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Foreword

This course1 studies computer algorithms, considering their construction, validation and effect-
iveness. After a general introduction to the subject a number of specific topics will be covered.
These may include: the problem of sorting data sets into order, the theory of formal gram-
mars and problems such as the parsing of arithmetic expressions, the construction and use of
pseudorandom numbers.

Course Numbers

The course exists in two incarnations; as a regular lecture course, and as a reading course. The
lecture course can only run when a significant number of members of the class indicate that
they wish to take it. In contrast the reading course can always run, but is clearly only there
for the (very) small number of students who really want to learn about algorithms. To avoid
confusion, there are different “Catalogue of Course” numbers for the two methods of delivery.
The normal lecture course is called MX4002, or MX4052 when it is taken by someone who is
not doing Honours, and so will be examined in January; in contrast, the reading course is called
MX4028, or MX4078 if examined in January.2 To avoid confusion and unnecessary duplication,
the course will be labelled as MX4002 in these notes.

These Notes

The notes contain the material that I use when preparing the actual lectures; in that sense they
are my lecture notes. They also approximate what you as a student may choose to write down
from these lectures; in that sense they are your lecture notes. And in each case, they form an
approximation: a lecture is a form of communication; I will alter things in the lecture whenever
I think a change will improve communication, and you may choose to write down things from
the lecture that I have not put in these notes.

”Lectures were once useful, but now when all can read, and books are so numerous,
lectures are unnecessary.” Samuel Johnson, 1799.

Lecture notes have been around for centuries, either informally, as handwritten notes, or
formally as textbooks. Recently improvements in typesetting have made it easier to produce
“personalised” printed notes as here, but there has been no fundamental change. Experience
shows that very few people are able to use lecture notes as a substitute for lectures; if it were
otherwise, lecturing, as a profession would have died out by now. To put it another way, “any
teacher who can be replaced by a teaching machine, deserves to be”. So you should bear in mind
that:

• these notes are intended to complement the experience you get from attending the lectures;
and

1This is quoted directly from the corresponding entry in the Catalogue of Courses.
2At present it is wrongly designated as MX4528 — the course is not available in the second half session

ix
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• are available to supplement the notes that you take in the lectures.

There is significant value in taking your own notes; you are much more likely to see what is going
on as you do so. I hope that by having this version available as well you can quickly correct any
errors that occur as you take them.

Theses notes were originally written, in TEX, by Dr John Pulham to accompany a similar
course that he gave for several years. This version was developed from these notes. This version
conatins a slightly different selection of material. It is written in LATEX which allows a higher
level view of the text, and simplifies the preparation of such things as the index on page 107
and numbered equations. You will find that most equations are not numbered, or are numbered
symbolically. However sometimes I want to refer back to an equation, and in that case it is
numbered within the section. Thus Equation (1.1) refers to the first numbered equation in
Section 1 and so on.

The Web Version

These notes have evolved slowly and so many errors have been eliminated. However they continue
to change and grow as we find ways to make them more useful. This means that there will be
new errors, even though I have tried hard to eliminate them. A printed version is extremely
convenient to use, but has the disadvantage that updating is expensive and inconvenient. In
contrast the web is a very recent, but already almost universal medium, which offers convenient
and very rapid updating. To take advantage of this these notes are also available as a set of
linked file on the web, written in HTML (Hypertext Markup Language), the native language of
the web. Since I can update these files (over 750 when I last counted) easily, this format will
always have the most recent version of the notes. They are available at

http://www.maths.abdn.ac.uk/∼igc/tch/mx4002/notes/notes.html

They can be reached from the Departmental web page by going through the private home page
of Ian Craw.

At present they are in a form suitable for relatively simple browsers. However it is essential
to use a graphics-based one, because each piece of mathematics has to be delivered as a separate
image. In the future browsers may be able to cope with mathematics, although I think this
unlikely to happen quickly. Typically you will use Netscape, wherever it is available, to read
the html version of the notes. The conversion from printed notes to html is automatic, and has
some imperfections; I expect these to reduce as the technology matures, but you should be aware
of the problem.

A pdf (portable document format) version is availablefrom the Web. The file can then
be viewed using Adobe’s freely available Acrobat reader, or may well display directly in your
browser. In either case, the whole document, or selected pages, can then be printed. This is
likely to give much better quality output than printing directly from the web, since the pdf
version is based on the original Postscript rather than the derived HTML.

Putting these notes on the web has exposed them to a much wider audience. I thank Sean
Sedwards and Dr. Steve Kelem for letting me know of mistakes even though they had nothing to
do with the course! Many others commented on problems with the images, which aroise because
some of the diagrams were drawn in FrameMaker. I have now redrawn the diagrams, either in
xfig or using the pstricks package, and these problems should now be in the past.

The MX4028 Mailing List

There is a mailing list associated with this class. You can subscribe to it by sending email to
majordomo@maths.abdn.ac.uk with a message that has an empty “subject” field and contains
the single line subscribe mx4028. If you add your signature automatically, you can also add
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the line end after the subscribe request, and the signature will be ignored. You are encouraged
to join this list. You then mail mx4028@maths.abdn.ac.uk to contribute to the list.

I have always been happy to deal with questions by email, and have made a point of publishing
my email address both on the web and in the printed notes. This list provides a more general
way of communicating in which both questions and their answers go to everyone on the list.
Here are some reasons why this might be useful:

• It is rare for just one person in a class to have a given problem; by sending the answer to
this list, others can benefit from it.

• When a topic causes general concern, the lectures can be changed to cover it in greater
detail, or pick up the problem area.

• Often other members of the class can be of more help than the lecturer; this way everyone
is aware of the problems and is invited to help or comment.

• I have always been careful to make statements about the examination in front of the whole
class – the list provides a useful public forum.

Please note that this list is being maintained on the mathematics machines rather than the
central University ones, so you need to mail maths.abdn.ac.uk to reach it.

Finally some points of netiquette.

• Please remember the usual courtesies; although this is email, it is still fairly public.

• If you send email directly to me, I will not copy it to this list without first getting your
permission.

• The list is low security. Although you are technically able to impersonate someone else,
please don’t do so.

• Keep a copy of the message you get when you join the list to remind you how to leave; you
are welcome to leave and re-join as often as you wish.

Sometimes it is useful to pass a message to the whole class. I believe that for most people,
this list is more useful way than posting it on a notice board. One natural use would be to cancel
a lecture if that has to be done unexpectedly. The message may not reach everyone, but those
who read it will be saved the inconvenience of turning up.

Any more questions? Why not mail the list? You won’t be the only one with them.

Background Reading

There is an enormous literature on this subject, although much of it has a different end in view
from the one we take in this course. The aim here is to discuss appropriate algorithms, emphas-
ising the underlying structures and the ability to assess algorithms. This is not a programming
course, and so there is no explicit aim to cover the implementation details, which are needed
to convert an algorithm into an actual working computer program. At times such details will
influence the more abstract approach, but even in this case, our considerations will be general,
and not tied to a particular language.

Many of the books on the subject are concerned with both the theory and implementation of
algorithms. The two books which are closest to the spirit of this course both take this approach.
One, (v Aho, Hopcroft & Ullamn 1983), implements in Pascal, while the other (Sedgwick 1995),
is a C++ version of a book that originally implemented in Pascal. This is typical of many of
he books you will find in the library; if it is well written, the implementation details should be
easily omitted. A more advanced book (Knuth 1981), the “bible” of the subject for many, is
much more concerned with the fundamentals.
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Chapter 1

Introduction

1.1 Algorithms; Computer languages

This course is going to study algorithms. Before we start to study them it would help if we knew
what they were. A full and rigorous definition of what is meant by an algorithm is complicated
and may be confusing at this stage. However, all the essential ideas about algorithms can be
encapsulated in the single statement that an algorithm for solving a problem is a technique for
solving that problem that can be programmed for a computer.

In rather more detail, an Algorithm is a finite and definite procedure for solving a problem.
The finiteness is important; we cannot accept as algorithms methods which, for example, involve
us in taking limits unless we have available a finite procedure for evaluating those limits. The
definiteness is also important. We cannot accept as algorithms methods which involve making
inspired guesses, like finding a clever substitution for an integral.

You may already have met the word algorithm in the context of Euclid’s Algorithm for the
calculation of the highest common factor of two integers. This is indeed an algorithm in our
sense of the word. Let me write it down in the form of a procedure, using the kind of semi-
formal language that we will normally adopt for describing algorithms.

algorithm hcf(n,m) // calculate hcf of positive integers n,m
begin
repeat begin
l = remainder on dividing n by m.
n = m
m = l

until m = 0 // required hcf is n.
end

You should have no difficulty in translating this into a program in whatever computer language
you happen to use. It can be proved to be finite — each operation in the procedure is finite and
we only go round the loop a finite number of times (these things have to be proved, of course).
It is manifestly definite, no guesses or choices are being made.

On the other hand, the problem of finding the decimal representation of
√

2 cannot be solved
by an algorithm, so far as we know, because there are infinitely many decimal digits to be found
and they cannot be described ‘finitely’ because they neither repeat nor follow a clear pattern.
The problem of finding a specified finite number of the decimal digits of

√
2 is an algorithmic

problem.
What is involved in the study of algorithms? Firstly, of course, there is the problem of

actually finding algorithms to solve important problems. In addition there is the problem of

1
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evaluating those algorithms. Are they good or bad? Could we expect to do better by studying
the problem further?

The usual measure of quality of an algorithm is its speed — does it do its job efficiently?
Other significant criteria are: does it require a lot of computer space, is it easy to generalise, is
it simple and logical and consequently easy to program without error?

Euclid’s Algorithm is an example of a very good algorithm. It is undoubtedly a simple
algorithm. It does not require much adjustment to cover all integers rather than just positive
ones. It turns out that it is almost the quickest known way to solve the problem. Compare
it, for example, with the equally correct method which starts with the lesser of n and m and
successively reduces it by 1 until it divides both n and m. It would be a good first exercise for
you to program these two methods and then compare their running times when required to find
the h.c.f. of two six digit numbers.

1.1.1 Programming

This is probably the place to talk about programming, and the languages involved. Everything I
do can be programmed in FORTRAN, Maple or in any other language that you know, and you
will benefit by actually trying the algorithms out on a computer. It is worthwhile developing
enough facility to try the last example quickly to get a feel for the times taken by various
algorithms. However, this is not a programming course, and you should not spend too much
time doing this. Unfortunately, although it is very good for numerical work, FORTRAN is by
no means the most suitable language with which to investigate algorithms, both because it is
hard to write it both legally and clearly, and also because it lacks certain facilities. To make
the first point, note that the language used to describe the Euclidean Algorithm above is not
FORTRAN. It is in fact a kind of pidgin C or Pascal. I hope you will find this pseudocode easy
to use on paper without a formal description of what is acceptable; the idea is that anything
that communicates is OK!

To see FORTRAN’s lack of facilities, consider the following equivalent description of the
Euclidean Algorithm.

algorithm hcf(n,m) // sets result to hcf of positive integers n,m
begin

if (m = 0)
return(n)

else
return(hcf(m, n mod m))

endif
end

Arguably it is easier to see why this version of the algorithm is valid. The first statement is
clear; if one of the numbers is zero, then we take the hcf to be the other one. The rest of the
algorithm is the statement that the hcf of two numbers is the same as the hcf of the smaller,
and of the remainder when the larger is divided by the smaller.

1.1.2 An Implementation of the Euclidean Algorithm

An alternative way to see how this, and subsequent algorithms behave is to try out an imple-
mentation written to show the steps involved. By trying it with different inputs, you can get
an idea of efficiency, and also check your understanding of what happens with unusual input.
An implementation of this algorithm in the Java language is available in the hypertext version
of this document, enabling you to do this. I hope you can get access to a working version, and
appreciate having code working right in the notes!
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1.1.3 Recursion

This type of “divide and conquer” algorithm is very common in what follows; one way to solve
a problem is to show how to reduce it to a smaller problem of the same (or a closely related)
type. If that smaller problem itself can be reduced, then we can continue in this way. Ideally
we end up only having to solve a very trivial version of the problem. A familiar model for this
should be the evaluation of integrals using reduction formulae, for example In =

∫
sinn x. Using

integration by parts, one expresses In in terms of In−2, and then only has to evaluate I1 and I0.
In this context, the method is known as recursion, because the function recursively calls

itself. The method is not necessarily very efficient (as measured by run times) but it is very
good for showing the logical structure of the program. The language FORTRAN does not support
recursion, so only the first form of the algorithm is acceptable to it. In contrast, languages like
Pascal, POP11, C etc are quite happy with recursions even though they have to unwind the
recursion to perform the actual evaluation.

Another lack in FORTRAN is any built-in sophisticated form of structure, other than the
double precision number, and the array. Of course, this sparseness is one reason why the language
is attractive. However, we shall see later that writing effective algorithms, and generating new
data structures are very closely related, and that, at least during explorations, it can be valuable
to have non-numeric structures available. In particular, it can be helpful to have a “list” as a
built in data type. For this reason I will also use POP11, as above to give examples. Again there
should be no difficulties; if you don’t speak POP11, just read it.

1.1.4 Algorithm Types

In this course I am not going to attempt to describe all known algorithms — that would require
an encyclopedia and would also be futile. The important end result of a study of algorithms
is that you should be able to write and evaluate your own algorithms for the problems that
confront you, and which are probably not in the books anyway. To that end I am going to look
at a small number of typical methods from a range of different contexts, so as to show you the
type of thinking that is involved. These may then give you the basic hints as to how to proceed
with your problems. An analogy with the integral calculus might make this point just as well.
No sane calculus book will attempt to list all possible substitutions that work in evaluating
integrals. You will be shown some substitutions that are famously effective in certain types of
problems and you will be shown enough general examples to give you the general idea of how to
proceed in other cases. Then you are left to your own devices.

However, it is worthwhile to give an indication of the range of applications which are usually
covered. These include

• sorting algorithms;

• searching algorithms;

• string processing and language;

• geometric algorithms;

• graph algorithms; and

• mathematical algorithms.

1.2 An Algorithm — Hatching Polygons

Our first example was clearly an algorithm; it was called an algorithm! We now illustrate the
concept with algorithms which have a more geometric flavour.
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1.2.1 The Problem

Suppose we have a polygon in the plane defined by a sequence of vertices v1, v2, . . . , vn. The
polygon can be arbitrarily complicated but we will assume that it is not re-entrant ; that is to
say, no two edges of the polygon cross. Fig 1.1 illustrates this.

but not

Figure 1.1: A polygon, and a re-entrant polygon.

With this qualification, our polygon will define a region — the inside of the polygon (not so
clear in the re-entrant case). Our basic problem is going to be to shade in this region. To be
precise, and to avoid computer technicalities, we want to hatch the region with a set of equally
spaced straight lines, as shown in Fig 1.2.

Figure 1.2: Hatching a polygon with horizontal lines.

To keep things simple we will assume that the hatching lines are to be horizontal (constant
y), though the generalisation to sloping lines is very easy. We will assume that we have available
the single computer-graphics instruction:

draw a line from (x1, y1) to (x2, y2)

A polygon is convex if it is not re-entrant and if the join of any two points in the region
lies entirely within the region. Examples of a convex and a non-convex polygon are shown in
Fig. 1.3; the non-convex one has an example line drawn with both end points in the polygon,
but which does not remain completely within the polygon.

but not

Figure 1.3: A convex polygon, and a non-convex polygon.

There is obviously a difference in difficulty between the problem of hatching a convex polygon
and that of hatching a general one. We will start by solving the general case and then try to see
whether we can simplify, and speed up, the method if we know that the polygon is convex.
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1.2.2 General Method

The method is based on the following observation. Suppose we have any polygonal (non-
reentrant) region in the plane. Then, special cases excepted, any line l either misses the region
completely or else meets the polygon in an even number of points which, in order, are into, out
of, into, out of,. . . , into, out of the region. (The special cases come when an edge lies on the
line or when two intersection points degenerate into a single intersection at a vertex.)

I O I IO O

Figure 1.4: A single hatching line passing in and out.

If we are using the line l to hatch the region then we will want to join the first point to the
second one, the third to the fourth, the fifth to the sixth and so on. With this observation we
can now solve the hatching problem. The outline of the procedure is this:

for each hatching line:
Go through the edges of the polygon in sequence,
find out which ones cut the hatching line

For each edge that does, store the intersection points in a list
Sort the list of intersection points into order to give

(p1, p2, p3, p4, . . . , p2n−1, p2n)
Finally, draw in the lines

(p1, p2), (p3, p4), . . . (p2n−1, p2n)

Like most such outlines this still leaves us with lots of work to do, but at least the remaining
problems are more standard ones:

1. how do we describe the hatching lines;

2. how do we decide whether or not a hatching line meets a given edge; and

3. how do we sort the intersection points into order?

The first question is reasonable easy if the hatching is horizontal. The hatching lines are of
the form y = h. To find the range of values of h we firstly find the lowest and highest vertices
of the polygon, and let the corresponding values of h be hmax and hmin. The situation is shown
in Fig. 1.5.

This involves running through the n vertices and picking out the min and max values of their
y-coordinates. We then decide on the spacing between the lines.

Having done this our program will become

algorithm hatch // hatch a polygon with horizontal lines
begin
h = hmin
repeat begin
do job for y = h
h = h + dh
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hmax

hmin

y

Figure 1.5: The range for h.

until h >= hmax.
end

For the second question, horizontal hatch lines make life very easy. The edge joining vi to
vi+1 will fail to meet the line y = h if either both the y-coordinates of the vertices are less than
h or both are greater than h. Algebraically, we could express the intersection condition as

(yi+1 − h)(yi − h) ≤ 0

If we have decided that an edge does meet the hatch line then we will want to find the intersection
point (its x-coordinate will be a suitable number to store as a parameter along the hatch line).
This is now just good old-fashioned coordinate geometry.

The equation of the line joining (xi, yi) to (xj , yj) can be written as

(xj − xi)(y − yi) = (yj − yi)(x− xi)

We want x when y = h. If yi 6= yj then we have

x = xi +
(
xj − xi

yj − yi

)
(h− yi)

If yi = yj then we have a problem. It is best to ignore the intersection.
We will consider the third question in detail later in the course.

1.2.3 Hatching Convex Polygons

If we happen to know that the polygon we are dealing with is convex then the above general
algorithm for shading is very inefficient. The problem can be solved much more efficiently in
this case. The idea, which avoids the sorting step above, is shown in Fig. 1.6.

y

x

rightleft

B

T

Figure 1.6: Hatching a convex polygon.

For the sake of variety let’s start at the top this time. The advantage in this case is that
we do not need to go searching through all the edges all the time. At any particular stage we
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are dealing with one ‘left’ edge and one ‘right’ edge. Whenever the horizontal level drops below
the bottom end of one of these edges we move on to the next edge on that side. The starting
and ending points of the hatches are calculated from the equations of the edges. The procedure
stops when the h value drops below that of B.

1.3 The Analysis of an Algorithm

In this section we will study one simple algorithm in fairly full detail. This should clarify some
of the basic ideas, and illustrate the type of information we are trying to extract in more general
situations. The problem is “trivial”, but even so, the calculations to which we are led, are not
completely trivial.

Algorithms are methods for solving problems, so we had better start by stating the problem:

Given a list(k1, k2, . . . , kn) of numbers, find the smallest one.

This is hardly a profound problem and there is no difficulty in finding an algorithm to solve
it. The following procedure works:

algorithm min(x,n) // to find the minimum of x =(x(1),...,x(n))
begin
min = x(1)
for i = 2 to n begin
if ( x(i)< min )

min = x(i)
end
return (min)

end

In words, we keep our “minimum element so far” in min. We put it equal to x(1) at the start
and then move along the list, updating min whenever we come to an element that is smaller than
it. When we get to the end of the list min will contain the smallest element. Strictly speaking
we should now present a proof of the algorithm, but I think that we can get away with the word
‘trivial’ in this case.

Now that we have an algorithm for solving the problem the next job is to evaluate it. Such
evaluations are normally competitive — there are a number of possible algorithms for solving
a problem and we have to decide which is best. In this case we just have the one method and
it is difficult to think of a significantly different way to solve the problem. Nevertheless we will
proceed with our evaluation.

1.3.1 Timing

Our attention is going to focus on the timing of the algorithm. How long does it take to do
the job? The obvious answer to this question is: it depends on which computer you are using.
Certainly, but that does not make the question a silly one. Most present-day computers only
vary in the speed with which they can perform elementary operations (machine instructions).
If we know how many basic operations the method requires then we know how fast it will run
on any particular machine. We will not go down to quite this level of detail because machines
also differ somewhat in the nature of their elementary operations but we will always attempt to
break our algorithms down into very simple steps.

Let me now rewrite the above algorithm in the form of a flow-chart using very basic operations
(see Fig. 1.7). We will pretend that each of these operations takes the same time to execute on
a computer. This is not precisely true but neither is it wildly false.
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STOP

NO

YES

NO

F

E

D

C

B

A

YES

min = x(1)

i = 2

x(i) < min?

i = i + 1

i <= n?

min = x(i)

Figure 1.7: Flow chart to find the minimum element in a list.

Now we can start timing the algorithm. We just want to count how many times each box
is executed. Boxes A and B are only executed once. Boxes C, E and F are on a loop that the
program goes round n − 1 times, so each of these is executed n − 1 times. That leaves box D.
This is where all our problems come.

Consider the list (4,5,3,6,1,2). As the algorithm scans along this it will start with min=4. It
will then do a ‘detour’ on the third element to make min=3 and it will make a final detour on
the fifth element to give min its final value of 1. In all the box D gets executed twice.

On the other hand, if we apply the algorithm to the list (1,4,3,6,2,5) the detour box D will
never be executed. min will get its correct value right at the start and will never need to be
updated.

This is our problem. There is no fixed value for the number of detours. It depends entirely
on the list being processed. We can make three obvious statements about the value d of the
number of detours:

• First, the minimum value of d is zero. This will occur whenever the list has its smallest
element in first place.

• Second, the maximum value of d for a list of n elements is n − 1. This will occur when
the list is in strictly decreasing order, so that the current value of the minimum has to be
updated on each step.

• Thirdly, for lists of n elements d can take any value between these extremes (exercise).

These comments allow us to make the following statement. Suppose each box in the flow
chart takes unit time to execute. Then the time T (n) taken by the algorithm to find the minimum
of n numbers lies in the range

3(n− 1) + 2 ≤ T (n) ≤ 3(n− 1) + 2 + (n− 1)
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or
3n− 1 ≤ T (n) ≤ 4n− 2

For many purposes this might be all that you need to know. The timing is roughly proportional
to the number of elements in the list, allowing for some variation due to the different number of
detours made for different lists.

1.3.2 A More Precise Analysis

Nevertheless, it would be nice to have some more precise information about the value of d. That
is the problem that we are going to study next.

We know that d varies from one list to another. What we really want to know is its general
behaviour. In particular, it would be nice to know the average value of d for lists of length n.
The usual difficulty with averages is that we have to know what we are averaging over and how
we are taking that average. That seems simple enough in this case. We are, surely, averaging
over all lists of length n. Perhaps so, but in that case we also need to know that probability
of any particular list being chosen, so that we know how to weight the average. That’s more
difficult. It would seem silly to claim that all lists of n numbers are equally likely to be presented
to the algorithm. Computers rarely deal with numbers of the order of 1010000.

We will instead adopt a rather different approach. This will be used again in later chapters.
Notice that as far as the algorithm is concerned the actual numbers in the list are irrelevant.
All that matters is their relative ordering. What I mean by this is that the algorithm takes the
same time to process the list (3000, 2000, 1000, 4000) as it does to process the lists (3, 2, 1, 4) or
(300, 22, 9, 1000). All that matters is that in each case the first element is the third smallest, the
third element is the smallest and so on. 1

Because of this observation we can make a critical simplification. Let us assume that we
are dealing with lists of n distinct elements (I will leave consideration of lists with repeated
elements to you). Then we may as well assume that the lists that we are dealing with are all
the permutations of the list (1, 2, 3, 4, . . . , n). There is nothing limiting about this assumption.
Let us now go further and make another assumption, this time a genuine one. Let us assume
that all these permutations are equally likely to be presented to the algorithm. This may not
be a reasonable assumption in some situations. It may be the case that in a certain application
the vast majority of lists supplied to the algorithm are only slightly shuffled and as such do not
represent a random sample from the set of all possible permutations. In that case the following
analysis would not be correct. Our assumption is really a neutral assumption made in the absence
of other information (and happens to make the mathematics easier, which is a very significant
point!). So now we have a mathematically precise problem to solve.

What is the average number of detours executed when applying the algorithm to
the permutations of (1, 2, 3, . . . , n), granted that all such permutations are equally
probable?

1.3.3 Computing detours: An
k

Let Sn denote the set of all permutations of (1, 2, 3, . . . , n). Recall that Sn has n! elements. Let
An

k be the number of permutations in Sn that require k detours when applying the algorithm.
Then the average number of detours, denoted by µ(n) is given by

µ(n) =
1
n!

∑
k

kAn
k

Consider first the case when n = 3. We can list all the permutations in S3 and work out the
number of detours for each one.

1I am making the possibly doubtful assumption that the computer handles all numbers equally quickly. This
may not be true in general but consideration of such problems would take us too far afield.



10 CHAPTER 1. INTRODUCTION

π d
(1, 2, 3) 0
(1, 3, 2) 0
(2, 1, 3) 1
(2, 3, 1) 1
(3, 1, 2) 1
(3, 2, 1) 2

Table 1.1: Number of detours sorting elements of S3.

In the above notation we have A3
0 = 2, A3

1 = 3 and A3
2 = 1, giving a total of 3! = 6. The

average number of detours is

µ(3) =
0 + 0 + 1 + 1 + 1 + 2

6
=

0.A3
0 + 1.A3

1 + 2.A3
2

6
=

5
6
.

You should check for yourself in the same way, that µ(2) = 1
2 and, with a bit more effort,

that µ(4) = 13
12 .

Returning to the general case, note that we have already decided the following claims:

An
k = 0 if k < 0 or k ≥ n,

An
0 = (n− 1)! (all permutations starting with a 1),

An
n−1 = 1 (only the permutation (n, n− 1, . . . , 3, 2, 1)),

A2
0 = 1 A2

1 = 1.

Now consider the following argument. Divide Sn up into n subsets. The first, L1, consisting
of those that end with a 1, the second, L2, consisting of those that end with a 2 and so on up to
the last subset, Ln, consisting of those lists that end with an n. We now try to count how many
of the elements of each of these subsets require k detours.

First consider L1. In this set we know for certain that the last detour is made on the very
last element, because 1 is the smallest element. So k − 1 detours must have been made in the
previous n − 1 elements. Now the previous elements make up all permutations of (2, 3, . . . , n),
each one represented just once. So by our earlier argument about the irrelevance of the names
of the elements, the number of permutations in L1 that require k detours is An−1

k−1 .
Now consider L2. In this case we know for certain that we do not do a detour on the last

element, because the 1 has already passed. So all k detours must occur in the first n−1 elements.
By the same argument as in the previous case this means that the number of permutations in
L2 that require k detours is An−1

k .
The same argument applies to the other subsets L3, . . . , Ln. In each case all k detours have

to be made before we come to the last element because the last element is not 1.
Gathering all this information together we see that we obtain the following recurrence relation

for An
k :

An
k = (n− 1)An−1

k +An−1
k−1 for n > 1, k > 0.

That was a typical combinatorial argument and it may very well leave you a bit confused.
The best thing to do in that case is to work through the argument in a particular case, for
example n = 4. You may then realise that behind the confusion lies a simple argument.

We are now in a position to work out lots of values of An
k by using this recurrence relation in

conjunction with the initial and boundary values calculated before. Some values which can be
obtained fairly easily are given in Table 1.2. For example, A6

3 = 5A5
3 +A5

2 = 5× 10 + 35 = 85.
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n
1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1

Table 1.2: Values of An
k for small values of n and k.

We can obviously carry this on as long as we wish, but it does not provide us with anything
like a general formula for An

k . Compare this situation with that of the binomial coefficients.
There we have a recurrence relation which is superficially very similar to the one for the A’s:

Cn
k = Cn−1

k + Cn−1
k−1

from which we build up Pascal’s triangle. But we also have the explicit formula

Cn
k =

n!
k! (n− k)!

(allowing that we accept the factorials as ‘explicit’). We have no such explicit formula for the
A’s.

Does the fact that we have not actually got an explicit formula for the A’s destroy any hope
of calculating the value of µ(n)? As it happens it does not, though this is not yet obvious. What
we will do next is to use the recurrence for the A’s to obtain a corresponding recurrence relation
for the µ’s. The difference will turn out to be that the recurrence relation for the µ’s is explicitly
solvable. That is luck rather than judgment.

Take the definition of µ(n):

µ(n) =
1
n!

∑
k

kAn
k

and substitute An
k by the value given by its recurrence relation.

µ(n) =
1
n!

∑
k

k((n− 1)An−1
k +An−1

k−1)

Now start to manipulate the right-hand side:

µ(n) =
n− 1
n!

∑
k

kAn−1
k +

1
n!

∑
k

kAn−1
k−1 ,

=
n− 1
n!

(n− 1)!µ(n− 1) +
1
n!

∑
k

(k − 1)An−1
k−1 +

1
n!

∑
k

An−1
k−1 ,

=
n− 1
n

µ(n− 1) +
(n− 1)!
n!

µ(n− 1) +
(n− 1)!
n!

,

= µ(n− 1) +
1
n
.

So we have obtained the recurrence relation

µ(n) = µ(n− 1) +
1
n
.
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Before going on to study this, perhaps I had better explain what was happening in the above
chain of manipulations. The aim of the exercise was to replace all the A’s by µ’s, somehow or
other. Nothing much happens in the first line. In the second line we note that the first sum
is just the sum that would occur in the definition of µ(n − 1), so we substitute appropriately,
remembering the factorial. We also do a further, less obvious, bit of rearrangement. Basically,
we change the kAn−1

k−1 term into (k − 1)An−1
k−1 + An−1

k−1 . This will then allow us to interpret the
first sum as part of the definition of µ(n − 1) — remember that k is a dummy variable and it
doesn’t matter in the least that we suddenly choose to call it k − 1. Finally, in the third line,
recall that the sum of all the A’s must equal the total number of permutations.

Now let’s study the recurrence that we have obtained. We already know that µ(2) = 1/2.
So, using the recurrence,

µ(3) =
1
2

+
1
3
,

µ(4) =
1
2

+
1
3

+
1
4
,

µ(5) =
1
2

+
1
3

+
1
4

+
1
5
,

and so on. It is now obvious that

µ(n) =
1
2

+
1
3

+ · · ·+ 1
n
.

Our conclusion is that the average number of detours made in applying the “minimum ele-
ment” algorithm to the permutations of (1, 2, . . . , n), assuming that all are equally likely to
occur, is

µ(n) = Hn − 1

where Hn is the nth Harmonic Number defined by

Hn = 1 +
1
2

+
1
3

+ · · ·+ 1
n

=
n∑

k=1

1
k
.

1.3.4 Approximating Hn

Does this help? Only if we know something about Hn. This leads us into another important
aspect of the study of algorithms, that of asymptotic estimation. Put in simple terms, can we
find a simple approximate formula for µ(n) to replace the complicated exact formula that we
have obtained above? In this case we can, and the result is quite famous.

Consider the diagram in Fig 1.8. By adding up the areas of the rectangles that lie above the
graph we get

1 +
1
2

+
1
3

+ · · ·+ 1
n− 1

>

∫ n

1

dx

x
= lnn.

Similarly, by adding up the areas of the rectangles that lie below the graph we get

1
2

+
1
3

+ · · ·+ 1
n
<

∫ n

1

dx

x
= lnn.

From these we easily deduce that

lnn+
1
n
< Hn < lnn+ 1

This estimate can be improved greatly, but is already adequate for our purposes. It says that
Hn is close to ln n, and that the percentage error decreases to zero as n→∞.
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21 3 4 n-1 n

y = 1/x

Figure 1.8: Graph of y = 1/x.

If you are interested, a better estimate is

Hn = lnn+ γ +
1
2n

+ · · · where γ = 0.5772156649 is Euler’s Constant.

A proof, together with much more information is available in (Graham, Knuth & Patashnik 1988,
Page 264). Don’t take the title of this book at its face value: “Concrete” Mathematics is a blend
of Continuous and discrete mathematics, chosen to be of interest and relevance to this type of
calculation!

Now we can go back to our study of the timing of our algorithm. Recall that we obtained a
formula for the average running time of the algorithm which could now be written as

T (n) = 3(n− 1) + 2 + µ(n),

= 3n+Hn − 2,

≈ 3n+ lnn.

Where the approximation is meant to be applied if n is quite large. This is interesting. Let
me put some values down in a table:

n 3n lnn
10 30 2.3

100 300 4.6
1000 3000 6.9

10000 30000 9.2

Table 1.3: The growth of T (n).

So you see that, on average, there are really very few detours indeed. For a value of n like
10000 the detours only make up, on average, 0.03% of the time taken by the algorithm.

This shows a phenomenon that you need to get clear in your mind at an early stage: the
logarithm function grows very slowly indeed.

1.3.5 Conclusion

The algorithm that we have produced for finding the least element of a list of numbers runs in
time which is, on average, almost exactly proportional to the number of terms in the list.
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This assertion was made on the assumption that the lists are lists of distinct elements and
that all orders of elements in those lists are equally likely to occur.
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Questions 1 (Hints and solutions start on page 86.)

Q 1.1. Sometimes it is fairly easy to think of a better algorithm; sometimes it can seem unlikely
that one exists until a better one is demonstrated. How can you compute x55 using only 9
multiplications? How few multiplications do you need to calculate a polynomial of degree n?

How few multiplications do you need to compute the product of two n × n matrices? After
some thought, try looking in the books for “Strassen’s method” which dates from 1968!

Q 1.2. Look carefully through the procedure for hatching a polygon and try to pick out the
‘special cases’ that might occur and which might require modifications to the program to cope
with them.

Q 1.3. What result does the procedure produce if presented with a re-entrant polygon like that
in the first figure?

Q 1.4. How should the program be modified if we want all our hatch lines to be at angle α to
the horizontal?

Q 1.5. A non-reentrant polygon has vertices v1, v2, . . . , vn. You are given a point (x, y). Find a
reasonably quick way to decide whether or not this point is in the region defined by the polygon.

Q 1.6. You are given a list v1, v2, . . . , vn of vertices in the plane. How would you set about
deciding whether they defined a convex polygon?

Q 1.7. What might you do if you wanted to shade an annular region, like the gap between two
squares, one inside the other?

Q 1.8. Change the minimum element algorithm so that it finds the maximum element instead.
Convince yourself that the timing for this algorithm is the same as it was for the minimum
element algorithm.

Q 1.9. Write an algorithm to find the two smallest elements in a list of numbers (the smallest
and the second smallest). You should be able to make it a lot more efficient than finding the
minimum twice over.

Q 1.10. How could the minimum element algorithm be speeded up if you knew in advance that
all the elements of the list come from a finite set of size much smaller than the length of the list
— for example, if the elements were all single digits? Assume that you know what set you are
dealing with.

If the lists are random lists from this set estimate the timing of your algorithm.

Q 1.11. For once in your life, write down all the permutations of (1, 2, 3, 4). Count the number
of detours for each permutation and check that the average comes out as 13/12.

Q 1.12. Use the recurrence relation for the An
k to add the next two rows to my table of values.

Can you give an explicit formula for An
n−2?

Q 1.13. Refer to the picture of the graph of y = 1/x earlier in the chapter. Notice that, because
of the concavity of this graph, the diagonals of the small rectangles in the picture lie above the
graph. Use this to obtain an improved estimate for Hn.
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Q 1.14. Write an efficient algorithm, using a pseudocode of your choice, to find the minimum
element of a given list of integers.

The algorithm is to be run on an abstract computer on which each basic operation; assign-
ment, comparison between two numbers or incrementing a counter, takes one unit of time. Show
that the time T (n) for the algorithm to run on a list of length n satisfies T (n) = O(n).

The timing of one such algorithm is known to be

T (n) = 3n− 1 + µ(n)

where µ satisfies µ(n) = µ(n− 1) + 1
n and µ(1) = 0. Obtain an expression for µ(n) as a series.

By comparing with the area under a suitable curve, show that µ(n) satisfies the inequality

lnn+
1
n
− 1 < µ(n) < lnn.

and thus obtain estimates for T (100).

Q 1.15. Write an efficient algorithm, using a pseudocode of your choice, to find the minimum
element (min) and the second smallest element (second) of a given list of integers.

The algorithm is to be run on an abstract computer on which each basic operation (assign-
ment, comparison between two numbers or incrementing a counter) takes one unit of time. Show
that the time T (n) for the algorithm to run on a list of length n satisfies T (n) = O(n).

Explain what assumptions you would make to get the expected value of this running time.
Illustrate your answer by doing explicit calculations in the case where n = 4. [You are not
required to compute the expected running time in general.]



Chapter 2

Sorting

The general problem faced in this topic is to put into some kind of order a list of items for
which such an ordering is defined. At its simplest this might mean putting a list of numbers
into ascending order. More generally it includes doing things like putting lists of words into
alphabetical order.

I will be assuming in this section that the ordering relation that we are using is what is known
as a linear ordering. Let me be a little bit formal about this. A partially ordered set (P,<) is a
set P together with a relation < which satisfies the conditions:

• if x < y then it is not true that y < x.

• (in consequence) it is not true that x < x.

• if x < y and y < z then x < z.

A typical example might be to have P as the set of all citizens of the UK with x < y if x is
descended from y.

A partially ordered set is called a linearly ordered set if, in addition, we have the condition

• for any x 6= y either x < y or y < x.

This is obviously not true for the previous example. It is true for things like the integers
or reals ordered in the usual way. It is also true for the set of words ordered lexicographically.
Most sorting techniques are designed primarily to deal with lists taken from linearly ordered sets.
Apart from that all that we really need to assume is that we have some algorithm for deciding
whether x < y or x = y or y < x.

2.1 Complications

I will stick to simple problems but let me at least indicate some of the difficulties that can arise
in real life.

The first problem is the size of the list to be ordered. I will write my algorithms using a list
{xn} to represent the data. If you turn the algorithm into a computer program you will probably
want to turn this list into something like a FORTRAN array. This may not be possible if the
list is too large for the computer’s memory. You may only be able to hold part of the data inside
the computer at any time, the rest will probably have to stay on disc or tape. This is known as
the problem of external sorting. I may say something about it later.

Another problem is the stability of the sorting method. Let me explain this by an example.
Suppose you are an airline. You have a list of the passengers for the day’s flights. Associated
to each passenger is the number of his/her flight. You will probably want to sort the list into

17
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alphabetical order. No problem. Next you want to resort the list by flight number so as to get
lists of passengers for each flight. Again, no problem — except that it would be very nice if, for
each flight list, the names were still in alphabetical order. This is the problem of stable sorting.
To be a bit more mathematical about it, suppose we have a list of items {xi} with xa equal to
xb as far as the sorting comparison is concerned and with xa before xb in the list. The sorting
method is stable if xa is sure to come before xb in the sorted list.

Finally, we have the problem of key sorting. The individual items to be sorted might be
very large objects (e.g. complicated record cards). All sorting methods naturally involve a lot
of moving around of the things being sorted. If the things are very large this might take up a
lot of computing time — much more than that taken just to switch two integers in an array. In
this kind of case the best approach is the leave the actual data alone and instead work with a
list of ‘markers’ for the data. You shuffle the markers, not the data itself. If you really want to,
you can reorder the actual data after you have determined its ordering.

2.2 Two Simple Sorting Algorithms

Let me present two algorithms for sorting a list of numbers into ascending order (they will work
with any linearly ordered set). They are meant to be ‘obvious’ rather than good. We will
consider good methods later. The main aim here is to get something ‘on the table’ so that we
know what we have to improve on later.

The first algorithm is probably the most mindless of all. I will call it the ‘minimum element
sort’. It is probably the method that you would use by hand if you had a very small number of
items to sort.

2.2.1 Minimum Element Sort

The recipe is as follows: go through the list and find the smallest element. Swap it with the first
element of the list. Now find the smallest element of the rest of the list and swap it with the
second element of the list. And so on.

Rather more formally: to sort (x1, . . . , xn) into ascending order

for i = 1 to n-1 begin
find smallest of (xi, . . . , xn)
swap with xi

end

Putting in all the details, we get:

algorithm minimumElementSort
begin

for i = 1 to n-1 begin
min = x(i)
minp = i
for j = i+1 to n begin
if x(j) < min then begin

min = x(j)
minp = j

end
end
t = x(i)
x(i) = x(minp)
x(minp) = t

end
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end

I think this method is obvious enough not to need a proof.
The other concern is its efficiency. So let us consider the timing of the algorithm. The most

important part of the process is the repeated search for the extreme element. It can be shown
that for k items this takes time roughly proportional to k. The other parts of the algorithm are
of lower order. Thus the overall running time for the algorithm (for reasonably large values of
n) should be roughly proportional to

n−1∑
i=1

(n− i) =
n(n− 1)

2
≈ n2

2

We say that this is an O(n2) sorting algorithm.

2.2.2 Insertion Sort

Once more we want to sort a list (x1, . . . , xn) into ascending order. Let me state the full
algorithm directly

algorithm insertionsort
begin
for i= n-1 down to 1 begin
temp = xi

j = i+1
while(j <= n and xj < temp) begin
xj−1 = xj

j=j+1
end
xj−1 = temp

end
end

To help you see what is happening, here is the algorithm working on the list (4, 3, 6, 1, 5, 2).

i = 5 4 3 6 1 5 2 temp = 5
i = 4 4 3 6 1 2 5 temp = 1
i = 3 4 3 6 1 2 5 temp = 6
i = 2 4 3 1 2 5 6 temp = 3
i = 1 4 1 2 3 5 6 temp = 4
i = 0 1 2 3 4 5 6 temp =

2.2.3 Proof of Algorithm

This algorithm is sufficiently complicated to deserve a proof. We use ‘induction’.

Claim: at the end of step ‘i’ the elements xi, . . . , xn are in order.
If so then at the end of step ‘1’ (the end of the algorithm) x1, . . . , xn are in order. So we

just have to prove the claim. It is certainly true after the first step ‘n− 1’ — xn−1 and xn will
have been swapped, if necessary, to get them into order. Suppose that at the start of step ‘i’
the elements xi+1, . . . , xn are in order. The effect of step ‘i’ is to move element xi along the list
until it comes to a bigger element, or to the end of the list. When this has been done xi, . . . , xn

will be in order. QED.
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Approximate Timing For large n the main component of the time taken by the algorithm
is that taken in shuffling elements to the right (the while loop). This will be the sum of the shift
times for each i = n− 1, . . . , 1. This time, for each i, is proportional to the distance shifted.

In the above example

i 5 4 3 2 1
distance 1 0 3 2 3

giving a total distance of 9.
For n items the minimum number of shifts required is 0, if list originally in order. The

maximum number of shifts required is

1 + 2 + 3 + · · ·+ (n− 1) =
n(n− 1)

2
,

and this happens if the list is in reverse order. The actual number of shifts will depend on the
list, so this is another case where we really want to know the average. Once more we have the
problem of how to work out the average.

Before doing this it will help if we make some simplifications and assumptions.

1. Let us assume that we are dealing with lists of distinct elements. The analysis would
be somewhat different (as would the algorithm) if the list contained a high proportion of
repeated elements. As a simple example, you would probably use a different method to
put a list of 0’s and 1’s into order.

2. There is then no loss of generality in assuming that the elements of the list are the integers
1, 2, 3, . . . , n in some order. As far as the algorithm is concerned it is not the actual values
of the elements that matter so much as their relative positions in the list. The list (1, 4, 3, 2)
takes the same time to sort as the list (100, 400, 302, 220) and the algorithm goes through
exactly the same moves for each.

3. Finally we add in the extra, and serious, assumption that all these permutations are equally
likely to occur — so that we can talk in terms of a random permutation. This is the ‘in the
absence of any other information’ assumption. It may be the case in certain applications
that some permutations are more likely than others — for example, the list may just be
an ordered list with a small number of elements swapped around. This would require a
different analysis.

Now consider the algorithm. At stage ‘i’ we take element xi and move it a distance d ∈
{0, 1, . . . , n− i} through the list to its correct position.

xi has not been touched by the algorithm up to this point so, on average, we have no
information about its proper position in the list. In other words, all possible shifts for xi are
equally likely. (Note that this depends on our assumption that all permutations are equally
likely.)

So the average distance moved by xi is

(0 + 1 + 2 + · · ·+ (n− i))/(n− i+ 1) =
(

1
n− i+ 1

)
(n− i)(n− i+ 1)

2
=
n− i

2

So, on average, the total number of shifts is

n−1∑
i=1

n− i

2
=
n(n− 1)

4

So the overall time for the sort should be roughly proportional to n2. Once more, this is an O(n2)
algorithm — though it should be significantly faster than the minimum element algorithm.
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2.2.4 A More Precise Analysis of Insertion Sort

We can give a more precise analysis of the operation of insertion sort. It is going to be a
bit complicated. We will find out in the next section that insertion sort is not a very good
sorting method and should not be used except in special circumstances. So why waste time on a
complicated analysis? Simply because it happens to be a reasonably nice piece of mathematics
from which you might learn something.

The important quantity in the analysis of the timing of Insertion Sort is the total distance
through which the elements of the list are moved to the right during the sort. Let us assume, as
usual, that we are dealing with a permutation of (1, 2, . . . , n).

By the nature of the algorithm, the number of places that i is moved in the sort is equal to
the number of elements that are less than i and to the right of i in the original list. For example,
if you apply insertion sort to the list

π = (7, 4, 5, 1, 3, 2, 6)

you will find that 1,2 and 6 do not get moved at all, 3 is moved one place (2 is less than it), 5 is
moved 3 places (1,3,2 are less than it) and so on.

Bearing this in mind let us associate to each permuted list π ∈ Sn a list m = (m1,m2, . . . ,mn)
where mi is the number of numbers in π that are less than i and to the right of it. For the
permutation of the previous paragraph we have

m = (0, 0, 1, 3, 3, 0, 6)

In this m5 = 3 because, of the four numbers less than 5, three of them are to the right of 5 in π.
The lists m that we produce from permutations obviously have the property that 0 ≤ mi < i,

because there are only i − 1 positive numbers less than i. In particular m1 must be 0 and m2

can only take the values 0 or 1.
Let us now introduce the following set Mn:

Mn = {(m1,m2,m3, . . . ,mn) : 0 ≤ mi < i, i = 1, n}

Then what we have done is constructed a mapping

φ : Sn →Mn π → mπ.

Example n = 3

M3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2)}.

Under φ we have

(1, 2, 3) → (0, 0, 0) (1, 3, 2) → (0, 0, 1)
(2, 1, 3) → (0, 1, 0) (3, 1, 2) → (0, 0, 2)
(2, 3, 1) → (0, 1, 1) (3, 2, 1) → (0, 1, 2)

Note that, in this case, φ has turned out to be a bijection — it pairs off the elements of S3 and
M3.

Lemma 2.1. |Mn| = n!

Proof. There are i possibilities for the ith component. All the components are independent. So
the total number of lists is 1× 2× 3× . . .× n = n!.

Theorem 2.2. The map φ : Sn →Mn is a bijection.
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Proof. Since Sn and Mn have the same number of elements it will be enough to show either that
φ is one-one or that it is onto. Each implies the other.

Let me ‘prove’ that φ is onto by doing an example. The general proof is just a formalisation
of what I do in this example.

Consider m = (0, 1, 0, 2, 1) ∈ M5. We must find a permutation π ∈ S5 such that φ(π) = m.
We find it like this:

m2 = 1 so 1 is on the right of 2 2 1
m3 = 0 so 1, 2 are on the left of 3 2 1 3
m4 = 2 so 1, 3 must be on the right of 4 2 4 1 3
m5 = 1 so 3 must be on the right of 5 2 4 1 5 3

So the required permutation is π = (2, 4, 1, 5, 3).
You should be able to convince yourself that there is nothing special about this example and

that this mode of construction will work for any m ∈Mn. That would prove that φ is onto and
hence a bijection.

Let us now return to Insertion Sort. If we are using it to sort π ∈ Sn then the total number
of moves that we make is

t(π) =
n∑

i=1

mi where m = φ(π)

Since φ is a bijection, averaging over Sn is the same as averaging over Mn. So the average
number of moves made in Insertion Sort when applied to a list in Sn, assuming that all lists are
equally probable, is

t̄(n) =
1
n!

∑
m∈Mn

t(m)

The rest of the argument is algebra. First, we reorder the sum

t̄(n) =
1
n!

∑
m∈Mn

(
n∑

i=1

mi

)
=

1
n!

n∑
i=1

( ∑
m∈Mn

mi

)

Now mi takes the possible values 0, 1, 2, 3, . . . , i− 1 and takes each value n!/i times. So

∑
m∈Mn

mi =
n!
i

(0 + 1 + 2 + 3 + · · ·+ (i− 1)) =
n!
i

i(i− 1)
2

=
n!
2

(i− 1)

Therefore

t̄(n) =
1
n!

n∑
i=1

n!
2

(i− 1) =
1
2

n∑
i=1

(i− 1)

Performing the sum we end up with our final result for the average number of moves made when
applying Insertion Sort to a list from Sn:

t̄(n) =
n(n− 1)

4

This is, of course, the same result that we obtained earlier by less precise means.

We have found that the maximum value of t(π) is n(n − 1)/2, the minimum value is 0 and
the average value is half way between them at n(n− 1)/4. Does that tell us everything we need
to know about the insertion sort? No it does not. In fact it tells us very little about what might
happen in any particular application of insertion sort. This is really the old story with averages.
The average is an extremely simple statistic. It gives you one important fact about a population,
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Figure 2.1: Potential distributions of running times about the mean.

but not more. At the moment we have no idea which, if any, of the graphs shown in Fig. 2.1
best represents the actual distribution of running times for Insertion sort.

The next statistical step after calculating the average (the mean) is to try to get some idea
of the dispersal of the population away from the mean. The simplest approach to this is to
calculate the standard deviation.

The standard deviation σ of the running times is, by definition,

σ2 =
1
n!

∑
π∈Sn

(t(π) − t̄(n))2

I will leave the evaluation of this to you as a fairly heavy exercise in manipulation and summa-
tion.1 The answer comes out as

σ2 =
2n3 + 3n2 − 5n

72
What does this tell us? The simplest statement that we can make is what is known as Chebychev’s
Inequality. This says that if we have a quantity f (a random variable) which has mean µ and
standard deviation σ then

Pr(|f − µ| > kσ) <
1
k2

So, for example, the probability of f taking a value which is more than 4 standard deviations
from the mean is less than 1/16. (I should point out that Chebychev’s inequality tends to be
rather ‘pessimistic’ and that distributions are usually closer to the mean than it suggests.)

Consider some values calculated from the expressions that we have obtained for the Insertion
Sort timings.

n µ σ
20 95 15.4
50 612.5 59.8
100 247.5 168
500 62375 1866
1000 249750 5274

Table 2.1: Timing insertion sort

You can see that when n gets large σ becomes very small as a percentage of µ. This is
because µ behaves like n2 and σ like n3/2. This tells us that, for large values of n, the time taken
by insertion sort varies little, in percentage terms, from its mean value. For the case n = 1000,
using Chebychev and the obvious symmetry of the distribution, we can say that

Pr(t(π) < 200000) < 0.006

1You may find this quite hard. see Knuth (1998, Page 16) for the result, and techniques that help.
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In other words, we are dealing with a distribution that has a very sharp peak concentrated at
the mean and the timing for Insertion Sort should be very stable indeed. For large values of n
a deviation in the time of more than 10% from the mean should be a rare occurrence.

2.3 A better sort: Quicksort

Let me now introduce you to another sorting technique, which uses a recursive ‘divide and
conquer’ method. That is to say, it solves the problem of sorting a list by breaking the list
into two parts and then applying the algorithm to each part in turn and so on recursively.
There may or may not be some special technique used at the tail end of the recursion. Since
recursive functions (functions that refer to themselves) are not officially allowed in FORTRAN
these algorithms are more easily coded in other languages, like C or Pascal.

The idea here is very simple in its broad outline. We start with our list {x1, . . . , xn}. We
pick some element in the list, called the separator, and then rearrange the list so that all the
elements that are less than or equal to the separator come before it and all the elements that
are greater than the separator come after it. Having done this we then recursively apply the
algorithm to each of these sublists. The recursion continues along any branch until its sublist
shrinks down to zero or one element. (Actually it turns out to be a bit more efficient if we switch
over to Insertion Sort when the lists drop to a length below about 10.)

The outline of the program would be:

algorithm quicksort(x,lo,hi)
// to sort xlo, . . . , xhi

begin
if hi > lo begin // i.e. if there is anything to sort
choose separator s from list
separate out the list into the form
(xlo, . . . , xk, s , xk+2, . . . , xhi)
quicksort(x,lo,k)
quicksort(x,k+2,hi)

end
end

You then sort the whole list x1, . . . , xn by the call quicksort(x,1,n).
The only detail left to be explained is how we do the separation. There is no problem in

actually doing it. The problem is to make it efficient and to do it without introducing an extra
array for temporary storage. I will state the algorithm and leave it to you to convince yourself
that it works and does so in time proportional to the length of the list. The other problem is
which element to choose as separator. The basic criterion, as we will see, is that the separation
should be as even as possible. The obvious procedure of picking the first element can be a bit
dangerous if the list is already nearly in order. People sometimes choose the ‘middle’ element
and sometimes use a random number generator to pick an element at random. The choice does
not affect the method.

01 algorithm separate(x,lo,hi,sep)
02 // rearranges the list xlo, . . . , xhi either side of xsep.
03 begin
04 xsep = x(sep)
05 x(sep) = x(lo)
06 x(lo) = xsep
07 i = lo
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08 j = hi
09 while( i < j ) begin
10 while( x(j) > xsep ) j = j - 1
11 x(i) = x(j)
12 while( i < j and x(i) <= xsep ) i = i + 1
13 x(j) = x(i)
14 end
15 x(i) = xsep
16 end

The algorithm starts in lines 1 to 3 by moving x(sep) to the start of the list, where it acts as
a sentinel, ensuring that the while loop on line 10 necessarily terminates. It also makes available
the separating value against which we compare everything in a temporary variable. Pointer i
will always point to one after the top of the “low” list, while j will point to one before the “high”
list.

The first while loop on line 10 starts at the top of the list, and drops down until it finds
an element that is out of place. This is copied to its new position, effectively leaving a hole in
position j. The first time this copy happens, the value xsep in x(lo) is overwritten, but the
new value acts just as effectively as a sentinel. When the “increasing’ while loop on line 12 starts,
we have just put a “low” value in x(i), so we move up the list until we find a “high’ value. This
is copied to the available hole in position j on line 13, and the whole process restarts. Note that
each time other than the first that we enter the while loop on line 10, we have just put a “high”
element in position j, so j is reduced by at least one each time.

At each stage of the algorithm everything below i and above j is properly ordered. Clearly
i ≤ j, and the algorithm is complete when i = j, in which case we fill in the hole with the
separator, as in line 15. That leaves the problem of timing.

2.3.1 Timing the algorithm

Since the algorithm is recursive we expect to get a recurrence relation for the time taken. The
following argument is going to be a bit vague in its use of the word ‘average’ in order to keep
things simple. As usual we assume that the initial list is a permutation of {1, . . . , n} and that
all permutations are equally likely. Let Tn be the average time taken to quicksort n elements.

The sort consists of:

• doing the separation; and

• quicksorting the two sublists.

The above separation algorithm works in time proportional to n, say αn. Suppose the list
splits into sublists of lengths k and n − 1 − k; this leaves one left over for the separator. Then
on average

Tn = αn+ Tk + Tn−1−k

But we do not know the value of k in advance. All possible values are equally likely. So we take
the average over all the possibilities:

Tn = αn+
1
n

n−1∑
k=0

(Tk + Tn−1−k)

This simplifies at once (why?) to

Tn = αn+
2
n

n−1∑
k=0

Tk
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This is a ‘full-history’ recurrence, and the usual way to deal with such things is to get rid of the
history by elimination between two successive formulas. From the above

n

2
(Tn − αn) = T0 + · · ·+ Tn−1

n+ 1
2

(Tn+1 − α(n+ 1)) = T0 + · · ·+ Tn−1 + Tn

Subtract these and get, after a bit of rearranging,

Tn+1

n+ 2
=

Tn

n+ 1
+

α(2n+ 1)
(n+ 1)(n+ 2)

Let Sn = Tn/(n+ 1). Then

Sn+1 = Sn +
α(2n+ 1)

(n+ 1)(n+ 2)

Hence

Sn = S0 +
n−1∑
k=0

α(2k + 1)
(k + 1)(k + 2)

You get at the value of this sum by using partial fractions, just as you would if integrating. You
can check that

Sn = S0 + 3α
n−1∑
k=0

1
k + 2

− α

n−1∑
k=0

1
k + 1

,

= S0 + 3α(Hn+1 − 1)− αHn = S0 + 2αHn +
3α
n+ 1

− 3α.

So we have, going back to T

Tn = 2α(n+ 1)Hn + (S0 − 3α)(n+ 1) + 3α

This is a bit complicated, but remember that Hn ∼ lnn. So, for large values of n we can
reasonably say that

Tn ∝ n lnn

For large values of n this should be a huge improvement on the O(n2) time taken by our previous
algorithms. To give you some idea of the improvement, consider the values in Table 2.2

n n2 n lnn
10 100 23.0
50 2500 195.6

100 10000 460.5
500 250000 3107.3

1000 1000000 6907.8

Table 2.2: A comparison of n2 and n logn for different values of n.
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2.4 Merge Sort

There are a number of versions of this algorithm. I will present one which, though not the most
efficient, is reasonably easy to describe. The important thing is the basic concept.

Before starting on the sorting algorithm I must introduce the concept of the merging of two
ordered lists. This is simply the problem of taking two ordered lists and combining them into a
single ordered list. This could be done by just sticking the two lists together and then sorting
the result, but that is obviously stupid. We must make use of the fact that the two sublists are
initially in order. The process we use is really quite obvious. We start at the start of each list
and then ‘deal’ elements from each list into the new list one at a time, deciding at each step
which list to take the next element from. The only slight complication in the algorithm is that
we have to remember that one sublist may run out of elements before the other.

2.4.1 Merge Algorithm

This is an algorithm to merge the lists x1, . . . , xn and y1, . . . , ym into a single ordered list
z1, . . . , zn+m. The lists x and y are initially in order.

algorithm merge(x,n,y,m,z)
begin
xp = 1
yp = 1
zp = 1
while( xp <= n and yp <= m ) begin
if(x(xp) < y(yp) ) then begin

z(zp) = x(xp)
xp = xp + 1

else
z(zp) = y(yp)
yp = yp + 1

end
zp = zp + 1

end
if( xp > n ) then begin // x ran out first
for j = yp to m begin

z(zp) = y(j)
zp = zp + 1

end
end
if( yp > m ) then begin // y ran out first
for j = xp to n begin

z(zp) = x(j)
zp = zp + 1

end
end

end

In this algorithm xp, yp, zp point to the ‘current position’ in the x,y and z lists respectively.
If the current x-value is smaller than the current y-value we add the x-value to z and move up
xp. Otherwise we move the current y-value to z and move up yp. We then move up zp. This
carries on until one or other of the original lists dries up. We then copy the remainder of the
other list to z. The algorithm obviously works.
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The time taken by this algorithm to merge the two lists is roughly proportional to the sum
of the lengths of the two lists. This would be almost exact if both lists were exhausted at more
or less the same time. The algorithm runs a bit faster if there is a long tail left to copy at the
end.

2.4.2 Merge Sort

This is another ‘divide and conquer’ algorithm. We take our list and divide it in two at the
‘mid-point’. We then sort each half, using this algorithm recursively, and use the above merge
algorithm to combine the two halves into a single ordered list.

In outline:

algorithm mergesort(x)
begin

let x1 be first half of x
let x2 be second half of x
mergesort(x1)
mergesort(x2)
merge(x1,x2,x)

end

Let me now make this a bit more precise. It will be convenient to introduce a subroutine
with the following specification:

inmerge(x,i,j)
x1, . . . , xn is a list and 1 ≤ i < j ≤ n
let m = [(i+j)/2] // the middle
xi, . . . , xm are in order
xm+1, . . . , xj are in order
the algorithm returns x with xi, . . . , xj in order.

This is just a re-write of the above merge algorithm with the notation changed a bit. To keep
things simple you would probably need to introduce an extra ‘storage array’ to play the role of
z in that algorithm, and then copy z back into the appropriate part of x.

Now for the full algorithm. I have written it rather untidily. You could tidy it up as an
exercise.

algorithm mergesort(x,i,j)
// sorts into order the elements xi, . . . , xj of the list x]
begin

m = [(i+j)/2]
if j-i < 3 then sort the list crudely
else begin
mergesort(x,i,m)
mergesort(x,m+1,j)
inmerge(x,i,j)

end
end

The complete list is of course then sorted with a call to mergesort(x,1,n).
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2.4.3 Timing the Algorithm

As before we look for a recurrence relation. We will ignore the special case j − i < 3 which
occurs at the end of each branch. Let T (n) be the average time to sort n elements. The sort
consists of sorting two lists of ‘half’ the length and then combining them by a merge. So

T (n) = T (floor(n/2)) + T (ceiling(n/2)) + αn.

We have already studied this recurrence and have found that, roughly speaking,

T (n) ∝ n lnn

So this algorithm, like Quicksort, is an O(n lnn) sorting algorithm.

2.5 Timings for Various Sorting Algorithms

Each type of sort was given a set of M randomly chosen lists of integers (0 ≤ k ≤ 16383) for the
shown lengths n. The sorts were timed (in centiseconds per sort) using the following methods
and numbers of lists.

Label Method M
A Minimum Element Sort 200
B Insertion Sort 500
C Quicksort 500
D Mergesort 500

The timings are given in Table 2.3.

n Method A Method B Method C Method D
100 10.5 5.8 2.0 3.7
200 41.0 22.2 4.6 8.6
300 90.9 49.4 7.4 14.6
400 160.8 86.9 10.3 19.4
500 250.6 135.5 13.3 27.3
600 360.1 194.6 16.4 32.5
700 489.6 264.8 19.6 37.3
800 638.8 346.0 23.0 43.3
900 807.9 437.0 26.2 51.8

Table 2.3: A comparison of sort times using different sorting methods.

Empirical Formulas for the data in Table 2.3 are as follows, where T is in centiseconds:

A) T (n) ≈ 0.001n2

B) T (n) ≈ 0.00054n2

C) T (n) ≈ 0.00043n lnn
D) T (n) ≈ 0.00083n lnn

These data confirm the theoretical analysis of the order of the timing, and also give some idea
of the size of the contants of proportionality.
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2.6 Optimal Sorting

The obvious question that now arises is: can we do still better? Could we, with a bit of ingenuity,
devise a sorting technique that works in time which is faster than O(n lnn)? I want to present
an argument in this section that says that, under fairly broad assumptions, we cannot. O(n lnn)
is essentially optimal for sorting n items.

We can undoubtedly do better in certain situations, usually when we have some extra in-
formation available about the elements of the list. For example, if we knew that every element
of the list was one of the digits 0,1,. . . ,9 it would be easy to put together a sorting program that
worked in time O(n) (think about it).

But suppose that we are dealing with what are called comparison-only sorts where the only
question that we can ask of two elements in the list is: which of the two is the bigger? In this
case I hope to show you that we cannot do better than O(n lnn) even in principle.

I am actually going to study a slightly different problem, but its theory is equivalent to that
of optimal sorting. The problem has to do with the old game of Twenty Questions. I choose a
permutation π from Sn and you have to find out which one I have picked. You have to do this by
asking me questions. The only questions that you are allowed to ask are of the form: is element
i bigger than element j? The only answers I can give are yes or no. Can we find a lower limit
for the maximum number of questions that you will have to ask me in order to find out what π
is? That’s the problem that we are going to study.

Let’s consider the simple case of n = 3 first. A possible line of questioning could be the one
shown in the tree shown in Fig 2.2 — a decision tree.

1 < 2?

2 < 3?

Yes

1 2 3

Yes

1 < 3?

No

1 3 2

Yes

3 1 2

No

2 < 3?

No

1 < 3?

Yes

2 1 3

Yes

2 3 1

No
3 2 1

No

Figure 2.2: A decision tree for an element of S3.

Notice that, with this arrangement of the questions you could not guarantee to be able to
get the answer in fewer than 3 questions (though you might in some cases get it in 2). Could
we rearrange the questions so as to guarantee to get the answer in two questions? No we could
not, and we don’t have to work through all possibilities to decide this.

The point is that each possible permutation has to appear as a leaf on the tree (and, by the
logic of the tree, can only appear at one leaf). Now S3 has 3! = 6 elements, so any decision tree
for S3 must have precisely 6 leaves. You can easily check that every possible tree of depth 2 has
at most 4 leaves. 4 is less than 6 so we cannot possibly distinguish all 6 permutations with 2
questions.

Now consider the general case of Sn. This has n! elements, so a decision tree for Sn must
have n! leaves. You can easily convince yourself that a tree of depth d has at most 2d leaves on
it (the maximum for 3 questions was 8 leaves). So, if

2d < n! ≤ 2d+1

we know that we cannot possibly find all n! permutations in d questions though we may be able
to find them in d+ 1 questions (unlikely).
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So what does this say about the value of d? Take logs of all parts of the inequality and get

d ln 2 < lnn! ≤ (d+ 1) ln 2

or
d <

lnn!
ln 2

≤ d+ 1

So the minimum number of questions in which we can guarantee to be able to find any permuta-
tion is greater than

opt =
lnn!
ln 2

To make more sense of this we now use Stirling’s approximation

n! ≈
√

2πnnne−n

or, taking logs,

lnn! ≈ 1
2

ln(2π) +
1
2

lnn+ n lnn− n

It is easy to see from this that
opt = O(n lnn)

So O(n lnn) is the lower limit for the number of questions in which we can guarantee to be
able to find any permutation from Sn.

The same logic applies to comparison-only sorting — which is just another way of deciding
on the nature of a permutation. So we end up with the fact that it is logically impossible to
produce comparison-only sorts that work in time better than O(n lnn).

2.7 Optimal Merging

The earlier discussion of the algorithm for merging two files leads to the following problem. We
know that if we have two ordered files of lengths n and m respectively then they can be merged
into a single ordered file in time proportional to n+m.

340

190

90

50

30

10 20 20 40

100

50 50

150

70 80

Figure 2.3: Merging files of different sizes.

Now suppose we have a number of ordered files of lengths n1, n2, . . . , nk. We want to combine
them all into one big ordered file. We do it by combining files two at a time until they have all
been combined. The question is: in what order do we combine the files?

As a simple example, suppose we have three files of lengths 20, 30 and 40. Call them A, B
and C. If we combine A with B and then combine the result with C then the time taken is (up
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to a proportionality factor) (20 + 30) + (50 + 40) = 140. If, instead, we first combine B and C
and combine the result with A the time taken is (30+50)+(80+20) = 180 which is significantly
slower.

There is a very simple algorithm which tells you how to combine the files in a way that is as
efficient as possible:

Algorithm: Of all the files available for combining at any stage, combine the two smallest
(or two of the smallest if there is a choice).

As an illustration, suppose we have files x1, x2, x3, . . . , x8 of sizes 10, 20, 20, 40, 50, 50, 70,
80. The tree diagram in Fig. 2.3 shows the sequence in which these files should be combined.

2.7.1 Some Example Sort Implementations

As with the Euclidean Algorithm, another way to learn how a sort algorithm behaves is to watch
it working. An implementation of a number of sorting algorithms in the Java language is
available in the hypertext version of this document, enabling you to do this.
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Questions 2 (Hints and solutions start on page 90.)

Q 2.1. Just to check that you understand the basic notations, let

π1 =
(

1 2 3 4 5 6
4 3 1 5 2 6

)
, π2 =

(
1 2 3 4 5 6
6 5 4 3 2 1

)

be permutations in S6. Work out π1π2, π2π1, π−1
1 π2π1, π3

1 . Decompose π1 and π2 as products
of disjoint cycles.

Show that the inverse of a cycle is a cycle. What is the inverse of 〈a1, a2, . . . , ak〉?

Q 2.2. Suppose that a permutation π ∈ Sn decomposes into a product of disjoint cycles as

π = σ1σ2 . . . σk.

Find the smallest positive integer m such that πm = id ( the order of π) in terms of the lengths
of the sigmas.

Q 2.3. If we have a pack of 16 cards then the effect of a split-and-interleave shuffle is one of the
following permutations, depending on which ‘hand’ is uppermost.

π1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16

)

π2 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8

)
Break each permutation into a product of disjoint cycles and then find the smallest positive
integers n,m such that πn

1 = id and πm
2 = id. (If you’ve got paper and patience you can do the

same for a pack of 52 cards.)

Q 2.4. Bearing all this stuff about decompositions in mind, what permutations in S10 have
the highest degree, and what is that degree? (Once more: the degree of a permutation is the
smallest positive integer n such that πn = id, where id is the ‘identity permutation’ that changes
nothing.)

What are the permutations of highest order in S20? Please don’t check through all 20! =
2, 432, 902, 008, 176, 640, 000 cases!

Q 2.5. In the following parts I want you to write an algorithm to perform the desired calculation.
At the least, sketch out the way in which such an algorithm would operate. At the most, if
enthusiastic, write an actual program in some language.

Let us adopt the convention that a permutation is represented by an array (a1, a2, . . . , ak),
standing for the permutation

π =
(

1 2 . . . k
a1 a2 . . . ak

)
1. Given two permutations π1 and π2, calculate their product;

2. calculate the inverse of a permutation; and

3. decompose a permutation into a product of disjoint cycles.

You will need to decide on a useful form for the ‘output’.

Q 2.6. Work through each sorting algorithm carefully for each of the following lists — pretend
to be a computer.
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5,4,6,8,2,1,3,9,0,7
0,1,2,3,4,5,6
6,5,4,3,2,1,0
1,1,1,2,2,2,2

Q 2.7. If, in Quicksort, we choose the first element of each sublist as separator at each stage
then the very worst case of the algorithm comes when you present it with a list that is already
in order!

In this case the algorithm achieves as little dividing and conquering as possible. If T (n) is
the running time for this case and the separation time is αn, show that T (n) = αn + T (n− 1)
and deduce that T (n) = O(n2).

Q 2.8. Which of the sorting algorithms are stable? Recall the definition of stable: We have a list
of elements x1, . . . , xn. They may all be different but some are the same as far as the inequality
is concerned (e.g. the elements may be pairs of numbers xi = (a, b) and we may be putting
them into order according to the first element). Suppose that xi and xj are equal as far as the
inequality is concerned. Then the sort is stable if it preserves the order in which xi and xj came
in the list.

Q 2.9. Before looking at the notes, which contain the answer, try to think up an algorithm
for merging two ordered list into a single ordered list. You are given lists (x1, . . . , xn) and
(y1, . . . , ym) both of which are in increasing order and you want to put them together into a list
(z1, . . . , zn+m) which is also in increasing order. Your method should not take time worse than
O(n+m) (it should be roughly proportional to n+m). When you have done this compare your
result with the version in the notes.

Can you adapt the algorithm so that it finds the union of the two lists x∪ y ? — i.e. there
are to be no repeated elements in z.

Q 2.10. Suppose we want to sort a list (x1, . . . , xn) into order. If we use Insertion Sort it will
take time roughly proportional to n2. Suppose that we do the following instead: first split the list
into two halves, then apply insertion sort to each half, then merge the results by the algorithm
of the previous question. Show that this should lead to a faster sorting routine if n is reasonably
large. What about subdividing the list into a larger number of sublists?

Suppose that you don’t split the list into two halves but just divide it randomly into two
parts before starting the above process. Are you likely to get much of an advantage over direct
Insertion Sort or does this depend on the split being almost exactly half way?

Q 2.11. Write a careful algorithm to decide the alphabetical order of two words. To be more
precise: define a function ord(a,b) which, given the strings of letters a and b returns 1 if a
is alphabetically before b, 0 if they are equal and −1 if b is alphabetically before a. You may
assume that the end of each word is marked in the string by the ‘letter’ ε.

Q 2.12. We have been working with recursive programs, so let’s look at recursive functions.
Let P (n) be the number of ways of decomposing n as a sum of positive integers, ignoring

order.
e.g.4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1soP (4) = 5

P is a surprisingly important function. It would be nice if we could calulate its values without
having to write down all possible decompositions.

The easiest approach is to define a function Q(n,m) which gives the number of ways of
decomposing n using no numbers bigger thanm. For exampleQ(4, 1) = 1, Q(4, 2) = 3, Q(4, 3) =
4 . Obviously P (n) = Q(n, n).
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I am now going to give you a recursive definition of Q. I want you to show that it is correct
in the following two senses: (1) starting with any (n,m) (n,m ≥ 1) it allows us to find Q(n,m),
and (2) the answer you get is correct.

The following are meant to be applied in order:

1. Q(1,m) = 1 if m ≥ 1

2. Q(n, 1) = 1 if n ≥ 1

3. Q(n,m) = Q(n, n) if m ≥ n ≥ 1

4. Q(n, n) = Q(n, n− 1) + 1 if n ≥ 2

5. Q(n,m) = Q(n,m− 1) +Q(n−m,m)

The usual problem you run into with such definitions is that it is possible to get trapped into
an infinite loop from which there is no escape.

Whilst you are at it, work out a few values of P (n).
Another famous recursive function is Ackerman’s function. This was designed to be a nuis-

ance. The function A(n,m) is defined as follows:

1. A(0,m) = m+ 1

2. A(n, 0) = A(n− 1, 1)

3. A(n,m) = A(n− 1, A(n,m− 1))

Work out A(3, 2). Roughly how many digits has A(4, 2)? If you had to write out A(4, 4) would
the forests of Sweden be sufficient, or would you have to use up the Amazon basin as well?

Q 2.13. In case you found the timing argument for insertion sort a bit too glib, try the following
alternative:

Let π ∈ Sn be a permutation of {1, . . . , n}. Think of π as a (shuffled) list. For i = 1, . . . , n
let mπ(i) be the number of elements in the list π that are to the right of i and are less than it.

ifπ = (42153) ∈ S5thenmπ(1) = 0, mπ(2) = 1, mπ(3) = 0etc

Why is mπ(1)+ · · ·+mπ(n) equal to the number of ‘moves’ that need to be made in the insertion
sort of π ∈ Sn?

Show that 0 ≤ mπ(i) ≤ i− 1fori = 1, . . . , n.

LetPn = {(m1, . . . ,mn) ∈ Zn : 0 ≤ mi ≤ i− 1 i = 1, . . . , n}

We have a mapping ψ : Sn → Pn given by ψ(π) = mπ.
(1) Show that |Pn| = n! = |Sn|.
(2) We now want to prove that ψ is a bijection. Since both sets have the same number of
elements it is sufficient to prove that ψ is onto. So we have to prove that, given m ∈ Pn, we can
find π ∈ Sn such that ψ(π) = m.

Show how to reconstruct (4, 2, 1, 5, 3) from m = (0, 1, 0, 3, 1).
What perm π ∈ Sn produces m = (0, 0, 1, 2, 0, 4, 1, 4, 6)?
Can you now give a rough argument to show that ψ is onto?

For π ∈ Sn let

ρ(π) =
n∑

i=1

mπ(i)
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— the total number of ‘moves’ in the insertion sort of π. Then the average number of moves for
all π ∈ Sn is

av =
1
n!

∑
π∈Sn

ρ(π)

=
1
n!

∑
m∈Pn

(
n∑

i=1

mi

)
why?

=
1
n!

n∑
i=1

∑
m∈Pn

mi

What is
∑
mi over m ∈ Pn? (Work out some simple examples.) Now calculate av.

Q 2.14. a) Describe the “Quicksort” algorithm for sorting a list and give pseudo-code for a
routine

quicksort(x,lo,hi)

which sorts the sublist xlo, . . . , xhi of the list x. You may assume that the routine separate(x,lo,hi,sep),
in which a list is separated into two sublists based on the separator sep, is available. Illustrate
your answer by “quicksorting” the list

6 4 8 2 11 5 3 7 9 1 10

[When making a “random” choice from a list, choose the item that occurs in the first position,
so a “random” choice from [2, 1, 3] would be 2.]

b) Let Tn be the average time taken to quicksort a list of n elements. Assuming that the
separation algorithm applied to a list of length n takes time αn, derive the recurrence relation

Tn = αn+
2
n

n−1∑
k=0

Tk,

explaining what other simplifying assumptions have been made. Hence show that

1
n+ 1

Tn = T0 +
n−1∑
k=0

α(2k + 1)
(k + 1)(k + 2)

.

c) How does Quicksort compare with insertion sort and Heapsort?
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Abstract Data Types

3.1 Introduction

One of the simplifications made in modern abstract algebra is the identification of appropriate
structures in which to consider different problems. Thus for example Galois theory is most
natural expressed working over a field, while the study of the abstract Euclidean algorithm is
done in an integral domain. Each is a type of ring with additional structure, and each has
the properties in common to all (commutative) rings. The gain is often suggested to be one of
generality — that as soon as you know something is an integral domain, then you can use all
the available results. But another gain is that the set of allowed operations is constrained. Thus
there is no point in thinking about dividing in an integral domain, because the concept is not
available, even though in a practical example of an integral domain, such as Z, given n ∈ Z, the
inverse, 1/n is perfectly well defined.

A similar abstraction is useful when considering algorithms. It forces attention on the under-
lying structure, and disallows ad-hoc manipulations. The abstraction is known as an Abstract
Data Type or (sometimes, for brevity) ADT. And like the abstract structures of algebra, an un-
derstanding of their utility can only follow a set of definitions, and simple examples to illustrate
that the structures occur frequently in practice.

As a first example consider a restricted class of integers, say {n ∈ Z : 0 ≤ n ≤ 100000000}.
There are some situations when it would be helpful to have a name for such a class. And it
may be helpful to name an object of this type as annualSalaryInPence. The set of allowed
operations can then be sensibly restricted. Thus while it makes sense to compute 1000000− 25,
doing arithmetical operations with an item of type AnnualSalaryInPence and an item of type
AgeInYears is likely to be nonsense.1

We next consider some Abstract Data Types.

3.1.1 The ADT Stack

A stack is a collection of elements or items, for which the following operations are defined:

create(S) creates an empty stack S;

isEmpty(S) is a predicate 2 that returns “true” if S exists and is empty, and “false” otherwise;

push(S,item) adds the given item to the stack S3 ; and
1Conventionally the class name is often written SomeClass, with an item of type SomeClass being given the

name someClass.
2A predicate is a function which only takes the values “true” or “false.”
3Here and elsewhere, we will assume that “all items are equivalent”. In some computer languages this is valid,

but with others (eg C++) which have strong forms of type checking, an attempt to put a real number into a
stack of integers would be a compile time error.

37
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pop(S) removes the most recently added item from the stack S and returns it as the value of
the function;

The primitive isempty is needed to avoid calling pop on an empty stack, which should cause
an error. In the real world, the push primitive should return an error when the stack is “full”
and so no more items can be added. We ignore such complications here. An additional operation
is sometimes defined, called top(S) which simply returns the last item to be added to the stack,
without removing it. Show that this can be done in terms of the primitive operations described
above.

The word “stack” is chosen by analogy with a stack of plates, where the last one placed on
the top of the stack is usually the first one to be used. Thus a stack implements a “last in first
out” ordering on a set of items.

3.1.2 The ADT Queue

A queue is a collection of elements, or items, for which the following operations are defined:

create(Q) creates an empty queue Q;

isEmpty(Q) is a predicate that returns “true” if Q exists and is empty, and “false” otherwise;

add(Q,item) adds the given item to the queue Q; and

next(Q) removes from the queue Q the least recently added item that remains in the queue,
and returns it as the value of the function;

The primitive isempty(Q) is needed to avoid calling next on an empty queue, which should
cause an error. As for a stack, we ignore the situation when the queue is “full”; a finite queue,
in which the length is actually fixed by the problem, is a different structure.

The word “queue” is thus like the queue at a counter for service, in which customers are
dealt with in the order in which they arrive.

An important point about Abstract Data Types; is that they describe properties of a structure
without specifying an implementation in any way. Thus an algorithm which works with a
“queue” data structure will work however it is implemented. The implementation suggested in
Exercise. 3.1 may not be efficient, but the efficiency of an implementation can be separated from
the details of the algorithm. We discuss below different ways in which stacks and queues can be
implemented efficiently.

3.1.3 The ADT Array

An array is probably the most versatile or fundamental Abstract Data Type, left until now
simply to show it was reasonable to consider others. An array is a finite sequence of storage
cells, for which the following operations are defined:

create(A,N) creates an array A with storage for N items;

A[i]=item stores item in the ith position in the array A; and

A[i] returns the value of the item stored in the ith position in the array A.

Of course an array is another way of looking at a vector; the emphasis here is on the functions
that create and access it. It is a matter of convenience how the array cells should be labelled.
When it is necessary to be precise, we assume they are labelled A[0], . . . , A[N − 1], as is the
convention in eg C++, but the “more obvious” convention using A[1], . . . , A[N ] is equally valid.
It is important to stick with one convention or the other. Whatever FORTRAN or C may tell
you, we regard accessing A[i] as an error if a value has not previously been assigned to it!

The data storage in most computers can be regarded as an array, so in practice it provides
the ultimate implementation for most of our other Abstract Data Types



3.1. INTRODUCTION 39

Example 3.1. An array can be used to implement a stack.
Solution We implement a stack using an array of size N . The construction will fail if an attempt
is made to push more than N elements onto the stack.

The create(S) operation is trivial. An array A is created, and associated with the stack S.
In addition, an internal pointer or cursor p say, is initialised to point to the first cell in A. To be
definite, we take this as 0;

isEmpty(S) is true iff p = 0
push(S,item) is implemented as A[p] = item; p = p+1 and
pop(S) is implemented as return(A[p]); p = p-1
Of course there should be additional error checking for safety, to avoid problems if the capacity

of array is exceeded.
It is clear at this stage that a stack is a relatively simple structure; we have just implemented

it as an array in which the read-write pointer only moves one step between successive calls.

Example 3.2 (The three-coloured flags). You are given an array of length N , each of whose N
members is either a red, white or blue token. the aim is to re-arrange the tokens in such a way
that all the blue tokens appear before the white ones, and that all the red tokens appear last.
The following tools are available:

• predicates B(i), W(i) and R(i) which return true if and only if token i is respectively
blue, white and red; and

• an operation swap(i,j) which interchanges the tokens in positions i and j; the case i = j
is not excluded.

Each of the predicates may only be calculated one for each token. The aim is to accomplish the
re-arrangement with the minimum number of calls to the swap operation.
Solution Our aim is to sort the tokens so that the known blue area B comes before the known
white area W , and so that both of these come before the known red area R. In a general state
we will have an area X of tokens of unknown colour which follows W and precedes R. Initially
each of B, W and R is empty and X consists of the whole array. We use three variables to keep
track of the current state of the array. Let b and w point to the tokens which come immediately
after the blue and white areas respectively, and let r point to the token that comes immediately
before the red area.

B W X

b w r

R

Figure 3.1: Sorting the array of flags

An intermediate state during the sorting of the array is shown in Fig. 3.1. Consider the
following algorithm:-

b = w = 1;r = N;
while (w < r + 1) begin
if (W(w)) w = w+1 // it was a white token
else if (B(w)) begin // it was a blue token
swap(w,b);b=b+1;w=w+1
end

else begin // it was a red token
swap(r,w);r = r-1

end
end // while
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To see that the algorithm is finite, note that at each stage either w is increased or r is
decreased. Thus the length |X | of the region X , which is r + 1 − w decreases each time, while
the “sorted’ condition; that

B < W < X < R (3.1)

remains true. Since the algorithm terminates when the length of X becomes 0, we finish with a
sorted list. We have seen that the loop is executed N times, and that there are |B| + |R| calls
to the routine swap.

3.1.4 The ADT List

A (linked) list is another fundamental data type, which can be considered almost as basic as the
array. Just as eg FORTRAN regards the array as central, so the language lisp takes the list
as the object in terms of which everything else is described.4 If you want to take a closer look,
try (Winston & Horn 1989) or (Wilensky 1986).

An list is a finite sequence of storage cells, for which the following operations are defined:

create(l) creates an empty list l;

insert(item,i,list) changes the list from the form (a1, . . . , ai−1, ai, . . . an) by inserting item
between aa−1 and ai; it is an error to call this unless list has at least i− 1 items before
the call.

delete(i,list) deletes the item at position i from the list, returning list containing one
fewer item; and

read(i,list) returns the item at position i in the list, without changing the list.

Note what is missing; it is easy (at least based on the assumption that the operations specified
are quick) to traverse the list in the order it was created; but going “backwards” along the list
may be hard. It is often convenient to speak of the first item as the head of the list, and the
remainder of the list as the tail.

Example 3.3. Show how to implement a stack in terms of the Abstract Data Type list.

Solution This is clear; push simply adds the item to the head of the list, while pop returns the
head of the list, and replaces the list by its tail.

There is an obvious implementation of a list in terms of an array; simply treat the list as
a stack. However the additional operations, particularly those involved in inserting elements in
the middle of the list, involve a great deal of copying. An alternative implementation is in terms
of pairs, one member of which contains the item, while the other member points to the next pair
in the list. A special pointer indicates that the list has come to an end. Such an arrangement
is represented diagrammatically in Fig 3.2, which shows a list of five elements. The first pointer
(ie the one pointing to “value1”) can the be stored as the list.

value1 value2 value3 value4 value5 0

Figure 3.2: A list implemented using cells and pointers.

Surgery on such a list is then a simple matter of altering a few pointer values. Such surgery
is shown in Fig 3.3. A common feature of list implementations is shown there in the hanging

4The name is an abbreviation of list processing language, and is not an acronym for “lots of irrelevent stupid
parentheses, as some who have tried to read it suggest. My own feeling is that lisp is so regular that it is likely
to appeal to mathematicians.
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pointer attached to “value3”. It could be considered as a list in its own right, with the pointer
still pointing to “value4”. However it is usually difficult to tell this just by examining the pair
itself, and the surgery shown might well have marooned this storage; it appears to be used, but
nothing refers to it. In this circumstance, it is known as “garbage”, and a specialised program
known as a “garbage collector” is often used to recover such storage.

value2value1 value3 value5 0value4

value6

Figure 3.3: The same list after an addition and a deletion.

We shall not make a great deal of use of lists; but you should be aware that they form a real
alternative to an array as a primitive Abstract Data Type, indeed computers have been built on
this premise.

3.1.5 The ADT Priority Queue

A priority queue is a collection of elements or items, each of which has an associated priority.
The operations available are:-

create creates an empty priority queue;

add(item) adds the given item to the priority queue; and

remove removes the item with the highest priority from the queue and returns it as the value
of the function.

Thus, unlike a queue, this is not a simple “first in — first out” structure. We take up the
question below of whether it can be implemented simply; for the present, it is here to show there
are Abstract Data Types which can be described easily, but which do not have an “obvious”
quick implementation.

3.2 Trees

We have already seen examples of trees used in the work on sorting in Section 2. There are
many flavours of trees; in this section we characterise them as Abstract Data Types and look at
some of their uses.

3.2.1 The ADT tree

A tree is a finite set of elements or nodes. If the set is non-empty, one of the nodes is distin-
guished as the root node, while the remaining (possibly empty) set of nodes are grouped into
subsets, each of which is itself a tree. This hierarchical relationship is described by referring to
each such subtree as a child of the root, while the root is referred to as the parent of each
subtree. If a tree consists of a single node, that node is called a leaf node.

It is a notational convenience to allow an empty tree. It is usual to represent a tree using
a picture such as Fig. 3.4, in which the root node is A, and there are three subtrees rooted at
B, C and D. The root of the subtree D is a leaf node, as are the remaining nodes, E, F , G, H
and I. The node C has a single child I, while each of E, F , G and H have the same parent B.
The subtrees rooted at a given node are taken to be ordered, so the tree in Fig. 3.4 is different
from the one in which nodes E and F are interchanged. Thus it makes sense to say that the
first subtree at A has 4 leaf nodes.
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A

B

E F G H

C

I

D

Figure 3.4: A simple tree.

Example 3.4. Show how to implement the Abstract Data Type tree using lists.

Solution We write [A B C] for the list containing three elements, and distinguish A from [A].
We can represent a tree as a list consisting of the root and a list of the subtrees in order. Thus
the list-based representation of the tree in Fig 3.4 is

[A [[B [[E] [F] [G] [H]]] [C [I]] [D]]].

Note that for example we confuse [D] with [D []], which we should write to be strictly cor-
rect, since D has an empty set of subtrees. To give an idea of how common the list representation
is, my editor was happily matching brackets as I typed the above; in other words, when I typed
the last “]”, the cursor moved to the “[” before “A” to show the balancing bracket.

3.2.2 Traversals

It is often convenient to a single list containing all the nodes in a tree. This list may correspond
to an order in which the nodes should be visited when the tree is being searched. We define three
such lists here, the preorder, postorder and inorder traversals of the tree. The definitions
themselves are recursive:

• if T is the empty tree, then the empty list is the preorder, the inorder and the postorder
traversal associated with T ;

• if T = [N ] consists of a single node, the list [N ] is the preorder, the inorder and the
postorder traversal associated with T ;

• otherwise, T contains a root node n, and subtrees T1, . . . , Tn: and

– the preorder traversal of the nodes of T is the list containing N , followed, in order by
the preorder traversals of T1 . . . , Tn;

– the inorder traversal of the nodes of T is the list containing the inorder traversal of
T1 followed by N followed in order by the inorder traversal of each of T2, . . . , Tn.

– the postorder traversal of the nodes of T is the list containing in order the postorder
traversal of each of T1, . . . , Tn, followed by N .

3.2.3 Binary Trees

A binary tree is a tree which is either empty, or one in which every node:

• has no children; or

• has just a left child; or

• has just a right child; or

• has both a left and a right child.
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We have already seen examples of binary trees; both Fig 2.2 considered in the discussion of
optimal sorting, and Fig 2.3 on Page 31 which was used to illustrate the process of optimal
merging, are binary trees, although in each case, the situation in which a node can have just
one child does not occur. Note also that this is rather different from an ordered tree, since for
a binary tree we distinguish between a node with a single left child, and one with a single right
child. An alternative definition, which is “cleaner” is to first introduce the concept of a terminal,
or “null” node, which has no children, and then define a binary tree to be one in which every
node other than the null node has precisely two children.

A complete binary tree is a special case of a binary tree, in which all the levels, except
perhaps the last, are full; while on the last level, any missing nodes are to the right of all the
nodes that are present. An example is shown in Fig. 3.5.

A

B

D
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C

F

M

G

Figure 3.5: A complete binary tree: the only “missing” entries can be on the last row.

Example 3.5. Give a space - efficient implementation of a complete binary tree in terms of an
array A. Describe how to pass from a parent to its two children, and vice-versa

Solution An obvious one, in which no space is wasted, stores the root of the tree in A[1]; the
two children in A[2] and A[3], the next generation at A[4] up to A[7] and so on. An element
A[k] has children at A[2k] and A[2k+1], providing they both exists, while the parent of node
A[k] is at A[k div 2]. Thus traversing the tree can be done very efficiently.

3.2.4 Huffman Codes

We discuss here an example in which the binary tree structure is of value. Consider the problem
of coding (in binary) a message consisting of a string of characters. This is routinely done in a
computer system; the code used almost universally at present is known as ASCII5, and allocates
8 bits to store each character. Thus A is represented using decimal 65, or 01000001 in binary etc.
A more modern one which allows a much wider range of languages to be represented is Unicode,
which allocates 16 bits to each character. This is used for example by the language Java, and
is an extension of ASCII in that any ASCII character can be converted to Unicode by prefixing
it with the zero byte. Although these codes are simple, there are obvious inefficiencies; clearly
Unicode wastes at least half of the available space when storing plain ASCII.

Another source of inefficiency may lie in using the same number of bits to represent a common
letter, like “e” as to represent “q” which occurs much less frequently. What if we permit character
codes to have a variable length? An apparent difficulty is the need to have a neutral separator
character to indicate the end of one character code, and so delimit it from the next. Say a code
has the prefix property if no character code is the prefix, or start of the the code for another
character. Clearly a code with the prefix property avoids this need to have additional separators,
while permitting variable lengths. An obvious question is:

5American Standard Code for Information Interchange
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• do codes with the prefix property exist; and if so

• is there a “best” one to use?

In Table 3.1 we give an example of such a prefix code for a small alphabet, and contrast it
with a simple fixed length code. It is clear that there are savings in this case which make it worth
going further. We will see shortly why the example has the prefix property; in the meantime
check that the string “0000100111” in Code 2 decodes uniquely as “acbd”.

Symbol Code 1 Code 2
a 001 000
b 001 11
c 010 01
d 011 001
e 100 10

Table 3.1: Code 1 has fixed length code; Code 2 has the prefix property.

Consider now a binary tree, in which each leaf node is labelled with a symbol. We can assign
a binary code to each symbol as follows: associate “0” with the path from a node to its left child,
and “1” with the corresponding path to the right child. The code for a symbol is obtained by
following the path from the root to the leaf node containing that symbol. The code necessarily
has the prefix property; the tree property means that a leaf node cannot appear on a path to
another leaf. Conversely it is clear how to associate a binary tree with a binary code having the
prefix property; the code describes the shape of the tree down to the leaf associated with each
symbol.

Of course a fixed length code necessarily has the prefix property. We show in Fig. 3.6 the
binary trees corresponding to the two codes given in Table 3.1, thus incidentally demonstrating
that the variable length code in the example does have the prefix property.
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Figure 3.6: Binary trees representing the codes in Table 3.1

We now describe how to build the binary Huffman code for a given message. This code has
the prefix property, and in a fairly useful sense turns out to be the best such code. We describe
the code by building the corresponding binary tree. We start by analysing the message to find
the frequencies of each symbol that occurs in it. Our basic strategy will be to assign short codes
to symbols that occur frequently, while still insisting that the code has the prefix property. Our
example will be build around the message

A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS
6

The corresponding frequencies are given in Table 3.2; note that in this case, we choose to include
the space symbol “ ”, written in the table as  .

6This idea is used frequently in (Sedgwick 1995) to illustrate algorithms.
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Now begin with a collection (a forest) of very simple trees, one for each symbol to be coded,
with each consisting of a single node, labelled by that symbol, and the frequency with which it
occurs in the string. The construction is recursive: at each stage the two trees which account
for the least total frequency in their root nodes are selected, and used to produce a new binary
tree. This has, as its children the two trees just chosen: the root is then labelled with the total
frequency accounted for by both subtrees, and the original subtrees are removed from the forest.
The construction continues in this way until only one tree remains; that is then the Huffman
encoding tree.7
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Figure 3.7: The Huffman encoding tree for the string “A SIMPLE STRING TO BE ENCODED
USING A MINIMAL NUMBER OF BITS”.

The resulting Huffman encoding tree for our example string is shown in Fig 3.7. By con-
struction, the symbols only occur at leaf nodes, and so the corresponding code has the prefix
property. In the diagram, these leaf nodes still carry the frequencies used in their construction;
formally once the tree has been built, the symbols which are shown below the leaves should re-
place the frequencies at the nodes. The right-most node is the symbol  . As already described,
the character encoding is the read by traversing from the root to each leaf, recording “0” if the
left hand branch is traversed, and “1” if the right hand one is taken. Thus “S” is encoded as
“0100”, while  is “11” and “C” is “000110”.

Definition 3.6. Let T be a tree with weigths w1, . . . wn at its leaf nodes. The weighted leaf
path length L(T ) of T is

L(T ) =
∑

i∈leaf(T )

liwi (3.2)

where li is the path length; the length of the path from the root to node i.
7There are choices involved, so the Huffman tree is certainly not unique. It is thus more accurate to speak

about a Huffmann tree; we shall do this in future.

I A B D M E O C F G S T L R N P U  
6 3 3 2 4 5 3 1 1 2 4 3 2 2 5 1 2 11

Table 3.2: Symbol frequencies used to build a Huffman Code.
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We are interested in the case when the tree is an encoding tree and the weights are the
frequency of occurrence of the symbols associated with the leaf nodes. In that case L(T ) is the
length of the message after encoding, since at node i, the character occurs a total of wi times,
and requires li bits to encode it. We now show that a Huffman encoding tree gives the best
encoding. Say that a binary tree T is optimal if L(T ) has its minimum value over all possible
trees with the same set of leaf nodes.

Theorem 3.7. A Huffman tree is optimal.

Proof. We start with an apparently simple result.
Lemma 3.8. Suppose that nodes with weights wi and wj satisfy wi < wj . Then in an optimal
tree the corresponding path lengths li and lj satisfy lj ≤ li.

Proof. This is just the assertion that nodes that occur infrequently have long codes. Suppose
we have a tree T associated with a given set of nodes having weights {wk}, and that for some
pair i, j, we have wi < wj but li < lj . Then

(wj − wi)(lj − li) > 0 and so wj lj + wili > wj li + wilj .

Consider now the effect on the weighted leaf path length L(T ) of interchanging the weights on
nodes i and j. The new weighted leaf path length is

L(T )− (wj lj + wili) + (wj li + wilj) < L(T ).

Thus T was not optimal, since the new tree has a smaller weighted leaf path length.

Lemma 3.9. Suppose that nodes in an optimal tree have weights wi labelled so that w1 ≤
w2 ≤ · · · ≤ wn. Then by relabelling if necessary subject to this constraint, we can also have
l1 ≥ l2 ≥ · · · ≥ ln.

Proof. Suppose conversely that i < j but li < lj . Since i < j, we have wi ≤ wj . However if
wi < wj , then by Lemma 3.8 we have lj ≤ li since we are assuming the tree is optimal. But
lj > li, showing that we must have wi = wj . There is thus no loss if we interchange the labels
i and j. We can continue to do this until we achieve the required consistent labelling of the
corresponding node lengths.

We can now show that a Huffman tree is optimal. This argument was adapted from Gersting
(1993, Page 402). We establish the result by induction on the number n of leaf nodes in the
tree. The result is clear for n = 1.

Next note that in any optimal binary tree, there are no nodes with single children — replacing
the child by the parent produces a shorter weighted external path length.

Consider now a set of n+ 1 weights wi with n+ 1 ≥ 2, which by Lemma 3.9 we suppose to
be ordered such that w1 ≤ w2 ≤ . . . ≤ wn+1 in such a way that the corresponding paths lengths
satisfy l1 ≥ l2 ≥ · · · ≥ ln. Let Tn+1 be an optimal tree for these weights with weighted leaf path
length L(Tn+1). By our choice of labelling w1 occurs on the longest path, as does its sibling wj ;
since they are siblings, l1 = lj . Since li ≥ l2 ≥ lj , we have l1 = l2. Thus the new tree T ′n+1

obtained by interchanging nodes 2 and j have the same weighted external path length.
Next construct a new tree Tn with a new “leaf” node w = w1 +w2 by combining w1 and w2

from T ′n+1 to give a tree with n leaf nodes. Let Hn be a Huffman tree on these nodes, and note
that, by construction the tree obtained by replacing the single node w in Hn by the nodes w1 and
w2, the two smallest weights, is a Huffman tree Hn+1. By induction, we have L(Tn) ≥ L(Hn),
since they have the same leaf nodes. We now calculate:

L(Tn) + w1 + w2 = L(Tn+1) and H(Tn) + w1 + w2 = H(Tn+1).

Thus L(Tn+1) ≥ L(Hn+1). But Tn+1 was optimal, so this inequality is an equality and Hn+1 is
optimal, as required.
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Remark 3.10. The above proof has to be done a little carefully. The (complete) binary tree
having nodes with weights 1, 3, 2 and 2 is not a Huffman tree, but is optimal; however inter-
changing the second and third nodes does not affect the weighted leaf path length and does give
a Huffman Tree. In the proof, this interchage is the step of creating T ′n+1 from Tn+1

A little more can be said, centred round the need to have the coding tree available when
decoding. Of course, for “general purpose” language, the letter frequencies are well known, and
could be assumed. In general, the need to transmit the coding tree as well as the message reduces
the effectiveness of the method a little. And it can be impractical to preprocess a message to
get the exact frequencies of the symbols before any of the message is transmitted. There is a
variant however, called adaptive Huffman coding, in which the frequencies are assumed initially
to be all the same, and then adjusted in the light of the message being coded to reflect the
actual frequencies. Since the decoder has access to the same information as the encoder, it can
be arranged that the decoder changes coding trees at the same point as the encoder does; thus
they keep in step. One way to do that is to introduce extra “control” symbols to the alphabet,
and use these to pass such information.

Modern coding schemes such as zip (or gzip or pkzip) are based on these ideas.

3.3 Heapsort

So far we have argued that algorithms can often be best expressed in terms of an Abstract Data
Type; in this section we reveres the process, and show how, thinking in terms of an ADT can
give an algorithm. Implementing the algorithm is then the same as implementing the Abstract
Data Type. Our problem is again one of sorting, but this time we base the algorithm on the
priority queue of Section 3.1.5. Since we are sorting we have a natural priority associated with
each item, namely the value that determines its sort order.8 The algorithm is then trivial: we
add elements as they are given to the priority queue, and when the queue is full, simply retrieve
them in order.

Of course this begs many questions; certainly we can’t get a useful algorithm without dis-
cussing an implementation. We thus chose a representation of a priority queue as a complete
binary tree (Section 3.2.3) in which each node contains an element and its associated key or
priority. In addition, we assume that these keys satisfy the heap condition, that:

at each node, the associated key is larger than the keys associated with either child
of that node.

Note that the node with the highest priority is necessarily at the root of the tree, thus we
can clearly represent a one element priority queue in this way. We now show that the required
operations of addition and removal can be done in such a way that the heap condition is still
satisfied. Rather than give formal definitions of the operations, we illustrate them with an
example, so consider a priority queue whose keys are the letters from the string “A SORTING
EXAMP”. We associate a priority with alphabetical order, with letters at the end of the alphabet
being given the highest priority. The corresponding tree is drawn with each key used to label
the associated node. Assume for the moment that Fig. 3.8, without the letter “P” represents
an intermediate stage in the construction; you can certainly check that it satisfies the heap
condition, and consider the situation when the letter “P” is added to this priority queue formed
from the earlier letters from our string. The result is the complete binary tree shown in Fig. 3.8.
To maintain the tree as a complete binary tree, there was no choice about where the new node
was created, and the new tree no longer satisfies the heap condition. To restore that, we allow
interchanges which permit the new node, with key “P” to move up the tree, swapping places
with elements whose priority is lower. Doing this set of swaps gives Fig. 3.9, which now does
satisfy the heap condition.

8Formally we have only considered comparison sorting up until now, but the passage from that to the “equi-
valent” problem of ordering a permutation accepted the existence of a global priority.



48 CHAPTER 3. ABSTRACT DATA TYPES

X

T

G

A E

S

R A

O

M

I P

N

Figure 3.8: Adding the element “P” to
a priority queue.
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Figure 3.9: The resulting priority
queue, after the heap condition is re-
stored.

The “remove” operation is similar; we first get the shape right, and then restore the heap
condition. Since removing an element leaves a complete binary tree with one fewer element,
the first step can be done by removing the root element, and replacing it by the last element
in the tree. This is shown in Fig. 3.10, where the remove operation is applied to the priority
queue of Fig 3.9. In order to restore the heap condition, the new root element must be allowed
to “drop down” the tree until the tree satisfies the heap condition again. At each stage, if the
heap condition is violated, the root element is swapped for the larger of its two children, thus
restoring the heap condition at that level. the resulting priority queue is shown in Fig 3.11.
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Figure 3.10: Removing the element
“X” of highest priority from Fig. 3.9.
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Figure 3.11: The resulting priority
queue, after the heap condition is re-
stored.

Finally note that in Example 3.5 we presented an array-based implementation of a complete
binary tree in which moving up and down the tree was efficient. Certainly both the “add” and
“remove” operations can be implemented in a time proportional to the depth of the tree, and
hence in time O(log n) where n is the number of elements to be sorted. Since we do a total
of 2n such operations in a complete implementation of Heapsort, we thus get a total time of
O(n log n).

We already saw in Section 2.6 that we were not going to improve on this order of magnitude.
And in fact the time constant is worse than that for quicksort by a factor of about 2, so quicksort
remains the method of choice. So what is special about Heapsort? Note that we always complete
the “add” and “remove” operations in O(log n) time; there is no “worst case”. Thus unlike
quicksort, the worst case running time of Heapsort is the same as its average running time.
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Questions 3 (Hints and solutions start on page 92.)

Q 3.1. Show how a queue can be implemented using two stacks. How many different stack
operations are needed to implement each add or next operation of the queue?

Q 3.2. Show how to implement a queue using an array. Recall the command i rem N, which
returns the remainder when i is divided by N .

Q 3.3. Assume now that at least half the tokens in the ’three coloured flags” array are red.
Describe an algorithm which uses fewer calls to the swap routine.

Q 3.4. The operation of “flattening” a list is the removal of any sublist structure, while keeping
all the elements. This the flattening of [A [B C [[D] E] F] G] is just [A B C D E F G]. Show
that the flattening of the list representation of a tree is one of the preorder, inorder or postorder
traversal. Which one?

Compute each of the traversals of the tree whose list representation is
[A [[B [[E] [F] [G] [H]]] [C [I]] [D]]].

Q 3.5. Show that the definitions of a binary tree in terms of terminal nodes and in terms of left
and right children, are equivalent.

Q 3.6. Show that the priority queue representation shown in Fig.3.9 is the one obtained by
using the “add” operation described above on the first 13 letters of the string “A SORTING
EXAMPLE” one by one in the given order to an empty priority queue. Continue the process to
give the priority queue using all 15 letters.

Q 3.7. Verify the construction used to produce the Huffman encoding tree for the string “A
SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”.

Q 3.8. Describe a Huffman code and give examples of circumstances when it (or a variant)
might be used. Illustrate your answer by constructing a binary Huffman code for the string

A TEST EXAMINATION ANSWER

As well as deriving the coding tree, you should give your code for the word ANSWER. Note
that the string contains 12 distinct symbols, include the “space” symbol, and 25 symbols in all.

In what sense is a Huffman code optimal?

Q 3.9. Give a brief description of a priority queue and a complete binary tree. What does it
mean to say that a complete binary tree satisfies the heap condition?

Describe the use of Heapsort to sort the string

HEAPSORT

Give the full construction of the heap in detail, and give details of the first step in its use.
Does Heapsort have any advantages over Quicksort?

Q 3.10. Describe a Huffman code and give examples of circumstances when it (or a variant)
might be used. Illustrate your answer by constructing a binary Huffman code for the string

A HUFFMAN EXAMPLE PLEASE

As well as deriving the coding tree, you should give your code for the word PLEASE. Note that
the string contains 12 distinct symbols, include the “space” symbol, and 24 symbols in all.

An alphabet which contains 2n letters and and their associated probabilities is given and the
corresponding symbols are derived using the Huffman construction. How short can the longest
of these symbols be? What property of the corresponding probabilities would ensure that this
minimum length is attained. How long can the longest symbol be? Give restrictions on the
corresponding probabilities to ensure that this maximum length occurs.
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Chapter 4

Grammers and Parsing

A good source of material relevent to this section is (Sedgwick 1995); in my edition, there are
chapters on “String Searching”, Pattern Matching” and “Parsing” all of which are of interest.

If you type the following line in a FORTRAN program

X = (A + B)*C - D

you expect the computer, when running the program, to take the values of A and B, add them,
multiply the answer by the value of C and then subtract the value of D — finally putting the
result in X. How does the computer work out that that is what you want to happen? How does
it ‘read’ the expression on the RHS? Equally, how does it know that the following is rubbish?

X = (A + B)C - * D))

The FORTRAN compiler has the job of making sense of what you have written and converting
it into a series of machine operations. You will know by now that FORTRAN, like all other
computer languages, requires you to write your programs in a very strict and formalised style.
It imposes a syntax or grammar on you which you cannot ignore in any way (the compiler will
accept A*(B+C) but not A(B+C), despite the standard mathematical convention).

The general problem we face is this: the compiler (or compiler writer) defines a certain syntax
for ‘acceptable statements’. You have to write your programs in this syntax. The compiler then
has to be able to ‘decode’ what you have written so as to find out what to do. It also has to be
able to decide whether what you have written actually is grammatical.

To study this problem it helps to introduce the concept of a Formal Language and the related
concept of a Syntax ( a Chomsky Transformational Grammar, to be precise). The definitions
of these concepts are going to be rather abstract, but some examples should make things fairly
clear.

4.1 Formal Languages

To define the concept of a Formal Language we need the ideas of an Alphabet and a string.
An alphabet is a finite set A. That’s all.
A string from the finite set A is just a finite ordered list of elements of A. Say that α =

(a1, a2, a3, . . . , an) is a string from A if ai ∈ A for i = 1, . . . , n. For historical reasons we usually
use the notation α = a1a2a3 . . . an for a string. The length of a string is the number of things
in the list. We usually add in one more string, the empty string ε which has nothing in it at all
and has length 0.

We use the following notations: An is the set of all strings of length n from A. A+ is the set
of all strings from A, excluding the empty string. A∗ is the set of all strings from A, including
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the empty string.
A+ =

⋃
n≥1

An A∗ = A+ ∪ {ε}

I will use the obvious notation an for a string of n successive a’s.
A Formal Language on the alphabet A is a subset L ⊂ A∗.
Bet that surprised you. Years of work by linguists and philologists and all we get is one idiot

sentence as a definition. Don’t be too put out, the real substance is yet to come. All we are
saying so far is that our ‘languages’ are collections of strings of items. If you think in terms of
a language like English the set A is not really the ‘alphabet’ that you learned in school, but the
set of all words in the dictionary. The basic item is the word (or, more properly, stem). The
‘strings’ that we are talking about are then the sentences of English. From this point of view
English is defined as a subset of all possible sentences formed from words from the (English)
dictionary. Sentences like “the cat sat on the mat” are in this set but sentences like ’cat sat the
on mat the” are not.

The big question, of course, is: what is the subset? Which sentences are English and which
are not. We cannot, in any practical sense, answer this question by listing the elements of the
set because it is infinite. English allows constructions like: I saw a cat and a dog and a giraffe
and a banana and two sheep and three sheep and four sheep and . . . . So there is no limit to
the length of an English sentence. Instead, we would like to be able to specify the subset by its
properties. The usual way to do this is to state a grammar of some kind — a set of rules which
tell you what you are or are not allowed to do. That is going to be the next thing that we look
at.

4.2 Formal Grammars

Suppose we have a Formal Language. That is to say, we have an Alphabet A and a certain subset
L ⊂ A∗. How do we set about defining L? There are many approaches to this but one has become
very standard in recent years, particularly in computer science. This approach is due to the
well-known linguistic theorist Noam Chomsky (1959). He developed this approach in studying
‘natural’ languages, but it has since been taken over in a big way to describe computer languages.
Chomsky’s basic idea was to think of grammars as describing various possible transformations
that can be performed on the sentences of a language. The application of chains of these
transformations should be able to ‘generate’ all the sentences of the language, even though the
list of transformations is itself finite. These transformations form the ‘deep-structure’ of the
language.

To present a very trivial example, the basic notion is the sentence. The abstract object
called a sentence can be transformed into the list (subject) (verb) (object). The abstract
object called a subject can be transformed into the list (article) (noun). The items of this
list can than be transformed into the concrete items: (the)(cat). This type of process gives us
the following ‘generative structure’ of the sentence the cat ate the banana which is illustrated in
Fig 4.1.

sentence

subject

article

The

noun

cat

verb

ate

object

article

the

noun

banana

Figure 4.1: The generative structure of a sentence.

Let me now define what I mean by a Formal Grammar (or transformational grammar, or
Chomsky grammar).
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A Formal Grammar consists of:

• a finite set A — the Alphabet;

• a finite set A — the abstract Alphabet;

• an element σ ∈ A — the initial symbol; and

• a finite set P of productions of the form α→ β
where α ∈ (A ∪A)+ and β ∈ (A ∪A)∗.

This needs some explaining. The alphabet A is something that we have already met (the set
of words in English, for example). The abstract alphabet consists of those abstract objects like
sentence, noun and adjectival phrase that occur in the partial transformation of a sentence.
The initial symbol is the starting point for our transformations. In our example of English the
initial symbol is sentence.

The Productions are the transformational rules, like

subject → article noun
or noun → banana.

Notice that our general definition allows mixtures of both concrete and abstract symbols on
both sides of →, though there must be some abstracts on the left-hand side.

The Formal Language defined by a Formal Grammar is just the set of all strings in A∗

that can be derived by using these productions (over and over again).
Let me use the notation α ⇒ β to mean that the string β ∈ (A ∪A)∗ can be derived, using

the rules or productions of the formal grammar from the string α.
At this point I had better say goodbye to English and all other natural languages because

their grammars are hugely complicated1 and not fully understood. I will stick to the much
simpler grammars that might occur in computer languages.

4.3 First Example

Consider the following formal grammar:

• The alphabet is A = {a, b}.
• The abstract alphabet is A = {σ}.
• The initial symbol is σ.

• The productions are

1. σ → aσ;
2. σ → σb;
3. σ → a; and
4. σ → b.

This is certainly a Formal Grammar. The obvious question to ask is: what language does it
define? Which strings of a’s and b’s can we produce with these productions? Let me call the
language L.

The best thing to do at this stage is usually to mess about a bit applying the rules just to
see what kind of pattern emerges, if any. Obviously ‘a’ and ‘b’ are in L. If we apply (1) and then
(4) we get ‘ab’ in L. If we apply (1) twice we get σ ⇒ aaσ. This is still ‘abstract’, in that it still
contains elements of the abstract alphabet. If we now apply (3) we get ‘aaa’ in L.

Let me now prove a theorem which will tell us what L looks like.
1To remind you of just how hard they are, think of parsing “Time flies like an arrow”; you should find three

completely separate interpretations, one each with “time” as a noun, a verb and an adjective.
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Theorem 4.1. L = {anbm : n+m > 0}

Proof. Any string that we can generate by the rules, starting from σ, can contain at most one
σ (look at (1) and (2). If it contains no σ’s then it is fully concrete and a string of L.

So any application of (3) or (4) will make our string concrete and stop the process. This
means that we generate strings in L by arbitrary combinations of (1) and (2) followed by precisely
one application of either (3) or (4).

Now (1) followed by (2) gives σ → aσ → aσb while (2) followed by (1) gives σ → σb → aσb.
Note that these produce the same result. So the order of application of (1) and (2) does

not matter. Thus we can simplify our earlier statement to saying that any string in L can be
produced by a certain number of applications of (1), possibly zero, followed by a certain number
of applications of (2), possibly zero, followed by either (3) or (4). You can easily check that this
gives us

σ → aiσ → aiσbj → ai+1bj or aibj+1 (i, j ≥ 0)

Thus at least one index has to be non zero. That proves the theorem.

Now that we know what the language is we can go further and try to produce a ‘parsing
algorithm’ for it. We want to write an algorithm which, given any string from A∗ will decide
whether or not it is in L and, if so, what is its structure (what are n and m?). This is very
easy in this case. In more complicated languages, where we cannot find a neat description of the
strings in the language, it can be very difficult. Indeed it can easily become impossible.

In fact the parsing algorithm is so easy in this case that I will leave it to you to write; see
question 4.1

4.4 Second Example

Consider the following Formal Grammar:

• The alphabet is A = {a, b}.
• The abstract alphabet is A = {σ}.
• The initial symbol is σ.

• The productions are

1. σ → σσb; and
2. σ → a;

This is actually a slightly simplified case of a very important grammar indeed. We will meet
it again later in a more serious context. Again, let me call the resulting language L.

If you experiment a bit with this grammar you will probably get confused! The structure is
not immediately obvious. So let me jump in straight away with the answer.

Consider the following property of strings in A+:

Property P Let α ∈ A+ satisfy the following two properties:

1. Up to any point in α there are more a’s than b’s.

2. The number of a’s in α is one more than the number of b’s.

I claim that a string α ∈ A+ is in L iff it satisfies property P. This is very nice because, once
more, property P is very easy to check

Theorem 4.2. If α ∈ L then α satisfies property P.
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Proof. We use induction on the length of α. The only string in L of length 1 is ‘a’, which satisfies
P. Suppose inductively that all strings in L of length ≤ n satisfy property P and that n ≥ 1.

Let α ∈ L have length n + 1. Since σ ⇒ α and α 6= a we must have started its generation
with the production σ → σσb. So α must have the overall structure α = βγb where β, γ ∈ L.
Also β and γ both have length ≤ n.

So, by the induction hypothesis, β and γ must satisfy P. This tells us all we need to know
about α. It is clear that α satisfies P1 up to the end of β. The a’s therefore start γ in profit
and therefore stay in profit till the end of γ since γ satisfies P1. Furthermore, if there are k a’s
in β and h a’s in γ then α has k + h a’s and (k − 1) + (h − 1) + 1 = (k + h − 1) b’s. So P1 is
satisfied up to the end and P2 is also satisfied. Work this through for an example if you find it
confusing.

So any string of length n+ 1 in L satisfies P. So, by induction, all strings in L satisfy P.

Theorem 4.3. If α ∈ A+ and α satisfies P then α is in L.

Proof. We use induction once more. The only string in A+ of length 1 that satisfies P is ‘a’ and
this is in L. Suppose inductively that all strings of length ≤ n that satisfy P are in L.

Let α be a string of length n+ 1 which satisfies P. α starts with at least two a’s (n ≥ 1). It
must contain a ‘b’. So, somewhere, it contains the sequence ‘aab’. So we can write

α = λaabµ

Now let β = λaµ. You can easily check that, since α satisfies P, β satisfies P. Also β has length
< n. So, by the induction hypothesis, β is in L.

The only way to get an ‘a’ into a string in L is to use rule (2). So we must have

σ ⇒ λσµ→ λaµ

But, by rule (1),

σ ⇒ λσµ→ λσσbµ→ λaabµ = α

So σ ⇒ α and α must be in L.
So all strings of length n+1 in A+ which satisfy P are in L, and thus by induction, all strings

in A+ that satisfy P are in L.

4.5 Arithmetic Expressions

Let’s now go back to where we started. Consider the strings that occur on the right-hand side
of equals signs in programs — what are known as Arithmetic Expressions. I mean things like

a+ b+ c ∗ d, a ∗ (b− c/d)− e/f, a ∗ b ∗ ((c− d) ∗ a− p ∗ (u− v) ∗ (r + s))/t

These expressions are made up of variable names, binary operators and brackets. There are
many other things that can occur in such expressions in actual computer languages. For example,
powers (**), unary minus (−a + b), actual numbers (1.23 ∗ a − 3.45), and things like function
and array references (sin(a+ b)− p(4)). We are going to ignore these complications (they are no
more than complications) and concentrate on expressions made up of variables, the four basic
binary operators and brackets. We also ignore spaces. Let us restrict things further by assuming
that there are just 26 possible variables — the lower-case letters.

We are dealing with a language of some kind. An expression is a string of symbols from a
certain alphabet. Some such strings are ‘grammatical’, as in the above examples, and others are
not — for example

a+ (b+ a(b+ c) ((+ + a− b− ((

What is the underlying grammar. What decides whether a given string is or is not grammatical?
Let me now introduce the syntax for such Arithmetic Expressions (AE’s). It produces

the ‘right’ answers.
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4.5.1 AE Grammer

The grammar for Arithmetic Expressions is as follows:

• The alphabet is A = V ∪B ∪ P where
V = {a, b, c, . . . , z}, B ={+,-,*,/} and P ={(,)};

• The abstract alphabet is A = { expr , var , op }
• The initial symbol is expr .

• The productions are

1. expr → expr op expr ;
2. expr → ( expr );
3. expr → var ;
4. var → a|b|c| . . . |y|z; and
5. op → +| − | ∗ |/

Note the way I have written (4) and (5). In fact (4) is actually 26 separate production rules.
The vertical bars indicate alternatives.

At this point you probably expect me to prove that this grammar is correct — that it actually
produces the right kind of expression. We cannot do this for the simple reason that we have not
got any other definition to compare it with! All we have is a certain common-sense about what
is or is not correct. If you play around with the grammar a bit and try to see what it is doing
you will soon convince yourself that it is indeed doing the right things and following the right
principles.

As an example, consider the expression ((a + b) ∗ c + d)/a. Can we derive this from the
grammar? We can, as shown in Table 4.1, which should give you the basic idea.

expr → expr op expr (1)
→ expr / a (5)(3)(4)
→ ( expr ) / a (2)
→ ( expr op expr ) / a (1)
→ ( expr + d) / a (5)(3)(4)
→ ( expr op expr +d)/a (1)
→ ( expr * c + d)/ a (5)(3)(4)
→ (( expr )*c + d)/ a (2)
→ (( expr op expr )*c + d)/ a (1)
→ ((a + b)*c + d)/ a (5)(3)(4)

Table 4.1: Deriving ((a+ b) ∗ c+ d)/a from our grammer

Let’s try another problem. How do we show that (a+ (b−)) is not in the language? This is
intrinsically more difficult. We have to show that there is no possible sequence of transformations
that will produce this result. This particular example is not too difficult. We can see where the
‘bad’ bit comes — the (b−). How do we show that this sequence of symbols cannot happen.
What I will prove is that there is no way that our grammar will allow an op symbol to be
followed by a right bracket.

Firstly, the only way to get the minus sign is by using (5) to replace the abstract symbol op
. The only way we could have got the op symbol there in the first place was by using (1) —
which is the only rule with op involved on the RHS. So, when op was first introduced it was
followed by expr . So now the question becomes: could expr generate a string starting with
a ‘)’? The answer to this is no. Rule (1) changes expr into something that starts with the
abstract symbol expr , rule (2) changes expr into something that starts with a left-bracket
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and the only other relevant rule is (3), which produces a var which certainly cannot transform
into a right-bracket. So our expression is not in the language.

That was rather long-winded, but I was trying to be precise. It has, in effect, produced a
general theorem for us: no string in this language has a symbol from B followed by a right-
bracket. We can produce lots of other theorems like this. In fact, I suggest that you try to prove
the results embodied in Table 4.2, which indicates whether or not a given symbol can be followed
by another given one in a grammatical expression. As an example, it shows that a symbol from
B cannot be followd by a symbol from B, but can be followed by “(”.

→ V → B → ( → )
V n y n y
B y n y n
( y n y n
) n y n y

Table 4.2: Possible follow-on symbols.

4.6 Postfix Expressions

There is another syntax for arithmetic expressions that you may have met before if you have
used a rather old-fashioned pocket calculator. This is called Postfix notation, or Reverse Polish
(as in Pole, not table wax).

The expression a+ b ∗ (c− d) + e written in postfix form is abcd− ∗+ e+. This looks rather
cryptic. You can get the idea most easily if you read it backwards as “ add e to (add (times
(c− d) and b) to a)”. A few more examples are shown in Table 4.3 which may serve better than
an elaborate explanation:

a+(b+c) → abc++
(a+b)+c → ab+c+

a-b*c → abc*–
(a/b)*(c/d) → ab/cd/*
a/(b+c*d-e) → abcd*+e–/

a-b*c+d/e → abc*–de/+

Table 4.3: Converting expressions to postfix notation.

I hope that makes sense. Notice that the translation of expressions that are not fully bracketed
(e.g. a+ b+ c) is ambiguous — but that does not matter.

4.6.1 Postfix Grammer

The Grammar for Postfix Expressions is as follows:

• The alphabet is A = V ∪ B where V = {a, b, c, . . . , z} and B =
{+,−, ∗, /}

• The abstract alphabet is A = { expr , var , op }
• The initial symbol is expr .

• The productions are

1. expr → expr expr op ;
2. expr → var ;
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3. var → a|b|c| . . . |z; and
4. op → +| − | ∗ |/

Note that, apart from the lack of brackets, the significant change is the order of the abstracts
in (1). This grammar is actually a simple generalisation of the grammar that we studied in
Example 2. Because of this it is now easy to prove the following result:
Theorem 4.4. A string α in A+ is a postfix expression iff it satisfies the following property: there
is one more var symbol in α than op symbols and up to any point in α there are more var
symbols than op symbols.

You can prove it as an exercise (it just means making minor modifications in the corresponding
proofs in Example 2).

So we can now write a simple ‘syntax-checking’ algorithm to decide whether or not a given
string is in postfix form. (See below for explanations of isvar and isop.)

algorithm postfix-checker(s,n)
// check the string s1, . . . , sn to see if it is postfix.
begin

count = 0
if (n = 1) then begin
if isvar(s1) then begin
return POSTFIX

else
return NOT POSTFIX

end
end
for i=1 to n-1 begin
if isvar( si ) then count = count + 1
if isop( si ) then count = count - 1
if count <= 0 then return NOT POSTFIX

end
if isop( sn ) and count 6= 2 then return NOT POSTFIX
if isvar( sn ) then return NOT POSTFIX
return IS POSTFIX

end.

This routine uses the predicates isvar(x) and isop(x). A predicate is just a function that
returns the logical values TRUE or FALSE. The predicate isvar(x) will return TRUE iff x is
a var symbol. The predicate isop(x) will return TRUE iff x is an op symbol.

The routine will work with much more general alphabets than I have been using, so long as
isvar() and isop() are suitably redefined. In many computer languages the operator list is a
bit longer, often including a power operator (like ** in FORTRAN). Some languages even allow
you to define your own binary operators. In almost all computer languages the alphabet for var
is much bigger, usually consisting of all strings of up to a given number of characters from a set
which certainly includes all the letters and digits and may include a lot more.

None of this has any important effect on what I have been doing. The restriction to a
simple alphabet was a matter of convenience rather than a simplification of the theory. The
more complicated you make your alphabets the more difficult it becomes to write the isvar()
predicate — but that is somebody else’s problem.

4.7 Converting Infix to Postfix

The expression syntax that we started with (the usual one) is called an infix system, because the
binary operator comes between its operands ( a+ b ). The other system is called postfix because
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the operator comes after its operands ( ab+ ). To every infix expression there corresponds a
postfix expression that has the same effect. The converse is not true because, as we have seen,
there is an ambiguity. The infix expression a + b + c can be represented as either abc++ or
ab+c+ in infix. The reason for the ambiguity is the lack of brackets in the infix expression. If
the infix expression were ‘fully bracketed’ there would be no ambiguity. Thus (a + b) + c pairs
with ab+c+ and a+ (b+ c) pairs with abc++.

I now want to look at the problem of converting infix expressions to postfix expressions. I
will first simplify the problem by only considering ‘fully bracketed’ infix expressions. I will then
look at the more difficult problem of handling general infix expressions.

The ‘fully bracketed’ version of an expression like a + b ∗ c/d is (a + ((b ∗ c)/d)). Note at
once that there is a very serious problem here. The above expression should not be bracketed
as ((a+ b) ∗ (c/d)) — that’s something entirely different. This is where we meet the concept of
operator precedence. You do multiplications before additions, and so on. The main reason for
restricting to fully bracketed expressions is to avoid this problem.

Let me now introduce the syntax for Fully Bracketed Infix Expressions (fbie’s).

4.7.1 FBIE Grammer

The Grammar for Fully Bracketed Infix Expressions is as follows:

• The alphabet is A = V ∪B ∪ P where
V = {a, b, c, . . . , z}, B ={+,-,*,/} and P ={(,)}

• The abstract alphabet is A = { expr , var , op }
• The initial symbol is expr .
• The productions are

1. expr → ( expr op expr )
2. expr → var
3. var → a|b|c| . . . |z; and
4. op → +| − | ∗ |/

The difference between this and our previous infix syntax is that the original (1) and (2) have
been compressed into the single production (1) which forces the presence of brackets.

The following are examples of fbie. You should check that they are derivable from the above
grammar.

((a+ b)− c) ((a ∗ b)/((b− d)/e)) ((((a + b) ∗ c)− d) + e)

I now want to present a conversion algorithm which will take a fbie and convert it into the
corresponding postfix expression. As well as being of interest in its own right, it is also a good
example of the use of a stack, introduced in Section 3.1.1. Given this construct, and an assumed
implementation, the conversion routines are natural:

algorithm fbie-to-postfix(s,n)
// convert the fbie s of length n into postfix.
begin
let ans be empty string
initialise the stack
for i = 1 to n begin
if isvar(si) then append si to ans
if isop(si) then push(si)
if si = ( then ignore
if si = ) then pop stack and append result to ans

end
return ans as result

end.
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The action of the routine is to pump out the var symbols as they come in, as it should, but
to put op symbols onto the stack — the pending tray — until a right bracket comes along to
close off the latest ( expr op expr ) sequence. Then an op symbol is pumped out.

This is a very raw version of the routine. It would be better if the routine could pick up
the fact that the input was not a proper fbie and stop with a useful error message, rather
than crashing or producing a result that was not correct. The ‘crash’, if it occured, would be
produced by an attempt to pop an empty stack (or trying to push onto a full stack — but that’s
an implementation fault rather than a logical one).

Let’s work through an example. Suppose we want to translate

s = (((a+ b) ∗ (e− f)) + g)

Following the algorithm gives the trace shown in Table 4.4.

item action ans stack
1 ( ignore empty empty
2 ( ignore empty empty
3 ( ignore empty empty
4 a append a empty
5 + push a +
6 b append ab +
7 ) pop & append ab+ empty
8 * push ab+ *
9 ( ignore ab+ *

10 e append ab+e *
11 – push ab+e *–
12 f append ab+ef *–
13 ) pop & append ab+ef– *
14 ) pop & append ab+ef–* empty
15 + push ab+ef–* +
16 g append ab+ef–*g +
17 ) pop & append ab+ef–*g+ empty

Table 4.4: Translating the fbie s = (((a+ b) ∗ (e− f)) + g)

The result is ab+ef-*g+. Note that the stack is empty at the end. Logically, it must be. If
it is not then s was not a fbie. Again note that the action of the routine is to put var symbols
into the answer as they come, but to put op symbols onto the ‘pending’ stack until we know
what they are to be applied to. The occurence of a right bracket tells us that the most recent
pending operation is to be activated, so we take it off the stack and put it into the answer.

4.8 Evaluating a Postfix Expression

Now we come to the nub of the problem. The compiler has input an expression in normal form
from your program. It has decided that it is grammatically correct and has converted it into
postfix form. Now it has to understand it — i.e. work out what it is asking for. The compiler
does not actually perform the operations called for by the expression (that is done when you
run the program) but it generates a stream of machine instructions that will have the effect of
evaluating the expression. To give you a taste of what happens let me invent a totally fictitious
compiler and equally fictitious machine language.

The expression (a+ b) ∗ (c+ d) would be converted into something like the following

fetch value of a into register
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add value of b to register
put result into temporary store T
fetch value of c into register
add value of d to register
multiply value of T into register

The point is that the actual machine operations are usually rather elementary things (on
small computers there would probably be far more instructions used than in this example simply
because the instructions are that much more elementary).

Let’s get on with the problem. The beauty of postfix expressions is that they are very easy
to evaluate. That’s why I converted into postfix in the first place. And here is the evaluation
algorithm, which once more uses the two ‘predicates’ isvar(x) and isop(x):

01 algorithm evaluate(s,n)
02 // s is a postfix string of length n
03 for i = 1 to n begin
04 if isvar( s(i) ) then push(value of s(i) )
05 if isop( s(i) ) then begin
06 x = pop
07 y = pop
08 do y s(i) x and push result (note the order)
09 end
10 end
11 x = pop
12 return x
13 end.

The basic action is this: as each variable appears in the expression its value is pushed onto
the stack (4). When an operation appears (5) the top two values are taken off the stack (6,7)
and this operation is performed on them. The result is pushed back onto the stack (8). This
means that, at any stage, the next operator applies to the previous two values on the stack. At
the end there should be just one value left in the stack — the result. Pop this (11) and return
it as the answer.

A compiler, as I said, does not actually perform the calculation — you are not running the
program yet. At line 8 the compiler will write the machine code for performing the operation,
rather than actually performing it.
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Questions 4 (Hints and solutions start on page 97.)

Q 4.1. Write an algorithm in pseudocode which, given any string from A∗ will decide if it is of
the form {anbm : n+m > 0}, and if so, return the values of m and n.

Q 4.2. Consider the following Formal Grammar G, which generates the Formal Language L.

A = {a, b} A = {σ} initial = σ
productions:
1. σ → σσ
2. σ → aσb
3. σ → ab

Show that every string in L has even length, starts with an a and ends with a b. Find all
strings in L of lengths 2,4,6,8.

Prove that α ∈ A+ is in L iff it satisfies the property:

1. up to any point in α the number of b’s does not exceed the number of a’s; and

2. α has equal numbers of a’s and b’s.

What very familiar structure is described by this grammar?

Q 4.3. Find a grammar that generates the language L = {an2 | n ≥ 1}. There are abstract
considerations that show your grammar cannot be very simple.

Q 4.4. The following indicate the acceptable forms for REAL numbers in FORTRAN (excluding
the exponent form 12.2E6).

23.45, 23, .34, 32., −2.7, −23, −.7 − 8.

Write a grammar that will generate precisely such strings from the alphabet A = {0, 1, 2, . . . , 9}∪
{+,−, .}. Extend the grammar to cover the exponent case as well.

Your grammar will presumably allow things like

12345657891224234234345345456556756678678.23525253152615263126

which FORTRAN may not like very much. Can you think of a way of working into the grammar
the requirement that, for example, there are no more than 8 digits before the decimal point?
There is no tidy answer.

Q 4.5. What language is generated by the following grammar?

A = {a, b, c}, A = {A,B,C}, initial = A
1. A→ aABC
2. A→ aBC
3. CB → BC
4. aB → ab
5. bB → bb
6. bC → bc
7. cC → cc

Q 4.6. Extend the AE grammar so as to include the possibility of the ‘unary minus’ as in −a+b
or −(b+ c) ∗ d. You are not to allow things like a+−b, but a ∗ −b is marginal and probably to
be included.
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Q 4.7. Build up a ‘succession’ table for AE — saying which objects are allowed to follow which
in a string generated by AE. The objects are: var, op, (, ), start and end (where start and end
are the start and end of the string). When you have it, check its validity by giving examples of
all the successions that you claim can exist and proving that the rest cannot.

Q 4.8. Convert the following expressions first into fbie form and then into postfix form.

a+ b− c, a+ b ∗ d− c ∗ a, (a− b) ∗ c/d, a/b/c/d/(a+ (b ∗ c− d)/u)

Q 4.9. Consider the formal language L given by the following grammar.

• The alphabet is A = {a, b, c}.
• The abstract alphabet is A = {σ, α, β, γ}.
• The initial symbol is σ.

• The productions are

1. σ → aσβγ;
2. σ → aβγ;
3. γβ → βγ;
4. aβ → ab;
5. bβ → bb;
6. bγ → bc; and
7. cγ → cc.

a) Prove that the string abc is in L.

b) Prove that the string a2bcbc is not in L. If productions (4) to (7) are replaced by

(4′.) β → b; and (5′.) γ → c.

does this remain true?

c) Prove that the string anbncn is in L for any n ≥ 1.

d) Give a simple description of the strings in L and give arguments to support your claim.
[A formal proof is not expected]

Q 4.10. Consider the formal language L given by the following grammar.

• The alphabet is A = {a}.
• The abstract alphabet is A = {σ, α, β, γ}.
• The initial symbol is σ.

• The productions are

1. σ → αβ;
2. αβ → ααβ;
3. αβ → αaγ;
4. αa→ aaα;
5. ααγ → αγ; and
6. aαγ → a.
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a) Prove that the string a2 is in L.

b) Prove that the string a4 is in L.

c) Let s be a string generated from σ. For each a in s, define the wieght of a to be 2k,
where k is the number of copies of α which occur in s to the left of a. Show that the sum of the
weights of all copies of a in s is the same before and after an application of production (4).

d) Give a simple description of the strings in L and give arguments to support your claim.

Q 4.11. Consider the formal language L given by the following grammar.

• The alphabet is A = {a, b, c}.
• The abstract alphabet is A = {α, β, γ}.
• The initial symbol is α.

• The productions are

1. α→ aαβγ;
2. α→ aβγ;
3. γβ → βγ;
4. aβ → ab;
5. bβ → bb;
6. bγ → bc;
7. cγ → cc.

a) Prove that the string a2b2c2 is in L.

b) Prove that at every stage of the process, no member of the abstract alphabet appears to
the left of any member of A.

c) Prove that production (2) is always applied exactly once, and that after it has been
applied the resulting string is of the form an+1σ, where n ≥ 0 and σ contains exactly n + 1
copies of both β and γ, ordered in such a way that up to any point in σ, there are at least as
many copies of β as of γ.

d) Give a simple description of the strings in L and give arguments to support your claim.
[A formal proof is not expected.]



Chapter 5

Random Numbers

5.1 What is a Random Number?

Many computer programs, particularly those involved in ‘simulation’, require random choices of
various kinds to be made. How does a computer, which is a totally deterministic device, make
‘random’ choices? What is a random choice for that matter? (see (Knuth 1981))

We will see later that most of the situations that require random choices to be made can
be handled once we have ‘random numbers’ available. So, what’s a random number? You will
realise that this is a silly question as soon as you rephrase it in the form ‘is 2 a random number?’.
Randomness is not a property of individual numbers. More properly it is a property of infinite
sequences of numbers.

I am now going to try to clarify what we mean by a random sequence of numbers. To keep
things definite I will assume that we are talking about real numbers in the range [0, 1).

What we are eventually aiming to define and construct is what is known as a random number
generator. This is a function (black box) which, when given an input value seed (usually an
integer), produces as output an infinite random sequence of real numbers {xk} with xk ∈ [0, 1).

seed → RAND → {xk}
Furthermore, we require that different seeds produce different sequences and that, in some sense,
’related’ seeds do not produce related sequences.

As far as I am aware, nobody has ever given an entirely convincing definition of the term
‘random sequence’. On the other hand, everybody has a common-sense idea of what it means.
We say things like: ‘the sequence should have no pattern or structure’. More directly we might
say that knowing x1, . . . , xn tells us nothing about xn+1, . . . .

One of the simplest attempts at a mathematical definition goes as follows.

Definition 5.1. A sequence {pk} in [0, 1)n is uniformly distributed on [0, 1)n if, for any box

A = [r1, l1]× [r2, l2]× · · · × [rn, ln]

in [0, 1)n,

lim
k→∞

|{p1, p2, . . . , pk} ∩A|
k

= |A|

where |A| is the volume of A.

Definition 5.2. A sequence {xk} on [0, 1) is n-distributed on [0, 1) if the sequence {pk} given
by

pk = (xkn, xkn+1, . . . , xkn+n−1) ∈ [0, 1)n

is uniformly distributed on [0, 1)n.

65
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We will require that a random sequence in [0, 1) be ∞-distributed on [0, 1), i.e. k-distributed
for all k.

This turns out to be an inadequate definition of randomness, but it is good enough for all
practical purposes. In particular, an∞-distributed sequence will pass all the standard statistical
tests for randomness. (If you want to be thoroughly perverse you could argue that the fact that
it passes all such test is itself evidence of a certain non-randomness!)

5.2 Generating Random Numbers

Most computer languages have software ‘random number generators’. These do not generate
random sequences in the above sense (almost by definition, no algorithmic process can possibly
do so). Instead, they produce what are called pseudo-random numbers. These are sequences
of numbers that are sufficiently ‘random’ to pass all current statistical tests for randomness in
‘realistic’ cases.

Two quotations are in order here:

A random sequence is a vague notion embodying the idea of a sequence in which
each term is unpredictable to the uninitiated and whose digits pass a certain number
of tests, traditional with statisticians and depending somewhat on the use to which
the sequence is put. (Lehmer 1951).

Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin. (Von Neumann 1951). “If you think you’re a really good
programmer,...read [Knuth’s] Art of Computer Programming....You should definitely
send me a resume if you can read the whole thing.” – Bill Gates

There are many algorithms available (see (Knuth 1981) for some horror stories) but most
languages now use what are called linear congruential generators.

A Linear Congruential Generator is determined by three positive integers a, b, m. We
call a the multiplier, b the increment andm the modulus . It produces its pseudo-random sequence
as follows:

• generate a sequence of integers {nk} (0 ≤ nk < m) as follows:

– specify n0 - the seed ; and
– generate the rest by

nk+1 = ank + b (mod m).

• then let xk = nk

m ∈ [0, 1).

This looks ridiculous. The x’s are rational and there are only m values available for them:
k/m for k = 0, . . . ,m− 1. However, in practical cases, m is usually something like

232 = 4, 294, 967, 296

and a is chosen carefully to give good results. (The choice of a is critical, the choice of b less
important.)

It can be shown that the following conditions should be satisfied if we are to have a good
generator:

• The modulus m should be large. This is usually not a problem because values like the one
given above are very convenient for computer arithmetic.

• If, as often happens, m is a power of 2 then pick a such that amod8 = 5. This will have the
effect of maximising the period of the necessarily cyclic sequence produced. The choice of
value for a is the most delicate part of the whole design. Any suggested value for a should
be submitted to a thing called the ‘spectral test’ before being used.
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• The increment b should be coprime to m. A value like b = 1 is perfectly acceptable.

An acceptable choice of values would be:

m = 232 a = 1664525 b = 1.

The theory behind these conditions is discussed in much more detail in (Knuth 1981, Section
3.2.1).

5.3 Applications of Random Numbers

There are many ‘random processes’ that are useful in various kinds of simulation. Most, if not
all, of these can be generated once you have available a random number generator of the kind
discussed above.

Let me now consider a few of them. Suppose throughout that rand() is a random number
generator that, by successive calls, produces a random sequence uniformly distributed on [0, 1).

5.3.1 Generating Random Reals

It is common to want a stream of random numbers uniformly distributed between, say, X and
Y — rather than between 0 and 1. This is easily arranged

xrand(X,Y ) = X + (Y −X) ∗ rand()

i.e. just scale and shift. This does not affect the randomness in any way. Let me give a partial
argument to justify that claim. We know that rand() generates a sequence {xk} ⊂ [0, 1) which
is uniformly distributed. We want to show that the sequence produced by xrand(X,Y ) has the
same kind of property with respect to the interval [X,Y ). It is easiest to say this in probability
language. Let [u, v) be an interval in [X,Y ). We want the probability that a number produced
by xrand(X,Y ) falls in this range to be (v− u)/(Y −X) — i.e. the subset gets precisely its fair
share of elements. Now

u ≤ xrand(X,Y ) < v ⇐⇒ u ≤ X + (Y −X) ∗ rand() < v

⇐⇒ u−X

Y −X
≤ rand() <

v −X

Y −X

Now, you can easily check that this range for rand() lies in [0, 1). The length of the range is

v −X

Y −X
− u−X

Y −X
=

v − u

Y −X

So the probability that rand() falls in this range is, by the uniform distribution of rand(),
(v − u)/(Y −X). So this is the probablity that xrand(X,Y ) gives a value in [u, v). This is the
value that we wanted.

Similar arguments would show that the sequence produced by xrand(X,Y ) is k-distributed
on [X,Y ) for all k.

5.3.2 Generating Random Integers

Suppose we want to generate a random stream of integers in the range n, . . . ,m. The function
for this is:

irand(n,m) = [n+ (m− n+ 1) ∗ rand()].

This works because:
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• the result is certainly an integer in the range n, . . . ,m — note that rand() < 1.

• To check randomness we just have to be sure that each integer is equally likely to be chosen
at each stage. But k is chosen if

k ≤ n+ (m− n+ 1) ∗ rand() < k + 1,

i.e.
k − n

m− n+ 1
≤ rand() <

k + 1− n

m− n+ 1
.

The length of this range, which lies in [0, 1), is independent of k (subtract and see). So,
by the definition of uniform distribution for rand(), all values of k are equally likely to be
chosen.

If you feel energetic you can also prove that the output of irand(n,m) has ‘higher order random-
ness’ in the sense that, for example, all pairs (i, j) with n ≤ i, j ≤ m are equally likely to be
chosen.

5.3.3 Choosing ‘with probability p’

Very often random algorithms require you to ‘choose this object with probability p’ or ‘take this
option with probability p’. What does this mean and how do we do it? The basic meaning is
that in a large number of such decisions you will perform the action proportion p of the time.
But we’re not doing it lots of times, we’re just doing it once. Well, in that case you have to make
a random decision as to whether or not to perform the action and the decision must be biased
so as to give the correct proportion ‘in the long run’.

The simplest case is that of choosing with probability 1/2. This means that we are equally
likely to choose or not choose. The traditional method is to toss a coin. If we had to make a
choice with probability 1/6 we might decide to throw a dice and take the action if it shows a six.

The general case can be handled by means of a standard random number generator. Suppose
we want to take an option ‘with probability p’. Then we use our random number generator to
generate a random real in [0, 1). If this number is less than p we take the option, otherwise we
do not. This is correct, in terms of probability, because [0, p) is proportion p of [0, 1).

x = rand()
if(x < p) take option
else don’t take option.

So, for example, tossing a coin can be simulated by

x = rand()
if(x < 0.5) then say Heads
else say Tails

5.3.4 Random Shuffles

This is more difficult. We have a list (x1, . . . , xn) and we want to shuffle it randomly.
The following, surprisingly simple, algorithm does the trick:

algorithm shuffle(x,n) // shuffle x1, . . . , xn

begin
for i = n downto 2 begin
k = irand(1,i)
swap over xi and xk

end
end
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Why does this work? It seems that it is not doing enough ‘mixing up’ to produce a genuinely
random shuffle. We can only prove that it works if we have some notion of what we mean by a
‘random shuffle’. Let me keep things simple and say that a shuffling process is random if each
element of the list can end up in any position in the list with equal probability. That is to say,
in a list of n items there are n possible places that any given element can eventually occupy. I
want each of these places to be equally likely.

So we now have to calculate the probability that our algorithm puts element xi into position
j, where 1 ≤ i, j ≤ n. If you look carefully at the algorithm you will see that element xi end up
in position j if it is not chosen on the first n − j steps of the algorithm and is chosen on the
step n − j + 1. Since we know that irand(n,m) is genuine we can use elementary methods to
find that the probability of xi ending up in position j is

n− 1
n

· n− 2
n− 1

· n− 3
n− 2

· · · j

j + 1
· 1
j

=
j

n
· 1
j

=
1
n
,

which is exactly what we wanted.

5.3.5 Random Samples

The problem here is to choose a sample of k things at random from a list of n things. There are
a number of possible problems here and I will just consider two of them:

Straightforward sampling. Given the list (x1, . . . , xn) use the shuffle algorithm given above,
but stop it after k steps. The last k items in the list will then be a random sample (or the shuffling
algorithm would not be random).

Conveyor Belt sampling It is often the case that the set to be sampled from is far too big to
be held in memory. We have to be able to make our selection simply by looking at one item of
the set at a time. The obvious analogy is that of a quality control inspector standing alongside
a conveyor belt and having to choose, let’s say, 10 items from every 1000 that pass him. He has
to be able to do this without backing up the conveyor belt.

algorithm runningsample(k, N)
// choose k items at random from N supplied
begin
t = 0
chosen = 0
repeat begin
if ((N-t)*rand() >= (k-chosen)) begin

// pass over next item
read in next item
t = t + 1

end
else begin

// accept next item
read in next item
print out next item
t = t + 1
chosen = chosen + 1

end
end // repeat
until (chosen = k)

end.
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In this it is assumed that the data to be sampled from can be read item by item (‘stream input’)
- ‘read in next item’ fetches the next item in the list.

The logic of this method is that if, at the ith item, we have so far chosen j items then we
have k − j items left to choose from the remaining n − i + 1 items (including the ith). So it
seems reasonable to choose the ith item with probability

k − j

n− i+ 1

and that’s what the algorithm does. That seems too obvious to be true!
This is a simple routine but once more the real problem lies in trying to justify its claim to

produce a random sample. Indeed, it is not obvious that the routine will succeed in getting its
full sample before it runs out of input!

We cannot end up with more than k items because we stop the loop if we have got k. It is
thus enogh to show that we cannot end up with fewer than k. Suppose conversely that we had
ended up with j < k items and that the last item not chosen was the ith. Then, at that stage,
we had already chosen j − (N − i) items. So the probability of choosing the ith was

k − (j − (N − i))
N − i+ 1

=
N − i+ (k − j)
N − i+ 1

≥ 1,

so we must have chosen it! Contradiction.
Let’s now look at the claim that it produces random samples. Consider samples of size k.

There are Cn
k of these in all and we want each of them to be an equally likely selection.

Let me start by looking at the simple case k = 2. What is the probability of our choosing
the subset {xa, xb} from (x1, x2, . . . , xn)?

We must not pick x1, x2, . . . , xa−1, we must pick xa, we must not pick xa+1, . . . , xb−1, we
must pick xb and we must not pick xb+1, . . . , xn. Turn all that into a probability calculation
and you get the probability

p =
i=a−1∏

i=1

(
n− i− 1
n− i+ 1

)
· 2
n− a+ 1

·
b−1∏

i=a+1

(
n− i

n− i+ 1

)
· 1
n− b+ 1

·
n∏

i=b+1

(
n− i+ 1
n− i+ 1

)
.

This looks horrible at first sight, but closer examination reveals all.
The denominators run in sequence from n down to 1. So the overall denominator is n!. We

have a 2 and a 1 on the top (at the chosen points) and that gives us a factor 2!. Finally, the rest
of the numerator is

(n− 2)(n− 3) · · · (n− a) · (n− a− 1)(n− a− 2) · · · (n− b+ 1) · (n− b) · · · 1 = (n− 2)!

Notice that the sequence steps over the joins properly. This gives us the factor (n− 2)!. So the
probability is

p =
2! (n− 2)!

n!
=

1
Cn

2

as required.

The general argument goes in just the same way. Suppose we specify a subset of k elements.
Then we work out the probability of choosing this subset, as above. We find that the denomin-
ators run from n down to 1 once more — giving the n!. The ‘chosen’ elements give us the factor
1.2.3 . . . k = k!. There remain n− k numerators. They are all different, the largest is n− k and
the smallest is 1. So they must be precisely all the numbers from 1 to n − k and so give the
factor (n− k)!. Thusthe probability of choosing this subset is

p =
k! (n− k)!

n!
=

1(
n
k

) .
So all subsets of a given size are equally likely to be chosen, and we definitely have a random
sample.
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Questions 5 (Hints and solutions start on page 101.)

Q 5.1. Show that if X is any finite set and φ : X → X is any mapping then, for any x ∈ X , the
sequence {xi} defined by

x0 = x xi+1 = φ(xi)

is eventually periodic; in other words, from some point in the sequence the sequence is periodic
from there on.

Q 5.2. In this and the following questions, assume that you have available a random number
generator RAND which produces random reals uniformly distributed on [0, 1). So a statement
like x = RAND will give you a ‘random number’.

Consider the following sets

T1 = {(x, y) ∈ R2 : 0 ≤ x, y < 1 y < x}
T2 = {(x, y) ∈ R2 : 0 ≤ x, y < 1 x+ y < 1}
T3 = {(x, y, z) ∈ R3 : 0 ≤ x, y, z < 1 x+ y + z < 1}
T4 = {(x, y, z) ∈ R3 : 0 ≤ x, y, z < 1 x+ y + z = 1}

A certain application requires you to produce a random sequence of points in T1. How do
you do this? Answer the same question for T2.

Here are four ways to produce a sequence of points in T3. Each application of the process
produces one more point in the set. How do they compare with regard to efficiency? Which of
the four actually produce a random sequence in T3?

Method 1
repeat x = RAND, y = RAND, z = RAND
until x+ y + z < 1.

Method 2
repeat

pick a random point (x, y) in T2,
z = RAND

until x+ y + z < 1

Method 3
pick a random point (x, y) in T2

repeat z = RAND until x+ y + z < 1

Method 4 pick a random point in T2 pick z at random from [0, 1− x− y)

Finally, show how to obtain a random sequence of points in T4.

Q 5.3. Some half-witted geographer wants you to produce for him a sequence of points chosen
randomly on the surface of the earth, for some kind of statistical experiment. How do you set
about producing points at random on the surface of a sphere? (No, you don’t pick a latitude at
random and then a longitude at random. Why? )

Q 5.4. Show how to generate random n×n symmetric matrices with real elements in the range
(−1, 1).

Q 5.5. Suppose we want to generate random integers in the range 0 . . . 10n − 1. One, slightly
cranky, approach might be to choose each of the n − 1 digits (0 . . . 9) randomly and then stick
them together to form the number. Does this give random integers? Prove it.
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Q 5.6. The simplest algorithm for obtaining a random sample of k items from a list x1, . . . , xn

is this:

count = 0
repeat
pick i at random from $1,2, . . . ,n$
if $x_i$ has not yet been chosen then choose it and put count=count+1

until count = k

The only problem with this is its potential running time. The bigger k is compared to n the
more ‘doublers’ we are going to have to reject.

The problem is to estimate how many choices we are going to have to make before we get
the k items that we want. The following crude argument gives the right result. Let w(n, k) be
the average waiting time, i.e. number of choices made, in order to get a sample of k things from
n items. Then w(n, k) is w(n, k − 1) plus the expected number of choices needed to obtain the
final item (you must have found k − 1 items before you find the kth!). Show that

w(n, k) = w(n, k − 1) +
n

n− k + 1

and deduce that

w(n, k) = n

(
1
n

+
1

n− 1
+ · · ·+ 1

n− k + 1

)
= n(Hn −Hn−k)

where Hn is the nth harmonic number.
Show that if n is reasonably large then we have the approximation

w(n, k)
k

≈ 1
α

ln
(

1
1− α

)
, where α =

k

n

Q 5.7. In this question, you are given a random number generator RAND() which produces
random reals uniformly distributed in [0, 1).

a) You are required to choose k objects “ at random” from a sequence of N objects —
perhaps passing on a conveyor belt. You must decide whether a given object is to be selected
before the next one becomes available. Give pseudocode for such an algorithm, and justify the
assertion that it will produce exactly k items. [You are not asked to justify that the sample is
a random sample.]

b) Let T be the triangle with vertices at (0, 2), (−1, 0) and (1, 0). Describe an algorithm
to generate a sequence of points {pn} in T “at random”. Your answer should produce an
additional point pn for each pair of calls to RAND(). Explain briefly why your algorithm does
what is required.



Chapter 6

The Fast Fourier Transform

6.1 Multiplying Polynomials

Suppose we have two polynomials

p(x) = a0 + a1x+ a2x
2 + · · · an−1x

n−1 and q(x) = b0 + b1x+ b2x
2 + · · · bn−1x

n−1, (6.1)

each of degree n− 1. We consider the problem of computing their product

p(x)q(x) = a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x2 + · · ·
+ (an−1b0 + · · ·+ a0bn−1)xn−1 + · · ·

+ (an−1bn−2 + an−2bn−1)x2n−3 + an−1bn−1x
2n−2.

As written, this product involves 2n− 1 terms and a total of

2(1 + 2 + · · ·+ n− 1) + n = n2

multiplications to compute all the coefficients. A natural question then arises as to whether we
can manage with fewer multiplications. The aim of this section is to show that the work can
be suitably re-arranged so that only O(n log n) multiplications are needed. The constant in the
O(n log n) is really quite small; unlike Strassen’s method of matrix multiplication, the underlying
algorithm is of great practical importance.

The idea is simple, although we don’t discuss it directly in this form. In order to determine
p(x)q(x), a polynomial of degree 2n− 2, it is enough to know its value at 2n− 1 points. Each of
p(x) and q(x) can be determined at a fixed set of 2n− 1 points, and so the product polynomial
can be determined at these points with 2n − 1 multiplications in R or C . Thus provided we
can efficiently evaluate each polynomial at the 2n− 1 points, and then reconstruct the product
polynomial from its 2n−1 known values, we have another way of multiplying the two polynomials.

6.2 Fourier Series

The crucial idea uses a variant of the Fourier transform, which is often first met as a way of
representing a function in terms of sine and cosine of multiples of an angle. Recall that given
f a function defined on the interval [−π, π], or defined on R and periodic, with period 2π, we
define the Fourier coefficients of f by

an =
1
2π

∫ π

−π

f(t) cosnt dt, and bn =
1
2π

∫ π

−π

f(t) sinnt dt.

73
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For many functions, we can reconstruct f from its Fourier coefficients, by using the Fourier
series. In the case of a string fixed between two points, and initially held in a shape which is
the graph of f , the Fourier (sine) coefficients have a physical interpretation; they represent the
amount of the corresponding harmonic in the resulting vibration.

A trick often used to unite the Fourier sine and cosine series, even for real functions, is to
define the complex Fourier coefficient

cn =
1
2π

∫ π

−π

f(t) exp(−int) dt.

The usual series then follow by taking real and imaginary parts. There are many advantages in
using this complex form, even though there is a less intuitive description for the coefficients.

In this section we apply these ideas to the discrete Fourier transform, the version which
applies to a function f defined on the finite set Zn. As in the continuous case, it is helpful to
think of the function as being periodic, so that f(j + n) = f(j). The discrete transform has the
advantage that we no longer have convergence worries; of course a finite sum exists, while an
integral may not: but it does mean that the formulae are less familiar.

6.3 The Fourier Matrix

We need a simple result about complex numbers.

Lemma 6.1. Let zn = 1, and assume that z 6= 1. Then

1 + z + z2 + · · ·+ zn−1 = 0.

Proof. It is trivial to verify the factorisation

zn − 1 = (z − 1)(1 + z + z2 + · · ·+ zn−1).

The result follows, since we are given a zero of the left hand side.

It is easy to describe the nth roots of unity. Let ω = exp(−2πi/n); then the roots are all of
the form ωk for some k with 0 ≤ k < n. Note also that ω satisfies the condition of the lemma.
We now define the Fourier matrix Fn for any integer n ≥ 1 by:

Fn =
1√
n




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


 .

Note that Fn is a complex symmetric matrix; so is the same as its transpose. Thus its adjoint
(the transposed complex conjugate of the given matrix) is just the complex conjugate. We write
this as F̄n. It is given simply by replacing ω in the above by ω̄ = exp(2πi/n).

A word about notation: we shall have quite a lot to do with ω. Note the choice of sign in
the exponent; it was arbitrary, but this way the definition of Fn is correct. When we need to
emphasise that we have an nth root of unity, we shall write ωn.

In the study of complex vector spaces, an interesting class of matrices are the unitary ones;
those whose inverse is the adjoint. They are the complex equivalent of the orthogonal matrices,
in which the inverse is just the transpose. An orthogonal matrix represents a rotation of given
orthonormal axes (possibly with a reflection); a unitary matrix could be considered for this
reason, as a complex rotation.

Theorem 6.2. The Fourier matrix Fn is a unitary matrix.
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Proof. It is enough to show that F̄nFn = In, where In is the identity matrix. Since the jth row
of F̄n is

1√
n

(1, ω̄j, ω̄2j , . . . , ω̄(n−1)j)

while the kth column of Fn is

1√
n

(1, ωk, ω2k, . . . , ω(n−1)k),

and since ω̄k = w−k, the entry in the (j, k)th place of the product is just

1
n

(1 + ω(j−k) + ω2(j−k) + · · ·+ ω(n−1)(j−k)).

We now distinguish two cases. If j = k, this is just (1 + 1 + · · ·+ 1)/n = 1, while if j 6= k, it is
zero by the lemma, since ω(j−k) is an nth root of unity, but is not equal to 1. It follows that the
product is the identity matrix as claimed.

We can identify a complex valued function defined on Zn with an element of C n by f → f =
(f(0), f(1), . . . , f(n− 1)).1 The discrete Fourier transform of f is then defined to be the action
of the Fourier matrix on (f(0), f(1), . . . , f(n − 1)). It will be convenient to write f ∈ C

n , or
f = (f1, f2, . . . , fn−1) although we think of C n in this form as periodic functions on Z

n.
Identifying the Fourier matrix as unitary gives one way of thinking of the discrete Fourier

transform; as a complex rotation in C
n . The idea that a rotation of the co-ordinate axes will

preserve essential features of a problem, while possibly making the new co-ordinate representation
easier to work with, is a familiar one. We thus begin a study which will show there are indeed
some things which are easier to describe and manipulate in the transformed representation.
Corollary 6.3. Let f = (f0, f1, . . . , fn−1) be a vector in R

n or C n , and define F in C
n by

Fp =
1√
n

n−1∑
j=0

fj exp
(−2πijp

n

)
=

1√
n

n−1∑
j=0

fjω
jp (0 ≤ p ≤ n− 1), (6.2)

Then the transformation can be inverted to give

fj =
1√
n

n−1∑
p=0

Fp exp
(

2πijp
n

)
=

1√
n

n−1∑
p=0

Fpω
−jp (0 ≤ j ≤ n− 1). (6.3)

Proof. Our definition gives F = Fn(f). Since the Fourier matrix is unitary, we have f = F̄n(F),
which is the required result.

6.4 Products

We have seen that the discrete Fourier transform is defined on C n . In addition to being a vector
space, C n becomes a commutative ring when a “pointwise” product is defined in the obvious
way for a and b in C

n by

a.b = (a1, a2, . . . , an).(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

There is however another product, the convolution product on C
n which is natural from a

different viewpoint. For a and b in C
n , define a ? b ∈ C n by

(a ? b)j =
n−1∑
k=0

aj−kbk,

1We confuse the function f and the vector f ; it may have been clearer to drop the bold font vector notation.



76 CHAPTER 6. THE FAST FOURIER TRANSFORM

where each index in the sum is interpreted mod n, so that for example a−1 = an−1 etc. This
product arises from considering Cn as functions on Zn, the cyclic abelian group with addition
mod n, as we did in the definition of the discrete Fourier transform. Let 1k be the function
on Z

n which takes the value 0 except at the integer k, where it takes the value 1. A natural
way to define 1j.1k is as 1j+k, where we interpret j + k modulo n. This extends by linearity to
the whole of C n ; it is easy to check that the resulting product is the convolution just defined.2

Convolution makes C n into a (commutative) ring; it is easy to verify that convolution is an
associative product. It is commutative since

(b ? a)j =
n−1∑
k=0

bj−kak =
n−1∑
k=0

blaj−l,

where we have rewritten in terms of l = j − k,

=
j−n−1∑

l=j

aj−lbl =
n−1∑
l=0

aj−lbl = (a ? b)j ,

since we can sum over Zn in any order.

6.5 Properties of the Fourier Transform

In this section we note a number of useful properties of the Fourier transform. Recall that we
write Fnf = F; we shall sometimes write f̂ instead of F . It is often convenient to ignore the
normalising constant 1/

√
n in the formula, in which case, we have

Fp =
n−1∑
j=0

fjω
jp.

The constant is then explicitly inserted in the formula at some later stage.
Proposition 6.4. Let f ∈ R

n . Then F0 ∈ R, while for p > 0, Fn−p = F̄p. In particular, if n is
even, then Fn/2 ∈ R.

Proof. Since by definition, ω is an nth root of unity, we have ωn−j = ωnω−j = ω̄j ; now compute.

Note also that, in general we have F0 = f0 + f1 + f2 + · · · + fn−1, while if n is even, so
ωkn/2 = (−1)k, we have Fn/2 = f0 − f1 + f2 + · · · − fn−1.
Theorem 6.5 (Parseval’s Theorem). Let f ∈ C

n and let F ∈ C
n be the discrete Fourier trans-

form of f . Then
n−1∑
j=0

|fj |2 =
n−1∑
p=0

|Fp|2.

Proof. Recall that for any complex number z, we have |z|2 = zz̄.
From the definitions, we have

n−1∑
p=0

|Fp|2 =
1
n

∑
p

∣∣∣∑
j

fjω
pj
∣∣∣2 =

1
n

∑
p

∑
j

fjω
pj
∑

k

f̄kω
−pk

=
1
n

∑
p

∑
j

∑
k

fj f̄kω
p(j−k) =

1
n

∑
p

∑
j

|fj |2

2This is a very simple example of a group algebra, a construct central to modern harmonic analysis.
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since the sum vanishes by Lemma 6.1 unless j = k. The result follows.

Remark: For physical reasons, this sum is often referred to as the power spectrum; we see it is
preserved under the Fourier transform. The result is usually known in the engineering literature
as Rayleigh’s Theorem. It is essentially a restatement of the fact that the Fourier matrix is
unitary, and follows trivially from that fact by using a little more matrix theory as follows:

||F(f)||2 =< F(f),F(f) >=< F∗F(f), f >

=< f , f >= ||f ||2,
where F∗ is the adjoint, or transposed complex conjugate of F, and we have used the fact that
F is unitary.

These results are all of interest. However for our purposes, the crucial one is that the Fourier
transform behaves nicely with respect to convolution. We already know that Fn is an isometry
from C

n to C
n ; we now observe that is is an algebra isomorphism when appropriate products

from Section 6.4 are chosen.

Theorem 6.6 (The Convolution Theorem). Let f and g be in C
n . Then

f̂ ĝ = Fn(f ? g).

In other words, the discrete Fourier transform maps convolution to pointwise multiplication.

Proof. This is a simple calculation, but relies heavily on the fact that each n-tuple is considered
as periodic on Zn, so fj = fn+j and so on.

Fn(f ? g)p =
∑

k

∑
j

fjgk−jω
kp =

∑
j

fjω
jp
∑

k

gk−jω
(k−j)p.

Since the sum is really over Zn, we can start anywhere, so

Fn(f ? g)p =
∑

j

fjω
jp

n+j∑
k=j

gk−jω
(k−j)p,

and substituting l = k − j, and then rewriting with k instead of l,

=
∑

j

fjω
jp
∑

k

gkω
kp = f̂pĝp.

6.6 The Fast Fourier Transform.

The convolution theorem suggest a different way of computing a?b for a,b ∈ C
n ; as the inverse

transform of â.b̂. In other words, we first compute the discrete Fourier transforms of a and
b, then compute the pointwise product â.b̂, and finally compute the inverse discrete Fourier
transform to obtain a ?b. However, the obvious way to calculate the discrete Fourier transform,
using equation 6.2 involves n multiplications for each of the n terms. Thus two transforms, a
pointwise product and and an inverse transform total 3n2 +n multiplications, as opposed to the
n2 multiplications needed to do the convolution directly. We discuss in this section an algorithm
which makes the computation of the Fourier transform very much more efficient, reducing the
calculations from one of order n2 to one of order n logn. This arrangement of the calculation is
known as the fast Fourier transform or FFT. The algorithm was brought to the attention of
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many people by Cooley and Tukey (1965), although as often happens it appears to have been
discovered a number of times before that, with the idea going back to Gauss! There are now
many variants; a good reference for both these and for code itself is (Press, Flannery, Teukolsky
& Vetterling 1992, Chapter 12). The common feature is that the length of the vector should
factor into a product of a large number of small primes; a very efficient version is when the image
size is a power of two, and we present this.

Assume then we are calculating the Fourier transform of a vector of length n = 2m, so m =
log2(n). To concentrate on essentials, we ignore the normalising factor. Write ωn = exp (−2πi/n)
to emphasise the underlying image size. Then (ωn)n = 1 and, since n = 2m, we have n =
2.2m−1 = 2n1 for m ≥ 1. We have

Fp =
n−1∑
j=0

fjω
jp
n =

2n1−1∑
j=0

fjω
jp
2n1

.

on re-writing in terms of n1. This sum can be split into two terms, according to whether j is
even or odd, so

Fp =
n1−1∑
j=0

f2jω
2jp
2n1

+
n1−1∑
j=0

f2j+1ω
(2j+1)p
2n1

,

=
n1−1∑
j=0

f2jω
jp
n1

+
n1−1∑
j=0

f2j+1ω
jp
n1
ωp

n.

We consider this sum in more detail. Suppose first that 0 ≤ p < n1. Then we can rewrite
this as

Fp = f̂even(p) + ωp
nf̂odd(p) (6.4)

where feven is the restriction of f to the even elements in its domain, and similarly for fodd.
Further, if we consider f̂ at a point in the second half of its domain, namely at a point p + n1

for some p with 0 ≤ p < n1, we see that

ωj(p+n1)
n1

= ωjp
n1

and ωp+n1
n = −ωp

n.

Thus we have

f̂(p+ n1) = f̂even(p)− ωp
nf̂odd(p). (6.5)

These two formulae are essentially the same, and show we can calculate a transform of size
n = 2m in terms of two transforms of size 2m−1.

6.6.1 Timing the FFT

We analyse the savings this method produces in the usual way. Let α(m) be the number of
additions needed to calculate the FFT on a vector of length n = 2m, and let µ(m) be the
corresponding number of multiplications.
Lemma 6.7. For m ≥ 1, µ(m) = m.2(m−1), α(m) = m.2m.

Proof. Clearly µ(0) = α(0) = 0, while µ(1) = 1, α(1) = 2. More generally, the result follows by
induction, since

µ(m+ 1) = 2m + 2µ(m) and α(m+ 1) = 2(m+1) + 2µ(m).

To check this, note that in addition to computing feven and fodd, Equation 6.4 gives an addi-
tional 2m multiplications when computing a transform of length 2m+1, while Equation 6.5 shows
these same products, ωp

nf̂odd(p), are all that are needed. The addition formula is even more
straightforward.
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Thus we get the claimed reduction form O(n2) to O(n log n). In particular, this gives a
method of implementing convolution using only n + 3n log(n)/2 multiplications. Our original
problem in Section 6.1 had two polynomials, each of degree n−1, whose product was (of course)
of degree 2n − 2. We saw in Exercise 6.3 that the product polynomial could be computed
using convolution, providing we worked in C

2n , to avoid the unwanted “wrap-around” part of
the definition of convolution. We now see that, provided we work in a space of dimension 2m

where m is the smallest integer such that 2n ≤ 2m, then we replace n2 multiplications with
O(m.2m) = O(n log n). If n is large, the saving can be very significant.

In fact a further speed-up can be obtained by arranging the data so it can be accessed simply.
In order to compute f̂ you need the values

f(0)f(4)︸ ︷︷ ︸ f(2)f(6)︸ ︷︷ ︸︸ ︷︷ ︸ and f(1)f(5)︸ ︷︷ ︸ f(3)f(7)︸ ︷︷ ︸︸ ︷︷ ︸
as two 4 - point transforms to combine into the 8 - point transform as

f(0)f(4)︸ ︷︷ ︸ f(2)f(6)︸ ︷︷ ︸︸ ︷︷ ︸ f(1)f(5)︸ ︷︷ ︸ f(3)f(7)︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
.

Each of these 4 - point transforms is calculated as two 2 - point transforms, as implied by the
bracketing. Thus in order to do the calculation, it is convenient if the input data is re-ordered.
If we write f(σ(j)) for the required re-ordering, so σ is a permutation of the set {1, 2, . . . , n},
then σ(j) = the bit reversal of the binary expansion of j. For example,

σ(6) = σ(1102) = 0112 = 3.

6.7 Convolution as Filtering

We claimed above that the fast Fourier transform was very important, but so far have presented
it purely as a way of multiplying polynomials. For the remainder of this section we give a brief
indication of a much more practical use for this algorithm. To do so, we first suggest another
way of thinking about convolution.

Although convolution is symmetric, I want to interpret the action of convolving by a fixed
element of C n , and to emphasise the asymmetry I will call the fixed element m rather than b.
We thus consider the map

a → a ?m (a ∈ C n )

for a fixed element m ∈ C
n . We will call such a fixed element a mask or filter. How does

filtering (convolving with a fixed mask) affect a ∈ C n , often called the signal?
To get an initial understanding, it helps to choose a simple filter, so let

m = (m0,m1, 0, . . . , 0,m−1) and a = (a0, a1, a2, . . . , an−2, an−1).

From the definition, we have

a ?m = (a−1m1 + a0m0 + a1m−1, a0m1 + a1m0 + a2m−1, . . .

an−3m1 + an−2m0 + an−1m−1, an−2m1 + an−1m0 + a0m−1). (6.6)

The circular wrap-around is essential as far as m is concerned, but can get in the way of under-
standing what happens to a.

Example 6.8. Let a = (0, 0, 3, 7, 1, 4, 6, 2, 0, 0) and m = (4, 2, 0, 0, 0, 0, 0, 0, 0, 1). Evaluate a ?m.
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Solution This is simple arithmetic, based on Equation 6.6.

a ?m = (0, 3, 19, 35, 22, 24, 34, 20, 4, 0).

It is worth doing to the calculation to discover an efficient way to set it out. One way is as
follows: first flip m, and then consider sliding it along above a, multiplying elements in the
same column, and assigning the sum of these products as the output associated with the current
position of element zero of m. Here then is the calculation of the fourth element (ie the element
with index 3) of a ?m:

0 0 2 4 1 0 0 0 0 0
0 0 3 7 1 4 6 2 0 0

And (a ?m)3 = 2.3 + 4.7 + 1.1.

It may be easier now to see why the language of signals and filters was used. In this case, the
filter m has acted as a smoothing filter; the two pronounced peaks in the original signal have
been spread out; indeed, looking at m it may now be clear that it is indeed a prescription to
smooth the central element by incorporating a contribution from either side. For convenience
in calculation, this particular filter also amplified the signal. However the effect may have been
easier to understand if the filter had been scaled so that the total mass (the sum of all the values
in the filter) was set to 1. This would involve multiplying a ?m by 1/7.

The effect of convolution has been to “do the same thing” to each of the elements of the
incoming signal a. In this case it was easy to do the convolution directly because the support
(the number of non -zero elements) of m was small. As the support becomes larger, the gain
from implementing such a filter using Fourier transforms and the convolution theorem becomes
significant.

In passing we note another name for m, since we can recognise m as the (reveresed) output
corrsponding to input 10 in the notation of Section 6.4. It is thus sometimes called the point
spread function, or perhaps the instrument response function. From this viewpoint, displaying
the mask as (m0, . . . ,mn−1) is not particularly convenient; it is usually easier to visualise the
effect if presented as

(. . . ,m−2,m−1,m0,m1,m2, . . . )

centered as closely as possible on m0. Thus we would describe the mask of Example 6.8 as
(0, 0, 0, 1, 4, 2, 0, 0, 0, 0), and as being centered on the value 4.

6.8 An application to Image Processing

We can extend the definition of the discrete Fourier transform from vectors to arrays with only
notational difficulty. It is of interest because an array has a very visual representation as a
digitised image or picture, with f(j, k) representing the brightness of the image at position
(j, k). We thus define the Fourier transform of an image as the (complex valued) array F , given
by

F (p, q) =
1√
nm

m−1∑
j=0

n−1∑
k=0

f(j, k) exp
(−2πijp

m

)
exp

(−2πikq
n

)
.

Just as before we can write this as a double sum

F (p, q) =
1√
nm

m−1∑
j=0

n−1∑
k=0

f(j, k)ωjp
mω

kq
n .
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There is a similar inversion formula to Equation 6.3, which can be checked in exactly the same
way.

The implementation of the true 2 - dimensional transform can be done in two stages; for
each fixed row, we take the transform of each column, and then with the transformed data in
the corresponding position, take the transform of each row. Thus all the difficulties have been
faced in the 1-dimensional case.

A digitised image rotuinely contains around 250, 000 elements or pixels; there is thus a very
significant saving to be made by using the FFT to implement convolution or masking as soon as
the support of the mask becomes of significant size. We conclude with two examples of image
masks which clearly do useful things, and which normally would be implemented in this way.

6.8.1 Gaussian Blur

As we saw in Example 6.8, an obvious use for masking is to implement a smoothing or blurring.
Such an effect is easy to see on an image. We now approximate a normal, or Gaussian blur,
obtained perhaps using a “soft” lens so the light spreads out on the focal plane, rather than all
going to the “correct” spot. Such a Gaussian, of variance σ2 is of the form

f(j, k) =
1√
2πσ

exp
(−(j2 + k2)

2σ2

)
,

where conventionally we assume the function is zero outside a neighbourhood of radius 3σ. If
we take σ = 1 we get the mask

1
1003




0 0 1 2 1 0 0
0 3 13 22 13 3 0
1 13 59 97 59 13 1
2 22 97 159 97 22 2
1 13 59 97 59 13 1
0 3 13 22 13 3 0
0 0 1 2 1 0 0



.

The result of applying this mask, considered as centered on the largest value, to the image of
Fig 6.1 is shown in Fig. 6.2. It is clear that a noticeable blur has been obtained as was expected.

Figure 6.1: Input image. Figure 6.2: Output after
Gaussian filtering.

Figure 6.3: The zero-
crossings of the image
filtered by a difference of
Gaussians.

It may be less clear why there is any interest in blurring an image. However it can form a
useful intermediate step. The image shown in Fig 6.1 was filtered using a difference of Gaussians
(DoG filter) at two different scales. The resulting filter is supposed to respond in a way very
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simlarly to the receptive fields in our eyes. The output is no longer always positive, so does not
represent an image, but the pixels where the intensity changes sign are marked in Fig 6.3. The
overall effect is that of a neurophysiologically plausible edge detector.

6.8.2 The Laplace Operator

We give one more example of why (linear) digital filtering, implemented via the FTT may be of
interest. This involves the Laplacian filter given by the mask

1
5


 0 −1 0
−1 4 −1
0 −1 0


 .

This is the digital analogue of the negative Laplacian operator, ie

−
(

∂

∂x2
+

∂

∂y2

)
.

The second derivative is evaluated as(
f(y, x+ δx)− f(y, x)

)
−
(
f(y, x)− f(y, x− δx)

)
.

Adding two orthogonal such approximations gives the mask shown. An example of the output
of the Laplacian filter is given in Fig. 6.4.

Figure 6.4: Output of Laplacian filter. Figure 6.5: Output of sharpening filter.

There is another interpretation of the operator, which although completely unjustifiable, may
indicate why the output from the Laplacian gives a “sharpened” version of the original image.
We have seen above how to create an image blur(f) from f , using, for example, the mask

1
5


0 1 0

1 1 1
0 1 0


 .

It can thus be argued that (f−blur(f)) defines a function called, perhaps sharp(f). But sharp(f)
has mask 

0 0 0
0 1 0
0 0 0


− 1

5


0 1 0

1 1 1
0 1 0


 ,

and this is precisely the Laplacian mask. We can thus argue that the Laplacian sharpens. In
practice, the image in Fig. 6.4 is almost dark; we are seeing only the sharpness; to see more
useful output, we need to add the sharpness back to the original image; this gives Fig. 6.5.



6.8. AN APPLICATION TO IMAGE PROCESSING 83

Summary You are probably beginning to recognise this sort of processing. For example it is
now commonplace in television titles. Such processing must be done very quickly, even though
the images are large, with perhaps 400, 000 elements in each. The FFT algorithm is sufficiently
fast to do this in a pipeline, while pointwise multiplication can be very simply. The combination
enables “special effects” processing to be done routinely, in situations where there is insufficient
time to implement filtering using the naive “muliply and add at every point” algorithm.
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Questions 6 (Hints and solutions start on page 105.)

Q 6.1. For each l ∈ Zn define the shift operator Sl on C
n by Slf(j) = f(j − l), and as before,

write ω = exp(−2πi/n). Prove that

Fn(Slf)(p) = ωlp
Fnf(p)

Q 6.2. The Fourier matrices F2 and F3 are

1√
2

(
1 1
1 −1

)
and

1√
3


1 1 1

1 ω ω2

1 ω2 ω


 ,

where

ω = −1
2
− i

√
3

2
= cos

(
2π
3

)
− i sin

(
2π
3

)
.

Check that these are both unitary matrices directly, and write down F4 and F5.

Q 6.3. Let a = (a0, a1, . . . , an−1, 0, . . . , 0) and b = (b0, b1, . . . , bn−1, 0, . . . , 0) be points in C
2n

Show that

a ? b =
(
a0b0, (a1b0 + a0b1), (a2b0 + a1b1 + a0b2), · · · ,

(an−1b0 + an−2b1 + · · ·+ a0bn−1), · · · , an−1bn−1, 0
)
.

Deduce that if a and b are the coefficients of polynomials p(x) and q(x) respectively, as in
Equation6.1 then p(x)q(x) has coefficients a ? b.

Q 6.4. Write out a full implementation of an 8 - point discrete Fourier transform.

Q 6.5. One way to look at the Fourier transform of a polynomial, considered as a point in C
n ,

is in terms of evaluation of the polynomial at a fixed set of n fixed points. Verify this, and
determine the fixed set of points.

Q 6.6. Let zn = 1, and assume that z 6= 1. Verify that

1 + z + z2 + · · ·+ zn−1 = 0.

Let ω = exp(−2πi/n). Verify that for any integer n ≥ 1, the Fourier matrix Fn defined by

Fn =
1√
n




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




has inverse F̄n, the complex conjugate of Fn.
Explain how this fact can be used to derive an algorithm which takes time O(n log n) to

multiply two polynomials of degree n. You are not required to prove anything but you should
ensure that your notation is defined and that results you use, such as the convolution theorem,
are clearly stated.
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Big O

We often end up with messy timing formulas like

T (n) = 2.456n2 + π ln(3n) +
5
7
[
√
n+ 1].

This sort of detail is rarely of any use to anyone. Users of algorithms usually want simpler results
that are easier to understand. They want to know whether a given program is going to take
seconds, minutes or years to complete. They are not usually interested in the difference between
1.23 seconds and 1.24 seconds.

Now, in the above formula the last two terms are quite small compared to the first, particu-
larly if n is large.

For n = 10 it gives T (10) = 245.6 + 10.69 + 2.14
For n = 100 it gives T (100) = 24560 + 17.92 + 7.14
We would like to be able to say that T (n) behaves essentially like n2 (modulo a proportionality

factor). This is much easier to understand and is essentially true.
I now want to introduce a notation that goes some way towards making this idea precise.
Let f, g : R → R be functions. We say that f = O(g) if there are x0,M > 0 such that

|f(x)| < M |g(x)| for x > x0

i.e. there is some fixed multiple of g that eventually dominates f . Another way to say this is
that f(x)/g(x) is eventually bounded.

For example

n2 + n+ 1 = O(n2) since, for n > 1, 3n2 > n2 + n+ 1

= O(n3) even more so

6= O(n) because
n2 + n+ 1

n
→∞ as n→∞

Similarly, n3 − 4n2 + n = O(n3) and 6= O(n2).
Note that n2 + n+ 1 = O(n100) is true, but not very helpful. We usually try to make Big-O

statements as ‘limiting’ as possible.

A standard kind of statement in this subject is: Algorithm A has T (n) = O(n2) and algorithm
B has T (n) = O(n3). So A is the faster algorithm. Be careful! This is usually correct, but could
in some cases be misleading. To take a very silly example: if f(n) = 1010n2 and g(n) =
10−10n3 then f = O(n2) and g = O(n3) but f(n) > g(n) so long as n < 1020. In real life the
proportionality factors are rarely that different, so Big-O statements are usually fairly safe for
reasonably large values of n.

85
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Solutions to Exercises

Solutions for Questions 1 (page 15).

Solution 1.1: Strassen’s method can be found at (Sedgewick 1988, Page532).

Solution 1.2: The only two problems that can really occur have to do with the hatching line
not meeting an edge ‘cleanly’. The first is the case where an edge of the polygon is horizontal
and happens to coincide over its length with the hatching line. In this case there is no unique
intersection point. The best approach in this case is to ignore this edge — i.e. say that it does
not intersect the hatch line.

The other problem comes when a hatch line passes through a vertex of the polygon. That
vertex belongs to two edges, so it will be counted twice and add two points to the intersection
list when you only really mean to add one point. This will, in general, screw up the sequence.

Solution 1.3: No solution offered.

Solution 1.4: The only real difference is in the algebra. The equations of our hatch-lines are now
something like y = mx+h where m = tanα. We now have a slightly more complicated problem
in deciding whether or not a hatch-line meets an edge, but that’s just algebra.

Solution 1.5: No solution offered.

Solution 1.6: No solution offered.

Solution 1.7: No solution offered.

Solution 1.8: No solution offered.

Solution 1.9: There seem to be two useful things to do — initialise carefully, and check each
array element against the known second smallest element. Here is one reasonable attempt

algorithm twoSmallest(array x, length n)
if n < 2 return (fail)
// First set up min and min2 so we have min <= min2
if (x(1) < x(2)) then

min = x(1)
min2 = x(2)

else
min = x(2)
min2 = x(1)

endif
// and now check each element to see if it disturbs the definition
// of the two as the lowest and second lowest.
while (i <= n) do

if (x(i) < min2) then
if (x(i) < min) then // we have a new lowest

min2 = min // the second smallest must also change
min = x(i)

else // we have a new second lowest
min2 = x(i)

endif
endif

endwhile
return min, min2

end
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It *may* be better to maintain pointers to the two array entries which contain the required
minima, but the gain, if any, is minimal.

Solution 1.10: No solution offered.

Solution 1.11: No solution offered.

Solution 1.12: To get an explicit formula for An
n−2, write an = An

n−2 and note from the recurrence
relation that

an = (n− 1)An−1
n−2 + an−1 = (n− 1).1 + an−1

on using the fact that An
n−1 = An−1

n−2 = 1. Thus since a2 = 1 we have

an = (n− 1) + (n− 2) + · · ·+ 2 + 1,

=
n(n− 1)

2
.

Note that a3 = 3, a4 = 6 and a5 = 10 as given in the table.
We can also ask about An

n−3. With the above experience, lets call this bn−1. Then from the
recurrence relation, we have bn = An

n−2 = bn−1 and b2 = A3
0 = 6. Thus

bn =
n2(n− 1)

2
+ bn−1

=
1
2

n∑
k=3

k2(k − 1) + 6

=
1
2

n∑
k=1

k2(k − 1) + 6− 4/2

=
1
2

(
n2(n+ 1)2

4
− n(n+ 1)(2n+ 1)

6

)
+ 4

=
n(n+ 1)

24
(3n2 − n− 4) + 4.

Clearly more off-diagonals can be evaluataed in this way if necessary.

Solution 1.13: No solution offered.

Solution 1.14: The algorithm is as follows:

algorithm min(x,n) // to find the minimum of x =(x(1),...,x(n))
begin
min = x(1)
for i = 2 to n begin
if ( x(i)< min )

min = x(i)
end
return (min)

end

In order to analyse the timing, we present the algorithm as a flowchart:
We just want to count how many times each box is executed. Boxes A and B are only

executed once. Boxes C, E and F are on a loop that the program goes round n − 1 times, so
each of these is executed n− 1 times. That leaves box D; suppose it is visited d times. Clearly
the minimum value of d is zero, which occurs whenever the list has its smallest element in first
place. And the maximum value of d for a list of n elements is n − 1. This will occur when the



88 APPENDICES

STOP

NO

YES

NO

F

E

D

C

B

A

YES

min = x(1)

i = 2

x(i) < min?

i = i + 1

i <= n?

min = x(i)

Figure 6: Flow chart to find the minimum element in a list.

list is in strictly decreasing order, so that the current value of the minimum has to be updated
on each step.

Thus the time T (n) taken by the algorithm to find the minimum of n numbers lies in the
range

3(n− 1) + 2 ≤ T (n) ≤ 3(n− 1) + 2 + (n− 1)

or
3n− 1 ≤ T (n) ≤ 4n− 2.

In order to derive “average” values we assume that the lists that we are dealing with are all
the permutations of the list (1, 2, 3, 4, . . . , n). There is nothing limiting about this assumption.
We further assume that all these permutations are equally likely to be presented to the algorithm.
Clearly T (2) = 2.5 since step D will be visited on half of all “average” inputs. Thus µ(2) = 1

2 ,
and so

µ(n) =
1
2

+
1
3

+ . . .
1
n
.

Consider now the diagram in Fig 7.

21 3 4 n-1 n

y = 1/x

Figure 7: Graph of y = 1/x.
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By adding up the areas of the rectangles that lie above the graph we get

1 +
1
2

+
1
3

+ · · ·+ 1
n− 1

>

∫ n

1

dx

x
= lnn.

and so µ(n) > lnn− 1+ 1
n . Similarly, by adding up the areas of the rectangles that lie below the

graph we get

1
2

+
1
3

+ · · ·+ 1
n
<

∫ n

1

dx

x
= lnn

and µ(n) < lnn. Combining these we have

lnn− 1 +
1
n
< µ(n) < lnn.

Thus

3n− 2 + lnn+
1
n
< T (n) < 3n− 1 + ln(n).

In particular, if n = 100 we have 302.6053 < T (n) < 303.6052. [And the fact that this estimate
can be much improved was noted in the text.]

Solution 1.15: Here is pseudocode for the minimum and second minimum element algorithm. I
don’t think it is in the spirit of this question to check that the list has at least three elements
etc!

algorithm min_and_second(x)
// To find the smallest and second smallest of x = (x(1)...x(n))
begin
if (x(1) < x(2)) then

min = x(1)
second = x(2)

else
min = x(2)
second = x(1)

endif
for i = 3 to n begin

if (x(i) < min) then
second = min
min = x(i)

else if (x(i) < second) then
second = x(i)
endif

else
// do nothing

endif
end
return (min AND second)

end

Let T (n) be the time taken to execute on a list of length n. The setup phase takes 1 test and 2
assigments. In the main loop, executed (n− 2) times, there is an initial assigment of i, a final
test to see if (i == n) and either

• two tests and no assigments; or
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• two tests and one assignment; or

• one test and two assigments.

giving either 4 or 5 operations in a given iteration. We ignore the cost of the return statement.
Thus the total operation count satisfies

3 + 4(n− 2) ≤ T (n) ≤ 3 + 5(n− 2) or 4n− 5 ≤ T (n) ≤ 5n− 7.

In either case, and hence in general, the algorithm is O(n).
We shall refer to either of the second two cases as involving a detour. Our aim is to find the

“average” number of detours d; since T (n) = 4n − 5 + d, this will give the “average” time to
complete the algorithm.

Note that the actual numbers in the list are irrelevant. All that matters is their relative
ordering. Thus we assume that we are dealing with lists of n distinct elements (we ignore the
possibility that the lists with repeated elements). Then we may as well assume that the lists
that we are dealing with are all the permutations of the list (1, 2, 3, 4, . . . , n). In addition assume
that all these permutations are equally likely to be presented to the algorithm. Thus we seek
the average number of detours executed when applying the algorithm to the permutations of
(1, 2, 3, . . . , n), granted that all such permutations are equally probable.

We now compute the number of detours that occur when applying the algorithm to each
permutation in S4. Note that a detour occurs precisely when we encounter a new minimum
element in either third or fourth place in the original list. The computation is given in Table 1
We see there are 28 detours in all so the expected number of detours is 7/6 and the average time

π d π d π d π d
(1,2,3,4) 0 (2,1,3,4) 0 (3,1,2,4) 1 (4,1,2,3) 1
(1,2,4,3) 0 (2,1,4,3) 0 (3,1,4,2) 1 (4,1,3,2) 2
(1,3,2,4) 1 (2,3,1,4) 1 (3,2,1,4) 1 (4,2,1,3) 1
(1,3,4,2) 1 (2,3,4,1) 1 (3,2,4,1) 1 (4,2,3,1) 2
(1,4,2,3) 1 (2,4,1,3) 1 (3,4,1,2) 2 (4,3,1,2) 2
(1,4,3,2) 2 (2,4,3,1) 2 (3,4,2,1) 2 (4,3,2,1) 2

Table 1: Counting detours for the elements of S4

to sort a list of length 4 is 13 1
3 units.

Solutions for Questions 2 (page 33).

Solution 2.1: No solution offered.

Solution 2.2: No solution offered.

Solution 2.3: No solution offered.

Solution 2.4: No solution offered.

Solution 2.5: No solution offered.

Solution 2.6: No solution offered.

Solution 2.7: No solution offered.

Solution 2.8: No solution offered.

Solution 2.9: No solution offered.

Solution 2.10: No solution offered.



91

Solution 2.11: No solution offered.

Solution 2.12: No solution offered.

Solution 2.13: No solution offered.

Solution 2.14:

a) We start with our list {x1, . . . , xn}, pick some element in the list, called the separator,
and then rearrange the list so that all the elements that are less than or equal to the separator
come before it and all the elements that are greater than the separator come after it. Having done
this we then recursively apply the algorithm to each of these sublists. The recursion continues
along any branch until its sublist shrinks down to zero or one element. The outline of the
program is:

algorithm quicksort(x,lo,hi)
// to sort xlo, . . . , xhi

begin
if hi > lo begin // i.e. if there is anything to sort
choose separator s from list
separate out the list into the form
(xlo, . . . , xk, s , xk+2, . . . , xhi)
quicksort(x,lo,k)
quicksort(x,k+2,hi)

end
end

The whole list is then sorted with a call to quicksort(x,1,n). The choice of s can be made at
random from the list.

We show the various stages in sorting the given list, drawing a box round the separator
element. At each stage the list is shown after the call to separate and before recursive calls to
the two sublists.

6 4 8 2 11 5 3 7 9 1 10
4 2 5 3 1 6 8 11 7 9 10
2 3 1 4 5 6 7 8 11 9 10
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11

Note that the last sort was necessary; although the previous line was in fact sorted, this depended
on the accidental positioning of 10 after 9 in the original array.

b) We assume that the initial list is a permutation of {1, . . . , n} and that all permutations
are equally likely. Suppose the list splits into sublists of lengths k and n− 1− k; this leaves one
left over for the separator. Then on average

Tn = αn+ Tk + Tn−1−k

By our assumptions, all possible values of k are equally likely. We thus remove the dependence
on k by taking the average over all the possibilities:

Tn = αn+
1
n

n−1∑
k=0

(Tk + Tn−1−k).
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Since each of the Tk’s appears twice in the sum, we obtain

Tn = αn+
2
n

n−1∑
k=0

Tk

as required. Using this relationship twice,

n

2
(Tn − αn) = T0 + · · ·+ Tn−1

n+ 1
2

(Tn+1 − α(n+ 1)) = T0 + · · ·+ Tn−1 + Tn.

Subtracting these and rearranging gives

Tn+1

n+ 2
=

Tn

n+ 1
+

α(2n+ 1)
(n+ 1)(n+ 2)

.

c) Although insertion sort is simple to program without error, it runs in time O(n2), where
n is the number of elements in the list. Although more complicated as we saw above, Quicksort
has an average running time of O(n log n), and is very significantly faster for long lists than
insertion sort.

Heapsort is another sorting method which runs in time O(n log n), and has the advantage
that this also applies to the worst case running time, while Quicksort requires time O(n2) in the
worst case. However the constant of proportionality is typically twice as big for Heapsort, so in
general Quicksort is sufficiently faster to be the method of choice when speed is important, and
there is no reason to believe the input is unusual.

Solutions for Questions 3 (page 49).

Solution 3.1: Pop the stack and push onto an auxiliary stack until the first stack is empty, and
you can get at the bottom element. Then push them all back again, noting that at least they
come out in the right order. So if there are n elements on the stack, it takes 2n operations to
remove the next element from the queue: not a very bright idea!

Solution 3.2: Add at the end of the array, remove at the front, and roll round to avoid running
out of space before the array is full. This means there is need for two points to be kept current
all the time, say f, pointing to the front of the queue, and b, pointing to the back, where new
elements will be added. If f < b things are as you expect, while if f > b, the queue “really”
stretches from f to b + N, where N is the size of the array.

Solution 3.3: Since there are more red tokens than any other, we re-arrange the algorihtm to
avoid performing a swap when we meet a red token. Here is the new algorithm:

b = w = 1;r = N; // initialise as before
while (w < r + 1) begin

if (R(r)) r = r-1 // it was a red token
else if (W(r)) begin // it was a white token
swap(w,r);w=w+1
end

else begin // it was a blue token
swap(b,w);swap(r,b);b=b+1;w=w+1

end
end // while
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The action on seeing a blue token is first to move region W up by swapping it’s first member
with the unknown token at the bottom of region X , and then to swap that unknown token with
the one at the bottom of region R, which has just proved to be blue.

The total number of calls to swap is thus |W |+2|B|. This is faster than the original algorithm
provided

|W |+ 2|B| ≤ |B|+ |R|
and this occours iff |W |+ |B| ≤ |R|; in other words, when at least half of the tokens are red.

Solution 3.4: It is the preorder traversal.

Preorder:- [A B E F G H C I D]
Inorder:- [E B F G H A I C D]
Postorder:- [E F G H B I C D A]

Solution 3.5: To pass from a “left-right children” description to a “terminal node” description,
replace the empty tree by one consisting of a single terminal node. Next repleace every child
node which is a leaf node by one having two children, each of which is a terminal node. Finally,
if a node has a left child, add a terminal right node etc.

To pass from the “terminal node” description to the “left-right children” description, simlpy
delete all terminal nodes.

Solution 3.6: Try it - going to Sedgewick if necessary for more help.

Solution 3.7: Note that it is not unique; where two symbols have the same frequency, it is
necessary to make exactly the same choice as shown in the diagram in order to exactly reproduce
the tree given in the notes.

Solution 3.8: A Huffman code is used when the input is from a limited character set, and contains
information that is redundant; a typical example is English text, in which the letter “e” occurs
significantly more often than random. One such application is in the “gzip” utility which is
based on the Huffman code.

We describe how to build the binary Huffman code by building the corresponding binary
tree. We start by analysing the message to find the frequencies of each symbol that occurs in
it. Our basic strategy will be to assign short codes to symbols that occur frequently, while still
insisting that the code has the prefix property. Our example will be build around the message

A TEST EXAMINATION ANSWER

The corresponding frequencies are given in Table 6.8.2; we write the space symbol “ ”, in the
table as  .

A T E S X M I N O W R  
4 3 3 2 1 1 2 3 1 1 1 3

Table 2: Symbol frequencies used to build a Huffman Code.

Now begin with a collection (a forest) of very simple trees, one for each symbol to be coded,
with each consisting of a single node, labelled by that symbol, and the frequency with which it
occurs in the string. The construction is recursive: at each stage the two trees which account
for the least total frequency in their root nodes are selected, and used to produce a new binary
tree. This has, as its children the two trees just chosen: the root is then labelled with the total
frequency accounted for by both subtrees, and the original subtrees are removed from the forest.
The construction continues in this way until only one tree remains; that is then the Huffman
encoding tree.
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N  A X M O W T E R S I
3 3 4 1 1 1 1 3 3 1 2 2

2 2 3 2
4 6 5

6 8
14 11

25

Table 3: Symbol frequencies used to build a Huffman Code.

[NB The particular order in which the symbols are displayed was determined by trial and
error in order to present the result in a tabular form in which only adjacent columns were merged.
It is not necessary to give a presentation in this form; crossing are perfectly acceptable.]

We now code the word ANSWER using this coding tree. Although this is a prefix code and
so spaces are not required, we include spaces between letters for clarity. We read up from the
bottom of the table, assigning 0 to a choice of a left hand branch, and 1 to a choice of the right
hand branch. The resulting code is then

010 000 1101 01111 101 1100

The Huffman code has the prefix property; no character code is the prefix, or start of the the
code for another character. In the same way that the Huffman code was constructed, we can
associate a binary code with the prefix property to any binary tree. Given any binary tree with
the same set of leaf nodes, and thus able to code the same symbols, the Huffman code is optimal
in the sense that the corresponding coded message length is at least as short as that from the
given tree.

Solution 3.9: A priority queue is a collection of elements or items, each of which has an associated
priority. The operations available are:-

create creates an empty priority queue;

add(item) adds the given item to the priority queue; and

remove removes the item with the highest priority from the queue.

A complete binary tree is a tree which is either empty, or one in which every node:

• has no children; or

• has just a left child; or

• has both a left and a right child.

In addition, we require that all the levels, except perhaps the last, has both a left and a right
child; while on the last level, any missing nodes are to the right of all the nodes that are present.

If we have a representation of a priority queue as a complete binary tree in which each node
contains an element and its associated key or priority, it satisfies theheap condition if at each
node, the associated key is larger than the keys associated with either child of that node.

We now create a priority queue, represented as a complete binary tree, in which letters at
the end of the alphabet have priority. When the first three characters are added as additional
nodes in the binary tree, the new tree already satisfies the heap condition. Adding “P” violates
that condition; “P” thus has to rise until it is again satisfied.
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H H

E

H

E A

H

E

P

A

→ P

H

E

A

When “S” is added, it rises to the top of the tree before the heap condition holds.

P

H

E S

A

−→ S

P

E H

A

Now add “O”; it has to rises to be above “A”

S

P

E H

A

O

−→ S

P

E H

O

A

Now add “R”; this replaces “O” and fills the tree at level 2.

S

P

E H

O

A R

−→ S

P

E H

R

A O

The final addition of “T” completes the tree, when it has been re-heaped.

S

P

E

T

H

R

A O

−→ T

S

P

E

H

R

A O

The string is now sorted by removing the root node — this is the item with the highest
priority remaining in the tree — and replacing it with the “last” node in the tree. The tree no
longer satisfies the heap condition, and so the node that has just been promoted is allowed to
fall again until the condition holds.

E

S

P H

R

A O

−→ S

P

E H

R

A O
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The root of the tree again contains the next character in order and is removed. This continues
until the whole heap has been destroyed.

Finally, note that although in general Heapsort is slower than Quicksort by a factor of about
2, the “worst case” behaviour remains O(n log n), whereas Quicksort can become O(n2).

Solution 3.10: A Huffman code is used when the input is from a limited character set, and
contains information that is redundant; a typical example is English text, in which the letter “e”
occurs significantly more often than random. One such application is in the “gzip” utility which
is based on the Huffman code.

We describe how to build the binary Huffman code by building the corresponding binary
tree. We start by analysing the message to find the frequencies of each symbol that occurs in
it. Our basic strategy will be to assign short codes to symbols that occur frequently, while still
insisting that the code has the prefix property. Our example will be build around the message

A HUFFMAN EXAMPLE PLEASE

The corresponding frequencies are given in Table 6.8.2; we write the space symbol “ ”, in the
table as  .

A  H U F M N E X P L S
4 3 1 1 2 2 1 4 1 2 2 1

Table 4: Symbol frequencies used to build a Huffman Code.

Now begin with a collection (a forest) of very simple trees, one for each symbol to be coded,
with each consisting of a single node, labelled by that symbol, and the frequency with which it
occurs in the string. The construction is recursive: at each stage the two trees which account
for the least total frequency in their root nodes are selected, and used to produce a new binary
tree. This has, as its children the two trees just chosen: the root is then labelled with the total
frequency accounted for by both subtrees, and the original subtrees are removed from the forest.
The construction continues in this way until only one tree remains; that is then the Huffman
encoding tree.

A  H U F M N X E P L S
4 3 1 1 2 2 1 1 4 2 2 1

2 2 3
4 4 5

7 8 9
15

24

Table 5: Symbol frequencies used to build a Huffman Code.

[NB The particular order in which the symbols are displayed happens to give a table with
no crossings when listed in the order in which the symbols are gathered. It is not necessary to
give a presentation in this form; crossing are perfectly acceptable.]

We now code the word PLEASE using this coding tree. Although this is a prefix code and
so spaces are not required, we include spaces between letters for clarity. We read up from the
bottom of the table, assigning 0 to a choice of a left hand branch, and 1 to a choice of the right
hand branch. The resulting code is then

110 1110 10 000 1111 10
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A binary tree with 2n nodes must have at least n levels, so the longest string must have
at least n symbols. This bound is actually attained if the tree is a complete binary tree; one
circumstance in which this will occur is if all the letters in the initial alphabet are equally
probable.

To get the longest possible string, the tree must be completely unbalanced, with (for example)
every left node being a leaf node, and with all growth taking place at the right. This means that
apart from the final level, we have one symbol of each length, and so the longest symbol must
have length 2n − 1. If the corresponding probabilities are p0 ≥ . . . ≥ pk, where k = 2n, then to
ensure the tree builds in the way specified, we must have

pi ≥
k∑

j=i+1

pj

so the probability of a given symbol must be at least as great as the sum of the probabilities of
all the less likely symbols.

Solutions for Questions 4 (page 62).

Solution 4.1: No solution offered.

Solution 4.2: No solution offered.

Solution 4.3: Here is my attempt. I first give the result, and only then suggest how to think
about it.

• The alphabet is A = {a}.
• The abstract alphabet is A = {σ,B,C,D,E, S, T}.
• The initial symbol is σ.

• The productions are

1. σ → a;
2. σ → aBT ;
3. T → E;
4. E → a;
5. Ba → aB;
6. BE → aaE;
7. BT → CaaBS;
8. BC → CaaB;
9. aC → aaDB;

10. DB → BD;
11. aDa → aaD ; and
12. DS → BT .

Clearly this has something behind it. Start by thinking of T , S and E as terminal symbols. One
is always present, in the last position, until the final production, when the string is made fully
concrete. Note that only production 6 decreases the number of B’s, so production 4 cannot be
invoked until all B’s have been removed.

The productions are based on the identity (n+ 1)2 = n2 + 2n+ 1, and the idea behind it is
that “at rest”, when the string contains only ‘a’s, ‘B’s and a final T , there are n2 copies of a,
then n copies of B, (think of each B as aa) and finally one T - thought of also as a. For example,
applying productions 2, 7, 9, 11, 10 and 12 leads to aaaaBBT . At this point a choice is made
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between production 7, which eventually increases the string from length n2 to length (n + 1)2,
and production 3, which makes the string fully concrete. Once production 3 has been used, only
productions 4, 5 and 6 are relevant.

If the choice is made to apply production 7, the only option is to pass C through all the
B’s using production 8 until it converts to a D and then pass this D back down until it hits S.
Each time C passes through B, an additional 2 a’s are created, so as C passes up the string, an
additional 2n copies of a are created as needed. The (2n + 1)th extra a is then added before
before passing D back to the terminator S, where it becomes a T again to repeat the process.

As you can see, production rules form an unusual programming language, but the principles
are not very different from many others.

Solution 4.4: The question asked for a grammar, and did not ask for a proof that the grammar
gave what was wanted — for the same reason that we didn’t prove that the grammar AE gave
arithmetic expressions; there was no other formal definition with which to compare.

Here is a suitable grammar.

• The alphabet is A = {0, 1, 2, . . . , 9} ∪ {+,−, .};
• The abstract alphabet is A = { (full), (optsign), (unsigned), (number),

(digit)}
• The initial symbol is (full).

• The productions are

1. (full) → (optsign)(unsigned);
2. (unsigned) → (number).(digit)(number);
3. (unsigned) → (digit)(number);
4. (number) → (digit)(number);
5. (number) → ε, the empty string;
6. (digit) → 0|1|2| . . . |9; and
7. (optsign) → +| − | ε.

We can describe the actions to a certain extent. Starting with the initial symbol, we must pass
to (unsigned) using production 1 so we optionally add a sign. An (unsigned) either contains
a decimal point followed by at least one digit, or is a string of at least one digit. So we allow
things like 0.0, or even .0, but dis-allow 345. in which the decimal point is not followed by a
digit.

There is no real additional difficulty in coping with the exponential form 12.3E4 provided
the alphabet is extended to contain E; only one new production is needed, namely

(full) → (optsign)(unsigned) E (optsign)(digit)(number);

Of course this assume that things like .7E − 06 are legal. Another way would be to have a new
member of the abstract alphabet, say (optE), which is defined in the obvious way to be either
a correctly formatted “E” terminator, or null; this is then put at the end of the first production.

A boring solution to having a fixed length is to have a member (8digits) of the abstract
alphabet, and an obvious production involving a (digit) and (7digits) etc.

Solution 4.5: No solution offered.

Solution 4.6: No solution offered.

Solution 4.7: No solution offered.

Solution 4.8: No solution offered.

Solution 4.9:
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a) We have

σ
(2)−→ aβγ

(4)−→ abγ
(6)−→ abc

and so abc is in L.

b) We first show that a2bcbc is not in L. Any derivation must start as

σ
(1)−→ aσβγ

(2)−→ a2βγβγ

since this is the only way to derive a string with exactly two copies of a. If we apply (3) at this
stage, we are essentially forced to derive the string a2b2c2, as in part (c). However making β
and γ concrete involves using productions (4) to (7), and the opportunity to use each of these is
limited. We must start by using (4), since the others involve b or c. The sequence

a2βγβγ
(4)−→ a2bγβγ

(6)−→ a2bcβγ

is then forced, and no further productions apply. Thus we cannot derive a2bcbc.
If productions (4) to (7) are replaced by (4′) and (5′), we can derive a2bcbc as follows:

σ
(1)−→ aσβγ

(2)−→ a2βγβγ
(4′)−→ a2bγbγ

(5′)−→ a2bcbc.

c) We have the derivation

σ
(1)−→an−1σ(βγ)n−1 (2)−→ an−1a(βγ)n (3)−→ an−1aβnγn (4)−→

an−1abβn−1γn (5)−→ anbn−1bγn (6)−→ anbn−1bcγn−1 (7)−→ anbncn.

Here, each odd labelled production is applied (n− 1) times, while each even labelled production
is applied only once, and provides the “glue” to move to the next stage.

d) We have L = {anbncn}; in other words, L consists of an arbitrary string of a’s followed
by the same number of b’s and concluding with the same number of c’s

To see why this is so; why anbncn are the only strings which can be derived, we essentially
follow the argument in part (b) It is not possible to make β or γ concrete unless we use production
(4); since until that is used there is neither b nor c available. But production (4) cannot be used
until after (2), which itself stops further use of (1). So at the end of this stage we have anβ...γ
and the intermediate symbols are equal numbers of β’s and γ’s. Note that we can never make
concrete a string containing cβ; and one will occur as it did in part (b) unless production (3) is
fully utilised. In this latter case we derive anbncn.

Solution 4.10:

a)

σ
(1)−→ αβ

(3)−→ αaγ
(4)−→ a2αγ

(6)−→ aa

and so a2 is in L.

b)

σ
(1)−→ αβ

(2)−→ ααβ
(3)−→ α2aγ

(4)−→ αa2αγ
(4)−→ a2αaαγ

(4)−→ a4α2γ
(5)−→ a4αγ

(6)−→ a4

and so a4 is in L.
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c) Consider the effect of applying a modified form of production (4) in which αa is replaced
by aα. The weight associated with this copy of a reduces from 2k+1 (say) to 2k and the weights
of all other a’s remains the same. Now consider the effect of using the correct form of production
(4). In addition to that loss of weight, and additional a is introduced, which also has weight 2k.
This restores the total weight of the string to what it was originally.

d) Note that production (1) is a forced first step and that afterwards there is exactly one
β until production (3) is made, at which point there are no copies of β and only the last three
productions are relevant. At this stage, the string has the form αnβ for some n ≥ 1. We can get
all such with n ≥ 1 simply by applying production (2) a total of n− 1 times.

Counting γ’s shows we only use production (6) once, as the last step to make the string
fully concrete. Until the string becomes fully concrete, γ remains as the last element. Thus
production (5) can only be used at the right-hand end of the string, and so does not effect the
total weight. At the start of this phase the total weight is 2n. Just before we apply production
(6), the string must be in the form akαγ, and this has total weight k. Thus the final production
is

a2n

αγ
(6)−→ a2n

and L = {a2n | n ≥ 1}.
Solution 4.11:

a) Here is the initial derivation.

α
(1)−→ aαβγ

(2)−→ a2βγβγ
(3)−→ a2ββγγ

(4)−→ a2bβγγ
(5)−→ a2b2γγ

(6)−→ a2b2cγ
(7)−→ a2b2c2

and so a2b2c2 is in L.

b) It is trivial that for the initial symbol α, our hypothesisH that no member of the abstract
alphabet appears to the left of any member of A, is true. Assume inductively that H is true for
the first n steps in a derivation, and note that none of the 7 productions given destroys H ; it
thus remains true after n+ 1 steps and the general result follows by induction.

c) There is at most one α in the string, and this always lies at the abstract concrete boundary
until production (2) is used, at which point nether (1) nor (2) are relevant. So our initial
productions are necessarily drawn from (1) and (3) until (2) is used, at which point, since each
application of (1) introduces both an additional α and an additional βγ, there are exactly n+ 1
each of a, β and γ. The commutativity relation (3) can only move β to the left, so the result
follows.

d) We claim that L = {an+1bn+1cn+1 | n ≥ 0}. One way is clear, since the following shows
all the claimed strings lie in L.

α
(1)−→ anα(βγ)n (2)−→ an+1(βγ)n+1 (3)−→ an+1βn+1γn+1 (4)−→ an+1bβnγn+1

(5)−→ an+1bn+1γn+1 (6)−→ an+1bn+1cγn (7)−→ an+1bn+1cn+1.

Here we apply productions 1,3,5 and 7 a total of n times, and the remaining ones once.
Conversely we must show that these are the only strings that can be produced.
Note that the argument for the second part shows we necessarily apply (1) and (3) in any

order before applying (2). Consider now the stage after production (2) has been applied; then
only (3) and (4) are relevant initially. After using (3) at most n times we necessarily use (4),
at which point we introduce b into the string. We now have n more b’s to make concrete, and
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this process can only occur at the single point where the left hand concrete symbols meet the
abstract symbols on the right. Note also that as soon as we use production (6) we introduce a c
at the abstract/concrete interface and so can only subsequently use production (7). We are thus
forced to already have made all β’s concrete before applying (7). In other words we are forced to
essentially imitate the sequence of productions at the start of this section except for production
(3) which can be applied at any time, provided it has been applied n times before production
(6) is used.

Solutions for Questions 5 (page 71).

Solution 5.1: Since X is finite, the set {xi ∈ X | i = 0, 1, 2, . . .} is itslef finite, and so there must
be some pair i, j > 0 such that xi = xi+j . Choose the least such i for which this holds, and
then choose the least such j. Then xi+j+1 = φxi + j = φxi = x = i+ 1 etc and the sequence is
periodic of period j starting at xi.

Solution 5.2: There are several ways of getting a point “at random” in T1; we look at them
in turn. The most straightforward is to choose x = RAND and y = RAND, and then throw
away the points not in T1. This has the disadvantage that we throw away half of the points
chosen. A quicker method depends on the fact that the line y = x divides the square into two
congruent triangles, and so accepts (x, y) if it lies in T1 and otherwise accepts the point (y, x),
which necessarily lies in T1, if (x, y) does not (unless x = y, which we ignore, or throw away).

A third way can generalise a little more easily. First let t = RAND, write x =
√
t, choose

y = RAND[0, x) and choose the point (x, y). Clearly the chosen point lies in T1; we have to
show that this gives a random distribution. Given x, it is clear that y is chosen with uniform
probability; we must thus show that x was chosen appropriately. In other words, that the
probability dp of choosing a point in a strip of width dx at the point x is proportional to xdx,
the area of the strip. Thus

dp = kx dx, and so p = kx2/2 = Kt.

Thus the probability is uniform, as required.
It is clear that the same arguments apply to choosing a point in T2.
We now analyse ways of producing points in T3. It is clear that Method 1 produces points

chosen at random in T3.
Method 2 is like Method 1, except that before the third call to RAND(), a check is made

that (x, y) ∈ T2, and the process abandoned if it is not. Clearly we can ommit a call to RAND()
without affecting the outcome, if we know in advance that nothing will be produced. Thus this
method does produce random points of T2.

Note that Method 3 and Method 4 are effectively the same, although Method 4 is quicker; in
each case, having picked (x, y) at random in T2, we wait until some z with 0 ≤ z < 1−x− y has
been chosen before making another choice of (x, y). In particular, we see that the probability of
a point lying in

{(x, y, z) | (x0 ≤ x ≤ x0 + dx, y0 ≤ y ≤ y0 + dy, 0 ≤ z ≤ 1− x0 − y0)}

is proportional to dx dy, rather than (1 − x0 − y0) dx dy as it should do if equal volumes are
equally likely.

Random points in T4: the triangle in question is equilateral, with side
√

2. We first show
how to pick a point at random from the equilateral triangle T with vertices (−1, 0), (0, 1) and
(1, 0) whose side is of length 2, and then construct an affine map to the requierd triangle.

To choose a point at random in T , pick x = RAND() and y = 2 ∗ RAND(). If (x, y) ∈ T ,
accept it; otherwise choose (−x, 2 − y) ∈ T . This is essentially the same idea as in choosing a
point of T1.
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There will be a unique affine map to T4. A calculation shows it is

(x, y) −→
(
−1

2
x− 1

4
y +

1
2
,
1
2
x− 1

4
y +

1
2
,
1
1
y

)

is the rquired map.
A less efficient, and incorrect way picks x′, y′ and z′ using RAND(), so necessarily equally

distributed random variables with 0 ≤ x′, y′, z′ < 1, and then use variables

x =
x′

x′ + y′ + z′
, y =

y′

x′ + y′ + z′
, z =

z′

x′ + y′ + z′

Again we have 0 ≤ x′, y′, z′ < 1 equally distributed with 0 ≤ x, y, z < 1 and they satisfy the
required constraint. This amounts to choosing a point in the unit cube, and projecting onto the
plane x + y + z = 0. It is now clear that there is a problem; the probability of picking a given
point is proportional to the length of the line from the origin, through the point, to the edge of
the unit cube, which can vary from 1, at a vertx to

√
3 along the main diagonal.

Solution 5.3: Assume the earth is a sphere of radius R, and that latitude and longitude are
chosen at random. The area in which the point can lie if the latitude is between 0 and a very
small angle dϑ is approximately the area of a cylinder of radius R and height Rdϑ, and so
has area 2πR2 dϑ. An equally likely choice is that the latitude lies between π/2 − dϑ and π/2,
in which case the chosen point lies in an approximately circular arc of radius Rdϑ, with area
πR2(dϑ)2. Theses are very different; thus the choice thus does not lead to an equal probability
of choosing points near the pole, and near the equator.

An easy way to choose points from the ball x2 + y2 + z2 ≤ 1 is to choose each of x, y and z
from RAND(−1, 1) and then reject points which do not satisfy x2 +y2 +z2 ≤ 1. The probability
of acceptance is then the ratio of the volume of the sphere of radius 1 to the volume of the
enclosing cube of side 2. This is 4π/3 to 8, or 0.52. Points on the sphere can be chosen by first
picking a point in the ball, and then projecting onto the sphere.

Alternatively, we can choose longitude from RAND[0, 2π), and latitude from a distribution
which reflects the resulting areas. for simplicity we choose a point at random in the northern
hemisphere of a sphere of radius 1, and indicate at the end how the idea can be modified. Let
ϑ = 2π ∗ RAND(), choose x = RAND(), and let

r = f(x) =
√

2x− x2

Note that f : [0, 1] → [0, 1] is monotone increasing, and so has an inverse function. Then
0 ≤ r ≤ 1, so the point with polar co-ordinates (r, ϑ) lies in the unit disc. We take this to be
the equatorial disc, and pick as our point in the northern hemisphere the unique point which
projects down to the point (r, ϑ). Clearly the angular distribution is uniform; to show that this
choice is random, it is thus enough to show that the probability of choosing 0 ≤ a < r < b ≤ 1
is the same as proportion of the area of the hemisphere which sits above this annulus.

To this end recall the classical result, which can also be easily proved using calculus, that
the area of a spherical cap is the same as the area of a cylinder of the same radius as the sphere
whose height is the height of the cap. The area of that portion of the unit hemisphere which sits
above the annulus 0 ≤ a < r < b ≤ 1 is thus

2π
(
1−

√
1− b2

)
− 2π

(
1−

√
1− a2

)
= 2π

(√
1− a2 −

√
1− b2

)
.

since the area of the hemisphere is 2π, we must show that the probability of choosing 0 ≤ a <
r < b ≤ 1 is

(√
1− a2 −√1− b2

)
.
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Let g(r) = 1−√1− r2, so g(r) = x, and f and g are inverse functions. Computing probab-
ilities,

Pr(a < r < b) = Pr(g(a) < g(r) < g(b)) since g is monotone,

= Pr
(
1−

√
1− a2 < x < 1−

√
1− b2

)
=
√

1− a2 −
√

1− b2 since x is uniformly distributed.

Of course this is the calculation used to determine f in the first place.
To map to the whole sphere, choose x at random from [-1,1); then use the sign of x to

determine whether to go to the northern or southern hemispheres, and |x| in place of x to
determine r.

Solution 5.4: Let the matrix A have entries aij for 1 ≤ i, j ≤ n. For i ≥ j define aij =
2 ∗RAND − 1, and let aij = aji if i < j. Clearly A is symmetric, while each entry is uniformly
distributed on [−1, 1); to avoid the possibility of getting −1 as an entry, simply make another
selection using the random number generator should it be chosen.

Solution 5.5: No solution offered.

Solution 5.6: Assume we have chosen k− 1 items in the way described, and are trying to choose
the kth such item. We are successful at the first choice if any of the remaining n− k + 1 items
are chosen; this occurs with probability (n − k + 1)/n. In the same way, we need two choices
if we fail at the first attempt (probability (k − 1)/n), and succeed at the second (probability
(n− k + 1)/n as before); thus with total probability(

k − 1
n

)
n− k + 1

n
.

Of course we may need three, four etc choices before we succeed. The expected number of choices
is thus

n− k + 1
n

(
1.1 + 2.

k − 1
n

+ 3.
(
k − 1
n

)2

+ · · ·
)

Recall that

1 + 2x+ 3x2 + · · · =
d

dx
(1 + x+ x2 + · · · ) if |x| < 1,

=
d

dx
(1− x)−1 = (1− x)−2 if |x| < 1,

Thus the expected number of choices is

n− k + 1
n

(
1− k − 1

n

)2

=
n

n− k + 1

as claimed.
As in the question, this then gives

w(n, k) = n

(
1
n

+
1

n− 1
+ · · ·+ 1

n− k + 1

)
= n(Hn −Hn−k).

Since w(n, 1) = 1, we have

w(n, k)
k

=
n

k
(Hn −Hn−k)
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and using the approximation Hn ∼ log(n),

=
1
α

log
(

n

n− k

)
=

1
α

log
(

1
1− α

)
.

Solution 5.7:

a) We give the pseudocode for the Running Sample algorithm in Fig. ??

algorithm runningsample(k, N)
// choose k items at random from N supplied
begin

t = 0
chosen = 0
repeat begin
if ((N-t)*rand() >= (k-chosen)) begin
// pass over next item
read in next item
t = t + 1

end
else begin
// accept next item
read in next item
print out next item
t = t + 1
chosen = chosen + 1

end
end // repeat
until (chosen = k)

end.

The logic of this method is that if, at the ith item, we have so far chosen j items then we
have k − j items left to choose from the remaining N − i + 1 items (including the ith). So it
seems reasonable to choose the ith item with probability

k − j

n− i+ 1

and that’s what the algorithm does.
We cannot end up with more than k items because we stop the loop if we have got k. It is

thus enough to show that we cannot end up with fewer than k. Suppose conversely that we had
ended up with j < k items and that the last item not chosen was the ith. Then, at that stage,
we had already chosen j − (N − i) items. So the probability of choosing the ith was

k − (j − (N − i))
N − i+ 1

=
N − i+ (k − j)
N − i+ 1

≥ 1,

so we must have chosen it! Contradiction.

b) Our algorithm identifies the half of the equilateral triangle to the left of the x - axis with
the remaining half of the square

S = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2},
namely the half above the line y + 2x = 2. Our algorithm is then
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x = RAND();
y = RAND();
if ( y > 2 - 2*x) then

x = -1 + x
y = 2 - y

endif
return (x,y)

The pair (x, y) are chosen uniformly from a rectangle with the same area as the given triangle.
Our algorithm aranges to use all the points produced, while the transformation which maps the
part of the square outside the equilateral triangle to the “missing” part of the triangle is Euclidean
and hence preserves areas.

Solutions for Questions 6 (page 84).

Solution 6.1: From the definition of the shift operator, we have

Fn(Slf)(p) =
1√
n

n−1∑
j=0

f(j − l) exp
(−2πijp

n

)

=
1√
n

n−1∑
j=0

f(j − l)ω(j−l)pωlp =
1√
n

n+l−1∑
j=l

f(j − l)ω(j−l)pωlp

and substituting k = j − l, and then rewriting with j instead of k,

=
1√
n

n−1∑
j=0

f(j)ωjpωlp = ωlp
Fnf(p).

Solution 6.2: No solution offered.

Solution 6.3: No solution offered.

Solution 6.4: No solution offered.

Solution 6.5: We compute from the definition of p̂ = F(p).

p̂(0) = a0 + a1 + a2 + · · ·+ an−1,

p̂(1) = a0 + a1ω + a2ω
2 + · · ·+ an−1ω

n−1,

p̂(2) = a0 + a1ω
2 + a2ω

4 + · · ·+ an−1ω
2(n−1),

· · ·
p̂(n− 1) = a0 + a1ω

n−1 + a2ω
2(n−1) + · · ·+ an−1ω

(n−1)(n−1).

Thus the fixed set of points are the nth roots of unity.

Solution 6.6: It is trivial to verify the factorisation

zn − 1 = (z − 1)(1 + z + z2 + · · ·+ zn−1).

The result follows, since we are given a zero of the left hand side and z 6= 1.
It is enough to show that F̄nFn = In,the identity matrix; we have then explicitly produced

an inverse. Since the jth row of F̄n is

1√
n

(1, ω̄j, ω̄2j , . . . , ω̄(n−1)j)
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while the kth column of Fn is

1√
n

(1, ωk, ω2k, . . . , ω(n−1)k),

and since ω̄k = w−k, the entry in the (j, k)th place of the product is just

1
n

(1 + ω(j−k) + ω2(j−k) + · · ·+ ω(n−1)(j−k)).

We now distinguish two cases. If j = k, this is just (1 + 1 + · · ·+ 1)/n = 1, while if j 6= k, it is
zero by the lemma, since ω(j−k) is an nth root of unity, but is not equal to 1. It follows that the
product is the identity matrix as claimed.

Let

p(x) = a0 + a1x+ a2x
2 + · · · an−1x

n−1

be a polynomial of degree n − 1, which we identify with a point in C
n using the map p →

(a0, a1, . . . , an). For a and b in C
n , define a ? b ∈ C n by

(a ? b)j =
n−1∑
k=0

aj−kbk,

where each index in the sum is interpreted mod n, so that for example a−1 = an−1 etc. Let
a = (a0, a1, . . . , an−1, 0, . . . , 0) and b = (b0, b1, . . . , bn−1, 0, . . . , 0) be points in C

2n Then

a ? b =
(
a0b0, (a1b0 + a0b1), (a2b0 + a1b1 + a0b2), · · · ,

(an−1b0 + an−2b1 + · · ·+ a0bn−1), · · · , an−1bn−1, 0
)
.

A calculation shows that if a and b are the coefficients of polynomials p(x) and q(x) respectively,
then p(x)q(x) has coefficients a?b, at least when embedded in C2n to avoid circular wrap-around.

Let a = (a0, a1, . . . , an−1) be a vector in C
n , and define F in C

n by â = Fn(a). Since
the Fourier matrix is unitary, we have a = F̄n(â), and so this transformation, the Discrete
Fourier Transform, is invertible. In this context, we need the Convolution Theorem Convolution
Theorem: Let a and b be in C

n . Then

Fn(a)Fn(b) = Fn(a ? b).

In other words, the discrete Fourier transform maps convolution to pointwise multiplication.
The convolution theorem suggest a different way of computing a ?b at least when we embed

a,b ∈ C
2n ; as the inverse transform of F2na · F2nb. In other words, we first compute the

Discrete Fourier Transforms of a and b, then compute the pointwise product F2na · F2nb, and
finally compute the inverse Discrete Fourier Transform to obtain a ?b. It turns out by a careful
arrangement of its operations, the Fourier transform can be computed using only O(n log n)
operations. This is known as the Fast Fourier Transform.
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