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Chapter 9

Network adaptation issues

Editor: Michel Besson
Authors: Michel Besson, Peter Baxedale

n this chapter the most important aspects of the components adapting ATM Network
Elements (NE) to the Q3 interface required by the VPC and Routing management
system are discussed.

The RACE II project R2061 EXPLOIT developed an ATM testbed, located in
Basel, is organised around a kernel of several ATM switches interconnected through
high speed links. Various classes of traffic can be generated within this network
through different types of terminal equipment connected directly or indirectly via
appropriate adaptors or interworking units.

9.1 Architecture of the Network Elements

Each Network Element (ATM switch) is connected to a subsystem controller (SSC - a
UNIX work station) through a high speed link. The SSCs contain the software blocks
responsible for controlling routing, connection acceptance, traffic policing and updat-
ing the connection tables.

For the purpose of managing the ATM switches, an agent implementing a Q-Adap-
tor Function (QAF) was developed and installed on each of the SSCs (see Figure 9.1).
The agent is responsible for interacting with the software resources in the SSCs and
representing these resources as managed objects through a TMN compliant interface.

I
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Two approaches were considered for defining the MIBs to be presented to the
upper, decision making levels of the TMN:

• NE level: This approach involved designing the NE MIB without considering
the network-wide view. The key criteria were performance and ease of use.
Careful attention was been paid to the use of GDMO facilities to structure infor-
mation. This MIB is not based on the generic M.3100 [9.1] classes.

• NEM level: In this approach, the NE level is not modelled in isolation but with a
wider view of both the NE and Network layers, with a specific attention to the
configuration aspects of both NEs and network wide concepts (such as VPCs).
The goal of this approach was to achieve an overall solution, parts of which
would be mainly applicable to the Network layer and other parts to the Network
Element layer, but embodying uniform and consistent modelling concepts. Con-
sideration of the M.3100 [9.1] classes was the main criteria for this MIB.

The remainder of this chapter discusses these two MIBs without going into the details
of their specification but rather by presenting the strong and weak points of both
approaches. TheNEM level MIB is presented first.

9.2 The NEM level MIB

The general approach was:
1. To use existing M.3100 classes when appropriate.
2. If not adequate, try to specialise them by deriving new classes.
3. If this cannot be done, propose changes to the standard classes to allow the

required specialisation.
4. If this cannot be done, propose new classes.
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Figure 9.1 Functional architecture of the CMIP agent
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9.2.1 Derived classes

In most cases, M.3100 classes could be used directly. In some cases it was necessary to
derive new classes based on those from M.3100 but containing additional technology-
specific attributes. An example islinkTTPSource. This represents a source port con-
nected to a physical link. The bandwidth of the link and the number of VPs for which
the port is configured (maximum number of VPs) is required, so the derived class
linkTTPSource contains these additional attributes.

9.2.2 New classes

9.2.2.1 Routing tables

A Virtual Path/Virtual Channel ATM network has routing tables which identify paths
to be taken (along particular VPCs) to reach a destination node. These tables are
accessed and modified by the management system for route design and congestion con-
trol, and therefore they need to be represented in the MIB.

No standard classes could be found for modelling routing tables, so new classes
were defined. These arerouteSelectionTable, a container for routing table entries, and
routeSelectionEntry for specifying a particular route. TherouteSelectionEntry class
was not designed to be generic, having technology specific attributes such as CoS
(Class of Service). It could be redesigned to be more generic, possibly having a condi-
tional package for some of the attributes, or deriving another more specialised class
from a generic one. Attributes such as destination node, source pointer (showing which
termination point source object to route to, in our case avpcTTPSource object) and
possibly route priority are probably fairly generic in nature.

9.2.2.2 CAC attributes

Attributes relating to the Connection Admission Control (CAC) - target cell loss prob-
ability and VPC allocated bandwidth - are required. These are technology (ATM) spe-
cific and therefore are not contained in M.3100. Rather than add these attributes to the
derived classes representing VPC termination points, a new classcacConfiguration
was defined. The use of a separate class allowed more flexibility in the design. The
cacConfiguration class can be used to represent anything to related to CAC and can be
instantiated wherever knowledge of the CAC is required. In our design we use different
name bindings at the Network and NE levels. At the Network level, the CAC informa-
tion is associated with a VPC and should therefore be contained by thevpcTrail object.
But due to the design of the ETB network, CAC information is also required at each
intermediate node, so the CAC data needs to be available at the start of each VPL. This
can be achieved by instantiating acacConfiguration object at each intermediate node
along a VPC, contained by the relevantvpcCTPSource object (representing the VPL
source).

A similar result could have been achieved by defining acacConfiguration package,
which could then be conditionally included in thevpcCTPSource andvpcTrail classes.
We felt that this would have been a less elegant and less flexible approach.



INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

254

9.2.2.3 Cross connections

Cross connections are used for connecting VPLs to build VPCs. AvpcCTPSink may be
connected to an outgoingvpcCTPSource. Although M.3100 defines thefabric and
crossConnection classes for dealing with these, they are not sufficiently generic and
require attributes and actions not appropriate for ATM. New classesatmFrabric and
atmCrossConnection are therefore defined which are very similar to the M.3100
classes and retain the basic principles but are more appropriate for ATM.

9.2.2.4 Statistical objects

New classes have also been defined for various objects used in the gathering of net-
work statistics. These are technology specific and would not be expected to be found in
the generic standards. The approach has been taken to use separate classes specifically
for holding statistical data. Instances of these can then be created or deleted as required
by monitoring applications and positioned appropriately in the containment tree.

9.2.3 Problems

The classes outlined above have been implemented without serious difficulties. At the
Network layer, some problems were experienced in the dynamic creation and deletion
of trails. There is no simple way to create an object such as a VPC from a remote man-
ager, as is required by ICM. To construct a VPC one needs to create not only the trail
object, which has pointers to the required connection objects (VPLs in this case), but
also the connection objects themselves and all the trail and connection end points. This
would be a very lengthy and involved process to carry out remotely. In fact, the only
external information required is the name of the required VPC together with a list of
the names of the physical links it is to traverse and the rest can be carried out internally.
This suggests the need for a higher level action such ascreateTrail associated with the
network class. An alternative approach, adopted by ICM, is to define a new class with a
higher level of abstraction. This class we calledvpcTopology. It contains a list of the
links traversed by the VPC and hides the underlying detail.

Another problem experienced at the Network level is in remote access to the MIB
to acquire certain information, again mainly relating to trails. If it is required, for
example, to find the links over which a VPC passes, this information is not readily
available. The trail object only contains pointers to the connection objects, and it is
these objects which can be used to identify the physical links. This implies an extra
level of indirection and extra remote accesses to get the information (first get the trail
object, then get the connection objects it points to). To overcome this problem, in this
particular example thevpcTopology class mentioned above can be used to provide the
information directly. Alternatively, it may be possible to extract the information by
careful use of scoping and filtering.
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9.3 The NE level MIB

As mentioned before, the criteria used for the design of this MIB has been more the
performance and “ease to access” aspects than the conformance to the M.3100 classes.

9.3.1 Usage of M.3100 “terminationPoint”

The main attribute used in the fourterminationPoint classes from M.3100 is thecon-
nectivityPointer- a valid question is how consistent this is with the ATM technology.
(Some other attributes are very specific to SDH technology, e.g.supportableClientList,
which belongs to a conditional package, or are very generic such as theoperational-
State and as such they do not represent added value).

Each of these four classes contains an attribute, named specifically for each class, to
handle the information about stream connectivity. They are illustrated Figure 9.2.

A “connectivityPointer” has the following ASN1 syntax

ConnectivityPointer ::= CHOICE { noneNULL,
singleObjectInstance,
concatSEQUENCE OF
ObjectInstance}

where an “ObjectInstance” [9.3] is used to identify a specific object either through a
DN or a RDN or an “ad hoc” octet string.
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Figure 9.2 Stream connectivity
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There are several remarks to be made here:
• Pointers are indirections to other objects; this means that it is not possible to

read the attributes associated to a sibling TP in a single “GET” request. A first
“GET” request is needed to recover the DN of the “pointed to” objects, and a
second request must be used to recover the actual information.

• If we consider this model applied to ATM, where from top to bottom we have
VCC, VCL, VPC, VPL we realise that these pointers are of no use. What is of
interest for an ATM switch is to link between the layer of VCs and the layer of
VPs: given a VP (VPC or VPL) one would like to know what are the VCs (VCC
or VCL) going through it, and given a VC one would like to know what VP it
belongs to. As shown on the figure, the pointers do not cross the layers.

• Having two different objects to designate aTTPSource and its associatedCTP-
Source (same for the sink) is pure overhead. Indeed, at a VPC source (A) it
makes sense to have additional information compared to the corresponding
VPL source (B), but since these two points are very closely related it seems
much more natural to consider that a VPC is a specialisation of a VPL: this
could be elegantly modelled using two classes:VPCSource inheriting from
classVPLSource.

9.3.2 Naming port, VPs and VCs

Making TTPSource and CTPSource a single object does not solve the problem we
identified earlier of being able to “point” between the VPs layer and the VCs layer
(where a VCC is switched from one VPC to another one: point P to Q). In addition it
seems natural also to keep the information associated to the sibling point: P pointing to
Q and Q pointing to P. At first sight, it seems that in this case we need two pointers.

• First, instead of using pointers, we will simply use the integer values used in the
ATM protocol and called VPI and VCI.

• Second, instead of using two attributes to convey this information in the “inher-
itance” tree, we will much more naturally use the containment tree, and con-
sider that aVCLSource is “contained” within the subtree whose root is the
correspondingVPCSource. A VPCSource is identified through its VPI and any
specific VCLSource can be identified within this subtree through its VCI.

One advantage in using CMIP with respect to SNMP is that it is possible to have
entries in tables that are tables themselves. Neither ETSI [9.6] nor ATMF M4 [9.4]
MIB take advantage of this feature to model the ports, VPs and VCs, using the quite
natural structuring facility offered by the containment schema shown in Figure 9.3.

In these two “standard” MIBs, these entities are all contained in theatmMan-
agedElement instance, and therefore they have to refer to their real container entity
with a pointer or an Id. (For example, A VC has to point to the VP which is containing
it.).

In addition, the fact that all VP and VC instances are contained in the sameatm-
ManagedElement instance means that a global numbering scheme has to be used for
the VCs and the VPs which does not match the reality.

The alternative solution that we adopted take advantage of the “structuring” facility
of the containment tree, as shown in Figure 9.4.
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Understanding that in a port one can see the endpoint of either a VPC or a VPL, and
in a VPC one can see the endpoint of either a VCC or a VCL.

9.3.3 Management of the software

An ATM switch not only consists of the switch fabric itself but also of cell buffers,
cross connections, and ports. The switch contains also a number of software layers
responsible for signalling for connection establishment and release.

When an end terminal (A) wants to establish a connection with an other end termi-
nal (B) it will first contact the call control mechanism on the nearest switch, and for-
ward its request in terms of called number and quality of service, through the signalling
protocol. The call control function will ask the routing algorithm about the ports and
the VPCs to use to establish the connection, and the CAC algorithm about the availa-
bility of those resources. If there is capacity for the new call, the request is transferred
to the next node, and the resources are reserved on the switch, otherwise it is rejected.
Once B is reached, the connection is established, and the reservation of the resources
are made effective.

All these events can be monitored, and provide information on the status of the net-
work.

9.3.3.1 Call Control management

The call control function is mainly a general interface to the control software for estab-
lishing, releasing a connection. As such it may provide information on the following
topics:

• on a call basis:
• call acceptance
• call rejection

• on a connection basis:
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• connection acceptance
• connection release
• connection rejection

The information available on these may be:
• calling party number
• called party number
• quality of service required
• VPC and link used
• time of event

Using this basic information, one can use it for a certain number of purposes:
• Compute statistics (average and peak) on interconnection time and holding time

of connections to use the appropriate traffic model (bursty or constant) for each
end station (source or destination) and for each service type.

• Compute the number of rejected connection requests and established connec-
tions, for a certain time period. This could give information on the availability
(emptiness and saturation) of certain resources: virtual paths, links between two
nodes and providing a certain quality of service. Using this information may
lead to the modification of the network.

Typical actions resulting from these measures may result in the modifications
(removal, adding, change of allocated bandwidth) of the virtual paths provided by the
network.

9.3.3.2 CAC management

The CAC mechanism manages a small database of links, VPCs, and bandwidths which
are available or used. The table contains the following fields:

• Link number
• VPC number
• allocated bandwidth
• mean used bandwidth
• peak used bandwidth

The CAC algorithm uses this table to determine whether new connections may be
accepted on the VPC(s) it is responsible for. The calculations and measurements are
done by the CAC itself. The bandwidth is allocated to a VPC at creation time, and it
may be modified with appropriate care by the management system: the allocated band-
width of a VPC can not be less than the used bandwidth, and the sum of the allocated
bandwidths on a link can not exceed the overall bandwidth available on that link.

Monitoring this table offers information on the usage of the links. This table may be
modified dynamically in order to allocate more bandwidth to a VPC or add new VPCs

9.3.3.3 Routing management

The routing algorithm uses the route selection table to find a path when an incoming
call requests it. This table contains the following entities:

• route identifier
• outgoing link
• outgoing VPC
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• route priority
The route identifier must match the first few digits of a called party number in case the
numbering scheme is hierarchical, as in common telephone numbering, where the first
few digits give a geographical clue on the position of the called party.

The algorithm selects the route according to its priority. Modifying the priorities
may lead to redirect new connections to a different path.

In order to manage the routing of the connections (VCCs) through the network, one
must be able to modify this table, by adding new routes and deleting old ones.

The GDMO description we have used for this part is as follows:

routeSelTable                  MANAGED OBJECT CLASS
        DERIVED FROM           top;
        CHARACTERIZED BY       routeSelTablePkg;
        REGISTERED AS          { icmEtbQafManagedObjectClass 24 };

routeSelTable-node                      NAME BINDING
        SUBORDINATE OBJECT CLASS        routeSelTable;
        NAMED BY SUPERIOR OBJECT CLASS  node AND SUBCLASSES;
        WITH ATTRIBUTE                  routeSelTableId;
        CREATE                          ;
        REGISTERED AS                   { icmEtbQafNameBinding 24
};

routeSelTablePkg               PACKAGE
        ATTRIBUTES             routeSelTableId        GET;
        REGISTERED AS          { icmEtbQafPackage 22 };

routeSelTableId  ATTRIBUTE
        WITH ATTRIBUTE SYNTAX  ICM.Integer;
        MATCHES FOR            EQUALITY;
        REGISTERED AS          { icmEtbQafAttribute 64 };

routeSelEntry                  MANAGED OBJECT CLASS
        DERIVED FROM           top;
        CHARACTERIZED BY       routeSelEntryPkg;
        REGISTERED AS          { icmEtbQafManagedObjectClass 25 };

routeSelEntry-routeSelTable             NAME BINDING
        SUBORDINATE OBJECT CLASS        routeSelEntry;
        NAMED BY SUPERIOR OBJECT CLASS  routeSelTable;
        WITH ATTRIBUTE                  routeSelEntryId;
        CREATE                          WITH-AUTOMATIC-INSTANCE-
NAMING;
        REGISTERED AS { icmEtbQafNameBinding 25 };

routeSelEntryPkg               PACKAGE
        ATTRIBUTES             routeSelEntryId          GET,
                               nodeId                   GET-REPLACE,
                               cos                      GET-REPLACE,
                               portOut                  GET-REPLACE,
                               vpiOut                   GET-REPLACE,
                               priority                 GET-REPLACE;
        REGISTERED AS          { icmEtbQafPackage 23 };

routeSelEntryId                ATTRIBUTE
        WITH ATTRIBUTE SYNTAX  ICM.Integer;
        MATCHES FOR            EQUALITY;
        BEHAVIOUR              routeSelEntryIdBhvr;
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        REGISTERED AS          { icmEtbQafAttribute 70 };

routeSelEntryIdBhvr            BEHAVIOUR
        DEFINED AS             «The EntryId is the index in the
table and
                               is provided by the upper layer»;

priority                       ATTRIBUTE
        WITH ATTRIBUTE SYNTAX  ICM.Integer;
        MATCHES FOR            EQUALITY;
        BEHAVIOUR              priorityBhvr;
        REGISTERED AS          { icmEtbQafAttribute 72 };

priorityBhvr                   BEHAVIOUR
        DEFINED AS             «The priority can have values 0-9.
If in
                               the selection table, two routes are
found
                               with the same routeId, then the one
with
                               the higher priority is chosen»;

9.3.4 Statistical information with a very low granularity
As mentioned before, for the connection management, a very large number of statistics
may have to be computed. These computations may be done through metric objects
[9.2]. However, the key problem is that metric objects work by polling the target values
to get samples to do their computations. Since they do not have a very good granularity
because they may poll only once every second, many connection events may be lost.
Therefore these events must be logged, for example in EventLogRecord [9.2] objects.

This would mean that if the metric object has to compute the average number of
connections over the last N seconds, it would have to scan all the log records which
time is more recent than the current time-N. Unfortunately metric objects can not com-
pute statistics on an undefined number of instances. Moreover, the instance that is mon-
itored by a metric object has to existbefore the metric object instance is created. This
causes an additional problem if one wants to monitor a connection type that has not
been initiated yet.

To circumvent these problems, we have implemented local statistical objects,
designed for the specific purpose of computing the following items for each source/
destination/quality-of-service over a certain time period:

• connection holding time (mean and average) defined as the duration of a con-
nection

• interconnection time (mean and average) defined as the time between the end of
a connection and the beginning of the next connection

• number of accepted connections (mean and average)
• number of rejected connections (mean and average)
• connection rejection rate or ratio representing the number of rejected connec-

tions compared to the accepted ones
The proposed approach came up with the containment schema as shown in Figure 9.5.

Where theStatsTable contains all the possible Classes of Service (CoS) which is an
index on the Qualities of Service supported by the switch. These Instances are created
at start-up once for all.
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The destination instances represent the called destination. These instances are cre-
ated when an upper layer wants to monitor certain type of connections, for certain des-
tinations. The destinations are extracted from the called party number provided by the
call initiator, and represent the node (switch) to which the called party is connected.

An entry is created every time an upper layer wants to monitor a certain connection
type. The entry will compute the statistical information described above, based upon
the local logs of the agent. This way, all the events will be taken into account, and there
is no risk to miss one due to too rough granularity.

The time-period over which the averages are computed may be set using different
approaches:

• One could set an attribute T in the entry class, signifying that the computations
should be made over the period [t0 - T to T], t0 being the time at which a get
request is answered.

• One could say the above period T stretches from t0 to the time of the previous
get request.

• The last possibility is to set the period T at creation time, and compute the val-
ues every T seconds, independently from the get requests. This solution has the
disadvantage of requiring a synchronisation between the manager and the agent,
in such a way that the agent polls the result with the same period T.

The full GDMO description is not presented in this document. Instead, the most inter-
esting parts of the inheritance and containment trees are shown in Figure 9.6 and
Figure 9.7.

9.3.5 Relationship with ITU Recommendation M.3100

M.3100 was designed for a general purpose and uses a generic approach: the goal
being to capture the requirements which can be applicable independently from any spe-
cific technology. However the work has been based on the reference architecture for
SDH as defined in [9.5].

M.3100 introduces a layered approach based on the abstract concept of trails and
connections and their associated end points. The specific class ‘terminationPoint” is
introduced. This class is further decomposed into 4subclasses called:

• connectionTerminationPointSource (CTPSource),
• connectionTerminationPointSink (CTPSink),
• trailTerminationPointSource (TTPSource),
• trailTerminationPointSink (TTPSink).

StatsTable

Dest1 Dest2

CoS1 CoS2

Entry1 Entry2

Figure 9.5
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A trail is made up of a set of connections. Each trail can act as a “server” for a connec-
tion at the next layer up. This layered approach fits quite well with the hierarchical lay-
ered network model for ATM, as described in I311. This mapping is illustrated in
Figure 9.8.

Following M.3100, a “Connection” represents the abstraction of a transport con-
nection between two physical equipments within a given layer (n), while a “Trail” rep-
resents the abstraction of an end to end transport connection between equipment of the
layer above (n+1). A trail is then made of one, or possibly more, connections between
layer n equipment and crossconnections within this equipment.

Applying this model to ATM should read as follows: a VCC (Trail) extends through
several VCLs (Connections), each VCL corresponding to a VPC (Trail) which in turn
extends through a sequence of VPLs (Connections).

The M.3100 classes do not have any feature specific to VPC and VC. In order to
model such objects, it is necessary to introduce specific classes:

• A VPC class containing few attributes of general purpose, such as the identifier
(VPI) and the operational state. The bandwidth is handled differently along the
VP: the maximum allocated bandwidth and the cell loss probability are of inter-
est only at the source end, the effective bandwidth, representing the actual traf-
fic through a given VP, is calculated by the CAC (Connection Acceptance
Control) component only at the source of the VPC. Then, these attributes will
not be present within the “abstract” class VPC but within specific subclasses.

• A VC class containing attributes to characterise the class of service (CoS) asso-
ciated to the traffic they generate.

In addition to these “terminationPoint” M.3100 also introduces the “connectivity” class
which is further specialised into “trail” and “connection” connectivity classes.
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