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Preface

Modeling and simulation are powerful tools for explaining the world, making
predictions, designing things that work, and making them work better. Learning
to use these tools can be difficult; this book is my attempt to make the experience
as enjoyable and productive as possible.

By reading this book — and working on the exercises — you will learn some
programming, some modeling, and some simulation:

� With basic programming skills, you can create models for a wide range of
physical systems. My goal is to help you develop these skills in a way you
can apply immediately to real-world problems.

� This book presents the entire modeling process, including model selection,
analysis, simulation, and validation. I explain this process in Chapter 1,
and there are examples throughout the book.

� Simulation is an approach to modeling that uses computer programs to
implement models and generate predictions. This book shows how simu-
lations are used to run experiments, answer questions, and guide decision-
making.

To make this book accessible to the widest possible audience, I try to minimize
the “prerequisites”.

In particular, this book is intended for people who have never programmed
before. I start from the beginning, define new terms when they are introduced,
and present only the features you need, when you need them.

I assume that you know trigonometry and some calculus, but not much. If you
understand that a derivative represents a rate of change, that’s enough. You
will learn about differential equations and some linear algebra, but I will explain
what you need to know as we go along.

I assume you know basic physics, in particular the concepts of force, acceleration,
velocity, and position. If you know Newton’s second law of motion in the form
F = ma, that’s enough.
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You will learn to use numerical methods to search for roots of non-linear equa-
tions, to solve differential equations, and to search for optimal solutions. You
will learn how to use these methods first; then in Chapter 14 you will learn more
about how they work. But if you can’t stand the suspense, you can look “under
the hood” whenever you want.

I have tried to present a small set of tools that provides the most versatility
and power, to explain them as clearly as possible, and to give you chances to
practice what you learn.

I hope you enjoy the book and find it valuable.

Installing software

This book is based on MATLAB, a programming language originally developed
at the University of New Mexico and now produced by MathWorks, Inc.

MATLAB is a high-level language with features that make it well-suited for
modeling and simulation, and it comes with a program development environ-
ment that makes it well-suited for beginners.

However, one challenge for beginners is that MATLAB uses vectors and matrices
for almost everything, which can make it hard to get started. The organization
of this book is meant to help: we start with simple numerical computations,
adding vectors in Chapter 4 and matrices in Chapter 9.

Another drawback of MATLAB is that it is “proprietary”; that is, it belongs to
MathWorks, and you can only use it with a license, which can be expensive.

Fortunately, the GNU Project has developed a free, open-source alternative
called Octave (see https://www.gnu.org/software/octave/).

Most programs written in MATLAB can run in Octave without modification,
and the other way around. All programs in this book have been tested with
Octave, so if you don’t have access to MATLAB, you should be able to work
with Octave. The biggest difference you are likely to see is in the error messages.

To install and run MATLAB, see https://www.mathworks.com/downloads/

web_downloads/.

To install Octave, we strongly recommend that you use Anaconda, which is
a package management system that makes it easy to work with Octave and
supporting software.

Anaconda installs everything at the user level, so you can install it without
admin or root permissions. Follow the instructions for your operating system
at https://www.anaconda.com/download.



0.1 Working with the code v

Once you have Anaconda, you can install Octave by launching the Jupyter
Prompt (on Windows) or a Terminal (on Mac OS or Linux) and running:

conda install -c conda-forge octave

Then you can launch it from the command line like this:

octave

The first time you run it, a start window should appear to guide you through
some configuration.

0.1 Working with the code

The code for each chapter in this book is in a Zip file you can down-
load from https://github.com/AllenDowney/ModSimMatlab/raw/master/

ModSimMatlabCode.zip.

Once you have the Zip file, you can unzip it on the command line by running

unzip ModSimMatlabCode.zip

In Windows you can right-click on the Zip file and select Extract All.

If you open any of these files in MATLAB, you should be able to read the code.
To run it, press the green Run button.

You might get a message like, “File not found in the current folder”. MATLAB
will give you the option to Change Folder or Add to Path. If you change folders,
you will be able to run this file until you change folder again. If you add to the
path, you will always be able to run this file.

However, as you add more folders to the path, you are more likely to run into
problems with name collisions (see Section 4.17). I recommend you change
folders when necessary and avoid adding folders to the path.



vi Preface

Contributor’s list

If you have suggestions and corrections, please send them to:
mod_sim_matlab@greenteapress.com.

People who have found errors and helped us improve this book include Michael
Lintz, Kaelyn Stadtmueller, Roydan Ongie, Keerthik Omanakuttan, Pietro Pe-
terlongo, Li Tao, Steven Zhang, Elena Oleynikova, Kelsey Breseman, Philip
Loh, Harold Jaffe, Vidie Pong, Nik Martelaro, Arjun Plakkat, Zhen Gang Xiao,
Zavier Patrick Aguila, Michael Cline, Craig Scratchley.

Matt Wiens revised several sections of the book.



Contents

Preface iii

0.1 Working with the code . . . . . . . . . . . . . . . . . . . . . . . . v

1 Modeling and simulation 1

1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A glorified calculator . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Assignment statements . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 The workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Why variables? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.9 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Scripts 15

2.1 M-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Why scripts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Floating-point numbers . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



viii CONTENTS

2.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Assignment and equality . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Loops 25

3.1 Updating variables . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Bug taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Absolute and relative error . . . . . . . . . . . . . . . . . . . . . 27

3.4 for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Incremental development . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Vectors 37

4.1 Checking preconditions . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 if statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Relational operators . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Vector arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Everything is a matrix . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Elementwise operators . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 Indexing errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Vectors and sequences . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS ix

4.12 Plotting vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.13 Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.14 Apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.15 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.16 Spoiling the fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.17 Name Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.18 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Functions 53

5.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 What could go wrong? . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Multiple input variables . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Logical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Incremental development . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Nested loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7 Conditions and flags . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Encapsulation and generalization . . . . . . . . . . . . . . . . . . 62

5.9 continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 Mechanism and leap of faith . . . . . . . . . . . . . . . . . . . . . 65

5.11 Why functions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.12 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Zero-finding 69

6.1 Nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Zero-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 fzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 What could go wrong? . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Choosing an initial guess . . . . . . . . . . . . . . . . . . . . . . . 74



x CONTENTS

6.6 Vectorizing functions . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 More name collisions . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.8 Debugging your head . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Functions of Vectors 79

7.1 Functions and files . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Vectors as input variables . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Vectors as output variables . . . . . . . . . . . . . . . . . . . . . 81

7.4 Vectorizing functions . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Sums and differences . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.6 Products and ratios . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.7 Existential quantification . . . . . . . . . . . . . . . . . . . . . . 84

7.8 Universal quantification . . . . . . . . . . . . . . . . . . . . . . . 85

7.9 Logical vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.10 Debugging in four acts . . . . . . . . . . . . . . . . . . . . . . . . 87

7.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Ordinary Differential Equations 89

8.1 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3 Implementing Euler’s method . . . . . . . . . . . . . . . . . . . . 91

8.4 ode45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.5 Time dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.6 What could go wrong? . . . . . . . . . . . . . . . . . . . . . . . . 96

8.7 Labeling axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.8 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



CONTENTS xi

9 Systems of ODEs 101

9.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Row and column vectors . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 The transpose operator . . . . . . . . . . . . . . . . . . . . . . . 103

9.4 Lotka-Volterra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.5 Output matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.6 Phase plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.7 What could go wrong? . . . . . . . . . . . . . . . . . . . . . . . . 109

9.8 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10 Second-order Systems 111

10.1 Newtonian motion . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2 Freefall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.3 ODE events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.4 Air resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11 Two dimensions 119

11.1 Spatial vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Adding vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.3 ODEs in two dimensions . . . . . . . . . . . . . . . . . . . . . . . 121

11.4 Drag force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.5 What could go wrong? . . . . . . . . . . . . . . . . . . . . . . . . 126

11.6 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xii CONTENTS

12 Optimization 131

12.1 Optimal baseball . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.2 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3 Range versus angle . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.4 fminsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12.5 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13 Case studies 139

13.1 Celestial mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . 140

13.3 Bungee jumping . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13.4 Bungee revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

13.5 Spider-Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

14 How does it work? 145

14.1 How ode45 works . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

14.2 How fzero works . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

14.3 How fminsearch works . . . . . . . . . . . . . . . . . . . . . . . 148



Chapter 1

Modeling and simulation

This chapter presents the modeling process and introduces MATLAB, the pro-
gramming language we will use to represent models and run simulations.

1.1 Modeling

This book is about modeling and simulation of physical systems. The following
diagram shows what I mean by “modeling”:

A
b
st
ra
ct
io
n

Analysis

Simulation

V
alid

ati o
n

Measurement

M
o
d
el

Sy
st
e
m

P
red

ict io
n

D
ata



2 Modeling and simulation

Starting in the lower left, the system is something in the real world we are
interested in. Often, it is something complicated, so we have to decide which
details can be left out; removing details is called abstraction.

The result of abstraction is a model, which is a description of the system that
includes only the features we think are essential. A model can be represented
in the form of diagrams and equations, which can be used for mathematical
analysis. It can also be implemented in the form of a computer program,
which can run simulations.

The result of analysis and simulation might be a prediction about what the
system will do, an explanation of why it behaves the way it does, or a design
intended to achieve a purpose.

We can validate predictions and test designs by taking measurements from
the real world and comparing the data we get with the results from analysis
and simulation.

For any physical system, there are many possible models, each one including and
excluding different features, or including different levels of detail. The goal of
the modeling process is to find the model best suited to its purpose (prediction,
explanation, or design).

Sometimes the best model is the most detailed. If we include more features, the
model is more realistic, and we expect its predictions to be more accurate.

But often a simpler model is better. If we include only the essential features
and leave out the rest, we get models that are easier to work with, and the
explanations they provide can be clearer and more compelling.

As an example, suppose someone asked you why the orbit of the Earth is nearly
elliptical. If you model the Earth and Sun as point masses (ignoring their
actual size), compute the gravitational force between them using Newton’s law
of universal gravitation, and compute the resulting orbit using Newton’s laws
of motion, you can show that the result is an ellipse.

Of course, the actual orbit of Earth is not a perfect ellipse, because of the
gravitational forces of the Moon, Jupiter, and other objects in the solar system,
and because Newton’s laws of motion are only approximately true (they don’t
take into account relativistic effects).

But adding these features to the model would not improve the explanation;
more detail would only be a distraction from the fundamental cause. However,
if the goal is to predict the position of the Earth with great precision, including
more details might be necessary.

Choosing the best model depends on what the model is for. It is usually a good
idea to start with a simple model, even if it is likely to be too simple, and test
whether it is good enough for its purpose. Then you can add features gradually,



1.2 A glorified calculator 3

starting with the ones you expect to be most essential. This process is called
iterative modeling.

Comparing results of successive models provides a form of internal validation,
so you can catch conceptual, mathematical, and software errors. And by adding
and removing features, you can tell which ones have the biggest effect on the
results, and which can be ignored.

Comparing results to data from the real world provides external validation,
which is generally the strongest test.

The focus of this book is simulation, and the primary tool we will use is MAT-
LAB.

1.2 A glorified calculator

At heart, MATLAB is a glorified calculator. When you start MATLAB you will
see a window entitled MATLAB that contains smaller windows entitled Current
Folder, Command Window, and Workspace. In Octave, Current Folder is called
File Browser.

The Command Window runs the interpreter, which allows you to type com-
mands, then executes them and prints the result.

Initially, the Command Window contains a welcome message with information
about the version of the software you are running, followed by a prompt:

>>

This symbol prompts you to enter a command.

The simplest kind of command is a mathematical expression, like 2 + 1).

If you type an expression and then press Enter (or Return), MATLAB evalu-
ates the expression and prints the result.

>> 2 + 1

ans = 3

Just to be clear: in this example, MATLAB displayed >>; I typed 2 + 1 and
then hit Enter, and MATLAB displayed ans = 3.

In this expression, the plus sign is an operator and the numbers 2 and 1 are
operands.

An expression can contain any number of operators and operands. You don’t
have to put spaces between them; some people do and some people don’t.

>> 1+2+3+4+5+6+7+8+9

ans = 45
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Speaking of spaces, you might have noticed that MATLAB puts a blank line
between ans = and the result. In my examples I will leave it out to save room.

The other arithmetic operators are pretty much what you would expect. Sub-
traction is denoted by a minus sign, -; multiplication by an asterisk, *; division
by a forward slash, /.

>> 2*3 - 4/5

ans = 5.2000

Another common operator is exponentiation, which uses the ^ symbol, some-
times pronounced “carat” or “hat”. So 2 raised to the 16th power is

>> 2^16

ans = 65536

The order of operations is what you would expect from basic algebra: expo-
nentiation happens before multiplication and division, and multiplication and
division happen before addition and subtraction. If you want to override the
order of operations, you can use parentheses.

>> 2 * (3-4) / 5

ans = -0.4000

When I added the parentheses I also changed the spacing to make the grouping
of operands clearer to a human reader. This is the first of many style guidelines
I will recommend for making your programs easier to read. Style doesn’t change
what the program does; the MATLAB interpreter doesn’t check for style. But
human readers do, and the most important human who will read your code is
you.

And that brings us to the First Theorem of Debugging:

Readable code is debuggable code.

It is worth spending time to make your code pretty; it will save you time de-
bugging!

1.3 Math functions

MATLAB knows how to compute pretty much every math function you’ve heard
of. It knows all the trigonometric functions; here’s how you use them:

>> sin(1)

ans = 0.8415



1.4 Documentation 5

This command is an example of a function call. The name of the function is
sin, which is the usual abbreviation for the trigonometric sine. The value in
parentheses is called the argument.

The trig functions sin, cos, tan—among many others—work in radians.1

Some functions take more than one argument, in which case they are separated
by commas. For example, atan2 computes the inverse tangent, which is the
angle in radians between the positive x-axis and the point with the given y and
x coordinates.

>> atan2(1,1)

ans = 0.7854

If that bit of trigonometry isn’t familiar to you, don’t worry about it. It’s just
an example of a function with multiple arguments.

MATLAB also provides exponential functions, like exp, which computes e raised
to the given power. So exp(1) is just e.

>> exp(1)

ans = 2.7183

The inverse of exp is log, which computes the logarithm base e:

>> log(exp(3))

ans = 3

This example also demonstrates that function calls can be nested; that is, you
can use the result from one function as an argument for another.

More generally, you can use a function call as an operand in an expression.

>> sqrt(sin(0.5)^2 + cos(0.5)^2)

ans = 1

As you probably guessed, sqrt computes the square root.

There are lots of other math functions, but this is not meant to be a reference
manual. To learn about other functions, you should read the documentation.

1.4 Documentation

MATLAB comes with two forms of online documentation, help and doc.

The help command works in the Command Window; just type help followed
by the name of a command.

1MATLAB also provides trig functions that work in degrees. For example, sind,cosd, and
tand compute the sine, cosine, and tangent of an angle given in degrees.
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>> help sin

sin Sine of argument in radians.

sin(X) is the sine of the elements of X.

See also asin, sind, sinpi.

Some documentation uses vocabulary we haven’t covered yet. For example, “the
elements of X” will likely not make sense until we get to vectors and matrices a
few chapters from now.

The doc pages are usually better. If you type doc sin, a browser window
appears with more detailed information about the function, including examples
of how to use it. The examples often use vectors and arrays, so they may not
make complete sense yet, but you can get a preview of what’s coming.

1.5 Variables

One of the features that makes MATLAB more powerful than a calculator is
the ability to give a name to a value. A named value is called a variable.

MATLAB comes with a few predefined variables. For example, the name pi

refers to the mathematical quantity π, which is approximately

>> pi

ans = 3.1416

And if you do anything with complex numbers, you might find it convenient
that both i and j are predefined as the square root of −1.

You can use a variable name anywhere you can use a number; for example, as
an operand in an expression:

>> pi * 3^2

ans = 28.2743

Or as an argument to a function:

>> sin(pi/2)

ans = 1

>> exp(i * pi)

ans = -1.0000 + 0.0000i

As the second example shows, many MATLAB functions work with complex
numbers. This example demonstrates Euler’s Equality:

eiπ = −1
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Whenever you evaluate an expression, MATLAB assigns the result to a variable
named ans. You can use ans in a subsequent calculation as shorthand for “the
value of the previous expression”.

>> 3^2 + 4^2

ans = 25

>> sqrt(ans)

ans = 5

But keep in mind that the value of ans changes every time you evaluate an
expression.

1.6 Assignment statements

You can create your own variables, and give them values, with an assignment
statement. The assignment operator is the equals sign, =.

>> x = 6 * 7

x = 42

This example creates a new variable named x and assigns it the value of the
expression 6 * 7. MATLAB responds with the variable name and the computed
value.

In every assignment statement, the left side has to be a legal variable name.
The right side can be any expression, including function calls.

Almost any sequence of lower and upper case letters is a legal variable name.
Some punctuation is also legal, but the underscore, _, is the only commonly-
used non-letter. Numbers are fine, but not at the beginning. Spaces are not
allowed. Variable names are case sensitive, so x and X are different variables.

>> fibonacci0 = 1;

>> LENGTH = 10;

>> first_name = 'bob'

first_name = bob

The first two examples demonstrate the use of the semi-colon, which suppresses
the output from a command. In this case MATLAB creates the variables and
assigns them values, but displays nothing.

The third example demonstrates that not everything in MATLAB is a number.
A sequence of characters in single quotes is a string.
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Although i, j, and pi are predefined, you are free to reassign them. It is
common to use i and j for other purposes, but rare to assign a different value
to pi.

1.7 The workspace

When you create a new variable, it appears in the Workspace window, and it is
added to the workspace, which is a set of variables and their values.

The who command prints the names of the variables in the workspace.

>> x=5;

>> y=7;

>> z=9;

>> who

Your variables are:

x y z

The clear command removes specified variables from the workspace

>> clear x

>> who

Your variables are:

y z

But be careful: if you don’t specify any variables, clear removes them all.

To display the value of a variable, you can use the disp function.

>> disp(z)

9

But it’s easier to just type the variable name.

>> z

z = 9

1.8 Why variables?

Some reasons to use variables are:
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� To avoid recomputing a value that is used repeatedly. For example, if
your computation uses e frequently, you might want to compute it once
and save the result2.

>> e = exp(1)

e = 2.7183

� To make the connection between the code and the underlying mathematics
more apparent. If you are computing the area of a circle, you might want
to use a variable named r:

>> r = 3

r = 3

>> area = pi * r^2

area = 28.2743

That way your code resembles the familiar formula a = πr2.

� To break a long computation into a sequence of steps. Suppose you are
evaluating a big, hairy expression like this:

ans = ((x - theta) * sqrt(2 * pi) * sigma)^-1 * ...

exp(-1/2 * (log(x - theta) - zeta)^2 / sigma^2)

You can use an ellipsis to break the expression into multiple lines. Just
type ... at the end of the first line and continue on the next.

But often it is better to break the computation into a sequence of steps
and assign intermediate results to variables.

shiftx = x - theta

denom = shiftx * sqrt(2 * pi) * sigma

temp = (log(shiftx) - zeta) / sigma

exponent = -1/2 * temp^2

ans = exp(exponent) / denom

The names of the intermediate variables explain their role in the compu-
tation. shiftx is the value of x shifted by theta. It should be no surprise
that exponent is the argument of exp, and denom ends up in the denom-
inator. Choosing informative names makes the code easier to read and
understand, which makes them easier to debug.

1.9 Errors

It’s early, but now would be a good time to start making errors. Whenever you
learn a new feature, you should try to make as many errors as possible, as soon
as possible.

2You don’t have to do this in Octave; it is predefined.
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When you make deliberate errors, you see what the error messages are. Later,
when you make accidental errors, you will know what the messages mean.

A common error for beginning programmers is leaving out the * for multiplica-
tion.

>> area = pi r^2

area = pi r^2

|

Error: Invalid expression. Check for missing multiplication

operator, missing or unbalanced delimiters, or other syntax

error. To construct matrices, use brackets instead of parentheses.

The error message indicates that the expression in invalid and suggests several
things that might be wrong. In this case, one of its guesses is right; we are
missing a multiplication operator.

Another common error is to leave out the parentheses around the arguments of
a function. For example, in math notation, it is common to write something
like sinπ, but not in MATLAB.

>> sin pi

Undefined function 'sin' for input arguments of type 'char'.

The problem is that when you leave out the parentheses, MATLAB treats the
argument as a string (rather than as an expression). In this case the error
message is helpful, but the results can be baffling. For example, if you call abs,
which computes absolute values, and forget the parentheses, you get a surprising
result:

>> abs pi

ans = 112 105

I won’t explain this result; for now, I’ll just suggest that you should always put
parentheses around arguments.

This example also demonstrates the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting
an error message.

Beginning programmers often hate error messages and do everything they can
to make the messages go away. Experienced programmers know that error
messages are your friend. They can be hard to understand, and even misleading,
but it is worth the effort to understand them.

Here’s another common error. If you were translating this mathematical ex-
pression into MATLAB:

1

2
√
π
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You might be tempted to write this:

1 / 2 * sqrt(pi)

But that would be wrong because of the order of operations. Division and
multiplication are evaluated from left to right, so this expression would multiply
1/2 by sqrt(pi).

To keep sqrt(pi) in the denominator, you could use parentheses:

1 / (2 * sqrt(pi))

or make the division explicit.

1 / 2 / sqrt(pi)

1.10 Glossary

interpreter: The program that reads and executes MATLAB code.

command: A line of MATLAB code executed by the interpreter.

prompt: The symbols the interpreter prints to indicate that it is waiting for
you to type a command.

operator: One of the symbols, like * and +, that represent mathematical op-
erations.

operand: A number or variable that appears in an expression along with op-
erators.

expression: A sequence of operands and operators that specifies a mathemat-
ical computation and yields a value.

value: The numerical result of a computation.

evaluate: To compute the value of an expression.

order of operations: The rules that specify which operations in an expression
are performed first.

function: A named computation; for example log10 is the name of a function
that computes logarithms in base 10.

call: To cause a function to execute and compute a result.

function call: A kind of command that executes a function.

argument: An expression that appears in a function call to specify the value
the function operates on.
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nested function call: An expression that uses the result from one function
call as an argument for another.

variable: A named value.

assignment statement: A command that creates a new variable (if necessary)
and gives it a value.

string: A value that consists of a sequence of characters (as opposed to a num-
ber).

1.11 Exercises

Exercise 1

You might have heard that a penny dropped from the top of the Empire State
Building would be going so fast when it hit the pavement that it would be
embedded in the concrete; or if it hit a person, it would break their skull.

We can test this myth by making and analyzing a model. To get started, we’ll
assume that the effect of air resistance is small. This will turn out to be a bad
assumption, but bear with me.

If air resistance is negligible, the primary force acting on the penny is gravity,
which causes the penny to accelerate downward.

If the initial velocity is 0, the velocity after t seconds is at, and the distance the
penny has dropped is

h = at2/2

Using algebra, we can solve for t:

t =
√

2h/a

Plugging in the acceleration of gravity, a = 9.8 m/s2, and the height of the
Empire State Building, h = 381 m, we get t = 8.8 s. Then computing v = at
we get a velocity on impact of 86 m/s, which is about 190 miles per hour. That
sounds like it could hurt.

Use MATLAB to perform these computations, and check that you get the same
result.

Exercise 2

The result in the previous exercise is not accurate because it ignores air resis-
tance. In reality, once the penny gets to about 18 m/s, the upward force of air



1.11 Exercises 13

resistance equals the downward force of gravity, so the penny stops accelerat-
ing. After that, it doesn’t matter how far the penny falls; it hits the sidewalk
at about 18 m/s, much less than 86 m/s.

As an exercise, compute the time it takes for the penny to reach the sidewalk
if we assume that it accelerates with constant acceleration a = 9.8 m/s2 until
it reaches terminal velocity, then falls with constant velocity until it hits this
sidewalk.

The result you get is not exact, but it is a pretty good approximation.
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Chapter 2

Scripts

In this chapter we introduce scripts, floating-point numbers, and as a warm-up
exercise, Fibonacci numbers.

2.1 M-files

So far we have typed all of our programs “at the prompt”, which is fine if you
are not writing more than a few lines. Beyond that, you will want to store your
program in a script and then execute the script.

A script is a file that contains MATLAB code. These files are also called “M-
files” because they use the extension .m, which is short for MATLAB.

You can create and edit scripts with any text editor or word processor, but the
simplest way is by clicking the New Script button in the upper left corner. A
window appears running a text editor specially designed for MATLAB.

Type the following code in the editor:

x = 5

Then press the Save button. A dialog window should appears where you can
choose the file name and the folder where it should go. Change the name to
myscript.m and save it into any folder you like.

Now press the green Run button. You might get a message that says the script
is not found in the current folder. If so, click the button that says Change Folder
and it should run.

You can also run your script from the Command Window: type myscript at
the prompt and press Enter. MATLAB executes your script and displays the
result.
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>> myscript

x = 5

When you run a script, MATLAB executes the commands in the M-File, one
after another, exactly as if you had typed them at the prompt.

When you run a script, you should not include the extension .m. If you try, you
will get an error message like this:

>> myscript.m

Undefined variable "myscript" or class "myscript.m".

When you name a new script, try to choose something meaningful and memo-
rable.

Do not choose a name that is not already in use; if you do, you will replace one
of MATLAB’s functions with your own (at least temporarily). You might not
notice right away, but you might get some confusing behavior later.

Also, the name of the script cannot contain spaces. If you create a file named
my script.m, MATLAB will complain when you try to run it:

>> my script

Undefined function or variable 'my'.

Keeping track of your scripts can be a pain. To keep things simple, for now, I
suggest putting all of your scripts in one folder.

2.2 Why scripts?

The most common reasons to use scripts are:

� When you are writing more than a couple of lines of code, it might take
a few tries to get everything right. Putting your code in a script makes it
easier to edit than typing it at the prompt.

� If you choose good names for your scripts, you will be able to remember
which script does what, and you might be able to reuse a script from one
project to the next.

� If you run a script repeatedly, it is faster to type the name of the script
than to retype the code!

But the great power of scripts comes with great responsibility: you have to
make sure that the code you are running is the code you think you are running.

Whenever you start a new script, start with something simple, like x=5, that
produces a visible effect. Then run your script and confirm that you get what
you expect.
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When you type the name of a script, MATLAB searches for the script in a
search path, which is a sequence of folders. If it doesn’t find the script in
the first folder, it searches the second, and so on. If you have scripts with the
same name in different folders, you could be looking at one version and running
another.

If the code you are running is not the code you are looking at, you will find
debugging a frustrating exercise! And that brings us to the Third Theorem of
Debugging:

Be sure that the code you are running is the code you think you are
running.

2.3 Fibonacci

The Fibonacci sequence, denoted F , is described by the equations F1 = 1,
F2 = 1, and for i > 2, Fi = Fi−1 + Fi−2. The following expression computes
the nth Fibonacci number:

Fn =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]

We can translate this expression into MATLAB, like this:

s5 = sqrt(5);

t1 = (1 + s5) / 2;

t2 = (1 - s5) / 2;

diff = t1^n - t2^n;

ans = diff / s5

I use temporary variables like t1 and t2 to make the code readable and the
order of operations explicit. The first four lines have a semi-colon at the end,
so they don’t display anything. The last line assigns the result to ans.

If we save this script in a file named fibonacci1.m, we can run it like this:

>> n = 10

>> fibonacci1

ans = 55.0000

Before calling this script, you have to assign a value to n. If n is not defined,
you get an error:

>> clear n

>> fibonacci1

Undefined function or variable 'n'.
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Error in fibonacci1 (line 9)

diff = t1^n - t2^n;

This script only works if there is a variable named n in the workspace; otherwise,
you get an error.

MATLAB tells you what line of the script the error is in, and displays the line.

This information can be helpful, but beware! MATLAB is telling you where the
error was discovered, not where the error is. In this case, the error is not in the
script at all, which brings us to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, not where
it was caused.

Often you have to work backwards to find the source of the problem.

2.4 Floating-point numbers

MATLAB uses IEEE double-precision floating-point numbers, which are accu-
rate to about 15 digits of precision. Most integers can be represented exactly,
but most fractions cannot.

For example, if you compute the fraction 2/3:

>> 2/3

ans = 0.6666

The result is only approximate — the correct answer has an infinite number of
6s.

It’s not as bad as this example makes it seem: MATLAB uses more digits than
it shows by default. You can change the output format to see the other digits.

>> format long

>> 2/3

ans = 0.666666666666667

In this example, the first 14 digits are correct; the last one has been rounded
off.

Large and small numbers are displayed in scientific notation. For example, if we
use the built in function factorial to compute 50!, we get the following result:

>> factorial(100)

ans = 9.332621544394410e+157
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The e in this notation is not the transcendental number known as e; it is
just an abbreviation for “exponent”. So this means that 100! is approximately
9.33×10157. The exact solution is a 158-digit integer, but with double-precision
floating-point we only know the first 16 digits.

You can enter numbers using the same notation.

>> speed_of_light = 3.0e8

speed_of_light = 300000000

Although floating-point can represent very large and small numbers, there are
limits. The predefined variables realmax and realmin contain the largest and
smallest numbers MATLAB can handle.

>> realmax

ans = 1.797693134862316e+308

>> realmin

ans = 2.225073858507201e-308

If the result of a computation is too big, MATLAB “rounds up” to infinity.

>> factorial(170)

ans = 7.257415615307994e+306

>> factorial(171)

ans = Inf

Division by zero also returns Inf.

>> 1/0

ans = Inf

For operations that are undefined, MATLAB returns NaN, which stands for “not
a number”.

>> 0/0

ans = NaN

2.5 Comments

Along with the commands that make up a program, it is useful to include
comments that provide additional information about the program. The percent
symbol % separates the comments from the code.

>> speed_of_light = 3.0e8 % meters per second

speed_of_light = 300000000
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The comment runs from the percent symbol to the end of the line. In this case
it specifies the units of the value. In an ideal world, MATLAB would keep track
of units and propagate them through the computation, but for now that burden
falls on the programmer.

Comments have no effect on the execution of the program. They are there for
human readers. Good comments make programs more readable; bad comments
are useless or (even worse) misleading.

Avoid comments that are redundant with the code:

>> x = 5 % assign the value 5 to x

Good comments provide additional information that is not in the code, like
units in the example above, or the meaning of a variable:

>> p = 0 % position from the origin in meters

>> v = 100 % velocity in meters / second

>> a = -9.8 % acceleration of gravity in meters / second^2

If you use longer variable names, you might not need explanatory comments,
but there is a trade-off: longer code can become harder to read. Also, if you are
translating from math that uses short variable names, it can be useful to make
your program consistent with your math.

2.6 Documentation

Every script should contain a comment that explains what it does, and what
the requirements are for the workspace. For example, I might put something
like this at the beginning of fibonacci1.m:

% Computes a numerical approximation of the nth Fibonacci number.

% Precondition: you must assign a value to n before running this script.

% Postcondition: the result is stored in ans.

A precondition is something that must be true when the script starts in order
for it to work correctly. A postcondition is something that will be true when
the script completes.

If there is a comment at the beginning of a script, MATLAB assumes it is
the documentation for the script, so if you type help fibonacci1, you get the
contents of the comment (without the percent signs).

>> help fibonacci1

Computes a numerical approximation of the nth Fibonacci number.

Precondition: you must assign a value to n before running this script.

Postcondition: the result is stored in ans.

That way, scripts that you write behave just like predefined scripts. You can
even use the doc command to see your comment in the Help Window.
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2.7 Assignment and equality

In mathematics the equals sign means that the two sides of the equation have
the same value. In MATLAB an assignment statement looks like a mathematical
equality, but it’s not.

One difference is that the sides of an assignment statement are not interchange-
able. The right side can be any legal expression, but the left side has to be a
variable, which is called the target of the assignment. So this is legal:

>> y = 1;

>> x = y+1

x = 2

But this is not:

>> y+1 = x

y+1 = x

|

Error: Incorrect use of '=' operator.

To assign a value to a variable, use '='.

To compare values for equality, use '=='.

In this case the error message not very helpful. The problem here is that the
expression on the left side is not a valid target for an assignment.

Another difference between assignment and equality is that an assignment state-
ment is only temporary, in the following sense. When you assign x = y+1, you
get the current value of y. If y changes later, x does not get updated.

A third difference is that a mathematical equality is a statement that may or
may not be true. In mathematics, y = y + 1 is a statement that happens
to be false for all values of y. In MATLAB, y = y+1 is a sensible and useful
assignment statement. It reads the current value of y, adds one, and replaces
the old value with the new value.

>> y = 1;

>> y = y+1

y = 2

When you read MATLAB code, you might find it helpful to pronounce the
equals sign “gets” rather than “equals.” So x = y+1 is pronounced “x gets the
value of y plus one.”

2.8 Glossary

M-file: A file that contains a MATLAB program.
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script: An M-file that contains a sequence of MATLAB commands.

search path: The list of folder where MATLAB looks for M-files.

workspace: A set of variables and their values.

precondition: Something that must be true when the script starts, in order
for it to work correctly.

postcondition: Something that will be true when the script completes.

target: The variable on the left side of an assignment statement.

floating-point: A way to represent numbers in a computer.

scientific notation: A format for typing and displaying large and small num-
bers; e.g. 3.0e8, which represents 3.0× 108 or 300,000,000.

comment: Part of a program that provides additional information about the
program, but does not affect its execution.

2.9 Exercises

Exercise 3

To test your understanding of assignment statements, write a few lines of code
that swap the values of x and y. Put your code in a script called swap and test
it.

If it works correctly, to should be able to run it like this:

>> x = 1, y = 2

x = 1

y = 2

>> swap

>> x, y

x = 2

y = 1

Exercise 4

Imagine that you are the operator of a bike share system with two locations:
Boston and Cambridge.
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You observe that every day 5% of the bikes in Boston are dropped off in Cam-
bridge, and 3% of the bikes in Cambridge get dropped off in Boston. At the
beginning of the month, there are 100 bikes at each location.

Write a script called bike_update that updates the number of bikes in each
location from one day to the next. The precondition is that the variables b and
c contain the number of bikes in each location at the beginning of the day. The
postcondition is that b and c have been modified to reflect net movement of
bikes.

To test your program, initialize b and c at the prompt and then execute the
script. The script should display the updated values of b and c, but not any
intermediate variables.

Remember that bikes are countable things, so b and c should always be integer
values. You might want to use the round function to compute the number of
bikes that move each day.

If you execute your script repeatedly, you can simulate the passage of time from
day to day (you can repeat a command by pressing the Up arrow and then
Enter).

What happens to the bikes? Do they all end up in one place? Does the system
reach an equilibrium, does it oscillate, or does it do something else?

In the next chapter we will see how to execute your script automatically, and
how to plot the values of a and b over time.
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Chapter 3

Loops

This chapter introduces one of the most important programming language fea-
tures, the for loop, the mathematical concepts sequence and series, and a pro-
cess for writing programs, incremental development.

3.1 Updating variables

In Exercise 4, you might have been tempted to write something like

b = b - 0.05*b + 0.03*c

c = c + 0.05*b - 0.03*c

But that would be wrong, so very wrong. Why? The problem is that the first
line changes the value of a, so when the second line runs, it gets the old value
of b and the new value of a. As a result, the change in a is not always the same
as the change in b, which violates the principle of Conversation of Bikes!

One solution is to use temporary variables anew and bnew:

b_new = b - 0.05*b + 0.03*c

c_new = c + 0.05*b - 0.03*c

b = b_new

c = c_new

This has the effect of updating the variables “simultaneously;” that is, it reads
both old values before writing either new value.

The following is an alternative solution that has the added advantage of simpli-
fying the computation:
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b_to_c = 0.05*b - 0.03*c

b = b - b_to_c

c = c + b_to_c

It is easy to look at this code and confirm that it obeys Conversation of Bikes.
Even if the value of b_to_c is wrong, at least the total number of bikes is right.
And that brings us to the Fifth Theorem of Debugging:

The best way to avoid a bug is to make it impossible.

In this case, removing redundancy also eliminates the opportunity for a bug.

3.2 Bug taxonomy

There are four kinds of bugs:

Syntax error: You have written a command that cannot execute because it
violates one of the rules of syntax. For example, you can’t have two
operands in a row without an operator, so pi r^2 contains a syntax error.
When the interpreter finds a syntax error, it prints an error message and
stops running your program.

Runtime error: Your program starts running, but something goes wrong
along the way. For example, if you try to access a variable that doesn’t
exist, that’s a runtime error. When the interpreter detects the problem,
it prints an error message and stops.

Logical error: Your program runs without generating any error messages, but
it doesn’t do the right thing. The problem in the previous section, where
we changed the value of b before reading the old value, is a logical error.

Numerical error: Most computations in MATLAB are only approximately
right. Most of the time the errors are small enough that we don’t care,
but in some cases the round-off errors are a problem.

Syntax errors are usually the easiest. Sometimes the error messages are confus-
ing, but MATLAB can usually tell you where the error is, at least roughly.

Runtime errors are harder because, as I mentioned before, MATLAB can tell
you where it detected the problem, but not what caused it.

Logical errors are hard because MATLAB can’t help at all. Only you know what
the program is supposed to do, so only you can check it. From MATLAB’s point
of view, there’s nothing wrong with the program; the bug is in your head!
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Numerical errors can be tricky because it’s not clear whether the problem is
your fault. For most simple computations, MATLAB produces the floating-
point value that is closest to the exact solution, which means that the first 15
significant digits should be correct.

But some computations are ill-conditioned, which means that even if your pro-
gram is correct, the round-off errors accumulate and the number of correct digits
can be smaller. Sometimes MATLAB can warn you that this is happening, but
not always! Precision (the number of digits in the answer) does not imply
accuracy (the number of digits that are right).

3.3 Absolute and relative error

There are two ways of thinking about numerical errors, called absolute and
relative.

Absolute error: The difference between the correct value and the approxima-
tion. We often write the magnitude of the error, ignoring its sign, when
it doesn’t matter whether the approximation is too high or too low.

Relative error: The error expressed as a fraction (or percentage) of the exact
value.

For example, we might want to estimate 9! using the formula
√

18π(9/e)9. The
exact answer is 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362, 880. The approximation is
359, 536.87. So the absolute error is 3,343.13.

At first glance, that sounds like a lot—we’re off by three thousand — but we
should consider the size of the thing we are estimating. For example, $3000
matters a lot if we are talking about my annual salary, but not at all if we are
talking about the national debt.

A natural way to handle this problem is to use relative error. In this case, we
would divide the error by 362,880, yielding .00921, which is just less than 1%.
For many purposes, being off by 1% is good enough.

3.4 for loops

A loop is a part of a program that executes repeatedly; a for loop is the kind
of loop that uses the for statement.

The simplest use of a for loop is to execute one or more lines a fixed number of
times. For example, in the last chapter we wrote a script named bike_update

that simulates a day in the life of a bike share service. To simulate an entire
month, we have to run it 30 times:
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for i=1:30

bike_update

end

The first line looks like an assignment statement, and it is like an assignment
statement, except that it runs more than once. The first time it runs, it creates
the variable i and assigns it the value 1. The second time, i gets the value 2,
and so on, up to and including 30.

The colon operator, :, specifies a range of integers. You can create a range at
the prompt:

>> 1:5

ans = 1 2 3 4 5

The variable you use in the for statement is called the loop variable. It is
common to use the names i, j, and k as loop variables.

The statements inside the loop are called the body. By convention, they are
indented to show that they are inside the loop, but the indentation does not
affect the execution of the program. The end statement marks the end of the
loop.

To see the loop in action you can run a loop that displays the loop variable:

>> for i=1:5

i

end

i = 1

i = 2

i = 3

i = 4

i = 5

As this example shows, you can run a for loop from the command line, but it’s
much more common to put it in a script.

Exercise 5

Create a script named bike_loop that uses a for loop to run bike_update 30
times. Before you run it, you have to assign values to b and c. For this exercise,
start with the values b = 100 and c = 100.

If everything goes smoothly, your script will display a long stream of numbers
on the screen. It is probably too long to fit, and even if it fit, it would be hard
to interpret. A graph would be much better!
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3.5 plotting

plot is a versatile function for plotting points and lines on a two-dimensional
graph. Unfortunately, it is so versatile that it can be hard to use (and hard to
read the documentation). We will start simple and work our way up.

To plot a single point, type

>> plot(1, 2, 'o')

A Figure Window should appear with a graph and a single, blue circle at x
position 1 and y position 2.

The letter in single quotes is a style string that specifies how the point should
be plotted. Other shapes include +, *, x, s (for square), d (for diamond), ^ (for
a triangle).

You can also specify the color:

>> plot(1, 2, 'ro')

r stands for red; the other colors include green, blue, cyan, magenta, yellow,
and black.

When you use plot this way, it can only plot one point at a time. If you run
plot again, it clears the figure before making the new plot. The hold command
lets you override that behavior. hold on tells MATLAB not to clear the figure
when it makes a new plot; hold off returns to the default behavior.

Try this:

>> clf

>> hold on

>> plot(1, 1, 'ro')

>> plot(2, 2, 'go')

>> plot(3, 3, 'bo')

>> hold off

The clf command clears the figure before we start plotting.

You should see a figure with three circles. MATLAB scales the plot automati-
cally so that the axes runs from the lowest values in the plot to the highest.

Exercise 6

Modify bike_loop so that it clears the figure before running the loop. Then,
each time through the loop, it should plot the value of b versus the value of i
with a red circle..

Once you get that working, modify it so it plots the values of c with blue
diamonds.
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3.6 Sequences

In mathematics a sequence is a set of numbers that corresponds to the positive
integers. The numbers in the sequence are called elements. In math notation,
the elements are denoted with subscripts, so the first element of the series A is
A1, followed by A2, and so on.

for loops are a natural way to compute the elements of a sequence. As an
example, in a geometric sequence, each element is a constant multiple of the
previous element. As a more specific example, let’s look at the sequence with
A1 = 1 and the ratio Ai+1 = Ai/2, for all i. In other words, each element is
half as big as the one before it.

The following loop computes the first 10 elements of A:

a = 1

for i=2:10

a = a/2

end

Each time through the loop, we find the next value of a by dividing the previous
value by 2. Notice that the loop range starts at 2 because the initial value of a
corresponds to A1, so the first time through the loop we are computing A2.

Each time through the loop, we replace the previous element with the next, so
at the end, a contains the 10th element. The other elements are displayed on
the screen, but they are not saved in a variable. Later, we will see how to save
the elements of a sequence in a vector.

This loop computes the sequence recurrently, which means that each element
depends on the previous one. For this sequence it is also possible to compute
the ith element directly, as a function of i, without using the previous element.
In math notation, Ai = A1r

i−1.

Exercise 7

Write a script named sequence that uses a loop to compute elements of A
directly.

3.7 Series

In mathematics, a series is the sum of the elements of a sequence. It’s a terrible
name, because in common English, “sequence” and “series” mean pretty much
the same thing, but in math, a sequence is a set of numbers, and a series is an
expression (a sum) that has a single value. In math notation, a series is often
written using the summation symbol

∑
.
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For example, the sum of the first 10 elements of A is

10∑
i=1

Ai (3.1)

A for loop is a natural way to compute the value of this series:

A1 = 1;

total = 0;

for i=1:10

a = A1 * (1/2)^(i-1);

total = total + a;

end

ans = total

A1 is the first element of the sequence; each time through the loop a is the ith
element.

The way we are using total is sometimes called an accumulator; that is, a
variable that accumulates a result a little bit at a time. Before the loop we
initialize it to 0. Each time through the loop we add in the ith element. At the
end of the loop total contains the sum of the elements. Since that’s the value
we were looking for, we assign it to ans.

Exercise 8

This example computes the terms of the series directly; as an exercise, write a
script named series that computes the same sum by computing the elements
recurrently. You will have to be careful about where you start and stop the
loop.

3.8 Generalization

As written, the previous example always adds up the first 10 elements of the
sequence, but we might be curious to know what happens to total as we increase
the number of terms in the series. If you have studied geometric series, you might
know that this series converges on 2; that is, as the number of terms goes to
infinity, the sum approaches 2 asymptotically.

To see if that’s true for our program, we can replace the constant, 10, with a
variable named n:

A1 = 1;

total = 0;

for i=1:n
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a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

The code above can now compute any number of terms, with the precondition
that you have to set n before you execute the code. I put this code in a file
named series.m, then ran it with different values of n:

>> n=10; series

total = 1.99804687500000

>> n=20; series

total = 1.99999809265137

>> n=30; series

total = 1.99999999813735

>> n=40; series

total = 1.99999999999818

It sure looks like it’s converging on 2.

Replacing a constant with a variable is called generalization. Instead of com-
puting a fixed, specific number of terms, the new script is more general; it can
compute any number of terms. This is an important idea we will come back to
when we talk about functions.

3.9 Incremental development

As you start writing longer programs, you might find yourself spending more
time debugging. The more code you write before you start debugging, the
harder it is to find the problem.

Incremental development is a way of programming that tries to minimize
the pain of debugging. The fundamental steps are:

1. Always start with a working program. If you have an example from a
book, or a program you wrote that is similar to what you are working on,
start with that. Otherwise, start with something you know is correct, like
x=5. Run the program and confirm that you are running the program you
think you are running.

This step is important, because in most environments there are little things
that can trip you up when you start a new project. Get them out of the
way so you can focus on programming.
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2. Make one small, testable change at a time. A “testable” change is one
that displays something on the screen (or has some other effect) that you
can check. Ideally, you should know what the correct answer is, or be able
to check it by performing another computation.

3. Run the program and see if the change worked. If so, go back to Step 2.
If not, you will have to do some debugging, but if the change you made
was small, it shouldn’t take long to find the problem.

With incremental development, your code is more likely to work the first time;
and if it doesn’t the problem is more likely to be obvious. And that brings us
to the Sixth Theorem of Debugging:

The best kind of debugging is the kind you don’t have to do.

In practice, there are two problems with incremental development:

� Sometimes you have to write extra code to generate visible output that
you can check. This extra code is called scaffolding because you use
it to build the program and then remove it when you are done. But
time you save on debugging is almost always worth the time you invest in
scaffolding.

� When you are getting started, it might not be obvious how to choose the
steps that get from x=5 to the program you are trying to write. There is
an extended example in Section 5.5.

If you find yourself writing more than a few lines of code before you start
testing, and you are spending a lot of time debugging, you should try incremental
development.

3.10 Glossary

absolute error: The difference between an approximation and an exact an-
swer.

relative error: The difference between an approximation and an exact answer,
expressed as a fraction or percentage of the exact answer.

loop: A part of a program that runs repeatedly.

loop variable: A variable, defined in a for statement, that gets assigned a
different value each time through the loop.

range: The set of values assigned to the loop variable, often specified with the
colon operator; for example 1:5.
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body: The statements inside the for loop that are run repeatedly.

sequence: In mathematics, a set of numbers that correspond to the positive
integers.

element: A member of the set of numbers in a sequence.

recurrently: A way of computing the next element of a sequence based on
previous elements.

directly: A way of computing an element in a sequence without using previous
elements.

series: The sum of the elements in a sequence.

accumulator: A variable that is used to accumulate a result a little bit at a
time.

generalization: A way to make a program more versatile, for example by
replacing a specific value with a variable that can have any value.

incremental development: A way of programming by making a series of
small, testable changes.

scaffolding: Code you write to help you program or debug, but which is not
part of the finished program.

3.11 Exercises

Exercise 9

Years ago I was in a fudge shop and saw a sign that said “Buy one pound of
fudge, get another quarter pound free.” That’s simple enough.

But if I ran the fudge shop, I would offer a special deal to anyone who can solve
the following problem:

If you buy a pound of fudge, we’ll give you another quarter pound
free. And then we’ll give you a quarter of a quarter pound, or 1/16.
And then we’ll give you a quarter of that, and so on. How much
fudge would you get in total?

Write a script called fudge.m that solves this problem. Hint: start with
series.m and generalize it by replacing the ratio 1/2 with a variable, r.
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Exercise 10

We have already seen the Fibonacci sequence, F , which is defined recurrently
as

for i ≥ 3, Fi = Fi−1 + Fi−2

In order to get started, you have to specify the first two elements, but once you
have those, you can compute the rest. The most common Fibonacci sequence
starts with F1 = 1 and F2 = 1.

Write a script called fibonacci2 that uses a for loop to compute the first 10
elements of this Fibonacci sequence. As a postcondition, your script should
assign the 10th element to ans.

Now generalize your script so that it computes the nth element for any value of
n, with the precondition that you have to set n before you run the script. To
keep things simple for now, you can assume that n is greater than 0.

Hint: you will have to use two variables to keep track of the previous two
elements of the sequence. You might want to call them prev1 and prev2.
Initially, prev1 = F1 and prev2 = F2. At the end of the loop, you will have to
update prev1 and prev2; think carefully about the order of the updates!
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Chapter 4

Vectors

This chapter presents conditional statements and vectors, and three patterns
for working with data: reduce, apply, and search.

4.1 Checking preconditions

Some of the loops in the previous chapter don’t work if the value of n isn’t set
correctly before the loop runs. For example, this loop computes the sum of the
first n elements of a geometric sequence:

A1 = 1;

total = 0;

for i=1:n

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

It works for any positive value of n, but what if n is negative? In that case, you
get:

total = 0

Why? Because the expression 1:-1 means “all the numbers from 1 to -1, count-
ing up by 1.” It’s not immediately obvious what that should mean, but MAT-
LAB’s interpretation is that there aren’t any numbers that fit that description,
so the result is

>> 1:-1

ans = 1x0 empty double row vector
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If the matrix is empty, you might expect it to be 0x0, but there you have it.

In any case, if you loop over an empty range, the loop never runs at all, which
is why in this example the value of total is zero for any negative value of n.

If you are sure that you will never make a mistake, and that the preconditions
of your functions will always be satisfied, then you don’t have to check. But
for the rest of us, it is dangerous to write a script, like this one, that quietly
produces the wrong answer (or at least a meaningless answer) if the input value
is negative. A better alternative is to use an if statement.

4.2 if statements

The if statement allows you to check for certain conditions and execute state-
ments if the conditions are met. In the previous example, we could write:

if n<0

ans = NaN

end

The syntax is similar to a for loop. The first line specifies the condition we
are interested in; in this case we are asking if n is negative. If it is, MATLAB
executes the body of the statement, which is the indented sequence of statements
between the if and the end.

MATLAB doesn’t require you to indent the body of an if statement, but it
makes your code more readable, so you should do it. Don’t make me tell you
again.

In this example, the “right” thing to do if n is negative is to set ans = NaN,
which is a standard way to indicate that the result is undefined (not a number).

If the condition is not satisfied, the statements in the body are not executed.
Sometimes there are alternative statements to execute when the condition is
false. In that case you can extend the if statement with an else clause.

The complete version of the previous example might look like this:

if n<0

ans = NaN

else

A1 = 1;

total = 0;

for i=1:n

a = A1 * 0.5^(i-1);

total = total + a;

end
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ans = total

end

Statements like if and for that contain other statements are called compound
statements. All compound statements end with... end.

In this example, one of the statements in the else clause is a for loop. Putting
one compound statement inside another is legal and common, and sometimes
called nesting.

4.3 Relational operators

The operators that compare values, like < and > are called relational operators
because they test the relationship between two values. The result of a relational
operator is one of the logical values: either 1, which represents “true,” or 0,
which represents “false.”

Relational operators often appear in if statements, but you can also evaluate
them at the prompt:

>> x = 5;

>> x < 10

ans = 1

You can assign a logical value to a variable:

>> flag = x > 10

flag = 0

A variable that contains a logical value is often called a flag because it flags the
status of some condition.

The other relational operators are <= and >=, which are self-explanatory, ==, for
“equal,” and ~=, for “not equal.”

Don’t forget that == is the operator that tests equality, and = is the assignment
operator. If you try to use = in an if statement, you get an error:

>> if x=5

if x=5

|

Error: Incorrect use of '=' operator.

To assign a value to a variable, use '='.

To compare values for equality, use '=='.

Did you mean:

>> x = 5

In this case, the error message is pretty helpful.
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4.4 Logical operators

To test if a number falls in an interval, you might be tempted to write something
like 0 < x < 10, but that would be wrong, so very wrong. Unfortunately, in
many cases, you will get the right answer for the wrong reason. For example:

>> x = 5;

>> 0 < x < 10 % right for the wrong reason

ans = 1

But don’t be fooled!

>> x = 17

>> 0 < x < 10 % just plain wrong

ans = 1

The problem is that MATLAB is evaluating the operators from left to right, so
first it checks if 0<x. It is, so the result is 1. Then it compares the logical value
1 (not the value of x) to 10. Since 1<10, the result is true, even though x is not
in the interval.

For beginning programmers, this is an evil, evil bug!

One way around this problem is to use a nested if statement to check the two
conditions separately:

ans = 0

if 0<x

if x<10

ans = 1

end

end

But it is more concise to use the AND operator, &&, to combine the conditions.

>> x = 5;

>> 0<x && x<10

ans = 1

>> x = 17;

>> 0<x && x<10

ans = 0

The result of AND is true if both of the operands are true. The OR operator,
||, is true if either or both of the operands are true.
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4.5 Vectors

The values we have seen so far are all single numbers, which are called scalars
to contrast them with vectors and matrices, which are collections of numbers.

A vector in MATLAB is similar to a sequence in mathematics; it is set of
numbers that correspond to positive integers. There are several ways to create
vectors; one of the most common is to put a sequence of numbers in square
brackets:

>> [1 2 3]

ans = 1 2 3

In general, anything you can do with a scalar, you can also do with a vector.
You can assign a vector value to a variable:

>> X = [1 2 3]

X = 1 2 3

Variables that contain vectors are often capital letters. That’s just a convention;
MATLAB doesn’t require it, but for beginning programmers, it is a useful way
to remember what is a vector and what is a scalar.

4.6 Vector arithmetic

You can perform arithmetic with vectors, too. If you add a scalar to a vector,
MATLAB increments each element of the vector:

>> Y = X + 5

Y = 6 7 8

The result is a new vector; the original value of X is not changed.

If you add two vectors, MATLAB adds the corresponding elements of each
vector and creates a new vector that contains the sums:

>> Z = X+Y

Z = 7 9 11

But adding vectors only works if the operands are the same size. Otherwise you
get an error:

>> W = [1 2]

W = 1 2 3

>> X + W

Matrix dimensions must agree.



42 Vectors

The error message in this case is confusing, because we are thinking of these
values as vectors, not matrices. The problem is a slight mismatch between math
vocabulary and MATLAB vocabulary.

4.7 Everything is a matrix

In math (specifically in linear algebra) a vector is a one-dimensional sequence
of values and a matrix is two-dimensional. And, if you want to think of it that
way, a scalar is zero-dimensional.

In MATLAB, everything is a matrix (except strings). You can see this if you
use the whos command to display the variables in the workspace. whos is similar
to who, but it also displays the size of each value and other information.

To demonstrate, I’ll make one of each kind of value:

>> scalar = 5

scalar = 5

>> vector = [1 2 3 4 5]

vector = 1 2 3 4 5

>> matrix = ones(2,3)

matrix =

1 1 1

1 1 1

The built-in function ones builds a new matrix with the given number of rows
and columns, and sets all the elements to 1. Now let’s see what we’ve got.

>> whos

Name Size Bytes Class Attributes

matrix 2x3 48 double

scalar 1x1 8 double

vector 1x5 40 double

According to MATLAB, everything is a double, which is another name for a
double-precision floating-point number.

But they have difference sizes:

� The size of scalar is 1x1, which means it has 1 row and 1 column.

� vector has 1 row and 5 columns.

� And matrix has 2 rows and 3 columns.
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The point of all this is that you can think of your values as scalars, vectors, and
matrices, and I think you should. But in MATLAB they are all matrices.

4.8 Elementwise operators

If you have two vectors with the same length, you can add and subtract them:

>> X = [1 2 3]

X = 1 2 3

>> Y = [4 5 6]

Y = 1 4 6

>> X + Y

ans = 5 7 9

>> X - Y

ans = -3 -3 -3

These operations are performed elementwise; that is, MATLAB adds or sub-
tracts corresponding elements of the two vectors, and the result is a vector with
the same size.

But if you divide two vectors, you might be surprised by the result:

>> X / Y

ans = 0.4156

MATLAB is performing a matrix operation called right division, which I will
not try to explain. If you want to divide the elements of X by the elements of
Y, you have to use ./, which is elementwise division:

>> X ./ Y

ans = 0.2500 0.4000 0.5000

Multiplication has the same problem. If you use *, MATLAB does matrix
multiplication. With these two vectors, matrix multiplication is not defined,
and you get an error:

>> X * Y

Error using *

Incorrect dimensions for matrix multiplication.

Check that the number of columns in the first matrix

matches the number of rows in the second matrix

To perform elementwise multiplication, use '.*'.

In this case, the error message is pretty helpful. As it suggests, you can use .*

to perform elementwise multiplication:
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>> X .* Y

ans = 4 10 18

As an exercise, see what happens if you use the exponentiation operator, ^, with
a vector.

4.9 Indices

You can select an element from a vector with parentheses:

>> Y = [6 7 8 9]

Y = 6 7 8 9

>> Y(1)

ans = 6

>> Y(4)

ans = 9

This means that the first element of Y is 6 and the fourth element is 9. The
number in parentheses is called the index because it indicates which element
of the vector you want.

The index can be any kind of expression.

>> i = 1;

>> Y(i+1)

ans = 7

We can use a loop to display the elements of Y:

for i=1:4

Y(i)

end

Each time through the loop we use a different value of i as an index into Y.

A limitation of this example is that we had to know the number of elements in
Y. We can make it more general by using the length function, which returns
the number of elements in a vector:

for i=1:length(Y)

Y(i)

end

Now that works for a vector of any length.
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4.10 Indexing errors

An index can be any kind of expression, but the value of the expression has to
be a positive integer, and it has to be less than or equal to the length of the
vector. If it’s zero or negative, you get an error:

>> Y(0)

Array indices must be positive integers or logical values.

If it’s not an integer, you get an error:

>> Y(1.5)

Array indices must be positive integers or logical values.

If the index is too big, you also get an error:

>> Y(5)

Index exceeds the number of array elements (4).

The error messages use the word “array” rather than “matrix”, but they mean
the same thing, at least for now.

4.11 Vectors and sequences

Vectors and sequences go together nicely. For example, another way to evaluate
the Fibonacci sequence is by storing successive values in a vector. Again, the
definition of the Fibonacci sequence is F1 = 1, F2 = 1, and Fi = Fi−1 + Fi−2

for i > 2. In MATLAB, that looks like

F(1) = 1

F(2) = 1

for i=3:n

F(i) = F(i-1) + F(i-2)

end

I use a capital letter for the vector F and lower-case letters for the scalars i and
n.

If you had any trouble with Exercise 10, you have to appreciate the simplicity
of this version. The MATLAB syntax is similar to the math notation, which
makes it easier to check correctness.

However, you have to be careful with the range of the loop. In the previous
version, the loop runs from 3 to n, and each time we assign a value to the ith
element.

It would also work to “shift” the index over by two, running the loop from 1 to
n-2:
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F(1) = 1

F(2) = 1

for i=1:n-2

F(i+2) = F(i+1) + F(i)

end

Either version is fine, but you have to choose one approach and be consistent.
If you combine elements of both, you will get confused. I prefer the version that
has F(i) on the left side of the assignment, so that each time through the loop
it assigns the ith element.

If you only want the nth Fibonacci number, storing the whole sequence wastes
some space. But if wasting space makes your code easier to write and debug,
that’s probably ok.

Exercise 11

Write a loop that computes the first n elements of the geometric sequence Ai+1 =
Ai/2 with A1 = 1. Notice that math notation puts Ai+1 on the left side of the
equality. When you translate to MATLAB, you may want to shift the index.

4.12 Plotting vectors

If you call plot with a vector as an argument, MATLAB plots the indices on
the x-axis and the elements on the y-axis. To plot the Fibonacci numbers we
computed in the previous section:

plot(F)

This display is often useful for debugging, especially if your vectors are big
enough that displaying the elements on the screen is unwieldy.

By default, MATLAB draws a blue line, but you can override that setting with
a style string, as we saw in Section 3.5. For example, the string ’ro-’ tells
MATLAB to plot a red circle at each data point; the hyphen means the points
should be connected with a line.

4.13 Reduce

A frequent use of loops is to run through the elements of an array and add them
up, or multiply them together, or compute the sum of their squares, etc. This
kind of operation is called reduce, because it reduces a vector with multiple
elements down to a single scalar.
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For example, this loop adds up the elements of a vector named X (which we
assume has been defined).

total = 0

for i=1:length(X)

total = total + X(i)

end

ans = total

The use of total as an accumulator is similar to what we saw in Section 3.7.
Again, we use the length function to find the upper bound of the range, so this
loop will work regardless of the length of X. Each time through the loop, we add
in the ith element of X, so at the end of the loop total contains the sum of the
elements.

4.14 Apply

Another common use of a loop is to run through the elements of a vector,
perform some operation on the elements, and create a new vector with the
results. This kind of operation is called apply, because you apply the operation
to each element in the vector.

For example, the following loop computes a vector Y that contains the squares
of the elements of X (assuming, again, that X is already defined).

for i=1:length(X)

Y(i) = X(i)^2

end

4.15 Search

Yet another use of loops is to search the elements of a vector and return the
index of the value you are looking for (or the first value that has a particular
property).

For example, the following loop finds the index of the element 0 in X:

for i=1:length(X)

if X(i) == 0

ans = i

end

end
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A funny thing about this loop is that it keeps going after it finds what it is
looking for. That might be what you want; if the target value appears more
than one, this loop provides the index of the last one.

But if you want the index of the first one (or you know that there is only one),
you can save some unnecessary looping by using the break statement.

for i=1:length(X)

if X(i) == 0

ans = i

break

end

end

break does pretty much what it sounds like. It ends the loop and proceeds
immediately to the next statement after the loop (in this case, there isn’t one,
so the code ends).

4.16 Spoiling the fun

Experienced MATLAB programmers would never write the kind of loops in this
chapter, because MATLAB provides simpler and faster ways to perform many
reduce, filter and search operations.

For example, the sum function computes the sum of the elements in a vector
and prod computes the product.

Many apply operations can be done with elementwise operators. The following
statement is more concise than the loop in Section 4.14

Y = X .^ 2

And find can perform search operations:

>> X = [3 2 1 0]

X = 3 2 1 0

>> find(X==0)

ans = 4

If you understand loops and you are are comfortable with the shortcuts, feel
free to use them! Otherwise, you can always write out the loop.

4.17 Name Collisions

All scripts run in the same workspace, so if one script changes the value of a
variable, all other scripts see the change. With a small number of simple scripts,
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that’s not a problem, but eventually the interactions between scripts become
unmanageable.

For example, the following (increasingly familiar) script computes the sum of
the first n terms in a geometric sequence, but it also has the side-effect of
assigning values to A1, total, i, and a.

A1 = 1;

total = 0;

for i=1:10

a = A1 * 0.5^(i-1);

total = total + a;

end

ans = total

If you were using any of those variable names before calling this script, you might
be surprised to find, after running the script, that their values had changed. If
you have two scripts that use the same variable names, you might find that they
work separately and then break when you try to combine them. This kind of
interaction is called a name collision.

As the number of scripts you write increases, and they get longer and more
complex, name collisions become more of a problem. Avoiding this problem is
one of the motivations for functions.

4.18 Glossary

compound statement: A statement, like if and for, that contains other
statements in an indented body.

nesting: Putting one compound statement in the body of another.

relational operator: An operator that compares two values and generates a
logical value as a result.

logical value: A value that represents either “true” or “false”. MATLAB uses
the values 1 and 0, respectively.

flag: A variable that contains a logical value, often used to store the status of
some condition.

scalar: A single value.

vector: A sequence of values.

matrix: A two-dimensional collection of values (also called “array” in some
MATLAB documentation).
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ind An integer value used to indicate one of the values in a vector or matrix
(also called subscript in some MATLAB documentation).

element: One of the values in a vector or matrix.

elementwise: An operation that acts on the individual elements of a vector or
matrix (unlike some linear algebra operations).

reduce: A way of processing the elements of a vector and generating a single
value; for example, the sum of the elements.

apply: A way of processing a vector by performing some operation on each of
the elements, producing a vector that contains the results.

search: A way of processing a vector by examining the elements in order until
one is found that has the desired property.

name collision: The scenario where two scripts that use the same variable
name interfere with each other.

4.19 Exercises

Exercise 12

Write an expression that computes the square root of the sum of the squares of
the elements of a vector, without using a loop.

Exercise 13

The ratio of consecutive Fibonacci numbers, Fn+1/Fn, converges to a constant
value as n increases. Write a script that computes a vector with the first n
elements of a Fibonacci sequence (assuming that the variable n is defined), and
then computes a new vector that contains the ratios of consecutive Fibonacci
numbers. Plot this vector to see if it seems to converge. What value does it
converge on?

Exercise 14

The following set of equations is based on a famous example of a chaotic system,
the Lorenz attractor1:

xi+1 = xi + σ (yi − xi) dt (4.1)

yi+1 = yi + [xi(r − zi)− yi] dt (4.2)

zi+1 = zi + (xiyi − bzi) dt (4.3)

1See https://en.wikipedia.org/wiki/Lorenz_system.
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� Write a script that computes the first 10 elements of the sequences X, Y ,
and Z and stores them in vectors named X, Y, and Z.

Use the initial values X1 = 1, Y1 = 2, and Z1 = 3, with values σ = 10,
b = 8/3, and r = 28, and with dt = 0.01.

� Read the documentation for plot3 and comet3 and plot the results in 3
dimensions.

� Once the code is working, use semi-colons to suppress the output and then
run the program with sequence length 100, 1000, and 10000.

� Run the program again with different starting conditions. What effect
does it have on the result?

� Run the program with different values for σ, b, and r and see if you can
get a sense of how each variable affects the system.

Exercise 15

The logistic map2 is described by the following equation:

Xi+1 = rXi(1−Xi) (4.4)

where Xi is a number between zero and one and r is a positive number that
represents.

� Write a script named logmap that computes the first 50 elements of X
with r=3.9 and X1=0.5, where r is the parameter of the logistic map and
X1 is the initial value.

� Plot the results for a range of values of r from 2.4 to 4.0. How does the
behavior of the system change as you vary r?

2See https://en.wikipedia.org/wiki/Logistic_map
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Chapter 5

Functions

This chapter introduces the most important idea in computer programming:
functions!

A function is like a script, except

� Each function has its own workspace, so any variables defined inside a
function only exist while the function is running, and don’t interfere with
variables in other workspaces, even if they have the same name.

� Function inputs and outputs are defined carefully to avoid unexpected
interactions.

To define a new function, you create an M-file with the name you want, and
put a function definition in it. For example, to create a function named myfunc,
create an M-file named myfunc.m and put the following definition into it.

function res = myfunc(x)

s = sin(x)

c = cos(x)

res = abs(s) + abs(c)

end

The first non-comment word of the file has to be function, because that’s how
MATLAB tells the difference between a script and a function file.

A function definition is a compound statement. The first line is called the
signature of the function; it defines the inputs and outputs of the function.
In this case the input variable is named x. When this function is called, the
argument provided by the user will be assigned to x.

The output variable is named res, which is short for “result”. You can call
the output variable whatever you want, but as a convention, I like to call it res.
Usually the last thing a function does is assign a value to the output variable.
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Once you have defined a new function, you call it the same way you call built-in
MATLAB functions. If you call the function as a statement, MATLAB puts the
result into ans:

>> myfunc(1)

s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

ans = 1.38177329067604

But it is more common (and better style) to assign the result to a variable:

>> y = myfunc(1)

s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

y = 1.38177329067604

While you are debugging a new function, you might want to display intermediate
results like this, but once it is working, you will want to add semi-colons to make
it a silent function. Most built-in functions are silent; they compute a result,
but they don’t display anything (except sometimes warning messages).

Each function has its own workspace, which is created when the function starts
and destroyed when the function ends. If you try to access (read or write) the
variables defined inside a function, you will find that they don’t exist.

>> clear

>> y = myfunc(1);

>> who

Your variables are: y

>> s

Undefined function or variable 's'.

The only value from the function that you can access is the result, which in this
case is assigned to y.

If you have variables named s or c in your workspace before you call myfunc,
they will still be there when the function completes.
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>> s = 1;

>> c = 1;

>> y = myfunc(1);

>> s, c

s = 1

c = 1

So inside a function you can use whatever variable names you want without
worrying about collisions.

5.1 Documentation

At the beginning of every function file, you should include a comment that
explains what the function does:

.

% res = myfunc(x)

% Compute the Manhattan distance from the origin to the

% point on the unit circle with angle (x) in radians.

function res = myfunc(x)

% this is not part of documentation given by help function

s = sin(x);

c = cos(x);

res = abs(s) + abs(c);

end

When you ask for help, MATLAB prints the comment you provide.

>> help myfunc

res = myfunc(x)

Compute the Manhattan distance from the origin to the

point on the unit circle with angle (x) in radians.

There are lots of conventions about what should be included in these comments.
Among other things, it is a good idea to include

� The signature of the function, which includes the name of the function,
the input variable(s) and the output variable(s).

� A clear, concise, abstract description of what the function does. An ab-
stract description is one that leaves out the details of how the function
works, and includes only information that someone using the function
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needs to know. You can put additional comments inside the function that
explain the details.

� An explanation of what the input variables mean; for example, in this case
it is important to note that x is considered to be an angle in radians.

� Any preconditions and postconditions.

5.2 What could go wrong?

There are a few “gotchas” that come up when you start defining functions. The
first is that the “real” name of your function is determined by the file name,
not by the name you put in the function signature. As a matter of style, you
should make sure that they are always the same, but if you make a mistake, or
if you change the name of a function, it is easy to get confused.

In the spirit of making errors on purpose, change the name of the function in
myfunc to something_else, and then run it again.

If this is what you put in myfunc.m:

function res = something_else (x)

s = sin(x);

c = cos(x);

res = abs(s) + abs(c);

end

Here’s what you’ll get:

>> y = myfunc(1)

y = 1.3818

>> y = something_else(1)

Undefined function or variable 'something_else'.

myfunc still works because that’s the name of the file. something_else doesn’t
work because the name of the function is ignored.

The second gotcha is that the name of the file can’t have spaces. For example,
if you write a function and rename the file to my func.m, and then try to run
it, you get:

>> y = my func(1)

y = my func(1)

|

Error: Unexpected MATLAB expression.



5.3 Multiple input variables 57

The third gotcha is that your function names can collide with built-in MATLAB
functions. For example, if you create an M-file named sum.m, and then call sum,
MATLAB might call your new function, not the built-in version! Which one
actually gets called depends on the order of the directories in the search path,
and (in some cases) on the arguments. As an example, put the following code
in a file named sum.m:

function res = sum(x)

res = 7;

end

And then try this:

>> sum(1:3)

ans = 6

>> sum

ans = 7

In the first case MATLAB used the built-in function; in the second case it ran
your function! This kind of interaction can be very confusing. Before you create
a new function, check to see if there is already a MATLAB function with the
same name. If there is, choose another name!

5.3 Multiple input variables

Functions can, and often do, take more than one input variable. For example,
the following function takes two input variables, a and b:

function res = hypotenuse(a, b)

res = sqrt(a^2 + b^2);

end

This function computes the length of the hypotenuse of a right triangle if the
lengths of the adjacent sides are a and b.

If we call it from the Command Window with arguments 3 and 4, we can confirm
that the length of the third side is 5.

>> c = hypotenuse(3, 4)

c = 5

The arguments you provide are assigned to the input variables in order, so in
this case 3 is assigned to a and 4 is assigned to b. MATLAB checks that you
provide the right number of arguments; if you provide too few, you get
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>> c = hypotenuse(3)

Not enough input arguments.

Error in hypotenuse (line 2)

res = sqrt(a^2 + b^2);

This error message is slightly confusing, because it suggests that the problem
is in hypotenuse rather than in the function call. Keep that in mind when you
are debugging.

If you provide too many arguments, you get

>> c = hypotenuse(3, 4, 5)

Error using hypotenuse

Too many input arguments.

Which is a better message.

5.4 Logical functions

In Section 4.4 we used logical operators to compare values. MATLAB also
provides logical functions that check for certain conditions and return logical
values: 1 for “true” and 0 for “false”.

For example, isprime checks to see whether a number is prime.

>> isprime(17)

ans = 1

>> isprime(21)

ans = 0

The functions isscalar and isvector check whether a value is a scalar or
vector.

To check whether a value you have computed is an integer, you might be tempted
to use isinteger. But that would be wrong, so very wrong. isinteger checks
whether a value belongs to one of the integer types (a topic we have not dis-
cussed); it doesn’t check whether a floating-point value happens to be integral.

>> c = hypotenuse(3, 4)

c = 5

>> isinteger(c)

ans = 0

To do that, we have to write our own logical function, which we’ll call
isintegral:
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function res = isintegral(x)

if round(x) == x

res = 1;

else

res = 0;

end

end

This function is good enough for most applications, but remember that floating-
point values are only approximately right: sometimes the approximation is an
integer when the actual value is not; sometimes the approximation is not an
integer when the actual value is.

5.5 Incremental development

Suppose we want to write a program to search for “Pythagorean triples”: sets
of integral values, like 3, 4, and 5, that are the lengths of the sides of a right
triangle. In other words, we would like to find integral values a, b, and c such
that a2 + b2 = c2.

Here are the steps we will follow to develop the program incrementally:

� Write a script named find triples and start with a simple statement
like x=5.

� Write a loop that enumerates values of a from 1 to 3, and displays them.

� Write a nested loop that enumerates values of b from 1 to 4, and displays
them.

� Inside the loop, call hypotenuse to compute c and display it.

� Use isintegral to check whether c is an integral value.

� Use an if statement to print only the triples a, b, and c that pass the test.

� Transform the script into a function.

� Generalize the function to take input variables that specify the range to
search.

Starting with x=5 might seem silly, but if you start simple and add a little bit
at a time, you will avoid a lot of debugging.

Here’s the second draft:

for a=1:3

a

end
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At each step, the program is testable: it produces output (or another visible
effect) that you can check.

5.6 Nested loops

The third draft contains a nested loop:

for a=1:3

a

for b=1:4

b

end

end

The inner loop gets executed 3 times, once for each value of a, so here’s what
the output looks like (I adjusted the spacing to make the structure clear):

>> find_triples

a = 1 b = 1

b = 2

b = 3

b = 4

a = 2 b = 1

b = 2

b = 3

b = 4

a = 3 b = 1

b = 2

b = 3

b = 4

The next step is to compute c for each pair of values a and b.

for a=1:3

for b=1:4

c = hypotenuse(a, b);

[a, b, c]

end

end

To display the values of a, b, and c, I store them in a vector; here’s what the
output looks like:
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>> find_triples

ans = 1.0000 1.0000 1.4142

ans = 1.0000 2.0000 2.2361

ans = 1.0000 3.0000 3.1623

ans = 1.0000 4.0000 4.1231

ans = 2.0000 1.0000 2.2361

ans = 2.0000 2.0000 2.8284

ans = 2.0000 3.0000 3.6056

ans = 2.0000 4.0000 4.4721

ans = 3.0000 1.0000 3.1623

ans = 3.0000 2.0000 3.6056

ans = 3.0000 3.0000 4.2426

ans = 3 4 5

You might notice that we are wasting some effort here. After checking a = 1
and b = 2, there is no point in checking a = 2 and b = 1. We can eliminate the
extra work by adjusting the range of the second loop:

for a=1:3

for b=a:4

c = hypotenuse(a, b);

[a, b, c]

end

end

If you are following along, run this version to make sure it has the expected
effect.

5.7 Conditions and flags

The next step is to check for integral values of c. This loop calls isintegral

and prints the resulting logical value.

for a=1:3

for b=a:4

c = hypotenuse(a, b);

flag = isintegral(c);

[c, flag]

end

end

By not displaying a and b I made it easy to scan the output to make sure that
the values of c and flag look right.

>> find_triples
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ans = 1.4142 0

ans = 2.2361 0

ans = 3.1623 0

ans = 4.1231 0

ans = 2.8284 0

ans = 3.6056 0

ans = 4.4721 0

ans = 4.2426 0

ans = 5 1

The next step is to use flag to display only the successful triples:

for a=1:3

for b=a:4

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end

end

end

Now the output is minimal:

>> find_triples

ans = 3 4 5

5.8 Encapsulation and generalization

As a script, this program has the side-effect of assigning values to a, b, c, and
flag, which would make it hard to use if any of those names were in use. By
wrapping the code in a function, we can avoid name collisions; this process is
called encapsulation because it isolates this program from the workspace.

The first draft of the function takes no input variables:

function res = find_triples ()

for a=1:3

for b=a:4

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end
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end

end

end

The empty parentheses in the signature are not strictly necessary, but they
make it apparent that there are no input variables. Similarly, when I call the
new function, I like to use parentheses to remind me that it is a function, not a
script:

>> find_triples()

The output variable isn’t strictly necessary, either; it never gets assigned a value.
But I put it there as a matter of habit, and also so my function signatures all
have the same structure.

The next step is to generalize this function by adding input variables. The
natural generalization is to replace the constant values 3 and 4 with a variable
so we can search an arbitrarily large range of values.

function res = find_triples (n)

for a=1:n

for b=a:n

c = hypotenuse(a, b);

flag = isintegral(c);

if flag

[a, b, c]

end

end

end

end

Here are the results for the range from 1 to 15:

>> find_triples(15)

ans = 3 4 5

ans = 5 12 13

ans = 6 8 10

ans = 8 15 17

ans = 9 12 15

Some of these are more interesting than others. The triples 5, 12, 13 and 8, 15, 17
are “new,” but the others are just multiples of the 3, 4, 5 triangle we already
knew.
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5.9 continue

As a final improvement, let’s modify the function so it only displays the “lowest”
of each Pythagorean triple, and not the multiples.

The simplest way to eliminate the multiples is to check whether a and b share a
common factor. If they do, dividing both by the common factor yields a smaller,
similar triangle that has already been checked.

MATLAB provides a gcd function that computes the greatest common divisor
of two numbers. If the result is greater than 1, a and b share a common factor
and we can use the continue statement to skip to the next pair:

function res = find_triples (n)

for a=1:n-1

for b=a:n

if gcd(a,b) > 1

continue

end

c = hypotenuse(a, b);

if isintegral(c)

[a, b, c]

end

end

end

end

continue causes the program to end the current iteration immediately, jump
to the top of the loop, and “continue” with the next iteration.

In this case, since there are two loops, it might not be obvious which loop to
jump to, but the rule is to jump to the inner-most loop (which is what we want).

I also simplified the program slightly by eliminating flag and using isintegral

as the condition of the if statement.

Here are the results with n=40:

>> find_triples(40)

ans = 3 4 5

ans = 5 12 13

ans = 7 24 25

ans = 8 15 17

ans = 9 40 41

ans = 12 35 37

ans = 20 21 29
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5.10 Mechanism and leap of faith

Let’s review the sequence of steps that occur when you call a function:

1. Before the function starts running, MATLAB creates a new workspace for
it.

2. MATLAB evaluates each of the arguments and assigns the resulting values,
in order, to the input variables (which live in the new workspace).

3. The body of the code executes. Somewhere in the body (often the last
line) a value gets assigned to the output variable.

4. The function’s workspace is destroyed; the only thing that remains is the
value of the output variable and any side effects the function had (like
displaying values or creating a figure).

5. The program resumes from where it left off. The value of the function call
is the value of the output variable.

When you are reading a program and you come to a function call, there are two
ways to interpret it:

� You can think about the mechanism I just described, and follow the exe-
cution of the program into the function and back, or

� You can take the “leap of faith”: assume that the function works correctly,
and go on to the next statement after the function call.

When you use built-in functions, it is natural to take the leap of faith, in part
because you expect that most MATLAB functions work, and in part because
you don’t generally have access to the code in the body of the function.

But when you start writing your own functions, you will probably find yourself
following the “flow of execution”. This can be useful while you are learning,
but as you gain experience, you should get more comfortable with the idea of
writing a function, testing it to make sure it works, and then forgetting about
the details of how it works.

Forgetting about details is called abstraction; in the context of functions,
abstraction means forgetting about how a function works, and just assuming
(after appropriate testing) that it works.

5.11 Why functions?

For many people, it takes some time to get comfortable with functions. If you
are one of them, you might be tempted to avoid functions, and sometimes you
can get by without them.
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But experienced programmers use functions extensively, for several good rea-
sons:

� Each function has its own workspace, so using functions helps avoid name
collisions.

� Functions lend themselves to incremental development: you can debug the
body of the function first (as a script), then encapsulate it as a function,
and then generalize it by adding input variables.

� Functions allow you to divide a large problem into small pieces, work on
the pieces one at a time, and then assemble a complete solution.

� Once you have a function working, you can forget about the details of how
it works and concentrate on what it does. This process of abstraction is
an important tool for managing the complexity of large programs.

Another reason to use functions is that many of the tools provided by MATLAB
require them. For example, in the next chapter we will use fzero to find solu-
tions of nonlinear equations. Later we will use ode45 to approximate solutions
to differential equations.

5.12 Glossary

side-effect: An effect, like modifying the workspace, that is not the primary
purpose of a script.

input variable: A variable in a function that gets its value, when the function
is called, from one of the arguments.

output variable: A variable in a function that is used to return a value from
the function to the caller.

signature: The first line of a function definition, which specifies the names of
the function, the input variables and the output variables.

silent function: A function that doesn’t display anything or generate a figure,
or have any other side-effects.

logical function: A function that returns a logical value (1 for “true” or 0 for
“false”).

encapsulation: The process of wrapping part of a program in a function in
order to limit interactions (including name collisions) between the function
and the rest of the program.

generalization: Making a function more versatile by replacing specific values
with input variables.
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abstraction: The process of ignoring the details of how a function works in
order to focus on a simpler model of what the function does.

5.13 Exercises

Exercise 16

There is an interesting connection between Fibonacci numbers and Pythagorean
triples. If F is a Fibonacci sequence,

(FiFi+3, 2Fi+1Fi+2, F
2
i+1 + F 2

i+2) (5.1)

is a Pythagorean triple, for all i ≥ 1.

Write a function named fib triple that takes n as an input variable, computes
the first n Fibonacci numbers, stores them in a vector, and checks whether this
formula produces Pythagorean triples for numbers in the sequence.
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Chapter 6

Zero-finding

In this chapter we’ll use the MATLAB function fzero to find roots of nonlinear
equations.

6.1 Nonlinear equations

What does it mean to “solve” an equation? That may seem like an obvious
question, but I want to take a minute to think about it, starting with a simple
example: let’s say that we want to know the value of a variable, x, but all we
know about it is the relationship x2 = a.

If you have taken algebra, you probably know how to “solve” this equation: you
take the square root of both sides and get x = ±

√
a. Then, with the satisfaction

of a job well done, you move on to the next problem.

But what have you really done? The relationship you derived is equivalent to
the relationship you started with—they contain the same information about
x—so why is the second one preferable to the first?

There are two reasons. One is that the relationship is now explicit in x: because
x is all alone on the left side, we can treat the right side as a recipe for computing
x, assuming that we know the value of a.

The other reason is that the recipe is written in terms of operations we know
how to perform. Assuming that we know how to compute square roots, we can
compute the value of x for any value of a.

When people talk about solving an equation, what they usually mean is some-
thing like “finding an equivalent relationship that is explicit in one of the vari-
ables”. In the context of this book, that’s what I will call an analytic solution,
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to distinguish it from a numerical solution, which is what we are going to do
next.

To demonstrate a numerical solution, consider the equation x2 − 2x = 3. You
could solve this analytically, either by factoring it or by using the quadratic equa-
tion, and you would discover that there are two solutions, x = 3 and x = −1.
Alternatively, you could solve it numerically by rewriting it as x = ±

√
2x+ 3.

This equation is not explicit, since x appears on both sides, so it is not clear
that this move did any good at all. But suppose that we had some reason to
expect there to be a solution near 4. We could start with x = 4 as an “initial
guess,” and then use the equation x =

√
2x+ 3 iteratively to compute successive

approximations of the solution.1

Here’s what happens:

>> x = 4;

>> x = sqrt(2*x+3)

x = 3.3166

>> x = sqrt(2*x+3)

x = 3.1037

>> x = sqrt(2*x+3)

x = 3.0344

>> x = sqrt(2*x+3)

x = 3.0114

>> x = sqrt(2*x+3)

x = 3.0038

After each iteration, x is closer to the correct answer, and after 5 iterations, the
relative error is about 0.1%, which is good enough for most purposes.

Techniques that generate numerical solutions are called numerical methods.
The nice thing about the method I just demonstrated is that it is simple, but
it doesn’t always work, and it is not often used in practice. We’ll see better
alternatives soon.

6.2 Zero-finding

A nonlinear equation like x2 − 2x = 3 is a statement of equality that is true for
some values of x and false for others. A value that makes it true is a solution;

1To understand why this works, see https://en.wikipedia.org/wiki/Fixed-point_

iteration.
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any other value is a non-solution. But for any given non-solution, there is no
sense of whether it is close or far from a solution, or where we might look to
find one.

To address this limitation, it is useful to rewrite non-linear equations as zero-
finding problems:

� The first step is to define an “error function” that computes how far a
given value of x is from being a solution.

In this example, the error function is

f(x) = x2 − 2x− 3 (6.1)

Any value of x that makes f(x) = 0 is also a solution of the original
equation.

� The next step is to find values of x that make f(x) = 0. These values are
called zeros of the function, also called roots.

Zero-finding lends itself to numerical solution because we can use the values of
f , evaluated at various values of x, to make reasonable inferences about where
to look for zeros.

And one of the best numerical methods is available as a built-in MATLAB
function, fzero.

6.3 fzero

In order to use fzero, you have to define a MATLAB function that computes
the error function you derived from the original nonlinear equation, and you
have to provide an initial guess at the location of a zero.

We’ve already seen an example of an error function:

function res = error_func(x)

res = x^2 - 2*x -3;

end

You can call error func from the Command Window, and confirm that there
are zeros at 3 and -1.

>> error_func(3)

ans = 0

>> error_func(-1)

ans = 0
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But let’s pretend that we don’t know where the roots are; we only know that
one of them is near 4. Then we could call fzero like this:

>> fzero(@error_func, 4)

ans = 3.0000

Success! We found one of the zeros.

The first argument is a function handle that names the M-file that evaluates
the error function. The @ symbol allows us to name the function without calling
it. The interesting thing here is that you are not actually calling error func

directly; you are just telling fzero where it is. In turn, fzero calls your error
function — more than once, in fact.

The second argument is the initial guess. If we provide a different initial guess,
we get a different root (at least sometimes).

>> fzero(@error_func, -2)

ans = -1

Alternatively, if you know two values that bracket the root, you can provide
both:

>> fzero(@error_func, [2,4])

ans = 3

The second argument is a vector that contains two elements.

You might be curious to know how many times fzero calls your function, and
where. If you modify error func so that it displays the value of x every time
it is called and then run fzero again, you get:

>> fzero(@error_func, [2,4])

x = 2

x = 4

x = 2.75000000000000

x = 3.03708133971292

x = 2.99755211623500

x = 2.99997750209270

x = 3.00000000025200

x = 3.00000000000000

x = 3

x = 3

ans = 3

Not surprisingly, it starts by computing f(2) and f(4). Then it computes a point
in the interval, 2.75 and evaluates f there. After each iteration, the interval gets
smaller and the guess gets closer to the true root. fzero stops when the interval
is so small that the estimated zero is correct to about 15 digits.

If you would like to know more about how fzero works, see Section 14.2.
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6.4 What could go wrong?

The most common problem people have with fzero is leaving out the @. In that
case, you get something like:

>> fzero(error_func, [2,4])

Not enough input arguments.

Error in error_func (line 2)

res = x^2 - 2*x -3;

The error occurs because MATLAB treats the first argument as a function call,
so it calls error func with no arguments.

Another common problem is writing an error function that never assigns a value
to the output variable. In general, functions should always assign a value to the
output variable, but MATLAB doesn’t enforce this rule, so it is easy to forget.
For example, if you write:

function res = error_func(x)

y = x^2 - 2*x -3

end

and then call it from the Command Window:

>> error_func(4)

y = 5

It looks like it worked, but don’t be fooled. This function assigns a value to y,
and it displays the result, but when the function ends, y disappears along with
the function’s workspace. If you try to use it with fzero, you get

>> fzero(@error_func, [2,4])

y = -3

Error using fzero (line 231)

FZERO cannot continue because user-supplied function_handle ==>

error_func failed with the error below.

Output argument "res" (and maybe others) not assigned during call

to "error_func".

If you read it carefully, this is a pretty good error message, provided you under-
stand that “output argument” and “output variable” are the same thing.

You would have seen the same error message when you called error func from
the interpreter, if you had assigned the result to a variable:

>> x = error_func(4)
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y = 5

Output argument "res" (and maybe others) not assigned during

call to "error_func".

You can avoid all of this if you remember these two rules:

� Functions should assign values to their output variables.2

� When you call a function, you should do something with the result (either
assign it to a variable or use it as part of an expression, etc.).

When you write your own functions and use them yourself, it is easy for mistakes
to go undetected. But when you use your functions with MATLAB functions
like fzero, you have to get it right!

Yet another thing that can go wrong: if you provide an interval for the initial
guess and it doesn’t actually contain a root, you get

>> fzero(@error_func, [0,1])

Error using fzero (line 272)

The function values at the interval endpoints must differ in sign.

There is one other thing that can go wrong when you use fzero, but this one
is less likely to be your fault. It is possible that fzero won’t be able to find a
root.

fzero is generally pretty robust, so you may never have a problem, but you
should remember that there is no guarantee that fzero will work, especially if
you provide a single value as an initial guess. Even if you provide an interval that
brackets a root, things can still go wrong if the error function is discontinuous.

6.5 Choosing an initial guess

The better your initial guess (or interval) is, the more likely it is that fzero will
work, and the fewer iterations it will need.

When you are solving problems in the real world, you will usually have some
intuition about the answer. This intuition is often enough to provide a good
initial guess.

Another approach is to plot the function and see if you can approximate the
zeros visually. If you have a function, like error func that takes a scalar input
variable and returns a scalar output variable, you can plot it with ezplot:

2Well, ok, there are exceptions, including find triples. Functions that don’t return a
value are sometimes called “commands”, because they do something (like display values or
generate a figure) but either don’t have an output variable or don’t make an assignment to it.
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>> ezplot(@error_func, [-2,5])

The first argument is a function handle; the second is the interval you want to
plot the function in.

By examining the plot, you can estimate the location of the two roots.

6.6 Vectorizing functions

With this example, you might get the following warning3:

Warning: Function failed to evaluate on array inputs;

vectorizing the function may speed up its evaluation and

avoid the need to loop over array elements.

This means that MATLAB tried to call error_func with a vector, and it failed.
The problem is that it uses * and ^ operators; as we saw in Section 4.8, those
operators don’t do what we want, which is elementwise multiplication and ex-
ponentiation.

If you rewrite error_func like this:

function res = error_func(x)

res = x.^2 - 2.*x -3;

end

The warning message goes away, and ezplot runs faster, for what it’s worth.

6.7 More name collisions

Functions and variables occupy the same workspace, which means that whenever
a name appears in an expression, MATLAB starts by looking for a variable with
that name, and if there isn’t one, it looks for a function.

As a result, if you have a variable with the same name as a function, the variable
shadows the function. For example, if you assign a value to sin, and then try
to use the sin function, you might get an error:

>> sin = 3;

>> x = 5;

>> sin(x)

Index exceeds the number of array elements (1).

'sin' appears to be both a function and a variable.

3In Octave it’s an error, so you have to vectorize the function.
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If this is unintentional, use 'clear sin' to remove

the variable 'sin' from the workspace.

Since the value we assigned to sin is a scalar, and a scalar is really a 1x1 matrix,
MATLAB tries to access the 5th element of the matrix and finds that there isn’t
one.

In this case MATLAB is able to detect the error, and the error message is pretty
helpful. But if the value of sin was a vector, or if the value of x was smaller,
you would be in trouble. For example:

>> sin = 3;

>> sin(1)

ans = 3

Just to review, the sine of 1 is not 3!

You can avoid these problems by choosing function names carefully:

� Use long, descriptive names for functions, not single letters like f.

� To be even clearer, use function names that end in func.

� Before you define a function, check whether MATLAB already has a func-
tion with the same name.

6.8 Debugging your head

When you are working with a new function or a new language feature for the
first time, you should test it in isolation before you put it into your program.

For example, suppose you know that x is the sine of some angle and you want
to find the angle. You find the MATLAB function asin, and you are pretty
sure it computes the inverse sine function. Pretty sure is not good enough; you
want to be very sure.

Since we know sin 0 = 0, we could try

>> asin(0)

ans = 0

which is correct. Now, we also know that the sine of 90 degrees is 1, so if we
try asin(1), we expect the answer to be 90, right?

>> asin(1)

ans = 1.5708

Oops. We forgot that the trig functions in MATLAB work in radians, not
degrees. So the correct answer is π/2, which we can confirm by dividing through
by pi:
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>> asin(1) / pi

ans = 0.5000

With this kind of testing, you are not really checking for errors in MATLAB,
you are checking your understanding. If you make an error because you are
confused about how MATLAB works, it might take a long time to find, because
when you look at the code, it looks right.

Which brings us to the Seventh Theorem of Debugging:

The worst bugs aren’t in your code; they are in your head.

6.9 Glossary

analytic solution: A way of solving an equation by performing algebraic op-
erations and deriving an explicit way to compute a value.

numerical solution: A way of solving an equation by finding a numerical value
that satisfies the equation, often approximately.

numerical method: A method (or algorithm) for generating a numerical so-
lution.

zero (of a function): An argument that makes the result of a function 0.

function handle: In MATLAB, a function handle is a way of referring to a
function by name (and passing it as an argument) without calling it.

shadow: A kind of name collision in which a new definition causes an existing
definition to become invisible. In MATLAB, variable names can shadow
built-in functions (with hilarious results).

6.10 Exercises

Exercise 17

1. Write a function called cheby6 that evaluates the 6th Chebyshev polyno-
mial. It should take an input variable, x, and return

32x6 − 48x4 + 18x2 − 1 (6.2)

2. Use ezplot to display a graph of this function in the interval from -1 to
1. Estimate the location of any zeros in this range.
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3. Use fzero to find as many different roots as you can. Does fzero always
find the root that is closest to the initial guess?

Exercise 18

When a duck is floating on water, how much of its body is submerged?

To estimate a solution to this problem4, we’ll assume that the submerged part
of a duck is well approximated by a section of a sphere. If a sphere with radius
r is submerged in water to a depth d, the volume of the sphere below the water
line is

V =
π

3
(3rd2 − d3) as long as d < 2r

We’ll also assume that the density of a duck is ρ, is 0.3g/cm3 (0.3 times the
density of water), and that its mass is 4

3πr
3ρ.

Finally, according to the law of buoyancy, an object floats at the level where
the weight of the displaced water equals the total weight of the object.

Here are some suggestions for how to proceed:

� Write an equation relating ρ, d, and r.

� Rearrange the equation so the right-hand side is zero. Our goal is to find
values of d that are roots of this equation.

� Write a MATLAB function that evaluates this function. Test it, then
make it a quiet function.

� Make a guess about the value of d0 to use as a starting place.

� Use fzero to find a root near d0.

� Check to make sure the result makes sense. In particular, check that
d < 2r, because otherwise the volume equation doesn’t work!

� Try different values of ρ and r and see if you get the effect you expect.
What happens as ρ increases? Goes to infinity? Goes to zero? What
happens as r increases? Goes to infinity? Goes to zero?

4This example is adapted from Gerald and Wheatley, Applied Numerical Analysis, Fourth
Edition, Addison-Wesley, 1989.
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Functions of Vectors

Now that we have functions and vectors, we’ll put them together to write func-
tions that take vectors as input variables and return vectors as output variables.
And you’ll see two patterns for computing with vectors, existential and universal
quantification. But first, let’s talk about organizing functions and files.

7.1 Functions and files

So far we have only put one function in each file. It is also possible to put
more than one function in a file, but only the first one, the top-level function,
can be called from the Command Window. The other helper functions can be
called from anywhere inside the file, but not from any other file.

Large programs almost always require more than one function; keeping multiple
functions in one file is convenient, but it makes debugging difficult because you
can’t call helper functions from the Command Window.

To help with this problem, I often use the top-level function to develop and test
my helper functions. For example, to write a program for Exercise 18, I would
create a file named duck.m and start with a top-level function named duck that
takes no input variables and returns no output value.

Then I would write a function named error func to evaluate the error function
for fzero. To test error func I would call it from duck and then call duck
from the Command Window.

Here’s what my first draft might look like:

function res = duck()

error = error_func(10)
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end

function res = error_func(d)

rho = 0.3; % density in g / cm^3

r = 10; % radius in cm

res = d;

end

The line res = d isn’t finished yet, but this is enough code to test. Once I
finished and tested error func, I would modify duck to use fzero.

For this problem we might only need two functions, but if there were more, I
could write and test them one at a time, and then combine them into a working
program.

7.2 Vectors as input variables

Since many of the built-in functions take vectors as arguments, it should come
as no surprise that you can write functions that take vectors. Here’s a simple
(silly) example:

function res = display_vector(X)

X

end

There’s nothing special about this function at. The only difference from the
scalar functions we’ve seen is that I used a capital letter to remind me that X is
a vector.

This is another example of a function that doesn’t actually return a value; it
just displays the value of the input variable:

>> display_vector(1:3)

X = 1 2 3

Here’s a more interesting example that encapsulates the code from Section 4.13
that adds up the elements of a vector:

function res = mysum(X)

total = 0;

for i=1:length(X)

total = total + X(i);

end

res = total;

end
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I called it mysum to avoid a collision with the built-in function sum, which does
pretty much the same thing.

Here’s how you call it from the Command Window:

>> total = mysum(1:3)

total = 6

Because this function has an output variable, I made a point of assigning it to
a variable.

7.3 Vectors as output variables

There’s also nothing wrong with assigning a vector to an output variable. Here’s
an example that encapsulates the code from Section 4.14:

function res = myapply(X)

for i=1:length(X)

Y(i) = X(i)^2;

end

res = Y;

end

Here’s how myapply works:

>> V = myapply(1:3)

V = 1 4 9

Exercise 19

Write a function named myfind that encapsulates the code, from Section 4.15,
that finds the location of a target value in a vector.

7.4 Vectorizing functions

Functions that work on vectors will almost always work on scalars as well,
because MATLAB considers a scalar to be a vector with length 1.

>> mysum(17)

ans = 17

>> myapply(9)

ans = 81
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Unfortunately, the converse is not always true. If you write a function with
scalar inputs in mind, it might not work on vectors.

But it might! If the operators and functions you use in the body of your function
work on vectors, then your function will probably work on vectors.

For example, here is the very first function we wrote:

function res = myfunc(x)

s = sin(x);

c = cos(x);

res = abs(s) + abs(c);

end

And lo! It turns out to work on vectors:

>> Y = myfunc(1:3)

Y = 1.3818 1.3254 1.1311

Some of the other functions we wrote don’t work on vectors, but they can
be patched up with just a little effort. For example, here’s hypotenuse from
Section 5.3:

function res = hypotenuse(a, b)

res = sqrt(a^2 + b^2);

end

This doesn’t work on vectors because the ^ operator tries to do matrix expo-
nentiation, which only works on square matrices.

>> hypotenuse(1:3, 1:3)

Error using ^ (line 51)

Incorrect dimensions for raising a matrix to a power.

Check that the matrix is square and the power is a scalar.

To perform elementwise matrix powers, use '.^'.

But if you replace ^ with the elementwise operator .^, it works!

>> A = [3,5,8];

>> B = [4,12,15];

>> C = hypotenuse(A, B)

C = 5 13 17

The function matches up corresponding elements from the two input vectors,
so the elements of C are the hypotenuses of the pairs (3, 4), (5, 12), and (8, 15),
respectively.

In general, if you write a function using only elementwise operators and functions
that work on vectors, the new function will also work on vectors.
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7.5 Sums and differences

Another common vector operation is cumulative sum, which takes a vector
as an input and computes a new vector that contains all of the partial sums of
the original. In math notation, if V is the original vector, then the elements of
the cumulative sum, C, are:

Ci =

i∑
j=1

Vj (7.1)

In other words, the ith element of C is the sum of the first i elements from V .
MATLAB provides a function named cumsum that computes cumulative sums:

>> X = 1:5

X = 1 2 3 4 5

>> C = cumsum(X)

C = 1 3 6 10 15

The inverse operation of cumsum is diff, which computes the difference between
successive elements of the input vector.

>> D = diff(C)

D = 2 3 4 5

Notice that the output vector is shorter by one than the input vector. As a
result, MATLAB’s version of diff is not exactly the inverse of cumsum. If it
were, then we would expect cumsum(diff(X) to be X:

>> cumsum(diff(X))

ans = 1 2 3 4

But it isn’t.

Exercise 20

Write a function named mydiff that computes the inverse of cumsum, so that
cumsum(mydiff(X)) and mydiff(cumsum(X)) both return X.
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7.6 Products and ratios

The multiplicative version of cumsum is cumprod, which computes the cumula-
tive product. In math notation, that’s:

Pi =

i∏
j=1

Vj (7.2)

In MATLAB, that looks like:

>> V = 1:5

V = 1 2 3 4 5

>> P = cumprod(V)

P = 1 2 6 24 120

MATLAB doesn’t provide the multiplicative version of diff, which would be
called ratio, and which would compute the ratio of successive elements of the
input vector.

Exercise 21

Write a function named myratio that computes the inverse of cumprod, so that
cumprod(myratio(X)) and myratio(cumprod(X)) both return X.

You can use a loop, or if you want to be clever, you can take advantage of the
fact that eln a+ln b = ab.

If you apply myratio to a vector that contains Fibonacci numbers, you can
confirm that the ratio of successive elements converges on the golden ratio,
(1 +

√
5)/2 (see Exercise 13).

7.7 Existential quantification

It is often useful to check the elements of a vector to see if there are any that
satisfy a condition. For example, you might want to know if there are any
positive elements. In logic, this condition is called existential quantification,
and it is denoted with the symbol ∃, which is pronounced “there exists.” For
example, this expression

∃x in S : x > 0

means, “there exists some element x in the set S such that x > 0.” In MATLAB
it is natural to express this idea with a logical function, like exists, that returns
1 if there is such an element and 0 if there is not.
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function res = exists(X)

for i=1:length(X)

if X(i) > 0

res = 1;

return

end

end

res = 0;

end

We haven’t seen the return statement before; it is similar to break except that
it breaks out of the whole function, not just the loop. That behavior is what we
want here because as soon as we find a positive element, we know the answer (it
exists!) and we can end the function immediately without looking at the rest of
the elements.

If we get to the end of the loop, that means we didn’t find what we were looking
for, so the result is 0.

7.8 Universal quantification

Another common operation on vectors is to check whether all of the elements
satisfy a condition, which is known to logicians as universal quantification,
denoted with the symbol ∀, and pronounced “for all.” So this expression

∀x in S : x > 0

means “for all elements, x, in the set S, x > 0.”

One way evaluate this expression in MATLAB is to count the number of el-
ements that satisfy the condition. A better way is to reduce the problem to
existential quantification; that is, to rewrite

∀x in S : x > 0 (7.3)

as

∼ ∃x in S : x ≤ 0 (7.4)

Where ∼ ∃ means “does not exist.” In other words, checking that all the
elements are positive is the same as checking that there are no elements that
are non-positive.
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Exercise 22

Write a function named forall that takes a vector and returns 1 if all of the
elements are positive and 0 if there are any non-positive elements.

7.9 Logical vectors

When you apply a logical operator to a vector, the result is a logical vector;
that is, a vector whose elements are the logical values 1 and 0.

>> V = -3:3

V = -3 -2 -1 0 1 2 3

>> L = V>0

L = 0 0 0 0 1 1 1

In this example, L is a logical vector whose elements correspond to the elements
of V. For each positive element of V, the corresponding element of L is 1.

Logical vectors can be used like flags to store the state of a condition. And they
are often used with the find function, which takes a logical vector and returns
a vector that contains the indices of the elements that are “true”.

Applying find to L yields

>> find(L)

ans = 5 6 7

which indicates that elements 5, 6 and 7 have the value 1.

If there are no “true” elements, the result is an empty vector.

>> find(V>10)

ans = Empty matrix: 1x0

This example computes the logical vector and passes it as an argument to find

without assigning it to an intermediate variable. You can read this version
abstractly as “find the indices of elements of V that are greater than 10.”

We can also use find to write exists more concisely:

function res = exists(X)

L = find(X>0)

res = length(L) > 0

end
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Exercise 23

Write a version of forall using find.

7.10 Debugging in four acts

When you are debugging a program, and especially if you are working on a hard
bug, there are four things to try:

reading: Examine your code, read it back to yourself, and check that it means
what you meant to say.

running: Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the problem
becomes obvious, but you might have to invest time building scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, run-
time, or logical? What information can you get from the error messages,
or from the output of the program? What kind of error could cause the
problem you’re seeing? What did you change last, before the problem
appeared?

retreating: At some point, the best thing to do is back off, undoing recent
changes, until you get back to a program that works, and that you under-
stand. Then you can starting rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget
the others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical
error, but not if the problem is a conceptual misunderstanding. If you don’t
understand what your program does, you can read it 100 times and never see
the error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if
you run experiments without thinking or reading your code, you might fall into
a pattern I call “random walk programming,” which is the process of making
random changes until the program does the right thing. Needless to say, random
walk programming can take a long time.

The way out is to take more time to think. Debugging is like an experimental
science. You should have at least one hypothesis about what the problem is. If
there are two or more possibilities, try to think of a test that would eliminate
one of them.
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Taking a break sometimes helps with the thinking. So does talking. If you
explain the problem to someone else (or even yourself), you will sometimes find
the answer before you finish asking the question.

But even the best debugging techniques will fail if there are too many errors,
or if the code you are trying to fix is too big and complicated. Sometimes the
best option is to retreat, simplifying the program until you get to something
that works, and then rebuild.

Beginning programmers are often reluctant to retreat, because they can’t stand
to delete a line of code (even if it’s wrong). If it makes you feel better, copy
your program into another file before you start stripping it down. Then you can
paste the pieces back in a little bit at a time.

To summarize, here’s the Eighth Theorem of Debugging:

Finding a hard bug requires reading, running, ruminating, and some-
times retreating. If you get stuck on one of these activities, try the
others.

7.11 Glossary

top-level function: The first function in an M-file; it is the only function that
can be called from the Command Window or from another file.

helper function: A function in an M-file that is not the top-level function; it
only be called from another function in the same file.

existential quantification: A logical condition that expresses the idea that
“there exists” an element of a set with a certain property.

universal quantification: A logical condition that expresses the idea that all
elements of a set have a certain property.

logical vector: A vector, usually the result of applying a logical operator to a
vector, that contains logical values 1 and 0.



Chapter 8

Ordinary Differential
Equations

In this chapter you’ll learn about a mathematical tool for describing physical
systems, differential equations, and two computation tools for solving them,
Euler’s method and ode45.

8.1 Differential equations

A differential equation (DE) is an equation that describes the derivatives of
an unknown function. “Solving a DE” means finding a function whose deriva-
tives satisfy the equation.

For example, suppose we would like to predict the population of yeast growing
in a nutrient solution. Assume that we know the initial population is 5 billion
yeast cells.

When yeast grow in particularly yeast-friendly conditions, the rate of growth at
any point in time is proportional to the current population.

If we define y(t) to be the population at time t, we can write the following
equation for the rate of growth:

dy

dt
(t) = ay(t) (8.1)

where dy
dt (t) is the derivative of y(t) and a is a constant that characterizes how

quickly the population grows.

This equation is “differential” because it relates a function to one of its deriva-
tives.
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It is an ordinary differential equation (ODE) because all the derivatives in-
volved are taken with respect to the same variable. If it related derivatives
with respect to different variables (partial derivatives), it would be a partial
differential equation.

This equation is first-order because it involves only first derivatives. If it
involved second derivatives, it would be second order, and so on.

And it is linear because each term involves t, f , or df/dt raised to the first
power; if any of the terms involved products or powers of t, f , and df/dt it
would be nonlinear.

Now suppose we want to predict the yeast population in the future. We can do
that using Euler’s method.

8.2 Euler’s method

Here’s a test to see if you are as smart as Euler. Let’s say you arrive at time t
and measure the current population, y, and the rate of change, r. What do you
think the population will be after some period of time ∆t has elapsed?

If you said y + r∆t, congratulations! You just invented Euler’s method.

This estimate is based on the assumption that r is constant, but in general it’s
not, so we only expect the estimate to be good if r changes slowly and ∆t is
small.

So what if we want to make a prediction when ∆t is large? One option is to
break ∆t into smaller pieces, called time steps.

Then we can use the following equations to get from one time step to the next:

Ti+1 = Ti + dt (8.2)

Yi+1 = Yi +
df

dt
(t) dt (8.3)

(8.4)

Here {Ti} is a sequence of times where we estimate the value of y, and {Yi} is
the sequence of estimates. For each index i, Yi is an estimate of y(Ti).

If the rate doesn’t change too fast and the time step isn’t too big, Euler’s method
is accurate enough for most purposes. One way to check is to run it once with
time step dt and then run it again with time step dt/2. If the results are the
same, they are probably accurate; otherwise, we can cut the time step again.
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8.3 Implementing Euler’s method

As an example I’ll use Euler’s method to solve the equation from Section 8.1:

dy

dt
(t) = ay(t)

With the initial condition y(0) = 5 billion cells and the growth parameter a =
0.2 per hour.

As a first step, I created a file named euler.m with a top-level function and a
helper function:

function res = euler()

T(1) = 0;

Y(1) = 5;

r = rate_func(T(1), Y(1))

end

function res = rate_func(t, y)

a = 0.2;

dydt = a * y;

res = dydt;

end

In euler I initialize the initial conditions and then call rate_func. In
rate_func I compute the rate of change in the population.

After testing these functions, I added code to euler to implement these differ-
ence equations:

Ti+1 = Ti + ∆t (8.5)

Yi+1 = Yi + r∆t (8.6)

(8.7)

where r is the rate of population growth computed by rate_func. Here’s the
code:

function res = euler()

T(1) = 0;

Y(1) = 5;

dt = 0.1;

for i=1:100

r = rate_func(T(i), Y(i));
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Figure 8.1: Solution to a simple differential equation by Euler’s method.

T(i+1) = T(i) + dt;

Y(i+1) = Y(i) + r * dt;

end

plot(T, Y)

end

The result is a plot of population over time, shown in Figure 8.1. The population
doubles in a little less than 4 hours.

8.4 ode45

A limitation of Euler’s method is that it assumes that the derivative is constant
between time steps, and that is not generally true. Fortunately, there are better
methods that estimate the derivative between time steps, and they are much
more accurate.

MATLAB provides a function called ode45 that implements one of these meth-
ods. In this section I’ll explain how to use it; you can read more about how it
works in Section 14.1.

In order to use ode45, you have to write a function that evaluates dy/dt as a
function of t and y. Fortunately, we already have one, rate_func:

function res = rate_func(t, y)
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Figure 8.2: Solutions to a simple differential equation by Euler’s method and
ode45.

a = 0.2;

dydt = a * y;

res = dydt;

end

We can call ode45 from the Command Window like this:

[T, Y] = ode45(@rate_func, [0, 4], 5);

plot(T, Y)

The first argument is a function handle, as we saw in Section 6.3. The second
argument is the time interval where we want to evaluate the solution; in this
case the interval is from t = 0 to t = 4 hours. The third argument is the initial
population, 5 billion cells.

ode45 is the first function we have seen that returns two output variables. In
order to store them, we have to assign them to two variables, T and Y.

Figure 8.2 shows the results. The solid line is the estimate we computed with
Euler’s method; the dashed line is the solution from ode45.

For the first 4-5 hours, the two solutions are indistinguishable. But as the rate
of growth increases, Euler’s method gets less accurate.

In general, you should use ode45 instead of Euler’s method. It is almost always
more accurate.
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8.5 Time dependence

Looking at rate_func in the previous section, you might notice that it takes t
as an input variables but doesn’t use it. That’s because the growth rate does
not depend on time; that’s because bacteria don’t know what time it is.

But rats do. Or, at least, they know what season it is. Suppose that the
population growth rate for rats depends on the current population and the
availability of food, which varies over the course of the year. The differential
equation might be something like

dy

dt
(t) = ay(t) (1− cos(ωt)) (8.8)

where t is time in days and y(t) is the population at time t.

a and ω are parameters. A parameter is a value that quantifies a physical
aspect of the scenario being modeled. Parameters are often constants, but in
some models they vary in time.

In this example, a characterizes the reproductive rate per day, and ω is the
frequency of a periodic function that describes the effect of varying food supply
on reproduction.

We’ll use the values a = 0.002 and ω = 2π/365 (one cycle per year). The growth
rate is lowest at t = 0, on January 1, and highest at t = 365/2, on June 1.

Now we can write a function that evaluates the growth rate:

function res = rate_func(t, y)

a = 0.002;

omega = 2*pi / 365;

res = a * y * (1 - cos(omega * t));

end

To test this function, I put it in a file called rats.m with a top-level function
called rats:

function res = rats()

t = 365/2;

y = 1000;

res = rate_func(t, y);

end

Suppose there are 1000 rats at t = 365/2. We can compute the growth rate like
this:

>> r = rats

r = 4
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Figure 8.3: Solutions to a simple differential equation by Euler’s method and
ode45.

So if there are 1000 rats on June 31, we expect them to reproduce at a rate that
would produce about 4 new rats per day.

Since the growth rate is constantly changing, it is not easy to predict the future
rat population, but that is exactly what ode45 does. Here’s how:

[T, Y] = ode45(@rate_func, [0, 365], 1000)

plot(T, Y)

The first argument is a function handle, again. The second argument is the
interval we are interested in, one year. The third argument is the initial popu-
lation, y(0) = 1000.

Figure 8.3 shows the results. The population grows slowly during the winter,
quickly during the summer, and the slowly again in the fall.

To see the population at the end of the year, you can display the last element
of Y:

Y(end)

2.0751e+03

That’s a little more than 2000 rats, so the population roughly doubles in one
year.

end is a special word in MATLAB; when it appears as an index, it means “the
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index of the last element”. You can use it in an expression, so Y(end-1) is the
second-to-last element of Y.

8.6 What could go wrong?

Don’t forget the @ on the function handle. If you leave it out, MATLAB treats
the first argument as a function call, and calls rate_func without providing
arguments.

Not enough input arguments.

Error in rats>rate_func (line 18)

res = a * y * (1 - cos(omega * t));

Error in rats (line 6)

[T, Y] = ode45(rate_func, [0, 365], 1000);

Also, remember that the function you write will be called by ode45, which
means has to take two input variables, t and y, in that order, and return one
output variable, res.

If you are working with a rate function like this:

dy

dt
(t) = ay(t) (8.9)

You might be tempted to write this:

function res = rate_func(y) % WRONG

a = 0.002;

res = a * y;

end

But that would be wrong. So very wrong. Why? Because when ode45 calls
rate func, it provides two arguments. If you only take one input variable, you’ll
get an error. So you have to write a function that takes t as an input variable,
even if you don’t use it.

function res = rate_func(t, y) % RIGHT

a = 0.002;

res = a * y;

end

Another common error is to write a function that doesn’t make an assignment
to the output variable. If you write something like this:
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function res = rate_func(t, y)

a = 0.002;

omega = 2*pi / 365;

r = a * y * (1 - cos(omega * t)); % WRONG

end

And then call it from ode45, you get

Output argument "res" (and maybe others) not assigned during call

to "rate_func".

I hope these warnings save you some time debugging.

8.7 Labeling axes

The plots in this chapter have labels on the axes, and one of them has a legend,
but I didn’t show you how to do that.

The functions to label the axes are xlabel and ylabel:

xlabel('Time (hours)')

ylabel('Population (billions of cells)')

The function to generate a legend is legend:

legend('euler', 'ode45')

The arguments are the labels for the lines, in the order they were drawn. Usually
the legend is in the upper right corner, but you can move it by providing an
optional argument called Location:

legend('euler', 'ode45', 'Location', 'northwest')

Finally, I saved the figures using saveas:

saveas(gcf, 'runge.eps', 'epsc')

The first argument is the figure we want to save; gcf, is a MATLAB command
that stands for “get current figure”, which is the figure we just drew. The second
argument is the filename. The extension specifies the format we want, which is
Encapulated PostScript. The third argument tells MATLAB what “driver” to
use. The details aren’t important, but epsc generates figures in color.

8.8 Glossary

differential equation (DE): An equation that relates the derivatives of an
unknown function.
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ordinary DE (ODE): A DE in which all derivatives are taken with respect
to the same variable.

partial DE (PDE): A DE that includes derivatives with respect to more than
one variable

first-order DE: A DE that includes only first derivatives.

linear DE: A DE that includes no products or powers of the function and its
derivatives.

time step: The interval in time between successive estimates in the numerical
solution of a DE.

parameter: A value that appears in a model to quantify some physical aspect
of the scenario being modeled.

8.9 Exercises

Exercise 24

Suppose that you are given an 8 ounce cup of coffee at 90 ◦C. You have learned
from bitter experience that the hottest coffee you can drink comfortably is 60 ◦C.

If the temperature of the coffee drops by 0.7 ◦C during the first minute, how
long will you have to wait to drink your coffee?

You can answer this question with Newton’s Law of Cooling1:

dy

dt
(t) = −k(y(t)− e)

where y(t) is the temperature of the coffee at time t, e is the temperature of the
environment, and k is a parameter that characterizes the rate of heat transfer
from the coffee from the environment.

Let’s assume that e is 20 ◦C and constant; that is, the coffee does not warm up
the room.

Let’s also assume k is constant. In that case, we can estimate it based on the
information we have. If the temperature drops 0.5 ◦C during the first minute,
when the coffee is 90 ◦C, we can write

−0.7 = −k(90− 20)

Solving this equation yields k = 0.01.

Here are some suggestions for getting started:

1See https://en.wikipedia.org/wiki/Newton’s_law_of_cooling.
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� Create a file named coffee.m and write a function called coffee that
takes no input variables. Put a simple statement like x=5 in the body of
the function and invoke coffee from the Command Window.

� Add a function called rate func that takes t and y and computes dy
dt .

In this case rate func does not actually depend on t; nevertheless, your
function has to take t as the first input variable in order to work with
ode45.

� Test your function by adding a line like rate func(0,90) to coffee, then
call coffee from the Command Window. Confirm that the initial rate is
−0.7 ◦C/min.

� Once you get rate func working, modify coffee to use ode45 to compute
the temperature of the coffee for 60 minutes. Confirm that the coffee cools
quickly at first, then more slowly, and reaches room temperature after
about an hour.

� Plot the results and estimate the time when the temperature reaches 60 ◦C.
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Chapter 9

Systems of ODEs

In the previous chapter we used Euler’s method and ode45 to solve a single
first-order differential equation. In this chapter we’ll move on to systems of
ODEs and implement a model of a predator-prey system. But first, we have to
learn about matrices.

9.1 Matrices

A matrix is a two-dimensional version of a vector. Like a vector, it contains
elements that are identified by indices. The difference is that the elements are
arranged in rows and columns, so it takes two indices to identify an element.

One of many ways to create a matrix is the magic function, which returns a
“magic square” with the given size 1:

>> M = magic(3)

M = 8 1 6

3 5 7

4 9 2

If you don’t know the size of a matrix, you can use whos to display it:

>> whos

Name Size Bytes Class

M 3x3 72 double array

Or the size function, which returns a vector:

1See https://en.wikipedia.org/wiki/Magic_square.
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>> V = size(M)

V = 3 3

The first element is the number of rows, the second is the number of columns.

To read an element of a matrix, you specify the row and column numbers:

>> M(1,2)

ans = 1

>> M(2,1)

ans = 3

When you are working with matrices, it takes some effort to remember which
index comes first, row or column. I find it useful to repeat “row, column”
to myself, like a mantra. You might also find it helpful to remember “down,
across,” or the abbreviation RC.

Another way to create a matrix is to enclose the elements in brackets, with
semi-colons between rows:

>> D = [1,2,3 ; 4,5,6]

D = 1 2 3

4 5 6

>> size(D)

ans = 2 3

9.2 Row and column vectors

Although it is useful to think in terms of scalars, vectors and matrices, from
MATLAB’s point of view, everything is a matrix. A scalar is just a matrix that
happens to have one row and one column:

>> x = 5;

>> size(x)

ans = 1 1

And a vector is a matrix with only one row:
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>> R = 1:5;

>> size(R)

ans = 1 5

Well, some vectors, anyway. Actually, there are two kind of vectors. The ones
we have seen so far are called row vectors, because the elements are arranged
in a row; the other kind are column vectors, where the elements are in a single
column.

One way to create a column vector is to create a matrix with only one element
per row:

>> C = [1;2;3]

C =

1

2

3

>> size(C)

ans = 3 1

The difference between row and column vectors is important in linear algebra,
but for most basic vector operations, it doesn’t matter. When you index the
elements of a vector, you don’t have to know what kind it is:

>> R(2)

ans = 2

>> C(2)

ans = 2

9.3 The transpose operator

The transpose operator, which looks remarkably like an apostrophe, computes
the transpose of a matrix, which is a new matrix that has all of the elements
of the original, but with each row transformed into a column (or you can think
of it the other way around).

In this example:
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>> D = [1,2,3 ; 4,5,6]

D = 1 2 3

4 5 6

D has two rows, so its transpose has two columns:

>> Dt = D'

Dt = 1 4

2 5

3 6

Exercise 25

What effect does the transpose operator have on row vectors, column vectors,
and scalars?

9.4 Lotka-Volterra

The Lotka-Volterra model describes the interactions between two species in an
ecosystem, a predator and its prey. As an example, we’ll consider foxes and
rabbits.

The model is governed by the following system of differential equations:

dx

dt
= αx− βxy (9.1)

dy

dt
= −γy + δxy (9.2)

(9.3)

where x and y are the populations of rabbits and foxes, and a, b, c, and d are
parameters governing the interactions between the two species.2

At first glance you might think you could solve these equations by calling ode45

once to solve for x as a function of time and once to solve for y. The problem is
that each equation involves both variables, which is what makes this a system
of equations and not just a list of unrelated equations. To solve a system, you
have to solve the equations simultaneously.

Fortunately, ode45 can handle systems of equations. The difference is that the
initial condition is a vector that contains initial values x(0) and y(0), and the
output is a matrix that contains one column for x and one for y.

2See https://en.wikipedia.org/wiki/Lotka-Volterra_equations.
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Here’s what the rate function looks like with the parameters a = 0.1, b = 0.01,
c = 0.1, and d = 0.002:

function res = rate_func(t, V)

% unpack the elements of V

x = V(1);

y = V(2);

% set the parameters

a = 0.1;

b = 0.01;

c = 0.1;

d = 0.002;

% compute the derivatives

dxdt = a*x - b*x*y;

dydt = -c*y + d*x*y;

% pack the derivatives into a vector

res = [dxdt; dydt];

end

The first input variable is time. Even though the time variable, t, is not used
in this rate function, its presence is required by the ode45 solver.

The second input variable is a vector with two elements, x(t) and y(t).

The body of the function includes four sections, each explained by a comment.

The first section unpacks the vector by copying the elements into scalar vari-
ables. This isn’t necessary, but giving names to these values helps me remember
what’s what. It also makes the third section, where we compute the derivatives,
resemble the mathematical equations we were given, which helps prevent errors.

The second section sets the parameters that describe the reproductive rates of
rabbits and foxes, and the characteristics of their interactions. If we were study-
ing a real system, these values would come from observations of real animals,
but for this example I chose values that yield interesting results.

The last section packs the computed derivatives back into a vector. When
ode45 calls this function, it provides a vector as input and expects to get a
vector as output.

Sharp-eyed readers will notice something different about this line:

res = [drdt; dfdt];

The semi-colon between the elements of the vector is not an error. It is necessary
in this case because ode45 requires the result of this function to be a column
vector.
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As always, it is a good idea to test your rate function before you call ode45. I
created a file named lotka.m with the following top-level function:

function res = lotka()

t = 0;

V_init = [80, 20];

rate_func(t, V_init)

end

V_init is a vector that represents the initial condition, 80 rabbits and 20 foxes.
The result from rate_func is:

-8.0000

1.2000

Which means that with these initial conditions, we expect the rabbit population
to decline initially at a rate of 8 per week, and the fox population to increase
by 1.2 per week.

Now we can run ode45 like this:

tspan = [0, 200]

[T, M] = ode45(@rate_func, tspan, V_init)

The first argument is the function handle for the rate function. The second
argument is the time span, from 0 to 200 weeks. The third argument is the
initial condition.

9.5 Output matrices

ode45 returns two values: T, which is a vector of time values, and M, which is a
matrix with one column for each population and one row for each time value in
T.

>> size(M)

ans = 185 2

This structure – one column per variable – is a common way to use matrices.
plot understands this structure, so if you do this:

>> plot(T, M)

MATLAB understands that it should plot each column from M versus T.

You can copy the columns of M into other variables like this:

>> R = M(:, 1);

>> F = M(:, 2);
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Figure 9.1: Solution for the Lotka-Volterra model.

In this context, the colon represents the range from 1 to end, so M(:, 1) means
“all the rows, column 1” and M(:, 2) means “all the rows, column 2.”

>> size(R)

ans = 185 1

>> size(F)

ans = 185 1

So R and F are column vectors.

Now we can plot these vectors separately, which makes it easier to give them
different style strings:

>> plot(T, R, '-')

>> plot(T, F, '--')

Figure 9.1 shows the results. The x-axis is time in weeks; the y-axis is popula-
tion. The top curve shows the population of rabbits; the bottom curve shows
foxes.

Initially there are too many foxes, so the rabbit population declines. Then there
are not enough rabbits, and the fox population declines. That allows the rabbit
population to recover, and the pattern repeats.

This cycle of “boom and bust” is typical of the Lotka-Volterra model.
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Figure 9.2: Phase plot from the Lotka-Volterra model.

9.6 Phase plot

Instead of plotting the two populations over time, it is sometimes useful to plot
them against each other, like this:

>> plot(R, F)

Figure 9.2 shows the result. Each point on this plot represents a certain number
of rabbits (on the x axis) and a certain number of foxes (on the y axis).

Since these are the only two variables in the system, each point in this plane
describes the complete state of the system.

Over time, the state moves around the plane; this figure shows the path traced
by the state over time; this path is called a trajectory.

Since the behavior of this system is periodic, the trajectory is a loop.

If there are 3 variables in the system, we need 3 dimensions to show the state
of the system, so the trajectory is a 3-D curve. You can use plot3 to trace
trajectories in 3 dimensions, but for 4 or more variables, you are on your own.
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9.7 What could go wrong?

The output vector from the rate function has to be a column vector; otherwise
you get an error:

Error using odearguments (line 93)

RATE_FUNC must return a column vector.

Error in ode45 (line 115)

odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0,

options, varargin);

Error in lotka (line 7)

[T, M] = ode45(@rate_func, tspan, V_init);

Which is pretty good as error messages go. It’s not clear why it needs to be a
column vector, but that’s not our problem.

Another possible error is reversing the order of the elements in the initial con-
ditions, or the vectors inside lotka. MATLAB doesn’t know what the elements
are supposed to mean, so it can’t catch errors like this; it will just produce
incorrect results.

The order of the elements (rabbits and foxes) is up to you, but you have to be
consistent. That is, the initial conditions you provide when you call ode45 have
to be the same as the order, inside rate_func, where you unpack the input
vector and repack the output vector.

9.8 Glossary

row vector: A matrix that has only one row.

column vector: A matrix that has only one column.

transpose: An operation that transforms the rows of a matrix into columns
(or the other way around, if you prefer).

system of equations: A collection of equations written in terms of the same
set of variables.

unpack: To copy the elements of a vector into a set of variables.

pack: To copy values from a set of variables into a vector.

state: If a system can be described by a set of variables, the values of those
variables are called the state of the system.
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phase plot: A plot that shows the state of a system as point in the space of
possible states.

trajectory: A path in a phase plot that shows how the state of a system
changes over time.

9.9 Exercises

Exercise 26

Based on the examples we have seen so far, you would think that all ODEs
describe population as a function of time, but that’s not true.

According to Wikipedia, “The Lorenz attractor, introduced by Edward Lorenz
in 1963, is a non-linear three-dimensional deterministic dynamical system de-
rived from the simplified equations of convection rolls arising in the dynamical
equations of the atmosphere. For a certain set of parameters the system exhibits
chaotic behavior and displays what is today called a strange attractor...”3

The system is described by this system of differential equations:

xt = σ(y − x) (9.4)

yt = x(r − z)− y (9.5)

zt = xy − bz (9.6)

Common values for the parameters are σ = 10, b = 8/3, and r = 28.

Use ode45 to estimate a solution to this system of equations.

1. Create a file named lorentz.m with a top-level function named lorenz

and a helper function named rate_func.

2. The rate function should takes t and V as input variables, where the
components of V are understood to be the current values of x, y and z. It
should compute the corresponding derivatives and return them in a single
column vector.

3. Test the function by calling it from the top-level function with values like
t = 0, x = 1, y = 2, and z = 3. Once you get your function working, you
should make it a silent function before calling ode45.

4. Use ode45 to estimate the solution for the time span [0, 30] with the initial
condition x = 1, y = 2, and z = 3.

5. Plot the results as a time series, that is, each of the variables as a function
of time.

6. Use plot3 to plot the trajectory of x, y, and z.

3See https://en.wikipedia.org/wiki/Lorenz_attractor.



Chapter 10

Second-order Systems

So far we have seen first-order differential equations and systems of first-order
ODEs. In this chapter we introduce second-order systems, which are particularly
useful for modeling Newtonian motion.

10.1 Newtonian motion

Newton’s second law of motion is often written like this:

F = ma (10.1)

where F is the net force acting on an object, m is the mass of the object, and
a is the acceleration of the object.

This equation suggests that if you know m and a you can compute force, which
is true, but in most physical simulations it is the other way around: based on a
physical model, you know F and m, and you compute a.

So if we know acceleration as a function of time, how do we find the position
of the object, r? Well, we know that acceleration is the second derivative of
position, so we can write a differential equation

d2r

dt2
= a (10.2)

where d2r
dt2 is the second time derivative of r.
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Because this equation includes a second derivative, it is a second-order ODE.
ode45 can’t solve the equation this form, but by introducing a new variable, v,
for velocity, we can rewrite it as a system of first-order ODEs:

dr

dt
= v (10.3)

dv

dt
= a (10.4)

(10.5)

The first equation says that the first derivative of r is v; the second equation
says that the first derivative of v is a.

10.2 Freefall

As an example, let’s get back to the question from Exercise 1:

If you drop a penny from the top of the Empire State Building, how
long does it take to reach the sidewalk, and how fast it is going when
it gets there?

We’ll start with no air resistance; then we’ll add air resistance to the model and
see what effect it has.

Near the surface of the earth, acceleration due to gravity is −9.8 m/s2, where
the minus sign indicates that gravity pulls down.

If the object falls straight down, we can describe its position with a scalar value
y, representing altitude.

Here is a rate function we can use with ode45 to solve this problem:

function res = rate_func(t, X)

% unpack position and velocity

y = X(1);

v = X(2);

% compute the derivatives

dydt = v;

dvdt = -9.8;

% pack the derivatives into a column vector

res = [dydt; dvdt];

end
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The rate function takes t and X as input variables, where the elements of X

are understood to be the position and velocity of the object. It returns a col-
umn vector that contains dydt and dvdt, which are velocity and acceleration,
respectively.

Since velocity is the second element of X, we can simply assign this value to
dydt. And since the derivative of velocity is acceleration, we can assign the
acceleration of gravity to dvdt.

As always, we should test the rate function before we call ode45. Here’s the
top-level function we can use to test it:

function penny()

t = 0;

X = [381, 0];

rate_func(t, X)

end

The initial condition of X is the initial position, which is the height of the Empire
State Building, about 381 m, and the initial velocity, which is 0 m/s.

The result from rate_func is:

0

-9.8000

which is what we expect.

Now we can run ode45 with this rate function:

tspan = [0, 10]

[T, M] = ode45(@rate_func, tspan, X)

As always, the first argument is the function handle, the second is the time span
(30 seconds) and the third is the initial condition.

The result is a vector, T, that contains the time values, and a matrix, M, that
contains two columns, one for altitude and one for velocity.

We can extract the first column and plot it, like this:

Y = M(:, 1)

plot(T, Y)

Figure 10.1 shows the result. Altitude drops slowly at first and picks up speed.
Between 8 and 9 seconds, the altitude reaches 0, which means the penny hits
the sidewalk. But ode45 doesn’t know where the ground is, so the penny keeps
going through zero into negative altitude. We can solve that problem using
events.
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Figure 10.1: Altitude versus time for an object in free fall.

10.3 ODE events

Normally when you call ode45 you specify a start time and an end time. But
sometimes you don’t know ahead of time when the simulation should end. MAT-
LAB provides a way to deal with this problem; here’s how it works:

1. Define an event function that specifies when the simulation should stop.
For example, here is an event function for the penny example:

function [value, isterminal, direction] = event_func(t,X)

value = X(1);

isterminal = 1;

direction = -1;

end

The event function takes the the same input variables as the rate function
and returns three output variables: value determines whether an event
can occur, direction determines whether it does, and isterminal deter-
mines what happens.

An event can occur when value passes through 0. If direction is positive,
the event only occurs if value is increasing. If direction is negative, the
event only occurs if value is decreasing. If direction is 0, the event
always occurs.

If isterminal is 1, the event causes the simulation to end; otherwise the
simulation continues.
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This event function uses the altitude of the penny as value, so an event
occurs when the altitude is decreasing and passes through 0. When it
does, the simulation ends.

2. Use odeset to create an object called options:

options = odeset('Events', @event_func);

The name of the option is Events and the value is the handle of the event
function.

3. Pass options as a fourth argument to ode45:

[T, M] = ode45(@rate_func, tspan, X, options);

When ode45 runs, it invokes event_func after each timestep. If the event
function indicates that a terminal event occurred, ode45 stop the simula-
tion.

Let’s look at the results from the penny example.

>> T(end)

8.8179

>> M(end, :)

0.0000 -86.4153

The last value of T is 8.817, which is the number of seconds the penny takes to
reach the sidewalk.

The last row of M indicates that the final altitude is 0, which is what we wanted,
and the final velocity is about 86 m/s.

10.4 Air resistance

To make this simulation more realistic, we can add air resistance. For large
objects moving quickly through air, the force due to air resistance, called “drag”,
is proportional to velocity squared. For an object falling down, drag is directed
up, so if velocity is negative, drag force is positive.

fd = −sgn(v)bv2 (10.6)

where v is velocity and b is a drag constant that depends on the density of air,
the cross-sectional area of the object and the shape of the object.

sgn is the sign or signum function, which is 1 for positive values of v and -1 for
negative values. So fd is always in the opposite direction of v.
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To convert from force to acceleration, we have to know mass, but that’s easy
to find: the mass of a penny is about 2.5 g. It’s not as easy to find the drag
constant, but I have estimated1 that it is about 75× 10−6 kg/m.

Here’s a function that takes t and X as input variables and returns the total
acceleration of the penny due to gravity and drag:

function res = acceleration(t, X)

b = 75e-6; % drag constant in kg/m

v = X(2); % velocity in m/s

f_d = -sgn(v) * b * v^2; % drag force in N

m = 2.5e-3; % mass in kg

a_d = f_d / m; % drag acceleration in m/s^2

a_g = -9.8; % acceleration of gravity in m/s^2

res = a_g + a_d; % total acceleration

end

The first three lines compute force due to drag. The next two lines compute
acceleration due to drag. The last two lines compute total acceleration due to
drag and gravity.

Be careful when you are working with forces and accelerations; make sure you
only add forces to forces or accelerations to accelerations. In my code, I use
comments to remind myself what units the values are in. That helps me avoid
nonsense like adding forces to accelerations.

To use this function, I made a small change in rate_func:

function res = rate_func(t, X)

y = X(1);

v = X(2);

dydt = v;

dvdt = acceleration(t, X); % this line has changed

res = [dydt; dvdt];

end

Everything else is the same. Figure 10.2 shows the result.

Air resistance makes a big difference! Velocity increases until the drag acceler-
ation equals g; after that, velocity is constant and position decreases linearly
(and much more slowly than it would in a vacuum).

With air resistance, the time until the penny hits the sidewalk is 22.4 s, sub-
stantially longer than before (8.8 s).

1Based on reports that the terminal velocity of a penny is about 18 m/s.



10.5 Exercises 117

0 5 10 15 20 25

Time (s)

0

50

100

150

200

250

300

350

400

A
lt
it
u

d
e

 (
m

)

Figure 10.2: Altitude versus time for an penny in free fall with air resistance.

And the final velocity is 18.1 m/s, substantially slower than before (86 m/s).

10.5 Exercises

Exercise 27

The drag constant for a skydiver without a parachute is about 0.2 kg m. Modify
the penny code from this chapter to simulate the descent of a 75 kg skydiver from
an initial altitude of 4000 m. What is the velocity of the skydiver on impact?

After opening a parachute, the velocity of the skydiver slows to about 5 m/s.
Use your simulation to find the drag constant that yields a terminal velocity of
5 m/s.

Increase the mass of the skydiver, and confirm that terminal velocity increases.
This phenomenon is the source of the intuition that heavy objects fall faster; in
air, they do!

Now suppose the skydiver free falls until they get to altitude 1000 m before
opening the parachute. How long would it take them to reach the ground?

What is the lowest altitude where the skydiver can open the parachute and
still land at less than 6 m/s (assuming that the parachute opens and deploys
instantly)?
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Exercise 28

Here’s a question from the web site Ask an Astronomer2:

“If the Earth suddenly stopped orbiting the Sun, I know eventually
it would be pulled in by the Sun’s gravity and hit it. How long would
it take the Earth to hit the Sun? I imagine it would go slowly at
first and then pick up speed.”

Use ode45 to answer this question. Here are some suggestions about how to
proceed:

1. Look up the Law of Universal Gravitation and any constants you need. I
suggest you work entirely in SI units: meters, kilograms, and Newtons.

2. When the distance between the Earth and the Sun gets small, this system
behaves badly, so you should use an event function to stop when the
surface of Earth reaches the surface of the Sun.

3. Express your answer in days, and plot the results as millions of kilometers
versus days.

2https://web.archive.org/web/20180617133223/http://curious.astro.

cornell.edu/about-us/39-our-solar-system/the-earth/other-catastrophes/

57-how-long-would-it-take-the-earth-to-fall-into-the-sun-intermediate



Chapter 11

Two dimensions

In the previous chapter, we solved a one-dimensional problem, a penny falling
from the Empire State Building. Now we’ll solve a two-dimensional problem,
finding the trajectory of a baseball.

11.1 Spatial vectors

The word “vector” means different things to different people. In MATLAB, a
vector is a matrix that has either one row or one column. So far we have used
MATLAB vectors to represent:

sequences: A sequence is a set of values identified by integer indices; it is
natural to store the elements of the sequence as elements of a MATLAB
vector.

state vectors: A state vector is a set of values that describes the state of a
physical system. When you call ode45, you give it initial conditions in
a state vector. Then when ode45 calls your rate function, it gives you a
state vector.

time series: The results from ode45 are vectors, T and Y, that represent a time
series, that is, a mapping from the time values in T to the values in Y.

In this chapter we will see another use of MATLAB vectors: representing spatial
vectors. A spatial vector represents a multidimensional physical quantity like
position, velocity, acceleration, or force.

For example, to represent a position in two-dimensional space, we can use a
vector with two elements:
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>> P = [3 4]

To interpret this vector, we have to know what coordinate system it is defined
in. Most commonly, we use a Cartesian system where the x-axis points east
and the y-axis points north. In that case P represents a point 3 units east and
4 units north of the origin.

Spatial vectors represent the magnitude and direction of a physical quantity.
For example, the magnitude of P is the distance from the origin to P, which is
the hypotenuse of the triangle with sides 3 and 4. We can compute it using the
Pythagorean theorem:

>> sqrt(sum(P.*P))

ans = 5

Or more simply by using the function norm, which computes the “Euclidean
norm” of a vector, which is its magnitude:

>> norm(P)

ans = 5

There are two ways to get the direction of a vector. One convention is to
compute the angle between the vector and the x-axis:

>> atan2(P(2), P(1))

ans = 0.9273

In this example, the angle is about 0.9 rad. But for computational purposes, we
often represent direction with a unit vector, which is a vector with length 1.
To get a unit vector we can divide a vector by its length:

function res = hat(V)

res = V / norm(V)

end

This function takes a vector, V, and returns a unit vector with the same direction
as V. It is called hat because in mathematical notation, unit vectors are written
with a “hat” symbol. For example, the unit vector with the same direction as
P would be written P̂.

11.2 Adding vectors

Vectors are particularly useful for representing quantities like force and accel-
eration because we can add them up without having to think explicitly about
direction.

As an example, suppose we have two vectors representing forces:
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Figure 11.1: The sum of two forces represented by vectors.

>> A = [2, 4];

>> B = [2, -2];

A represents a force pulling northeast; B represents a force pulling southeast, as
shown in Figure 11.1

To compute the sum of these forces, all we have to do is add the vectors:

>> A + B

ans = 4 2

This will come in handy later in the chapter.

11.3 ODEs in two dimensions

So far we have used ode45 to solve a system of first-order equations and a
single second-order equation. Now we’ll take one more step, solving a system of
second-order equations.

As an example, we’ll simulate the flight of a baseball. Assuming there is no wind
and no spin on the ball, it should travel in a vertical plane, so we can think of the
system as two-dimensional, with x representing the horizontal distance travelled
and y representing height or altitude.

Here’s a rate function we can use to simulate this system with ode45:
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function res = rate_func(t, W)

P = W(1:2);

V = W(3:4);

dPdt = V;

dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];

end

function res = acceleration(t, P, V)

g = 9.8; % acceleration of gravity in m/s^2

a_gravity = [0; -g];

res = a_gravity;

end

The second argument of rate_func is understood to be a vector, W, with four
elements. The first two are assigned to P, which represents position; the last two
are assigned to V, which represents velocity. Both P and V have two elements
representing the x and y components.

The goal of the rate function is to compute the derivative of W, so the output has
to be a vector with four elements, where the first two represent the derivative
of P and the last two represent the derivative of V.

The derivative of P is velocity. We don’t have to compute it; we were given it
as part of W.

The derivative of V is acceleration. To compute it, we call acceleration, which
takes as input variables time, position and velocity. In this example, we don’t
use any of the input variables, but we will soon.

For now we’ll ignore air resistance, so the only force on the baseball is gravity.
We represent acceleration due to gravity with a vector that has magnitude g

and direction along the negative y axis.

Let’s assume that a ball is batted from an initial position 1 m above home plate,
with an initial velocity of 30 m/s in the horizontal and 40 m/s in the vertical
direction.

Here’s how we can call ode45 with these initial conditions:

P = [0; 3]; % initial position in m

V = [40; 30]; % initial velocity in m/s

W = [P; V]; % initial condition

tspan = [0 8]

[T, M] = ode45(@rate_func, tspan, W);
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Figure 11.2: Simulated flight of a baseball neglecting drag force.

P and V are column vectors because we put semi-colons between the elements.
So W is a column vector with four elements. tspan specifies that we want to run
the simulation for 6 s.

The output variables from ode45 are a vector, T, that contains time values and a
matrix, M, with four columns: the first two are position; the last two are velocity.

Here’s how we can plot position as a function of time:

X = M(:, 1);

Y = M(:, 2);

plot(T, X)

plot(T, Y)

X and Y get the first and second columns from M, which are the x and y coordi-
nates of position.

Figure 11.2 shows what they look like. The x coordinate increases linearly
because the x velocity is constant. The y coordinate goes up and down, as we
expect.

The simulation ends just before the ball lands, having traveled almost 250 m.
That’s substantially farther than a real baseball would travel, because we have
ignored air resistance, or “drag force”.
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11.4 Drag force

A simple model for the drag force on a baseball is:

Fd = −1

2
ρv2CdAV̂ (11.1)

where Fd is a vector that represents the force on the baseball due to drag, ρ is
the density of air, Cd is the drag coefficient, and A is the cross-sectional area .

V is the baseball’s velocity vector; v is the magnitude of V and V̂ is a unit
vector in the same direction as V . The minus sign at the beginning means that
the result is in the opposite direction as V .

The following function computes the drag force on a baseball:

function res = drag_force(V)

C_d = 0.3; % dimensionless

rho = 1.3; % kg / m^3

A = 0.0042; % m^2

v = norm(V); % m/s

res = -1/2 * C_d * rho * A * v * V;

end

The drag coefficient for a baseball is about 0.3. The density of air at sea level
is about 1.3 kg/m3. The cross-sectional area of a baseball is 0.0042 m2.

Now we have to update acceleration to take drag into account:

function res = acceleration(t, P, V)

g = 9.8; % acceleration of gravity in m/s^2

a_gravity = [0; -g];

m = 0.145; % mass in kilograms

a_drag = drag_force(V) / m;

res = a_gravity + a_drag;

end

As in Section 11.3, acceleration represents acceleration due to gravity with
a vector that has magnitude g and direction along the negative y axis. But
now it also computes drag force, then divides by the mass of the baseball to
get acceleration due to drag. Finally, it adds a_gravity and a_drag to get the
total acceleration of the baseball.

Figure 11.3 shows these quantities graphically. Acceleration due to drag, D, is
in the opposite direction of velocity, V. Acceleration of gravity, G, is straight
down. Total acceleration, A, is the sum of D and G.
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Figure 11.3: Diagram of velocity, V, acceleration due to drag force, D, acceler-
ation due to gravity, G, and total acceleration, A.
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Figure 11.4: Simulated flight of a baseball including drag force.
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Figure 11.4 shows the results from ode45. The ball lands after about 5 s, hav-
ing traveled less than 150 m, substantially less than what we got without air
resistance, about 250 m.

This result suggests that ignoring air resistance is not a good choice for modeling
a baseball.

11.5 What could go wrong?

What could go wrong? Well, vertcat for one. To explain what that means, I’ll
start with concatenation, which is the operation of joining two matrices into
a larger matrix. “Vertical concatenation” joins the matrices by stacking them
on top of each other; “horizontal concatenation” lays them side by side.

Here’s an example of horizontal concatenation with row vectors:

>> x = 1:3

x = 1 2 3

>> y = 4:5

y = 4 5

>> z = [x, y]

z = 1 2 3 4 5

Inside brackets, the comma operator performs horizontal concatenation. The
vertical concatenation operator is the semi-colon. Here is an example with
matrices:

>> X = zeros(2,3)

X = 0 0 0

0 0 0

>> Y = ones(2,3)

Y = 1 1 1

1 1 1

>> Z = [X; Y]

Z = 0 0 0

0 0 0

1 1 1

1 1 1
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These operations only work if the matrices are the same size along the dimension
where they are glued together. If not, you get:

>> a = 1:3

a = 1 2 3

>> b = a'

b = 1

2

3

>> c = [a, b]

Error using horzcat

Dimensions of matrices being concatenated are not consistent.

>> c = [a; b]

Error using vertcat

Dimensions of matrices being concatenated are not consistent.

In this example, a is a row vector and b is a column vector, so they can’t be
concatenated in either direction.

Reading the error messages, you probably guessed that horzcat is the function
that performs horizontal concatenation, and likewise with vertcat and vertical
concatenation.

In Section 11.3 we use horizontal concatenation to pack dRdt and dVdt into the
output variable:

function res = rate_func(t, W)

P = W(1:2);

V = W(3:4);

dPdt = V;

dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];

end

As long as dRdt and dVdt are column vectors, the semi-colon performs vertical
concatenation, and the result is a column vector with four elements. But if
either of them is a row vector, that’s trouble.

ode45 expects the result from rate_func to be a column vector, so if you are
working with ode45, it is probably a good idea to make everything a column
vector.
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In general, if you run into problems with horzcat and vertcat, use size to
display the dimensions of the operands, and make sure you are clear on which
way your vectors go.

11.6 Glossary

spatial vector: A value that represents a multidimensional physical quantity
like position, velocity, acceleration or force.

unit vector: A vector with norm 1, used to indicate direction.

norm: The magnitude of a vector. Sometimes called “length,” but not to be
confused with the number of elements in a MATLAB vector.

concatenation: The operation of joining two matrices end-to-end to form a
new matrix.

11.7 Exercises

Exercise 29

When the Boston Red Sox won the World Series in 2007, they played the Col-
orado Rockies at their home field in Denver, Colorado. Find an estimate of the
density of air in the Mile High City. What effect does this have on drag? What
effect does it have on the distance the baseball travels?

Exercise 30

The actual drag on a baseball is more complicated than what is captured
by our simple model. In particular, the drag coefficient depends on veloc-
ity. You can get some of the details from The Physics of Baseball1; the figure
you need is reproduced at https://github.com/AllenDowney/ModSimMatlab/
blob/master/code/data/baseball_drag.png.

Use this data to specify a more realistic model of drag and modify your program
to implement it. How big is the effect on the distance the baseball travels?

Exercise 31

According to Wikipedia, the record distance for a human cannonball is 59.05
meters2.

1Robert K. Adair, Harper Paperbacks, 3rd Edition, 2002.
2See https://en.wikipedia.org/wiki/Human_cannonball.
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Modify the example from this chapter to simulate the flight of a human can-
nonball. You might have to do some research to find the drag coefficient and
cross sectional area for a flying human.

Find the initial velocity (both magnitude and direction) you would need to break
this record. You might have to experiment to find the optimal launch angle.



130 Two dimensions



Chapter 12

Optimization

In Exercise 31, you were asked to find the best launch angle for a human can-
nonball, meaning the angle that maximizes the distance traveled before landing.
In this chapter, we solve a similar problem, finding the best launch angle for a
baseball.

We’ll solve the problem two ways, first running simulations with a range of
values and plotting the results; then using a MATLAB function, fminsearch.

12.1 Optimal baseball

In the previous chapter we wrote functions to simulate the flight of a baseball
with a known initial velocity. Now we’ll use that code to find the launch angle
that maximizes “range”, that is, the distance the ball travels before landing.

First we need an event function to stop the simulation when the ball lands.

function [value, isterminal, direction] = event_func(t, W)

value = W(2);

isterminal = 1;

direction = -1;

end

This is similar to the event function we saw in Section 10.3, except that it uses
W(2) as the event value, which is the y coordinate. This event function stops
the simulation when the altitude of the ball is 0 and falling.

Now we can call ode45 like this:

P = [0; 1]; % initial position in m
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V = [40; 30]; % initial velocity in m/s

W = [P; V]; % initial condition

tspan = [0 10];

options = odeset('Events', @event_func);

[T, M] = ode45(@rate_func, tspan, W, options);

The initial position of the ball is 1 m above home plate. Its initial velocity is
40 m/s in the x direction and 30 m/s in the y direction.

The maximum duration of the simulation is 10 s, but we expect an event to stop
the simulation first. We can get the final values of the simulation like this:

T(end)

M(end, :)

The final time is 5.1 s. The final x position is 131 m; the final y position is 0, as
expected.

12.2 Trajectory

Now we can extract the x and y positions:

X = M(:, 1);

Y = M(:, 2);

In Section 11.3 we plotted X and Y separately as functions of time. Alternatively
we can plot them against each other, like this:

plot(X, Y)

Figure 12.1 shows the result, which is the trajectory of the baseball from
launch, on the left, to landing, on the right.

12.3 Range versus angle

Now we’d like to simulate the trajectory of the baseball with a range of launch
angles. First, I’ll take the code we have and wrap it in a function that takes the
launch angle as an input variable, runs the simulation, and returns the distance
the ball travels.

function res = baseball_range(theta)

P = [0; 1];

v = 50;

[vx, vy] = pol2cart(theta, v);
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Figure 12.1: Simulated flight of a baseball plotted as a trajectory.

V = [vx; vy]; % initial velocity in m/s

W = [P; V]; % initial condition

tspan = [0 10];

options = odeset('Events', @event_func);

[T, M] = ode45(@rate_func, tspan, W, options);

res = M(end, 1);

end

The launch angle, theta, is in radians. The magnitude of velocity is always
50 m/s. I use pol2cart to convert the angle and magnitude to Cartesian com-
ponents, vx and vy.

After running the simulation, I extract the final x position and return it as an
output variable.

We can run this function for a range of angles like this:

thetas = linspace(0, pi/2);

for i = 1:length(thetas)

ranges(i) = baseball_range(thetas(i));

end

And then plot ranges as a function of thetas:
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Figure 12.2: Simulated flight of a baseball plotted as a trajectory.

plot(thetas, ranges)

Figure 12.2 shows the result. As expected, the ball does not travel far if it is
hit nearly horizontal or vertical. The peak is apparently near 0.7 rad.

Considering that our model is only approximate, this result might be good
enough. But if we want to find the peak more precisely, we can use fminsearch.

12.4 fminsearch

fminsearch is similar to fzero, which we saw in Section6.3. Recall that fzero
takes a function handle and an initial guess, and returns a root of the function.
As an example, to find a root of this function:

function res = error_func(x)

res = x^2 - 2;

end

We can call fzero like this:

>> x = fzero(@error_func, 1)

ans = 1.4142

The result is near the square root of 2. If we call fminsearch with the same
function:



12.5 Animation 135

>> x = fminsearch(@error_func, 1)

x = -8.8818e-16

The result is close to 0, which is where this function is minimized. Optionally,
fminsearch returns two values:

>> [x, fval] = fminsearch(@error_func, 1)

x = -8.8818e-16

fval = -2

x is the location of the minimum; fval is the value of the function evaluated at
x.

We can use fminsearch to find the maximum of a function by writing a short
function that negates the function we want to maximize:

function res = min_func(angle)

res = -baseball_range(angle);

end

Now we can call fminsearch like this:

>> [x, fval] = fminsearch(@min_func, pi/4)

x = 0.6921

fval = -131.5851

The optimal launch angle for the baseball is 0.69 rad; launched at that angle,
the ball travels about 132 m.

If you are curious about how fminsearch works, see Section 14.3.

12.5 Animation

Animation is a useful tool for checking the results of a physical model. If
something is wrong, animation can make it obvious. There are two ways to do
animation in MATLAB. One is to use getframe to capture a series of images
and movie to play them back.

The more informal way is to draw a series of plots. Here is a function that
animates the results of a baseball simulation:

function animate(T,M)

X = M(:,1);

Y = M(:,2);
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minmax = [min([X]), max([X]), min([Y]), max([Y])];

for i=1:length(T)

clf

axis(minmax)

plot(X(i), Y(i), 'o')

drawnow;

if i < length(T)

dt = T(i+1) - T(i);

pause(dt);

end

end

end

The input variables are the output from ode45, a vector T and a matrix M. The
columns of M are the x and y coordinates of the baseball.

minmax is a vector of four elements which is used inside the loop to set the
axes of the figure. This is necessary because otherwise MATLAB scales the
figure each time through the loop, so the axes keep changing, which makes the
animation hard to watch.

Each time through the loop, animate uses clf to clear the figure and axis to
reset the axes. Then it plots a circle to represent the position of the baseball.

We have to call drawnow so that MATLAB actually displays each plot. Oth-
erwise it waits until you finish drawing all the figures and then updates the
display.

We can call animate like this:

tspan = [0 10];

W = [0 1 30 40];

[T, M] = ode45(@rate_func, tspan, W);

animate(T, M)

One limitation of this kind of animation is that the speed of the animation
depends on how fast your computer can generate the plots. Since the results
from ode45 are usually not equally spaced in time, your animation might slow
down where ode45 takes small time steps and speed up where the time step is
larger.

One way to fix this problem is to change the way to specify tspan. Here is an
example:

tspan = 0:0.1:10;

The result vector that goes from 0 to 10 with a step size of 0.1. This option
does not affect the accuracy of the results; ode45 still uses variable time steps
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to generate the estimates, but then it interpolates them before returning the
results.

With equal time steps, the animation should be smoother.

Another option is to use pause to play the animation in real time. After drawing
each frame and calling drawnow, you can compute the time until the next frame
and use pause to wait:

dt = T(i+1) - T(i);

pause(dt);

A limitation of this method is that it ignores the time required to draw the
figure, so it tends to run slow, especially if the figure is complex or the time step
is small.

12.6 Exercises

Exercise 32

Manny Ramirez is a former member of the Boston Red Sox (an American base-
ball team) who was famous for his relaxed attitude. The goal of this exercise is
to solve the following Manny-inspired problem:

What is the minimum effort required to hit a home run in Fenway Park?

Fenway Park is a baseball stadium in Boston, Massachusetts. One of its most
famous features is the “Green Monster”, which is a wall in left field that is
unusually close to home plate, only 310 feet away. To compensate for the short
distance, the wall is unusually high, at 37 feet.

You can solve this problem in two steps:

1. For a given velocity, find the launch angle that maximizes the height of
the ball when it reaches the wall. Notice that this is not quite the same
as the angle that maximizes the distance the ball travels.

2. Find the minimal velocity that clears the wall, given that it has the op-
timal launch angle. Hint: this is actually a root-finding problem, not an
optimization problem.

Exercise 33

A golf ball hit with backspin generates lift, which might increase the distance
it travels, but the energy that goes into generating spin probably comes at the
cost of lower initial velocity.
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Write a simulation of the flight of a golf ball and use it to find the launch
angle and allocation of spin and initial velocity (for a fixed energy budget) that
maximizes the horizontal range of the ball in the air.

The lift of a spinning ball is due to the Magnus force1, which is perpendicular to
the axis of spin and the path of flight. The coefficient of lift is proportional to
the spin rate; for a ball spinning at 3000 rpm it is about 0.1. The coefficient of
drag of a golf ball is about 0.2 as long as the ball is moving faster than 20 m/s.

1See https://en.wikipedia.org/wiki/Magnus_effect.
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Case studies

This chapter includes additional exercises where you can apply what you have
learned.

13.1 Celestial mechanics

Celestial mechanics describes how objects move in outer space. If you did
Exercise 28, you simulated the Earth being pulled toward the Sun in one di-
mension. Now we’ll simulate the Earth orbiting the Sun in two dimensions.

To keep things simple, we’ll consider only the effect of the Sun on the Earth,
and ignore the effect of the Earth on the Sun. So we’ll place the Sun at the
origin and use a spatial vector, P, to represent the position of the Earth relative
to the Sun.

Given the mass of the Sun, m1, and the mass of the Earth, m2, the gravitational
force between them is

Fg = −Gm1m2

r2
P̂

where G is the universal gravitational constant1, r is the distance of Earth from
the Sun, and P̂ is a unit vector in the direction of P.

Write a simulation of Earth orbiting the Sun. You can look up the orbital
velocity of the Earth, or search for the initial velocity that causes the earth to
make one complete orbit in one year. Optionally, use fminsearch to find the
velocity that gets the Earth as close as possible to the starting place after one
year.

1See https://en.wikipedia.org/wiki/Gravity.
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13.2 Conservation of Energy

A useful way to check the accuracy of an ODE solver is to see whether it
conserves energy. For planetary motion, it turns out that ode45 does not.

The kinetic energy of a moving body is

KE = mv2/2

The potential energy of a sun with mass m1 and a planet with mass m2 and a
distance r between them is

PE = −Gm1m2

r
(13.1)

Write a function called energy func that takes the output of your Earth sim-
ulation and computes the total energy (kinetic and potential) of the system for
each estimated position and velocity.

Plot the result as a function of time and check whether it increases or decreases
over the course of the simulation.

You can reduce the rate of energy loss by decreasing ode45’s tolerance option
using odeset (see Section 10.3):

options = odeset('RelTol', 1e-5);

[T, M] = ode45(@rate_func, tspan, W, options);

The name of the option is RelTol for “relative tolerance.” The default value is
1e-3 or 0.001. Smaller values make ode45 less “tolerant,” so it does more work
to make the errors smaller.

Run ode45 with a range of values for RelTol and confirm that as the tolerance
gets smaller, the rate of energy loss decreases.

Along with ode45, MATLAB provides several other ODE solvers (see https:

//www.mathworks.com/help/matlab/math/choose-an-ode-solver.html).
Run your simulation with one of the other ODE solvers MATLAB provides
and see if any of them conserve energy. You might find that ode23 works
surprisingly well (although technically it does not conserve energy either).

13.3 Bungee jumping

Suppose you want to set the world record for the highest “bungee dunk”, which
is a stunt in which a bungee jumper dunks a cookie in a cup of tea at the lowest
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point of a jump. An example is shown in this video: http://modsimpy.com/

dunk.

Since the record is 70 m, let’s design a jump for 80 m. We’ll start with the
following modeling assumptions:

� Initially the bungee cord hangs from a crane with the attachment point
80 m above a cup of tea.

� Until the cord is fully extended, it applies no force to the jumper. It turns
out this might not be a good assumption; we will revisit it.

� After the cord is fully extended, it obeys Hooke’s Law; that is, it applies
a force to the jumper proportional to the extension of the cord beyond its
resting length. See http://modsimpy.com/hooke.

� The mass of the jumper is 75 kg.

� The jumper is subject to drag force, as in the previous model, so that
their terminal velocity is 60 m/s.

Our objective is to choose the length of the cord, L, and its spring constant, k,
so that the jumper falls all the way to the tea cup, but no farther!

We’ll start with the length of the bungee cord, L at 25 m and spring constant,
k at 40 N/m.

Assume that the jumper has a cross-sectional area of 1 m and a terminal velocity
of 60 m/s, and weighs 75 kg.

13.4 Bungee revisited

In the previous case study we simulated a bungee jump with a model that took
into account gravity, air resistance, and the spring force of the bungee cord, but
we ignored the weight of the cord.

It is tempting to say that the cord has no effect because it falls along with the
jumper, but that intuition is incorrect. As the cord falls, it transfers energy to
the jumper.

At http://modsimpy.com/bungee you’ll find a paper2 that explains this phe-
nomenon and derives the acceleration of the jumper, a, as a function of position,
y, and velocity, v:

a = g +
µv2/2

µ(L+ y) + 2L

2Heck, Uylings, and Kdzierska, “Understanding the physics of bungee jumping”, Physics
Education, Volume 45, Number 1, 2010.
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Figure 13.1: Diagram of the initial state for the Spider-Man case study.

where g is acceleration due to gravity, L is the length of the cord, and µ is the
ratio of the mass of the cord, m, and the mass of the jumper, M .

If you don’t believe that their model is correct, this video might convince you:
http://modsimpy.com/drop.

Modify your solution to the previous problem to model this effect. How does
the behavior of the system change as we vary the mass of the cord? When the
mass of the cord equals the mass of the jumper, what is the net effect on the
lowest point in the jump?

13.5 Spider-Man

In this case study we’ll develop a model of Spider-Man swinging from a springy
cable of webbing attached to the top of the Empire State Building. Initially,
Spider-Man is at the top of a nearby building, as shown in Figure 13.1.

The origin, O, is at the base of the Empire State Building. The vector H rep-
resents the position where the webbing is attached to the building, relative to
O. The vector P is the position of Spider-Man relative to O. And L is the vector
from the attachment point to Spider-Man.

By following the arrows from O, along H, and along L, we can see that

H + L = P

So we can compute L like this:
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L = P - H

The goals of this case study are:

1. Implement a model of this scenario to predict Spider-Man’s trajectory.

2. Choose the right time for Spider-Man to let go of the webbing in order to
maximize the distance he travels before landing.

3. Choose the best angle for Spider-Man to jump off the building, and the
best time to let go of the webbing, to maximize range.

We’ll use the following parameters:

1. According to the Spider-Man Wiki3, Spider-Man weighs 76 kg.

2. Let’s assume his terminal velocity is 60 m/s.

3. The length of the web is 100 m.

4. The initial angle of the web is 45° to the left of straight down.

5. The spring constant of the web is 40 N/m when the cord is stretched, and
0 when it’s compressed.

3http://modsimpy.com/spider



144 Case studies



Chapter 14

How does it work?

In this chapter we “open the hood”, looking more closely at how some of the
tools we have used — ode45, fzero, and fminsearch — work.

14.1 How ode45 works

According to the MATLAB documentation, ode45 uses “an explicit Runge-
Kutta formula, the Dormand-Prince pair”. You can read about it at https:

//en.wikipedia.org/wiki/Runge-Kutta_methods, but I’ll try to give you a
sense of it here.

The key idea behind all Runge-Kutta methods is to evaluate the rate function
several times at each time step, and use a weighted average of the computed
slopes to estimate the value at the next time step. The details are in where the
rate function is called and how the slopes are averages.

As an example, I’ll solve the following differential equation:

dy

dt
(t) = y sin t

Given a differential equation, it is usually straightforward to write a rate func-
tion:

function res = rate_func(t, y)

dydt = y * sin(t);

res = dydt;

end

And we can call it like this:
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y0 = 1;

tspan=[0 4];

options = odeset('Refine', 1);

[T, Y] = ode45(@rate_func, tspan, y0, options);

For this example I use odeset to set the Refine option to 1, which tells ode45
to return only the time steps it computes, rather than interpolating between
them.

Now I can modify the rate function to plot the places where it gets evaluated:

function res = rate_func(t, y)

dydt = y * sin(t);

res = dydt;

plot(t, y, 'ro')

dt = 0.01;

ts = [t t+dt];

ys = [y y+dydt*dt];

plot(ts, ys, 'r-')

end

When rate_func runs it plot a red circle at each location, and a short red line
showing the computed slope.

Figure 14.1 shows the result. ode45 computes 10 time steps (not counting the
initial condition) and evaluates the rate function 61 times.

Figure 14.2 shows the same plot, zoomed in on a single time step, from 0.8 to
1.2. We can see that ode45 evaluates the rate function several times per time
step, at several places between the end points.

One important thing to take away from this figure: most of the places where
ode45 evaluates the rate function are not part of the solution it returns, and
they are not always good estimates of the solution.

At each time step, ode45 actually computes two estimates of the next value. By
comparing them, it can estimate the magnitude of the error, which is uses to
adjust the time step. If the error is too big, it uses a smaller time step; if the
error is small enough, it uses a bigger time step. Because ode45 is adaptive in
this way, it minimizes the number of times it calls the rate function to achieve
a given level of accuracy.

14.2 How fzero works

According to the MATLAB documentation, fzero uses uses “a combination of
bisection, secant, and inverse quadratic interpolation methods”.
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Figure 14.1: Points where ode45 evaluates the rate function.
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Figure 14.2: Points where ode45 evaluates the rate function, zoomed in.
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f(x2)

f(x1)

Figure 14.3: Initial state of a root-finding search.

To understand what that means, suppose we are trying to find a root of a
function on one variable, f(x), and assume we have evaluated the function at
two place, x1 and x2, and found that the result have opposite signs. Specifically,
assume f(x1) > 0 and f(x2) < 0, as shown in Figure 14.3.

As long as f is continuous, there must be at least one root in this interval. In
this case we would say that x1 and x2 bracket a zero.

If this was all you knew about f , where would you go looking for a root? If
you said “halfway between x1 and x2”, congratulations! You just invented a
numerical method called bisection!

If you said, “I would connect the dots with a straight line and compute the zero
of the line,” congratulations! You just invented the secant method!

And if you said, “I would evaluate f at a third point, find the parabola that
passes through all three points, and compute the zeros of the parabola,” then
congratulations, you just invented inverse quadratic interpolation.

That’s most of how fzero works. The details of how these methods are com-
bined are interesting, but beyond the scope of this book. You can read more at
https://en.wikipedia.org/wiki/Brents_method.

14.3 How fminsearch works

According to the MATLAB documentation, fminsearch uses the Nelder-Mead
simplex algorithm. You can read about it at https://en.wikipedia.org/

wiki/Nelder-Mead_method, but you might find it overwhelming.

To give you a sense of how it works, I will present a simpler algorithm, the
golden-section search. Suppose we are trying to find the minimum of a
function of a single variable, f(x). As a starting place, assume that we have
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Figure 14.4: Initial state of a golden-section search.
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Figure 14.5: Possible states of a golden-section search after evaluating f(x4).

evaluated the function at three places, x1, x2, and x3, and found that x2 yields
the lowest value. Figure 14.4 shows this initial state.

If f is continuous, there has to be at least one minimum point between x1 and
x3.

The next step is to choose a fourth point, x4, and evaluate f(x4). There are
two possible outcomes, depending on whether f(x4) is greater than f(x2). Fig-
ure 14.5 shows the two possible states.

If f(x4) is less than than f(x2) (shown on the left), the local minimum must
be between x2 and x3, so we would discard x1 and proceed with the new triple
(x2, x4, x3).

If f(x4) is greater than f(x2) (shown on the right), the local minimum must
be between x1 and x4, so we would discard x3 and proceed with the new triple
(x1, x2, x4).

Either way the range gets smaller and our estimate of the optimal value of x
gets better.

This method works for almost any value of x4, but some choices are better
than others. You might be tempted to bisect the interval between x2 and
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x3, but that turns out not to be the best choice. You can read about a
better option at https://en.wikipedia.org/wiki/Golden-section_search#
Probe_point_selection.
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internal validation, 2
interpreter, 2
interval, 31, 61, 80
invalid expression, 8
inverse quadratic interpolation , 125
iterative modeling, 2

kinetic energy, 119

labeling axes, 81
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launch angle, 113, 114, 118
Law of Universal Gravitation, 100
Law of universal gravitation, 119
leap of faith, 53
legend, 82
length function, 35, 37
linear algebra, 33, 87
linear differential equation, 75
logical error, 20
logical function, 47
logical operator, 31
logical value, 30, 47
logical vector, 71
logistic map, 41
loop, 21, 23, 35, 36

nested, 49
loop body, 21
loop variable, 21
Lorenz attractor, 40, 92
Lotka-Volterra model, 87

M-file, 43
m-file, 11
magic square, 85
magnitude, 103
Magnus force, 118
Manny Ramirez, 118
mass, 99, 119
math function

exponential, 4
logarithm, 4
trigonometric, 4

mathematical function
square root, 4

Matrices
transpose, 87

matrix, 5, 32, 33, 85, 97
matrix exponentiation, 67
matrix multiplication, 34
mechanics

celestial, 119
minimum, 126
model, 2
modeling, 1
multiplication, 3

matrix, 34
myth, 10

name
function, 45
variable, 6

name collision, 38, 44, 46, 62
NaN, 30
NaN, 14
Nelder-Mead, 126
nested function call, 4
nested loop, 49
nesting, 30, 31
Newton, 2
Newton’s law of cooling, 82
Newton’s law of motion, 95
Newtonian motion, 95
nonlinear equation, 57
norm, 104
not a number, 14, 30
number

floating-point, 13, 33
numerator, 8
numerical error, 20
numerical method, 58
numerical solution, 57

ODE event, 97, 113
ODE events, 97
ode23, 120
ode45, 78, 88, 117, 119, 123
odeset, 98, 113, 120, 123
ones, 33
operand, 3–5
Operations

relational, 30
operations

order of, 3
operator, 3

AND, 32
assignment, 6
colon, 21, 29
comma, 109
elementwise, 34, 62
logical, 31
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OR, 32
relational, 30

optimization, 113, 122
options, 98
OR operator, 32
orbit, 2
order of operations, 3, 9
ordinary differential equation, 75
output

suppress, 6
output argument, 61
output variable, 43, 51, 60, 66, 78, 81,

106

pack vector, 88
parachute, 100
parameter, 79, 89, 122
parentheses, 3, 8, 35
pause, 118
penny, 10, 96
percent sign, 15
phase plot, 91
plot

ezplot, 61
plot, 22, 36
plot3, 91
Plotting

points, 22
plotting vector, 36
pol2cart, 115
polar coordinates, 115
position, 96, 103, 119
postcondition, 15, 29, 45
potential energy, 119
precondition, 15, 29, 45
predefined variable, 5
prediction, 2
prod function, 38
product

cumulative, 69
prompt, 2
Pythagorean theorem, 103
Pythagorean triple, 48, 55

quantification

existential, 69
universal, 70

rabbit, 87
radian, 115
Ramirez, Manny, 118
random walk programming, 72
range, 21, 29, 36, 113, 114, 122
rate function, 78, 80, 88, 104, 123
rate function , 96
reading, 71
realism, 2
realmax, 14
realmin, 14
recurrent computation, 23
reduce, 37
relational operator, 30
relative error, 20
relativity, 2
RelTol, 120
res, 43
retreating, 71
return statement, 70
root, 58
row, 85
row vectors, 86
ruminating, 71
Runge-Kutta, 123
running, 71
runtime error, 20

saveas, 82
scaffolding, 25
scalar, 32, 37
scientific notation, 14
script, 11, 39, 43

reasons for, 12
script file name, 12
Scripts

M-files, 11
search, 37
search path, 12
secant method, 125
second derivative, 95
second-order differential equation, 95
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semi-colon, 6, 13, 86, 89
sequence, 23, 36, 103

Fibonacci, 12
series, 23
sgn, 99
shadow, 62
signum function, 99
silent function, 44
simplicity, 2
size, 85
skydiver, 100
spatial vector, 103, 119
sphere, 64
Spider-Man, 121
spring constant, 121, 122
square root, 40, 57
state, 91, 103
statement

break, 38
end, 21
return, 70
assignment, 6, 21
compound, 30

step size, 118
string, 6

style, 37
style string, 22, 37
sum, 23

cumulative, 68
sum, 66
sum function, 38
Sun, 100, 119
suppress output, 6
syntax

..., 7
semi-colon, 6

syntax error, 20
system, 1
system of equations, 88
system of ODEs, 87

tea, 120
terminal velocity, 99, 122
theorems of debugging, 131
time dependence, 79

time series, 103
time span, 80, 97, 106, 117
time step, 76, 78, 124
tolerance, 120
top-level function, 65, 76
trajectory, 91, 114, 122
transcendental number, 14
transpose operator, 87
trigonometry, 4

undefined operation, 14
underscore, 6
unit, 15
unit vector, 104, 107
universal gravitation constant, 119
universal quantification, 70
unpack vector, 88
update, 19

validation, 2
external, 2
internal, 2

value
logical, 30, 47

variable, 5, 6, 33
assignment, 16
flag, 31
input, 43, 46
loop, 21
output, 43, 51, 60, 78
predefined, 5
reasons for, 7

variable name, 6, 15, 32
vector, 5, 29, 32, 36, 37, 59, 66

column, 86
logical, 71
plotting, 36
row, 86
spatial, 103
unit, 104

vector addition, 121
vector arithmetic, 32
vectorizing, 62, 67
velocity, 96, 105, 113, 118, 119
vertcat, 109
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vertical concatenation, 109

weasel, 87
who, 6
whos, 85
whos command, 33
Workspace, 2
workspace, 6, 13, 38, 44, 53

xlabel, 81

ylabel, 81

zero
division by, 14

zero-finding, 58


