
This PDF file contains a chapter of:

INTEGRATED COMMUNICATIONS MANAGEMENT
OF BROADBAND NETWORKS

Crete University Press, Heraklio, Greece
ISBN 960 524 006 8

Edited by David Griffin

Copyright © The ICM consortium, Crete University Press 1996

The electronic version of this book may be downloaded for personal use only. You may view
the contents of the files using an appropriate viewer or print a single copy for your own use
but you may not use the text, figures or files in any other way or distribute them without
written permission of the copyright owners.

First published in 1996 by
CRETEUNIVERSITY PRESS

Foundation for Research and Technology
P.O. Box 1527, Heraklio, Crete, Greece 711 10

Tel: +30 81 394235, Fax: +30 81 394236
email: pek@iesl.forth.gr

Copyright © The ICM consortium, CUP 1996

The ICM consortium consists of the following companies:

Alcatel ISR, France
Alpha SAI, Greece

Ascom Monetel, France
Ascom Tech, Switzerland

Centro de Estudos de Telecommunicações, Portugal
Cray Communications Ltd., United Kingdom (Prime contractor)

Danish Electronics, Light & Acoustics, Denmark
De Nouvelles Architectures pour les Communications, France

Foundation for Research and Technology - Hellas, Institute of Computer Science, Greece
GN Nettest AS, Denmark

National Technical University of Athens, Greece
Nokia Corporation, Finland

Queen Mary and Westfield College, United Kingdom
Unipro Ltd., United Kingdom

University College London, United Kingdom
University of Durham, United Kingdom

VTT - Technical Research Centre of Finland

Downloaded from: http://www.ee.ucl.ac.uk/~dgriffin/papers/book/icmbook.html

267

Chapter 10

The OSIMIS TMN platform

Editors: Kevin McCarthy, George Pavlou
Authors: George Pavlou, Kevin McCarthy, Thurain Tin, James Cowan,

George Mykoniatis, Jorge Sanchez, James Reilly,
Costas Stathopoulos, Stelios Sartzetakis, David Griffin,

Jose Neuman de Souza, Nazim Agoulmine,
Henryka Jormakka, Juha Koivisto

he OSIMIS (OSI Management Information Service) platform provides the foun-
dation for the quick and efficient construction of complex TMN systems. It is an
object-oriented development environment in C++ [10.1], based on the OSI

Management Model [10.5], which hides the underlying protocol complexity (CMIS/
CMIP [10.6][10.7]) and harnesses the power and expressiveness of the associated
information model [10.8]. OSIMIS combines the thoroughness of the OSI models and
protocols with distributed systems concepts projected by ODP [10.19] to provide a
highly dynamic distributed information store. It also combines seamlessly the OSI
management power with the large installed base of Internet SNMP-capable network
elements.

OSIMIS is ideally suited for Telecommunications Management Network (TMN)
[10.3] environments because of its support for hierarchically organised complex man-
agement systems and its ability to embrace a number of diverse management technolo-
gies through proxy systems. OSIMIS provides a generic CMIS/P to SNMP application
gateway [10.34], whilst adaptation to other models or proprietary systems is feasible.
OSIMIS projects a model whereby OSI management, being the most powerful of cur-
rent management technologies, provides the unifying end-to-end means through which

T

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

268

other technologies are integrated via application level gateways, possibly in a generic
fashion. This chapter explains the OSIMIS concepts, architecture, components and phi-
losophy.

Throughout this chapter, the termmanagement application (or simplyapplication)
refers to a TMN physical block e.g. Operations System (OS), Workstation-Operation
System (WS-OS), Mediation Device (MD), Q-Adaptor (QA) or Network Element
(NE). All these blocks, apart from WS-OSs, exportmanaged objects across manage-
ment interfaces. Also, all these blocks, apart from NEs, may contain managing objects.
The termobject throughout this chapter refers to a managed, managing or support
infrastructure object (realised as a C++ instance in engineering terms).

10.1 Introduction

OSIMIS is an object-oriented management platform based on the OSI model [10.5]
and implemented mainly in C++. It provides an environment for the development of
management applications which hides the details of the underlying management serv-
ice through object-oriented Application Program Interfaces (APIs) and allows design-
ers and implementors to concentrate on the intelligence to be built into management
applications rather than the mechanics of management service/protocol access. The
manager-agent model and the notion of managed objects as abstractions of real
resources are used but the separation between managing and managed systems is not
strong in engineering terms: a management application or an object within an applica-
tion can be in both managing and managed roles. This is particularly common in situa-
tions where a management system is decomposed according to a hierarchical logically
layered approach. This is exactly the model suggested by the TMN and OSIMIS pro-
vides special support to realise management hierarchies.

OSIMIS was designed from the beginning with the intent to support the integration
of existing systems with either proprietary management facilities or different manage-
ment models. Different methods for the interaction with real managed resources are
supported, encompassing loosely coupled resources as is the case with subordinate
agents and management hierarchies. The fact that the OSI model was chosen as the
basic management model facilitates the integration of other models, the latter usually
being less powerful, as is the case with the Internet SNMP [10.27] and the emerging
OMG CORBA [10.21] technologies. OSIMIS already provides a generic application
gateway between CMIS [10.6] and SNMP [10.27] while a similar approach for inte-
grating OSI management and the OMG CORBA framework may be possible.

OSIMIS has been developed in a number of European research projects, in addition
to ICM, namely the RACE NEMESYS and ESPRIT MIDAS and PROOF projects. It
has been used extensively in both research and commercial environments and has
served as the management platform for a number of other RACE and ESPRIT projects
in the TMN and distributed systems management areas.

THE OSIMIS TMN PLATFORM

269

10.1.1 What is meant by “TMN platform?”

OSIMIS is principally an object-oriented development environment: it is a distributed
systems management toolkit that supports the easy construction of TMN components
such as Operations Systems, Q-Adaptors, Mediation Devices and Network Element
agents. Development is greatly assisted by the provision of generic support infrastruc-
ture such as GDMO/ASN.1 compilers, run-time libraries at various levels of abstrac-
tion, directory systems and generic manager applications such as MIB instance
browser.

Being a distributed management platform, OSIMIS provides an implementation of
the CMIP protocol together with a fully integrated X.500-based location transparency
mechanism in order to meet the communication and distribution needs of TMN appli-
cations. Lightweight security mechanisms are also provided to maintain the access
rights, integrity and confidentiality of relevant associations.

10.1.2 Platform component overview

OSIMIS uses the ISODE (ISO Development Environment) [10.29] as the underlying
OSI upper layer protocol stack but also supports XOM/XMP [10.22] as an alternative.
The advantages of the ISODE environment include the provision of services like
FTAM [10.20] and a full implementation of the OSI Directory Service (X.500) [10.4]
which are essential in complex distributed management environments. Also a number
of underlying network technologies are supported, namely X.25, CLNP and also TCP/
IP through the RFC1006 method. These constitute the majority of currently deployed
networks, whilst interoperation of applications between any of these is possible via
Transport Service Bridging.

The OSIMIS services and architecture are shown in Figure 10.1. In the layered part,
applications are programs while the rest are building blocks realised as libraries. The
lower part shows the generic applications provided; from those the ASN.1 and GDMO
tools are essential in providing off-line support for the realisation of new MIBs. The
thick line indicates all the APIs an application may use. In practice though most appli-
cations use only the Generic Managed System (GMS) and the Remote MIB (RMIB)
APIs when acting in agent and manager roles respectively, in addition to the Coordina-
tion and high-level ASN.1 support APIs. The latter are used by other components in
this layered architecture and are orthogonal to them, as such they are shown aside.
Directory access for address resolution and the provision of location transparency may
or may not be used, while the Directory Support Service (DSS) API provides more
sophisticated searching, discovery and trading facilities.

The OSIMIS platform comprises the following types of support:
• high-level object-oriented APIs realised as libraries,
• tools (compilers/translators) as separate programs supporting the above APIs,
• generic applications such as browsers, gateways, directory servers,
• specific useful management applications.

 Some of these services are provided by ISODE (see Figure 10.2) and these are:

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

270

• the OSI Transport (class 0), Session and Presentation protocols, including a
lightweight version of the latter that may operate directly over the Internet TCP/
IP,

• the Association Control and Remote Operations Service Elements (ACSE and
ROSE) as building blocks for higher level services,

• the File Transfer Access and Management (FTAM) and Directory Access Serv-
ice Element (DASE),

• an ASN.1 compiler with C language bindings (the pepsy tool),
• a Remote Operations stub generator (the rosy tool),
• an FTAM service for the UNIX operating system,
• a full Directory Service implementation including an extensible Directory Serv-

ice Agent (DSA) and a set of Directory User Agents (DUAs),
• a transport service bridge allowing interoperability of applications over differ-

ent types of networks.
OSIMIS is built as an environment using ISODE and is mostly implemented in the
C++ programming language. The services it offers are:

• an implementation of CMIS/P using the ISODE ACSE, ROSE and ASN.1
tools,

• high-level ASN.1 support that encapsulates ASN.1 syntaxes in C++ objects,
• an ASN.1 Attribute compiler which uses the ISODE pepsy compiler to auto-

mate to a large extent the generation of syntax C++ objects,
• a Coordination mechanism that allows an application to be structured in a fully

event-driven fashion and can interwork with similar mechanisms,
• a Presentation Support service which is an extension of the coordination mecha-

nism to interwork with X-Windows based mechanisms,
• the Generic Managed System (GMS) which is an object-oriented OSI agent

engine offering a high-level API to implement new managed object classes, a

ASN.1
Tools

GDMO
Tools

CMIP/SNMP
Gateway

Generic
Managers

DSA/
DUAs

ACSE/ROSE
and OSI stack

UDP and
Internet stack

CMISE DASE SNMP

RMIB’DSS

SMIB

Coord.
Applications

ASN.1 &
GDMOSupport

GMS
RMIB

= lightweight security support

Support

XOM/
XMP

Figure 10.1 OSIMIS layered architecture and generic applications

THE OSIMIS TMN PLATFORM

271

library of generic attributes, notifications and objects and systems management
functions,

• a suite of lightweight security mechanisms, which meet many requirements for
access control, authentication, data integrity and data confidentiality,

• a compiler for the OSI Guidelines for the Definition of Managed Objects
(GDMO) [10.10] language which complements the GMS by producing C++
stub managed objects covering every syntactic aspect and leaving only behav-
iour to be implemented,

• the Remote and Shadow MIB high-level object-oriented manager APIs,
• a Directory Support service offering application addressing and location trans-

parency services,

ASN.1
Tools

DSA/
DUAs

ACSE/ROSE
and OSI stack

UDP and
Internet stack

DASE SNMP

ASN.1
Support

Figure 10.2 The components provided by ISODE

ASN.1
Tools

GDMO
Tools

CMIP/SNMP
Gateway

Generic
Managers

CMISE

RMIB’

SMIB

Coord.

Applications
ASN.1 &
GDMOSupport

GMS
RMIB

= lightweight security support

Support

XOM/
XMP

Figure 10.3 The components provided by OSIMIS

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

272

• a generic CMIS/P to SNMP application gateway driven by a translator between
SNMP and OSI GDMO MIBs,

• a set of generic manager applications.

10.1.3 Underlying communications environments

10.1.3.1 The ISO development environment

The ISO Development Environment (ISODE) [10.29] is a platform for the develop-
ment of OSI services and distributed systems. It provides an upper layer OSI stack that
conforms fully to the relevant ISO/ITU-T recommendations and includes tools for
ASN.1 manipulation and remote operations stub generation. Two fundamental OSI
applications are provided: Directory Service (X.500) [10.4] and File Transfer (FTAM)
[10.20] implementations. ISODE is implemented in the C programming language
[10.2] and runs on most versions of the UNIX operating system. ISODE does not pro-
vide any network and lower layer protocols e.g. X.25 or CLNP, but relies on imple-
mentations for UNIX-based workstations which are accessible through the kernel
interface. The upper layer protocols realised are the transport, session and presentation

protocols of the OSI seven-layer model. The Association Control, Remote Operations
and Reliable Transfer application layer Service Elements (ACSE, ROSE and RTSE)
are also provided which, when used in conjunction with the ASN.1 support, act as
building blocks for higher level services. A special lightweight presentation layer is
also provided that runs directly on top of TCP; this may be used for the CMOT (CMIP
over TCP) stack. In engineering terms, the ISODE stack is a set of libraries linked with
applications using it.

ASN.1 manipulation is very important to OSI distributed applications. The ISODE
approach for a programmatic interface (API) relies on a fundamental abstraction
known asPresentation Element (PE). This is a generic C structure capable of describ-
ing in a recursive manner any ASN.1 data type. An ASN.1 compiler known aspepsy is
provided with C language bindings, which produces concrete representations i.e. C

Applications

ACSE ROSE RTSE

OSI PP

OSI SP

OSI TP0 TP4

RFC1006

TCP/IP X.25
CLNP

OS

Kernel

space

ASN.1
&ROSE
tools User

Space

Figure 10.4 The ISODE OSI stack

THE OSIMIS TMN PLATFORM

273

structures corresponding to the ASN.1 types and also encode/decode routines that con-
vert those to PEs and back. The presentation layer converts between PEs and the
encoded data stream according to the encoding rules (e.g. BER).

One of the most important concepts pioneered in ISODE is that of interworking
over different lower layer protocol stacks which is realised through Transport Service
bridging (TS-bridge) [10.30]. ISODE provides an implementation of the ISO Transport
Protocol (TP) class 0 over X.25 or even over the Internet TCP/IP using the RFC1006
method [10.26], in which TCP is treated as a reliable network service. The ISODE ses-
sion protocol may also run over the ISO TP class 4 and the Connectionless Network
Protocol (CLNP). Transport service bridges, which are simple relaying applications
similar to Interworking Units (ITUs), may be used to link sub-networks of all these dif-
ferent communities and to provide end-to-end interoperability hiding the heterogeneity
of the underlying network technology. The combinations mentioned before constitute
the vast majority of currently deployed networks.

10.1.3.2 Industry standard XOM/XMP communication environment

The X/Open Management Protocols (XMP) [10.22] defines an Application Program
Interface (API) that provides access to management information services. The services
are defined in terms of operations and notifications on managed objects. The interface
uses the generic concepts defined by ISO, which form the basis for systems manage-
ment, and supports the model defined in the Structure of Management Information
(SMI). It offers service primitives which correspond to the abstract services of both
CMIS and SNMP, and intends to keep management software independent of the imple-
mentation of the protocol stack.

The interface is designed to be used and implemented in conjunction with the gen-
eral-purpose OSI-Abstract-Data Manipulation (XOM) API [10.22]. OSI data corre-
sponds to information structured by the Abstract Syntax Notation One (ASN.1). Data
manipulation consists of creating, examining, modifying and deleting data correspond-
ing to ASN.1 syntax. By providing tools for manipulating ASN.1 objects, the interface
shields the programmer from much of ASN.1's complexity.

While XOM/XMP takes an object-oriented view of structural information, it does
not incorporate all the characteristics of other object-oriented systems. In particular, the
implementations of the functions for manipulating objects are separate from the defini-
tions of the objects' classes, and there is no notion of encapsulating or hiding the infor-
mation associated with objects (although the interface does hide the information
representation).

OSIMIS Management Application
msap-xmp
XOM/XMP

Protocol Stack

Figure 10.5 OSIMIS XOM/XMP application stack

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

274

The initial implementation of high-level OSIMIS services required an underlying
ISODE OSI stack. The ISODE ASN.1 and OSIMIS CMIS APIs are different from the
current industry standard XOM/XMP as they were designed much earlier. To make it
possible to use protocol stacks other than that provided by ISODE, an XMP support
library msap-xmp (see Figure 10.5) was developed in ICM. This library provides a link
between the XOM/XMP API and OSIMIS by replacing the original CMIP library used
in the ISODE version of OSIMIS, whilst still retaining the OSIMIS CMIS API, known
as Management Service Access Point (MSAP) - see Section 10.2.1, so that the OSIMIS
management applications may operate over either an XMP or an ISODE stack.

10.2 The OSIMIS components and services

10.2.1 Management protocol and abstract syntax support

OSIMIS is based on the OSI management model as the means for end-to-end manage-
ment and as such it implements the OSI Common Management Information Service/
Protocol (CMIS/P). This is implemented as a C library and uses the ISODE ACSE and
ROSE service elements together with their ASN.1 support. Every request and response
CMIS primitive is realised through a procedure call. Indications and confirmations are
realised through a single ‘wait’ procedure call. Associations are represented as commu-
nication end-points (file descriptors) and operating system calls e.g. the Berkeley
UNIX select (2) can be used for multiplexing them to realise event-driven policies.

The OSIMIS CMIS API is known as the MSAP API, standing for Management
Service Access Point. It was conceived long before standard APIs such as the X/Open
XMP were specified and as such it does not conform to the latter. Having been
designed specifically for CMIS and not for both CMIS and SNMP as the XMP one, it
hides more information and may result in more efficient implementations. The reason
this is a procedural C object-based and not a fully object-oriented implementation is to
conform to the ISODE style, the trend of industry APIs and to be easily integrated in
diverse environments. Higher-level object-oriented abstractions that encapsulate this
functionality and add much more can be designed and built as explained in
Section 10.2.4. OSIMIS also includes an implementation of the Internet SNMPv1
which is used by the generic application gateway between the two. This uses the UNIX
implementation of the Internet UDP and the ISODE ASN.1 support, and is imple-
mented in much the same fashion as CMIS/P, again without conforming to XMP.
Applications using CMIS need to manipulate ASN.1 types for the CMIS managed
object attribute values, actions, error parameters and notifications. The API for ASN.1
manipulation in ISODE is different to the X/Open XOM. Migration to XOM/XMP is
possible through thin conversion layers so that the upper layer OSIMIS services are not
affected (see Section 10.1.3.2). Such conversion infrastructure was first designed in the
ESPRIT MIDAS project while it has been implemented in the RACE ICM project.

Regarding ASN.1 manipulation, it is up to an application to encode and decode val-
ues as this adds to its dynamic nature by allowing late bindings of types to values and
graceful handling of error conditions. From a distributed programming point of view
this is unacceptable and OSIMIS provides a mechanism to support high-level object-

THE OSIMIS TMN PLATFORM

275

oriented ASN.1 manipulation, shielding the programmer from details and enabling dis-
tributed programming using C++ objects as data types. This is achieved by using poly-
morphism to encapsulate behaviour in the data types determining how encoding and
decoding should be performed through an ASN.1 meta-compiler which produces C++
classes for each type. Encode, decode, parse, print and compare methods are produced
together with a get-next-element one for multi-valued types (ASN.1 SET OF or
SEQUENCE OF). Finally, the very important ANY DEFINED BY construct is auto-
matically supported through a table driven approach, mapping types to syntaxes. This
high-level OO ASN.1 approach is used by higher level OSIMIS services such as GMS,
RMIB and SMIB.

10.2.2 Application coordination support

Management and, more generally, distributed applications have complex needs in
terms of handling external input. Management applications have additional needs of
internal alarm mechanisms for arranging periodic tasks in real time (polling etc.) Fur-
thermore, some applications may need to be integrated with Graphical User Interface
(GUI) technologies which have their own mechanisms for handling data from the key-
board and mouse. In this context, the term application assumes one process in operat-
ing systems terms.

There are a number of different techniques to organise an application for handling
both external and internal events. The organisation needs to be event driven so that no
resources are used when the system is idle. The two major techniques are:

• use a single-threaded execution paradigm, and,
• use a multi-threaded one.

In the first, external communications should follow an asynchronous model, since
waiting for the result of a remote operation in a synchronous fashion will block the
whole system. Of course, a common mechanism is needed for all the external listening
and demultiplexing of the incoming data, this requirement is fulfilled by the OSIMIS
Application Coordination Support. In the second, many threads of control can execute
simultaneously (in a pseudo-parallel fashion) within the same process, which means
that blocking on an external result is allowed. This is the style of organisation used by
distributed systems platforms as they are based on RPC which is inherently synchro-
nous with respect to client objects performing remote operations to server objects.

The advantage of the first mechanism is that it is supported by most operating sys-
tems and, as such, it is lightweight and efficient whilst its drawbacks are that it intro-
duces state for handling asynchronous remote operation results. The second
mechanism allows more natural programming in a stateless fashion with respect to
remote operations but it requires internal locking mechanisms and re-entrant code. In
addition, such mechanisms are not yet commonly supported by operating systems and
as such are not very efficient. An additional problem in organising a complex applica-
tion concerns the handling of internal timer alarms: most operating systems do not
‘stack’ them i.e. there can only be one alarm pending for each process. This means that
a common mechanism is needed to ensure the correct usage of the underlying operat-
ing system mechanism.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

276

OSIMIS provides an object-oriented infrastructure in C++ which allows an applica-
tion to be organised in a fully event-driven fashion under a single-threaded execution
paradigm, where every external or internal event is serialised and taken to completion
on a ‘first-come-first-served’ basis. This mechanism allows the easy integration of
additional external sources of input or timer alarms and it is realised by two C++
classes: theCoordinator and theKnowledge Source (KS). There should always be one
instance of the Coordinator or any derived class in the application, whilst the KS is an
abstract class that facilitates usage of the coordinator services and integrates external
sources of input and timer alarms. All external events and timer alarms are controlled
by the coordinator whose presence is transparent to implementors of specific KSs
through the abstract KS interface: This model is depicted in Figure 10.6.

This coordination mechanism is designed in such a way as to allow integration with
those provided by other systems; which is achieved through special classes derived
from the coordinator, allowing interworking with a particular mechanism. These spe-
cialised coordinator classes still control the sources of input and timer alarms of the
OSIMIS KSs, but pass on the task of performing the central listening to the other sys-
tem’s coordination mechanism. This is required for OSIMIS agents which wish to
receive association requests, since ISODE imposes its own listening mechanism which
hides the Presentation Service Access Point (PSAP) on which new ACSE associations
are accepted. A similar mechanism is needed for Graphical User Interface technologies
which have their own coordination mechanisms: In which case, a new specialised coor-
dinator class is needed for each of them. At the present time, the X-Windows Motif, the
Tcl/Tk interpreted language and the InterViews graphical object library are fully inte-
grated.

10.2.3 The generic managed system

The Generic Managed System (GMS) provides support for building agents that offer
the full functionality of the OSI management model, including scoping, filtering,
access control, linked replies and cancel-get. OSIMIS fully supports theObject Man-
agement[10.11], Event Reporting[10.13] andLog Control[10.14] Systems Manage-
ment Functions (SMFs); the qualityofServiceAlarm notification of theAlarm
Reporting[10.12] SMF; together with profiles of theAccess Control[10.17],Monitor
Metric [10.15] andSummarisation[10.16] SMFs. In conjunction with the GDMO

C

KS

KS

KS

communication

entry point

C: Coordinator KS: Knowledge Source

Figure 10.6 The OSIMIS process coordination support model

Single operating system
process

THE OSIMIS TMN PLATFORM

277

compiler the GMS offers a very high level API for the integration of new managed
object classes where only semantic aspects (behaviour) need to be implemented. It also
offers different methods of access to the associated real resources, including proxy
mechanisms, based on the Coordination mechanism.

The Generic Managed System is built using the coordination and high-level ASN.1
support infrastructure and most of its facilities are provided by three C++ classes which
interact with each other:

• theCMISAgent, which provides OSI agent facilities,
• theMO which is the abstract class providing generic managed object support,
• theMOClassInfo which is a meta-class for a managed object class.

The GMS library also contains generic attribute types such as counter, gauge, counter-
Threshold, gaugeThreshold and tideMark, and specific attributes and objects as in the
Definition of Management Information (DMI) [10.9], which relate to the SMFs. The
object-oriented internal structure of a managed system built using the GMS in terms of
interacting object instances is shown in Figure 10.7. It should be noted that this is one
engineering “capsule” in ODP terms i.e. one operating system process.

...

C

A

MOs

meta-

appl

from ‘RR’

to ‘RR’

CMIS repl

Event Rep.

CMIS req

C: Coordinator A: CMIS Agent RR: Real Resource MO: Managed Object

objs

Figure 10.7 The GMS object-oriented architecture

classes

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

278

10.2.3.1 The CMIS agent

The CMISAgent is a specialised knowledge source, more specifically a specific Isode-
Agent, as it accepts management associations. There is always one instance of this
class for every application undertaking an agent role. Its functions are to accept or
reject associations according to authentication information, check the validity of opera-
tion parameters, find the base object for the operation, apply scoping and filtering,
check if atomic synchronisation can be enforced, check access control rights and then
apply the operation on the target managed object(s) and return the result(s)/error(s).
There is a very well defined interface between this class and the generic MO, which is
at present purely synchronous: a method call should always return with a result i.e.
attribute values or an error. This means that managed objects which mirror loosely cou-
pled real resources and exercise an “access-upon-external-request” regime will have to
access the real resource in a synchronous fashion which will result in the application
blocking until the result is received. This is only a problem if another request is waiting
to be served or if many objects are accessed in one request through scoping. Threads
would be a solution but the first approach will be a GMS internal asynchronous API
which is currently being designed. It is noted that the CMISAgent to MO interface is
bidirectional as managed objects emit notifications which may be converted to event
reports and passed to the manager.

10.2.3.2 Managed object instances and meta-classes

Every specific managed object class needs access to information common to the class
which is independent of all instances and common to all of them. This information
concerns attributes, actions and notifications for the class, initial and default attribute
values, ‘template’ ASN.1 objects for manipulating action and notification values, inte-
ger tags related to the object identifiers etc. This leads to the introduction of a common
meta-class for all the managed object classes, the MOClassInfo. The inheritance tree is
internally represented by instances of this class linked in a tree fashion as shown in the
‘meta-classes’ block of Figure 10.7.

Specific managed object classes are simply realised by equivalent C++ classes pro-
duced by the GDMO compiler and augmented manually with behaviour. Through
access to meta-class information requests are first checked for correctness and authori-
sation before the behaviour code that interacts with the real resource is invoked.
Behaviour is implemented through a set of polymorphic methods which may be rede-
fined to model the associated real resource. Managed object instances are linked inter-
nally in a tree mirroring the containment relationships - see the “MOs” part of
Figure 10.7. Scoping becomes simply a tree search, whilst special care is taken to make
sure the tree reflects the state of the associated resources before scoping, filtering and
other access operations. Filtering is provided through compare methods of the
attributes which are simply the C++ syntax objects, or derived classes (when behaviour
is coded at the attribute level.)

THE OSIMIS TMN PLATFORM

279

10.2.3.3 Real resource access

There are three possible types of interaction between the managed object and the asso-
ciated resource1 with respect to CMIS Get requests:

• access upon external request,
• ‘cache-ahead’ through periodic polling of the real resource,
• update through asynchronous event reports from the real resource.

The first one means that no real resource access is performed until a managing process
accesses the managed object. In the second, requests are responded quickly, especially
with respect to loosely coupled resources, but timeliness of information may be
slightly affected. Finally the third one is good but only if it can be tailored so that there
is no unnecessary overhead when the agent is idle.

The GMS offers support for all methods through the coordination mechanism.
When asynchronous reports or results are required, it is likely that a separate object
will be needed to demultiplex the incoming information and deliver it to the appropri-
ate managed object instance. It should be noted here that an asynchronous interface to
real resources driven by external CMIS requests is not currently supported as this
requires an internal asynchronous interface between the agent and the managed
objects. These objects are usually referred to as Internal Communications Controllers
(ICCs) and are essentially specialised knowledge source objects.

The internal organisation of a GMS-based agent in terms of the major interacting
object instances is shown in Figure 10.7. Note that the instances shown are only the
major ones defining the internal flow of control. The application’s intelligence may be
realised through a number of other objects which are application specific. Note also
that the OSI stack is essentially encapsulated by the CMISAgent object.

10.2.3.4 Systems management functions: overview

As already stated, OSIMIS supports the most important of the systems management
functions. As far as the GMS is concerned, these functions are realised as special man-
aged objects and generic attribute and notification types which can be simply instanti-
ated or invoked. This is the case, for example, with the alarm reporting, metric and
summarisation objects. In other cases, the GMS knows the semantics of these classes
and uses them accordingly e.g. in access control, event and log control. Notifications
can be emitted through a special method call and all the subsequent notification
processing is carried out by the GMS in a fashion transparent to application code. In
the case of the object management SMF the code generated by the GDMO compiler
together with the GMS completely hiding the emission of object creation and deletion
notifications, as well as the attribute change one when something is changed through
CMIS. Log control is realised simply through managed object persistency which is a
general property of all OSIMIS managed objects. This is implemented using the GNU
version of the UNIX DBM database management system and relies on object instance
encoding using ASN.1 and the OSI Basic Encoding Rules to serialise the attribute val-

1. In the TMN context ‘real resource’ may refer to resources at high levels of abstraction,
mapped onto lower level resources as well as to the finest granularity resources at the
lowest level of the management hierarchy i.e. network elements.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

280

ues. Any object can be persistent so that its values are retained between different incar-
nations of an agent application. At start-up time, an agent looks for any logs or other
persistent objects and simply arranges its management information tree accordingly.

10.2.3.5 Monitoring and summarisation SMFs

While the manager-agent model does not in itself restrict the amount of intelligence
that may be incorporated and provided by managed objects, most standard specifica-
tions concentrate on providing a rich enough set of attributes and actions which model
information and possible interactions with the underlying resource. Notifications are
also provided to report significant exceptions but they are usually generic ones, e.g.
object creation, object deletion and attribute value change.

The OSI Structure and Definition of Management Information (SMI/DMI) specify
generic attribute types such as counter, gauge, threshold and tide-mark. Gauges model
entities with associated semantics e.g. number of calls, users, quality of service etc. or
the rate of change of associated counters e.g. bytes per second. Thresholds and tide-
marks may be applied to gauges and generate QoS alarms and also attribute value
changes, indicating change of the high or low ‘water mark’. Such activities are of a
managing nature. Although thresholding functions could be made part of managed
objects modelling real resources, it does not take long to recognise their genericity. As
such, they are better provided elsewhere so that they become re-usable. The relevant
ISO/ITU-T group recognised the importance of generic monitoring facilities and stand-
ardised the Metric Monitor [10.15] and Summarisation [10.16] systems management
functions. By making such functions generic, it is possible to implement them once and
make them part of the associated platform infrastructure.

The whole idea behind monitor metric objects is to provide thresholding facilities
in a generic fashion. Monitor metric objects may be instantiated within an application
in an agent role and be configured to monitor, at periodic intervals, an attribute of
another real resource managed object. That attribute may belong to a network element
managed object but also to a higher-level management application, being mapped onto
lower-level managed objects through an Information Conversion Function (ICF). The
observed attribute should be a counter or gauge and the metric object either observes it
‘as is’ or converts the observed values to a rate (derived gauge) over time. Statistical
smoothing of the observed values is also possible if desired.

The main importance of this facility is the attachment of gauge thresholds and tide-
marks to the resulting derived gauge which may generate quality of service alarms and
indicate the high and/or low ‘water mark’, as desired by systems using this function. In
fact, the metric objects essentially enhance the ‘raw’ information model of the
observed object. The metric monitor functionality can be summarised as:

• data capture:through observation or ‘scanning’ of a managed object attribute,
• data conversion: potential conversion of a counter or gauge to a derived gauge,
• data enhancement:potential statistical smoothing of the derived result,
• notification generation: QoS alarm and attribute value change notifications.

The metric monitoring model is shown in Figure 10.8.
Gauge thresholds are always specified in pairs of values: a triggering and a cancel-

ling threshold. The former will generate a notification when crossed only if the latter

THE OSIMIS TMN PLATFORM

281

has been previously crossed in the opposite direction. This prevents the continuous
generation of notifications when the measured value oscillates around the triggering
threshold and is known as thehysteresis mechanism. Figure 10.9 shows both high (e.g.
‘over-utilisation’) and low thresholds (e.g. ‘under-utilisation’) applied to the observed
value. Typically, a normalised value of around 5% is used as the hysteresis interval.

The metric objects offer the OSI management power through event reporting and
logging, even if the ‘raw’ observed management information model does not support
such notifications. More importantly, they obviate the use of rates, thresholds and tide-
marks in a way tied to specific managed object classes but they allow the same flexibil-
ity and power dynamically, whenever a managing system needs it. Such a monitoring
facility reduces the management traffic between applications and their impact on the
managed network by supporting an event-based operation paradigm.

The summarisation objects extend the idea of monitoring a single attribute to moni-
toring many attributes across a number of selected managed object instances. They
offer similar but complementary facilities to metric objects. In this case, there are no
comparisons or thresholding but only the potential statistical smoothing and simple
algorithmic results of the observed values (min, max, mean and variance). These are
reported periodically to the interested managing systems through notifications. The
observed managed objects and attributes can be specified either by supplying explicitly
their names or through CMIS scoping and filtering. The observed values may be raw
ones, modelling an underlying resource, or enhanced values as observed by metric
objects. They can be reported either at every observation period or after a number of
observation periods (buffered scanning).

Figure 10.8 The metric monitoring model

mo
attr
val
thldnotification

“scanning”

Metric Monitoring
Managed Object

management
interface

A

A Application in agent role (“exporting” a management interface)
Attribute

Real Resource “Observed”
Managed Object

Figure 10.9 Thresholding with hysteresis

va
lu

e trigger

clear

time

current gauge

low “clear”

low
threshold

gauge lower limit gauge upper limit

“clear”

“clear”

high2

high1

X X

XX

 value

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

282

The major importance of this facility is that a number of measurements a managing
system needs can be specified once and then reported as mentioned, without the man-
aging system having to send complex CMIS queries periodically or having to perform
the statistical smoothing etc. Intelligence in this context has to do with the periodic
scanning and reporting of diverse information automatically, after the criteria for its
assembly have been specified once. Such criteria may be expressed through CMIS
scoping and filtering, providing a lot of flexibility in summarising information of
dynamic nature (e.g. traffic across certain ATM virtual path connections etc.) Any
other complex computations on the summarised information are left to be performed
by the managing system. Such logic is usually of static, pre-compiled nature.

10.2.3.6 Advanced intelligent monitoring facilities

While the metric monitor and summarisation facilities can be combined to provide a lot
of flexibility, they still leave the task of complex calculations and comparisons to man-
aging systems. In most cases it is not just a single attribute value that needs to be mon-
itored and compared to thresholds but the combination of more than one attribute,
possibly across different managed objects. The derived value is thus the result of the
application of amathematical operationon the observed values. Such an operation
could be thesum(a1+...+an), div(a/b), diff(a-b) etc. The combination of more than one
operations may be used to construct arbitrary expressions, albeit at the cost of multiple
intelligent monitoring objects.

A facility therefore is needed that combines the properties of the metric monitor
(thresholding on a derived result) and summarisation objects (observation of arbitrary
objects and attributes). This combination is effected through a mathematical operation
that is performed on the observed values to yield the derived result. We have recog-
nised the need for such a facility early on and have specified and implemented a
number of GDMO classes that provide this functionality, termed collectivelyGeneric
Support Monitoring Objects [10.38]. Since then, the relevant ITU-T standardisation
committee has also recognised this need and provided amendments to the metric and
summarisation functions offering similar functionality.

In most cases, simple mathematical calculations are enough to express real-world
problems. For example, if connection acceptance and rejection counts are kept, the
connection rejection ratio is given by the simple formula below. Such arithmetic opera-
tions can be either specified statically, through a relevant attribute of the summarisation
object, or specified dynamically by combining the observed attribute values with oper-
ands. In the latter case, ultimate flexibility is provided in applying arbitrary mathemati-
cal operations.
 Connection Rejection Ratio Transmission error rate
 Sum(connRej) Sum(pdusRej)
 --------------------------- ------------
 Sum(connAcc) + Sum(connRej) Sum(pdusSent)

10.2.3.6.1 Model

The underlying concepts for the Generic Monitoring Support function are based on the
combination of the Metric Monitoring and Summarisation functions. This function
provides the ability to aggregate attribute values, apply operations on them and provide

THE OSIMIS TMN PLATFORM

283

statistical information about the aggregated result of the operation. The function is real-
ised by the Generic Support Monitoring Objects (GSMO) and provides for:

• the ability to monitor information provided by single or multiple attribute types,
• the selection of the observed attribute values either explicitly, through the

names of the containing objects, or through scoping and filtering,
• the identification of an operation (e.g. sum) to be applied on the observed

attribute values,
• the identification of an algorithm (e.g. uniform weighted moving average) used

to smooth the derived result,
• the ability to emit notifications when the derived result crosses a threshold or

“pushes” a tide-mark or when any of its attributes change.

The model for the operation of the GSMO objects is similar to that of summarisation
and is shown in Figure 10.10. Information is obtained by observing attributes of other
objects, including managed objects representing a management view of an underlying
network or service resource, metric objects, or other GSMO objects. The attributes of
those “observable” objects are accessed at the object boundary, triggering associated
behaviour in the same fashion as across a management interface.

10.2.4 Generic high-level manager support

Programming manager applications using the CMIS API can be tedious. Higher object-
oriented abstractions can be built on top of the CMIS services and such approaches
were initially investigated in the RACE-I NEMESYS project whilst work in this area
was taken much further in ICM.

10.2.4.1 The remote MIB (RMIB) and the shadow MIB (SMIB)

The Remote MIB (RMIB) support service offers a higher level API which provides the
abstraction of a proxy agent object. This handles association establishment and release;

Figure 10.10 Intelligent monitoring and summarisation model

GSMO: Generic Support Monitoring Object EFD:

Monitor Metric,

Real Resource MOs

“scanning”

notifications

Log records
Event reports

GSMO

EFDs

other GSMOs etc.

Event Forwarding Discriminator

Logs

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

284

hides object identifiers through friendly names; hides ASN.1 manipulation using the
high-level ASN.1 support; hides the complexity of CMIS distinguished names and fil-
ters through a string-based notation; assembles linked replies; provides a high level
interface to event reporting which hides the manipulation of event discriminators and
finally provides error handling at different levels. There is also a low level interface for
applications that do not want this friendliness and the performance cost it entails but
they still need the high-level mechanisms for event reporting and linked replies.

In the RMIB API there are two basic C++ classes involved: theRMIBAgent which
is essentially the proxy object (a specialised KS in OSIMIS terms) and theRMIBMan-
agerabstract class which provides call-backs for asynchronous services offered by the
RMIBAgent. While event reports are inherently asynchronous, manager to agent
requests can be both: synchronous, in an RPC like fashion, or asynchronous. In the lat-
ter case linked replies could all be assembled first or passed to the specialised
RMIBManager one by one. It should be noted that in the case of the synchronous API
the whole application blocks until the results and/or errors are received, or a timeout
occurs, whilst this is not the case with the asynchronous API. The introduction of
threads or co-routines will obviate the use of the asynchronous API for reasons other
than event reporting or a one-by-one delivery mechanism for linked replies.

While the RMIB infrastructure offers a much higher level facility than a raw CMIS
API such as the OSIMIS MSAP or X/Open’s XMP. Its message passing nature is
closely linked to that of CMIS apart from the fact that it hides the manipulation of
event forwarding discriminators to effect event reporting. Though this facility is per-
fectly adequate for even complex managing applications as it offers the full CMIS
power (scoping, filtering etc.), simpler higher-level approaches could be very useful for
rapid prototyping.

One such facility is provided by the Shadow MIB (SMIB) support service, which
offers the abstraction of objects in local address space, ‘shadowing’ the real managed
objects handled by remote agents. The real advantages of such an approach are two
fold: first, the API could be less CMIS-like for accessing the local objects since param-
eters such as distinguished names, scoping etc. can be replaced by pointers in the local
address space. Second, the existence of images of MOs as local shadow objects can be

<SMIBMgr> <ApplObj> <RMIBMgr>

RMIBAgent
SMIBAgent

API

SMOs

CMIS/P

Figure 10.11 The remote and shadow MIB manager access models

THE OSIMIS TMN PLATFORM

285

used to cache information and optimise access to the remote agents. The caching mech-
anism could be controlled by local application objects, tailoring it according to the
nature of the application in hand in conjunction with shared management knowledge
regarding the nature of the remote MIBs. The model and supporting C++ classes are
very similar to the RMIB ones. The two models are illustrated in Figure 10.11.

Both the RMIB and SMIB support services are based on a compiled model, whilst
interpreted models are more suitable for quick prototyping, especially when similar
mechanisms for Graphical User Interfaces are available. Such mechanisms currently
exist e.g. the Tcl/Tk language/widget set or the SPOKE object-oriented environment,
which were used in ICM as technologies to support GUI construction. Combining
them to a CMIS-like interpreted scripting language can lead to a very versatile infra-
structure for the rapid prototyping of applications with graphical front ends.

10.2.4.2 The Tcl-RMIB API

Being both interpreted and string based, the Tcl language was selected to form the basis
for the OSIMIS scripting languageTcl-RMIB. The presence of existing string based
interfaces to CMIS, via the RMIB, has greatly assisted in the development of this new
interface.

Tcl-RMIB [10.33] assists rapid prototyping of management GUIs, event monitors,
MIB browsers etc. with similar functionality to that of the RMIB API, supporting both
synchronous and asynchronous interactions as shown in Figure 10.12.

Management Script

Interpreter

RMIB Agent Command
procedure

RMIB API
CMIS/P

Agent

Managed
Objects

result/errorcommand

argumentsagentId

TCL

C++

Tcl-RMIB
API

Figure 10.12 Tcl-RMIB model interactions

RMIB Manager

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

286

10.2.5 Security services

10.2.5.1 Introducing secure management services

General standards in the area of security for OSI applications are only now being
developed, whilst theObjects and Attributes for Access ControlSystems Management
Function [10.17] has only recently become an international standard. Nevertheless,
systems based on OSI management have security requirements and as such OSIMIS
provides the following security services: peer authentication, stream integrity, data
confidentiality and access control.

If we consider the scenario of a TMN process that is connected to another compo-
nent via the X-interface by a network link, then there are a number of threats posed by
this link:

• Passive attack: this allows an interloper toobserve datapassing on the link.
• Active attack: where a process is interposed on the link in order tomodifyor

inject dataon the link. There are four important sub-classes:
• The replayof a previous message, e.g. one that causes a CMIS Action to be

re-applied that leads to a managed element resource being reset.
• The modification of a previous message may result in an unauthorised

effect, e.g. the application of a CMIS Set operation to an administrative state
attribute.

• PDU reordering, insertion or removal.
• Themasqueradeattack involves an entity attempting to take on the identity

of another entity that has important privileges. This might be achieved by
the modification of a previously captured message.

The security of network management is probably the ultimate example of the need to
trade off the level of security achieved against any reduction in the timeliness that
operations must be enacted: To this end OSIMIS enlists the services of lightweight
Data Encryption Standard (DES)private key mechanisms to defeat the attacks listed
above. Private key mechanisms require that both parties (i.e. TMN processes) that need
to set up an association, have knowledge of the samekey. The key is a 64 bit string that
is used as the input parameter to the DES algorithm; which causes a defined translation
of the input data to the output data stream, in such a manner that the input data can only
be re-generated from the output data stream if the original key is known.

10.2.5.2 Lightweight authentication, data integrity and confidentiality

The mechanisms are lightweight in the sense that they are based on an optimisedData
Encryption Standard (DES) [10.35] implementation; as opposed to the significantly
more expensiveRivest, Shamir and Adleman (RSA) [10.36] cryptographic algorithm,
with its associated overhead of X.500 certificate storage.

10.2.5.2.1 DES secret key authentication

This assumes that only the two processes involved in an association establishment have
knowledge of the association initiator’s secret key. The authenticated association set up
involves the exchange of a shared ‘secret’ value (thesession key), that will be gener-

THE OSIMIS TMN PLATFORM

287

ated on a per association basis. A time value is included in the set up so as to ensure
that a partially completed set up message exchange can not be replayed by a rogue
process.

Successful completion of the authenticated association set up ensures that the iden-
tities of both parties (as denoted by globally unique Distinguished Names) is as
claimed. This prevents a rogue managing application from gaining illegal access to
and/or control of an agent process; or a rogue agent process imitating a valid agent
process and supplying incorrect information to a managing application.

10.2.5.2.2 Data integrity and PDU ordering guarantees

Data integrity and PDU ordering are achieved through the usage ofMessage Digest 5
(MD5) checksums and PDU sequence numbers respectively. Each CMIP PDU is first
encoded using the Distinguished Encoding Rules (DER) to yield a byte streamB. The
session keyKs (which was exchanged during association set up) is then appended to
yield the byte streamBs. Next Bs is used as input to the MD5 hashing algorithm
which yields a 128 bit checksum (c) which is carried in the ROSinvokeId field.

We can guarantee that theinvokeId values are unique by combiningc with a
number from a generated sequence. This sequence of numbers is obtained from a
pseudo random number generator, using a seed from the session keyKs, so that only
the initiator and responder can be aware of the sequence. In fact both the initiator and
the responder have their own sequence of numbers, since they will need to communi-
cate asynchronously.

001

101101

encrypt decrypt

decrypt

Figure 10.13 Successful DES decryption requires knowledge of the
DES encryption key

Bs = B*Ks, c = MD5hash(Bs)

i = f(n,c) CMIP PDU sender
c = g(i,n) CMIP PDU receiver
i = ROS invokeId
n = one of the numbers from the generated sequence
c = CMIP PDU’s checksum
f = the XOR function
g = f -1 (Note: XOR and XOR-1 are fast and effective)

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

288

10.2.5.2.3 Data confidentiality

DES encryption is utilised to prevent unauthorised entities from inspecting the contents
of the CMIP PDUs. The CMIS PDU is encrypted and junk padding is then appended
and prepended in order to prevent plain text attacks.

10.2.5.3 Access control

Access control for OSI management is based on the model described in ISO IS 10164-
9 / ITU-T X.741Objects and Attributes for Access Control SMF [10.17]. This function
allows restrictions to be placed on a user’s (the Initiator) right to access information
(the Target) held at an agent, and it can be based on one or more of the access control
schemes. Authenticated identities are a fundamental requirement for the usage of
access control mechanisms.

10.2.5.3.1 The access control model

OSIMIS supports access control based on anAccess Control List (ACL) scheme. The
model is realised by a set of “Support Managed Objects” which identify:

• the default access control rules (theaccessControlRules class);
• the specific access control rules (therule class);
• the protected targets (thetargets class);
• the initiators that are granted or denied access to targets (theaclInitiators class

for ACL based schemes).
The inheritance hierarchy of those classes is presented in Figure 10.14.

The instances of those classes are combined through name bindings to form the
containment schema shown in Figure 10.15. A single instance of the accessControl-
Rules class is required per access decision function within a security domain, repre-
senting the default policy within that domain i.e. the application in an agent role whose
managed objects are protected.

top

accessControl

accessControlRules rule targets initiators

aclInitiators

Figure 10.14 Access control inheritance hierarchy

accessControlRules

rule

targets initiators

system

Figure 10.15 Access control containment schema

THE OSIMIS TMN PLATFORM

289

Containment is not the only relationship between these managed objects:
• rules may point to initiators and targets, binding them in order to grant or to

deny access;
• targets may point to other managed objects that constitute the actual protected

targets.
These relationships are realised through special attributes of those classes. We will now
describe each of these classes and their attributes.

The aclInitiators class has one significant attribute,accessControlList, which is a
list of distinguished names representing the initiators referenced under a security pol-
icy. Initiators may be bound to targets through item rules specifically, or otherwise they
are either granted or denied access to everything through global rules.

The targets class identifies classes and instances for object level access control.
Classes are identified through themanagedObjectClasses attribute which is an object
list. Instances are subjected through themanagedObjectInstances, scope and filter
attributes. The first attribute is a list of distinguished names identifying the target
instances, whilst if scope and filter have values other than the defaults, they are applied
to all the previous instances to yield the overall set of target objects. If both classes and
instances are present, a boolean OR relationship is assumed.

The operations which are to be granted or denied for the identified target objects are
specified through theoperationsList attribute. The full list of operations are get, scope,
filter, set, action, create and delete. The first three are ‘monitoring’ operations while the
last four are ‘control’ ones. Scope means we allow for a target object to be selected
through scoping whilst filter means we allow for it to evaluate a filtering assertion.
Denying scope does not mean that the object in question is not visible at all, this
depends on the enforcement action imposed by the relevant containing rule object.

The use of these facilities can provide very powerful capabilities to identify target
objects in a dynamic fashion. Only some of their ‘properties’ need to be known in
advance in order to be catered for by a policy based on static access control objects. In
short, these facilities allow the definition of policies which will be valid for any objects
created dynamically in the system either through the management interface or as a
result of real resource interactions.

Therule object class binds initiators and targets through an enforcement action that
may be allow (grant rule) or deny (deny rule). The attributes of the rule class areinitia-
torsList, targetsList andenforcementAction. The first two are both distinguished name
lists pointing to the contained initiators and targets respectively. TheenforcementAc-
tion attribute may take the following values:denyWithResponse (default),denyWith-
outResponse, denyWithFalseResponse, abortAssociation or allow. If
enforcementAction has any one of the first four values it is a deny rule while the last
one,allow, renders it a grant rule.DenyWithoutResponse means that no reply is sent
back to the initiator i.e. this facility is used to hide some targets completely. This does
not mean that the initiator will possibly deadlock: the CMIS/P rules are obeyed and an
empty reply will terminate a sequence of linked replies or a single request in this case.

If a rule has an empty targets list it is a global rule else it is an item rule. Global
deny rules are used to refuse access to everything, whilst global grant rules grant
access to everything for certain initiators. If the initiators list is empty, it means that the
rule applies to all the initiators.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

290

As the precedence of evaluation of rules supports a “least privileged” policy, the
order of evaluation for any requested operation is:

1) global deny rules,
2) item deny rules,
3) global grant rules,
4) item grant rules,
5) default rules.

This order of evaluation essentially means that the strictest deny rules have prece-
dence; whilst if there are no deny rules for the operation and target in question, the
most “generous” grant rule applies.

Finally, theaccessControlRules class identifies the default rules that should apply if
no global or item rules have denied or granted access for the operation and target in
question. The main attributes aredefaultAccess, defaultDenialResponse and denial-
Granularity. DefaultAccess allows or denies access for each of the possible operations.
If an operation is not present, the default value is deny. Note that deny and allow are
expressed through the enforcementAction syntax, which means that four values may be
used to express denial: Note that all of these mean simply deny in this context, it is the
defaultDenialResponse attribute that determines the exact type of denial. This can have
denyWithResponse, denyWithoutReponse, denyWithFalseResponse andabortAssocia-
tion values. Only the first two are currently supported. Finally, the denialGranularity
attribute allows the level of denial to be controlled. Denial at the request, object and
attribute levels are possible but the current implementation supports only object level
denial.

10.2.5.4 Concluding comments on the OSIMIS security mechanisms

We have set out to provide security solutions that balance a high level of security
against any associated reduction in the timeliness of TMN management operations. In
the absence of hardware support for cryptographic processing and key storage, the
mechanisms described in this section are perceived to provide an optimal trade-off:
Indeed extensive trials have confirmed that the DES based authentication, data integ-
rity, PDU ordering confirmation and access control security mechanisms provide the
TMN with a very strong armoury in the battle against the onslaught of both passive and
active attacks.

10.2.6 Directory support: shared management knowledge
and location transparency

A TMN is a highly distributed environment in which each component management
process needs access to information on the location, the offered services and the sup-
ported managed objects of the other management processes; this information is collec-
tively termedShared Management Knowledge [10.18]. The OSI Directory Service
[10.4] provides the means for storing the SMK, since it provides a multi-purpose glo-
bally distributed database system.

The Directory Service model structures information about a large number of
objects, such as services, network resources, organisations and people, in a hierarchical

THE OSIMIS TMN PLATFORM

291

fashion termed theDirectory Information Tree (DIT), which is the X.500 equivalent of
OSI management’s MIT. Information objects can be created and deleted, and have their
attributes accessed (read or written). Access can involve complex assertions through
filtering as with CMIP. This object-oriented information store is distributed over physi-
cally separate entities known asDirectory Service Agents (DSAs). These communicate
with each other through a special protocol and any requests for information that a
‘local’ DSA does not hold can be ‘chained’ to all the other DSAs until the information
is found. A management process can access this information viaDirectory User Agents
(DUAs) which communicate with the ‘local’ domain DSA using theDirectory Access
Protocol(DAP).

The principal reasons for selecting the Directory as the global SMK repository are:
• It provides a global schema for naming and storing information about objects

that are highly distributed. For example, every management process in the
world can be registered with a unique name, i.e. its Distinguished Name (DN).

• It provides powerful mechanisms for transparently accessing this global infor-
mation (e.g. searching within some scope in the DIT using some filter).

• One of the major objectives of the OSI Directory, since it was recommended,
was to provide an information repository for OSI application processes. For
example, by keeping the locations (i.e. OSI presentation addresses) of the vari-
ous application entities representing the application processes within the OSI
environment.

10.2.6.1 Globally unique naming using Distinguished Names

Since both the MIT and DIT naming schemes are hierarchically structured, by ‘splic-
ing’ them together we can give a globally unique DN name to every Managed Object.
This is achieved by taking a given MO’s Local DN sequence, which is unique with
respect to a givenSystems Management Application Process (SMAP), and appending
this to the DN of the SMAP itself. For example, from Figure 10.16 below we can see
that the high-lightedSwitchX Q-Adaptor managed object, has a locally unique naming
sequence of:

{systemId=switchX@ifDir=output@ifId=3}
giving a combined globally unique name of:

{c=GR@o=FORTH@ou=ICS@cn=ManagementProcesses@cn=SwitchX
-QA@systemId=switchX@ifDir=output@ifId=3}

10.2.6.2 Providing location transparency

Location transparency is a basic mechanism in a distributed environment (ITU X.900).
In the TMN, it provides a means for finding the address of SMAPs in a location inde-
pendent way. Bearing in mind that the location of a SMAP may change over time (e.g.
a Q-Adaptor for some ATM-switch that is running on machine X might migrate to
some other machine if X crashes), we conclude that location transparency should be
supported in a TMN. Since the location of a SMAP does not change very frequently,
the OSI Directory is appropriate for storing, retrieving and modifying location infor-
mation for SMAPs.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

292

The basic requirement for a location transparency mechanism is that, given a
SMAP’s name, i.e. itsApplication Entity Title(AET), it should provide a means of
identifying the location, i.e. the OSI presentation address (PSAP) where theSystems
Management Application Entity (SMAE) representing that SMAP is awaiting, either
for management operations or notifications. In the TMN though, there is the possibility
that a SMAP is represented from more than one SMAE, for example, consider the fol-
lowing cases:

• SwitchX-QA depicted in Figure 10.16 above, that is replicated so as to achieve
fault tolerance,

• a Network Element Level Manager (NELM) that can act as a manager (by issu-
ing management operations to lower level processes) and an agent (by serving
management requests issued by a NLM-OS) at the same time,

• a SMAP that supports more than one interoperable interface, meaning that a dif-
ferent SMAE might be present for each interface,

• a SMAP that provides some management service can implement a number of
management functions. These management functions will be provided by a
number of SMAEs representing the SMAP.

Bearing these in mind, a location transparency mechanism involves choosing among a
number of SMAEs representing the SMAP we wish to communicate with. In order to
provide this functionality, the following information should be kept in every directory
object that represents an SMAE:

• the application context supported from the communicating entity,
• the presentation address (PSAP) where this SMAE is located,

DIT

MIT

o=FORTH

root

cn=Management Processes

cn=SwitchX-QA

cn=SMAE1

interfaces
ifDir = output

interfaces
ifDir = input

ev. fwd. discrim.
efdId = XYZ

log
logId = ABC

system
systemId = switchX

interface
ifId = 3

interface
ifId = 4

interface
ifId = 2

interface
ifId = 1

ou=ICS

c=GR
o=UCL

c=UK

ou=CS

cn=Management Processeses

cn=SMA:Athena

cn=SMAE1 cn=SMAE2

Figure 10.16 Global management application and object naming

THE OSIMIS TMN PLATFORM

293

• Additionally, every SMAE directory object should contain information regard-
ing the systems management application service element (SMASE) and the
common management information service element (CMISE) in the SMAE. This
information includes the supported systems management application service
(SMAS), functional units (FUs), the supported management profiles, the sup-
ported CMIP version and the supported CMIS FUs on every SMAE.

In our current implementation, every SMAP has the ability to update (by issuing a
DAP modify, add or remove operation) the directory objects that represents itself and
its corresponding SMAEs. These update operations take place on the start-up and shut-
down of a SMAP. Having the above information about each SMAE registered in the
Directory, each SMAP (either in the manager or agent role) can establish an association
with any other named SMAP, in a location transparent way by performing the follow-
ing step:

• Given the DN of the SMAP it wishes to associate with, it performs a DAP
search under the following conditions (i.e. we use a filter with the following
conditions):
• the DN of the SMAP is used as the base object for the search,
• search for objects with the standard application context name ‘systems-man-

agement’,
• search for objects that support the interoperable interface through which it

wishes to communicate (by checking the supported CMIP version and the
supported CMIS FUs),

• search for objects that perform a specific management function in the oppo-
site role (by checking the supported SMAS FUs and the supported manage-
ment profiles),

which should return the value of the required presentation address attribute value of the
matching SMAE.

10.3 The OSIMIS TMN development process

10.3.1 The development phases

The Guidelines for the Definition of Managed Objects [10.10], provide a formal means
of defining Managed Objects (MOs). Essentially, it is an object-oriented specification
language that is used to define a set of Managed Object Classes (MOCs), which at run-
time are instantiated as MOs. For each MOC, its position is specified in both the inher-
itance and containment hierarchies of a MIB, the names and types of its attributes, the
notifications that it can emit, and the actions that can be performed on it.

In theory a GDMO compiler should be able to take a MIB specification and pro-
duce a management agent that implements the MIB; in practice, the process is more
involved due to the fact that GDMO defines the required behaviour of each MOC in
natural language, which can not be readily parsed. In addition certain MOC attribute
types may not have been pre-installed into OSIMIS, though utilisation of the provided
ASN.1 and attribute compilers minimises the task of generating a C++ class for each
new attribute type.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

294

Each MOC in OSIMIS is represented by a C++ class definition, which at run-time
is instantiated as an MO. The OSIMIS GDMO compiler therefore has to generate OSI-
MIS MO compliant C++ header and methods files. The attribute compiler will generate
the necessary C++ files for any additional attribute types. This leaves the provision of
the code for MOC specific behaviour and the interface to the real resources, which
must be provided manually.

10.3.2 The ASN.1 and OSIMIS attribute compilers

For each MOC attribute type’s syntax, which is specified in ASN.1, the existing
ISODEPepsycompiler can produce a C language structure, together with functions for
encoding and decoding, printing, string parsing and performing comparisons. High-
level C++ abstractions are then used to provide the support for dealing with these
ASN.1 based attribute types, in such a way that utilisation of the actual abstract and
transfer syntaxes of the ISODE ASN.1 support service are hidden from the imple-
menter byencapsulating the Pepsy compiler output.

In ICM an ASN.1 Attribute compiler has been designed and implemented, which
can automate the production of the required C++ attribute classes. The only minor
problem with this approach is that the automated mechanisms for the print and parse
methods may utilise string formats that the agent implementor might wish to replace
with their own preferred format; whilst sometimes the automatically produced com-
pare method may be incorrect due to buried-in semantics. In these cases hand-coded
methods can be provided which simply over-write the automatically produced ones.

10.3.3 A platform-independent GDMO compiler

Being script driven, the OSIMIS GDMO compiler is completely platform-independent
i.e. it does not contain any hard-coded knowledge of a specific network management
platform, in our case of OSIMIS. Typically a compiler parses a program (of GDMO
statements, in this case) and builds up a symbol table representation of the program; in
our compiler the symbol table is represented as a set of C++ objects. The code genera-
tion phase of the compiler then produces code for the target platform. In our compiler,
the code generation phase is controlled by an interpreted script language. The script
language is able to address the information in the compiler's symbol table and to output
the information to files that conform to the requirements of a particular network man-
agement platform; in software engineering terms, this is achieved by adding meta class
information to the C++ symbol table objects so that they can be used as variables in the
script language. In short, the symbol table data of the compiler is entirely malleable. It
is in this sense that the knowledge of a particular network management platform is not
hard-coded in the GDMO compiler.

Compiler scripts supplied with OSIMIS, permit the extraction of information from
the compiler’s symbol table, leading to the generation of OSIMIS conformant MO
header and methods files. The script language also has primitives that make it possible
to merge hand written code and compiler generated code.

Gdmoasn-cmplis a Unix shell script that invokes three programs that generate the
code that is linked into an agent executable. A modified version of the ISODE Pepsy

THE OSIMIS TMN PLATFORM

295

ASN.1 compiler parses the ASN.1 module and generates C encoders and decoders; the
OSIMIS Attribute compiler then takes the code generated by Pepsy and encapsulates it
into OSIMIS conformant C++ attribute classes. The GDMO compiler parses the
GDMO script and generates a C++ header and methods file for each managed object
class defined in the GDMO script; at the same time it includes the hand written code
that manages the real resource. Finally, it generates a Unix Makefile that will compile
the managed object C++ files and generate a library that can be linked to the OSIMIS
libraries (such as the GMS and kernel libraries) to create an agent. Figure 10.17 below
illustrates the sequence in which the various programs are executed.

The GDMO compiler uses two databases to resolve references, a database of exter-
nal attributes which resolves GDMO attributes that are DERIVED FROM externally
defined attributes and a database of syntaxes that resolves all the WITH...SYNTAX
clauses in the GDMO script. Both databases have the same format, the GDMO
attribute or syntax name followed by the name of its corresponding C++ class and the
name of the header file that defines the C++ class. The contents of these databases are
loaded into the compiler's symbol table at run-time; the OSIMIS scripts can then gener-
ate code that resolves all the references.

As it can be seen from the Figure 10.17, theasn-cmplscript initially reads the
GDMO module and a syntax database that contains a list of those syntaxes provided by
OSIMIS so that a list of undefined attribute types can be generated by the Pepsy and
Attribute compilers. The GDMO compiler then updates its symbol table with the newly
defined attribute types.

When the GDMO compiler generates code, it has to include hand written code that
manages the real resource. The following conventions have been adopted and pro-
grammed into the scripts that control the compiler's code generation. For each MOC,
the GDMO compiler looks for two files of hand written code that are merged with the
compiler generated code. One file, whose name is formed by concatenating the name
of the MOC with ‘.inc.h ’, should contain user defined data and method declara-
tions. Another file, whose name is formed by concatenating the name of the MOC with
‘ .inc.cc ’, should contain user defined methods. If an MO does not require any user
defined methods or data, there is no need to create these files. The hand written files are
included using the C#include pre-processor directive. The compiler sets up the rel-
evant dependencies in the Makefile so that if one of the hand written files is changed,
only the relevant C++ class will be recompiled.

The hand written code has to take into account the object-oriented nature of the
OSIMIS platform. At least one of the methods of hand written code would be expected
to redefine a C++ virtual method in the OSIMIS GMS; for example, you might want to
redefine the virtual methodget , which resolves CMIP M-GET requests, so that when
the request is received, the values of the MO's attributes are refreshed by an appropri-
ate call to the real resource.

In the long run, the large amount of initial effort that has been invested in building a
platform-independent GDMO compiler should pay dividends. OSIMIS is a research
platform that is continually evolving and thus will demand changes in the GDMO com-
piler; it will be much easier to modify a set of interpreted scripts than a large amount of
complex C++ code.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

296

10.3.4 Concluding remark on the TMN development process

When the Attribute and GDMO compilers are considered and the array of built-in
SMFs, distribution services and security mechanisms are taken into account, it is our
contention that the OSIMIS platform goes a very long way down the road towards the
fully automatic creation of TMN management processes.

GDMO module

GDMO compiler

ASN.1 module

Pepsy compiler

C [en|de]coders

syntax database

Attribute compiler

Attribute database

MO database

MOC specific code

code generation script

C++ MO classesC++ attribute classes

Main program

dumpsyntax

used attribute syntaxes list

required syntaxes

gdmoasn-cmpl

asn-cmpl

code generation script

C++ compiler

C++ compiler

Makefile

Agent

Libmo.a

C++ attribute classes

Key: script name compiler name handwritten code

Figure 10.17 TMN agent generation sequence

OSIMIS libraries:
gms, kernel, msap,
lt, monsup...

e.g. MO behaviour

THE OSIMIS TMN PLATFORM

297

10.4 The OSIMIS applications

OSIMIS includes two types of generic management applications: semantic-free man-
agers that may operate on any MIB without changes and gateways to other manage-
ment models. OSIMIS provides a set of generic managers, graphical or command-line
based, which provide the full power of CMIS and a generic application gateway
between CMIS/P and SNMP. A very recent advance has been the provision of a meta-
management system that manages the TMN applications themselves.

10.4.1 Generic managers

There is a class of applications which are semantic-free and these are usually referred
to as MIB browsers as they allow one to move around in a management information
tree, retrieve and alter attribute values, perform actions and create and delete managed
objects. OSIMIS provides a MIB browser with a Graphical User Interface based on the
InterViews X-Windows C++ graphical object library. This allows management opera-
tions to be applied and also provides a monitoring facility. Its successor, which is to be
re-engineered in Tcl/Tk, will also have the capability of receiving event reports and of
monitoring objects through event reporting.

In addition OSIMIS provides a set of programs that operate from the command line
and realise the full set of CMIS operations. These may be combined together in a
‘management shell’. There is also an event sink application that can be used to receive
event reports according to specified criteria. Both the MIB browser and these command
line programs owe their genericity to the generic CMIS facilities (empty local distin-
guished name {} for the top MIB object, actualClass and scoping) and the manipula-
tion of the ANY DEFINED BY ASN.1 syntax through the table driven approach
described in Section 10.2.1.

The integration of the platform’s location transparency and lightweight security
mechanisms provide these management applications with secure access to location
independent resources.

10.4.2 Sample agent

OSIMIS contains a non-standard implementation of an OSI Transport Protocol (TP)
MIB. This manages the TP implementation of the ISODE stack and has proved to be
very useful in monitoring the activity of ISODE based applications, such as DSAs,
MTAs, transport bridges and even management applications themselves.

10.4.3 Distributed processing example

To demonstrate the use of the OSI management model as a powerful paradigm for dis-
tributed processing (see Section 10.5.1) when supported by high-level object-oriented
APIs, the OSIMIS platform was extended with a distributed processing example. A
simpleStats class was specified providing simple statistical services in the form of
actions. The currently supported services (actions) are:

• calcSqrt - returns the square root of a non-negative real number

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

298

• calcMeanStdDev - calculates and returns the mean and standard deviation of a
series of real numbers

The genericmaction utility can be deployed to provide a 1 line shell script (!) that pro-
vides access to these services. In case a more complex client program needs to utilise
these services, the RMIB access API may be used; a demonstration client is included
which required only 20 lines in C++. The OSIMIS location transparency service may
be used to hide the location where an instance ofsimpleStats object executes.

10.4.4 Management domain interoperability

Whether driven by technological merit, simplicity of development or government pro-
files, considerable investments have been made and will continue to be made into the
provision of network management solutions based on the two dominant management
architectures, namely SNMPv1 [10.27] and OSI [10.5]. They exist together so they
must be made to coexist, so as to achieve global inter-working across heterogeneous
platforms in the management domain. It is the authors’ contention that coexistence can
most readily be achieved by selecting a semantically rich reference model as the basis
for this inter-working. Such an approach can then be readily extended to encompass
both up and coming technologies such as CORBA [10.21] as well as future architec-
tures.

The collaborative work of the Network Management Forum’s (NMF) ISO/CCITT
and Internet Management Coexistence (IIMC) group has provided a sound basis to our
efforts in achieving coexistence through automated application level gateways.
Through out this section we shall use the terms ‘proxy’, ‘application level gateway’
and ‘Q-Adaptor’ [10.3] synonymously, to indicate the automated translation of infor-
mation and protocol models, so as to achieve the representation of management objects
defined under one proprietary paradigm under that of an alternative model, namely
OSI.

10.4.4.1 Information model mapping

10.4.4.1.1 Overview

Although conceptually similar from a very high level, the SNMP and OSI Management
Frameworks are based upon very different approaches to the problem of open network
management. One area where this difference is glaringly obvious is in their approaches
to formalized descriptions of management information bases (MIBs).

The approach of the SNMP structure of managed information (SMI) is a very
straightforward extension to Abstract Syntax Notation One (ASN.1), and uses a simple
object-based approach to describing managed objects, defined using a small set of
ASN.1 macros. These objects tend to be either very self-contained and atomic, or else
are simple tables of other objects. This leads to a very straightforward MIB structure
and approach to naming of MOs, describing simple objects, each with a number of use-
ful attributes, or tables of simple objects.

In the OSI world, a completely object-oriented approach is prescribed by the
Guidelines for Definitions of Managed Objects (GDMO) [10.10]. This approach is

THE OSIMIS TMN PLATFORM

299

very powerful, as it allows for reusable definitions of Managed Object Classes,
Attribute Classes, Notifications, Behaviours, etc. The structure of the management
information tree (MIT), is very flexible and is based on the use of specialized Naming
Attributes to create very complex trees of information.

The need for automated conversion of SNMP MIB descriptions to the OSI GDMO
format and vice-versa is a requirement for open-minded people interested in peaceful
coexistence of both the Internet and ISO management frameworks, in order to best lev-
erage the power of them both. In fact, the “Internet ISO Management Co-existence”
(IIMC) work included the creation of practical solutions to allow this. The work pre-
sented on IMIBTOOL in this section is based on and contributed to the IIMC process
[10.23][10.25] during 1993-94.

10.4.4.1.2 Introduction to IMIBTOOL

The purpose of IMIBTOOL is to completely automate the conversion of SNMP MIB
descriptions to GDMO MIB descriptions (see Figure 10.18). Most of the rules for
doing this have been described in [10.23]. Such conversion is a tedious, error-prone
and repetitive task if done by hand; so in order to free the programmer to concentrate
on more challenging tasks, the IMIBTOOL was developed.

The IMIBTOOL was based on the popular SMIC (SNMP MIB Compiler) program
[10.28]. This program is basically the front-end for an SNMPv1 MIB compiler1. It has
many useful options, including generation of various types of useful information from
an SNMPv1 MIB description. Basically, it syntactically checks an SNMPv1 MIB
description, builds a very rich parse tree, and generates various types of outputs based
on the command line options. It was decided to take this existing MIB compiler and
add an option to convert the parse tree into GDMO plus ASN.1 output based on the
IIMCIMIBTRANS [10.23] rules. This turned out to be a very fast, effective solution.
During the course of writing IMIBTOOL, a number of inputs where made to the IIM-
CIMIBTRANS conversion rules that would not have been determined otherwise. Imi-
btool is the first openly-available translator for this purpose.

10.4.4.1.3 The IMIBTOOL translation process

Figure 10.19 shows the imibtool ’s input and post-processing requirements. The
include file specifies all the SNMPv1 MIB definitions for a complete MIB, but one

1. The next generation of the SMIC compiler also supports SNMPv2.

SNMPv1
MIB

Description

GDMO
MIB

Description

Supporting
ASN.1 type
Definitions

IMIBTOOL

Figure 10.18 MIB description conversion using the IMIBTOOL

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

300

may only want to convert some but not all of the sub-MIBs.Imibtool may also gen-
erate some supporting ASN.1 definitions, as explained in the IIMC documents.

One annoying aspect is that there is no way to automatically identify SNMPv1
group objects. The only way forimibtool to recognize them for SNMPv1 is to have
a built-in table of Object-Identifiers of SNMPv1 group objects, though in the future
this will be handled via a configuration file.

The IIMC documents also define certain keywords held in GDMO behaviour
clauses, that describe aspects such as how MOs can be created or deleted. It is not pos-
sible to automatically generate the correct CREATE/DELETE parameters, such as
‘CREATE WITH-AUTOMATIC-INSTANCE-NAMING’, and so some degree of post-
processing is required, via a “sed” script.

Imibtool has proven to be a very useful tool for automated conversion of
SNMPv1 to GDMO MIB descriptions. It would be very nice to extend imibtool to also
handle SNMPv2 extensions as well, this would eliminate the need to identify SNMPv1
groups.Imibtool has been used by many people around the world wishing to auto-
matically convert their SNMPv1 MIBs.

10.4.4.2 The generic CMIS/P to SNMP gateway

The current industry standard for network element management is the Internet SNMP,
which is less powerful than the OSI CMIP. The same holds for the relevant information
models; the OSI is fully object-oriented while the SNMP supports a simple remote

#include “rfc1155.smi”
#include “rfc1212.smi”
#include “rfc1215.smi”
#include “rfc1213.mib”
#include “rfc1215.trp”

IMIBTOOL (SMIC)

Errors, Warnings
& debug information

Individual
text files

Include File: “mibii”

addition of new
SNMPv1 groups

-Y options

GDMO
File

ASN.1
File

Post-processing
rules

GDMO
File

written by MIB
designer if needed

SMIC’s intermediate
file formats

(own, MOSY, OIDS)

Key: IMIBTOOL extensions to SMIC

Figure 10.19 Using IMIBTOOL

THE OSIMIS TMN PLATFORM

301

debugging paradigm. Generic application gateways between them are possible without
any semantic loss for conversion from CMIS/P to SNMP as the latter’s operations and
information model are a subset of the OSI ones. Work for standards in this area has
been driven by the Network Management Forum (NMF) while the ICM project con-
tributed actively to them and also built a generic application gateway.

This work involves a translator between Internet MIBs to equivalent GDMO ones
(i.e. theimibtool) and a special script for the GDMO compiler which produces run-
time support for the generic gateway. That way the handling of any current or future
MIBs will be possible without the need to change a single line of code. It should be
added that the generic gateway works with SNMPv1 but may be extended to cover
SNMPv2.

A fundamental design requirement for the gateway is to achieve seamless inter-
operability between TMN management Operations Systems (OS) or Mediation Func-
tions (MF) and SNMPv1 managed resources. An efficient mapping is essential given
the fact that the gateway introduces an intermediate hop in the manager/agent commu-
nication path, see Figure 10.20.

10.4.4.2.1 The Internet Q-Adaptor (IQA) gateway in operation

An underlying aim of our research is to maximise the level of automation in generating
a Q-Adaptor that proxies for the desired remote SNMPv1 agents. Three stages are
required, namelytranslate, convert andrun, see Figure 10.21.

• Translation involves the usage of the OSIMIS SMI to GDMO converter (‘imi-
btool ’) to produce an OSI representation of the MIB that is to be managed.

• Conversion yields a simplified MIB description using the GDMO compiler.
• Run - the gateway reads in the simplified input file MIB description(s) and is

ready to provide an ‘OSI view’ of the SNMPv1 managed real resources.

10.4.5 Managing the TMN itself

Whereas the scope of the TMN is to manage networks and services, the scope of meta-
management is to manage the TMN itself. We introduce the termmetamanagement to
refer to thefunction of managing the management processes, systems and software
comprising the TMN. This includes the start-up and shutdown of management proc-
esses, recovery procedures in case of failures, as well as the automatic distribution and
update of code and configuration files, so that an easily configured and fault tolerant
TMN is provided. The metamanagement service has yet to be formally defined in the

OSI
Manager
OS/MF

Internet
QA

gateway

SNMPv1
Network Element

Agents

CMIS requests

Event-Reports

SNMPv1 requests

SnmpV1 responses/
SnmpV1 Traps

Figure 10.20 Manager/agent communication paths

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

302

standards; so the OSIMIS meta-management service is undergoing a continuous evolu-
tionary process, where we implement many features that have proved useful in ICM.

Within this section we will assume that the various TMN management processes
interact according to the enhanced OSI manager/agent model proposed in [10.37]. This
means that each management process is capable of not only updating the Directory
with information about its state, functionality, location etc., but can also interrogate the
same information about other processes via Directory queries. This provides the criti-
cal information about which processes exist in a TMN, the management services they
provide and a location transparent way for associating with them. This kind of infor-
mation, also called Shared Management Knowledge, forms the basis for our metaman-
agement system which is able to maintain a global view of the various TMN building
blocks and the way they interact.

The TMN building blocks (OS, MDs, QAs, NEs and WSs) are installed on a net-
work of computers which communicate over the DCN. In this section, we call these
computersTMN hosts. The only requirement for a TMN host is to run a multitasking
operating system which uses OSI to communicate with other hosts in the TMN.

We offer a tool to the TMN operator that helps him configure the TMN. After the
configuration, the metamanagement system monitors the operation of the TMN and
informs the operator of any exceptional conditions. It is the responsibility of the opera-
tor to take appropriate action. This initial ‘manual’ mode of operation provides the
basic capabilities of metamanagement, and permits an evolutionary path towards its
eventual automation by incorporating intelligence into the metamanagement compo-
nents themselves.

Figure 10.22 depicts the metamanagement system model. Two new processes are
introduced: theMeta-Management Agent (MMA) and theMeta-Management Opera-
tions System (MMOS). It is assumed that every TMN host runs a MMA acting in the
agent role containing a MIB presenting managed objects representing the management
processes running on that TMN host. Additionally, the MMA contains an FTAM client
that is capable of connecting to an appropriate FTAM server in order to retrieve soft-
ware and configuration files not present locally on the TMN host.

The MMOS acts in the manager role. It implements an OS equipped with an HCI
(Human Computer Interface) through which the TMN operator is capable of perform-

SNMPv1 SMI

IIMC augmented GDMO

simplified MIB description

imibtool

GDMO compiler

IQASNMPv1 agent(s) OSI Manager(s)

Figure 10.21 The Internet Q-Adaptor’s execution cycle.

THE OSIMIS TMN PLATFORM

303

ing appropriate management operations on the MMAs and therefore the management
processes on the TMN hosts. Both the MMA and the MMOS contain a Directory User
Agent (DUA) that performs the Directory updates and queries described in [10.37].

The MMA and MMOS are critical for the operation of the TMN and are therefore
implemented as fault tolerant processes. The MMOS obtains information concerning
the running MMAs, and therefore the available TMN hosts, through Directory search
operations. Additionally it keeps the current load of each TMN host and an estimation
of the load of the DCN links interconnecting the MMOS to that particular MMA.

The TMN operator, using the MMOS HCI, determines the appropriate TMN host
on which to run a new management process. The new management process is started
via a CMIP Create operation from the MMOS to the chosen MMA, i.e. the MMOS cre-
ates a managed object within the MMA’s MIB.

The MMA reads from the Directory the entry corresponding to the process’s soft-
ware package and checks whether the necessary files are available locally. If the soft-
ware package is already available, the MMA executes the process and updates its MIB
with the newly created MO. After receiving the appropriate object creation message
the MMOS updates the Directory with information about the started process. This
information includes the MMA that is responsible for the process, the software pack-
age that the process runs and the execution vector used to start the process. If the soft-
ware package is not available on the TMN host (or it is out-of-date), the MMA
retrieves the files from the TMN FTAM server located in one of the TMN hosts. After
retrieving the necessary files the MMA proceeds as above.

As well as creating new management processes, the TMN operator may need to ter-
minate currently running management processes, e.g. during reconfiguration of the

MMOS
HCI

Directory

MMA

FTAM
server

T
M

N
 h

os
t

FTAM
CLIENT

FTAM

DUA

Managed
Objects

-executable

-config. files

DUA DAP operations

C
M

IS
/C

M
IP

 images

DAP o
pe

ra
tio

ns

mngmnt
process

Figure 10.22 The OSIMIS metamanagement model

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

304

TMN. To terminate a management process, the MMOS issues a CMIP Delete opera-
tion on the appropriate managed object in the respective MMA.

Each MMA periodically checks whether the management processes running on its
TMN host are alive (e.g. by issuing a CMIP Get request for thesystem MO). In case
of a process failure, the MMA sends an appropriate notification to the MMOS. The
TMN operator (through the HCI of the MMOS) is always able to access a complete
view of the TMN. He can query the directory for TMN hosts, the processes that run or
are available, where they run and their operational status.

We have shown that a management model based on OSI systems management con-
cepts is rich enough to support the requirements of a metamanagement system. This
type of management is typical in distributed systems contexts but we have shown that
the OSI management and directory models provide a very good solution in an OSI
management environment.

10.5 Other areas of application for OSIMIS

Up to now it has been assumed that OSIMIS will be used purely as a TMN manage-
ment platform. Though this is the reason it was conceived, the power and generality of
the OSI management model, on which OSIMIS is based, together with the abstractions
OSIMIS provides and make it suitable for other potential usages outside the manage-
ment systems realm.

10.5.1 OSIMIS as a general distributed systems platform

All the facilities described above make OSIMIS suitable as a general vehicle for build-
ing distributed systems. The CMIS Action primitive is essentially a general object
method i.e. a remote operation, now the combination of remote operations, location
transparency and high-level object access mechanisms make it possible to build dis-
tributed systems quickly and efficiently.

Realising a simple time-of-the-day server requires no more than 10 lines of C++
code, using the GMS and GDMO compiler. Accessing all these objects in a particular
environment using the location transparency and the RMIB support services and print-
ing the time requires about 20 lines of C++ code. Finally, the performance of OSIMIS-
based systems is generally very high and experiments have shown that it is directly
comparable, even for simple information access, to that of SNMP-based ones.

10.5.2 OSIMIS as an object-oriented distributed database

OSIMIS provides managed object persistency and in particular the facility to log infor-
mation as records (special managed objects) and to fully control the behaviour of the
logs containing them. The OSI management service offers the possibility to create,
delete and retrieve logs and log records and also sophisticated searching facilities
through scoping and filtering. Nothing prevents one to create special log record classes
which could be manipulated through the management protocol - standard eventLo-

THE OSIMIS TMN PLATFORM

305

gRecords are created within the managed system as a result of notifications and criteria
set by managers.

Despite the fact that this was not the purpose of the OSI management model, its
generality and richness make it suitable as a general distributed object-oriented data-
base mechanism. At the moment OSIMIS does not yet provide transaction support,
which is very important for such usage. When these are implemented, the existing
infrastructure will make it possible to use OSIMIS for storing information in a distrib-
uted fashion while providing sophisticated authentication and access control mecha-
nisms. It should be noted that transaction services are particularly useful in the higher
TMN layers where more static information e.g. service, and customer specific data, is
stored.

10.6 Epilogue

OSIMIS has proved the feasibility of OSI management and especially the suitability of
its object-oriented concepts as the basis for higher-level abstractions which harness its
power and hide its complexity. It has also shown that a management platform can be
much more than a raw management protocol API together with sophisticated GUI sup-
port which is what has been provided until now by most commercial offerings. In com-
plex hierarchical management environments, as epitomised by a TMN, object-oriented
agent support similar to that of the GMS and the associated tools and functions is fun-
damental, as is the ability to support the easy construction of proxy systems. Higher
level manager support is also important to hide the complexity of CMIS services and
allow the rapid but efficient systems realisation.

Finally, as we live in a multi-model and protocol world, it is unwise to assume
existing investment will be simply thrown away to conform to a new model. In the
management world there are two prevalent solutions, OSI and Internet, whilst a third
one, the ODP-based OMG CORBA framework threatens to become ade facto indus-
trial standard. All three solutions will have to co-exist in the years to come and the
basis for their integration through generic application gateways should be the most
powerful of the three in order to ensure translation without loss of semantics. OSI is the
most powerful one in terms of both protocol operations and information model expres-
siveness, justifying as such its choice as the basis of OSIMIS.

10.7 Acknowledgements

We would like to thank Graham Knight and Saleem Bhatti, from the ESPRIT MIDAS
project, for their contributions to OSIMIS. Our colleagues from international collabo-
rative endeavours such as the NMF’s IIMC also deserve a special mention.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

306

10.8 References

[10.1] B.Stroustrup, “The C++ Programming Language,” Addison-Wesley, Reading,
MA, 1986.

[10.2] B.W.Kernigham, D.M.Ritchie, “The C Programming Language,” Prentice-
Hall, New Jersey, 1978.

[10.3] ITU-T M.3010, Principles for a Telecommunications Management Network,
Working Party IV, Report 28, Dec. 1991.

[10.4] ITU-T X.500, Information Processing - Open Systems Interconnection - The
Directory: Overview of Concepts, Models and Service, 1988.

[10.5] ITU-T X.701, Information Technology - Open Systems Interconnection -
Systems Management Overview, July 1991.

[10.6] ITU-T X.710, Information Technology - Open Systems Interconnection -
Common Management Information Service Definition, Version 2, July 1991.

[10.7] ITU-T X.711, Information Technology - Open Systems Interconnection -
Common Management Information Protocol Specification, Version 2, 7/91.

[10.8] ITU-T X.720, Information Technology - Open Systems Interconnection -
Structure of Management Information - Part 1: Management Information
Model, January 1992.

[10.9] ITU-T X.721, Information Technology - Open Systems Interconnection -
Structure of Management Information - Part 2: Definition of Management
Information, February 1992.

[10.10] ITU-T X.722, Information Technology - Open Systems Interconnection -
Structure of Management Information - Part 4: Guidelines for the Definition
of Managed Objects, August 1991.

[10.11] ITU-T X.730, Information Technology - Open Systems Interconnection -
Systems Management: Object Management Function, January 1992.

[10.12] ITU-T X.733, Information Technology - Open Systems Interconnection -
Systems Management: Alarm Reporting Function, February 1992.

[10.13] ITU-T X.734, Information Technology - Open Systems Interconnection -
Systems Management: Event Management Function, February 1992.

[10.14] ITU-T X.735, Information Technology - Open Systems Interconnection -
Systems Management: Log Control Function, September 1992.

[10.15] ITU-T X.738, Information Technology - Open Systems Interconnection -
Systems Management: Metric Objects and Attributes, 1994.

[10.16] ITU-T X.739, Information Technology - Open Systems Interconnection -
Systems Management: Summarisation Function, 1994.

[10.17] ITU-T X.741, Information Technology - Open Systems Interconnection -
Systems Management: Objects and attributes for access control, 1995.

[10.18] ITU-T Draft X.750, Information Technology - Open Systems Interconnection
- Systems Management: Management knowledge management function.

[10.19] ITU-T X.901, ODP Reference Model Part 1. Overview, 1995.
[10.20] Information Processing - Open Systems Interconnection - File Transfer,

Access and Management, 1988.
[10.21] Object Management Group, The Common Object Request Broker Architec-

ture and Specification (CORBA), 1991.

THE OSIMIS TMN PLATFORM

307

[10.22] X/Open, OSI-Abstract-Data Manipulation and Management Protocols Speci-
fication, January 1992.

[10.23] L.LaBarre (Editor), Forum 026 - Translation of Internet MIBs to ISO/CCITT
GDMO MIBs, Issue 1.0, October 1993.

[10.24] April Chang (Editor), Forum 028 - ISO/CCITT to Internet Management
Proxy, Issue 1.0, October 1993.

[10.25] L.LaBarre (Editor), Forum 029 - Translation of Internet MIB-II (RFC1213) to
ISO/CCITT GDMO MIB, Issue 1.0, October 1993.

[10.26] D. Cass, M. Rose, ISO transport services on top of TCP, Network Working
Group, Request For Comments 1006, May 1987.

[10.27] J.Case, M.Fedor, M.Schoffstall, J.Davin, A Simple Network Management
Protocol (SNMP), Network Working Group, Request For Comments 1157,
May 1990.

[10.28] SMIC was written by Dave Perkins of Synoptics, and is available in the
ftp://ftp.synoptics.com/eng/mibcompiler directory.

[10.29] M.T. Rose, J.P. Onions, C.J. Robbins, “The ISO Development Environment
User’s Manual Version 7.0” PSI Inc / X-Tel Services Ltd., July 1991.

[10.30] J.P. Onions, “Transport Bridging,” Published in Interworking: Research and
Experience, Vol. 1, pp. 27-34, John Wiley & Sons.

[10.31] G.Pavlou, T.Tin, “OSIMIS User Manual Version 1.0 for System Version 4.0,”
Dept. of Computer Science, University College London, December 1994.

[10.32] G.Pavlou, “The OSIMIS TMN Platform: Support for Multiple Technology
Integrated Management Systems,” Proceedings of the 1st RACE IS&N Con-
ference, Paris, November 1993.

[10.33] T.Tin, G.Pavlou, R.Shi, “Tcl-MCMIS: Interpreted Management Access Facil-
ities,” Proc. of the 6th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations & Management, Ottawa, Canada, October 1995.

[10.34] K.McCarthy, G.Pavlou, S.Bhatti, J.Neuman De Souza, “Exploiting the Power
of OSI Management for the Control of SNMP-capable Resources Using
Generic Application Level Gateways,” ISINM’95.

[10.35] National Institute of Standards and Technology, “Data Encryption Standard”
FIPS Publication 46-1, January 1988.

[10.36] R. L. Rivest, A. Shamir, L. A. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems,” Communications of the ACM, 21
(2), pp. 120-126, February 1978.

[10.37] Stathopoulos C., Griffin D., Sartzetakis S.: “Handling the Distribution of
Information in the TMN,” Proceedings of the fourth international symposium
on integrated network management, ISINM’95, ed. Sethi A., et al., Chapman
& Hall, 1995.

[10.38] RACE R2059 ICM internal deliverable, “Monitoring Management Function
in OSIMIS, ICM/WP3/NTUA/0097,” Nov. 1994.

INTEGRATED COMMUNICATIONS MANAGEMENT OF BROADBAND NETWORKS

308

