

Cryptography
and 13ata Security

Dorothy Elizabeth Rob, ling Denning
PURDUE UNIVERSITY

A VV

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts [] Menlo Park, California

London II Amsterdam • Don Mills, Ontario I Sydney

Library of Congress Cataloging in Publication Data

Denning, Dorothy E., (Dorothy Elizabeth), 1945-
Cryptography and data security.

Includes bibliographical references and index.
1. Computers--Access control. 2. Cryptography.

3. Data protection. 1. Title.
QA76.9.A25D46 1 9 8 2 001.64'028'9 81-15012
ISBN 0-201-10150-5 AACR2

Copyright © 1982 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

ISBN 0-201-10150-5
A BCDE FG H I J -M A-898765432

In memory of my Father,

Cornelius Lowell Robling

1910-1965

Preface

Electronic computers have evolved from exiguous experimental enterprises in the
1940s to prolific practical data processing systems in the 1980s. As we have come
to rely on these systems to process and store data, we have also come to wonder
about their ability to protect valuable data.

Data security is the science and study of methods of protecting data in
computer and communication systems from unauthorized disclosure and modifica-
tion. The goal of this book is to introduce the mathematical principles of data
security and to show how these principles apply to operating systems, database
systems, and computer networks. The book is for students and professionals seek-
ing an introduction to these principles. There are many references for those who
would like to study specific topics further.

Data security has evolved rapidly since 1975. We have seen exciting develop-
ments in cryptography: public-key encryption, digital signatures, the Data Encryp-
tion Standard (DES), key safeguarding schemes, and key distribution protocols.
We have developed techniques for verifying that programs do not leak confidential
data, or transmit classified data to users with lower security clearances. We have
found new controls for protecting data in statistical databases--and new methods
of attacking these databases. We have come to a better understanding of the
theoretical and practical limitations to security.

Because the field is evolving so rapidly, it has been difticult to write a book
that is both coherent and current. Even as the manuscript was in production, there
were new developments in the field. Although I was able to incorporate a few of
these developments, they are not as well integrated into the book as I would like.
In many cases, I was only able to include references.

Some areas are still unsettled, and I was unable to treat them to my satisfac-
tion. One such area is operating system verification; another is the integration of

vi PREFACE

cryptographic controls into operating systems and database systems. I hope to
cover these topics better in later editions of the book.

Data security draws heavily from mathematics and computer science. I have
assumed my audience has some background in programming, data structures,
operating systems, database systems, computer architecture, probability theory,
and linear algebra. Because I have found most computer science students have
little background in information theory and number theory, I have included self-
contained tutorials on these subjects. Because complexity theory is a relatively new
area, I have also summarized it.

This book is used in a one-semester graduate computer science course at
Purdue University. The students are assigned exercises, programming projects,
and a term project. The book is suitable for a graduate or advanced undergraduate
course and for independent study. There are a few exercises at the end of each
chapter, most of which are designed so the reader can recognize the right answer. I
have purposely not included solutions. There is also a puzzle.

Here is a brief summary of the chapters:

Chapter 1, Introduction, introduces the basic concepts of cryptography, data
security, information theory, complexity theory, and number theory.
Chapter 2, Encryption Algorithms, describes both classical and modern
encryption algorithms, including the Data Encryption Standard (DES) and
public-key algorithms.
Chapter 3, Cryptographic Techniques, studies various techniques related to
integrating cryptographic controls into computer systems, including key
management.
Chapter 4, Access Controls, describes the basic principles of mechanisms
that control access by subjects (e.g., users or programs) to objects (e.g., files
and records). These mechanisms regulate direct access to objects, but not
what happens to the information contained in these objects.
Chapter 5, Information Flow Controls, describes controls that regulate the
dissemination of information. These controls are needed to prevent programs
from leaking confidential data, or from disseminating classified data to users
with lower security clearances.
Chapter 6, Inference Controls, describes controls that protect confidential
data released as statistics about subgroups of individuals.

I am deeply grateful to Jim Anderson, Bob Blakley, Peter Denning, Whit
Dime, Peter Neumann, and Rich Reitman, whose penetrating criticisms and sug-
gestions guided me to important results and helped me focus my ideas. I am also
grateful to Greg Andrews, Leland Beck, Garrett Birkhoff, Manuel Blum, David
Chaum, Francis Chin, Larry Cox, Ttire Dalenius, George Davida, Dave Gifford,
Carl Hammer, Mike Harrison, Chris Hoffmann, Stephen Matyas, Glen Myers,
Bob Morris, Steve Reiss, Ron Rivest, Jan Schlt~rer, Gus Simmons, and Larry
Snyder. These people gave generously of their time to help make this a better
book.

PREFACE vii

I am thankful to the students who read the book, worked the problems, and
provided numerous comments and suggestions: George Adams, Brian Beuning,
Steve Booth, Steve Breese, Carl Burch, Steve Burton, Ray Ciesielski, Cliff
Cockerham, Ken Dickman, James Dobrina, Dave Eckert, Jeremy Epstein, Tim
Field, Jack Fitch, Jim Fuss, Greg Gardner, Neil Harrison, Ching-Chih Hsiao,
Teemu Kerola, Ron Krol, Meng Lee, Peter Liesenfelt, Paul Morrisett, Tim Nodes,
Bhasker Parthasarathy, Steve Pauley, Alan Pieramico, Steve Raiman, Dan Reed,
David Rutkin, Paul Scherf, Carl Smith, Alan Stanson, Mark Stinson, Andy Tong,
and Kim Tresner. I am especially thankful to Matt Bishop for providing solutions
and for grading.

The working version of the book was prepared on the department's VAX
computer. I am grateful to Doug Comer, Herb Schwetman, and the many others
who kept the system operational and paid careful attention to backup procedures.
I am grateful to the people who helped with the publication of the book, especially
Peter Gordon, Gail Goodell, Cheryl Wurzbacher, and Judith Gimple.

I am especially grateful to my husband, Peter, for his encouragement, sup-
port, advice, and help throughout.

Contents

INTRODUCTION
1.1
1.2
1.3

1.4

1.5

1.6

Cryptography 1
Data Security 3
Cryptographic Systems 7
1.3.1 Public-Key Systems 11
1.3.2 Digital Signatures 14
Information Theory 16
1.4.1 Entropy and Equivocation 17
1.4.2 Perfect Secrecy 22
1.4.3 Unicity Distance 25
Complexity Theory 30
1.5.1 Algorithm Complexity 30
1.5.2 Problem Complexity and NP-Completeness 31
1.5.3 Ciphers Based on Computationally Hard Problems
Number Theory 35
1.6.1 Congruences and Modular Arithmetic 36

48
1.6.2 Computing Inverses 39
1.6.3 Computing in Galois Fields

Exercises 54
References 56

34

ENCRYPTION ALGORITHMS 59
2.1 Transposition Ciphers 59
2.2 Simple Substitution Ciphers 62

2.2.1 Single-Letter Frequency Analysis
2.3 Homophonic Substitution Ciphers 67

2.3.1 Beale Ciphers 70

66

ix

CONTENTS

2.4

2.5

2.6

2.7

2.8

2.8.2
2.8.3
2.8.4

Exercises
References

2.3.2 Higher-Order Homophonics
Polyalphabetic Substitution Ciphers
2.4.1 Vigen6re and Beaufort Ciphers
2.4.2 Index of Coincidence 77
2.4.3
2.4.4
2.4.5
2.4.6

72
73

Kasiski Method 79
Running-Key Ciphers 83
Rotor and Hagelin Machines 84
Vernam Cipher and One-Time Pads

74

Polygram Substitution Ciphers 87
2.5.1 Playfair Cipher 87
2.5.2 Hill Cipher 88
Product Ciphers 90
2.6.1 Substitution-Permutation Ciphers
2.6.2 The Data Encryption Standard (DES)
2.6.3 Time-Memory Tradeoff 98
Exponentiation Ciphers 101
2.7.1 Pohlig-Hellman Scheme 103
2.7.2 Rivest-Shamir-Adleman (RSA) Scheme
2.7.3 Mental Poker 110
2.7.4 Oblivious Transfer 115
Knapsack Ciphers 117
2.8.1 Merkle-Hellman Knapsacks 118

Graham-Shamir Knapsacks 121
Shamir Signature-Only Knapsacks
A Breakable NP-Complete Knapsack

126
129

86

90
92

104

122
125

CRYPTOGRAPHIC TECHNIQUES 135
3.1 Block and Stream Ciphers 135
3.2 Synchronous Stream Ciphers 138

3.2.1 Linear Feedback Shift Registers
3.2.2 Output-Block Feedback Mode

3.3

3.4

3.5

3.6

139
142

3.2.3 Counter Method 143
Self-Synchronous Stream Ciphers 144
3.3.1 Autokey Ciphers 145
3.3.2 Cipher Feedback 145
Block Ciphers 147
3.4.1 Block Chaining and Cipher Block Chaining
3.4.2 Block Ciphers with Subkeys 151
Endpoints of Encryption 154
3.5.1 End-to-End versus Link Encryption 154
3.5.2 Privacy Homomorphisms 157
One-Way Ciphers 161
3.6.1 Passwords and User Authentication 161

149

CONTENTS xi

3.7

3.8

Key Management 164
3.7.1 Secret Keys 164
3.7.2 Public Keys 169
3.7.3 Generating Block Encryption Keys
3.7.4 Distribution of Session Keys 173
Threshold Schemes 179
3.8.1
3.8.2

Exercises
References

171

Lagrange Interpolating Polynomial Scheme
Congruence Class Scheme 183

185
187

180

ACCESS CONTROLS 191
4.1 Access-Matrix Model 192

4.1.1 The Protection State 192
4.1.2 State Transitions 194
4.1.3 Protection Policies 199

4.2 Access Control Mechanisms 200
4.2.1 Security and Precision 200
4.2.2 Reliability and Sharing 201
4.2.3 Design Principles 206

4.3 Access Hierarchies 207
4.3.1 Privileged Modes 207
4.3.2 Nested Program Units 208

4.4 Authorization Lists 209
4.4.1 Owned Objects 210
4.4.2 Revocation 213

4.5 Capabilities 216
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6 Query Modification 230

4.6 Verifiably Secure Systems 231
4.6.1 Security Kernels 232
4.6.2 Levels of Abstraction 235
4.6.3 Verification 236

4.7 Theory of Safe Systems 240
4.7.1 Mono-Operational Systems
4.7.2 General Systems 242
4.7.3 Theories for General Systems
4.7.4 Take-Grant Systems 248

Exercises 257
References 259

Domain Switching with Protected Entry Points
Abstract Data Types 219
Capability-Based Addressing 224
Revocation 227
Locks and Keys 228

241

245

218

xii CONTENTS

INFORMATION FLOW CONTROLS
5.1

265

5.2

5.3

5.4

5.5

Lattice Model of Information Flow
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
Flow Control Mechanisms
5.2.1 Security and Precision
5.2.2 Channels of Flow 281
Execution-Based Mechanisms

265
Information Flow Policy 265
Information State 266
State Transitions and Information Flow
Lattice Structure 273
Flow Properties of Lattices

279
279

276

282
5.3.1
5.3.2 Flow-Secure Access Controls
5.3.3 Data Mark Machine 288
5.3.4 Single Accumulator Machine
Compiler-Based Mechanism 291
5.4.1 Flow Specifications
5.4.2 Security Requirements
5.4.3 Certification Semantics
5.4.4
5.4.5
5.4.6
Program Verification
5.5.1 Assignment
5.5.2 Compound
5.5.3 Alternation 311
5.5.4 Iteration 312
5.5.5 Procedure Call 313

267

Dynamically Enforcing Security for Implicit Flow
285

292
293
297

290

General Data and Control Structures
Concurrency and Synchronization
Abnormal Terminations 305

3O7
309

310

298
302

5.5.6 Security 316
5.6 Flow Controls in Practice

5.6.1 System Verification
5.6.2 Extensions 320
5.6.3 A Guard Application

Exercises 324
References 327

318
318

321

282

INFERENCE CONTROLS 331
6.1 Statistical Database Model

6.2

332
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
Inference Control Mechanisms
6.2.1 Security and Precision

Information State 332
Types of Statistics 334
Disclosure of Sensitive Statistics
Perfect Secrecy and Protection
Complexity of Disclosure 339

340
340

336
339

CONTENTS xiii

6.3

6.4

6.5

6.2.2 Methods of Release 341
Methods of Attack 344
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Small and Large Query Set Attacks
Tracker Attacks 346
Linear System Attacks 352
Median Attacks 356
Insertion and Deletion Attacks

Mechanisms that Restrict Statistics
6.4.1 Cell Suppression 360
6.4.2 Implied Queries 364
6.4.3 Partitioning 368
Mechanisms that Add Noise 371

6.6
Exercises
References
INDEX 393

6.5.1 Response Perturbation (Rounding)
6.5.2 Random-Sample Queries 374
6.5.3 Data Perturbation 380
6.5.4 Data Swapping 383
6.5.5 Randomized Response (Inquiry)
Summary 387

388
390

358
358

386

344

372

1
Introduction

1.1 CRYPTOGRAPHY

Cryptography is the science and study of secret writing. A cipher is a secret meth-
od of writing, whereby plaintext (or cleartext) is transformed into ciphertext
(sometimes called a cryptogram). The process of transforming plaintext into ci-
phertext is called encipherment or encryption; the reverse process of transforming
ciphertext into plaintext is called decipherment or deeryption. Both encipherment
and decipherment are controlled by a cryptographic key or keys (see Figure 1.1).

There are two basic types of ciphers: transpositions and substitutions. Trans-
position ciphers rearrange bits or characters in the data. With a "rail-fence"
cipher, for example, the letters of a plaintext message are written down in a

FIGURE 1.1 Secret writing.

plaintext key
1

ciphertext

1

2 INTRODUCTION

pattern resembling a rail fence, and then removed by rows. The following illus-
trates this pattern:

DISCONCERTED COMPOSER

D 0 R C O

I C N E T D O P
S C E M

S R
E

DO RCOICNETDOPS RSCEM E

The key to the cipher is given by the depth of the fence, which in this example is 3.
Substitution ciphers replace bits, characters, or blocks of characters with

substitutes. A simple type of substitution cipher shifts each letter in the English
alphabet forward by K positions (shifts past Z cycle back to A); K is the key to the
cipher. The cipher is often called a Caesar cipher because Julius Caesar used it
with K = 3. The following illustrates Caesar's method:

IMPATIENT WAITER

LPSDWLHQW ZDLWHU .

A code is a special type of substitution cipher that uses a "code book" as the
key. Plaintext words or phrases are entered into the code book together with their
ciphertext substitutes, as shown next"

Word Code
BAKER 1701
FRETTING 5603
GUITARIST 4008
LOAFING 3790

LOAFING BAKER

3790 1701

The term code is sometimes used to refer to any type of cipher.
In computer applications, transposition is usually combined with substitu-

tion. The Data Encryption Standard (DES), for example, enciphers 64-bit blocks
using a combination of transposition and substitution (see Chapter 2).

Cryptanalysis is the science and study of methods of breaking ciphers. A
cipher is breakable if it is possible to determine the plaintext or key from the
ciphertext, or to determine the key from plaintext-ciphertext pairs. There are three
basic methods of attack: ciphertext-only, known-plaintext, and chosen-plaintext.

Under a eiphertext-only attack, a cryptanalyst must determine the key solely
from intercepted ciphertext, though the method of encryption, the plaintext lan-
guage, the subject matter of the ciphertext, and certain probable words may be

DATA SECURITY 3

known. For example, a message describing the location of a buried treasure would
probably contain words such as BURIED, TREASURE, NORTH, TURN,
RIGHT, MILES.

Under a known-plaintext attack, a cryptanalyst knows some plaintext-
ciphertext pairs. As an example, suppose an enciphered message transmitted from
a user's terminal to the computer is intercepted by a cryptanalyst who knows that
the message begins with a standard header such as "LOGIN". As another exam-
ple, the cryptanalyst may know that the Department field of a particular record
contains the ciphertext for Physics; indeed, the cryptanalyst may know the De-
partment field of every record in thedatabase. In some cases, knowledge of prob-
able words allows a close approximation to a known-plaintext attack. Encrypted
programs are particularly vulnerable because of the regular appearance of
keywordsue.g, begin, end, var, procedure, if, then. Even if the exact position of
encrypted keywords is unknown, a cryptanalyst may be able to make reasonable
guesses about them. Ciphers today are usually considered acceptable only if they
can withstand a known-plaintext attack under the assumption that the cryptana-
lyst has an arbitrary amount of plaintext-ciphertext pairs.

Under a ehosen-plaintext attack, a cryptanalyst is able to acquire the cipher-
text corresponding to selected plaintext. This is the most favorable case for the
cryptanalyst. A database system may be particularly vulnerable to this type of
attack if users can insert elements into the database, and then observe the changes
in the stored ciphertext. Bayer and Metzger [Baye76] call this the planted record
problem.

Public-key systems (defined in Section 1.3) have introduced a fourth kind of
attack: a chosen-eiphertext attack. Although the plaintext is not likely to be intelli-
gible, the cryptanalyst may be able to use it to deduce the key.

A cipher is unconditionally secure if, no matter how much ciphertext is inter-
cepted, there is not enough information in the ciphertext to determine the plaintext
uniquely. We shall give a formal definition of an unconditionally secure cipher in
Section 1.4. With one exception, all ciphers are breakable given unlimited re-
sources, so we are more interested in ciphers that are computationally infeasible to
break. A cipher is computationally secure, or strong, if it cannot be broken by
systematic analysis with available resources.

The branch of knowledge embodying both cryptography and cryptanalysis is
called eryptology.

1.2 DATA SECURITY

Classical cryptography provided secrecy for information sent over channels where
eavesdropping and message interception was possible. The sender selected a cipher
and encryption key, and either gave it directly to the receiver or else sent it indi-
rectly over a slow but secure channel (typically a trusted courier). Messages and
replies were transmitted over the insecure channel in ciphertext (see Figure 1.2).
Classical encryption schemes are described in Chapter 2.

Modern cryptography protects data transmitted over high-speed electronic

4 INTRODUCTION

FIGURE 1.2 Classical information channel.

Sender

plaintext

Receiver

ciphertext

insecure channel

key'

secure key distribution channel

plaintext

lines or stored in computer systems. There are two principal objectives: secrecy (or
privacy), to prevent the unauthorized disclosure of data; and authenticity or integ-
rity), to prevent the unauthorized modification of data.

Information transmitted over electronic lines is vulnerable to passive wire-
tapping, which threatens secrecy, and to active wiretapping, which threatens au-
thenticity (see Figure 1.3). Passive wiretapping (eavesdropping) refers to the
interception of messages, usually without detection. Although it is normally used
to disclose message contents, in computer networks it can also be used to monitor
traffic flow through the network to determine who is communicating with whom.
Protection against disclosure of message contents is provided by enciphering trans-
formations, which are described in Chapter 2, and by the cryptographic techniques
described in Chapter 3. Protection against traffic flow analysis is provided by
controlling the endpoints of encryption; this is discussed in Chapter 3.

Active wiretapping (tampering) refers to deliberate modifications made to
the message stream. This can be for the purpose of making arbitrary changes to a
message, or of replacing data in a message with replays of data from earlier
messages (e.g., replacing the amount field of a transaction "CREDIT SMITH'S
ACCOUNT WITH $10" with the amount field of an earlier transaction "CRED-
IT JONES'S ACCOUNT WITH $5000"). It can be for the purpose of injecting
false messages, injecting replays of previous messages (e.g., to repeat a credit
transaction), or deleting messages (e.g., to prevent a transaction "DEDUCT
$1000 FROM SMITH'S ACCOUNT"). Encryption protects against message

FIGURE 1.3 Threats to secure communication.

sender ' ~ receiver
insecure channel ~ / / / "

7
passive wiretapping active wiretapping

DATA SECURITY 5

modification and injection of false messages by making it infeasible for an oppo-
nent to create ciphertext that deciphers into meaningful plaintext. Note, however,
that whereas it can be used to detect message modification, it cannot prevent it.

Encryption alone does not protect against replay, because an opponent could
simply replay previous ciphertext. Cryptographic techniques for protecting against
this problem are discussed in Chapter 3. Although encryption cannot prevent
message deletion, the cryptographic techniques discussed in Chapter 3 can detect
deletions of blocks or characters within a message stream. Deletion of entire mes-
sages can be detected with communication protocols that require message
acknowledgment.

FIGURE 1.4 Threats to data stored in computer systems.

Computer system

overwriting modifying

replaying

browsing

P

classified
data

"'"k__
confidential

data

statistic

inference

FT]

leaking

r

unclassified
user

inserting

deleting

6 INTRODUCTION

Data in computer systems is vulnerable to similar threats (see Figure 1.4).
Threats to secrecy include browsing, leakage, and inference. Browsing refers to
searching through main memory or secondary storage for information (e.g., confi-
dential data or proprietary software programs). It is similar to eavesdropping on
communication channels, but there are two important differences. On the one
hand, information stored in computer systems has a longer lifetime; in this sense,
browsing poses a more serious threat than eavesdropping. On the other hand,
information transmitted over electronic lines is vulnerable to tapping even when
access to the system is denied. Browsing is possible only if the user has access to
the system and to unauthorized regions of memory. Access controls, described in
Chapter 4, can prevent this.

Cryptography protects against browsing by making the information unintel-
ligible. It can supplement access controls and is especially useful for protecting
data on tapes and discs which, if stolen, can no longer be protected by the system.
Cryptography cannot, however, protect data from disclosure while it is being pro-
cessed in the clear. Access controls are needed for this purpose, and these controls
must include procedures that clear memory between use to ensure that confiden-
tial data is not inadvertently exposed. If access is not controlled, encrypted data
can also be vulnerable to ciphertext searching (e.g., finding employees making
identical salaries by searching for records with identical ciphertext salaries); cryp-
tographic solutions to this problem are described in Chapter 3.

Leakage refers to the transmission of data to unauthorized users by processes
with legitimate access to the data. A compiler, for example, could leak a propri-
etary software program while it is being compiled. An income tax program could
leak confidential information about a user. A file editor could leak classified mili-
tary data to a user without a security clearance. Cryptography and access controls
must be supplemented with information flow controls, discussed in Chapter 5, to
control information dissemination.

Inference refers to the deduction of confidential data about a particular
individual by correlating released statistics about groups of individuals. For exam-
ple, if Smith is the only non-Ph.D, faculty member in a Physics department,
Smith's salary can be deduced by correlating the average salary of all faculty in
the department with the average salary of all Ph.D. faculty in the department.
Although cryptography and access controls can protect the data records from
browsing, they do not provide a mathematical framework for determining which
statistics can be released without disclosing sensitive data. Inference controls, dis-
cussed in Chapter 6, address this problem.

Threats to authenticity include tampering and accidental destruction. Tam-
pering with data in computer systems is analogous to active wiretapping on com-
munication channels, but differs from it in the same ways browsing differs from
passive wiretapping. Like active wiretapping, tampering can be for the purpose of
making arbitrary changes to data (e.g., changing the Salary field of an employee
record from $20,000 to $25,000). It can be for the purpose of replaying data stored
previously in a record (e.g., to restore a previous balance in an accounting record),
or replaying data stored in some other record (e.g., to make the Salary field of an
employee record the same as that of a higher paid employee). It can also be for the

CRYPTOGRAPHIC SYSTEMS

purpose of overwriting data with nonsense (e.g., overwriting a cryptographic key
so that encrypted data becomes inaccessible). Finally, it can be for the purpose of
inserting records (e.g., adding a dummy employee record to the payroll file) or
deleting files or records (e.g., to remove a bad credit report). Cryptographic tech-
niques can help protect against these threats by making it possible to detect false
or replayed ciphertext. But it cannot prevent them. Access controls are essential
for the reliable operation of the system. Backup is vital for recovery.

Accidental destruction refers to the unintentional overwriting or deletion of
data. Unintentional overwriting is caused by faulty software (e.g., because an
array subscript is out-of-range). Cryptography cannot protect against this threat.
Access controls, implemented in language processors and in hardware, provide
error confinement by preventing programs from writing into the memory regions
of other programs or into system tables. Unintentional deletion is caused by soft-
ware or hardware failure (e.g., a disk head crash), and by user mistakes (e.g.,
inadvertently deleting lines of a file during an editing session). Backup is needed to
recover from accidental as well as deliberate destruction. Many text editors have
automatic backup facilities so that an earlier version of a file is easily recovered;
some have facilities for undoing each editing command.

Computer systems are vulnerable to another problem: masquerading. If an
intruder can gain access to a system under another user's account, then the intrud-
er can access the user's data files and all other information permitted to the user.
Similarly, if a program can spoof legitimate users logging into the system into
believing that they are conversing with the system, the program might be able to
obtain confidential information from these users (e.g., their login passwords). Pro-
tection against masquerading requires that the system and user be able to mutual-
ly authenticate each other. Such strategies that use encrypted passwords are
described in Chapter 3. "Digital signatures" provide a more general means of
authenticating users or processes; they are introduced in Section 1.3.3.

Data security is the science and study of methods of protecting data in
computer and communications systems. It embodies the four kinds of controls
studied in this book: cryptographic controls, access controls, information flow con-
trois, and inference controls. It also embodies procedures for backup and recovery.

1.3 CRYPTOGRAPHIC SYSTEMS

This section describes the general requirements of all cryptographic systems, the
specific properties of public-key encryption, and digital signatures.

A cryptographic system (or cryptosystem for short) has five components:

1. A plaintext message space, if/.
2. A ciphertext message space, C.
3. A key space, .K.
4. A family of enciphering transformations, EK: ~ ~ C, where K ~ .K.
5. A family of deciphering transformations, DK: C ~ ~ , where K ~ .K.

8 INTRODUCTION

FIGURE 1.5 Cryptographic system.

plaintext ciphertext plaintext

Each enciphering transformation E K is defined by an enciphering algorithm
E, which is common to every transformation in the family, and a key K, which
distinguishes it from the other transformations. Similarly, each deciphering trans-
formation D K is defined by a deciphering algorithm D and a key K. For a given K,
D K is the inverse of EK; that is, DK(EK(M)) = M for every plaintext message M. In
a given cryptographic system, the transformations E K and D K are described by
parameters derived from K (or directly by K). The set of parameters describing E K
is called the enciphering key, and the set of parameters describing D K the decipher-
ing key. Figure 1.5 illustrates the enciphering and deciphering of data.

Cryptosystems must satisfy three general requirements:

1. The enciphering and deciphering transformations must be efficient for all
keys.

2. The system must be easy to use.
3. The security of the system should depend only on the secrecy of the keys and

not on the secrecy of the algorithms E or D.

Requirement (1) is essential for computer applications; data is usually enciphered
and deciphered at the time of transmission, and these operations must not be
bottlenecks. Requirement (2) implies it must be easy for the cryptographer to find
a key with an invertible transformation. Requirement (3) implies the enciphering
and deciphering algorithms must be inherently strong; that is, it should not be
possible to break a cipher simply by knowing the method of encipherment. This
requirement is needed because the algorithms may be in the public domain or
known to a cryptanalyst, whence knowing K reveals E g and D g. Note, however, the
converse need not hold; that is, knowing E g or DE need not reveal K. This is
because the enciphering key describing E g or the deciphering key describing D x
could be derived from K by a one-way (irreversible) transformation (see Section
1.5.3). This technique is used in public-key systems (see Section 1.3). We shall
assume the algorithms E and D are public knowledge.

There are specific requirements for secrecy and authenticity. Secrecy re-
quires that a cryptanalyst not be able to determine plaintext data from intercepted
ciphertext. Formally, there are two requirements:

Secrecy requirements
It should be computationally infeasible for a cryptanalyst to systematically
determine the deciphering transformation D K from intercepted ciphertext C,
even if the corresponding plaintext M is known.

CRYPTOGRAPHIC SYSTEMS

, It should be computationally infeasible for a cryptanalyst to systematically
determine plaintext M from intercepted ciphertext C.

Requirement (1) ensures that a cryptanalyst cannot systematically determine the
deciphering transformation (guessing may be possible). Thus, the cryptanalyst will
be unable to decipher C or other ciphertext enciphered under the transformation
E g. Requirement (2) ensures that a cryptanalyst cannot systematically determine
plaintext without the deciphering transformation. Both requirements should hold
regardless of the length or number of ciphertext messages intercepted.

Secrecy requires only that the transformation D g (i.e., the deciphering key)
be protected. The transformation E g can be revealed if it does not give away D g.
Figure 1.6 illustrates. The straight line shows the intended flow through the sys-
tem, while the bent line shows the undesired flow that results from successful
attacks.

Data authenticity requires that a cryptanalyst not be able to substitute a
false ciphertext C' for a ciphertext C without detection. Formally, the two require-
ments are:

Authenticity requirements
It should be computationally infeasible for a cryptanalyst to systematically
determine the enciphering transformation E g given C, even if the correspond-
ing plaintext M is known.
It should be computationally infeasible for a cryptanalyst to systematically
find ciphertext C' such that DK(C') is valid plaintext in the set M.

Requirement (1) ensures that a cryptanalyst cannot systematically determine the
enciphering transformation. Thus the cryptanalyst will be unable to encipher a
different plaintext message M', and substitute the false ciphertext C' = EK(M')
for C. Requirement (2) ensures that a cryptanalyst cannot find ciphertext C' that
deciphers into meaningful plaintext without the enciphering transformation. Nu-
merical data is particularly vulnerable to ciphertext substitution because all values
may be meaningful. Both requirements should hold regardless of the amount of
ciphertext intercepted.

Authenticity requires only that the transformation E g (i.e., the enciphering

FIGURE 1.6 Secrecy.

M

protected

c M

°

M

10 INTRODUCTION

FIGURE 1.7 Authenticity.

protected

M ~ C

~ d i s a l l o w e d

<23 AM/

key) be protected. The transformation D K could be revealed if it does not give away
E x . Figure 1.7 illustrates.

Simmons classifies cryptosystems as symmetric (one-key) and asymmetric
(two-key) [Simm79]. In symmetric or one-key cryptosystems the enciphering and
deciphering keys are the same (or easily determined from each other). Because we
have assumed the general method of encryption is known, this means the transfor-
mations E K and D x are also easily derived from each other. Thus, if both E K and D K
are protected, both secrecy and authenticity are achieved. Secrecy cannot be sepa-
rated from authenticity, however, because making either E K or D K available ex-
poses the other. Thus, all the requirements for both secrecy and authenticity must
hold in one-key systems.

One-key systems provide an excellent way of enciphering users' private files.
Each user A has private transformations E n and D A for enciphering and decipher-
ing files (see Figure 1.8). If other users cannot access E n and D n, then both the
secrecy and authenticity of A's data is assured.

One-key systems also provide an excellent way of protecting information
transmitted over computer networks. This is the classical information channel
where the sender and receiver share a secret communication key (see Figure 1.2).
If both parties are mutually trustworthy, they can be assured of both the secrecy
and authenticity of their communications.

Until recently, all cryptosystems were one-key systems. Thus, one-key sys-

FIGURE 1.8 Single-key encryption of private files.

A' s File

User
A

Encrypted
Data

CRYPTOGRAPHIC SYSTEMS 11

FIGURE 1.9 File encryption with separate Read/Write keys.

User with
Write Authority

User with
Read Authority

write-key I

read-key

Encrypted
Data

tems are also usually referred to as conventional (or classical) systems. The DES is
a conventional system.

In asymmetric or two-key cryptosystems the enciphering and deciphering
keys differ in such a way that at least one key is computationally infeasible to
determine from the other. Thus, one of the transformations E K or D K can be re-
vealed without endangering the other.

Secrecy and authenticity are provided by protecting the separate transforma-
tions--D g for secrecy, E K for authenticity. Figure 1.9 illustrates how this principle
can be applied to databases, where some users have read-write authority to the
database, while other users have read authority only. Users with read-write au-
thority are given both D K and E K, so they can decipher data stored in the database
or encipher new data to update the database. If E K cannot be determined from D K,

users with read-only authority can be given D K, so they can decipher the data but
cannot update it. Thus D K is like a read-key, while E K is like a write-key (more
precisely, the deciphering key describing D K is the read-key, and the enciphering
key describing E K the write-key).

Note that this does not prevent a user with read-only authority (or no access
authority) from destroying the data by overwriting the database with nonsense. It
only prevents that user from creating valid ciphertext. To protect the data from
such destruction, the system must be secured by access controls, so that no user
can write into the database without the write-key E K. The system need not, how-
ever, control read access to the data, because the data cannot be deciphered with-
out the read-key D K.

1.3.1. Public-Key Systems

The concept of two-key cryptosystems was introduced by Diffie and Hellman in
1976 [Diff76]. They proposed a new method of encryption called public-key en-
eryption, wherein each user has both a public and private key, and two users can
communicate knowing only each other's public keys.

In a public-key system, each user A has a public enciphering transformation
E A, which may be registered with a public directory, and a private deciphering
transformation D A, which is known only to that user. The private transformation
D A is described by a private key, and the public transformation E A by a public key

12 INTRODUCTION

FIGURE 1.10 Secrecy in public-key system.

public private

M M

A B

derived from the private key by a one-way transformation. It must be computa-
tionally infeasible to determine D A from E A (or even to find a transformation
equivalent to DA).

In a public-key system, secrecy and authenticity are provided by the separate
transformations. Suppose user A wishes to send a message M to another user B. If
A knows B's public transformation Es, A can transmit M to B in secrecy by
sending the ciphertext C = Es(M) . On receipt, B deciphers C using B's private
transformation DB, getting

DB(C) = DB(Es(M)) = M .

(See Figure 1.10.) The preceding scheme does not provide authenticity because
any user with access to B's public transformation could substitute another message
M' for M by replacing C with C' = Es(M').

For authenticity, M must be transformed by A's own private transformation
D A. Ignoring secrecy for the moment, A sends C = DA(M) to B. On receipt, B uses
A's public transformation E A to compute

EA(C) = EA(DA(M)) = M .

(See Figure 1.11.) Authenticity is provided because only A can apply the transfor-
mation D A. Secrecy is not provided because any user with access to A's public
transformation can recover M.

Now, we had previously defined a transformation D A as a function from the
ciphertext space C to the message space M. To apply D A to plaintext messages, D A
must instead map M to C. Furthermore, to restore the original message, E a must
be the inverse of DA; that is, E A must be a function from C to M such that
EA(DA(M)) = M.

To use a public-key system for both secrecy and authenticity, the ciphertext
space C must be equivalent to the plaintext space ~//so that any pair of transforma-
tions E A and D A can operate on both plaintext and ciphertext messages. Further-
more, both E A and D A must be mutua l inverses so that E A (D A (M))
= DA(EA(M)) = M. These requirements are summarized in Table 1.1.

FIGURE 1.11 Authenticity in public-key system.

private public

M ==-===~ M

A B

CRYPTOGRAPHIC SYSTEMS 13

TABLE 1.1 Requirements for public-key transformations.

Secrecy Authenticity Both

E A ' m ~ C D A ' m ~ C EA.m- - ,m
DA'C~ n~ EA 'C~ m DA m ~ m
D A (E A (M)) = M E A (D A (M)) = M D A (E A (M)) = M

E A (D A (M)) = M

To achieve both secrecy and authenticity, the sender and receiver must each
apply two sets of transformations. Suppose A wishes to send a message M to B.
First A's private transformation D A is applied. Then A enciphers the result using
B's public enciphering transformation E e, and transmits the doubly transformed
message C = Es(DA(M)) to B. B recovers M by first applying B's own private
deciphering transformation D B, and then applying A's public transformation E A to
validate its authenticity, getting

EA(DB(C)) = EA(DB(EB(DA(M)))
= EA(DA(M))
= M .

(See Figure 1.12.)
Only one of the public-key encryption methods discussed in Chapter 2 can be

used for both secrecy and authenticity. This is the scheme invented by Rivest,
Shamir, and Adleman of MIT (referred to as the "RSA scheme"). The RSA
scheme is based on the difficulty of factoring large numbers (see Section 2.7). The
schemes based on the difficulty of solving "knapsack problems" can be used for
either secrecy or authenticity but not both (see Section 2.8). McEliece's [McE178]
scheme based on error correcting codes (not discussed in this book) is also restrict-
ed to secrecy.

Simmons [Simm81] shows how a public-key authenticity system can be used
to verify the identity of individuals seeking entrance to secured areas (computer
room, nuclear reactor site, etc.). Each individual permitted to enter the area is
given an ID card containing descriptive information such as name and social secu-
rity number, identifying information such as voiceprint or handprint, and access

FIGURE 1.12 Secrecy and authenticity in public-key system.

private public private public

M M

secrecy

authenticity

14 INTRODUCTION

control information such as the time of day when entrance is permitted. The
information is encrypted under the private key of the central authority issuing the
card. The corresponding public key is distributed to all areas where entry is con-
trolled. The individual enters the restricted area through a special facility where
the identifying information is taken and checked against the information stored on
the individual's card.

1.3.2 Digital Signatures

A digital signature is a property private to a user or process that is used for signing
messages. Let B be the recipient of a message M signed by A. Then A's signature
must satisfy these requirements:

B must be able to validate A's signature on M.
It must be impossible for anyone, including B, to forge A's signature.
In case A should disavow signing a message M, it must be possible for a
judge or third party to resolve a dispute arising between A and B.

A digital signature, therefore, establishes sender authenticity; it is analogous to an
ordinary written signature. By condition (2), it also establishes data authenticity.

Public-key authentication systems provide a simple scheme for implementing
digital signatures. Because the transformation D A is private to A, D A serves as A's
digital signature. The recipient B of a message M signed by A (i.e., transformed by
DA) is assured of both sender and data authenticity. It is impossible for B or
anyone else to forge A's signature on another message, and impossible for A to
disclaim a signed document (assuming D A has not been lost or stolen). Because the
inverse transformation E A is public, the receiver B can readily validate the signa-
ture, and a judge can settle any disputes arising between A and B. Summarizing,

1. A signs M by computing C = DA(M).
2. B validates A's signature by checking that EA(C) restores M.
3. A judge resolves a dispute arising between A and B by checking whether

EA(C) restores M in the same way as B.

Whereas conventional systems such as the DES provide data authenticity,
they do not in themselves provide sender authenticity. Because the sender and
receiver share the same key, the receiver could forge the sender's signature, and it
would be impossible for a judge to settle a dispute.

It is possible to implement digital signatures in conventional systems using a
trusted third party S. The following approach was suggested by Merkle [Merk80].
Each user A registers a pair of private transformations E A and D A with S, where
EA(DA(M)) = M for every message M. To send a signed message M to B, A
computes C = DA(M), and transmits C to B. To check the validity of C and obtain
M, B sends C to S. S computes EA(C) = M and returns M to B enciphered under

CRYPTOGRAPHIC SYSTEMS 15

B's private transformation. (Other methods of implementing digital signatures in
conventional systems are described in Rabin [Rabi78], Needham and Schroeder
[Need78], Popek and Kline [Pope79], and Smid [Staid79].)

There are difficulties with both the conventional and public-key approach if
signature keys are lost or stolen. This problem is addressed in Chapter 3.

There are many applications for digital signatures. For example, if customer
A's bank receives an electronic message requesting the withdrawal of $100,000,
the bank must be certain the request came from A; if A later disavows the mes-
sage, the bank must be able to prove to a third party that the message originated
with A.

In the preceding example, secrecy is desired as well as authenticity, because
the customer would like the transaction to be confidential. In some applications,
sender and data authenticity are desirable in the absence of secrecy. Simmons
[Simm79] describes a system developed at Sandia Laboratories for nuclear test
ban treaty verification where authentication is required but secrecy cannot be
tolerated. Each nation is allowed to install a seismic observatory in the other
nation (the host) to determine whether it is complying with a requirement to stop
all underground testing of nuclear weapons. The observatory transmits the data
gathered back to a monitor in the nation owning the observatory. There are three
requirements:

The monitor must be certain the information reported back has originated
from the observatory and has not been tampered with by the host; thus both
sender and data authenticity are essential.
The host nation must be certain the information channel is not being used for
other purposes; thus it must be able to read all messages transmitted from
the observatory.
Neither the monitor nor the host should be able to create false messages that
appear to have originated from the observatory. If a dispute arises between
the monitor and host about the authenticity of a message, a third party (e.g.,
the United Nations or NATO) must be able to resolve the dispute.

All three requirements are satisfied in a public-key authentication system, where
the observatory uses a private transformation (unknown even to the host) to sign
all messages transmitted to the monitor. Both the monitor and host have access to
the corresponding public transformation.

Merkle [Merk80] describes two applications of signatures for software pro-
tection. The first involves distributing network software to the individual nodes of
a network. If the software is signed, the nodes can check the validity of the soft-
ware before execution. The second involves running privileged programs in operat-
ing systems. The system (preferably hardware) could refuse to execute any
program in privileged mode that is not properly signed by a program verifier,
making it impossible for someone to substitute a program that could run in privi-
leged mode and wreak havoc in the system. This idea could be extended to all
programs, with the system refusing to execute any code that has not been signed

16 INTRODUCTION

by some authority. Note that these applications do not require a method of resolv-
ing disputes. They could, therefore, be implemented in a conventional system,
where the sender and receiver share a common key.

1.4 INFORMATION THEORY

In 1949, Shannon [Shan49] provided a theoretical foundation for cryptography
based on his fundamental work on information theory [Shan48]. He measured the
theoretical secrecy of a cipher by the uncertainty about the plaintext given the
received ciphertext. If, no matter how much ciphertext is intercepted, nothing can
be learned about the plaintext, the cipher achieves perfect secrecy.

With one exception, all practical ciphers leave some information about the
plaintext in the ciphertext. As the length of the ciphertext increases, the uncertain-
ty about the plaintext usually decreases, eventually reaching 0. At this point, there
is enough information to determine the plaintext uniquely, and the cipher is, at
least in theory, breakable.

Most ciphers are theoretically breakable with only a few hundred bits of
plaintext. But this does not mean these ciphers are insecure, because the computa-
tional requirements to determine the plaintext may exceed available resources.
Thus, the important question is not whether a cipher is unconditionally secure, but
whether it is computationally secure in the sense of being infeasible to break.

This section reviews information theory and its application to cryptography.
Information theory also applies to the problem of controlling information dissemi-
nation; this application is discussed in Chapter 5. Section 1.5 discusses computa-
tional complexity and its application to cryptography.

Information theory addresses two related problems: the "noisy channel prob-
lem" and the secrecy problem. In the noisy channel problem, a sender transmits a
message M over a noisy channel to a receiver (see Figure 1.13). If a distorted
message M' is received, then the receiver would like to recover M. To make this
possible, the sender adds redundant bits (called error control codes) to M in such a
way that transmission errors can be corrected (or at least detected so that the
receiver can request retransmission).

The noisy channel problem is analogous to the secrecy problem in crypto-
graphic systemsmthe noise corresponding to the enciphering transformation, the

FIGURE 1.13 Noisy channel.

noise

M M'
channel

sender receiver

INFORMATION THEORY 17

received message M' to ciphertext. Although the role of the cryptanalyst is similar
to the role of the receiver in the noisy channel problem, the role of the sender is
quite different because the objective is to make message recovery infeasible. (See
[Simm79] for more discussion of this.)

1.4.1. Entropy and Equivocation

Information theory measures the amount of information in a message by the aver-
age number of bits needed to encode all possible messages in an optimal encoding.
The Sex field in a database, for example, contains only one bit of information
because it can be encoded with one bit (Male can be represented by "0" , Female
by "1"). If the field is represented by an ASCII character encoding of the charac-
ter strings " M A L E " and "FEMALE" , it will take up more space, but will not
contain any more information. The Salary field in a database, however, contains
more than one bit of information, because there are more possibilities, and these
possibilities cannot all be encoded with one bit. In computer systems, programs
and text files are usually encoded with 8-bit ASCII codes, regardless of the
amount of information in them. As we shall see shortly, text files can be com-
pressed by about 40% without losing any information.

The amount of information in a message is formally measured by the en-
tropy of the message. The entropy is a function of the probability distribution
over the set of all possible messages. Let X1 X n be n possible messages occur-
ring with probabilities p(X~) . . , P(Xn) where ~ = . , • , i=lp(X,) 1 The entropy of a
given message is defined by the weighted average:

n

H(X) = - 5". p(Xi)log2p(X/).
i=1

We shall write this as the sum taken over all messages X:

H (X) = - E p (X) log2 p (X)
X

= ~ p(X) log2(1)
X p (X) " (1.1)

Example:
Suppose there are two possibilities: Male and Female, both equally likely;
thus p(Male) = p(Female) = 1/2. Then

1 1
H(X) = ~(log2 2) + ~(log2 2)

1 1
= ~ - b ~ = 1,

confirming our earlier observation that there is 1 bit of information in the
Sex field of a database, m

18 INTRODUCTION

Intuitively, each term log2 (1/p(X)) in Eq. (1.1) represents the number of
bits needed to encode message X in an optimal encoding--that is, one which
minimizes the expected number of bits transmitted over the channel. The weighted
average H(X) gives the expected number of bits in optimally encoded messages.

Because lip(X) decreases as p(X) increases, an optimal encoding uses short
codes for frequently occurring messages at the expense of using longer ones for
infrequent messages. This principle is applied in Morse code, where the most
frequently used letters are assigned the shortest codes.

"Huffman codes" [Huff52] are optimal codes assigned to characters, words,
machine instructions, or phrases. Single-character Huffman codes are frequently
used to compact large files. This is done by first scanning the file to determine the
frequency distribution of the ASCII characters, next finding the optimal encoding
of the characters, and finally replacing each character with its code. The codes are
stored in a table at the beginning of the file, so the original text can be recovered.
By encoding longer sequences of characters, the text can be compacted even fur-
ther, but the storage requirements for the table are increased. A character encod-
ing of the text file for this chapter using the Compact program on UNIX t reduced
its storage requirements by 38%, which is typical for text files.~: Machines with
variable-length instruction sets use Huffman codes to assign short codes to fre-
quently used instructions (e.g., LOAD, STORE, BRANCH).

The following examples further illustrate the application of Eq. (1.1) to
determine the information content of a message.

Example:
Let n = 3, and let the 3 messages be the letters A, B, and C, where p(A)
= 1/2 and p(B) = p(C) = 1/4. Then

logz(1) p(A) = 1 ° g 2 2 = 1

log2(1) p(B) = l ° g z 4 = 2

log2(1) p(C) = log2 4 = 2 ,

and

H (X) = (½)log2 2 + 2[(¼)1og2 4] = 0 . 5 + 1 . 0 = 1.5 .

An optimal encoding assigns a 1-bit code to A and 2-bit codes to B and C.
For example, A can be encoded with the bit 0, while B and C can be encoded
with two bits each, 10 and 11. Using this encoding, the 8-letter sequence
ABAACABC is encoded as the 12-bit sequence 010001101011 as shown
next:

1" UNIX is a trademark of Bell Labs.
Tom Sederberg wrote a program to determine the net reduction in space for this chapter when

sequences of n characters are encoded. For n = 2, the reduction was again about 38% (the increase in
table size compensating for the decrease in text space)" for n = 3, it dropped to about 25%.

INFORMATION THEORY 19

A B A A C A B C
0 10 0 0 11 0 10 11

The average number of bits per letter is 12/8 = 1.5.
The preceding encoding is optimal; the expected number of bits per

letter would be at least 1.5 with any other encoding. Note that B, for exam-
ple, cannot be encoded with the single bit 1, because it would then be impos-
sible to decode the bit sequence 11 (it could be either BB or C). Morse code
avoids this problem by separat ing letters with spaces. Because spaces
(blanks) must be encoded in computer applications, this approach in the long
run requires more storage, m

Example:
Suppose all messages are equally likely; that is, p(Xi) = 1In for i = 1 , n.
Then

H (X) = n[(-~)log2 n] = logz n.

Thus, log2 n bits are needed to encode each message. For n = 2 k, H(X) = k
and k bits are needed to encode each possible message, m

Example:
Let n = 1 and p(X) = 1. Then H(X) = log2 1 = 0. There is no information
because there is no choice, m

Given n, H(X) is maximal for p(X1) = . . . = p(X,,) = 1/n; that is, when all
messages are equally likely (see exercises at end of chapter). H(X) decreases as
the distribution of messages becomes more and more skewed, reaching a minimum
of H(X) = 0 when p(X,.) - 1 for some message X,.. As an example, suppose X
represents a 32-bit integer variable. Then X can have at most 32 bits of informa-
tion. If small values of X are more likely than larger ones (as is typical in most
programs), then H(X) will be less than 32, and if the exact value of X is known,
H(X) will be 0.

The entropy of a message measures its uncertainty in that it gives the num-
ber of bits of information that must be learned when the message has been distort-
ed by a noisy channel or hidden in ciphertext. For example, if a cryptanalyst
knows the ciphertext block " Z $ J P 7 K " corresponds to either the plaintext
" M A L E " or the plaintext " F E M A L E " , the uncertainty is only one bit. The crypt-
analyst need only determine one character, say the first, and because there are
only two possibilities for that character, only the distinguishing bit of that charac-
ter need be determined. If it is known that the block corresponds to a salary, then
the uncertainty is more than one bit, but it can be no more than log2 n bits, where n

is the number of possible salaries.
Public-key systems used for secrecy only are vulnerable to a ciphertext-only

20 INTRODUCTION

attack if there is not enough uncertainty in the plaintext. To see why, consider a
ciphertext C = EA(M), where E4 is a public enciphering transformation and M is
a plaintext message in a set of n possible messages M1 , M,. Even if it is
computationally infeasible to determine the private deciphering transformation
D A, it may be possible to determine M by computing C i = EA(M i) for i = 1, 2, . . .
until C = C i, whence M = M i. This type of attack would work, for example, if M is
known to be an integer salary less than $100,000 because there would be at most
100,000 messages to try. The attack can be prevented by appending a random bit
string to a short message M before enciphering; this string would be discarded on
deciphering. Of course, if au thent ic i ty is used with s e c r e c y - - t h a t is, C
= EA(DB(M)), the cryptanalyst, lacking D B, cannot search the plaintext space this
way. Conventional systems are not vulnerable to this attack because the encipher-
ing (and deciphering) key is secret.

For a given language, consider the set of all messages N characters long. The
rate of the language for messages of length N is defined by r = H(X)/N; that is,
the average number of bits of information in each character. For large N, esti-
mates of r for English range from 1.0 bits/letter to 1.5 bits/letter. The absolute
rate of the language is defined to be the maximum number of bits of information
that could be encoded in each character assuming all possible sequences of charac-
ters are equally likely. If there are L characters in the language, then the absolute
rate is given by R = log2 L, the maximum entropy of the individual characters. For
English, R = log2 26 = 4.7 bits/letter. The actual rate of English is thus consider-
ably less than its absolute rate. The reason is that English, like all natural lan-
guages, is highly redundant. For example, the phrase "occurring frequently" could
be reduced by 58% to "crng frq" without loss of information. By deleting vowels
and double letters, mst ids cn b xprsd n fwr ltrs, bt th xprnc s mst nplsnt.

Redundancy arises from the structure of the language. It is reflected in the
statistical properties of English language messages in the following ways
[Shan51]"

1. Single letter frequency distributions. Certain letters such as E, T, and A
occur much more frequently than others.

2. Digram frequency distributions. Certain digrams (pairs of letters) such as
TH and EN occur much more frequently than others. Some digrams (e.g.,
QZ) never occur in meaningful messages even when word boundaries are
ignored (acronyms are an exception).

3. Trigram distributions. The proportion of meaningful sequences decreases
when trigrams are considered (e.g., BB is meaningful but BBB is not).
Among the meaningful trigrams, certain sequences such as THE and ING
occur much more frequently than others.

4. N-gram distributions. As longer sequences are considered, the proportion of
meaningful messages to the total number of possible letter sequences de-
creases. Long messages are structured not only according to letter sequences
within a word but also by word sequences (e.g., the phrase PROGRAM-
MING LANGUAGES is much more likely than the phrase LANGUAGES
P R O G R A M M I N G) .

INFORMATION THEORY 21

Programming languages have a similar structure, reflected in the statistical
properties of programs [Turn73]. Here there is more freedom in letter sequences
(e.g., the variable name QZK is perfectly valid), but the language syntax imposes
other rigid rules about the placement of keywords and delimiters.

The rate of a language (entropy per character) is determined by estimating
the entropy of N-grams for increasing values of N. As N increases, the entropy per
character decreases because there are fewer choices and certain choices are much
more likely. The decrease is sharp at first but tapers off quickly; the rate is esti-
mated by extrapolating for large N. (See [Shan51,Cove78].)

The redundancy of a language with rate r and absolute rate R is defined by D
= R - r. For R = 4.7 and r = 1, D = 3.7, whence the ratio D/R shows English to
be about 79% redundant; for r = 1.5, D = 3.2, implying a redundancy of 68%. We
shall use the more conservative estimate r = 1.5 and D = 3.2 in our later examples.

The uncertainty of messages may be reduced given additional information.
For example, let X be a 32-bit integer such that all values are equally likely; thus
the entropy of X is H(X) = 32. Suppose it is learned that X is even. Then the
entropy is reduced by one bit because the low order bit must be 0.

Given a message Y in the set Y1,.. . , Ym, where ~iml p(Y/) = 1, let pr(X) be
the conditional probability of message X given message Y [this is sometimes writ-
ten P (X[Y)], and let p(X, Y) be the joint probability of message X and message
Y; thus,

p(X, Y) = pr(X)p(Y) .

The equivocation is the conditional entropy of X given Y:

Hy(X) = - ~ p(X, Y)log2 py(X),
X,Y

which we shall write as

Hr(X) = Y". p(X, Y) log2(1)
x,Y py(X)

(l . 2 a)

o r

Hv(X) = E p(Y) E py(X) log2 (1) Y X pr(X) . (1.2b)

Example:
Let n = 4 and p(X) = 1/4 for each message X; thus H(X) = log2 4 = 2.
Similarly, let m = 4 and p(Y) = 1/4 for each message Y. Now, s, lppose each
message Y narrows the choice of X to two of the four messages as shown
next, where both messages are equally likely:

Y,: X~ or X~, Y~: X~ or X3
Y3:X3 or X4, Y4:X4 or X, .

Then for each Y, py(X) = 1/2 for two of the X's and py(X) = 0 for the
remaining two X's. Using Eq. (1.2b), the equivocation is thus

22 INTRODUCTION

Hy(X)= 4[(¼)2[(½)log2 2]] = 1og22 = 1 .

Thus knowledge of Y reduces the uncertainty of X to one bit, corresponding
to the two remaining choices for X. I I

1.4.2. Perfect Secrecy

Shannon studied the information theoretic properties of cryptographic systems in
terms of three classes of information:

1. Plaintext messages M occurring with prior probabilities p(M), where
Z p(M) = 1.

M
2. Ciphertext messages C occurring with probabilities p(C), where Z p (C) = 1.

C
3. Keys K chosen with prior probabilities p(K), where E p(K) = 1.

K

Let pc(M) be the probability that message M was sent given that C was
received (thus C is the encryption of message M). Perfect secrecy is defined by the
condition

Pc(M) = p (M) ;

that is, intercepting the ciphertext gives a cryptanalyst no additional information.
Let pg(C) be the probability of receiving ciphertext C given that M was

sent. Then pg(C) is the sum of the probabilities p(K) of the keys K that encipher
M as C:

PM(C) = E p(K)
K

EK(M) = C

Usually there is at most one key K such that EK(M) = C for given M and C, but
some ciphers can transform the same plaintext into the same ciphertext under
different keys.

A necessary and sufficient condition for perfect secrecy is that for every C,

PM(C) = p(C) for all M.

This means the probability of receiving a particular ciphertext C given that M was
sent (enciphered under some key) is the same as the probability of receiving C
given that some other message M' was sent (enciphered under a different key).
Perfect secrecy is possible using completely random keys at least as long as the
messages they encipher. Figure 1.14 illustrates a perfect system with four
messages, all equally likely, and four keys, also equally likely. Here Pc(M) =
P(M) = 1/4, and PM(C) = p(C) = 1/4 for all M and C. A cryptanalyst
intercepting one of the ciphertext messages C1, C2, G, or C4 would have no way of

INFORMATION THEORY 23

FIGURE 1.14 Perfect secrecy (adapted from [Shan49]).

Key

Mi ... 1.

4,

3

M 3 1

C1

C2

C3

2

M4 3

plaintext
messages

. ~ C 4

ciphertext
messages

determining which of the four keys was used and, therefore, whether the correct
message is M~, M2, Ms, or M4.

Perfect secrecy requires that the number of keys must be at least as great as
the number of possible messages. Otherwise there would be some message M such
that for a given C, no K deciphers C into M, implying Pc(M) = 0. The cryptana-
lyst could thereby eliminate certain possible plaintext messages from consider-
ation, increasing the chances of breaking the cipher.

Example:
Suppose the 31-character ciphertext

C = LZWJWAKFGGLZWJDSFYMSYWTMLXJWFUZ

was produced by a Caesar cipher (see Section 1.1), where each letter in the
alphabet is shifted forward by K positions, 0 _< K _< 25. Because the number
of possible keys is smaller than the number of possible English sentences of
length 31, perfect secrecy is not achieved. The cipher is easily broken by
trying all 26 keys as shown in Figure 1.15. The plaintext message is

24 INTRODUCTION

FIGURE 1.15 Solution of substitution cipher.

Key Message

0: L Z W J W A K F G G L Z W J D S F Y M S Y W T M L X J W F U Z
1: K Y V I V Z J E F F K Y V I C R E X L R X V ' S L K W I V E T Y
2: J X U H U Y I D E E J X U H B Q D W K Q W U R K J V H U D S X
3: I W T G T X H C D D I W T G A P C V J P V T Q J I U G T C R W
4: H V S F S W G B C C H V S F Z O B U I O U S P I H T F S B Q V
5: G U R E R V F A B B G U R E Y N A T H N T R O H G S E R A P U
6: F T Q D Q U E Z A A F T Q D X M Z S G M S Q N G F R D Q Z O T
7: E S P C P T D Y Z Z E S P C W L Y R F L R P M F E Q C P Y N S
8: D R O B O S C X Y Y D R O B V K X Q E K Q O L E D P B O X M R
9: C Q N A N R B W X X C Q N A U J W P D J P N K D C O A N W L Q

10: B P M Z M Q A V W W B P M Z T I V O C I O M J C B N Z M V K P
11: A O L Y L P Z U V V A O L Y S H U N B H N L I B A M Y L U J O
12: Z N K X K O Y T U U Z N K X R G T M A G M K H A Z L X K T I N
13: Y M J W J N X S T T Y M J W Q F S L Z F L J G Z Y K W J S H M
14: X L I V I M W R S S X L I V P E R K Y E K I F Y X J V I R G L
15: W K H U H L V Q R R W K H U O D Q J X D J H E X W I U H Q F K
16: V J G T G K U P Q Q V J G T N C P I W C I G D W V H T G P E J
17: U I F S F J T O P P U I F S M B O H V B H F C V U G S F O D I
18: T H E R E I S N O O T H E R L A N G U A G E B U T F R E N C H
19: S G D Q D H R M N N S G D Q K Z M F T Z F D A T S E Q D M B G
20: R F C P C G Q L M M R F C P J Y L E S Y E C Z S R D P C L A F
21: Q E B O B F P K L L Q E B O I X K D R X D B Y R Q C O B K Z E
22: P D A N A E O J K K P D A N H W J C Q W C A X Q P B N A J Y D
23: O C Z M Z D N I J J O C Z M G V I B P V B Z W P O A M Z I X C
24: N B Y L Y C M H I I N B Y L F U H A O U A Y V O N Z L Y H W B
25: M A X K X B L G H H M A X K E T G Z N T Z X U N M Y K X G V A

M = T H E R E IS N O O T H E R L A N G U A G E BUT F R E N C H . t

Because only one of the keys (K = 18) produces a meaningful message,
we have:

pc(M) = 1
Pc(M') = 0, for every other message M'

1
PM(C) = p (1 8) - 2 6

PM,(C) = 0, for every other message M ' . I I

Example:
With a slight modification to the preceding scheme, we can create a cipher
having perfect secrecy. The trick is to shift each letter by a random amount .
Specifically, K is given by a s t ream klk2 where each k i is a random

t From S. Gorn's Compendium of Rarely Used Cliches.

INFORMATION THEORY 25

integer in the range [0, 25] giving the amount of shift for the ith letter. Then
the 31-character ciphertext C in the preceding example could correspond to
any valid 31-character message, because each possible plaintext message is
derived by some key stream. For example, the plaintext message

THIS SPECIES HAS ALWAYS BEEN EXTINCT.]"

is derived by the key stream

18, 18, 14, 17, 4 ,

Though most of the 31-character possible plaintext messages can be ruled
out as not being valid English, this much is known even without the cipher-
text. Perfect secrecy is achieved because interception of the ciphertext does
not reveal anything new about the plaintext message.

The key stream must not repeat or be used to encipher another
message. Otherwise, it may be possible to break the cipher by correlating
two ciphertexts enciphered under the same portion of the stream (see
Section 2.4.4). m

A cipher using a nonrepeating random key stream such as the one described
in the preceding example is called a one-time pad. One-time pads are the only
ciphers that achieve perfect secrecy. Implementation of one-time pads and ap-
proximations to one-time pads is studied in Chapters 2 and 3.

1.4.3 Unicity Distance

Shannon measured the secrecy of a cipher in terms of the key equivocation Hc(K)
of a key K for a given ciphertext C; that is, the amount of uncertainty in K given C.
From Eq. (1.2b), this is

Hc(K) = ~ p(C) ~ Pc(K) logz (1 \)
C K pc(K) '

where Pc(K) is the probability of K given C. If Hc(K) is 0, then there is no
uncertainty, and the cipher is theoretically breakable given enough resources. As
the length N of the ciphertext increases, the equivocation usually decreases.

The unieity distance is the smallest N such that Hc(K) is close to 0; that is, it
is the amount of ciphertext needed to uniquely determine the key. A cipher is
unconditionally secure if Hc(K) never approaches 0 even for large N; that is, no
matter how much ciphertext is intercepted, the key cannot be determined. (Shan-
non used the term "ideal secrecy" to describe systems that did not achieve perfect
secrecy, but were nonetheless unbreakable because they did not give enough infor-
mation to determine the key.)

Most ciphers are too complex to determine the probabilities required to
derive the unicity distance. Shannon showed, however, it is possible to approxi-

• 1" Also from S. Gorn's Compendium of Rarely Used Cliches.

26 INTRODUCTION

mate it for certain ciphers using a random cipher model. Hellman [Hell77] also
derived Shannon's result using a slightly different approach.

Following Hellman, we assume each plaintext and ciphertext message comes
from a finite alphabet of L symbols. Thus there are 2 nN possible messages of
length N, where R = log2 L is the absolute rate of the language. The 2 nN messages
are partitioned into two subsets: a set of 2 rN meaningful messages and a set of 2 RN
- 2 rN meaningless messages, where r is the rate of the language. All meaningful
messages are assumed to have the same prior probability 1/2 "N = 2 -rN, while all
meaningless messages are assumed to have probability 0.

We also assume there are 2H(K) keys, all equally likely, where H (K) is the key
entropy (number of bits in the key). The prior probability of all keys is p (K)
= 1/2H(K)= 2-H(K).

A random cipher is one in which for each key K and ciphertext C, the
decipherment DK(C) is an independent random variable uniformly distributed over
all 2 RN messages, both meaningful and not. Intuitively, this means that for a given
K and C, DK(C) is as likely to produce one plaintext message as any other. Actual-
ly the decipherments are not completely independent because a given key must
uniquely encipher a given message, whence DK(C) ~ DK(C') for C ~ C' .

FIGURE 1.16 Random cipher model (adapted from [Hell 77]).

2 rN

meaningful
messages

2 R N _ 2 rN

meaningless
messages

1 M] ' ~ 2

2

1

2

o 2

C 1

C 2

C 3

C 4

C 5

C 6

C 7

2RN

ciphertext
messages

INFORMATION THEORY 27

Consider the ciphertext C = EK(M) for given K and M. A spurious key
decipherment or false solution arises whenever encipherment under another key K'
could produce C; that is, C = EK,(M) for the same message M, or C = E K, (M ') for
another meaningful message M'. Figure 1.16 shows two spurious key decipher-
ments, one from the third ciphertext and one from the sixth. A cryptanalyst inter-
cepting one of these ciphertexts would be unable to break the cipher since there
would be no way of picking the correct key. We are not concerned with decipher-
ments that produce meaningless messages, because the cryptanalyst can immedi-
ately reject these solutions.

Now, for every correct solution to a particular ciphertext, there are (2H(K) --

1) remaining keys, each of which has the same probability q of yielding a spurious
key decipherment. Because each plaintext message is equally likely, the probabil-
ity of getting a meaningful message and, therefore, a false solution is given by

2 r N
n q - 2R N 2 (r-R)N = 2-ON,

where D = R - r is the redundancy of the language. Letting F denote the expected
number of false solutions, we have

F = (2 H(K) - - 1) q = (2 H (K) - - 1) 2 -ON ~ 2 H (K) - D N . (1.3)

Because of the rapid decrease in the exponential with increasing N,

logzF = H (K) - O N = 0

is taken as the point where the number of false solutions is sufficiently small the
cipher can be broken. Thus

N - H (K)
D (1.4)

is the unicity distancemthe amount of text necessary to break the cipher.
If for given N, the number of possible keys is as large as the number of

meaningful messages, then H (K) = 1og2(2 RN) = RN; thus

H (K) - D N = (R - D) N = r N ¢ O,

and the cipher is theoretically unbreakable. This is the principle behind the one-
time pad.

Example:

Consider the DES, which enciphers 64-bit blocks (8 characters) using 56-bit
keys. The DES is a reasonably close approximation to the random cipher
model. Figure 1.17 shows F as a function of N for English language mes-
sages, where H (K) = 56 and D = 3.2 in Eq. (1.3). The unicity distance is
thus

N n
56
3.2

- 17.5 characters,

or a little over two blocks. Doubling the key size to 112 bits would double the
unicity distance to 35 characters. I

28 INTRODUCTION

FIGURE .1.17 Unicity distance for DES.

56

50

r-q

o 45

o 40

O

35

o 30

E = 25
7

20

X

15 0

E

10
©

5

0 5

Unicity Point

I I I N¢ I
10 15 17.5 20

N

Length of Ciphertext

Example:
Consider a simple substitution cipher that shifts every letter in the alphabet
forward by K positions, 0 ~ K _< 25. Then H(K) = log226 = 4.7 and the
unicity distance is

4.7
N - - 1.5 characters.

3.2

This estimate does not seem plausible, however, because no substitution
cipher can be solved with just one or two characters of ciphertext. There are
two problems with the approximation. First, the estimate D = 3.2 applies
only to reasonable long messages. Second, the cipher is a poor approximation
to the random cipher model. This is because most ciphertexts are not pro-
duced by meaningful messages (e.g., the ciphertext QQQQ is produced only
by the meaningless messages AAAA, B BBB ZZZZ), whence the deci-
pherments are not uniformly distributed over the entire message space. Nev-
ertheless, shifted ciphers can generally be solved with just a few characters of
ciphertext. II

INFORMATION THEORY 29

The random cipher model gives a conservative estimate of the amount of
ciphertext needed to break a cipher. Thus a particular cipher will have a unicity
distance of at least H(K)/D. In practice, H(K)/D is a good approximation even
for simple ciphers. We shall derive the unicity distance of several ciphers in Chap-
ter 2. The interested reader can read more about the unicity distances of classical
ciphers in Deavours [Deav77].

The unicity distance gives the number of characters required to uniquely
determine the key; it does not indicate the computational difficulty of finding it. A
cipher may be computationally infeasible to break even if it is theoretically possi-
ble with a relatively small amount of ciphertext. Public-key systems, for example,
can be theoretically broken without any ciphertext at all. The cryptanalyst, know-
ing the public key and the method of generating key pairs, can systematically try
all possible private keys until the matching key is found (see Brassard [Bras79a,
Bras80]). This strategy is computationally infeasible, however, for large key
spaces (e.g., with 2200 keys). The DES can also be broken by exhaustive search of
the key space in a known-plaintext attack (by trying all keys until one is found
that enciphers the plaintext into the matching ciphertext). Nevertheless, the best
known strategies for breaking the DES are extremely time-consuming. By con-
trast, certain substitution ciphers discussed in the next chapter use longer keys and
have much greater unicity distances than DES. These ciphers are often relatively
simple to solve, however, when enough ciphertext is intercepted.

Equation (1.4) shows that the unicity distance N is inversely proportional to
the redundancy D. As D approaches 0, an otherwise trivial cipher becomes un-
breakable. To illustrate, suppose a 6-digit integer M is enciphered as 351972 using
a Caesar-type shifted substitution cipher with key K, where 0 ~ K _< 9, and that
all possible 6-digit integers are equally likely. Then a cryptanalyst cannot deter-
mine which of the following integers is the value of M:

Key Integer
0 351972
1 240861
2 139750

• °

9 462083

The reason the cipher cannot be solved is that the language has no redundancy;
every digit counts.

Because of the inherent redundancy of natural languages, many ciphers can
be solved by statistical analysis of the ciphertext. These techniques use frequency
distributions of letters and sequences of letters, ciphertext repetitions, and prob-
able words. Although a full discussion of these techniques is beyond the scope of
this book, Chapter 2 describes how a few simple ciphers can be broken using
frequency distributions. (For more depth in this area, see [Konh81].)

Protection against statistical analysis can be provided by several means. One
way, suggested by Shannon, is by removing some of the redundancy of the lan-

30 INTRODUCTION

guage before encryption. In computer systems, for example, Huffman codes could
be used to remove redundancy by compressing a file before encryption.

Shannon also proposed two encryption techniques to thwart attacks based on
statistical analysis: confusion and diffusion. Confusion involves substitutions that
make the relationship between the key and ciphertext as complex as possible.
Diffusion involves transformations that dissipate the statistical properties of
the plaintext across the ciphertext. Many modern ciphers such as the DES and
public-key schemes provide confusion and diffusion through complex enciphering
transformations over large blocks of data. These ciphers can also be operated in
a "chaining mode", where each ciphertext block is functionally dependent on
all preceding blocks; this diffuses the plaintext across the entire ciphertext (see
Chapter 3).

1.5 COMPLEXITY THEORY

Computational complexity provides a foundation for analyzing the computational
requirements of cryptanalytic techniques, and for studying the inherent difficulty
of solving ciphers. It also provides a foundation for studying the inherent difficulty
of proving security properties about arbitrary systems (see Chapter 4), and for
analyzing the computational difficulty of protecting confidential data released in
the form of statistics (Chapter 6).

1.5.1 Algorithm Complexity

The strength of a cipher is determined by the computational complexity of the
algorithms used to solve the cipher. The computational complexity of an algorithm
is measured by its time (T) and space (S) requirements, where T and S are
expressed as functions of n, and n characterizes the size of the input. A function
f(n) is typically expressed as an "order-of-magnitude" of the form O(g(n)) (called
"big O" notation), wheref(n) = O(g(n)) means there exist constants c and no such
that

f in) _< c lg(n)] for n ~ no.

As an example, suppose f(n) = 17n + 10. Then f(n) = O(n) because 17n + 10
18n for n ~. 10 [i.e., g(n) = n, c = 18, and no = 10]. If f (n) is a polynomial of

the form

f(n) = atnt.+ at_l nt-1 +-F aln + ao

for constant t, then f(n) = O(nt); that is, all constants and low-order terms are
ignored.

Measuring the time and space requirements of an algorithm by its order-of-
magnitude performance has the advantage of being system independent; thus, it is
unnecessary to know the exact timings of different instructions or the number of
bits used to represent different data types. At the same time, it allows us to see

COMPLEXITY THEORY 31

TABLE 1.2 Classes of algorithms.

Number of operations
Class Complexity for n = 10 ~ Real time

Polynomial
Constant O(1) 1 1 #sec
Linear O(n) 10 G 1 second
Quadratic O(n 2) 10 TM 10 days
Cubic O(n 3) 10 TM 27,397 years

Exponential O(2 n) 10301030 10301016 years

how the time and space requirements grow as the size of the input increases. For
example, if T = O(n2), doubling the size of the input quadruples the running time.

It is customary to classify algorithms by their time (or space) complexities.
An algorithm is polynomial (more precisely, polynomial time) if its running time is
given by T = O(n t) for some constant t; it is constant if t = 0, linear if t = 1,
quadratic if t = 2, and so forth. It is exponential if T = O(th(n)) for constant t and
polynomial h(n).

For large n, the complexity of an algorithm can make an enormous differ-
ence. For example, consider a machine capable of performing one instruction per
microsecond (~tsec); this is 106 instructions per second, or 8.64 × 101° instructions
per day. Table 1.2 shows the running times of different classes of algorithms for n
= l06, where we have ignored all constants and rounded to 1011 instructions per
day. At T = O(n 3) execution of the algorithm becomes computationally infeasible
on a sequential machine. It is conceivable, however, that a configuration with 1
million processors could complete the computation in about 10 days. For T
= 0(2,) execution of the algorithm is computationally infeasible even if we could
have trillions of processors working in parallel.

Many ciphers can be solved by exhaustively searching the entire key space,
trying each possible key to ascertain whether it deciphers into meaningful plain-
text or some known plaintext. If n = 2H(K) is the size of the key space, then the
running time of this strategy is T = O(n) = O(2H(K)). Thus, the time is linear in
the number of keys, but exponential in the key length. This is why doubling the
length of the keys used for DES from 56 bits to t12 bits can have a dramatic
impact on the difficulty of breaking the cipher, even though it increases the unicity
distance only by a factor of 2.

1.5.2. Problem Complexity and NP-Completeness

Complexity theory classifies a problem according to the minimum time and space
needed to solve the hardest instances of the problem on a Turing Machine (or
some other abstract model of computation). A Turing Machine (TM) is a finite
state machine with an infinite read-write tape (e.g., see [Gare79,Aho74,Mins67]
or the description in Section 4.7.2 for details). A TM is a "realistic" model of

32 INTRODUCTION

computation in that problems that are polynomial solvable on a TM are also
polynomial solvable on real systems and vice versa.

Problems that are solvable in polynomial time are called tractable because
they can usually be solved for reasonable size inputs. Problems that cannot be
systematically solved in polynomial time are called intractable or simply "hard",
because as the size of the input increases, their solution becomes infeasible on even
the fastest computers. Turing [Turi36] proved that some problems are so hard
they are undecidable in the sense that it is impossible to write an algorithm to solve
them. In particular, he showed the problem of determining whether an arbitrary
TM (or program) halts is undecidable. Many other problems have been shown to
be undecidable by proving that if they could be solved, then the "halting problem"
could be solved (see Section 4.7.2 for an example).

Figure 1.18 shows several important complexity classes and their possible
relationships (their exact relationships are unknown). The class P consists of all
problems solvable in polynomial time.

FIGURE 1.18 Complexity classes.

EXPTIME

PSPACE - Complete
-

f

PSPACE

NP- / ~ J CoNP-
Complete \ Complete

\ .,"
NP f ~ CoNP

NPNCoNP

COMPLEXITY THEORY 3 3

The class NP (nondeterministic polynomial) consists of all problems solvable
in polynomial time on a nondeterministic TM. This means if the machine guesses
the solution, it can check its correctness in polynomial time. Of course, this does
not really "solve" the problem, because there is no guarantee the machine will
guess the right answer.

To systematically (deterministically) solve certain problems in NP seems to
require exponential time. An example of such a problem is the "knapsack prob-
lem": given a set of n integers A = {al, . . . , a,} and an integer S, determine
whether there exists a subset of A that sums to S.~f The problem is clearly in NP
because for any given subset, it is easy to check whether it sums to S. Finding a
subset that sums to S is much harder, however, as there are 2" possible subsets;
trying all of them has time complexity T = 0(2"). Another example of a problem
that seems to have exponential time complexity is the "satisfiability problem",
which is to determine whether there exists an assignment of values to a set of n
boolean variables Vl, . . . , v, such that a given set of clauses over the variables is
true.

The class NP includes the class P because any problem polynomial solvable
on a deterministic TM is polynomial solvable on a nondeterministic one. If all NP
problems are polynomial solvable on a deterministic TM, we would have P = NP.
Although many problems in NP seem much "harder" than the problems in P (e.g.,
the knapsack problem and satisfiability) no one has yet proved P 4= NP.

Cook [Cook71] showed the satisfiability problem has the property that every
other problem in NP can be reduced to it in polynomial time. This means that if
the satisfiability problem is polynomial solvable, then every problem in NP is
polynomial solvable, and if some problem in NP is intractable, then satisfiability
must also be intractable. Since then, other problems (including the knapsack prob-
lem) have been shown to be equivalent to satisfiability in the preceding sense. This
set of equivalent problems is called the NP-complete problems, and has the proper-
ty that if any one of the problems is in P, then all NP problems are in P and P
- NP. Thus, the NP-complete problems are the "hardest" problems in NP. The
fastest known algorithms for systematically solving these problems have worst-
case time complexities exponential in the size n of the problem. Finding a poly-
nomial-time solution to one of them would be a major breakthrough in computer
science.

A problem is shown to be NP-complete by proving it is NP-hard and in NP.
A problem is NP-hard if it cannot be solved in polynomial time unless P = NP. To
show a problem A is NP-hard, it is necessary to show that some NP-complete
problem B is polynomial-time reducible to an instance of A, whence a polynomial-
time algorithm for solving A would also solve B. To show A is in NP, it is neces-
sary to prove that a correct solution can be proved correct in polynomial time.

The class CoNP consists of all problems that are the complement of some
problem in NP. Intuitively, problems in NP are of the form "determine whether a

t The integers represent rod lengths, and the problem is to find a subset of rods that exactly fits

a one-dimensional knapsack of length n.

34 INTRODUCTION

solution exists," whereas the complementary problems in CoNP are of the form
"show there are no solutions." It is not known whether NP = CoNP, but there are
problems that fall in the intersection NP n CoNP. An example of such a problem
is the "composite numbers problem": given an integer n, determine whether n is
composite (i.e., there exist factors p and q such that n = pq) or prime (i.e., there
are no such factors). The problem of finding factors, however, may be harder than
showing their existence.

The class PSPACE consists of those problems solvable in polynomial space,
but not necessarily polynomial time. It includes NP and CoNP, but there are
problems in PSPACE that are thought by some to be harder than problems in NP
and CoNP. The PSPACE-complete problems have the property that if any one of
them is in NP, then PSPACE = NP, or if any one is in P, then PSPACE = P. The
class EXPTIME consists of those problems solvable in exponential time, and in-
cludes PSPACE. The interested reader is referred to [Gare79,Aho74] for a more
complete treatment of complexity theory.

1.5.3. Ciphers Based on Computationally Hard Problems

In their 1976 paper, Diffie and Hellman [Diff76] suggested applying computa-
tional complexity to the design of encryption algorithms. They noted that NP-
complete problems might make excellent candidates for ciphers because they
cannot be solved in polynomial time by any known techniques. Problems that are
computationally more difficult than the problems in NP are not suitable for en-
cryption because the enciphering and deciphering transformations must be fast
(i.e., computable in polynomial time). But this means the cryptanalyst could guess
a key and check the solution in polynomial time (e.g., by enciphering known
plaintext). Thus, the cryptanalytic effort to break any polynomial-time encryption
algorithm must be in NP.

Diffie and Hellman speculated that cryptography could draw from the the-
ory of NP complexity by examining ways in which NP-complete problems could
be adapted to cryptographic use. Information could be enciphered by encoding it
in an NP-complete problem in such a way that breaking the cipher would require
solving the problem in the usual way. With the deciphering key, however, a short-
cut solution would be possible.

To construct such a cipher, secret "trapdoor" information is inserted into a
computationally hard problem that involves inverting a one-way function. A func-
tion f is a one-way function if it is easy to compute f(x) for any x in the domain of
f, while, for almost all y in the range of f, it is computationally infeasible to
compute f - l (y) even i f f is known. It is a trapdoor one-way function if it is easy to
compute f-~ given certain additional information. This additional information is
the secret deciphering key.

Public-key systems are based on this principle. The trapdoor knapsack
schemes described in Section 2.8 are based on the knapsack problem. The RSA
scheme described in Section 2.7 is based on factoring composite numbers.

NUMBER THEORY 35

The strength of such a cipher depends on the computational complexity of
the problem on which it is based. A computationally difficult problem does not
necessarily imply a strong cryptosystem, however. Shamir gives three reasons
[Sham79]:

1. Complexity theory usually deals with single isolated instances of a problem.
A cryptanalyst often has a large collection of statistically related problems to
solve (e.g., several ciphertexts generated by the same key).

2. The computational complexity of a problem is typically measured by its
worst-case or average-case behavior. To be useful as a cipher, the problem
must be hard to solve in almost all cases.

3. An arbitrarily difficult problem cannot necessarily be transformed into a
cryptosystem, and it must be possible to insert trapdoor information into the
problem in such a way that a shortcut solution is possible with this informa-
tion and only with this information.

Lempel [Lemp79] illustrates the first deficiency with a block cipher for
which the problem of finding an n-bit key is NP-complete when the plaintext
corresponding to one block of ciphertext is known. But given enough known plain-
text, the problem reduces to solving n linear equations in n unknowns. The cipher
is described in Section 2.8.4.

Shamir [Sham79] proposes a new complexity measure to deal with the sec-
ond difficulty. Given a fraction r such that 0 ~ r ~ 1, the percentile complexity
T(n, r) of a problem measures the time to solve the easiest proportion r of the
problem instances of size n. For example, T(n, 0.5) gives the median complexity;
that is, at least half of the instances of size n can be solved within time T(n, 0.5).
The problem of deciding whether a given integer is prime has median complexity
O(1) because half of the numbers have 2 as a factor, and this can be tested in
constant time.

With respect to the third difficulty, Brassard [Bras79b] shows it may not be
possible to prove that the cryptanalytic effort to invert a trapdoor one-way func-
tion is NP-complete. If the function satisfies a few restrictions, then a proof of NP-
completeness would imply NP = CoNP.

1.6 NUMBER THEORY

This section summarizes the concepts of number theory needed to understand the
cryptographic techniques described in Chapters 2 and 3. Because we are primarily
interested in the properties of modular arithmetic rather than congruences in gen-
eral, we shall review the basic theorems of number theory in terms of modular
arithmetic, emphasizing their computational aspects. We shall give proofs of these
fascinating theorems for the benefit of readers unfamiliar with them. Readers

36 INTRODUCTION

familiar with these results can go on to the next chapter. For a comprehensive
t rea tment of this material , see, for example [LeVe77,Nive72,Vino55].

1.6.1 Congruences and Modular Arithmetic

Given integers a, b, and n ~ 0, a, is congruent to b modulo n, writ ten?

a ~ n b

if and only if

a - b = k n

for some integer k; that is n divides (a - b), written

n l (a - b) .

For example, 17 ----~ 7, because (17 - 7) = 2 • 5.

If a = , b, then b is called a residue of a modulo n (conversely, a is a residue
of b modulo n). A set of n integers {rl , r,} is called a complete set of residues
modulo n if, for every integer a, there is exactly one r,. in the set such that a =_, r:.

For any modulus n, the set of integers {0, 1 , n - 1} forms a complete set of
residues modulo n.

We shall write

a mod n

to denote the residue r of a modulo n in the range [0, n - 1]. For example, 7 mod 3
= 1. Clearly,

a m o d n = r implies a ~ n r ,

but not conversely. Furthermore,

a = , b if and only if a m o d n = b m o d n ;

thus, congruent integers have the same residue in the range [0, n - 1].
Note that this definition of mod is somewhat different from the definition in

some programming languages, such as PASCAL, where a mod n gives the remain-
der in dividing a by n. Whereas the range of our mod is [0, n - 1], the range of
PASCAL' s is [- (n - 1), n - 1]. For example, - 2 rood 26 = - 2 in P A S C A L
rather than 24.

Like the integers, the integers mod n with addition and multiplication form a
commutative ring. This means the laws of associativity, commutativi ty, and distrib-
utivity hold. Furthermore, computing in modular ar i thmetic (i.e., reducing each
intermediate result mod n) gives the same answer as computing in ordinary integer
ar i thmetic and reducing the result mod n. This is because reduction mod n is a

~f We shall reserve the more familiar notation using "mod n" for modular arithmetic.

NUMBER THEORY 3 7

homomorphism from the ring of integers to the ring of integers mod n as shown
next:

Theorem 1.1. Principle o f modular arithmetic:
Let a~ and a2 be integers, and let op be one of the binary operators +, - , or *.
Then reduction rood n is a homomorphism from the integers to the integers
rood n (see Figure 1.19); that is,

(a~ op a2) mod n = [(al mod n) op (a2 mod n)] rood n.

Proof"
We can write

a~ = kxn + r~
az = k2n + rz

where r~, r2 e [0, n - 1]. For addition, we have

(a~ + a2) mod n = [(k~n + r~) + (kzn + rz)] mod n
= [(k~ + k2)n + (r, + rz)] mod n
= [r~ + r2] mod n

= [(a 1 mod n) + (az mod n)] mod n .

Subtraction is similar. For multiplication,

(al • a2) rood n = [(kin + r~) • (kzn + r2)] mod n
[(kakzn + rlkz + r2k~)n + rlr2] mod n
[rl * rz] mod n
[(a, mod n) • (a2 mod n)] mod n . m

The preceding theorem shows that evaluating (al op a2) in modular arithmetic
gives the same result as evaluating it in ordinary integer arithmetic and reducing
the result mod n.

The principle of modular arithmetic is behind the familiar principle of "cast-
ing out 9's". For an integer a, a mod 9 is the sum of the digits of a (mod 9).

FIGURE 1.19 Principle of modular arithmetic.

In tegers In t ege r s m o d ~1

r e d u c t i o n rood n

a 1 a 2 ,, "~ (a 1 m o d n) (a 2 rood n)

op

r e d u c t i o n m o d n

(a 1 Ol) a 2) - ,

op

(a 1 rood n) o p (a 2 rood n) rood n =

(a 1 op a2) rood 11

38 INTRODUCTION

Example:
The following illustrates how this principle is applied to check the result of a
computation (135273 + 261909 + 522044):

Integer
Arithmetic

1 3 5 2 7 3
2 6 1 9 0 9

+ 5 2 2 0 4 4

Mod 9
Arithmetic

3
0

+ 8
9 1 9 2 2 6 ~ 2 . II

Note that the principle of modular arithmetic also applies to exponentiations
of the form e t, where 0 .~ t _< n - 1; that is, computing e t in mod n arithmetic is
equivalent to computing e t and reducing the result mod n. This is because exponen-
tiation is equivalent to repeated multiplications:

t
e t m o d n = [r I (e m o d n)] m o d n .

i=1

Example:
Consider the expression

35 mod 7.

This can be computed by raising 3 to the power 5 and then reducing the
result mod 7 as shown next:

1. Square 3: 3 • 3 = 9
2. Square the result: 9 • 9 = 81
3. Multiply by 3: 81 • 3 = 243
4. Reduce mod 7: 243 mod 7 = 5 ,

where we have used the method of repeated squaring and multiplication to
reduce the number of multiplications. Alternatively, the intermediate results
of the computation can be reduced mod 7 as shown next:

1. Square 3: 3 * 3 mod 7 = 2
2. Square the result: 2 , 2 m o d 7 = 4
3. Multiply by 3: 4 • 3 mod 7 = 5. II

If t >_ n, reducing t mod n may not give the same result; that is, (e t mod n) mod n
may not equal e I mod n. For example, (25 mod 3) mod 3 = 1, but 25 mod 3 = 2.

Computing in modular arithmetic has the advantage of restricting the range
of the intermediate values. For a k-bit modulus n (i.e., 2 k-1 _< n < 2k), the value
of any addition, subtraction, or multiplication will be at most 2k bits. This means
that we can, for example, perform exponentiations of the form a: mod n using
large numbers without generating enormous intermediate results.

Because some of the encryption algorithms discussed later in this book are

NUMBER THEORY 39

FIGURE 1.20 Fast exponentiation.

Algorithm f a s t e x p (a, z, n)

begin "return x = a z mod n"
al '= a; zl := z;
x : = l "
while zl ~ 0 do " x (a l zl mod n) = a z mod n"

begin
whilezl m o d 2 = 0 d o

begin "square a 1 while z 1 is even"
zl "= zl div 2;
al "= (al • al) mod n

end;
zl := zl - 1;
x := (x • al) mod n "multiply"

end;
f as texp "= x

end

based on exponentiation mod n, we give here a fast exponentiation algorithm. The
algorithm, shown in Figure 1.20, uses repeated squaring and multiplication. The
notation for this algorithm and other algorithms in this book is based on PASCAL
control structures. The operator "div" denotes integer division with truncation.
Because z l = 0 when the algorithm terminates, the loop invariant " x (a l z,~ mod n)
= a z mod n" implies that x = a z mod n. Suppose a, z, and n are k-bit integers.
Letting (zk_ 1 , zl, z0) denote the binary representation of z, the algorithm
processes the bits in the order z0, z l , . . ", Zk_~ (i.e., from low order to high order),
squaring when the bits are 0, and multiplying and squaring when they are 1. In a
hardware implementation of the algorithm, these bits could be accessed directly,
omitting the computations "zl mod 2", "z l div 2", and "zl - 1".

Let T be the running time of the algorithm. Because each 0-bit gives rise to
one multiplication and each 1-bit gives rise to two multiplications (except for the
leftmost 1-bit, which gives rise to one multiplication), the number of multiplica-
tions is bounded by

k + 1 ~ T _ < 2 k + 1,

where k = l_logzzJ is the length of z in bits ("1_ _1" denotes the floor--i.e., round
down to nearest integer); this is linear in the length of z. The expected number of
multiplications for all z of length k is 1.5k + 1. By comparison, a naive algorithm
performs z - 1 multiplications, which is exponential in the length of z.

1.6.2. Computing Inverses

Unlike ordinary integer arithmetic, modular arithmetic sometimes permits the
computation of multiplicative inverses; that is, given an integer a in the range

40 INTRODUCTION

[0, n - 1], it may be possible to find a unique in teger x in the r ange [0, n - 1]
such tha t

ax mod n = 1 .

For example , 3 and 7 are mult ipl icat ive inverses mod 10 because 21 rood 10 = 1. It

is this capabi l i ty to compute inverses tha t makes modu la r a r i thmet ic so appea l ing

in c ryp tograph ic applicat ions.
We will now show tha t given a e [0, n - 1], a has a un ique inverse mod n

when a and n are relat ively prime; tha t is when gcd(a, n) = 1, where "gcd"
denotes the grea tes t common divisor. We first prove the following lemma:

Lemma 1.1:
If gcd(a, n) = 1, then (ai mod n) ~ (aj mod n) for each i, j such tha t 0 _< i

< j < n .

Proof"
Assume the cont rary . Then n la(i - j). Since gcd(a, n) = 1, (i - j)
mus t be a mul t ip le of n. But this is impossible because both i and j are

smal ler than n. 1

This proper ty implies tha t each ai mod n (i = 0, . . . , n - 1) is a dist inct res idue

mod n, and tha t the set {ai mod n}i_-0 n-1 is a p e r m u t a t i o n of the comple te set of
residues {0 , n - 1}. For example , if n = 5 and a = 3:

3 • 0 mod 5 = 0
3 • 1 mod 5 = 3
3 • 2 mod 5 = 1
3 • 3 mod 5 = 4
3 . 4 m o d 5 = 2 .

This proper ty does not hold when a and n have a common factor, as shown next:

2 • 0 mod 4 = 0
2 • 1 mod 4 = 2
2 • 2 mod 4 = 0
2 . 3 m o d 4 = 2 .

L e m m a 1.1 implies a has a unique inverse when gcd(a, n) = 1:

Theorem 1.2:
If gcd(a, n) = 1, then there exists an in teger x, 0 < x < n, such tha t ax
rood n = 1.

eroo~
Because the set {ai mod n}i=0 n - - 1 is a p e r m u t a t i o n of {0, 1
n -1}, x = i, where ai mod n = 1, is a solution. I

T h e o r e m 1.2 shows the exis tence of an inverse, but does not give an a lgor i thm for

finding it. We shall now review some addi t ional propert ies of congruences re la ted

NUMBER THEORY 41

to reduced residues and the Euler totient function, showing how these properties
lead to the construction of an algori thm for computing inverses.

The reduced set of residues mod n is the subset of residues {0 , n - 1}
relatively prime to n.? For example, the reduced set of residues mod 10 is {1, 3, 7,
9}. If n is prime, the reduced set of residues is the set of n - 1 elements {1, 2, . . . ,
n - 1}; that is, it is the complete set of residues except for 0. Note that 0 is never
included in the reduced set of residues.

The Euler totient function 4~(n) is the number of elements in the reduced set
of residues modulo n. Equivalently, 4~(n) is the number of positive integers less
than n that are relatively prime to n.

For a given modulus n, let {rl, . . . , r,~(n)} be the reduced set of residues. The
reduced set of residues has the property that every integer relatively prime to n is
congruent modulo n to some member rj of the set. Thus if gcd(a, n) = 1 for some
integer a, then for each ri[1 .~ i ~ 4~(n)], gcd(ar i, n) = 1 and ar i mod n = rj for
some rj. By the same reasoning as for a complete set of residues, the set {ar i rood
n}i=a 4,(n) is, therefore, a permutat ion of { r l , . . . , r4,(n)}.

For prime p, the number of integers less than p that are relatively prime to p
is trivially given by 4~(P) = P - 1. For the product of two primes p and q we have:

Theorem 1.3:
For n = pq and p, q prime,

4~(n) = ~b(p)th(q) = (p - 1) (q - 1) .

Proof:
Consider the complete set of residues modulo n: {0, 1, . . . , pq - 1}. All
of these residues are relatively prime to n except for the p - 1 elements
{q, 2q, (p - 1)q}, the q - 1 elements ~p, 2 p , . . . , (q - 1)p}, and 0.
Therefore,

c h (n) = p q - [(p - 1) + (q - 1) + 1] = p q - p - q + 1
= (p - 1) (q - 1). m

Example:
L e t p = 3 a n d q = 5. Then 4>(15) = (3 - 1) (5 - 1) = 2 , 4 = 8 , a n d t h e r e
are 8 elements in the reduced set of residues modulo 15" {1, 2, 4, 7, 8, 11, 13,
14}. m

In general, for arbi t rary n, 4~(n) is given by

t
1

~(n) = H pTi- (P i - 1) ,
i=1

where

t Strictly speaking, any complete set of residues relatively prime to n is a reduced set of residues;
here we are only interested in the set of residues in the range [1, n - 1].

42 INTRODUCTION

el e 2 e l
n = PiP2 " ' ' P t

is the prime factorization of n (i.e., the Pi are distinct primes, and e/gives the
number of occurrences of Pi).

Example:
F o r n = 24 = 2331 ,

4~(24) = 2 2 (2 - 1) 3 ° (3 - 1) = 8;

the reduced set of residues is{l, 5, 7, 11, 13, 17, 19, 23}. I

The following are two important results of number theory:

Theorem 1.4. Fermat's Theorem:
Let p be prime. Then for every a such that gcd(a, p) = 1,

aP - l mod p = 1 .

The proof follows from Euler's generalization: 1

Theorem 1.5. Euler's Generalization:
For every a and n such that gcd(a, n) = 1,

a4~(n) mod n = 1 .

e r o o r f "
Let ~trl, . . . , r~(,)} be the reduced set of residues modulo n such that
0 < r i < n for 1 ~ i ~ 4~(n). Then {arl mod n ar,(,) mod n} is a
permutat ion o f { r l , . . . , r44n) }. Therefore,

4)(n) 4)(n)
I I (ari mod n) = I-I r i

i=1 i=1

giving

(a~(.) mod n)
4~(n) q~(n)

I " I r i = I '~ r i ,
i = l i = l

which, by cancellation, implies a~(") mod n = 1. 1

Euler's generalization of Fermat 's theorem gives us an algorithm for solving an
equation

ax mod n -- 1 ,

where gcd(a, n) = 1. This solution is given by

X = a 4 , (n) - I mod n . (1.s)

NUMBER THEORY 43

If n is prime, this is simply

x = a("-l)- 1 mod n = a n-2 mod n .

E x a mp l e :

L e t a = 3 a n d n = 7. Then

x = 35 mod 7 ,

which we saw earlier is 5. This checks, because 3 • 5 mod 7 = 1. m

If 4~(n) is known, the inverse x of a (mod n) can be computed using Eq.
(1.5) and the algorithm f a s t e x p given in Figure 1.20. Alternatively, x can be
computed using an extension of Euclid's algorithm for computing the greatest
common divisor [Knut69]. With this approach, it is not necessary to know 4~(n).

An iterative version of Euclid's algorithm is given in Figure 1.21. The algo-
rithm is extended to solve for x as shown in Figure 1.22. The algorithm computes
gcd(a, n) by computing gi+l = gi-1 rood gi for i = 1, 2 , . . . until g; = 0, where
go = n, g, = a, and "'gi = UiFl "~" via" is the loop invar iant . When

gi = O, gi- , = god(a, n). If gcd(a, n) = 1, then gi-1 = 1 and Vi_la - 1 = ui_xn,
giving vi_,a =~n 1. Thus, x = vi_ , is an inverse of a mod n. Now, x will be in the
range - n < x < n. If x is negative, x + n gives the solution in the range
0 < x < n. Knuth shows the average number of divisions performed by the
algorithm is approximately (.843 In (n) + 1.47).

E x a mp l e :
The following illustrates the execution of the algorithm to solve the equation

"3x mod 7 = 1":

i gi ui vi Y
0 7 1 0
1 3 0 1 2
2 1 -1 - 2 3
3 0

Because v2 = - 2 is negative, the solution is x = - 2 + 7 = 5. m

Note that the implementation of the algorithm can use three local variables:
glast, g, and gnex t to represent gi-1, gi, and gi+~, respectively, for all i (similarly for
v). Note also that the variable u is not essential to the computation and, therefore,
can be omitted. We have presented the algorithm in the preceding form for clarity.

The algorithm is easily extended to find solutions to general equations

ax mod n = b

when gcd(a, n) = 1. First, the solution x0 to " a x mod n = 1" is found. Now

aXo mod n = 1 implies abxo mod n = b ,

whence

x = bxo mod n

44 INTRODUCTION

FIGURE 1.21 Euclid's algorithm for computing the greatest common divisor.

Algorithm gcd(a, n)

begin

go := n;
gl := a;

i : = 1 ;
while g i -~ 0 do

begin

gi+~ := gi-1 mod gi;
i : = i + 1

end;

gcd := gi - i
end

FIGURE 1.22 Euclid's algorithm extended to compute inverses.

Algorithm inv (a, n)

begin "Return x such that ax mod n = 1, where 0 < a < n"
go := n; gl "= a;
u0 := 1" v0 "= O;
U 1 : = O; V 1 "~ ' 1"
i : = 1 ;

while gi -~ 0 do "gi = uin + via"
begin

Y "= gi-1 div gi;

gi+~ := g i - l - Y * gi;
Ui+l ~= Ui_l m y , Ui;

Vi+l := Vi_l m y , Vi;

i : = i + 1
end;

X : = Vi_l;

i f x ~ O t h e n i n v : = x e i s e i n v . = x + n
end

is the un ique so lu t ion to "ax m o d n = b" in the r a n g e [1, n - 1]. Th is leads to the
fo rmulas :

Solve "ax mod n = b" when gcd(a, n) = 1"

x = [b * i n v (a , n)] mod n
x = [b • f a s t e x p (a , 4~(n) - 1, n)] m o d n

(1.6)
(1.7)

If gcd(a, n) v~ 1, the equa t ion "ax m o d n = b" will e i the r have no so lu t ion or

will have m o r e t h a n one so lu t ion in the r a n g e [1, n - 1] as desc r ibed by the
fo l lowing t h e o r e m .

NUMBER THEORY 45

Theorem 1.6:

Let g = gcd(a, n). If g lb (i.e., b mod g = 0) the equation

ax mod n = b

will have g solutions of the form

x = [(~) x 0 + t (~)] m o d n f o r t = 0 , g - l ,

where x0 is the solution to

(a) (n)
x m o d ~ = 1 ;

otherwise it will have no solution.

Proof:
If " a x mod n = b" has a solution in the range [1, n - 1], then n [(a x -

b). Because g i n and g lax , it follows that g [b must also hold. Now, the
equation

(a) (n)
 mod = 1

has a unique solution xo in the range [1, (n / g) - 1]. This implies that
xl = (b/g)Xo mod (n / g) is a solution of

(~) x mod (~) = (_bg)

in the range [1, (n / g) -1.]. Therefore, (a / g) x l - (b / g) = kn for some
integer k. Multiplying by g we get axl - b = kn, which implies that Xl
is a solution of "'ax mod n = b". Now, any x in the range [1, n - 1]
such that x ~ (n/g)Xl is also a solution of " a x mod n = b". Therefore, all
solutions of " a x mod n = b" are given by

x = x~ + t (n-) , t = O, . . . , g - 1 . .
\ g /

Example:
Consider the equation

6xmod 10 = 4.

Because g = gcd(6, 10) = 2, and 2 divides 4, there are 2 solutions. We first
compute the solution x0 to the equation

(~) x mod (~) = 1,

that is,

3xmod 5 = 1

46 INTRODUCTION

getting x0 = 2. This gives

Xl= (4) 2 m o d (2) = 4 m o d 5 = 4 .

The solutions are thus:

t = 0 : x = 4

t = l ' x - [4 + (~Q)] mod 1 0 = 9 . .

Figure 1.23 gives an algorithm for printing the solutions described by Theo-
rem 1.6. Division is denoted by " / " rather than "div" where the numerator is
evenly divisible by the denominator.

An equation of the form " a x mod n = b" may also be solved using the prime
factorization of n. Let

n = d l d z . . , d t

be the prime factorization of n, where

d i = p ~ i (1 ~ i _ < t)

and the Pi are distinct primes. Thus, the di are pairwise relatively prime.
Let f (x) be a polynomial in x. The following theorem shows that x is a

solution to the equation f (x) mod n = 0 if and only if x is a common solution to the
set of equations f (x) rood d i = 0 for i = 1 t.

Theorem 1.7:
Let dl d t be pairwise relatively prime, and let n = dldz . . . d t. Then

FIGURE 1.23 Solve linear equations.

Algorithm solve (a, n, b)

begin "print all solutions x to ax mod n = b"
g := gcd(a, n);
i f (bmodg) = 0

then begin
print(g, "solutions follow");
nO := n/g;
x0 := inv(a/g, nO);
xl "= ((b / g) • xO) rood n;
f a r t : = 0 t o g - 1 do

begin
x := (xl + t , n 0) modn;
print(x)

end
end

else print("no solutions exist")
end

NUMBER THEORY 47

f (x) mod n = 0
f (x) mod d i = 0

if and only if
(1 ~ i ~ t) .

Proof:
Because the d i are pairwise relatively prime, n t f (x) if and only if

d i l f (x) for i = 1 , . . . , t. I

We can apply this result to solve equations of the form

a x mod n = b.

Wri t ing this as (a x - b) mod n = 0, we find a common solution to the equations
(a x - b) m o d d i = 0 or, equivalently, to the equations

a x m o d d i = b mod d i (1 _< i ~ t) .

We can construct a common solution x to f (x) mod d i = 0 (1 ~ i _< t) from
a set of independent solutions x~ x t, where x i is a solution to f i x) mod d i = 0.
Observe that every x congruent to x i modulo d~ is a solution to f (x) m o d d i = O.

Therefore, x is a solution t o f (x) mod n = 0 if x m o d d i = x i for i = 1 , . . . , t. The
Chinese Remainder Theorem shows how a common solution x to the preceding
system of equations can be computed.

Theorem 1.8. Chinese Remainder Theorem:
Let d l , . . . , d t be pairwise relatively prime, and let n = d l d z . . . d r Then the
system of equations

(x mod di) = x i (i = 1 t)

has a common solution x in the range [0, n - 1].

eroo~
Now, for each i = 1 , t, g c d (d i, n / d i) = 1. Therefore , there exist Yi

such that (n / d i) y i m o d d i = 1. Fur thermore , (n / d i) y i mod dj = 0 for j
-¢- i because dj is a factor of (n / d i) . Let

t

x = [~ YiXi] mod n .

i=1

Then x is a solution of "x mod d i = x i " (1 .~ i ~ t) because

x m o d d i = y i x i mod d i = x i . I I

Example:
We shall show how the Chinese Remainder Theorem can be used to solve the
equation "3x mod 10 = 1". We observe that 10 = 2 • 5, so dl = 2 and d2 = 5.
We first find solutions x, and x2, respectively, to the equations:

48 INTRODUCTION

FIGURE 1.24 Find solution to system of equations using the
Chinese Remainder Theorem.

Algorithm crt(n, d, d r X 1 X t)

begin "return x e [0, n - 1] such that x mod d i

f o r i : = 1 t o t d o
Yi "= inv ((n /d i) modd i, di);

x : = O ;
f o r i : = 1 to t d o

x := [x + (n /d i) • Yi * xi] mod n;
c r t : = X

end

= x i(1 _ < i _ < t) "

3x mod 2 = 1
3x mod 5 = 1 .

This gives us x, = 1 and x2 = 2. We then apply the Chinese Remainder
Theorem to find a common solution x to the equations:

x m o d 2 = X l = 1
x m o d 5 = x z = 2 .

We find Yl and Y2 such that

(~ Q) y l m o d 2 = 1, and

(~Q)y2 m o d 5 = 1,

getting y, = 1 and Y2 = 3. We then have

X = [(~Q)yix1-I- (~Q)Y2X2] mod 10

= [5 . 1 * 1 + 2 . 3 . 2] mod 10 = 7

Thus 7 is the inverse of 3 (mod 10). II

An algorithm that computes the solution given by the Chinese Remainder
Theorem is given in Figure 1.24. Note that an implementat ion of the algori thm
can combine the two for loops and use a single local variable to represent the Yr.
We have presented the algori thm this way to show its relation to the proof of
Theorem 1.8.

1.6.3 Computing in GaloisFields

When the modulus is a prime p, every integer a e [1, p - 1] is relatively prime to p
and, therefore, has a unique multiplicative inverse mod p. This means the set of

NUMBER THEORY 49

integers mod p, together with the arithmetic operations, is a finite field t , called
the Galois field GF(p) after their discoverer Evariste Galois. Because division is
possible, arithmetic mod p is more powerful than ordinary integer arithmetic. Real
arithmetic is not generally applicable to cryptography because information is lost
through round-off errors (the same holds for integer division, where information is
lost through truncation). Many of the ciphers developed in recent years are based
on arithmetic in GF(p), where p is a large prime.

Another type of Galois field with applications in cryptography is based on
arithmetic mod q over polynomials of degree n. These fields, denoted GF(qn), have
elements that are polynomials of degree n - 1 (or lower) of the form

a = an_lXn-1 "{" ' ' ' q- a l x + ao ,

where the coefficients a; are integers mod q. Each element a is a residue mod p (x) ,

where p (x) is an irreducible polynomial of degree n (i.e., p cannot be factored into
polynomials of degree less than n).

Arithmetic on the coefficients of the polynomials is done mod q. For exam-
ple, the coefficients c i in the sum c = a + b are given by c i = (a i + b i) mod q (0 _< i
< n). Because a and b are of degree n - 1, the sum a + b is a polynomial of
degree at most n - 1, whence it is already reduced mod p (x) . The product a * b
could be of degree greater than n - 1 (but at most 2n - 2), however, so it must be
reduced mod p(x); this is done by dividing by p (x) and taking the remainder.

Of particular interest in computer applications are the fields GF (2"). Here
the coefficients of the polynomials are the binary digits 0 and 1. Thus, an element
a can be represented as a bit vector (a,_l, . . . , al, a0) of length n, and each of the
possible 2 n bit vectors of length n corresponds to a different element in GF(2~). For
example, the bit vector 11001~: corresponds to the polynomial (x 4 + x 3 + 1) in
GF(25). To avoid confusion with the notation GF(p), where p is a prime number,
we shall not write GF(32) for GF(25), for example, even though 32 is not prime.

Computing in GF(2") is more efficient in both space and time than comput-
ing in GF(p). Let p be a prime number such that 2 n-1 < p < 2 n, whence the
elements of GF(p) are also represented as bit vectors of length n (using the stan-
dard binary representation of the positive integers; e.g., 11001 corresponds to the
integer 24 + 2 ~ + 1 = 25). We first observe that whereas all 2 n bit vectors corre-
spond to elements of GF(2"), this is not true for GF(p); in particular, the bit
vectors representing the integers in the range [p, 2" - 1] are not elements of
GF(p). Thus it is possible to represent more elements (up to twice as many!) in
GF(2 .) than in GF(p) using the same amount of space. This can be important in
cryptography applications, where the strength of a scheme usually depends on the
size of the field. For comparable levels of security, GF(2 ~) is more efficient in
terms of space than GF(p).

We next observe that arithmetic is more efficient in GF(2 n) than in GF(p).

t A field is any integral domain in which every element besides 0 has a multiplicative inverse;
the rational numbers form an infinite field.

:~ To simplify our notation, we shall write bit vectors as strings here and elsewhere in the book.

5 0 INTRODUCTION

To see why, we shall briefly describe how the arithmetic operations are implement-
ed in GF(2n). We assume the reader has a basic understanding of integer arithme-
tic in digital computers.

We first consider operations over the binary coefficients of the polynomials.
Recall that these operations are performed mod 2. Let u and v be binary digits.
Then u and v can be added simply by taking the "exclusive-or" u ~ v; that is,

0 if u = v (both bits the same)
(u + v) m o d 2 = u ~ v = 1 i f u ¢ v.

Subtraction is the same:

(u - v) m o d 2 = (u + v - 2) m o d 2 (u + v) m o d 2
= U ~ V .

The bits u and v can be multiplied by taking the boolean "and":

u . v = u a n d v .

Now, let a and b be the bit vectors a = (a n _ 1 a0) and b = (b n _ 1 , bo).
In GF(2"), a and b are added (or subtracted) by taking the ~ of each pair of bits.
Letting c = a + b (or a - b), we have c = (Cn-1 , Co), where

c i = a i ~ b i f o r i = 0 , . . . , n - 1.

The operator ~ is extended pairwise to bit strings, so we can also write c = a ~ b
to denote the sum (or difference) of a and b.

Example:
Let a = 10101 and b = 01100. In GF(25), c = a + b is computed as follows:

a = 1 0 1 0 1
b = 0 1 1 0 0
c = l 1 0 0 1 .

By contrast, if we add the bit vectors a and b in GF(p) for p = 31, we must
perform carries during the addition, and then divide to reduce the result mod
31"

Step 1. Add a and b:

a = 1 0 1 0 1
b = 01 1 0 0
c = 1 0 0 0 0 1

(21)
(12)
(33)

Step 2. Divide by 31 and keep the remainder:

c - - 0 0 0 1 0 (2) . I

Multiplication of a and b in GF(2,) is also easier than in GF(p). Here,
however, the product a • b must be divided by the irreducible polynomial p(x)
associated with the field. The product d = a • b is represented by the polynomial
s u m "

NUMBER THEORY 51

n - 1
d = ~ (a i * b)x i mod p (x) ,

i=0

where

b = b n _ l x n - 1 q- . . . Jr" bo if a i = 1
a i • b = 0 otherwise.

Example:
Let a - 101. If a is squared in GF(23) with irreducible polynomial p(x) -- x 3
+ x + 1 (1011 in binary), the product d = a • a is computed as follows:

Step 1. Multiply a • a:

1 0 1
1 0 1
1 0 1

0 0 0
1 0 1
1 0 0 0 1

Step 2. Divide by p (x) - 1011"

10
1 0 1 1) 1 0 0 0 1

1 0 1 1
l l l = d .

If a is squared in GF(p) for p = 7, the computation is similar, except the
additions and subtractions in the multiply and divide steps require carries. II

Example:
Let a = 111 and b = 100. The product d = a • b is computed in GF(23) with
irreducible polynomial p(x) = 1011 (x 3 + x + 1) as follows:

Step 1. Multiply a * b:

1 1 1
1 0 0
0 0 0

0 0 0
1 1 1
1 1 1 0 0

S t y 2. D i v i d e b y p (x) = 1011"

11
1 0 1 1) 1 1 1 0 0

1 0 1 1
1 0 1 0
1 0 1 1

l = d .

52 INTRODUCTION

Thus, 111 , 100 mod 1011 = 001, so 111 and 100 are inverses mod 1011 in
GF(28). m

To divide b by a in GF(2 n) with modulus p(x), we compute the inverse of a
mod p(x) , denoted a -~, and multiply b by a -1. Because the algorithms developed in
the preceding section for computing inverses apply to any finite field, we can apply
them to compute inverses in GF(2n). To do this, we observe that every bit vector of
length n except for the 0-vector is relatively prime to p(x) regardless of the irredu-
cible polynomial p(x) . Thus, the number of residues relatively prime to p(x) is
given by ~ (p (x)) = 2 n - 1, where we have extended the meaning of the Euler
totient function ¢ to polynomials. We can then use Eq. (1.5) to compute a -~,
where a • a - ' mod p(x) = 1, getting

a -1 = a*(p(x)) -~ mod p(x) = a 2n-z mod p (x) .

Alternatively, we can compute a -1 using the extended version of Euclid's algo-
rithm shown in Figure 1.22"

a -~ = inv(a, p (x)) ,

where arithmetic is done in GF(2n).

Example:
Let a = 100 (x 2) and p (x) = 1011 in GF(2~).
The reader should verify that

a - l = 100 z3-2mod 1011 = 1006mod 1011
= 111,

and

a -1 = inv(100, 1011)
= 1 1 1 . II

(Davida [Davi72] describes an algorithm for computing inverses that is suitable
for parallel implementation.)

To summarize, polynomial arithmetic in GF(2 n) is more efficient than inte-
ger arithmetic in GF(p) because there are no carries, and division by the modulus
is never needed for addition or subtraction.

The cost of hardware (or software) to compute in GF(2 n) depends somewhat
on the choice of modulus. Blakley (Blak80) shows how multiplication can be
efficiently implemented in GF(2 n) with an irreducible trinomial of the form

p (x) = x n+ x + 1.

The polynomial p (x) = x 8 + x + 1 in our examples is of this form. Most such
trinomials are not irreducible; the following is a list of all irreducible ones through
n = 127"

NUMBER THEORY 53

n = 1, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 63, 127.

(See, for example, [Zier68,Zier69] for a list of irreducible trinomials for n
> 127.)

Multiplication is efficient when p (x) is of this form, because the long string
of O's in p (x) simplifies the reduction mod p (x) . To see how this works, let d - a
• b, where a - (an_a, a0) and b = (bn_~, . . . , b0). Before reduction rood p (x) ,

the product is given by the (2n - 1)-bit vector

(S n - 1 , $2, S1 , C n - 1 , . . . , e l , Co) ,

where:

c i = ao * b i • al * b i_ l • . . . • a i * b o , i = O, . . . , n - 1

s i = a i • bn_ 1 ~ ai+ 1 * bn_ z ~ . . . ~ an_ 1 * b i , i = 1, . . . , n - 1 .

This is illustrated next:

bn_l . . . bl bo

an_l • . . al ao

aobn_l • . • aobl aobo

a lbn_ l a l b n _ 2 . . . albo

azbn-1 a z b n - z a2bn-3 . . .
• . ° °

° ° ° . °

an_ lbn_ l • . . an_ lbz a n - l b l an_lbo

S n _ l • . . S 2 S1 C n _ l • . .

Reducing by p (x) , we see that if bit sn_l

Cl C 0 •

bit s,_2
product

= 1, bit Cn_ 1 and Cn_ 2 are complemented; if
= 1, bits Cn_2 and Cn_ 8 are complemented; and so forth, giving the reduced

d = (d n _ l , . . . , d o)

where:

dn_ 1 - - O n _ 1 ~ Sn_a

d i = c i ~ s i ~ s i + ~ (0 < i < n - 1)

do ~ CO ~ S 1 .

Berkovits, Kowalchuk, and Schanning [Berk79] have developed a fast implemen-
tation of GF(2 ~2~) arithmetic using the previous approach with p (x) = x ~7 + x + 1.

The fields GF(2 ~) are used in many error correcting codes, including "Ham-
ming codes". These codes can be efficiently implemented using shift registers
with feedback. (For more information on coding theory, see [Hamm80,Ber168,
MacW78,Pete72,McE177].) A cryptographic application for shift registers is de-
scribed in Chapter 3.

54 INTRODUCTION

EXERCISES

1.1

1.2

1.3

1.4
1.5
1.6

1.7

1.8

1.9

1.10

Decipher the folloveing Caesar cipher using K = 3:

V R V R V H D P V W U H V V .

Let X be an integer variable represented with 32 bits. Suppose that the
probability is 1/2 that X is in the range [0, 28 - 1], with all such values being
equally likely, and 1/2 that X is in the range [28, 2 ~2 - 1], with all such
values being equally likely. Compute H(X).
Let X be one of the six messages: A, B, C, D, E, F, where:

1
p(A) = p(B) = p(C) =

1
p(O) - 8

1
p(E) = p (F) - 16 "

Compute H(X) and find an optimal binary encoding of the messages.
Prove that for n = 2, H(X) is maximal for p~ = P2 = 1/2.
Prove that for any n, H(X) is maximal for Pi = 1/n (1 ~ i _< n).
Show that H(X, Y) ~ H(X) + H(Y), where

H(X, Y) = ~E p(X, Y) log~ (1)
x , r p (Z Y) "

[Hint." p(X) = ~ p(X, Y), p(Y) = ~ p(X, Y), and p(X)p(Y) _< p(X, Y),
Y X

equality holding only when X and Y are independent.]
Show that H(X, Y) = Hy (X) -b H(Y). Combine this with the result in the
previous problem to show that H r (X) _< H(X); thus, the uncertainty about
X cannot increase with the additional information Y. [Hint." p(X, Y) =
py(X)p(Y).]
Let M be a secret message revealing the recipient of a scholarship. Suppose
there was one female applicant, Anne, and three male applicants, Bob, Doug,
and John. It was initially thought each applicant had the same chance
of receiving the scholarship; thus p(Anne) = p(Bob) = p(Doug) = p(John)
= 1/4. It was later learned that the chances of the scholarship going to a
female were 1/2. Letting S denote a message revealing the sex of the recipi-
ent, compute Hs(M).
Let M be a 6-digit number in the range [0, 10 ~ - 1] enciphered with a
Caesar-type shifted substitution cipher with key K, 0 ~ K ~ 9. For exam-
ple, if K = l, M = 123456 is enciphered as 234567. Compute H(M) , H(C),
H(K), Hc(M), and Hc(K), assuming all values of M and K are equally
likely.
Consider the following ciphertexts:

XXXXX

EXERCISES 55

V W X Y Z
RKTIC
JZQAT

Which of the these ciphertexts could result from enciphering five-letter
words of English using:

a. A substitution cipher, where each letter is replaced with some other
letter, but the letters are not necessarily shifted as in the Caesar cipher
(thus A could be replaced with K, B with W, etc.).

b. Any transposition cipher.

1.11 Suppose plaintext messages are 100 letters long and that keys are specified
by sequences of letters. Explain why perfect secrecy can be achieved with
keys fewer than 100 letters long. How long must the keys be for perfect
secrecy?

1.12 Compare the redundancy of programs written in different languages (e.g.,
PASCAL, APL, and COBOL). Suggest ways in which the redundancy can
be reduced (and later recovered) from a program.

1.13 Show that the cancellation law does not hold over the integers mod n with
multiplication when n is not prime by showing there exist integers x and y
such that x • y mod n = 0, but neither x nor y is 0.

1.14 Let n be an integer represented in base 10 as a sequence of t decimal digits
dl d 2 . . . dr. Prove that

n m o d 9 = d i m o d 9 .
i 1

1.15 For each equation of the form (ax mod n = b) that follows, solve for x in the
range [0, n - 1].

a. 5 x m o d 17 = 1
b. 1 9 x m o d 2 6 = 1
c. 17x mod 100 = 1
d. 17xmod 1 0 0 = 10

1.16 Find all solutions to the equation

15x mod 25 = 10

in the range [0, 24] .
1.17 Apply algorithm crt in Figure 1.24 to find an x e [0, 59] such that

x mod 4 = 3
x rood 3 = 2
x mod 5 = 4 .

1.18 Find a solution to the equation

1 3 x m o d 7 0 = 1

by finding Xl, X2, and x8 such that

56 INTRODUCTION

13Xl mod 2 = 1
13xzmod5 = 1
13x3mod7 = 1

and then applying algorithm crt.
1.19 Let a = 100 (x 2) in GF(28) with modulus p(x) = 1011 (x 3 + x + 1). Divide

1000000000000 by 1011 to show that

a-1 = 1006mod 1011 = 111.

Using algorithm inv, show that

a -~ = inv(lO0, 1011) = 111.

1.20 Find the inverse of a = 011 (x + 1) in GF(28) with p(x) = 1011.

REFERENCES

Aho74. Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass. (1974).

Baye76. Bayer, R. and Metzger, J. K., "On the Encipherment of Search Trees and Random
Access Files," ACM Trans. On Database Syst. Vol. 1(1) pp. 37-52 (Mar. 1976).

Berk79. Berkovits, S., Kowalchuk, J., and Schanning, B., "Implementing Public Key
Schemes," IEEE Comm. Soc. Mag. Vol. 17(3) pp. 2-3 (May 1979).

Ber168. Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York (1968).
Blak80. Blakley, G. R., "One-Time Pads are Key Safeguarding Schemes, Not Cryptosys-

tems," Proc. 1980 Symp. on Security and Privacy, IEEE Computer Society, pp. 108-
113 (Apr. 1980).

Bras79a. Brassard, G., "Relativized Cryptography," Proc. IEEE 20th Annual Symp. on
Found. of Comp. Sci., pp. 383-391 (Oct. 1979).

Bras79b. Brassard, G., "A Note on the Complexity of Cryptography," IEEE Trans. on
Inform. Theory Vol. IT-25(2) pp. 232-233 (Mar. 1979).

Bras80. Brassard, G., "A Time-Luck Tradeoff in Cryptography," Proc. IEEE 21st Annual
Syrup. on Found. of Comp. Sci., pp. 380-386 (Oct. 1980).

Cook71. Cook, S. A., "The Complexity of Theorem-Proving Procedures," Proc. 3rd Annual
ACM Symp. on the Theory of Computing, pp. 151-158 (1971).

Cove78. Cover, T. M. and King, R. C., "A Convergent Gambling Estimate of the Entropy
of English," IEEE Trans. onlnfor. Theory Vol. IT-24 pp. 413-421 (Aug. 1978).

Davi72. Davida, G. I., "Inverse of Elements of a Galois Field," Electronics Letters Vol.
8(21) (Oct. 19, 1972).

Deav77. Deavours, C. A., "Unicity Points in Cryptanalysis," Cryptologia Vol. 1 (1) pp. 46-
68 (Jan. 1977).

Diff76. Diffie, W. and Hellman, M., "New Directions in Cryptography," IEEE Trans. on
lnfo. Theory Vol. IT-22(6) pp. 644-654 (Nov. 1976).

Gare79. Garey, M. R. and Johnson, D. S., Computers and Intractability, A Guide to the
Theory ofNP-Completeness, W. H. Freeman and Co., San Francisco, Calif. (1979).

Hamm80. Hamming, R. W., Coding and Information Theory, Prentice-Hall, Englewood
Cliffs, N.J. (1980).

REFERENCES 57

Hell77. Hellman, M. E., "An Extension of the Shannon Theory Approach to Cryptogra-
phy," IEEE Trans. on Info. Theory Vol. IT-23 pp. 289-294 (May 1977).

Huff52. Huffman, D., "A Method for the Construction of Minimum-Redundancy Codes,"
Proc. IRE Vol. 40 pp. 1098-1101 (1952).

Knut69. Knuth, D., The Art of Computer Programming; Vol. 2, Seminumerical Algo-
rithms, Addison-Wesley, Reading, Mass. (1969). (Exercise 4.5.2.15.)

Konh81. Konheim, A. G., Cryptography: A Primer, John Wiley & Sons, New York (1981).
Lemp79. Lempel, A., "Cryptology in Transition," Computing Surveys Vol. 11 (4) pp. 285-

303 (Dec. 1979).
LeVe77. LeVeque, W. J., Fundamentals of Number Theory, Addison-Wesley, Reading,

Mass. (1977).
MacW78. MacWilliams, E J. and Sloane, N. J. A., The Theory of Error Correcting

Codes, North-Holland, New York (1978).
McEI77. McEliece, R., The Theory of Information and Coding, Addison-Wesley, Reading,

Mass. (1977).
McE178. McEliece, R., "A Public Key Cryptosystem Based on Algebraic Coding Theory,"

DSN Progress Rep. 42-44, Jet Propulsion Lab Calif. Inst. of Tech., Pasadena, Ca.
(Jan., Feb. 1978).

Merk80. Merkle, R. C., "Protocols for Public Key Cryptosystems," pp. 122-133 in Proc.
1980 Symp. on Security and Privacy, IEEE Computer Society (Apr. 1980).

Mins67. Minsky, M., Computation: Finite and lnfinite Machines, Prentice-Hall, Engle-
wood Cliffs, N.J. (1967).

Need78. Needham, R. M. and Schroeder, M., "Using Encryption for Authentication in
Large Networks of Computers," Comm. ACM Vol. 21(12) pp. 993-999 (Dec. 1978).

Nive72. Niven, I. and Zuckerman, H. A., An Introduction to the Theory of Nurnbers, John
Wiley & Sons, New York (1972).

Pete72. Peterson, W. W. and Weldon, E. J., Error Correcting Codes, MIT Press, Cam-
bridge, Mass. (1972).

Pope79. Popek, G. J. and Kline, C. S., "Encryption and Secure Computer Networks,"
Computing Surveys Vol. 11(4) pp. 331-356 (Dec. 1979).

Rabi78. Rabin, M., "Digitalized Signatures," pp. 155-166 in Foundations of Secure Com-
putation, ed. R. A. DeMillo et al., Academic Press, New York (1978).

Sham79. Shamir, A., "On the Cryptocomplexity of Knapsack Systems," Proc. 11 th Annual
ACM Symp. on the Theory of Computing, pp. 118-129 (May 1979).

Shan48. Shannon, C. E., "A Mathematical Theory of Communication," Bell Syst. Tech. J.
Vol. 27 pp. 379-423 (July), 623-656 (Oct.) (1948).

Shan49. Shannon, C. E., "Communication Theory of Secrecy Systems," Bell Syst. Tech. J.
Vol. 28 pp. 656-715 (Oct. 1949).

Shan51. Shannon, C. E., "Predilection and Entropy of Printed English," Bell Syst. Tech. J.,
Vol. 30 pp. 50-64 (Jan. 1951).

Simm79. Simmons, G. J., "Symmetric and Asymmetric Encryption," Computing Surveys
Vol. 11(4) pp. 305-330 (Dec. 1979).

Simm81. Simmons, G. J., "Half a Loaf is Better Than None: Some Novel Message Integri-
ty Problems," Proc. 1981 Syrup. on Security and Privacy, IEEE Computer Society
pp. 65-69, (April 1981).

Smid79. Smid, M., "A Key Notarization System for Computer Networks," NBS Special
Pub. 500-54, National Bureau of Standards Washington, D.C. (Oct. 1979).

Turi36. Turing, A., "On Computable Numbers, with an Application to the Entscheidungs-
problem," Proc. London Math. Soc. Ser. 2 Vol. 42, pp. 230-265 and Vol. 43, pp.
544-546 (1936).

58 INTRODUCTION

Turn73. Turn, R., "Privacy Transformations for Databank Systems," pp. 589-600 in Proc.
NCC, Vol. 42, AFIPS Press, Montvale, N.J. (1973).

Vino55. Vinogradov, I. M., An Introduction to the Theory of Numbers, Pergamon Press,
Elmsford, N.Y. (1955).

Zier68. Zierler, N. and Brillhard, J., "On Primitive Trinomials (Mod 2)," lnfo. and Con-
trol Vol. 13 pp. 541-554 (1968).

Zier69. Zierler, N. and Brillhard, J., "On Primitive Trinomials (Mod 2)," Info. and Con-
trol Vol. 14 pp. 566-569 (1969).

2
Encryption Algorithms

2.1. TRANSPOSITION CIPHERS

Transposition ciphers rearrange characters according to some scheme. This rear-
rangement was classically done with the aid of some type of geometric figure.
Encipherment proceeded in two steps as shown next:

p l a i n t e x t , ~ f i g u r e ~ c i p h e r t e x t

w r i t e - in t a k e - o f f

First, the plaintext was written into the figure according to some "write-in" path.
Second, the ciphertext was taken off the figure according to some "take-off'' path.
The key consisted of the figure together with the write-in and take-off paths.

The geometrical figure was often a 2-dimensional array (matrix). In colum-
nar transposition the plaintext was written into a matrix by rows. The ciphertext
was obtained by taking off the columns in some order.

Example:
Suppose that the plaintext R E N A I S S A N C E is written into a 3 × 4 matrix
by rows as follows:

1 2 3 4
R E N A
I S S A

N C E

If the columns are taken off in the order 2-4-1-3 , the resulting ciphertext is
ESCAARINNSE. II

59

60 ENCRYPTION ALGORITHMS

(See Mellen [Mel173] for a generalization of this technique to n-dimensional
arrays.)

Many transposition ciphers permute the characters of the plaintext with a
fixed period d. Let Z d be the integers 1 through d, and let f : Z d ~ Z d be a permuta-
tion over Z d. The key for the cipher is given by the pair K = (d, f) . Successive
blocks of d characters are enciphered by permuting the characters according to f.
Thus, a plaintext message

M = m l . . . rn d md+t . . . m 2 d . . •

is enciphered as

E K (M) = m f (1) . . , m f(d) md+f(1) . . . m d+f(d)

Decipherment uses the inverse permutation.

E x a m p l e :

Suppose that d = 4 and f gives the permutation:

i : 1 2 3 4
f (i) : 2 4 1 3;

thus, the first plaintext character is moved to the third position in the cipher-
text, the second plaintext character to the first position, and so forth. The
plaintext RENAISSANCE is enciphered as:

M = RENA ISSA NCE
E K (M) = EARN SAIS C N E .

The preceding ciphertext is broken into groups of four letters only for clarity;
the actual ciphertext would be transmitted as a continuous stream of charac-
ters to hide the period. The short block at the end is enciphered by moving
the characters to their relative positions in the permutation. II

Like columnar transposition, periodic permutation ciphers can be viewed as
transpositions of the columns of a matrix in which the plaintext is written in by
rows. With periodic permutations, however, the ciphertext is also taken off by
rows. This is more efficient for computer applications, because each row (block)
can be enciphered and deciphered independently. With columnar transposition,
the entire matrix must be generated for encipherment and decipherment.

The cryptanalyst can easily recognize whether a cipher is a transposition
cipher because the relative frequencies of the letters in the ciphertext will closely
match the expected frequencies for plaintext. The ciphers are broken by anagram-
ming~the process of restoring a disarranged set of letters into their original posi-
tions (e.g., see [Sink66,Gain56]). This is facilitated with tables of frequency
distributions for digrams (double-letter combinations) and for trigrams (triple-
letter combinations). Figure 2.1 shows the frequency distribution of digrams in a
file containing 67,375 letters (all letters were converted to uppercase). The file
contained the preface of this book and other documentst. Note that the digrams
TH and HE, which occur in the word THE, are in the highest group.

tSix ACM President's Letters and a grant proposal.

TRANSPOSITION CIPHERS 61

FIGURE 2.1 Frequency distribution of digrams.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

• • • ~ • • • ~ • ~ • • • • • • •

+ • • • + • • ~ + • • • • • + • • ~ • ~ ~ • •

• • • + • • • + • • • • • ~ • • • ~ ~ ~ • • • •

+ ~ + + ~ ~ ~ • ~ • • + + ~ ~ + • -X- ..X- + • ~ • •

• • • ~ ~ • • ~ • • • • 4 + • • • • ~ • • • •

• • • ~ • • • ~ • • • • • • • ~ • ~ • • • •

.+. • • • ~ • • • ~ • • • • ~ • • • • • • • • •

• .~ + • • ~ + + ~ • • • • + ~ + ~ ~ • • •

• • • • • • •

• • • • • • • • • • • • • • • ~ • • • •

• + + + ~ + • ~ • • • • • + • • • + ..X- • • • •

. . . . • + ~ • • • • ~ + ~ • + + • • •

• • ~ • • ~ • • • ~ • • ~ ~ + • ~ ~ • •

-4.- • ~ ~ * • • • + • • • ~ • + • • • + + • • • ~ •

+ ~ + • + ~ • ~ + • • • ~ • + ~ • • ~ ~ ~ • ~

+ • • • * • • .~- -~ • • • • • + • • ~ + ~ ~ • ~

• • •

• + ~ • • • • •

• • • ~ • • • • • • ~ • • • • • • •

• • • • • • • • • • ~ • • • • •

• • • • • • • ~ • • • • • ~ ~ • • • • • • •

Maximum digram frequency = 2.31% of the digrams

Key" * High' more than 1.15 % of the digrams
+ Medium: more than 0.46 % of the digrams
- Low: more than 0.12 % of the digrams
• Rare: more than 0.00 % of the digrams

blank: no occurrences

To determine the expected number of characters required to break a permu-
tation cipher with period d, observe that there are d? possible arrangements of d
characters. Assuming all keys (i.e., arrangements) are equally likely, the entropy
of the key is thus H(K) = log2d! Using Eq. (1.4), the unicity distance is thus:

N - H(K) _ log2dI
D D "

62 ENCRYPTION ALGORITHMS

Using Sterling's approximation for d!, we get

N ~
3.2

taking D = 3.2 bits/letter as the redundancy of English.

Example:
If the period is d = 27, then die ~ 10 and log2 (d/e) ~ 3.2, so N ~ 27. m

2.2 SIMPLE SUBSTITUTION CIPHERS

There are four types of substitution ciphers: simple substitution, homophonic sub-
stitution, polyalphabetic substitution, and polygram substitution. Simple substitu-
tion ciphers replace each character of plaintext with a corresponding character of
ciphertext; a single one-to-one mapping from plaintext to ciphertext characters is
used to encipher an entire message. Homophonic substitution ciphers are similar,
except the mapping is one-to-many, and each plaintext character is enciphered
with a variety of ciphertext characters. Polyalphabetic substitution ciphers use
multiple mappings from plaintext to ciphertext characters; the mappings are usu-
ally one-to-one as in simple substitution. Polygram substitution ciphers are the
most general, permitting arbitrary substitutions for groups of characters.

A simple substitution cipher replaces each character of an ordered plaintext
alphabet, denoted A, with the corresponding character of an ordered cipher alpha-
bet, denoted C (typically C is a simple rearrangement of the lexicographic order of
the characters in A). Let A be an n-character alphabet {a0, a l , . . . , an_a}. Then C is
an n-character alphabet ~(a0), f (a l) f(an_a)}, where ./2A---~ C is a one-to-one
mapping of each character of A to the corresponding character of C. The key to
the cipher is given by C or, equivalently, by the function f.

To encipher, a plaintext message M = m l m 2 . . , is written as the ciphertext
message:

EK(M) = f(ma)f(mz)

Example:
Suppose that f maps the standard English alphabet A = {A, B , Z} into
the cipher alphabet C shown next:

A: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
C: H A R P S I C O D B E F G J K L M N Q T U V W X Y Z .

Then the plaintext RENAISSANCE is enciphered as:

SIMPLE SUBSTITUTION CIPHERS 63

M = R E N A I S S A N C E
EK(M) = N S J H D Q Q H J R S . m

The preceding example uses a keyword mixed alphabet" the cipher alphabet is
constructed by first listing the letters of a keyword (in this case HARPSI-
CHORD), omitting duplicates, and then listing the remaining letters of the alpha-
bet in order.

Ciphers based on shifted alphabets (sometimes called "direct standard alpha-
bets" [Sink66]) shift the letters of the alphabet to the right by k positions, modulo
the size of the alphabet. Formally,

f(a) = (a + k) mod n ,

where n is the size of the alphabet A, and "a" denotes both a letter of A and its
position in A. For the standard English alphabet, n = 26 and the positions of the
letters are as follows:

0 - A 7 - H 1 3 - N 2 0 - U
1 - B 8 - I 1 4 - O 2 1 - V
2 - C 9 - J 1 5 - P 2 2 - W
3 - D 1 0 - K 1 6 - Q 2 3 - x
4 - E 1 1 - L 1 7 - R 2 4 - Y
5 - F 1 2 - M 1 8 - S 2 5 - Z
6 - G 1 9 - T

We noted in Chapter 1 that this type of cipher is called a Caesar cipher, because
Julius Caesar used it with k = 3. Under the Caesar cipher, our plaintext RE-
N A I S S A N C E is enciphered as

M = R E N A I S S A N C E
EK(M) = U H Q D L V V D Q F H .

More complex transformations of the plaintext alphabet are possible. Ci-
phers based on multiplications (sometimes called "decimations" [Sink66]) of the
standard alphabet multiply each character by a key k; that is,

f (a) = ak mod n ,

where k and n are relatively prime so that the letters of the alphabet produce a
complete set of residues (see Section 1.6.2).

Example:
If k = 9 and A is the standard English alphabet, we have

A = ABC DEF G H I J K L M N O PQR STU VWX YZ
C = AJS BKT CLU D M V E N W FOX GPY HQZ I R ,

whence

M = R E N A I S S A N C E
EK(M) = X K N A u G G A N S K . m

64 ENCRYPTION ALGORITHMS

FIGURE 2.2 Churchyard cipher.

F]I:

m •

D •

G •

C •

F •

I - J •

IFq m Fq j _JN
ciphertext

K : L : M.* T U V

N : O ° P ° . . W X Y

Q ° R " S ° Z • • •

If k and n are not relatively prime, several plaintext letters will encipher to the
same ciphertext letter, and not all letters will appear in the ciphertext alphabet.
For example, if n = 26 and k = 13,

f (A) = f (C) = f (E) = . . . -- f (Y) -- A (0)
f(B) = f (D) -- f (F) = f (Z) = N (13) .

Addition (shifting) and multiplication can be combined to give an afline
transformation (linear plus a constant):

f (a) = (akl + ko) mod n ,

where k~ and n are relatively prime.
Higher-order transformations are obtained with polynomial transformations

of degree t:

f (a) = (atkt + W-lkt_a + . . . + akx + ko) mod n .

Caesar ciphers are polynomial transformations of degree 0, while affine transfor-
mations are of degree 1.

Some substitution ciphers use nonstandard ciphertext alphabets. For exam-
ple, the Churchyard cipher shown in Figure 2.2 was engraved on a tombstone in
Trinity Churchyard, New York, in 1794 [Kruh77]. The key to the cipher is given
by the "tic-tac-toe" diagrams. The solution is left as an exercise to the reader. A
similar cipher was also engraved on a tombstone in St. Paul's Churchyard, New
York, in 1796. The first published solution to the ciphers appeared in the New
York Herald in 1896~over 100 years later.

Messages have also been encoded in musical symbols [Sam79]. A common
method was a simple substitution of individual notes for letters. Several composers
used such schemes to encode the names of people into their works, and then build
themes around the encoding. Bach, for example, incorporated his own name
(which in German usage can be written Bb-A-C-B) into the "Musical Offering"
and the "Art of the Fugue".

Let us now calculate the number of letters needed to break general substitu-
tion alphabets of size n. Observe that the number of possible keys is n !~ the
number of ways of arranging the n letters of the alphabet. If all keys are equally
likely, the unicity distance is

SIMPLE SUBSTITUTION CIPHERS 65

N ~ H (K) _ logz n!
D D

For English, N ~ log2 26!/3.2 ~_ 88.4/3.2 ~_ 27.6. Thus, approximately 27 or 28
letters are needed to break these ciphers by frequency analysis. This explains the
difficulty in solving the Churchyard ciphers, which contained only 15 characters.
In practice, ciphers with at least 25 characters representing a "sensible" message
in English can be readily solved [Frie67].

Ciphers based on polynomial transformations have smaller unicity distances
and are easier to solve. For shifted alphabets, the number of possible keys is only
26; the unicity distance, derived in Section 1.4.3; is:

N ~ log2 26 ,.~ 1.5
3.2

FIGURE 2.3 Frequency distribution of letters.

Char Expected Actual %

A 8.0 7.5
B 1.5 1.4
C 3.0 4.1
D 4.0 3.2
E 13.0 12.7
F 2.0 2.3
G 1.5 1.9
H 6.0 3.8
I 6.5 7.7
J 0.5 0.2
K 0.5 0.4
L 3.5 3.8
M 3.0 3.0
N 7.0 7.0
O 8.0 7.5
P 2.0 3.0
Q 0.2 0.2
R 6.5 6.7
S 6.0 7.3
T 9.0 9.2
U 3.0 2.8
V 1.0 1.0
W 1.5 1.4
X 0.5 0.3
Y 2.0 1.6
Z 0.2 0.1

Each , represents 0.5 percent.
Number of Letters = 67375

66 ENCRYPTION ALGORITHMS

2.2.1 Single-Letter Frequency Analysis

Simple substitution ciphers are generally easy to break in a ciphertext-only attack
using single-letter frequency distributions. Figure 2.3 shows the frequency distri-
bution of the letters in the file used previously for Figure 2.1. The letters had a
slightly different distribution than expected based on other sources; for compari-
son, the percentages in a commonly used table described in Kahn [Kahn67] are
shown alongside the actual percentages.

Kahn partitions the letters into subsets of high, medium, low, and rare fre-
quency of usage as shown in Figure 2.4. Other sources give slightly different
frequency distributions, but the letters fall into these same general categories.
Except for H (which was too low) and P (which was too high), our letters also fell
into these categories.

Computer files may have a frequency distribution quite different from that
of English text. Figure 2.5 shows the distribution of ASCII characters in the
Pascal program that computed the frequency distributions. Note the large number
of blanks.

By comparing the letter frequencies in a given ciphertext with the expected
frequencies, a cryptanalyst can match the ciphertext letters with the plaintext
letters. Digram and trigram distributions are also helpful.

Ciphers based on shifted alphabets are usually easy to solve, because each
ciphertext letter is a constant distance from its corresponding plaintext letter.

Ciphers based on affine transformations of the form

f (a) = (ak l + ko) mod n

are somewhat trickier [Sink66]. If a set of t correspondences (or suspected corre-
spondences) between plaintext letters m~ and ciphertext letters c i (1 ~ i ~ t), then
it may be possible to determine the multiplier kl and shift factor k0 by solving the
system of equations:

(m~k~ + ko) mod n = c~

(mtk l + ko) mod n = c t .

Example.
Consider the following plaintext-ciphertext letter correspondences (the num-
bers in parentheses are the numerical equivalents)"

FIGURE 2.4 Partitioning of letters by frequency.

high: E T A O N I R S H
medium" D L U C M
low: P F Y W G B V
rare: J K Q X Z

HOMOPHONIC SUBSTITUTION CIPHERS 67

Plaintext Ciphertext
E (4) K (10)
J (9) T (19)
Y (13) U (20)

This gives the three equations:

(4 k , + k 0) mod26 = 10 (1)
(9k, + k0) mod 26 = 19 (2)

(13k l+k0) m o d 2 6 = 2 0 (3)

Subtracting Eq. (1) from Eq. (2), we get

5kl mod 26 = 9 .

We can solve for kl using Eq. (1.6) (see Section 1.6.2), getting

kx = [9 • inv(5, 26)] mod 26
=(9.21)rood26
= 7 .

Substituting in Eq. (1) gives

(28 +k0) mod26 = 10,

whence

k0 = - 1 8 m o d 2 6 = 8 .

Note that we did not need Eq. (3) to solve for k~ and k0. We must, however,
check that the solution satisfies Eq. (3). If it does not, then at least one of the
three plaintext-ciphertext correspondences is incorrect (or else the cipher is
not an affine transformation). In this case, the key does satisfy Eq. (3). II

In general, we may need more than two equations to solve for k0 and kl. This
is because equations of the form "ak mod 26 = c" have multiple solutions when a
divides 26 (see Section 1.6.2).

Peleg and Rosenfeld [Pele79] describe a relaxation algorithm for solving
general substitution ciphers. For each plaintext letter a and ciphertext letter b, an
initial probability Pr[f(a) = b] is computed based on single-letter frequencies,
where Pr[f(a) = b] is the probability that plaintext letter a is enciphered as b.
These probabilities are then iteratively updated using trigram frequencies until the
algorithm converges to a solution (set of high probability pairings).

2.3 HOMOPHONIC SUBSTITUTION CIPHERS

A homophonic substitution cipher maps each character a of the plaintext alphabet
into a set of ciphertext elements f (a) called homophones. Thus the mapping f from
plaintext to ¢iphertext is of the form.j2 A ~ 2 e. A plaintext message M = mlm2
. . . is enciphered as C = clG where each c i is picked at random from the set of

homophones f (mi) .

tm

0

E~

CO

t,_

t_

0

0
o m

. m

tm

U.J
D~

!

~ ~ * .

~ O 0 0 0 0 0 ~ ~ O 0 0 0 0 ~ O 0 0 0 0 Q O O ~ O ~ O O ~ Q O O Q O O O Q O O O O O O Q O

68

~ ~ ~ •

U

Z ,--,

69

70 ENCRYPTION ALGORITHMS

Example:
Suppose that the English letters are enciphered as integers between 0 and 99,
where the number of integers assigned to a letter is proportional to the
relative frequency of the letter, and no integer is assigned to more than one
letter. The following illustrates a possible assignment of integers to the let-
ters in the message PLAIN PILOT (for brevity, integer assignments for the
remaining letters of the alphabet are not given):

Letter Homophones
A
I

L
N
O
P
T

One possible encipherment of the message is"

M = P L A I N P I L O T
C = 9 1 44 56 65 59 33 08 76 28 78

17 19 34 41 56 60 67 83
08 22 53 65 88 90
03 44 76
02 09 15 27 32 40 59
01 11 23 28 42 54 70 80
33 91
05 10 20 29 45 58 64 78 99

. m

Kahn [Kahn67] notes the first known Western use of a homophonic cipher
appears in correspondence between the Duchy of Mantua and Simeone de Crema
in 1401. Multiple substitutions were assigned only to vowels; consonants were
assigned single substitutions.

Homophonic ciphers can be much more difficult to solve than simple substi-
tution ciphers, especially when the number of homophones assigned to a letter is
proportional to the relative frequency of the letter. This is because the relative
distribution of the ciphertext symbols will be nearly fiat, confounding frequency
analysis. A homophonic cipher may still be breakable, however, if other statistical
properties of the plaintext (e.g., digram distributions) are apparent in the cipher-
text (e.g., see [Prat42,Stah73]).

Clearly, the more ciphertext symbols available to distribute among the plain-
text letters, the easier it is to construct a strong cipher. In the limiting case where
each letter of plaintext enciphers into a unique cipherfext symbol, the cipher can
be unbreakable.

2.3.1 Beale Ciphers

For over a century amateur cryptanalysts have been trying to solve a cipher pur-
ported to point to a treasure buried in Virginia around 1820 by a party of adven-
turers led by Thomas Jefferson Beale. The cipher is the first of three ciphers left
by Beale. The second cipher, solved by James Ward [Ward85] in the 1880s,
describes the alleged treasure and states that the first cipher contains directions
for finding it. The treasure consists of gold, silver, and jewels worth millions of

HOMOPHONIC SUBSTITUTION CIPHERS 71

FIGURE 2.6 Declaration of Independence (first 107 words).

(1)
(11)
(21)
(31)
(41)
(51)
(61)
(71)
(81)
(91)
(99)

When, in the course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, and to assume among the Powers
of the earth the separate and equal station to which
the Laws of Nature and of Nature's God entitle them,
a decent respect to the opinions of mankind requires that
they should declare the causes which impel them to the
separation. We hold these truths to be self-evident; that
all men are created equal, that they are endowed by
their Creator with certain unalienable rights; that among
these are Life, Liberty, and the pursuit of Happiness.

dollars today. The third cipher is supposed to list the next of kin of the
adventurers.

The second cipher (B2) is an interesting example of a homophonic substitu-
tion cipher. The key is the Declaration of Independence (DOI). The words of the
DOI are numbered consecutively as shown in Figure 2.6.

Beale enciphered each letter in the plaintext message by substituting the
number of some word which started with that letter. The letter W, for example,
was enciphered with the numbers 1, 19, 40, 66, 72, 290, and 459. The cipher
begins

115 73 24 818 37 52 49 17 31 62 657 22 7 15 ,

which deciphers to "I have depos i ted . . . " .
The first cipher (B1) has been "solved"--al legedly--by several persons,

using techniques for solving homophonics plus anagramming to make the "solu-
tion" fit. No one admits having found the treasure, however, and there is consider-
able speculation that the whole thing is a hoax. Gillogly [Gill80] found a strange
anomaly in B 1, which he believes supports the hoax hypothesis. He deciphered B 1
using the initial letters of the DOI, and discovered the sequence

A B F D E F G H I I J K L M M N O H P P

in the middle of the plaintext. Gillogly observed that the first F is encrypted as 195
and that word 194 begins with a C; similarly, the last H is encrypted as 301 and
word 302 begins with an O. Hammer [Hamm79] found 23 encrypting errors in
B1, so it is possible the F (for C) and H (for O) were "typos", and the original
plaintext sequence was A B C D E F G H I I J K L M M N O O P P . Perhaps the sequence is
a clue that the DOI is the key--not to abundant r iches--but to a gigantic practical
joke.

Meanwhile, members of the Beale Cipher Association pool their findings,
hoping to either locate the treasure or simply solve the riddle. More information
about these fascinating ciphers may also be found in [Bea178,Hamm71].

72 ENCRYPTION ALGORITHMS

2.3.2 Higher-Order Homophonics

Given enough ciphertext C, most ciphers are theoretically breakable (in the Shan-
non sense---doing so may be computationally infeasible). This is because there will
be a single key K that deciphers C into meaningful plaintext; all other keys will
produce meaningless sequences of letters. Hammer [Harem81] shows it is possible
to construct higher-order homophonic ciphers such that any intercepted ciphertext
will decipher into more than one meaningful message under different keys. For
example, a ciphertext could decipher into the following two messages under differ-
ent keys:

T H E T R E A S U R E I S B U R I E D I N G O O S E C R E E K

T H E B E A L E C I P H E R S A R E A G I G A N T I C H O A X .

To construct a second-order homophonic cipher (one in which each cipher-
text has two possible plaintext messages), the numbers 1 through n 2 are randomly
inserted into an n × n matrix K whose rows and columns correspond to the charac-
ters of the plaintext alphabet _,4. For each plaintext character a, row a of K defines
one set of homophones f~(a) and column a defines another set of homophones
f2(a). The set of rows thus corresponds to one key (mapping)f~ and the set of
columns to a second key f2. A plaintext message M = m~m2 . . . is enciphered along
with a dummy message X = x ~ x 2 . . , to get ciphertext C = c~c2 where

c i = K [m i , x i] i = 1 , 2

Each ciphertext element q. is thus selected from the intersection of the sets fa(m/.)
and f 2 (x i) and, therefore, deciphers to either m i (under key fl) or x i (under f2). A
cryptanalyst cannot deduce the correct message from the ciphertext C because
both M and X are equally likely. The intended recipient of the message can,
however, decipher C knowing K.

Example:
Let n = 5. The following illustrates a 5 × 5 matrix for the plaintcxt alphabet
{E, I, L, M, S}:

E I L M S
E [10 22 18 02 11
I [12 01 25 05 20
L [19 06 23 13 07
M 103 16 08 24 15
S [17 09 21 14 04

The message SMILE is enciphered with the dummy message LIMES as
follows:

M = S M I L E
X = L I M E S
C = 21 16 05 19 11 . 1

POLYALPHABETIC SUBSTITUTION CIPHERS 73

Hammer investigated the possibility of B 1 being a second-order homophonic.
Beale might have enciphered messages M and X using two documents--for exam-
ple, the DOI for M and the Magna Carta (MC) for X. Each ciphertext element c i
would then be some number j such that the jth word of the DOI begins with m i
and the jth word of the MC begins with x i. Hammer deduced, however, that Beale
had probably not used this method.

2.4 POLYALPHABETIC SUBSTITUTION CIPHERS

Because simple substitution ciphers use a single mapping from plaintext to
ciphertext letters, the Single-letter frequency distribution of the plaintext letters is
preserved in the ciphertext. Homophonic substitutions conceal this distribution by
defining multiple ciphertext elements for each plaintext letter. Polyalphabetic sub-
stitution ciphers conceal it by using multiple substitutions.

FIGURE 2.7 Cipher disk.

74 ENCRYPTION ALGORITHMS

The development of polyalphabetic ciphers began with Leon Battista
Alberti, the father of Western cryptography [Kahn67]. In 1568, Alberti published
a manuscript describing a cipher disk that defined multiple substitutions (see Fig-
ure 2.7). In the outer circle Alberti placed 20 plaintext letters (H, K, and Y were
not used and J, U, and W were not part of the Latin alphabet) and the numbers
1-4 (for special codes). In the movable inner circle he randomly placed the letters
of the Latin alphabet plus "&". The disk thus defined 24 possible substitutions
from the plaintext letters in the outer ring to the ciphertext letters in the inner
ring, depending on the position of the disks. Alberti's important insight was his
realization that the substitution could be changed during encipherment by turning
the inner disk.

Most polyalphabetic ciphers are periodic substitution ciphers based on a peri-
od d. Given d cipher alphabets C1 C d, let f : A --~ C i be a mapping from the
plaintext alphabet A to the ith cipher alphabet C i (1 ~ i ~ d). A plaintext
message

M = m l . . . m d m d + l • . . m z d . . .

is enciphered by repeating the sequence of mappings f~ , fa every d characters:

E K (M) = f l (m ,) . . . f a (md) A (m d + l) . . . f a (m 2 d)

For the special case d = 1, the cipher is monoalphabetic and equivalent to simple
substitution.

2.4.1 Vigen6re and Beaufort Ciphers

A popular form of periodic substitution cipher based on shifted alphabets is the
Vigen~re cipher. As noted by Kahn [Kahn67], this cipher has been falsely attrib-
uted to the 16th Century French cryptologist Blaise de Vigen~re. The key K is
specified by a sequence of letters:

K = k l . . . k d ,

where k i (i = 1, . . . , d) gives the amount of shift in the ith alphabet; that is,

f i (a) = (a + ki) mod n .

E x a m p l e :

The encipherment of the word RENAISSANCE under the key BAND is
shown next:

M = R E N A I S S A NCE
K = BAND BAND BAN

E K (M) = S E A D J S F D OCR .

In this example, the first letter of each four-letter group is shifted (mod 26)
by 1, the second by 0, the third by 13, and the fourth by 3. II

:fi
¢1I

i , , .

>

1,1.1
,_!
1:13

~ ~ ~ ~ - ~ ~ Z O ~ ~ ~ > ~ ~ <

?5

76 ENCRYPTION ALGORITHMS

The Vigen~re Tableau facilitated encryption and decryption (see Table 2.1).
For plaintext letter a and key letter k, the ciphertext c is the letter in column a of
row k. For ciphertext c, the plaintext a is the column containing c in row k.

The Beaufort cipher is similar, using the substitution

f . (a) = (k i - a) mod n.

Note that the same function can be used to decipher; that is, for ciphertext letter c,

f = l (c) = (k i - c) mod n.

The Beaufort cipher reverses the letters in the alphabet, and then shifts them to
the right by (k i + 1) positions. This can be seen by rewriting f as follows"

f . (a) = [(n - 1) - a + (k i @ 1)] mod n.

E x a m p l e :

If k i = D, the mapping from plaintext to ciphertext letters is given by f.(a)
= (D - a) rood 26 as shown next:

A: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

C- D C B A Z Y X W V U T S R Q P O N M L K J I H G F E . II

The Vigenb~re Tableau can be used to encipher and decipher. For plaintext
letter a, the ciphertext letter c is the row containing the key k in column a. For
ciphertext letter c, the plaintext letter a is the column containing k in row c. The
Beaufort cipher is named after the English admiral Sir Francis Beaufort, although
it was first proposed by the Italian Giovanni Sestri in 1710 [Kahn67].

The Variant Beaufort cipher uses the substitution

f . (a) = (a - ki) mod n .

Because

(a - ki) modn = (a + (n - k i)) m o d n ,

the Variant Beaufort cipher is equivalent to a Vigen~re cipher with key character
(n - k i) .

The Variant Beaufort cipher is also the inverse of the V'lgenere" cipher; thus if
one is used to encipher, the other is used to decipher.

The unicity distance for periodic substitution ciphers is easy to calculate
from the individual substitution ciphers. If there are s possible keys for each
simple substitution, then there are s a possible keys if d substitutions are used. The
unicity distance is thus

N _~ H (K) log2(s d) log2s
' ~ ~ " ~ ~ ~ d ,

D D D

If N ciphertext characters are required to break the individual substitution ci-
phers, then d N characters are required to break the complete cipher. For a Vigen-
~,re cipher with period d, s - 26, giving

POLYALPHABETIC SUBSTITUTION CIPHERS 77

4.7
N ~ ~.2 d = 1.5d.

To solve a periodic substitution cipher, the cryptanalyst must first determine
the period of the cipher. Two tools are helpful: the index of coincidence and the

Kasiski method.

2.4.2 Index of Coincidence

The index of coincidence (IC), introduced in the 1920s by William Friedman
[Frie20] (see also [Kahn67]), measures the variation in the frequencies of the
letters in the ciphertext. If the period of the cipher is 1 (i.e., simple substitution is
used), there will be considerable variation in the letter frequencies and the IC will
be high. As the period increases, the variation is gradually eliminated (due to
diffusion) and the IC will be low.

Following Sinkov [Sink66], we shall derive the IC by first defining a measure
of roughness (M R) , which gives the variation of the frequencies of individual
characters relative to a uniform distribution:

n-1
M R = Z (,,-[), ,

i=O

where Pi is the probability that an arbitrarily chosen character in a random cipher-
text is the ith character a~ in the alphabet (i = O, . . . , n - 1), and

n-1
~pi=l .

i=0

For the English letters we have

M R =

25
z (, , - i)

i=0

25 25

= ~ p ~ - ~ 6 ~ J i + 26(2~)2
i=0 i

25
= Z ~ p ~ - + G

i=0

25
= Z p -.038.

i=0

78 ENCRYPTION ALGORITHMS

Because the period and, therefore, the probabilities are unknown, it is not possible
to compute MR. But it is possible to estimate MR using the distribution of letter
frequencies in the ciphertext. Observe that

25
M R + .038 = Z p~

i=0

is the probability that two arbitrarily chosen letters from a random ciphertext are
the same. Now, the total number of pairs of letters that can be chosen from a given
ciphertext of length N is (N) = N (N - 1)/2. Let F, be the frequency of the ith
letter of English (i = 0 , . . . , 25) in the ciphertext; thus, ~i~0 Fi = N. The number
of pairs containing just the ith letter is

F,.(F i - 1)

2

The IC is defined to be the probability that two letters chosen at random from the
given ciphertext are alike:

25
Z ~.(F~ - 1)

i=0
I C =

N (N - 1)

Because this is an estimate of ~i2~op~, the 1C is an estimate of M R + .038. But
unlike MR, IC can be computed from the ciphertext.

Now, M R ranges from 0 for a flat distribution (infinite period) to .028 for
English and ciphers with period 1. Thus, IC varies from .038 for an infinite period
to .066 for a period of 1. For a cipher of period d, the expected value of IC is:

- 1)
N 1 (.066) + d - 1 (.038).

Table 2.2 shows the expected value of IC for several values of d.
To estimate the period of a given cipher, the cryptanalyst measures the

frequencies of the letters in the ciphertext, computes IC using Eq. (2.1), and

TABLE 2.2 Expected index of coincidence.

d IC
1 .066
2 .052
3 .047
4 .045
5 .044

10 .041
large .038

POLYALPHABETIC SUBSTITUTION CIPHERS 79

finally compares this with the expected values shown in Table 2.2. Because I C is
statistical in nature, it does not necessarily reveal the period exactly. Nevertheless,
it may provide a clue as to whether the cipher is monoalphabetic, polyalphabetic
with small period, or polyalphabetic with large period.

2.4.3 Kasiski Method

The Kasiski method, introduced in 1863 by the Prussian military officer Friedrich
W. Kasiski [Kasi63], analyzes repetitions in the ciphertext to determine the exact
period (see also [Kahn67,Gain56]). For example, suppose the plaintext TO BE
OR NOT TO BE is enciphered with a Vigen~re cipher using key HAM as shown
next:

M = T O B E O R N O T T O B E
K = H A M H A M H A M H A M H

E K (M) = A O N L O D U O F A O N L

Notice that the ciphertext contains two occurrences of the cipher sequence
AONL, 9 characters apart.

Repetitions in the ciphertext occur when a plaintext pattern repeats at a
distance equal to a multiple of the key length. Repetitions more than two cipher
characters long are unlikely to occur by pure chance. If m ciphertext repetitions
are found at intervals/j (1 ~ j _< m), the period is likely to be some number that
divides most of the m intervals. The preceding example has an interval 11 = 9,
suggesting a period of 1, 3, or 9 (in fact it is 3).

The I C is useful for confirming a period d found by the Kasiski method or by
exhaustive search (whereas this would be tedious and time-consuming by hand, a
computer can systematically try d = 1, 2, 3, . . . until the period is found). Letting
c~c 2 . . . denote the ciphertext, the I C is computed for each of the sequences:

1" c~ C d + 1 C z d + l . . .

2:c2 Cd+z Czd+2 • • •

,

d: Cd C2d C3d • • •

If each sequence is enciphered with one key, each will have an I C close to .066.
Once the period is determined, each cipher alphabet is separately analyzed as for
simple substitution.

E x a m p l e :

We shall now apply the index of coincidence and Kasiski method to analyze
the ciphertext shown in Figure 2.8. Figure 2.9 shows that the frequency
distribution of the letters in the ciphertext is flatter than normal, and that
the I C is .0434; this suggests a polyalphabetic substitution cipher with a
period of about 5.

X
O

.12

O

O

E

00
04

U.i

2D
O
I.I.

D ~ O N ~

<>!2 >~

O Z × ~ ~

Z ~ Z ~ ~

~ ~ Z

~ > N Z N ~

D ~ Z ~ O ~

O m ~ m m ~ O
~ ~ ~ N
~ @ N ~ N ~

~ ~ - ~ 0 ~

~ N ~ ~ ~
N ~ m ~ > Z ~

80

POLYALPHABETIC SUBSTITUTION CIPHERS 81

FIGURE 2.9 Frequency distribution of ciphertext in Figure 2.8.

Char Percent

A 4.0 ********
B 0.9 **
C 6.1 ************
D 2.0 ****
E 4.9 **********
F 3.5 *******
G 4.0 ********
H 3.2 ******
I 3.5 *******
J 4.6 *********
K 5.2 **********
L 5.8 ************
M 3.2 ******
N 4.6 *********
O 4.0 ********
P 2.0 ****
Q 3.8 ********
R 8.7 *****************
S 4.3 *********
T 2.0 ****
U 3.5 *******
V 4.0 ********
W 1.7 ***
X 0.6 •
Y 6.1 ************
Z 3.8 ********

Number of Characters = 346
Index of Coincidence = .0434

To de te rmine the exact period, we observe there are three occurrences

of the 11-character sequence Q G O L K A L V O S J (see F igure 2.8), the first
two separa ted by a dis tance of 51 characters , and the second two by 72

characters . Because 3 is the only common divisor of 51 and 72, the period is

almost certain to be 3, even though the IC predicted a somewhat larger
period.

Figure 2.10 shows the IC and frequency dis t r ibut ion for each of the
sequences.

1" C 1 C 4 C 7 . . .

2: c 2 c 5 c 8 . . .

3 : c8 c6 c9

Each c ipher text a lphabe t has an IC near or above .66, confirming the hy-
pothesis that the period is 3.

o

co

o .

co

o

.2

. ~

o

o "

0

ai

o

~o

0

,~

o

o

o

41.

a .

~0 ~ ~ P,- o co o o o c9 0~ o~ o l . o o P- ~,o 0~ t 0 o o ~ o ~ o ~ P,-
~ 4 d 4 d ~ d d L 6 d ~ ~ d ~ ~ 4 d d d a ~ d d 4

~ ~ ~ O ~ ~ ~ E O ~ ~ ~ ~ ~ ~

o ~ d ~ a i d N ~ L 6 d d 4 ~ g ~ 4 d 4 ~ L 6 4 d d d t d d

~ ~ ~ ~ ~ ~ ~ o ~ s ~ ~ ~ ~ ~

t l .

t1~ t l ,
t l • t l ,

II.

ii.
tl,
tl,

t l .

II. t l . t l .
t l . t l . t l .

d d ~ 4 4 ~ N d ~ ~ d d d a i , 4 g d d ~ 4 % ~ 4 g

Lo

II

o

o

II

o

k

o

o

co

II

o

F~

. , - i

o

o

o

Q

f
o

II

-p-I

o
L~

o

!!

o

$
o

II

8

82

POLYALPHABETIC SUBSTITUTION CIPHERS 83

To determine the type of cipher, we might first consider a simple Vi-
gen~re or Beaufort cipher. Looking at the second alphabet, we see a surpris-
ing similarity between this distribution and the expected distribution for
English letters (see Figure 2.3). This suggests a Vigen~re cipher with an A as
the second key character, whence the letters c2, c5, . . , are already in plain-
text. We leave finding the first and third characters and deciphering the text
as an exercise for the reader. The plaintext is one of Raymond Smullyan's?
gems. m

2.4.4 Running-Key Ciphers

The security of a substitution cipher generally increases with the key length. In a
running-key cipher, the key is as long as the plaintext message, foiling a Kasiski
attack (assuming the key does not repeat). One method uses the text in a book (or
any other document) as a key sequence in a substitution cipher based on shifted
alphabets (i.e., a nonperiodic Vigen~re cipher). The key is specified by the title of
the book and starting position (section, paragraph, etc.).

Example:
Given the starting key: "Cryptography and Data Security, Section 2.3.1,
paragraph 2," the plaintext message "THE TREASURE IS B U R I E D . . . "
is enciphered as

M = T H E T R E A S U R E I S B U R I E D . . .

K = T H E S E C O N D C I P H E R I S A N . . .
EK(M) = M O I L V G O F X T M X Z F L Z A E Q . . .

(the string "(B2)" in the text was omitted from the key sequence because
some of the characters are not letters), m

Because perfect secrecy is possible using key sequences as long as the mes-
sages they encipher, one might expect a running key cipher to be unbreakable.
This is not so. If the key has redundancy (as with English text), the cipher may be
breakable using Friedman's methods [Friel8] (see also [Kahn67,Diff79]). Fried-
man's approach is based on the observation that a large proportion of letters in the
ciphertext will correspond to encipherments where both the plaintext and key
letters fall in the high frequency category (see Figure 2.4).

Example:
In our earlier example, 12 of the 19 ciphertext letters came from such pairs,
as noted next:

M = T H E T R E A S U R E I S B U R I E D . . .
K = T H E S E C O N D C I P H E R I S A N

t R. Smullyan, This Book Needs No Title, Prentice-Hall, Englewood Cliffs, N.J., 1980.

84 ENCRYPTION ALGORITHMS

Of the remaining 7 pairs, either the plaintext or key letter belongs to the
high frequency category in 6 of the pairs, and both belong to the medium
category in the remaining pair. II

Friedman recommends starting with the assumption that all ciphertext let-
ters correspond to high frequency pairs, thus reducing the number of initial possi-
bilities for each plaintext and key letter. The initial guesses are then related to
digram and trigram distributions (and possibly probable words) to determine the
actual pairings.

Example:
Consider the first three ciphertext letters MOI in the preceding example.
There are 26 possible plaintext-key letter pairings for each ciphertext letter
(assuming a shifted substitution). Examining the possible pairs for M, we see
there are only three pairs where both the plaintext and key character fall in
the high frequency category:

plaintextletter: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
key letter: M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

ciphertext letter: MMMMMMMMMMMMMMMMMMMMMMMMMM

The high frequency pairs for all three letters are:

M O I
E - I A-O A - I
I - E O-A I - A
T - T H-H E - E

R - R

Now, there are 3 • 3 • 4 = 36 possible combinations of the preceding pairs:

plaintext: EAA EAI . . . T H E . . . THR
key: I O I IOA . . . THE . . . THR
ciphertext: MOI MOI . . . MOI . . . MOI .

Many of the trigrams for either the plaintext or key are very unlikely (e.g.,
EAA and IOI in the first combination). The trigram THE occurring simul-
taneously in both the plaintext and key is the most likely, and a cryptanalyst
making this choice will have correctly guessed the first word of both the
plaintext and key. II

2.4.5 Rotor and Hagelin Machines

Rotor and Hagelin machines implement polyalphabetic substitution ciphers with a
long period.

POLYALPHABETIC SUBSTITUTION CIPHERS 85

A rotor machine consists of a bank of t rotors or wired wheels. The perimeter
of each rotor R i has 26 electrical contacts (one for each letter of the alphabet) on
both its front and rear faces. Each coiatact on the front face is wired to a contact
on the rear face to implement a mapping f from plaintext to ciphertext letters. R i
can rotate into 26 positions, and each position alters the mapping. When R i is in
position Ji, the mapping is defined by

F i (a) = ~ . (a - Ji) mod 26 + Ji) mod 26 .

A plaintext letter (signal) enters the bank of rotors at one end, travels
through the rotors in succession, and emerges as ciphertext at the other end. A
machine with t rotors effectively implements a substitution cipher composed of F~,
. . . , F t. The ith plaintext letter m i of a message M = m ~ m 2 . . . is enciphered as

E k i (m i) = F t 0 . . . 0 F l (a) ,

where k i consists of the wired mappings./] ft and the positions j~ J t of the
rotors.

The wirings plus initial positions of the rotors determine the starting key. As
each plaintext letter is enciphered, one or more of the rotors moves to a new
position, changing the key. A machine with t rotors does not return to its starting
position until after 26 / successive encipherments; a machine with 4 rotors, for
example, thus has a period of 26' = 456,976 letters; one with 5 rotors has a period
of 11,881,376 letters. The Enigma, invented by Arthur Scherbius and used by the
Germans up through World War II, uses an odometer rotor motion. The first rotor
advances to the next position after each character is enciphered. After it has made
a complete rotation, the second rotor advances to its next position. Similarly, after
the second rotor has made a complete rotation, the third advances, and so on until
all rotors have moved through all positions. (See [Diff79,Kahn67,Konh81,
Deav80a,Deav80b] for additional information about these machines, including
methods used to break them.)

The Hagelin machines, invented by Boris Hagelin [Kahn67] in the 1920s
and 1930s, use keywheels with pins. There are t wheels, and each wheel has Pi pins
(1 _< i _< t), where the Pi are relatively prime. The Hagelin C-48, for example, has
6 wheels with 17, 19, 21, 23, 25, and 26 pins, respectively. The pins can be pushed
either left or right, and the combined setting of the pins and positions of the wheels
determine a key. Letting k i be the key when the ith plaintext character m i is
enciphered, m i is enciphered as in a Beaufort substitution:

E k i (m i) = (k i - m i) mod 26

(deciphering is the same). After each ciphertext character is enciphered, all t
wheels are rotated one position forward. Because the Pt do not have any common
factors, the wheels do not return to their starting position until after N~=lPi enci-
pherments. The C-48, for example, has a period of over 100 million. Hagelin
machines were used extensively during World War II, and are still used today.
(See also [Diff79,Kahn67,Bark77,Rive81]).

Although rotor and Hagelin machines generate long key streams, they are

86 ENCRYPTION ALGORITHMS

not as random as they might seem, and the machines are vulnerable to cryptanaly-
sis (see preceding references). Techniques for generating key streams that seem
less vulnerable are described in Chapter 3.

2.4.6 Vernam Cipher and One-Time Pads

If the key to a substitution cipher is a random sequence of characters and is not
repeated, there is not enough information to break the cipher. Such a cipher is
called a one-time pad, as it is only used once.

The implementation of one-time pads in computer systems is based on an
ingenious device designed by Gilbert Vernam in 1917 [Kahn67]. An employee of
American Telephone and Telegraph Company (A. T. & T.), Vernam designed a
cryptographic device for telegraphic communications based on the 32-character
Baudot code of the new teletypewriters developed at A. T. & T. Each character is
represented as a combination of five marks and spaces, corresponding to the bits 1
and 0 in digital computers. A nonrepeating random sequence of key characters is
punched on paper tape, and each plaintext bit is added modulo 2 to the next key
bit. Letting M = m l m 2 . . , denote a plaintext bit stream and K = klk2 . . . a key bit
stream, the Vernam cipher generates a ciphertext bit stream C = E K (M) = c~c2,
. . . , where

c i = (m i + ki) mod 2 , i = 1, 2

The cipher is thus like a Vigen6re cipher over the binary alphabet {0, 1}.
The Vernam cipher is efficiently implemented in microelectronics by taking

the "exclusive-or" of each plaintext/key pair (see Section 1.6.3)"

C i = m i • k i .

Because k i • ki = 0 for kg = 0 or 1, deciphering is performed with the same
operation:

C i • k i = m i • k i • k i
= m i .

Example :

If the plaintext character A (11000 in Baudot) is added to the key character
D (10010 in Baudot), the result is"

M = 1 1 0 0 0
K = 1 0 0 1 0

E K (M) = 0 1 0 1 0 . I

Army cryptologist Major Joseph Mauborgne suggested the one-time use of each
key tape, and thus the most formidable cipher of all was born. The only drawback
of the cipher is that it requires a long key sequence; we shall return to this problem
in the next chapter.

If the key to a Vernam cipher is repeated, the cipher is equivalent to a

POLYGRAM SUBSTITUTION CIPHERS 87

running-key cipher with a text as key. To see why, suppose two plaintext streams
M and M ' are enciphered with a key stream K, generating ciphertext streams C
and C', respectively. Then

c i = m i • k i,
! l

C i = m i • k i,

for i = 1, 2 Let C" be a stream formed by taking the ~ of C and C'; then

it = c i ~ l C i Ci

= m i ~ k i ~ m f ttt k i
!

= m i • m i ,

for i = 1, 2, The stream C" is thus equivalent to a stream generated by the
encipherment of message M with message (key) M ' and is no longer unbreakable.
Note that this ciphertext is broken by finding the plaintext rather than the key. Of
course, once the plaintext is known, the key is easily computed (each k i = ci ~ mr).

2.5 P O L Y G R A M S U B S T I T U T I O N C I P H E R S

All of the preceding substitution ciphers encipher a single letter of plaintext at a
time. By enciphering larger blocks of letters, polygram substitution ciphers make
cryptanalysis harder by destroying the significance of single-letter frequencies.

2.5.1 Playfair Cipher

The Playfair cipher is a digram substitution cipher named after the English scien-
tist Lyon Playfair; the cipher was actually invented in 1854 by Playfair's friend,
Charles Wheatstone, and was used by the British during World War I [Kahn67].
The key is given by a 5 X 5 matrix of 25 letters (J was not used), such as the one
shown in Figure 2.11. Each pair of plaintext letters m l m z is enciphered according
to the following rules:

D

If ml and m2 are in the same row, then cl and c2 are the two characters to the
right of ml and m2, respectively, where the first column is considered to be to
the right of the last column.
If ml and m2 are in the same column, then cl and cz are the two characters

FIGURE 2.1 1 Key for Playfair cipher.

H A R P S
I C O D B
E F G K L
M N Q T U
V W X Y Z

88 ENCRYPTION ALGORITHMS

.

.

.

below ml and m2, respectively, where the first row is considered to be below
the last row.
If ml and m2 are in different rows and columns, then c, and c2 are the other
two corners of the rectangle having ml and m2 as corners, where Cl is in m,'s
row and cz is in m2's row.
If m~ = m2, a null letter (e.g., X) is inserted into the plaintext between mi
and m2 to eliminate the double.
If the plaintext has an odd number of characters, a null letter is appended to
the end of the plaintext.

Example:
To encipher the first two letters of R E N A I S S A N C E , observe that R and E
are two corners of the rectangle

H A R
I C O
E F G .

They are thus enciphered as the other two corners, H and G. The entire
plaintext is enciphered as:

M = RE NA IS SA NC EX
EK(M) = HG WC BH H R WF G V . II

2.5.2 Hill Cipher

The Hill cipher [Hi1129] performs a linear transformation on d plaintext charac-
ters to get d ciphertext characters. Suppose d = 2, and let M = mlm2. M is
enciphered as C = EK(M) = CLC2, where

Cl = (kllml + klzm2) mod n
C2 = (k z iml + kz2m2) mod n .

Expressing M and C as the column vectors M = (ml, m2) and C = (Ca, c2), this can
be written as

C = EK(M) = K M mod n ,

where K is the matrix of coefficients:

kll klz~ II
kzx kzz] "

That is,

_ _ (ml) modn
k~ k J m~

POLYGRAM SUBSTITUTION CIPHERS 89

Deciphering is done using the inverse matrix K-~:

DK(C) = K-1C mod n
= K - I K M mod n

= m ,

where K K -~ mod n = I, and I is the 2 × 2 identity matrix.

Exa mp l e :
Let n be 26 and let K and K -~ be as follows"

K g -1 I

3 15 2~) mod 26= (10 01)

Suppose we wish to encipher the plaintext message EG, which corresponds to
the column vector (4, 6). We compute

(; :) = (33 25) (46)mod 26

_ _

16 '

getting the ciphertext C = (24, 16) or YQ. To decipher, we compute

15 2~) (21~) mod 26= (46) II
17

Because the enciphering transformation is linear, it may be possible to solve
for the key with just a few characters of known plaintext. Suppose d = 2, and the
cryptanalyst has the following correspondences of plaintext and ciphertext:

ml
M~

= (ml, m2), Cl "~ (C1, C2)
= (m3, m,) , G = (c3, c,) .

Let M and C be the following matrices of column vectors:

M = (M1, M2) = / {m,
\ m2 (Cl

c = (c , , c ~) = c~

We have

C = K M mod n .

ms)
m4

£3 I "
C4

If M is nonsingular, the cryptanalyst can compute its inverse and solve for K:

K = C M -l mod n .

This strategy can be applied for any d, and requires only O(d ~) operations to
compute the inverse.

90 ENCRYPTION ALGORITHMS

2.6 PRODUCT CIPHERS

A product cipher E is the composition of t functions (ciphers) F1 F t, where
each F i may be a substitution or transposition. Rotor machines are product ciphers,
where FF i is implemented by rotor R i (I ~ i ~ t).

2.6.1 Substitution-Permutation Ciphers

Shannon [Shan49] proposed composing different kinds of functions to create
"mixing transformations", which randomly distribute the meaningful messages
uniformly over the set of all possible ciphertext messages. Mixing transformations
could be created, for example, by applying a transposition followed by an alternat-
ing sequence of substitutions and simple linear operations.

This approach is embodied in the LUCIFER cipher, designed at IBM by
Feistel [Feis73]. LUCIFER uses a transformation that alternately applies substi-
tutions and transpositions.

Figure 2.12 illustrates how the basic principle is applied to 12-bit blocks (in
practice, longer blocks should be used). The cipher alternatively applies substitu-
tions S i and permutations Pi, giving

C = E K (M) = S t o Pt-1 o . . . o $2 o P1 o S i (M) ,

where each S i is a function of the key K. The substitutions Si are broken into 4
smaller substitutions Sil , S~4, each operating on a 3-bit subblock to reduce the
complexity of the microelectronic circuits. Because the permutations Pi shuffle all

FIGURE 2.12 Substitution-permutation cipher.

S 1

m l ~

m 2 ~ S11

m 3 ~

r n 4 ~

m 5- S12

m 6

m 7 , ,

m s , ~ S13

m 9

m l 0 ~

m
1 1 ~ S14

m 1 2 ~

P 1 P t -1 St $2

]

$21 I

$22

$23

$24

St 1 "

St2 ,

St 3

S t4 ,

c 1

, c 2

, c 3

, c 4

c 5

c 6

c 7

c 8

~ c 9

- ~ - m c 10

C l l

, c i 2

PRODUCT CIPHERS 91

FIGURE 2. i3 DES enciphering algorithm.

Lo

T

1 (iP)
!

R o

(£]

L 1 =R 0 R 1 =Lo~ f (Ro , K 1)

L2=R 1

k

J ¢.
L15 =R14

R2 = L I ~ f (R 1' K2)

i A
f

..>,:

R15 =L14~f(R14, K15)

K16

Rt6 = L 1 5 ~ f (R15,K16)

1

IP -1)

output

L16 =R15

I

92 ENCRYPTION ALGORITHMS

12-bits, each bit of plaintext can conceivably affect each bit of ciphertext. (See
[Feis70,Feis75,Kam78] for details on the design of substi tution-permutation
ciphers.)

2.6.2 The Data Encryption Standard (DES)

In 1977 the National Bureau of Standards announced a Data Encryption Stan-
dard to be used in unclassified U.S. Government applications [NBS77]. The en-
cryption algorithm was developed at IBM, and was the outgrowth of LUCIFER.

DES enciphers 64-bit blocks of data with a 56-bit key. There is disagreement
over whether a 56-bit key is sufficiently strong; we shall discuss this controversy
after describing the algorithm.

The algori thm--which is used both to encipher and to decipher--is summa-
rized in Figure 2.13. An input block T is first transposed under an initial permuta-
tion IP, giving To - IP(T). After it has passed through 16 iterations of a function
f, it is transposed under the inverse permutation IP -1 to give the final result. The
permutations IP and IP -1 are given in Tables 2.3(a) and 2.3(b), respectively.
These tables (as well as the other permutation tables described later) should be
read left-to-right, top-to-bottom. For example, IP transposes T = t , t 2 . . , t64 into To

- t 58 t so . . , tT. All tables are fixed.
Between the initial and final transpositions, the algorithm performs 16 iter-

ations of a function f that combines substitution and transposition. Let T,. denote
the result of the ith iteration, and let L; and R i denote the left and right halves of
T i, respectively; that is, ~. = L i R i, where

Then

L i = tl . . . t32

R i = t 8 3 . . . / 6 4 •

L i = R i _ 1

R i = Li_ , tt1 f (R i _ 1, Ki)

where " ~ " is the exclusive-or operation and K,. is a 48-bit key described later. Note
that after the last iteration, the left and right halves are not exchanged; instead the

TABLE 2.3(a) Initial permutation IP. TABLE 2.3(b) Final permutation IP -1.

58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 6 38 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37 5 45 13 53 21 61 29
57 49 41 33 25 17 9 1 36 4 44 12 52 20 60 28
59 51 43 35 27 19 11 3 35 3 43 11 51 19 59 27
61 53 45 37 29 21 13 5 34 2 42 10 50 18 58 26
63 55 47 39 31 23 15 7 33 1 41 9 49 17 57 25

94 ENCRYPTION ALGORITHMS

shown in Tab le 2.4. This t ab l e is used in the s a m e way as the p e r m u t a t i o n tab les ,

excep t t h a t some bits of Rt_ 1 a re se lec ted m o r e t h a n once; thus , given R i _ a = r l r2

• . . r~2, E(Ri_ i) = r ~ 2 r l r 2 . . , r~2rl .

N e x t , the exclus ive-or of E(Ri_ i) and K i is c a l c u l a t e d and the resu l t b roken

into e igh t 6-bi t b locks B 1 , . . . , Bs, w h e r e

E(Ri_ ,) ~ K i = B , B 2 . . . B8 •

TABLE 2.6 Selection functions (S-boxes).

Column
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 l l 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 S,
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 $2
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 $3
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 $4
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

0 2 12 4 1 7 10 l l 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 $5
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 l l

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 $6
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

0 4 l l 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 $7
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 $8
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

PRODUCT CIPHERS 95

Each 6-bit block Bj is then used as input to a selection (substitution) function
(S-box) Sj, which returns a 4-bit block Sj(Bj). These blocks are concatenated
together, and the resulting 32-bit block is transposed by the permutation P shown
in Table 2.5. Thus, the block returned by f (Ri_ ,, K i) is

P (S a (B ,) . . . Ss(Bs)) .

Each S-box Sj maps a 6-bit block Bj = b~b2b3b4bsb6 into a 4-bit block as defined in

FIGURE 2. i 5 Key schedule calculation.

,I,
Co

1, (Ls,)
1

C1

K

1, (PC_l)

Do

,I, (Ls,)
l
D]

PC - 2 K1

C 2

1
I
!

,I, QLs,6)
,I,

C16

D 2

I
,,I, (Ls,6)
,I,

D16

~ K 2

Ki6

2

96 ENCRYPTION ALGORITHMS

Table 2.6. This is done as follows: The integer corresponding to blb~ selects a row
in the table, while the integer corresponding to b2b3b4b5 selects a column. The value
of Sj(Bj) is then the 4-bit representation of the integer in that row and column.

Example :
If B~ = 010011, then S 1 returns the value in row 1, column 9; this is 6, which
is represented as 0110. II

Key calculat ion. Each iteration i uses a different 48-bit key K i derived from the
initial key K. Figure 2.15 illustrates how this is done. K is input as a 64-bit block,
with 8 parity bits in positions 8, 16, . . . , 64. The permutation PC-1 (permuted
choice 1) discards the parity bits and transposes the remaining 56 bits as shown in
Table 2.7. The result PC- 1 (K) is then split into two halves C and D of 28 bits each.
The blocks C and D are then successively shifted left to derive each key K;. Letting
C i and D i denote the values of C and D used to derive K i, we have

(7,. = LS/(C~_,), D i = LS~(D~_i) ,

where LSi is a left circular shift by the number of positions shown in Table 2.8,
and Co and Do are the initial values of C and D. Key K~ is then given by

K i = PC-2(Ci Di) , where

PC-2 is the permutation shown in Table 2.9.

Deciphering. Deciphering is performed using the same algorithm, except that
K~6 is used in the first iteration, K~ in the second, and so on, with K 1 used in the

TABLE 2.7 Key permutation PC-1.

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15

7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

TABLE 2.8 Key schedule of left shifts LS.

Iteration Number of
i Left Shifts
1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1

10 2
11 2
12 2
13 2
14 2
15 2
16 1

PRODUCT CIPHERS 97

TABLE 2.9 Key permutation PC-2.

14 ~ 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

16th iteration. This is because the final permutation IP -1 is the inverse of the
initial permutation IP, and

R i _ i = L i

Li_ , = R i • f (L i , Ki) •

Note that whereas the order of the keys is reversed, the algorithm itself is not.

I m p l e m e n t a t i o n . DES has been implemented both in software and in hardware.
Hardware implementations achieve encryption rates of several million bps (bits
per second).

In 1976 (before DES was adopted), the National Bureau of Standards held
two workshops to evaluate the proposed standard. At that time, Diffie and Hell-
man, and others, were concerned about possible weaknesses (see [Hell76, Diff77].
After the second workshop, Morris, Sloane, and Wyner [Morr77] reported that
they believed the DES had two major weaknesses:

.

2.
K e y size." 56 bits may not provide adequate security.
S - b o x e s : The S-boxes may have hidden trapdoors.

Diffie and Hellman argue that with 56-bit keys, DES may be broken under a
known-plaintext attack by exhaustive search. In [Diff77] they show that a special-
purpose machine consisting of a million LSI chips could try all 256 ~ 7 X 10 '6 keys
in 1 day. Each chip would check one key per tzsec or 8.64 X 10 TM keys per day.
Whereas it would take almost 10 ~ days for one chip to check all keys, 10 ~ chips can
check the entire key space in 1 day. The cost of such a machine would be about
$20 million. Amortized over 5 years, the cost per day would be about $10,000.
Because on the average only half the key space would have to be searched, the
average search time would be half a day, making the cost per solution only $5,000.
More recently, Diffie [Diff81] has increased this estimate to a 2-day average
search time on a $50M machine (using 1980 technology). But he and Hellman
[Hell79] both predict the cost of building a special-purpose DES search machine
will drop substantially by 1990.

Hellman [Hell80] has also shown that it is possible to speed up the searching
process by trading time for memory in a chosen'plaintext attack (see following
section). The cost per solution would be $10 on a $5M machine. Because the

98 ENCRYPTION ALGORITHMS

FIGURE 2.16 Multiple encipherment with DES.

encipher

plaintext

D E S ~ ~ E S -1~ ~ (D E S >

K 1 K 2 K 1

! I I _
V ' I t ,qr

(DES -I~ " ,/f DES) " (DES -1~ ~

decipher

ciphertext

attack can be thwarted with techniques such as cipher block chaining (see Chapter
3), the search strategy itself does not pose a real threat.

Hellman and others argue that the key size should be doubled (112 bits).
Tuchman [Tuch79] claims that the same level of security can be obtained with 56-
bit keys, using a multiple encryption scheme invented by Matyas and Meyer. Let
DES K denote the encipering transformation for key K, and DES-~ the correspond-
ing deciphering transformation. A plaintext message M is enciphered as

C = DESK, (DES~2(DESK, (M))) ;

that is, it is successively enciphered, deciphered, and then enciphered again, using
one key (K1) for the encipherments and another (K2) for the decipherment (see
Figure 2.16). The message M is restored by reversing the process and applying the
inverse transformations:

DES~i (DESK2 (DES~:i(C))) = M.

Merkle and Hellman [Merk81] believe this approach may be less secure than
using a single 112-bit key (or even using 3 separate keys in a triple-encryption
scheme), showing that it can be theoretically broken under a chosen-plaintext
attack using about 256 operations and 25~ keys stored on 4 billion tapes.

Hellman and others have also questioned whether the S-boxes are secure
(the analysis behind their design is presently classified). They believe that the
design should be unclassified so that it may be publicly evaluated. (See [Suga79,
Hel179,Davi79,Bran79,Tuch79] for a debate on these issues.)

2.6.3 Time-Memory Tradeoff

There are two naive approaches to breaking a cipher with n keys: exhaustive
search and table lookup. Exhaustive search uses a known-plaintext attack: Given

PRODUCT CIPHERS 99

ciphertext C, the known plaintext M is enciphered with each key K until EK(M)
= C. The time complexity is T = O(n) and the space complexity is S = O(1). We
saw earlier that if one key can be tested in I ~sec on a special-purpose chip, then n
= 256 ~_ 7 X 10 ~ keys can be checked in T = 10 ~ days, and 1 million chips can
search the entire key space in parallel in approximately 1 day.

Table lookup uses a chosen-plaintext attack: For chosen plaintext M0, the
ciphertexts C i = EKi(Mo) are precomputed for i = 1, . . . , n. The keys K~. are
arranged in a table so that C i gives the index of K i. Thus, for a given ciphertext, the
corresponding key K can be found in time T = O(1), though the space complexity
is S = O(n). For 56-bit keys, the space requirements are S = 56(2 ~6) ~ 56 X 7
X 10 ~ ~ 4 X 10 TM bits. This would require about 4 billion magnetic tapes (at about
109 bits per tape), costing about $80 billion (at $20 per tape).

Hellman's time-memory tradeoff technique is a hybrid approach that trades
time for space in a chosen-plaintext attack [Hell80]. Like table lookup, it requires
the precomputation and storage of a table. For the time-memory tradeoff tech-
nique, however, the table size is only S = O(n2/~). Like exhaustive search, the
technique also requires searching. Here again, however, the search time is only T
= 0(n2/3).

Define

f (K) = R(EK(Mo))

for chosen plaintext M0, where R is a function that reduces a 64-bit block to a 56-
bit block (by discarding 8 bits). For a given ciphertext Co = EK(Mo), the objective
(of cryptanalysis) is to find the inverse K of f, that is,

K =f -~(R(Co)) .

For the precomputation, rn starting points SPa, . . . , SP m are randomly cho-
sen from the key space. The following values are computed for some integer t and i
= 1 , . . . , m :

x;0= se,
Xij=f(Xi,j_~) (1 < j < t)

(see Table 2.10). The ending points EP,. of the computation can thus be expressed:
EP,. = f t (SP i) (1 <_ i _< m). The m pairs of values (SP,., EP,.) are stored in a table
sorted by the EP,.. The storage requirements for the table are S = O(m), and the
precomputation time is Tp = O(mt).

Given an intercepted ciphertext Co = EK(Mo), the search for K proceeds by
first looking for K in column t - 1, of the X's (see Table 2.10). If this fails, the
remaining columns are searched in the order t - 2, t - 3 ,0 . Because the X's
are not stored in the table, they must be computed from the starting points as
described earlier.

To begin, }I1 = R(Co) is computed in order to reduce Co to 56 bits. Next, if Y1
= EP i for some i (1 <~ i ~< m), then Y~ = f(Xi,t-1). This implies that either K
= X~.,_~ or that f has more than one inverse. This latter event is called a "false
alarm." To determine whether X;.,_a is correct, it is used to encipher the chosen
plaintext M0; K = Xi, t-~ if and only if Ex~,t_l(Mo) = Co.

100 ENCRYPTION ALGORITHMS

TABLE 2.10 Time-memory tradeoff table.

Starting Ending
Points Points

f f f f f f
SP1 = Xlo ~ X l l ~ X 1 2 - - - ~ . • • ~ Xl,t-2 ~ X l , t - 1 ~ Xlt = EP,

.

.

SPi = Xio ~ X~l ~ x ~ ~ . . . ~ X i , . - ~ xi , t- , ~ Nit -- EPi
• °

o °

S P m = X m o - - ~ X r m - - ~ X m z - - ~ . . . - -~Xm,t-z-- -~Xm,t-1---~Xmt = E P m

If K is not found in column t - 1 of the X's, column t - 2 is searched next.
This is done by setting Y2 = f(Y1). K = Xi, t-2 for some i if and only if Y2 = EPi and
Exi, t_2(Mo) = Co. The remaining columns are searched by computing Y~ = f(Yj-1)

for j = 3 , t. K = Xi.t_ j for some i if and only if Yj = E P i and Exi, t_j (Mo) = Co.

Assuming false alarms are rare, the time to search one table is T = O(t) . If
all m t values of X represented by the table are randomly chosen and different, then
the probability of finding a random key K in the table is p = m t / n . Allowing for
overlap, Hellman shows that if m t 2 = n, the probability of success has the approxi-
mate lower bound of:

p ~ . . 8 m t m t
n n

Let m = t = nl/~. Then the storage requirements are S = O (m) = O (n l / a) , the
precomputation time is Tp = O (m t) = 0(n2/3), and the search time is T~ = O(t)

= O(nVa). The probability of success, however, is only approximately n-X~ 3. For n
= 1017, this is a little better than 10 -6, which is not good. If t = nl/~ tables are
precomputed and searched instead, then the probability of success is quite high.
The total storage requirements then become S = O (t m) = O(nZ/3), while the total
precomputation time becomes Tp = O (t m t) = O(n) and the total search time
becomes T s = O(t t) = 0(n2/3). The real time can be reduced by precomputing and
searching some (or all) of the tables in parallel.

Rivest has observed that the search time can be reduced by forcing each
endpoint E P i to satisfy some easily tested syntactic property (e.g., begins with a
fixed number of O's) that is expected to hold after t encipherments of the starting
point SP i (so the expected number of entries represented by a table of m starting
and ending points is still mr) . Thus, instead of precomputing EP i = f i (S P i) for a
fixed t, S P i would be successively reenciphered until it satisfied the chosen
property.

Hellman suggests a hardware implementation using m = 105, t = 106, and
106 tables. Because each table entry contains a 56-bit starting point S P and a 56-

EXPONENTIATION CIPHERS 101

bit ending point EP, the total storage requirements are thus 1011 X 112 bits or
about 1013 bits, which can be stored on 10,000 tapes (assuming 109 bits per tape).
These can be read and searched in 1 day with 100 tape drives. Each tape drive
would have a 107 bit semiconductor memory for storing one table. Each memory
would have 100 DES chips searching for 100 different keys in parallel. The ma-
chine would also be capable of doing the precomputation; with all 10,000 DES
units operating in parallel, this would take about 1.1 years (using a DES chip
operating at 4 ~sec per encipherment).

The total parts would cost about $3.6M using 1980 technology. Depreciated
over 5 years, this is about $2500 per day, or $25 per solution. With decreasing
hardware costs, the cost per solution could drop to $1.

To break a cipher using time-memory tradeoff, it must be possible to per-
form a chosen-plaintext attack. This is possible when plaintext messages are
known to contain commonly occurring sequences (e.g., blanks) or standard head-
ers (e.g., "LOGIN:"), and each block is separately enciphered. Techniques such as
cipher block chaining (see Section 3.4.1) protect against this type of attack. The
proposed Federal standards suggest taking such precautions.

2.7 EXPONENTIATION CIPHERS

In 1978, Pohlig and Hellman [Poh178a] published an encryption scheme based on
computing exponentials over a finite field. At about the same time, Rivest, Sha-
mir, and Adleman [Rive78a] published a similar scheme, but with a slight twist m
a twist that gave the MIT group a method for realizing public-key encryption as
put forth by Diffie and Hellman [Diff76]. In Sc ien t i f i c A m e r i c a n , Martin Garder
[Gard77] described the RSA scheme as "A New Kind of Cipher That Would
Take Millions of Years to Break." Oddly enough, just 60 years earlier in 1917, the
same journal published an article touting the Vigen~re ciphers as "impossible of
translation" [Kahn67].

The Pohlig-Hellman and RSA schemes both encipher a message block M E
[0, n - 1] by computing the exponential

C = M e mod n , (2.2)

where e and n are the key to the enciphering transformation. M is restored by the
same operation, but using a different exponent d for the key:

M = C a mod n . (2.3)

Enciphering and deciphering can be implemented using the fast exponentiation
algorithm shown in Figure 1.20 (see Section 1.6.1)"

C = f a s t e x p (M , e, n)

M = f a s t e x p (C , d, n) .

The enciphering and deciphering transformations are based on Euler's gen-
eralization of Fermat's Theorem (see Theorem 1.5 in Section 1.6.2), which states
that for every M relatively prime to n,

102 ENCRYPTION ALGORITHMS

M¢(n) m o d n = 1 .

This property implies that if e and d satisfy the relation

ed mod 4~(n) = 1 , (2.4)

then Eq. (2.3) is the inverse of Eq. (2.2), so that deciphering restores the original
plaintext message. This result is proved in the following theorem:

Theorem 2.1:
Given e and d satisfying Eq. (2.4) and a message M ~ [0, n - 1] such that
g c d (M , n) = 1,

(M e mod n) d mod n = M.

Proof"
We have

(M e mod n) d mod n = M ed mod n .

Now, ed mod 4~(n) = 1 implies that ed = tO(n) + 1 for some integer t.
Thus,

M ed mod n = M t~(n)+l mod n
= MMt4~(n) rood n
= M(Mt4~(n) mod n) mod n ,

where:

M to(n) mod n = (Me,(n) rood n) t mod n
= It m o d n

= 1 .

Thus,

M ed rood n = (M * 1) mod n

- - M . i

By symmetry, enciphering and deciphering are commutat ive and mutual inverses;
thus,

(M d mod n) e mod n = M de mod n = M .

It is because of this symmetry that the R S A scheme can be used for secrecy and
authenticity in a public-key system.

Given 4~(n), it is easy to generate a pair (e, d) satisfying Eq. (2.4). This is
done by first choosing d relatively prime to 4~(n), and then using the extended
version of Euclid's algorithm (see Figure 1.22 in Section 1.6.2) to compute its
inverse:

e = inv (d , oh(n)) . (2.5)

[Because e and d are symmetric, we could also pick e and compute d = inv(e ,

~(n)) .]

EXPONENTIATION CIPHERS 103

Given e, it is easy to compute d (or vice versa) if 4~(n) is known. But if e and
n can be released without giving away 4~(n) or d, then the deciphering transforma-
tion can be kept secret, while the enciphering transformation is made public. It is
the ability to hide 4~(n) that distinguishes the RSA scheme from the Pohlig-Hell-
man scheme.

2.7.1 Pohlig-Hellman Scheme

In the Pohlig-Hellman scheme, the modulus is chosen to be a large prime p. The
enciphering and deciphering functions are thus given by

C = M e m od p
M = C d mod p ,

where all arithmetic is done in the Galois field GF(p) (see Section 1.6.3). Because
p is prime, qS(p) = p - 1 (see Section t.6.2), which is trivially derived from p. Thus
the scheme can only be used for conventional encryption, where e and d are both
kept secret.

Example:
L e t p = 11, whence 4~(P) = P - 1 = 10. Choose d = 7 and compute e
= i n v (7 , 10) = 3. Suppose M = 5. Then M is enciphered as:

C = M e mod p = 53 mod 11 = 4 .

Similarly, C is deciphered as"

M = C d m o d p = 47mod 11 = 5 . m

The security of the scheme rests on the complexity of computing discrete
logarithms in GF(p). This is because under a known-plaintext attack, a cryptana-
lyst can compute e (and thereby d) given a pair (M, C):

e = l o g MC inGF(p)

(p may be deduced by observing the sizes of plaintext and ciphertext blocks).
Pohlig and Hellman show that if (p - 1) has only small prime factors, it is possible
to compute the logarithm in O(log2p) time, which is unsatisfactory even for large
values of p. They recommend picking p = 2p' + 1, where p' is also a large prime.

Now, the fastest known algorithm for computing the discrete logarithm in
GF(p), due to Adleman [Adle79], takes approximately

T = exp (sqrt (I n (p) ln (In (p)))) (2.6)

steps, where "In" denotes the natural logarithm and "exp" its inverse). If p is 200
bits long, Eq. (2.6) evaluates to

T = 2.7 × 10 '1 .

Assuming 1011 steps can be performed per day (i.e., about 1 step per #sec), the

104 ENCRYPTION ALGORITHMS

entire computation would take only a few days. But if p is 664 bits long (200
decimal digits),

T = 1.2 X 10 z3,

which would take about 1012 days or several billion years. Figure 2.17 shows a
graph of log,0 T as a function of the length of p in bits. Techniques for picking
large primes are described in the next section.

Pohlig and Hellman also note that their scheme could be implemented in the
Galois Field GF(2,), where 2 " - 1 is a large prime (called a Mersenne prime--e.g.,
see [Knut69]). Such an implementation would be efficient and have the advantage
that all messages would be exactly n bits; furthermore, every element in the range
[l , 2 n -- 2] could be used as a key.

2.7.2 Rivest-Shamir-Adleman (RSA) Scheme

In the RSA scheme, the modulus n is the product of two large primes p and q:

n = p q .

Thus

4~(n) = (p - 1) (q - 1)

(see Theorem 1.3 in Section 1.6.2). The enciphering and deciphering functions are
given by Eq. (2.2) and (2.3). Rivest, Shamir, and Adleman recommend picking d
relatively prime to 4~(n) in the interval [max (p, q) + 1, n - 1] (any prime in the
interval will do); e is computed using Eq. (2.5). If inv(d, cb(n)) returns e such that
e < log2 n, then a new value of d should be picked to ensure that every encrypted
message undergoes some wrap-around (reduction modulo n).

Example:
L e t p = 5 a n d q = 7 , w h e n c e n = p q = 3 5 a n d ¢ (n) = (5 - 1) (7 - 1) = 2 4 .
Pick d = 11. Then e = i nv (l l , 24) = 11 (in fact, e and d will always be the
same for p = 5 and q = 7--see exercises at end of chapter). Suppose M = 2.
Then

C = M e m o d n = 211mod35 = 2 0 4 8 m o d 3 5 = 18 ,

and

C d mod n = 1811 mod 35 = 2 = M . I!

Example:
Let p = 53 and q = 61, whence n = 53 • 61 = 3233 and O(n) = 52
• 60 = 3120. Letting d = 791, we get e = 71. To encipher the message
M = R E N A I S S A N C E , we break it into blocks of 4 digits each, where A
= 00, B = 01 Z = 25, and blank = 26 (in practice, characters would be
represented by their 8-bit ASCII codes). We thus get

EXPONENTIATION CIPHERS 105

FIGURE 2.17 Time to compute discrete logarithm or to factor.

o

o

25

20

15

10

! I I
0 100 200

I I I 1 I I
300 400 500 600 700 800

Length of Modulus in Bits

M = R E N A I S S A N C E
= 1704 1300 0818 1800 1302 0426 .

The first block is enciphered as 170471 = 3106. The entire message is enci-
phered as

C = 3 1 0 6 0100 0931 2691 1984 2927 . !1

Because O(n) cannot be determined without knowing the prime factors p and
q, it is possible to keep d secret even if e and n are made public. This means that
the RSA scheme can be used for public-key encryption, where the enciphering
transformation is made public and the deciphering transformation is kept secret.

The security of the system depends on the difficulty of factoring n into p and
q. The fastest known factoring algorithm, due to Schroeppel (unpublished), takes

T = exp (sqrt (I n (n)ln (In (n))))

i

106 ENCRYPTION ALGORITHMS

FIGURE 2.18 Evaluate Jacobi symbol.

/ a \
Algorithm J(a, b)" "Evaluate ~) "

i r a = 1 t h e n J ' = 1
else if a mod 2 = 0 then begin

i f (b , b - 1) / 8 m o d 2 = 0
then J := J(a/2, b) else J := -J(a/2, b) end

else i f (a - 1) , (b - 1) / 4 m o d 2 = 0
then J := J(b rood a, a) else J := -J(b mod a, a)

steps. This is the same number of steps required to compute the discrete logarithm
in GF(n) when n is prime [see Eq. (2.6) and Figure 2.17]. Rivest, Shamir, and
Adleman suggest using 100-digit numbers for p and q; then n is 200 digits, and
factoring would take several billion years at the rate of one step per microsecond.

The security of the system also depends on using carefully selected primes p
and q. If n is 200 digits, then p and q should be large primes of approximately 100
digits each. To find a 100-digit prime p, Rivest, Shamir, and Adleman recommend
randomly generating numbers until a number b is found that is "probably" prime.
To test b for primality, 100 random numbers a ~ [1, b - 1] are generated. Then b
is almost certain to be prime if the following test (due to Solovay and Strassen
[Solo77]) is satisfied for each a:

gcd(a, b) = l and (-~) m o d b = a(b-1)/z m o d b , (2.7)

where (~) is the Jacobi symbol (see [LeVe77,Nive72,Vino55] and discussion in

following section). When gcd(a, b) = 1, the Jacobi symbol can be efficiently
evaluated using the recursive function J(a, b) shown in Figure 2.18. If b is prime,
then Eq. (2.7) is true for all a E [1, b - 1]. If b is not prime, Eq. (2.7) is true with
probability at most 1/2 for each such a, and at most 1/21°° for 100 such a's.

For better protection against factoring, additional precautions should be
taken in selecting p and q:

1. p and q should differ in length by a few digits.
2. Both p - 1 and q - 1 should contain large prime factors.
3. gcd(p -~ 1, q - 1) should be small.

To find a prime p such that p - 1 has a large prime factor, first generate a large
random prime p'. Then generate

p = i * p ' + 1, f o r i = 2 , 4 , 6 (2.8)

until p is prime. Further protection may be obtained by picking p' such that p ' - 1
has a large prime factor.

Simmons and Norris [Simm77] showed the scheme may be broken without
factoring if p and q are not carefully chosen. They found that for certain keys,

EXPONENTIATION CIPHERS 107

reenciphering a ciphertext message a small number of times restored the original
plaintext message. Thus, given ciphertext Co = M e mod n and the public key (e, n),
a cryptanalyst may be able to determine M by computing

C i = C~'_l m o d n , f o r i = 1 , 2 , . . .

until Ci is a meaningful message. Clearly, this type of attack is worthwhile only if
the plaintext is restored within a reasonably small number of steps (e.g., a mil-
lion). Rivest [Rive78b] showed that if each prime p is chosen so that p - 1 has a
large prime factor p', where p' - 1 has a large prime factor p", then the probabil-
ity of this type of attack succeeding is extremely small. For primes larger than
1 &0, this probability is at most 10 -9°.

Blakley and Blakley [Blak78] and Blakley and Borosh [Blak79] show that
for any choice of keys, at least nine plaintext messages will not be concealed by
encipherment; that is, for any e and n, M e mod n = M for at least nine M.
Although the probability of picking one out of nine such messages is small if
messages are 200 digits long, a poor choice of keys will conceal less than 50% of all
possible messages. They argue that the system will be more resistant to this type of
attack and sophisticated factoring algorithms if safe primes are selected; a prime p
is safe if

p = 2 p ' + 1, where p' is an odd prime

(every prime but 2 is odd). This represents a restriction on the form of Eq. (2.8)
suggested by Rivest, Shamir, and Adleman. We observed earlier that Pohlig and
Hellman also suggested using safe primes in their scheme.

Breaking the RSA scheme can be no more difficult than factoring, because a
fast factoring algorithm automatically gives an efficient cryptanalytic procedure.
This does not, however, rule out finding an efficient algorithm for cryptanalysis
without finding a corresponding algorithm for factoring. Rabin [Rabi79] and Wil-
liams [Will80] have devised variants of the RSA scheme where the cryptanalytic
effort is equivalent to factorization. There is, however, a drawback to these
schemes arising from the constructive nature of the proofs. Rivest has observed
that any cryptosystem for which there exists a constructive proof of equivalence of
the cryptanalytic effort with factorization is vulnerable to a chosen-ciphertext
attack (see [Will80]). Upon obtaining the deciphered message for a selected ci-
phertext message, a cryptanalyst can factor the modulus and break the cipher.

If n, d, and e are each 200 decimal digits (664 bits), the storage requirements
per user are about 2,000 bits. Since both e and n must be made public, the public
storage requirements are thus about 1.3 kilobits per user. By comparison, the DES
requires only 56 bits (or 112 bits if longer keys or multiple encryption is used).

The time requirements are also considerably greater than for the DES. To
encipher or decipher a 664-bit number requires 1-2 multiplications in modular
arithmetic per bit, or about 1,000 multiplications total. Rivest has designed a
special-purpose chip that will run at a few thousand bps [Rive80]. Although this is
fast enough to support real-time communication over telephone lines, it is too slow
for communication links capable of higher bit rates. Rabin's scheme [Rabi70] has
a faster enciphering algorithm (requiring only one addition, one multiplication,

108 ENCRYPTION ALGORITHMS

and one division by the modulus--see exercises); the deciphering algorithm is
comparable to the RSA algorithm.

Because the enciphering and deciphering functions are mutual inverses, the
RSA scheme can be used for secrecy and authenticity. Each user A obtains a
modulus n A and enciphering and deciphering exponents e A and d A. A registers e A

and n A with a public directory, thus making A's enciphering transformation E A

public. A keeps d A and, therefore, the deciphering transformation D A secret.
User B can send a secret message M to A by obtaining A's public transfor-

mation E A and transmitting

E A (M) = M eA mod n A ,

which A deciphers using A's secret transformation D A"

D A (E A (M)) = M eMA mod n A = M .

Alternatively, A can send a signed message M to B by transmitting

D A (M) = M dA mod n A ,

which B authenticates using A's public transformation E A"

E A (D A (M)) = M dAeA mod n A = M .

Because only A can apply D A, it cannot be forged, and a judge can settle any
dispute arising between A and B.

A slight difficulty arises when both secrecy and authenticity are desired,
because it is necessary to apply successive transformations with different moduli.
For example, in order for A to send a signed, secret message to B, A must
transmit:

C = E B (D A (M)) .

If n A > n B, the blocks comprising D A (M) might not be in the range [0, n B - 1] of
B's transformation. Reducing them modulo no does not solve the problem, because
it would then be impossible to recover the original message. One solution is to re-
block D A (M). Rivest, Shamir, and Adleman show that reblocking can be avoided
using a threshold value h (e.g., h = 1099). Each user has two sets of transforma-
tions: (EA1, DAI) for signatures and (EA2, DA2) for secrecy, where hA1 < h < hA2. To
send a signed, secret message to B, A, transmits

C = EB2(DA, (M)) ,

which is computable because hA1 < h < nB2. User B recovers M and checks A's
signature by computing

EAi(DB2(C)) -- EAi(DB2(EB2(DAi(M)))

= E A i (D A ~ (M))
~ g .

EXPONENTIATION CIPHERS 109

Konfelder [Konf78] suggests another approach, pointing out that if C
= EB(DA(M)) is not computable because n A > n B, then C' = DA(EB(M)) is
computable. User B, knowing both n A and n B, can recover M by computing either
of the following:

Case 1" n A < n B
EA(DB(C)) = E A (D B (E B (D A (M))))

= EA(DA(M))
= M .

Case 2: n A > n B
DB(EA(C')) = D B (E A (D A (E B (M))))

= DB(EB(M))
= g .

If a dispute arises between A and B on the authenticity of A's signature, a judge
must be able to ascertain that M originated with A. If rt A < riB, B applies B's
private transformation to C and presents the judge with X = DB(C) and M. The
judge computes

M ' = EA(X)

using A's public transformation, and verifies that M ' = M. If n A > nB, another
approach is needed because D B must be applied after E A, and B may not want to
give D 8 to the judge. The solution is for B to present the judge with C' and M. The
judge computes

X = EB(M)
X ' = EA(C') = EA(DA(EB(M)))

using both A's and B's public transformations, and verifies that X = X'. Table
2.11 summarizes.

In the above approach, the storage requirements for a signed message are the
same as for the unsigned message. Thus, in applications where the unsigned mes-
sage is stored in the clear or as ciphertext encrypted by some other method, the
total storage requirements are twice that of the unsigned message alone. An alter-
native, described by Davies and Price [DavsS0], is to compress a message into a
"digest" by hashing, and then sign the digest. This reduces the storage require-
ments for a signed message to a fixed size block.

TABLE 2.11 Secrecy and authenticity in RSA scheme.

n A < n B nA > n B
A transmits C = EB(DA(M)) C '= DA(EB(M))
B computes M = EA(DB(C)) M = DB(EA(C'))
B gives judge M, X = DB(C) M, C'
Judge computes M' = EA(X) X = EB(M) , X ' = EA(C') ,
Judge tests M' = M X = X'

110 ENCRYPTION ALGORITHMS

2.7.3 Mental Poker

Shamir, Rivest, and Adleman [Sham80a] show how any commutative cipher can
be used to play a fair game of "mental poker". The scheme is easily implemented
with an exponentiation cipher, where the players share a common modulus n.

Mental poker is played like ordinary poker but without cards and without
verbal communication; all exchanges between the players must be accomplished
using messages. Any player may try to cheat. The requirements for a fair game are
as follows:

The game must begin with a "fair deal". Assuming the players have
exchanged a sequence of messages to accomplish this, then

a .

b,
C.

The players should know the cards in their own hand but not the
others.
All hands must be disjoint.
All possible hands must be equally likely for each player.

During the game, players may want to draw additional cards from the re-
maining deck; these must also be dealt fairly as described in (1). Players
must also be able to reveal cards to their opponents without compromising
the security of their remaining cards.
At the end of the game, the players must be able to check that the game was
played fairly, and that their opponents did not cheat.

For simplicity, assume there are two players Alice and Bob, and each has a
secret key. The keys are not revealed until the end of the game.

Let E h and D A denote Alice's secret transformations, and let E B and D a de-
note Bob's. The enciphering transformations must commute; that is, for any mes-
sage M:

eA (eB (M)) = EB ((M)) .

The 52 cards are represented by messages:

Mi" "two of clubs"
M2: "three of clubs"

Msz: "ace of spades".

Bob is the dealer. The protocol for a fair deal is as follows"

Bob enciphers the 52 messages, getting 52 encrypted messages:

E B (M i) , i = 1 , . . . , 5 2 .

He then randomly shuffles the encrypted deck and sends it to Alice.

EXPONENTIATION CIPHERS 111

0

,11,

Alice randomly selects 5 encrypted messages and returns them to Bob. Bob
deciphers them to determine his hand.
Alice randomly selects 5 more encrypted messages, C1, . . . , C5. She enci-
phers them with her key, getting

c/= i = 1 , . . . , 5 .

She then sends the doubly enciphered messages C(. C~ to Bob.
Bob deciphers each message C i' with his key, getting

=

=

for some message Mj. He returns these to Alice. She then deciphers them
with her key to determine her hand.

During the game, additional cards may be dealt by repeating the preceding proce-
dure. At the end of the game, both players reveal their keys to prove they did not

cheat.
Because exponentiation in modular arithmetic is commutative, mental poker

may be implemented with an exponentiation cipher. Bob and Alice agree on a
large modulus n with corresponding 4~(n). Alice picks a secret key (e A, d A) such
that eAd A mod 4~(n) = 1 and uses the transformations:

EA (M) = M eA mod n
DA (M) = M dA mod n.

Similarly, Bob picks a secret key (e B, d B) and uses the transformations:

E B (M) = M eB mod n
DB(M) = M an mod n.

Lipton [Lipt79a] shows that it may be possible to cheat using this encryption
method. One way uses quadratic residues. A number a is a quadratic residue
modulo n if gcd(a, n) = 1 and there exists an x such that

x 2 - - a,
~ - n

or, equivalently,

x 2 m o d n = a m o d n ;

otherwise, it is a quadratic nonresidue modulo n. Any x satisfying the preceding
equations is a square root of a modulo n. Let R2 denote the set of quadratic
residues modulo n. For any message M = a, enciphering (or deciphering) M
preserves its membership in R~ as shown by the following theorem:

Theorem 2.2:
Given a, 0 < a < n, a ~ R2 if and only if Eg(a) = a e rood n E R2, where

K = (e, n).

112 ENCRYPTION ALGORITHMS

Proof"
First, suppose a E R 2. Then x 2 mod n = a for some x. Because

Eg(a) = a e mod n = (x 2) e mod n = (x e) 2 mod n,

Eg(a) is in R~.
Now, suppose Eg(a) ~ R2. Because deciphering is the same oper-

ation as enciphering but with exponent d, (Eg(a))d rood n = a must
also be in R2. II

Example:
Let n = 11. Then 3 is a quadrat ic residue modulo 11 because 5 z mod 11 = 3.
Suppose e = 4. Then 34 mod 11 = 4 is also a quadrat ic residue because

22mod 11 = 4 . II

Alice can exploit this result by noting which cards have messages in R2.
After Bob has encrypted and shuffled these messages, she still cannot decipher
them. She can tell, however, which correspond to those in R2. If the modulus n is a
prime p (as in the Pohl ig-Hel lman scheme), the probabili ty of a message being in
Rz is 1/2; this gives her one bit of informat ion per card which could help her to
win. For example, if she observes that the plaintext messages for all four aces are
quadrat ic residues, she could select quadrat ic residues for her hand and quadrat ic
nonresidues for Bob's.

For prime p, half the numbers in the range [1, p - 1] are in R2 and half are
not. To prove this result, we first prove that the equation x z mod p = a has either
two solutions or no solutions. (See also [LeVe77,Nive72,Vino55].)

Theorem 2.3:
For p r i m e p > 2 a n d 0 < a < p ,

x 2 m od p = a

has two solutions if a e R2 and no solutions otherwise.

Proof."
If a ~ Rz, there is at least one solution Xl. But then p - xl must also be a
solution because

(p - x~) 2 mod p = (p2 _ 2px~ 4- x~) mod p
= Xl z rood p = a .

Fur thermore , the solutions are distinct because p - xl = x~ is possible
only if 2 divides p. II

Theorem 2.4:
For prime p > 2, there are (p - 1) /2 quadrat ic residues modulo p and
(p - 1) /2 quadrat ic nonresidues.

EXPONENTIATION CIPHERS 113

Proof"
Clearly the (p - 1) /2 residues

12,22, (p - 1)2 2 mod p

are quadrat ic residues. There can be no addit ional quadrat ic residues
because for every a E R2, at least one of its roots xl or p - xl must fall
in the range [1, (p - 1) /2] . BB

Example:
For p = 7, the quadrat ic residues are

12 m o d 7 = 1

2 z mod 7 = 4
3 2 m o d 7 = 2 . Bi

Now, if gcd(a, p) = 1, it is simple to de termine whether a ~ R2 by comput ing
a q ' - 1)/z mod p. Theorem 2.5 shows the result will be congruent to 1 if a e R2 and to
- 1 otherwise.

T h e o r e m 2.5:
For p r i m e p > 2 a n d o < a < p ,

1 if a ~ R 2

a(p-1)/2 rood p = p - 1 otherwise (2.9)

Proofi
By Fermat ' s Theorem,

(a p - ' - 1) m o d p = 0 .

Because p is odd, we can factor ap -~ - 1, gett ing

(a~p-a)/2 + 1) (a~p-~)/2 - 1) rood p = 0 .

This implies that p must divide either a{p-1)/2 + 1 o r a (p - 1) / 2 - 1. (It
cannot divide both because this would imply that p divides their differ-
ence, which is 2 .) W e thus have

+ 1 . a(P-1) /2 ~ p _

Now, if a c R2, then there exists an x such that a = x 2 mod p, which
implies

aCp-1)/2 mod p = (x2){p-1)/2 mod p

= x p -~ m o d p

= 1 .

Thus, the (p - 1) / 2 quadrat ic residues are solutions of

a(p-1)/2 mod p = 1 .

114 ENCRYPTION ALGORITHMS

There can be no additional solutions because the equation, being of
degree (p - l) / 2 , can have no more than (p - l) / 2 solutions. Thus, the
(p - l) / 2 quadratic nonresidues must be solutions of

a(p-1)/2 mod p = p - 1 . 1

E x a m p l e :

We saw earlier that 1, 2, and 4 are quadratic residues modulo p = 7. We can
verify this by computing a(7-')/2 rood 7 - a 8 rood 7 for a = 1, 2, 4:

18 mod 7 = 1
2 3 mod 7 = 1
4 8 mod 7 = 1 .

Similarly, we can verify that a = 2, 3, and 5 are quadratic nonresidues by
computing

32 mod 7 = 6
58mod 7 --- 6
68 mod 7 = 6 . I

Note the relationship between Eq. (2.9) and Eq. (2.7), which is used to test a
number b for primality by checking whether

(~) m o d b = a(b-1)/2 m o d b

for some random a relatively prime to b. If b is a prime p, then the Jacobi symbol

(~) is equivalent by the Legendre symbol, also denoted (;) , which is defined by

(~) = { + l i f a , R z

- 1 otherwise,

when gcd(a , p) = 1. By Theorem 2.5, (~) m o d p = a~p-1)/z mod p. If b is not

prime, let b = PlPz • • • Pt be the prime factorization of b (factors may repeat). Then

the Jacobi symbol (-~) is defined in terms of the Legendre symbol as follows:

(~) (a) (a) (a)
= y x y~ " ~ •

Note that whereas the Jacobi symbol is always congruent to _+ 1 (mod b), the
expression a(b-1)/z mod b may not be congruent to _+ 1 when b is not prime.

Example:
For n = 9 and a = 2, 2 4 mod 9 = 7. II

No,e a.so that whereas is de,ned by the prime factorization of b. it can be

EXPONENTIATION CIPHERS 115

evaluated without knowing the factors. The recursive function J (a , b) given in the

previous section for evaluating (b) does so by exploiting several properties of the

Jacobi symbol, namely:

1. (b) = l .

3. (2) - (- 1)(bZ-a)/8 .

4. (~)= (b mOda a) .

if g c d (a , b) = 1 .

Returning to mental poker, we see that enciphering function may preserve
other properties about a message M = a as well. For example, let Rt be the set of
elements congruent to x t mod n for some x. Then a E R t if and only if a e mod n E R t .

Lipton proposes two modifications to the exponential method, each of which
forces all messages (plaintext and ciphertext) to be quadratic residues [Lipt79b].
The first method appends extra low-order bits to each message M, set to make the
extended message a quadratic residue. The original message is recovered by dis-
carding the extra bits. The second method multiplies nonresidue messages by a
fixed nonresidue w (the product of two nonresidues is a quadratic residue). The
original message is recovered by multiplying by w -1, where w -1 is the inverse of
w (mod n).

These results show that for some applications, an encryption algorithm must
be more than just computationally strong. This particular application requires an
algorithm that conceals not only the messages but their mathematical properties.

2.7.4 Oblivious Transfer

Rabin has devised a protocol whereby Alice can transfer a secret to Bob with
probability 1/2. Thus, Bob has a 50% chance of receiving the secret and a 50%
chance of receiving nothing. On the other hand, Bob will know whether he has
received the secret; Alice will not. Clearly, the uncertainty must be agreeable to
both Alice and Bob, or one of them would refuse to cooperate. Called the "obliv-
ious transfer", the protocol is described by Blum [Blum81a] as follows:

Oblivious transfer protocol
Alice sends to Bob the product n of two distinct odd primes p and q. The
primes p and q represent her secret. They may, for example, be the secret
parameters to an RSA deciphering transformation.

116 ENCRYPTION ALGORITHMS

11

.

.

Bob picks a number x at random, where 0 < x < n and g c d (x , n) = 1, and
sends to Alice

a = x z m o d n . (2 . 1 0)

Alice, knowing p and q, computes the four roots of a: x, n - x, y, n - y (see
discussion following). She picks one of these roots at random and sends it to
Bob.

If Bob receives y or n - y, he can determine p and q from x and y by
computing

g c d (x + y , n) = p or q

(see exercises at end of chapter) . If he receives x or n - x, he learns nothing.

Equation (2.10) has four roots because n has two distinct prime factors. By
Theorem 1.7, we know that any solution x of Eq. (2.10) must be a common
solution of

x 2 mod p = a mod p (2.11)
x 2 mod q = a mod q . (2.12)

By Theorem 2.3, Eq. (2.11) has two solutions: Xl and p - X l , and Eq. (2.12) has
two solutions: x2 and q - x2. The four solutions of Eq. (2.10) are thus obtained
using the Chinese Remainder Theorem (Theorem 1.8).

Now, finding the solutions of Eq. (2.11) and (2.12) is part icularly easy if
p + 1 and q + 1 are divisible by 4. Observe that

(a (P + l) / 4) 2 - - a(P+l)/2 mod p = a(a(p-1)/2) mod p = a .

The last equality holds because a is a quadrat ic residue modulo p; thus, by Theo-
rem 2.5, alp-l)~ 2 mod p = 1. This gives us the two solutions:

x~ = a~p+~)/4 mod p
X 2 = a (q + l) / 4 mod q .

Note that Bob cannot find the root y of Eq. (2.10) without knowing p and q. If he
accidentally picks an x that is a multiple of p or q, he can compute g c d (x , n) = p

or q, but the probability of this happening is small for large p and q.

Example:
Let p = 3 and q = 7. Then n = p q = 21. Suppose Bob picks x = 5 and sends
to Alice

a = 5 2 m o d 2 1 = 4 .

Alice computes the roots

xl - 4(8+1)/4 mod 3 = 1

xz = 4(7+1)/4 mod 7 = 2 .

Applying algori thm crt of Figure 1.24, Alice then computes

KNAPSACK CIPHERS 117

Zl = cr t (n , p , q, xi, x2) = 16
z2 = cr t (n , p , q, Xl, q - x2) = 19
z8 = cr t (n , p , q, p - x i , x2) = 2

z4 -'- c r t (n , p , q, p - x l , q - x2) = 5 .

Note that z4 = x, the number Bob picked. Let y = z2 = 19. Then z3 - n - y
and z, = n - x (whence they can be determined from x and y directly rather
than by the Chinese Remainder Theoremmsee exercises at end of chapter).

Suppose now that Alice sends the root y to Bob. Bob, using x, com-
putes p and q as follows:

g c d (x + y , n) = g o d (5 + 19, 21)
= g c d (2 4 , 2 1) = 3 = p .

n 21
q p 3 7 . II

The oblivious transfer protocol can be used to flip coins by telephone, ex-
change secrets, and send certified mail [Blum81a,Rabi81,Blum81b]. We shall
describe the protocol for coin flipping by telephone. The problem here is to devise
a scheme whereby Bob can call HEADS or TAILS and Alice can flip in such a
way that each has a 50% chance of winning. Flipping a real coin over the tele-
phone is clearly unsatisfactory because if Bob calls HEADS, Alice can simply say
"Sorry, TAILS." The solution given by Blum [Blum8 l a] is as follows:

,

4.

Coin flipping protocol
Alice selects two large primes p and q and sends n = p q to Bob.
Bob checks if n is prime, a prime power, or even; if so, Alice cheated and
loses. Bob picks an x and sends a = x 2 mod n to Alice.
Alice computes the four roots of a, picks one at random, and sends it to Bob.
Bob wins if he can factor n.

2.8 KNAPSACK CIPHERS

We shall describe three public-key encryption schemes based on the NP-complete
knapsack problem. The first two can be used for secrecy, but not authentication.
The reason is that the enciphering transformation does not map the entire message
space back onto itself; thus, it is not possible to take an arbitrary message and sign
it by applying the deciphering transformation. By contrast, the third scheme can
be used for authentication but not secrecy. The problem here is just the opposite:
although the deciphering algorithm can be applied to all messages, the enciphering
algorithm cannot.

Shamir [Sham79] studied the feasibility of constructing a knapsack system
for both secrecy and authentication. In order to use a secrecy knapsack system for
authentication, the system must be sufficiently dense that most messages can be
signed. The interesting result is that any knapsack system with this property is
polynomial solvable; thus a single knapsack system cannot be used for both secrecy
and signatures.

118 ENCRYPTION ALGORITHMS

2.8.1 Merkle-Hellman Knapsacks

Merkle and Hellman [Merk78] proposed a scheme whose security depends on the
difficulty of solving the following 0 - 1 knapsack problem"

Given a positive integer C and a vector A = (a, , a,) of positive integers,
find a subset of the elements of A that sum to C; that is, find a binary vector
M = (mi mn) such that C = A M , or

n

C = ~ a i m i . (2.13)
i=1

This knapsack problem is adapted from Karp's knapsack problem [Karp72],
which is to determine simply whether a solution M exists.

E x a m p l e :

L e t n = 5, C = 14, a n d A = (1, 10, 5, 22, 3). Then M = (1, 1 , 0 , 0 , 1) i s a
solution. II

The knapsack problem is an NP-complete problem. The best known algo-
rithms for solving arbitrary instances of size n require 0 (2 , / z) time and 0(2,/4)
space [Schr79]. There is, however, a special class of knapsack problems, referred
to as simple knapsacks, that can be solved in linear time. In a simple knapsack, the
elements a i (i = 1 n) are super i n c r e a s i n g so that

i - 1

a~> Eaj
j = l

for i = 2 , n. This implies that

m , = 1 iff C >_ a ,

and, f o r i = n - 1, n - 2 , 1,

n

(C - Z m j a j) >_ a i .

j = i + l

An algorithm for solving simple knapsacks is shown in Figure 2.19.

FIGURE 2.19 Solution to simple knapsack.

Algorithm snap (C, A)" "Simple Knapsack Solution"
for i "= n downto 1 do

begin
if C >_ a i then m i "= 1 else m i : = O;
C := C - a i * m i

end;
if C = 0 then snap "= M else "no solution exists"

. / / .

KNAPSACK CIPHERS 1 19

E x a m p l e :

Rearranging the elements of the vector in the preceding example to give A'
= (1, 3, 5, 10, 22) shows that A' is a simple knapsack vector, whence
s n a p (1 4 , A') gives the solution (1, 1, 0, 1, 0). m

Merkle and Hellman show how to convert a simple knapsack into a trapdoor
knapsack that is hard to solve without additional information. First, a simple
knapsack vector A' = (ai', . • . , a,~) is selected. This allows an easy solution to a
problem C' = A ' M . Next, an integer u is chosen such that

n

u > 2a ' n > ~ a i' .
i=1

Then an integer w is chosen such that g c d (u , w) = 1, and the inverse w -1 of w
mod u is computed using w -1 = inv(w, u) (see Section 1.6.2). Finally, the vector A'
is transformed into a hard knapsack vector A = w A ' mod u; that is,

' mod u . a i = w * a i

Now, solving C = A M is difficult, but with knowledge of the trapdoor infor-
mation w -1 and u, the problem can be transformed into the easy problem:

C' = w - l C mod u
= w - t A M mod u
= w - ~ (w A ') M mod u
= A ' M mod u
= A ' M .

To apply the trapdoor knapsack problem to public-key encryption, let the
public key be the hard knapsack vector A, and let the secret key be the simple
knapsack vector A' together with the trapdoor information u and w -1 (actually A'
can be computed from A, u, and w -z by A' = w - l A mod u). Let E A denote the
enciphering transformation using the public key A, and let D A denote the decipher-
ing transformation using the secret key (A', u, w-I).

To encipher, the plaintext is broken into blocks M = (m~ ran) of n bits
each. Each block M is then enciphered as

C = E A (M) = A M .

C is deciphered by computing

DA(C) = s n a p (w - I f mod u, A') = M .

E x a m p l e :

Let A' = (1, 3, 5, 10), u = 20, and w = 7. Then w -1 ---- 3. The simple vector
A' is transformed into the "hard" vector

A = (7 . 1 m o d 2 0 , 7 . 3 m o d 2 0 , 7 * 5 m o d 2 0 , 7 . 1 0 m o d 2 0)
= (7, 1, 15, 1 0) .

Let M = 13, which is the binary vector (1, 1, 0, 1).

120 ENCRYPTION ALGORITHMS

Then

and

C = EA(M) = 7 + 1 + 10 = 18,

DA(C) = DA(18)
= snap(3 • 18 mod 20, A') = snap(14, A')
= (1 , 1 , 0 , 1)
= 1 3 . m

Merkle and Hellman originally suggested using n = 100 or more. Schroeppel
and Shamir [Schr79], however, have developed an algorithm that can solve knap-
sacks of this size. By trading time for space, their method can solve the knapsack
problem in time T = 0(2,/2) and space S = 0(2,/4) . For n = 100, 2 s° ~ 1015; thus,
a single processor could find a solution in about 11,574 days, and 1000 processors
could find a solution in about 12 days (ignoring constants and figuring 8.64 X 10 TM

instructions per day). But if n = 200, 21°° --~ 103°, whence the algorithm is compu-
tationally infeasible.

Merkle and Hellman suggest choosing several pairs (u, w) and iterating the
transformation A - wA' mod u to obscure the transformation. Indeed, Shamir and
Zippel [Sham80a] show that if this extra precaution is not taken, the scheme is
highly vulnerable to cryptanalysis when u is known.

Although the (hard) knapsack problem is NP-complete, this does not imply
that the trapdoor knapsack problem is also NP-complete. It could be that the
peculiar structure of the system provides a shortcut solution. No faster solution
has yet been found.

Pohlig [Poh178a] has shown that if a hard knapsack has large simple subsets,
it may be feasible to find a solution in a much shorter period of time. The probabil-
ity of an arbitrary knapsack having large simple subsets is extremely small, how-
ever, so this does not seem to be a serious threat.

For n = 200, the a~' are chosen from the range [(2 i -1 - - 1) 2200 + 1, (2i-1)22°°].
This gives 2200 choices for each a~', making it difficult for a cryptanalyst to deter-
mine any one of them. Because u > 2a;00 is required, u is chosen from the range
[24°1 + 1, 2402 - 1] and w from the range [2, u - 2]. Note that this puts each a i in
the range [1, 2402 - 2]. Thus, a 200-bit plaintext message M has a ciphertext
message (knapsack problem) C = A M with a 410-bit representation (summing
200 402-bit values can add up to I-log2 200--] = 8 bits to the representation, where
"[- - i" denotes the ceiling function). This is why the scheme cannot be used for
authentication. There will be many 410-bit knapsack problems that do not corre-
spond to 200-bit messages, whence the deciphering transformation cannot be ap-
plied to arbitrary messages of length 410.

For n = 200, the storage requirements for each public vector A are approxi-
mately 200 • 400 = 80 kilobits. In contrast, the RSA scheme uses only about 1
kilobit per public key. Shamir [Sham80b] investigated the feasibility of reducing
the storage requirements by either shortening the elements a i or reducing their
number. Let t be the length (in bits) of each a i (t = 400 in the implementation

KNAPSACK CIPHERS 121

suggested previously). The first strategy fails because the deciphering algorithm
becomes ambiguous when t < n, and the scheme is insecure when t is sufficiently
small. To implement the second strategy, an n-bit message M is broken into d
multi-bit chunks ml , md such that each coefficient m i in Eq. (2.13) is n / d bits,
and only d elements a~ are needed. This strategy also fails because such "compact
knapsacks" are easier to solve than 0-1 knapsacks.

Enciphering and deciphering are faster, however, than in the RSA scheme.
For n = 200, enciphering requires at most 200 additions, while deciphering re-
quires at most 200 subtractions plus one multiplication in modular arithmetic. In
contrast, the RSA scheme requires about 1000 multiplications in modular arith-
metic to encipher and decipher. Henry [Henr81] presents a fast knapsack decryp-
tion algorithm that optimizes the evaluation of

C t "~]d)--lC mod u .

Letting bn_~2n-a + . . . + b02° denote the binary expansion of C, evaluation of C'
can be expressed as

[bn_l(2n-Xw -1 mod u) + . . . + b0(2°w -~ mod u)] mod u .

Since the terms in parentheses are independent of C, they can be precomputed and
stored in a table. Computation of C' thus reduces to a sequence of at most n table
lookups and n - 1 additions, followed by a single reduction mod u. The reduction
mod u is "easy" in that the sum can be no larger than nu.

2.8.2 Graham-Shamir Knapsacks

Graham and Shamir independently discovered a way of obscuring the super-
increasing property of trapdoor knapsacks [Sham80c,Lemp79]. A Graham-Sha-
mir trapdoor knapsack vector A' = (a;, . . . , an') has the property that each af has
the following binary representation:

a; = (Rj, Ij, Sj)

where Rj and Sj are long random bit strings, and Ij is a bit string of length n such
that the j th high-order bit is 1 and the remaining n - 1 bits are 0. Each random bit
string Sj has log2 n O's in its high-order bit positions so that summing does not
cause them to overflow into the area of the/ j ' s . Thus a sum C' = A ' M has the
binary representation"

C ' = (R , M , S) ,

where R = ~j~l Rjmj and S = ~j~l Sjmj. Notice that the vector of bit strings
((I n, an), . , (11, Sx)) (i.e., the elements aj listed in reverse order and without the
Rj's) is a simple knapsack vector. The Rj's are added to obscure this property.
These knapsacks are even easier to solve than Merkle-Hellman trapdoor knap-
sacks, however, because M can be extracted directly from the binary representa-
tion of C'.

122 ABFDEFGHIIJKLMMNOHPP

Example:
Let n = 5 where A' is given by

j R/ ~ Sj
1 011010 10000 000101 = a (
2 001001 01000 000011 =a~
3 010010 00100 000100 =a~
4 011000 00010 000111 =a~
5 000110 00001 000001 = a~

Let M = (0, 1, 0, 0, 1). Then

C' = A ' M

= a2 + a~
= (Rz + R~, Iz + 15, Sz + S5)
= 0 0 1 1 1 1 01001 0 0 0 1 0 0 . l l

A trapdoor knapsack vector A' is converted to a hard knapsack vector A as in the
Merkle-Hellman scheme; that is, by picking u and w and computing A = wA"
rood u. Similarly, a message M is enciphered as in the Merkle-Hellman scheme,
whence C = E A (M) = A M . C is deciphered by computing C' = w - l C rood u and
extracting from C' the bits representing M. Shamir and Zippel [Sham80c] believe
this variant is safer, faster, and simpler to implement than the original scheme
proposed by Merkle and Hellman.

2.8.3 Shamir Signature-Only Knapsacks

Unlike the RSA exponentiation scheme, the trapdoor knapsack schemes cannot be
used for authentication. The reason is that the enciphering function is not "onto"
the entire message space; thus, certain messages (indeed most!) cannot be deci-
phered before they are enciphered.

Shamir [Sham78a] shows how a trapdoor knapsack can be constructed to
provide digital signatures. Shamir's knapsacks, however, cannot be used for secre-
cy. The scheme is based on the following NP-complete knapsack problem, which is
also an extension of the one defined by Karp [Karp72].

Given integers n, M, and A = (a l , . . . , a2k), find C = (c I , C2k) such that
M = CA mod n; that is, such that

2k
M = ~ cjaj mod n ,

j = l
(2.14)

where each cj is an integer in the range [0, log n].

In a signature-only knapsack system, n is a k-bit random prime number (k = 100
would be appropriate). The pair (A, n) is the public key, M is a message in the

KNAPSACK CIPHERS 123

range [0, n - 1], and C is the signature of M. The recipient of a pair (M, C) can
validate the signature by checking that

E A(C) = C A m o d n = M .

But the recipient cannot forge a signature for another message M' without solving
the knapsack problem. The signer, however, has secret trapdoor information for
generating a signature C = DA(M) .

The secret trapdoor information is a k X 2k binary matrix H whose values
are chosen at random. The vector A is constructed to satisfy the following system
of modular linear equations:

h1,1 " " " h~,2k

h~,~ . . . h 2 , 2 k

° °

hk,1. . . hk,2g

a l

az

°

a2k

2 0

21

= . m o d n ,

2k-1

giving

2k
E hijaj = 2 i-1 mod n

j = l
i = 1 , . . . , k .

Because there are only k equations in 2k unknowns, k values of A can be chosen at
random, and the remaining values determined by solving the preceding system.

Let M be a message, and let M = (ml , ink) be the reversal of M in
binary (i.e., m i is the ith low-order bit in M, 1 ~ i ~ k). M is signed by computing

m
C = DA(M) = M H ,

whence

k
c j= ~ m i h i j (1 ~ j ~ 2k) .

i=1

We see C is a valid signature because

2k
EA(C) = CA mod n = ~ Q a j m o d n

j = l

= E ~ m i h i j a j m o d n
j = l i=1

= ~ m i ~ h i j a j modn
i=1 j = l

124 ENCRYPTION ALGORITHMS

k
= ~ mi2i-' mod n

i=1

= M .

E x a m p l e :
Let k = 3 and n = 7. This will allow us to sign messages in the range [0, 6].
Let H be as follows:

n
l l 0 1 0 0 1 1

0 1 1 1 0 1
1 0 1 1 1 0

and pick al = 1, a2 = 2, and a~ = 3. Solving for the remaining values of A, we
get a4 = 0, a~ = 0, and a6 = 4, whence A = (1, 2, 3, 0, 0, 4). Let M = 3;
because this is 011 in binary, M = (1, 1, 0). The signature C is thus:

m
C = M H i, OlOO,l

= (1 1 O) 0 1 1 1 0 1
1 0 1 1 1 0

= (1 , 1,2, 1 , 0 , 2) .

To validate C we compute

CA mod 7 = [(1, 1, 2, 1, 0, 2) (1, 2, 3, 0, 0, 4)] mod 7
= [l + 2 + 6 + 0 + 0 + 8] m o d 7
= 17 m o d 7

= 3 . I

The signing procedure thus far is insecure, because someone might be able to
determine H by examining enough (M, C) pairs. To prevent this, messages are
randomized before they are signed. This is done using a random binary vector
R = (r 1 , rzk). First,

M ' - (M - R A) m o d n

is computed; thus

M = (M' + RA) mod n .

Next, M ' is signed as described previously, giving a signature C'. Finally, the
signature of M is computed from C' by adding R, giving C = C' + R. C is a valid
signature of M because

CA mod n = (C' + R)A mod n
= (C ' A + RA) mod n

= (M ' + R A) m o d n

= m .

KNAPSACK CIPHERS 125

Example:
Let k, n, H, A, and M be as before, and let R = (1, 0, 0, 0, 1, 1). Then

and

M" = (M - R A) mod n
= (3 - [(1, 0, 0, 0, 1, 1) (I, 2, 3, 0, 0, 4)] mod 7
= (3 - [1 + 0 + 0 + 0 + 0 + 4]) m o d 7
= (3 - 5) m o d 7 = - 2 m o d 7
- - - - 5 ,

C = M ' H m o d n = (2 , 0 , 2 , 1, 1, 1) .

The signature of M is thus

C = C ' + R = (2 , 0 , 2 , 1 , 1 , 1) + (1 , 0 , 0 , 0 , 1 , 1)
=(3,0,2,1,2,2) ,

which the reader should verify is also valid. II

Because a signature depends on the random vector R, a message M can have
multiple signatures C satisfying Eq. (2.14), as illustrated in the preceding exam-
ples for M = 3. This explains why the scheme cannot be used for secrecy. Because
D A is one-to-many, computing D A (E A (M)) might not give back M.

The signature-only knapsack system has the advantage of being fast. But,
like the other knapsack schemes, it is not known whether it is as difficult to solve
as the NP-complete problem on which it is based.

2.8.4 A Breakable NP-Complete Knapsack

Lempel [Lemp79] describes a conventional (one-key) cipher derived jointly with
Even and Yacobi with the peculiar property of being NP-complete under a chosen-
plaintext attack, yet easily breakable given enough known plaintext. The cipher
uses an n-bit secret key of the form K = (k l , . . . , kn), and a knapsack vector A =
(a l , . . . , a n) of positive elements, assumed known to the cryptanalyst. Messages
are enciphered by breaking them into t-bit blocks of the form M = (ml rot),
where t = ~log2(1 -'1- ~in__lai)--].

To encipher a message M, the sender generates a random n-bit vector
R = (r I rn) and forms the t-bit sum:

n

S = A (K e R) = ~ ai(k i ~ r i) .
i=1

M is then enciphered as the (t + n)-bit vector

C = (L , R) , w h e r e L = M e S .

126 ENCRYPTION ALGORITHMS

Because the last n bits of C contain R, a receiver knowing K and A can compute S
and exclusive-or it with L (the first t bits of C) to recover M.

A cryptanalyst, knowing A and a single (M, C) pair, can find S by
computing

L ~ M - (M ~ S) ~ M = S .

To determine K, the cryptanalyst must solve the knapsack problem S -
A (K ~ R), which is NP-complete.

If, however, the cryptanalyst knows a set of n pairs (M i, Ci) = (M i , L i , R i) ,

for i = 1 , n, such that the n vectors U i = 1 n _ 2R i are linearly independent (1 n
is a vector of n l's), the cryptanalyst can easily solve for the key K. To see how this
can be done, observe that

K ~ R i = K + R i - 2(K * R i)

= R ; + K * U/. ,

where multiplication (.) is componentwise. This leads to the system of equations

S i -- A (K ~ R i)

= A (R i + K , Ui)

= A R i + (Ui * A) K i = 1, . . . , n .

Letting 7,. -- S i - A R i , the n equations can be expressed in matrix form as

7"1 U1 ' a l 0 . . . 0 kl
T2 U2 0 a2 0 k2

. . . . o .

00 L
Thus the system is readily solved for K when the U i are linearly independent and
the a i positive. The probability of N >~ n pairs (M;, C;) containing a subset of n
linearly independent U i is bounded below by approximately 1/3 for N = n, and
quickly approaches 1 as N increases.

This example shows that it is not enough to base a cipher on a computation-
ally hard problem. It is necessary to show that the cipher cannot be broken under
any form of attack. The weakness in the scheme is caused by the linear relation-
ship between the plaintext and ciphertext, which does not hold in the other knap-
sack schemes.

EXERCISES

2.1
2.2

Decipher the Churchyard cipher shown in Figure 2.2.
Decipher the following ciphertext, which was enciphered using a Vigen~re
cipher with key ART"

EXERCISES 127

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

YFN GFM IKK IXA T .

Decipher the following ciphertext, which was enciphered using a Beaufort
cipher with key ART:

CDZ ORQ WRH SZA AHP .

Decipher the following ciphertext, which was enciphered using a Playfair
cipher with the key shown in Figure 2.11.

A R H M C W C O K I P W .

Decipher the ciphertext LJ (11 9) using the decipher matrix

15 20
17 9)

with the Hill cipher. (The plaintext is a two-letter word of English).
Solve the cipher of Figures 2.8-2.10 by finding the remaining two key char-
acters and deciphering the text.
Consider a linear substitution cipher that uses the transformation f (a) = ak
mod 26. Suppose it is suspected that the plaintext letter J (9) corresponds to
the ciphertext letter P (15); i.e., 9k mod 26 = 15. Break the cipher by solving
for k.
Consider an affine substitution cipher using the transformation f (a) = (akl
+ k0) mod 26. Suppose it is suspected that the plaintext letter E (4) corre-
sponds to the ciphertext letter F (5) and that the plaintext letter H (7)
corresponds to the ciphertext letter W (22). Break the cipher by solving for
kl and k0.
Determine the unicity distance of ciphers based on affine transformations of
the form f (a) = (akl + ko) mod 26. Assume the keys k0 and kl generate a
complete set of residues, and that all such keys are equally likely.
Consider a homophonic cipher that uses 26h ciphertext symbols, assigning h
homophones to each letter of the English alphabet. Determine the number of
possible keys (i.e., assignments of homophones), and use your result to calcu-
late the unicity distance of the cipher.
Suppose that the keys used with DES consist only of the letters A-Z and are
8 letters long. Give an approximation of the length of time it would take to
try all such keys using exhaustive search, assuming each key can be tested in
one tzsec. Do the same for keys 8 letters or digits long.
Let X' denote the bit-by-bit complement of a block X. Show that if C
= DESK(M), then C' = DESK,(M'). Explain how this property can be
exploited in a chosen-plaintext attack to reduce the search effort by roughly
50%. (Hint: Obtain the ciphertext for a plaintext M and its complement M'.)
(This symmetry in the DES was reported in [Hell76].)
Consider the RSA encryption scheme with public keys n = 55 and e = 7.
Encipher the plaintext M = 10. Break the cipher by finding p, q, and d.
Decipher the ciphertext C = 35.
Consider the Pohlig-Hellman exponentiation cipher, where

128 ENCRYPTION ALGORITHMS

E K (M) = M e mod p (x)

DK(C) = C a mod p (x) ,

2.15

2.16

e = 5, d = 3, p (x) = (x 3 + x + 1), and exponentiation is performed in the

field GF(2~). Because ¢(p) = 7 (see Section 1.6.3), ed mod ¢(p) = 1. Let M
= x 2 + 1 = 101 in binary. Compute C = E K (M). Compute DK(C), showing
that deciphering restores M.
Consider the RSA encryption scheme with n = pq, where p = 5 and q = 7.
Prove that all keys d and e in the range [0, ¢ (n) - 1] must satisfy the

equality d = e.
Consider the equations

x mod p = x~ or p - xx

x mod q = x2 or q - x2 ,

where n = pq for primes p and q. There are four common solutions, given by

zl = crt(n, p, q, Xl, X2)
z2 = crt(n, p, q, x~, q - x2)
za = crt(n, p, q, p - x~, x2)

z4 = crt(n, p, q, p - Xl, q - x2) •

2.17

2.18

2.19

2.20

Show that z4 n - zl and z3 = n - z2.
Using the result of the preceding exercise, find the 4 solutions to the equa-
tion x 2 mod 77 = 4 by first finding solutions to x 2 mod 7 = 4 and x 2

mod 11 = 4 .
Let n = pq for primes p and q. Given a, 0 < a < n, let x and y be square
roots of a modulo n such that y ~ x and y ~ n - x. Show that g c d (x + y, n)
= p o r q .
Show how coin flipping by telephone can be implemented using a scheme
based on the mental poker protocol. Could either Bob or Alice have an
advantage?
Rabin's public-key encryption scheme enciphers a message M as

C = M (M + b) mod n ,

where b and n are public and n = pq for secret primes p and q. Give a
deciphering algori thm for the case where p + 1 and q + 1 are divisible by 4.
(Hint." compute d such that 2d mod n = b. Then

(M + d) 2 m o d n = (C + d 2) m o d n .)

2.21 Suppose that the public key for a Merk le -Hel lman knapsack system is given

by the vector A = (17, 34, 2, 21, 41), and that the ciphertext C = 72 resulted

from enciphering some number M with A. The secret key is given by the
values u = 50 and w = 17. Find M by deciphering C.

2.22 Consider Shamir ' s signature-only knapsack scheme, and let n = 7 and

n 0 1 0 0 1 0
0 0 0 0 0 1

REFERENCES 129

2.23

2.24

2.25

2.26

Given al = 1, a2 = 2, and a3 = 3, compute a4, as, and a6. Sign the message M
= 3, first without randomizing, and then using the random vector R = (0, 1,
0, 1, 0, 1). Check the validity of both signatures,
Class Computer Project:
Teacher." Write a program to encipher a reasonably long message using a
Vigen~re or Beaufort cipher. (Optional: provide programs to compute the
index of coincidence IC and print histograms of letter frequencies.)
Students: Break the cipher using the computer to analyze the ciphertext and
to decipher the message.
Class Computer Project: Implement the DES.
Teacher: Write programs to convert ASCII character sequences into 64-bit
blocks and vice versa. Each 64-bit block can be represented internally as a
bit or character array of ' l ' s and 'O's so the bits are easily addressed; it can
be represented externally as a record containing 64 characters (' l ' s and '0's).
Create a file containing the data for the DES tables. Implement the DES,
and encipher a message for the students. Give the students a skeleton of your
program containing the declarations and statements used to input the DES

tables.
Students: Complete the program and decipher the message.
Class Computer Project." Implement the RSA scheme using a 7-digit num-
ber n (this can be guaranteed by picking p and q in the range [1000, 3162])
and 6-digit data blocks.
Teacher: Write programs to convert character streams into 6-digit blocks
and vice versa (assign a 2-digit number to each character).
Students: Generate keys. Exchange public keys and messages.
Class Computer Project: Implement one of the trapdoor knapsack encryp-
tion schemes.

REFERENCES

Adle79. Adleman, L., "A Subexponential Algorithm for the Discrete Logarithm Problem
with Applications to Cryptography," Proc. IEEE 20th Annual Syrup. on Found. of
Comp. Sci., pp. 55-60 (Oct. 1979).

Bark77. Barker, W. G., Cryptanalysis of the Hagelin Cryptograph, Aegean Park Press,
Laguna Hill, Calif. (1977).

Bea178. "The Beale Ciphers," The Beale Cypher Assoc., Medfield, Mass. (1978).
Blak78. Blakley, B. and Blakley, G. R., "Security of Number Theoretic Public Key Crypto-

systems Against Random Attack," Cryptologia. In three parts: Part I: Vol. 2, No. 4
(Oct. 1978), pp. 305-321; Part II: Vol. 3, No. 1 (Jan. 1979), pp. 29-42; Part III: Vol.
3, No. 2 (Apr. 1979), pp. 105-118.

Blak79. Blakley, G. R. and Borosh, I., "Rivest-Shamir-Adleman Public Key Cryptosystems
Do Not Always Conceal Messages," Comp. & Math. with Applic. Vol. 5 pp. 169-
178 (1979).

Blum81a. Blum, M., "Three Applications of the Oblivious Transfer: 1. Coin Flipping by
Telephone, 2. How to Exchange Secrets, 3. How to Send Certified Electronic Mail,"
Dept. EECS, Univ. of California, Berkeley, Calif. (1981).

130 ENCRYPTION ALGORITHMS

Blum81b. Blum, M. and Rabin, M. O., "How to Send Certified Electronic Mail," Dept.
EECS, Univ. of California, Berkeley, Calif. (1981).

Bran79. Branstad, D., "Hellman's Data Does Not Support His Conclusion," IEEE Spec-
trum Vol. 16(7) p. 41 (July 1979).

Davi79. Davida, G. I., "Hellman's Scheme Breaks DES in its Basic Form," IEEE Spec-
trum Vol. 16(7) p. 39 (July 1979).

Days80. Davies, D. W. and Price, W. L., "The Application of Digital Signatures Based on
Public Key Cryptosystems," NPL Report DNACS 39/80, National Physical Lab.,
Teddington, Middlesex, England (Dec. 1980).

Deav80a. Deavours, C. A., "The Black Chamber: A Column; How the British Broke Enig-
ma," Cryptologia Vol. 4(3) pp. 129-132 (July 1980).

Deav80b. Deavours, C. A., "The Black Chamber: A Column; La Methode des Batons,"
Cryptologia Vol. 4(4) pp. 240-247 (Oct. 1980).

Diff76. Diffie, W. and Hellman, M., "New Directions in Cryptography," IEEE Trans. on
Info. Theory Vol. IT-22(6) pp. 644-654 (Nov. 1976).

Diff77. Diffie, W. and Hellman, M., "Exhaustive Cryptanalysis of the NBS Data Encryp-
tion Standard," Computer Vol. 10(6) pp. 74-84 (June 1977).

Diff79. Diffie, W. and Hellman, M., "Privacy and Authentication: An Introduction to
Cryptography," Proc. IEEE Vol. 67(3) pp. 397-427 (Mar. 1979).

Diff81. Diffie, W., "Cryptographic Technology: Fifteen Year Forecast," BNR Inc., Moun-
tain View, Calif. (Jan. 1981).

Feis70. Feistel, H., "Cryptographic Coding for Data-Bank Privacy," RC-2827, T. J. Wat-
son Research Center, Yorktown Heights, N.Y. (Mar. 1970).

Feis73. Feistel, H., "Cryptography and Computer Privacy," Sci. Am. Vol. 228(5) pp. 15-
23 (May 1973).

Feis75. Feistel, H., Notz, W. A., and Smith, J., "Some Cryptographic Techniques for
Machine to Machine Data Communications," Proc. IEEE Vol. 63(11) pp. 1545-
1554 (Nov. 1975).

Friel8. Friedman, W. E, "Methods for the Solution of Running-Key Ciphers," Riverbank
Publication No. 16, Riverbank Labs, Geneva, Ill. (1918).

Frie20. Friedman, W. E, "The Index of Coincidence and Its Applications in Cryptogra-
phy," Riverbank Publication No. 22, Riverbank Labs., Geneva, Ill. (1920).

Frie67. Friedman, W. E, "Cryptology," Encyclopedia Britannica Vol. 6 pp. 844-851
(1967).

Gain56. Gaines, H. E, Cryptanalysis, Dover, New York (1956).
Gard77. Gardner, M., "Mathematical Games," Sci. Am. Vol. 237(2) pp. 120-124 (Aug.

1977).
Gill80. Gillogly, J. J., "The Beale Ciphers: A Dissenting Opinion," Cryptologia Vol. 4(2)

pp. 116-119 (Apr. 1980).
Hamm71. Hammer, C., "Signature Simulation and Certain Cryptographic Codes," Comm.

ACM Vol. 14(1) pp. 3-14 (Jan. 1971).
Hamm79. Hammer, C., "How Did TJB Encode B2?" Cryptologia Vol. 3(1) pp. 9-15 (Jan.

1979).
Hamm81. Hammer, C., "High Order Homophonic Ciphers," Cryptologia Vol. 5(4) pp.

231-242, (Oct. 1981).
Hell76. Hellman, M., Merkle, R., Schroeppel, R., Washington, L., Diffie, W., Pohlig, S.,

and Schweitzer, P., "Results of an Initial Attempt to Cryptanalyze the NBS Data
Encryption Standard," Information Systems Lab., Dept. of Electrical Eng., Stanford
Univ. (1976).

REFERENCES 131

Hell79. Hellman, M. E., "DES Will Be Totally Insecure Within Ten Years," IEEE Spec-
trum Vol. 16(7) pp. 32-39 (July 1979).

Hell80. Hellman, M. E., "A Cryptanalytic Time-Memory Tradeoff," IEEE Trans. on Info.
Theory Vol. IT-26(4) pp. 401-406 (July 1980).

Henr81. Henry, P. S., "Fast Decryption Algorithm for the Knapsack Cryptographic Sys-
tem," Bell System Tech. J., Vol. 60 (5) pp. 767-773 (May-June 1981).

Hill 29. Hill, L. S., "Cryptography in an Algebraic Alphabet," Am. Math. Monthly Vol. 36
pp. 306-312 (June-July 1929).

Kahn67. Kahn, D., The Codebreakers, Macmillan Co., New York (1967).
Kam78. Kam, J. B. and Davida, G. I., "A Structured Design of Substitution-Permutation

Encryption Networks," pp. 95-113 in Foundations of Secure Computation, ed. R. A.
DeMillo et al., Academic Press, New York (1978).

Karp72. Karp, R. M., "Reducibility Among Combinatorial Problems," pp. 85-104 in Com-
plexity of Computer Computations, ed. R. E. Miller and J. W. Thatcher, Plenum
Press, New York (1972).

Kasi63. Kasiski, E W., Die Geheimschriften und die Dechiffrir-kunst, Mittler & Son
(1863).

Knut69. Knuth, D., The Art of Computer Programming," Vol. 2, Seminumerical Algo-
rithms, Addison-Wesley, Reading, Mass. (1969).

Konf78. Konfelder, L. M., "On the Signature Reblocking Problem in Public-Key Crypto-
systems," Comm. ACM Vol. 21(2) p. 179 (Feb. 1978).

Konh81. Konheim, A. G., Cryptography: A Primer, John Wiley & Sons, New York (1981).
Kowa80. Kowalchuk, J., Shanning, B. P., and Powers, S. A., "Communications Privacy:

Integration of Public and Secret Key Cryptography," Proc. Nat'l. Telecommunica-
tions Conf., pp. 49.1.1-49.1.5 (Dec. 1980).

Kruh77. Kruh, L., "The Churchyard Ciphers," Cryptologia Vol. 1(4) pp. 372-375 (Oct.
1977).

Lemp79. Lempel, A., "Cryptology in Transition," Computing Surveys Vol. 11 (4) pp. 285-
303 (Dec. 1979).

LeVe77. LeVeque, W. J., Fundamentals of Number Theory, Addison-Wesley, Reading,
Mass. (1977).

Lipt79a. Lipton, R. J., "How to Cheat at Mental Poker," Comp. Sci., Dept. Univ. of Calif.,
Berkeley, Calif. (Aug. 1979).

Lipt79b. Lipton, R. J., "An Improved Power Encryption Method," Comp. Sci., Dept. Univ.
of Calif., Berkeley, Calif. (Aug. 1979).

Mel173. Mellen, G. E., "Cryptology, Computers, and Common Sense," pp. 569-579 in
Proc. NCC, Vol. 42, AFIPS Press, Montvale, N.J. (1973).

Merk78. Merkle, R. C. and Hellman, M. E., "Hiding Information and Signatures in Trap-
door Knapsacks," IEEE Trans. on lnfo. Theory Vol. IT-24(5) pp. 525-530 (Sept.
1978).

Merk81. Merkle, R. C. and Hellman, M. E., "On the Security of Multiple Encryption,"
Comm. ACM Vol. 27(7) pp. 465-467 (July 1981).

Mort77. Morris, R., Sloane, N. J. A., and Wyner, A. D., "Assessment of the National
Bureau of Standards Proposed Federal Data Encryption Standard," Cryptologia Vol.
1(3) pp. 281-291 (July 1977).

NBS77. "Data Encryption Standard," FIPS PUB 46, National Bureau of Standards,
Washington, D.C. (Jan. 1977).

Nive72. Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers, John
Wiley & Sons, New York (1972).

132 ENCRYPTION ALGORITHMS

Pele79. Peleg, S. and Rosenfeld, A., "Breaking Substitution Ciphers Using a Relaxation
Algorithm," Comm. ACM Vol. 22(11) pp. 598-605 (Nov. 1979).

Poh178a. Pohlig, S. and Hellman, M., "An Improved Algorithm for Computing Logarithms
over GF(p) and its Cryptographic Significance," IEEE Trans. on Info. Theory Vol.
IT-24(1) pp. 106-110 (Jan. 1978).

Poh178b. Pohlig, S., "Bounds on a Class of Easily Solved Knapsacks," MIT Lincoln Lab.,
Lexington, Mass. (1978).

Prat42. Pratt, E, Secret and Urgent, Blue Ribbon Books, Garden City, N.Y. (1942).
Rabi79. Rabin, M. O., "Digitalized Signatures and Public-Key Functions as Intractable as

Factorization," MIT/LCS/TR-212, MIT Lab. for Computer Science, Cambridge,
Mass. (Jan. 1979).

Rabi81. Rabin, M. O., "Exchange of Secrets," Dept. of Applied Physics, Harvard Univ.,
Cambridge, Mass. (1981).

Rive78a. Rivest, R. L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems," Comm. ACM Vol. 21(2) pp. 120-126
(Feb. 1978).

Rive78b. Rivest, R. L., "Remarks on a Proposed Cryptanalytic Attack of the M.I.T. Public
Key Cryptosystem," Cryptologia Vol. 2(1)pp. 62-65 (Jan. 1978).

Rive80. Rivest, R. L., "A Description of a Single-Chip Implementation of the RSA Ci-
pher," Lambda Vol. 1(3) pp. 14-18 (1980).

Rive81. Rivest, R. L., "Statistical Analysis of the Hagelin Cryptograph," Cryptologia Vol.
5(1) pp. 27-32 (Jan. 1981).

Sam79. Sam, E., "Musical Cryptography," Cryptologia Vol. 3(4) pp. 193-201 (Oct. 1979).
Schr79. Schroeppel, R. and Shamir, A., "A TS ~ = O(2 n) Time/Space Tradeoff for Certain

NP-Complete Problems," Proc. IEEE 20th Annual Syrup. on Found. of Comp. Sci.,
(Oct. 1979).

Sham78. Shamir, A., "A Fast Signature Scheme," MIT/LCS/TM-107, MIT Lab. for
Computer Science, Cambridge, Mass. (July 1978).

Sham79. Shamir, A., "On the Cryptocomplexity of Knapsack Systems," Proc. l lth Annual
ACM Syrup. on the Theory of Computing, pp. 118-129 (1979).

Sham80a. Shamir, A., Rivest, R. L., and Adleman, L. M., "Mental Poker," in The Math-
ematical Gardner, ed. D. Klarner, Prindle, Weber & Schmidt, Boston, Mass. (1980).

Sham80b. Shamir, A., "The Cryptographic Security of Compact Knapsacks (Preliminary
Report)," pp. 94-99 in Proc. 1980 Syrup. on Security and Privacy, IEEE Computer
Society (Apr. 1980).

Sham80c. Shamir, A. and Zippel, R. E., "On the Security of the Merkle-Hellman Crypto-
graphic Scheme," IEEE Trans. on Info. Theory Vol. IT-26(3) pp. 339-40 (May
1980).

Shan49. Shannon, C. E., "Communication Theory of Secrecy Systems," Bell Syst. Tech. J.
Vol. 28 pp. 656-715 (Oct. 1949).

Simm77. Simmons, G. J. and Norris, J. N., "Preliminary Comments on the M.I.T. Public
Key Cryptosystem," Cryptologia Voi. 1(4) pp. 406-414 (Oct. 1977).

Sink66. Sinkov, A., Elementary Cryptanalysis, Math. Assoc. Am. (1966).
Solo77. Solovay, R. and Strassen, V., "A Fast Monte-Carlo Test for Primality," SIAM J.

Computing Vol. 6 pp. 84-85 (Mar. 1977).
Stah73. Stahl, E A., "A Homophonic Cipher for Computational Cryptography," pp. 565-

568 in Proc. NCC, Vol. 42, AFIPS Press, Montvale, N.J. (1973).
Suga79. Sugarman, R., "On Foiling Computer Crime," IEEE Spectrum Vol. 16(7) pp. 31-

32 (July 1979).

REFERENCES 13 3

Tuch79. Tuchman, W., "Hellman Presents No Shortcut Solutions to the DES," IEEE
Spectrum Vol. 16(7) pp. 40-41 (July 1979).

Vino55. Vinogradov, I. M., An Introduction to the Theory of Numbers, Pergamon Press,
Elmsford, N.Y. (1955).

Ward85. Ward, J. B., The Beale Papers, Pamphlet printed by Virginian Book and Job
Print; reprinted by The Beale Cypher Assoc., Medfield, Mass. (1885).

Will80. Williams, H. C., "A Modification of the RSA Public-Key Encryption Algorithm,"
IEEE Trans. on Info. Theory Vol. IT-26(6) pp. 726-729 (Nov. 1980).

,3
C ryptographic Techniques

3.1 BLOCK AND STREAM CIPHERS

Let M be a plaintext message. A block cipher breaks M into successive blocks Ma,
M2 and enciphers each M 1 with the same key K; that is,

E K (M) = E K (M ,) E K (M 2)

Each block is typically several characters long. Examples of block ciphers are
shown in Table 3.1. Simple substitution and homophonic substitution ciphers are
block ciphers, even though the unit of encipherment is a single character. This is
because the same key is used for each character. We shall return to block ciphers
in Section 3.4.

A stream cipher breaks the message M into successive characters or bits rnl,
m2,. • . , and enciphers each rn i with the ith element ki of a key stream K = klk2
. . . ; that is,

TABLE 3.1 Block ciphers.
, ,

Cipher

Transposition with period d
Simple substitution
Homophonic substitution
Playfair
Hill with d × d matrix
DES
Exponentiation mod n
Knapsacks of length n

Block size
, ,

d characters
1 character
1 character
2 characters
d characters
64 bits
log2 n bits (664 bits recommended)
n bits (200 bits recommended)

135

136 CRYPTOGRAPHIC TECHNIQUES

E K (M) = E k , (m l) E k 2 (m z)

A stream cipher is periodic if the key stream repeats after d characters, for some
fixed d; otherwise, it is nonperiodic. Ciphers generated by Rotor and Hagelin
machines are periodic stream ciphers. The Vernam cipher (one-time pad) and
running-key ciphers are nonperiodic stream ciphers.

A periodic substitution cipher with a short period (e.g., Vigen6re cipher) is
normally regarded as a stream cipher because plaintext characters are enciphered
one by one, and adjacent characters are enciphered with a different part of the
key. But it has characteristics in common with both types of ciphers. Let K = k l k z

. . . k a, where d is the period of the cipher. The cipher can be regarded as a block
cipher, where each M i is a block of d letters:

E K (M) = E K (M 1) E K (M z) . . . ,

or as a stream cipher, where each m i is one letter, and K is repeated in the key
stream; that is, the key stream is:

K K K

k , . . . k d k~ . . . k d k l . . . k d . . .

For short periods, the cipher is more like a block cipher than a stream cipher, but
it is a weak block cipher because the characters are not diffused over the entire
block. As the length of the period increases, the cipher becomes more like a stream
cipher.

There are two different approaches to stream encryption: synchronous meth-
ods and self-synchronous methods (see Table 3.2). In a synchronous stream cipher,
the key stream is generated independently of the message stream. This means that
if a ciphertext character is lost during transmission, the sender and receiver must

TABLE 3.2 Stream ciphers.

Synchronous stream ciphers Period

Vigen~re with period d d
Rotor machines with t rotors 26 t
Hagelin machines with t wheels, each having Pi pins P l P 2 " " P t

Running-key
Vernam
Linear Feedback Shift Registers with n-bit register 2 n
Output-block feedback mode with DESt 264
Counter method with DES 264

Self-synchronous methods

Autokey cipher
Cipher feedback mode

t It can be less; see [Hell80].

BLOCK AND STREAM CIPHERS 137

FIGURE 3.1 Propagation of error with self-synchronous stream cipher.

synchronization l o s t synchronization restored

1 J
• " ! ' ' '

incorrectly
deciphered

error correctly
occurs deciphered

resynchronize their key generators before they can proceed further. Furthermore,
this must be done in a way that ensures no part of the key stream is repeated (thus
the key generator should not be reset to an earlier state). All the stream ciphers we
have discussed so far are synchronous. Section 3.2 describes three methods better
suited for digital computers and communications: Linear Feedback Shift Regis-
ters, output-block feedback mode, and the counter method. These ciphers are also
periodic.

In a self-synchronous stream cipher, each key character is derived from a
fixed number n of preceding ciphertext characters. Thus, if a ciphertext character
is lost or altered during transmission, the error propagates forward for n charac-
ters, but the cipher resynchronizes by itself after n correct ciphertext characters
have been received (see Figure 3.1). Section 3.3 describes two self-synchronous
stream ciphers: autokey ciphers and cipher feedback mode. Self-synchronous
stream ciphers are nonperiodic because each key character is functionally depen-
dent on the entire preceding message stream.

Even though self-synchronous stream ciphers do not require resynchroniza-
tion when errors occur, transmission errors cannot be ignored. The errors could be
a sign of active wiretapping on the channel. Even if the errors are not caused by
wiretapping, retransmission is necessary if the application requires recovery of lost
or damaged characters.

Although protocols for recovering from transmission errors are beyond the
scope of this book, we shall briefly describe the role of error detecting and correct-
ing codes in cryptographic systems. Diffie and Hellman [Diff79] observe that if
errors are propagated by the decryption algorithm, applying error detecting codes
before encryption (and after decryptionmsee Figure 3.2) provides a mechanism
for authenticity, because modifications to the ciphertext will be detected by the

_ .

FIGURE 3.2 Encryption used with error detecting codes.

M C ~- M

138 ABFDEFGHIIJKLMMNOHPP

error decoder. Block ciphers and self-synchronous stream ciphers propagate errors,
so this strategy is applicable for both of these modes of operation. Synchronous
stream ciphers, on the other hand, do not propagate errors because each ciphertext
character is independently enciphered and deciphered. If a fixed linear error de-
tecting code is used, then an opponent could modify the ciphertext character and
adjust the parity bits to match the corresponding changes in the message bits. To
protect against this, a keyed or nonlinear error detecting code can be used. Error
correcting codes must be applied after encryption (because of the error propaga-
tion by the decryption algorithm), but can be used with error detecting codes
(applied before encryption) for authentication.

Communication protocols for initiating and terminating connections and
synchronizing key streams are also beyond the scope of this book. It is worth
noting, however, that such protocols must require message acknowledgement to
detect deletion of messages. (For a more detailed description of the cryptography-
communications interface, see [Bran75,Bran78,Feis75,Kent76,Pope79].)

All the stream ciphers discussed in this chapter use a simple exclusive-or
operation for enciphering and deciphering (as in the Vernam cipher). Thus, the
enciphering algorithm is given by:

C i • E k i (m i) -- m i • k i ,

where each k i, m;, and c; is one bit or character. The deciphering algorithm is the
same:

Dk,(Ci) = c i • k i

= (m i • k i) • k i

= m i .

3.2 SYNCHRONOUS STREAM CIPHERS

A synchronous stream cipher is one in which the key stream K = k i k 2 . . , is
generated independently of the message stream. The algorithm that generates the
stream must be deterministic so the stream can be reproduced for decipherment.
(This is unnecessary if K is stored, but storing long key streams may be impracti-
cal.) Thus, any algorithm that derives the stream from some random property of
the computer system is ruled out. The starting stage of the key generator is initial-
ized by a "seed" I0. Figure 3.3 illustrates.

We saw in Chapter 2 that stream ciphers are often breakable if the key
stream repeats or has redundancy; to be unbreakable, it must be a random se-
quence as long as the plaintext. Intuitively, this means each element in the key
alphabet should be uniformly distributed over the key stream, and there should be
no long repeated subsequences or other patterns (e.g., see [Knut69,Brig76] for a
discussion of criteria for judging randomness).

No finite algorithm can generate truly random sequences [Chai74]. Al-
though this does not rule out generating acceptable keys from pseudo-random
number generators, the usual congruence type generators are unacceptable.

SYNCHRONOUS STREAM CIPHERS 139

FIGURE 3.3 Synchronous stream cipher.

I°~ ;I Key
Generator

m i
message s tream

Key
G e n e r a t o r

key
i stream i

,~ c i =

encipher ciphertext stream decipher

key
s tream

sender receiver

~- m i

Even a good pseudo-random number generator is not always suitable for key
generation. Linear Feedback Shift Registers are an example; given a relatively
small amount of plaintext-ciphertext pairs, a cryptanalyst can easily derive the
entire key stream. Because this technique illustrates the possible pitfalls of key
generators, we shall describe it before turning to methods that appear to be much
stronger.

3.2.1 Linear Feedback Shift Registers

An n-stage Linear Feedback Shift Register (LFSR) consists of a shift register R
= (rn, rn_ 1 r l) and a "tap" sequence T = (t n, t n _ l , . . . , tl), where each r i and t~
is one binary digit. At each step, bit r, is appended to the key stream, bits r,
r2 are shifted right, and a new bit derived from T and R is inserted into the left end
of the register (see Figure 3.4). Letting R' = (r,~, r' . . n-x, . , r~') denote the next state
of R, we see that the computation of R' is thus:

r[= r i + 1 i = 1 , n - - 1

n

r~ = T R = ~ t i r i mod 2 = t l r l • t2 r2 • . . . • t n r n •

i=l

FIGURE 3.4 Linear Feedback Shift Register (LFSR).
,

Shift Register R

_ t l

key stream

I40 CRYPTOGRAPHIC TECHNIQUES

Thus,

R ' = H R m o d 2 ,

where H is the n × n matrix"

(3.1)

n

t n tn_ 1 i n _ 2 . . , ta t2 tl
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

° ° °

0 0 0 1 0 0
0 0 0 . . . 0 1 0

An n-stage LFSR can generate pseudo-random bit strings with a period of
2 " - 1 (e.g., see [Golu67]). To achieve this, the tap sequence T must cause R to
cycle through all 2" - 1 nonzero bit sequences before repeating.This will happen if
the polynomial

T (x) = tnX n + tn_ i x n-1 + ' . . + tl X + 1 ,

formed from the elements in the tap sequence plus the constant 1, is primitive. A
primitive polynomial of degree n is an irreducible polynomial that divides x 2"-~ + 1,
but not x d + 1 for any d that divides 2 - - 1. Primitive trinomials of the form
T (x) = x n + x a + 1 are particularly appealing, because only two stages of the
feedback register need be tapped. (See [Golu67,Pete72,Zier68,Zier69] for tables
of primitive polynomials.)

E x a m p l e :

Figure 3.5 illustrates a 4-stage LFSR with tap sequence T = (1, 0, 0, 1) ;
thus there are "taps" on bits r~ and r4. The matrix H is given by

n __

1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

FIGURE 3.5 Four.stage LFSR.

key stream

S Y N C H R O N O U S S T R E A M CIPHERS
141

The polynomial T (x) = x 4 + x + 1 is primitive, so the register will cycle
through all 15 nonzero bit combinations in GF(23) before repeating. Starting
R in the initial state 0001, we have

0 0 0 1
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1
0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0

The rightmost column gives the key stream K = 100011110101100. II

A binary message stream M = m l m 2 . . . is enciphered by computing c i = mi
• k i as the bits of the key stream are generated (see Figure 3.6). Deciphering is
done in exactly the same way; that is, by regenerating the key stream and comput-
ing c~ • k i = m i. The seed I0 is used to initialize R for both encipherment and

decipherment.
The feedback loop attempts to simulate a one-time pad by transforming a

short key (I0) into a long pseudo-random sequence K. Unfortunately, the result is a
poor approximation of the one-time pad.

The tap sequence T is easily determined in a known-plaintext attack [Meye
73,Meye72]. Following the description in [Diff79], we shall show how this is done
using just 2n bits of plaintext-ciphertext pairs. Let M = m l . • • m 2 n be the plaintext
corresponding to ciphertext C = cl . . . C2n. We can determine the key sequence K

= k ~ . . . k z n by computing

FIGURE 3.6 Encryption with LFSR.
_

Io

~n i

i

v

e n c i p h e r

i

d e c i p h e r

ill i

142 CRYPTOGRAPHIC TECHNIQUES

mi ~ c i = m i ~ (m i ~ k i) = k i ,

for i = 1 ,2n.

Let R i be a column vector representing the contents of register R during the
ith step of the computation. Then

R, = (k , , k n _ 1 . . . , kl)
R2 = (k n + 1, k, . . . , k2)

R,+, = (k2,, k2n-, . . . , k,+~) .

Let X and Y be the following matrices:

X = (R , , R 2 R .)

Y = (R 2 , R 3 , . . . , R , + i) •

Using Eq. (3.1), we find that X and Y are related by

Y - H X m o d 2 .

Because X is always nonsingular, H can be computed from

H = Y X -1 mod 2 (3.2)

and T can be obtained from the first row of H. The number of operations required
to compute the inverse matrix X -1 is on the order of n ~, whence the cipher can be
broken in less than 1 day on a machine with a 1 usec instruction time for values of
n as large as 1000.

3.2.2 Output-Block Feedback Mode

The weakness of LFSRs is caused by the linearity of Eq. (3.1). A better approach
is to use a nonlinear transformation. Nonlinear block ciphers such as the DES
seem to be good candidates for this. Figure 3.7 illustrates an approach called
output-block feedback mode (OFM). The feedback register R is used as input to a
block encryption algorithm E , with key B. During the ith iteration, E B (R) is com-
puted, the low-order (rightmost) character of the output block becomes the ith key
character kt, and the entire block is fed back through R to be used as input during
the next iteration. Note that each k~ is one character rather than just a single bit;
this is to reduce the number of encipherments with E , , which will be considerably
more time-consuming than one iteration of a LFSR. A message stream is broken
into characters and enciphered in parallel with key generation as described earlier.
The technique has also been called internal feedback [Camp78] because the feed-
back is internal to the process generating the key stream; by contrast, the self-
synchronous method described in Section 3.3.2 uses a feedback loop derived from
the ciphertext stream. (See [Gait77] for a discussion of using DES in OFM.)

SYNCHRONOUS STREAM CIPHERS 143

FIGURE 3.7 Synchronous stream cipher in output-block feedback mode (OFM).

ue

m i ~ c i - ~ ~. m i

encipher decipher

3.2.3 Counter Method

Diffie and Hellman [Diff79,Hel180] have suggested a different approach called
the counter method. Rather than recycling the output of E B back through E B,
successive input blocks are generated by a simple counter (see Figure 3.8).

With the counter method, it is possible to generate the ith key character k i
without generating the first i - 1 key characters by setting the counter to I0 + i -
1. This capability is especially useful for accessing the ith character in a direct
access file. With OFM, it is necessary to first compute i - 1 key characters.

FIGURE 3.8 Synchronous stream cipher in counter mode.

R R
[counter [• -I o] c°unter]" Io

discard ~k discard /
i ~.k./

m i ' " ~ ' " ' c i " " '~d .J ~ m i

encipher decipher

144 CRYPTOGRAPHIC TECHNIQUES

In Section 2.4.4, we saw that stream ciphers could be broken if the key
stream repeated. For this reason, synchronous stream ciphers have limited applica-
bility to file and database encryption; if an element is inserted into the middle of a
file, the key stream cannot be reused to reencipher the remaining portion of the
file. To see why, suppose an element m' is inserted into the file after the ith
element. We have:

original plaintext: . . . m i m i + l m i + 2 . . .

key stream: . . . k i k i + 1 k i + z . . .

original ciphertext: . . . c i c i+ 1 ci+ 2 . . .

updated plaintext: . m i m ' . . .
• . mi+l

key stream: . . . k i ki+ 1 ki+ z . . .

updated ciphertext : . . , c i c~'+~ c[+2 . . .

Bayer and Metzger [Baye76] show that if m' is known, then all key elements kj
and plaintext elements mj (j > i) can be determined from the original and updated
ciphertext:

ki+ 1 = ci+ 1 mi+l = ci+ 1 • ki+l

ki+ z = c[+ 2 • m i+l , mi+z = ci+ z • ki+z

Note that a cryptanalyst does not need to know the position in the file where the
insertion is made; this can be determined by comparing the original and, updated
versions of the file.

Synchronous stream ciphers protect against ciphertext searching, because
identical blocks of characters in the message stream are enciphered under a differ-
ent part of the key stream. They also protect against injection of false ciphertext,
replay, and ciphertext deletion, because insertions or deletions in the ciphertext
stream cause loss of synchronization.

Synchronous stream ciphers have the advantage of not propagating errors; a
transmission error affecting one character will not affect subsequent characters.
But this is also a disadvantage in that it is easier for an opponent to modify
(without detection) a single ciphertext character than a block of characters. As
noted earlier, a keyed or nonlinear error detecting code helps protect against this.

3.3 SELF-SYNCHRONOUS STREAM CIPHERS

A self-synchronous stream cipher derives each key character from a fixed number
n of preceding ciphertext characters [Sava67]. The genesis of this idea goes back
to the second of two autokey ciphers invented by Vigen~re in the 16th Century
[Kahn67]. We shall first describe Vigen6re's schemes, and then describe a method
suited for modern cryptographic systems.

SELF-SYNCHRONOUS STREAM CIPHERS 145

3.3.1 Autokey Ciphers

An autokey cipher is one in which the key is derived from the message it enciphers.
In Vigen~re's first cipher, the key is formed by appending the plaintext M = rnim2
. . . to a "priming key" character kl; the ith key character (i > 1) is thus given by
k i = m i _ 1.

Example:
Given the priming key D, the plaintext RENAISSANCE is enciphered as
follows, using a shifted substitution cipher (Vigen~re actually used other
substitutions)"

M = R E N A I S S A N C E
K = D R E N A I S S A N C

EK(M) = U V R N I A K S N P G . Ii

In Vigen6re's second cipher, the key is formed by appending each character
of the ciphertext to the priming key kx; that is, k i = c i_ 1 (i > I) .

Example:
Here the plaintext RENAISSANCE is enciphered with the priming key D
as follows:

M = R E N A I S S A N C E
K = D U Y L L T L D D Q S

EK(M) = U Y L L T L D D Q S W . Ii

Of course, neither of these ciphers is strong by today's standards. But Vige-
n6re's discovery that nonrepeating key streams could be generated from the mes-
sages they encipher was a significant contribution to cryptography.

Vigen~re's second autokey cipher is a self-synchronous system in the sense
that each key character is computed from the preceding ciphertext character
(here, the computation is a simple identity operation).

Even though each key character can be computed from its preceding cipher-
text character, it is functionally dependent on all preceding characters in the mes-
sage plus the priming key. Thus, each ciphertext character is functionally
dependent on the entire preceding message. This phenomenon, sometimes called
"garble extension", makes cryptanalysis more difficult, because the statistical
properties of the plaintext are diffused across the ciphertext.

3.3.2 Cipher Feedback

Vigen~re's system is weak because it exposes the key in the ciphertext stream. This
problem is easily remedied by passing the ciphertext characters through a nonlin-
ear block cipher to derive the key characters. The technique is called cipher feed-

146 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.9 Self-synchronous stream cipher in cipher feedback mode (CFB).

shi f t r eg i s t e r R

/0

c i

sh i f t r eg i s t e r R

d i sca rd

i ~ mi

back mode (CFB) because the ciphertext characters participate in the feedback
loop. It is sometimes called "chaining", because each ciphertext character is func-
tionally dependent on (chained to) preceding ciphertext characters. This mode has
been approved by the National Bureau of Standards for use with DES [GSA77].

Figure 3.9 illustrates. The feedback register R is a shift register, where each
ciphertext character c~ is shifted into one end of R immediately after being gener-
ated (the character at the other end is simply discarded). As before, R is initialized
to the seed I0. During each iteration, the value of R is used as input to a block
encryption algorithm E B, and the low-order character of the output block becomes
the next key character.

With CFB, transmission errors affect the feedback loop. If a ciphertext char-
acter is altered (or lost) during transmission, the receiver's shift register will differ
from the transmitter's, and subsequent ciphertext will not be correctly deciphered
until the erroneous character has shifted out of the register. Because the registers
are synchronized after n cycles (where n is the number of characters per block), an
error affects at most n characters; after that, the ciphertext is correct (see Figure
3.1).

CFB is comparable to the counter method in its ability to access data in
random access files. To decipher the ith ciphertext character c~, it suffices to load
the feedback register with the n preceding ciphertext characters q._~, . . . , c~_x, and
execute one cycle of the feedback loop to get k i.

With CFB, it is possible to make an insertion or deletion in a file without
reenciphering the entire file. It is, however, necessary to reencipher all characters
after the place of insertion or deletion, or the following block of characters will not
be decipherable. Reencipherment can be confined to a single record in a file by
reinitializing the feedback loop for each record. Although this exposes identical

BLOCK CIPHERS 147

records, identical records can be concealed by prefixing each record with a random
block of characters, which is discarded when the record is deciphered for process-
ing. Note that cipher feedback is not vulnerable to the insertion/deletion attack
described for synchronous ciphers. This is because the key stream is automatically
changed by any change in the message stream.

Self-synchronous ciphers protect against ciphertext searching because differ-
ent parts of the message stream are enciphered under different parts of the key
stream. They also protect against all types of authenticity threats because any
change to the ciphertext affects the key stream. Indeed, the last block of ciphertext
is functionally dependent on the entire message, serving as a checksum for the
entire message.

A checksum refers to any fixed length block functionally dependent on every
bit of the message, so that different messages have different checksums with high
probability. Checksums are frequently appended to the end of messages for au-
thentication. The method of computing the checksum should ensure that two mes-
sages differing by one or more bits produce the same checksum with probability
only 2-", where n is the length of the checksum. CFB can be used to compute
checksums for plaintext data when authenticity is required in the absence of secre-
cy. Although a checksum does not usually provide the same level of security as
encrypting the entire message, it is adequate for many applications.

3.4 BLOCK CIPHERS

We have seen how a block encryption algorithm E can be used to generate a key
stream in either synchronous or self-synchronous mode. This raises an obvious
question: Is it better to use a block encryption algorithm for block encryption, or to
use it for stream encryption? Although the answer to this question depends on the
requirements of the particular application, we can make some general observations
about the efficiency and security of the different approaches.

Using block encryption directly is somewhat faster than either stream mode,
because there will be only one execution of the encryption algorithm per n charac-
ters rather than n executions. This may not be an important factor, however, when
the algorithm is implemented in special-purpose hardware capable of encrypting
several million bits per second (as for some DES implementations). Such data
rates are well beyond the capabilities of slow-speed telecommunications lines. Fur-
thermore, block encryption is not inherently faster than stream encryption; stream
encryption can be speeded up by using a faster generator, and, for applications
requiring high speed, a key stream can be generated in advance with synchronous
stream encryption (see [Brig80]).

With block encryption, transmission errors in one ciphertext block have no
affect on other blocks. This is comparable to cipher feedback mode, where a
transmission error in one ciphertext character affects only the next n characters,
which is equivalent to one block.

Block encryption may be more susceptible to cryptanalysis than either
stream mode. Because identical blocks of plaintext yield identical blocks of cipher-

i

148 CRYPTOGRAPHIC TECHNIQUES

text, blocks of blanks or keywords, for example, may be identifiable for use in a
known-plaintext attack. This is not a problem with stream encryption because
repetitions in the plaintext are enciphered under different parts of the key stream.
With block encryption, short blocks at the end of a message must also be padded
with blanks or zeros, which may make them vulnerable to cryptanalysis.

In database systems, enciphering each field of a record as a separate block is
not usually satisfactory. If the fields are short, padding increases the storage re-
quirements of the database, and may leave the data vulnerable to cryptanalysis.
Enciphering the fields with an algorithm that operates on short blocks does not
solve the problem, because the algorithm will be weaker.

Even if the fields are full size and cryptanalysis impossible, information can
be vulnerable to ciphertext searching. Consider a database containing personnel
records. Suppose the Salary field of each record is enciphered as a single block,
and that all salaries are enciphered under the same key. The Name fields are in
the clear, so that a particular individual's record can be identified. A user can
determine which employees earn salaries equal to Smith's by searching for those
records with ciphertext Salary fields identical to Smith's. This problem demon-
strates the need to protect nonconfidential information as well as confidential
information, and the possible pitfalls of enciphering database records by fields,
especially when multiple records are enciphered under one key.

Block encryption is more susceptible to replay than stream encryption. If
each block is independently enciphered with the same key, one block can be re-
played for another. Figure 3.10 shows how a transaction "CREDIT S M I T H $10"
can be changed to "CREDIT S M I T H $5000" by replaying a block containing the
ciphertext for $5000 (see [Camp78]). This type of replay is not possible with a
stream cipher (assuming the key stream is not repeated). One simple solution is to
append checksums to the end of messages.

Replay can also be a problem in databases. Consider again the database of
employee records, where each record contains a Salary field enciphered as a sepa-
rate block, and all salaries are enciphered under one key. Suppose a user can

FIGURE 3.10 Replay of ciphertext block.

Before Replay

CREDIT JONES ~ 5000 CREDIT SMITH $ 10

After Replay

CREDIT JONES $ 5000 CREDIT SMITH $ 5000

BLOCK CIPHERS 149

identify the records in the database belonging to Smith and to Jones, and that
Jones's salary is known to be higher than Smith's. By copying Jones's enciphered
Salary field into Smith's record, Smith's salary is effectively increased. The
change will not be detected. Adding a checksum to each record can thwart this
type of attack, but cannot protect against attacks based on ciphertext searching as
described earlier.

Block encryption is also vulnerable to insertion and deletion of blocks, be-
cause these changes to the message stream do not affect surrounding blocks. Al-
though it may be difficult to create false ciphertext for textual data, it may not be
for numeric data. If, for example, the objective is simply to make the balance in an
account nonzero, any positive integer will do. As noted earlier, applying error
detecting codes before encryption protects against this threat. Checksums can also
be added.

A database system with secure access controls can prevent unauthorized
users from searching or modifying ciphertext (or plaintext) as described in these
examples. Access controls are not always foolproof, however, and cannot generally
prevent users from browsing through data on removable storage devices such as
tapes and disks, or from tapping communications channels.

The following subsections describe two strategies for making block encryp-
tion more resistant to attack.

3.4.1 Block Chaining and Cipher Block Chaining

Feistel [Feis73] showed that block ciphers could be made more resistant to crypt-
analysis and ciphertext substitution (including replay) using a technique called
block chaining. Before enciphering each plaintext block M i, some of the bits of the
previous ciphertext block Ci are inserted into unused bit positions of Mi, thereby
chaining the blocks together. Kent [Kent76] proposed a similar approach using
sequence numbers. Both strategies protect against insertions, deletions, and modi-

FIGURE 3.11 Cipher block chaining (CBC).
,

Io

Mi
Ci

~ C i

Ci

D~

Mi

150 CRYPTOGRAPHIC TECHNIQUES

fications in the message stream in much the same way as a stream cipher in cipher
feedback mode. But, unlike cipher feedback mode, they reduce the number of
available message bits per block.

This is remedied by an approach called cipher block chaining (CBC), which
has been suggested for use with the DES [GSA77]. CBC is similar to cipher
feedback (CFB), except that an entire block of ciphertext is fed back through a
register to be exclusive-ored with the next plaintext block. The result is then
passed through a block cipher E K with key K (see Figure 3.11). The ith plaintext
block M; is thus enciphered as

C i = E K (M i • Ci_~),

where Co = I0. Deciphering is done by computing

D,¢(c~) ~ ce_~ --~ DK(EK(Mi ~ Ci_1)) • Ci_ 1
= (M, ~ C,_,) • C~_,
- M i .

Because each ciphertext block C i is computed from M i and the preceding cipher-
text block Ci_ 1, one transmission error affects at most two blocks. At the same
time, each C i is functionally dependent on all preceding ciphertext blocks, so the
statistical properties of the plaintext are diffused across the entire ciphertext,
making cryptanalysis more difficult. Like cipher feedback mode, the last block
serves as a checksum, so the method can also be used to compute checksums for
messages encrypted under another scheme or stored as plaintext.

CBC is similar to CFB in its resistance to all forms of attack (including
ciphertext searching, replay, insertion, and deletion). It is more efficient than CFB
in that it uses a single execution of the block encryption algorithm for each mes-
sage block. It also protects a block cipher against the time-memory tradeoff attack
described in Section 2.6.3. To see why, let C i be the ciphertext corresponding to the
chosen plaintext Mo. Since O K (C i) - M o • C~_1, to determine K a cryptanalyst
would have to generate the tables of starting and ending points using M0 • Ci_l
rather than M0. But this would rule out the possibility of precomputing the tables
or of using the same tables to break more than one cipher.

CBC is used in the Information Protection System (IPS), a set of crypto-
graphic application programs designed by IBM [Konh80]. The algorithms E and
D are implemented with DES. The IPS facilities allow users to encrypt and de-
crypt entire files, and to call the encryption functions from their programs. Chain-
ing may be applied either to a single record (called block chaining in IPS) or to a
collection of records (called record chaining). Under block chaining, the feedback
register is reset to I0 at the beginning of each record, while under record chaining,
it retains its value across record boundaries. Record chaining has the advantage of
concealing identical lines in a file. Block chaining may be preferable for direct
access files and databases, however, because records can be accessed directly with-
out deciphering all preceding records, and records can be inserted and deleted
without reenciphering the remaining records. Identical records can be concealed
by prefixing each i'ecord with a random block of characters, as described earlier
for cipher feedback.

The chaining procedure is slightly modified to deal with short blocks. To

ABFDEFGHIIJKLMMNOHPP 151

encipher a trailing short block M t of j bits, the preceding ciphertext block Ct_ 1 is
reenciphered, and the first j bits exclusix~e-ored with Mr; thus C t = M t ~ EK(Ct_ i) .
Because Ct_ 1 depends on all preceding blocks of the record, the trailing short
ciphertext block is as secure as the preceding full ones.

With block chaining, there is a problem securing short records, because there
is no feedback from the previous record. To encipher a single short record M~ of j
bits, it is exclusive-ored with the first j bits of I0; thus, C1 = M1 • I0. Although this
is not strong, it does superficially conceal the plaintext.

Cipher block chaining is somewhat less efficient for databases than direct
block encryption because changing a field requires reenciphering all succeeding
fields. Nevertheless, the added protection may offset the performance penalties for
many applications. Moreover, if an entire record is fetched during retrieval any-
way, encryption and decryption need not degrade performance if implemented in
hardware.

3.4.2 Block Ciphers with Subkeys

Davida, Wells, and Kam [Davi79] introduced a new type of block cipher suitable
for databases. A database is modeled as a set of records, each with t fields. Each
record is enciphered as a unit, so that all fields are diffused over the ciphertext.
The individual fields can be separately deciphered, though doing so requires access
to an entire ciphertext record. Like cipher block chaining, the scheme protects
against all types of attack.

Access to a particular field requires a special subkey for the field. There are
separate read subkeys d~, . . . , d t for deciphering each field, and separate write
subkeys e~, e t for enciphering each field. The subkeys are global to the data-
base; that is, all records are enciphered with the same subkeys. Each user is given
subkeys only for the fields that user is allowed to read or write.

We shall first describe a simplified, but insecure, version of the scheme, and
then discuss the modifications needed for security. The scheme is based on the
Chinese Remainder Theorem (see Theorem 1.8 in Section 1.6.2). To construct
subkeys, each read subkey dj is chosen to be a random prime number larger than
the maximum possible value for field j. Letting n = did2 . . . dr, the write subkeys
are as follows:

ej = , (3.3)

where yj is the inverse of (n / d j) mod dj"

yj = inv(,, / dj, dj) .

Let M be a plaintext record with fields m ~ , . . . , m r The entire record is enciphered
as

t
C - - ~ e j m j m o d n .

j = l
(3.4)

! i

152 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.12 Enciphering and deciphering with subkeys.

M

record m 1 e • • m/ • • • n

V 1

enc iphe r

c iphe r t ex t
record ! C , J

lai te
field m/

dec ipher

Because C is the solution to the equations

C mod dj = mj , (3.5)

for j = 1 , t, the j th field is easily deciphered using only the read subkey dj.
Figure 3.12 illustrates the enciphering and deciphering of a record.

The j th field can be updated using only the read and write subkeys dj and ej.
Letting m} denote the new value, the updated ciphertext C' is given by

C' = [C - ej (C mod dj) + ej m~] mod n . (3.6)

Example:
L e t t = 3, dl = 7, dz = l l , a n d d 3 = 5. T h e n n = 7 , 11 • 5 = 385 and

Yl = inv(385/7 , 7) = inv(55, 7) = 6
Yz = i n v (3 8 5 / l l , 11) = inv (35 ,11) = 6
y~ = inv(385/5 , 5) = inv(77, 5) = 3 .

The write subkeys are thus:

BLOCK CIPHERS 153

e~ = 55 * 6 = 330
e~ = 35 * 6 = 210
e 8 = 7 7 " 3 = 2 3 1 .

Let M be the plaintext record M = (4, 10, 2). Using Eq. (3.4), M is enci-
phered with the write subkeys as

C = (elm1 + ezmz + eBmB) mod n
= (3 3 0 . 4 + 2 1 0 , 1 0 + 2 3 1 , 2) m o d 3 8 5
= (1320 + 2100 + 462) mod 385 = 3882 mod 385
= 3 2 .

Using Eq. (3.5), the fields of M are deciphered with the read subkeys as
follows"

m l = C mod dx = 32 mod 7 = 4
m 2 = C m o d d 2 = 32mod 11 = 10
m3 = C m o d d 3 = 3 2 m o d 5 = 2 .

Using Eq. (3.6), the contents of the second field can be changed from 10 to 8
as follows:

C' = [C - ez(C mod d2) + ez * 8] mod n
= [32 - 210 * 10 + 210 • 8] mod 385
= - 3 8 8 mod 385 = - 3 mod 385
= 382 .

The reader should verify that all three fields are still retrievable. II

There are two weaknesses with the scheme as described thus far. The first lies in
the method of enciphering as defined by Eq. (3.4). Let mij denote the value of the
j th field in record i. A user knowing the plaintext values mlj and m2j for two
records M1 and M2 can determine the read key dj from the ciphertext C1 and C2.
Observe that Eq. (3.5) implies

C1 - - m V = u ld j

C 2 - m2j ~ u2dj

for some ul and u2. Thus, dj can be determined with high probability by computing
the greatest common divisor of (C, - re,j) and (C2 - m2j). The solution is to
append a random 32-bit (or longer) value xj to each mj before enciphering with Eq.
(3.4).

The second weakness is that the method of updating fields individually, as
defined by Eq. (3.6), can expose the read keys (see exercises at end of chapter).
The solution here is to reencipher the entire record, using new random values xj for
all fields.

Because both the read and write subkeys are required to write a field, user A
automatically has read access to any field that A can write. This is consistent with
most access control policies. But to write a single field, A must also have access to
n; this gives A the ability to compute the write subkey for any field for which A has

154 CRYPTOGRAPHIC TECHNIQUES

the read subkey. This is not consistent with most access control policies. To pre-
vent this, n must be hidden in the programs that access the database. To read field
j, A would invoke a read procedure, passing as parameter the read subkey dj; to
write the field, A would invoke a write procedure, passing as parameters dj, ~, and
the new value mj.

The write subkey ej for field j is computed from n and the read subkey dj.
Therefore, any group of users with access to all the read subkeys can compute n
and determine all the write subkeys. To prevent collusion, dummy fields are added
to each record. The read and write subkeys for these fields are not given to any
user.

3.5 ENDPOINTS OF ENCRYPTION

Data protected with encryption may be transmitted over several links before it
arrives at its final destination. For example, data may be input from a user's
terminal to the user's program, where it is processed and then transmitted to a disk
file for storage. Later, the user may retrieve the data and have it displayed on the
terminal. In computer networks, data may be transmitted from one location on the
network to another for processing or for storage. In the discussion that follows, we
use the terminology node for any location (computer, terminal, front-end, or pro-
gram) where data may be input, stored, encrypted, processed, routed (switched),
or output; and link for any communication line or data bus between two nodes.

3.5.1 End-to-End versus Link Encryption

There are many possible choices of endpoints for the encryption. At one extreme,
link eneryption enciphers and deciphers a message M at each node between the
source node 0 and the destination node n [Bara64]. The message is processed as
plaintext at the ith node, and transmitted as ciphertext Ei(M) over the ith link (see
Figure 3.13). Each link i has its own pair of transformations E i and D i, and differ-
ent encryption algorithms and message formats may be used on the different links.
This strategy is generally used with physical (hard-wired) connections. At the
other extreme, end-to-end eneryption enciphers and deciphers a message at the
source and destination only (see Figure 3.14).

There are advantages and disadvantages to both extremes. With link encryp-

FIGURE 3.13 Link encryption.

' " M M

link l L ~ link 2 ~
node 0 node 1 node 2

E 3 (M) E n (M) M ~]

link 3 link 1 l ~]
node n

ENDPOINTS OF ENCRYPTION 155

FIGURE 3.14 End-to-end encryption.

node 0

EK,(M),,,,~]' ' [,EK,(M) ~] ------ I--EK(M) EK(M)~ M
link 1 node i link 2 node 2 link 3 link n node n

tion users need only one key for communicating with their local systems. With
end-to-end encryption, users need separate keys for communicating with each
correspondent. In addition, protocols are needed whereby users (or nodes) can
exchange keys to establish a secure connection (see Section 3.7).

End-to-end encryption provides a higher level of data security because the
data is not deciphered until it reaches its final destination. With link encryption,
the data may be exposed to secrecy and authenticity threats when it is in plaintext
at the intermediate nodes. Thus, end-to-end encryption is preferable for electronic
mail and applications such as electronic-funds transfer requiring a high level of
security.

End-to-end encryption, however, is more susceptible to attacks of traffic flow
analysis. With link encryption, the final destination addresses of messages can be
transmitted as ciphertext along each link. This is not possible with end-to-end
encryption, because the intermediate nodes need the addresses for routing (unless
there is a single physical connection). The addresses could be used, for example, to
learn whether an important business transaction was taking place.

For applications requiring high security, the two approaches can be com-
bined. Figure 3.15 shows how an end-to-end cryptographic system can be inter-
faced with a communications system using link encryption to encipher addresses.
The cryptographic system is on the outside, enciphering messages before they are
processed by the communications system, and deciphering messages after they
have been processed by the communications system. Each "packet" sent over a
link has a header field and a data field. The header field contains the final destina-
tion of the message, enciphered using the key for the link, plus other control
information used by the communications system. If the channel is used for more
than one connection (as in a ring network), the header must also contain the
immediate source and destination addresses in plaintext (the source address is
needed so the receiver will know which key to use to decipher the final destination
address).

Because a packet arriving at a device contains both plaintext and ciphertext,
the device must be capable of operating in two modes: normal (plaintext) mode in
which arriving control characters are interpreted by the device, and a "transpar-
ent" (ciphertext) mode in which arriving characters are not interpreted [Feis75].
With this feature, messages can also be exchanged in either plaintext or
ciphertext.

Enciphering the final destinations of messages along the way does not ob-
scure activity on a particular channel. The only solution here is to pad the channel
with dummy traffic to make it appear constantly busy.

156 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.15 End-to-end data encryption with link adress-encryption.

cryptographic communications
system system

I
M '

link 1 I !

~][En

Communications
system

A sends E K (M) to B

f
f

(
~ e o e

link n

/

Node forwards E K (M)

M

aphic
[system

B deciphers to get M

m m m

communications
system

J

Chaum [Chau81] uses a combination of endpoints to design an electronic
mail system based on public-key encryption. His system allows messages to-be sent
anonymously through a node S (called a "mix"), which collects and shuffles mes-
sages to obscure their flow through the network.

Suppose user A (at location A) wishes to send an anonymous message M to
user B (at location B). First A enciphers M using B's public transformation E 8 (for
end-to-end encryption). A then enciphers the destination B plus the enciphered
message using S's public transformation Es, and transmits the result to S:

C = Es(B, EB(M)) .

S deciphers C using its private transformation Ds, and forwards the enciphered
message Es(M) to B, which B deciphers using B's private transformation D s. The
sender A is not revealed to B, and the path from A to B is concealed through
encryption of B's address on the path from A to S and shuffling at S.

If A wants to receive a reply from B, A sends along an untraceable return
address together with a key K that B uses to encipher the reply; the message
transmitted through S is thus:

C = Es(B, EB(M , U, K)) ,

where

u = g s (A)

is A's untraceable return address. Because A's address is enciphered with S's
public key, B cannot decipher it. B can, however, send a reply M' to A through S:

ENDPOINTS OF ENCRYPTION 157

C' = Es(U, E K (M ')) .

S deciphers U and forwards the reply EK(M') to A.
There could be a problem with the scheme as we have described it if there is

not enough uncertainty about the message M or the return address (see Section
1.4.1). Because A cannot sign M (doing so would divulge A's identity), someone
might be able to determine M by guessing an X and checking whether EB(X)
= EB(M) using B's public key [this comparison cannot be made if A signs the
message, transmitting DA(EB(M))] . Similarly, B might be able to guess the send-
er A from the untraceable return address, where the number of candidate address-
es may be relatively small. Chaum solves the problem by appending random bit
strings to all messages before enciphering.

If the output of one mix is used as the input for a second mix, then both
mixes would have to conspire or be compromised for any message to be traced.
With a series of mixes, any single mix can ensure the security of the messages.
Thus, in the limiting case, each sender or receiver is a mix and need only trust
itself.

3.5.2 Privacy Homomorphisms

To process data at a node in the system, it is usually necessary to decipher the data
first, and then reencipher it after it has been processed. Consequently, it may be
exposed to secrecy or authenticity threats while it is being processed. There are
two possible safeguards. The first is to encapsulate the computation in a physically
secure area. The second is to process the data in its encrypted state.

Rivest, Adleman, and Dertouzos [Rive78a] describe how the latter might be
accomplished with a privacy hornomorphism. The basic idea is that encrypted data,
after processing, should be the same as if the data were first deciphered, processed
in plaintext, and finally reenciphered. Suppose the plaintext data is drawn from an
algebraic system consisting of

.

2.
3.
4.

Data elements, denoted by a, b, etc.
Operations, denoted by f.
Predicates, denoted by p.
Distinguished constants, denoted by s.

Similarly, suppose the ciphertext is drawn from an algebraic system with corre-
sponding data elements a', b', operations f ' , predicates p', and distinguished con-
stants s'. Let E g be the enciphering t ransformat ion, and let D g be the
corresponding deciphering transformation. Then D K is a homomorphism from the
ciphertext system to the plaintext system if and only if for all cipher elements a', b'
the following hold:

For all f and corresponding f :

f ' (a', b") = Eg(f (Dg(a ') , Dg(b'))) .

For all p and corresponding p"

158 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.16 Privacy homomorphism.

Plaintext system Ciphertext system

a, b, • • • a', b ' , • • •

plaintext
result

f
P

encrypted
result

,

p' (a', b') if and only if P (D K (a '), D K (b ') , . . .) .

For all s and corresponding s':

OK(S') = s .

Figure 3.16 illustrates the first requirement.

E x a m p l e :

Consider an exponentiation cipher (see Section 2.7) with enciphering
transformation

EK(a) = a e mod n,

and corresponding deciphering transformation

DK(a') = (a')d mod n ,

where ed mod 4~(n) = 1. Then D K is a homomorphism from a ciphertext
system consisting of the integers modulo n, with multiplication and test for
equality, to an identical plaintext system. Given elements

a' = a e mod n, and
b' = b e mod n,

we have

a" • b' = (a e mod n) • (b e rood n) mod n
= (a * b) e mod n

a ' = b' if and only if a = b. 1

Privacy homomorphisms have inherent limitations. The most significant of
these is described in Theorem 3.1.

ENDPOINTS OF ENCRYPTION 159

Theorem 3. !:
It is not possible to have a secure enciphering function for an algebraic
system that includes the ordering predicate " .~" when the encrypted version
of the distinguished constants can be determined.

Proof:
Consider the plaintext system over the natural numbers with +, ~ ,
and the constants 0 and 1. Let +', _<', 0', and 1' denote the correspond-
ing operators and elements in the ciphertext system. Given ciphertext
element i', it is possible to determine the corresponding plaintext ele-
ment i without computing Dg(i') using a simple binary search strategy.
First, determine 1' (by assumption this is possible). Next, compute

2' = 1' + ' 1'
4' = 2' + ' 2'
8' = 4' + ' 4'

,

(2/)' = (2J-~) ' + ' (2J-~) '

until i' _< (2/)' for some j. At this point, it is known that i falls in the
interval [2J -~ + 1, 2J]. To determine i, apply a similar binary search
strategy to search the interval between 21-1 and 2J (the details of this
are left as an exercise for the reader), m

Privacy homomorphisms are an intuitively attractive method for protecting
data. But they are ruled out for many applications because comparisons cannot in
general be permitted on the ciphertext. In addition, it is not known whether it is
possible to have a secure privacy homomorphism with a large number of
operations.

Approximations of the basic principle, however, are used to protect confiden-
tial data in statistical databases. A one-way (irreversible) privacy transformation
EK(M) transforms ("enciphers") a confidential data value M into a value that can
be disclosed without violating the privacy of the individual associated with M
[Turn73]. Examples of privacy transformations are "data perturbation", which
distorts the value of M (e.g., by rounding), "aggregation", which replaces M with
a group average, and "data swapping", which swaps values in one record with
those in another (see Chapter 6). A privacy transformation is an approximation of
a privacy homomorphism in that statistics computed from the transformed data
are estimates of those computed from the original ("deciphered") data. But be-
cause it is impossible to restore the data to its original state and the transformation
introduces errors, it is not a true privacy homomorphism. (Reed [Reed73] shows
how the amount of distortion introduced by a privacy transformation can be mea-
sured using information theory, in particular, rate distortion theory.)

The basic principle is also used to protect proprietary software. Many soft-
ware vendors distribute the source code for their programs so their customers can

160 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.17 Proprietary software protection.

original program

P ---<55--. modified program
p,

execute

'!

execute

output

tailor the code to their needs and make corrections. The problem is that a custom-
er may illegally sell or give away copies of the program. If the copies have been
modified (e.g., by changing the names of variables and rearranging code), it can
be difficult to prove an agreement was breached. Indeed, the vendor might not
even be aware of the illegal distribution.

One solution is to transform ("encipher") a source program in such a way
that the transformed program executes the same as the original but is more diffi-
cult to copy [DeMi78]. Let P ' be the transformed version of a program P. The
transformation should satisfy the following properties:

,

2.
3.

P ' should have the same output as P for all valid inputs.
P ' should have approximately the same performance characteristics as P.
P ' should have distinguishing features that are difficult to conceal in copies.

Property (1) is similar to the first property of a privacy homomorphism, where the
elements a and b are programs and the function f corresponds to program execu-
tion (see Figure 3.17); instead of processing data in an encrypted state, we now
execute programs in an encrypted state.

One method is to pad a program with code that does not affect the output (at
least on valid inputs). Map makers employ a similar technique, introducing minor
errors that do not seriously impair navigation, but make copies easily discernible.
A second method is to transform the code or constants of the program to obscure
the algorithm. A third method is to transform the program so that it will not run
on other systems. This could be done by hiding in the code information about the
customer; this information would be checked when the program runs. None of
these transformations need be cryptographically strong; the objective is only to
make it more costly to change a program than to develop it from scratch or obtain
it from the vendor.

It is easier to protect proprietary software when the source is not distributed.
In a sense, program compilation is a form of encipherment, because the algorithm
is obscured in the object code. Object code can be decompiled, however, so the

ONE-WAY CIPHERS 161

encipherment is cryptographically weak. Still, it is easier to hide customer depen-
dent information in object code than in the source, and many customers will lack
the skills needed to decompile and modify the code.

Kent [Kent80] proposes special hardware and cryptographic techniques to
protect proprietary software in small computer systems. Externally supplied soft-
ware would run in tamper-resistant modules that prevent disclosure or modifica-
tion of the information contained therein. Outside the module, information would
be stored and transmitted in encrypted form.

3.6 ONE-WAY CIPHERS

A one-way cipher is an irreversible function f from plaintext to ciphertext. It is
computationally infeasible to systematically determine a plaintext message M
from the ciphertext C = f (M).

One-way ciphers are used in applications that do not require deciphering the
data. One such class of applications involves determining whether there is a corre-
spondence between a given message M and a ciphertext C stored in the system.
This correspondence is determined by computing f (M), and comparing the result
with C. For this to be effective, f should be one-to-one, or at least not too degener-
ate. Otherwise, a false message M' may pass the test f (M ') = C.

A one-way cipher can be implemented using a computationally secure block
encryption algorithm E by letting

f (M) = EM(Mo),

where Mo is any given, fixed message. The message M serves as the key to E. As
long as E is secure, it is computationally infeasible to determine the enciphering
key M with a known plaintext attack by examining pairs (M0, EM(Mo)).

Purdy [Purd74] suggests implementing a one-way cipher using a sparse
polynomial of the form:

f (x) = (x n 4- an_l xn-1 " [- " " "Jr a , x -1- ao) mod p ,

where p is a large prime and n is also large. Because a polynomial of degree n has
at most n roots, there can be at most n messages enciphering to the same cipher-
text. The time to invert f (i.e., find its roots) is O(n2(log p)2); for n ~ 22 ̀ and
p ~ 2 ~4, this will exceed 1016 operations. (See [Evan74] for other methods of
implementing one-way ciphers.)

Note that a one-way cipher cannot be implemented using a stream cipher
with keystream M and plaintext stream M0. We would have C = M0 • M, whence
M is easily computed by M = C ~ M0.

3.6.1 Passwords and User Authentication

Password files are protected with one-way ciphers using a scheme developed by
Needham [Wilk75]. Rather than storing users' passwords in the clear, they are

162 CRYPTOGRAPHIC TECHNIQUES

transformed by a one-way cipher f, and stored as ciphertext in a file which cannot
be deciphered even by the systems staff. Each entry in the password file is a pair
(ID, f(P)), where ID is a user identifier and P is the user's password. To log into
the system, a user must supply ID and P. The system computes the enciphered
password f(P), and checks this against the password file; the login is permitted
only if there is a match.

Because the stored passwords cannot be deciphered, they are completely safe
even if the entire password file is (accidentally or maliciously) disclosed. This also
implies that a forgotten password P cannot be recovered. A new password P ' must
be created, and f(P') entered into the password file.

A strong one-way cipher can protect passwords only if users select passwords
at random. In practice, users select short, easily remembered passwords. Such
passwords are often simple to find by exhaustive search. Sequences of letters are
systematically generated, enciphered, and then looked up in the table. In a study
of password security on Bell Labs' UNIX, Morris and Thompson [Morr79] dis-
covered that about 86% of all passwords were relatively easy to compromise. The
system-supplied passwords were no better; because they were generated by a pseu-
do-random number generator with only 215 possible outputs, all possible passwords
could be tried in about 1 minute on a DEC PDP-11/70.

Two improvements were made to the UNIX password security. First, the
password entry program was modified to encourage users to use longer passwords.
Second, each password is concatenated with a 12-bit random number (called the
salt) before encryption, effectively lengthening the password by 12 bits. When a
password P is created, a salt X is generated and concatenated to P. Letting PX
denote the concatenation, both X and f(PX) are stored in the password file along
with the user's ID. When a user logs in, the system gets X from the file, forms the
concatenation PX using the password P supplied by the user, and checks f(PX)
against the password file.

This does not increase the work factor for finding a particular user's pass-
word, because the salt is not protected. But it substantially increases the work
factor for generating random passwords and comparing them with the entire pass-
word file, since each possible password could be enciphered with each possible salt.
If passwords are n bits long, there are 2 n+12 possibilities for the entries f(PX) in the
password table; thus, the effort required to find the password associated with one
of these entries is 2 lz times greater than for a file containing only enciphered
passwords.

Suppose a user logs into the system and supplies password P as described
earlier. If P is transmitted from the user's terminal to the system in the clear, it
could be compromised on the way (e.g., by wiretapping). It may not even make it
to the system: a program masquerading as the login procedure might trick the user
into typing ID and P.

Feistel, Notz, and Smith [Feis75] describe a login procedure that does not
expose the user's password, and allows the user and system to mutually authenti-
cate each other. They assume each user A has a private key on some digital
storage medium (e.g., a magnetic-stripe card) which can be inserted into A's
terminal, and that a copy of the key is stored on file at the system. To log into the

ONE-WAY CIPHERS 163

FIGURE 3.18 Login protocol with passwords.

®A

0 EA (T)

Q E A (T,P)

(~) "kogin Complete"

Key File
A I key
B] key

Password File

A I j (pi

System S

system, A transmits ID in the clear (for simplicity, we assume ID = A) . The
system responds with a "challenge-reply" test that allows A to determine whether
the communication is "live" (and not a replay of an earlier login), and allows the
system to establish A's authenticity. Letting S denote the system, the protocol is as
follows (see also Figure 3.18)"

.

°

Login protocol using passwords
A transmits ID = A to S.
S sends to A:

x = E A (7 3 ,

where T is the current date and time, and E A is the enciphering transforma-
tion derived from A's private key.
A deciphers X to get T, and checks that T is current. If it is, A replies to S by
sending

Y = E A (T , P)

where P is A's password.
S deciphers Y to get T and P. It checks T against the time transmitted to A
in Step 2,'and checks f (P) against the password file. If both check, the login
completes successfully.

The protocol is easily modified for a public-key system. In Step 2, the system
S uses its private transformation D s (for sender authenticity) to create X = Ds(T) ,

which A can validate using S's public transformation E s. In Step 3, A uses the
system's public enciphering transformation (for secrecy) to create Y = E s (T , P).

Only S can decipher Y to obtain A's password and complete the login. Note that
A's private transformation (i.e., digital signature) can be used for authentication
instead of A's password; in this case, the protocol becomes:

164 ABFDEFGHIIJKLMMNOHPP

Login protocol using digital signatures
1. A transmits I D = A to S.
2. S sends to A:

X = Ds (T) ,

where T is the current date and time, and D s is S's private transformation.
3. A computes E s (X) = T using S's public transformation, and checks that T is

current. If it is, A replies to S by sending

Y = DA(T),

where D A is A's private transformation.
4. The system validates Y using A's public transformation E A. If it is valid, the

login completes successfully.

One possible weakness with the digital signature protocol is that users can be
impersonated if their private keys are stolen. The password protocol has the advan-
tage that memorized passwords are less susceptible to theft than physical keys--
provided users do not write them down. The digital signature protocol can be
enhanced by combining it with passwords or with a mechanism that uses personal
characteristics (e.g., a handprint) for identification. If passwords are used, then A
sends to S

DA(T), Es(T, P)

in Step 3 of the protocol.

3.7 KEY MANAGEMENT

A troublesome aspect of designing secure cryptosystems is key management. Un-
less the keys are given the same level of protection as the data itself, they will be
the weak link. Even if the encryption algorithm is computationally infeasible to
break, the entire system can be vulnerable if the keys are not adequately protected.
In this section we consider various techniques for safeguarding and distributing
keys.

3.7.1 Secret Keys

We first consider the management of keys that are used by a single user (or
process) to protect data stored in files. The simplest approach is to avoid storing
cryptographic keys in the system. In IPS [Konh80], for example, keys do not
reside permanently in the system. Users are responsible for managing their own
keys and entering them at the time of encipherment or decipherment.

IPS offers users two formats for entering the 56-bit keys needed for DES.
The first format is the direct entry of an 8-byte key (56 key bits plus 8 parity bits).

KEY MANAGEMENT 165

This format should be used only if the 56 key bits are randomly selected; a key
formed from English letters only (or even letters and digits) is too easy to find by
exhaustive search. Because it is easier for users to remember meaningful strings,
IPS provides a second format whereby a key can be entered as a long character
string. The string is reduced to a 56-bit key by enciphering it with DES using
cipher block chaining, and keeping the rightmost 56 bits (i.e., the checksum). The
process is called "key crunching".

Keys could also be recorded in Read Only Memory (ROM) or on magnetic
stripe cards [Feis75,Flyn78,Denn79]. The hardware-implemented key could then
be entered simply by inserting it into a special reader attached to the user's
terminal.

In conventional systems, users may register private keys with the system to
establish a secure channel between their terminals and the central computer (mas-
ter terminal keys are used in some systems for this purpose). These keys must be
protected, and the simplest strategy is to store them in a file enciphered under a
system master key. Unlike passwords, encryption keys cannot be protected with
one-way functions, because it would then be impossible to recover them.

In public-key systems, a user A need not register a private transformation D A
with the system to establish a secure channel. This does not mean D A requires no
security. If it is used for signatures, it must be protected from disclosure to prevent
forgery. Indeed, it must be protected from deliberate disclosure by A. If A can give
away DA--Or even just claim to have lost Dz-- then A has a case for disavowing
any message (see [Salt78,Lipt78]). To prevent this, Merkle [Merk80] suggests
that A's signature key should not be known to anyone, including A. A single copy
of D h would be kept in a dedicated microcomputer or sealed in a ROM.

Even if D A is given a high level of protection, some mechanism is needed to
handle the case where D A is compromised. This case can be handled as for lost or
stolen credit cards: liability would be limited once the loss or theft is reported to
the system. A signature manager S would keep a record of A's past and present
public transformations E A, and the times during which these transformations were
valid. To determine whether a message was signed before the loss, messages could
be timestamped. A cannot affix the timestamp, however, because A could know-
ingly affix an incorrect time, and if D A is compromised, someone else could forge a
message and affix a time when D A was valid. The solution is for S to affix the
current time T to a message signed by A, and then add its own signature D s,
thereby playing the role of a notary public [Pope79,Merk80]. A message M would
thus be doubly signed as follows:

C = D s (D A (M), T) .

Another user receiving C can check (with S) that A's corresponding public trans-
formation E A was valid at time T before accepting C.

A similar strategy can be used to protect a signature transformation D A in a
conventional system. But because the corresponding enciphering transformations
E A and E s are secret, the receiver of a signed message C = D s (D A (M), T) cannot
validate the signature (see Section 1.3.3).

166 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.19 File encryption with keys record.
, , , , ,

f (K)

E K (F)

Keys record

Validation record

Encrypted data

The keys that unlock a database require special protection. If the database is
shared by many users, it is usually better to store the keys in the system under the
protection of a key manager than to distribute the keys directly to the users, where
they would be vulnerable to loss or compromise. More importantly, it relieves the
users of the burden of key management, providing "cryptographic transparency".
Database keys could be enciphered under a database master key and stored either
in the database or in a separate file.

Gudes [Gude80] has proposed a scheme for protecting file encrypting keys
that can be integrated with the access control policies of a system. Let K be the
encryption key for a file F. For every user A allowed access to F, the system
computes

x = E A (K) ,

using A's private transformation E A, and stores X in a keys record at the beginning
of the encrypted file (see Figure 3.19). When A requests access to F, the system
finds A's entry X in the keys record, and computes DA(X) = DA(EA(K)) = K; the
file is then deciphered using the recovered key. An additional level of protection
against unauthorized updates is provided by storing f (K) in a validation record of
the file, where f is a one-way function. A user is not allowed to update the file
unless f (DA(X)) matches the value in the authentication field. If the file is enci-
phered using a two-key system, with separate read and write keys as described in
Section 1.2 (see Figure 1.8), users can be given read access without write access to
the file. One drawback with the scheme is that if a user's access rights to a file are
revoked, the file must be reenciphered under a new key, and the keys record and
validation record recomputed.

Ehrsam, Matyas, Meyer, and Tuchman [Ehrs78,Maty78] describe a com-
plete key management scheme for communication and file security. They assume
that each host system has a master key KMO with two variants, KM1 and KM2.
The variants can be some simple function of KMO. The master keys are used to
encipher other encryption keys and to generate new encryption keys. Each termi-
nal also has a master terminal key KMT, which provides a secure channel between
the terminal and the host system for key exchange. The system stores its copies of

KEY MANAGEMENT 1 6 7

these keys in a file enciphered under KM1. Other key encrypting keys, such as file
master keys (called secondary file keys), are stored in files enciphered under KM2.

The master key KMO is stored in the nonvolatile storage of a special crypto-
graphic facility or security module. (KM1 and KM2 are computed from KMO as
needed.) The facility is secured so that users cannot access the master key or its
derivatives. Data encrypting keys are stored and passed to the cryptographic facili-
ty as ciphertext to protect them from exposure.

Special operations are provided by the cryptographic facilities in the host
systems and terminals. The following operations are used by the key management
scheme in a host:

1. Set master key (sink). A master key KMO is installed with the operation

5

,

,

smk(KMO) . (3.7)

Clearly, this operation requires special protection.
Encipher under master key (emk). A key K is protected by encrypting it
under KMO with the operation

emk(K) = EKMo(K) . (3.8)

Encipher (ecph). To encipher a message M using key K, K is passed to the
cryptographic facility enciphered under KMO. Letting X = EKMo(K) be the
enciphered key, M is enciphered with the operation

ecph(X, M) = EK(M) , (3.9)

where K = DKMO(X) (see Figure 3.20). This instruction allows keys to be
stored and passed to the cryptographic facility as ciphertext.
Decipher (dcph). Similarly, a ciphertext message C is deciphered using a key
K with the operation

dcph(X, C) = DK(C) , (3.10)

where K = DKMo(X) (see Figure 3.21).
Reencipher from master key (rfmk). A terminal master key K M T is stored
under KM1 encipherment as W = EKe 1 (KMT). The reencipher from master
key operation allows the key manager to take a key K enciphered under
KMO as X = EKMo(K) and put it under K M T encipherment:

FIGURE 3.20 Encipher (ecph).

X = EKMO
r

EK(M~

168 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.21 Decipher (dcph).

X=EKMo (K)

I
~(c)

,

rfmk(W, X) = EKMT(K) , (3.11)

where KMT = DKMi(W), and K = DKMo(X) (see Figure 3.22). This oper-
ation is used by the key manager to transmit keys to terminals and other host
systems for end-to-end encryption (see Section 3.7.4). As with the preceding
operations, none of the keys entering or leaving the cryptographic facility is
ever in the clear.

KMT is stored under KM1 encipherment to protect K from exposure.
If KMT were stored under KMO encipherment as W' = EKMo(KMT), then K
could be obtained from Y = EKMT(K) using the dcph operation:

dcph(W', Y) = DKMT(Y) = K .

Thus, an eavesdropper obtaining Y, W', and access to the cryptographic
facility could decipher messages enciphered under K.
Reencipher to master key (rtmk). A file encrypting key K is likewise not
stored under KMO encipherment; if it were, then any user who obtained
access to the encrypted key and the cryptographic facility could decipher the
file using the dcph operation. Rather, K is stored under the encipherment of
a secondary file key KNF as X - EKNF(K); KNF, in turn, is stored under
KM2 encipherment as W - EKMz(KNF). To use K, it must first be placed
under KMO encipherment. This is done with the reencipher to master key
operation"

rtmk(W, X) = EKMo(K) (3.12)

FIGURE 3.22 Reencipher from master key (rfmk).

W = EKM 1 (K M T) ~

KMT

X = EKMo(K) EKMT(K)

KEY MANAGEMENT 169

FIGURE 3.23 Reeincipher to master key (rtmk).
.

14' = EKM 2 (KNF) ~ D K M 2 ~

KNF

X = EKNF(K)

V

EKM 0 (K)

where K = DKlvF(X) and KNF = DKM2(W) (see Figure 3.23).
Note that KNF is stored under KM2 encipherment rather than under

KM1 encipherment. This is done to separate the communications and file
systems. If the rtmk operation used KM1 instead of KM2, it would be the
inverse of rfmk. This would allow the key management operations for the file
system to be used to obtain keys used by the communications system. In fact,
neither rfmk nor rtmk have inverse operations.

The master key KMT for a terminal is stored in the cryptographic facility of
the terminal. The following operations are provided by the facility:

.

Decipher from master key (dmk). This operation takes a key K transmitted
to the terminal under KMT encipherment as EKMT(K), deciphers it, and
stores it in a special working register of the facility. K remains in the working
register until it is changed or the terminal is turned off.
Encipher (ecph). This operation enciphers data using the key stored in the
working register. The encrypted data is transmitted to its destination, provid-
ing end-to-end encryption.
Decipher (dcph). This operation deciphers data using the key stored in the
working register.

3.7.2 Public Keys

Public keys can be distributed either outside the system or from a public-key
directory within the system. In the former case, they could be recorded on some
digital medium such as a magnetic stripe card, which can be inserted into a special
reader attached to a user's terminal. Users would exchange public keys by giving
out copies of their cards.

In the latter case, they could be stored in a file managed by a system direc-
tory manager S. It is unnecessary to safeguard the keys from exposure, because
their secrecy is not required for secure communication or digital signatures. But it
is essential to maintain their integrity so they can be used to transmit messages in
secrecy and validate digital signatures. If S (or an imposter) supplies a valid but
incorrect public key, a user could unknowingly encipher confidential data that

170 CRYPTOGRAPHIC TECHNIQUES

would be decipherable by foe rather than friend, or be tricked into accepting a
message with the wrong signature.

Imposters can be thwarted by requiring a signature from S [Rive78b,
Need78]. This does not, however, protect against a faulty or untrustworthy sys-
tem. To deal with both problems, Konfelder [Konf78] proposes certificates. Upon
registering a public transformation E A with the system, a user A receives a signed
certificate from S containing E A. Using public-key encryption to implement the
signature, A's certificate is thus:

CA = Ds(A, EA, T) (3.13)

(strictly speaking, C A would contain the key to EA), T is a timestamp giving the
current time, and D s is S's private signature transformation. A can verify that the
certificate came from S and contains the correct public key by computing

Es (CA) = (A , EA , T) ,

using the public transformation E s of S. Certificates can be distributed either
through S or by their owners. The receiver of a certificate C A can verify its authen-
ticity the same way as the owner. In addition, the receiver can check the time-
stamp to determine if C A is current.

There is a problem if the secret signature key used by the system directory
manager is compromised. Merkle's [Merk80] tree authentication scheme solves
this problem by eliminating the secret signature key. All entries in the public file
are signed as a unit using a one-way hashing function. Users can authenticate their
own keys in a file of n keys knowing O(logz n) intermediate values of the hashing
function. These intermediate values form an authentication path of a tree, and
serve as a form of certificate.

Let K1, . . . , K, denote the file of public enciphering keys. Let f (x , y) be a
function that returns a value in the domain off. The hashing function H is defined
recursively by:

f (H(i , m), H(m + 1, j)) if i < j, where m = L(i + j)/2_~
H(i,j) = f (Ki ' Ki) if i = j

where H(1, n) is the hash value of the entire public file.
Figure 3.24 illustrates the computation for n = 8. Users can compute H(1, 8)

by following a path from their key to the root, provided they know the intermedi-
ate values of H needed to follow the path. For example, the user with key K1 can
compute H(1, 8) from H(2, 2), H(3, 4), and H(5, 8) by computing the following
sequence:

H(1, 1) = f(Kx, K~)
H(1, 2) = f (H(1, 1), H(2, 2))
H(1, 4) = f (H(1 , 2), H(3, 4))
H(1, 8) = f (H(1 , 4), H(5, 8)) .

The values K1, H(2, 2), H(3, 4), and H(5, 8) form this user's authentication path.
Because the entire file is hashed as a unit, any modification of the file invali-

dates every certificate. Thus, it is easy for a user to determine whether someone

//

KEY MANAGEMENT 171

FIGURE 3.24 Tree authentication.

H(1

/
H(1, 2)

H (1, 8)

H(1,4)

H(5, 6)

H(5, 5) H(6,6)

H(7, 8)

H(7, 7) H(8, 8)

!
K2 K3 K 4 K 5 K 6 K7 K8

else is attempting to masquerade as the user. There is a drawback, though; the
entire file must be rehashed each time an entry is added or changed.

3.7.3 Generating Block Encryption Keys

In Section 3.2 we discussed methods for generating pseudo-random key streams
for stream encryption. The streams were generated from a seed I0 using a block
encryption algorithm. We shall now discuss methods for generating single keys.
These values should satisfy the same properties of randomness as key streams, and
should not be repeated across power failures.

Matyas and Meyer [Maty78] suggest methods for generating keys from the
master keys KMO, KM1, and KM2 described in Section 3.7.1. They recommend
the master key KMO be generated outside the system by some random process
such as tossing coins or throwing dice. The key could be recorded on some digital
medium, entered from the medium, and installed with the set master key operation

smk.
A set of key-encrypting keys K i (i = 1, 2) is derived from a random

number R, which is generated outside the system in the same manner as the
master key. Each K i is generated from the operation r fmk [Eq.(3.11)]"

K i = r f m k (R , r fmk (R , T + i)) ,

where T is the current time (the parity bits of K i are adjusted as needed). Because
r fmk is a function of KMO, K i is a function of a random number R, the time, and

the master key.
Data encrypting keys are generated inside the system using the operation

172 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.25 Key generation.

~ u z

u

r t m k [Eq. (3.12)]. Consecutive random numbers R i (i = 1, 2) are generated
from two independent values Ui_ 1 and Z i by

R~ = r t m k (U i, U i) , (3.14)

where

U~ = rtmk(U~_~, Z~) for i > 0 ,

and each Z i is derived from two or more independent clock readings (see Figure
3.25). The initial value U0 is derived from a combination of user and process
dependent information. Each U~ is a function of K M O and all preceding values of U
and Z, and each R~ is a function of K M O and U~; thus, it should be computationally
infeasible to determine one R i from another Rj, and computationally infeasible to
determine R i from U i or vice versa.

Each random number R~ is defined as the encipherment of a data encrypting
key K i under some other key X; that is,

R i = E x (K i) .

Thus, K~ can be generated without ever being exposed in plaintext. For example, if
K is to be used to encipher data stored in a system file, R t would be defined as

e i = EKNF(Ki) ,

where K N F is a secondary file key.
Keys that are used more than once (e.g., database keys or private keys) can

be stored in files, enciphered under some other key. If an application uses a large
number of such keys, it is more efficient (in terms of space) to regenerate them

/?

///

KEY MANAGEMENT 17 3

when they are needed. This cannot be done using the preceding methods, because
the keys are a function of the current state of the system. Bayer and Metzger
[Baye76] describe an encipherment scheme for paged file and database structures
(including indexed structures) where each page is enciphered under a different
page key. The key K for a page P is derived from a file key K F by K = EKE(P).
Keys for other objects could be generated by similar means. In capability-based
systems (see Chapter 4), each object is identified by a unique name; this name
could be used to derive the encryption key for the object. By encrypting each
object under a separate key, exposure of a key endangers only one object.

Each record of a database could be enciphered under a different key using a
scheme suggested by Flynn and Campasano [Flyn78]. A record key would be a
function of a database key and selected plaintext data stored in the record (or
supplied by the user), and would be generated at the time the record is accessed.
Enciphering each record under a separate key would protect against ciphertext
searching and replay as described in Section 3.4. A user authorized to access the
encrypted fields of the records either would use a special terminal equipped with
the database key, or would be given a copy of the key sealed in a ROM, which
could be inserted into any terminal. The scheme could also be used to encipher
each field of a record under a separate key, though encrypting the fields of a
record separately can introduce security problems as described earlier.

Keys shared by groups of users in a computer network can be generated from
information about the group members. Let G be a group of users in a network of N
users. Members of G can share a secret group key K~:~, which allows them to
broadcast and receive messages from other members of G, and to access and
update files private to G. Users not in G are not allowed access to K a. There can be
at most 2 N - N - 1 groups of two or more users in the system. Denning and
Schneider [Denn81a] and Denning, Meijer, and Schneider [Denn81b] describe
schemes for deriving all possible group keys from a list of N user values; thus, the
schemes generate an exponential number of keys from a linear number of values.
One simple method computes the key Kc for a group G of m users from

K 6 = 2 K1Kz ' ' 'Km mod p ,

where K 1 , . . . , K m are the user's private keys. A user not in G cannot determine K c
or any of the K i of the members in G without computing a discrete logarithm. In
Section 2.7.1, we saw this was infeasible when p was 200 decimal digits long. If a
key shorter than 200 digits is needed, Ka can be compressed by enciphering it with
a stream cipher in cipher feedback mode or with cipher block chaining, and keep-
ing the rightmost bits.

3.7.4 Distribution of Session Keys

If two users wish to communicate in a network using conventional encryption, they
must share a secret session key (also called "communication key"). Either a sys-
tem key manager must supply this key (in which case security of the key distribu-

174 CRYPTOGRAPHIC TECHNIQUES

FIGURE 3.26 Centralized key distribution protocol.

© 8)

(~ EA(B,K, T,E B (A,K, T))

private
key file

A key

B key
i

@ E B (A, K, T)

tion facility is required), or else the users must find an independent but secure
method for exchanging the key by themselves. We shall show how each of these
approaches may be implemented.

We shall first describe a protocol for obtaining session keys from a central-
ized key distribution facility, sometimes called an "authentication server", S. The
protocol is based on one introduced by Needham and Schroeder [Need78] and
modified by Denning and Sacco [Denn81c]. We assume each user has a private
key, registered with S. If two users wish to communicate, one of them obtains a
session key K from S and distributes it to the other. A new key is obtained for each
session, so that neither the users nor S need keep lists of session keys. Although S
could keep a list of session keys for all possible pairs of users, the storage require-

ments would be enormous [for n users there are (2) possible pairs], and the keys

might be vulnerable to attack. The key distribution facility could be distributed
over the network.

User A acquires a key K from S to share with another user B by initiating
the following steps (also refer to Figure 3.26):

Centralized key distribution protocol
A sends to S the plaintext message

(A, B)

stating both A's and B's identity.

ABFDEFGHIIJKLMMNOHPP 175

S sends to A the ciphertext message

EA(B, K, T, C) ,

where E A is the enciphering transformation derived from A's private key, K
is the session key, T is the current date and time, and

C = EB(A, K, T) ,

where E 8 is the enciphering transformation derived from B's private key.
A sends to B the message C from Step 2.

In Step 1, A could conceal B's identity by sending (A, E A (B)) to S. A's identifier
cannot be encrypted under E A, however, because then S would not know with
whom to correspond.

In Step 2, S returns the session key K enciphered under B's private key as
well as A's so that A can securely send the key to B without knowing B's private
key. The timestamp T guards against replays of previous keys.

For added protection, the protocol can be extended to include a "handshake"
between B and A [Need78]:

.

,

B picks a random identifier I and sends to A

X = EK(I) .

,4 deciphers X to obtain I, modifies it in some predetermined way to get F
(e.g. , F = I + 1), and returns to B

EK(I') .

This confirms receipt of I and the use of K.

With the handshake, A can begin transmitting data to B at Step 5; without the
handshake, A can begin at Step 3.

To protect K from exposure between the time it is generated and the time it
is enciphered under A's and B's private keys, K should be generated as a random
number R in ciphertext as described in the preceding section [see Eq. (3.14)].
Ehrsam, Matyas, Meyer, and Tuchman [Ehrs78] suggest that R be defined as the
encipherment of K under the master key KMO; that is,

R = EKMo(K) .

If users' private keys are enciphered under a variant master key K M 1 , as described
in Section 3.7.1 for terminal master keys, K can be deciphered and reenciphered
under A's and B's private keys using the reencipher from master key operation
r f m k [Eq. (3.11)].

It is desirable to distribute the server S over the network so that all keys do
not have to be registered at a single site, and so that no single file contains all
private keys. This general approach is used in the protocols given by Ehrsam,
Matyas, Meyer, and Tuchman [Ehrs78] for use in the system described in Section
3.7.1. Here the host systems for the users exchange an enciphered session key R.

176 CRYPTOGRAPHIC TECHNIQUES

Each host then uses the r frnk instruction to transmit R to its respective user's
terminal, enciphered under the terminal master key K M T (users' private keys are
used for data encryption only, not for key exchange). The hosts exchange R using
the r f m k and r t m k operations as follows. Let H A be the host for A and H B the host
for B, and let K M O A and K M O B be their respective master keys. H A and H B share a
secondary communication key K N C . K N C is stored as W A = EKM1A(KNC) at H A

(for key forwarding) and as ~ = EKM2B(KNC) at H a (for key receiving). The
encrypted key K is given by R = EKM o , (K) . H A uses the r f m k instruction to
forward R to H B, and H B uses the r tmk~ins t ruc t ion to receive R. The complete
protocol is as follows:

.

Key distribution by host systems
H A generates R = EKMoA(K), and sends to HB:

r f m k (W A, R) = E x N c (R) .

H B obtains R by computing

r t m k (W B, E m v c (R)) = R .

H A sends to A:

Z A = r f m k (Y A , R) = EKMTA (K) ,

where K M T A is A's terminal master key, and IrA -- EKM1A(KMTA) • A obtains
K by deciphering Z A.

Similarly, H~ sends to B:

Z B = r f m k (Y B, R) = EKMTB(K) ,

where K M T B is B's terminal master key, and YB = EKM1B(KMTs) • B obtains
K by deciphering Z a.

The scheme is also used to distribute session keys to nodes or processes rather than
terminals.

Diffie and Hellman [Diff76] and Merkle [Merk78] have proposed an ap-
proach that allows users to exchange session keys directly. Diffie's and Hellman's
scheme is based on the computational difficulty of computing discrete logarithms
(see Section 2.7.1). The first user, A, picks a random value x A in the interval [0,
p - 1], where p is prime (p may be publicly available to all users). The second
user, B, also picks a random value x B in the interval [0, p - 1]. Then A sends to B
the value

YA = axA mod p,

and B sends to A the value

YB = aXB mod p,

for some constant a. For sufficiently large values of x A and x B (e.g., 664 bits), the
fastest known algorithms for computing the discrete logarithm function are intrac-
table, whence x A and x B cannot be practically computed from YA and YB (see Sec-
tion 2.7.1). After the y's are exchanged, A computes the session key

/

/

KEY MANAGEMENT 177

K = (yB) xA mod p
= (a xB mod p) xA mod p
= a xAx8 mod p ,

and similarly for B.
Although an eavesdropper cannot compute K from either YA or YB, there is no

way A and B can be sure that they are communicating with each other with this
mechanism alone. This problem is remedied in the public-key distribution schemes
described next.

MITRE is developing a demonstration system that uses public-key distribu-
tion for key exchange and the DES for message encryption [Scha79,Scha80].
Each user A obtains a "private key" x A and registers the "public key" YA = axA

mod p with a public-key distribution center (YA and x A are not encryption keys in
the usual sense since they are not used to encipher and decipher in a public-key
cryptosystem). The MITRE system provides three modes of operating the DES for
message encryption" standard block mode, cipher feedback mode, and cipher block
chaining. For the latter two modes, two users A and B must exchange initialization
bit vectors (seeds) IAB and IBA in addition to a session key K; IAB is used for trans-
mission from A to B and IBA for transmissions from B to A. A secure channel is
established between A and B as follows:

Exchange of keys using public-key distribution
1. A obtains YB from the public directory and computes a key KAB = (yB) xA mod

p as described earlier. A generates random values R and RA8 and computes
the session key K and initialization vector IAS:

K = DAB(R) , lAB = DK(RAB) ,

where DAB is the DES deciphering transformation with key KAB. A sends to B
the plaintext

(A, R, RAs) .

2. B obtains YA and computes KAB = (ys) ~A rood p. B computes

K = DAB(R) , lAB = DK(RAB) •

B modifies lAB in a predetermined way to get I~ n and computes

X - EK(I'AB) •

B generates a random value RSA, computes

1BA = DK(RsA) ,

and sends (X, RBA) to A.
3. A deciphers X to get DK (X) = I,~ B. This confirms receipt of IAB by B. A

computes

IsA = DK(RBA) •

A modifies IBA in a predetermined way to get IRA, computes

y - EK(I'BA) ,

178 CRYPTOGRAPHIC TECHNIQUES

0

and sends Y to B.
B deciphers Y to get D K (Y) = I~A, confirming receipt of IB, 4 by A.

Note that all ciphertext transmitted between A and B is enciphered under the
session key K, which is likely to have a much shorter lifetime than the shared
key KAs.

Computation of the public keys YA and Ye and the private key KAB is imple-
mented in GF(2") using n = 127 and irreducible polynomial p (x) = x 127 + x + 1

(see Section 1.6.3). Recall that implementation in GF(2 ") was also suggested for
the Pohlig-Hellman exponentiation cipher, where computation of YA -- axA mod p
corresponds to the encryption of plaintext a using encryption key x A (see Section
2.7.1).

The MITRE demonstration system provides both central and local public-
key distribution modes. With central key distribution, a user acquires public keys
directly from the key distribution center each time the user wants to establish a
secure connection. With local key distribution, the public key directory is down-
loaded to the user's system and stored in local memory. This has the advantage of
relieving the central facility of participating in every connection. The demonstra-
tion system also provides a non-directory mode corresponding to the original Dif-
fie-Hellman proposal, where the public values are exchanged directly by the users.
This mode is suitable when active wiretapping does not pose a serious threat.

A public-key cryptosystem can also be used to exchange session keys
[Diff76,Merk80]. Following the timestamp protocol in [Denn81b], let C A and C B

FIGURE 3.27 Public-key distribution protocol.

®(A,B)

(~ CA =Ds(A, EA,T 1)

C B=D S(B,E B, T2)

public keys

e] B

Q C A ,C B E B(D A (K, T))

THRESHOLD SCHEMES 179

be A's and B's certificates [Eq. (3.13)], signed by S. A and B can exchange a key
K with the following protocol (also refer to Figure 3.27):

Q

Public-key distribution protocol
A sends the plaintext message (A, B) to S, requesting certificates for A and
B.
S sends to A the certificates

CA = Ds(A, EA, T1)
CB = Ds(B, EB, T~) .

A checks C A and gets B's public transformation E B from C n. A then generates
a random key K, gets the time T, and sends the following to B:

(G, G , x) ,

where X = EB(DA(K, T)) , and D A is A's private deciphering transformation.
B checks C B, gets A's public transformation E A from CA, and computes

= (K, T) ,

where D B is B's private transformation.

For added protection, the protocol can be extended to include a handshake be-
tween B and A, following the approach described for the centralized key distribu-
tion protocol. Of course, in a public-key system users can send messages directly
using each other's public keys (obtained from certificates). The protocol would be
used only if conventional encryption of messages is needed for performance
reasons.

If the public keys are distributed among multiple hosts in a network, then the
protocol must be extended slightly to allow exchange of certificates among the
hosts. In Step 2, if A's host S does not have B's public key, it could dispatch a
message to B's host requesting a certificate for B.

For additional reading on protocols for secure communication and key ex-
change, see Davies and Price [Davs79,Pric81], Kent [Kent78,Kent76], and Popek
and Kline [Pope79]. Protocols for secure broadcast scenario are examined in Kent
[Kent81].

3.8 THRESHOLD SCHEMES

Ultimately, the safety of all keys stored in the system--and therefore the entire
system--may depend on a single master key. This has two serious drawbacks.
First, if the master key is accidently or maliciously exposed, the entire system is
vulnerable. Second, if the master key is lost or destroyed, all information in the
system becomes inaccessible. The latter problem can be solved by giving copies of
the key to "trustworthy" users. But in so doing, the system becomes vulnerable to
betrayal.

=

1 8 0 CRYPTOGRAPHIC TECHNIQUES

The solution is to break a key K into w shadows (pieces) K1, . . . , K~ in such a
way that:

°

2.
With knowledge of any t of the Kg, computing K is easy; and
With knowledge of any t - 1 or fewer of the K i, determining K is impossible
because of lack of information.

The w shadows are given to w users. Because t shadows are required to reconstruct
the key, exposure of a shadow (or up to t - 1 shadows) does not endanger the key,
and no group of less than t of the users can conspire to get the key. At the same
time, if a shadow is lost or destroyed, key recovery is still possible (as long as there
are at least t valid shadows). Such schemes are called (t, w) threshold schemes
[Sham79], and can be used to protect any type of data. Blakley [Blak79] pub-
lished the first threshold scheme, which was based on projective geometry. The
following subsections describe two other approaches.

3.8.1 Lagrange Interpolating Polynomial Scheme

Shamir [Sham79] has proposed a scheme based on Lagrange interpolating polyno-
mials (e.g., see [Ardi70,Cont72]). The shadows are derived from a random poly-
nomial of degree t - 1:

h(x) = (at_lxt-1 + . . . + alx + ao) mod p (3.15)

with constant term a0 = K. All arithmetic is done in the Galois field GF(p), where
p is a prime number larger than both K and w (long keys can be broken into
smaller blocks to avoid using a large modulus p). Given h(x) , the key K is easily
computed by

g = h(0) .

The w shadows are computed by evaluating h(x) at w distinct values xl,

. . . , Xw:

g i = h(xi) i = 1 w . (3.16)

Each pair (x i, Ki) is thus a point on the "curve" h(x) . The values xl x w need
not be secret, and could be user identifiers or simply the numbers 1 through w.
Because t points uniquely determine a polynomial of degree t - 1, h(x) and,
therefore, K can be reconstructed from t shadows. There is not enough informa-
tion, however, to determine h(x) or K from fewer than t shadows.

Given t shadows Kil , gi2 Kit, h(x) is reconstructed from the Lagrange
polynomial:

t t (x - Xij)
h (x) = ~ K~s ~ m o d p . (3.17)

j
j - a s

THRESHOLD SCHEMES 181

Because arithmetic is in GF(p), the divisions in Eq. (3.17) are performed by com-
puting inverses rood p and multiplying.

Example:
L e t t = 3, w = 5, p = 17, K = 13, and

h(x) = (2x 2 + 10x + 13) mod 17

with random coefficients 2 and 10. Evaluating h(x) at x = 1 , 5 , we get
five shadows"

K l = h (1) = (2 + 1 0 + 13) m o d 1 7 =
K 2 = h (2) = (8 + 2 0 + 13) m o d 1 7 =
K3 = h(3) = (18 + 30 + 13) mod 17 =
K4 = h(4) = (32 + 40 + 13) mod 17 =

25 mod 17 = 8
41 rood 17 = 7
6 1 m o d 1 7 = 10
85 mod 17 = 0

K~ = h(5) = (50 + 50 + 13) mod 17 = 113 mod 17 = 11 .

We can reconstruct h(x) from any three of the shadows. Using K1, Ks, and
Ks, we have:

h (x) = [8 (x - 3) (x - 5) + l o (x - 1) (x - 5) + 1 1 (x - 1) (x - 3)]
(1 - 3) (1 - 5) (3 - 1) (3 - 5) (5 - 1) (5 - 3) mod 17

[8 (x - 3) (x - 5) + 10 (x - l) (x - 5) + 11 (x - 1) (x - 3)] mod 17
(- 2) (- 4) (2) (- 2) (4) (2) a

I

= [8 * inv(8, 1 7) , (x - 3) (x - 5)
+ 10 • inv(-4, 17) • (x - 1) (x - 5)
+ 11 • inv(8, 1 7) , (x - 1) (x - 3)] rood 17

-- [8 , 1 5 , (x - 3) (x - 5) + 1 0 , 4 , (x - 1) (x - 5)
+ 1 1 , 1 5 , (x - 1) (x - 3)] mod 17

= [(x - 3) (x - 5) + 6 (x - 1) (x - 5) + 1 2 (x - 1) (x - 3)] mod 17

- [19x 2 - 92x + 81] mod 17

= 2 x 2 + 1 0 x + 13 . I

Blakley [BlakS0] shows the scheme can be more efficiently implemented in
GF(2") with modulus p(x) = x n + x + 1 if p(x) is irreducible (which it usually is
not--see Section 1.6.3). Here, the coefficients a i of h(x) a r e elements of GF(2n),
and h(x) is reduced mod p(x). Similarly, the coordinates x i and K i are elements of
GF(2n), and Eq. (3.17) is evaluated in GF(2"). Note that whereas the "x" in h(x)
is a variable or unknown, each "x" in p(x) represents a placeholder for the binary
representation of p.

Example:
Consider the field GF(28) with irreducible polynomial

p(x) = x 3 + x + 1 = 1011 (in binary)

The elements of GF(23) are binary strings of length 3. Let t = 2, w = 3,
K = 011, and

182 CRYPTOGRAPHIC TECHNIQUES

h(x) = (101x + 011) rood 1011

with random coefficient 101. Evaluating h(x) at x = 001, 010, and 011,
we get:

K~

= h(O01) = (101 • 001 -4- 0 1 1) mod 1011

= 1 1 0

= h (0 1 0) = (101 • 0 1 0 + 0 1 1) m o d 1011

= 001 + 011 = 0 1 0

= h (0 1 1) = (101 • 011 + 0 1 1) m o d 1011

= 100 -!- 011 = 111 .

We can reconstruct h(x) from any two of the shadows. Using K1 and K2,
we have

a (x - 010) a (x - 001)
h(x) = _ [11"(001 - 010) + 01"(010 - 001)] mod 1011

[- 010) + 0 1 0 (x - 001)] mod 1011
= llO'(X 011 011 "

Because the inverse of 0! 1 is 110, and subtraction is equivalent to addition,
this reduces to:

h(x) = [110 • 110 • (x + 0 1 0) + 0 1 0 • 110 • (x + 001)] mod 1011

= [010 • (x + 0 1 0) + 111 • (x + 0 0 1)] mod 1011

= 0 1 0 x + 100+ l l l x + 111

= 1 0 1 x + 0 1 1 . I

Shamir observes that the general approach [implemented in either GF(p) or
GF(2")] has several useful properties, namely:

Q

0

.

The size of each shadow K i does not substantially exceed the size of the key
K [there may be some key expansion in GF(p), because p must be larger
than K].
For fixed K, additional shadows can be created without changing existing
ones just by evaluating h(x) at more values of x. A shadow can also be
destroyed without affecting other shadows.
A shadow can be voided without changing K by using a different polynomial
h(x) with the same constant term. Voided shadows cannot be used unless
there are at least t of them derived from the same polynomial.
A hierarchical scheme is possible, where the number of shadows given to
each user is proportional to the user's importance. For example, a company
president can be given three shadows, each vice-president two, and so forth.
Key recovery is efficient, requiring only O(t 2) operations to evaluate Eq.
(3.17) using standard algorithms, or O(t log 2 t) operations using methods
discussed in [Knut69,Aho74].

THRESHOLD SCHEMES 183

3.8.2 Congruence Class Scheme

Asmuth and Bloom [Asmu80] have proposed a threshold scheme based on the
Chinese Remainder Theorem (see Theorem 1.8 in Section 1.5.2). In their scheme
the shadows are congruence classes of a number associated with K. Let

{p, dl, d2, • . • , dw}

be a set of integers such that

1. p > K

2. dl < d2 < ' " < dw
3. g c d (p , di) = 1 for all i
4. gcd(d~, dj) = 1 for i -~ j

5. d~dz . . . dt > pdw-t+2 dw-t+a . . . dw .

Requirements (3) and (4) imply the set of integers is pairwise relatively prime.
Requirement (5) implies the product of the t smallest d i is larger than the product
of p and the t - 1 largest d r Let n = dldz • . . dt be the product of the t smallest d r

Thus n / p is larger than the product of any t - 1 of the d r Let r be a random
integer in the range [0, (n / p) - 1]. To decompose K into w shadows, K ' = K + rp

is computed; this puts K ' in the range [0, n - 1]. The shadows are then as follows:

K i = K ' mod d i i = 1 , . . . , w . (3.18)

To recover K, it suffices to find K'. If t shadows Kil, Kit are known, then
by the Chinese Remainder Theorem K' is known modulo

nl = dildi2 . . " dit •

Because nl -~ n, this uniquely determines K', which can be computed using algo-

rithm crt in Figure 1.24:

K ' = crt(na, dil, . . . , dit, g i 1 Kit) mod n .

Finally, K is computed from K', r, and p:

K = K ' - r p .

If only t - 1 shadows Ki~, . . . , Kit_~ are known, K'

modulo

(3.19)

(3.20)

can only be known

nz = d i l d i 2 . . , d i t _ 1 •

Because n / n z > p and gcd(n2 , p) = 1, the numbers x such that x <_ n and x ~ , z
K' are evenly distributed over all the congruence classes modulo p; thus, there is

not enough information to determine K'.

E x a m p l e :
L e t K = 3, t = 2, w = 3, p = 5, d~ = 7, d z = 9, a n d d ~ = l l . Then

n = d i d 2 = 7 . 9 = 63 > 5 . 11 =pd3

184 ABFDEFGHIIJKLMMNOHPP

as required. We need a random number r in the range [0, (63/5) - 1] --
[0, 11]. Picking r = 9, we get

K ' = K + r p = 3 + 9 * 5 = 4 8 .

The shadows are thus:

K, = 4 8 m o d 7 = 6
K 2 - 48mod 9 = 3
K3 = 48mod 11 - 4 .

Given any two of the shadows, we can compute K. Using/<1 and K~, we have

nx = d i d 3 = 7 . 11 = 77 .

Applying algorithm crt, we first compute

Yl = inv(nl /d , , d,) = inv(11, 7) = 2
Y2 = inv(nt/d3, d3) = inv(7, 11) = 8 .

Thus

K ' = [(~) y l K , + (~)Y3K3] mod n,

= [1 1 , 2 , 6 + 7 , 8 , 4] mod77
= 356 mod 77
= 4 8 .

Thus,

K = K ' - r p = 4 8 - 9 * 5 = 3 . I

Asmuth and Bloom describe an efficient algorithm for reconstructing K that
requires only O(t) time and O(w) space. Thus their scheme is asymptotically more
efficient than Shamir's polynomial scheme, which requires O(t log 2 t) time. For
small t, this may not be an important consideration.

Asmuth and Bloom also describe a modification to their scheme for detect-
ing defective shadows before their use. The basic idea is to remove the requirement
that the moduli d i be pairwise relatively prime [requirement (4)]. Then two shad-
ows K i and Kj will be congruent modulo gcd(d i, ~) if both shadows are correct.
Because an error in one shadow K; will change its congruence class modulo gcd(d i,
dj) for most (if not all) j =/= i, defective shadows are easily detected. With this
approach, requirement (5) must be changed to require that the least common
multiple (lcm) of any t of the d; is larger than the product of p and the lcm of any
t - 1 of the d;. (The general approach can also be incorporated in the polynomial
interpolation scheme.)

Other threshold schemes have been proposed. Davida, DeMillo, and Lipton
[Davi80] have proposed a scheme based on error correcting codes. Bloom [Bloo81]
has outlined a class of schemes approaching optimal speed when the key length is
large compared with the threshold value t; his schemes are based on linear maps

/

EXERCISES 18 5

over finite fields. (See [Blak81] for a study of security proofs for threshold
schemes.)

Whereas cryptosystems achieve computational security, threshold schemes
achieve unconditional security by not putting enough information into any t - 1
shadows to reconstruct the key. Blakley [Blak80] has shown the one-time pad can
be characterized as a t = 2 threshold scheme protecting a message M. Here, the
sender and receiver each has a copy of the pad M~, which serves as one shadow.
The second shadow, constructed by the sender and transmitted to the receiver, is
given by the ciphertext M2 = M ~ Ma. Both M~ and M2 are needed to reconstruct
M. The interesting point is that classifying the one-time pad as a key threshold
scheme explains how it can achieve perfect security when no other cryptosystem
can.

EXERCISES

3.1

3.2

3.3
3.4

3.5

3.6

3.7

Suppose the ith ciphertext c~ is deleted from a direct access file enciphered
with a synchronous stream cipher, and that the remainder of the file is
deciphered and reenciphered using the original key stream, where c~+~ is now
enciphered under k~, c~+~ under k~+~, and so forth. Show that all key elements
kj and plaintext elements mj (j ~ i) can be determined from the original and
updated ciphertext if m~ is known.
Let M = 100011 and C = 101101 be corresponding bit streams in a known
plaintext attack, where the key stream was generated with a 3-stage linear
feedback register. Using Eq. (3.2) solve for H to get the tap sequence T.
Describe methods for breaking Vigen~re's autokey ciphers.
Let d~ = 3, d2 = 5, and d3 = 7 be read subkeys in the scheme described in
Section 3.4.2. Using Eq. (3.3), find write subkeys e~, e2, and es. Using Eq.
(3.4), encipher a record having fields m~ = 2, m2 = 4, and m3 = 3 (do not
bother adding random strings to each field). Show that all three fields can be
deciphered using only their read subkeys in Eq. (3.5). Using ez and d2 in Eq.
(3.6), modify the ciphertext so that the second field has the value 3 instead
of 4. Show that all three fields can be extracted from the modified ciphertext
using only their read subkeys.
Consider the subkey scheme described in Section 3.4.2. Let C~ and C2 be two
ciphertext records of t fields each, and suppose the first t - 1 fields in each
record are updated as defined by Eq. (3.6). Letting C'~ and C~ denote the
updated ciphertext records, show how the read key d t can be determined for
the tth field from the original and updated ciphertext records.
Complete the proof of Theorem 3.1 in Section 3.5.2 by showing how the
exact value of i can be determined.
Consider a privacy homomorphism for the system of natural numbers with
addition, multiplication, and test for equality. Given a ciphertext element i',
show that it is possible to determine whether the corresponding plaintext
element i is equal to an arbitrary constant n in O(n) time without using any
constants.

186 CRYPTOGRAPHIC TECHNIQUES

3.8 Give the authentication path for the user with key K6 in Figure 3.24. Show
how these values can be used to compute H(1, 8).

3.9 Consider Shamir's key threshold scheme based on Lagrange interpolating
polynomials in GF(p). Let t = 4, p = 11, K = 7, and

h (x) = (x 3 + 10x 2 + 3 x + 7) rood 11 .

Using Eq. (3.16), compute shadows for x = 1,2, 3, and 4. Using Eq. (3.17),
reconstruct h (x) from the shadows.

3.10 Consider Shamir's key threshold scheme based on Lagrange interpolating
polynomials in GF(28) with irreducible polynomial p (x) = x 8 + x + 1

= 1011. Let t = 3, K = 010, and

h (x) = (001x 2 + 011x + 010) mod 1011 .

Compute shadows for x = 001, 011, and 100. Reconstruct h (x) from the
shadows.
Consider Asmuth's and Bloom's key threshold scheme based on the Chinese
Remainder Theorem. Let t = 2, w = 4, p = 5, dl = 8, d2 = 9, d3 = 11, and d4
= 13. Then n = 8 • 9 = 72. Let K = 3 and r = 10, whence K' = 53. Using
Eq. (3.18), decompose K' into four shadows, K1, K2, K~, and K4. Using Eq.
(3.19) and Eq. (3.20), reconstruct K from K1 and K2, and from K~ and K4.
Class C o m p u t e r Project." Implement one of the key threshold schemes.
Consider a synchronous stream cipher where the ith key element k i of a
stream K is a block given by

k i = (i + 1) d m o d n ,

where d is the private key to an RSA cipher and n is public. Thus,

K = kt, k2, ks, k4, k5
= 2 d, 3 d, 4 d, 5 d, 6 d (mod n) .

The ith block mi of a message stream M is enciphered as c i = m~ ~ k i. As
shown by Shamir [Sham81], this stream is vulnerable to a known-plaintext
attack. Show how a cryptanalyst knowing the plaintext-ciphertext pairs
(m~, c~) and (m2, c2) can determine k3 and ks. Given many plaintext-cipher-
text pairs, can the cryptanalyst determine d and thereby derive the entire key
stream?
Shamir [Sham81] proposes the following key stream as an alternative to the
one given in the preceding exercise:

K = k l, k2, k3, • . .
= Sa/da, S~/d2, SVd8 (mod n),

where n = p q for large primes p and q, the d i are pairwise relatively prime
and relatively prime to 4~(n), S is secret, and SVdi mod n is the d~th root of S
mod n. An example of a stream is

K = S V 3, $1/5, S1F (mod n).

Shamir shows this stream is cryptographically strong; in particular, the diffi-

3.11

3.12
3.13

3.14

REFERENCES 187

culty of determining unknown key elements is equivalent to breaking the
RSA cipher. Show how the dith root of S can be computed to give k i. [Hint:
Find the inverse of d i mod q~(n).] Show why this technique cannot be used to
compute the square root of S.

3.15 Suppose users A and B exchange message M in a public-key system using the
following protocol:

A encrypts M using B's public transformation, and sends the ciphertext
message to B along with plaintext stating both A's and B's identity:

(A, B,
B deciphers the ciphertext, and replies to A with

(B, A, EA(M)) .

Show how an active wiretapper could break the scheme to determine M.
(See Dolev [Dole81] for a study on the security of this and other public key
protocols.)

REFERENCES

Aho74. Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass. (1974).

Ardi70. Ardin, B. W. and Astill, K. N., Numerical Algorithms, Addison-Wesley, Reading,
Mass. (1970).

Asmu80. Asmuth, C. and Bloom, J., "A Modular Approach to Key Safeguarding," Math.
Dept., Texas A&M Univ., College Station, Tex. (1980).

Bara64. Baran, P., "On Distributed Communications: IX. Security, Secrecy, and Tamper-
Free Considerations," RM-3765-PR, The Rand Corp., Santa Monica, Calif. (1964).

Baye76. Bayer, R. and Metzger, J. K., "On the Encipherment of Search Trees and Random
Access Files," ACM Trans. on Database Syst. Vol. 1 (1) pp. 37-52 (Mar. 1976).

Blak79. Blakley, G. R., "Safeguarding Cryptographic Keys," Proc. NCC, Vol. 48, AFIPS
Press, Montvale, N.J., pp. 313-317 (1979).

Blak80. Blakley, G. R., "One-Time Pads are Key Safeguarding Schemes, Not Cryptosys-
tems," Proc. 1980 Syrup. on Security and Privacy, IEEE Computer Society, pp. 108-
113 (Apr. 1980).

Blak81. Blakley, G. R. and Swanson, L., "Security Proofs for Information Protection Sys-
tems," in Proc. 1981 Syrup. on Security and Privacy, IEEE Computer Society pp.
75-88 (Apr. 1981).

Bloo81. Bloom, J. R., "A Note on Superfast Threshold Schemes," Math. Dept., Texas
A&M Univ., College Station, Tex. (1981).

Bran75. Branstad, D. K., "Encryption Protection in Computer Communication Systems,"
Proc. 4th Data Communications Syrup., pp. (8-1)-(8-7) (1975).

Bran78. Branstad, D. K., "Security of Computer Communication," IEEE Comm. Soc.
Mag. Vol. 16(6) pp. 33-40 (Nov. 1978).

Brig76. Bright, H. S. and Enison, R. L., "Cryptography Using Modular Software Ele-
ments," Proc. NCC, Vol. 45, AFIPS Press, Montvale, N.J., pp. 113-123 (1976).

188 CRYPTOGRAPHIC TECHNIQUES

Brig80. Bright, H. S., "High-Speed Indirect Cryption," Cryptologia Vol. 4(3) pp. 133-139
(July 1980).

Camp78. Campbell, C. M., "Design and Specification of Cryptographic Capabilities,"
IEEE Comm. Soc. Mag. Vol. 16(6) pp. 15-19 (Nov. 1978).

Chai74. Chaitin, G. J., "Information-Theoretic Limitations of Formal Systems," J. ACM
Vol. 21(3) pp. 403-424 (July 1974).

Chau81. Chaum, D. L., "Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms," Comm. ACM Vol. 24(2) pp. 84-88 (Feb. 1981).

Cont72. Conte, S. D. and deBoor, C., Elementary Numerical Analysis, McGraw-Hill, New
York (1972).

Davi79. Davida, G. I., Wells, D. L., and Kam, J. B., "A Database Encryption System with
Subkeys," TR-CS-78-8, Dept. of Electrical Eng. and Computer Science, The Univ.
of Wisconsin, Milwaukee, Wis. (May 1979).

Davi80. Davida, G. I., DeMillo, R. A., and Lipton, R. J., "Protecting Shared Cryptograph-
ic Keys," Proc. 1980 Syrup. on Security and Privacy, IEEE Computer Society, pp.
100-102 (Apr. 1980).

Davs79. Davies, D. W. and Price, W. L., "A Protocol for Secure Communication," NPL
Report NACS 21/79, National Physical Lab., Teddington, Middlesex, England
(Nov. 1979).

DeMi78. DeMillo, R., Lipton, R., and McNeil, L., "Proprietary Software Protection," pp.
115-131 in Foundations of Secure Computation, Academic Press, New York (1978).

Denn79. Denning, D. E., "Secure Personal Computing in an Insecure Network," Comm.
ACM Vol. 22(8) pp. 476-482 (Aug. 1979).

Denn81a. Denning, D. E. and Schneider, E B., "Master Keys for Group Sharing," Info.
Proc. Let. Vol. 12(1) pp. 23-25 (Feb. 13, 1981).

Denn81b. Denning, D. E., Meijer, H., and Schneider, E B., "More on Master Keys for
Group Sharing," Info. Proc. Let. (to appear).

Denn81c. Denning, D. E. and Sacco, G. M., "Timestamps in Key Distribution Protocols,"
Comm. ACM Vol. 24(8) pp. 533-536 (Aug. 1981).

Diff76. Diffie, W. and Hellman, M., "New Directions in Cryptography," IEEE Trans. on
Info. Theory Vol. IT-22(6) pp. 644-654 (Nov. 1976).

Diff79. Diffie, W. and Hellman, M., "Privacy and Authentication: An Introduction to
Cryptography," Proc. IEEE Vol. 67(3) pp. 397-427 (Mar. 1979).

Dole81. Dolev, D. and Yao, A. C., "On the Security of Public Key Protocols," Proc. 22nd
Annual Syrup. on the Foundations o f Computer Science, (1981).

Ehrs78. Ehrsam, W. E, Matyas, S. M., Meyer, C. H., and Tuchman, W. L., "A Crypto-
graphic Key Management Scheme for Implementing the Data Encryption Stan-
dard," IBM Syst. J. Vol. 17(2) pp. 106-125 (1978).

Evan74. Evans, A. Jr., Kantrowitz, W., and Weiss, E., "A User Authentication Scheme
Not Requiring Secrecy in the Computer," Comm. ACM Vol. 17(8) pp. 437-442
(Aug. 1974).

Feis73. Feistel, H., "Cryptography and Computer Privacy," Sci. Am. Vol. 228(5) pp. 15-
23 (May 1973).

Feis75. Feistel, H., Notz, W. A., and Smith, J. L., "Some Cryptographic Techniques for
Machine to Machine Data Communications," Proc. IEEE Vol. 63(11) pp. 1545-
1554 (Nov. 1975).

Flyn78. Flynn, R. and Campasano, A. S., "Data Dependent Keys for a Selective Encryp-
tion Terminal," pp. 1127-1129 in Proc. NCC, Vol. 47, AFIPS Press, Montvale, N.J.
(1978).

GSA77. "Telecommunications: Compatibility Requirements for Use of the Data Encryp-

REFERENCES 189

tion Standard," Proposed Federal Standard 1026, General Services Administration
Washington, D.C. (Oct. 1977).

Gait77. Gait, J., "A New Nonlinear Pseudorandom Number Generator," IEEE Trans. on
Software Eng. Vol. SE-3(5) pp. 359-363 (Sept. 1977).

Golu67. Golumb, S. W., Shift Register Sequences, Holden-Day, San Francisco, Calif.
(1967).

Gude80. Gudes, E., "The Design of a Cryptography Based Secure File System," IEEE
Trans. on Software Eng. Vol. SE-6(5) pp. 411-420 (Sept. 1980).

Hell80. Hellman, M. E., "On DES-Based, Synchronous Encryption," Dept. of Electrical
Eng., Stanford Univ., Stanford, Calif. (1980).

Kahn67. Kahn, D., The Codebreakers, Macmillan Co., New York (1967).
Kent76. Kent, S. T., "Encryption-Based Protection Protocols for Interactive User-Comput-

er Communication," MIT/LCS/TR-162, MIT Lab. for Computer Science, Cam-
bridge, Mass. (May 1976).

Kent78. Kent, S. T., "Protocol Design Considerations for Network Security," Proc. of the
NATO Advanced Studies Inst. on the Interlinking of Computer Networks, D. Rei-
del, pp. 239-259 (1978).

Kent80. Kent, S. T., "Protecting Externally Supplied Software in Small Computers," Ph.D.
Thesis, Dept. of Electrical Eng. and Computer Science, MIT, Cambridge, Mass.
(Sept. 1980).

Kent81. Kent, S. T., "Security Requirements and Protocols for a Broadcast Scenario,"
IEEE Trans. on Communications Vol. COM-29(6) pp. 778-786 (June 1981).

Knut69. Knuth, D., The Art of Computer Programming," Vol. 2, Seminumerical Algo"
rithms, Addison-Wesley, Reading, Mass. (1969).

Konf78. Konfelder, L. M., "A Method for Certification," MIT Lab. for Computer Science,
Cambridge, Mass. (May 1978).

Konh80. Konheim, A. G., Mack, M. H., McNeill, R. K., Tuckerman, B., and Waldbaum,
G., "The IPS Cryptographic Programs," IBM Syst. J. Vol. 19(2) pp. 253-283
(1980).

Lipt78. Lipton, S. M. and Matyas, S. M., "Making the Digital Signature Legal~and
Safeguarded," Data Communications, pp. 41-52 (Feb. 1978).

Maty78. Matyas, S. M. and Meyer, C. H., "Generation, Distribution, and Installation of
Cryptographic Keys," IBM Syst. J. Vol. 17(2) pp. 126-137 (1978).

Merk78. Merkle, R. C., "Secure Communication Over an Insecure Channel," Comm.
ACM Vol. 21(4) pp. 294-299 (Apr. 1978).

Merk80. Merkle, R. C., "Protocols for Public Key Cryptosystems," Proc. 1980 Syrup. on
Security and Privacy, IEEE Computer Society, pp. 122-133 (Apr. 1980).

Meye72. Meyer, C. H. and Tuchman, W. L., "Pseudo-Random Codes Can Be Cracked,"
Electronic Design Vol. 23 (Nov. 1972).

Meye73. Meyer, C. H., "Design Considerations for Cryptography," Proc. NCC, Vol. 42
AFIPS Press, Montvale, N.J. pp. 603-606 (1973).

Morr79. Morris, R. and Thompson, K., "Password Security: A Case History," Comm.
ACM Vol. 22(11) pp. 594-597 (Nov. 1979).

Need78. Needham, R. M. and Schroeder, M., "Using Encryption for Authentication in
Large Networks of Computers," Comm. ACM Vol. 21(12) pp. 993-999 (Dec. 1978).

Pete72. Peterson, W. W. and Weldon, E. J., Error Correcting Codes MIT Press, Cam-
bridge, Mass. (1972).

Pope79. Popek, G. J. and Kline, C. S., "Encryption and Secure Computer Networks,"
Computing Surveys Vol. 11(4) pp. 331-356 (Dec. 1979).

Pric81. Price, W. L. and Davies, D. W., "Issues in the Design of a Key Distribution

190 CRYPTOGRAPHIC TECHNIQUES

Centre," NPL Report DNACS 43/81, National Physical Lab., Teddington, Middle-
sex, England (Apr. 1981).

Purd74. Purdy, G. P., "A High Security Log-in Procedure," Comm. ACM Vol. 17(8) pp.
442-445 (Aug. 1974).

Reed73. Reed, I. S., "Information Theory and Privacy in Data Banks," Proc. NCC Vol. 42,
AFIPS Press, Montvale, N.J., pp. 581-587 (1973).

Rive78a. Rivest, R. L., Adleman, L., and Dertouzos, M. L., "On Data Banks and Privacy
Homomorphisms," pp. 169-179 in Foundations of Secure Computation, ed. R. A.
DeMillo et al., Academic Press, New York (1978).

Rive78b. Rivest, R. L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems," Comm. ACM Vol. 21(2) pp. 120-126
(Feb. 1978).

Salt78. Saltzer, J., "On Digital Signatures," Oper. Syst. Rev. Vol. 12(2) pp. 12-14 (Apr.
1978).

Sava67. Savage, J. E., "Some Simple Self-Synchronizing Digital Data Scramblers," Bell
System Tech. J., pp. 448-487 (Feb. 1967).

Scha79. Schanning, B. P., "Data Encryption with Public Key Distribution," EASCON '79
Conf. Record, pp. 653-660 (Oct. 1979).

Scha80. Schanning, B. P., Powers, S. A., and Kowalchuk, J., "Memo: Privacy and Authen-
tication for the Automated Office," Proc. 5th Conf. on Local Computer Networks,
pp. 21-30 (Oct. 1980).

Sham79. Shamir, A., "How to Share a Secret," Comm. ACM Vol. 22(11) pp. 612-613
(Nov. 1979).

Sham81. Shamir, A., "On the Generation of Cryptographically Strong Pseudo-Random
Sequences," Dept. of Applied Math., The Weizmann Institute of Science, Rehovot,
Israel (1981).

Turn73. Turn, R., "Privacy Transformations for Databank Systems," Proc. NCC, Vol. 42,
AFIPS Press, Montvale, N.J., pp. 589-600 (1973).

Wilk75. Wilkes, M. V., Time-Sharing Computing Systems, Elsevier/MacDonald, New
York (1968; 3rd ed., 1975).

Zier68. Zierler, N. and Brillhard, J., "On Primitive Trinomials (Mod 2)," Info. and Con-
trol Vol. 13 pp. 541-554 (1968).

Zier69. Zierler, N. and Brillhard, J., "On Primitive Trinomials (Mod 2)," Info. and Con-
trol Vol. 14 pp. 566-569 (1969).

4
Access Controls

Access controls ensure that all direct accesses to objects are authorized. By regu-
lating the reading, changing, and deletion of data and programs, access controls
protect against accidental and malicious threats to secrecy, authenticity, and sys-
tem availability (see Chapter 1).

Many access controls incorporate a concept of ownership--that is, users may
dispense and revoke privileges for objects they own. This is common in file systems
intended for the long-term storage of user data sets and programs. Not all applica-
tions include this concept; for example, patients do not own their records in a
medical information system.

The effectiveness of access controls rests on two premises. The first is proper
user identification: no one should be able to acquire the access rights of another.
This premise is met through authentication procedures at login as described in
Chapter 3. The second premise is that information specifying the access rights of
each user or program is protected from unauthorized modification. This premise is
met by controlling access to system objects as well as to user objects.

In studying access controls, it is useful to separate policy and mechanism. An
access control policy specifies the authorized accesses of a system; an access con-
trol mechanism implements or enforces the policy. This separation is useful for
three reasons. First, it allows us to discuss the access requirements of systems
independent of how these requirements may be implemented. Second, it allows us
to compare and contrast different access control policies as well as different
mechanisms that enforce the same policies. Third, it allows us to design mecha-
nisms capable of enforcing a wide range of policies. These mechanisms can be
integrated into the hardware features of the system without impinging on the
flexibility of the system to adapt to different or changing policies.

191

192 ACCESS CONTROLS

4.1 ACCESS-MATRIX MODEL

The access-matrix model provides a framework for describing protection systems.
The model was independently developed by researchers in both the operating sys-
tems area and the database area. The operating systems version of the model was
formulated by Lampson [Lamp71] in conjunction with the COSINE Task Force
on Operating Systems [DenP71a]. The model was subsequently refined by Gra-
ham and Denning [GrDe72,DenP71b]. Harrison, Ruzzo, and Ullman [Harr76]
later developed a more formal version of the model as a framework for proving
properties about protection systems. At about the same time the access matrix was
introduced as a model of protection in operating systems, Conway, Maxwell, and
Morgan [Conw72] of the ASAP project at Cornell University independently mod-
eled protection in database systems with a security matrix.

The model is defined in terms of states and state transitions, where the state
of a protection system is represented by a matrix, and the state transitions are
described by commands.

4.1.1 The Protection State

The state of a system is defined by a triple (S, O, A), where"

S is a set of subjects, which are the active entities of the model. We will
assume that subjects are also considered to be objects; thus S _c O.
O is a set of objects, which are the protected entities of the system. Each
object is uniquely identified by a name.
A is an access matrix, with rows corresponding to subjects and columns to
objects. An entry A [s, o] lists the access rights (or privileges) of subject s for
object o.

In operating systems, the objects typically include files, segments of memory,
and processes (i.e., activations of programs). The subjects may be users, processes,
or domains; a domain is a protection environment in which a process executes. A
process may change domains during its execution.

The access rights specify the kinds of accesses that may be performed on
different types of objects. The rights for segments and files usually include R
(read), W (write), and E (execute). (Some systems have an append right, which
allows subjects to add data to the end of an object but not overwrite existing data.)
Some rights may be generic, applying to more than one type of object; R, W, E,
and Own (ownership) are examples. The number of generic rights is finite.

Example:
Figure 4.1 illustrates the state of a simple system having two processes
(subjects), two memory segments, and two files. Each process has its own
private segment and owns one file. Neither process can control the other
process, m

. /

ACCESS-MATRIX MODEL 193

FIGURE 4.1 Access matrix.

P1

Subjects

P2

M 1

R
W
E

M2

R
W
E

Objects

F1

Own
R
W

F 2 P1 P2

Owtl
R
E

Graham and Denning associate with each type of object a monitor that
controls access to the object. The monitor for an object o prevents a subject s from
accessing o when A [s, o] does not contain the requisite right. A monitor can be
implemented in hardware, software, or some combination of hardware and soft-
ware. An example of a monitor is the hardware that checks an address to deter-
mine if it is within the memory bounds associated with a process. Another example
is the file system monitor that validates requests for file accesses.

Protection within a program is modeled with a more refined matrix in which
the subjects are procedures (or activations of procedures), and the objects are data
structures and procedures. The access rights for a data object are determined by
the operations and procedures that may be applied to objects of that type. For
example, the access rights for an integer variable consist of the arithmetic and
relational operators (+, *, < , etc.) and assignment (:=); the rights for an integer
constant (or variable passed by value) exclude assignment. Note that the right to
apply the assignment operator is granted by W-access to an object, whereas the
right to apply the remaining operators is granted by R-access to the object.

The access rights for a programmer-defined object of type stack may be
restricted to push and pop procedures, so the program cannot manipulate the
underlying representation of the stack (e.g., to delete an element from the middle
of the stack). The pop and push procedures, however, have access to the represen-
tation of stacks.

The protection provided by language structures must be enforced by both the
language processor and the run-time system. The language processor is responsible
for screening out specification errors (e.g., violations of syntax, type, and scope
rules). The run-time system is responsible for screening out execution errors (e.g.,
linkage errors, binding errors, addressing errors, or I /O errors). The system also
provides protection in case of changes to compiled programs. If access checking is
implemented in hardware, it can be performed in parallel with program execution,
and need not degrade the performance of the system. The strongest protection
comes from a combination of compiler and system support: the compiler prevents
programs with detectable specification errors from executing; the system ensures
that programs execute according to their specifications and to the current protec-

tion state.

194 ACCESS CONTROLS

In database systems, the subjects correspond to users and the objects to files,
relations, records, or fields within records. Each entry A [s, o] is a decision rule,
specifying the conditions under which user s may access data object o, and the
operations that s is permitted to perform on o.

The decision rules are a generalization of the concept of access rights. The
rules may specify both data-independent conditions, which are analogous to the
rights in operating systems, and data-dependent conditions, which are a function of
the current values of the data being accessed. For example, permitting a user to
alter the contents of only those student records for which the Department field is
Physics is an example of a data-dependent condition. The concept of dependency
may be extended to include time-dependent conditions, which are functions of the
clock (e.g., a user may be permitted to access the payroll records between 9 and 5
only), context-dependent conditions, which are functions of combinations of data
(e.g., a user may be permitted to see student grades or student names, but not
pairs of names and grades), and history-dependent conditions, which are functions
of previous states of the system (e.g., a process may not be allowed to write into an
unclassified file if it previously processed classified data) [Hart76]. In general, a
decision may depend on any available information describing the present or past
state of the system.

The decision rules are similar to the control procedures described in Hoff-
man's [Hoff71] formulary model. In Hoffman's system, all security is enforced by
a set of database access procedures called formularies. A formulary consists of
control procedures that determine whether to grant an access request, addressing
procedures that map logical names into virtual addresses, and encryption and
decryption procedures. Hoffman's formularies are like the object monitors de-
scribed by Graham and Denning.

4.1 .2 State Transitions

Changes to the state of a system are modeled by a set of commands. Commands
are specified by a sequence of primitive operations that change the access matrix.
These operations are conditioned on the presence of certain rights in the access
matrix and are controlled by a monitor responsible for managing the protection
state. Harrison, Ruzzo, and Ullman identified six primitive operations:

enter r into A[s, o]
delete r from A[s, o]
create subject s
create object o
destroy subject s
destroy object o .

Their effect on the access matrix is formally defined in Table 4.1. Let op be a
primitive operator, and let Q = (S, O, A) be a system state. Then execution of op
in state Q causes a transition from Q to the state Q' = (S', O', A') under the
conditions defined in Table 4.1. This is written as

ACCESS-MATRIX MODEL 195

TABLE 4.1 Primitive operations.

op

enter r into A[s, o]

conditions new state

s ~ S S ' = S
o ~ 0 0 ' = 0

A'[s, o] = At s, O] U {r}
m/[Sl, O1] = A[S1 , O1] (Sl, O1) :'7"= (S t O)

s E S S ' = S
o E O 0 ' = 0

At[S1, O1] -- A[s1, ol] ($1, ol) ~: (s, o)

s' O s'=su{s'}
o

A'[s, o] = A[s, o] s E S, o ~ 0
A'[s', o] = ~ , o ~ O'
A'[s, s'] = ~ , s ~ S'

o' ~ 0 S' = S
ou{o'}

A'[s, o] = A[s, o] s ~ S, o ~ O
A'[s, o'] = ~ , s ~ S'

s' , S S ' = S - { s ' }
or= o - {s'}
A'[s, o] = A[s, o] s ~ S', o E O'

o' ~ 0 S' = S
o' ~S O' = O - {o'}

delete r from A[s, o]

create subject s'

create object o'

destroy subject s'

destroy object o'

A'[s, o] = A[s, o] s ~ S', o ~ O'

Q ~ o p Q'

(read "Q derives Q' under o p ") .
Harrison, Ruzzo, and Ullman consider commands of the following form:

command c(x ~ , . . . , x k)
if r~ in A [x ~ , Xo~] and

r2 in A[x~2, Xoz] and

r m in A[Xsm, Xo~]

then
opt;
opz;

196 ACCESS CONTROLS

°

oPn
end,

where rl, . . . , r m are rights, and s l, . . . , sm and ol , om are integers between
1 and k. A command may have an empty set of conditions (i.e., m - 0). We
assume, however, that each command performs at least one operation.

The effect of a command on the state of a protection system is as follows. Let
c (a ~ , . . . , a k) be a command with actual parameters a1 a k, and let Q = (S, O,
A) be a state of a protection system. Then Q yields state Q' under c, written

Q ~4,h ak) Q "
provided

•

2.
Q' = Q if one of the conditions of c is not satisfied, and
Q' = Qn otherwise, where there exist states Q0, Q~ Qn such that

• Q,F- • .~- , Q , , Q = Qo ~- Opl op2 " oPn

where opt denotes the primitive operation opi, substituting the actual param-
eters ai for the formal parameters x~.

We shall write Q I-- C Q' if there exist actual parameters al, • . . , ak such that Q
~-c(al ak) Q'; and Q t- Q' if there exists a command c such that Q F- c Q'. Finally,
we shall write Q t-* Q' if there exists a sequence of length n ~ 0: Q = Q0 I-- Q 1 F . . .
F - Q , = Q ' .

The access-matrix model is an abstract representation of the protection poli-
cies and mechanisms found in real systems. As such, it provides a conceptual aid to
understanding and describing protection systems, a common framework for com-
paring different protection systems, and a formal model for studying the inherent
properties of protection systems. Some mechanisms are more easily described by
other models, however. We shall later use graphs to describe mechanisms that
involve the transfer of rights.

Protection systems should not be implemented using the matrix and associ-
ated commands. One reason is there are much better ways of representing the
access state of a system than with a matrix that is likely to be large and sparse.
Another is that the commands are too primitive for most applications.

Example:
We shall show how the model can be used to describe the transfer of rights in
operating systems with processes, segments, and owned files, as illustrated by
Figure 4.1. Our example is similar to the one given by Harrison, Ruzzo, and
Ullman.

Any process may create a new file. The process creating a file is auto-
matically given ownership of the file and R W-access to the file. This is
represented by the command:

ACCESS-MATRIX MODEL 197

command create.file(p, f)
create object f;
enter Own into A [p, f] ;
enter R into A[p, f];
enter W into A [p, f]

end.

The process owning a file may change its rights to the file. For example, a
process p owning a file f can protect f from inadvertent modification by
removing its W-access to f It may also confer any right to the file (except
ownership) on other processes. For example, R-access may be conferred by
process p on process q with the command:

command confer.read(p, q, f)
if Own in A[p, f]
then enter R into A[q,.lf]

end.

(Similar commands confer W- and E-access.)
The preceding command states that the owner of an object can grant a

right to the object it does not have. In particular, it can grant this right to
itself. This allows it to revoke its W-access to an object, and later restore the
right to modify the object. This violates the principle of attenuation of privi-
lege, which states that a process can never increase its rights, or transfer
rights it does not have. We shall apply this principle only to nonowners, as is
done in most systems.

Removal of access rights is a subject of much controversy. Here we
shall assume that the owner of an object may revoke access rights to the
object at any time. Commands for removing access rights from the access
matrix are similar to those for conferring rights; for example, process p may
revoke R-access from process q with the command:

command revoke.read(p, q, f)
if Own in A[p, f]
then delete R from A [q, f]

end.

Some systems permit subjects to transfer an access right r to an un-
owned object. This is modeled with a copy flag (denoted by an asterisk
placed after r). Following the principle of attenuation of privilege, a process
may transfer any access right it holds for an object provided the copy flag of
the attribute is set. The following command transfers R-access from process
p to q, but does not give q the ability to transfer the right further:

command transfer.read(p, q, f)
if R , in A[p, f]
then enter R into A[q, f]

end.

198 ACCESS CONTROLS

Alternatively, a process may be able to transfer an access right, but forfeit
the right in so doing. This is modeled with a transfer-only flag (denoted by
+). The following command transfers R-access under these conditions:

command transfer-only.read (p, q, f)
if R + in A[p, f]
then delete R+ from A[p, f] ;

enter R+ into A[q, f]
end.

The owner of an object would be able to confer rights with or without either
of the flags.

Some systems permit a process to spawn subordinate processes and
control the access rights of its subordinates. A process p can create a subor-
dinate process q having memory segment rn with the command:

command create.subordinate(p, q, m)
create subject q;
create object m;
enter Ctrl into Alp, q]
enter R into A[q, m]
enter W into A[q, m]
enter E into A[q, m]

end.

Process p is given the Ctrl right to q, allowing it to take or revoke any of q's
rights, including those conferred on q by other processes. The following com-
mand gives p R-access to q's memory segment:

command take.subordinate.read(p, q, m)
if Ctrl in A[p, q] and

R in A[q, m]
then enter R in Alp, m]

end.

The following command revokes q's R-access to file j~

command revoke.subordinate.read(p, q, f)
if Ctrl in A[p, q]
then delete R from A [q, f]

end.

If our command format permitted disjunctions, we could combine re-
voke.subordinate.read with revoke.read:

command revoke.read(p, q, f)
if Own in A[p, f] or

Ctrl in Alp, q]
then delete R from A [q, f]

end.

ACCESS-MATRIX MODEL 199

FIGURE 4.2 Access matrix after command sequence.

Objects
M1 M2 M3 F1 F 2

,

R Own
P1 W R

E W i
, , , ! , ,

R Own

Subjects P2 W R
w

P3

P1 P2 P3

Ctrl

Because any command with disjunctions is equivalent to a list of separate
commands, we have restricted commands to the simpler format.

Figure 4.2 shows the effect of executing the following commands on
the initial state shown in Figure 4.1"

create.subordinate(P2, P3, M3)
take.subordinate.read(P2, P3, M3)
take.subordinate.write(P2, P3, M3)
confer.read(P2, P3, F2) . II

4.1.3. Protection Policies

A configuration of the access matrix describes what subjects can do--not neces-
sarily what they are authorized to do. A protection policy (or security policy)
partitions the set of all possible states into authorized versus unauthorized states.
The next example shows how a simple policy regulating message buffers shared by
two communicating processes can be formally described in terms of authorized
states.

Example:
The following specifies that for every message buffer b, there exists exactly
one process p that can write into the buffer and one process q that can read
from the buffer (see Figure 4.3).

FIGURE 4.3 Shared message buffer.

write ,

, , ,

"l b I.F read @

200 ACCESS CONTROLS

A state Q = (S, O, A) is authorized if and only if for every buffer b e O,
there exists exactly one process p E S such that W e A[p, b] and exactly
one process q -~ p such that R ~ A[q, b). I

Whether a state is authorized can depend on the previous state and the
command causing the state transition"

Example:
Consider the system described in the previous section. The following speci-
fies that no subject can acquire access to a file unless that right has been
explicitly granted by the file's owner:

Let Q = (S, O, A) be an authorized state such that Own e A[p,)q for
subject p and file f, but r ¢ A[q, j] for subject q and right r. Let Q' = (S',
O', A') be a state such that r E A'[q, j] and Q I% Q'. Then Q' is authorized
if and only if

c = confer.read(p, q, J3 • I

(See also [Krei80] for descriptions of protection policies).

4.2 ACCESS CONTROL MECHANISMS

4.2.1 Security and Precision

The access control mechanisms of a system enforce the system's security policies
by ensuring that the physical states of the system correspond to authorized states
of the abstract model. These mechanisms must monitor all accesses to objects as
well as commands that explicitly transfer or revoke rights. Otherwise, the system
could enter a physical state that does not correspond to an authorized state of the
model. For example, a subject could bypass a file system and issue a read request
directly to the physical location of a file on disk. The security mechanisms must
also ensure that the physical resource states correspond to logical object states of
the model. Systems that do not clear memory between use, for example, may
expose data to unauthorized subjects.

The security mechanisms of a system may be overprotective in the sense of
preventing entry to an authorized state or of denying an authorized access. For
example, a system might never allow a subject access to a file unless the subject
owns the file. Systems that are overprotective are secure, but may not satisfy other
requirements of the system.

The preceding requirements are summarized with the aid of Figure 4.4. Let
S be the set of all possible states, and let P be the subset of S authorized by the
protection policies of the system. Let R be the subset of S that is reachable with
the security mechanisms in operation. The system is secure if R C P; that is, if all
reachable states are authorized. The system is precise (not overprotective) if R
= P; that is, if all authorized states are reachable (see Figure 4.4).

After discussing the general requirements of security mechanisms, we shall
describe particular mechanisms. We shall then turn to the problem of designing

ACCESS CONTROL MECHANISMS 201

FIGURE 4.4 Security and precision.

All States

Authorized States
S (given policy)

Unauthorized States

Reachable States
(given mechanism)

Secure' R c p

Precise: R = P

systems whose security can be verified. Finally, we shall examine theoretical ques-
tions related to proving properties about the transfer of rights in abstract models.

4.2.2 Reliability and Sharing

Protection mechanisms enforce policies of controlled sharing and reliability. Sev-
eral levels of sharing are possible:

o

2.
3.
4.

No sharing at all (complete isolation).
Sharing copies of data objects.
Sharing originals of data objects.
Sharing untrusted programs.

Each level of sharing imposes additional requirements on the security
mechanisms of a system. The sharing of data introduces a problem of suspicion,
where the owner s of a data object x may not trust another subject sl with whom s
shares access. For example, s may fear that sl will grant its access rights to x to

202 ACCESS CONTROLS

FIGURE 4.5 Suspicion.
,

shared data

o w n I =

su on

another subject s2 (see Figure 4.5). Alternatively, s may fear that S 1 will simply
misuse its privileges--for example, Sl could read x and broadcast its contents to
other subjects (see Figure 4.6). The second problem does not fall under the scope
of an access control policy, however, because it involves the transfer of information
rather than the transfer of rights; controls for information flow are studied in the
next chapter.

Most systems have facilities for sharing originals of programs or data. On-
line database systems often allow multiple users simultaneous access to a common
database. Most operating systems allow concurrent processes to execute the same
code and access global system tables or file directories.

There are several reasons for sharing originals of data (or programs) rather
than just copies. A principal reason is to save space. Another is to save time that

FIGURE 4.6 Misuse of privilege.
, ,

O W n

shared data

read

broadcast

, , . . I̧ ̧

ABFDEFGHIIJKLMMNOHPP 203

FIGURE 4.7 Trojan Horse.

Q

~ ~Horse /
' , ,r . .2p /

would otherwise be needed to make duplicates or transfer updates to a master
copy. A third reason is to ensure each subject has a consistent, up-to-date view of

the data.
Protecting originals of data imposes additional requirements on the security

mechanisms, however, because a subject with write-access to the original might
destroy the data. Concurrent accesses to the data must be controlled to prevent
writing subjects from interfering with other subjects.

If programs are shared, the protection problem is considerably more complex
than if only data is shared. One reason is a Trojan Horse may be lurking inside a
borrowed program. A Trojan Horse performs functions not described in the pro-
gram specifications, taking advantage of rights belonging to the calling environ-
ment to copy, misuse, or destroy data not relevant to its stated purpose (see Figure
4.7). A Trojan Horse in a text editor, for example, might copy confidential infor-
mation in a file being edited to a file accessible to another user. The attack was
first identified by D. Edwards and described in the Anderson report [Ande72].
The term Trojan Horse is often used to refer to an entry point or "trapdoor"
planted in a system program for gaining unauthorized access to the system, or to
any unexpected and malicious side effect [Lind75]. Protection from Trojan Horses
requires encapsulating programs in small domains with only the rights needed for

the task, and no more.
Even if encapsulated, a borrowed program may have access to confidential

parameters passed by the calling subject s. The program could transmit the data to
the program's owner s', or retain it in objects owned by s' for later use (see Figure
4.8). For example, a compiler might make a copy of a proprietary software pro-
gram. A program that cannot retain or leak its parameters is said to be memory-

less or confined.
Lampson [Lamp73] was the first to discuss the many subtleties of the con-

finement problem. As long as a borrowed program does not have to retain any

204 ACCESS CONTROLS

FIGURE 4.8 The confinement problem.

o w n confidential
parameters

call
r e a d

write

own ! I transmit

o w n

information, confinement can be implemented by restricting the access rights of
the program (and programs called by it). But as soon as the program must retain
nonconfidential information, access controls alone are insufficient, because there is
no way of ensuring the program does not also retain confidential information. This
is called the selective confinement problem, and is treated in the next chapter.

Protecting proprietary programs is also difficult. The owner needs assur-
ances that borrowers can execute the programs, but cannot read or copy them. We
saw in Chapter 3 how a form of encryption can be used to protect proprietary
programs run on the customer's system. Access controls can be used to protect
programs run on the owner's system, because the borrower cannot copy a program
if it is only given access rights to execute (but not read) the program.

The sharing of software, therefore, introduces a problem of mutual suspicion
between the owner and the borrower: the owner of a program p may be concerned
the borrower will steal p; the borrower may be concerned the owner will steal
confidential input to p (see Figure 4.9).

Protection mechanisms are needed for reliability as much as sharing. They
prevent malfunctioning programs from writing into segments of memory belong-
ing to the supervisor or to other programs. They prevent undebugged software
from disrupting the system. They prevent user programs from writing directly on a
disk, destroying files and directories. They provide backup copies of files in case of
hardware error or inadvertent destruction. By limiting the damage caused by map

ACCESS CONTROL MECHANISMS 205

FIGURE 4.9 Mutual suspicion.

program
borrower

own confidential
data

I
I

mutual
suspicion

I

I

;teal

o w n

proprietary
program

P
steal

program
owner

functioning programs, they provide error confinement and an environment for
recovery.

Protection was originally motivated by time-sharing systems serving multiple
users simultaneously and providing long-term storage for their programs and data.
Protection was essential both for reliability and controlled sharing.

The recent trend toward distributed computing through networks of personal
computers mitigates the need for special mechanisms to isolate users and pro-
grams--each user has a private machine. It is often unnecessary for users to share
originals of programs in this environment, because it is more economical to run a
separate copy on each user's machine. Controlled sharing is still essential, how-
ever; the difference is that it must now be provided by the network rather than by
the users' personal computers. Users may wish to exchange data and programs on
the network, store large files in central storage facilities, access database systems,
or run programs on computers having resources not provided by their own
computers.

Network security requires a combination of encryption and other security
controls. Encryption is needed to protect data whose transmission over the network
is authorized. Information flow controls are needed to prevent the unauthorized
dissemination of confidential data, classified military data, and proprietary soft-
ware over the network. Access controls are needed to prevent unauthorized access
to the key management facilities, to shared databases, and to computing facilities.
They are needed for reliability; loss of a single node on the network should not
bring down the entire network, or even make it impossible to transmit messages
that would have been routed through that node.

206 ACCESS CONTROLS

4.2.3 Design Principles

Saltzer and Schroeder identified several design principles for protection mecha-
nisms [Salt75]"

1. Least privilege: Every user and process should have the least set of access
rights necessary. This principle limits the damage that can result from error
or malicious attack. It implies processes should execute in small protection
domains, consisting of only those rights needed to complete their tasks.
When the access needs of a process change, the process should switch do-
mains. Furthermore, access rights should be acquired by explicit permission
only; the default should be lack of access (Saltzer and Schroeder called this a
"fail-safe" default). This principle is fundamental in containing Trojan
Horses and implementing reliable programs; a program cannot damage an
object it cannot access.

2. Economy of mechanism: The design should be sufficiently small and simple
that it can be verified and correctly implemented. Implementing security
mechanisms in the lowest levels of the system (hardware and software) goes
a long way toward achieving this objective, because the higher levels are then
supported by a secure base. This means, however, security must be an inte-
gral part of the design. Attempting to augment an existing system with
security mechanisms usually results in a proliferation of complex mecha-
nisms that never quite work. Although the system must be sufficiently flexi-
ble to handle a variety of protection policies, it is better to implement a
simple mechanism that meets the requirements of the system than it is to
implement one with complicated features that are seldom used.

3. Complete mediation: Every access should be checked for authorization. The
mechanism must be efficient, or users will find means of circumventing it.

4. Open design: Security should not depend on the design being secret or on the
ignorance of the attackers [Bara64]. This principle underlies cryptographic
systems, where the enciphering and deciphering algorithms are assumed
known.

5. Separation of privilege: Where possible, access to objects should depend on
more than one condition being satisfied. The key threshold schemes dis-
cussed in Section 3.8 illustrate this principle; here more than one shadow is
needed to restore a key.

6. Least common mechanism: Mechanisms shared by multiple users provide
potential information channels and, therefore, should be minimized. This
principle leads to mechanisms that provide user isolation through physically
separate hardware (distributed systems) or through logically separate virtual
machines [Pope74,Rush81].

7. Psychological acceptability: The mechanisms must be easy to use so that
they will be applied correctly and not bypassed. In particular, it must not be
substantially more difficult for users to restrict access to their objects than it
is to leave access to them unrestricted.

~ r//'¸

ACCESS HIERARCHIES 207

Access control mechanisms are based on three general concepts:

0

Access Hierarchies, which automatically give privileged subjects a superset
of the rights of less privileged subjects.
Authorization Lists, which are lists of subjects having access rights to some
particular object.
Capabilities, which are like "tickets" for objects; possession of a capability
unconditionally authorizes the holder access to the object.

Examples of mechanisms based on one or more of these concepts are discussed in
Sections 4.3-4.5.

4.3 ACCESS HIERARCHIES

We shall describe two kinds of mechanisms based on access hierarchies: privileged
modes and nested program units.

4.3.1 Privileged Modes

Most existing systems implement some form of privileged mode (also called super-
visor state) that gives supervisor programs an access domain consisting of every
object in the system. The state word of a process has a 1-bit flag indicating
whether the process is running in privileged mode or in nonprivileged (user) mode.
A process running in privileged mode can create and destroy objects, initiate and
terminate processes, access restricted regions of memory containing system tables,
and execute privileged instructions that are not available to user programs (e.g.,
execute certain I / O operations and change process statewords). This concept of
privileged mode is extended to users in UNIX, where a "super user" is allowed
access to any object in the system.

The protection rings in MULTICS are a generalization of the concept of
supervisor state [Grah68,Schr72,Orga72]. The state word of a process p specifies
an integer ring number in the range [0, r - 1]. Each ring defines a domain of
access, where the access privileges of ring j are a subset of those for ring i, for all
0 _< i < j _< r - 1 (see Figure 4.10). The supervisor state has r = 2.

Supervisor states and ring structures are contrary to the principle of least
privilege. Systems programs typically run with considerably more privilege than
they require for their tasks, and ring 0 programs have full access to the whole
system. A single bug or Trojan Horse in one of these programs could do consider-
able damage to data in main memory or on disk.

There are numerous examples of users who have exploited a design flaw that
enabled them to run their programs in supervisor state or plant a Trojan Horse in
some system module. For example, Popek and Farber [Pope78] describe an "ad-

FIGURE 4.10 MULTICS rings.
, ,

208 ACCESS CONTROLS

dress wraparound" problem in the PDP-10 TENEX system: under certain condi-
tions, a user could force the program counter to overflow while executing a
supervisor call, causing the privileged-mode bit in the process state word to be
turned on, and control to return to the user's program in privileged mode.

This does not mean supervisor states are inherently bad. They have strength-
ened the security of many systems at low cost. But systems requiring a high level
of security need additional mechanisms to limit the access rights of programs
running in supervisor state. Moreover, these systems require verifying that there
are no trapdoors whereby a user can run programs in supervisor state.

4.3.2 Nested Program Units

The scope rules of languages such as ALGOL, PL/I , and Pascal automatically
give inner program units (e.g., procedures and blocks) access to objects declared in
enclosing units--even if they do not require access to these objects. The inner
program units are, therefore, much like the inner rings of MULTICS. Whereas
objects declared in the inner units are hidden from the rest of the program, objects
declared in the outer units may be accessible to most of the program.

Example:
Consider the program structure shown in Figure 4.11. The inner program
unit S1 has access to its own local objects as well as global objects declared
in the enclosing units R1, Q1, and P1 (as long as there are no name con-
flicts). No other unit can access objects local to $1 unless they are explicitly
passed as parameters by $1. The outermost unit P1 has access only to the

AUTHORIZATION LISTS 209

FIGURE 4.11 Block structured program.

R1

R2
Q1

P1

02

objects declared in P1, though these objects are global to the entire pro-
gram. II

Programs that exploit the full capabilities of nested scopes are often difficult
to maintain. An inner unit that modifies a global data object has side effects that
can spread into other units sharing the same global objects. Changes to the code in
the innermost units can affect code in the other units. Changes to the structure of
a global object can affect code in the innermost units of the program.

Some recent languages have facilities for restricting access to objects in
enclosing program units. In Euclid [Lamp76a], for example, a program unit can
access only those objects that are accessible in the immediately enclosing unit and
either explicitly imported into the unit (through an imports list) or declared
pervasive (global) in some enclosing block. Ada t has a similar facility, where a
restricted program unit can access only those objects declared in an enclosing unit
and included in the visibility list for the unit.

4 .4 A U T H O R I Z A T I O N L ISTS

An authorization list (also called an access-control list) is a list of n >_ 0 subjects
who are authorized to access some particular object x. The ith entry in the list
gives the name of a subect s i and the rights r i in A[s i, x] of the access matrix:

"~Ada is a trademark of the Department of Defense.

210 ACCESS CONTROLS

Authorization List

S1, Fl
$2, r2

s,, r, .

An authorization list, therefore, represents the nonempty entries in column x of
the access matrix.

4.4.1 O w n e d O b j e c t s

Authorization lists are typically used to protect owned objects such as files. Each
file has an authorization list specifying the names (or IDs) of users or user groups,
and the access rights permitted each. Figure 4.12 illustrates.

The owner of a file has the sole authority to grant access rights to the file to
other users; no other user with access to the file can confer these rights on another
user (in terms of the abstract model, the copy flag is off). The owner can revoke
(or decrease) the access rights of any user simply by deleting (or modifying) the
user's entry in the authorization list.

MULTICS uses authorization lists to protect segments in long-term storage
[Dale65,Bens72,Orga72]. Each segment has an access-control list.with an entry
for each user permitted access to the segment. Each entry in the list indicates the

FIGURE 4.12 Author izat ion list for file.

File Directory

k

i i,i / ~ i User ID
ART

PAT

Rights

Own, RI¥

RW

ROY R

SAM R

Authorization List for F

file
F

/

AUTHORIZATION LISTS 211

type of access (read, write, or execute) permitted, together with the range of rings
(bracket) over which this permission is granted"

(rl, r2)--the read bracket, rl _< r2
(wl, w2)--the write bracket, W 1 ~ W 2

(el, e2)--the execute bracket, el .~ ez •

A process executing in ring i (see previous section) is not allowed access to a
segment unless the user associated with the process is listed in the access-control
list, and i falls within the range corresponding to the type of access desired.

In the SWARD system, authorization lists are associated with access sets for
objects [Buck80]. Users can group objects together into object sets, and then
define access sets over objects, object sets, and other access sets.

Example:
Figure 4.13 illustrates an access set for the object sets X, Y, and Z. The
access set A 1 is defined by the expression X + Y - Z, which evaluates left-
to-right to the set of objects {a2, c} (duplicate names in Y are removed; thus
al, the first version of a, is not included). Because the set A 1 is defined by an
expression, its constituency can change as objects are added to or deleted
from the object sets X, Y, and Z. II

To access an object, a user must specify the name of the object and an access

FIGURE 4.13 Access sets in SWARD.

Access Set A 1

X + Y - Z

x ~ YJI. ~ z

object sets

I

a 2

objects

212 ACCESS CONTROLS

FIGURE 4.14 UNIX file directory tree.

root

bin dev usr etc tmp

e • pjd

chl ch2 ch3 ch4 ch5 ch6

set. The user is granted access to the object only if it is included in the access set;
in addition, the authorization list for the set must have an entry for the user with
the appropriate access rights.

In UNIX, each file has an authorization list with three entries: one specify-
ing the owner's access rights; a second specifying the access rights of all users in
the owner's group (e.g., faculty, students, etc.), and a third specifying the access
rights of all others [Ritc74]. The access rights for each entry include R, IF, and E,
(E is interpreted as "directory search" for directory files). The UNIX file system
has a tree-structured directory, and files are named bypaths in the tree.

Example:
Figure 4.14 shows a portion of the tree structure for the UNIX file system
that contains the working version of this book. A user (other than ded)
wishing to read Chapter 4 must specify the path name/us r /ded /book /ch4 .
Access is granted provided the user has E-access to the directories usr, ded,
and book, and R-access to the file ch4. i l

Many systems use authorization lists with only two entries: one specifying
the owner's access rights, and the other specifying the access rights of all others.
The access rights in these systems are usually limited to R and IF.

These degenerate forms of authorization lists do not meet the objective of
least privilege. Nevertheless, they are efficient to implement and search, and ade-
quate for many applications.

AUTHORIZATION LISTS 213

Because an authorization list can be expensive to search, many systems do
not check the authorization list for every access. A file system monitor, for exam-
ple, might check a file's authorization list when the file is opened, but not for each
read or write operation. Consequently, if a right is revoked after a file is opened,
the revocation does not take effect until the file is closed. Because of their ineffi-
ciencies, authorization lists are not suitable for protecting segments of memory,
where address bounds must be checked for every reference.

We saw in Section 3.7.1 (see Figure 3.19) how access to a file F encrypted
under a key K (or keys if separate read and write keys are used) could be con-
trolled by a "keys record", where every user allowed access to F has an entry in the
record containing a copy of K enciphered under the user's private transformation.
The keys record is like an authorization list, and is impossible to forge or bypass
(the key is needed to access the file). Standard authorization lists for encrypted or
unencrypted files could also be protected from unauthorized modification by en-
crypting them under a file monitor key.

4.4.2 Revocation

The authorization lists we have described so far have the advantage of giving the
owner of an object complete control over who has access to the object; the owner
can revoke any other user's access to the object by deleting the user's entry in the
list (though the revocation might not take effect immediately as noted earlier).
This advantage is partially lost in systems that use authorization lists to support
nonowned objects, and allow any user to grant and revoke access rights to an
object.

An example of such a system is System R [Grif76], a relational database
system [Codd70,Codd79] developed at the IBM Research Laboratory in San Jose.
The protected data objects of System R consist of relations, which are sets (tables)
of n-tuples (rows or records), where each n-tuple has n attributes (columns). A
relation can be either a base relation, which is a physical table stored in memory,
or a view, which is a logical subset, summary, or join of other relations.

Example:
An example of a relation is

Student (Name, Sex, Major, Class, SAT, GP).

Each tuple in the Student relation gives the name, sex, major, class, SAT
score, and grade-point of some student in the database (see Table 6.1 in
Chapter 6). II

The access rights for a relation (table) include:

Read."

Insert:

for reading rows of the table, using the relation in queries, or
defining views based on the relation.
for adding new rows to a table.

214 ACCESS CONTROLS

Delete:
Update:
Drop:

for deleting rows in a table.
for modifying data in a table or in certain columns of a table.
for deleting a table.

Any user A with access rights to a table can grant these rights to another user B
(provided the copy flag is set). A can later revoke these rights, and the state of the
system following a revocation should be as if the rights had never been granted.
This means that if B has subsequently granted these rights to another user C, then
C's rights must also be lost. In general, any user who could not have obtained the
rights without the grant from A to B must lose these rights.

To implement this, each access right granted to a user is recorded in an
access list called Sysauth. Sysauth is a relation, where each tuple specifies the
user receiving the right, the name of the table the user is authorized to access, the
type of table (view or base relation), the grantor making the authorization, the
access rights granted to the user, and a copy flag (called a Grant option). Each
access right (except for Update) is represented by a column of Sysauth and indi-
cates the time of the grant (a time of 0 means the right was not granted). The
timestamps are used by the revocation mechanism to determine the path along
which a right has been disseminated.

The column for Update specifies All, None, or Some. If Some is specified,
then for each updatable column, a tuple is placed in a second authorization table
called Syscolauth. It is unnecessary to provide a similar feature for Read, because
any subset of columns can be restricted through the view mechanism. For exam-
ple, access only to Name, Sex, Major, and Class for the Student relation can be
granted by defining a view over these attributes only (i.e., excluding SAT and
GP).

Note that the authorization list for a particular relation X can be obtained
from Sysauth by selecting all tuples such that Table = X.

Example:
The following shows the tuples in Sysauth that result from a sequence of
grants for a relation X created by user A. (Columns for table type and the
rights Delete, Update, and Drop are not shown.)

User Table Grantor Read Insert . . . Copy
, ,

B X A 10 10 yes
D X A 15 0 no
C X B 20 20 yes
D X C 30 30 yes .

User B obtained both Read and Insert access to X from A at time t = 10,
and passed both rights to C at time t = 20. User D obtained Read access to X
from A at time t = 15, and both Read and Insert access to X from C at time
t = 30. Whereas D can grant the rights received from C, D cannot grant the
Read right received from A. n

AUTHORIZATION LISTS 215

FIGURE 4.15 Transfer of rights for relation X.
.

10 ~ 20 ~ 30

R

Griffiths and Wade [Grif76] use directed graphs to illustrate the transfer
and revocation of rights for a particular relation. Each node of a graph represents
a user with access to the relation. Each edge represents a grant and is labeled with
the time of the grant; we shall also label an edge with the rights transferred.

Example:
Figure 4.15 shows a graph for the relation X of the previous example. Sup-
pose that at time t = 40, A revokes the rights granted to B. Then the entries
in Sysauth for both B and C must be removed because C received these
rights from B. Although D is allowed to keep rights received directly from A,
D must forfeit other rights received from C. The final state of Sysauth is
thus:

User Table Grantor Read Insert. . . Copy
, ,

D X A 15 0 no . II

Example:
Figure 4.16 illustrates a more complicated situation, where B first grants
rights to C received from A (t = 15), and then later grants rights to C
received from D (t = 25). The state of Sysauth is thus:

FIGURE 4.16 Transfer of rights for relation Y.

10
m

R.I

2,/
R

15
m

R,I

25
m

R,I

216 ACCESS CONTROLS

User Table Grantor Read Insert . . . Copy
.

D Y A 5 0 yes
B Y A 10 10 yes
C Y B 15 15 yes
B Y D 20 0 yes
C Y B 25 25 yes . n

In the preceding example, we recorded in Sysauth the duplicate grants from B to
C (at t = 15 and t = 25). This differs from the procedure given by Griffiths and
Wade, which records only the earliest instance of a grant and, therefore, would not
have recorded the one at t = 25. Fagin [Fagi78] observed that unless all grants are
recorded, the revocation procedure may remove more rights than necessary.

Example:
Suppose A revokes the Read and Insert rights given to B. B should be al-
lowed to keep the Read right received from D, and C should be allowed to
keep the Read right received from B at time t = 25 that was passed along the
path (A, D, B, C). Both B and C, however, must forfeit their Insert rights.
The final state of Sysauth should therefore be:

User Table Grantor Read Inser t . . . Copy

D Y A 5 0 yes
B Y D 20 0 yes
C Y B 25 0 yes .

.

If the duplicate entry at time t = 25 had not been recorded in Sysauth, C's
Read right for Y would have been lost. n

4.5 CAPABILITIES

A capability is a pair (x, r) specifying the unique name (logical address) of an
object x and a set of access rights r for x (some capabilities also specify an object's
type). The capability is a ticket in that possession unconditionally authorizes the
holder r-access to x. Once the capability is granted, no further validation of access
is required. Without the capability mechanism, validation would be required on
each access by searching an authorization list.

The concept of capability has its roots in Iliffe's "codewords", which were
implemented in the Rice University Computer [Ilif62] in 1958, and generalized in
the Basic Language Machine [I1if72] in the early 1960s. A codeword is a descrip-
tor specifying the type of an object and either its value (if the object is a single
element such as an integer) or its length and location (if the object is a structure of
elements such as an array). A codeword also has a special tag that allows it to be

CAPABILITIES 217

recognized and interpreted by the hardware. A similar concept was embodied in
the "descriptors" of the Burroughs B5000 computer in 1961.

Dennis and VanHorn [DeVH66] introduced the term "capability" in 1966.
They proposed a model of a multiprogramming system that used capabilities to
control access to objects that could either be in main memory or in secondary
(long-term) storage. In their model, each process executes in a domain called a
"sphere of protection", which is defined by a capability list, or C-list for short. The
C-list for a domain s is a list of n >_ 0 capabilities for the objects permitted to s:

C-List

Xl~ F1

X2~ F 2

Xn~ F n

where r i gives the rights in A [s, xi] of the access matrix. The C-list for s, therefore,
represents the nonempty entries in row s of the access matrix.

Example:
Figure 4.17 illustrates a C-list that provides read/execute-access (RE) to the
code for procedure A, read-only-access (R) to data objects B and C, and
read/write-access (RW) to data object D. The diagram shows each capabili-
ty pointing directly to an object; the mapping from capabilities to object
locations is described in Section 4.5.3. m

FIGURE 4,17 Capability list.

Rights Object

C - list

procedure
code

218 ACCESS CONTROLS

Capabilities have been the underlying protection mechanism in several sys-
tems, including the Chicago Magic Number Computer [Fabr7 l a], the BCC model
I system [Lamp69], the SUE system [Sevc74], the Cal system [Lamp76b], the
Plessey System 250 [Eng174], HYDRA [Wulf74,Cohe75], the CAP system
[Need77], StarOS for CM. [Jone79], UCLA Secure UNIX [Pope79], iMAX for
the INTEL iAPX 432 [Kahn81], the SWARD system [Myer80,Myer78], and
PSOS [Feie79,Neum80].

4.5.1 Domain Switching with Protected Entry Points

Dennis and VanHorn envisaged a mechanism for supporting small protection do-
mains and abstract data types. A principal feature of their mechanism was an
enter capability (denoted by the access right Ent). An enter capability points to a
C-list and gives the right to transfer into the domain defined by the C-list. Enter
capabilities provide a mechanism for implementing protected entry points into

FIGURE 4.18 Domain switch with protected entry points.
, ,

call

Rights

RE

RW

I

i

Ent [

C - list
Calling Domain

Object 2 . y
calling

procedure

data
segment

RE

RW

Object.
m

called
procedure

C - l i s t
Called Domain

data
segment

turn

CAPABILITIES 219

procedures, or protected subsystems. When a process calls a protected procedure,
its C-list (and therefore domain) is changed. When the procedure returns, the
former C-list is restored (see Figure 4.18).

This concept of giving each procedure its own set of capabilities supports the
principle of least privilege. Each capability list need contain entries only for the
objects required to carry out its task. Damage is confined in case the program
contains an error. An untrusted program can be encapsulated in an inferior sphere
of protection where it cannot endanger unrelated programs. Data can be hidden
away in a domain accessible only to the programs allowed to manipulate it. This
provides a natural environment for implementing abstract data types (see also
[Linn76]).

4.5.2 Abstract Data Types

An abstract data type is a collection of objects and operations that manipulate the
objects. Programming languages that support abstract data types have facilities
for defining a type module that specifies:

1. The name t of an object type.
2. The operations (procedures, functions) that may be performed on objects of

type t. There are two categories of operations: external operations, which
provide an interface to the module from the outside, and internal operations,
which are available within the module only. The semantics of the operations
may be defined by a set of axioms.

3. The representation or implementation of objects of type t in terms of more
primitive objects. This representation is hidden; it is not available to proce-
dures outside the module.

Abstract data types are also called extended-type objects, because they extend the
basic built-in types of a programming language. Languages that support abstract
data types include Simula 67 [Dah172], CLU [Lisk77], Alphard [Wulf76], MOD-
EL [Morr78], and Ada. These languages are sometimes called "object-oriented"
languages.

Example:
Figure 4.19 shows the principal components of a type module for a stack of
integer elements, implemented as a sequential vector; all procedures are
available outside the module. II

A type module encapsulates objects in a small protection domain. These
objects can be accessed only through external procedures that serve as protected
entry points into the module. The module provides an environment for information
hiding, where the low-level representation of an object is hidden from outside
procedures that perform high-level operations on the data.

The principal motivation for abstract data types is program reliability and

220 ACCESS CONTROLS

FIGURE 4.19 Type module for stacks.

module stack
constant size = 100;
type stack =

record of
top: integer, init 0;
data: array[1 .. size] of integer;

end;
procedure push(vat s: stack; x: integer);

begin
s.top := s.top + 1;
if s.top > size

then "stack overflow"
else s.data[s.top] := x

end;
procedure pop(var s: stack): integer;

begin
if s.top = 0

then "stack underflow"
else begin

pop := s.data[s.top];
s.top := s.top - l;
end

end;
procedure empty(var s: stack): boolean;

begin
if s.top = 0

then empty := true
else empty := false

end
end stack

maintenance. Because the representation of an object is confined to a single mod-
ule, changes to the representation should have little effect outside the module.

Capability-based systems provide an attractive environment for implement-
ing abstract data types because the objects required by a program can be linked to
the program by capabilities, and capabilities provide a uniform mechanism for
accessing all types of objects. Iliffe's codewords, in fact, were devised to support
data abstraction.

In HYDRA, for example, each procedure in a type module is represented by
a C-list that includes capabilities for the procedure's code and local objects, and
templates for the parameters passed to the procedure. If a process creates an
instance x of the object type defined by the module, it is given a capability C for x
with rights to pass x to the procedures of the module (or a subset of the proce-
dures), but it is not given R W rights to the representation of x. Because the
procedures of the type module require R W rights to the internal representation of
x, they are permitted to amplify the rights in C to those specified in an "amplifica-
tion template".

s ~

ABF DEF GHIIJ KL MMNOHP P 221

FIGURE 4.20 Abstract data type and rights amplification.

calling procedure

RE

Pop, Push . . . , , . . . ,41, stack S
Empty

Ent ",

Calling C- l i s t ~ ~ pop
procedure

Before call

After call

Amplification template Pop /R W

C - list for
pop procedure

RE J

RW

C - list for
Activation o f pop

Example:
Let S be an instance of type stack as defined in Figure 4.19. Figure 4.20
shows a calling C-list with Pop, Push, and Empty rights to S, and an Ent
right for the pop procedure. The C-list for the pop procedure has an amplifi-
cation template that allows it to amplify the pop right in a capability for a
stack to R W. When the pop procedure is called with parameter S, a C-list
for the activation of pop is created with R W rights for S (activation C-lists
are analogous to procedure activation records). II

222 ACCESS CONTROLS

FIGURE 4.21 Object encapsulated in private domain.

f
RE , ~

Calling C - list

R E

RW

C - list for S TM

stack
S

FIGURE 4.22 Sealed objects.

Program

seal unseal

stack

module

CAPABILITIES 223

The capability mechanisms of HYDRA are implemented completely in soft-
ware. Many of the features in HYDRA have been implemented in hardware in the
INTEL iAPX 432. Its operating system, iMAX, is implemented in Ada. An Ada
type module (called a "package") is represented by a capability list for the proce-
dures and data objects of the module. If objects are passed to the module as
parameters, their capabilities are represented by templates (called descriptor-
control objects), and rights amplification is used as in HYDRA.

Objects can also be encapsulated in private domains, in which case rights
amplification is not needed (see Figure 4.21). The private domain contains capa-
bilities for the object plus the procedures for manipulating it. This strategy is also
used in CAR

Rights amplification is one way of implementing the unseal operation de-
scribed by Morris [Mors73]. Morris suggested that an object of type t be sealed
by the type manager for t such that only the type manager can seal and unseal it,
and operations applied to the sealed object cause an error. The seal, therefore,
serves to authenticate the internal structure of the object to the type manager,
while hiding the structure from the remainder of the program. Figure 4.22 shows a
sealed stack.

Seal and unseal could also be implemented with encryption. The type man-
ager would encrypt an object before releasing it to the program, and only the type
manager would be able to decrypt it for processing. This could degrade perform-
ance if the time required to encrypt and decrypt the object exceeds the processing
time. When abstract data types are used primarily for program reliability and
maintenance rather than for protection against malicious attacks, more efficient
mechanisms are preferable. (A more general form of cryptographic sealing is
described in Section 4.5.5.)

The SWARD machine designed by Myers effectively seals objects through
its tagged memory. Every object in memory is tagged with a descriptor that identi-
fies its type and size. If an object is a nonhomogeneous structure (e.g., a record
structure), its elements are also tagged. A program must know the internal struc-
ture of an object to access it in memory. This means a program can hold a capabil-
ity with R W-access to an object without being able to exercise these rights--only
the type module will know the representation of the object and, therefore, be able
to access it. This does not guarantee that a program cannot guess the internal
representation of its objects and thereby access them, but it does prevent programs
from accidentally modifying their objects. Myers calls this a "second level of
protection"--the capabilities providing the "first level".

Although object-oriented languages have facilities for specifying access con-
straints on object types, they do not have facilities for specifying additional con-
straints on instances of a type. For example, it is not possible in these languages to
specify that a procedure is to have access only to the push procedure for a stack $1
and the pop and empty procedures for another stack $2. Jones and Liskov
[Jone76a] proposed a language extension that permits the specification of quali-
fied types that constrain an object type to a subset of the operations defined on
that type. The constraints imposed by qualified types can be enforced by the
compiler or by the underlying capability mechanism.

224 ACCESS CONTROLS

Minsky [MinN78] has extended the concept of capability to distinguish be-
tween tickets for operands (data objects) and activators for operators (functions or
procedures). A ticket is like a capability. An activator `4 has the following
structure:

A = (o, p , , . . . , pk IG) ~ po

where o is an operator-identifier, Pi is an access constraint on the ith operand of
o(1 _< i _< k), G is a global constraint defined on all operands, and Po is a
constraint on the result of the operator. The constraints Pi may be data-dependent
or state-dependent; the global constraint G allows for the specification of context
dependent conditions. A subject can apply the operator o of an activator A only if
the operands satisfy the constraints of A.

The scheme could be implemented using a capability-based system that sup-
ports enter capabilities for protected modules. An activator ,4 for operator o would
be implemented as a capability to enter a protected module. The module would
check the operands to determine if they satisfy the constraints of A; if so, it would
execute the operator o.

Minsky believes, however, that an underlying mechanism that implements
both tickets and activators is preferable. He shows that such a scheme could
support abstract data types without using rights amplification.

Example:
A process owning a stack S would be given a ticket for S and activators for
popping and pushing arbitrary stacks. The type module, on the other hand,
would be given activators for reading and writing the representation of
stacks; these activators can be applied to the stack S if the process owning S
passes the ticket for S to the type module. The activators within the type
module serve the same purpose as the templates used in HYDRA. II

4.5.3 Capability-Based Addressing

Capabilities provide an efficient protection mechanism that can be integrated with
a computer's addressing mechanism. This is called capability-based addressing.
Figure 4.23 illustrates how the ith word of memory in a segment X is addressed
with a capability. The instruction address specifies a capability C for X and the
offset i (the capability may be loaded on a hardware stack or in a register). The
logical address of X is mapped to a physical address through a descriptor in a
mapping table: the descriptor gives the base B and length L of the memory seg-
ment containing the object. The base address B could be an address in either
primary or secondary memory (a flag, called the presence bit, indicates which); if
the object is in secondary memory, it is moved to primary memory and B updated.
The process is given access to the memory address B + i only if the offset is in
range; that is, if 0 ~ i < L. With the descriptor table, an object can be relocated
without changing the capability; only the entry in the descriptor table requires
updating.

CAPABILITIES 225

FIGURE 4.23 Capability-based addressing.

Rights Object

- - - ' ' "

Capability

instruction address

cap offset Object Length Base

i .i '] 1

Descriptor Table

,/
t
I
f
t
f
I
t
I

Memory

B + i

B + L - I

A capability does not usually index the mapping table directly. Instead it
gives the unique name of the object, and this name is hashed to a slot in the table.
This has special advantages when programs are shared or saved in long-term
storage. Because the capabilities are invariant, the program can run in any domain
at any time without modification. All variant information describing the location
of the program and the objects referenced by it is kept in a central descriptor table
under system control.

This property of invariance distinguishes capability systems from segmented
virtual memory systems based on codewords and descriptors. In a descriptor-
addressed system, a program accesses an object through a local address that points
directly to an entry in the descriptor table. (Access rights are stored directly in the
descriptors.) If local addresses refer to fixed positions in the descriptor table,
sharing requires the participants to prearrange definitions (bindings) of local ad-
dresses. (See [Fabr71b,Fabr74] for a detailed discussion of capability-based
addressing.)

The capabilities and hashed descriptor table need not significantly degrade
addressing speed. Information in the descriptor table can be stored in high-speed
associative registers, as is done for virtual memories. Table lookup time can be
reduced by picking object names that hash to unique slots in the table (in
SWARD, this is done by incrementing a counter until the value hashes to an
empty slot).

With capability-based addressing, subjects sharing an object need only store
a capability to an entry point in the structure, and different subjects can have
different entry points and different access rights.

226 ACCESS CONTROLS

FIGURE 4.24 Shared subdirectory.

P 1 C - list

R W ,,,
_

R

R W ,,

D

R W °

R

D 1

D 2

D l l

R W i
i

D 1 2

D 3

Di rec to r i e s D 3 1

Files

P 2 C - list

Example:
Figure 4.24 shows a process P1 with an R W-capability for the root D of a file
directory. To read file F1, P1 would first get the R W-capability for directory
D1 from D; it would then get the R W-capability for D l l from D1, and
finally get an R-capability for F1 from D11. Similarly, P1 can acquire capa-
bilities to access other files in the directory or to modify directories ad-
dressed by RW-capabilities (namely, D, D1, Di 1, and D3). Process P1 can
share the subdirectory D3 with a process P2 by giving it an R-capability for
the subdirectory D3; thus P2 can only access files F5 and F6; it cannot
modify any of the directories. !1

With capability-based addressing, the protection state of a system is more
naturally described with a directed graph such as shown in Figure 4.24 than with a
matrix. The nodes of a graph correspond to the subjects and objects of the matrix;
the edges to rights.

If the memory of the machine is not tagged, then the capabilities associated
with a process or object must be stored in capability lists that are managed sepa-
rately from other types of data. This means any object that has both capabilities
and other types of data must be partitioned into two parts: a capability part and a
data part. The system must keep these parts separate to protect the capabilities
from unauthorized modification. This approach is used in most capability systems.

/

CAPABILITIES 227

If the memory is tagged, capabilities can be stored anywhere in an object
and used like addresses. Because their tags identify them as capabilities, the sys-
tem can protect them from unauthorized modification. To address an object with a
capability, the capability could be loaded either onto a hardware stack (in a stack
architecture) or into a register (in a register architecture). The tagged memory
approach simplifies addressing, domain switching, and storage management rela-
tive to partitioning (e.g., see [Dens80,Myer78]). Tagged memory, like capabilities,
has its origins in the Rice Computer, the Basic Language~Machine, and the Bur-
roughs B5000 [Ilif72]. The SWARD machine and PSOS operating systems use
tagged memories, as well as the capability-based machine designs of Dennis
[Dens80] and Gehringer [Gehr79]. In SWARD, for example, a program can
address local objects directly; capabilities are only used to address nonlocal ob-
jects. A capability can refer either to an entire object or to an element within an
object. Indirect capabilities can be created to set up indirect address chains.

A system can use both capabilities and authorization lists--capabilities for
currently active objects and authorization lists for inactive ones. Both MULTICS
and SWARD, for example, provide a segmented name space through a single-level
logical store. To access a segment in MULTICS, a process requests a descriptor
(capability in SWARD) for it; this is granted provided the user associated with the
process is listed in the authorization list for the target segment (access set in
SWARD). Thereafter, the process can access the segment directly through the
capability.

4.5.4 Revocat ion

Capabilities are easy to copy and disseminate, especially when they are stored in a
tagged memory rather than in C-lists. This facilitates sharing among procedures
or processes. There is, however, a drawback to this if objects are owned, and the
owners can revoke privileges. If all access rights to an object are stored in a single

FIGURE 4.25 Revocation of rights with indirection.

user:

owner:

c.j Rw x,

 wIx, l -1
C' Revoke

C R W X scriptor Table

.!
object

228 ACCESS CONTROLS

FIGURE 4.26 Revocation of rights with indirect capability in SWARD.

user: I R w

owner:

[Rw ! - .[o ect

C [RW scriptor Table

authorization list, it is relatively simple to purge them. But if they are scattered
throughout the system, revocation could be more difficult.

Redell [Rede74] proposed a simple solution to this problem based on indirect
addressing. The owner of an object X with capability C creates a capability C'
with name X'. Rather than pointing to the object directly, the entry for X ' in the
descriptor table points to the entry for X. The owner grants access to X by giving
out copies of the capability C' (see Figure 4.25). If the owner later revokes C', the
entry for X' is removed from the descriptor table, breaking the link to X. The
indirect capabilities of SWARD can also be used for revocation. Here the user is
given an indirect capability I that points to a copy C1 of the owner's capability for
X. The owner revokes access to X by changing C1 (see Figure 4.26).

4.5.5 Locks and Keys

Locks and keys combine aspects of list-oriented and ticket-oriented mechanisms.
Associated with each object x is a list of locks and access rights:

L1, rl
L2, r~

°

Ln, rn .

A subject s is given a key K i to lock L; i f s has r;-access to x; that is, if A Is, x] = r i.

A lock list, therefore, represents a column of the access matrix, where identical
(nonempty) entries of the column can be represented by a single pair (L/, r/). A
key for an object represents a form of capability in which access is granted only if
the key matches one of the locks in the object's lock list. The owner of an object
can revoke the access rights of all subjects sharing a key K; by deleting the entry

CAPABILITIES 229

for L i in the lock list. Typically n - 1; that is, an object contains a single lock. In
this case, a key is like an indirect capability, because the owner can revoke the key
by changing the lock.

This method of protection resembles the "storage keys" used in IBM Sys-
tem/360 [IBM68]; the program status word of a process specifies a 4-bit key that
must match a lock on the region of memory addressed by the process.

The ASAP file maintenance system designed at Cornell uses locks and keys
[Conw72]. Each field in a record has associated with it one of eight possible
classes (locks). Users are assigned to one or more of the classes (keys), and can
only access those fields for which they have a key. There is also associated with
each user a list of operations (e.g., Update, Print) the user is allowed to perform,
and a set of data-dependent access restrictions. Whereas the data-independent
restrictions are enforced at compile-time, the data-dependent restrictions are en-
forced at run-time.

Encryption is another example of a lock and key mechanism. Encrypting
data places a lock on it, which can be unlocked only with the decryption key.
Gifford [Gift82] has devised a scheme for protecting objects with encryption,
which he calls cryptographic sealing. Let X be an object encrypted with a key K;
access to X, therefore, requires K. Access to K can be controlled by associating an
opener R with X. Openers provide different kinds of sharing, three of which are as
follows:

,

OR-Access, where K can be recovered with any D i in a list of n deciphering
transformations D 1 , . . . , D,. Here the opener R is defined by the list

R = (EL(K), E2(K) E , (K)) ,

where E i is the enciphering transformation corresponding to D;. Because K is
separately enciphered under each of the E;, a process with access to any one
of the D i can present D t to obtain K. The opener is thus like the "keys record"
in Gudes's scheme described in Section 3.7.1 (see Figure 3.19).
AND-Access, where every D; in a list of deciphering transformations D1 ,
D, must be present to recover K. Here the opener R is defined by

R = E n (E n _ i (. . . E z (E i (K)) . . .)) .

Clearly, every D i must be present to obtain K from the inverse function

D i (D 2 (. . . Dn_i (Dn(R)) . . .)) = K .

Quorum-Access, where K can be recovered from any subset of t of the D~ in a
list D1 , D.. Here R is defined by the list

R = (E~(Ka), E2(Kz) , E n (K .)) ,

where each K i is a shadow of K in a (t, n) threshold scheme (see Section 3.8).

The different types of access can be combined to give even more flexible
forms of sharing. The scheme also provides mechanisms for constructing submas-

230 ACCESS CONTROLS

ter keys and indirect keys (that allow keys to be changed), and providing check-
sums in encrypted objects (for authentication--see Section 3.4). It can be used
with both single-key and public-key encryption.

4.5.6 Query Modification

A high-level approach to security may be taken in query-processing systems (also
called transaction-processing systems). The commands (queries) issued by a user
are calls on a small library of transaction programs that perform specific oper-
ations, such as retrieving and updating, on a database. The user is not allowed to
write, compile, and run arbitrary programs. In such systems, the only programs
allowed to run are the certified transaction programs.

A user accesses a set of records with a query of the form (f, T, E), where f is
an operation, T is the name of a table, and E is a logical expression identifying a
group of records in T.

Example:
An example of an expression is E = " S e x = Female". A request to retrieve
this group of records from a table S t u d e n t is specified by the query:

Retrieve, S tudent , (Sex = F e m a l e) . II

Stonebraker and Wong [Ston74] proposed an access control mechanism
based on query modification. Associated with each user is a list with entries of the
form (T, R), where T is the name of a table and R is a set of access restrictions on
T. The list is similar to a capability list in that it defines a user's access rights to
the database. Each access restriction is of the form (f, S), where S is an expression
identifying a subset of T; it authorizes the user to perform operation f on the
subset defined by S. If the user poses the query (f, T, E), the transaction program
modifies E according to the expression S; it then proceeds as if the user had
actually presented a formula (E • S), where " . " denotes logical and (see Figure
4.27).

Example:
If a user is permitted to retrieve only the records of students in the depart-
ment of computer science, then S = "Dept = CS" , and the preceding request
would be transformed to:

Retrieve, S tudent , (Sex = Female) • (Dept = CS) . II

Query modification may be used in systems with different underlying struc-
tures. Stonebraker and Wong developed it for the INGRES system, a relational
database management system; it is also used in the GPLAN system [Cash76], a
network-based database system designed around the CODASYL Data Base Task
Group report.

/

231

requested allowed

FIGURE 4.27 Query modification.

VERIFIABLY SECURE SYSTEMS

The technique has the advantage of being conceptually simple and easy to
implement, yet powerful enough to handle complex access constraints. It is, how-
ever, a high-level mechanism applicable only at the user interface. Lower-level
mechanisms are needed to ensure the transaction programs do not violate their
constraints, and to ensure users cannot circumvent the query processor.

4.6 VERIFIABLY SECURE SYSTEMS

The presence of protection mechanisms does not guarantee security. If there are
errors or design flaws in the operating system, processes may still be able to
acquire unauthorized access to objects or bypass the protection mechanisms. For
example, a user may be able to bypass an authorization list for a file stored on disk
by issuing I /O requests directly to the disk.

In the 1960s, the Systems Development Corporation (SDC) developed an
approach for locating security flaws in operating systems [Lind75]. The method-
ology involves generating an inventory of suspected flaws called "flaw hypothe-
ses", testing the hypotheses, and generalizing the findings to locate similar flaws.
SDC applied the technique to locate and repair flaws in several major systems (see
also [Hebb80] for a more recent application).

Most flaws satisfy certain general patterns; for example, a global variable
used by the supervisor is tampered with between calls, and the supervisor does not
check the variable before use. The University of Southern California Information
Sciences Institute (ISI) has developed tools (some automatic) for finding these
error patterns in operating systems [Carl75].

Penetration analysis (sometimes called a "tiger team" approach) has helped
locate security weaknesses. But like program testing, it does not prove the absence
of flaws.

232 ACCESS CONTROLS

In general, it is not possible to prove an arbitrary system is secure. The
reason is similar to the reason we cannot prove programs halt, and is addressed in
Section 4.7. But just as it is possible to write verifiably correct programs (e.g., the
program "i : - 7 + 10" always halts and satisfies the post-condition "i = 17"), it is
possible to build provably secure systems. The key is to integrate the verification of
a system into its specification, design, and implementation; that is described in the
subsections that follow. Neumann [Neum78] believes the approach has led to
systems with fewer flaws, but suggests combining it with penetration analysis to
further strengthen the security of a system. Again, an analogy with program devel-
opment holds; we would not put into production a verified but untested air traffic
control program.

Even with advanced technology for developing and verifying systems, it is
unlikely systems will be absolutely secure. Computer systems are extremely com-
plex and vulnerable to many subtle forms of attack.

We shall first examine two techniques for structuring systems that aid verifi-
cation, and then examine the verification process itself.

4.6.1 Security Kernels

The objective is to isolate the access checking mechanisms in a small system
nucleus responsible for enforcing security. The nucleus, called a security kernel,
mediates all access requests to ensure they are permitted by the system's security
policies. The security of the system is established by proving the protection policies
meet the requirements of the system, and that the kernel correctly enforces the
policies. If the kernel is small, the verification effort is considerably less than that
required for a complete operating system.

The concept of security kernel evolved from the reference monitor concept
described in the Anderson report [Ande72], and was suggested by Roger Schell. A
reference monitor is an abstraction of the access checking function of object moni-
tors [GrDe72] (see Section 4.1.1).

Several kernel-based systems have been designed or developed, including the
MITRE security kernel for the DEC PDP-11/45 [Schi75,Mil176]; MULTICS
with AIM [Schr77]; the MULTICS-based system designed at Case Western Re-
serve [Walt75]; the UCLA Data Secure UNIX system (DSU) for the PDP-11/45
and PDP-11/70 [Pope79]; the UNIX-based Kernelized Secure Operating System
(KSOS) developed at Ford Aerospace for the PDP-11/70 (KSOS-11)
[McCa79,Bers79] and at Honeywell for a Honeywell Level 6 machine (KSOS-6
or SCOMP) [Broa76]; and Kernelized VM/370 (KVM/370) developed at the
System Development Corporation [Gold79].

With the exception of UCLA Secure UNIX, these systems were all devel-
oped to support the Department of Defense multilevel security policy described in
the next chapter. Informally, this policy states that classified information must not
be accessible to subjects with a lower security clearance. This means, for example,
a user having a Secret clearance must not be able to read from Top Secret files

/ /

VERIFIABLY SECURE SYSTEMS 233

FIGURE 4.28 UCLA secure UNIX archi tecture.

User Process User Process

pplicatiOffl [Application
Program | ! Program

user mode

Schedu,er)(Ne'w°rk)i NIX I''! UNIX II()1((Manager Interface " Interface Policy Dialoguer
Manager

KISS ! \ KISS

supervisor
mode

Kernel I I kernel mode

(i.e., "read up") or write Secret information in Confidential or Unclassified files
(i.e., "write down").

We shall briefly describe UCLA Secure UNIX and KSOS-11. Both systems
support a UNIX interface and run on PDP-11 hardware; both exploit the three
execution modes of the PDP-11" kernel (highest privilege), supervisor, and user
(least privilege). But different strategies have been used to structure and develop

i

the two systems.
Figure 4.28 shows the architecture of the UCLA Secure UNIX system.

Each user process runs in a separate protection domain, and is partitioned into two
virtual address spaces. One address space contains the user (application) program
and runs in user mode; the other contains a UNIX interface and runs in supervisor
mode. The UNIX interface consists of a scaled down version of the standard
UNIX operating system and a Kernel Interface SubSystem (KISS) that interfaces
with the kernel.

The protection domain of a process is represented by a capability list man-
aged by the kernel. The kernel enforces the protection policy represented by the
capabilities, but does not alter the protection data. The power to grant and revoke
capabilities is invested in a separate policy manager that manages the protection
policies for shared files and kernel objects (processes, pages, and devices). Pro-

234 ACCESS CONTROLS

FIGURE 4.29 KSOS-11 architecture.

~untApplication Program~N~
rusted Sys°trem S o f t w a ~ user mode

UNIX Emulator supervisor mode

kernel mode

cesses cannot directly pass capabilities. The policy manager relies on a separate
process (called a "dialoguer") to establish a secure connection between a user and
terminal. The security policies and mechanisms of the system, therefore, are in-
vested in the kernel, the policy manager, and the dialoguer (shown highlighted in
Figure 4.28).

The kernel supports four types of objects: capabilities, processes, pages, and
devices. It does not support type extensibility through abstract data types. Capa-
bilities are implemented in software. The kernel is small (compared with other
kernels), consisting of less than 2000 lines of code. The system architecture also
includes a resource scheduler and network manager for the ARPANET.

Figure 4.29 shows the architecture of KSOS. Like the UCLA kernel, the
KSOS kernel is at the lowest level and runs in kernel mode. But the KSOS kernel
is substantially larger than the UCLA kernel, providing more operating system
functions, file handling, and a form of type extension (the kernel is closer to a
complete operating system than a simple reference monitor). The kernel enforces
both an access control policy and the multilevel security policy.

A UNIX emulator and a "trusted" portion of nonkernel system software run
in supervisor mode and interface directly with the kernel. The emulator translates
system calls at the UNIX interface into kernel calls. Untrusted (nonverified) sys-

VERIFIABLY SECURE SYSTEMS 235

tem software and application programs run in user mode and interface with the
UNIX emulator or directly with the kernel. They can communicate with trusted
processes through interprocess communication messages provided by the kernel.
The trusted software consists of support services such as login, the terminal inter-
face, and the telecommunications interface; and security mechanisms for applica-
tions with policies that conflict with the multilevel security policies of the kernel
(see Section 5.6.3 for an example). Trusted processes are at least partially verified
or audited.

Security kernels have also been used to structure database systems. Downs
and Popek [Down77] describe a database system that uses two security kernels: a
"kernel input controller", which processes user requests at the logical level, and a
"base kernel", which accesses the physical representation of the data. All security
related operations are confined to the kernels. Separate (nonverified) data man-
agement modules handle the usual data management functions, such as selecting
access methods, following access paths, controlling concurrent accesses, and for-
matting data. The base kernel is the only module allowed to access the database.

4.6.2 Levels of Abstraction

The basic idea is to decompose a system (or security kernel) into a linear hierarchy
of abstract machines, M0, . . . , Mn. Each abstract machine M i (0 < i ~ n) is
implemented by a set of abstract programs Pi-1 running on the next lower level
machine Mi_ 1. Thus the programs at level i depend only on the programs at levels
0 i - 1. They are accessible at level i + 1, but may be invisible at levels above
that. The system is verified one level at a time, starting with level 0; thus verifica-
tion of each level can proceed under the assumption that all lower levels are
correct. The general approach originated with Dijkstra [Dijk68], who used it to
structure the "THE" (Technische Hoogeschule Eindhoven) multiprogramming
system.

The Provably Secure Operating System (PSOS), designed at SRI under the
direction of Peter Neumann, has a design hierarchy with 17 levels of abstraction
(see Figure 4.30) [Feie79,Neum80]. PSOS is a capability-based system support-
ing abstract data types. Because capabilities provide the basic addressing and
protection mechanisms of the system, they are at the lowest level of abstraction.
All levels below virtual memory (level 8) are invisible at the user interface, except
for capabilities and basic operations (level 4). In the first implementation, levels 0
through 8 are expected to be implemented in hardware (or microcode) along with
a few operations at the higher levels.

Imposing a loop-free dependency structure on a system design is not always
straightforward (see [Schr77]). Some abstractions--for example, processes and
memory--are seemingly interdependent. For example, the process manager de-
pends on memory for the storage of process state information; the virtual memory
manager depends on processes for page swaps. Because neither processes nor
memory can be entirely below the other, these abstractions are split into "real"

236 ACCESS CONTROLS

FIGURE 4.30 PSOS design hierarchy.

Level Abstractions

Command interpreter
User environments and name space
User input/output
Procedure records
User processes and visible input/output
Creation and deletion of user objects
Directories
Abstract data types
Virtual memory (segmentation)
Paging
System processes and system input/output
Primitive input/output
Basic arithmetic and logical operations
Clocks
Interrupts
Real memory (registers and storage)
Capabilities

and "virtual" components. In PSOS, real memory is below processes, but a few
fixed (real) system processes with real memory are below virtual memory. User
(virtual) processes are above virtual memory. (In PSOS, the design hierarchy is
also separated from the implementation hierarchy.)

4.6.3 Verification

Verification involves developing formal specifications for a system, proving the
specifications satisfy the security policies of the system, and proving the imple-
mentation satisfies the specifications.

SRI researchers have developed a Hierarchical Design Methodology
(HDM) to support the development of verifiable systems [Neum80,Robi79].
HDM has been used in the design of PSOS and the development of KSOS.

HDM decomposes a system into a hierarchy of abstract machines as de-
scribed in the preceding section. Each abstract machine is specified as a module in
the language SPECIAL (SPECification and Assertion Language). A module is
defined in terms of an internal state space (abstract data structures) and state
transitions, using a specification technique introduced by Parnas [Parn72,Pric73].
The states and state transitions are specified by two types of functions:

V-functions, that give the value of a state variable (primitive V-function) or a
value computed from the values of state variables (derived V-function). The
initial value of a primitive V-function is specified in the module definition.

s

VERIFIABLY SECURE SYSTEMS 237

FIGURE 4.31 Specification of stack module.

module stack;
Vfun top() : integer;

"primitive V-function giving the index
of the top of the stack"

hidden;
initially: top = O;
exceptions: none;

Vfun data(i: integer) : integer;
"primitive V-function giving the value

of the ith element of the stack"
hidden;
initially: 'V'i (data(i) = undefined);
exceptions: (i < O) or (i > size);

Vfun empty() : boolean;
"derived V-function giving status of stack"

derived: if top = 0 then true else false;
Ofun push(x: integer);

"push element x onto top of stack"
exceptions: top >_ size;
effects: 'top = top + 1;

'data('top) = x;
'v'j ~ 'top, 'data(j) = data(j)

end stack

, O-functions, that perform an operation changing the state. State transitions
(called effects) are described by assertions relating new values of primitive
V-functions to their prior values. A state variable cannot be modified unless
its corresponding primitive V-function appears in the effects of an O-
function.

A function can both perform an operation and return a value, in which case it is
called an OV-function. Functions may be either visible or invisible (hidden) outside
the module. Primitive V-functions are always hidden.

The specification of a function lists exceptions which state abnormal condi-
tions under which the function is not defined. The implementation must ensure the
code for the function is not executed when these conditions are satisfied (e.g., by
making appropriate tests).

Example:
Figure 4.31 shows a specification of a module for a subset of the s tack
module shown in Figure 4.19. A V-function name preceded by a prime (')
refers to the value of the V-function after the transition caused by the effects
of an O-function; the unprimed name refers to its original value. Specifica-
tion of the pop operation is left as an exercise. II

HDM structures the development of a system into five stages:

238 ACCESS CONTROLS

SO.

S1.

$2.

$3.

$4.

Interface Definition. The system interface is defined and decomposed into a
set of modules. Each module manages some type of system object (e.g.,
segments, directories, processes), and consists of a collection of V-, and O-
functions. (Formal specifications for the functions are deferred to Stage $2.)
The security requirements of the system are formulated. For PSOS, these
requirements are described by two general principles:
a. Detection Principle: There shall be no unauthorized acquisition of

information.
b. Alteration Principle: There shall be no unauthorized alteration of

information.
These are low-level principles of the capability mechanism; each type man-
ager uses capabilities to enforce its own high-level policy.
Hierarchical Decomposition. The modules are arranged into a linear hierar-
chy of abstract machines M0, . . . , M, as described in Section 4.6.i. The
consistency of the structure and of the function names is verified.
Module Specification. Formal specifications for each module are developed
as described. Each module is verified to determine if it is self-consistent and
satisfies certain global assertions. The basic security requirements of the
system are represented as global assertions and verified at this stage. For
PSOS, the alteration and detection principles are specified in terms of capa-
bilities providing read and write access.
Mapping Functions. A mapping function is defined to describe the state
space at level i in terms of the state space at level i - 1 (0 < i ~ n). This is
written as a set of expressions relating the V-functions at level i to those at
level i - 1. Consistency of the mapping function with the specifications and
the hierarchical decomposition is verified.
Implementation. Each module is implemented in hardware, microcode, or a
high-level language, and the consistency of the implementation with the
specifications and mapping function is verified. Implementation proceeds
one level at a time, from the lowest level to the highest. Each function at
level i is implemented as an abstract program which runs on machine Mi_ 1.

Each abstract program is verified using Floyd's [Floy67] inductive-
assertion method, which is extended to handle V- and O-function calls. Entry
and exit assertions are constructed for each program from the specifications.
A program is proved correct by showing that if the entry assertions hold
when the program begins execution, then the exit assertions will hold when
the program terminates, regardless of the execution path through the pro-
gram. The proof is constructed by inserting intermediate assertions into the
program; these define entry and exit conditions for simple paths of the pro-
gram. A simple path is a sequence of statements with a single entry and a
single exit. For each simple path S with entry assertion P and exit assertion
Q, a verification condition (PC) in the form of an implication P' ~ Q' is
derived by transforming P and Q to reflect the effects of executing S. The
program is proved (or disproved) correct by proving (or disproving) the FCs
are theorems. The proof techniques are described in [Robi77]. Program
proving is studied in Section 5.5.

VERIFIABLY SECURE SYSTEMS 239

Researchers at SRI have developed several tools [Silv79] to support HDM
and its specification language SPECIAL. These include tools to check the consis-
tency of specifications and mappings, the Boyer-Moore theorem-prover [Boye79],
and verification condition generators for several programming languages including
FORTRAN [Boye80] and Pascal [LeviS1].

At UCLA, Popek and others have adopted a two-part strategy to develop
and verify the UCLA security kernel [Pope78,Walk80]. The first part involves
developing successively more detailed specifications of the kernel until an imple-
mentation is reached:

,

3.
4.

Top-Level Specifications, which give a high-level, intuitive description of the
security requirements of the system.
Abstract-Level Specifications, which give a more refined description.
Low-Level Specifications, which give a detailed description.
Pascal Code satisfying the specifications.

The specifications at each level are formulated in terms of an abstract machine
with states and state transitions satisfying the following general requirements:

1. Protected objects may be modified only by explicit request.
2. Protected objects may be read only by explicit request.
3. Specific access to protected objects is permitted only when the recorded

protection data allows it; i.e., all accesses must be authorized.

These requirements are essentially the same as the Detection and Alteration prin-
ciples of PSOS.

The second part involves verifying that the Pascal implementation satisfies
the low-level specifications, and verifying that the specifications at each level are
consistent with each other. Note that whereas for PSOS the implementation is
constructed from the hierarchy of specifications and mapping functions, for
UCLA Secure UNIX it represents a refinement of the bottom-level specifications.
Verification of UCLA Secure UNIX was assisted by the AFFIRM verification
system and its predecessor XIVUS, developed at ISI.

For further reading on specification and verification systems, see Cheheyl,
Gasser, Huff, and Millen [Cheh81]. This paper surveys four systems, including
HDM and AFFIRM. The other two systems are Gypsy, developed at the Universi-
ty of Texas at Austin, and the Formal Development Methodology (FDM) and its
specification language Ina Jo, developed at SDC.

Rushby [Rush81] has proposed a new approach to the design and verifica-
tion of secure systems. His approach is based on a distributed system architecture
that provides security through physical separation of subjects where possible,
trusted modules that control the communication channels among subjects, and a
security kernel that enforces the logical separation of subjects sharing the same
physical resources. Verification involves showing that the communication channels
are used in accordance with the security policies of the system, and that the
subjects become completely isolated when these channels are cut. The latter part,

i '

i

240 ACCESS CONTROLS

called "proof of separability," involves showing that a subject cannot distinguish
its actual environment on a shared machine from its abstract environment on a
private virtual machine. The approach is particularly suited for the development of
secure networks that use encryption to protect data transmitted over the channels.

4.7 THEORY OF SAFE SYSTEMS

Harrison, Ruzzo, and Ullman [Harr76] studied the feasibility of proving proper-
ties about a high-level abstract model of a protection system. They used as their
model the access-matrix model described in Section 4.1; thus, the state of a system
is described by an access matrix A, and state transitions by commands that create
and destroy subjects and objects, and enter and delete rights in A. They defined an
unauthorized state Q to be one in which a generic right r could be leaked into A;
the right would be leaked by a command c that, when run in state Q, would
execute a primitive operation entering r into some cell of A not previously contain-
ing r. An initial state Q0 of the system is defined to be safe for r if it cannot derive
a state Q in which r could be leaked.

Leaks are not necessarily bad, as any system that allows sharing will have
many leaks. Indeed, many subjects will intentionally transfer (leak) their rights to
other "trustworthy" subjects. The interesting question is whether transfer of a
right r violates the security policies of the system. To answer this question, safety
for r is considered by deleting all trustworthy subjects from the access matrix.

Proving a system is safe does not mean it is secure~safety applies oniy to the
abstract model. To prove security, it is also necessary to show the system correctly
implements the model; that is, security requires both safety and correctness. Th~s,
safety relates to only part of the verification effort described in the preceding
section.

Harrison, Ruzzo, and Ullman showed safety is undecidable in a given arbi-
trary protection system. Safety is decidable, however, if no new subjects or objects
can be created. They also showed safety is decidable in a highly constrained class
of systems permitting only "mono-operational" commands, which perform at most
one elementary operation. We first review their results for mono-operational sys-
tems, and then review their results for general systems.

We then consider the prospects for developing a comprehensive theory of
protection (or even a finite number of such theories) sufficiently general to enable
proofs or disproofs of safety. Not surprisingly, we can show there is no decidable
theory adequate for proving all propositions about safety.

These results must be interpreted carefully. They are about the fundamental
limits of our abilities to prove properties about an abstract model of a protection
system. They do not rule out constructing individual protection systems and prov-
ing they are secure, or finding practical restrictions on the model that make safety
questions tractable. Yet, these results do suggest that systems without severe re-
strictions on their operation will have security questions too expensive to answer.
Thus we are forced to shift our concern from proving arbitrary systems secure to

ABFDEFGHIIJKLMMNOHPP 241

designing systems that are provably secure. PSOS, KSOS, UCLA Unix, and the
other systems described in the last section are provably secure only because they
were designed to satisfy specified security requirements. Their security was contin-
ually verified at each stage in the development of the system.

We conclude this chapter with a discussion of safety in systems constrained
by the "take-grant" graph rules. For such systems, safety is not only decidable, but
decidable in time linear in the size of the protection graph.

4.7.1 Mono-Operational Systems

A protection system is mono-operational if each command performs a single primi-
tive operation. Harrison, Ruzzo, and Ullman prove the following theorem:

Theorem 4.1:
There is an algorithm that decides whether a given mono-operational system
and initial state Q0 is safe for a given generic right r.

Crook
We will show that only a finite number of command sequences need be
checked for the presence of a leak. Observe first that we can ignore
command sequences containing delete and destroy operators, since
commands only check for the presence of rights, not their absence.
Thus, if a leak occurs in a sequence containing these commands, then
the leak would occur in one without them.

Observe next that we can ignore command sequences containing
more than one create operator. The reason is that all commands that
enter or check for rights in new positions of the access matrix can be
replaced with commands which enter or check for rights in existing
positions of the matrix; this is done simply by changing the actual
parameters from the new subjects and objects to existing subjects and
objects. It is necessary, however, to retain one create subject command
in case the initial state has no subjects (to ensure that the matrix has at
least one position in which to enter rights).

This means the only command sequences we need consider are
those consisting of enter operations and at most one create subject
operation.

Now, the number of distinct enter operations is bounded by g n s n o,

where g is the number of generic rights, n s = IS01 + 1 is the number
of subjects, and n o = I O0] + 1 is the number of objects. Because the
order of enter operations in a command sequence is not important, the
number of command sequences that must be inspected is, therefore,
bounded by:

2 g n s n o +1 .

242 ACCESS CONTROLS

Although it is possible to construct a general decision procedure to determine
the decidability of arbitrary mono-operational systems, Harrison, Ruzzo, and Utl-
man show the problem to be NP-complete and thus intractable. They note, how-
ever, that by using the technique of "dynamic programming" (e.g., see [Aho74]),
an algorithm polynomial in the size of the initial matrix can be devised for any
given system.

Most systems are not mono-operational, as illustrated by the examples of
Section 4.1.2. Nevertheless, the results are enlightening in that they show the
safety question for general systems will, at best, be extremely difficult.

4.7.2 General Systems

Harrison, Ruzzo, and Ullman show that the general safety problem is undecida-
ble. To prove this result, they show how the behavior of an arbitrary Turing
machine (e.g., see [Aho74,Mins67]) can be encoded in a protection system such
that leakage of a right corresponds to the Turing machine entering a final state.
Therefore, if safety is decidable, then so is the halting problem. Because the halt-
ing problem is undecidable, the safety problem must also be undecidable.

A Turing machine T consists of a finite set of states K and a finite set of tape
symbols £, which includes a blank b. The tape consists of an infinite number of
cells numbered 1, 2 , . . . , where each cell is initially blank. A tape head is always
positioned at some cell of the tape.

The m o v e s of T are specified by a function 6: K X £ ~ K × £ X {L, R}. If ~(q,
X) = (p, Y, R) and T is in state q scanning symbol X with its tape head at cell i,
then T enters state p, overwrites X with Y, and moves its tape head right one cell
(i.e., to cell i + 1). If 6(q, X) = (p, Y, L) the same thing happens, but the tape head
is moved left one cell (unless i = 1).

T begins in an initial state qo, with its head at cell 1. There is also a final
state qf such that if T enters qf it halts. The "halting problem" is to determine
whether an arbitrary Turing machine ever enters its final state. It is well-known
that this problem is undecidable. We shall now show the safety problem is also
undecidable.

Theorem 4.2:
It is undecidable whether a given state of a given protection system is safe
for a given generic right.

Proof:
Let T be an arbitrary Turing machine. We shall first show how to
encode the state of T as an access matrix in a protection system, and
then show how to encode the moves of T as commands of the system.
The tape symbols will be represented as generic access rights, and the
tape cells as subjects of the matrix.

Suppose that T is in state q. At that time, T will have scanned a

THEORY OF SAFE SYSTEMS 2 4 3

FIGURE 4.32 Encoding of Turing machine.
. . , .

Tape Head

Machine Configuration" [A [B 1 ~
r

io1 I.
State • q

1 2 3 4

1 A Own

Owtl

C

q
Own

D

End

finite number k of cells, and cells k + 1, k + 2 will be blank. State
q is represented as an access matrix A with k subjects and k objects (all
subjects) such that:

If cell s of the tape contains the symbol X, then A[s, s] contains
the right X.
A[s, s + 1] contains the right Own (s = i k - 1) (this
induces an ordering on the subjects according to the sequence of
symbols on the tape).
A[k, k] contains the right End (this signals the current end of the
tape).
If the tape head is positioned at cell s, then A[s, s] contains the
right q.

Figure 4.32 shows the access matrix corresponding to a Turing ma-
chine in state q whose first four cells hold ABCD, with the tape head at
cell 3.

Note that the machine's tape is encoded along the diagonal of the
matrix. It cannot be encoded along a row (or column) of the matrix
because for a given subject s, there is no concept of a predecessor or
successor of s. The only way of ordering the subjects is by giving each
subject s a right (such as Own) for another subject (denoted s + 1).

The initial state q0 is represented as an access matrix with one

244 ACCESS CONTROLS

subject So, corresponding to the first tape cell. The rights in A[s0, So]
include qo, b (since all cells are blank), and End.

The moves of T are represented as commands. A move 6(q, X)
= (p, Y, L) is represented by a command that revokes the right q from
subject s' and grants the right p to subject s, where s' represents the
current position of the tape head, and s represents the cell to the left of
s'. The command, shown next, also substitutes the right Y for the right
X in the cell represented by s'.

command Cqx(S, s')
if

Own in A Is, s'] and
q in A [s', s'] and
X in A [s', s']

then
delete q from A Is', s']
delete X from A[s', s']
enter Yinto A[s',s']
enter p into A[s, s]

end.

A move 6(q, X) = (p, Y, R) is represented by two commands to handle
the possibility that the tape head could move past the current end of
the tape (in which case a new subject must be created). The specifica-
tion of these commands is left as an exercise for the reader.

Now, if the Turing machine reaches its final state qf, then the
right qf will be entered into some position of the corresponding access
matrix. Equivalently, if the Turing machine halts, then the right qf is
leaked by the protection system. Because the halting problem is unde-
cidable, the safety problem must, therefore, also be undecidable. I!

Theorem 4.2 means that the set of safe protection systems is not reeursive;
that is, it is not possible to construct an algorithm that decides safety for all
systems. Any procedure alleged to decide safety must either make mistakes or get
hung in a loop trying to decide the safety of some systems.

We can, however, generate a list of all unsafe systems; this could be done by
systematically enumerating all protection systems and all sequences of commands
in each system, and outputting the description of any system for which there is a
sequence of commands causing a leak. This is stated formally by Theorem 4.3:

Theorem 4.3:
The set of unsafe systems is recursively enumerable. m

We cannot, however, enumerate all safe systems, for a set is recursive if and only if
both it and its complement are recursively enumerable.

Whereas the safety problem is in general undecidable, it is decidable for
finite systems (i.e., systems that have a finite number of subjects and objects).

THEORY OF SAFE SYSTEMS 245

Harrison, Ruzzo, and Ullman prove, however, the following theorem, which im-
plies that any decision procedure is intractable:

Theorem 4. 4:
The question of safety for protection systems without create commands is
PSPACE-complete (complete in polynomial space), m

This means that safety for these systems can be solved in polynomial time
(time proportional to a polynomial function of the length of the description of the
system) if and only if PSPACE = P; that is, if and only if any problem solvable in
polynomial space is also solvable in polynomial time. Although the relationship
between time and space is not well understood, many believe PSPACE ~ P and
exponential time is required for such problems (see Section 1.5.2). The proof of
Theorem 4.4 involves showing any polynomial-space bounded Turing machine can
be reduced in polynomial time to an initial access matrix whose size is polynomial
in the length of the Turing machine input.

Harrison and Ruzzo [Harr78] considered monotonic systems, which are re-
stricted to the elementary operations create and enter (i.e., there are no destroy or
delete operators). Even for this highly restricted class of systems, the safety prob-
lem is undecidable.

4.7.3 Theories for General Systems

Denning, Denning, Garland, Harrison, and Ruzzo [Denn78] studied the implica-
tions of the decidability results for developing a theory of protection powerful
enough to resolve safety questions. Before presenting these results, we shall first
review the basic concepts of theorem-proving systems. Readers can skip this sec-
tion without loss of continuity.

A formal language L is a recursive subset of the set of all possible strings over
a given finite alphabet; the members of L are called sentences.

A deductive theory T over a formal language L consists of a set A of axioms,
where A C L, and a finite set of rules of inference, which are recursive relations
over L. The set of theorems of T is defined inductively as follows:

o

2.
If t is an axiom (i.e., t ~ A), then t is a theorem of T; and
If t l t k are theorems of T and <t l , . . . , t k , t > ~ R for some rule of
inference R, then t is a theorem of T.

Thus, every theorem t of T has a proof, which is a finite sequence • t l , tn> of
sentences such that t = t, and each t i is either an axiom or follows from some
subset of t l , • • • , ti_l by a rule of inference. We write T ~ t to denote t is a theorem
of T (is provable in T).

Two theories T and T' are said to be equivalent if they have the same set of
theorems. Equivalent theories need not have the same axioms or rules of inference.

246 ACCESS CONTROLS

A theory T is recursively axiomatizable if it has (or is equivalent to a theory
with) a recursive set of axioms. The set of theorems of any recursively axiomatiza-
ble theory is recursively enumerable: we can effectively generate all finite se-
quences of sentences, check each to see if it is a proof, and enter in the
enumeration the final sentence of any sequence that is a proof.

A theory is decidable if its theorems form a recursive set.
Because the set of safe protection systems is not recursively enumerable, it

cannot be the set of theorems of a recursively axiomatizable theory. This means
the set of all safe protection systems cannot be effectively generated by rules of
inference from a finite (or even recursive) set of safe systems. (Note this does not
rule out the possibility of effectively generating smaller, but still interesting classes
of safe systems.) This observation can be refined, as we shall do, to establish
further limitations on any recursively axiomatizable theory of protection.

A representation of safety over a formal language L is an effective map
p ----~ tp from protection systems to sentences of L. We interpret tp as a statement of
the safety of protection system p.

A theory T is adequate for proving safety if and only if there is a representa-
tion p ~ tp of safety such that

T ~- tp if and only if p is safe.

Analogs of the classical Church and Gt~del theorems for the undecidability and
incompleteness of formal theories of arithmetic follow for formal theories of pro-
tection systems.

Theorem 4.5:
Any theory T adequate for proving safety must be undecidable. 1

This theorem follows from Theorem 4.2 by noting that, were there an adequate
decidable T, we could decide whether a protection system p were safe by checking
whether T ~- tp.

Theorem 4.6:
There is no recursively axiomatizable theory T adequate for proving
safety. 1

This theorem follows from Theorems 4.2 and 4.3. If T were adequate and recur-
sively axiomatizable, we could decide the safety of p by enumerating simulta-
neously the theorems of T and the set of unsafe systems; eventually, either tp will
appear in the list of theorems or p will appear in the list of unsafe systems,
enabling us to decide the safety of p.

Theorem 4.6 shows that, given any recursively axiomatizable theory T and
any representation p - - ~ tp of safety, there is some system whose safety either is
established incorrectly by T or is not established when it should be. This result in
itself is of limited interest for two reasons: it is not constructive (i.e., it does not
show us how to find such a p); and, in practice, we may be willing to settle for
inadequate theories as long as they are sound, that is, as long as they do not err by

/ i

THEORY OF SAFE SYSTEMS 247

falsely establishing the safety of unsafe systems. Formally, a theory T is sound if
and only if p is safe whenever T ~ tp. Tlie next theorem overcomes the first
limitation, showing how to construct a protection system p that is unsafe if and
only if T ~- tp; the idea is to design the commands of p so that they can simulate a
Turing machine that "hunts" for a proof of the safety of p; if and when a sequence
of commands finds such a proof, it generates a leak. If the theory T is sound, then
such a protection system p must be safe but its safety cannot be provable in T.

Theorem 4. 7:
Given any recursively axiomatizable theory T and any representation of
safety in T, one can construct a protection system p for which T ~- tp if and
only if p is unsafe. Furthermore, if T is sound, then p must be safe, but its
safety is not provable in T.

/'roof."
Given an indexing {Mit of Turing machines and an indexing {Pi} of
protection systems, the proof of Theorem 4.2 shows how to define a
recursive function f such that

(a) M i halts iff Pf(i) is unsafe.

Since T is recursively axiomatizable and the map p ~ tp is computable,
there is a recursive function g such that

(b) T k- tpi iff Mg(i) halts;

the Turing machine Mg(t) simply enumerates all theorems of T, halting
if tpi is found. By the Recursion Theorem [Roge67], one can find effec-
tively an index j such that

(c) Mj halts iff Mg(f(j)) halts.

Combining (a), (b), and (c), and letting p = pf(j), we get

(d) T ~- tp iff MgUU)) halts
iff Mj halts
iff pf(j.) = p is unsafe,

as was to be shown.
Now, suppose T is sound. Then tp cannot be a theorem of T lest p

be simultaneously safe by soundness and unsafe by (d). Hence, T ~ tp,
and p is safe by (d) . II

The unprovability of the safety of a protection system p in a given sound
theory T does not imply p's safety is unprovable in every theory. We can, for
example, augment T by adding tp to its axioms. But no matter how much we
augment T, there will always exist another safe p' whose safety is unprovable in
the new theory T'. In other words, this abstract view shows that systems for
proving safety are necessarily incomplete: no single effective deduction system can
be used to settle all questions of safety.

248 ACCESS CONTROLS

We also considered theories for protection systems of bounded size. Al-
though the safety question becomes decidable (Theorem 4.4), any decision proce-
dure is likely to require enormous amounts of time. This rules out practical
mechanical safety tests, but not the possibility that ingenious or lucky people
might always be able to find proofs faster than any mechanical method. Unfortu-
nately, we found even this hope ill-founded. If we consider reasonable proof sys-
tems in which we can decide whether a given string of symbols constitutes a proof
in time polynomial in the string's length, then we have the following"

Theorem 4.8:
For the class of protection systems in which the number of objects and
domains of access is bounded, safety (or unsafety) is polynomial verifiable by
some reasonable logical system if and only if PSPACE = NP; that is, if and
only if any problem solvable in polynomial space is solvable in nor_Jetermin-
istic polynomial time. I!

Many believe PSPACE ~ NP (see Section 1.5.2).

4.7.4 Take-Grant Systems

Jones, Lipton, and Snyder [Jone76b] introduced the Take-Grant graph model to
describe a restricted class of protection systems. They showed that for such sys-
tems, safety is decidable even if the number of subjects and objects that can be
created is unbounded. Furthermore, it is decidable in time linear in the size of the
initial state. We shall describe these results, following their treatment in a survey
paper by Snyder [Snyd81a].

As in the access-matrix model, a protection system is described in terms of
states and state transitions. A protection state is described by a directed graph G,
where the nodes of the graph represent the subjects and objects of the system
(subjects are not objects in the take-grant model), and the edges represent rights.
We shall let (x, y) denote the set of access rights on an edge from x to y, where
r E (x, y) means that x has right r for y. If x is a subject, then (x, y) in G is like
A[x, y] in the access matrix.

There are two special rights: take (abbreviated t), and grant (abbreviated g).
If a subject s has the right t for an object x, then it can take any of x's rights; if it
has the right g for x, then it can share any of its rights with x. These rights
describe certain aspects of capability systems. If a subject has a capability to read
from an object x containing other capabilities, then it can take capabili'ies (rights)
from x; similarly, if it has a capability to w_ite into x, it can grant capabilities to x.

Example:
Figure 4.33 shows the graph representation of the directory structure shown
in Figure 4.24. We have used "e" to represent subject nodes, and "o" to
represent object nodes. Note that R and W capabilities for a directory be-

y •

THEORY OF SAFE SYSTEMS 249

FIGURE 4.33 Take-grant representation of directory structure.

F I
R

tg Dll F2

tg
_- . , .. , ~ o - ' ~ 0 PI D ~ " ' ~ 2 - - ' O F 4

P2

come take and grant rights, respecti~ ely, in the take-grant model, whereas R
and W capabilities for files remain as R and W rights. II

The take-grant model describes the transfer of authority (rights) in systems.
It does not describe the protection state with respect to rights that cannot be
transferred. Thus, it abstracts from the complete state only information needed to
answer questions related to safety.

Example:
Figure 4.34 shows only part of the protection state of Figure 4.2. A process
can grant rights for any of its owned files to any other process, so there is an
edge labeled g connecting each pair of processes. But only process P2 is
allowed to take rights from another process, namely its subordinate P3, so
there is only one edge labeled t. Because rights for memory segments cannot

FIGURE 4.34 Take-grant graph for system shown in Figure 4.2.

F1 R W P I g P 2 R W F 2

g tg

g g

P 3

250 ACCESS CONTROLS

be granted along the g-edges (memory is not owned and the copy flag is not
set), these rights are not shown. Consequently, the graph does not show P2
can take P3's rights for memory segment M3 (as it did). 1

State transitions are modeled as graph rewriting rules for commands. There

are four rules:

1. Take: Let s be a subject such that t e (s, x), and r e (x, y) for some right r and

.

,

,

nodes x and y. The command

s take r for y from x

adds r to (s, y). Graphically,

f
/

t r jr t r

S X y S X

\

y

where the symbol "®" denotes vertices that may be either subjects or

objects.
Grant: Let s be a subject such that g E (s, x) and r e (s, y) for some right r

and nodes x and y. The command

s grant r for y to x

adds r to (x, y). Graphically,

r

I---
s x y s x y

Create: Let s be a subject and p a set of rights. The command

{ subjec t }
s crea tep for new object x

adds a new node x and sets (s, x) = p. Graphically,
p

• b- e = , m m,l l~4~
S S X

Remove: Let s be a subject and x a node. The command

s remove r for x

deletes r from (s, x). Graphically,

p p - r
_-- ~ ® I-- --- ~ ®
S X S X

/./

THEORY OF SAFE SYSTEMS 251

We have stated the commands take, grant, and remove as operations on a single
right r. These commands can also be applied to subsets of rights, as is done in
[Jone76b,Snyd8 la].

Example:
The following commands show how process P1 can create a new file F7 and
add it to the directory D11 shown in Figure 4.33.

°

2.
3.
4.

P1 create R W for new object F7
P1 take t for D1 from D
P1 take g for D11 from D1
P1 grant R W for F7 to D11

The effect of these commands is shown in Figure 4.35. I

Let G be a protection graph. We shall write G H C G' if command c transforms
G into graph G', G H G' if there exists some command c such that G t-c G', and
G t-* G' if there exists a (possibility null) sequence of commands that transforms G
into G'.

We are now ready to consider safety in the context of protection graphs.
Suppose there exists a node s with right r for node x; thus r e (s, x). Recall that the
safety question is to determine whether another subject can acquire the right r
(not necessarily for x). Rather than considering whether an arbitrary subject can
acquire the right r for an arbitrary node, we shall consider whether a particular
node p (subject or object) can acquire the particular right r for x. We are inter-
ested in knowing whether this question is decidable, and, if so, the computational

FIGURE 4.35 Adding a new file F7 to directory D11.

R W /

/

t g

tg ~ t RW

P1 D ~ D2

P2

D l l

~ ~ ~ F 7

® / .

D12

RW

D3 D31

~F3

RW ~F6

252 ACCESS CONTROLS

complexity of the decision procedure. Note that if this question is decidable with a
decision procedure having linear time complexity T = O(n) for an initial graph
with n nodes, then the more general question is decidable within time T = O(n 3)
[only nodes (p and x) existing in the initial graph need be considered].

The safety question is formalized as follows. Given an initial graph Go with
nodes s, x, and p such that r ~ (s, x) and r ¢ (p, x), Go is safe for the right r for x if
and only if r ¢ (p, x) in every graph G derivable from Go (i.e., Go I-* G). We shall
consider the question in two contexts: first, where s can "share" its right with other
nodes (but not necessarily p), and second, where the right must be "stolen" from s.

Given an initial graph Go with nodes p and x such that r ¢ (p, x) in Go, the
predicate can.share(r, x, p, Go) is true if and only if there exists a node s in Go such
that r E (s, x) and Go is unsafe for the right r for x; that is, p can acquire the
right r for x. To determine the conditions under which the predicate can.share is
true, we first observe that rights can only be transferred along edges labeled with
either t or g. Two nodes x and y are tg-connected if there is a path between them
such that each edge on the path is labeled with either t or g (the direction of the
edge is not important); they are directly tg-connected if the path is the single edge
(x, y) or (y, x). Jones, Lipton, and Snyder prove the following sufficient condition
for can.share:

Theorem 4.9:
can.share(r, x, p Go) is true if p is a subject and

1. There exists a subject s in Go such that r ~ (s, x) in Go, and
2. s and p are directly tg-connected.

/'roof."
There are four cases to consider:

Case 1.

t r

p s x

The first case is simple, as p can simply take the right r from s with the
command:

p take r for x from s

Case 2.
g

p 7 ~x

This case is also simple, as s can grant (share) its right to p with the
command:

s grant r for x to p

/ i

THEORY OF SAFE SYSTEMS 253

Case 3.

g r

p 7" x

This case is less obvious, as p cannot acquire the right with a single
command. Nevertheless, with the cooperat ion of s, p can acquire the
right with four commands:

p create tg for new object y
y

?

/
J g r

p s x

p grant g for y to s
y

~ r
- v - 7 ~ ®

p s x

s grant r for x to y

Y

\
r

P s x

p take r for x from y
Y

r

tg

p x

\ /
~ r ~

Case 4.

t

P S X

This case also requires four commands; we leave it as an exercise for
the reader. 1

254 ACCESS CONTROLS

This result is easily extended to handle the case where subjects s and p are tg-
connected by a path of length >_ 1 consisting of subjects only. Letting p = P0, P~,
. . . , pn - s denote the path between p and s, each p; (for i = n - 1, n - 2 0)
can acquire the right from Pi+l as described in Theorem 4.9. It turns out that tg-
connectivity is also a necessary condition for can.share in graphs containing only
subjects; this is summarized in the following theorem:

Theorem 4.1 O:
If Go is a subject-only graph, then can.share(r, x, p, Go) is true if and only if:

.

2.
There exists a subject s in Go such that r { (s, x), and
s is tg-connected to p. I!

If the graph can contain both subjects and objects, the situation is more
complicated. Before we can state results for this case, we must first introduce some
new concepts.

An i s l and is any maximal subject-only tg-connected subgraph. Clearly, once
a right reaches an island, it can be shared with any of the subjects on the island.
We must also describe how rights are transferred between two islands.

A tg-path is a path st, o 2 , . . . , on_l, s n of n ~. 3 tg-connected nodes, where sl
and s n are subjects, and o2, . . . , on_l are objects. A tg-semipath is a path s~, o2,
. . . . o n of n ~. 2 tg-connected nodes, where s~ is a subject, and o 2 , . . . , o n are
objects. Each tg-path or semipath may be described by a word over the alphabet

, g , t , .

Example:
The tg-path connecting p and s in the following graph

t t g t r
. . . . o - o - " ~@

p u v w s x

- - - - - ~ -----ff 4 - - - - ~ - - - - -

is described by the word t t g t . II

A bridge is a tg-path with an associated word in the regular expression:

(T), u (T), u (T), ~ (T), u (T), ~-(T), .

Bridges are used to transfer rights between two islands. The path t t g t in
the preceding example is a bridge; as an exercise, the reader should show how s
can share its right r for x with p.

An in i t ia l s p a n is a tg-semipath with associated words in

(-T)* g

and a terminal span is a tg-semipath with associated word in

(T) , .

The arrows emanate from the subject sl in the semipaths. Note that a bridge is a
composition of initial and terminal spans. The idea is that a subject on one island

THEORY OF SAFE SYSTEMS 255

is responsible for transferring a right over the initial span of a bridge, and a subject
on the other island is responsible for transferring the right over the terminal span;
the middle of the bridge represents a node across which neither subject alone can
transfer rights.

We now have the following theorem:

Theorem 4.11:
The predicate can.share(r, x, p, Go) is true if and only if:

,

2.
There exists a node s such that r E (s, x) in Go; and
There exist subjects p ' and s' such that

a. p ' = p (if p is a subject) or p ' is tg-connected to p by an initial
span (if p is an object), and

b. s' = s (if s is a subject) or s' is tg-connected to s by a terminal
span (if s is an object); and

c. There exist islands 11, . . . , I, (u _> 1) such that p ' e 11, s: ~ I,, and
there is a bridge from Ij to Ij+l (1 .~ j < u). II

An initial span is used only when p is an object; it allows the transfer of a right

FIGURE 4.36 Path over which r for x may be t ransferred from s to p.

in i t i a l span f
g t ~ 11

b r idge

f ~----(
!

br idge

12

t e r m i n a l span

t t t r

S r S

i ~ i ~ ~ : ~ ~

256 ACCESS CONTROLS

from an island to p (p is like the middle node of a bridge). A terminal span is
similarly used only when s is an object; it allows the transfer of the right r from s
to an island (s is like the middle node of a bridge). Figure 4.36 illustrates the path
along which the right r for x is transferred from s to p.

Jones, Lipton, and Snyder proved the following theorem:

Theorem 4.12:
There is an algorithm for testing can.share that operates in linear time in the
size of the initial graph, m

The algorithm performs a depth first search of the protection graph (e.g., see
[Aho74]).

We now turn to the question of stealing. Intuitively, a node p steals a right r
for x from an owner s if it acquires r for x without the explicit cooperation of s.
Formally, the predicate can.steal(r, x, p, Go) is true if and only if p does not have r
for x in Go and there exist graphs Gx, . . . , G, such that:

1. Go I---cl G1 I-cz . . . l--On Gn;
2. r ~ (p, x) in Gn; and
3. For any subject s such that r ~ (s, x) in Go, no command c i is of the form

s grant r for x to y

for any node y in Gi_ 1.

Note, however, that condition (3) does not rule out an owner s from transferring
other rights. Snyder [Snyd81 b] proved the following theorem, which states that a
right must be stolen (taken) directly from its owner:

Theorem 4.13:
can.steal(r, x, p, Go) is true if and only if:

1. There is a subject p ' such that p' = p (if p is a subject) or p' initially
spans to p (if p is an object), and

2. There is a node s such that r e (s, x) in Go and can.share(t, s, p', Go) is
true; i.e., p' can acquire the right to take from s. m

This means if a subject cannot acquire the right to take from s, then it cannot steal
a right from s by some other means. Subjects that participate in the stealing are
called conspirators.

If a subject p cannot steal a right for an object x, this does not necessarily
mean the information in x is protected. For example, another subject s may copy
the information in x into another object y that p can read (see Figure 4.37). To
handle this problem, Bishop and Snyder [Bish79] distinguish between de jure
acquisition, where p obtains the read right R for x, and de facto acquisition, where
p obtains the information in x, but not necessarily the right R for x. They intro-
duce four commands to describe information transfer using R, W rights, and show
that de facto acquisition can be described by graphs with certain kinds of R W-

EXERCISES 257

FIGURE 4.37 De facto acquisition.

p s

of x)

X

paths (analogous to the tg-paths). They also show de facto acquisition can be
decided in time linear in the size of the initial graph. The problem of securing
information flow is discussed in the next chapter.

The take-grant model is not intended to model any particular system or
classes of systems, although it does describe many aspects of existing systems,
especially capability systems. Nevertheless, the results are significant because they
show that in properly constrained systems, safety decisions are not only possible
but relatively simple. Safety is undecidable in the Harrison, Ruzzo, Ullman model
because the commands of a system were unconstrained; a command could, if
desired, grant some right r for x to every subject in the system. The take-grant
model, on the other hand, constrains commands to pass rights only along tg-paths.

Snyder [Snyd77] investigated the problem of designing systems based on the
take-grant model. He showed it is possible to design systems powerful enough to
solve certain protection problems. One of his designs is outlined in the exercises at
the end of this chapter.

Jones suggested an extension to the take-grant model for handling procedure
calls and parameter passing [Jone78]. Her extension associates "property sets"
with subjects and with passive procedure objects that serve as templates for subject
creation. Execution of a procedure call causes a new subject to be created with
rights defined by the templates.

E X E R C I S E S

4.1 Consider the revocation scheme used by System R (see Section 4.4.2), and
suppose Sysauth contains the following tuples for a relation Z created by
user A:

User Table Grantor Read Insert . . . Copy

D Z A 5 5 yes
B Z A 10 0 yes
C Z B t 5 0 yes
C Z D 20 20 yes
B Z C 30 30 yes
E Z B 40 40 no

258 A C C E S S C O N T R O L S

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

Draw a graph showing the transfer of rights. Suppose that at time t - 50, A
revokes all rights granted to D. Show the resulting state of Sysauth.
Write an algorithm for implementing the revocation procedure of System R.
Specify a policy for confinement (see Section 4.2.2), and design a capability-
based mechanism for enforcing the policy.
Complete the specifications of the module shown in Figure 4.31 by writing

an OV-function for pop.
Consider the representation of a Turing machine as a protection system as
described in Section 4.7.2. Complete the proof of Theorem 4.2 by showing
how the move c3(q, X) = (p, Y, R) can be represented with two commands.
Given the access matrix shown in Figure 4.32, show the matrix that results

after the following two moves:

6(q, C) = (p, D, R)
6(p, D) = (s, E, R) .

Complete the proof of Theorem 4.9 by giving the command sequence for

Case 4.
Give a sequence of commands showing how the right r for x can be trans-

--...---~ ------~ ~-------- 4:_--
ferred over the bridge t t g t connectingp and s in the following graph:

t t g t r
~,~ ~ - . ~ ~ v ~--

p u v w s x

Let Go be the protection graph:
P

I g t

a .

b .

C.

t s R z

g t i
V W X Y

Give a sequence of rule applications showing can.share(R, z, p, Go) is

true.
Is can.share(t, s', p, Go) true? Why or why not?
Show can.steal(R, z, p, Go) is true, and list the conspirators.

Consider a system in which processes p and q communicate information
stored in their private files through a shared message buffer b provided by a
trusted supervisor process s. Show that this system can be modeled as a take-
grant system with subjects s, p, and q. Show an initial state in which process
p owns a file x, process q owns a file y, and the supervisor s has whatever
rights it needs to establish the buffer (do not give the supervisor any more
rights than it needs to do this). Construct a command sequence whereby the
buffer is established, and show the graph produced by the command

sequence.

REFERENCES 259

REFERENCES

Aho74. Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass. (1974).

Ande72. Anderson, J. P., "Computer Security Technology Planning Study," ESD-TR-73-
51, Vols. I and II, USAF Electronic Systems Div., Bedford, Mass. (Oct. 1972).

Bara64. Baran, P., "On Distributed Communications: IX. Security, Secrecy, and Tamper-
Free Considerations," RM-3765-PR, The Rand Corp., Santa Monica, Calif. (1964).

Bens72. Bensoussan, A., Clingen, C. T., and Daley, R. C., "The MULTICS Virtual Mem-
ory: Concepts and Design," Comm. ACM Vol. 15(5) pp. 308-318 (May 1972).

Bers79. Berson, T. A. and Barksdale, G. L., "KSOSmDevelopment Methodology for a
Secure Operating System," pp. 365-371 in Proc. NCC, Vol. 48, AFIPS Press, Mont-
vale, N.J. (1979).

Bish79. Bishop, M. and Snyder, L., "The Transfer of Information and Authority in a
Protection System," Proc. 7th Symp. on Oper. Syst. Princ., ACM Oper. Syst. Rev.,
pp. 45-54 (Dec. 1979).

Boye79. Boyer, R. and Moore, J. S., A Computational Logic, Academic Press, New York
(1979).

Boye80. Boyer, R. and Moore, J. S., "A Verification Condition Generator for Fortran,"
Computer Science Lab. Report CSL-103, SRI International, Menlo Park, Calif.
(June 1980).

Broa76. Broadbridge, R. and Mekota, J., "Secure Communications Processor Specifica-
tion," ESD-TR-76-351, AD-A055164, Honeywell Information Systems, McLean,
Va. (June 1976).

Buck80. Buckingham, B. R, S., "CL/SWARD Command Language," SRI-CSL-79-013c,
IBM Systems Research Institute, New York (Sept. 1980).

Carl75. Carlstedt, J., Bisbey, R. II, and Popek, G., "Pattern-Directed Protection Evalua-
tion," NTIS AD-A012-474, Information Sciences Inst., Univ. of Southern Calif.,
Marina del Rey, Calif. (June 1975).

Cash76. Cash, J., Haseman, W. D., and Whinston, A. B., "Security for the GPLAN
System," Info. Systems Vol. 2 pp. 41-48 (1976).

Cheh81. Cheheyl, M. H., Gasser, M., Huff, G. A., and Millen, J. K. "Verifying Security,"
ACM Computing Surveys Vol. 13(3) pp. 279-339 (Sept. 1981).

Codd70. Codd, E. E, "A Relational Model for Large Shared Data Banks," Comm. ACM
Vol. 13(6) pp. 377-387 (1970).

Codd79. Codd, E. E, "Extending the Database Relational Model to Capture More Mean-
ing," ACM Trans. on Database Syst. Vol. 4(4) pp. 397-434 (Dec. 1979).

Cohe75. Cohen, E. and Jefferson, D., "Protection in the HYDRA Operating System,"
Proc. 5th Symp. on Oper. Syst. Print., ACM Oper. Syst. Rev. Vol. 9(5) pp. 141-160
(Nov. 1975).

Conw72. Conway, R. W., Maxwell, W. L., and Morgan, H. L., "On the Implementation of
Security Measures in Information Systems," Comm. ACM Vol. 15(4) pp. 211-220
(Apr. 1972).

Dah172. Dahl, O. J. and Hoare, C. A. R., "Hierarchical Program Structures," in Struc-
tured Programming, ed. Dahl, Dijkstra, Hoare, Academic Press, New York (1972).

Dale65. Daley, R. C. and Neumann, E G., "A General-Purpose File System for Secondary
Storage," pp. 213-229 in Proc. Fall Jt. Computer Conf., Vol. 27, AFIPS Press,
Montvale, N.J. (1965).

Denn78. Denning, D. E., Denning, P. J., Garland, S. J., Harrison, M. A., and Ruzzo, W. L.,

7 T

260 ACCESS CONTROLS

"Proving Protection Systems Safe," Computer Sciences Dept., Purdue Univ., W.
Lafayette, Ind. (Feb. 1978).

DenP71a. Denning, P. J., "An Undergraduate Course on Operating Systems Principles,"
Report of the Cosine Comm. of the Commission on Education, National Academy of
Engineering, Washington, D.C. (June 1971).

DenP71 b. Denning, P. J., "Third Generation Computer Systems," Computing Surveys Vol.
3(4) pp. 175-216 (Dec. 1971).

DeVH66. Dennis, J. B. and VanHorn, E. C., "Programming Semantics for Multipro-
grammed Computations," Comm. ACM Vol. 9(3) pp. 143-155 (Mar. 1966).

DensS0. Dennis, T. D., "A Capability Architecture," Ph.D. Thesis, Computer Sciences
Dept., Purdue Univ., W. Lafayette, Ind. (1980).

Dijk68. Dijkstra, E. W., "The Structure of the 'THE'--Multiprogramming System,"
Comm. ACM Vol. 11(5) pp. 341-346 (May 1968).

Down77. Downs, D. and Popek, G. J., "A Kernel Design for a Secure Data Base Manage-
ment System," pp. 507-514 in Proc. 3rd Conf. Very Large Data Bases, IEEE and
ACM, New York (1977).

Eng174. England, D. M., "Capability Concept Mechanism and Structure in System 250,"
pp. 63-82 in Proc. Int. Workshop on Protection in Operating Systems, Inst. Re-
cherche d'Informatique, Rocquencourt, Le Chesnay, France (Aug. 1974).

Fabr71a. Fabry, R. S., "Preliminary Description of a Supervisor for a Machine Oriented
Around Capabilities," ICR Quarterly Report 18, Univ. of Chicago, Chicago, Ill.
(Mar. 1971).

Fabr71b. Fabry, R. S., "List Structured Addressing," Ph.D. Thesis, Univ. of Chicago,
Chicago, Ill. (Mar. 1971).

Fabr74. Fabry, R. S. "Capability-Based Addressing," Comm. ACM Vol. 17(7) pp. 403-
412 (July 1974).

Fagi78. Fagin, R., "On an Authorization Mechanism," ACM Trans. on Database Syst.
Vol. 3(3) pp. 310-319 (Sept. 1978).

Feie79. Feiertag, R. J. and Neumann, P. G., "The Foundations of a Provably Secure
Operating System (PSOS)," pp. 329-334 in Proc. NCC, Vol. 48, AFIPS Press,
Montvale, N.J. (1979).

Floy67. Floyd, R. W., "Assigning Meaning to Programs," pp. 19-32 in Math. Aspects of
Computer Science, ed. J. T. Schwartz, Amer. Math. Soc. (t967).

Gehr79. Gehringer, E., "Variable-Length Capabilities as a Solution to the Small-Object
Problem," Proc. 7th Syrup. on Oper. Syst. Princ., ACM Oper. Syst. Rev., pp. 131-
142 (Dec. 1979).

Gift82. Gifford, D. K., "Cryptographic Sealing for Information Security and Authentica-
tion," Comm. ACM (Apr. 1982).

Gold79. Gold, B. D., Linde, R. R., Peeler, R. J., Schaefer, M., Scheid, J. E, and Ward, P.
D., "A Security Retrofit of VM/370," pp. 335-344 in Proc. NCC, Vol. 48, AFIPS
Press, Montvale, N.J. (1979).

GrDe72. Graham, G. S. and Denning, P. J., "Protection--Principles and Practice," pp.
417-429 in Proc. Spring Jt. Computer Conf., Vol. 40, AFIPS Press, Montvale, N. J.
(1972).

Grah68. Graham, R. M., "Protection in an Information Processing Utility," Comm. ACM
Vol. 11(5) pp. 365-369 (May 1968).

Grif76. Griffiths, E E and Wade, B. W., "An Authorization Mechanism for a Relational
Database System," ACM Trans. on Database Syst. Vol. 1(3) pp. 242-255 (Sept.
1976).

REFERENCES 261

Harr76. Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., "Protection in Operating
Systems," Comm. ACM Vol. 19(8) pp. 461-471 (Aug. 1976).

Harr78. Harrison, M. A. and Ruzzo, W. L., "Monotonic Protection Systems," pp. 337-365
in Foundations of Secure Computation, ed. R. A. DeMillo et at., Academic Press,
New York (1978).

Hart76. Hartson, H. R. and Hsiao, D. K., "Full Protection Specifications in the Semantic
Model for Database Protection Languages," Proc. 1976 ACM Annual Conf., pp. 90-
95 (Oct. 1976).

Hebb80. Hebbard, B. et al., "A Penetration Analysis of the Michigan Terminal System,"
ACM Oper. Syst. Rev. Vol. 14(1) pp. 7-20 (Jan. 1980).

Hoff71. Hoffman, L. J., "The Formulary Model for Flexible Privacy and Access Control,"
pp. 587-601 in Proc. Fall Jt. Computer Conf., Vol. 39, AFIPS Press, Montvale, N.J.
(1971).

IBM68. IBM, "IBM System/360 Principles of Operation," IBM Report No. GA22-6821
(Sept. 1968).

I1if62. lliffe, J. K. and Jodeit, J. G., "A Dynamic Storage Allocation System," Computer J.
Vol. 5 pp. 200-209 (1962).

Ilif72. Iliffe, J. K., Basic Machine Principles, Elsevier/MacDonald, New York (lst ed.
1968, 2nd ed. 1972).

Jone76a. Jones, A. K. and Liskov, B. H., "A Language Extension Mechanism for Control-
ling Access to Shared Data," Proc. 2nd Int. Conf. Software Eng., pp. 62-68 (1976).

Jone76b. Jones, A. K., Lipton, R. J., and Snyder, L., "A Linear Time Algorithm for
Deciding Security," Proc. 17th Annual Syrup. on Found. of Comp. Sci. (1976).

Jone78. Jones, A. K., "Protection Mechanism Models: Their Usefulness," pp. 237-254 in
Foundations of Secure Computation, ed. R. A. DeMillo et al., Academic Press, New
York (1978).

Jone79. Jones, A. K., Chansler, R. J., Durham, I., Schwans, K., and Vegdahl, S. R.,
"StarOS, a Multiprocessor Operating System for the Support of Task Forces," Proc.
7th Symp. on Oper. Syst. Princ., ACM Oper. Sys. Rev., pp. 117-121 (Dec. 1979).

Kahn81. Kahn, K. C., Corwin, W. M., Dennis, T. D., D'Hooge, H., Hubka, D. E., Hutch-
ins, L. A., Montague, J. T., Pollack, E J., Gifkins, M. R., "iMAX: A Multiprocessor
Operating System for an Object-Based Computer," Proc. 8th Syrup. on Oper. Syst.
Princ., ACM Oper. Syst. Rev., Vol. 15(5), pp. 127-136 (Dec. 1981).

Krei80. Kreissig, G., "A Model to Describe Protection Problems," pp. 9-17 in Proc. 1980
Syrup. on Security and Privacy, IEEE Computer Society (Apr. 1980).

Lamp69. Lampson, B. W., "Dynamic Protection Structures," pp. 27-38 in Proc. Fall Jt.
Computer Conf., Vol. 35, AFIPS Press, Montvale, N.J. (1969).

Lamp71. Lampson, B. W., "Protection," Proc. 5th Princeton Syrup. of Info. Sci. and Syst.,
pp. 437-443 Princeton Univ., (Mar. 1971). Reprinted in ACM Oper. Syst. Rev., Vol.
8(1) pp. 18-24 (Jan. 1974).

Lamp73. Lampson, B. W., "A Note on the Confinement Problem," Comm. ACM Vol.
16(10) pp. 613-615 (Oct. 1973).

Lamp76a. Lampson, B. W., Horning, J. J., London, R. L., Mitchell, J. G., and Popek, G. J.,
"Report on the Programming Language Euclid" (Aug. 1976).

Lamp76b. Lampson, B. W. and Sturgis, H. E., "Reflections on an Operating System De-
sign," Comm. ACM Vol. 19(5) pp. 251-265 (May 1976).

Levi81. Levitt, K. N. and Neumann, P. G., "Recent SRI Work in Verification," ACM
SIGSOFT Software Engineering Notes Vol. 6(3) pp. 33-47. (July 1981).

Lind75. Linde, R. R., "Operating System Penetration," pp. 361-368 in Proc. NCC, Vol. 44,

262 ACCESS CONTROLS

AFIPS Press, Montvale, N.J. (1975).
Linn76. Linden, T. A., "Operating System Structures to Support Security and Reliable

Software," Computing Surveys Vol. 8(4) pp. 409-445 (Dec. 1976).
Lisk77. Liskov, B. H., Snyder, A., Atkinson, R., and Schaffert, C., "Abstraction Mecha-

nisms in CLU," Comm. ACM Vol. 20(8) pp. 564-576 (Aug. 1977).
McCa79. McCauley, E. J. and Drongowski, P. J., "KSOS--The Design of a Secure Oper-

ating System," pp. 345-353 in Proc. NCC, Vol. 48, AFIPS Press, Montvale, N.J.
(1979).

Mi1176. Millen, J. K., "Security Kernel Validation in Practice," Comm. ACM Vol. 19(5)
pp. 243-250 (May 1976).

Mins67. Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, Engle-
wood Cliffs, N.J. (1967).

MinN78. Minsky, N., "The Principle of Attenuation of Privileges and its Ramifications,"
pp. 255-276 in Foundations of Secure Computation, ed. R. A. DeMillo et al., Aca-
demic Press, New York (1978).

Morr78. Morris, J. B., "Programming by Successive Refinement," Dept. of Computer
Sciences, Purdue Univ., W. Lafayette, Ind. (1978).

Mors73. Morris, J. H., "Protection in Programming Languages," Comm. ACM Vol. 16(1)
pp. 15-21 (Jan. 1973).

Myer78. Myers, G., Advances in Computer Architecture, John Wiley & Sons, New York
(1978).

Myer80. Myers, G. and Buckingham, B. R. S., "A Hardware Implementation of Capabili-
ty-Based Addressing," ACM Oper. Syst. Rev. Vol. 14(4) pp. 13-25 (Oct. 1980).

Need77. Needham, R. M. and Walker, R. D. H., "The Cambridge CAP Computer and Its
Protection System," Proc. 6th Symp. on Oper. Syst. Princ., ACM Oper. Syst. Rev.
Vol. 11(5)pp. 1-10 (Nov. 1977).

Neum78. Neumann, P. G., "Computer Security Evaluation," pp. 1087-1095 in Proc. NCC,
Vol. 47, AFIPS Press, Montvale, N.J. (1978).

Neum80. Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt, K. N., and Robinson, L.,
"A Provably Secure Operating System: The System, Its Applications, and Proofs,"
Computer Science Lab. Report CSL-116, SRI International, Menlo Park, Calif.
(May 1980).

Orga72. Organick, E. I., The Multics System: An Examination of Its Structure, MIT
Press, Cambridge, Mass. (1972).

Parn72. Parnas, D. L., "A Technique for Module Specification with Examples," Comm.
ACM Vol. 15(5) pp. 330-336 (May 1972).

Pope74. Popek, G. J. and Kline, C. S., "Verifiable Secure Operating System Software," pp.
145-151 in Proc. NCC, Vol. 43, AFIPS Press, Montvale, N.J. (1974).

P6pe78. Popek, G. J. and Farber, D. A., "A Model for Verification of Data Security in
Operating Systems," Comm. ACM Vol. 21(9) pp. 737-749 (Sept. 1978).

Pope79. Popek, G. J., Kampe, M., Kline, C. S., Stoughton, A., Urban, M., and Walton, E.,
"UCLA Secure Unix," pp. 355-364 in Proc. NCC, Vol. 48, AFIPS Press, Montvale,
N.J. (1979).

Pric73. Price, W. R., "Implications of a Vertical Memory Mechanism for Implementing
Protection in a Family of Operating Systems," Ph.D. Thesis, Comp. Sci. Dept., Car-
negie-Mellon Univ., Pittsburgh, Pa. (1973).

Rede74. Redell, D. R. and Fabry, R. S., "Selective Revocation and Capabilities," pp. 197-
209 in Proc. Int. Workshop on Protection in Operating Systems, Inst. de Recherche
d'Informatique, Rocquencourt, Le Chesnay, France (Aug. 1974).

REFERENCES 263

Ritc74. Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System," Comm.
ACM Vol. 17(7) pp. 365-375 (July 1974).

Robi77. Robinson, L. and Levitt, K. N., "Proof Techniques for Hierarchically Structured
Programs," Comm. ACM Vol. 20(4) pp. 271-283 (Apr. 1977).

Robi79. Robinson, L.,"The HDM Handbook, Volume I: The Foundations of HDM," SRI
Project 4828, SRI International, Menlo Park, Calif. (June 1979).

Roge67. Rogers, H., Theory o f Recursive Functions and Effective Computability,
McGraw-Hill, New York (1967). Section 11.2

Rush81. Rushby, J. M., "Design and Verification of Secure Systems," Proc. 8th Symp. on
Oper. Syst. Princ., ACM Oper. Syst. Rev., Vol. 15(5), pp. 12-21 (Dec. 1981).

Salt75. Saltzer, J. H. and Schroeder, M. D., "The Protection of Information in Computer
Systems," Proc. IEEE Vol. 63(9) pp. 1278-1308 (Sept. 1975).

Schi75. Schiller, W. L., "The Design and Specification of a Security Kernel for the PDP
11/45," ESD-TR-75-69, The MITRE Corp., Bedford, Mass. (Mar. 1975).

Schr72. Schroeder, M. D. and Saltzer, J. H., "A Hardware Architecture for Implementing
Protection Rings," Comm. ACM Vol. 15(3) pp. 157-170 (Mar. 1972).

Schr77. Schroeder, M. D., Clark, D. D., and Saltzer, J. H., "The MULTICS Kernel Design
Project," Proc. 6th Symp. on Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol. 11(5)
pp. 43--56 (Nov. 1977).

Sevc74. Sevcik, K. C. and Tsichritzis, D. C., "Authorization and Access Control Within
Overall System Design," pp. 211-224 in Proc. Int. Workshop on Protection in Oper-
ating Systems, IRIA, Rocquencourt, Le Chesnay, France (1974).

Silv79. Silverberg, B., Robinson, L., and Levitt, K., "The HDM Handbook, Volume II: The
Languages and Tools of HDM," SRI Project 4828, SRI International, Menlo Park,
Calif. (June 1979).

Snyd77. Snyder, L., "On the Synthesis and Analysis of Protection Systems," Proc. 6th
Symp. on Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol. 11(5) pp. 141-150 (Nov.
1977).

Snyd81a. Snyder, L., "Formal Models of Capability-Based Protection Systems," IEEE
Trans. on Computers Vol. C-30(3) pp. 172-181 (Mar. 1981).

Snyd81b. Snyder, L., "Theft and Conspiracy in the Take-Grant Model," JCSS Vol. 23(3),
pp. 333-347 (Dec. 1981).

Ston74. Stonebraker, M. and Wong, E., "Access Control in a Relational Data Base Man-
agement System by Query Modification," Proc. 1974 ACM Annual Conf., pp. 180-
186 (Nov. 1974).

WalkS0. Walker, B. J., Kemmerer, R. A., and Popek, G. J., "Specification and Verification
of the UCLA Unix Security Kernel," Comm. ACM Vol. 23(2) pp. 118-131 (Feb.
1980).

Walt75. Walter, K. G. et al., "Structured Specification of a Security Kernel," Proc. Int.
Conf. Reliable Software, ACM SIGPLAN Notices Vol. 10(6) pp. 285-293 (June
1975).

Wulf74. Wulf, W. A., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and
Pollack, E, "HYDRA: The Kernel of a Multiprocessor System," Comm. ACM Vol.
17(6) pp. 337-345 (June 1974).

Wulf76. Wulf, W. A., London, R. L., and Shaw, M., "An Introduction tothe Construction
and Verification of Alphard Programs," IEEE Trans. on Software Eng. Vol. SE-2(4)
pp. 253-265 (Dec. 1976).

Information Flow Controls

Access controls regulate the accessing of objects, but not what subjects might do
with the information contained in them. Many difficulties with information "leak-
age" arise not from defective access control, but from the lack of any policy about
information flow. Flow controls are concerned with the right of dissemination of
information, irrespective of what object holds the information; they specify valid
channels along which information may flow.

5.1 LATTICE MODEL OF INFORMATION FLOW

We shall describe flow controls using the lattice model introduced by Denning
[Denn75,Denn76a]. The lattice model is an extension of the Bell and LaPadula
[Bell73] model, which describes the security policies of military systems (see Sec-
tion 5.6).

The lattice model was introduced to describe policies and channels of infor-
mation flow, but not what it means for information to flow from one object to
another. We shall extend the model to give a precise definition of information flow
in terms of classical information theory.

An information ttow system is modeled by a lattice-structured flow policy,
states, and state transitions.

5.1.1 Information Flow Policy

An information flow policy is defined by a lattice (SC, _<), where SC i s a finite
set of security classes, and ~ is a binary relationt partially ordering the classes of

t In [Denn76a], the notation "--~" is used to denote the relation "~".

265

266 INFORMATION FLOW CONTROLS

SC. The security classes correspond to disjoint classes of information; they are
intended to encompass, but are not limited to, the familiar concepts of "security
classifications" and "security categories" [Weis69,Gain72].

For security classes A and B, the relation A ~ B means class A information
is lower than or equal to class B information. Information is permitted to flow
within a class or upward, but not downward or to unrelated classes; thus, class A
information is permitted to flow into class B if and only if A _< B. There is a lowest
class, denoted Low, such that Low _< A for all classes A in SC. Low security
information is permitted to flow anywhere. Similarly, there is a highest class,
denoted High, such that A _< High for all A. High security information cannot
leave the class High. The lattice properties of (SC, _<) are discussed in Sections
5.1.4 and 5.1.5.

Example:
The simplest flow policy specifies just two classes of information: confiden-
tial (High) and nonconfidential (Low); thus, all flows except those from
confidential to nonconfidential objects are allowed. This policy specifies the
requirements for a selectively confined service program that handles both
confidential and nonconfidential data [Denn74,Fent74]. The service pro-
gram is allowed to retain the customer's nonconfidential data, but it is not
allowed rtO retain or leak any confidential data. An income tax computing
service, for example, might be allowed to retain a customer's address and the
bill for services rendered, but not the customer's income or deductions. This
policy is enforced with flow controls that assign all outputs of the service
program to class Low, except for the results returned to the customer. 1

Example:
The multilevel security policy for government and military systems represents
each security class by a pair (A, C), where A denotes an authority level and
C a category. There are four authority levels"

OmUnclassified
1--Confidential
2--Secret
3--Top Secret .

There are 2 m categories, comprising all possible combinations of m compart-
ments for some m; examples of compartments might be Atomic and Nuclear.
Given classes (A, C) and (A', C'), (A, C) _< (A', C') if and only if A ~ A'
and C _C C'. Transmissions from (2, (Atomic)) to (2, (Atomic, Nuclear)) or
to (3, (Atomic)) are permitted, for example, but those from (2, (Atomic)) to
(1, (Atomic)) or to (3, (Nuclear)) are not. 1

5.1.2 Information State

The information state of a system is described by the value and security class of
each object in the system. An object may be a logical structure such as a file,

LATTICE MODEL OF INFORMATION FLOW 267

record, field within a record, or program variable; or it may be a physical structure
such as a memory location, register (including an address or instruction register),
or a user. For an object x, we shall write "x" for both the name and value of x (the
correct interpretation should be clear from context), and x (x with an underbar)
for its security class. When we want to specify the value and class of x in some
particular state s, we shall write x~ and _x s, respectively. We shall write simply x
and x when the state is clear from context or unimportant to the discussion. m

The class of an object may be either constant or varying. With fixed or
constant classes (also called "static binding"), the class of an object x is constant
over the lifetime of x; that is, X_s = _x s, for all states s and s' that include x. With
variable classes (also called "dynamic binding"), the class of an object x varies
with its contents; that is, _x s depends on x~. A flow control mechanism could sup-
port both fixed and variable classesmfor example, fixed classes for permanent or
global objects, and variable ones for temporary or local ones. Users are assigned
fixed classes called "security clearances". Unless explicitly stated otherwise, all
objects have fixed security classes.

Given objects x and y, a flow from x to y is authorized (permitted) by a flow
policy if and only if _x _< y_; if y has a variable class, then y is its class after the
flow.

5.1.3 State Transitions and Information Flow

State transitions are modeled by operations that create and delete objects, and
operations that change the value or security class of an object. Information flows
are always associated with operations that change the value of an object. For
example, execution of the file copy operation "copy(F1, F2)" causes information
to flow from file F1 to file F2. Execution of the assignment statement "y "= x /
1000" causes some information to flow from x to y, but less than the assignment
~ y o~ X~°

To determine which operations cause information flow, and the amount of
information they transfer, we turn to information theory [see Section 1.4.1; in
particular, Eq. (1.1) and (1.2)]. Let s' be the state that results from execution of a
command sequence a in state s, written

s I--as"

(read "s derives s' under cd'). Given an object x in s and an object y in s', let Hy,(X)
be the equivocation (conditional entropy) of x s given Ys', and let Hy(x) be the
equivocation of x s given the value ys of y in state s; if y does not exist in state ST
then Hy(x) = H(x), where H(x) is the entropy (uncertainty) of x. Execution of a
in state s causes information flow from x to y, denoted

if new information about Xs can be determined from Ys'; that is, if

Hy,(X) < Hy(x) .

We shall write x --% y, or simply x ---, y, if there exist states s and s' such that

268 INFORMATION FLOW CONTROLS

execution of command sequence a causes a flow x --~ y. Cohen's [Cohe77,Cohe78]
definition of "strong dependency" and Millen's [Mi1178] and Furtek's [Furt78]
deductive formulations of information flow are similar to this definition, but they
do not account for the probability distribution of the values of variables as pro-
vided by Shannon's information theory.

A flow x s - % Ys' is authorized if and only if Y_s -~ Yj; that is, the final class of
y is at least as great as the initial class of x.

The amount of information (in bits) transferred by a flow x s --% Ys' is
measured by the reduction in the uncertainty about x:

I(~, x, y, s, s') = Hy(x) - H y , (X) .

Letting P,(x) denote the probability distribution of x in state s, the channel capaci-
ty of x ---+, y is defined by the maximum amount of information transferred over
all possible probability distributions of x:

C(c~, x, y) = max l(a, x, y, s, s')
P~(x)

Note that if y can be represented with n bits, the channel capacity of any com-
mand sequence transferring information to y can be at most n bits. This means
that if the value of y is derived from m inputs x~ Xm, On the average only m / n
bits can be transferred from each input.

The following examples illustrate how the previous definitions are applied.
_

Example:
Consider the assignment

y : = x .

Suppose x is an integer variable in the range [0, 15], with all values equally
likely. Letting pg denote the probability that x = i, we have

0 otherwise .

If y is initially null, then

Hy(x) = H (x) = ~ P i l°gz(~/) = 1 6 (1 ~) l o g z 1 6 = 4 .
i

Because the exact value of x can be determined from y after the statement is
executed, Hy,(X) = 0. Thus, 4 bits of information are transferred to y.

The capacity of an assignment "y := x" is usually much greater than 4
bits. If x and y are represented as 32-bit words, for example, the capacity is
32 bits. Or, if x and y are vectors of length n, where each vector element is a
32-bit word, the capacity is 32n. In both cases, the capacity is achieved when
all possible words are equally likely.

Note that the statement "y := x" does not cause a flow x --~ y if the
value of x is known. This is because Hy,(X) = Hy(X) = H(x) = O. II

LATTICE MODEL OF INFORMATION FLOW 269

Example:
Consider the sequence of statements

Z "= X;
y ' = z .

Execution of this sequence can cause an "indirect flow" x ~ y through the
intermediate variable z, as well as a direct flow x ~ z. Note, however, that
the sequence does not cause a flow z --~ y, because the final value of y does
not reveal any information about the initial value of z. !1

Example:
Consider the statement

z ' = x + y .

Let x and y be in the range [0, 15] with all values equally likely; thus H(x)
= H(y) = 4 bits. Given z, the values of x and y are no longer equally likely
(e.g., z = 0 implies both x and y must be 0, z = 1 implies either x = 0 and y
= 1 or x = 1 and y = 0). Thus, both Hz,(X) and Hz,(y) are less than 4 bits,
and execution of the statement reduces the uncertainty about both x and y.

Now, little can be deduced about the values of x and y from their sum
when both values are unknown. Yet if one of the elements is known, the
other element can be determined exactly. In general, the sum z = xl + . . .
+ x, of n elements contains some information about the individual elements.
Given additional information about some of the elements, it is often possible
to deduce the unknown elements (e.g., given the sum z l of n - 1 elements,
the nth element can be determined exactly from the difference z - z 1). The
problem of hiding confidential information in sums (and other statistics) is
studied in the next chapter. II

Example:
It may seem surprising that the syntactically similar statement

z : = x ~ y ,

where x and y are as described in the previous example and " ~ " denotes the
exclusive-or operator, does not cause information to flow to z. This is because
the value of z does not reduce the uncertainty about either x or y (all values
of x and y are equally likely for any given z). This is a Vernam cipher, where
x is the plaintext, y is the key, and z is the ciphertext. This example shows it
is not enough for an object y to be functionally dependent on an object x for
there to be a flow x ~ y. It must be possible to learn something new about x
from y.

We saw in Chapter 1 that most ciphers are theoretically breakable
given enough ciphertext; thus, encryption generally causes information to
flow from a plaintext message M to a eiphertext message C = EK(M). Deter-
mining M from C may be computationally infeasible, however, whence the
information in C is not practically useful. Thus, in practice high security

270 INFORMATION FLOW CONTROLS

information can be encrypted and transmitted over a low security channel
without violating a flow policy. I

Example:
Consider the if statement

if x = 1 t h e n y ' = 1,

where y is initially 0. Suppose x is 0 or 1, with both values equally likely;
thus H(x) = 1. After this statement is executed, y contains the exact value of
x, giving Hy,(X) = 0. Thus, 1 bit of information is transferred from x to y.
Even if x is not restricted to the range [0, 1], the value of y reduces the
uncertainty about x (y = 1 implies x = 1 and y = 0 implies x ~ 1).

The flow x ~ y caused by executing the if statement is called an
implicit flow to distinguish it from an explicit flow caused by an assignment.
The interesting aspect of an implicit flow x ~ y is that it can occur even in
the absence of any explicit assignment to y. For the preceding if statement,
the flow occurs even when x ~ 1 and the assignment to y is skipped. There
must be a possibility of executing an assignment to y, however, and this
assignment must be conditioned on the value of x; otherwise, the value of y
cannot reduce the uncertainty about x.

The information in an implicit flow is encoded in the program counter
(instruction register) of a process when it executes a conditional branch
instruction. This information remains in the program counter as long as the
execution path of the program depends on the outcome of the test, but is lost
thereafter. I

Example:
Consider the statement

i f (x = 1) a n d (y = 1) t h e n z : = 1 ,

where z is initially 0. Suppose x and y are both 0 or 1, with both values
equally likely; thus H(x) = H(y) = 1. Execution of this statement transfers
information about both x and y to z (z = 1 implies x = y = 1, and z = 0
implies x = 0 with probability 2/3 and x = 1 with probability 1/3; similarly
for y). The equivocations Hz,(X) and Hz,(y) are both approximately .7 (deri-
vation of this is left as an exercise). Thus, the amount of information trans-
ferred about each of x and y is approximately .3 bit, and the total amount of
information transferred is about .6 bit.

Rewriting the statement as a nested conditional structure

i f x = 1

then if y = 1 t h e n z ' = 1

shows that implicit flows can be transferred through several layers of nest-
ing. II

LATTICE MODEL OF INFORMATION FLOW 271

Example:
Consider the if statement

if x_> 8 t h e n y ' = 1 ,

where y is initially 0. Again suppose x is an integer variable in the range [0,
15], with all values equally likely, so H(x) = 4. To derive the equivocation
Hy,(x) from executing this statement, let qj be the probability y' = j (j = 0 or
1), and let qj(i) be the probability x = i given y' = j. Then

and

1
q0 = ql = ~

I
q0(i)= ~- 0 ~ i ~ 7

0 otherwise {1
q~(i)= g 8 _ < i . ~ 15

0 otherwise

1 15
Hy,(X) = ~ qj ~ qj(i)1og2(qj~)

j = 0 i=0

= (1) 3 + (1) 3 = 3 .

Execution of this statement, therefore, transfers 1 bit of information about x
to y (namely, the high-order bit).

Suppose instead x has the following distribution:

~ 0 _ < i _ < 7

pi = 1 ~ i = 8

0 otherwise .

The uncertainty of x is:

H (x) = 8 (~6) log2 16 + (½)log2 2 = 2.0 + 0 . 5 = 2 . 5 .

The probability distributions of y and of x given y are:

1
q0 = ql = ~

272 ABFDEFGHIIJKLMMNOHPP

I 1
q0(i)= ~ 0 _ < i _ < 7

0 otherwise

1 i = 8
ql (i)= 0 otherwise .

Therefore,

Again, 1 bit of information is transferred. This is because y is assigned the
value 1 with probability 1/2. It may seem that more than 1 bit of informa-
tion can be transferred by this statement, because when y is assigned the
value 1, there is no uncertainty about x- - i t must be 8. On the other hand,
when y is assigned the value 0, there is still uncertainty about the exact value
of x- - i t could be anything between 0 and 7. The equivocation Hy,(X) mea-
sures the expected uncertainty of x over all possible assignments to y. II

In general, an if statement of the form

i f f (x) then y '= 1

for some function f transfers 1 bit when the probability f (x) is true is 1/2. Let Pi be
the probability x = i for all possible values i of x. Assuming y is initially 0 and
Hy(x) = H(x), we have

1
qo = ql =

2Pi if f(i) is false
q°(i) = 0 otherwise

2pi iff(i) is true
q~(i) = 0 otherwise

whence:

Hy,(X)= (½)~. qo (i)logz (q 0 ~) + (½)~. ql (i)logz (q~(/))
l l

i i

= ~ Pi log2 (~) - ~ pilog2 2
i i

= H (x) - - 1 .

If the probability f ix) is true is not 1/2, less than 1 bit of information will be
transferred (see exercises at end of chapter).

LATTICE MODEL OF INFORMATION FLOW 273

It should now come as no surprise that the channel capacity of the statement

if f (x) then y "= 1

is at most 1 bit. The reason is simple: because y can be represented by 1 bit (0 or
1), it cannot contain more than 1 bit of information about x.

5.1.4 Lattice Structure

A flow policy (SC, _<) is a lattice if it is a partially ordered set (poset) and there
exist least upper and greatest lower bound operators, denoted ~ and ® respective-
lye, on S C (e.g., see [Birk67]). That (SC, _<) is a poset implies the relation _< is
reflexive, transitive, and antisymmetric; that is, for all A, B, and C in SC:

1. Reflexive: A _< A
2. Transitive: A .~ B and B ~ C implies
3. Antisymmetric" A ~ B and B ~ A implies

A . ~ C
A = B .

That ~ is a least upper bound operator on S C implies for each pair of classes A and
B in SC, there exists a unique class C = A ~ B in S C such that:

1. A ~ C a n d B ~ C , a n d
2. A ~ D a n d B ~ D implies C ~ D for all D in S C .

By extension, corresponding to any nonempty subset of classes S = (A1 , A n) of
SC, there is a unique element ~ S = A1 • A2 • . . . • A n which is the least upper
bound for the subset. The highest security class, High, is thus High = ~SC.

That ® is a greatest lower bound operator on S C implies for each pair of
classes A and B i n SC, there exists a unique class E = A ® B such that"

1. E ~ A and E _< B , and
2. D . ~ A a n d D ~ B implies D E E for a l l D i n S C .

By extension, corresponding to any subset S = (A1 , A n) of SC, there is a
unique element ®S = A1 ® A2 ® . . . ® A n which is the greatest lower bound for the
subset. The lowest security class, Low, is thus Low = ®SC. Low is an identity
element on ~; that is, A ~ Low = A for all A ~ SC. Similarly, High is an identity
element on ®.

Example:
Figure 5.1 illustrates a lattice with 11 classes, where an arrow from a class X
to a class Y means X ~ Y. The graphical representation is a standard prece-
dence graph showing only the nonreflexive, immediate relations. We have,
for example,

!" In the remainder of this chapter, " ~ " denotes least upper bound rather than exclusive-or.

274 INFORMATION FLOW CONTROLS

FIGURE 5.1 Lattice.

High

It",,.
G I

F

Low

A @ C = C , A ® C = A

C @ D = G, C O D = A
C @ D @ E = High , C ® D ® E = Low. I I

A linear lattice is s imply a l inear o rder ing on a set of n classes S C = (0, 1,

. . . , n - 1) such t ha t for all i , j ~ [0, n - 1] •

a. i • j = max(i , j)

b. i ® j = min(i , j)
c. L o w = O; H i g h = n - 1 .

FIGURE 5.2 Subset lattice.

tx, Y, z}

lx, yl lx, {yz
~L

0

LATTICE MODEL OF INFORMATION FLOW 275

For n = 2, this lattice describes systems that distinguish confidential data in class
1 (High) from nonconfidential data in class 0 (Low). For n = 4, it describes the
authority levels in military systems.

Given a set X, a subset lattice is derived from a nonlinear ordering on the set
of all subsets of X. The ordering relation .~ corresponds to set inclusion C, the
least upper bound • to set union t j , and the greatest lower bound ® to set
intersection N. The lowest class corresponds to the empty set and the highest class
to X. Figure 5.2 illustrates for X = (x, y, z).

A subset lattice is particularly useful for specifying arbitrary input-output
relations. Suppose a program has m input parameters x~, x m and n output
parameters y~, . . . , y, such that each output parameter is allowed to depend on
only certain inputs [Jone75]. A subset lattice can be constructed from the subsets
of X = (x x , . . . , xm). The class associated with each input x i is the singleton set xj
= (xt), and the class associated with each output yj is the set .Zj = (x i l x i ----~ Yj is
allowed).

Example:
Suppose a program has three input parameters xl, x2, and xs, and two output
parameters Yl and Y2 subject to the constraint that yl may depend only on xl
and x2, and Y2 may depend only on xl and xs. Then y_~ = {xl, x2} and Y_2 = {xx,
x~). m

A subset lattice also describes policies for which X is a set of categories or
properties, and classes are combinations of categories; information in an object a is
allowed to flow into an object b if and only if b has at least the properties of a.

Example:
Consider a database containing medical, financial, and criminal records on
individuals, and let X = (M e d i c a l Financial Criminal) . Medical informa-
tion is permitted to flow into an object b if and only if Medica l ~ b, and a
combination of medical and financial information is permitted to flow into b
if and only if both Medica l E b and Financial E b. 1

Another example is the set of security categories in military systems. Karger
[Karg78] discusses the application of such lattices to the private sector and decen-
tralized computer networks, where the security lattices may be large.

Still richer structures can be constructed from combinations of linear and
subset lattices.

Example: Mul t i l eve l security.
The security classes of the military multilevel security policy (see Section
5.1.1) form a lattice determined by the (Cartesian) product of the linear
lattice of authority levels and the subset lattice of categories. Let (A, C) and
(A', C') be security classes, where A and A' arc authority levels and C and
C' arc categories. Then

276 INFORMATION FLOW CONTROLS

a °

b.
C.

d.
e .

(A, C) <~ (A', C') iff A <~A', C C C'
(A, C) ~ (A', C') = (max(A, A'), C U C')
(A, C) ® (A', C') = (min(A, A'), C n C')
Low = (0, ()) = (Unclassified, O)
High = (3, X) = (Top Secret, X) ,

where X is the set of all compartments. II

Because any arbitrary set of allowable input/output relations can be de-
scribed by a subset lattice, we lose no generality or flexibility by restricting atten-
tion to lattice-structured flow policies.

It is also possible to take an arbitrary flow policy P = (SC, _<) and trans-
form it into a lattice P' = (SC', ~ ') ; classes A and B in SC have corresponding
classes A' and B' in SC' such that A _< B in P if and only if A' ~ B' in P'
[Denn76b]. This means that a flow is authorized under P if and only if it is
authorized under P', where objects bound to class A in P are bound to class A' in
P'. The transformation requires only that the relation _< be reflexive and transi-
tive. To derive a relation _<' that is also antisymmetric, classes forming cycles
(e.g., A _< B _< C .~ A) are compressed into single classes. To provide least upper
and greatest lower bound operators, new classes are added. Figure 5.3 illustrates.
The class AB is added to give A and B a least upper bound; the classes Low and
High are added to give bounds on the complete structure. The classes D and E
forming a cycle in the original structure are compressed into the single class DE in
the lattice.

5.1.5 Flow Properties of Lattices

The lattice properties can be exploited in the construction of enforcement mecha-
nisms. Transitivity of the relation .~ implies a n y indirect flow x --~ y resulting
from a sequence of flows

X ~ Z 0 ~ Z 1 ~ . . . ~ Z n _ 1 ~ Z n " ~ y

is permitted if each flow Zg_x ---~ zi (1 _< i _< n) is permitted, because

X -~ £o ~ Zl ~ . ' . ~ Zn-1 ~ Zn -~" Y

implies x _< y. Therefore, an enforcement mechanism need only verify direct
flows.

Example:
The security of the indirect flow x ----~ y caused by executing the sequence of
statements

z "--'-- X ;

y ' = z

LATTICE MODEL OF INFORMATION FLOW 277

FIGURE 5.3 Transformation of nonlattice policy into a lattice.
, , ,

High

/
1 1 DE c! o! c,,,ABIAI

x , /
Low

automatically follows from the security of the individual statements; that is,
x<zand_z_<y_ impl i e s_x_<y . i l

In general, transitivity of the relation .~ implies that if executing each of the
statements $1, . . . , Sn is authorized, then executing the statements in sequence is
authorized.

Transitivity greatly simplifies verifying implicit flows. To see why, suppose
the value of a variable x is tested, and the program follows one of two execution
paths depending on the outcome of the test. At some point, the execution paths
join. Before the paths join, implicit flows from x (encoded in the program counter)
must be verified. But after the paths join, information can only flow indirectly
from x, and transitivity automatically ensures the security of these flows.

Example:
Consider the sequence

z "= O;
if x = 1 t h e n z ' = 1;
y ' = z ,

where x is initially 0 or 1. Execution of this sequence implicitly transfers
information from x to z, and then explicitly from z to y. Because of transitiv-
ity, the security of the indirect flow x ~ y automatically follows from the
security of the flows x ----~ z and z ----~ y. I

The existence of a least upper bound operator ~ implies that if x_l .~ y_, . . . ,
_x, _< y for objects xl , x , and y, then there is a unique class _x = _xl • . . .

278 ABFDEFGHIIJKLMMNOHPP

X n such that _x _< y_. This means that a set of flows x 1 ~ y, . . . , x n ~ y is
authorized if the single relation _x _< y_ holds. This simplifies the design of verifica-
tion mechanisms.

Example:
To verify the security of an assignment statement:

y := Xl "b X2 * Xs,

a compiler can form the class x = xl ~ xz • xs as the expression on the right
is parsed, and then verify the relation _x <_ y_ when the complete statement is
recognized. Similarly, a rUn-time enforcement mechanism can form the class
x_ as the expression is evaluated, and verify the relation x _< y_ when the
assignment to y is performed. I

The least upper bound operator ~ can be interpreted as a "class combining
operator" specifying the class of a result y = f (x l , . . . , Xn) . With variable security
classes, x_ = x~ ~ . . . ~ Y_n is the minimal class that can be assigned to y such that
the flows x i ---~ y are secure.

The existence of a greatest lower bound operator ® implies that if x _< Y_I,
" ' ' , ~ ~ Y_n for objects x and Y l , Yn , then there is a unique class y_ = Y_i
® . . . ® y, such that _x _< y . This means a set of flows x ~ Y l , x ~ Y n is
authorized if the single relation _x ~ y_ holds. This also simplifies the design of
verification mechanisms.

Example:
To verify the security of an if statement

if x then
begin

Yl := O;
Y2 := O;
Ys := 0

end,

a compiler can form the class y_ = Y_i ® Y_2 ® Y_8 as the statements are
parsed, and then verify the implicit flows x ---~ Yi (i = 1, 2, 3) by checking
that_x_<y_. II

The least security class L o w consists of all information that is unrestricted.
This includes all data values that can be expressed in the language (e.g., integers
and characters), and implies that execution of statements such as

X'---- |

x ' = x + l
x := 'On a clear disk you can seek forever'

is always authorized. Because L o w is an identity on O, the class of the expression
"x + 1" is simply x ~ L o w = x .

FLOW CONTROL MECHANISMS 279

5.2 FLOW CONTROL MECHANISMS

5.2.1 Security and Precision

Let F be the set of all possible flows in an information flow system, let P be the
subset of F authorized by a given flow policy, and let E be the subset of F "execut-
able" given the flow control mechanisms in operation. The system is secure if
E C P; that is, all executable flows are authorized. A secure system is precise if
E -- P; that is, all authorized flows are executable. Figure 5.4 illustrates.

Note the similarity of Figure 5.4 with Figure 4.4, where a secure system is
defined to be one that never enters an unauthorized state. We can also define a
secure information flow system in terms of authorized states. Let so be an initial
state; so is authorized, because flows are associated with state transitions. Let s be
a state derived from So by executing a command sequence a; then s is authorized if
and only if all flows x~0 --~ y~ are authorized (i.e., x~0 _< ~) . By transitivity of the
relation _<, the state of the system remains authorized if the flows caused by each
state transition are authorized. Defining secure information flow in terms of au-
thorized states allows us to use a single definition of security for a system that
supports both an access control policy and an information flow policy, as do most
systems.

Although it is simple to construct a mechanism that provides security (by

FIGURE 5.4 Security and precision.
, , ,

Unauthorized flows

All flows

Authorized flows
(given policy)

Executable flows
(given mechanism)

Secure" E c p
Precise" E = P

280 INFORMATION FLOW CONTROLS

inhibiting all operations) it is considerably more difficult to construct a mecha-
nism that provides precision as well.

Example:
Consider the assignment

y ' = k , x ,

and a policy in which k _< y_ but _x _K__ Y; that is, information may flow from k
to y but not from x to y. A mechanism that always prohibits execution of this
statement will provide security. It may not be precise, however, because
execution of the statement does not cause a flow x ~ y if either k = 0 or
H(x) = 0 (i.e., there is no uncertainty about x). To design a mechanism that
verifies the relation _x .~ y_ only for actual flows x ~ y is considerably more
difficult than designing one that verifies the relation x _< y_ for any operation
that can potentially cause a flow x ---~ y. II

To further complicate the problem, it is generally undecidable whether a
given system is secure or precise.

Example:
Consider the statement

if f (n) halts then y "= x else y "= 0 ,

where f is an arbitrary function and x ~ y_. Consider two systems: one that
always allows execution of this statement, and another that always prohibits
its execution. Clearly, it is undecidable whether the first system is secure or
the second precise without solving the halting problem. To make matters
worse, it is theoretically impossible to construct a mechanism that is both
secure and precise [Jone75]. II

In a secure system, the security class y_ of any object y will be at least as high
as the class of the information stored in y. This does not imply, however, that a
variable class y_ must monotonically increase over time. If information is removed
from y, then y may decrease.

Example:
Consider the following sequence of statements:

y "= x;
z : = y;
y ' = 0 .

After the first statement is executed, y_ must satisfy _x _< y_ to reflect the flow
x ~ y. After the last statement is executed, however, y_ can be lower than x_,
because y no longer contains information about x. Thus, the security class of
an object can be increased or decreased at any time as long it does not violate
security. II

FLOW CONTROL MECHANISMS 281

In some systems, trusted processes are permitted to violate the flow require-
ments--for example, to lower the security class of an object. These processes,
however, must meet the security policies of the system as a whole (see Section
5.6.3 for an example).

5.2.2 Channels of Flow

Lampson [Lamp73] observed that information flows along three types of channels:

Legitimate Channels, which are intended for information transfer between
processes or programs--e.g., the parameters of a procedure.
Storage Channels, which are objects shared by more than one process or
program--e.g., a shared file or global variable.
Covert Channels, which are not intended for information transfer at a l lne.g . ,
a process's effect on the system load.

Legitimate channels are the simplest to secure. Securing storage channels is con-
siderably more difficult, because every object--file, variable, and status bi t - -must
be protected.

Example:
To illustrate the subtlety of this point, consider the following scheme by
which a process p can transfer a value x to a process q through the lock bit of
a shared file .fi p arranges regular intervals of use and nonuse of the file
according to the binary representation of x; q requests use of the file each
interval, and determines the corresponding bit of x according to whether the
request is granted. II

Although it is possible in principle to enforce security for all flows along
legitimate and storage channels, covert channels are another matter (see also
[Lipn75]). The problem is that information can be encoded in some physical
phenomenon detectable by an external observer. For example, a process may cause
its running time to be proportional to the value of some confidential value x which
it reads. By measuring the running time on a clock that operates independently of
the system, a user can determine the value of x. This type of covert channel is
called a "timing channel"; other resource usage patterns may be exploited, such as
the electric power consumed while running a program, or system throughput.

The only known technical solution to the problem of covert channels requires
that jobs specify in advance their resource requirements. Requested resources are
dedicated to a job, and the results, even if incomplete, are returned at precisely the
time specified. With this strategy, nothing can be deduced from running time or
resource usage that was not known beforehand; but even then, users can deduce
something from whether their programs successfully complete. This scheme can be
prohibitively expensive. Cost effective methods of closing all covert channels prob-
ably do not exist.

282 INFORMATION FLOW CONTROLS

5.3 EXECUTION-BASED MECHANISMS

Security can be enforced either at execution time by validating flows as they are
about to occur (prohibiting unauthorized ones), or at compile time by verifying the
flows caused by a program before the program executes. This section studies the
first approach; Sections 5.4-5.6 study the second approach. Before describing spe-
cific execution-based mechanisms, we discuss the general problem of dynamically
enforcing security for implicit flows.

5.3.1 Dynamically Enforcing Security for Implicit Flow

Initially we assume objects have fixed security classes. We then consider the prob-
lems introduced by variable classes.

Dynamically enforcing security for explicit flows is straightforward, because
an explicit flow always occurs as the result of executing an assignment of the form

y "= f (x l , X n) •

A mechanism can enforce the security of the explicit flows x i ~ y (1 .~ i .~ n) by
verifying the relation x_x • . . . • _x, .~ y_ at the time of the assignment to y. If the
relation is not true, it can generate an error message, and the assignment can be
skipped or the program aborted.

Dynamically enforcing security for implicit flows would appear to be more
difficult, because an implicit flow can occur in the absence of any explicit assign-
ment. This was illustrated earlier by the statement

i f x = 1 t h e n y ' = 1 .

This seems to suggest that verifying implicit flows to an object only at the time of
an explicit assignment to the object is insecure. For example, verifying the relation
x _< y_ only when the assignment "y '= 1" is performed in the preceding statement
would be insecure.

The interesting result, proved by Fenton [Fent74], is that security can be
enforced by verifying flows to an object only at the time of explicit assignments to
the object. But there is one catch: attempted security violations cannot generally
be reported. This means if an unauthorized implicit flow is detected at the time of
an assignment, not only must that assignment be skipped, but the error must not
be reported to the user, and the program must keep running as though nothing has
happened. The program cannot abort or even generate an error message to the
user unless the user's clearance is at least that of the information causing the flow
violation. It would otherwise be possible to use the error message or abnormal
termination to leak high security data to a user with a low security clearance.
Moreover, the program must terminate in a low security state; that is, any infor-
mation encoded in the program counter from tests must belong to the class Low.
Details are given in Sections 5.3.3 and 5.3.4.

EXECUTION-BASED MECHANISMS 283

Example:
Secure execution of the if statement

if x = 1 then y "= 1

is described by

if x = 1
then if x ~< y_ then y := 1 else skip
else skip .

Suppose x is 0 or 1, y is initially O, x = High, and y_ = Low; thus, the flow x
y is not secure. Because the assignment to y is skipped both when x = 1

(because the security check fails) and when x = 0 (because the test "x = 1"
fails), y is always 0 when the statement terminates, thereby giving no infor-
mation about x. Note that if an error flag E is set to 1 when the security
check fails, then the value of x is encoded in the flag (E = 1 implies x = 1, E
= 0 implies x -- 0). I

In general, suppose an assignment

y "F-f (X, Xm)

is directly conditioned on variables Xm+l, . . . , X n. Then the explicit and implicit
flow to y can be validated by checking that the relation

holds, skipping the assignment if it does not. This is secure, because the value of y
is not changed when the security check fails; it is as though the program never
even made the test that would have led to the assignment and, therefore, the
implicit flow.

Fenton's result is significant for two reasons. First, it is much simpler to
construct a run-time enforcement mechanism if all implicit and explicit flows can
be validated only at the time of actual assignments. Second, such a mechanism is
likely to be more precise than one that checks implicit flows that occur in the
absence of explicit assignments.

Example:
Consider the statement

if x = 1 t h e n y ' = 1 e l s e z ' = 1

where x = High. Suppose that when x = 1, y = High and z = Low, but when
m m

x ~ 1, y _ = L o w a n d _ z = H i g h . If both relations x ~ y_ and _x _< z are
tested on both branches, the program will be rejected, even though it can be
securely executed using Fenton's approach. (Verification of this is left to the
reader.) 1

Now, an error flag can be securely logged in a record having a security class

284 INFORMATION FLOW CONTROLS

at least that of the information. Although it is insecure to report it to a user in a
lower class, the capacity of the leakage channel is at most 1 bit (because at most 1
bit can be encoded in a 1-bit flag). The error message can, however, potentially
disclose the exact values of all variables in the system. To see why, suppose all
information in the system is encoded in variables xl, • . . , xn, and there exists a
variable y known to be 0 such that x i ~ y_ (i = 1, . . . , n). Then execution of the
statement

if (xl = v a l l) and (x2 = valz) a n d . . , and (X n = vain)

t h e n y "= I

generates an error message when xl = va l l , x n = v a l n, disclosing the exact
values of x l , x n. But if a single x i v~ val t , an error message is not generated,
and little can be deduced from the value of y. Thus, an intruder could not expect to
learn much from the statement. Similarly, execution of the statement

if ~ ((xx = val~) and (x2 = v a l O a n d . . , and (X n = Vain))

t h e n y "= 1

terminates successfully (without causing a security error) when xl = va l l x n

= valn , leaking the exact values of x~ x n. Note, however, that the values of x~,
. . . , x n are not encoded in y, because y will be 0 even when the test succeeds. The
values are encoded in the termination status of the program, which is why only 1
bit of information can be leaked.

It is clearly unsatisfactory not to report errors, but errors can be logged, and
offending programs removed from the system. This solution may be satisfactory in
most cases. It is not satisfactory, however, if the 1 bit of information is sufficiently
valuable (e.g., a signal to attack). There is a solution--we can verify the security
of all flows caused by a program before the program executes. This approach is
studied in Sections 5.4 and 5.5.

Suppose now that objects have variable security classes. If an object y is the
target of an assignment "y := f (x ~ , . . . , X m) " conditioned on objects Xm+ ~ x n,

changing y's class to

Y "= Xl ~ . . . ~ ~m ~ ~m+l (]~ ' ' - ~ ~n

at the time of the assignment might seem sufficient for security. Although it is
secure for the explicit flows, it is not secure for the implicit flows, because the
execution path of the program will be different for different values of Xm+ ~, . . . ,

x,. This is illustrated by the following example.

Example:
Consider the execution of the procedure c o p y 1 shown in Figure 5.5. Suppose
the local variable z has a variable class (initially L o w) , z is changed when-
ever z is assigned a value, and flows into y are verified whenever y is assigned
a value. Now, if the procedure is executed with x = 0, the test "x = 0"
succeeds and (z, _z) becomes (1, x); hence the test "z = 0" fails, and y
remains 0. If it is executed with x = 1, the test "x = 0" fails, so (z, z)
remains (0, L o w) ; hence the test "z = 0" succeeds, y is assigned the value 1,

EXECUTION-BASED MECHANISMS 285

FIGURE 5.5 Procedure c o p y 1.

procedure copyl(x: integer; var y: integer);
"copy x to y"
var z: integer;
begin

y := 0;
z : = 0;
i f x = 0 t h e n z : = 1;
if z = 0 t h e n y : = 1

end
end copy l

and the relation Low ~< y_ is verified. In either case, execution terminates
with y = x, but without verifying the relation _x ~ y_. The system, therefore,
is insecure when _x ~ y_. m

To construct a secure mechanism for variable classes, several approaches are
possible. Denning [Denn75] developed an approach that accounts for all implicit
flows, including those occurring in the absence of explicit ones. In the copyl
program, for example, _z would be increased to x even when the test "x = 0" fails,

m

and the relation _z ~ y_ would be verified regardless of whether the test "z = 0"
succeeds. The disadvantage of this approach is that a compiler must analyze the
flows of a program to determine what objects could receive an implicit flow, and
insert additional instructions into the compiled code to increase a class if
necessary.

Fenton [Fent73] and Gat and Saal [Gat75] proposed a different solution.
Their solution involves restoring the class and value of any object whose class was
increased during execution of a conditional structure to the class and value it had
just before entering the structure. Hence, the objects whose class and value are
restored behave as "local objects" within the conditional structure. This ensures
the security of all implicit flows by nullifying those that caused a class increase.
The disadvantage of this approach is the added complexity to the run-time en-
forcement mechanism.

Lampson suggested another approach that is much simpler to implement
than either of the preceding. The class of an object would be changed only to
reflect explicit flows into the object; implicit flows would be verified at the time of
explicit ones, as for fixed classes. For example, execution of the statement "if
x = 1 then y "= z" would set y_ to z_, and then verify the relation _x .~ y_.

5.3.2 Flow-Secure Access Controls

Simple flow controls can be integrated into the access control mechanisms of
operating systems. Each process p is assigned a security clearance p_ specifying the
highest class p may read from and the lowest class p may write into. Security is

FIGURE 5.6 Access control mechanism.

INFORMATION FLOW CONTROLS

input classes

I

X
- - m _x 1 _x 2

286

X 1 ~ X 2 ~ c o o s X m

process class

-Yl ® Y2 ®eee®Y--n

Yl Y2 eoe --Yn
J k ,

output classes

enforced by access controls that permit p to acquire read access to an object x only
if x_ _< £, and write access to an object y only if/~ _< y_. Hence, p can read from xl,
. . . , x m and write into Yl, Yn only if

.Xl ~ ' ' ' ~ ~m ~ ~ "~ Y l ~ . - " ~ Y_n

(see Figure 5.6). This automatically guarantees the security of all flows, explicit or
implicit, internal to the process.

In military systems, access controls enforce both a nondiscretionary policy of
information flow based on the military classification scheme (the multilevel securi-
ty policy), and a discretionary policy of access control based on "need-to-know"
(that is, on the principle of least privilege). A process running with a Secret
clearance, for example, is permitted to read only from Unclassified, Confidential,
and Secret objects; and to write only tO Secret and Top Secret objects (although

ABF DE F GHIIJKL MMNOHPP 2 8 7

integrity constraints may prevent it from writing into Top Secret objects). All the
kernel-based systems discussed in Section 4.6.1 use access controls to enforce
multilevel security for user and untrusted system processes.

One of the first systems to use access controls to enforce multilevel security
was the ADEPT-50 time-sharing system developed at SDC in the late 1960s
[Weis69]. In ADEPT, the security clearance/~ of a process p, called its "high
water mark", is dynamically determined by the least upper bound of the classes of
all files opened for read or write operations; thus p_ is monotonically nondecreasing.
When the process closes a newly created file f, the class f_ is set to p_. Rotenberg's
[Rote74] Privacy Restriction Processor is similar, except that £ is determined by
the ~ of the classes opened for read, and whenever the process writes into a file f,
the file's class is changed to f '= f ~ p_.

This approach of dynamically assigning processes and objects to variable
security classes can lead to leaks, as illustrated by the following example.

Example:
Suppose the procedure copyl (see Figure 5.5) is split between processes pl
and p2, where pl and p2 communicate through a global variable z dynami-
cally bound to its security class:

p l ' i f x = O t h e n z ' = 1

p 2 : i f z = O t h e n y ' = i .

Now suppose p_J. and ~ are set to the ~ of the classes of all objects opened
for read or write operations, y and z are initially 0 and in class Low, z is
changed only when z is opened for writing, and flows to y are verified only
when y is opened for writing. When x = 0, pl terminates with z = 1 and z
= pl = _x; thus, ~ is set to _ x. But the test "z = 0" in p2 fails, so y is never
opened for writing, and the relation ~ _< y is never verified. When x = 1, pl
terminates with pl = _x; however, because z is never opened for writing, (z, _z)
remains (0, Low); thus, ~ = Low, y becomes 1, and the relation Low _< y_ is
verified. In both cases, p2 terminates with y = x, even though the relation x

y_ is never verified. Thus, a leak occurs if x ~ y.
This problem does not arise when objects and processes have fixed

security classes. To see why, suppose pl runs in the minimal class needed to
read x; i.e., pJ_ = _x. Then pl will never be allowed to write into z unless x
.~ z. Similarly, p2 will not be allowed to read z unless _z ~ p2, and it will
never be allowed to write into y unless ~ .~ y_. Hence, no information can
flow from x to y unless x .~ z _< y_. 1

Because of the problems caused by variable classes, most access-control-
based mechanisms bind objects and processes to fixed security classes. The class of
a process p is determined when p is initiated.

Flow-secure access controls provide a simple and efficient mechanism for
enforcing information flow within user processes. But they are limited, because
they do not distinguish different classes of information within a process. For exam-
ple, if a process reads both confidential (High) and nonconfidential (Low) data,

288 INFORMATION FLOW CONTROLS

then p_ must be High, and any objects written by p must be in class High. The
process cannot be given write access to objects in class Low, because there would
be no way of knowing whether the information transferred to these objects was
confidential or nonconfidential. The process cannot, therefore, transfer informa-
tion derived only from the nonconfidential inputs to objects in class Low.

In general, it is not possible with access controls alone to enforce security in
processes that handle different classes of information simultaneously. This rules
out using access controls to enforce the security of certain operating system pro-
cesses that must access information in different classes and communicate with
processes at different levels. Yet the flows within system processes must be secure,
lest other processes exploit this to establish leakage channels through system state
variables. For example, a Trojan Horse in a file editor could use such a channel to
leak Top Secre t information in a file being edited to a user with a lower clearance.

To enforce security within processes that handle different classes of informa-
tion, the information flow internal to a process must be examined. The remainder
of this chapter describes hardware and software mechanisms to do this.

5.3.3 Data Mark Machine

Fenton [Fent74,Fent73] studied a run-time validation mechanism in the context of
an abstract machine called a Data Mark Machine (DMM). The Data Mark Ma-
chine is a Minsky machine [Mins67] extended to include tags (data marks) for
marking the security class of each register (memory location).

A Minsky machine has three instructions:

x ' = x + 1 increment
if x = 0 then goto n else x "= x - 1 "branch on zero or decrement"
hal t ,

where x is a register and n is a statement label. Despite its simplicity, the machine
can compute all computable functions as long as there are at least two (infinite)
registers and a register containing zero.

Fenton's important observation was that a program counter class, p_(, could
be associated with a process to validate all implicit flows caused by the process.
This class is determined as follows: whenever a process executes a conditional
branch

if x = 0 then goto n ,

the current value and class of pc is pushed onto a stack, and (pc, pc) is replaced
with (n, .p_£ ~ _x). The class .p_(is increased by x_ because information about x is
encoded in the execution path of the program. The only way p_£ can be decreased is
by executing a return instruction, which restores (pc, p__() to its earlier value. This
forces the program to return to the instruction following the conditional branch,
whence the execution path is no longer directly conditioned on the value of x.

Initially p__(. = Low, so that immediately before executing an instruction on a
path directly conditioned on the values of xl, . . . , Xm, p__£ = xl ~ . . . • _x m. If the

EXECUTION-BASED MECHANISMS 289

TABLE 5.1 Data Mark Machine (DMM).

Instruction Execution

x : = x + l
i fx = 0

then goto n
else x := x - 1

if' x = 0
then goto n
e l s e x : = x - 1

return
halt

if p..._c. _< x then x "= x + 1 else skip
i fx = 0
then (push(pc , p__£); p___c "= P.._S_ ~ _x; pc '= n)

else (if p__£ _< x then x := x - 1 else skip}
if x = 0
then (if _x ~ p__c. then pc "= n else skip)
else (if p_..c. _< x_ then x "= x - 1 else skip)
pop(pc , pc)

if empty stack then Halt

instruction is an assignment " y - = y + 1" or "y := y - 1" then the hardware
validates the relation p_£. _< y_, inhibiting the assignment if the condition is not
satisfied; this ensures the security of the implicit flows x / ~ y (i = 1 , m). The
halt instruction requires the stack be empty, so the program cannot t e rmina t e
without returning from each branch. This ensures the final state of the p rogram
contains only L o w security information. If security violations are not reported, the
mechanism is completely secure as discussed earlier. If violations are reported and
insecure programs aborted, an insecure program can leak at most 1 bit.

The complete semantics of the Data M a r k Machine are summar ized in Ta-
ble 5.1. The second if s ta tement , denoted if', allows a program to branch without
stacking the program counter (stacking is unnecessary for security because _x _< p__c.
implies p_c. = p_£ ~ x_).

Example:
Figure 5.7 shows how the c o p y l program of Figure 5.5 can be t ranslated into
instructions for the D M M . For simplicity, we assume y and z are initially 0.
Note that the t ranslated program modifies the value of x; this does not affect
its flow from x to y.

The following execution trace shows the effect of executing each in-
struction when x = 0 and x _< z:

Instruction x y z pc Security Check

initial
1
4
5
2
3

0 0 0 L o w

x

1 x ~ z

Low

0 Low <~ z

The reader should verify that the p rogram causes informat ion to flow from x
to y only when _x .~ z_ ~ y_. I!

290 INFORMATION FLOW CONTROLS

FIGURE 5.7 Translation of copy1 for DMM.

1 i fx = 0 t h e n g o t o 4 e l s e x := x - 1
2 i fz = 0 t h e n g o t o 6 e l s e z : = z - 1
3 halt

4 z : = z + l
5 return

6 y ' = y + l
7 return

5.3.4 Single Accumulator Machine

The protection features of the Data Mark Machine can be implemented in actual
systems. We shall outline how this could be done on a single accumulator machine
(SAM) with a tagged memory. Our approach is similar to the one proposed in

[Denn75].
The security class of each data object is stored in the tag field of the corre-

sponding memory location. A variable tag a c c represents the class of the informa-
tion in the accumulator. As in the Data Mark Machine, there is a program counter
stack, and a class p_£ associated with the current program counter. The semantics

o f typical instructions are shown in Table 5.2. (The semantics for operations to
subtract, multiply, etc. would be similar to those for ADD.)

Example:
Execution of the statement "y := x l • x 2 + x 3 " is shown next:

Operation Execution Trace

LOAD xl
MULTx2
ADD x 3

STORE y

acc "= x l" ac....£ := x i • p_£
acc "= acc • x2; acc := acc ~ x 2 ~ p__~

acc := acc + x3; acc "= acc ~ x__3 ~ p__£

if ac_.__£ ~ p..£ ~ y_ then y "= acc

TABLE 5.2 Single accumulator machine (SAM).

Operation Execution

LOAD x
STORE y
ADD x
Bn
BZn

BZ' n

RETURN
STOP

acc := x; ac___£ "= x_ ~ p_£
if ac__£ ~ p__£ _< y_ then y "= acc else skip
acc "= acc + x; ac_... S := acc ~ x ~ P..S

p c "= n

if (acc = 0) then { p u s h (p c , p_£);
P_.S. "= P_.£ ~ ac_£; pc "= n)

if (acc = 0) and (acc _< P_.S) then p c := n else skip
p o p (p c , pc)

if empty stack then stop

COMPILER-BASED MECHANISM 291

FIGURE 5.8 Translation of procedure copy1 on SAM.

y "= 0" 1 LOAD 0
2 STORE y

z := 0; 3 LOAD 0
4 STORE z

i f x = 0 5 LOAD x
6 BZ8
7 B l l

then z := 1; 8 LOAD 1
9 STORE z

10 RETURN

i f z = 0

then y "= 1

"push (7, p__£)"

" p o p - goto 7"

1 i LOAD z
12 BZ 14 "push (13, pc)"
13 B 17
14 LOAD 1
15 STORE y
16 RETURN "pop - goto 13"
17 STOP

TABLE ,5.3 Semantics for STORE on variable class machine.
, , ,

Operation Execution

STORE y if pc <_ ac__.£c then (y "= acc; y := acc)

Note the check associated with the S T O R E verifies x_! ~ x._.2 ~ x__3 (9 p_£
_<y.m

Figure 5.8 shows how the procedure copy1 in Figure 5.5 can be translated
into instructions on the single accumulator machine. Execution of the program is
left as an exercise.

If the memory tags are variable, security cannot be guaranteed by changing
the semantics of the S T O R E operation to:

y "= acc; y_ "= acc O p_£ .

(See the discussion of the procedure copy1 .) Security can be guaranteed, however,
by changing an object's class to reflect explicit flows to the object, as long as
implicit flows are verified as for fixed classes. This approach is taken in Table 5.3.

5.4 C O M P I L E R - B A S E D M E C H A N I S M

We first consider a simple program certification mechanism that is easily integrat-
ed into any compiler. The mechanism guarantees the secure execution of each
statement in a program--even those that are not executed, or, if executed, do not
cause an information flow violation. The mechanism is not precise, however, as it

292 INFORMATION FLOW CONTROLS

will reject secure programs. For example, consider the following program segment

i f x = 1 then y := a e lse y := b.

Execution of this segment causes either a flow a ---~ y or a flow b ---~ y, but not
both. The simple certification mechanism, however, requires that both _a _< y_ and
b ~ y. This is not a problem if both relations hold; but if _a _< y_ holds only when x

w

~- 1, and b _< y_ holds only when x ~ 1, we would like a more precise mechanism.
To achieve this, in Section 5.5 we combine flow proofs with correctness proofs, so
that the actual execution path of a program can be taken into account.

The mechanism described here is based on [Denn75,Denn77]. It was devel-
oped for verifying the internal flows of applications programs running in an other-
wise secure system, and not for security kernel verification.

5.4.1 Flow Specifications

We first consider the certification of procedures having the following structure:

procedure p n a m e (x l , . . . , xm; var Yl , . . . , Yn);

vat z l , . . . , Zp; "local variables"
S "statement body"

end p n a m e ,

where x l , . . . , Xm are input parameters, and y~, . . . , Yn are output parameters or
input/output parameters. Let u denote an input parameter x or input/output
parameter y, and let v denote either a parameter or local variable. The declaration

of v has the form

v: type class (u t u ~ v is allowed) ,

where the class declaration specifies the set of all parameters permitted to flow
into v. Note that the class of an input parameter x will be specified as the singleton
set x = (x). The class of an input/output parameter y will be of the form (y, ul,
• . . ~-uk), where ua , u k are other inputs to y. If y is an output only, the class of
y will be of the form (ul, . . . , u k) (i.e., y ¢ y_); hence, its value must be cleared on
entry to the procedure to ensure its old value cannot flow into the procedure.
References to global variables are not permitted; thus, each nonlocal object refer-
enced by a procedure must be explicitly passed as a parameter.

The class declarations are used to form a subset lattice of allowable input-
output relations as described in Section 5.1.4. Specifying the security classes of the
parameters and local variables as a subset lattice simplifies verification. Because
each object has a fixed security class during program verification, the problems
caused by variable classes are avoided. At the same time, the procedure is not
restricted to parameters having specific security classes; the classes of the actual
parameters need only satisfy the relations defined for the formal parameters. We
could instead declare specific security classes for the objects of a program; the
mechanism described here works for both cases.

COMPILER-BASED MECHANISM 293

Example :

The following gives the flow specifications of a procedure that computes the
maximum of its inputs"

procedure max(x: integer class (x);
y: integer class (y);
var m: integer class (x, y));

begin
i f x > y t h e n m ' = x e i s e m ' = y

end
end m a x .

The security class specified for the output m implies that x _< m and
B

y__<m, l

E x a m p l e :

The following gives the input-output specifications of a procedure that swaps
two variables x and y, and increments a counter i (recording the number of
swaps):

procedure swap(var x , y: integer class (x, y);
var i: integer class (i));

vat t: integer class (x, y);
begin

t " = X;

x: = y;
y ' = t;
i ' = i + 1

end
end swap .

Because both x_ _< y_ and y_ .~ _x are required for security, the specifications
state that _x = y_; this class is also assigned to the local variable t. Note that
i is in a class by itself because it does not receive information from either
x o r y . m

5.4.2 Security Requirements

A procedure is secure if it satisfies its specifications; that is, for each input u and
output y, execution of the procedure can cause a flow u ~ y only if the classes
specified for u and y satisfy the relation _u _< y_. The procedures in the preceding
examples are secure.

We shall define the security requirements for the statement (body) S of a
procedure recursively, giving sufficient conditions for security for each statement
type. These conditions are expressed as constraints on the classes of the param-
eters and local variables. A procedure is then secure if its flow specifications (i.e.,

294 INFORMATION FLOW CONTROLS

class declarations) imply these constraints are satisfied. The conditions are not
necessary for security, however, and some secure programs will be rejected. Initial-
ly, we assume S is one of the following"

1. Assignment: b := e
2. Compound: begin Sx; . . . ; S n end
3. Alternation: if e then S~ [else Sz]
4. Iteration: while e do S~
5. Call: q(ax, . . . , am, bl, b n)

where the S i are statements, and e is an expression with operands a~ an, which
we write as

e = f (a l , . . . , a n) ,

where the function f has no side effects. The class of e is given by

£ = _ a , e . . . e _ a , .

We assume all data objects are simple scalar types or files, and all statements
terminate and execute as specified; there are no abnormal terminations due to
exceptional conditions or program traps. Structured types and abnormal program
terminations are considered later.

The security conditions for the explicit flow caused by an assignment are as
follows'

Secur i t y condi t ions f o r ass ignment:
Execution of an assignment

b " ~ e

is secure if e .~ b . 1

Because input and output operations can be modeled as assignments in which the
source or target object is a file, they are not ~ considered separately here.

Because the relation .~ is transitive, the security conditions for a compound
statement are as follows:

Secur i t y condi t ions f o r compound:
Execution of the statement

begin S~ ; . . . ; S. end

is secure if execution of each of S~, . . . , S n is secure. I

Consider next the alternation statement

if e then $1 [else $2] .

If objects bl bm are targets of assignments in $1 [or $2], then execution of the

COMPILER-BASED MECHANISM 295

i f statement can cause implicit flows from e to each bj. We therefore have the
following:

Security conditions for alternation:
Execution of the statement

if e then $1 [else Sz]

is secure if
(i) Execution of S~ [and $2] is secure, and

(ii) _e _< S, where S = $1 [® $2] and
S~ = ®{bib is a target of an assignment in $1} ,
S_~ = ®(_b I b is a target of an assignment in $2} 1

Condition (ii) implies e .~ _bl ® . . . ® _b m, and, therefore, _e _< b~. (1 ~ j ~ m).

Example:
For the following statement

if x > y then
begin

Z " = W;

i - = k + l
end ,

condition (ii) is given by _x ~ y_ _< z ® t_" . 1

Consider an iteration statement

while e do S~ .

If bt b m are the targets of flows in S~, then execution of the statement can
cause implicit flows from e to each bj. Security is guaranteed by the same condi-
tion as for the if statement:

Security conditions for iteration:
Execution of the statement

while e do $1

is secure if
(i) S terminates,

(ii) Execution of St is secure, and
(iii) _e .~ S, where S = $1 and

S~ = ® (bib is a target of a possible flow in Sx}. 1

Because other iterative structures (e.g., for and repeat-until) can be described in
terms of the while, we shall not consider them separately here.

Nonterminating loops can cause additional implicit flows, because execution

296 INFORMATION FLOW CONTROLS

of the remaining statements is conditioned on the loop terminat ing-- this is dis-
cussed later. Even terminating loops can cause covert flows, because the execution
time of a procedure depends on the number of iterations performed. There appears
to be no good solution to this problem.

Finally, consider a call

q(a~ a m, b~ b n) ,

where al, . . . , a,,, are the actual input arguments and b l , . . . , b n the actual input/
output arguments corresponding to formal parameters Xl, •. •, Xm and Yl, . . . , Yn,
respectively. Assuming q is secure, execution of q can cause a flow a; ~ bj only if
x; _< yj; similarly, it can cause a flow b;--~ bj only if y; _< yj. We therefore have
the following'

Security conditions for procedure call:
Execution of the call

q(al a m, b l b n)

is secure if

(i) q is secure, and
(ii) a;_<b_j if x ; _ < y j (1 _< i_< m, 1 _ < j _ < n) and

bi ~ b j if y_i.~ Yj (l _< i _< n, l _< j _< n) 1

If q is a main program, the arguments correspond to actual system objects.
The system must ensure the classes of these objects satisfy the flow requireinents
before executing the program. This is easily done if the certification mechanism
stores the flow requirements of the parameters with the object code of the
program.

Example:
Consider the procedure m a x (x , y, m) of the preceding section, which assigns
the maximum of x and y to m. Because the procedure specifies that x _~ m

m

and y_ _< m for output m, execution of a call " m a x (a , b, c)" is secure if a_ _< _c
and b ~ c. II

Example:
The security requirements of different statements are illustrated by the pro-
cedure shown in Figure 5.9, which copies x into y using a subtle combination
of implicit and explicit flows (the security conditions are shown to the right
of each statement). Initially x is 0 or 1. When x = 0, the first test "z = 1"
succeeds, and the first iteration sets y = 0 and z = x = 0; the second test
"z = 1" then fails, and the program terminates. When x = 1, the first test "z
= 1" succeeds, and the first iteration sets y = 0 and z = x = 1; the second
test "z = 1" also succeeds, and the second iteration sets y = 1 and z = 0; the
third test "z = 1" then fails, and the program terminates. In both cases, the
program terminates with y = x. The flow x ---~ y is indirect: an explicit flow x

COMPILER-BASED MECHANISM 297

FIGURE 5.9 Procedure copy2.

procedure copy2(x: integer class (x);
var y: integer class (x));

"copy x to y"
vat z" integer class (x);
begin

z := 1" Low_<z
m

y "= -1" Low <_ y
whilez= 1 do z _ < y ® z

begin
y'= y + 1" y<_ y
i f y = O y < _ z

m

t h e n z : = x x_< z
else z := 0 Low _< z

m

end
end

end copy2

z occurs during the first iteration; this is followed by an implicit flow z ---~
y during the second iteration due to the iteration being conditioned on z.

The security requirements for the body of the procedure imply the
relations _x _< _z _< y_ _< _z must hold. Because the flow specifications state y_
= z = x = (x), the security requirements are met, and the procedure is

m

secure. If the specifications did not state the dependency of either y or z on x,
the security requirements would not be satisfied.

Now, consider a call "copy2(a, b)", for actual arguments a and b.
Because y is the only formal output parameter in copy2 and x satisfies the
relation x_ _< y_, the call is secure provided _a _< _b" Although the stronger
relation x_ = y holds in copy2, it is unnecessary that _a = _b because the
argument a is not an output of copy2 (hence the relation b .~ a need not
hold). Thus, a call "'copy2(a, b)" is secure if b is in a higher class than a, but
not vice versa. I

5.4.3 Certification Semantics

The certification mechanism is sufficiently simple that it can be easily integrated
into the analysis phase of a compiler. Semantic actions are associated with the
syntactic types of the language as shown in Table 5.4 (see [Denn75,Denn77] for
details). As an expression e = f (a l , . . . , a,) is parsed, the class _e = a 1 ~ o . . i~ a n is
computed and associated with the expression. This facilitates verification of explic-
it and implicit flows from al an.

Example:
As the expression e = "a + b .c" is parsed, the classes of the variables are
associated with the nodes of the syntax tree and propagated up the tree,
g i v i n g e = a ~ b ~ c . 1

INFORMATION FLOW CONTROLS

TABLE 5.4 Certification semantics.

Expression e Semantic Actions

f(a1,. . . , an) - e : = - a , $. . . $ a ,
Statement S

b := e S : = b; - -
verify - e % 5

begin S,; . . . ; S , end - s := S , - e . . . @:,

if e then S , S := S, [8 S,] ; - - -
[else S,] verify - e 5 S -

while e do S, - S := - S,;
verify 5 5 S

q(a l , . . . , am; b,, . . . , b,) verify 5, I 4 if xi I 3
verify ii 5 4 if zi I yj
S : = - - b , e . . . el?,

Similarly, as each statement S is recognized, a class S = 8Cb I b is the target of an
assignment in S) is computed and associated with the statement. This facilitates
verification of implicit flows into S.

Example:
Figure 5.10 illustrates the certification of the statement

if a = b then
begin

c := 0;
d : = d - t 1

end
elsed := c * e .

The overall parse is represented as a syntax tree for the statement. The
security classes (in parentheses) and verification checks (circled) are shown
opposite each subtree. The semantic actions propagate the classes of expres-
sions and statements up the tree. H

We shall now consider extensions to the flow semantics and certification
mechanisms to handle structured data types, arbitrary control structures for se-
quential programs, concurrent programs, and abnormal terminations.

5.4.4 General Data and Control Structures

The mechanism can be extended to handle complex data structures. We shall
outline the security requirements for 1-dimensional arrays here. Consider a vector

COMPILER-BASED MECHANISM 299

FIGURE 5.10 Certification of a statement.

(c ® d)
~ b _<_c ®,j)

if t i E (a _ • b) then ~ (c ® d) else

_a = _b begin i l r (£) 7 ~ (d_) end j :="

L o w s c) 11%(a_<a

(_a)

c := fl(Zow) -a : a l l _4 ~ "e

0 d + 1
o

,

a[1 :n]. We first observe that if an array reference "a [e] " occurs within an expres-
sion, where e is a subscript expression, then the array reference can contain infor-
mation about a[e] or e.

Example:
Consider the s tatement

b "= a[e].

If e is known but a[e] is not, then execution of this s ta tement causes a flow
a[e] --~ b. If a[i] is known for i = 1 , n but e is not, it can cause a flow e

b (e.g., if a[i] = i for i = 1, n, then b = e). m

We next observe that an assignment of the form "a[e] "= b" can cause information
about e to flow into a[e].

Example:
If an assignment "a[e] "= 1" is made on an all-zero array, the value of e can
be obtained from the index of the only nonzero element in a. m

If all elements a[i] belong to the same class a, the certification mechanism is
easily extended to verify flows to and from arrays. For an array reference "a[e]" ,
the class _a ~ _e can be associated with the reference to verify flows from a and e.
For an array assignment "a[e] "= b", the relation _e _< _a can be verified along with
the relation b _< a.

If the elements belong to different classes, it is necessary to check only the
classes a[i] for those i in the range of e. This is because there can be no flow to or
from a[j] if e never evaluates to j (there must be a possibility of accessing an
object for information to flow).

300 INFORMATION FLOW CONTROLS

Example:
Given a[1:4] and b[1:4], the statement

if x .~ 2 then b[x] := a[x]

requires only that

x ~ a[i] _< b[i], i = 1, 2. II

Performing such a flow analysis is beyond the scope of the present mechanism.
As a general rule, a mechanism is needed to ensure addresses refer to the

objects assumed during certification. Otherwise, a statement like "a[e] := b"
might cause an invalid flow b ----~ c, where c is an object addressed by a[e] when e is
out of range. There are several possible approaches to constructing such a mecha-
nism. One method is for the compiler to generate code to check the bounds of
array subscripts and pointer variables. The disadvantage of this approach is that it
can substantially increase the size of a program as well as its running time. A more
efficient method is possible if each array object in memory has a descriptor giving
its bounds; the hardware can then check the validity of addresses in parallel with
instruction execution. A third method is to prove that all subscripts and pointer
variables are within their bounds; program proving is discussed in the next section.

The certification mechanism can be extended to control structures arising
from arbitrary goto statements. Certifying a program with unrestricted gotos,
however, requires a control flow analysis of the program to determine the objects
receiving implicit flows. (This analysis is unnecessary if gotos are restrictedmfor
example, to loop exitsmso that the scope of conditional expressions can be deter-
mined during syntax analysis.) Following is an outline of the analysis required to
do the certification. All basic blocks (single-entry, single-exit substructures) are

FIGURE 5.11 Procedure copy2 with goto.

procedure copy2(x: integer class (x) ;
var y: integer class (x));

"copy x to y"
var z: integer class (x);
begin
1: z := 1; bl

y := -1;

2: if z ~ 1 then goto 6 b2

3: y := y + 1; b~
if y ~ 0 then goto 5;

4: z := x; b4
goto 2;

5: z := 0; b5
goto 2;

6: end b6
end copy2

COMPILER-BASED MECHANISM 301

identified. A control flow graph is constructed, showing transitions among basic
blocks; associated with block b i is an expression e i that selects the successor of b i in
the graph (e.g., see [Alle70]). The security class of block b i is the ® of the classes
of all objects that are the targets of flows in b i (if there are no such objects, this
class is High) . The immediate forward dominator IFD(b i) is computed for each
block b~. It is the closest block to b i among the set of blocks that lie on all paths
from b~ to the program exit and, therefore, is the point where the divergent execu-
tion paths conditioned on e i converge. Define B i as the set of blocks on some path
from b i to I F D (b i) excluding b i and IFD(bi) . The security class of B i is _B i = ® (b~
[bj ~ Bi). Because the only blocks directly conditioned on the selector expression e i
of b i are those in B i, the program is secure if each block b i is independently secure
and e i ~< B i for all i.

E x a m p l e :
Figure 5.11 shows how the copy2 procedure of Figure 5.9 can be written
with gotos and partitioned into blocks. The control flow graph of the pro-
gram is shown in Figure 5.12. Proof that the program is secure is left as an
exercise, m

FIGURE 5.12 Control flow graph of copy2.

e2:z~: 1

false

IFD (b 1) = b2

IFD (b 2) = b 6

IFD (b 3) = IFD (b 4) --- IFD (b 5) = b 2

true

e 3 : Y ~ O

302 INFORMATION FLOW CONTROLS

5.4.5 Concurrency and Synchronization

Reitman [Reit79] and Andrews and Reitman [Andr80] show that information can
flow among concurrent programs over synchronization channels.

Example:
Suppose procedures p and q synchronize through a shared semaphore s as
follows:

procedure p(x: integer class {x};
vat s: semaphore class {s, x));

begin
if x = i then signal(s)

end
end p
procedure q(var y: integer class (s, y};

var s: semaphore class (s, y});
begin

y "= 0;
wait(s);
y ' = 1

end
end q

where wait(s) delays q until p issues a signal(s) operation. Concurrent execu-
tion of these procedures causes an implicit flow of information from param-
eter x of p to parameter y of q over the synchronization channel associated
with the semaphore s: if x = 0, y is set to 0, and q is delayed indefinitely on s;
i f x = 1, q is signaled, a n d y is set to 1. Thus, i f p and q are invoked
concurrently as follows:

cobegin
p(a, s)

q(b, s)
coend

the value of argument a flows into argument b. I

The flow x ----~ y in the preceding example is caused by wait(s) and signal(s),
which read and modify the value of s as follows (the complete semantics of these
operations are not shown):

Read Write

wait(s) wait for s > 0 s := s - 1
signal(s) s := s + 1

COMPILER-BASED MECHANISM 303

FIGURE 5.13 Synchronization flows.

procedure copy3(x: integer class (x);
var y: integer class (x));

"copy x to y"
var sO: semaphore class (x);

sl: semaphore class (x));
cobegin

"Process 1"
if x = 0 then signal(sO) else signal(s/)

"Process 2"
wait(sO); y "= 1; signal(s/);

"Process 3"
wait(s/); y := 0; signal(s0);

coend
end copy3

Therefore, execution of the if statement in p causes an implicit flow from x to s,
causing the value of x to flow into q.

When x = 0, q is left waiting on semaphore s. Because this is similar to a
nonterminating while loop, we might wonder if all synchronization channels are
associated with abnormal terminations from timeouts. If so, they would have a
channel capacity of at most 1 bit, and could be handled as described in the next
section. Reitman and Andrews show, however, that information can flow along
synchronization channels even when the procedures terminate normally.

Example:
Consider the program copy3 shown in Figure 5.13. When x = 0, process 2
executes before process 3, so the final value of y is 0; when x ~ 0, process 3
executes before process 2, so the final value of y is 1. Hence, if x is initially 0
or 1, execution of copy3 sets y to the value of x. I

Because each statement logically following a wait(s) operation is conditioned
on a signal(s) operation, there is an implicit flow from s to every variable that is
the target of an assignment in a statement logically following the wait. To ensure
the security of these flows, Reitman and Andrews require the class of every such
variable y satisfy the relation s_ _< y_.

With parallel programs, information can also flow over global channels asso-
ciated with loops.

Example:
Consider the program copy4 shown in Figure 5.14. Execution of copy4 trans-

304 INFORMATION FLOW CONTROLS

FIGURE 5.14 Global flows in concurrent programs.

procedure copy4(x: integer class (x);
var y: integer class (x));

"copy x to y"
var cO, el: boolean class (x);
begin

eO := el := true ;
cobegin

if x = 0 then eO := false else el := false

II
begin

while eO do ;
y := 1;
eI := false

end

begin
while el do ;
y : = O;
eO := false

end
coend

end
end copy4

fers information from x to y, with variables eO and e l playing the role of
semaphores sO and s l . I I

Our present certification mechanism would not verify the relations weO _< y_
and e__l..~ y_ in the preceding example, because the assignments to y are outside the
loop bodies. To verify these "global flows", Reitman and Andrews consider the
expression e of a statement "while e do S~" to have a global scope that includes any
statement logically following the while; the relation _e _< y_ is verified for every
object y that is the target of an assignment in the global scope. A "while e",
therefore, is treated like a "wait(e)". Extending the certification semantics of
Table 5.4 to verify synchronization and global flows in parallel programs is left as
an exercise.

Reed and Kanodia [Reed79] observed that synchronization flows can also
emanate from a waiting process; because wait(s) modifies the value of s, another
waiting process can be blocked or delayed as a result. They show that by using
eventeounts for process synchronization, information flows are restricted to
signalers.

A signaling process can covertly leak a value by making the length of delay

COMPILER-BASED MECHANISM 305

proportional to the value. The problem is the same as with loops, and there does
not appear to be a satisfactory solution to either.

5.4.6 Abnormal Terminations

Information can flow along covert channels associated with abnormal program
terminations.

Example:
Consider the following copy procedure:

procedure copy5(x: integer class (x);
var y: integer class 0);

"insecure procedure that leaks x to y"
begin

y "= 0;
w h i l e x = 0 d o ;
y : = 1

end
end copy5 .

If x = 0, then y becomes 0, and the procedure hangs in the loop; if x = 1,
then y becomes 1, and the procedure terminates. 1

The flow x --~ y in the copy5 procedure occurs because the statement "y := 1" is
conditioned on the value of x; thus there is an implicit flow x ~ y, even though y is
not the target of a flow in the statements local to the loop.

Such covert flows are not confined to nonterminating loops.

Example:
If the while statement in copy5 is replaced by the statement"

if x = O t h e n x ' = l /x;

the value of x can still be deduced from y; if x = O, the procedure abnormally
terminates with a divide-by-zero exception and y = O; if x = l, the procedure
terminates normally with y = 1. 1

Indeed, the nonterminating while statement could be replaced by any action that
causes abnormal program termination: end-of-file, subscript-out-of-range, etc.
Furthermore, the leak occurs even without the assignments to y, because the value
of x can be determined by whether the procedure terminates normally.

Example:
Consider this copy procedure:

306 INFORMATION FLOW CONTROLS

procedure copy6(x: integer class (x);
var y: integer class ()) ;

"insecure procedure that leaks x to y"
var sum: integer class (x};

z' integer class O;
begin

z '= O;
s u m "= O;
y - = O;
while z = 0 do

begin
s u m "= s u m + x;

y ' = y + 1;
end

end
end c o p y 6 .

This procedure loops until the variable s u m overflows; the procedure then
terminates, and x can be approximated by M A X / y , where MAX is the larg-
est possible integer. The program trap causes an implicit flow x --~ y because
execution of the assignment to y is conditioned on the value of s u m , and thus
x, but we do not require that x_ ~ y_. I

The problem of abnormal termination can be handled by inhibiting all traps
except those for which actions have been explicitly defined in the program
[Denn77]. Such definitions could be made with a statement similar to the on
statement of PL/I :

on condition do statement ,

where "condition" names a trap condition (overflow, underflow, end-of-file,
divide-by-zero, etc.) for some variable, and "statement" specifies the action to be
taken. When the trap occurs, the statement is executed, and control then returns to
the point of the trap. The security requirements for programs can then be extended
to ensure the secure execution of all programmer defined traps.

Example:
If the statement

on overflow s u m do z "= 1

were added to the c o p y 6 procedure, the security check s u m _~ z_ would be
made, and the procedure would be declared insecure, m

This still leaves the problem of undefined traps and abnormal terminations
from timeouts and similar events (overflowing a page limit or punched card limit,
or running out of memory or file space). Many such problems can be eliminated
by proving properties about the security and correctness of procedures; this is

PROGRAM VERIFICATION 307

discussed in the next section. A mechanism that detects and logs abnormal termi-
nation of certified procedures is also essential.

5.5 PROGRAM VERIFICATION

Andrews and Reitman [Andr80] developed a deductive system for information
flow based on the lattice model and on Hoare's [Hoar69] deductive system for
functional correctness. The flow requirements of a procedure q are expressed as
assertions about the values and classes of objects before and after q executes.
Given an assertion P (precondition) about the initial state of q, and an assertion Q
(postcondition) about the final state of q, q's security is proved (or disproved) by
showing that Q satisfies the security requirements, and that if P is true on entry to
q, Q will be true on exit. The proof is constructed by inserting intermediate asser-
tions into the program, and applying axioms and proof rules defined over the
statements of the language.

The approach has two advantages over the simple certification mechanism.
First, it provides a single system for proving both security and correctness. Second,
it gives a more precise enforcement mechanism for security.

Example:
Consider this procedure:

procedure copy7(x, a, b: integer; var y: integer);
if x = 1 t h e n y ' = a e l s e y ' = b

end copy7.

Because of the implicit flow from x to y and the explicit flows from a and b
to y, the certification mechanism requires the following relations hold for
any execution of copy7:

x _~y ,a ~y_,andb_ ~ y .

This is stronger than necessary, because any particular execution will trans-
fer information from either a into y or from b into y but not both. I

To achieve a more precise enforcement mechanism, the flow logic assigns a
variable v to a variable class v representing the information state of v at any given
point in the program. An assertion about the information state of v is of the form

v _< C,

where C is a security class. The assertion states the information in v is no more
sensitive than C. The bound C may be expressed as a specific class, as in v _~ Low,
which states v contains information belonging to the lowest security class only.
This assertion would hold, for example, after the unconditional execution of the
assignment "v "= 0". The bound may be expressed as the fixed class of v, as in
v ~ v, which states that v contains information no more sensitive than its class v

308 INFORMATION FLOW CONTROLS

permits. The bound may also be expressed as a join of the information states of
other variables, as in v _< =u~ ~ . . . ~ __u,, which states v contains information no
more sensitive than that in Ul Un.

A special class pc represents the information state of the program counter
(Andrews and Reitman call this class local); ~ simulates the program counter
class pc in Fenton's Data Mark Machine (see Section 5.3.3), and is used to prove
properties about implicit flows.

Assertions about the classes of variables can be combined with assertions
about their values. An assertion about the final state of the copy7 procedure is
given by:

(~..C .~ PCc7,
(x = 1) D ~ <_ ~ ~ =a ~ PCe7) , (x ~ 1) D (~ ~< __x ~ =b ~ PCc7)) ,

where PCc7 represents a bound on ~c upon entering copy7. This says when x = 1,
the information in y is no more sensitive than that in x, a, and the program counter
pc; when x ~ 1, the information in y is no more sensitive than that in x, b, and pc.

In the flow logic, execution of an assignment statement

v :=f(ul, . . . , u n)

is described by the assertion

=v<__u~e...e~,_

relating the information state of v to that of u ~ , . . . , u n. Note that this differs from
the certification mechanism of the previous section, where the assignment state-
ment imposes the security condition

_ux e . . . e_Un--<_v,

relating the fixed security class of v to that of u~, . . . , u,. Section 5.5.6 shows how
security conditions relate to assertions in the flow logic.

An assertion P will be expressed as a predicate in first-order calculus using
"," for conjunction, " :3" for implication, " ~ " for negation, and " V " for univer-
sal quantification (we shall not use disjunction or existential quantification in our
examples).

Let P and Q be assertions about the information state of a program. For a
given statement S,

{e} S {Q)

means if the precondition P is true before execution of S, then the postcondition Q
is true after execution of S, assuming S terminates. The notation

P[x ~ y]

means the assertion P with every free occurrence of x replaced with y.
The simplest proof rule is the rule of consequence:

PROGRAM VERIFICATION 309

Rule of consequence:

Given: P ~ F, (F) S (Q'), Q' ~ Q
Conclusion: (P) S (Q) 1

The axioms and proof rules for each statement type are now given in Sec-
tions 5.5.1-5.5.5.

,5.5.1 Assignment

Let S be the statement

b : = e ,

and let P be an assertion about the information state after S is executed. The
axiom for correctness is simply

(P[b ~ e]) b := e (P),

because any assertion about b that is true after the assignment must be true of the
value of e before the assignment. Note, however, the change in b is reflected in the
postcondition P, and not the precondition.

Example:
Consider the statement

y : = x + l .

The axiom can be used to prove that the precondition (0 _< x .~ 4) implies
the postcondition (1 _< y .~ 5):

(0 _< x _< 4)
{1 .~ (x + 1) .~ 5)
y : = x + l
(1 . ~ y _ < 5).

The second assertion follows from the first by simple implication. The third
follows from the second (and the effect of executing the assigment state-
ment) by the axiom for assignment, n

The precondition (P[b ~ e]) of the assignment axiom is called a weakest
precondition because it is the weakest condition needed to establish the postcondi-
tion. Of course, the rule of consequence always allows us to substitute stronger
conditions.

Example:
The following is also true:

(x = 3, z = O)

310 INFORMATION FLOW CONTROLS

y ' = x + l
(1 ~ < y ~ < 5) . l

In general, we would like to establish the minimal precondition needed to prove
security and correctness.

Extending the assignment axiom to include information flow, we must ac-
count for both the explicit flow from e and the implicit flow from pc. We get

Assignment axiom:

(P[b ~--- e; __b ~ _e ~ pc]) b "= e (P) 1

This states the sensitivity of b after the assignment will be no greater than that of e
and pc before the assignment.

Example:
Suppose execution of the statement "y "= x + 1" is conditioned on the value
of variable z. Given the precondition (0 .~ x ~ 4, p_c _< z=), we can prove:

(0 ~ x ~ 4,~c. ~ =z)
(0 .~ x .~ 4, _x O pc .~ x_ ~ z_,12 £ _< z_)
y ' = x + l

(1 _< y <_ 5, y__ _< __x ~ z_,£f _< =z)

The postcondition (y= _< _x_ ~ __z} states that the information in y after the
statement is executed is no more sensitive than that in x and z. 1

5.5.2 Compound

Let S be the statement

begin $1; • • • ; Sn e n d .

The proof rule for correctness is

Compound rule:

Given:
Conclusion:

(el } Si (el+l} for i = 1 , n
(P1} beg in $1; . . . ; S n end (Pn+~) 1

No extensions are needed to handle information flow security.

Example:
Consider the statement

begin "compute y = x mod n for x >_ 0"
i "= x div n;
y" x - i , n

end

PROGRAM VERIFICATION 311

The following proves y = x mod n when x ~. 0 and n > 0, and y= _< x= ~ __n
when pc _< Low:

(x >_ O, n > 0 , ~ _< Low)

begin
(0 _< x - (x div n) , n < n, x__ ~ =n _< x_ ~ _n, pc _< Low)

i "= x div n;
(O _< x - i*n < n, i _< x ~ n, pc _< Low}

(O _ < x - i * n < n, (x - i , n - x) mod n = O,

x • i • n _< x ~ n, pc_< Low)

yT= ;-7 ,n
end

(O _< y < n, (y - x) m o d n = O, y__ _< ~ O n, pc_<Low} .

Because the initial value of i does not flow into y, its class does not appear in
the postcondition. The proof consists of a sequence of statements and asser-
tions. Each assertion follows from its preceding assertion either by simple
implication (e.g., the second and fourth assertions), or by the axioms and
proof rules (e.g., the third and fifth assertions). 1

5.5.3 Alternation

Let S be the statement

if e then S~ else $2,

where $2 is the null statement when there is no else part. The proof rule for
correctness follows:

Given: (e, e) $1 (Q)
(e, ~ e) $2 (Q)

Conclusion: (P) if e then $1 else $2 (Q) I

E x a m p l e :

Consider the statement

if x _ > 0 t h e n y : = x e l s e y : = - x .

We can prove that execution of this statement sets y = I xl for any initial
value of x:

()

if x > _ 0
(x _> O)
(x >_ 0, x =]xl)
then y := x

(y = l x l)

(x < O)

312 INFORMATION FLOW CONTROLS

(x < o, - x = Ixl)
else y "= - x

(y = l x [}
(y = Ixl) . m

To extend the proof rule to secure information flow, we must account for the
implicit flow from e into $1 and $2 via the program counter. To do this, the
precondition P is written as a conjunction P = {V, L), where L is an assertion
about pc and V is an assertion about the remaining information state. Similarly,
the postcondition Q is written as a conjunction Q = (v ' , L). On entry to (and exit
from) $1 and $2, L is replaced with an assertion L' such that (V, L) implies the
assertion L'[p~. ~-- p_.~ ~ =e]. This allows the class pc to be temporarily increased by
e on entry to S~ or $2, and then restored on exit. Because p_.~. is restored after
execution of the if statement, the assertion L is invariant (i.e., it is the same in P
and Q); however, the assertion V may be changed by $1 or $2. We thus have the
following rule:

Alternation rule:

Given: P = (V, L), Q = (V', L)
(V, e, L') S, (V', L')
(V, ~,e, L') Sz (V', L')
P D L' [~ - - L ~ ~ _ _ e]

Conclusion: (P) if e then $1 else $2 (Q) II

Example:
Consider the statement

if x = 1 t h e n y ' = a e l s e y ' = b

of the procedure copy7. We can prove for all x, a, and b,

~ _< Cow}
if x = 1

(x = 1, pc ~< x)
(x = 1, p c ~ __a _< _x ~ a , p c _< _x
then y "= a

(x = 1, y__ .~ x= ~ a, pc _< __x)

(x ¢ 1, pc_<x)__
(x :/: 1, pc ~ b <~ x ~ b, pc <~ x)
else y := b

(x =/: 1, y__ <~ x ~ b, pc <~ x)
(p_ c __< Low,
(x = 1) ~ ~_<_x_~__a),(x ~ 1) ~ ~=_< = x ~ b)) . I I

5 .5 .4 I terat ion

Let S be the statement

PROGRAM VERIFICATION 313

while e do $1.

The proof rule for correctness is

Given: (P, e) $1 (P)
Conclusion: (P) while e do $1 (P, ~e) n

where P is the loop invariant. This is extended to security as for alternation:

Iteration rule:
Given: P = (V, L)

(V, L', e) S, (V, L')
P ~ L' [pc ~---/~e. $ e]

Conclusion: (P) while e do S~ (P, --~e) II

To handle parallel programs, a slightly more complicated rule is needed. To certify
"global flows" from the loop condition e to statements outside $1 that logically
follow the while statement, the assertions P and Q are expressed as the
conjunctions

P = (V , L , G)
Q = (v , ...-,e,L, G') ,

where G is an assertion about a special class global, and

P ~ G'[global ~ gtob.al ~ pc ~ =e] .

Unlike p__£, global is never restored; instead it continually increases, because all
subsequent statements of the program are conditioned on loop terminations.

The class globa ! is also used to certify synchronization flows (see exercises at
end of chapter).

5.5.5 Procedure Call

Let q be a procedure of the form:

procedure q(x; var y);
local variable declarations;
(e, &c. _< eCq)
S

(O)
end q ,

where x is a vector of input parameters, and y is a vector of output parameters (or
input/output parameters). The body S may reference global variables z and global
constants. We assume all variables in x, y, and z are disjoint (see [Grie80] for
proof rules for overlapping variables).

We assume the security proof of q is of the form

- " = 5 7 ¸ ~

314 INFORMATION FLOW CONTROLS

(P, ~ . _< PCq) s (g) ,

where P is a precondition that must hold at the time of the call, PCq is a place-
holder for a bound on pc at the time of the call, and Q is a postcondition that holds
when q terminates. We assume Q does not reference the local variables of q. Q
may reference the value parameters x; we assume all such references are to the
initial values and classes passed to q (assignments to x in q do not affect the actual
parameters anyway). Q may reference the variable parameters y and global varia-
bles z; the initial values and classes of these variables at the time of call are

Z/. referenced by y', y ' and z',
Consider a call of the form

q(a; b) ,

where a is a vector of arguments corresponding to the parameters x, and b is a
vector of arguments corresponding to the parameters y.

Reitman and Andrews give a proof rule for verifying the security of proce-
dure calls, but not their correctness. We shall instead use the following proof rule,
which is an extension of correctness proof rules (e.g., see [Grie80,Lond78]), allow-
ing for the substitution of classes as well as values:

Procedure call rule:
Given: (e, ~c ~ eCq) S (Q)
Conclusion: (P[(x, x__) ~ (a, __a); 0', Y=) ~ (b, =b); PCq~PC],

V U, V:

a[(x, __x) .-- (a, __a);
0', y=) ~ (u, __u); 0 / , y__') ~ (b, =b);
(Z, _-Z) ~ (V, =V); (Z/, =Z t) ~ (Z, Z); eCq ~ PC]

R[(b, =b) ~ (u, ~_); (z, __z) ~ (v, =v)])
q(a, b)

(R) II

where PC is a bound on ~ at the time of the call; that is, p_.c _< PC is implied by
the precondition of the call. The assertion (Vu, v:Q[] D R[]) says R can be true
after the call if and only if for all possible values u assigned to the variable
parameters y, and all possible values v assigned to the global variables z, the
postcondition Q implies R before the call when a is substituted for x, b for y', z for
z', and the current bound PC for PCq.

Example:
Consider the following procedure, with precondition and postcondition as
shown:

procedure f(var yl, y2" integer);

begin
y2 := yl;
yl := 0

end

PROGRAM VERIFICATION 315

(y l__ _< PCf, y_2 _< y l ' ~ PCf, pc _< PCf)
end f .

Note the precondition of f consists only of an assertion about pc (i.e., the
condition P in the proof rule is "true"). The postcondition states the final
value of yl is no more sensitive than the program counter, and that of y2 is
no more sensitive than the initial value of y l and the program counter.
Consider a call "f(bl, b2)". Given the precondition (pc <_ Low, ~bl <_ High,
b2 <_ Low}, we can prove execution of f lowers bl but raises b2 as follows:

(bl~ <_ High, b2 <_ Low, pc <_ Low)
(£f. _~ Low,

V u l , u 2 : (u._~ _< Low, u2 _< High, p_£ _< Low) D,
(u_~ _< Low, u_~ _< High, pc _< Low))

f(b~, b2)
(b_l. _< Low, b___2 ~ High, pc _< Low) . m

Example:
Consider the following procedure, which deciphers a string x (we shall as-
sume the key is part of the decipher function)"

procedure decipher(x: string "ciphertext,';
var y: string "plaintext");

"decipher x into y"
~pc _< PCd~
"decipher transformation"

(y_ _< _-x ~ PC d, pc <_ PC d)
end decipher .

The postcondition states the final state of y is no more sensitive than the
state of x and the program counter.

Now, consider the procedure shown in Figure 5.15, which calls deci-

FIGURE 5.15 Procedure getmsg.

procedure getmsg(c: string; var p: string);
"get message: decipher c and return the

corresponding plaintext p if the authority
of the calling program is at least level 2
(Secret)" the authority is represented by
the global constant a"

(a _< Low, pc <_ eCg)
if a > 2

then decipher (c, p)
else p : = null

(a_ <_ Low, pc <_ PCg,
(a >__ 2) z (e -< c ~ PCg),

end getmsg
.

(a < 2) D ~_<PCg))

316 INFORMATION FLOW CONTROLS

pher. The postcondition states the final class of p is bounded by c ~ PCg
when a ~. 2, and by PCg when a < 2, where PCg is a placeholder for a bound
on p._c_ at the time of the call. Because the initial value of p is lost, its initial
sensitivity does not affect its final sensitivity. The authority level a is in the
lowest class. We shall now prove that the precondition of getmsg implies the
postcondition.

(a _< Low, pc <_ PCg)
i r a > _ 2
(a >_ 2, _a ~ Low, p__c ~ eCg)

<_ ec ,
XV/U:(U ~ C ~ eGg, pc "~ Pfg) Z

(a ~ 2, _a ~ Low, =u _< =c ~ PCg, pc ~ PCg))
then decipher(c, p)

(a ~ 2, _a_ ~ Low, p__ ~ =c ~ PCg, pc ~ PCg)

(a < 2, a <_ Low, pc <_ PCg)
else p := null

(a < 2, a <_ Low, p <_ PCg, pc <_ PCg}
(a <_ Low, pc <_ PCg,
(a >_ 2) ~3 (/2_ -< c ~ PCg), (a < 2) :3 (p__ _< PCg)) . I I

5.5.6 Security

Proving a program satisfies its assertions does not automatically imply the pro-
gram is secure. The assertions must also satisfy the security requirements imposed
by the flow policy.

Given a statement S and a proof (P) S (Q}, execution of S is secure if and
only if:

1. P is initially true,
2. For every object v assigned to a fixed security class _v, Q

(v_< v)
m

The second requirement states that the information represented in the final
value of v (represented by v) must be no more sensitive than that permitted by the
class v.

m

Example:
Earlier we proved:

<_ Low)
if x = 1 t h e n y ' = a e l s e y : = b

(p_£ _< Low,
(x = 1) 2) ~ ~ x = O _ a) , (x ~ 1) 2) (~_<__xO__b)} .

Let x = l, _x = Low, _a = Low, b = High, y = Low, and pc = Low. Since

PROGRAM VERIFICATION 317

the postcondition does not contain any assertions about the sensitivity of
information in x, a, or b, it does not imply that x _< Low, a _< Low, b
_< High, and Z _< Low. To show execution of this statement is secure, we
instead prove:

(x = 1, _-x _< Low, _-a _< Low, _-b _< High, p_~. _< Low)
if x = 1 t h e n y ' = a e l s e y ' = b

(x = 1, _x _< Low, _a .~ Low, b .~ High, y_ _< x_ • _a, p_f_ _< Low}
m

(x = 1, _x .~ Low, _a _< Low, b .~ High, y .~ Low, pc _< Low} . II

Example:
Consider the following statement, which passes objects c and p to the proce-
dure getmsg of Figure 5.15 (we have chosen the same names for our actual
arguments as for the formal parameters of g)

getmsg(c, p) .

Let a = 3 (Top Secret), _a = 0 (Unclassified or Low), _c = 2 (Secret), p_ = 3,
and PC = 3. Because a ~. 2, the ciphertext c will be deciphered, and the
result assigned to p. We can prove:

(a = 3, a _< Low, c_< 2 , ~ ~ 3)
(a .~ Lo~v, l~. -< 3~

V u:(__a ~ Low, _-u _< 3, p_c _< 3) D
(a = 3, a=~Low,=c_< 2,__u_< 3, p_c_< 3))

getrnsg(c, p)
(a = 3,_a _< Low,_c _< 2,/~ _< 3, p__f_ _< 3) .

Because the postcondition implies the contents of each object is no more
sensitive than its fixed class, the preceding call is secure.

Next let a = 1 (Confidential), _a = 0, _ c = 2, p_ = 1, and PC = 1. Here a
< 2, so c will not be deciphered, and p will be assigned the null value. We
can prove:

(a = 1, a _< Low, c ~ 2 , ~ . ~ 1)
(a _< Lo~v, ~ _< 1~

Vu:(__a_<Low,__u_< 1 , ~ ~ 1) D
(a = 1 ,_a_<Low,£_< 2, u_< 1, p_£_< 1))

getmsg(c, p)
(a = 1 , _ a ~ _ L o w , £ _ < 2 , 1 2 _ < 1, p_f _< 1) .

Again the postcondition implies execution of the call is secure.
If a ~. 2 and/~ < _c, we cannot prove execution of the call is secure

(because it is not secure!msee exercises at the end of Chapter). Assuming
only verified programs are allowed to execute, this means a top secret pro-
cess, for example, cannot cause secret ciphertext to be deciphered into a
lower classified variable, m

Once a procedure has been formally verified, we would like assurances it has

318 INFORMATION FLOW CONTROLS

not been tampered with or replaced by a Trojan Horse. This is a good application
for digital signatures (see Section 1.3.1). The verification mechanism would sign
the code for a procedure after its security had been proved, and the operating
system would not load and execute any code without a valid signature.

5.6 FLOW CONTROLS IN PRACTICE

5.6.1 System Verification

Efforts to build verifiably secure systems have been motivated largely by the secu-
rity requirements of the Department of Defense. Prior to the 1970s, no commer-
cially available system had withstood penetration, and no existing system could
adequately enforce multilevel security. To deal with this problem, classified infor-
mation was processed one level at a time, and the system was shut down and
cleared before processing information at another level. This was a costly and cum-
bersome mode of operation.

In the early 1970s, the Air Force Electronic Systems Division sponsored
several studies aimed at developing techniques to support the design and verifica-
tion of multilevel security systems. The methodology that emerged from these
studies was founded on the concept of security kernel (see Section 4.6.1), and was
reported in papers by Anderson [Ande72], Schell, Downey, and Popek [Sche72],
Bell and Burke [Bell74], and Bell and LaPadula [Bell73]. By the late 1970s, the
methodology had been applied (to various degrees) to the design and verification
of several security kernels including those listed in Section 4.6.1.

A security kernel is specified in terms of states and state transitions, and
verified following the general approach described in Section 4.6.3. The multilevel
security requirements of the kernel are based on a model introduced by Bell and
LaPadula at MITRE [Bell73]. The model assumes objects have fixed security
classes; this assumption is formalized by an axiom called the tranquility principle.
Multilevel security is given in terms of two axioms called the simple security
condition and the ,-property (pronounced "star-property"). The simple security
condition states that a process p may not have read access to an object x unless x

p_. The ,-property states that a process may not have read access to an object x
and write access to an object y unless _x ~ y_. This is stronger than necessary,
because p may not cause any information flow from x to y; applications of the
model to security kernel verification have relaxed this to require x ~ y_ only when
y is functionally dependent on x.

Researchers at MITRE [Mil176,Mil181] and at SRI [Feie77,Feie80] have
developed techniques for verifying multilevel security in formal program specifica-
tions expressed as V- and O-functions (see Section 4.6.3). Flows from state varia-
bles are specified by references to primitive V-functions, and flows into state
variables by changes to primitive V-functions (specified by the effects of O-func-
tions). Security is verified by proving the security classes of the state variables and
of the process executing the specified function satisfy the conditions for simple
security and the ,-property. The principal difference between security proofs for

FLOW CONTROLS IN PRACTICE 319

specifications and those for programs (such as described in the preceding sections)
is that specifications are nondeterministic; that is, the statements in the effects of
an O-function are unordered.

Feiertag [Feie80] developed a model and tool for verifying multilevel securi-
ty for V- and O-function specifications written in SPECIAL. The tool is part of
SRI's Hierarchical Design Methodology HDM (see Section 4.6.3). A formula
generator constructs formulas from the specifications that either prove or disprove
a module is multilevel secure. Nontrivial formulas are passed to the Boyer-Moore
theorem prover, where they are proved (or disproved) to be theorems. The user
specifies the security classes of the state variables and the partial ordering relation
~ , so the tool is not limited to the military classification scheme. The Feiertag
model is the basis for the PSOS secure object manager [Feie77,Neum80]. The
tool has been used to verify the specifications of both the KSOS-11 and KSOS-6
(SCOMP) kernels. Verification of the KSOS kernel revealed several insecure
channels in the design, some of which will remain as known potential low-band-
width signaling paths [NeumS0].

MITRE [Mill81] has also developed an automated tool for analyzing flows
in modules written in a specification language. The flow analyzer associates se-
mantic attributes with the syntactic types of the specification language in much
the same way as in the compiler-based mechanism described in Section 5.4.3. This
information is then used to produce tables of formulas which, if true, give suffi-
cient conditions for security (as in Feiertag's tool). The analyzer is generated using
the YACC parser generator on UNIX, so it can be easily adapted to different
specification languages; analyzers for subsets of SPECIAL and Ina Jo (the specifi-
cation language developed at SDC) have been implemented.

The MITRE flow analyzer is based in part on the deductive formulation of
information flow developed jointly by Millen [Mi1178] and Furtek [Furt78]. The
deductive formulation describes information flow in a module by transition con-
straints on the values of the state variables on entry to and exit from the module.
Such a constraint is of the form

Xlu l "" " x k . k × Y v ,

where x l , x k , and y are state variables; and u l , . . . , u k , and v represent their
respective values. The constraint states that if x i has the value ui (i = 1 , . . . , k) on
entry to the module, then y cannot have the value v on exit from the module. Thus,
the condition on the right of the "X" represents an impossible exit condition given
the entry condition on the left. The constraint thus limits the possible values of the
variables, making it possible to deduce something about the value of one variable
from the values of other variables.

Example:
Consider the statement (formal specification)

y = x ,

relating the new (primed) value of y to the old (unprimed) value of x. This
statement is described by the set of constraints

2

320 INFORMATION FLOW CONTROLS

(Xu × Yvl V v s u} ,

which states that if x initially has the value u, then the new value of y cannot
be v for any v ¢: u. Thus the initial value of x can be deduced from the new
value of y, and the security requirements of the statement are given by the
condition

x < _ y . II

Example:
The specification statement

if x = O t h e n ' y = O e l s e ' y = 1

is described by the set of constraints

(xo× YvlV ~ O) U (x u× yvlu ~ O,v ~ 1),

which shows that access to the new value of y can be used to deduce some-
thing about the initial value of x..The security requirements of this statement
are given by the same condition as the previous statement, n

The MITRE flow analyzer can handle arrays of elements belonging to dif-
ferent classes.

Example:
Consider the specification statement

i f x < 2 t h e n ' y = a [x] .

This statement is described by the set of constraints

(x i a [i] . x y v l v ~ u , i < 2) .

The security requirements of the statement are thus given by

x_<y_
a[i] _<y_ for i< 2 . !1

Rushby's [Rush81] approach to the design and verification of secure systems
(see Section 4.6.3) seems to obviate the need to prove multilevel flow security for a
security kernel. Since the kernel serves to isolate processes sharing the same ma-
chine, it suffices to prove such an isolation is achieved. Proofs of multilevel secur-
ity are needed only for the explicit communication channels connecting processes.

\

5.6.2 Extensions

Practical systems often have information flow requirements that extend or conflict
with the information flow models we have described thus far; for example,

/

FLOW CONTROLS IN PRACTICE 321

.

J

Integrity. Information flow models describe the dissemination of informa-
tion, but not its alteration. Thus an Unclassified process, for example, can
write nonsense into a Top Secret file without violating the multilevel security
policy. Although this problem is remedied by access controls, efforts to de-
velop a multilevel integrity model have been pursued. Biba [Biba77] pro-
posed a model where each object and process is assigned an integrity level,
and a process cannot write into an object unless its integrity level is at least
that of the object (in contrast, its security level must be no greater than that
of the object).
Sanitization and Downgrading. Written documents routinely have their secu-
rity classifications lowered ("downgraded"), and sensitive information is
edited ("sanitized") for release at a lower level. Because these operations
violate the multilevel security policy, they cannot be handled by the basic
flow control mechanisms in a security kernel. The current practice is to place
them in trusted processes that are permitted to violate the policies of the
kernel. The trusted processes are verified (or at least audited) to show they
meet the security requirements of the system as a whole. An example of such
a trusted process is described in the next section.
Aggregation. An aggregate of data might require a higher classification than
the individual items. This is because the aggregate might give an overall
picture that cannot be deduced (or easily deduced) from an individual item.
For example, the aggregate of all combat unit locations might reveal a plan
of attack. This is the opposite of the inference problem discussed in the next
chapter, where the problem is to provide a means of releasing statistics that
give an overall picture, while protecting the individual values used to com-
pute the statistics.

5.6.3 A Guard Application

The ACCAT Guard [Wood79] is an interesting blend of flow controls and cryp-
tography. Developed by Logicon at the Advanced Command and Control Archi-
tectural Testbed (ACCAT), the Guard is a minicomputer interface between two
computers (or networks of computers) of different classifications (called Low and
High).

The Guard supports two types of communication: network mail and database
transactions. The Guard allows information to flow without human intervention
from Low to High computers, but approval by a Security Watch Officer is re-
quired for flows from High to Low. Figure 5.16 shows the role of the Security
Watch Officer for both types of communication. For mail, information flows in
one direction only, so human intervention is required only for mail transmitted
from High to Low computers (Figure 5.16b). Database transactions always re-
quire human intervention, however, because information flows in one direction
with the query and the reverse direction with the response. Queries from a High
computer to a Low computer must pass through the Security Watch Officer,

322 INFORMATION FLOW CONTROLS

FIGURE 5.16 Information flow through the Guard and Security Watch Officer.
• ,

mail
L o w

Computer
High

Computer

a) Mail transmitted from Low to High computer.

L o w
Computer

High
Computer

b) Mail transmitted from High to Low computer.

Lo w
Computer

High
Computer

c) Database query from High to Low computer.

L o w
Computer

High
Computer

d) Database query from Low to High computer.
|

though the response can be returned without human intervention (Figure 5.16c).
Queries from a Low to High computer can pass through the Guard without human
intervention, but here the response must be reviewed. The Guard passes the re-
sponse first through a Sanitization Officer, who edits the response as needed to

ABFDEFGHIIJKLMMNOHPP 323

FIGURE 5.17 The ACCAT Guard.

PLIs

ARPANET

Low
Computer

Guard

High
Computer

remove High security information, and then through the Security Watch Officer
(Figure 5.16d).

Figure 5.17 shows the structure of the Guard system. The computers are
connected to encryption devices called Private Line Interfaces (PLIs). The PLIs in
turn are connected to the ARPANET (Advance Research Projects Agency NET-
work) through Interface Message Processors (IMPs) or Terminal Interface Pro-
cessors (TIPs). Separate encryption keys logically connect the Low computers to a
Low process in the Guard and the High computers to a High process in the Guard.
Because the keys are different, the Low and High computers cannot communicate
directly.

The Low and High processes run in a secure UNIX environment (such as
provided by KSOS). Flows from Low to High processes in the Guard are handled

324 INFORMATION FLOW CONTROLS

by the security mechanisms provided by the kernel. Because flows from High
to Low processes violate the multilevel security policy, they are controlled by a
trusted process that interfaces with the Security Watch Officer and downgrades
information. Verification of the downgrade trusted process requires showing that
all flows from High to Low are approved by the Security Watch Officer (see
[Ames80]). The Low and High processes communicate with the trusted processes
through inter-process communication messages provided by the kernel. The Secur-
ity Watch Officer's terminal is directly connected to the kernel to prevent
spoofing.

The multilevel security problem can be solved in part by running each classi-
fication level on a separate machine, and using encryption to enforce the flow
requirements between machines [Davi80]. But this is only a partial solution. As
illustrated by the Guard, some applications must process multiple classification
levels and even violate the general flow policy. These applications must be sup-
ported by a secure system so they cannot be misused. The design and verification
of specialized systems (such as the Guard), however, should be simpler than for
general-purpose systems.

EXERCISES

5.1

5.2

5.3

Consider the following statement

if x > k t h e n y ' = 1,

where x is an integer variable in the range [1, 2m], with all values equally
likely, y is initially 0, and k is an integer constant. Give a formula for Hy, (x),
the equivocation of x given the value of y after the statement is executed.
Show that the amount of information transferred by this statement is maxi-
mal when k = m by showing this problem is equivalent to showing that the
entropy of a variable with two possible values is maximal when both values
are equally likely (see Exercise 1.4).
Consider the statement

if x > k t h e n y ' = 1,

where x has the probability distribution

1
~ x = O

1 p i = ~ x 1

1
-~ x 2,

and y is initially 0. Compute the entropy H(x). Compute the equivocation
Hy, (x) both for k = 0 and k = 1.
Consider the statement

i f (x = 1) andO,= 1) thenz:= 1,

i

EXERCISES 325

5.4

5.5

5.6

5.7

5.8

5.9

where x and y can each be 0 or 1, with both values equally likely, and z is
initially 0. Compute the equivocations H z, (x) and H z, (y).
Consider the statement

Z : = X - I ' y ,

where x and y can each be 0 or 1, with both values equally likely. Compute
the equivocations H z, (x) and H z, (y).
Let x be an integer variable in the range [0, 232 - 1], with all values equally
likely. Write a program that transfers x to y using implicit flows. Compare
the running time of your program with the trivial program "y "= x".
Consider the lattice in Figure 5.1. What class corresponds to each of the
following?
a. A O B , A ® B
b. B O I , B ® I
c. B ~ C , B ® C
d. A O C ~ D , A ® C ® D
e. A O B ~ D , A ® B ® D .
Trace the execution of the procedure copyl on the Data Mark Machine (see
Figure 5.7 and Table 5.1) for x = 1 when z _< y_. Show that execution of
copyl is secure when _x ~ y_ both for x = 0 and x = t. Note that if x < y,
then either x ~ z or z ~ y.
Trace the execution of the procedure copy1 on the single accumulator ma-
chine (see Figure 5.8 and Table 5.2) for both x = 0 and x = 1 when x
= High, y_ = Low, _z = High, and p___c is initially Low, showing that execution
of this procedure is secure.
Draw a syntax tree showing how the certification mechanism of Section
5.4.3 verifies the flows in the following statement:

while a > 0 do
begin

. a ' = a - x ,
b ' = a , y

end.

5.10 Following the approach in Section 5.4.2, give security conditions for a case
statement:

case a of
vl" $1;
v2: $2;

°

V n] an;
end,

where a is a variable and Vl, V n are values.
5.11 For each Boolean expression in the copy2 procedure shown in Figures 5.11

and 5.12, identify the set of blocks directly conditioned on the expression.

326 INFORMATION FLOW CONTROLS

Assume the value of x can be any integer (i.e., is not restricted to the values
0 and 1). Use your results to identify all implicit flows in the procedure,
showing that the procedure is secure.

5.12 Extend the certification semantics of Table 5.6 to include the following
statements for concurrent programs:

signal(s);
wait(s);
cobegin $1; . . . ; Sn end.

Your semantics should provide an efficient method of verifying the relations
s _< y_ for every object y that is the target of an assignment in a statement
logically following an operation wait(s). Note that you will have to extend
the semantics of other statements to do this. In particular, you will have to
extend the semantics of the while statement to certify global flows from the
loop condition. Show how the extended mechanism certifies the procedures
copy3 (Figure 5.13) and copy4 (Figure 5.14).

5.13 Given the statement

if x = 0
then begin

t "= a;
y ' = t

end,

prove the precondition (x_ .~ Low, pc _< Low) implies the postcondition (x=
<_ Low, (x = O) ~ (y= <_ a), pc <_ Low).

5.14 Prove the precondition implies the postcondition in the following procedure:

procedure mod(x, n: integer; var y: integer); var i: integer;
(n > O, pc <~ PC m)
begin "compute y = x mod n"

i "-- x div n;
y "= x - i,n;
i fy < O t h e n y ' = y + n

end.
(0 .~ y < n, (y - x) mod n = 0, y__ _< .~ ~ __n ~ PC m, p_c _< PC m)

end mod .

5.15 Using the procedure rood in the preceding exercise, prove the following"

(a = 12, n = 5, p_~ _< Low, __n _< Low)
rood(a, n, b)

(b = 2, b _< a, pc _< Low, n _< Low).

5.16 Give a proof rule for an array assignment of the form

a [i , , . . . , in] := b .

Prove the following:

• / /

REFERENCES 327

(n__ <_ Low, pc <_ Low)
begin

i ' = 1;
while i _< n do

begin
a[i] "= 0;
i ' = i + 1

end
end

(V j: (1 .~ j ~ n) D a[j] .~ Low, =n .~ Low, p_~..~ Low) .

5.17 Consider a call getmsg(c, p) to the getmsg procedure of Figure 5.15, where a
= 2, _a = Low, PC = 2, _c = 2, and p_ = 1. Show it is not possible to prove
execution of the call is secure.

5.18 Develop axioms and proof rules for the following statements for concurrent
programs:

signals(s);
wait(s);
cobegin S~; . . . " S n end.

You will have to introduce a class global to verify global flows and flows
caused by synchronization. The class global should increase by both _s and p_£
after execution of wait(s) [note that to do this, you must make your syntact~
substitution in the precondition of wait(s)]. You should assume the flow
proofs

(el} S1 (Q1) , (Pn) an (Q,)

are "interference free" in the sense that executing some S i does not invali-
date the proof of Sj (1 _< j .~ n). Unlike p_.c, the class global is never restored.
Show how global can be included in the proof rules for procedure calls.
Consider the procedure copy3 of Figure 5.13. Prove that the postcondition (y
.~ X, ~ .~ PC) follows from the precondition (x_ _< X, pc_ ~ PC) and the
body of the procedure. Do the same for the proce-dure cofiy-4 of Figure 5.14.

5.19 Following Millen's and Furtek's deductive formulation of information flow
as described in Section 5.6.1, give constraints for the following specification
statements, where x, y, and z are variables:
a. ' y = x + l .
b. ' z = x + y .
c. if x = 1 then 'y = a else 'y = b , for variables a and b.
d. if x < 2 then 'b[x] = a[x] , for arrays a[l 'n] and b[l:n].

REFERENCES

Alle70. Allen, E E., "Control Flow Analysis," Proc. Symp. Compiler Optimization, ACM
SIGPLAN Notices Vol. 5(7) pp. 1-19 (July 1970).

328 INFORMATION FLOW CONTROLS

Ames80. Ames, S. R. and Keeton-Williams, J. G., "Demonstrating Security for Trusted
Applications on a Security Kernel Base," pp. 145-156 in Proc. 1980 Syrup. on Secu-
rity and Privacy, IEEE Computer Society (April 1980).

Ande72. Anderson, J. P., "Computer Security Technology Planning Study," ESD-TR-73-
51, Vols. I and II, USAF Electronic Systems Div., Bedford, Mass. (Oct. 1972).

Andr80. Andrews, G. R. and Reitman, R. P., "An Axiomatic Approach to Information
Flow in Parallel Programs," ACM Trans. on Prog. Languages and Systems Vol. 2(1)
pp. 56-76 (Jan. 1980).

Bell73. Bell, D. E. and LaPadula, L. J., "Secure Computer Systems: Mathematical Foun-
dations and Model," M74-244, The MITRE Corp., Bedford, Mass. (May 1973).

Bell74. Bell, D. E. and Burke, E. L., "A Software Validation Technique for Certification:
The Methodology," ESD-TR-75-54, Vol. I, The MITRE Corp., Bedford, Mass.
(Nov. 1974).

Biba77. Biba, K. J., "Integrity Considerations for Secure Computer Systems," ESD-TR-
76-372, USAF Electronic Systems Division, Bedford, Mass. (Apr. 1977).

Birk67. Birkhoff, G., Lattice Theory, Amer. Math. Soc. Col. Pub., XXV, 3rd ed. (1967).
Cohe77. Cohen, E., "Information Transmission in Computational Systems," Proc. 6th

Syrup. on Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol. 11(5) pp. 133-139 (Nov.
1977).

Cohe78. Cohen, E., "Information Transmission in Sequential Programs," pp. 297-335 in
Foundations of Secure Computation, ed. R. A. DeMilto et al., Academic Press, New
York (1978).

Davi80. Davida, G. I., DeMillo, R. A., and Lipton, R. J., "A System Architecture to
Support a Verifiably Secure Multilevel Security System," pp. 137-145 in Proc. 1980
Syrup. on Security and Privacy, IEEE Computer Society (Apr. 1980).

Denn74. Denning, D. E., Denning, P. J., and Graham, G. S., "Selectively Confined Subsys-
tems," in Proc. Int. Workshop on Protection in Operating Systems, IRIA, Rocquen-
court, LeChesnay, France, pp. 55-61 (Aug. 1974).

Denn75. Denning, D. E., "Secure Information Flow in Computer Systems," Ph.D. Thesis,
Purdue Univ., W. Lafayette, Ind. (May 1975).

Denn76a. Denning, D. E., "A Lattice Model of Secure Information Flow," Comm. ACM
Vol. 19(5) pp. 236-243 (May 1976).

Denn76b. Denning, D. E., "On the Derivation of Lattice Structured Information Flow
Policies," CSD TR 180, Computer Sciences Dept., Purdue Univ., W. Lafayette, Ind.
(Mar. 1976).

Denn77. Denning, D. E. and Denning, P. J., "Certification of Programs for Secure Infor-
mation Flow," Comm. ACM Vol. 20(7) pp. 504-513 (July 1977).

Feie77. Feiertag, R. J., Levitt, K. N., and Robinson, L., "Proving Multilevel Security of a
System Design," Proc. 6th Syrup. on Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol.
11(5) pp. 57-66 (Nov. 1977).

Feie80. Feiertag, R. J., "A Technique for Proving Specifications are Multilevel Secure,"
Computer Science Lab. Report CSL-109, SRI International, Menlo Park, Calif.
(Jan. 1980).

Fent73. Fenton, J. S., "Information Protection Systems," Ph.D. Dissertation, Univ. of
Cambridge, Cambridge, England (1973).

Fent74. Fenton, J. S., "Memoryless Subsystems," Comput. J. Vol. 17(2) pp. 143-147 (May
1974).

Furt78. Furtek, F., "Constraints and Compromise," pp. 189-204 in Foundations of Secure
Computation, ed. R. A. DeMillo et al., Academic Press, New York (1978).

Gain72. Gaines, R. S., "An Operating System Based on the Concept of a Supervisory
Computer," Comm. ACM Vol. 15(3) pp. 150-156 (Mar. 1972).

REFERENCES 329

Gat75. Gat, I. and Saal, H. J., "Memoryless Execution: A Programmer's Viewpoint," IBM
Tech. Rep. 025, IBM Israeli Scientific Center, Haifa, Israel (Mar. 1975).

Grie80. Gries, D. and Levin, G., "Assignment and Procedure Call Proof Rules," ACM
Trans. on Programming Languages and Systems Vol. 2(4) pp. 564-579 (Oct. 1980).

Hoar69. Hoare, C. A. R., "An Axiomatic Basis for Computer Programming," Comm.
ACM Vol. 12(10) pp. 576-581 (Oct. 1969).

Jone75. Jones, A. K. and Lipton, R. J., "The Enforcement of Security Policies for Compu-
tation," Proc. 5th Syrup. on Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol. 9(5), pp.
197-206 (Nov. 1975).

Karg78. Karger, P. A., "The Lattice Model in a Public Computing Network," Proc. ACM
Annual Conf. Vol. 1 pp. 453-459 (Dec. 1978).

Lamp73. Lampson, B. W., "A Note on the Confinement Problem," Comm. ACM Vol.
16(10) pp. 613-615 (Oct. 1973).

Lipn75. Lipner, S. B., "A Comment on the Confinement Problem," Proc. 5th Syrup. on
Oper. Syst. Princ., ACM Oper. Syst. Rev. Vol 9(5) pp. 192-196 (Nov. 1975).

Lond78. London, R. L., Guttag, J. V., Horning, J. J., Lampson, B. W., Mitchell, J. G., and
Popek, G. J., "Proof Rules for the Programming Language Euclid," Acta Informa-
tica Vol. 10 pp. 1-26 (1978).

Mi1176. Millen, J. K., "Security Kernel Validation in Practice," Comm. ACM Vol. 19(5)
pp. 243-250 (May 1976).

Mi1178. Millen, J. K., "Constraints and Multilevel Security," pp. 205-222 in Foundations
of Secure Computation, ed. R. A. DeMillo et al., Academic Press, New York (1978).

Mill81. Millen, J. K., "Information Flow Analysis of Formal Specifications," in Proc. 1981
Syrup. on Security and Privacy, IEEE Computer Society, pp. 3-8 (Apr. 1981).

Mins67. Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, Engle-
wood Cliffs, N.J. (1967).

Neum80. Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt, K. N., and Robinson, L.,
"A Provably Secure Operating System: The System, Its Applications, and Proofs,"
Computer Science Lab. Report CSL-116, SRI International, Menlo Park, Calif.
(May 1980).

Reed79. Reed, D. P. and Kanodia, R. K., "Synchronization with Eventcounts and Sequenc-
ers," Comm. ACM Vol. 22(2) pp. 115-123 (Feb. 1979).

Reit79. Reitman, R. P., "A Mechanism for Information Control in Parallel Programs,"
Proc. 7th Symp. on Oper. Syst. Princ., ACM Oper. Syst. Rev., pp. 55-62 (Dec.
I979).

Rote74. Rotenberg, L. J., "Making Computers Keep Secrets," Ph.D. Thesis, TR-115, MIT
(Feb. 1974).

Rush81. Rushby, J. M., "Design and Verification of Secure Systems," Proc. 8th Syrup. on
Oper. Syst. Princ., ACM Oper. Syst. Rev., Vol. 15(5), pp. 12-21 (Dec. 1981).

Sche72. Schell, R., Downey, P., and Popek, G., "Preliminary Notes on the Design of a
Secure Military Computer System," MCI-73-1, USAF Electronic Systems Div.,
Bedford, Mass. (Oct. 1972).

Weis69. Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System," pp.
119-133 in Proc. Fall Jt. Computer Conf., Vol. 35, AFIPS Press, Montvale, N.J.
(1969).

Wood79. Woodward, J. P. L., "Applications for Multilevel Secure Operating Systems," pp.
319-328 in Proc. NCC, Vol. 48. AFIPS Press, Montvale, N.J. (1979).

Inference Controls

When information derived from confidential data must be declassified for wider
distribution, simple flow controls as described in the previous chapter are inad-
equate. This is true of statistical databases, which can contain sensitive informa-
tion about individuals or companies. The objective is to provide access to statistics
about groups of individuals, while restricting access to information about any
particular individual. Census bureaus, for example, are responsible for collecting
information about all citizens and reporting this information in a way that does
not jeopardize individual privacy.

The problem is that statistics contain vestiges of the original information. By
correlating different statistics, a clever user may be able to deduce confidential
information about some individual. For example, by comparing the total salaries
of two groups differing only by a single record, the user can deduce the salary of
the individual whose record is in one group but not in the other. The objective of
inference controls is to ensure that the statistics released by the database do not
lead to the disclosure of confidential data.

Although many databases are used for statistics only (e.g., census data),
general-purpose database systems may provide both statistical and nonstatistical
access. In a hospital database, for example, doctors may be given direct access to
patients' medical records, while researchers are only permitted access to statistical
summaries of the records. Although we are primarily interested in protection
mechanisms for general-purpose systems, we shall also describe mechanisms for
statistics-only databases.

331

332 INFERENCE CONTROLS

6.1 STATISTICAL DATABASE MODEL

We shall describe a statistical database in terms of an abstract model.i" Although
the model does not accurately describe either the logical or physical organization
of most database systems, its simplicity allows us to focus on the disclosure prob-
lem and compare different controls.

6.1.1 Information State

The information state of a statistical database system has two components: the
data stored in the database and external knowledge. The database contains infor-
mation about the attributes of N individuals (organizations, companies, etc.).
There are M attributes (also called variables), where each attribute Aj (1 ~ j
_< M) has lA i I possible values. An example of an attribute is Sex, whose two
possible values are Male and Female. We let xij denote the value of attribute j for
individual i. When the subscript j is not important to the discussion, we shall write
simply x i to denote the value of an attribute A for individual i.

It is convenient to view a statistical database as a collection of N records,
where each record contains M fields, and xij is stored in record i, field j (see Figure
6.1). Note that this is equivalent to a relation (table) in a relational database
[Codd70,Codd79], where the records are M-tuples of the relation. If the informa-
tion stored in the database is scattered throughout several relations, then the rela-
tion depicted in Figure 6.1 corresponds to the "natural join" of these relations. We
shall assume that each field is defined for all individuals, and that each individual
has a single record.

Example:
Table 6.1 shows a (sub) database containing N = 13 confidential student
records for a hypothetical university having 50 departments. Each record has
M = 5 fields (excluding the identifier), whose possible values are shown in
Table 6.2. The attribute S A T specifies a student's average on the S A T
(Scholastic Aptitude Test) and GP specifies a student's current grade-point.
Unless otherwise stated, all examples refer to this database. 1

External knowledge refers to the information users have about the database.
There are two broad classes of external knowledge: working knowledge and sup-
plementary knowledge. Working knowledge is knowledge about the attributes rep-
resented in the database (e.g., the information in Table 6.2) and the types of

Jan Schlt~rer, Elisabeth Wehrle, and myself [Denn82] have extended the model described
here, showing how a statistical database can be viewed as a lattice of tables, and how different controls
can be interpreted in terms of the lattice structure. Because this work was done after the book had gone
into production, it was not possible to integrate it into this chapter.

STATISTICAL DATABASE MODEL 333

FIGURE 6.1 Abstract view of a stat ist ical database.

Record Ai . . . A j . . . A M

1 x~ • • • X l j • • • X i M

. . .

• • ,

, ° •

i X i l . . . X i j . . . X i M

, ° °

• ° °

° o .

N XN~ • • • X N j • • • X N M

TABLE 6.1 Stat ist ical database with N = 13

students.

Name Sex Major Class SAT GP

Allen Female CS 1980 600 3.4
Baker Female EE 1980 520 2.5
Cook Male EE 1978 630 3.5
Davis Female CS 1978 800 4.0
Evans Male Bio 1979 500 2.2
Frank Male EE 1981 580 3.0
Good Male CS 1978 700 3.8
Hall Female Psy 1979 580 2.8
lies Male CS 1981 600 3.2
Jones Female Bio 1979 750 3.8
Kline Female Psy 1981 500 2.5
Lane Male EE 1978 600 3.0
Moore Male CS 1979 650 3.5

TABLE 6.2 Attr ibute values for Table 6.1.

Attribute Aj Values I Ajl

Sex Male, Female 2
Major Bio, CS, EE, Psy 50
Class 1978, 1979, 1980, 1981 4
S A T 310, 320, 330 790, 800 50
GP 0.0, 0.1, 0.2 3.9, 4.0 41

statistics available. Supplementary knowledge is information that is not normally
released by the database. This information may be confidential (e.g., a part icular
student 's GP or S A T score) or nonconfidential (e.g., the student 's sex).

334 INFERENCE CONTROLS

6.1.2 Types of Statistics

Statistics are computed for subgroups of records having common attributes. A
subgroup is specified by a characteristic formula C, which, informally, is any
logical formula over the values of attributes using the operators "or" (+), "and"
(o), and "not" (,~), where the operators are written in order of increasing priority.
An example of a formula is

(Sex = M a l e) ° ((Major = CS) + (Major = EE)) ,

which specifies all male students majoring in either CS or EE. We shall omit
attribute names where they are clear from context, e.g., "Male • (CS + EE)" . We
shall also use relational operators in the specification of characteristics, since these
are simply abbreviations for the "or" of several values; for example, "GP > 3.7" is
equivalent to "(GP = 3.8) + (GP -- 3.9) + (GP = 4.0)".

The set of records whose values match a characteristic formula C is called
the query set of C. For example, the query set of C - "Female ° CS" is (1, 4),
which consists of the records for Allen and Davis. We shall write "C" to denote
both a formula and its query set, and IC[to denote the number of records in C
(i.e., the size of C). We denote by All a formula whose query set is the entire
database; thus C C_ All for any formula C, where " _ " denotes query set inclusion.

Given]Aj] values for each of the M attributes Aj (j = 1, . . . , M), there are

M
E-- I-I IAji

j = l

possible distinguishable records described by formulas of the form

(A1 = a l) " . . . " (A M = aM) ,

where aj is some value of attribute Aj. The query set corresponding to a formula of
this form is called an elementary set because it cannot be further decomposed. The
records in an elementary set (if any) are indistinguishable. Thus there are E
elementary sets in the database, some of which may be empty. We let g denote the
maximum size of all elementary sets; thus g is the maximum number of individuals
having identical records, that is, the size of the largest indecomposable query set.
If the number of records N satisfies N ~ E, then every individual may be identi-
fied by a unique elementary set, giving g = 1.

Example:

If we allow queries over all five attributes in Table 6.1, E = (2) (50) (4) (50)
(41) = 820,000; g = 1 because each record is uniquely identifiable. If queries
are restricted to the attributes Sex, Major, and Class, then E = 400; g = 2
because two students have the common characteristic "Male • EE • 1978". II

Statistics are calculated over the values associated with a query set C. The
simplest statistics are counts (frequencies) and s u m s :

STATISTICAL DATABASE MODEL 335

count(C) = t C I
sum(C, Aj) = E xij •

iEC

Example:
count(Female • CS) = 2, and sum(Female • CS, SAT) = 1400. II

Note that sums apply only to numeric data (e.g., GP, and SAT). The responses
from counts and sums are used to calculate relative frequencies and averages
(means):

rfreq(C) = count(C) = I C I
N N

avg(C, A j) = sum(C, Ai)
IcI

Example: 1400
avg(Femaleo CS, SAT) - 2 - 700. 1

More general types of statistics can be expressed as finite moments of the
form:

e l e2 e M (6ol) q(C, e l , . . . , e M) = ~ xilxi2 . . . XiM ,

ieC

where the exponents el e M are nonnegative integers. Note that counts and
sums can be expressed as moments:

count(C) = q(C, 0 , . . . , O)
sum(C, Aj) --q(C, 0 , O, 1, 0 O) ,

where the j th exponent for the sum is 1, and all other exponents are 0. Means,
variances, covariances, and correlation coefficients can also be computed. For
example, the mean and variance of attribute A~ are given by:

X 1 = avg(C, A1) = q (C , 1, 0, . . . , 0)
IcI

cry = var(C, A1) = q(C, 2, 0 , O) - (X1)2 .
I¢1-1

The covariance of attributes A~ and A2 is given by

cr~ = covar(C, A~, A2) = q(C, 1, 1, 0 , . . . , O)
Ic I -1

and the correlation coefficient of A~ and A~ is

Pl~ = corcoef(C, A1, A~) - cr~ .
0"lG 2

- X 1 X 2

336 INFERENCE CONTROLS

By q(C) we shall mean any statistic, or query for a statistic, of the form (6.1).
Another type of statistic selects some value (smallest, largest, median, etc.)

from the query set. We shall write

median(C, Aj)

to denote the median or t-I CI/2q largest value of attribute Aj in the query set C,
where "1--I" denotes the ceiling (round up to nearest integer). Note that when the
query-set size is even, the median is the smaller of the two middle values, and not
their average.

Example:
The set of GPs for all female students is (2.5, 2.5, 2.8, 3.4, 3.8, 4.0); thus
median(Female, GP) = 2.8. II

Statistics derived from the values of m distinct attributes are called m-order
statistics. The attributes can be specified by terms in the characteristic formula C,
or by nonzero exponents ej in Formula (6.1). There is a single 0-order statistic,
namely count(All). Examples of 1-order statistics are count(Male) and sum(All,
GP). Examples of 2-order statistics are count(Male ° CS) and sum(Male, GP).
Note that count(EE + CS) is a 1-order statistic because CS and EE are values of
the same attribute.

6.1.3 Disclosure of Sensitive Statistics

A statistic is sensitive if it discloses too much confidential information about some
individual (organization, company, etc.). A statistic computed from confidential
information in a query set of size 1 is always sensitive.

Example:
The statistic

sum(EE • Female, GP) = 2.5

is sensitive, because it gives the exact grade-point of Baker, the only female
student in EE. m

A statistic computed from confidential information in a query set of size 2 may
also be classified as sensitive, because a user with supplementary knowledge about
one of the values may be able to deduce the other from the statistic. The exact
criterion for sensitivity is determined by the policies of the system. One criterion
used by the U.S. Census Bureau for sums of economic data is the n-respondent,
k%-dominance rule, which defines a sensitive statistic to be one where n or fewer
values contribute more than k% of the total [Cox80].

Example:
A statistic giving the sum of the exact earnings of IBM and all early music

STATISTICAL DATABASE MODEL 337

stores in Indiana would be sensitive under a 1-respondent, 99%-dominance
criterion; its release would disclose a considerable amount of information
about IBM's earnings (namely the high-order digits), though it would dis-
close little about the early music stores (which would be hidden in the low-
order digits). II

Clearly, all sensitive statistics must be restricted (i.e., not permitted). In addition,
it may be necessary to restrict certain nonsensitive statistics if they could lead to
disclosure of sensitive ones.

Example:
Suppose that the only statistics classified as sensitive in the sample database
are those computed from query sets of size 1. Then neither sum(EE, GP) nor
sum(EE • Male, GP) is sensitive. At least one of these statistics must be
restricted, however, because if they are both released, Baker's grade-point is
disclosed:

sum(EE ° Female, GP)
= sum(EE, GP) - sum(EE • Male, GP)
= 1 2 . 0 - 9.5
= 2 . 5 . I I

Let R be a set of statistics released to a particular user, and let K denote the
user's supplementary knowledge. Statistical disclosure [Haq75] occurs whenever
the user can deduce from R and K something about a restricted statistic q; in
terms of classical information theory (see Section 1.4),

HK.R(q) < HK(q) ,

where HK(q) is the equivocation (conditional entropy) of q given K, and HK, R(q) is
the equivocation of q given K and R. Statistical disclosure of a sensitive statistic is
sometimes called residual [Fell72] or personal disclosure (compromise) [Haq75]. If
a disclosure occurs without supplementary knowledge, it is called resultant disclo-
sure; if supplementary knowledge is necessary, it is called external disclosure
[Haq75]. Supplementary knowledge is always required for personal disclosure to
match the value disclosed with a particular individual.

Example:
Disclosure of sum(EE • Female, GP) can lead to personal disclosure of
Baker's GP only if some user knows that Baker is a female student majoring
in EE. The user must also know that Baker is the only female student in EE;
this could be deduced from the statistic:

count(EE ° Female) = 1

or, if this statistic is restricted (because it isolates a single individual), from

eount(EE) - count(EE ° Male) = 4 - 3 = 1 . I!

338 INFERENCE CONTROLS

The amount of information (in bits) that a set of statistics R discloses about a
statistic q is measured by the reduction of entropy: Hg(q) -- HK.R(q).

A disclosure may be either exact or approximate. Exact disclosure occurs
when q is determined exactly; thus, Hg.e(q) = 0. For example, the preceding
disclosure of Baker's grade-point is exact.

Approximate disclosure occurs when q is not determined exactly. Dalenius
describes three types of approximate disclosure [Dale77]. First, a disclosure may
reveal bounds L and U such that L <_ q _< U.

Example:
If it is known only that count(EE • Female) >_ 1, then release of the statistic
R = eount(EE) = 4 implies

1 _< count(EE • Female) _< 4 ,

thereby reducing the uncertainty about count(EE • Female) to

Hg.R((count(EE° Female)) = 2

bits of information (assuming all counts in the range [1, 4] are equally
likely). II

Example:
Release of the statistics

count(EE) = 4
eount(EE ° (GP >_ 3.0)) = 3

count(EE ° Male) = 3
count(EE ° Male • (GP _> 3.0)) = 3

reveals that

0 _< sum(EE ° Female, GP) < 3.0 . II

Second, a disclosure may be negative in the sense of revealing that q ~ y, for
some value y. For example, a user may learn that sum(EE • Female, GP) ~ 3.5.

Third, a disclosure may be probabilistic in the sense of disclosing information
that is true only with some probability. An example is interval estimation, where it
is learned that q falls in some interval [L, U] with probability p; that is,

Pr[qE [L, U]] = p .

The interval [L, U] is called the confidence interval for q, and the probability p the
confidence level.

Example:
Suppose an estimate ~ of q is a random variable drawn from a distribution
approximately normal with standard deviation a~,. We then have"

Pr[q~ [~ +_ 1.645tr~]] ~ .90
er[q, [~' _+ 1.960~r~]] ~ .95

STATISTICAL DATABASE MODEL 339

Pr[q~ [~' _+ 2.575a~,]] _~ .99.

The interval [@ _+ 1.645a~,], for example, is called the 90% confidence inter-
val of q because it is 90% certain that q lies in this interval. 1

6.1.4 Perfect Secrecy and Protection

A statistical database provides perfect secrecy if and only if no sensitive statistic is
disclosed. In practice, no statistical database can provide perfect secrecy, because
any released statistic contains some information about the data used to compute it.
Even the statistic sum(All, GP) contains some information about each student's
grade-point, though it is difficult to extract a particular student's grade-point from
it without additional statistics or supplementary information.

Our definition of perfect secrecy in statistical database systems is similar to
the definition of perfect secrecy in cryptographic systems (see Section 1.4.2). But
whereas it is a reasonable objective for cryptography, it is unreasonable for statis-
tical databases--perfect secrecy would require that no information be released.

We are more interested in the difficulty of obtaining close approximations of
confidential values. Given a sensitive statistic q, we say that q is protected from
disclosure if and only if it is not possible to obtain an estimate ~ with confidence
interval [L~,, U~,] such that

Pr[qE [L~, U~]] >_ p where (U~, - L~,) ~ k (6.2)

for probability p and interval length k (p and k can depend on q); otherwise, it is
compromisable. Clearly, any statistic is compromisable for a sufficiently large
interval or sufficiently small probability; therefore, we are only concerned about
disclosure for relatively small k, and p near 1.0. Disclosure (compromise) occurs
when an estimate ~' satisfying Eq. (6.2) can be obtained from a released set of
statistics R. Note that this covers all forms of approximate disclosure except for
negative disclosure. It also covers exact disclosure; here p = 1.0 and k = 0.

Example:
Let q = s u m (E E . F e m a l e , GP) = 2.5, p = .95, and k = 1.0. Then an
estimate ~ = 2.0 such that

Pr[q~ [2.0 _+ 0.5]] _~ .95

discloses q. Note that if a released set of statistics shows that q must lie in
the interval [2.0, 3.0], then q is disclosed because [2.0, 3.0] is a 100% confi-
dence interval for every estimate in the interval. I

6.1.5 Complexity of Disclosure

If a statistic q is not protected, we would like to know the difficulty of obtaining an
estimate @ satisfying Eq. (6.2). This will be measured by the number N~ of re-
leased statistics that a user with supplementary knowledge K needs to obtain ~.

340 INFERENCE CONTROLS

Note that N~ is similar to the unicity distance of a cipher (see Section 1.4.3); it is
the number of statistics needed to reduce the uncertainty about q to an unaccept-
able level.

Frank [Fran77] has investigated another way of applying information theory
to disclosure. He defines the disclosure set D to be the set of individuals whose
attributes are known. Personal disclosure occurs when the size of this set increases
by at least 1. The uncertainty HK(D) of D is a function of the frequency distribu-
tion of the variables in the database and a user's supplementary knowledge. This
uncertainty decreases by HK(D) - HK, R(D) when a set R of frequency distribu-
tions is released.

6.2 INFERENCE C O N T R O L M E C H A N I S M S

6.2.1 Security and Precision

An inference control mechanism must protect all sensitive statistics. Let S be the
set of all statistics, P the subset of S classified as nonsensitive, and R the subset of
S released. Let D be the set of statistics disclosed by R (including the statistics in
R). The statistical database is secure if D _C P; that is, no sensitive statistic is
disclosed by R.

FIGURE 6.2 Security and precision.
, ,

Sensitive statistics
All statistics

Nonsensitive statistics
(given policy)

Disclosed statistics

Released statistics
(given mechanism)

Secure" D c_ p
Precise: D = P

INFERENCE CONTROL MECHANISMS 341

We would like the released set R to be complete in the sense that all nonsen-
sitive statistics are in R or are computable from R (i.e., disclosed by R). A system
in which D = P is said to be precise. Whereas secrecy is required for privacy,
precision is required for freedom of information. Figure 6.2 illustrates the require-
ments for security and precision; note the similarity of this figure with Figures 4.4
and 5.4.

The problem is that it can be extremely difficult to determine whether re-
leasing a statistic will lead to disclosure of a sensitive statistic (violating security),
or prevent the release of a complete set of statistics (violating precision). Most
statistics lead to disclosure only when they are correlated with other statistics.

Example:
Although neither of the statistics sum(EE, GP) and sum(EE • Male, GP) is
sensitive, if one is released, the other must be restricted to protect Baker's
grade-point. Furthermore, it must be impossible to compute the restricted
statistic from the set of released statistics. II

This example shows that it is not generally possible to release a complete set
of statistics; thus, any inference control mechanism must be imprecise. If we settle
for releasing a maximal set of statistics, we find that the problem of determining a
maximal set of statistics is NP-complete [Chin80].

Whether a statistic can lead to disclosure depends on a user's supplementary
knowledge. Because it is not usually feasible to account for a particular user's
supplementary knowledge, many mechanisms are based on a worst-case assump-
tion about supplementary knowledge. A mechanism for the student record data-
base, for example, might assume that a user knows the Sex, Major, and Class of
every student, and the GP and SAT of some of the students.

To avoid restricting too many statistics, many statistical databases add
"noise" to the data or to released statistics. The objective is to add enough noise
that most nonsensitive statistics can be released without endangering sensitive
ones--but not so much that the released statistics become meaningless.

6.2.2 Methods of Release

Many of the mechanisms depend on the method in which statistics are released.
Census bureaus and other agencies that conduct population surveys have tradition-
ally released statistics in two formats" macrostatistics and microstatistics.

Macrostatistics. These are collections of related statistics, usually presented in
the form of 2-dimensional tables containing counts and sums.

Example:
Tables 6.3 and 6.4 show counts and total SAT scores for the student record
database. The entries inside the tables give statistics for query sets defined
by all possible values of Sex and Class. For example, the entry in row 1,

342 INFERENCE CONTROLS

TABLE 6.3 Student counts by Sex and Class.

Class
Sex 1978 1979 1980 1981

•

Female 1 2 2 1
Male 3 2 0 2

, ,

Sum 4 4 2 3
, ,

Sum

13

TABLE 6.4 Total SAT scores by Sex and Class.

Class
Sex

Female
Male
Sum

1978 1 9 7 9 1 9 8 0 1981
, , ,

800 1 3 3 0 1120 500
1930 1150 0 1180
2730 2480 1120 1680

Sum

3750
4260

Total

8010 Total

column 3 gives the 2-order statistic count(Female • 1980) in Table 6.3, and
the 3-order statistic sum(Female ° 1980, S A T) in Table 6.4. The row sums
give statistics for the query sets defined by Sex, and the column sums for the
query sets defined by Class. For example, the sum for column 3 gives the
1-order statistic count(1980) in Table 6.3, and the 2-order statistic sum

(1980, S A T) in Table 6.4. Finally, the total gives the 0-order statistic count

(All) in Table 6.3 and the 1-order statistic sum (All, S A T) in Table 6.4. m

Macrostatistics have the disadvantage of providing only a limited subset of
all statistics. For example, it is not possible to compute correlations of S A T scores
and grade-points from the data in Tables 6.3 and 6.4, or to compute higher-order
statistics [e.g., sum(Female • CS ° 1980, SAT)] .

Because the set of released statistics is greatly restricted, macrostatistics
provide a higher level of security than many other forms of release. Even so, it may
be necessary to suppress certain cells from the tables or to add noise to the
statistics.

Example:
Because Davis is the only female student in the class of 1978, the total S A T
score shown in row 1, column 1 of Table 6.4 should be suppressed; otherwise,
any user knowing that she is represented in the database can deduce her
S A T score (the same holds for column 4, which represents Kline's S A T
score). We shall return to this example and study the principles of cell sup-
pression in Section 6.4.1. m

Micros ta t i s t i c s . These consist of individual data records having the format
shown in Figure 6.1. The data is typically distributed on tape, and statistical

i

INFERENCE CONTROL MECHANISMS 343

evaluation programs are used to compute desired statistics. These programs have
facilities for assembling (in main memory or on disk) query sets from the records
on the tape, and for computing statistic s over the assembled records. New query
sets can be formed by taking a subset of the assembled records, or by assembling a
new set from the tape.

Because no assumptions can be made about the programs that process the
tapes, protection mechanisms must be applied at the time the tapes are created.
Census bureaus control disclosure by

1. removing names and other identifying information from the records,
2. adding noise to the data (e.g., by rounding--see also discussion of privacy

transformations in Section 3.5.2),
3. suppressing highly sensitive data,
4. removing records with extreme values,
5. placing restrictions on the size of the population for which microdata can be

released, and
6. providing relatively small samples of the complete data.

The 1960 U.S. Census, for example, was distributed on tape as a random sample
of 1 record out of 1000 with names, addresses, and exact geographical locations
removed [Hans71]. A snooper would have at best a 1/1000 chance of associating a
given sample record with the right individual.

Macrostatistics and microstatistics have been used for the one-time publica-
tion of data collected from surveys. Because they can be time-consuming and
costly to produce, they are not well suited for the release of statistics in on-line
database systems that are frequently modified.

Query-Processing Systems. The development of on-line query-processing sys-
tems has made it possible to calculate statistics at the time they are requested;
released statistics, therefore, reflect the current state of the system. These systems
have powerful query languages, which make it easy to access arbitrary subsets of
data for both statistical and nonstatistical purposes. The data is logically and
physically organized for fast retrieval, so that query sets can be constructed much
more rapidly than from sequential files of records stored on tape or disk.

Because all accesses to the data are restricted to the query-processing pro-
grams, mechanisms that enforce access, flow, or inference controls can be placed
in these programs. The final decision whether to release a statistic or to grant
direct access to data can be made at the time the query is made.

Many of the methods used to protect macrostatistics and microstatistics are
not applicable to these systems. Techniques that add noise to the stored data
generally cannot be used, because accuracy of the data may be essential for non-
statistical purposes. Techniques such as cell suppression that involve costly and
time-consuming computations cannot be applied on a per-query basis. Sampling
techniques that use relatively small subsets of the database may not give suffi-
ciently accurate statistics in small to medium size systems.

Because we are primarily interested in controls for query-processing systems,

344 INFERENCE CONTROLS

most of the techniques discussed in this chapter are for these systems. A compre-
hensive discussion of the techniques used by government agencies to protect mac-
rostatistics and microstatistics is given in [U.S.78].

We shall first study methods of attacking statistical databases, and then
study techniques that reduce the threat of such attacks.

6.3 METHODS OF ATTACK

Before we can evaluate the effectiveness of existing and proposed inference con-
trois, we must understand the threat. In this section, we shall examine several
kinds of disclosure techniques. All the methods involve using released statistics and
supplementary knowledge to solve a system of equations for some unknown.

6.3.1 Small and Large Query Set Attacks

Hoffman and Miller [Hoff70] showed that it is easy to compromise a database
that releases statistics about small query sets. Suppose that a user knows an indi-
vidual I who is represented in the database and who satisfies the characteristic
formula C. If the user queries the database for the statistic count(C) and the
system responds "1", then the user has identified I in the database and can learn
whether I has an additional characteristic D by asking for the statistic count(C
• D), where:

1 implies I has D
count(C • D) = 0 implies I does not have D .

Similarly, the user can learn the value of attribute A for I by asking for the
statistic sum(C, A).

Example:
Suppose a user knows Evans is represented in the student record database,
and that Evans is a male biology student in the class of 1979. The statistic

count (Male • Bio • 1979) = 1

reveals Evans is the only such student. The statistic

coun t (Male • Bio • 1979 • (Sa t >_ 600)) = 0

reveals that his S A T score is under 600, and the statistic

s u m (M a l e • Bio • 1979, S A T) = 500

reveals his exact S A T score. II

This type of attack may work even when an individual cannot be uniquely
identified. Suppose that an individual I is known to satisfy C and count(C) > 1. If

METHODS OF ATTACK 345

FIGURE 6.3 Query-set size control.
,

restricted permitted restricted

f l (1 r 1

0 n - 1 n N - n N - n + 1 N

count(C • D) = count(C), then I must also satisfy D; however, if count(C • D)
< count(C), then nothing can be concluded about whether I satisfies D. (See also
Haq [Haq74,Haq75].)

To protect against this kind of attack, statistics based on small query sets
must be restricted. Because these statistics are normally classified as sensitive,
their restriction would be automatic. If the query language permits complementa-
tion, large query sets must also be restricted (even though they are not sensitive);
otherwise, users could pose their queries relative to the complement ~ C of the
desired characteristic C. Suppose as before that C uniquely identifies an individual
I in the database; thus count(--~C) = N - 1, where N = count(All) is the size of
the database. A user can determine whether C satisfies an additional characteristic
D by posing the query c o u n t (~ (C • D)), because

count (~ (C • D)) = { N-N 1 impliesimplies II hasd°esDn°t, have D

The user can learn the value of an attribute A for I from

sum(C, A) = sum(All, A) - sum(,~C, A) .

In general, for any query q(C) of the form (6.1),

q(C) = q(All) - q('~ C) .

Query-Set-Size Control. These results show that any statistical database needs
at least a mechanism that restricts query sets having fewer than n or more than N
- n records, for some positive integer n:

Query-Set-Size Control:
A statistic q(C) is permitted only if

n_<l c l_< N - n ,

where n >_ 0 is a parameter of the database. I

(See Figure 6.3.) Note that n <_ N / 2 if any statistics at all are to be released. Note
also that this restricts the statistics q(All). In practice these statistics can be
released; if they are restricted, they can be computed from q(All) = q(C)
+ q('-,C) for any C such that n _< [C[_< N - n.

346 INFERENCE CONTROLS

6.3.2 Tracker Attacks

The query-set-size control provides a simple mechanism for preventing many trivi-
al compromises. Unfortunately, the control is easily subverted. Schltirer [Sch175]
showed that compromises may be possible even for n near N / 2 by a simple snoop-
ing tool called the "tracker". The basic idea is to pad small query sets with enough
extra records to put them in the allowable range, and then subtract out the effect
of the padding. The following describes different types of trackers.

Indiv idual Trackers. Schltirer considered statistics for counts that are released
only for query-set sizes in the range [n, N - n], where n > 1. Suppose that a user
knows an individual I who is uniquely characterized by a formula C, and that the
user seeks to learn whether I also has the characteristic D. Because count(C ° D)
_< count(C) = 1 < n, the previous method cannot be used to determine whether I
also has the characteristic D. If C can be divided in two parts, the user may be able
to calculate count(C • D), however, from two answerable queries involving the
parts.

Suppose that the formula C can be decomposed into the product C = C1

• C2, such that count (C/• ~ C 2) and count(C/) are both permitted"

n _< c o u n t (C / ° ~ C 2) _< count (C/) _< N - n .

The pair of formulas (C1, C1 ° ~ C 2) is called the individual tracker (of I) because
it helps the user to "track down" additional characteristics of I. The method of
compromise is summarized as follows:

Ind iv idual Tracker Compromise:

Let C = C1 • C2 be a formula uniquely identifying individual I, and let T
= C1 • ~ C 2 [see Figure 6.4(a)]. Using the permitted statistics count(T) and
count(T + CI • D), compute:

count(C • D) = count(T + CI • D) - count(T) (6.3)

[see Figure 6.4(b)]. If count(C • D) = 0, I does not have characteristic D. If
count(C • D) = count(C), I has characteristic D. If count(C) = 1, Palme
[Palm74] showed that the value of an attribute A of I can be computed from

sum(C, A) = sum(C/ , A) - sum(T, A) .

In general, if q(C) is any restricted query for a finite moment of the form
(6.1), then q(C) can be computed from

q(C) = q (C l) - q (T) . (6.4)

[See Figure 6.4(a).] If it is not known whether the formula C uniquely
identifies I, Eq. (6.4) can be used to determine whether count(C) = 1"

count(C) = count (C/) - count(T) . I

METHODS OF ATTACK 347

FIGURE 6.4 Individual tracker compromise.

C1 C2

C = C 1 • C2

T = C 1 • ~ C 2

a) q (C) = q (C1)- q (T)

D

C e D

C2

b) q (C • D) = q (T + C 1 • D) - q (T)

E x a m p l e :

Evans is identified by the formula

C = M a l e o B i o o 1979 .

Let n = 3, C1 = M a l e , and C 2 = B i o • 1979. Then

T = C I , ,~, C 2

= M a l e • ~ (B i o • 1979) .

We can determine whether Evans is uniquely identified by C and whether his
S A T score is at least 600 by applying Eqs. (6.4) and (6.3), where D = (S A T

>_ 600)"

c o u n t (M a l e • B i o • 1979)
= c o u n t (M a l e) - c o u n t (M a l e • ~ (B i o • 1979))

348 INFERENCE CONTROLS

= 7 - 6

= 1

coun t (Male ° Bio • 1979 • (S A T ~ 600))
= coun t (Ma le • ~ (Bioo 1979) + M a l e . (S A T ~ 600))

- coun t (Ma le • ~ (Bio • 1979))
= 6 - 6

= 0 .

His GP can be determined by applying Eq. (6.4)'

s u m (M a l e • Bio • 1979, GP)

= sum(Male , G P) - s u m (M a l e • ~ (Bio • 1979), GP)

= 22.2 - 20.0
= 2 . 2 . II

This type of compromise is not prevented by lack of a decomposition of C
giving query sets C1 and T in the range [n, N - n]. Schl~Srer pointed out that
restricted sets CI and T can often be replaced with permitted sets C1 + C M and T
+ CM, where count (C/• C M) = 0. The formula CM, called the "mask", serves
only to pad the small query sets with enough (irrelevant) records to put them in
the permitted range.

General Trackers. The individual tracker is based on the concept of using cate-
gories known to describe a certain individual to determine other information about
that individual. A new individual tracker must be found for each person. Schwartz
[Schw77] and Denning, Denning, and Schwartz [Denn79] showed that this re-
striction could be removed with "general" and "double" trackers. A single general
or double tracker can be used to compute the answer to every restricted statistic in
the database. No prior knowledge about anyone in the database is required
(though some supplementary knowledge is still required for personal disclosure).

A general tracker is any characteristic formula T such that

2n ~ I T I ~ N - 2n .

Notice that queries q(T) are always answerable, because I T[is well within the
range [n, N - n] (see Figure 6.5).

Obviously, n must not exceed N / 4 if a general tracker is to exist at all.
Schl~Srer [Schl80] showed that if g _< N - 4n, where g is the size of the largest
elementary set (see Section 6.1.2), then the database must contain at least one
general tracker.

FIGURE 6.5 General tracker.

T

 vvvvv I ! ! I vvvvv
0 n 2t7 N - 2n N - n N

METHODS OF ATTACK 349

FIGURE 6.6 General tracker compromise.

~ T

A l l

q (A l l) = q (T) + q (~ T) = w + x + y + z

q (C) = q (C + T) + q (C + ~ T) - q (A l l)

= (w + x + y) + (w + x + z) - (w + x + y + z)

= W + X

General Tracker Compromise:
Let T be a general tracker and let q(C) be a restricted query for any finite
moment of the form (6.1). First calculate

q(All) = q(T) + q (~ T) .

If lCI < n, q(C) can be computed from

q(C) = q(C + T) + q(C + ~ T) - q(All)

(see Figure 6.6), and if[cO > N - n, q (C) can be computed from

(6.5)

q(C) = 2q(All) - q (~ C + T) - q (~ C + ~ T) . (6.6)

If the user does not know whether the query set is too small or too large,
Formula (6.5) can be tried first; if the queries on the right-hand side are
permitted, the user can proceed; otherwise, Formula (6.6) can be used. Thus,
q(C) can be computed with at most five queries. II

Example:
Let n = 3 in the student record database. To be answerable, a query set's size
must fall in the range [3, 10], but a general tracker's query-set size must fall

350 INFERENCE CONTROLS

in the subrange [6, 7]. Because g = 1 and N - 4n = 13 - 12 = 1, the
database must contain at least one general tracker. The database actually
contains several trackers; we shall use the tracker T = Male, where I T[= 7.

Suppose it is known that Jones satisfies the characteristic C = Female
• Bio, but it is not known whether C uniquely identifies her. The restricted
statistic count(Female ° Bio) can be computed from formula (6.5)"

count(All) = count(Male) + coun t (~Male)
= 7 + 6

= 13

count(Female ° Bio)
= count(Female ° Bio + Male)

+ count(Female ° Bio + ~ M a l e) - count(All)
= 8 + 6 - 13

~ - 1 .

Because Jones is uniquely identified by C, her GP can be deduced by com-
puting the restricted statistic sum(Female • Bio, GP):

sum(All, GP) = sum(Male, GP) + s u m (~ M a l e , GP)
-- 22.2 + 19.0
= 41.2

sum(Female • Bio, GP)
= sum(Female ° Bio + Male, GP)

+ sum(Female • Bio + ~ M a l e , GP) - sum(All, GP)
= 26.0 + 19.0 - 41.2
= 3 . 8 . 1

Once a tracker is found, any restricted statistic can be computed with just a
few queries. We might hope that finding trackers would be difficult, but unfortu-
nately this is not the case. Denning and Schltirer [Denn80a] constructed an algo-
rithm that finds a tracker within O(log2 E) queries, where E is the number of
elementary sets. The algorithm begins by taking a formula C1 such that[C1 [< 2n,
and a formula C2 -- All. Then CI is padded and C2 reduced until either [CI [or
] C21 falls inside the range [2n, N - 2n]. The padding and reducing is done using a
binary search strategy, whence convergence is in logarithmic time. The results of
an experiment performed on a medical database showed that a tracker could often
be found with just one or two queries. SchliJrer [Schl80] also showed that large
proportions of the possible queries in most databases are general trackers; thus, a
general tracker is apt to be discovered quickly simply by guessing.

Double Trackers. We might hope to secure the database by restricting the range
of allowable query sets even further. Because general trackers may exist for n near
N/4 , we must make n > N/4 . Before we consider the security of such a strategy,
let us examine its implications: n = N / 4 already restricts half of all possible query-
set sizes; even this is probably too large for most statistical applications. Any
larger value of n is likely to seriously impair the utility of the database.

METHODS OF ATTACK 3 51

FIGURE 6.7 Double tracker compromise.

T

f I f
~T

k J t ,

U "~U

q (C) = q (U) + q (C + T) - q (T) - q (, ~ (C • T) • U)

=(u+ v + x + y) + (u + v + w + x) - (u + x) - (v + x +v)
= b l + V + W

Nevertheless, we found that trackers can circumvent much larger values of
n. If n <_ N /3 , compromise may be possible using a double tracker. A double
tracker is a pair of characteristic formulas (T, U) for which

T_C U,
n ~ I T I ~ N - 2n, and
2 n ~ < l U [~ N - n .

Double Tracker Compromise:
Let q(C) be a query for a restricted statistic, and let (T, U) be a double
tracker. If lC] < n, q(C) can be computed from

q(C) = q(U) + q(C + T) - q(T) - q (, ~ (C . T) . U) (6.7)

(see Figure 6.7), and if lC[> N - n, q(C) can be computed from

q(C) = q (~ U) - q('-~C + T) + q (r) + q (" - ' (~ C • T) • U) . (6.8)

Thus, q(C) can be computed with at most seven queries, m

Union Trackers. Schlt~rer generalized the concept of trackers to "union" track-
ers. Such trackers may exist even when n is near N/2 , that is, when the only
released statistics are those involving approximately half the population.

352 INFERENCE CONTROLS

FIGURE 6.8 Union tracker compromise.

q (C) = q (T i + C) - q (T i)

A union tracker is a set of u ~. 2 disjoint formulas (T~ , T,) such that

n _ < l T,.l_< N - n - g

for i = 1 u, where g is the size of the largest elementary set. The formulas ~.
can be used to compute any restricted statistic q (C) when n ~ N / 2 - g.

Union T r a c k e r C o m p r o m i s e :

Let q (C) be a restricted statistic, and let (7 ' 1 , . . . , T,) be a union tracker.
Split C into elementary sets $1 S t such that C = $1 + • • • + St. For each
Sj, find a T i such that Sj ~ T i (whence S j N T i = 4~), and compute

q(Sj) = q(~. + Sj) - q (T i) .

Because IS j[~ g, q (T i + S j) is permitted for each j. Finally, compute

q (C) = q(S1) - ! - -k q(S ,) .

Note that if C is a formula uniquely identifying some individual in the
database, the preceding simplifies to

q (C) = q(T i -I- C) - q (T i) , (6.9)

where C n T i = q~ (see Figure 6.8) . II

In general, the method is more difficult to apply than general or double trackers,
especially for n near N / 2 - g. Still, it demonstrates that controls restricting only
the sizes of query sets are doomed to failure.

6.3.3 Linear System Attacks

Let ql, . . . , qm be a set of released statistics of the form q; = sum(C;, A) (1 _< i
_< m). A linear-system at tack involves solving a system of equations

H X - Q

METHODS OF ATTACK 3 5 3

for some xj, where X = (xl, • • . , Xu) and Q = (ql , qm) are column vectors, and
hij= 1 i f j ~ C i a n d h i j = 0 o t h e r w i s e (1 ~ i ~ m , 1 ~ j . ~ N) .

Example:
The queries q, = sum(Female, GP) = 19.0 and q2 = sum(Female + Male
• CS ° 1979, GP) = 22.5 correspond to the linear system:

"Xi"

X2

X3

X4

X5 (11o10o010, o0] xx
1 1 0 1 0 0 0 1 0 1 1 0 1 X8 22.5

Xs

Xlo
Xll

X12
X18

Moore's GP can be compromised by solving for xl~ = sum(Male • CS • 1979,
GP) = q 2 - ql = 22.5 - 19.0 = 3.5. 1

All the tracker attacks studied in the previous section are examples of linear-
system attacks.

Key-Specified Queries. Dobkin, Jones, and Lipton [Dobk79] studied key-speci-
fied queries of the form sum(C, A), where C is specified by a set of k keys (i,, . . . ,
i k) identifying the records in the query set C. The value k is fixed for all queries,
ruling out tracker attacks, which use different size query sets.

When disclosure is possible, the number of queries needed to achieve exact
disclosure is no worse than linear in k.

Example:
Suppose k = 3 and consider the following queries:

sum((1, 2, 3}, A) = x~ + x2 + x3 = q,
sum((1, 2, 4), A) = x~ + x2 + x4 = q2
sum((1, 3, 4), A) = x, + x3 + x4 = q3
sum((2, 3, 4), A) = x2 + x3 + X4 = q 4 •

These queries can be expressed as the following linear system"

'ilO l ixxl Iqxl 1 1 0 1 x2 = q2
1 0 1 1 X3 q3
0 1 1 1 x4 q4

354 INFERENCE CONTROLS

The value xi can be compromised by computing

1
Xx = ~ (q l "4- q2 + q 3 - 2q4) . 1

Schwartz, Denning, and Denning [Schw79,Schw77] extended these results
to w e i g h t e d s u m s of the form

k
wsum((il , ik), A) = E wjxij •

j = l

If the weights ~ are unknown, k of the x i can be compromised within k (k + 1)
queries with supplementary knowledge of at least one xj, and all x i can be compro-
mised within N + k 2 - 1 queries. Compromise is impossible, however, without
supplementary knowledge, assuming none of the data values are zero
[Sch w 79 ,Denn 80b, Liu 80].

Query-Set -Over lap Control. Dobkin, Jones, and Lipton were primarily con-
cerned with the complexity of linear systems when queries are not allowed to
overlap by more than a few records. They observed that many compromises, in-
cluding the one preceding, use query sets that have a large number of overlapping
records. Such compromises could be prevented with a mechanism that restricts
query sets having more than r records in common:

Query-Set-Overlap Control:
A statistic q(C) is permitted only if l c • D I _ < r for all q(D) that have been
released, where r > 0 is a parameter of the system. 1

Now, implementing such a control is probably infeasible: before releasing a statis-
tic, the database would have to compare the latest query set with every previous
one.

The control would also seriously impair the usefulness of the database (i.e., it
would be very imprecise), because statistics could not be released for both a set
and its subsets (e.g., all males and all male biology majors). It would rule out
publishing row and column sums in 2-dimensional tables of counts or aggregates.

What is interesting and somewhat surprising is that the control does not
prevent many attacks. Let m (N , k, r) be the minimum number of key-specified
queries for groups of size k needed to compromise a value xi in a database of N
elements having an overlap restriction with parameter r. Dobkin, Jones, and
Lipton showed that without supplementary knowledge, compromise is impossible
when

k Z - 1 k + l
N < ~ -I-

2r 2 "

For r = 1 (i.e., any pair of query sets can have at most one record in common),
compromise is, therefore, impossible when N < k (k + 1)/2. They showed that
compromise is possible for r = 1 when N >~ k 2 - k "1- 1; the number of queries
needed is bounded by:

METHODS OF ATTACK 3 5 5

k < m (N , k , 1) ~ 2 k - 1 .

The possibility of compromising when

k (k + 1) < N < k 2 _ k + i
2

was left open.

Example:

The following illustrates how x7 can be compromised with five queries when
k = 3 a n d r = 1"

q~ = xl + x2 + x3
qz =

q3 = x~
q4 = xz
q5 = x8

Then x7

X4 + X5 "1- X6
+ x4 + x7

+ x5 + x7
+ x6+ x~ .

= (q ~ + q , + q s - q l - q 2) / 3 . I

In general, XkLk+~ can be determined from the 2k - 1 queries:

k

qi = ~ Xk(i_~)+j i = 1 , . . . , k - 1
j = l

k - 1

qk+i-1 = ~ Xk~j_l)+i + XkZ_k+ 1 i = 1, . . . , k .
j = l

Then

Xk2_k+ 1 =

k k - 1

q k + i - 1 - ~ qi
i=1 i=1

Davida, Linton, Szelag, and Wells [Davi78] and Kam and Uilman [Kam77]
have also shown that a minimum overlap control often can be subverted using key-
specified queries.

Characteristic-Specified Queries. In on-line statistical database systems, users
should not be allowed to specify groups of records by listing individual identifiers.
Nevertheless, the preceding results give insight into the vulnerabilities of data-
bases when groups of records are specified by characteristic formulas. On the one
hand, we observe that if each record (individual) i in the database is uniquely
identified by the characteristic Ci, then any key list (ix , i k) can be expressed as
the characteristic formula Cil .~- °.. .~- Ciko Therefore, if a database can be compro-
mised with key-specified queries, it can be compromised with characteristic-speci-
fied queries. Caution must be taken in applying this result, however. Even though
key-lists can be formulated as characteristics, it is not possible to do so without

356 ABFDEFGHIIJKLMMNOHPP

knowledge of the characteristics identifying the individuals named. Without this
supplementary knowledge, it is not possible to precisely control the composition of
query sets as for key-specified queries. Thus, achieving compromise with charac-
teristics may be considerably more difficult than with keys. In practice, a database
may be safe from this type of attack, especially if the attack must be done manual-
ly without the aid of a computer to formulate and pose queries.

On the other hand, the key model assumes all query sets are the same size k,
ruling out simple attacks based on trackers. Because these attacks depend on
highly overlapping query sets, we could eliminate tracker attacks with a query-set-
overlap control. The preceding results are significant in that they show there are
other methods of attack that do not use overlapping query sets. Because an overlap
control would also seriously impair the usefulness of the database and be expensive
to implement, we must search for other kinds of controls.

Fellegi [Fell72] and Chin and Ozsoyoglu [Chin80] show it is possible to
determine whether the response to a query, when correlated with the responses to
earlier queries, could result in exact disclosure. Chin and Ozsoyoglu do this by
recording a complete history (audit trail) of all queries about some confidential
attribute in a binary matrix H having N columns and at most N linearly indepen-
dent rows. Each column represents one individual, and the rows represent a basis
for the set of queries deducible from the previously answered queries (i.e., the set
D in Figure 6.2); thus, each query that has been answered or could be deduced is
expressed as a linear combination of the rows of H. When a new query is asked,
the matrix is updated so that if the query would compromise the j th individual,
updating the matrix introduces a row with all zeros except for a 1 in column j;
thus, the potential compromise is easily detected. The matrix can be updated in
O(N 2) time, so the method is tractable for small databases.

6.3.4 Median Attacks

Another type of attack uses queries that select some value from the query set. In
this section we consider queries for medians.

Example:
Suppose a user knows that Allen is the only student satisfying the formula
(Female • CS • 1980). Consider these statistics:

median(EE • 1978 + Female • CS • 1980, GP) = 3.4
median(BIO + Female • CS ° 1980, GP) = 3.4

Because both query sets have the same median and each student in these sets
has a different GP, the GP of 3.4 must correspond to a student in both query
sets. Because Allen is the only student in both sets, this must be Allen's
grade-point (see Figure 6.9). I

This example further demonstrates the futility of a query-set-overlap control
indeed, the attack exploits the fact that Allen is the only student in both sets.

METHODS OF ATTACK 357

FIGURE 6.9 Compromise with medians.
, ,

E E • 1978 + F e m a l e • C S • 1980 B i o + F e m a l e • C S • 1980

In general, let i be a record and C and D query sets such that:

1. C . D = (i),
2. median(C, A) = median(D, A), and
3. xj ~ x j , , f o r a l l j , j ' E C U D , j ~ j '

Then x i = median(C, A).
To employ this attack, it is necessary to find two query sets that have the

same median and a single common record. DeMillo, Dobkin, and Lipton
[DeMi77] define m(k) to be the number of queries of the form median((il ik),
A) needed to find query sets satisfying Properties (1)-(3) under an overlap restric-
tion of r = 1, assuming no two values are the same. They show that compromise of
some x i is always possible within

k + 1 if k is a prime power
re(k) = 4(k z + 1) otherwise

queries if N >_ m(k) - 1.

A curious aspect of this result is that it applies to any type of selection
query--including those that lie! As long as the database always retuins some value
in the query set, compromise is possible with any two queries satisfying only
Properties (1)-(3).

Example:
Consider these queries:

largest(EE • 1978 + Female ° CS • 1980, GP) = 3.4 (lying)

358 INFERENCE CONTROLS

smal les t (Bio + Female • C S ° 1980, GP) = 3.4 (lying) .

By the same reasoning as before, the response 3.4 must be Allen's GP. II

Compromise is even easier when there is no overlap control. Reiss [Reis78]
shows that some element can always be found within O(log ~ k) queries, and that a
specific element can usually be found within O(log k) queries with supplementary
knowledge and within O(k) queries without supplementary knowledge if its value
is not too extreme. DeMillo and Dobkin [DeMi78] show that at least O(log k)
queries are required, so

O(log k) _< m (k) ~< O(log 2 k) .

6.3.5 Insertion and Deletion Attacks

Dynamic databases that allow insertions and deletions of records are vulnerable to
additional attacks. Hoffman [Hoff77] observed that a query-set-size restriction of
n can be subverted if records can be added to the database. If I C{ < n, then
dummy records satisfying C are added to the database; i f [CI > N - n, then
dummy records satisfying "--~C are added. Of course, this type of attack presup-
poses that the user has permission to add new records to the database; a user with
statistical access only cannot use this technique.

A second type of attack involves compromising newly inserted records. Let i
be a new record satisfying a formula C, and consider the following sequence of
operations:

q, = q (C)

insert (i)
q2 = q (C) .

Then q(i) = qz - ql. Chin and Ozsoyoglu [Chin79] show this threat can be
eliminated by processing insertions and deletions in pairs.

A third type of attack involves compromising an existing record i in a query
set C by observing the changes to a statistic q (C) when (pairs of) records are
added to or deleted from C. If lCI is odd, then i may be determined exactly (see
exercises at end of chapter). Chin and Ozsoyoglu show that this threat can be
eliminated by requiring that all query sets contain an even number of records
(dummy records may be added to achieve this).

These attacks may not pose a serious threat if users with statistics-only
access cannot insert and delete records, or otherwise control the changes being
made to the database. Thus, many systems may not need controls that counter
these attacks.

6.4 MECHANISMS THAT RESTRICT STATISTICS

We have studied two controls that restrict statistics that might lead to compro-
mise: a query-set-size control and a query-set-overlap control. A size control, while

359

100

FIGURE 6.10 Identification of records in sample data.

90

80

30

~= 70

~' 60

8
~ 50

0

~ 40

20

10

v

MECHANISMS THAT RESTRICT STATISTICS

4 5 6 7 8 9 10

Number of At t r ibutes Needed for Identif icat ion

extremely valuable and simple to implement, is insufficient. An overlap control is
generally impractical, imprecise, and insufficient.

Another possibility is a maximum-order eontroi, which restricts any statistic
that employs too many attribute values. This would prevent compromises that
require a large number of attributes to identify a particular individual. In a sample
of 100 records drawn from a medical database containing over 30,000 records,
SchltJrer found that none of the records could be uniquely identified with fewer
than 4 attributes, only 1 record could be identified with 4 attributes, about half of
the records with 7 or fewer attributes, and nearly all with 10 attributes [Sch175]
(see Figure 6.10). Thus, restricting queries to 3-order statistics might prevent most
compromises in this database. Unfortunately, this can be overly restrictive because
many of the higher-order statistics may be safe.

In the remainder of this section we examine three other possible controls
aimed at restricting statistics that could lead to disclosure. The first is used by
census bureaus to suppress statistics from tables of macrostatistics. While ex-
tremely effective, it is time-consuming and may not be suitable for on-line, dynam-
ic databases. The second aims to decide at the time a query is posed whether
release of the statistic could lead to compromise. The third partitions a database so
that statistics computed over any partition are safe; queries about subsets of a
partition are not permitted.

In [Denn82], we report on another restriction technique, called the S , , / N -

360 INFERENCE CONTROLS

criterion.? The control, proposed by Schl~rer [Sch176], restricts query sets over
attributes that decompose the database into too many sets relative to the size N of
the database (whence some of the sets are likely to be small). Formally, let C be a
query set over attributes A1, . . . , A m, and let S m = rlim__llAilbe the number of
elementary sets over At, : . . , A m. A statistic q (C) is restricted if

S m / N > t

for some threshold t (e.g., t = .1). The control is extremely efficient and less
restrictive than a maximum'order control. Although it does not guarantee securi-
ty, it can be combined with a simple perturbation technique to provide a high level

of security at low cost.
f

6.4.1 Cell Suppression

Cell suppression is one technique used by census bureaus to protect data published
in the form of 2-dimensional tables of macrostatistics. It involves suppressing from
the tables all sensitive statistics together with a sufficient number of nonsensitive
ones, called complementary suppressions, to ensure that sensitive statistics cannot
be derived from the published data. The sensitivity criterion for counts is typically
a minimum query-set size. The sensitivity criterion for sums might be an n-respon-
dent, k%-dominance rule, where a sensitive statistic is one in which n or fewer
values contribute more than k% of the total.

Example:
Let us now return to Table 6.4 in Section 6.2.2. Suppose we have a (n, k)
sensit ivityrule, where n = 1 and k = 90. Clearly the entries in row 1,

TABLE 6.5 Total SAT scores by Sex and Class.

Class
Sex 1978 1 9 7 9 1 9 8 0 1981 Sum

Female - - 1330 1120
M a l e 1930 1150 0 1180
Sum 2730 2480 1 1 2 0 1680

3750
4260
8010 Total

TABLE 6.6 Total SAT scores by Sex and Class.

Class
Sex 1978 1 9 7 9 1980 1 9 8 1 Sum

Female
Male
Sum

1330 1120
1150 0

2730 2480 1 1 2 0 1680

3750
4260
8010 Total

~fBecause the study was performed after the book had gone into production, it is not possible to
give details here.

?

MECHANISMS THAT RESTRICT STATISTICS 361

columns 1 and 4 must be suppressed; in both cases, one student contributed
100% of the total SAT score. Table 6.5 shows these changes. Note that none
of the other statistics in the table is sensitive.

Now, suppressing only these entries is insufficient, because they can be
computed by subtracting the entries in the corresponding columns of row 2
from the column sums. Therefore, it is necessary to suppress either the en-
tries in row 2 or the column sums; Table 6.6 shows the result of the former
approach. The table is now safe from exact disclosure (see exercises at end of
chapter). II

It is easy to determine whether a statistic is sensitive by itself. Consider the statis-
tic q = sum(C, A), and let d = sum(C, A, n) denote the sum of the n largest
(dominant) values used to compute q. Thus, if lCI = m and

q = x 1 + . . , .~- X n " J r ' . . . -[- X m ,

where

X l ~ " ' " ~ X n ~ . " ' " ~ X m ,

then

d = x x + . - ' + X n •

The statistic q is sensitive if d > (k/lOO)q; that is, if q < q+, where q+ = (100/
k)d (see Figure 6.11). Note that it is actually d that requires protection.

It is considerably more difficult to determine whether a nonsensitive statistic
can be used to derive exactly or approximately--a sensitive statistic. Following
Cox [Cox76,Cox78], we first discuss acceptable bounds on estimates of sensitive
statistics.

Let ~ be an estimate of a sensitive statistic q. Now if ~' ~ q+, then ~ does
not reveal any information about q that would not have been released if q were not
sensitive [i.e., if q >_ (lO0/k)d were true]. Thus, a lower bound on an acceptable
upper estimate of q is given by

q+= (l~~0)d . (6.10)

To determine an acceptable lower estimate, we assume that n, k, and m are
known, where m = I cI (in practice, these values are not usually disclosed). Ob-
serve that d ~. (n/m)q, for any statistic q, sensitive or not. Suppose q is not
sensitive; that is, d lies in the interval [(n/m)q, (k/lOO)q]. If q is right at the
sensitivity threshold, that is, q = (lO0/k)d, this interval is [(n/m) (lO0/k)d, d]
(see Figure 6.12). Thus, q~ = (n/m) (lO0/k)d is an acceptable lower estimate of d

FIGURE 6.1 1 Restr ic ted stat is t ic q.

, (1 0)
0 d q = ~ d

362 INFERENCE CONTROLS

FIGURE 6.12 Interval for d at sensitivity threshold.

, (lt o> 0 .}--- d d

if q is sensitive, because q~ gives no more information about d than would be
obtained if q were at the sensitivity threshold. Now, a lower estimate L~, of d can
be obtained from a lower estimate L~, of q by

Therefore, an upper bound on an acceptable lower estimate of q is given by

q _ = I (~ 0) (~) 2 d i f m > n

if m _< n .
(6.11)

Example:
Let k = 90, n = 2, m = 10, q = 950, and d = 900. Then q is sensitive,
because 950 < (100/90)900. An acceptable upper estimate of q is q+
= (100/90)900 = 1000, because q would then have been released. Now, if q
were at the sensitivity threshold (100/90)900 = 1000, we could conclude d
falls in the interval [(2/10) (100/90)900, 900] = [200, 900]. An acceptable
lower estimate of q is thus q- = (2/10) (100/90)z900 = 222.2, which gives a
lower bound of 200 for d. II

Cox explains it may be desirable to lower q- so that q+ and q- are, respec-
tively, subadditive and superadditive [Sand77]. The bound q+ is subadditive, be-
cause the relation

q+(C -t- D) .~ q+(C) -!- q+(O)

holds, where q+(C) denotes the acceptable upper estimate for the cell correspond-
ing to q(C). The bound q- is not superadditive, however, because the relation

q-(C) + q-(O) .~ q-(C + D)

does not hold (see exercises at end of chapter). Subadditivity and superadditivity
reflect the principle that aggregation decreases the sensitivity of data; thus, we
would expect the acceptable bounds to become tighter as data is aggregated.

Given q- and q+, an interval estimate I = [L~,, U~,] of q is acceptable if I falls
below q-, above q+, or strictly contains the interval [q-, q+]. (In the latter case, I
is too large to be of much value.) Interval estimates are obtained for each sensitive
statistic using linear algebra, and statistics that derive unacceptable estimates are
suppressed from the tables.

MECHANISMS THAT RESTRICT STATISTICS 363

TABLE 6.7 Table with
suppressed cells.

x,, 6 x~3
8 X22 X23

X31 X32 3
20 30 25

25
30
20
75

E x a m p l e :

Consider Table 6
been suppressed.

.7, where the variables xij denote sensitive entries that have
The six unknowns are related by the following equations:

Xll + X13 = 2 5 - 6 = 19 (1)
x22+x23= 3 0 - 8 = 22 (2)
x3x+x32= 2 0 - 3 = 17 (3)
x~x + xs~ = 2 0 - 8 = 12 (4)
x22+x32= 3 0 - 6 = 2 4 (5)
x ,s+x23 = 2 5 - 3 = 2 2 . (6)

Equations (1)-(6) imply

0 _ < x l , ~ i2 (by 1 and 4) (7)
0_<x13 .~ 19 (by 1 and 6) (8)
O _ ~ x 2 z _ < 22 (b y 2 a n d 5) (9)
0 _ < x 2 3 ~ 2 2 (b y 2 a n d 6) (10)
0 .~x31_< 12 (b y 3 a n d 4) (11)
0 .~x82_< 17 (b y 3 a n d 5) . (12)

These interval estimates can then be used to derive tighter bounds for x18, x22,
x23, and x32. By Eq. (3),

x32 = 1 7 - x 3 1 •

Because xs, is at most 12 [by Eq. (1 1)], we have

5 _< xs2 --< 17 . (13)

The bounds on xs2, in turn, affect the interval estimate for x22. By Eq. (5),

x22 = 2 4 - x 8 2 ;

thus Eq. (1 3) implies

7 _< x22 --< 19 .

By Eq. (2),

x23 = 2 2 - x 2 2 ,

so Eq. (14) implies

3 _~ xz3 --< 15 .

Similarly, by Eq. (6),

(1 4)

(is)

364 INFERENCE CONTROLS

TABLE 6.8 Interval esti-
mates for Table 6.7.

0-12 6 7-19
8 7-19 3-15

0-12 5-17 3
20 30 25

25
30
20
75

x13 = 2 2 - x23 ,

so Eq. (15) implies

7 _< x~3--< 19 . (16)

Equations (7), (11), and (13)-(16) give the best possible bounds on the
unknowns (see Table 6.8). If any of the interval estimates is unacceptable,
additional cells must be suppressed, m

Cox [Cox78] gives a linear analysis algorithm that determines interval esti-
mates for suppressed internal cells in a 2-dimensional table. The algorithm is a
modification of the simplex algorithm of linear programming (e.g., see [Dant63]).
If the analysis uncovers unacceptable interval estimates, additional cells are sup-
pressed (the complementary suppressions), and the analysis repeated until all esti-
mates are acceptable. The method does not always determine the minimum set of
complementary suppressions; this is an open problem. Sande [Sand77] has devel-
oped a similar interval analysis procedure.

Cell suppression is limited by the computational complexity of the analysis
procedure. Whereas it has been successfully applied to 2- and 3-dimensional ta-
bles, whether it could be adapted to query-processing systems for general-purpose
databases is an open problem. The set of all possible statistics for a database with
10 fields of data in each record corresponds to a 10-dimensional table. Applying
cell suppression to a table of this size may not be tractable.

6.4.2 Implied Queries

Let us consider the possibility of dynamically applying a limited form of cell
suppression in general-purpose databases when sensitivity is defined by a mini-
mum query-set size. A statistic q(C) is thus sensitive when [CI < n. For simplic-
ity, we shall restrict attention to exact disclosure.

Let q(C) be a sensitive statistic. Because q(C) can be trivially computed
from the relation q(C) = q(All) - q (~C) , it is necessary to suppress q(,--,C) to
protect q(C) [we shall assume q(All) is not restricted]. Because]C[< n if and
only if l ~ C I > N - n, we can prevent such trivial compromises by suppressing
any statistic whose query-set size falls outside the range [n, N - n]; this is the
same query-set-size restriction introduced in Section 6.3.1.

We observed earlier that sensitive statistics can often be derived from non-
sensitive ones by means of trackers and linear-system attacks. Friedman and Hoff-

MECHANISMS THAT RESTRICT STATISTICS 365

FIGURE 6.13 Partitioning over two attributes.

b ~ b

~ a

a . b

~ a ° b

a ° ~ b

~ a . ~ b

Database

man [Frie80] show how some of these attacks can be prevented by suppressing
nonsensitivo statistics whose "implied query sets" fall outside the range [n, .N- n].

Let q(C) be a 2-order statistic of the form C = a ° b or C = a + b, where a
and b are values of attributes A and B respectively. The following relations hold
(see Figure 6.13)"

q(a ° ,~b) = q(a) - q(a • b)
q (~ a ° b) = q (b) - q (a ° b)
q(a ° b) = q (a) + q(b) - q(a + b)
q (~ a ° ~ b) = q(All) - q(a + b)

= q (A l l) - q (a) - q (b) + q (a ° b) .

(1)
(2)
(3)

(4)

Given q(a • b), Eqs. (1) and (2) can be used to derive q(a ° ~ b) and q (~ a
• b), either of which could be sensitive even if q(a • b) is not. The formulas (a ° ~ b)
and (,~ a • b) are called the implied query sets of (a • b), and the statistic q(a ° b) is
restricted if either its query set or its implied query sets falls outside the range [n,
N - n]. If q(All) is permitted (even though[Al l[> N - n), the formula q (~ a °
,~b) can be derived by Eq. (4), so that (~ a ° ~ b) is also implied by (a • b).
Although q(a + b) can also be derived from q(a ° b) by Eq. (3), q(a + b) cannot
lead to disclosure if q (~ a ° ~ b) does not; therefore, it need not be explicitly
checked.

Given q(a + b), we can similarly derive q(a ° b) by Eq. (3), and thereby also
derive q(a ° ~ b) , q (~ a • b), and q (~ a ° ~ b). Therefore, the statistic q(a + b) is
restricted if its query set or any of its other implied query sets (a ° b) , t (a ° ~ b) ,
(~ a ° b), and (~ a ° ~ b) fall outside the range [n, N - n]. Because [~ a • ~ b l
= N - l a + b l, it is not necessary to explicitly check the size of both (,~a ° ~ b)
and (a + b).

To summarize: a query q(a ° b) or q(a + b) is permitted if and only if the
sizes of the following query sets fall in the range [n, N - n]"

a . b , a . ~ b , ~ a ° b , ~ a ° ~ b .

t Friedman and Hoffman did not include (a • b) in their list of implied query sets for (a + b); we
have included it because q(a • b) can be sensitive even if q(a + b) and its other implied queries are not.

366 INFERENCE CONTROLS

By symmetry, the queries q (~ a ° b), q(a • ~b) , q(,-,~a ° --~b), q(,'~a + b), q(a +

-~b), and q('-~a + ~ b) have the same four implied query sets. The four implied
query sets partition the database as shown in Figure 6.13. The partitioning is such
that given a statistic over any one of these areas (or over three of the four areas),
then the same statistic can be computed over all the areas using only lower-order
statistics [namely q(a), q(b), and q(All)].

Because the database is partitioned by the four query sets, it is not possible
for one of the sets to be larger than N - n unless some other set is smaller than n;
therefore, it is not necessary to check upper bounds. It is necessary to check all
four lower bounds, however, because any one of the four query sets could be
sensitive even if the other three are not. We also observe that if the four 2-order
query sets are not sensitive, then the 1-order statistics q(a) and q(b) cannot be
sensitive. The converse, however, is not true.

E x a m p l e :

We shall show how two attacks aimed at learning Baker's GP can be thwart-
ed by checking implied query sets. Because Baker is the only Female student
in EE, her GP could be derived using the following:

sum(Female ° EE, GP)
= sum(Female, GP) + sum(EE, G P) - sum(Female + EE, GP) .

Because the query set (Female + EE) has the implied query set (Female °
EE) where lFemale ° EEl = 1, the statistic sum(Female + EE, GP) would
be suppressed, thwarting the attack.

Similarly, Baker's GP could be derived from:

sum(Female ° EE, GP)
= sum(Female, GP) - sum(Female ° ~ E E , GP) .

Because the query set (Female • ~ E E) has the implied query set (Female •
~ , - , E E) = (Female • EE), the statistic sum(Female ° ~ E E , GP) would
similarly be suppressed, thwarting the attack. 1

The situation is considerably more complicated when the characteristic for-
mula C of a query q(C) is composed of more than two terms. We show in
[Denn81] that given any m-order statistic q of the form q(al ° " . • a m) or q(al +

• • • + am), where a i = ai or ~ a i and a i is the value of attribute A i (1 ~ i _< m), the
following 2 m statistics can be computed from q and lower-order statistics:

q(a l " a2 • am)

q(ax ° a 2 ° ~ a m)

°

q(al ° ~ az . ' " ° ~ a m)

q (~ a l ° a2 ' ' ' " " a m)

q (~ a l ° a2 ' ' ' " ° " - ' a m)

MECHANISMS THAT RESTRICT STATISTICS 367

FIGURE 6.14 Partitioning over three attributes.

b ~b

~ a

a ° b ° c

a o b o , - ~ c

~ a ° b ° c

~ a ° b o ~ c

ao ~ b o c

a ° ~ b . ~ c

~ a ° ~ b ° c

~ a ° ~ b . ~ c

Database

q (~ a l ° ~ a 2 ° ' " ° " a m) •

We are thus led to the following control:

I m p l i e d - Q u e r i e s Control:
An m-order statistic over attribute values al a m is permitted if and only
if all 2 m implied query sets listed above have at least n records. 1

Figure 6.14 shows the eight implied query sets for the case m = 3. The
formulas relating a statistic q computed over one of the query sets to the remain-
ing query sets are:

q(a o b ° ~ c) = q (a ° b) - q (a ° b ° c)

q(a o ~ b ° c) = q(a ° c) - q (a o b ° c)

q (~ a ° b ° c) = q (b ° c) - q (a ° b ° c)

q(a ° ~ b ° ~ c) = q(a ° ~ b) - q (a ° ~ b ° c)

= q(a) - q (a ° b) - q (a ° c) + q (a ° b ° c)
q (~ a o ~ b o c) = q(c) - q (a o c) - q (b o c) + q (a ° b o c)

q (~ a ° b ° ~ c) = q(b) - q (a ° b) - q (b ° c) + q (a ° b ° c)

q (~ a ° ~ b • ~ c) = q (A I l) - q (a) - q (b) - q(c)
+ q (a o b) + q (a o c) + q (b o c) - q (a o b ° c) .

Because of the exponential growth of the number of implied queries, we
conclude that an implied-queries control may become impractical for high-order

368 INFERENCE CONTROLS

TABLE 6.9 Table with sensitive statistic q(a l ° bl) .

01

a2

a s

B

b~ b2 • • • b t

q (a , • b2) . . . q (a l • b t)

q(a2 • b,) q(a2 • b2) . . . q(a2 • b t)

q(a s ° bl) q(a s ° b2) . . . q (a s • b t)

q(a ,)

q(a2)

q(as)
q(bl) q(b2) . . . q (b t) q (A l l)

statistics. A 10-order statistic, for example, has 1024 implied queries.
Even if we examine all implied query sets, the control would not prevent

deduction of sensitive statistics. To see why, suppose that attribute A has values al,
. . . . a s, and that attribute B has values bl b t. Then the records of the data-
base are partitioned into s t groups, as shown in Table 6.9.

Suppose that the statistic q (a l ° b l) is sensitive, but that none of the remain-
ing cells is sensitive. Then any attempt to deduce q (a , • bi) from a statistic whose
implied query sets include (ai ° bi) will be thwarted; for example, the following
attack could not be used:

q (a l • b l) = q(b~) - q(,~- ,a, ° b l) .

Suppressing statistics that directly imply q (a l ° b~) does not, however, preclude
deduction of q (a i ° bl) from queries about disjoint subsets of ai or bl. For example,

q (a l ° b l) = q (b l) - [q(a2 ° b l) Jr - b q (a s . bx)] .

This example suggests that for a given m-order statistic over attributes AI,
. . . , A m, it would be necessary to check all elementary sets defined by these attri-
butes. If each attribute A i has [Ai[possible values, this would involve checking

m

17 IA, I
i=1

query sets.
It is more efficient to keep a history of previously asked queries for the

purpose of determining whether each new query causes compromise (see Section
6.3.3) than it is to determine whether a query could potentially cause compromise.
Moreover, the implied-queries approach is likely to be much less precise, because
the additional queries needed to cause compromise may never be asked.

6.4.3 Partitioning

Yu and Chin [Yu77] and Chin and Ozsoyoglu [Chin79] have studied the feasibil-
ity of partitioning a dynamic database at the physical level into disjoint groups
such that:

MECHANISMS THAT RESTRICT STATISTICS 369

TABLE 6.10 Partit ioned database.
.

Sex Class
19~78 197~J '1980 1981

F e m a l e 2 2 0

M a l e 4 2 0 2

1. Each group G has g = [G [records, where g = 0 or g >_ n, and g is even.
2. Records are added to or deleted from G in pairs.
3. Query sets must include entire groups. If the query set for a statistic includes

one or more records from each of rn groups G1 , G m, then q(G1 + . . .

• "k Gm) is released.

The first two conditions prevent attacks based on small query sets and insertion or
deletions of records (see Section 6.3.5). The third condition prevents exact disclo-
sure from attacks based on isolating a particular individual--for example, by
using a tracker or a linear system of equations. Clever query sequences can at best
disclose information about an entire group.

Example:
Table 6.10 gives counts for a possible partitioning of the student record
database when k = 1. Because the database has an odd number of records,
the record for Kline has been omitted. Because the query set " F e m a l e •

1978" contains a single record and the set " M a l e ° 1978" contains an odd
number of records (3) these sets have been merged (Olsson calls this "rolling
up" [Olss75]). A query for a statistic c o u n t (M a l e • 1978) would thus return
count(1978) = 4 (rather than 3), and a query eount(EE) would return
count(1978 + F e m a l e • 1980 + M a l e ° 1981) = 8 (rather than 4) because
there are E E majors in all three groups. II

Partitioning by 1-, 2-, or 3-order statistics is equivalent to releasing tables of
macrostatistics as described in the previous section. Therefore, to control approxi-
mate disclosures (as by the n-respondent, k%-dominance rule) cell-suppression
techniques must be applied; this may not be practical for dynamic databases.
Using broad categories defined by 2- or 3-order statistics may also limit the useful-
ness of the database. Yet if we partition by higher-order statistics, cell suppression
may be too costly.

Chin and Ozsoyoglu [Chin81] also consider the design of a complete data-
base system that supports partitioning at the logical level. They describe their
approach in terms of the Data Abstraction Model of Smith and Smith [Smit77].
The model partitions the individuals represented in the database into populations
having common characteristics; populations can be decomposed into subpopula-
tions, and populations that cannot be further decomposed are "atomic." The com-
plete set of populations forms a hierarchy such that each nonatomic population is
composed of disjoint atomic populations. Disjoint populations having a common
parent may be grouped into "clusters".

370 INFERENCE CONTROLS

FIGURE 6.15 Data abstraction model of student record database.

Student

Male Female 1 8 1979 1980 1981

Male Male Male Male Female Female Female FeTnale
1978 t 979 1980 1981 1978 1979 1980 1981

Example:
Figure 6.15 illustrates a partitioning of the student record database by Sex
and Class similar to the partitioning in Table 6.10. The populations at the
leaves of the hierarchy are atomic, and the populations at the middle level
form two clusters: Sex = (Male, Female) and Class = (1978, 1979, 1980,
1981}. m

A Population Definition Construct (PDC) defines each population, the oper-
ations that can be performed over the population, and the security constraints of
the population. The permitted statistics q(P) for a population P must satisfy the
constraints.

1

q(P) is permitted if and only if q(P') is permitted for every population P' in
a cluster with P.
q(P) is permitted if q(S) is permitted for any subpopulation S of P.

If Pa, Pm are atomic populations in the same cluster, condition (1) says that if
any Pi must be suppressed, then all Pi must be suppressed. This may be much more
restrictive than necessary.

A User Knowledge Construct (UKC) defines groups of users and their sup-
plementary knowledge about the database, the operations permitted to members of
the group, and the security constraints of the group. Security information in both

MECHANISMS THAT ADD NOISE 371

the PDCs and a UKC is used to determine whether a statistic should be released to
a particular user.

Feige and Watts [Feig70] describe a variant of partitioning called microag-
gregation: individuals are grouped to create many synthetic "average individuals";
statistics are computed for these synthetic individuals rather than the real ones.

Partitioning may limit the free flow of statistical information if groups are
excessively large or ill-conceived, or if only a limited set of statistics can be com-
puted for each group. But if a rich set of statistical functions is available, large
groups may not severely impact the practicality of some databases.

Dalenius and Denning [Dale79] considered the possibility of a single-parti-
tion database; that is, the only available statistics are those computed over the
entire database. All released statistics would be finite moments of the form:

N
q(Al l , e l , e M) = ~ el ez e M

• . . ~ X i l X i 2 • . . X i M ,

i=1

where

el + e2 + . . . + eM--< e

for some given e. Because all statistics are computed over the entire database,
disclosure is extremely difficult if not impossible. At the same time, it is possible
for the statistician to compute correlations of attributes.

We considered the feasibility of releasing all moments for a given e as an
alternative to releasing macrostatistics or microstatistics. This approach would
provide a richer set of statistics than are provided by macrostatistics, but a higher
level of protection than provided by microstatistics. The total number of moments
increases rapidly with e and M, however, so it may not be feasible to compute and
release more than a relatively small subset of all possible moments. The total
number of moments over M variables is given by

m e (M) = (M + e) .
e

Example:
If M = 40, then m2(40) = 861 and m~(40) = 12,341. !1

6.5 MECHANISMS THAT ADD NOISE

Restricting statistics that might lead to disclosure can be costly and imprecise,
especially if we take into account users' supplementary knowledge. Consequently,
there is considerable interest in simple mechanisms that control disclosure by
adding noise to the statistics. These mechanisms are generally more efficient to
apply, and allow the release of more nonsensitive statistics.

i ~i I ~ i

372 INFERENCE CONTROLS

6.5.1 Response Perturbation (Rounding)

Response perturbation refers to any scheme which perturbs a statistic q = q (C) by
some function r(q) before it is released. The perturbation usually involves some
form of rounding-- that is, q is rounded up or down to the nearest multiple of some
base b.

There are two kinds of rounding: systematic rounding and random rounding.
Systematic rounding always rounds q either up or down according to the following
rule. Let b' = I_(b + 1)/2__1 and d = q mod b. Then

q if d = 0
r (q) = q - d i f d < b ' (round down)

q + (b - d) if d E b' (round up) .

Given a rounded value r(q) , a user can deduce that q lies in the interval [r(q) - b'
+ 1, r (q) + b' - 1]. For example, if b = 5, then r(q) = 25 implies q e [23, 27].

Under certain conditions, it is possible to recover exact statistics from their
rounded values. Let C1 , C m be disjoint query sets, and let Cm+ 1 = C1 U . . . tA

Cm; thus, qm+l = ql + .. • + qm, where qi = sum(C/, A) for some attribute A (1 ~ i
m + 1). Let [L i, U/] be the interval estimates for each r(qi) , and let L = L1 "1-

. . . + L m and U = U1 + . . . + U m. Achugbue and Chin [Achu79] show that it is
possible to deduce the exact values of the qi from the rounded values r(qi) when
either:

(i)

(ii)

U = Lm+l, in which case

q i =U/ (1 _< i .~ m)

qm+l = Zm+l, or

L = Um+l, in which case

qi = L i (1 _< i_< m)

qm+l = Um+l •

(See Figure 6.16.)

FIGURE 6.16 Disclosure from rounded values.

u

i
L m + 1

!
Um + 1

Case (i) Disclosure

t
Lm+ 1

L

i
Um+ 1

Case (ii) Disclosure

MECHANISMS THAT ADD NOISE 373

TABLE 6.1 1 Disclosure under systematic rounding.

r(qi) Li Ui
ql 15 13 17
q2 10 8 12
q3 15 13 17
q4 20 18 22

52 68

qm+l 70 68 72
, , ,

Case (i) is illustrated in Table 6.11. Because U = 68 = Lm+l, each qi (1 _< i
_< m) must achieve its maximum; otherwise qm+l would be smaller, making
r(qm+~) and Lm+ 1 smaller.

If neither Case (i) nor Case (ii) applies, then exact disclosure is not possible
from r(ql) , r(qm). Nevertheless, if the overlap between [L, U] and [Lm+ ~,
Urn+l], is not too large, it may be possible to reduce the interval estimates [L i, U/].
If other (rounded) statistics are available, the intervals may be further reduced.
(Schltirer [Sch177] also investigated the vulnerabilities of systematic rounding to
tracker attacks.)

Random rounding rounds a statistic q up or down according to the following
rule:

q
r (q) = q - d

q + (b - d)

i f d - - O
with probability 1 - p
with probability p

(round down)
(round up)

When p = d/b, random rounding has the advantage of being unbiased.
Random rounding is subject to the same methods of error removal as system-

atic rounding.

Example:
Table 6.12 shows how exact values can be recovered from a 2-dimensional
table of rounded sums, where the rounding base b is 5. Here the total must
be at least 76, which is achievable only when the entries inside the table
achieve their maximum possible values. I i

Random rounding is also vulnerable to another kind of attack in query-
processing systems. If a query q is asked many times, its true value can be deduced
by averaging the rounded values. (See also [Fel174,Narg72,Haq77,Palm74].)

Both systematic and random rounding have the drawback that the sum of
the rounded statistics for disjoint query sets can differ from the rounded statistic
for the union of the sets. As illustrated by Tables 6.11 and 6.12, this can often be
exploited to obtain better estimates of the rounded values. Controlled rounding
overcomes this deficiency by requiring the sum of rounded statistics to equal their
rounded sum [Caus79,Cox81]; that is, if C 1 , . . . , Cm are disjoint query sets and
Cm+ 1 is the union Cm+ ~ = C~ U . . . U C m, then

374 INFERENCE CONTROLS

TABLE 6.12 Disclosure under random rounding (adapted from [Schl77]).

(a)

(b)

(c)

10 20
10 20
25 50

35
40
80

Table of Rounded Values.

6-14 16-24
6-14 16-24

21-29 46-54

31-39
36-44
76-84

Table of Interval Estimates.

14 24
14 24
28 48

38
38
76

Table of Exact Values.

r(ql) -I- . . . - l - r(qm) = r (q m + l) .

Cox [Cox81] describes a method of achieving controlled rounding in 1- or 2-
dimensional tables of macrostatistics. For a given integer p ~ 1, the method finds
an optimal controlled rounding that minimizes the sum of the pth powers of the
absolute values of the differences between the true statistics and their rounded
values; that is, that minimizes the objective function

Zp = E [q - r(q) I p

q

The problem of finding an optimal controlled rounding can be expressed as a
capacity-constrained transportation problem [Dant63], and thereby solved using
standard algorithms. The technique is particularly well-suited for protecting tables
of relatively small frequency counts.

Other kinds of response perturbations are possible. For example, Schwartz
[Schw77] studies functions r(q) that return a pseudo-random value uniformly
distributed over the interval [q - d, q + d] for relatively small values of d. To
prevent error removal by averaging, the same query must always return the same
response.

6.5.2 Random-Sample Queries

We mentioned earlier that census agencies often protect microstatistics by releas-
ing relatively small samples of the total number of records. In this section we shall
describe the results of an ongoing research project aimed at applying sampling to
query-processing systems.

MECHANISMS THAT ADD NOISE 375

Most inference controls are subverted by a single basic principle of compro-
mise: because the user can control the composition of each query set, he can isolate
a single record or value by intersecting query sets. Denning [Denn80c] introduced
a new class of queries called Random-Sample Queries (RSQs) that deny the in-
truder precise control over the queried records. RSQs introduce enough uncertain-
ty that users cannot isolate a confidential record but can get accurate statistics for
groups of records.

This query-based control differs from the sampling controls employed in
population surveys in two respects. First, it uses relatively large samples, say on
the order of 80-90% of the total number of records in the database; thus, the
released statistics are fairly accurate. Second, it uses a different sample to com-
pute each statistic. It is this aspect of the strategy that radically departs from the
traditional use of sampling and allows the use of large samples. But whereas this is
economical to implement in query-processing systems, it would be expensive to use
with microstatistics or macrostatistics. The control is defined as follows:

Random-Sample-Query Control:
Given a query q(C), as the query processor examines each record i in C, it
applies a selection function f(C, i) that determines whether i is used to
compute the statistic. The set of selected records forms a sampled query set

C*= (i e CIf(C, i) = 1) ,

from which the query processor returns q* = q(C*). A parameter p specifies
the sampling probability that a record is selected, m

The uncertainty introduced by this control is the same as the uncertainty in sam-
piing the entire database, with a probability p of selecting a particular record for a
sample. The expected size of a random sample over the entire database of size N is
pN.

The control is easy to implement when p = 1 - 1/2 k. Let r(i) be a function
that maps the ith record into a random sequence of m _> k bits. Let s(C) be a
function that maps formula C into a random sequence of length m over the alpha-
bet (0, 1, ,); this string includes exactly k bits and m - k asterisks (asterisks
denote "don't care"). The ith record is excluded from the sampled query set when-
ever r(i) matches s(C) [a "match" exists whenever each nonasterisk character of
s(C) is the same as the corresponding symbol of r(i)]. The selection function f(C,
i) is thus given by

f(c, ~) ={ 1 if r(i) does not match s(C)
0 if r(i) matches s(C)

This method applies for p > 1/2 (e.g., p = .5, .75, .875, and .9375). For p < 1/2,
use p = 1/2k; the ith record is included in the sample if and only if r(i) matches
s(C).

Example:
Let p = 7/8, m = 8, and s(C) = ",10,1,**". If r(i) = "11011000" for some

376 INFERENCE CONTROLS

i, that record would match s(C) and be excluded from C*. If r generates
unique random bit sequences, then the expected size of C* is 7/8 that of C. I

Encryption algorithms are excellent candidates for the functions r and s, as
they yield seemingly random bit sequences. If the database is encrypted anyway,
the function r could simply select m bits from some invariant part of the record
(e.g., the identifier field); this would avoid the computation of r(i) during query
processing. With a good encryption algorithm, two formulas C and D having
almost identical query sets will map to quite different s(C) and s(D), thereby
ensuring that C* and D* differ by as much as they would with pure random
sampling.

Under RSQs, it is more natural to return relative frequencies and averages
directly, since the statistics are not based on the entire database, and the users may
not know what percentage of the records are included in the random sample.
Recall that the true relative frequencies and averages are given by:

IcI
rfreq(C) = N

1 ~ x i .

avg(C, A) - I C[iEC

The sampled relative frequencies and averages are:

Ic*t
rfreq*(C) -

pN

1 ~ Xi"
avg*(C, A) - l C* I i,C*

Note the expected value of I C*l is pl C I; thus, the expected value of the sampled
frequency is l f l /N , the true relative frequency.

The values of p and N may be published so users can judge the significance
of the estimates returned. A user who knows p and N can then compute approxi-
mations for both the sampled and unsampled counts and sums.

A minimum query-set-size restriction is still needed with RSQs if the sam-
piing probability is large. Otherwise, all records in a small query set would be
included in a sample with high probability, making compromise possible.

Compromise is controlled by introducing small sampling errors into the sta-
tistics. For frequencies, the relative error between the sampled frequency and the
true frequency is given by

fc = rfreq*(C) - rfreq(C)
rfreq(C)

The expected relative error is zero; thus, the sampled relative frequency is an
unbiased estimator of the true relative frequency. The root-mean-squared relative
error is

i

MECHANISMS THAT ADD NOISE 377

i - P " ~¢fc) = cIp

Thus, for fixed p, the expected error decreases as the square root of the query-set
size.

Figure 6.17 shows a graph of the error ~(fc) as a function ofl CI for several
values of p. For p > .5, I CI > 100 gives less than a 10% error. For p = .9375, I CI
> 667 gives less than a 1% error. For extremely small query sets, however, the
relative errors may be unacceptably high. Absolute errors for counts are greater
than those for relative frequencies by a factor of N; however, their relative errors
are comparable. The same holds for sums as compared with averages.

The relative error between a sampled average and the true average is
given by:

avg'(C, A) - avg(C, A)
ac = avg(C, A) "

The sampled average is not unbiased, but its bias is negligible. The root-mean-
square error depends on the distribution of the data values in the query set. For
sufficiently large t C l, it is approximately

~(ac) ~ ely(C, A)R(fc) ,

where efv(C, A) = vat(C, A)V~/avg(C, A) is the coefficient of variation for the
distribution of data values of A in C. If the data values are uniformly distributed
over a moderately large interval [1, d] (e.g., d > 10), the root-mean-square error
becomes

A
R(ac) ~ 0.6 R(fc) ,

showing that the relative errors in averages behave the same as in frequencies but
are 40% smaller. These results were confirmed experimentally on a simulated
database.

RSQs control compromise by reducing a questioner's ability to interrogate
the desired query sets precisely. We have studied the extent to which the control
may be circumvented by small query sets, general trackers, and error removal by
averaging. Compromise may be possible with small query sets unless p is small or
a minimum query-set-size restriction is imposed. Trackers, on the other hand, are
no longer a useful tool for compromise.

RSQs appear to be most vulnerable to attacks based on error removal by
averaging. Because the same query always returns the same response, it is neces-
sary to pose different but "equivalent" queries to remove sampling errors. One
method involves averaging the responses of equivalent queries that use different
formulas to specify the same query set.

Example:
The statistic q(Male • 1978) could be estimated from the sampled statistics:

q*(Male • 1978)

c

o -

o

i1)
._>

c
t~

E

o
o

o
I1)
Q.
X

ILl

m"-

t.l.I

0
I.L

H

0
II

1-

o d o o o

CY

378

MECHANISMS THAT ADD NOISE 379

q* (-~ Female ° 1978)
q*(Male° ,~(1979 + 1980 + 1981))
q*(Male° (Bio ° 1978) + Male ° (,~Bio ° 1978))

II

Schltirer observed that this problem does not arise if s(C) is a function of the query
set C rather than the characteristic formula so that s(C) = s(D) whenever formu-
las C and D are reducible to each other. Still, this would not prevent a second
method of averaging that uses disjoint subsets of query sets.

Example:
The statistic q(Male ° 1978) could be estimated from:

q*(Male • 1978 ° Bio) + q*(Male • 1978 ° .~Bio)
q*(Male ° 1978 • CS) + q*(Male ° 1978 ° .-.~CS)
q*(Male ° 1978 ° E E) + q*(Male ° 1978 ° ~ E E)
q*(Male ° 1978 ° Psy) + q*(Male ° 1978 ° ,~Psy)

II

Let q~ qm be the responses from m independent queries that estimate
q = rfreq(C), and let

m
~ = l Z q ;

m i=1

be an estimate of q. The mean and variance of ~ are:

- t c I
N

V a r (~) = ICI(1 - p)
m N~p .

For large m (m ~_ 30 should be sufficient when the distribution of possible
responses for each q~ is symmetric), the distribution of ~ is approximately normal.
Letting a~, = [Var(~)]l/2, the confidence intervals for the true frequency q given

are:

er[qE [~' _+ 1.645~r~,]] -~ .90
er[q~ [~' +_ 1.960a~,]] _~ .95
Pr[q~ [~ _+ 2.575a~]] --~ .99.

If we assume that a 95% confidence interval is required for disclosure, the length
of this interval is given by

380 INFERENCE CONTROLS

3.92 ~ / (1 - p) tCI
k = 3.92cr~, = ~ _ _ p m "

Now, k _< 1/N is required to estimate q to within one record (such accuracy is
required, for example, to estimate relative frequencies for small query sets using
trackers). The number of queries required to achieve this accuracy is

m >_ (3.92) z (i - p) [C [> 1 5 (l - p) I C] p p •

For fixed p, the function grows linearly in[C[. For p = .5, over 450 queries are
required to estimate frequencies for query sets of size 30; over 1500 queries are
required to estimate frequencies for query sets of size 100. For p = .9375, 100
queries are required to estimate frequencies for query sets of size 100.

For averages taken over variables uniformly distributed over a range [1, s],

m > 1 2 8 (l - p) I C]
P

queries are required to obtain an estimate sufficiently accurate to enable personal
disclosure by a simple tracker attack (more complex linear-system attacks would
require even more queries). This is about an order of magnitude greater than for
frequencies; whereas the relative errors in averages (for uniform distributions) are
lower than in frequencies, more queries are required to obtain estimates accurate
enough to compromise with averages than with frequencies. S. Kurzban observed,
however, that compromise may be easier for skewed distributions, ~vhich would
also have higher relative errors.

For large query sets, the number of queries required to obtain reliable esti-
mates of confidential data under RSQs is large enough to protect against manual
attacks. Nevertheless, a computer might be able to subvert the control by system-
atically generating the necessary queries. Threat monitoring (i.e., keeping a log or
audit trail) is probably necessary to detect this type of systematic attack [Hoff70].

6.5.3 Data Perturbation

Noise can also be added to the data values directly--either by permanently modi-
fying the data stored in the database, or by temporarily perturbing the data when
it is used in the calculation of some statistic. The first approach is useful for
protecting data published in the form of microstatistics, but it cannot be used in
general-purpose databases where the accuracy of the data is essential for nonsta-
tistical purposes. This section describes a temporary perturbation scheme for gen-
eral-purpose systems. The next section describes data modification for published
microstatistics.

Data perturbation involves perturbing each data value x i used to compute a
statistic q(C) by some function f(xi), and then using x~ = f(xi) in place of x/in the
computation. Beck [Beck80] showed how data perturbation could be integrated

MECHANISMS THAT ADD NOISE 381

into a query-processing system for count, sum, and selection queries. We shall
describe his approach for protecting data released as sums.

Consider the query

S=sum(C,A)= ~ x i .

iEC

Rather than releasing sum(C, A), the system computes and releases

S' = sum'(C, A) = Z x~ , (6.12)
i~C

where

X~-~" X i "~" z l i (x i - - XC) Jr" Z2 i ,

and Xc = avg(C, A) = sum(C, A)/[CI is the mean value taken over the query set C,
and z l i and z2~ are independent random variables, generated for each query, with
expected value and variance:

E(z I i) = O V a r (z l i) = 2a ~
2a ~ ,_

E(z2i) = 0 Var(z2i) = - ~ t X c - ~)2 ,

where .2 = avg(All , A) is the mean taken over the entire database, and the param-
eter a is constant for all queries. The expected value of S' is E (S ') = S; thus, the
perturbed statistic is an unbiased estimator of the true statistic.

The variance of S' is

Var(S') = 2aZ~r~.[C i + 2aZ(xc - 2) 2 , (6.13)

where

1 Z (X i - - XC) z
c r Y - t C I i ,C

is the sample variance over C. It is bounded below by

Var(S') >__ a 2 (x i - y~)2 (6.14)

for each x~, which implies

tr s, > a l x i - 2 1 ,

where a s, is the standard deviation of the estimate S'.
Beck defines a value x~ to be safe if it is not possible to obtain an estimate ~

of x~ such that

O'~i < C[Xi - - x l ,

where c is a parameter of the system. The preceding result shows that it is not
possible to compromise a value x~ using a single query if a _> c.

Beck also shows that it takes a least n = (a / c) 2 queries to compromise a

382 INFERENCE CONTROLS

database using any kind of linear-system attack, including those based on error
removal by averaging. Combining these two results, we see that compromise can
be prevented by picking a >> c.

Unfortunately, this has the undesirable side effect of introducing extremely
large errors into the released statistics. Beck solves this problem by introducing a
scheme for changing the z l i and z2 i so that it is possible to achieve an exponential
increase in the number of queries needed to compromise, with less than a linear
increase in the standard deviation of the responses.

Rather than picking a completely new z l i and z2 i for each record and each
query, z l i and z2 i are computed from the sum of m independent random variables:

m

z l i = ~ zl i j ,
j = l

where:

E (z l ij) = 0

E(z2 i j) = 0

(1 < _ j < _ m) .

E (z l i) = 0

m

z2 i = ~ z2ij ,
j = l

Var(zlij) = 2a2

2a 2 ,_
Var(z2/j) - - ~ t x c - 2)2

Then

Var(zl i) = 2ma2

E (z 2 i) -- 0 V a r (z 2 i) - 2ma2
I c t •

This means that the response S' will have variance

Var(S') = 2ma2cFc l C I + 2 m a 2 (2 c - 2) 2 ,

so that the standard deviation will be bounded by

tr s, > amV21xi - x l .

Decomposing the z l i and z2 i into m components therefore increases the standard
deviation in the error by ml/2.

Each z l i and z 2 i is changed for each query by changing at least one of the zl i j

and z2q (1 <_ j <_ m) . Beck shows that by changing only z l i l and z2il after each
query, compromise may be possible with n = (a / c) 2 queries as before. If in addi-
tion we change zli2 and z2i2 after every d = L (a/c)2_A queries, then n = d 2 queries
are required to compromise. If we continue in this way to change z l i j and z2ij after
every dJ -1 queries (1 _< j _< m), then n = d m = L_(a /c)22 m queries are needed to
compromise, whereas the standard deviation in the errors is proportional to only
a m V 2. Beck shows that picking a = 31/2c (i.e., d = 3) minimizes am1~ 2 while
holding [_(a/c)2_] m constant.

As m increases, the standard deviation of responses grows as ma/2, while the
difficulty of compromisng grows as 3 m. Using a simulated database, Beck con-
firmed his hypothesis that it was possible to protect against billions of queries and
still provide reasonably accurate statistics.

Beck outlines a simple implementation that allows the released value S' to be

MECHANISMS THAT ADD NOISE 383

computed with just a single pass over the data values. Let r(i) be a function that
maps the ith record into a pseudorandom bit pattern, as in the random-sample-
queries control; similarly, let r(S) be a pseudorandom bit pattern of the query S.
We also associate m - 1 bit patterns b2,. • •, b m with the database, where each bj is
changed after every dJ -1 queries. Then zli l is generated using r(i) ~ r(S) as a seed
to a random number generator (where ~ denotes exclusive-or); and for j = 2, . . . ,
m, zlij is generated using r(i) ~ bj as the seed. Similarly, z2~j is generated, using a
different random number generator, where z2~.j is the same as z2ij, except that
Var(z2 ij) = 1 (thus it can be generated without knowing Xc); therefore,

[2a2(2_c_.__ E:)2,)1/2 ,
z2ij = \ [C[z2ij •

To compute the released statistic in a single pass over the query set, we
observe that

S t

where:

= E X~ = E [X i + z l i (x i - Xc) + z2i]
iEC i~C

[2 a 2 (E c - E) 2)
= S + $1 - EcZ1 + \ IcI

SI = ~ z l ixi
ieC

Z1 = ~ zzl i
iEC

Z2* = Z z2~. .

iEC

1 / 2

Z2*

6.5.4 Data Swapping

Schltirer [Sch177] suggested a data transformation scheme based on interchanging
values in the records. The objective is to interchange (swap) enough values that
nothing can be deduced from disclosure of individual records, but at the same time
to preserve the accuracy of at least low-order statistics. The approach has subse-
quently been studied by Schltirer [Schl81] and by Dalenius and Reiss [Dale78],
who introduced the term "data swapping".

Schltirer defines a database D to be d-transformable if there exists at least
one other database D' such that

°

2.
D and D' have the same k-order frequency counts for k = 0, 1 d, and
D and D' have no records in common.

Example:
Table 6.13 shows a 2-transformable database D of student records contain-
ing the three fields Sex, Major, and GP. This database is 2-transformable

384 INFERENCE CONTROLS

TABLE 6.13 A 2-transformable database.

Record Sex Major GP

Female Bio 4.0
Female CS 3.0
Female EE 3.0
Female Psy 4.0
Male Bio 3.0
Male CS 4.0
Male EE 4.0
Male Psy 3.0

D
!

Sex Major GP

Male Bio 4.0
Male CS 3.0
Male EE 3.0
Male Psy 4.0

Female Bio 3.0
Female CS 4.0
Female EE 4.0
Female Psy 3.0

because the database D' has the same 0-, 1-, and 2-order statistics. For
example, count(Female • CS) = 1 in both D and D'. Note, however, that 3-
order statistics are not preserved. For example,

1 i n D
count(Female°CS°3.0)= 0 i n D ' . II

Because all 1-order counts must be preserved, D' must contain exactly the
same set of values, and in the same quantities, as D. Thus, D' can be obtained from
D by swapping the values among the records. If swapping is done on a single
attribute A (as in Table 6.13), it suffices to check counts that involve the values of
A to determine whether all low-order statistics are preserved.

Schltirer studied the conditions under which a database D is d-transform-
able; he proved that

D must have M >_ d -t- 1 attributes.
D must contain at least N >_ (m / 2) 2 d records, where m is the maximum
number of values I Ajl for any attribute Aj (1 _< j ~ M).

He also showed that D must have a recursive structure. Consider each subdatabase
D1 of D consisting of all records having the same value for some attribute A (in O 1

the attribute A is omitted). If D is d-transformable, then 01 must be (d - 1)-
transformable over the remaining attributes.

Example:
Figure 6.18 illustrates the recursive structure of the database D of Table
6.13, where A = Sex. Note that the subdatabase D~' is a 1-transformation of
the subdatabase D1, and vice-versa. 1

Data swapping could be used in two ways. One way would be to take a given
database D, find a d-transformation on D for some suitable choice of d, and then
release the transformed database D'. This method could be used with statistics-
only databases and the publication of microstatistics; it could not be used with

MECHANISMS THAT ADD NOISE 385

FIGURE 6.18. Recursive structure of database.
.

Female
Female
Female
Female

Ol

Bio 4.0
CS 3.0
EE 3.0
Psy 4.0

Male Bio
Male CS
Male EE

~ Psy

D;

3.0
4.0
4.0
3.0

general-purpose databases, where accuracy of the data is needed for nonstatistical
purposes. Because k-order statistics for k > d are not necessarily preserved, these
statistics would not be computed from the released data.

If swapping is done over all confidential variables, the released data is pro-
tected from disclosure. Reiss [Reis79] has shown, however, that the problem of
finding a general data swap is NP-complete. Thus, the method appears to be
impractical.

To overcome these limitations, Reiss [Reis77] has studied the possibility of
applying approximate data swapping to the release of microstatistics. Here a por-
tion of the original database is replaced with a randomly generated database
having approximately the same k-order statistics (k = 0, . . . , d) as the original
database. The released database is generated one record at a time, where the
values chosen for each record are randomly drawn from a distribution defined by
the k-order statistics of the original data. Reiss shows that it is possible to provide
fairly accurate statistics while ensuring confidentiality.

Any scheme that modifies the data records cannot be used in general-pur-
pose systems. There is, however, another way of applying data swapping that
would be applicable to these systems. If we could simply show that a database D is
d-transformable, we could safely release any k-order statistic (k ~ d), because
such a statistic could have been derived from a different set of records. For exam-
ple, there is no way of determining (without supplementary knowledge) a student's
GP from the 0-, 1-, and 2-order statistics of the database shown in Table 6.13,
even though each student is uniquely identifiable by Sex and Major. The problem
with this approach is that there is no known efficient algorithm for testing a
database for d-transformability. Even if an efficient algorithm could be found,
security cannot be guaranteed if the users have supplementary knowledge about
the database (see exercises at end of chapter).

Data released in the form of microstatistics may be perturbed in other
waysNfor example, by rounding or by swapping a random subset of values with-

386 INFERENCE CONTROLS

out regard to preserving more than 0 and 1-order statistics. Some of these tech-
niques are discussed by Dalenius [Dale76] and by Campbell, Boruch, Schwartz,
and Steinberg [Camp77].

6.5.5 Randomized Response (Inquiry)

Because many individuals fear invasion of their privacy, they do not respond truth-
fully to sensitive survey questions. For example, if an individual is asked "Have
you ever taken drugs for depression?", the individual may lie and respond No,
thereby biasing the results of the survey. Warner [Warn65] introduced a "ran-
domized response" technique to deal with this problem. The technique is applied
at the time the data is gathered--that is, at the time of inquiry.

The basic idea is that the individual is asked to draw a question at random
from a set of questions, where some of the questions are sensitive and some are not.
Then the individual is asked to respond to that question, but to not reveal the
question answered.

Bourke and Dalenius [Bour75] and Dalenius [Dale76] discuss several strate-
gies for doing this. Warner's original scheme is illustrated by the following sample
questions"

Were you born in August?
Have you ever taken drugs for depression?

The objective of the survey is to determine the percentage of the population who
have taken drugs for depression. The respondent picks one question at random
(e.g., by tossing a coin), and then answers Yes or No. Assuming that the percent-
age of the population born in August is known, the percentage who have taken
drugs for depression can be deduced from the number of Yes answers (see exer-
cises at end of chapter).

Although it is not possible to determine whether an individual has taken
drugs for depression from a Yes answer, a Yes answer might seem potentially more
revealing than a No answer. This lack of symmetry may, therefore, bias the re-
sults, though the bias will be less than if the respondent is given no choice at all
and asked Question 2 directly.

Bourke suggested a symmetric scheme to remove this bias. Here the respon-
dent is asked to draw a card at random from a deck and respond with the number
on the card that describes him. His approach is illustrated next:

Card 1: (1)
(2)

I have taken drugs for depression.
I have not taken drugs for depression.

Card 2: (1)
(2)

I was born in August.
I was not born in August.

Card 3: (1)
(2)

I have not taken drugs for depression.
I have taken drugs for depression.

SUMMARY 387

Because a response of "1" (or "2") is linked to both having taken drugs and not
having taken drugs, an individual might feel less threatened about responding
truthfully to the survey.

Let p; be the proportion of card (i) in the deck (i = 1, 2, 3), let b be the
probability that an individual is born in August. Suppose that N individuals are
surveyed, and that N1 of them respond "1". To determine the probability d that an
individual has taken drugs for depression, we observe that the expected number of
individuals responding "1" is given by

E(1) = [pld + p2b + p3(1 - d)] N .

If pl =/= P3, we can solve for d, getting

E(1) p2b - p3
N

d =
Pl - P8

Because N1 is an estimate of E(1), we can estimate d with

N1 _ p2b - P3
~ = N

pl - P3

Example:
Let N = 1000, pl = .4, p= - .3, p3 = .3, b = .1, and Nx = 350. Then
d - . 2 . m

The randomized response technique can be viewed as an example of data
perturbation, where each individual perturbs the data by a random selection. For
obvious reasons, it is not applicable to general-purpose systems where accuracy of
the data is essential (e.g., a hospital database or the student record database).

6.6 SUMMARY

Although it is not surprising that simple inference controls can be subverted, it is
surprising that often only a few queries are required to do so. A query-set-size
control, while necessary, is insufficient because it can be subverted with trackers.
A query-set-overlap control is infeasible to implement, possible to subvert, and too
restrictive to be of practical interest.

Controls that provide a high level of security by restricting statistics are not
always practical for general-purpose database systems. Cell suppression may be
too time-consuming to apply to on-line dynamic databases. Data swapping may be
limited to the publication of microstatistics. Partitioning at the logical level is an
attractive approach, but it could limit the free flow of statistical information if the
partitions do not match the query sets needed by researchers, or if the set of
available statistics are not sufficiently rich. If partitioning is used, it must be
included in the initial design of the database; it cannot be added to an arbitrary

388 INFERENCE CONTROLS

database structure. The a m / N - c r i t e r i o n is an alternative to partitioning that may
be less restrictive and easier to integrate into an existing database system.

Controls that add noise to the statistics are an interesting alternative because
they are efficient and allow the release of more nonsensitive statistics. They are
also simple to implement and could be added to almost any existing database
system. Two controls that look promising here are random-sample queries and
data perturbation. These controls could augment simple restriction techniques
such as a query-set-size control and the S m /N-cr i t e r ion .

EXERCISES

6.1 Show how Good's GP can be compromised under a query-set-size restriction
of n = 3 using

a) An individual tracker attack [Eq. (6.4)], where C1 = CS and C2

= Male • 1978.
b) A general tracker attack [Eq. (6.5)], where T = Male.

c) A double tracker attack [Eq (6.7)], where T = CS and U = CS + EE.

d) A union tracker attack [Eq. (6.9)], where T~ = Female and T2
= Male.

6.2

6.3

6.4

6.5

6.6

Show Moore's GP can be compromised by a linear system attack under an
overlap constraint of r = 1 using key-specified queries for sums, where the
size of the key list is k = 4 (see Section 6.3.3).
Let ql, . • . , qm be key-specified queries of the form median((il, . . . , ik), A),
such that no two queries have more than one record in common and such
that each query set consists of some subset of k records in the set (1, . . . ,
m - 1) (assume m is large enough that this is possible). Assuming all xj
are unique (1 ~ j _< m - 1), show that some x / c a n be determined from ql,

. . . , a m .
Let C be a formula with initial query set (1, 2, 3). Suppose that records
satisfying C can be added to or deleted from the database in pairs, and that
the query sum(C, A) can be posed between such additions or deletions. As-
suming a query-set-size restriction of n = 3, construct a minimal sequence of
insertions, deletions, and queries that disclose Xl when none of the x i are
known. Generalize your result to C = (1, 2 , . . . , s) for any odd s and n = s.
Show the suppressed entries in Table 6.6 cannot be exactly determined from
the remaining entries without supplementary knowledge by showing the four
unknowns are related by only three linearly independent equations. Deter-
mine the best possible interval estimate for each unknown cell.
Prove the cell suppression bound q+(C) defined by Eq. (6.10) is subadditive
by showing that

q+(C + D) _< q+(C) + q+(D) .

EXERCISES 389

6.7

6.8

6.9

Prove the cell suppression bound q-(C) defined by Eq. (6.11) is not superad-
ditive by showing that the following may hold:

q-(C) + q-(O) > q-(C + D).

Let q = 100 + 5 + 5 + 5 + 5 = 120. Show q is sensitive under a 1-
respondent, 75%-dominance sensitivity criterion. Determine a lower bound
on an acceptable upper estimate q+ of q[Eq. (6.10)], and an upper bound on
an acceptable lower estimate q- of q[Eq. (6.11)].
Given the following table of rounded values, determine the exact values
assuming that systematic rounding base 5 was used.

10 10 125
I0 10 25
25 25 50

6.10 Karpinski showed it may be possible to subvert a systematic rounding control
when records can be added to the database [Karp70]. As an example, sup-
pose that count(C) = 49 and systematic rounding base 5 is used; thus, the
system returns the value 50 in response to a query for count(C). Show how a
user can determine the true value 49 by adding records that satisfy C to the
database, and posing the query count(C) after each addition. Can this attack
be successfully applied with random rounding?

6.11 Consider Beck's method of data perturbation. Show that S' as defined by Eq.
(6.12) is an unbiased estimator of the true sum S. Derive Eqs. (6.13) and
(6.14) for Var (S').

6.12 Consider the 2-transformable database D in Table 6.13 of Section 6.5.4.
Suppose that a user knows Jane is represented in the database and that Jane
is a CS major. Explain why it is not possible to deduce Jane's GP from 0-, 1-,
and 2-order statistics without supplementary knowledge. Show that it is pos-
sible, however, to deduce Jane's GP if the user knows that her GP is not 4.0.

6.13 Consider the method of randomized response, and suppose that N = 1000
individuals participate in a population survey. Each individual is asked to
toss a coin to determine which of the following questions to answer:

(1)
(2)

Have you ever been to New York?
Have you ever taken drugs for depression?

Suppose that 300 people respond Yes, and that it is known that roughly 40%
of the population surveyed has visited New York. What is the expected
percentage of the population surveyed who have taken drugs for depression?
Now, suppose that it is learned that Smith answered Yes to the survey, but it
is not known whether Smith has been to New York. What is the probability
Smith answered Question (2)? What is the probability Smith has taken
drugs for depression?

390 INFERENCE CONTROLS

REFERENCES

Achu79. Achugbue, J. O. and Chin, E Y., "The Effectiveness of Output Modification by
Rounding for Protection of Statistical Databases," INFOR Vol. 17(3) pp. 209-218
(Mar. 1979).

Beck80. Beck, L. L., "A Security Mechanism for Statistical Databases," A C M Trans. on
Database Syst. Vol. 5(3) pp. 316-338 (Sept. 1980).

Bour75. Bourke, E D. and Dalenius, T., "Some New Ideas in the Realm of Randomized
Inquiries," Confidentiality in Surveys, Report No. 5, Dept. of Statistics, Univ. of
Stockholm, Stockholm, Sweden (Sept. 1975).

Camp77. Campbell, D. T., Boruch, R. E, Schwartz, R. D., and Steinberg, J., "Confiden-
tiality-Preserving Modes of Access to Files and to Interfile Exchange for Useful
Statistical Analysis," Eval. Q. Vol. 1(2) pp. 269-299 (May 1977).

Caus79. Causey, B., "Approaches to Statistical Disclosure," in Proc. Amer. Stat. Assoc.,
Soc. Stat. Sec. Washington, D.C. (1979).

Chin79. Chin., F. Y. and Ozsoyoglu, G., "Security in Partitioned Dynamic Statistical
Databases," pp. 594-601 in Proc. IEEE COMPSAC Conf. (1979).

Chin80. Chin, E Y. and Ozsoyoglu, G., "Auditing and Inference Control in Statistical
Databases," Univ. of Calif., San Diego, Calif. (Dec. 1980).

Chin81. Chin, E Y. and Ozsoyoglu, G., "Statistical Database Design," A C M Trans. on
Database Syst. Vol. 6(1) pp. 113-139 (Mar. 1981).

Codd70. Codd, E. E, "A Relational Model for Large Shared Data Banks," Comm. A C M
Vol. 13(6) pp. 377-387 (1970).

Codd79. Codd, E. E, "Extending the Database Relational Model to Capture More Mean-
ing," ACM Trans. on Database Syst. Vol. 4(4) pp. 397-434 (Dec. 1979).

Cox76. Cox, L. H., "Statistical Disclosure in Publication Hierarchies," presented at the
Amer. Stat. Assoc. Meeting, Stat. Comp. Sec. (1976).

Cox78. Cox, L. H., "Suppression Methodology and Statistical Disclosure Control," Confi-
dentiality in Surveys, Report No. 26, Dept. of Statistics, Univ. of Stockholm, Stock-
holm, Sweden (Jan. 1978).

Cox80. Cox, L. H., "Suppression Methodology and Statistical Disclosure Control," J.
Amer. Stat. Assoc. Vol. 75(370) pp. 377-385 (June 1980).

Cox81. Cox, L. H. and Ernst, L. R., "Controlled Rounding," U.S. Bureau of the Census,
Washington, D.C. (Jan. 1981).

Dale76. Dalenius, T., "Confidentiality in Surveys," J. Statistical Research Vol. 10(1) pp.
15-41 (Jan. 1976).

Dale77. Dalenius, T., "Towards a Methodology for Statistical Disclosure Control," Statis-
tisk tidskrift Vol. 15 pp. 429-444 (1977).

Dale78. Dalenius, T. and Reiss, S. E, "Data-Swapping--A Technique for Disclosure Con-
trol," Confidentiality in Surveys, Report No. 31, Dept. of Statistics, Univ. of Stock-
holm, Stockholm, Sweden (May 1978).

Dale79. Dalenius, T. and Denning, D., "A Hybrid Scheme for Statistical Release," Com-
puter Sciences Dept., Purdue Univ., W. Lafayette, Ind. (Oct. 1979).

Dant63. Dantzig, G., Linear Programming and Extensions, Princeton Univ. Press, Prince-
ton, N.J. (1963).

Davi78. Davida, G. I., Linton, D. J., Szelag, C. R., and Wells, D. L., "Data Base Security,"
IEEE Trans. on Software Eng. Vol. SE-4(6) pp. 531-533 (Nov. 1978).

DeMi77. DeMillo, R. A., Dobkin, D. P., and Lipton, R. J., "Even Databases That Lie Can
Be Compromised," IEEE Trans. on Software Eng. Vol. SE-4(1) pp. 73-75 (Jan.
1977).

REFERENCES 391

DeMi78. DeMillo, R. A. and Dobkin, D. E, "Combinatorial Inference," pp. 27-35 in
Foundations of Secure Computation, Academic Press, New York (1978).

Denn79. Denning, D. E., Denning, P. J., and Schwartz, M. D., "The Tracker: A Threat to
Statistical Database Security," ACM Trans. on Database Syst. Vol. 4(1) pp. 76-96
(March 1979).

Denn80a. Denning, D. E. and SchlSrer, J., "A Fast Procedure for Finding a Tracker in a
Statistical Database," ACM Trans. on Database Syst. Vol. 5(1) pp. 88-102 (Mar.
1980).

Denn80b. Denning, D. E., "Corrigenda: Linear Queries in Statistical Databases," ACM
Trans. on Database Syst. Vol. 5(3) p. 383 (Sept. 1980).

Denn80c. Denning, D. E., "Secure Statistical Databases Under Random Sample Queries,"
ACM Trans. on Database Syst. Vol. 5(3) pp. 291-315 (Sept. 1980).

Denn81. Denning, D. E., "Restricting Queries That Might Lead to Compromise," in Proc.
1981 Symp. on Security and Privacy, IEEE Computer Society (Apr. 1981).

Denn82. Denning, D. E., Schltirer, J., and Wehrle, E., "Memoryless Inference Controls for
Statistical Databases," manuscript in preparation (1982).

Dobk79. Dobkin, D., Jones, A. K., and Lipton, R. J., "Secure Databases: Protection
Against User Inference," ACM Trans. on Database Syst. Vol. 4(1) pp. 97-106 (Mar.
1979).

Feig70. Feige, E. L. and Watts, H. W., "Protection of Privacy Through Microaggregation,"
in Databases. Computers, and the Social Sciences, ed. R. L. Bisco, Wiley-Inter-
science, New York (1970).

Fell72. Fellegi, I. P., "On the Question of Statistical Confidentiality," J. Amer. Stat. Assoc.
Vol. 67(337) pp. 7-18 (Mar. 1972).

Fell74. Fellegi, I. E and Phillips, J. L., "Statistical Confidentiality: Some Theory and
Applications to Data Dissemination," Annals Econ. Soc'l Measurement Vol. 3(2) pp.
399-409 (Apr. 1974).

Fran77. Frank, O., "An Application of Information Theory to the Problem of Statistical
Disclosure," Confidentiality in Surveys, Report No. 20, Dept. of Statistics, Univ. of
Stockholm, Stockholm, Sweden (Feb. 1977).

Frie80. Friedman, A. D. and Hoffman, L. J., "Towards a Fail-Safe Approach to Secure
Databases," pp. 18-21 in Proc. 1980 Symp. on Security and Privacy, IEEE Comput-
er Society (Apr. 1980).

Hans71. Hansen, M. H., "Insuring Confidentiality of Individual Records in Data Storage
and Retrieval for Statistical Purposes," Proc. Fall Jt. Computer Conf., Vol. 39, pp.
579-585 AFIPS Press, Montvale, N.J. (1971).

Haq74. Haq, M. I., "Security in a Statistical Data Base," Proc. Amer. Soc. Info. Sci. Vol.
11 pp. 33-39 (1974).

Haq75. Haq, M. I., "Insuring Individual's Privacy from Statistical Data Base Users," pp.
941-946 in Proc. NCC, Vol. 44, AFIPS Press, Montvale, N.J. (1975).

Haq77. Haq, M. I., "On Safeguarding Statistical Disclosure by Giving Approximate An-
swers to Queries," Int. Computing Symp., North-Holland, New York (1977).

Hoff70. Hoffman, L. J. and Miller, W. E, "Getting a Personal Dossier from a Statistical
Data Bank," Datamation Vol. 16(5) pp. 74-75 (May 1970).

Hoff77. Hoffman, L. J., Modern Methods for Computer Security and Privacy, Prentice-
Hall, Englewood Cliffs, N.J. (1977).

Kam77. Kam, J. B. and Ullman, J. D., "A Model of Statistical Databases and their Securi-
ty," ACM Trans. on Database Syst. Vol. 2(1) pp. 1-10 (Mar. 1977).

Karp70. Karpinski, R. H., "Reply to Hoffman and Shaw," Datamation Vol. 16(10) p. 11
(Oct. 1970).

392 INFERENCE CONTROLS

Liu80. Liu, L., "On Linear Queries in Statistical Databases," The MITRE Corp., Bedford,
Mass. (1980).

Narg72. Nargundkar, M. S. and Saveland, W., "Random Rounding to Prevent Statistical
Disclosure," Proc. Amer. Stat. Assoc., Soc. Stat. Sec., pp. 382-385 (1972).

Olss75. Olsson, L., "Protection of Output and Stored Data in Statistical Databases," ADB-
Information, 4, Statistika Centralbyr~n, Stockholm, Sweden (1975).

Palm74. Palme, J., "Software Security," Datamation Vol. 20(1) pp. 51-55 (Jan. 1974).
Reis77. Reiss, S. B., "Practical Data-Swapping: The First Steps," pp. 38-45 in Proc. 1980

Symp. on Security and Privacy, IEEE Computer Society (Apr. 1980).
Reis78. Reiss, S. B., "Medians and Database Security," pp. 57-92 in Foundations o f

Secure Computation, ed. R. A. DeMillo et al., Academic Press, New York (1978).
Reis79. Reiss, S. B., "The Practicality of Data Swapping," Technical Report No. CS-48,

Dept. of Computer Science, Brown Univ., Providence, R.I. (1979).
Sand77. Sande, G., "Towards Automated Disclosure Analysis for Establishment Based

Statistics," Statistics Canada (1977).
Sch175. Schlt~rer, J., "Identification and Retrieval of Personal Records from a Statistical

Data Bank," Methods Inf. Med. Vol. 14(1) pp. 7-i3 (Jan. 1975).
Sch176. Schltirer, J., "Confidentiality of Statistical Records: A Threat Monitoring Scheme

for On-Line Dialogue," Meth. Inf. Med., Vol. 15(1), pp. 36-42 (1976).
Sch177. Schltirer, J., "Confidentiality and Security in Statistical Data Banks," pp. 101-123

in Data Documentation: Some Principles and Applications in Science and Industry;
Proc. Workshop on Data Documentation, ed. W. Guas and R. Henzler, Verlag Do-
kumentation, Munich, Germany (1977).

Schl80. Schlt~rer, J., "Disclosure from Statistical Databases: Quantitative Aspects of
Trackers," ACM Trans. on Database Syst. Vol. 5(4) pp. 467-492 (Dec. 1980).

Schl81. Schltirer, J., "Security of Statistical Databases: Multidimensional Transforma-
tion," ACM Trans. on Database Syst. Vol. 6(1) pp. 95-112 (Mar. 1981).

Schw77. Schwartz, M. D., "Inference from Statistical Data Bases," Ph.D. Thesis, Comput-
er Sciences Dept., Purdue Univ., W. Lafayette, Ind. (Aug. 1977).

Schw79. Schwartz, M..D., Denning, D. E., and Denning, P. J., "Linear Queries in Statisti-
cal Databases," ACM Trans. on Database Syst. Vol. 4(1) pp. 476-482 (Mar. 1979).

Smit77. Smith, J. M. and Smith, D. C. P., "Database Abstractions: Aggregation and
Generalization," ACM Trans. on Database Syst. Vol. 2(2) pp. 105-133 (June 1977).

U.S.78. U.S. Dept. of Commerce, "Report on Statistical Disclosure and Disclosure-Avoid-
ance Techniques," U.S. Government Printing Office, Washington, D.C. (1978).

Warn65. Warner, S. L., "Randomized Response: A Technique for Eliminating Evasive
Answer Bias," J. Amer. Stat. Assoc. Vol. 60 pp. 63-69 (1965).

Yu77. Yu, C. T. and Chin, E Y., "A Study on the Protection of Statistical Databases,"
Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 169-181 (1977).

Index

Abnormal program terminations, 305-307
Abstract data types, 218-224,235-238
ACCAT Guard, 321-324
Access controls, 6-7,149,153-254,166,191-258
Access matrix model, 192-200,209-210,217,228,

240-248
Achugbue, J. O., 372
Activators, 224
Ada, 209,219,223
ADEPT-50 system, 287
Adleman, L., 13,101,103-108,110,157,170
Affine transformation, 64,66-67,127
AFFIRM, 239
Aggregation, 159,321
Aho, A., 31,34,182,242
Alberti, L. B., 74
Allen, E E., 301
Ames, S. R., 325
Amount of information (See Entropy)
Amplification of rights, 220-221,224
Anagramming, 60
Anderson, J. P., 203,232,318
Andrews, G. R., 302-303,307-308,314
Ardin, B. W., 180
Arrays, 298-300,326-327
ASAP file maintenance system, 192,229
Asmuth, C., 183-184,186
Assignment statement, 295,298,309-310
Astill, K. N., 180
Asymmetric cryptosystem, 10-11
Atkinson, R., 219
Attenuation of privilege, 197
Attribute (database), 213,332
Audit trail, 356,380

Authentication
Iogin, 7,13,161-164,166,191
sender (See Digital signatures)
server, 174
software, 15-16,318
tree, 170-171

Authenticity, 4-15
Authority level, 266,275
Authorization, 191,267
Authorization lists, 207,209-216
Autokey cipher, 136-137,144-145,185

Backup, 7
Baran, E, 154,206
Barker, W. G., 85
Barksdale, G. L., 232
Basic Language Machine, 216,227
Bayer, R., 3,144,173
BCC Model I, 218
Beale ciphers, 70-71,73
Beaufort, E, 76
Beaufort cipher, 76,85,127,129
Beck, L. L., 380-382,389
Bell, D. E., 265,318
Bell-LaPadula model, 265,318
Bensoussan, A., 210
Berkhoff, G., 273
Berkovitz, J., 53
Berlekamp, E. R., 53
Berson, T. A., 232
Biba, K. J., 321
Bisbey, R., 231
Bishop, M., 256
Blakley, B., 107

393

394 INDEX

Blakley, G. R., 52,107,180,181,185
Block chaining, 149,150
Block ciphers, 135-136,138,145,147-154,161
Bloom, J. R., 183-184,186
Blum, M., 115,117
Borosh, I., 107
Boruch, R. E, 386
Bourke, P. D., 386
Boyer, R. S., 218,235-236,239,319
Branstad, D. K., 98,138
Brassard, 29,35
Bright, H. S., 138,147
Brillard, J., 53,140
Broadbridge, R., 232
Browsing, 6,149
Buckingham, B. R. S., 211,218
Burke, E. L., 318
Burroughs B5000, 217,227

Caesar cipher, 2,23,63
Cal system, 218
Campasano, A. S., 165,173
Campbell, C. M., 142
Campbell, D. T., 390
Capabilities, 173,207,216-228,233-236,238,248
CAP system, 218,223
Carlstedt, J., 231
Cash, J., 230
Category, 266,275
Causey, B., 373
Cell suppression, 342-343,359-364,369,387
Certificates, public key, 170,179
Chaitin, G. J., 138
Channel capacity, 268
Channels, types, 281
Chansler, R. J., 218
Characteristic formula, 334
Chaum, D. L., 156-157
Checksum, 147, 149-150,230
Cheheyl, M. H., 239
Chicago Magic Number Computer, 218
Chin, E Y., 341,356,358,368-369,372
Chinese Remainder Theorem, 46-48,116-117,

151,183
Chosen-plaintext attack, 3,97,99,101,150
Churchyard cipher, 64,126
Cipher, 1
Cipher block chaining (CBC), 98,101,150-

151,177
Cipher feedback mode (CFB), 136-137,145-

147,150,177
Ciphertext, 1,7

alphabet, 62,74
Ciphertext-only attack, 2-3,19-20,66
Ciphertext searching, 6,144,147-148,150,173
Clark, D. D., 232,235
Class, security, 232,265
Classical cryptography, 3,11
Clearance, security, 6,232,267,285-287
Cleartext (plaintext), 1
Clingen, C. T., 211

Codd, E. E, 213,332
Code, 2
Codewords, 216,220,225
Cohen, E., 218,268
Coin flipping, 117,128,171
Columnar transposition, 59-60
Commands, access matrix, 194-199

take-grant graphs, 250
Communications security, 3-7,138,154-

157,166-169,173-179
Compartment, 266
Compiler certification, 291-307
Complexity classes, 31-34
Complexity theory, 30-34
Compound statement, 294,298,310
Compromise (personal disclosure), 337
Computationally secure cipher, 3,16
Concurrent programs, 302-305,313,327
Confidence interval, 338-339
Confinement, 203-204,266
Confusion, 30
Congruence, 36
CoNP, 33-35
Constraints, transition, 319-320
Conte, S. D., 33-35
Control flow graph, 300-301
Conventional cryptosystem, 10,14-16,20,165
Conway, R. W., 192,229
Cook, S. A., 33
Copy flag, 197
Corwin, W. M., 218
Counter method, 136-137,143,146
count statistics, 334-335
Cover, T. M., 21
Covert channels, 281,296,305-307
Cox, L. H., 336,361-362,364,373-374
crt algorithm, 48
Cryptanalysis, 2-3
Cryptogram, 1
Cryptographic sealing, 229-230
Cryptographic system (cryptosystem), 7-8
Cryptography, 1
Cryptology, 3

Dahl, O. J., 219
Dalenius, T., 338,371,383,386
Daley, R. C., 210
Dantzig, G., 364,374
Data Encryption Standard (DES), 2,11,14,27-

31,92-101,107,127,129,135,142,146-
147,150,164,177

Data Mark Machine (DMM), 288-290,308
Data perturbation, 159,380-383,388
Data security, 3-7
Data swapping, 159,383-387
Database systems, 6-7,17

access controls, 149,192,194,202,205,213-
216,229-231,235

encryption, 143-144,146-154,166,173
inference, 6,159,269,321,331-390
relational, 213-216,230,332

INDEX 395

Davida, G. I., 52,92,98,151,184,324,355
Davies, D. W., 109,179
dcph (decipher), 167-169
Deavours, C. A., 29,85
deBoor, C., 180
Decidability, 32,242-248,251,257,280
Deciphering, 1,7-11

key, 8-11
Declaration of Independence (DOI), 71
Decryption, 1
De facto, de jure acquisition, 256
DeMillo, R. A., 160,184,324,357-358
Denning, D. E., 165,173,174,178,245,265,266,

285,290,292,297,306,332,348,354,359,
366,371,375

Denning, P. J., 192-193,232,245,266,292,297,
306,348,354

Dennis, J. B., 217-218
Dennis, T. D., 218,227
Dertouzos, M. L., 157
DES (See Data Encryption Standard)
Descriptors, addressing, 217,224-225
D'Hooge, H., 218
Diffie, W., 11,34,83,85,97,101,137,141,143,

176,178
Diffusion, 30
Digital signatures, 7,14-15,108-109,117,122-

125,163-165,169-170,318
Digram distributions, 20,60-61
Dijkstra, E. W., 235
Disclosure, 4,331,336-341
Discretionary policy, 286
Dobkin, D., 353-354,357-358
Dolev, D., 187
Domain, 192,203,206,217-219,233
Downey, P., 318
Downgrading, 321-324
Downs, D., 235
Drongowski, P. J., 232
Durham, I., 218

Eavesdropping, 4
ecph (encipher), 167, 169
Edwards, D., 203
Effects (of O-functions), 237
Ehrsam, W. E, 166,175
Electronic mail, 155-157,321-324
Elementary set, 232
Enciphering, 1,7-11

key, 8-11
Encryption, 1-190,205,213,229-230,240,269-

270,321-324,376
End-to-end encryption, 154-157
England, D. M., 218
Enigma, 85
Enison, R. L., 138
Entropy, 17-22,267,337
Equivocation, 21-22,25,267,337
Ernst, L. R., 373-374
Error, transmission, 16,19,136-138,144,146-147
Error codes, 13,53,137-138,144,149

Euclid's algorithm, 43-44,102
Euler's generalization of Fermat's Theorem,

42,101
Euler totient function, 41
Evans, A., 161
Even, S., 125
Exclusive-or ~, 50
Exhaustive search, 29,31,98-99,162
Explicit flow, 270
Exponential time, 31,34
Exponentiation algorithm (fastexp), 38-39
Exponentiation ciphers, 10t-115,135

Fabry, R. S., 218,225,228
Factoring, 13,34,105-107,117
Fagin, R., 216
Farber, D. A., 207,239
fastexp algorithm, 39,101
Feiertag, R. J., 218,235-236,318-319
Feige, E. L., 371
Feistel, H., 90,92,138,149,155,162,165
Fellegi, I. P., 337,356,373
Fenton, J. S., 266,282-283,285,288,308
Fermat's Theorem, 42,101
File systems, access controls, 191-193,196-200,

203-205,210-213,226,248-249,251
encryption, 143-144,146,150-151,166-

168,172-173,213
Finite field (See Galois field)
Flow (See information flow)
Floyd, R. W., 238
Flynn, R., 165,173
Formulary model, 194
Frank, O., 340
Frequency distributions, 20,29,60-61,65-70,

73,77-84
digram, 20,60-61,84
single letter, 20,65-69,73,77-84
trigram, 20,60,67,84

Friedman, A. D., 364-365
Friedman, W. E, 65,77,83-84
Furtek, E, 268,319,327

Gaines, H. E, 60,79
Gaines, R. S., 266
Gait, J., 142
Galois field (GF), 48-53

GF(p), 49-52,103,181-182
GF(2n), 49-53,104,178,181-182,186

Gardner, M., 101
Garey, M. R., 31,34
Garland, S. J., 245
Gasser, M., 239
Gat, I., 285
gcd (greatest common divisor), 43-44
Gehringer, E., 227
Gifford, D. K., 229
Gifkins, M. R., 218
Gillogly, J. J., 71
Global flows, 303-304,313
Gold, B. D., 232

396 INDEX

Golumb, S. W., 140
Gorn, S., 24-25
GPLAN database system, 230
Graham, G. S., 192-193,232,266
Graham, R. L., 121
Graham, R. M., 207
Graham-Shamir knapsacks, 121-122
Greatest lower bound ®, 273,278
Gries, D., 314
Griffiths, E E, 213,215-216
Guard, ACCAT, 321-324
Gudes, E., 166,229
Guttag, J. V., 314

Hagelin, B., 85
Hagelin machines, 84-86,136
Halting problem, 32,232,242-244,247
Hammer, C., 71-73
Hamming, R. W., 53
Hansen, M. H., 343
Haq, M. I., 337,345,373
Harrison, M. A., 192,195,196,240-242,245,257
Hartson, H. R., 194
Haseman, W. D., 230
HDM (Hierarchical Design Methodology), 236-

239,319
Hebberd, B., 231
Hellman, M. E., 11,26,34,83,85,97-101,103-

104,107,118-120,137,141,143,176,178
Henry, P. S., 121
Hierarchical systems design, 235-239
High water mark, 287
Hill, L. S., 88
Hill cipher, 85-89,127,135
Hoare, C. A. R., 219,307
Hoffman, L. J., 194,344,358,364-365,380
Homomorphism, 36-37,157-160
Homophonic substitution, 62,67-73,127,135
Hopcroft, J., 31,34,182,242
Horning, J. J., 209,314
Hsiao, D. K., 194
Hubka, D. E., 218
Huff, G. A., 239
Huffman, D., 18
Huffman codes, 18,30
Hutchins, L. A., 218
HYDRA system, 218,220,224

IBM, 90,92,150,213,229
if statement, 295,298,311-312
Iliffe, J. K., 216,220,227
Implicit flow, 270
Implied queries, 364-368
Index of Coincidence (IC), 77-79,81-82
Inference controls, 6-7,159,269,321,331-390
Information flow

controls, 6-7,202-205,256-257,265-327
logic, 307-317
meaning of, 267-273

Information theory, 16-30,159,265,267-268,337
INGRES database system, 230

Initialization block, 138,141,146,150,177
Integrity, 4,321
Intel iAPX 432, 218-223
Intractable, 32
inv algorithm (compute inverses), 44
Inverses, computing, 39-44
IPS (Information Protection System), 150-151,

164-165
Irreducible polynomial, 49,140,181
ISI (Information Sciences Institute), 231,239

Jacobi symbol, 106,114-115
Jefferson, D., 218
Jodeit, J. G., 216
Johnson, D. S., 31,34
Jones, A. K., 218,223,248,251-252,256-257,

280,353-354

Kahn, D., 66,70,74,76-77,79,83,85-87,101,144
Kahn, K. C., 218
Kam, J. B., 92,151,355
Kampe, M., 218,232
Kanodia, R. K., 304
Kantrowitz, W., 161
Karger, P. A., 275
Karp, R. M., 118,122
Karpinski, R. H., 389
Kasiski, E W., 79
Kasiski method, 79-83
Keeton-Williams, J. G., 324
Kemmerer, R. A., 239
Kent, S. T., 138,149,161,179
Kernel (See Security kernel)
Key, encryption/decryption, 1,7-11

database, file, 151-154,166-168,172-173
distribution of, 173-179
generating, 171-173
group, 173
hardware, 162,165,173
management, 164-185
master, 166-169,171,175-176,179
private, 1,I 1,164-169,173-176
public, 11,169-171,177-179
read/write, 11,151-154,166,213
secondary, 167,172,176
signature, 11,165
stream, 24-25,83,85-87,135-147
subkeys, 15 I-154,185
terminal, 166-169,176
threshold schemes, 179-186,206,229

Key-specified query, 353
Keys record, 166,213,229
King, R. C., 21
Kline, C. S., 15,138,165,179,206,218,232
Knapsack problem, ciphers, 13,33-34,117-

126,135
simple knapsacks, 118
trapdoor knapsacks, 119

Known-plaintext attack, 3,29,98,103,141,
185,186

Knuth, D., 43,104,138,182

INDEX 397

Konfelder, L. M., 108,170
Konheim, A. G., 29,85,150
Kowalchuk, J., 53,177
Kreissig, G., 200
Kruh, L., 64
KSOS (Kernelized Secure Operating System),

232-236,240,319,323
Kurzban, S., 380
KVM/370 (Kernelized VM/370), 232

Lagrange polynomials, 180-182,186
Lampson, B. W., 192,203,209,218,281,285,314
LaPadula, L. J., 265,318
Lattice model, 265-278

definition of lattice, 273
input/output lattice, 275
subset lattice, 274-275

Leakage of information, 6,265
of rights, 240-248

Least privilege, 203,206-207,219,286
Least upper bound @, 273,277-278
Legendre symbol, 114
Lempel, A., 35,121,125
LeVeque, W. J., 36,106,112
Levin, G., 314
Levin, R., 218
Levitt, K. N., 218,235-236,238-239,318-319
Linde, R. R., 203,231,232
Linden, T. A., 219
Linear Feedback Shift Registers, i 36-137,139-

142,185
Link encryption, 154-157
Linton, D. J., 355
Lipner, S. B., 281
Lipton, R. J., 11,115,160,184,248,251-252,256,

280,324,353-354
Lipton, S. M., 165,357
Liskov, B. H., 219,223
Liu, L., 354
Locks and keys, 228-230
Logarithm, computing, 103-106,173,176
Login protocols, 161-164
London, R. L., 209,219,314
LUCIFER, 90,92

Mack, M. H., 150
Macrostatistics, 341-343,360
MacWilliams, E J., 53
Masquerading, 7
Matyas, S. M., 98,165,166,171,175
Mauborgne, J., 86
Maximum order control, 359-360
Maxwell, W. L., 192,229
McCauley, E. J., 232
McEliece, R., 13,53
McNeil, L., 160
McNeill, R. K., 150
Meaningful/meaningless messages, 26
Mechanism, protection, 191,200-207,279-281,

340-341
median statistics, 336,356-357

Meijer, H., 173
Mekota, J., 232
Mellen, G. E., 60
Memoryless programs, 203-204
Mental poker, 110-115,128
Merkle, R. C., 14-15,97-98,118-120,165,170,

176,178
Merkle-Hellman knapsacks, 118-122,128
Metzger, J., 3,144,173
Meyer, C. H., 98,141,166,171,175
Microaggregation, 371
Microstatistics, 341-343,384
Millen, J. K., 232,239,268,318-319,327
Miller, W. E, 344,380
Minsky, M., 31,242,288
Minsky, N., 224
Minsky machine, 288
Mitchell, J. G., 209,314
MITRE, 177.-178,232,318-320
Modular arithmetic, 35-53
Module (See Abstract data types)
Moments, finite, 335,371
Morgan, H. L., 192,229
Monitors, protection, 193,232,234
Montague, J. T., 218
Moore, J. S., 239,319
Morris, J. B., 219
Morris, J. H., 223
Morris, R., 97,162
MULTICS, 207,210-211,227,232
Multilevel security, 232,235,266,275-276,286-

287,318-324
Multiple encryption with DES, 98
Mutual suspicion, 204-205
Myers, G., 218,225,227

Nargundkar, M. S., 373
Needham, R. M., 15,161,170,174-175,218
Need-to-know, 286
Networks, 4,15,154-157,173-176,179,205,

239,240
Neumann, P. G., 210,218,232,235-236,239
Niven, I., 36,t06,112
Noise (See Pertubation)
Nondiscretionary policy, 286
Norris, J., 106
Notz, W. A., 92,138,155,162,165
NP, NP-complete, NP-hard, 33-35
n-respondent, k%-dominance rule, 336,360

Object-oriented languages, 219
Objects (of access matrix), 192
Oblivious transfer, 115-117
O-function, 237
Olsson, L., 369
One-key cryptosystem, 10
One-time pad, 25,86-87,136,141,185
One-way cipher, 161-162
One-way function, 341,161,166

398 INDEX

Operating systems, access controls, 192-193,
196-208,216-229,249-250,285-288

authentication, 15,318
flow controls, 285-288,318-324
verification, 231-240,288,318-324

Order of statistic, 336
Organick, E. I., 207,210
Output-block feedback mode (OFM), 136-137,

142-143
Overlap control, 354-357, 387
OV-function, 237
Ownership, 191,196-198,200,202-205,210-213
Ozsoyoglu, G., 341,356,358,368-369

P (polynomial time), 32-34
Palme, J., 346,373
Parnas, D. L., 236
Partitioning, 368-371,387
Passwords, 7, t 61-164
Peeler, R. J., 232
Peleg, S., 67
Penetration analysis, 231-232
Percentile complexity, 35
Perfect secrecy, 16,22-25,339
Periodic ciphers, 60-62,74-82,84-85,136-137
Permutation cipher (See Transposition cipher)
Perturbation, 341,343,360,371-388
Peterson, W. W., 53,140
Phillips, J. L., 373
Pierson, C., 218
Plaintext, 1,7

alphabet, 62,74
Playfair, L., 87
Playfair cipher, 87-88,t27,135
Pohlig, S., 97,101,103-104,107,120
Pohlig-Hellman scheme, 101-104,112,127-

128,178
Policy, protection, 191,199-201,233-234,265-

267,279,336,340
Pollack, E J., 218
Polyalphabetic substitution, 62,73-87
Polygram substitution, 62,87-89
Polynomial interpolation, 180-182,184,186
Popek, G. J., 15,138,165,179,206,207,209,

218,231,232,235,239,314,318
Powers, S. A., 177
Pratt, E, 70
Precise, 200-201,279-280,340-341
Price, W. L., 109,179
Price, W. R., 236
Prime numbers, 34,42,48

generating, testing, 106-107
Privacy, 4
Privacy homomorphism, 157-160,185
Privacy transformation, 159,343
Privileged modes, 15,207-208,233-235
Procedure call, 218-224,296,298,313-316
Product ciphers, 90-98
Program counter class, 288,308
Programming languages, 21,193,208-209, 2 t 9-

224

Program proving, 238,291-317
Proof rules, 307-316
Proprietary software, 6,159-161,203-205
Protected entry point, 218-219
PSOS (Provably Secure Operating System),

218,235-240,319
PSPACE, 34
Public-key cryptosystems, 8,11-15,19-20,29-

30,34,101-109,117-125,156-157,163-
165,187,230

Public-key distribution system, 176-179
Purdy, G. P., 161

Quadratic residue, 111-117
Query, 335-336,353

modification, 230-231
processing systems, 230-231,343
set, 334
-set-overlap control, 354-357,387
-set-size control, 345-352,364,376,387-388

Rabin, M. O., 15,107,115,117,128
Rail-fence cipher, 1
Random cipher model, 25-29
Randomized response, 386-387,389
Random sample queries, 374-380,388
Rate of language, 20-21,26-27
Redell, D. R., 228
Redundancy, 20-21,27-30,83,138
Reed, D. P., 304
Reed, I. S., 159
Reference monitor, 232,234
Reiss, S. B., 358,383,385
Reitman, R. P., 302-303,307-308,314
Relatively prime, 40
Reliability, 7,201,204-205,219
Replay, 4-6,144,148-150,173
Residue, 36

reduced set, 41
Revocation, 197-198,213-216,227-228,233,258
rfmk (reencipher from master key), 167-169,

171,175-176
Rice University Computer, 216,227
Rights (of access matrix), 192
Rings (protection), 207-208
Ritchie, D. M., 212
Rivest, R. L., 13,85,100-101,104-108,

110,157,170
Robinson, L., 218,235-236,238-239,318-319
Rogers, H., 247
Rosenfeld, A., 67
Rotenberg, L. J., 287
Rotor machines, 84-85,90,136
Rounding, 159,343,372-374,389
RSA scheme, 13,34,101-109,115,120,122,127-

129,186
rtmk (reencipher to master key), 168-169,

172,176
Running key cipher, 83-84,87,136
Rushby, J. M., 206,239,320
Ruzzo, W. L., 192,195,196,240-242,245,257

INDEX 399

Saal, H. J., 285
Sacco, G. M., 174,178
Safe prime, 103,107
Safety, 240-257
Salt, with passwords, 162
Saltzer, J. H., 165,206,207,232,235
Sam, E., 64
Sampling, 343,374-380
Sande, G., 364
Sanitization, 321
Savage, J. E., 144
Saveland, W., 373
S-box, 93-98
Schaefer, M., 232
Schaffert, C., 219
Schanning, B., 53,177
Scheid, J. E, 232
Schell, R., 232,318
Scherbius, A., 85
Schiller, W. L., 232
Schltirer, J., 332,346,348,350-351,359-360,373,

379,383-384
Schneider, E B., 173
Schroeder, M., 15,170,174-175,206,207,232,235
Schroeppel, R., 97,105
Schwans, K., 218
Schwartz, M. D., 348,354,374
Schwartz, R. D., 386
Schweitzer, P., 97
SCOMP, 232,319
SDC (Systems Development Corporation), 231,

232,239,287,319
Sealing, 223,229-230
Secrecy, 4,6,8-13,16-17
Secure, 200-201,279-281,293,316,340-341
Security

data, 3-7
class (level), 232,265
variable class, 267,278,284-285,287,307
clearance, 6,232,267,285-287
kernel, 232-236,239,287,292,318-320,324

Sederberg, T., 18
Selective confinement, 204,266
Self-synchronous stream ciphers, 136-138,

144-147
Sensitive statistic, 336
Session keys, distribution, 173-179
Sestri, I. G., 76
Sevcik, K. C., 218
Shadows, 180
Shamir, A., 13,15,35,101,104-108,110,117,120-

122,128,170,180,182,184,186
Shannon, C. E., 16-30,90,268
Sharing, 201-205
Shaw, M., 219
Shifted substitution, 2,23,28-29,63,66,74,83,145
Signature (See Digital signatures)
Signature-only knapsacks, 122-125,128-129
Silverberg, B., 239
Simmons, G., 10,13,17,106
Simple security condition, 318

Simple substitution, 62-66,73,135
Single Accumulator Machine, 290-291
Sinkov, A., 60,63,66,77
Size control, 345-352,364,376,387,388
Sloane, N. J. A., 53,97
Smid, M., 15
Smith, D. C. P., 369
Smith, J. L., 92,138,155,162,165
Smith, J. M., 369
sink (set master key), 167,171
Smullyan, R., 83
snap algorithm, 118
Snyder, A., 219
Snyder, L., 248,251-252,256-257
Software protection, 6,15-16,159-161,203-205
Soiovay, R., 106
SPECIAL language, 236-239,319
Specifications, 236-239,292-293,318-320
Sphere of protection (domain), 217-218
SRI, 235-239,318-319
Stahl, E A., 70
StarOS for CM*, 218
Star property, 318
Statistical database, 159,269,321,331-390
Steinberg, J., 386
Stonebraker, M., 230
Stoughton, A., 218,232
Strassen, V., 106
Stream ciphers, 135-148
Strong cipher, 3
Sturgis, H. E., 218
Subadditive/superadditive, 362
Subjects (of access matrix), 192
Subkeys, 151-154,185
Substitution ciphers, 2,62-89
Substitution-permutation ciphers, 90-92
SUE system, 218
Sugarman, R., 98
sum statistics, 334-335
Supervisor states, 207-208,233-234
Suspicion, 201-205
Swanson, L., 185
SWARD, 211-212,218,219,225,227,228
Symmetric cryptosystems, 10
Synchronization channels, 302-305,313
Synchronous stream ciphers, 136-144,185
System R, 213-216,257-258
Szeleg, C. R., 355

Table lookup, 99
Tagged memory, 223,226-227,288-291
Take-grant model, 241,248-258
Tampering, 4-7
TENEX system, 207
Theories of protection, formal, 240-257
THE system, 235
Thompson, K., 162,212
Threat monitoring, 380
Threshold schemes, 179-186,206,229
Tickets, 207,224
Time-memory tradeoff, 97--101,120

400 INDEX

Timestamps, 163-165,170,175,178-179
Timing channel, 281,296
Trackers, 346-353,356,364,377,380,388
Tractable, 32
Traffic flow analysis, 4,155
Tranquility principle, 318
Transposition ciphers, 1-2,59-62,135
Trapdoor one-way function, 34
Trigram distributions, 20,60,67,84
Trojan Horse, 203,206,207,288,318
Trusted processes, 234-235,239,281,321,324
Tsichritzis, D. C., 218
Tuchman, W. L., 98,141,166,175
Tuckerman, B., 150
Turing, A., 32
Turing machine, 31-32,242-245,247,258
Turn, R., 21,159
Two-key cryptosystem, 10-11

(See also Public-key cryptosystems)

UCLA Secure UNIX, 218,232-234,239,240
Ullman, J. D., 31,34,182,192,195,196,240-242,

245,257,355
Uncertainty (entropy), 16-22,25,157,267-

268,338
Unconditionally secure cipher, 3,16,25
Undecidability, 32,242-248,257,280
Unicity distance, 25-29,31,61-62,64-65,76-77
Urban, M., 218,232
UNIX, 18,162,207,212,218,232-235,239,

319,323

VanHorn, E. C., 217-218
Vegdahl, S. R., 218
Verification, 15,231-240,291-320,324
Vernam, G., 86
Vernam cipher, 86-87,136,138,269
V-function, 237
Vigen~re, B. de, 74,144-145,185

Vigen~re cipher, 74-76,83,101,126,129,136
Vigen~re Tableau, 75-76
Vinogradov, I. M., 36,106,112
Virtual machines, 206,240

Wade, B. W., 213,215-216
Waldbaum, G., 150
Walker, B. J., 239
Walker, R. D. H., 218
Walter, K. J., 232
Walton, E., 218,232
Ward, J. B., 70
Ward, P. D., 232
Warner, S. L., 386
Washington, L., 97
Watts, H. W., 371
Wehrle, E., 332,359
Weiss, E., 161
Weissman, C., 266,287
Weldon, E. J., 53,140
Wells, D. L., 151,355
Wheatstone, C., 87
while statement, 295,298,312-313
Whinston, A. B., 230
Wilkes, M. V., 161
Williams, H. C., 107
Wiretapping, 4-5,137,149,187
Wong, E., 230
Woodward, J. P. L., 321
Wulf, W. A., 218,219
Wyner, A., 97

Yacobi, Y., 125
Yao, A. C., 187
Yu, C. T., 368

Zierler, N., 53,140
Zippel, R. E., 120-122
Zuckerman, H. S., 36,106,112

