
How to be a successful technical architect
for J2EE applications

Derek C. Ashmore

™

http://www.amazon.com/exec/obidos/ASIN/0972954899

Derek Ashmore has assembled a “must-have” book for anyone working
with Java and/or J2EE applications. Mr. Ashmore covers all the bases in
this “how-to” approach to designing, developing, testing, and implement-
ing J2EE applications using Java with frequent references to XML, JDBC
libraries, SOAP, relational database access (using SQL), and references vari-
ous useful tools when relevant. This book clearly illustrates Derek’s exper-
tise in the Java world . . . thank you for sharing your knowledge to the IT
community with such a useful book.

— Dan Hotka, Author, Instructor, Oracle Expert

[Derek has written] an in-depth and comprehensive resource for the Java 2
architect! The book provides a concise road map for real-world J2EE devel-
opment. The approach is practical and straightforward, based on a wealth
of experience. All aspects of project management, application and data
design, and Java development are covered. This book avoids the “dry style”
and over-abstraction (over-simplification) common to so many books in
this subject area. An awesome book, I keep it on my “A” shelf!

— Jim Elliott, CTO, West Haven Systems, Inc.

Clear reading and bridges the gap between professionals and professors.
I’ve read many technical books in my thirty-year career where the author
spends more time tossing around the current buzz words and fails to get
the point across. Derek’s book really connects with the hard core devel-
oper. Practical, knowledgeable, excellent examples.

— John R. Mull, President, Systech Software Products, Inc.

I’m a junior J2EE technical architect, and I just finish reading your [book].
It’s really interesting and instructive. It helps me a lot on my project plan-
ning . . .

— Bruno Gagnon, Junior Technical Architect

http://www.amazon.com/exec/obidos/ASIN/0972954899

Derek C. Ashmore

How to be a successful technical architect
for J2EE™ applications

™

The J2EE
Architect’s
Handbook

http://www.amazon.com/exec/obidos/ASIN/0972954899

What readers are saying about The J2EE Architect’s Handbook:

I would highly recommend The J2EE Architect’s Handbook to anyone who
has struggled with how to practically apply all of the Objected Oriented
Design, Design Pattern, eXtreme Programming, and Data Modeling books
that line their shelves.

— D. Scott Wheeler, Partner, Open Foundation

This book is well crafted and explains everything you really need to know
in order to be a successful and productive J2EE architect. It is an excellent
book, which offers a full and detailed coverage of the topic of J2EE archi-
tecture and can be used as a handbook by the novice or as a reference tool
for the experienced architect. The straightforward writing style and good
visuals make for a quick and comprehensive learning experience. If Java is
your primary programming language, and you’re currently working as a
J2EE architect or considering it as a future career, this book should be in
your library.

— Ian Ellis, Senior Technical Architect

The J2EE Architect’s Handbook is a must have for experienced architects
and budding designers alike. It is concise, to the point, and packed with
real-world code examples that reinforce each concept. Today’s J2EE teams
would do well to keep a copy at each designer’s fingertips.

— Ross MacCharles, Lead Technical Architect

The Architect’s Handbook offers an excellent summary/detail look at what
comprises a mature J2EE application architecture. It helps the average de-
veloper to become a productive team member by providing an awareness
of the larger issues in development. And it transforms the more senior
technician into an insightful architect, now readily capable of making sound,
high-impact decisions. An unparalleled resource for the architect’s library.

— Jeffrey Hayes

http://www.amazon.com/exec/obidos/ASIN/0972954899

© 2004 by Derek C. Ashmore

DVT Press
34 Yorktown Center, PMB 400
Lombard, IL 60148
sales@dvtpress.com
http://www.dvtpress.com

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any informa-
tion storage and retrieval system, without written permission from the author except for the
inclusion of brief quotations for a review.

The opinions and views expressed in this book are solely that of the author. This book does
not necessarily represent the opinions and views of the technical reviewers or the firms that
employ them.

TRADEMARKS: Java, J2EE, Java Development Kit, and Solaris are trademarks of Sun
Microsystems, Inc. All other products or services mentioned in this book are the trademarks
or service marks of their respective companies and organizations.

While every precaution has been taken in the preparation of this book, the author and pub-
lisher assume no responsibility for errors and omissions or for damages resulting from the use
of the information contained herein.

ISBN: 0972954899

Library of Congress Cataloging-in-Publication Data
Ashmore, Derek C.

The J2EE architect’s handbook : how to be a
successful technical architect for J2EE applications /
by Derek C. Ashmore.

p. cm.
Includes bibiliographical references and index.
ISBN 0972954899

1. Java (Computer program language) 2. Application
software--Development. 3. Web site development.
I. Title.

QA76.73.J38A84 2004 005.2'762
QB103-200953

Editor: Barbara McGowran
Cover Design: The Roberts Group
Interior Design: The Roberts Group
Indexer: The Roberts Group

DVT Press∆∆

http://www.amazon.com/exec/obidos/ASIN/0972954899

v

Contents
Preface xi

How the Book Is Organized xii
Common Resources xiii
Feedback xiii
Acknowledgments xiii

1. Project Development Team and Project Life Cycle 1
Project Development Team: Roles and Responsibilities 1

Technical Architect 2
Project Manager 5
Business Analyst 5
Layout Designer 6
Presentation-Tier Developer 6
Business Logic Developer 7
Data Modeler 7
Database Administrator 7
Data Migration Specialist 8
Infrastructure Specialist 8
Testing Specialist 8

Project Life Cycle Approaches 9
Waterfall Approach 9
Iterative Approaches 9
Rational Unified Process 10
Which Approach Is Most Popular? 11
Consider a Hybrid Approach 11

Further Reading 12

SECTION 1: Planning J2EE Applications 13

2. Defining the Project 15
Identifying Project Scope 17
Identifying the Actors 17
Writing Use Cases 19
Common Mistakes 22
Architect’s Exercise: ProjectTrak 23
Prototyping 24
Further Reading 25

3. Scope Definition and Estimation 27
Defining Scope 27
Basics of Estimating 28
An Algorithm for Estimating 29
Architect’s Exercise: ProjectTrak 31
Further Reading 32

http://www.amazon.com/exec/obidos/ASIN/0972954899

vi Contents

4. Designing External Application Interfaces 33
Selecting a Communication Method 34

Asynchronous Communication 35
Synchronous Communication 35
Comparing the Two Methods 37
Common Mistakes 39

Determining a Data Structure 39
Error-Handling Requirements 42

Error Notification Procedures 42
Retry Procedures 42

External Interface Guidelines 43
Architect’s Exercise 45

SECTION 2: Designing J2EE Applications 47

5. A Layered Approach to J2EE Design 49
Overview of the Layering Concept 49
Data Access Object Layer 52

Choosing a Database Persistence Method 53
Simplified Data Access Pattern 56
Supporting Multiple Databases 57

Value Object Layer 59
Common Patterns 59

Business Logic Layer 60
Common Patterns 61

Deployment Layer 63
Choosing Deployment Wrappers 63
Common Patterns 65

Presentation Layer 66
Architectural Component Layer 68
Further Reading 70

6. Creating the Object Model 71
Identifying Objects 72

Object Identification Example 73
Turning Objects into Classes 75
Determining Relationships 75
Identifying Attributes 77
Identifying Methods 78
Shortcuts 79
Architect’s Exercise: ProjectTrak 81
Further Reading 84

7. Creating the Data Model 85
Key Terms and Concepts 86
Design Practices and Normal Form 89
Architect’s Exercise: ProjectTrak 91

http://www.amazon.com/exec/obidos/ASIN/0972954899

viiContents

Creating Database Schema Definitions 93
Common Mistakes 94

Creating XML Document Formats 95
Common Mistakes 98

Further Reading 98

8. Network Architecture 99
Key Terms and Concepts 100
Networking Basics 102
Security 104

Architecting Application Security 105
Scalability and High Availability 105

Architecting Scalability and Availability 107
Network Diagram Example 108
Further Reading 108

9. Planning Construction 109
Task Order and Dependencies 110
Critical Path 115
Common Mistakes 116
Further Reading 117

Section 3: Section 3: Section 3: Section 3: Section 3: Building J2EE Applications 119

10. Building Value Objects 121
Implementation Tips and Techniques 123
Value Objects Made Easy 130
Common Mistakes 133
Architect’s Exercise: ProjectTrak 134

11. Building XML Access Objects 139
An XAO Example 140
Architectural Guidelines 145
Overview of JAXB 145
JAXB Usage Guidelines 149
Using XSLT Within Java 150
XSLT Usage Guidelines 151
Internet Resources 152
Further Reading 152

12. Building Database Access Objects 153
Data Access Object Coding Guidelines 154
Using Entity Beans 157
A Hibernate Example 159
JDBC Best Practices 163
Architect’s Exercise: ProjectTrak 169

http://www.amazon.com/exec/obidos/ASIN/0972954899

viii Contents

Other Code Reduction Paradigms 173
Java Data Objects (JDO) 173
CocoBase 173
TopLink 173
OJB 173

Further Reading 174

13. Building Business Objects 175
Transaction Management 176
Business Object Coding Guidelines 180
Architect’s Exercise: ProjectTrak 182
Further Reading 184

14. Building Deployment Layer Objects 185
Session Beans 186
Message-Driven Beans 191
Web Services 194
Architect’s Exercise: ProjectTrak 195
Further Reading 197

15. Building the Presentation Layer 199
Presentation Components 201

Page Display 201
User Input Validation 204
Data Processing 206
Navigation 208
Security 208

Presentation Layer Coding Guidelines 209
Common Mistakes 210
Further Reading 210

16. Building Architectural Components 211
Component Quality 212
Making Components Easy to Use 213
Making Components Easy to Configure and Control 216
Open Source Alternatives 217

Resolving Technical Issues 218
Mitigating Political Risk 219

Component Usage Guidelines 219

17. Application Architecture Strategies 223
Logging Strategies 223

Sample Strategy 225
Exception-Handling Strategies 225

Sample Strategy 234
Threading Strategies 234

Sample Threading Guidelines 237

http://www.amazon.com/exec/obidos/ASIN/0972954899

ixContents

Configuration Management Strategies 237
Further Reading 240

SECTION 4: Testing and Maintaining J2EE Applications 241

18. Functional Testing Guidelines 243
Testing Assumptions 244
Testing Coverage 245
Test Case Coding Overview and Examples 246

Combining Test Cases into Suites 248
Testing Best Practices 249

19. Performance Tuning and Load Testing 251
Measuring Performance 252

Memory Leaks Defined 253
Testing for Memory Leaks 254

Diagnosing Performance Problems 256
Using HPROF to Measure CPU Usage 257
Using HPROF to Measure Memory Usage 260

Further Reading 262

20. Postimplementation Activities 263
Application-Monitoring Guidelines 264
Bug-Fighting Guidelines 265
Top Refactoring Indicators 266
Common Refactoring Techniques 267

Extract and Delegate 267
Extract and Extend 269
Extract and Decouple with Interface 270

Further Reading 271

Bibliography 273

The Apache Software License, Version 1.1 276

Index 277

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

xi

Preface
The J2EE Architect’s Handbook was written for technical architects and senior
developers tasked with designing and leading the development of J2EE ap-
plications. With numerous strategies, guidelines, tips, tricks, and best prac-
tices, the book helps the architect navigate the entire development process,
from analysis through application deployment. To help you achieve success
as a J2EE technical architect, the book presents the following material:

▲ A basic framework for filling the role of technical architect

▲ Architect-level tips, tricks, and best practices

▲ Tips, tricks, and best practices for making code more maintainable

▲ Tips, tricks, and best practices for creating and communicating
designs

▲ Out-of-the-box, open source support utilities for application
architecture

▲ Template material for implementing many phases of application
development

▲ Estimation and project-planning material

This book is not a study guide for any of the certification exams for Java
and J2EE technologies provided by Sun Microsystems.

Further, the book is not for beginners. Readers should know Java syntax
and have at least an intermediate programming skill set as well as basic knowl-
edge of the following:

http://www.amazon.com/exec/obidos/ASIN/0972954899

xii

▲ Enterprise beans (experience coding at least one session bean and
entity bean is helpful)

▲ Relational databases, SQL, and JDBC

▲ XML and how to access XML via Java

▲ JSPs and servlets

▲ Corporate systems development

▲ Object-oriented design concepts

A common misperception is that J2EE applications are incredibly com-
plex. Authors of technical books and articles unintentionally support this
fallacy by providing incredible technical depth on aspects of J2EE not com-
monly used. For example, many texts begin their discussions of enterprise
beans by describing J2EE transaction capabilities in great detail. But most
J2EE applications make only limited use of J2EE transaction management
capabilities. In this book, I strip away some of the complexity that most
developers rarely use to reveal how relatively straightforward J2EE applica-
tions really are. Your time is too valuable to waste reading about features
and concepts you’ll rarely use in the marketplace.

How the Book Is Organized

The first chapter of the book describes the role of the technical architect in
most organizations and explains how the project life cycle illustrated in this
book fits in with Extreme Programming (XP), the Rational Unified Process
(RUP), and other possible methodologies.

Section 1 details how to define the project objectives using use-case analy-
sis. It also discusses how to define scope and create a preliminary project
plan. The guidelines presented in this section will help you successfully com-
plete these tasks that are critical to your project coming in on time and on
budget. The most common reasons for project failures or cost overruns are
poorly defined and managed objectives and scope, not technical problems.

Section 2 focuses on object-modeling and data-modeling activities, de-
scribing how detailed they need to be and illustrating common mistakes. In
addition, you will learn how to architect interfaces with external systems
and how to refine the project plan and associated estimates. The modeling
skills presented in this section are critical to effectively communicating a
design to developers.

Section 3 presents implementation tips and guidelines for all aspects of
J2EE applications. You’ll learn how to layer your application to minimize

Preface

http://www.amazon.com/exec/obidos/ASIN/0972954899

xiii

the impact of enhancements and changes. You’ll also become acquainted
with CementJ, an open source assistance framework that enables you to
streamline your development at each layer.

In addition, section 3 details application architecture decisions you’ll need
to make regarding testing, exception handling, logging, and threading, and
you’ll learn tips and techniques for implementing major sections of the de-
sign. The failure of a technical architect to define implementation strategies
and methodologies can slow down a project significantly and increase the
number of bugs.

Section 4 offers tips and guidelines for developing testing procedures
and process improvement. These suggestions are directed at making your
applications more stable and maintainable. In addition, you’ll learn the signs
warning you that refactoring activities are necessary. Reading this section
will enable you to make subsequent projects even more successful.

Common Resources

The book utilizes the CementJ open source project. A Java API, CementJ
provides the functionality that most J2EE applications need but is not yet
directly provided by the JDK specification. CementJ helps you build a strong
foundation for your application, filling the gaps between the JDK and your
applications. Using CementJ will help you streamline your development.
CementJ binaries and source can be downloaded at http://sourceforge.net/
projects/cementj/.

Another open source project on which this book relies is ProjectTrak.
This planning package serves as an illustration for implementing the con-
cepts presented in this book. ProjectTrak binaries and source can be down-
loaded at http://sourceforge.net/projects/projecttrak/.

Errata, example source code, and other materials related to this book
can be found at http://www.dvtpress.com/javaarch/.

Feedback

I’m always interested in reading comments and suggestions that will im-
prove future editions of this book. Please send feedback directly to me at
dashmore@dvt.com. If your comment or suggestion is the first of its kind
and is used in the next edition, I’ll gladly send you an autographed copy.

Acknowledgments

Several people helped tremendously to refine the book concept and edit the
drafts to keep me from mass marketing mediocrity. They have my undying

Preface

http://www.amazon.com/exec/obidos/ASIN/0972954899

xiv

gratitude and thanks. I could not have written this book without the assis-
tance of the following people:

Ron Clapman is a seasoned and experienced senior architect in the
Chicago-land area. Ron started his career at AT&T Bell Laboratories in the
1980s where he received firsthand knowledge on the then new and growing
field of object-oriented software. Today, he provides a broad range of ser-
vices that encompass multiple roles as technical project manager, business
analyst, enterprise application architect, and software developer for mis-
sion-critical applications and systems. Ron’s reputation as an architect, lec-
turer, teacher, and mentor are highly recognized and valued by his clients.

Jeff Hayes is an independent application software engineer with a back-
ground in mathematics, financial and medical systems application develop-
ment, and bioelectric signal processing. He has a diverse list of clients whose
primary businesses include nuclear power engineering, medical facilities
quality assurance, hospitals, and banking systems and trust management. As
owner of Chicago Software Workshop, Jeff stresses education and long-
range planning in his engagements. He holds a master of science degree in
electrical engineering from Northwestern University and is a member of
the IEEE.

Ross MacCharles is the lead technical architect for Nakina Systems in
Ottawa, Canada. He has spent his fourteen-year career as an influential so-
lutions provider and technology leader in a variety of business domains,
including global telecommunications firms, innovative startups, federal gov-
ernment agencies, international news agencies, major banks, and insurance
companies. Ross can be reached at rossmacc@hotmail.com.

Jason Prizeman is a technical architect and has been specializing in the
J2EE framework for more than five years. His project exposure is vast, en-
compassing a huge range of projects for an array of business sectors.

Mike Trocchio is a senior technical architect for Leading Architectures
Inc., a Chicago-area consulting firm. Mike is currently focusing on the de-
sign, development, and deployment of large-scale Internet applications. He
has strong expertise in all areas of information technology, including re-
quirements gathering, object modeling, object-oriented designs, database
modeling, code development, implementation, and performance tuning. He
also has strong exposure to application security, general corporate security
policies, and using open source products in an application to save time and
money. Mike can be reached at mtrocchio@leadingarch.com.

D. Scott Wheeler has performed almost every role in systems
development over the past sixteen years, while utilizing a wide variety of

Preface

http://www.amazon.com/exec/obidos/ASIN/0972954899

xv

technologies. He is currently a technical architect involved in open source
development and promotion. He is the founder of the Open Source
Developer’s Kit (http://www.osdk.com/), owner of Nortoc Inc. (http://
www.nortoc.com/), and partner in Open Foundation (http://
www.openfoundation.com/). Scott can be reached at dwheeler@nortoc.com.

Preface

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

1

1

Project Development Team and
Project Life Cycle
This chapter lays the foundation for building a successful first project, from
inception to release. It begins by defining what a technical architect is and
does and summarizes how the architect works with other team members.
The chapter continues with a look at a few alternative approaches to the
development process. Still a subject of considerable debate, the definitive
process for building a successful project does not yet exist, leading many
companies to adopt a hybrid plan.

Project Development Team: Roles and Responsibilities

All J2EE development teams need people with a wide variety of skills to fill
numerous roles within the team. Among the many skill sets needed to make
a J2EE project successful are:

▲ Technical architect

▲ Project manager

▲ Business analyst

▲ Layout designer

▲ Presentation-tier developer

http://www.amazon.com/exec/obidos/ASIN/0972954899

2

▲ Business logic developer

▲ Data modeler

▲ Database administrator

▲ Data migration specialist

▲ Infrastructure specialist

▲ Testing specialist

Although the book focuses on the role of the technical architect, this
section defines the roles and responsibilities of other major players on the
J2EE development team and describes the responsibilities of the technical
architect with respect to those roles.

Some organizations use different labels for the roles. For instance, an
infrastructure specialist may be called a system administrator, a testing spe-
cialist may be a tester, and some organizations may distinguish between a
test team manager and individual testers. Regardless of the terms you attach
to these skill sets, making all of them part of a development team greatly
increases its chances of creating a successful J2EE project.

Further, it’s possible for one person on the team to fill many roles and
for one role to be co-owned by multiple people if the project is large enough.
Some organizations combine the roles of technical architect and project
manager. Some organizations have a senior developer double as a database
administrator or as an infrastructure specialist. And some have the same
developers work on the presentation tier as well as the business layer. I’m
not trying to recommend a team organization but merely to communicate
what skill sets are necessary, however they are organized.

Technical Architect

The technical architect identifies the technologies that will be used for

the project. In many organizations, some technology choices are made at an
enterprise level. For instance, many organizations make hardware and op-
erating system choices and some software choices (e.g., the J2EE container
vendor) at an enterprise level. Commonly, choosing a language, such as Java,
is an enterprise-level decision.

However, most applications have technical requirements that aren’t ex-
plicitly provided in enterprise-level edicts. I make a distinction between tech-
nology choices made at an enterprise level and those made for individual
applications. For example, a decision to use the Java language for all server-
side programming might be made at an enterprise level, but a decision about

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

3

which XML parser to use might be left to individual application architects.
In many organizations, the people making enterprise-level technology
choices make up a group separate from the J2EE development team.

The technical architect is commonly responsible for identifying third-
party packages or utilities that will be used for a project. For example, the
architect might identify a need for a template-based generation engine and
choose Apache’s Velocity.

The technical architect recommends the development methodologies and

frameworks of the project. Typically, the architect makes these recommen-
dations to the project manager. For example, a common recommendation is
to document all analyses in use-case format and supplement with a proto-
type. Another common recommendation is to document the design in terms
of an object model. Some organizations define the methodologies used at
an enterprise level.

The technical architect provides the overall design and structure of the

application. Each developer brings to a project a unique set of preconceived
opinions, habits, and preferences. Synthesizing the input of this sometimes
widely divergent group, the technical architect ensures that the work done
by individual developers is complementary.

I liken the role of technical architect to that of an orchestra conductor.
All musicians have differing opinions about how to interpret a given work.
The conductor provides the interpretation that will be used and works with
the musicians to implement it.

The technical architect ensures that the project is adequately defined. A
project analysis must be detailed and consistent enough to form the basis
for building an application. Typically, the technical architect works with the
project manager and business analyst to define the project.

The technical architect ensures that the application design is adequately

documented. Documenting the application design is a critical step in estab-
lishing sound communication with and among developers. The process of
creating documentation forces the architect to think through issues thor-
oughly. And the final document enables management to add or change de-
velopers to the project without adversely encroaching on the architect’s time.
For developers, documentation allows them to proceed if the technical ar-
chitect is absent from the project for a limited period and enables them to
work through design inconsistencies on their own without consuming the

Project Development Team: Roles and Responsibilities

http://www.amazon.com/exec/obidos/ASIN/0972954899

4

time of other members of the development team. Documentation also helps
to insulate the project against the effects of personnel turnover.

I’ve seen many projects that were not documented, and the result was that
adding a developer was a major chore because the architect had to verbally
convey the design to the newcomer. Having to communicate the design ver-
bally negates some of the benefits to bringing on additional developers.

The technical architect establishes coding guidelines. Because individual
developers have coding preferences, coding standards need to be articulated
so that the individual pieces are more easily brought together. The techni-
cal architect is responsible for establishing project procedures and guide-
lines for topics such as the following, which are covered in more depth later
in the book:

▲ Exception handling

▲ Logging

▲ Testing

▲ Threading

The technical architect identifies implementation tasks for the project

manager. This role is especially important for J2EE projects because they
encompass a much wider range of technologies than do other types of sys-
tems projects. Out of practical necessity, the technical architect also helps
the project manager with project planning and estimates.

The technical architect mentors developers for difficult tasks. Typically,
the architect is more experienced than the developers. When the developers
run into a technical problem that slows them down, the architect is often
the one to help them create a solution. For many projects, the architect is
more of a mentor than an implementer.

The technical architect enforces compliance with coding guidelines. Be-
ing the one who establishes coding guidelines, the technical architect is the
most likely to recognize when the guidelines are not being followed and is
therefore the logical choice to enforce them. A project manager, who typi-
cally is charged with enforcement tasks, often does not have the technical
experience to recognize compliance.

Code reviews are an excellent enforcement mechanism. It is much harder
for individual developers to privately skirt team coding standards if other
team members examine the code.

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

5

Code reviews are also an excellent learning tool for all members of the
development team. The technical architect discovers holes in the design,
and all participants learn tips and tricks from the rest of the team. Typically
the most experienced member of the team, the technical architect often fa-
cilitates the code review. To be most useful, a code review should be held in
a congenial, nonthreatening atmosphere.

The technical architect assists the project manager in estimating project

costs and benefits for management. Although this is usually the project
manager’s responsibility, most project managers are less experienced with
J2EE technologies and may not be aware of everything that needs to be
done.

The technical architect assists management in making personnel deci-

sions for developer positions. While personnel decisions are often viewed
as a management function, the technical architect is in a good position to
assess technical competence. Mistakes in personnel decisions can cause con-
siderable damage to project timelines.

Project Manager

The project manager is responsible for coordinating and scheduling all tasks
for all members of the project development team. The project manager
must also communicate current project activities and status to management
and end-user representatives. Further, the project manager acquires any re-
sources or materials needed by the project or the team members.

The technical architect is responsible for providing technical advice and

guidance to the project manager. The technical architect assists the project
manager in identifying project tasks and the order in which they should be
completed. The architect also helps the project manager identify needed
materials and resources, including guiding the selection of other team mem-
bers and validating their skill sets from a technical standpoint.

Business Analyst

The business analyst is responsible for working with end users to define the
application requirements—the detail necessary to design and build the appli-
cation. Because end users and developers often use different terminology, the
business analyst is responsible for translating communications between end
users and developers. Often the business analyst has experience on both the
end-user side of the enterprise and the information technology side.

Project Development Team: Roles and Responsibilities

http://www.amazon.com/exec/obidos/ASIN/0972954899

6

As a project progresses, the business analyst’s role diminishes but does
not disappear. Developers typically have additional business questions that
come to light during coding and testing activities. The business analyst works
with the business side to get these questions answered.

The technical architect is responsible for ensuring that the application re-

quirements determined by the business analyst are adequate. It’s unrea-
sonable to expect 100 percent of the analysis to be complete and correct.
After all, analysis is to some extent subjective. However, the analysis needs
to be complete enough to warrant proceeding with design.

Layout Designer

Many applications, especially those that are publicly available, need profes-
sional graphics or layout designers. Most technical architects, left to their
own devices, can produce functional Web pages, but those pages typically are
ugly and hard to use. Graphics design is more art than science. Usually, the
layout designer works primarily with the business analyst and other represen-
tatives of the business side to work out the design. But the layout designer
may also work with the presentation-tier developer to create a prototype.

The technical architect is responsible for ensuring that the layout is tech-

nically feasible. I’ve seen many Web page designs that use text effects that
are available in word processors but are not supported by HTML—for ex-
ample, a design using text rotated 90 degrees. The architect is in a position
to catch and correct these kinds of problems early.

Presentation-Tier Developer

The presentation-tier developer is responsible for coding all HTML,
Javascript, applet/Swing code, JSPs, and/or servlets for an application. In
general, anything directly involved in producing the user interface is in the
purview of the presentation-tier developer. Typically in collaboration with
the layout designer, the presentation-tier developer builds the prototype
and develops the working version. And with the technical architect, the pre-
sentation-tier developer determines the structure and design of front-end
navigation.

The technical architect is responsible for ensuring that design patterns

can be maintained and extended. Navigation issues are often complex and
can easily degrade into hard-to-maintain code. The technical architect is in

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

7

a good position to identify and correct maintenance issues as well as other
technical problems that arise.

Business Logic Developer

The business logic developer is responsible for coding all invisible parts of
the application, including enterprise beans, Web services, RMI services,
CORBA services, business objects, and data access objects. Some people re-
fer to these invisible parts as the server-side components of the application.
The business logic developer is often a Java specialist who works closely
with the technical architect and assists in performance tuning as needed.

The technical architect provides guidance for the business logic devel-

oper. It’s common for technical issues and problems to arise in server-side
components, which are usually the most complex pieces of an application.
Thus the technical architect often acts as a mentor to the business logic
developer.

Data Modeler

The data modeler uses information from the business analyst to identify,
define, and catalog all data the application stores in a database. Data model-
ing typically involves documenting application data in entity-relationship
(ER) diagrams. The database administrators then uses the ER diagrams to
produce a physical database design. Thus it is common for the roles of data
modeler and database administrator to be combined.

The technical architect is responsible for ensuring that the data model is

adequate. As with business analysis, it’s unreasonable to expect the data model
to be 100 percent complete. If the data model is largely complete and in
third normal form, future changes in the model (and thus the database) are
likely to be minor.

Database Administrator

The database administrator is responsible for formulating a database design
based on the business requirements for the application and for creating and
maintaining database environments for the application. Typically, the data-
base administrator assists with performance tuning and helps the business
logic developer diagnose application development issues regarding data ac-
cess. Sometimes, the database administrator doubles as a business logic de-
veloper or data migration specialist.

Project Development Team: Roles and Responsibilities

http://www.amazon.com/exec/obidos/ASIN/0972954899

8

The technical architect works with the database administrator to re-

solve any issues or problems involving database storage. However, the
database administrator primarily interacts with the data modeler and the
business logic developer.

Data Migration Specialist

Some applications, such as those for data warehousing, depend heavily on
data migrated from other sources. The data migration specialist writes and
manages all scripts and programs needed to populate the application data-
bases on an ongoing basis. When an application has few migration require-
ments, this role may not be necessary or may merge with the database
administrator’s role.

The technical architect defines data migration requirements for the mi-

gration specialist. Working with the data migration specialist to solve any
technical issues or problems that might arise is another aspect of the techni-
cal architect’s role.

Infrastructure Specialist

The infrastructure specialist is responsible for providing all development,
testing, and production environments as well as the deployment meth-
ods. A formal infrastructure for development and deployment saves time
and effort. The idiosyncrasies involved in administrating containers,
writing deployment scripts, and assisting with other developers diagnos-
ing problems with their test environments represent a unique and chal-
lenging problem set.

The technical architect defines infrastructure requirements for the infra-

structure specialist. The architect works with the specialist to determine
the number and nature of the environments needed and what level of sup-
port is required for each environment. Many projects need at least one de-
velopment, testing, and production environment. Some organizations com-
bine the role of infrastructure specialist with that of technical architect.

Testing Specialist

A testing specialist is typically a detail-oriented person who makes sure that
the application produced matches the specification and is reasonably free of
bugs. Typically, a testing specialist has at least a basic knowledge of the busi-
ness area.

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

9

The technical architect works with testing staff to identify any infrastruc-

ture requirements and support needed. The project manager and the busi-
ness analyst usually establish the content of test plans and the testing meth-
odology. Therefore, the architect’s role in testing is usually support.

Project Life Cycle Approaches

There are differing schools of thought as to what the J2EE project life cycle
should be. This section describes these schools of thought and presents my
views on the topic. The guidelines presented in this book are intended to be
compatible with any methodology.

Waterfall Approach

The waterfall approach entails performing all analysis and design for a
project before coding and testing. This approach was commonly used when
most development was mainframe-based and is still the one most compa-
nies prefer.

Projects developed under the waterfall approach tend to be large and
have long delivery times. Hence, they entail more risk. These projects usu-
ally don’t require business participants to learn as much technical terminol-
ogy, and the business-side interface is tightly controlled.

Compared with other approaches, the waterfall approach to project de-
velopment does not provide feedback as early in the process but delivers a
more complete solution. Waterfall projects tend to fit neatly into the bud-
get planning cycle, which may be one reason for their popularity.

Because of the length of time waterfall projects usually require, the busi-
ness requirements often change during the project. Project managers then
face a dilemma: if the project doesn’t change with the business, the resulting
application won’t provide as much benefit; and if the project changes course
to follow business requirement changes, the time and resources needed for
the project will be negatively affected.

Iterative Approaches

Iterative approaches strive to separate a project into small component pieces
that typically need few resources. Thus the iterative approach is the antith-
esis of the waterfall approach. The most popular iterative method is Ex-
treme Programming (XP).

The central objective of XP is reducing the technical risks and project
costs that plague the waterfall approach. XP uses the following assumptions:

Project Life Cycle Approaches

http://www.amazon.com/exec/obidos/ASIN/0972954899

10

▲ Catching mistakes earlier is cheaper in the long run.

▲ Reducing complexity also reduces technical risk and is cheaper in
the long run.

XP dictates that you break the problem up into many small problems
(called stories) that take three weeks or less to implement. Each story is co-
developed by two programmers using one machine. The programmatic test
to determine if the new story functionality works is developed and added to
the regression test suite when the story is developed. These programmers
ignore every aspect of the application except the story they are working on.
A business participant is dedicated to the project and is immediately avail-
able to answer any business questions that arise.

Using pairs of programmers to code everything theoretically reduces
the probability that an error survives to deployment. Using pairs also tends
to make code simpler because it takes time to explain the concept to another
person. The more complicated the algorithm, the harder it is to explain.
The emphasis on reducing complexity makes it less likely that mistakes will
occur.

The emphasis on testing, creating, and frequently running a regres-
sion test suite catches mistakes early and reduces the probability that
any change will inadvertently introduce new bugs or have other unin-
tended consequences.

XP reduces risk by providing feedback early. A development team pro-
ceeding down the wrong track will be alerted and corrected earlier, when it’s
much cheaper.

Rational Unified Process

The Rational Unified Process (RUP) is a formalized development method-
ology. Most RUP literature describes it as an iterative approach, but that’s
only half the story. RUP emphasizes starting with requirements gathering,
analysis, and design activities for the entire project—including object and
data modeling—before proceeding to construction. In this sense, RUP takes
a waterfall approach to analysis and design but an iterative approach to con-
struction and delivery. By encouraging early requirements gathering and
analysis, RUP seeks to keep the project aligned with user expectations.

RUP mitigates risk by encouraging the team to develop the riskiest
portions of the project first, allowing more time to recognize and re-
spond to issues and problems. It also reduces rework when the design
requires alteration.

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

11

Which Approach Is Most Popular?

I’m not prepared to declare any of these approaches “best.” They all have
advantages and disadvantages. The waterfall approach appears to be the most
commonly used.

XP is rarely used in pure form. This isn’t a judgment, merely an observa-
tion. Most companies use (and are more comfortable with) a waterfall ap-
proach to initial development and major enhancements. While enhance-
ments are more iterative with the waterfall approach, the iteration size is
usually much larger than with XP approaches.

XP’s requirement of two coders for one task is a hard sell. From a layman’s
perspective, XP appears to consume more resources than is necessary for
any given coding task. The cost for the extra coder is readily quantifiable,
but the lost productivity for mistakes often is not. And people tend to opt
for reducing the costs they can easily see, not the ones they may know are
present but are not apparent.

RUP seems to be gaining popularity. In fact, more companies appear to
be using RUP than are using XP. However, every implementation of RUP
I’ve seen has been partial. It’s common for organizations to be selective and
use the portions of RUP that provide the most benefit to the project at hand.

Consider a Hybrid Approach

This book is largely compatible with either approach. XP users would merely
choose much smaller iteration sizes than my illustrations. Because one ap-
proach rarely has a monopoly on common sense and is devoid of disadvan-
tages, I prefer a hybrid approach.

XP’s emphasis on testing has great value. I’ve adopted the practice of cod-
ing test sequences for everything I write and combining them into a full
regression test. I’ve even seen a team go so far as to put a full regression test
in the build and force the deployment to fail if all the tests don’t pass. I find
that the mistakes avoided by this practice more than pay for the extra time
and effort required to develop and maintain test scenarios.

XP’s war on complexity has value. Simpler is better. Ignoring all stories
but the one you’re working on does produce simpler code in the short term.
But it also introduces a higher probability of rework (or refactoring, in more
modern parlance), for which many projects have no budget. If refactoring
isn’t done properly or the developers are under time pressure, the code can
easily end up being unnecessarily complex anyway. Also, many developers
use the “complexity” excuse to ignore business requirements.

Project Life Cycle Approaches

http://www.amazon.com/exec/obidos/ASIN/0972954899

12

RUP’s emphasis on centralized analysis and design has great value. XP
assumes that developers can take a parochial view of the story they are work-
ing on and ignore anything else. This can cause some amount of rework. All
developers really should have a larger focus. Because RUP concentrates analy-
sis and design at the beginning of a project, it represents a sensible compro-
mise between a purely iterative approach and the waterfall approach.

It is necessary to control communication with end users. XP assumes that
any member of the development team should be able to talk to an end-user
representative. Developers and end users usually have different perspec-
tives and use different terminology. In practice, many developers have trouble
adapting to nontechnical terminology. They simply can’t translate business
terminology into technical terminology, and vice versa. Some centralization
of communication to the business side is necessary as a practical matter.

Further Reading

Beck, Kent. 2000. Extreme Programming Explained. Reading, MA: Addison-
Wesley.

Brooks, Frederick P., Jr. 1975. The Mythical Man-Month: Essays on Software
Engineering. Reading, MA: Addison-Wesley.

Kroll, Per, and Philippe Krutchen. 2003. The Rational Unified Process Made
Easy: A Practitioner’s Guide to the RUP. Boston: Addison-Wesley.

Chapter 1: Project Development Team and Project Life Cycle

http://www.amazon.com/exec/obidos/ASIN/0972954899

13

Section 1

Planning J2EE Applications
The technical architect typically assists in planning J2EE applica-
tions by participating in analysis activities, defining scope, and
estimating resources, among other activities. The architect’s role
in the planning stage varies greatly from company to company.
Although I’ve taken the perspective that the architect leads and
facilitates planning activities, your role at an individual company
may be to assist rather than facilitate.

In this section, you will learn how to:

▲ Facilitate and document business analysis.
▲ Assist the project manager in defining project scope.
▲ Estimate needed time and resources.
▲ Define and design interfaces to external applications.

The skills you learn here will enable you to apply the design
techniques discussed in section 2.

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

15

2

Defining the Project
The first step in developing any application is performing analysis to define
its purpose, scope, and objectives. A J2EE application is no exception. In-
cluding analysis in the development process is basic common sense, but I’m
continually amazed at how many projects muddle through without defining
their targets first.

The technical architect is not directly involved in defining the project;
that is the job of the project manager, business analyst, and end user. How-
ever, the architect is responsible for ensuring that the project is defined with
enough consistency and detail that it can be physically designed and imple-
mented. Because most other members of the J2EE development team don’t
know what information is required to design and implement an application,
the technical architect often facilitates project definition discussions.

The technical architect must possess analysis skills. Without analysis skills,
an architect cannot recognize weak points and gaps in project definition.
Although an architect who lacks analysis skills will likely catch most prob-
lems in project definition during the construction phase, by then it’s more
expensive to make changes.

I can hear the groans of developers as I write. Technical people want to
hear more about coding techniques than project definition and analysis-
gathering strategies. I completely understand. There’s nothing I like more

http://www.amazon.com/exec/obidos/ASIN/0972954899

16

than producing good code that does something useful. However, to get good
code, you need good analysis and good project definition. My experience is
that the probability of getting useful code without doing decent analysis
first is slim to none.

Use cases are an important tool in analysis. The Unified Modeling Lan-
guage (UML) specification was created to describe and document analysis
and designs for systems that use object-oriented languages such as Java. The
main construct UML has for describing what an application will accomplish
is the use case. This chapter defines the term use case, guides you through
writing use cases for a project, lists some common mistakes made in creat-
ing use cases and how to avoid them, and presents and discusses an example
of use cases written for one project.

This chapter does not contain a comprehensive synopsis of use cases
with respect to the UML specification. I present the subset of the specifica-
tion that is commonly used and is practical. For a thorough treatment of the
UML specification, see Booch, Rumbaugh, and Jacobson (1999).

Although some developers distinguish between use cases and require-
ments, I see no difference. Requirements are the specific features, written
in business terms, that an application must provide. Therefore, require-
ments typically are use cases written in summary form.

If you’re using Extreme Programming (XP), you create stories rather
than use cases. Nonetheless, you will still find this chapter useful. Despite
the more granular nature of the stories most XP users create compared with
UML use cases, I consider the constructs of the story and the use case to be
conceptually identical. The major difference is that the granularity of the
story enables one pair of programmers to implement it in three weeks’ time
versus the larger time frame usually needed for one programmer to imple-
ment a use case.

Additionally, I like to prototype the user interfaces. A prototype is an ex-
cellent vehicle for enabling the business side and developers to understand
the target of a development project. I usually have no trouble getting the
business side interested in the prototyping process because it concretely
represents what they’re going to get. Prototyping also helps refine the use
cases.

Once you’ve defined a project’s use cases (or stories), you can create a
fairly detailed definition of the project, written in business terms, that both
developers and businesspeople can understand. This allows the business side
and any management stakeholders to provide feedback early. Getting a formal

Chapter 2: Defining the Project

http://www.amazon.com/exec/obidos/ASIN/0972954899

17

sign-off for the use cases in a particular project enables the project manager
to contain project scope.

Identifying Project Scope

A high-level project definition and preliminary idea about scope is needed
before use-case analysis and prototyping exercises can be effective. Most
developers are detail oriented and will consider this high-level definition
too vague to be useful. Keep in mind that the purpose of this high-level
project definition is only to determine scope for the use-case analysis (not
for coding).

Here is an example of a high-level project definition statement: Build a
system that assists project managers in planning tasks, tracking the activities
of every team member, and estimating completion dates. The project-track-
ing application should allow the user to do the following:

▲ Define a project and its tasks.

▲ Record people assigned to project tasks and estimate the time
needed to complete each task.

▲ Record the order in which tasks will be completed.

▲ Record project progress and mark tasks as completed.

▲ Automatically schedule the project.

▲ Create reports of project progress.

As vague and simplistic as the statement is, it provides a starting point
for identifying actors and constructing use cases.

Identifying the Actors

The first step in use-case analysis is to identify the actors. An actor is the
user type or external system serviced or affected by the use case. Although
word actor has connotations of being an actual person, a UML actor can be
an external system or an organization type or role.

The following is a list of actors for a report generation application:

▲ Trust customer user

▲ Trust customer organization

▲ Banking support user

▲ Report template developer

▲ Document delivery application interface

Identifying Project Scope

http://www.amazon.com/exec/obidos/ASIN/0972954899

18

▲ Report template definition interface

▲ Data warehouse application interface

▲ Report request application interface

▲ Application administrator

And here’s a list of actors for a cash-tracking application:

▲ Cash manager user

▲ Transaction approver user

▲ Senior transaction approver user

▲ Banking support user

▲ Fund accounting application interface

▲ Application administrator

You may have noticed that in each example, I listed individual user groups
as separate items. I did this primarily because every user group has different
capabilities. While some use cases apply to all types of end users, others are
user-group specific. In each example, we had far fewer different types of end
users when we started use-case analysis than we had when we finished. Dur-
ing the course of writing the use cases, we began to realize that there were
different user roles that required different capabilities.

It is possible for a user to represent multiple actors. For example, a user
who provides banking support may also assume the role of a cash manager
or transaction approver.

Consider the application administrator as an actor for any large applica-

tion. This forces some attention to support—which increases availability
and in turn makes other actors (who happen to be people) happy.

Make sure that all actors are direct. Sometimes people are confused by the
external system interfaces and want to list as actors the end users serviced by
an external interface. For example, if a security-trading system is one of the
external interfaces, you may be tempted to list traders as actors because they
are serviced indirectly by your application. However, the security-trading
system is the actor, and the traders are indirect end users.

Facilitate identifying actors by beginning with a small group. Technical
architects and business analysts can facilitate the discussion by making as-
sumptions about who the actors are and reviewing them with other members

Chapter 2: Defining the Project

http://www.amazon.com/exec/obidos/ASIN/0972954899

19

of the team and the business side. In my experience, people are much better
and quicker critiquing something in place than they are adding to a blank
sheet of paper. You will probably discover additional actors as use-case analysis
proceeds.

Writing Use Cases

A use case is a description of something a system does at the request of or in
response to an action by one of its actors. You should write use cases in
business terms, not technical ones. Anyone on the business side should be
able to read the text without a translator or technical glossary. Use cases
containing technical terms often indicate that technical design assumptions
are being made at this stage, and they shouldn’t be. Use cases can also serve
as a casual “contract” between the business and development sides of the
organization as to what will be delivered in what increments.

Use-case text should begin “The system (or application) will.” If you
identify a use case that cannot be written in this form, it’s likely not a valid
use case but part of another one. Note that use cases often service multiple
actors. I recommend explicitly listing all affected actors in the use case.

The following are examples of use cases from a reporting system:

▲ The system will provide an interface that will accept report template
definitions from an existing MVS/CICS application.

▲ The system will allow application administrators to control the
report templates that members of a trust customer organization can
run.

▲ The system will run reports at least as fast as its predecessor system
did on average.

▲ The system will restrict reported data for all trust customer users to
that of the trust customer organization to which they belong.

▲ The system will allow banking support customers to execute all
report templates using data from any trust customer organization.

Some of these use cases have additional detail beyond the summary sen-
tences. For example, complete use-case text for the performance require-
ment is:

▲ The system will run reports at least as fast as its predecessor system
did on average. Trust customer users and banking support users run
reports. The primary measurement is the clock time measured from

Writing Use Cases

http://www.amazon.com/exec/obidos/ASIN/0972954899

20

the time the submit button is pressed until the time the user is able
to view the report in the browser. CPU time is not relevant to this
use case. Performance and scalability were the entire reason the
rewrite project was funded.

Uses cases can be written with a more formal organization and content.
See Cockburn (2001) for more details.

There are no rules about how long a use case should be. Generally, more
information is better. I find it helpful to start with and include a summary
for each use case that is no longer than two sentences. This simplifies orga-
nizing the use cases as the list grows. As analysis proceeds, you will attach
additional detail to most use cases.

Avoid use-case diagrams. The UML specification does define a graphical
representation scheme for use cases. However, graphical schemes are rarely
used, and I purposely do not discuss them in this book. My experience has
shown that use-case diagrams confuse both the business side and develop-
ers, and that the costs of creating, explaining, and maintaining these graphi-
cal constructs far outweigh any benefits they provide.

Writing use cases requires in-depth participation from the business side.

From the technical side, some business analysts may be able to help con-
struct an initial draft, but the process should not end without direct business
side participation and review. Although enlisting the involvement of busi-
ness users is sometimes easier said than done, their input is valuable. In my
experience, insufficient business support for analysis efforts such as use-case
review can cause a project to fail.

Facilitate use-case analysis by starting with a small group. Technical ar-
chitects can speed this process along by working with one business side user
or a business analyst to draft a set of use cases that can initiate discussion.
These draft use cases will be incomplete, and some will be incorrect, but
you’ll get feedback easier and quicker than you would if you started with a
blank sheet of paper. You can use objections to your assumptions to refine
and improve the draft use cases.

Consider recording use cases in a database. I find it helpful to enter the
use cases into a database rather than using a word processor. Please see the
“Use Case Template Database” (defined using Microsoft Access) on the In-
ternet at http://www.dvtpress.com/javaarch/.

Chapter 2: Defining the Project

http://www.amazon.com/exec/obidos/ASIN/0972954899

21

Enlist someone to act as “scribe” for the use-case discussions. When you’re
facilitating a discussion, you won’t have time to take good notes. Having
someone other than the facilitator write the discussion notes helps ensure
that they will be complete and understandable.

Write use cases so they can be amended as more information becomes

available. Use cases are always evolving. If you discover additional informa-
tion in the modeling phases or in later portions of the project, add this ma-
terial to the use cases.

Use-case analysis is finished when team members feel they can estimate

a time to implement each use case. Estimates may be in terms of number
of weeks rather than hours. Some developers don’t feel comfortable provid-
ing estimates until they’ve essentially coded the application. You may need
to gently remind these developers that some difference between the esti-
mate and the actual amount of time a task takes is expected.

Be sure to include requirements for security, scalability, and availability.

The following are use cases for these three topics from systems I’ve
architected in the past:

▲ The system will require senior approver users to approve cash
transactions exceeding $5 million.

▲ The system will require separating the transaction entry user and
the approver.

▲ The system will have reasonable response times for all users with at
least eighty concurrently running reports.

▲ The system will be available 24x7x365 with the exception of a
fifteen-minute maintenance window on Thursdays at 10 p.m.,
provided that Thursday is not within five business days of month-
end.

Do not slow down if the group has trouble articulating requirements. Make
assumptions and proceed. If your use cases are not right, the objectors have
the responsibility to tell you what’s wrong so you can correct the problem.
You can use that information to refine and improve the use cases.

Writing Use Cases

http://www.amazon.com/exec/obidos/ASIN/0972954899

22

Common Mistakes

This section contains examples of use cases that have various defects.

Imposing a technical design assumption under the guise of a requirement.

This is the mistake I see most frequently. Consider the following use case
paraphrased from the reporting system example used earlier in the chapter:

▲ The system will allow application administrators to limit system
load by setting rules that prohibit report execution for groups of
users or redirect their execution to a batch stream.

This use case made several unwarranted assumptions and had us solving
the wrong problems. It assumed that the hardware/software architecture
used by the application could not be scaled to handle the load and that some
alternative processing route was necessary. It assumed that the application
could not be made as efficient as the “batch stream” mentioned. And it as-
sumed that the batch stream environment in fact had surplus capacity to
handle the load that the application should have been handling.

Even if some of the assumptions made in this use case turned out to be
true, we should have started by planning an architecture that more than
supported our load. In fact, most of the assumptions turned out to be false:
The architecture could handle the load efficiently; the batch stream was a
frequent performance bottleneck and, in fact, did not have surplus capacity;
and the efficiency of the application more than satisfied users.

A better way to write this use case would have been:

▲ The system will support up to 200 concurrently running reports
with a maximum daily volume of 500,000 reports.

Including physical design assumptions in use cases. For example, one of
the developers submitted the following use case for the reporting system:

▲ The system will insert a row into the report request table after the
request is completed.

This use case made the physical design assumption that we were record-
ing request runs in a table. But at that point, we had not decided whether we
would or wouldn’t do so, nor should we have. After some discussion, I learned
that application administrators needed a way to know what reports a user
ran so they could reproduce problems a trust customer reported to the help
desk. Given these requirements, a better way to word the use case would
have been:

Chapter 2: Defining the Project

http://www.amazon.com/exec/obidos/ASIN/0972954899

23

▲ The system will record report request history for at least thirty-six
hours for the benefit of application administrators and report
template developers investigating reported problems.

Not keeping analysis sessions productive. Analysis efforts can stall for many
reasons, including ineffective facilitation or leadership, an extremely low
level of detail in the discussion, and lack of information. Technical archi-
tects can steer the development team away from all these problems.

Failing to document use cases, even when the project is small. Most de-
velopers assume that documenting use cases is unnecessary when the project
has only one developer. Use cases should be documented anyway. Docu-
mented use cases target the development effort and make tangents less likely.
Further, documented use cases communicate the objectives of the develop-
ment to management and the business side and assist in project transition if
additional developers join the team or the project is assigned to another
developer.

Repeatedly defining terms in every use case. Even for complicated appli-
cations, it’s unnecessary to define terms repeatedly in every use case in which
they appear. Instead, you can define and maintain them once in a separate
list of business terms. For example, cash transaction (a term used in an earlier
use-case example) refers to money transferred from one account to another.
The characteristics of a transaction are that it has an identifier, a date, a cash
amount, at most one account from which the money is taken, and at most
one account to which the money is transferred.

If you think writing use cases seems easy, you’re right. The corollary to
this is that if you think you’re missing something and that writing use cases
should be harder than this chapter makes it appear, you’re making the task
harder than it needs to be. If writing use cases required more than common
sense, the practice would not be successful because you would never get a
room full of people to agree on the outcome.

Architect’s Exercise: ProjectTrak

ProjectTrak is an open source project management tool. Although some
companies have budgets that allow them to buy commercial project man-
agement software for their architects and project managers, many do not.
Because project management software is an essential tool for any large-scale
development, there is a value in having an open source (free) alternative.
The ProjectTrak project is hosted at http://projecttrak.sourceforge.net/. A

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

24

Figure 2.1: ProjectTrak Use-Case Examples

The system will allow users to define, view, and save project

information.

▲ Projects have a name, any number of project tasks, and any
number of project resource personnel. In addition, it will track the
date the project was created and last updated.

The system will allow users to define, edit, and display project tasks.

▲ A project task has a name, an estimate (in hours), percent
complete, one assigned personnel resource, any number of
dependent tasks, and a priority (high/medium/low).

The system will compute work schedule information about project

tasks.

▲ A projected start date and end date will be computed for each task.
This date range will be consistent with the number of working
hours available for the assigned resource. This projected date
range will not conflict with the range generated for other tasks
assigned to this resource.

▲ The order that tasks are completed will be consistent with their
priority assignment.

▲ The order that tasks are completed will be consistent with the
dependent tasks listed.

subset of the project’s use-case analysis is presented in figure 2.1. A com-
plete set of use cases is distributed with the project’s source.

Prototyping

At this stage, the development team usually has enough information to choose
a user interface technology (which typically involves HTML because most
applications are Web-compliant these days). A user interface enables the
prototype to become a part of the real application and guards against acci-
dentally promising delivery of something that isn’t technically possible.

Consider involving the layout designer in producing the prototype. In fact,
the layout designer should almost facilitate this particular exercise instead
of the technical architect. I find that technicians usually don’t make the most
aesthetically pleasing user interface screens. I know I don’t.

Chapter 2: Defining the Project

http://www.amazon.com/exec/obidos/ASIN/0972954899

25

Remember that prototypes are not functional by definition. None of the
prototype screens should have dynamic data. If you are responsible for de-
veloping the prototype and are using HTML, I highly recommend Castro
(2002).

Further Reading

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 1999. The Unified Mod-
eling Language User Guide. Reading, MA: Addison-Wesley.

Castro, Elizabeth. 2002. HTML for the World Wide Web with XHTML and
CSS: Visual QuickStart Guide, 5th ed. Berkeley, CA: Peachpit Press.

Cockburn, Alistair. 2001. Writing Effective Use Cases. Boston: Addison-Wesley.

Fowler, Martin, and Kendall Scott. 1997. UML Distilled: Applying the Stan-
dard Object Modeling Language. Reading, MA: Addison-Wesley.

Further Reading

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

27

 3

Scope Definition and Estimation
In most organizations, the project manager works with the business side
and management to establish project scope and to estimate time and re-
source requirements. And frequently, the project manager relies on the tech-
nical architect for assistance in these tasks. The scenario is no different for
J2EE applications. This chapter is written for architects responsible for help-
ing to define and estimate delivery for management; readers not involved in
these tasks can safely skip the chapter.

Defining Scope

Objectively define project scope in terms of use cases, and obtain the agree-

ment of the business side. Changing scope during a project wreaks havoc
with project timelines and lowers the morale of the development team. When
the business side makes additional requests after development is under way,
acknowledge them, record them in a use case, and schedule them for a fu-
ture release. Often, making rough estimates for each use case provides in-
formation the business side will find useful in deciding scope.

Get agreement on the use cases from the project sponsor. As use cases are
written in business terms, they can be used as a “contract” with the business
side and management as to what will be delivered when. Work with the
business side to choose which use cases will be implemented in the current

http://www.amazon.com/exec/obidos/ASIN/0972954899

28

project. Anything else will be deferred. Even if scope is agreed on verbally,
put it in writing and e-mail it to everyone remotely connected to the project.
Make sure to keep a copy.

Diligently enforce project scope once it’s determined. The most important
thing the project manager can do once the scope of a project is determined
is to enforce it. The technical architect has the responsibility of alerting the
project manager to scope changes. It’s much harder to hit a moving target.
Although I generally prefer to schedule all enhancements for future releases,
the architect usually doesn’t get to decide scheduling issues. I estimate the
request in use-case form and provide a preliminary estimate. Usually, the
project manager can use this information to steer the business side toward
scheduling the request for a future release.

Basics of Estimating

Many technical people consider estimating difficult, and indeed, at this stage,
it is definitely as much art as it is science. This chapter presents a method of
determining a gross estimate based on information you should have from
the use-case analysis and the prototypes. I make no claims that my way of
estimating is the only way. If you have an approach you’re comfortable with,
stay with it.

Estimates formed at the beginning of a project should be revisited peri-
odically and refined after more detailed planning and designing are done.
After defining the external interfaces and completing object and data mod-
eling, you will be in a better position to make more accurate estimates. Es-
timates you make now should be detailed enough that you can use them in
estimating any combination of use cases. Ideally, the business side looks at
cost/benefit comparisons when deciding on scope.

Estimate in terms of the slowest resource on the team. We all know
that some people take less time on development tasks than do others. I
would rather deliver a project early than have to explain why it’s going to
be late.

Estimates should be proportionally balanced. I have found that a typi-
cal development team spends about one-third of its resource budget plan-
ning and designing, one-third coding and unit testing, and one-third
supporting system- and user-testing activities. Keep in mind that some
portion of the planning and design budget was spent performing the use-

Chapter 3: Scope Definition and Estimation

http://www.amazon.com/exec/obidos/ASIN/0972954899

29

case analysis described in the previous chapter (I usually assume that
planning and design is 50 percent complete at this point). These ratios
apply to the entire life of the project.

Consider the time needed to set up the development, testing, and produc-

tion environments. Most companies provide established environments at
the enterprise level. For example, many companies have a central adminis-
tration team to establish environments for development, testing, and pro-
duction of new applications. If your company has such a team, time allo-
cated to environment setup will be low and not usually material for
preliminary estimates. If this isn’t the case at your company, you should add
an estimate for setting up environments.

Developers are more successful at estimating coding and unit-testing tasks

than anything else. If you can get a reasonable coding and unit-testing esti-
mate, you can extrapolate the rest using the ratios mentioned previously and
get a ballpark estimate. Note that to extrapolate a total estimate based on
those ratios, you just multiply the coding and unit-testing estimate by 2.5,
assuming that planning and design is 50 percent complete at the time you
estimate.

An Algorithm for Estimating

It should be noted that technical architects are responsible for estimating
hours only. Project managers should be equipped to account for absences
due to responsibilities to other projects and vacation.

Step 1: Determine the number of screens, interfaces, database tables, and

conversions for each use case. To derive a coding and unit-testing esti-
mate, gather estimates of the following for the group of use cases being
considered for the project:

▲ Screens in the user interface (two man-weeks each)

▲ External application interfaces (four man-weeks each)

▲ Database tables (two man-weeks each)

▲ Tables or files conversioned (two man-weeks each)

Not all these items will exist for each use case. The basic estimates noted
in parentheses in the preceding list are applicable if the development team
hasn’t been formed; if there is an existing team, more accurate estimates for
each item may be possible. Estimates at this point will not be exact. Estimating

An Algorithm for Estimating

http://www.amazon.com/exec/obidos/ASIN/0972954899

30

based on the number of objects is more accurate, but that number is not
available before object modeling exercises are done.

Step 2: Estimate coding and unit-testing time for each use case. Based on
the information gathered in step 1, it’s simple mathematics to get a base
estimate for a combination of use cases. The base estimate is the length of
time it takes for one developer to complete coding and unit-testing tasks. It
may seem a bit strange to estimate coding and unit-testing time before de-
sign is complete. Few developers seem to be bothered by this ambiguity.

Many developers confuse unit testing with system testing. Unit testing is
strictly at a class level. How well a class functions when called from other
classes within the application is system testing, not unit testing.

For example, for a set of use cases that involves four screens, two exter-
nal interfaces, five database tables, no data conversions, and two environ-
ment setups, the base estimate is:

(4 × 2) + (2 × 4) + (5 × 2) + (0 × 2) = 26 man-weeks, or 1,040 hours

Step 3: Multiply the base estimate from step 2 by 2.5 to account for analy-

sis and testing activities for each use case. If coding and unit testing are
about one-third of the overall cost of each use case, the total cost should be
about three times the base estimate. Because the analysis is about 50% com-
plete at this stage, estimate the total cost to be about 2.5 times the base
estimate. Continuing the previous example, the total hours left for the project
would be 1,040 × 2.5 = 2,600.

Step 4: Inflate the estimate by 20% for each additional developer on the

project. The base estimate assumes that the project has just one developer.
Each developer added to a project adds communication and coordination
time (Brooks 1975). Although necessary, time spent communicating and
coordinating is time not spent developing. Therefore, inflate the base esti-
mate by 20% (i.e., multiply by 1.20) for each developer added. For example,
with a base estimate of 2,600 hours and five developers expected, estimate
spending 1,600 × (1.20)4 = 3,318 hours to code and unit test. Incidentally, it’s
a good idea to round that number to 3,500 to avoid creating the mistaken
impression that this is an exact estimate.

Assuming the project’s five developers are dedicated full time (32 hours
per week, allowing for bureaucratic distractions, etc.), the development team
could work a total of 160 hours per week. This means that project delivery

Chapter 3: Scope Definition and Estimation

http://www.amazon.com/exec/obidos/ASIN/0972954899

31

would be approximately five to six months out. Specifically state the estimate
in months or quarters at this point to avoid creating the impression that this
is an exact estimate.

Step 5: Review your estimates with the development team. If developers
don’t have input, they won’t feel bound by the estimates. It’s important to
remind developers that these estimates will be reassessed after design is
complete.

More manpower rarely saves a late project’s timeline. The communica-
tion/coordination penalty, as previously described, is the primary reason
that adding people to a late project only makes it later. Architects are often
asked for ballpark estimates before all the analysis is done. Even if it won’t
be literally correct, you can ballpark an estimate by filling out with assump-
tions and documenting them with the estimate.

Architect’s Exercise: ProjectTrak

Based on the requirements documented in the use cases we identified in
chapter 2, we would expect screens or pages for the following topics:

▲ Project definition view/edit

▲ Task definition view/edit

▲ Resource definition view/edit

▲ Resource calendar definition view/edit

▲ Skill set view/edit

▲ Project work schedule view and calculation

▲ Progress report view

▲ Gantt chart view

Some of these pages will be more complicated than others, but at this
stage, we don’t need to worry about that. Let’s assume that it will average
out. Working with an estimate of two man-weeks for each page, let’s add
sixteen man-weeks to the estimate.

There are no external interfaces or data conversions for this product, so
we don’t need to add time to the estimate for these activities.

Based on the requirements, at a minimum, we will have database tables
for the following constructs:

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

32

▲ Project

▲ Task

▲ Task resource assignment

▲ Resource

▲ Resource work schedule

▲ Skill set

▲ Resource skill set

Working with an estimate of two man-weeks per table, let’s add fourteen
man-weeks to the estimate.

The base estimate is then approximately 30 man-weeks, or 1,200 hours
of coding and unit-testing time. Because this is only coding and testing time,
we estimate the total number of hours left for the project at 1,200 × 2.5 =
3,000 hours.

Assuming that three developers will be assigned to the project and al-
lowing time for communication and management, we estimate 3,000 ×
(1.20)3 = 5,184 hours. As discussed, we’ll want to round that to 5,000 hours
so as not to create the impression that this is an exact estimate.

Further Reading

Brooks, Frederick P., Jr. 1975. The Mythical Man-Month: Essays on Software
Engineering. Reading, MA: Addison-Wesley.

DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive Projects
and Teams, 2nd ed. New York: Dorset House, 1999.

Chapter 3: Scope Definition and Estimation

http://www.amazon.com/exec/obidos/ASIN/0972954899

33

4

Designing External Application
Interfaces
It is common for a J2EE application to communicate with external applica-
tions. For example, a purchasing application may notify an accounting ap-
plication of all purchases, or an inventory management application may notify
an accounting application of all inventory receipts and customer shipments.
A technical architect is responsible for the design of application interfaces
as well as the application itself. This chapter describes how to define exter-
nal application interfaces in enough detail that both the J2EE and external
applications will have the information needed to perform design and imple-
mentation tasks.

If your J2EE application programmatically initiates processing in exter-
nal applications, you should identify those applications as actors in the use-
case analysis, as discussed in chapter 2. All specifics about the information
transferred between the J2EE application and the external applications should
be the subject of one or more use cases. For example, the fact that a pur-
chasing system notifies the accounting system about all orders placed should
be the subject of a use case.

Use cases for an external application interface should identify the events
that trigger use of the interface as well as the information passed for each
event. For example, consider the following use case:

http://www.amazon.com/exec/obidos/ASIN/0972954899

34

The inventory system will notify the accounting system about all inven-
tory receipts.

▲ Notification will occur immediately after the receipt is recorded.

▲ Notification will include the vendor ID and timestamp for each
receipt as well as the UPC and quantity for each item in the
shipment.

▲ Confirmation of the notification is required from the accounting
system.

Formally define and document the external interfaces so that developers
from both applications have a basis for object-modeling activities (described
in chapter 6). The technical architects for both applications need a basis for
their modeling and implementation activities. Further, the project manager
needs a contract between your development group and the external system
developers that describes everyone’s responsibilities.

The following aspects of external interfaces should be discussed with the
external teams and agreed on among the teams:

▲ Communication method

▲ Data content structure

▲ Triggering events for content exchange

▲ Error-handling procedures and responsibilities

The technical architect should facilitate interface design discussions. Part
of the role of facilitator is keeping the discussions limited to the topics just
listed. The internal design of either application is largely irrelevant to this
discussion. The platform used by the external application is relevant be-
cause it could affect the ability of the J2EE application to use some commu-
nication methods. For example, if the external application is not written in
Java, the J2EE application cannot use any form of communication that uses
RMI, such as enterprise beans.

Selecting a Communication Method

Communication with another application is either synchronous or asyn-
chronous. With synchronous communication, the transmission occurs imme-
diately and an error is generated if the external application is down. Ex-
amples of synchronous communication technologies include EJBs, RMI, Web
services, CORBA, and HTTP. And I have even seen some projects use HTTP

Chapter 4: Designing External Application Interfaces

http://www.amazon.com/exec/obidos/ASIN/0972954899

35

programmatically as a method for communication. With asynchronous com-
munication, application processing continues while the communication is
being completed. The application your communication is directed at may
not receive your message immediately. Examples of technologies that can
be used asynchronously include messaging/JMS and Web services.

Whether you choose synchronous or asynchronous communication de-
pends on the business requirements of the application. Use cases requiring
external interfaces should describe the business process in enough detail
that you can make this choice. If the external application requires immedi-
ate action, your best choice is synchronous communication. On the other
hand, if delayed processing is acceptable from a business perspective, your
best choice is asynchronous communication. The following sections pro-
vide more detail on each communication method.

Asynchronous Communication

Asynchronous communication is typically implemented via messaging tech-
nologies, known in the Java world as JMS. You can also use asynchronous
communication for broadcasts, commonly known as publish/subscribe ca-
pability. That is, you can send a message to any number of applications that
care to listen. The message content is usually informational rather than some
type of processing instruction.

Depending on your messaging vendor, messaging can be platform inde-
pendent. Most of my clients use IBM’s MQ/Series. MQ has client interfaces
for most platforms and would be a viable choice for communicating be-
tween a Windows .Net application and a J2EE application, for example.

Messaging technologies have very loose coupling. Applications can gen-
erally make any technology change the way they want to without affecting
messaging interfaces, as long as they continue to support the message trans-
mission protocol and format. For example, you could convert one of the
applications from COBOL to Java without requiring any changes to other
message senders or receivers.

Synchronous Communication

Although you can implement synchronous communication with messaging,
it is more common to implement it using Web services: RMI/EJB, CORBA,
or HTTP. If you use messaging for synchronous communication, it is gener-
ally point-to-point, not any type of broadcast. Synchronous communica-
tion is generally configured to generate an error if the external application
is not available and structured to require a response. You can think of

Selecting a Communication Method

http://www.amazon.com/exec/obidos/ASIN/0972954899

36

synchronous communication as an external call. Web services are just dif-
ferent ways to structure that call.

Using messaging in a synchronous fashion confuses some people, but it
is common in the healthcare industry. I’ve also seen it used in utility compa-
nies as well. Consider the following example of how a purchasing system
uses synchronous messaging to obtain available credit information from an
accounting application:

1 The purchasing system creates an XML document containing
instructions to return the amount of credit available to a specific
customer.

2 The purchasing system sends this XML document as a message to a
specific queue monitored by the accounting application.

3 The purchasing system waits for a response from the accounting
application.

4 The accounting application receives the message, parses the XML
text, and obtains the needed credit information.

5 The accounting application creates an XML document with the
credit information and responds to the message received,
incorporating the XML text in the response.

6 The purchasing system receives the response, parses the XML
document created by the accounting application, and continues
processing.

Increasingly, Web services are being used for synchronous communica-
tion. The primary advantages of Web services are (1) they are platform in-
dependent to the point that the external application platform is not rel-
evant, and (2) they are more loosely coupled than CORBA or RMI/EJB calls.
Web services are a good choice for synchronously communicating with non-
Java applications (such as .Net applications).

Using HTTP to communicate with another application has similar ad-
vantages and disadvantages to using Web services because they both use
HTTP. HTTP communication does require that you adopt some type of
application protocol because it doesn’t natively use SOAP.

To understand the concept of using HTTP as a communication method,
consider the following example of a purchasing application using HTTP to
request information from an inventory management system:

Chapter 4: Designing External Application Interfaces

http://www.amazon.com/exec/obidos/ASIN/0972954899

37

1 The purchasing application issues an HTTP request (using
java.net.URL) to the inventory application requesting current
inventory levels for an item (e.g., laundry detergent).

2 A servlet in the inventory management system receives the request
and initiates processing.

3 The inventory management system examines its database and
determines the quantity of the requested item available at all
warehouses.

4 The inventory management system constructs an XML document
containing the quantity information.

5 The servlet in the inventory management system returns the XML
document to the caller in the same way it would return HTML to a
browser.

6 The purchasing application receives the XML document, parses it,
and continues processing using the inventory information received.

In this example, the XML format used must have the same design as
XML used with messaging technologies.

CORBA allows external calls to applications written on any platform that
supports CORBA. In this sense, CORBA is more platform independent than
is RMI/EJB but less independent than Web services or HTTP. CORBA is also
slightly more mature than Web services or RMI/EJB.

Both RMI services and J2EE enterprise beans are restricted to Java appli-
cations. This tight coupling between applications can create deployment
difficulties because both applications need to use compatible versions of
common classes to avoid marshalling errors.

All types of synchronous communication require an error-processing
strategy if the external application is unavailable or a transaction cannot be
processed properly. Your options are either to produce an error or to de-
velop a mechanism within your own application to retry later. I prefer the
latter when possible because, although this does introduce complexity into
the application, the administrative overhead dealing with outages is too high
otherwise.

Comparing the Two Methods

Let’s look at some examples of each method. If you send a synchronous
message or call another application, giving it an instruction to do something
for a customer, your application waits for that transmission to occur before

Selecting a Communication Method

http://www.amazon.com/exec/obidos/ASIN/0972954899

38

continuing processing. Consequently, your application will know when there
is a communication failure. If a response is expected, your application will
know when processing errors occur with the request. Unfortunately, be-
cause your application is waiting for the communication and possibly a re-
sponse, there is a portion of application performance you don’t control.

If you sent the same message asynchronously, your application would
not wait for the communication. Because the communication physically hap-
pens after an application initiates it, it often appears faster than synchronous
communication. And asynchronous communication is more fault tolerant.
If the target application is temporarily down, the message will be delivered
automatically when that application comes back up, with no manual inter-
vention. The disadvantage is that asynchronous communication cannot de-
tect processing errors and does not know when your transaction will be
physically processed.

Table 4.1 summarizes the features of each method.

Table 4.1: Features of Synchronous and Asynchronous

Communication Methods

Chapter 4: Designing External Application Interfaces

Feature EJB
Web
Services

Messaging/
JMS

RMI HTTP CORBA

Java-
compliant
only

Any Any Java-
compliant
only

Any Any

Synch.
only

Both Both Synch.
only

Synch.
only

Synch.
only

Coupling Tight Loose Loose Tight Loose Loose

Transaction
support

 Local and
JTA

Local and
JTA

Local Local Local Local

Requires J2EE
container?

 Yes No No No No No

Yes Yes Yes No Yes Yes

Caller platform
requirements

Communication
method supported

Support clustering
for scalability and

availability?

http://www.amazon.com/exec/obidos/ASIN/0972954899

39

Common Mistakes

Using databases and file systems as “message brokers.” This error-prone
strategy consists of writing a row in a database table (or file in a file system)
with the contents of a message. The second part to the strategy is writing an
agent that “polls” the database (or file system) for new messages to arrive,
reads and processes the message content, and then deletes the row or file.

In essence, this strategy is akin to writing your own messaging system. It
is typically a frequent source of bugs. Why reinvent the wheel? Choose one
of the existing forms of communication and concentrate on business logic,
not low-level communication programming.

Using an asynchronous communication method, such as messaging, when

a response is required. With this strategy, your application sends an asyn-
chronous message to another application and waits for a return message
from that application.

Using asynchronous communication when responses are required puts
you in the position of programming an algorithm to wait for a response.
How long do you wait? If you wait too long, you could be holding up a user.
If you don’t wait long enough, you could mistakenly report an error. This is
akin to two blindfolded people trying to find each other in a vacuum.

As asynchronous messaging requires messaging software, using asynchro-
nous communication when a response is required adds components and
complexity to the application. Although messaging technologies are robust
and stable, synchronous communication methods are less vulnerable to un-
planned outages.

Determining a Data Structure

Document all data passed to an external application. The communication
structure or format, along with the conditions that dictate transmission, is
part of your contract with the external system developers. The data struc-
ture should be documented and agreed to in writing.

If the communication method chosen is Web services, RMI, CORBA, or
enterprise beans, documenting the data structure is an object-modeling ex-
ercise. You’ll need to fully define the services or beans along any method, as
well as the objects used in their arguments. Object-modeling concepts are
more fully covered in chapter 6.

The parts you need to identify and document for the external interface
are the name and type of the service, the name and return type (typically a

Determining a Data Structure

http://www.amazon.com/exec/obidos/ASIN/0972954899

40

value object) of the method, and any required arguments. Since the return
type and arguments might be value objects (VOs), the fields on those VOs
will have to be documented as well. Sometimes VOs are referred to as data
transfer objects.

For example, consider a Web service, CustomerService, with a method
called getCustomerInfo() passing a userId string and returning an ob-
ject of type CustomerVO. For the external interface, all parties need to know
legal argument rules, what the fields in CustomerVO will contain, and what
exceptions, if any, might be thrown. Figure 4.1 shows an example.

If you choose messaging as the communication method, you need to
fully define the format of the message transmission. By far the most popular
format employed these days is XML.

Chapter 4: Designing External Application Interfaces

Figure 4.1: Example Interface Specification

Service Name: CustomerService
Service Type: WebService
Client class: com.jmu.client.CustomerServiceClient
Client jar: JmuClient.jar

Customer Information Retrieval

Method Name: getCustomerInfo

Arguments: CustomerID—(String)
▲ CustomerID cannot be null
▲ CustomerID cannot be blank

Returns: com.jmu.vo.CustomerVO
▲ firstName (String)
▲ lastName (String)
▲ id (String)
▲ streetAddress (String)
▲ city (String)
▲ state (String)—two letter abbreviation, capitalized.
▲ telephone (String)

Exceptions:

▲ java.lang.IllegalArgumentException if customer ID
is null or blank

▲ com.jmu.common.CustomerNotFound if no
customer exists

▲ java.rmi.RemoteException if technical issue with
the call

http://www.amazon.com/exec/obidos/ASIN/0972954899

41

XML is a common protocol for interapplication communication and
message formats. XML is preferred in the Java world because many open
source tools are available.

Use simple XML formats for interfaces to legacy platforms. XML can be a
headache for developers using legacy platforms if your company won’t buy
an XML parser. Open source parsers and other tools are not available for
COBOL or PL/I, at the time of this writing. This would be a valuable open
source project.

When the external application is a legacy system and the client doesn’t
buy XML tools to assist, custom formats are common out of practical neces-
sity. Custom formats can have a keyword-type organization (like XML) or
some type of positional organization. COBOL lends itself to fixed-length
strings using a positional format.

You need to develop a DTD or schema, or otherwise document the XML
document formats and tags with allowed values. Leaving this communica-
tion verbal is a recipe for disappointment and countless project delays. Chap-
ter 7 includes material to help you design XML documents.

You don’t necessarily have to validate XML documents for external inter-

faces. Developing a DTD to describe a document format does not mean
that you have to “validate” the document when it’s parsed. Validation works
well for documents that were directly written by people, and thus more
likely to contain errors. Application interfaces are mechanical. Aside from
initial development, the probability of receiving a malformed XML docu-
ment that was programmatically generated from another application is low.
Given this, the benefits of validation don’t usually outweigh its performance
costs.

Avoid sending serialized Java objects as message content. This effectively
negates the benefits of loose coupling by making both applications depen-
dent on the same classes. If a change is made to one of the objects refer-
enced by the serialized class, the change would have to be deployed to both
applications simultaneously. Further, serialization problems can occur if one
of the applications upgrades its Java Virtual Machine (JVM). Serialized ob-
jects cannot be visually inspected to determine content; they must be pro-
grammatically processed. They also limit communication to Java applications.

Determining a Data Structure

http://www.amazon.com/exec/obidos/ASIN/0972954899

42

Error-Handling Requirements

Error-handling requirements need to be discussed, documented, and agreed
to just as thoroughly as data formats do. Bad error handling will lead to high
maintenance costs.

Error Notification Procedures

All external application interfaces should have error notification procedures.

Some organizations provide centralized operations personnel responsible
for notifying application support personnel of errors. This is often achieved
through some type of console message. It’s not uncommon for the console
to be monitored 24x7x365. It’s normal for organizations with this capability
to provide some way to programmatically generate a console message that
someone takes action on.

Use mechanical error notification. In companies that haven’t established
enterprise-wide error notification procedures, I typically include some type
of e-mail notification for severe system errors. Merely writing errors to a
log assumes that someone will look at them. Most messages written to the
log often go unnoticed. As most alphanumeric pagers accept messages via
e-mail, it’s easy to include pager notification for severe errors. This should
be used with caution for obvious reasons.

Don’t be afraid to be verbose when logging for errors. My philosophy is
that the error log should contain as much information as possible. While
some of it might not be useful for a particular problem, it’s better to have
too much than too little when it comes to information. If logging is success-
ful, a large percentage of errors should be diagnosable just from the error
message without further need to reproduce the problem.

At some companies, commercial tool support is available to help with log-
ging. BMC Patrol, EcoTools, and Tivoli are commercial network management
toolsets that are often used to monitor the enterprise. OpenNMS (http://
www.opennms.org/) is an open source alternative for network management.

Retry Procedures

Once initial development is complete, most errors with interfaces have en-
vironmental causes. Examples include someone recycling the database or
messaging software, someone tripping over a network cord, and a server
with a full file system. In most cases, the error is eventually fixed and the
application interface resumes proper function.

Chapter 4: Designing External Application Interfaces

http://www.amazon.com/exec/obidos/ASIN/0972954899

43

However, with most applications, some type of recovery or retransmis-
sion procedure must be performed for the transmissions that failed. For
example, messages recording customer purchases from the ordering appli-
cation must be resent to keep accounting records accurate.

Make retry procedures mechanical. For transmissions that a user isn’t physi-
cally waiting for, I often put a scheme for automatic retry logic in place.
Environmental problems occur often enough in most companies to warrant
including selective retry logic to recover from outages more quickly and
with less effort. The objective of the retry mechanism is to automatically
recover from a temporary outage without manual intervention by an appli-
cation administrator.

The potential for complexity lies in discriminating between temporary
outages and errors that won’t magically go away over time. It’s possible to
take a shotgun approach and assume that all errors occur as a result of a
temporary outage and initiate retry logic. You should use this approach with
care.

All mechanical retry logic should have limits. It’s important not to retry
forever, essentially creating an infinite loop. Choose a sensible retry interval
and number of retry attempts. It’s also wise to make these limits config-
urable so they can be easily adjusted. Retry attempts should also be logged
or possibly follow your mechanical notification procedure. Upon receiving
notification of the retries, an application administrator might realize that
corrective action should be taken.

External Interface Guidelines

Many J2EE applications communicate with external systems, some of which
may not be Java applications. As a technical architect, you’ll probably have
an opportunity to facilitate design and implementation of external inter-
faces. Over the years, I’ve adopted several techniques for creating successful
external interfaces.

Record every request or transmission from or to an external application. This
should be the first task in any external interface. Be sure to log this information
so that you know the time (and node if you’re in a clustered environment). If
there’s a problem with work you initiated in an external application, you’ll want
to be able to tell those developers exactly what calls they made and when. If
there’s a problem processing a call from an external application, you’ll want
enough information to replicate it and fix any problems quickly.

External Interface Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

44

This documentation practice helps prevent you or any member of the
development team from being blamed for the mistakes of others. Without
facts, anyone can make accusations, and in too many corporations, you’re
guilty until proven innocent. Having a transmission log will make it easier
to determine which application has a problem.

Create a way for an application administrator to resubmit a work request

from an external application. When your application experiences an envi-
ronmental problem and you’re able to fix it, the application administrator
should be able to resubmit the work that failed. This limits the impact on
end users and limits the number of people (and thus the time) needed to fix
a problem. Sometimes, resubmission isn’t possible or applicable. But it can
save you time for activities that are more fun than maintenance.

As an example, one of the applications I supported provided scheduled
reporting capabilities. An application administrator could resubmit any re-
port that wasn’t being delivered to a browser by an administrative Web-
based utility.

Collect the identity of the transmitter. Part of every transmission should be
information that indicates the identity of the caller. This is meant as a way
to reduce your maintenance time, not as a security mechanism. In the case
of an inappropriate call, you want to be able to quickly notify the applica-
tion making it. If you don’t know where it’s coming from, finding it and
getting it fixed takes longer.

Develop a mechanical way to “push” errors to the transmitter. If there is a
problem processing a request made by an external application, administra-
tors from that application need to be notified. If the interface has a tight
coupling (e.g., session bean, RMI service), all you have to do is throw an
exception. Whatever mechanism the external application uses for error pro-
cessing will be able to handle the error.

If the interface has a loose coupling (e.g., uses messaging technologies),
you need to construct a way to mechanically notify administrators from the
external application of the error. Most often, I’ve seen e-mail used as an
effective error notification channel for these cases. As most alphanumeric
pages accept e-mails, paging is a possibility. However, I would thoroughly
test your error processing before hooking it up to a pager.

Chapter 4: Designing External Application Interfaces

http://www.amazon.com/exec/obidos/ASIN/0972954899

45

Architect’s Exercise

I assisted in the development of a customized reporting system that accepted
information via JMS from external applications. In this case, the two types
of information being received were batch-processing requests and updates
to meta-data needed to produce reports.

In all cases, the format of the messages received was XML. We had dif-
ferent document formats for the batch-processing requests and the report
template meta-data updates. Immediately after receiving a message, we would
go through the following steps:

1 Parse the XML document.

2 If there was a parse error, log the error and the contents of the
message as well as notify an application administrator by e-mail.

3 If the document was well formed, interrogate the document type.

4 If the document was one of the two supported types, record it’s
receipt, including the XML text, the document type, and the date
and time of receipt, in a file on disk (using a database or any other
storage media).

5 Process the request normally, mailing any errors, along with the
XML text, to an application administrator mail group. The
application sending us the XML messages had representatives in the
mail group.

6 An application administrator could resubmit both types of requests
via a secured Web page if necessary.

Architect’s Exercise

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

47

Section 2

Designing J2EE Applications
The technical architect typically leads and facilitates all applica-
tion design activities. In this section, you will learn how to:

▲ Document application designs with object models so
other development staff can easily understand the design.

▲ Understand software layering concepts and how to use
them to organize J2EE applications into smaller and more
manageable sections.

▲ Apply common design patterns at each software layer.
▲ Document application storage requirements using data-

modeling techniques.
▲ Design XML document formats.
▲ Understand common network architectures for J2EE

applications and how the network architecture assists in
providing security, scalability, and high-availability
features.

▲ Refine project estimates after the design phase.

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

49

5

A Layered Approach to J2EE Design
Object modeling is a key skill for any technical architect with any object-
oriented technology, such as J2EE. Object models are the most popular
mechanism for documenting J2EE application designs. The technical archi-
tect is typically responsible for facilitating creation of an object model. This
chapter presents and explains a general approach to designing J2EE applica-
tions. This discussion is necessary background to the next chapter, which
offers tips and techniques for transforming the use-case analysis described
in previous chapters into a concrete design.

J2EE application design is a vast topic. Entire books have been written
about design techniques, design patterns, and object modeling with UML.
And like most large and complicated methodologies, UML is only partially
applied in business applications. Thus, although I don’t want to discourage
learning, I do take a streamline approach to the topic in this chapter. For
instance, of the hundreds of design patterns that have been identified and
cataloged, this chapter focuses on the handful of patterns most commonly
used in business applications today.

Overview of the Layering Concept

A common framework for J2EE applications is software layering, in which
each layer provides functionality for one section of the system. The layers
are organized to provide support and base functionality for other layers. For

http://www.amazon.com/exec/obidos/ASIN/0972954899

50

example, the data access layer provides a set of services to read and write
application data. An inventory management application needs services that
can read information about specific items and warehouses.

Layering is not a new concept; operating systems and network protocols
have been using it for years. For instance, anyone who’s worked with net-
works is familiar with telnet, FTP, and Internet browsers. All these services
depend on a TCP/IP networking layer. As long as the interface to TCP/IP
services stays constant, you can make network software advances within the
TCP framework without affecting telnet, FTP, or your Web-browsing capa-
bility. Typically, the TCP/IP layer requires the services of a device layer,
which understands how to communicate with an Ethernet card.

Applications can make strategic use of the same concept. For example,
it’s common to make data access a separate portion of an application so that
data sources (e.g., Sybase or Oracle) can be changed relatively easily with-
out affecting the other layers. The way the application physically reads and
writes data may change without affecting application processing or business
logic.

To continue the inventory management example, suppose the data ac-
cess layer had a method to look up the information for an inventory item
given a UPC code. Suppose that other parts of the application use this method
when information about items is needed (e.g., a customer viewing that item
on a Web page or an inventory analyst ordering stock for that item). As long
as the methods for access item information remain the same, you should be
able to reorganize how you can store information about items and ware-
houses without affecting the rest of the application.

In essence, a layered approach mitigates the risk of technical evolution.
If you use this concept to separate your deployment mechanics (e.g., serv-
lets, enterprise beans), you can add new deployments without changing your
business logic or data access layer. For example, Web services have become
popular only within the last two years. If your application effectively sepa-
rates your business logic and data access logic from the rest of your applica-
tion, you can freely add a Web services deployment without having to change
the entire application.

Table 5.1 lists common software layers used in J2EE applications. You
can think of these layers as “roles.” For instance, a customer object may
have a role in the data access layer, the business logic layer, and the deploy-
ment layer.

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

51

Table 5.1: Roles of Software Layers in J2EE Applications

Layer Role

Data access object layer Manages reading, writing, updating, and deleted stored data.
Commonly contains JDBC code, but could also be used for XML
document and file storage manipulation.

Business logic layer Manages business processing rules and logic.

Value objects layer Lightweight structures for related business information. These
are sometimes referred to as data transfer objects.

Deployment layer Publishes business object capabilities.

Presentation layer Controls display to the end user.

Architectural component layer Generic application utilities. Often, these objects are good
candidates for enterprise-wide use.

Figure 5.1 illustrates how the individual software layers interrelate.
When this boils down to code, I usually implement the layers as separate

packages. Here’s an example package structure:

com.jmu.app.dao Data access object layer
com.jmu.app.bus Business logic layer
com.jmu.app.vo Value objects layer
com.jmu.app.client Presentation layer
com.jmu.app.util Architectural component layer
com.jmu.app.deploy Deployment layer

I use the abbreviation jmu for “just made up.” Also, you’ll want to re-
place the app abbreviation with a meaningful application name.

One question I commonly hear is, why not call the data access object
layer directly from the presentation layer? Although calling the data access
object layer directly can save some code by eliminating a couple of layers, it
means placing any business logic either in the data access object layer or the
presentation layer, which makes those layers more complex. Software layer-
ing works on the premise that it’s easier to solve multiple small problems
than fewer large ones. Experience has taught me two lessons:

▲ Every time I try to eliminate software layers, I end up having to
come back and restructure the application later.

▲ There is tremendous value in consistency.

There is value in consistency for maintenance purposes. For instance, if
some JSPs call data access objects directly while others work through business

Overview of the Layering Concept

http://www.amazon.com/exec/obidos/ASIN/0972954899

52

objects and others use deployment wrappers, to make a change to code you’re
unfamiliar with you have to do an audit of the whole action sequence. This
defeats the purpose of object orientation.

The remainder of the chapter discusses each layer in depth and common
design patterns used for each.

Data Access Object Layer

Data access objects (DAOs) manage access to persistent storage of some
type. Usually, the storage used is a relational database, but DAOs can man-
age files, XML documents, and other types of persistent storage as well.

The primary reasons to separate data access from the rest of the applica-
tion is that it’s easier to switch data sources and share DAOs between appli-
cations. Medium- to large-sized businesses in particular are likely to have
multiple applications using the same data access logic.

A couple of patterns for data access objects are most common. The sim-
plest pattern has each persistent object represented as a DAO. I call this the
simplified data access pattern. The more complex, but more flexible, pattern

Figure 5.1: Software Layers for J2EE Applications

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

53

in common use is a factory-based pattern. In fact, it’s called the data access
object pattern. I’ll define each pattern later in the section.

For convenience, I separate DAO objects in the package hierarchy (e.g.,
com.acme.appname.data or com.acme.appname.dao). I only mention
this because some modeling tools (e.g., Rational Rose) encourage you to
decide your package structure at modeling time. Some developers also add a
DAO suffix to data access object names; for example, a customer DAO might
be named CustomerDAO.

Choosing a Database Persistence Method

The question of which persistence method is best is the subject of consider-
able disagreement and debate. Although the J2EE specification provides for
entity beans, other popular forms of database persistence exist. The degree
to which developers take sides in the debate is akin to a discussion of reli-
gion or politics. The debate is not entirely rational. I’ll take you through my
thoughts on the different options, what I see in the marketplace, and what I
prefer to use. However, the modeling concepts in this chapter are appli-
cable to all persistence methods.

When beginning object-modeling activities, you can identify a DAO with-
out choosing the persistence method you’ll use at implementation. For in-
stance, the DAO could be a custom-coded JDBC class, an entity bean (EJB)
with bean-managed persistence (BMP) or container-managed persistence
(CMP), a JDO object, or an object generated by an object-relational (O/R)
mapping tool such as TopLink or Hibernate. J2EE applications are compat-
ible with all these persistence methods. However, you should choose a per-
sistence method before completing object-modeling activities, because the
method you choose can affect the design.

In making a decision, I first consider what needs to happen at the data
access objects layer. I then grade each persistence method according to how
well it achieves the goals, using the following rating system:

▲ High (best rating): Gets high marks toward achieving the stated goal

▲ Medium (middle rating): Moderately achieves the stated goal

▲ Low (lowest rating): Doesn’t achieve the stated goal very well

Table 5.2 lists the goals and ratings of several data persistence methods.
Following the table are explanations of my reasoning in determining the
ratings. I consider the first four goals listed in the table to be the most im-
portant to the majority of my clients.

Data Access Object Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

54

Minimize the learning curve. Because JDBC was the first persistence API for
databases, it is the most familiar to most, if not all, Java developers and thus
has the lowest learning curve. The learning curve for entity beans with con-
tainer-managed persistence is widely acknowledged to be large. To use en-
tity beans with bean-managed persistence, developers need to understand
both JDBC and entity beans. JDO and most O/R toolsets have learning curves
that are higher than JDBC and lower than entity beans.

Minimize code and configuration files written and maintained. People have
a tendency to consider the number of lines of code only when evaluating
ease of development. I view any configuration file (e.g., an entity bean de-
ployment descriptor) as code with a different syntax. Hence, I don’t see
entity beans as having less code or simpler code than JDBC. JDO and most
O/R toolsets I’m familiar with save some percentage of code in most
situations.

Maximize the ability to tune. Because it’s the lowest level API and closest to
the database, JDBC provides unfettered ability to tune database SQL. Every
other choice relies on a product to generate the SQL used. For instance,
most object-relational mapping tools generate the SQL executed; it’s usu-
ally harder to tune without direct control of the SQL used.

Minimize the deployment effort. Deployment hassles negatively impact
development and maintenance time. Changes in JDBC code require just a
recompile, whereas entity bean changes require a recompile, stub generation,

Table 5.2: Ratings of Data Persistence Methods

Goal JDBC EJB/BMP EJB/CMP JDO O/R Tool

Minimize learning curve High Low Low Medium Medium

Low Low Low Medium Medium

Maximize ability to tune High Medium Low Low Low

Minimize deployment effort High Low Low Medium Medium

Medium Medium High High High

High Medium Medium Medium Low

Low High High Low Low

Yes Yes Yes Yes Yes

Minimize code and
configuration files written
and maintained

Maximize code portability

Minimize vendor reliance

Maximize availability and
fail-over

Manageable via JTA

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

55

and redeployment of the bean. JDO implementations and O/R toolsets may
require more work than a recompile but usually less than a bean change.

Maximize code portability. Being able to easily port code to different
databases is important. Although you can write portable JDBC code, a
significant percentage of JDBC code uses some database feature that’s
proprietary and not portable. Entity beans with BMP contain JDBC code
and get the same grade. Entity beans with CMP don’t have JDBC code,
but they do have mappings and sometimes SQL statements in the de-
ployment descriptors. If the SQL statements use a proprietary database
feature, there’s a portability issue, but the magnitude of the problem would
likely be smaller. The same could be said of most JDO and O/R toolset
implementations.

Minimize vendor reliance. You need to reduce your dependence on vendors
that provide J2EE container services, JDBC drivers, JDO drivers, and O/R
toolsets. This is desirable from a business standpoint should a vendor fail or
change its cost structure. You can change vendors for JDBC drivers easily;
I’ve done it many times with multiple database vendors.

Changing container vendors is moderately easy. You do have the possi-
bility of performance-tuning issues, particularly with CMP and JDO ven-
dors. With O/R toolsets, application code directly uses vendor (or vendor-
generated) classes. Switching O/R toolsets requires significant development
in most cases.

Maximize availability and fail-over. Most of the time, availability and fail-
over are provided by the container or database vendor. With the possible
exception of entity beans, the persistence method adds absolutely nothing
to fail-over. Entity beans, both CMP and BMP, are excepted because the
container has more control and can provide better fail-over services. How-
ever, fail-over capabilities in this regard are largely dependent on your con-
tainer vendor.

Manageable via JTA. The Java Transaction API (JTA) is the part of the
J2EE specification that provides the two-phase commit functionality. Many
developers appear to be under the impression that to use two-phase commit
functionality, you need to use entity beans. That’s not true. As long as you’re
able to manage transaction commits and rollbacks via JTA, you can get the
two-phased commit functionality.

Although I’ve seen selected use of entity beans, JDO, and O/R toolsets,
most of my clients manage persistence using native JDBC. JDO use seems to

Data Access Object Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

56

be getting more press and may indeed be the fastest-growing JDBC alterna-
tive, but it hasn’t pervaded the market yet.

I think about the use of software toolsets in the same way an economist
thinks about market efficiency. Financial analysts and economists have a
theory that financial markets are efficient. That is, when a new piece of
information becomes public, the stock prices of all companies related to
that information change accordingly over time. For example, when the Enron
and United Airlines bankruptcies became publicly known, the news had pro-
found effects on their stock prices.

When new software paradigms are introduced, if they provide benefits
that exceed their costs, over time developers will switch to them. The time
frame in which this happens for programming paradigms is much slower
than that for financial markets, but the general concept is much the same.
The “market” consensus regarding database persistence appears to be fa-
voring native JDBC at the moment. If developers do in fact migrate to the
more productive software paradigms over time, the inference would be that
native JDBC persistence is the best choice for most applications.

Simplified Data Access Pattern

Of the two patterns for data access objects that are most common, this is the
simplest. In this pattern, there is a one-to-one correspondence between the
physical storage construct (e.g., relational database table, XML document,
or file) and the DAO that manages it. For example, you might have
CUSTOMER_DAO manage access to a CUSTOMER table in a relational database.
Although you haven’t identified methods yet, you can imagine that this class
will have methods to search and return information on one or more cus-
tomers using search criteria as arguments. It might have methods to insert,
update, and delete customers as well.

The advantage of this pattern is that it’s simple. Its chief disadvantage is
that it’s often specific to one data source type. The code involved in ma-
nipulating an XML document is quite different from the JDBC and SQL
required to use a database table. Switching the data source type would be a
major overhaul to most methods in the class.

This pattern is usable no matter what database persistence mechanism
you choose. If data access will be managed by an entity bean, that entity
bean would in essence be your DAO. The same could be said for a class
using native JDBC, JDO, or an O/R toolset. Figure 5.2 illustrates an object
model for this pattern.

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

57

Supporting Multiple Databases

For an application that supports multiple types of databases, the data access
object pattern, which is factory based, is quite common. This pattern imple-
ments the DAO as an interface. A factory is required to produce objects that
implement this interface. In addition, you will have an implementation of
this interface for each type of data source. The factory is smart enough to
know how to instantiate all implementations. Figure 5.3 illustrates an object
model for this pattern.

For example, consider a customer DAO implementation. It would have a
CustomerDAO interface that would specify a variety of search methods as
well as an update, delete, and insert method. It would also have a customer
DAO factory (CustomerDAOFactory) responsible for providing a DAO for
the application to use. It might also have an implementation for all rela-
tional databases it supports (e.g., CustomerDAOOracleImpl, Customer-
DAOSybaseImpl, CustomerDAOMySQLImpl, etc.). The business object code
would use the CustomerDAO interface exclusively so it could use any one of
the implementations.

Figure 5.2: A Simplified Data Access Pattern

BusinessLayerObject

DataAccessObject 1 DataAccessObject 2 DataAccessObject 3

Relational
Database Table

XML Document

Object Database
DataStore

Data Access Object Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

58

Figure 5.3: Data Access Object Pattern

A
b

st
ra

ct
D

A
O

Fa
ct

o
ry

O
ra

cl
eD

A
O

Fa
ct

o
ry

M
yS

q
lD

A
O

Fa
ct

o
ry

X
m

lD
A

O
Fa

ct
o

ry
O

O
d

b
D

A
O

Fa
ct

o
ry

D
A

O
1O

ra
cl

eI
m

p
l

D
A

O
2O

ra
cl

eI
m

p
l

D
A

O
1M

yS
q

lIm
p

l
D

A
O

2M
yS

q
lIm

p
l

D
A

O
1X

m
lIm

p
l

D
A

O
2X

m
lIm

p
l

D
A

O
1O

O
d

b
Im

p
l

D
A

O
2O

O
d

b
Im

p
l

«i
nt

er
fa

ce
»

D
A

O
1

«i
nt

er
fa

ce
»

D
A

O
2

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

59

The data access object pattern is overkill if you don’t foresee a need to

support multiple database vendors. Few business applications need to be
able to do this. Software vendors are more likely to need this pattern than
business application users. I discuss it at length because it has an unqualified
recommendation in many texts.

Value Object Layer

Every application has data items that logically belong and typically are used
together. It’s programmatically convenient and, with enterprise beans, per-
formance enhancing to treat this logical group of data items as a separate
object. This type of object is commonly known as a value object (VO), al-
though some texts refer to it as a data transfer object. If Java had a “struc-
ture” construct, as C/C++ and many other languages do, a VO would be a
structure.

For example, you could combine various pieces of information for a re-
port template into a VO. Methods needing a report template argument could
then accept the ReportTemplateVO instead of individual arguments for all
components of the structure.

Typically, a VO has accessors and mutators but little else. And usually a
VO implements java.io.Serializable so it can be transmitted to re-
mote application clients. J2EE containers and RMI services serialize the con-
tent of Java classes before transmitting them to a remote machine. A com-
mon convention is to give value object names a VO suffix, as in CustomerVO.

Common Patterns

The value object originates from a formally defined pattern. In some texts,
this pattern is called the value object pattern (Alur, Crupi, and Malks, 2001).
The VO pattern enhances EJB performance but is useful in communication
among all layers of the application.

You can combine the VO pattern with the composite pattern, which is
used when something contains other things. For instance, a report template
often contains multiple parameters. Using the composite pattern, the
ReportTemplateVO contains an array of ReportTemplateParameterVO
objects, as illustrated in figure 5.4.

Value Object Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

60

Figure 5.4: Composite Pattern with Value Object Context

+getTemplateId() : int
+setTemplateId(in id : int)
+getTemplateName() : String
+setTemplateName(in name : String)
+getTemplateLabel() : String
+setTemplateLabel(in label : String)
+getTemplateParameter() : ReportTemplateParameterVO[]
+setTemplateParameter(in parameter : ReportTemplateParameterVO[])

-templateId : int
-templateName : String
-templateLabel : String
-templateParameter : ReportTemplateParameterVO

ReportTemplateVO

+getParameterId() : int
+setParameterId(in id : int)
+getParameterName() : String
+setParameterName(in name : String)
+getDefaultValue() : Object
+setDefaultValue(in value : Object)
+getChosenValue() : Object
+setChosenValue(in value : Object)
+getDataType() : String
+setDataType(in type : String)

-parameterId : int
-parameterName : String
-defaultValue : Object
-dataType : String
-chosenValue : Object

ReportTemplateParameterVO

1*

Business Logic Layer

Objects in the business logic layer combine data with business rules, con-
straints, and activities. Business objects should be separated from DAOs,
VOs, and the deployment layer, such as enterprise beans, to maximize the
possibility of reuse. Business objects often use and coordinate the activities
of multiple data access objects.

Business objects should be deployment independent and self-contained. Any
Java Naming and Directory Interface (JNDI) resource (e.g., database connec-
tions) that a business object needs to function should be provided by its de-
ployment wrapper. This allows business objects to be redeployed (or

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

61

republished, if you will) as anything you would like, including enterprise beans,
RMI services, CORBA services, Web services, applets, and applications.

Some developers add the BO suffix to business object names, but this is
not a technical requirement.

Common Patterns

Layered initialization is a pattern you will commonly use when you have
different varieties of the same object. For example, most applications have
different types of users. As shown in figure 5.5, you might have trust cus-
tomer users, corporate customer users, banking support users, application
administrator users, and so on. All these users share commonality but also
have aspects that are unique.

When the same business object might have to produce different outputs
or use different inputs, you will most likely use the adapter pattern. Con-
sider the example shown in figure 5.6, a reporting business object that has
several different delivery mechanisms—e-mail, printing, Web site publish-
ing—but all other processing is the same. Having an adapter to represent
the input consolidates a lot of code.

Like the adapter pattern, the strategy pattern is used when the activities
of a business object are likely to vary according to the context. However, the
adapter pattern leaves the activities of a class constant while dynamically
varying its inputs and outputs, and the strategy pattern makes the activities
of a class dynamic while using constant inputs and outputs. It’s largely a
difference in perception of “who’s the client.” Figure 5.7 illustrates the strat-
egy pattern.

Figure 5.5: Layered Initialization Pattern Example

User

TrustCustomer CorporateCustomer BankingSupportUser AdminUser

Business Logic Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

62

Figure 5.6: Adapter Pattern Example

+addDeliveryAdapter(in adapter : DeliveryAdapter)

-adapter : DeliveryAdapter[]

Report

+run()

«interface»
DeliveryAdapter

+run()

EmailDeliveryAdapter

+run()

PrinterDeliveryAdapter
+run()

WebSiteDeliveryAdapter

Figure 5.7: Strategy Pattern Example

ProjectTaskManager

+scheduleProjectTasks(in project : ProjectVO) : ProjectVO

«interface»
Scheduler

+scheduleProjectTasks(in project : ProjectVO) : ProjectVO

LPSchedulingAlgorithm

+scheduleProjectTasks(in project : ProjectVO) : ProjectVO

IterativeScedhulingAlgorithm

+scheduleProjectTasks(in project : ProjectVO) : ProjectVO

FutureAlgorithm1

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

63

Deployment Layer

Objects in the deployment layer—called deployment wrappers—are the heart
of J2EE architecture. Deployment wrappers publish business object func-
tionality to Java classes that could be on separate machines (including any-
thing in the presentation tier). Examples of deployment wrappers include
enterprise beans (e.g., session beans, message-driven beans), RMI services,
and Web services. CORBA services are also deployment wrappers but are
not considered a traditional part of J2EE architecture.

I consider entity beans to be DAOs, not deployment wrappers. Although
technically you can call entity beans from remote clients, doing so slows
performance and is therefore not recommended. Calls to entity beans are
usually consolidated in session beans. This practice is known as a session
bean façade.

Use enterprise beans to publish business logic. Some developers consider
enterprise beans to represent business logic. Although it is technically pos-
sible to consolidate what I call business objects and enterprise beans into
the same class, I don’t recommend it. Keeping the business logic separate
gives you complete deployment flexibility. You can deploy the same busi-
ness object as an enterprise bean, message-driven bean, a CORBA service, a
Web service, or even a client application with no changes to the underlying
business object. Separating the business logic into deployment-independent
classes does create additional classes, but the classes are less complex.

Document a deployment wrapper as one class in your object model, even

though it’s composed of several classes. Take a stateless session bean ex-
ample. A session bean has a client proxy, an interface, a bean, and a home
object implementation. With the exception of the home implementation,
all these classes will contain the same method signatures. There’s no value
in tediously documenting every piece of the deployment layer.

Choosing Deployment Wrappers

You can have multiple deployment wrappers for the same business object.
For example, it is not uncommon to create a message-driven bean and a
Web service deployment for a customer object.

Each type of deployment wrapper has its advantages and disadvantages.
Choosing which type of deployment wrapper to use is difficult if you haven’t
substantially completed use-case analysis and prototyping (chapter 3) or
defining application interfaces (chapter 4). Table 5.3 summarizes the differ-
ences between the types of deployment wrappers.

Deployment Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

64

Table 5.3: Features of Deployment Wrapper Types

Feature EJB
Web

Services
Messaging/

JMS
RMI HTTP CORBA

Caller platform
requirements

 Java-
compliant
only

Any Any Java-
compliant
only

Any Any

Synch. only Both Both Synch. only Synch.
only

Synch.
only

Coupling Tight Loose Loose Tight Loose Loose

Transaction
support

Local and
JTA

Local and
JTA

Local Local Local Local

Requires J2EE
container?

 Yes No No No No No

Yes Yes Yes No Yes Yes

Communication
method
supported

Supports
clustering for
scalability and
availability?

Faced with deciding which deployment wrappers to use and which busi-
ness objects to publish, ask yourself the following questions; your answers
will help you navigate through the decision-making process.

Is your business object called from applications that aren’t Java?

This functionality is commonly deployed as a Web service. Web services
completely eliminate any language-to-language restrictions by using a com-
mon message protocol, UDDI. Because Web services don’t represent a pro-
grammatic coupling, they need little deployment coordination. Drawbacks
to using Web services are that the standards are still being refined. It’s a
newer, and thus less mature, technology.

Additionally, if the external application is written in a language that sup-
ports CORBA and your organization has purchased an ORB supporting that
language, you can deploy this functionality as a CORBA service. The CORBA
interface is the lowest common denominator so that a wider array of lan-
guages can be supported. Supported CORBA languages include C/C++,
COBOL, Java, Lisp, PL/I, Python, and Smalltalk.

If your messaging vendor supports JMS and also has a native API for the
foreign application platform, you should be able to deploy this functionality
as a message-driven enterprise bean.

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

65Deployment Layer

Is your business object likely to be used by dynamic HTML page constructs,

such as servlets and JSPs?

These business objects should be published with a deployment wrapper in-
stead of being used directly by the presentation layer. This allows you to keep
the presentation layer, which is typically hard to debug, less complicated. It
also allows you to keep the business logic layer deployment generic.

Functionality supporting JSPs and servlets is commonly implemented as
a session bean. For best performance, use stateless rather than stateful ses-
sion beans if the business rules of your application allow it. Avoid using
entity beans directly because doing so greatly increases the number of net-
work transmissions and gravely impacts performance.

Does your business object receive and process messages via JMS?

Functionality supporting JMS message receipt and processing is commonly
implemented via a message-driven enterprise bean. Although the JMS stan-
dard was created and refined in the last few years, messaging technology has
existed for more than a decade. Most messaging technology vendors have
implemented the JMS interface. Messaging is good for transmitting infor-
mation. This technology is designed more to guarantee delivery than to
issue a subsecond response time.

Does your business object require two-phase commit functionality?

If it does, deploy the business object as a session bean. Two-phase commit
functionality requires JTA and is provided by J2EE containers. Web ser-
vices or servlets running from within a J2EE container will have access to
JTA, but these deployments may be used in environments that don’t sup-
port JTA.

Common Patterns

The pattern commonly used for deployment wrappers is a combination of
the session façade pattern and the proxy pattern. This combination (or slight
variations thereof) works for all the deployment wrappers that I can think
of. The session façade pattern has been especially popular with EJB deploy-
ments, but the concept is valid for most types of distributed objects.

One of the primary objectives of the session façade pattern is to mini-
mize network traffic. Figure 5.8 illustrates how you can effectively combine
the session façade and proxy patterns.

Although not required by the session façade pattern, I like to provide
client proxies for my distributed services, such as enterprise beans, RMI
services, and CORBA services. This makes objects in the deployment layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

66

Figure 5.8: Session Façade Pattern with Proxy Pattern

ClientProxy DeploymentLayerObject

BusinessLayerObject

OtherBusinessLayerObjects Data Access Layer Objects

Session Bean
or

RMI Service
or

Web Service

easier to use because it eliminates the need for a caller in the presentation
layer to care about wrapper-specific deployment details. Figure 5.9 depicts
enterprise beans deployed in a session façade pattern.

Presentation Layer

The presentation layer is the section of the application responsible for ev-
erything end users physically see in the user interface. Various deployment
wrappers provide functionality to the presentation layer.

J2EE developments support HTML/Javascript interfaces and applet
interfaces. Most applications provide HTML. J2EE applications produce
HTML interfaces by using a combination of static HTML pages and dy-
namically generated content via servlets and JSPs. There are several good
texts for servlets and JSPs (e.g., see Hall, 2000; Hunter and Crawford,
2001). Applets can be used for applications that require advanced con-
trols (actions on mouse-overs, drag-drops, sophisticated interactive dis-
play controls, etc.).

The presentation layer uses deployment wrappers exclusively. The rea-
son is that the presentation might not execute on the same host as the busi-
ness logic and will require distributed services. Although it is technically
possible to run the servlet engine on the same host as the J2EE container,
some organizations prefer not to.

Most organizations use a variant of the model-view-controller (MVC)

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

67

pattern for the presentation layer. The MVC pattern is a natural choice for
Java because Swing uses the MVC pattern as well. The MVC pattern con-
sists of three parts: (1) the model tracks session state and relevant session
information, (2) the controller interprets all URLs and directs changes to
the appropriate model if necessary, and (3) the view presents information in
the model. In a J2EE world, typically the model is a combination of deploy-
ment wrappers (enterprise beans, Web services, and RMI services), the con-
troller is a servlet, and the view is a JSP.

The most popular implementation of the MVC pattern designed specifi-
cally for J2EE platform user interfaces is Struts. An open source product
from the Apache Jakarta project (http://jakarta.apache.org/struts/), Struts
provides a generic, configurable servlet controller that supports J2EE view-
ers and models. Figure 5.10 is a diagram of the basic parts of Struts and how
it fits the MVC pattern.

The classes depicted in the figure (plus an XML configuration file) are
the basics needed to implement Struts. Although Struts has many more
classes, a major focus of this book is to shorten the learning curve for new
architects, so I stick to the basics. Readers desiring a more in-depth knowl-
edge of Struts should see Spielman (2003).

Presentation Layer

Figure 5.9: Session Bean Deployment Example

+getCustomerInfo(in customerId : String) : CustomerVO

CustomerClient

+getCustomerInfo(in customerId : String) : CustomerVO

CustomerBean

+getCustomerInfo(in customerId : String) : CustomerVO

CustomerBO

CustomerDAO AccountDAO FeaturePrivilegeDAO

http://www.amazon.com/exec/obidos/ASIN/0972954899

68

In a Struts world, there are several components that the developer pro-
vides. First, a developer-provided XML configuration file (struts-config.xml)
tells the ActionServlet which Action to invoke and which JSP to for-
ward to based on parameters in the URL. The ActionServlet class from
Struts is serving as the controller for the MVC pattern, and JSPs serve as a
view. You will read more about the configuration format and features avail-
able for Struts in chapter 14.

Second, the developer optionally provides extensions of ActionForm to
validate user input. If errors are found, Struts navigates the user back to the
URL specified in the configuration file. Your JSPs are responsible for figuring
out if there are errors to display and physically displaying error messages.

By the way, the Struts ActionForm is also intended as a mechanism to
collect user-entered data from a Web page. Use of this feature is optional. If
you do use it, any page that has user entry will require an ActionForm. This
is a Struts feature I rarely use.

Third, developer-provided extensions of Action can call objects in the
deployment layer, such as enterprise beans, Web services, RMI services, and
so on. Calls to the deployment layer initiate some type of process within
your application or retrieve data to be displayed to the user. The displayed
data are put on the session (just as in a custom servlet). Your JSPs will re-
trieve any information needed for display from the session.

Fourth, the developer provides JSPs and/or static HTML pages to dis-
play to the user. The ActionServlet forwards the request after the Ac-
tion has completed. Don’t worry, Struts does provide a way to dynamically
change the forward.

Struts has the advantage of giving you controller functionality you would
otherwise have to build, and it’s popular, which means many developers al-
ready know it. Its chief disadvantage is that it’s complex and not the easiest
creature to debug when problems arise. Despite its complexity, I usually opt
for using it. I’ll provide a cheat sheet for getting up to speed on Struts in
chapter 14.

Architectural Component Layer

Ideally, all general utilities and components would be provided natively in
the Java Development Kit (JDK). But in reality, a gap exists between what
the JDK provides and the capabilities applications need. Third-party utili-
ties, APIs, and packages fill a significant portion of this gap, but they do not
have complete coverage. Your object-modeling activities probably identify
a need for architectural components and utilities that don’t yet exist in open

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

69Architectural Component Layer

Figure 5.10: MVC Pattern as It Appears in Struts

C
lien

t
A

ctio
n

S
ervlet

A
ctio

n
JS

P
s

calls

S
truts-provided controller

E
JB

s
W

eb
S

ervices
R

M
I S

ervices

E
JB

s, W
eb services, and R

M
I services are the m

odel

Yo
u

rA
ctio

n

H
T

M
L

P
ag

es

D
eveloper-provided JS

P
s and

H
T

M
L pages that display

content to the user

forw
ards to

H
ttp

S
essio

n

J2E
E

-provided
session that
stores m

odel
content retrieved
by "YourA

ction"
to be displayed in

JS
P

s

<
struts-

config.xm
l>

reads

A
ctio

n
F

o
rm

S
truts-

provided
class that
validates
user input

Yo
u

rV
alid

atio
n

F
o

rm
D

eveloper-provided
classes that call

objects in the
deploym

ent layer

S
truts-provided class

that updates/retrieves
m

odel

D
eveloper-provided

classes that validate
input

http://www.amazon.com/exec/obidos/ASIN/0972954899

70

source form or otherwise. These common components are candidates for
sharing across the enterprise.

Whenever possible, use existing architecture utilities as opposed to build-
ing them from scratch. Look first to the open source community (it’s free
and sure to fit in any organization’s budget). If you do opt to use an open
source package, make sure that you download a copy of the source for the
version that you’re going to use. If you have production bugs involving an
open source package, having the source makes the investigation easier.

Be sure to perform technical feasibility testing for any open source pack-
age you select if none of the development team has experience with it. The
earlier you find out the limitations of a package, the more time you’ll have to
react to those limitations and the less they will impact your project timeline.

Although looking for an open source package is a bit like looking for a
needle in a haystack, you can shorten the search by starting at the Open
Source Developer’s Kit site (http://www.osdk.com/). This site surveys and
categorizes the most popular open source packages.

Architectural components should be kept application generic for two
reasons. First, if they are important enough to share across the enterprise
(or perhaps across the Java community as an open source package), they’ll
be easier to share if they don’t have hooks into a specific application. If
someone creates an open source package to do this in the future, your home-
grown utility will be easier to obsolete.

At this point, you’ll want to identify the components and classes that
your application will commonly use and leave the details to the developers.
The abstract nature and complexity of architectural components can lead to
analysis paralysis for many development groups. Specify and model the ca-
pabilities and the objects the application will interact with, but leave the
details to your most advanced developers.

Further Reading

Alur, Deepak, John Crupi, and Dan Malks. 2001. Core J2EE Patterns: Best
Practices and Design Strategies. New York: Prentice Hall.

Hall, Marty. 2000. Core Servlets and JavaServer Pages (JSP). New York:
Prentice Hall.

Hunter, Jason, and William Crawford. 2001. Java Servlet Programming, 2nd
ed. Sebastopol, CA: O’Reilly & Associates.

Spielman, Sue. 2003. The Struts Framework: Practical Guide for Java Pro-
grammers. Boston: Morgan Kaufmann.

Chapter 5: A Layered Approach to J2EE Design

http://www.amazon.com/exec/obidos/ASIN/0972954899

71

6

Creating the Object Model
The technical architect is typically responsible for leading the application
design process. In this role, the architect is as much a facilitator as an appli-
cation designer. This chapter shows you ways to utilize use-case analysis
along with the layered approach described in the previous chapter to con-
struct effective designs for J2EE applications and document them in an ob-
ject model. Along the way, I’ll share some techniques for leading a group
design process.

Finished use cases are essential for effective application design. Without
them, the object-modeling sessions will produce more questions than an-
swers. If you do find vague points or unaddressed issues in the use-case
documentation, apply the technique of making assumptions to fill the gaps.
Document the assumptions you make so you can confirm them with the
business side later. Your use-case analysis is more likely to be incomplete
when you’re working on a large project.

Object-modeling exercises are applicable for the Java portions of a J2EE
application that are custom written (e.g., not provided by a software ven-
dor). Modeling of third-party software components should be limited to
those classes directly called by your application.

The technical architect is responsible for facilitating design discussions,

which should involve the business logic and presentation-tier developers

http://www.amazon.com/exec/obidos/ASIN/0972954899

72

in the design process. Because of its subjective nature, the object-modeling
process can be a large source of frustration and a project bottleneck. I’ve
seen some projects where the architect produces the object model privately
and then attempts to coerce other developers to follow. Although a lone
modeler may be able to produce an object model more quickly than a team,
the model is more likely to contain errors and omissions, and only the ar-
chitect understands and is loyal to it.

When the model is produced privately, it doesn’t get substantive devel-
oper support. After all, if developers can’t understand or agree with a plan,
they certainly won’t want to follow it. Many developers react to architect-
produced models by ceasing to contribute anything meaningful to the project
from that point. The architect may want to “draft” a model as a way to move
the design process along, but developers should clearly understand that this
draft is presented solely to prompt discussion and is entirely subject to change.

As a practical matter, when I need to get meaningful support from mul-
tiple developers, I go through the longer exercise of forming the plan col-
lectively. Developers who have had input to a model and repeated opportu-
nities to suggest enhancements to it are going to be more enthusiastic about
implementing it.

Appoint a scribe for all modeling sessions. It’s difficult to facilitate design
sessions and take accurate and complete notes of the items discussed at the
same time. As the architect is usually leading the session, one of the devel-
opers should act as scribe, perhaps on a rotating basis. After the design ses-
sion, the scribe is responsible for updating the object model to reflect changes
discussed in the session.

The remainder of this chapter presents a framework you can use to guide
development staff through the object-modeling process. The first step in the
process is to identify the major objects in your application using the use cases
as a guide. Next, you refine these objects into classes, determine how they
interact, and identify attributes and methods. Throughout the chapter, I show
you how to streamline the process and avoid those annoying bottlenecks.

Identifying Objects

Identify the most important constructs. Nouns in use cases are generally
good candidates for classes. Thus a good way to start identifying objects is
by reading the use cases and extracting a list of all the nouns. (You can ignore
system in the beginning phrase, “The system will,” because it’s merely part
of the use-case format.)

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

73

At this point, you should interpret my use of the word object loosely. In
the early stages of development, it’s impossible to know enough about these
objects to understand exactly which classes you will derive from them. Note
that my use of the term object differs from some texts that use the term to
refer to an instance of a class.

Don’t bother with attribution or relationships at this stage. Attribution and
relationships are important, but identifying them too early will bog you
down in too much detail and will throw the team into frequent tangents.
For now, try not to be concerned about process and focus instead on data
organization.

As objects are identified, record persistence requirements. Some classes
will represent data that your application has to store, usually in a database,
and are said to be persistent. In fact, persistent objects frequently appear as
entities in the data model. I often record objects with persistent data as
entities in the data model as they’re identified in the object model. I discuss
data modeling in detail in chapter 7.

Objects identified at this stage are high level. You will further refine and
expand them later in the process, using objects to determine specific classes.

Object Identification Example

Let’s use an example paraphrased from a reporting system I once imple-
mented. The team defined the following uses cases:

▲ The system will provide an interface that will accept report template
definitions from an existing MVS/CICS application. A report
template consists of an ID, a name, a list of parameters required to
run the template, and a list of data items produced by the template.

▲ The system will allow application administrators to control the
report templates that users belonging to a trust customer
organization can run.

▲ The system will run reports at least as fast as its predecessor system
did on average.

▲ The system will restrict reported data for all trust customer users to
that of the trust customer organization to which they belong.

▲ The system will allow banking support users to execute all report
templates using data from any trust customer organization.

Identifying Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

74

Looking at the nouns in the use cases in order (ignoring system, as men-
tioned earlier) gave us the list that appears in the first column of table 6.1.

Table 6.1: Object Identification Example

Noun (fromuse case) Object

Interface ReportTemplateInterface

Report template ReportTemplate

List of parameters ReportTemplateParameter

Data item ReportDataItem

Application administrator ApplicationAdministrator

Trust customer organization TrustCustomerOrganization

Trust customer user TrustCustomerMember

Reported data Report

Banking support user BankingSupportUser

Next we rephrased the nouns to make them self-contained object names,
as shown in table 6.1. By self-contained, I mean that object names shouldn’t
depend on context to provide meaning. For instance, interface from the first
use case became ReportTemplateInterface and list of parameters became
ReportTemplateParameter. The fact that our use case referred to a “list”
of parameters was documented as a relationship. The more descriptive the
object name, the better. All the objects were persistent except Report-
TemplateInterface. (Note that the word interface in this use case refers to
an application interface and may not imply use of a Java interface construct.)

Three types of users appear in the list: application administrator, trust
customer member, and banking support user. When we got to attribution,
we recognized that there was another object, User, with different subtypes.
Inheritance relationships like this are easier to recognize when it comes
time for attribution, so let’s leave the object list as it is for now.

An alternative to merely identifying nouns is to do the data-modeling
exercise first. All identified entities are good object candidates. Many of the
objects we identified in this example would make good entity candidates as
well. See chapter 7 for details.

Some of these objects were implemented as classes in multiple software
layers in the application. This process is the focus of the next section. De-
fining and illustrating these layers was described in chapter 5.

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

75

Turning Objects into Classes

Once you have identified major objects in the application, you need to re-
fine those objects into classes and organize them in a framework.

After identifying objects, you need to identify which layers they pertain to.

It is common for objects to have multiple roles. Any object you have identi-
fied as playing multiple roles (e.g., manage data access, implement business
rules, etc.) must get counterparts in multiple layers. For example,
ReportTemplate, ReportTemplateParameter, and ReportDataItem from
table 6.1 had persistence requirements as well as requirements as business
objects. Therefore, they appeared as classes in at least the data access layer,
the business object layer, and the value object layer.

Define separate classes for each object in each layer. If you define the same
class for each of these roles, the classes get too large to effectively maintain
and you lose all the benefits from software layering.

From the object identification example, consider object ReportTemplate.
Class ReportTemplateDAO, residing in the data access layer, was respon-
sible for reading and writing template information using a relational data-
base. ReportTemplateVO in the value object layer described all character-
istics of a report template (e.g., its name, data type, display length, etc.).
ReportTemplateBus in the business logic layer coordinated and enforced
all rules for creating a new report template.

Determining Relationships

A relationship describes how different classes interact. You can determine
relationships after you’ve identified individual classes. The UML literature
documents several categories of object relationships. Most applications only
need the four types described in the following paragraphs.

Dependency (uses) relationship documents that one class uses another class.
At a code level, using another class means referencing the class in some way
(e.g., declaring, instantiating, etc.). Because this relationship type is strik-
ingly similar to the association relationship type, I usually ignore the differ-
ence between the two types as unnecessary complexity. The relationship in
figure 6.1 is read as “Customer uses Account.”

Turning Objects into Classes

http://www.amazon.com/exec/obidos/ASIN/0972954899

76

Figure 6.1: Dependency Relationship Illustration

Customer Account

Generalizes (extends) relationship documents that one class extends, or in-
herits the characteristics of, another class. Most medium to large applica-
tions have a handful of this type of relationship.

An extends relationship is denoted by a solid line with a hollow arrow.
The relationship in figure 6.2 is read as “TrustCustomer extends Cus-
tomer.” The attributes of Customer will be available and usable in all
children.

Figure 6.2: Extends Relationship Illustration

-customerId : String
-customerLastName : String
-customerFirstName : String

Customer

-accountManager : String
-allowedSecuritiesLendingTrades : boolean

TrustCustomer

-accountManager : String

BankingCustomer
-brokerageAccountId : String
-allowedOptionTrades : boolean

BrokerageCustomer

Realization (implements) relationship documents that a class implements
an interface. An implements relationship is denoted by a dotted line with a
hollow arrow. The relationship in figure 6.3 is read as “EmailDelivery
implements ReportDeliveryType.”

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

77

Figure 6.3: Implements Relationship Illustration

+deliver()

«interface»
ReportDeliveryType

+deliver()

EmailDeliveryType

+deliver()

FaxDeliveryType

Aggregation (collects) relationship documents that a class collects multiple
occurrences of a class. A collects relationship is denoted by a solid line with
a diamond next to the class doing the collecting. The relationship in figure
6.4 reads “Customer collects Account.”

Figure 6.4: Collects Relationship Illustration

Customer

Account

-collects1

*

Don’t document formal relationships to value objects. VOs have so many rela-
tionships that if they are documented, the model becomes unreadable and un-
usable. After all, the purpose of creating the class diagram is to make the appli-
cation easier for the team to understand and implement. VO relationships are
easy for developers to figure out from the method signatures anyway.

Identifying Attributes

Attributes are fields that a class contains. At a code level, attributes are in-
stance-level variable declarations. Most attribution occurs with VOs, with
other object types receiving little attribution.

Identifying Attributes

http://www.amazon.com/exec/obidos/ASIN/0972954899

78

Ideally, attributes should be base, not derived. A base attribute is
atomic—that is, its value is not derived from the value of other elements or
the result of a calculation. Conversely, a derived attribute is made up of
the values of other elements. For example, consider a CustomerVO class
that has firstName, lastName, and fullName attributes. The attribute
fullName is derived because it is made up of the first and last names.

Avoid declaring derived attributes. Derived attributes, like fullName men-
tioned in the previous paragraph, only give you more to maintain. If a cus-
tomer changes his or her last name, the values of two attributes need to
change. Instead of making fullName an attribute, it would be better to
create a method, such as getFullName(), that does the concatenation.

Identifying Methods

Methods are where the action is. Methods are invoked primarily when a
user does something, when something that was scheduled occurs, and when
something is received from an external interface. A common way to identify
methods is to analyze each event and document the methods needed along
the way. During the course of identifying the methods you’ll need, you’ll
usually identify new classes.

Starting with user actions, I use screens from the prototype to drive
method identification. Consider an application login as an example. Most
applications customize the main screen based on a user’s identity and pref-
erences. For the moment, assume that authorization and authentication is
provided by the enterprise architecture and not at an application level. Fur-
ther assume that you need to invoke something that will get user specifics
from the security package, invoke something to retrieve that user’s prefer-
ences regarding your application, and display the main application page.

If you use Struts, you’ll need some kind action class that can get user
specifics from the security package, using the package to look up customer
preferences (which will be used to generate the main page). If you haven’t
yet identified an action class to do this, add it to the model. Ignoring the
security package itself, since it’s out of scope, you then need a method some-
where that allows the user preference look-up.

Remember from our discussion of software layering in chapter 5 that
classes in the presentation tier use deployment wrappers rather than using
DAOs directly. Most applications identify a user object (or something simi-
lar) that manifests into a DAO class, a VO class, a business object, and a
deployment wrapper for an enterprise bean. It would be logical to add a

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

79

getUser(String userId) method to our User deployment wrapper. It
would also be logical for that method to return a UserVO, which includes
information about preferences, as a result of the call. As a shortcut, assume
that this method is added to the client proxy and all necessary components
(controller interface and bean) of the deployment wrapper.

Pass and return VOs instead of individual data items. Doing so can in-
crease performance when you use enterprise beans as a deployment wrap-
per. By reducing the number of methods that need to be changed, passing
and returning VOs also reduces the amount of code that you’ll need to change
when you enhance the application.

Deployment wrappers typically don’t contain application logic but pass
through to a business object. This method will have to be added to the
business object as well. The deployment wrapper, when getUser() is called,
instantiates and calls a similar method on the business object, UserBus.

The physical look-up of the user preferences is usually delegated to at
least one DAO. It would be logical to have a UserDAO that has a select()
method on it that would do the look-up.

By now, you’re probably wondering why you don’t just have the Action
class invoke the DAO directly. It would appear to be simpler because it would
cut out several layers of classes that, in this example, appear to be adding
little to the functionality of the product. Technically, you could have had the
Action class invoke the DAO directly, but doing so would have greatly added
to the complexity of the Action class, which isn’t easy to debug, and would
have eliminated the insulating benefits of software layering, as discussed in
the last chapter.

Figure 6.5 illustrates an object model for the example just discussed.

Shortcuts

Over the years, I’ve adopted several shortcuts that decrease the time and
effort required in the object-modeling phase.

Document deployment wrappers as one class. How deployment wrappers
(e.g., session beans) are structured is standard, and there is no value in docu-
menting it repeatedly. For example, model an EJB as one class instead of
breaking it up into its three or four component parts that all have the same
signatures anyway.

Assume that all documented attributes will have of accessors (get meth-

ods) and mutators (set methods). This simplifies the model and eliminates

Shortcuts

http://www.amazon.com/exec/obidos/ASIN/0972954899

80

a lot of boring busywork. It also makes the model easier to read and thus
more useful. For example, if you document that a CustomerVO class has a
lastName attribute, you should be able to assume the existence of
getFirstName() and setFirstName() methods without explicitly docu-
menting them in the model.

Omit relationships to objects in the JDK. Including these relationships adds
little value but a lot of complexity, making the model hard to read. For
example, many attributes in the JDK are strings. Technically, any class con-
taining a string attribute should have a relationship to the java.lang.String
class. In a typical application, documenting these types of relationships would
add hundreds or thousands of relationships to your model and provide no
benefit.

Forget about generating code from UML. My experience is that it’s usually a
net time loss. The minute level of detail you have to type in the model usually
exceeds the time it would take to code it using any integrated development

Figure 6.5: Object Model Example

+execute()

UserInitializationAction

+execute()

org.apache.struts.action::Action

+getUserPreferences(in userId : String) : UserPreferenceVO

User

+getUserPreferences(in userId : String) : UserPreferenceVO

UserBO

+getUserInfo(in userId : String) : UserVO

UserDAO

MainScreenDisplayJSP

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

81

environment (IDE). On the other hand, generating UML from existing code
can be an extremely valuable and easy to do if your IDE supports it.

Don’t attempt to micromanage the coding when determining methods.

Leave some work to the developer. If the development team starts docu-
menting private methods, it’s going too far.

Architect’s Exercise: ProjectTrak

Let’s apply these concepts to the ProjectTrak example used in previous chap-
ters. The following use case is from ProjectTrak:

▲ The system will allow users to define, edit, and display project tasks.
A project task has a name, an estimate (in hours), percent complete,
one assigned personnel resource, any number of dependent tasks,
and a priority (high/medium/low).

Starting with the presentation layer, let’s assume that the prototype in-
forms us that there is one page for task definition, edit, and display, with a
push-button control for the Save capability. The one display must be dy-
namically generated, so it can’t be a static HTML page. We’ll make it a JSP
and call it TaskEditDisplayJSP in our object model.

Further, let’s assume that there is a control on another page (out of scope
of our example) that causes the task display/edit page to come up either with
information from an existing task or blank (in the case of a new task). And
let’s assume that we’re using Struts.

We need an action to look up the existing task information and store it
on the session for the TaskEditDisplayJSP. If this is a new task, our ac-
tion needs to initialize the appropriate variables on the session for the
TaskEditDisplayJSP. This action, like all actions, will extend org.apache
.struts.action.Action.

The action, which we’ll call TaskDisplayAction, should call some-
thing in the deployment layer to get task information. Because this is a J2EE
application and we don’t need to support anything but Java clients, let’s make
this deployment layer object a session bean (we can choose between state-
less and stateful later). We’ll call it ProjectBean. As discussed previously,
let’s create a client for the bean to make it easier for presentation-tier devel-
opers to call. We’ll call that client proxy ProjectClient.

Further, we need a method on the bean and client that retrieves project
task information. Let’s identify that method as getProjectTask(). As with

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

82

all get-type services, we need to pass an argument that identifies which task
to retrieve, and we need a VO object to represent a project task returned.

Our use case has enough detail to identify and define the ProjectTaskVO
object with all the attributes listed from the use-case definition. As discussed
in the “Shortcuts” section, we’ll list only the attributes in the model, not the
accessors and mutators. We can assume that the object will have
getTaskId() and setTaskId() methods, even though we won’t list them
in the model. We also won’t document the relationships between
ProjectTaskVO and all the objects that use it because it would make the
model unreadable and not useful.

ProjectBean will need to get project task information from an object in
the business logic layer. The ProjectTaskBO object in the business logic
layer needs to access a DAO to look up the task.

After users input or change task information, they have the option to
save. We need an action in the presentation layer to initiate the save. Let’s
call it the TaskSaveAction. The TaskSaveAction should include some-
thing in the deployment layer to initiate the save. We also need a validation
form to make sure users entered valid data. This form extends org.apache
.struts.action.ActionForm. Let’s call it TaskEditValidationForm.

Following much the same logic that we used to identify the getProject-
Task() methods in our client proxy, enterprise bean, business object, and
data access object, we can identify a saveProjectTask() method to ini-
tiate save processing at all these levels.

Figure 6.6 is an object model for everything we identified in this example.
Note that this model has something that’s very extensible. If we need to

support .Net clients at some point, we can create a Web service deployment
for the PROJECT_BO, and all other functionality remains the same. If we change
our data storage mechanism, we can do so without affecting any other tier.
The layering concept used here provides us insulation against change.

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

83

Figure 6.6: ProjectTrak Object Model

org.apache.struts.action::Action

TaskDisplayAction TaskSaveAction

TaskEditDisplayJSP

+getProjectTask(in taskId : int) : ProjectTaskVO
+saveProjectTask(in task : ProjectTaskVO)

ProjectClient

-taskId : int
-taskName : String
-estimate : double
-pctComplete : float
-dependentTasks : ProjectTaskVO[]
-assignedResource : ResourceVO
-priority : String

ProjectTaskVO

ResourceVO

+getProjectTask(in taskId : int) : ProjectTaskVO
+saveProjectTask(in task : ProjectTaskVO)

ProjectBean

+getProjectTask(in taskId : int) : ProjectTaskVO
+saveProjectTask(in task : ProjectTaskVO)

ProjectBO

+getProjectTask(in taskId : int) : ProjectTaskVO
+saveProjectTask(in task : ProjectTaskVO)

ProjectTaskDAO

org.apache.struts.action::ActionForm

TaskEditValidationForm

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

84

Further Reading

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley.

Grand, Mark. 2002. Java Enterprise Design Patterns. New York: John Wiley &
Sons.

Johnson, Rod. 2002. Expert One-on-One: J2EE Design and Development. In-
dianapolis, IN: Wrox Press.

Taylor, David. 1990. Object-Oriented Technology: A Manager’s Guide. Read-
ing, MA: Addison-Wesley.

Chapter 6: Creating the Object Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

85

7

Creating the Data Model
Most books about J2EE skip the data-modeling and database design phases
of development. But I have found that both steps are critical to the success
of a J2EE application. As part of the development team, a technical architect
should have a basic knowledge of data modeling. Further, in some compa-
nies, the architect is responsible for designing the application database. Just
as object-modeling exercises help produce good code, data-modeling exer-
cises help produce good database designs. (I have to admit, however, that
the many years I spent as a database designer and administrator may have
prejudiced my views as to the importance of data modeling.)

In addition, I find data-modeling concepts useful in designing XML docu-
ment formats, such as DTDs and schemas. Applying data-modeling con-
cepts to XML document design is a bit unconventional. The thought pro-
cess behind deciding if a data item is an element or an attribute is similar to
deciding between entities and attributes in data modeling. In addition, one-
to-many relationships in data modeling translate directly to the child ele-
ment concept in XML documents. I’ll provide some details and examples in
this section to show how you can implement data models as XML document
formats.

Although relational databases may someday be usurped by object data-
bases, I don’t see any signs of that occurring in today’s market. For now,
because relational databases are part of most J2EE applications, most technical

http://www.amazon.com/exec/obidos/ASIN/0972954899

86

architects need to have at least a basic understanding of data-modeling
concepts.

If you’re more comfortable with data modeling than with object model-
ing, feel free to take the easier path by doing data-modeling activities before
object modeling. All the entities (defined in the next section) in the data
model are potential identifications of data access objects, business objects,
and value objects. Although the two modeling disciplines use different terms,
they are quite similar conceptually.

Key Terms and Concepts

An entity is something you want to keep information about and thus repre-
sents information that persists (i.e., is written to media). Usually, an entity is a
noun. Although most entities are implemented as database tables, the terms
entity and table are not synonymous. An entity is purely a conceptual con-
struct, with its closest counterpart in object modeling being a class. Good
examples of entities are customer, account, user, customer order, and product.

In a relational database, an entity is implemented as a table. When you
implement your data model as an XML DTD or schema, then each entity
becomes an element.

An entity occurrence (sometimes shortened to occurrence) is an in-
stance of an entity. If you’re more comfortable with object modeling, you
can think of an entity occurrence as similar to instantiating a class. If you
can’t resist the urge to equate entities and tables, consider an entity occur-
rence as a row in a table. And for XML users, an entity occurrence is like an
individual element in an XML document.

An attribute is a characteristic of an entity. Although attributes can be
nouns, they usually don’t make sense outside the context of an entity. For
example, attributes of a CUSTOMER entity could be CUSTOMER_ID ,
FIRST_NAME, LAST_NAME, STREET_ADDRESS, CITY, STATE, and ZIP_CODE.
Attributes should be atomic—that is, they should be self-contained and not
derived from the values of other attributes.

A primary key is the one attribute, or combination of attributes, of an
entity that uniquely identifies an entity occurrence. For example,
CUSTOMER_ID would be a good primary key for the CUSTOMER entity, and
ACCOUNT_NUMBER and ORDER_NUMBER taken together would be a good pri-
mary key for an entity called CUSTOMER_ORDER.

Every entry must have a primary key. If, by chance, no combination of
attributes uniquely identifies an entity occurrence, make up an attribute to

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

87

serve as a key. For example, most manufacturers assign unique identifiers
(UPC codes) to their products, but when they don’t, you might have to make
up product IDs to serve as the primary key.

A relationship is an association between two entities. Out of the many
types of relationships that exist, three are commonly used: one-to-many,
many-to-many, and supertype/subtype. In a one-to-many relationship, one
occurrence of an entity is associated with possibly multiple occurrences of
another entity. For example, a single customer could have multiple accounts
or place multiple orders. Often, the entity with a single occurrence is called
the parent, and the entity with multiple occurrences is called the child.
Figure 7.1 illustrates a one-to-many relationship.

Notice in the figure that the ACCOUNT entity contains the primary key
(PK) columns of the ACCOUNT_TYPE and CUSTOMER entities. Each addi-
tional column in ACCOUNT is a foreign key (FK). Foreign keys are the pri-
mary keys of related entities that an entity uses for look-up purposes. The
existence of a foreign key is an implicit result of creating a one-to-many
relationship. For example, given an occurrence of ACCOUNT, related CUS-
TOMER and ACCOUNT_TYPE information is easy to determine.

Some data-modeling tools provide for many-to-many relationships be-
tween entities. In a many-to-many relationship, each entity has a one-to-
many relationship with the other. For example, customer orders can con-
tain many products, and each product can be purchased by multiple

Figure 7.1: One-to-Many Relationship

Customer

PK Customer ID

Last Name
First Name
Telephone

Account

PK Account ID

Account Name
FK1 Account Type
FK2 Customer ID

Account Type

PK Account Type

Key Terms and Concepts

http://www.amazon.com/exec/obidos/ASIN/0972954899

88

customers. It is common to rewrite a many-to-many relationship as two
separate one-to-many relationships with a new entity defined as a cross-
reference. Figure 7.2 is an example of a many-to-many relationship.

In a supertype/subtype relationship, an entity refines the definition of
another entity. For example, in banking, a customer entity might be too
generic for a bank that has trust customers, private banking customers,
corporate customers, brokerage customers, and so on. As shown in figure
7.3, the CUSTOMER entity is the supertype, and the others are the subtypes.

Figure 7.2: Many-to-Many Relationship

Product

Customer

is equivalent to

Customer Customer Product

Product

Figure 7.3: Supertype/Subtype Relationship

Customer

PK Customer ID

First Name
Last Name

Banking Customer

PK,FK1 Customer ID

Online Access Allowed

Brokerage Customer

PK,FK1 Customer ID

Options Allowed

Mortgage Customer

PK,FK1 Customer ID

Lending Limit
Credit Rating

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

89

It is possible to have entities related to themselves. This is called a re-
cursive relationship. For example, consider an EMPLOYEE entity with
EMPLOYEE_ID as the primary key. A recursive one-to-many relationship could
be used to indicate the manager of each employee. As a result of the rela-
tionship, a foreign key, say MANAGER_ID, would be used to cross-reference
employees with their managers.

Design Practices and Normal Form

Normal form is a set of rules that guide you in identifying entities and
relationships. In fact, there are many different degrees of normal form, but
in practice, third normal form is the one most frequently used. For that
reason, I limit the discussion here to third normal form; if you are inter-
ested in other normal forms, I recommend Date (2003).

To qualify for third normal form, entities must satisfy three conditions:

1 All repeating attribute groups should be removed and placed in a
separate entity.

2 All nonkey attributes should be dependent only on the primary key.

3 All nonkey attributes should be dependent on every attribute in the
primary key.

Suppose the CUSTOMER entity has the attributes ADDRESS_LINE_1,
ADDRESS_LINE_2, ADDRESS_LINE_3, and ADDRESS_LINE_4. Technically,
such an entity isn’t third normal form because it’s a repeating group and
violates condition 1. Figure 7.4a illustrates the example of this bad practice,
and Figure 7.4b illustrates a possible correction.

Figure 7.4a: Violation of the First Condition of Third Normal Form

Customer

Customer_ID
Customer_Name
Address_Line_1
Address_Line_2
Address_Line_3
Address_Line_4

Design Practices and Normal Form

http://www.amazon.com/exec/obidos/ASIN/0972954899

90

Figure 7.4b: Violation Corrected

Customer

PK Customer_ID

Customer_Name

Customer_Address_Line

PK Address_Line_Nbr
PK,FK1 Customer_ID

Address_Line

Suppose the ACCOUNT entity contains the attribute ACCOUNT_BALANCE.
This isn’t third normal form because it violates condition 2. ACCOUNT_BALANCE
is fully dependent on outstanding orders, the line items on them, and the
payments that have been made—items in other entities. Another problem
with ACCOUNT_BALANCE is that it isn’t atomic. ACCOUNT_BALANCE is com-
puted based on previous orders and customer payments.

Suppose the CUSTOMER_ORDER entity (which has a primary key that com-
bines ACCOUNT_NUMBER and ORDER_NUMBER) has the attributes
ACCOUNT_NAME and ADDRESS_INFORMATION. This technically isn’t third
normal form because these attributes relate to the account but not the spe-
cific order, which violates condition 3. Figure 7.5a illustrates the order vio-
lating third normal form, and Figure 7.5b illustrates a corrected version.

Figure 7.5a: Violation of the Third Condition of Third Normal Form

Customer_Order

PK Account_Nbr
PK Order_Nbr

Account_Shipping_Name
Account_Shipping_Address
Account_Shipping_City
Account_Shipping_State
Account_Shipping_Zip_Code
Shipping_Charge

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

91

Figure 7.5b: Violation Corrected

Customer_Order

PK Order_Nbr
PK,FK1 Account_Nbr

Shipping_Charge

Account

PK Account_Nbr

Account_Name
Account_Shipping_Name
Account_Shipping_Address
Account_Shipping_City
Account_Shipping_State
Account_Shipping_Zip_Code

Architect’s Exercise: ProjectTrak

Now that we’ve defined all the key data-modeling terms, let’s pull them all
together into a real application. We’ll continue with the following use case
from ProjectTrak:

▲ The system will allow users to define, edit, and display project tasks. A
project task has a name, an estimate (in hours), percent complete,
one assigned personnel resource, any number of dependent tasks,
and a priority (high/medium/low).

The first task in the data-modeling exercise is to identify the entities.
And the first question we need to answer is: what things are we keeping
information about? A project task is the most obvious candidate and alludes
to the existence of another entity, a project. Although the use case doesn’t
give us any information about the characteristics of a project, we should
identify it as an entity anyway.

The second sentence of the use case gives a list of characteristics for the
PROJECT_TASK entity. Those traits that are atomic will be attributes of
PROJECT_TASK. The name and estimate for PROJECT_TASK are definitely
atomic, so let’s add them to PROJECT_TASK as attributes.

PERCENT_COMPLETE might (or might not) be an atomic attribute. An-
other use case for this project states that the product needs to track the time
people work on each task. So we could calculate the percent complete for
each task by adding up the time people have contributed to the task and
dividing that by the hourly estimate. We could argue that the estimate might
be wrong and that we might use up all the time estimated for a particular
task before completing it. Because the use case doesn’t make the issue clear,

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

92

let’s assume that the PERCENT_COMPLETE is atomic and might not correlate
to the time worked toward a task. We’ll check that assumption with a busi-
ness analyst later.

The phrase “personnel resource” is a bit ambiguous. If we only had this
use case to consider, we might assume this to mean the name of that re-
source and model it as an attribute of PROJECT_TASK. However, one of the
other use cases mentions tracking skill sets for a resource. That would indi-
cate that a resource is a separate entity with a relationship to PROJECT_TASK
rather than an attribute of PROJECT_TASK. We’ll go ahead and identify the
entity RESOURCE, even though this use case doesn’t tell us its attributes. We
also know that there is a relationship between PROJECT_TASK and RESOURCE.

The phrase “any number of dependent tasks” indicates that PROJECT_TASK
has a recursive relationship (a one-to-many relationship to itself). The chil-
dren tasks in this relationship are other tasks that must be completed before
we can consider PROJECT_TASK complete.

PRIORITY might (or might not) be an appropriate attribute. A data-mod-
eling purist might tell you that a priority is separate from a project task and
thus should be modeled as an entity. If we did this, we would need to put a
one-to-many relationship between the PRIORITY and PROJECT_TASK entities.

If we had identified a use case that provided for users to define their own
priority levels, we would definitely make PRIORITY an entity. However, be-
cause the use case only mentions priority as a characteristic of a project task,
let’s model PRIORITY as an attribute of PROJECT_TASK.

While the use case doesn’t specify a relationship between PROJECT and
PROJECT_TASK, most people would feel comfortable that there is one. An-
other ProjectTrak use case states that projects can have multiple tasks. Al-
though we could be accused of jumping the gun a bit, we’ll go ahead and
draw in the relationship.

Next, we need to identify primary keys for our three entities. At this
point, let’s assume that we have to artificially construct a key for each. We’ll
call them PROJECT_ID, TASK_ID, and RESOURCE_ID. Typically, we would
record the assumption and revisit it after we’ve analyzed several other use
cases. We may be able to identify a natural key for each entity later in the
analysis. Natural keys are preferable to artificially constructed keys because
they are more intuitive and understandable. Artificial keys also require ad-
ditional application logic to generate and maintain.

Perhaps you felt a bit uncomfortable with making assumptions in this
exercise. But it’s a fact of corporate life: few decisions (including design

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

93

decisions like the ones we made here) are made with perfect information.
Try as you might, your use cases will never be 100 percent complete.

Figure 7.6 shows the ProjectTrak data model.

Creating Database Schema Definitions

Typically, database administrators use the data model to create relational
database schemas for the rest of the team to use. And most database admin-
istrators use modeling tools to do the dirty work. Unfortunately, few open
source tools for creating schemas are available. Although the process is a bit
more involved than what I illustrate in this section, with the help of a quali-
fied database administrator, you can create schemas using the following cen-
tral algorithm:

1 Directly translate each entity into a table. All attributes of an entity
become columns in the table. Explicitly define the primary key in
each table.

2 Assign a foreign key in the child entity of each one-to-many relationship.
Remember, a foreign key is the primary key of another entity that
exists so that you can match data in one entity to another. For
example, CUSTOMER_ID will appear as a foreign key in the ACCOUNT
table so that you have a way to associate an account with a specific
customer using a SQL join.

Figure 7.6: ProjectTrak Data Model Example

Project

PK Project ID

Project Task

PK Task ID

Task Name
Estimate In Hours
Completion_Pct

FK2 Project ID
FK3 Resource ID

Resource

PK Resource ID

Creating Database Schema Definitions

http://www.amazon.com/exec/obidos/ASIN/0972954899

94

3 Rewrite each many-to-many relationship by adding an associative table
and two one-to-many relationships. An associative table has a primary
key that is made up of two foreign keys. For example, look back at
figure 7.2 to see the many-to-many relationship between CUSTOMER
and PRODUCT. This will get implemented by creating a new table
(called CUSTOMER_LINE_ITEM, for example) that relates customers
to products.

As an illustration, listing 7.1 translates the ProjectTrak data model from
figure 7.6 into Oracle DDL.

Listing 7.1: ProjectTrak DDL for Figure 7.6

create table Project (Project_ID number primary key);

create table Project_Task

 (Task_ID number primary key,

Task_Name varchar(50) not null,

Estimate_In_Hrs number,

Completion_Pct number,

Project_ID number not null,

Resource_ID number

)

create table Resource (Resource_ID number primary key);

ALTER TABLE Project_Task

 ADD CONSTRAINT Project_FK

 FOREIGN KEY (Project_ID)

 REFERENCES Project(Project_ID);

ALTER TABLE Project_Task

 ADD CONSTRAINT Resource_FK

 FOREIGN KEY (Resource_ID)

 REFERENCES Resource(Resource_ID);

Common Mistakes

Denormalizing the database out of habit. Denormalizing a database means
replicating information to avoid look-ups and enhance performance. Con-
sequently, denormalization can introduce maintenance problems if the two
copies get out of synch.

In the early days of relational databases, denormalization for performance
was a must. However, the technology has advanced to the point where forced

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

95

denormalizations are rare. Today, denormalizations are done more out of
(bad) habit than for performance reasons.

Dropping database integrity constraints for programmatic convenience.

Some developers like to shut off the foreig key relationships between tables.
Not using database integrity constraints initially saves the programmer time
because it permits invalid inserts, updates, and deletes. But I’ve found you
lose more time than you save because you end up having to fight bugs cre-
ated by flawed inserts, updates, and deletes. The sooner you catch a bug, the
cheaper and easier it is to fix.

Creating XML Document Formats

In addition to their use in database design, data-modeling techniques can
easily be applied to designing XML documents. The same data models that
database administrators use to create physical database designs also readily
translate into XML document formats, such as DTDs or schemas. XML is
most often used as a means of communication between applications.

The first step in creating any XML document is to identify the document
root. XML documents usually contain lists of things identified in the data
model. For instance, a <customer-update> document might contain a list
of customer-related elements that contain information hat has changed. A
<purchase-order> document might contain a list of order-related ele-
ments describing one or more purchase order contents.

Entities in a data model translate to elements in an XML document. Only
implement the elements that are needed for the documents you’re creating.
Chances are that you don’t need all entities translated into elements. Enti-
ties that represent small look-up value domains (e.g., CUSTOMER_TYPE,
ACCOUNT_TYPE, etc.) are usually implemented as attributes rather than ele-
ments in an XML document.

Attributes of an entity become attributes of the corresponding element.

For example, the <customer> element from figure 7.1 would have the at-
tributes customer-id, last-name, first-name, and telephone.

A one-to-many relationship implies that one element is the child of an-

other in an XML document. Unlike relational databases, a foreign key to the
parent element isn’t needed because it’s indicated by segment ancestry. An-
cestry is indicated naturally within the XML syntax. For example, the

Creating XML Document Formats

http://www.amazon.com/exec/obidos/ASIN/0972954899

96

<customer> element from figure 7.1 would have an optional <account>
child element.

As a more complete illustration, listing 7.2 is a sample XML document
for the data model in figure 7.1.

Listing 7.2: XML Documnt Example

<?xml version=”1.0" encoding=”UTF-8"?>

<customer-update>

<customer customer-id=”C123"

first-name=”Derek”

last-name=”Ashmore”

telephone=”999-990-9999">

<account account-id=”A1"

account-name=”Personal Checking”

account-type=”checking”/>

</customer>

</customer-update>

A sample DTD definition for this XML document type follows:

<?xml version=”1.0" encoding=”UTF-8"?>

<!ELEMENT account EMPTY>

<!ATTLIST account

account-id CDATA #REQUIRED

account-name CDATA #REQUIRED

account-type CDATA #REQUIRED

>

<!ELEMENT customer (account)>

<!ATTLIST customer

customer-id CDATA #REQUIRED

first-name CDATA #REQUIRED

last-name CDATA #REQUIRED

telephone CDATA #REQUIRED

>

<!ELEMENT customer-update (customer)>

A sample Schema definition for this XML document type follows:

<?xml version=”1.0" encoding=”UTF-8"?>

<!DOCTYPE xsd:schema PUBLIC “-//W3C//DTD XMLSCHEMA 19991216//EN” “” [

<!ENTITY % p ‘xsd:’>

<!ENTITY % s ‘:xsd’>

]>

<xsd:schema xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>

<xsd:complexType name=”accountType”

 content=”empty”>

<xsd:attribute name=”account-id”

type=”xsd:string” use=”required”/>

<xsd:attribute name=”account-name”

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

97

type=”xsd:string” use=”required”/>

<xsd:attribute name=”account-type”

type=”xsd:string” use=”required”/>

</xsd:complexType>

<xsd:complexType name=”customerType”

 content=”elementOnly”>

<xsd:sequence>

<xsd:element name=”account”

type=”accountType”/>

</xsd:sequence>

<xsd:attribute name=”customer-id”

 use=”required”>

<xsd:simpleType base=”xsd:binary”>

<xsd:encoding value=”hex”/>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name=”first-name”

type=”xsd:string” use=”required”/>

<xsd:attribute name=”last-name”

type=”xsd:string” use=”required”/>

<xsd:attribute name=”telephone”

type=”xsd:string” use=”required”/>

</xsd:complexType>

<xsd:element name=”customer-update”>

<xsd:complexType content=”elementOnly”>

<xsd:sequence>

<xsd:element name=”customer”

type=”customerType”/>

</xsd:sequence>

<xsd:attribute name=”xmlns:xsi”

type=”xsd:uriReference”

use=”default”

 value=”http://www.w3.org/1999/XMLSchema-instance”/>

<xsd:attribute

 name=”xsi:noNamespaceSchemaLocation”

type=”xsd:string”/>

<xsd:attribute

 name=”xsi:schemaLocation”

type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Rewrite all many-to-many relationships by choosing one of the entities of

each relationship to be a child element. For example, consider a many-to-
many relationship between customer orders and products. This relation-
ship would be rewritten as two one-to-many relationships using the entity
ORDER_LINE_ITEM as a cross-reference. An <order-line-item> element

Creating XML Document Formats

http://www.amazon.com/exec/obidos/ASIN/0972954899

98

could be a child of the <order> or <product> element, or both. Chances
are that both do not need to be implemented and that <order-line-item>
would be considered a child of <order>.

Common Mistakes

Declaring attributes as elements. One of the most common XML design
mistakes I see is making data elements that should be attributes. For ex-
ample, some developers would have made account-name, from listing 7.2,
a separate element instead of an attribute of <account>. Misusing elements
in this way is likely to cause lower parsing performance and slower XSLT
transformations.

Further Reading

Date, C. J. 2003. An Introduction to Database Systems, 8th ed. Boston: Pearson/
Addison Wesley.

Fleming, Candace C., and Barbara von Halle. 1989. Handbook of Relational
Database Design. Reading, MA: Addison-Wesley.

Chapter 7: Creating the Data Model

http://www.amazon.com/exec/obidos/ASIN/0972954899

99

8

Network Architecture
The primary goal for network architecture with respect to J2EE applica-
tions is to provide the foundation for three important features: security,
scalability, and high availability. Although technical architects typically are
not responsible for configuring the network, they should understand the
features provided by the network architecture to determine what they need
to add directly to an application.

The technical architect is responsible for ensuring that applications don’t

breach the company’s security infrastructure. Security in most companies
is a centralized function and is treated as a network infrastructure issue.
Despite this, the architect must understand what the company infrastruc-
ture provides and ensure that any application developed doesn’t do any-
thing to circumvent the security architecture in place. For example, with
most security architectures I’m aware of, it’s technically possible for the
application to use a generic ID to provide users access to information for
which they’re not personally authorized.

The technical architect is responsible for application scalability. Scalability
refers to the ability of your site to handle an increasingly large number of
users. Although server hardware and network infrastructure provide a plat-
form that makes scaling possible, application design is as much a contribut-
ing factor to scalability as the underlying hardware configuration.

http://www.amazon.com/exec/obidos/ASIN/0972954899

100

The technical architect is responsible for application availability. The term
high availability describes a site that is always available for use and has mini-
mal downtime. While the server and network infrastructure may provide
such features as clustering and automatic fail-over, faulty application design
can defeat these features and can make applications unavailable.

Developers who have come up through the ranks as programmers usu-
ally have little exposure to networking and network architecture. Because
the architecture for J2EE applications typically involves multiple servers,
and because I routinely get enough basic networking questions from senior
developers, this chapter begins by defining some key networking terms and
goes on to explain, by example, the basic functioning of a network.

In addition, the chapter describes and provides examples of two generic
architectures commonly used for J2EE applications: one for security and
the other for scalability and availability. Understanding your network archi-
tecture also helps you identify where a problem is occurring.

Readers who already understand networking basics might want to skip
to the section titled “Security.”

Key Terms and Concepts

An IP address identifies the location of a machine or device on a TCP/IP
network. If your PC is on the Internet, you have an IP address. An example
IP address is 192.168.1.101. Although it looks as if this address has four
parts, it only has two: a network part and a host part. The network part
identifies the network where the device is located, and the host part identi-
fies the specific device within that network. In the example, 192.168.1 is the
network part, and 101 is the host part. Most networks use the first three
nodes of the IP address to identify the network. This is configurable, but
that task is beyond the scope of this chapter. Most devices on a network are
assigned IP addresses. Network communication between IP addresses is com-
monly called traffic.

A subnet mask indicates which parts of the IP address identify the net-
work and which parts identify the host. For instance, a common subnet
mask is 255.255.255.0. This means that the first three nodes of an IP ad-
dress indicates the network, the last node IP address indicates the host. As
each node has 256 possible values (0 to 255), this example network can have
256 IP addresses in it.

A switch or a hub is a device that allows multiple machines to partici-
pate on a network. There are technical differences between hubs and switches

Chapter 8: Network Architecture

http://www.amazon.com/exec/obidos/ASIN/0972954899

101

that are beyond the scope of this chapter. A switch or hub can also be used
to connect networks. For example, my PC is connected to a switch. That
switch is connected to another switch that is connected to other machines
in my house. Switches and hubs are devices that do not have assigned IP
addresses.

A router is a device that understands where to send traffic based on the
network portion of the IP address. Routers are required for large networks.
While hubs and switches allow you to create a network, routers connect
entire networks. Some routers are programmable and can actually provide
functionality similar to that of firewalls (defined later). Some operating sys-
tems are capable of making servers act as routers.

A gateway is a router that provides users in a network access to the In-
ternet. Gateways are typically provided by Internet services providers (ISPs).

A firewall provides security for a network. The configurable rules of a
firewall define what network traffic is allowed and block the rest. Firewalls
keep Internet traffic away from servers that corporations use internally. Like
many people, I have a firewall in front of my Internet connection to guard
against security breaches. Here are a few examples of typical firewall rules:

▲ Allow HTTP traffic from anyone to servers ren and stimpy.

▲ Allow HTTPS traffic from anyone to servers ren and stimpy.

▲ Allow FTP traffic from anyone to server homer.

A load-balancing appliance is used for Web sites with high volume.
For Web sites that have high numbers of users, sometimes it’s cheaper to
buy several smaller servers than to buy one or two large ones. The load-
balancing appliance distributes traffic over several identically configured Web
servers.

A domain name service (DNS) tracks labels for IP addresses. For ex-
ample, it’s easier to remember http://www.javasoft.com/, Sun’s Java tech-
nology Web site, than to remember 192.18.97.39. A DNS tracks the fact
that the Java technology Web site is at 192.18.97.39. A DNS also makes it
easy for administrators to change the location of a Web site.

A demilitarized zone (DMZ) is a network sandwiched between two
firewalls. It’s common to put a public site in a DMZ, with the Internet out-
side one firewall and a corporation’s internal network outside the other. This
decreases the probability of hackers getting into your internal corporate
network because they would have to break through two firewalls to do so.

Key Terms and Concepts

http://www.amazon.com/exec/obidos/ASIN/0972954899

102

A cluster is a group of servers that service the same applications and are
configured in such a way that they share one IP address. Clustering is a
complex topic and can be defined at a hardware level, software level, or a
combination of the two. Sometimes groups of servers like this are referred
to as a server farm.

Networking Basics

The easiest way to explain how networking works is by example. Let’s look
at what happens when I surf to http://www.javasoft.com/, the Java technol-
ogy Web site. My DNS server (63.240.76.4) is asked to provide the IP ad-
dress for the Java technology Web site, which is 192.18.97.39. My machine
sends the request to the gateway/firewall device in my basement
(192.168.1.1). That gateway sends the request to my cable modem (IP ad-
dress unknown). The cable modem sends the request to the gateway pro-
vided by my ISP. My communication goes through a large number of rout-
ers and gateways illustrated by the traceroute in listing 8.1. Eventually, my
request gets to Sun’s Java technology Web site.

Listing 8.1: A Traceroute to http://www.javasoft.com/

C:\>tracert www.javasoft.com

Tracing route to www.javasoft.com [192.18.97.39]

over a maximum of 30 hops:

 1 10 ms 10 ms 10 ms 10.164.160.1

 2 10 ms 10 ms 10 ms 12.244.106.129

 3 10 ms 10 ms 10 ms 12.244.68.26

 4 10 ms 20 ms 10 ms 12.244.68.30

 5 10 ms 10 ms 10 ms 12.244.72.242

 6 10 ms 20 ms 20 ms gbr2-p100.cgcil.ip.att.net [12.123.5.78]

 7 10 ms 20 ms 10 ms tbr1-p013602.cgcil.ip.att.net [12.122.11.37]

 8 10 ms 10 ms 10 ms gbr3-p50.cgcil.ip.att.net [12.123.5.146]

 9 20 ms 10 ms 10 ms POS5-2.BR5.CHI2.ALTER.NET [204.255.169.145]

 10 10 ms 10 ms 20 ms 0.so-3-1-0.XL2.CHI2.ALTER.NET [152.63.71.97]

 11 20 ms 10 ms 10 ms 0.so-2-0-0.TL2.CHI2.ALTER.NET [152.63.67.109]

 12 20 ms 20 ms 10 ms 0.so-7-0-0.TL2.STL3.ALTER.NET [152.63.146.62]

 13 70 ms 70 ms 70 ms 0.so-3-0-0.CL2.DEN4.ALTER.NET [152.63.89.233]

 14 71 ms 90 ms 80 ms 178.ATM7-0.GW3.DEN4.ALTER.NET [152.63.72.73]

 15 * * * Request timed out.

 16 80 ms 70 ms 80 ms rwres.java.Sun.COM [192.18.97.39]

Trace complete.

Chapter 8: Network Architecture

http://www.amazon.com/exec/obidos/ASIN/0972954899

103

Notice that one of the addresses in the route was unidentifiable and was
marked “Request timed out” in the trace. This is probably a firewall. The
firewall at the Java technology Web site might not be configured to allow
traceroutes initiating from the Internet.

Figure 8.1 is an example of a network diagram. The lines indicate net-
work connectivity. All machines on the network must be connected to a
hub, switch, or router of some type.

Figure 8.1: Network Diagram Example

World Wide Web

RS CS TR RD TD CD
TALK / DATA

TALK Cable Modem

Firewall/Router

Switch

Switch

Network
Printer

latigid

Sun
Server

latigid

Windows
Server

Zachary’s
PC

Morgan’s
PC

Office

Networking Basics

http://www.amazon.com/exec/obidos/ASIN/0972954899

104

Security

Security for J2EE applications and the underlying environment can be
thought of in terms of authorization, authentication, and provisioning. Se-
curity features are used to limit the types of traffic allowed over a network
(e.g., HTTP traffic, mail, FTP, etc.). Further, some transmissions might be
allowed for some users but not for all. Firewalls are typically used to limit
the types of network transmissions possible at site level. It’s standard for
J2EE applications to allow only HTTP or HTTPS traffic through the firewall.
FTP traffic to an FTP server also might be allowed.

User authentication is commonly handled at the Web server level with
the assistance of some type of identity management product (such as Oblix™).
These products are typically used to force a user login and validate the re-
quested password.

The authorization feature of a Web server (with the help of a third-
party encryption vendor) is targeted at making sure that the entity provid-
ing the user ID and password for the session is still the entity issuing re-
quests over the server. This feature also protects the content of every
transmission from being viewed or altered by a third party. SSL is one com-
monly used encryption mechanism.

Provisioning features regulate which users get access to which applica-
tions. In complex environments, provisioning allows a user to use only some
applications, not all. Provisioning is normally provided by a purchased prod-
uct and not developed internally.

The reason that these concerns are usually addressed at an architecture
level is that they’re common to all applications. None of the features dis-
cussed here should require any specific application-level coding. If the ap-
plication provides personalization features and the infrastructure provides
identity management software, the application might look up information
about the user.

Most J2EE applications position their firewalls so that at least the Web
and application servers are in a DMZ. Because intruders must break through
multiple firewalls to get to application data, using a DMZ reduces the prob-
ability of a break-in.

Figure 8.2 depicts a basic network architecture for a J2EE application. In
this diagram, the Web servers provide security. The LDAP server is used to
provide customer identity information for the Web servers.

Chapter 8: Network Architecture

http://www.amazon.com/exec/obidos/ASIN/0972954899

105

Architecting Application Security

Leverage the infrastructure security features as much as possible. Security
features managed at an enterprise level usually have a lower chance of fail-
ure compared with custom-coded solutions at the application level. My
premise is that commercial and open source packages generally have less
severe bugs and are more robust than custom-coded applications.

Audit the use of generic IDs. A generic ID is an ID not associated with a
specific person. It is common practice to use a generic ID and password for
a database connection. It is not common to use a generic ID to provide
protected Web content to users who are not explicitly authorized for that
content. I’ve seen applications that use generic IDs in this way to skirt the
security infrastructure of the company.

Effectively use URL masks to indicate security requirements. Most Web
servers enforce security based on URLs. For example, a URL containing the
phrase “/public” may not be secure, while a URL containing the phrase
“/admin” might be restricted to application and system administrators. If
the end users of your application have different capabilities depending on
who they are, make sure that the URLs used to access them reflect their
roles. In most companies, this will increase your chances of being able to
use the security infrastructure.

Scalability and High Availability

Scalability and high availability come from the network architecture’s pro-
vision of redundant Web servers, application servers, and database servers.

Figure 8.2: Basic J2EE Network Architecture

Application
Server
Farm

App
Server

1

App
Server

2

App
Server

3

WWW

Web
Server
Farm

Web
Server

1

Web
Server

2

Web
Server

3

LDAP Server Messaging Manager Server

Database
Server
Farm

Db
Server

1

Db
Server

2

Db
Server

3

Scalability and High Availability

http://www.amazon.com/exec/obidos/ASIN/0972954899

106

Additionally, some architectures might have LDAP and messaging server
redundancies.

Hardware redundancies provide scalability by distributing the load over
multiple machines. For instance, if your application servers can handle 1,000
concurrent users each, you need five to handle 5,000 users. You can keep
adding to your heart’s content. The same concept holds for all the other
types of servers.

Hardware redundancies provide high availability by reducing the chances
that all hardware will be down at the same time and all users prevented from
using your site. The more redundancy, the lower the probability of outage
(theoretically, at least). Using this logic, diminishing returns appear very
quickly. After three servers, the probability of an outage is so low that the
probability reductions associated with additional servers are minuscule.

One important corollary to the hardware redundancy principle is that
your site is only as strong as your weakest link. One of my clients provides
effective redundancies at all levels, except that the company’s database doesn’t
support using multiple servers without manual intervention and some amount
of data loss. For this client, adding more servers would achieve little to noth-
ing toward high availability because the company has an unguarded single
point of failure anyway. This client’s scalability is also limited because the
company can only scale the size of the single database server and doesn’t
have opportunities to increase bandwidth.

The amount of redundancy of each piece of hardware doesn’t necessar-
ily increase in parallel. For example, you might add more application serv-
ers while leaving the number of Web servers alone. You might increase the
number of load balancers and leave the number of Web servers and applica-
tion servers alone. The roles additional servers play depends on where your
CPU cycles are being spent.

System administrators have different ways to bind an army of servers
together. One method is to use some type of load-balancing software or
appliance. The cheapest tool is a DNS that distributes the load in a round-
robin manner. For a large site, however, the company usually purchases a
load-balancing appliance that uses a distribution algorithm that is more so-
phisticated and more efficient than round-robin.

Some operating systems have clustering capabilities, which bind together
multiple machines to look like one machine. Because the machines commu-
nicate on a low level, if one machine crashes, fail-over is generally quick and
the probability of transaction failure during the crash is low.

Chapter 8: Network Architecture

http://www.amazon.com/exec/obidos/ASIN/0972954899

107

Operating system clustering is usually complemented by application
server software and database software. For example, BEA’s WebLogic™ prod-
uct supports clustering. Oracle’s database software also supports clustering
(this feature is called Parallel Server).

Generally, clustering technologies are costly on a number of fronts. Out-
right licensing fees are often high for clustered solutions. But far more sig-
nificant are the support costs associated with effectively administering and
configuring such an environment, which you cannot avoid if you want to
get the maximum benefit from the software purchase.

Architecting Scalability and Availability

Audit all objects placed on the session to ensure that they are serializable.

J2EE applications usually place information on the session, and J2EE con-
tainers must be able to serialize these objects and transport them to other
servers to use in the event of a failure. If these objects contain anything that
doesn’t implement java.io.Serializable, the container will not be able
to provide a seamless transition to another server in response to a failure.

Keep all code servers generic. The clustering capabilities that J2EE con-
tainers provide depend on the fact that code executed on one node in the
cluster operates the same way when executed in another node. I’ve seen
applications inadvertently make code environment aware and not be able to
function in a clustered environment.

Figure 8.3: Network Diagram Example

WWW

Web, Mail,
and LDAP

Servers

Application, Database,
and Messaging Servers

Web
Server

1

Web
Server

2
Web

Server
3

App
Server

1

App
Server

2

App
Server

3

LDAP Server 1 Messaging Manager Server 1

Db
Server

1

Db
Server

2

Db
Server

3

Messaging Manager Server 2
LDAP Server 2

Mail Server

Internal
Network

Scalability and High Availability

http://www.amazon.com/exec/obidos/ASIN/0972954899

108

Network Diagram Example

The architecture shown in figure 8.3 is a slight variation from the generic
architecture presented in Figure 8.2. The site has two DMZs for extra secu-
rity. The outer DMZ hosts Web servers, the LDAP servers (for customer
authorization), and a mail server. The inner DMZ hosts all application serv-
ers, database servers, and messaging servers. This architecture is redundant
and scalable at several levels. As usage of the site expands, the number of
Web servers, LDAP servers, application servers, and database servers can
easily be expanded to handle growth.

The fact that all types of servers are duplicated at least once (with the
exception of the mail server) significantly lowers the probability of an
unplanned outage. The fact that the mail server isn’t made redundant means
that the company is prepared to accept a limited mail service outage.

Further Reading

Hunt, Craig. 2002. TCP/IP Network Administration, 3rd ed. Sebastopol, CA:
O’Reilly & Associates.

Chapter 8: Network Architecture

http://www.amazon.com/exec/obidos/ASIN/0972954899

109

9

Planning Construction
Okay, you’ve read the chapter title, and you’re thinking, “What’s a chapter
on project planning doing in a technical architect’s handbook?” But remem-
ber, part of the technical architect’s role is to give the project manager infor-
mation on construction tasks, the order in which they should be completed,
and what dependencies exist. And these days, J2EE architects are often called
on to fill the project management role.

This chapter develops and adds detail to the high-level requirements
described in chapter 3. After completing use-case analysis and object and
data modeling, you should have enough information for a more detailed
plan. My project plans typically have the following types of activities:

▲ Use-case analysis

▲ Object modeling

▲ Data modeling

▲ Data migration/conversion activities

▲ Coding and unit testing

▲ System testing

▲ User acceptance testing

▲ Deployment activities

http://www.amazon.com/exec/obidos/ASIN/0972954899

110

Many of these categories can be divided into lower-level tasks. For ex-
ample, you could break down use-case analysis into major subject areas of
the application. Typically, I divide coding and unit-testing activities into
major classes, with one or two people assigned to each.

Figure 9.1 shows a task list from the ProjectTrak application we’ve been
using in the “Architect’s Exercise” sections.

Task Order and Dependencies

The most common planning question I get from project managers is how to
effectively order construction and unit testing. I usually advise the follow-
ing order:

▲ DAO (with testing classes) and VO classes

▲ Business objects (with testing classes)

▲ Deployment wrappers and interfaces

▲ Presentation layer

Architectural components of a project need to be constructed before they
are needed. There is no way to make more detailed recommendations for
architectural components because they can be used in all layers of the project.

You will find that most business objects rely heavily on DAOs and VOs.
As such, you cannot complete most business objects until the classes they
use are complete. If you’re using project management software, I’d ensure
that these dependencies are properly reflected in the plan.

The presentation layer actions and JSPs would logically be completed
after the deployment layer is coded. If the presentation layer coding and
construction must start first for political reasons, then stub the deployment
wrappers. These “stubs” are throwaway work.

The tasks at this point in the project should become granular enough
that most developers will feel comfortable providing estimates. As a result,
the project plan can be more accurate now than in the preliminary stages
described in chapter 3.

If you’re using a project management tool, and the work schedule it com-
putes doesn’t make sense, the most likely cause is that some dependencies
are incorrect or missing. Many people circumvent the management tool
and manually compute and enter start and end dates for all the tasks. I pre-
fer to fix the dependencies rather than produce an unrealistic plan.

Chapter 9: Planning Construction

http://www.amazon.com/exec/obidos/ASIN/0972954899

111

Figure 9.1: Example J2EE Project Plan for ProjectTrak

Project Start Date: Thu 6/26/03

Project Finish Date: Wed 11/12/03

Tasks

1 Use case
analysis

1 day? Thu 6/26/03 Thu 6/26/03 0%

2 Design
Activities

24.5
days

Thu 6/26/03 Wed 7/30/03 0%

3 Screen design
and prototype

16 hrs Mon 7/28/03 Wed 7/30/03 Derek
Ashmore

0%

4 Object Modeling 4 days Thu 6/26/03 Tue 7/1/03 0%

5 Base
functionality

16 hrs Thu 6/26/03 Fri 6/27/03 Derek
Ashmore

0%

6 Skill set tracking
capability

8 hrs Mon 6/30/03 Mon 6/30/03 Derek
Ashmore

0%

7 Baseline
capability

8 hrs Tue 7/1/03 Tue 7/1/03 Derek
Ashmore

0%

8 Data Modeling 4 days Tue 7/22/03 Fri 7/25/03 0%

9 Base
functionality

16 hrs Tue 7/22/03 Wed 7/23/03 Derek
Ashmore

0%

10 Skill set tracking
capability

8 hrs Thu 7/24/03 Thu 7/24/03 Derek
Ashmore

0%

11 Baseline
capability

8 hrs Fri 7/25/03 Fri 7/25/03 Derek
Ashmore

0%

12 Physical
database design

4 hrs Mon 7/28/03 Mon 7/28/03 Derek
Ashmore

0%

13 Coding 46.75
days

Wed 7/2/03 Thu 9/4/03 0%

14 VO Objects 30 days Wed 7/2/03 Tue 8/12/03 0%

15 BaselineVO 2 hrs Wed 7/9/03 Wed 7/9/03 Developer 1 0%

16 ProjectVO 2 hrs Wed 7/2/03 Wed 7/2/03 Developer 1 0%

17 ProjectTaskVO 2 hrs Wed 7/9/03 Wed 7/9/03 Developer 1 0%

18 ProjectTaskWith
ProjectionVO

2 hrs Tue 8/12/03 Tue 8/12/03 Developer 1 0%

19 ResourceVO 2 hrs Tue 7/8/03 Tue 7/8/03 Developer2 0%

20 SkillsetVO 2 hrs Wed 7/2/03 Wed 7/2/03 Developer2 0%

21 Data Access
Layer with Test
Classes

15.5
days

Wed 7/2/03 Wed 7/23/03 0%

22 BaselineDAO 40 hrs Wed 7/16/03 Wed 7/23/03 Developer 1 0%

ID Task Name Duration Start Finish
Resource
Names

%
Complete

Task Order and Dependencies

http://www.amazon.com/exec/obidos/ASIN/0972954899

112

23 ProjectDAO 40 hrs Wed 7/2/03 Wed 7/9/03 Developer 1 0%

24 ProjectTaskDAO 40 hrs Wed 7/9/03 Wed 7/16/03 Developer 1 0%

25 SkillsetDAO 32 hrs Wed 7/2/03 Tue 7/8/03 Developer2 0%

26 ResourceDAO 32 hrs Tue 7/8/03 Mon 7/14/03 Developer2 0%

27

25.75
days

Wed 7/2/03 Wed 8/6/03 0%

28 ProjectBO 80 hrs Wed 7/23/03 Wed 8/6/03 Developer 1 0%

29 ResourceBO 40 hrs Mon 7/14/03 Mon 7/21/03 Developer2 0%

30 TaskScheduler
BO

80 hrs Wed 7/2/03 Tue 7/15/03 Derek
Ashmore

0%

31

16.25
days

Mon 7/21/03 Tue 8/12/03 0%

32 ProjectBean 32 hrs Wed 8/6/03 Tue 8/12/03 Developer 1 0%

33 ResourceBean 32 hrs Mon 7/21/03 Fri 7/25/03 Developer2 0%

34 31.75
days

Wed 7/16/03 Thu 8/28/03 0%

35 Struts
configuration

32 hrs Wed 7/16/03 Mon 7/21/03 Derek
Ashmore

0%

36 Test classes
with Cactus

40 hrs Thu 8/21/03 Thu 8/28/03 Derek
Ashmore

0%

37 14.25
days

Fri 7/25/03 Thu 8/14/03 0%

38 BaselineDisplay
Action

16 hrs Tue 8/12/03 Thu 8/14/03 0%

39 BaselineSave
Action

16 hrs Tue 8/12/03 Thu 8/14/03 0%

40 CombinedWork
ScheduleDisplay
Action

16 hrs Tue 8/12/03 Thu 8/14/03 0%

41 ProjectDisplay
Action

16 hrs Tue 8/12/03 Thu 8/14/03 0%

42 ProjectSave
Action

16 hrs Tue 8/12/03 Thu 8/14/03 0%

43 TaskDisplay 16 hrs Tue 8/12/03 Thu 8/14/03 0%

44 TaskSaveAction 16 hrs Tue 8/12/03 Thu 8/14/03 0%

Business Logic
Layer with Test
Classes

Deployment
Layer with
Client Classes

Presentation
Layer

Action Classes

Action

ID Task Name Duration Start Finish
Resource
Names

%
Complete

Chapter 9: Planning Construction

http://www.amazon.com/exec/obidos/ASIN/0972954899

113

45 WorkSchedule 16 hrs Fri 7/25/03 Tue 7/29/03 0%

46 WorkSchedule
SaveAction

16 hrs Fri 7/25/03 Tue 7/29/03 0%

47 JSPs 5 days Thu 8/14/03 Thu 8/21/03 0%

48 BaselineDisplay
JSP

40 hrs Thu 8/14/03 Thu 8/21/03 0%

49 ProjectEditDisplay 40 hrs Thu 8/14/03 Thu 8/21/03 0%

50 ProjectWorkSch
eduleDisplayJSP

40 hrs Thu 8/14/03 Thu 8/21/03 0%

51 TaskEditDisplay 40 hrs Thu 8/14/03 Thu 8/21/03 0%

52 WorkSchedule 40 hrs Thu 8/14/03 Thu 8/21/03 0%

53 5 days Thu 8/28/03 Thu 9/4/03 0%

54 Code and verify
test suite

40 hrs Thu 8/28/03 Thu 9/4/03 Derek
Ashmore

0%

55 System testing 160 hrs Thu 8/28/03 Thu 9/25/03 0%

56 32 days Fri 9/26/03 Tue 11/11/03 0%

57 Alpha support 80 hrs Fri 9/26/03 Fri 10/10/03 0%

58 Beta 1 support 80 hrs Mon 10/13/03 Mon 10/27/03 0%

59 Beta 2 support 80 hrs Tue 10/28/03 Tue 11/11/03 0%

60 99.75
days

Thu 6/26/03 Wed 11/12/03 0%

61 Development
environment
setup

16 hrs Thu 6/26/03 Fri 6/27/03 0%

62 System test
environment
setup

16 hrs Mon 6/30/03 Tue 7/1/03 0%

63 Alpha release 8 hrs Thu 9/25/03 Fri 9/26/03 0%

64 Beta 1 release 8 hrs Fri 10/10/03 Mon 10/13/03 0%

65 Beta 2 release 8 hrs Mon 10/27/03 Tue 10/28/03 0%

66 Production
release

8 hrs Tue 11/11/03 Wed 11/12/03 0%

DisplayAction

JSP

JSP

EditDisplayJSP

Regression Test
suite

User Acceptance
Testing

Deployment
Activities

ID Task Name Duration Start Finish
Resource
Names

%
Complete

Task Order and Dependencies

http://www.amazon.com/exec/obidos/ASIN/0972954899

114

ID Name Group Max Units Peak Units

1 Technical Architect 100% 100%

2 Developer 1 100% 100%

3 Developer2 100% 100%

Task
ID

Task Name
Resource

Name
Work Start Finish

% Work
Complete

3 Screen design
and prototype

Derek
Ashmore

16 hrs Mon 7/28/03 Wed 7/30/03 0%

5 Base
functionality

Derek
Ashmore

16 hrs Thu 6/26/03 Fri 6/27/03 0%

6 Skill set
tracking
capability

Derek
Ashmore

8 hrs Mon 6/30/03 Mon 6/30/03 0%

7 Baseline
capability

Derek
Ashmore

8 hrs Tue 7/1/03 Tue 7/1/03 0%

9 Base
functionality

Derek
Ashmore

16 hrs Tue 7/22/03 Wed 7/23/03 0%

10 Skill set
tracking
capability

Derek
Ashmore

8 hrs Thu 7/24/03 Thu 7/24/03 0%

11 Baseline
capability

Derek
Ashmore

8 hrs Fri 7/25/03 Fri 7/25/03 0%

12 Physical
database
design

Derek
Ashmore

4 hrs Mon 7/28/03 Mon 7/28/03 0%

15 BaselineVO Developer 1 2 hrs Wed 7/9/03 Wed 7/9/03 0%

16 ProjectVO Developer 1 2 hrs Wed 7/2/03 Wed 7/2/03 0%

17 ProjectTaskVO Developer 1 2 hrs Wed 7/9/03 Wed 7/9/03 0%

18 ProjectTaskWith
ProjectionVO

Developer 1 2 hrs Tue 8/12/03 Tue 8/12/03 0%

19 ResourceVO Developer2 2 hrs Tue 7/8/03 Tue 7/8/03 0%

20 SkillsetVO Developer2 2 hrs Wed 7/2/03 Wed 7/2/03 0%

22 BaselineDAO Developer 1 40 hrs Wed 7/16/03 Wed 7/23/03 0%

23 ProjectDAO Developer 1 40 hrs Wed 7/2/03 Wed 7/9/03 0%

24 ProjectTaskDAO Developer 1 40 hrs Wed 7/9/03 Wed 7/16/03 0%

25 SkillsetDAO Developer2 32 hrs Wed 7/2/03 Tue 7/8/03 0%

26 ResourceDAO Developer2 32 hrs Tue 7/8/03 Mon 7/14/03 0%

28 ProjectBO Developer 1 80 hrs Wed 7/23/03 Wed 8/6/03 0%

29 ResourceBO Developer2 40 hrs Mon 7/14/03 Mon 7/21/03 0%

Assignments

Resources

Chapter 9: Planning Construction

http://www.amazon.com/exec/obidos/ASIN/0972954899

115

30 TaskScheduler
BO

Derek
Ashmore

80 hrs Wed 7/2/03 Tue 7/15/03 0%

32 ProjectBean Developer 1 32 hrs Wed 8/6/03 Tue 8/12/03 0%

33 ResourceBean Developer2 32 hrs Mon 7/21/03 Fri 7/25/03 0%

35 Struts
configuration

Derek
Ashmore

32 hrs Wed 7/16/03 Mon 7/21/03 0%

36 Test classes
with Cactus

Derek
Ashmore

40 hrs Thu 8/21/03 Thu 8/28/03 0%

54 Code and verify
test suite

Derek
Ashmore

40 hrs Thu 8/28/03 Thu 9/4/03 0%

 Task
ID

Task Name
Resource

Name
Work Start

% Work
CompleteFinish

Critical Path

Critical Path

The critical path comprises the dependent tasks that take the longest. In
effect, the critical path determines the length of the project. A delay of one
day to the critical path will delay the project by one day. Conversely, one
day saved in the critical path will allow the project to come in one day early.
If you’re a technical architect doubling as a project manager, pay more at-
tention to the critical path than to anything else. Most project management
software packages highlight the critical path if you have entered all the re-
source assignments and dependencies completely.

A critical path can shift. If you save enough time on a critical path task,
it’s possible that it isn’t on the critical path anymore—something else is. If a
long delay occurs for a task that is not on the critical path but is still essen-
tial, the task might become part of the critical path.

For example, financial analysis software I helped develop included a com-
ponent responsible for generating analysis using company financial infor-
mation and financial models that users input. In the beginning, this compo-
nent was not part of the critical path. But as the project proceeded, the
critical path changed to incorporate the component because the developer
leading the effort to write it didn’t have enough knowledge and experience
for the task.

The best books I’ve encountered on the importance of the critical path
(and planning in general) are Goldratt (1992, 1997). Although both books
use factory assembly lines as examples, the concepts are applicable to J2EE
projects (and with their novel-like formats, the books are entertaining reads).

http://www.amazon.com/exec/obidos/ASIN/0972954899

116

Common Mistakes

Going straight to code. Many developers are impatient with design. They
view object-modeling and data-modeling activities as boring compared with
coding. I’ve seen many projects proceed to coding without doing enough
modeling to figure out what the target is first. Although most of those projects
eventually were finished, they usually used more resources than was neces-
sary. Sometimes, targetless efforts can use two to four times the required
resources.

A good analogy is residential construction. When contractors build houses,
they create the blueprints first to avoid costly mistakes and rework. Object
models and data models are effectively blueprints for J2EE applications.

Permitting a moving target. Once scope is decided for the project (e.g., it
has been decided which use cases will be implemented, and the content of
those use cases has enough detail from which to design), discourage or even
outlaw scope increases. I know this is easier said than done. McConnell
(1998) suggests installing a change control board, which is charged with
reviewing and authorizing all change requests once a project has progressed
passed analysis and high-level design. The existence of a change control
board effectively discourages scope increases by creating bureaucratic red
tape.

If you can’t avoid adding something to a project late in the game, make
sure the additional activities, time, and costs get added to the project plan.
Also, make sure that the revised project plan reflects the fact that the time
spent on analysis and design for the new features zapped time from what
you were supposed to be doing (making it late, too). If the new feature causes
rework on tasks already completed, make sure that those costs are also docu-
mented for all to see.

Think of the residential construction analogy again. Changes in
homebuyer wants and desires cause rework and impact the delivery date.

Not correcting personnel assignment mistakes. Of course, it’s best to avoid
making mistakes in the first place. But when mistakes happen, your best course
of action is to recognize and fix them rather than ignore them. The most
damaging mistakes in large projects are in the areas of personnel task assign-
ment. This type of mistake is so damaging because most managers are unable
to gather the courage to correct the mistakes, thus allowing them to continue.

Although the project manager traditionally handles personnel assign-
ments, the architect (with more knowledge of technical skill sets) should at

Chapter 9: Planning Construction

http://www.amazon.com/exec/obidos/ASIN/0972954899

117Further Reading

least serve in an advisory role. DeMarco and Lister (1999) make some inter-
esting observations:

▲ The best person on the team outperforms the worst by 10:1.

▲ The best performer on the team is about 2.5 times better than the
average.

In addition, people generally are extremely good at some tasks but poor
at others. Good project managers learn to recognize the difference and ad-
just assignments appropriately. For example, someone might be a whiz when
it comes to coding the presentation tier but a complete dud at coding archi-
tectural components. Some people can perform testing with ease but are
poor at coding.

Saving integration testing activities until the end of the project. Analysis
and design mistakes and omissions often aren’t visible until construction
begins. Integration testing the application makes analysis and design mis-
takes visible even if the application is only partially functional. Finding these
mistakes earlier in the project gives you a chance to correct the error with
fewer effects to the project timeline.

Further Reading

DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive Projects
and Teams, 2nd ed. New York: Dorset House.

Goldratt, Eliyahu. 1992. The Goal: A Process of Ongoing Improvement. Great
Barrington, MA: North River Press.

———. 1997. Critical Chain. Great Barrington, MA: North River Press.

McConnell, Steve. 1998. Software Project Survival Guide. Redmond, WA:
Microsoft Press.

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

119

Section 3

Building J2EE Applications

Once the design is complete, the technical architect is often asked
to guide application construction. Activities that are the direct
responsibility of the technical architect during construction in-
clude setting coding standards; mentoring junior developers
through more difficult programming tasks; and establishing con-
ventions for logging, exception handling, and application con-
figuration. In addition, the architect (or senior developer) is usu-
ally responsible for coding any custom architectural components
the application requires because of the difficulty involved in the
task.

This section guides you through the application construction
process. In it, you will learn how to:

▲ Establish coding conventions for all software layers.
▲ Use XML effectively within your application.
▲ Choose a database persistence method (e.g., JDBC, entity

beans, etc.).
▲ Set conventions and guidelines for transaction

management.
▲ Understand how to make architectural components easy

for developers to use.

http://www.amazon.com/exec/obidos/ASIN/0972954899

120

▲ Set guidelines for logging, exception handling, threading,
and configuration management.

This section will also introduce you to the CementJ initiative
(http://sourceforge.net/projects/cementj/). CementJ is an open
source Java API that provides functionality needed by most Java/
J2EE applications that isn’t yet provided by the JDK specification
directly.

CementJ contains base class value objects, data access objects,
enterprise bean clients, application exceptions, and others that
can be easily extended and used. CementJ also contains numerous
timesaving static utilities that turn common coding tasks into
one-liners.

http://www.amazon.com/exec/obidos/ASIN/0972954899

121

10

Building Value Objects
A value object (VO) is a lightweight, serializable (i.e., implements
java.io.Serializable) object that structures groups of data items into a
single logical construct. For example, EmployeeVO is a class in a human
resources application that is a value object containing the data last name,
first name, employee ID, job position, and start date. EmployeeVO is used in
all layers of the application, from presentation to data access. The term
value object comes directly from the value object design pattern. Some texts
use data transfer object instead.

The value object design pattern, as written, is intended to minimize net-
work traffic between enterprise beans and their callers (because each argu-
ment passed initiates a network transmission). In addition, it is designed to
improve the performance of enterprise beans by minimizing the number of
method arguments, and thus network transmissions, needed to call them.
For example, it’s more efficient to call the addEmployee() method of an
enterprise bean passing an EmployeeVO than it is to require individual ar-
guments for last name, first name, and so on. I think of the value object
design pattern in much broader terms and use VOs to communicate infor-
mation between all layers of the application, as illustrated in figure 10.1.

At first glance, my broader definition of a value object appears to contra-
dict the principles of object-oriented design that tell us to combine data

http://www.amazon.com/exec/obidos/ASIN/0972954899

122

with the business logic. Those principles would have us think of “employee”
as an object that contains its data (e.g., last name, first name) and methods
such as add(), terminate(), and oppress() that represent business logic.
For many practical considerations, such as increasing the performance of
enterprise beans, we need to have the option for referencing data outside
the business logic context.

Chapter 13 will show you ways of constructing objects in the business
logic layer that adhere to object-oriented design principles and also allow
you to reference the data portion of these objects as a value object. For
example, the Employee class could easily provide a getEmployeeVO()
accessor that provides the data for an employee without its business logic.

Because the technical architect is responsible for establishing coding stan-
dards and guidelines and mentoring development staff, this chapter pro-
vides several implementation tips and techniques for value objects. Addi-
tionally, the chapter explains several concepts needed for effectively
structuring value objects. And to make implementing these recommendations

Chapter 10: Building Value Objects

Figure 10.1: Using Value Objects Within a Layered Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

u
e

O
b

je
ct

 L
ay

er
V

al
u

e
O

b
je

ct
 L

ay
er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

http://www.amazon.com/exec/obidos/ASIN/0972954899

123

easier and less time consuming, the chapter presents a ValueObject class,
which I’ve included in the CementJ initiative (http://sourceforge.net/
projects/cementj/).

Implementation Tips and Techniques

Always implement java.io.Serializable. For a value object to be us-
able as an argument to any type of distributed object, such as enterprise
beans or RMI services, it needs to implement Serializable. There are no
methods required by Serializable, so implementation is easy. You’re better
off not putting anything in a value object that isn’t serializable, such as a
database connection. But if you must put a nonserializable object in a value
object, declare it transient so it’s bypassed during any serialization at-
tempts. Listing 10.1 is an extract of value object code.

Listing 10.1: Sample Value Object Code

 1:public class CustomerVO

 2: implements Serializable, Describable

 3:{

 4: public CustomerVO() {}

 5:

 6: public String getCustomerId()

 7: {

 8: return _customerId;

 9: }

 10: public void setCustomerId(String id)

 11: {

 12: if (id == null)

 13: {

 14: throw new IllegalArgumentException

 15: (“Null customer Id not allowed.”);

 16: }

 17: if (id.equals(“”))

 18: {

 19: throw new IllegalArgumentException

 20: (“Blank customer Id not allowed.”);

 21: }

 22: _customerId = id;

 23: }

 24:

 25: // Some code ommitted for brevity

 26: private String _customerId = null;

 27:}

Source: /src/book/sample/vo/ CustomerVO.java

Implementation Tips and Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

124

Always populate all fields of a value object. Some programmers, for the
sake of convenience, don’t take the trouble to populate all fields of a value
object if they only need a subset of the fields in it. In my experience, this
practice saves time during construction, but it inevitably causes bugs that
show up as NullPointerException exceptions when something attempts
to use a field that is not populated. I recommend either populating all fields
of a value object or creating a new value object with the new field set.

Always type fields accurately. I’ve often seen programmers implement dates
and numbers as strings, usually to save time when initially coding a value
object. But as the application gets larger, this practice can cause confusion
and inevitably results in additional conversion code where the field is used.
It also leads to confusion for maintenance and causes bugs because someone
will format the strings inappropriately.

Check dependence on third-party classes in value objects. Value objects
are used as arguments for distributed objects, such as enterprise beans, Web
services, and RMI services. If your value objects rely on third-party classes,
your callers will have to include them in their classpath to call you. This can
be an inconvenience for your callers and make your distributed objects harder
to use.

Make value objects self-descriptive. Value objects should have the capabil-
ity of providing a textual description of themselves for error-logging pur-
poses. One technique that I use to accomplish this is to implement De-
scribable.

Describable is an interface that specifies how a value object can pro-
vide a textual description of itself. Provided with CementJ (package
org.cementj.common), Describable is used in error handling and log-
ging. If you don’t provide an easy way to dump the contents of a value object
to a log when an exception occurs, it’s tedious and time consuming to pro-
vide enough detail in the log to be able to reproduce the problem. An ex-
ample of how tedious exception processing can be without Describable is
shown in listing 10.2a.

Listing 10.2a: Exception Processing Without Describable

 1:…………… // try block

 2:catch (Exception e)

 3:{

 4: Logger.logError(

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

125

 5: “Error updating customer information: “ +

 6: “fname= “ + customerVO.getFirstName() +

 7: “lname= “ + customerVO.getLastName() +

 8: “addr= “ + customerVO.getAddress() +

 9: “city= “ + customerVO.getCity() +

 10: “state= “ + customerVO.getState() +

 11: “zip= “ + customerVO.getZipCode())

 12: ;

 13:}

Had CustomerVO implemented Describable, the exception-handling
code would have been much shorter, as illustrated in listing 10.2b.

Listing 10.2b: Exception Processing with Describable

 1:…………… // try block

 2:catch (Exception e)

 3:{

 4: Logger.logError (

 5: “Error updating customer information: “ +

 6: customerVO.describe());

 7:}

In some cases, the string value returned by describe() could be identi-
cal to the results of toString(). The difference is that describe() re-
sults are meant for human eyes. All too often, toString() results are pro-
grammatically interpreted and not easy for humans to read and interpret.
The source code to Describable appears in listing 10.3.

Listing 10.3: Describable Interface Definition

package org.cementj.common;

public interface Describable

{

 /**

 * Provides a textual version of description and state.

 */

 public String describe();

}

Source: src/org/cementj/common/Describable.java

If you prefer not to tie value objects to an outside product such as
CementJ, you might consider creating a counterpart to Describable in
your applications.

Always override method toString(). If you don’t override toString(),

Implementation Tips and Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

126

the resulting text is not meaningful. An example from the default imple-
mentation of toString() is

com.myapp.Test@3179c3

There are enough classes in the JDK that accept Object arguments and
expect to be able to toString() it that you should provide an implementa-
tion (e.g., StringBuffer). The implementation of toString() inherited
from Object isn’t all that useful.

Consider overriding methods equals() and hashcode(). If a value object
is ever used as a key in a HashMap, Hashtable, or HashSet, equals() and
hashcode() are used for key identification. The definition of these meth-
ods, inherited from Object, dictates that for two value objects to be equal,
they must literally be the same class instance. For example, consider a
CustomerVO with firstName and lastName fields. You could have two
instances of “John Doe” that will look unequal using the equals() inher-
ited from Object. You will have to override both equals() and hashcode()
for a value object if you want it usable in any type or Map object, such as
Hashtable, HashMap, or TreeMap.

The behavior differences between a meaningful implementation of
equals() and the implementation inherited from Object confuses many
developers. The example in Listing 10.4a should help alleviate any confusion.

Listing 10.4a: Sample Object.equals() Implementation

 1: public void showObjectEqualImplementation()

 2: {

 3: ObjectWithoutEqualsImpl fiveAsObject =

 4: new ObjectWithoutEqualsImpl(“5”);

 5: ObjectWithoutEqualsImpl anotherFiveAsObject =

 6: new ObjectWithoutEqualsImpl(“5”);

 7: ObjectWithoutEqualsImpl sevenAsObject =

 8: new ObjectWithoutEqualsImpl(“7”);

 9:

 10: System.out.println(“Object equals() demo:”);

 11: System.out.println(

 12: “\tfiveAsObject.equals(anotherFiveAsObject): “+

 13: fiveAsObject.equals(anotherFiveAsObject));

 14: System.out.println(

 15: “\tfiveAsObject.equals(sevenAsObject): “ +

 16: fiveAsObject.equals(sevenAsObject));

 17: }

Source: src/book/sample/general/EqualsDemonstration.java

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

127

Listing 10.4a uses a simple class that does not override method equals()
and uses the implementation inherited from Object. The variable declared
in line 3 with the value 5 should be “equal” to the object declared in line 5.
However, if you were to run the sample, you would see that the variables are
actually not considered equal. Output to the sample is provided in listing
10.4b.

Listing 10.4b: Output from Listing 10.4a

Object equals() demo:

fiveAsObject.equals(anotherFiveAsObject): false

fiveAsObject.equals(sevenAsObject): false

If you were to run a different sample using class String instead of
ObjectWithoutEqualsImpl, the output would be more what you would
expect because String overrides method equals().

The method hashcode() returns an integer that is guaranteed to be
equal for two instances of Object that are equal. The logic behind con-
structing an algorithm to do this can get intricate. I usually utilize String,
which has a nice implementation of hashcode(). You can concatenate all
fields of a value object and get the hashcode of the resulting string. It is legal
to have hashcode() return the same integer for all instances, but this will
make using HashMap and Hashtable extremely inefficient. Listing 10.5
illustrates an effective implementation of hashcode().

Listing 10.5: Sample hashcode() Implementation

 1: public int hashcode()

 2: {

 3: return this.getObjectAsString().hashCode();

 4: }

 5:

 6: private String getObjectAsString()

 7: {

 8: return this.getObjectAsString(this);

 9: }

 10:

 11: private String getObjectAsString(CustomerVO vo)

 12: {

 13: StringBuffer buffer = new StringBuffer(256);

 14:

 15: if (vo._customerId != null)

 16: {

 17: buffer.append(vo._customerId);

Implementation Tips and Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

128

 18: }

 19: else buffer.append(“null”);

 20: if (vo._firstName != null)

 21: {

 22: buffer.append(vo._firstName);

 23: }

 24: else buffer.append(“null”);

 25: if (vo._lastName != null)

 26: {

 27: buffer.append(vo._lastName);

 28: }

 29: else buffer.append(“null”);

 30: if (vo._address != null)

 31: {

 32: buffer.append(vo._address);

 33: }

 34: else buffer.append(“null”);

 35: if (vo._city != null) buffer.append(vo._city);

 36: else buffer.append(“null”);

 37: if (vo._state != null) buffer.append(vo._state);

 38: else buffer.append(“null”);

 39: if (vo._zipCode != null)

 40: {

 41: buffer.append(vo._zipCode);

 42: }

 43: else buffer.append(“null”);

 44:

 45: return buffer.toString();

 46: }

Source: /src/book/sample/vo/ CustomerVO.java

Implementing equals() is similar. You concatenate all field members
and use the equals() implementation of String, as shown in listing 10.6.

Listing 10.6: Sample equals() Implementation

1: public boolean equals(Object obj)

2: {

3: boolean answer = false;

4:

5: if (obj instanceof CustomerVO)

6: {

7: String dtoId =

8: this.getObjectAsString((CustomerVO) obj);

9: if (this.getObjectAsString().equals(dtoId))

10: {

11: answer = true;

12: }

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

129

13: }

14:

15: return answer;

16: }

Source: /src/book/sample/vo/ CustomerVO.java

Consider implementing java.lang.Comparable. If you ever use a value
object in a sorted collection (e.g., TreeSet or TreeMap), you must imple-
ment Comparable for sensible sort results. Implementing Comparable re-
quires the implementation of a compareTo() method that returns 0 if the
two objects are equal, a negative number if the object is less than the argu-
ment passed, or a positive number if the Object is greater than the argu-
ment passed. Listing 10.7 illustrates.

Listing 10.7: Sample compareTo() Implementation

 1: public int compareTo(Object obj)

 2: {

 3: int compareResult = 0;

 4: Object tempObj = null;

 5: Object tempObjCompareTarget = null;

 6: Comparable c1, c2;

 7:

 8: if (obj == null)

 9: {

 10: throw new IllegalArgumentException

 11: (“Comparisons to null objects not defined.”);

 12: }

 13: if (! (obj instanceof CustomerVO))

 14: {

 15: throw new IllegalArgumentException

 16: (“Comparing different class types not allowed.”);

 17: }

 18:

 19: CustomerVO dto = (CustomerVO) obj;

 20: compareResult = _lastName.compareTo(dto._lastName);

 21: if (compareResult == 0)

 22: {

 23: compareResult =

 24: _firstName.compareTo(dto._firstName);

 25: }

 26: if (compareResult == 0)

 27: {

 28: compareResult =

 29: _customerId.compareTo(dto._customerId);

 30: }

 31: if (compareResult == 0)

Implementation Tips and Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

130

 32: {

 33: compareResult =

 34: _address.compareTo(dto._address);

 35: }

 36: if (compareResult == 0)

 37: {

 38: compareResult =

 39: _city.compareTo(dto._city);

 40: }

 41: if (compareResult == 0)

 42: {

 43: compareResult = _state.compareTo(dto._state);

 44: }

 45: if (compareResult == 0)

 46: {

 47: compareResult =

 48: _zipCode.compareTo(dto._zipCode);

 49: }

 50:

 51: return compareResult;

 52: }

Source: /src/book/sample/vo/ CustomerVO.java

Value Objects Made Easy

My laundry list of recommendations makes implementing value objects ex-
tremely boring, tedious, and time consuming. As a technical architect, you
have the option of mentoring developers as they follow these recommenda-
tions and, you hope, implement them consistently. Another option is to pro-
vide architectural utilities that make coding value objects easier and quicker
and bring some consistency to value object behavior.

These goals are achieved by CementJ, a tool I created to provide archi-
tectural support for value objects. To use CementJ value object support, you
need to extend org.cementj.base.ValueObject from the CementJ API.
ValueObject contains a meaningful implementation of equals(),
hashcode(), and describe() so you don’t have to implement them. Un-
fortunately, CementJ isn’t able to provide a reliable implementation of
compareTo() because of current limitations with Java’s reflection API. List-
ing 10.8 is an example of how you can extend ValueObject.

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

131

Listing 10.8: Sample Value Object Extending

org.cementj.base.ValueObject

 1:package book.sample.vo.cementj;

 2:

 3:import org.cementj.base.ValueObject;

 4:

 5:public class CustomerVO extends ValueObject

 6:{

 7:

 8: public CustomerVO() {}

 9:

 10: public String getCustomerId()

 11: {

 12: return _customerId;

 13: }

 14: public void setCustomerId(String id)

 15: {

 16: if (id == null)

 17: {

 18: throw new IllegalArgumentException

 19: (“Null customer Id not allowed.”);

 20: }

 21: if (id.equals(“”))

 22: {

 23: throw new IllegalArgumentException

 24: (“Blank customer Id not allowed.”);

 25: }

 26: _customerId = id;

 27: }

 28:

 29: // some code ommitted for bevity

 30:

 31: private String _customerId = null;

 32: private String _firstName = null;

 33: private String _lastName = null;

 34: private String _address = null;

 35: private String _city = null;

 36: private String _state = null;

 37: private String _zipCode = null;

 38:}

Source: /src/book/sample/vo/cementj/CustomerVO.java

Although listing 10.8 has the same functionality as the custom-coded
original value object, it’s only 73 lines long as opposed to 180. You don’t
need to specify implementation of Serializable or Describable because
ValueObject does it for you.

Value Objects Made Easy

http://www.amazon.com/exec/obidos/ASIN/0972954899

132

In addition, ValueObject provides a describeAsXML() feature that
formats the content of a value object into an XML formatted document.
This feature can save you time in applications that need to transmit the
content of a value object via messaging technologies to another application.
Another possible use of this feature is to use the XML version of the content
to provide better presentation in error messages. Listing 10.9 illustrates an
XML document generated by ValueObject.

Listing 10.9: Sample XML Document Description of a ValueObject

<?xml version=”1.0" encoding=”UTF-8"?>

<!DOCTYPE book-sample-dto-cementj-CustomerDTO>

<book-sample-dto-cementj-CustomerDTO name=”book-sample-dto-cementj-

CustomerDTO”>

 <Field name=”_customerId” type=”java.lang.String”

 value=”12345"/>

 <Field name=”_firstName” type=”java.lang.String”

 value=”Derek”/>

 <Field name=”_lastName” type=”java.lang.String”

 value=”Ashmore”/>

 <Field name=”_address” type=”java.lang.String”

 value=”34 Yorktown Center, PMB 400"/>

 <Field name=”_city” type=”java.lang.String”

 value=”Lombard”/>

 <Field name=”_state” type=”java.lang.String”

 value=”IL”/>

 <Field name=”_zipCode” type=”java.lang.String”

 value=”60148"/>

</book-sample-dto-cementj-CustomerDTO>

ValueObject does use reflection to achieve its magic, so it’s slower than
custom-coded value objects. Table 10.1 presents a performance comparison
for our sample CustomerVO.

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

133

Table 10.1: Performance Comparison for ValueObject for 1,000

Version JVM Milliseconds per 1,000 operations

HashCode() Equals()

1.4.2 241 291 270

Custom 1.4.2 0 0 40

VO extension 1.3.1 290 40 270

Custom 1.3.1 0 0 90

VO extension

Instantiation

For the table, I arbitrarily chose 1,000 iterations to make the time differ-
ences more apparent. Most applications will have fewer executions of these
methods per transaction.

By using ValueObject, you trade some performance for development
and maintenance time. Most value objects in an application use these opera-
tions in large enough volume for the speed of ValueObject to be an issue.
I recommend you custom code only the small number of value objects that
you’ve determined need faster execution time based on your performance-
tuning efforts.

In addition, since value objects that extend ValueObject contain only
small amounts of logic, if any, no test cases are necessary. If you choose to
provide your own implementations of equals(), hashcode(), and
toString(), you need to construct test cases for these methods.

Common Mistakes

Populating VOs inconsistently. I’ve seen some applications where fields of
value objects were populated with different value sets depending on usage
context. This practice is error prone and leads to bugs. It’s also confusing
for developers to maintain, especially if they weren’t involved in the initial
development effort. Usually, this practice is a red flag indicating that the
design is process oriented instead of object oriented.

Using a blank string to avoid a NullPointerException. Some developers
initialize all fields to a blank string or something that means “null” but re-
ally isn’t, as in the following:

private String _customerName = “”;

Although this kind of declaration eliminates NullPointerException

Common Mistakes

http://www.amazon.com/exec/obidos/ASIN/0972954899

134

exceptions, it doesn’t prevent some other type of derivative exception from
appearing down the line. This practice is akin to “sweeping dirt under the
rug” and is best avoided.

Maintaining parent-child relationships for VOs in both directions. For ex-
ample, the CustomerVO would contain a collection of AccountVO children,
and each of the AccountVO instances would contain a reference back to the
parent. You run into the same problems with this practice as you do when
you replicate data in relational databases. The result is double the mainte-
nance when data is changed. Further, the practice is error prone and tends
to be the root cause of bugs.

Architect’s Exercise: ProjectTrak

For the ProjectTrak application, which we’ve been working on in the
“Architect’s Exercises” throughout this book, we will use CementJ and its
ValueObject for all value objects. Listing 10.10 has code from the
ProjectVO class of ProjectTrak. You may recall that we identified this ob-
ject in chapter 6.

In addition to implementing all the coding recommendations presented
in this chapter, I suggest you check the arguments to mutators to catch ille-
gal variable assignments early. This practice reduces the likelihood that you’ll
get a derivative NullPointerException of something else that’s relatively
time consuming to debug.

Listing 10.10: Sample ProjectVO Class from ProjectTrak

 1:package com.dvt.app.project.vo;

 2:

 3:import org.cementj.base.ValueObject;

 4:import java.util.Date;

 5:import java.io.Serializable;

 6:

 7:/**

 8: * VO representing information about a project. This

 9: * class is part of the ProjectTrak application.

 10: * <p>Copyright: Delta Vortex Technologies, 2003.

 11: */

 12:public class ProjectVO

 13: extends ValueObject

 14: implements Serializable, Comparable

 15:{

 16:

 17: public ProjectVO() {}

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

135

 18:

 19: public String getProjectName()

 20: {

 21: return _projectName;

 22: }

 23: public void setProjectName(String name)

 24: {

 25: if (name == null)

 26: {

 27: throw new IllegalArgumentException

 28: (“Null project name not allowed.”);

 29: }

 30: if (name.equals(“”))

 31: {

 32: throw new IllegalArgumentException

 33: (“Blank project name not allowed.”);

 34: }

 35: _projectName = name;

 36: }

 37:

 38: public String[] getProjectBaselineNames()

 39: {

 40: return _projectBaselines;

 41: }

 42: public void setProjectBaselineNames(String[] name)

 43: {

 44: _projectBaselines = name;

 45: }

 46:

 47: public Date getDateCreated()

 48: {

 49: return _dateCreated;

 50: }

 51: public void setDateCreated(Date dateCreated)

 52: {

 53: if (dateCreated == null)

 54: {

 55: throw new IllegalArgumentException

 56: (“Null dateCreated not allowed.”);

 57: }

 58: _dateCreated = dateCreated;

 59: }

 60:

 61: public Date getDateModified()

 62: {

 63: return _dateLastModified;

 64: }

 65: public void setDateModified(Date dateLastModified)

 66: {

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

136

 67: if (dateLastModified == null)

 68: {

 69: throw new IllegalArgumentException

 70: (“Null dateLastModified not allowed.”);

 71: }

 72: _dateLastModified = dateLastModified;

 73: }

 74:

 75: public Date getProjectStart()

 76: {

 77: return _projectStart;

 78: }

 79: public void setProjectStart(Date start)

 80: {

 81: _projectStart = start;

 82: }

 83:

 84: public Date getProjectEnd()

 85: {

 86: return _projectEnd;

 87: }

 88: public void setProjectEnd(Date end)

 89: {

 90: _projectEnd = end;

 91: }

 92:

 93: public ResourceVO[] getAssignedResources()

 94: {

 95: return _assignedResources;

 96: }

 97: public void setAssignedResources(

 98: ResourceVO[] assignedResources)

 99: {

 100: if (assignedResources == null)

 101: {

 102: throw new IllegalArgumentException

 103: (“Null assignedResources not allowed.”);

 104: }

 105: _assignedResources = assignedResources;

 106: }

 107:

 108: public ProjectTaskVO[] getProjectTasks()

 109: {

 110: return _projectTasks;

 111: }

 112: public void setProjectTasks(

 113: ProjectTaskVO[] projectTasks)

 114: {

 115: if (projectTasks == null)

Chapter 10: Building Value Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

137

 116: {

 117: throw new IllegalArgumentException

 118: (“Null projectTasks not allowed.”);

 119: }

 120: _projectTasks = projectTasks;

 121: }

 122:

 123: public int compareTo(Object obj)

 124: {

 125: int comparator = 0;

 126: if (obj == null)

 127: {

 128: throw new IllegalArgumentException

 129: (“Null object not allowed.”);

 130: }

 131: if (! (obj instanceof ProjectVO))

 132: {

 133: throw new IllegalArgumentException

 134: (“Invalid Object Type: “ +

 135: obj.getClass().getName());

 136: }

 137:

 138: ProjectVO pvo = (ProjectVO) obj;

 139: comparator = _projectName.compareTo(

 140: pvo._projectName);

 141: if (comparator == 0)

 142: {

 143: comparator = _dateLastModified.compareTo(

 144: pvo._dateLastModified);

 145: }

 146:

 147: return comparator;

 148: }

 149:

 150: private String _projectName = null;

 151: private String[] _projectBaselines = null;

 152: private Date _dateCreated = null;

 153: private Date _dateLastModified = null;

 154: private ResourceVO[] _assignedResources = null;

 155: private ProjectTaskVO[] _projectTasks = null;

 156: private Date _projectStart = null;

 157: private Date _projectEnd = null;

 158:

 159:}

Source: /src/com/dvt/app/project/vo/ProjectVO.java

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

139

11

Building XML Access Objects
Data access objects are classes that read and write persistent data. XML ma-
nipulation, because it’s really a data access operation, is part of the DAO layer.
An XML access object (XAO) reads and writes data in an XML format and
converts that format to value objects that other layers in the application can
use. For example, PurchaseOrderXAO is an XAO for a purchasing applica-
tion that reads and transmits orders in an XML format. PurchaseOrderXAO
contains the following methods:

public void setPurchaseOrder(String xmlText);

public void setPurchaseOrder(PurchaseOrderVO[] order);

public void setPurchaseOrder(InputStream order);

public String getPurchaseOrderXmlText();

public PurchaseOrderVO[] getPurchaseOrder();

public void transmit(EDIDestination dest);

public void save(OutputStream os);

Business objects use XAOs to interpret and produce XML data, as illus-
trated in figure 11.1. Typically, XAOs should have little to do with imple-
menting the business rules associated with processing the data. XML-related
code is separated to limit and localize the impact that changes in the XML
structure have on your application. If this logic were scattered in various

http://www.amazon.com/exec/obidos/ASIN/0972954899

140

places in the business logic layer, for example, it would be much harder to
find and change.

As a technical architect, you are responsible for forming coding stan-
dards and guidelines. This chapter provides implementation guidance and
examples for structuring XAOs. In addition, we’ll look at a way to generate
code that XAOs can use easily, saving you development and maintenance
time.

The chapter assumes that you have a basic knowledge of XML concepts
and have used an XML parser with Java. Familiarity with XSL style sheets
and templates will also help you understand the examples presented here.
For readers wanting an XML concept review, the tutorials at W3Schools
(http://www.w3schools.com/) are well written and concise.

An XAO Example

XML access objects are responsible for translating XML documents into
value objects that can be used by the rest of the application and vice versa.

Figure 11.1: Using XML Access Objects Within a Layered Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

141

For example, Listing 11.1 illustrates the setPurchaseOrder() method that
reads an XML document and extracts an array of purchase order value ob-
jects. This example happens to use the JAXB API along with a CementJ
utility to interpret XML. However, JDOM fans or developers who like the
native DOM parser would place their extraction logic here. In fact, your
XML parsing and interpretation strategy can change in XAOs without ad-
versely affecting the rest of your application.

Listing 11.1: Sample XAO Method to Read an XML Document

 1:package book.sample.dao.xml;

 2:

 3:import org.cementj.util.JAXBUtility;

 4:// some imports omitted.

 5:

 6:public class PurchaseOrderXAO

 7:{

 8: private static final String

 9: PURCHASE_ORDER_JAXB_PACKAGE =

 10: “book.sample.dao.xml.po”;

 11:

 12: public void setPurchaseOrder(InputStream xmlStream)

 13: {

 14: PurchaseOrderVO[] poArray = null;

 15: ArrayList poList = new ArrayList();

 16: PurchaseOrderVO po = null;

 17: CustomerOrderType xmlOrder = null;

 18:

 19: try

 20: {

 21: CustomerOrderList order =

 22: (CustomerOrderList)

 23: JAXBUtility.getJaxbXmlObject(

 24: PURCHASE_ORDER_JAXB_PACKAGE,

 25: xmlStream);

 26: List xmlOrderList = order.getCustomerOrder();

 27: for (int i = 0 ; i < xmlOrderList.size(); i++)

 28: {

 29: xmlOrder = (CustomerOrderType)

 30: xmlOrderList.get(i);

 31: po = new PurchaseOrderVO();

 32:

 33: po.setCustomerId(xmlOrder.getCustomerId());

 34: po.setOrderNbr(

 35: Integer.parseInt(xmlOrder.getOrderId()));

 36: // ... Other Purchase Order information

 37: // gathered here.

An XAO Example

http://www.amazon.com/exec/obidos/ASIN/0972954899

142

 38:

 39: poList.add(po);

 40: }

 41:

 42: if (poList.size() > 0)

 43: {

 44: poArray = new PurchaseOrderVO[poList.size()];

 45: poArray = (PurchaseOrderVO[])

 46: poList.toArray(poArray);

 47: }

 48:

 49: this.setPurchaseOrder(poArray);

 50: }

 51: catch (Throwable t)

 52: {

 53: throw new SampleException(

 54: “Error parsing PO XML.”, t);

 55: }

 56: }

 57:}

Source: /src/book/sample/dao/xml/PurchaseOrderXAO.java

I used a utility from CementJ in line 23 to save several lines of code. Line
23 could easily be replaced with code using JAXB or JDOM directly if you
prefer.

A method to create XML documents would be structured much the same
way. The PurchaseOrderXAO class could easily have a method called
getPurchaseOrderXmlText() that generates XML text, as illustrated in
listing 11.2.

Listing 11.2: Sample XAO Method to Create XML Text

 1:package book.sample.dao.xml;

 2:

 3:import org.cementj.util.JAXBUtility;

 4:// some imports omitted.

 5:

 6:public class PurchaseOrderXAO

 7:{

 8: private static final String

 9: PURCHASE_ORDER_JAXB_PACKAGE =

 10: “book.sample.dao.xml.po”;

 11:

 12: public String getPurchaseOrderXmlText()

 13: {

 14: String xmlText = null;

 15: ObjectFactory factory = new ObjectFactory();

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

143

 16:

 17: CustomerOrderType xmlOrder = null;

 18:

 19: try

 20: {

 21: CustomerOrderList xmlOrderList =

 22: factory.createCustomerOrderList();

 23: for (int i = 0; i < _purchaseOrder.length; i++)

 24: {

 25: xmlOrder = factory.createCustomerOrderType();

 26: xmlOrder.setCustomerId(

 27: _purchaseOrder[i].getCustomerId());

 28: xmlOrder.setOrderId(

 29: Integer.toString(

 30: _purchaseOrder[i].getOrderNbr()));

 31: // ... Other Purchase Order information set

 32: // here.

 33:

 34: xmlOrderList.getCustomerOrder().add(xmlOrder);

 35: }

 36:

 37: xmlText = JAXBUtility.flushXmlToString(

 38: PURCHASE_ORDER_JAXB_PACKAGE, xmlOrderList);

 39: }

 40: catch (JAXBException j)

 41: {

 42: throw new SampleException(

 43: “Error creating PO XML.”, j);

 44: }

 45:

 46: return xmlText;

 47: }

 48:}

Source: /src/book/sample/dao/xml/PurchaseOrderXAO.java

Notice that XML interpretation and generation are self-contained and
localized. If attributes are added to the <purchase-order> XML docu-
ment and are needed by the application, those changes are localized to XAO
classes and those generated by JAXB. The XML document format can change
without affecting the other layers of the application.

Sometimes, XAOs are used to translate XML documents into alternative
formats. A common technology to accomplish this is XSLT. As an example,
I’ve created a short XSL template that translates the <purchase-order>
XML document into HTML, which can be sent to a browser. The
PurchaseOrderXAO class could easily have a method called

An XAO Example

http://www.amazon.com/exec/obidos/ASIN/0972954899

144

getPurchaseOrderAsHtml() that generates XML text, as illustrated in
listing11.3.

Listing 11.3: Sample XAO Method to Create HTML Text

 1:package book.sample.dao.xml;

 2:

 3:import javax.xml.transform.Transformer;

 4:import javax.xml.transform.TransformerFactory;

 5:import javax.xml.transform.stream.StreamResult;

 6:import javax.xml.transform.stream.StreamSource;

 7:// some imports omitted.

 8:

 9:public class PurchaseOrderXAO

 10:{

 11:

 12: public String getPurchaseOrderAsHtml()

 13: {

 14: String htmlText = null;

 15: String xmlText = this.getPurchaseOrderXmlText();

 16: ByteArrayInputStream xmlTextStream =

 17: new ByteArrayInputStream(xmlText.getBytes());

 18:

 19: try

 20: {

 21: ByteArrayOutputStream output =

 22: new ByteArrayOutputStream

 23: (xmlText.length() * 2);

 24: TransformerFactory tFactory =

 25: TransformerFactory.newInstance();

 26: Transformer transformer =

 27: tFactory.newTransformer

 28: (new StreamSource(“PurchaseOrder.xsl”));

 29: transformer.transform(

 30: new StreamSource(xmlTextStream),

 31: new StreamResult(output));

 32: htmlText = output.toString();

 33: }

 34: catch (Throwable t)

 35: {

 36: throw new SampleException(

 37: “Error creating PO HTML.”, t);

 38: }

 39:

 40: return htmlText;

 41: }

 42:}

Source: /src/book/sample/dao/xml/PurchaseOrderXAO.java

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

145

Architectural Guidelines

Avoid direct use of the DOM to interpret XML data. It is faster to develop
and easier to maintain applications using complementary technologies, such
as JAXB or JDOM, than using a DOM parser directly.

My preference is JAXB, which generates Java source code that can read,
interpret, and serialize XML documents conforming to a given schema. The
advantages of JAXB are that it maps XML documents to Java classes that are
easy for developers to use, and the learning curve for JAXB is short.

Apply XML technologies consistently throughout the application. What-
ever your technology choices are, there is a tremendous benefit to consis-
tency. For instance, if the developers of your application prefer JDOM and
are comfortable with that choice, you have little reason to use JAXB. Con-
sistency makes the application easier to maintain because it reduces the skill
sets required for maintenance developers. Consistency also reduces the time
it takes to investigate bugs because maintenance developers can begin with
a base understanding as to how XAOs are structured.

Place XML-related code into separate classes. One reason for separating
XML-related classes from those that implement business rules is to insulate
your application from changes in XML document structure. Another reason
is that separating XML document interpretation and business logic can lead
to simpler code. Further, if multiple applications must read and interpret
the same XML document formats, keeping XML-related code separate makes
it easier to share that code across applications.

Overview of JAXB

Because JAXB is a relatively new API, here is a brief synopsis of JAXB and an
example of how to use it in this section. JAXB can be downloaded from the
Java Web site (http://java.sun.com/xml/jaxb/). Refer to the JAXB documen-
tation for installation information.

JAXB is a code generator that provides Java classes that mimic an XML
document format. Each XML element is generated into a Java class with
fields for all attributes on the XML document. For example, a <customer-
order> XML element might be generated into a CustomerOrderType in-
terface that has accessors and mutators for all attributes and child elements
of the segment. Programmers can then use the generated class as they would

Architectural Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

146

any value object they would write. A diagram of the CustomerOrderType
interface generated by JAXB is presented in Figure 11.2.

A similar interface and implementation was generated by JAXB for all
elements in the schema. An important thing to note is that child elements
are represented as lists. These generic lists contain only JAXB-generated
components.

Instantiating a JAXB object from a file containing an XML document is
relatively easy. Listing 11.4 is an example.

Listing 11.4: Using JAXB to Read an XML Document

 1:import javax.xml.bind.JAXBContext;

 2:import javax.xml.bind.Marshaller;

 3:import javax.xml.bind.Unmarshaller;

 4:

 5:public class SampleJAXB

 6:{

Figure 11.2: Object Model for JAXB-Generated Interface

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

147

 7: public Object getJAXBObject() throws Throwable

 8: {

 9: InputStream xmlDocumentInputStream =

 10: new FileInputStream(“PurchaseOrder.xml”);

 11: JAXBContext jc = JAXBContext.newInstance(

 12: “book.sample.dao.xml.po”);

 13: Unmarshaller u = jc.createUnmarshaller();

 14: return u.unmarshal(xmlDocumentInputStream);

 15: }

 16:}

Source: /src/book/sample/dao/xml/SampleJAXB.java

The JAXB calls are virtually identical for all JAXB documents. Alterna-
tively, you can use the CementJ JAXBUtility (from package org.cementj
.util) as a shortcut, as shown in listing 11.5.

Listing 11.5: Using CementJ JAXBUtility to Read an XML Document

 1:import org.cementj.util.JAXBUtility;

 2:

 3:public class SampleJAXB

 4:{

 5: public Object getJAXBObjectViaCementJ()

 6: throws Throwable

 7: {

 8: return JAXBUtility.getJaxbXmlObject(

 9: “book.sample.dao.xml.po”,

 10: new File(“PurchaseOrder.xml”));

 11: }

 12:}

Source: /src/book/sample/dao/xml/SampleJAXB.java

Similarly, producing an XML document from a JAXB-binded object is
also relatively easy. Listing 11.6 provides an example.

Listing 11.6: Using JAXB to Write an XML Document to Disk

 1:import javax.xml.bind.JAXBContext;

 2:import javax.xml.bind.Marshaller;

 3:import javax.xml.bind.Unmarshaller;

 4:

 5:public class SampleJAXB

 6:{

 7: public void serializeJAXBObject(

 8: CustomerOrderList order)

 9: throws Throwable

 10: {

Overview of JAXB

http://www.amazon.com/exec/obidos/ASIN/0972954899

148

 11: JAXBContext jc = JAXBContext.newInstance(

 12: “book.sample.dao.xml.po”);

 13: Marshaller m = jc.createMarshaller();

 14: m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

 15: Boolean.TRUE);

 16: m.marshal(order, new FileOutputStream(

 17: “PurchaseOrderGenerated.xml”));

 18: }

 19:}

Source: /src/book/sample/dao/xml/SampleJAXB.java

CementJ also provides a shortcut for writing XML documents, as listing
11.7 illustrates.

Listing 11.7: Using CementJ to Produce an XML Document with JAXB

Classes

 1:import org.cementj.util.JAXBUtility;

 2:

 3:public class SampleJAXB

 4:{

 5: public void serializeJAXBObjectWithCementJ(

 6: CustomerOrderList order)

 7: throws Throwable

 8: {

 9: JAXBUtility.flushXmlToStream(

 10: “book.sample.dao.xml.po”,

 11: order, new FileOutputStream(

 12: “PurchaseOrderGeneratedCementJ.xml”));

 13: }

 14:}

Source: /src/book/sample/dao/xml/SampleJAXB.java

JAXB requires an XML schema as input to the code generator. If you
haven’t developed schemas for XML documents, you can use one of a num-
ber of tools available that derive schemas from XML documents. These will
relieve you of the job of coding the schemas manually. I use a commercial
tool called xmlspy (http://www.xmlspy.com/) to generate schemas from XML
documents. You can find several other commercial and open source alterna-
tives by doing a simple Web search.

You can run the JAXB code generator from a command prompt or an
ANT script. Because the documentation contains several good examples of
invoking the JAXB code generator from an ANT script, I won’t duplicate
that effort here. To invoke JAXB from a Windows command prompt, use
the following:

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

149

java -jar %JAXB_HOME%/lib/jaxb-xjc.jar –d <output dir> -p <package name>

<schema>

For more information, refer to the JAXB documentation.

JAXB Usage Guidelines

The advantages of using JAXB are many. It drastically reduces the amount
of custom application code needed for XML processing. JAXB-binded classes
can easily be regenerated, so keeping up with XML document format changes
is relatively easy. And because it’s a native part of the JDK, you can be as-
sured that JAXB will be around awhile.

JAXB is not appropriate for situations where you want to process se-
lected tags of XML documents and ignore the rest. It doesn’t provide any
searching capabilities (as X/Path does). And it is not appropriate if you merely
want to reformat an XML document into some other content type (such as
HTML); I would use X/Path, XSL, and XSLT for these purposes.

Although most developers commonly use the marshaling and
unmarshaling API portion of JAXB, I consider the API awkward. The de-
signers of the API could have (and should have) written these actions as one-
line calls to make them easier to use. I recommend using a shortcut, such as
the one provided with CementJ, until less verbose ways to marshal and
unmarshal become part of the JAXB API.

Never directly modify code generated by JAXB. If you do, those changes
will be lost when you regenerate the binded classes for an XML document
format change. Further, you would need to write test classes for these cus-
tom changes where no tests were necessary before.

If an XML schema is shared across applications, you might consider cen-
tralizing JAXB-generated classes. Most applications using an XML docu-
ment don’t require custom generation options and can use a centrally gen-
erated class set.

Generate JAXB into separate packages—don’t commingle. If you com-
mingle generated code with custom code, developers might have difficulty
knowing what source is modifiable and what they shouldn’t touch. In short,
it’s easier to enforce the “no modify” guideline previously described if you
create separate packages.

Don’t use generated JAXB classes as value objects in applications. In many
applications, JAXB-generated interfaces resemble the value objects, imply-
ing that the JAXB-generated interfaces should replace the value objects.

JAXB Usage Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

150

However, exposing JAXB classes to the rest of your application makes your
application vulnerable to changes in XML document format. Further, value
objects often need capabilities that don’t exist in the generated JAXB inter-
faces (e.g., Serializable, Comparable, overriding equals() and
hashcode(), etc.). And the pain of using JAXB-generated classes in your
application as value objects will persist long after you’ve forgotten the initial
development time savings.

Using XSLT Within Java

XSLT and X/Path are often used in combination to reformat XML docu-
ments into a readable format, such as HTML or text. In essence, these tech-
nologies are used mostly to provide “reporting” capabilities for XML docu-
ments. Additionally, XSLT and X/Path can transform an XML document
into any text format (e.g., another XML document or source code). This
section assumes that you have a basic knowledge of XML, X/Path, and XSLT
and focuses on how you can use them within the Java language. If you need
a better understanding of these technologies, consult the tutorials at Zvon
(http://www.zvon.org/).

XSLT is the mechanism by which XML data is transformed into HTML
or text format. The details about this transformation are stored in an XSL
style sheet. Listing 11.8 is a sample style sheet for the <purchase-order>
example we’ve been using. This style sheet produces an HTML page listing
all customer orders and ordered items.

Listing 11.8: Sample XSL Style Sheet

<xsl:stylesheet version=”1.0"

 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html”/>

<xsl:template match=”customer-order”>

 <p>

 Order Nbr: <xsl:value-of select=”@order-id” />

 Date Created: <xsl:value-of select=”@date-created” />

 Date Shipped: <xsl:value-of select=”@date-shipped” />

 </p>

 <xsl:for-each select = “order-line”>

 Product: <xsl:value-of select=”@product-id” />

 Quantity: <xsl:value-of select=”@order-quantity” />

 Price: <xsl:value-of select=”@order-price” />

 </xsl:for-each>

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

151

</xsl:template>

</xsl:stylesheet>

Source: /xml/PurchaseOrder.xsl

In a layered architecture, you would want to perform this transforma-
tion in a DAO. The HTML output from this transformation would be re-
turned to the presentation tier for display to a user. Listing 11.9 is an ex-
ample of how you could do this within Java.

Listing 11.9: Initiating an XSL Transformation

 1:import javax.xml.transform.Transformer;

 2:import javax.xml.transform.TransformerException;

 3:import javax.xml.transform.TransformerFactory;

 4:import javax.xml.transform.stream.StreamResult;

 5:import javax.xml.transform.stream.StreamSource;

 6:

 7:public class SampleXSL

 8:{

 9: public String runSimpleTransformation()

 10: throws TransformerConfigurationException,

 11: TransformerException

 12: {

 13: ByteArrayOutputStream output =

 14: new ByteArrayOutputStream (200000);

 15: TransformerFactory tFactory =

 16: TransformerFactory.newInstance();

 17: Transformer transformer = tFactory.newTransformer

 18: (new StreamSource(“PurchaseOrder.xsl”));

 19: transformer.transform(

 20: new StreamSource(“PurchaseOrder.xml”),

 21: new StreamResult(output));

 22: return output.toString();

 23: }

 24:}

Source: /src/book/sample/dao/xml/SampleXSL.java

XSLT Usage Guidelines

Don’t format data as XML just to use XSLT reformatting capabilities. If the
data to be reported isn’t already in XML format, it usually isn’t worth the
trouble to put it into XML format solely to report from it via XSLT. A myriad
of toolsets can generate reports directly from data in a relational database.
Further, forming XML, parsing it, and transforming can be resource intensive.

XSLT Usage Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

152

Consider using the XSLTC compiler. If your style sheets are static (i.e., they
aren’t dynamically generated at runtime), use the XSLTC compiler (http://
xml.apache.org/xalan-j/xsltc_usage.html). In most cases, this provides at least
a 25 percent performance enhancement. As with JAXB-generated classes,
put XSLTC-generated classes into a separate package structure and don’t
manually change them.

Internet Resources

Among the many Internet resources for XML, XSL, XSLT, X/Path, and other
XML topics, the following are my favorites:

▲ ZVON.org (http://www.zvon.org/). The References and Tutorials
sections of the site are great. The tutorials most relevant to this
chapter are the X/Path Tutorial, the XSLT Tutorial, and the XML
Schema Tutorial.

▲ W3Schools (http://www.w3schools.com/). Offers well-written and
concise tutorials for XML and XSLT concepts as well as tutorials for
other topics.

▲ Jeni’s XSLT Pages (http://www.jenitennison.com/xslt/). Excellent,
well-written tutorials that will get you up and running quickly.

▲ Jeni’s Schema Pages (http://www.jenitennison.com/schema/).

Further Reading

Bradley, Neil. 2000. The XSL Companion. Reading, MA: Addison-Wesley.

Chapter 11: Building XML Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

153

12

Building Database Access Objects
Data access objects read and write data in databases and convert that for-
mat to value objects usable by other layers in the application. For example,
PurchaseOrderDAO, a DAO in a purchasing application, reads purchase
order information from a database and converts it to value objects (e.g.,
PurchaseOrderVO) that the rest of the application can use. Purchase-
OrderDAO also uses information in PurchaseOrderVO to update or insert
data in the database. The following are some methods PurchaseOrderDAO
might have:

public PurchaseOrderVO getPurchaseOrder(int orderNbr);

public void savePurchaseOrder(PurchaseOrderVO order);

public PurchaseOrderVO[] getCustomerPOs(String customerId);

public PurchaseOrderVO[] getUnshippedPOs();

public PurchaseOrderVO[] getBackOrderedPOs();

Figure 12.1 illustrates the role of DAOs in the software layer hierarchy.
All logic that interprets and processes that data is in the business logic

layer, not in the data access object layer. The reason for segregating data
access is to limit and consolidate your exposure to changes in the data source.
For example, one of my clients migrated from using Sybase to Oracle. The
migration was relatively easy in applications with segregated data access.
Further, from a maintenance standpoint, it was easy to locate, modify, and

http://www.amazon.com/exec/obidos/ASIN/0972954899

154

enhance the data access object layer to handle minor changes, such as col-
umn additions.

As discussed in chapter 5, most developers use native JDBC as a persis-
tence mechanism. The current chapter provides some guidelines for using
JDBC effectively and constructing JDBC data access objects that you can
easily use in a layered architecture. For readers using entity beans or object-
relational mapping tools, I illustrate how these technologies work in a lay-
ered architecture.

Data Access Object Coding Guidelines

The guidelines presented here apply only to custom-coded data access ob-
jects (entity bean users can skip to the next section). Listing 12.1 is an ex-
ample of the guidelines in use.

Figure 12.1: Using Data Access Objects Within a Layered Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

155

Listing 12.1: Sample Data Access Object Code

 1:import book.sample.vo.PurchaseOrderVO;

 2:

 3:// some code omitted

 4:

 5:public class PurchaseOrderDAO

 6:{

 7: private static final String SELECT_SQL =

 8: “select CUSTOMER_ID, DATE_CREATED, DATE_SHIPPED “ +

 9: “ from PURCHASE_ORDER “ +

 10: “ where ORDER_NBR = ?”;

 11: public PurchaseOrderVO getPurchaseOrder(int orderNbr)

 12: throws SQLException

 13: {

 14: PurchaseOrderVO order = null;

 15:

 16: PreparedStatement pStmt = null;

 17: ResultSet results = null;

 18:

 19: try

 20: {

 21: OrderLineItemDAO lineDAO =

 22: new OrderLineItemDAO(this._dbConnection);

 23: pStmt = this._dbConnection.prepareStatement(

 24: SELECT_SQL);

 25: pStmt.setInt(1, orderNbr);

 26:

 27: results = pStmt.executeQuery();

 28: if (results.next())

 29: {

 30: order = new PurchaseOrderVO();

 31: order.setOrderNbr(orderNbr);

 32: order.setCustomerId(results.getString(

 33: “CUSTOMER_ID”));

 34: order.setOrderDate(results.getDate(

 35: “DATE_CREATED”));

 36: order.setShipDate(results.getDate(

 37: “DATE_SHIPPED”));

 38: order.setOrderedItems(

 39: lineDAO.getPOItems(orderNbr));

 40: }

 41: else

 42: {

 43: throw new DataNotFoundException

 44: (“Purchase order not found. OrderNbr=” +

 45: orderNbr);

 46: }

Data Access Object Coding Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

156

 47: }

 48: finally

 49: {

 50: // CementJ alternative for close

 51: //—> DatabaseUtility.close(results, pStmt);

 52:

 53: if (results != null)

 54: {

 55: try {results.close();}

 56: catch (SQLException s)

 57: {

 58: // Log warning here.

 59: }

 60: }

 61: if (pStmt != null)

 62: {

 63: try {pStmt.close();}

 64: catch (SQLException s)

 65: {

 66: // Log warning here.

 67: }

 68: }

 69: }

 70:

 71: return order;

 72: }

 73:}

Source: /src/book/sample/dao/db/PurchaseOrderDAO.java

Always pass the database connection from the business logic layer. How
database connections are created is deployment specific. For example, you’ll
do a JNDI look-up for a database connection pool if the deployment is
within a container, but you’ll create one directly from the JDBC driver if the
code is deployed as part of an application. DAO code should be application
generic and usable in either place.

The code to make a database connection a settable property isn’t com-
plicated. The easiest way is to extend DbDataAccessObject (package
org.cementj.base) from CementJ, which already contains connection-
related code.

Database objects created within a method should be closed within the

same method. Examples of this kind of object include PreparedStatement,
Statement, ResultSet, CallableStatement objects. For many database
platforms, it’s necessary to close ResultSet, PreparedStatement,
CallableStatement, and Statement objects. Some JDBC drivers close

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

157

these objects when the Connection is closed, and some don’t. It’s easier to
spot bugs involving not closing an objects later if you adopt the convention
of closing everything you create at this layer.

Because most JDBC objects throw a checked exception when they are
closed, close() method calls must be enclosed in verbose try/catch logic.
As you can see in listing 12.1, the finally block for the SQLException is
very verbose. CementJ has a one-line convenience method to close JDBC
objects. If you use the CementJ alternative, illustrated in line 51, you can
omit lines 53 to 68.

CementJ logs errors on close() as a warning but does not produce an
exception. If you want different behavior on an error from close(), you
need to custom code that logic.

Do not close connection objects or issue commits, rollbacks, or savepoints

within a DAO. Connection objects are created and closed in the business
logic layer. Units of work, such as commits and rollbacks, are also handled
in the business logic layer. Chapter 13 provides details on how to handle
connection class creation, closing, and committing.

Using Entity Beans

For readers who use entity beans, this section illustrates how to incorporate
them into a layered architecture. This is not intended as comprehensive
entity bean coverage. For more in-depth information on using entity beans,
see Alur et al. (2001).

Using the layered architecture as discussed throughout this book, entity
bean usage occurs in data access objects and makes native JDBC code within
data access objects unnecessary. In other words, each method in a DAO uses
entity beans to retrieve and store data, not native JDBC. For example, con-
sider a method on PurchaseOrderDAO called getPOsForCustomer that
will look up all orders for a given customer. Listing 12.2 illustrates how the
method uses an entity bean to retrieve information for the purchase orders
and place them in PurchaseOrderVO objects so that they can be used
throughout the application.

Listing 12.2: Using Entity Beans for Data Access Objects

 1: public PurchaseOrderVO[] getPOsForCustomer (

 2: String customerId)

 3: {

 4: PurchaseOrderVO[] po = null;

Using Entity Beans

http://www.amazon.com/exec/obidos/ASIN/0972954899

158

 5: try

 6: {

 7: // Look up Entity Bean reference

 8: Context ctx = new InitialContext();

 9: PurchaseOrderHome poHome = (PurchaseOrderHome)

 10: PortableRemoteObject.narrow(

 11: ctx.lookup(

 12: “java:comp/env/BookSamples/PurchaseOrder”),

 13: PurchaseOrderHome.class);

 14: // —> End of Entity Bean Lookup

 15:

 16: PurchaseOrder poEjb = null;

 17: Iterator poIt = null;

 18: Collection poC =

 19: poHome.findByCustomerId(customerId);

 20: if (poC.size() > 0)

 21: {

 22: po = new PurchaseOrderVO[poC.size()];

 23: int i = 0;

 24: poIt = poC.iterator();

 25: while (poIt.hasNext())

 26: {

 27: poEjb = (PurchaseOrder)poIt.next();

 28: po[i] = new PurchaseOrderVO();

 29: po[i].setCustomerId(poEjb.getCustomerId());

 30: po[i].setOrderNbr(poEjb.getOrderNbr());

 31: po[i].setOrderDate(poEjb.getDateCreated());

 32: po[i].setShipDate(poEjb.getDateShipped());

 33:

 34: i++;

 35: }

 36: }

 37:

 38: }

 39: catch (Throwable t)

 40: {

 41: throw new SampleException

 42: (“Error searching PO. cust=” +

 43: customerId, t);

 44: }

 45:

 46: return po;

 47: }

Source: /src/book/sample/dao/db/PurchaseOrderDAO.java

Note that this example uses container-managed persistence and local
interfaces from the 2.0 EJB specification.

The example in listing 12.2 illustrates that in a layered architecture, DAOs

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

159

can have the same role within the application no matter what technology
the objects use to interact with a database. Data access objects can be
converted from using native JDBC to using entity beans (and vice versa)
without affecting the rest of the application.

As a performance enhancement, you may want to consider placing the
context and JNDI look-up (lines 7 through 14 of listing 12.2) in the con-
structor so that you don’t repeat these operations for each call. I don’t make
this a general recommendation because it can cause availability issues in
clustered environments.

A Hibernate Example

Object-relational toolsets appear to be gaining popularity. To illustrate how
you can incorporate an object-relational toolset into a layered architecture,
this chapter focuses on the Hibernate toolset, which is hosted at http://
www.hibernate.org/.

Hibernate complements a layered architecture exceptionally well. The
toolset requires mapping value objects to tables and columns in the data-
base. With the mapping, Hibernate can read or write to the database using
value objects directly. This greatly reduces the amount of Java code needed
in DAOs.

Hibernate does have a configuration requirement. It’s possible to specify
this configuration in an XML file or by coding it in a central utility class. I
elected to code Hibernate’s configuration in a utility class called
HibernateEnvironment, the source for which is shown in listing 12.3.

Listing 12.3: Sample Hibernate Configuration

 1:package book.sample.dao.db;

 2:

 3:import book.sample.vo.*;

 4:import book.sample.env.SampleException;

 5:

 6:import net.sf.hibernate.SessionFactory;

 7:import net.sf.hibernate.HibernateException;

 8:import net.sf.hibernate.cfg.Configuration;

 9:

 10:import java.util.Properties;

 11:

 12:public class HibernateEnvironment

 13:{

 14: private static SessionFactory _sessionFactory;

 15: static

A Hibernate Example

http://www.amazon.com/exec/obidos/ASIN/0972954899

160

 16: {

 17: Properties props = new Properties();

 18: props.put(“hibernate.dialect”,

 19: “net.sf.hibernate.dialect.Oracle9Dialect”);

 20: props.put(

 21: “hibernate.cglib.use_reflection_optimizer”,

 22: “true”);

 23: props.put(“hibernate.connection.driver_class”,

 24: “oracle.jdbc.driver.OracleDriver”);

 25: props.put(“hibernate.connection.url”,

 26: “jdbc:oracle:thin:@localhost:1521:ORA92”);

 27: props.put(“hibernate.connection.username”,

 28: “scott”);

 29: props.put(“hibernate.connection.password”,

 30: “tiger”);

 31: props.put(“hibernate.connection.pool_size”,

 32: “3”);

 33: props.put(“hibernate.statement_cache.size”,

 34: “3”);

 35:

 36: Configuration cfg = new Configuration();

 37: try

 38: {

 39: cfg.addClass(OrderedItemVO.class);

 40: cfg.addClass(PurchaseOrderVO.class);

 41: cfg.setProperties(props);

 42:

 43: _sessionFactory =

 44: cfg.buildSessionFactory();

 45: }

 46: catch (HibernateException h)

 47: {

 48: throw new SampleException(

 49: “Hibernate configuration error”, h);

 50: }

 51: }

 52:

 53: public static SessionFactory getSessionFactory()

 54: {

 55: return _sessionFactory;

 56: }

 57:}

Source: /src/book/sample/dao/db/HibernateEnvironment.java

Configuration code such as that in listing 12.3 is only executed once
when the application is started. It mainly consists of specifying the JDBC
driver and connection information as well as registering each value object
that can be persisted.

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

161

For each value object registered, a mapping must be created to tell Hiber-
nate which fields in the class correspond to which columns in the database.
Listing 12.4 is an example mapping for PurchaseOrderVO. Most of the con-
tent for this mapping can be easily generated by an open source Eclipse plug-
in called Hibernator, which is available at http://sourceforge.net/projects/
hibernator/.

Listing 12.4: Sample Hibernate Value Object Mapping

<?xml version=”1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

 “-//Hibernate/Hibernate Mapping DTD//EN”

 “http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>

 <class name=”book.sample.vo.PurchaseOrderVO”

table=”purchase_order”>

 <id name=”orderNbr” column=”ORDER_NBR”

unsaved-value=”0" >

 <generator class=”hilo”>

 <param name=”table”>purchase_order_nbr</param>

 <param name=”column”>next_value</param>

 <param name=”max_lo”>100</param>

 </generator>

 </id>

 <property name=”customerId” column=”CUSTOMER_ID” />

 <property name=”orderDate” column=”DATE_CREATED” />

 <property name=”shipDate” column=”DATE_SHIPPED” />

 </class>

</hibernate-mapping>

Source: /src/book/sample/vo/PurchaseOrderVO.hbm.xml

Hibernate has three classes to implement transaction management:
SessionFactory, Session, and Transaction. Session manages JDBC
connections for Hibernate, and as you might expect, SessionFactory is
needed to establish a Session. Session objects produce Transaction
objects that can be used for commits and rollbacks.

As when you use native JDBC, you handle all connection and transaction
management logic in the business logic layer. Code illustrating how to use
Hibernate Session and Transaction objects to establish a connection and
commit a transaction is presented in listing 12.5.

A Hibernate Example

http://www.amazon.com/exec/obidos/ASIN/0972954899

162

Listing 12.5: Sample Hibernate Session and Transaction Management

 1:import book.sample.dao.db.PurchaseOrderDAO;

 2:import book.sample.dao.db.HibernateEnvironment;

 3:

 4:import net.sf.hibernate.Transaction;

 5:import net.sf.hibernate.SessionFactory;

 6:import net.sf.hibernate.Session;

 7:

 8:// Some code omitted

 9:

 10: SessionFactory factory =

 11: HibernateEnvironment.getSessionFactory();

 12: Session session =

 13: factory.openSession();

 14: Transaction tx = session.beginTransaction();

 15:

 16: PurchaseOrderDAO dao =

 17: new PurchaseOrderDAO(session);

 18: dao.savePurchaseOrder(order);

 19:

 20: tx.commit();

Inside the DAO, the Hibernate session object is used to initiate selects,
updates, and inserts. Listing 12.6 is an example of how to insert.

Listing 12.6: Sample Hibernate Insert

 1: public void savePurchaseOrder(PurchaseOrderVO order)

 2: throws SQLException

 3: {

 4: try

 5: {

 6: Integer generatedOrderNbr =

 7: (Integer) this._hibernateSession.save(order);

 8:

 9: OrderedItemVO[] line = order.getOrderedItems();

 10: for (int i = 0 ; i < line.length; i++)

 11: {

 12: line[i].setOrderNbr(

 13: generatedOrderNbr.intValue());

 14: line[i].setLineNbr(i);

 15: this._hibernateSession.save(line[i]);

 16: }

 17: }

 18: catch (Throwable t)

 19: {

 20: throw new SampleException(

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

163

 21: “Error saving purchase order: “ +

 22: order.describe(), t);

 23: }

 24: }

Source: /src/book/sample/dao/db/PurchaseOrderDAO.java)

JDBC Best Practices

Most J2EE applications manage their own persistence via JDBC, so a few
tips and guidelines for JDBC usage are appropriate here. I assume that you
already know the basics of JDBC programming. Readers wanting a good
reference for JDBC basics as well as other programming topics should see
Horstmann and Cornell (2001).

Use host variables in SQL statements instead of hard-coding literals in

SQL strings. As a convenience, many developers embed literals in SQL state-
ments instead. Listing 12.7 is an example of the bad practice of embedding
literals. Notice that this example places a user ID directly in the SQL state-
ment. Notice, too, that this example uses the + operator for string concat-
enation. Although using + is convenient, you can concatenate strings faster
using StringBuffers and the StringBuffer.append() method.

Listing 12.7: Embedding Literals in SQL Statements (Bad Practice)

 1: Statement stmt;

 2: ResultSet rst;

 3: Connection dbconnection;

 4:

 5: // some code omitted

 6:

 7: stmt = dbconnection.createStatement();

 8: rst = stmt.executeQuery(

 9: “select count(*) “ +

 10: “from portfolio_info “ +

 11: “where USER_ID = “ +

 12: userID);

 13: if(rst.next())

 14: {

 15: count = rst.getInt(1);

 16: }

The problem with the code in listing 12.7 is that it circumvents database
optimizations provided by Oracle, DB2/UDB, and many others. To get the
benefit of database software optimizations, you need to use
PreparedStatement objects instead of Statement objects for SQL that

JDBC Best Practices

http://www.amazon.com/exec/obidos/ASIN/0972954899

164

will be executed multiple times. Further, you need to use host variables in-
stead of literals for literals that will change between executions. With listing
12.7, the SQL statement for user ID 1 will be different than for user ID 2
("where USER_ID = 1" is different from "where USER_ID = 2"). A
better way to approach this SQL statement is presented in listing 12.8.

Listing 12.8: Using a Host Variable in a SQL Statement (Listing 12.7

Rewritten)

ResultSet rst;

PreparedStatement pstmt;

Connection dbconnection;

...

pstmt = dbconnection.prepareStatement (“select count(*) from

portfolio_info where USER_ID = ? “);

pstmt.setDouble(1,userID);

rst = pstmt.executeQuery();

if(rst.next())

{

 count = rst.getInt(1);

}

Notice that because listing 12.8 uses host variables instead of literals, the
SQL statement is identical no matter what the qualifying user ID is. Further,
a PreparedStatement is used instead of a Statement.

To better understand the database optimizations possible when using
PreparedStatement objects, consider how Oracle processes SQL state-
ments. When executing SQL statements, Oracle goes through the follow-
ing steps:

1 Look up the statement in the shared pool to see if it has already
been parsed or interpreted. If yes, go directly to step 4.

2 Parse (or interpret) the statement.

3 Figure out how to get the desired data and record the information in
a portion of memory called the shared pool.

4 Get the data.

When Oracle looks up a SQL statement to see if it has already been
executed (step 1), it attempts a character-by-character match of the SQL
statement. If the program finds a match, it can use the parse information
already in the shared pool and does not have to do steps 2 and 3 because it
has done the work already. If you hard-code literals in SQL statements, the
probability of finding a match is low ("where USER_ID = 1" is not the

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

165

same as "where USER_ID = 2"). This means that Oracle will have to
reparse listing 12.7 for each portfolio selected. Had listing 12.7 used host
variables and a PreparedStatement, the SQL statement (which would look
something like "where USER_ID =:1" in the shared pool) would have
been parsed once and only once.

DB2/UDB uses different terminology but a similar algorithm for dynamic
SQL statements. Use of the PreparedStatement over the Statement is
recommended for DB2/UDB as well.

Always close Statement, PreparedStatement, CallableStatement and

Connection variables with a finally block. Many database platforms allo-
cate resources to servicing these classes, and many continue to allocate those
resources for a period if the objects aren’t closed after use. Closing the vari-
ables improves time and resources spent on maintenance to keep errors from
happening.

In the example shown in listing 12.9, a finally block closes Prepared-
Statement. The connection in the example method remains open because
it is used elsewhere in the application. Also notice that the call to
DatabaseUtility from CementJ closes the PreparedStatement. Using
a utility to do the close makes it a one-liner. To execute close() on
ResultSet and PreparedStatement directly, you need to use a try/catch
to handle the SQLException.

Listing 12.9: Using a Finally Block to Close JDBC Resources

 1:import org.cementj.util.DatabaseUtility;

 2:

 3:// Some code omitted..

 4:private static final String GET_DISPLAY_SQL =

 5: “select t_ddlb_itm_dspl_val “ +

 6: “from nasdb..nmr_parm_ddlb_val where “ +

 7: “i_templ_parm = ? and c_ddlb_itm = ? “;

 8:

 9:public String getDisplayValue(int parmId,

 10: String parmValue)

 11: {

 12: String displayValue = null;

 13:

 14: PreparedStatement pStmt = null;

 15: ResultSet results = null;

 16:

 17: try

 18: {

 19: pStmt = _dbConnection.prepareStatement(

JDBC Best Practices

http://www.amazon.com/exec/obidos/ASIN/0972954899

166

 20: GET_DISPLAY_SQL);

 21:

 22: pStmt.setInt(1, parmId);

 23: pStmt.setString(2, parmValue.trim());

 24: results = pStmt.executeQuery();

 25:

 26: if (results.next())

 27: {

 28: displayValue =

 29: results.getString(“t_ddlb_itm_dspl_val”);

 30: if (displayValue != null) displayValue =

 31: displayValue.trim();

 32: }

 33: }

 34: catch (Throwable t)

 35: {

 36: throw new MyApplicationRuntimeException(

 37: “Error selecting parm value::> parmId=” +

 38: parmId +

 39: “; parmValue=” + parmValue, t);

 40: }

 41: finally

 42: {

 43: DatabaseUtility.close(results, pStmt);

 44: }

 45:

 46: return displayValue;

 47: }

Consolidate formation of SQL statement strings. As a former database ad-
ministrator, I spend a substantial portion of my time reading the code oth-
ers have written and suggesting ways to improve performance. As you might
expect, I am particularly interested in the SQL statements. I find it espe-
cially hard to follow SQL statements constructed by string manipulation
scattered over several methods. It greatly enhances readability if you con-
solidate the logic that forms the SQL statement.

Listing 12.10a is a good illustration of this point. Note that the string
manipulation to form the SQL statement is located in one place. The SQL
string is also defined statically to reduce the amount of string concatenation.

Listing 12.10a: Using a String Host Variable for a Date Field

Select sum(sale_price)

From purchase_order

Where to_char(sale_dt,’YYYY-MM-DD’) >= ?

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

167

Limit use of column functions. Try to limit your use of column functions to
the select lists of select statements. Moreover, use only aggregate functions
(e.g., count, sum, and average) needed for select statements that use a “group
by” clause. There are two reasons for this recommendation: performance
and portability.

When you limit the use of a function to a select list (and keep it out of
where clauses), you can use the function without blocking the use of an
index. In the same way that the to_char function prohibited the database
from using an index in listing 12.10a, column functions in where clauses
likely will prohibit the database from using an index. This results in slower
query performance. Rewriting the SQL statement as shown in Listing 12.10b
allows most databases to use indices.

Listing 12.10b: Query with java.sql.Timestamp as a Host Variable

Select sum(sale_price)

From purchase_order

Where sale_dt >= ?

In addition, many of the operations for which developers use SQL col-
umn functions (data type conversion, value formatting, etc.) are faster in
Java than if the database did them. I’ve had 5–20 percent performance im-
provement in many applications by avoiding some column functions and
implementing the logic in Java instead. Another way to look at it is that you
cannot tune column functions because you cannot control the source code.
By implementing that logic in Java, you create code that you can tune if
necessary.

Moreover, using non-ANSI standard column functions can also cause
portability problems. Not all database vendors implement the same column
functions. For instance, one of my favorite Oracle column functions, de-
code, which allows you to translate one set of values into another, is not
implemented in many of the other major database platforms. In general,
using column functions like decode has the potential to become a portabil-
ity issue.

Always specify a column list with a select statement (avoid Select *). A
common shortcut is to use the * in select statements to avoid having to type
out a column list. Listing 12.11a illustrates this shortcut, and listing 12.11b
illustrates the alternative of explicitly listing desired columns.

JDBC Best Practices

http://www.amazon.com/exec/obidos/ASIN/0972954899

168

Listing 12.11a: Select Statement with *

Select * from customer

Listing 12.11b: Full Select Statement with Column List

Select last_nm, first_nm, address, city, state, customer_nbr from

customer

I recommend explicitly listing columns in select statements, as illustrated
in listing 12.11b. The reason is that if someone reorders the columns in any
of the tables in the select or adds new columns, the results obtained with the
* shortcut will change, and you must modify the class. For example, suppose
a database administrator changes the order of the columns, putting column
CUSTOMER_NBR first (there are valid reasons why a database administrator
would reorder columns) and adds a column called COUNTRY. The developer
who used the * shortcut will have to change code: all the offset references
used in processing the ResultSet will change. On the other hand, the de-
veloper who explicitly listed all the columns will be oblivious to the change
because the code will still work.

Explicitly listing columns in a select statement is a best practice because
it eliminates the need for maintenance in some cases.

Always specify a column list with an insert statement. Many developers
use the shortcut of omitting the column list in an insert statement to avoid
having to type out a column list. By default, the column order is the same as
physically defined in the table. Listing 12.12a illustrates this shortcut, and
listing 12.12b illustrates the alternative of explicitly listing desired columns.

Listing 12.12a: Insert Statement Without Column List

Insert into customer

Values (‘Ashmore’,’Derek’,’3023 N.Clark’,’Chicago’,

’IL’, 555555)

Listing12.12b: Full Insert Statement with Column List

Insert into customer

(last_nm, first_nm, address, city, state, customer_nbr)

Values (?,?,?,?,?,?)

I recommend explicitly listing columns in insert statements, as illustrated
in listing 12.12b, for the same reason you should explicitly list columns in

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

169

select statements. If someone reorders the columns in any of the tables in
the insert or adds new columns, the insert could generate an exception, and
you must modify the insert statement. For example, suppose that database
administrator again changes the order of the columns, putting column
CUSTOMER_NBR first, and adds a column called COUNTRY. The developer
who used the shortcut will have to change code The developer who explic-
itly listed all columns will be oblivious to the change because the code will
still work. In addition, note that listing 12.12b uses host variables, so the
same PreparedStatement can be used for all inserts if there are multiple
inserts.

As in select statements, explicitly listing columns in an insert statement
is a best practice because it can eliminate the need for maintenance. Fur-
ther, allowing reuse of the PreparedStatement improves performance,
especially for inserts of large numbers of rows.

Code test cases for all DAO methods and put them in the test suite. You
should be able to run a regression test for all objects in the data access layer
at any time. This improves product quality by automating a reasonable test
process.

Architect’s Exercise: ProjectTrak

ProjectTrak uses exclusively custom-coded data access objects as described
in this chapter and does not use entity beans. Many work-scheduling soft-
ware packages are deployed as stand-alone applications on client worksta-
tions. Although these requirements are not documented in the use cases for
ProjectTrak, we don’t want the application design to make a stand-alone
client deployment difficult later. Using entity beans requires the services of
a J2EE container. All data access objects in ProjectTrak use CementJ
DbDataAccessObject class and utilities.

The data model for ProjectTrak is given in figure 12.2. There are twelve
entities. As no denormalization will be applied to this data model, all enti-
ties are implemented as tables. I always use the database to enforce refer-
ential integrity rules. The referential integrity rules highlight some types
of errors at the data access level and force developers to fix them early.
Data access is supported by the data access objects shown in figures 12.3a
and 12.3b.

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

170

Figure 12.2: Data Model Diagram for ProjectTrak

P
ro

je
ct

P
ro

je
ct

 N
am

e

C
re

at
ed

 D
at

e
La

st
 U

pd
at

ed
 D

at
e

P
ro

je
ct

 T
as

k
T

as
k

ID

A
ss

ig
ne

d
R

es
ou

rc
e

(F
K

)
P

ro
je

ct
 N

am
e

(F
K

)
T

as
k

N
am

e
E

st
im

at
e

In
 H

rs
P

ct
 C

om
pl

et
e

P
rio

rit
y

P
ar

en
t T

as
k

ID
 (

F
K

)

R
es

ou
rc

e

R
es

ou
rc

e
ID

R
es

ou
rc

e
N

am
e

R
es

ou
rc

e
A

ct
iv

e
In

d
S

un
da

y
W

or
k

H
rs

M
on

da
y

W
or

k
H

rs
T

ue
sd

ay
 W

or
k

H
rs

W
ed

ne
sd

ay
 W

or
k

H
rs

T
hu

rs
da

y
W

or
k

H
rs

F
rid

ay
 W

or
k

H
rs

S
at

ur
da

y
W

or
k

H
rs

P
ro

je
ct

 P
er

so
nn

el
P

ro
je

ct
 N

am
e

(F
K

)
R

es
ou

rc
e

ID
 (

F
K

)

C
om

pa
ny

 H
ol

id
ay

s
ho

lid
ay

 d
at

e

R
es

ou
rc

e
O

ut
ag

e
D

ay
s

O
ut

 D
at

e
R

es
ou

rc
e

ID
 (

F
K

)

P
ro

je
ct

 B
as

el
in

e

B
as

el
in

e
N

am
e

P
ro

je
ct

 N
am

e
(F

K
)

B
as

el
in

e
C

re
at

io
n

D
at

e

B
as

el
in

e
T

as
k

B
as

el
in

e
N

am
e

(F
K

)
T

as
k

ID

A
ss

ig
ne

d
R

es
ou

rc
e

(F
K

)
T

as
k

N
am

e
P

ar
en

t T
as

k
ID

 (
F

K
)

E
st

im
at

e
In

 H
rs

P
ct

 C
om

pl
et

e
P

rio
rit

y
P

ro
je

ct
ed

 S
ta

rt
 D

at
e

P
ro

je
ct

ed
 E

nd
 D

at
e

B
as

el
in

e
R

es
ou

rc
e

R
es

ou
rc

e
ID

B
as

el
in

e
N

am
e

(F
K

)

R
es

ou
rc

e
N

am
e

S
ki

ll
S

et

S
ki

ll
S

et
 N

am
e

S
ki

ll
S

et
 D

es
c

R
es

ou
rc

e
S

ki
ll

S
et

R
es

ou
rc

e
ID

 (
F

K
)

S
ki

ll
S

et
 N

am
e

(F
K

)

P
ro

fic
ie

nc
y

T
as

k
S

ki
ll

S
et

S
ki

ll
S

et
 N

am
e

(F
K

)
T

as
k

ID
 (

F
K

)

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

171

Figure 12.3a: Data Access Objects for ProjectTrak

+getBaseline(in baselineName : String) : BaselineDTO
+saveBaseline(in baseline : BaselineDTO)

com.dvt.app.project.dao::BaselineDAO

+getBaselineResources() : ResourceDTO
+saveBaselineResources(in resourceList : ResourceDTO[])

com.dvt.app.project.dao::BaselineResourceDAO

+getBaselineTasks() : ProjectTaskWithProjectionDTO[]
+saveBaselineTask(in projectTasks : ProjectTaskWithProjectionDTO[])

com.dvt.app.project.dao::BaselineTaskDAO

+saveSkillDefinition(in name : String, in description : String)

com.dvt.app.project.dao::SkillSetDAO

«uses»

«uses»

+getProjectPersonnel(in projectName : String) : ResourceDTO[]

com.dvt.app.project.dao::ProjectPersonnelDAO

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

172

Figure 12.3b: Data Access Objects for ProjectTrak

+getProject(in projectName : String) : ProjectDTO

ProjectDAO

+getProjectTask(in taskId : int) : ProjectTaskDTO
+saveProjectTask(in task : ProjectTaskDTO)

ProjectTaskDAO

+getResource() : ResourceDTO
+saveResource(in resource : ResourceDTO)
+saveResourceOutage(in resourceId : int, in outageDate : Date)

ResourceDAO

«uses»

+getAllHolidays() : Date[]

CompanyHolidayDAO

+getResourceOutageDays(in resourceId : int) : Date[]
+saveResourceOutage(in resourceId : int, in outageDate : Date)

ResourceOutageDAO

«uses»

«uses»

+saveProject(in project : ProjectDTO)

Each entity is supported by a like-named data access object. For example,
ProjectTaskDAO provides reading/writing capabilities for the
PROJECT_TASK table. We might be tempted here to combine the reading/
writing logic for multiple tables into a single data access object. Although
this would reduce the number of data access objects, it doesn’t really reduce
the workload because the JDBC work is the most time consuming. Combin-
ing the data access objects just relocates where the work resides, it doesn’t
eliminate any work.

There is also value in consistency. Developers who weren’t involved in
the initial development will be able to find data access logic they need to
work quickly and easily. If we combine access logic for multiple tables into a
single data access object, it would take longer to find the logic we need to
change.

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

173

Other Code Reduction Paradigms

JDBC coding is widely acknowledged as verbose. It isn’t complicated code,
but there tends to be a lot of it in most applications. Consequently, a num-
ber of products have been invented to reduce the amount of code (and the
time spent on development and maintenance) for data access objects. These
products have achieved mixed success in the marketplace. The bottom line
is that they generally don’t achieve enough code reduction to pay for their
learning curve and performance overhead.

This section lists the most prevalent products and where to get more
information about them. Although I don’t use these products or recom-
mend them, I think every technical architect should be aware of their
existence.

Java Data Objects (JDO)

The JDO specification is now a formal part of the JDK (JSR-12). You can
download the reference implementation and get more information at the
JDO home page, http://java.sun.com/products/jdo/. Additional information
about available JDO implementations can be found at http://
www.jdocentral.com/.

CocoBase

CocoBase is a commercial object/relational mapping (ORM) product. You
can download the software and obtain information on licensing from http://
www.thoughtinc.com/.

TopLink

TopLink is a commercial ORM product that was acquired by Oracle Cor-
poration. You can download the software as well as obtain the documenta-
tion from http://otn.oracle.com/products/ias/toplink/content.html.

OJB

The ObjectRelationalBridge (OJB) is an open source object/relational map-
ping tool from Apache. You can download the software and documentation
from http://db.apache.org/ojb/.

Other Code Reduction Paradigms

http://www.amazon.com/exec/obidos/ASIN/0972954899

174

Further Reading

Alur, Deepak, John Crupi, and Dan Malks. 2001. Core J2EE Patterns: Best
Practices and Design Strategies. New York: Prentice Hall.

Horstmann, Cay S., and Gary Cornell. 2001. Core Java 2, Volume II: Ad-
vanced Features, 5th ed. Essex, UK: Pearson Higher Education.

Johnson, Rod. 2002. Expert One-on-One: J2EE Design and Development. In-
dianapolis, IN: Wrox Press.

Chapter 12: Building Database Access Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

175

13

Building Business Objects
The business logic layer for J2EE applications combines data with business
rules, constraints, and activities. I usually separate them from DAOs, VOs,
and deployment wrappers, such as enterprise beans or Web services, to maxi-
mize the possibility of reuse. It’s common for business objects (BOs) to use
and coordinate the activities of multiple data access objects. Figure 13.1
illustrates how business objects function in a layered architecture.

Business objects are instantiated and invoked by other business objects
or classes in the deployment layer, such as enterprise beans or Web services.
They often instantiate and use classes in the data access layer, such as those
discussed in the previous two chapters. This chapter provides coding guide-
lines used for business objects and presents examples taken from ProjectTrak.

As an illustration, consider a business object in a purchasing application.
Class PurchaseOrder is in the business logic layer and is used by the de-
ployment layer to provide the ability to view and submit purchase orders.
PurchaseOrder has the following methods:

public PurchaseOrderVO getPurchaseOrderVO ();

public void setPurchaseOrderVO(PurchaseOrderVO po);

public void setPurchaseOrder (int ordered);

public void record ()

 throws InsufficientCreditException;

http://www.amazon.com/exec/obidos/ASIN/0972954899

176

public void cancel ();

public PurchaseOrderVO[] getCustomerPurchaseOrders(

String custId);

Business objects are responsible for transaction management. Because busi-
ness objects are the only classes that understand context, they should deter-
mine where transactions begin and when they are committed or rolled back.
Business objects understand, for instance, which database inserts, updates,
and deletes are necessary to perform a business function, such as adding a
customer, defining a purchase order, or deactivating a retail product. These
business functions can be saved together to form a composite transaction or
can be issued individually.

Transaction Management

For J2EE applications, you can manage transactions differently than you do
for other types of Java applications. Some texts refer to transaction manage-
ment as transaction demarcation. The J2EE specification defines the Java

Figure 13.1: Using Business Objects Within a Layered Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 13: Building Business Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

177

Transaction API (JTA), which provides a standard interface for transaction
management. This standard interface allows container vendors to provide
features such as two-phase commit capability.

J2EE developers typically have the choice of managing transactions pro-
grammatically via JTA or instructing the container (via enterprise bean de-
ployment descriptors) to perform transaction management automatically.
Many of my clients manage transactions programmatically, opting not to
use JTA features and locally managing their transactions using JDBC. Pro-
grammed transaction management enables the business logic layer to func-
tion outside a J2EE environment.

Because of the variety of methods for managing transactions in J2EE
applications, most texts advocate putting business logic in enterprise beans.
They recommend this so you can take advantage of container transaction
management features. Although I agree with the desire to offer advanced
features, I respectfully disagree with the practice of making the business
logic layer deployment specific.

Decouple transaction management tasks from the business logic layer with

an interface. By decoupling transaction management, you can keep the busi-
ness logic layer locally debuggable but still make advanced transaction man-
agement features available for J2EE deployments. An example of this concept
is interface TransactionContext (from package org.cementj.base.trans),
defined within CementJ.

TransactionContext is a part of CementJ, not a native part of the JDK
or J2EE specification. If you prefer not to use CementJ directly, you can
take this discussion as a “concept” example and still apply the concepts to
the business logic layer. You would, of course, have to invent your own ver-
sion of TransactionContext.

TransactionContext, as implemented in CementJ, is a transaction man-
ager that provides database connections, begins transactions, and manages
commits and rollbacks. Because TransactionContext is an interface, the
implementation can be J2EE specific (i.e., use JTA) for J2EE deployments
but use native JDBC for other types of environments. Either way, the busi-
ness logic is identical in all environments.

Listing 13.1 contains the definition for TransactionContext.

Listing 13.1: Defining TransactionContext

 1:package org.cementj.base.trans;

 2:

Transaction Management

http://www.amazon.com/exec/obidos/ASIN/0972954899

178

 3:import java.sql.Connection;

 4:

 5:public interface TransactionContext

 6:{

 7:

 8: public Connection getConnection(String label)

 9: throws TransactionException;

 10:

 11: public void commitAll() throws TransactionException;

 12:

 13: public void rollbackAll()

 14: throws TransactionException;

 15:

 16: public void begin() throws TransactionException;

 17:

 18: public void closeAll() throws TransactionException;

 19:}

Let’s look at each method in detail. TransactionContext provides all
database connections needed by the data access layer in the method
getConnection(). Many applications use multiple database connections
to different sources. For this reason, a “label” to identify the connection
type is required. In a J2EE context, this will typically be your database pool
name.

TransactionContext provides the ability to demark transaction be-
ginnings using the method begin(). In a J2EE application, JTA usually per-
forms this task. TransactionContext also provides a way to commit or
roll back transactions using commitAll() and rollbackAll(), respectively.

TransactionContext enables you to close all opened connections via
closeAll(). You should close all opened connections to prevent connec-
tion leaks, which we will discuss later.

It is imperative that you don’t issue commits, rollbacks, or closes on the
connections obtained from TransactionContext directly. Doing so will
make your transactions “local” and circumvent the use of container transac-
tion management features. Listing 13.2 illustrates the use of Transaction-
Context.

Listing 13.2: Using TransactionContext to Decouple Transaction

Management

 1:package book.sample.bo;

 2:

 3:import book.sample.vo.PurchaseOrderVO;

 4:import book.sample.dao.db.PurchaseOrderDAO;

Chapter 13: Building Business Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

179

 5:// some code omitted

 6:

 7:public class PurchaseOrder

 8: extends BusinessLogicObject

 9:{

 10:

 11: // some code omitted

 12:

 13: public void record()

 14: throws InsufficientCreditException,

 15: InternalApplicationException

 16: {

 17: if (_purchaseOrderVO == null)

 18: throw new IllegalArgumentException(

 19: “Null orders not allowed.”);

 20:

 21: try

 22: {

 23: this._transactionContext.begin();

 24: Connection conn =

 25: this._transactionContext.getConnection(

 26: “MyDbPoolName”);

 27: CreditValidationBO creditBO =

 28: new CreditValidationBO(

 29: this._transactionContext);

 30: double availableCredit =

 31: creditBO.getAvailableCredit(

 32: _purchaseOrderVO.getCustomerId());

 33:

 34: if (_purchaseOrderVO.getTotalOrderAmount() >

 35: availableCredit)

 36: {

 37: throw new InsufficientCreditException

 38: (“Sorry — your order exceeds your available” +

 39: “ credit of $” + availableCredit + “!”);

 40: }

 41:

 42: PurchaseOrderDAO orderDAO =

 43: new PurchaseOrderDAO(conn);

 44: orderDAO.savePurchaseOrder(_purchaseOrderVO);

 45: this._transactionContext.commitAll();

 46: }

 47: catch (InsufficientCreditException i)

 48: {

 49: this._transactionContext.rollbackAll();

 50: throw i;

 51: }

 52: catch (InternalApplicationException iae)

 53: {

Transaction Management

http://www.amazon.com/exec/obidos/ASIN/0972954899

180

 54: this._transactionContext.rollbackAll();

 55: throw iae;

 56: }

 57: catch (Throwable t)

 58: {

 59: this._transactionContext.rollbackAll();

 60: throw new InternalApplicationException

 61: (“Error recording PO ==> “ +

 62: _purchaseOrderVO.describe(), t);

 63: }

 64: finally {this._transactionContext.closeAll();}

 65: }

 66:}

Source: /src/book/sample/bo/PurchaseOrder.java

Business Object Coding Guidelines

Never put anything deployment specific in an object in the business logic

layer. Business objects should be reusable in any deployment without changes.
This insulates business logic from changes and developments in the deploy-
ment layer, which changes more rapidly than anything else. In the few years
that Java has existed, an increasing number of distributed applications have
used enterprise beans rather than CORBA. Over the past couple of years,
Web services and message-driven beans have replaced entity beans. If you
think J2EE and enterprise beans are the last programming evolution, re-
member the lesson of the Year 2000 problem: your code will probably live
longer than you expect.

Many J2EE books guide you toward incorporating business logic directly
into enterprise beans. I don’t subscribe to that view because of the rapid
pace at which deployment methodologies have changed over the years. En-
tity beans, if you use them, will have to be an exception. Use of entity beans
definitely limits how your application can be deployed.

Always accept environment resources as arguments on construction. This
includes TransactionContext and any additional JNDI resources. This
advice is guided by the principle of keeping business logic deployment ge-
neric. It also tends to reduce complexity in the business logic layer. To sim-
plify passing in commonly used resources, I usually extend BusinessLogic-
Object from CementJ (package org.cementj.base) for business objects,
as illustrated in listing 13.2.

All public methods should explicitly validate the arguments. If you don’t,
you run a significant risk of generating a derivative exception, such as a

Chapter 13: Building Business Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

181

NullPointerException, which can take longer to debug and fix. If you
generate an IllegalArgumentException with a clear message, program-
ming errors in the deployment layer or within business objects that call you
will have a better chance at being caught in unit testing.

Record the argument values in any generated exception. This practice makes
internal system errors easier to replicate, thus easier to debug and fix. This
is especially true if you’ve kept the business logic layer deployment generic
and locally debuggable. Because most arguments are value objects, you can
use the describe() method (if the value objects implement Describable)
to do this quite easily. Listing 13.2 illustrates this practice.

A possible concern with catching Throwable is losing information con-
tained within the root exception. However, the original exception and stack
trace can be retained if your application exceptions extend either
ApplicationException or ApplicationRuntimeException from
CementJ or use the chained exception feature found in version 1.4 and above
of the JDK.

Another common concern centers on the assumption that application code
could not possibly be equipped to handle some of the exceptions that could
get caught (e.g., OutOfMemmoryError or ClassDefNotFoundError). I ar-
gue that recording the circumstances and context surrounding such an error
is necessary if developers are going to fix the problem. Recording these types
of errors should not be left to chance. Chapter 17 provides a more extensive
discussion of exception-handling practices and recommendations.

Any method that creates a database connection should close it in a finally

block. If it doesn’t, it will create a common problem for J2EE environments
called a connection leak. A connection leak is a database connection that
has been created but will never be closed. Most J2EE containers manage
database connections by using connection pools. Connection pools are of-
ten configured to have a maximum size. If an application has allocated its
maximum size, other users will err out. Thus a connection leak could inad-
vertently cause an error for another user. Also, connection leaks unneces-
sarily take up resources in the database server, as illustrated in listing 13.2.

Code test cases for all public methods of business objects and put the

code in the regression test suite. All business objects can and should be
testable individually. I like to put them in a regression test suite so that they
can be easily run before new releases. I use JUnit for testing (http://
www.junit.org). It’s open source and easy to use.

Business Object Coding Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

182

Avoid using patterns not documented in one of the reputable pattern texts.

I normally try to encourage creativity. However, at this point, hundreds of
patterns have been identified and documented. The odds that you will en-
counter a requirement in a business application that isn’t satisfied or ad-
dressed by at least one of the documented patterns is remote. As a reminder,
I’ve listed several commonly used patterns in chapter 5.

Architect’s Exercise: ProjectTrak

Given the somewhat simple use cases for the first release of the product,
we’ve identified four publishable business objects. These objects are listed
in the model shown in figure 13.2.

Of the four objects, the ProjectBO, ResourceBO, and SkillSetBO
objects are mostly transactional in nature. They are primarily concerned
with maintaining the integrity of data recorded in a relational database. The
TaskSchedulerBO is more complex. This class does the work of determin-
ing the work schedule given the constraints that users have input.

Figure 13.2: Business Logic Layer Object Model

+getProjectTask(in taskId : int) : ProjectTaskWithProjectionVO
+saveProjectTask(in task : ProjectTaskVO)
+getProject() : ProjectVO
+saveProject(in project : ProjectVO)
+saveBaseline(in baselineName : String, in project : ProjectVO)
+getBaseline(in baselineName : String) : BaselineVO

com.dvt.app.project.bus::ProjectBO

+getResource() : ResourceVO
+saveResource(in resource : ResourceVO)

com.dvt.app.project.bus::ResourceBO

+getAvailableSkillSets() : SkillSetVO[]
+saveSkillSet(in skillset : SkillSetVO)

com.dvt.app.project.bus::SkillSetBO

+scheduleTasks(in project : ProjectVO) : ProjectVO

+getCriticalPath() : ProjectTaskWithProjectionVO[]

com.dvt.app.project.bus::TaskSchedulerBO

Chapter 13: Building Business Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

183

TaskSchedulerBO manages the process that derives the start and end dates
for each task in a way that enforces the project’s dependencies.
TaskSchedulerBO will probably need more design work than what’s docu-
mented in the model presented in figure 13.2.

Rather than drag the whole team through determining the work-
scheduling algorithm and what additional support classes might be needed,
the architect should work with a smaller group of developers (maybe even
just one senior developer) to figure out the algorithm and then report back
to the whole team. The more complex the problem, the longer it will take a
large group to solve.

The use-case text that is causing us to write a task scheduler is the
following:

▲ The system will compute work schedule information about project
tasks. A projected start date and end date will be computed for each
task. This date range will be consistent with the number of working
hours available for the assigned resource. This projected date range
will not conflict with the range generated for other tasks assigned to
the resource.

▲ The order that tasks are completed will be consistent with their
priority assignment.

▲ The order that tasks are completed will be consistent with the
dependent tasks.

The use case tells us what the scheduler needs to do, but it really doesn’t
tell us how. This is as it should be, but it does give us a practical problem. I
can think of several algorithms we can use to determine the schedule, but
they will likely all produce a different result. For example, we could use an
iterative algorithm that starts with the current day and iterates through,
looking for free resources to assume tasks. Or we could use an algorithm
that expresses these constraints as a classic linear programming problem.
Linear programming is a branch of operations research that uses matrix
algebra to solve optimization problems such as scheduling.

It is also highly likely that users will discover additional constraints after
testing our scheduler and watching it do something they didn’t agree with.
After we change a scheduler, it would be handy to review the effects of the
change on several projects to see if we’re making the scheduler better or
worse. Testers and developers will need an easy way to compare work sched-
ules determined by different schedulers.

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

184

Assuming for a moment that we could get users to agree to the addi-
tional use case that would provide users the ability to choose among several
schedulers, it would be a prime candidate for the strategy pattern described
in chapter 5. The algorithm candidates we have are different, but they all
have the same inputs and outputs. Figure 13.3 is an example of applying the
strategy model to ProjectTrak. The strategy pattern works by having
TaskSchedulerBO rely on an interface, not a concrete class. We can then
make the choice of scheduler data driven (e.g., from a user’s choice).

Further Reading

Alur, Deepak, John Crupi, and Dan Malks. 2001. Core J2EE Patterns: Best
Practices and Design Strategies. New York: Prentice Hall.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns. Reading, MA: Addison-Wesley.

Figure 13.3: Sample ProjectTrak Strategy Pattern

TaskSchedulerBO

+scheduleTasks(in project : ProjectVO) : ProjectVO

«interface»
Scheduler

+scheduleTasks(in project : ProjectVO) : ProjectVO

LPSchedulingAlgorithm

+scheduleTasks(in project : ProjectVO) : ProjectVO

IterativeScedhulingAlgorithm

+scheduleTasks(in project : ProjectVO) : ProjectVO

FutureAlgorithm1

Chapter 13: Building Business Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

185

14

Building Deployment Layer Objects
Objects in the deployment layer (which I call deployment wrappers) “pub-
lish” the content of the business logic layer to the presentation tier. In a
J2EE world, the presentation tier can be on a separate server than the busi-
ness logic layer. The deployment layer provides this remote calling capabil-
ity. Deployment wrappers are purposely kept relatively simple and thin be-
cause they are more difficult and time consuming to develop and maintain
than normal Java classes. Simple, thin deployment wrappers are less likely
to have bugs.

Among the types of objects in the deployment layer are enterprise beans,
Web services, and RMI services. The logic in the methods should contain
the following activities:

▲ Instantiation/call to the underlying business object

▲ Initialization of the transaction context (defined in chapter 12)

▲ Log exceptions

Deployment wrappers, which are usually invoked from other applica-
tions or by elements of the presentation tier, should contain no business
logic. Any business logic directly coded within a deployment wrapper would
have to be replicated if you were to change your deployment strategy. The
role of the deployment layer is depicted in figure 14.1.

http://www.amazon.com/exec/obidos/ASIN/0972954899

186

Several deployment wrappers are available for J2EE applications. Ses-
sion beans, message-driven beans, and Web services are among the most
common. I focus on these three types of deployment wrappers in this chap-
ter because the activities within them are strikingly similar. The chapter
provides coding guidelines for each type and describes how to publish busi-
ness objects using each type. Along the way, I’ll point out additional re-
sources in case you want more depth.

I’ve seen applications that call business objects directly from servlets,
effectively making it a deployment wrapper. By so doing, they are effec-
tively using servlets as deployment wrappers and eliminating the use of ses-
sion beans or Web services. In other words, some applications run entirely
within the servlet engine.

Session Beans

Session beans are a good choice for publishing functionality to multiple
applications. In many environments, several applications run on separate

Figure 14.1: Using Deployment Wrappers Within a Layered

Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

187

servers. By separating the application servers from where the servlet engine
and the EJB container run, you can provide additional scalability and
availability.

Session beans are also a good choice if you need tight coupling between
two or more applications. Large organizations usually put applications in
separate containers. If tight coupling between two applications exists (e.g.,
between an order entry and order fulfillment application), beans allow these
applications to work in tandem yet be sized separately for the resources they
need.

Because they are flexible and accessible by many different types of appli-
cations, session beans are also useful when the business object functionality
is supporting multiple presentation tiers. I’ve worked on several applica-
tions in which the Web tier and administration tools were run as stand-
alone applications. Enterprise beans allowed both applications to use the
same services.

In a layered architecture where session beans publish but do not imple-
ment business logic, bean method signatures tend to be identical to method
signatures in a business object. For example, consider listing 14.1, which
is a session bean deployment for the PurchaseOrder class developed in
chapter 12.

Listing 14.1: Sample Session Bean Deployment

 1:package book.sample.deploy.po;

 2:

 3:import book.sample.bo.PurchaseOrder;

 4:// some code omitted.

 5:

 6:public class PurchaseOrderBean

 7: extends DefaultSessionBean

 8:{

 9: public void recordPurchaseOrder(PurchaseOrderVO poVO)

 10: throws InsufficientCreditException,

 11: InternalApplicationException

 12: {

 13: try

 14: {

 15: J2EETransactionContext context =

 16: new J2EETransactionContext(

 17: this._sessionContext);

 18: PurchaseOrder po = new PurchaseOrder(context,

 19: poVO);

 20: po.record();

Session Beans

http://www.amazon.com/exec/obidos/ASIN/0972954899

188

 21: }

 22: catch (InsufficientCreditException ice)

 23: {

 24: throw ice;

 25: }

 26: catch (InternalApplicationException iae)

 27: {

 28: LogManager.getLogger().logError(iae.getMessage(),

 29: iae);

 30: throw iae;

 31: }

 32: catch (Throwable t)

 33: {

 34: StringBuffer message = new StringBuffer();

 35: message.append(“Error recording PO ==> “);

 36: if (poVO != null)

 37: {

 38: message.append(poVO.describe());

 39: }

 40: else message.append(“null”);

 41:

 42: LogManager.getLogger().logError(

 43: message.toString(), t);

 44: throw new InternalApplicationException

 45: (message.toString(), t);

 46: }

 47: }

 48:}

Source: /src/book/sample/po/PurchaseOrderBean.java

The signature for an application method on the session bean corresponds

to that of an object in the business logic layer. Remember that the bean
isn’t adding any business logic, it’s just making a class in the busiess logic
layer callable as an enterprise bean from remote machines.

Notice that listing 14.1 extends DefaultSessionBean instead of imple-
menting the SessionBean interface directly. DefaultSessionBean is a
convenience class in CemetJ that provides a default implementation for a
session bean. I typically extend that to cut down the number of lines of
code. If you do need to put logic in ejbActivate(), ejbPassivate(), or
one of the other SessionBean methods, you can easily provide an override.

Deployment wrappers should perform error logging. The deployment wrap-
pers are the last opportunity your application has to log before control is
returned to a caller that might be on a remote machine. If your application
will be the only code calling the session bean, it’s possible to move logging

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

189

to the servlet or the Struts action class that calls the bean. Chapter 17 pro-
vides more detail on logging issues.

Whether it’s better to use Log4J or the API logging provided in version
1.4 of the JDK is the topic of current debate. I typically decouple my loggers
with interfaces. Similarly, CementJ implements a logging interface that can
use either of these two logging packages and can easily be implemented for
any other logging package you might want to use.

All exceptions thrown should implement java.io.Serializable. Oth-
erwise, the client will likely receive a marshaling exception instead of the
meaningful exception you tried to throw. In listing 14.1, both
InsufficientCreditException and InternalApplicationException
are serializable. Incidentally, if exceptions extend either Application-
Exception or ApplicationRuntimeException from CementJ, they au-
tomatically implement Serializable as well as track the root exception
with stack trace.

Using stateless session beans improve performance. A stateful session bean
remembers information from a user’s previous calls, whereas a stateless ses-
sion bean does not. You should use stateful session beans if you’re support-
ing multiple presentation tiers (e.g., HTML/JSPs, applets, and a heavy client-
side application deployment). If your application requires you to maintain
state, you won’t want to replicate the state management logic in each pre-
sentation tier.

Stateless session beans should avoid instance-level variables. There’s re-
ally no need for them in a stateless bean. A possible exception is storing the
SessionContext provided by the container so that you have easy access to
the UserTransaction for transaction management.

In an effort to be nice to my customers (callers), I provide a client imple-
mentation of the bean so they don’t have to write what is in essence the
same code. Listing 14.2 illustrates this concept.

Listing 14.2: Sample Session Bean Client

 1:package book.sample.client;

 2:

 3:// some code omitted

 4:

 5:public class PurchaseOrderClient

 6:{

 7: public PurchaseOrderClient() throws NamingException,

Session Beans

http://www.amazon.com/exec/obidos/ASIN/0972954899

190

 8: CreateException,

 9: RemoteException

 10: {

 11: _controller = this.getController();

 12: }

 13:

 14: public void recordPurchaseOrder(PurchaseOrderVO po)

 15: throws InsufficientCreditException,

 16: InternalApplicationException,

 17: RemoteException

 18: {

 19: _controller.recordPurchaseOrder(po);

 20: }

 21:

 22: public PurchaseOrderVO[] getPOsForCustomer (

 23: String customerId)

 24: throws InternalApplicationException,

 25: RemoteException

 26: {

 27: return _controller.getPOsForCustomer(customerId);

 28: }

 29:

 30: private PurchaseOrderController getController()

 31: throws NamingException,

 32: CreateException,

 33: RemoteException

 34: {

 35: PurchaseOrderController controller = null;

 36: Context ctx = new InitialContext();

 37:

 38: Object home =

 39: ctx.lookup(“PurchaseOrderControllerHome”);

 40: PurchaseOrderControllerHome controllerHome =

 41: (PurchaseOrderControllerHome)

 42: PortableRemoteObject.narrow(home,

 43: PurchaseOrderControllerHome.class);

 44: controller = (PurchaseOrderController)

 45: PortableRemoteObject.narrow (

 46: controllerHome.create(),

 47: PurchaseOrderController.class);

 48:

 49: return controller;

 50: }

 51:

 52: private PurchaseOrderController _controller = null;

 53:}

Source: /src/book/sample/client/PurchaseOrderClient.java

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

191

Message-Driven Beans

Message-driven beans (MDBs) allow the container to handle the threading
associated with listening to a JMS queue. When MDBs are deployed, the
container administrator provides information about what queue it listens
for. When a message is received from a queue, the container allocates an
MDB and calls the onMessage() method on it, providing the content of the
message. Processing within the MDB is similar to a stateless session bean in
many ways. MDBs have the same set of responsibilities that session beans
do, with a few differences. For the purchase order example, consider the
onMessage() method in listing 14.3.

Listing 14.3: Using an MDB to Process Purchase Orders

 1:package book.sample.deploy.poxml;

 2:

 3:import book.sample.bo.PurchaseOrder;

 4:// some code omitted

 5:

 6:public class PurchaseOrderMessageDrivenBean

 7: extends DefaultMessageDrivenBean

 8:{

 9:

 10: public PurchaseOrderMessageDrivenBean() {}

 11:

 12: public void onMessage(Message message)

 13: {

 14: String xmlText = null;

 15: PurchaseOrderVO order = null;

 16:

 17: try

 18: {

 19: J2EETransactionContext context =

 20: new J2EETransactionContext(

 21: this._messageDrivenContext);

 22: if (message != null &&

 23: message instanceof TextMessage)

 24: {

 25: TextMessage tm = (TextMessage) message;

 26: xmlText = tm.getText();

 27: }

 28: else

 29: {

 30: LogManager.getLogger().logError

 31: (“Null or invalid message received by “ +

 32: “PurchaseOrderMessageDrivenBean”);

 33: }

Message-Driven Beans

http://www.amazon.com/exec/obidos/ASIN/0972954899

192

 34:

 35: order = this.customerOrderListXlator(xmlText);

 36:

 37: PurchaseOrder po = new PurchaseOrder(context,

 38: order);

 39: po.record();

 40: }

 41: catch (InsufficientCreditException ice)

 42: {

 43: LogManager.getLogger().logInfo(ice.getMessage(),

 44: ice);

 45: }

 46: catch (InternalApplicationException iae)

 47: {

 48: LogManager.getLogger().logError(iae.getMessage(),

 49: iae);

 50: }

 51: catch (Throwable t)

 52: {

 53: StringBuffer errMessage = new StringBuffer();

 54: errMessage.append(“Error recording PO ==> “);

 55: if (order != null)

 56: {

 57: errMessage.append(order.describe());

 58: }

 59: else errMessage.append(“null”);

 60:

 61: LogManager.getLogger().logError(

 62: errMessage.toString(), t);

 63: }

 64: finally

 65: {

 66: JMSUtility.acknowledgeMessage(message);

 67: }

 68: }

 69:}

Source: /src/book/sample/poxml/PurchaseOrderMessageDrivenBean.java

The MDB deployment for recording a purchase order has the additional
burden of interpreting the message, but otherwise processing is very similar
to a session bean. I typically use XML as a protocol for messages. However,
this is a preference, not a technical requirement.

MDBs should not throw exceptions. There’s no application “caller” to throw
the exception to. The best you can do is log the error and possibly e-mail or
page an application administrator. If you do throw an exception, it would

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

193

most likely be recorded in the containers’ logs. My experience is that in
most organizations, the probability that anyone will see it is extremely low.

Acknowledge message receipt in a finally block. If you receive a message
but don’t acknowledge it, it may be redelivered. This leads to a common
messaging problem known as a “poison message.” Essentially, if message
processing continually errors out without acknowledgment, it creates an
infinite loop when the message is redelivered. Generally, you should ac-
knowledge the message even if processing the content of the message pro-
duced an error. Acknowledging the message means only that you success-
fully received it.

An annoying consequence of message acknowledgment is a checked ex-
ception. To avoid this, I use a convenience class from CementJ that reduces
the acknowledgment to one line of code as illustrated on line 66 of listing
14.3.

You can send multiple types of messages over one queue. For example,
you might send customer information updates, product updates, and pur-
chase orders over the same queue. In this case, the MDB would not directly
contain logic to process the message but would forward it on to a handler.
Figure 14.2 is an object model illustrating this concept.

Message-Driven Beans

Figure 14.2: Sample MDB Receiving Multiple Message Types

MyMessageDrivenBean

+onMessage(in message : String)

«interface»
MessageHandler

+onMessage(in message : String)

PurchaseOrderHandler

+onMessage(in message : String)

ProductUpdateHandler

+onMessage(in message : String)

FutureHandler1

http://www.amazon.com/exec/obidos/ASIN/0972954899

194

Web Services

All the major container vendors are providing ways to configure stateless
session beans so they can be called as a Web service using the SOAP proto-
col. This is the easiest and fastest way by far for you to get a Web service up
and going quickly, because all it requires on the server side is a configura-
tion change. The guidelines given for session beans earlier in the chapter
apply to Web services directly.

Unfortunately, all the Web service client code that I’ve seen differs slightly
for each SOAP service provider or vendor. Listing 14.4 is a sample using
Apache, which appears to be popular, but you should consider this a “con-
cept” example that you may not be able to take literally.

Listing 14.4: Sample Apache SOAP Web Service Client

 1:package book.sample.client.web;

 2:

 3:import book.sample.vo.PurchaseOrderVO;

 4:// some code omitted

 5:

 6:public class PoClient

 7:{

 8: public PoClient() throws ServiceException

 9: {

 10: _webService = new Service();

 11: _webServiceCall = _webService.createCall();

 12:

 13: _webServiceCall.setTargetEndpointAddress(

 14: PO_SERVICE_URL);

 15: }

 16:

 17: public void recordPurchaseOrder(

 18: PurchaseOrderVO order)

 19: throws InsufficientCreditException,

 20: InternalApplicationException,

 21: RemoteException

 22: {

 23: QName recordPOQName =

 24: new QName(“recordPurchaseOrder”);

 25:

 26: Object[] args = new Object[1];

 27: args[0] = order.describeAsXMLDocument();

 28: _webServiceCall.setOperationName(

 29: recordPOQName);

 30:

 31: Object ret = null;

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

195

 32: ret = _webServiceCall.invoke(args);

 33: }

 34:}

Source: /src/book/sample/client/web/PoClient.java

Notice that listing 14.4 passes XML text as an argument instead of as a
value object directly. It certainly could have passed the value object directly.
With Web services, passing complex data types is a little less straightfor-
ward than it should be, but it is possible. The primary reason to pass XML
document text instead is performance.

Cohen (2003) has done some performance and scalability tests compar-
ing various types of argument patterns for Web services. The practice of
passing XML text as a string argument falls under the category of what he
calls SOAP Remote Procedure Call Literal Encoding (SOAP RPC-literal).
Compared with passing the value object directly, this type of code is easier
to implement, is faster, and scales better.

Furthermore, passing XML text as a string argument is less sensitive to
changes in SOAP vendors. Complex data types depend on serialization (and
deserialization) techniques to encode content. Because vendors use differ-
ent encoding techniques, the serializer on the client and server should be
from the same vendor. Passing XML text (as string data) bypasses potential
vendor-switching costs down the road.

CementJ facilitates the practice of passing XML text in Web services.
Value objects that extend ValueObject can easily be translated to XML
text via the method encodeAsXML(). I would like to offer a decodeFrom-
XML() in the future, but reconstituting a class from an XML document with
enough reliability for production systems is a challenging task.

Architect’s Exercise: ProjectTrak

In the previous chapter, we identified four business objects that provide
functionality for a Web-compliant Java/J2EE presentation tier. At this point,
the use cases don’t require interfacing with additional clients or legacy sys-
tems. All processing identified is synchronous. Because this is intended as
an enterprise-wide product, we would like to keep clustering technology
capabilities for high availability.

Session beans are the J2EE deployment mechanism that meets these re-
quirements. Neither Web services nor CORBA are required because we
haven’t identified a need to support non-J2EE platforms. Should this need
come up in the future, we can add a deployment for it relatively easily. RMI
services don’t satisfy typical availability requirements for this kind of

Architect’s Exercise: ProjectTrak

http://www.amazon.com/exec/obidos/ASIN/0972954899

196

+
ge

tP
ro

je
ct

Ta
sk

(in
 ta

sk
Id

 :
in

t)
 :

P
ro

je
ct

Ta
sk

W
ith

P
ro

je
ct

io
nV

O
+

sa
ve

P
ro

je
ct

Ta
sk

(in
 ta

sk
 :

P
ro

je
ct

Ta
sk

V
O

)
+

ge
tP

ro
je

ct
()

 :
P

ro
je

ct
V

O
+

sa
ve

P
ro

je
ct

(in
 p

ro
je

ct
 :

P
ro

je
ct

V
O

)
+

ge
tB

as
el

in
e(

in
 b

as
el

in
eN

am
e

: S
tr

in
g)

 :
B

as
el

in
eV

O
+

sa
ve

B
as

el
in

e(
in

 b
as

el
in

eN
am

e
: S

tr
in

g,
 in

 p
ro

je
ct

 :
P

ro
je

ct
V

O
)

co
m

.d
vt

.a
pp

.p
ro

je
ct

.c
lie

nt
::P

ro
je

ct
C

lie
n

t

+
ge

tP
ro

je
ct

Ta
sk

(in
 ta

sk
Id

 :
in

t)
 :

P
ro

je
ct

Ta
sk

W
ith

P
ro

je
ct

io
nV

O

+
sa

ve
P

ro
je

ct
Ta

sk
(in

 ta
sk

 :
P

ro
je

ct
Ta

sk
V

O
)

+
ge

tP
ro

je
ct

()
 :

P
ro

je
ct

V
O

+
sa

ve
P

ro
je

ct
(in

 p
ro

je
ct

 :
P

ro
je

ct
V

O
)

+
ge

tB
as

el
in

e(
in

 b
as

el
in

eN
am

e
: S

tr
in

g)
 :

B
as

el
in

eV
O

+
sa

ve
B

as
el

in
e(

in
 b

as
el

in
eN

am
e

: S
tr

in
g,

 in
 p

ro
je

ct
 :

P
ro

je
ct

V
O

)

co
m

.d
vt

.a
pp

.p
ro

je
ct

.d
ep

lo
y.

tr
ak

::
P

ro
je

ct
B

ea
n

+
cr

ea
te

()

co
m

.d
vt

.a
pp

.p
ro

je
ct

.d
ep

lo
y.

tr
ak

::
P

ro
je

ct
C

o
n

tr
o

lle
rH

o
m

e

+
ge

tP
ro

je
ct

Ta
sk

(in
 ta

sk
Id

 :
in

t)
 :

P
ro

je
ct

Ta
sk

W
ith

P
ro

je
ct

io
nV

O
+

sa
ve

P
ro

je
ct

Ta
sk

(in
 ta

sk
 :

P
ro

je
ct

Ta
sk

V
O

)
+

ge
tP

ro
je

ct
()

 :
P

ro
je

ct
V

O
+

sa
ve

P
ro

je
ct

(in
 p

ro
je

ct
 :

P
ro

je
ct

V
O

)
+

ge
tB

as
el

in
e(

in
 b

as
el

in
eN

am
e

: S
tr

in
g)

 :
B

as
el

in
eV

O
+

sa
ve

B
as

el
in

e(
in

 b
as

el
in

eN
am

e
: S

tr
in

g,
 in

 p
ro

je
ct

 :
P

ro
je

ct
V

O
)

«i
nt

er
fa

ce
»

co
m

.d
vt

.a
pp

.p
ro

je
ct

.d
ep

lo
y.

tr
ak

::
P

ro
je

ct
C

o
n

tr
o

lle
r

+
ge

tP
ro

je
ct

Ta
sk

(in
 ta

sk
Id

 :
in

t)
 :

P
ro

je
ct

Ta
sk

W
ith

P
ro

je
ct

io
nV

O
+

sa
ve

P
ro

je
ct

Ta
sk

(in
 ta

sk
 :

P
ro

je
ct

Ta
sk

V
O

)
+

ge
tP

ro
je

ct
()

 :
P

ro
je

ct
V

O
+

sa
ve

P
ro

je
ct

(in
 p

ro
je

ct
 :

P
ro

je
ct

V
O

)
+

sa
ve

B
as

el
in

e(
in

 b
as

el
in

eN
am

e
: S

tr
in

g,
 in

 p
ro

je
ct

 :
P

ro
je

ct
V

O
)

+
ge

tB
as

el
in

e(
in

 b
as

el
in

eN
am

e
: S

tr
in

g)
 :

B
as

el
in

eV
O

co
m

.d
vt

.a
pp

.p
ro

je
ct

.b
us

::
P

ro
je

ct
B

O

Figure 14.3: Complete Object Model of the ProjectBean

Chapter 14: Building Deployment Layer Objects

http://www.amazon.com/exec/obidos/ASIN/0972954899

197

application. And we don’t require asynchronous processing or interfaces to
legacy applications, so we don’t need messaging technologies, such as JMS.

Given all of this, we’ll deploy our business objects as session beans for
the time being. With our layered architecture, we can add deployments or
swap out our session beans for something else down the line if we need to.

I’ve adopted the shortcut discussed in chapter 5 of modeling the beans as
one object. Each enterprise bean object in the model should be understood
to contain a stateless session bean, a controller, a controller home, and a
client stub. Figure 14.3 illustrates a more complete model for the
ProjectBean, without that shortcut.

Further Reading

Cohen, Frank. 2003 (March). “Discover SOAP Encoding’s Impact on Web
Service Performance.” IBM DeveloperWorks. Available online at http://www-
106.ibm.com/developerworks/webservices/library/ws-soapenc/.

Further Reading

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

199

15

Building the Presentation Layer
Objects in the presentation layer produce the pages or screens that users
physically see and use. There are several aspects to the presentation side:
static content, dynamic content, and navigation. For J2EE applications,
HTML pages typically provide static content, and a combination of JSPs
and servlets usually provide dynamic content. For applications that require
special effects (e.g., mouse-overs), Javascript can be used in combination
with either static or dynamically produced HTML. Users navigate pages
using controls (e.g., push buttons) on the page. Figure 15.1 depicts the role
of the presentation layer.

Although it is technically possible to embed all presentation logic within
JSPs, this type of architecture is difficult to maintain. A better method is to
organize the presentation tier in a way that separates page display, user in-
put validation, data processing, navigation, and security. This type of orga-
nization is often referred to as a model-view-controller (MVC) architecture.
Although an MVC architecture results in more components to maintain,
they are all relatively simple. For a more detailed discussion of the MVC
pattern, see the Java Web site (http://java.sun.com/blueprints/patterns/
MVC.html).

The most common framework used to organize the presentation layer
(and support an MVC architecture) is Struts, the open source package from

http://www.amazon.com/exec/obidos/ASIN/0972954899

200

Apache introduced in chapter 5 and available from http://jakarta.apache.org/
struts/. As with many other frameworks, some of Struts’ features are com-
monly used and others are rarely used in practice. I’ll concentrate on the
package’s most commonly used features here to give you a basic understand-
ing of how to use it to implement the presentation layer. Spielman (2003) is
a good source for more in-depth information on Struts.

Some developers use XSL transformations to produce dynamic content,
but the technique is not a formal part of the J2EE specification and produces
mixed success. Although you might consider this option if your data exists
in XML format, formatting data with XML merely to run transformations
on it to produce HTML usually results in high development and mainte-
nance costs.

Other types of presentation components are applets and Swing. These
technologies are not J2EE specific and thus are out of the scope of this book.
However, with a layered architecture, you certainly can deploy applets or
Swing clients.

Figure 15.1: Using Presentation Objects Within a Layered Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

hi
te

ct
ur

al
 C

om
po

ne
nt

 L
ay

er

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

201

In a layered architecture, the presentation layer is not self-contained.
Presentation objects rely on client stubs and the value objects used with
those stubs in the deployment layer for dynamic content. You can change
aspects of any other layer without having to change the presentation layer.
Likewise, you can make changes in presentation without affecting the other
software layers.

Presentation Components

Each component in the presentation layer has one of the following roles:
page display, user input validation, data processing, navigation, or security.
Guidelines for developing presentation layer components for each role are
presented in the following sections.

Page Display

Most pages are either HTML for static content or JSPs for dynamic con-
tent. When using Struts, you should use JSPs only to create the page. JSPs
are written with the assumption that the information they need to dynami-
cally generate content has already been produced and associated with the
HttpSession. With little in the way of conditional logic, JSP pages are
relatively simple and easy to debug.

Consider an example from ProjectTrak. A JSP produces a page that al-
lows users to view the information associated with project tasks (e.g., who’s
assigned to it, the percentage of the task completed, its name, etc.). Figure
15.2 illustrates what the page looks like.

Presentation Components

Figure 15.2: JSP Page Output

http://www.amazon.com/exec/obidos/ASIN/0972954899

202

The JSP assumes that information for a project task (the ProjectTaskVO
object) has been retrieved and is already on the session. All the JSP has to do
is obtain the value object from the session and populate the appropriate
controls on the page. This is simple logic. Listing 15.1 has a code extract
from the JSP.

Listing 15.1: JSP to Produce the Page in Figure 15.1

 1:<HTML>

 2:<!—

 3: ProjectTrak Task Information Report

 4:

 5: Author: Derek C. Ashmore

 6:—>

 7:

 8:<%@ page import=”com.dvt.app.project.dto.*,

 9: java.text.SimpleDateFormat;”

 10:%>

 11:

 12:<jsp:useBean id=”projectName” scope=”session”

 13: class=”java.lang.String” />

 14:<jsp:useBean id=”startDate” scope=”session”

 15: class=”java.lang.String” />

 16:<jsp:useBean id=”endDate” scope=”session”

 17: class=”java.lang.String” />

 18:<%

 19: ProjectTaskWithProjectionDTO[] task =

 20: (ProjectTaskWithProjectionDTO[])

 21: session.getAttribute(“taskList”);

 22:%>

 23:

 24:<HEAD>

 25:<TITLE><%= projectName %> Task Information</TITLE>

 26:<META http-equiv=”Content-Type”

 27: content=”text/html; charset=windows-1252">

 28:</HEAD>

 29:

 30:<BODY>

 31:<H1>ProjectTrak</H1>

 32:<P>

 33:
Project Start Date: <%= startDate %>

 34:
Project Finish Date: <%= endDate %>

 35:<P>

 36:<H2>Assignments</H2>

 37:<TABLE BORDER>

 38: <TR BGCOLOR=”#DFDFDF”>

 39: <TH NOWRAP>Task ID</TH>

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

203

 40: <TH NOWRAP ALIGN=left>Task Name</TH>

 41: <TH NOWRAP ALIGN=left>Resource Name</TH>

 42: <TH NOWRAP>Work</TH>

 43: <TH NOWRAP>Start</TH>

 44: <TH NOWRAP>Finish</TH>

 45: <TH NOWRAP>% Work Complete</TH>

 46: </TR>

 47:

 48: <%

 49: SimpleDateFormat format =

 50: new SimpleDateFormat(“MM/dd/yy”);

 51: for (int i = 0 ; i < task.length ; i++)

 52: {

 53: %>

 54:

 55: <TR BGCOLOR=”#FFFFFF” ALIGN=right>

 56: <TD ALIGN=center><%= task[i].getTaskId() %></TD>

 57: <TD ALIGN=left><%= task[i].getTaskName() %></TD>

 58: <TD ALIGN=left>

 59:<%= task[i].getAssignedResource().getResourceName() %>

 60: </TD>

 61: <TD NOWRAP>

 62: <%= task[i].getEstimateInHours() %> hrs

 63: </TD>

 64: <TD NOWRAP>

 65: <%= format.format(task[i].getProjectedStartDate()) %>

 66: </TD>

 67: <TD NOWRAP>

 68: <%= format.format(task[i].getProjectedEndDate()) %>

 69: </TD>

 70: <TD>0%</TD>

 71: </TR>

 72:

 73: <%

 74: }

 75: %>

 76:

 77:</TABLE>

 78:</BODY>

 79:</HTML>

Source: /jsp/TaskList.jsp

A key to successful JSP development is using them for content display
only. JSPs with navigation and business logic embedded in them can be
complex and difficult to debug. Debugging complicated JSPs is a time-
intensive effort, and without the tools required for interactive debugging,
the developer is reduced to primitive tracing.

Presentation Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

204

User Input Validation

User input validation (e.g., ensuring the user entered all required fields) can
be performed on the client with Javascript or on the server. In a Struts world,
server-side user validation is delegated to ActionForm classes. Client-side
input validation is often faster, especially if the user has a slow Internet con-
nection. However, because support for Javascript support varies from browser
to browser, Javascript can be a maintenance nightmare. These maintenance
issues and the proliferation of high-speed Internet connections support vali-
dating user input on the server side.

ActionForm objects aren’t required for Struts unless you’re doing server-
side input validation. If you’ve nothing to validate for a page, don’t bother
creating a form for that page.

Struts offers two ways to manage input validation. The first is to use the
Struts Validator plug-in, which allows you to essentially program the vali-
dation rules in XML documents instead of Java. Although some developers
see this as being easier, I don’t. The set-up overhead and complexity make
this an unattractive option in my view. For more detail on this point, see the
Struts documentation.

Another alternative is to code the validation rules in Java within the form.
Validation rules are classes that extend org.apache.struts.action
.ActionForm and are coded in an override to method validate(). The
validate() method returns object ActionErrors, which contains a de-
scription of all errors found. Struts manages navigating users to the pages
they came from, and the JSP takes care of displaying validation errors, should
they be present. Listing 15.2 illustrates the validate() override in a form.
This option sounds straightforward enough, but there’s more.

Listing 15.2: Sample Form Containing Validation Rules

 1: public ActionErrors validate(ActionMapping mapping,

 2: HttpServletRequest request)

 3: {

 4: ActionErrors errors = null;

 5:

 6: if (_proj == null)

 7: {

 8: errors = new ActionErrors();

 9: errors.add(“proj”,

 10: new ActionError(“Null project not allowed.”));

 11: }

 12: else if (_proj.equals(“”))

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

205

 13: {

 14: errors = new ActionErrors();

 15: errors.add(“proj”,

 16: new ActionError(“Blank project not allowed.”));

 17: }

 18:

 19: if (errors != null)

 20: {

 21: request.getSession().setAttribute(“errors”,

 22: errors);

 23: }

 24: return errors;

 25: }

It turns out that ActionError objects contain a key that is used to look
up message text in a properties file, which is managed as a ResourceBundle.
Using ResourceBundle objects, you can support user messages in multiple
languages. This powerful feature is a necessary complexity for multinational
applications. However, managing and coordinating these keys between your
properties files and your code is annoying and painful, so if your business
applications aren’t written to support multiple languages, don’t add the un-
necessary complexity.

Struts provides a tag library to assist JSPs in displaying validation errors
should they occur. These libraries can be used with either of the two valida-
tion methods previously described.

Notice that listing 15.2 doesn’t define the ActionError messages with
property keys but inserts the message text instead. It also stores the error
messages on the session, which isn’t typically required when overriding vali-
date(). This is an inelegant shortcut I often use with Struts.

In JSPs that require input validation, you can insert a one-line include
statement like the following:

<jsp:include page="/jsp/ShowErrors.jsp" flush="true"/>

With the JSP include statement, you can retrieve error messages from
the session and format them for the user. Because it doesn’t use the
ActionError objects as they we’re intended to be used, this shortcut is
crude. However, it does have the effect of eliminating the overhead of man-
aging any property files, thus saving you development time. Listing 15.3
illustrates ShowErrors.jsp. As applications vary widely in look and feel,
you’ll want to customize the error display to fit the look and feel of each
application.

Presentation Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

206

Listing 15.3: Using ShowErrors.jsp to Validate User Input

 1:<%@ page import=”org.apache.struts.action.ActionErrors,

 2: org.apache.struts.action.ActionError”

 3:%>

 4:

 5:<jsp:useBean id=”errors” scope=”session”

 6: class=”org.apache.struts.action.ActionErrors” />

 7:

 8:<%

 9: if (errors != null)

 10: {

 11: java.util.Iterator errorIt = errors.get();

 12: ActionError error = null;

 13: while (errorIt.hasNext())

 14: {

 15: error = (ActionError) errorIt.next();

 16:%>

 17:

 18: <%= error.getKey() %>

 19:

 20:

 21:<%

 22: errors.clear();

 23: session.removeAttribute(“errors”);

 24: }

 25: }

 26:%>

Source: /jsp/ShowErrors.jsp

Data Processing

After validating user input, Struts delegates all processing to action classes
that extend org.apache.struts.action.Action. It’s common to over-
ride the method execute(), which usually does all the processing. Instead,
an action class uses parameters on the request (or information already on
the HttpSession) as arguments for a call to something in the deployment
layer. The deployment layer component returns information that the action
class puts on the session.

In ProjectTrak, one of the use cases requires a list of task assignments
associated with a project. The action class that ProjectTrak uses to produce
the task list is ProduceTaskListAction. It instantiates a ProjectClient,
which was discussed in the last chapter, and invokes the getProject()
method that retrieves a ProjectVO containing all the information the JSP
needs for display. The logic within the action class is relatively simple. Little

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

207

conditional logic is required. Listing 15.4 is an extract of code from
ProduceTaskListAction.

Listing 15.4: Using ProduceTaskListAction to Process Data

 1:package com.dvt.app.project.action;

 2:

 3:import com.dvt.app.project.client.ProjectClient;

 4:import com.dvt.app.project.vo.ProjectVO;

 5:

 6:import javax.servlet.http.HttpServletRequest;

 7:import javax.servlet.http.HttpServletResponse;

 8:import org.apache.struts.action.*;

 9:import java.text.SimpleDateFormat;

 10:

 11:public class ProduceTaskListAction extends Action

 12:{

 13:

 14: public ActionForward execute(ActionMapping mapping,

 15: ActionForm form,

 16: HttpServletRequest request,

 17: HttpServletResponse response)

 18: throws Exception

 19: {

 20: ActionForward forward = null;

 21: SimpleDateFormat format =

 22: new SimpleDateFormat(“MM/dd/yy”);

 23: ProjectClient projectClient = new ProjectClient();

 24: ProjectVO projectDTO =

 25: projectClient.getProject(

 26: request.getParameter(“proj”));

 27:

 28: request.getSession().setAttribute(“projectName”,

 29: projectDTO.getProjectName());

 30: request.getSession().setAttribute(“startDate”,

 31: format.format(projectDTO.getProjectStart()));

 32: request.getSession().setAttribute(“endDate”,

 33: format.format(projectDTO.getProjectEnd()));

 34: request.getSession().setAttribute(“taskList”,

 35: projectDTO.getProjectTasks());

 36:

 37: forward = mapping.findForward(“success”);

 38:

 39: return forward;

 40: }

 41:}

Presentation Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

208

Navigation

With Struts, navigation is configured in the struts-config.xml file. You des-
ignate a URL mask (e.g., /trak/TaskEdit*) in the file to uniquely identify all
task edit requests. Struts provides a controller servlet that understands, via
the struts-config.xml file, that any request with this URL requires executing
an action class and forwarding the request to a display URL.

In addition to the URL, the struts-config.xml file lists the action class
and the URL of the display JSP (or static HTML page) to use once the action
class is successfully executed. For example, struts-config.xml would desig-
nate TaskDisplayAction to be executed for each task edit request. The
file would also specify that the request be forwarded to the display JSP to
produce the HTML that will be sent to the browser. Listing 15.5 is an ex-
tract from a struts-config.xml file.

Listing 15.5: Using struts-config.xml for Navigation

<struts-config>

 <form-beans>

 <form-bean name=”projectForm”

type=”com.dvt.app.project.form.ProjectListForm”

 />

 </form-beans>

 <action-mappings>

 <action path=”/tasklist”

 type=”com.dvt.app.project.action.ProduceTaskListAction”

 name=”projectForm”

 scope=”request”

 validate=”true”

 input=”/jsp/Project.jsp”>

 <forward name=”success”

 path=”/jsp/TaskList.jsp”/>

 <forward name=”failure”

 path=”/jsp/ServerErrors.jsp”/>

 </action>

 </action-mappings>

</struts-config>

The struts-config.xml can also specify an error page if the action class
doesn’t process successfully.

Security

For most applications, the first step in security is establishing whether or
not a user is supposed to have access. The question is usually decided by the
Web server before the application is invoked. For most J2EE applications, if

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

209

a user successfully enters a user ID and password, the Web server forwards
the user’s HTTP(S) request to the application.

In many cases, an application is written to assume that if it was invoked,
the user is entitled to the content. For example, if you subscribe to the on-
line version of BusinessWeek, once you supply your user ID and password,
you’re entitled to the content. The BusinessWeek application doesn’t need
to know your specific identity.

Some applications have more sophisticated requirements, altering con-
tent based on the identity of the user. An example of this is an online Wall
Street Journal subscription. Based on who you are (and the preferences you
establish), any news regarding a specific list of companies you specify ap-
pears as “Company News” content.

Other applications alter content depending on user-specific groups. With
J2EE applications, groups are more often referred to as roles. An example of
this type of data access appears on the open source software development
Web site SourceForge.net. SourceForge designates users as belonging to
“projects.” Within each project, users can be either an “admin” or a “devel-
oper.” The options a user sees on SourceForge pages differ depending on
the user’s role affiliation.

If your application alters its content based on a user’s ID or role, the
presentation layer can obtain this information from the HttpServlet-
Request (from javax.servlet.http). The action classes and JSPs have
access to the request. Given a variable request that is of type
HttpServletRequest, the following line of code can get a user ID:

String userId = request.getUserPrincipal().getName();

I’m not aware of a standard way for a J2EE application to get a list of
roles a user has access to, but it can easily verify a user’s membership in a
specific role. The following code validates that a user is in the “admin” role:

if (request.isUserInRole(“admin”))

{

 // your application code here

}

Presentation Layer Coding Guidelines

Keep every Action, ActionForm, and JSP thin. They are difficult to debug
if your company didn’t buy tools that allow servlet debugging. You want as
little conditional logic as possible. A layered architecture leads you to put all
the complexity in the layers that are locally debuggable, like the business

Presentation Layer Coding Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

210

and data access layers. If you use Javascript code, keep it thin for the same
reasons.

Action classes and JSPs should not use instance-level variables. Other-
wise, you have a good chance of getting incorrect behavior from your appli-
cation because every instantiation of an action or JSP is used to service mul-
tiple users. In contrast, an ActionForm can have instance-level variables.

Common Mistakes

Putting business logic in JSPs or servlets. Business logic tends to make
JSPs and servlets more complex and difficult to maintain unless your orga-
nization buys development tools that allow interactive debugging. I’ve seen
Web applications with all server-side code embedded in servlets.

Declaring instance-level variables on servlets. Don’t consider servlets thread
safe by default (even if you implement SingleThreadModel). I’ve even seen
a development team “synchronize” every method in the servlet in an at-
tempt to compensate for the problems caused by declaring instance-level
variables.

Using no formal navigation control. Without a formal control structure,
presentation layer code is often unstructured and unorganized. It’s usually
harder to maintain. Besides Struts, another good presentation layer control
package is Maverick (http://mav.sourceforge.net/).

Further Reading

Spielman, Sue. 2003. The Struts Framework: Practical Guide for Java Pro-
grammers. Boston: Morgan Kaufmann.

Chapter 15: Building the Presentation Layer

http://www.amazon.com/exec/obidos/ASIN/0972954899

211

16

Building Architectural Components
Architectural components are classes and static utilities generic enough to
be used for many applications. After you’ve identified a need for an archi-
tectural component, your first step should usually be looking in the market-
place for a component that meets that need. If you have the necessary bud-
get, commercial alternatives are often better than building your own
components. But I recommend starting your marketplace search by check-
ing out open source alternatives, which can be just as good as commercial
software and a lot easier on the budget. At the end of the chapter, I highlight
some of my favorite open source Web sites.

One issue with component software, both open source and commercial,
is the extreme variance in quality. Some components are easy to understand
and use, others are inscrutable and impractical. In this chapter, I list the
capabilities that developers generally associate with quality components. You
can use this list to evaluate open source or commercial component software.
I also present a series of tips and techniques for creating your own architec-
tural components with those capabilities considered the marks of quality.

The role of architectural components is illustrated in figure 16.1.

http://www.amazon.com/exec/obidos/ASIN/0972954899

212

Component Quality

High-quality architectural components have the following capabilities:

▲ Shorten development time and effort

▲ Shorten expected maintenance time and effort

▲ Work in many applications because they are generic

▲ Work as advertised

These traits are desirable for any component software, whether it is com-
mercial, open source, or authored by you.

A common guideline people use when judging PC software is: if they
have to consult a manual to do basic tasks, they judge the software “too hard
to use.” You can use much the same standard when assessing component
software. I consider component software difficult to use if:

▲ You have to read more than two pages of material to install and
configure the component.

Figure 16.1: Using Architectural Components Within a Layered

Architecture

Data Access Object (DAO) Layer

Database DAOs
XML Access Objects

(XAOs)
File DAOs

Business Logic Layer

Deployment Layer

Enterprise Beans Web Services Java Application

Presentation Layer

Servlets/JSPs Applets

V
al

ue
 O

bj
ec

t L
ay

er

A
rc

h
it

ec
tu

ra
l C

o
m

p
o

n
en

t
L

ay
er

Chapter 16: Building Architectural Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

213

▲ It takes more than an hour from installing to using a component for
a basic task.

Ease of use is the feature most commonly lacking in both commercial
and open source component software.

A common mistake people use when designing architectural components
is choosing a scope that is too large. A large scope usually results in a com-
plex component that will take a long time to become available and have a
long learning curve. I use the 80/20 rule when selecting features to imple-
ment in an architectural component. Component designers shouldn’t get
bogged down with features people will rarely use.

Making Components Easy to Use

If you’re evaluating component software, ease of use should be one of the
deciding criteria. If you’re creating an architectural component, there are a
number of things you can do (that many component developers don’t do) to
make your component easy to use.

Limit the instructions for basic tasks to a one-page cheat sheet. You can
have a more detailed document for sophisticated, unusual tasks. The longer
the material developers need to read to get going, the higher the percentage
of developers who will give up in the process and look for something else.

Minimize the number of statements necessary to perform basic tasks. One
of the chief benefits to using a component is eliminating code in the appli-
cation. A one-line call is ideal because it eliminates typing and reduces the
number of classes and methods you need to learn.

Consider the JAXB API as an example. A handful of lines must be issued
to parse an XML document, as illustrated in listing 16.1.

Listing 16.1: Sample JAXB Parse

………… // some code omitted.

 InputStream xmlDocumentInputStream = new FileInputStream

 (“PurchaseOrder.xml”);

 JAXBContext jc = JAXBContext.newInstance

 (“book.sample.dao.xml.po”);

 Unmarshaller u = jc.createUnmarshaller();

 CustomerOrderList order =

 (CustomerOrderList) u.unmarshal(xmlDocumentInputStream);

This series of calls could (and should) have been reduced to a one-line

Making Components Easy to Use

http://www.amazon.com/exec/obidos/ASIN/0972954899

214

call. Using CementJ, listing 16.2 performs the same parse with relatively
simple code.

Listing 16.2: Sample JAXB Parse Using CementJ

………… // some code omitted.

CustomerOrderList order =

 (CustomerOrderList) JAXBUtility.getJaxbXmlObject

 (“book.sample.dao.xml.po”,

 new File(“PurchaseOrder.xml”));

The authors of the JAXP API could have provided a one-line call to trans-
form an XML document. Instead, they force people to learn about
JAXBContext and Unmarshaller, classes that contain features most de-
velopers rarely use.

One way to achieve a one-line call is to rely on a static method. This
eliminates having to instantiate anything. The choice to make that call
static is more than just a tactical choice. If you instantiated an object with
the getJaxbXmlObject() method on it, you would not benefit from the
fact that it was an object. For instance, you probably would not put the
object in some type of collection or pass it between other objects as a
method argument.

Minimize the number of arguments necessary to perform basic tasks. You
can accomplish this by providing multiple overloads. Some of those overloads
have small numbers of arguments with sensible defaults for the rest. For ex-
ample, consider ThreadWorks, an API that makes multithreaded program-
ming in Java easier and safer. Software and documentation for ThreadWorks
are available at http://sourceforge.net/ projects/threadworks/.

The TaskManager from ThreadWorks hides the complexity of thread-
ing code, running tasks for you, on your behalf. A simple example is the
following code, which asynchronously runs one or more tasks:

_taskManager.run(task); // Run One Task

_taskManager.run(taskCollection); // Run several Tasks

_taskManager.run(taskArray); // Run several Tasks

Optionally, you can run one or more tasks and have a Completion-
EventListener execute when all are done, as follows:

_taskManager.run(task, completionEventListener);

_taskManager.run(taskCollection, completionEventListener);

_taskManager.run(taskArray, completionEventListener);

Chapter 16: Building Architectural Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

215

With TaskManager, it should be easy to perform a basic task, yet ad-
vanced capabilities can be made available.

Separate the classes meant for public consumption from those needed

internally by the API. The more classes a component has, the longer it takes
to find the class with the functionality you want. For example Struts’
org.apache.struts.action package has three or four classes that are
commonly used, and the rest are internal. Keeping all these classes together
just adds to the time required to learn the API.

One way to solve this problem is to move classes not meant for public
consumption to a separate package that’s documented as “for internal use
only.” For example, ThreadWorks separates all internal classes into its
com.dvt.support package. Users don’t have to wade through low-level
classes they don’t need yet to find the functionality they want.

Provide samples that are easy to copy with an index. Make it easy to find a
sample that is close to what the user wants. Most of us learn by example and
don’t type very quickly. Having something to copy from saves users time. A
good place for short samples is within the JavaDoc.

Limit dependencies on other APIs. I once was forced to implement a poorly
written scheduling component for a client (I wasn’t given a choice). This
component used two internal components that were hard to use and com-
plex to configure. I’ve since learned how to avoid inflicting the same kind of
pain on users of my open source components: use interfaces to decouple.

For example, CementJ depends on logging services in several places.
Users wanting to try out the API should not have to configure logging ser-
vices or use a specific logging package. With a logging interface that
decouples, CementJ implements a console logger by default. Users can eas-
ily use Log4J or the logging package that comes with version 1.4 and above
of the JDK. Alternatively, CementJ can be configured to use any logger.

Apache has a similar package for its open source Commons components.
Called Logging, the package is a bit more complex and requires a bit more
of a learning curve than CementJ. It can be downloaded from http://
jakarta.apache.org/commons/logging.html.

Check all arguments on all methods meant for public consumption and

produce clear error messages for invalid inputs. Rather than degenerating
into derivative exceptions (e.g., null pointer exceptions), put information on
how to correct problems in the exceptions. For example, “Invalid format

Making Components Easy to Use

http://www.amazon.com/exec/obidos/ASIN/0972954899

216

type argument” isn’t as useful as “Invalid format type ‘foo.’ Valid types are
the following constants on this class: PDF, HTML, XLS, and DOC.” Sim-
ply displaying the erroneous value passed to a method might shorten the
time it takes to debug and correct the issue.

Avoid throwing “checked” exceptions. Throwing “unchecked” exceptions,
which extend RuntimeException, is preferred because it doesn’t force the
user into as much try/catch logic. Not needing as much code to use a com-
ponent definitely makes it easier to use. For a more detailed discussion of
this rather controversial concept, see chapter 17.

Making Components Easy to Configure and Control

Minimize the number of properties a user must configure. Some compo-
nents use a properties file, which is a file of key and value pairs, to manage
configuration settings. These files are often used in conjunction with the
java.util.Properties object. Listing 16.3 is a short extract from a past
release of the WebLogic™ application server software. It illustrates what a
properties file looks like.

Listing 16.3: Sample Properties File

###

Server configuration

###

If the DTD location is changed from the default this property

needs to changed to point to the new location.

commerce.xml.entity.basePath=H:\bea\weblogic700\portal/lib/dtd

##

Logger class

##

commerce.log.class=com.beasys.commerce.util.NonCatalogLog

commerce.log.display.deprecated=true

commerce.log.display.debug=false

The more properties users need in order to choose values for running
your component, the longer and harder your component is to configure.
You can alleviate this problem by choosing sensible defaults for as many
configuration properties as possible. In addition, clear error messages for
incorrect configurations can make your components easy to use. The method
BEA used for WebLogic™ was to write an installation program that config-
ured required properties on install.

Chapter 16: Building Architectural Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

217

Minimize the required complexity of any needed XML documents. The
more complex the document structure, the harder the component is to con-
figure and control. Jakarta’s Ant project is an excellent example of using
XML files effectively. Ant is an XML scripting utility commonly used for
application builds. Its scripting language is XML based, and its structure is
simple and intuitive. Although Ant has an extensive array of options, it also
has sensible defaults and good documentation. This open source project is
available at http://ant.apache.org/.

Produce clear error messages on invalid configurations. Components must
have clear error messages. Nothing is more aggravating than trying to fig-
ure out why code you didn’t write is degenerating into a NullPointer-
Exception. Clear error messages can make the difference in a developer’s
perception of your component.

Provide numerous configuration file examples that are easy to copy. This
is especially important if the component is capable of complex configura-
tions. I suggest providing basic examples as well as complex ones. Although
it isn’t a Java-based component, the best example of this concept I can think
of is the command directive file used for the SqlLoader utility that comes
with Oracle’s database software. In the book Oracle Database Utilities 10g
Release, chapter 12 gives examples of several database loads. It’s easy to find
a load directive file to start from that’s relatively close to the one you need.
This book is available online at http://technet.oracle.com/.

Limit installation and configuration instructions to a one-page cheat sheet.

If the instructions are too long and complex, it reduces the benefit of using
the component in the first place. Having an expanded document for com-
plete functionality is fine, but users doing basic tasks shouldn’t have to read
more than a page or two.

Open Source Alternatives

Open source alternatives have blossomed over the past couple of years, so
much so that searching for open source alternatives for a given need has
become a complicated task. One good place to start is the Open Source
Developer’s Kit at http://www.osdk.com/. This site lists and categorizes open
source components to simplify your task of locating one that fits your need.

Many organizations are wary of using open source products. The per-
ception is that these products are essentially unsupported. And while the
price of open source technologies will fit into any corporate budget, many

Open Source Alternatives

http://www.amazon.com/exec/obidos/ASIN/0972954899

218

organizations like the security of having a technical support number to call
when problems come up. There are really two issues here. The first is the
practical issue of being able to solve technical problems with an open source
product to get your applications working, and keep them working. The sec-
ond is having someone else to blame if your product selection decision turns
out to be a bad one. Usually, companies with anti-open source policies are
more worried about blame assignment.

Resolving Technical Issues

The following are some steps I’ve gone through to solve problems with
open source component software. Step 1 is the simplest solution. If that
doesn’t work, you’ll need to perform step 2 before trying any of the remain-
ing steps, which are listed in order of simplicity.

Step 1: Search news groups. True, many open source products don’t have
formal support organizations. But because they are free, open source prod-
ucts tend to have a large user base. Consequently, it’s highly likely that some-
one else has experienced the same problem you’re dealing with and con-
sulted a news group about it. Your support mechanism is the Google search
engine (http://www.google.com/), which is nice enough to make all the news
groups searchable. In fact, I use Google to solve problems with commercial
components before calling the support organization because it’s usually faster.
More often than not, I find the answer in a response to someone else’s post.

Step 2: Replicate the problem. This helps you get through the remaining
steps quickly. Preferably, you would want to be able to replicate the prob-
lem in your development environment. Your test case illustrating the prob-
lem should be locally debuggable.

Step 3: Upgrade to the latest version. If a newer version of the product is
available, a good time to try it out is when you’re trying to resolve a techni-
cal issue. Maybe the problem is the result of a bug that someone caught and
fixed. Often, the work involved in upgrading is just including a more recent
jar(s) in your classpath.

Step 4: Evaluate competing products. I look for competing open source
products that do the same thing. If I can easily switch products, I’ll try that.
I once had an issue with an open source Java FTP client API that had a
memory leak. When a news group search didn’t reveal an answer to my
problem, I switched to another open source FTP client API.

Chapter 16: Building Architectural Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

219

Step 5: Debug your test scenario. Although this isn’t a pleasant task, it in-
variably enables you to determine the root issue. Once you know what the
problem is, you can start looking for a way to work around it.

Step 6: Modify component code to fix the problem. This should be treated
as an option of last resort. If you use an altered version of an open source
product, you’ll be on your own for problem investigations after that. You’ll
never know if the problem you’re experiencing was a result of a product bug
or the result of your change. If you have to modify the code, take the trouble
to report the bug to the developers that produced the component. Most
developers of open source products would release a new version with a bug
fix. As soon as you can get to an unaltered version of the component, you
should do it.

Mitigating Political Risk

The second issue surrounding the use of open source component software
is the corporate need to have someone to blame if the choice of open source
product doesn’t work out as well as intended. I can’t think of a way to com-
pletely solve the issue, but I can think of many ways to mitigate the risk.

Suggest a commercial software component along with open source alter-

natives and keep any documentation of the decision. This tactic effectively
makes the component decision a group effort. If an open source decision is
ever questioned, you can frame the issue as a group decision and point to
budgetary advantages.

Track which open source products you use and keep source as well as

binary distributions. You won’t want to find out at the time you’re having
trouble that the source for the version you’re using is no longer available. As
a last resort, you can try to fix the problem yourself.

Identify competitors to the open source product. This shortens the time it
takes to switch components should you need to do so.

Component Usage Guidelines

Whether a third-party component is open source or not, one of your goals
should be minimizing business risk. A large part of that is keeping switching
costs small so that if a mistake is made, it will be easier to correct.

Minimize the classes directly using third-party components. I typically ac-
complish this by using a proxy pattern. For example, consider a Java FTP

Component Usage Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

220

client. I mentioned previously that I switched out this component for one
with lower memory requirements. I was able to switch components easily
because most of my application did not use the FTP component directly.
One class in my application called FtpClient performed all FTP requests.

Since FtpClient was the only class that used the open source compo-
nent, I could switch products easily with no impact to the rest of the appli-
cation. Listing 16.4 shows the source for this client.

Listing 16.4: Sample Component Delegate

 1:import com.enterprisedt.net.ftp.*;

 2:

 3:public class FtpClient

 4:{

 5: public FtpClient (String hostName,

 6: String userName,

 7: String password)

 8: throws ApplicationException

 9: {

 10: // arg check omitted.

 11: try {

 12: _ftpClient = new FTPClient(hostName);

 13: _ftpClient.login(userName, password);

 14: _ftpClient.setTimeout(DEFAULT_TIMEOUT_IN_MILLIS);

 15: _ftpClient.setConnectMode(FTPConnectMode.ACTIVE);

 16: }

 17: catch (Throwable e)

 18: {

 19: throw new ApplicationException(

 20: “Error creating FTP client. “, e);

 21: }

 22: }

 23:

 24: public void put(String localFileName,

 25: String hostFileName)

 26: throws ApplicationException

 27: {

 28: // arg check omitted

 29: try{_ftpClient.put(localFileName, hostFileName);}

 30: catch (Throwable e)

 31: {

 32: throw new ApplicationException(

 33: “Error with FTP put: local=” + localFileName +

 34: “, remote=” + hostFileName, e);

 35: }

 36: }

 37:

Chapter 16: Building Architectural Components

http://www.amazon.com/exec/obidos/ASIN/0972954899

221

 38: public void get(String hostFileName)

 39: throws ApplicationException

 40: {

 41: // arg check omitted

 42: try{_ftpClient.get(hostFileName);}

 43: catch (Throwable e)

 44: {

 45: throw new ApplicationException(

 46: “Error with FTP get: file=” + hostFileName, e);

 47: }

 48:

 49: private FTPClient _ftpClient = null;

 50: }

You can use this technique with virtually any software component. Re-
member that you also must front any component-based exception so that
your application relies on internal classes, not external ones.

Component Usage Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

223

17

Application Architecture Strategies
To ensure that your applications have internal consistency, you need to es-
tablish strategies for logging, exception handling, threading, and configura-
tion management from the outset. Most developers have preferences for
each area of application building. If your team has many developers and you
let them use their preferences, you will create an application that is inter-
nally inconsistent and harder to maintain. This chapter offers strategies for
each aspect of application architecture. In this section, I’ve articulated ex-
amples of strategies I’ve used in the past. Once you establish the strategy,
don’t be afraid to refine it with additional detail to suit the needs and com-
fort level of your developers.

Logging Strategies

Application components should not depend on a specific logger. General-
use components should be able to use any logging package an application
adopts. This can be done by having one class in the application acting as a
log manager, delegating the log write to Log4J or one of the other logging
packages. Listing 17.1 is an example of an application logger implementation.

http://www.amazon.com/exec/obidos/ASIN/0972954899

224

Listing 17.1: Sample Log Manager Using Log4J

 1:import org.apache.log4j.ConsoleAppender;

 2:import org.apache.log4j.FileAppender;

 3:import org.apache.log4j.PatternLayout;

 4:

 5:public class Logger

 6:{

 7: public static void logInfo(String message)

 8: {

 9: _internalLogger.info(message);

 10: }

 11:

 12:// Other “log” methods omitted.

 13: private static org.apache.log4j.Logger _internalLogger

 14: = null;

 15: static

 16: {

 17: _internalLogger = org.apache.log4j.Logger.getLogger

 18:(Logger.class);

 19: _internalLogger.addAppender (

 20:new FileAppender(new PatternLayout(),

 21:Environment.getLogFileName()));

 22: }

The Apache open source component software, Commons, has a package
called Logging designed to fill this need. Unfortunately, it is rather heavy
(despite being billed as intentionally “lightweight”) and not easy to use. It
requires an XML parser and has a more complicated configuration scheme.
I consider Logging more hassle than it’s worth.

Limit coding for logging methods to one line. Logging is done so frequently
that you’ll save a lot of time by reducing the code it takes to log. Notice that
listing 17.1 makes all logging methods static. You don’t have to instantiate
anything to log a message. Some logging implementations have you execut-
ing a static method on a factory of some type to get a logger. Don’t subject
your developers to this extra code.

Decouple exception handling and logging. Usually, the activity that follows
catching an exception is logging the event with enough information to rep-
licate the bug. Consequently, many developers incorporate logging logic
within the exception they generate on construction. This practice is conve-
nient programmatically because the logging takes place automatically when
the exception is instantiated, and it ensures that an exception is logged and
not swallowed.

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

225

However, the strategy creates some problems. It leads to multiple log
entries for the same error and log entries without enough context to solve
the error (often informational context from the caller is needed). Further,
reusing objects in another application that may have a different logging strat-
egy is difficult under this strategy.

Another problem with incorporating logging logic within the exception
is that the same exception may be treated as a severe error in one application
and as a nonevent in another. For example, “Customer not found on data-
base” might be a grave error worthy of logging for a customer maintenance
application but not for a reporting application. It would be logical for the
customer look-up to be the same code.

I prefer to log at the deployment level. For example, my enterprise beans
log exceptions directly or indirectly generated by classes used by the enter-
prise beans. Similarly, my client applications and CORBA services log ex-
ceptions generated in those deployments. By logging at the deployment level,
I can easily have a different logging strategy for each deployment. I can log
to a file in a client application deployment and log through JMS for my
enterprise bean deployment. This flexibility also allows me to treat excep-
tions differently in different contexts.

Sample Strategy

▲ Use myapp.util.Logger for all logging. Do not use
System.out.println().

▲ Log errors and exceptions in the deployment and presentation
layers as well as in the run() method of any asynchronously
running code.

▲ Warnings (i.e., errors not severe enough to warrant the throwing of
an exception but would be useful to a developer fixing bugs) can be
logged anywhere from any layer.

▲ When using logging to output debug information, use logDebug()
so the output can optionally be suppressed.

▲ Do not use the general logging facility as a transaction log.

Exception-Handling Strategies

Validate all arguments explicitly in all public methods in all public classes.

Validating all arguments for publicly consumed methods prevents deriva-
tive exceptions. Derivative exceptions are those reported well after the error

Exception-Handling Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

226

occurred. It’s an all-too-common error to pass a null argument to a method
accidentally, only to find that a NullPointerException was generated when
the class that was called (directly or indirectly) tries to use the argument and
isn’t expecting the null value.

While it’s possible to get the class, method, and line number where the
NullPointerException occurred, the actual error occurred well before
at the point where the null value originated. This often is in an entirely
separate method and class from what’s reported in the stack trace and can
take significant time to track down, especially if the code is complex and
multiple variables could have generated the exception. Typically, derivative
exceptions like this take more time and effort to fix because the error mes-
sage and information don’t make the problem clear. Had the method gener-
ated an exception message such as “Null name argument not allowed,” the
error would have been easier to find and fix.

Argument validation enables you to report an error with a clearer mes-
sage than you would otherwise get. Null arguments are commonly vali-
dated. If an argument has to conform to a specific value set (for example, a
docType argument that allows only pdf, xls, and txt values), the value should
be validated as well. I typically use java.lang.IllegalArgumentException
for invalid arguments, as illustrated in listing 17.2.

Listing 17.2: Example of Argument Checking

 1:public static Connection getConnection(

 2: String connectionPoolName)

 3: throws NamingException, SQLException

 4: {

 5: if (connectionPoolName == null)

 6: throw new IllegalArgumentException

 7: (“Null connectionPoolName not allowed.”);

 8: if (connectionPoolName.equals(“”))

 9: throw new IllegalArgumentException

 10: (“Blank connectionPoolName not allowed.”);

 11: Context ctx = new InitialContext();

 12: DataSource source = (DataSource)

 13: PortableRemoteObject.narrow

 14: (ctx.lookup(connectionPoolName),

 15: DataSource.class);

 16: return source.getConnection();

 17: }

Include general catches for public methods in the deployment layer. If you
adopt the suggestion of throwing mostly RuntimeException exceptions,

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

227

your try/catch logic will mainly be in application entry points, such as
enterprise beans, servlets, RMI services, and so on. Unless you have a reason
to catch errors that are more specific, I recommend a general catch of
java.lang.Throwable.

This opinion is a bit controversial. Many texts promote the idea that
application code should only catch exceptions it is prepared to “handle.” I
agree with this premise. Most texts go on to posit that an application cannot
possibly have a meaningful response to a JVM error such as OutOfMemory-
Exception or ClassNotFoundError. If you agree with this statement, logic
dictates that you should not catch Throwable.

However, an application can make a meaningful response to a JVM er-
ror. That response typically is to log the error with enough context that a
developer can fix the problem. If the application is a Web site or any type of
multi-user application, you might also want to notify an operator or appli-
cation administrator. If you don’t catch JVM errors and the like, you leave
the reporting of them to chance. While many containers will catch and log
Throwable, my experience is that those logs are too often ignored.

Many of the applications I support are 24x7x365 with significant busi-
ness ramifications if they’re not functioning. I can’t afford to leave the re-
porting (or notification) for any type of error, JVM or otherwise, to chance.
I suspect that many of you can’t either.

A common solution is to catch java.lang.Exception instead. How-
ever, catching java.lang.Exception will miss many possible JVM errors
(for example, OutOfMemoryError). The cost of missing an exception is that
a derivative error will probably occur. Catching java.lang.Throwable is
a better solution because it truly will catch everything, as shown in listing 17.3.

Listing 17.3: Example of Catching Throwable

 1:try

 2:{

 3: … // App code here

 4:}

 5:catch (Throwable t)

 6:{

 7: _message = t.getClass().getName()

 8: + “:” + t.getMessage();

 9: t.printStackTrace(_log);

 10:

 11: _log.println(“———————”);

 12:}

Exception-Handling Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

228

Don’t catch more specific exceptions unless your error processing is
different. In cases where multiple types of checked exceptions can be thrown,
I commonly see catches for each type of exception, and the code in the catch
block commonly replicated for each exception type. For example, if listing
17.4 contained one catch for Throwable, it would have comprised signifi-
cantly less code.

One word of caution: if your application calls the stop() method on a
Thread, catching Throwable will also catch java.lang.ThreadDeath.
In this case, ThreadDeath will have to be rethrown so that the Thread
actually dies. The stop() method was deprecated early on because it’s in-
herently unstable. Use of the stop() method is not recommended and ac-
tively discouraged. If you don’t stop threads with the stop() method, there’s
no reason to worry about accidentally catching ThreadDeath.

Listing 17.4: Example of Poor Exception-Catching Code

 1:public JMUNonStaticCodeTable

 2: getAcctConslCodeTable (String aUserId,

 3: String aSponsorId)

 4: throws JMUException, Exception

 5: {

 6: try

 7: {

 8: ………… // App code here

 9: }

 10: catch (JMUException ne)

 11: {

 12: throw ne;

 13: }

 14: catch (Exception e)

 15: {

 16: throw new JMUException(

 17: getJMUTransactionInfo(),

 18: CLASSNAME +

 19: “.getAcctConslCodeTable” +

 20: “(String aUserId, “ +

 21: “String aSponsorId) “ +

 22: “Exception “ +

 23: e.getMessage() +

 24: “ obtaining accounts/consl for “+

 25: “userId= “ + aUserId + “ and “ +

 26: “sponsorId= “ + aSponsorId,

 27: e);

 28:

 29: }

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

229

 30: catch (Throwable bigProblem)

 31: {

 32: throw new JMUException(

 33: getJMUTransactionInfo(),

 34: CLASSNAME +

 35: “.getAcctConslCodeTable” +

 36: “(String aUserId, “ +

 37: “String aSponsorId) “ +

 38: “THROWABLE EXCEPTION OCCURRED “+

 39: “obtaining accounts/consl for “+

 40: “userId= “ + aUserId + “ and “+

 41: “sponsorId= “ + aSponsorId,

 42: bigProblem);

 43: }

 44: finally

 45: {

 46: return _acctConslCodeTable;

 47: }

 48: }

Listing 17.4 illustrates good as well as bad practices. Notice that the
programmer did make a deliberate effort to document the context associ-
ated with the exception to help a developer debug and fix a problem later.
The effort deserves some applause.

Unfortunately, the programmer also put a return statement in the finally
block on line 46. This will have the unfortunate effect of swallowing the
exception. While the exception contains lots of good information, it will
never be seen.

The programmer also had the foresight to catch Throwable. I view this
as a good point, but some will disagree with me. However, the programmer
did miss an opportunity to streamline code. The programmer has much the
same processing for the Exception catch as the Throwable catch. The
programmer could have streamlined the code by simply eliminating the Ex-
ception catch. Listing 17.5 is an alternative version of listing 17.4 that
corrects these problems.

Listing 17.5: Improved Exception-Handling Code (Listing 17.4

Rewritten)

 1:public JMUNonStaticCodeTable

 2: getAcctConslCodeTable (String aUserId,

 3: String aSponsorId)

 4: throws JMUException

 5: {

 6: try

Exception-Handling Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

230

 7: {

 8: …………… // App code here

 9: }

 10: catch (JMUException ne)

 11: {

 12: throw ne;

 13: }

 14: catch (Throwable bigProblem)

 15: {

 16: throw new JMUException(

 17: getJMUTransactionInfo(),

 18: “getAcctConslCodeTable” +

 19: “(String aUserId, “ +

 20: “String aSponsorId) “ +

 21: “obtaining accounts/consl for “+

 22: “userId= “ + aUserId + “ and “+

 23: “sponsorId= “ + aSponsorId,

 24: bigProblem);

 25: }

 26:

 27: return _acctConslCodeTable;

 28:}

Make exception messages meaningful. When throwing exceptions, pro-
viding null or overly generic messages that state the obvious (for example,
“Error occurred”) aren’t helpful to development staff or end users. Addi-
tionally, including the class name in a message is equally meaningless be-
cause it’s already present in the stack trace. The method name needs to be
included only if the method is overloaded. The specific method overload
generating the error isn’t available explicitly from the stack trace.

Including information about argument values passed can help a devel-
oper reproduce the error. However, doing so can be tedious and time con-
suming if the argument is an object with multiple fields and can also lead to
copied code if an object is common and used as an argument to many meth-
ods. To make exception handling easier, I make value objects capable of
creating textual descriptions of themselves. One way to do this is to imple-
ment Describable from CementJ. Listing 17.6a illustrates error process-
ing without the benefit of a Describable implementation.

Listing 17.6a: Exception Processing Without a Describable

Implementation

 1:public void processOrderWithoutDescribe(

 2: PurchaseOrderDTO order)

 3: {

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

231

 4: if (order == null)

 5: throw new IllegalArgumentException

 6:(“Null order not allowed.”);

 7: try

 8: {

 9: // App code here

 10: }

 11: catch (Throwable t)

 12: {

 13: StringBuffer errorMessage = new StringBuffer(256);

 14: errorMessage.append(“Error processing order: “);

 15:

 16: errorMessage.append(“custId=”);

 17: if (order.getCustomerId() != null)

 18:errorMessage.append(order.getCustomerId());

 19: else errorMessage.append(“null”);

 20:

 21: errorMessage.append(“, shipDt=”);

 22: if (order.getShipDate() != null)

 23:errorMessage.append(order.getShipDate());

 24: else errorMessage.append(“null”);

 25:

 26: // Replicate for each field of “order”.....

 27:

 28: LogManager.getLogger().logError (

 29:errorMessage.toString(), t);

 30: }

 31: }

Listing 17.6b illustrates how to implement Describable to streamline
exception processing for every method that uses the PurchaseOrderVO
object.

Listing 17.6b: Using describe() to Streamline Error Processing

 1:public void processOrderWithDescribe(

 2: PurchaseOrderDTO order)

 3: {

 4: if (order == null)

 5: throw new IllegalArgumentException

 6:(“Null order not allowed.”);

 7: try

 8: {

 9: // App code here

 10: }

 11: catch (Throwable t)

 12: {

 13: LogManager.getLogger().logError (

Exception-Handling Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

232

 14:”Error processing order: “ + order.describe(), t);

 15: }

 16: }

Use native JDK exceptions before creating your own. There’s no need to
reinvent the wheel. Many developers won’t even check if there is an appro-
priate JDK-defined exception that they could use in lieu of creating an ap-
plication-specific exception. As a real-world example, I’ve seen a developer
create an exception called NullValueException that was thrown when a
method was provided a null argument instead of a valid value. Illegal-
ArgumentException (from java.lang) would have been a better choice.

Exploit Java’s unchecked exception capability. Methods that throw
RuntimeException don’t force all callers into coding a try/catch block or
listing the exception in the throws clause and will reduce the size and com-
plexity of the caller. Callers still have the option of trapping exceptions with
a try/catch or listing the exception in the throws clause, but they are not
forced to. In addition, most developers create checked exceptions out of
habit, not because of a deliberate choice. I’ve been guilty of this, too.

My suggestion to use unchecked exceptions instead of checked excep-
tions is a bit unorthodox and controversial. I used to use checked exceptions
religiously. After coding thousands of try/catch blocks, I realized that using
RuntimeException does save tremendous amounts of code and makes the
remaining code much more readable. The response to most exceptions
(whether they are checked or unchecked) in most applications is to log the
error with enough context that it can be duplicated and fixed by a developer
later. Using RuntimeException allows you to choose where to place your
try/catch code instead of forcing it to be a part of most methods in most
classes. In many cases, the cost of throwing checked exceptions (in terms of
extra coding/maintenance time) is not worth the benefits.

Use of the RuntimeException is appropriate. According to the JavaDoc
for the JDK, RuntimeException is intended for “exceptions that can be
thrown during the normal operation of the Java Virtual Machine.” Most
application-level exceptions fall into this category. I use RuntimeException
in most of the applications I write and place the try/catch blocks in methods
that have the ability to record enough context that I can replicate and fix the
error.

I’m not alone in my opinion. Johnson (2002) provides a good argument for
using unchecked exceptions instead of exceptions. Bruce Eckel (of “Thinking
in Java” fame) also appears to have converted to using unchecked exceptions

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

233

(see http://www.mindview.net/Etc/Discussions/CheckedExceptions) along with
Gunjan Doshi (see http://www.onjava.com/pub/a/onjava/2003/11/19/
exceptions.html).

Limit the nesting depth of a try/catch block to two. (Many of you, I know,
would campaign for one.) If you need more, remove the inner blocks of
code to separate private methods for readability. In addition, fixing bugs in
nested try/catch scenarios can be difficult. As an aside, the need for deeply
nested try/catch logic usually indicates a need to refactor this section of
code.

Don’t catch exceptions and do nothing with them. For programmatic con-
venience, some developers catch exceptions but fail to code the catch block.
This practice eliminates a compiler error but makes the code harder to main-
tain. Many times, swallowing exceptions leads to derivative exceptions later
on that are harder to find and fix. If you catch an exception, do something
with it (at least log it).

Never put a return statement in a finally block. If something throws an
exception within a try block, the finally block is executed before the excep-
tion is thrown. If you issue a return statement within the finally or some-
thing excepts within the finally, the original exception will never be thrown
and never be seen. This will increase the time and effort needed to debug a
problem.

The architect and project manager should establish an exception-handling

and logging strategy before coding begins. Developers often have personal
preferences for exception handling and logging. If you don’t define a strat-
egy for exception handling and logging, developers will choose their own,
and you’ll have no consistency across the application. Eventually, when dif-
ferent sections of the application are integrated, conflicts will arise. In addi-
tion, it’ll be more difficult for an outsider to maintain the application.

For example, suppose one developer adopts the philosophy of logging
exceptions when they’re instantiated, while another expects logging to oc-
cur at the deployment level. When all code is integrated, some errors will
go unreported, which will greatly increase testing and maintenance time.

One of the most valuable pieces of information generated by an excep-
tion is the stack trace of the root exception. The stack trace indicates where
the exception was thrown definitively. In some cases, you will even get an
exact line number. Ideally, you should see the stack trace of the root exception

Exception-Handling Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

234

combined with more descriptive context information. To accomplish this,
I’ve incorporated two exceptions that are smart enough to record informa-
tion from the root exception in CementJ: ApplicationException and
ApplicationRuntimeException from the org.cementj.base package.

An important component of your exception-handling strategy should be
a “root” exception that is the parent of all non-JDK-related exceptions gen-
erated by your application. ApplicationRuntimeException or
ApplicationException would be wise choices.

You also need to enforce your exception-handling strategy. I use group
code reviews as a mechanism for enforcement and education. Code reviews,
if conducted properly, are constructive. Developers can learn a lot by re-
viewing the code of other developers. Reviews also make it more difficult to
skirt established policy, such as an exception-handling strategy. Addition-
ally, code reviews allow you to identify any shortcomings in the exception-
handling strategy and make adjustments, if necessary.

Sample Strategy

▲ Use IllegalArgumentException to flag all erroneous method
arguments on public methods.

▲ Always include enough information in the message of the exception
to duplicate the condition in a testing environment.

▲ All application exceptions should extend
ApplicationRuntimeException (from org.cementj.base).
New application exception proposals should be reviewed by the
technical architect.

▲ All try/catch blocks in the business logic layer or the data access
layer should not interfere with the throwing of an
ApplicationRuntimeException. Throw the exception to the
caller instead.

Threading Strategies

Most applications have tasks that run asynchronously. These tasks can in-
clude scheduled “batch” work and long-running tasks users won’t wait for.
J2EE applications are no exception. Unfortunately, the J2EE specification
makes no provision for work done asynchronously.

Furthermore, the J2EE specification explicitly prohibits spawning threads
directly or indirectly from within enterprise beans, so if you’re going to

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

235

adhere to the specification, your hands are tied. This is one of the few nega-
tive features of the J2EE specification. It should offer a way to spawn asyn-
chronous tasks with the understanding that the container could not provide
transactional integrity for spawned tasks (e.g., you couldn’t roll them back).

Many developers provide a message-driven bean deployment for their
asynchronous work so they can effectively spawn the task via JMS. Rather
than an intentional misuse of JMS, this practice is a way to spawn asynchro-
nous work while complying with the J2EE specification. It has the effect of
twisting the container’s arm into handling the threading issue.

You have several choices for spawning asynchronous work in J2EE:

▲ Delegate the work out to a message-driven bean.

▲ Delegate the work out to an RMI service that spawns needed
threads.

▲ Break the specification and spawn threads in stateless session beans.

▲ Use the Timer service that’s part of the EJB 2.1 specification (if you
are running a 2.1-compliant container).

I favor delegating the work out to an RMI service. RMI services have no
threading restriction, and their calls offer a tighter coupling than JMS mes-
sage transmission. And because most container vendors offer clusterable
RMI services, you’re not sacrificing availability or scalability by using an
RMI service to do asynchronous work.

Although it’s more programmatically convenient to break the specifica-
tion, it’s also risky. With many containers, you can get away with it in a
stateless session bean context, but your code may not work in some contain-
ers and may break on a container upgrade.

Only intermediate to advanced developers should attempt to write thread-
safe code. Bugs from threaded code can be the most difficult bugs to find
and fix.

The following are just a few recommendations for creating thread-safe
code. It is by no means a comprehensive review of threading. Entire books
have been written on multithreaded and concurrent programming. My fa-
vorite is Lea (2000).

Limit thread count to a manageable level. Each thread consumes memory
and causes more context switching within the JVM. Because of the resources
and management overhead required, adding threads has diminishing re-
turns. The point at which returns for additional threads diminish varies

Threading Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

236

among hardware configurations. Essentially, more threads are not necessar-
ily better and do not necessarily increase throughput. In fact, depending on
your hardware, more threads could decrease throughput.

Avoid explicitly setting thread priority. Only an advanced developer should
consider explicitly setting the priority of threads because it greatly increases
the complexity of debugging for a multithreaded application because it in-
creases the chance of thread starvation. Thread starvation most often hap-
pens when a thread doesn’t get execution time because the JVM is occupied
with higher-priority tasks. The symptom of thread starvation is that work
you spawned doesn’t appear to ever run. Unless you have a specific reason
for wanting a thread to have a lower priority, you should avoid the addi-
tional complexity.

Setting thread priority would be especially dangerous if you’re breaking
the J2EE specification and initiating multithreaded code from within enter-
prise beans. You could inadvertently interfere with the normal operation of
a container.

Identify all threads as daemon threads. The JVM makes a distinction be-
tween daemon and user threads. The JVM shuts down when all user threads
terminate. If you spawn a user thread, it’s best to make a provision for how
it terminates. If you declare your threads as daemon threads, they do not
interfere with a JVM shutdown. By the way, user threads are the default.
Keep in mind that anything running daemon threads can be abruptly termi-
nated at any point. Listing 17.7 is one way to declare daemon threads.

Listing 17.7: Declaring Threads as Daemons

 1:// app code here

 2:

 3:Thread thread = new Thread(runnableClass);

 4:thread.setDaemon(true);

 5:thread.start();

 6:

 7:// app code here

Log enough information on error so that you can reproduce an error situa-

tion in a single-threaded test case. Debugging multithreaded code is often
more difficult. Although most IDEs do support multithreading, the behav-
ior of threads under an IDE often differs from their behavior at normal
runtime. Error processing in spawned tasks needs to be robust enough to
allow debugging a section of code within a single-threaded test case.

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

237

Explicitly name all created threads. Many containers have management ex-
tensions that will let you view the activity of each thread. As containers
usually have dozens, if not hundreds, of threads, a specific thread is easier to
find if it is descriptively named. Listing 17.8 illustrates how to name a thread.

Listing 17.8: Naming a Thread

 1:// app code here

 2:

 3:Thread thread = new Thread(runnableClass);

 4:thread.setName(“My thread name”);

 5:thread.start();

 6:

 7:// app code here

Perform a code review for all multithreaded code. I generally promote code
reviews for the entire business logic and data access layers. Since multi-
threaded code can be especially difficult to debug, you should consider a
code review even if you don’t subject any of the other layers to the same
level of scrutiny.

Until recently, programmers were left to their own devices to code, ex-
ecute, and manage multithreaded code. On a recent project, I had an exten-
sive need for multithreaded code, but the skill level of the developers wasn’t
high enough to get everything coded safely within the project timeline. To
make the deadline, I created a package to manage execution of our threaded
code. I then recrafted and re-architected this package into the open source
product called ThreadWorks (available at http://sourceforge.net/projects/
threadworks/).

Sample Threading Guidelines

▲ Code all asynchronous tasks to implement java.lang.Runnable.

▲ Run all asynchronous tasks using ThreadWorks.

▲ Perform a code review of all asynchronous tasks.

▲ Centrally define all TaskManagers. Consult the technical architect
for a TaskManager assignment for all asynchronous tasks.

Configuration Management Strategies

Most J2EE applications have some configurable properties, such as:

▲ Names for database connection pools

Configuration Management Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

238

▲ Logging level indicators

▲ Mail group names for error messages

I usually have one class that’s responsible for reading and interpreting
configuration files, and I put static accessors on that class to make the prop-
erties available. An example appears in listing 17.9.

Listing 17.9: Implementing an Environment Class

 1:public class SampleEnvironment

 2:{

 3: // Some code omitted

 4: public static String getDatabaseConnectionPoolName()

 5: {

 6: return _myEnvironment.getProperty(“db.pool”);

 7: }

 8:}

Having each object read the configuration file and search for the proper-
ties they care about is more correct from an object-oriented design perspec-
tive. However, it simply isn’t practical in many cases. If your application has
300 classes that need access to application properties, having them all read a
configuration file is a bit disk intensive. Many times, the number of needed
properties exceeds what can practically be fed into the JVM as a system prop-
erty (with the “-D” option) at runtime.

The advantage of using one class is that configuration file management
occurs in one place in the application. Developers can find and change the
class easily, and it’s simple to reference the application properties from other
classes. You can even change configuration file formats and not affect the
rest of your application.

CementJ provides a base class called ApplicationEnvironment (from
package org.cementj.base) that provides basic functionality.
ApplicationEnvironment, by default, provides support for configuration
files in a properties format (see java.util.Properties), but it’s possible
to override that and use XML or other formats. ApplicationEnvironment
also checks for file updates at a configurable interval. This feature is useful
because it allows you to change the behavior of your application without
stopping and restarting your EJB container.

Listing 17.10 is an example implementation of Application-
Environment. See CementJ JavaDoc for additional details.

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

239

Listing 17.10: Implementing the ApplicationEnvironment Class

 1:package book.sample.env;

 2:

 3:import org.cementj.base.ApplicationEnvironment;

 4:

 5:public class SampleEnvironment

 6: extends ApplicationEnvironment

 7:{

 8: protected SampleEnvironment(){}

 9:

 10: protected String getConfigurationFileName()

 11: {return CONFIG_FILE_NAME;}

 12: private static final SampleEnvironment

 13: _myEnvironment = new SampleEnvironment();

 14:

 15: public static String getDatabaseConnectionPoolName()

 16: {

 17: return _myEnvironment.getProperty(“db.pool”);

 18: }

 19:

 20: public static final String CONFIG_FILE_NAME

 21: = “myapp.properties”;

 22:}

Another example of establishing strategies for exception handling, log-
ging, and coding conventions drawn from the open source community
can be found at http://jakarta.apache.org/cactus/participating/
coding_conventions.html.

This example is the coding conventions established for the open source
product Cactus that is used to facilitate writing test cases for server-side
classes, such as servlets or enterprise beans. The URL above is an excellent
example of formally establishing architectural policies discussed in this chap-
ter and communicating them. The exception-handling and logging strate-
gies do differ somewhat from the advice I’ve provided here. I still provide it
as an example because establishing clear guidelines for developers to follow
is more important than the minor disagreements I have with some of the
line items.

Configuration Management Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

240

Further Reading

Johnson, Rod. 2002. Expert One-on-One: J2EE Design and Development. In-
dianapolis, IN: Wrox Press.

Lea, Doug. 2000. Concurrent Programming in Java Second Edition: Design
Principles and Patterns. Boston, MA: Addison-Wesley.

Chapter 17: Application Architecture Strategies

http://www.amazon.com/exec/obidos/ASIN/0972954899

241

Section 4

Testing and Maintaining
J2EE Applications

Once the work of building the application is finished, the techni-
cal architect is often asked to lead performance-testing activities
and ensure that the application is production ready. At this stage,
the architect’s primary objective is improving application perfor-
mance, stability, and operational readiness. To achieve this goal,
the architect needs to conduct performance tests and make per-
formance improvements, recommend changes to make applica-
tions easier to monitor and support, and identify candidates for
code refactoring.

This section guides you through these activities. In it, you
will learn how to:

▲ Establish coding guidelines for functional test cases.
▲ Conduct effective performance tests.
▲ Effectively profile your application to improve its use of

memory and CPU.

▲ Improve supportability for your applications.
▲ Recognize when code needs refactoring.
▲ Effectively apply code-refactoring techniques.

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

243

18

Functional Testing Guidelines
Throughout the book, I’ve recommended that you create test cases for all
data access objects and business logic objects because these layers contain
most of the application’s complexity. I’ve also mentioned that these tests are
used for unit testing as well as part of a regression test suite. In this chapter,
I show you how to use open source testing components, based on JUnit, to
accomplish this.

JUnit is an open source framework that facilitates the writing and run-
ning of test cases and grouping them into test suites. You can download
JUnit from the project home page at http://www.junit.org/index.htm.

I use open source testing components because they’re popular and easy
for anyone to access. Those of you using commercial testing packages can
look at the examples in this chapter as conceptual. All commercial testing
tools I’m aware of will support the testing concepts illustrated in this chap-
ter. Performance and load testing concepts are covered in chapter 19.

Ideally, I’d recommend highly automated ways to test the presentation
layer. Currently, the most popular product to do this appears to be Apache’s
Cactus. However, this product has limited testing capabilities. For instance,
although it can test if session attributes are set properly, it can’t tell if the
aesthetics of the resulting page are working. Consequently, you have to do
manual testing before release anyway, which significantly reduces the ben-
efits of setting up a regression test for the presentation layer.

http://www.amazon.com/exec/obidos/ASIN/0972954899

244

Additionally, the setup work for Cactus is verbose and tedious. Between
the two drawbacks I’ve mentioned, the cost of setting a regression test up with
Cactus usually outweighs the benefits. I’m sure that this will change given
time. You can download Cactus from the project home page at http://
jakarta.apache.org/cactus/.

Testing Assumptions

I subscribe to two beliefs about functional testing:

▲ Automated testing is better than manual testing.

▲ Finding bugs sooner lowers costs and improves quality.

Automated testing is better because it’s consistent and easier to run. It
doesn’t slack off at the end of a hard day, and it’s easily repeatable. As a
result, automated regression testing for even small changes in the applica-
tion is more cost-effective. I’ve seen projects that go so far as to incorporate
the test suite in the build script. If one of the regression tests fails, the build
fails and the developers are forced to fix the bug.

Automated testing is as complete as you want it to be. If you subscribe to
the view that test cases should be created as the application is developed,
then you also feel that developers should initially create test cases. But these
test cases are usually not complete. If you adopt the recommendation that
the first step in fixing a bug is writing a test case that reproduces it, your
regression test is enhanced as you find more bugs. Over time, you get a
robust set of regression tests that increases the probability of finding bugs
before deployment.

Automated testing isn’t free. Creating and maintaining tests consumes man-
power, so it’s important to use the 80/20 rule. Initially code test cases for the
80 percent of the application that is most complex and most prone to error.
You can fill out the remaining 20 percent over time. If you stop to create
automated tests that are 100 percent comprehensive, you’ll end up adding
many hours to the timeline to the extent that the costs will outweigh the
benefits.

The sooner you find a bug, the less damage it will cause. Damage from
bugs occurs in many forms. A bug discovered late in the testing process can
impact a project timeline. A bug discovered after deployment can damage
users’ faith in the system and the development team. And fixing bugs late in
the process involves more manpower. At that point, the fix can involve not

Chapter 18: Functional Testing Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

245

only the developer but an entire testing team (if your project has them, and
many do).

By contrast, news of a bug caught early in the project passes no further
than the development team. The testing team and end users won’t be di-
rectly involved in verifying a fix to a bug they never experienced.

As applications mature and gain complexity, automated testing becomes
preventative medicine. With complex code comes the likelihood that a de-
veloper will fix one problem and inadvertently cause another. Some would
say that this is a red flag indicating a need for code refactoring, as discussed
in chapter 20. Automated testing decreases the possibility that a fix to one
problem causes another and then goes unnoticed until after production.

Testing Coverage

Most developers already code test cases for classes they write to allow for
unit testing and debugging. Given this, writing formal test cases that can
later be executed in a test suite usually doesn’t take much additional work.
This section shows you how to write test cases within the JUnit framework.

Selectively choose test case coverage. Ideally, you should code test cases
for all public methods in all classes. Realistically, however, most projects
achieve something less than the ideal, at least in the beginning. Again, I
initially apply the 80/20 rule. It’s more important to have basic test cases for
the most complex places in the application because these places have a greater
chance of containing bugs. It’s most convenient to create test cases as you
write the code. I typically ask developers for one test case per public method
for every data access object and business object in the application.

Asking for one test case per method or service call is by no means com-
prehensive, but it’s a sensible start. Over time, this test case library can be
enhanced and will provide good automatic regression testing capabilities. If
developers use a testing framework such as JUnit, the test cases should be
combinable into test suites.

When investigating a bug report, most developers will try to replicate
the bug. At some point in the investigation, the developer will find out which
classes contain the bug. For most bugs, it’s not too much additional work to
create a test case (or modify an existing one) to replicate the bug and include
it in the test suite. This gives the developer a smaller section of code to
debug. It also contributes to a more robust regression test. The regression
test should be executed on a periodic basis (even on a scheduled basis, with
errors mailed to the development team).

Testing Coverage

http://www.amazon.com/exec/obidos/ASIN/0972954899

246

Test Case Coding Overview and Examples

The mechanics of setting up a JUnit test case are relatively straightforward.
All test cases extend junit.framework.TestCase. You need to override the
runTest() method, which performs pretest processing, the test itself, and
posttest processing. I usually code a main() so the test case can be run and
debugged outside the test suite. Listing 18.1 is an example of a test case
from a ProjectTrak data access object.

Listing 18.1: Sample Test Case for a Data Access Object

 1:package test.dvt.app.project.dao;

 2:

 3:import com.dvt.app.project.dao.ProjectTaskDAO;

 4:import com.dvt.app.project.vo.ProjectTaskVO;

 5:

 6:import org.cementj.util.DatabaseUtility;

 7:import org.cementj.base.DataNotFoundException;

 8:import junit.framework.TestCase;

 9:

 10:import java.sql.Connection;

 11:

 12:public class TestProjectTaskDAO extends TestCase

 13:{

 14:

 15: public TestProjectTaskDAO()

 16: {

 17: super(“ProjectTaskDAO unit tests”);

 18: }

 19:

 20: protected void setUp() throws java.lang.Exception

 21: {

 22: super.setUp();

 23: _dbConnection =

 24: DatabaseUtility.getOracleJDBCConnection

 25: (“localhost”, 1521, “ORA92”,

 26: “scott”, “tiger”);

 27: }

 28:

 29: protected void runTest() throws java.lang.Throwable

 30: {

 31: try

 32: {

 33: this.setUp();

 34: ProjectTaskDAO dao =

 35: new ProjectTaskDAO(_dbConnection);

 36:

Chapter 18: Functional Testing Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

247

 37: ProjectTaskVO taskVO = null;

 38:

 39: // Test for data not found.

 40: boolean dataNotFound = false;

 41: try {taskVO = dao.getProjectTask(77777);}

 42: catch (DataNotFoundException d)

 43: {

 44: dataNotFound = true;

 45: }

 46: TestCase.assertTrue(“Test 1: Not found test”,

 47: dataNotFound);

 48:

 49: // test for data found

 50: taskVO = dao.getProjectTask(11111);

 51: TestCase.assertTrue(“Test 2: Select test”,

 52: taskVO != null);

 53:

 54: // test for task save

 55: taskVO.setTaskId(77777);

 56: dao.saveProjectTask(taskVO);

 57: ProjectTaskVO newTaskVO =

 58: dao.getProjectTask(77777);

 59: TestCase.assertTrue(“Test 3: Insert test”,

 60: newTaskVO.equals(taskVO));

 61:

 62: // test for delete

 63: dao.deleteProjectTask(77777);

 64: dataNotFound = false;

 65: try {taskVO = dao.getProjectTask(77777);}

 66: catch (DataNotFoundException d)

 67: {

 68: dataNotFound = true;

 69: }

 70: TestCase.assertTrue(“Test 4: Delete test”,

 71: dataNotFound);

 72: }

 73: finally

 74: {

 75: this.tearDown();

 76: }

 77: }

 78:

 79: protected void tearDown() throws java.lang.Exception

 80: {

 81: super.tearDown();

 82: DatabaseUtility.close(_dbConnection);

 83: }

 84:

 85: private Connection _dbConnection = null;

Test Case Coding Overview and Examples

http://www.amazon.com/exec/obidos/ASIN/0972954899

248

 86:

 87: public static void main(String[] args)

 88: {

 89: TestProjectTaskDAO test = new TestProjectTaskDAO();

 90:

 91: try

 92: {

 93: test.runTest();

 94: }

 95: catch (Throwable t) {t.printStackTrace();}

 96: }

 97:}

I usually put the database connection creation in the setup() method over-
ride and the close in the teardown() method override.

Here are a few things to note from the example in listing 18.1:

▲ The test is self-contained for the most part.

▲ All assertions and the test case are uniquely labeled so developers
can find them easily if they fail in the test suite.

▲ The test case is in a package that only contains test cases and
supporting classes.

▲ The test case is named so it’s easy for other developers to find.

Combining Test Cases into Suites

I’ve mentioned that it’s fairly easy to combine TestCase classes into test
suites. JUnit implements this capability via its TestSuite class. Once it’s
instantiated and loaded with TestCase, the TestSuite class can be run via
JUnit’s TestRunner class, which is a GUI utility. Listing 18.2 is a sample test
suite from one of my open source products.

Listing 18.2: Sample Test Suite from ThreadWorks

 1:public class ThreadworksTestSuite {

 2:

 3: public ThreadworksTestSuite() {}

 4:

 5: public static Test suite()

 6: {

 7: TestSuite suite= new TestSuite(“Threadworks”);

 8:

 9: suite.addTest(new InstantiationTest());

 10: suite.addTest(new SingleTaskWithoutNotification());

 11: suite.addTest(new SingleTaskWithNotification());

Chapter 18: Functional Testing Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

249

 12: suite.addTest(new TerminationTest());

 13: suite.addTest(new GroupTaskWithNotification());

 14: suite.addTest(new GroupTaskWithoutNotification());

 15: suite.addTest(

 16: new TaskCollectionWithNotification());

 17: suite.addTest(

 18: new TaskCollectionWithoutNotification());

 19: suite.addTest(new SuccessorTasksWithNotification());

 20: suite.addTest(

 21: new ScheduleNonRecurringWithoutDependencies());

 22: suite.addTest(

 23: new ScheduleNonRecurringWithDependencies());

 24:

 25: return suite;

 26: }

 27:

 28: public static void main(String[] argv)

 29: {

 30: junit.swingui.TestRunner.run(

 31: ThreadworksTestSuite.class);

 32:

 33: }

 34:}

Testing Best Practices

Keep test cases and supporting classes in a separate package structure.

Although test cases are developed in conjunction with the application, they
are not truly a part of it. Typically, you have no need to deploy them to
anything but your testing environments.

I usually organize the package structure of my test cases and supporting
classes after the application package structure. For instance, for CementJ,
the test classes for everything in package org.cementj.base are in
test.cementj.base. Supporting classes for those test cases are in package
test.cementj.base.support. Keeping a consistent package structure will
save developers time.

Adopt a naming convention for test classes that makes them easy to find.

This is another suggestion that can save developers time. For instance, I
name all of my test classes TestXxx, where Xxx is the name of the class being
tested. For example, class TestValueObject is the test class for ValueObject.
I prefer to combine all unit tests for the same class into one test class, but
this is not a technical requirement or suggestion.

Testing Best Practices

http://www.amazon.com/exec/obidos/ASIN/0972954899

250

Put a descriptive label on all test assertions. When you code assert() or
assertTrue() method calls in your test cases, you can optionally provide a
label that will be displayed on failure; for example:

TestCase.assertTrue("Test 2: Select test", taskVO != null);

This label becomes important when you’re running the test case as part
of a regression test suite. If the test fails, you don’t want developers wasting
time trying to figure out which test failed. Note that the error description
doesn’t need to identify the test class that failed; JUnit will do that for you.

I’ve adopted the practice of prefixing all assertion descriptions with Test
x:, where x is the test number within the test case. I make x unique within
the test class. This is boring and uncreative, but functional.

Make each TestCase class self-sufficient and independent. Test cases should
not rely on other test cases having to execute before it. If you write the test
cases so that test case 1 has to be run before test case 2 will work, it’s not
obvious to other developers what the prerequisites are should they want to
use a test case for unit testing and debugging. There may be some isolated
cases where implementing this suggestion isn’t practical.

Chapter 18: Functional Testing Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

251

19

Performance Tuning and Load Testing
Management often looks to the technical architect to lead performance-
tuning efforts. This chapter provides tips and tricks you can use to tune and
load test your J2EE applications. In fact, you can use many of the concepts
presented here for other types of applications as well.

Establish performance and scalability targets. This is the first step in per-
formance tuning and load testing. Without targets, you’ll never know when
those tasks have finished.

Although there are always opportunities for performance improvement,
performance tuning has diminishing returns over time. When you start tun-
ing, the changes you make will result in larger performance improvements.
But over time, your improvements will get smaller and smaller with most
applications. Because most of the benefit you get from tuning will occur in
the first 20 percent of the work, the 80/20 rule applies once again.

Don’t start tuning until after the application is in testing. Many developers
have a desire to tune every piece of code they write. I admire their desire for
completeness, but it hurts the timeline of the project. Chances are high that
a good percentage of the code being tuned at this level will not result in
good performance enhancement to the application as a whole. Although
I’ve meet many developers that are not comfortable with this concept,

http://www.amazon.com/exec/obidos/ASIN/0972954899

252

experience has taught me that at some places in the application, the cost of
tuning doesn’t reap enough benefit for anyone to care about.

Most performance problems originate in application code. Developers tend
to ferret out performance problems by examining container configurations,
JVM options, operating system performance, network performance, and the
like rather than looking at code. This is usually wishful thinking on the part
of developers.

Measure performance before tuning to establish a baseline. The next sec-
tion discusses how to measure performance. The numbers that result from
performance measuring will be the basis for judging the effectiveness of
performance improvements.

Performance tuning is an extensive subject. I can only scratch the sur-
face here. Joines, Willenborg, and Hygh (2002) is a good comprehensive
reference for performance tuning J2EE applications. I find the numerous
tips in Bulka (2000) incredibly useful for improving performance after I’ve
identified a problem.

Measuring Performance

A load generator is a software package that measures the performance of
applications, including J2EE applications. Typically, a load generator mim-
ics multiple users so you can simulate load.

Most load generators operate by running a test script (or a set of them)
several times concurrently, simulating a configurable number of virtual us-
ers. By measuring the performance each virtual user gets, the load genera-
tor enables you to examine the performance averages over all virtual users.
Sometimes this information is presented graphically.

Load tests are usually written in the form of URL sequences. I prefer not
to set up tests for other classes unless the application has significant back-end
processing that needs to be tested under load. This can happen if your appli-
cation processes JMS messages from other applications, for example.

Although a load generator can tell you if you’re meeting performance
targets, it can’t tell you why your performance is what it is. If you meet your
performance targets, you should stop the tuning effort. If you don’t meet
your targets, you’ll need to apply additional techniques to diagnose the causes
of the performance problem.

Use load tests to detect memory leaks in addition to performance. Yes,
even though Java has a garbage collector for memory, it’s still possible to

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

253

have a leak. It’s fairly easy to determine if you have a memory leak; it’s much
harder to find where it is.

Memory Leaks Defined

With Java, memory leaks occur in code that retains references to objects
that are no longer needed. A reference is a variable declaration and assign-
ment. Java’s garbage collector periodically frees memory associated with
nonreferenceable variables. If a variable is referenceable, its memory will
not be freed.

For instance, the variable account in the following code is a reference
for a value object:

AccountVO account = new AccountVO();

If this line of code appears as a local variable declaration within a method,
the reference ends when the method completes. After the method com-
pletes, the garbage collector frees memory associated with the account
declaration.

If the declaration is an instance-level field, the reference ends when the
enclosing object is no longer referenced. For example, if the variable ac-
count is declared as an instance-level field for CustomerVO, the reference
to account ends when the reference to an instantiated CustomerVO object
ends, as shown here:

public class CustomerVO

{

 private AccountVO account = new AccountVO();

}

A variable defined as static can easily cause a memory leak because the
reference ends when the JVM stops or the reference is specifically nulled
out.

Memory leaks in J2EE applications are frequently caused by statically de-

fined Collection objects. For instance, it’s common to statically define an
application Properties object to store configuration details, as in the
following:

public class Environment

{

 private static Properties _configurationProps =

new Properties();

}

Measuring Performance

http://www.amazon.com/exec/obidos/ASIN/0972954899

254

Any value stored in this statically defined Properties object is
referenceable. Collection objects, such as Properties or HashMaps, often
produce memory leaks because it’s easy to put values into them and forget
to remove them later.

Testing for Memory Leaks

To test for memory leaks, note how much memory the container is using
before, during, and after the test. You should see memory at a low level to
start, ramp up during the test, and slowly decrease within a few minutes to
an hour after the test. For example, a container might initially start at 128MB
of memory and grow to 180MB during the performance test. After the test,
memory allocation should trend back toward 128MB.

It’s not realistic for memory to return to its pretest level, but most of the
memory allocated during the test should be freed. To diagnose memory
leaks, I start by running the test in a profiler with the memory options turned
on. The next section tells you how to do this.

One output of memory leak testing is knowing which transactions are
not performing to requirements. In the layered application architecture
discussed in this book, the business logic layer or the data access layer are
the most likely places for performance problems to occur. Beans and Web
services usually only publish functionality in business objects anyway. It
should be relatively quick to construct a test case (or modify an existing
one) specifically for the underlying business objects that produce the per-
formance problem. Constructing these test cases gives you something that’s
easier to profile.

I use an open source load generator from Apache called JMeter. It’s easy
to install and set up test plans. You can obtain JMeter at http://
jakarta.apache.org/jmeter/. A JMeter test plan can contain a thread group
with any number of URLs. You dictate how many “virtual users” get created
to run the test plan and how long they run. If you set up a URL for each
major page and control in your application, you’ll get average, minimum,
and maximum timing information for each URL, as illustrated in figure 19.1.
JMeter allows you to save this information in a separate file for future refer-
ence later.

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

255

Figure 19.1: JMeter Example

Always run load tests under the same conditions multiple times. You need
to make sure that nothing is interfering with the test that you’re not aware
of. I’ve seen load tests accidentally contending for batch runs or server back-
ups. If you run each test at least twice and get similar results each time, then
you’ll have a higher degree of trust in the information JMeter gives you.

Document and limit changes between each test. If you make several changes
between load tests, you won’t know which of the changes helped or hurt
performance. For example, let’s say you changed four things. It’s possible
that one of the changes helped performance, one of the changes hurt per-
formance, and two didn’t make any material difference whatsoever. Because
you combined the changes, however, you’ll never really know what helped
performance and what hurt it.

Monitor and record CPU and memory usage during the test. The simplest
way to do this is at the operating system level. Most UNIX operating sys-
tems provide a top utility, which provides CPU and memory usage for each

Measuring Performance

http://www.amazon.com/exec/obidos/ASIN/0972954899

256

process as well as usage for the entire server. You’re obviously interested in
what’s happening for the container process during the load test. Listing 19.1
is an extract from a top utility output. If your application runs on a Win-
dows platform, you’ll need to use the perfmon utility.

Listing 19.1: Sample Top Utility Output

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND

21886 dashmore 15 0 1012 1012 776 R 0.1 0.1 0:00 java

1 root 15 0 480 480 428 S 0.0 0.0 0:04 init

2 root 15 0 0 0 0 SW 0.0 0.0 0:00 keventd

3 root 15 0 0 0 0 SW 0.0 0.0 0:00 kapmd

It’s more convenient to limit top utility output to the process running
the container. Unfortunately, the options to the top utility are different for
each platform. For instance, on Solaris, using the –U option will limit output
to a specific user.

top –U username

On Linux, you would limit output by specifying the process ID with the
–p option.

top –p pid

If you’re using a UNIX other than Solaris or Linux, you’ll have to con-
sult the manual page for the top utility for your specific UNIX platform. By
the way, Loukides (2002) is an excellent reference for interpreting CPU and
memory utilization statistics that UNIX utilities provide.

Expect to see both CPU and memory usage increase during the test and
decrease after the test. If you don’t see memory allocation diminish after the
test (e.g., within fifteen to thirty minutes), it’s likely that you have a memory
leak. You should profile your load test both for CPU usage and memory usage.

Diagnosing Performance Problems

Use profiler tools to diagnose performance problems. A profiler reports
the activity of a JVM at a configurable interval (typically, every five millisec-
onds) and reports the call stack in use for every thread. The methods taking
the most time will most likely show up in more observations and provide
leads as to where you should tune.

Some J2EE containers use multiple JVMs, making it difficult to profile
the entire container. Instead, you’ll want to directly profile test cases that
use the underlying business objects. You’ll skip profiling the deployment

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

257

and presentation layers in their entirety, but performance tuning is most
likely to be at the business logic layer or lower anyway. In a layered architec-
ture, the deployment and presentation layers don’t perform much of the
processing. If your container only uses one JVM, you can profile the entire
container and run your JMeter test script against it with a small load.

Do not attempt to profile in a clustered environment. For those of you in a
clustered architecture, I recommend profiling in one instance only, not in
clustered mode. Your goal is to tune your application, not wade through the
work your container does to implement clustering.

Profilers tell you where (in which class or method) CPU time is being
spent and where (in which classes) memory is being allocated. The default
profiler that comes with the JVM (HPROF) produces output that’s not intui-
tive and is hard to read, but that output contains much of the same informa-
tion as commercial profilers. The advantage of commercial profilers is that
they make performance information easier to read and interpret. If your
organization has a license for a commercial profiler, use it instead of HPROF.

If you don’t have access to a commercial profiler, you’ll probably have to
spend a few more minutes interpreting the output than your colleagues with
commercial profilers. In the next section, I provide a usage cheat sheet for
HPROF. The default profiler measures both CPU time and memory alloca-
tion, but I recommend measuring these separately to avoid contaminating
the test. Methods for debugging memory leaks are also included in the next
section.

Using HPROF to Measure CPU Usage

HPROF is invoked by including arguments when the JVM is started. To
measure CPU usage, include the following arguments in the Java command
invocation:

-Xrunhprof:cpu=samples,thread=y,file=cpu.hprof.txt,depth=32

HPROF will place results in the file listed in the file argument. The cpu
argument indicates that HPROF will measure CPU consumption, not
memory. The thread argument tells you that HPROF will indicate the thread
in the stack trace details. And the depth argument indicates how many lev-
els or calls to record in the stack trace details.

The JVM should be shut down cleanly for HPROF to have an opportu-
nity to record its observations. Don’t be surprised if HPROF takes a few
minutes to record its data. Likewise, don’t be alarmed at the sluggishness of
your application while HPROF is running; that’s to be expected.

Diagnosing Performance Problems

http://www.amazon.com/exec/obidos/ASIN/0972954899

258

With the CPU options turned on, HPROF produces a file. The first place
to look is in the last part of the file, in a section detailing CPU stack trace
rankings. This section provides a call stack ID and the percentage of the
time the call stack was invoked. HPROF works by recording the call stacks
for each thread every five minutes. Odds are high that HPROF will most
frequently observe the places where your application is spending the most
time. Listing 19.2 illustrates the CPU stack trace rankings produced by
HPROF.

Listing 19.2: Sample CPU Stack Trace Rankings

CPU SAMPLES BEGIN (total = 52) Sun Jul 13 10:48:18 2003

rank self accum count trace method

 1 30.77% 30.77% 16 6 java.lang.StringBuffer.<init>

 2 25.00% 55.77% 13 5 java.lang.StringBuffer.<init>

 3 9.62% 65.38% 5 11 java.lang.Class.getName

 4 7.69% 73.08% 4 7 java.lang.Class.isAssignableFrom

 5 7.69% 80.77% 4 8 java.lang.Class.getName

 6 5.77% 86.54% 3 10 java.lang.Class.isAssignableFrom

 7 3.85% 90.38% 2 13 java.lang.reflect.Field.copy

 8 1.92% 92.31% 1 12 java.lang.Class.isAssignableFrom

 9 1.92% 94.23% 1 4 java.io.FileOutputStream.writeBytes

 10 1.92% 96.15% 1 1 sun.misc.URLClassPath$3.run

 11 1.92% 98.08% 1 9 java.lang.Class.getName

 12 1.92% 100.00% 1 14 java.lang.Class.copyFields

CPU SAMPLES END

Once you have the call stack ID, you can get details of what’s in that stack
in the preceding section of the HPROF-produced file. Listing 19.3 shows
the stack corresponding to trace 6, which accounted for 30.77% of the CPU
time.

Listing 19.3: Stack Trace Details

TRACE 6: (thread=3)

java.lang.StringBuffer.<init>(StringBuffer.java:115)

org.cementj.base.ValueObject.getConcantonatedObjectValue(ValueObject.java:219)

org.cementj.base.ValueObject.equals(ValueObject.java:49)

book.sample.dto.cementj.TestCustomerDTO.main(TestCustomerDTO.java:28)

The stack trace description will tell you what class or method in your
code is using up the time. You want to look at the first class in the trace that

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

259

is a part of your application (the bold line in listing 19.3). This is where you
need look for tuning opportunities.

Listing 19.4 is the section of code highlighted in the trace. Lines 3 and 4
in the listing are taking the largest amount of CPU time. The only piece of
this that can be tuned is the initial size of the buffer, given by
_startBufferSize. A higher number means that it will take longer to in-
stantiate the buffer, but the append() operations later in this method won’t
take as long because the memory is already allocated.

Listing 19.4: Extract from CementJ

 1: private String getConcantonatedObjectValue()

 2: {

 3: StringBuffer buffer =

 4: new StringBuffer(_startBufferSize);

 5: Object tempObj = null;

 6: Object[] tempArray = null;

 7: // Some code omitted.

 8: }

I’ve found that taking more time in the initial allocation is a better practice
than causing the append() to reallocate larger and larger chunks of memory.
After validating that the _startBufferSize is being estimated appropriately
and isn’t much larger than the memory needed, there isn’t any way to tune
this code. I would move on to the other hot spots listed in the trace.

Entire books have been written about coding for better performance.
The first book I consult is Bulka (2000), which has a wide range of code-
level tuning suggestions that are supported by performance test data. I can’t
recommend this book highly enough.

Look only at stacks using 5 percent or more of the CPU. The rest is too
small to worry about. Suppose you’re able to tune a method only using 1
percent of your CPU. Suppose you get a 20 percent performance improve-
ment for that method. Since it only uses 1 percent of the CPU anyway, your
effort will improve performance by just 0.2 percent overall—usually not
considered a material improvement. The corollary to this suggestion is that
if all stacks are using less than 5 percent of your CPU, you can stop tuning.

If you find that most of your time is being spent in JDBC, you should
enlist the aid of a database administrator and tune your database and/or
application SQL. It’s entirely possible that the stack trace indicates a specific
method in a DAO. That usually will limit the SQL being executed to one or
two statements. You can then execute these statements via an online query

Diagnosing Performance Problems

http://www.amazon.com/exec/obidos/ASIN/0972954899

260

tool to diagnose query performance. Within the online query tool, you can
try out alternative ways of writing the query to get your sample working
faster.

Using HPROF to Measure Memory Usage

To have HPROF measure memory usage, invoke the JVM with the following
arguments:

-Xrunhprof:heap=sites,file=mem.hprof.txt,depth=24,cutoff=0.01

Memory leaks are among the most difficult bugs to find and diagnose.
The largest objects that can cause memory leaks are statically defined vari-
ables, particularly statically defined collections. HPROF provides a trace rank-
ing that details the traces that have the most memory allocated. Listing 19.5
is a sample of a memory trace ranking.

Listing 19.5: Sample Memory Trace Ranking

SITES BEGIN (ordered by live bytes) Sun Jul 13 11:12:39 2003

 percent live alloc’ed stack class

 rank self accum bytes objs bytes objs trace name

 1 35.21% 35.21% 158256 3297 33600000 700000 419

java.lang.reflect.Field

 2 17.42% 52.64% 78312 492 79680 517 1 [C

 3 10.10% 62.74% 45416 214 45416 214 1 [B

 4 5.03% 67.77% 22608 471 4800000 100000 415

book.sample.dto.cementj.CustomerDTO

 5 4.19% 71.96% 18840 471 4000000 100000 418

java.lang.reflect.Field

 6 3.91% 75.87% 17576 315 17576 315 1 java.lang.Object

 7 3.35% 79.22% 15064 282 15064 282 1 [S

 8 2.98% 82.20% 13384 239 13384 239 1 java.lang.Class

 9 2.89% 85.09% 12984 541 13632 568 1 java.lang.String

 10 2.48% 87.58% 11168 208 601448 220 1 [I

SITES END

The first aspect of the memory ranking to look at is the ratio of “live”
bytes to “allocated” bytes. Live bytes represent memory that is referenceable
and currently being used by the application. Allocated bytes represent the
total memory allocated within the JVM. The difference between the allo-
cated and live bytes will be garbage collected at some point.

Memory leaks tend to be traces where the live bytes represent close to
100 percent of the allocated bytes. The first trace in listing 19.5 doesn’t fit
this profile, but the second one does. It’s important to remember that a high

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

261

live-to-allocated bytes ratio could indicate a leak, but it’s possible to have a
high ratio without a leak.

Take a closer look at trace 419, shown in listing 19.6. As the largest
memory consumer, trace 419 might be a good place to find something you
can tune. The next largest memory consumer, trace 1, might be a place to
see a memory leak.

Although you might not recognize the object type consuming the memory,
it’s important to look at the stack trace because it indicates the code that’s
allocating the memory. The trace behind trace 419, which is allocating about
35.21 percent of live memory, is presented in listing 19.6.

Listing 19.6: Trace 419 from the Sample in Listing 19.5

TRACE 419:

java.lang.reflect.Field.copy(Field.java:83)

java.lang.reflect.ReflectAccess.copyField(ReflectAccess.java:9)

sun.reflect.ReflectionFactory.copyField(ReflectionFactory.java:

277)

java.lang.Class.copyFields(Class.java:1962)

java.lang.Class.getDeclaredFields(Class.java:1090)

org.cementj.base.ValueObject.<init>(ValueObject.java:26)

book.sample.dto.cementj.CustomerDTO.<init>(CustomerDTO.java:8)

book.sample.dto.cementj.TestCustomerDTO.main(

TestCustomerDTO.java:38)

Once again, look at the first object in the trace that comes from the
application. It appears that memory is being allocated from within the con-
structor of ValueObject on line 26. In listing 19.7, line 3 shows the code in
ValueObject allocating the memory that is highlighted in the trace.

Listing 19.7: Code Highlighted in the Trace

 1:protected ValueObject()

 2: {

 3: _classField = this.getClass().getDeclaredFields();

 4: for (int i = 0 ; _classField != null &&

 5: i < _classField.length; i++)

 6: {

 7: _classField[i].setAccessible(true);

 8: }

 9: _startBufferSize = (_classField.length + 1) * 128;

 10: }

Unfortunately, little can be done to reduce memory allocation here.
ValueObject needs access to the underlying field definitions to properly

Diagnosing Performance Problems

http://www.amazon.com/exec/obidos/ASIN/0972954899

262

implement meaningful versions of describe(), equals(), hashcode(), and
several other methods.

The next trace in the ranking, trace 1, is shown in listing 19.8.

Listing 19.8: Trace 1 from the Sample in Listing 19.5

TRACE 1:

<empty>

It turns out that trace 1 doesn’t have a lot of meaningful information. I
see this occasionally in HPROF traces but have never run across an explana-
tion as to why it happens. My guess is that it’s either an HPROF bug, memory
associated with the JVM internally, or memory that no longer has a refer-
ence and is awaiting garbage collection. In practice, I’d move on to the next
item in the ranking that doesn’t belong to trace 1.

Further Reading

Bulka, Dov. 2000. Java™ Performance and Scalability. Vol. 1, Server-Side Pro-
gramming Techniques. Reading, MA: Addison-Wesley.

Joines, Stacy, Ruth Willenborg, and Ken Hygh. 2002. Performance Analysis
for Java Websites. Reading, MA: Addison-Wesley.

Loukides, Mike, and Gian-Paolo Musumeci. 2002. System Performance Tun-
ing, 2nd ed. Sebastapol, CA: O’Reilly & Associates.

Chapter 19: Performance Tuning and Load Testing

http://www.amazon.com/exec/obidos/ASIN/0972954899

263

20

Postimplementation Activities
The project isn’t over when it’s over. Most development teams spend time
after implementation to correct bugs and bring the product additional sta-
bility. In some organizations, separate teams provide postimplementation
support. Members of the support teams receive training from the develop-
ment team.

The technical architect can play a significant role in providing stability
to the implemented application and reducing the time and effort needed to
maintain it. In addition, by performing a constructive review of the devel-
opment process, both its successes and mishaps, the architect can help pre-
vent problems on future projects. In many organizations, the architect is
responsible for providing support in addition to developing applications.

This chapter presents guidelines to help you improve the quality, com-
pleteness, and timeliness of the information you gather on application is-
sues and problems. In addition, I describe techniques for responding more
quickly and effectively to your application monitoring information, includ-
ing tips on debugging and refactoring. The postimplementation activities
you learn here can help you decrease the quantity and severity of problems
over time and minimize the number of users experiencing outages.

http://www.amazon.com/exec/obidos/ASIN/0972954899

264

Application-Monitoring Guidelines

Many organizations consider application monitoring as a simple matter of
purchasing the right software—BMC Patrol™ or EcoTools™, for example.
Usually, however these tools are not used effectively. And even when used
to their potential, they monitor server and database health much better than
they do custom applications.

Monitoring software can determine if your application is available and
measure the performance of common tasks but not much more. No product
currently on the market can tell you why your application isn’t available or
find bugs that prevent users from getting what they want. Although pur-
chasing a monitoring tool may be the first step in effective application moni-
toring, the task certainly doesn’t end there.

The objectives of monitoring applications are to detect and notify appli-
cation administrators of ongoing issues and problems. You can address these
objectives in several ways without using monitoring software. Here are some
guidelines for using your application’s functionality to its best advantage.

Look for every opportunity to improve the quality and completeness of

your regression test. The first place to discover application issues and prob-
lems is in the application regression test. In earlier chapters, I recommended
constructing test cases along with the application. Now you need to com-
bine these test cases into a regression test. Bugs and errors caught at this
stage are often found and fixed without incident. The more comprehensive
your regression test is, the greater your chances of catching bugs before
your application is released.

Improve the quality and completeness of application error reports. The
best sources of information you have about application issues and problems
after code has deployed are the error reports your application generates
(reports of runtime errors). Application runtime errors are usually either
software bugs or the result of environmental issues (e.g., the database is
unavailable). With environmental issues, the earlier you act on the error
report, the fewer users are affected.

Using the information in the application error report, you can solve most
bugs resulting in log entries or reports. I still recommend writing test cases
that replicate bugs and including them in your regression test later. But any
time you can save identifying the problem will in turn save time for your
support staff.

Chapter 20: Postimplementation Activities

http://www.amazon.com/exec/obidos/ASIN/0972954899

265

Broadcast application error messages to provide opportunities for quicker

responses. Often an environmental issue shows up as a system error report
and can be corrected before too many users are affected. I have found that
most developers look at logs only when an end user has reported a problem.
Therefore, I usually broadcast error reports to the development team over
some medium (e.g., e-mail) to increase the probability that someone will fix
the errors before users notice.

Some developers don’t like receiving broadcasted application error re-
ports because the volume of broadcast reports can be substantial in the be-
ginning. Usually, however, the volume of error reports decreases over time
as application bugs are fixed.

Make the first sentence or subject of an error report descriptive and mean-

ingful. Because applications commonly generate many reports of the same
error, you can save the support staff time by providing a reasonable descrip-
tion of the error in the subject line of an e-mail or in the first sentence of the
message. This is especially important in companies in which the support
staff does not develop applications.

System error reports tend to be more comprehensive than user bug re-
ports. In my experience, users don’t report all the errors they experience.
And often the information a user provides is less than complete.

Nonetheless, user bug reports can be valuable sources of information.
Often users can help you replicate the bug. Because the goal of using test
cases and system error reports is to reduce the number of bugs reported by
end users, the quantity of bugs reported is an indicator of the quality of your
test cases and error reports.

Bug-Fighting Guidelines

Always fix root errors first. I distinguish between root and derivative errors.
A derivative error happens because of an unexpected condition caused by
some other error. That other error is the root error. If you fix the root error,
the derivative error often disappears without your having to fix it directly.

For example, I once received reports that an application was exceeding
the maximum number of database connections with one of the connection
pools. It turned out that this error was derivative. The real problem was that
locking contention with a table made a transaction much longer than it should
have been. As a result, the application was holding on to database connections
longer than anticipated. Fixing the locking problem made the connection

Bug-Fighting Guidelines

http://www.amazon.com/exec/obidos/ASIN/0972954899

266

pool errors disappear. Many would have been tempted to increase the
connection pool size.

Include tests for bugs in the test suite. As stated earlier, making the regres-
sion test more robust enables you to identify problems earlier. XP advocates
would use stronger terms and advise testing for all bugs in the test suite.
The reality is that some bugs, like those that cause display defects, are diffi-
cult to code into a test case. Sometimes the cost of producing the test far
outweighs its benefits. Support staff will have to evaluate the need for a bug-
inspired test on a case-by-case basis.

Declare war on derivative error. A NullPointerException is a good ex-
ample of a derivative error—a problem that is reported well after it oc-
curred. As discussed in chapter 17, you can reduce derivative exceptions by
checking the validity of argument values in public methods.

Continually refine error reports to be more useful and descriptive. If you
receive an error report that doesn’t provide enough information to solve the
problem, you have two bugs: the one causing the error report and the other
causing the incomplete report. It’s usually worthwhile to fix both problems.
If you continually enhance the information in error reports, you will notice
a decrease in the amount of time it takes to investigate bugs and diagnose
problems.

Top Refactoring Indicators

Refactoring is rewriting selected code to make it easier to understand and
maintain. Fowler (2000) provides an extensive list of conditions that indi-
cate the need to refactor—conditions he calls “Bad Smells in Code.” Al-
though his list is so comprehensive I wouldn’t presume to add to it, it is code
centric. For readers who may not have the intimate understanding of code
needed to apply Fowler’s advice, I describe some observable symptoms that
may indicate a need to refactor but don’t require a full audit of the
application’s source.

Classes that you can’t change without inadvertently creating other bugs

may need to be refactored. This symptom is reminiscent of the movie Night
of the Living Dead. Some programming bugs don’t die, they just come back
in different forms. Various circumstances can cause a bug to undergo such a
metamorphosis.

Sometimes this happens when code within a class behaves differently

Chapter 20: Postimplementation Activities

http://www.amazon.com/exec/obidos/ASIN/0972954899

267

depending on context. For example, I had one client that used a central API
to provide reports for multiple applications. For political reasons, the API
interpreted some of the argument values differently depending on which
application was calling it (not a good idea, I know). Eventually, this service
needed to be refactored because we couldn’t change it without inadvert-
ently causing bugs in some of the applications calling it.

Sometimes bugs morph when code within a single class is doing too much
and should be separated into multiple classes. For example, one application
I worked on had to be able to accept data from multiple data sources. Some
of the data sources were relational databases; some weren’t. At first we had
only two data sources. The programmer took a shortcut and put conditional
logic in the class managing input to handle either data source. When we had
to add data sources, the class had to be refactored.

Enhancements or bug fixes requiring identical changes in multiple classes

may indicate a need to refactor. Some developers are almost too fond of
copy-and-paste technology. In most cases, identical code in multiple classes
should become common code “called” by multiple classes. Given a tight
time frame, the developer who discovers a case of copied code might not
have the time to make the code common. The architect or manager can
assist by providing a mechanism to track these cases so they can be fixed
when time permits.

Abnormally complicated methods or classes that developers fear chang-

ing may need to be refactored. Sometimes this symptom occurs in combi-
nation with the morphing-bug symptom described earlier. It is another in-
dication that the code is too complex and needs to be refactored. Of course,
the validity of this symptom depends on the assumption that developers are
rational and their “fear” justified, which might not always be the case.

Common Refactoring Techniques

Refactory has been the topic of entire books, within which are dozens of
refactoring techniques. Here I concentrate on the most commonly used
techniques. Readers interested in delving deeper into the topic should see
Fowler (2000) and Alur et al. (2003).

Extract and Delegate

Common code identified in multiple classes calls for the extract-and-del-
egate method of refactoring. The common code is extracted and placed in a

Common Refactoring Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

268

separate class. The new class then serves as a delegate and is called within
any class needing it. Many of the static utilities in CementJ were created
because common code existed in many classes and needed to be centralized.

For example, it is common for JDBC-related classes to close ResultSets,
Statements, and PreparedStatements in a finally block. Unfortunately, clos-
ing one of these objects can throw an SQLException, which is a checked
exception. As shown in lines 9 through 18 of listing 20.1, this causes nested
try/catch logic in the finally block, which is usually identical everywhere.

Listing 20.1: Sample Candidate for the Extract-and-Delegate Method

of Refactoring

 1:PreparedStatement pStmt = null;

 2:try

 3:{

 4: pStmt = connection.prepareStatement(sqlText);

 5: // JDBC Code here

 6:}

 7:finally

 8:{

 9: if (pStmt != null)

 10: {

 11: try {pStmt.close()}

 12: catch (SQLException q)

 13: {

 14: Logger.logWarning(

 15: “Error closing PreparedStatement”,

 16: q)

 17: }

 18: }

 19:}

Although the nested try/catch isn’t complicated, it’s verbose and makes
JDBC code harder to read. Listing 20.2 illustrates how extracting that code
into a separate utility class shortens the code quite a bit.

Listing 20.2: Using the Extract-and-Delegate Technique (Refactoring

of Listing 20.1)

 1:PreparedStatement pStmt = null;

 2:try

 3:{

 4: pStmt = connection.prepareStatement(sqlText);

 5: // JDBC Code here

 6:}

 7:finally

Chapter 20: Postimplementation Activities

http://www.amazon.com/exec/obidos/ASIN/0972954899

269

 8:{

 9: DatabaseUtility.close(pStmt);

 10:}

One argument I usually get from the copy-and-paste advocates is that
the central utility created by the extract-and-delegate technique is more
complex than the original. This can be true, but the result is much less code
to maintain. Further, a central utility is usually the most tested because it’s
used most often. In listing 20.2, for example, the source for the utility method
isn’t much more complex than the original. Listing 20.3 provides the source
for DatabaseUtility.close().

Listing 20.3: DatabaseUtility Source Extract

 1: public static void close(PreparedStatement pStmt)

 2: {

 3: if (pStmt == null) return;

 4: try {pStmt.close();}

 5: catch (SQLException e)

 6: {

 7: LogManager.getLogger().logWarning(

 8: “Prepared statement close error”, e);

 9: }

 10: }

Common code isn’t always a static utility but comprises common char-
acteristics shared among multiple classes. To centralize this code, you would
use the extract-and-extend technique.

Extract and Extend

This refactoring technique is used when classes share the same characteris-
tics and methods. Ideally, you will identify such classes in design, but some-
times the commonality becomes apparent only after construction.
ValueObject from CementJ is a good example of applying the extract-and-
extend technique. In fact, I created ValueObject after noticing a lot of com-
mon code with value object classes for one of my applications.

Often value object classes need functions such as producing a textual
description of themselves or implementing hashcode() and equals() so
they can be effectively used in hash constructs. ValueObject makes these
kinds of functions common so they do not have to be coded in multiple
value object classes individually. To benefit from ValueObject, all you need
do is extend it. ValueObject is covered extensively in chapter 10.

Common Refactoring Techniques

http://www.amazon.com/exec/obidos/ASIN/0972954899

270

A combination of the extract-and-delegate and extract-and-extend tech-
niques is also commonly used.

Extract and Decouple with Interface

You use this refactoring technique when classes in your application have the
same function but do not have common code. This technique is a combina-
tion of the two techniques previously described.

One example can be drawn from ProjectTrak and its ability to use mul-
tiple scheduling algorithms. As discussed in chapter 13, ProjectTrak users
can specify the algorithm used to produce a project schedule to facilitate
testing and refinement of the scheduling feature. Some of these algorithms
may have common characteristics and share common code, but others may
not. Not all scheduling algorithms can usefully extend AbstractAlgorithm.
By decoupling with the interface Scheduler as illustrated in figure 20.1, the
user can implement any algorithm without adversely affecting other parts
of the application.

Chapter 20: Postimplementation Activities

http://www.amazon.com/exec/obidos/ASIN/0972954899

271

Figure 20.1: Sample Interface Decoupling

TaskSchedulerBO

+scheduleTasks(in project : ProjectVO) : ProjectVO

«interface»
Scheduler

+scheduleTasks(in project : ProjectVO) : ProjectVO

LPSchedulingAlgorithm

+scheduleTasks(in project : ProjectVO) : ProjectVO

IterativeScedhulingAlgorithm

+scheduleTasks(in project : ProjectVO) : ProjectVO

FutureAlgorithm1

AbstractAlgorithm

Further Reading

Alur, Deepak, John Crupi, and Dan Malks. 2003. Core J2EE Patterns: Best
Practices and Design Strategies, 2nd ed. New York: Prentice Hall.

Fowler, Martin. 2000. Refactoring: Improving the Design of Existing Code. Read-
ing, MA: Addison-Wesley.

Further Reading

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

273

Bibliography

Alur, Deepak, John Crupi, and Dan Malks. 2003. Core J2EE patterns: Best
Practices and Design Strategies, 2nd ed. New York, Prentice Hall.

Beck, Kent. 2000. Extreme Programming Explained. Reading, MA: Addison-
Wesley.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 1998. The Unified Mod-
eling Language User Guide. Reading, MA: Addison-Wesley.

Bradley, Neil. 2000. The XSL Companion. Reading, MA: Addison-Wesley.

Brooks, Frederick P., Jr. 1975. The Mythical Man-Month: Essays on Software
Engineering. Reading, MA: Addison-Wesley.

Bulka, Dov. 2000. Java™ Performance and Scalability. Vol. 1, Server-Side Pro-
gramming Techniques. Reading, MA: Addison-Wesley.

Castro, Elizabeth. 2002. HTML for the World Wide Web with XHTML and
CSS: Visual QuickStart Guide, 5th ed. Berkeley, CA: Peachpit Press.

Cockburn, Alistair. 2001. Writing Effective Use Cases. Boston: Addison-Wesley.

Cohen, Frank. 2003 (March). “Discover SOAP Encoding’s Impact on Web
Service Performance.” IBM DeveloperWorks. Available online at http://www-
106.ibm.com/developerworks/webservices/library/ws-soapenc/.

Date, C. J. 2003. An Introduction to Database Systems, 8th ed. Boston: Pearson
Addison-Wesley.

DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive Projects
and Teams, 2nd ed. New York: Dorset House.

Ensor, Dave, and Ian Stevenson. 1997. Oracle Design. Sebastopol, CA:
O’Reilly & Associates.

Fleming, Candace C., and Barbara von Halle. 1989. Handbook of Relational
Database Design. Reading, MA: Addison-Wesley.

http://www.amazon.com/exec/obidos/ASIN/0972954899

274

Fowler, Martin. 2000. Refactoring: Improving the Design of Existing Code. Read-
ing, MA: Addison-Wesley.

———. 2003. Patterns of Enterprise Application Architecture. Reading, MA:
Addison-Wesley.

Fowler, Martin, and Kendall Scott. 1997. UML Distilled: Applying the Stan-
dard Object Modeling Language. Reading, MA: Addison-Wesley.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley.

Grand, Mark. 1998. Patterns in Java, Vol. 1. New York: John Wiley & Sons.

———. 1999. Patterns in Java, Vol. 2. New York: John Wiley & Sons.

———. 2002. Java Enterprise Design Patterns. New York: John Wiley & Sons.

Goldratt, Eliyahu. 1992. The Goal: A Process of Ongoing Improvement. Great
Barrington, MA: North River Press.

———. 1994. It’s Not Luck. Great Barrington, MA: North River Press.

———. 1997. Critical Chain. Great Barrington, MA: North River Press.

Hall, Marty. 2000. Core Servlets and JavaServer Pages (JSP). New York:
Prentice Hall.

Horstmann, Cay S., and Gary Cornell. 2001. Core Java 2. Vol. 2, Advanced
Features, 5th ed. Essex, UK: Pearson Higher Education.

Hunt, Craig. 2002. TCP/IP Network Administration, 3rd ed. Sebastopol, CA:
O’Reilly & Associates.

Hunter, Jason, and William Crawford. 2001. Java Servlet Programming, 2nd
ed. Sebastopol, CA: O’Reilly & Associates.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. 1999. The Unified Soft-
ware Development Process. Reading, MA: Addison-Wesley.

Jeffries, Ron, Ann Anderson, and Chet Hendrickson. 2001. Extreme Pro-
gramming Installed. Reading, MA: Addison-Wesley.

Johnson, Rod. 2002. Expert One-on-One: J2EE Design and Development. In-
dianapolis, IN: Wrox Press.

Bibliography

http://www.amazon.com/exec/obidos/ASIN/0972954899

275

Joines, Stacy, Ruth Willenborg, and Ken Hygh. 2002. Performance Analysis
for Java Websites. Reading, MA: Addison-Wesley.

Kroll, Per, and Philippe Krutchen. 2003. The Rational Unified Process Made
Easy: A Practitioner’s Guide to the RUP. Boston: Addison-Wesley.

Lea, Doug. 2000. Concurrent Programming in Java Second Edition: Design
Principles and Patterns. Boston, MA: Addison-Wesley.

Loukides, Mike, and Gian-Paolo Musumeci. 2002. System Performance Tun-
ing, 2nd ed. Sebastopol, CA: O’Reilly & Associates.

McConnell, Steve. 1998. Software Project Survival Guide. Redmond, WA:
Microsoft Press.

Richardson, Chris. 2003. “Simplifying Domain Model Persistence in a J2EE
Application Using JDO.” TheServerSide. Available at http://www
.theserverside.com/resources/article.jsp?l=JDODomainModel.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 1999. The Unified Mod-
eling Language Reference Manual. Reading, MA: Addison-Wesley.

Spielman, Sue. 2003. The Struts Framework: Practical Guide for Java Pro-
grammers. Boston: Morgan Kaufmann.

Sun Microsystems. 2002. Java™ 2 Platform, Enterprise Edition (J2EE™) Speci-
fication (“Specification”) Version: 1.4. Mountain View, CA: Sun Microsystems.

Taylor, David. 1990. Object-Oriented Technology: A Manager’s Guide. Read-
ing, MA: Addison-Wesley.

Bibliography

http://www.amazon.com/exec/obidos/ASIN/0972954899

276

The Apache Software License, Version 1.1
Copyright (c) 2001 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: “This product includes software
developed by the Apache Software Foundation (http://www.apache.org/).”

Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names “Apache” and “Apache Software Foundation” and “Apache
JMeter” must not be used to endorse or promote products derived from
this software without prior written permission. For written permission,
please contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, “Apache
JMeter,” nor may “Apache” appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUN-
DATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Apache Software License

http://www.amazon.com/exec/obidos/ASIN/0972954899

277

Index

Accessors 79
action 68, 79, 206, 209
actionError 205
actionForm 68, 204, 209, 210
actionServlet 68
Actors

identifying 17–19
Adapter pattern 61
Ant 217
Applets 61, 189, 200
Application monitoring 264–65
Architectural component layer 68–70
Architectural components 211–21

usage guidelines 219–20
Arguments 181

minimizing 214
null 226
passing 82
passing XML text as 195
validating 180, 225

assert() 250
assertTrue() 250
Attributes 86

base 78
declaring as element 98
derived 78
identifying 77–78

Authentication 104
Authorization 104

Base estimate 30
Bean-managed persistence (BMP) 53,

55
BMC Patrol™ 42, 264
Bug morphing 267
Business analyst 1, 3, 5–6

Business logic 50, 122, 180
and session beans 188
coding within deployment

wrappers 185
embedding in JSPs 203
putting in enterprise beans 177

Business logic developer 2, 7, 8
Business logic layer 60–61, 65, 153,

157, 175, 177, 185, 188, 254, 257
debugging 209

Business objects 60, 63, 78, 79, 86,
110, 254

building 175–84
coding guidelines 180–82
deployment of 180
use of XAOs 139

Bytes
allocated 260
live 260

Cactus 239, 243, 244
CementJ 120, 124, 130, 141, 147, 148,

149, 156, 157, 169, 177, 181, 188,
189, 193, 195, 214, 215, 230, 234,
238, 249, 268, 269

Child 87
Classes 86, 215, 238, 269

internal 215, 221
multiple 267

close() 157, 165
Cluster 102
Clustered architecture 257
Clustering 100, 106, 107
COBOL 41
CocoBase 173

http://www.amazon.com/exec/obidos/ASIN/0972954899

278 Index

Code
common 267, 268, 269
minimizing 54
portability 55
reviews 4, 234, 237

Coding standards 4
Collections

statically defined 260
Column list

specifying 168
Commits 157
Commons 215, 224
Communication methods 34–39

asynchronous 35, 38, 39
common mistakes in 39
synchronous 34, 35–37, 39

comparable 129
Composite pattern 59
Configuration code 160
Configuration management

strategies 237–39
Connection leak 181
Connection objects

closing 157
Connection pools 181
Container-managed persistence

(CMP) 53, 55
CORBA 34, 35, 36, 39, 61, 63, 64, 65,

180, 195
advantages of 37
logging exceptions 225

CPU usage
measuring with HPROF 257–60
monitoring 255

Critical path 115

Data access layer 50, 175, 254
debugging 210

Data access object layer 51, 52–59, 153
Data access objects (DAOs) 60, 63, 78,

79, 86, 110, 139, 175
building 153–74
coding guidelines 154–57

Data migration specialist 2, 8
Data modeler 2, 7
Data modeling 7, 85–98
Data processing 206–7
Data structure

determining 39–41
Data transfer object 40, 59, 121
Database

tuning 259
Database administrator 2, 7
Database connection 156, 181, 248
Database design 85
Database objects 85

closing 156
Database SQL

tuning 54
Databases

denormalizing 94
relational 85
supporting multiple 57–59
using as message broker 39

Debugging 244, 264–66
Defining the project 15–25

objectives 15
purpose 15
scope 15, 17, 27–28

Demilitarized zone (DMZ) 101, 104
Dependencies 110, 215
Deployment 50, 54, 156
Deployment layer 50, 60, 63–66, 68,

180, 185, 201, 206, 256
logging at 225

Deployment wrapper 60, 63, 65, 67,
78, 79, 110, 175

and business logic 185
building 185–97
choosing 63–65
documenting 79
types of 63–64

describable 124, 230, 231
describe() 181
Device layer 50
Document object model (DOM) 141,

145

http://www.amazon.com/exec/obidos/ASIN/0972954899

279Index

Documentation
of application design 3–4
of deployment wrappers 79
of J2EE application designs 49
of use cases 23

Domain name service (DNS) 101, 106
DTDs 41, 85, 86, 95, 96

EcoTools™ 42, 264
EJB 34, 35, 36, 37, 53, 59, 187
Elements 95, 98
Enterprise beans 34, 37, 39, 50, 59, 60,

61, 63, 65, 67, 68, 78, 123, 124,
175, 177, 185, 187, 188, 239

as deployment wrappers 79
improving performance of 121, 122
logging exceptions 225
spawning threads from within 234,

236
Entities 86
Entity beans 53, 54, 55, 63, 180

changing 54
using as DAOs 157–59
with BMP 55
with CMP 55

Entity occurrence 86
Entity-relationship (ER) diagrams 7
equals() 126
Error handling 42–43, 124

and resubmission 44
notification procedures 42
retry procedures 42–43

Error log 42
Error reports 264
Errors

application runtime 264
derivative 227, 265, 266
root 265

Estimating 28–29
algorithm for 29–31

exception 227
Exception handling

decoupling 224–25
strategies 225–34

Exceptions 44, 181
and MDBs 192
checked 193
derivative 215, 225, 226, 233
JDK 232
missing 227
null pointer 215
unchecked 216, 232

External application interfaces
designing 33–45
guidelines 43–44

Extreme Programming (XP) 9–12, 16

Factory 57
Fail-over 55, 106

automatic 100
File systems

using as message broker 39
Finally block 165, 181, 193, 233
Firewalls 101, 104
Functions

limiting use of 167

Gateway 101
Generic ID 105
Get-type services 82

hashcode() 126
Hibernate 53, 159–63
Hibernator 161
High availability 99, 100, 105–7
Host variables 163, 164
HPROF

measuring CPU usage with 257–60
measuring memory usage with

260–62
HTML 66, 143, 150, 189, 199, 200,

201
HTTP 34, 35, 37

advantages of 36
Hub 100

Identity management software 104
Infrastructure specialist 2, 8

http://www.amazon.com/exec/obidos/ASIN/0972954899

280 Index

Input validation 204–6
Insert statements 168
Integrated development environment

(IDE) 80, 236
Interfaces

using to decouple 215
Inventory management application 50
IP address 100
Iterative approach 9, 10

J2EE application design 49–70
Java 34
Java Data Objects (JDO) 53, 54, 55, 56,

173
Java Development Kit (JDK) 68, 126,

149, 177, 181
exceptions 232

Java Naming and Directory Interface
(JNDI) 60, 180

Java Transaction API (JTA) 55, 65, 176,
178

Java Virtual Machine (JVM) 41, 256,
257, 260

shutdown 236
Javascript 66, 199, 204, 210
JAXB 141, 142, 143, 145–49, 213

advantages and disadvantages 149
code generator 148
usage guidelines 149–50

JDBC 54, 55, 56, 154, 156, 159, 161,
163–69, 173, 177, 259

objects 157
JDOM 141, 142, 145
Jeni’s XSLT Pages 152
JMeter 254, 255, 257
JMS 35, 65, 197, 225, 235, 252
JSPs 65, 66, 110, 189, 199, 201, 202,

209
and input validation 205
debugging 203
embedding navigation and business

logic 203
putting business logic in 210

JUnit 181, 243, 245, 246, 248, 250

Keys
artificial 92, 94
foreign 87, 93
natural 92
primary 86

Layered initialization 61
Layout designer 1, 6, 24
Legacy platforms 41
Linux 256
Literals 164
Load generator 252
Load testing 251–62
Load-balancing appliance 101, 106
Log4J 189, 215, 223
Logging 124, 188–89, 215

decoupling 224–25
limit coding for 224
strategies 223–25

Maverick 210
Memory leaks 253–54

finding with HPROF 260
testing for 254–56

Memory usage
measuring with HPROF 260–62
monitoring 255

Message-driven beans (MDBs) 63, 64,
65, 180, 186, 191–93, 235

Messages 217
acknowledging 193
error 265
exception 230
poison 193

Messaging
and requiring responses 39
point-to-point 35

Messaging technologies 35, 44, 65, 197
Messaging/JMS 35
Methods

identifying 78–79
Model-view-controller (MVC) 66, 199
Monitoring software 264
MQ/Series 35
Mutators 79

http://www.amazon.com/exec/obidos/ASIN/0972954899

281Index

Navigation 208
embedding in JSPs 203

.Net applications 36
Network architecture 99–108
Network management software 42
Normal form

third 89–91
nullPointerException 124, 133, 134,

181, 226, 266

Object modeling 39, 49–70
creating the object 71–84

Object orientation 52
Object-relational (O/R) toolset 53, 54,

55, 56, 159
ObjectRelationalBridge (OJB) 173
Objects

distributed 124
identifying 72–74
persistent 73
turning into classes 75

Oblix™ 104
onMessage() 191
Open source 70, 105, 211, 217–19, 239

mitigating risk 219
resolving technical issues 218–19
testing components 243

OpenNMS 42
Oracle 50, 107
Overloads 214

Page display 201–3
Parent 87
Performance

measuring 252–56
Performance tuning 251–62

and diminishing returns 251
Persistence management 163
Persistence method

choosing 53–56
PL/I 41
preparedStatement 163, 164, 169

closing 268
closing with a utility 165

Presentation layer 51, 65, 66–68, 110,
257

building 199–210
coding guidelines 209–10
common mistakes in coding 210
components 201–9
testing 243

Presentation tier 78
multiple 187

Presentation-tier developer 1, 6
Profiling 256–57

using commercial software 257
Project development team

roles and responsibilities 1–9
Project life cycle

approaches to 9–12
Project management software 23, 110,

115
Project manager 1, 2, 3, 4, 5, 27, 29
Project planning 109–17
ProjectTrak 23–24, 31–32, 81–82,

91–93, 134–37, 169–72, 182–84,
195–97, 270

Properties
minimizing 216

Prototyping 24–25
user interfaces 16

Provisioning 104
Proxy pattern 65, 219
Publish/subscribe capability 35

Rational Unified Process (RUP) 10, 11
Refactoring 245, 266–67

commonly used techniques 267–71
extract and decouple with interface

technique 270
extract-and-delegate method 267–69
extract-and-extend technique

269–70
Reference 253
Referential integrity rules 169
Regression testing 11, 169, 181, 250,

264, 266
automated 244, 245

http://www.amazon.com/exec/obidos/ASIN/0972954899

282 Index

Relationships 75–77, 87–89
collects 77
extends 76
implements 76
many-to-many 87
one-to-many 87, 95
recursive 89
supertype/subtype 88
uses 75

Report generation 151
Requirements 16, 22
resultSets

closing 268
Return statements 233
RMI services 34, 35, 36, 37, 39, 44, 59,

61, 63, 65, 67, 68, 123, 124, 185,
195, 227, 235

Roles 209
Rollbacks 157
Router 101
runnable 237
runTest() 246
runtimeException 232

Scalability 99, 105–7
Scheduling algorithms 270
Schemas 85, 86, 95, 148

creating 93–95
Scope 116, 213
Security 99, 104–5, 208–18
Select statements

using * in 167
serializable 123, 189
Serialization 195
Serialized objects 41
Server farm 102
Server-side components 7
Servlets 50, 65, 66, 186, 187, 199, 227,

239
debugging 209
putting business logic in 210

Session bean façade 63, 65

Session beans 44, 63, 65, 79, 186–90,
195

and business logic 188
stateless 189, 191, 194, 235

setup() 248
Shared pool 164
Simplified data access pattern 52, 56

advantages and disadvantages 56
SOAP 36, 194, 195
Software layering 49–52
Solaris 256
SQL applications

tuning 259
SQL statements 55

embedding literals in 163, 164
how DB2/UDB processes 165
how Oracle processes 164
strings 166

Stack trace 233
statement 163, 164

closing 165, 268
stop() 228
Stories 10, 16
Strategy pattern 61
String manipulation 166
stringBuffer.append() 163
stringBuffers 163
Strings 80
Struts 67, 68, 69, 78, 199–201, 204,

206, 208, 210, 215
Subnet mask 100
Swing 67, 200
Switch 100
Sybase 50
System testing

vs. unit testing 30

Tables 86
associative 94

Task order 110
Tasks

asynchronous 234

http://www.amazon.com/exec/obidos/ASIN/0972954899

283Index

TCP/IP networking layer 50
teardown() 248
Technical architect 1, 2–5
Test assertions

descriptions 250
Test cases 244, 265, 266

combining into suites 248
keeping in separate package

structure 249
making self-sufficient 250
writing 245, 246–49

testCase 248
Testing 169, 181

automated 244–45
for memory leaks 254–56
functional 243–50

Testing specialist 2, 8
testSuite 248
thread 228
threadDeath 228
Threading 234–37

and daemon threads 236
and thread starvation 236
and user threads 236
setting thread priority 236

ThreadWorks 214, 215, 237, 248
throwable 227, 228
Tivoli 42
to_char 167
Top utility 255–56
TopLink 53, 173
toString() 125
Traffic 100
Transaction demarcation 176
Transaction management 176–80

container 177
decoupling 177
programmed 177

Transmission log 43

UDDI protocol 64
Unified Modeling Language

(UML) 16, 49
Unit testing

vs. system testing 30

UNIX 255, 256
URL masks 105
Use cases 16, 17, 18, 27

common mistakes in 22–23
documenting 23
for external application

interfaces 33–34
writing 19–21

Use-case diagrams 20
User interface technology 24

Validation 41
Value object (VO) 40, 59, 60, 78, 82,

86, 110, 153, 175, 181, 195, 201,
269

building 121–37
common mistakes made with 133
formatting content as XML

document 132
mapping to tables and columns 159
passing and returning 79
sorting 129
using JAXB classes as 149

Value object layer 59–60
Value object pattern 59
valueObject 130, 269
Variables

closing 165
instance-level 189, 210
nonreferenceable 253
referenced 253
statically defined 260

W3Schools 152
Waterfall approach 9, 10
Web services 34, 35, 37, 39, 61, 63, 64,

67, 68, 124, 175, 180, 185, 186,
194–95, 254

advantages of 36
WebLogic™ 107, 216
Work-scheduling software 169

X/Path 149, 150
XML 40, 41, 139, 200

as protocol 192

http://www.amazon.com/exec/obidos/ASIN/0972954899

284 Index

XML access object (XAO) 139–40
XML documents 85, 86, 132

creating 96–98
simplifying 217
translating into HTML 143–44, 150
translating into VOs 140–44
using JAXB to read 145–49

XML text
passing as an argument 195

xmlspy 148
XSL 149, 200

style sheet 150
XSLT 143, 149, 150–51

style sheet 152
usage guidelines 151–52

XSLTC compiler 152

ZVON.org 152

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

http://www.amazon.com/exec/obidos/ASIN/0972954899

	Contents
	Preface
	Project Development Team and Project Life Cycle
	Section 1: Planning J2EE Applications
	Defining the Project
	Scope Definition and Estimation
	Designing External Application Interfaces

	Section 2: Designing J2EE Applications
	A Layered Approach to J2EE Design
	Creating the Object Model
	Creating the Data Model
	Network Architecture
	Planning Construction

	Section 3: Building J2EE Applications
	Building Value Objects
	Building XML Access Objects
	Building Business Objects
	Building Deployment Layer Objects
	Building the Presentation Layer
	Building Architectural Components
	Application Architecture Strategies
	Building Database Access Objects

	Section 4: Testing and Maintaining J2EE Applications
	Functional Testing Guidelines
	Performance Tuning and Load Testing
	Postimplementation Activities

	Index

	Click to Buy This Book:

