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Chapter 1

Introduction

This course is about computing. The notion of computing is much more fundamental than
the notion of a computer, because computing can be done even without one. In fact, we have
been computing ever since we entered primary school, mainly using pencil and paper. Since
then, we have been adding, subtracting, multiplying, dividing, computing lengths, areas,
volumes and many many other things. In all these computations we follow some definite,
unambiguous set of rules. This course is about studying these rules for a variety of problems
and writing them down explicitly.

When we explicitly write down the rules (or instructions) for solving a given computing
problem, we call it an algorithm. Thus algorithms are primarily vehicles for communication;
for specifying solutions to computational problems, unambiguously, so that others (or even
computers) can understand the solutions. When an algorithm is written according to a
particular syntax of a language which can be interpreted by a digital computer, we call it
a program. This last step is necessary when we wish to carry out our computations using a
computer.

While writing down algorithms, it is important to choose an underlying model of com-
putation, i.e., to choose appropriate primitives to describe an algorithm. This choice deter-
mines the kind of computations that can be carried out in the model. For example, if our
computational model consists of only ruler and compass constructions, then we can write
down explicit rules (algorithms) for bisecting a line segment, bisecting an angle, construct-
ing lengths equal to given irrational numbers and a plethora of other things. We cannot,
however, trisect an angle. For trisecting an angle, we require additional primitives like, for
example, a protractor. For arithmetic computations we can use various computing models
like calculators, slide rules or even an abacus (as we believe our ancestors have been using).
With each of these models of computing, the rules for specifying a solution (algorithms) are
different, and the precision of the solution also differs. Thus, in our study of algorithms and
programs, it becomes important to first choose a reasonable model of computation. Soon
in these notes we will describe our choice of computational models which are widely used
in modern computing using digital computers.

Once a computational model is available, and we can specify an algorithm (or a program)
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8 CHAPTER 1. INTRODUCTION

to solve a given problem, we have to ensure that the algorithm is correct. We would also
wish that our algorithms are efficient. Correctness and efficiency of algorithm design are
central issues in this course. In what follows, we will endeavour to develop methodologies
for the design of correct algorithms.

Thus, the major vehicles for problem solving using computers are:

Algorithm An Algorithm is a finite specification of the solution to a given problem (definite
input and output). It is unambiguous and specifies a solution in terms of a finite
process (finite number of steps in execution).

Effective Algorithm When the solution is specified according to a model of computation
(particular primitives).

Program Encoding of an effective algorithm in the syntax of a programming language.
This is necessary for machine execution of an algorithm.

In the two subsequent chapters we will establish two widely used models of computation
and develop methodologies for algorithm design and proving correctness of algorithms in
these models. The two models that we will introduce are the functional and the imperative
models of computation. We will use the programming languages ML and Java to write
programs in these two models respectively. We will devote the remaining part of this
chapter to discuss some mathematical preliminaries necessary for programming.



Chapter 2

Mathematical preliminaries

We will discuss sets, relations and functions, Boolean logic and Principle of Mathematical
Induction. Most of these topics are covered in the high school curriculum and a confident
reader may wish to skip this section. However, we urge the reader to definitely read the
material on Mathematical Induction which forms the basis for programming.

2.0.1 Sets

A set is a collection of distinct objects. The class of CS120 is a set. So is the group of all
first year students at the IITD. We will use the notation {a, b, c} to denote the collection of
the objects a, b and c. The elements in a set are not ordered in any fashion. Thus the set
{a, b, c} is the same as the set {b, a, c}. Two sets are equal if they contain exactly the same
elements.

We can describe a set either by enumerating all the elements of the set or by stating
the properties that uniquely characterize the elements of the set. Thus, the set of all
even positive integers not larger than 10 can be described either as S = {2, 4, 6, 8, 10} or,
equivalently, as S = {x | x is an even positive integer not larger than 10}

A set can have another set as one of its elements. For example, the set A = {{a, b, c}, d}
contains two elements {a, b, c} and d; and the first element is itself a set.

We will use the notation x ∈ S to denote that x is an element of (“belongs to”) the set
S.

A set A is a subset of another set B, denoted as A ⊆ B, if x ∈ B whenever x ∈ A.
An empty set is one which contains no elements and we will denote it with the symbol

φ. For example, let S be the set of all students who fail the course CS120. S might turn
out to be empty (hopefully; if everybody studies hard). By definition, the empty set φ is
a subset of all sets. We will also assume an Universe of discourse U , and every set that we
will consider is a subset of U . Thus we have

1. φ ⊆ A for any set A

2. A ⊆ U for any set A

9



10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

The union of two sets A and B, denoted A∪B is the set whose elements are exactly the
elements of either A or B (or both). The intersection of two sets A and B, denoted A ∩B
is the set whose elements are exactly the elements of both A and B. Thus, we have

1. S = A ∪B = {x | (x ∈ A) or (x ∈ B)}

2. S = A ∩B = {x | (x ∈ A) and (x ∈ B)}

We also have, for any set A

1. A ∪ φ = A

2. A ∪ U = U

3. A ∩ φ = φ

4. A ∩ U = A

The Cartesian product of two sets A and B, denoted by A× B, is the set of all ordered
pairs (a, b) such that a ∈ A and b ∈ B. Thus,

A×B = {(a, b) | (a ∈ A) and (b ∈ B)}

An is the set of all ordered n-tuples (a1, a2, . . . , an) such that ai ∈ A for all i. i.e.,

An = A×A× · · · ×A︸ ︷︷ ︸
n times

We will use the following notation to denote some standard sets:

The set of Natural Numbers 1 N = {0, 1, 2, . . .}

The set of positive integers P = {1, 2, 3, . . .}

The set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

The set of real numbers R

The Boolean set B = {false, true}
1we will include 0 in the set of Natural numbers. After all, it is quite natural to score a 0 in an examination
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2.0.2 Relations and Functions

A binary relation from A to B is a subset of A×B. It is a characterization of the intuitive
notion that some of the elements of A are related to some of the elements of B. Familiar
binary relations from N to N are =, 6=, <, ≤, >, ≥. Thus the elements of the set
{(0, 0), (0, 1), (0, 2), . . . , (1, 1), (1, 2), . . .} are all members of the relation ≤ which is a subset
of N× N.

In general, an n-ary relation among the sets A1, A2, . . . , An is a subset of the set A1 ×
A2 × · · · ×An.

A function from A to B is a binary relation R from A to B such that for every element
a ∈ A there is a unique element b ∈ B so the (a, b) ∈ R (R(a) = b). We will use the
notation R : A → B to denote a function R from A to B. The set A is called the domain
of the function R and the set B is called the co-domain of the function R. The range of a
function R : A→ B is the set {b ∈ B | for some a ∈ A, R(a) = b}. Some familiar examples
of functions are

1. + and ∗ (addition and multiplication) are functions of the type f : N× N→ N

2. − (subtraction) is a function of the type f : N× N→ Z.

3. div and mod are functions of the type f : N × P → N. If a = q ∗ b + r such that
0 ≤ r < b and a, b, q, r ∈ N then the functions div and mod are defined as div(a, b) = q
and mod(a, b) = r. We will often write these binary functions as a∗b, a div b, a mod b
etc.

4. The binary relations =, 6=, <, ≤, >, ≥ are also functions of the type f : N×N→ B
where B = {false, true}.

2.0.3 Principle of Mathematical Induction

Anyone who has had a good grounding in school mathematics must be familiar with two
uses of mathematical induction.

1. Definition of functions and relations by mathematical induction,

2. Proofs by the principle of mathematical induction.

We present below some familiar examples of definitions by mathematical induction.

Example 2.1 The factorial function on natural numbers (of the type f : N→ N) is defined
as follows

Basis. 0! = 1

Induction step. (n+ 1)! = (n+ 1) ∗ n!
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Example 2.2 The nth power (where n is a natural number) of a positive number x is often
defined as

Basis. x0 = 1

Induction step. xn+1 = xn ∗ x

This is a function of the type f : P× N→ P.

Example 2.3 The set of n-tuples of natural numbers can be defined in terms of Cartesian
products as

Basis. N1 = N

Induction step. Nn+1 = Nn × N

Example 2.4 For binary relations R and S on A we define their composition (denoted
R ◦ S) as follows.

R ◦ S = {(a, c) | for some b ∈ A, (a, b) ∈ R and (b, c) ∈ S}

We may extend this binary relational composition to an n-fold composition of a single
relation R as follows.

Basis. R1 = R

Induction step. Rn+1 = R ◦Rn

Similarly the principle of mathematical induction is the means by which we have often
proved (as opposed to defining) properties about numbers, or statements involving the
natural numbers. The principle may be stated as follows.

Principle of Mathematical Induction (PMI) – Version 1
A property P holds for all natural numbers provided

Basis step: P holds for 0, and

Induction step: If P holds for an arbitrary n ≥ 0, P also holds for n+ 1

The underlined portion, called the Induction hypothesis, is an assumption that is nec-
essary for the conclusion to be proved. Intuitively, the principle captures the fact that in
order to prove any statement involving natural numbers, it suffices to do it in two steps.
The first step is the basis which needs to be proved. The proof of the induction step es-
sentially tells us that the reasoning involved in proving the statement involving the other
natural numbers is the same once the basis has been proved. Hence instead of an infinitary
proof (one for each natural number) we have a compact finitary proof which exploits the
similarity of the proofs for all the naturals except the basis.
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Example 2.5 We prove that all natural numbers of the form n3 + 2n are divisible by 3.
Proof:

Basis. For n = 0, we have n3 + 2n = 0 which is divisible by 3.

Induction hypothesis. n3 + 2n is divisible by 3 for an arbitrary n ≥ 0.

Induction step. Consider (n+ 1)3 + 2(n+ 1). We have

(n+ 1)3 + 2(n+ 1)

= (n3 + 3n2 + 3n+ 1) + (2n+ 2)

= (n3 + 2n) + 3(n2 + n+ 1)

which is divisible by 3.

2

Several versions of this principle exist. We state some of the most important ones. In each
case, the underlined portion is the induction hypothesis. For example it is not necessary
to consider 0 (or even 1) as the basis step. Any integer k could be considered the basis, as
long as the property is to be proved for all n ≥ k.

Principle of Mathematical Induction (PMI) – Version 2
A property P holds for all natural numbers, n ≥ k ≥ 0 provided

Basis step: P holds for k, and

Induction step: If P holds for an arbitrary n ≥ k, then P holds for n+ 1.

Such a version seems very useful when the property to be proved is not true or is undefined
for 0 or 1. The following example illustrates this.

Example 2.6 Suppose we have stamps of two different denominations, 3 paise and 5 paise.
We want to show that it is possible to make up exactly any postage of 8 paise or more using
stamps of these two denominations [Liu]. Thus we want to show that every positive integer
n ≥ 8 is expressible as n = 3i+ 5j where i, j ≥ 0.
Proof:

Basis. For n = 8, we have n = 3 + 5, i.e. i = j = 1.

Induction hypothesis. n = 3i+ 5j for an n ≥ 8, i, j ≥ 0.

Induction step. Consider n + 1. If j = 0 then clearly i ≥ 3 and we may write n + 1 as
3(i− 3) + 5(j + 2). Otherwise n+ 1 = 3(i+ 2) + 5(j − 1).

2
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In the next version we strengthen the hypothesis.

Principle of Mathematical Induction (PMI) – Version 3
A property P holds for all natural numbers provided

Basis step: P holds for 0, and

Induction step: If P holds for all m, 0 < m ≤ n for an arbitrary n ≥ 0, then P also holds
for n+ 1.

Example 2.7 Let F0 = 0, F1 = 1, F2 = 1, . . . be the Fibonacci sequence where for all
n ≥ 2, Fn = Fn−1 + Fn−2. Let φ = (1 +

√
5)/2. We now show that Fn ≤ φn−1 for all

positive n.
Proof:

Basis. For n = 1, we have F1 = φ0 = 1.

Induction hypothesis. Fn ≤ φn−1 for all m, 1 ≤ m ≤ n.

Induction step.

Fn+1 = Fn + Fn−1
≤ φn−1 + φn−2 (by the induction hypothesis)
= φn−2(φ+ 1)
= φn (since φ2 = φ+ 1)

2

Versions 1 and 2 of PMI rely on the fact that starting from 0 (or k) every integer larger
than 0 (or k) may be obtained by successively adding 1 to the previous one, whereas version
3 is obtained by considering the natural numbers as being totally ordered by the < relation.

Since the natural numbers are themselves defined as the smallest set N such that 0 ∈ N
and whenever n ∈ N, n+ 1 also belongs to N. Therefore we may state yet another version
of PMI from which the other versions previously stated may be derived. The intuition
behind this version is that a property P may also be considered as defining a set S = {x |
x satisfies P}. Therefore if a property P is true for all natural numbers the set defined by
the property is the set of natural numbers. This gives us the last version of PMI.

Principle of Mathematical Induction (PMI) – Version 0
For a set S, S = N provided

Basis step: 0 ∈ S, and

Induction step: If n ∈ S, then n+ 1 ∈ S.
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Problems

1. GCD of two integers a, b > 0 is defined as max{x : x is an integer, x > 0, x | a, x | b},
where the notation x | a means x divides a. Consider the following algorithm for
computing GCD using pencil and paper:

gcd(a, b) =


a if a = b
gcd(a− b, b) if a > b
gcd(a, b− a) if b > a

Convince yourself that the above algorithmic specification (rule) is correct for com-
puting GCD. Carry out the pencil and paper computation using the above algorithm
for the special case of a = 18 and b = 12.

2. Suppose your algorithmic primitives are ruler and compass constructions.

(a) Explain how you can compare two integer lengths to determine which is larger.

(b) Explain how you can subtract one integer from the other.

(c) Give a set of rules (algorithm) for computing the GCD of two integers using ruler
and compass.

3. Prove the following formulae by using PMI.

(a) 1 + 2 + · · ·+ n = n(n+ 1)/2

(b) 1 + 3 + 5 + · · ·+ (2n− 1) = n2

(c) 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

4. Note that

1 +
1

2
= 2− 1

2

1 +
1

2
+

1

4
= 2− 1

4

1 +
1

2
+

1

4
+

1

8
= 2− 1

8

Guess the general law suggested and prove it by using PMI.

5. Prove the following statement using PMI: If a line of unit length is given, then a line
of length

√
n can be constructed using ruler and compass for every positive integer n.

6. Prove by PMI, that every integer n > 1 is either a prime or a product of primes.

7. Prove that versions 1, 2 and 3 of PMI are mutually equivalent.
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8. Find the fallacy in the following proof by PMI. Rectify it and again prove using PMI.
Theorem

1

1× 2
+

1

2× 3
+ · · ·+ 1

(n− 1)× n
=

3

2
− 1

n

Proof: For n = 1 the LHS is 1/2 and so is the RHS. Assume that the theorem is
true for an n > 1. We then prove the induction step.

LHS =
1

1× 2
+

1

2× 3
+ · · ·+ 1

(n− 1)× n
+

1

n× (n+ 1)

=
3

2
− 1

n
+

1

n× (n+ 1)

=
3

2
− 1

n
+

1

n
− 1

n+ 1

=
3

2
− 1

n+ 1

2

9. Find the fallacy in the following proof by PMI.
Theorem Given any collection of n blonde girls. If at least one of the girls has blue
eyes, then all n of them have blue eyes.
Proof: The statement is obviously true for n = 1. The step from k to k + 1 can
be illustrated by going from n = 3 to n = 4. Assume, therefore, that the statement
is true for n = 3 and let G1, G2, G3, G4 be four blonde girls, at least one of which,
say G1, has blue eyes. Taking G1, G2, and G3 together and using the fact that the
statement is true when n = 3, we find that G2 and G3 also have blue eyes. Repeating
the process with G1, G2 and G4, we find that G4 has blue eyes. Thus all four have
blue eyes. A similar argument allows us to make the step from k to k + 1 in general.
2

Corollary. All blonde girls have blue eyes.
Proof: Since there exists at least one blonde girl with blue eyes, we can apply the
foregoing result to the collection consisting of all blonde girls. 2

Note: This example is from G. Pólya, who suggests that the reader may want to test
the validity of the statement by experiment.



Chapter 3

A functional model of computation

In this chapter we will introduce the basics of a functional model of computation. The func-
tional model is very close to mathematics; hence functional algorithms are easy to analyze
in terms of correctness and efficiency. We will use the ML interactive environment to write
and execute functional programs. This will provide an interactive mode of development and
testing of our early algorithms. In the later chapters we will see how a functional algorithm
can serve as a specification for development of algorithms in other models of computation.

In the functional model of computation every problem is viewed as an evaluation of a
function. The solution to a given problem is specified by a complete and unambiguous
functional description. Every reasonable model of computation must have the following
facilities:

Primitive expressions which represent the simplest objects with which the model is con-
cerned.

Methods of combination which specify how the primitive expressions can be combined
with one another to obtain compound expressions.

Methods of abstraction which specify how compound objects can be named and ma-
nipulated as units.

In what follows we introduce the following features of our functional model:

1. The Primitive expressions.

2. Definition of one function in terms of another (substitution).

3. Definition of functions using conditionals.

4. Inductive definition of functions.

We will introduce the more advanced concepts in our functional model later in these notes.

17
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3.1 The primitive expressions

The basic primitives of the functional model are constants, variables and functions.
Elements of the sets N,Z,R are constants. Thus, numbers like -1, 0, 1, 5.26 are all

constants. So are the elements of the set B = {true, false}. We will introduce other
kind of constants later in these notes. Variables are identifiers which refer to data objects
(constants). We will use identifiers like n, a, b, x etc. to refer to various data elements used
in our functional algorithms. The variables are bound to values (constants) in pretty much
the same way as in school algebra. Thus, the declarations x = 5 and y = true bind the
variables x and y to the values 5 and true respectively.

In what follows we describe an interactive session in the ML programming environment
where we bind variables to constants.

Typing val x = 5; at the prompt - of the ML environment defines x to be 5. The ML

interpreter returns val x = 5 : int and waits at the next - prompt.

Standard ML of New Jersey, Version 110.0.3, January 30, 1998

- val x = 5;

val x = 5 : int

-

If we now type x; at the ML prompt the interpreter returns val it = 5 : int. The word
it is an ML keyword indicating the the value of the last expression that it has evaluated.
Further, note that ML also informs you of the type of the value that it has returned. The
word int is used to denote an integer.

- x;

val it = 5 : int

Similarly we can bind the variable y to the boolean constant true (true) as follows:

- val y = true;

val y = true : bool

-

Typing y; next gives us val it = true : bool.

- y;

val it = true : bool

-

The primitive functions of the type f : Z× Z→ Z and f : R× R→ R which we assume
to be available in our functional model are addition (+), subtraction (−), multiplication
(∗). We will also assume the div and mod functions of the type f : N×P→ N. Note that if
a ∈ N and b ∈ P and a = q ∗ b+ r for some integers q ∈ N and 0 ≤ r < b then div(a, b) = q
and mod(a, b) = r. The division function / : R × R → R will be assumed to be valid only
for real numbers. In addition to the above, we will assume the functions =, ≤, <, ≥, >
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and 6= which are of the type f : Z × Z → B or f : R × R → B depending on the context;
and the functions ∧ : B × B → B (and), ∨ : B × B → B (or) and ¬ : B → B (not). These
functions can be invoked in ML in the following way.

〈Example〉≡
- 5 * 2;

val it = 10 : int

- 5.0/2.0;

val it = 2.5 : real

- 5 - 2;

val it = 3 : int

- val a = true;

val a = true : bool

- val b = false;

val b = false : bool

- not a;

val it = false : bool

- a andalso b;

val it = false : bool

- a orelse b;

val it = true : bool

- 10 div 3;

val it = 3 : int

- 10 mod 3;

val it = 1 : int

- ~10 div 3;

val it = ~4 : int

- ~10 mod 3;

val it = 2 : int

-
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In the above example the user types in the expressions after the ML prompt - and the ML

interpreter prints the result in the next line. Note that ML distinguishes between the binary
operation of subtraction - from the unary minus ~ used for negative numbers. Further notice
that ML follows standard mathematical convention for the div and mod operators, viz. that
the quotient and remainder on division must satisfy the condition that the remainder is
non-negative.
〈Example〉≡ is not a part of the ML code. It is our convention for stating that 〈Example〉

is the name we will use to denote the following Program codes. The actual ML code follows
in the type-writer font.

3.2 Substitution of functions

In what follows, we give a few examples of definition of one function in terms of another
and the evaluation of such functions through substitution.

Example 3.1 Finding the square of a natural number.

We can directly specify the function square, which is of the type square : N → N in
terms of the standard multiplication function ∗ : N× N→ N as

square(n) = n ∗ n

Here, we are assuming that we can substitute one function for another provided they both
return an item of the same type. To evaluate, say, square(5), we have to thus evaluate 5∗5.
An ML program for this function can be described as

〈Square〉≡
fun square(n):int = n * n;

fun is a special word in ML (called a keyword) that is used for defining new functions. In
our example we use it to define square n to be n * n. An invocation of the ML function
with square(5) returns 25.

Thus, we can build more complex functions from simpler ones. As an example, let us
define a function to compute x2 + y2.

Example 3.2 Finding the sum of two squares.

We can define a function sum squares : N× N→ N as follows

sum squares(x, y) = square(x) + square(y)

The function sum squares is thus defined in terms of the functions + and square. The
corresponding ML program can be written as

〈Sum of squares〉≡
fun sum_squares (x, y) = square (x) + square (y);
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An invocation of the ML function as sum squares (3, 4) results in 25.

As another example, let us consider the following

Example 3.3
Let us define a function f : N→ N as follows

f(n) = sum squares((n+ 1), (n+ 2))

In ML we can define it as

〈The function f 〉≡
fun f (n) = sum_squares (n+1, n+2);

Invocation of the function with f(5) results in evaluation of sum squares (5+1, 5+2)

which, in turn, results in the evaluation of square (6) + square (7) yielding the final
answer + (6 * 6) + (7 * 7) which is 85.

3.2.1 Substitution using let

We often need local variables in our functions other than those defined as formal parameters.
The ML function let allows for definition and substitution of local variables. We illustrate
its use through the following example.

Example 3.4 Using let to define local variables.
Suppose we wish to compute the function

f(x, y) = x(1 + xy)2 + y(1− y) + (1 + xy)(1− y)

We could also express this as

a = 1 + xy

b = 1− y
f(x, y) = xa2 + yb+ ab

Thus we can avoid multiple computations of 1 +xy and 1− y by using local variables a and
b.

In ML this can be achieved using the primitive let as follows

〈using let〉≡
fun f (x, y) =

let

val a = 1 + x * y;

val b = 1 - y

in x*a*a + y*b + a*b

end;
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The general form of let is

〈let〉≡
let

val 〈var 1 〉 = 〈exp 1 〉;
val 〈var 2 〉 = 〈exp 2 〉;

.

.

.

val 〈var n〉 = 〈exp n〉
in 〈body〉
end;

which can be thought of as

〈〉≡
let

〈var 1 〉 have the value defined by 〈exp 1 〉 and

〈var 2 〉 have the value defined by 〈exp 2 〉 and

.

.

.

〈var n〉 have the value defined by 〈exp n〉
in 〈body〉
end;
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3.3 Definition of functions using conditionals

In this section we give a few examples of function definitions using conditionals.

Example 3.5 Finding the larger of two numbers.
Let us define a function max : N×N→ N.The domain set for this function is the Cartesian
product of natural numbers representing a pair, and the co-domain is the set N. Thus, the
function accepts a pair of natural numbers as its input, and gives a single natural number
as its output. We define this function as

max(a, b) =

{
a if a ≥ b
b otherwise

While defining the function max, we have assumed that we can compare two natural num-
bers, with the ≥ function and determine which is larger. The basic primitive used in this
case is if-then-else. Thus if a ≥ b, the function returns a as the output, else it returns b.
Note that for every pair of natural numbers as its input, max returns a unique number as
the output and hence it adheres to the definition of a function given in Section 2.0.2. In ML

the above definition looks as follows.

〈max 〉≡
fun max (a, b):int =

if a >= b then a

else b;

Example 3.6 Finding the absolute value of x.
We define the function abs : Z→ N as

abs(x) =


x if x > 0
0 if x = 0
−x if x < 0

In ML , we may define the above function as

〈abs (first alternative)〉≡
fun abs (x) =

if x > 0 then x

else

if x = 0 then 0

else ~x;

or, alternatively as

〈abs (second alternative)〉≡
fun abs (x) =

if x < 0 then ~x

else x;
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In general, the conditional function if is expressed in ML as

〈if expression〉≡
if 〈predicate〉 then 〈consequent〉 else 〈alternative〉;
To evaluate the if function, the 〈predicate〉 is evaluated first. The 〈predicate〉 must eval-

uate to either true or false. If the 〈predicate〉 evaluates to true, the value of the 〈consequent〉
is returned. Otherwise the value of the 〈alternative〉 is returned.

3.4 Functions as inductively defined computational processes

All the examples we have presented so far are of functions which can be evaluated by
substitutions or by evaluation of conditions. In what follows we give an example of an
inductively defined functional algorithm for computing the GCD of two positive integers.
This algorithm was described in Chapter 1.

Example 3.7 Computing the GCD of two numbers.
We can define the function gcd : P× P→ P as

gcd(a, b) =


a if a = b
gcd(a− b, b) if a > b
gcd(a, b− a) if b > a

It is a function because for every pair of positive integers as input, it gives a positive integer
as the output. It is also a finite computational process, because given any two positive
integers as input, the description tells us, unambiguously, how to compute the solution and
the process terminates after a finite number of steps. For example for the specific case of
computing gcd(18, 12), we have

gcd(18, 12) = gcd(12, 6) = gcd(6, 6) = 6.

In ML we can write the above function as

〈gcd〉≡
fun gcd (a, b) =

if a = b then a

else

if a>b then gcd (a-b, b)

else gcd (a, b-a);
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However not all mathematically valid specifications of functions are algorithms. For exam-
ple,

sqrt(n) =

{
m if m ∗m = n
0 if 6 ∃m : m ∗m = n

is mathematically a perfectly valid description of a function of the type sqrt : N → N.
However the mathematical description does not tell us how to evaluate the function, and
hence it is not an algorithm. An algorithmic description of the function would have to start
with m = 1 and check if m ∗ m = n for all subsequent increments of m by 1 till either
such an m is found or m ∗ m > n. We will soon see how to describe such functions as
computational processes or algorithms such that the computational processes terminate in
finite time.

As another example of a mathematically valid specification of a function which is not an
algorithm, consider the following functional description of f : N→ N

f(n) = 0 for n = 0 and f(n) = f(n+ 1)− 1 for all n ∈ N

f(n) = n ∀n ∈ N is a solution (though not the only one) to the above specification.
However, it is not a valid algorithm because in order to evaluate f(1) we have to evaluate
f(n+1) for n = 1, 2, 3, . . . which leads to an infinite computational process. One can rewrite
the specification of the above function, in an inductive form, as

g(n) =

{
0 if n = 0
g(n− 1) + 1 otherwise

Now this indeed defines a valid algorithm for computing f(n). Mathematically the spec-
ifications for f(n) and g(n) are equivalent in that they both define the same function.
However, the specification for g(n) constitutes a valid algorithm whereas that for f(n) does
not. For successive values of n, g(n) can be computed as

g(0) = 0

g(1) = g(0) + 1 = 1

g(2) = g(1) + 1 = g(0) + 1 + 1 = 2

...

Similarly, consider the definition

f(n) = f(n)

Every function is a solution to the above but it is computationally undefined.
Thus, we see that a specification of a function is an algorithm only if it actually

defines a precise computational procedure to evaluate it. For instance, any of the following
constitutes an algorithmic description:
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1. It is directly specified in terms of a pre-defined function which is either primitive or
there exists an algorithm to compute it.

2. It is specified in terms of the evaluation of a condition.

3. It is inductively defined and the validity of its description can be established through
the Principle of Mathematical Induction.

4. It is obtained through any finite number of combinations of the above three steps
using substitutions.

In what follows we further elaborate on how we can describe functions as computational
processes. Complex functions can be algorithmically defined in terms of two main types of
processes - recursive and iterative.

3.5 Recursive processes

Recursive computational processes are characterized by a chain of deferred operations. As
an example, we will consider an algorithm for computing the factorial of an integer n (n!).

Example 3.8 Factorial Computation: Given n ≥ 0, compute factorial of n (n!)1.
Recall the inductive definition of n! given inExample 2.1. On the basis of the inductive
definition, we can define a functional algorithm for computing factorial(n), which is of the
type factorial : N→ N as

factorial(n) =

{
1 if n = 0
n× factorial(n− 1) otherwise

Here factorial(n) is the function “name” and the description after the = sign is the “body”
of the function. A ML program for the above algorithm looks as follows:

〈Factorial〉≡
fun factorial (n) =

if n = 0 then 1

else n * factorial (n-1);

1The factorial function was first defined by Euclid in his Elements during the course of his proof of the
existence of infinitely many prime numbers. This was written around 300 B.C.
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It is instructive to examine the computational process underlying the above definition.
The computational process, in the special case of n = 5, looks as follows

factorial(5)

= (5× factorial(4))

= (5× (4× factorial(3)))

= (5× (4× (3× factorial(2))))

= (5× (4× (3× (2× factorial(1)))))

= (5× (4× (3× (2× (1× factorial(0))))))

= (5× (4× (3× (2× (1× 1)))))

= (5× (4× (3× (2× 1))))

= (5× (4× (3× 2)))

= (5× (4× 6))

= (5× 24)

= 120

A computation such as this is characterized by a growing and shrinking process. In the
growing phase each “call” to the function is replaced by its “body” which in turn con-
tains a “call” to the function with different arguments. In order to compute according to
the inductive definition, the actual multiplications will have to be postponed till the base
case of factorial(0) can be evaluated. This results in a growing process. Once the base
value is available, the actual multiplications can be carried out resulting in a shrinking pro-
cess. Computational processes which are characterized by such “deferred” computations
are called recursive. This is not to be confused with the notion of a recursive procedure
which just refers to the syntactic fact that the procedure is described in terms of itself.

Note that by a computational process we require that a machine, which has only the
capabilities provided by the computational model, be able to perform the computation.
A human normally realizes that multiplication is commutative and associative and may
exploit it so that he does not have to defer performing the multiplications. However if
the multiplication operation were to be replaced by a non-associative operation then even
the human would have to defer the operation. Thus it becomes necessary to perform all
recursive computations through deferred operations.

Exercise 3.1 Consider the following example of a function f : N → Z defined just like
factorial except that multiplication is replaced by subtraction which is not associative.

f(n) =

{
1 if n = 0
n− f(n− 1) otherwise

1. Unfold the computation, as in the example of factorial(5) above, to show that f(5) =
2.
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2. What properties will you use as a human computer in order to avoid deferred com-
putations?

3.6 Analysis of correctness and efficiency

In this section we deal with the methodology for the analysis of correctness and efficiency
of functional algorithms.

3.6.1 Correctness

The correctness of the above functional algorithm can be established by using the Principle
of Mathematical Induction. The algorithm adheres to an inductive definition and, conse-
quently, can be proved correct by using PMI. Even though the proof of correctness may
seem obvious in this instance, we give the proof to emphasize and clarify the distinction
between a mathematical specification and an algorithm that implements it.
To show that: For all n ∈ N, factorial(n) = n! (i.e., the function factorial implements
the factorial function defined in Example 2.1).
Proof: By PMI on n.

Basis. When n = 0, factorial(n) = 1 = 0! by definitions of factorial and 0!.

Induction hypothesis. For k = n− 1, k ≥ 0, we have that factorial(k) = k!.

Induction step. Consider factorial(n).

factorial(n) = n× factorial(n− 1)
= n× (n− 1)! by the induction hypothesis
= n! by the definition of n!

Hence the function factorial implements the factorial function n!. 2

3.6.2 Efficiency

The other important aspect in the analysis of an algorithm is the issue of efficiency - both in
terms of space and time. The efficiency of an algorithm is usually measured in terms of the
space and time required in the execution of the algorithm (the space and time complexities).
These are functions of the input size n.

A careful look at the above computational process makes it obvious that in order to
compute factorial(n), the n integers will have to be remembered (or stacked up) before the
actual multiplications can begin. Clearly, this leads to a space requirement of about n. We
will call this the space complexity.

The time required to execute the above algorithm is directly proportional (at least as a
first approximation) to the number of multiplications that have to be carried out and the
number of function calls required. We can evaluate this in the following way. Let T (n) be
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the number of multiplications required for a problem of size n (when the input is n). Then,
from the definition of the function factorial we get

T (n) =

{
0 if n = 0
1 + T (n− 1) otherwise

(3.1)

T (0) is obviously 0, because no multiplications are required to output factorial(0) = 1 as
the result. For n > 0, the number of multiplications required is one more than that required
for a problem of size n− 1. This is a direct consequence of the recursive specification of the
solution. We can solve Equation 3.1 by telescoping, i.e.,

T (n) = T (n− 1) + 1 (3.2)

= T (n− 2) + 2

...

= T (0) + n

= n

Thus n is the number of multiplications required to compute factorial(n) and this is the
time complexity of the problem.

To estimate the space complexity, we have to estimate the number of deferred operations
which is about the same as the number of times the function factorial is invoked.

Exercise 3.2 Show, in a similar way, that the number of function calls required to evaluate
factorial(n) is n+ 1.

Equation 3.1 is called a recurrence equation and we will use such equations to analyze the
time complexities of various algorithms in these notes. Note that the measure of space and
time given above are independent of how fast a computing machine is. Rather, it is given
in terms of the amount of space required and the number of multiplications and function
calls that are required. The measures are thus independent of any computing machine.

3.6.3 Efficiency, Why and How?

Modern technological advances in silicon have seen processor sizes fall and computing power
rise dramatically. The microchip one holds in the palm today packs more computing power
– both processor speed and memory size – than the monster monoliths that occupied whole
rooms in the 50’s. A sceptic is therefore quite entitled to ask: who cares about efficient
algorithms anyway? If it runs too slow, just throw the processor away and get a larger one. If
it runs out of space, just buy a bigger disk! Let’s perform some simple back-of-the-envelope
calculations to see if this scepticism is justified.

Consider the problem of computing the determinant of a matrix, a problem of funda-
mental importance in numerical analysis. One method is to evaluate the determinant by
the well known formula:

detA =
∑
σ

(−1)sgnσA1,σ(1) ·A2,σ(2) · · ·An,σ(n).
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Suppose you have implemented this algorithm on your laptop to run in 10−4 × 2n seconds
when confronted with any n×n matrix (it will actually be worse than this!). You can solve
an instance of size 10 in 10−4 × 210 seconds, i.e., about a tenth of a second. If you double
the problem size, you need about a thousand times as long, or, nearly 2 minutes. Not too
bad. But to solve an instance of size 30 (not at all an unreasonable size in practice), you
require a thousand times as long again, i.e. even running your laptop the whole day isn’t
sufficient (the battery would run out long before that!). Looking at it another way, if you
ran your algorithm on your laptop for a whole year (!) without interruption, you would still
only be able to compute the detrminant of a 38× 38 matrix!

Well, let’s buy new hardware! Let’s go for a machine that’s a hundred times as fast –
now this is getting almost into supercomputing range and will cost you quite a fortune!
What does it buy you in computing power? The same algorithm now solves the problem
in 10−6 × 2n seconds. If you run it for a whole year non–stop (let’s not even think of
the electricity bill!), you can’t even compute a 45 × 45 determinant! In practice, we will
routinely encounter much larger matrices. What a waste!

Exercise 3.3 In general, show that if you were previously able to compute n× n determi-
nants in some given time (say a year) on your laptop, the fancy new supercomputer will
only solve instances of size n+ log 100 or about n+ 7 in the same time.

Suppose that you’ve taken this course and invest in algorithms instead. You discover the
method of Gaussian elimination (we will study it later in these notes) which, let us assume,
can compute a n × n determinant in time 10−2n3 on your laptop. To compute a 10 × 10
determinant now takes 10 seconds, and a 20 × 20 determinant now requires between one
and two minutes. But patience! It begins to pay off later: a 30× 30 determinant takes only
four and a half minutes and in a day you can handle 200× 200 determinants. In a years’s
computation, you can do monster 1500× 1500 determinants.

3.6.4 In the long run: Asymptotic analysis and Orders of growth

You may have noticed that there was something unsatisfactory about our way of doing
things – the calculation was tuned too closely to our machine. The figure of 10−4 × 2n

seconds is a bit arbitrary – the time to execute on one particular laptop – and has no
other absolute significance for an analysis on a different machine. We would like to remedy
this situation so as to have a mode of analysis that has absolute significance applicable to
any machine. It should tell us precisely how the problem scales – how does the resource
requirement grow as the size of the input increases – on any machine.

We now introduce one such machine independent measure of the resources required by a
computational process – the order of growth. If n is a parameter that measures the size of
a problem then we can measure the resources required by an algorithm as a function R(n).
We say that the function R(n) has an order of growth O(f(n)) (of order f(n)), if there exist
constants K and n0 such that R(n) ≤ Kf(n) whenever n ≥ n0.

In our example of the computation of factorial(n), we found that the space required
is n, whereas the number of multiplications and function calls required are n and n + 1
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respectively. We see, that according to our definition of order of growth, each of these are
O(n). Thus, we can say that the space complexity and the time complexity of the algorithm
are both O(n). In the example of determinant computation, regardless of the particular
machine and the corresponding constants, the algorithm based on Gaussian elimination has
time complexity O(n3).

Order of growth is only a crude measure of the resources required. A process which
requires n steps and another which requires 1000n steps have both the same order of growth
O(n). However, On the other hand, the O(·) notation has the following advantages:

• It hides constants, thus it is robust across different machines.

• It gives fairly precise indication of how the algorithm scales as we increase the size of
the input. For example, if an algorithm has an order of growth O(n), then doubling
the size of the input will very nearly double the amount of resources required, whereas
with a O(n2) algorithm will square the amount of resources required.

• It tells us which of two competing algorithm will win out eventually in the long
run: for example, however large the constant K may be, it is always possible to find
a break point above which Kn will always be smaller than n2 or 2n giving us an
indication of when an algorithm with the former complexity will start working better
than algorithms with the latter complexities.

• Finally the very fact that it is a crude analysis means that it is frequently much easier
to perform than an exact analysis! And we get all the advantages listed above.

In what follows we will give examples of algorithms which have different orders of growth.

Exercise 3.4 What does O(1) mean? Are O(1) and O(n) different?

In Figure 3.1 we show the relative scaling of some order functions with respect to n. In
Figure 3.2 we plot the O(n2) and the O(2n) curves with an increased y-axis range. Clearly
any algorithm with a time complexity of O(2n) is computationally infeasible. In order to
solve a problem of size 100 roughly 2100 ≈ 1030 steps will be required.

Exercise 3.5 Assuming that a single step may be executed in, say, 10−9 seconds, obtain
a rough estimate to solve a problem of size 100 using an algorithm with a time complexity
of O(2n).

3.7 More examples of recursive algorithms

Now that we have established methods for analyzing the correctness and efficiency of algo-
rithms, let us consider a few more examples of fundamental recursive algorithms.

Example 3.9 Computing xn: Given an integer x > 0, compute xn, where n ≥ 0.
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Figure 3.1: A comparison of various orders of growth.

We seek a function of the type power : P× N→ N. Let us develop this algorithm using
PMI- version 1 according to Example 2.2. Clearly, the base case specification can be
given as power(x, n) = 1 if n = 0. If we assume, as the induction hypothesis, that we
can compute power(x, n − 1) = xn−1 for an n ≥ 1, then the induction step to compute
power(x, n) = xn would be x ∗ power(x, n− 1). Thus, an obvious algorithmic specification
for this problem is

power(x, n) =

{
1 if n = 0
x ∗ power(x, n− 1) otherwise

The correctness of the algorithm can be established by the PMI. See Example 2.2.

Exercise 3.6 Show that the space and time complexities of the above algorithm are both
O(n).

An ML program for this function can be given as

〈Power〉≡
fun power (x, n) =

if n = 0 then 1

else x * power (x, n-1)
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Figure 3.2: A comparison of O(n2), O(n logn) and O(2n).

We can, however, significantly reduce the number of multiplications required by adopting
the following strategy. Note that once we have computed x2, we can compute x4 by simply
squaring it with only one multiplication, instead of the two required by the above scheme.
Thus, we can compute xn by successive squaring.

We can again develop this algorithm according to the Principle of Mathematical Induction
on n. The base can again be given as power(x, n) = 1 if n = 0. Let us assume that we can
compute xn div 2 = power(x, n div 2) as the inducuction hypothesis (we use PMI - version
3). Then sqr(power(x, n div 2)) would give us xn−1 or xn depending on whether n is odd or
even. Thus the induction step to compute xn would be x∗sqr(power(x, n div 2)) if n is odd
and sqr(power(x, n div 2)) if n is even. This leads to the following algorithm specification2

fast power(x, n) =


1 if n = 0
x ∗ square(fast power(x, (n div 2))) if odd(n)
square(fast power(x, (n div 2))) otherwise

where odd(n) = ((n mod 2) = 1) and square(x) = x ∗ x.

The correctness of the fast algorithm can be established as follows:

2The idea behind this algorithm is ancient. It appears in the Hindu Chandah-sutra by Acharya Pingala,
written before 200 B.C. See Knuth 1969, section 4.6.3, for a more detailed discussion.



34 CHAPTER 3. A FUNCTIONAL MODEL OF COMPUTATION

Correctness
To show that: fast power(x, n) = xn for all x ∈ P, n ∈ N.
Proof: By induction on n using PMI – version 3.

Basis. for n = 0 we have fast power(x, n) = 1 = x0 for any x ∈ P.

Induction hypothesis. fast power(x,m) = xm for all 0 ≤ m ≤ (n− 1) and for all x ∈ P.

Induction step. Consider power(x, n) for any x ∈ P.

1. If n is odd. Then n = 2k + 1 for some k ≥ 0 and n div 2 = k.

fast power(x, n) = x ∗ (fast power(x, n div 2))2

= x ∗ xn div 2 ∗ xn div 2 by induction hypothesis
= x ∗ xn−1 by the fact that n is odd
= xn

2. If n is even. Then n = 2k for some k ≥ 0 and n div 2 = k.

fast power(x, n) = (fast power(x, n div 2))2

= xn div 2 ∗ xn div 2 by induction hypothesis
= xn by the fact that n is even

2

Efficiency
To see that the successive squaring method is more efficient than our previous method,
let us compute the number of multiplications required by the method of recurrence. For
simplicity, we assume that n is a power of 2 (n = 2m). The recurrence is given by

T (n) =

{
1 if n = 1
T (n/2) + 1 for n > 1

we solve the recurrence equation to obtain

T (n) = T (2m−1) + 1

= T (2m−2) + 2

...

= T (20) +m

= m+ 1

= log2 n+ 1

Thus, instead of O(n) multiplications, the new algorithm requires only O(log2 n) multi-
plications. (we will write this as O(lg n)) multiplications. To see how significant this
improvement is, we compare n and lg n in the following table.
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n 2 4 8 16 32 64 . . .

lg n 1 2 3 4 5 6 . . .

The ML function corresponding to the fast powering algorithm is

〈Fast power〉≡
fun fast_power (x, n) =

let fun odd (m) = (m mod 2 = 1)

in if n=0 then 1

else if odd (n) then x * square (fast_power (x, n div 2))

else square (fast_power (x, n div 2))

end;

square is the function we have previously defined and div is standard function in ML .3

Exercise 3.7 For the fast method of powering –

1. Show that for any value of n the number of multiplications required cannot be more
than d2 lg ne. Hence conclude that the number of multiplications is O(lg n). For what
values of n do you require d2 lg ne multiplications exactly.

2. Evaluate the number of function calls required.

3. Evaluate the space requirement.

Example 3.10 Fibonacci: Computation of the nth Fibonacci number, n ≥ 1.

The first few numbers in the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, . . .

Each number beyond the first two is derived from the sum of its two nearest predecessors.
We can give a straightforward functional description for computing the nth Fibonacci

number. It is a function of the type fib : P→ P

fib(n) =


1 if n = 1
1 if n = 2
fib(n− 1) + fib(n− 2) otherwise

The correctness of the algorithm is obvious from the inductive definition. We can write an
ML function for the above as

〈Fibonacci〉≡
fun fib (n) =

if (n=0) orelse (n=1) then 1

else fib (n-1) + fib (n-2);

3Note that the most recent version of ML (version 110.0.3) assumes by default that all arithmetic variables
and operations like +, \* are integer operations unless specified explicitly as real
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It is instructive to look at the computational process underlying the computation of fib(n).
Let us consider the computation for the specific case of n = 5 (see Figure 3.3). Note that,
unlike our previous examples which use one recursive call, fib(n) is defined in terms of two
recursive calls. This is an example of nonlinear recursion whereas all our previous examples
were of linear recursion. As a consequence of the two recursive calls, in order to evaluate
fib(5) we have to evaluate fib(4) and fib(3). In turn, to evaluate fib(4), we have to evaluate
fib(3) and fib(2). Thus, we have to evaluate fib(3) twice, which leads to inefficiency. In
fact, the number of times fib(1) or fib(2) will have to be computed is fib(n) itself.

Figure 3.3: The unfolding of the computation of fib(5)

Exercise 3.8 Show that the number of times fib(1) or fib(2) will have to be computed by
the above algorithm while computing fib(n) is equal to fib(n) itself.

Exercise 3.9 Verify, by induction, that fib(n) = (φn − ψn)/
√

5, where φ = (1 +
√

5)/2 =
1.618 and ψ = (1−

√
5)/2. φ is called the golden ratio4

From the above exercises it is obvious that the time complexity of the above algorithm is
clearly O(φn). Thus, the number of steps required to compute fib(n) grows exponentially
with n, and the computation is intractable for large n. φ100 is of the order of 1020, and,
consequently, the evaluation of fib(n) using the above algorithm will require of the order
of 1020 function calls. This is a very large number indeed, and may take several years
of computation even on the fastest of computers. In the Section 3.9 we will see how the
computation of fib(n) can be speeded up by designing an iterative process.

4Many of the ancient Greek monuments (including the Parthenon) had an elevation where the ratio of
the base of the monument to its height was a close approximation of φ. It was considered the most majestic
proportion for temples. Can you give a ruler and compass construction of the golden ratio?
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Example 3.11 Counting the number of primes between integers a and b (both inclusive).

We will assume the availability of a function prime(n) which returns true if n is a prime
and returns false otherwise. The function we are seeking is of the type count primes :
N× N→ N. We can give an inductive definition of this function as

count primes(a, b) =


0 if a > b
count primes(a, b− 1) + 1 if prime(b)
count primes(a, b− 1) otherwise

We can establish the correctness of the above algorithms as follows.

Correctness
To show that: The function count primes(a, b) returns the count of the number of primes
between a and b assuming the function prime(n) to be correct.
Proof: By PMI – Version 2 on (b− a+ 1).

Basis. If a > b, the interval is empty and count primes(a, b) returns 0.

Induction hypothesis. count primes(a, b− 1) returns the count of the number of primes
between a and b− 1 for a, b such that (b− a+ 1) ≥ 0.

Induction step. If b is a prime then count primes(a, b) returns count primes(a, b−1)+1.
Otherwise, it returns count primes(a, b− 1).

2

Exercise 3.10 Show that the number of additions required and number of function calls to
prime(n) required are both O(n) where n = b−a. Note that it is not possible to determine
the time and space complexities of this algorithm without the knowledge of the complexities
of the function prime(n).

An ML function for the above can be written as

〈Count〉≡
fun count_primes (a, b) =

if a > b then 0

else if prime (b) then 1 + count_primes (a, b-1)

else count_primes (a, b-1);

Example 3.12 Computing
∑b

n=a f(n).
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We will assume that the function f(n) is available. We can then define the function
sum : N× N→ N, inductively, as

sum(a, b) =

{
0 if a > b
f(b) + sum(a, b− 1) otherwise

Exercise 3.11 For the algorithm described above

1. Establish the correctness by PMI.

2. Show that both the time and the space complexities of the algorithm are O(n) where
n = b − a. Assume that the function f(n) can be computed using O(1) time and
space.

An ML function for the above can be written as

〈Sum〉≡
fun sum (a, b) =

if a > b then 0

else sum (a, b-1) + f(b);
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Example 3.13 Determining whether a positive integer is a perfect number.
A positive integer is called a perfect number if the sum of its proper divisors add up to
the number itself. a is a proper divisor of b if a is a divisor of b and a 6= b. The smallest
examples of perfect numbers are 6 (1 + 2 + 3 = 6) and 28 (1 + 2 + 4 + 7 + 14 = 28) 5.
The next few perfect numbers are 496, 8128 and 33550336. Euclid devotes a chapter to
perfect numbers in his Elements. There he proves that any number of the form 2p−1(2p−1)
is perfect, provided the odd factor (2p − 1), is prime. A few values of p for these perfect
numbers are p = 2, 3, 5, 7, 13, 17, 19, 61, 107, 127, 257.

We define a function perfect? : P → {true, false} for determining whether a number is
perfect or not in the following way.

perfect(n) = (n = addfactors(n))

where the function addfactors : P → N computes the sum of the proper factors of n. We
can define add-factors as

addfactors(n) = sum(1, n div 2)

where sum is as defined in Example 3.12 and f : P→ N is defined as

f(i) =

{
i if n mod i = 0
0 otherwise

Note that the n used in the definition of f(i) is the same as in the function perfect?.

Exercise 3.12 For the above algorithms

1. Establish the correctness.

2. Evaluate the space and the time complexities.

We can write an ML function for the above as

〈Perfect〉≡
fun perfect (n) =

let

〈Code for add factors〉
in n = add_factors (n)

end;

5The smallest perfect numbers 6 and 28 were known to the Hindus as well as the Hebrews. Some
commentators of the bible regard 6 and 28 as the basic numbers of the Supreme Architect. They point to
the 6 days of creation and the 28 days of the lunar cycle. Others go so far as to explain the imperfection of
the second creation by the fact that eight souls, not six, were rescued in Noah’s ark. Said St. Augustine:
“Six is a number perfect in itself, and not because God created all things in six days; rather the converse is
true; God created all things in six days because this number is perfect, and it would have been perfect even
if the work of six days did not exist.”
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〈Code for add-factors〉≡
fun add_factors (n) =

let

〈Code for f(i)〉;
〈Code for sum〉
in sum (1, n div 2)

end;

〈Code for f(i)〉≡
fun f (i) =

if n mod i = 0 then i

else 0;

〈Code for sum〉≡
fun sum (a, b) =

if a > b then 0

else f(b) + sum (a, b-1);

Thus, the entire code can be given as

〈Entire code for perfect (n)〉≡
fun perfect (n) =

let fun add_factors (n) =

let fun f (i) =

if n mod i = 0 then i

else 0;

fun sum (a, b) =

if a > b then 0

else f(b) + sum (a, b-1);

in sum (1, n div 2)

end;

in n = add_factors (n)

end;
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Exercise 3.13 Using the property that if i is a divisor of n then (n div i) is also a divisor
of n, give an improved version of the above algorithm and thus improve the complexity from
O(n) to O(

√
n). What happens if n is a perfect square? Write a ML program to implement

your improved algorithm.

The above is a typical example of program development through top down design and
step-wise refinement. We strongly recommend this method of program development and
will adhere to this method for most examples in these notes.

It is instructive to note the nesting of the various ML functions declared above. The
function add-factors is local to the function perfect. Hence it cannot be directly accessed
from the level from which perfect can be invoked. The accessibility of various variables
and functions from different parts of the ML code is guided by the Scope rules in functional
programming. In what follows in the next section we formalize the notion.

3.8 Scope rules

In this section we introduce and formalize the notion of scope and the concepts of free
and bound variables. As will be evident these concepts play quite an important role in
programming. They also exist in mathematics as we illustrate by the following examples.

Example 3.14 Consider the expression
∑b

n=a f(n) in Example 3.12. It contains the fol-
lowing names

a, b, n, f

Of these we do not know what a, b and f denote except that we assume that a and b are
natural numbers and f is a function on natural numbers. Hence the names a, b and f are
called free in the expression

∑b
n=a f(n). However n is said to be bound in the sense that

the expression makes it clear that n ranges over the interval [a, b] and is used only in order
to facilitate the definition of the summation function. Further the scope of n is limited to
the summation expression and we say that n is local to the summation function.

Example 3.15 Consider the following indefinite integral∫ z

0

(∫ y

0
f(x)dx+

∫ y

0
g(u)du

)
dy

It contains as free the names z, f and g. The other names x, u and y are bound. The scopes
of the bound variables are shown below.

∫ z

0

∫ y

0
f(x)dx︸ ︷︷ ︸
x

+

∫ y

0
g(u)du︸ ︷︷ ︸
u

 dy

︸ ︷︷ ︸
y
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Note that an equivalent way of writing this indefinite integral is∫ z

0

(∫ y

0
f(x)dx+

∫ y

0
g(x)dx

)
dy

where the two uses of x in the two different integrals are meant to denote different variables.
Further we may note that though y is a bound variable of the complete expression, when
we consider only the sub-expressions∫ y

0
f(x)dx and

∫ y

0
f(x)dx

y is free in both. It is also free in the sub-expression(∫ y

0
f(x)dx+

∫ y

0
g(x)dx

)
However it is bound when the integral over y is performed.

Example 3.16 Now consider the complete ML code of Example 3.13 (perfect numbers).

• The name perfect is bound and has a scope which extends beyond the definition.
This implies that in some later program in the same file or ML session one could use
this name to mean exactly what we have defined it to be.

• The name add-factors is bound and has a scope which begins with its definition and
extends right up to the end of the definition of perfect (n) but no further. Hence if
after defining perfect (n) as given one types in, say, add-factors (12) in the same
session then one would get an error. This is because add-factors has no meaning
outside the scope of the definition of perfect (n).

• Similarly the name f is bound and has a scope that extends up to the end of the
definition of add-factors and no further. The name sum also has a scope similar to
that of f.

• The variables a and b are bound and have scopes beginning at their first occurrence
in the definition of sum and ending with the same definition.

• Similarly i in (define (f i) ..) has a scope that extends over the definition of f
and no further.

• The name n in the definition of the function f has a scope that begins with its first
occurrence in the definition of the function add-factors (n) and extends only up to
the end of this definition of add-factors and no further. Thus within the scope of
the function f the variable n is free. The variable n in the definition perfect (n) has
a scope that extends up to the end of that definition. It is important to note that
the variable n in the definition perfect (n) and the variable n in the definition of
add-factors are actually different. We could, for example, replace all occurrences of
n in the scope of add-factors with m without affecting the program in any way.



3.9. TAIL-RECURSION AND ITERATIVE PROCESSES 43

• There are a few other names used in the program like div and mod. At the initiation of
the ML session these functions are automatically loaded by the ML interactive system
and therefore they occur as bound names whose scopes extend right up to the end
of the session. It is however possible to create a large “hole” in the scopes of these
definitions by writing our own definition of div and mod

3.9 Tail-recursion and iterative processes

So far we have considered computations based on recursive processes which are characterized
by deferred computations (see Section 3.5). The deferred computations invariably lead to
a high space complexity for the algorithms. For example, the algorithm for computing
factorial(n) discussed in Example 3.8, has a space complexity of O(n) as a consequence of
the deferred computations. Also, in some cases like the computation of fib(n), an algorithm
described in terms of a recursive process leads to unacceptably high time complexities. In
this section, we will see how such inefficiencies can be removed by describing alternative
algorithms for these problems using tail-recursion which lead to iterative computational
processes.

The crucial idea in iterative algorithms is to represent the state of the computation at
each stage in terms of auxiliary variables so as to obtain the final result from the final
state of these variables. We may think of the state of a computation as a collection of
instantaneous values of certain quantities. This is analogous to the notion of the state of a
particle in some good old problem in Physics - the state of a particle is described in terms
of its mass, position, velocity and acceleration at any instant of time.

As an example of an iterative algorithm described through state changes, let us consider
the problem of computation of factorial(n) again and design an iterative algorithm for the
problem.

Example 3.17 Iterative computation of factorial.
We maintain the state of the factorial computation in terms of three auxiliary variables f ,
c and m. We start with initial values f = f0 when c = c0, and successively increment the
value of the counter c by 1 while maintaining, at every stage, the following condition about
the state of the computation invariant

(c0 ≤ c ≤ m) ∧ (f = f0 ∗
c∏

i=c0+1

i) ∧ (f0 ∗
m∏

i=c0+1

= f ∗
m∏

i=c+1

i)

Then, when c = m we can obtain f = f0 ∗
∏m
i=c0+1 as the final result. This is the same as

factorial(n) if the initial values are m = n, c0 = 0 and f0 = 1 respectively. The resulting
algorithm is described below.

factorial(n) = fact iter(n, 1, 0)
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where, the auxiliary function fact iter : N× P× N→ P is given as

fact iter(m, f, c)

=

{
f if c = m
fact iter(m, f ∗ (c+ 1), c+ 1) otherwise

Note that the invariant condition (which is a boolean function of the state of the system
described in terms of the variables f and c) holds true every time the function fact iter is
invoked. We can write an ML program for this iterative version as follows

〈Iterative factorial〉≡
fun factorial (n) =

let 〈Code for fact iter〉
in fact_iter (n, 1, 0)

end;

〈Code for fact iter〉≡
fun fact_iter (m, f, c) =

if c=m then f

else fact_iter (m, f*(c+1), c+1);
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The function description of fact iter is called tail-recursive because the “otherwise”
clause in its description is a simple recursive call to the function itself. Contrast this with
the “otherwise” clause of the recursive factorial (described in Example 3.8) which is given
as n∗factorial(n−1) and involves the recursive call with the multiplication operation. A
tail-recursive definition such as this leads to a computational process different from that of
the recursive version for the same problem. The underlying computational process for the
special case of factorial(5) looks as follows

factorial(5)

= fact iter(5, 1, 0)

= fact iter(5, 1, 1)

= fact iter(5, 2, 2)

= fact iter(5, 6, 3)

= fact iter(5, 24, 4)

= fact iter(5, 120, 5)

= 120

Contrast this with the recursive process for computing factorial(n) in Example 3.8. The
recursive process is characterized by a growing and shrinking due to deferred computations,
where, in the growing process, the multiplicative constants 5,4,3,2 and 1 are stacked up
before the results of factorial(0), factorial(1), factorial(2), factorial(3) and factorial(4)
become available. In the shrinking process the actual multiplications n ∗ factorial(n − 1)
are carried out to obtain factorial(n) successively. In contrast, there is no growing process
in the iterative version. The results of the successive stages are captured in the value of f
where the stage itself is indicated by the value of c. The values of these two variables, at
any instant, give the state of the computation.

The time complexity of the iterative algorithm is clearly O(n) which is same as that of the
recursive one, whereas the space complexity in this case reduces to O(1). This is because,
at any stage, the instantaneous values of only three variables are required to be stored.

3.9.1 Correctness of an iterative process

The correctness of an iterative process can be established by an analysis of the invariant
condition. In fact, the invariant condition is merely an encoding of the proof of correctness
by mathematical induction.

To illustrate this, let us first give a proof of correctness of fact iter using PMI.
To show: For all m, f, c such that 0 ≤ c ≤ m

fact iter(m, f, c) = f ∗
m∏

i=c+1

i

Proof: Using PMI – Version 1 on (m− c).
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Basis. (m− c) = 0 or (m = c).

fact iter(m, f, c) = f = f ∗
m∏

i=c+1

i = f ∗ 1

Induction hypothesis. For some k = (m− c) ≥ 0,

fact iter(m, f, c) = f ∗
m∏

i=c+1

i

Induction step. Let (m− c) = k + 1 > 0. Then

fact iter(m, f, c) = fact iter(m, f ∗ (c+ 1), c+ 1)
= f ∗ (c+ 1) ∗

∏m
i=c+2 i by Inductive hypothesis

= f ∗
∏m
i=c+1 i

2

Then we can prove the correctness of the function factorial(n) as follows:
Proof:

factorial(n) = fact iter(n, 1, 0) = 1 ∗
n∏
i=1

i = n!

2

On the other hand, the invariant condition

(c0 ≤ c ≤ m) ∧ (f = f0 ∗
c∏

i=c0+1

i) ∧ (f0 ∗
m∏

i=c0+1

= f ∗
m∏

i=c+1

i)

encodes the above proof of correctness through a description of state changes. At the initial
stage, when c = c0, the invariant condition gives us that f = f0. At the final stage when
c = m, the invariant condition gives us that f = f0 ∗

∏m
i=c0+1 i which is the final value

that the function returns. According to the initial invocation of fact iter from the function
factorial, the initial values are f0 = 1, c0 = 0 and m = n. Thus the final value of f is
f =

∏m
i=1 i = n!.

Since iterative algorithms are described through state changes, for correct design of an
iterative algorithm, it is helpful to first design the invariant condition such that the desired
result can be obtained from the final state of the variables. The invariant condition can
then act as a specification for the design of the algorithm. In what follows, we give some
more examples of iterative processes.

3.10 More examples of iterative processes

Example 3.18 Iterative computation of
∑b

a f(n).
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As before, we assume that the function f(n) is available. We can describe the iterative
process in terms of the auxiliary variables s and c. We can initialize the process with c = c0
and s = s0 = 0, keep computing the partial sum s =

∑c−1
i=c0

f(i), and continue the iterative
process till c reaches the final value cf + 1 . An invariant capturing the above idea can be
written as

INV = (c0 ≤ c ≤ cf + 1) ∧ (s =
c−1∑
i=c0

f(i)) ∧ (s+

cf∑
i=c

f(i) =

cf∑
i=c0

f(i))

In order to compute
∑b

a f(n) using the computational process described by the above
invariant, we have to initialize the process with c0 = a, cf = b and s = 0. We can describe
the iterative algorithm for sum : N× N→ N as

sum(a, b) = sum iter(a, b, 0)

where, the auxiliary function sum iter : N× N× N→ N is given as

sum iter(c, cf , s)

=

{
s if c = cf + 1
sum iter(c+ 1, cf , s+ f(c)) otherwise

Exercise 3.14 For the above algorithm

1. Establish the correctness, independently, using both PMI and the invariant property.

2. Estimate the time and space complexities assuming that f(n) can be computed in
O(1) time using O(1) space.

The ML function for the above can be written as

〈Iterative sum〉≡
fun sum (a, b) =

let 〈Code for sum iter〉
in sum_iter (a, b, 0)

end;

〈Code for sum iter〉≡
fun sum_iter (c, cf, s) =

if c = cf+1 then s

else sum_iter (c+1, cf, s + f(c));
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Note that in the above code f occurs free in the definition. Hence it is necessary to have
already the function f previously in the ML session before using these definitions.

Example 3.19 Euclid’s algorithm 6 for GCD.
Euclid’s algorithm for computing the GCD of two numbers can be expressed in a functional
form as follows. It is a function of the type Euclid gcd : P× N→ P.

Euclid gcd(a, b) =

{
a if b = 0
Euclid gcd(b, (a mod b)) otherwise

Note that the algorithm is tail-recursive, and, consequently, generates an iterative process.
Correctness
We will first prove the correctness by mathematical induction. Then we will construct an
invariant for the algorithm and analyze the correctness using the invariant. In either case
we require the following result which was proved by Euclid.
Claim: If a = qb+ r, 0 < r < b, then gcd(a, b) = gcd(b, r)
Proof: If d = gcd(a, b) then d | a (d divides a) and d | b which, in turn, implies that
d | (a − qb), or d | r. Thus d is a common divisor of b and r. If c is any common divisor
of b and r, then c | (qb + r) which implies that c | a. Thus c is a common divisor of a and
b. Since d is the largest divisor of both a and b, it follows that c ≤ d. It now follows from
definition that d = gcd(b, r). 2

We will now prove using PMI that for all b ≥ 0, for all a > 0, Euclid gcd(a, b) = gcd(a, b).
Proof: By PMI – Version 3 on b.

Basis. b = 0. If b = 0 then for all a > 0, Euclid gcd(a, b) = a = gcd(a, b).

Induction hypothesis. For all b ≤ k such that 0 ≤ b, for all a > 0, Euclid gcd(a, b) =
gcd(a, b).

Induction step. Consider b = k + 1, a > 0.

Euclid gcd(a, b) = Euclid gcd(b, a mod b)
= gcd(b, a mod b) by the inductive hypothesis
= gcd(a, b) by the Claim above

2

If a0 and b0 are the initial values of a and b respectively, an invariant condition for the
above is

INV = (gcd(a, b) = gcd(a0, b0)) ∧ (a > 0) ∧ (b ≥ 0)

Exercise 3.15 Verify that the invariant condition is satisfied both at the initial and the
final stage of the algorithm.

6So called because it appears in Euclid’s Elements. This book was written around 300 B.C. According
to Knuth (1969) it may be considered the oldest known non-trivial algorithm. The Egyptian method of
multiplication (Problem 5) is definitely older, but, as Knuth explains, Euclid’s algorithm is the oldest known
to have been presented as a general algorithm, rather than as a set of illustrative examples.
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Efficiency
To analyze the efficiency of the Euclid’s algorithm for gcd we need the following result.
Lamé’s Theorem: If Euclid’s algorithm requires k steps to compute the gcd of some pair,
then the smaller number in the pair must be greater than or equal to the kth Fibonacci
number.

Exercise 3.16 Verify the validity of Lamé’s Theorem.

We can use this theorem to analyze the time complexity of the Euclid’s algorithm. Let n
be the smaller of the two inputs to the function. If the process takes k steps, then we must
have n ≥ fib(k) ≈ φk. Thus, the number of steps k is O(log n).

The ML function that implements the algorithm can be written as

〈gcd〉≡
fun Euclid_gcd (a, b) =

if b=0 then a

else Euclid_gcd (b, a mod b);
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Example 3.20 Iterative computation of Fibonacci numbers.
In Example 3.10 we saw that the computation of fib(n) by a purelyrecursive process requires
an exponential number of operations. Thus the computation is intractable. However, the
computation can be speeded up by designing an alternative iterative process. An easy way
around the problem is to start with the two smallest Fibonacci numbers, and retain the
values of the last two Fibonacci numbers as the state of the system, in two auxiliary variables
a and b (say) and to compute the nth Fibonacci number from the previous two. We can use
a counter count, to represent the stages of the computation. An invariant condition for the
above process for n ≥ 3 is

(n ≥ 3) ∧ (3 ≤ count ≤ n) ∧ (a = fib(count− 2)) ∧ (b = fib(count− 1))

Then, when count = n, the process may terminate and we may obtain the value a + b =
fib(count − 2) + fib(count − 1) = fib(n) as the final answer. An algorithm based on this
invariant condition can be described as

fib(n) =


1 if n = 1
1 if n = 2
fib iter(n, 1, 1, 3) otherwise

where fib iter(n, a, b, count) : P× P× P× P→ P is an auxiliary function defined as

fib iter(n, a, b, count) =

{
a+ b if count = n
fib iter(n, b, a+ b, count+ 1) otherwise

The function fib iter(n, a, b, count) is invoked only if n ≥ 3, and every time this function
is invoked, the invariant condition holds. The above process obviously requires only n − 2
additions to compute fib(n) for n ≥ 3. Thus, the iterative algorithm requires O(n) time
and O(1) space for computing the nth Fibonacci number. This is a significant improvement
over the purely recursive version we considered earlier.

Exercise 3.17 Establish the correctness of the above algorithm.

An ML function for the the iterative computation of Fibonacci is

〈Iterative Fibonacci〉≡
fun fib (n) =

let 〈Code for fib iter〉
in if n<=2 then 1

else fib_iter (n, 1, 1,3)

end;

〈Code for fib iter〉≡
fun fib_iter (n, a, b, count) =

if count = n then a+b

else fib_iter (n, b, a+b, count+1);
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Problems

For each of the problems given below, identify the types of the functions you need to define,
establish their correctness using PMI and invariants (if the algorithm is iterative) and
determine the space and time complexities. Finally, translate your functional algorithms
into ML programs and execute them.

1. Construct both recursive and iterative algorithms for

(a) Finding the number of digits (in base 10) in a given positive integer assuming
there are no leading zeroes.

(b) Reversing the digits of a positive integer in base 10.

2. Suppose we rewrite the fast powering algorithm described in Example 3.9 as follows

power(x, n) =


1 if n = 0
x ∗ power(x, (n div 2)) ∗ power(x, (n div 2)) if odd(n)
power(x, (n div 2)) ∗ power(x, (n div 2)) otherwise

Do you foresee any problem?

3. Define a tail-recursive (iterative) algorithm for the function f : N→ Z

f(n) =

{
1 if n = 0
n− f(n− 1) otherwise

Define an invariant property for the above algorithm.

4. Design an iterative process that uses successive squaring to compute xn and works in
O(lg n) time.

5. The powering algorithm is based on successive multiplications. Similarly, one can
devise an integer multiplication algorithm based on repeated additions. Design an
iterative functional algorithm for integer multiplication in terms of adding, doubling
and halving. The algorithm should work in O(lg n) time.7

6. If a ≥ 0 and b > 0 are two integers, then there exists q ≥ 0 and 0 ≤ r < b such that
a = q∗b+r. The div and mod functions are defined as div(a, b) = q and mod(a, b) = r.
Develop iterative algorithms for div and mod using addition and subtraction.

7. Amicable numbers are pairs of numbers each of whose proper divisors add up to
the other (1 is included as a divisor but the numbers are not included as their own

7This algorithm which is sometimes known as the ‘Russian peasant method” of multiplication, is very
old. Examples of its use are found in the Rhind Papyrus, one of the two oldest mathematical documents in
existence, written about 1700 B.C. (and copied from an even older document) by an Egyptian scribe named
A’h-mose.
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divisors). The smallest pair of amicable numbers are 220 and 284 8. Develop a
functional algorithm to determine whether a given pair of numbers are amicable or
not.

8. Develop a functional algorithm to determine whether a given number is a prime or
not.

9. Develop an algorithm to compute the sum of the first n Fibonacci numbers. The
algorithm should work in O(n) time and O(1) space.

10. Given that tn is the nth term in the expansion of sin(x), write a function to determine
the n+ 1th term.

11. Using your solution for the above, write a function to evaluate the value of sin(x) up
to n terms.

12. Suppose you have an infinite supply of coins of denomination 50p, 25p, 10p, 5p and 1p.
In how many ways can you generate change for a given amount, say Rs. 1/- = 100p.
Given that a function d(n) is available which gives the denomination of the nth type
of coin, develop a recursive algorithm to count the number of ways to generate change
for a given amount. What can you say about the number of steps required for the
computation?

13. Write an iterative function for the coin exchange problem. Show that a suitably
defined iterative function will work faster for the given problem.

8Down through their quaint history, amicable numbers have been important in magic and astrology, and
in casting of horoscopes, making talismans, and concocting love potions. The philosopher Iamblichus of
Chalcis (A.D 250 - A.D 330) ascribed a knowledge of the pair 220 and 284 to the Pythagoreans. He wrote:
“They [the Pythagoreans] call certain numbers amicable numbers, adopting virtues and social qualities to
numbers, as 220 and 284; for the parts of each have the power to generate the other”. See Elementary
number theory by D. M. Burton for details.



Chapter 4

The Imperative model of
computation

In the last chapter we studied the basics of a functional model of computation. Though
the functional model is attractive from the point of view of ease of algorithm design and
correctness analysis, imperative models of computation are more commonly used in practice
mainly because of reasons of efficiency. In particular, imperative programming languages
like Fortran and C have been thoroughly optimized through years of research, and pro-
grams compiled in these languages, in general, work faster. Hence, in this chapter, we will
introduce the basics of an imperative model of computation. We will use the programming
language Java as a representative language for writing programs for imperative algorithms.
In the next chapter we will relate the two models of computation and show how an initial
functional design of an algorithm helps in the development of an imperative algorithm using
step-wise refinement.

In the imperative model of computation an algorithm is a specification of what to do
in order to solve a given problem in terms of a sequence of instructions which have to be
executed in the given order. In what follows we describe the primitives for the imperative
model.

4.1 The primitives for the imperative model

In the last chapter we have seen in the cases of both the factorial and fibonacci computa-
tions that an iterative process is often more efficient than a recursive process for the same
problem. However, we had used a functional model to describe iterative processes in which
we introduced the notion of the state of the computation.

A careful look at the computation of iterative processes reveals that we have a starting
state from which the desired final state is obtained. For describing iterative processes, it is
often more convenient to use a model of computation which merely describes state changes.

In this chapter we consider the imperative model of computation which allows us to
describe how a state should be changed. As we have mentioned in the last chapter, we

53
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may think of the state of a computation as a collection of instantaneous values of certain
quantities. A state change occurs if at least one of the quantities comprising the state is
changed.

The imperative model of computation uses instructions or commands to make desired
state changes. Hence the concept of a variable in the imperative model is really that it is
a quantity whose value can be changed through an appropriate command. The primary
command which does this in the imperative model is the ‘assignment’ instruction which we
describe below.

4.1.1 Variables and the assignment instruction

The variables which we have been using in the functional model (e.g., n, a, b, count etc.)
have no special meaning other than that they can be instantiated with values of a given type.
These variables are similar to those used in algebra. In contrast, in the imperative model
we will use variables to store the state of a computation. In this model, a “declaration” of
variables to be of a certain type with a statement like

int a,b;

creates and reserves two locations (or boxes) with the names a and b in which integer values
can be stored.

a b

Initially, immediately after the declaration, the contents of the boxes with names a and
b are undefined. The following assignment instruction stores the integer 2 in the location
named a

a = 2;

The above is read as “a assigned 2”. The content of the location b is still undefined and the
state of the variables is

a 2 b

A subsequent assignment instruction of the form

b = a;

changes the state to

a 2 b 2

Note that the content of a gets copied to b, and a is unchanged. A further assignment
instruction
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a = a + b;

changes the state to:

a 4 b 2

The contents of a gets replaced by the sum of the present contents of a and b, whereas the
contents of b remains unchanged.

On the left of the = operator must be a single variable whose state is being updated, and
on the right must be an expression comprising operators, variables and values. The right
side must evaluate to the same type as the variable specified in the left.

As a result of this, in the imperative style, state changes can be performed only one at
a time. Consequently, simultaneous changes in the values of several variables have to be
performed in some orderly fashion, one-at-a time, so as to ensure that the desired final state
is obtained through several one-step changes.

The state of the computation at any instant is a snapshot of the contents of all the
variables used in the algorithm.

As an example of an imperative style algorithm using the assignment instruction, let us
consider the following problem of swapping the contents of two variables.

Example 4.1 Exchanging the values of two variables a and b (swapping).
Given the initial state of two variables a and b of the same type, we have to construct an
algorithm to exchange their values (contents). Assuming that the initial contents of a and
b are a0 and b0 respectively, we can describe the initial and the final states as

Pre-condition: (a = a0) ∧ (b = b0)

Post-condition: (a = b0) ∧ (b = a0)

The ‘pre-condition’ and the ‘post-condition’ are logical properties of the initial and the
desired final states of the computation respectively. Together they form the specification for
the algorithm. Thus the objective of the algorithm is to change the state of the computation,
through a sequence of steps, so that finally the post-condition is true given that the pre-
condition is true to start with. We can achieve the transformation by using a variable
temp for temporary storage. We can first copy the contents of a to temp, then replace the
contents of a with the contents of b, and finally replace the content of b with that of temp.
We describe the complete imperative algorithm as

/* assert A : (a = a0) ∧ (b = b0) */

temp = a;

a = b;

b = temp;

/* assert B : (a = b0) ∧ (b = a0) */
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In the above example, the three assignment instructions have to be executed in the given
order to achieve the exchange. An algorithm in the imperative model is a sequence of
instructions which have to be executed in a step by step manner to carry out a desired
computation. The instructions are separated by the symbol ‘;’. The sequence of three
instructions may be regarded as a single compound instruction. To enable us to regard
certain sequences of instructions as a single instruction we use a bracketing mechanism,
where the left bracket is the symbol { and the closing bracket is the symbol }. Hence the
above algorithm could be rewritten using brackets as follows
/* assert A : (a = a0) ∧ (b = b0) */

{

temp = a;

a = b;

b = temp;

}

/* assert B : (a = b0) ∧ (b = a0) */
As we will see the {...} brackets are very useful to avoid possible confusion.

4.1.2 Assertions

The reader may have noticed that in the algorithm stated above there are statements labeled
“assert” about the state of the computation. These are not instructions to be executed but
are essential documentation necessary for correct design of imperative algorithms. These
are true statements about the state of a computation. Such statements are called assertions
or logical propositions. Throughout these notes we will make such assertions about the state
of a computation in the imperative style description of algorithms. The pre-condition and
the post-condition are assertions about the initial and the final states of the algorithm
respectively. Very often they do not completely describe the state of each variable in the
computation, but instead give us an abstract property of the state which should be true.
The invariant properties described in the last chapter are also examples of such assertions.
In special cases an assertion may completely describe the state as in the algorithm below
in which between any two instructions there is an assertion.

/* assert A0: (a = a0) ∧ (b = b0) */
{

temp = a;

/* assert A1: (a = a0 = temp) ∧ (b = b0) */
a = b;

/* assert A2: (a0 = temp) ∧ (a = b = b0) */
b = temp;

}

/* assert A3: (a0 = temp = b) ∧ (a = b0) */
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The assertions A1, A2 and A3 completely describe the state of the computation at those
points. In contrast, the post-condition, /* assert B: (a = b0) ∧ (b = a0) */, used earlier,
does not completely describe the state and it is merely a true statement about the final
state. It is obvious that from A3 one may deduce B and hence if A3 is true then so is B.

In general, a complete description of the state may not be interesting, relevant or even
known to us at any stage of a computation. Hence assertions, which are true statements
about the state, are used to capture the essential properties of the state. Throughout these
notes we will use suitable assertions as algorithm/program documentations wherever there
is a scope of ambiguity and definitely as the input/output specifications for the various
modules which we will design. This will enable us to develop our algorithms in a modu-
lar fashion with the input-output specifications of the individual modules serving as the
interfaces between the different modules.

Exercise 4.1 Which of the following algorithms achieve the same result? Which of them
achieves the same result as the swap algorithm defined above?

(a) { (b) { (c) {

temp = b; temp = b; temp = a;

b = a; a = temp; b = temp;

a = temp; b = a; a = b;

} } }

Exercise 4.2 Given the pre-condition (a = a0) ∧ (b = b0) ∧ (c = c0) write imperative
algorithms to achieve the following post-conditions:

1. (a = b0) ∧ (b = c0) ∧ (c = a0)

2. (a = c0) ∧ (b = a0) ∧ (c = b0)

Exercise 4.3 Given the pre-condition (a = a0)∧ (b = b0) where a and b are integers, indi-
cate the state changes (using suitable assertions) that take place in the following algorithm.
What is the final state?

{

a = a + b;

b = a - b;

a = a - b;

}

In what follows we introduce the if then else and the while do instructions which provide
the basic mechanisms for the flow of control in an imperative style algorithm.



58 CHAPTER 4. THE IMPERATIVE MODEL OF COMPUTATION

4.1.3 The if then else instruction

The if then else instruction is the basic tool for decision making in imperative style pro-
gramming. It is a directive for executing one out of two possible sequences of instructions
depending on a logical condition. The structure of the if then else is

if (C)

s1

else

s2

Here s1 and s2 may either be simple instructions (e.g., a single assignment or another if
then else instruction or a while-do instruction which we will introduce shortly), or they may
even be compound instructions enclosed in a pair of {...} brackets.

The condition (C) is a statement about the state of the computation at that point.
However C is not an assertion because it is not necessarily a true statement about the
state. If the condition C is true then the state changes proposed in s1 are performed and if
C is false then the state changes proposed in s2 are performed. Given that the pre-condition
of the if then else instruction is an assertion A, we may rewrite it as follows by inserting
appropriate assertions

/* assert A : . . . */

if (C)

/* assert A ∧ C */

s1

else

/* assert A ∧ ¬C */

s2

Note that if C is true in the state before the if then else instruction is performed then we
may assert that both A and C are true. However if C is false, then we assert that both A
and ¬C are true (as given after the “else”).

A special case of the if then else is the if then instruction

if (C)

s1

In this case s1 is executed if the condition C is true, else nothing is done. The following
two examples illustrate the use of such an instruction.

Example 4.2 Swap the values of variables a and b (which are of the same type) if a > b.
Let temp be a variable of the same type as a and b. The algorithm can be given as

/* assert A : (a = a0) ∧ (b = b0) */

if (a > b)
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/* assert A ∧ (a > b) */

{

temp = a;

a = b;

b = temp;

{

/* assert B : ((a0 <= b0) ∧ (a = a0) ∧ (b = b0)) ∨ ((a = b0) ∧ (b = a0)) */

Note the use of {...} brackets to ensure that the entire sequence is to be regarded as a single
(compound) instruction if the condition a > b is true. On the other hand if the brackets
were not used then the instructions a= b and b = temp are executed even if a ≤ b and the
instruction temp = a is executed only when a > b.

Exercise 4.4 Consider the following sequence of instructions
/* assert A : (a = a0) ∧ (b = b0) */

if (a > b)

temp = a;

a = b;

b = temp

Write assertions after each step of the above sequence of instructions starting from the
pre-condition.

Example 4.3 The following if then instruction ensures that x is always non-negative.

/* assert A : (x < 0) ∨ (x ≥ 0) */

if (x < 0)

/* assert A ∧ (x < 0) */

x = -x;

/* assert B : (x ≥ 0) */

In what follows we give a few more examples of case analysis using the if then else.

Example 4.4 Finding the roots of a quadratic equation of the form ax2 + bx+ c = 0.
Here a, b and c are real valued coefficients. We assume that a 6= 0. The variables r1 and i1
should contain the real and the imaginary parts of the first root, and the variables r2 and
i2 should contain the real and the imaginary parts of the second root.
We describe the algorithm, in terms of the variables a, b, c, d and e of the type real as
follows

/* assert A : (a = a0 6= 0) ∧ (b = b0) ∧ (c = c0) */

d = b*b - 4*a*c;

if (d >= 0)
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/* assert A ∧ (d ≥ 0) */

{

e = sqrt(d); r1 = (-b+e)/(2*a); r2 = (-b-e)/(2*a);

i1 = 0; i2 = 0;

}

else

/* assert A ∧ (d < 0) */

{

e = sqrt(-d); r1 = -b/(2*a); r2 = r1;

i1 = e/(2*a); i2 = -e/(2*a);

}

/* assert B : [(a = a0) ∧ (b = b0) ∧ (c = c0) ∧ (d = (b2 − 4ac)]
∧

[ ((d ≥ 0) ∧ (r1 = (−b+
√
d)/2a)∧

(r2 = (−b−
√
d)/2a) ∧ (c1 = c2 = 0))

∨
((d < 0) ∧ (r1 = r2 = −b/2a) ∧ (c1 =

√
| d |/2a)∧

(c2 = −
√
| d |/2a))

]
*/

Example 4.5 Determining whether a given month and day represent a valid date.
Given that m and d are integer type variables and the pre-condition (m = m0) ∧ (d = d0),
establish whether m and d together give a valid day of an year (m gives the month and d
gives the day). Set an integer variable valid to 1 if they represent a valid day and set it to
0 otherwise.

We describe the algorithm as follows.

/* assert A : (m = m0) ∧ (d = d0) */

if ((m < 1) or (m > 12) or (d < 1) or (d > 31))

valid = 0;

else

/* assert: (1 ≤ m ≤ 12) ∧ (1 ≤ d ≤ 31) */

if ((m = 1) or (m = 3) or (m = 5) or (m = 7) or (m = 8) or (m = 10)

or (m = 12))

/* assert: (m ∈ {1, 3, 5, 7, 8, 10, 12}) ∧ (1 ≤ d ≤ 31) */

valid = 1;

else

/* assert: m ∈ {2, 4, 6, 9, 11} ∧ (1 ≤ d ≤ 31) */

if ((m = 4) or (m = 6) or (m = 9) or (m = 11))

* ssert: m ∈ {4, 6, 9, 11} ∧ (1 ≤ d ≤ 31) */
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if (d < 31)
/* assert: m ∈ {4, 6, 9, 11} ∧ (1 ≤ d ≤ 30) */

valid = 1;

else
/* assert: m ∈ {4, 6, 9, 11} ∧ (d = 31) */

valid = 0;

else
/* assert: (m = 2) ∧ (1 ≤ d ≤ 31)}
if (d < 30)

/* assert: (m = 2) ∧ (1 ≤ d ≤ 29) */

valid = 1;

else
/* assert: (m = 2) ∧ (30 ≤ d ≤ 31) */

valid = 0;
/* assert: [(valid = 1) ∧B]

∨
[(valid = 0) ∧ ¬B] */

where,

B = ((m ∈ {1, 3, 5, 7, 8, 10, 12}) ∧ (1 ≤ d ≤ 31)) ∨
((m ∈ {4, 6, 9, 11}) ∧ (1 ≤ d ≤ 30)) ∨
((m = 2) ∧ (1 ≤ d ≤ 29))

Exercise 4.5 Given that y, m and d are integer type variables and the pre-condition
(y = y0) ∧ (m = m0) ∧ (d = d0), establish whether y, m and d together give a valid date.
Set an integer variable valid to 1 if they represent a valid date and set it to 0 otherwise.

In our examples using the if then else instruction, we have made assertions at every stage
of the decision making. However, in future, for the sake of brevity, we will make suitable
assertions only at places where there is some scope of ambiguity.

4.1.4 The while do instruction

Apart from the assignment of values to variables and the if then else we need a construct
for carrying out iteration in the imperative model. A careful look at the iterative process
for computing factorial(n) (Example 3.17) tells us that the final result is obtained through
a sequence of state changes of the variables f and c. The evolution of the states of these
two variables can be described as

f = 1 and c = 0

f = 1 and c = 1

f = 2 and c = 2

f = 6 and c = 3

f = 24 and c = 4
...

till c = n. To describe the process in the imperative model we would have to start with
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f = 1;

c = 0;

and repeat the following instruction till c = n

if (c <> n) then

begin

f = f * (c+1);

c = c + 1;

end

Thus we will have to put at least n such if then else instructions in a sequence. Since n
is not known in general, we require a finite and compact representation of such repetitive
operations. The primary iterative construct in this model which does this is the while do.
The instruction

while (C)

s1

repeats s1 while the boolean condition C is true. Thus the instruction s1 is executed if the
condition C is true to start with. After each execution of the instruction s1 the condition
C is evaluated again to determine whether it is true or not. The process is repeated if C
is true; otherwise the while do instruction is terminated. As in the case of if then else, s1
may either be a simple instruction or a compound instruction. Each of these instructions,
in turn, can be one of the three types - assignment, if then else or while do.

Since the purpose of the while do instruction is to represent iterative processes, we must
associate an invariant condition with every while do loop. This invariant condition must
hold true every time the condition C is evaluated. We may rewrite the while do instruction
with its associated assertions as

/* assert: I */

while (C)

/* assert I ∧ C */

{

s1;

/* assert I */

}

/* assert: B = I ∧ ¬C */

Thus, the invariant assertion, I, must be true the first time the while do instruction is
encountered. This has to be ensured though a proper initialization process. If the condition
C is true, then the assertion I ∧ C must be true before the state changes proposed in s1
are carried out every time during the iterative process. The invariant condition I along
with the condition C may thus be looked upon as the specification for the design of while
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do instruction. Finally, when the loop is terminated, the condition I ∧ ¬C gives the final
desired state.

To see an example of algorithm design using the while do instruction, let us consider an
iterative version of the factorial computation in the imperative style.

Example 4.6 Iterative computation of factorial(n) for n ≥ 0 in the imperative style.
We can first describe an iterative algorithm for this problem in the functional style with
the invariant condition I = (0 ≤ count ≤ n) ∧ (fact = count !)) as follows

factorial(n) = fact iter(n, 1, 0)

where,

fact iter(n, fact, count) =

{
fact if count = n
fact iter(n, fact ∗ (count+ 1), count+ 1) otherwise

we can then translate the above algorithm in the imperative style using the while do
instruction as

/* assert A : n ≥ 0}

count = 0;

fact = 1;

/* assert I : (0 ≤ count ≤ n) ∧ (fact = count !) */

while (count != n)

/* assert I ∧ (count 6= n) */

{

count = count + 1;

fact = fact * count;

/* assert I */

}

/* assert I ∧ (count = n) */
/* assert B : fact = n! */

It is important to note that every tail-recursive functional algorithm can be represented
using a while-do loop as in the above example. The auxiliary variables of the tail-recursive
function (e.g.. fact and count) become local variables of the imperative algorithm, and
both the tail-recursive function and the while do loop are described in terms of the same
invariant. The condition of the while-do loop becomes the complement of the termination
condition of the tail-recursive function.
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4.1.5 Functions and procedures in the imperative model

While designing an algorithm to perform certain computation it may often be necessary
for different parts of the computation to share some components. For example, consider an
algorithm that needs to compute factorial(m) and factorial(n) for different values of m
and n. Rather than duplicating the imperative algorithm for factorial computation at two
different places, it is more convenient to have a separate function for the sub-algorithm for
computing factorial of a number, which may then be invoked with different inputs m and
n. In what follows we give two imperative functions for factorial computation.

Example 4.7 Imperative style functions for computing factorial(n).

An imperative style function for the factorial computation using the recursive algorithm
of Example 3.8 can be written using Java syntax as

〈Factorial (recursive)〉≡
int factorial(int n)

/* assert: (n >= 0) */

{

if (n = 0)

return 1;

else

return (n * factorial(n-1));

};
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The function declaration int factorial(int n) indicates that the function factorial

can be invoked with an integer input and that it returns an integer value.
Note, however, that the imperative style function defined above is fundamentally different

from its corresponding functional definition given in the last chapter, though they use the
same algorithm. Here n is an imperative style variable which stores a value. An invocation
of the function from the calling environment with
a = factorial(5)

assigns the value 5 to n. The function returns an integer value through its name factorial.
Alternatively we can write an imperative style function using the iterative algorithm of

Example 3.17 as

〈Factorial (iterative)〉≡
int factorial(int n)

/* assert: (n >= 0) */

int f,c;

{

f = 1; c = 0;

{INV: (0 <= c <= n) and (f = c!) and (n! = f * (c+1)*(c+2)...*n)}

while (c != n) {

c := c + 1;

f := f * c;

}

/* assert: (f = n!) */

return f;

}

This function can also be invoked in the same way. This function uses its own local
variables f and c which are not visible from the calling environment.

In some cases it may not be necessary to return a value through the function name.
Rather we may wish to define a generic algorithm which effects some state changes. In such
cases we may use a procedure.

Example 4.8 Swapping the values of two variables.
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A procedure for swapping the values of two global variables a and b can be defined as
follows

〈Swap〉≡
void swap();

int t;

{

/* assert: (a = a0) and (b = b0) */

t := a;

a := b;

b := t;

/* assert: (a = b0) and (b = a0) */

}

Note that the procedure swap defined above does not have any formal input passed from
the calling program as an argument. Neither does it return any output. It merely affects
some state changes of the globally defined variables a and b

m := 3; n := 4;

swap();

/* assert: (m = 4) and (n = 3) */

The input parameters to a procedure or a function are specified within brackets, along
with their types, in the declaration. These parameters are called the formal parameters
of a procedure or a function. For example, if a function or procedure is invoked from the
calling environment with an instruction like a = factorial(b), the formal parameter n

is initialized by copying the value of the variable b. The effect is similar to that of an
assignment like n = b. Thus, in this case, n and b are two different variables, and even if
n is modified in the function the variable b in the calling environment remains unaffected.
The variable n is local to the function and is not accessible from the point of invocation in
the calling environment.

In what follows we describe a complete Java program for computing factorial(n) using
the iterative method.

Example 4.9 A complete Java program for computing factorial of a number.
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A complete Java program for computing factorial using the iterative method is given as
follows:

〈Complete program〉≡
import java.io.*;

import javagently.*;

public class factorial {

public static void main(String args[])

throws IOException

{

int n,i,f;

BufferedReader in = Text.open(System.in);

System.out.println("Input n");

n = Text.readInt(in);

i = 0; f = 1;

/*INV = (0<=i<=n) AND (f = i!) */

while (i < n) {

i++;

f = f*i;

}

System.out.println("f = "+f);

}

}
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In the above code we define a Java class for computing factorial. The declaration
public implies that this code can be accessed by anybody. The code imports two packages
called java.io and javagently to facilitate input and output. Text.open and Text.readInt

are methods or functions defined in the public class Text in the javagently package. The
instruction BufferedReader in = Text.open(System.in); sets up the Java system for
input from the keyboard. System.out.println is a method for generating output on the
screen. It prints the input string. In this case the input string is a concatenation of two
strings "f = " and the string corresponding to the inetger f which is automatically gener-
ated by the concatenation operator +.

We will study more about Java classes and methods later in these notes while discussing
Object oriented programming.

Problems

1. Develop Java programs/functions for each of the problems in the last Chapter.

2. Write a Java function to find the minimum of three input integers.

3. Develop Java programs for the following

(a) Given three points (x1, y1), (x2, y2), (x3, y3) to determine whether they are collinear,
and if so which point lies between which two.

(b) Given the coordinates of the centers of two circles and their radii, find whether
they intersect, and if so find the points of their intersection.

(c) Given the coordinates of four points on a plane, determine whether they form
a quadrilateral, and if so classify it if possible as a square, rectangle, rhombus,
parallelogram etc.

4. Develop a Java function which reads n integers from the input and returns the max-
imum.

5. Given the coordinates (x0, y0) of the center of a circle and a point (x1, y1) lying on its
circumference, develop a Java program that outputs the coordinates (x1, y1), . . . , (x6, y6)
of the vertices of a regular hexagon inscribed in the circle.

6. Develop a Java program to read a sequence of digits, terminated by a non-digit
character, and to find the value of the integer the sequence represents.

7. An automatic cash register is given as input

(a) the cost of the customer’s purchases (in Rupees)

(b) the amount of money the customer has given (in Rupees)
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It outputs the balance the customer should be paid indicating how many notes of
each denomination (Rs. 100, Rs. 50, Rs. 20, Rs. 10, Rs. 5, Rs. 2, Rs. 1) should
be paid so that the minimum number of notes are given to the customer. Develop an
iterative Java program to solve this problem. Assume that all costs and notes are
integral multiple of the Rupee.

8. Let p(x) =
∑n

i=0 aix
i be a polynomial. Assuming that the input is received in the

order
x, n, a0, a1, . . . , an

develop a Java program to do the following tasks.

(a) evaluate the polynomial in O(n) time

(b) evaluate both the polynomial and its derivative in O(n) time
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Chapter 5

Step-wise refinement and
Procedural Abstraction

Now that we have studied the essentials of the functional and the imperative models of
computation, we are ready to develop more complex programs. In this chapter we will study
the methodology of developing complex programs using step-wise refinement, procedural
abstractions and higher order functions.

5.1 Step-wise refinement

The primary objective in computational problem-solving is to develop a correct and efficient
computer program for solving the problem at hand. In this chapter we will illustrate
how, given a problem definition, a precise algorithm and program implementation can be
developed, in a step-wise manner, from an outline of the solution using a powerful method
called step-wise refinement or top-down design. The objective of the design methodology
is to first establish the overall structure and the relationships between the various parts of
the problem, and then address the specific and complex issues of the implementations of
the various sub-parts.

The main phases of computer based problem solving are:

Outline of solution: which identifies the basic principle by which the input can be trans-
formed to the output and gives an outline of the solution.

Algorithm design and analysis: which makes precise the outline indicated, identifies
the various components required and gives a precise method of computing the solution.
A crucial aspect in algorithm design is the analysis of correctness and efficiency.

Program design: which involves an implementation of the algorithm using the syntax of
a programming language.

We have already seen an example of step-wise refinement in Example 3.13. The problem
of deciding whether a given positive integer is a perfect number or not was decomposed

71
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into many sub-problems; and separate functional algorithms were then written for each of
those. The main idea behind the decomposition strategy is not merely to divide a program
into parts, but to ensure that each sub-problem accomplishes a clearly identifiable task and
is written as a separate function or procedure which can then be used as a module to define
other functions. For example, the function perfect was defined in terms of the function
addfactors, and while describing the function perfect we were able to regard addfactors as
a black-box. Thus the actual design of the function addfactors could be postponed till later
and we were only concerned with what it computes and not how it computes. Thus, as far
as the function perfect is concerned, addfactors is not really a procedure but a procedural
abstraction. Procedural abstraction is an integral part of step-wise refinement and it allows
program development in a modular and systematic fashion.

5.1.1 Executable specifications and rapid-prototyping

In our method of step-wise refinement we will first develop our algorithms in the functional
model of computation, primarily because it is closer to mathematics and it is easier to ana-
lyze correctness and efficiency in the functional model. It is also easier, in general, to identify
the various sub-parts required in the functional model resulting in greater modularity in the
algorithm design. The functional description can then serve as the specification for the im-
perative program, and we can translate the functional description into an imperative Java

program. If the functional description is also coded in ML then the ML program can serve as
an executable specification for the imperative program. In such a case, since a ML program
is easier to implement, the executable specification can be thoroughly tested before under-
taking the design of the corresponding Java program. The ML interactive environment can
then serve as an environment for rapid-prototyping.

A rapid-prototyping environment allows for the following:

1. A direct translation of a mathematical specification of a computation into an exe-
cutable form. Executable specifications are written in a language which is very sim-
ilar to normal mathematical notations. Hence proofs of correctness and analysis of
efficiency can be carried out easily.

2. An interactive mode of program development, testing and verification. An interactive
mode also allows for testing, debugging and frequent changes to proceed concurrently.

3. A finer analysis of both correctness and efficiency of the possible algorithms that may
be candidate solutions to a problem.

Functional programs are small in size even though they may represent complex algorithms
and may take a long time to execute with realistic input. The small size of functional
code and the lack of fine details which are not immediately relevant allows for shorter
development times. Hence a functional programming language like ML with its interactive
mode of computation provides an excellent environment for rapid-prototyping of programs
and allows specifications to be executed, tested and even improved before coding it up in a
more efficient imperative programming language.
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5.1.2 Examples of step-wise refinement

In what follows we illustrate the methodology of step-wise refinement through a few exam-
ples.

Example 5.1 Determining whether a given positive integer n is a prime (Method 1).
Outline of the solution: A positive integer p is a prime if its only positive divisor other
than 1 is p itself. Hence 1 is not a prime. Since all even numbers are divisible by 2, the
only even prime is 2 itself. Hence a prime other than 2 is necessarily an odd number. If n
is an odd number, we can determine whether n is a prime by testing the divisibility of n
by test divisors chosen successively from the sequence 3, 5, 7, 9 · · · till one of the following
conditions is realized:

1. A test divisor divides n exactly; in such a case n is not a prime.

2. The square of the test divisor exceeds n. In such a case n does not have a positive
divisor other than 1 and n, and, consequently, n is a prime.

Algorithm design and analysis: We will first develop a functional algorithm based
on the above computational strategy. The function we are seeking is of the type prime :
P→ {true, false}. We can give a top level description of the function as

prime(n) = (n = 2) ∨ ((odd(n) ∧ (smallest divisor(n) = n)))

Note that we have given a top-level description of the algorithm in terms of the procedu-
ral abstractions odd and smallest divisor. We may now design algorithms for these two
procedures after deriving their exact specifications from the above description.

The function odd : P→ {true, false} can be defined as

odd(n) = ((n mod 2) = 1)

The function smallest divisor(n) should return the smallest divisor of n in the interval
between 2 . . . n. We can compute the smallest divisor of n using an iterative algorithm
whose state space is described in terms of two variables - n and test divisor. An invariant
condition for the iterative algorithm can be described as

INV = (3 ≤ test divisor ≤ b
√
nc+ 2)

∧
(no odd integer in the interval [3 . . . (test divisor − 2)] divides n)

We can then define the function smallest divisor : P→ P as

smallest divisor(n) = find iter(n, 3)

where the auxiliary function find iter : P × P → P can be defined according to the above
invariant condition as

find iter(n, test divisor) =


n if (test divisor2 > n)
test divisor if ((n mod test divisor) = 0)
find iter(n, test divisor + 2) otherwise
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The correctness of the above algorithm can be established from the invariant condition.
Alternatively, the correctness of the iterative algorithm can also be established using PMI.

Exercise 5.1 For the above functional algorithm

1. Verify that the iterative procedure satisfies the invariant condition given above. In
particular verify that the invariant condition holds initially, and the desired final result
can also be obtained from the invariant condition.

2. Establish the correctness of the above algorithm using PMI.

Since the algorithm tests for divisors between 1 and
√
n the time complexity of the

algorithm is clearly O(
√
n). The space complexity of the iterative process in O(1).

Program development: The algorithm developed above can now be treated as a spec-
ification for the imperative Java program. We can first translate the above functional
description into a ML program which can then be tested before designing the corresponding
Java program.

〈Prime-test 1 (ML)〉≡
fun prime(n) =

let

〈Code for smallest divisor〉
fun odd(n) = (n mod 2 = 1)

in

(n=2) orelse (odd(n) andalso (n = smallest_divisor(n)))

end;

〈Code for smallest divisor〉≡
fun smallest_divisor(n) =

let

〈Code for find divisor〉
in

find_divisor(n,3)

end;

〈Code for find divisor〉≡
fun find_divisor(n,test_divisor) =

let

fun square(x:int) = x*x

in

if square(test_divisor) > n then

n

else if (n mod test_divisor) = 0 then

test_divisor

else

find_divisor(n, test_divisor + 2)

end
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The ML program given above can be thoroughly tested. In fact, if the ML program is
written by defining every component function at the top-level (i.e., by not defining a function
within the scope of another function as suggested above), then each component function
can also be tested individually. Thus any mistake, due to oversight at the algorithm design
phase, can be removed by testing the functional code.

Experiments can also be conducted to verify the expected time complexity of the algo-
rithm. One can use the special timer function available in the ML basis library to obtain the
evaluation time of a function along with the overheads for garbage collection 1. The overall
execution time minus the the garbage collection time and the system time (this is the time
spent in input/output) gives a reasonable estimate of the run-time of the program. Note
that the run-time thus obtained is not a very accurate measure because of other system
overheads but suffices for rough profiling of functional programs.

Exercise 5.2 Since the algorithm for primality testing described above has a time com-
plexity of O(

√
n), the time taken to test the primality of a number ≈ 10m should be about

three times the time taken to test the primality of m. Experiment to find out whether this
is indeed true. Explain any discrepancy that you may observe. The experiment may be
conducted on the numbers 21893 and 218947, both of which are primes.

A Pascal program for the above can be written as

〈Prime-test (Java)〉≡
import java.io.*;

import javagently.*;

public class Primetest {

public static void main(String args[])

throws IOException {

int n;

BufferedReader in = Text.open(System.in);

Text.prompt("Input n: ");

n = Text.readInt(in);

if (prime(n))

System.out.println(n + " is a prime");

else

System.out.println(n + " is not a prime");

}

1Garbage collection is a part of the memory management of the ML run-time system, which identifies and
recycles memory space which is not required any more. Hence different runs of the same program with the
same inputs could give you different run-times, depending upon how often the garbage collector is called in
the interactive mode.
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static boolean prime(int n) {

return ((n ==2) | ((n%2 ==1) & (smallest_divisor(n) == n)));

}

static int smallest_divisor(int n) {

int test_divisor;

test_divisor = 3;

/* assert: INV */

while ((test_divisor*test_divisor <= n) & ((n % test_divisor) != 0))

test_divisor = test_divisor + 2;

/* assert: INV and

((Math.sqr(test_divisor) > n) OR ((n mod test_divisor) = 0))

*/

if ((n % test_divisor) == 0)

return test_divisor;

else

return n;

}

}

Note that in the Java implementation we have replaced the tail-recursive algorithm for
computing the smallest divisor with a while loop and we have used the same invariant
condition for the tail-recursive function and the while loop. The condition of the while
loop is the same as the otherwise clause of the tail-recursive procedure. The extra variable
test divisor required to define the state space is now a local variable of the function
smallest divisor and it has been initialized before the while loop. As we have men-
tioned before, a tail-recursive function can always be directly translated into an imperative
procedure described by a while loop.

To further illustrate the methodology of step-wise refinement we will develop an alterna-
tive method for primality testing using a different computational theory.

Example 5.2 Determining whether a given positive integer n is a prime (Method 2).
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Outline of the solution: Our new method of primality testing is based on a result in
number theory known as the Fermat’s little theorem.

Fermat’s little theorem: If n is a prime number and a is any positive integer less than
n, then a raised to the nth power is congruent to a modulo n.

Two numbers are said to be congruent modulo n if they both have the same remainder
when divided by n. The remainder of a number a when divided by n is also referred to as
a modulo n.

If n is not a prime, then, in general, most of the numbers a < n will not satisfy the above
relation. Thus, given a number n, we can pick a random number a < n and the compute
the remainder an modulo n. If this is not equal to a, n is certainly not a prime. Otherwise,
chances are good that n is a prime. We can assume that the probability that n is a prime
is 0.5. We can keep repeating the above experiment and stop if either

1. at any stage we find that n is not a prime, or

2. we find that the probability that n is not a prime has decreased to an acceptable
level. Note that with the successive experiments, the probability that n is not a prime
decreases as 0.5, 0.25, 0.125 . . ..

Unfortunately, there are numbers which fool Fermat’s test. These numbers are called
Carmichael numbers. Little is known about these numbers except that they are extremely
rare. There are 16 Carmichael numbers below 100,000. The smallest few are 561, 1105,
1729, 2821 and 6601. Thus the chances are little that an arbitrary number will fool the
Fermat’s test and the above strategy is quite reliable for deciding whether a number is prime
or not 2.
Algorithm design and analysis: We can now develop a functional algorithm for primality
testing based on the above computational theory. We start by defining an iterative function
prime(n, q) of the type prime : P × N → {true, false}, where n is the number whose
primality is to be tested and q is the maximum number of times the Fermat’s test is to be
applied.

prime(n, q) =

{
true if n = 2
prime test(n, q, false) otherwise

where the iterative function prime test : P × N × {true, false} → {true, false} is defined
using the invariant

INV = (¬failed = (n has passed Fermat’s test (q0 − q) times))

2People who are not satisfied with the validity of Fermat’s test because of the existence of Carmichael
numbers may consider the following fact. In testing the primality of very large numbers chosen at random,
the chance of stumbling upon a number that fools the Fermat test is less than the chance that cosmic
radiation will cause the computer to make an error in carrying out a “correct” algorithm.
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(where q0 is the initial value of q) as

prime test(n, q, failed) =


true if q = 0
false if failed
prime test(n, q − 1,¬Fermat test(n)) otherwise

where, the function Fermat test(n) applies the Fermat’s test on the number n once. Note
that prime test returns false if the Fermat’s test fails even once. We can define the function
Fermat test : P→ {true, false} as

Fermat test(n) = (expmod(a, n, n) = a)

where a is a random number between 2 and n−1 and expmod(b, e,m) computes be modulo m.
We can, to start with, define the function expmod : P × P × P → P in terms of the fast

exponentiation function power(b, e) of Example 3.9 as

expmod(b, e,m) = power(b, e) mod m

Since the time complexity of the function power(b, e) is O(lg e), we can expect to compute
expmod also with O(lg e) multiplications. Note, however, that the unit cost here is a
multiplication. However, multiplying, say, 423223 with 378127 is far more complex than
multiplying, say, 23 with 35. Thus, the cost of multiplication itself depends on the number
of digits of the multiplicands. In order to compute be (or, an) with the above algorithm, for
large n, we have to multiply large numbers, thereby increasing the cost of the multiplications.
Hence, even though the time complexity of the algorithm is O(lg n) multiplications, the cost
of each multiplication cannot be treated as O(1).

We can speed up the process by observing that

x ∗ y mod m = ((x mod m) ∗ (y mod m)) mod m

Thus, if we take the mod operation inside the scope of square in the fast exponentiation
algorithm of Example 3.9, then we can get by without ever having to multiply numbers
larger than m. This gives us the following algorithm for expmod:

expmod(b, e,m) =


1 if e = 1
(expmod(b, (e div 2),m))2 mod m if even(e)
(b ∗ expmod(b, (e− 1),m)) mod m otherwise

Exercise 5.3 Establish the correctness of the expmod function defined above by the fol-
lowing steps:

1. Show that for x, y,m ∈ P, (xy mod m) = (x mod m)(y mod m).

2. Prove the correctness of the expmod function using PMI.
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It is important to note that though we can establish the correctness of Fermat test,
the correctness of the overall algorithm cannot be established because the algorithm is not
correct for primality testing owing to the existence of the Carmichael numbers. Theoretically
this remains an inexact method for computing primality.

Exercise 5.4 Show that the time complexity of the expmod function defined as above is
O(lg e).

Consequently, the Fermat’s test can be conducted once in O(lg n) time. Thus the time com-
plexity of the overall algorithm is O(q lg n) where q is maximum number of times Fermat’s
test has to be applied.

Exercise 5.5 Given that ε is the acceptable probability of error in declaring a number n
as a prime, find out q, the number of times Fermat’s test must be executed, in terms of
ε. Assume that if the Fermat’s test succeeds once, the chances are even that n is a prime.
Ignore the existence of numbers which may fool Fermat’s test.

Actually, the probability that a number n is prime if it passes the Fermat’s test once is
more than even, and, consequently, only a few tests will suffice. Even if the probability is
0.5, the expected number of times the test has to be conducted to determine whether n is
composite is only 2. Thus q can be taken as a constant and the average time complexity of
the overall algorithm is only O(lg n).
Program development: We will first develop a ML program for the above algorithm. We
will use an ML function Rand.randint(m), which generates a random number between 0
and m− 1, to generate the random numbers necessary for the Fermat’s test.3

〈Prime-test 2 (ML)〉≡
fun prime(n,q) =

let

〈Code for prime test〉
in

if (n = 2) then

true

else

prime_test(n,q,false)

end;

3The ML module Rand can be downloaded from the CS120 home page. The module will have to be loaded
in to the ML interactive environment before the ML function prime can be invoked. It will also be necessary to
initialize the random number generator with the command Rand.initialize(x) where x can be an arbitrary
real number in the range from 0.0 to 2147483647.0. Note that Rand.randint is not a function in the strict
sense because it returns a different output for the same input for different invocations. It is only packaged
as a function.
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〈Code for prime test〉≡
fun prime_test(n,q,failed) =

let

〈Code for Fermat test〉
in

if q = 0 then

true

else if failed then

false

else

prime_test(n,q-1,not(Fermat_test(n)))

end

〈Code for Fermat test〉≡
fun Fermat_test(n) =

let

〈Code for expmod〉
in

let

val a = Rand.randint(n-2) + 2

in

(a = expmod(a,n,n))

end

end

〈Code for expmod〉≡
fun expmod(b,e,m) =

let

fun sqr(x) = x*x : int;

in

if e = 0 then

1

else if (e mod 2) = 0 then

sqr(expmod(b,e div 2,m)) mod m

else

((b mod m) * expmod(b,e-1,m)) mod m

end
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Exercise 5.6 Test each of the functions defined above separately.

Exercise 5.7 Implement the primality test, separately, using each of the above definitions
of the function expmod. Experimentally determine in which case you get a behaviour closer
to that suggested by the O(lg n) time complexity. You can measure the times required to
test the primality of 218947 and 21893, compute the ratios of the the two times and check
if they are close to (lg 218947/ lg 21893). Explain any discrepancy that you may observe.

The Java code for the function prime(n,q) can be now written as follows.

〈Prime-test 2 (Java)〉≡
import java.io.*;

import javagently.*;

public class fermat {

public static void main(String args[])

throws IOException {

long n,q;

BufferedReader in = Text.open(System.in);

Text.prompt("Input n");

n = Text.readInt(in);

Text.prompt("Input q");

q = Text.readInt(in);

if (prime(n,q))

System.out.println(n + " is a prime");

else

System.out.println(+n + " is not a prime");

}

static boolean prime(long n, long q) {

boolean failed;

failed = false;

while (q != 0 & !failed) {

failed = !fermat_test(n);

q = q-1;

}

if (q == 0)

return true;

else
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return false;

}

static boolean fermat_test(long n) {

long a;

a = randint(n-2) + 2;

return (expmod(a,n,n) == a);

}

static long expmod(long b, long e, long m) {

if (e == 0)

return 1;

else if (e%2 == 0)

return square(expmod(b,e/2,m)) % m;

else

return ((b%m) * expmod(b,e-1,m)) % m;

}

static long square (long n) {

return n*n;

}

static long randint(long n) {

return (long)(Math.floor(Math.random() * n));

}

}
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The imperative function randint is used to generate a random number in the range
0 . . . (n−1) from the standard Java function Math.random() which generates a real random
number in the interval (0, 1).

Exercise 5.8 Try to test the primality of a large prime number (say 218947, or even larger)
with your ML and Java programs. What is the largest prime for which you obtain a correct
result?

The reason that the above ML and Java programs will not work correctly for large numbers
has nothing to do with the correctness of the algorithm. The largest integer that any ML or
Java implementations can represent is limited. In order to compute an modulo n using the
function expmod, we need to compute products of numbers which may be as large as n. For
large n, this product may exceed largest integers that the programming languages ML and
Java can represent causing integer overflow. The ML interpreter can detect the overflow
and give a suitable error message. The Java interpreter will simply crash in case of an
integer overflow. We will see later how such errors can be detected and handled in both ML

and Java .

Example 5.3 Computation of square root by Newton’s method.
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Outline of the solution: The Newton’s method for iterative computation of
√
x can be

described as follows.

1. Start with a suitable guess g0 for
√
x and iterate as given below4.

gn+1 =
1

2

(
gn +

x

gn

)

2. Stop if at any stage the relative error | gn −
√
x | /
√
x < ε, where ε is a desired level

of accuracy.

Algorithm design and analysis: We will design an algorithm for computing the function
sqrt(x, ε) which returns the square root of a real number x > 0 within a relative error of ε.

The function we are seeking is of the type sqrt : R× R→ R.
We can determine the initialization and the termination conditions from the following

analysis. We have, for n > 0

gn −
√
x =

1

2gn−1
(gn−1 −

√
x)2

and

gn +
√
x =

1

2gn−1
(gn−1 +

√
x)2

Thus, we have

gn −
√
x

gn +
√
x

=

(
gn−1 −

√
x

gn−1 +
√
x

)2

=

(
g0 −

√
x

g0 +
√
x

)2n

≥ 0

Hence gn ≥
√
x for all n > 0 even if g0 <

√
x. We also have that

gn −
√
x = 2

√
x

q2
n

1− q2n

where

q =
g0 −

√
x

g0 +
√
x

Thus, to obtain
lim
n→∞

gn =
√
x

we must have | q |< 1 or g0 > 0.
Thus, with a choice of g0 = 1 we have

lim
n→∞

gn =
√
x and gn ≥

√
x ∀n > 0

4This is also called Hero’s algorithm.
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Also note that

gn−1 − gn = gn−1 −
1

2

(
gn−1 +

x

gn−1

)
=
g2n−1 − x

2gn−1
> 0

Hence the approximations gn for n ≥ 1 form a monotonically decreasing sequence

g1 ≥ g2 · · · ≥ gn−1 ≥ gn ≥ · · · ≥
√
x

We also have from the above that

gn−1 −
√
x ≤ gn−1 −

x

gn−1
=
g2n−1 − x
gn−1

= 2(gn−1 − gn)

Hence, if 0 ≤ 2(gn − gn+1)/
√
x < ε for n ≥ 2, it is guaranteed that 0 ≤ (gn −

√
x)/
√
x < ε,

and we may use this condition as the stopping criterion.
Now we may design an algorithm for computing square root as follows. We may write

an invariant for the iterative computation as

INV = [n = 0] ∨ [(n > 0) ∧ (gn −
√
x = 2

√
x

q2
n

1− q2n
)]

where q is as above. We start with g0 = 1. At any stage stop if the error 2(gn − gn+1) falls
below a desired level of accuracy ε.

The complete algorithm can then be given as

sqrt(x, ε) = sqrt iter(x, ε, 1, 0)

where the auxiliary function sqrt iter : R× R× R× R→ R is defined as

sqrt iter(x, ε, gn, n) =

{
gn if acceptable(gn, gnew, x, ε)
sqrt iter(x, ε, gnew, n+ 1) otherwise

where
gnew = update(gn, x)

Note that we have given a top-level description of the algorithm in terms of the procedural
abstractions acceptable and update. We may now design algorithms for these two procedures
after deriving their exact specifications from the above description.

The function acceptable : R × R × R × R → B accepts gn, gnew, x and ε as input and
determines whether the termination condition is satisfied. The function update : R×R→ R
updates the guess gn according to Newton’s iteration formula. We may define these functions
as

acceptable(gn, gnew, x, ε) = (4(gn − gnew)2 < x ∗ ε2)

and
update(g, x) = (x/g + g)/2
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Correctness
It can easily be verified that the initialization satisfies the invariant. Also the choice g0 = 1
ensures that | q |< 1. Thus, according to the invariant the successive guesses generate a
monotonically decreasing sequence, i.e.,

g1 ≥ g2 · · · ≥ gn−1 ≥ gn ≥ · · · ≥
√
x

and the convergence of the process is guaranteed. The termination condition ensures that
we have the solution to the desired level of accuracy.
Efficiency

Suppose we wish to have an accuracy up to the kth decimal digit, i.e.,

gn −
√
x√

x
≤ ε = 10−k

Then, the number of iterations, n, required can be estimated from the invariant condition
as follows. We require that

gn −
√
x√

x
= 2

q2
n

1− q2n
≤ 10−k

where | q |< 1 is a constant. In the asymptotic analysis the denominator term, 1− q2n , can
be bounded by a constant, i.e., for some n > n0 we must have 1− q2n > c for some constant
c such that 0 < c < 1. Hence, for n > n0, we require that

2
q2
n

1− q2n
< 2

q2
n

c
≤ 10−k

Hence, the number of iterations required is

n = O(lg k)

Program development: Now we are ready to translate the above algorithm description
into programming syntax. The complete ML program can be given as follows.

〈Sqrt〉≡
fun sqrt(x,epsilon) =

let

〈Code for sqrt iter〉
in

sqrt_iter(x,epsilon,1.0,0)

end;
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〈Code for sqrt iter〉≡
fun sqrt_iter(x,epsilon,gn,n) =

let

〈Code for acceptable〉
〈Code for update〉

in

let val gnew = update(gn,x)

in

if acceptable(gn,gnew,x,epsilon) then

gn

else

sqrt_iter(x,epsilon,gnew,n+1)

end

end

〈Code for acceptable〉≡
fun acceptable(gn,gnew,x,epsilon) =

let

fun sqr(x:real) = x*x

in

((4.0*sqr(gn-gnew)) <= (x * sqr(epsilon)))

end

〈Code for update〉≡
fun update(gn,x) = (gn + x/gn)/2.0;

Exercise 5.9 Test each of the ML functions developed above by actual execution.

Note that in the above algorithm we have not used the variable n explicitly. Its only role is
to establish the correctness.

Exercise 5.10 Modify the above code to return the pair (gn, n) ∈ R × N and verify that
the number of steps required (given by n) to compute the square root of a number agrees
with the theoretically derived time complexity.

Once we understand abstract role of the variable n in the above program (and complete the
actual testing of the program), we may drop it from the actual program.

Exercise 5.11 Rewrite the functional algorithm and the ML program without using the
iteration counter n explicitly.

Exercise 5.12 Develop a Java function for square root computation by translating the
above ML program.
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5.2 Procedural abstraction using higher-order functions

Till now we have only considered functions which accept numbers as input values and
return numbers as output values. But even in numerical computations we will be severely
restricted if we only consider functions of this type. There may be several computational
problems whose algorithmic solutions are based on a common central idea and are similar in
structure. In such a case we should be able to abstract out these common features in a high
level algorithm which can then be tailored to define solutions to particular problems with
these features. Such abstract functions can be written as higher-order functions. Higher
order functions are those which can accept functions as arguments and return functions as
values. In this section we will illustrate the use of such higher-order functions.

5.2.1 Functions as input parameters

Consider the following problems for computing three different sums.

1. Computing the sum of all integers from a to b (Example 3.12). A functional algorithm
for the problem can be given in terms of a function sum : N× N→ N as

sum(a, b) =

{
0 if (a > b)
a+ sum(a+ 1, b) otherwise

2. Computing the sum of squares of all integers from a to b. A functional algorithm for
the problem can be given in terms of the function sum squares : N× N→ N as

sum squares(a, b) =

{
0 if (a > b)
square(a) + sum squares(a+ 1, b) otherwise

3. Computing the sum of a sequence of terms in the following series which converges to
π/8:5

1

1 · 3
+

1

5 · 7
+

1

9 · 11
+ . . .

A functional algorithm for the problem can be given in terms of the function pi sum :
N→ R as

pi sum(n) =

{
0 if (a > b)
(1/(a ∗ (a+ 2))) + pi sum(a+ 4, b) otherwise

Clearly, the three algorithms share a lot in common; so much so that they warrant the
design of a common function which combines the common characteristics of the three dif-
ferent different functions. This can be achieved by defining a generic summation whose
functionality is given by

b∑
x=a,succ(x)

f(x)

5This series, usually written as π
4

= 1 − 1
3

+ 1
5
− 1

7
+ . . ., is due to Leibniz
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i.e., the summation of an arbitrary function f(x) in the range [a, b] in steps defined by
the successor function succ(x). In order to write a functional algorithm for such a generic
summation one needs to be able to accept two functions f : N → α and succ : N → N as
input in addition to the parameters a and b which belong to the set N. Here α may be
any generic type on which the operation + is defined (e.g. N or R). Hence, the generic
summation must be a higher-order function whose type is

summation : N× N× (N→ α)× (N→ N)→ α

A functional algorithm for the generic summation can then be given as

summation(a, b, f, succ) =

{
0 if (a > b)
f(a) + summation(succ(a), b, f, succ) otherwise

The advantage of defining such a higher-order function independent of any particular prob-
lem is that the analysis of correctness and efficiency of the algorithm can be carried out in
a general setting.

Exercise 5.13 For the function summation

1. Establish the correctness assuming the correctness of the functions f and succ. Note
that f and succ are just procedural abstractions of two unknown functions.

2. Determine the time and the space complexity in terms of number of calls to the
functions f and succ.

In ML the higher-order summation function can be written as follows:

〈summation〉≡
fun summation(a:int,b,f,succ) =

if (a > b) then

0

else

f(a) + summation(succ(a),b,f,succ);

> val summation = fn : int * int * (int -> int) * (int -> int) -> int

Then the summation functions sum and sum squares of the type N × N → N can be
defined in terms of the higher-order summation function as follows:

〈sum〉≡
fun sum(a,b) =

let

fun term(x) = x : int;

fun next(x) = x + 1

in

summation(a,b,term,next)

end;

> val sum = fn : int * int -> int
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〈sum squares〉≡
fun sum_squares(a,b) =

let

fun term(x) = x*x : int;

fun next(x) = x + 1

in

summation(a,b,term,next)

end;

> val sum_squares = fn : int * int -> int

The functions sum and sum squares are of the type N×N→ N. In contrast, the function
pi sum is of the type N × N → R. In order to satisfy the strict type checking in ML , we
have to re-define the function summation so that it returns a value of the type R.

〈real summation〉≡
fun real_summation(a : int,b,f,succ) =

if (a > b) then

0.0

else

f(a) + summation(succ(a),b,f,succ);

> val real_summation = fn : int * int * (int -> real) * (int -> int) -> real

Note that the only change in code that is required is the replacement of the identity
element of summation. We can now define pi sum as

〈pi sum〉≡
fun pi_sum(n) =

let

fun term(x) = 1.0/real(x*(x+2));

fun next(x) = x + 4

in

summation(1,n,term,next)*8.0

end;

> val pi_sum = fn : int * int -> real

Thus we see that the same form of the abstract function summation can be used to
compute sums of various different kinds. It may appear that the same effect may be achieved
by defining the summation function directly (not as a higher-order function) as

〈summation (incorrect)〉≡
fun summation(a,b) =

if (a > b) then

0

else

f(a)+summation(succ(a),b);

> Error: unbound variable or constructor: succ, f
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and by defining a particular summing function, say sum as

〈sum (incorrect)〉≡
fun sum(a:int,b:int) =

let

fun f(x : int) = x;

fun succ(x) = x + 1

in

summation(a,b)

end;

However, this will not work because the functions f and succ are local to the function
sum and are not defined in the global scope of the function summation. Both f and succ are
free parameters in the scope of the function summation and in order to evaluate the function
summation these two functions must be defined in its global scope with the same names.
It is not advisable to define the function summation with f and succ as free parameters
because then, in order to use the function summation, one has to look inside its definition
to find these names and it cannot be used as a black-box. In principle this would be similar
to having to open the back panel of a TV with a screw-driver in order to determine whether
it has 110V or 220V power input. Clearly, then the TV ceases to be a black-box (at least
figuratively speaking).

5.2.2 Polymorphic functions
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There is still something unsatisfactory about our higher order summation. We have had
to define two versions of the same function to account for the type checking in ML . Since the
two versions are essentially the same, it should be possible to write a single type independent
version. One option would be to pass the identity element of summation as a formal
parameter to the higher order function. But, in such a case, we will need to pass the operator
(‘+’ in this case) also as a formal parameter because the identity element depends on the
operator. If we change both the identity element and the operator, it will be inappropriate to
call the resulting higher order function summation. Then, with the same function, we will
be able to compute

∏b
i=a f(i) as well by setting the operator to ‘*’ and the identity element

to 1. In view of this we will call the modified function accumulator. The type of the higher
order function will be accumulator : N×N× (N→ α)× (N→ N)× (α× β → β)× β → β.
Here α and β represent sets of generic type which can be substituted with any specific
instance. Such functions of generic types are called polymorphic. Such a function can be
written in ML as follows:

〈accumulator〉≡
fun accumulator(a:int,b,f,succ,oper,iden) =

if (a > b) then

iden

else

oper(f(a),accumulator(succ(a),b,f,succ,oper,iden));

>val accumulator = fn

: int * int * (int -> ’a) * (int -> int) * (’a * ’b -> ’b) * ’b -> ’b

We can now use the polymorphic higher order function to compute sum defined above
in the following way:

〈sum (modified)〉≡
fun sum(a,b) =

let

fun term(x) = x : int;

fun next(x) = x + 1

in

accumulator(a,b,term,next,op+,0)

end;

> val sum = fn : int * int -> int
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Here op+ is the ML syntax for converting the infix operator + to the corresponding binary
function. The function pi sum can be defined in terms of accumulator as

〈pi sum (modified)〉≡
fun pi_sum(n) =

let

fun term(x) = 1.0/real(x*(x+2));

fun next(x) = x + 4

in

accumulator(1,n,term,next,op+,0.0)

end;

> val pi_sum = fn : int -> real

The higher order accumulator can even be used to compute factorial(n) as follows:

〈factorial (modified)〉≡
fun factorial(n) =

let

fun term(x : int) = x;

fun next(x) = x + 1

in

accumulator(1,n,term,next,op*,1)

end;

> val factorial = fn : int -> int

In fact, we can go one step further and re-define accumulator so that the input parameters
a and b are also polymorphic. In such a case we will also have to pass a comparison function
in order to make the > operator of a generic type. We give the definition as follows:

〈accumulator (modified)〉≡
fun accumulator(a:’a,b,comp,f,succ,oper,iden) =

if comp(a,b) then

iden

else

oper(f(a),accumulator(succ(a),b,comp,f,succ,oper,iden));

> val accumulator = fn

: ’a * ’b * (’a * ’b -> bool) * (’a -> ’c) * (’a -> ’a) * (’c * ’d -> ’d)

* ’d

-> ’d
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We can then use the higher order accumulator to compute summations on the real line
as well.

Example 5.4 Computing definite integrals of smooth functions. A definite integral of a
function f between the limits a and b can be approximated numerically using the formula∫ b

a
f(x)dx ≈

[
f

(
a+

∆x

2

)
+ f

(
a+ ∆x+

∆x

2

)
+ f

(
a+ 2∆x+

∆x

2

)
+ . . .

]
∆x

We can develop a higher-order ML function for computing definite integral as suggested
above using the modified accumulator defined above. The function integral takes a function
f and the parameters a,b and dx as input and returns the value of the definite integral as
the output. Thus, it has the following type:

integral : (R→ R)× R× R× R→ R

We can define the function integral as follows:

integral(f, a, b, dx) = accumulator((a+
dx

2
), b, op >, f, add dx, op+, 0.0) ∗ dx

where the function add dx(x) can be defined as

add dx(x) = x+ dx

The corresponding ML function can then be given as

〈integral〉≡
fun integral(f,a,b,dx) =

let

fun add_dx(x) = x + dx

in

accumulator((a+dx/2.0),b,op>,f,add_dx,op+,0.0)*dx

end;

> val integral = fn : (real -> real) * real * real * real -> real

Exercise 5.14 Use the function integral defined above to compute
∫ π/2
0 sin (x)dx

The advantage of writing such generic higher order functions is that the correctness and
efficiency analysis of the algorithmic process needs to be carried out only once. The higher
order function can then be applied to solve a whole class of similar problems instead of a
single one.

5.2.3 Constructing functions using lambda (λ)
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λ, or fn in ML , is a special notation used in functional programming to denote a nameless
function. The value of a λ-expression is a function. For example, the expression

λx[x+ 4]

is used to denote “a function which accepts x as input and returns x + 4 as the output”.
The corresponding definition in ML is given as:

〈fn example〉≡
fn x => x + 4;

> val it = fn : int -> int

The general form of a λ-expression in mathematical notation is

λ〈formal parameters〉[〈body〉]

and in ML it is

〈fn〉≡
fn (〈formal parameters〉) => (〈body〉);
The scope of the formal parameters is limited to the body of the λ-expression. Thus fn

is used to create functions in the same way as fun except that a function defined by fn has
no name. For example we can use λ to define the function pi sum described in the previous
section without using any auxiliary function as follows:

pi sum(n) = accumulator(1, n, op >, λx[1/(x ∗ (x+ 2))], λx[x+ 4], op+, 0)

The equivalent definition in ML would be

〈pi sum〉≡
fun pi_sum(n) =

accumulator(1,n,op>,fn x:int => 1.0/real(x*(x+2)),fn x => x+4,op+,0.0);

> val pi_sum = fn : int -> real

The ML function let defined in Section 3.2.1 is a special form of fn. A let expression

〈let〉≡
let

val 〈identifier 1 〉 = 〈exp 1 〉);
val 〈identifier 2 〉 = 〈exp 2 〉);

.

.

.

val 〈identifier n〉 = 〈exp n〉)
in

〈body〉
end;
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is equivalent to the λ-expression

〈equivalent〉≡
(fn (〈var 1 〉,〈var 2 〉,...,〈var n〉) => 〈body〉)

(〈exp 1 〉,〈exp 2 〉,..., 〈exp n〉);
In what follows we will see many other applications of λ-expressions.

5.2.4 Functions as returned values

We can use λ-expressions to describe higher-order functions which return functions as values.
Consider the following example.

Example 5.5 Curried multiplication.
Consider the following definition of the function mult:

mult = λx[λy[x ∗ y]]

here the type of the function mult is as follows:

mult : N→ (N→ N)

The function mult accepts a number x ∈ N as its input and returns a function of the type
(N→ N) as its output. The corresponding definition in ML can be given as

〈mult〉≡
val mult = fn x:int => fn y => x*y;

> val mult = fn : int -> int -> int

A completely equivqlent way of writing this in ML is as follows:

〈mult (equivalent)〉≡
fun mult x y = x*y : int;

> val mult = fn : int -> int -> int

Thus typing, say, (mult 2) at the prompt of the ML interpretor returns a function λy(2∗
y) of the type N→ N.

〈interactive〉≡
(mult 2);

>val it = fn : int -> int

which indicates that it is a function of y. One can now apply the function returned by
(mult 2) to, say, 3 and obtain 6 as the answer.

〈interactive〉+≡
(mult 2) 3;

> val it = 6 : int
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By defining mult as above, the binary function ∗ has been represented in terms of two
unary functions. The advantage of defining mult as above is that it becomes a higher-order
function and one can define other functions based on multiplication in terms of mult. For
example, consider the ML definitions

〈double〉≡
val double = (mult 2);

> val double = fn : int -> int

and

〈hundred times〉≡
val hundred_times = (mult 100);

> val hundred_times = fn : int -> int

The resulting functions double : N → N and hundred times : N → N are both derived
from a higher-order function mult. These functions can now be applied to multiply a
number by 2 or 100.

〈interactive〉+≡
double(5);

> val it = 10 : int

hundred_times(5);

> val it = 500 : int

The above strategy of representing an n-ary function in terms of n unary functions by using
λ-expressions to return functions as parameters is called Currying6. We will see several
more examples of Currying in the following examples.

Example 5.6 Composing two functions.
The composition f ◦ g : γ → β of two functions f : α→ β and g : γ → α can be defined

as a higher-order function as follows:

f ◦ g = compose = λf [λg[λx[f(g(x)]]]

The type of the function compose is then given by

compose : (α→ β)→ ((γ → α)→ (γ → β))

The corresponding definition in ML can be given as

〈compose〉≡
val compose = fn f => fn g => fn x => f(g(x));

> val compose = fn : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

6After the logician Haskell B. Curry. The technique is actually credited to Moses Schönfinkel who
conceived it in 1924 but somehow “Schönfinkeling” has not caught on.
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or, equivalently, as

〈compose (equivalent)〉≡
fun compose f g x = f(g(x));

> val compose = fn : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

The function compose can then be used to compose two functions, say sin(x) and cos(x)
as follows:

〈sin of cos〉≡
val sin_of_cos = compose(Math.sin) Math.cos;

> val sin_of_cos = fn : real -> real

The function sin of cos can then be invoked on any input, say π, to compute sin(cos(π))
as

〈invocation〉≡
sin_of_cos(Math.pi);

> val it = ~0.841470984808 : real

or directly as

〈invocation〉+≡
(compose(Math.sin) Math.cos) Math.pi;

> val it = ~0.841470984808 : real

Exercise 5.15 Indicate the type of the ML functions

1. (compose Math.sin)

2. ((compose Math.sin) Math.cos))

Exercise 5.16 Give a ML function for composing f ◦ g where g(x, n) = xn and and f(x) =
x+ 1 where the input x and n are integers. Indicate the type of composed function.

Exercise 5.17 Consider the following alternate description of compose where it is of the
type compose : (α→ β)× (γ → α)→ (γ → β) and is defined as

compose(f, g) = λx[f(g(x))]

In fact there is an ML operator ◦ which follows this definition of compose:

〈invocation〉+≡
op o;

> val it = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b

Math.sin o Math.cos;

> val it = fn : real -> real

(Math.sin o Math.cos) Math.pi;

> val it = ~0.841470984808 : real
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1. Give the equivalent definition in ML and show how two functions, say sin and cos,
can be composed.

2. Why is our original definition a more preferred option? Give examples to show that
the original definition is more general.

Example 5.7 nth repeated application of a function f .
If f : α → α is any function then we can form the nth repeated application of f whose

value at x ∈ α is f(f(. . . (f(x)) . . .)). For example, if f(x) = x + 1 then the nth repeated
application of f is the function g where g(x) = x + n. If f is the operation of squaring a
number, then the nth repeated application of f is the function that raises its input to the
(2n)th power. We can define a higher-order function repeat : (α → α) → (N → (α → α)
which accepts f and n as input and returns a function of the type (α→ α) as its output.

repeat(f) = λn

[{
λx = x if (n = 0)
compose(f, repeat(f)(n− 1)) otherwise

]
In ML the function repeat can be written as

〈repeat〉≡
fun repeat f n =

if n=0 then (fn x => x)

else f o (repeat f (n-1));

> val repeat = fn : (’a -> ’a) -> int -> ’a -> ’a

Exercise 5.18 Use repeat in the ML interactive environment

1. To compute x+ n by repeating n times a function f(x) = x+ 1.

2. To compute cos(cos . . . (cos(1)) . . .)) where the function cos (pre-defined in ML as
Math.cos) is applied 100 times. This should give you the solution of the equation
cos(x) = x which is approximately 0.7391.7

Example 5.8 Computing the derivative of a function with respect to x.

7The solution of f(x) = x is called the fixed-point of the function f .
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Consider the statement “the derivative of sin(x) is cos(x)”. What this really means is
that the derivative of a function whose value at x is sin(x) is another function whose value
at x is cos(x). Thus derivative may be regarded as a function which given a function f as
input, returns another function Df as the output. Thus, if f is a function and dx is some
small number, then the derivative Df of f is that function whose value at any number x is
given by (in the limit of small dx)

Df(x) =
f(x+ dx)− f(x)

dx

Thus derivative may be thought of as a higher-order function of the type

deriv : R→ (R→ R)→ (R→ R)

which takes dx as input and returns a function which takes f as its input and returns the
function Df as the output. It can be defined using a λ-expression as

deriv(dx) = λ(f)λ(x)[(f(x+ dx)− f(x))/dx]

In ML the equivalent definition would be

〈deriv〉≡
fun deriv dx f x = (f(x+dx) - f(x))/dx : real;

> val deriv = fn : real -> (real -> real) -> real -> real

We can use the function deriv to approximate the derivative of sin(x) at π (which is
cosπ = −1)as follows:

〈invocation〉≡
(deriv(0.000001) Math.sin) Math.pi;

> val it = ~1.00000000014 : real

Exercise 5.19 Use the higher-order function deriv to approximate the value of the deriva-
tive of x3 at 5.

We can even use the higher-order derivative function to compute the partial derivative of a
multi-variate function. For example, if f(x, y) = x3y then the partial derivative of f with
respect to x is 3x2y. The partial derivative evaluated at say x = 3, y = 4 is 108.

In order to compute the partial derivative of f with respect to x we need to write the
function f in the curried form as

f = λy[λx[x3 ∗ y]]

The function f then has the type f : R→ (R→ R). It can be defined in ML as

〈curried f(x,y)〉≡
fun f y x = x*x*x*y : real;

> val f = fn : real -> real -> real
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Then in order to approximate the partial derivative of f(x, y) = x3y at x = 3, y = 4 we
can use

〈invocation〉+≡
((deriv (f 4) 0.001) 3) [return]

108.036003999985

(deriv(0.000001) (f 4.0)) 3.0;

> val it = 108.000036022 : real

Exercise 5.20 Use the function deriv to compute the partial derivative of x3y2 with
respect to y at x = 3, y = 4. Indicate the type of any function that you may need to define.

We can also combine the higher order functions repeat and deriv to define a function to
compute the nth derivative of a given function.

Example 5.9 Computing the nth derivative of a function.
The higher order function nderiv : R× N→ ((R→ R)→ (R→ R)) can be written as

nderiv(dx, n) = (repeat(derivdx)n)

It takes the parameters dx and n as input, and returns a function which takes f as input
and returns a function to compute the nth derivative of f as the output. It can be written
in ML as

〈nth derivative〉≡
fun nderiv(dx,n) = (repeat (deriv dx) n);

> val nderiv = fn : real * int -> (real -> real) -> real -> real

We can now define a sequence of functions D0, D1, D2, . . . to compute the zeroth, first,
second, ... derivatives of a given function.

〈higher derivatives〉≡
val D0 = nderiv(0.001,0);

> val D0 = fn : (real -> real) -> real -> real

val D1 = nderiv(0.001,1);

> val D1 = fn : (real -> real) -> real -> real

val D2 = nderiv(0.001,2);

> val D2 = fn : (real -> real) -> real -> real

Exercise 5.21 Use the functions D0, D1, D2, . . . to compute the higher derivatives of
sin(x) and cos(x) at a given value of x.

Example 5.10 Computing the root of a function using Newton’s method.
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A root of a function f(x) is a value r such that f(r) = 0. Newton’s method for computing
the roots of a differentiable function can be described as follows. If f is a function and y is
an approximation to the root of f , then a better approximation to the root can be obtained
by

y − f(y)

Df(y)

This generalizes the formula we used for computing the square root of a number in Example
5.3.

Exercise 5.22 Consider f(y) = y2 − x. Clearly, the root of f(y) gives the square root of
x. Show that the formula for iterative improvement used in Example 5.3 is a special case
of Newton’s method.

Newton’s method does not always converge to an answer, but it can be shown that in cases
where it does converge every iteration of Newton’s method doubles the number of digits of
accuracy of the approximation to the root. In the special case of computing square roots
we have already established that the Newton’s method is guaranteed to converge.

Newton’s method for computing a root of an arbitrary function f can be written as a
higher-order function. It should accept a function f , a parameter guess and an accuracy
factor ε as input and return the root as the output. Hence it has the following type.

newton : (R→ R)× R× R→ R

It can be defined as

newton(f, guess, ε) =

{
guess if acceptable?(guess, f, ε)
newton(f, update(guess, f), ε) otherwise

where the functions acceptable? : R × (R → R) × R → B and update : R × (R → R) → R
are defined as

acceptable(guess, f, ε) = (| f(guess) |≤ ε)

and
update(guess, f) = guess− f(guess)/Df(guess)

where
Df = (deriv(dx)f)

We can set dx to some small value like 10−6. The equivalent definition in ML can then be
given as

〈newton〉≡
fun newton(f,guess,epsilon) =

let

fun acceptable(guess,f,epsilon) = (abs(f(guess)) <= epsilon);

fun update(guess,f) = guess - f(guess)/((deriv 0.000001) f guess);

in
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if acceptable(guess,f,epsilon) then guess

else newton(f,update(guess,f),epsilon)

end;

> val newton = fn : (real -> real) * real * real -> real

Exercise 5.23 Use the ML code for Newton’s method to

1. Compute the square root of a number by Newton’s method. Compare the execution
time with the program developed in Example 5.3.

2. Compute the fixed point of the equation x = cos(x). Start with an initial value of
guess = 1.

The idea of using functions as input parameters and returned values may take some
getting used to, or it may appear to be little more than a mathematical trick. However the
increased flexibility in expressing programming ideas is enormous and using higher-order
functions it becomes possible to abstract out the essence of a general idea or algorithm
without having to bother about the specific details. Thus, programming in a language that
supports higher-order functions is really convenient.

Problems

1. Use the following timer function to profile the run-times of both our methods of
primality testing.
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The following function timer measures the execution speed of any arbitrary ML ex-
pression. The arguments f is the function to be timed and x is its input. n is the
number of times the function should be invoked. The function doesn’t take in to ac-
count the time spent in the control loop of the timer function itself, and, consequently,
the timing is somewhat inaccurate. Further, different runs of the same program may
however give slightly different times because of system overheads.

〈timer〉≡
fun timer f x n =

let fun ntimes(f,x,n) =

let fun ntimes_iter(f,x,n,i) =

if (i=n) then

()

else

(f(x);ntimes_iter(f,x,n,i+1))

in

ntimes_iter(f,x,n,0)

end

in

let val dummy =

Timer.startCPUTimer ()

in ntimes(f,x,n); Timer.checkCPUTimer(dummy)

end

end;

> val timer = fn

: (’a -> ’b) -> ’a -> int -> {gc:Time.time, sys:Time.time, usr:Time.time}

The timer function can be invoked from the ML interpreter to evaluate, say, prime(79)
hundred times as follows:

〈invocation〉≡
(timer prime 79 1000);

> val it =

{gc=TIME {sec=0,usec=0},sys=TIME {sec=0,usec=0},usr=TIME {sec=0,usec=10000}}

: {gc:Time.time, sys:Time.time, usr:Time.time}
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Note that the timer function outputs the garbage collection time, the system time
and the user time separately.

2. Two prime numbers p and q are said to be twin primes if q = p+ 2. Develop a Java

program, using step-wise refinement, to output the first twin primes after n where n
is an input parameter.

3. Assuming that a function f(x) is given, develop Java functions, using step-wise re-
finement, for

(a) finding a root of the function between two limits by bisection method (see Section
0.7 of Kreyszig).

(b) finding the definite integral of the function between two limits a and b, by

i. the trapezoidal rule (see Section 0.8 of Kreyszig)

ii. Simpson’s rule (see Section 0.8 of Kreyszig)

4. Obtain an algorithm for finding the kth root of a number x and perform an analysis
similar to that in Example 5.3.

5. The reciprocal 1/x of a number x > 0 can be computed as follows. Start with an
initial guess y0 and iteratively update the guess as

yn+1 = yn ∗ (2− x ∗ yn)

and terminate the process when | 1−x∗yn |< ε for a given ε. Use step-wise refinement
to

(a) determine a suitable value of y0.

(b) develop a complete Java program for the problem.

(c) carry out an analysis of the number of steps required.

6. Define a higher-order double summation function to compute

b∑
i=a

d∑
j=c

f(i, j)

in terms of the higher-order function summation defined in Section 5.2.1.

7. The higher-order summation function developed in Section 5.2.1 is recursive. Write
an iterative version of the higher-order function.

8. The idea of smoothing a function is an important concept in signal processing. If f
is a function and dx some small value, then the smoothed version of f is the function
whose value at a point x is the average of f(x − dx), f(x) and f(x + dx). Write a
function called smooth which takes as input a function that computes f and returns
a function that computes the smoothed f .
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9. It is sometimes valuable to repeatedly smooth a function (i.e., smooth the smoothed
function, and so on) to obtain a n-fold smoothed function. Show how to generate the
n-fold smoothed function of any given function using smooth and repeat.

10. Newton’s method is an example of a still more general computational strategy known
as iterative improvement. An iterative improvement says that, to compute something,
we start with an initial guess for the answer, test if the guess is good enough, and
otherwise improve the guess and continue the process using the improved guess as
the new guess. Write a higher-order function called iterative improve that takes two
procedures as arguments: a method for telling whether the guess is good enough and
a method for improving the guess. iterative improve should return as its value a
function that takes a guess as argument and keeps improving the guess until it is
good enough. Express the following using iterative improve:

(a) The algorithm for computing the square root of Example 5.3

(b) The algorithm developed in Problem 5 for computing the reciprocal of a number.

(c) A fixed-point iteration for computing the solution of the equation x = cos(x).

(d) Newton’s method.

11. Can you use the higher-order function iterative improve to compute the factorial
of a given number n iteratively? Iteration itself can be regarded as a higher-order
function. What would be required to write a general purpose higher-order function
that can represent any iteration?

12. In a language like ML which can manipulate functions, we can get by without numbers
(at least insofar as non-negative integers are concerned) by implementing 0 and the
operation of adding 1 as

val zero = fn f => fn x => x;

val succ = fn n => fn f => fn x => f ((n f) x);

This representation is known as Church numerals, after the logician Alonzo Church
who invented λ-calculus.

(a) Figure out how the above definitions work.

(b) Define one and two directly (not in terms of zero and succ). [Hint: Use
substitution to evaluate (succ zero)]

(c) define addition directly.
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Chapter 6

Abstract Data Types

So far we have been computing only with integer, boolean and real data types. These
basic data-types, along with the character data type, are supported by most programming
languages. However, for more complex computations we need to deal with more structured
forms of data. Examples of such structured data-types are rational and complex numbers,
lists and sequences, polynomials, vectors and matrices, trees, stacks, queues, files etc. In
this chapter we will see how structured data-types like rational and complex numbers, lists
and sequences can be constructed out of the basic data-types. Our ultimate objective is to
create a hierarchy of data-types, as shown in Figure 6.1, with more complex ones defined
on top of simpler ones, so that the programs which use a particular data-type become
independent of how the data-type is implemented. Complex computations which need to
manipulate objects of these types can then be designed at a higher conceptual level in terms
of these data types.

Any data-type which is not supported natively by a programming language is called an
abstract data type. It includes a representation for items of the data type and associated
operations on the items. An implementation of an abstract data type is called a data struc-
ture. In what follows we will illustrate the design of some abstract data types in both ML

and Java .

6.1 Building the Rational data-type (pairs)

Let us consider the task of designing an arithmetic system to carry out computations with
rational numbers. The abstract data-type rational is defined as

RAT = {(p, q) | p, q ∈ Z, q 6= 0}

where Z is the integer data-type. Rational numbers are interpreted as the ratio p/q. Our
design objective is to construct functions like plus : RAT × RAT → RAT , minus :
RAT × RAT → RAT , mult : RAT × RAT → RAT , div : RAT × RAT → RAT ,
equalto : RAT × RAT → B which adds, subtracts, multiplies, divides and checks the
equality of rational numbers. Any user program that uses rational arithmetic may then

109
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expressions, polynomials

6

trees, big-numbers, sets

6

lists, sequences

6

rational, complex

6

pairs

6

integer, boolean, real, character

Figure 6.1: Hierarchy of types.

directly use these functions and treat RAT as a data-type in its own right. The major
advantage of such a scheme is increased modularity. Even if we decide, at a later point
of time, to change our implementation of the data-type RAT , there should be no need to
modify any higher level computation that uses rational numbers.

Let us assume, for the time being, that we can construct a rational number given a
numerator and a denominator using the function

make rat : Z× {Z− {0}} → RAT

i.e., make rat(n, d) returns the rational number n/d. Let us also assume the we have the
functions

numer : RAT → Z
denom : RAT → {Z− {0}}

which given a rational number as the input, return the numerator and the denominator
respectively.

We can then add, subtract, multiply, divide and check equality of rational numbers using
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the following relations:

n1
d1

+
n2
d2

=
n1 ∗ d2 + n2 ∗ d1

d1 ∗ d2
n1
d1
− n2
d2

=
n1 ∗ d2 − n2 ∗ d1

d1 ∗ d2
n1
d1
∗ n2
d2

=
n1 ∗ n2
d1 ∗ d2

n1
d1
/
n2
d2

=
n1 ∗ d2
d1 ∗ n2

n1
d1

=
n2
d2

⇔ (n1 ∗ d2) = (d1 ∗ n2)

We can write our functions for manipulating objects of the data-type RAT in terms of
the above rules as

plus(a, b) = make rat (numer(a) ∗ denom(b) + numer(b) ∗ denom(a), denom(a) ∗ denom(b))

minus(a, b) = make rat(numer(a) ∗ denom(b)− numer(b) ∗ denom(a), denom(a) ∗ denom(b))

mult(a, b) = make rat(numer(a) ∗ numer(b), denom(a) ∗ denom(b))

div(a, b) = make rat(numer(a) ∗ denom(b), denom(a) ∗ numer(b))
equalto(a, b) = (numer(a) ∗ denom(b) = denom(a) ∗ numer(b))

Thus, as long as two integers can be glued together using the function make rat and
un-glued using the functions numer and denom, we have an effective way of implementing
the data-type RAT and its associated functions. We have to, of course, decide how to
implement the functions make rat, numer and denom.
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6.2 Rational data-type in ML

6.2.1 signature, datatype and module

The programming language ML allows us to specify an abstract data type in terms of its
signature. The signature tells us what are the essential components of the data-type available
to any program that uses the data-type. It is merely a specification of the type and a list of
operations associated with an abstract data type. It specifies what the operations are, but
not how they are implemented. Consider, for example, the following ML declaration of the
signature of a rational number.

〈Signature of rational〉≡
signature Rational =

sig

type number;

val makerat : int *int -> number;

val plus : number * number -> number;

val minus : number * number -> number;

val mult : number * number -> number;

val div : number * number -> number;

val equalto : number * number -> bool;

end;

The signature tells us that any implementation of the abstract data type Rational must
define a data-type called number; a function called makerat for constructing a rational
number given two integers, and the functions plus, minus, mult, div and equalto which
allow us to manipulate rational numbers. Further, only these functions will be available as
the interface of the abstract data type Rational for other programs to use.

In order to implement the data-type Rational we need a facility to glue two integers in
to a compound value. We may do this in ML using the primitive declaration datatype and
a constructor in the following way:

〈datatype declaration〉≡
datatype number = ratify of int*int;

The above declaration defines the data-type number to be a compound value created with
the constructor ratify. Note that the choice of the name of the constructor is arbitrary and
we could choose any name for the constructor. The constructor ratify accepts two input
arguments and returns a compound value which is a pair with the two input arguments as
parts. Thus, if the two input integers are a and b then the compound value is ratify(a,b).
The compound value can be un-glued by a powerful ML concept called pattern matching.
The ML declarations

〈pattern matching〉≡
fun numer(ratify(a,_)) = a;

fun denom(ratify(_,b)) = b;
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define numer and denom to be functions that accept compound items created with the
constructor ratify as input and return the components a and b respectively as output.
The mechanism for extracting the components a and b from the compound item is called
pattern matching. The notation ratify(a, ) means that we do not care about the second
argument in the pattern matching.

Armed with the above, we can now define an ML module called RAT1 which is our first
implementation of the abstract data type Rational.

〈Module RAT1 〉≡
structure RAT1 : Rational =

struct

datatype number = ratify of int*int;

exception DenomIsZero;

fun gcd(a,b) =

if b = 0 then

a

else gcd(b,a mod b);

fun makerat(n:int,d:int) : number =

if d = 0 then

raise DenomIsZero

else

let

val pn = abs(n);

val pd = abs(d);

val sign =

if n = 0 then

0

else (n div pn) * (d div pd);

val g = gcd(pn,pd)

in

ratify(sign * pn div g,pd div g)

end;

fun numer(ratify(x,_)) = x;

fun denom(ratify(_,y)) = y;

fun plus(a,b) =

let

val x = numer(a)*denom(b) + numer(b)*denom(a);

val y = denom(a)*denom(b);
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in

makerat(x,y)

end;

fun minus(a,b) = ...

fun mult(a,b) = ...

fun div(a,b) = ...

fun equalto(a,b) = ...

end;

Exercise 6.1 Complete the functions minus, mult, div and equalto in the above module
definition.

The above ML module RAT1 is a particular implementation (a data structure) of the abstract
data type Rational. The declaration

〈structure declaration〉≡
structure RAT1 : Rational =

struct

...

end;

specifies that the module RAT1 adheres to the signature Rational defined earlier. We
can use the module RAT1 from the ML prompt in the following way.

〈ML usage examples〉≡
- val x = RAT1.makerat(2,4);

val x = ratify (1,2) : RAT1.number

- val y = RAT1.makerat(3,~6);

val y = ratify (~1,2) : RAT1.number

- RAT1.plus(x,y);

val it = ratify (0,1) : RAT1.number

In the above example DenomIsZero is declared to be an exception which is a standard
data type in ML . The DenomIsZero exception is raised when the denominator is zero in
makerat. A typical ML usage example is

〈ML exception〉≡
- RAT1.makerat(2,0);

uncaught exception DenomIsZero

raised at: rat.ml:23.13-23.24
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Programs that use rational numbers

Rational numbers in problem domain

makerat, plus, minus, mult, div, equalto

Rules for rational-number arithmetic

makerat, numer, denom

However pairs are implemented

Constructors or any other method of implementing pairs

Figure 6.2: Abstraction barriers in the implementation of rational numbers

We will illustrate later how to write code to catch and exception to facilitate a graceful
exit.

Note that the ML module RAT1 uses the internal function gcd to reduce a rational number
to its canonical form. It also uses functions numer and denom for the internal representa-
tion of the data type. However, since these functions are not a part of the signature
Rational, they are not visible outside the module RAT1, and, consequently, an usage like
RAT1.gcd(4,6) is illegal. Only those components of a module which are explicitly specified
in the signature of the abstract data type are available for use from outside.

We have thus implemented the data-type for rational numbers using several abstraction
barriers. At the lowest level is the pairing of integers using the primitive datatype and
the constructor facility in ML . At the next higher level are our functions makerat, numer
and denom. Using these functions we have defined, at a still higher level, our functions
for manipulating rational numbers. Any user program at a higher level may now simply
define variables of the type rational (RAT1.number), construct rational numbers using the
function makerat and use the functions for carrying out arithmetic on rationals directly.
The overall hierarchy is illustrated in Figure 6.2. Thus, at the interface to the highest
level of any program using rational numbers, only the functions RAT1.makerat, RAT1.plus,
RAT1.minus, RAT1.mult, RAT1.div and RAT1.equalto need to be available. The rest of
the detail of the implementation may be completely hidden from an user program. This is
achieved through the signature declaration.

The above idea of hiding the details of the implementation of an abstract data type is
key to modular programming. After all, in order to drive a car we need to know only the
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methods available - the use of the steering, the brake, the indicators 1, the clutch and gear
changing. We definitely do not want to know about the details of the transmission system,
the viscocity of the brake fluid etc. These issues are relevant when we are designing a
car, exactly in the same way the internal representation of the data type is relevant to the
designer of the data-type module. This clear cut separations of concerns is key to succesful
development of large programs.

We may even change the underlying representation of rational numbers without affecting
any computation at the higher levels. For example, we may consider a totally different,
though somewhat inefficient, implementation of our functions makerat, numer and denom.
If we consider only positive rational numbers, we may define the function makerat as

makerat(n, d) = 2n/gcd(n,d) ∗ 3d/gcd(n,d)

The function makerat then returns an integer as defined above. Using the unique prime
factorization theorem which states that any positive integer can be uniquely expressed as a
product of primes, we can define the functions numer and denom by simply counting the
numbers or 2’s and 3’s, respectively, in the prime factorization of any integer returned by
makerat. We may thus define these functions as

numer(r) =

{
0 if r mod 2 6= 0
numer(r div 2) + 1 otherwise

and

denom(r) =

{
0 if r mod 3 6= 0
denom(r div 3) + 1 otherwise

We can then implement an entirely different module (a different data structure) for the
same abstract data-type Rational in the following way.

〈Module RAT2 〉≡
structure RAT2 : Rational =

struct

type number = int;

exception DenomIsZero;

fun gcd(a,b) =

if b = 0 then

a

else gcd(b,a mod b);

fun power(x,n) = ...

1Not in Delhi!
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fun makerat(n:int,d:int) : number =

if d = 0 then

raise DenomIsZero

else

let

val pn = abs(n);

val pd = abs(d);

val sign =

if n = 0 then

0

else (n div pn) * (d div pd);

val g = gcd(pn,pd)

in

if sign = 0 then

power(2,pn div g)*power(3,pd div g)

else

sign * power(2,pn div g)*power(3,pd div g)

end;

fun numer(r : number) =

let

val sign = r div abs(r);

fun niter(r,i) =

if (r mod 2) <> 0 then

i

else

niter(r div 2,i+1)

in

sign*niter(abs(r),0)

end;

fun denom(r : number) =

let

fun niter(r,i) =

if (r mod 3) <> 0 then

i

else

niter(r div 3,i+1)

in

niter(abs(r),0)

end;
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fun plus(a,b) =

let

val x = numer(a)*denom(b) + numer(b)*denom(a);

val y = denom(a)*denom(b);

in

makerat(x,y)

end;

fun minus(a,b) = ...

fun mult(a,b) = ...

fun div(a,b) = ...

fun equalto(a,b) = ...

end;

Exercise 6.2 Verify that if we use the above definitions of the functions makerat, numer
and denom, we do not need to modify any of the functions plus, minus, mult, div and
equalto. Also verify that any top level program that was defined using the module RAT1

can be used unchanged with the module RAT2.
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6.3 Rational data-type in Java

6.3.1 Interfaces, Classes and Objects: Basics of Object Oriented Pro-
gramming

Unlike in ML where we only have functions which return values of specified types, in an
imperative language like Java an instance of an abstract data type has a physical presence in
the sense that it occupies a definite position in memory (like imperative variables discussed
before) and is described through the state of the memory. Such instances of abstract data
types are called objects. In addition to their state in the memory objects also have associated
methods which represent the operations associated with the abstract data type.

In an object oriented programming language like Java , abstract data types are imple-
mented using interfaces, classes and objects which we describe below.

An interface in Java is a specification of an abstract data type. It is analogous to a
signature in ML and is merely a list of the operations associated with the abstract data
type. Like signatures in ML , interfaces in Java specify what the operations associated
with an abstract data type are, but not how they are implemented. An interface for the
abstract data type Rational can be specified in Java as follows.

〈Rational interface〉≡
package myutils;

public interface Number {

String show(); /* convert to string for display */

Number add(Number r); /* Addition */

Number sub(Number r); /* Subtraction */

Number mult(Number r); /*Multiplication */

Number div(Number r) throws Exception; /* Division */

boolean lessthan(Number a); /* Comparison less than */

boolean equal(Number a); /* Comparison equal to */

boolean lteq(Number a); /*Comparison less than or equal to */

}
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The interface Number specifies that any realization of this data-type must support the
methods show, which converts the object under consideration to a String which can be
displayed; add, sub, mult and div which return the results of arithmetic operations with
other objects; and lessthan, equal and lteq which return the results of comparison with
other objects. Note that the operation div can throw an exception to indicate a possible
division by zero.

A class in Java is a particular realization of an abstract data type, pretty much similar
to a module in ML . A class implements an interface if it implements all the methods of an
interface. A class typically is a specification of the data fields or instance variables that an
object of this class contains as well as the methods or operations that an object can execute.
An object is a specific instance of a class which is created with a constructor. When an object
is created, memory is allocated for its data fields which are initialized to specific beginning
values.

In what follows, we give a class corresponding to the abstract data type Rational.

〈Rational class〉≡
package myutils;

public class Rational implements Number {

private int numer, denom; /* data fields or instance variables */

public Rational (int n, int d) { /* the constructor */

int sign;

int pn = Math.abs(n);

int pd = Math.abs(d);

if (pd == 0) {

/* the denominator is 0. we can’t proceed */

System.out.println ("Error: Denominator is 0"); System.exit (0);

}

if (pn == 0)

sign = 0;

else

sign = (n/pn)*(d/pd);

int g = gcd (pn, pd);

numer = sign * (pn/g); denom = pd/g;

}

private int gcd (int n, int d) { /* we don’t want gcd to be

visible outside the class */

int pn = Math.abs(n);

int pd = Math.abs (d);

int rem = pn % pd;

while (rem != 0) {

pn = pd; pd = rem; rem = pn %pd;
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}

return pd;

}

public String show () {

return numer + "/" + denom;

}

public Number add (Number a) {

Rational r = (Rational) a; /* type cast a to Rational */

int n = numer*r.denom + denom*r.numer;

int d = denom*r.denom;

return new Rational (n, d); /* use the constructor to

create a new object */

}

public Number sub (Number a) {

Rational r = (Rational) a;

int n = numer*r.denom - denom*r.numer;

int d = denom*r.denom;

return new Rational (n, d);

}

public Number mult (Number a) {

Rational r = (Rational) a;

int n = numer*r.numer;

int d = denom*r.denom;

return new Rational (n, d);

}

public Number div (Number a) throws Exception {

Rational r = (Rational) a;

if (r.numer == 0) throw new Exception ("Division by rational 0/1");

int n = numer*r.denom;

int d = denom*r.numer;

return new Rational (n, d);

}

public boolean equal (Number a) {

Rational r = (Rational) a;

return ((numer == r.numer) && (denom == r.denom));\

}
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public boolean lessthan (Number a) {

Rational r = (Rational) a;

return (numer*r.denom < r.numer*denom);

}

public boolean lteq (Number a) {

Rational r = (Rational) a;

return (lessthan (r) || equal (r));

}

}
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The above class description associates the instance variables numer and denom with every
object. A new object of the type Rational can be created with the constructor called
Rational. The name of the constructor for a class and the name of the class must be the
same. The instruction new Rational (n, d), used at several places in the above code,
creates a new Rational object. New memory is allocated for the instance variables numer

and denom and these are initialized to the values n and d respectively, as specified by the
constructor. Apart from the instance variables the object also has the associated methods -
add, sub etc.

Note the use of keywords public and private in the above code. The keyword public

specifies that the corresponding instance variable or the method can be accessed from any
other class, whereas private specifies that the corresponding items are hidden from other
classes and can be accessed only from within. The instance variables numer and denom

and the method gcd are details of the internal representation of a rational number in this
particular class definition and there is no need to make these visible outside the class
definition. This principle of making only the necessary items visible outside a class definition
is called data hiding.

In what follows we give an example of the usage of the Rational data type from a
top level program. Note that the specification package myutils at the top of the above
interface and class definitions make the above codes a part of a package called myutils. In
the following program we include the package myutils accordingly.

〈Testing the Rational class〉≡
import java.io.*;

import cs120.*;

import myutils.*;

public class rat {

public static void main(String args[])

throws IOException{

int n1,d1,n2,d2;

BufferedReader in = Text.open(System.in);

Text.prompt("Input n for first number");

n1 = Text.readInt(in);

Text.prompt("Input d for first number");

d1 = Text.readInt(in);

Text.prompt("Input n for second number");

n2 = Text.readInt(in);

Text.prompt("Input d for second number");

d2 = Text.readInt(in);
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/* create rational objects p and q */

Rational p = new Rational(n1,d1);

Rational q = new Rational(n2,d2);

/* show p and q */

System.out.println(p.show());

System.out.println(q.show());

/*add q to p and assign to r after type casting */

Rational r = (Rational) p.add(q);

/* show r */

System.out.println(r.show());

}

}

In the above definition of the class Rational, the methods show, add, sub etc. are all
object methods. Note that they are invoked from above test program as p.show(), p.add(q)
etc., where p is the name of an object. We could also choose to make them class methods
by using the Java keyword static in the following way.

〈class methods〉≡
public static Number add(Number a, Number b) {

Rational r = (Rational) a;

Rational s = (Rational) b;

int n = r.numer*s.denom + r.denom*s.numer;

int d = r.denom*s.denom;

return new Rational (n, d);

}

We would also need to make the corresponding changes in the interface definition. The
keyword static specifies that the corresponding instance variable or method is shared by
all objects of this class and they become class variables or class methods. The class method
add could be invoked from the test program as

〈class method invocation〉≡
Rational r = (Rational) Rational.add(p,q);
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Note that the method add is then prefixed by the class name and not by the object name.
We will discuss the situations in which a class method may be preferred over an object
method in the later chapters.

Exercise 6.3 Change the above Java programs so that all the methods are class methods
instead of object methods.

Exercise 6.4 Implement a Java class for Rational using the same interface given above
using the second scheme described in the previous section using uniqueness of prime fac-
torization. Show that the test program can be used unchanged.

Problems

Implement the following in both ML and Java .

1. Develop an abstract data-type for carrying out arithmetic with complex numbers.

2. Develop an abstract data-type called interval. An interval is defined by two real
numbers signifying the lower and upper bounds. Develop the following functions for
carrying out operations on intervals:

(a) make interval, for creating an interval

(b) intadd, for adding two intervals. Here the minimum value of the sum should be
the sum of the two lower bounds and the maximum value of the sum should be
the sum of the two upper bounds.

(c) intsubtract, for subtracting two intervals.

(d) intmult, for multiplying two intervals.

(e) intdiv, for dividing two intervals.

3. Suppose that you have to compute resistances in electrical circuits where the resistance
of each resistor is known only up to some tolerance. For example, a resistor labeled
“6.8 ohms with 10% tolerance” has a resistance between 6.12 ohms and 7.48 ohms.
Using the abstract data-type called interval developed in the previous exercise, develop
functions for computing the resistances of

(a) two resistors connected in series.

(b) two resistors connected in parallel.
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Chapter 7

Programming with Lists

List is among the simplest of all data structures yet one of the most important, because a
very large variety of application programs are based on them. In this chapter we will study
the basics of programming with lists in both functional and imperative settings.

7.1 Lists

Let α be an arbirary data-type. The abstract data-type α−LIST , which a list of elements
of α, is defined recursively as follows. For any arbitrary data-type α

1. The empty list [] is an element of α−LIST .

2. α−LIST = α× α−LIST

Thus an instance of α−LIST is a finite sequence of a basic data-type

α−LIST = α∗ =

∞⋃
n=0

αn

In other words a member of α−LIST may be empty or may contain an arbitrarily long
sequence of the elements of the set α. We will denote the data-type of non-empty lists as

α−LIST+ = α+ =

∞⋃
n=1

αn

Following the methodology of implementing a new data-type illustrated in the last chap-
ter, we will develop the α−LIST data-type using abstraction barriers. In addition to deciding
on a representation for lists in the ML and Java programming languages, we will also pro-
vide certain functions available at the interface of the next higher level for manipulating
lists. In particular we will provide the following list functions:

127
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1. attach : α × α−LIST → α−LIST , which given an element from the set α and a list
(which may be empty) attaches the element to the front of the list. For example, if
ls = [1, 2, 3], then attach(0, ls) should return the list ls = [0, 1, 2, 3], and attach(0, [])
should return the list [0].

2. empty : α−LIST → {true, false}, which given an input list determines whether it is
empty or not.

3. head : α−LIST+ → α, which given a non-empty list as its input returns the first
element of the type α.

4. tail : α−LIST+ → α−LIST which given a non-empty list as its input returns the
sub-list without the first element. It returns the empty list if the input list has only
one element.

Assuming, for the time being, that we can implement the abstract data-type α−LIST
with the above associated methods in both ML and Java programming languages, we can
illustrate its use by developing some algorithms for manipulating lists.

Example 7.1 Determining whether a given list is a singleton list (contains only one ele-
ment).
We can define the function singleton : α−LIST → {true, false} as

singleton(ls) =

{
false if empty(ls)
empty(tail(ls)) otherwise

Example 7.2 Finding the maximum element in a non-empty list of integers.
Here α = N and we are seeking a function of the type

MAXM : α−LIST+ → α

An algorithm for the function MAXM can be specified as

MAXM(ls) =

{
head(ls) if singleton?(ls)
max(head(ls),MAXM(tail(ls))) otherwise

where the binary function max : N× N→ N may be defined as

max(a, b) =

{
a if a ≥ b
b otherwise

Correctness: We can establish the correctness of the above functional description by
demonstrating that

1. the number returned by MAXM is and an element of the input list, and

2. it is the largest element of the list (note that there may be more than one occurrence
of the largest value).
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Proof: By induction on n, the length of the list.

Base case. (n = 1) or singleton?(ls). If the list has only one element then MAXM(ls) =
head(ls) which is an element of the list and is trivially the largest.

Induction hypothesis. MAXM(ls) returns the largest value in the list if the size of the
list is (n− 1).

Induction step. Consider a list ls such that the size is (n > 1). Note that tail(ls) is a list
of size (n− 1). Now,

MAXM(ls) = max(head(ls),MAXM(tail(ls))) = max(a, b)

where a = head(ls) is an element of the list and b = MAXM(tail(ls)) is the largest
element in the sub-list tail(ls) by the induction hypothesis. By the definition of the
binary function max, whose correctness is trivially established, MAXM thus returns
the largest element in the list ls.

2

The time complexity of the above algorithm is obviously O(n).

Exercise 7.1 Write an iterative version of the function MAXM .

Example 7.3 Computing the length of a list.
We can define the function length : α−LIST → N recursively as

length(ls) =

{
0 if empty(ls)
1 + length(tail(ls)) otherwise

Altenatively, we can construct an iterative version of the above function using the invariant
condition

INV = after i iterations: length(ls) = n− i ∧ len = i ∧ 0 ≤ i ≤ n

where ls0 is the length of the original list as follows:

length(ls) = length iter(ls, 0)

where

length iter(ls, len) =

{
len if empty(ls)
length iter(tail(ls), len+ 1) otherwise

Exercise 7.2 Establish the correctness of the above algorithms for computing the length
of a given list and estimate the time complexity.
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Example 7.4 Appending two lists.
The functiona append : α−LIST × α−LIST → α−LIST can be written as follows.

append(l1, l2) =

{
l2 if empty(l1)
attach(head(l1), append(tail(l1), l2)) otherwise

The correctness of the function append can be established by PMI.
Correctness: To show that if l1 = [l11 l12 . . . l1n] and l2 = [l21 l22 . . . l2m], then append(l1, l2)
returns the list [l11 l12 . . . l1n l21 l22 . . . l2m].

Proof: By induction on n (the length of l1).

Basis. n = 0 or l1 = []). append(l1, l2) = l2 = [l21 l22 . . . l2m] by function definition.

Induction hypothesis. For all 0 ≤ k ≤ n such that k = n − i + 1 is the length of
l1 = [l1i l12 . . . l1n], append(l1, l2) returns the list [l1i l12 . . . l1n l21 l22 . . . l2m].

Induction step. Consider l1 = [l11 l12 . . . l1n]. We have that

append(l1, l2) = attach(head(l1), append(tail(l1), l2)) by function definition
= attach(l11, append(tail(l1), l2)) by definition of head
= attach(l11, [l12 . . . l1n l21 l22 . . . l2m]) by induction hypothesis
= [l11, l12 . . . l1n l21 l22 . . . l2m] by definition of attach

2

Exercise 7.3 Show that the time complexity of append is O(n) where n is the size of l1.
What is the space complexity?

Example 7.5 Higher order list functions: map and filter.
The higher order function map is of the type map : (α→ α)×α−LIST → α−LIST . Given
a function and a list as its input map returns the list formed by applying the input function
on every element of the input list. For example, if the input list is ls = [1, 2, 3, 4, 5], then
map(square, ls) should return the list [1, 4, 9, 16, 25] and map(cube, ls) should return the
list [1, 8, 27, 64, 125].

The higher order function filter is of the type filter : (α→ B)×α−LIST → α−LIST . It
accepts a predicate (boolean function) of the input type α and a list as its input and returns
a sub-list of those elements for which the predicate is true. For example, if the input list
is ls = [1, 2, 3, 4, 5], then filter(odd, ls) should return the list [1, 2, 5] and filter(prime, ls)
should return the list [2, 3, 5].

We can write functional algorithms for map and filter as follows:

map(f, ls) =

{
[] if empty(ls)
attach(f(head(ls)),map(f, tail(ls))) otherwise

filter(pred?, ls) =


[] if empty(ls)
attach(head(ls), filter(pred?, tail(ls))) if pred?(head(ls))
filter(pred?, tail(ls)) otherwise
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Exercise 7.4 Establish the correctness of map and filter using PMI and estimate the
time complexities.

Hence we see that the abstract data-type α−LIST along with its associated functions attach,
empty, head and tail is quite powerful and we can indeed develop complex functions for
list manipulation using these. We have to, of course, address the issues of implementing the
abstract data-type in both ML and Java programming languages. In what follows, we will
first develop the list data-type in ML and then follow it up with a Java implementation.

7.2 The α−LIST data-type in ML

α−LIST happens to be a built-in standard data-type in ML which provides the following
constructors:

1. The constructor [] creates an empty instance of α−LIST .

2. If x ∈ α and ls ∈ α−LIST , then x::ls is an instance of α−LIST with x attached to
the front of ls. Hence, the constructor :: is the function attach is ML .

We may define the basic methods attach, empty, head and tail of the data-type α−LIST
in ML as follows

〈List data-type in ML 〉≡
structure LIST =

struct

exception emptylist;

fun empty([]) = true

| empty(x::ls) = false;

fun attach(x,ls) = x::ls;

fun head([]) = raise emptylist

| head(x::ls) = x;

fun tail([]) = raise emptylist

| tail(x::ls) = ls;

end;
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Thus, the abstract data-type α−LIST can easily be realized in ML using the basic con-
structors [] and :: and using pattern matching.

However, since ML already provides the basic constructors for list programming, we will
continue to use the ML primitives directly in our subsequent programs instead of using
struct LIST. We will do so only for convenience with the understanding that both are
equivalent.

We can now translate the functional descriptions of Examples 7.1, 7.2, 7.3, 7.4 into ML

programs.

〈singleton? 〉≡
fun singleton([]) = false

| singleton(x::[]) = true

| singleton(ls) = false;

〈MAXM 〉≡
fun max([]) = raise empty

| max(x::[]) = x

| max(x::ls) =

if x > max(ls) then

x

else

max(ls);

〈length〉≡
fun length([]) = 0

| length(x::ls) = length(ls) + 1;

〈length (iterative)〉≡
fun length(ls) =

let

fun length_iter([],len) = len

| length_iter(x::ls,len) = length_iter(ls,len+1)

in

length_iter(ls,0)

end;

〈append〉≡
fun append([],l2) = l2

| append(x::ls,l2) = x::append(ls,l2);
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〈map〉≡
fun map f [] = []

| map f (x::ls) = f(x)::(map f ls);

〈filter〉≡
fun filter pred [] = []

| filter pred (x::xs) =

if pred(x) then

x::(filter pred xs)

else

(filter pred xs);

Exercise 7.5 Use the ML interpreter to execute each of the above functions.

Now that we have implemented the data-type α−LIST in ML , we can consider a few
more algorithms for lists.

Example 7.6 Finding the nth element of a list.
The function we are seeking is of the type nth : N× α−LISTn+ → α, where α−LISTn+ is
the set of lists of size at least n. If n = 0, then the function should return the first element
of the list. Otherwise, it should return the nth element of the list taking the first element
as the 0th. We may define the function in ML as

〈nth〉≡
fun nth(n,[]) = raise emptylist

| nth(n,x::ls) =

if n = 0 then x else nth(n-1,ls);

Exercise 7.6 Establish the correctness of the above function using PMI.

Example 7.7 Reversing a given list.
We can define the function reverse : α−LIST → α−LIST inductively as follows. Inducting
on the length of the list, the base case is clearly given as reverse([]) = []. Given that we
can solve the problem reverse(ls) (induction hypothesis), the problem reverse(x::ls)

can clearly be solved as append(reverse(ls),x::[]). Hence we have

〈reverse〉≡
fun reverse([]) = []

| reverse(x::ls) = append(reverse(ls),x::[]);
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Exercise 7.7 Establish the correctness of the above function using PMI.

Note, however, that the above function reverse has an unacceptably high time complexity.
To see this we may write a recurrence relation describing the time complexity of the above
function. Let T (n) be the number of operations required to reverse a list of size n using
the above algorithm. Note that in order to reverse a list of size n, it is required to reverse
a list of size n − 1 and append it to a single element list. Also note that (append x y)

requires O(m) steps when the list x is of size m and a :: operation is required to form a
single element list. A recurrence for T (n) may be given as

T (0) = 0

T (n) = T (n− 1) + n

We can solve the above recurrence by telescoping, i.e.,

T (n) = T (n− 1) + n

= T (n− 2) + (n− 1) + n

...

= T (0) + 1 + 2 + . . .+ n

= n(n+ 1)/2

Hence the overall time complexity of the function reverse given above is O(n2).

Exercise 7.8 Estimate the space complexity of the above algorithm.

Alternatively, we may define an iterative version of the above function using the invariant

INV = after i iterations: length(ls) = n−i∧length(rev) = i∧append(reverse(rev), ls) = ls0

〈reverse (iterative〉≡
fun rev(ls) =

let

〈Code for rev iter〉
in

reviter(ls,[])

end;

〈Code for rev iter〉≡
fun reviter([],rev) = rev

| reviter(x::ls,rev) = reviter(ls,x::rev)
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Exercise 7.9 Establish the correctness of the above iterative algorithm for reversing a
given list and show that the time complexity is O(n). Compare the space complexities of
the two algorithms.

Exercise 7.10 Execute the ML programs for both the algorithms for reversing random
lists of size 2,4,8,32,64,128,256,512 and 1024 and compare the execution times of the two
algorithms. Verify that each time the problem size is doubled, the execution time of the
first algorithm increases by roughly four times whereas the execution time of the second
algorithm doubles.

Example 7.8 Inserting an element into a sorted list.
We will develop the function of the type insert : α×α−LIST sorted → α−LIST sorted, where
α−LIST sorted is the data-type denoting all lists sorted in the ascending order. We can
develop the function insert by inducting on the length of the list. The base case is clearly
given as insert(a,[]) = a::[]. Given the inductive hypothesis that we can solve the
problem insert(a,ls), we can program the induction step as follows

〈insert〉≡
fun insert(a,[]) = [a]

| insert(a,x::ls) =

if a < x then a::x::ls else x::insert(a,ls);

Exercise 7.11 Establish the correctness of the above algorithm using PMI and show that
the worst case time complexity (measured in terms of number of :: operations) of the
above algorithm for inserting an element into a list of size n is n+ 1. Under what condition
of the input list does the worst case situation occur?

Example 7.9 Merging two sorted lists.
We can again develop an algorithm for the function merge : α−LIST sorted×α−LIST sorted →
α−LIST sorted inductively. Inducting on the length of the lists, we have the base cases
merge([],l2) = l2 and merge(l1,[]) = l1. Given that we can solve merge(l1,y::l2)

when l1 is of size n ≥ 0 and merge(x::l1,l2) when l2 is of size m ≥ 0, we can write the
program as

〈Code for merge〉≡
fun merge([],l2) = l2

| merge(l1,[]) = l1

| merge(x::l1,y::l2) =

if x <= y then x::merge(l1,y::l2) else y::merge(x::l1,l2);
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Exercise 7.12 Establish the correctness of the above algorithm.

Exercise 7.13 Develop an iterative version of the above algorithm.

Example 7.10 Insertion sort.
We will define a function insort : α−LIST → α−LIST sorted, in terms of the function insert
defined in Example 7.8 as follows. Inducting on the length of the list, the base case is clearly
insort([]) = []. Given that we can solve insort(ls), the problem insort(x::ls) is
merely the problem of inserting x in to the sorted list insort(ls). Hence, we have

〈insort〉≡
fun insort([]) = []

| insort(x::ls) = insert(x,insort(ls));

Exercise 7.14 Establish the correctness of the insort function using PMI.

We can analyze the time complexity of the above algorithm as follows. Let T (n) be the
number of operations required to sort a list of size n using the above algorithm. Note that
in order to solve a sorting problem of size n, it is required to solve a sorting problem of size
n− 1 in addition to inserting an element, x , into a list of size n− 1. A recurrence for T (n)
may be given as

T (0) = 0

T (n) = T (n− 1) + n

which yields T (n) = n(n+ 1)/2 = O(n2).

Exercise 7.15 Show that though the worst case time complexity of the insertion sort
algorithm is O(n2), the best case complexity, when the input list is sorted, is O(n). Hence
the algorithm is very efficient when the input list is nearly sorted. What is the average case
behaviour of the algorithm when roughly half the elements are in the reverse order?

Alternatively, we can write an iterative version of the function for insertion sort using
the invariant

INV = after i iterations: length(ls) = n− i ∧ length(result) = i

∧result contains the first i elements of ls0 in sorted order

∧ls contains the last n− i elements of ls0

〈insort (iterative)〉≡
fun insort(ls) =

let

〈Code for insort iter〉
in

insort_iter(ls,[])

)
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〈Code for insort iter〉≡
fun insort_iter([],result) = result

| insort_iter(x::ls,result) = insort_iter(ls,insert(x,result));

Exercise 7.16 Establish the correctness of the iterative algorithm and compare the space
complexities of the recursive and the iterative algorithms for insertion sort.

Example 7.11 Merge sort.
We have discussed a sorting algorithm based in insertion. We can develop a more efficient
algorithm for sorting using divide-and-conquer. Given that we can merge two sorted lists
of sizes n and m in O(n+m) steps and split a list of size n in two roughly equal sub-lists
of size n div 2 in O(n) steps, we can apply divide-and-conquer in the following way. Using
PMI version 3 on the length of the list we can give the base case as msort(x::[]) =

x::[]. If we can split the original list into two half size lists l1 and l2, then, by induction
hypothesis, we can sort l1 and l2 with msort(l1) and msort(l2). Clearly, the induction
step is merge(msort(l1),msort(l2)). Hence we have the following program.

〈msort〉≡
fun msort([]) = []

| msort(x::[]) = x::[]

| msort(ls) =

let

〈Code for split〉
〈Code for merge〉
val (l1,l2) = split(ls)

in

merge(msort(l1),msort(l2))

end;
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We can develop the function split : α−LIST → α−LIST × α−LIST using the following
invariant. Let the original list be ls0 = [a1, a2, . . . , an].

INV = (1 ≤ i ≤ n+ 1) ∧ (ls = [ai, . . . , an])
∧

((either i is odd ∧ l2 = [a1, a3, .., ai−2] ∧ l1 = [a2, a4, ..., ai−1])
(or i is even ∧ l2 = [a1, a3, .., ai−1] ∧ l1 = [a2, a4, ..., ai−2]))

〈Code for split〉≡
fun split(ls) =

let

fun splititer([],i,l1,l2) = (l1,l2)

| splititer(x::ls,i,l1,l2) =

if (i mod 2 = 0) then

splititer(ls,i+1,x::l1,l2)

else

splititer(ls,i+1,l1,x::l2)

in

splititer(ls,1,[],[])

end;
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Exercise 7.17 Establish the correctness of the functions split and msort.

We can calculate the number of steps required for msort as follows. Since the number
of steps required for both split and merge is n, we can write a recurrence for the overall
procedure as

T (1) = 1 (we do not require any step for the singleton input)
T (n) = 2T (n/2) + 2n

Assuming, for the time being, that n = 2m (a perfect power of two), we can solve the above
recurrence by telescoping, i.e.,

T (n) = 2T (2m−1) + 2.2m

= 2(2T (2m−2) + 2.2m−1) + 2.2m = 2.2T (2m−2) + 4.2m

= 2.2(2T (2m−3) + 2.2m−2) + 4.2m = 2.2.2T (2m−3) + 6.2m

...
= 2mT (20) + 2m.2m

= 2n log2 n = O(n log2 n)

Hence, the worst case complexity of msort is better than that of insort. We will see later
that this is the best we can do for sorting.

Exercise 7.18 Show that the above result holds even if n is not a perfect power of two.

Example 7.12 Quick sort.
In the insertion sort algorithm described above we first split a list of size n into a single
item and a list of size n − 1 and then insert the item into the recursively sorted sublist of
size n− 1. A popular alternative is quick sort where we first partition the given list in the
form

[. . . all elements ≤ x . . . , x, . . . all elements > x . . .]

where x is the first element of the list. One can then recursively apply the sorting algorithm
to the two sublists to the left and right of x.

We can use the higher order function filter defined above to collect the elements ≤ x
into one list and > x into another. We can then recursively apply quick sort to the two
sub-lists and append them, with x in between, to obtain the final result.

We can first define a higher order comparison function as

〈Code for comp〉≡
fun comp opr x y = opr(y,x):bool
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and then define a function for quick sort, in terms of comp and filter as

〈qsort〉≡
fun qsort([]) = []

| qsort(x::xs) =

let

〈Code for comp〉
in

append(qsort(filter (comp op<= x) xs),x::qsort(filter (comp op> x) xs))

end;
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Exercise 7.19 Establish the correctness of qsort using PMI.

Exercise 7.20 Generalize qsort by converting it to a higher order function which takes a
suitable comparison function as it’s input and show how can one use the same higher order
function to sort an arbitrary list in either ascending or descending order.

Exercise 7.21 We have developed the ML function for insertion sort for sorting lists only
in the ascending order. Modify the functions insort and insert into higher order functions
like in the previous exercise.

The run time analysis of qsort is instructive. The split operation always takes n steps.
Since the value of the first element, x, is arbitrary, the two partitions we obtain are of sizes
i and n− 1− i, where i is any value between 0 and n− 1 with equal probability. That is,
if the partitioning element happens to be the smallest element in the list then i is 0, and if
it happens to be the largest element in the list then i is n − 1. For any other choice i has
a value in between. Now, in the extreme cases, if at every recursive stage the partitioning
element is either the smallest or the largest, then, to solve a problem of size n we have to
solve two sub-problems of sizes 0 and n− 1. This would obviously happen if the input list
is either in increasing or in decreasing order. Note that the problem of size 0 has zero cost.
In addition, we have to append the two sublists after attaching the partitioning element to
the front of the second list. The cost of the append operation is proportional to the size of
the first list. Thus, if the list is arranged in increasing order, the first partition is of size 0
and the second partition is of size n− 1 and append has no cost. The only cost involved is
attaching the partitioning element to the front of the second list and the cost of split. We
can write a recurrence for the number of steps in quick-sort as

T (0) = 0

T (n) = T (0) + T (n− 1) + n+ 1 = T (n− 1) + n+ 1

and we obtain T (n) = O(n2).
On the other hand, if the list is sorted in descending order, then for every recursive step

the size of the first list is n − 1 and that of the second is 0. In this case, append is costly
and requires n − 1 steps. In addition, we have the unit cost of attaching the partitioning
element to the front of the second list and a cost n for splitting the lists. In this case the
recurrence becomes

T (0) = 0

T (n) = T (n− 1) + T (0) + (n− 1) + 1 + n = T (n− 1) + 2n

and we obtain T (n) = O(n2).
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Thus we see that in case the input list is already in ascending or descending order, the
number of steps required for qsort is identical to that for the worst case for insort. This
is the worst case behaviour for qsort.

We are yet to analyze the in between cases. It may so happen, if we are lucky, that every
time the partitioning element falls in the middle of the list and the two sublists generated
out of partitioning are of roughly equal sizes. In such a case we have to solve two sub-
problems of sizes roughly equal to n/2 and the append operation also requires n/2 steps.
The recurrence is given as

T (0) = 0

T (n) = 2T (n/2) + n+ n/2

We have obtained a divide-and conquer recurrence and it is easy to verify that this recurrence
solves to T (n) = O(n log2 n) and the behavior is similar to msort.

In most cases, however, god is neither so cruel nor so benevolent, and, we have an in
between situation. We obtain splits of sizes i and n− i− 1 with i ranging from 0 to n− 1
with equal probability. Thus, the average cost of the two sub-problems that we have to
solve can be written as

1

n

n−1∑
i=0

(T (i) + T (n− i− 1)) =
2

n

n−1∑
i=0

T (i)

Writing the cost of split and append as cn for some constant c, we have the average case
recurrence for qsort as

T (0) = 0

T (n) =
2

n

n−1∑
i=0

T (i) + cn

We can multiply the second equation above with n to obtain

nT (n) = 2
n−1∑
i=0

T (i) + cn2

Telescoping, we can also write this as

(n− 1)T (n− 1) = 2

n−2∑
i=0

T (i) + c(n− 1)2

Subtracting the second equation from the first, to be rid of the summation, we obtain

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2cn− c
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The constant −c is insignificant for the analysis and can be dropped. We obtain, after
rearranging

nT (n) = (n+ 1)T (n− 1) + 2cn

Dividing the above by n(n+ 1) we obtain

T (n)

n+ 1
=
T (n− 1)

n
+

2c

n+ 1

Telescoping, we obtain,
T (n−1)

n = T (n−2)
n−1 + 2c

n
T (n−2)
n−1 = T (n−3)

n−2 + 2c
n−1

...
T (2)
3 = T (2)

1 + 2c
3

Adding all the above yields

T (n)

n+ 1
=
T (1)

2
+ 2c

n+1∑
i=3

1

i

Now T (1)
2 is a constant and the summation to the right is bounded above by

∫ n+1
0

1
xdx =

O(lnn) . Hence, clearly, T (n) = O(n lnn). Thus, the average case behaviour of qsort

is closer to it’s best case behaviour. In fact, on random data, qsort is one of the fastest
sorting algorithms.

7.3 The α−LIST data-type in Java
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Figure 7.1: Linked-list representation of lists.

Building the list data-type in an imperative language like Java is more complicated than
in ML because the storage management has to be explicitly handled. We will represent an
object of the type α−LIST using the popular linked-lists scheme common in imperative
languages. Conceptually the representation can be viewed as in Figure 7.1. A linked-lists
is a linear ordering of nodes. Each node is a compound object which stores one reference to
an element (an integer object, for example) and another reference to the next node in the
representation. The last node may be terminated by assigning the Java constant null to
the next-node reference. Note that every variable in an imperative language like Java can
be thought of as a reference to an object or a memory location. Thus the references, both to
integer objects and to next nodes can be represented by simple Java variables. The class
for a node can be defined in Java as

〈Code for Node class〉≡
class Node {

Object data;

Node link;

Node(Object d,Node n) {

data = d; link = n;

}

}
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The class defines two instance variables, data and link, of types Object and Node. These
are references to a data element and the next node, respectively. Object is a key-word in
Java used to indicate a polymorphic data-type (analogous to α). Note that the definition is
circular, because the type of the instance variable link is Node itself. However, conceptually
there is nothing wrong in this circular definition and it is allowed in Java . The constructor
Node takes two references, one to a data element and another to the next node, as input
and creates and initializes the instance variables.

We now want to define a Java class for the abstract data type α−LIST described at the
beginning of this chapter. Apart from the internal representation, the class definition must
also support a constructor, and the methods empty, attach, head and tail. Each object of
the class alphaList needs to have only one instance variable, start, which is a reference
to the first node in the list. Thus, we may define the Java class alphaList as follows.

〈class alphaList〉≡
public class alphaList {

private Node start;

〈Code for Node class〉

public alphaList() {

start = null;

}

private static alphaList makeList(Node start) {

alphaList T = new alphaList();

T.start = start;

return T;

}

public static alphaList newList(alphaList ls) {

alphaList T = new alphaList();

T.start = ls.start;

return T;

}

〈Code for empty〉
〈Code for attach〉
〈Code for head〉
〈Code for tail〉

}
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The instance variable start is declared private because we want to hide our internal
representation from external classes which may use alphaList. It is for the same reason
that we have defined the class Node within the class alphaList. Node is an inner class of
alphaList and is consequently hidden from all external classes.

From our experience with list programming in ML we know that we often require to
create empty lists, or assign the value of one list to another. Accordingly, we have designed
the basic constructor for the class alphaList so that it returns an empty list indicated by
start == null. To be able to assign the value of one list to another we have defined the
function public static alphaList newList(alphaList ls). Note, from the definition,
that newList creates a new list object, with it’s own instance variable, which is then set
to the instance variable of the old list. The two list objects then have different references
(names), but the share the same set of nodes. We will discuss the consequences of sharing of
nodes by two lists a little later Section 7.3.1. We also provide a function private static

alphaList makeList(Node start) for creating new list starting from an arbitrary start

node reference. The new list created by makeList will also share it’s nodes with some other
lists. The function is declared private because it directly uses the internal representation.
Note that both newList and makeList are class methods because of the use of the key-word
static. They cannot be object methods because their sole purpose is to create new list
objects.

We can now develop the code for list methods as follows.
For the function empty, we have to merely check whether start == null.

〈Code for empty〉≡
public boolean empty() {

return (start ==null);

}

For attaching an Object x to an list object we have to first create a new instance of
Node (an object of type Node) and set it’s data element to x. Then we have to set the link

field of the new node so that it points to the original list and set the start field of the list
object to the new node.

〈Code for attach〉≡
public void attach(Object x) {

if (empty())

start = new Node(x,null);

else {

Node T = new Node(x,start);

start = T;

}

}
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head returns the reference of the data object of the node pointed at by the start of the
list

〈Code for head〉≡
public Object head() {

return start.data;

}

To return the tail of a list we create a new list whose start is start.link of the input
list

〈Code for tail〉≡
public alphaList tail() {

return makeList(start.link);

}
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Thus, the complete code of the class alphaList can be given as

〈class alphaList〉+≡
public class alphaList {

private Node start;

class Node {

Object data;

Node link;

Node(Object d,Node n) {

data = d; link = n;

}

}

public alphaList() {

start = null;

}

private static alphaList makeList(Node start) {

alphaList T = new alphaList();

T.start = start;

return T;

}

public static alphaList newList(alphaList ls) {

alphaList T = new alphaList();

T.start = ls.start;

return T;

}

public boolean empty() {

return (start ==null);

}

public void attach(Object x) {

if (empty())

start = new Node(x,null);

else {

Node T = new Node(x,start);

start = T;

}

}



7.3. THE α−LIST DATA-TYPE IN JAVA 149

public Object head() {

return start.data;

}

public alphaList tail() {

return makeList(start.link);

}

}
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7.3.1 Sharing of lists and garbage collection

In the above design of class alphaList we have seen that often two different list objects
may share some of their nodes. While this saves memory space one has to consider the
possibility of side effects - changing data items of one list may mutate the other. This,
however, is not a possibility with the class alphaList. No external methods can access any
of the instance variable start of a list object, the Node objects and the method makeList

because they are declared private. All other public methods or constructors create new
lists and return, thereby ensuring that the input lists are preserved in their original form.
Consider, for example, the instruction l2 = alphaList.newList(l1). Though the two
lists l1 and l2 share all the nodes they are two different list objects with their own start

variables. A subsequent instruction, like l2.attach(x), will create a new node whose
data points to x and link points to the node referenced by the start variable of l2,
and subsequently modify the start variable of l2 to point to the new node. The start

variable of l1 continues to point to the same node. Thus, the integrity of both the lists are
maintained enabling us to do ML style list programming.

Now, in imperative programming, we may wish to delete a list, ls, we have no use for.
This may be achieved by setting ls = null. The Java run-time system has a powerful
background process called garbage collection which automatically marks name-less objects
(with no reference) as garbage and frees the memory occupied by it. Setting ls to null

destroys the start variable of ls and the node pointed at by start (and, hence, all sub-
sequent nodes) becomes garbage. If however, any of these nodes is referenced by the start

variable of another list also, it cannot be marked as garbage because it is not name-less.
Hence, all nodes prior to this node will be freed, but this and all subsequent nodes will
remain intact. Because of the garbage collection facility is Java we do not have to bother
about destroying objects we have created, except setting them to null. However, in other
imperative programming languages we may have to design our own list destructors.

7.3.2 List programming in Java

Now that we have defined class alphaList, we are ready to translate the ML list programs
that we have developed into Java . For implementing the sort functions our data items
must support the comparison functions and hence must implement the following interface
Sortable.

〈Interface Sortable〉≡
package myutils;

public interface Sortable {

boolean lessthan(Sortable a);

boolean equal(Sortable a);

}
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We can now define a class called ListFunctions in which we can translate most of our
ML programs.

〈class ListFunctions〉≡
package myutils;

public class ListFunctions {

public static alphaList reverse(alphaList ls) {

alphaList revlist = new alphaList();

while (!ls.empty()) {

Object x = ls.head();

revlist.attach(x);

ls = ls.tail();

}

return revlist;

}

public static alphaList append(alphaList l1, alphaList l2) {

if (l1.empty())

return alphaList.newList(l2);

else {

Object x = l1.head();

l1 = l1.tail();

alphaList ls = append(l1,l2);

ls.attach(x);

return(alphaList.newList(ls));

}

}

public static alphaList insert(Sortable x, alphaList ls) {

if (ls.empty()) {

ls.attach(x); return ls;

}

else {

Sortable hd = (Sortable) ls.head();

if (x.lessthan(hd)) {

ls.attach(x); return ls;

}

else {

alphaList temp = insert(x,ls.tail());

temp.attach(hd);

return temp;
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}

}

}

public static alphaList insort(alphaList ls) {

if (ls.empty())

return new alphaList ();

else

return insert((Sortable) ls.head(),insort(ls.tail()));

}

}

Note that the functions in the class ListFunctions are almost literal translations of
the ML programs developed earlier.

Figure 7.2: Appending two lists in Java using the function ListFunctions.append

It is instructive to consider the actual process of appending two lists with the function
ListFunctions.append. The process is illustrated in Figure 7.2. The input lists l1 and
l2 are not modified by the function append described above. A new copy of the list l1 is
made using successive calls to the function attach and the new list is attached to the front
of l2. The combined list is returned by the function append(l1,l2). Note that the lists
l1 and l2 are left intact.

Similarly, the effect of inserting the element 4 in the list [1,2,3,5] using ListFunctions.insert
is illustrated in Figure 7.3. Note that, like the function ListFunctions.append, the func-
tion ListFunctions.insert also generates a new list.
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Figure 7.3: Inserting an element into a sorted lists in Java using the function
ListFunctions.insert

Programs that use the alphaList data-type and the methods in ListFunctions

Sequences and lists in problem domain

empty, attach, head, tail, newList, constructor alphaList,
append, reverse, insert, insort

Algorithms/Programs for manipulating lists

constructors [], :: and pattern matching in ML ; classes and objects in Java

Figure 7.4: Abstraction barriers in the implementation of α−LIST

We have designed the Java classes alphaList and ListFunctions using several ab-
straction barriers. The abstraction barriers in the implementation are illustrated in Figure
7.4. We can now define programs at a higher level, using the above functions, without any
explicit reference to the details of the implementation.

In what follows we will give an example of top-level list programming in Java using the
classes alphaList and ListFunctions. Java does not allow us to use the basic data-type
int interchangeably with the polymorphic type Object. In view of this, we will need to
define a new Java class, Int, to test our list programs. In what follows, we only describe
the methods of Int. It implements interface Sortable which we have already described
The details of the implementation are given in the appendix.

〈class Int〉≡
package myutils;

public class Int implements Sortable {

public Int(int a); /* the constructor */

public int toint(); /* object mehod to convert to int */

public boolean lessthan(Sortable x); /* comparison method */
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public boolean equal(Sortable x); /* comparison method */

public static alphaList readlist() throws IOException;

public static void printlist(alphaList ls);

}

We can define a top-level program as

〈a program to test list classes〉≡
import java.io.*;

import java.util.*;

import cs120.*;

import myutils.*;

public class listtest {

public static void main(String args[])

throws IOException {

System.out.println("input a:");

alphaList la = Int.readlist();

System.out.println("input b:");

alphaList lb = Int.readlist();

System.out.print("a = ");

Int.printlist(la);

System.out.print("b = ");

Int.printlist(lb);

alphaList lc = ListFunctions.reverse(la);

System.out.print("a = ");

Int.printlist(la);

System.out.print("c = ");

Int.printlist(lc);

lc = ListFunctions.append(la,lb);

System.out.print("c = ");

Int.printlist(lc);

alphaList ld = ListFunctions.insort(lc);

System.out.print("d = ");

Int.printlist(ld);

}

}
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Exercise 7.22 Execute the above program.

Exercise 7.23 Add the functions merge sort and quick sort to the class ListFunctions

Problems

Implement the following in both ML and Java .

1. Develop an abstract data-type called set. Represent a set of integers as a list (there
should be no duplications) and develop functions for

(a) Adding a new element to a set.

(b) Checking whether an element belongs to a set.

(c) Finding the intersection of two sets.

(d) Finding the union of two sets.

Estimate the time complexity of each operation.

2. Represent a set as an ordered list of integers and develop functions for each of the
above operations. The time complexity of each of the above functions should be linear.

3. Consider a representation of univariate polynomials as lists of pairs of the type (coef-
ficient, exponent). For example, the polynomial 7x8 + 3x4 +x+ 5 may be represented
as the list [[7, 8], [3, 4], [1, 1], [5, 0]]. Assume that the polynomials are in their canonical
form, i.e, the exponents are in the decreasing order.

(a) Develop algorithms/functions for adding and multiplying two polynomials. Es-
timate the time complexities of your algorithms.

(b) Develop Java function/procedure for reading and printing a polynomial.

Appendix: The Int class



156 CHAPTER 7. PROGRAMMING WITH LISTS

In what follows we give the code for the class Int.

〈class Int〉≡
package myutils;

import java.io.*;

import java.util.*;

import cs120.*;

public class Int implements Sortable {

private int val;

public Int(int a) {

val = a;

}

public int toint() {

return val;

}

public boolean lessthan(Sortable x) {

Int n = (Int) x;

return (val < n.val);

}

public boolean equal(Sortable x) {

Int n = (Int) x;

return (val == n.val);

}

public static alphaList readlist() throws IOException {

StringTokenizer T;

int i,ntokens,c,n;

String s;

Int x;

alphaList ls = new alphaList();

BufferedReader in = Text.open(System.in);

s = in.readLine();

T = new StringTokenizer(s);

ntokens = T.countTokens();

if (ntokens != 0) {

i = 0;

while (i < ntokens) {

i++;

c = Integer.parseInt(T.nextToken());

x = new Int(c);

ls.attach(x);

}
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}

return ListFunctions.reverse(ls);

}

public static void printlist(alphaList ls) {

while (!ls.empty()) {

Int x = (Int) ls.head();

System.out.print(x.val+" ");

ls = ls.tail();

}

System.out.println();

}

public static void readarray(Int a[],int n) throws IOException {

StringTokenizer T;

int i,ntokens,c;

String s;

Int x;

BufferedReader in = Text.open(System.in);

s = in.readLine();

T = new StringTokenizer(s);

ntokens = T.countTokens();

if (ntokens >= n) {

i = 0;

while (i < n) {

c = Integer.parseInt(T.nextToken());

x = new Int(c);

a[i] = x;

i++;

}

}

}

public static void printarray(Int a[],int n) {

for(int i=0; i < n;i++) System.out.print(a[i].val + " ");

System.out.println();

}

}


