
Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Data Structures and Algorithms
with Object-Oriented Design Patterns in

C#
Bruno R. Preiss

B.A.Sc., M.A.Sc., Ph.D., P.Eng.
Software Engineer and Architect

SOMA Networks, Inc.
Toronto, Canada

● Colophon
● Dedication
● Preface
● Contents
● Introduction
● Algorithm Analysis
● Asymptotic Notation
● Foundational Data Structures
● Data Types and Abstraction
● Stacks, Queues, and Deques
● Ordered Lists and Sorted Lists
● Hashing, Hash Tables, and Scatter Tables
● Trees
● Search Trees
● Heaps and Priority Queues
● Sets, Multisets, and Partitions
● Garbage Collection and the Other Kind of Heap
● Algorithmic Patterns and Problem Solvers

http://www.brpreiss.com/books/opus6/html/book.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:21]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/main.html

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

● Sorting Algorithms and Sorters
● Graphs and Graph Algorithms
● C# and Object-Oriented Programming
● Class Hierarchy Diagrams
● Character Codes
● References
● Index

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/book.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:21]

http://www.brpreiss.com/books/opus6/main.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Colophon

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Colophon
Copyright © 19101 by Bruno R. Preiss.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

This book was prepared with LaTeX and reproduced from camera-ready copy supplied by the author.
The book is typeset using the Computer Modern fonts designed by Donald E. Knuth with various
additional glyphs designed by the author and implemented using METAFONT.

METAFONT is a trademark of Addison Wesley Publishing Company.

Java is a registered trademark of Sun Microsystems.

TeX is a trademark of the American Mathematical Society.

UNIX is a registered trademark of AT&T Bell Laboratories.

Microsoft is a registered trademark of Microsoft Corporation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page1.html [2002-11-17 ｿﾀﾈﾄ 11:01:22]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Dedication

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Dedication
To Patty

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page2.html [2002-11-17 ｿﾀﾈﾄ 11:01:22]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Preface

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Preface
This book was motivated by my experience in teaching the course E&CE 250: Algorithms and Data
Structures in the Computer Engineering program at the University of Waterloo. I have observed that the
advent of object-oriented methods and the emergence of object-oriented design patterns has lead to a
profound change in the pedagogy of data structures and algorithms. The successful application of these
techniques gives rise to a kind of cognitive unification: Ideas that are disparate and apparently unrelated
seem to come together when the appropriate design patterns and abstractions are used.

This paradigm shift is both evolutionary and revolutionary. On the one hand, the knowledge base grows
incrementally as programmers and researchers invent new algorithms and data structures. On the other
hand, the proper use of object-oriented techniques requires a fundamental change in the way the
programs are designed and implemented. Programmers who are well schooled in the procedural ways
often find the leap to objects to be a difficult one.

● Goals
● Approach
● Outline
● Suggested Course Outline
● Online Course Materials

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page3.html [2002-11-17 ｿﾀﾈﾄ 11:01:23]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Goals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Goals

The primary goal of this book is to promote object-oriented design using C# and to illustrate the use of
the emerging object-oriented design patterns. Experienced object-oriented programmers find that certain
ways of doing things work best and that these ways occur over and over again. The book shows how
these patterns are used to create good software designs. In particular, the following design patterns are
used throughout the text: singleton, container, enumeration, adapter and visitor.

Virtually all of the data structures are presented in the context of a single, unified, polymorphic class
hierarchy. This framework clearly shows the relationships between data structures and it illustrates how
polymorphism and inheritance can be used effectively. In addition, algorithmic abstraction is used
extensively when presenting classes of algorithms. By using algorithmic abstraction, it is possible to
describe a generic algorithm without having to worry about the details of a particular concrete realization
of that algorithm.

A secondary goal of the book is to present mathematical tools just in time. Analysis techniques and
proofs are presented as needed and in the proper context. In the past when the topics in this book were
taught at the graduate level, an author could rely on students having the needed background in
mathematics. However, because the book is targeted for second- and third-year students, it is necessary
to fill in the background as needed. To the extent possible without compromising correctness, the
presentation fosters intuitive understanding of the concepts rather than mathematical rigor.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page4.html [2002-11-17 ｿﾀﾈﾄ 11:01:24]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Approach

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Approach

One cannot learn to program just by reading a book. It is a skill that must be developed by practice.
Nevertheless, the best practitioners study the works of others and incorporate their observations into their
own practice. I firmly believe that after learning the rudiments of program writing, students should be
exposed to examples of complex, yet well-designed program artifacts so that they can learn about the
designing good software.

Consequently, this book presents the various data structures and algorithms as complete C# program
fragments. All the program fragments presented in this book have been extracted automatically from the
source code files of working and tested programs. It has been my experience that by developing the
proper abstractions, it is possible to present the concepts as fully functional programs without resorting to
pseudo-code or to hand-waving.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page5.html [2002-11-17 ｿﾀﾈﾄ 11:01:24]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Contents

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Contents

● Colophon
● Dedication
● Preface

❍ Goals
❍ Approach
❍ Outline
❍ Suggested Course Outline
❍ Online Course Materials

● Introduction
❍ What This Book Is About
❍ Object-Oriented Design

■ Abstraction
■ Encapsulation

❍ Object Hierarchies and Design Patterns
■ Containers
■ Enumerators
■ Visitors
■ Cursors
■ Adapters
■ Singletons

❍ The Features of C# You Need to Know
■ Variables
■ Value Types and Reference Types
■ Parameter Passing
■ Classes and Objects
■ Inheritance
■ Interfaces and Polymorphism
■ Other Features

❍ How This Book Is Organized
■ Models and Asymptotic Analysis
■ Foundational Data Structures
■ Abstract Data Types and the Class Hierarchy

http://www.brpreiss.com/books/opus6/html/page10.html (1 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

http://www.brpreiss.com/books/opus6/index.html

Contents

■ Data Structures
■ Algorithms

● Algorithm Analysis
❍ A Detailed Model of the Computer

■ The Basic Axioms
■ A Simple Example-Arithmetic Series Summation
■ Array Subscripting Operations
■ Another Example-Horner's Rule
■ Analyzing Recursive Methods

■ Solving Recurrence Relations-Repeated Substitution
■ Yet Another Example-Finding the Largest Element of an Array
■ Average Running Times
■ About Harmonic Numbers
■ Best-Case and Worst-Case Running Times
■ The Last Axiom

❍ A Simplified Model of the Computer
■ An Example-Geometric Series Summation
■ About Arithmetic Series Summation
■ Example-Geometric Series Summation Again
■ About Geometric Series Summation
■ Example-Computing Powers
■ Example-Geometric Series Summation Yet Again

❍ Exercises
❍ Projects

● Asymptotic Notation
❍ An Asymptotic Upper Bound-Big Oh

■ A Simple Example
■ Big Oh Fallacies and Pitfalls
■ Properties of Big Oh
■ About Polynomials
■ About Logarithms
■ Tight Big Oh Bounds
■ More Big Oh Fallacies and Pitfalls
■ Conventions for Writing Big Oh Expressions

❍ An Asymptotic Lower Bound-Omega
■ A Simple Example
■ About Polynomials Again

❍ More Notation-Theta and Little Oh

http://www.brpreiss.com/books/opus6/html/page10.html (2 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

❍ Asymptotic Analysis of Algorithms
■ Rules For Big Oh Analysis of Running Time
■ Example-Prefix Sums
■ Example-Fibonacci Numbers
■ Example-Bucket Sort
■ Reality Check
■ Checking Your Analysis

❍ Exercises
❍ Projects

● Foundational Data Structures
❍ Arrays

■ Extending C# Arrays
■ Constructors
■ Copy Method
■ DynamicArray Indexers
■ DynamicArray Properties
■ Resizing an Array

❍ Multi-Dimensional Arrays
■ Array Subscript Calculations
■ An Implementation
■ Constructor
■ MultiDimensionalArray Indexer
■ Matrices
■ Dense Matrices
■ Canonical Matrix Multiplication

❍ Singly-Linked Lists
■ An Implementation
■ List Elements
■ LinkedList Default Constructor
■ Purge Method
■ LinkedList Properties
■ First and Last Properties
■ Prepend Method
■ Append Method
■ Copy Method
■ Extract Method
■ InsertAfter and InsertBefore Methods

❍ Exercises

http://www.brpreiss.com/books/opus6/html/page10.html (3 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

❍ Projects
● Data Types and Abstraction

❍ Abstract Data Types
❍ Design Patterns

■ Class Hierarchy
■ C# Objects and the IComparable Interface

■ Abstract Comparable Objects
■ Comparison Operators

■ Wrappers for Value Types
■ Containers

■ Abstract Containers
■ Visitors

■ The IsDone Property
■ Abstract Visitors
■ The AbstractContainer Class ToString Method

■ Enumerable Collections and Enumerators
■ Enumerators and foreach

■ Searchable Containers
■ Abstract Searchable Containers

■ Associations
❍ Exercises
❍ Projects

● Stacks, Queues, and Deques
❍ Stacks

■ Array Implementation
■ Fields
■ Constructor and Purge Methods
■ Push and Pop Methods, Top Property
■ Accept Method
■ GetEnumerator Method

■ Linked-List Implementation
■ Fields
■ Constructor and Purge Methods
■ Push and Pop Methods, Top Property
■ Accept Method
■ GetEnumerator Method

■ Applications
■ Evaluating Postfix Expressions

http://www.brpreiss.com/books/opus6/html/page10.html (4 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Implementation
❍ Queues

■ Array Implementation
■ Fields
■ Constructor and Purge Methods
■ Enqueue and Dequeue Methods, Head Property

■ Linked-List Implementation
■ Fields
■ Constructor and Purge Methods
■ Enqueue and Dequeue Methods, Head Property

■ Applications
■ Implementation

❍ Deques
■ Array Implementation

■ The ``Head'' Operations
■ The ``Tail'' Operations

■ Linked List Implementation
■ The ``Head'' Operations
■ The ``Tail'' Operations

■ Doubly-Linked and Circular Lists
❍ Exercises
❍ Projects

● Ordered Lists and Sorted Lists
❍ Ordered Lists

■ Array Implementation
■ Fields
■ Creating a List and Inserting Items
■ Finding Items in a List
■ Removing Items from a List
■ Positions of Items in a List
■ Finding the Position of an Item and Accessing by Position
■ Inserting an Item at an Arbitrary Position
■ Removing Arbitrary Items by Position

■ Linked-List Implementation
■ Fields
■ Inserting and Accessing Items in a List
■ Finding Items in a List
■ Removing Items from a List

http://www.brpreiss.com/books/opus6/html/page10.html (5 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Positions of Items in a List
■ Finding the Position of an Item and Accessing by Position
■ Inserting an Item at an Arbitrary Position
■ Removing Arbitrary Items by Position

■ Performance Comparison: OrderedListAsArray vs. ListAsLinkedList
■ Applications

❍ Sorted Lists
■ Array Implementation

■ Inserting Items in a Sorted List
■ Locating Items in an Array-Binary Search
■ Finding Items in a Sorted List
■ Removing Items from a List

■ Linked-List Implementation
■ Inserting Items in a Sorted List
■ Other Operations on Sorted Lists

■ Performance Comparison: SortedListAsArray vs. SortedListAsList
■ Applications

■ Implementation
■ Analysis

❍ Exercises
❍ Projects

● Hashing, Hash Tables, and Scatter Tables
❍ Hashing-The Basic Idea

■ Example
■ Keys and Hash Functions

■ Avoiding Collisions
■ Spreading Keys Evenly
■ Ease of Computation

❍ Hashing Methods
■ Division Method
■ Middle Square Method
■ Multiplication Method
■ Fibonacci Hashing

❍ Hash Function Implementations
■ Integral Keys
■ Floating-Point Keys
■ Character String Keys
■ Hashing Containers

http://www.brpreiss.com/books/opus6/html/page10.html (6 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Using Associations
❍ Hash Tables

■ Abstract Hash Tables
■ Separate Chaining

■ Implementation
■ Constructor, Length Property and Purge Methods
■ Inserting and Removing Items
■ Finding an Item

■ Average Case Analysis
❍ Scatter Tables

■ Chained Scatter Table
■ Implementation
■ Constructor, Length Property, and Purge Methods
■ Inserting and Finding an Item
■ Removing Items
■ Worst-Case Running Time

■ Average Case Analysis
❍ Scatter Table using Open Addressing

■ Linear Probing
■ Quadratic Probing
■ Double Hashing
■ Implementation

■ Constructor, Length Property, and Purge Methods
■ Inserting Items
■ Finding Items
■ Removing Items

■ Average Case Analysis
❍ Applications
❍ Exercises
❍ Projects

● Trees
❍ Basics

■ Terminology
■ More Terminology
■ Alternate Representations for Trees

❍ N-ary Trees
❍ Binary Trees
❍ Tree Traversals

http://www.brpreiss.com/books/opus6/html/page10.html (7 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Preorder Traversal
■ Postorder Traversal
■ Inorder Traversal
■ Breadth-First Traversal

❍ Expression Trees
■ Infix Notation
■ Prefix Notation
■ Postfix Notation

❍ Implementing Trees
■ Tree Traversals

■ Depth-First Traversal
■ Preorder, Inorder, and Postorder Traversals
■ Breadth-First Traversal
■ Accept Method

■ Tree Enumerators
■ Constructor
■ MoveNext Method and Current Property

■ General Trees
■ Fields
■ Constructor and Purge Methods
■ Key Property and GetSubtree Method
■ AttachSubtree and DetachSubtree Methods

■ N-ary Trees
■ Fields
■ Constructors
■ IsEmpty Property
■ Key Property, AttachKey and DetachKey Methods
■ GetSubtree, AttachSubtree and DetachSubtree Methods

■ Binary Trees
■ Fields
■ Constructors
■ Purge Method

■ Binary Tree Traversals
■ Comparing Trees
■ Applications

■ Implementation
❍ Exercises
❍ Projects

http://www.brpreiss.com/books/opus6/html/page10.html (8 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

● Search Trees
❍ Basics

■ M-Way Search Trees
■ Binary Search Trees

❍ Searching a Search Tree
■ Searching an M-way Tree
■ Searching a Binary Tree

❍ Average Case Analysis
■ Successful Search
■ Solving The Recurrence-Telescoping
■ Unsuccessful Search
■ Traversing a Search Tree

❍ Implementing Search Trees
■ Binary Search Trees

■ Fields
■ Find Method
■ Min Property

■ Inserting Items in a Binary Search Tree
■ Insert and AttachKey Methods

■ Removing Items from a Binary Search Tree
■ Withdraw Method

❍ AVL Search Trees
■ Implementing AVL Trees

■ Constructor
■ AdjustHeight Method, Height and BalanceFactor Properties

■ Inserting Items into an AVL Tree
■ Balancing AVL Trees
■ Single Rotations
■ Double Rotations
■ Implementation

■ Removing Items from an AVL Tree
❍ M-Way Search Trees

■ Implementing M-Way Search Trees
■ Implementation
■ Constructor and M Property
■ Inorder Traversal

■ Finding Items in an M-Way Search Tree
■ Linear Search

http://www.brpreiss.com/books/opus6/html/page10.html (9 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Binary Search
■ Inserting Items into an M-Way Search Tree
■ Removing Items from an M-Way Search Tree

❍ B-Trees
■ Implementing B-Trees

■ Fields
■ Constructor and AttachSubtree Methods

■ Inserting Items into a B-Tree
■ Implementation
■ Running Time Analysis

■ Removing Items from a B-Tree
❍ Applications
❍ Exercises
❍ Projects

● Heaps and Priority Queues
❍ Basics
❍ Binary Heaps

■ Complete Trees
■ Complete N-ary Trees

■ Implementation
■ Fields
■ Constructor and Purge Methods

■ Putting Items into a Binary Heap
■ Removing Items from a Binary Heap

❍ Leftist Heaps
■ Leftist Trees
■ Implementation

■ Fields
■ Merging Leftist Heaps
■ Putting Items into a Leftist Heap
■ Removing Items from a Leftist Heap

❍ Binomial Queues
■ Binomial Trees
■ Binomial Queues
■ Implementation

■ Heap-Ordered Binomial Trees
■ Adding Binomial Trees
■ Binomial Queues

http://www.brpreiss.com/books/opus6/html/page10.html (10 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Fields
■ AddTree and RemoveTree
■ MinTree and Min Properties

■ Merging Binomial Queues
■ Putting Items into a Binomial Queue
■ Removing an Item from a Binomial Queue

❍ Applications
■ Discrete Event Simulation
■ Implementation

❍ Exercises
❍ Projects

● Sets, Multisets, and Partitions
❍ Basics

■ Implementing Sets
❍ Array and Bit-Vector Sets

■ Basic Operations
■ Union, Intersection, and Difference
■ Comparing Sets
■ Bit-Vector Sets

■ Basic Operations
■ Union, Intersection, and Difference

❍ Multisets
■ Array Implementation

■ Basic Operations
■ Union, Intersection, and Difference

■ Linked-List Implementation
■ Union
■ Intersection

❍ Partitions
■ Representing Partitions
■ Implementing a Partition using a Forest

■ Implementation
■ Constructor
■ Find and Join Methods

■ Collapsing Find
■ Union by Size
■ Union by Height or Rank

❍ Applications

http://www.brpreiss.com/books/opus6/html/page10.html (11 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

❍ Exercises
❍ Projects

● Garbage Collection and the Other Kind of Heap
❍ What is Garbage?

■ Reduce, Reuse, Recycle
■ Reduce
■ Reuse
■ Recycle

■ Helping the Garbage Collector
❍ Reference Counting Garbage Collection

■ When Objects Refer to Other Objects
■ Why Reference Counting Does Not Work

❍ Mark-and-Sweep Garbage Collection
■ The Fragmentation Problem

❍ Stop-and-Copy Garbage Collection
■ The Copy Algorithm

❍ Mark-and-Compact Garbage Collection
■ Handles

❍ Exercises
❍ Projects

● Algorithmic Patterns and Problem Solvers
❍ Brute-Force and Greedy Algorithms

■ Example-Counting Change
■ Brute-Force Algorithm
■ Greedy Algorithm

■ Example-0/1 Knapsack Problem
❍ Backtracking Algorithms

■ Example-Balancing Scales
■ Representing the Solution Space
■ Abstract Backtracking Solvers

■ Abstract Solvers
■ Depth-First Solver
■ Breadth-First Solver

■ Branch-and-Bound Solvers
■ Depth-First, Branch-and-Bound Solver

■ Example-0/1 Knapsack Problem Again
❍ Top-Down Algorithms: Divide-and-Conquer

■ Example-Binary Search

http://www.brpreiss.com/books/opus6/html/page10.html (12 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Example-Computing Fibonacci Numbers
■ Example-Merge Sorting
■ Running Time of Divide-and-Conquer Algorithms

■ Case 1 ()

■ Case 2 ()

■ Case 3 ()

■ Summary
■ Example-Matrix Multiplication

❍ Bottom-Up Algorithms: Dynamic
Programming

■ Example-Generalized Fibonacci Numbers
■ Example-Computing Binomial Coefficients
■ Application: Typesetting Problem

■ Example
■ Implementation

❍ Randomized Algorithms
■ Generating Random Numbers

■ The Minimal Standard Random Number Generator
■ Implementation

■ Random Variables
■ A Simple Random Variable
■ Uniformly Distributed Random Variables
■ Exponentially Distributed Random Variables

■ Monte Carlo Methods
■ Example-Computing

■ Simulated Annealing
■ Example-Balancing Scales

❍ Exercises
❍ Projects

● Sorting Algorithms and Sorters
❍ Basics
❍ Sorting and Sorters

■ Abstract Sorters
■ Sorter Class Hierarchy

❍ Insertion Sorting
■ Straight Insertion Sort

■ Implementation

http://www.brpreiss.com/books/opus6/html/page10.html (13 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Average Running Time
■ Binary Insertion Sort

❍ Exchange Sorting
■ Bubble Sort
■ Quicksort

■ Implementation
■ Running Time Analysis

■ Worst-Case Running Time
■ Best-Case Running Time

■ Average Running Time
■ Selecting the Pivot

❍ Selection Sorting
■ Straight Selection Sorting

■ Implementation
■ Sorting with a Heap

■ Implementation
■ Building the Heap

■ Running Time Analysis
■ The Sorting Phase

❍ Merge Sorting
■ Implementation
■ Merging
■ Two-Way Merge Sorting
■ Running Time Analysis

❍ A Lower Bound on Sorting
❍ Distribution Sorting

■ Bucket Sort
■ Implementation

■ Radix Sort
■ Implementation

❍ Performance Data
❍ Exercises
❍ Projects

● Graphs and Graph Algorithms
❍ Basics

■ Directed Graphs
■ Terminology
■ More Terminology

http://www.brpreiss.com/books/opus6/html/page10.html (14 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Directed Acyclic Graphs
■ Undirected Graphs
■ Terminology
■ Labeled Graphs
■ Representing Graphs

■ Adjacency Matrices
■ Sparse vs. Dense Graphs
■ Adjacency Lists

❍ Implementing Graphs
■ Vertices

■ Enumerators
■ Edges
■ Graphs and Digraphs

■ Accessors and Mutators
■ Enumerators
■ Graph Traversals

■ Directed Graphs
■ Abstract Graphs
■ Implementing Undirected Graphs

■ Using Adjacency Matrices
■ Using Adjacency Lists

■ Comparison of Graph Representations
■ Space Comparison
■ Time Comparison

❍ Graph Traversals
■ Depth-First Traversal

■ Implementation
■ Running Time Analysis

■ Breadth-First Traversal
■ Implementation
■ Running Time Analysis

■ Topological Sort
■ Implementation
■ Running Time Analysis

■ Graph Traversal Applications:
Testing for Cycles and Connectedness

■ Connectedness of an Undirected Graph
■ Connectedness of a Directed Graph

http://www.brpreiss.com/books/opus6/html/page10.html (15 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ Testing Strong Connectedness
■ Testing for Cycles in a Directed Graph

❍ Shortest-Path Algorithms
■ Single-Source Shortest Path

■ Dijkstra's Algorithm
■ Data Structures for Dijkstra's Algorithm
■ Implementation
■ Running Time Analysis

■ All-Pairs Source Shortest Path
■ Floyd's Algorithm
■ Implementation
■ Running Time Analysis

❍ Minimum-Cost Spanning Trees
■ Constructing Spanning Trees
■ Minimum-Cost Spanning Trees
■ Prim's Algorithm

■ Implementation
■ Kruskal's Algorithm

■ Implementation
■ Running Time Analysis

❍ Application: Critical Path Analysis
■ Implementation

❍ Exercises
❍ Projects

● C# and Object-Oriented Programming
❍ Variables

■ Value Types
■ References Types

■ Null References
❍ Parameter Passing

■ Pass By Value
■ Passing By Reference

■ The Trade-off
■ In and Out Parameters
■ Passing Reference Types

❍ Objects and Classes
■ Class Members: Fields and Methods
■ Constructors

http://www.brpreiss.com/books/opus6/html/page10.html (16 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

Contents

■ The No-Arg Constructor
■ Properties and Accessors

■ Member Access Control
■ Operator Overloading

❍ Nested Classes
❍ Inheritance and Polymorphism

■ Derivation and Inheritance
■ Derivation and Access Control

■ Polymorphism
■ Interfaces
■ Abstract Methods and Abstract Classes
■ Method Resolution
■ Abstract Classes and Concrete Classes
■ Algorithmic Abstraction

■ Multiple Inheritance
■ Run-Time Type Information and Casts

❍ Exceptions
● Class Hierarchy Diagrams
● Character Codes
● References
● Index

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page10.html (17 of 17) [2002-11-17 ｿﾀﾈﾄ 11:01:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Index

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Index

o
seebig oh, seelittle oh

seeEuler's constant

seeomega

seetheta

seelambda
abstract algorithms

Tree Traversals
abstract class

Class Hierarchy, Class Hierarchy, Abstract Classes and Concrete
abstract data type

Foundational Data Structures, Abstract Data Types
abstract method

Class Hierarchy
abstract property

Class Hierarchy
abstract solver

Abstract Backtracking Solvers
abstract sorter

Sorting and Sorters
access path

Inserting Items into an
accessor

DynamicArray Properties, DynamicArray Properties, get get, set set
activation record

The Basic Axioms
activity-node graph

Application: Critical Path Analysis
actual parameter

Pass By Value
acyclic

http://www.brpreiss.com/books/opus6/html/page622.html (1 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

http://www.brpreiss.com/books/opus6/index.html

Index

directed graph
Directed Acyclic Graphs

adapter
PreorderInorder, and Postorder , PreorderInorder, and Postorder

address
Abstract Data Types

adjacency lists
Adjacency Lists

adjacency matrix
Adjacency Matrices

adjacent
Terminology

ADT
seeabstract data type

algorithmic abstraction
Algorithmic Abstraction

ancestor
More Terminology
proper

More Terminology
and

UnionIntersection, and Difference
annealing

Simulated Annealing
annealing schedule

Simulated Annealing
arc

directed
Terminology

undirected
Undirected Graphs

ArgumentException
Extract Method

arithmetic series
About Arithmetic Series Summation

arithmetic series summation
An Example-Geometric Series Summation, About Arithmetic Series Summation

arity
N-ary Trees

array
Foundational Data Structures

http://www.brpreiss.com/books/opus6/html/page622.html (2 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

asoperator
Run-Time Type Information and

ASCII
Character String Keys

association
Searchable Containers

asymptotic behavior
Asymptotic Notation

attributes
Abstract Data Types

AVL balance condition
AVL Search Trees

AVL rotation
Balancing AVL Trees

AVL tree
Basics

B-Tree
B-Trees, B-Trees

Bachmann, P.
An Asymptotic Upper Bound-Big

backtracking algorithms
Backtracking Algorithms

bag
Projects, Multisets

balance condition
AVL Search Trees, B-Trees
AVL

AVL Search Trees
base class

Class Hierarchy, Derivation and Inheritance
big oh

An Asymptotic Upper Bound-Big
tightness

Tight Big Oh Bounds, More Notation-Theta and Little
tightness

Tight Big Oh Bounds, More Notation-Theta and Little
transitive property

Properties of Big Oh
binary digit

Binomial Queues
binary heap

http://www.brpreiss.com/books/opus6/html/page622.html (3 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Sorting with a Heap
binary operator

Applications
binary search

Locating Items in an , Example-Binary Search
binary search tree

Binary Search Trees, Binary Search Trees
binary tree

Binary Trees, Binary Trees
complete

Complete Trees
binding

Abstract Data Types, Variables
binomial

Binomial Trees
binomial coefficient

Binomial Trees
bit

Binomial Queues
Boolean

and
UnionIntersection, and Difference

or
UnionIntersection, and Difference

bound
Abstract Data Types

boxing value types
Wrappers for Value Types

branch-and-bound
Branch-and-Bound Solvers

breadth-first spanning tree
Constructing Spanning Trees

breadth-first traversal
Applications, Applications, Breadth-First Traversal, Example-Balancing Scales, Breadth-First
Traversal

brute-force algorithms
Brute-Force and Greedy Algorithms

bubble sort
Bubble Sort

bucket sort
Example-Bucket Sort

http://www.brpreiss.com/books/opus6/html/page622.html (4 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

buckets
Example-Bucket Sort

byte
The Basic Axioms

C# programming language
Abstract Data Types

C++ programming language
Abstract Data Types

carry
Merging Binomial Queues

cast operator
Run-Time Type Information and

ceiling function
About Harmonic Numbers

central limit theorem
Exercises

chained scatter table
Chained Scatter Table

child
Applications, Terminology

circular list
Singly-Linked Lists, Doubly-Linked and Circular Lists

class
Objects and Classes

clock frequency
A Simplified Model of

clock period
A Simplified Model of

coalesce
Chained Scatter Table

cocktail shaker sort
Exercises

coefficient
binomial

Binomial Trees
collapsing find

Collapsing Find
column-major order

Exercises
commensurate

elements

http://www.brpreiss.com/books/opus6/html/page622.html (5 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Sorted Lists, Basics
elements

Sorted Lists, Basics
functions

More Big Oh Fallacies , More Big Oh Fallacies
functions

More Big Oh Fallacies , More Big Oh Fallacies
compact

The Fragmentation Problem
compaction

Mark-and-Compact Garbage Collection
complement

Exercises
complete N-ary tree

Complete N-ary Trees
complete binary tree

Complete Trees, Sorting with a Heap
complex numbers

Class Members: Fields and
component

connected
Connectedness of an Undirected

compound statement
Rules For Big Oh

concrete class
Class Hierarchy, Abstract Classes and Concrete

conjunction
SetsMultisets, and Partitions

connected
undirected graph

Connectedness of an Undirected
connected component

Connectedness of an Undirected , Exercises
conquer

seedivide
constant

Conventions for Writing Big
constructor

Constructors
default no-arg

The No-Arg Constructor

http://www.brpreiss.com/books/opus6/html/page622.html (6 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

no-arg
The No-Arg Constructor

ContainerEmptyException
First and Last Properties

coordinates
polar

Properties and Accessors
counted do loop

Rules For Big Oh
critical activity

Application: Critical Path Analysis
critical path

Application: Critical Path Analysis
critical path analysis

Application: Critical Path Analysis
cubic

Conventions for Writing Big
cycle

More Terminology
negative cost

Single-Source Shortest Path
simple

More Terminology
dangling pointer

What is Garbage?
dangling reference

What is Garbage?
data ordering property

M-Way Search Trees
database

Associations
decision tree

A Lower Bound on
declaration

Class Hierarchy
default no-arg constructor

The No-Arg Constructor
defragment

The Fragmentation Problem
degree

Applications

http://www.brpreiss.com/books/opus6/html/page622.html (7 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

in
Terminology

out
Terminology

delegate
Garbage Collection and the

dense graph
Sparse vs. Dense Graphs

depth
More Terminology

depth-first spanning tree
Constructing Spanning Trees

depth-first traversal
Example-Balancing Scales, Depth-First Traversal

deque
StacksQueues, and Deques, Deques

derivation
Class Hierarchy, Derivation and Inheritance

derivative
Applications

derived class
Derivation and Inheritance

descendant
More Terminology
proper

More Terminology
difference

SetsMultisets, and Partitions, Basics, UnionIntersection, and Difference
symmetric

Exercises
differentiation

Applications
digit

binary
Binomial Queues

digraph
seedirected graph

Dijkstra's algorithm
Dijkstra's Algorithm

directed acyclic graph
Directed Acyclic Graphs

http://www.brpreiss.com/books/opus6/html/page622.html (8 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

directed arc
Terminology

directed graph
Directed Graphs

discrete event simulation
Discrete Event Simulation

disjunction
SetsMultisets, and Partitions

distribution sorting
Distribution Sorting

distribution sorts
Sorter Class Hierarchy

divide and conquer
Top-Down Algorithms: Divide-and-Conquer

division method of hashing
Division Method

double
The Basic Axioms

double hashing
Double Hashing

double rotation
Double Rotations

double-ended queue
Deques

doubly-linked list
Doubly-Linked and Circular Lists

dual
Application: Critical Path Analysis

dynamic binding
Abstract Data Types

dynamic programming
Bottom-Up Algorithms: Dynamic
Programming

earliest event time
Application: Critical Path Analysis

edge
Applications, Terminology
emanate

Terminology
incident

Terminology

http://www.brpreiss.com/books/opus6/html/page622.html (9 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

element
SetsMultisets, and Partitions

emanate
Terminology

enumerated type
Value Types

enumeration
Projects

enumerator
Containers

equivalence classes
Applications

equivalence of trees
Comparing Trees

equivalence relation
Applications, Kruskal's Algorithm

Euler's constant
About Harmonic Numbers, Solving The Recurrence-Telescoping, Average Running Time

Euler, Leonhard
Binomial Trees

Eulerian walk
Exercises

evaluation stack
Postfix Notation

event-node graph
Application: Critical Path Analysis

exception
First and Last Properties, Extract Method

exception handler
Exceptions

exceptions
Exceptions

exchange sorting
Exchange Sorting

exchange sorts
Sorter Class Hierarchy

exclusive or
Character String Keys, Character String Keys

exponent
Floating-Point Keys

exponential

http://www.brpreiss.com/books/opus6/html/page622.html (10 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Conventions for Writing Big
exponential cooling

Simulated Annealing
exponential distribution

Exponentially Distributed Random Variables
expression tree

Expression Trees
extend

Abstract Methods and Abstract
external node

N-ary Trees
external path length

Unsuccessful Search
factorial

Analyzing Recursive Methods
feasible solution

Brute-Force Algorithm
Fibonacci hashing method

Fibonacci Hashing
Fibonacci number

Fibonacci Hashing, AVL Search Trees
Fibonacci numbers

Example-Fibonacci Numbers, Example-Computing Fibonacci Numbers
closed-form expression

Example-Fibonacci Numbers
generalized

Example-Generalized Fibonacci Numbers
field

Variables, Class Members: Fields and
FIFO

Queues
fifo-in, first-out

Queues
find

collapsing
Collapsing Find

floor function
About Harmonic Numbers

Floyd's algorithm
Floyd's Algorithm

forest

http://www.brpreiss.com/books/opus6/html/page622.html (11 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Binomial Queues, Binomial Queues, Implementing a Partition using
formal parameter

Pass By Value
Fortran

Abstract Data Types
foundational data structure

Foundational Data Structures
fully connected graph

Exercises
garbage

What is Garbage?
garbage collection

What is Garbage?
mark-and-compact

Mark-and-Compact Garbage Collection
mark-and-sweep

Mark-and-Sweep Garbage Collection
reference counting

Reference Counting Garbage Collection
stop-and-copy

Stop-and-Copy Garbage Collection
Gauss, Karl Friedrich

Binomial Trees
generalized Fibonacci numbers

Example-Generalized Fibonacci Numbers
geometric series

About Geometric Series Summation
geometric series summation

An Example-Geometric Series Summation, Example-Geometric Series Summation Again, About
Geometric Series Summation, Example-Geometric Series Summation Yet

get accessor
Properties and Accessors

golden ratio
Fibonacci Hashing

graph
connectedness

Connectedness of an Undirected
dense

Sparse vs. Dense Graphs
directed

Directed Graphs

http://www.brpreiss.com/books/opus6/html/page622.html (12 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

directed acyclic
Directed Acyclic Graphs

labeled
Labeled Graphs

sparse
Sparse vs. Dense Graphs

traversal
Graph Traversals

undirected
Undirected Graphs

graph theory
Graphs and Graph Algorithms

handle
Handles

harmonic number
Average Running Times, About Harmonic Numbers, Average Case Analysis, Solving The
Recurrence-Telescoping, Average Running Time

harmonic series
About Harmonic Numbers

hash function
Keys and Hash Functions, Keys and Hash Functions

hash table
Hash Tables

hashing
division method

Division Method
Fibonacci method

Fibonacci Hashing
middle-square method

Middle Square Method
multiplication method

Multiplication Method
head

Singly-Linked Lists
heap

Basics, Garbage Collection and the
heapify

Sorting with a Heap
heapsort

Sorting with a Heap
height

http://www.brpreiss.com/books/opus6/html/page622.html (13 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

of a node in a tree
More Terminology

of a tree
More Terminology

heuristic
Depth-FirstBranch-and-Bound Solver

hierarchy
Trees

Horner's rule
Another Example-Horner's Rule, Example-Geometric Series Summation Again, Character String
Keys

IComparable interface
C# Objects and the

IEnumerable interface
Enumerable Collections and Enumerators

IEnumerator interface
Enumerable Collections and Enumerators

implement
Abstract Methods and Abstract

implementation
Class Hierarchy

implements
Class Hierarchy

in parameter
In and Out Parameters

in-degree
Terminology, Topological Sort

in-place sorting
Insertion Sorting, Selection Sorting

incident
Terminology

increment
Generating Random Numbers

indexer
DynamicArray Indexers, Finding the Position of , Inserting and Accessing Items

infix
Applications

infix notation
Infix Notation

inheritance
Derivation and Inheritance

http://www.brpreiss.com/books/opus6/html/page622.html (14 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

single
Derivation and Inheritance

inorder traversal
Inorder Traversal, Traversing a Search Tree
M-way tree

Traversing a Search Tree
insertion sorting

Insertion Sorting
straight

Straight Insertion Sort
insertion sorts

Sorter Class Hierarchy
integral type

Integral Keys
interface

Class Hierarchy, Class Hierarchy, Interfaces
internal node

N-ary Trees
internal path length

Unsuccessful Search
complete binary tree

Complete Trees
internal path length of a tree

Successful Search
Internet domain name

Character String Keys
intersection

SetsMultisets, and Partitions, Basics, UnionIntersection, and Difference
interval

search
Locating Items in an

inverse modulo W
Multiplication Method

inversion
Average Running Time

is operator
Run-Time Type Information and

isomorphic
Alternate Representations for Trees

isomorphic trees
Exercises

http://www.brpreiss.com/books/opus6/html/page622.html (15 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

iterative algorithm
Example-Fibonacci Numbers

key
Associations, Keys and Hash Functions

keyed data
Using Associations

knapsack problem
Example-0/1 Knapsack Problem

Kruskal's algorithm
Kruskal's Algorithm

L'Hôpital's rule
About Logarithms, About Logarithms

l-value
Abstract Data Types

labeled graph
Labeled Graphs

lambda
seeload factor

last-in, first-out
Stacks

latest event time
Application: Critical Path Analysis

leaf
Terminology

leaf node
N-ary Trees

least-significant-digit-first radix sorting
Radix Sort

left subtree
Binary Trees, M-Way Search Trees

leftist tree
Leftist Trees

level
More Terminology

level-order
Complete N-ary Trees

level-order traversal
Applications

lexicographic order
Array Subscript Calculations

lexicographic ordering

http://www.brpreiss.com/books/opus6/html/page622.html (16 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Radix Sort
lexicographically precede

Radix Sort
lifetime

Abstract Data Types, Abstract Data Types, Variables
LIFO

Stacks
limit

Properties of Big Oh
linear

Conventions for Writing Big
linear congruential random number generator

Generating Random Numbers
linear probing

Linear Probing
linear search

Yet Another Example-Finding the
linked list

Foundational Data Structures
list

Ordered Lists and Sorted
little oh

More Notation-Theta and Little
live

Mark-and-Sweep Garbage Collection
LL rotation

Single Rotations
in a B-tree

Removing Items from a
load factor

Average Case Analysis
local variable

Variables
log squared

Conventions for Writing Big
logarithm

Conventions for Writing Big
long

The Basic Axioms
loop

More Terminology

http://www.brpreiss.com/books/opus6/html/page622.html (17 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

loose asymptotic bound
More Notation-Theta and Little

LR rotation
Double Rotations

 ukasiewicz, Jan
Applications

M-way search tree
M-Way Search Trees

mantissa
Floating-Point Keys

many-to-one mapping
Keys and Hash Functions

mark-and-compact garbage collection
Mark-and-Compact Garbage Collection

mark-and-sweep garbage collection
Mark-and-Sweep Garbage Collection

matrix
Matrices
addition

Matrices
adjacency

Adjacency Matrices
multiplication

Matrices
sparse

Adjacency Matrices
max-heap

Sorting with a Heap
median

Selecting the Pivot
median-of-three pivot selection

Selecting the Pivot
memory leak

What is Garbage?
merge sort

Example-Merge Sorting
merge sorting

Merge Sorting
merge sorts

Sorter Class Hierarchy
mergeable priority queue

http://www.brpreiss.com/books/opus6/html/page622.html (18 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Basics
merging nodes in a B-tree

Removing Items from a
Mersenne primes

The Minimal Standard Random
method

Class Members: Fields and
middle-square hashing method

Middle Square Method
min heap

Basics
minimal subgraph

Minimum-Cost Spanning Trees
minimum spanning tree

Minimum-Cost Spanning Trees
mixed linear congruential random number generator

Generating Random Numbers
modulus

Generating Random Numbers
Monte Carlo methods

Monte Carlo Methods
MSIL

HashingHash Tables, and
multi-dimensional array

Multi-Dimensional Arrays
multiplication hashing method

Multiplication Method
multiplicative linear congruential random number generator

Generating Random Numbers
multiset

Multisets
mutator

Properties and Accessors
N-ary tree

N-ary tree
N-ary Trees

N-queens problem
N-queens problem

Exercises
name

Abstract Data Types, Abstract Data Types, Abstract Data Types, Variables

http://www.brpreiss.com/books/opus6/html/page622.html (19 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Nary tree
textbf

negative cost cycle
Single-Source Shortest Path

nested class
Nested Classes

nested struct
Implementation

Newton, Isaac.
Binomial Trees

no-arg constructor
The No-Arg Constructor
default

The No-Arg Constructor
node

Applications, Basics, N-ary Trees, Binary Trees, Terminology
non-recursive algorithm

Example-Fibonacci Numbers
normalize

Generating Random Numbers
null path length

Leftist Trees, Leftist Trees
null reference

Null References
object-oriented programming

Abstract Data Types
object-oriented programming language

Abstract Data Types
objective function

Brute-Force Algorithm
odd-even transposition sort

Exercises
omega

An Asymptotic Lower Bound-Omega
open addressing

Scatter Table using Open
operator overloading

Operator Overloading
operator precedence

Applications
optimal binary search tree

http://www.brpreiss.com/books/opus6/html/page622.html (20 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Exercises
or

UnionIntersection, and Difference
ordered list

Ordered Lists and Sorted
ordered tree

N-ary Trees, Binary Trees
ordinal number

Positions of Items in
oriented tree

N-ary Trees
out parameter

In and Out Parameters
out-degree

Terminology
overloading operators

Operator Overloading
override

Derivation and Inheritance, Derivation and Inheritance
parameter passing

Parameter Passing
parent

Applications, Terminology
parentheses

Applications
partial order

Comparing Sets
partition

Partitions, Kruskal's Algorithm
Pascal

Abstract Data Types
Pascal's triangle

Example-Computing Binomial Coefficients
Pascal, Blaise

Example-Computing Binomial Coefficients
pass-by-reference

Parameter Passing
pass-by-value

Parameter Passing
path

Terminology

http://www.brpreiss.com/books/opus6/html/page622.html (21 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

access
Inserting Items into an

path length
external

Unsuccessful Search
internal

Unsuccessful Search
weighted

Shortest-Path Algorithms
perfect binary tree

Searching a Binary Tree, AVL Search Trees
period

Generating Random Numbers
pivot

Quicksort
pointer

Projects, References Types
polar coordinates

Properties and Accessors
Polish notation

Applications
polymorphism

Class Hierarchy, Polymorphism
polynomial

About Polynomials, About Polynomials Again
postcondition

Inserting Items in a
postorder traversal

Postorder Traversal
power set

Array and Bit-Vector Sets
precede lexicographically

Radix Sort
precondition

Inserting Items in a
predecessor

Fields, More Terminology
prefix notation

Prefix Notation
preorder traversal

Preorder Traversal

http://www.brpreiss.com/books/opus6/html/page622.html (22 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

prepend
Prepend Method

Prim's algorithm
Prim's Algorithm

primary clustering
Linear Probing

prime
relatively

Multiplication Method
priority queue

mergeable
Basics

probability density function
Exponentially Distributed Random Variables

probe sequence
Scatter Table using Open

proper subset
Comparing Sets

proper superset
Comparing Sets

pruning a solution space
Branch-and-Bound Solvers

pseudorandom
Generating Random Numbers

quadratic
Conventions for Writing Big

quadratic probing
Quadratic Probing

queue
StacksQueues, and Deques

quicksort
Quicksort

r-value
Abstract Data Types

radix sorting
Radix Sort

random number generator
linear congruential

Generating Random Numbers
mixed linear congruential

Generating Random Numbers

http://www.brpreiss.com/books/opus6/html/page622.html (23 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

multiplicative linear congruential
Generating Random Numbers

random numbers
Generating Random Numbers

random variable
Random Variables

rank
Union by Height or

realizes
Class Hierarchy

record
Abstract Data Types

recurrence relation
Analyzing Recursive Methods

recursive algorithm
Analyzing Recursive Methods, Example-Fibonacci Numbers

ref parameter
In and Out Parameters

reference
null

Null References
reference count

Reference Counting Garbage Collection
reference counting garbage collection

Reference Counting Garbage Collection
reference type

Variables, References Types
reflexive

Applications
relation

equivalence
Applications

relatively prime
Multiplication Method

repeated substitution
Solving Recurrence Relations-Repeated Substitution

Reverse-Polish notation
Applications

right subtree
Binary Trees

RL rotation

http://www.brpreiss.com/books/opus6/html/page622.html (24 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Double Rotations
root

Basics, Mark-and-Sweep Garbage Collection
rotation

AVL
Balancing AVL Trees

double
Double Rotations

LL
Single Rotations, Removing Items from a

LL
Single Rotations, Removing Items from a

LR
Double Rotations

RL
Double Rotations

RR
Single Rotations, Removing Items from a

RR
Single Rotations, Removing Items from a

single
Double Rotations

row-major order
Array Subscript Calculations

RPN
seeReverse-Polish notation

RR rotation
Single Rotations
in a B-tree

Removing Items from a
RTTI

seerun-time type information
run-time type information

Run-Time Type Information and
sbyte

The Basic Axioms
scales

Example-Balancing Scales
scatter tables

Scatter Tables
scope

http://www.brpreiss.com/books/opus6/html/page622.html (25 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Abstract Data Types, Abstract Data Types, Variables
search interval

Locating Items in an
search tree

M-way
M-Way Search Trees

binary
Binary Search Trees

seed
Generating Random Numbers

selection sorting
Selection Sorting

selection sorts
Sorter Class Hierarchy

sentinel
Singly-Linked Lists, Adjacency Matrices

separate chaining
Separate Chaining

set
SetsMultisets, and Partitions

set accessor
Properties and Accessors

sibling
Terminology

sign
Floating-Point Keys

significant
Floating-Point Keys

simple cycle
More Terminology

simple type
Value Types

simulated annealing
Simulated Annealing

simulation time
Discrete Event Simulation

single inheritance
Derivation and Inheritance

single rotation
Double Rotations

single-ended queue

http://www.brpreiss.com/books/opus6/html/page622.html (26 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Queues
singleton

Exercises, Implementation
singly-linked list

Doubly-Linked and Circular Lists
size

Abstract Data Types
slack time

Application: Critical Path Analysis
slide

Handles
solution space

Example-Balancing Scales
solver

Abstract Backtracking Solvers
sort

topological
Topological Sort

sorted list
Ordered Lists and Sorted , Sorted Lists, Basics

sorter
Sorting and Sorters

sorting
in place

Selection Sorting
in-place

Insertion Sorting
sorting algorithm

bucket sort
Example-Bucket Sort

sorting by distribution
Distribution Sorting

sorting by exchanging
Exchange Sorting

sorting by insertion
Insertion Sorting

sorting by merging
Merge Sorting

sorting by selection
Selection Sorting

source

http://www.brpreiss.com/books/opus6/html/page622.html (27 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

Exercises
spanning tree

Minimum-Cost Spanning Trees
breadth-first

Constructing Spanning Trees
depth-first

Constructing Spanning Trees
minimum

Minimum-Cost Spanning Trees
sparse graph

Sparse vs. Dense Graphs
sparse matrix

Adjacency Matrices
specializes

Class Hierarchy
stable sorts

Basics
stack

Stacks
stack frame

The Basic Axioms
state

Discrete Event Simulation
static binding

Abstract Data Types
Stirling numbers

Partitions, Partitions
stop-and-copy garbage collection

Stop-and-Copy Garbage Collection
straight insertion sorting

Straight Insertion Sort
straight selection sorting

Straight Selection Sorting
string literal

Wrappers for Value Types
strongly connected

Connectedness of a Directed
struct type

Value Types
subgraph

Minimum-Cost Spanning Trees

http://www.brpreiss.com/books/opus6/html/page622.html (28 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

minimal
Minimum-Cost Spanning Trees

subset
Comparing Sets
proper

Comparing Sets
subtraction

SetsMultisets, and Partitions
subtree

Applications
successor

Fields, More Terminology
superset

Comparing Sets
proper

Comparing Sets
symbol table

HashingHash Tables, and , Applications
symmetric

Applications
symmetric difference

Exercises
tail

Singly-Linked Lists, Singly-Linked Lists
telescoping

Solving The Recurrence-Telescoping, Running Time of Divide-and-Conquer
temperature

Simulated Annealing
tertiary tree

N-ary Trees
theta

More Notation-Theta and Little
throw

Exceptions
tight asymptotic bound

Tight Big Oh Bounds
time

simulation
Discrete Event Simulation

topological sort
Topological Sort

http://www.brpreiss.com/books/opus6/html/page622.html (29 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

total order
Basics
binary trees

Comparing Trees
transitive

Sorted Lists, Applications, Basics
transpose

Matrices
traversal

Tree Traversals, Example-Balancing Scales, Graph Traversals
breadth-first

Breadth-First Traversal, Breadth-First Traversal
breadth-first

Breadth-First Traversal, Breadth-First Traversal
depth-first

Depth-First Traversal
inorder

Inorder Traversal, Traversing a Search Tree
inorder

Inorder Traversal, Traversing a Search Tree
postorder

Postorder Traversal
preorder

Preorder Traversal
tree

Basics
N-ary

N-ary Trees
binary

Binary Trees
equivalence

Comparing Trees
expression

Expression Trees
height

More Terminology
internal path length

Successful Search
leftist

Leftist Trees
ordered

http://www.brpreiss.com/books/opus6/html/page622.html (30 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

N-ary Trees, Binary Trees
ordered

N-ary Trees, Binary Trees
oriented

N-ary Trees
search

seesearch tree
tertiary

N-ary Trees
traversal

Tree Traversals
tree traversal

Applications
type

Abstract Data Types, Variables, Variables
enumerated

Value Types
reference

References Types
simple

Value Types
struct

Value Types
ulong

The Basic Axioms
undirected arc

Undirected Graphs
undirected graph

Undirected Graphs
Unicode

Character String Keys
Unicode character set

Example
Unicode escape

Example
uniform distribution

Spreading Keys Evenly
uniform hashing model

Average Case Analysis
union

SetsMultisets, and Partitions, Basics, UnionIntersection, and Difference

http://www.brpreiss.com/books/opus6/html/page622.html (31 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

Index

union by rank
Union by Height or

union by size
Union by Size

universal set
SetsMultisets, and Partitions, Kruskal's Algorithm

unsafe
Projects

unsorted list
Basics

value
Abstract Data Types, Associations, Variables

value type
Wrappers for Value Types, Variables

variable
Variables
local

Variables
Venn diagram

Alternate Representations for Trees, SetsMultisets, and Partitions
vertex

Terminology
visibility

Abstract Data Types
visitor

Containers
weakly connected

Connectedness of a Directed
weighted path length

Shortest-Path Algorithms
word size

Middle Square Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page622.html (32 of 32) [2002-11-17 ｿﾀﾈﾄ 11:01:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Introduction

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Introduction

● What This Book Is About
● Object-Oriented Design
● Object Hierarchies and Design Patterns
● The Features of C# You Need to Know
● How This Book Is Organized

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page11.html [2002-11-17 ｿﾀﾈﾄ 11:01:31]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Acknowledgments

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Acknowledgments
Insert acknowledgements here.

Waterloo, Canada

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page9.html [2002-11-17 ｿﾀﾈﾄ 11:01:32]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Outline

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Outline

This book presents material identified in the Computing Curricula 1991 report of the ACM/IEEE-CS
Joint Curriculum Task Force[45]. The book specifically addresses the following knowledge units: AL1:
Basic Data structures, AL2: Abstract Data Types, AL3: Recursive Algorithms, AL4: Complexity
Analysis, AL6: Sorting and Searching, and AL8: Problem-Solving Strategies. The breadth and depth of
coverage is typical of what should appear in the second or third year of an undergraduate program in
computer science/computer engineering.

In order to analyze a program, it is necessary to develop a model of the computer. Chapter develops
several models and illustrates with examples how these models predict performance. Both average-case
and worst-case analyses of running time are considered. Recursive algorithms are discussed and it is
shown how to solve a recurrence using repeated substitution. This chapter also reviews arithmetic and
geometric series summations, Horner's rule and the properties of harmonic numbers.

Chapter introduces asymptotic (big-oh) notation and shows by comparing with Chapter that the

results of asymptotic analysis are consistent with models of higher fidelity. In addition to , this

chapter also covers other asymptotic notations (, , and) and develops the asymptotic

properties of polynomials and logarithms.

Chapter introduces the foundational data structures--the array and the linked list. Virtually all the
data structures in the rest of the book can be implemented using either one of these foundational
structures. This chapter also covers multi-dimensional arrays and matrices.

Chapter deals with abstraction and data types. It presents the recurring design patterns used
throughout the text as well a unifying framework for the data structures presented in the subsequent
chapters. In particular, all of the data structures are viewed as abstract containers.

Chapter discusses stacks, queues, and deques. This chapter presents implementations based on both
foundational data structures (arrays and linked lists). Applications for stacks and queues are presented.

Chapter covers ordered lists, both sorted and unsorted. In this chapter, a list is viewed as a searchable
container. Again several applications of lists are presented.

http://www.brpreiss.com/books/opus6/html/page6.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:33]

http://www.brpreiss.com/books/opus6/index.html

Outline

Chapter introduces hashing and the notion of a hash table. This chapter addresses the design of
hashing functions for the various basic data types as well as for the abstract data types described in

Chapter . Both scatter tables and hash tables are covered in depth and analytical performance results
are derived.

Chapter introduces trees and describes their many forms. Both depth-first and breadth-first tree
traversals are presented. Completely generic traversal algorithms based on the use of the visitor design
pattern are presented, thereby illustrating the power of algorithmic abstraction. This chapter also shows
how trees are used to represent mathematical expressions and illustrates the relationships between
traversals and the various expression notations (prefix, infix, and postfix).

Chapter addresses trees as searchable containers. Again, the power of algorithmic abstraction is
demonstrated by showing the relationships between simple algorithms and balancing algorithms. This
chapter also presents average case performance analyses and illustrates the solution of recurrences by
telescoping.

Chapter presents several priority queue implementations, including binary heaps, leftist heaps, and
binomial queues. In particular this chapter illustrates how a more complicated data structure (leftist heap)
extends an existing one (tree). Discrete-event simulation is presented as an application of priority queues.

Chapter covers sets and multisets. Also covered are partitions and disjoint set algorithms. The latter
topic illustrates again the use of algorithmic abstraction.

Garbage collection is discussed in Chapter . This is a topic that is not found often in texts of this sort.
However, because the C# language relies on garbage collection, it is important to understand how it
works and how it affects the running times of programs.

Chapter surveys a number of algorithm design techniques. Included are brute-force and greedy
algorithms, backtracking algorithms (including branch-and-bound), divide-and-conquer algorithms, and
dynamic programming. An object-oriented approach based on the notion of an abstract solution space
and an abstract solver unifies much of the discussion. This chapter also covers briefly random number
generators, Monte Carlo methods, and simulated annealing.

Chapter covers the major sorting algorithms in an object-oriented style based on the notion of an
abstract sorter. Using the abstract sorter illustrates the relationships between the various classes of
sorting algorithm and demonstrates the use of algorithmic abstractions.

Finally, Chapter presents an overview of graphs and graph algorithms. Both depth-first and breadth-
first graph traversals are presented. Topological sort is viewed as yet another special kind of traversal.

http://www.brpreiss.com/books/opus6/html/page6.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:33]

Outline

Generic traversal algorithms based on the visitor design pattern are presented, once more illustrating
algorithmic abstraction. This chapter also covers various shortest path algorithms and minimum-
spanning-tree algorithms.

At the end of each chapter is a set of exercises and a set of programming projects. The exercises are
designed to consolidate the concepts presented in the text. The programming projects generally require
the student to extend the implementation given in the text.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page6.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:33]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Suggested Course Outline

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Suggested Course Outline

This text may be used in either a one semester or a two semester course. The course which I teach at
Waterloo is a one-semester course that comprises 36 lecture hours on the following topics:

1. Review of the fundamentals of programming in C# and an overview of object-oriented

programming with C#. (Appendix). [4 lecture hours].

2. Models of the computer, algorithm analysis, and asymptotic notation (Chapters and). [4
lecture hours].

3. Foundational data structures, abstraction, and abstract data types (Chapters and). [4 lecture
hours].

4. Stacks, queues, ordered lists, and sorted lists (Chapters and). [3 lecture hours].

5. Hashing, hash tables, and scatter tables (Chapter). [3 lecture hours].

6. Trees and search trees (Chapters and). [6 lecture hours].

7. Heaps and priority queues (Chapter). [3 lecture hours].

8. Algorithm design techniques (Chapter). [3 lecture hours].

9. Sorting algorithms and sorters (Chapter). [3 lecture hours].

10. Graphs and graph algorithms (Chapter). [3 lecture hours].

Depending on the background of students, a course instructor may find it necessary to review features of
the C# language. For example, an understanding of inner classes is required for the implementation of
enumerations. Similarly, students need to understand the workings of classes, interfaces, and

inheritance in order to understand the unifying class hierarchy discussed in Chapter .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page7.html [2002-11-17 ｿﾀﾈﾄ 11:01:33]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Online Course Materials

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Online Course Materials

Additional material supporting this book can be found on the world-wide web at the URL:

http://www.pads.uwaterloo.ca/Bruno.Preiss/books/opus6

In particular, you will find there the source code for all the program fragments in this book as well as an
errata list.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page8.html [2002-11-17 ｿﾀﾈﾄ 11:01:34]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

What This Book Is About

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

What This Book Is About
This book is about the fundamentals of data structures and algorithms--the basic elements from which
large and complex software artifacts are built. To develop a solid understanding of a data structure
requires three things: First, you must learn how the information is arranged in the memory of the
computer. Second, you must become familiar with the algorithms for manipulating the information
contained in the data structure. And third, you must understand the performance characteristics of the
data structure so that when called upon to select a suitable data structure for a particular application, you
are able to make an appropriate decision.

This book also illustrates object-oriented design and it promotes the use of common, object-oriented
design patterns. The algorithms and data structures in the book are presented in the C# programming
language. Virtually all the data structures are presented in the context of a single class hierarchy. This
commitment to a single design allows the programs presented in the later chapters to build upon the
programs presented in the earlier chapters.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page12.html [2002-11-17 ｿﾀﾈﾄ 11:01:34]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Object-Oriented Design

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Object-Oriented Design
Traditional approaches to the design of software have been either data oriented or process oriented. Data-
oriented methodologies emphasize the representation of information and the relationships between the
parts of the whole. The actions which operate on the data are of less significance. On the other hand,
process-oriented design methodologies emphasize the actions performed by a software artifact; the data
are of lesser importance.

It is now commonly held that object-oriented methodologies are more effective for managing the
complexity which arises in the design of large and complex software artifacts than either data-oriented or
process-oriented methodologies. This is because data and processes are given equal importance. Objects
are used to combine data with the procedures that operate on that data. The main advantage of using
objects is that they provide both abstraction and encapsulation.

● Abstraction
● Encapsulation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page13.html [2002-11-17 ｿﾀﾈﾄ 11:01:34]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstraction

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstraction

Abstraction can be thought of as a mechanism for suppressing irrelevant details while at the same time
emphasizing relevant ones. An important benefit of abstraction is that it makes it easier for the
programmer to think about the problem to be solved.

For example, procedural abstraction lets the software designer think about the actions to be performed
without worrying about how those actions are implemented. Similarly, data abstraction lets the software
designer think about the objects in a program and the interactions between those objects without having
to worry about how those objects are implemented.

There are also many different levels of abstraction. The lower the levels of abstraction expose more of
the details of an implementation whereas the higher levels hide more of the details.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page14.html [2002-11-17 ｿﾀﾈﾄ 11:01:35]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Encapsulation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Encapsulation

Encapsulation aids the software designer by enforcing information hiding. Objects encapsulate data and
the procedures for manipulating that data. In a sense, the object hides the details of the implementation
from the user of that object.

There are two very real benefits from encapsulation--conceptual and physical independence. Conceptual
independence results from hiding the implementation of an object from the user of that object.
Consequently, the user is prevented from doing anything with an object that depends on the
implementation of that object. This is desirable because it allows the implementation to be changed
without requiring the modification of the user's code.

Physical independence arises from the fact that the behavior of an object is determined by the object
itself. The behavior of an object is not determined by some external entity. As a result, when we perform
an operation on an object, there are no unwanted side-effects.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page15.html [2002-11-17 ｿﾀﾈﾄ 11:01:35]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Object Hierarchies and Design Patterns

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Object Hierarchies and Design Patterns
There is more to object-oriented programming than simply encapsulating in an object some data and the
procedures for manipulating those data. Object-oriented methods deal also with the classification of
objects and they address the relationships between different classes of objects.

The primary facility for expressing relationships between classes of objects is derivation--new classes
can be derived from existing classes. What makes derivation so useful is the notion of inheritance.
Derived classes inherit the characteristics of the classes from which they are derived. In addition,
inherited functionality can be overridden and additional functionality can be defined in a derived class.

A feature of this book is that virtually all the data structures are presented in the context of a single class
hierarchy. In effect, the class hierarchy is a taxonomy of data structures. Different implementations of a
given abstract data structure are all derived from the same abstract base class. Related base classes are in
turn derived from classes that abstract and encapsulate the common features of those classes.

In addition to dealing with hierarchically related classes, experienced object-oriented designers also
consider very carefully the interactions between unrelated classes. With experience, a good designer
discovers the recurring patterns of interactions between objects. By learning to use these patterns, your
object-oriented designs will become more flexible and reusable.

Recently, programmers have to started name the common design patterns. In addition, catalogs of the
common patterns are now being compiled and published[15].

The following object-oriented design patterns are used throughout this text:

● Containers
● Enumerators
● Visitors
● Cursors
● Adapters

http://www.brpreiss.com/books/opus6/html/page16.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:35]

http://www.brpreiss.com/books/opus6/index.html

Object Hierarchies and Design Patterns

● Singletons

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page16.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Containers

A container is an object that holds within it other objects. A container has a capacity, it can be full or
empty, and objects can be inserted and withdrawn from a container. In addition, a searchable container
is a container that supports efficient search operations.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page17.html [2002-11-17 ｿﾀﾈﾄ 11:01:36]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enumerators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enumerators

An enumerator provides a means by which the objects within a container can be accessed one-at-a-time.
All enumerators share a common interface, and hide the underlying implementation of the container from
the user of that container.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page18.html [2002-11-17 ｿﾀﾈﾄ 11:01:36]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Visitors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Visitors

A visitor represents an operation to be performed on all the objects within a container. All visitors share a
common interface, and thereby hide the operation to be performed from the container. At the same time,
visitors are defined separately from containers. Thus, a particular visitor can be used with any container.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page19.html [2002-11-17 ｿﾀﾈﾄ 11:01:37]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Cursors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Cursors

A cursor represents the position of an object in an ordered container. It provides the user with a way to
specify where an operation is to be performed without having to know how that position is represented.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page20.html [2002-11-17 ｿﾀﾈﾄ 11:01:37]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Adapters

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Adapters

An adapter converts the interface of one class into the interface expected by the user of that class. This
allows a given class with an incompatible interface to be used in a situation where a different interface is
expected.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page21.html [2002-11-17 ｿﾀﾈﾄ 11:01:37]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Singletons

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Singletons

A singleton is a class of which there is only one instance. The class ensures that there only one instance
is created and it provides a way to access that instance.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page22.html [2002-11-17 ｿﾀﾈﾄ 11:01:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Features of C# You Need to Know

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Features of C# You Need to Know
This book does not teach the basics of programming. It is assumed that you have taken an introductory
course in programming and that you have learned how to write a program in C#. That is, you have
learned the rules of C# syntax and you have learned how to put together C# statements in order to solve
rudimentary programming problems. The following paragraphs describe more fully aspects of
programming in C# with which you should be familiar.

● Variables
● Value Types and Reference Types
● Parameter Passing
● Classes and Objects
● Inheritance
● Interfaces and Polymorphism
● Other Features

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page23.html [2002-11-17 ｿﾀﾈﾄ 11:01:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Variables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Variables

You must be very comfortable with the notion of a variable as an abstraction for a region of a memory. A
variable has attributes such as name, type, value, address size, lifetime, and scope.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page24.html [2002-11-17 ｿﾀﾈﾄ 11:01:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Value Types and Reference Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Value Types and Reference Types

You must understand the differences between the value types and reference types. In particular, you
should understand the subtle differences which arise when assigning and comparing reference types.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page25.html [2002-11-17 ｿﾀﾈﾄ 11:01:39]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Parameter Passing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Parameter Passing

There are two parameter passing mechanisms in C#, pass-by-value and pass-by-reference. It is essential
that you understand how these mechanisms work both for value types and for reference types.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page26.html [2002-11-17 ｿﾀﾈﾄ 11:01:39]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Classes and Objects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Classes and Objects

A C# class encapsulates a set of values and a set of operations. The values are represented by the fields
of the class and the operations by the methods of the class. In C# a class definition introduces a new type.
The instances of a class type are called objects.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page27.html [2002-11-17 ｿﾀﾈﾄ 11:01:39]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inheritance

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inheritance

In C# one class may be derived from another. The derived class inherits all the fields and the methods of
the base class or classes. In addition, inherited methods can be overridden in the derived class and new
fields and functions can be defined. You should understand how the compiler determines the code to
execute when a particular method is called.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page28.html [2002-11-17 ｿﾀﾈﾄ 11:01:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Interfaces and Polymorphism

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Interfaces and Polymorphism

A C# interface comprises a set of method prototypes. Different classes can implement the same interface.
In this way, C# facilities polymorphism--the idea that a given abstraction can have many different forms.
You should understand how interfaces are used together with abstract classes and inheritance to support
polymorphism.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page29.html [2002-11-17 ｿﾀﾈﾄ 11:01:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Other Features

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Other Features

This book makes use of other C# features such as exceptions and run-time type information. You can
learn about these topics as you work your way through the book.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page30.html [2002-11-17 ｿﾀﾈﾄ 11:01:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

How This Book Is Organized

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

How This Book Is Organized

● Models and Asymptotic Analysis
● Foundational Data Structures
● Abstract Data Types and the Class Hierarchy
● Data Structures
● Algorithms

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page31.html [2002-11-17 ｿﾀﾈﾄ 11:01:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Models and Asymptotic Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Models and Asymptotic Analysis

To analyze the performance of an algorithm, we need to have a model of the computer. Chapter
presents a series of three models, each one less precise but easier to use than its predecessor. These
models are a similar, in that they require a careful accounting of the operations performed by an
algorithm.

Next, Chapter presents asymptotic analysis. This is an extremely useful mathematical technique
because it simplifies greatly the analysis of algorithms. Asymptotic analysis obviates the need for a
detailed accounting of the operations performed by an algorithm, yet at the same time gives a very
general result.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page32.html [2002-11-17 ｿﾀﾈﾄ 11:01:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Foundational Data Structures

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Foundational Data Structures

When implementing a data structure, we must decide first whether to use an array or a linked list as the
underlying organizational technique. For this reason, the array and the linked list are called foundational

data structures. Chapter also covers multi-dimensional arrays and matrices.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page33.html [2002-11-17 ｿﾀﾈﾄ 11:01:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Data Types and the Class Hierarchy

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Data Types and the Class Hierarchy

Chapter introduces the notion of an abstract data type. All of the data structures discussed in this

book are presented as instances of various abstract data types. Chapter also introduces the class
hierarchy as well as the various related concepts such as enumerators and visitors.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page34.html [2002-11-17 ｿﾀﾈﾄ 11:01:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Data Structures

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Data Structures

Chapter covers stacks, queues, and deques. Ordered lists and sorted lists are presented in Chapter .

The concept of hashing is introduced in Chapter . This chapter also covers the design of hash
functions for a number of different object types. Finally, hash tables and scatter tables are presented.

Trees and search trees are presented in Chapters and . Trees are one of the most important non-

linear data structures. Chapter also covers the various tree traversals, including depth-first traversal

and breadth-first traversal. Chapter presents priority queues and Chapter covers sets, multisets,
and partitions.

An essential element of the C# run-time system is the pool of dynamically allocated storage. Chapter
presents a number of different approaches for implementing garbage collection, in the process illustrating
the actual costs associated with dynamic storage allocation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page35.html [2002-11-17 ｿﾀﾈﾄ 11:01:42]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Algorithms

The last three chapters of the book focus on algorithms, rather than data structures. Chapter is an
overview of various algorithmic patterns. By introducing the notion of an abstract problem solver, we

show how many of the patterns are related. Chapter uses a similar approach to present various sorting
algorithms. That is, we introduce the notion of an abstract sorter and show how the various sorting
algorithms are related.

Finally, Chapter gives a brief overview of the subject of graphs an graph algorithms. This chapter

brings together various algorithmic techniques from Chapter with the class hierarchy discussed in the
earlier chapters.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page36.html [2002-11-17 ｿﾀﾈﾄ 11:01:42]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Algorithm Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Algorithm Analysis

What is an algorithm and why do we want to analyze one? An algorithm is ``a...step-by-step procedure
for accomplishing some end.''[10] An algorithm can be given in many ways. For example, it can be
written down in English (or French, or any other ``natural'' language). However, we are interested in
algorithms which have been precisely specified using an appropriate mathematical formalism--such as a
programming language.

Given such an expression of an algorithm, what can we do with it? Well, obviously we can run the
program and observe its behavior. This is not likely to be very useful or informative in the general case.
If we run a particular program on a particular computer with a particular set of inputs, then all know is
the behavior of the program in a single instance. Such knowledge is anecdotal and we must be careful
when drawing conclusions based upon anecdotal evidence.

In order to learn more about an algorithm, we can ``analyze'' it. By this we mean to study the
specification of the algorithm and to draw conclusions about how the implementation of that algorithm--
the program--will perform in general. But what can we analyze? We can

● determine the running time of a program as a function of its inputs;
● determine the total or maximum memory space needed for program data;
● determine the total size of the program code;
● determine whether the program correctly computes the desired result;
● determine the complexity of the program--e.g., how easy is it to read, understand, and modify;

and,
● determine the robustness of the program--e.g., how well does it deal with unexpected or erroneous

inputs?

In this text, we are concerned primarily with the running time. We also consider the memory space
needed to execute the program. There are many factors that affect the running time of a program. Among
these are the algorithm itself, the input data, and the computer system used to run the program. The
performance of a computer is determined by

● the hardware:
❍ processor used (type and speed),

http://www.brpreiss.com/books/opus6/html/page37.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:43]

http://www.brpreiss.com/books/opus6/index.html

Algorithm Analysis

❍ memory available (cache and RAM), and
❍ disk available;

● the programming language in which the algorithm is specified;
● the language compiler/interpreter used; and
● the computer operating system software.

A detailed analysis of the performance of a program which takes all of these factors into account is a
very difficult and time-consuming undertaking. Furthermore, such an analysis is not likely to have lasting
significance. The rapid pace of change in the underlying technologies means that results of such analyses
are not likely to be applicable to the next generation of hardware and software.

In order to overcome this shortcoming, we devise a ``model'' of the behavior of a computer with the goals
of simplifying the analysis while still producing meaningful results. The next section introduces the first
in a series of such models.

● A Detailed Model of the Computer
● A Simplified Model of the Computer
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page37.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Detailed Model of the Computer

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Detailed Model of the Computer

In this section we develop a detailed model of the running time performance of C# programs. The model
developed is independent of the underlying hardware and system software. Rather than analyze the
performance of a particular, arbitrarily chosen physical machine, we model the execution of a C#

program on the ``common language runtime'' (see Figure).

A direct consequence of this approach is that we lose some fidelity--the resulting model cannot predict
accurately the performance of all possible hardware/software systems. On the other hand, the resulting
model is still rather complex and rich in detail.

http://www.brpreiss.com/books/opus6/html/page38.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:43]

http://www.brpreiss.com/books/opus6/index.html

A Detailed Model of the Computer

Figure: C# system overview.

● The Basic Axioms
● A Simple Example-Arithmetic Series Summation

http://www.brpreiss.com/books/opus6/html/page38.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:43]

A Detailed Model of the Computer

● Array Subscripting Operations
● Another Example-Horner's Rule
● Analyzing Recursive Methods
● Yet Another Example-Finding the Largest Element of an Array
● Average Running Times
● About Harmonic Numbers
● Best-Case and Worst-Case Running Times
● The Last Axiom

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page38.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Basic Axioms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Basic Axioms

The running time performance of the common language runtime is given by a set of axioms which we
shall now postulate. The first axiom addresses the running time of simple variable references:

Axiom The time required to fetch an operand from memory is a constant, , and the
time required to store a result in memory is a constant, .

According to Axiom , the assignment statement

y = x;

has running time . That is, the time taken to fetch the value of variable x is and the
time taken to store the value in variable y is .

We shall apply Axiom to manifest constants too: The assignment

y = 1;

also has running time . To see why this should be the case, consider that the constant
typically needs to be stored in the memory of the computer, and we can expect the cost of fetching it to
be the same as that of fetching any other operand.

The next axiom addresses the running time of simple arithmetic operations:

Axiom The times required to perform elementary arithmetic operations, such as addition,
subtraction, multiplication, division, and comparison, are all constants. These times are
denoted by , , , , and , respectively.

According to Axiom , all the simple operations can be accomplished in a fixed amount of time. In
order for this to be feasible, the number of bits used to represent a value must be fixed. In C#, the number
of bits needed to represent a number range from 8 (for byte and sbyte) to 64 (for long , ulong
and double). It is precisely because the number of bits used is fixed that we can say that the running
times are also fixed. If arbitrarily large numbers are allowed, then the basic arithmetic operations can
take an arbitrarily long amount of time.

http://www.brpreiss.com/books/opus6/html/page39.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:44]

http://www.brpreiss.com/books/opus6/index.html

The Basic Axioms

By applying Axioms and , we can determine that the running time of a statement like

y = y + 1;

is . This is because we need to fetch two operands, y and 1; add them; and, store

the result back in y.

C# syntax provides several alternative ways to express the same computation:

y += 1;
++y;
y++;

We shall assume that these alternatives require exactly the same running time as the original statement.

The third basic axiom addresses the method call/return overhead:

Axiom The time required to call a method is a constant, , and the time required to
return from a method is a constant, .

When a method is called, certain housekeeping operations need to be performed. Typically this includes
saving the return address so that program execution can resume at the correct place after the call, saving
the state of any partially completed computations so that they may be resumed after the call, and the
allocation of a new execution context (stack frame or activation record) in which the called method can
be evaluated. Conversely, on the return from a method, all of this work is undone. While the method
call/return overhead may be rather large, nevertheless it entails a constant amount of work.

In addition to the method call/return overhead, additional overhead is incurred when parameters are
passed to the method:

Axiom The time required to pass an argument to a method is the same as the time required
to store a value in memory, .

The rationale for making the overhead associated with parameter passing the same as the time to store a
value in memory is that the passing of an argument is conceptually the same as assignment of the actual
parameter value to the formal parameter of the method.

According to Axiom , the running time of the statement

y = F(x);

http://www.brpreiss.com/books/opus6/html/page39.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:44]

The Basic Axioms

would be , where is the running time of method F for input x.

The first of the two stores is due to the passing of the parameter x to the method F; the second arises
from the assignment to the variable y.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page39.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Simple Example-Arithmetic Series Summation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Simple Example-Arithmetic Series Summation

In this section we apply Axioms , and to the analysis of the running time of a program to
compute the following simple arithmetic series summation

The algorithm to compute this summation is given in Program .

Program: Program to compute .

The executable statements in Program comprise lines 5-8. Table gives the running times of each
of these statements.

statement time code

5 result = 0

http://www.brpreiss.com/books/opus6/html/page40.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:45]

http://www.brpreiss.com/books/opus6/index.html

A Simple Example-Arithmetic Series Summation

6a i = 1

6b i <= n

6c ++i

7 result += i

8 return result

TOTAL

Table:Computing the running time of Program .

Note that the for statement on line 6 of Program has been split across three lines in Table . This
is because we analyze the running time of each of the elements of a for statement separately. The first
element, the initialization code, is executed once before the first iteration of the loop. The second
element, the loop termination test, is executed before each iteration of the loop begins. Altogether, the
number of times the termination test is executed is one more than the number of times the loop body is
executed. Finally, the third element, the loop counter increment step, is executed once per loop iteration.

Summing the entries in Table we get that the running time, T(n), of Program is

where and .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page40.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Subscripting Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Subscripting Operations

We now address the question of accessing the elements of an array of data. In general, the elements of a
one-dimensional array are stored in consecutive memory locations. Therefore, given the address of the
first element of the array, a simple addition suffices to determine the address of an arbitrary element of
the array:

Axiom The time required for the address calculation implied by an array subscripting
operation, e.g., a[i], is a constant, . This time does not include the time to compute
the subscript expression, nor does it include the time to access (i.e., fetch or store) the array
element.

By applying Axiom , we can determine that the running time for the statement

y = a[i];

is . Three operand fetches are required: the first to fetch a, the base address of

the array; the second to fetch i, the index into the array; and, the third to fetch array element a[i].

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page41.html [2002-11-17 ｿﾀﾈﾄ 11:01:46]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Another Example-Horner's Rule

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Another Example-Horner's Rule

In this section we apply Axioms , , and to the analysis of the running time of a program
which evaluates the value of a polynomial. That is, given the n+1 coefficients , and a
value x, we wish to compute the following summation

The usual way to evaluate such polynomials is to use Horner's rule , which is an algorithm to compute
the summation without requiring the computation of arbitrary powers of x. The algorithm to compute this

summation is given in Program . Table gives the running times of each of the executable

statements in Program .

Program: Program to compute using Horner's rule.

http://www.brpreiss.com/books/opus6/html/page42.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:47]

http://www.brpreiss.com/books/opus6/index.html

Another Example-Horner's Rule

statement time

5

6a

6b

6c

7

8

TOTAL

Table:Computing the running time of Program .

Summing the entries in Table we get that the running time, T(n), of Program is

where and

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page42.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Analyzing Recursive Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Analyzing Recursive Methods

In this section we analyze the performance of a recursive algorithm which computes the factorial of a
number. Recall that the factorial of a non-negative integer n, written n!, is defined as

However, we can also define factorial recursively as follows

It is this latter definition which leads to the algorithm given in Program to compute the factorial of n.

Table gives the running times of each of the executable statements in Program .

Program: Recursive program to compute n!.

http://www.brpreiss.com/books/opus6/html/page43.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:48]

http://www.brpreiss.com/books/opus6/index.html

Analyzing Recursive Methods

time

statement n=0 n>0

5

6 --

8 --

Table:Computing the running time of Program .

Notice that we had to analyze the running time of the two possible outcomes of the conditional test on
line 5 separately. Clearly, the running time of the program depends on the result of this test.

Furthermore, the method Factorial calls itself recursively on line 8. Therefore, in order to write down

the running time of line 8, we need to know the running time, , of Factorial. But this is precisely

what we are trying to determine in the first place! We escape from this catch-22 by assuming that we

already know what is the function , and that we can make use of that function to determine the

running time of line 8.

By summing the columns in Table we get that the running time of Program is

where and

. This kind of equation is called a

recurrence relation because the function is defined in terms of itself recursively.

● Solving Recurrence Relations-Repeated Substitution

http://www.brpreiss.com/books/opus6/html/page43.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:48]

Analyzing Recursive Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page43.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Solving Recurrence Relations-Repeated Substitution

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Solving Recurrence Relations-Repeated Substitution

In this section we present a technique for solving a recurrence relation such as Equation called

repeated substitution . The basic idea is this: Given that , then we may also

write , provided n>1. Since T(n-1) appears in the right-hand side of the

former equation, we can substitute for it the entire right-hand side of the latter. By repeating this process
we get

The next step takes a little intuition: We must try to discern the pattern which is emerging. In this case it
is obvious:

where . Of course, if we have doubts about our intuition, we can always check our result by

induction:

extbfProof (By Induction). Base Case Clearly the formula is correct for k=1, since

.

Inductive Hypothesis Assume that for . By this assumption

Note also that using the original recurrence relation we can write

http://www.brpreiss.com/books/opus6/html/page44.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:50]

http://www.brpreiss.com/books/opus6/index.html

Solving Recurrence Relations-Repeated Substitution

for . Substituting Equation in the right-hand side of Equation gives

Therefore, by induction on l, our formula is correct for all .

So, we have shown that , for . Now, if n was known, we would

repeat the process of substitution until we got T(0) on the right hand side. The fact that n is unknown
should not deter us--we get T(0) on the right hand side when n-k=0. That is, k=n. Letting k=n we get

where and

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page44.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Yet Another Example-Finding the Largest Element of an Array

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Yet Another Example-Finding the Largest Element
of an Array

In this section we consider the problem of finding the largest element of an array. That is, given an array
of n non-negative integers, , we wish to find

The straightforward way of solving this problem is to perform a linear search of the array. The linear

search algorithm is given in Program and the running times for the various statements are given in

Table .

Program: Linear search to find .

statement time

5

http://www.brpreiss.com/books/opus6/html/page45.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:51]

http://www.brpreiss.com/books/opus6/index.html

Yet Another Example-Finding the Largest Element of an Array

6a

6b

6c

7

8

9

Table:Computing the running time of Program

.

With the exception of line 8, the running times follow simply from Axioms , and . In particular,
note that the body of the loop is executed n-1 times. This means that the conditional test on line 7 is
executed n-1 times. However, the number of times line 8 is executed depends on the data in the array and
not just n.

If we consider that in each iteration of the loop body, the variable result contains the largest array
element seen so far, then line 8 will be executed in the iteration of the loop only if satisfies the
following

Thus, the running time of Program , , is a function not only of the number of elements in the

array, n, but also of the actual array values, . Summing the entries in Table we get

where

http://www.brpreiss.com/books/opus6/html/page45.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:51]

Yet Another Example-Finding the Largest Element of an Array

While this result may be correct, it is not terribly useful. In order to determine the running time of the
program we need to know the number of elements in the array, n, and we need to know the values of the
elements in the array, . Even if we know these data, it turns out that in order to

compute the running time of the algorithm, , we actually have to solve the

original problem!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page45.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:01:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Running Times

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Running Times

In the previous section, we found the function, , which gives the running time

of Program as a function both of number of inputs, n, and of the actual input values. Suppose instead

we are interested in a function which gives the running time on average for n inputs,

regardless of the values of those inputs. In other words, if we run Program , a large number of times
on a selection of random inputs of length n, what will the average running time be?

We can write the sum of the running times given in Table in the following form

where is the probability that line 8 of the program is executed. The probability is given by

That is, is the probability that the array entry, , is larger than the maximum of all the preceding
array entries, .

In order to determine , we need to know (or to assume) something about the distribution of input
values. For example, if we know a priori that the array passed to the method FindMaximum is ordered
from smallest to largest, then we know that . Conversely, if we know that the array is ordered

from largest to smallest, then we know that .

In the general case, we have no a priori knowledge of the distribution of the values in the input array. In
this case, consider the iteration of the loop. In this iteration is compared with the maximum of the i

values, preceding it in the array. Line 6 of Program is only executed if is the
largest of the i+1 values . All things being equal, we can say that this will happen with

http://www.brpreiss.com/books/opus6/html/page46.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:52]

http://www.brpreiss.com/books/opus6/index.html

Average Running Times

probability 1/(i+1). Thus

Substituting this expression for in Equation and simplifying the result we get

where , is the harmonic number .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page46.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Harmonic Numbers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Harmonic Numbers

The series is called the harmonic series , and the summation

gives rise to the series of harmonic numbers , , , As it turns out, harmonic numbers often creep

into the analysis of algorithms. Therefore, we should understand a little bit about how they behave.

A remarkable characteristic of harmonic numbers is that, even though as n gets large and the difference

between consecutive harmonic numbers gets arbitrarily small (), the series does not

converge! That is, does not exist. In other words, the summation goes off to

infinity, but just barely.

Figure helps us to understand the behavior of harmonic numbers. The smooth curve in this figure is

the function y=1/x. The descending staircase represents the function .

http://www.brpreiss.com/books/opus6/html/page47.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:01:54]

http://www.brpreiss.com/books/opus6/index.html

About Harmonic Numbers

Figure: Computing harmonic numbers.

Notice that the area under the staircase between 1 and n for any integer n>1 is given by

Thus, if we can determine the area under the descending staircase in Figure , we can determine the
values of the harmonic numbers.

As an approximation, consider the area under the smooth curve y=1/x:

Thus, is approximately for n>1.

If we approximate by , the error in this approximation is equal to the area between the two
curves. In fact, the area between these two curves is such an important quantity that it has its own

http://www.brpreiss.com/books/opus6/html/page47.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:01:54]

About Harmonic Numbers

symbol, , which is called Euler's constant . The following derivation indicates a way in which to
compute Euler's constant:

A program to compute Euler's constant on the basis of this derivation is given in Program . While this
is not necessarily the most accurate or most speedy way to compute Euler's constant, it does give the
correct result to six significant digits.

Program: Program to compute .

So, with Euler's constant in hand, we can write down an expression for the harmonic number:

where is the error introduced by the fact that is defined as the difference between the curves on the

interval , but we only need the difference on the interval [1,n]. As it turns out, it can be shown

http://www.brpreiss.com/books/opus6/html/page47.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:01:54]

About Harmonic Numbers

(but not here), that there exists a constant K such that for large enough values of n, .

Since the error term is less than 1/n, we can add 1/n to both sides of Equation and still have an error
which goes to zero as n gets large. Thus, the usual approximation for the harmonic number is

We now return to the question of finding the average running time of Program , which finds the

largest element of an array. We can now rewrite Equation to give

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page47.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:01:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Best-Case and Worst-Case Running Times

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Best-Case and Worst-Case Running Times

In Section we derived the average running time of Program which finds the largest element of an
array. In order to do this we had to determine the probability that a certain program statement is
executed. To do this, we made an assumption about the average input to the program.

The analysis can be significantly simplified if we simply wish to determine the worst case running time.

For Program , the worst-case scenario occurs when line 8 is executed in every iteration of the loop.
We saw that this corresponds to the case in which the input array is ordered from smallest to largest. In

terms of Equation , this occurs when . Thus, the worst-case running time is given by

Similarly, the best-case running time occurs when line 8 is never executed. This corresponds to the case
in which the input array is ordered from largest to smallest. This occurs when and best-case

running time is

In summary we have the following results for the running time of Program :

http://www.brpreiss.com/books/opus6/html/page48.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:55]

http://www.brpreiss.com/books/opus6/index.html

Best-Case and Worst-Case Running Times

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page48.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Last Axiom

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Last Axiom

In this section we state the last axiom needed for the detailed model of the common language runtime.
This axiom addresses the time required to create a new object instance:

Axiom The time required to create a new object instance using the new operator is a
constant, . This time does not include any time taken to initialize the object.

By applying Axioms , , and , we can determine that the running time of the statement

Int32 ref = new Int32(0);

is , where is the running time of the Int32

constructor.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page49.html [2002-11-17 ｿﾀﾈﾄ 11:01:56]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Simplified Model of the Computer

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Simplified Model of the Computer

The detailed model of the computer given in the previous section is based on a number of different
timing parameters-- , , , , , , , , , , and . While it is true that a
model with a large number of parameters is quite flexible and therefore likely to be a good predictor of
performance, keeping track of the all of the parameters during the analysis is rather burdensome.

In this section, we present a simplified model which makes the performance analysis easier to do. The
cost of using the simplified model is that it is likely to be a less accurate predictor of performance than
the detailed model.

Consider the various timing parameters in the detailed model. In a real machine, each of these parameters
is a multiple of the basic clock period of the machine. The clock frequency of a modern computer is
typically between 500 MHz and 2 GHz. Therefore, the clock period is typically between 0.5 and 2 ns. Let
the clock period of the machine be T. Then each of the timing parameters can be expressed as an integer
multiple of the clock period. For example, , where , .

The simplified model eliminates all of the arbitrary timing parameters in the detailed model. This is done
by making the following two simplifying assumptions:

● All timing parameters are expressed in units of clock cycles. In effect, T=1.
● The proportionality constant, k, for all timing parameters is assumed to be the same: k=1.

The effect of these two assumptions is that we no longer need to keep track of the various operations
separately. To determine the running time of a program, we simply count the total number of cycles
taken.

● An Example-Geometric Series Summation
● About Arithmetic Series Summation

http://www.brpreiss.com/books/opus6/html/page50.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:56]

http://www.brpreiss.com/books/opus6/index.html

A Simplified Model of the Computer

● Example-Geometric Series Summation Again
● About Geometric Series Summation
● Example-Computing Powers
● Example-Geometric Series Summation Yet Again

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page50.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

An Example-Geometric Series Summation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

An Example-Geometric Series Summation

In this section we consider the running time of a program to compute the following geometric series
summation . That is, given a value x and non-negative integer n, we wish to compute the summation

An algorithm to compute this summation is given in Program .

Program: Program to compute .

Table gives the running time, as predicted by the simplified model, for each of the executable

statements in Program .

http://www.brpreiss.com/books/opus6/html/page51.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:57]

http://www.brpreiss.com/books/opus6/index.html

An Example-Geometric Series Summation

statement time

5 2

6a 2

6b 3(n+2)

6c 4(n+1)

8 2(n+1)

9a 2(n+1)

9b

9c

10

11 4(n+1)

13 2

TOTAL

Table:Computing the running

time of Program .

In order to calculate the total cycle counts, we need to evaluate the two series summations

and . Both of these are arithmetic series summations . In the next section we show that the sum

of the series is n(n+1)/2. Using this result we can sum the cycle counts given in Table to

arrive at the total running time of cycles.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page51.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Arithmetic Series Summation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Arithmetic Series Summation

The series, , is an arithmetic series and the summation

is called the arithmetic series summation .

The summation can be solved as follows: First, we make the simple variable substitution i=n-j:

Note that the term in the first summation in Equation is independent of j. Also, the second summation

is identical to the left hand side. Rearranging Equation , and simplifying gives

http://www.brpreiss.com/books/opus6/html/page52.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:58]

http://www.brpreiss.com/books/opus6/index.html

About Arithmetic Series Summation

There is, of course, a simpler way to arrive this answer. Consider the series, , and

suppose n is even. The sum of the first and last element is n+1. So too is the sum of the second and
second-last element, and the third and third-last element, etc., and there are n/2 such pairs. Therefore,

.

And if n is odd, then , where n-1 is even. So we can use the previous result for to

get .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page52.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Geometric Series Summation Again

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Geometric Series Summation Again

In this example we revisit the problem of computing a geometric series summation . We have already

seen an algorithm to compute this summation in Section (Program). This algorithm was shown to

take cycles.

The problem of computing the geometric series summation is identical to that of computing the value of
a polynomial in which all of the coefficients are one. This suggests that we could make use of Horner's

rule as discussed in Section . An algorithm to compute a geometric series summation using Horner's

rule is given in Program .

Program: Program to compute using Horner's rule.

The executable statements in Program comprise lines 5-8. Table gives the running times, as given
by the simplified model, for each of these statements.

http://www.brpreiss.com/books/opus6/html/page53.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:59]

http://www.brpreiss.com/books/opus6/index.html

Example-Geometric Series Summation Again

statement time

5 2

6a 2

6b 3(n+2)

6c 4(n+1)

7 6(n+1)

8 2

TOTAL 13n+22

Table:Computing
the running time

of Program .

In Programs and we have seen two different algorithms to compute the same geometric series

summation. We determined the running time of the former to be cycles and of the

latter to be 13n+22 cycles. In particular, note that for all non-negative values of n,

. Hence, according to our simplified model of the computer,

Program , which uses Horner's rule, always runs faster than Program !

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page53.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:01:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Geometric Series Summation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Geometric Series Summation

The series, , is a geometric series and the summation

is called the geometric series summation .

The summation can be solved as follows: First, we make the simple variable substitution i=j-1:

Note that the summation which appears on the right is identical to the left hand side. Rearranging

Equation , and simplifying gives

http://www.brpreiss.com/books/opus6/html/page54.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:00]

http://www.brpreiss.com/books/opus6/index.html

About Geometric Series Summation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page54.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Computing Powers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Computing Powers

In this section we consider the running time to raise a number to a given integer power. That is, given a
value x and non-negative integer n, we wish to compute the . A naıve way to calculate would be to
use a loop such as

int result = 1;
for (int i = 0; i <= n; ++i)
 result *= x;

While this may be fine for small values of n, for large values of n the running time may become
prohibitive. As an alternative, consider the following recursive definition

For example, using Equation , we would determine as follows

which requires a total of five multiplication operations. Similarly, we would compute as follows

which requires a total of eight multiplication operations.

A recursive algorithm to compute based on the direct implementation of Equation is given in

Program . Table gives the running time, as predicted by the simplified model, for each of the

executable statements in Program .

http://www.brpreiss.com/books/opus6/html/page55.html (1 of 5) [2002-11-17 ｿﾀﾈﾄ 11:02:03]

http://www.brpreiss.com/books/opus6/index.html

Example-Computing Powers

Program: Program to compute .

time

statement n=0 n>0 n>0

n is even n is odd

5 3 3 3

6 2 -- --

7 -- 5 5

8 -- --

10 -- --

TOTAL 5

Table:Computing the running time of Program .

By summing the columns in Table we get the following recurrence for the running time of Program

http://www.brpreiss.com/books/opus6/html/page55.html (2 of 5) [2002-11-17 ｿﾀﾈﾄ 11:02:03]

Example-Computing Powers

As the first attempt at solving this recurrence, let us suppose that for some k>0. Clearly, since n

is a power of two, it is even. Therefore, .

For , Equation gives

This can be solved by repeated substitution:

The substitution stops when k=j. Thus,

Note that if , then . In this case, running time of Program is

.

The preceding result is, in fact, the best case--in all but the last two recursive calls of the method, n was

even. Interestingly enough, there is a corresponding worst-case scenario. Suppose for some

value of k>0. Clearly n is odd, since it is one less than which is a power of two and even. Now

consider :

http://www.brpreiss.com/books/opus6/html/page55.html (3 of 5) [2002-11-17 ｿﾀﾈﾄ 11:02:03]

Example-Computing Powers

Hence, is also odd!

For example, suppose n is 31 (). To compute , Program calls itself recursively to compute

, , , , and finally, --all but the last of which are odd powers of x.

For , Equation gives

Solving this recurrence by repeated substitution we get

The substitution stops when k=j. Thus,

Note that if , then . In this case, running time of Program is

.

Consider now what happens for an arbitrary value of n. Table shows the recursive calls made by

Program in computing for various values of n.

http://www.brpreiss.com/books/opus6/html/page55.html (4 of 5) [2002-11-17 ｿﾀﾈﾄ 11:02:03]

Example-Computing Powers

n powers computed recursively

1 1

2 2

3 2

4 3

5 3

6 3

7 3

8 4

Table:Recursive calls made in Program .

By inspection we determine that the number of recursive calls made in which the second argument is non-

zero is . Furthermore, depending on whether the argument is odd or even, each of these

calls contributes either 18 or 20 cycles. The pattern emerging in Table suggests that, on average just
as many of the recursive calls result in an even number as result in an odd one. The final call (zero

argument) adds another 5 cycles. So, on average, we can expect the running time of Program to be

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page55.html (5 of 5) [2002-11-17 ｿﾀﾈﾄ 11:02:03]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Geometric Series Summation Yet Again

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Geometric Series Summation Yet Again

In this example we consider the problem of computing a geometric series summation for the last time.

We have already seen two algorithms to compute this summation in Sections and (Programs

and).

An algorithm to compute a geometric series summation using the closed-form expression (Equation)

is given in Program . This algorithm makes use of Program to compute .

Program: Program to compute using the closed-form expression.

To determine the average running time of Program we will make use of Equation , which gives the
average running time for the Power method which is called on line 5. In this case, the arguments are x

and n+1, so the running time of the call to Power is . Adding to this the

additional work done on line 5 gives the average running time for Program :

The running times of the three programs which compute the geometric series summation presented in

this chapter are tabulated below in Table and are plotted for in Figure . The plot

shows that, according to our simplified model of the computer, Program has the best running time for

n<4. However as n increases, Program is clearly the fastest of the three and Program is the
slowest for all values of n.

http://www.brpreiss.com/books/opus6/html/page56.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:04]

http://www.brpreiss.com/books/opus6/index.html

Example-Geometric Series Summation Yet Again

program T(n)

Program

Program 13n+22

Program

Table:Running times of Programs ,

and .

Figure: Plot of running time vs. n for Programs , and .

http://www.brpreiss.com/books/opus6/html/page56.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:04]

Example-Geometric Series Summation Yet Again

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page56.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Determine the running times predicted by the detailed model of the computer given in Section

 for each of the following program fragments:

1. for (int i = 0; i < n; ++i)
 ++k;

2. for (int i = 1; i < n; i *= 2)
 ++k;

3. for (int i = n - 1; i != 0; i /= 2)
 ++k;

4. for (int i = 0; i < n; ++i)
 if (i % 2 == 0)
 ++k;

5. for (int i = 0; i < n; ++i)
 for (int j = 0; j < n; ++j)
 ++k;

6. for (int i = 0; i < n; ++i)
 for (int j = i; j < n; ++j)
 ++k;

7. for (int i = 0; i < n; ++i)
 for (int j = 0; j < i * i; ++j)
 ++k;

2. Repeat Exercise , this time using the simplified model of the computer given in Section .
3. Prove by induction the following summation formulas:

1.

http://www.brpreiss.com/books/opus6/html/page57.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:06]

http://www.brpreiss.com/books/opus6/index.html

Exercises

2.

3.

4. Evaluate each of the following series summations:

1.

2.

3.

4.

5. Show that , for . Hint: Let and show that

.

6. Show that . Hint: Let and show that the difference

 is (approximately) a geometric series summation.

7. Solve each of the following recurrences by repeated substitution:

1.

2.

3.

4.

5.

http://www.brpreiss.com/books/opus6/html/page57.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:06]

Exercises

6.

7.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page57.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Write a non-recursive method to compute the factorial of n according to Equation . Calculate

the running time predicted by the detailed model given in Section and the simplified model

given in Section .

2. Write a non-recursive method to compute according to Equation . Calculate the running

time predicted by the detailed model given in Section and the simplified model given in

Section .
3. Write a program that determines the values of the timing parameters of the detailed model (

, , , , , , , , , , and) for the machine on which it is
run.

4. Using the program written for Project , determine the timing parameters of the detailed model

for your computer. Then, measure the actual running times of Programs , and and

compare the measured results with those predicted by Equations , and (respectively).

5. Given a sequence of n integers, , and a small positive integer k, write an

algorithm to compute

without multiplication. Hint: Use Horner's rule and bitwise shifts.

6. Verify Equation experimentally as follows: Generate a large number of random sequences of

length n, . For each sequence, test the hypothesis that the probability that

 is larger than all its predecessors in the sequence is . (For a good source of

random numbers, see Section).

http://www.brpreiss.com/books/opus6/html/page58.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:07]

http://www.brpreiss.com/books/opus6/index.html

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page58.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Asymptotic Notation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Asymptotic Notation

Suppose we are considering two algorithms, A and B, for solving a given problem. Furthermore, let us
say that we have done a careful analysis of the running times of each of the algorithms and determined

them to be and , respectively, where n is a measure of the problem size. Then it should be

a fairly simple matter to compare the two functions and to determine which algorithm is

the best!

But is it really that simple? What exactly does it mean for one function, say , to be better than

another function, ? One possibility arises if we know the problem size a priori. For example,

suppose the problem size is and . Then clearly algorithm A is better than

algorithm B for problem size .

In the general case, we have no a priori knowledge of the problem size. However, if it can be shown,

say, that for all , then algorithm A is better than algorithm B regardless of the

problem size.

Unfortunately, we usually don't know the problem size beforehand, nor is it true that one of the functions
is less than or equal the other over the entire range of problem sizes. In this case, we consider the
asymptotic behavior of the two functions for very large problem sizes.

● An Asymptotic Upper Bound-Big Oh
● An Asymptotic Lower Bound-Omega
● More Notation-Theta and Little Oh
● Asymptotic Analysis of Algorithms
● Exercises
● Projects

http://www.brpreiss.com/books/opus6/html/page59.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:07]

http://www.brpreiss.com/books/opus6/index.html

Asymptotic Notation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page59.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

An Asymptotic Upper Bound-Big Oh

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

An Asymptotic Upper Bound-Big Oh
In 1892, P. Bachmann invented a notation for characterizing the asymptotic behavior of functions. His
invention has come to be known as big oh notation:

Definition (Big Oh) Consider a function f(n) which is non-negative for all integers

. We say that ``f(n) is big oh g(n),'' which we write f(n)=O(g(n)), if there exists an

integer and a constant c>0 such that for all integers , .

● A Simple Example
● Big Oh Fallacies and Pitfalls
● Properties of Big Oh
● About Polynomials
● About Logarithms
● Tight Big Oh Bounds
● More Big Oh Fallacies and Pitfalls
● Conventions for Writing Big Oh Expressions

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page60.html [2002-11-17 ｿﾀﾈﾄ 11:02:08]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Simple Example

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Simple Example

Consider the function f(n)=8n+128 shown in Figure . Clearly, f(n) is non-negative for all integers

. We wish to show that . According to Definition , in order to show this we

need to find an integer and a constant c>0 such that for all integers , .

It does not matter what the particular constants are--as long as they exist! For example, suppose we
choose c=1. Then

Since (n+8)>0 for all values of , we conclude that . That is, .

So, we have that for c=1 and , for all integers . Hence, .

Figure clearly shows that the function is greater than the function f(n)=8n+128 to the

right of n=16.

Of course, there are many other values of c and that will do. For example, c=2 and

 will do, as will c=4 and . (See Figure).

http://www.brpreiss.com/books/opus6/html/page61.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:09]

http://www.brpreiss.com/books/opus6/index.html

A Simple Example

Figure: Showing that .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page61.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:09]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Big Oh Fallacies and Pitfalls

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Big Oh Fallacies and Pitfalls

Unfortunately, the way we write big oh notation can be misleading to the naıve reader. This section
presents two fallacies which arise because of a misinterpretation of the notation.

Fallacy Given that and , then .

Consider the equations:

Clearly, it is reasonable to conclude that .

However, consider these equations:

It does not follow that . For example, and are both , but

they are not equal.

Fallacy If f(n)=O(g(n)), then .

Consider functions f, g, and h, such that f(n)=h(g(n)). It is reasonable to conclude that

 provided that is an invertible function. However, while we may write

f(n)=O(h(n)), the equation is nonsensical and meaningless. Big oh is not a

mathematical function, so it has no inverse!

The reason for these difficulties is that we should read the notation as ``f(n) is big oh n

squared'' not ``f(n) equals big oh of n squared.'' The equal sign in the expression does not really denote

http://www.brpreiss.com/books/opus6/html/page62.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:10]

http://www.brpreiss.com/books/opus6/index.html

Big Oh Fallacies and Pitfalls

mathematical equality! And the use of the functional form, , does not really mean that O is a

mathematical function!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page62.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Properties of Big Oh

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Properties of Big Oh

In this section we examine some of the mathematical properties of big oh. In particular, suppose we

know that and .

● What can we say about the asymptotic behavior of the sum of and ? (Theorems

and).

● What can we say about the asymptotic behavior of the product of and ? (Theorems

 and).

● How are and related when ? (Theorem).

The first theorem addresses the asymptotic behavior of the sum of two functions whose asymptotic
behaviors are known:

Theorem If and , then

extbfProof By Definition , there exist two integers, and and two constants and such that

 for and for .

Let and . Consider the sum for :

Thus, .

According to Theorem , if we know that functions and are and ,

http://www.brpreiss.com/books/opus6/html/page63.html (1 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

http://www.brpreiss.com/books/opus6/index.html

Properties of Big Oh

respectively, the sum is . The meaning of

 is this context is the function h(n) where for

integers all .

For example, consider the functions and . Then

Theorem helps us simplify the asymptotic analysis of the sum of functions by allowing us to drop the

 required by Theorem in certain circumstances:

Theorem If in which and are both non-negative

for all integers such that for some limit , then

.

extbfProof According to the definition of limits , the notation

means that, given any arbitrary positive value , it is possible to find a value such that for all

Thus, if we chose a particular value, say , then there exists a corresponding such that

http://www.brpreiss.com/books/opus6/html/page63.html (2 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

Properties of Big Oh

Consider the sum :

where . Thus, .

Consider a pair of functions and , which are known to be and ,

respectively. According to Theorem , the sum is .

However, Theorem says that, if exists, then the sum f(n) is simply

 which, by the transitive property (see Theorem below), is .

In other words, if the ratio asymptotically approaches a constant as n gets large, we can

say that is , which is often a lot simpler than .

Theorem is particularly useful result. Consider and .

From this we can conclude that . Thus, Theorem suggests

that the sum of a series of powers of n is , where m is the largest power of n in the summation.

http://www.brpreiss.com/books/opus6/html/page63.html (3 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

Properties of Big Oh

We will confirm this result in Section below.

The next theorem addresses the asymptotic behavior of the product of two functions whose asymptotic
behaviors are known:

Theorem If and , then

extbfProof By Definition , there exist two integers, and and two constants and such that

 for and for . Furthermore, by Definition ,

 and are both non-negative for all integers .

Let and . Consider the product for :

Thus, .

Theorem describes a simple, but extremely useful property of big oh. Consider the functions

 and . By Theorem , the

asymptotic behavior of the product is . That is, we are able to

determine the asymptotic behavior of the product without having to go through the gory details of

calculating that .

The next theorem is closely related to the preceding one in that it also shows how big oh behaves with
respect to multiplication.

Theorem If and is a function whose value is non-negative for

integers , then

extbfProof By Definition , there exist integers and constant such that for

http://www.brpreiss.com/books/opus6/html/page63.html (4 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

Properties of Big Oh

. Since is never negative,

Thus, .

Theorem applies when we multiply a function, , whose asymptotic behavior is known to be

, by another function . The asymptotic behavior of the result is simply

.

One way to interpret Theorem is that it allows us to do the following mathematical manipulation:

That is, Fallacy notwithstanding, we can multiply both sides of the ``equation'' by and the

``equality'' still holds. Furthermore, when we multiply by , we simply bring the

inside the .

The last theorem in this section introduces the transitive property of big oh:

Theorem (Transitive Property) If f(n)=O(g(n)) and g(n)=O(h(n)) then f(n)=O(h(n)).

extbfProof By Definition , there exist two integers, and and two constants and such that

 for and for .

Let and . Then

Thus, f(n)=O(h(n)).

http://www.brpreiss.com/books/opus6/html/page63.html (5 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

Properties of Big Oh

The transitive property of big oh is useful in conjunction with Theorem . Consider

which is clearly . If we add to the function , then by Theorem , the sum

 is because . That is,

. The combination of the fact that and the transitive

property of big oh, allows us to conclude that the sum is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page63.html (6 of 6) [2002-11-17 ｿﾀﾈﾄ 11:02:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Polynomials

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Polynomials

In this section we examine the asymptotic behavior of polynomials in n. In particular, we will see that as
n gets large, the term involving the highest power of n will dominate all the others. Therefore, the
asymptotic behavior is determined by that term.

Theorem Consider a polynomial in n of the form

where . Then .

extbfProof Each of the terms in the summation is of the form . Since n is non-negative, a particular

term will be negative only if . Hence, for each term in the summation, . Recall too

that we have stipulated that the coefficient of the largest power of n is positive, i.e., .

Note that for integers , for . Thus

http://www.brpreiss.com/books/opus6/html/page64.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:16]

http://www.brpreiss.com/books/opus6/index.html

About Polynomials

From Equation we see that we have found the constants and , such that for

all , . Thus, .

This property of the asymptotic behavior of polynomials is used extensively. In fact, whenever we have a

function, which is a polynomial in n, we

will immediately ``drop'' the less significant terms (i.e., terms involving powers of n which are less than

m), as well as the leading coefficient, , to write .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page64.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Logarithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Logarithms

In this section we determine the asymptotic behavior of logarithms. Interestingly, despite the fact that

 diverges as n gets large, for all integers . Hence, . Furthermore,

as the following theorem will show, raised to any integer power is still O(n).

Theorem For every integer , .

extbfProof This result follows immediately from Theorem and the observation that for all integers

,

This observation can be proved by induction as follows:

Base Case Consider the limit

for the case k=1. Using L'Hôpital's rule we see that

Inductive Hypothesis Assume that Equation holds for . Consider the case k=m+1.

Using L'Hôpital's rule we see that

http://www.brpreiss.com/books/opus6/html/page65.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:17]

http://www.brpreiss.com/books/opus6/index.html

About Logarithms

Therefore, by induction on m, Equation holds for all integers .

For example, using this property of logarithms together with the rule for determining the asymptotic

behavior of the product of two functions (Theorem), we can determine that since ,

then .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page65.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Tight Big Oh Bounds

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Tight Big Oh Bounds

Big oh notation characterizes the asymptotic behavior of a function by providing an upper bound on the
rate at which the function grows as n gets large. Unfortunately, the notation does not tell us how close the
actual behavior of the function is to the bound. That is, the bound might be very close (tight) or it might
be overly conservative (loose).

The following definition tells us what makes a bound tight, and how we can test to see whether a given
asymptotic bound is the best one available.

Definition (Tightness) Consider a function f(n)=O(g(n)). If for every function h(n) such
that f(n)=O(h(n)) it is also true that g(n)=O(h(n)), then we say that g(n) is a tight
asymptotic bound on f(n).

For example, consider the function f(n)=8n+128. In Section , it was shown that .

However, since f(n) is a polynomial in n, Theorem tells us that f(n)=O(n). Clearly O(n) is a tighter

bound on the asymptotic behavior of f(n) than is .

By Definition , in order to show that g(n)=n is a tight bound on f(n), we need to show that for every
function h(n) such that f(n)=O(h(n)), it is also true that g(n)=O(h(n)).

We will show this result using proof by contradiction: Assume that g(n) is not a tight bound for
f(n)=8n+128. Then there exists a function h(n) such that f(n)=8n+128=O(h(n)), but for which

. Since 8n+128=O(h(n)), by the definition of big oh there exist positive constants c

and such that for all .

Clearly, for all , . Therefore, . But then, by the definition of big

oh, we have the g(n)=O(h(n))--a contradiction! Therefore, the bound f(n)=O(n) is a tight bound.

http://www.brpreiss.com/books/opus6/html/page66.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:18]

http://www.brpreiss.com/books/opus6/index.html

Tight Big Oh Bounds

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page66.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

More Big Oh Fallacies and Pitfalls

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

More Big Oh Fallacies and Pitfalls

The purpose of this section is to dispel some common misconceptions about big oh. The next fallacy is
related to the selection of the constants c and used to show a big oh relation.

Fallacy Consider non-negative functions f(n), , and , such that

. Since for all integers if ,

then by Definition .

This fallacy often results from the following line of reasoning: Consider the function .

Let and . Then f(n) must be O(n), since for all . However, this

line of reasoning is false because according to Definition , c must be a positive constant, not a
function of n.

The next fallacy involves a misunderstanding of the notion of the asymptotic upper bound.

Fallacy Given non-negative functions , , , and , such that

, , and for all integers , ,

then .

This fallacy arises from the following line of reasoning. Consider the function and

. Since for all values of , we might be tempted to conclude that

. In fact, such a conclusion is erroneous. For example, consider and

. Clearly, the former is and the latter is . Clearly too, for

all values of !

The previous fallacy essentially demonstrates that while we may know how the asymptotic upper bounds
on two functions are related, we don't necessarily know, in general, the relative behavior of the two
bounded functions.

http://www.brpreiss.com/books/opus6/html/page67.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:20]

http://www.brpreiss.com/books/opus6/index.html

More Big Oh Fallacies and Pitfalls

This fallacy often arises in the comparison of the performance of algorithms. Suppose we are comparing
two algorithms, A and B, to solve a given problem and we have determined that the running times of

these algorithms are and , respectively. Fallacy

demonstrates that it is an error to conclude from the fact that for all that

algorithm A will solve the problem faster than algorithm B for all problem sizes.

But what about any one specific problem size? Can we conclude that for a given problem size, say ,
that algorithm A is faster than algorithm B? The next fallacy addresses this issue.

Fallacy Given non-negative functions , , , and , such that

, , and for all integers , ,

there exists an integer for which then .

This fallacy arises from a similar line of reasoning as the preceding one. Consider the function

 and . Since for all values of , we might be tempted to

conclude that there exists a value for which . Such a conclusion is erroneous. For

example, consider and . Clearly, the former is and the latter is

. Clearly too, since for all values of , there does not exist any value

 for which .

The final fallacy shows that not all functions are commensurate :

Fallacy Given two non-negative functions f(n) and g(n) then either f(n)=O(g(n)) or
g(n)=O(f(n)).

This fallacy arises from thinking that the relation is like and can be used to compare any two

functions. However, not all functions are commensurate. Consider the following functions:

http://www.brpreiss.com/books/opus6/html/page67.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:20]

More Big Oh Fallacies and Pitfalls

Clearly, there does not exist a constant c for which for any even integer n, since the g(n)

is zero and f(n) is not. Conversely, there does not exist a constant c for which for any

odd integer n, since the f(n) is zero and g(n) is not. Hence, neither f(n)=O(g(n)) nor g(n)=O(f(n)) is true.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page67.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Conventions for Writing Big Oh Expressions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Conventions for Writing Big Oh Expressions

Certain conventions have evolved which concern how big oh expressions are normally written:

● First, it is common practice when writing big oh expressions to drop all but the most significant

terms. Thus, instead of we simply write .

● Second, it is common practice to drop constant coefficients. Thus, instead of , we simply

write . As a special case of this rule, if the function is a constant, instead of, say O(1024),

we simply write O(1).

Of course, in order for a particular big oh expression to be the most useful, we prefer to find a tight

asymptotic bound (see Definition). For example, while it is not wrong to write ,

we prefer to write f(n)=O(n), which is a tight bound.

Certain big oh expressions occur so frequently that they are given names. Table lists some of the
commonly occurring big oh expressions and the usual name given to each of them.

expression name

O(1) constant

 logarithmic

 log squared

O(n) linear

 n log n

 quadratic

http://www.brpreiss.com/books/opus6/html/page68.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:21]

http://www.brpreiss.com/books/opus6/index.html

Conventions for Writing Big Oh Expressions

 cubic

 exponential

Table:The names of
common big oh

expressions.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page68.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

An Asymptotic Lower Bound-Omega

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

An Asymptotic Lower Bound-Omega
The big oh notation introduced in the preceding section is an asymptotic upper bound. In this section, we
introduce a similar notation for characterizing the asymptotic behavior of a function, but in this case it is
a lower bound.

Definition (Omega) Consider a function f(n) which is non-negative for all integers

. We say that ``f(n) is omega g(n),'' which we write , if there

exists an integer and a constant c>0 such that for all integers , .

The definition of omega is almost identical to that of big oh. The only difference is in the comparison--

for big oh it is ; for omega, it is . All of the same conventions and caveats

apply to omega as they do to big oh.

● A Simple Example
● About Polynomials Again

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page69.html [2002-11-17 ｿﾀﾈﾄ 11:02:21]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Simple Example

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Simple Example

Consider the function which is shown in Figure . Clearly, f(n) is non-

negative for all integers . We wish to show that . According to Definition , in

order to show this we need to find an integer and a constant c>0 such that for all integers ,

.

As with big oh, it does not matter what the particular constants are--as long as they exist! For example,
suppose we choose c=1. Then

Since for all values of , we conclude that .

So, we have that for c=1 and , for all integers . Hence, .

Figure clearly shows that the function is less than the function f(n)=5n-64n+256 for all

values of . Of course, there are many other values of c and that will do. For example, c=2 and

.

http://www.brpreiss.com/books/opus6/html/page70.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:22]

http://www.brpreiss.com/books/opus6/index.html

A Simple Example

Figure: Showing that .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page70.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:22]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

About Polynomials Again

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

About Polynomials Again

In this section we reexamine the asymptotic behavior of polynomials in n. In Section we showed that

. That is, f(n) grows asymptotically no more quickly than . This time we are

interested in the asymptotic lower bound rather than the asymptotic upper bound. We will see that as n
gets large, the term involving also dominates the lower bound in the sense that f(n) grows

asymptotically as quickly as . That is, that .

Theorem Consider a polynomial in n of the form

where . Then .

extbfProof We begin by taking the term out of the summation:

Since, n is a non-negative integer and , the term is positive. For each of the remaining

terms in the summation, . Hence

http://www.brpreiss.com/books/opus6/html/page71.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:23]

http://www.brpreiss.com/books/opus6/index.html

About Polynomials Again

Note that for integers , for . Thus

Consider the term in parentheses on the right. What we need to do is to find a positive constant c and an
integer so that for all integers this term is greater than or equal to c:

We choose the value for which the term is greater than zero:

The value will suffice! Thus

http://www.brpreiss.com/books/opus6/html/page71.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:23]

About Polynomials Again

From Equation we see that we have found the constants and c, such that for all ,

. Thus, .

This property of the asymptotic behavior of polynomials is used extensively. In fact, whenever we have a

function, which is a polynomial in n, we

will immediately ``drop'' the less significant terms (i.e., terms involving powers of n which are less than

m), as well as the leading coefficient, , to write .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page71.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

More Notation-Theta and Little Oh

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

More Notation-Theta and Little Oh
This section presents two less commonly used forms of asymptotic notation. They are:

● A notation, , to describe a function which is both O(g(n)) and , for the same g(n).

(Definition).

● A notation, , to describe a function which is O(g(n)) but not , for the same g(n).

(Definition).

Definition (Theta) Consider a function f(n) which is non-negative for all integers

. We say that ``f(n) is theta g(n),'' which we write , if and only if

f(n) is O(g(n)) and f(n) is .

Recall that we showed in Section that a polynomial in n, say

, is . We also showed in Section

 that a such a polynomial is . Therefore, according to Definition , we will write

.

Definition (Little Oh) Consider a function f(n) which is non-negative for all integers

. We say that ``f(n) is little oh g(n),'' which we write f(n)=o(g(n)), if and only if f(n)

is O(g(n)) but f(n) is not .

Little oh notation represents a kind of loose asymptotic bound in the sense that if we are given that
f(n)=o(g(n)), then we know that g(n) is an asymptotic upper bound since f(n)=O(g(n)), but g(n) is not an

asymptotic lower bound since f(n)=O(g(n)) and implies that .

For example, consider the function f(n)=n+1. Clearly, . Clearly too, ,

since not matter what c we choose, for large enough n, . Thus, we may write

http://www.brpreiss.com/books/opus6/html/page72.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:24]

http://www.brpreiss.com/books/opus6/index.html

More Notation-Theta and Little Oh

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page72.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Asymptotic Analysis of Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Asymptotic Analysis of Algorithms
The previous chapter presents a detailed model of the computer which involves a number of different
timing parameters-- , , , , , , , , , , and . We show that
keeping track of the details is messy and tiresome. So we simplify the model by measuring time in clock
cycles, and by assuming that each of the parameters is equal to one cycle. Nevertheless, keeping track of
and carefully counting all the cycles is still a tedious task.

In this chapter we introduce the notion of asymptotic bounds, principally big oh, and examine the
properties of such bounds. As it turns out, the rules for computing and manipulating big oh expressions
greatly simplify the analysis of the running time of a program when all we are interested in is its
asymptotic behavior.

For example, consider the analysis of the running time of Program , which is just Program again,
an algorithm to evaluate a polynomial using Horner's rule.

Program: Program again.

statement detailed model simple big oh

http://www.brpreiss.com/books/opus6/html/page73.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:25]

http://www.brpreiss.com/books/opus6/index.html

Asymptotic Analysis of Algorithms

model

5 5 O(1)

6a 4 O(1)

6b 3n+3 O(n)

6c 4n O(n)

7 9n O(n)

8 2 O(1)

TOTAL 16n+14 O(n)

Table:Computing the running time of Program .

Table shows the running time analysis of Program done in three ways--a detailed analysis, a
simplified analysis, and an asymptotic analysis. In particular, note that all three methods of analysis are
in agreement: Lines 5, 6a, and 8 execute in a constant amount of time; 6b, 6c, and 7 execute in an amount
of time which is proportional to n, plus a constant.

The most important observation to make is that, regardless of what the actual constants are, the
asymptotic analysis always produces the same answer! Since the result does not depend upon the values
of the constants, the asymptotic bound tells us something fundamental about the running time of the
algorithm. And this fundamental result does not depend upon the characteristics of the computer and
compiler actually used to execute the program!

Of course, you don't get something for nothing. While the asymptotic analysis may be significantly easier
to do, all that we get is an upper bound on the running time of the algorithm. In particular, we know

nothing about the actual running time of a particular program. (Recall Fallacies and).

● Rules For Big Oh Analysis of Running Time
● Example-Prefix Sums
● Example-Fibonacci Numbers

http://www.brpreiss.com/books/opus6/html/page73.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:25]

Asymptotic Analysis of Algorithms

● Example-Bucket Sort
● Reality Check
● Checking Your Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page73.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:25]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Rules For Big Oh Analysis of Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Rules For Big Oh Analysis of Running Time

In this section we present some simple rules for determining a big-oh upper bound on the running time of
the basic compound statements in a C# program.

Rule follows directly from Theorem . The total running time of a sequence of statements is equal

to the sum of the running times of the individual statements. By Theorem , when computing the sum
of a series of functions it is the largest one (the) that determines the bound.

Rule appears somewhat complicated due to the semantics of the C# for statement. However, it

follows directly from Theorem . Consider the following simple counted do loop .

for (int i = 0; i < n; ++i)

 ;

http://www.brpreiss.com/books/opus6/html/page74.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:27]

http://www.brpreiss.com/books/opus6/index.html

Rules For Big Oh Analysis of Running Time

Here is int i = 0, so its running time is constant (); is i < n, so its running time

is constant (); and is ++i, so its running time is constant (). Also, the

number of iterations is I(n)=n. According to Rule , the running time of this is

, which simplifies to .

Furthermore, if the loop body does anything at all, its running time must be . Hence, the

loop body will dominate the calculation of the maximum, and the running time of the loop is simply

.

If we don't know the exact number of iterations executed, I(n), we can still use Rule provided we
have an upper bound, I(n)=O(f(n)), on the number of iterations executed. In this case, the running time is

.

Rule follows directly from the observation that the total running time for an if-then-else statement
will never exceed the sum of the running time of the conditional test, , plus the larger of the running

times of the then part, , and the else part, .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page74.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Prefix Sums

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Prefix Sums

In this section, we will determine a tight big-oh bound on the running time of a program to compute the
series of sums , , ..., , where

An algorithm to compute this series of summations is given in Program . Table summarizes the
running time calculation.

Program: Program to compute for .

statement time

http://www.brpreiss.com/books/opus6/html/page75.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:28]

http://www.brpreiss.com/books/opus6/index.html

Example-Prefix Sums

5a O(1)

5b

5c

7

8a

8b

8c

9

10

TOTAL

Table:Computing the running time of

Program .

Usually the easiest way to analyze program which contains nested loops is to start with the body of the

inner-most loop. In Program , the inner-most loop comprises lines 8 and 9. In all, a constant amount of
work is done--this includes the loop body (line 9), the conditional test (line 8b) and the incrementing of
the loop index (line 8c).

For a given value of j, the inner-most loop is done a total j+1 times. And since the outer loop is done for

, in the worst case, the inner-most loop is done n times. Therefore, the

contribution of the inner loop to the running time of one iteration of the outer loop is O(n).

The rest of the outer loop (lines 5, 7 and 10) does a constant amount of work in each iteration. This
constant work is dominated by the O(n) of the inner loop. The outer loop is does exactly n iterations.

Therefore, the total running time of the program is .

But is this a tight big oh bound? We might suspect that it is not, because of the worst-case assumption we
made in the analysis concerning the number of times the inner loop is executed. The inner-most loop is

done exactly j+1 times for . However, we did the calculation assuming the

inner loop is done O(n) times, in each iteration of the outer loop. Unfortunately, in order to determine
whether our answer is a tight bound, we must determine more precisely the actual running time of the
program.

http://www.brpreiss.com/books/opus6/html/page75.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:28]

Example-Prefix Sums

However, there is one approximate calculation that we can easily make. If we observe that the running
time will be dominated by the work done in the inner-most loop, and that the work done in one iteration
of the inner-most loop is constant, then all we need to do is to determine exactly the number of times the
inner loop is actually executed. This is given by:

Therefore, the result is a tight, big-oh bound on the running time of Program .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page75.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Fibonacci Numbers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Fibonacci Numbers

In this section we will compare the asymptotic running times of two different programs that both

compute Fibonacci numbers. The Fibonacci numbers are the series of numbers , , ..., given by

Fibonacci numbers are interesting because they seem to crop up in the most unexpected situations.
However, in this section, we are merely concerned with writing an algorithm to compute given n.

Fibonacci numbers are easy enough to compute. Consider the sequence of Fibonacci numbers

The next number in the sequence is computed simply by adding together the last two numbers--in this

case it is 55=21+34. Program is a direct implementation of this idea. The running time of this

algorithm is clearly O(n) as shown by the analysis in Table .

http://www.brpreiss.com/books/opus6/html/page76.html (1 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

http://www.brpreiss.com/books/opus6/index.html

Example-Fibonacci Numbers

Program: Non-recursive program to compute Fibonacci numbers.

statement time

5 O(1)

6 O(1)

7a O(1)

7b

7c

9

10

11

13 O(1)

TOTAL O(n)

Table:Computing the running time of

http://www.brpreiss.com/books/opus6/html/page76.html (2 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

Example-Fibonacci Numbers

Program .

Recall that the Fibonacci numbers are defined recursively: . However, the

algorithm used in Program is non-recursive --it is iterative . What happens if instead of using the
iterative algorithm, we use the definition of Fibonacci numbers to implement directly a recursive

algorithm ? Such an algorithm is given in Program and its running time is summarized in Table .

Program: Recursive program to compute Fibonacci numbers.

time

statement n<2

5 O(1) O(1)

6 O(1) --

8 -- T(n-1)+T(n-2)+O(1)

TOTAL O(1) T(n-1)+T(n-2)+O(1)

Table:Computing the running time

of Program .

From Table we find that the running time of the recursive Fibonacci algorithm is given by the
recurrence

http://www.brpreiss.com/books/opus6/html/page76.html (3 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

Example-Fibonacci Numbers

But how do you solve a recurrence containing big oh expressions?

It turns out that there is a simple trick we can use to solve a recurrence containing big oh expressions as

long as we are only interested in an asymptotic bound on the result. Simply drop the s from the

recurrence, solve the recurrence, and put the back! In this case, we need to solve the recurrence

In the previous chapter, we used successfully repeated substitution to solve recurrences. However, in the

previous chapter, all of the recurrences only had one instance of on the right-hand-side--in this case

there are two. As a result, repeated substitution won't work.

There is something interesting about this recurrence: It looks very much like the definition of the

Fibonacci numbers. In fact, we can show by induction on n that for all .

extbfProof (By induction).

Base Case There are two base cases:

Inductive Hypothesis Suppose that for for some . Then

Hence, by induction on k, for all .

So, we can now say with certainty that the running time of the recursive Fibonacci algorithm, Program

http://www.brpreiss.com/books/opus6/html/page76.html (4 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

Example-Fibonacci Numbers

, is . But is this good or bad? The following theorem shows us how bad this really

is!

Theorem (Fibonacci numbers) The Fibonacci numbers are given by the closed form
expression

where and .

extbfProof (By induction).

Base Case There are two base cases:

Inductive Hypothesis Suppose that Equation holds for for some . First,

we make the following observation:

Similarly,

http://www.brpreiss.com/books/opus6/html/page76.html (5 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

Example-Fibonacci Numbers

Now, we can show the main result:

Hence, by induction, Equation correctly gives for all .

Theorem gives us that where and .

Consider . A couple of seconds with a calculator should suffice to convince you that .

Consequently, as n gets large, is vanishingly small. Therefore, . In asymptotic terms,

we write . Now, since , we can write that .

Returning to Program , recall that we have already shown that its running time is .

And since , we can write that . That is, the

running time of the recursive Fibonacci program grows exponentially with increasing n. And that is

really bad in comparison with the linear running time of Program !

Figure shows the actual running times of both the non-recursive and recursive algorithms for

computing Fibonacci numbers. Because the largest C# int is 2147483647, it is only possible to
compute Fibonacci numbers up to before overflowing.

The graph shows that up to about n=35, the running times of the two algorithms are comparable.

However, as n increases past 40, the exponential growth rate of Program is clearly evident. In fact,

the actual time taken by Program to compute was in excess of two and a half minutes!

http://www.brpreiss.com/books/opus6/html/page76.html (6 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

Example-Fibonacci Numbers

Figure: Actual running times of Programs and .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page76.html (7 of 7) [2002-11-17 ｿﾀﾈﾄ 11:02:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Bucket Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Bucket Sort

So far all of the asymptotic running time analyses presented in this chapter have resulted in tight big oh
bounds. In this section we consider an example which illustrates that a cursory big oh analysis does not
always result in a tight bound on the running time of the algorithm.

In this section we consider an algorithm to solve the following problem: Sort an array of n integers ,
, ..., , each of which is known to be between 0 and m-1 for some fixed m. An algorithm for

solving this problem, called a bucket sort , is given in Program .

Program: Bucket sort.

A bucket sort works as follows: An array of m counters, or buckets , is used. Each of the counters is set
initially to zero. Then, a pass is made through the input array, during which the buckets are used to keep
a count of the number of occurrences of each value between 0 and m-1. Finally, the sorted result is
produced by first placing the required number of zeroes in the array, then the required number of ones,
followed by the twos, and so on, up to m-1.

http://www.brpreiss.com/books/opus6/html/page77.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:32]

http://www.brpreiss.com/books/opus6/index.html

Example-Bucket Sort

The analysis of the running time of Program is summarized in Table . Clearly, the worst-case
running time of the first loop (lines 7-8) is O(m) and that of the second loop (lines 9-10) is O(n).

time

statement cursory analysis careful analysis

7-8 O(m) O(m)

9-10 O(n) O(n)

11-13 O(mn) O(m+n)

TOTAL O(mn) O(m+n)

Table:Computing the running time of

Program .

Consider nested loops on lines 11-13. Exactly m iterations of the outer loop are done--the number of
iterations of the outer loop is fixed. But the number of iterations of the inner loop depends on
bucket[j]--the value of the counter. Since there are n numbers in the input array, in the worst case a
counter may have the value n. Therefore, the running time of lines 11-13 is O(mn) and this running time

dominates all the others, so the running time of Program is O(mn). (This is the cursory analysis

column of Table).

Unfortunately, the cursory analysis has not produced a tight bound. To see why this is the case, we must

consider the operation of Program more carefully. In particular, since we are sorting n items, the final
answer will only contain n items. Therefore, line 13 will be executed exactly n times--not mn times as the
cursory result suggests.

Consider the inner loop at line 12. During the iteration of the outer loop, the inner loop does

 iterations. Therefore, the conditional test at line 12b is done times.

Therefore, the total number of times the conditional test is done is

http://www.brpreiss.com/books/opus6/html/page77.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:32]

Example-Bucket Sort

So, the running time of lines 11-13 is O(m+n) and therefore running time of Program is O(m+n).

(This is the careful analysis column of Table).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page77.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Reality Check

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Reality Check

``Asymptotic analysis is nice in theory,'' you say, ``but of what practical value is it when I don't know

what c and are?'' Fallacies and showed us that if we have two programs, A and B, that solve a

given problem, whose running times are and say, we cannot conclude in

general that we should use algorithm A rather than algorithm B to solve a particular instance of the
problem. Even if the bounds are both known to be tight, we still don't have enough information. What we
do know for sure is that eventually, for large enough n, program A is the better choice.

In practice we need not be so conservative. It is almost always the right choice to select program A. To

see why this is the case, consider the times shown in Table . This table shows the running times
computed for a very conservative scenario. We assume that the constant of proportionality, c, is one
cycle of a 1 GHz clock. This table shows the running times we can expect even if only one instruction is
done for each element of the input.

n=1 n=8

Table:Actual lower bounds assuming a 1 GHz clock,

http://www.brpreiss.com/books/opus6/html/page78.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:35]

http://www.brpreiss.com/books/opus6/index.html

Reality Check

and .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page78.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Checking Your Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Checking Your Analysis

Having made an asymptotic analysis of the running time of an algorithm, how can you verify that the
implementation of the algorithm performs as predicted by the analysis? The only practical way to do this
is to conduct an experiment--write out the algorithm in the form of a computer program, compile and
execute the program, and measure its actual running time for various values of the parameter, n say, used
to characterize the size of the problem.

However, several difficulties immediately arise:

● How do you compare the results of the analysis which, by definition, only applies asymptotically,
i.e., as n gets arbitrarily large, with the actual running time of a program which, of necessity, must
be measured for fixed and finite values of n?

● How do you explain it when the results of your analysis do not agree with the observed behavior
of the program?

Suppose you have conducted an experiment in which you measured the actual running time of a
program, T(n), for a number of different values of n. Furthermore, suppose that on the basis of an
analysis of the algorithm you have concluded that the worst-case running time of the program is O(f(n)).
How do you tell from the measurements made that the program behaves as predicted?

One way to do this follows directly from the definition of big oh: there exists c>0 such that

 for all . This suggests that we should compute the ratio T(n)/f(n) for each of

value of n in the experiment and observe how the ratio behaves as n increases. If this ratio diverges, then
f(n) is probably too small; if this ratio converges to zero, then f(n) is probably too big; and if the ratio
converges to a constant, then the analysis is probably correct.

What if f(n) turns out to large? There are several possibilities:

● The function f(n) is not a tight bound. That is, the analysis is still correct, but the bound is not the
tightest bound possible.

● The analysis was for the worst case but the worst case did not arise in the set of experiments
conducted.

● A mistake was made and the analysis is wrong.

http://www.brpreiss.com/books/opus6/html/page79.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:35]

http://www.brpreiss.com/books/opus6/index.html

Checking Your Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page79.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. Consider the function . Using Definition show that .

2. Consider the function . Using Definition show that .

3. Consider the functions and . Using Theorem

show that .

4. Consider the functions and . Using Theorem show that

.

5. For each pair of functions, f(n) and g(n), in the following table, indicate if f(n)=O(g(n)) and if
g(n)=O(f(n)).

f(n) g(n)

10n

http://www.brpreiss.com/books/opus6/html/page80.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:37]

http://www.brpreiss.com/books/opus6/index.html

Exercises

6. Show that the Fibonacci numbers (see Equation) satisfy the identities

for .

7. Prove each of the following formulas:

1.

2.

3.

8. Show that , where and .

9. Show that .

10. Solve each of the following recurrences:

1.

2.

3.

4.

11. Derive tight, big oh expressions for the running times of Example-a,Example-b,Example-
c,Example-d,Example-f,Example-g,Example-h,Example-i.

12. Consider the C# program fragments given below. Assume that n, m, and k are non-negative ints
and that the methods E, F, G, and H have the following characteristics:

❍ The worst case running time for E(n,m,k) is O(1) and it returns a value between 1 and
(n+m+k).

❍ The worst case running time for F(n,m,k) is O(n+m).
❍ The worst case running time for G(n,m,k) is O(m+k).

http://www.brpreiss.com/books/opus6/html/page80.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:37]

Exercises

❍ The worst case running time for H(n,m,k) is O(n+k).
Determine a tight, big oh expression for the worst-case running time of each of the following
program fragments:

1. F(n, 10, 0);
G(n, m, k);
H(n, m, 1000000);

2. for (int i = 0; i < n; ++i)
 F(n, m, k);

3. for (int i = 0; i < E(n, 10, 100); ++i)
 F(n, 10, 0);

4. for (int i = 0; i < E(n, m, k); ++i)
 F(n, 10, 0);

5. for (int i = 0; i < n; ++i)
 for (int j = i; j < n; ++j)
 F(n, m, k);

13. Consider the following C# program fragment. What value does F compute? (Express your
answer as a function of n). Give a tight, big oh expression for the worst-case running time of the
method F.

public class Example
{
 public static int F(int n)
 {
 int sum = 0;
 for (int i = 1; i <= n; ++i)
 sum = sum + i;
 return sum;
 }
 // ...
}

14. Consider the following C# program fragment. (The method F is given in Exercise). What
value does G compute? (Express your answer as a function of n). Give a tight, big oh expression
for the worst-case running time of the method G.

public class Example

http://www.brpreiss.com/books/opus6/html/page80.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:37]

Exercises

{
 // ...
 public static int G(int n)
 {
 int sum = 0;
 for (int i = 1; i <= n; ++i)
 sum = sum + i + F(i);
 return sum;
 }
}

15. Consider the following C# program fragment. (The method F is given in Exercise and the

method G is given in Exercise). What value does H compute? (Express your answer as a
function of n). Give a tight, big oh expression for the worst-case running time of the method H.

public class Example
{
 // ...
 public int H(int n)
 { return F(n) + G(n); }
}

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page80.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Write a C# method that takes a single integer argument n and has a worst-case running time of

O(n).
2. Write a C# method that takes a single integer argument n and has a worst-case running time of

.

3. Write a C# method that takes two integer arguments n and k and has a worst-case running time of

.

4. Write a C# method that takes a single integer argument n and has a worst-case running time of

.

5. Write a C# method that takes a single integer argument n and has a worst-case running time of

.

6. Write a C# method that takes a single integer argument n and has a worst-case running time of

.

7. The generalized Fibonacci numbers of order are given by

Write both recursive and non-recursive methods that compute . Measure the running times

of your algorithms for various values of k and n.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page81.html [2002-11-17 ｿﾀﾈﾄ 11:02:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Foundational Data Structures

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Foundational Data Structures

In this book we consider a variety of abstract data types (ADTs) , including stacks, queues, deques,
ordered lists, sorted lists, hash and scatter tables, trees, priority queues, sets, and graphs. In just about
every case, we have the option of implementing the ADT using an array or using a some kind of linked
data structure.

Because they are the base upon which almost all of the ADTs are built, we call the array and the linked
list the foundational data structures . It is important to understand that we do not view the array or the
linked list as ADTs, but rather as alternatives for the implementation of ADTs.

In this chapter we consider arrays first. We review the support for arrays in C# and then show how to
provide arrays with arbitrary subscript ranges, resizeable arrays, multi-dimensional arrays, and matrices.
Next, we consider a number of linked list implementation alternatives and we discuss in detail the
implementation of a singly-linked list class, LinkedList. It is important to become familiar with this
class, as it is used extensively throughout the remainder of the book.

● Arrays
● Multi-Dimensional Arrays
● Singly-Linked Lists
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page82.html [2002-11-17 ｿﾀﾈﾄ 11:02:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Arrays

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Arrays

Probably the most common way to aggregate data is to use an array. In C# an array is an object that
contains a collection of objects, all of the same type. For example,

int[] a = new int[5];

allocates an array of five integers and assigns it to the variable a.

The elements of an array are accessed using integer-valued indices. In C# the first element of an array
always has index zero. Thus, the five elements of array a are a[0], a[1], ..., a[4]. All array objects in
C# have an int property called Length, the value of which is equal to the number of array elements. In
this case, a.Length has the value 5.

C# checks at run-time that the index used in every array access is valid. Valid indices fall between zero
and . If an invalid index expression is used, an IndexOutOfRangeException

exception is thrown.

It is important to understand that in C#, the variable a refers to an array object of type int[]. In
particular, the sequence of statements

int[] b;
b = a;

causes the variable b to refer to the same array object as variable a.

Once allocated, the size of a C# array object is fixed. That is, it is not possible to increase or decrease the
size of a given array. Of course, it is always possible to allocate a new array of the desired size, but it is
up to the programmer to copy the values from the old array to the new one.

How are C# arrays represented in the memory of the computer? The specification of the C# language

leaves this up to the system implementers[22]. However, Figure illustrates a typical implementation
scenario.

http://www.brpreiss.com/books/opus6/html/page83.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:39]

http://www.brpreiss.com/books/opus6/index.html

Arrays

Figure: Memory representation of C# arrays.

The elements of an array typically occupy consecutive memory locations. That way, given i it is possible

to find the position of in constant time. In addition to the array elements, the array object has a

Length property, the value of which is represented by an int field called length.

On the basis of Figure , we can now estimate the total storage required to represent an array. Let S(n)
be the total storage (memory) needed to represent an array of n ints. S(n) is given by

where the function is the number of bytes used for the memory representation of an instance

of an object of type X.

In C#, the sizes of the simple data types are fixed constants. Hence, . In practice,

an array object may contain additional fields. For example, it is reasonable to expect that there is a field
which records the position in memory of the first array element. In any event, the overhead associated
with a fixed number of fields is O(1). Therefore, S(n)=O(n).

● Extending C# Arrays
● Constructors
● Copy Method

http://www.brpreiss.com/books/opus6/html/page83.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:39]

Arrays

● DynamicArray Indexers
● DynamicArray Properties
● Resizing an Array

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page83.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Extending C# Arrays

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Extending C# Arrays

While the C# programming language does indeed provide built-in support for arrays, that support is not
without its shortcomings: Array indices range from zero to n-1, where n is the array length and the size of
an array is fixed once allocated.

One way to address these deficiencies is to define a new class with the desired functionality. We do this

by defining a DynamicArray class with two fields as shown in Program . The first is an array of C#
objects and the second is an int which records the lower bound for array indices.

Program: DynamicArray fields.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page84.html [2002-11-17 ｿﾀﾈﾄ 11:02:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructors

Program gives the code for three DynamicArray class constructors. The main constructor (lines 6-
10) takes two arguments, n and m, which represent the desired array length and the lower bound for array
indices, respectively. This constructor allocates an array of objects of length n and sets the
baseIndex field to m. The remaining two constructors (lines 12-16) simply call the main constructor
by invoking the this initializer. These constructors simply provide default values for m and n.

Program: DynamicArray constructors.

In C#, when an array is allocated, two things happen. First, memory is allocated for the array object and
its elements. Second, each element of the array is initialized with the appropriate default value (in this
case null).

http://www.brpreiss.com/books/opus6/html/page85.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:40]

http://www.brpreiss.com/books/opus6/index.html

Constructors

For now, we shall assume that the first step takes a constant amount of time. Since there are n elements to
be initialized, the second step takes O(n) time. Therefore, the running time of the main constructor is
O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page85.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Copy Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Copy Method

Program defines the Copy method of the DynamicArray class. This method provides a way to
copy the elements of one array to another. The Copy method is intended to be used like this:

DynamicArray a = new DynamicArray(5);
DynamicArray b = new DynamicArray(5);
// ...
b.Copy(a);

The effect of doing this is to copy the elements of array a to the elements of array b. Note that after the
copy, a and b still refer to distinct DynamicArray instances.

Program shows a simple implementation of the Copy method. To determine its running time, we
need to consider carefully the execution of this method.

http://www.brpreiss.com/books/opus6/html/page86.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:41]

http://www.brpreiss.com/books/opus6/index.html

Copy Method

Program: DynamicArray class Copy method.

First, we observe that the Copy method detects and avoids self-copies. That is, the special case

a.Copy(a);

is handled properly by doing nothing.

If the array sizes differ, a new array of objects is allocated. As discussed above, this operation takes
O(n) in the worst case, where n is the new array length.

Next, there is a loop which copies one-by-one the elements of the input array to the newly allocated
array. Clearly this operation takes O(n) time to perform. Finally, the baseIndex field is copied in O(1)
time. Altogether, the running time of the Copy method is T(n)=O(n), where n is the size of the array
being copied.

http://www.brpreiss.com/books/opus6/html/page86.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:41]

Copy Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page86.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

DynamicArray Indexers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

DynamicArray Indexers

The elements of a C# array are accessed by enclosing the index expression between brackets [and] like
this:

a[2] = b[3];

In order to be able to use the same syntax to access the elements of a DynamicArray object, we define
an indexer .

Program defines an indexer that provides both get and set accessor methods. The get accessor
takes an index and returns the element found in the array at the given position. The set accessor takes
an index and an object value and stores the value in the array at the given position.

Program: DynamicArray indexer.

Both accessors translate the given index by subtracting from it the value of the baseIndex field. In this
way arbitrary subscript ranges are supported. Since the overhead of this subtraction is constant, the
running times of the get and set accessors of the indexer are O(1).

http://www.brpreiss.com/books/opus6/html/page87.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:42]

http://www.brpreiss.com/books/opus6/index.html

DynamicArray Indexers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page87.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

DynamicArray Properties

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

DynamicArray Properties

Program defines three properties of DynamicArrays--Data, BaseIndex, and Length. These
properties provide the means to inspect the contents of a DynamicArray object (using the get
accessor methods) and the means to modify the contents of a DynamicArray object (using the set
accessor methods).

Clearly, the running times of each of the BaseIndex property get and set accessors is a constant.
Similarly, the running time of the Length property set accessor is also a constant.

http://www.brpreiss.com/books/opus6/html/page88.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:42]

http://www.brpreiss.com/books/opus6/index.html

DynamicArray Properties

Program: DynamicArray properties.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page88.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Resizing an Array

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Resizing an Array

The set accessor of the Length property provides the means to change the size of an array at run time.
This method can be used both to increase and to decrease the size of an array.

The running time of this algorithm depends only on the new array length. Let n be the original size of the

array and let m be the new size of the array. Consider the case where . The method first allocates

and initializes a new array of size m. Next, it copies at most elements from the old array to

the new array. Therefore, .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page89.html [2002-11-17 ｿﾀﾈﾄ 11:02:43]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Multi-Dimensional Arrays

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Multi-Dimensional Arrays

A multi-dimensional array of dimension n (i.e., an n-dimensional array or simply n-D array) is a

collection of items which is accessed via n subscript expressions. For example, in C# the element

of the two-dimensional array x is accessed by writing x[i,j].

The built-in multi-dimensional arrays suffer the same indignities that simple one-dimensional arrays do:
Array indices in each dimension range from zero to , where Length is the array length in

the given dimension and the number of dimensions and the size of each dimension is fixed once the array
has been allocated.

In order to illustrate how these deficiencies of the C# built-in multi-dimensional arrays can be overcome,
we will examine the implementation of a multi-dimensional array class, MultiDimensionalArray,

that is based on the one-dimensional array class discussed in Section .

● Array Subscript Calculations
● An Implementation
● Constructor
● MultiDimensionalArray Indexer
● Matrices
● Dense Matrices
● Canonical Matrix Multiplication

http://www.brpreiss.com/books/opus6/html/page90.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:43]

http://www.brpreiss.com/books/opus6/index.html

Multi-Dimensional Arrays

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page90.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Subscript Calculations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Subscript Calculations

The memory of a computer is essentially a one-dimensional array--the memory address is the array
subscript. Therefore, a natural way to implement a multi-dimensional array is to store its elements in a
one-dimensional array. In order to do this, we need a mapping from the n subscript expressions used to
access an element of the multi-dimensional array to the one subscript expression used to access the one-
dimensional array. For example, suppose we wish to represent a array of of ints, a, using a one-

dimensional array like this:

int[] b = new int[6];

Then we need to determine which element of b, say b[k], will be accessed given a reference of the

form a[i,j]. That is, we need the mapping f such that .

The mapping function determines the way in which the elements of the array are stored in memory. The
most common way to represent an array is in row-major order , also known as lexicographic order . For
example, consider the two-dimensional array. The row-major layout of this array is shown in

Figure .

Figure: Row-major order layout of a 2D array.

In row-major layout, it is the right-most subscript expression (the column index) that increases the

http://www.brpreiss.com/books/opus6/html/page91.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:45]

http://www.brpreiss.com/books/opus6/index.html

Array Subscript Calculations

fastest. As a result, the elements of the rows of the matrix end up stored in contiguous memory locations.

In Figure , the first element of the first row is at position b[0]. The first element of the second row is
at position b[3], since there are 3 elements in each row.

We can now generalize this to an arbitrary n-dimensional array. Suppose we have an n-D array a with
dimensions

Then, the position of the element a[, , ,] is given by

where

The running time required to calculate the position appears to be since the position is the sum of n

terms and for each term we need to compute , which requires O(n) multiplications in the worst case.

However, the factors are determined solely from the dimensions of the array. Therefore, we need only

compute the factors once. Assuming that the factors have been precomputed, the position calculation can
be done in O(n) time using the following algorithm:

int offset = 0;
for (int j = 1; j <= n; ++j)

 offset += * ;

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page91.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

An Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

An Implementation

In this section we illustrate the implementation of a multi-dimensional array using a one-dimensional
array. We do this by defining a class called MultiDimensionalArray that is very similar to the

DynamicArray class defined in Section .

Program defines the fields of the MultiDimensionalArray class. Altogether three fields are
used. The first, dimensions is an array of length n, where n is number of dimensions and

 is the size of the dimension ().

Program: MultiDimensionalArray fields.

The second field, factors, is also an array of length n. The element of the factors array

corresponds to the factor given by Equation .

The third field, data, is a one-dimensional array used to hold the elements of the multi-dimensional
array in row-major order.

http://www.brpreiss.com/books/opus6/html/page92.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:46]

http://www.brpreiss.com/books/opus6/index.html

An Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page92.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor

The constructor for the MultiDimensionalArray class is defined in Program . It takes as its lone
argument an array of ints which represents the dimensions of the array. For example, to create a

 three-dimensional array, we invoke the constructor like this:

MultiDimensionalArray a =
 new MultiDimensionalArray (3, 5, 7);

Program: MultiDimensionalArray constructor.

The constructor copies the dimensions of the array into the dimensions array, and then it computes

http://www.brpreiss.com/books/opus6/html/page93.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:46]

http://www.brpreiss.com/books/opus6/index.html

Constructor

the factors array. These operations take O(n), where n is the number of dimensions. The constructor
then allocates a one-dimensional array of length m given by

The worst-case running time of the constructor is O(m+n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page93.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

MultiDimensionalArray Indexer

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

MultiDimensionalArray Indexer

The elements of a multi-dimensional array are accessed using the get and set accessor methods of the

MultiDimensionalArray indexer. For example, you can access the element of a three-

dimensional array a like this:

value = a[i,j,k];

and you can modify the element like this:

a[i,j,k] = value;

Program defines an indexer that provides get and set accessors implemented using the
GetOffset method. The GetOffset method takes a set of n indices and computes the position of the

corresponding element in the one-dimensional array according to Equation . This computation takes
O(n) time in the worst case, where n is the number of dimensions. Consequently, the running times of the
get and set accessors are also O(n).

http://www.brpreiss.com/books/opus6/html/page94.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:47]

http://www.brpreiss.com/books/opus6/index.html

MultiDimensionalArray Indexer

Program: MultiDimensionalArray indexer.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page94.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Matrices

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Matrices

Multi-dimensional arrays of floating-point numbers arise in many different scientific computations. Such
arrays are usually called matrices . Mathematicians have studied the properties of matrices for many
years and have developed an extensive repertoire of operations on matrices. In this section we consider
two-dimensional matrices of doubles and examine the implementation of simple, matrix multiplication.

The preceding sections show that there are many possible ways to implement matrices. In order to
separate interface from implementation, we define the abstract Matrix base class shown in Program

.

Program: Matrix abstract class.

This interface defines an indexer (with get and put accessors) and methods for some of the elementary
operations on matrices such as computing the transpose of a matrix (Transpose), adding matrices
(Plus), and multiplying matrices (Times). In addition, the addition and multiplication operators + and
* are overloaded for use with Matrix instances.

http://www.brpreiss.com/books/opus6/html/page95.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:48]

http://www.brpreiss.com/books/opus6/index.html

Matrices

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page95.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Dense Matrices

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Dense Matrices

The simplest way to implement a matrix is to use a two-dimensional array as shown in Program . In
this case, we use three fields. The first two fields, numberOfRows and numberOfColumns record
the dimensions of the matrix. The third field, array, is a C# two-dimensional array of doubles.

Program: DenseMatrix fields, constructor, and properties.

The constructor takes two arguments, m and n, and constructs the corresponding matrix. Clearly,
the running time of the constructor is O(mn). (Remember, C# initializes all the array elements to zero).

http://www.brpreiss.com/books/opus6/html/page96.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:48]

http://www.brpreiss.com/books/opus6/index.html

Dense Matrices

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page96.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Canonical Matrix Multiplication

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Canonical Matrix Multiplication

Given an matrix A and an matrix B, the product C=AB is an matrix. The elements
of the result matrix are given by

Accordingly, in order to compute the produce matrix, C, we need to compute mp summations each of
which is the sum of n product terms. An algorithm to compute the matrix product is given in Program

. The algorithm given is a direct implementation of Equation .

http://www.brpreiss.com/books/opus6/html/page97.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:49]

http://www.brpreiss.com/books/opus6/index.html

Canonical Matrix Multiplication

Program: DenseMatrix class times method.

The algorithm begins by checking to see that the matrices to be multiplied have compatible dimensions.
That is, the number of columns of the first matrix must be equal to the number of rows of the second one.
This check takes O(1) time in the worst case.

Next a matrix in which the result will be formed is constructed (line 12-13). The running time for this is
O(mp). For each value of i and j, the innermost loop (lines 19-20) does n iterations. Each iteration takes a
constant amount of time.

The body of the middle loop (lines 16-22) takes time O(n) for each value of i and j. The middle loop is

http://www.brpreiss.com/books/opus6/html/page97.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:49]

Canonical Matrix Multiplication

done for p iterations, giving the running time of O(np) for each value of i. Since, the outer loop does m
iterations, its overall running time is O(mnp). Finally, the result matrix is returned on line 24. This takes a
constant amount of time.

In summary, we have shown that lines 9-11 are O(1); lines 12-13 are O(mp); lines 14-23 are O(mnp); and
line 24 is O(1). Therefore, the running time of the canonical matrix multiplication algorithm is O(mnp).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page97.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Singly-Linked Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Singly-Linked Lists

The singly-linked list is the most basic of all the linked data structures. A singly-linked list is simply a
sequence of dynamically allocated objects, each of which refers to its successor in the list. Despite this

obvious simplicity, there are myriad implementation variations. Figure shows several of the most
common singly-linked list variants.

Figure: Singly-linked list variations.

The basic singly-linked list is shown in Figure (a). Each element of the list refers to its successor and

the last element contains the null reference. One variable, labeled head in Figure (a), is used to
keep track of the list.

The basic singly-linked list is inefficient in those cases when we wish to add elements to both ends of the
list. While it is easy to add elements at the head of the list, to add elements at the other end (the tail) we
need to locate the last element. If the basic basic singly-linked list is used, the entire list needs to be

http://www.brpreiss.com/books/opus6/html/page98.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:50]

http://www.brpreiss.com/books/opus6/index.html

Singly-Linked Lists

traversed in order to find its tail.

Figure (b) shows a way in which to make adding elements to the tail of a list more efficient. The
solution uses a second variable, tail , which refers to the last element of the list. Of course, this time
efficiency comes at the cost of the additional space used to store the variable tail.

The singly-linked list labeled (c) in Figure illustrates two common programming tricks. There is an
extra element at the head of the list called a sentinel . This element is never used to hold data and it is
always present. The principal advantage of using a sentinel is that it simplifies the programming of
certain operations. For example, since there is always a sentinel standing guard, we never need to modify
the head variable. Of course, the disadvantage of a sentinel such as that shown in (c) is that extra space
is required, and the sentinel needs to be created when the list is initialized.

The list (c) is also a circular list . Instead of using a null reference to demarcate the end of the list, the
last element of the list refers to the sentinel. The advantage of this programming trick is that insertion at
the head of the list, insertion at the tail of the list, and insertion at an arbitrary position of the list are all
identical operations.

Of course, it is also possible to make a circular, singly-linked list that does not use a sentinel. Figure

 (d) shows a variation in which a single variable is used to keep track of the list, but this time the
variable, tail, refers to the last element of the list. Since the list is circular in this case, the first element
follows the last element of the list. Therefore, it is relatively simple to insert both at the head and at the
tail of this list. This variation minimizes the storage required, at the expense of a little extra time for
certain operations.

Figure illustrates how the empty list (i.e., the list containing no list elements) is represented for each

of the variations given in Figure . Notice that the sentinel is always present in list variant (c). On the
other hand, in the list variants which do not use a sentinel, the null reference is used to indicate the
empty list.

http://www.brpreiss.com/books/opus6/html/page98.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:50]

Singly-Linked Lists

Figure: Empty singly-linked lists.

In the following sections, we will present the implementation details of a generic singly-linked list. We
have chosen to present variation (b)--the one which uses a head and a tail--since is supports append and
prepend operations efficiently.

● An Implementation
● List Elements
● LinkedList Default Constructor
● Purge Method
● LinkedList Properties
● First and Last Properties
● Prepend Method
● Append Method
● Copy Method
● Extract Method
● InsertAfter and InsertBefore Methods

http://www.brpreiss.com/books/opus6/html/page98.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:50]

Singly-Linked Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page98.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:02:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

An Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

An Implementation

Figure illustrates the the singly-linked list scheme we have chosen to implement. Two related
structures are used. The elements of the list are represented using instances of the Element class which
comprises three fields, list, datum and next. The main structure is an instance of the LinkedList
class which also comprises two fields, head and tail, which refer to the first and last list elements,
respectively. The list field of every Element contains a reference to the LinkedList instance with
which it is associated. The datum field is used to refer to the objects in the list and the next field refers
to the next list element.

Figure: Memory representation of a linked list.

Program defines the LinkedList.Element class. It is used to represent the elements of a linked
list. It has three fields, list, datum and next, a constructor and two properties, Datum and Next.

http://www.brpreiss.com/books/opus6/html/page99.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:51]

http://www.brpreiss.com/books/opus6/index.html

An Implementation

Program also defines the fields of the LinkedList class, head and tail.

Program: LinkedList fields and LinkedList.Element class.

We can calculate the total storage required, S(n), to hold a linked list of n items from the class definitions

given in Program as follows:

http://www.brpreiss.com/books/opus6/html/page99.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:51]

An Implementation

In C# all object references occupy a constant amount of space. Therefore, S(n)=O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page99.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:02:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

List Elements

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

List Elements

The definitions of the methods of the LinkedList.Element class are given in Program .
Altogether, there are three methods--a constructor and two properties.

The constructor simply initializes the field to the provided values. Assigning a value to the list,
datum and next fields takes a constant amount of time. Therefore, the running time of the constructor
is O(1).

The Datum and Next properties provide get accessor methods that simply return the values of the
corresponding fields. Clearly, the running times of each of these methods is O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page100.html [2002-11-17 ｿﾀﾈﾄ 11:02:51]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

LinkedList Default Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

LinkedList Default Constructor

The code for the LinkedList default constructor is given in Program . Since the fields head and
tail are initially null, the list is empty by default. As a result, the constructor does nothing. The
running time of the default constructor is clearly constant. That is, T(n)=O(1).

Program: LinkedList default constructor.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page101.html [2002-11-17 ｿﾀﾈﾄ 11:02:52]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Purge Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Purge Method

Program gives the code for the Purge method of the LinkedList class. The purpose of this
method is to discard the current list contents and to make the list empty again. Clearly, the running time
of Purge is O(1).

Program: LinkedList class Purge method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page102.html [2002-11-17 ｿﾀﾈﾄ 11:02:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

LinkedList Properties

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

LinkedList Properties

Three LinkedList properties are defined in Program . The Head and Tail properties provide
get accessors for the corresponding fields of LinkedList. The IsEmpty property provides a get
accessor that returns a bool result which indicates whether the list is empty. Clearly, the running time of
each accessor is O(1).

Program: LinkedList class properties.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page103.html [2002-11-17 ｿﾀﾈﾄ 11:02:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

First and Last Properties

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

First and Last Properties

Two more LinkedList properties are defined in Program . The First property provides a get
accessor that returns the first list element. Similarly, the Last property provides a get accessor that
returns the last list element. The code for both methods is almost identical. In the event that the list is
empty, a ContainerEmptyException exception is thrown.

http://www.brpreiss.com/books/opus6/html/page104.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:54]

http://www.brpreiss.com/books/opus6/index.html

First and Last Properties

Program: LinkedList class First and Last properties.

We will assume that in a bug-free program, neither the First nor the Last property accessors will be
called for an empty list. In that case, the running time of each of these methods is constant. That is,
T(n)=O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page104.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Prepend Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Prepend Method

To prepend an element to a linked list is to insert that element in front of the first element of the list. The

prepended list element becomes the new head of the list. Program gives the algorithm for the
Prepend method of the LinkedList class.

Program: LinkedList class Prepend method.

The Prepend method first creates a new LinkedList.Element. Its datum field is initialized with
the value to be prepended to the list, item; and the next field refers to the first element of the existing
list by initializing it with the current value of head. If the list is initially empty, both head and tail
refer to the new element. Otherwise, just head needs to be updated.

Note, the new operator initializes the new LinkedList.Element instance by calling its constructor.

In Section the running time of the constructor was determined to be O(1). And since the body of the
Prepend method adds only a constant amount of work, the running time of the Prepend method is
also O(1).

http://www.brpreiss.com/books/opus6/html/page105.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:54]

http://www.brpreiss.com/books/opus6/index.html

Prepend Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page105.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Append Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Append Method

The Append method, the definition of which is given in Program , adds a new
LinkedList.Element at the tail-end of the list. The appended element becomes the new tail of the
list.

Program: LinkedList class Append method.

The Append method first allocates a new LinkedList.Element. Its datum field is initialized with
the value to be appended, and the next field is set to null. If the list is initially empty, both head and
tail refer to the new element. Otherwise, the new element is appended to the existing list, and the just
tail pointer is updated.

The running time analysis of the Append method is essentially the same as for Prepend. I.e, the
running time is O(1).

http://www.brpreiss.com/books/opus6/html/page106.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:55]

http://www.brpreiss.com/books/opus6/index.html

Append Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page106.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Copy Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Copy Method

The code for the Copy method of the LinkedList class is given in Program . The Copy method is
used to assign the elements of one list to another. It does this by discarding the current list elements and
then building a copy of the given linked list.

Program: LinkedList class Copy method.

The Copy method begins by calling Purge to make sure that the list to which new contents are being
assigned is empty. Then, it traverses the list passed to it one-by-one calling the Append method to
append the items to the list begin constructed.

In Section the running time for the Append method was determined to be O(1). If the resulting list
has n elements, the Append method will be called n times. Therefore, the running time of the Copy

http://www.brpreiss.com/books/opus6/html/page107.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:55]

http://www.brpreiss.com/books/opus6/index.html

Copy Method

method is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page107.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Extract Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Extract Method

In this section we consider the Extract method of the LinkedList class. The purpose of this
method is to delete the specified element from the linked list.

Program: LinkedList class Extract method.

The Extract method searches sequentially for the item to be deleted. In the absence of any a priori

http://www.brpreiss.com/books/opus6/html/page108.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:56]

http://www.brpreiss.com/books/opus6/index.html

Extract Method

knowledge, we do not know in which list element the item to be deleted will be found. In fact, the
specified item may not even appear in the list!

If we assume that the item to be deleted is in the list, and if we assume that there is an equal probability
of finding it in each of the possible positions, then on average we will need to search half way through
the list before the item to be deleted is found. In the worst case, the item will be found at the tail--
assuming it is in the list.

If the item to be deleted does not appear in the list, the algorithm shown in Program throws an
ArgumentException exception . A simpler alternative might be to do nothing--after all, if the item
to be deleted is not in the list, then we are already done! However, attempting to delete an item which is
not there, is more likely to indicate a logic error in the programming. It is for this reason that an
exception is thrown.

In order to determine the running time of the Extract method, we first need to determine the time to
find the element to be deleted. If the item to be deleted is not in the list, then the running time of

Program up to the point where it throws the exception (line 16) is T(n)=O(n).

Now consider what happens if the item to be deleted is found in the list. In the worst-case the item to be
deleted is at the tail. Thus, the running time to find the element is O(n). Actually deleting the element
from the list once it has been found is a short sequence of relatively straight-forward manipulations.
These manipulations can be done in constant time. Therefore, the total running time is T(n)=O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page108.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

InsertAfter and InsertBefore Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

InsertAfter and InsertBefore Methods

Consider the methods InsertAfter and InsertBefore of the LinkedList.Element class

shown in Program . Both methods take a single argument that specifies an item to be inserted into the
list. The given item is inserted either in front of or immediately following this list element.

http://www.brpreiss.com/books/opus6/html/page109.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:57]

http://www.brpreiss.com/books/opus6/index.html

InsertAfter and InsertBefore Methods

Program: LinkedList.Element class InsertAfter and InsertBefore methods.

The InsertAfter method is almost identical to Append. Whereas Append inserts an item after the
tail, InsertAfter inserts an item after an arbitrary list element. Nevertheless, the running time of
InsertAfter is identical to that of Append, i.e., it is O(1).

To insert a new item before a given list element, it is necessary to traverse the linked list starting from the
head to locate the list element that precedes the given list element. In the worst case, the given element is
the at the tail of the list and the entire list needs to be traversed. Therefore, the running time of the
InsertBefore method is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page109.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. How much space does the DynamicArray class declared in Program use to store an
array of Int32s of length N?

2. How much space does the LinkedList class declared in Program use to store a list
of n Int32s?

3. For what value of N/n do the two classes use the same amount of space?

2. Consider the Copy method of the DynamicArray class given in Program . What is the
purpose of the test array != this on line 8?

3. The Copy method of the DynamicArray class defined in Program has the effect of making
the target of the assignment exactly the same as the source. An alternative version could assign
the elements based on their apparent locations in the source an target arrays. That is, assign a[i]
to b[i] for all values of i that are valid subscripts in both a and b. Write an Copy method with
the modified semantics.

4. The array subscripting methods defined in Program don't test explicitly the index expression
to see if it is in the proper range. Explain why the test is not required in this implementation.

5. The Base property set accessor of the DynamicArray class defined in Program simply
changes the value of the baseIndex field. As a result, after the base is changed, all the array
elements appear to have moved. How might the method be modified so that the elements of the
array don't change their apparent locations when the base is changed?

6. Equation is only correct if the subscript ranges in each dimension start at zero. How does the
formula change when each dimension is allowed to have an arbitrary subscript range?

7. The alternative to row-major layout of of multi-dimensional arrays is called column-major order .
In column-major layout the leftmost subscript expression increases fastest. For example, the
elements of the columns of a two-dimensional matrix end up stored in contiguous memory

locations. Modify Equation to compute the correct position for column-major layout.

8. Consider the Times and Plus methods of the Matrix interface defined in Program .

Implement these methods for the DenseMatrix class defined in Program .
9. Which methods are affected if we drop the tail member variable from the LinkedList class

declared in Program ? Determine new running times for the affected methods.
10. How does the implementation of the Prepend method of the LinkedList class defined in

Program change when a circular list with a sentinel is used as shown in Figure (c).
11. How does the implementation of the Append method of the LinkedList class defined in

http://www.brpreiss.com/books/opus6/html/page110.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:57]

http://www.brpreiss.com/books/opus6/index.html

Exercises

Program change when a circular list with a sentinel is used as shown in Figure (c).

12. Consider the assignment operator for the LinkedList class given in Program . What is the
purpose of the test linkedlist != this on line 8?

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page110.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Complete the implementation of the DynamicArray class given in Program to Program .
Write a test suite to verify all of the functionality. Try to exercise every line of code in the
implementation.

2. Complete the implementation of the LinkedList class given in Program to Program .
Write a test suite to verify all of the functionality. Try to exercise every line of code in the
implementation.

3. Change the implementation of the LinkedList class given in Program to Program by

removing the tail field. That is, implement the singly-linked list variant shown in Figure (a).
Write a test suite to verify all of the functionality. Try to exercise every line of code in the
implementation.

4. Change the implementation of the LinkedList class given in Program to Program so

that it uses a circular, singly-linked list with a sentinel as shown in Figure (c). Write a test
suite to verify all of the functionality. Try to exercise every line of code in the implementation.

5. The MultiDimensionalArray class given in Program to Program only supports
subscript ranges starting at zero. Modify the implementation to allow an arbitrary subscript base
in each dimension.

6. Design and implement a three-dimensional matrix class Matrix3D based on the two-

dimensional class DenseMatrix given in Program to Program
7. A row vector is a matrix and a column vector is an matrix. Define and implement

classes RowVector and ColumnVector as classes derived from the base class

DynamicArray given in Program to Program . Show how these classes can be combined

to implement the Matrix interface declared in Program .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page111.html [2002-11-17 ｿﾀﾈﾄ 11:02:58]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Data Types and Abstraction

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Data Types and Abstraction

It is said that ``computer science is [the] science of abstraction[2].'' But what exactly is abstraction?
Abstraction is ``the idea of a quality thought of apart from any particular object or real thing having that
quality''[10]. For example, we can think about the size of an object without knowing what that object is.
Similarly, we can think about the way a car is driven without knowing its model or make.

Abstraction is used to suppress irrelevant details while at the same time emphasizing relevant ones. The
benefit of abstraction is that it makes it easier for the programmer to think about the problem to be
solved.

● Abstract Data Types
● Design Patterns
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page112.html [2002-11-17 ｿﾀﾈﾄ 11:02:58]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Data Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Data Types
A variable in a procedural programming language such as Fortran , Pascal , C++ , and C# , is an
abstraction. The abstraction comprises a number of attributes --name , address , value , lifetime , scope ,
type , and size . Each attribute has an associated value. For example, if we declare an integer variable in
C#, int x, we say that the name attribute has value ``x'' and that the type attribute has value ``int''.

Unfortunately, the terminology can be somewhat confusing: The word ``value'' has two different
meanings--in one instance it denotes one of the attributes and in the other it denotes the quantity assigned
to an attribute. For example, after the assignment statement x = 5, the value attribute has the value
five.

The name of a variable is the textual label used to refer to that variable in the text of the source program.
The address of a variable denotes is location in memory. The value attribute is the quantity which that

variable represents. The lifetime of a variable is the interval of time during the execution of the
program in which the variable is said to exist. The scope of a variable is the set of statements in the text
of the source program in which the variable is said to be visible . The type of a variable denotes the set of
values which can be assigned to the value attribute and the set of operations which can be performed on
the variable. Finally, the size attribute denotes the amount of storage required to represent the variable.

The process of assigning a value to an attribute is called binding . When a value is assigned to an
attribute, that attribute is said to be bound to the value. Depending on the semantics of the programming
language, and on the attribute in question, the binding may be done statically by the compiler or
dynamically at run-time. For example, in C# the type of a variable is determined at compile time--static
binding . On the other hand, the value of a variable is usually not determined until run-time--dynamic
binding .

In this chapter we are concerned primarily with the type attribute of a variable. The type of a variable
specifies two sets:

● a set of values; and,
● a set of operations.

For example, when we declare a variable, say x, of type int, we know that x can represent an integer in

the range and that we can perform operations on x such as addition, subtraction,

http://www.brpreiss.com/books/opus6/html/page113.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:59]

http://www.brpreiss.com/books/opus6/index.html

Abstract Data Types

multiplication, and division.

The type int is an abstract data type in the sense that we can think about the qualities of an int apart
from any real thing having that quality. In other words, we don't need to know how ints are represented
nor how the operations are implemented to be able to be able to use them or reason about them.

In designing object-oriented programs, one of the primary concerns of the programmer is to develop an
appropriate collection of abstractions for the application at hand, and then to define suitable abstract data
types to represent those abstractions. In so doing, the programmer must be conscious of the fact that
defining an abstract data type requires the specification of both a set of values and a set of operations on
those values.

Indeed, it has been only since the advent of the so-called object-oriented programming languages that
the we see programming languages which provide the necessary constructs to properly declare abstract
data types. For example, in C#, the class construct is the means by which both a set of values and an
associated set of operations is declared. Compare this with the struct construct of C or Pascal's
record , which only allow the specification of a set of values!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page113.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:02:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Design Patterns

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Design Patterns
An experienced programmer is in a sense like concert musician--he has mastered a certain repertoire of
pieces which he is prepared to play at any time. For the programmer, the repertoire comprises a set of
abstract data types with which he is familiar and which he is able to use in her programs as the need
arises.

The chapters following this present a basic repertoire of abstract data types. In addition to defining the
abstractions, we show how to implement them in C# and we analyze the performance of the algorithms.

The repertoire of basic abstract data types has been designed as a hierarchy of C# classes. This section
presents an overview of the class hierarchy and lays the groundwork for the following chapters.

● Class Hierarchy
● C# Objects and the IComparable Interface
● Wrappers for Value Types
● Containers
● Visitors
● Enumerable Collections and Enumerators
● Searchable Containers
● Associations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page114.html [2002-11-17 ｿﾀﾈﾄ 11:02:59]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Class Hierarchy

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Class Hierarchy

The C# class hierarchy which is used to represent the basic repertoire of abstract data types is shown in

Figure . Two kinds of classes are shown in Figure ; abstract C# classes , which look like this

, and concrete C# classes , which look like this . In addition, C#

interfaces are shown like this . Solid lines in the figure indicate the specializes relation
between classes and between interfaces; base classes and interfaces always appear to the left of derived
classes and interfaces. Dashed lines indicates the the realizes relation between a class and the
interface(s) it implements. In C# a class may specialize at most one other class and it may realize any
number of interfaces. A C# interface may specialize any number of interfaces (but not classes).

http://www.brpreiss.com/books/opus6/html/page115.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:00]

http://www.brpreiss.com/books/opus6/index.html

Class Hierarchy

Figure: Object class hierarchy.

A C# interface comprises a set of method and property declarations . An interface does not supply
implementations for the methods or properties it declares. In effect, an interface identifies the set of
operations provided by every class that implements the interface.

An abstract class in C# is a class which defines only part of an implementation. Consequently, it is not
possible create object instances of abstract classes. In C# an abstract class may contain zero or more
abstract methods or abstract properties . A abstract method or property is one for which no
implementation is given.

An abstract class is intended to be used as the base class from which other classes are derived . By
declaring abstract methods in the base class, it possible to access the implementations provided by the
derived classes through the base-class methods. Consequently, we don't need to know how a particular
object instance is implemented, nor do we need to know of which derived class it is an instance.

This design pattern uses the idea of polymorphism . Polymorphism literally means ``having many forms.''
The essential idea is that a C# interface is used to define the set of values and the set of operations--the
abstract data type. Then, various different implementations (many forms) of the interface can be made.
We do this by defining abstract classes that contain shared implementation features and then by deriving
concrete classes from the abstract base classes.

http://www.brpreiss.com/books/opus6/html/page115.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:00]

Class Hierarchy

The remainder of this section presents the top levels of the class hierarchy which are shown in Figure .
The top levels define those attributes of objects which are common to all of the classes in the hierarchy.
The lower levels of the hierarchy are presented in subsequent chapters where the abstractions are defined
and various implementations of those abstractions are elaborated.

Figure: Object class hierarchy.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page115.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

C# Objects and the IComparable Interface

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

C# Objects and the IComparable Interface

All C# classes, including arrays, are ultimately derived from the base class called object. The object
keyword is an alias for the class System.Object. The following code fragment identifies some of the

methods defined in the System.Object class :

namespace System
{
 public class Object
 {
 public Object() { ... }
 public virtual bool Equals(object o) { ... }
 public virtual int GetHashCode() { ... }
 public Type GetType() { ... }
 public virtual string ToString() { ... }
 // ...
 }
}

Notice that the C# System.Object class contains a method called Equals, the purpose of which is
to indicate whether some other object is ``equal to'' this one. By default, obj1.Equals(obj2) returns
true only if obj1 and obj2 refer to the same object.

Of course, any derived class can override the Equals method to do the comparison in a way that is
appropriate to that class. For example, the Equals method is overridden in the System.Int32 class
as follows: If obj1 and obj2 are Int32s, then obj1.equals(obj2) is true when (int)obj1
is equal to (int)obj2.

So, all C# objects provide a means to test for equality. Unfortunately, they do not provide a means to test
whether one object is ``less than'' or ``greater than'' another. To overcome this difficulty, C# provides the
standard interface called IComparable . The following code fragment defines the IComparable
interface.

namespace System.Collections

http://www.brpreiss.com/books/opus6/html/page116.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:00]

http://www.brpreiss.com/books/opus6/index.html

C# Objects and the IComparable Interface

{
 public interface IComparable
 {
 int CompareTo(object o);
 }
}

The IComparable interface defines a single method. This instance method takes a specified object and
compares it with the given object instance. The method returns an integer that is less than, equal to, or
greater than zero depending on whether this object instance is less than, equal to, or greater than the
specified object instance o, respectively.

● Abstract Comparable Objects
● Comparison Operators

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page116.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Comparable Objects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Comparable Objects

The abstract class at the top of the class hierarchy is called ComparableObject. All the other classes

in the hierarchy are ultimately derived from this class. As shown in Figure , the

ComparableObject class implements the IComparable interface discussed in Section .

The CompareTo method is defined as an abstract method in Program . Program also defines the
private method Compare. To understand the operation of the Compare method, consider an expression
of the form obj1.Compare(obj2). First, the Compare method determines whether obj1 and
obj2 are instances of the same type (line 7). If they are, the CompareTo method is called to do the
comparison. Thus, the CompareTo method is only ever invoked for instances of the same class.

Program: ComparableObject methods.

If obj1 and obj2 are instances of different types, then the comparison is based on the names of the
types (lines 10-11). Suppose obj1 is an instance of the class named Opus6.StackAsArray and

http://www.brpreiss.com/books/opus6/html/page117.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:01]

http://www.brpreiss.com/books/opus6/index.html

Abstract Comparable Objects

obj2 is an instance of the class named Opus6.QueueAsLinkedList. Then obj1 is ``less than''
obj2 because StackAsArray precedes alphabetically QueueAsLinkedList.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page117.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Comparison Operators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Comparison Operators

Program shows how the comparison operators ==, !=, <, <=, >=, and > are implemented. All of
these methods invoke the Compare method and then interpret the result as needed.

The == and != operators are slightly different to make them more robust and easier to use. Specifically,
they do the right thing when either operand of == and != is a null reference.

http://www.brpreiss.com/books/opus6/html/page118.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:02]

http://www.brpreiss.com/books/opus6/index.html

Comparison Operators

Program: ComparableObject comparison operators.

The use of polymorphism in the way shown gives the programmer enormous leverage. The fact all
objects are derived from the ComparableObject base class, together with the fact that every concrete
class must implement an appropriate CompareTo method, ensures that the comparison operators can be
used to compare any pair of ComparableObjects and that the comparisons always work as expected.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page118.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Wrappers for Value Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Wrappers for Value Types

The value types in C# are bool, char, schar, short, ushort, int, uint, long, ulong,
float, and double. There is also the ``type'' void which is used in the place of the return type to
declare a method that returns nothing. Whenever a value type is used in a context where an object is
required, C# automatically boxes the value type. Therefore, in C# a value parameter can be used
wherever an object is expected.

Each C# value type is an alias for a struct in the System class. E.g., int is an alias for the struct
System.Int32 and void is an alias for the struct System.Void. Since all C# structs are ultimately
derived from the object class, they all implement the methods defined in that class. Specifically, a
value types provide an Equals methods.

Furthermore, most (but not all) of the C# value types implement the IComparable interface. I.e., they
provide a CompareTo method for comparing instances of the same type. Unfortunately, since the value
types are not derived from the ComparableObject class it is not possible to use the operators shown

in Program with value type instances.

To circumvent this shortcoming, we might be tempted to try something like this:

class ComparableInt32 :
 ComparableObject,
 System.Int32 // Wrong. Int32 is a struct!
{
 // ...
}

Unfortunately, according to the C# language specification, Int32 is a struct--it cannot be extended[22].
Consequently, we are forced to implement our own wrapper classes if we want them to extend
ComparableObject base class.

Program defines the ComparableValue abstract class that extends the ComparableObject
base class. This class ``wraps'' an object that implements the IComparable interface.

http://www.brpreiss.com/books/opus6/html/page119.html (1 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

http://www.brpreiss.com/books/opus6/index.html

Wrappers for Value Types

Program: More here

The ComparableValue class as a single field obj that refers to the wrapped IComparable object
instance. The constructor takes a IComparable object reference and assigns it to the obj field. The
Object property of the ComparableValue class provides a get accessor that returns the contained
object instance. The GetHashCode and ToString methods simply delegate to the contained
IComparable instance.

The CompareTo method compares a ComparableValue with a given object. The assumption is
that the given object is also a ComparableValue. The CompareTo method compares the objects
contained in the ComparableValue wrappers.

http://www.brpreiss.com/books/opus6/html/page119.html (2 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

Wrappers for Value Types

Programs , and define three wrapper classes ComparableChar, ComparableInt32, and
ComparableDouble, which are wrappers for C# value types char, int, and double.

Program: ComparableChar class.

Program: ComparableInt32 class.

Program: ComparableDouble class.

http://www.brpreiss.com/books/opus6/html/page119.html (3 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

Wrappers for Value Types

C# also provides the string class for dealing with character sequences. The string class is special in
that it is closely tied to the definition of the language itself. The C# compiler automatically creates a

string object for every string literal , such as "Hello world.\n", in a C# program. Program
defines the class ComparableString which wraps a string instance using the
ComparableValue class.

Program: ComparableString class.

Using these classes it is now possible to write a sequence of statements like:

ComparableInt32 i = 1;
ComparableInt32 j = 2;
if (i > j)
 Console.WriteLine((int)i - (int)j);

In this sequence, the values 1 and 2 are first boxed by C#\ and then wrapped in instances of the

ComparableInt32 class. The comparison operator invoked is that given in Program and the

CompareTo method invoked is that given in Program .

Finally, to make it possible to deal with ComparableObjects only, a collection of conversion

operators is defined in Program I.e., for each value type a implicit conversion is provided that wraps
that value type in the corresponding ComparableValue class. Similarly, explicit conversion operators
are provided to unwrap the contained values types.

http://www.brpreiss.com/books/opus6/html/page119.html (4 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

Wrappers for Value Types

Program: More here

By using the methods given in Program , we can rewrite the code fragment given above as

ComparableObject i = 1;
ComparableObject j = 2;
if (i > j)
 Console.WriteLine((int)i - (int)j);

The effect of this code fragment is exactly as before. However, this time the objects are refered to by
variables whose type is the abstract base class ComparableObject.

http://www.brpreiss.com/books/opus6/html/page119.html (5 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

Wrappers for Value Types

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page119.html (6 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:03]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Containers

A container is an object that contains within it other objects. Many of the data structures presented in this
book can be viewed as containers. For this reason, we develop a common interface that is implemented
by the various data structure classes.

The Container interface is declared in Program . It comprises the three properties, Count,
IsEmpty, IsFull, and two methods, Purge and Accept. In addition, the Container interface
extends the IComparable interface (and therefore provides a CompareTo method) and it extends the
IEnumerable interface (and therefore provides a GetEnumerator method).

Program: Container interface.

A container may be empty or it may contain one or more other objects. Typically, a container has finite
capacity. The IsEmpty property provides a get accessor that returns true when the container is
empty and the IsFull property provides a get accessor that returns true when the container is full.
The Count property provides a get accessor that returns the number of objects in the container.

The purpose of the Purge method is to discard all of the contents of a container. After a container is
purged, the IsEmpty property is true and the Count property is zero.

Conspicuous by their absence from Program are methods for putting objects into a container and for
taking them out again. These methods have been omitted from the Container interface, because the
precise nature of these methods depends on the type of container implemented.

http://www.brpreiss.com/books/opus6/html/page120.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:04]

http://www.brpreiss.com/books/opus6/index.html

Containers

In order to describe the remaining Accept methods we need to introduce first the concepts of a visitor
and an enumerator , as well as with the Visitor, IEnumerable and IEnumerator interfaces

which represent these concepts. Visitors are discussed below in Section and enumerators are

discussed in Section .

● Abstract Containers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page120.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Containers

Program introduces an abstract class called AbstractContainer. It is intended to be used as the

base class from which concrete container realizations are derived. As illustrated in Figure , the

AbstractContainer class extends the ComparableObject class (defined in Program) and it

implements the Container interface (defined in Program).

A single field, count, is used. This field is used to keep track of the number of objects held in the
container. The count field is initially zero by default. It is the responsibility of the derived class to
update this field as required.

Program: AbstractContainer fields and properties.

The Count property provides a get accessor that returns the number of items contained in the
container. The get accessor simply returns the value of the count field.

IsEmpty and IsFull bool-valued properties which indicate whether a given container is empty or
full, respectively. Notice that the IsEmpty get accessor does not directly access the count field.

http://www.brpreiss.com/books/opus6/html/page121.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:04]

http://www.brpreiss.com/books/opus6/index.html

Abstract Containers

Instead it uses Count property. As long as the Count property has the correct semantics, the IsEmpty
property will too.

In some cases, a container is implemented in a way which makes its capacity finite. When this is the
case, it is necessary to be able to determine when the container is full. IsFull is a bool-valued
property that provides a get accessor that returns the value true if the container is full. The default
version always returns false.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page121.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Visitors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Visitors

The Container interface described in the preceding section interacts closely with the Visitor

interface shown in Program . In particular, the Accept method of the Container interface takes as
its argument a reference to any class that implements the Visitor interface.

Program: Visitor interface.

But what is a visitor? A shown in Program , a visitor is an object that has a Visit method and an
IsDone property. Of these, the Visit method is the most interesting. The Visit method takes as its
argument a reference to an object instance.

The interaction between a container and a visitor goes like this: The container is passed a reference to a
visitor by calling the container's Accept method. That is, the container ``accepts'' the visitor. What does
a container do with a visitor? It calls the Visit method of that visitor one-by-one for each object
contained in the container.

The interaction between a Container and its Visitor are best understood by considering an
example. The following code fragment gives the design framework for the implementation of the
Accept method in some concrete class, say SomeContainer, that implements the Container
interface:

public class SomeContainer : Container
{
 public void Accept(Visitor visitor)
 {
 foreach (object i in this)

http://www.brpreiss.com/books/opus6/html/page122.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:05]

http://www.brpreiss.com/books/opus6/index.html

Visitors

 {
 visitor.Visit(i);
 }
 }
 // ...
}

The Accept method calls Visit for each object i in the container. Since Visitor is an interface, it
does not provide an implementation for the Visit operation. What a visitor actually does with an object
depends on the actual class of visitor used.

Suppose that we want to print all of the objects in the container. One way to do this is to create a
PrintingVisitor which prints every object it visits, and then to pass the visitor to the container by
calling the Accept method. The following code shows how we can declare the PrintingVisitor
class which prints an object on the console.

public class PrintingVisitor : Visitor
{
 public void Visit(object obj)
 { Console.WriteLine(obj); }
 // ...
}

Finally, given an object c that is an instance of a concrete class SomeContainer that implements the
Container interface, we can call the Accept method as follows:

Container c = new SomeContainer();
// ...
c.accept(new PrintingVisitor());

The effect of this call is to call the Visit method of the visitor for each object in the container.

● The IsDone Property
● Abstract Visitors
● The AbstractContainer Class ToString Method

http://www.brpreiss.com/books/opus6/html/page122.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:05]

Visitors

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page122.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:05]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The IsDone Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The IsDone Property

As shown in Program , the Visitor interface also includes the property IsDone. The IsDone
property provides a get accessor that is used to determine whether a visitor has finished its work. That
is, the IsDone method returns the bool value true if the visitor ``is done.''

The idea is this: Sometimes a visitor does not need to visit all the objects in a container. That is, in some
cases, the visitor may be finished its task after having visited only a some of the objects. The IsDone
method can be used by the container to terminate the Accept method early like this:

public class SomeContainer : Container
{
 public void Accept(Visitor visitor)
 {
 foreach (object i in this)
 {
 if (visitor.IsDone)
 return;
 visitor.Visit(i);
 }
 }
 // ...
}

To illustrate the usefulness of IsDone, consider a visitor which visits the objects in a container with the
purpose of finding the first object that matches a given target object. Having found the first matching
object in the container, the visitor is done and does not need to visit any more contained objects.

The following code fragment defines a visitor which finds the first object in the container that matches a
given object.

public class MatchingVisitor : Visitor
{
 private object target;
 private object found;

 public MatchingVisitor(object target)

http://www.brpreiss.com/books/opus6/html/page123.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:05]

http://www.brpreiss.com/books/opus6/index.html

The IsDone Property

 { this.target = target; }

 public void Visit(object obj)
 {
 if (!IsDone && obj.equals(target))
 found = obj;
 }

 public bool IsDone()
 { return found != null; }
}

The constructor of the MatchingVisitor visitor takes a reference to an object instance that is the
target of the search. That is, we wish to find an object in a container that matches the target. For each
object the MatchingVisitor visitor visits, it compares that object with the target and makes found
point at that object if it matches. Clearly, the MatchingVisitor visitor is done when the found
pointer is non-zero.

Suppose we have a container c that is an instance of a concrete container class, SomeContainer, that
implements the Container interface; and an object x that is an instance of a concrete object class,
SomeObject. Then, we can call use the MatchingVisitor visitor as follows:

Container c = new SomeContainer();
Object x = new SomeObject();
// ...
c.Accept(new MatchingVisitor(x));

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page123.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:05]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Visitors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Visitors

Program defines an abstract class called AbstractVisitor that implements the Visitor
interface. This class is provided simply as a convenience. It provides a default implementation for the
Visit method which does nothing and a default implementation for the IsDone method which always
returns false.

Program: AbstractVisitor class.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page124.html [2002-11-17 ｿﾀﾈﾄ 11:03:06]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The AbstractContainer Class ToString Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The AbstractContainer Class ToString Method

One of the methods defined in the C# object class is the ToString method. Consequently, every C#
object supports the ToString method. The ToString method is required to return a string that
represents the object ``textually.'' It is typically invoked in situations where it is necessary to print out the
representation of an object.

Program defines the ToString method of the AbstractContainer class. This method is
provided to simplify the implementation of classes derived from the AbstractContainer class. The
default behavior is to print out the name of the class and then to print each of the elements in the
container, by using the Accept method together with a visitor.

http://www.brpreiss.com/books/opus6/html/page125.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:06]

http://www.brpreiss.com/books/opus6/index.html

The AbstractContainer Class ToString Method

Program: AbstractContainer class ToString method.

The ToString method makes use of a StringBuilder to accumulate the textual representations of
the objects in the container. A C# string builder is like a C# string, except it can be modified. In
particular, the StringBuilder class defines various Append methods that can be used to append text
to the builder.

In this case, we use a visitor to do the appending. That is, the Visit method appends to the string

http://www.brpreiss.com/books/opus6/html/page125.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:06]

The AbstractContainer Class ToString Method

builder the textual representation of every object that it visits. (It also makes sure to put in commas as
required).

The final result returned by the ToString method consists of the name of the container class, followed
by a comma-separated list of the contents of that container enclosed in braces { and }.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page125.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enumerable Collections and Enumerators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enumerable Collections and Enumerators

In this section we introduce an abstraction called an enumerator. An enumerator provides the means to
access one-by-one all the objects in a container. Enumerators are an alternative to using the visitors

described in Section .

The Container interface given in Program extends the standard C# IEnumerable interface .
The following code fragment defines the IEnumerable interface.

namespace System.Collections
{
 public interface IEnumerable
 {
 public IEnumerator GetEnumerator();
 }
}

Simply put, a class that is enumerable provides a method that returns an enumerator.

The idea is that for every concrete container class we will also implement a related class that implements
the standard C# IEnumerator interface . The following code fragment defines the IEnumerator
interface.

namespace System.Collections
{
 public interface IEnumerator
 {
 public bool MoveNext();
 public object Current { get; }
 public void Reset();
 }
}

The interface comprises two methods, MoveNext and Reset, and a property, Current.

http://www.brpreiss.com/books/opus6/html/page126.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:07]

http://www.brpreiss.com/books/opus6/index.html

Enumerable Collections and Enumerators

In order to understand the desired semantics, it is best to consider first an example which illustrates the
use of an enumerator. Consider a concrete container class, say SomeContainer, that implements the
Container interface. The following code fragment illustrates the use of the enumerator to access one-
by-one the objects contained in the container:

Container c = new SomeContainer();
// ...
IEnumerator e = c.GetEnumerator();
while (e.MoveNext())
{
 object obj = e.Current;
 Console.WriteLine(obj);
}
e.Reset();

In order to have the desired effect, the members of the IEnumerator interface must have the following
behaviors:

MoveNext
The MoveNext method is called in the loop-termination test part of the while statement. The
MoveNext conceptually moves the enumerator to the next object to be visited. The MoveNext
method returns true when there are still more objects in the container to be visited and it returns
false when all of the contained objects have been visited.

Current
The Current property provides a get accessor that returns the next object in the container to be
visited. If there is no current object to be visited, this accessor throws a
InvalidOperationException exception.

Reset
The Reset method resets the enumerator so that all the objects in the container can be visited
again.

Given these semantics for the enumerator methods, the program fragment shown above systematically
visits all of the objects in the container and prints each one on its own line of the console.

One of the advantages of using an enumerator object which is separate from the container is that it is
possible then to have more than one enumerator associated with a given container. This provides greater
flexibility than possible using a visitor, since only one visitor can be accepted by a container at any given
time. For example, consider the following code fragment:

Container c = new SomeContainer();
// ...

http://www.brpreiss.com/books/opus6/html/page126.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:07]

Enumerable Collections and Enumerators

IEnumerator e1 = c.GetEnumerator();
while (e1.MoveNext())
{
 object obj1 = e1.Current;
 IEnumerator e2 = c.GetEnumerator();
 while (e2.MoveNext())
 {
 object obj2 = e2.Current;
 if (obj1.Equals(obj2))
 Console.WriteLine(obj1 + "=" + obj2);
 }
}

This code compares all pairs of objects in the container c and prints out those which are equal.

A certain amount of care is required when defining and using enumerators. In order to simplify the
implementation of enumerators, we shall assume that while an enumerator is in use, the associated
container will not be modified.

● Enumerators and foreach

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page126.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enumerators and foreach

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enumerators and foreach

The C# compiler automatically generates code to use an enumerator when the foreach statement is
used. Thus, given an object c that is an instance of a concrete class SomeContainer that implements
the Container interface, we can use the foreach statement to enumerate the objects in the container
as follows:

Container c = new SomeContainer();
// ...
foreach (object obj in c)
{
 Console.WriteLine(obj);
}

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page127.html [2002-11-17 ｿﾀﾈﾄ 11:03:07]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Searchable Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Searchable Containers

A searchable container is an extension of the container abstraction. It adds to the interface provided for
containers methods for putting objects in and taking objects out, for testing whether a given object is in
the container, and a method to search the container for a given object.

The definition of the SearchableContainer interface is shown in Program . The

SearchableContainer interface extends the Container interface given in Program . It adds
four methods to the inherited interface.

Program: SearchableContainer interface.

The IsMember method is a bool-valued method which takes as its argument any object derived from
the ComparableObject abstract base class. The purpose of this method is to test whether the given
object instance is in the container.

The purpose of the Insert method is to put an object into the container. The Insert method takes a
ComparableObject and inserts it into the container. Similarly, the Withdraw method is used to
remove an object from a container. The argument refers to the object to be removed.

The final method, Find, is used to locate an object in a container and to return a reference to that object.
In this case, it is understood that the search is to be done using the comparison methods defined in the
ComparableObject class. That is, the Find method is not to be implemented as a search of the
container for the given object but rather as a search of the container for an object that compares equal to
the given object.

http://www.brpreiss.com/books/opus6/html/page128.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:08]

http://www.brpreiss.com/books/opus6/index.html

Searchable Containers

This is an important subtlety in the semantics of Find: The search is not for the given object, but rather
for an object that compares equal to the given object. These semantics are particularly useful when using

associations , which are defined in Section .

In the event that the Find method fails to find an object equal to the specified object, then it will return
null. Therefore, the user of the Find method should test explicitly the returned value to determine
whether the search was successful. Also, the Find method does not remove the object it finds from the
container. An explicit call of the Withdraw method is needed to actually remove the object from the
container.

● Abstract Searchable Containers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page128.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:08]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Searchable Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Searchable Containers

Program introduces an abstract class called AbstractSearchableContainer. It is intended to
be used as the base class from which concrete searchable container realizations are derived. As illustrated

in Figure , the AbstractSearchableContainer class extends the AbstractContainer

class (defined in Program) and it implements the SearchableContainer interface (defined in

Program).

Program: AbstractSearchableContainer class.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page129.html [2002-11-17 ｿﾀﾈﾄ 11:03:09]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Associations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Associations

An association is an ordered pair of objects. The first element of the pair is called the key ; the second
element is the value associated with the given key.

Associations are useful for storing information in a database for later retrieval. For example, a database
can be viewed as a container that holds key-and-value pairs. The information associated with a given key
is retrieved from the database by searching the database for an the ordered pair in which the key matches
the given key.

Program introduces the Association class. The Association class concrete extension of the

ComparableObject class given in Program .

Program: Association fields.

An association has two fields, key and value. The key field is any object that implements the
IComparable interface. The value field is any, arbitrary object.

Two constructors and two properties are defined in Program . The first constructor takes two
arguments and initializes the key and value fields accordingly. The second constructor takes only one
argument which is used to initialize the key field--the value field is set to null.

http://www.brpreiss.com/books/opus6/html/page130.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:10]

http://www.brpreiss.com/books/opus6/index.html

Associations

Program: Association constructors.

The Key and the Value property each provides a get accessor. The former returns the value of the
key field; the latter, returns the value of the value field.

The remaining methods of the Association class are defined in Program . The CompareTo
method is used to compare associations. Its argument is an object that is assumed to be an instance of the
Association class. The CompareTo method is one place where an association distinguishes
between the key and the value. In this case, the result of the comparison is based solely on the keys of the
two associations--the values have no role in the comparison.

http://www.brpreiss.com/books/opus6/html/page130.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:10]

Associations

Program: Association methods.

Program also defines a ToString method. The purpose of the ToString method is to return a
textual representation of the association. In this case, the implementation is trivial and needs no further
explanation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page130.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Specify the set of values and the set of operations provided by each of the following C# types:

1. char,
2. int,
3. double, and
4. string.

2. What are the features of C# that facilitate the creation of user-defined data types.
3. Explain how each of the following C# features supports polymorphism:

1. interfaces,
2. abstract classes,
3. inheritance, and
4. operator overloading.

4. Suppose we define two concrete classes, A and B, both of which are derived from the

ComparableObject class declared in Program . Furthermore, let a and b be instances of
classes A and B (respectively) declared as follows:

public class A : ComparableObject { ... };
public class B : ComparableObject { ... };
ComparableObject a = new A();
ComparableObject b = new B();

Give the sequence of methods called in order to evaluate a comparison such as ``a < b''. Is the
result of the comparison true or false? Explain.

5. Consider the ComparableInt32 wrapper class defined in Program . Explain the operation
of the following program fragment:

ComparableObject i = 5;
ComparableObject j = 7;
bool result = i < j;

6. Let c be an instance of some concrete class derived from the AbstractContainer class given

in Program . Explain how the statement

Console.WriteLine(c);

http://www.brpreiss.com/books/opus6/html/page131.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:10]

http://www.brpreiss.com/books/opus6/index.html

Exercises

prints the contents of the container on the console.
7. Suppose we have a container c (i.e., an instance of some concrete class derived from the

AbstractContainer class defined in Program) which among other things happens to
contain itself. What happens when we invoke the ToString method on c?

8. Enumerators and visitors provide two ways to do the same thing--to visit one-by-one all the
objects in a container. Give an implementation for the Accept method of the
AbstractContainer class that uses an enumerator.

9. Is it possible to implement an enumerator using a visitor? Explain.
10. Suppose we have a container which we know contains only instances of the

ComparableInt32 class defined in Program . Design a Visitor which computes the sum
of all the integers in the container.

11. Consider the following pair of Associations:

ComparableObject a = new Association(3, 4);
ComparableObject b = new Association(3);

Give the sequence of methods called in order to evaluate a comparison such as ``a == b''. Is the
result of the comparison true or false? Explain.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page131.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Design and implement suitable wrapper classes that extend the ComparableObject base

class for the C# types bool, byte, short, long, float, and void.
2. Using visitors, devise an implementation for the IsMember property and the Find method of

the AbstractSearchableContainer class declared in Program .
3. Using an enumerator, devise an implementation for the IsMember property and the Find

method of the AbstractSearchableContainer class declared in Program .
4. Devise a scheme using visitors whereby all of the objects contained in one searchable container

can be removed from it and transfered to another container.
5. A bag is a simple container that can hold a collection of objects. Design and implement a

concrete class called Bag that extends the AbstractSearchableContainer class defined

in Program . Use the DynamicArray class given in Chapter to keep track of the contents
of the bag.

6. Repeat Project , this time using the LinkedList class given in Chapter .
7. In Java it is common to use an enumeration as the means to iterate through the objects in a

container. In C# we can define an enumeration like this:

public interface Enumeration
{
 bool hasMoreElements { get; }
 object nextElement();
}

Given an enumeration e from some container c, the contents of c can be printed like this:

while (e.hasMoreElements)
 Console.WriteLine(e.nextElement());

Devise a wrapper class to encapsulate a C# enumerator and provide the functionality of a Java
enumeration.

http://www.brpreiss.com/books/opus6/html/page132.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:11]

http://www.brpreiss.com/books/opus6/index.html

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page132.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Stacks, Queues, and Deques

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Stacks, Queues, and Deques

In this chapter we consider several related abstract data types--stacks, queues, and deques. Each of these
can be viewed as a pile of items. What distinguishes each of them is the way in which items are added to
or removed from the pile.

In the case of a stack, items are added to and removed from the top of the pile. Consider the pile of
papers on your desk. Suppose you add papers only to the top of the pile or remove them only from the
top of the pile. At any point in time, the only paper that is visible is the one on top. What you have is a
stack.

Now suppose your boss comes along and asks you to complete a form immediately. You stop doing
whatever it is you are doing, and place the form on top of your pile of papers. When you have filled-out
the form, you remove it from the top of the stack and return to the task you were working on before your
boss interrupted you. This example illustrates that a stack can be used to keep track of partially
completed tasks.

A queue is a pile in which items are added an one end and removed from the other. In this respect, a
queue is like the line of customers waiting to be served by a bank teller. As customers arrive, they join
the end of the queue while the teller serves the customer at the head of the queue. As a result, a queue is
used when a sequence of activities must be done on a first-come, first-served basis.

Finally, a deque extends the notion of a queue. In a deque, items can be added to or removed from either
end of the queue. In a sense, a deque is the more general abstraction of which the stack and the queue are
just special cases.

As shown in Figure , we view stacks, queues, and deques as containers. This chapter presents a
number of different implementation alternatives for stacks, queues, and deques. All of the concrete

classes presented are extensions of the AbstractContainer class defined in Chapter .

http://www.brpreiss.com/books/opus6/html/page133.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:11]

http://www.brpreiss.com/books/opus6/index.html

Stacks, Queues, and Deques

Figure: Object class hierarchy.

● Stacks
● Queues
● Deques
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page133.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Stacks

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Stacks
The simplest of all the containers is a stack . A stack is a container which provides exactly one method,
Push, for putting objects into the container; and one method, Pop, for taking objects out of the

container. Figure illustrates the basic idea.

Figure: Basic stack operations.

Objects which are stored in a stack are kept in a pile. The last item put into the stack is a the top. When
an item is pushed into a stack, it is placed at the top of the pile. When an item popped, it is always the top
item which is removed. Since it is always the last item to be put into the stack that is the first item to be
removed, a stack is a last-in, first-out or LIFO data structure.

In addition to the Push and Pop operations, the typical stack implementation also has a property called
Top that provides a get accessor that returns the item at the top of the stack without removing it from
the stack.

http://www.brpreiss.com/books/opus6/html/page134.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:12]

http://www.brpreiss.com/books/opus6/index.html

Stacks

Program defines the Stack interface. The Stack interface extends the Container interface

defined in Program . Hence, it comprises all of the methods inherited from Container plus the
three methods Top, Push, and Pop.

Program: Stack interface.

When implementing a data structure, the first issue to be addressed is which foundational data
structure(s) to use. Often, the choice is between an array-based implementation and a linked-list
implementation. The next two sections present an array-based implementation of stacks followed by a
linked-list implementation.

● Array Implementation
● Linked-List Implementation
● Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page134.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:12]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

This section describes an array-based implementation of stacks. Program introduces the
StackAsArray class. The StackAsArray class is a concrete class that extends the

AbstractContainer class introduced in Program and implements the Stack interface defined

in Program .

Program: StackAsArray fields.

● Fields
● Constructor and Purge Methods
● Push and Pop Methods, Top Property
● Accept Method
● GetEnumerator Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page135.html [2002-11-17 ｿﾀﾈﾄ 11:03:12]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The StackAsArray class contains one field--an array of objects called array. In addition, the
StackAsArray class inherits the count field from the AbstractContainer class. In the array
implementation of the stack, the elements contained in the stack occupy positions 0, 1, ..., of
the array.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page136.html [2002-11-17 ｿﾀﾈﾄ 11:03:13]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

The definitions of the StackAsArray constructor and Purge methods are given in Program . The
constructor takes a single parameter, size, which specifies the maximum number of items that can be
stored in the stack. The variable array is initialized to be an array of length size. The constructor
requires O(n) time to construct the array, where .

Program: StackAsArray class constructor and Purge methods.

The purpose of the Purge method is to remove all the contents of a container. In this case, the objects in
the stack occupy the first count positions of the array. To empty the stack, the Purge method simply
assigns the value null to the first count positions of the array. Clearly, the running time for the
Purge method is O(n), where .

http://www.brpreiss.com/books/opus6/html/page137.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:14]

http://www.brpreiss.com/books/opus6/index.html

Constructor and Purge Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page137.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Push and Pop Methods, Top Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Push and Pop Methods, Top Property

Program defines the Push and Pop methods and the Top property of the StackAsArray class.
The first of these, Push, adds an element to the stack. It takes as its argument the object to be pushed
onto the stack.

http://www.brpreiss.com/books/opus6/html/page138.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:15]

http://www.brpreiss.com/books/opus6/index.html

Push and Pop Methods, Top Property

Program: StackAsArray class Push and Pop Methods, Top property.

The Push method first checks to see if there is room left in the stack. If no room is left, it throws a
ContainerFullException exception. Otherwise, it simply puts the object into the array, and then
increases the count variable by one. In a correctly functioning program, stack overflow should not
occur. If we assume that overflow does not occur, the running time of the Push method is clearly O(1).

The Pop method removes an item from the stack and returns that item. The Pop method first checks if
the stack is empty. If the stack is empty, it throws a ContainerEmptyException exception.
Otherwise, it simply decreases count by one and returns the item found at the top of the stack. In a
correctly functioning program, stack underflow will not occur normally. The running time of the Pop
method is O(1).

Finally, the Top property provides a get accessor that returns the top item in the stack. The get
accessor does not modify the stack. In particular, it does not remove the top item from the stack. The
Top method first checks if the stack is empty. If the stack is empty, it throws a
ContainerEmptyException exception. Otherwise, it returns the top item, which is found at
position in the array. Assuming stack underflow does not occur normally, the running time
of the Top method is O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page138.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Accept Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Accept Method

Program defines the Accept method for the StackAsArray class. As discussed in Chapter ,
the purpose of the Accept method of a container is to accept a visitor and to cause it to visit one-by-one
all of the contained objects.

Program: StackAsArray class Accept method.

The body of the Accept method is simply a loop which calls the Visit method for each object in the
stack. The running time of the Accept method depends on the running time of the Visit method. Let

 be the running time of the Visit method. In addition to the time for the method call, each

iteration of the loop incurs a constant overhead. Consequently, the total running time for Accept is

, where n is the number of objects in the container. And if , the

total running time is to O(n).

http://www.brpreiss.com/books/opus6/html/page139.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:16]

http://www.brpreiss.com/books/opus6/index.html

Accept Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page139.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

GetEnumerator Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

GetEnumerator Method

As discussed in Section , the GetEnumerator method of a Container returns an
IEnumerator. An enumerator is meant to be used like this:

Stack stack = new StackAsArray(57);
stack.Push(3);
stack.Push(1);
stack.Push(4);
IEnumerator e = stack.GetEnumerator();
while (e.MoveNext())
{
 Object obj = e.Current;
 Console.WriteLine(obj);
}

This code creates an instance of the StackAsArray class and assigns it to the variable stack. Next,
several ints are pushed onto the stack. Finally, an enumerator is used to systematically print out all of
the objects in the stack.

Program defines GetEnumerator method of the StackAsArray class. The GetEnumerator
method returns a new instance of the private class StackAsArray.Enumerator that implements the
IEnumerator interface (lines 5-32).

http://www.brpreiss.com/books/opus6/html/page140.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:16]

http://www.brpreiss.com/books/opus6/index.html

GetEnumerator Method

http://www.brpreiss.com/books/opus6/html/page140.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:16]

GetEnumerator Method

Program: StackAsArray class GetEnumerator method.

The Enumerator class has two fields, stack and position. The stack field refers to the stack
whose elements are being enumerated. The position field is used to keep track of the position in the
array of the current object.

The MoveNext method is called in the loop termination test of the while loop given above. The
purpose of MoveNext method is to advance the enumerator to the next object in the stack. The
enumerator resets the position to -1 and returns false when there are no more elements. Clearly, the
running time of MoveNext is O(1).

The Current property provides a get accessor that returns the current object. It returns the object in
the stack specified by the position field provided that the value of the position field is non-
negative. Otherwise, it throws a InvalidOperationException exception. Clearly, the running
time of Current is also O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page140.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked-List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked-List Implementation

In this section we will examine a linked-list implementation of stacks that makes use of the

LinkedList data structure developed in Chapter . Program introduces the
StackAsLinkedList class. The StackAsLinkedList class is a concrete class that extends the

AbstractContainer class introduced in Program and implements the Stack interface defined

in Program .

Program: StackAsLinkedList fields.

● Fields
● Constructor and Purge Methods
● Push and Pop Methods, Top Property
● Accept Method
● GetEnumerator Method

http://www.brpreiss.com/books/opus6/html/page141.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:17]

http://www.brpreiss.com/books/opus6/index.html

Linked-List Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page141.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The implementation of the StackAsLinkedList class makes use of one field--an instance of the
LinkedList class called list. In addition, the StackAsLinkedList class inherits the count
field from the AbstractContainer class. This list is used to keep track of the objects in the stack.
As a result, there are as many elements in the linked list as there are objects in the stack.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page142.html [2002-11-17 ｿﾀﾈﾄ 11:03:17]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

The definitions of the constructor and the Purge methods of the StackAsLinkedList class are

shown in Program . With a linked-list implementation, it is not necessary to preallocate storage space
for the objects in the stack. Space is allocated dynamically and incrementally on the basis of demand.

Program: StackAsLinkedList class constructor and Purge methods.

The constructor simply creates an empty LinkedList and assigns it to the list field. Since an empty
list can be created in constant time, the running time of the StackAsLinkedList constructor is O(1).

The Purge method of the StackAsLinkedList class simply calls the Purge method of the
LinkedList class. The Purge method of the LinkedList class discards all the elements of the list
in constant time. Consequently, the running time of the Purge method is also O(1).

http://www.brpreiss.com/books/opus6/html/page143.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:18]

http://www.brpreiss.com/books/opus6/index.html

Constructor and Purge Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page143.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Push and Pop Methods, Top Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Push and Pop Methods, Top Property

The Push and Pop methods, and the Top property of the StackAsLinkedList class are defined in

Program .

http://www.brpreiss.com/books/opus6/html/page144.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:19]

http://www.brpreiss.com/books/opus6/index.html

Push and Pop Methods, Top Property

Program: StackAsLinkedList class Push and Pop Methods, Top property.

The implementation of Push is trivial. It takes as its argument the object to be pushed onto the stack
and simply prepends that object to the linked list list. Then, one is added to the count variable. The
running time of the Push method is constant, since the Prepend method has a constant running time,
and updating the count only takes O(1) time.

The Pop method is implemented using the First property and the Extract method of the
LinkedList class. The First property is used to get the first item in the linked list. The First get
accessor runs in constant time. The Extract method is then called to extract the first item from the
linked list. In the worst case, Extract requires O(n) time to extract an item from a linked list of length
n. But the worst-case time arises only when it is the last element of the list which is to be extracted. In
the case of the Pop method, it is always the first element that is extracted. This can be done in constant
time. Assuming that the exception which is raised when Pop is called on an empty list does not occur,
the running time for Pop is O(1).

The definition of the Top get accessor is quite simple. It returns the first object in the linked list.
Provided the linked list is not empty, the running time of Top is O(1). If the linked list is empty, the Top
get accessor throws a ContainerEmptyException exception.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page144.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:19]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Accept Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Accept Method

The Accept method of the StackAsLinkedList class is defined in Program . The Accept
method takes a visitor and calls its Visit method one-by-one for all of the objects on the stack.

Program: StackAsLinkedList class Accept method.

The implementation of the Accept method for the StackAsLinkedList class mirrors that of the

StackAsArray class shown in Program . In this case, the linked list is traversed from front to back,
i.e., from the top of the stack to the bottom. As each element of the linked list is encountered, the Visit

method is called. If is the running time of the Visit method, the total running time for

Accept is , where is the number of objects in the container. If we

assume that , the total running time is O(n).

http://www.brpreiss.com/books/opus6/html/page145.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:19]

http://www.brpreiss.com/books/opus6/index.html

Accept Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page145.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:19]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

GetEnumerator Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

GetEnumerator Method

Program defines GetEnumerator method of the StackAsLinkedList class. The
GetEnumerator method returns an instance of the private class
StackAsLinkedlist.Enumerator that implements the IEnumerator interface (lines 5-34).

http://www.brpreiss.com/books/opus6/html/page146.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:20]

http://www.brpreiss.com/books/opus6/index.html

GetEnumerator Method

Program: StackAsLinkedList class GetEnumerator method.

The Enumerator class has two fields, stack and position. The stack field refers to the stack
whose elements are being enumerated. The position field is used to keep track of the position in the
linked list of the next object to be enumerated.

The purpose of the MoveNext method is to advance the enumerator to the next position and return false

whether there are not more elements to be enumerated. In Program elements remain as long as the
position is not null. Clearly, the running time of MoveNext is O(1).

The Current property provides a get accessor that returns the current object. It returns the appropriate
object in the linked list, provided that the value of the position variable is not null. Otherwise, it
throws a InvalidOperationException exception. Clearly, the running time of this accessor is
also O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page146.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

Consider the following expression:

In order to determine the value of this expression, we first compute the sum 5+9 and then multiply that
by 2. Then we compute the product and add it to the previous result to get the final answer. Notice

that the order in which the operations are to be done is crucial. Clearly if the operations are not done in
the correct order, the wrong result is computed.

The expression above is written using the usual mathematical notation. This notation is called infix
notation. What distinguishes this notation is the way that expressions involving binary operators are
written. A binary operator is an operator which has exactly two operands, such as + and . In infix
notation, binary operators appear in between their operands.

Another characteristic of infix notation is that the order of operations is determined by operator
precedence . For example, the (multiplication) operator has higher precedence than does the +
(addition) operator. When an evaluation order is desired that is different from that provided by the
precedence, parentheses , ``('' and ``)'', are used to override precedence rules. An expression in
parentheses is evaluated first.

As an alternative to infix, the Polish logician Jan ukasiewicz introduced notations which require
neither parentheses nor operator precedence rules. The first of these, the so-called Polish notation ,

places the binary operators before their operands. For Equation we would write:

This is also called prefix notation, because the operators are written in front of their operands.

While prefix notation is completely unambiguous in the absence of parentheses, it is not very easy to
read. A minor syntactic variation on prefix is to write the operands as a comma-separated list enclosed in
parentheses as follows:

http://www.brpreiss.com/books/opus6/html/page147.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:21]

http://www.brpreiss.com/books/opus6/index.html

Applications

While this notation seems somewhat foreign, in fact it is precisely the notation that is used for static
method calls in C#:

Plus(Times(Plus(5,9) ,2), Times(6,5));

The second form of ukasiewicz notation is the so-called Reverse-Polish notation (RPN). Equation
is written as follows in RPN:

This notation is also called postfix notation for the obvious reason--the operators are written after their
operands.

Postfix notation, like prefix notation, does not make use of operator precedence nor does it require the
use of parentheses. A postfix expression can always be written without parentheses that expresses the
desired evaluation order. For example, the expression , in which the multiplication is done

first, is written ; whereas the expression is written .

● Evaluating Postfix Expressions
● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page147.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Evaluating Postfix Expressions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Evaluating Postfix Expressions

One of the most useful characteristics of a postfix expression is that the value of such an expression can
be computed easily with the aid of a stack of values. The components of a postfix expression are
processed from left to right as follows:

1. If the next component of the expression is an operand, the value of the component is pushed onto
the stack.

2. If the next component of the expression is an operator, then its operands are in the stack. The
required number of operands are popped from the stack; the specified operation is performed; and
the result is pushed back onto the stack.

After all the components of the expression have been processed in this fashion, the stack will contain a

single result which is the final value of the expression. Figure illustrates the use of a stack to evaluate

the RPN expression given in Equation .

Figure: Evaluating the RPN expression in Equation using a stack.

http://www.brpreiss.com/books/opus6/html/page148.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:21]

http://www.brpreiss.com/books/opus6/index.html

Evaluating Postfix Expressions

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page148.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program gives the implementation of a simple RPN calculator. The purpose of this example is to
illustrate the use of the Stack class. The program shown accepts very simplified RPN expressions: The
expression may contain only single-digit integers, the addition operator, +, and the multiplication
operator, *. In addition, the operator = pops the top value off the stack and prints it on the console.
Furthermore, the calculator does its computation entirely with integers.

http://www.brpreiss.com/books/opus6/html/page149.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:22]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Stack application--a single-digit, RPN calculator.

Notice that the stack variable of the Calculator method may be any object that implements the
Stack interface. Consequently, the calculator does not depend on the stack implementation used! For
example, if we wish to use a stack implemented using an array, we can simply replace line 6 with the
following:

Stack stack = new StackAsArray(10);

The running time of the Calculator method depends upon the number of symbols, operators, and
operands, in the expression being evaluated. If there are n symbols, the body of the while loop is
executed n times. It should be fairly obvious that the amount of work done per symbol is constant,
regardless of the type of symbol encountered. This is the case for both the StackAsArray and the
StackAsLinkedList stack implementations. Therefore, the total running time needed to evaluate an
expression comprised of n symbols is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page149.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:22]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Queues
In the preceding section we saw that a stack comprises a pile of objects that can be accessed only at one
end--the top. In this section we examine a similar data structure called a single-ended queue . Whereas in
a stack we add and remove elements at the same end of the pile, in a single-ended queue we add elements
at one end and remove them from the other. Since it is always the first item to be put into the queue that

is the first item to be removed, a queue is a first-in, first-out or FIFO data structure. Figure
illustrates the basic queue operations.

Figure: Basic queue operations.

Program defines the Queue interface. The Queue interface extends the Container interface

defined in Program . Hence, comprises all the methods inherited from Container plus two
methods, Enqueue, and Dequeue, and the Head property, As we did with stacks, we examine two
queue implementations--an array-based one and a linked-list one.

http://www.brpreiss.com/books/opus6/html/page150.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:23]

http://www.brpreiss.com/books/opus6/index.html

Queues

Program: Queue interface.

● Array Implementation
● Linked-List Implementation
● Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page150.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

Program introduces the QueueAsArray class. The QueueAsArray class is a concrete class that

extends the AbstractContainer class introduced in Program and implements the Queue

interface defined in Program .

Program: QueueAsArray fields.

● Fields
● Constructor and Purge Methods
● Enqueue and Dequeue Methods, Head Property

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page151.html [2002-11-17 ｿﾀﾈﾄ 11:03:23]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

QueueAsArray objects comprise three fields--array, head, and tail. The first, array, is an array
of objects that is used to hold the contents of the queue. The objects contained in the queue will be

held in a contiguous range of array elements as shown in Figure (a). The fields head and tail
denote the left and right ends, respectively, of this range.

Figure: Array implementation of a queue.

In general, the region of contiguous elements will not necessarily occupy the leftmost array positions. As
elements are deleted at the head, the position of the left end will change. Similarly, as elements are added
at the tail, the position of the right end will change. In some circumstances, the contiguous region of

elements will wrap around the ends of the array as shown in Figure (b).

As shown in Figure , the leftmost element is array[head], and the rightmost element is

http://www.brpreiss.com/books/opus6/html/page152.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:24]

http://www.brpreiss.com/books/opus6/index.html

Fields

array[tail]. When the queue contains only one element, as shown in Figure (c).

Finally, Figure (b) shows that if the queue is empty, the head position will actually be to the right of
the tail position. However, this is also the situation which arises when the queue is completely full!

The problem is essentially this: Given an array of length n, then and .

Therefore, the difference between the head and tail satisfies . Since

there are only n distinct differences, there can be only n distinct queue lengths, 0, 1, ..., n-1. It is not
possible to distinguish the queue which is empty from the queue which has n elements solely on the basis
of the head and tail fields.

There are two options for dealing with this problem: The first is to limit the number of elements in the
queue to be at most n-1. The second is to use another field, count, to keep track explicitly of the actual
number of elements in the queue rather than to infer the number from the head and tail variables. The
second approach has been adopted in the implementation given below.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page152.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

The definitions of the QueueAsArray class constructor and Purge methods are given in Program .
The constructor takes a single parameter, size, which specifies the maximum number of items that can
be stored in the queue. The constructor initializes the fields as follows: The array field is initialized to
an array of length size and the head and tail fields, are initialized to represent the empty queue. The
total running time for the QueueAsArray constructor is O(n), where .

http://www.brpreiss.com/books/opus6/html/page153.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:25]

http://www.brpreiss.com/books/opus6/index.html

Constructor and Purge Methods

Program: QueueAsArray constructor and Purge methods.

The purpose of the Purge method is to remove all the contents of a container. In this case, the objects in
the queue occupy contiguous array positions between head and tail. To empty the queue, the Purge
method walks through the occupied array positions assigning to each one the value null as it goes.
Clearly, the running time for the Purge method is O(n), where .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page153.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:25]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enqueue and Dequeue Methods, Head Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enqueue and Dequeue Methods, Head Property

Program defines Enqueue and Dequeue methods and the Head property of the QueueAsArray
class.

http://www.brpreiss.com/books/opus6/html/page154.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:26]

http://www.brpreiss.com/books/opus6/index.html

Enqueue and Dequeue Methods, Head Property

Program: QueueAsArray class Enqueue and Dequeue methods, class Head property.

The Head property provides a get accessor that returns the object found at the head of the queue,
having first checked to see that the queue is not empty. If the queue is empty, it throws a
ContainerEmptyException exception. Under normal circumstances, we expect that the queue will
not be empty. Therefore, the normal running time of this accessor is O(1).

The Enqueue method takes a single argument which is a the object to be added to the tail of the queue.
The Enqueue method first checks that the queue is not full--a ContainerFullException
exception is thrown when the queue is full. Next, the position at which to insert the new element is
determined by increasing the tail field by one modulo the length of the array. Finally, the object to be
enqueued is put into the array at the correct position and the count is adjusted accordingly. Under
normal circumstances (i.e., when the exception is not thrown), the running time of Enqueue is O(1).

The Dequeue method removes an object from the head of the queue and returns that object. First, it
checks that the queue is not empty and throws an exception when it is. If the queue is not empty, the
method first sets aside the object at the head in the local variable result; it increases the head field by
one modulo the length of the array; adjusts the count accordingly; and returns result. All this can be
done in a constant amount of time so the running time of Dequeue is a O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page154.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked-List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked-List Implementation

This section presents a queue implementation which makes use of the singly-linked list data structure,

LinkedList, that is defined in Chapter . Program introduces the QueueAsLinkedList class.
The QueueAsLinkedList extends the AbstractContainer class and implements the Queue
interface.

Program: QueueAsLinkedList fields.

● Fields
● Constructor and Purge Methods
● Enqueue and Dequeue Methods, Head Property

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page155.html [2002-11-17 ｿﾀﾈﾄ 11:03:27]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

Just like the StackAsLinkedList class, the implementation of the QueueAsLinkedList class
requires only one field--list. The list field is an instance of the LinkedList class. It is used to
keep track of the elements in the queue.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page156.html [2002-11-17 ｿﾀﾈﾄ 11:03:27]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

Program defines the QueueAsLinkedList constructor and Purge methods. In the case of the
linked list implementation, it is not necessary to preallocate storage. The constructor simply initializes
the list object as an empty list. The running time of the constructor is O(1).

Program: QueueAsLinkedList class constructor and Purge methods.

The Purge method empties the queue by invoking the Purge method provided by the LinkedList
class and then sets the count field to zero. Since a linked-list can be purged in constant time, the total
running time for the Purge method is O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page157.html [2002-11-17 ｿﾀﾈﾄ 11:03:27]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enqueue and Dequeue Methods, Head Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enqueue and Dequeue Methods, Head Property

The Enqueue and Dequeue methods and the Head property of the QueueAsLinkedList class are

given in Program .

http://www.brpreiss.com/books/opus6/html/page158.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:28]

http://www.brpreiss.com/books/opus6/index.html

Enqueue and Dequeue Methods, Head Property

Program: QueueAsLinkedList class Enqueue and Dequeue methods, Head property.

The Head property provides a get accessor that returns the object at the head of the queue. The head of

the queue is in the first element of the linked list. In Chapter we saw that the running time of
LinkedList.First is a constant, Therefore, the normal running time for the Head method is O(1).

The Enqueue method takes a single argument--the object to be added to the tail of the queue. The
method simply calls the LinkedList.Append method. Since the running time for Append is O(1),
the running time of Enqueue is also O(1).

The Dequeue method removes an object from the head of the queue and returns that object. First, it
verifies that the queue is not empty and throws an exception when it is. If the queue is not empty,
Dequeue saves the first item in the linked list in the local variable result. Then that item is extracted

from the list. Using the LinkedList class from Chapter , the time required to extract the first item
from a list is O(1) regardless of the number of items in the list. As a result, the running time of Dequeue
is also O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page158.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

The FIFO nature of queues makes them useful in certain algorithms. For example, we will see in

Chapter that a queue is an essential data structure for many different graph algorithms. In this section
we illustrate the use of a queue in the breadth-first traversal of a tree.

Figure shows an example of a tree. A tree is comprised of nodes (indicated by the circles) and edges
(shown as arrows between nodes). We say that the edges point from the parent node to a child node.

The degree of a node is equal to the number of children of that node. For example, node A in Figure
has degree three and its children are nodes B, C, and D. A child and all of its descendents is called a
subtree .

Figure: A tree.

One way to represent such a tree is to use a collection of linked structures. Consider the following

interface definition which is an abridged version of the Tree interface described in Chapter .

public interface Tree
{
 object Key { get; }
 int Degree { get; }
 Tree GetSubtree(int i);

http://www.brpreiss.com/books/opus6/html/page159.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

http://www.brpreiss.com/books/opus6/index.html

Applications

 // ...
};

Each node in a tree is represented by an object that implements the Tree interface. The Key property
provides a get accessor that returns an object which represents the contents of the node. E.g. in Figure

, each node carries a one-character label so the Key property would return a char value that
represents that label. The Degree property provides a get accessor that returns the degree of the node
and the GetSubtree method takes an int argument i and returns the corresponding child of that
node.

One of the essential operations on a tree is a tree traversal . A traversal visits one-by-one all the nodes in
a given tree. To visit a node means to perform some computation using the information contained in that

node--e.g., print the key. The standard tree traversals are discussed in Chapter . In this section we
consider a traversal which is based on the levels of the nodes in the tree.

Each node in a tree has an associated level which arises from the position of that node in the tree. For

example, node A in Figure is at level 0, nodes B, C, and D are at level 1, etc. A breadth-first
traversal visits the nodes of a tree in the order of their levels. At each level, the nodes are visited from
left to right. For this reason, it is sometimes also called a level-order traversal . The breadth-first

traversal of the tree in Figure visits the nodes from A to L in alphabetical order.

One way to implement a breadth-first traversal of a tree is to make use of a queue as follows: To begin
the traversal, the root node of the tree is enqueued. Then, we repeat the following steps until the queue is
empty:

1. Dequeue and visit the first node in the queue.
2. Enqueue its children in order from left to right.

Figure illustrates the breadth-first traversal algorithm by showing the contents of the queue
immediately prior to each iteration.

http://www.brpreiss.com/books/opus6/html/page159.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

Applications

Figure: Queue contents during the breadth-first traversal of the tree in Figure .

● Implementation

http://www.brpreiss.com/books/opus6/html/page159.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page159.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program defines the method BreadthFirstTraversal. This method as its argument any object
that implements the Tree interface. The idea is that the method is passed the root of the tree to be
traversed. The algorithm makes use of the QueueAsLinkedList data structure, which was defined in
the preceding section, to hold the appropriate tree nodes.

The running time of the BreadthFirstTraversal algorithm depends on the number of nodes in the
tree which is being traversed. Each node of the tree is enqueued exactly once--this requires a constant
amount of work. Furthermore, in each iteration of the loop, each node is dequeued exactly once--again a
constant amount of work. As a result, the running time of the BreadthFirstTraversal algorithm
is O(n) where n is the number of nodes in the traversed tree.

Program: Queue application--breadth-first tree traversal.

http://www.brpreiss.com/books/opus6/html/page160.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page160.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:29]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Deques

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Deques

In the preceding section we saw that a queue comprises a pile of objects into which we insert items at one
end and from which we remove items at the other end. In this section we examine an extension of the
queue which provides a means to insert and remove items at both ends of the pile. This data structure is a

deque . The word deque is an acronym derived from double-ended queue .

Figure illustrates the basic deque operations. A deque provides three operations which access the
head of the queue, Head, EnqueueHead and DequeueHead, and three operations to access the tail of
the queue, Tail, EnqueueTail and DequeueTail.

Figure: Basic deque operations.

Program defines the Deque interface. The Deque interface extends the Container interface

defined in Program . Hence, it comprises all of the methods inherited from Container plus four
methods, EnqueueHead, DequeueHead, EnqueueTail, and DequeueTail, and two properties,
Head and Tail.

http://www.brpreiss.com/books/opus6/html/page161.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:30]

http://www.brpreiss.com/books/opus6/index.html

Deques

Program: Deque interface.

● Array Implementation
● Linked List Implementation
● Doubly-Linked and Circular Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page161.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

Program introduces an array implementation of a deque. The DequeAsArray class extends the

QueueAsArray class introduced in Program and implements the Deque interface defined in

Program . The QueueAsArray class provides almost all the required functionality. Only five of the
six operations introduced in the Deque interface need to be implemented.

● The ``Head'' Operations
● The ``Tail'' Operations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page162.html [2002-11-17 ｿﾀﾈﾄ 11:03:30]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The ``Head'' Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The ``Head'' Operations

Program defines the methods EnqueueHead and DequeueHead. The latter is trivial to implement--
it simply calls the Dequeue method inherited from the QueueAsArray class.

Program: DequeAsArray class ``Head'' operations.

The EnqueueHead method takes a single argument which is the object to be added to the head of the
deque. The EnqueueHead method first checks that the deque is not full--a
ContainerFullException exception is thrown when the deque is full. Next, the position at which
to insert the new element is determined by decreasing the head field by one modulo the length of the
array. Finally, the object to be enqueued is put into the array at the correct position and the count is
adjusted accordingly. Under normal circumstances (i.e., when the exception is not thrown), the running
time of EnqueueHead is O(1).

http://www.brpreiss.com/books/opus6/html/page163.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:31]

http://www.brpreiss.com/books/opus6/index.html

The ``Head'' Operations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page163.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The ``Tail'' Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The ``Tail'' Operations

Program defines the Tail property and the EnqueueTail and DequeueTail methods of the
DequeAsArray class.

http://www.brpreiss.com/books/opus6/html/page164.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:32]

http://www.brpreiss.com/books/opus6/index.html

The ``Tail'' Operations

Program: DequeAsArray class ``Tail'' operations.

The Tail property provides a get accessor that returns the object found at the tail of the deque, having
first checked to see that the deque is not empty. If the deque is empty, it throws a
ContainerEmptyException exception. Under normal circumstances, we expect that the deque will
not be empty. Therefore, the normal running time of this method is O(1).

The EnqueueTail method simply calls the Enqueue method inherited from the QueueAsArray
class. Its running time was shown to be O(1).

The DequeueTail method removes an object from the tail of the deque and returns that object. First, it
checks that the deque is not empty and throws an exception when it is. If the deque is not empty, the
method sets aside the object at the tail in the local variable result; it decreases the tail field by one
modulo the length of the array; adjusts the count accordingly; and returns result. All this can be
done in a constant amount of time so the running time of DequeueTail is a constant.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page164.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked List Implementation

Program defines a linked-list implementation of a deque. The DequeAsLinkedList class extends

the QueueAsLinkedList class introduced in Program and implements the Deque interface

defined in Program . The QueueAsLinkedList implementation provides almost all of the required
functionality. Only five of the six operations defined in the Deque interface need to be implemented.

Program: DequeAsLinkedList class ``Head'' operations.

● The ``Head'' Operations
● The ``Tail'' Operations

http://www.brpreiss.com/books/opus6/html/page165.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:32]

http://www.brpreiss.com/books/opus6/index.html

Linked List Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page165.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The ``Head'' Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The ``Head'' Operations

Program defines the methods EnqueueHead and DequeueHead. The latter is trivial to implement--
it simply calls the Dequeue method inherited from the QueueAsLinkedList class.

The EnqueueHead method takes a single argument--the object to be added to the head of the deque.
The method simply calls the LinkedList.prepend method. Since the running time for Prepend is
O(1), the running time of EnqueueHead is also O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page166.html [2002-11-17 ｿﾀﾈﾄ 11:03:32]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The ``Tail'' Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The ``Tail'' Operations

Program defines the Tail property and the EnqueueTail and DequeueTail methods of the
DequeAsArray class.

Program: DequeAsLinkedList class ``Tail'' operations.

http://www.brpreiss.com/books/opus6/html/page167.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:33]

http://www.brpreiss.com/books/opus6/index.html

The ``Tail'' Operations

The Tail property provides a get accessor that returns the object at the tail of the deque. The tail of the

deque is in the last element of the linked list. In Chapter we saw that the running time of
LinkedList.getLast is a constant, Therefore, the normal running time for this accesor is O(1).

The EnqueueTail method simply calls the Enqueue method inherited from the
QueueAsLinkedList class. Its running time was shown to be O(1).

The DequeueTail method removes an object from the tail of the deque and returns that object. First, it
verifies that the deque is not empty and throws an exception when it is. If the deque is not empty,
DequeueTail saves the last item in the linked list in the local variable result. Then that item is

extracted from the linked list. When using the LinkedList class from Chapter , the time required to
extract the last item from a list is O(n), where is the number of items in the list. As a result,
the running time of DequeueTail is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page167.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:33]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Doubly-Linked and Circular Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Doubly-Linked and Circular Lists

In the preceding section we saw that the running time of DequeueHead is O(1), but that the running
time of DequeueTail is O(n), for the linked-list implementation of a deque. This is because the linked
list data structure used, LinkedList, is a singly-linked list . Each element in a singly-linked list
contains a single reference--a reference to the successor (next) element of the list. As a result, deleting
the head of the linked list is easy: The new head is the successor of the old head.

However, deleting the tail of a linked list is not so easy: The new tail is the predecessor of the original
tail. Since there is no reference from the original tail to its predecessor, the predecessor must be found by
traversing the linked list from the head. This traversal gives rise to the O(n) running time.

In a doubly-linked list , each list element contains two references--one to its successor and one to its

predecessor. There are many different variations of doubly-linked lists: Figure illustrates three of
them.

http://www.brpreiss.com/books/opus6/html/page168.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:34]

http://www.brpreiss.com/books/opus6/index.html

Doubly-Linked and Circular Lists

Figure: Doubly-linked and circular list variations.

Figure (a) shows the simplest case: Two variables, say head and tail, are used to keep track of the list
elements. One of them refers to the first element of the list, the other refers to the last. The first element
of the list has no predecessor, therefore that reference is null. Similarly, the last element has no successor
and the corresponding reference is also null. In effect, we have two overlapping singly-linked lists which

go in opposite directions. Figure also shows the representation of an empty list. In this case the head
and tail variables are both null.

A circular, doubly-linked list is shown in Figure (b). A circular list is formed by making use of
variables which would otherwise be null: The last element of the list is made the predecessor of the first
element; the first element, the successor of the last. The upshot is that we no longer need both a head and
tail variable to keep track of the list. Even if only a single variable is used, both the first and the last list
elements can be found in constant time.

Finally, Figure (c) shows a circular, doubly-linked list which has a single sentinel. This variation is
similar to the preceding one in that both the first and the last list elements can be found in constant time.

http://www.brpreiss.com/books/opus6/html/page168.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:34]

Doubly-Linked and Circular Lists

This variation has the advantage that no special cases are required when dealing with an empty list.

Figure shows that the empty list is represented by a list with exactly one element--the sentinel. In the
case of the empty list, the sentinel is both is own successor and predecessor. Since the sentinel is always
present, and since it always has both a successor and a predecessor, the code for adding elements to the
empty list is identical to that for adding elements to a non-empty list.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page168.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. The array-based stack implementation introduced in Program uses a fixed length array. As a
result, it is possible for the stack to become full.

1. Rewrite the Push method so that it doubles the length of the array when the array is full.
2. Rewrite the Pop method so that it halves the length of the array when the array is less than

half full.
3. Show that the average time for both push and pop operations is O(1). Hint: Consider the

running time required to push items onto an empty stack, where .

2. Consider a sequence S of push and pop operations performed on a stack that is initially empty.
The sequence S is a valid sequence of operations if at no point is a pop operation attempted on an
empty stack and if the stack is empty at the end of the sequence. Design a set of rules for
generating a valid sequence.

3. Devise an implementation of the queue abstract data type using two stacks. Give algorithms for
the Enqueue and Dequeue operations, and derive tight big-oh expressions for the running
times of your implementation.

4. Write each of the following infix expressions in postfix notation:
1. ,

2. ,

3. ,

4. ,

5. , and

6. .

5. Write each of the following postfix expressions in infix notation:
1. ,

2. ,

3. ,

4. ,

5. , and

6. .
6. Devise an algorithm which translates a postfix expression to a prefix expression. Hint: Use a

stack of strings.

http://www.brpreiss.com/books/opus6/html/page169.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:35]

http://www.brpreiss.com/books/opus6/index.html

Exercises

7. The array-based queue implementation introduced in Program uses a fixed length array. As a
result, it is possible for the queue to become full.

1. Rewrite the Enqueue method so that it doubles the length of the array when the array is
full.

2. Rewrite the Dequeue method so that it halves the length of the array when the array is
less than half full.

3. Show that the average time for both enqueue and dequeue operations is O(1).
8. Stacks and queues can be viewed as special cases of deques. Show how all the operations on

stacks and queues can be mapped to operations on a deque. Discuss the merits of using a deque to
implement a stack or a queue.

9. Suppose we add a new operation to the stack ADT called FindMinimum that returns a reference
to the smallest element in the stack. Show that it is possible to provide an implementation for
FindMinimum that has a worst case running time of O(1).

10. The breadth-first traversal method shown in Program visits the nodes of a tree in the order of
their levels in the tree. Modify the algorithm so that the nodes are visited in reverse. Hint: Use a
stack.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page169.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Enhance the functionality of the RPN calculator given in Program in the following ways:
1. Use double-precision, floating-point arithmetic.
2. Provide the complete repertoire of basic operators: +, -, , and .
3. Add an exponentiation operator and a unary negation operator.
4. Add a clear method that empties the operand stack and a print method that prints out the

contents of the operand stack.

2. Modify Program so that it accepts expressions written in prefix (Polish) notation. Hint: See

Exercise .
3. Write a program to convert a postfix expression into an infix expression using a stack. One way to do

this is to modify the RPN calculator program given in Program to use a stack of infix expressions.
A binary operator should pop two strings from the stack and then push a string which is formed by
concatenating the operator and its operands in the correct order. For example, suppose the operator is
``*'' and the two strings popped from the stack are "(b+c)" and "a". Then the result that gets
pushed onto the stack is the string "a*(b+c)".

4. Devise a scheme using a stack to convert an infix expression to a postfix expression. Hint: In a
postfix expression operators appear after their operands whereas in an infix expression they appear
between their operands. Process the symbols in the prefix expression one-by-one. Output operands
immediately, but save the operators in a stack until they are needed. Pay special attention to the
precedence of the operators.

5. Modify your solution to Project so that it immediately evaluates the infix expression. That is,

create an InfixCalculator method in the style of Program .
6. Consider a string of characters, S, comprised only of the characters (,), [,], , and . We say that S is

balanced if it has one of the following forms:
❍ , i.e., S is the string of length zero,

❍ ,

❍ ,

❍ ,

❍

where both T and U are balanced strings, In other words, for every left parenthesis, bracket or brace,
there is a corresponding right parenthesis, bracket or brace. For example, "{()[()]}" is balanced,
but "([)]" is not. Write a program that uses a stack of characters to test whether a given string is
balanced.

7. Design and implement a MultipleStack class which provides stacks in a single container.

http://www.brpreiss.com/books/opus6/html/page170.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:36]

http://www.brpreiss.com/books/opus6/index.html

Projects

The declaration of the class should look something like this:

public class MultipleStack : Container
{
 public MultipleStack(int numberOfStacks);
 public void Push(object object, int whichStack);
 public object Pop(int whichStack);
 // ...
}

❍ The constructor takes a single integer argument that specifies the number of stacks in the
container.

❍ The Push method takes two arguments. The first gives the object to be pushed and the second
specifies the stack on which to push it.

❍ The Pop method takes a single integer argument which specifies the stack to pop.
Choose one of the following implementation approaches:

1. Keep all the stack elements in a single array.
2. Use an array of Stack objects.
3. Use a linked list of Stack objects.

8. Design and implement a class called DequeAsDoublyLinkedList that implements the Deque

interface using a doubly-linked list. Select one of the approaches shown in Figure .

9. In Section , the DequeAsArray class extends the QueueAsArray class. Redesign the
DequeAsArray and QueueAsArray components of the class hierarchy making DequeAsArray
the base class and deriving QueueAsArray from it.

Figure: Expression tree for .

10. Devise an approach for evaluating an arithmetic expression using a queue (rather than a stack). Hint:

Transform the expression into a tree as shown in Figure and then do a breadth-first traversal of

the tree in reverse (see Exercise). For example, the expression becomes

. Evaluate the resulting sequence from left to right using a queue in the same way that a

postfix expression is evaluated using a stack.

http://www.brpreiss.com/books/opus6/html/page170.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:36]

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page170.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Ordered Lists and Sorted Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Ordered Lists and Sorted Lists

The most simple, yet one of the most versatile containers is the list . In this chapter we consider lists as
abstract data types. A list is a series of items. In general, we can insert and remove items from a list and
we can visit all the items in a list in the order in which they appear.

In this chapter we consider two kinds of lists--ordered lists and sorted lists. In an ordered list the order
of the items is significant. Consider a list of the titles of the chapters in this book. The order of the items
in the list corresponds to the order in which they appear in the book. However, since the chapter titles are
not sorted alphabetically, we cannot consider the list to be sorted. Since it is possible to change the order
of the chapters in book, we must be able to do the same with the items of the list. As a result, we may
insert an item into an ordered list at any position.

On the other hand, a sorted list is one in which the order of the items is defined by some collating
sequence. For example, the index of this book is a sorted list. The items in the index are sorted
alphabetically. When an item is inserted into a sorted list, it must be inserted at the correct position.

As shown in Figure , two interfaces are used to represent the different list abstractions--
OrderedList and SortedList. The various list abstractions can be implemented in many ways. In
this chapter we examine implementations based on the array and the linked list foundational data

structures presented in Chapter .

Figure: Object class hierarchy.

http://www.brpreiss.com/books/opus6/html/page171.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:37]

http://www.brpreiss.com/books/opus6/index.html

Ordered Lists and Sorted Lists

● Ordered Lists
● Sorted Lists
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page171.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Ordered Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Ordered Lists

An ordered list is a list in which the order of the items is significant. However, the items in an ordered
lists are not necessarily sorted. Consequently, it is possible to change the order of items and still have a
valid ordered list.

Program defines the OrderedList interface. The OrderedList interface extends the

SearchableContainer interface defined in Program . Recall that a searchable container is a
container that supports the following additional operations:

Insert
used to put objects into a the container;

Withdraw
used to remove objects from the container;

Find
used to locate objects in the container;

IsMember
used to test whether a given object instance is in the container.

Program: OrderedList interface.

The OrderedList interface adds the following operations:

this[int]
used to access the object at a given position in the ordered list, and

FindPosition
used to find the position of an object in the ordered list.

http://www.brpreiss.com/books/opus6/html/page172.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:37]

http://www.brpreiss.com/books/opus6/index.html

Ordered Lists

The FindPosition method of the the List interface takes a ComparableObject and searches

the list for an object that matches the given one. The return value is a Cursor. Program defines the
Cursor interface.

Program: Cursor interface.

A cursor ``remembers'' the position of an item in a list. The Program interface given in Program
defines the following operations:

Datum
used to access the object in the ordered list at the current cursor position;

InsertAfter
used to insert an object into the ordered list after the current cursor position;

InsertBefore
used to insert an object into the ordered list before the current cursor position; and

Withdraw
used to remove from the ordered list the object at the current cursor position.

As we did in the previous chapter with stacks, queues, and deques, we will examine two ordered list

implementations--an array-based one and a linked-list one. Section presents an array version of

ordered lists; Section , an implementation using on the LinkedList class.

● Array Implementation
● Linked-List Implementation
● Performance Comparison: OrderedListAsArray vs. ListAsLinkedList
● Applications

http://www.brpreiss.com/books/opus6/html/page172.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:37]

Ordered Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page172.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

This section presents an array-based implementation of ordered lists. Program introduces the
OrderedListAsArray class. The OrderedListAsArray class extends the

AbstractSearchableContainer class introduced in Program and it implements the

OrderedList interface defined in Program .

Program: OrderedListAsArray fields.

● Fields
● Creating a List and Inserting Items
● Finding Items in a List
● Removing Items from a List
● Positions of Items in a List
● Finding the Position of an Item and Accessing by Position
● Inserting an Item at an Arbitrary Position
● Removing Arbitrary Items by Position

http://www.brpreiss.com/books/opus6/html/page173.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:38]

http://www.brpreiss.com/books/opus6/index.html

Array Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page173.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The OrderedListAsArray class comprises one field, array, which is an array of
ComparableObjects. In addition, the OrderedListAsArray class inherits the field count from
AbstractContainer. The array variable is used to hold the items in the ordered list. Specifically,
the items in the list are stored in array positions 0, 1, ..., . In an ordered list the position of an

item is significant. The item at position 0 is the first item in the list; the item at position , the
last.

An item at position i+1 is the successor of the one at position i. That is, the one at i+1 follows or comes
after the one at i. Similarly, an item a position i is the predecessor of the one at position i+1; the one at
position i is said to precede or to come before the one at i+1.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page174.html [2002-11-17 ｿﾀﾈﾄ 11:03:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Creating a List and Inserting Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Creating a List and Inserting Items

Program gives the definitions of the constructor and the Insert methods of the
OrderedListAsArray class. The constructor takes a single argument which specifies the length of
array to use in the representation of the ordered list. Thus if we use an array-based implementation, we
need to know when a list is declared what will be the maximum number of items in that list. The
constructor initializes the array variable as an array with the specified length. The running time of the
constructor is clearly O(n), where .

Program: OrderedListAsArray class constructor and Insert methods.

The Insert method is part of the interface of all searchable containers. Its purpose is to put an object
into the container. The obvious question which arises is, where should the inserted item be placed in the
ordered list? The simple answer is, at the end.

In Program we see that the Insert method simply adds the new item to the end of the list, provided
there is still room in the array. Normally, the array will not be full, so the running time of this method is

http://www.brpreiss.com/books/opus6/html/page175.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:39]

http://www.brpreiss.com/books/opus6/index.html

Creating a List and Inserting Items

O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page175.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding Items in a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding Items in a List

Program defines two OrderedListAsArray class methods which search for an object in the
ordered list. The IsMember method tests whether a particular object instance is in the ordered list. The
Find method locates in the list an object which matches its argument.

Program: OrderedListAsArray class IsMember and Find methods.

The IsMember method is a bool-valued method which takes as its argument a
ComparableObject. This method compares the argument one-by-one with the contents of the
array. Note that this method tests whether a particular object instance is contained in the ordered list.

http://www.brpreiss.com/books/opus6/html/page176.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:40]

http://www.brpreiss.com/books/opus6/index.html

Finding Items in a List

In the worst case, the object sought is not in the list. In this case, the running time of the method is O(n),
where is the number of items in the ordered list.

The Find method also does a search of the ordered list. However, it uses the overloaded == operator to
compare the items. Thus, the Find method searches the list for an object which matches its argument.
The Find method returns the object found. If no match is found, it returns null. The running time of

this method depends on the time required for the comparison operator, . In the worst case, the

object sought is not in the list. In this case the running time is . For simplicity, we

will assume that the comparison takes a constant amount of time. Hence, the running time of the method
is also O(n), where is the number of items in the list.

It is important to understand the subtle distinction between the search done by the IsMember method
and that done by Find. The IsMember method searches for a specific object instance while Find
simply looks for a matching object. Consider the following:

ComparableInt32 object1 = 57;
ComparableInt32 object2 = 57;
List list = new OrderedListAsArray(1);
list.Insert(object1);

This code fragment creates two ComparableInt32 class instances, both of which have the value 57.
Only the first object, object1, is inserted into the ordered list list. Consequently, the method call

list.IsMember(object1)

returns true; whereas the method call

list.IsMember(object2)

returns false.

On the other hand, if a search is done using the Find method like this:

ComparableObject object3 = list.Find(object2);

the search will be successful! After the call, object3 and object1 refer to the same object.

http://www.brpreiss.com/books/opus6/html/page176.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:40]

Finding Items in a List

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page176.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a List

Objects are removed from a searchable container using the Withdraw method. Program defines the
Withdraw method for the OrderedListAsArray class. This method takes a single argument which
is a the object to be removed from the container. It is the specific object instance which is removed from
the container, not simply one which matches (i.e., compares equal to) the argument.

Program: OrderedListAsArray class Withdraw method.

The withdraw method first needs to find the position of the item to be removed from the list. An
exception is thrown if the list is empty, or if the object to be removed is not in the list. The number of
iterations needed to find an object depends on its position. If the object to be removed is found at position
i, then the search phase takes O(i) time.

http://www.brpreiss.com/books/opus6/html/page177.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:40]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a List

Removing an object from position i of an ordered list which is stored in an array requires that all of the
objects at positions i+1, i+2, ..., , be moved one position to the left. Altogether,

 objects need to be moved. Hence, this phase takes time.

The running time of the Withdraw method is the sum of the running times of the two phases, O(i)+

. Hence, the total running time is O(n), where is the number of items in the

ordered list.

Care must be taken when using the Withdraw method. Consider the following:

ComparableInt32 object1 = 57;
ComparableInt32 object2 = 57;
List list = new OrderedListAsArray(1);
list.Insert(object1);

To remove object1 from the ordered list, we may write

list.Withdraw(object1);

However, the call

list.Withdraw(object2);

will fail because object2 is not actually in the list. If for some reason we have lost track of object1,
we can always write:

list.Withdraw(list.Find(object2));

which first locates the object in the ordered list (object1) which matches object2 and then deletes
that object.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page177.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Positions of Items in a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Positions of Items in a List

As shown in Program , objects that implement the Cursor interface can be used to access, insert, and

delete objects in an ordered list. Program defines private nested class called
OrderedListAsArray.MyCursor that implements the Cursor interface. The idea is that
instances of this class are used by the OrderedListAsArray class to represent the abstraction of a
position in an ordered list.

http://www.brpreiss.com/books/opus6/html/page178.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:41]

http://www.brpreiss.com/books/opus6/index.html

Positions of Items in a List

Program: OrderedListAsArray.MyCursor class.

The MyCursor class has two fields, list and offset. The list field refers to an
OrderedListAsArray instance and the offset field records records an offset in that list's array of
objects. A single constructor is provided which simply assigns a given values to the list and offset

fields. Program also defines the Datum property of the MyCursor class. This property provides a
get accessor that returns the item in the array at the position record in the offset field, provided that
position is valid. The running time of the accessor is simply O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page178.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding the Position of an Item and Accessing by Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding the Position of an Item and Accessing by Position

Program defines two more operations of the OrderedListAsArray class, the FindPosition
method and an indexer this[int]. The FindPosition method takes as its argument a
ComparableObject. The purpose of this method is to search the ordered list for an item which
matches the object, and to return its position in the form of an object that implements the Cursor
interface. In this case, the result is an instance of the private MyCursor class.

Program: OrderedListAsArray class FindPosition method and this[int] indexer.

http://www.brpreiss.com/books/opus6/html/page179.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:42]

http://www.brpreiss.com/books/opus6/index.html

Finding the Position of an Item and Accessing by Position

The search algorithm used in FindPosition is identical to that used in the Find method (Program

). The FindPosition uses the overloaded == operator to locate a contained object which is equal
to the search target. Note that if no match is found, the offset is set to the value count, which is one
position to the right of the last item in the ordered list. The running time of FindPosition is identical

to that of Find: , where .

The indexer defined in Program provides a get accessor that takes an int argument and returns the
object in the ordered list at the specified position. In this case, the position is specified using an integer-
valued subscript expression. The implementation of this method is trivial--it simply indexes into the
array. Assuming the specified offset is valid, the running time of this method is O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page179.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting an Item at an Arbitrary Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting an Item at an Arbitrary Position

Two methods for inserting an item at an arbitrary position in an ordered list are declared in Program --
InsertBefore and InsertAfter. Both of these take one arguments--a ComparableObject.

The effects of these two methods are illustrated in Figure .

Figure: Inserting an item in an ordered list implemented as an array.

Figure shows that in both cases a number of items to the right of the insertion point need to be moved
over to make room for the item that is being inserted into the ordered list. In the case of
InsertBefore, items to the right including the item at the point of insertion are moved; for
InsertAfter, only items to the right of the point of insertion are moved, and the new item is inserted
in the array location following the insertion point.

Program gives the implementation of the InsertAfter method for the
OrderedListAsArray.MyCursor class. The code for the InsertBefore method is identical
except for one line as explained below.

http://www.brpreiss.com/books/opus6/html/page180.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

http://www.brpreiss.com/books/opus6/index.html

Inserting an Item at an Arbitrary Position

Program: OrderedListAsArray.MyCursor class InsertAfter method.

The InsertAfter method takes one argument--a ComparableObject. The method begins by
performing some simple tests to ensure that the position is valid and that there is room left in the array to
do the insertion.

On line 18 the array index where the new item will ultimately be stored is computed. For

InsertAfter the index is as shown in Program . In the case of InsertBefore,

the value required is simply offset. The loop on lines 20-21 moves items over and then object being
inserted is put in the array on line 22.

http://www.brpreiss.com/books/opus6/html/page180.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

Inserting an Item at an Arbitrary Position

If we assume that no exceptions are thrown, the running time of InsertAfter is dominated by the
loop which moves list items. In the worst case, all the items in the array need to be moved. Thus, the
running time of both the InsertAfter and InsertBefore method is O(n), where .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page180.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Arbitrary Items by Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Arbitrary Items by Position

The final method of the OrderedListAsArray.MyCursor class that we will consider is the
Withdraw method. The desired effect of this method is to remove from the ordered list the item at the
position specified by the cursor.

Figure shows the way in which to delete an item from an ordered list which implemented with an
array. All of the items remaining in the list to the right of the deleted item need to be shifted to the left in
the array by one position.

Figure: Withdrawing an item from an ordered list implemented as an array.

Program gives the implementation of the Withdraw method. After checking the validity of the
position, all of the items following the item to be withdraw are moved one position to the left in the
array.

http://www.brpreiss.com/books/opus6/html/page181.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

http://www.brpreiss.com/books/opus6/index.html

Removing Arbitrary Items by Position

Program: OrderedListAsArray.MyCursor class Withdraw method.

The running time of the Withdraw method depends on the position in the array of the item being
deleted and on the number of items in the ordered lists. In the worst case, the item to be deleted is in the
first position. In this case, the work required to move the remaining items left is O(n), where

.

http://www.brpreiss.com/books/opus6/html/page181.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

Removing Arbitrary Items by Position

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page181.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked-List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked-List Implementation

This section presents a linked-list implementation of ordered lists. Program introduces the
OrderedListAsLinkedList class. The OrderedListAsLinkedList class extends the

AbstractSearchableContainer class introduced in Program and it implements the

OrderedList interface defined in Program .

Program: OrderedListAsLinkedList fields.

● Fields
● Inserting and Accessing Items in a List
● Finding Items in a List
● Removing Items from a List
● Positions of Items in a List
● Finding the Position of an Item and Accessing by Position
● Inserting an Item at an Arbitrary Position
● Removing Arbitrary Items by Position

http://www.brpreiss.com/books/opus6/html/page182.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:44]

http://www.brpreiss.com/books/opus6/index.html

Linked-List Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page182.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

Objects of the OrderedListAsLinkedList class contain one field, linkedList, which is a
linked list of ComparableObjects. The linkedList is used to hold the items in the ordered list.
Since a linked list is used, there is no notion of an inherent limit on the number of items which can be
placed in the ordered list. Items can be inserted until the available memory is exhausted.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page183.html [2002-11-17 ｿﾀﾈﾄ 11:03:44]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting and Accessing Items in a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting and Accessing Items in a List

Program gives the code for the constructor, Insert method, and this[int] indexer of the
OrderedListAsLinkedList class. The constructor simply creates an empty linked list. Clearly, the
running time of the constructor is O(1).

http://www.brpreiss.com/books/opus6/html/page184.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:45]

http://www.brpreiss.com/books/opus6/index.html

Inserting and Accessing Items in a List

Program: OrderedListAsLinkedList class constructor, Insert method, and this[int]
indexer.

The Insert method takes a ComparableObject and adds it to the ordered list. As in the case of the
ArrayAsLinkedList class, the object is added at the end of the ordered list. This is done simply by
calling the Append method from the LinkedList class.

The running time of the Insert method is determined by that of Append. In Chapter this was
shown to be O(1). The only other work done by the Insert method is to add one to the count
variable. Consequently, the total running time for Insert is O(1).

Program also defines an indexer that provides a get accessor which takes an argument of type int.
This method is used to access elements of the ordered list by their position in the list. In this case, the
position is specified by a non-negative, integer-valued index. Since there is no way to access directly the

 element of linked list, the implementation of this method comprises a loop which traverses the list to

find the item. The method returns a reference to the item, provided . Otherwise, i

is not a valid subscript value and the method throws an exception.

The running time of the accessor method depends on the number of items in the list and on the value of
the subscript expression. In the worst case, the item sought is at the end of the ordered list. Therefore, the
worst-case running time of this algorithm, assuming the subscript expression is valid, is O(n), where

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page184.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding Items in a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding Items in a List

Program defines the IsMember and Find methods of the ListAsLinkedList class. The
implementations of these methods are almost identical. However, they differ in two key aspects--the
comparison used and the return value.

http://www.brpreiss.com/books/opus6/html/page185.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:46]

http://www.brpreiss.com/books/opus6/index.html

Finding Items in a List

Program: OrderedListAsLinkedList class IsMember and Find methods.

The IsMember method tests whether a particular object instance is contained in the ordered list. It
returns a bool value indicating whether the object is present. The running time of this method is clearly
O(n), where , the number of items in the ordered list.

The Find method locates an object which matches a given object. The match is determined by using the
overloaded == operator. Find returns a reference to the matching object if one is found. Otherwise, it

returns the null value. The running time for this method, is , where is the

time required to do the comparison, and is the number of items in the ordered list. This
simplifies to O(n) when the comparison can be done in constant time.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page185.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a List

The Withdraw method is used to remove a specific object instance from an ordered list. The
implementation of the Withdraw method for the OrderedListAsLinkedList class is given in

Program .

Program: OrderedListAsLinkedList class Withdraw method.

The implementation of Withdraw is straight-forward: It simply calls the Extract method provided
by the LinkedList class to remove the specified object from linkedList. The running time of the

Withdraw method is dominated by that of Extract which was shown in Chapter to be O(n),
where n is the number of items in the linked list.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page186.html [2002-11-17 ｿﾀﾈﾄ 11:03:47]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Positions of Items in a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Positions of Items in a List

Program gives the definition of a the OrderedListAsLinkedList.MyCursor private nested

class. The MyCursor class implements the Cursor interface defined in Program . The purpose of
this class is to record the position of an item in an ordered list implemented as a linked list.

Program: OrderedListAsLinkedList.MyCursor class.

The MyCursor class has two fields, list and element. The list field refers to an
OrderedListAsLinkedList instance and the element refers to the linked-list element in which a

http://www.brpreiss.com/books/opus6/html/page187.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:47]

http://www.brpreiss.com/books/opus6/index.html

Positions of Items in a List

given item appears. Notice that this version of MyCursor is fundamentally different from the array
version. In the array version, the position was specified by an offset, i.e, by an ordinal number that
shows the position of the item in the ordered sequence. In the linked-list version, the position is specified
by a reference to the element of the linked list in which the item is stored. Regardless of the
implementation, both kinds of position provide exactly the same functionality because they both
implement the Cursor interface.

The Datum property of the OrderedListAsLinkedList.MyCursor class is also defined in

Program . This property provides a get accessor that dereferences the element field to obtain the
required item in the ordered list. The running time is clearly O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page187.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding the Position of an Item and Accessing by Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding the Position of an Item and Accessing by Position

The FindPosition method of the OrderedListAsLinkedList class is used to determine the
position of an item in an ordered list implemented as a linked list. Its result is an instance of the inner

class MyCursor. The FindPosition method is defined in Program

Program: OrderedListAsLinkedList class FindPosition method

The FindPosition method takes as its argument a ComparableObject that is the target of the
search. The search algorithm used by FindPosition is identical to that of Find, which is given in

Program . Consequently, the running time is the same: , where is the time

required to match two ComparableObjects, and is the number of items in the ordered
list.

http://www.brpreiss.com/books/opus6/html/page188.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:48]

http://www.brpreiss.com/books/opus6/index.html

Finding the Position of an Item and Accessing by Position

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page188.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting an Item at an Arbitrary Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting an Item at an Arbitrary Position

Once having determined the position of an item in an ordered list, we can make use of that position to
insert items into the middle of the list. Two methods are specifically provided for this purpose--
InsertAfter and InsertBefore. Both of these take a single argument--the
ComparableObject to be inserted into the list.

Program: OrderedListAsLinkedList.MyCursor class InsertAfter method.

Program gives the implementation for the InsertAfter method of the
OrderedListAsLinkedList.MyCursor class. This method simply calls the InsertAfter
method provided by the LinkedList class. Assuming no exceptions are thrown, the running time for
this method is O(1).

The implementation of InsertBefore is not shown--its similarity with InsertAfter should be

http://www.brpreiss.com/books/opus6/html/page189.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:48]

http://www.brpreiss.com/books/opus6/index.html

Inserting an Item at an Arbitrary Position

obvious. Since it must call the InsertBefore method provided by the LinkedList class, we expect
the worst case running time to be O(n), where .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page189.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Arbitrary Items by Position

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Arbitrary Items by Position

The final method to be considered is the Withdraw method of the
OrderedListAsLinkedList.MyCursor class. This method removes an arbitrary item from an
ordered list, where the position of that item is specified by a cursor instance. The code for the

Withdraw method is given in Program .

Program: OrderedListAsLinkedList.MyCursor class Withdraw method.

The item in the linked list at the position specified by the cursor is removed by calling the Extract
method provided by the LinkedList class. The running time of the Withdraw method depends on
the running time of the Extract of the LinkedList class. The latter was shown to be O(n) where n
is the number of items in the linked list. Consequently, the total running time is O(n).

http://www.brpreiss.com/books/opus6/html/page190.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:49]

http://www.brpreiss.com/books/opus6/index.html

Removing Arbitrary Items by Position

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page190.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Performance Comparison: OrderedListAsArray vs. ListAsLinkedList

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Performance Comparison: OrderedListAsArray
vs. ListAsLinkedList

The running times calculated for the various operations of the two ordered list implementations,

OrderedListAsArray and OrderedListAsLinkedList, are summarized below in Table .
With the exception of two operations, the running times of the two implementations are asymptotically
identical.

ordered list implementation

OrderedList- OrderedList-

method AsArray AsLinkedList

Insert O(1) O(1)

IsMember O(n) O(n)

Find O(n) O(n)

Withdraw O(n) O(n)

this[int]{get} O(1) O(n)

FindPosition O(n) O(n)

Cursor.Datum{get} O(1) O(1)

Cursor.InsertAfter O(n) O(1)

Cursor.InsertBefore O(n) O(n)

Cursor.Withdraw O(n) O(n)

Table:Running times of operations on ordered lists.

http://www.brpreiss.com/books/opus6/html/page191.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:50]

http://www.brpreiss.com/books/opus6/index.html

Performance Comparison: OrderedListAsArray vs. ListAsLinkedList

The two differences are the indexer and the InsertAfter method. The indexing operation can be
done constant time when using an array, but it requires O(n) in a linked list. Conversely, InsertAfter
requires O(n) time when using an array, but can be done in constant time in the singly-linked list.

Table does not tell the whole story. The other important difference between the two implementations
is the amount of space required. Consider first the array implementation, OrderedListAsArray. The

storage required for an array was discussed in Chapter . Using that result, the storage needed for an
OrderedListAsArray which can hold at most M ComparableObjects is given by:

Notice that we do not include in this calculation that space required for the objects themselves. Since we
cannot know the types of the contained objects, we cannot calculate the space required by those objects.

A similar calculation can also be done for the OrderedListAsLinkedList class. In this case, we
assume that the actual number of contained objects is n. The total storage required is given by:

If we assume that integers and object references require four bytes each, the storage requirement for the
OrderedListAsArray class becomes 12+4M bytes; and for the ListAsList class, 16+12n bytes.
That is, the storage needed for the array implementation is O(M), where M is the maximum length of the
ordered list; whereas, the storage needed for the linked list implementation is O(n), where n is the actual
number of items in the ordered list. Equating the two expressions, we get that the break-even point
occurs at n=(M-1)/3. That is, if n<(M-1)/3, the array version uses more memory space; and for n>(M-
1)/3, the linked list version uses more memory space.

It is not just the amount of memory space used that should be considered when choosing an ordered list
implementation. We must also consider the implications of the existence of the limit M. The array
implementation requires a priori knowledge about the maximum number of items to be put in the
ordered list. The total amount of storage then remains constant during the course of execution. On the
other hand, the linked list version has no pre-determined maximum length. It is only constrained by the
total amount of memory available to the program. Furthermore, the amount of memory used by the
linked list version varies during the course of execution. We do not have to commit a large chunk of
memory for the duration of the program.

http://www.brpreiss.com/books/opus6/html/page191.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:50]

Performance Comparison: OrderedListAsArray vs. ListAsLinkedList

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page191.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:03:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

The applications of lists and ordered lists are myriad. In this section we will consider only one--the use of
an ordered list to represent a polynomial. In general, an -order polynomial in x, for non-negative
integer n, has the form

where . The term is the coefficient of the power of x. We shall assume that the coefficients

are real numbers.

An alternative representation for such a polynomial consists of a sequence of ordered pairs:

Each ordered pair, , corresponds to the term of the polynomial. That is, the ordered pair is

comprised of the coefficient of the term together with the subscript of that term, i. For example, the

polynomial can be represented by the sequence .

Consider now the -order polynomial . Clearly, there are only two nonzero coefficients:

 and . The advantage of using the sequence of ordered pairs to represent such a

polynomial is that we can omit from the sequence those pairs that have a zero coefficient. We represent

the polynomial by the sequence

Now that we have a way to represent polynomials, we can consider various operations on them. For
example, consider the polynomial

http://www.brpreiss.com/books/opus6/html/page192.html (1 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

http://www.brpreiss.com/books/opus6/index.html

Applications

We can compute its derivative with respect to x by differentiating each of the terms to get

where . In terms of the corresponding sequences, if p(x) is represented by the

sequence

then its derivative is the sequence

This result suggests a very simple algorithm to differentiate a polynomial which is represented by a
sequence of ordered pairs:

1. Drop the ordered pair that has a zero exponent.
2. For every other ordered pair, multiply the coefficient by the exponent, and then subtract one from

the exponent.

Since the representation of an -order polynomial has at most n+1 ordered pairs, and since a constant

amount of work is necessary for each ordered pair, this is inherently an algorithm.

Of course, the worst-case running time of the polynomial differentiation will depend on the way that the
sequence of ordered pairs is implemented. We will now consider an implementation that makes use of
the OrderedListAsLinkedList class. To begin with, we need a class to represent the terms of the

polynomial. Program gives the definition of the Term class and several of its methods.

http://www.brpreiss.com/books/opus6/html/page192.html (2 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

Applications

Program: Term class.

Each Term instance has two fields, coefficient and exponent, which correspond to the elements
of the ordered pair as discussed above. The former is a double and the latter, an int.

http://www.brpreiss.com/books/opus6/html/page192.html (3 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

Applications

The Term class extends the ComparableObject class introduced in Program . Therefore,

instances of the Term class may be put into a container. Program defines three methods: a
constructor, CompareTo, and Differentiate. The constructor simply takes a pair of arguments and
initializes the corresponding fields accordingly.

The CompareTo method is used to compare two Term instances. Consider two terms , and .
We define the relation on terms of a polynomial as follows:

Note that the relation does not depend on the value of the variable x. The CompareTo method
implements the relation.

Finally, the Differentiate method does what its name says: It differentiates a term with respect to x.

Given a term such as , it computes the result (0,0); and given a term such as where i>0, it

computes the result .

We now consider the representation of a polynomial. Program defines the Polynomial abstract
class. The class comprises three abstract methods--Add, Differentiate, and Plus. The Add
method is used to add terms to a polynomial. The Differentiate method differentiates the
polynomial. The Plus method is used to compute the sum of two polynomials. In addition to these
methods, the addition operator + is overloaded for Polynomial operands.

Program: Polynomial abstract class.

Program introduces the PolynomialAsOrderedList class. This concrete class implements the
Polynomial interface. It has a single field of type OrderedList. In this case, an instance of the
OrderedListAsLinkedList class is used to contain the terms of the polynomial.

http://www.brpreiss.com/books/opus6/html/page192.html (4 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

Applications

Program: PolynomialAsOrderedList class.

Program defines the method Differentiate which has the effect of changing the polynomial to
its derivative with respect to x. To compute this derivative, it is necessary to call the Differentiate
method of the Term class for each term in the polynomial. Since the polynomial is implemented as a
container, there is an Accept method which can be used to perform a given operation on all of the
objects in that container. In this case, we define a visitor, DifferentiatingVisitor, which

http://www.brpreiss.com/books/opus6/html/page192.html (5 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

Applications

assumes its argument is an instance of the Term class and differentiates it.

After the terms in the polynomial have been differentiated, it is necessary to check for the term (0,0)

which arises from differentiating . The Find method is used to locate the term, and if one is

found the Withdraw method is used to remove it.

The analysis of the running time of the polynomial Differentiate method is straightforward. The
running time required to differentiate a term is clearly O(1). So too is the running time of the Visit
method of the DifferentiatingVisitor. The latter method is called once for each contained
object. In the worst case, given an -order polynomial, there are n+1 terms. Therefore, the time
required to differentiate the terms is O(n). Locating the zero term is O(n) in the worst case, and so too is
deleting it. Therefore, the total running time required to differentiate a -order polynomial is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page192.html (6 of 6) [2002-11-17 ｿﾀﾈﾄ 11:03:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sorted Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sorted Lists
The next type of searchable container that we consider is a sorted list . A sorted list is like an ordered list:
It is a searchable container that holds a sequence of objects. However, the position of an item in a sorted
list is not arbitrary. The items in the sequence appear in order, say, from the smallest to the largest. Of

course, for such an ordering to exist, the relation used to sort the items must be a total order .

Program defines the SortedList interface. Like its unsorted counterpart, the SortedList

interface extends the SearchableContainer interface defined in Program .

Program: SortedList interface.

In addition to the basic repertoire of operations supported by all searchable containers, sorted lists
provide the following operations:

this[int]
used to access the object at a given position in the sorted list; and

FindPosition
used to find the position of an object in the sorted list.

Sorted lists are very similar to ordered lists. As a result, we can make use of the code for ordered lists
when implementing sorted lists. Specifically, we will consider an array-based implementation of sorted

lists that is derived from the OrderedListAsArray class defined in Section , and a linked-list
implementation of sorted lists that is derived from the OrderedListAsLinkedList class given in

Section .

http://www.brpreiss.com/books/opus6/html/page193.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:53]

http://www.brpreiss.com/books/opus6/index.html

Sorted Lists

● Array Implementation
● Linked-List Implementation
● Performance Comparison: SortedListAsArray vs. SortedListAsList
● Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page193.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:53]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

The SortedListAsArray class is introduced in Program . The SortedListAsArray class

extends the OrderedListAsArray class introduced in Program and it implements the

SortedList interface defined in Program .

Program: SortedListAsArray class.

There are no addition fields required to implement the SortedListAsArray class. That is, the fields
provided by the base class OrderedListAsArray are sufficient.

● Inserting Items in a Sorted List
● Locating Items in an Array-Binary Search
● Finding Items in a Sorted List
● Removing Items from a List

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page194.html [2002-11-17 ｿﾀﾈﾄ 11:03:54]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items in a Sorted List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items in a Sorted List

When inserting an item into a sorted list we have as a precondition that the list is already sorted.
Furthermore, once the item is inserted, we have the postcondition that the list must still be sorted.
Therefore, all the items initially in the list that are larger than the item to be inserted need to be moved to

the right by one position as shown in Figure .

Figure: Inserting an item into a sorted list implemented as an array.

Program defines the Insert method for the SortedListAsArray class. This method takes as its
argument the object to be inserted in the list. Recall that the Insert method provided by the
ListAsLinkedList class simply adds items at the end of the array. While this is both efficient and
easy to implement, it is not suitable for the SortedListAsArray class since the items in the array
must be end up in order.

http://www.brpreiss.com/books/opus6/html/page195.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:54]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items in a Sorted List

Program: SortedListAsArray class Insert method.

The Insert method given in Program first checks that there is still room in the array for one more
item. Then, to insert the item into the list, all the items in the list that are larger than the one to be inserted
are moved to the right. This is accomplished by the loop on lines 7-12. Finally, the item to be inserted is
recorded in the appropriate array position on line 13.

In the worst case, the item to be inserted is smaller than all the items already in the sorted list. In this
case, all items must be moved one position to the right. Therefore, the running time of the
Insert method is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page195.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Locating Items in an Array-Binary Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Locating Items in an Array-Binary Search

Given a sorted array of items, an efficient way to locate a given item is to use a binary search . The

FindOffset method of the SortedListAsArray class defined in Program uses a binary search
to locate an item in the array which matches a given item.

Program: SortedListAsArray class FindOffset method.

The binary search algorithm makes use of a search interval to determine the position of an item in the
sorted list. The search interval is a range of array indices in which the item being sought is expected to be
found. The initial search interval is . The interval is iteratively narrowed by comparing

http://www.brpreiss.com/books/opus6/html/page196.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:55]

http://www.brpreiss.com/books/opus6/index.html

Locating Items in an Array-Binary Search

the item sought with the item found in the array at the middle of the search interval. If the middle item
matches the item sought, then we are done. Otherwise, if the item sought is less than the middle item,
then we can discard the middle item and the right half of the interval; if the item sought is greater than
the middle item, we can discard the middle item and the left half of the interval. At each step, the size of
the search interval is approximately halved. The algorithm terminates either when the item sough is
found, or if the size of the search interval becomes zero.

In the worst case, the item sought is not in the sorted list. Specifically, the worst case occurs when the
item sought is smaller than any item in the list because this case requires two comparisons in each

iteration of the binary search loop. In the worst case, iterations are required. Therefore, the

running time of the FindOffset method is , where

 and TGT represents the running times required to compare two ComparableObject instances.

If we assume that and , then the total running time is simply ,

where .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page196.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding Items in a Sorted List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding Items in a Sorted List

Program defines the two methods used to locate items in a sorted list. Both of these methods make
use of the FindOffset method described above.

Program: SortedListAsArray class Find and FindPosition methods.

http://www.brpreiss.com/books/opus6/html/page197.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:56]

http://www.brpreiss.com/books/opus6/index.html

Finding Items in a Sorted List

The Find method takes a given object and finds the object contained in the sorted list which matches
(i.e., compares equal to) the given one. It calls FindOffset to determine by doing a binary search the
array index at which the matching object is found. Find returns a reference to the matching object, if
one is found; otherwise, it returns null. The total running time of Find is dominated by

FindOffset. Therefore, the running time is .

The FindPosition method also takes an object, but it returns a Cursor instead. FindPosition
determines the position in the array of an object which matches its second argument.

The implementation of FindPosition is trivial: It calls FindOffset to determine the position at
which the matching object is found and returns an instance of the private class MyCursor. (The

MyCursor class is derived from the class of the same name shown in Program). The MyCursor
overrides the inherited InsertAfter and InsertBefore methods with methods that throw an
InvalidOperationException. These insert operations are not provided for sorted lists because
they allow arbitrary insertion, but arbitrary insertions do not necessarily result in sorted lists.

The total running time of the FindPosition method is dominated by FindOffset. Therefore like

Find, the running time of FindPosition is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page197.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a List

The purpose of the Withdraw method is to remove an item from the sorted list. Program defines the
Withdraw method which takes an object and removes it from the sorted list.

Program: SortedListAsArray class Withdraw method.

The Withdraw method makes use of FindOffset to determine the array index of the item to be
removed. Removing an object from position i of an ordered list which is stored in an array requires that
all of the objects at positions i+1, i+2, ..., , be moved one position to the left. The worst case

is when i=0. In this case, items need to be moved to the left.

Although the Withdraw method is able to make use of FindOffset to locate the position of the item

http://www.brpreiss.com/books/opus6/html/page198.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:56]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a List

to be removed in time, the total running time is dominated by the left shift, which is O(n) in

the worst case. Therefore, the running time of Withdraw is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page198.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked-List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked-List Implementation

This section presents a linked-list implementation of sorted lists that is derived from the

OrderedListAsLinkedList class given in Section . The SortedListAsLinkedList class

is introduced in Program . The SortedListAsLinkedList extends the

OrderedListAsLinkedList class introduced in Program and it implements the SortedList

interface defined in Program .

Program: SortedListAsLinkedList class.

There are no additional fields defined in the SortedListAsLinkedList class. The inherited fields
are sufficient to implement a sorted list. In fact, the functionality inherited from the
ListAsLinkedList class is almost sufficient--the only method of which the functionality must
change is the Insert operation.

● Inserting Items in a Sorted List
● Other Operations on Sorted Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page199.html [2002-11-17 ｿﾀﾈﾄ 11:03:57]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items in a Sorted List

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items in a Sorted List

Program gives the implementation of the Insert method of the SortedListAsLinkedList
class. This method takes a single argument: the object to be inserted into the sorted list. The algorithm
used for the insertion is as follows: First, the existing sorted, linked list is traversed in order to find the
linked list element which is greater than or equal to the object to be inserted into the list. The traversal is
done using two variables--prevPtr and ptr. During the traversal, the latter keeps track of the current
element and the former keeps track of the previous element.

By keeping track of the previous element, it is possible to efficiently insert the new item into the sorted

list by calling the InsertAfter method of the LinkedList class. In Chapter , the
InsertAfter method was shown to be O(1).

In the event that the item to be inserted is smaller than the first item in the sorted list, then rather than
using the InsertAfter method, the Prepend method is used. The Prepend method was also
shown to be O(1).

In the worst case, the object to be inserted into the linked list is larger than all of the objects already
present in the list. In this case, the entire list needs to be traversed before doing the insertion.
Consequently, the total running time for the Insert operation of the SortedListAsLinkedList
class is O(n), where .

http://www.brpreiss.com/books/opus6/html/page200.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:58]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items in a Sorted List

Program: SortedListAsLinkedList class Insert method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page200.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Other Operations on Sorted Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Other Operations on Sorted Lists

Unfortunately, it is not possible to do a binary search in a linked list. As a result, it is not possible to
exploit the sortedness of the list in the implementation of any of the other required operations on sorted
lists. The methods inherited from the OrderedListAsLinkedList provide all of the needed
functionality.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page201.html [2002-11-17 ｿﾀﾈﾄ 11:03:58]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Performance Comparison: SortedListAsArray vs. SortedListAsList

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Performance Comparison: SortedListAsArray
vs. SortedListAsList

The running times calculated for the various methods of the two sorted list implementations,

SortedListAsArray and SortedListAsLinkedList, are summarized below in Table .
With the exception of two methods, the running times of the two implementations are asymptotically
identical.

sorted list implementation

SortedList- SortedList-

method AsArray AsLinkedList

Insert O(n) O(n)

IsMember O(n) O(n)

Find O(n)

Withdraw O(n) O(n)

this[int]{get} O(1) O(n)

FindPosition O(n)

Cursor.Datum{get} O(1) O(1)

Cursor.Withdraw O(n) O(n)

Table:Running times of operations on sorted lists.

Neither the SortedListAsArray nor SortedListAsLinkedList implementations required any
additional fields beyond those inherited from their respective base classes, OrderedListAsArray
and OrderedListAsLinkedList. Consequently, the space requirements analysis of the sorted list

implementations is identical to that of the ordered list implementations given in Section .

http://www.brpreiss.com/books/opus6/html/page202.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:58]

http://www.brpreiss.com/books/opus6/index.html

Performance Comparison: SortedListAsArray vs. SortedListAsList

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page202.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

In Section we saw that an -order polynomial,

where , can be represented by a sequence of ordered pairs thus:

We also saw that it is possible to make use of an ordered list to represent such a sequence and that given
such a representation, we can write an algorithm to perform differentiation.

As it turns out, the order of the terms in the sequence does not affect the differentiation algorithm. The
correct result is always obtained and the running time is unaffected regardless of the order of the terms in
the sequence.

Unfortunately, there are operations on polynomials whose running time depends on the order of the
terms. For example, consider the addition of two polynomials:

To perform the addition all the terms involving x raised to the same power need to be grouped together.

If the terms of the polynomials are in an arbitrary order, then the grouping together of the corresponding
terms is time consuming. On the other hand, if the terms are ordered, say, from smallest exponent to
largest, then the summation can be done rather more efficiently. A single pass through the polynomials
will suffice. It makes sense to represent each of the polynomials as a sorted list of terms using, say, the
SortedListAsLinkedList class.

http://www.brpreiss.com/books/opus6/html/page203.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:59]

http://www.brpreiss.com/books/opus6/index.html

Applications

● Implementation
● Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page203.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:03:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

To begin with, we need to represent the terms of the polynomial. Program extends the definition of

the Term class introduced in Program --some additions are needed to support the the implementation
of polynomial addition.

Program: Term methods.

http://www.brpreiss.com/books/opus6/html/page204.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Four additional operations are declared in Program . The first is a constructor which creates a copy of
a given term. The next two properties, Coefficient and Exponent, provide get accessors that
return the corresponding fields of a Term instance. Clearly, the running time of each of these operations
is O(1).

The final method, operator+, provides the means to add two Terms together. The result of the
addition is another Term. The working assumption is that the terms to be added have identical
exponents. If the exponents are allowed to differ, the result of of the addition is a polynomial which
cannot be represented using a single term! To add terms with like exponents, we simply need to add their
respective coefficients. Therefore, the running time of the Term addition operator is O(1).

We now turn to the polynomial itself. Program introduces the PolynomialAsSortedList class.

This class implements the Polynomial interface defined in Program . It has a single field of type
SortedList. We have chosen in this implementation to use the linked-list sorted list implementation
to represent the sequence of terms.

http://www.brpreiss.com/books/opus6/html/page204.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

Implementation

Program: PolynomialAsSortedList class Plus method.

Program defines the Plus method. This method adds two Polynomials to obtain a third. It is
intended to be used like this:

Polynomial p1 = new PolynomialAsSortedList();
Polynomial p2 = new PolynomialAsSortedList();
// ...
Polynomial p3 = p1 + p2;

http://www.brpreiss.com/books/opus6/html/page204.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page204.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Analysis

The proof of the correctness of Program is left as an exercise for the reader (Exercise). We
discuss here the running time analysis of the algorithm, as there are some subtle points to remember
which lead to a result that may be surprising.

Consider the addition of a polynomial p(x) with its arithmetic complement -p(x). Suppose p(x) has n
terms. Clearly -p(x) also has n terms. The sum of the polynomials is the zero polynomial. An important
characteristic of the zero polynomial is that it has no terms! In this case, exactly n iterations of the main
loop are done (lines 14-31). Furthermore, zero iterations of the second and the third loops are required
(lines 32-35 and 36-39). Since the result has no terms, there will be no calls to the Add method.
Therefore, the amount of work done in each iteration is a constant. Consequently, the best case running
time is O(n).

Consider now the addition of two polynomials, p(x) and q(x), having l and m terms, respectively.
Furthermore, suppose that largest exponent in p(x) is less than the smallest exponent in q(x).
Consequently, there is no power of x which the two polynomials have in common. In this case, since p(x)
has the lower-order terms, exactly l iterations of the main loop (lines 14-31) are done. In each of these
iterations, exactly one new term is inserted into the result by calling the Add method. Since all of the
terms of p(x) will be exhausted when the main loop is finished, there will be no iterations of the second
loop (lines 32-35). However, there will be exactly m iterations of the third loop (lines 36-39) in each of
which one new term is inserted into the result by calling the Add method.

Altogether, l+m calls to the Add will be made. It was shown earlier that the running time for the insert
method is O(k), where k is the number of items in the sorted list. Consequently, the total running time for
the l+m insertions is

Consequently, the worst case running time for the polynomial addition given in Program is ,

where n=l+m. This is somewhat disappointing. The implementation is not optimal because it fails to take
account of the order in which the terms of the result are computed. That is, the Add method repeatedly
searches the sorted list for the correct position at which to insert the next term. But we know that correct

position is at the end! By replacing in Program all of the calls to the Add method by

http://www.brpreiss.com/books/opus6/html/page205.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

http://www.brpreiss.com/books/opus6/index.html

Analysis

((result as PolynomialAsSortedList).list as SortedListAsLinkedList)
 .linkedList.Append (...);

the total running time can be reduced to O(n) from !

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page205.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Devise an algorithm to reverse the contents of an ordered list. Determine the running time of your

algorithm.
2. Devise an algorithm to append the contents of one ordered list to the end of another. Assume that

both lists are represented using arrays. What is the running time of your algorithm?

3. Repeat Exercise , but this time assume that both lists are represented using linked lists. What is
the running time of your algorithm?

4. Devise an algorithm to merge the contents of two sorted lists. Assume that both lists are
represented using arrays. What is the running time of your algorithm?

5. Repeat Exercise , but this time assume that both lists are represented using linked lists. What is
the running time of your algorithm?

6. The Withdraw method can be used to remove items from a list one at a time. Suppose we want
to provide an additional a method, WithdrawAll, that takes one argument and withdraws all
the items in a list that match the given argument. We can provide an implementation of the
WithdrawAll method in the AbstractSearchableContainer class like this:

public class AbstractSearchableContainer :
 AbstractContainer, SearchableContainer
{
 void WithdrawAll(ComparableObject arg)
 {
 ComparableObject obj;
 while ((obj = Find(arg)) != null)
 Withdraw(obj);
 }
 // ...
}

Determine the worst-case running time of this method for each of the following cases:
1. an array-based implementation of an ordered list,
2. a linked-list implementation of an ordered list,
3. an array-based implementation of a sorted list, and
4. a linked-list implementation of a sorted list.

7. Devise an O(n) algorithm, to remove from an ordered list all the items that match a given item.
Assume the list is represented using an array.

http://www.brpreiss.com/books/opus6/html/page206.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:01]

http://www.brpreiss.com/books/opus6/index.html

Exercises

8. Repeat Exercise , but this time assume the ordered list is represented using a linked list.
9. Consider an implementation of the OrderedList interface that uses a doubly-linked list such as

the one shown in Figure (a). Compare the running times of the operations for this

implementation with those given in Table .
10. Derive an expression for the amount of space used to represent an ordered list of n elements using

a doubly-linked list such as the one shown in Figure (a). Compare this with the space used by
the array-based implementation. Assume that integers and pointers each occupy four bytes.

11. Consider an implementation of the SortedList interface that uses a doubly-linked list such as

the one shown in Figure (a). Compare the running times of the operations for this

implementation with those given in Table .

12. Verify that Program correctly computes the sum of two polynomials.
13. Write an algorithm to multiply a polynomial by a scalar. Hint: Use a visitor.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page206.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Write a visitor to solve each of the following problems:

1. Find the smallest element of a list.
2. Find the largest element of a list.
3. Compute the sum of all the elements of a list.
4. Compute the product of all the elements of a list.

2. Design and implement a class called OrderedListAsDoublyLinkedList which represents

an ordered list using a doubly-linked list. Select one of the approaches shown in Figure .

3. Consider the Polynomial class given in Program . Implement a method that computes the
value of a polynomial, say p(x), for a given value of x. Hint: Use a visitor that visits all the terms
in the polynomial and accumulates the result.

4. Devise and implement an algorithm to multiply two polynomials. Hint: Consider the identity

Write a method to multiply a Polynomial by a Term and use the polynomial addition operator

defined in Program .
5. Devise and implement an algorithm to compute the power of a polynomial, where k is a

positive integer. What is the running time of your algorithm?
6. For some calculations it is necessary to have very large integers, i.e., integers with an arbitrarily

large number of digits. We can represent such integers using lists. Design and implement a class
for representing arbitrarily large integers. Your implementation should include operations to add,
subtract, and multiply such integers, and to compute the power of such an integer, where k is a

small positive integer. Hint: Base your design on the Polynomial class given in Program .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page207.html [2002-11-17 ｿﾀﾈﾄ 11:04:01]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hashing, Hash Tables, and Scatter Tables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hashing, Hash Tables, and Scatter
Tables

A very common paradigm in data processing involves storing information in a table and then later
retrieving the information stored there. For example, consider a database of driver's license records. The
database contains one record for each driver's license issued. Given a driver's license number, we can
look up the information associated with that number.

Similar operations are done by the C# compiler. The compiler uses a symbol table to keep track of the
user-defined symbols in a C# program. As it compiles a program, the compiler inserts an entry in the
symbol table every time a new symbol is declared. In addition, every time a symbol is used, the compiler
looks up the attributes associated with that symbol to see that it is being used correctly and to guide the
generation of the MSIL code.

Typically the database comprises a collection of key-and-value pairs. Information is retrieved from the
database by searching for a given key. In the case of the driver's license database, the key is the driver's
license number and in the case of the symbol table, the key is the name of the symbol.

In general, an application may perform a large number of insertion and/or look-up operations.
Occasionally it is also necessary to remove items from the database. Because a large number of
operations will be done we want to do them as quickly as possible.

● Hashing-The Basic Idea
● Hashing Methods
● Hash Function Implementations
● Hash Tables
● Scatter Tables
● Scatter Table using Open Addressing

http://www.brpreiss.com/books/opus6/html/page208.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:02]

http://www.brpreiss.com/books/opus6/index.html

Hashing, Hash Tables, and Scatter Tables

● Applications
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page208.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hashing-The Basic Idea

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hashing-The Basic Idea
In this chapter we examine data structures which are designed specifically with the objective of
providing efficient insertion and find operations. In order to meet the design objective, certain
concessions are made. Specifically, we do not require that there be any specific ordering of the items in
the container. In addition, while we still require the ability to remove items from the container, it is not
our primary objective to make removal as efficient as the insertion and find operations.

Ideally we would build a data structure for which both the insertion and find operations are O(1) in the
worst case. However, this kind of performance can only be achieved with complete a priori knowledge.
We need to know beforehand specifically which items are to be inserted into the container.
Unfortunately, we do not have this information in the general case. So, if we cannot guarantee O(1)
performance in the worst case, then we make it our design objective to achieve O(1) performance in the
average case.

The constant time performance objective immediately leads us to the following conclusion: Our
implementation must be based in some way on an array rather than a linked list. This is because we can
access the element of an array in constant time, whereas the same operation in a linked list takes O(k)
time.

In the previous chapter, we consider two searchable containers--the ordered list and the sorted list. In the
case of an ordered list, the cost of an insertion is O(1) and the cost of the find operation is O(n). For a

sorted list the cost of insertion is O(n) and the cost of the find operation is for the array

implementation.

Clearly, neither the ordered list nor the sorted list meets our performance objectives. The essential
problem is that a search, either linear or binary, is always necessary. In the ordered list, the find operation
uses a linear search to locate the item. In the sorted list, a binary search can be used to locate the item
because the data is sorted. However, in order to keep the data sorted, insertion becomes O(n).

In order to meet the performance objective of constant time insert and find operations, we need a way to
do them without performing a search. That is, given an item x, we need to be able to determine directly
from x the array position where it is to be stored.

http://www.brpreiss.com/books/opus6/html/page209.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:02]

http://www.brpreiss.com/books/opus6/index.html

Hashing-The Basic Idea

● Example
● Keys and Hash Functions

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page209.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example

We wish to implement a searchable container which will be used to contain character strings from the set
of strings K,

Suppose we define a function as given by the following table:

x h(x)

"ett" 1

"två" 2

"tre" 3

"fyra" 4

"fem" 5

"sex" 6

"sju" 7

"åtta" 8

"nio" 9

"tio" 10

"elva" 11

"tolv" 12

Then, we can implement a searchable container using an array of length n=12. To insert item x, we
simply store it a position h(x)-1 of the array. Similarly, to locate item x, we simply check to see if it is

found at position h(x)-1. If the function can be evaluated in constant time, then the both the insert

and the find operations are O(1).

We expect that any reasonable implementation of the function will run in constant time, since the

size of the set of strings, K, is a constant! This example illustrates how we can achieve O(1) performance

http://www.brpreiss.com/books/opus6/html/page210.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:03]

http://www.brpreiss.com/books/opus6/index.html

Example

in the worst case when we have complete, a priori knowledge.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page210.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:03]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Keys and Hash Functions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Keys and Hash Functions

We are designing a container which will be used to hold some number of items of a given set K. In this
context, we call the elements of the set K keys . The general approach is to store the keys in an array. The

position of a key in the array is given by a function , called a hash function , which determines the

position of a given key directly from that key.

In the general case, we expect the size of the set of keys, |K|, to be relatively large or even unbounded.

For example, if the keys are 32-bit integers, then . Similarly, if the keys are arbitrary

character strings of arbitrary length, then |K| is unbounded.

On the other hand, we also expect that the actual number of items stored in the container to be
significantly less than |K|. That is, if n is the number of items actually stored in the container, then

. Therefore, it seems prudent to use an array of size M, where M is as least as great as the

maximum number of items to be stored in the container.

Consequently, what we need is a function . This function maps the set of

values to be stored in the container to subscripts in an array of length M. This function is called a hash
function .

In general, since , the mapping defined by hash function will be a many-to-one mapping . That

is, there will exist many pairs of distinct keys x and y, such that , for which h(x)=h(y). This

situation is called a collision. Several approaches for dealing with collisions are explored in the following
sections.

What are the characteristics of a good hash function?

● A good hash function avoids collisions.
● A good hash function tends to spread keys evenly in the array.
● A good hash function is easy to compute.

http://www.brpreiss.com/books/opus6/html/page211.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:04]

http://www.brpreiss.com/books/opus6/index.html

Keys and Hash Functions

● Avoiding Collisions
● Spreading Keys Evenly
● Ease of Computation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page211.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Avoiding Collisions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Avoiding Collisions

Ideally, given a set of distinct keys, , the set of hash values

 contains no duplicates. In practice, unless we know something about the

keys chosen, we cannot guarantee that there will not be collisions. However, in certain applications we
have some specific knowledge about the keys that we can exploit to reduce the likelihood of a collision.
For example, if the keys in our application are telephone numbers, and we know that the telephone
numbers are all likely to be from the same geographic area, then it makes little sense to consider the area
codes in the hash function, the area codes are all likely to be the same.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page212.html [2002-11-17 ｿﾀﾈﾄ 11:04:04]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Spreading Keys Evenly

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Spreading Keys Evenly

Let be the probability that the hash function . A hash function which spreads keys evenly has

the property that for , In other words, the hash values computed by the function

 are uniformly distributed . Unfortunately, in order to say something about the distribution of the

hash values, we need to know something about the distribution of the keys.

In the absence of any information to the contrary, we assume that the keys are equiprobable. Let be

the set of keys that map to the value i. That is, . If this is the case, the

requirement to spread the keys uniformly implies that . An equal number of keys should

map into each array position.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page213.html [2002-11-17 ｿﾀﾈﾄ 11:04:05]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Ease of Computation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Ease of Computation

This does not mean necessarily that it is easy for someone to compute the hash function, nor does it mean
that it is easy to write the algorithm to compute the function; it means that the running time of the hash
function should be O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page214.html [2002-11-17 ｿﾀﾈﾄ 11:04:06]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hashing Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hashing Methods
In this section we discuss several hashing methods. In the following discussion, we assume that we are
dealing with integer-valued keys, i.e., . Furthermore, we assume that the value of the hash
function falls between 0 and M-1.

● Division Method
● Middle Square Method
● Multiplication Method
● Fibonacci Hashing

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page215.html [2002-11-17 ｿﾀﾈﾄ 11:04:06]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Division Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Division Method

Perhaps the simplest of all the methods of hashing an integer x is to divide x by M and then to use the
remainder modulo M. This is called the division method of hashing . In this case, the hash function is

Generally, this approach is quite good for just about any value of M. However, in certain situations some
extra care is needed in the selection of a suitable value for M. For example, it is often convenient to make
M an even number. But this means that h(x) is even if x is even; and h(x) is odd if x is odd. If all possible
keys are equiprobable, then this is not a problem. However if, say, even keys are more likely than odd

keys, the function will not spread the hashed values of those keys evenly.

Similarly, it is often tempting to let M be a power of two. For example, for some integer k>1.

In this case, the hash function simply extracts the bottom k bits of the binary

representation of x. While this hash function is quite easy to compute, it is not a desirable function
because it does not depend on all the bits in the binary representation of x.

For these reasons M is often chosen to be a prime number. For example, suppose there is a bias in the
way the keys are created that makes it more likely for a key to be a multiple of some small constant, say
two or three. Then making M a prime increases the likelihood that those keys are spread out evenly.
Also, if M is a prime number, the division of x by that prime number depends on all the bits of x, not just
the bottom k bits, for some small constant k.

The division method is extremely simple to implement. The following C# code illustrates how to do it:

public class DivisionMethod
{
 private const int M = 1031; // a prime

 public static int H(int x)
 { return Math.Abs(x) % M; }
}

http://www.brpreiss.com/books/opus6/html/page216.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:07]

http://www.brpreiss.com/books/opus6/index.html

Division Method

In this case, M is a constant. However, an advantage of the division method is that M need not be a
compile-time constant--its value can be determined at run time. In any event, the running time of this
implementation is clearly a constant.

A potential disadvantage of the division method is due to the property that consecutive keys map to
consecutive hash values:

While this ensures that consecutive keys do not collide, it does mean that consecutive array locations will
be occupied. We will see that in certain implementations this can lead to degradation in performance. In
the following sections we consider hashing methods that tend to scatter consecutive keys.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page216.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Middle Square Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Middle Square Method

In this section we consider a hashing method which avoids the use of division. Since integer division is
usually slower than integer multiplication, by avoiding division we can potentially improve the running
time of the hashing algorithm. We can avoid division by making use of the fact that a computer does
finite-precision integer arithmetic. For example, all arithmetic is done modulo W where is a
power of two such that w is the word size of the computer.

The middle-square hashing method works as follows. First, we assume that M is a power of two, say

 for some . Then, to hash an integer x, we use the following hash function:

Notice that since M and W are both powers of two, the ratio is also a power two.

Therefore, in order to multiply the term by M/W we simply shift it to the right by w-k bits!

In effect, we are extracting k bits from the middle of the square of the key--hence the name of the
method.

The following code fragment illustrates the middle-square method of hashing:

public class MiddleSquareMethod
{
 private const int k = 10; // M==1024
 private const int w = 32;

 public static int H(int x)
 { return (int)((uint)(x * x)) >> (w - k); }
}

Since x is an int, the product x * x is also an an int. In C#, an int represents a 32-bit quantity and
the product of two ints is also a 32-bit quantity. The final result is obtained by shifting the product w-k
bits to the right, where w is the number of bits in an integer. Note, we cast the product to a uint before
the shift so as to cause the right-shift operator to insert zeroes on the left. Therefore, the result always
falls between 0 and M-1.

http://www.brpreiss.com/books/opus6/html/page217.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:08]

http://www.brpreiss.com/books/opus6/index.html

Middle Square Method

The middle-square method does a pretty good job when the integer-valued keys are equiprobable. The
middle-square method also has the characteristic that it scatters consecutive keys nicely. However, since
the middle-square method only considers a subset of the bits in the middle of , keys which have a
large number of leading zeroes will collide. For example, consider the following set of keys:

This set contains all keys x such that . For all of these keys h(x)=0.

A similar line of reasoning applies for keys which have a large number of trailing zeroes. Let W be an
even power of two. Consider the set of keys

The least significant w/2 bits of the keys in this set are all zero. Therefore, the least significant w bits of
of are also zero and as a result h(x)=0 for all such keys!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page217.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:08]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Multiplication Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Multiplication Method

A very simple variation on the middle-square method that alleviates its deficiencies is the so-called,
multiplication hashing method . Instead of multiplying the key x by itself, we multiply the key by a
carefully chosen constant a, and then extract the middle k bits from the result. In this case, the hashing
function is

What is a suitable choice for the constant a? If we want to avoid the problems that the middle-square
method encounters with keys having a large number of leading or trailing zeroes, then we should choose
an a that has neither leading nor trailing zeroes.

Furthermore, if we choose an a that is relatively prime to W, then there exists another number a' such

that . In other words, a' is the inverse of a modulo W, since the product of a and its

inverse is one. Such a number has the nice property that if we take a key x, and multiply it by a to get ax,
we can recover the original key by multiplying the product again by a', since axa'=aa'x=1x.

There are many possible constants which the desired properties. One possibility which is suited for 32-bit

arithmetic (i.e.,) is . The binary representation of a is

This number has neither many leading nor trailing zeroes. Also, this value of a and are
relatively prime and the inverse of a modulo W is .

The following code fragment illustrates the multiplication method of hashing:

public class MultiplicationMethod
{
 private const int k = 10; // M==1024
 private const int w = 32;
 private const uint a = 2654435769U;

http://www.brpreiss.com/books/opus6/html/page218.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:09]

http://www.brpreiss.com/books/opus6/index.html

Multiplication Method

 public static int H(int x)
 { return (int)((uint)(x * a) >> (w - k)); }
}

The code is a simple modification of the middle-square version. Nevertheless, the running time remains
O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page218.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:09]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fibonacci Hashing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fibonacci Hashing

The final variation of hashing to be considered here is called the Fibonacci hashing method . In fact,
Fibonacci hashing is exactly the multiplication hashing method discussed in the preceding section using a
very special value for a. The value we choose is closely related to the number called the golden ratio.

The golden ratio is defined as follows: Given two positive numbers x and y, the ratio is the

golden ratio if the ratio of x to y is the same as that of x+y to x. The value of the golden ratio can be
determined as follows:

There is an intimate relationship between the golden ratio and the Fibonacci numbers . In Section it
was shown that the Fibonacci number is given by

where and !

The Fibonacci hashing method is essentially the multiplication hashing method in which the constant a is

chosen as the integer that is relatively prime to W which is closest to . The following table gives

suitable values of a for various word sizes.

W

 40503

 2654435769

http://www.brpreiss.com/books/opus6/html/page219.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:10]

http://www.brpreiss.com/books/opus6/index.html

Fibonacci Hashing

 11400714819323198485

Why is special? It has to do with what happens to consecutive keys when they are hashed using the

multiplicative method. As shown in Figure , consecutive keys are spread out quite nicely. In fact,

when we use to hash consecutive keys, the hash value for each subsequent key falls in

between the two widest spaced hash values already computed. Furthermore, it is a property of the golden

ratio, , that each subsequent hash value divides the interval into which it falls according to the golden

ratio!

Figure: Fibonacci hashing.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page219.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hash Function Implementations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hash Function Implementations

The preceding section presents methods of hashing integer-valued keys. In reality, we cannot expect that
the keys will always be integers. Depending on the application, the keys might be letters, character
strings or even more complex data structures such as Associations or Containers.

In general given a set of keys, K, and a positive constant, M, a hash function is a function of the form

In practice is it convenient to implement the hash function h as the composition of two functions f and g.
The function f maps keys into integers:

where is the set of integers. The function g maps non-negative integers into :

Given appropriate functions f and g, the hash function h is simply defined as the composition of those
functions:

That is, the hash value of a key x is given by g(f(x)).

By decomposing the function h in this way, we can separate the problem into two parts: The first
involves finding a suitable mapping from the set of keys K to the non-negative integers. The second
involves mapping non-negative integers into the interval [0,M-1]. Ideally, the two problems would be
unrelated. That is, the choice of the function f would not depend on the choice of g and vice versa.
Unfortunately, this is not always the case. However, if we are careful, we can design the functions in

such a way that is a good hash function.

http://www.brpreiss.com/books/opus6/html/page220.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:11]

http://www.brpreiss.com/books/opus6/index.html

Hash Function Implementations

The hashing methods discussed in the preceding section deal with integer-valued keys. But this is
precisely the domain of the function g. Consequently, we have already examined several different
alternatives for the function g. On the other hand, the choice of a suitable function for f depends on the
characteristics of its domain.

In the following sections, we consider various different domains (sets of keys) and develop suitable hash
functions for each of them. Each domain considered corresponds to a C# class. Recall that every C# class
is ultimately derived from the System.Object class and that the System.Object class declares a
method called GetHashCode:

namespace System
{
 public class object
 {
 public virtual int GetHashCode () { /* ... */ }
 // ...
 }
}

The GetHashCode method corresponds to the function f which maps keys into integers.

● Integral Keys
● Floating-Point Keys
● Character String Keys
● Hashing Containers
● Using Associations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page220.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Integral Keys

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Integral Keys

Of all the C# types, the so-called integral types are the simplest to hash into integers. The integral data
types are byte, sbyte, short, ushort, int, uint, long, ulong, and char. Since the
underlying representation of such data types can be viewed as an integer, the hash function is trivial. A
suitable function f for an integral data type is the identity function:

Program completes the definition of the ComparableInt32 wrapper class introduced in Program

. In this case, the GetHashCode method simply returns the value of the boxed Int32 object.
Clearly, the running time of of the GetHashCode method is O(1).

Program: ComparableInt32 class GetHashCode method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page221.html [2002-11-17 ｿﾀﾈﾄ 11:04:12]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Floating-Point Keys

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Floating-Point Keys

Dealing with floating-point number involves only a little more work. In C# the floating-point data types
are float and double. The size of a float is 32 bits and the size of a double is 64 bits.

We seek a function f which maps a floating-point value into a non-negative integer. One possibility is to
simply reinterpret the bit pattern used to represent the floating point number as an integer. However, this
is only possible when the size of the floating-point type does not exceed the size of int. This condition
is satisfied only by the float type.

Another characteristic of floating-point numbers that must be dealt with is the extremely wide range of
values which can be represented. For example, when using IEEE floating-point, the smallest double

precision quantity that can be represented is and the largest is . Somehow

we need to map values in this large domain into the range of an int.

Every non-zero floating-point quantity x can be written uniquely as

where , and . The quantity s is called the sign , m is

called the mantissa or significant and e is called the exponent . This suggests the following definition
for the function f:

where such that w is the word size of the machine.

This hashing method is best understood by considering the conditions under which a collision occurs
between two distinct floating-point numbers x and y. Let and be the mantissas of x and y,
respectively. The collision occurs when f(x)=f(y).

http://www.brpreiss.com/books/opus6/html/page222.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:13]

http://www.brpreiss.com/books/opus6/index.html

Floating-Point Keys

Thus, x and y collide if their mantissas differ by less than 1/2W. Notice that the sign of the number is not
considered. Thus, x and -x collide Also, the exponent is not considered. Therefore, if x and y collide, then

so too do x and for all permissible values of k.

Program completes the definition of the ComparableDouble wrapper class introduced in

Program . The GetHashCode function shown computes the hash function defined in Equation .

Program: ComparableDouble class GetHashCode method.

This implementation makes use of the fact that in the IEEE standard floating-point format the least-

significant 52 bits of a 64-bit floating-point number represent the quantity . Since

an int is a 32-bit quantity, , and we can rewrite Equation as follows:

Thus, we can compute the hash function simply by shifting the binary representation of the floating-point

number 20 bits to the right as shown in Program . Clearly the running time of the GetHashCode
method is O(1).

http://www.brpreiss.com/books/opus6/html/page222.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:13]

Floating-Point Keys

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page222.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:13]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Character String Keys

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Character String Keys

Strings of characters are represented in C# as instances of the String class. A character string is simply
a sequence of characters. Since such a sequence may be arbitrarily long, to devise a suitable hash
function we must find a mapping from an unbounded domain into the finite range of int.

We can view a character string, s, as a sequence of n characters,

where n is the length of the string. (The length of a string can be determined using the String property
Length). One very simple way to hash such a string would be to simply sum the numeric values
associated with each character:

As it turns out, this is not a particularly good way to hash character strings. Given that a C# char is a 16-

bit quantity, , for all . As a result, . For

example, given a string of length n=5, the value of f(s) falls between zero and . In fact, the
situation is even worse, in North America we typically use only the ASCII subset of the Unicode
character set. The ASCII character set uses only the least-significant seven bits of a char. If the string is
comprised of only ASCII characters, the result falls in the range between zero and 640.

Essentially the problem with a function f which produces a result in a relatively small interval is the

situation which arises when that function is composed with the function . If the size

of the range of the function f is less than M, then does not spread its values uniformly on the

interval [0,M-1]. For example, if M=1031 only the first 640 values (62% of the range) are used!

Alternatively, suppose we have a priori knowledge that character strings are limited to length n=4. Then,
we can construct an integer by concatenating the binary representations of each of the characters. For

example, given , we can construct an integer with the function

http://www.brpreiss.com/books/opus6/html/page223.html (1 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:15]

http://www.brpreiss.com/books/opus6/index.html

Character String Keys

where . Since B is a power of two, this function is easy to write in C#:

static int F(String s)
{
 return (int)s[0] << 21 | (int)s[1] << 14
 | (int)s[2] << 7 | (int)s[3];
}

While this function certainly has a larger range, it still has a problems--it cannot deal strings of arbitrary
length.

Equation can be generalized to deal with strings of arbitrary length as follows:

This function produces a unique integer for every possible string. Unfortunately, the range of f(s) is
unbounded. A simple modification of this algorithm suffices to bound the range:

where such that w is word size of the machine. Unfortunately, since W and B are both powers
of two, the value computed by this hash function depends only on the last W/B characters in the character

string. For example, for and , this result depends only on the last five characters in the
string--all character strings having exactly the same last five characters collide!

Writing the code to compute Equation is actually quite straightforward if we realize that f(s) can be
viewed as a polynomial in B, the coefficients of which are , , ..., . Therefore, we can use Horner's

rule (see Section) to compute f(s) as follows:

static int F(string s)
{
 int result = 0;
 for (int i = 0; i < s.Length; ++i)
 result = result * B + (int)s[i];

http://www.brpreiss.com/books/opus6/html/page223.html (2 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:15]

Character String Keys

 return result;
}

This implementation can be simplified even further if we make use of the fact that , where b=7.
Since B is a power of two, in order to multiply the variable result by B all we need to do is to shift it
left by b bits. Furthermore, having just shifted result left by b bits, we know that the least significant b
bits of the result are zero. And since each character has no more than b=7 bits, we can replace the
addition operation with an exclusive or operation.

static int F(String s)
{
 int result = 0;
 for (int i = 0; i < s.Length; ++i)
 result = result << b ^ (int)s[i];
 return result;
}

Of the 128 characters in the 7-bit ASCII character set, only 97 characters are printing characters

including the space, tab, and newline characters (see Appendix). The remaining characters are control
characters which, depending on the application, rarely occur in strings. Furthermore, if we assume that
letters and digits are the most common characters in strings, then only 62 of the 128 ASCII codes are
used frequently. Notice, the letters (both upper and lower case) all fall between and . All

the information is in the least significant six bits. Similarly, the digits fall between and --these

differ in the least significant four bits. These observations suggest that using should work well.

That is, for , the hash value depends on the last five characters plus two bits of the sixth-last
character.

We have developed a hashing scheme which works quite well given strings which differ in the trailing
letters. For example, the strings "temp1", "temp2", and "temp3", all produce different hash values.
However, in certain applications the strings differ in the leading letters. For example, the two Internet
domain names "ece.uwaterloo.ca" and "cs.uwaterloo.ca" collide when using Equation

. Essentially, the effect of the characters that differ is lost because the corresponding bits have been
shifted out of the hash value.

http://www.brpreiss.com/books/opus6/html/page223.html (3 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:15]

Character String Keys

Program: ComparableString class GetHashCode method.

This suggests a final modification which shown in Program . Instead of losing the b=6 most
significant bits when the variable result is shifted left, we retain those bits and exclusive or them back
into the shifted result variable. Using this approach, the two strings "ece.uwaterloo.ca" and
"cs.uwaterloo.ca" produce different hash values.

Table lists a number of different character strings together with the hash values obtained using

Program . For example, to hash the string "fyra", the following computation is performed (all
numbers in octal):

1 4 6 f

1 7 1 y

1 6 2 r

1 4 1 a

1 4 7 7 0 6 3 4 1

http://www.brpreiss.com/books/opus6/html/page223.html (4 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:15]

Character String Keys

x Hash(x) (octal)

"ett" 01446564

"två" 01656545

"tre" 01656345

"fyra" 0147706341

"fem" 01474455

"sex" 01624470

"sju" 01625365

"åtta" 0344656541

"nio" 01575057

"tio" 01655057

"elva" 044556741

"tolv" 065565566

Table:Sample character
string keys and the hash
values obtained using

Program .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page223.html (5 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hashing Containers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hashing Containers

As explained in Section , a container is an object which contains other objects. The

AbstractContainer class introduced in Program implements the Container interface defined

in Program . In this section we show how to define a GetHashCode method in the
AbstractContainer class that computes a suitable hash function on any container.

Given a container c which contains n objects, , , ..., , we can define the hash function f(c) as
follows:

That is, to hash a container, simply compute the sum of the hash values of the contained objects.

Program gives the code for the GetHashCode method of the AbstractContainer class. This
method makes use of the Accept method to cause a visitor to visit all of the objects contained in the
container. When the visitor visits an object, it calls that object's GetHashCode method and accumulates
the result.

http://www.brpreiss.com/books/opus6/html/page224.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:16]

http://www.brpreiss.com/books/opus6/index.html

Hashing Containers

Program: AbstractContainer class GetHashCode method.

Since the Accept method is an abstract method, every concrete class derived from the
AbstractContainer class must provide an appropriate implementation. However, it is not necessary
for any derived class to redefine the behavior of the GetHashCode method--the behavior inherited
from the AbstractContainer class is completely generic and should suffice for all concrete
container classes.

There is a slight problem with Equation . Different container types that happen to contain identical
objects produce exactly the same hash value. For example, an empty stack and an empty list both

produce the same hash value. We have avoided this situation in Program by adding to the sum the
value obtained from hashing the class of the container itself.

http://www.brpreiss.com/books/opus6/html/page224.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:16]

Hashing Containers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page224.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Using Associations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Using Associations

Hashing provides a way to determine the position of a given object directly from that object itself. Given
an object x we determine its position by evaluating the appropriate hash function, h(x). We find the
location of object x in exactly the same way. But of what use is this ability to find an object if, in order to
compute the hash function h(x), we must be able to access the object x in the first place?

In practice, when using hashing we are dealing with keyed data . Mathematically, keyed data consists of
ordered pairs

where K is a set of keys, and V is a set of values. The idea is that we will access elements of the set A
using the key. That is, the hash function for elements of the set A is given by

where is the hash function associated with the set K.

For example, suppose we wish to use hashing to implement a database which contains driver's license
records. Each record contains information about a driver, such as her name, address, and perhaps a
summary of traffic violations. Furthermore, each record has a unique driver's license number. The
driver's license number is the key and the other information is the value associated with that key.

In Section the Association class was declared which comprises two fields, a key and a value.
Given this declaration, the definition of the hash method for Associations is trivial. As shown in

Program , it simply calls the GetHashCode method on the key field.

http://www.brpreiss.com/books/opus6/html/page225.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:17]

http://www.brpreiss.com/books/opus6/index.html

Using Associations

Program: Association class GetHashCode method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page225.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Hash Tables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Hash Tables
A hash table is a searchable container. As such, its interface provides methods for putting an object into

the container, finding an object in the container, and removing an object from the container. Program
defines the HashTable interface. The HashTable interface extends the

SearchableContainerInterface defined in Program . One additional property, called

LoadFactor, is declared. The purpose of this property is explained in Section .

Program: HashTable interface.

● Abstract Hash Tables
● Separate Chaining
● Average Case Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page226.html [2002-11-17 ｿﾀﾈﾄ 11:04:18]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Hash Tables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Hash Tables

As shown in Figure , we define an AbstractHashTable class from which several concrete
realizations are derived.

Figure: Object class hierarchy.

Program introduces the AbstracHashTable class. The AbstractHashTable class extends

the AbstractSearchableContainer class introduced in Program and it implements the

HashTable interface defined in Program .

http://www.brpreiss.com/books/opus6/html/page227.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:18]

http://www.brpreiss.com/books/opus6/index.html

Abstract Hash Tables

Program: AbstractHashTable methods.

Program introduces the Length property and three methods, F, G, and H. The Length property is
an abstract property that provides a get accessor that returns the length of a hash table.

The methods F, G, and H correspond to the composition discussed in Section . The F

method takes as an object and calls the GetHashCode method on that object to compute an integer.

The G method uses the division method of hashing defined in Section to map an integer into the
interval [0,M-1], where M is the length of the hash table. Finally, the H method computes the
composition of F and G.

In the following we will consider various ways of implementing hash tables. In all cases, the underlying
implementation makes use of an array. The position of an object in the array is determined by hashing
the object. The main problem to be resolved is how to deal with collisions--two different objects cannot
occupy the same array position at the same time. In the following section, we consider an approach
which solves the problem of collisions by keeping objects that collide in a linked list.

http://www.brpreiss.com/books/opus6/html/page227.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:18]

Abstract Hash Tables

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page227.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Separate Chaining

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Separate Chaining

Figure shows a hash table that uses separate chaining to resolve collisions. The hash table is
implemented as an array of linked lists. To insert an item into the table, it is appended to one of the
linked lists. The linked list to it is appended is determined by hashing that item.

Figure: Hash table using separate chaining.

Figure illustrates an example in which there are M=16 linked lists. The twelve character strings
"ett"-"tolv" have been inserted into the table using the hashed values and in the order given in

Table . Notice that in this example since M=16, the linked list is selected by the least significant four

bits of the hashed value given in Table . In effect, it is only the last letter of a string which determines
the linked list in which that string appears.

http://www.brpreiss.com/books/opus6/html/page228.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:19]

http://www.brpreiss.com/books/opus6/index.html

Separate Chaining

● Implementation
● Constructor, Length Property and Purge Methods
● Inserting and Removing Items
● Finding an Item

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page228.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:19]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the ChainedHashTable class. The ChainedHashTable class extends the

AbstractHashTable class introduced in Program . The ChainedHashTable class contains a
single field called array. It is declared as an array of LinkedLists. (The LinkedList class is

described in Chapter).

Program: ChainedHashTable fields.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page229.html [2002-11-17 ｿﾀﾈﾄ 11:04:19]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor, Length Property and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor, Length Property and Purge Methods

The constructor, Length property, and Purge methods of the ChainedHashTable class are defined

in Program . The constructor takes a single argument which specifies the size of hash table desired. It
creates an array of the specified length and then initializes the elements of the array. Each element of the
array is assigned an empty linked list. The running time for the ChainedHashTable constructor is
O(M) where M is the size of the hash table.

Program: ChainedHashTable class constructor, Length property, and Purge methods.

The Length property provides a get accessor that returns the length of the array field. Clearly its

http://www.brpreiss.com/books/opus6/html/page230.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:20]

http://www.brpreiss.com/books/opus6/index.html

Constructor, Length Property and Purge Methods

running time is O(1)

The purpose of the Purge method is to make the container empty. It does this by invoking the Purge
method one-by-one on each of the linked lists in the array. The running time of the Purge method is
O(M), where M is the size of the hash table.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page230.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting and Removing Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting and Removing Items

Program gives the code for inserting and removing items from a ChainedHashTable.

Program: ChainedHashTable class Insert and Withdraw methods.

The implementations of the Insert and Withdraw methods are remarkably simple. For example, the
Insert method first calls the hash method H to compute an array index which is used to select one of
the linked lists. The Append method provided by the LinkedList class is used to add the object to

the selected linked list. The total running time for the Insert operation is ,

where is the running time of the GetHashCode method. Notice that if the hash method

runs in constant time, then so too does hash table insertion operation!

The Withdraw method is almost identical to the Insert method. Instead of calling the Append, it
calls the linked list Extract method to remove the specified object from the appropriate linked list. The

running time of Withdraw is determined by the time of the Extract operation. In Chapter this

http://www.brpreiss.com/books/opus6/html/page231.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:21]

http://www.brpreiss.com/books/opus6/index.html

Inserting and Removing Items

was shown to be O(n) where n is the number of items in the linked list. In the worst case, all of the items
in the ChainedHashTable have collided with each other and ended up in the same list. That is, in the
worst case if there are n items in the container, all n of them are in a single linked list. In this case, the

running time of the Withdraw operation is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page231.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding an Item

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding an Item

The definition of the Find method of the ChainedHashTable class is given in Program . The
Find method takes as its argument any ComparableObject. The purpose of the Find operation is
to return the object in the container that is equal to the given object.

Program: ChainedHashTable class Find method.

The Find method simply hashes its argument to select the linked list in which it should be found. Then,
it traverses the linked list to locate the target object. As for the Withdraw operation, the worst case
running time of the Find method occurs when all the objects in the container have collided, and the item
that is being sought does not appear in the linked list. In this case, the running time of the find operation

is .

http://www.brpreiss.com/books/opus6/html/page232.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:21]

http://www.brpreiss.com/books/opus6/index.html

Finding an Item

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page232.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Case Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Case Analysis

The previous section has shown that in the worst case, the running time to insert an object into a
separately chained hash table is O(1), and the time to find or delete an object is O(n). But these bounds
are no better than the same operations on plain lists! Why have we gone to all the trouble inventing hash
tables?

The answer lies not in the worst-case performance, but in the average expected performance. Suppose we
have a hash table of size M. Let there be exactly n items in the hash table. We call the quantity

 the load factor . The load factor is simply the ratio of the number of items in the hash table

to the array length.

Program gives the implementation for the get accessor of the LoadFactor property of the

AbstractHashTable class. This method computes by calling the Count method to

determine n and the Length method to determine M.

Program: AbstractHashTable class LoadFactor method.

Consider a chained hash table. Let be the number of items in the linked list, for
. The average length of a linked list is

http://www.brpreiss.com/books/opus6/html/page233.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:23]

http://www.brpreiss.com/books/opus6/index.html

Average Case Analysis

The average length of a linked list is exactly the load factor!

If we are given the load factor , we can determine the average running times for the various operations.
The average running time of Insert is the same as its worst case time, O(1)--this result does not
depend on . On the other hand, the average running time for Withdraw does depend on . It is

 since the time required to delete an item from a linked list of length

is .

To determine the average running time for the Find operation, we need to make an assumption about
whether the item that is being sought is in the table. If the item is not found in the table, the search is said
to be unsuccessful. The average running time for an unsuccessful search is

On the other hand, if the search target is in the table, the search is said to be successful. The average
number of comparisons needed to find an arbitrary item in a linked list of length is

Thus, the average running time for a successful search is

So, while any one search operation can be as bad as O(n), if we do a large number of random searches,

we expect that the average running time will be . In fact, if we have a sufficiently good hash

function and a reasonable set of objects in the container, we can expect that those objects are distributed
throughout the table. Therefore, any one search operation will not be very much worse than the worst
case.

Finally, if we know how many objects will be inserted into the hash table a priori, then we can choose a
table size M which is larger than the maximum number of items expected. By doing this, we can ensure

that . That is, a linked list contains no more than one item on average. In this case, the

average time for Withdraw is and for Find it is

http://www.brpreiss.com/books/opus6/html/page233.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:23]

Average Case Analysis

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page233.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Scatter Tables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Scatter Tables
The separately chained hash table described in the preceding section is essentially a linked-list
implementation. We have seen both linked-list and array-based implementations for all of the data
structures considered so far and hash tables are no exception. Array-based hash tables are called scatter
tables .

The essential idea behind a scatter table is that all of the information is stored within a fixed size array.
Hashing is used to identify the position where an item should be stored. When a collision occurs, the
colliding item is stored somewhere else in the array.

One of the motivations for using scatter tables can be seen by considering again the linked-list hash table

shown in Figure . Since most of the linked lists are empty, much of the array is unused. At the same
time, for each item that is added to the table, dynamic memory is consumed. Why not simply store the
data in the unused array positions?

● Chained Scatter Table
● Average Case Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page234.html [2002-11-17 ｿﾀﾈﾄ 11:04:23]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Chained Scatter Table

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Chained Scatter Table

Figure illustrates a chained scatter table . The elements of a chained scatter table are ordered pairs.
Each array element contains a key and a ``pointer.'' All keys are stored in the table itself. Consequently,
there is a fixed limit on the number of items that can be stored in a scatter table.

Figure: Chained scatter table.

Since the pointers point to other elements in the array, they are implemented as integer-valued array
subscripts. Since valid array subscripts start from the value zero, the null pointer must be represented not
as zero, but by an integer value that is outside the array bounds (say -1).

To find an item in a chained scatter table, we begin by hashing that item to determine the location from
which to begin the search. For example, to find the string "elva", which hashes to the value

http://www.brpreiss.com/books/opus6/html/page235.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:24]

http://www.brpreiss.com/books/opus6/index.html

Chained Scatter Table

, we begin the search in array location . The item at that

location is "fyra", which does not match. So we follow the pointer in location to location . The

item there, "fyra", does not match either. We follow the pointer again, this time to location where
we ultimately find the string we are looking for.

Comparing Figures and , we see that the chained scatter table has embedded within it the linked
lists which appear to be the same as those in the separately chained hash table. However, the lists are not
exactly identical. When using the chained scatter table, it is possible for lists to coalesce .

For example, when using separate chaining, the keys "tre" and "sju" appear in a separate list from
the key "tolv". This is because both "tre" and "sju" hash to position , whereas "tolv" hashes

to position . The same keys appear together in a single list starting at position in the chained scatter
table. The two lists have coalesced.

● Implementation
● Constructor, Length Property, and Purge Methods
● Inserting and Finding an Item
● Removing Items
● Worst-Case Running Time

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page235.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

The ChainedScatterTable class is introduced in Program . This class extends the

AbstractHashTableClass introduced in Program . The scatter table is implemented as an array
of Entry structs. The Entry struct is a nested struct defined within the ChainedScatterTable
class.

Program: ChainedScatterTable fields and ChainedScatterTable.Entry struct.

Each Entry instance has two fields--obj and next. The former refers to a ComparableObject.
The latter indicates the position in the array of the next element of a chain. The value of the constant
NULL will be used instead of zero to mark the end of a chain. The value zero is not used to mark the end
of a chain because zero is a valid array subscript.

http://www.brpreiss.com/books/opus6/html/page236.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:24]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page236.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor, Length Property, and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor, Length Property, and Purge Methods

Program defines the constructor, Length property, and Purge methods of the
ChainedScatterTable class. The constructor takes a single argument which specifies the size of
scatter table desired. It creates an array of the desired length and initializes each element of the array by
assigning to it an new Entry instance. Consequently, the running time for the
ChainedScatterTable constructor is O(M) where M is the size of the scatter table.

Program: ChainedScatterTable class constructor, Length, and Purge methods.

The Length property provides a get accessor that returns the length of the array field. Clearly, its

http://www.brpreiss.com/books/opus6/html/page237.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:25]

http://www.brpreiss.com/books/opus6/index.html

Constructor, Length Property, and Purge Methods

running time is O(1).

The Purge method empties the scatter table by assigning null values to each entry in the table. the time
required to purge the scatter table is O(M), where M is the length of the table.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page237.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:25]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting and Finding an Item

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting and Finding an Item

Program gives the code for the Insert and Find methods of the ChainedScatterTable class.
To insert an item into a chained scatter table we need to find an unused array location in which to put the
item. We first hash the item to determine the ``natural'' location for that item. If the natural location is
unused, we store the item there and we are done.

http://www.brpreiss.com/books/opus6/html/page238.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:26]

http://www.brpreiss.com/books/opus6/index.html

Inserting and Finding an Item

Program: ChainedScatterTable class Insert and Find methods.

However, if the natural position for an item is occupied, then a collision has occurred and an alternate
location in which to store that item must be found. When a collision occurs it must be the case that there
is a chain emanating from the natural position for the item. The insertion algorithm given always adds
items at the end of the chain. Therefore, after a collision has been detected, the end of the chain is found
(lines 12-13).

After the end of the chain is found, an unused array position in which to store the item must be found.
This is done by a simple, linear search starting from the array position immediately following the end of
the chain (lines 14-17). Once an unused position is found, it is linked to the end of the chain (line 18),
and the item is stored in the unused position (line 20).

The worst case running time for insertion occurs when the scatter table has only one unused entry. That
is, when the number of items in the table is n=M-1, where M is the table size. In the worst case, all of the
used array elements are linked into a single chain of length M-1 and the item to be inserted hashes to the
head of the chain. In this case, it takes O(M) to find the end of the chain. In the worst case, the end of the
chain immediately follows the unused array position. Consequently, the linear search for the unused
position is also O(M). Once an unused position has been found, the actual insertion can be done in

constant time. Therefore, the running time of the insertion operation is in the

worst case.

Program also gives the code for the Find method which is used to locate a given object in the scatter
table. The algorithm is straightforward. The item is hashed to find its natural location in the table. If the
item is not found in the natural location but a chain emanates from that location, the chain is followed to
determine if that item appears anywhere in the chain.

The worst-case running time occurs when the item for which we are looking is not in the table, the table
is completely full, and all of the entries are linked together into a single linked list. In this case, the

running time of the Find algorithm is .

http://www.brpreiss.com/books/opus6/html/page238.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:26]

Inserting and Finding an Item

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page238.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items

Removing items from a chained scatter table is more complicated than putting them into the table. The
goal when removing an item is to have the scatter table end up exactly as it would have appeared had that
item never been inserted in the first place. Therefore, when an item is removed from the middle of a
chain, items which follow it in the chain have to be moved up to fill in the hole. However, the moving-up
operation is complicated by the fact that several chains may have coalesced.

Program gives an implementation of the Withdraw method of the ChainedScatterTable
class. The algorithm begins by checking that the table is not empty (lines 7-8). To remove an item, we
first have to find it. This is what the loop on lines 9-11 does. If the item to be deleted is not in the table,
when this loop terminates the variable i has the value NULL and an exception is thrown (lines 12-13).
Otherwise, the item a position i in the table is to be removed.

http://www.brpreiss.com/books/opus6/html/page239.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:27]

http://www.brpreiss.com/books/opus6/index.html

Removing Items

Program: ChainedScatterTable class Withdraw method.

The purpose of the loop on lines 14-31 is to fill in the hole in the chain which results when the item at
position i is removed by moving up items which follow it in the chain. What we need to do is to find the
next item which follows the item at i that is safe to move into position i. The loop on lines 15-27
searches the rest of the chain following the item at i to find an item which can be safely moved.

Figure illustrates the basic idea. The figures shows a chained scatter table of length ten that contains
integer-valued keys. There is a single chain as shown in the figure. However, notice that the values in the
chain are not all equal modulo 10. In fact, this chain must have resulted from the coalescing of three
chains--one which begins in position 1, one which begins in position 2, and one which begins in position
5.

http://www.brpreiss.com/books/opus6/html/page239.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:27]

Removing Items

Figure: Removing items from a chained scatter table.

Suppose we wish to remove item 11 which is in position 2, which is indicated by the box in Figure

 (a). To delete it, we must follow the chain to find the next item that can be moved safely up to
position 2. Item 02 which follows 11 and can be moved safely up to position 2 because that is the
location to which it hashes. Moving item 02 up moves the hole down the list to position 3 (Figure

 (b)). Again we follow the chain to find that item 21 can be moved safely up giving rise to the situation

in Figure (c).

Now we have a case where an item cannot be moved. Item 05 is the next candidate to be moved.
However, it is in position 5 which is the position to which it hashes. If we were to move it up, then it
would no longer be in the chain which emanates from position 5. In effect, the item would no longer be
accessible! Therefore, it cannot be moved safely. Instead, we must move item 31 ahead of item 5 as

shown in Figure (d). Eventually, the hole propagates to the end of the chain, where it can be delete

http://www.brpreiss.com/books/opus6/html/page239.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:27]

Removing Items

easily (Figure (e)).

The loop on lines 15-27 of Program finds the position j of an item which can be safely moved to
position i. The algorithm makes use of the following fact: An item can be safely moved up only if it does
not hash to a position which appears in the linked list between i and j. This is what the code on lines 17-
24 tests.

When execution reaches line 28, either we have found an item which can be safely moved, or there does
not exist such an item. If an item is found, it is moved up (line 29) and we repeat the whole process again.
On the other hand, if there are no more items to be moved up, then the process is finished and the main
loop (lines 14-31) terminates.

The statement on line 32 does the actual deed of removing the data from the position which i which by
now is at the end of the chain. The final task to be done is to remove the pointer to position i, since there
is no longer any data at that position. That is the job of the loop on lines 33-40.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page239.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Worst-Case Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Worst-Case Running Time

Computing a tight bound on the worst-case running time of Program is tricky. Assuming the item to
be removed is actually in the table, then the time required to find the item (lines 9-11) is

in the worst case.

The worst-case running time of the main loop occurs when the table is full, there is only one chain, and
no items can be safely moved up in the chain. In this case, the running time of the main loop (lines 14-
31) is

Finally, the worst case running time of the last loop (lines 33-40) is O(M).

Therefore, the worst-case running time of the Withdraw method for chained scatter tables is

Clearly we don't want to be removing items from a chained scatter table very often!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page240.html [2002-11-17 ｿﾀﾈﾄ 11:04:28]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Case Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Case Analysis

The previous section has shown that the worst-case running time to insert or to find an object into a
chained scatter table is O(M). The average case analysis of chained scatter tables is complicated by the
fact that lists coalesce. However, if we assume that chains never coalesce, then the chains which appear
in a chained scatter table for a given set of items are identical to those which appear in a separately
chained hash table for the same set of items.

Unfortunately we cannot assume that lists do not coalesce--they do! We therefore expect that the average
list will be longer than and that the running times are correspondingly slower. Knuth has shown that
the average number of probes in an unsuccessful search is

and the average number of probes in a successful search is approximately

where is the load factor[29]. The precise functional form of and is not so important here.

What is important is that when , i.e., when the table is full, and .

Regardless of the size of the table, an unsuccessful search requires just over two probes on average, and a
successful search requires just under two probes on average!

Consequently, the average running time for insertion is

since the insertion is always done in first empty position found. Similarly, the running time for an
unsuccessful search is

and for a successful search its

http://www.brpreiss.com/books/opus6/html/page241.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:28]

http://www.brpreiss.com/books/opus6/index.html

Average Case Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page241.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Scatter Table using Open Addressing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Scatter Table using Open Addressing
An alternative method of dealing with collisions which entirely does away with the need for links and
chaining is called open addressing . The basic idea is to define a probe sequence for every key which,
when followed, always leads to the key in question.

The probe sequence is essentially a sequence of functions

where is a hash function, . To insert item x into the scatter table, we

examine array locations , , ..., until we find an empty cell. Similarly, to find item x in the

scatter table we examine the same sequence of locations in the same order.

The most common probe sequences are of the form

where . The function h(x) is the same hash function that we have seen before. That

is, the function h maps keys into integers in the range from zero to M-1.

The function c(i) represents the collision resolution strategy. It is required to have the following two
properties:

Property 1
c(0)=0. This ensures that the first probe in the sequence is

Property 2
The set of values

http://www.brpreiss.com/books/opus6/html/page242.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:29]

http://www.brpreiss.com/books/opus6/index.html

Scatter Table using Open Addressing

must contain every integer between 0 and M-1. This second property ensures that the probe
sequence eventually probes every possible array position.

● Linear Probing
● Quadratic Probing
● Double Hashing
● Implementation
● Average Case Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page242.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:29]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linear Probing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linear Probing

The simplest collision resolution strategy in open addressing is called linear probing . In linear probing,
the function c(i) is a linear function in i. That is, it is of the form

Property 1 requires that c(0)=0. Therefore, must be zero.

In order for to satisfy Property 2, and M must be relatively prime. If we know the M will

always be a prime number, then any will do. On the other hand, if we cannot be certain that M is
prime, then must be one. Therefore, linear probing sequence that is usually used is

for .

Figure illustrates an example of a scatter table using open addressing together with linear probing.
For example, consider the string "åtta". This string hashes to array position . The corresponding

linear probing sequence begins at position and goes on to positions , ,.... In this case, the search
for the string "åtta" succeeds after three probes.

http://www.brpreiss.com/books/opus6/html/page243.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:30]

http://www.brpreiss.com/books/opus6/index.html

Linear Probing

Figure: Scatter table using open addressing and linear probing.

To insert an item x into the scatter table, an empty cell is found by following the same probe sequence
that would be used in a search for item x. Thus, linear probing finds an empty cell by doing a linear
search beginning from array position h(x).

An unfortunate characteristic of linear probing arises from the fact that as the table fills, clusters of
consecutive cells form and the time required for a search increases with the size of the cluster.
Furthermore, when we attempt to insert an item in the table at a position which is already occupied, that
item is ultimately inserted at the end of the cluster--thereby increasing its length. This by itself is not
inherently a bad thing. After all, when using the chained approach, every insertion increase the length of
some chain by one. However, whenever an insertion is made between two clusters that are separated by
one unoccupied position, the two clusters become one, thereby potentially increasing the cluster length
by an amount much greater than one--a bad thing! This phenomenon is called primary clustering .

http://www.brpreiss.com/books/opus6/html/page243.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:30]

Linear Probing

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page243.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Quadratic Probing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Quadratic Probing

An alternative to linear probing that addresses the primary clustering problem is called quadratic

probing . In quadratic probing, the function c(i) is a quadratic function in i. The general quadratic has
the form

However, quadratic probing is usually done using .

Clearly, satisfies property 1. What is not so clear is whether it satisfies property 2. In fact, in

general it does not. The following theorem gives the conditions under which quadratic probing works:

Theorem When quadratic probing is used in a table of size M, where M is a prime

number, the first probes are distinct.

extbfProof (By contradiction). Let us assume that the theorem is false. Then there exist two distinct

values i and j such that , that probe exactly the same position. Thus,

Since M is a prime number, the only way that the product (i-j)(i+j) can be zero modulo M is for either i-j

to be zero or i+j to be zero modulo M. Since i and j are distinct, . Furthermore, since both i

and j are less than , the sum i+j is less than M. Consequently, the sum cannot be zero. We have

successfully argued an absurdity--if the theorem is false one of two quantities must be zero, neither of
which can possibly be zero. Therefore, the original assumption is not correct and the theorem is true.

http://www.brpreiss.com/books/opus6/html/page244.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:31]

http://www.brpreiss.com/books/opus6/index.html

Quadratic Probing

Applying Theorem we get that quadratic probing works as long as the table size is prime and there

are fewer than n=M/2 items in the table. In terms of the load factor , this occurs when .

Quadratic probing eliminates the primary clustering phenomenon of linear probing because instead of
doing a linear search, it does a quadratic search:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page244.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Double Hashing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Double Hashing

While quadratic probing does indeed eliminate the primary clustering problem, it places a restriction on
the number of items that can be put in the table--the table must be less than half full. Double Hashing is
yet another method of generating a probing sequence. It requires two distinct hash functions,

The probing sequence is then computed as follows

That is, the scatter tables is searched as follows:

Since the collision resolution function is c(i)=ih'(x), the probe sequence depends on the key as follows: If
h'(x)=1, then the probing sequence for the key x is the same as linear probing. If h'(x)=2, the probing
sequence examines every other array position. This works as long as M is not even.

Clearly since c(0)=0, the double hashing method satisfies property 1. Furthermore, property 2 is satisfied
as long as h'(x) and M are relatively prime. Since h'(x) can take on any value between 1 and M-1, M must
be a prime number.

But what is a suitable choice for the function h'? Recall that h is defined as the composition of two

functions, where . We can define h' as the composition , where

http://www.brpreiss.com/books/opus6/html/page245.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:32]

http://www.brpreiss.com/books/opus6/index.html

Double Hashing

Double hashing reduces the occurrence of primary clustering since it only does a linear search if h'(x)
hashes to the value 1. For a good hash function, this should only happen with probability 1/(M-1).
However, for double hashing to work at all, the size of the scatter table, M, must be a prime number.

Table summarizes the characteristics of the various open addressing probing sequences.

probing sequence primary clustering capacity limit size restriction

linear probing yes none none

quadratic probing no M must be prime

double hashing no none M must be prime

Table:Characteristics of the open addressing probing sequences.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page245.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

This section describes an implementation of a scatter table using open addressing with linear probing.

Program introduces the OpenScatterTable class. The OpenScatterTable class extends the

AbstractHashTable class introduced in Program . The scatter table is implemented as an array of
elements of the nested struct Entry. Each Entry instance has two fields--obj and state. The former
is refers to a ComparableObject. The latter is an EntryState enum the value of which is either
EMPTY, OCCUPIED or DELETED.

http://www.brpreiss.com/books/opus6/html/page246.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:33]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: OpenScatterTable fields, OpenScatterTable.EntryState enum, and
OpenScatterTable.Entry struct.

Initially, all entries are empty. When an object recorded in an entry, the state of that entry is changed to
OCCUPIED. The purpose of the third state, DELETED, will be discussed in conjunction with the
Withdraw method below.

● Constructor, Length Property, and Purge Methods
● Inserting Items
● Finding Items
● Removing Items

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page246.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:33]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor, Length Property, and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor, Length Property, and Purge Methods

Program defines the constructor, Length property, and Purge methods of the
OpenScatterTable class. The OpenScatterTable constructor takes a single argument which
specifies the size of scatter table desired. It creates an array of the desired length and initializes each
element of the array by assigning to it an new Entry instance. Consequently, the running time for the
OpenScatterTable constructor is O(M) where M is the size of the scatter table.

Program: OpenScatterTable class constructor, Length property, and Purge methods.

The Length property provides a get accessor that returns the length of the array field. Clearly, its

http://www.brpreiss.com/books/opus6/html/page247.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:33]

http://www.brpreiss.com/books/opus6/index.html

Constructor, Length Property, and Purge Methods

running time is O(1).

The Purge method empties the scatter table by nulling out all the Entrys in the array. The time
required to purge the scatter table is O(M), where M is the length of the table.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page247.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:33]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items

The method for inserting an item into a scatter table using open addressing is actually quite simple--find
an unoccupied array location and then put the item in that location. To find an unoccupied array element,
the array is probed according to a probing sequence. In this case, the probing sequence is linear probing.

Program defines the methods needed to insert an item into the scatter table.

http://www.brpreiss.com/books/opus6/html/page248.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:34]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items

Program: OpenScatterTable class C, FindUnoccupied, and Insert methods.

The method C defines the probing sequence. As it turns out, the implementation required for a linear
probing sequence is trivial. The method C is the identity function.

The purpose of the private method FindUnoccupied is to locate an unoccupied array position. The
FindUnoccupied method probes the array according the probing sequence determined by the C
method. At most n+1 probes are made, where is the number of items in the scatter table.
When using linear probing it is always possible to find an unoccupied cell in this many probes as long as
the table is not full. Notice also that we do not search for an EMPTY cell. Instead, the search terminates
when a cell is found, the state of which is not OCCUPIED, i.e., EMPTY or DELETED. The reason for this
subtlety has to do with the way items may be removed from the table. The FindUnoccupied method
returns a value between 0 and M-1, where M is the length of the scatter table, if an unoccupied location is
found. Otherwise, it throws an exception that indicates that the table is full.

The Insert method takes a ComparableObject and puts that object into the scatter table. It does so
by calling FindUnoccupied to determine the location of an unoccupied entry in which to put the
object. The state of the unoccupied entry is set to OCCUPIED and the object is saved in the entry.

The running time of the Insert method is determined by that of FindUnoccupied. The worst case
running time of FindUnoccupied is O(n), where n is the number of items in the scatter table.

Therefore, the running time of Insert is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page248.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding Items

The Find and FindMatch methods of the OpenScatterTable class are defined in Program .
The FindMatch method takes a ComparableObject and searches the scatter table for an object
which matches the given one.

http://www.brpreiss.com/books/opus6/html/page249.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:35]

http://www.brpreiss.com/books/opus6/index.html

Finding Items

Program: OpenScatterTable Class FindMatch and Find methods.

FindMatch follows the same probing sequence used by the Insert method. Therefore, if there is a
matching object in the scatter table, FindMatch will make exactly the same number of probes to locate
the object as were made to put the object into the table in the first place. The FindMatch method makes
at most M probes, where M is the size of the scatter table. However, note that the loop immediately
terminates should it encounter an EMPTY location. This is because if the target has not been found by the
time an empty cell is encountered, then the target is not in the table. Notice also that the comparison is
only attempted for entries which are marked OCCUPIED. Any locations marked DELETED are not
examined during the search but they do not terminate the search either.

The running time of the Find method is determined by that of FindMatch. In the worst case
FindMatch makes n comparisons, where n is the number of items in the table. Therefore, the running

time of Find is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page249.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items

Removing items from a scatter table using open addressing has to be done with some care. The naïve
approach would be to locate the item to be removed and then change the state of its location to EMPTY.
However, that approach does not work! Recall that the FindMatch method which is used to locate an
item stops its search when it encounters an EMPTY cell. Therefore, if we change the state of a cell in the
middle of a cluster to EMPTY, all subsequent searches in that cluster will stop at the empty cell. As a
result, subsequent searches for an object may fail even when the target is still in the table!

One way to deal with this is to make use of the third state, DELETED. Instead of marking a location
EMPTY, we mark it DELETED when an item is deleted. Recall that that the FindMatch method was
written in such a way that it continues past deleted cells in its search. Also, the FindUnoccupied
method was written to stop its search when it encounters either an EMPTY or a DELETED location.
Consequently, the positions marked DELETED are available for reuse when insertion is done.

Program gives the implementation of the Withdraw. The Withdraw method takes a
ComparableObject and removes that object from the scatter table. It does so by first locating the
specific object instance using FindInstance and then marking the location DELETED. The
implementation of FindInstance has been elided. It is simply a trivial variation of the FindMatch
method.

http://www.brpreiss.com/books/opus6/html/page250.html (1 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:36]

http://www.brpreiss.com/books/opus6/index.html

Removing Items

Program: OpenScatterTable Class Withdraw method.

The running time of the Withdraw method is determined by that of FindInstance. In the worst case
FindInstance has to examine every array position. Therefore, the running time of Withdraw is

.

There is a very serious problem with the technique of marking locations as DELETED. After a large
number of insertions and deletions have been done, it is very likely that there are no cells left that are
marked EMPTY. This is because, nowhere in any of the methods (except Purge) is a cell ever marked
EMPTY! This has the very unfortunate consequence that an unsuccessful search, i.e., a search for an

object which is not in the scatter table, is . Recall that FindMatch examines at most M array

locations and only stops its search early when an EMPTY location is encountered. Since there are no more
empty locations, the search must examine all M locations.

If we are using the scatter table in an application in which we know a priori that no items will be
removed, or perhaps only a very small number of items will be removed, then the Withdraw method

given in Program will suffice. However, if the application is such that a significant number of
withdrawals will be made, a better implementation is required.

Ideally, when removing an item the scatter table ends up exactly as it would have appeared had that item
never been inserted in the first place. Note that exactly the same constraint is met by the Withdraw

method for the ChainedScatterTable class given in Program . It turns out that a variation of

http://www.brpreiss.com/books/opus6/html/page250.html (2 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:36]

Removing Items

that algorithm can be used to implement the Withdraw method for the OpenScatterTable class as

shown in Program .

Program: OpenScatterTableV2 Withdraw method.

The algorithm begins by checking that the scatter table is not empty. Then it calls FindInstance to
determine the position i of the item to be removed. If the item to be removed is not in the scatter table
FindInstance returns -1 and an exception is thrown. Otherwise, FindInstance falls between 0

http://www.brpreiss.com/books/opus6/html/page250.html (3 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:36]

Removing Items

and M-1, which indicates that the item was found.

In the general case, the item to be deleted falls in the middle of a cluster. Deleting it would create a hole
in the middle of the cluster. What we need to do is to find another item further down in the cluster which
can be moved up to fill in the hole that would be created when the item at position i is deleted. The
purpose of the loop on lines 12-20 is to find the position j of an item which can be moved safely into
position i. Note the implementation here implicitly assumes that a linear probing sequence is used--the C
method is not called explicitly. An item at position j can be moved safely to position i only if the hash
value of the item at position j is not cyclically contained in the interval between i and j.

If an item is found at some position j that can be moved safely, then that item is moved to position i on
line 23. The effect of moving the item at position j to position i, is to move the hole from position i to
position j (line 24). Therefore, another iteration of the main loop (lines 10-25) is needed to fill in the
relocated hole in the cluster.

If no item can be found to fill in the hole, then it is safe to split the cluster in two. Eventually, either
because no item can be found to fill in the hole or because the hole has moved to the end of the cluster,
there is nothing more to do other than to delete the hole. Thus, on line 26 the entry at position i is set to
EMPTY and the associated obj is set to null. Notice that the third state DELETED is not required in
this implementation of Withdraw.

If we use the Withdraw implementation of Program , the scatter table entries will only ever be in
one of two two states--OCCUPIED or EMPTY. Consequently, we can improve the bound on the worst-

case for the search from to ,

where n is the number of items in the scatter table.

Determining the running time of Program is a little tricky. Assuming the item to be deleted is actually

in the table, the running time to find the position of that item (line 7) is , where

 is the number of item actually in the scatter table. In the worst case, the scatter table is
comprised of a single cluster of n items, and we are deleting the first item of the cluster. In this case, the
main loop on lines 10-25 makes a pass through the entire cluster, in the worst case moving the hole to the
end of the cluster one position at at time. Thus, the running time of the main loop is

. The remaining lines require a constant amount of additional time.

Altogether, the running time for the Withdraw method is in the worst case.

http://www.brpreiss.com/books/opus6/html/page250.html (4 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:36]

Removing Items

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page250.html (5 of 5) [2002-11-17 ｿﾀﾈﾄ 11:04:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Case Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Case Analysis

The average case analysis of open addressing is easy if we ignore the primary clustering phenomenon.

Given a scatter table of size M that contains n items, we assume that each of the combinations of n

occupied and (m-n) empty scatter table entries is equally likely. This is the so-called uniform hashing
model .

In this model we assume that the entries will either be occupied or empty, i.e., the DELETED state is not
used. Suppose a search for an empty cell requires exactly i probes. Then the first i-1 positions probed
must have been occupied and the position probed was empty. Consider the i cells which were probed.

The number of combinations in which i-1 of the probed cells are occupied and one is empty is .

Therefore, the probability that exactly i probes are required is

The average number of probes required to find an empty cell in a table which has n occupied cells is U(n)
where

Using Equation into Equation and simplifying the result gives

http://www.brpreiss.com/books/opus6/html/page251.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:38]

http://www.brpreiss.com/books/opus6/index.html

Average Case Analysis

This result is actually quite intuitive. The load factor, , is the fraction of occupied entries. Therefore,

 entries are empty so we would expect to have to probe entries before finding an empty

one! For example, if the load factor is 0.75, a quarter of the entries are empty. Therefore, we expect to
have to probe four entries before finding an empty one.

To calculate the average number of probes for a successful search we make the observation that when an
item is initially inserted, we need to find an empty cell in which to place it. For example, the number of
probes to find the empty position into which the item is to be placed is U(i). And this is exactly the
number of probes it takes to find the item again! Therefore, the average number of probes required
for a successful search in a table which has n occupied cells is S(n) where

Substituting Equation in Equation and simplifying gives

where is the harmonic number (see Section). Again, there is an easy intuitive derivation for

this result. We can use a simple integral to calculate the mean number of probes for a successful search

using the approximation as follows

Empirical evidence has shown that the formulas derived for the uniform hashing model characterize the
performance of scatter tables using open addressing with quadratic probing and double hashing quite

http://www.brpreiss.com/books/opus6/html/page251.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:38]

Average Case Analysis

well. However, they do not capture the effect of primary clustering which occurs when linear probing is
used. Knuth has shown that when primary clustering is taking into account, the number of probes
required to locate an empty cell is

and the number of probes required for a successful search is

The graph in Figure compares the predictions of the uniform hashing model (Equations and)

with the formulas derived by Knuth (Equations and). Clearly, while the results are qualitatively
similar, the formulas are in agreement for small load factors and they diverge as the load factor increases.

Figure: Number of probes vs. load factor for uniform hashing and linear probing.

http://www.brpreiss.com/books/opus6/html/page251.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:38]

Average Case Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page251.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications
Hash and Scatter tables have many applications. The principal characteristic of such applications is that
keyed information needs to be frequently accessed and the access pattern is either unknown or known to
be random. For example, hash tables are often used to implement the symbol table of a programming
language compiler. A symbol table is used to keep track of information associated with the symbols
(variable and method names) used by a programmer. In this case, the keys are character strings and each
key hash associated with it some information about the symbol (e.g., type, address, value, lifetime,
scope).

This section presents a simple application of hash and scatter tables. Suppose we are required to count
the number of occurrences of each distinct word contained in a text file. We can do this easily using a

hash or scatter table. Program gives the an implementation.

http://www.brpreiss.com/books/opus6/html/page252.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:39]

http://www.brpreiss.com/books/opus6/index.html

Applications

Program: Hash/scatter table application--counting words.

The private nested class Counter extends the class ComparableInt32 defined in Section . In
addition to the functionality inherited from the base class, the Counter class overloads the ++ operator
which increments the value by one.

The WordCounter method does the actual work of counting the words in the input file. The local
variable table refers to a ChainedHashTable that is used to keep track of the words and counts.
The objects which are put into the hash table are all instances of the class Association. Each
association has as its key a String class instance, and as its value a Counter class instance.

The main loop of the WordCounter method reads a line of text from the input stream. Each line of text
is split into an array of words and the inner loop processes each word one at a time. For each word, a
Find operation is done on the hash table to determine if there is already an association for the given key.
If none is found, a new association is created an inserted into the hash table. The given word is used as
the key of the new association and the value is a counter which is initialized to one. On the other hand, if
there is already an association for the given word in the hash table, the corresponding counter is
incremented. When the WordCounter method reaches the end of the input stream, it simply prints the
hash table on the given output stream.

http://www.brpreiss.com/books/opus6/html/page252.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:39]

Applications

The running time of the WordCounter method depends on a number of factors, including the number
of different keys, the frequency of occurrence of each key, and the distribution of the keys in the overall
space of keys. Of course, the hash/scatter table implementation chosen has an effect as does the size of
the table used. For a reasonable set of keys we expect the hash function to do a good job of spreading the
keys uniformly in the table. Provided a sufficiently large table is used, the average search and insertion
time is bounded by a constant. Under these ideal conditions the running time should be O(n), where n is
the number of words in the input file.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page252.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Suppose we know a priori that a given key is equally likely to be any integer between a and b.

1. When is the division method of hashing a good choice?
2. When is the middle square method of hashing a good choice?

2. Compute (by hand) the hash value obtained by Program for the strings "ece.uw.ca" and

"cs.uw.ca". Hint: Refer to Appendix .
3. Canadian postal codes have the format LDL DLD where L is always a letter (A-Z), D is always a

digit (0-9), and is always a single space. For example, the postal code for the University of
Waterloo is N2L 3G1. Devise a suitable hash function for Canadian postal codes.

4. For each type of hash table listed below, show the hash table obtained when we insert the keys

in the order given into a table of size M=16 that is initially empty. Use the following table of hash
values:

x Hash(x) (octal)

"un" 016456

"deux" 0145446470

"trois" 016563565063

"quatre" 010440656345

"cinq" 0142505761

"six" 01625070

"sept" 0162446164

"huit" 0151645064

"neuf" 0157446446

"dix" 01455070

"onze" 0156577345

"douze" 014556647345

http://www.brpreiss.com/books/opus6/html/page253.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:40]

http://www.brpreiss.com/books/opus6/index.html

Exercises

1. chained hash table,
2. chained scatter table,
3. open scatter table using linear probing,
4. open scatter table using quadratic probing, and

5. open scatter table using double hashing. (Use Equation as the secondary hash
function).

5. For each table obtained in Exercise , show the result when the key "deux" is withdrawn.

6. For each table considered in Exercise derive an expression for the total memory space used to
represent a table of size M that contains n items.

7. Consider a chained hash table of size M that contains n items. The performance of the table

decreases as the load factor increases. In order to keep the load factor below one, we

propose to double the size of the array when n=M. However, in order to do so we must rehash all
of the elements in the table. Explain why rehashing is necessary.

8. Give the sequence of M keys that fills a chained scatter table of size M in the shortest possible
time. Find a tight, asymptotic bound on the minimum running time taken to fill the table.

9. Give the sequence of M keys that fills a chained scatter table of size M in the longest possible
time. Find a tight, asymptotic bound on the minimum running time taken to fill the table.

10. Consider the chained hash table introduced shown in Program .
1. Rewrite the Insert method so that it doubles the length of the array when .

2. Rewrite the Withdraw method so that it halves the length of the array when .

3. Show that the average time for both insert and withdraw operations is still O(1).

11. Consider two sets of integers, and .

1. Devise an algorithm that uses a hash table to test whether S is a subset of T. What is the
average running time of your algorithm?

2. Two sets are equivalent if and only if both and . Show that we can test if

two sets of integers are equivalent in O(m+n) time (on average).

12. (This question should be attempted after reading Chapter). Rather than use an array of linked
lists, suppose we implement a hash table with an array of binary search trees.

1. What are the worst-case running times for Insert, Find, and Withdraw.
2. What are the average running times for Insert, Find, and Withdraw.

13. (This question should be attempted after reading Section). Consider a scatter table with open
addressing. Devise a probe sequence of the form

where c(i) is a full-period pseudo random number generator. Why is such a sequence likely to be
better than either linear probing or quadratic probing?

http://www.brpreiss.com/books/opus6/html/page253.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:40]

Exercises

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page253.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Complete the implementation of the ChainedHashTable class declared in Program by
providing suitable definitions for the following operations: IsMember, CompareTo, Accept,
and GetEnumerator. Write a test program and test your implementation.

2. Complete the implementation of the ChainedScatterTable class declared in Program by
providing suitable definitions for the following operations: IsFull, IsMember, CompareTo,
Accept, and GetEnumerator. Write a test program and test your implementation.

3. Complete the implementation of the OpenScatterTable class declared in Program by
providing suitable definitions for the following methods: IsFull, IsMember,
FindInstance, CompareTo, Accept, and GetEnumerator. Write a test program and test
your implementation.

4. The Withdraw method defined in Program has been written under the assumption that linear
probing is used. Therefore, it does not call explicitly the collision resolution method C. Rewrite
the Withdraw method so that it works correctly regardless of the collision resolution strategy
used.

5. Consider an application that has the following profile: First, n symbols (character strings) are read
in. As each symbol is read, it is assigned an ordinal number from 1 to n. Then, a large number of
operations are performed. In each operation we are given either a symbol or a number and we
need to determine its mate. Design, implement and test a data structure that provides both
mappings in O(1) time.

6. Spelling checkers are often implemented using hashing. However, the space required to store all
the words in a complete dictionary is usually prohibitive. An alternative solution is to use a very
large array of bits. The array is initialized as follows: First, all the bits are set to zero. Then for

each word w in the dictionary, we set bit h(w) to one, where is a suitable hash function.

To check the spelling in a given document, we hash the words in the document one-by-one and
examine the corresponding bit of the array. If the bit is a zero, the word does not appear in the
dictionary and we conclude that it is misspelled. Note if the bit is a one, the word may still be
misspelled, but we cannot tell.

Design and implement a spelling checker. Hint: Use the SetAsBitVector class given in

Chapter .

http://www.brpreiss.com/books/opus6/html/page254.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:40]

http://www.brpreiss.com/books/opus6/index.html

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page254.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Trees

In this chapter we consider one of the most important non-linear information structures--trees. A tree is
often used to represent a hierarchy . This is because the relationships between the items in the hierarchy
suggest the branches of a botanical tree.

For example, a tree-like organization chart is often used to represent the lines of responsibility in a

business as shown in Figure . The president of the company is shown at the top of the tree and the vice-
presidents are indicated below him. Under the vice-presidents we find the managers and below the
managers the rest of the clerks. Each clerk reports to a manager, each manager reports to a vice-president,
and each vice-president reports to the president.

Figure: Representing a hierarchy using a tree.

It just takes a little imagination to see the tree in Figure . Of course, the tree is upside-down. However,
this is the usual way the data structure is drawn. The president is called the root of the tree and the clerks
are the leaves.

A tree is extremely useful for certain kinds of computations. For example, suppose we wish to determine
the total salaries paid to employees by division or by department. The total of the salaries in division A
can be found by computing the sum of the salaries paid in departments A1 and A2 plus the salary of the
vice-president of division A. Similarly, the total of the salaries paid in department A1 is the sum of the

http://www.brpreiss.com/books/opus6/html/page255.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:41]

http://www.brpreiss.com/books/opus6/index.html

Trees

salaries of the manager of department A1 and of the two clerks below him.

Clearly, in order to compute all the totals, it is necessary to consider the salary of every employee.
Therefore, an implementation of this computation must visit all the employees in the tree. An algorithm
that systematically visits all the items in a tree is called a tree traversal.

In this chapter we consider several different kinds of trees as well as several different tree traversal
algorithms. In addition, we show how trees can be used to represent arithmetic expressions and how we
can evaluate an arithmetic expression by doing a tree traversal.

● Basics
● N-ary Trees
● Binary Trees
● Tree Traversals
● Expression Trees
● Implementing Trees
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page255.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics
The following is a mathematical definition of a tree:

Definition (Tree) A tree T is a finite, non-empty set of nodes ,

with the following properties:

1. A designated node of the set, r, is called the root of the tree; and

2. The remaining nodes are partitioned into subsets, , , ..., , each of

which is a tree.

For convenience, we shall use the notation to denote the tree T.

Notice that Definition is recursive--a tree is defined in terms of itself! Fortunately, we do not have a
problem with infinite recursion because every tree has a finite number of of nodes and because in the
base case a tree has n=0 subtrees.

It follows from Definition that the minimal tree is a tree comprised of a single root node. For example

 is such a tree. When there is more than one node, the remaining nodes are partitioned into

subtrees. For example, the is a tree which is comprised of the root node B and the

subtree . Finally, the following is also a tree

How do , , and resemble their arboreal namesake? The similarity becomes apparent when we

consider the graphical representation of these trees shown in Figure . To draw such a pictorial

representation of a tree, , the following recursive procedure is used: First, we

first draw the root node r. Then, we draw each of the subtrees, , , ..., , beside each other below

http://www.brpreiss.com/books/opus6/html/page256.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:42]

http://www.brpreiss.com/books/opus6/index.html

Basics

the root. Finally, lines are drawn from r to the roots of each of the subtrees.

Figure: Examples of trees.

Of course, trees drawn in this fashion are upside down. Nevertheless, this is the conventional way in
which tree data structures are drawn. In fact, it is understood that when we speak of ``up'' and ``down,''
we do so with respect to this pictorial representation. For example, when we move from a root to a
subtree, we will say that we are moving down the tree.

The inverted pictorial representation of trees is probably due to the way that genealogical lineal charts
are drawn. A lineal chart is a family tree that shows the descendants of some person. And it is from
genealogy that much of the terminology associated with tree data structures is taken.

● Terminology
● More Terminology
● Alternate Representations for Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page256.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Terminology

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Terminology

Consider a tree , , as given by Definition .

● The degree of a node is the number of subtrees associated with that node. For example, the degree
of tree T is n.

● A node of degree zero has no subtrees. Such a node is called a leaf .
● Each root of subtree of tree T is called a child of r. The term grandchild is defined in a

similar manner.

● The root node r of tree T is the parent of all the roots of the subtrees , . The term

grandparent is defined in a similar manner.
● Two roots and of distinct subtrees and of tree T are called siblings .

Clearly the terminology used for describing tree data structures is a curious mixture of mathematics,
genealogy, and botany. There is still more terminology to be introduced, but in order to do that, we need
the following definition:

Definition (Path and Path Length) Given a tree T containing the set of nodes R, a path
in T is defined as a non-empty sequence of nodes

where , for such that the node in the sequence, , is the parent of

the node in the sequence . The length of path P is k-1.

For example, consider again the tree shown in Figure . This tree contains many different paths. In

fact, if you count carefully, you should find that there are exactly 29 distinct paths in tree . This

includes the path of length zero, ; the path of length one, ; and the path of length three,

.

http://www.brpreiss.com/books/opus6/html/page257.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:43]

http://www.brpreiss.com/books/opus6/index.html

Terminology

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page257.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

More Terminology

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

More Terminology

Consider a tree T containing the set of nodes R as given by Definition .

● The level or depth of a node in a tree T is the length of the unique path in T from its root

r to the node . For example, the root of T is at level zero and the roots of the subtrees are of T
are at level one.

● The height of a node in a tree T is the length of the longest path from node to a leaf.

Therefore, the leaves are all at height zero.
● The height of a tree T is the height of its root node r.
● Consider two nodes and in a tree T. The node is an ancestor of the node if there exists

a path in T from to . Notice that and may be the same node. That is, a node is its own
ancestor. However, the node is a proper ancestor if there exists a path p in T from to such
that the length of the path p is non-zero.

● Similarly, node is a descendant of the node if there exists a path in T from to . And
since and may be the same node, a node is its own descendant. The node is a proper
descendant if there exists a path p in T from to such that the length of the path p is non-zero.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page258.html [2002-11-17 ｿﾀﾈﾄ 11:04:44]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Alternate Representations for Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Alternate Representations for Trees

Figure shows an alternate representation of the tree defined in Equation . In this case, the tree is

represented as a set of nested regions in the plane. In fact, what we have is a Venn diagram which
corresponds to the view that a tree is a set of sets.

Figure: An alternate graphical representation for trees.

This hierarchical, set-within-a-set view of trees is also evoked by considering the nested structure of
computer programs. For example, consider the following fragment of C# code:

class D {
 class E {
 class F {
 }
 }
 class G {
 class H {
 class I {}
 }
 class J {
 class K {}
 class L {}
 }

http://www.brpreiss.com/books/opus6/html/page259.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:44]

http://www.brpreiss.com/books/opus6/index.html

Alternate Representations for Trees

 class M {}
 }
}

The nesting structure of this program and the tree given in Equation are isomorphic . Therefore, it
is not surprising that trees have an important role in the analysis and translation of computer programs.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page259.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

N-ary Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

N-ary Trees
In the preceding section we considered trees in which the nodes can have arbitrary degrees. In particular,
the general case allows each of the nodes of a tree to have a different degree. In this section we consider
a variation in which all of the nodes of the tree are required to have exactly the same degree.

Unfortunately, simply adding to Definition the additional requirement that all of the nodes of the tree
have the same degree does not work. It is not possible to construct a tree which has a finite number of
nodes all of which have the same degree N in any case except the trivial case of N=0. In order to make it
work, we need to introduce the notion of an empty tree as follows:

Definition (N-ary Tree) An N-ary tree T is a finite set of nodes with the following
properties:

1. Either the set is empty, ; or

2. The set consists of a root, R, and exactly N distinct N-ary trees. That is, the

remaining nodes are partitioned into subsets, , , ..., , each of

which is an N-ary tree such that .

According to Definition , an N-ary tree is either the empty tree, , or it is a non-empty set of nodes

which consists of a root and exactly N subtrees. Clearly, the empty set contains neither a root, nor any
subtrees. Therefore, the degree of each node of an N-ary tree is either zero or N.

There is subtle, yet extremely important consequence of Definition that often goes unrecognized. The

empty tree, , is a tree. That is, it is an object of the same type as a non-empty tree. Therefore, from

the perspective of object-oriented program design, an empty tree must be an instance of some object
class. It is inappropriate to use the null reference to represent an empty tree, since the null reference
refers to nothing at all!

The empty trees are called external nodes because they have no subtrees and therefore appear at the
extremities of the tree. Conversely, the non-empty trees are called internal nodes .

http://www.brpreiss.com/books/opus6/html/page260.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:46]

http://www.brpreiss.com/books/opus6/index.html

N-ary Trees

Figure shows the following tertiary (N=3) trees:

In the figure, square boxes denote the empty trees and circles denote non-empty nodes. Except for the
empty trees, the tertiary trees shown in the figure contain the same sets of nodes as the corresponding

trees shown in Figure .

Figure: Examples of N-ary trees.

Definitions and both define trees in terms of sets. In mathematics, elements of a set are normally

http://www.brpreiss.com/books/opus6/html/page260.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:46]

N-ary Trees

unordered. Therefore, we might conclude that that relative ordering of the subtrees is not important.
However, most practical implementations of trees define an implicit ordering of the subtrees.
Consequently, it is usual to assume that the subtrees are ordered. As a result, the two tertiary trees,

 and , are considered to be distinct unequal

trees. Trees in which the subtrees are ordered are called ordered trees . On the other hand, trees in which
the order does not matter are called oriented trees . In this book, we shall assume that all trees are
ordered unless otherwise specified.

Figure suggests that every N-ary tree contains a significant number of external nodes. The following
theorem tells us precisely how many external nodes we can expect:

Theorem An N-ary tree with internal nodes contains (N-1)n+1 external nodes.

extbfProof Let the number of external nodes be l. Since every node except the root (empty or not) has a
parent, there must be (n+l-1)/N parents in the tree since every parent has N children. Therefore, n=(n+l-
1)/N. Rearranging this gives l=(N-1)n+1.

Since the external nodes have no subtrees, it is tempting to consider them to be the leaves of the tree.
However, in the context of N-ary trees, it is customary to define a leaf node as an internal node which

has only external subtrees. According to this definition, the trees shown in Figure have exactly the

same sets of leaves as the corresponding general trees shown in Figure .

Furthermore, since height is defined with respect to the leaves, by having the leaves the same for both
kinds of trees, the heights are also the same. The following theorem tells us something about the
maximum size of a tree of a given height h:

Theorem Consider an N-ary tree T of height . The maximum number of internal

nodes in T is given by

extbfProof (By induction).

Base Case Consider an N-ary tree of height zero. It consists of exactly one internal node and N empty
subtrees. Clearly the theorem holds for h=0 since

http://www.brpreiss.com/books/opus6/html/page260.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:46]

N-ary Trees

Inductive Hypothesis Suppose the theorem holds for , for some . Consider a

tree of height k+1. Such a tree consists of a root and N subtrees each of which contains at most

 nodes. Therefore, altogether the number of nodes is at most

That is, the theorem holds for k+1. Therefore, by induction on k, the theorem is true for all values of h.

An interesting consequence of Theorems and is that the maximum number of external nodes in an
N-ary tree of height h is given by

The final theorem of this section addresses the maximum number of leaves in an N-ary tree of height h:

Theorem Consider an N-ary tree T of height . The maximum number of leaf nodes

in T is .

extbfProof (By induction).

Base Case Consider an N-ary tree of height zero. It consists of exactly one internal node which has N
empty subtrees. Therefore, the one node is a leaf. Clearly the theorem holds for h=0 since .

Inductive Hypothesis Suppose the theorem holds for , for some . Consider a

tree of height k+1. Such a tree consists of a root and N subtrees each of which contains at most leaf

nodes. Therefore, altogether the number of leaves is at most . That is, the theorem

holds for k+1. Therefore, by induction on k, the theorem is true for all values of h.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page260.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:04:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Trees

In this section we consider an extremely important and useful category of tree structure--binary trees . A
binary tree is an N-ary tree for which N is two. Since a binary tree is an N-ary tree, all of the results
derived in the preceding section apply to binary trees. However, binary trees have some interesting
characteristics that arise from the restriction that N is two. For example, there is an interesting
relationship between binary trees and the binary number system. Binary trees are also very useful for the
representation of mathematical expressions involving the binary operations such as addition and
multiplication.

Binary trees are defined as follows:

Definition (Binary Tree) A binary tree T is a finite set of nodes with the following
properties:

1. Either the set is empty, ; or

2. The set consists of a root, r, and exactly two distinct binary trees and ,

.

The tree is called the left subtree of T, and the tree is called the right subtree of T.

Binary trees are almost always considered to be ordered trees . Therefore, the two subtrees and

are called the left and right subtrees, respectively. Consider the two binary trees shown in Figure .
Both trees have a root with a single non-empty subtree. However, in one case it is the left subtree which
is non-empty; in the other case it is the right subtree that is non-empty. Since the order of the subtrees

matters, the two binary trees shown in Figure are different.

http://www.brpreiss.com/books/opus6/html/page261.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:48]

http://www.brpreiss.com/books/opus6/index.html

Binary Trees

Figure: Two distinct binary trees.

We can determine some of the characteristics of binary trees from the theorems given in the preceding

section by letting N=2. For example, Theorem tells us that an binary tree with internal nodes

contains n+1 external nodes. This result is true regardless of the shape of the tree. Consequently, we
expect that the storage overhead of associated with the empty trees will be O(n).

From Theorem we learn that a binary tree of height has at most internal nodes.

Conversely, the height of a binary tree with n internal nodes is at least . That is, the

height of a binary tree with n nodes is .

Finally, according to Theorem , a binary tree of height has at most leaves. Conversely, the

height of a binary tree with l leaves is at least . Thus, the height of a binary tree with l leaves is

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page261.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Tree Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Tree Traversals

There are many different applications of trees. As a result, there are many different algorithms for
manipulating them. However, many of the different tree algorithms have in common the characteristic
that they systematically visit all the nodes in the tree. That is, the algorithm walks through the tree data
structure and performs some computation at each node in the tree. This process of walking through the
tree is called a tree traversal .

There are essentially two different methods in which to visit systematically all the nodes of a tree--depth-
first traversal and breadth-first traversal. Certain depth-first traversal methods occur frequently enough
that they are given names of their own: preorder traversal, inorder traversal and postorder traversal.

The discussion that follows uses the tree in Figure as an example. The tree shown in the figure is a

general tree in the sense of Definition :

However, we can also consider the tree in Figure to be an N-ary tree (specifically, a binary tree if we
assume the existence of empty trees at the appropriate positions:

http://www.brpreiss.com/books/opus6/html/page262.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:48]

http://www.brpreiss.com/books/opus6/index.html

Tree Traversals

Figure: Sample tree.

● Preorder Traversal
● Postorder Traversal
● Inorder Traversal
● Breadth-First Traversal

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page262.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Preorder Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Preorder Traversal

The first depth-first traversal method we consider is called preorder traversal . Preorder traversal is
defined recursively as follows. To do a preorder traversal of a general tree:

1. Visit the root first; and then
2. do a preorder traversal each of the subtrees of the root one-by-one in the order given.

Preorder traversal gets its name from the fact that it visits the root first. In the case of a binary tree, the
algorithm becomes:

1. Visit the root first; and then
2. traverse the left subtree; and then
3. traverse the right subtree.

For example, a preorder traversal of the tree shown in Figure visits the nodes in the following order:

Notice that the preorder traversal visits the nodes of the tree in precisely the same order in which they are

written in Equation . A preorder traversal is often done when it is necessary to print a textual
representation of a tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page263.html [2002-11-17 ｿﾀﾈﾄ 11:04:49]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Postorder Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Postorder Traversal

The second depth-first traversal method we consider is postorder traversal . In contrast with preorder
traversal, which visits the root first, postorder traversal visits the root last. To do a postorder traversal of
a general tree:

1. Do a postorder traversal each of the subtrees of the root one-by-one in the order given; and then
2. visit the root.

To do a postorder traversal of a binary tree

1. Traverse the left subtree; and then
2. traverse the right subtree; and then
3. visit the root.

A postorder traversal of the tree shown in Figure visits the nodes in the following order:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page264.html [2002-11-17 ｿﾀﾈﾄ 11:04:49]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inorder Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inorder Traversal

The third depth-first traversal method is inorder traversal . Inorder traversal only makes sense for binary
trees. Whereas preorder traversal visits the root first and postorder traversal visits the root last, inorder
traversal visits the root in between visiting the left and right subtrees:

1. Traverse the left subtree; and then
2. visit the root; and then
3. traverse the right subtree.

An inorder traversal of the tree shown in Figure visits the nodes in the following order:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page265.html [2002-11-17 ｿﾀﾈﾄ 11:04:50]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Breadth-First Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Breadth-First Traversal

Whereas the depth-first traversals are defined recursively, breadth-first traversal is best understood as a
non-recursive traversal. The breadth-first traversal of a tree visits the nodes in the order of their depth in
the tree. Breadth-first traversal first visits all the nodes at depth zero (i.e., the root), then all the nodes at
depth one, and so on. At each depth the nodes are visited from left to right.

A breadth-first traversal of the tree shown in Figure visits the nodes in the following order:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page266.html [2002-11-17 ｿﾀﾈﾄ 11:04:50]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Expression Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Expression Trees

Algebraic expressions such as

have an inherent tree-like structure. For example, Figure is a representation of the expression in

Equation . This kind of tree is called an expression tree .

The terminal nodes (leaves) of an expression tree are the variables or constants in the expression (a, b, c,
d, and e). The non-terminal nodes of an expression tree are the operators (+, -, , and). Notice that the

parentheses which appear in Equation do not appear in the tree. Nevertheless, the tree representation
has captured the intent of the parentheses since the subtraction is lower in the tree than the multiplication.

Figure: Tree representing the expression a/b+(c-d)e.

The common algebraic operators are either unary or binary. For example, addition, subtraction,
multiplication, and division are all binary operations and negation is a unary operation. Therefore, the
non-terminal nodes of the corresponding expression trees have either one or two non-empty subtrees.
That is, expression trees are usually binary trees.

What can we do with an expression tree? Perhaps the simplest thing to do is to print the expression

http://www.brpreiss.com/books/opus6/html/page267.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:51]

http://www.brpreiss.com/books/opus6/index.html

Expression Trees

represented by the tree. Notice that an inorder traversal of the tree in Figure visits the nodes in the
order

Except for the missing parentheses, this is precisely the order in which the symbols appear in Equation

!

This suggests that an inorder traversal should be used to print the expression. Consider an inorder
traversal which, when it encounters a terminal node simply prints it out; and when it encounters a non-
terminal node, does the following:

1. Print a left parenthesis; and then
2. traverse the left subtree; and then
3. print the root; and then
4. traverse the right subtree; and then
5. print a right parenthesis.

Applying this procedure to the tree given in Figure we get

which, despite the redundant parentheses, represents exactly the same expression as Equation .

● Infix Notation
● Prefix Notation
● Postfix Notation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page267.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Infix Notation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Infix Notation

The algebraic expression in Equation is written in the usual way such mathematical expressions are
written. The notation used is called infix notation because each operator appears in between its operands.
As we have seen, there is a natural relationship between infix notation and inorder traversal.

Infix notation is only possible for binary operations such as addition, subtraction, multiplication, and
division. Writing an operator in between its operands is possible only when it has exactly two operands.

In Chapter we saw two alternative notations for algebraic expressions--prefix and postfix.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page268.html [2002-11-17 ｿﾀﾈﾄ 11:04:52]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Prefix Notation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Prefix Notation

In prefix notation the operator is written before its operands. Therefore, in order to print the prefix
expression from an expression tree, preorder traversal is done. That is, at every non-terminal node we do
the following:

1. Print the root; and then
2. print a left parenthesis; and then
3. traverse the left subtree; and then
4. print a comma; and then
5. traverse the right subtree; and then
6. print a right parenthesis.

If we use this procedure to print the tree given in Figure we get the prefix expression

While this notation may appear unfamiliar at first, consider the result obtained when we spell out the
names of the operators:

Plus(Div(a,b), Times(Minus(c,d), e))

This is precisely the notation used in a typical programming language to invoke user defined methods
Plus, Minus, Times, and Div.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page269.html [2002-11-17 ｿﾀﾈﾄ 11:04:52]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Postfix Notation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Postfix Notation

Since inorder traversal produces an infix expression and preorder traversal produces a prefix expression,
it should not come as a surprise that postorder traversal produces a postfix expression. In a postfix
expression, an operator always follows its operands. The beauty of postfix (and prefix) expressions is
that parentheses are not necessary.

A simple postorder traversal of the tree in Figure gives the postfix expression

In Section we saw that a postfix expression is easily evaluated using a stack. So, given an expression
tree, we can evaluate the expression by doing a postorder traversal to create the postfix expression and

then using the algorithm given in Section to evaluate the expression.

In fact, it is not really necessary to first create the postfix expression before computing its value. The
expression can be evaluated by making use of an evaluation stack during the course of the traversal as
follows: When a terminal node is visited, its value is pushed onto the stack. When a non-terminal node is
visited, two values are popped from the stack, the operation specified by the node is performed on those
value, and the result is pushed back onto the evaluation stack. When the traversal terminates, there will
be one result in the evaluation stack and that result is the value of the expression.

Finally, we can take this one step further. Instead of actually evaluating the expression, the code to
compute the value of the expression is emitted. Again, a postorder traversal is done. However, now
instead of performing the computation as each node is visited, the code needed to perform the evaluation

is emitted. This is precisely what a compiler does when it compiles an expression such as Equation
for execution.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page270.html [2002-11-17 ｿﾀﾈﾄ 11:04:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing Trees

In this section we consider the implementation of trees including general trees, N-ary trees, and binary
trees. The implementations presented have been developed in the context of the abstract data type

framework presented in Chapter . That is, the various types of trees are viewed as classes of

containers as shown in Figure .

Figure: Object class hierarchy

Program defines the Tree interface. The Tree interface extends the Container interface defined

in Program .

http://www.brpreiss.com/books/opus6/html/page271.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:54]

http://www.brpreiss.com/books/opus6/index.html

Implementing Trees

Program: Tree interface.

The Tree interface adds the following operations to those inherited from the Container interface:

Key
This property accesses the object contained in the root node of a tree.

GetSubtree
This method returns the subtree of the given tree.

IsEmpty
This bool-valued property is true if the root of the tree is an empty tree, i.e., an external node.

IsLeaf
This bool-valued property is true if the root of the tree is a leaf node.

Degree
This property accesses the degree of the root node of the tree. By definition, the degree of an
external node is zero.

Height
This property accesses the height of the tree. By definition, the height of an empty tree is -1.

DepthFirstTraversal and BreadthFirstTraversal

These methods are like the Accept method of the container class (see Section). Both of these
methods perform a traversal. That is, all the nodes of the tree are visited systematically. The
former takes a PrePostVisitor and the latter takes a Visitor. When a node is visited, the
appropriate methods of the visitor are applied to that node.

● Tree Traversals
● Tree Enumerators
● General Trees
● N-ary Trees

http://www.brpreiss.com/books/opus6/html/page271.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:54]

Implementing Trees

● Binary Trees
● Binary Tree Traversals
● Comparing Trees
● Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page271.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Tree Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Tree Traversals

Program introduces the AbstractTree class. The AbstractTree class extends the

AbstractContainer class introduced in Program and it implements the Tree interface defined

in Program . The AbstractTree class provides default implementations for both the
DepthFirstTraversal and BreadthFirstTraversal methods. Both of these
implementations access abstract properties, such as Key, and call abstract methods, such as and
GetSubtree. In effect, they are abstract algorithms . An abstract algorithm describes behavior in the
absence of implementation!

● Depth-First Traversal
● Preorder, Inorder, and Postorder Traversals
● Breadth-First Traversal
● Accept Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page272.html [2002-11-17 ｿﾀﾈﾄ 11:04:54]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Depth-First Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Depth-First Traversal

Program defines the DepthFirstTraversal method of the AbstractTree class. The
traversal method takes one argument--any object that implements the PrePostVisitor interface

defined in Program .

Program: AbstractTree class DepthFirstTraversal method.

A PrePostVisitor is a visitor with three methods, PreVisit, InVisit, PostVisit, and the
propderty IsDone. During a depth-first traversal the PreVisit and PostVisit methods are each
called once for every node in the tree. (The InVisit method is provided for binary trees and is

discussed in Section).

http://www.brpreiss.com/books/opus6/html/page273.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:55]

http://www.brpreiss.com/books/opus6/index.html

Depth-First Traversal

Program: PrePostVisitor interface.

The depth-first traversal method first calls the PreVisit method with the object in the root node. Then,
it calls recursively the DepthFirstTraversal method for each subtree of the given node. After all
the subtrees have been visited, the PostVisit method is called. Assuming that the IsEmpty, Key,
and GetSubtree operations all run in constant time, the total running time of the
DepthFirstTraversal method is

where n is the number of nodes in the tree, is the running time of PreVisit, and

 is the running time of .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page273.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Preorder, Inorder, and Postorder Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Preorder, Inorder, and Postorder Traversals

Preorder, inorder, and postorder traversals are special cases of the more general depth-first traversal
described in the preceding section. Rather than implement each of these traversals directly, we make use
a design pattern pattern, called adapter , which allows the single method to provide all the needed
functionality.

Suppose we have an instance of the PrintingVisitor class (see Section). The
PrintingVisitor class implements the Visitor interface. However, we cannot pass a

PrintingVisitor instance to the DepthFirstTraversal method shown in Program
because it expects an object that implements the PrePostVisitor interface.

The problem is that the interface implemented by the PrintingVisitor does not match the interface
expected by the DepthFirstTraversal method. The solution to this problem is to use an adapter.
An adapter converts the interface provided by one class to the interface required by another. For
example, if we want a preorder traversal, then the call to the PreVisit (made by
DepthFirstTraversal) should be mapped to the Visit method (provided by the
PrintingVisitor). Similarly, a postorder traversal is obtained by mapping PostVisit to Visit.

Program defines the AbstractPrePostVisitor class. This class implements the

PrePostVisitor interface defined in Program . It provides trivial default implementations for all
the required methods.

http://www.brpreiss.com/books/opus6/html/page274.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:56]

http://www.brpreiss.com/books/opus6/index.html

Preorder, Inorder, and Postorder Traversals

Program: AbstractPrePostVisitor class.

Programs , and define three adapter classes--PreOrder, InOrder, and PostOrder. All
three classes are similar: They all extend the AbstractPrePostVisitor class defined in Program

; all have a single field that refers to a Visitor; and all have a constructor that takes a Visitor.

Program: PreOrder class.

Program: InOrder class.

http://www.brpreiss.com/books/opus6/html/page274.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:56]

Preorder, Inorder, and Postorder Traversals

Program: PostOrder class.

Each class provides a different interface mapping. For example, the PreVisit method of the
PreOrder class simply calls the Visit method on the visitor field. Notice that the adapter
provides no functionality of its own--it simply forwards method calls to the visitor instance as
required.

The following code fragment illustrates how these adapters are used:

Visitor v = new PrintingVisitor();
Tree t = new SomeTree();
// ...
t.DepthFirstTraversal(new PreOrder(v));
t.DepthFirstTraversal(new InOrder(v));
t.DepthFirstTraversal(new PostOrder(v));

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page274.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:04:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Breadth-First Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Breadth-First Traversal

Program defines the BreadthFirstTraversal method of the AbstractTree class. As

defined in Section , a breadth-first traversal of a tree visits the nodes in the order of their depth in the
tree and at each level the nodes are visited from left to right.

Program: AbstractTree class BreadthFirstTraversal method.

We have already seen in Section a non-recursive breadth-first traversal algorithm for N-ary trees.
This algorithm makes use of a queue as follows. Initially, the root node of the given tree is enqueued,
provided it is not the empty tree. Then, the following steps are repeated until the queue is empty:

http://www.brpreiss.com/books/opus6/html/page275.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:56]

http://www.brpreiss.com/books/opus6/index.html

Breadth-First Traversal

1. Remove the node at the head of the queue and call it head.
2. Visit the object contained in head.
3. Enqueue in order each non-empty subtree of head.

Notice that empty trees are never put into the queue. Furthermore, it should be obvious that each node of
the tree is enqueued exactly once. Therefore, it is also dequeue exactly once. Consequently, the running

time for the breadth-first traversal is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page275.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Accept Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Accept Method

The AbstractTree class replaces the functionality provided by the single method Accept with two
different kinds of traversal. Whereas the Accept method is allowed to visit the nodes of a tree in any
order, the tree traversals visit the nodes in two different, but well-defined orders. Consequently, we have
chosen to provide a default implementation of the Accept method which does a preorder traversal.

Program shows the implementation of the Accept method of the AbstractTree class. This
method uses the PreOrder adapter to pass on a given visitor to the DepthFirstTraversal
method.

Program: AbstractTree class Accept method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page276.html [2002-11-17 ｿﾀﾈﾄ 11:04:57]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Tree Enumerators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Tree Enumerators

This section describes the implementation of an enumerator which can be used to step through the
contents of any tree instance. For example, suppose we have declared a variable tree which refers to a
BinaryTree. Then we can view the tree instance as a container and print its contents as follows:

Tree tree = new BinaryTree();
// ...
IEnumerator e = tree.GetEnumerator();
while (e.MoveNext())
{
 Object obj = e.Current;
 Console.WriteLine(obj);
}

Every concrete class that implements the Container interface must provide a GetEnumerator
method. This method returns an object that implements the IEnumerator interface defined in Section

. The enumerator can then be used to systematically visit the contents of the associated container.

We have already seen that when we systematically visit the nodes of a tree, we are doing a tree traversal.
Therefore, the implementation of the enumerator must also do a tree traversal. However, there is a catch.
A recursive tree traversal method such as DepthFirstTraversal keeps track of where it is
implicitly using the C# virtual machine stack. However, when we implement an enumerator we must
keep track of the state of the traversal explicitly. This section presents an enumerator implementation
which does a preorder traversal of the tree and keeps track of the current state of the traversal using a

stack from Chapter .

Program introduces the private nested class Enumerator declared within the AbstractTree

class. The Enumerator class implements the IEnumerator interface defined in Section . The

Enumerator contains two fields--tree and stack. As shown in Program , the GetEnumerator
method of the AbstractTree class returns a new instance of the Enumerator class each time it is
called.

http://www.brpreiss.com/books/opus6/html/page277.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:58]

http://www.brpreiss.com/books/opus6/index.html

Tree Enumerators

Program: AbstractTree class GetEnumerator method and the Enumerator class.

● Constructor
● MoveNext Method and Current Property

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page277.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor

The code for the Enumerator constructor method is given in Program . Notice that it uses an
instance of the StackAsLinkedList class. (The linked-list implementation of stacks is described in

Section). An empty stack can be created in in constant time. Therefore, the running time of the
constructor is O(1).

Program: AbstractTree Enumerator constructor.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page278.html [2002-11-17 ｿﾀﾈﾄ 11:04:58]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

MoveNext Method and Current Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

MoveNext Method and Current Property

Program defines the standard operations provided by enumerators, the MoveNext and Reset
methods, and the Current property. The Enumerator uses the stack to keep track nodes in the tree to
be enumerated. As long as the stack is not empty, the Current property provides a get accessor that
returns the key of the tree node at the top of the stack. Clearly, the running time for this accessor is O(1).

http://www.brpreiss.com/books/opus6/html/page279.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:59]

http://www.brpreiss.com/books/opus6/index.html

MoveNext Method and Current Property

Program: AbstractTree Enumerator class Current property, MoveNext and Reset methods.

The MoveNext method advances the enumerator to the next item and returns true as long as there are
still more items in the container. If the stack is empty, the enumeration has not yet begun. In this case, the
MoveNext method pushes the root node of the tree onto the stack (provided the tree is not empty). If the
stack is not empty, MoveNext method pops the top tree from the stack and then pushes its subtrees onto
the stack (provided that they are not empty). Notice the order is important here. In a preorder traversal,
the first subtree of a node is traversed before the second subtree. Therefore, the second subtree should
appear in the stack below the first subtree. That is why the subtrees are pushed in reverse order. The
running time for MoveNext is O(d) where d is the degree of the tree node at found at the top of the
stack.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page279.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:04:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

General Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

General Trees

This section outlines an implementation of general trees in the sense of Definition . The salient
features of the definition are first, that the nodes of a general tree have arbitrary degrees; and second, that
there is no such thing as an empty tree.

The recursive nature of Definition has important implications when considering the implementation
of such trees as containers. In effect, since a tree contains zero or more subtrees, when implemented as a
container, we get a container which contains other containers!

Figure shows the approach we have chosen for implementing general trees. This figure shows how

the general tree in Figure can be stored in memory. The basic idea is that each node has associated

with it a linked list of the subtrees of that node. A linked list is used because there is no a priori
restriction on its length. This allows each node to have an arbitrary degree. Furthermore, since there are
no empty trees, we need not worry about representing them. An important consequence of this is that the
implementation never makes use of the null reference!

http://www.brpreiss.com/books/opus6/html/page280.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:00]

http://www.brpreiss.com/books/opus6/index.html

General Trees

Figure: Representing general trees using linked lists.

Program introduces the GeneralTree class which is used to represent general trees as specified by

Definition . The GeneralTree class extends the AbstractTree class introduced in Program .

Program: GeneralTree fields.

● Fields
● Constructor and Purge Methods
● Key Property and GetSubtree Method
● AttachSubtree and DetachSubtree Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page280.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The GeneralTree class definition comprises three fields--key, degree, and list. The first, key,
represents the root node of the tree. The second, an integer degree, records the degree of the root node

of the tree. The third, list, is an instance of the LinkedList class defined in Chapter . It is used
to contain the subtrees of the given tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page281.html [2002-11-17 ｿﾀﾈﾄ 11:05:01]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

Program defines the GeneralTree constructor and Purge methods. According to Definition , a
general tree must contain at least one node--an empty tree is not allowed. Therefore, the constructor takes
one argument, any object instance. The constructor initializes the fields as follows: The key field is
assigned the argument; the degree field is set to zero; and, the list field is assigned an empty linked
list. The running time of the constructor is clearly O(1).

Program: GeneralTree class constructor and Purge methods.

The Purge method of a container normally empties the container. In this case, the container is a general

tree which is not allowed to be empty. Thus, the Purge method shown in Program discards the
subtrees of the tree, but it does not discard the root. The running time of the Purge method is clearly

http://www.brpreiss.com/books/opus6/html/page282.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:01]

http://www.brpreiss.com/books/opus6/index.html

Constructor and Purge Methods

O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page282.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Key Property and GetSubtree Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Key Property and GetSubtree Method

Program defines the various GeneralTree class methods for manipulating general trees. The Key
property provides a get accessor that returns the object contained by the root node of the tree. Clearly,
its running time is O(1).

http://www.brpreiss.com/books/opus6/html/page283.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:02]

http://www.brpreiss.com/books/opus6/index.html

Key Property and GetSubtree Method

Program: GeneralTree class Key property, GetSubtree, AttachSubtreeand
DetachSubtree methods.

The GetSubtree method takes as its argument an int, i, which must be between 0 and
, where degree is the degree of the root node of the tree. It returns the subtree of the

given tree. The GetSubtree method simply takes i steps down the linked list and returns the
appropriate subtree. Assuming that i is valid, the worst case running time for GetSubtree is O(d),
where is the degree of the root node of the tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page283.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

AttachSubtree and DetachSubtree Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

AttachSubtree and DetachSubtree Methods

Program also defines two methods for manipulating the subtrees of a general tree. The purpose of the
AttachSubtree method is to add the specified subtree to the root of a given tree. This method takes
as its argument a GeneralTree instance which is to be attached. The AttachSubtree method
simply appends to the linked list a pointer to the tree to be attached and then adds one the degree
variable. The running time for AttachSubtree is O(1).

Similarly, the DetachSubtree method removes the specified subtree from the given tree. This method
takes as its argument the GeneralTree instance which is to be removed. It removes the appropriate
item from the linked list and then subtracts one from the degree variable. The running time for
DetachSubtree is O(d) in the worst case, where .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page284.html [2002-11-17 ｿﾀﾈﾄ 11:05:02]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

N-ary Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

N-ary Trees

We now turn to the implementation of N-ary trees as given by Definition . According to this
definition, an N-ary tree is either an empty tree or it is a tree comprised of a root and exactly N subtrees.
The implementation follows the design pattern established in the preceding section. Specifically, we
view an N-ary tree as a container.

Figure illustrates the way in which N-ary trees can be represented. The figure gives the representation
of the tertiary (N=3) tree

The basic idea is that each node has associated with it an array of length N of pointers to the subtrees of
that node. An array is used because we assume that the arity of the tree, N, is known a priori.

Figure: Representing N-ary trees using pointer arrays.

Notice that we explicitly represent the empty trees. That is, a separate object instance is allocated for
each empty tree. Of course, an empty tree contains neither root nor subtrees.

Program introduces the the NaryTree class which represents N-ary trees as specified by Definition

http://www.brpreiss.com/books/opus6/html/page285.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:03]

http://www.brpreiss.com/books/opus6/index.html

N-ary Trees

. The class NaryTree extends the AbstractTree class introduced in Program .

Program: NaryTree fields.

● Fields
● Constructors
● IsEmpty Property
● Key Property, AttachKey and DetachKey Methods
● GetSubtree, AttachSubtree and DetachSubtree Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page285.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:03]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The implementation the NaryTree class is very similar to that of the GeneralTree class. The
NaryTree class definition also comprises three fields--key, degree, and subtree. The first, key,
represents the root node of the tree. The second, an integer degree, records the degree of the root node
of the tree. The third, subtree, is an array of NaryTrees. This array contains the subtrees of the
given tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page286.html [2002-11-17 ｿﾀﾈﾄ 11:05:04]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructors

The NaryTree class declares two constructors. Implementations for the two constructors are given in

Program . The first constructor takes a single argument of type int which specifies the degree of the
tree. This constructor creates an empty tree. It does so by setting the key field to null, and by setting
the subtree array to null. The running time of this constructor is O(1).

Program: NaryTree constructors.

The second constructor takes two arguments. The first specifies the degree of the tree, and the second is

http://www.brpreiss.com/books/opus6/html/page287.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:04]

http://www.brpreiss.com/books/opus6/index.html

Constructors

any object instance. This constructor creates a non-empty tree in which the specified object occupies

the root node. According to Definition , every internal node in an N-ary tree must have exactly N
subtrees. Therefore, this constructor creates and attaches N empty subtrees to the root node. The running
time of this constructor is O(N), since N empty subtrees are created and constructed and the constructor
for an empty N-ary tree takes O(1) time.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page287.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

IsEmpty Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

IsEmpty Property

The IsEmpty property provides a get accessor that indicates whether a given N-ary tree is the empty

tree. The implementation of this method is given in Program . In this implementation, the key field is
null if the tree is the empty tree. Therefore, IsEmpty method simply tests the key field. Clearly, this
is a constant time operation.

http://www.brpreiss.com/books/opus6/html/page288.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:05]

http://www.brpreiss.com/books/opus6/index.html

IsEmpty Property

Program: NaryTree methods.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page288.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:05]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Key Property, AttachKey and DetachKey Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Key Property, AttachKey and DetachKey Methods

Program also defines three operations for manipulating the root of an N-ary tree. The Key property
provides a get accessor that returns the object contained in the root node of the tree. Clearly, this
operation is not defined for the empty tree. If the tree is not empty, the running time of this method is
O(1).

The purpose of AttachKey is to insert the specified object into a given N-ary tree at the root node. This
operation is only defined for an empty tree. The AttachKey method takes as its argument an object to
be inserted in the root node and assigns that object to the key field. Since the node is no longer empty, it
must have exactly N subtrees. Therefore, N new empty subtrees are created and attached to the node. The
running time is O(N) since N subtrees are created, and the running time of the constructor for an empty N-
ary tree takes O(1).

Finally, DetachKey is used to remove the object from the root of a tree. In order that the tree which

remains still conforms to Definition , it is only permissible to remove the root from a leaf node. And

upon removal, the leaf node becomes an empty tree. The implementation given in Program throws an
exception if an attempt is made to remove the root from a non-leaf node. Otherwise, the node is a leaf
which means that its N subtrees are all empty. When the root is detached, the array of subtrees is also
discarded. The running time of this method is clearly O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page289.html [2002-11-17 ｿﾀﾈﾄ 11:05:05]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

GetSubtree, AttachSubtree and DetachSubtree Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

GetSubtree, AttachSubtree and DetachSubtree Methods

Program defines the three methods for manipulating the subtrees of an N-ary tree. The GetSubtree
method takes as its argument an int, i, which must be between 0 and N-1. It returns the subtree of
the given tree. Note that this operation is only defined for a non-empty N-ary tree. Given that the tree is
not empty, the running time is O(1).

http://www.brpreiss.com/books/opus6/html/page290.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:06]

http://www.brpreiss.com/books/opus6/index.html

GetSubtree, AttachSubtree and DetachSubtree Methods

Program: NaryTree methods.

The AttachSubtree method takes two arguments. The first is an integer i between 0 and N-1. The
second is an NaryTree instance. The purpose of this method is to make the N-ary tree specified by the
second argument become the subtree of the given tree. It is only possible to attach a subtree to a non-
empty node and it is only possible to attach a subtree in a place occupied by an empty subtree. If none of
the exceptions are thrown, the running time of this method is simply O(1).

The DetachSubtree method takes a single argument i which is an integer between 0 and N-1. This
method removes the subtree from a given N-ary tree and returns that subtree. Of course, it is only
possible to remove a subtree from a non-empty tree. Since every non-empty node must have N subtrees,
when a subtree is removed it is replaced by an empty tree. Clearly, the running time is O(1) if we assume
that no exceptions are thrown.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page290.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Trees

This section presents an implementation of binary trees in the sense of Definition . A binary tree is
essentially a N-ary tree where N=2. Therefore, it is possible to implemente binary trees using the
NaryTree class presented in the preceding section. However, because the NaryTree class
implementation is a general implementation which can accommodate any value of N, it is somewhat less
efficient in both time and space than an implementation which is designed specifically for the case N=2.
Since binary trees occur quite frequently in practice, it is important to have a good implementation.

Another consequence of restricting N to two is that we can talk of the left and right subtrees of a tree.
Consequently the interface provided by a binary tree class is quite different from the general interface
provided by an N-ary tree class.

Figure shows how the binary tree given in Figure is be represented. The basic idea is that each
node of the tree contains two fields that refer to the subtrees of that node. Just as we did for N-ary trees,
we represent explicitly the empty trees. Since an empty tree node contains neither root nor subtrees it is
represented by a structure in which all the fields are null.

http://www.brpreiss.com/books/opus6/html/page291.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:06]

http://www.brpreiss.com/books/opus6/index.html

Binary Trees

Figure: Representing binary trees.

The BinaryTree class is declared in Program . The BinaryTree class extends the

AbstractTree class introduced in Program .

Program: BinaryTree fields.

● Fields

http://www.brpreiss.com/books/opus6/html/page291.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:06]

Binary Trees

● Constructors
● Purge Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page291.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The BinaryTree class has three fields--key, left, and right. The first, key, represents the root
node of the tree. The latter two, represent the left and right subtrees of the given tree. All three fields are
null if the node represents the empty tree. Otherwise, the tree must have a root and two subtrees.
Consequently, all three fields are non-null in a non-empty node.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page292.html [2002-11-17 ｿﾀﾈﾄ 11:05:07]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructors

Program defines constructors for the BinaryTree class. The first one takes three arguments and
assigns each of them to the corresponding field. Clearly the running time of this constructor is O(1).

http://www.brpreiss.com/books/opus6/html/page293.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:08]

http://www.brpreiss.com/books/opus6/index.html

Constructors

Program: BinaryTree constructors, Left and Right properties

The second constructor, the no-arg constructor, creates an empty binary tree. It simply sets all three fields
to null.

The third constructor takes as its argument any object. The purpose of this constructor is to create a
binary tree with the specified object as its root. Since every binary tree has exactly two subtrees, this
constructor creates two empty subtrees and assigns them to the left and right fields.

Program also defines the Left and Right properties. These properties provide get accessors that
return the left and right subtrees of the given tree, respectively.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page293.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:08]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Purge Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Purge Method

The Purge method for the BinaryTree class is defined in Program . The purpose of the Purge
method is to make the tree empty. It does this by assigning null to all the fields. Clearly, the running
time of the Purge method is O(1).

Program: BinaryTree class Purge method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page294.html [2002-11-17 ｿﾀﾈﾄ 11:05:08]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Tree Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Tree Traversals

Program defines the DepthFirstTraversal method of the BinaryTree class. This method
supports all three tree traversal methods--preorder, inorder, and postorder. The implementation follows

directly from the definitions given in Section . The traversal is implemented using recursion. That is,
the method calls itself recursively to visit the subtrees of the given node. Note that the recursion
terminates properly when an empty tree is encountered since the method does nothing in that case.

Program: BinaryTree class DepthFirstTraversal method.

The traversal method takes as its argument any object that implements the PrePostVisitor interface

http://www.brpreiss.com/books/opus6/html/page295.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:09]

http://www.brpreiss.com/books/opus6/index.html

Binary Tree Traversals

defined in Program . As each node is ``visited'' during the course of the traversal, the PreVisit,
InVisit, and PostVisit methods of the visitor are invoked on the object contained in that node.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page295.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:09]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Comparing Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Comparing Trees

A problem which is relatively easy to solve is determining if two trees are equivalent. Two trees are
equivalent if they both have the same topology and if the objects contained in corresponding nodes are
equal. Clearly, two empty trees are equivalent. Consider two non-empty binary trees

 and . Equivalence of trees is given by

A simple, recursive algorithm suffices to test the equivalence of trees.

Since the BinaryTree class is ultimately derived from the ComparableObject class introduced in

Program , it must provide a CompareTo method to compare binary trees. Recall that the
CompareTo method is is used to compare two objects, say obj1 and obj2 like this:

int result = obj1.CompareTo(obj2);

The CompareTo method returns a negative number if ; a positive number if

; and zero if .

So what we need is to define a total order relation on binary trees. Fortunately, it is possible to define
such a relation for binary trees provided that the objects contained in the nodes of the trees are drawn
from a totally ordered set.

Theorem Consider two binary trees and and the relation < given by

where is either or and is . The

relation < is a total order.

http://www.brpreiss.com/books/opus6/html/page296.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:10]

http://www.brpreiss.com/books/opus6/index.html

Comparing Trees

The proof of Theorem is straightforward albeit tedious. Essentially we need to show the following:

● For any two distinct trees and , such that , either or .

● For any three distinct trees , , and , if and then .

The details of the proof are left as an exercise for the reader (Exercise).

Program gives an implementation of the CompareTo method for the BinaryTree class. This

implementation is based on the total order relation < defined in Theorem . The argument of the
CompareTo method can be any object instance. However, normally that object will be another
BinaryTree instance. Therefore, the cast on line 10 is normally successful.

http://www.brpreiss.com/books/opus6/html/page296.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:10]

Comparing Trees

Program: BinaryTree class CompareTo method.

The CompareTo method compares the two binary trees this and arg. If they are both empty trees,
CompareTo returns zero. If this is empty and arg is not, CompareTo returns -1; and if arg is
empty and this is not, it returns 1.

Otherwise, both trees are non-empty. In this case, CompareTo first compares their respective roots. We
assume that the roots implement the IComparable interface and, therefore, we use the CompareTo
method to compare them. If the roots are equal, then the left subtrees are compared. Then, if the roots
and the left subtrees are equal, the right subtrees are compared.

Clearly the worst-case running occurs when comparing identical trees. Suppose there are exactly n nodes

in each tree. Then, the running time of the CompareTo method is , where

 is the time needed to compare the objects contained in the nodes of the trees.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page296.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

Section shows how a stack can be used to compute the value of a postfix expression such as

Suppose instead of evaluating the expression we are interested in constructing the corresponding

expression tree. Once we have an expression tree, we can use the methods described in Section to
print out the expression in prefix or infix notation. Thus, we have a means for translating expressions
from one notation to another.

It turns out that an expression tree can be constructed from the postfix expression relatively easily. The
algorithm to do this is a modified version of the algorithm for evaluating the expression. The symbols in
the postfix expression are processed from left to right as follows:

1. If the next symbol in the expression is an operand, a tree comprised of a single node labeled with
that operand is pushed onto the stack.

2. If the next symbol in the expression is a binary operator, the top two trees in the stack correspond
to its operands. Two trees are popped from the stack and a new tree is created which has the
operator as its root and the two trees corresponding to the operands as its subtrees. Then the new
tree is pushed onto the stack.

After all the symbols of the expression have been processed in this fashion, the stack will contain a single

tree which is the desired expression tree. Figure illustrates the use of a stack to construct the

expression tree from the postfix expression given in Equation .

http://www.brpreiss.com/books/opus6/html/page297.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:11]

http://www.brpreiss.com/books/opus6/index.html

Applications

http://www.brpreiss.com/books/opus6/html/page297.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:11]

Applications

Figure: Postfix to infix conversion using a stack of trees.

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page297.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the ExpressionTree class. This class provides a static method, called
ParsePostfix, which translates a postfix expression to an infix expression using the method
described above. This method reads an expression from the input stream one character at a time. The
expression is assumed to be a syntactically valid postfix expression comprised of single-digit numbers,
single-letter variables, and the binary operators +, -, *, and /.

http://www.brpreiss.com/books/opus6/html/page298.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:12]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Binary tree application--postfix to infix conversion.

Since only binary operators are allowed, the resulting expression tree is a binary tree. Consequently, the

ExpressionTree class extends the BinaryTree class introduced in Program .

The main program loop, lines 11-23, reads characters from the input stream one at a time. If a letter or a
digit is found, a new tree with the character as its root is created and pushed onto the stack (line 15). If an
operator is found, a new tree is created with the operator as its root (line 18). Next, two trees are popped
from the stack and attached to the new tree which is then pushed onto the stack (lines 19-21).

When the ParsePostfix method encounters the end-of-file, its main loop terminates. The resulting
expression tree is popped from the stack and returned from the ParsePostfix method.

Program defines the ToString method for the ExpressionTree class. This method can be used
to print out the expression represented by the tree.

http://www.brpreiss.com/books/opus6/html/page298.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:12]

Implementation

Program: Binary tree application--printing infix expressions.

The ToString method constructs a string that represents the expression using a PrePostVisitor
which does a depth-first traversal and accumulates its result in a string builder like this: At each non-
terminal node of the expression tree, the depth-first traversal first calls PreVisit, which appends a left
parenthesis to the string builder. In between the traversals of the left and right subtrees, the InVisit
method is called, which appends a textual representation of the object contained within the node to the
string builder. Finally, after traversing the right subtree, PostVisit appends a right parenthesis to the
string builder. Given the input ab/cd-e*+, the program constructs the expression tree as shown in

Figure , and then forms the infix expression

The running time of the ParsePostfix method depends upon the number of symbols in the input. The
running time for one iteration the main loop is O(1). Therefore, the time required to construct the

http://www.brpreiss.com/books/opus6/html/page298.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:12]

Implementation

expression tree given n input symbols is O(n). The DepthFirstTraversal method visits each node
of the expression tree exactly once and a constant amount of work is required to print a node. As a result,
printing the infix expression is also O(n) where n is the number of input symbols.

The output expression contains all of the input symbols plus the parentheses added by the ToString
method. It can be shown that a valid postfix expression that contains n symbols, always has (n-1)/2

binary operators and (n+1)/2 operands (Exercise). Hence, the expression tree contains (n-1)/2 non-
terminal nodes and since a pair of parentheses is added for each non-terminal node in the expression tree,
the output string contains 2n-1=O(n) symbols altogether. Therefore, the overall running time needed to
translate a postfix expression comprised of n symbols to an infix expression is O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page298.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:12]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. For each tree shown in Figure show the order in which the nodes are visited during the following
tree traversals:

1. preorder traversal,
2. inorder traversal (if defined),
3. postorder traversal, and
4. breadth-first traversal.

Figure: Sample trees for Exercise .

2. Write a visitor that prints the nodes of a general tree in the format of Equation .
3. Derive an expression for the total space needed to represent a tree of n internal nodes using each of

the following classes:

1. GeneralTree introduced in Program ,

2. NaryTree introduced in Program , and

3. BinaryTree introduced in Program .
4. A full node in a binary tree is a node with two non-empty subtrees. Let l be the number of leaf nodes

in a binary tree. Show that the number of full nodes is l-1.

5. The generic DepthFirstTraversal method defined in Program is a recursive method. Write
a non-recursive depth-first traversal method that has exactly the same effect as the recursive version.

6. Program defines a visitor that prints using infix notation the expression represented by an
expression tree. Write a visitor that prints the same expression in prefix notation with the following

http://www.brpreiss.com/books/opus6/html/page299.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:13]

http://www.brpreiss.com/books/opus6/index.html

Exercises

format:

7. Repeat Exercise , but this time write a visitor that the expression in postfix notation with the
following format:

8. The visitor defined in Program prints many redundant parentheses because it does not take into
consideration the precedence of the operators. Rewrite the visitor so that it prints

rather than

9. Consider postfix expressions involving only binary operators. Show that if such an expression
contains n symbols, it always has (n-1)/2 operators and (n+1)/2 operands.

10. Prove Theorem .

11. Generalize Theorem so that it applies to N-ary trees.

12. Consider two binary trees, and and the relation

 given by

If , the trees are said to be isomorphic . Devise an algorithm to test whether two binary trees

are isomorphic. What is the running time of your algorithm?

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page299.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:13]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Devise an algorithm to compute the height of a tree. Write an implementation of your algorithm

as the Height method of the AbstractTree class introduced in Program .
2. Devise an algorithm to count the number of internal nodes in a tree. Write an implementation of

your algorithm as the get accessor for the Count property of the AbstractTree class

introduced in Program .
3. Devise an algorithm to count the number of leaves in a tree. Write an implementation of your

algorithm as a method of the AbstractTree class introduced in Program .

4. Devise an abstract (generic) algorithm to compare trees. (See Exercise). Write an
implementation of your algorithm as the CompareTo method of the AbstractTree class

introduced in Program .

5. The Enumerator class introduced in Program does a preorder traversal of a tree.
1. Write an enumerator class that does a postorder traversal.
2. Write an enumerator class that does a breadth-first traversal.
3. Write an enumerator class that does an inorder traversal. (In this case, assume that the tree

is a BinaryTree).

6. Complete the GeneralTree class introduced in Program by providing suitable definitions
for the following operations: IsEmpty, IsLeaf, Degree, and CompareTo. Write a test
program and test your implementation.

7. Complete the NaryTree class introduced in Program by providing suitable definitions for
the following operations: Purge, IsLeaf, Degree, and CompareTo. Write a test program
and test your implementation.

8. Complete the BinaryTree class introduced in Program by providing suitable definitions
for the following operations: IsEmpty, IsLeaf, Degree, Key, AttachKey, DetachKey,
AttachLeft, DetachLeft, AttachRight, DetachRight, and GetSubtree. Write a
test program and test your implementation.

9. Write a visitor that draws a picture of a tree on the screen.
10. Design and implement an algorithm that constructs an expression tree from an infix expression

such as

Hint: See Project .

http://www.brpreiss.com/books/opus6/html/page300.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:13]

http://www.brpreiss.com/books/opus6/index.html

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page300.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:13]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Search Trees

In the preceding chapter we consider trees in which the relative positions of the nodes in the tree are
unconstrained. In other words, a given item may appear anywhere in the tree. Clearly, this allows us
complete flexibility in the kind of tree that we may construct. And depending on the application, this may
be precisely what we need. However, if we lose track of an item, in order to find it again it may be
necessary to do a complete traversal of the tree (in the worst case).

In this chapter we consider trees that are designed to support efficient search operations. In order to make
it easier to search, we constrain the relative positions of the items in the tree. In addition, we show that by
constraining the shape of the tree as well as the relative positions of the items in the tree, search
operations can be made even more efficient.

● Basics
● Searching a Search Tree
● Average Case Analysis
● Implementing Search Trees
● AVL Search Trees
● M-Way Search Trees
● B-Trees
● Applications
● Exercises
● Projects

http://www.brpreiss.com/books/opus6/html/page301.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:14]

http://www.brpreiss.com/books/opus6/index.html

Search Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page301.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics
A tree which supports efficient search, insertion, and withdrawal operations is called a search tree . In
this context the tree is used to store a finite set of keys drawn from a totally ordered set of keys K. Each
node of the tree contains one or more keys and all the keys in the tree are unique, i.e., no duplicate keys
are permitted.

What makes a tree into a search tree is that the keys do not appear in arbitrary nodes of the tree. Instead,
there is a data ordering criterion which determines where a given key may appear in the tree in relation
to the other keys in that tree. The following sections present two related types of search trees, M-way
search trees and binary search trees.

● M-Way Search Trees
● Binary Search Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page302.html [2002-11-17 ｿﾀﾈﾄ 11:05:14]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

M-Way Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

M-Way Search Trees

Definition (M-way Search Tree) An M-way search tree T is a finite set of keys. Either

the set is empty, ; or the set consists of n M-way subtrees , , ..., , and n-1

keys, , , ..., ,

where , such that the keys and nodes satisfy the following data ordering

properties :

1. The keys in each node are distinct and ordered, i.e., for .

2. All the keys contained in subtree are less than . The tree is called the

left subtree with respect to the key .

3. All the keys contained in subtree are greater than . The tree is called the

right subtree with respect to the key .

Figure gives an example of an M-way search tree for M=4. In this case, each of the non-empty nodes
of the tree has between one and three keys and at most four subtrees. All the keys in the tree satisfy the
data ordering properties. Specifically, the keys in each node are ordered and for each key in the tree, all
the keys in the left subtree with respect to the given key are are less than the given key, and all the keys
in the right subtree with respect to the given key are larger than than the given key. Finally, it is
important to note that the topology of the tree is not determined by the particular set of keys it contains.

http://www.brpreiss.com/books/opus6/html/page303.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:15]

http://www.brpreiss.com/books/opus6/index.html

M-Way Search Trees

Figure: An M-way search tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page303.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Search Trees

Just as the binary tree is an important category of N-ary trees, the binary search tree is an important
category of M-way search trees.

Definition (Binary Search Tree) A binary search tree T is a finite set of keys. Either

the set is empty, ; or the set consists of a root r and exactly two binary search trees

 and , , such that the following properties are satisfied:

1. All the keys contained in left subtree, , are less than r.

2. All the keys contained in the right subtree, , are greater than r.

Figure shows an example of a binary search tree. In this case, since the nodes of the tree carry
alphabetic rather than numeric keys, the ordering of the keys is alphabetic. That is, all the keys in the left
subtree of a given node precede alphabetically the root of the that node, and all the keys in the right
subtree of a given node follow alphabetically the root of that node. The empty trees are shown explicitly

as boxes in Figure . However, in order to simplify the graphical representation, the empty trees are
often omitted from the diagrams.

Figure: A binary search tree.

http://www.brpreiss.com/books/opus6/html/page304.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:16]

http://www.brpreiss.com/books/opus6/index.html

Binary Search Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page304.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Searching a Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Searching a Search Tree
The main advantage of a search tree is that the data ordering criterion ensures that it is not necessary to
do a complete tree traversal in order to locate a given item. Since search trees are defined recursively, it
is easy to define a recursive search method.

● Searching an M-way Tree
● Searching a Binary Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page305.html [2002-11-17 ｿﾀﾈﾄ 11:05:16]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Searching an M-way Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Searching an M-way Tree

Consider the search for a particular item, say x, in an M-way search tree. The search always begins at the
root. If the tree is empty, the search fails. Otherwise, the keys contained in the root node are examined to
determine if the object of the search is present. If it is, the search terminates successfully. If it is not,
there are three possibilities: Either the object of the search, x, is less than , in which case subtree is

searched; or x is greater than , in which case subtree is searched; or there exists an i such that

 for which , in which case subtree is searched.

Notice that when x is not found in a given node, only one of the n subtrees of that node is searched.
Therefore, a complete tree traversal is not required. A successful search begins at the root and traces a
downward path in the tree, which terminates at the node containing the object of the search. Clearly, the
running time of a successful search is determined by the depth in the tree of object of the search.

When the object of the search is not in the search tree, the search method described above traces a
downward path from the root which terminates when an empty subtree is encountered. In the worst case,
the search path passes through the deepest leaf node. Therefore, the worst-case running time for an
unsuccessful search is determined by the height of the search tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page306.html [2002-11-17 ｿﾀﾈﾄ 11:05:17]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Searching a Binary Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Searching a Binary Tree

The search method described above applies directly to binary search trees. As above, the search begins at
the root node of the tree. If the object of the search, x, matches the root r, the search terminates
successfully. If it does not, then if x is less than r, the left subtree is searched; otherwise x must be greater
than r, in which case the right subtree is searched.

Figure shows two binary search trees. The tree is an example of a particularly bad search tree

because it is not really very tree-like at all. In fact, it is topologically isomorphic with a linear, linked list.
In the worst case, a tree which contains n items has height O(n). Therefore, in the worst case an
unsuccessful search must visit O(n) internal nodes.

Figure: Examples of search trees.

On the other hand, tree in Figure is an example of a particularly good binary search tree. This tree

is an instance of a perfect binary tree .

http://www.brpreiss.com/books/opus6/html/page307.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:18]

http://www.brpreiss.com/books/opus6/index.html

Searching a Binary Tree

Definition (Perfect Binary Tree) A perfect binary tree of height is a binary tree

 with the following properties:

1. If h=0, then and .

2. Otherwise, h>0, in which case both and are both perfect binary trees of

height h-1.

It is fairly easy to show that a perfect binary tree of height h has exactly internal nodes.

Conversely, the height of a perfect binary tree with n internal nodes is . If we have a search

tree that has the shape of a perfect binary tree, then every unsuccessful search visits exactly h+1 internal

nodes, where . Thus, the worst case for unsuccessful search in a perfect tree is

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page307.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Case Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Case Analysis

● Successful Search
● Solving The Recurrence-Telescoping
● Unsuccessful Search
● Traversing a Search Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page308.html [2002-11-17 ｿﾀﾈﾄ 11:05:18]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Successful Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Successful Search

When a search is successful, exactly d+1 internal nodes are visited, where d is the depth in the tree of
object of the search. For example, if the object of the search is at the root which has depth zero, the search
visits just one node--the root itself. Similarly, if the object of the search is at depth one, two nodes are
visited, and so on. We shall assume that it is equally likely for the object of the search to appear in any
node of the search tree. In that case, the average number of nodes visited during a successful search is

, where is the average of the depths of the nodes in a given tree. That is, given a binary search

tree with n>0 nodes,

where is the depth of the node of the tree.

The quantity is called the internal path length . The internal path length of a tree is simply the

sum of the depths (levels) of all the internal nodes in the tree. Clearly, the average depth of an internal
node is equal to the internal path length divided by n, the number of nodes in the tree.

Unfortunately, for any given number of nodes n, there are many different possible search trees.
Furthermore, the internal path lengths of the various possibilities are not equal. Therefore, to compute the
average depth of a node in a tree with n nodes, we must consider all possible trees with n nodes. In the
absence of any contrary information, we shall assume that all trees having n nodes are equiprobable and
then compute the average depth of a node in the average tree containing n nodes.

Let I(n) be the average internal path length of a tree containing n nodes. Consider first the case of n=1.
Clearly, there is only one binary tree that contains one node--the tree of height zero. Therefore, I(1)=0.

Now consider an arbitrary tree, , having internal nodes altogether, l of which are found in its

left subtree, where . Such a tree consists of a root, the left subtree with l internal nodes and and

a right subtree with n-l-1 internal nodes. The average internal path length for such a tree is the sum of the
average internal path length of the left subtree, I(l), plus that of the right subtree, I(n-l-1), plus n-1 because

the nodes in the two subtrees are one level lower in .

http://www.brpreiss.com/books/opus6/html/page309.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:20]

http://www.brpreiss.com/books/opus6/index.html

Successful Search

In order to determine the average internal path length for a tree with n nodes, we must compute the

average of the internal path lengths of the trees averaged over all possible sizes, l, of the (left)

subtree, .

To do this we consider an ordered set of n distinct keys, . If we select the

key, , to be the root of a binary search tree, then there are l keys, , , ..., , in its left subtree and n-

l-1 keys, , , ..., in its right subtree.

If we assume that it is equally likely for any of the n keys to be selected as the root, then all the subtree

sizes in the range are equally likely. Therefore, the average internal path length for a tree with

 nodes is

Thus, in order to determine I(n) we need to solve the recurrence

To solve this recurrence we consider the case n>1 and then multiply Equation by n to get

Since this equation is valid for any n>1, by substituting n-1 for n we can also write

which is valid for n>2. Subtracting Equation from Equation gives

http://www.brpreiss.com/books/opus6/html/page309.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:20]

Successful Search

which can be rewritten as

Thus, we have shown the solution to the recurrence in Equation is the same as the solution of the
recurrence

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page309.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Solving The Recurrence-Telescoping

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Solving The Recurrence-Telescoping

This section presents a technique for solving recurrence relations such as Equation called
telescoping . The basic idea is this: We rewrite the recurrence formula so that a similar functional form
appears on both sides of the equal sign. For example, in this case, we consider n>2 and divide both sides

of Equation by n+1 to get

Since this equation is valid for any n>2, we can write the following series of equations:

Each subsequent equation in this series is obtained by substituting n-1 for n in the preceding equation. In
principle, we repeat this substitution until we get an expression on the right-hand-side involving the base
case. In this example, we stop at n-k-1=2.

Because Equation has a similar functional form on both sides of the equal sign, when we add

Equation through Equation together, most of the terms cancel leaving

http://www.brpreiss.com/books/opus6/html/page310.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:21]

http://www.brpreiss.com/books/opus6/index.html

Solving The Recurrence-Telescoping

where is the harmonic number . In Section it is shown that , where

 is called Euler's constant . Thus, we get that the average internal path length of the

average binary search tree with n internal nodes is

Finally, we get to the point: The average depth of a node in the average binary search tree with n nodes is

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page310.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Unsuccessful Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Unsuccessful Search

All successful searches terminate when the object of the search is found. Therefore, all successful
searches terminate at an internal node. In contrast, all unsuccessful searches terminate at an external

node. In terms of the binary tree shown in Figure , a successful search terminates in one of the nodes
which are drawn as a circles and an unsuccessful search terminates in one of the boxes.

The preceding analysis shows that the average number of nodes visited during a successful search
depends on the internal path length , which is simply the sum of the depths of all the internal nodes.
Similarly, the average number of nodes visited during an unsuccessful search depends on the external
path length , which is the sum of the depths of all the external nodes. Fortunately, there is a simple
relationship between the internal path length and the external path length of a binary tree.

Theorem Consider a binary tree T with n internal nodes and an internal path length of I.
The external path length of T is given by

In other words, Theorem says that the difference between the internal path length and the external
path length of a binary tree with n internal nodes is E-I=2n.

extbfProof (By induction).

Base Case Consider a binary tree with one internal node and internal path length of zero. Such a tree has
exactly two empty subtrees immediately below the root and its external path length is two. Therefore, the
theorem holds for n=1.

Inductive Hypothesis Assume that the theorem holds for for some . Consider

an arbitrary tree, , that has k internal nodes. According to Theorem , has k+1 external nodes. Let

 and be the internal and external path length of , respectively, According to the inductive

hypothesis, .

Consider what happens when we create a new tree by removing an external node from and

replacing it with an internal node that has two empty subtrees. Clearly, the resulting tree has k+1 internal

http://www.brpreiss.com/books/opus6/html/page311.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:22]

http://www.brpreiss.com/books/opus6/index.html

Unsuccessful Search

nodes. Furthermore, suppose the external node we remove is at depth d. Then the internal path length of
 is and the external path length of is

.

The difference between the internal path length and the external path length of is

Therefore, by induction on k, the difference between the internal path length and the external path length

of a binary tree with n internal nodes is 2n for all .

Since the difference between the internal and external path lengths of any tree with n internal nodes is 2n,
then we can say the same thing about the average internal and external path lengths averaged over all
search trees. Therefore, E(n), the average external path length of a binary search tree is given by

A binary search tree with internal n nodes has n+1 external nodes. Thus, the average depth of an external
node of a binary search tree with n internal nodes, , is given by

These very nice results are the raison d'être for binary search trees. What they say is that the average
number of nodes visited during either a successful or an unsuccessful search in the average binary search

tree having n nodes is . We must remember, however, that these results are premised on the

assumption that all possible search trees of n nodes are equiprobable. It is important to be aware that in
practice this may not always be the case.

http://www.brpreiss.com/books/opus6/html/page311.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:22]

Unsuccessful Search

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page311.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:22]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Traversing a Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Traversing a Search Tree

In Section , the inorder traversal of a binary tree is defined as follows:

1. Traverse the left subtree; and then
2. visit the root; and then
3. traverse the right subtree.

It should not come as a surprise that when an inorder traversal of a binary search tree is done, the nodes
of the tree are visited in order!

In an inorder traversal the root of the tree is visited after the entire left subtree has been traversed and in a
binary search tree everything in the left subtree is less than the root. Therefore, the root is visited only
after all the keys less than the root have been visited.

Similarly, in an inorder traversal the root is visited before the right subtree is traversed and everything in
the right subtree is greater than the root. Hence, the root is visited before all the keys greater than the root
are visited. Therefore, by induction, the keys in the search tree are visited in order.

Inorder traversal is not defined for arbitrary N-ary trees--it is only defined for the case of N=2.
Essentially this is because the nodes of N-ary trees contain only a single key. On the other hand, if a node

of an M-way search tree has n subtrees, then it must contain n-1 keys, such that . Therefore,

we can define inorder traversal of an M-way tree as follows:

To traverse a node of an M-way tree having n subtrees,

Traverse ; and then

visit ; and then

traverse ; and then

visit ; and then

traverse ; and then

http://www.brpreiss.com/books/opus6/html/page312.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:23]

http://www.brpreiss.com/books/opus6/index.html

Traversing a Search Tree

2n-2.
visit ; and then

2n-1.
traverse .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page312.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing Search Trees
Since search trees are designed to support efficient searching, it is only appropriate that they implement

the SearchableContainer interface. Recall from Section that the searchable container interface
includes the operations Find, IsMember, Insert, and Withdraw.

Figure: Object class hierarchy

Program defines the SearchTree interface. The SearchTree interface extends the Tree

interface defined in Program and the SearchableContainer interface defined in Program .

Program: SearchTree interface.

In addition, two properties are defined--Min and Max. The Min property provides a get accessor that
returns the object contained in the search tree having the smallest key. Similarly, the Max provides a get
accessor that returns the contained object having the largest key.

http://www.brpreiss.com/books/opus6/html/page313.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:24]

http://www.brpreiss.com/books/opus6/index.html

Implementing Search Trees

● Binary Search Trees
● Inserting Items in a Binary Search Tree
● Removing Items from a Binary Search Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page313.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Search Trees

The class BinarySearchTree introduced in Program represents binary search trees. Since binary
trees and binary search trees are topologically similar, the BinarySearchTree class extends the

BinaryTree introduced in Program . In addition, because it represents search trees, the

BinarySearchTree class implements the SearchTree interface defined in Program .

Program: BinarySearchTree class.

● Fields
● Find Method
● Min Property

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page314.html [2002-11-17 ｿﾀﾈﾄ 11:05:24]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The BinarySearchTree class inherits the three fields key, left, and right from the
BinaryTree class. The first refers to any object instance, and the latter two are BinaryTree
instances which are the subtrees of the given tree. All three fields are null if the node represents the
empty tree. Otherwise, the tree must have a root and two subtrees. Therefore, all three fields are non-
null in an internal node.

Program defines the three properties Key, Left, and Right which access key, and the left and right
subtrees, respectively, of a given binary search tree. In the BinaryTree class the left and right
fields are BinaryTrees. However, in a binary search tree, the subtrees will be instances of the
BinarySearchTree class. The Left and Right accessors cast the left and right fields to the
appropriate type. Similarly, the Key accessor casts the key field to a ComparableObject.

Program: BinarySearchTree class Key, Left and Right properties.

http://www.brpreiss.com/books/opus6/html/page315.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:25]

http://www.brpreiss.com/books/opus6/index.html

Fields

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page315.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:25]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Find Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Find Method

Program gives the code for the Find method of the BinarySearchTree class. The Find method
takes as its argument any ComparableObject. The purpose of the method is to search the tree for an
object which matches the argument. If a match is found, Find returns the matching object. Otherwise,
Find returns null.

http://www.brpreiss.com/books/opus6/html/page316.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:26]

http://www.brpreiss.com/books/opus6/index.html

Find Method

Program: BinarySearchTree class Find and Min methods.

The recursive Find method starts its search at the root and descends one level in the tree for each
recursive call. At each level at most one object comparison is made (line 7). The worst case running time
for a search is

where is the time to compare two objects and n is the number of internal nodes in the tree.

The same asymptotic running time applies for both successful and unsuccessful searches.

The average running time for a successful search is , where

 is the average depth of an internal node in a binary search tree. If

, the average time of a successful search is .

The average running time for an unsuccessful search is , where

 is the average depth of an external node in a binary search tree. If

, the average time of an unsuccessful search is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page316.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Min Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Min Property

Program also shows a recursive implementation of the Min property get accessor of the
BinarySearchTree class. It follows directly from the data ordering property of search trees that to
find the node containing the smallest key in the tree, we start at the root and follow the chain of left
subtrees until we get to the node that has an empty left subtree. The key in that node is the smallest in the
tree. Notice that no object comparisons are necessary to identify the smallest key in the tree.

The running time analysis of the accessor follows directly from that of the Find method. The worst case

running time of Min is O(n) and the average running time is , where n is the number of internal

nodes in the tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page317.html [2002-11-17 ｿﾀﾈﾄ 11:05:26]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items in a Binary Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items in a Binary Search Tree

The simplest way to insert an item into a binary search tree is to pretend that the item is already in the
tree and then follow the path taken by the Find method to determine where the item would be.
Assuming that the item is not already in the tree, the search will be unsuccessful and will terminate an an
external, empty node. That is precisely where the item to be inserted is placed!

● Insert and AttachKey Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page318.html [2002-11-17 ｿﾀﾈﾄ 11:05:27]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Insert and AttachKey Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Insert and AttachKey Methods

The Insert method of the BinarySearchTree class is defined in Program . This method takes
as its argument the object which is to be inserted into the binary search tree. It is assumed in this
implementation that duplicate keys are not permitted. That is, all of the keys contained in the tree are
unique.

http://www.brpreiss.com/books/opus6/html/page319.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:28]

http://www.brpreiss.com/books/opus6/index.html

Insert and AttachKey Methods

Program: BinarySearchTree class Insert, AttachKey and Balance methods.

The Insert method behaves like the Find method until it arrives at an external, empty node. Once the
empty node has been found, it is transformed into an internal node by calling the AttachKey method.
AttachKey works as follows: The object being inserted is assigned to the key field and two new
empty binary trees are attached to the node.

Notice that after the insertion is done, the Balance method is called. However, as shown in Program

, the BinarySearchTree.Balance method does nothing. (Section describes the class
AVLTree which is derived from the BinarySearchTree class and which inherits the Insert
method but overrides the Balance operation).

The asymptotic running time of the Insert method is the same as that of Find for an unsuccessful

search. That is, in the worst case the running time is and the average case

running time is

where is the average depth of an external node in a binary search tree with n

internal nodes. When , the worst case running time is O(n) and the average case is

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page319.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a Binary Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a Binary Search Tree

When removing an item from a search tree, it is imperative that the tree which remains satisfies the data
ordering criterion. If the item to be removed is in a leaf node, then it is fairly easy to remove that item
from the tree since doing so does not disturb the relative order of any of the other items in the tree.

For example, consider the binary search tree shown in Figure (a). Suppose we wish to remove the
node labeled 4. Since node 4 is a leaf, its subtrees are empty. When we remove it from the tree, the tree

remains a valid search tree as shown in Figure (b).

Figure: Removing a leaf node from a binary search tree.

To remove a non-leaf node, we move it down in the tree until it becomes a leaf node since a leaf node is
easily deleted. To move a node down we swap it with another node which is further down in the tree. For

example, consider the search tree shown in Figure (a). Node 1 is not a leaf since it has an empty left
subtree but a non-empty right subtree. To remove node 1, we swap it with the smallest key in its right

subtree, which in this case is node 2, Figure (b). Since node 1 is now a leaf, it is easily deleted. Notice

that the resulting tree remains a valid search tree, as shown in Figure (c).

http://www.brpreiss.com/books/opus6/html/page320.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:28]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a Binary Search Tree

Figure: Removing a non-leaf node from a binary search tree.

To move a non-leaf node down in the tree, we either swap it with the smallest key in the right subtree or
with the largest one in the left subtree. At least one such swap is always possible, since the node is a non-
leaf and therefore at least one of its subtrees is non-empty. If after the swap, the node to be deleted is not
a leaf, the we push it further down the tree with yet another swap. Eventually, the node must reach the
bottom of the tree where it can be deleted.

● Withdraw Method

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page320.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Withdraw Method

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Withdraw Method

Program gives the code for the Withdraw method of the BinarySearchTree class. The
Withdraw method takes as its argument the object instance to be removed from the tree. The algorithm
first determines the location of the object to be removed and then removes it according to the procedure
described above.

http://www.brpreiss.com/books/opus6/html/page321.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:29]

http://www.brpreiss.com/books/opus6/index.html

Withdraw Method

Program: BinarySearchTree class Withdraw method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page321.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:29]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

AVL Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

AVL Search Trees

The problem with binary search trees is that while the average running times for search, insertion, and

withdrawal operations are all , any one operation is still O(n) in the worst case. This is so

because we cannot say anything in general about the shape of the tree.

For example, consider the two binary search trees shown Figure . Both trees contain the same set of
keys. The tree is obtained by starting with an empty tree and inserting the keys in the following order

The tree is obtained by starting with an empty tree and inserting the keys in this order

Clearly, is a better tree search tree than . In fact, since is a perfect binary tree , its height is

. Therefore, all three operations, search, insertion, and withdrawal, have the same

worst case asymptotic running time, .

The reason that is better than is that it is the more balanced tree. If we could ensure that the search

trees we construct are balanced then the worst-case running time of search, insertion, and withdrawal,
could be made logarithmic rather than linear. But under what conditions is a tree balanced?

If we say that a binary tree is balanced if the left and right subtrees of every node have the same height,
then the only trees which are balanced are the perfect binary trees. A perfect binary tree of height h has

exactly internal nodes. Therefore, it is only possible to create perfect trees with n nodes for

. Clearly, this is an unsuitable balance condition because it is not possible to

create a balanced tree for every n.

What are the characteristics of a good balance condition ?

http://www.brpreiss.com/books/opus6/html/page322.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:31]

http://www.brpreiss.com/books/opus6/index.html

AVL Search Trees

1. A good balance condition ensures that the height of a tree with n nodes is .

2. A good balance condition can be maintained efficiently. That is, the additional work necessary to
balance the tree when an item is inserted or deleted is O(1).

Adelson-Velskii and Landis were the first to propose the following balance condition and show that it
has the desired characteristics.

Definition (AVL Balance Condition) An empty binary tree is AVL balanced . A non-

empty binary tree, , is AVL balanced if both and are AVL

balanced and

where is the height of and is the height of .

Clearly, all perfect binary trees are AVL balanced. What is not so clear is that heights of all trees that
satisfy the AVL balance condition are logarithmic in the number of internal nodes.

Theorem The height, h, of an AVL balanced tree with n internal nodes satisfies

extbfProof The lower bound follows directly from Theorem . It is in fact true for all binary trees
regardless of whether they are AVL balanced.

To determine the upper bound, we turn the problem around and ask the question, what is the minimum
number of internal nodes in an AVL balanced tree of height h?

Let represent an AVL balanced tree of height h which has the smallest possible number of internal

nodes, say . Clearly, must have at least one subtree of height h-1 and that subtree must be .

To remain AVL balanced, the other subtree can have height h-1 or h-2. Since we want the smallest
number of internal nodes, it must be . Therefore, the number of internal nodes in is

, where .

Clearly, contains a single internal node, so . Similarly, contains exactly two nodes, so

. Thus, is given by the recurrence

http://www.brpreiss.com/books/opus6/html/page322.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:31]

AVL Search Trees

The remarkable thing about Equation is its similarity with the definition of Fibonacci numbers

(Equation). In fact, it can easily be shown by induction that

for all , where is the Fibonacci number.

Base Cases

Inductive Hypothesis Assume that for . Then

Therefore, by induction on k, , for all .

According to Theorem , the Fibonacci numbers are given by

where and . Furthermore, since , .

Therefore,

http://www.brpreiss.com/books/opus6/html/page322.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:31]

AVL Search Trees

This completes the proof of the upper bound.

So, we have shown that the AVL balance condition satisfies the first criterion of a good balance

condition--the height of an AVL balanced tree with n internal nodes is . What remains to be

shown is that the balance condition can be efficiently maintained. To see that it can, we need to look at
an implementation.

● Implementing AVL Trees
● Inserting Items into an AVL Tree
● Removing Items from an AVL Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page322.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing AVL Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing AVL Trees

Having already implemented a binary search tree class, BinarySearchTree, we can make use of

much of the existing code to implement an AVL tree class. Program introduces the AVLTree class

which extends the BinarySearchTree class introduced in Program . The AVLTree class inherits
most of its functionality from the binary tree class. In particular, it uses the inherited Insert and
Withdraw methods! However, the inherited Balance, AttachKey and DetachKey methods are
overridden and a number of new methods are declared.

Program: AVLTree fields.

Program indicates that an additional field is added in the AVLTree class. This turns out to be
necessary because we need to be able to determine quickly, i.e., in O(1) time, that the AVL balance
condition is satisfied at a given node in the tree. In general, the running time required to compute the
height of a tree containing n nodes is O(n). Therefore, to determine whether the AVL balance condition
is satisfied at a given node, it is necessary to traverse completely the subtrees of the given node. But this
cannot be done in constant time.

To make it possible to verify the AVL balance condition in constant time, the field height has been
added. Thus, every node in an AVLTree keeps track of its own height. In this way it is possible for the
Height property get accessor to run in constant time--all it needs to do is to return the value of the
height field. And this makes it possible to test whether the AVL balanced condition satisfied at a given
node in constant time.

http://www.brpreiss.com/books/opus6/html/page323.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:32]

http://www.brpreiss.com/books/opus6/index.html

Implementing AVL Trees

● Constructor
● AdjustHeight Method, Height and BalanceFactor Properties

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page323.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor

A no-arg constructor is shown in Program . This constructor creates an empty AVL tree. The height
field is set to the value -1, which is consistent with the empty tree. Notice that according to Definition

, the empty tree is AVL balanced. Therefore, the result is a valid AVL tree. Clearly, the running time
of the constructor is O(1).

http://www.brpreiss.com/books/opus6/html/page324.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:33]

http://www.brpreiss.com/books/opus6/index.html

Constructor

Program: AVLTree class constructor, AdjustHeight method, Height and BalanceFactor
properties.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page324.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:33]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

AdjustHeight Method, Height and BalanceFactor Properties

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

AdjustHeight Method, Height and BalanceFactor Properties

The Height property provides a get accessor that returns the value of the height field. Clearly the
running time of this method is constant.

The purpose of AdjustHeight is to recompute the height of a node and to update the height field.
This method must be called whenever the height of one of the subtrees changes in order to ensure the
height field is always up to date. The AdjustHeight method determines the height of a node by
adding one to the height of the highest subtree. Since the running time of the Height accessor is
constant, so too is the running time of AdjustHeight.

The BalanceFactor property provides a get accessor that returns the difference between the heights

of the left and right subtrees of a given AVL tree. By Definition , the empty node is AVL balanced.
Therefore, the BalanceFactor is zero for an empty tree. Again, since the running time of the
Height accessor is constant, the running time of BalanceFactor is also constant.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page325.html [2002-11-17 ｿﾀﾈﾄ 11:05:33]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items into an AVL Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items into an AVL Tree

Inserting an item into an AVL tree is a two-part process. First, the item is inserted into the tree using the
usual method for insertion in binary search trees. After the item has been inserted, it is necessary to check
that the resulting tree is still AVL balanced and to balance the tree when it is not.

Just as in a regular binary search tree, items are inserted into AVL trees by attaching them to the leaves.
To find the correct leaf we pretend that the item is already in the tree and follow the path taken by the
Find method to determine where the item should go. Assuming that the item is not already in the tree,
the search is unsuccessful and terminates an an external, empty node. The item to be inserted is placed in
that external node.

Inserting an item in a given external node affects potentially the heights of all of the nodes along the
access path , i.e., the path from the root to that node. Of course, when an item is inserted in a tree, the
height of the tree may increase by one. Therefore, to ensure that it resulting tree is still AVL balanced,
the heights of all the nodes along the access path must be recomputed and the AVL balance condition
must be checked.

Sometimes increasing the height of a subtree does not violate the AVL balance condition. For example,

consider an AVL tree . Let and be the heights of and , respectively.

Since T is an AVL tree, then . Now, suppose that . Then, if we insert an

item into , its height may increase by one to . The resulting tree is still AVL balanced

since . In fact, this particular insertion actually makes the tree more balanced! Similarly if

 initially, an insertion in either subtree will not result in a violation of the balance condition at

the root of T.

On the other hand, if and an the insertion of an item into the left subtree increases the

height of that tree to , the AVL balance condition is no longer satisfied because

. Therefore it is necessary to change the structure of the tree to bring it back into balance.

http://www.brpreiss.com/books/opus6/html/page326.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:34]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items into an AVL Tree

● Balancing AVL Trees
● Single Rotations
● Double Rotations
● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page326.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Balancing AVL Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Balancing AVL Trees

When an AVL tree becomes unbalanced, it is possible to bring it back into balance by performing an
operation called a rotation . It turns out that there are only four cases to consider and each case has its
own rotation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page327.html [2002-11-17 ｿﾀﾈﾄ 11:05:34]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Single Rotations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Single Rotations

Figure (a) shows an AVL balanced tree. For example, the balance factor for node A is zero, since its
left and right subtrees have the same height; and the balance factor of node B is +1, since its left subtree
has height h+1 and its right subtree has height h.

http://www.brpreiss.com/books/opus6/html/page328.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:35]

http://www.brpreiss.com/books/opus6/index.html

Single Rotations

Figure: Balancing an AVL tree with a single (LL) rotation.

Suppose we insert an item into , the left subtree of A. The height of can either increase or remain

the same. In this case we assume that it increases. Then, as shown in Figure (b), the resulting tree is
no longer AVL balanced. Notice where the imbalance has been manifested--node A is balanced but node
B is not.

Balance can be restored by reorganizing the two nodes A and B, and the three subtrees, , , and

, as shown in Figure (c). This is called an LL rotation , because the first two edges in the

insertion path from node B both go to the left.

There are three important properties of the LL rotation:

1. The rotation does not destroy the data ordering property so the result is still a valid search tree.
Subtree remains to the left of node A, subtree remains between nodes A and B, and

subtree remains to the right of node B.

2. After the rotation both A and B are AVL balanced. Both nodes A and B end up with zero balance
factors.

3. After the rotation, the tree has the same height it had originally. Inserting the item did not increase
the overall height of the tree!

Notice, the LL rotation was called for because the root became unbalanced with a positive balance factor
(i.e., its left subtree was too high) and the left subtree of the root also had a positive balance factor.

Not surprisingly, the left-right mirror image of the LL rotation is called an RR rotation . An RR rotation
is called for when the root becomes unbalanced with a negative balance factor (i.e., its right subtree is too
high) and the right subtree of the root also has a negative balance factor.

http://www.brpreiss.com/books/opus6/html/page328.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:35]

Single Rotations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page328.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Double Rotations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Double Rotations

The preceding cases have dealt with access paths LL and RR. Clearly two more cases remain to be
implemented. Consider the case where the root becomes unbalanced with a positive balance factor but

the left subtree of the root has a negative balance factor. This situation is shown in Figure (b).

http://www.brpreiss.com/books/opus6/html/page329.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:36]

http://www.brpreiss.com/books/opus6/index.html

Double Rotations

Figure: Balancing an AVL tree with a double (LR) rotation.

The tree can be restored by performing an RR rotation at node A, followed by an LL rotation at node C.

The tree which results is shown in Figure (c). The LL and RR rotations are called single rotations .
The combination of the two single rotations is called a double rotation and is given the name LR
rotation because the first two edges in the insertion path from node C both go left and then right.

Obviously, the left-right mirror image of the LR rotation is called an RL rotation . An RL rotation is
called for when the root becomes unbalanced with a negative balance factor but the right subtree of the
root has a positive balance factor. Double rotations have the same properties as the single rotations: The
result is a valid, AVL-balanced search tree and the height of the result is the same as that of the initial
tree.

Clearly the four rotations, LL, RR, LR, and RL, cover all the possible ways in which any one node can
become unbalanced. But how many rotations are required to balance a tree when an insertion is done?
The following theorem addresses this question:

Theorem When an AVL tree becomes unbalanced after an insertion, exactly one single or
one double rotation is required to balance the tree.

extbfProof When an item, x, is inserted into an AVL tree, T, that item is placed in an external node of the
tree. The only nodes in T whose heights may be affected by the insertion of x are those nodes which lie
on the access path from the root of T to x. Therefore, the only nodes at which an imbalance can appear
are those along the access path. Furthermore, when a node is inserted into a tree, either the height of the
tree remains the same or the height of the tree increases by one.

http://www.brpreiss.com/books/opus6/html/page329.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:36]

Double Rotations

Consider some node c along the access path from the root of T to x. When x is inserted, the height of c
either increases by one, or remains the same. If the height of c does not change, then no rotation is
necessary at c or at any node above c in the access path.

If the height of c increases then there are two possibilities: Either c remains balanced or an imbalance
appears at c. If c remains balanced, then no rotation is necessary at c. However, a rotation may be needed
somewhere above c along the access path.

On the other hand, if c becomes unbalanced, then a single or a double rotation must be performed at c.
After the rotation is done, the height of c is the same as it was before the insertion. Therefore, no further
rotation is needed above c in the access path.

Theorem suggests the following method for balancing an AVL tree after an insertion: Begin at the
node containing the item which was just inserted and move back along the access path toward the root.
For each node determine its height and check the balance condition. If the height of the current node does
not increase, then the tree is AVL balanced and no further nodes need be considered. If the node has
become unbalanced, a rotation is needed to balance it. After the rotation, the height of the node remains
unchanged, the tree is AVL balanced and no further nodes need be considered. Otherwise, the height of
the node increases by one, but no rotation is needed and we proceed to the next node on the access path.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page329.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program gives the code for the LLRotation method of the AVLTree class. This code implements

the LL rotation shown in Figure . The purpose of the LLRotation method is to perform an LL
rotation at the root of a given AVL tree instance.

Program: AVLTree class LLRotation method.

The rotation is simply a sequence of variable manipulations followed by two height adjustments. Notice
the rotation is done in such a way so that the the given AVLTree instance remains the root of the tree.

http://www.brpreiss.com/books/opus6/html/page330.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:37]

http://www.brpreiss.com/books/opus6/index.html

Implementation

This is done so that if the tree has a parent, it is not necessary to modify the contents of the parent.

The AVLTree class also requires an RRRotation method to implement an RR rotation. The

implementation of that method follows directly from Program . Clearly, the running time for the
single rotations is O(1).

Program gives the implementation for the LRRotation method of the AVLTree class. This double
rotation is trivially implemented as a sequence of two single rotations. As above, the method for the
complementary rotation is easily derived from the given code. The running time for each of the double
rotation methods is also O(1).

Program: AVLTree class LRRotation method.

When an imbalance is detected, it is necessary to correct the imbalance by doing the appropriate rotation.

The code given in Program takes care of this. The Balance method tests for an imbalance using the
BalanceFactor property. The balance test itself takes constant time. If the node is balanced, only a
constant-time height adjustment is needed.

http://www.brpreiss.com/books/opus6/html/page330.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:37]

Implementation

Program: AVLTree class Balance method.

Otherwise, the Balance method of the AVLTree class determines which of the four cases has
occurred, and invokes the appropriate rotation to correct the imbalance. To determine which case has
occurred, the Balance method calls the BalanceFactor property get accessor at most twice.
Therefore, the time for selecting the case is constant. In all only one rotation is done to correct the
imbalance. Therefore, the running time of this method is O(1).

The Insert method for AVL trees is inherited from the BinarySearchTree class (see Program

). The Insert method calls AttachKey to do the actual insertion. The AttachKey method is

overridden in the AVLTree class as shown in Program .

http://www.brpreiss.com/books/opus6/html/page330.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:37]

Implementation

Program: AVLTree class AttachKey method.

The very last thing that the Insert method does is to call the Balance method. which has also been

overridden as shown in Program . As a result the Insert method adjusts the heights of the nodes
along the insertion path and does a rotation when an imbalance is detected. Since the height of an AVL

tree is guaranteed to be , the time for insertion is simply .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page330.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from an AVL Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from an AVL Tree

The method for removing items from an AVL tree is inherited from the BinarySearchTree class in

the same way as AVL insertion. (See Program). All the differences are encapsulated in the
DetachKey and Balance methods. The Balance method is discussed above. The DetachKey

method is defined in Program

Program: AVLTree class DetachKey method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page331.html [2002-11-17 ｿﾀﾈﾄ 11:05:37]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

M-Way Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

M-Way Search Trees

As defined in Section , an internal node of an M-way search tree contains n subtrees and n-1 keys,

where , for some fixed value of . The preceding sections give implementations for

the special case in which the fixed value of M=2 is assumed (binary search trees). In this section, we
consider the implementation of M-way search trees for arbitrary, larger values of .

Why are we interested in larger values of M? Suppose we have a very large data set--so large that we
cannot get it all into the main memory of the computer at the same time. In this situation we implement
the search tree in secondary storage, i.e., on disk. The unique characteristics of disk-based storage vis-à-
vis memory-based storage make it necessary to use larger values of M in order to implement search trees
efficiently.

The typical disk access time is 1-10 ms, whereas the typical main memory access time is 10-100 ns.
Thus, main memory accesses are between 10000 and 1000000 times faster than typical disk accesses.
Therefore to maximize performance, it is imperative that the total number of disk accesses be minimized.

In addition, disks are block-oriented devices. Data are transfered between main memory and disk in large
blocks. The typical block sizes are between 512 bytes and 4096 bytes. Consequently, it makes sense to
organize the data structure to take advantage of the ability to transfer entire blocks of data efficiently.

By choosing a suitably large value for M, we can arrange that one node of an M-way search tree occupies
an entire disk block. If every internal node in the M-way search tree has exactly M children, we can use

Theorem to determine the height of the tree:

where n is the number of internal nodes in the search tree. A node in an M-way search tree that has M

children contains exactly M-1 keys. Therefore, altogether there are K=(M-1)n keys and Equation

becomes . Ideally the search tree is well balanced and the inequality becomes

an equality.

For example, consider a search tree which contains keys. Suppose the size of a disk
block is such that we can fit a node of size M=128 in it. Since each node contains at most 127 keys, at

http://www.brpreiss.com/books/opus6/html/page332.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:38]

http://www.brpreiss.com/books/opus6/index.html

M-Way Search Trees

least 16513 nodes are required. In the best case, the height of the M-way search tree is only two and at
most three disk accesses are required to retrieve any key! This is a significant improvement over a binary
tree, the height of which is at least 20.

● Implementing M-Way Search Trees
● Finding Items in an M-Way Search Tree
● Inserting Items into an M-Way Search Tree
● Removing Items from an M-Way Search Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page332.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing M-Way Search Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing M-Way Search Trees

In order to illustrate the basic ideas, this section describes an implementation of M-way search trees in

main memory. According to Definition , each internal node of an M-way search tree has n subtrees,
where n is at least two and at most M. Furthermore, if a node has n subtrees, it must contain n-1 keys.

Figure shows how we can implement a single node of an M-way search tree. The idea is that we use
two arrays in each node--the first holds the keys and the second contains pointers to the subtrees. Since
there are at most M subtrees but only M-1 keys, the first element of the array of keys is not used.

Figure: Representing a node of an M-way search tree.

● Implementation
● Constructor and M Property
● Inorder Traversal

http://www.brpreiss.com/books/opus6/html/page333.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:39]

http://www.brpreiss.com/books/opus6/index.html

Implementing M-Way Search Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page333.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the MWayTree class. The MWayTree class extends the AbstractTree class

introduced in Program and it implements the SearchableContainer interface defined in

Program . The two fields, key and subtree, correspond to the components of a node shown in

Figure . (Remember, the count field is inherited from the AbstractContainer base class

introduced in Program).

Program: MWayTree fields.

The first field, key, is an array ComparableObject instances. It is used to record the keys contained
in the node. The second field, subtree, is an array of MWayTree instances which are the subtrees of
the given node.

The inherited count field keeps track of the number of keys contained in the node. Recall, a node which

http://www.brpreiss.com/books/opus6/html/page334.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:39]

http://www.brpreiss.com/books/opus6/index.html

Implementation

contains keys has subtrees. We have chosen to keep track of the number of keys of a

node rather than the number of subtrees because it simplifies the coding of the algorithms by eliminating
some of the special cases.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page334.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and M Property

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and M Property

Program defines the constructor and the M property of the MWayTree class. The constructor takes a
single, integer-valued argument that specifies the desired value of M. Provided M is greater than or equal
to two, the constructor creates two arrays of length M. Note, a node in an M-way tree contains at most M-
1 keys. In the implementation shown, key[0] is never used. Because the constructor allocates arrays of
length M, its worst-case running time is O(M).

The M property shown in Program provides a get accessor that returns the value of M. That is, it
returns the maximum number of subtrees that a node is allows to have. This is simply given by the
length of the subtree array. The running time of the accessor is clearly O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page335.html [2002-11-17 ｿﾀﾈﾄ 11:05:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inorder Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inorder Traversal

Whereas inorder traversal of an N-ary tree is not defined for N>2, inorder traversal is defined for an M-
way search tree: By definition, the inorder traversal of a search tree visits all the keys contained in the
search tree in order.

Program is an implementation of the algorithm for depth-first traversal of an M-way search tree given

in Section . The keys contained in a given node are visited (by calling the InVisit method of the
visitor) in between the appropriate subtrees of that node. That is, key is visited in between subtrees

 and .

http://www.brpreiss.com/books/opus6/html/page336.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:41]

http://www.brpreiss.com/books/opus6/index.html

Inorder Traversal

Program: MWayTree class DepthFirstTraversal method.

In addition, the PostVisit method is called on after subtree has been visited, and the

PreVisit method is called on before subtree is visited.

It is clear that the amount of work done at each node during the course of a depth-first traversal is
proportional to the number of keys contained in that node. Therefore, the total running time for the depth-

first traversal is , where K is the number of

keys contained in the search tree.

http://www.brpreiss.com/books/opus6/html/page336.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:41]

Inorder Traversal

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page336.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Finding Items in an M-Way Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Finding Items in an M-Way Search Tree

Two algorithms for finding items in an M-way search tree are described in this section. The first is a na
ıve implementation using linear search. The second version improves upon the first by using a binary
search.

● Linear Search
● Binary Search

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page337.html [2002-11-17 ｿﾀﾈﾄ 11:05:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linear Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linear Search

Program gives the naıve version of the Find method of the MWayTree class. The Find method
takes a ComparableObject and locates the item in the search tree which matches the given object.

Program: MWayTree class Find method (linear search).

Consider the execution of the Find method for a node T of a an M-way search tree. Suppose the object

of the search is x. Clearly, the search fails when (lines 10-11). In this case, null is returned.

http://www.brpreiss.com/books/opus6/html/page338.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:43]

http://www.brpreiss.com/books/opus6/index.html

Linear Search

Suppose . The linear search on lines 13-20 considers the

keys , , , ..., , in that order. If a match is found, the matching object is returned

immediately (lines 16-17).

Otherwise, when the main loop terminates there are three possibilities: i=0 and ;

 and ; or i=n-1 and . In all three cases, the appropriate subtree in

which to continue search is (line 21).

Clearly the running time of Program is determined by the main loop. In the worst case, the loop is
executed M-1 times. Therefore, at each node in the search path at most M-1 object comparisons are done.

Consider an unsuccessful search in an M-way search tree. The running time of the Find method is

in the worst case, where h is the height of the tree and is the time required to compare two

objects. Clearly, the time for a successful search has the same asymptotic bound. If the tree is balanced

and , then the running time of Program is , where K is the

number of keys in the tree.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page338.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Search

We can improve the performance of the M-way search tree search algorithm by recognizing that since the

keys are kept in a sorted array, we can do a binary search rather than a linear search. Program gives
an alternate implementation for the Find method of the MWayTree class. This method makes use of the
FindIndex method which does the actual binary search.

http://www.brpreiss.com/books/opus6/html/page339.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:44]

http://www.brpreiss.com/books/opus6/index.html

Binary Search

Program: MWayTree class FindIndex and Find methods (binary search).

The FindIndex method as its argument a ComparableObject, say x, and returns an int in the
range between 0 and n-1, where n is the number of subtrees of the given node. The result is the largest

integer i, if it exists, such that where is the key. Otherwise, it returns the value 0.

FindIndex determines its result by doing a binary search. In the worst case,

iterations of the main loop (lines 14-21) are required to determine the correct index. One object
comparison is done before the loop (line 10) and one comparison is done in each loop iteration (line 17).
Therefore, the running time of the FindIndex method is

If , this simplifies to .

The Find method of the MWayTree class does the actual search. It calls FindIndex to determine

largest integer i, if it exists, such that where is the key (line 29). If it turns out that ,

then the search is finished (lines 30-31). Otherwise, Find calls itself recursively to search subtree

(line 33).

Consider a search in an M-way search tree. The running time of the second version of Find is

where h is the height of the tree and regardless of whether the search is successful. If the tree is balanced

and , then the running time of Program is simply ,

where K is the number of keys in the tree.

http://www.brpreiss.com/books/opus6/html/page339.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:44]

Binary Search

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page339.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items into an M-Way Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items into an M-Way Search Tree

The method for inserting items in an M-way search tree follows directly from the algorithm for insertion

in a binary search tree given in Section . The added wrinkle in an M-way tree is that an internal node
may contain between 1 and M-1 keys whereas an internal node in a binary tree must contain exactly one
key.

Program gives the implementation of the Insert method of the MWayTree class. This method
takes as its argument the object to be inserted into the search tree.

http://www.brpreiss.com/books/opus6/html/page340.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:45]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items into an M-Way Search Tree

Program: MWayTree class Insert method.

The general algorithm for insertion is to search for the item to be inserted and then to insert it at the point
where the search terminates. If the search terminates at an external node, that node is transformed to an

internal node of the form , where x is the key just inserted (lines 10-16).

If the search terminates at an internal node, we insert the new item into the sorted list of keys at the
appropriate offset. Inserting the key x in the array of keys moves all the keys larger than x and the
associated subtrees to the right one position (lines 23-33). The hole in the list of subtrees is filled with an
empty tree (line 31).

The preceding section gives the running time for a search in an M-way search tree as

where h is the height of the tree. The additional time required to insert the item into the node once the
correct node has been located is O(M). Therefore, the total running time for the Insert algorithm given

in Program is

http://www.brpreiss.com/books/opus6/html/page340.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:45]

Inserting Items into an M-Way Search Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page340.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from an M-Way Search Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from an M-Way Search Tree

The algorithm for removing items from an M-way search tree follows directly from the algorithm for

removing items from a binary search tree given in Section . The basic idea is that the item to be
deleted is pushed down the tree from its initial position to a node from which it can be easily deleted.
Clearly, items are easily deleted from leaf nodes. In addition, consider an internal node of an M-way
search tree of the form

If both and are empty trees, then the key can be deleted from T by removing both and ,

say. If is non-empty, can be pushed down the tree by swapping it with the largest key in ;

and if is non-empty, can be pushed down the tree by swapping it with the smallest key in .

Program gives the code for the Withdraw method of the MWayTree class. The general form of the

algorithm follows that of the Withdraw method for the BinarySearchTree class (Program).

http://www.brpreiss.com/books/opus6/html/page341.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:45]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from an M-Way Search Tree

Program: MWayTree class Withdraw method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page341.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

B-Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

B-Trees

Just as AVL trees are balanced binary search trees, B-trees are balanced M-way search trees. By
imposing a balance condition , the shape of an AVL tree is constrained in a way which guarantees that

the search, insertion, and withdrawal operations are all , where n is the number of items in the

tree. The shapes of B-Trees are constrained for the same reasons and with the same effect.

Definition (B-Tree) A B-Tree of order M is either the empty tree or it is an M-way
search tree T with the following properties:

1. The root of T has at least two subtrees and at most M subtrees.

2. All internal nodes of T (other than its root) have between and M subtrees.

3. All external nodes of T are at the same level.

A B-tree of order one is clearly impossible. Hence, B-trees of order M are really only defined for

. However, in practice we expect that M is large for the same reasons that motivate M-way search

trees--large databases in secondary storage.

Figure gives an example of a B-tree of order M=3. By Definition , the root of a B-tree of order
three has either two or three subtrees and the internal nodes also have either two or three subtrees.

Furthermore, all the external nodes, which are shown as small boxes in Figure , are at the same level.

http://www.brpreiss.com/books/opus6/html/page342.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:46]

http://www.brpreiss.com/books/opus6/index.html

B-Trees

Figure: A B-tree of order 3.

It turns out that the balance conditions imposed by Definition are good in the same sense as the AVL
balance conditions. That is, the balance condition guarantees that the height of B-trees is logarithmic in
the number of keys in the tree and the time required for insertion and deletion operations remains
proportional to the height of the tree even when balancing is required.

Theorem The minimum number of keys in a B-tree of order and height is

.

extbfProof Clearly, a B-tree of height zero contains at least one node. Consider a B-tree order M and

height h>0. By Definition , each internal node (except the root) has at least subtrees. This

implies the minimum number of keys contained in an internal node is . The minimum

number of keys a level zero is 1; at level one, ; at level two, ; at

level three, ; and so on.

Therefore the minimum number of keys in a B-tree of height h>0 is given by the summation

http://www.brpreiss.com/books/opus6/html/page342.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:46]

B-Trees

A corollary of Theorem is that the height, h, of a B-tree containing n keys is given by

Thus, we have shown that a B-tree satisfies the first criterion of a good balance condition--the height of

B-tree with n internal nodes is . What remains to be shown is that the balance condition can be

efficiently maintained during insertion and withdrawal operations. To see that it can, we need to look at
an implementation.

● Implementing B-Trees
● Inserting Items into a B-Tree
● Removing Items from a B-Tree

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page342.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing B-Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing B-Trees

Having already implemented the M-way search tree class, MWayTree, we can make use of much the

existing code to implement a B-tree class. Program introduces the BTree class which extends the

class MWayTree class introduced in Program With the exception of the two methods which modify
the tree, Insert and Withdraw, the BTree class inherits all its functionality from the M-way tree
class. Of course, the Insert and Withdraw methods need to be redefined in order to ensure that every
time tree is modified the tree which results is a B-tree.

Program: BTree fields.

● Fields
● Constructor and AttachSubtree Methods

http://www.brpreiss.com/books/opus6/html/page343.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:47]

http://www.brpreiss.com/books/opus6/index.html

Implementing B-Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page343.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

To simplify the implementation of the algorithms, a parent field has been added. The parent field
refers to the BTree node which is the parent of the given node. Whereas the subtree field of the
MWayTree class allows an algorithm to move down the tree; the parent field admits movement up the
tree. Since the root of a tree has no parent, the parent field of the root node is assigned the value
null.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page344.html [2002-11-17 ｿﾀﾈﾄ 11:05:47]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and AttachSubtree Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and AttachSubtree Methods

Program defines a constructor that takes a single int argument M and creates an empty B-tree of
order M. By default, the parent field is null.

The AttachSubtree method is used to attach a new subtree to a given node. The AttachSubtree
routine takes an integer, i, and an M-way tree (which must be a B-tree instance), and makes it the
subtree of the given node. Notice that this method also modifies the parent field in the attached node.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page345.html [2002-11-17 ｿﾀﾈﾄ 11:05:48]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inserting Items into a B-Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inserting Items into a B-Tree

The algorithm for insertion into a B-Tree begins as do all the other search tree insertion algorithms: To
insert item x, we begin at the root and conduct a search for it. Assuming the item is not already in the
tree, the unsuccessful search will terminate at a leaf node. This is the point in the tree at which the x is
inserted.

If the leaf node has fewer than M-1 keys in it, we simply insert the item in the leaf node and we are done.
For example, consider a leaf node with n<M subtrees and n-1 keys of the form

For every new key inserted in the node, a new subtree is required too. In this case because T is a leaf, all

its subtrees are empty trees. Therefore, when we insert item x, we really insert the pair of items .

Suppose the key to be inserted falls between and , i.e., . When we insert the pair

 into T we get the new leaf T' given by

What happens when the leaf is full? That is, suppose we wish to insert the pair, into a node T

which already has M-1 keys. Inserting the pair in its correct position gives a result of the form

However, this is not a valid node in a B-tree of order M because it has M+1 subtrees and M keys. The
solution is to split node T' in half as follows

Note, is a valid B-tree node because it contains subtrees and keys. Similarly,

is a valid B-tree node because it contains subtrees and keys. Note that

there is still a key left over, namely .

http://www.brpreiss.com/books/opus6/html/page346.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:49]

http://www.brpreiss.com/books/opus6/index.html

Inserting Items into a B-Tree

There are now two cases to consider--either T is the root or it is not. Suppose T is not the root. Where we

once had the single node T, we now have the two nodes, and , and the left-over key, . This

situation is resolved as follows: First, replaces T in the parent of T. Next, we take the pair

 and recursively insert it in the parent of T.

Figure illustrates this case for a B-tree of order three. Inserting the key 6 in the tree causes the leaf
node to overflow. The leaf is split in two. The left half contains key 5; and the right, key 7; and key 6 is
left over. The two halves are re-attached to the parent in the appropriate place with the left-over key
between them.

http://www.brpreiss.com/books/opus6/html/page346.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:49]

Inserting Items into a B-Tree

Figure: Inserting items into a B-tree (insert 6).

If the parent node fills up, then it too is split and the two new nodes are inserted in the grandparent. This
process may continue all the way up the tree to the root. What do we do when the root fills up? When the
root fills, it is also split. However, since there is no parent into which to insert the two new children, a
new root is inserted above the old root. The new root will contain exactly two subtrees and one key, as

allowed by Definition .

Figure illustrates this case for a B-tree of order three. Inserting the key 3 in the tree causes the leaf
node to overflow. Splitting the leaf and reattaching it causes the parent to overflow. Similarly, splitting
the parent and reattaching it causes the grandparent to overflow but the grandparent is the root. The root
is split and a new root is added above it.

http://www.brpreiss.com/books/opus6/html/page346.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:49]

Inserting Items into a B-Tree

Figure: Inserting items into a B-tree (insert 3).

Notice that the height of the B-tree only increases when the root node splits. Furthermore, when the root
node splits, the two halves are both attached under the new root. Therefore, the external nodes all remain

at the same depth, as required by Definition .

● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page346.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Insertion in a B-tree is a two-pass process. The first pass moves down the tree from the root in order to
locate the leaf in which the insertion is to begin. This part of the algorithm is quite similar to the Find

method given in Program . The second pass moves from the bottom of the tree back up to the root,

splitting nodes and inserting them further up the tree as needed. Program gives the code for the first

(downward) pass (Insert method) and the Program gives the code for the second (upward) pass
(InsertPair method).

http://www.brpreiss.com/books/opus6/html/page347.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:50]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: BTree class Insert method.

In the implementation shown, the downward pass starts at the root node and descends the tree until it
arrives at an external node. If the external node has no parent, it must be the root and, therefore, the tree
is empty. In this case, the root becomes an internal node containing a single key and two empty subtrees
(lines 11-13). Otherwise, we have arrived at an external node in a non-empty tree and the second pass

begins by calling InsertPair to insert the pair in the parent.

The upward pass of the insertion algorithm is done by the recursive InsertPair method shown in

Program . The InsertPair method takes two arguments. The first, object, is a
ComparableObject and the second, child, is a BTree. It is assumed that all the keys in child
are strictly greater than object.

http://www.brpreiss.com/books/opus6/html/page347.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:50]

Implementation

Program: BTree class InsertPair method.

The InsertPair method calls FindIndex to determine the position in the array of keys at which
pair (object,child) should be inserted (line 8). If this node is full (line 9), the InsertKey is called
to insert the given key at the specified position in the key array (line 11) and InsertSubtree is
called to insert the given tree at the specified position in the subtree array (line 12).

In the event that the node is full, the InsertKey method returns the key which falls off the right end of
the array. This is assigned to extraKey (line 17). Similarly, the InsertSubtree method returns the
tree which falls of the right end of the array. This is assigned to extraTree (line 19).

The node has now overflowed and it is necessary to balance the B-tree. If the node overflows and it is the

root (line 20), then two new B-trees, left and right are created (lines 22-23). The first

keys and subtrees of the given node are moved to the left tree by the AttachLeftHalfOf

method (line 24); and the last keys and subtrees of the given

node are moved to the right tree by the AttachRightHalfOf method (line 25). Then, the pair
(extraKey,extraTree) is inserted into the right tree (line 26).

http://www.brpreiss.com/books/opus6/html/page347.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:50]

Implementation

The left-over key is the one in the middle of the array, i.e., . Finally, the root node is modified so

that it contains the two new subtrees and the single left-over key (lines 27-30).

If the node overflows and it is not the root, then one new B-tree is created, right (line 35). The last

 keys and subtrees of the given node are moved to the left tree

by the AttachRightHalfOf method (line 36) and the pair (extraKey,extraTree) is inserted in

the right tree (line 37). The first keys and subtrees of the given node remain

attached to it.

Finally, the InsertPair method calls itself recursively to insert the left-over key, , and the

new B-tree, right, into the parent of this (line 38). This is the place where the parent field is needed!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page347.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The running time of the downward pass of the insertion algorithm is identical to that of an unsuccessful
search (assuming the item to be inserted is not already in the tree). That is, for a B-tree of height h, the
worst-case running time of the downward pass is

The second pass of the insertion algorithm does the insertion and balances the tree if necessary. In the
worst case, all of the nodes in the insertion path up to the root need to be balanced. Each time the
InsertPair method is invoked, it calls FindIndex which has running time

 in the worst case. The additional time required to

balance a node is O(M). Therefore, the worst-case running time of the upward pass is

Therefore, the total running time for insertion is

According to Theorem , the height of a B-tree is , where n is the number

of keys in the B-tree. If we assume that two keys can be compared in constant time, i.e.,

, then the running time for insertion in a B-tree is simply .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page348.html [2002-11-17 ｿﾀﾈﾄ 11:05:51]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a B-Tree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a B-Tree

The algorithm for removing items from a B-tree is similar to the algorithm for removing item from an
AVL tree. That is, once the item to be removed has be found, it is pushed down the tree to a leaf node
where it can be easily deleted. When an item is deleted from a node it is possible that the number of keys

remaining is less than . In this case, balancing is necessary.

The algorithm of balancing after deletion is like the balancing after insertion in that it progresses from

the leaf node up the tree toward the root. Given a node T which has keys, there are four

cases to consider.

In the first case, T is the root. If no keys remain, T becomes the empty tree. Otherwise, no balancing is
needed because the root is permitted to have as few as two subtrees and one key. For the remaining cases
T is not the root.

In the second case T has keys and it also has a sibling immediately on the left with at least

 keys. The tree can be balanced by doing an LL rotation as shown in Figure . Notice that after

the rotation, both siblings have at least keys. Furthermore, the heights of the siblings remain

unchanged. Therefore, the resulting tree is a valid B-tree.

http://www.brpreiss.com/books/opus6/html/page349.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a B-Tree

Figure: LL rotation in a B-tree.

The third case is the left-right mirror of the second case. That is, T has keys and it also has a

sibling immediately on the right with a least keys. In this case, the tree can be balanced by doing

an RR rotation .

In the fourth and final case, T has keys, and its immediate sibling(s) have keys.

In this case, the sibling(s) cannot give-up a key in a rotation because they already have the minimum

number of keys. The solution is to merge T with one of its siblings as shown in Figure .

http://www.brpreiss.com/books/opus6/html/page349.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

Removing Items from a B-Tree

Figure: Merging nodes in a B-tree.

The merged node contains keys from T, keys from the sibling, and one key

from the parent (the key x in Figure). The resulting node contains keys altogether,

which is M-2 if M is even and M-1 if M is odd. Either way, the resulting node contains no more than M-1
keys and is a valid B-tree node. Notice that in this case a key has been removed from the parent of T.
Therefore, it may be necessary to balance the parent. Balancing the parent may necessitate balancing the
grandparent, and so on, up the tree to the root.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page349.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications
There are many applications for search trees. The principal characteristic of such applications is that a
database of keyed information needs to be frequently accessed and the access pattern is either unknown
or known to be random. For example, dictionaries are often implemented using search trees. A dictionary
is essentially a container that contains ordered key/value pairs. The keys are words is a source language
and, depending on the application, the values may be the definitions of the words or the translation of the
word in a target language.

This section presents a simple application of search trees. Suppose we are required to translate the words
in an input file one-by-one from some source language to another target language. In this example, the
translation is done one word at a time. That is, no natural language syntactic or semantic processing is
done.

In order to implement the translator we assume that there exists a text file, which contains pairs of words.
The first element of the pair is a word in the source language and the second element is a word in the
target language. To translate a text, we first read the words and the associated translations and build a
search tree. The translation is created one word at a time by looking up each word in the text.

Program gives an implementation of the translator. The Translate method uses a search tree to
hold the pairs of words. In this case, an AVL tree is used. However, this implementation works with all
the search tree types described in this chapter (e.g., BinarySearchTree, AVLTree, MWayTree, and
BTree).

http://www.brpreiss.com/books/opus6/html/page350.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

http://www.brpreiss.com/books/opus6/index.html

Applications

Program: Application of search trees--word translation.

The Translate method reads pairs of strings from the input stream (lines 8-12). The Association

http://www.brpreiss.com/books/opus6/html/page350.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

Applications

class defined in Section is used to contain the key/value pairs. A new instance is created for each
key/value pair which is then inserted into the search tree (lines 13-14). The process of building the search
tree terminates when the end-of-file is encountered.

During the translation phase, the Translate method reads words one at a time from the input stream
and writes the translation of each word on the output stream. Each word is looked up as it is read
(lines 21-22). If no key matches the given word, the word is printed followed by a question mark
(lines 23-24). Otherwise, the value associated with the matching key is printed (lines 27-28).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page350.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. For each of the following key sequences determine the binary search tree obtained when the keys

are inserted one-by-one in the order given into an initially empty tree:
1. 1, 2, 3, 4, 5, 6, 7.
2. 4, 2, 1, 3, 6, 5, 7.
3. 1, 6, 7, 2, 4, 3, 5.

2. For each of the binary search trees obtained in Exercise determine the tree obtained when the
root is withdrawn.

3. Repeat Exercises and for AVL trees.
4. Derive an expression for the total space needed to represent a tree of n internal nodes using each

of the following classes:

1. BinarySearchTree introduced in Program ,

2. AVLTree introduced in Program ,

3. MWayTree introduced in Program , and

4. BTree introduced in Program .

Hint: For the MWayTree and BTree assume that the tree contains are k keys, where .

5. To delete a non-leaf node from a binary search tree, we swap it either with the smallest key its
right subtree or with the largest key in its left subtree and then recursively delete it from the
subtree. In a tree of n nodes, what its the maximum number of swaps needed to delete a key?

6. Devise an algorithm to compute the internal path length of a tree. What is the running time of
your algorithm?

7. Devise an algorithm to compute the external path length of a tree. What is the running time of
your algorithm?

8. Suppose that you are given a sorted sequence of n keys, , to be inserted

into a binary search tree.
1. What is the minimum height of a binary tree that contains n nodes.
2. Devise an algorithm to insert the given keys into a binary search tree so that the height of

the resulting tree is minimized.
3. What is the running time of your algorithm?

9. Devise an algorithm to construct an AVL tree of a given height h that contains the minimum
number of nodes. The tree should contain the keys , where is given by

Equation .

http://www.brpreiss.com/books/opus6/html/page351.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:53]

http://www.brpreiss.com/books/opus6/index.html

Exercises

10. Consider what happens when we insert the keys one-by-one in the order

given into an initially empty AVL tree for . Prove that the result is always a perfect tree of

height h.

11. The Find method defined in Program is recursive. Write a non-recursive method to find a
given item in a binary search tree.

12. Repeat Exercise for the Min method defined in Program .
13. Devise an algorithm to select the key in a binary search tree. For example, given a tree with n

nodes, k=0 selects the smallest key, k=n-1 selects the largest key, and selects the

median key.
14. Devise an algorithm to test whether a given binary search tree is AVL balanced. What is the

running time of your algorithm?

15. Devise an algorithm that takes two values, a and b such that , and which visits all the keys x

in a binary search tree such that . The running time of your algorithm should be

, where N is the number of keys visited and n is the number of keys in the tree.

16. Devise an algorithm to merge the contents of two binary search trees into one. What is the
running time of your algorithm?

17. (This question should be attempted after reading Chapter). Prove that a complete binary tree

(Definition) is AVL balanced.

18. Do Exercise .
19. For each of the following key sequences determine the 3-way search tree obtained when the keys

are inserted one-by-one in the order given into an initially empty tree:
1. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
2. 3, 1, 4, 5, 9, 2, 6, 8, 7, 0.
3. 2, 7, 1, 8, 4, 5, 9, 0, 3, 6.

20. Repeat Exercise for B-trees of order 3.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page351.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:53]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Complete the implementation of the BinarySearchTree class introduced in Program by
providing suitable definitions for the following operations: IsMember and Max. You must also

have a complete implementation of the base class BinaryTree. (See Project). Write a test
program and test your implementation.

2. Complete the implementation of the AVLTree class introduced in Program by providing
suitable definitions for the following operations: RRRotation, and RLRotation. You must

also have a complete implementation of the base class BinarySearchTree. (See Project).
Write a test program and test your implementation.

3. Complete the implementation of the MWayTree class introduced in Program by providing
suitable definitions for the following operations: Purge, Count, IsEmpty, IsLeaf, Degree,
Key, GetSubtree, IsMember, Min, Max, BreadthFirstTraversal, and
GetEnumerator. Write a test program and test your implementation.

4. Complete the implementation of the BTree class introduced in Program by providing suitable
definitions for the following methods: InsertKey, InsertSubtree,
AttachLeftHalfOf, AttachRightHalfOf, and Withdraw. You must also have a

complete implementation of the base class MWayTree. (See Project). Write a test program
and test your implementation.

5. The binary search tree Withdraw method shown in Program is biased in the following way:
If the key to be deleted is in a non-leaf node with two non-empty subtrees, the key is swapped
with the maximum key in the left subtree and then recursively deleted from the left subtree.
Following a long series of insertions and deletions, the search tree will tend to have more nodes in
the right subtrees and fewer nodes in the left subtrees. Devise and conduct an experiment that
demonstrates this phenomenon.

6. Consider the implementation of AVL trees. In order to check the AVL balance condition in
constant time, we record in each node the height of that node. An alternative to keeping track of
the height information explicitly is to record in each node the difference in the heights of its two
subtrees. In an AVL balanced tree, this difference is either -1, 0 or +1. Replace the height field

of the AVL class defined in Program with one called diff and rewrite the various methods
accordingly.

7. The M-way tree implementation given in Section is an internal data structure--it is assumed
that all the nodes reside in the main memory. However, the motivation for using an M-way tree is
that it is an efficient way to organize an external data structure--one that is stored on disk. Design,

http://www.brpreiss.com/books/opus6/html/page352.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:54]

http://www.brpreiss.com/books/opus6/index.html

Projects

implement and test an external M-way tree implementation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page352.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Heaps and Priority Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Heaps and Priority Queues

In this chapter we consider priority queues. A priority queue is essentially a list of items in which each
item has associated with it a priority. In general, different items may have different priorities and we
speak of one item having a higher priority than another. Given such a list we can determine which is the
highest (or the lowest) priority item in the list. Items are inserted into a priority queue in any, arbitrary
order. However, items are withdrawn from a priority queue in order of their priorities starting with the
highest priority item first.

For example, consider the software which manages a printer. In general, it is possible for users to submit
documents for printing much more quickly than it is possible to print them. A simple solution is to place

the documents in a FIFO queue (Chapter). In a sense this is fair, because the documents are printed
on a first-come, first-served basis.

However, a user who has submitted a short document for printing will experience a long delay when
much longer documents are already in the queue. An alternative solution is to use a priority queue in
which the shorter a document, the higher its priority. By printing the shortest documents first, we reduce
the level of frustration experienced by the users. In fact, it can be shown that printing documents in order
of their length minimizes the average time a user waits for his document.

Priority queues are often used in the implementation of algorithms. Typically the problem to be solved
consists of a number of subtasks and the solution strategy involves prioritizing the subtasks and then

performing those subtasks in the order of their priorities. For example, in Chapter we show how a

priority queue can improve the performance of backtracking algorithms, in Chapter we will see how a

priority queue can be used in sorting and in Chapter several graph algorithms that use a priority queue
are discussed.

● Basics
● Binary Heaps

http://www.brpreiss.com/books/opus6/html/page353.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:54]

http://www.brpreiss.com/books/opus6/index.html

Heaps and Priority Queues

● Leftist Heaps
● Binomial Queues
● Applications
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page353.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics
A priority queue is a container which provides the following three operations:

Enqueue
used to put objects into the container;

Min
accesses the smallest object in the container; and

DequeueMin
removes the smallest object from the container.

A priority queue is used to store a finite set of keys drawn from a totally ordered set of keys K. As
distinct from search trees, duplicate keys are allowed in priority queues.

Program defines the PriorityQueue interface. The PriorityQueue interface extends the

Container interface defined in Program . In addition to the inherited methods, the
PriorityQueue interface comprises the three methods listed above.

Program: PriorityQueue interface.

Program defines the MergeablePriorityQueue interface. The MergeablePriorityQueue

interface extends the PriorityQueue interface defined in Program . A mergeable priority queue
is one which provides the ability to merge efficiently two priority queues into one. Of course it is always
possible to merge two priority queues by dequeuing the elements of one queue and enqueueing them in
the other. However, the mergeable priority queue implementations we will consider allow more efficient
merging than this.

http://www.brpreiss.com/books/opus6/html/page354.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:55]

http://www.brpreiss.com/books/opus6/index.html

Basics

Program: MergeablePriorityQueue interface.

It is possible to implement the required functionality using data structures that we have already
considered. For example, a priority queue can be implemented simply as a list. If an unsorted list is
used, enqueueing can be accomplished in constant time. However, finding the minimum and removing
the minimum each require O(n) time where n is the number of items in the queue. On the other hand, if a
sorted list is used, finding the minimum and removing it is easy--both operations can be done in constant
time. However, enqueueing an item in a sorted list requires O(n) time.

Another possibility is to use a search tree. For example, if an AVL tree is used to implement a priority

queue, then all three operations can be done in time. However, search trees provide more

functionality than we need. Search trees support finding the largest item with Max, deletion of arbitrary
objects with Withdraw, and the ability to visit in order all the contained objects via
DepthFirstTraversal. All these operations can be done as efficiently as the priority queue
operations. Because search trees support more methods than we really need for priority queues, it is
reasonable to suspect that there are more efficient ways to implement priority queues. And indeed there
are!

A number of different priority queue implementations are described in this chapter. All the
implementations have one thing in common--they are all based on a special kind of tree called a min
heap or simply a heap.

Definition ((Min) Heap) A (Min) Heap is a tree,

with the following properties:

1. Every subtree of T is a heap; and,
2. The root of T is less than or equal to the root of every subtree of T. That is,

for all i, , where is the root of .

According to Definition , the key in each node of a heap is less than or equal to the roots of all the
subtrees of that node. Therefore, by induction, the key in each node is less than or equal to all the keys
contained in the subtrees of that node. Note, however, that the definition says nothing about the relative

http://www.brpreiss.com/books/opus6/html/page354.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:55]

Basics

ordering of the keys in the subtrees of a given node. For example, in a binary heap either the left or the
right subtree of a given node may have the larger key.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page354.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Heaps

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Heaps

A binary heap is a heap-ordered binary tree which has a very special shape called a complete tree. As a
result of its special shape, a binary heap can be implemented using an array as the underlying
foundational data structure. Array subscript calculations are used to find the parent and the children of a
given node in the tree. And since an array is used, the storage overhead associated with the subtree fields
contained in the nodes of the trees is eliminated.

● Complete Trees
● Implementation
● Putting Items into a Binary Heap
● Removing Items from a Binary Heap

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page355.html [2002-11-17 ｿﾀﾈﾄ 11:05:56]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Complete Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Complete Trees

The preceding chapter introduces the idea of a perfect tree (see Definition). Complete trees and
perfect trees are closely related, yet quite distinct. As pointed out in the preceding chapter, a perfect

binary tree of height h has exactly internal nodes. Since, the only permissible values of n

are

there is no perfect binary tree which contains, say 2, 4, 5, or 6 nodes.

However, we want a data structure that can hold an arbitrary number of objects so we cannot use a
perfect binary tree. Instead, we use a complete binary tree, which is defined as follows:

Definition (Complete Binary Tree) A complete binary tree of height , is a binary

tree with the following properties.

1. If h=0, and .

2. For h>0 there are two possibilities:
1. is a perfect binary tree of height h-1 and is a complete binary tree of

height h-1; or
2. is a complete binary tree of height h-1 and is a perfect binary tree of

height h-2.

Figure shows an example of a complete binary tree of height four. Notice that the left subtree of
node 1 is a complete binary tree of height three; and the right subtree is a perfect binary tree of height

two. This corresponds to case 2 (b) of Definition . Similarly, the left subtree of node 2 is a perfect
binary tree of height two; and the right subtree is a complete binary tree of height two. This corresponds

to case 2 (a) of Definition .

http://www.brpreiss.com/books/opus6/html/page356.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:58]

http://www.brpreiss.com/books/opus6/index.html

Complete Trees

Figure: A complete binary tree.

Does there exist an complete binary with exactly n nodes for every integer n>0? The following theorem
addresses this question indirectly by defining the relationship between the height of a complete tree and
the number of nodes it contains.

Theorem A complete binary tree of height contains at least and at most

 nodes.

extbfProof First, we prove the lower bound by induction. Let be the minimum number of nodes in a

complete binary tree of height h. To prove the lower bound we must show that .

Base Case There is exactly one node in a tree of height zero. Therefore, .

Inductive Hypothesis Assume that for , for some . Consider the

complete binary tree of height k+1 which has the smallest number of nodes. Its left subtree is a complete
tree of height k having the smallest number of nodes and its right subtree is a perfect tree of height k-1.

From the inductive hypothesis, there are nodes in the left subtree and there are exactly

nodes in the perfect right subtree. Thus,

http://www.brpreiss.com/books/opus6/html/page356.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:58]

Complete Trees

Therefore, by induction for all , which proves the lower bound.

Next, we prove the upper bound by induction. Let be the maximum number of nodes in a complete

binary tree of height h. To prove the upper bound we must show that .

Base Case There is exactly one node in a tree of height zero. Therefore, .

Inductive Hypothesis Assume that for , for some .

Consider the complete binary tree of height k+1 which has the largest number of nodes. Its left subtree is
a perfect tree of height k and its right subtree is a complete tree of height k having the largest number of
nodes.

There are exactly nodes in the perfect left subtree. From the inductive hypothesis, there are

 nodes in the right subtree. Thus,

Therefore, by induction for all , which proves the upper bound.

It follows from Theorem that there exists exactly one complete binary tree that contains exactly n

internal nodes for every integer . It also follows from Theorem that the height of a complete

binary tree containing n internal nodes is .

Why are we interested in complete trees? As it turns out, complete trees have some useful characteristics.
For example, in the preceding chapter we saw that the internal path length of a tree, i.e., the sum of the
depths of all the internal nodes, determines the average time for various operations. A complete binary
tree has the nice property that it has the smallest possible internal path length:

Theorem The internal path length of a binary tree with n nodes is at least as big as the
internal path length of a complete binary tree with n nodes.

extbfProof Consider a binary tree with n nodes that has the smallest possible internal path length.
Clearly, there can only be one node at depth zero--the root. Similarly, at most two nodes can be at depth
one; at most four nodes can be at depth two; and so on. Therefore, the internal path length of a tree with n
nodes is always at least as large as the sum of the first n terms in the series

http://www.brpreiss.com/books/opus6/html/page356.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:58]

Complete Trees

But this summation is precisely the internal path length of a complete binary tree!

Since the depth of the average node in a tree is obtained by dividing the internal path length of the tree by

n, Theorem tells us that complete trees are the best possible in the sense that the average depth of a
node in a complete tree is the smallest possible. But how small is small? That is, is does the average
depth grow logarithmically with n. The following theorem addresses this question:

Theorem The internal path length of a complete binary tree with n nodes is

extbfProof The proof of Theorem is left as an exercise for the reader (Exercise).

From Theorem we may conclude that the internal path length of a complete tree is .

Consequently, the depth of the average node in a complete tree is .

● Complete N-ary Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page356.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:05:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Complete N-ary Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Complete N-ary Trees

The definition for complete binary trees can be easily extended to trees with arbitrary fixed degree

 as follows:

Definition (Complete N-ary Tree) A complete N-ary tree of height , is an N-ary

tree with the following properties.

1. If h=0, for all i, .

2. For h>0 there exists a j, such that

1. is a perfect binary tree of height h-1 for all ;

2. is a complete binary tree of height h-1; and,

3. is a perfect binary tree of height h-2 for all i:j<i<N.

Note that while it is expressed in somewhat different terms, the definition of a complete N-ary tree is

consistent with the definition of a binary tree for N=2. Figure shows an example of a complete
ternary (N=3) tree.

Figure: A complete ternary tree.

Informally, a complete tree is a tree in which all the levels are full except for the bottom level and the

bottom level is filled from left to right. For example in Figure , the first three levels are full. The

http://www.brpreiss.com/books/opus6/html/page357.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:59]

http://www.brpreiss.com/books/opus6/index.html

Complete N-ary Trees

fourth level which comprises nodes 14-21 is partially full and has been filled from left to right.

The main advantage of using complete binary trees is that they can be easily stored in an array.
Specifically, consider the nodes of a complete tree numbered consecutively in level-order as they are in

Figures and . There is a simple formula that relates the number of a node with the number of its
parent and the numbers of its children.

Consider the case of a complete binary tree. The root node is node 1 and its children are nodes 2 and 3. In

general, the children of node i are 2i and 2i+1. Conversely, the parent of node i is . Figure

illustrates this idea by showing how the complete binary tree shown in Figure is mapped into an
array.

Figure: Array representation of a complete binary tree.

A remarkable characteristic of complete trees is that filling the bottom level from left to right
corresponds to adding elements at the end of the array! Thus, a complete tree containing n nodes
occupies the first n consecutive array positions.

The array subscript calculations given above can be easily generalized to complete N-ary trees.
Assuming that the root occupies position 1 of the array, its N children occupy positions 2, 3, ..., N+1. In
general, the children of node i occupy positions

and the parent of node i is found at

http://www.brpreiss.com/books/opus6/html/page357.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:59]

Complete N-ary Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page357.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:05:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

A binary heap is a heap-ordered complete binary tree which is implemented using an array. In a heap the
smallest key is found at the root and since the root is always found in the first position of the array,
finding the smallest key is a trivial operation in a binary heap.

In this section we describe the implementation of a priority queue as a binary heap. As shown in Figure

, we define a concrete class called BinaryHeap for this purpose.

Figure: Object class hierarchy

Program introduces the BinaryHeap class. The BinaryHeap class extends the

AbstractContainer class introduced in Program and it implements the PriorityQueue

interface defined in Program .

Program: BinaryHeap fields.

http://www.brpreiss.com/books/opus6/html/page358.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:59]

http://www.brpreiss.com/books/opus6/index.html

Implementation

● Fields
● Constructor and Purge Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page358.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:05:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The BinaryHeap class has a rather simple implementation. In particular, it requires only a single field,
array, which is declared as an array of ComparableObjects. This array is used to hold the objects
which are contained in the binary tree. When there are n items in the heap, those items occupy array
positions 1, 2, ..., n.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page359.html [2002-11-17 ｿﾀﾈﾄ 11:06:00]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor and Purge Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor and Purge Methods

Program defines the BinaryHeap constructor. The constructor takes a single argument of type int
which specifies the maximum capacity of the binary heap. The constructor allocates an array of the
specified size plus one. This is done because array position zero will not be used. The running time of the
constructor is O(n), where n is the maximum length of the priority queue.

Program: BinaryHeap class constructor and Purge methods.

The purpose of the Purge method is to make the priority queue empty. The Purge method assigns the
value null to the array positions one-by-one. Clearly the worst-case running time for the Purge
method is O(n), where n is the maximum length of the priority queue.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page360.html [2002-11-17 ｿﾀﾈﾄ 11:06:00]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Putting Items into a Binary Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Putting Items into a Binary Heap

There are two requirements which must be satisfied when an item is inserted in a binary heap. First, the

resulting tree must have the correct shape. Second, the tree must remain heap-ordered. Figure
illustrates the way in which this is done.

Since the resulting tree must be a complete tree, there is only one place in the tree where a node can be
added. That is, since the bottom level must be filled from left to right, the node node must be added at the

next available position in the bottom level of the tree as shown in Figure (a).

Figure: Inserting an item into a binary heap.

In this example, the new item to be inserted has the key 2. Note that we cannot simply drop the new item
into the next position in the complete tree because the resulting tree is no longer heap ordered. Instead,
the hole in the heap is moved toward the root by moving items down in the heap as shown in Figure

 (b) and (c). The process of moving items down terminates either when we reach the root of the tree or
when the hole has been moved up to a position in which when the new item is inserted the result is a

http://www.brpreiss.com/books/opus6/html/page361.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:01]

http://www.brpreiss.com/books/opus6/index.html

Putting Items into a Binary Heap

heap.

Program gives the code for inserting an item in a binary heap. The Enqueue method of the
BinaryHeap class takes as its argument the item to be inserted in the heap. If the priority queue is full
an exception is thrown. Otherwise, the item is inserted as described above.

Program: BinaryHeap class Enqueue method.

The implementation of the algorithm is actually remarkably simple. Lines 11-15 move the hole in the
heap up by moving items down. When the loop terminates, the new item can be inserted at position i.
Therefore, the loop terminates either at the root, i=1, or when the key in the parent of i, which is found at

position , is smaller than the item to be inserted.

Notice too that a good optimizing compiler will recognize that the subscript calculations involve only
division by two. Therefore, the divisions can be replaced by bitwise right shifts which usually run much
more quickly.

Since the depth of a complete binary tree with n nodes is , the worst case running time for the

Enqueue operation is

http://www.brpreiss.com/books/opus6/html/page361.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:01]

Putting Items into a Binary Heap

where is the time required to compare to objects. If , the Enqueue operation

is simply in the worst case.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page361.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a Binary Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a Binary Heap

The DequeueMin method removes from a priority queue the item having the smallest key. In order to
remove the smallest item, it needs first to be located. Therefore, the DequeueMin operation is closely
related to Min.

The smallest item is always at the root of a min heap. Therefore, the Min operation is trivial. Program

 gives the code for the Min property get accessor of the BinaryHeap class. Assuming that no
exception is thrown, the running time of the accessor is clearly O(1).

Program: BinaryHeap class Min property.

Since the bottom row of a complete tree is filled from left to right as items are added, it follows that the
bottom row must be emptied from right to left as items are removed. So, we have a problem: The datum
to be removed from the heap by DequeueMin is in the root, but the node to be removed from the heap
is in the bottom row.

Figure (a) illustrates the problem. The DequeueMin operation removes the key 2 from the heap, but

http://www.brpreiss.com/books/opus6/html/page362.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:02]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a Binary Heap

it is the node containing key 6 that must be removed from the tree to make it into a complete tree again.

When key 2 is removed from the root, a hole is created in the tree as shown in Figure (b).

Figure: Removing an item from a binary heap.

The trick is to move the hole down in the tree to a point where the left-over key, in this case the key 6,
can be reinserted into the tree. To move a hole down in the tree, we consider the children of the empty
node and move up the smallest key. Moving up the smallest key ensures that the result will be a min
heap.

The process of moving up continues until either the hole has been pushed down to a leaf node, or until
the hole has been pushed to a point where the left over key can be inserted into the heap. In the example

shown in Figure (b)-(c), the hole is pushed from the root node to a leaf node where the key 6 is

ultimately placed is shown in Figure (d).

Program gives the code for the DequeueMin method of the BinaryHeap class. This method
implements the deletion algorithm described above. The main loop (lines 13-23) moves the hole in the
tree down by moving up the child with the smallest key until either a leaf node is reached or until the
hole has been moved down to a point where the last element of the array can be reinserted.

http://www.brpreiss.com/books/opus6/html/page362.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:02]

Removing Items from a Binary Heap

Program: BinaryHeap class DequeueMin method.

In the worst case, the hole must be pushed from the root to a leaf node. Each iteration of the loop makes
at most two object comparisons and moves the hole down one level. Therefore, the running time of the
DequeueMin operation is

where is the number of items in the heap. If and , the

http://www.brpreiss.com/books/opus6/html/page362.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:02]

Removing Items from a Binary Heap

DequeueMin operation is simply in the worst case.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page362.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Leftist Heaps

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Leftist Heaps

A leftist heap is a heap-ordered binary tree which has a very special shape called a leftist tree. One of the
nice properties of leftist heaps is that is possible to merge two leftist heaps efficiently. As a result, leftist
heaps are suited for the implementation of mergeable priority queues.

● Leftist Trees
● Implementation
● Merging Leftist Heaps
● Putting Items into a Leftist Heap
● Removing Items from a Leftist Heap

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page363.html [2002-11-17 ｿﾀﾈﾄ 11:06:03]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Leftist Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Leftist Trees

A leftist tree is a tree which tends to ``lean'' to the left. The tendency to lean to the left is defined in terms
of the shortest path from the root to an external node. In a leftist tree, the shortest path to an external
node is always found on the right.

Every node in binary tree has associated with it a quantity called its null path length which is defined as
follows:

Definition (Null Path and Null Path Length)

Consider an arbitrary node x in some binary tree T. The null path of node x is the shortest
path in T from x to an external node of T.

The null path length of node x is the length of its null path.

Sometimes it is convenient to talk about the null path length of an entire tree rather than of a node:

Definition (Null Path Length of a Tree)

The null path length of an empty tree is zero and the null path length of a non-empty

binary tree is the null path length its root R.

When a new node or subtree is attached to a given tree, it is usually attached in place of an external node.
Since the null path length of a tree is the length of the shortest path from the root of the tree to an
external node, the null path length gives a lower bound on the cost of insertion. For example, the running

time for insertion in a binary search tree, Program , is at least

where d is the null path length of the tree.

A leftist tree is a tree in which the shortest path to an external node is always on the right. This informal
idea is defined more precisely in terms of the null path lengths as follows:

http://www.brpreiss.com/books/opus6/html/page364.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:04]

http://www.brpreiss.com/books/opus6/index.html

Leftist Trees

Definition (Leftist Tree) A leftist tree is a binary tree T with the following properties:

1. Either ; or

2. , where both and are leftist trees which have null path

lengths and , respectively, such that

Figure shows an example of a leftist heap. A leftist heap is simply a heap-ordered leftist tree. The

external depth of the node is shown to the right of each node in Figure . The figure clearly shows that
it is not necessarily the case in a leftist tree that the number of nodes to the left of a given node is greater
than the number to the right. However, it is always the case that the null path length on the left is greater
than or equal to the null path length on the right for every node in the tree.

Figure: A leftist heap.

The reason for our interest in leftist trees is illustrated by the following theorems:

Theorem Consider a leftist tree T which contains n internal nodes. The path leading from

the root of T downwards to the rightmost external node contains at most

nodes.

extbfProof Assume that T has null path length d. Then T must contain at least leaves. Otherwise,

http://www.brpreiss.com/books/opus6/html/page364.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:04]

Leftist Trees

there would be a shorter path than d from the root of T to an external node.

A binary tree with exactly l leaves has exactly l-1 non-leaf internal nodes. Since T has at least

leaves, it must contain at least internal nodes altogether. Therefore, .

Since T is a leftist tree, the shortest path to an external node must be the path on the right. Thus, the

length of the path to the rightmost external is at most .

There is an interesting dichotomy between AVL balanced trees and leftist trees. The shape of an AVL
tree satisfies the AVL balance condition which stipulates that the difference in the heights of the left and
right subtrees of every node may differ by at most one. The effect of AVL balancing is to ensure that the

height of the tree is .

On the other hand, leftist trees have an ``imbalance condition'' which requires the null path length of the
left subtree to be greater than or equal to that of the right subtree. The effect of the condition is to ensure

that the length of the right path in a leftist tree is . Therefore, by devising algorithms for

manipulating leftist heaps which only follow the right path of the heap, we can achieve running times
which are logarithmic in the number of nodes.

The dichotomy also extends to the structure of the algorithms. For example, an imbalance sometimes
results from an insertion in an AVL tree. The imbalance is rectified by doing rotations. Similarly, an
insertion into a leftist tree may result in a violation of the ``imbalance condition.'' That is, the null path
length of the right subtree of a node my become greater than that of the left subtree. Fortunately, it is
possible to restore the proper condition simply by swapping the left and right subtrees of that node.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page364.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

This section presents an implementation of leftist heaps that is based on the binary tree implementation

described in Section . Program introduces the LeftistHeap class. The LeftistHeap class

extends the BinaryTree class introduced in Program and it implements the

MergeablePriorityQueue interface defined in Program .

Program: LeftistHeap fields.

● Fields

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page365.html [2002-11-17 ｿﾀﾈﾄ 11:06:05]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

Since a leftist heap is a heap-ordered binary tree, it inherits from the BinaryTree base class the three
fields: key, left, and right. The key refers to the object contained in the given node and the left
and right fields refer to the left and right subtrees of the given node, respectively. In addition, the field
nullPathLength records the null path length of the given node. By recording the null path length in
the node, it is possible to check the leftist heap balance condition in constant time.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page366.html [2002-11-17 ｿﾀﾈﾄ 11:06:05]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Merging Leftist Heaps

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Merging Leftist Heaps

In order to merge two leftist heaps, say h1 and h2, declared as follows

MergeablePriorityQueue h1 = new LeftistHeap();
MergeablePriorityQueue h2 = new LeftistHeap();

we invoke the Merge method like this:

h1.Merge(h2);

The effect of the Merge method is to take all the nodes from h2 and to attach them to h1, thus leaving
h2 as the empty heap.

In order to achieve a logarithmic running time, it is important for the Merge method to do all its work on
the right sides of h1 and h2. It turns out that the algorithm for merging leftist heaps is actually quite
simple.

To begin with, if h1 is the empty heap, then we can simply swap the contents of h1 and h2. Otherwise,
let us assume that the root of h2 is larger than the root of h1. Then we can merge the two heaps by
recursively merging h2 with the right subheap of h1. After doing so, it may turn out that the right
subheap of h1 now has a larger null path length than the left subheap. This we rectify by swapping the
left and right subheaps so that the result is again leftist. On the other hand, if h2 initially has the smaller
root, we simply exchange the roles of h1 and h2 and proceed as above.

Figure illustrates the merge operation. In this example, we wish to merge the two trees and

shown in Figure (a). Since has the larger root, it is recursively merged with the right subtree of .

The result of that merge replaces the right subtree of as shown in Figure (b). Since the null path

length of the right subtree is now greater than the left, the subtrees of are swapped giving the leftist

heap shown in Figure (c).

http://www.brpreiss.com/books/opus6/html/page367.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:06]

http://www.brpreiss.com/books/opus6/index.html

Merging Leftist Heaps

Figure: Merging leftist heaps.

http://www.brpreiss.com/books/opus6/html/page367.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:06]

Merging Leftist Heaps

Program gives the code for the Merge method of the LeftistHeap class. The Merge method
makes use of two other methods, SwapContentsWith and SwapSubtrees. The
SwapContentsWith method takes as its argument a leftist heap, and exchanges all the contents (key
and subtrees) of this heap with the given one. The SwapSubtrees method exchanges the left and
right subtrees of this node. The implementation of these routines is trivial and is left as a project for the

reader (Project). Clearly, the worst-case running time for each of these routines is O(1).

The Merge method only visits nodes on the rightmost paths of the trees being merged. Suppose we are
merging two trees, say and , with null path lengths and , respectively. Then the running time

of the Merge method is

where is time required to compare two keys. If we assume that the time to compare two keys is

a constant, then we get , where and are the number of internal nodes in trees

 and , respectively.

http://www.brpreiss.com/books/opus6/html/page367.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:06]

Merging Leftist Heaps

Program: LeftistHeap class Merge method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page367.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Putting Items into a Leftist Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Putting Items into a Leftist Heap

The Enqueue method of the LeftistHeap class is used to put items into the heap. Enqueue is
easily implemented using the Merge operation. That is, to enqueue an item in a given heap, we simply
create a new heap containing the one item to be enqueued and merge it with the given heap. The

algorithm to do this is shown in Program .

Program: LeftistHeap class Enqueue method.

The expression for the running time for the Insert operation follows directly from that of the Merge
operation. That is, the time required for the Insert operation in the worst case is

where d is the null path length of the heap into which the item is inserted. If we assume that two keys can

be compared in constant time, the running time for Insert becomes simply , where n is the

number of nodes in the tree into which the item is inserted.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page368.html [2002-11-17 ｿﾀﾈﾄ 11:06:07]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing Items from a Leftist Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing Items from a Leftist Heap

The Min property get accessor locates the item with the smallest key in a given priority queue and the
DequeueMin method removes it from the queue. Since the smallest item in a heap is found at the root,

the Min property get accessor is easy to implement. Program shows how it can be done. Clearly, the
running time of the accessor is O(1).

Program: LeftistHeap class Min property.

Since the smallest item in a heap is at the root, the DequeueMin operation must delete the root node.
Since a leftist heap is a binary heap, the root has at most two children. In general when the root is
deleted, we are left with two non-empty leftist heaps. Since we already have an efficient way to merge
leftist heaps, the solution is to simply merge the two children of the root to obtain a single heap again!

Program shows how the DequeueMin operation of the LeftistHeap class can be implemented.

http://www.brpreiss.com/books/opus6/html/page369.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:07]

http://www.brpreiss.com/books/opus6/index.html

Removing Items from a Leftist Heap

Program: LeftistHeap class DequeueMin method.

The running time of Program is determined by the time required to merge the two children of the root
(line 17) since the rest of the work in DequeueMin can be done in constant time. Consider the running
time to delete the root of a leftist heap T with n internal nodes. The running time to merge the left and
right subtrees of T

where and are the null path lengths of the left and right subtrees T, respectively. In the worst case,

 and . If we assume that , the running time for DequeueMin

is .

http://www.brpreiss.com/books/opus6/html/page369.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:07]

Removing Items from a Leftist Heap

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page369.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binomial Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binomial Queues
A binomial queue is a priority queue that is implemented not as a single tree but as a collection of heap-
ordered trees. A collection of trees is called a forest . Each of the trees in a binomial queue has a very
special shape called a binomial tree. Binomial trees are general trees. That is, the maximum degree of a
node is not fixed.

The remarkable characteristic of binomial queues is that the merge operation is similar in structure to
binary addition. That is, the collection of binomial trees that make up the binomial queue is like the set of
bits that make up the binary representation of a non-negative integer. Furthermore, the merging of two
binomial queues is done by adding the binomial trees that make up that queue in the same way that the
bits are combined when adding two binary numbers.

● Binomial Trees
● Binomial Queues
● Implementation
● Merging Binomial Queues
● Putting Items into a Binomial Queue
● Removing an Item from a Binomial Queue

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page370.html [2002-11-17 ｿﾀﾈﾄ 11:06:08]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binomial Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binomial Trees

A binomial tree is a general tree with a very special shape:

Definition (Binomial Tree) The binomial tree of order with root R is the tree

defined as follows

1. If k=0, . That is, the binomial tree of order zero consists of a

single node, R.

2. If k>0, . That is, the binomial tree of order k>0

comprises the root R, and k binomial subtrees, , , ..., .

Figure shows the first five binomial trees, - . It follows directly from Definition that the

root of , the binomial tree of order k, has degree k. Since k may arbitrarily large, so too can the degree

of the root. Furthermore, the root of a binomial tree has the largest fanout of any of the nodes in that tree.

http://www.brpreiss.com/books/opus6/html/page371.html (1 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

http://www.brpreiss.com/books/opus6/index.html

Binomial Trees

Figure: Binomial trees , , ..., .

The number of nodes in a binomial tree of order k is a function of k:

Theorem The binomial tree of order k, , contains nodes.

extbfProof (By induction). Let be the number of nodes in , a binomial tree of order k.

Base Case By definition, consists a single node. Therefore .

Inductive Hypothesis Assume that for , for some . Consider the

binomial tree of order l+1:

http://www.brpreiss.com/books/opus6/html/page371.html (2 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

Binomial Trees

Therefore the number of nodes in is given by

Therefore, by induction on l, for all .

It follows from Theorem that binomial trees only come in sizes that are a power of two. That is,

. Furthermore, for a given power of two, there is exactly one shape of

binomial tree.

Theorem The height of , the binomial tree of order k, is k.

extbfProof (By induction). Let be the height of , a binomial tree of order k.

Base Case By definition, consists a single node. Therefore .

Inductive Hypothesis Assume that for , for some . Consider the

binomial tree of order l+1:

Therefore the height is given by

http://www.brpreiss.com/books/opus6/html/page371.html (3 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

Binomial Trees

Therefore, by induction on l, for all .

Theorem tells us that the height of a binomial tree of order k is k and Theorem tells us that the

number of nodes is . Therefore, the height of is exactly .

Figure shows that there are two ways to think about the construction of binomial trees. The first way

follows directly from the Definition . That is, binomial consists of a root node to which the k

binomial trees , , ..., are attached as shown in Figure (a).

Figure: Two views of binomial tree .

http://www.brpreiss.com/books/opus6/html/page371.html (4 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

Binomial Trees

Alternatively, we can think of as being comprised of two binomial trees of order k-1. For example,

Figure (b) shows that is made up of two instances of . In general, suppose we have two trees of

order k-1, say and , where . Then we can

construct a binomial tree of order k by combining the trees to get

Why do we call a binomial tree? It is because the number of nodes at a given depth in the tree is

determined by the binomial coefficient. And the binomial coefficient derives its name from the binomial
theorem. And the binomial theorem tells us how to compute the power of a binomial . And a
binomial is an expression which consists of two terms, such as x+y. That is why it is called a binomial
tree!

Theorem (Binomial Theorem) The power of the binomial x+y for is given by

where is called the binomial coefficient .

extbfProof The proof of the binomial theorem is left as an exercise for the reader (Exercise).

The following theorem gives the expression for the number of nodes at a given depth in a binomial tree:

Theorem The number of nodes at level l in , the binomial tree of order k, where

, is given by the binomial coefficient .

extbfProof (By induction). Let be the number of nodes at level l in , a binomial tree of order k.

Base Case Since contains a single node, there is only one level in the tree, l=0, and exactly one node

at that level. Therefore, .

Inductive Hypothesis Assume that for , for some . The

http://www.brpreiss.com/books/opus6/html/page371.html (5 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

Binomial Trees

binomial tree of order h+1 is composed of two binomial trees of height h, one attached under the root of
the other. Hence, the number of nodes at level l in is equal to the number of nodes at level l in

plus the number of nodes at level l-1 in :

Therefore by induction on h, .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page371.html (6 of 6) [2002-11-17 ｿﾀﾈﾄ 11:06:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binomial Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binomial Queues

If binomial trees only come in sizes that are powers of two, how do we implement a container which
holds an arbitrary number number of items n using binomial trees? The answer is related to the binary
representation of the number n. Every non-negative integer n can be expressed in binary form as

where is the binary digit or bit in the representation of n. For example, n=27 is

expressed as the binary number because 27=16+8+2+1.

To make a container which holds exactly n items we use a collection of binomial trees. A collection of
trees is called a forest . The forest contains binomial tree if the bit in the binary representation of n

is a one. That is, the forest which contains exactly n items is given by

where is determined from Equation . For example, the forest which contains 27 items is

The analogy between and the binary representation of n carries over to the merge operation. Suppose

we have two forests, say and . Since contains n items and contains m items, the

combination of the two contains n+m items. Therefore, the resulting forest is .

For example, consider n=27 and m=10. In this case, we need to merge with

. Recall that two binomial trees of order k can be combined to obtain a binomial tree of

order k+1. For example, . But this is just like adding binary digits! In binary notation,

the sum 27+10 is calculated like this:

http://www.brpreiss.com/books/opus6/html/page372.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:13]

http://www.brpreiss.com/books/opus6/index.html

Binomial Queues

1 1 0 1 1

+ 1 0 1 0

1 0 0 1 0 1

The merging of and is done in the same way:

+

Therefore, the result is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page372.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:13]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

● Heap-Ordered Binomial Trees
● Adding Binomial Trees
● Binomial Queues
● Fields
● AddTree and RemoveTree
● MinTree and Min Properties

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page373.html [2002-11-17 ｿﾀﾈﾄ 11:06:13]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Heap-Ordered Binomial Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Heap-Ordered Binomial Trees

Since binomial trees are simply general trees with a special shape, we can make use of the

GeneralTree class presented in Section to implement the BinomialTree class. (See Figure

).

Program introduces the BinomialQueue class and the inner class BinomialTree. The

BinomialTree class extends the GeneralTree class introduced in Program .

No new fields a declared in the BinomialTree class. Remember that the implementation of the
GeneralTree class uses a linked list to contain the pointers to the subtrees, since the degree of a node
in a general tree may be arbitrarily large. Also, the GeneralTree class already keeps track of the
degree of a node in its degree field. Since the degree of the root node of a binomial tree of order k is k,
it is not necessary to keep track of the order explicitly. The degree variable serves this purpose nicely.

Program: BinomialTree class.

http://www.brpreiss.com/books/opus6/html/page374.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:14]

http://www.brpreiss.com/books/opus6/index.html

Heap-Ordered Binomial Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page374.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Adding Binomial Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Adding Binomial Trees

Recall that we can combine two binomial trees of the same order, say k, into a single binomial tree of
order k+1. Each of the two trees to be combined is heap-ordered. Since the smallest key is at the root of a
heap-ordered tree, we know that the root of the result must be the smaller root of the two trees which are
to be combined. Therefore, to combine the two trees, we simply attach the tree with the larger root under

the root of the tree with the smaller root. For example, Figure illustrates how two heap-ordered
binomial trees of order two are combined into a single heap-ordered tree of order three.

Figure: Adding binomial trees.

The Add method defined in Program provides the means to combine two binomial trees of the same
order. The Add method takes a BinomialTree and attaches the specified tree to this node. This is
only permissible when both trees have the same order.

http://www.brpreiss.com/books/opus6/html/page375.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:15]

http://www.brpreiss.com/books/opus6/index.html

Adding Binomial Trees

Program: BinomialTree class Add method.

In order to ensure that the resulting binomial tree is heap ordered, the roots of the trees are compared. If
necessary, the contents of the nodes are exchanged using SwapContentsWith (lines 13-14) before the
subtree is attached (line 15). Assuming SwapContentsWith and AttachSubtree both run in

constant time, the worst-case running time of the Add method is . That is, exactly one

comparison and a constant amount of additional work is needed to combine two binomial trees.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page375.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binomial Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binomial Queues

A binomial queue is a mergeable priority queue implemented as a forest of binomial trees. In this section
we present a linked-list implementation of the forest. That is, the forest is represented using a linked list
of binomial trees.

Program introduces the BinomialQueue class. The BinomialQueue class extends the

AbstractContainer class introduced in Program and it implements the

MergeablePriorityQueue interface defined in Program .

Program: BinomialQueue fields.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page376.html [2002-11-17 ｿﾀﾈﾄ 11:06:15]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Fields

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Fields

The BinomialQueue class definition contains the single field treeList, which is an instance of the

LinkedList class introduced in Program . The binomial trees contained in the linked list are stored
in increasing order. That is, the binomial tree at the head of the list has the smallest order, and the
binomial tree at the tail has the largest order.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page377.html [2002-11-17 ｿﾀﾈﾄ 11:06:15]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

AddTree and RemoveTree

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

AddTree and RemoveTree

The AddTree and RemoveTree methods of the BinomialQueue class facilitate the implementation

of the various priority queue operations. These methods are defined in Program . The AddTree
method takes a BinomialTree and appends that tree to treeList. AddTree also adjusts the
count in order to keep track of the number of items in the priority queue. It is assumed that the order of
the tree which is added is larger than all the others in the list and, therefore, that it belongs at the end of
the list. The running time of AddTree is clearly O(1).

Program: BinomialQueue class AddTree and RemoveTree methods.

The RemoveTree method takes a binomial tree and removes it from the list. It is assumed that the
specified tree is actually in the list. RemoveTree also adjust the count as required. The running time
of RemoveTree depends on the position of the tree in the list. A binomial queue which contains exactly

n items altogether has at most binomial trees. Therefore, the running time of

http://www.brpreiss.com/books/opus6/html/page378.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:16]

http://www.brpreiss.com/books/opus6/index.html

AddTree and RemoveTree

RemoveTree is in the worst case.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page378.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

MinTree and Min Properties

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

MinTree and Min Properties

A binomial queue that contains n items consists of at most binomial trees. Each of these

binomial trees is heap ordered. In particular, the smallest key in each binomial tree is at the root of that
tree. So, we know that the smallest key in the queue is found at the root of one of the binomial trees, but
we do not know which tree it is.

The MinTree property get accessor is used to determine which of the binomial trees in the queue has

the smallest root. As shown in Program , the MinTree simply traverses the entire linked list to find

the tree with the smallest key at its root. Since there are at most binomial trees, the worst-

case running time of MinTree is

http://www.brpreiss.com/books/opus6/html/page379.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:17]

http://www.brpreiss.com/books/opus6/index.html

MinTree and Min Properties

Program: BinomialQueue class MinTree and Min methods.

Program also defines the Min property get accessor that returns the smallest key in the priority
queue. The Min property uses the MinTree property to locate the tree with the smallest key at its root
and returns that key. Clearly, the asymptotic running time of the Min accessor is the same as that of the
MinTree accessor.

http://www.brpreiss.com/books/opus6/html/page379.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:17]

MinTree and Min Properties

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page379.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Merging Binomial Queues

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Merging Binomial Queues

Merging two binomial queues is like doing binary addition. For example, consider the addition of

and :

+

The usual algorithm for addition begins with the least-significant ``bit.'' Since contains a tree and

 does not, the result is simply the tree from .

In the next step, we add the from and the from . Combining the two s we get a

which we carry to the next column. Since there are no s left, the result does not contain any. The

addition continues in a similar manner until all the columns have been added up.

Program gives an implementation of this addition algorithm. The Merge method of the
BinomialQueue class takes a BinomialQueue and adds its subtrees to this binomial queue.

http://www.brpreiss.com/books/opus6/html/page380.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:18]

http://www.brpreiss.com/books/opus6/index.html

Merging Binomial Queues

Program: BinomialQueue class Merge method.

Each iteration of the main loop of the algorithm (lines 15-41) computes the ``bit'' of the result--the
bit is a binomial tree of order i. At most three terms need to be considered: the carry from the preceding

http://www.brpreiss.com/books/opus6/html/page380.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:18]

Merging Binomial Queues

iteration and two s, one from each of the queues that are being merged.

Two methods, Sum and Carry, compute the result required in each iteration. Program defines both
Sum and Carry. Notice that the Sum method simply selects and returns one of its arguments. Therefore,
the running time for Sum is clearly O(1).

http://www.brpreiss.com/books/opus6/html/page380.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:18]

Merging Binomial Queues

Program: BinomialQueue class Sum and Carry methods.

In the worst case, the Carry method calls the Add method to combine two BinomialTrees into one.
Therefore, the worst-case running time for Carry is

Suppose the Merge method of Program is used to combine a binomial queue with n items with
another that contains m items. Since the resulting priority queue contains n+m items, there are at most

 binomial trees in the result. Thus, the worst-case running time for the Merge

operation is

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page380.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Putting Items into a Binomial Queue

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Putting Items into a Binomial Queue

With the Merge method at our disposal, the Enqueue operation is easy to implement. To enqueue an
item in a given binomial queue, we create another binomial queue that contains just the one item to be
enqueued and merge that queue with the original one.

Program shows how easily this can be done. Creating the empty queue (line 9) takes a constant
amount of time. Creating the binomial tree with the one object at its root (line 10) can also be done in

constant time. Finally, the time required to merge the two queues is

where n is the number of items originally in the queue.

Program: BinomialQueue class Enqueue method.

http://www.brpreiss.com/books/opus6/html/page381.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:19]

http://www.brpreiss.com/books/opus6/index.html

Putting Items into a Binomial Queue

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page381.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:19]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Removing an Item from a Binomial Queue

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Removing an Item from a Binomial Queue

A binomial queue is a forest of heap-ordered binomial trees. Therefore, to dequeue the smallest item
from the queue, we must withdraw the root of one of the binomial trees. But what do we do with the rest
of the tree once its root has been removed?

The solution lies in realizing that the collection of subtrees of the root of a binomial tree is a forest! For
example, consider the binomial tree of order k,

Taken all together, its subtrees form the binomial queue :

Therefore, to delete the smallest item from a binomial queue, we first identify the binomial tree with the
smallest root and remove that tree from the queue. Then, we consider all the subtrees of the root of that

tree as a binomial queue and merge that queue back into the original one. Program shows how this
can be coded.

http://www.brpreiss.com/books/opus6/html/page382.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:20]

http://www.brpreiss.com/books/opus6/index.html

Removing an Item from a Binomial Queue

Program: BinomialQueue class DequeueMin method.

The DequeueMin method begins by using the MinTree accessor to find the tree with the smallest root
and then removing that tree using RemoveTree (lines 11-12). The time required to find the appropriate
tree and to remove it is

where n is the number of items in the queue.

A new binomial queue is created on line 14. All the children of the root of the minimum tree are

http://www.brpreiss.com/books/opus6/html/page382.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:20]

Removing an Item from a Binomial Queue

detached from the tree and added to the new binomial queue (lines 15-21). In the worst case, the

minimum tree is the one with the highest order. i.e., , and the root of that tree has

children. Therefore, the running time of the loop on lines 15-21 is .

The new queue is then merged with the original one (line 22). Since the resulting queue contains n-1
keys, the running time for the Merge operation in this case is

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page382.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications

● Discrete Event Simulation
● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page383.html [2002-11-17 ｿﾀﾈﾄ 11:06:20]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Discrete Event Simulation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Discrete Event Simulation

One of the most important applications of priority queues is in discrete event simulation. Simulation is a
tool which is used to study the behavior of complex systems. The first step in simulation is modeling. We
construct a mathematical model of the system we wish to study. Then we write a computer program to
evaluate the model. In a sense the behavior of the computer program mimics the system we are studying.

The systems studied using discrete event simulation have the following characteristics: The system has a
state which evolves or changes with time. Changes in state occur at distinct points in simulation time. A
state change moves the system from one state to another instantaneously. State changes are called events.

For example, suppose we wish to study the service received by customers in a bank. Suppose a single
teller is serving customers. If the teller is not busy when a customer arrives at the bank, the that customer
is immediately served. On the other hand, if the teller is busy when another customer arrives, that
customer joins a queue and waits to be served.

We can model this system as a discrete event process as shown in Figure . The state of the system is
characterized by the state of the server (the teller), which is either busy or idle, and by the number of
customers in the queue. The events which cause state changes are the arrival of a customer and the
departure of a customer.

Figure: A simple queueing system.

If the server is idle when a customer arrives, the server immediately begins to serve the customer and
therefore changes its state to busy. If the server is busy when a customer arrives, that customer joins the
queue.

When the server finishes serving the customer, that customer departs. If the queue is not empty, the
server immediately commences serving the next customer. Otherwise, the server becomes idle.

http://www.brpreiss.com/books/opus6/html/page384.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:20]

http://www.brpreiss.com/books/opus6/index.html

Discrete Event Simulation

How do we keep track of which event to simulate next? Each event (arrival or departure) occurs at a
discrete point in simulation time . In order to ensure that the simulation program is correct, it must
compute the events in order. This is called the causality constraint--events cannot change the past.

In our model, when the server begins to serve a customer we can compute the departure time of that
customer. So, when a customer arrives at the server we schedule an event in the future which
corresponds to the departure of that customer. In order to ensure that events are processed in order, we
keep them in a priority queue in which the time of the event is its priority. Since we always process the
pending event with the smallest time next and since an event can schedule new events only in the future,
the causality constraint will not be violated.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page384.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

This section presents the simulation of a system comprised of a single queue and server as shown in

Figure . Program defines the class Event which represents events in the simulation. There are
two parts to an event, a type (either ARRIVAL or DEPARTURE), and a time.

Program: Event class.

Since events will be put into a priority queue, the Event class is derived from the Association class

introduced in Section . An association is an ordered pair comprised of a key and a value. In the case of
the Event class, the key is the time of the event and the value is the type of the event. Therefore, the

http://www.brpreiss.com/books/opus6/html/page385.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:21]

http://www.brpreiss.com/books/opus6/index.html

Implementation

events in a priority queue are prioritized by their times.

Program defines the Run method which implements the discrete event simulation. This method takes
one argument, timeLimit, which specifies the total amount of time to be simulated.

The Simulation class contains a single field, called eventList, which is a priority queue. This
priority queue is used to hold the events during the course of the simulation.

http://www.brpreiss.com/books/opus6/html/page385.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:21]

Implementation

Program: Application of priority queues--discrete event simulation.

The state of the system being simulated is represented by the two variables serverBusy and
numberInQueue. The first is a bool value which indicates whether the server is busy. The second
keeps track of the number of customers in the queue.

In addition to the state variables, there are two instances of the class ExponentialRV. The class

ExponentialRV is a random number generator defined in Section . It implements the

RandomVariable interface defined in Program . This interface defines a property called Next
which is used to sample the random number generator. Every time Next property get accessor is
called, a different (random) result is returned. The random values are exponentially distributed around a
mean value which is specified in the constructor. For example, in this case both serviceTime and
interArrivalTime produce random distributions with the mean value of 100 (lines 9-11).

It is assumed that the eventList priority queue is initially empty. The simulation begins by
enqueueing a customer arrival at time zero (line 12). The while loop (lines 13-44) constitutes the main
simulation loop. This loop continues as long as the eventList is not empty, i.e., as long as there is an
event to be simulated

Each iteration of the simulation loop begins by dequeuing the next event in the event list (line 14). If the
time of that event exceeds timeLimit, the event is discarded, the eventList is purged, and the
simulation is terminated. Otherwise, the simulation proceeds.

http://www.brpreiss.com/books/opus6/html/page385.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:21]

Implementation

The simulation of an event depends on the type of that event. The switch statement (line 18) invokes
the appropriate code for the given event. If the event is a customer arrival and the server is not busy,
serverBusy is set to true and the serviceTime random number generator is sampled to
determine the amount of time required to service the customer. A customer departure is scheduled at the
appropriate time in the future (lines 23-25). On the other hand, if the server is already busy when the
customer arrives, we add one to the numberInQueue variable (line 28).

Another customer arrival is scheduled after every customer arrival. The interArrivalTime random
number generator is sampled, and the arrival is scheduled at the appropriate time in the future (lines 29-
31).

If the event is a customer departure and the queue is empty, the server becomes idle (lines 34-35). When
a customer departs and there are still customers in the queue, the next customer in the queue is served.
Therefore, numberInQueue is decreased by one and the serviceTime random number generator is
sampled to determine the amount of time required to service the next customer. A customer departure is
scheduled at the appropriate time in the future (lines 37-40).

Clearly the execution of the Simulation method given in Program mimics the modeled system. Of
course, the program given produces no output. For it to be of any practical value, the simulation program
should be instrumented to allow the user to study its behavior. For example, the user may be interested in
knowing statistics such as the average queue length and the average waiting time that a customer waits
for service. And such instrumentation can be easily incorporated into the given framework.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page385.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. For each of the following key sequences determine the binary heap obtained when the keys are

inserted one-by-one in the order given into an initially empty heap:
1. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
2. 3, 1, 4, 1, 5, 9, 2, 6, 5, 4.
3. 2, 7, 1, 8, 2, 8, 1, 8, 2, 8.

2. For each of the binary heaps obtained in Exercise determine the heap obtained after three
consecutive DequeueMin operations.

3. Repeat Exercises and for a leftist heap.

4. Show the result obtained by inserting the keys one-by-one in the order given into

an initially empty binomial queue.

5. A full binary tree is a tree in which each node is either a leaf or its is a full node (see Exercise).
Consider a complete binary tree with n nodes.

1. For what values of n is a complete binary tree a full binary tree.
2. For what values of n is a complete binary a perfect binary tree.

6. Prove by induction Theorem .
7. Devise an algorithm to determine whether a given binary tree is a heap. What is the running time

of your algorithm?
8. Devise an algorithm to find the largest item in a binary min heap. Hint: First, show that the

largest item must be in one of the leaves. What is the running time of your algorithm?
9. Suppose we are given an arbitrary array of n keys to be inserted into a binary heap all at once.

Devise an O(n) algorithm to do this. Hint: See Section .
10. Devise an algorithm to determine whether a given binary tree is a leftist tree. What is the running

time of your algorithm?
11. Prove that a complete binary tree is a leftist tree.
12. Suppose we are given an arbitrary array of n keys to be inserted into a leftist heap all at once.

Devise an O(n) algorithm to do this. Hint: See Exercises and .

13. Consider a complete binary tree with its nodes numbered as shown in Figure . Let K be the
number of a node in the tree. The the binary representation of K is

http://www.brpreiss.com/books/opus6/html/page386.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:22]

http://www.brpreiss.com/books/opus6/index.html

Exercises

where .

1. Show that path from the root to a given node K passes passes through the following nodes:

2. Consider a complete binary tree with n nodes. The nodes on the path from the root to the
 are special. Show that every non-special node is the root of a perfect tree.

14. The Enqueue algorithm for the BinaryHeap class does object comparisons in the

worst case. In effect, this algorithm does a linear search from a leaf to the root to find the point at
which to insert a new key. Devise an algorithm that a binary search instead. Show that the number

of comparisons required becomes . Hint: See Exercise .

15. Prove Theorem .

16. Do Exercise .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page386.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:22]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Design and implement a sorting algorithm using one of the priority queue implementations

described in this chapter.

2. Complete the BinaryHeap class introduced in Program by providing suitable definitions for
the following operations: CompareTo, IsFull, Accept, and GetEnumerator. Write a test
program and test your implementation.

3. Complete the LeftistHeap class introduced in Program by providing suitable definitions
for the following operations: LeftistHeap (constructor), Left, Right,
SwapContentsWith, and SwapSubtrees. You will require a complete implementation of

the base class BinaryTree. (See Project). Write a test program and test your
implementation.

4. Complete the implementation of the BinomialTree class introduced in Program by
providing suitable definitions for the following operations: BinomialTree (constructor),
Count, and SwapContentsWith. You must also have a complete implementation of the base

class GeneralTree. (See Project). Write a test program and test your implementation.

5. Complete the implementation of the BinomialQueue class introduced in Program by
providing suitable definitions for the following methods: BinomialQueue (constructor),
Purge, CompareTo, Accept, and GetEnumerator. You must also have a complete

implementation of the BinomialTree class. (See Project). Write a test program and test
your implementation.

6. The binary heap described in this chapter uses an array as the underlying foundational data
structure. Alternatively we may base an implementation on the BinaryTree class described in

Chapter . Implement a priority queue class that extends the BinaryTree class (Program)

and implements the PriorityQueue interface (Program).

7. Implement a priority queue class using the binary search tree class from Chapter . Specifically,

extend the BinarySearchTree class (Program) and implement the PriorityQueue

interface (Program). You will require a complete implementation of the base class

BinarySearchTree. (See Project). Write a test program and test your implementation.
8. Devise and implement an algorithm to multiply two polynomials:

http://www.brpreiss.com/books/opus6/html/page387.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:23]

http://www.brpreiss.com/books/opus6/index.html

Projects

Generate the terms of the result in order by putting intermediate product terms into a priority
queue. That is, use the priority queue to group terms with the same exponent. Hint: See also

Project .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page387.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sets, Multisets, and Partitions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sets, Multisets, and Partitions

In mathematics a set is a collection of elements, especially a collection having some feature or features
in common. The set may have a finite number of elements, e.g., the set of prime numbers less than 100;
or it may have an infinite number of elements, e.g., the set of right triangles. The elements of a set may
be anything at all--from simple integers to arbitrarily complex objects. However, all the elements of a set
are distinct--a set may contain only one instance of a given element.

For example, , , , and are all sets the elements of which are drawn from

. The set of all possible elements, U, is called the universal set . Note also that the

elements comprising a given set are not ordered. Thus, and are the same set.

There are many possible operations on sets. In this chapter we consider the most common operations for
combining sets--union, intersection, difference:

union
The union (or conjunction) of sets S and T, written , is the set comprised of all the
elements of S together with all the elements of T. Since a set cannot contain duplicates, if the
same item is an element of both S and T, only one instance of that item appears in . If

 and , then .

intersection
The intersection (or disjunction) of sets S and T is written . The elements of are

those items which are elements of both S and T. If and , then

.

difference
The difference (or subtraction) of sets S and T, written S-T, contains those elements of S which
are not also elements of T. That is, the result S-T is obtained by taking the set S and removing

from it those elements which are also found in T. If and , then

.

http://www.brpreiss.com/books/opus6/html/page388.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:24]

http://www.brpreiss.com/books/opus6/index.html

Sets, Multisets, and Partitions

Figure illustrates the basic set operations using a Venn diagram . A Venn diagram represents the

membership of sets by regions of the plane. In Figure the two sets S and T divide the plane into the
four regions labeled I-IV. The following table illustrates the basic set operations by enumerating the
regions that comprise each set.

Figure: Venn diagram illustrating the basic set operations.

set region(s) of Figure

U I, II, III, IV

S I, II

S' III, IV

T II, III

 I, II, III

 II

S-T I

T-S III

● Basics
● Array and Bit-Vector Sets
● Multisets
● Partitions
● Applications

http://www.brpreiss.com/books/opus6/html/page388.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:24]

Sets, Multisets, and Partitions

● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page388.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics
In this chapter we consider sets the elements of which are integers. By using integers as the universe
rather than arbitrary objects, certain optimizations are possible. For example, we can use a bit-vector of

length N to represent a set whose universe is . Of course, using integers as the

universe does not preclude the use of more complex objects, provided there is a one-to-one mapping
between those objects and the elements of the universal set.

A crucial requirement of any set representation scheme is that it supports the common set operations
including union , intersection , and set difference . We also need to compare sets and, specifically, to
determine whether a given set is a subset of another.

● Implementing Sets

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page389.html [2002-11-17 ｿﾀﾈﾄ 11:06:25]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing Sets

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing Sets

As discussed above, this chapter addresses the implementation of sets of integers. A set is a collection of
elements. Naturally, we want to insert and withdraw objects from the collection and to test whether a
given object is a member of the collection. Therefore, we consider sets as being derived from the

SearchableContainer class defined in Chapter . (See Figure). In general, a searchable
container can hold arbitrary objects. However, in this chapter we will assume that the elements of a set
are integers.

Figure: Object class hierarchy

Program defines the Set interface. The Set interface extends the the SearchableContainer

interface defined in Program . Five new methods are declared--Union, Intersection,
Difference, Equals, and IsSubset. These methods correspond to the various set operations
discussed above.

http://www.brpreiss.com/books/opus6/html/page390.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:26]

http://www.brpreiss.com/books/opus6/index.html

Implementing Sets

Program: Set interface.

Program defines the AbstractSet class. The AbstractSet class extends the

AbstractSearchableContainer class introduced in Program and it implements the Set

interface defined in Program . As shown in Figure , all of the concrete set classes discussed in this
chapter are derived from the AbstractSet class.

http://www.brpreiss.com/books/opus6/html/page390.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:26]

Implementing Sets

Program: AbstractSet class.

The AbstractSet class defines a field called universeSize. This field is used to record the size of

the universal set. The constructor for the AbstractSet class is given in Program . It takes a single

argument, , which specifies that the universal set shall be .

The items contained in a set are integers. Therefore, the AbstractSet class defines abstract methods
called as Insert, IsMember, and Withdraw, that take int arguments.

However, the methods of the SearchableContainer interface such as Insert, IsMember, and
Withdraw, expect their arguments to be ComparableObjects. For this reason, the AbstractSet
class provides a default implementation for each such method which converts its argument to an int and
then invokes the like-named abstract method that takes an int argument.

http://www.brpreiss.com/books/opus6/html/page390.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:26]

Implementing Sets

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page390.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array and Bit-Vector Sets

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array and Bit-Vector Sets
In this section we consider finite sets over a finite universe. Specifically, the universe we consider is

, the set of integers in the range from zero to N-1, for some fixed and relatively small

value of N.

Let be the universe. Every set which we wish to represent is a subset of U.

The set of all subsets of U is called the power set of U and is written . Thus, the sets which we wish
to represent are the elements of . The number of elements in the set U, written |U|, is N. Similarly,

. This observation should be obvious: For each element of the universal set U there

are only two possibilities: Either it is, or it is not, a member of the given set.

This suggests a relatively straightforward representation of the elements of --an array of bool values,
one for each element of the universal set. By using array subscripts in U, we can represent the set
implicitly. That is, i is a member of the set if the array element is true.

Program introduces the class SetAsArray. The SetAsArray class extends the AbstractSet

class defined in Program . This class uses an array of length to represent the

elements of where .

Program: SetAsArray fields.

http://www.brpreiss.com/books/opus6/html/page391.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:27]

http://www.brpreiss.com/books/opus6/index.html

Array and Bit-Vector Sets

● Basic Operations
● Union, Intersection, and Difference
● Comparing Sets
● Bit-Vector Sets

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page391.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basic Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basic Operations

Program defines the constructor for the SetAsArray class as well as the three basic operations--
Insert, IsMember, and Withdraw. The constructor takes a single argument

, which defines the universe and, consequently, the size of the array of bool
values. The constructor creates the empty set by initializing all the elements of the bool array to
false. Clearly, the running time of the constructor is O(N).

Program: SetAsArray class constructor, Insert, Withdraw, and IsMember methods.

The Insert method is used to put an item into the set. The method takes an int argument that
specifies the item to be inserted. Then the corresponding element of array is set to true to indicate
that the item has been added to the set. The running time of the Insert operation is O(1).

http://www.brpreiss.com/books/opus6/html/page392.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:27]

http://www.brpreiss.com/books/opus6/index.html

Basic Operations

The IsMember method is used to test whether a given item is an element of the set. The semantics are
somewhat subtle. Since a set does not actually keep track of the specific object instances that are
inserted, the membership test is based on the value of the argument. The method simply returns the value
of the appropriate element of the array. The running time of the IsMember operation is O(1).

The Withdraw method is used to take an item out of a set. The withdrawal operation is the opposite of
insertion. Instead of setting the appropriate array element to true, it is set to false. The running time
of the Withdraw is identical to that of Insert, viz., is O(1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page392.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union, Intersection, and Difference

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union, Intersection, and Difference

Program defines the three methods, Union, Intersection, and Difference. These methods
correspond to , , and -, respectively.

http://www.brpreiss.com/books/opus6/html/page393.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:28]

http://www.brpreiss.com/books/opus6/index.html

Union, Intersection, and Difference

Program: SetAsArray class Union, Intersection and Difference methods.

The set union operator takes one argument which is assumed to be a SetAsArray instance. It computes
the SetAsArray obtained from the union of this and set. The implementation given requires that
the sets be compatible. Two sets are deemed to be compatible if they have the same universe. The result
also has the same universe. Consequently, the bool array in all three sets has the same length, N. The set
union method creates a result array of the required size and then computes the elements of the array as
required. The element of the result is true if either the element of s or the element of t is
true. Thus, set union is implemented using the bool or operator, ||.

The set intersection method is almost identical to set union, except that the elements of the result are
computed using the bool and operator. The set difference method is also very similar. In this case, an
item is an element of the result only if it is a member of s and not a member of t.

Because all three methods are almost identical, their running times are essentially the same. That is, the
running time of the set union, intersection, and difference operations is O(N), where

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page393.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Comparing Sets

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Comparing Sets

There is a special family of operators for comparing sets. Consider two sets, say S and T. We say that S is

a subset of T, written , if every element of S is also an element of T. If there is at least one

element of T that is not also an element of S, we say that S is a proper subset of T, written . We

can also reverse the order in which the expressions are written to get or , which indicates

that T is a (proper) superset of S.

The set comparison operators follow the rule that if and then , which is analogous

to a similar property of numbers: . However, set comparison is unlike

numeric comparison in that there exist sets S and T for which neither nor ! For example,

clearly this is the case for and . Mathematically, the relation is called a

partial order because there exist some pairs of sets for which neither nor holds; whereas

the relation (among integers, say) is a total order.

Program defines the methods Equals and IsSubset each of which take argument that is assumed
to be a SetAsArray instance. The former tests for equality and the latter determines whether the
relation holds between this and set. Both operators return a bool result. The worst-case running

time of each of these operations is clearly O(N).

http://www.brpreiss.com/books/opus6/html/page394.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:30]

http://www.brpreiss.com/books/opus6/index.html

Comparing Sets

Program: SetAsArray class Equals and IsSubset methods.

A complete repertoire of comparison methods would also include methods to compute , , , and .

These operations follow directly from the implementation shown in Program (Exercise).

http://www.brpreiss.com/books/opus6/html/page394.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:30]

Comparing Sets

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page394.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Bit-Vector Sets

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Bit-Vector Sets

The common language runtime uses one byte of memory to store a single C# bool value. Furthermore,
each bool in an array of bools occupies two bytes of memory[3]. However, since there are only the
two values true and false, a single bit is sufficient to hold a bool value. Therefore, we can realize a
significant reduction in the memory space required to represent a set if we use an array of bits.
Furthermore, by using bitwise operations to implement the basic set operations such as union and
intersection, we can achieve a commensurate reduction in execution time. Unfortunately, these
improvements are not free--the operations Insert, IsMember, and Withdraw, all slow down by a
constant factor.

Since C# does not directly support arrays of bits, we will simulate an array of bits using an array of

ints. Program illustrates how this can be done. The constant BITS is defined as the number of bits
in a single int.

Program: SetAsBitVector fields.

● Basic Operations
● Union, Intersection, and Difference

http://www.brpreiss.com/books/opus6/html/page395.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:30]

http://www.brpreiss.com/books/opus6/index.html

Bit-Vector Sets

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page395.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basic Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basic Operations

Program defines the constructor for the SetAsBitVector class as well as the three basic
operations--Insert, IsMember, and Withdraw. The constructor takes a single argument

, which specifies the universe and, consequently, the number of bits needed in

the bit array. The constructor creates an array of ints of length , where is the

number of bits in an int, and sets the elements of the array to zero. The running time of the constructor

is .

http://www.brpreiss.com/books/opus6/html/page396.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:31]

http://www.brpreiss.com/books/opus6/index.html

Basic Operations

Program: SetAsBitVector class constructor, Insert, Withdraw, and IsMember methods.

To insert an item into the set, we need to change the appropriate bit in the array of bits to one. The bit

of the bit array is bit of word . Thus, the Insert method is implemented using a

bitwise or operation to change the bit to one as shown in Program . Even though it is slightly more
complicated than the corresponding operation for the SetAsArray class, the running time for this
operation is still O(1). Since is a power of two, it is possible to replace the division and
modulo operations, / and %, with shifts and masks like this:

vector[item >> shift] |= 1 << (item & mask);

for a suitable definition of the constants shift and mask. Depending on the compiler and machine
architecture, doing so may improve the performance of the Insert operation by a constant factor. Of
course, its asymptotic performance is still O(1).

To withdraw an item from the set, we need to clear the appropriate bit in the array of bits and to test if an
item is a member of the set, we test the corresponding bit. The IsMember and Withdraw methods in

Program show how this can be done. Like Insert, both these methods have constant worst-case
running times.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page396.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union, Intersection, and Difference

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union, Intersection, and Difference

The implementations of the union, intersection, and difference methods for operands of type

SetAsBitVector are shown in Program . The code is quite similar to that for the SetAsArray

class given in Program .

http://www.brpreiss.com/books/opus6/html/page397.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:32]

http://www.brpreiss.com/books/opus6/index.html

Union, Intersection, and Difference

Program: SetAsBitVector class Union, Intersection and Difference methods.

Instead of using the bool operators &&, ||, and !, we have used the bitwise operators &, |, and . By
using the bitwise operators, bits of the result are computed in each iteration of the loop.

Therefore, the number of iterations required is instead of N. The worst-case running time of each

of these operations is .

Notice that the asymptotic performance of these SetAsBitVector class operations is the same as the
asymptotic performance of the SetAsArray class operations. That is, both of them are O(N).
Nevertheless, the SetAsBitVector class operations are faster. In fact, the bit-vector approach is
asymptotically faster than the the array approach by the factor w.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page397.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Multisets

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Multisets
A multiset is a set in which an item may appear more than once. That is, whereas duplicates are not
permitted in a regular set, they are permitted in a multiset. Multisets are also known simply as bags .

Sets and multisets are in other respects quite similar: Both support operations to insert and withdraw
items; both provide a means to test the membership of a given item; and both support the basic set
operations of union, intersection, and difference. As a result, the Multiset interface is essentially the

same as the Set interface as shown in Program .

Program: Multiset interface.

● Array Implementation
● Linked-List Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page398.html [2002-11-17 ｿﾀﾈﾄ 11:06:32]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Array Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Array Implementation

A regular set may contain either zero or one instance of a particular item. As shown in the preceding
section if the number of possible items is not excessive, we may use an array of bool variables to keep
track of the number of instances of a particular item in a regular set. The natural extension of this idea for
a multiset is to keep a separate count of the number of instances of each item in the multiset.

Program introduces the MultisetAsArray class. The MultisetAsArray class extends the

AbstractSet class defined in Program and it implements the Multiset interface defined in

Program . The multiset is implemented using an array of counters. Each
counter is an int in this case.

Program: MultisetAsArray class.

● Basic Operations
● Union, Intersection, and Difference

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page399.html [2002-11-17 ｿﾀﾈﾄ 11:06:33]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basic Operations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basic Operations

Program defines the constructor for the MultisetAsArray class as well as the three basic
operations--Insert, IsMember, and Withdraw. The constructor takes a single argument,

, and initializes an array of length N counters all to zero. The running time of
the constructor is O(N).

Program: MultisetAsArray class constructor, Insert, Withdraw, and IsMember methods.

http://www.brpreiss.com/books/opus6/html/page400.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:34]

http://www.brpreiss.com/books/opus6/index.html

Basic Operations

To insert an item, we simply increase the appropriate counter; to delete an item, we decrease the counter;
and to test whether an item is in the set, we test whether the corresponding counter is greater than zero. In
all cases the operation can be done in constant time.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page400.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union, Intersection, and Difference

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union, Intersection, and Difference

Because multisets permit duplicates but sets do not, the definitions of union, intersection, and difference
are slightly modified for multisets. The union of multisets S and T, written , is the multiset
comprised of all the elements of S together with all the element of T. Since a multiset may contain
duplicates, it does not matter if the same element appears in S and T.

The subtle difference between union of sets and union of multisets gives rise to an interesting and useful
property. If S and T are regular sets,

On the other hand, if S and T are multisets,

The intersection of sets S and T is written . The elements of are those items which are
elements of both S and T. If a given element appears more than once in S or T (or both), the intersection
contains m copies of that element, where m is the smaller of the number of times the element appears in S

or T. For example, if and , the intersection is

.

The difference of sets S and T, written S-T, contains those elements of S which are not also elements of
T. That is, the result S-T is obtained by taking the set S and removing from it those elements which are
also found in T.

Program gives the implementations of the union, intersection, and difference methods of

MultisetAsArray class. This code is quite similar to that of the SetAsArray class (Program)

and the SetAsBitVector class (Program). The worst-case running time of each of these
operations is O(N).

http://www.brpreiss.com/books/opus6/html/page401.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:35]

http://www.brpreiss.com/books/opus6/index.html

Union, Intersection, and Difference

http://www.brpreiss.com/books/opus6/html/page401.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:35]

Union, Intersection, and Difference

Program: MultisetAsArray class Union, Intersection and Difference methods.

Instead of using the bool operators &&, ||, and !, we have used + (integer addition), Math.Min and -
(integer subtraction). The following table summarizes the operators used in the various set and multiset
implementations.

class

operation SetAsArray SetAsBitVector MultisetAsArray

union || | +

intersection && & Math.Min

difference && and ! & and <= and -

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page401.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Linked-List Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Linked-List Implementation

The array implementation of multisets is really only practical if the number of items in the universe,
N=|U|, is not too large. If N is large, then it is impractical, or at least extremely inefficient, to use an array
of N counters to represent the multiset. This is especially so if the number of elements in the multisets is
significantly less than N.

If we use a linked list of elements to represent a multiset S, the space required is proportional to the size
of the multiset, |S|. When the size of the multiset is significantly less than the size of the universe,

, it is more efficient in terms of both time and space to use a linked list.

Program introduces the the MultisetAsLinkedList class. The MultisetAsLinkedList

extends the AbstractSet class defined in Program and it implements the Multiset interface

defined in Program . In this case a linked list of ints is used to record the contents of the multiset.

How should the elements of the multiset be stored in the list? Perhaps the simplest way is to store the
elements in the list in no particular order. Doing so makes the Insert operation efficient--it can be
done in constant time. Furthermore, the IsMember and Withdraw operations both take O(n) time,
where n is the number of items in the multiset, regardless of the order of the items in the linked list.

Consider now the union, intersection, and difference of two multisets, say S and T. If the linked list is
unordered, the worst case running time for the union operation is O(m+n), where m=|S| and n=|T|.
Unfortunately, intersection, and difference are both O(mn).

If, on the other hand, we use an ordered linked list, union, intersection, and difference can all be done in
O(m+n) time. The trade-off is that the insertion becomes an O(n) operation rather than a O(1). The
MultisetAsLinkedList implementation presented in this section records the elements of the
multiset in an ordered linked list.

http://www.brpreiss.com/books/opus6/html/page402.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:35]

http://www.brpreiss.com/books/opus6/index.html

Linked-List Implementation

Program: MultisetAsLinkedList fields.

● Union
● Intersection

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page402.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union

The union operation for MultisetAsLinkedList class requires the merging of two ordered, linked

lists as shown in Program . We have assumed that the smallest element contained in a multiset is
found at the head of the linked list and the largest is at the tail.

http://www.brpreiss.com/books/opus6/html/page403.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:36]

http://www.brpreiss.com/books/opus6/index.html

Union

Program: MultisetAsLinkedList class Union method.

The Union method computes its result as follows: The main loop of the program (lines 14-26) traverses
the linked lists of the two operands, in each iteration appending the smallest remaining element to the
result. Once one of the lists has been exhausted, the remaining elements in the other list are simply
appended to the result (lines 27-30). The total running time for the Union method is O(m+n), where

 and .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page403.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Intersection

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Intersection

The implementation of the intersection operator for the MultisetAsLinkedList class is similar to
that of union. However, instead of merging of two ordered, linked lists to construct a third, we compare
the elements of two lists and append an item to the third only when it appears in both of the input lists.

The Intersection method is shown in Program .

http://www.brpreiss.com/books/opus6/html/page404.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:37]

http://www.brpreiss.com/books/opus6/index.html

Intersection

Program: MultisetAsLinkedList class Intersection method.

The main loop of the program traverses the linked lists of both input operands at once using two
variables (lines 14-23). If the next element in each list is the same, that element is appended to the result
and both variables are advanced. Otherwise, only one of the variables is advanced--the one pointing to
the smaller element.

The number of iterations of the main loop actually done depends on the contents of the respective linked
lists. The best case occurs when both lists are identical. In this case, the number of iterations is m, where

. In the worst case case, the number of iterations done is m+n. Therefore, the

running time of the Intersection method is O(m+n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page404.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Partitions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Partitions

Consider the finite universal set . A partition of U is a finite set of sets

 with the following properties:

1. The sets , , ..., are pairwise disjoint. That is, for all values of i and j such

that .

2. The sets , , ..., span the universe U. That is,

For example, consider the universe . There are exactly five partitions of U:

In general, given a universe U of size n>0, i.e., |U|=n, there are partitions of U, where

is the so-called Stirling number of the second kind which denotes the number of ways to partition a set of

n elements into m nonempty disjoint subsets.

Applications which use partitions typically start with an initial partition and refine that partition either by
joining or by splitting elements of the partition according to some application-specific criterion. The

http://www.brpreiss.com/books/opus6/html/page405.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:39]

http://www.brpreiss.com/books/opus6/index.html

Partitions

result of such a computation is the partition obtained when no more elements can be split or joined.

In this chapter we shall consider only applications that begin with the initial partition of U in which each
item in U is in a separate element of the partition. Thus, the initial partition consists of |U| sets, each of
size one (like above). Furthermore, we restrict the applications in that we only allow elements of a

partition to be joined--we do not allow elements to split.

The two operations to be performed on partitions are:

Find
Given an item in the universe, say , find the element of the partition that contains i. That is,

find such that .

Join

Given two distinct elements of a partition P, say and such that , create a

new partition P' by removing the two elements and from P and replacing them with a single

element .

For example, consider the partition . The result of the

operation is the set because 3 is a member of . Furthermore, when we join sets

 and , we get the partition .

● Representing Partitions
● Implementing a Partition using a Forest
● Collapsing Find
● Union by Size
● Union by Height or Rank

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page405.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Representing Partitions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Representing Partitions

Program defines the Partition interface. The Partition interface extends the Set interface

defined in Program . Since a partition is a set of sets, it makes sense to derive Partition from Set.
The two methods, Find and Join, correspond to the partition operations described above.

Program: Partition interface.

The elements of a partition are also sets. Consequently, the objects contained in a Partition are also
implement the Set interface. The Find method of the Partition class expects as its argument an
int and returns the Set which contains the specified item.

The Join method takes two arguments, both of them references to Sets. The two arguments are
expected to be distinct elements of the partition. The effect of the Join operation is to remove the
specified sets from the partition and replace them with a Set which represents the union of the two.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page406.html [2002-11-17 ｿﾀﾈﾄ 11:06:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing a Partition using a Forest

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing a Partition using a Forest

A partition is a set of sets. Consequently, there are two related issues to consider when developing an
approach for representing partitions:

1. How are the individual elements or parts of the partition represented?
2. How are the elements of a partition combined into the whole?

This section presents an approach in which each element of a partition is a tree. Therefore, the whole
partition is a forest .

For example, Figure shows how the partition

can be represented using a forest. Notice that each element of the universal set

appears in exactly one node of exactly one tree.

Figure: Representing a partition as a forest.

http://www.brpreiss.com/books/opus6/html/page407.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:40]

http://www.brpreiss.com/books/opus6/index.html

Implementing a Partition using a Forest

The trees in Figure have some very interesting characteristics. The first characteristic concerns the
shapes of the trees: The nodes of the trees have arbitrary degrees. The second characteristic concerns the
positions of the keys: there are no constraints on the positions of the keys in a tree. The final
characteristic has to do with the way the tree is represented: Instead of pointing to its children, each node
of the tree points to its parent!

Since there is no particular order to the nodes in the trees, it is necessary to keep track of the position of

each node explicitly. Figure shows how this can be done using an array. (This figure shows the same

partition as in Figure). The array contains a node for each element of the universal set U. Specifically,
the array element holds the node that contains item i. Having found the desired node, we can follow
the chain of parent pointers to find the root of the corresponding tree.

Figure: Finding the elements of a partition.

● Implementation
● Constructor
● Find and Join Methods

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page407.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program declares two classes--PartitionAsForest and the inner class PartitionTree. The
latter is used to represent the individual elements or parts of a partition and the former encapsulates all of
the parts that make up a given partition.

Program: PartitionAsForest and PartitionTree fields.

http://www.brpreiss.com/books/opus6/html/page408.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:41]

http://www.brpreiss.com/books/opus6/index.html

Implementation

The PartitionTree class extends the AbstractSet class defined in Program and it

implements the Tree interface defined in Program . Since we are representing the parts of a partition
using trees, it makes sense that they implement the Tree interface. On the other hand, since a partition is
a set of sets, we must derive the parts of a partition from the AbstractSet class.

The PartitionTree class has four fields--partition, item, parent, and rank. Each instance
of this class represents one node of a tree. The partition field refers to the PartitionAsForest
instance that contains this tree. The parent field refers to the parent of a given node and the item field
records the element of the universal set that the given node represents. The remaining variable, rank, is
optional. While it is not required in order to provide the basic functionality, as shown below, the rank
variable can be used in the implementation of the Join operation to improve the performance of
subsequent Find operations.

The PartitionAsForest class represents a complete partition. The PartitionAsForest class

extends the AbstractSet class defined in Program and it implements the Partition interface

defined in Program . The PartitionAsForest class contains a single field, array, which is an
array PartitionTrees. The element of the array always refers to the tree node that contains
element i of the universe.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page408.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructor

Program gives the code for the PartitionTree constructor. The constructor creates a tree
comprised of a single node. It takes an argument which specifies the element of the universal set that the
node is to represent. The parent field is set to null to indicate that the node has no parent.
Consequently, the node is a root node. Finally, the rank field is initialized to zero. The running time of
the constructor is O(1).

Program shows the constructor for the PartitionAsForest class. The constructor takes a single

argument N which specifies that the universe shall be . It creates an initial

partition of the universe consisting of N parts. Each part contains one element of the universal set and,
therefore, comprises a one-node tree.

Program: PartitionAsForest constructors.

http://www.brpreiss.com/books/opus6/html/page409.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:42]

http://www.brpreiss.com/books/opus6/index.html

Constructor

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page409.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Find and Join Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Find and Join Methods

Two elements of the universe are in the same part of the partition if and only if they share the same root
node. Since every tree has a unique root, it makes sense to use the root node as the ``handle'' for that tree.
Therefore, the find operation takes an element of the universal set and returns the root node of the tree
that contains that element. And because of way in which the trees are represented, we can follow the
chain of parent pointers to find the root node.

Program gives the code for the Find method of the PartitionAsForest class. The Find
method takes as its argument an int and returns a Set. The argument specifies the item of the universe
that is the object of the search.

Program: PartitionAsForest class Find method.

The Find operation begins at the node array[item] and follows the chain of parent fields to find the
root node of the tree that contains the specified item. The result of the method is the root node.

The running time of the Find operation is O(d) where d is the depth in the tree of the node from which
the search begins. If we don't do anything special to prevent it, the worst case running time is O(N),
where N is the size of the universe. The best performance is achieved when every non-root node points to
the root node. In this case, the running time is O(1).

http://www.brpreiss.com/books/opus6/html/page410.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:43]

http://www.brpreiss.com/books/opus6/index.html

Find and Join Methods

Another advantage of having the parent field in each node is that the join operation can be implemented

easily and efficiently. For example, suppose we wish to join the two sets and shown in Figure .

While there are many possible representations for , it turns out that there are two simple

alternatives which can be obtained in constant time. These are shown in Figure . In the first
alternative, the root of is made a child of the root of . This can be done in constant time simply by

making the parent field of the root of refer to the root of . The second alternative is essentially the

same as the first except that the roles of and are exchanged.

Figure: Alternatives for joining elements of a partition.

Program gives the simplest possible implementation for the Join operation. The Join method of
the PartitionAsForest class takes two arguments--both of the references to Sets. Both arguments
are required to be references to distinct PartitionTree instances which are contained in the given
partition. Furthermore, both of them are required to be root nodes. Therefore, the sets that the arguments
represent are disjoint. The method CheckArguments makes sure that the arguments satisfy these

http://www.brpreiss.com/books/opus6/html/page410.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:43]

Find and Join Methods

conditions.

The Join operation is trivial and executes in constant time: It simply makes one node the parent of the
other. In this case, we have arbitrarily chosen that the node specified by the first argument shall always
become the parent.

Program: PartitionAsForest class simple Join method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page410.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Collapsing Find

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Collapsing Find

Unfortunately, using the Join algorithm given in Program can result in particularly bad trees. For

example, Figure shows the worst possible tree that can be obtained. Such a tree is bad because its
height is O(N). In such a tree both the worst case and the average case running time for the Find
operation is O(N).

Figure: A degenerate tree.

There is an interesting trick we can play that can improve matters significantly. Recall that the find
operation starts from a given node and locates the root of the tree containing that node. If, having found
the root, we replace the parent of the given node with the root, the next time we do a Find it will be
more efficient.

In fact, we can go one step further and replace the parent of every node along the search path to the root.
This is called a collapsing find operation. Doing so does not change the asymptotic complexity of the
Find operation. However, a subsequent Find operation which begins at any point along the search path
to the root will run in constant time!

http://www.brpreiss.com/books/opus6/html/page411.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:44]

http://www.brpreiss.com/books/opus6/index.html

Collapsing Find

Program gives the code for a collapsing version of the Find operation. The Find method first
determines the root node as before. Then, a second pass is made up the chain from the initial node to the
root, during which the parent of each node is assigned the root. Clearly, this version of Find is slower

than the one given in Program because it makes two passes up the chain rather than one. However,
the running of this version of Find is still O(d), where d is the depth of the node from which the search
begins.

Program: PartitionAsForest class collapsing Find method.

Figure illustrates the effect of a collapsing find operation. After the find, all the nodes along the
search path are attached directly to the root. That is, they have had their depths decreased to one. As a
side-effect, any node which is in the subtree of a node along the search path may have its depth decreased
by the collapsing find operation. The depth of a node is never increased by the find operation.
Eventually, if we do enough collapsing find operations, it is possible to obtain a tree of height one in
which all the non-root nodes point directly at the root.

http://www.brpreiss.com/books/opus6/html/page411.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:44]

Collapsing Find

Figure: Example of collapsing find.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page411.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union by Size

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union by Size

While using collapsing find does mitigate the negative effects of poor trees, a better approach is to avoid

creating bad trees in the first place. As shown in Figure , when we join to trees we have a choice--
which node should we choose to be the root of the new tree. A simple, but effective choice is to attach
the smaller tree under the root of the larger one. In this case, the smaller tree is the one which has fewer

nodes. This is the so-called union-by-size join algorithm. Program shows how this can be done.

Program: PartitionAsForest class union-by-size Join method.

The implementation uses the count field of the Container class, from which PartitionTree is
derived, to keep track of the number of items contained in the tree. (Since each node contains one item

http://www.brpreiss.com/books/opus6/html/page412.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:45]

http://www.brpreiss.com/books/opus6/index.html

Union by Size

from the universal set, the number of items contained in a tree is equal to the number of nodes in that
tree). The algorithm simply selects the tree with the largest number of nodes to become the root of the
result and attaches the root of the smaller tree under that of the larger one. Clearly, the running time of
the union-by-size version of Join is O(1).

The following theorem shows that when using the union-by-size join operation, the heights of the
resulting trees grow logarithmically.

Theorem Consider an initial partition P of the universe

comprised of N sets of size 1. Let S be an element of the partition obtained from P after

some sequence of union-by-size join operations, such that |S|=n for some . Let T be

the tree representing the set S. The height of tree T satisfies the inequality

extbfProof (By induction).

Base Case Since a tree comprised of a single node has height zero, the theorem clearly holds for n=1.

Inductive Hypothesis Suppose the theorem holds for trees containing n nodes for for

some . Consider a union-by-size join operation that produces a tree containing k+1 nodes. Such a

tree is obtained by joining a tree having nodes with another tree that has nodes,

such that l+m=k+1.

Without loss of generality, suppose . As a result, l is less than or equal to m.

Therefore, the union-by-size algorithm will attach under the root of . Let and be the heights

of and respectively. The height of the resulting tree is .

According to the inductive hypothesis, the height of is given by

Similarly, the quantity is bounded by

http://www.brpreiss.com/books/opus6/html/page412.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:45]

Union by Size

Therefore, the height of the tree containing k+1 nodes is no greater than

. By induction on k, the theorem holds for all values of .

Note that Theorem and its proof does not require that we use the collapsing find algorithm of Section

. That is, the height of a tree containing n nodes is guaranteed to be when the simple find is

used. Of course, there is nothing precluding the use of the collapsing find in conjunction with the union-
by-size join method. And doing so only makes things better.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page412.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Union by Height or Rank

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Union by Height or Rank

The union-by-size join algorithm described above controls the heights of the trees indirectly by basing
the join algorithm on the sizes of the trees. If we explicitly keep track of the height of a node in the node
itself, we can accomplish the same thing.

Program gives an implementation of the Join method that always attaches the shorter tree under the
root of the taller one. This method assumes that the rank field is used to keep track of the height of a
node. (The reason for calling it rank rather than height will become evident shortly).

Program: PartitionAsForest class union-by-rank Join method.

The only time that the height of node increases is when joining two trees that have the same height. In
this case, the height of the root increases by exactly one. If the two trees being joined have different

http://www.brpreiss.com/books/opus6/html/page413.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:46]

http://www.brpreiss.com/books/opus6/index.html

Union by Height or Rank

heights, attaching the shorter tree under the root of the taller one has no effect on the height of the root.

Unfortunately, there is a slight complication if we combine union-by-height with the collapsing find.
Since the collapsing find works by moving nodes closer to the root, it affects potentially the height of any
node moved. It is not at all clear how to recompute efficiently the heights that have changed. The
solution is not to do it at all!

If we don't recompute the heights during the collapsing find operations, then the height fields will no
longer be exact. Nevertheless, the quantities remain useful estimates of the heights of nodes. We call the
estimated height of a node its rank and the join algorithm which uses rank instead of height is called
union by rank .

Fortunately, Theorem applies equally well when when union-by-rank is used. That is, the height of

tree which contains n nodes is . Thus, the worst-case running time for the Find operation

grows logarithmically with n. And as before, collapsing find only makes things better.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page413.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Applications

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Applications
One of the most important applications of partitions involves the processing of equivalence relations.
Equivalence relations arise in many interesting contexts. For example, two nodes in an electric circuit are
electrically equivalent if there is a conducting path (a wire) connecting the two nodes. In effect, the wires
establish an electrical equivalence relation over the nodes of a circuit.

A similar relation arises among the classes in a C# program. Consider the following C# code fragment:

interface I {}
class A : I {}
class B : I {}
class C : A {}
class D : B {}

The three classes A, B, C and D are equivalent in the sense that they all implement the same interface I.
In effect, the class declarations establish an equivalence relation over the classes in a C# program.

Definition (Equivalence Relation) An equivalence relation over a universal set U is a
relation with the following properties:

1. The relation is reflexive . That is, for every , .

2. The relation is symmetric . That is, for every pair and , if

then .

3. The relation is transitive . That is, for every triple , and , if

 and then .

An important characteristic of an equivalence relation is that it partitions the elements of the universal set

U into a set of equivalence classes . That is, U is partitioned into , such that for

every pair and , if and only if x and y are in the same element of the partition. That

is, if there exists a value of i such that .

For example, consider the universe . and the equivalence relation defined over U

http://www.brpreiss.com/books/opus6/html/page414.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:48]

http://www.brpreiss.com/books/opus6/index.html

Applications

defines as follows:

This relation results in the following partition of U:

The list of equivalences in Equation contains many redundancies. Since we know that the relation
is reflexive, symmetric and transitive, it is possible to infer the complete relation from the following list

The problem of finding the set of equivalence classes from a list of equivalence pairs is easily solved

using a partition. Program shows how it can be done using the PartitionAsForest class defined

in Section .

http://www.brpreiss.com/books/opus6/html/page414.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:48]

Applications

Program: Application of disjoint sets--finding equivalence classes.

The algorithm first gets a positive integer n from the input and creates a partition, p, of the universe

 (lines 7-12). As explained in Section , the initial partition comprises n

disjoint sets of size one. That is, each element of the universal set is in a separate element of the partition.

Each iteration of the main loop processes one equivalence pair (lines 10-21). An equivalence pair
consists of two numbers, i and j, such that and . The find operation is used to determine

the sets s and t in partition p that contain elements i and j, respectively (lines 15-16).

If s and t are not the same set, then the disjoint sets are united using the join operation (lines 17-18).
Otherwise, i and j are already in the same set and the equivalence pair is redundant (line 20). After all
the pairs have been processed, the final partition is printed (line 22).

http://www.brpreiss.com/books/opus6/html/page414.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:48]

Applications

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page414.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. For each of the following implementations derive an expression for the total memory space

required to represent a set which contains of n elements drawn from the universe

.

1. SetAsArray (Program),

2. SetAsBitVector (Program),

3. MultisetAsArray (Program), and

4. MultisetAsLinkedList (Program).

2. In addition to = and , a complete repertoire of set operators includes , , and . For each

of the set implementations listed in Exercise show how to implement the remaining operators.
3. The symmetric difference of two sets S and T, written is given by

For each of the set implementations listed in Exercise devise an algorithm to compute
symmetric difference. What is the running time of your algorithm?

4. The complement of a set S over universe U, written S' is given by

Devise an algorithm to compute the complement of a set represented as a bit vector. What is the
running time of your algorithm?

5. Devise an algorithm to sort a list of integers using a multiset. What is the running time of your

algorithm? Hint: See Section .
6. Consider a multiset implemented using linked lists. When the multiset contains duplicate items,

each of those items occupies a separate list element. An alternative is to use a linked list of

ordered pairs of the form where i an the element of the universal set U and is a non-

negative integer that counts the number of instances of the element i in the multiset.

Derive an expression for the total memory space required to represent a multiset which contains

of n instances of m distinct element drawn from the universe .

http://www.brpreiss.com/books/opus6/html/page415.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:50]

http://www.brpreiss.com/books/opus6/index.html

Exercises

7. Consider a multiset implemented as described in Exercise . Devise algorithms for set union,
intersection, and difference. What are the running times of your algorithms?

8. Consider the initial partition . For each of the methods of

computing the union listed below show the result of the following sequence join operations:

, , , , , , ,

, .

1. simple union,
2. union by size,
3. union by height, and
4. union by rank.

9. For each final partition obtained in Exercise , show the result of performing a collapsing find
operation for item 9.

10. Consider the initial partition P of the universe comprised of N sets[24].

1. Show that N-1 join operations can be performed before the number of elements in the
partition is reduced to one.

2. Show that if n join operations are done (), the size of the largest element of

the partition is at most n+1.
3. A singleton is an element of a partition that contains only one element of the universal set.

Show that when n join operations are done (), at least

singletons are left.

4. Show that if less that join operations are done, at least one singleton is left.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page415.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Complete the SetAsArray class introduced in Program by providing suitable definitions for
the following operations: Purge, IsEmpty, IsFull, Count, Accept, and
GetEnumerator. Write a test program and test your implementation.

2. Complete the SetAsBitVector class introduced in Program by providing suitable
definitions for the following methods: Purge, IsEmpty, IsFull, Count, Accept, and
GetEnumerator. Write a test program and test your implementation.

3. Rewrite the Insert, Withdraw, and IsMember methods of the SetAsBitVector
implementation so that they use bitwise shift and mask operations rather than division and modulo
operations. Compare the running times of the modified methods with the original ones and
explain your observations.

4. Complete the MultisetAsArray class introduced in Program by providing suitable
definitions for the following methods: Purge, Count, Accept, and GetEnumerator. Write
a test program and test your implementation.

5. Complete the MultisetAsLinkedList class introduced in Program by providing suitable
definitions for the following methods: Purge, IsEmpty, IsFull, Count, CompareTo,
Accept, and GetEnumerator. Write a test program and test your implementation.

6. Design and implement a multiset class in which the contents of the set are represented by a linked

list of ordered pairs of the form , where i an the element of the universal set U and is a

non-negative integer that counts the number of instances of the element i in the multiset. (See

Exercises and).
7. Write a program to compute the number of ways in which a set of n elements can be partitioned.

That is, compute where

Hint: See Section .

http://www.brpreiss.com/books/opus6/html/page416.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:50]

http://www.brpreiss.com/books/opus6/index.html

Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page416.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Garbage Collection and the Other Kind of Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Garbage Collection and the Other Kind of
Heap

A C# object is an instance of a class, an array instance, or a delegate . Every object instance in a C#
program occupies some memory. The manner in which a C# object is represented in memory is left up to
the implementor of the common language runtime and, in principle, can vary from one implementation to
another. However, object data typically occupy contiguous memory locations.

The region of memory in which objects are allocated dynamically is often called a heap . In Chapter
we consider heaps and heap-ordered trees in the context of priority queue implementations.

Unfortunately, the only thing that the heaps of Chapter and the heap considered here have in common

is the name. While it may be possible to use a heap (in the sense of Definition) to manage a region of
memory, typical implementations do not. In this context the technical meaning of the term heap is closer
to its dictionary definition--``a pile of many things.''

The amount of memory required to represent a C# object is determined by the number and the types of
its fields. For example, fields of the C# simple types, occupy between one and sixteen bytes. E.g., bool
occupies one byte; char, short, and ushort occupy two bytes; int, uint, and float occupy four
bytes; long, ulong, and double occupy eight bytes; and decimal occupies sixteen bytes. A field
which refers to an object or to an interface typically requires only four bytes.

In addition to the memory required for the fields of an object, there is a fixed, constant amount of extra
storage set aside in every object (eight bytes). This extra storage carries information used by the common
language runtime to make sure that object is used correctly and to aid the process of garbage collection.

Every object in a C# program is created explicitly by invoking the new operator. Invoking the new
operator causes the common language runtime to perform the following steps:

1. An unused region of memory large enough to hold an instance of the desired class is found.
2. All of the fields of the object are assigned their default initial values.
3. The appropriate constructor is run to initialize the object instance.
4. A reference to the newly created object is returned.

http://www.brpreiss.com/books/opus6/html/page417.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:51]

http://www.brpreiss.com/books/opus6/index.html

Garbage Collection and the Other Kind of Heap

● What is Garbage?
● Reference Counting Garbage Collection
● Mark-and-Sweep Garbage Collection
● Stop-and-Copy Garbage Collection
● Mark-and-Compact Garbage Collection
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page417.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

What is Garbage?

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

What is Garbage?
While C# provides the means to create an object, the language does not provide the means to destroy an
object explicitly. As long as a program contains a reference to some object instance, the common
language runtime is required to ensure that the object exists. If the C# language provided the means to
destroy objects, it would be possible for a program to destroy an object even when a reference to that
object still existed. This situation is unsafe because the program could attempt later to invoke a method
on the destroyed object, leading to unpredictable results.

The situation which arises when a program contains a reference (or pointer) to a destroyed object is
called a dangling reference (or dangling pointer). By disallowing the explicit destruction of objects, C#
eliminates the problem of dangling references.

Languages that support the explicit destruction of objects typically require the program to keep track of
all the objects it creates and to destroy them explicitly when they are not longer needed. If a program
somehow loses track of an object it has created then that object cannot be destroyed. And if the object is
never destroyed, the memory occupied by that object cannot be used again by the program.

A program that loses track of objects before it destroys them suffers from a memory leak . If we run a
program that has a memory leak for a very long time, it is quite possible that it will exhaust all the
available memory and eventually fail because no new objects can be created.

It would seem that by disallowing the explicit destruction of objects, a C# program is doomed to eventual
failure due to memory exhaustion. Indeed this would be the case, were it not for the fact that the C#
language specification requires the common language runtime to be able to find unreferenced objects and
to reclaim the memory locations allocated to those objects. An unreferenced object is called garbage and
the process of finding all the unreferenced objects and reclaiming the storage is called garbage
collection .

Just as the C# language does not specify precisely how objects are to be represented in the memory of a
common language runtime, the language specification also does not stipulate how the garbage collection
is to be implemented or when it should be done. Garbage collection is usually invoked when the total
amount of memory allocated to a C# program exceeds some threshold. Typically, the program is
suspended while the garbage collection is done.

In the analyses presented in the preceding chapters we assume that the running time of the new operator

http://www.brpreiss.com/books/opus6/html/page418.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:51]

http://www.brpreiss.com/books/opus6/index.html

What is Garbage?

is a fixed constant, , and we completely ignore the garbage collection overhead. In reality, neither
assumption is valid. Even if sufficient memory is available, the time required by the common language
runtime to locate an unused region of memory depends very much on the data structures used to keep
track of the memory regions allocated to a program as well as on the way in which a program uses the
objects it creates. Furthermore, invoking the new operator may trigger the garbage collection process.
The running time for garbage collection can be a significant fraction of the total running time of a
program.

● Reduce, Reuse, Recycle
● Helping the Garbage Collector

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page418.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Reduce, Reuse, Recycle

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Reduce, Reuse, Recycle

Modern societies produce an excessive amount of waste. The costs of doing so include the direct costs of
waste disposal as well as the damage to the environment caused by the manufacturing, distribution, and
ultimate disposal of products. The slogan ``reduce, reuse, recycle,'' prescribes three strategies for
reducing the environmental costs associated with waste materials.

These strategies apply equally well to C# programs! A C# program that creates excessive garbage may
require more frequent garbage collection than a program that creates less garbage. Since garbage
collection can take a significant amount of time to do, it makes sense to use strategies that decrease the
cost of garbage collection.

● Reduce
● Reuse
● Recycle

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page419.html [2002-11-17 ｿﾀﾈﾄ 11:06:52]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Reduce

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Reduce

A C# program that does not create any object instances or arrays does not create garbage. Similarly, a
program that creates all the objects it needs at the beginning of its execution and uses the same objects
until it terminates also does not create garbage. By reducing the number of objects a program creates
dynamically during its execution, we can reduce or even eliminate the need for garbage collection.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page420.html [2002-11-17 ｿﾀﾈﾄ 11:06:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Reuse

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Reuse

Sometimes, a C# program will create many objects which are used only once. For example, a program
may create an object in the body of a loop that is used to hold ``temporary'' information that is only
required for the particular iteration of the loop in which it is created. Consider the following:

for (int i = 0; i < 1000000; ++i)
{
 SomeClass obj = new SomeClass(i);
 Console.WriteLine(obj);
}

This creates a million instances of the SomeClass class and prints them out. If the SomeClass class
has a propery, say Value, that provides a set accessor, we can reuse an a single object instance like
this:

SomeClass obj = new SomeClass();
for (int i = 0; i < 1000000; ++i)
{
 obj.Value = i;
 Console.WriteLine(obj);
}

Clearly, by reusing a single object instance, we have dramatically reduced the amount of garbage
produced.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page421.html [2002-11-17 ｿﾀﾈﾄ 11:06:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Recycle

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Recycle

Recycling of objects is a somewhat more complex strategy for reducing the overhead associated with
garbage collection. Instead leaving an unused object around for the garbage collector to find, it is put into
a container of unused objects. When a new object is needed, the container is searched first to see if an
unused one already exists. Because a container always refers to the objects it contains, those objects are
never garbage collected.

The recycling strategy can indeed reduce garbage collection overhead. However, it puts the burden back
on the programmer to explicitly put unused objects into the container (avoid memory leaks) and to make
sure objects put into the container are really unused (avoid dangling references). Because the recycling
strategy undermines some of the benefits of garbage collection, it should be used with great care.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page422.html [2002-11-17 ｿﾀﾈﾄ 11:06:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Helping the Garbage Collector

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Helping the Garbage Collector

The preceding section presents strategies for avoiding garbage collection. However, there are times when
garbage collection is actually desirable. Imagine a program that requires a significant amount of memory.
Suppose the amount of memory required is very close to the amount of memory available for use by the
common language runtime. The performance of such a program is going to depend on the ability of the
garbage collector to find and reclaim as much unused storage as possible. Otherwise, the garbage
collector will run too often. In this case, it pays to help out the garbage collector.

How can we help out the garbage collector? Since the garbage collector collects only unreferenced
objects it is necessary to eliminate all references to objects which are no longer needed. This is done by
assigning the value null to every variable that refers to an object that is no longer needed.
Consequently, helping the garbage collector requires a program to do a bit more work.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page423.html [2002-11-17 ｿﾀﾈﾄ 11:06:54]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Reference Counting Garbage Collection

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Reference Counting Garbage Collection
The difficulty in garbage collection is not the actual process of collecting the garbage--it is the problem
of finding the garbage in the first place. An object is considered to be garbage when no references to that
object exist. But how can we tell when no references to an object exist?

A simple expedient is to keep track in each object of the total number of references to that object. That is,
we add a special field to each object called a reference count . The idea is that the reference count field
is not accessible to the C# program. Instead, the reference count field is updated by the common
language runtime itself.

Consider the statement

object p = new ComparableInt32(57);

which creates a new instance of the ComparableInt32 class. Only a single variable, p, refers to the
object. Thus, its reference count should be one.

Figure: Objects with reference counters.

Now consider the following sequence of statements:

object p = new ComparableInt32(57);
object q = p;

This sequence creates a single ComparableInt32 instance. Both p and q refer to the same object.
Therefore, its reference count should be two.

In general, every time one reference variable is assigned to another, it may be necessary to update several

http://www.brpreiss.com/books/opus6/html/page424.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:54]

http://www.brpreiss.com/books/opus6/index.html

Reference Counting Garbage Collection

reference counts. Suppose p and q are both reference variables. The assignment

p = q;

would be implemented by the common language runtime as follows:

if (p != q)
{
 if (p != null)
 --p.refCount;
 p = q;
 if (p != null)
 ++p.refCount;
}

For example suppose p and q are initialized as follows:

object p = new ComparableInt32(57);
object q = new ComparableInt32(99);

As shown in Figure (a), two ComparableInt32 objects are created, each with a reference count of

one. Now, suppose we assign q to p using the code sequence given above. Figure (b) shows that after
the assignment, both p and q refer to the same object--its reference count is two. And the reference count
on ComparableInt32(57) has gone to zero which indicates that it is garbage.

Figure: Reference counts before and after the assignment p = q.

The costs of using reference counts are twofold: First, every object requires the special reference count
field. Typically, this means an extra word of storage must be allocated in each object. Second, every time
one reference is assigned to another, the reference counts must be adjusted as above. This increases
significantly the time taken by assignment statements.

http://www.brpreiss.com/books/opus6/html/page424.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:54]

Reference Counting Garbage Collection

The advantage of using reference counts is that garbage is easily identified. When it becomes necessary
to reclaim the storage from unused objects, the garbage collector needs only to examine the reference
count fields of all the objects that have been created by the program. If the reference count is zero, the
object is garbage.

It is not necessary to wait until there is insufficient memory before initiating the garbage collection
process. We can reclaim memory used by an object immediately when its reference goes to zero.
Consider what happens if we implement the C# assignment p = q in the common language runtime as
follows:

if (p != q)
{
 if (p != null)
 if (--p.refCount == 0)
 heap.Release(p);
 p = q;
 if (p != null)
 ++p.refCount;
}

Notice that the Release method is invoked immediately when the reference count of an object goes to
zero, i.e., when it becomes garbage. In this way, garbage may be collected incrementally as it is created.

● When Objects Refer to Other Objects
● Why Reference Counting Does Not Work

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page424.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

When Objects Refer to Other Objects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

When Objects Refer to Other Objects

The ComparableInt32 objects considered in the preceding examples are very simple objects--they
contain no references to other objects. Reference counting is an ideal strategy for garbage collecting such
objects. But what about objects that refer to other objects? For example, consider the Association

class described in Chapter which represents a pair. We can still use reference counting,

provided we count all to an object including references from other objects.

Figure (a) illustrates the contents memory following the execution of this statement:

object p = new Association(
 new ComparableComparableInt32(57),
 new ComparableInt32(99));

The reference count of the Association is one, because the variable p refers to it. Similarly, the
reference counts of the two ComparableInt32 instances are one because the Association refers
to both of them.

http://www.brpreiss.com/books/opus6/html/page425.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:55]

http://www.brpreiss.com/books/opus6/index.html

When Objects Refer to Other Objects

Figure: Reference counting when objects refer to other objects.

Suppose we assign the value null to the variable p. As shown in Figure (b), the reference count of
the association becomes zero--it is now garbage. However, until the Association instance continues
to exist until it is garbage collected. And because it still exists, it still refers to the ComparableInt32
objects.

Figure (d) shows that the garbage collection process adjusts the reference counts on the objects to
which the association refers only when the association is garbage collected. The two
ComparableInt32 objects are now unreferenced and can be garbage collected as well.

http://www.brpreiss.com/books/opus6/html/page425.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:55]

When Objects Refer to Other Objects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page425.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Why Reference Counting Does Not Work

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Why Reference Counting Does Not Work

So far, reference counting looks like a good idea. However, the reference counting does not always work.

Consider a circular, singly-linked list such as the one shown in Figure (a). In the figure, the variable
head refers to the head of the linked list and the last element of the linked list also refers to the head.
Therefore, the reference count on the first list element is two; whereas, the remaining list elements each
has a reference count of one.

Figure: Why reference counting fails.

Consider what happens when we assign the value null to the head variable. This results in the

situation shown in Figure (b). The reference count on the first list element has been decreased by one
because the head variable no longer refers to it. However, its reference count is not zero, because the
tail of the list still refers to the head.

We now have a problem. The reference counts on all the lists elements are non-zero. Therefore, they are
not considered to be garbage by a reference counting garbage collector. On the other hand, no external
references to the linked-list elements remain. Therefore, the list elements are indeed garbage.

This example illustrates the Achilles' heel of reference counting--circular data structures. In general,
reference counting will fail to work whenever the data structure contains a cycle of references. C# does
not prevent the creation of cyclic structures. Therefore, reference counting by itself is not a suitable
garbage collection scheme for arbitrary objects. Nevertheless, it is an extremely useful technique for

http://www.brpreiss.com/books/opus6/html/page426.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:56]

http://www.brpreiss.com/books/opus6/index.html

Why Reference Counting Does Not Work

dealing with simple objects that don't refer to other objects, such as ComparableInt32s and
strings.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page426.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Mark-and-Sweep Garbage Collection

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Mark-and-Sweep Garbage Collection

This section presents the mark-and-sweep garbage collection algorithm. The mark-and-sweep algorithm
was the first garbage collection algorithm to be developed that is able to reclaim cyclic data structures.

 Variations of the mark-and-sweep algorithm continue to be among the most commonly used garbage
collection techniques.

When using mark-and-sweep, unreferenced objects are not reclaimed immediately. Instead, garbage is
allowed to accumulate until all available memory has been exhausted. When that happens, the execution
of the program is suspended temporarily while the mark-and-sweep algorithm collects all the garbage.
Once all unreferenced objects have been reclaimed, the normal execution of the program can resume.

The mark-and-sweep algorithm is called a tracing garbage collector because is traces out the entire
collection of objects that are directly or indirectly accessible by the program. The objects that a program
can access directly are those objects which are referenced by local variables on the processor stack as
well as by any static variables that refer to objects. In the context of garbage collection, these variables
are called the roots . An object is indirectly accessible if it is referenced by a field in some other (directly
or indirectly) accessible object. An accessible object is said to be live . Conversely, an object which is not
live is garbage.

The mark-and-sweep algorithm consists of two phases: In the first phase, it finds and marks all accessible
objects. The first phase is called the mark phase. In the second phase, the garbage collection algorithm
scans through the heap and reclaims all the unmarked objects. The second phase is called the sweep
phase. The algorithm can be expressed as follows:

for each root variable r

 Mark(r);

Sweep();

In order to distinguish the live objects from garbage, we record the state of an object in each object. That

http://www.brpreiss.com/books/opus6/html/page427.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:57]

http://www.brpreiss.com/books/opus6/index.html

Mark-and-Sweep Garbage Collection

is, we add a special bool field to each object called, say, marked. By default, all objects are unmarked
when they are created. Thus, the marked field is initially false.

An object p and all the objects indirectly accessible from p can be marked by using the following
recursive Mark method:

void Mark(object p)

 if(!p.marked)

 p.marked = true;
 for each object q referenced by p
 Mark(q);

Notice that this recursive Mark algorithm does nothing when it encounters an object that has already
been marked. Consequently, the algorithm is guaranteed to terminate. And it terminates only when all
accessible objects have been marked.

In its second phase, the mark-and-sweep algorithm scans through all the objects in the heap, in order to
locate all the unmarked objects. The storage allocated to the unmarked objects is reclaimed during the
scan. At the same time, the marked field on every live object is set back to false in preparation for
the next invocation of the mark-and-sweep garbage collection algorithm:

void Sweep()

 for each object p in the heap

 if (p.marked)
 p.marked = false
 else
 heap.Release(p);

Figure illustrates the operation of the mark-and-sweep garbage collection algorithm. Figure (a)
shows the conditions before garbage collection begins. In this example, there is a single root variable.

http://www.brpreiss.com/books/opus6/html/page427.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:57]

Mark-and-Sweep Garbage Collection

Figure (b) shows the effect of the mark phase of the algorithm. At this point, all live objects have

been marked. Finally, Figure (c) shows the objects left after the sweep phase has been completed.
Only live objects remain in memory and the marked fields have all been set to false again.

Figure: Mark-and-sweep garbage collection.

Because the mark-and-sweep garbage collection algorithm traces out the set of objects accessible from
the roots, it is able to correctly identify and collect garbage even in the presence of reference cycles. This
is the main advantage of mark-and-sweep over the reference counting technique presented in the
preceding section. A secondary benefit of the mark-and-sweep approach is that the normal manipulations

http://www.brpreiss.com/books/opus6/html/page427.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:57]

Mark-and-Sweep Garbage Collection

of reference variables incurs no overhead.

The main disadvantage of the mark-and-sweep approach is the fact that that normal program execution is
suspended while the garbage collection algorithm runs. In particular, this can be a problem in a program
that interacts with a human user or that must satisfy real-time execution constraints. For example, an
interactive application that uses mark-and-sweep garbage collection becomes unresponsive periodically.

● The Fragmentation Problem

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page427.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Fragmentation Problem

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Fragmentation Problem

Fragmentation is a phenomenon that occurs in a long-running program that has undergone garbage
collection several times. The problem is that objects tend to become spread out in the heap. Live objects
end up being separated by many, small unused memory regions. The problem in this situation is that it
may become impossible to allocate memory for an object. While there may indeed be sufficient unused
memory, the unused memory is not contiguous. Since objects typically occupy consecutive memory
locations it is impossible to allocate storage.

The mark-and-sweep algorithm does not address fragmentation. Even after reclaiming the storage from
all garbage objects, the heap may still be too fragmented to allocate the required amount of space. The
next section presents an alternative to the mark-and-sweep algorithm that also defragments (or
compacts) the heap.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page428.html [2002-11-17 ｿﾀﾈﾄ 11:06:57]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Stop-and-Copy Garbage Collection

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Stop-and-Copy Garbage Collection

The section describes a garbage collection approach that collects garbage and defragments the heap
called stop-and-copy . When using the stop-and-copy garbage collection algorithm, the heap is divided
into two separate regions. At any point in time, all dynamically allocated object instances reside in only
one of the two regions--the active region. The other, inactive region is unoccupied.

When the memory in the active region is exhausted, the program is suspended and the garbage-collection
algorithm is invoked. The stop-and-copy algorithm copies all of the live objects from the active region to
the inactive region. As each object is copied, all references contained in that object are updated to reflect
the new locations of the referenced objects.

After the copying is completed, the active and inactive regions exchange their roles. Since the stop-and-
copy algorithm copies only the live objects, the garbage objects are left behind. In effect, the storage
occupied by the garbage is reclaimed all at once when the active region becomes inactive.

As the stop-and-copy algorithm copies the live objects from the active region to the inactive region, it
stores the objects in contiguous memory locations. Thus, the stop-and-copy algorithm automatically
defragments the heap. This is the main advantage of the stop-and-copy approach over the mark-and-
sweep algorithm described in the preceding section.

The costs of the stop-and-copy algorithm are twofold: First, the algorithm requires that all live objects be
copied every time garbage collection is invoked. If an application program has a large memory footprint,
the time required to copy all objects can be quite significant. A second cost associated with stop-and-
copy is the fact that it requires twice as much memory as the program actually uses. When garbage
collection is finished, at least half of the memory space is unused.

● The Copy Algorithm

http://www.brpreiss.com/books/opus6/html/page429.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

http://www.brpreiss.com/books/opus6/index.html

Stop-and-Copy Garbage Collection

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page429.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Copy Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Copy Algorithm

The stop-and-copy algorithm divides the heap into two regions--an active region and an inactive region.
For convenience, we can view each region as a separate heap and we shall refer to them as
activeHeap and inactiveHeap. When the stop-and-copy algorithm is invoked, it copies all live
objects from the activeHeap to the inactiveHeap. It does so by invoking the Copy method given
below starting at reach root:

for each root variable r

 r = Copy(r, inactiveHeap);

Swap(activeHeap, inactiveHeap);

The Copy method is complicated by the fact that it needs to update all object references contained in the
objects as it copies those objects. In order to facilitate this, we record in every object a reference to its
copy. That is, we add a special field to each object called forward which is a reference to the copy of
this object.

The recursive Copy method given below copies a given object and all the objects indirectly accessible
from the given object to the destination heap. When the forward field of an object is null, it indicates
that the given object has not yet been copied. In this case, the method creates a new instance of the object
class in the destination heap. Then, the fields of the object are copied one-by-one. If the field is a value
type, the value of that field is copied. However, if the field refers to another object, the Copy method
calls itself recursively to copy that object.

object Copy(object p, Heap destination)

 if (p == null)
 return null;
 if (p.forward == null)

 q = destination.NewInstance(p.getType());

http://www.brpreiss.com/books/opus6/html/page430.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

http://www.brpreiss.com/books/opus6/index.html

The Copy Algorithm

 p.forward = q;
 for each field f in p

 if (f is a value type)
 q.f = p.f;
 else
 q.f = Copy(p.f, destination);

 q.forward = null;

 return p.forward;

If the Copy method is invoked for an object whose forward field is non-null, that object has already
been copied and the forward field refers to the copy of that object in the destination heap. In that case,
the Copy method simply returns a reference to the previously copied object.

Figure traces the execution of the stop-and-copy garbage collection algorithm. When the algorithm is
invoked and before any objects have been copied, the forward field of every object in the active region

is null as shown in Figure (a). In Figure (b), a copy of object A, called A', has been created in
the inactive region, and the forward field of A refers to A'.

http://www.brpreiss.com/books/opus6/html/page430.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

The Copy Algorithm

Figure: Stop-and-copy garbage collection.

Since A refers to B, the next object copied is object B. As shown in Figure (c), fragmentation is
eliminated by allocating storage for B' immediately next to A'. Next, object C is copied. Notice that C
refers to A, but A has already been copied. Object C' obtains its reference to A' from the forward field

of A as shown in Figure (d).

After all the live objects have been copied from the active region to the inactive region, the regions

exchange their roles. As shown in Figure (e), all the garbage has been collected and the heap is no

http://www.brpreiss.com/books/opus6/html/page430.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

The Copy Algorithm

longer fragmented.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page430.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:06:58]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Mark-and-Compact Garbage Collection

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Mark-and-Compact Garbage Collection

The mark-and-sweep algorithm described in Section has the unfortunate tendency to fragment the

heap. The stop-and-copy algorithm described in Section avoids fragmentation at the expense of
doubling the size of the heap. This section describes the mark-and-compact approach to garbage
collection which eliminates fragmentation without the space penalty of stop-and-copy.

The mark-and-compact algorithm consists of two phases: In the first phase, it finds and marks all live
objects. The first phase is called the mark phase. In the second phase, the garbage collection algorithm
compacts the heap by moving all the live objects into contiguous memory locations. The second phase is
called the compaction phase. The algorithm can be expressed as follows:

for each root variable r

 Mark(r);

Compact();

● Handles

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page431.html [2002-11-17 ｿﾀﾈﾄ 11:06:59]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Handles

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Handles

The common language runtime specification does not prescribe how reference variables are
implemented. One approach is for a reference variable to be implemented as an index into an array of
object handles . Every object instance has its own handle. The handle for an object typically contains a
reference to a System.Type instance that describes the type of the object and a pointer to the region in
the heap where the object data resides.

The advantage of using handles is that when the position in the heap of an object is changed, only the
handle for that object needs to be modified. All other references to that object are unaffected because
such references actually refer to the handle. The cost of using handles is that the handle must be
dereferenced every time an object is accessed.

The mark-and-compact algorithm uses the handles in two ways: First, the marked flags which are set
during the mark operation are stored in the handles rather than in the objects themselves. Second,
compaction is greatly simplified because when an object is moved only its handle needs to be updated--
all other objects are unaffected.

Figure illustrates how object references are implemented using handles. Figure (a) shows a

circular, singly-linked list as it is usually drawn and Figure (b) shows how the list is represented
when using handles. Each reference variable actually contains an index into the array of handles. For
example, the head variable selects the handle at offset 2 and that handle points to linked list element A.
Similarly, the next field of list element A selects the handle at offset 5 which refers to list element B.
Notice that when an object is moved, only its handle needs to be modified.

http://www.brpreiss.com/books/opus6/html/page432.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:59]

http://www.brpreiss.com/books/opus6/index.html

Handles

Figure: Representing object references using handles.

The handle is a convenient place in which to record information used by the garbage collection
algorithm. For example, we add a bool field to each handle, called marked. The marked field is used
to mark live objects as follows:

void Mark(object p)

 if (!handle[p].marked)

 handle[p].marked = true;
 for each object q referenced by p
 Mark(q);

Notice that this version of the Mark method marks the object handles rather than the objects themselves.

Once all of the live objects in the heap have been identified, the heap needs to be defragemented. Perhaps
the simplest way to defragment the heap is to slide the objects in the heap all to one end, removing the
unused memory locations separating them. The following version of the Compact method does just this:

http://www.brpreiss.com/books/opus6/html/page432.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:59]

Handles

void Compact()

 long offset = 0;
 for each object p in the heap

 if (handle[p].marked)

 handle[p].object = heap.Move(p, offset);
 handle[p].marked = false;
 offset += sizeof(p);

This algorithm makes a single pass through the objects in the heap, moving the live objects towards the
lower heap addresses as it goes. The Compact method only modifies the object handles--object data
remain unchanged. This algorithm also illustrates an important characteristic of the sliding compaction
algorithm--the relative positions of the objects in the heap remains unchanged after the compaction
operation. Also, when the compaction method has finished, the marked fields have all been set back to
false in preparation for the next garbage collection operation.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page432.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:06:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Let M be the size of the heap and let f be the fraction of the heap occupied by live data. Estimate

the running time of the Mark method of the mark-and-sweep garbage collection scheme as a
function of f and M.

2. Repeat Exercise for the Copy method Estimate the running time of the Copy method of the
stop-and-copy garbage collection scheme.

3. Repeat Exercise for the Copy method Estimate the running time of the Compact method of
the stop-and-compact garbage collection scheme.

4. Using your answers to Exercises , and , show that running time of garbage collection is
inversely proportional to the amount of storage recovered.

5. The efficiency of a garbage collection scheme is the rate at which memory is reclaimed. Using

your answers to Exercises and compare the efficiency of mark-and-sweep with that of stop-
and-copy.

6. Devise a non-recursive algorithm for the Mark method of the mark-and-sweep garbage
collection scheme.

7. Repeat Exercise for the Copy method of the stop-and-copy garbage collection scheme.

8. Repeat Exercise for the Mark method of the mark-and-compact garbage collection scheme.
9. Consider the use of handles for representing object references. Is it correct to assume that the

order which objects appear in the heap is the same as the order in which the corresponding handles
appear in the array of handles? How does this affect compaction of the heap?

10. Consider the Compact method of the mark-and-compact garbage collection scheme. The
algorithm visits the objects in the heap in the order in which they appear in the heap, rather than in
the order in which the corresponding handles appear in the array of handles. Why is this
necessary?

11. The Compact method of the mark-and-compact garbage collection scheme slides the objects in
the heap all to one end, but leaves the handles where they are. As a result, the handle array
becomes fragmented. What modifications are necessary in order to compact the handle array as
well as the heap?

http://www.brpreiss.com/books/opus6/html/page433.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:00]

http://www.brpreiss.com/books/opus6/index.html

Exercises

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page433.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Devise and conduct a set of experiments to measure garbage collection overhead. For example,

write a program that creates a specified number of garbage objects as quickly as possible.
Determine the number of objects needed to trigger garbage collection. Measure the running time
of your program when no garbage collection is performed and compare it to the running time
observed when garbage collection is invoked.

2. C# provides the means for accessing memory directly by using pointers and unsafe blocks.
Therefore, we can simulate a heap using a C# array of ints. Write a C# class that manages an
array of ints. Your class should implement the following interface:

public interface Heap
{
 int Acquire(int size);
 int Release(int offset);
 int this[int offset] { get; set; }
}

The Acquire method allocates a region of size consecutive ints in the array and returns the
offset of the first int in the region. The Release method release a region of ints at the
specified offset which was obtained previously using Acquire. The indexer this[] provides
get and set accessors to access a value in the array at a given offset.

3. Using an array of ints simulate the mark-and-sweep garbage collection as follows:
1. Write a class that implements the Handle interface given below:

public interface Handle
{
 int Size { get; }
 int GetInt(int offset);
 Handle GetReference(int offset);
 SetInt(int offset, int value);
 SetReference(int offset, Handle h);
}

A handle refers to an object that contains either ints or other handles. The size of an
object is total the number of ints and handles it contains. The various store and fetch

http://www.brpreiss.com/books/opus6/html/page434.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:00]

http://www.brpreiss.com/books/opus6/index.html

Projects

methods are used to insert and remove items from the object to which this handle refers.
2. Write a class that implements the Heap interface given below

public interface Heap
{
 Handle Acquire(int size);
 void Release(Handle h);
 void CollectGarbage();
}

The Acquire method allocates a handle and space in the heap for an object of the given
size. The Release method releases the given handle but does not reclaim the associated
heap space. The CollectGarbage method performs the actual garbage collection
operation.

4. Using the approach described in Project , implement a simulation of mark-and-compact
garbage collection.

5. Using the approach described in Project implement a simulation of reference-counting
garbage collection.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page434.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Algorithmic Patterns and Problem Solvers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Algorithmic Patterns and Problem
Solvers

This chapter presents a number of different algorithmic patterns. Each pattern addresses a category of
problems and describes a core solution strategy for that category. Given a problem to be solved, we may
find that there are several possible solution strategies. We may also find that only one strategy applies or
even that none of them do. A good programmer is one who is proficient at examining the problem to be
solved and identifying the appropriate algorithmic technique to use. The following algorithmic patterns
are discussed in this chapter:

direct solution strategies
Brute force algorithms and greedy algorithms.

backtracking strategies
Simple backtracking and branch-and-bound algorithms.

top-down solution strategies
Divide-and-conquer algorithms.

bottom-up solution strategies
Dynamic programming.

randomized strategies
Monte Carlo algorithms and simulated annealing.

● Brute-Force and Greedy Algorithms
● Backtracking Algorithms
● Top-Down Algorithms: Divide-and-Conquer
● Bottom-Up Algorithms: Dynamic

Programming
● Randomized Algorithms
● Exercises
● Projects

http://www.brpreiss.com/books/opus6/html/page435.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:01]

http://www.brpreiss.com/books/opus6/index.html

Algorithmic Patterns and Problem Solvers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page435.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Brute-Force and Greedy Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Brute-Force and Greedy Algorithms

In this section we consider two closely related algorithm types--brute-force and greedy. Brute-force
algorithms are distinguished not by their structure or form, but by the way in which the problem to be
solved is approached. A brute-force algorithm solves a problem in the most simple, direct or obvious
way. As a result, such an algorithm can end up doing far more work to solve a given problem than a
more clever or sophisticated algorithm might do. On the other hand, a brute-force algorithm is often
easier to implement than a more sophisticated one and, because of this simplicity, sometimes it can be
more efficient.

Often a problem can be viewed as a sequence of decisions to be made. For example, consider the
problem of finding the best way to place electronic components on a circuit board. To solve this problem
we must decide where on the board to place each component. Typically, a brute-force algorithm solves
such a problem by exhaustively enumerating all the possibilities. That is, for every decision we consider
each possible outcome.

A greedy algorithm is one that makes the sequence of decisions (in some order) such that once a given
decision has been made, that decision is never reconsidered. For example, if we use a greedy algorithm to
place the components on the circuit board, once a component has been assigned a position it is never
again moved. Greedy algorithms can run significantly faster than brute force ones. Unfortunately, it is
not always the case that a greedy strategy leads to the correct solution.

● Example-Counting Change
● Example-0/1 Knapsack Problem

http://www.brpreiss.com/books/opus6/html/page436.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:01]

http://www.brpreiss.com/books/opus6/index.html

Brute-Force and Greedy Algorithms

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page436.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Counting Change

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Counting Change

Consider the problem a cashier solves every time he counts out some amount of currency. The cashier
has at his disposal a collection of notes and coins of various denominations and is required to count out a
specified sum using the smallest possible number of pieces.

The problem can be expressed mathematically as follows: Let there be n pieces of money (notes or

coins), , and let be the denomination of . For example, if is a dime, then

. To count out a given sum of money A we find the smallest subset of P, say , such that

.

One way to represent the subset S is to use n variables , such that

Given our objective is to minimize

subject to the constraint

http://www.brpreiss.com/books/opus6/html/page437.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:02]

http://www.brpreiss.com/books/opus6/index.html

Example-Counting Change

● Brute-Force Algorithm
● Greedy Algorithm

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page437.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Brute-Force Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Brute-Force Algorithm

Since each of the elements of is either a zero or a one, there are possible

values for X. A brute-force algorithm to solve this problem finds the best solution by enumerating all the
possible values of X.

For each possible value of X we check first if the constraint is satisfied. A value which

satisfies the constraint is called a feasible solution . The solution to the problem is the feasible solution

which minimizes which is called the objective function .

Since there are possible values of X the running time of a brute-force solution is . The running

time needed to determine whether a possible value is a feasible solution is O(n) and the time required to
evaluate the objective function is also O(n). Therefore, the running time of the brute-force algorithm is

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page438.html [2002-11-17 ｿﾀﾈﾄ 11:07:03]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Greedy Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Greedy Algorithm

A cashier does not really consider all the possible ways in which to count out a given sum of money.
Instead, he counts out the required amount beginning with the largest denomination and proceeding to
the smallest denomination.

For example, suppose we have ten coins: five pennies, two nickels, two dimes, and one quarter. That is,

. To count out 32 cents, we start with a quarter,

then add a nickel followed by two pennies. This is a greedy strategy because once a coin has been
counted out, it is never taken back. Furthermore, the solution obtained is the correct solution because it
uses the fewest number of coins.

If we assume that the pieces of money (notes and coins) are sorted by their denomination, the running
time for the greedy algorithm is O(n). This is significantly better than that of the brute-force algorithm
given above.

Does this greedy algorithm always produce the correct answer? Unfortunately it does not. Consider what
happens if we introduce a 15-cent coin. Suppose we are asked to count out 20 cents from the following

set of coins: . The greedy algorithm selects 15 followed by five ones--six

coins in total. Of course, the correct solution requires only two coins. The solution found by the greedy
strategy is a feasible solution, but it does not minimize the objective function.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page439.html [2002-11-17 ｿﾀﾈﾄ 11:07:04]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-0/1 Knapsack Problem

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-0/1 Knapsack Problem

 The 0/1 knapsack problem is closely related to the change counting problem discussed in the preceding
section: We are given a set of n items from which we are to select some number of items to be carried in
a knapsack. Each item has both a weight and a profit. The objective is to chose the set of items that fits in
the knapsack and maximizes the profit.

Let be the weight of the item, be the profit accrued when the item is carried in the
knapsack, and C be the capacity of the knapsack. Let be a variable the value of which is either zero or
one. The variable has the value one when the item is carried in the knapsack.

Given and , our objective is to maximize

subject to the constraint

Clearly, we can solve this problem by exhaustively enumerating the feasible solutions and selecting the
one with the highest profit. However, since there are possible solutions, the running time required for
the brute-force solution becomes prohibitive as n gets large.

An alternative is to use a greedy solution strategy which solves the problem by putting items into the
knapsack one-by-one. This approach is greedy because once an item has been put into the knapsack, it is
never removed.

How do we select the next item to be put into the knapsack? There are several possibilities:

Greedy by Profit
At each step select from the remaining items the one with the highest profit (provided the capacity
of the knapsack is not exceeded). This approach tries to maximize the profit by choosing the most

http://www.brpreiss.com/books/opus6/html/page440.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:05]

http://www.brpreiss.com/books/opus6/index.html

Example-0/1 Knapsack Problem

profitable items first.
Greedy by Weight

At each step select from the remaining items the one with the least weight (provided the capacity
of the knapsack is not exceeded). This approach tries to maximize the profit by putting as many
items into the knapsack as possible.

Greedy by Profit Density

At each step select from the remaining items the one with the largest profit density,

(provided the capacity of the knapsack is not exceeded). This approach tries to maximize the
profit by choosing items with the largest profit per unit of weight.

While all three approaches generate feasible solutions, we cannot guarantee that any of them will always

generate the optimal solution. In fact, it is even possible that none of them does! Table gives an
example where this is the case.

greedy by

i profit weight density optimal solution

1 100 40 0.4 1 0 0 0

2 50 35 0.7 0 0 1 1

3 45 18 0.4 0 1 0 1

4 20 4 0.2 0 1 1 0

5 10 10 1.0 0 1 1 0

6 5 2 0.4 0 1 1 1

total weight 100 80 85 100

total profit 40 34 51 55

Table:0/1 knapsack problem example (C=100).

The bottom line about greedy algorithms is this: Before using a greedy algorithm you must make sure
that it always gives the correct answer. Fortunately, in many cases this is true.

http://www.brpreiss.com/books/opus6/html/page440.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:05]

Example-0/1 Knapsack Problem

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page440.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:05]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Backtracking Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Backtracking Algorithms
In this section we consider backtracking algorithms . As in the preceding section, we view the problem
to be solved as a sequence of decisions. A backtracking algorithm systematically considers all possible
outcomes for each decision. In this sense, backtracking algorithms are like the brute-force algorithms
discussed in the preceding section. However, backtracking algorithms are distinguished by the way in
which the space of possible solutions is explored. Sometimes a backtracking algorithm can detect that an
exhaustive search is unnecessary and, therefore, it can perform much better.

● Example-Balancing Scales
● Representing the Solution Space
● Abstract Backtracking Solvers
● Branch-and-Bound Solvers
● Example-0/1 Knapsack Problem Again

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page441.html [2002-11-17 ｿﾀﾈﾄ 11:07:05]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Balancing Scales

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Balancing Scales

Consider the set of scales shown in Figure . Suppose we are given a collection of n weights,

, and we are required to place all of the weights onto the scales so that they are

balanced.

Figure: A set of scales.

The problem can be expressed mathematically as follows: Let represent the pan in which weight is
placed such that

The scales are balanced when the sum of the weights in the left pan equals the sum of the weights in the
right pan,

Given an arbitrary set of n weights, there is no guarantee that a solution to the problem exists. A solution
always exists if, instead of balancing the scales, the goal is to minimize the difference between between

http://www.brpreiss.com/books/opus6/html/page442.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:06]

http://www.brpreiss.com/books/opus6/index.html

Example-Balancing Scales

the total weights in the left and right pans. Thus, given , our objective is to minimize

 where

subject to the constraint that all the weights are placed on the scales.

Given a set of scales and collection of weights, we might solve the problem by trial-and-error: Place all
the weights onto the pans one-by-one. If the scales balance, a solution has been found. If not, remove
some number of the weights and place them back on the scales in some other combination. In effect, we
search for a solution to the problem by first trying one solution and then backing-up to try another.

Figure shows the solution space for the scales balancing problem. In this case the solution space
takes the form of a tree: Each node of the tree represents a partial solution to the problem. At the root
(node A) no weights have been placed yet and the scales are balanced. Let be the difference between
the the sum of the weights currently placed in the left and right pans. Therefore, at node A.

Figure: Solution space for the scales balancing problem.

Node B represents the situation in which weight has been placed in the left pan. The difference

between the pans is . Conversely, node C represents the situation in which the weight has

been placed in the right pan. In this case . The complete solution tree has depth n and

leaves. Clearly, the solution is the leaf node having the smallest value.

http://www.brpreiss.com/books/opus6/html/page442.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:06]

Example-Balancing Scales

In this case (as in many others) the solution space is a tree. In order to find the best solution a
backtracking algorithm visits all the nodes in the solution space. That is, it does a tree traversal . Section

 presents the two most important tree traversals--depth-first and breadth-first . Both kinds can be used
to implement a backtracking algorithm.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page442.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Representing the Solution Space

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Representing the Solution Space

This section presents an interface for the nodes of a solution space. By using an interface, we hide the
details of the specific problem to be solved from the backtracking algorithm. In so doing, it is possible to
implement completely generic backtracking problem solvers.

Although a backtracking algorithm behaves as if it is traversing a solution tree, it is important to realize
that it is not necessary to have the entire solution tree constructed at once. Instead, the backtracking
algorithm creates and destroys the nodes dynamically as it explores the solution space.

Program defines the Solution interface. Each instance of a class that implements the Solution
interface represents a single node in the solution space.

Program: Solution interface.

The Solution interface comprises the following properties:

IsFeasible
This get accessor returns true if the solution instance is a feasible solution to the given
problem. A solution is feasible if it satisfies the problem constraints.

IsComplete
This get accessor returns true if the solution instance represents a complete solution. A
solution is complete when all possible decisions have been made.

Objective
This get accessor returns the value of the objective function for the given solution instance.

Bound

http://www.brpreiss.com/books/opus6/html/page443.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:07]

http://www.brpreiss.com/books/opus6/index.html

Representing the Solution Space

This get accessor returns a value that is a lower bound (if it exists) on the objective function for
the given solution instance as well as all the solutions that can possibly be derived from that
instance. This is a hook provided to facilitate the implementation of branch-and-bound

backtracking which is described in Section .
Successors

This get accessor returns an IEnumerable object that represents all of the successors (i.e., the
children) of the given solution instance. It is assumed that the children of the given node are
created dynamically.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page443.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Backtracking Solvers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Backtracking Solvers

The usual way to implement a backtracking algorithm is to write a method which traverses the solution
space. This section presents an alternate, object-oriented approach that is based on the notion of an
abstract solver .

Think of a solver as an abstract machine, the sole purpose of which is to search a given solution space for
the best possible solution. A machine is an object. Therefore, it makes sense that we represent it as an
instance of some class.

Program defines the Solver interface. The Solver interface consists of the single method Solve.
This method takes as its argument a Solution that is the node in the solution space from which to
begin the search. The Solve method returns the to the best solution found.

Program: Solver interface.

● Abstract Solvers
● Depth-First Solver
● Breadth-First Solver

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page444.html [2002-11-17 ｿﾀﾈﾄ 11:07:07]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Solvers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Solvers

Program defines the AbstractSolver class. The AbstractSolver class implements the

Solver interface defined in Program . The AbstractSolver class contains two fields,
bestSolution and bestObjective, two concrete methods, UpdateBest and Solve and the
abstract method Search. Since Search is an abstract method, its implementation must be given in a
derived class.

http://www.brpreiss.com/books/opus6/html/page445.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:08]

http://www.brpreiss.com/books/opus6/index.html

Abstract Solvers

Program: AbstractSolver class.

The Solve method does not search the solution space itself--it merely sets things up for the Search
method. It is the Search method, which is provided by a derived class, that does the actual searching.
When Search returns it is expected that the bestSolution field will refer to the best solution and
that bestObjective will be the value of the objective function for the best solution.

The UpdateBest method is meant to be called by the Search method as it explores the solution
space. As each complete solution is encountered, the UpdateBest method is called to keep track of the
solution which minimizes the objective function.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page445.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:08]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Depth-First Solver

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Depth-First Solver

This section presents a backtracking solver that finds the best solution to a given problem by performing

depth-first traversal of the solution space. Program defines the DepthFirstSolver class. The

DepthFirstSolver class extends the AbstractSolver class defined in Program . It provides
an implementation for the Search method.

Program: DepthFirstSolver class.

The Search method does a complete, depth-first traversal of the solution space. Note that the
implementation does not depend upon the characteristics of the problem being solved. In this sense the
solver is a generic, abstract solver and can be used to solve any problem that has a tree-structured
solution space!

Since the Search method in Program visits all the nodes in the solution space, it is essentially a
brute-force algorithm. And because the recursive method backs up and then tries different alternatives, it
is called a backtracking algorithm.

http://www.brpreiss.com/books/opus6/html/page446.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:09]

http://www.brpreiss.com/books/opus6/index.html

Depth-First Solver

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page446.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:09]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Breadth-First Solver

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Breadth-First Solver

If we can find the optimal solution by doing a depth-first traversal of the solution space, then we can find

the solution with a breadth-first traversal too. As defined in Section , a breadth-first traversal of a tree
visits the nodes in the order of their depth in the tree. That is, first the root is visited, then the children of
the root are visited, then the grandchildren are visited, and so on.

The BreadthFirstSolver class is defined in Program . The BreadthFirstSolver class

extends the AbstractSolver class defined in Program . It simply provides an implementation for
the Search method.

Program: BreadthFirstSolver class.

http://www.brpreiss.com/books/opus6/html/page447.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:09]

http://www.brpreiss.com/books/opus6/index.html

Breadth-First Solver

The Search method implements a non-recursive, breadth-first traversal algorithm that uses a queue to
keep track of nodes to be visited. The initial solution is enqueued first. Then the following steps are
repeated until the queue is empty:

1. Dequeue the first solution in the queue.
2. If the solution is complete, call the UpdateBest method to keep track of the solution which

minimizes the objective function.
3. Otherwise the solution is not complete. Enqueue all its successors.

Clearly, this algorithm does a complete traversal of the solution space.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page447.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:09]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Branch-and-Bound Solvers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Branch-and-Bound Solvers

The depth-first and breadth-first backtracking algorithms described in the preceding sections both naıvely
traverse the entire solution space. However, sometimes we can determine that a given node in the
solution space does not lead to the optimal solution--either because the given solution and all its
successors are infeasible or because we have already found a solution that is guaranteed to be better than
any successor of the given solution. In such cases, the given node and its successors need not be
considered. In effect, we can prune the solution tree, thereby reducing the number of solutions to be
considered.

For example, consider the scales balancing problem described in Section . Consider a partial solution

 in which we have placed k weights onto the pans () and, therefore, n-k weights remain to

be placed. The difference between the weights of the left and right pans is given by

and the sum of the weights still to be placed is

Suppose that . That is, the total weight remaining is less than the difference between the weights

in the two pans. Then, the best possible solution that we can obtain without changing the positions of the

weights that have already been placed is The quantity is a lower bound on the value of

the objective function for all the solutions in the solution tree below the given partial solution .

In general, during the traversal of the solution space we may have already found a complete, feasible

solution for which the objective function is less than . In that case, there is no point in considering any

http://www.brpreiss.com/books/opus6/html/page448.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:10]

http://www.brpreiss.com/books/opus6/index.html

Branch-and-Bound Solvers

of the solutions below . That is, we can prune the subtree rooted at node from the solution tree. A

backtracking algorithm that prunes the search space in this manner is called a branch-and-bound
algorithm.

● Depth-First, Branch-and-Bound Solver

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page448.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Depth-First, Branch-and-Bound Solver

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Depth-First, Branch-and-Bound Solver

Only a relatively minor modification of the simple, depth-first solver shown in Program is needed to

transform it into a branch-and-bound solver. Program defines the
DepthFirstBranchAndBoundSolver class.

Program: DepthFirstBranchAndBoundSolver class.

The only difference between the simple, depth-first solver and the branch-and-bound version is the if
statement on lines 11-12. As each node in the solution space is visited two tests are done: First, the
IsFeasible accessor is called to check whether the given node represents a feasible solution. Next,
the Bound accessor is called to determine the lower bound on the best possible solution in the given
subtree. The second test determines whether this bound is less than the value of the objective function of
the best solution already found. The recursive call to explore the subtree is only made if both tests
succeed. Otherwise, the subtree of the solution space is pruned.

The degree to which the solution space may be pruned depends strongly on the nature of the problem

http://www.brpreiss.com/books/opus6/html/page449.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:11]

http://www.brpreiss.com/books/opus6/index.html

Depth-First, Branch-and-Bound Solver

being solved. In the worst case, no subtrees are pruned and the branch-and-bound method visits all the
nodes in the solution space. The branch-and-bound technique is really just a heuristic --sometimes it
works and sometimes it does not.

It is important to understand the trade-off being made: The solution space is being pruned at the added
expense of performing the tests as each node is visited. The technique is successful only if the savings
which accrue from pruning exceed the additional execution time arising from the tests.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page449.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-0/1 Knapsack Problem Again

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-0/1 Knapsack Problem Again

Consider again the 0/1 knapsack problem described in Section . We are given a set of n items from
which we are to select some number of items to be carried in a knapsack. The solution to the problem has

the form , where is one if the item is placed in the knapsack and zero otherwise.

Each item has both a weight, , and a profit, . The goal is to maximize the total profit,

subject to the knapsack capacity constraint

A partial solution to the problem is one in which only the first k items have been considered. That is, the

solution has the form , where . The partial solution is feasible if

and only if

Clearly if is infeasible, then every possible complete solution containing is also infeasible.

If is feasible, the total profit of any solution containing is bounded by

That is, the bound is equal the actual profit accrued from the k items already considered plus the sum of
the profits of the remaining items.

http://www.brpreiss.com/books/opus6/html/page450.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:12]

http://www.brpreiss.com/books/opus6/index.html

Example-0/1 Knapsack Problem Again

Clearly, the 0/1 knapsack problem can be solved using a backtracking algorithm. Furthermore, by using

Equations and a branch-and-bound solver can potentially prune the solution space, thereby
arriving at the solution more quickly.

For example, consider the 0/1 knapsack problem with n=6 items given in Table . There are

possible solutions and the solution space contains nodes. The simple

DepthFirstSolver given in Program visits all 127 nodes and generates all 64 solutions because

it does a complete traversal of the solution tree. The BreadthFirstSolver of Program behaves

similarly. On the other hand, the DepthFirstBranchAndBoundSolver shown in Program
visits only 67 nodes and generates only 27 complete solutions. In this case, the branch-and-bound
technique prunes almost half the nodes from the solution space!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page450.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:12]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Top-Down Algorithms: Divide-and-Conquer

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Top-Down Algorithms: Divide-and-
Conquer
In this section we discuss a top-down algorithmic paradigm called divide and conquer . To solve a given
problem, it is subdivided into one or more subproblems each of which is similar to the given problem.
Each of the subproblems is solved independently. Finally, the solutions to the subproblems are combined
in order to obtain the solution to the original problem.

Divide-and-conquer algorithms are often implemented using recursion. However, not all recursive
methods are divide-and-conquer algorithms. Generally, the subproblems solved by a divide-and-conquer
algorithm are non-overlapping.

● Example-Binary Search
● Example-Computing Fibonacci Numbers
● Example-Merge Sorting
● Running Time of Divide-and-Conquer Algorithms
● Example-Matrix Multiplication

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page451.html [2002-11-17 ｿﾀﾈﾄ 11:07:12]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Binary Search

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Binary Search

Consider the problem of finding the position of an item in a sorted list. That is, given the sorted sequence

 and an item x, find i (if it exists) such that . The usual solution to this

problem is binary search .

Binary search is a divide-and-conquer strategy. The sequence S is split into two subsequences,

 and . The original problem is

split into two subproblems: Find x in or . Of course, since the original list is sorted, we can quickly

determine the list in which x must appear. Therefore, we only need to solve one subproblem.

Program defines the method BinarySearch which takes four arguments, array, x, i and n. This
method looks for the position in array at which item x is found. Specifically, it considers the following
elements of the array:

http://www.brpreiss.com/books/opus6/html/page452.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:14]

http://www.brpreiss.com/books/opus6/index.html

Example-Binary Search

Program: Divide-and-conquer example--binary search.

The running time of the algorithm is clearly a function of n, the number of elements to be searched.

Although Program works correctly for arbitrary values of n, it is much easier to determine the
running time if we assume that n is a power of two. In this case, the running time is given by the
recurrence

Equation is easily solved using repeated substitution:

http://www.brpreiss.com/books/opus6/html/page452.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:14]

Example-Binary Search

Setting gives .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page452.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Computing Fibonacci Numbers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Computing Fibonacci Numbers

The Fibonacci numbers are given by following recurrence

Section presents a recursive method to compute the Fibonacci numbers by implementing directly

Equation . (See Program). The running time of that program is shown to be .

In this section we present a divide-and-conquer style of algorithm for computing Fibonacci numbers. We
make use of the following identities

for . (See Exercise). Thus, we can rewrite Equation as

Program defines the method Fibonacci which implements directly Equation . Given n>1 it
computes by calling itself recursively to compute and and then combines the two

results as required.

http://www.brpreiss.com/books/opus6/html/page453.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:15]

http://www.brpreiss.com/books/opus6/index.html

Example-Computing Fibonacci Numbers

Program: Divide-and-conquer Example--computing Fibonacci numbers.

To determine a bound on the running time of the Fibonacci method in Program we assume that

T(n) is a non-decreasing function. That is, for all . Therefore

. Although the program works correctly for all values of n, it is convenient

to assume that n is a power of 2. In this case, the running time of the method is upper-bounded by T(n)
where

Equation is easily solved using repeated substitution:

http://www.brpreiss.com/books/opus6/html/page453.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:15]

Example-Computing Fibonacci Numbers

Thus, T(n)=2n-1=O(n).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page453.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Merge Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Merge Sorting

Sorting algorithms and sorters are covered in detail in Chapter . In this section we consider a divide-
and-conquer sorting algorithm--merge sort . Given an array of n items in arbitrary order, the objective is
to rearrange the elements of the array so that they are ordered from the smallest element to the largest
one.

The merge sort algorithm sorts a sequence of length n>1 by splitting it into to subsequences--one of

length , the other of length . Each subsequence is sorted and then the two sorted sequences

are merged into one.

Program defines the method MergeSort which takes three arguments, array, i, and n. The
method sorts the following n elements:

The MergeSort method calls itself as well as the Merge method. The purpose of the Merge method

is to merge two sorted sequences, one of length , the other of length , into a single sorted

sequence of length n. This can easily be done in O(n) time. (See Program).

http://www.brpreiss.com/books/opus6/html/page454.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:16]

http://www.brpreiss.com/books/opus6/index.html

Example-Merge Sorting

Program: Divide-and-conquer example--merge sorting.

The running time of the MergeSort method depends on the number of items to be sorted, n. Although

Program works correctly for arbitrary values of n, it is much easier to determine the running time if
we assume that n is a power of two. In this case, the running time is given by the recurrence

Equation is easily solved using repeated substitution:

Setting gives .

http://www.brpreiss.com/books/opus6/html/page454.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:16]

Example-Merge Sorting

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page454.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time of Divide-and-Conquer Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time of Divide-and-Conquer Algorithms

A number of divide-and-conquer algorithms are presented in the preceding sections. Because these
algorithms have a similar form, the recurrences which give the running times of the algorithms are also

similar in form. Table summarizes the running times of Programs , and .

program recurrence solution

Program T(n)=T(n/2)+O(1)

Program T(n)=2T(n/2)+O(1) O(n)

Program T(n)=2T(n/2)+O(n)

Table:Running times of divide-and-conquer
algorithms.

In this section we develop a general recurrence that characterizes the running times of many divide-and-
conquer algorithms. Consider the form of a divide-and-conquer algorithm to solve a given problem. Let n
be a measure of the size of the problem. Since the divide-and-conquer paradigm is essentially recursive,
there must be a base case. That is, there must be some value of n, say , for which the solution to the
problem is computed directly. We assume that the worst-case running time for the base case is bounded
by a constant.

To solve an arbitrarily large problem using divide-and-conquer, the problem is divided into a number
smaller problems, each of which is solved independently. Let a be the number of smaller problems to be

solved (,). The size of each of these problems is some fraction of the original problem,

typically either or (,).

The solution to the original problem is constructed from the solutions to the smaller problems. The
running time required to do this depends on the problem to be solved. In this section we consider

http://www.brpreiss.com/books/opus6/html/page455.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:18]

http://www.brpreiss.com/books/opus6/index.html

Running Time of Divide-and-Conquer Algorithms

polynomial running times. That is, for some integer .

For the assumptions stated above, the running time of a divide-and-conquer algorithm is given by

In order to make it easier to find the solution to Equation , we drop the s as well as the from

the recurrence. We can also assume (without loss of generality) that . As a result, the recurrence

becomes

Finally, we assume that n is a power of b. That is, for some integer . Consequently, the

recurrence formula becomes

We solve Equation as follows. Divide both sizes of the recurrence by and then telescope :

http://www.brpreiss.com/books/opus6/html/page455.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:18]

Running Time of Divide-and-Conquer Algorithms

Adding Equation through Equation , substituting T(1)=1 and multiplying both sides by gives

In order to evaluate the summation in Equation we must consider three cases:

● Case 1 ()

● Case 2 ()

● Case 3 ()

● Summary

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page455.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Case 1 (#tex2html_wrap_inline67826#)

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Case 1 ()

In this case, the term falls between zero and one. Consider the infinite geometric series summation:

Since the infinite series summation approaches a finite constant C and since each term in the series is

positive, the finite series summation in Equation is bounded from above by C:

Substituting this result into Equation and making use of the fact that , and therefore
, gives

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page456.html [2002-11-17 ｿﾀﾈﾄ 11:07:19]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Case 2 (#tex2html_wrap_inline67840#)

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Case 2 ()

In this case the term is exactly one. Therefore, the series summation in Equation is simply

Substituting this result into Equation and making use of the fact that and gives

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page457.html [2002-11-17 ｿﾀﾈﾄ 11:07:19]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Case 3 (#tex2html_wrap_inline67850#)

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Case 3 ()

In this case the term is greater than one and we make use of the general formula for a finite

geometric series summation (see Section) to evaluate the summation:

Substituting this result in Equation and simplifying gives:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page458.html [2002-11-17 ｿﾀﾈﾄ 11:07:20]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Summary

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Summary

For many divide-and-conquer algorithms the running time is given by the general recurrence shown in

Equation . Solutions to the recurrence depend on the relative values of the constants a, b, and k.
Specifically, the solutions satisfy the following bounds:

Table shows how to apply Equation to find the running times of the divide-and-conquer

algorithms described in the preceding sections. Comparing the solutions in Table with those given in

Table shows the results obtained using the general formula agree with the analyses done in the
preceding sections.

program recurrence a b k case solution

Program T(n)=T(n/2)+O(1) 1 2 0

Program T(n)=2T(n/2)+O(1) 2 2 0

Program T(n)=2T(n/2)+O(n) 2 2 1

Table:Computing running times using Equation .

http://www.brpreiss.com/books/opus6/html/page459.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:21]

http://www.brpreiss.com/books/opus6/index.html

Summary

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page459.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Matrix Multiplication

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Matrix Multiplication

Consider the problem of computing the product of two matrices. That is, given two matrices, A

and B, compute the matrix , the elements of which are given by

Section shows that the direct implementation of Equation results in an running time. In

this section we show that the use of a divide-and-conquer strategy results in a slightly better asymptotic
running time.

To implement a divide-and-conquer algorithm we must break the given problem into several
subproblems that are similar to the original one. In this instance we view each of the matrices as a

 matrix, the elements of which are submatrices. Thus, the original matrix

multiplication, can be written as

where each , , and is an matrix.

From Equation we get that the result submatrices can be computed as follows:

http://www.brpreiss.com/books/opus6/html/page460.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:23]

http://www.brpreiss.com/books/opus6/index.html

Example-Matrix Multiplication

Here the symbols + and are taken to mean addition and multiplication (respectively) of

matrices.

In order to compute the original matrix multiplication we must compute eight matrix

products (divide) followed by four matrix sums (conquer). Since matrix addition is an

operation, the total running time for the multiplication operation is given by the recurrence:

Note that Equation is an instance of the general recurrence given in Equation . In this case, a=8,

b=2, and k=2. We can obtain the solution directly from Equation . Since , the total running

time is . But this no better than the original, direct algorithm!

Fortunately, it turns out that one of the eight matrix multiplications is redundant. Consider the following

series of seven matrices:

Each equation above has only one multiplication. Ten additions and seven multiplications are required to
compute through . Given through , we can compute the elements of the product matrix C

as follows:

http://www.brpreiss.com/books/opus6/html/page460.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:23]

Example-Matrix Multiplication

Altogether this approach requires seven matrix multiplications and 18 additions.

Therefore, the worst-case running time is given by the following recurrence:

As above, Equation is an instance of the general recurrence given in Equation . and we obtain the

solution directly from Equation . In this case, a=7, b=2, and k=2. Therefore, and the total

running time is

Note . Consequently, the running time of the divide-and-conquer matrix

multiplication strategy is which is better (asymptotically) than the straightforward

approach.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page460.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Bottom-Up Algorithms: Dynamic Programming

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Bottom-Up Algorithms: Dynamic
Programming
In this section we consider a bottom-up algorithmic paradigm called dynamic programming . In order to
solve a given problem, a series of subproblems is solved. The series of subproblems is devised carefully
in such a way that each subsequent solution is obtained by combining the solutions to one or more of the
subproblems that have already been solved. All intermediate solutions are kept in a table in order to
prevent unnecessary duplication of effort.

● Example-Generalized Fibonacci Numbers
● Example-Computing Binomial Coefficients
● Application: Typesetting Problem

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page461.html [2002-11-17 ｿﾀﾈﾄ 11:07:23]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Generalized Fibonacci Numbers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Generalized Fibonacci Numbers

Consider the problem of computing the generalized Fibonacci numbers . The generalized Fibonacci

numbers of order are given by

Notice that the ``normal'' Fibonacci numbers considered in Section are the same as the generalized
Fibonacci numbers of order 2.

If we write a recursive method that implements directly Equation , we get an algorithm with

exponential running time. For example, in Section it is shown that the time to compute the second-

order Fibonacci numbers is .

The problem with the direct recursive implementation is that it does far more work than is needed

because it solves the same subproblem many times. For example, to compute it is necessary to

compute both and . However, in computing it is also necessary to compute , and so

on.

An alternative to the top-down recursive implementation is to do the calculation from the bottom up. In
order to do this we compute the series of sequences

http://www.brpreiss.com/books/opus6/html/page462.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:25]

http://www.brpreiss.com/books/opus6/index.html

Example-Generalized Fibonacci Numbers

Notice that we can compute from the information contained in simply by using Equation .

Program defines the method Fibonacci which takes two integer arguments n and k and computes
the Fibonacci number of order k using the approach described above. This algorithm uses an array to

represent the series of sequences . As each subsequent Fibonacci number is computed it

is added to the end of the array.

Program: Dynamic programming example--computing generalized Fibonacci numbers.

The worst-case running time of the Fibonacci method given in Program is a function of both n
and k:

http://www.brpreiss.com/books/opus6/html/page462.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:25]

Example-Generalized Fibonacci Numbers

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page462.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:25]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Computing Binomial Coefficients

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Computing Binomial Coefficients

Consider the problem of computing the binomial coefficient

given non-negative integers n and m (see Theorem).

The problem with implementing directly Equation is that the factorials grow quickly with increasing

n and m. For example, . Therefore, it is not possible to represent n! for

 using 32-bit integers. Nevertheless it is possible to represent the binomial coefficients up to

n=33 without overflowing. For example, .

Consider the following recursive definition of the binomial coefficients:

This formulation does not require the computation of factorials. In fact, the only computation needed is
addition.

If we implement Equation directly as a recursive method, we get a method whose running time is
given by

http://www.brpreiss.com/books/opus6/html/page463.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:26]

http://www.brpreiss.com/books/opus6/index.html

Example-Computing Binomial Coefficients

which is very similar to Equation . In fact, we can show that which (by

Equation) is not a very good running time at all! Again the problem with the direct recursive
implementation is that it does far more work than is needed because it solves the same subproblem many
times.

An alternative to the top-down recursive implementation is to do the calculation from the bottom up. In
order to do this we compute the series of sequences

Notice that we can compute from the information contained in simply by using Equation .

Table shows the sequence in tabular form--the row of the table corresponds the sequence . This

tabular representation of the binomial coefficients is known as Pascal's triangle .

n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

http://www.brpreiss.com/books/opus6/html/page463.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:26]

Example-Computing Binomial Coefficients

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

Table:Pascal's triangle.

Program defines the method Binom which takes two integer arguments n and m and computes the

binomial coefficient by computing Pascal's triangle. According to Equation , each subsequent row

depends only on the preceding row--it is only necessary to keep track of one row of data. The
implementation shown uses an array of length n to represent a row of Pascal's triangle. Consequently,

instead of a table of size , the algorithm gets by with O(n) space. The implementation has been

coded carefully so that the computation can be done in place. That is, the elements of are computed

in reverse so that they can be written over the elements of that are no longer needed.

Program: Dynamic programming example--computing Binomial coefficients.

The worst-case running time of the Binom method given in Program is clearly .

http://www.brpreiss.com/books/opus6/html/page463.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:26]

Example-Computing Binomial Coefficients

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page463.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Application: Typesetting Problem

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Application: Typesetting Problem

Consider the problem of typesetting a paragraph of justified text. A paragraph can be viewed as a

sequence of n>0 words, . The objective is to determine how to break the sequence

into individual lines of text of the appropriate size. Each word is separated from the next by some amount
of space. By stretching or compressing the space between the words, the left and right ends of
consecutive lines of text are made to line up. A paragraph looks best when the amount of stretching or
compressing is minimized.

We can formulate the problem as follows: Assume that we are given the lengths of the words,

, and that the desired length of a line is D. Let represent the sequence of words

from to (inclusive). That is,

for .

Let be the sum of the lengths of the words in the sequence . That is,

The natural length, for the sequence is the sum of the lengths of the words, plus the normal

amount of space between those words. Let s be the normal size of the space between two words. Then

the natural length of is . Note, we can also define recursively as follows:

http://www.brpreiss.com/books/opus6/html/page464.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:28]

http://www.brpreiss.com/books/opus6/index.html

Application: Typesetting Problem

In general, when we typeset the sequence all on a single line, we need to stretch or compress the

spaces between the words so that the length of the line is the desired length D. Therefore, the amount of

stretching or compressing is given by the difference . However, if the sum of

the lengths of the words, , is longer than the desired line length D, it is not possible to typeset the

sequence on a single line.

Let be the penalty associated with typesetting the sequence on a single line. Then,

This definition is of penalty is consistent with the stated objectives: The penalty increases as the
difference between the natural length of the sequence and the desired length increases and the infinite
penalty disallows lines that are too long.

Finally, we define the quantity for as the minimum total penalty required to typeset

the sequence . In this case, the text may be all on one line or it may be split over more than one line.

The quantity is given by

We obtain Equation as follows: When i=j there is only one word in the paragraph. The minimum total
penalty associated with typesetting the paragraph in this case is just the penalty which results from
putting the one word on a single line.

In the general case, there is more than one word in the sequence . In order to determine the optimal

way in which to typeset the paragraph we consider the cost of putting the first k words of the sequence on
the first line of the paragraph, , plus the minimum total cost associated with typesetting the rest of the

paragraph . The value of k which minimizes the total cost also specifies where the line break

should occur.

http://www.brpreiss.com/books/opus6/html/page464.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:28]

Application: Typesetting Problem

● Example
● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page464.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example

Suppose we are given a sequence of n=5 words, having lengths

, respectively, which are to be typeset in a paragraph of width D=60. Assume that

the normal width of an inter-word space is s=10.

We begin by computing the lengths of all the subsequences of W using Equation . The lengths of all

n(n-1)/2 subsequences of W are tabulated in Table .

i j=1 2 3 4 5

1 10 10 20 30 42 92

2 10 10 20 32 82

3 10 10 22 72

4 12 12 62

5 50 50

Table:Typesetting
problem.

Given , D, and s, it is a simple matter to apply to obtain the one-line penalties,

, which measure the amount of stretching or compressing needed to set all the words in a given

subsequence on a single line. These are tabulated in Table .

http://www.brpreiss.com/books/opus6/html/page465.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:30]

http://www.brpreiss.com/books/opus6/index.html

Example

i j=1 2 3 4 5 j=1 2 3 4 5

1 50 30 10 12 50 30 10 12 22

2 50 30 8 50 30 8 18

3 50 28 50 28 38

4 48 48 58

5 10 10

Table:Penalties.

Given the one-line penalties , we can use Equation to find for each subsequence of W the

minimum total penalty, , associated with forming a paragraph from the words in that subsequence.

These are tabulated in Table .

The entry in Table gives the minimum total cost of typesetting the entire paragraph. The value

22 was obtained as follows:

This indicates that the optimal solution is to set words , , , and on the first line of the

paragraph and leave by itself on the last line of the paragraph. Figure illustrates this result.

http://www.brpreiss.com/books/opus6/html/page465.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:30]

Example

Figure: Typesetting a paragraph.

This formulation of the typesetting problem seems like overkill. Why not just typeset the lines of text one-
by-one, minimizing the penalty for each line as we go? In other words why don't we just use a greedy
strategy? Unfortunately, the obvious greedy solution strategy does not work!

For example, the greedy strategy begins by setting the first line of text. To do so it must decide how many
words to put on that line. The obvious thing to do is to select the value of k for which is the smallest.

From Table we see that has the smallest penalty. Therefore, the greedy approach puts

three words on the first line as shown in Figure .

Since the remaining two words do not both fit on a single line, they are set on separate lines. The total of
the penalties for the paragraph typeset using the greedy algorithm is . Clearly,

the solution is not optimal (nor is it very pleasing esthetically).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page465.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program defines the method Typeset which takes three arguments. The first, l, is an array of n
integers that gives the lengths of the words in the sequence to be typeset. The second, D, specifies the
desired paragraph width and the third, s, specifies the normal inter-word space.

http://www.brpreiss.com/books/opus6/html/page466.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:30]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Dynamic programming example--typesetting a paragraph.

The method first computes the lengths, , of all possible subsequences (lines 6-12). This is done by

using the dynamic programming paradigm to evaluate the recursive definition of given in Equation

. The running time for this computation is clearly .

The next step computes the one-line penalties as given by Equation (lines 13-21). This

calculation is a straightforward one and its running time is also .

Finally, the minimum total costs, , of typesetting each subsequence are determined for all possible

subsequences (lines 22-37). Again we make use of the dynamic programming paradigm to evaluate the

recursive definition of given in Equation . The running time for this computation is . As a

result, the overall running time required to determine the best way to typeset a paragraph of n words is

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page466.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Randomized Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Randomized Algorithms
In this section we discuss algorithms that behave randomly. By this we mean that there is an element of
randomness in the way that the algorithm solves a given problem. Of course, if an algorithm is to be of
any use, it must find a solution to the problem at hand, so it cannot really be completely random.

Randomized algorithms are said to be methods of last resort. This is because they are used often when no
other feasible solution technique is known. For example, randomized methods are used to solve problems
for which no closed-form, analytic solution is known. They are also used to solve problems for which the
solution space is so large that an exhaustive search is infeasible.

To implement a randomized algorithm we require a source of randomness. The usual source of
randomness is a random number generator. Therefore, before presenting randomized algorithms, we first
consider the problem of computing random numbers.

● Generating Random Numbers
● Random Variables
● Monte Carlo Methods
● Simulated Annealing

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page467.html [2002-11-17 ｿﾀﾈﾄ 11:07:31]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Generating Random Numbers

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Generating Random Numbers

In this section we consider the problem of generating a sequence of random numbers on a computer.
Specifically, we desire an infinite sequence of statistically independent random numbers uniformly
distributed between zero and one. In practice, because the sequence is generated algorithmically using
finite-precision arithmetic, it is neither infinite nor truly random. Instead, we say that an algorithm is
``good enough'' if the sequence it generates satisfies almost any statistical test of randomness. Such a
sequence is said to be pseudorandom .

The most common algorithms for generating pseudorandom numbers are based on the linear
congruential random number generator invented by Lehmer. Given a positive integer m called the
modulus and an initial seed value (), Lehmer's algorithm computes a sequence of

integers between 0 and m-1. The elements of the sequence are given by

where a and c are carefully chosen integers such that and .

For example, the parameters a=13, c=1, m=16, and produce the sequence

The first m elements of this sequence are distinct and appear to have been drawn at random from the set

. However since the sequence is cyclic with period m.

Notice that the elements of the sequence alternate between odd and even integers. This follows directly

from Equation and the fact that m=16 is a multiple of 2. Similar patterns arise when we consider the
elements as binary numbers:

The least significant two bits are cyclic with period four and the least significant three bits are cycle with

http://www.brpreiss.com/books/opus6/html/page468.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:32]

http://www.brpreiss.com/books/opus6/index.html

Generating Random Numbers

period eight! (These patterns arise because m=16 is also a multiple of 4 and 8). The existence of such
patterns make the sequence less random. This suggests that the best choice for the modulus m is a prime
number.

Not all parameter values result in a period of m. For example, changing the multiplier a to 11 produces
the sequence

the period of which is only m/2. In general because each subsequent element of the sequence is
determined solely from its predecessor and because there are m possible values, the longest possible
period is m. Such a generator is called a full period generator.

In practice the increment c is often set to zero. In this case, Equation becomes

This is called a multiplicative linear congruential random number generator. (For it is called a

mixed linear congruential generator).

In order to prevent the sequence generated by Equation from collapsing to zero, the modulus m must
be prime and cannot be zero. For example, the parameters a=6, m=13, and produce the

sequence

Notice that the first 12 elements of the sequence are distinct. Since a multiplicative congruential
generator can never produce a zero, the maximum possible period is m-1. Therefore, this is a full period
generator.

As the final step of the process, the elements of the sequence are normalized by division by the modulus:

In so doing, we obtain a sequence of random numbers that fall between zero and one. Specifically, a

mixed congruential generator () produces numbers in the interval [0,1), whereas a multiplicative

congruential generator (c=0) produces numbers in the interval (0,1).

http://www.brpreiss.com/books/opus6/html/page468.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:32]

Generating Random Numbers

● The Minimal Standard Random Number Generator
● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page468.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Minimal Standard Random Number Generator

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Minimal Standard Random Number Generator

A great deal of research has gone into the question of finding an appropriate set of parameters to use in
Lehmer's algorithm. A good generator has the following characteristics:

● It is a full period generator.
● The generated sequence passes statistical tests of randomness.
● The generator can be implemented efficiently using 32-bit integer arithmetic.

The choice of modulus depends on the arithmetic precision used to implement the algorithm. A signed 32-

bit integer can represent values between and . Fortunately, the quantity

 is a prime number! Therefore, it is an excellent choice for the modulus m.

Because Equation is slightly simpler than Equation , we choose to implement a multiplicative
congruential generator (c=0). The choice of a suitable multiplier is more difficult. However, a popular
choice is because it satisfies all three criteria given above: It results in a full period random
number generator; the generated sequence passes a wide variety of statistical tests for randomness; and it

is possible to compute Equation using 32-bit arithmetic without overflow.

The algorithm is derived as follows: First, let and . In this case,

, , and r<q.

Next, we rewrite Equation as follows:

This somewhat complicated formula can be simplified if we let :

http://www.brpreiss.com/books/opus6/html/page469.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:34]

http://www.brpreiss.com/books/opus6/index.html

The Minimal Standard Random Number Generator

Finally, we make use of the fact that m=aq-r to get

Equation has several nice properties: Both and are positive integers

between 0 and m-1. Therefore the difference can be represented using a

signed 32-bit integer without overflow. Finally, is either a zero or a one. Specifically, it is zero

when the sum of the first two terms in Equation is positive and it is one when the sum is negative. As

a result, it is not necessary to compute --a simple test suffices to determine whether the third term is

0 or m.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page469.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

We now describe the implementation of a random number generator based on Equation . Program
defines the RandomNumberGenerator class. This class has only static properties. In addition, the
constructor is declared private to prevent instantiation. Because there can only be one instance of a
static field, the implementation of the RandomNumberGenerator class is an example of the
singleton design pattern.

http://www.brpreiss.com/books/opus6/html/page470.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:35]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: RandomNumberGenerator class.

The Seed property provides a set accessor to specify the initial seed, . The seed must fall between 0

and m-1. If it does not, an exception is thrown. The Seed property also provides a get accessor that
returns the current seed value.

The Next property generates the elements of the random sequence. Each subsequent call to its get
accessor returns the next element of the sequence. The implementation follows directly from Equation

. Notice that the return value is normalized. Therefore, the values computed by the Next accessor are
uniformly distributed on the interval (0,1).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page470.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Random Variables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Random Variables

In this section we introduce the notion of an abstract random variable . In this context, a random variable
is an object that behaves like a random number generator in that it produces a pseudorandom number
sequence. The distribution of the values produced depends on the class of random variable used.

Program defines the RandomVariable interface. The RandomVariable interface provides the
single property Next. Given an instance, say rv, of a class that implements the RandomVariable
interface, repeated calls of the form

rv.Next;

are expected to return successive elements of a pseudorandom sequence.

Program: RandomVariable interface.

● A Simple Random Variable
● Uniformly Distributed Random Variables
● Exponentially Distributed Random Variables

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page471.html [2002-11-17 ｿﾀﾈﾄ 11:07:35]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Simple Random Variable

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Simple Random Variable

Program defines the SimpleRV class. The SimpleRV class implements the RandomVariable

interface defined in Program . This class generates random numbers uniformly distributed in the
interval (0,1).

Program: SimpleRV class.

The implementation of the SimpleRV class is trivial because the RandomNumberGenerator class
generates the desired distribution of random numbers. Consequently, the Next accessor simply calls
RandomNumberGenerator.Next.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page472.html [2002-11-17 ｿﾀﾈﾄ 11:07:36]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Uniformly Distributed Random Variables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Uniformly Distributed Random Variables

Program defines the UniformRV class. This class generates random numbers which are uniformly
distributed in an arbitrary interval (u,v), where u<v. The parameters u and v are specified in the
constructor.

Program: UniformRV class.

The UniformRV class is also quite simple. Given that the RandomNumberGenerator class
generates a sequence random numbers uniformly distributed on the interval (0,1), the linear

transformation

http://www.brpreiss.com/books/opus6/html/page473.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:37]

http://www.brpreiss.com/books/opus6/index.html

Uniformly Distributed Random Variables

suffices to produce a sequence of random numbers uniformly distributed on the interval (u,v).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page473.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exponentially Distributed Random Variables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exponentially Distributed Random Variables

Program defines the ExponentialRV class. This class generates exponentially distributed random
numbers with a mean value of . The mean value is specified in the constructor.

Program: ExponentialRV class.

The ExponentialRV class generates a sequence of random numbers, , exponentially distributed on

the interval and having a mean value . The numbers are said to be exponentially distributed

because the probability that falls between 0 and z is given by

where . The function p(x) is called the probability density function . Thus,

http://www.brpreiss.com/books/opus6/html/page474.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:38]

http://www.brpreiss.com/books/opus6/index.html

Exponentially Distributed Random Variables

Notice that is a value between zero and one. Therefore, given a random variable, ,

uniformly distributed between zero and one, we can obtain an exponentially distributed variable as

follows:

Note, if is uniformly distributed on (O,1), then so too is . The implementation of the Next method

follows directly from Equation .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page474.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Monte Carlo Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Monte Carlo Methods

In this section we consider a method for solving problems using random numbers. The method exploits
the statistical properties of random numbers in order to ensure that the correct result is computed in the
same way that a gambling casino sets the betting odds in order to ensure that the ``house'' will always
make a profit. For this reason, the problem solving technique is called a Monte Carlo method .

To solve a given problem using a Monte Carlo method we devise an experiment in such a way that the
solution to the original problem can be obtained from the experimental results. The experiment typically
consists of a series of random trials. A random number generator such as the one given in the preceding
section is used to create the series of trials.

The accuracy of the final result usually depends on the number of trials conducted. That is, the accuracy
usually increases with the number of trials. This trade-off between the accuracy of the result and the time
taken to compute it is an extremely useful characteristic of Monte Carlo methods. If only an approximate
solution is required, then a Monte Carlo method can be very fast.

● Example-Computing

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page475.html [2002-11-17 ｿﾀﾈﾄ 11:07:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Computing #tex2html_wrap_inline68478#

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Computing

This section presents a simple, Monte Carlo algorithm to compute the value of from a sequence of
random numbers. Consider a square positioned in the x-y plane with its bottom left corner at the origin as

shown in Figure . The area of the square is , where r is the length of its sides. A quarter circle is
inscribed within the square. Its radius is r and its center is at the origin of x-y plane. The area of the

quarter circle is .

Figure: Illustration of a Monte Carlo method for computing .

Suppose we select a large number of points at random inside the square. Some fraction of these points
will also lie inside the quarter circle. If the selected points are uniformly distributed, we expect the
fraction of points in the quarter circle to be

Therefore by measuring f, we can compute . Program shows how this can be done.

http://www.brpreiss.com/books/opus6/html/page476.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:39]

http://www.brpreiss.com/books/opus6/index.html

Example-Computing #tex2html_wrap_inline68478#

Program: Monte Carlo program to compute .

The Pi method uses the RandomNumberGenerator defined to generate (x,y) pairs uniformly
distributed on the unit square (r=1). Each point is tested to see if it falls inside the quarter circle. A given

point is inside the circle when its distance from the origin, is less than r. In this case since

r=1, we simply test whether .

How well does Program work? When 1000 trials are conducted, 792 points are found to lie inside the

circle. This gives the value of 3.168 for , which is only 0.8% too large. When trials are conducted,
78535956 points are found to lie inside the circle. In this case, we get which is
within 0.005% of the correct value!

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page476.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Simulated Annealing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Simulated Annealing

Despite its name, simulated annealing has nothing to do either with simulation or annealing. Simulated
annealing is a problem solving technique based loosely on the way in which a metal is annealed in order
to increase its strength. When a heated metal is cooled very slowly, it freezes into a regular (minimum-
energy) crystalline structure.

A simulated annealing algorithm searches for the optimum solution to a given problem in an analogous
way. Specifically, it moves about randomly in the solution space looking for a solution that minimizes
the value of some objective function. Because it is generated randomly, a given move may cause the
objective function to increase, to decrease or to remain unchanged.

A simulated annealing algorithm always accepts moves that decrease the value of the objective function.
Moves that increase the value of the objective function are accepted with probability

where is the change in the value of the objective function and T is a control parameter called the
temperature . That is, a random number generator that generates numbers distributed uniformly on the
interval (0,1) is sampled, and if the sample is less than p, the move is accepted.

By analogy with the physical process, the temperature T is initially high. Therefore, the probability of
accepting a move that increases the objective function is initially high. The temperature is gradually
decreased as the search progresses. That is, the system is cooled slowly. In the end, the probability of
accepting a move that increases the objective function becomes vanishingly small. In general, the
temperature is lowered in accordance with an annealing schedule .

The most commonly used annealing schedule is called exponential cooling . Exponential cooling begins
at some initial temperature, , and decreases the temperature in steps according to

where . Typically, a fixed number of moves must be accepted at each temperature before

proceeding to the next. The algorithm terminates either when the temperature reaches some final value,
, or when some other stopping criterion has been met.

http://www.brpreiss.com/books/opus6/html/page477.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:40]

http://www.brpreiss.com/books/opus6/index.html

Simulated Annealing

The choice of suitable values for , , and is highly problem-dependent. However, empirical

evidence suggests that a good value for is 0.95 and that should be chosen so that the initial

acceptance probability is 0.8. The search is terminated typically after some fixed, total number of
solutions have been considered.

Finally, there is the question of selecting the initial solution from which to begin the search. A key
requirement is that it be generated quickly. Therefore, the initial solution is generated typically at
random. However, sometimes the initial solution can be generated by some other means such as with a
greedy algorithm.

● Example-Balancing Scales

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page477.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Example-Balancing Scales

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Example-Balancing Scales

Consider again the scales balancing problem described in Section . That is, we are given a set of n

weights, , which are to be placed on a pair of scales in the way that minimizes the

difference between the total weight in each pan. Feasible solution to the problem all have the form

, where

To solve this problem using simulated annealing, we need a strategy for generating random moves. The
move generator should make small, random changes to the current solution and it must ensure that all
possible solutions can be reached. A simple approach is to use the formula

where is the initial solution, is a new solution, is a sequence of zeroes

and ones generated randomly, and denotes elementwise addition modulo two.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page478.html [2002-11-17 ｿﾀﾈﾄ 11:07:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. Consider the greedy strategy for counting out change given in Section . Let

be the set of available denominations. For example, the set represents

the denominations of the commonly circulated Canadian coins. What condition(s) must the set of
denominations satisfy to ensure the greedy algorithm always finds an optimal solution?

2. Devise a greedy algorithm to solve optimally the scales balancing problem described in Section

.
1. Does your algorithm always find the optimal solution?
2. What is the running time of your algorithm?

3. Consider the following 0/1-knapsack problem:

i

1 10 10

2 6 6

3 3 4

4 8 9

5 1 3

C=18

1. Solve the problem using the greedy by profit, greedy by weight and greedy by profit
density strategies.

2. What is the optimal solution?

4. Consider the breadth-first solver shown in Program . Suppose we replace the queue (line 3)
with a priority queue.

1. How should the solutions in the priority queue be prioritized?
2. What possible benefit might there be from using a priority queue rather than a FIFO

queue?

5. Repeat Exercise , but this time consider what happens if we replace the queue with a LIFO
stack.

6. Repeat Exercises and , but this time consider a branch-and-bound breadth-first solver.

http://www.brpreiss.com/books/opus6/html/page479.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:43]

http://www.brpreiss.com/books/opus6/index.html

Exercises

7. (This question should be attempted after reading Chapter). For some problems the solution
space is more naturally a graph rather than a tree.

1. What problem arises if we use the DepthFirstSolver given in Program to explore
a search space that is not a tree.

2. Modify the DepthFirstSolver so that it explores a solution space that is not a tree.

Hint: See Program .

3. What problem arises if we use the BreadthFirstSolver given in Program to
explore a search space that is not a tree.

4. Modify the BreadthFirstSolver so that it explores a solution space that is not a tree.

Hint: See Program .
8. Devise a backtracking algorithm to solve the N-queens problem : Given an chess board,

find a way to place N queens on the board in such a way that no queen can take another.
9. Consider a binary search tree that contains n keys, , , ..., , at depths , , ..., ,

respectively. Suppose the tree will be subjected to a large number of Find operations. Let be
the probability that we access key . Suppose we know a priori all the access probabilities. Then

we can say that the optimal binary search tree is the tree which minimizes the quantity

1. Devise a dynamic programming algorithm that, given the access probabilities, determines
the optimal binary search tree.

2. What is the running time of your algorithm?

Hint: Let be the cost of the optimal binary search tree that contains the set of keys

 where . Show that

10. Consider the typesetting problem discussed in Section . The objective is to determine how to
break a given sequence of words into lines of text of the appropriate size. This was done either by
stretching or compressing the space between the words. Explain why the greedy strategy always
finds the optimal solution if we stretch but do not compress the space between words.

11. Consider two complex numbers, a+bi and c+di. Show that we can compute the product (ac-
bd)+(ad+bc)i with only three multiplications.

12. Devise a divide-and-conquer strategy to find the root of a polynomial. For example, given a

http://www.brpreiss.com/books/opus6/html/page479.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:43]

Exercises

polynomial such as , and an interval [u,v] such that p(u) and p(v) have

opposite signs, find the value r, , such that p(r)=0.

13. Devise an algorithm to compute a normally distributed random variable. A normal distribution is
complete defined by its mean and standard deviation. The probability density function for a
normal distribution is

where is the mean and is the standard deviation of the distribution. Hint: Consider the central
limit theorem .

14. Devise an algorithm to compute a geometrically distributed random variable. A geometrically

distributed random variable is an integer in the interval given by the probability density

function

where is the mean of the distribution.

Hint: Use the fact , where Z is an exponentially distributed

random variable with mean .

15. Do Exercise .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page479.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects

1. Design a class that implements the Solution interface defined in Program to represent the

nodes of the solution space of a 0/1-knapsack problem described in Section .

Devise a suitable representation for the state of a node and then implement the following
properties IsFeasible, IsComplete, Objective, Bound, and Successors. Note, the
Successors method returns an IEnumerable object that that represents all the successors of
a given node.

1. Use your class with the DepthFirstSolver defined in Program to solve the

problem given in Table .

2. Use your class with the BreadthFirstSolver defined in Program to solve the

problem given in Table .
3. Use your class with the DepthFirstBranchAndBoundSolver defined in Program

 to solve the problem given in Table .

2. Do Project for the change counting problem described in Section .

3. Do Project for the scales balancing problem described in Section .

4. Do Project for the N-queens problem described in Exercise .
5. Design and implement a GreedySolver class, along the lines of the DepthFirstSolver

and BreadthFirstSolver classes, that conducts a greedy search of the solution space. To do
this you will have to add a method to the Solution interface:

public interface GreedySolution : Solution
{
 Solution GreedySuccessor();
}

6. Design and implement a SimulatedAnnealingSolver class, along the lines of the
DepthFirstSolver and BreadthFirstSolver classes, that implements the simulated

annealing strategy described in Section To do this you will have to add a method to the
Solution interface:

http://www.brpreiss.com/books/opus6/html/page480.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:44]

http://www.brpreiss.com/books/opus6/index.html

Projects

public interface SimulatedAnnealingSolution : Solution
{
 Solution RandomSuccessor();
}

7. Design and implement a dynamic programming algorithm to solve the change counting problem.
Your algorithm should always find the optimal solution--even when the greedy algorithm fails.

8. Consider the divide-and-conquer strategy for matrix multiplication described in Section .
1. Rewrite the implementation of the Times method of the Matrix class introduced in

Program .

2. Compare the running time of your implementation with the algorithm given in

Program .
9. Consider random number generator that generates random numbers uniformly distributed between

zero and one. Such a generator produces a sequence of random numbers . A
common test of randomness evaluates the correlation between consecutive pairs of numbers in the
sequence. One way to do this is to plot on a graph the points

1. Write a program to compute the first 1000 pairs of numbers generated using the

UniformRV defined in Program .
2. What conclusions can you draw from your results?

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page480.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sorting Algorithms and Sorters

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sorting Algorithms and Sorters

● Basics
● Sorting and Sorters
● Insertion Sorting
● Exchange Sorting
● Selection Sorting
● Merge Sorting
● A Lower Bound on Sorting
● Distribution Sorting
● Performance Data
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page481.html [2002-11-17 ｿﾀﾈﾄ 11:07:44]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics
Consider an arbitrary sequence comprised of of elements drawn from

a some universal set U. The goal of sorting is to rearrange the elements of S to produce a new sequence,
say S', in which the elements of S appear in order.

But what does it mean for the elements of S' to be in order? We shall assume that there is a relation, <,
defined over the universe U. The relation < must be a total order, which is defined as follows:

Definition A total order is a relation, say <, defined on the elements of some universal
set U with the following properties:

1. For all pairs of elements , exactly one of the following is true: i<j,

i=j, or j<i.

(All elements are commensurate).

2. For all triples , .

(The relation < is transitive).

In order to sort the elements of the sequence S, we determine the permutation

 of the elements of S such that

In practice, we are not interested in the permutation P, per se. Instead, our objective is to compute the

sorted sequence in which for .

Sometimes the sequence to be sorted, S, contains duplicates. That is, there exist values i and j,

, such that . In general when a sequence that contains duplicates is sorted, there

is no guarantee that the duplicated elements retain their relative positions. That is, could appear either
before or after in the sorted sequence S'. If duplicates retain their relative positions in the sorted
sequence the sort is said to be stable . In order for and to retain their relative order in the sorted

http://www.brpreiss.com/books/opus6/html/page482.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:46]

http://www.brpreiss.com/books/opus6/index.html

Basics

sequence, we require that precedes in S'. Therefore, the sort is stable if .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page482.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sorting and Sorters

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sorting and Sorters

The traditional way to implement a sorting algorithm is to write a method that sorts an array of data. This
chapter presents an alternate, object-oriented approach that is based on the notion of an abstract sorter .

Think of a sorter as an abstract machine, the sole purpose of which is to sort arrays of data. A machine is
an object. Therefore, it makes sense that we represent it as an instance of some class. The machine sorts
data. Therefore, the class will have a method, say Sort, which sorts an array of data.

Program defines the Sorter interface. The interface consists of the single method Sort. This
method takes as its argument an array of ComparableObjects and it sorts the objects therein.

Program: Sorter interface.

● Abstract Sorters
● Sorter Class Hierarchy

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page483.html [2002-11-17 ｿﾀﾈﾄ 11:07:46]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Sorters

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Sorters

Program defines the AbstractSorter class. The AbstractSorter class implements the

Sorter interface defined in Program . The AbstractSorter comprises the two fields, array
and n, the concrete methods Swap and Sort(ComparableObject[]), and the no-arg abstract
method Sort(). Since the no-arg Sort method is an abstract method, an implementation must be
given in a derived class.

Program: AbstractSorter class.

http://www.brpreiss.com/books/opus6/html/page484.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:47]

http://www.brpreiss.com/books/opus6/index.html

Abstract Sorters

The Sort(ComparableObject[]) method does not sort the data itself. It is the no-arg Sort
method, which is provided by a derived class, that does the actual sorting. The
Sort(ComparableObject[]) method merely sets-up things by initializing the fields of
AbstractSorter as follows: The array field refers to the array of objects to be sorted and the
length of that array is assigned to the n field.

The Swap method is used to implement most of the sorting algorithms presented in this chapter. The
swap method takes two integers arguments. It exchanges the contents of the array at the positions
specified by the arguments. The exchange is done as a sequence of three assignments. Therefore, the
Swap method runs in constant time.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page484.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sorter Class Hierarchy

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sorter Class Hierarchy

This chapter describes nine different sorting algorithms. These are organized into the following five
categories:

● insertion sorts
● exchange sorts
● selection sorts
● merge sorts
● distribution sorts .

As shown in Figure , the sorter classes have been arranged in a class hierarchy that reflects this
classification scheme.

Figure: Sorter class hierarchy

http://www.brpreiss.com/books/opus6/html/page485.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:48]

http://www.brpreiss.com/books/opus6/index.html

Sorter Class Hierarchy

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page485.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Insertion Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Insertion Sorting
The first class of sorting algorithm that we consider comprises algorithms that sort by insertion . An

algorithm that sorts by insertion takes the initial, unsorted sequence, , and

computes a series of sorted sequences , as follows:

1. The first sequence in the series, is the empty sequence. That is, .

2. Given a sequence in the series, for , the next sequence in the series, , is

obtained by inserting the element of the unsorted sequence into the correct

position in .

Each sequence , , contains the first i elements of the unsorted sequence S. Therefore, the

final sequence in the series, , is the sorted sequence we seek. That is, .

Figure illustrates the insertion sorting algorithm. The figure shows the progression of the insertion
sorting algorithm as it sorts an array of ten integers. The array is sorted in place . That is, the initial
unsorted sequence, S, and the series of sorted sequences, , occupy the same array.

http://www.brpreiss.com/books/opus6/html/page486.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:49]

http://www.brpreiss.com/books/opus6/index.html

Insertion Sorting

Figure: Insertion sorting.

In the step, the element at position i in the array is inserted into the sorted sequence which

occupies array positions 0 to (i-1). After this is done, array positions 0 to i contain the i+1 elements of

. Array positions (i+1) to (n-1) contain the remaining n-i-1 elements of the unsorted sequence S.

http://www.brpreiss.com/books/opus6/html/page486.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:49]

Insertion Sorting

As shown in Figure , the first step (i=0) is trivial--inserting an element into the empty list involves no
work. Altogether, n-1 non-trivial insertions are required to sort a list of n elements.

● Straight Insertion Sort
● Average Running Time
● Binary Insertion Sort

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page486.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Straight Insertion Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Straight Insertion Sort

The key step of any insertion sorting algorithm involves the insertion of an item into a sorted sequence.
There are two aspects to an insertion--finding the correct position in the sequence at which to insert the
new element and moving all the elements over to make room for the new one.

This section presents the straight insertion sorting algorithm. Straight insertion sorting uses a linear
search to locate the position at which the next element is to be inserted.

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page487.html [2002-11-17 ｿﾀﾈﾄ 11:07:49]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program defines the StraightInsertionSorter class. The StraightInsertionSorter

extends the AbstractSorter class defined in Program . It simply provides an implementation for
the no-arg Sort method.

Program: StraightInsertionSorter class Sort method.

In order to determine the running time of the Sort method, we need to determine the number of
iterations of the inner loop (lines 6-10). The number of iterations of the inner loop in the iteration of
the outer loop depends on the positions of the values in the array. In the best case, the value in position i
of the array is larger than that in position i-1 and zero iterations of the inner loop are done. In this case,
the running time for insertion sort is O(n). Notice that the best case performance occurs when we sort an
array that is already sorted!

In the worst case, i iterations of the inner loop are required in the iteration of the outer loop. This
occurs when the value in position i of the array is smaller than the values at positions 0 through i-1.
Therefore, the worst case arises when we sort an array in which the elements are initially sorted in

reverse. In this case the running time for insertion sort is .

http://www.brpreiss.com/books/opus6/html/page488.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:50]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page488.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Running Time

The best case running time of insertion sorting is O(n) but the worst-case running time is .

Therefore, we might suspect that the average running time falls somewhere in between. In order to
determine it, we must define more precisely what we mean by the average running time. A simple
definition of average running time is to say that it is the running time needed to sort the average
sequence. But what is the average sequence?

The usual way to determine the average running time of a sorting algorithm is to consider only sequences
that contain no duplicates. Since every sorted sequence of length n is simply a permutation of an unsorted

one, we can represent every such sequence by a permutation of the sequence .

When computing the average running time, we assume that every permutation is equally likely.
Therefore, the average running time of a sorting algorithm is the running time averaged over all
permutations of the sequence S.

Consider a permutation of the sequence S. An inversion in P consists of

two elements, say and , such that but i<j. That is, an inversion in P is a pair of elements

that are in the wrong order. For example, the permutation contains three inversions--(4,3),

(4,2), and (3,2). The following theorem tells us how many inversions we can expect in the average
sequence:

Theorem The average number of inversions in a permutation of n distinct elements is n(n-
1)/4.

extbfProof Let S be an arbitrary sequence of n distinct elements and let be the same sequence, but in
reverse.

For example, if , then .

Consider any pair of distinct elements in S, say and where . There are two distinct

http://www.brpreiss.com/books/opus6/html/page489.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:51]

http://www.brpreiss.com/books/opus6/index.html

Average Running Time

possibilities: Either , in which case is an inversion in ; or , in which case

 is an inversion in S. Therefore, every pair contributes exactly one inversion either to S or to .

The total number of pairs in S is . Since every such pair contributes an inversion

either to S or to , we expect on average that half of the inversions will appear in S. Therefore, the
average number of inversions in a sequence of n distinct elements is n(n-1)/4.

What do inversions have to do with sorting? As a list is sorted, inversions are removed. In fact, since the
inner loop of the insertion sort method swaps adjacent array elements, inversions are removed one at a
time! Since a swap takes constant time, and since the average number of inversions is n(n-1)/4, the

average running time for the insertion sort method is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page489.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Binary Insertion Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Binary Insertion Sort

The straight insertion algorithm presented in the preceding section does a linear search to find the
position in which to do the insertion. However, since the element is inserted into a sequence that is
already sorted, we can use a binary search instead of a linear search. Whereas a linear search requires

O(n) comparisons in the worst case, a binary search only requires comparisons. Therefore, if

the cost of a comparison is significant, the binary search may be preferred.

Program defines the BinaryInsertionSorter class. The BinaryInsertionSorter class

extends the AbstractSorter class defined in Program . The framework of the Sort method is
essentially the same as that of the StraightInsertionSorter class.

http://www.brpreiss.com/books/opus6/html/page490.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:52]

http://www.brpreiss.com/books/opus6/index.html

Binary Insertion Sort

Program: BinaryInsertionSorter class Sort method.

Exactly, n-1 iterations of the outer loop are done (lines 5-20). In each iteration, a binary search search is
done to determine the position at which to do the insertion (lines 7-17). In the iteration of the outer

loop, the binary search considers array positions 0 to i (for). The running time for the binary

search in the iteration is . Once the correct position is found, at most

i swaps are needed to insert the element in its place.

The worst-case running time of the binary insertion sort is dominated by the i swaps needed to do the

insertion. Therefore, the worst-case running time is . Furthermore, since the algorithm only swaps

adjacent array elements, the average running time is also (see Section). Asymptotically, the

binary insertion sort is no better than straight insertion.

However, the binary insertion sort does fewer array element comparisons than insertion sort. In the

http://www.brpreiss.com/books/opus6/html/page490.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:52]

Binary Insertion Sort

iteration of the outer loop, the binary search requires comparisons, for .

Therefore, the total number of comparisons is

(This result follows directly from Theorem).

The number of comparisons required by the straight insertion sort is in the worst case as well as

on average. Therefore on average, the binary insertion sort uses fewer comparisons than straight insertion
sort. On the other hand, the previous section shows that in the best case the running time for straight
insertion is O(n). Since the binary insertion sort method always does the binary search, its best case

running time is . Table summarizes the asymptotic running times for the two insertion

sorts.

running time

algorithm best case average case worst case

straight insertion sort O(n)

binary insertion sort

Table:Running times for insertion sorting.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page490.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exchange Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exchange Sorting
The second class of sorting algorithm that we consider comprises algorithms that sort by exchanging
pairs of items until the sequence is sorted. In general, an algorithm may exchange adjacent elements as
well as widely separated ones.

In fact, since the insertion sorts considered in the preceding section accomplish the insertion by swapping
adjacent elements, insertion sorting can be considered as a kind of exchange sort. The reason for creating
a separate category for insertion sorts is that the essence of those algorithms is insertion into a sorted list.
On the other hand, an exchange sort does not necessarily make use of such a sorted list.

● Bubble Sort
● Quicksort
● Running Time Analysis
● Average Running Time
● Selecting the Pivot

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page491.html [2002-11-17 ｿﾀﾈﾄ 11:07:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Bubble Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Bubble Sort

The simplest and, perhaps, the best known of the exchange sorts is the bubble sort . Figure shows
the operation of bubble sort.

http://www.brpreiss.com/books/opus6/html/page492.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:54]

http://www.brpreiss.com/books/opus6/index.html

Bubble Sort

Figure: Bubble sorting.

To sort the sequence , bubble sort makes n-1 passes through the data. In

each pass, adjacent elements are compared and swapped if necessary. First, and are compared; next,
 and ; and so on.

Notice that after the first pass through the data, the largest element in the sequence has bubbled up into
the last array position. In general, after k passes through the data, the last k elements of the array are
correct and need not be considered any longer. In this regard the bubble sort differs from the insertion
sort algorithms--the sorted subsequence of k elements is never modified (by an insertion).

Figure also shows that while n-1 passes through the data are required to guarantee that the list is
sorted in the end, it is possible for the list to become sorted much earlier! When no exchanges at all are
made in a given pass, then the array is sorted and no additional passes are required. A minor algorithmic
modification would be to count the exchanges made in a pass, and to terminate the sort when none are
made.

Program defines the BubbleSorter class. The BubbleSorter class extends the

AbstractSorter class defined in Program . It simply provides an implementation for the no-arg
Sort method.

Program: BubbleSorter class Sort method.

The outer loop (lines 5-8) is done for . That makes n-1 iterations in

total. During the iteration of the outer loop, exactly i-1 iterations of the inner loop are done (lines 6-
8). Therefore, the number of iterations of the inner loop, summed over all the passes of the outer loop is

http://www.brpreiss.com/books/opus6/html/page492.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:54]

Bubble Sort

Consequently, the running time of bubble sort is .

The body of the inner loop compares adjacent array elements and swaps them if necessary (lines 7-8).
This takes at most a constant amount of time. Of course, the algorithm will run slightly faster when no
swapping is needed. For example, this occurs if the array is already sorted to begin with. In the worst
case, it is necessary to swap in every iteration of the inner loop. This occurs when the array is sorted
initially in reverse order. Since only adjacent elements are swapped, bubble sort removes inversions one

at time. Therefore, the average number of swaps required is . Nevertheless, the running time of

bubble sort is always .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page492.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Quicksort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Quicksort

The second exchange sort we consider is the quicksort algorithm. Quicksort is a divide-and-conquer
style algorithm. A divide-and-conquer algorithm solves a given problem by splitting it into two or more
smaller subproblems, recursively solving each of the subproblems, and then combining the solutions to
the smaller problems to obtain a solution to the original one.

To sort the sequence , quicksort performs the following steps:

1. Select one of the elements of S. The selected element, p, is called the pivot .
2. Remove p from S and then partition the remaining elements of S into two distinct sequences, L

and G, such that every element in L is less than or equal to the pivot and every element in G is
greater than or equal to the pivot. In general, both L and G are unsorted.

3. Rearrange the elements of the sequence as follows:

Notice that the pivot is now in the position in which it belongs in the sorted sequence, since all the
elements to the left of the pivot are less than or equal to the pivot and all the elements to the right
are greater than or equal to it.

4. Recursively quicksort the unsorted sequences L and G.

The first step of the algorithm is a crucial one. We have not specified how to select the pivot.
Fortunately, the sorting algorithm works no matter which element is chosen to be the pivot. However, the
pivot selection affects directly the running time of the algorithm. If we choose poorly the running time
will be poor.

Figure illustrates the detailed operation of quicksort as it sorts the sequence

. To begin the sort, we select a pivot. In this example, the value 4 in the last

array position is chosen. Next, the remaining elements are partitioned into two sequences, one which

contains values less than or equal to 4 () and one which contains values greater than or

equal to 4 (). Notice that the partitioning is accomplished by exchanging elements.

This is why quicksort is considered to be an exchange sort.

http://www.brpreiss.com/books/opus6/html/page493.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:55]

http://www.brpreiss.com/books/opus6/index.html

Quicksort

Figure: ``Quick'' sorting.

After the partitioning, the pivot is inserted between the two sequences. This is called restoring the pivot.
To restore the pivot, we simply exchange it with the first element of G. Notice that the 4 is in its correct
position in the sorted sequence and it is not considered any further.

http://www.brpreiss.com/books/opus6/html/page493.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:55]

Quicksort

Now the quicksort algorithm calls itself recursively, first to sort the sequence ; second

to sort the sequence . The quicksort of L selects 1 as the pivot, and creates the two

subsequences and . Similarly, the quicksort of G uses 5 as the pivot and creates

the two subsequences and .

At this point in the example the recursion has been stopped. It turns out that to keep the code simple,
quicksort algorithms usually stop the recursion when the length of a subsequence falls below a critical
value called the cut-off. In this example, the cut-off is two (i.e., a subsequence of two or fewer elements
is not sorted). This means that when the algorithm terminates, the sequence is not yet sorted. However as

Figure shows, the sequence is almost sorted. In fact, every element is guaranteed to be less than two
positions away from its final resting place.

We can complete the sorting of the sequence by using a straight insertion sort. In Section it is shown
that straight insertion is quite good at sorting sequences that are almost sorted. In fact, if we know that
every element of the sequence is at most d positions from its final resting place, the running time of
straight insertion is O(dn) and since d=2 is a constant, the running time is O(n).

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page493.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:07:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the AbstractQuickSorter class. The AbstractQuickSorter class

extends the AbstractSorter class defined in Program . It declares the abstract method
SelectPivot the implementation of which is provided by a derived class.

Program: AbstractQuickSorter fields.

Program defines a Sort method of the AbstractQuickSorter class that takes two integer
arguments, left and right, which denote left and right ends, respectively, of the section of the array
to be sorted. That is, this Sort method sorts

.

http://www.brpreiss.com/books/opus6/html/page494.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:56]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: AbstractQuickSorter class recursive Sort method.

As discussed above, the AbstractQuickSorter only sorts sequences whose length exceeds the cut-
off value. Since the implementation shown only works correctly when the number of elements in the
sequence to be sorted is three or more, the cut-off value of two is used (line 5).

The algorithm begins by calling the method SelectPivot which chooses one of the elements to be the
pivot (line 7). The implementation of SelectPivot is discussed below. All that we require here is that
the value p returned by SelectPivot satisfies . Having selected an element to

be the pivot, we hide the pivot by swapping it with the right-most element of the sequence (line 8). The

http://www.brpreiss.com/books/opus6/html/page494.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:56]

Implementation

pivot is hidden in order to get it out of the way of the next step.

The next step partitions the remaining elements into two sequences--one comprised of values less than or
equal to the pivot, the other comprised of values greater than or equal to the pivot. The partitioning is
done using two array indices, i and j. The first, i, starts at the left end and moves to the right; the
second, j, starts at the right end and moves to the left.

The variable i is increased as long as array[i] is less than the pivot (line 14). Then the variable j is
decreased as long as array[j] is greater than the pivot (line 15). When i and j meet, the partitioning
is done (line 16). Otherwise, but . This situation is remedied

by swapping array[i] and array[j] (line 17).

When the partitioning loop terminates, the pivot is still in array[right]; the value in array[i] is
greater than or equal to the pivot; everything to the left is less than or equal to the pivot; and everything
to the right is greater than or equal to the pivot. We can now put the pivot in its proper place by swapping
it with array[i] (lines 19-20). This is called restoring the pivot. With the pivot in its final resting
place, all we need to do is sort the subsequences on either side of the pivot (lines 21-24).

Program defines the no-arg Sort method of the AbstractQuickSorter class. The no-arg Sort

acts as the front end to the recursive Sort given in Program . It calls the recursive Sort method with
left set to zero and right set to n-1, where n is the length of the array to be sorted. Finally, it uses a
StraightInsertionSorter to finish sorting the list.

Program: AbstractQuickSorter class Sort method.

http://www.brpreiss.com/books/opus6/html/page494.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:56]

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page494.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:07:56]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The running time of the recursive Sort method (Program) is given by

where n is the number of elements in sequence to be sorted, is the running time of the

SelectPivot method, and i is the number of elements which end up to the left of the pivot,

.

The running time of Sort is affected by the SelectPivot method in two ways: First, the value of the
pivot chosen affects the sizes of the subsequences. That is, the pivot determines the value i in Equation

. Second, the running time of the SelectPivot method itself, , must be taken into

account. Fortunately, if , we can ignore its running time because there is

already an O(n) term in the expression.

In order to solve Equation , we assume that and then drop the s from

the recurrence to get

Clearly the solution depends on the value of i.

● Worst-Case Running Time
● Best-Case Running Time

http://www.brpreiss.com/books/opus6/html/page495.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:57]

http://www.brpreiss.com/books/opus6/index.html

Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page495.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:07:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Worst-Case Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Worst-Case Running Time

In the worst case the i in Equation is always zero. In this case, we solve the recurrence using
repeated substitution like this:

The worst case occurs when the two subsequences are as unbalanced as they can be--one sequence has
all the remaining elements and the other has none.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page496.html [2002-11-17 ｿﾀﾈﾄ 11:07:58]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Best-Case Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Best-Case Running Time

In the best case, the partitioning step divides the remaining elements into two sequences with exactly the
same number of elements. For example, suppose that for some integer m>0. After

removing the pivot elements remain. If these are divided evenly, each sequence will have

 elements. In this case Equation gives

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page497.html [2002-11-17 ｿﾀﾈﾄ 11:07:59]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Average Running Time

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Average Running Time

To determine the average running time for the quicksort algorithm, we shall assume that each element of
the sequence has an equal chance of being selected for the pivot. Therefore, if i is the number of elements
in a sequence of length n less than the pivot, then i is uniformly distributed in the interval [0,n-1].

Consequently, the average value of . Similarly, the average the value of

. To determine the average running time, we rewrite

Equation thus:

To solve this recurrence we consider the case n>2 and then multiply Equation by n to get

Since this equation is valid for any n>2, by substituting n-1 for n we can also write

which is valid for n>3. Subtracting Equation from Equation gives

which can be rewritten as

http://www.brpreiss.com/books/opus6/html/page498.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:00]

http://www.brpreiss.com/books/opus6/index.html

Average Running Time

Equation can be solved by telescoping like this:

Adding together Equation through Equation gives

where is the harmonic number . Finally, multiplying through by n+1 gives

In Section it is shown that , where is called Euler's constant . Thus,

http://www.brpreiss.com/books/opus6/html/page498.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:00]

Average Running Time

we get that the average running time of quicksort is

Table summarizes the asymptotic running times for the quicksort method and compares it to those of
bubble sort. Notice that the best-case and average case running times for the quicksort algorithm have the
same asymptotic bound!

running time

algorithm best case average case worst case

bubble sort

quicksort (random pivot selection)

Table:Running times for exchange sorting.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page498.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Selecting the Pivot

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Selecting the Pivot

The analysis in the preceding section shows that selecting a good pivot is important. If we do a bad job of

choosing the pivot, the running time of quicksort is . On the other hand, the average-case analysis

shows that if every element of a sequence is equally likely to be chosen for the pivot, the running time is

. This suggests that we can expect to get good performance simply by selecting a random

pivot!

If we expect to be sorting random input sequences, then we can achieve random pivot selection simply
by always choosing, say, the first element of the sequence to be the pivot. Clearly this can be done in

constant time. (Remember, the analysis requires that). As long as each element

in the sequence is equally likely to appear in the first position, the average running time will be

.

In practice it is often the case that the sequence to be sorted is almost sorted. In particular, consider what
happens if the sequence to be sorted using quicksort is already sorted. If we always choose the first
element as the pivot, then we are guaranteed to have the worst-case running time! This is also true if we
always pick the last element of the sequence. And it is also true if the sequence is initially sorted in
reverse.

Therefore, we need to be more careful when choosing the pivot. Ideally, the pivot divides the input
sequence exactly in two. That is, the ideal pivot is the median element of the sequence. This suggests
that the SelectPivot method should find the median. To ensure that the running time analysis is
valid, we need to find the median in O(n) time.

How do you find the median? One way is to sort the sequence and then select the element. But

this is not possible, because we need to find the median to sort the sequence in the first place!

While it is possible to find the median of a sequence of n elements in O(n) time, it is usually not
necessary to do so. All that we really need to do is select a random element of the sequence while
avoiding the problems described above.

A common way to do this is the median-of-three pivot selection technique. In this approach, we choose
as the pivot the median of the element at the left end of the sequence, the element at the right end of the

http://www.brpreiss.com/books/opus6/html/page499.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:01]

http://www.brpreiss.com/books/opus6/index.html

Selecting the Pivot

sequence, and the element in the middle of the sequence. Clearly, this does the right thing if the input
sequence is initially sorted (either in forward or reverse order).

Program defines the MedianOfThreeQuickSorter class The
MedianOfThreeQuickSorter class extends the abstract AbstractQuickSorter class

introduced in Program . It provides an implementation for the SelectPivot method based on
median-of-three pivot selection. Notice that this algorithm does exactly three comparisons to select the
pivot. As a result, its running time is O(1). In practice this scheme performs sufficiently well that more
complicated pivot selection approaches are unnecessary.

Program: MedianOfThreeQuickSorter class SelectPivot method.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page499.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Selection Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Selection Sorting
The third class of sorting algorithm that we consider comprises algorithms that sort by selection . Such
algorithms construct the sorted sequence one element at a time by adding elements to the sorted sequence
in order. At each step, the next element to be added to the sorted sequence is selected from the remaining
elements.

Because the elements are added to the sorted sequence in order, they are always added at one end. This is
what makes selection sorting different from insertion sorting. In insertion sorting elements are added to
the sorted sequence in an arbitrary order. Therefore, the position in the sorted sequence at which each
subsequent element is inserted is arbitrary.

Both selection sorts described in this section sort the arrays in place . Consequently, the sorts are
implemented by exchanging array elements. Nevertheless, selection differs from exchange sorting
because at each step we select the next element of the sorted sequence from the remaining elements and
then we move it into its final position in the array by exchanging it with whatever happens to be
occupying that position.

● Straight Selection Sorting
● Sorting with a Heap
● Building the Heap

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page500.html [2002-11-17 ｿﾀﾈﾄ 11:08:01]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Straight Selection Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Straight Selection Sorting

The simplest of the selection sorts is called straight selection . Figure illustrates how straight
selection works. In the version shown, the sorted list is constructed from the right (i.e., from the largest to
the smallest element values).

http://www.brpreiss.com/books/opus6/html/page501.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:02]

http://www.brpreiss.com/books/opus6/index.html

Straight Selection Sorting

Figure: Straight selection sorting.

At each step of the algorithm, a linear search of the unsorted elements is made in order to determine the
position of the largest remaining element. That element is then moved into the correct position of the
array by swapping it with the element which currently occupies that position.

For example, in the first step shown in Figure , a linear search of the entire array reveals that 9 is the
largest element. Since 9 is the largest element, it belongs in the last array position. To move it there, we
swap it with the 4 that initially occupies that position. The second step of the algorithm identifies 6 as the
largest remaining element an moves it next to the 9. Each subsequent step of the algorithm moves one
element into its final position. Therefore, the algorithm is done after n-1 such steps.

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page501.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program defines the StraightSelectionSorter class. This class is derived from the

AbstractSorter base defined in Program and it provides an implementation for the no-arg Sort
method. The Sort method follows directly from the algorithm discussed above. In each iteration of the
main loop (lines 5-12), exactly one element is selected from the unsorted elements and moved into the
correct position. A linear search of the unsorted elements is done in order to determine the position of the
largest remaining element (lines 8-10). That element is then moved into the correct position (line 11).

Program: StraightSelectionSorter class Sort method.

In all n-1 iterations of the outer loop are needed to sort the array. Notice that exactly one swap is done in
each iteration of the outer loop. Therefore, n-1 data exchanges are needed to sort the list.

Furthermore, in the iteration of the outer loop, i-1 iterations of the inner loop are required and each

iteration of the inner loop does one data comparison. Therefore, data comparisons are needed to

sort the list.

http://www.brpreiss.com/books/opus6/html/page502.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:03]

http://www.brpreiss.com/books/opus6/index.html

Implementation

The total running time of the straight selection Sort method is . Because the same number of

comparisons and swaps are always done, this running time bound applies in all cases. That is, the best-

case, average-case and worst-case running times are all .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page502.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:03]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sorting with a Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sorting with a Heap

Selection sorting involves the repeated selection of the next element in the sorted sequence from the set
of remaining elements. For example, the straight insertion sorting algorithm given in the preceding
section builds the sorted sequence by repeatedly selecting the largest remaining element and prepending
it to the sorted sequence developing at the right end of the array.

At each step the largest remaining element is withdrawn from the set of remaining elements. A linear
search is done because the order of the remaining elements is arbitrary. However, if we consider the
value of each element as its priority, we can view the set of remaining elements as a priority queue. In
effect, a selection sort repeatedly dequeues the highest priority element from a priority queue.

Chapter presents a number of priority queue implementations, including binary heaps, leftist heaps
and binomial queues. In this section we present a version of selection sorting that uses a binary heap to
hold the elements that remain to be sorted. Therefore, it is called a heapsort . The principal advantage of
using a binary heap is that it is easily implemented using an array and the entire sort can be be done in
place.

As explained in Section , a binary heap is a complete binary tree which is easily represented in an
array. The n nodes of the heap occupy positions 1 through n of the array. The root is at position 1. In
general, the children of the node at position i of the array are found at positions 2i and 2i+1, and the

parent is found at position .

The heapsort algorithm consists of two phases. In the first phase, the unsorted array is transformed into a
heap. (This is called heapifying the array). In this case, a max-heap rather than a min-heap is used. The
data in a max heap satisfies the following condition: For every node in the heap that has a parent, the
item contained in the parent is greater than or equal to the item contained in the given node.

The second phase of heapsort builds the sorted list. The sorted list is built by repeatedly selecting the
largest element, withdrawing it from the heap, and adding it to the sorted sequence. As each element is
withdrawn from the heap, the remaining elements are heapified.

http://www.brpreiss.com/books/opus6/html/page503.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:04]

http://www.brpreiss.com/books/opus6/index.html

Sorting with a Heap

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page503.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

In the first phase of heapsort, the unsorted array is transformed into a max heap. Throughout the process
we view the array as a complete binary tree. Since the data in the array is initially unsorted, the tree is not
initially heap-ordered. We make the tree into a max heap from the bottom up. That is, we start with the

leaves and work towards the root. Figure illustrates this process.

Figure: Combining heaps by percolating values.

Figure (a) shows a complete tree that is not yet heap ordered--the root is smaller than both its
children. However, the two subtrees of the root are heap ordered. Given that both of the subtrees of the
root are already heap ordered, we can heapify the tree by percolating the value in the root down the tree.

To percolate a value down the tree, we swap it with its largest child. For example, in Figure (b) we

http://www.brpreiss.com/books/opus6/html/page504.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:04]

http://www.brpreiss.com/books/opus6/index.html

Implementation

swap 3 and 7. Swapping with the largest child ensures that after the swap, the new root is greater than or
equal to both its children.

Notice that after the swap the heap-order is satisfied at the root, but not in the left subtree of the root. We

continue percolating the 3 down by swapping it with 6 as shown in Figure (c). In general, we
percolate a value down either until it arrives in a position in which the heap order is satisfied or until it

arrives in a leaf. As shown in Figure (d), the tree obtained when the percolation is finished is a max
heap

Program introduces the HeapSorter class. The HeapSorter class extends the

AbstractSorter class defined in Program . The PercolateDown method shown in Program

 implements the algorithm described above. The PercolateDown method takes two arguments: the
number of elements in the array to be considered, n, and the position, i, of the node to be percolated.

Program: HeapSorter class PercolateDown method.

The purpose of the PercolateDown method is to transform the subtree rooted at position i into a max
heap. It is assumed that the left and right subtrees of the node at position i are already max heaps. Recall

http://www.brpreiss.com/books/opus6/html/page504.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:04]

Implementation

that the children of node i are found at positions 2i and 2i+1. PercolateDown percolates the value in
position i down the tree by swapping elements until the value arrives in a leaf node or until both children
of i contain smaller value.

A constant amount of work is done in each iteration. Therefore, the running time of the
PercolateDown method is determined by the number of iterations of its main loop (lines 7-17). In
fact, the number of iterations required in the worst case is equal to the height in the tree of node i.

Since the root of the tree has the greatest height, the worst-case occurs for i=1. In Chapter it is shown

that the height of a complete binary tree is . Therefore the worst-case running time of the

PercolateDown method is .

Recall that BuildHeap calls PercolateDown for . If

we assume that the worst-case occurs every time, the running time of BuildHeap is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page504.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Building the Heap

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Building the Heap

The BuildHeap method shown in Program transforms an unsorted array into a max heap. It does so

by calling the PercolateDown method for .

Program: HeapSorter class BuildHeap method.

Why does BuildHeap start percolating at ? A complete binary tree with n nodes has exactly

 leaves. Therefore, the last node in the array which has a child is in position . Consequently,

the BuildHeap method starts doing percolate down operations from that point.

The BuildHeap visits the array elements in reverse order. In effect the algorithm starts at the deepest
node that has a child and works toward the root of the tree. Each array position visited is the root of a

subtree. As each such subtree is visited, it is transformed into a max heap. Figure illustrates how the
BuildHeap method heapifies an array that is initially unsorted.

http://www.brpreiss.com/books/opus6/html/page505.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:05]

http://www.brpreiss.com/books/opus6/index.html

Building the Heap

Figure: Building a heap.

http://www.brpreiss.com/books/opus6/html/page505.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:05]

Building the Heap

● Running Time Analysis
● The Sorting Phase

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page505.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:05]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The BuildHeap method does exactly PercolateDown operations. As discussed above, the

running time for PercolateDown is , where is the height in the tree of the node at array

position i. The highest node in the tree is the root and its height is . If we make the simplifying

assumption that the running time for PercolateDown is for every value of i, we get that the

total running time for BuildHeap is .

However, is not a tight bound. The maximum number of iterations of the PercolateDown

loop done during the entire process of building the heap is equal to the sum of the heights of all of the
nodes in the tree! The following theorem shows that this is O(n).

Theorem Consider a perfect binary tree T of height h having nodes. The

sum of the heights of the nodes in T is .

extbfProof A perfect binary tree has 1 node at height h, 2 nodes at height h-1, 4 nodes at height h-2 and
so on. In general, there are nodes at height h-i. Therefore, the sum of the heights of the nodes is

.

The summation can be solved as follows: First, we make the simple variable substitution i=j-1:

http://www.brpreiss.com/books/opus6/html/page506.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:06]

http://www.brpreiss.com/books/opus6/index.html

Running Time Analysis

Note that the summation which appears on the right hand side is identical to that on the left. Rearranging

Equation and simplifying gives:

It follows directly from Theorem that the sum of the heights of a perfect binary tree is O(n). But a
heap is not a perfect tree--it is a complete tree. Nevertheless, it is easy to show that the same bound

applies to a complete tree. The proof is left as an exercise for the reader (Exercise). Therefore, the
running time for the BuildHeap method is O(n), were n is the length of the array to be heapified.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page506.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Sorting Phase

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Sorting Phase

Once the max heap has been built, heapsort proceeds to the selection sorting phase. In this phase the

sorted sequence is obtained by repeatedly withdrawing the largest element from the max heap. Figure
illustrates how this is done.

http://www.brpreiss.com/books/opus6/html/page507.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:07]

http://www.brpreiss.com/books/opus6/index.html

The Sorting Phase

Figure: Heap sorting.

The largest element of the heap is always found at the root and the root of a complete tree is always in
array position one. Suppose the heap occupies array positions 1 through k. When an element is
withdrawn from the heap, its length decreases by one. That is, after the withdrawal the heap occupies
array positions 1 through k-1. Thus, array position k is no longer required by the max heap. However, the
next element of the sorted sequence belongs in position k!

So, the sorting phase of heapsort works like this: We repeatedly swap the largest element in the heap
(always in position 1) into the next position of the sorted sequence. After each such swap, there is a new
value at the root of the heap and this new value is pushed down into the correct position in the heap using
the PercolateDown method.

Program gives the Sort method of the HeapSorter class. The Sort method embodies both
phases of the heapsort algorithm. In the first phase of heapsort the BuildHeap method is called to
transform the array into a max heap. As discussed above, this is done in O(n) time.

Program: HeapSorter class Sort method.

The second phase of the heapsort algorithm builds the sorted list. In all n-1 iterations of the loop on
lines 8-12 are required. Each iteration involves one swap followed by a PercolateDown operation.

http://www.brpreiss.com/books/opus6/html/page507.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:07]

The Sorting Phase

Since the worst-case running time for PercolateDown is , the total running time of the loop

is . The running time of the second phase asymptotically dominates that of the first phase. As

a result, the worst-case running time of heapsort is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page507.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Merge Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Merge Sorting
The fourth class of sorting algorithm we consider comprises algorithms that sort by merging . Merging is
the combination of two or more sorted sequences into a single sorted sequence.

Figure illustrates the basic, two-way merge operation. In a two-way merge, two sorted sequences are
merged into one. Clearly, two sorted sequences each of length n can be merged into a sorted sequence of
length 2n in O(2n)=O(n) steps. However in order to do this, we need space in which to store the result.
That is, it is not possible to merge the two sequences in place in O(n) steps.

Figure: Two-way merging.

Sorting by merging is a recursive, divide-and-conquer strategy. In the base case, we have a sequence
with exactly one element in it. Since such a sequence is already sorted, there is nothing to be done. To
sort a sequence of n>1 elements:

1. Divide the sequence into two sequences of length and ;

2. recursively sort each of the two subsequences; and then,
3. merge the sorted subsequences to obtain the final result.

Figure illustrates the operation of the two-way merge sort algorithm.

http://www.brpreiss.com/books/opus6/html/page508.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:08]

http://www.brpreiss.com/books/opus6/index.html

Merge Sorting

Figure: Two-way merge sorting.

● Implementation
● Merging
● Two-Way Merge Sorting
● Running Time Analysis

http://www.brpreiss.com/books/opus6/html/page508.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:08]

Merge Sorting

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page508.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:08]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program declares the TwoWayMergeSorter class. The TwoWayMergeSorter class extends the

AbstractSorter class defined in Program . A single field, tempArray, is declared. This field is
an array of ComparableObjects. Since merge operations cannot be done in place, a second,
temporary array is needed. The tempArray field keeps track of that array.

Program: TwoWayMergeSorter fields.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page509.html [2002-11-17 ｿﾀﾈﾄ 11:08:09]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Merging

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Merging

The Merge method of the TwoWayMergeSorter class is defined in Program . Altogether, this
method takes three integer parameters, left, middle, and right. It is assumed that

Furthermore, it is assumed that the two subsequences of the array,

and

are both sorted. The Merge method merges the two sorted subsequences using the temporary array,
tempArray. It then copies the merged (and sorted) sequence into the array at

http://www.brpreiss.com/books/opus6/html/page510.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:10]

http://www.brpreiss.com/books/opus6/index.html

Merging

Program: TwoWayMergeSorter class Merge method.

In order to determine the running time of the Merge method it is necessary to recognize that the total
number of iterations of the two loops (lines 10-16, lines 17-18) is , in the worst

case. The total number of iterations of the third loop (lines 19-20) is the same. Since all the loop bodies
do a constant amount of work, the total running time for the Merge method is O(n), where

 is the total number of elements in the two subsequences that are merged.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page510.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:10]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Two-Way Merge Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Two-Way Merge Sorting

Program gives the code for two Sort methods of the TwoWayMergeSorter class. The no-arg
Sort method sets things up for the second, recursive Sort method. First, it allocates a temporary array,
the length of which is equal to the length of the array to be sorted (line 7). Then it calls the recursive
Sort method which sorts the array (line 8). After the array has been sorted, the no-arg Sort discards
the temporary array (line 9).

Program: TwoWayMergeSorter class Sort methods.

http://www.brpreiss.com/books/opus6/html/page511.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:11]

http://www.brpreiss.com/books/opus6/index.html

Two-Way Merge Sorting

The second Sort method implements the recursive, divide-and-conquer merge sort algorithm described
above. The method takes two parameters, left and right, that specify the subsequence of the array to
be sorted. If the sequence to be sorted contains more than one element, the sequence is split in two
(line 16), each half is recursively sorted (lines 17-18), and then two sorted halves are merged (line 19).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page511.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The running time of merge sort is determined by the running time of the recursive Sort method. (The
no-arg Sort method adds only a constant amount of overhead). The running time of the recursive Sort
method is given by the following recurrence:

where .

In order to simplify the solution of Equation we shall assume that for some integer .

Dropping the s from the equation we get

which is easily solved by repeated substitution:

Therefore, the running time of merge sort is .

http://www.brpreiss.com/books/opus6/html/page512.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:11]

http://www.brpreiss.com/books/opus6/index.html

Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page512.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

A Lower Bound on Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

A Lower Bound on Sorting
The preceding sections present three sorting algorithms--quicksort, heapsort, and the two-

way merge sort. But is the best we can do? In this section we answer the question by

showing that any sorting algorithm that sorts using only binary comparisons must make such

comparisons. If each binary comparison takes a constant amount of time, then running time for any such

sorting algorithm is also .

Consider the problem of sorting the sequence comprised of three distinct items. That is,

. Figure illustrates a possible sorting algorithm in the form of a decision

tree . Each node of the decision tree represents one binary comparison. That is, in each node of the tree,
exactly two elements of the sequence are compared. Since there are exactly two possible outcomes for
each comparison, each non-leaf node of the binary tree has degree two.

Figure: A decision tree for comparison sorting.

http://www.brpreiss.com/books/opus6/html/page513.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:12]

http://www.brpreiss.com/books/opus6/index.html

A Lower Bound on Sorting

For example, suppose that a<b<c. Consider how the algorithm shown in Figure discovers this. The
first comparison compares a and b which reveals that a<b. The second comparison compares a and c to
find that a<c. At this point it has been determined that a<b and a<c-- the relative order of b and c is not
yet known. Therefore, one more comparison is required to determine that b<c. Notice that the algorithm

shown in Figure works correctly in all cases because every possible permutation of the sequence S
appears as a leaf node in the decision tree. Furthermore, the number of comparisons required in the worst
case is equal to the height of the decision tree!

Any sorting algorithm that uses only binary comparisons can be represented by a binary decision tree.
Furthermore, it is the height of the binary decision tree that determines the worst-case running time of the
algorithm. In general, the size and shape of the decision tree depends on the sorting algorithm and the
number of items to be sorted.

Given an input sequence of n items to be sorted, every binary decision tree that correctly sorts the input
sequence must have at least n! leaves--one for each permutation of the input. Therefore, it follows

directly from Theorem that the height of the binary decision tree is at least :

Since the height of the decision tree is , the number of comparisons done by any sorting

algorithm that sorts using only binary comparisons is . Assuming each comparison can be

done in constant time, the running time of any such sorting algorithm is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page513.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:12]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Distribution Sorting

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Distribution Sorting
The final class of sorting algorithm considered in this chapter consists of algorithms that sort by
distribution . The unique characteristic of a distribution sorting algorithm is that it does not make use of
comparisons to do the sorting.

Instead, distribution sorting algorithms rely on a priori knowledge about the universal set from which the
elements to be sorted are drawn. For example, if we know a priori that the size of the universe is a small,

fixed constant, say m, then we can use the bucket sorting algorithm described in Section .

Similarly, if we have a universe the elements of which can be represented with a small, finite number of

bits (or even digits, letters, or symbols), then we can use the radix sorting algorithm given in Section .

● Bucket Sort
● Radix Sort

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page514.html [2002-11-17 ｿﾀﾈﾄ 11:08:13]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Bucket Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Bucket Sort

Bucket sort is possibly the simplest distribution sorting algorithm. The essential requirement is that the
size of the universe from which the elements to be sorted are drawn is a small, fixed constant, say m.

For example, suppose that we are sorting elements drawn from , i.e., the set of

integers in the interval [0,m-1]. Bucket sort uses m counters. The counter keeps track of the number

of occurrences of the element of the universe. Figure illustrates how this is done.

Figure: Bucket sorting.

In Figure , the universal set is assumed to be . Therefore, ten counters are required--one

to keep track of the number of zeroes, one to keep track of the number of ones, and so on. A single pass
through the data suffices to count all of the elements. Once the counts have been determined, the sorted
sequence is easily obtained. For example, the sorted sequence contains no zeroes, two ones, one two, and
so on.

● Implementation

http://www.brpreiss.com/books/opus6/html/page515.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:14]

http://www.brpreiss.com/books/opus6/index.html

Bucket Sort

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page515.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the BucketSorter class. The BucketSorter class extends the

AbstractSorter class defined in Program . This bucker sorter is designed to sort specifically an
array of ComparableInt32s. The BucketSorter class contains two fields, m and count. The
integer m simply keeps track of the size of the universe. The count variable is an array of integers used
to count the number of occurrences of each element of the universal set.

Program: BucketSorter class fields and constructor.

The constructor for the BucketSorter class takes a single argument which specifies the size of the
universal set. The variable m is set to the specified value, and the count array is initialized to have the
required size.

Program defines the no-arg Sort method. It begins by setting all of the counters to zero (lines 8-9).
This can clearly be done in O(m) time.

http://www.brpreiss.com/books/opus6/html/page516.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:15]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: BucketSorter class Sort method.

Next, a single pass is made through the data to count the number of occurrences of each element of the
universe (lines 10-11). Since each element of the array is examined exactly once, the running time is
O(n).

In the final step, the sorted output sequence is created (lines 12-14). Since the output sequence contains
exactly n items, the body of the inner loop (line 14) is executed exactly n times. During the iteration

of the outer loop (line 12), the loop termination test of the inner loop (line 13) is evaluated

times. As a result, the total running time of the final step is O(m+n).

Thus, the running time of the bucket sort method is O(m+n). Note that if m=O(n), the running time for
bucket sort is O(n). That is, the bucket sort algorithm is a linear-time sorting algorithm! Bucket sort

breaks the bound associated with sorting algorithms that use binary comparisons because

bucket sort does not do any binary comparisons. The cost associated with breaking the

running time bound is the O(m) space required for the array of counters. Consequently, bucket sort is
practical only for small m. For example, to sort 16-bit integers using bucket sort requires the use of an

array of counters.

http://www.brpreiss.com/books/opus6/html/page516.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:15]

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page516.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:15]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Radix Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Radix Sort

This section presents a sorting algorithm known as least-significant-digit-first radix sorting . Radix
sorting is based on the bucket sorting algorithm discussed in the preceding section. However, radix
sorting is practical for much larger universal sets than it is practical to handle with a bucket sort.

Radix sorting can be used when each element of the universal set can be viewed as a sequences of digits
(or letters or any other symbols). For example, we can represent each integer between 0 and 99 as a
sequence of two, decimal digits. (For example, the number five is represented as ``05'').

To sort an array of two-digit numbers, the algorithm makes two sorting passes through the array. In the
first pass, the elements of the array are sorted by the least significant decimal digit. In the second pass,
the elements of the array are sorted by the most significant decimal digit. The key characteristic of the
radix sort is that the second pass is done in such a way that it does not destroy the effect of the first pass.
Consequently, after two passes through the array, the data is contained therein is sorted.

Each pass of the radix sort is implemented as a bucket sort. In the example we base the sort on decimal
digits. Therefore, this is called a radix-10 sort and ten buckets are required to do each sorting pass.

Figure illustrates the operation of the radix-10 sort. The first radix sorting pass considers the least
significant digits. As in the bucket sort, a single pass is made through the unsorted data, counting the
number of times each decimal digit appears as the least-significant digit. For example, there are no
elements that have a 0 as the least-significant digit; there are two elements that have a 1 as the least-
significant digit; and so on.

http://www.brpreiss.com/books/opus6/html/page517.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:17]

http://www.brpreiss.com/books/opus6/index.html

Radix Sort

Figure: Radix sorting.

After the counts have been determined, it is necessary to permute the input sequence so that it is sorted by
the least-significant digits. To do this permutation efficiently, we compute the sequence of offsets given
by

where R is the sorting radix. Note that is the position in the permuted sequence of the first

occurrence of an element whose least significant digit is i. By making use of the offsets, it is possible to
permute the input sequence by making a single pass through the sequence.

The second radix sorting pass considers the most significant digits. As above a single pass is made
through the permuted data sequence counting the number of times each decimal digit appears as the most-

http://www.brpreiss.com/books/opus6/html/page517.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:17]

Radix Sort

significant digit. Then the sequence of offsets is computed as above. The sequence is permuted again
using the offsets producing the final, sorted sequence.

In general, radix sorting can be used when the elements of the universe can be viewed as p-digit numbers
with respect to some radix, R. That is, each element of the universe has the form

where for . In this case, the radix sort algorithm must make p

sorting passes from the least significant digit, , to the most significant digit, , and each sorting

pass uses exactly R counters.

Radix sorting can also be used when the universe can be viewed as the cross-product of a finite number of
finite sets. That is, when the universe has the form

where p>0 is a fixed integer constant and is a finite set for . For example, each card in a 52-

card deck of playing cards can be represented as an element of , where

 and .

Before we can sort over the universe U, we need to define what it means for one element to precede
another in U. The usual way to do this is called lexicographic ordering . For example in the case of the
playing cards we may say that one card precedes another if its suit precedes the other suit or if the suits
are equal but the face value precedes that of the other.

In general, given the universe , and two elements of U, say x and y,

represented by the p-tuples and , respectively, we say that

x lexicographically precedes y if there exists such that and for all

.

With this definition of precedence, we can radix sort a sequence of elements drawn from U by sorting
with respect to the components of the p-tuples. Specifically, we sort first with respect to , then ,

and so on down to . Notice that the algorithm does p sorting passes and in the pass it requires

counters. For example to sort a deck of cards, two passes are required. In first pass the cards are sorted
into 13 piles according to their face values. In the second pass the cards are sorted into four piles

http://www.brpreiss.com/books/opus6/html/page517.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:17]

Radix Sort

according to their suits.

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page517.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program introduces the RadixSorter class. The RadixSorter class extends the

AbstractSorter class defined in Program . This radix sorter is designed to sort specifically an
array of ComparableInt32s.

Program: RadixSorter fields.

Three constants are declared in the RadixSorter class--R, r, and p. The constant R represents the
radix and . The constant p is the number sorting passes needed to sort the data. In this case

r=8 and . Therefore, a radix-256 sort is being done. We have chosen R as a power of two
because that way the computations required to implement the radix sort can be implemented efficiently
using simple bit shift and mask operations. In order to sort b-bit integers, it is necessary to make

 sorting passes.

One more field is defined in the RadixSorter class--count. The count field is an array of integers
used to implement the sorting passes. An array of integers of length R is created and assigned to the
count array.

The no-arg Sort method shown in Program begins by creating a temporary array of
ComparableObjects of length n. Each iteration of the main loop corresponds to one pass of the radix
sort (lines 8-29). In all p iterations are required.

http://www.brpreiss.com/books/opus6/html/page518.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:18]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: RadixSorter class Sort method.

During the pass of the main loop the following steps are done: First, the R counters are all set to zero
(lines 10-11). This takes O(R) time. Then a pass is made through the input array during which the
number of occurrences of each radix-R digit in the digit position are counted (lines 12-16). This pass
takes O(n) time. Notice that during this pass all the input data is copied into the temporary array.

http://www.brpreiss.com/books/opus6/html/page518.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:18]

Implementation

Next, the array of counts is transformed into an array of offsets according to Equation . This requires a
single pass through the counter array (lines 17-23). Therefore, it takes O(R) time. Finally, the data
sequence is permuted by copying the values from the temporary array back into the input array (lines 24-
28). Since this requires a single pass through the data arrays, the running time is O(n).

After the p sorting passes have been done, the array of data is sorted. The running time for the Sort

method of the RadixSorter class is . If we assume that the size of an integer is 32 bits

and given that R=256, the number of sorting passes required is p=4. Therefore, the running time for the
radix sort is simply O(n). That is, radix sort is a linear-time sorting algorithm.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page518.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Performance Data

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Performance Data
In order to better understand the actual performance of the various sorting algorithms presented in this
chapter, it is necessary to conduct some experiments. Only by conducting experiments is it possible to
determine the relative performance of algorithms with the same asymptotic running time.

To measure the performance of a sorting algorithm, we need to provide it with some data to sort. To
obtain the results presented here, random sequences of integers were sorted. That is, for each value of n,

the RandomNumberGenerator class defined in Section was used to create a sequence of n
integers. In all cases (except for bucket sort) the random numbers are uniformly distributed in the interval

. For the bucket sort the numbers are uniformly distributed in .

Figures , and show the actual running times of the sorting algorithms presented in this chapter.
These running times were measured on an Intel Pentium III, which has a 1 GHz clock and 256MB RAM
under the WindowsME operating system. The programs were compiled using the C# compiler provided
with the Microsoft .NET beta SDK (csc) and run under the Microsoft common language runtime. The
times shown are elapsed CPU times, measured in seconds.

Figure shows the running times of the sorts for sequences of length n, .

Notice that the bubble sort has the worst performance and that the binary insertion sort has the best

performance. Figure clearly shows that, as predicted, binary insertion is better than straight insertion.

Notice too that all of the sorts require more than 25 seconds of execution time to sort an array of

20000 integers.

http://www.brpreiss.com/books/opus6/html/page519.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:20]

http://www.brpreiss.com/books/opus6/index.html

Performance Data

Figure: Actual running times of the sorts.

The performance of the sorts is shown in Figure . In this case, the length of the sequence

varies between n=100 and . The graph clearly shows that the algorithms are

significantly faster that the ones. All three algorithms sort 100000 integers in under 2 seconds.

Merge sort and quicksort display almost identical performance.

http://www.brpreiss.com/books/opus6/html/page519.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:20]

Performance Data

Figure: Actual running times of the sorts.

Figure shows the actual running times for the bucket sort and radix sort algorithms. Both these
algorithms were shown to be O(n) sorts. The graph shows results for n between 100 and . The

universe used to test bucket sort was . That is, a total of m=1024 counters (buckets)

were used. For the radix sort, 32-bit integers were sorted by using the radix R=256 and doing p=4 sorting
passes.

http://www.brpreiss.com/books/opus6/html/page519.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:20]

Performance Data

Figure: Actual running times of the O(n) sorts.

Clearly, the bucket sort has the better running time. For example, it sorts 500000 10-bit integers in under
2 seconds. Radix sort performs extremely well too. It sorts 500000 32-bit integers in just over 2 seconds,
only slightly slower than the bucket sort.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page519.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:08:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises
1. Consider the sequence of integers

For each of the following sorting algorithms, draw a sequence of diagrams that traces the
execution of the algorithm as it sorts the sequence S: straight insertion sort, binary insertion sort,
bubble sort, quick sort, straight selection sort, heapsort, merge sort, and bucket sort.

2. Draw a sequence of diagrams that traces the execution of a radix-10 sort of the sequence

3. For each of the sorting algorithms listed in Exercises and indicate whether the sorting
algorithm is stable.

4. Consider a sequence of three distinct keys . Draw the binary decision tree that represents

each of the following sorting algorithms: straight insertion sort, straight selection sort, and bubble
sort.

5. Devise an algorithm to sort a sequence of exactly five elements. Make your algorithm as
efficient as possible.

6. Prove that the swapping of a pair of adjacent elements removes at most one inversion from a
sequence.

7. Consider the sequence of elements . What is the maximum number of

inversions that can be removed by the swapping of a pair of distinct elements and ? Express

the result in terms of the distance between and : .

8. Devise a sequence of keys such that exactly eleven inversions are removed by the swapping of
one pair of elements.

9. Prove that binary insertion sort requires comparisons.

10. Consider an arbitrary sequence . To sort the sequence, we determine the

permutation such that

http://www.brpreiss.com/books/opus6/html/page520.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:21]

http://www.brpreiss.com/books/opus6/index.html

Exercises

Prove that bubble sort requires at least p passes where

11. Modify the bubble sort algorithm (Program) so that it terminates the outer loop when it detects
that the array is sorted. What is the running time of the modified algorithm? Hint: See Exercise

.
12. A variant of the bubble sorting algorithm is the so-called odd-even transposition sort . Like

bubble sort, this algorithm a total of n-1 passes through the array. Each pass consists of two

phases: The first phase compares with and swaps them if necessary for

all the odd values of of i. The second phase does the same for the even values of i.
1. Show that the array is guaranteed to be sorted after n-1 passes.
2. What is the running time of this algorithm?

13. Another variant of the bubble sorting algorithm is the so-called cocktail shaker sort . Like bubble
sort, this algorithm a total of n-1 passes through the array. However, alternating passes go in
opposite directions. For example, during the first pass the largest item bubbles to the end of the
array and during the second pass the smallest item bubbles to the beginning of the array.

❍ Show that the array is guaranteed to be sorted after n-1 passes.
❍ What is the running time of this algorithm?

14. Consider the following algorithm for selecting the largest element from an unsorted

sequence of of n elements, .

1. If , sort S and select directly the largest element.

2. Otherwise n>5: Partition the sequence S into subsequences of length five. In general, there

will be subsequences of length five and one of length .

3. Sort by any means each of the subsequences of length five. (See Exercise).

4. Form the sequence containing the median values

of each of the subsequences of length five.
5. Apply the selection method recursively to find the median element of M. Let m be the

median of the medians.

6. Partition S into three subsequences, . such that all the elements in L are

less than m, all the elements in E are equal to m, and all the elements of G are greater than
m.

7. If then apply the method recursively to select the largest element of L; if

, the result is m; otherwise apply the method recursively to select

the largest element of G.

1. What is the running time of this algorithm?
2. Show that if we use this algorithm to select the pivot the worst-case running time of quick

http://www.brpreiss.com/books/opus6/html/page520.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:21]

Exercises

sort is .

15. Show that the sum of the heights of the nodes in a complete binary tree with n nodes altogether
is n-b(n), where b(n) is the number of ones in the binary representation of n.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page520.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Design and implement an algorithm that finds all the duplicates in a random sequence of keys.
2. Suppose we wish to sort a sequence of data represented using the linked-list class LinkedList

introduced in Program . Which of the sorting algorithms described in this chapter is the most
appropriate for sorting a linked list? Design and implement a linked list sorter class that
implements this algorithm.

3. Replace the Sort method of the MergeSorter class with a non-recursive version. What is the
running time of the non-recursive merge sort?

4. Replace the Sort method of the AbstractQuickSorter class with a non-recursive version.
What is the running time of the non-recursive quick sort? Hint: Use a stack.

5. Design and implement a radix-sorter class that sorts an array of strings.
6. Design and implement a RandomPivotQuickSorter class that uses a random number

generator (see Section) to select a pseudorandom pivot. Run a sequence of experiments to
compare the running times of random pivot selection with median-of-three pivot selection.

7. Design and implement a MeanPivotQuickSorter class that partitions the sequence to be
sorted into elements that are less than the mean and elements that are greater than the mean. Run a
sequence of experiments to compare the running times of the mean pivot quick sorter with median-
of-three pivot selection.

8. Design and implement a MedianPivotQuickSorter class that uses the algorithm given in

Exercise to select the median element for the pivot. Run a sequence of experiments to compare
the running times of median pivot selection with median-of-three pivot selection.

9. Design and implement a sorter class that sorts using a PriorityQueue instance. (See Chapter

).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page521.html [2002-11-17 ｿﾀﾈﾄ 11:08:22]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Graphs and Graph Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Graphs and Graph Algorithms

A graph is simply a set of points together with a set of lines connecting various points. Myriad real-world
application problems can be reduced to problems on graphs.

Suppose you are planning a trip by airplane. From a map you have determined the distances between the
airports in the various cities that you wish to visit. The information you have gathered can be represented

using a graph as shown in Figure (a). The points in the graph represent the cities and the lines
represent the distances between them. Given such a graph, you can answer questions such as ``What is
the shortest distance between LAX and JFK?'' or ``What is the shortest route that visits all of the cities?''

http://www.brpreiss.com/books/opus6/html/page522.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:23]

http://www.brpreiss.com/books/opus6/index.html

Graphs and Graph Algorithms

Figure: Real-world examples of graphs.

An electric circuit can also be viewed as a graph as shown in Figure (b). In this case the points in the
graph indicate where the components are connected (i.e., the wires) and the lines represent the
components themselves (e.g, resistors and capacitors). Given such a graph, we can answer questions such
as ``What are the mesh equations that describe the circuit's behavior?''

Similarly, a logic circuit can be reduced to a graph as shown in Figure (c). In this case the logic gates
are represented by the points and arrows represent the signal flows from gate outputs to gate inputs.
Given such a graph, we can answer questions such as ``How long does it take for the signals to propagate
from the inputs to the outputs?'' or ``Which gates are on the critical path?''

Finally, Figure (d) illustrates that a graph can be used to represent a finite state machine. The points
of the graph represent the states and labeled arrows indicate the allowable state transitions. Given such a
graph, we can answer questions such as ``Are all the states reachable?'' or ``Can the finite state machine

http://www.brpreiss.com/books/opus6/html/page522.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:23]

Graphs and Graph Algorithms

deadlock?''

This chapter is a brief introduction to the body of knowledge known as graph theory . It covers the most
common data structures for the representation of graphs and introduces some fundamental graph
algorithms.

● Basics
● Implementing Graphs
● Graph Traversals
● Shortest-Path Algorithms
● Minimum-Cost Spanning Trees
● Application: Critical Path Analysis
● Exercises
● Projects

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page522.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Basics

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Basics

● Directed Graphs
● Terminology
● More Terminology
● Directed Acyclic Graphs
● Undirected Graphs
● Terminology
● Labeled Graphs
● Representing Graphs

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page523.html [2002-11-17 ｿﾀﾈﾄ 11:08:23]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Directed Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Directed Graphs

We begin with the definition of a directed graph:

Definition (Directed Graph) A directed graph , or digraph , is an ordered pair

 with the following properties:

1. The first component, , is a finite, non-empty set. The elements of are called the
vertices of G.

2. The second component, , is a finite set of ordered pairs of vertices. That is,

. The elements of are called the edges of G.

For example, consider the directed graph comprised of four vertices and six edges:

The graph G can be represented graphically as shown in Figure . The vertices are represented by
appropriately labeled circles, and the edges are represented by arrows that connect associated vertices.

Figure: A directed graph.

Notice that because the pairs that represent edges are ordered, the two edges (a,c) and (c,a) are distinct.
Furthermore, since is a mathematical set, it cannot contain more than one instance of a given edge.

And finally, an edge such as (d,d) may connect a node to itself.

http://www.brpreiss.com/books/opus6/html/page524.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:24]

http://www.brpreiss.com/books/opus6/index.html

Directed Graphs

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page524.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Terminology

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Terminology

Consider a directed graph as given by Definition .

● Each element of is called a vertex or a node of G. Hence, is the set of vertices (or nodes) of
G.

● Each element of is called an edge or an arc of G. Hence, is the set of edges (or arcs) of G.

● An edge can be represented as . An arrow that points from v to w is known as

a directed arc . Vertex w is called the head of the arc because it is found at the arrow head.
Conversely, v is called the tail of the arc. Finally, vertex w is said to be adjacent to vertex v.

● An edge e=(v,w) is said to emanate from vertex v. We use notation to denote the set of

edges emanating from vertex v. That is,

● The out-degree of a node is the number of edges emanating from that node. Therefore, the out-

degree of v is

● An edge e=(v,w) is said to be incident on vertex w. We use notation to denote the set of

edges incident on vertex w. That is,

● The in-degree of a node is the number of edges incident on that node. Therefore, the in-degree of

w is

For example, Table enumerates the sets of emanating and incident edges and the in- and out-degrees

for each of the vertices in graph shown in Figure .

vertex v out-degree in-degree

a 2 1

b 1 1

http://www.brpreiss.com/books/opus6/html/page525.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:27]

http://www.brpreiss.com/books/opus6/index.html

Terminology

c 2 2

d 1 2

Table:Emanating and incident edge sets for graph in Figure

.

There is still more terminology to be introduced, but in order to do that, we need the following definition:

Definition (Path and Path Length)

A path in a directed graph is a non-empty sequence of vertices

where for such that for . The length of path

P is k-1.

For example, consider again the graph shown in Figure . Among the paths contained in there is

the path of length zero, ; the path of length one, ; the path of length two, ; and so on.

In fact, this graph generates an infinite number of paths! (To see how this is possible, consider that

 is a path in). Notice too the subtle distinction between a path of

length zero, say , and the path of length one .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page525.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

More Terminology

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

More Terminology

Consider the path in a directed graph .

● Vertex is the successor of vertex for . Each element of path P (except the

last) has a successor.

● Vertex is the predecessor of vertex for . Each element of path P (except the

first) has a predecessor.

● A path P is called a simple path if and only if for all i and j such that .

However, it is permissible for to be the same as in a simple path.
● A cycle is a path P of non-zero length in which . The length of a cycle is just the length

of the path P.

● A loop is a cycle of length one. That is, it is a path of the form .

● A simple cycle is a path that is both a cycle and simple.

Referring again to graph in Figure we find that the path is a simple path of length

three. Conversely, the path also has length three but is not simple because vertex c occurs

twice in the sequence (but not at the ends). The graph contains the path which is a cycle of

length three, as well as , a cycle of length four. The former is a simple cycle but the latter

is not.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page526.html [2002-11-17 ｿﾀﾈﾄ 11:08:29]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Directed Acyclic Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Directed Acyclic Graphs

For certain applications it is convenient to deal with graphs that contain no cycles. For example, a tree

(see Chapter) is a special kind of graph that contains no cycles.

Definition (Directed Acyclic Graph (DAG))

A directed, acyclic graph is a directed graph that contains no cycles.

Obviously, all trees are DAGs. However, not all DAGs are trees. For example consider the two directed,

acyclic graphs, and , shown in Figure . Clearly is a tree but is not.

Figure: Two directed, acyclic graphs.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page527.html [2002-11-17 ｿﾀﾈﾄ 11:08:29]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Undirected Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Undirected Graphs

An undirected graph is a graph in which the nodes are connected by undirected arcs . An undirected arc
is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail.
Therefore, we represent an edge in an undirected graph as a set rather than an ordered pair:

Definition (Undirected Graph) An undirected graph is an ordered pair

with the following properties:

1. The first component, , is a finite, non-empty set. The elements of are called the
vertices of G.

2. The second component, , is a finite set of sets. Each element of is a set that is
comprised of exactly two (distinct) vertices. The elements of are called the edges
of G.

For example, consider the undirected graph comprised of four vertices and four edges:

The graph can be represented graphically as shown in Figure . The vertices are represented by

appropriately labeled circles, and the edges are represented by lines that connect associated vertices.

Figure: An undirected graph.

Notice that because an edge in an undirected graph is a set, , and since is also a set, it

http://www.brpreiss.com/books/opus6/html/page528.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:30]

http://www.brpreiss.com/books/opus6/index.html

Undirected Graphs

cannot contain more than one instance of a given edge. Another consequence of Definition is that
there cannot be an edge from a node to itself in an undirected graph because an edge is a set of size two
and a set cannot contain duplicates.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page528.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Terminology

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Terminology

Consider an undirected graph as given by Definition .

● An edge emanates from and is incident on both vertices v and w.

● The set of edges emanating from a vertex v is the set

 The set of edges incident on a vertex w is

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page529.html [2002-11-17 ｿﾀﾈﾄ 11:08:31]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Labeled Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Labeled Graphs

Practical applications of graphs usually require that they be annotated with additional information. Such
information may be attached to the edges of the graph and to the nodes of the graph. A graph which has

been annotated in some way is called a labeled graph . Figure shows two examples of this.

Figure: Labeled graphs.

For example, we can use a directed graph with labeled vertices such as in Figure to represent a

finite state machine. Each vertex corresponds to a state of the machine and each edge corresponds to an
allowable state transition. In such a graph we can attach a label to each vertex that records some property
of the corresponding state such as the latency time for that state.

We can use an undirected graph with labeled edges such as in Figure to represent geographic

information. In such a graph, the vertices represent geographic locations and the edges represent possible
routes between locations. In such a graph we might use a label on each edge to represent the distance
between the end points.

http://www.brpreiss.com/books/opus6/html/page530.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:32]

http://www.brpreiss.com/books/opus6/index.html

Labeled Graphs

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page530.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Representing Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Representing Graphs

Consider a directed graph . Since , graph G contains at most edges. There

are possible sets of edges for a given set of vertices . Therefore, the main concern when designing
a graph representation scheme is to find a suitable way to represent the set of edges.

● Adjacency Matrices
● Sparse vs. Dense Graphs
● Adjacency Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page531.html [2002-11-17 ｿﾀﾈﾄ 11:08:33]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Adjacency Matrices

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Adjacency Matrices

Consider a directed graph with n vertices, . The simplest graph

representation scheme uses an matrix A of zeroes and ones given by

That is, the element of the matrix, is a one only if is an edge in G. The matrix A is

called an adjacency matrix .

For example, the adjacency matrix for graph in Figure is

Clearly, the number of ones in the adjacency matrix is equal to the number of edges in the graph.

One advantage of using an adjacency matrix is that it is easy to determine the sets of edges emanating
from a given vertex. For example, consider vertex . Each one in the row corresponds to an edge that
emanates from vertex . Conversely, each one in the column corresponds to an edge incident on
vertex .

We can also use adjacency matrices to represent undirected graphs. That is, we represent an undirected

graph with n vertices, using an matrix A of zeroes and ones given by

http://www.brpreiss.com/books/opus6/html/page532.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:35]

http://www.brpreiss.com/books/opus6/index.html

Adjacency Matrices

Since the two sets and are equivalent, matrix A is symmetric about the diagonal. That

is, . Furthermore, all of the entries on the diagonal are zero. That is, for

.

For example, the adjacency matrix for graph in Figure is

In this case, there are twice as many ones in the adjacency matrix as there are edges in the undirected
graph.

A simple variation allows us to use an adjacency matrix to represent an edge-labeled graph. For example,
given numeric edge labels, we can represent a graph (directed or undirected) using an matrix A in

which the is the numeric label associated with edge in the case of a directed graph, and

edge , in an undirected graph.

For example, the adjacency matrix for the graph in Figure is

In this case, the array entries corresponding to non-existent edges have all been set to . Here serves
as a kind of sentinel . The value to use for the sentinel depends on the application. For example, if the
edges represent routes between geographic locations, then a route of length is much like one that does
not exist.

Since the adjacency matrix has entries, the amount of spaced needed to represent the edges of a

graph is , regardless of the actual number of edges in the graph. If the graph contains relatively

few edges, e.g., if , then most of the elements of the adjacency matrix will be zero (or). A

matrix in which most of the elements are zero (or) is a sparse matrix .

http://www.brpreiss.com/books/opus6/html/page532.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:35]

Adjacency Matrices

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page532.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Sparse vs. Dense Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Sparse vs. Dense Graphs

Informally, a graph with relatively few edges is sparse, and a graph with many edges is dense. The
following definition defines precisely what we mean when we say that a graph ``has relatively few
edges'':

Definition (Sparse Graph) A sparse graph is a graph in which

.

For example, consider a graph with n nodes. Suppose that the out-degree of each vertex in

G is some fixed constant k. Graph G is a sparse graph because .

A graph that is not sparse is said to be dense:

Definition (Dense Graph) A dense graph is a graph in which

.

For example, consider a graph with n nodes. Suppose that the out-degree of each vertex in

G is some fraction f of n, . For example, if n=16 and f=0.25, the out-degree of each node is 4.

Graph G is a dense graph because .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page533.html [2002-11-17 ｿﾀﾈﾄ 11:08:35]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Adjacency Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Adjacency Lists

One technique that is often used for a sparse graph, say , uses linked lists--one for each

vertex. The linked list for vertex contains the elements of , the set of

nodes adjacent to . As a result, the lists are called adjacency lists .

Figure shows the adjacency lists for the directed graph of Figure and the directed graph of

Figure . Notice that the total number of list elements used to represent a directed graph is but the

number of lists elements used to represent an undirected graph is . Therefore, the space required

for the adjacency lists is .

http://www.brpreiss.com/books/opus6/html/page534.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:36]

http://www.brpreiss.com/books/opus6/index.html

Adjacency Lists

Figure: Adjacency lists.

By definition, a sparse graph has . Hence the space required to represent a sparse graph

using adjacency lists is . Clearly this is asymptotically better than using adjacency matrices which

require space.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page534.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing Graphs
In keeping with the design framework used throughout this text, we view graphs as specialized

containers. Formally, the graph is an ordered pair comprised of two sets--a set of vertices

and a set of edges. Informally, we can view a graph as a container with two compartments, one which
holds vertices and one which holds edges. There are four kinds of objects--vertices, edges, undirected
graphs, and directed graphs. Accordingly, we define four interfaces: Vertex, Edge, Graph, and

Digraph. (See Figure).

Figure: Object class hierarchy

● Vertices
● Edges
● Graphs and Digraphs
● Directed Graphs
● Abstract Graphs
● Implementing Undirected Graphs

http://www.brpreiss.com/books/opus6/html/page535.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:37]

http://www.brpreiss.com/books/opus6/index.html

Implementing Graphs

● Comparison of Graph Representations

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page535.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Vertices

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Vertices

What exactly is a vertex? The answer to this question depends on the application. At the very minimum,
every vertex in a graph must be distinguishable from every other vertex in that graph. We can do this by
numbering consecutively the vertices of a graph. In addition, some applications require vertex-weighted
graphs. A weighted vertex can be viewed as one which carries a ``payload''. The payload is an object that
represents the weight on the vertex.

Program defines the Vertex interface. The Vertex interface extends the IComparable
interface.

Program: Vertex interface.

Every vertex in a graph is assigned a unique number. The Number property provides a get accessor
that returns the number of a vertex. The Weight property provides a get accessor that returns an object
that represents the weight associated with a weighted vertex. If the vertex is is unweighted, the Weight
property is returns null.

● Enumerators

http://www.brpreiss.com/books/opus6/html/page536.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:38]

http://www.brpreiss.com/books/opus6/index.html

Vertices

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page536.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enumerators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enumerators

Program also declares four IEnumerable properties. The IncidentEdges property can be used

to enumerate the elements of the ; the EmanatingEdges property can be used to enumerate the

elements of . Similarly, the Predecessors property can be used to enumerate the elements of

 and the Successors property can be used to enumerate the elements

of . The elements of and are vertices whereas the elements

of and are edges.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page537.html [2002-11-17 ｿﾀﾈﾄ 11:08:39]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Edges

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Edges

An edge in a directed graph is an ordered pair of vertices; an edge in an undirected graph is a set of two
vertices. Because of the similarity of these concepts, we use the same class for both--the context in which
an edge is used determines whether it is directed or undirected.

Program defines the Edge interface. The Edge interface extends the IComparable interface.

Program: Edge interface.

An edge connects two vertices, and . The properties V0 and V1 provide get accessors that return
these vertices. The IsDirected property is a bool-valued accessor that returns true if the edge is
directed. When an Edge is directed, it represents . That is, is the head and is the tail.

Alternatively, when an Edge is undirected, it represents .

For every instance e of a class that implements the Edge interface, the Mate property satisfies the
following identities:

Therefore, if we know that a vertex v is one of the vertices of e, then we can find the other vertex by
calling e.Mate(v).

http://www.brpreiss.com/books/opus6/html/page538.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:40]

http://www.brpreiss.com/books/opus6/index.html

Edges

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page538.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:40]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Graphs and Digraphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Graphs and Digraphs

Directed graphs and undirected graphs have many common characteristics. In addition, we can view a

directed graph as an undirected graph with arrowheads added. As shown in Figure , we have chosen to
define the Graph interface to represent undirected graphs and to derive Digraph interface from it. We
have chosen this approach because many algorithms for undirected graphs can also be used with directed
graphs. On the other hand, it is often the case that algorithms for directed graphs cannot be used with
undirected graphs.

Program defines the Graph interface. The Graph interface extends the Container interface

defined in Program .

Program: Graph interface.

http://www.brpreiss.com/books/opus6/html/page539.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:41]

http://www.brpreiss.com/books/opus6/index.html

Graphs and Digraphs

There are essentially three groups of methods declared in Program : accessors and mutators,
enumerators, and traversals. The operations performed by the methods are explained in the following
sections.

● Accessors and Mutators
● Enumerators
● Graph Traversals

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page539.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Accessors and Mutators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Accessors and Mutators

The Graph interface declares the following accessor properties and mutator methods:

NumberOfEdges
This property provides a get accessor that returns the number of edges contained by the graph.

NumberOfVertices
This property provides a get accessor that returns the number of vertices contained by the graph.

IsDirected
This bool-valued property is true if the graph is a directed graph.

AddVertex
This method inserts a vertex into a graph. All the vertices contained in a given graph must have a
unique vertex number. Furthermore, if a graph contains n vertices, those vertices shall be
numbered 0, 1, ..., n-1. Therefore, the next vertex inserted into the graph shall have the number n.

GetVertex

This method takes an integer, say i where , and returns the vertex contained in the

graph.
AddEdge

This method inserts an edge into a graph. If the graph contains n vertices, both arguments must
fall in the interval [0,n-1].

IsEdge
This bool-valued method takes two integer arguments. It returns true if the graph contains an
edge that connects the corresponding vertices.

GetEdge
This method takes two integer arguments. It returns the edge instance (if it exists) that connects
the corresponding vertices. The behavior of this method is undefined when the edge does not
exist. (An implementation will typically throw an exception).

IsCyclic
This bool-valued property is true if the graph is cyclic.

IsConnected
This bool-valued property is true if the graph is connected. Connectedness of graphs is

discussed in Section .

http://www.brpreiss.com/books/opus6/html/page540.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:41]

http://www.brpreiss.com/books/opus6/index.html

Accessors and Mutators

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page540.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Enumerators

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Enumerators

All the other container classes considered in this text have only one associated enumerator. When dealing
with graphs, it is convenient to have two enumerators. The following methods each returns an
IEnumerable object as follows:

Vertices
This property can be used to enumerate the elements of .

Edges
This property can be used to enumerate the elements of .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page541.html [2002-11-17 ｿﾀﾈﾄ 11:08:41]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Graph Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Graph Traversals

The following traversal methods are analogous to the Accept method of the container class (see

Section). Each of these methods takes a visitor and performs a traversal. That is, all the vertices of the
graph are visited systematically. When a vertex is visited, the Visit method of the visitor is applied to
that vertex.

DepthFirstTraversal
This methods accepts two arguments--a PrePostVisitor and an integer. The integer specifies
the starting vertex for a depth-first traversal of the graph.

BreadthFirstTraversal
This methods accepts two arguments--a Visitor and an integer. The integer specifies the
starting vertex for a breadth-first traversal of the graph.

Graph traversal algorithms are discussed in Section .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page542.html [2002-11-17 ｿﾀﾈﾄ 11:08:42]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Directed Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Directed Graphs

Program defines the Digraph interface. The Digraph interface extends the Graph interface

defined in Program .

Program: Digraph interface.

The Digraph interface adds the following operations which apply only to directed graphs to the
inherited interface:

IsStronglyConnected
This bool-valued property is true if the directed graph is strongly connected. Strong

connectedness is discussed in Section .
TopologicalOrderTraversal

A topological sort is an ordering of the nodes of a directed graph. This traversal visits the nodes of
a directed graph in the order specified by a topological sort.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page543.html [2002-11-17 ｿﾀﾈﾄ 11:08:43]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Graphs

Program introduces the AbstractGraph class. The AbstractGraph class extends the

AbstractContainer class introduced in Program and it implements the Graph interface defined

in Program .

http://www.brpreiss.com/books/opus6/html/page544.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:43]

http://www.brpreiss.com/books/opus6/index.html

Abstract Graphs

Program: AbstractGraph, GraphVertex, and GraphEdge classes.

The AbstractGraph class serves as the base class from which the various concrete graph

implementations discussed in Section are derived. The AbstractGraph class also provides

implementations for the graph traversals described in Section and for the algorithms that test for

cycles and connectedness described in Section .

As shown in Program , the AbstractGraph class defines two nested classes, GraphVertex and

GraphEdge. Both classes extend the ComparableObject class introduced in Program .

The GraphVertex class implements the Vertex interface. It comprises three fields--graph,
number and weight. The graph field refers to the graph instance that contains this vertex. Each
vertex in a graph with n vertices is assigned a unique number in the interval [0,n-1]. The number field
records this number. The weight field is used to record the weight on a weighted vertex.

The GraphEdge class implements the Edge interface. It comprises four fields--graph, v0, v1, and
weight. The graph field refers to the graph instance that contains this edge. The v0 and v1 record the
vertices that are the end-points of the edge. The weight field is used to record the weight on a weighted
edge.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page544.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:43]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementing Undirected Graphs

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementing Undirected Graphs

This section describes two concrete classes--GraphAsMatrix and GraphAsLists. These classes
both represent undirected graphs. The GraphAsMatrix class represents the edges of a graph using an
adjacency matrix. The GraphAsLists class represents the edges of a graph using adjacency lists.

● Using Adjacency Matrices
● Using Adjacency Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page545.html [2002-11-17 ｿﾀﾈﾄ 11:08:44]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Using Adjacency Matrices

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Using Adjacency Matrices

The GraphAsMatrix is introduced in Program . The GraphAsMatrix class extends the

AbstractGraph class introduced in Program .

Program: GraphAsMatrix fields and constructor.

Each instance of the GraphAsMatrix class represents an undirected graph, say . The set

of vertices, , is represented using the vertex array inherited from the AbstractGraph base class.
Each vertex is represented by a separate GraphVertex instance.

Similarly, The set of edges, , is represented using the matrix field which is a two-dimensional array
of Edges. Each edge is represented by a separate GraphEdge instance.

The GraphAsMatrix constructor takes a single argument of type int that specifies the maximum
number of vertices that the graph may contain. This quantity specifies the length of the array of vertices
and the dimensions of the adjacency matrix. The implementation of the GraphAsMatrix class is left

as programming project for the reader (Project).

http://www.brpreiss.com/books/opus6/html/page546.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:44]

http://www.brpreiss.com/books/opus6/index.html

Using Adjacency Matrices

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page546.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Using Adjacency Lists

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Using Adjacency Lists

Program introduces the GraphAsLists class. The GraphAsLists extends the

AbstractGraph class introduced in Program . The GraphAsLists class represents the edges of
a graph using adjacency lists.

Program: GraphAsLists fields and constructor.

Each instance of the GraphAsLists class represents an undirected graph, say . The set of

vertices, , is represented using the vertex array inherited from the AbstractGraph base class. The
set of edges, , is represented using the adjacencyList field, which is an array of linked lists. The

 linked list, adjacencyList[i], represents the set which is the set of edges emanating

from vertex . The implementation uses the LinkedList class given in Section .

The GraphAsLists constructor takes a single argument of type int that specifies the maximum
number of vertices that the graph may contain. This quantity specifies the lengths of the array of vertices
and the array of adjacency lists. The implementation of the GraphAsLists class is left as

programming project for the reader (Project).

http://www.brpreiss.com/books/opus6/html/page547.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:45]

http://www.brpreiss.com/books/opus6/index.html

Using Adjacency Lists

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page547.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Comparison of Graph Representations

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Comparison of Graph Representations

In order to make the appropriate choice when selecting a graph representation scheme, it is necessary to
understand the time/space trade-offs. Although the details of the implementations have been omitted, we
can still make meaningful conclusions about the performance that we can expect from those
implementations. In this section we consider the space required as well as the running times for basic
graph operations.

● Space Comparison
● Time Comparison

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page548.html [2002-11-17 ｿﾀﾈﾄ 11:08:46]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Space Comparison

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Space Comparison

Consider the representation of a directed graph . In addition to the GraphVertex class

instances and the GraphEdge class instances contained by the graph, there is the storage required

by the adjacency matrix. In this case, the matrix is a matrix of Edges. Therefore, the amount

of storage required by an adjacency matrix implementation is

On the other hand, consider the amount of storage required when we represent the same graph using

adjacency lists. In addition to the vertices and the edges themselves, there are linked lists. If we use

the LinkedList class defined in Section , each such list has a head and tail field. Altogether

there are linked lists elements each of which refers to the linked list itself, to the next element of the

list and contains an Edge. Therefore, the total space required is

Notice that the space for the vertices and edges themselves cancels out when we compare Equation

with Equation . If we assume that all object references require the same amount of space, we can
conclude that adjacency lists use less space than adjacency matrices when

For example, given a 10 node graph, the adjacency lists version uses less space when there are fewer than

http://www.brpreiss.com/books/opus6/html/page549.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:47]

http://www.brpreiss.com/books/opus6/index.html

Space Comparison

30 edges. As a rough rule of thumb, we can say that adjacency lists use less space when the average

degree of a node, , satisfies .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page549.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Time Comparison

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Time Comparison

The following four operations are used extensively in the implementations of many different graph
algorithms:

find edge (v,w)
Given vertices v and w, this operation locates the corresponding Edge instance. When using an
adjacency matrix, we can find an edge in constant time.

When adjacency lists are used, the worst-case running time is , since is the

length of the adjacency list associated with vertex v.

This is the operation performed by the GetEdge method of the Graph interface.

enumerate all edges
In order to locate all the edges in when using adjacency matrices, it is necessary to examine all

 matrix entries. Therefore, the worst-case running time needed to enumerate all the edges is

.

On the other hand, to enumerate all the edges when using adjacency lists requires the traversal of

 lists. In all there are edges. Therefore the worst case running time is .

This operation is performed using the enumerator obtained using the Edges property of the
Graph interface.

enumerate edges emanating from v
To enumerate all the edges that emanate from vertex v requires a complete scan of the row of
an adjacency matrix. Therefore, the worst-case running time when using adjacency matrices is

.

Enumerating the edges emanating from vertex v is a trivial operation when using adjacency lists.

All we need do is traverse the list. This takes time in the worst case.

http://www.brpreiss.com/books/opus6/html/page550.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:48]

http://www.brpreiss.com/books/opus6/index.html

Time Comparison

This operation is performed using the enumerator obtained using the EmanatingEdges
property of the Vertex interface.

enumerate edges incident on w
To enumerate all the edges are incident on vertex w requires a complete scan of the column
of an adjacency matrix. Therefore, the worst-case running time when using adjacency matrices is

.

Enumerating the edges incident on vertex w is a non-trivial operation when using adjacency lists.
It is necessary to search every adjacency list in order to find all the edges incident on a given

vertex. Therefore, the worst-case running time is .

This operation is performed using the enumerator obtained using the IncidentEdges property
of the Vertex interface.

Table summarizes these running times.

representation scheme

operation adjacency matrix adjacency list

find edge (v,w) O(1)

enumerate all edges

enumerate edges emanating from v

enumerate edges incident on w

Table:Comparison of graph representations.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page550.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:48]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Graph Traversals

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Graph Traversals

There are many different applications of graphs. As a result, there are many different algorithms for
manipulating them. However, many of the different graph algorithms have in common the characteristic
that they systematically visit all the vertices in the graph. That is, the algorithm walks through the graph
data structure and performs some computation at each vertex in the graph. This process of walking
through the graph is called a graph traversal .

While there are many different possible ways in which to systematically visit all the vertices of a graph,
certain traversal methods occur frequently enough that they are given names of their own. This section
presents three of them--depth-first traversal, breadth-first traversal and topological sort.

● Depth-First Traversal
● Breadth-First Traversal
● Topological Sort
● Graph Traversal Applications:

Testing for Cycles and Connectedness

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page551.html [2002-11-17 ｿﾀﾈﾄ 11:08:48]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Depth-First Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Depth-First Traversal

The depth-first traversal of a graph is like the depth-first traversal of a tree discussed in Section . A
depth-first traversal of a tree always starts at the root of the tree. Since a graph has no root, when we do a
depth-first traversal, we must specify the vertex at which to begin.

A depth-first traversal of a tree visits a node and then recursively visits the subtrees of that node.
Similarly, depth-first traversal of a graph visits a vertex and then recursively visits all the vertices
adjacent to that node. The catch is that the graph may contain cycles, but the traversal must visit every
vertex at most once. The solution to the problem is to keep track of the nodes that have been visited, so
that the traversal does not suffer the fate of infinite recursion.

Figure: Depth-first traversal.

For example, Figure illustrates the depth-first traversal of the directed graph starting from vertex

c. The depth-first traversal visits the nodes in the order

A depth-first traversal only follows edges that lead to unvisited vertices. As shown in Figure , if we
omit the edges that are not followed, the remaining edges form a tree. Clearly, the depth-first traversal of
this tree is equivalent to the depth-first traversal of the graph

http://www.brpreiss.com/books/opus6/html/page552.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:49]

http://www.brpreiss.com/books/opus6/index.html

Depth-First Traversal

● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page552.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program gives the code for the DepthFirstTraversal method of the AbstractGraph class.
In fact, two DepthFirstTraversal methods are defined. One of them accepts two arguments; the

other, three. As indicated in Program , the two-argument method is declared public whereas the
three-argument one is protected.

The user of the Graph interface only sees the two-argument DepthFirstTraversal method. This
method takes any PrePostVisitor and an integer. The idea is that the Visit method of the visitor
is called once for each vertex in the graph and the vertices are visited in depth-first traversal order
starting from the vertex specified by the integer.

http://www.brpreiss.com/books/opus6/html/page553.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:50]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: AbstractGraph class DepthFirstTraversal method.

In order to ensure that each vertex is visited at most once, an array of length of bool values called

visited is used (line 10). That is, only if vertex i has been visited. All the array

elements are initially false (lines 11-12). After initializing the array, the two-argument method calls
the three-argument one, passing it the array as the third argument.

http://www.brpreiss.com/books/opus6/html/page553.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:50]

Implementation

The three-argument method returns immediately if the visitor is done. Otherwise, it visits the specified
node, and then it follows all the edges emanating from that node and recursively visits the adjacent
vertices if those vertices have not already been visited.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page553.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:50]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The running time of the depth-first traversal method depends on the graph representation scheme used.
The traversal visits each node in the graph at most once. When a node is visited, all the edges emanating
from that node are considered. During a complete traversal enumerates every edge in the graph.

Therefore, the worst-case running time for the depth-first traversal of a graph is represented using an
adjacency matrix is

When adjacency lists are used, the worst case running time for the depth-first traversal method is

Recall that for a sparse graph graph . If the sparse graph is represented using adjacency

lists and if and the worst-case running time of the depth-

first traversal is simply .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page554.html [2002-11-17 ｿﾀﾈﾄ 11:08:51]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Breadth-First Traversal

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Breadth-First Traversal

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in Section .
The breadth-first traversal of a tree visits the nodes in the order of their depth in the tree. Breadth-first
tree traversal first visits all the nodes at depth zero (i.e., the root), then all the nodes at depth one, and so
on.

Since a graph has no root, when we do a breadth-first traversal, we must specify the vertex at which to
start the traversal. Furthermore, we can define the depth of a given vertex to be the length of the shortest
path from the starting vertex to the given vertex. Thus, breadth-first traversal first visits the starting
vertex, then all the vertices adjacent to the starting vertex, and then all the vertices adjacent to those, and
so on.

Section presents a non-recursive breadth-first traversal algorithm for N-ary trees that uses a queue to
keep track vertices that need to be visited. The breadth-first graph traversal algorithm is very similar.

First, the starting vertex is enqueued. Then, the following steps are repeated until the queue is empty:

1. Remove the vertex at the head of the queue and call it v.
2. Visit v.
3. Follow each edge emanating from v to find the adjacent vertex and call it to. If to has not

already been put into the queue, enqueue it.

Notice that a vertex can be put into the queue at most once. Therefore, the algorithm must somehow keep
track of the vertices that have been enqueued.

http://www.brpreiss.com/books/opus6/html/page555.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:51]

http://www.brpreiss.com/books/opus6/index.html

Breadth-First Traversal

Figure: Breadth-first traversal.

Figure illustrates the breadth-first traversal of the directed graph starting from vertex a. The

algorithm begins by inserting the starting vertex, a, into the empty queue. Next, the head of the queue
(vertex a) is dequeued and visited, and the vertices adjacent to it (vertices b and c) are enqueued. When,
b is dequeued and visited we find that there is only adjacent vertex, c, and that vertex is already in the
queue. Next vertex c is dequeued and visited. Vertex c is adjacent to a and d. Since a has already been
enqueued (and subsequently dequeued) only vertex d is put into the queue. Finally, vertex d is dequeued
an visited. Therefore, the breadth-first traversal of starting from a visits the vertices in the sequence

● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page555.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:51]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Program gives the code for the BreadthFirstTraversal method of the AbstractGraph
class. This method takes any Visitor and an integer. The Visit method of the visitor is called once
for each vertex in the graph and the vertices are visited in breadth-first traversal order starting from the
vertex specified by the integer.

http://www.brpreiss.com/books/opus6/html/page556.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:52]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: AbstractGraph class BreadthFirstTraversal method.

A bool-valued array, enqueued, is used to keep track of the vertices that have been put into the queue.
The elements of the array are all initialized to false (lines 10-12). Next, a new queue is created and the
starting vertex is enqueued (lines 14-17).

The main loop of the BreadthFirstTraversal method comprises lines 18-30. This loop continues
as long as there is a vertex in the queue and the visitor is willing to do more work (line 18). In each
iteration exactly one vertex is dequeued and visited (lines 20-21). After a vertex is visited, all the
successors of that node are examined (lines 22-29). Every successor of the node that has not yet been
enqueued is put into the queue and the fact that it has been enqueued is recored in the array enqueued
(lines 24-28).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page556.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:52]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The breadth-first traversal enqueues each node in the graph at most once. When a node is dequeued, all
the edges emanating from that node are considered. Therefore, a complete traversal enumerates every
edge in the graph.

The actual running time of the breadth-first traversal method depends on the graph representation scheme
used. The worst-case running time for the traversal of a graph represented using an adjacency matrix is

When adjacency lists are used, the worst case running time for the breadth-first traversal method is

If the graph is sparse, then . Therefore, if a sparse graph is represented using adjacency

lists and if , the worst-case running time of the breadth-first traversal is just .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page557.html [2002-11-17 ｿﾀﾈﾄ 11:08:53]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Topological Sort

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Topological Sort

A topological sort is an ordering of the vertices of a directed acyclic graph given by the following
definition:

Definition (Topological Sort) Consider a directed acyclic graph . A

topological sort of the vertices of G is a sequence in which

each element of appears exactly once. For every pair of distinct vertices and in the

sequence S, if is an edge in G, i.e., , then i<j.

Informally, a topological sort is a list of the vertices of a DAG in which all the successors of any given
vertex appear in the sequence after that vertex. Consider the directed acyclic graph shown in Figure

. The sequence is a topological sort of the vertices of . To see that

this is so, consider the set of vertices:

The vertices in each edge are in alphabetical order, and so is the sequence S.

http://www.brpreiss.com/books/opus6/html/page558.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:54]

http://www.brpreiss.com/books/opus6/index.html

Topological Sort

Figure: A directed acyclic graph.

It should also be evident from Figure that a topological sort is not unique. For example, the following
are also valid topological sorts of the graph :

One way to find a topological sort is to consider the in-degrees of the vertices. (The number above a

vertex in Figure is the in-degree of that vertex). Clearly the first vertex in a topological sort must have
in-degree zero and every DAG must contain at least one vertex with in-degree zero. A simple algorithm
to create the sort goes like this:

Repeat the following steps until the graph is empty:

1. Select a vertex that has in-degree zero.
2. Add the vertex to the sort.
3. Delete the vertex and all the edges emanating from it from the graph.

● Implementation

http://www.brpreiss.com/books/opus6/html/page558.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:54]

Topological Sort

● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page558.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:54]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Instead of implementing an algorithm that computes a topological sort, we have chosen to implement a
traversal that visits the vertices of a DAG in the order given by the topological sort. The topological
order traversal can be used to implement many other graph algorithms. Furthermore, given such a
traversal, it is easy to define a visitor that computes a topological sort.

In order to implement the algorithm described in the preceding section, an array of integers of length

is used to record the in-degrees of the vertices. As a result, it is not really necessary to remove vertices or
edges from the graph during the traversal. Instead, the effect of removing a vertex and all the edges
emanating from that vertex is simulated by decreasing the apparent in-degrees of all the successors of the
removed vertex.

In addition, we use a queue to keep track of the vertices that have not yet been visited, but whose in-
degree is zero. Doing so eliminates the need to search the array for zero entries.

Program defines the TopologicalOrderTraversal method of the AbstractGraph class.
This method takes as its argument a Visitor. The Visit method of the visitor is called once for each
vertex in the graph. The order in which the vertices are visited is given by a topological sort of those
vertices.

http://www.brpreiss.com/books/opus6/html/page559.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:55]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: AbstractGraph class TopologicalOrderTraversal method.

The algorithm begins by computing the in-degrees of all the vertices. An array of integers of length
called inDegree is used for this purpose. First, all the array elements are set to zero. Then, for each

http://www.brpreiss.com/books/opus6/html/page559.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:55]

Implementation

edge , array element is increased by one (lines 12-16). Next, a queue to

hold vertices is created. All vertices with in-degree zero are put into this queue (lines 18-21).

The main loop of the TopologicalOrderTraversal method comprises lines 22-31. This loop
continues as long as the queue is not empty and the visitor is not finished. In each iteration of the main
loop exactly one vertex is dequeued and visited (lines 24-25).

Once a vertex has been visited, the effect of removing that vertex from the graph is simulated by
decreasing by one the in-degrees of all the successors of that vertex. When the in-degree of a vertex
becomes zero, that vertex is enqueued (lines 26-30).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page559.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:55]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The topological-order traversal enqueues each node in the graph at most once. When a node is dequeued,
all the edges emanating from that node are considered. Therefore, a complete traversal enumerates every
edge in the graph.

The worst-case running time for the traversal of a graph represented using an adjacency matrix is

When adjacency lists are used, the worst case running time for the topological-order traversal method is

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page560.html [2002-11-17 ｿﾀﾈﾄ 11:08:56]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Graph Traversal Applications: Testing for Cycles and Connectedness

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Graph Traversal Applications:
Testing for Cycles and Connectedness

This section presents several graph algorithms that are based on graph traversals. The first two
algorithms test undirected and directed graphs for connectedness. Both algorithms are implemented using
the depth-first traversal. The third algorithm tests a directed graph for cycles. It is implemented using a
topological-order traversal.

● Connectedness of an Undirected Graph
● Connectedness of a Directed Graph
● Testing Strong Connectedness
● Testing for Cycles in a Directed Graph

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page561.html [2002-11-17 ｿﾀﾈﾄ 11:08:56]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Connectedness of an Undirected Graph

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Connectedness of an Undirected Graph

Definition (Connectedness of an Undirected Graph) An undirected graph

is connected if there is a path in G between every pair of vertices in .

Consider the undirected graph shown in Figure . It is tempting to interpret this figure as a picture of

two graphs. However, the figure actually represents the undirected graph , given by

Clearly, the graph is not connected. For example, there is no path between vertices a and d. In fact,

the graph consists of two, unconnected parts, each of which is a connected sub-graph. The connected

sub-graphs of a graph are called connected components .

Figure: An unconnected, undirected graph with two (connected) components.

A traversal of an undirected graph (either depth-first or breadth-first) starting from any vertex will only
visit all the other vertices of the graph if that graph is connected. Therefore, there is a very simply way to
test whether an undirected graph is connected: Count the number of vertices visited during a traversal of
the graph. Only if all the vertices are visited is the graph connected.

Program shows how this can be implemented. The IsConnected property of the
AbstractGraph class provides a bool-valued get accessor that returns true if the graph is
connected.

http://www.brpreiss.com/books/opus6/html/page562.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:57]

http://www.brpreiss.com/books/opus6/index.html

Connectedness of an Undirected Graph

Program: AbstractGraph class IsConnected property.

The property is implemented using a the DepthFirstTraversal method and a visitor that simply
counts the number of vertices it visits. The Visit method adds one the count field of the counter each
time it is called.

The worst-case running time of the IsConnected property is determined by the time taken by the

DepthFirstTraversal. Clearly in this case . Therefore, the running time of

IsConnected is when adjacency matrices are used to represent the graph and

http://www.brpreiss.com/books/opus6/html/page562.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:57]

Connectedness of an Undirected Graph

when adjacency lists are used.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page562.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:08:57]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Connectedness of a Directed Graph

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Connectedness of a Directed Graph

When dealing with directed graphs, we define two kinds of connectedness, strong and weak. Strong
connectedness of a directed graph is defined as follows:

Definition (Strong Connectedness of a Directed Graph) A directed graph

is strongly connected if there is a path in G between every pair of vertices in .

For example, Figure shows the directed graph given by

Notice that the graph is not connected! For example, there is no path from any of the vertices in

 to any of the vertices in . Nevertheless, the graph ``looks'' connected in the sense that

it is not made of up of separate parts in the way that the graph in Figure is.

This idea of ``looking'' connected is what weak connectedness represents. To define weak connectedness
we need to introduce first the notion of the undirected graph that underlies a directed graph: Consider a

directed graph . The underlying undirected graph is the graph where

represents the set of undirected edges that is obtained by removing the arrowheads from the directed
edges in G:

http://www.brpreiss.com/books/opus6/html/page563.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:59]

http://www.brpreiss.com/books/opus6/index.html

Connectedness of a Directed Graph

Figure: An weakly connected directed graph and the underlying undirected graph.

Weak connectedness of a directed graph is defined with respect to its underlying, undirected graph:

Definition (Weak Connectedness of a Directed Graph) A directed graph is

weakly connected if the underlying undirected graph is connected.

For example, since the undirected graph in Figure is connected, the directed graph is weakly

connected. Consider what happens when we remove the edge (b,e) from the directed graph . The

underlying undirected graph that we get is in Figure . Therefore, when we remove edge (b,e) from

, the graph that remains is neither strongly connected nor weakly connected.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page563.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:08:59]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Testing Strong Connectedness

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Testing Strong Connectedness

A traversal of a directed graph (either depth-first or breadth-first) starting from a given vertex will only
visit all the vertices of an undirected graph if there is a path from the start vertex to every other vertex.

Therefore, a simple way to test whether a directed graph is strongly connected uses traversals--one

starting from each vertex in . Each time the number of vertices visited is counted. The graph is strongly
connected if all the vertices are visited in each traversal.

Program shows how this can be implemented. It shows the get accessor for the
IsStronglyConnected property of the AbstractGraph class which returns the bool value
true if the graph is strongly connected.

http://www.brpreiss.com/books/opus6/html/page564.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:00]

http://www.brpreiss.com/books/opus6/index.html

Testing Strong Connectedness

Program: AbstractGraph class IsConnected property.

The accessor consists of a loop over all the vertices of the graph. Each iteration does a
DepthFirstTraversal using a visitor that counts the number of vertices it visits. The running time

for one iteration is essentially that of the DepthFirstTraversal since for the

counting visitor. Therefore, the worst-case running time for the IsConnected method is

when adjacency matrices are used and when adjacency lists are used to represent

the graph.

http://www.brpreiss.com/books/opus6/html/page564.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:00]

Testing Strong Connectedness

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page564.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:00]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Testing for Cycles in a Directed Graph

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Testing for Cycles in a Directed Graph

The final application of graph traversal that we consider in this section is to test a directed graph for
cycles. An easy way to do this is to attempt a topological-order traversal using the algorithm given in

Section . This algorithm only visits all the vertices of a directed graph if that graph contains no cycles.

To see why this is so, consider the directed cyclic graph shown in Figure . The topological

traversal algorithm begins by computing the in-degrees of the vertices. (The number shown below each

vertex in Figure is the in-degree of that vertex).

Figure: A directed cyclic graph.

At each step of the traversal, a vertex with in-degree of zero is visited. After a vertex is visited, the vertex
and all the edges emanating from that vertex are removed from the graph. Notice that if we remove
vertex a and edge (a,b) from , all the remaining vertices have in-degrees of one. The presence of the

cycle prevents the topological-order traversal from completing.

Therefore, the a simple way to test whether a directed graph is cyclic is to attempt a topological traversal
of its vertices. If all the vertices are not visited, the graph must be cyclic.

Program gives the implementation of the IsCyclic property of the AbstractGraph class. This
property provides a bool-valued get accessor that returns true if the graph is cyclic. The
implementation uses a visitor that counts the number of vertices visited during a
TopologicalOrderTraversal of the graph.

http://www.brpreiss.com/books/opus6/html/page565.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:01]

http://www.brpreiss.com/books/opus6/index.html

Testing for Cycles in a Directed Graph

Program: AbstractGraph class IsCyclic property.

The worst-case running time of the IsCyclic property is determined by the time taken by the

TopologicalOrderTraversal. Since , the running time of IsCyclic is

 when adjacency matrices are used to represent the graph and when adjacency

lists are used.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page565.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:01]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Shortest-Path Algorithms

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Shortest-Path Algorithms
In this section we consider edge-weighted graphs, both directed and undirected, in which the weight
measures the cost of traversing that edge. The units of cost depend on the application.

For example, we can use a directed graph to represent a network of airports. In such a graph the vertices
represent the airports and the edges correspond to the available flights between airports. In this scenario
there are several possible cost metrics: If we are interested in computing travel time, then we use an edge-
weighted graph in which the weights represent the flying time between airports. If we are concerned with
the financial cost of a trip, then the weights on the edges represent the monetary cost of a ticket. Finally,
if we are interested the actual distance traveled, then the weights represent the physical distances between
airports.

If we are interested in traveling from point A to B, we can use a suitably labeled graph to answer the
following questions: What is the fastest way to get from A to B? Which route from A to B has the least
expensive airfare? What is the shortest possible distance traveled to get from A to B?

Each of these questions is an instance of the same problem: Given an edge-weighted graph, ,

and two vertices, and , find the path that starts at and ends at that has the smallest

weighted path length. The weighted length of a path is defined as follows:

Definition (Weighted Path Length) Consider an edge-weighted graph . Let

 be the weight on the edge connecting to . A path in G is a non-empty

sequence of vertices . The weighted path length of path P is

given by

The weighted length of a path is the sum of the weights on the edges in that path. Conversely, the
unweighted length of a path is simply the number of edges in that path. Therefore, the unweighted length
of a path is equivalent to the weighted path length obtained when all edge weights are one.

http://www.brpreiss.com/books/opus6/html/page566.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:02]

http://www.brpreiss.com/books/opus6/index.html

Shortest-Path Algorithms

● Single-Source Shortest Path
● All-Pairs Source Shortest Path

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page566.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:02]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Single-Source Shortest Path

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Single-Source Shortest Path

In this section we consider the single-source shortest path problem: Given an edge-weighted graph

 and a vertex , find the shortest weighted path from to every other vertex in .

Why do we find the shortest path to every other vertex if we are interested only in the shortest path from,
say, to ? It turns out that in order to find the shortest path from to , it is necessary to find the
shortest path from to every other vertex in G! If a vertex is ignored, say , then we will not consider
any of the paths from to that pass through . But if we fail to consider all the paths from to ,
we cannot be assured of finding the shortest one.

Furthermore, suppose the shortest path from to passes through some intermediate node . That is,

the shortest path is of the form It must be the case that the portion of P

between to is also the shortest path from to . Suppose it is not. Then there exists another
shorter path from to . But then, P would not be the shortest path from to , because we could
obtain a shorter one by replacing the portion of P between and by the shorter path.

Consider the directed graph shown in Figure . The shortest weighted path between vertices b and

f is the path which has the weighted path length nine. On the other hand, the shortest

unweighted path is from b to f is the path of length three, .

Figure: Two edge-weighted directed graphs.

http://www.brpreiss.com/books/opus6/html/page567.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:04]

http://www.brpreiss.com/books/opus6/index.html

Single-Source Shortest Path

As long as all the edge weights are non-negative (as is the case for), the shortest-path problem is

well defined. Unfortunately, things get a little tricky in the presence of negative edge weights.

For example, consider the graph shown in Figure . Suppose we are looking for the shortest path

from d to f. Exactly two edges emanate from vertex d, both with the same edge weight of five. If the

graph contained only positive edge weights, there could be no shorter path than the direct path .

However, in a graph that contains negative weights, a long path gets ``shorter'' when we add edges with

negative weights to it. For example, the path has a total weighted path length of four,

even though the first edge, (d,a), has the weight five.

But negative weights are even more insidious than this: For example, the path ,

which also joins vertex d to f, has a weighted path length of two but the path

has length zero. That is, as the number of edges in the path increases, the weighted path length decreases!

The problem in this case is the existence of the cycle the weighted path length of which is

less than zero. Such a cycle is called a negative cost cycle .

Clearly, the shortest-path problem is not defined for graphs that contain negative cost cycles. However,
negative edges are not intrinsically bad. Solutions to the problem do exist for graphs that contain both
positive and negative edge weights, as long as there are no negative cost cycles. Nevertheless, the
problem is greatly simplified when all edges carry non-negative weights.

● Dijkstra's Algorithm
● Data Structures for Dijkstra's Algorithm
● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page567.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:04]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Dijkstra's Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Dijkstra's Algorithm

Dijkstra's algorithm is a greedy algorithm for solving the single-source, shortest-path problem on an
edge-weighted graph in which all the weights are non-negative. It finds the shortest paths from some
initial vertex, say , to all the other vertices one-by-one. The essential feature of Dijkstra's algorithm is
the order in which the paths are determined: The paths are discovered in the order of their weighted
lengths, starting with the shortest, proceeding to the longest.

For each vertex v, Dijkstra's algorithm keeps track of three pieces of information, , , and :

The bool-valued flag indicates that the shortest path to vertex v is known. Initially,

 for all .

The quantity is the length of the shortest known path from to v. When the algorithm begins,

no shortest paths are known. The distance is a tentative distance. During the course of the

algorithm candidate paths are examined and the tentative distances are modified.

Initially, for all such that , while .

The predecessor of vertex v on the shortest path from to v. That is, the shortest path from to

v has the form .

Initially, is unknown for all .

Dijkstra's algorithm proceeds in phases. The following steps are performed in each pass:

1. From the set of vertices for with , select the vertex v having the smallest tentative

distance .

2. Set .

http://www.brpreiss.com/books/opus6/html/page568.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:06]

http://www.brpreiss.com/books/opus6/index.html

Dijkstra's Algorithm

3. For each vertex w adjacent to v for which , test whether the tentative distance is

greater than . If it is, set and set .

In each pass exactly one vertex has its set to true. The algorithm terminates after passes are

completed at which time all the shortest paths are known.

Table illustrates the operation of Dijkstra's algorithm as it finds the shortest paths starting from vertex

b in graph shown in Figure .

passes

vertex initially 1 2 3 4 5 6

a 3 b 3 b 3 b 3 b 3 b 3 b

b 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0 --

c 5 b 4 a 4 a 4 a 4 a 4 a

d 6 c 6 c 6 c 6 c

e 8 c 8 c 8 c 8 c

f 11 d 9 e 9 e

Table:Operation of Dijkstra's algorithm.

Initially all the tentative distances are , except for vertex b which has tentative distance zero.

Therefore, vertex b is selected in the first pass. The mark beside an entry in Table indicates that

the shortest path is known ().

Next we follow the edges emanating from vertex b, and , and update the distances
accordingly. The new tentative distances for a becomes 3 and the new tentative distance for c is 5. In
both cases, the next-to-last vertex on the shortest path is vertex b.

In the second pass, vertex a is selected and its entry is marked with indicating the shortest path is

http://www.brpreiss.com/books/opus6/html/page568.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:06]

Dijkstra's Algorithm

known. There is one edge emanating from a, . The distance to c via a is 4. Since this is less than
the tentative distance to c, vertex c is given the new tentative distance 4 and its predecessor on the
shortest-path is set to a. The algorithm continues in this fashion for a total of passes until all the
shortest paths have been found.

The shortest-path information contained in the right-most column of Table can be represented in the

form of a vertex-weighted graph as shown in Figure .

Figure: The shortest-path graph for .

This graph contains the same set of vertices as the problem graph . Each vertex v is labeled with the

length of the shortest path from b to v. Each vertex (except b) has a single emanating edge that

connects the vertex to the next-to-last vertex on the shortest-path. By following the edges in this graph
from any vertex v to vertex b, we can construct the shortest path from b to v in reverse.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page568.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Data Structures for Dijkstra's Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Data Structures for Dijkstra's Algorithm

The implementation of Dijkstra's algorithm described below uses the Entry struct declared in

Program . Each Entry value has three fields, known, distance, and predecessor, which
correspond to the variables , , and , respectively.

Program: GraphAlgorithms Entry struct.

In each pass of its operation, Dijkstra's algorithm selects from the set of vertices for which the shortest-
path is not yet known the one with the smallest tentative distance. Therefore, we use a priority queue to
represent this set of vertices.

The priority assigned to a vertex is its tentative distance. The class Association class introduced in

Program is used to associate a priority with a given vertex instance.

http://www.brpreiss.com/books/opus6/html/page569.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:06]

http://www.brpreiss.com/books/opus6/index.html

Data Structures for Dijkstra's Algorithm

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page569.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:06]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

An implementation of Dijkstra's algorithm is shown in Program . The DijkstrasAlgorithm
method takes two arguments. The first is a directed graph. It is assumed that the directed graph is an edge-
weighted graph in which the weights are ints. The second argument is the number of the start vertex, .

The DijkstrasAlgorithm method returns its result in the form of a shortest-path graph. Therefore,
the return value is a Digraph instance.

http://www.brpreiss.com/books/opus6/html/page570.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:07]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Dijkstra's algorithm.

The main data structures used are called table and queue (lines 6 and 12). The former is an array of

 Entry elements. The latter is a priority queue. In this case, a BinaryHeap of length is

used. (See Section).

The algorithm begins by setting the tentative distance for the start vertex to zero and inserting the start
vertex into the priority queue with priority zero (lines 10-12).

The main loop of the method comprises lines 13-33. In each iteration of this loop the vertex with the
smallest distance is dequeued (line 15). The vertex is processed only if its table entry indicates that the
shortest path is not already known (line 17).

When a vertex v0 is processed, its shortest path is deemed to be known (line 19). Then each vertex v1
adjacent to vertex is considered (lines 20-31). The distance to v1 along the path that passes through v0 is
computed (lines 23-24). If this distance is less than the tentative distance associated with v1, entries in
the table for v1 are updated, and the v1 is given a new priority and inserted into the priority queue
(lines 25-30).

The main loop terminates when all the shortest paths have been found. The shortest-path graph is then
constructed using the information in the table (lines 34-39).

http://www.brpreiss.com/books/opus6/html/page570.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:07]

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page570.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:07]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The running time of the DijkstrasAlgorithm method is dominated by the running time of the main

loop (lines 13-33). (It is easy to see that lines 5-9 and 34-39 run in time).

To determine the running time of the main loop, we proceed as follows: First, we ignore temporarily the
time required for the Enqueue and Dequeue operations in the priority queue. Clearly, each vertex in
the graph is processed exactly once. When a vertex is processed all the edges emanating from it are
considered. Therefore, the time (ignoring the priority queue operations) taken is O(|V|+|E|) when

adjacency lists are used and when adjacency matrices are used.

Now, we add back the worst-case time required for the priority queue operations. In the worst case, a
vertex is enqueued and subsequently dequeued once for every edge in the graph. Therefore, the length of

the priority queue is at most . As a result, the worst-case time for each operation is .

Thus, the worst-case running time for Dijkstra's algorithm is

when adjacency lists are used, and

when adjacency matrices are used to represent the input graph.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page571.html [2002-11-17 ｿﾀﾈﾄ 11:09:08]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

All-Pairs Source Shortest Path

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

All-Pairs Source Shortest Path

In this section we consider the all-pairs, shortest path problem: Given an edge-weighted graph

, for each pair of vertices in find the length of the shortest weighted path between the two

vertices.

One way to solve this problem is to run Dijkstra's algorithm times in turn using each vertex in as

the initial vertex. Therefore, we can solve the all-pairs problem in time when

adjacency lists are used, and , when adjacency matrices are used. However,

for a dense graph () the running time of Dijkstra's algorithm is ,

regardless of the representation scheme used.

● Floyd's Algorithm
● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page572.html [2002-11-17 ｿﾀﾈﾄ 11:09:09]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Floyd's Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Floyd's Algorithm

Floyd's algorithm uses the dynamic programming method to solve the all-pairs shortest-path problem on
a dense graph. The method makes efficient use of an adjacency matrix to solve the problem. Consider an

edge-weighted graph , where C(v,w) represents the weight on edge (v,w). Suppose the

vertices are numbered from 1 to . That is, let . Furthermore, let be the set

comprised of the first k vertices in . That is, , for .

Let be the shortest path from vertex v to w that passes only through vertices in , if such a

path exists. That is, the path has the form

Let be the length of path :

Since , the paths are correspond to the edges of G:

Therefore, the path lengths correspond to the weights on the edges of G:

Floyd's algorithm computes the sequence of matrices . The distances in represent

http://www.brpreiss.com/books/opus6/html/page573.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:11]

http://www.brpreiss.com/books/opus6/index.html

Floyd's Algorithm

paths with intermediate vertices in . Since , we can obtain the distances in

 from those in by considering only the paths that pass through vertex . Figure illustrates

how this is done.

Figure: Calculating in Floyd's algorithm.

For every pair of vertices (v,w), we compare the distance , (which represents the shortest path

from v to w that does not pass through) with the sum (which

represents the shortest path from v to w that does pass through). Thus, is computed as

follows:

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page573.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:11]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

An implementation of Floyd's algorithm is shown in Program . The FloydsAlgorithm method
takes as its argument a directed graph. The directed graph is assumed to be an edge-weighted graph in
which the weights are ints.

http://www.brpreiss.com/books/opus6/html/page574.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:12]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Floyd's algorithm.

The FloydsAlgorithm method returns its result in the form of an edge-weighted directed graph.
Therefore, the return value is a Digraph.

The principal data structure use by the algorithm is a matrix of integers called distance. All

the elements of the matrix are initially set to (lines 6-9). Next, an edge enumerator is used to visit all
the edges in the input graph in order to transfer the weights from the graph to the distance matrix
(lines 11-14).

The main work of the algorithm is done in three, nested loops (lines 16-25). The outer loop computes the
sequence of distance matrices . The inner two loops consider all possible pairs of

vertices. Notice that as is computed, its entries overwrite those of .

Finally, the values in the distance matrix are transfered to the result graph (lines 27-33). The result
graph contains the same set of vertices as the input graph. For each finite entry in the distance matrix,
a weighted edge is added to the result graph.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page574.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:12]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The worst-case running time for Floyd's algorithm is easily determined. Creating and initializing the

distance matrix is (lines 6-9). Transferring the weights from the input graph to the

distance matrix requires time if adjacency lists are used, and time when an

adjacency matrix is used to represent the input graph (lines 11-14).

The running time for the three nested loops is in the worst case. Finally, constructing the result

graph and transferring the entries from the distance matrix to the result requires time. As a

result, the worst-case running time of Floyd's algorithm is .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page575.html [2002-11-17 ｿﾀﾈﾄ 11:09:12]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Minimum-Cost Spanning Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Minimum-Cost Spanning Trees
In this section we consider undirected graphs and their subgraphs. A subgraph of a graph

is any graph such that and . In particular, we consider connected

undirected graphs and their minimal subgraphs . The minimal subgraph of a connected graph is called a
spanning tree:

Definition (Spanning Tree) Consider a connected, undirected graph . A

spanning tree of G is a subgraph of G, say , with the following properties:

1. .
2. T is connected.
3. T is acyclic.

Figure shows an undirected graph, , together with three of its spanning trees. A spanning tree is

called a tree because every acyclic undirected graph can be viewed as a general, unordered tree. Because
the edges are undirected, any vertex may be chosen to serve as the root of the tree. For example, the

spanning tree of given in Figure (c) can be viewed as the general, unordered tree

http://www.brpreiss.com/books/opus6/html/page576.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:14]

http://www.brpreiss.com/books/opus6/index.html

Minimum-Cost Spanning Trees

Figure: An undirected graph and three spanning trees.

According to Definition , a spanning tree is connected. Therefore, as long as the tree contains more
than one vertex, there can be no vertex with degree zero. Furthermore, the following theorem guarantees
that there is always at least one vertex with degree one:

Theorem Consider a connected, undirected graph , where . Let

 be a spanning tree of G. The spanning tree T contains at least one vertex of

degree one.

extbfProof (By contradiction). Assume that there is no vertex in T of degree one. That is, all the vertices
in T have degree two or greater. Then by following edges into and out of vertices we can construct a path
that is cyclic. But a spanning tree is acyclic--a contradiction. Therefore, a spanning tree always contains
at least one vertex of degree one.

According to Definition , the edge set of a spanning tree is a subset of the edges in the spanned graph.
How many edges must a spanning tree have? The following theorem answers the question:

http://www.brpreiss.com/books/opus6/html/page576.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:14]

Minimum-Cost Spanning Trees

Theorem Consider a connected, undirected graph . Let be a

spanning tree of G. The number of edges in the spanning tree is given by

extbfProof (By induction). We can prove Theorem by induction on , the number of vertices in the

graph.

Base Case Consider a graph that contains only one node, i.e., . Clearly, the spanning tree for

such a graph contains no edges. Since , the theorem is valid.

Inductive Hypothesis Assume that the number of edges in a spanning tree for a graph with has been

shown to be for .

Consider a graph with k+1 vertices and its spanning tree . According

to Theorem , contains at least one vertex of degree one. Let be one such vertex and

 be the one edge emanating from v in .

Let be the graph of k nodes obtained by removing v and its emanating edge from the graph .

That is, .

Since is connected, so too is . Similarly, since is acyclic, so too is . Therefore is a

spanning tree with k vertices. By the inductive hypothesis has k-1 edges. Thus, as k edges.

Therefore, by induction on k, the spanning tree for a graph with vertices contains edges.

● Constructing Spanning Trees
● Minimum-Cost Spanning Trees
● Prim's Algorithm
● Kruskal's Algorithm

http://www.brpreiss.com/books/opus6/html/page576.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:14]

Minimum-Cost Spanning Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page576.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:14]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructing Spanning Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructing Spanning Trees

Any traversal of a connected, undirected tree visits all the vertices in that tree, regardless of the node
from which the traversal is started. During the traversal certain edges are traversed while the remaining
edges are not. Specifically, an edge is traversed if it leads from a vertex that has been visited to a vertex
that has not been visited. The set of edges which are traversed during a traversal forms a spanning tree.

The spanning tree obtained from a breadth-first traversal starting at vertex v of graph G is called the

breadth-first spanning tree of G rooted at v. For example, the spanning tree shown in Figure (c) is
the breadth-first spanning tree of rooted at vertex b.

Similarly, the spanning tree obtained from a depth-first traversal is the depth-first spanning tree of G

rooted at v. The spanning tree shown in Figure (d) is the depth-first spanning tree of rooted at

vertex c.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page577.html [2002-11-17 ｿﾀﾈﾄ 11:09:15]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Minimum-Cost Spanning Trees

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Minimum-Cost Spanning Trees

The total cost of an edge-weighted undirected graph is simply the sum of the weights on all the edges in
that graph. A minimum-cost spanning tree of a graph is a spanning tree of that graph that has the least
total cost:

Definition (Minimal Spanning Tree) Consider an edge-weighted, undirected, connected

graph , where C(v,w) represents the weight on edge . The

minimum spanning tree of G is the spanning tree that has the smallest total

cost,

Figure shows edge-weighted graph together with its minimum-cost spanning tree . In

general, it is possible for a graph to have several different minimum-cost spanning trees. However, in this
case there is only one.

Figure: An edge-weighted, undirected graph and a minimum-cost spanning tree.

The two sections that follow present two different algorithms for finding the minimum-cost spanning
tree. Both algorithms are similar in that they build the tree one edge at a time.

http://www.brpreiss.com/books/opus6/html/page578.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:16]

http://www.brpreiss.com/books/opus6/index.html

Minimum-Cost Spanning Trees

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page578.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:16]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Prim's Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Prim's Algorithm

Prim's algorithm finds a minimum-cost spanning tree of an edge-weighted, connected, undirected graph

. The algorithm constructs the minimum-cost spanning tree of a graph by selecting edges

from the graph one-by-one and adding those edges to the spanning tree.

Prim's algorithm is essentially a minor variation of Dijkstra's algorithm (see Section). To construct
the spanning tree, the algorithm constructs a sequence of spanning trees , each of

which is a subgraph of G. The algorithm begins with a tree that contains one selected vertex, say

. That is, .

Given , we obtain the next tree in the sequence as follows. Consider the set of edges

given by

The set contains all the edges such that exactly one of v or w is in (but not both). Select the

edge with the smallest edge weight,

Then , where and . After

such steps we get which is the minimum-cost spanning tree of G.

Figure illustrates how Prim's algorithm determines the minimum-cost spanning tree of the graph

shown in Figure . The circled vertices are the elements of , the solid edges represent the elements of

 and the dashed edges represent the elements of .

http://www.brpreiss.com/books/opus6/html/page579.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:17]

http://www.brpreiss.com/books/opus6/index.html

Prim's Algorithm

Figure: Operation of Prim's algorithm.

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page579.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:17]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

An implementation of Prim's algorithm is shown in Program . This implementation is almost identical

to the version of Dijkstra's algorithm given in Program . In fact, there are only four differences
between the two algorithms. These are found on lines 3, 23-25, 34, and 36.

http://www.brpreiss.com/books/opus6/html/page580.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:18]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Prim's algorithm.

The PrimsAlgorithm method takes two arguments. The first is an undirected graph instance. We
assume that the graph is edge-weighted and that the weights are ints. The second argument is the
number of the start vertex, .

The PrimsAlgorithm method returns a minimum-cost spanning tree represented as an undirected
graph. Therefore, the return value is a Graph.

The running time of Prim's algorithm is asymptotically the same as Dijkstra's algorithm. That is, the
worst-case running time is

when adjacency lists are used, and

when adjacency matrices are used to represent the input graph.

http://www.brpreiss.com/books/opus6/html/page580.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:18]

Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page580.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:18]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Kruskal's Algorithm

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Kruskal's Algorithm

Like Prim's algorithm, Kruskal's algorithm also constructs the minimum spanning tree of a graph by
adding edges to the spanning tree one-by-one. At all points during its execution the set of edges selected
by Prim's algorithm forms exactly one tree. On the other hand, the set of edges selected by Kruskal's
algorithm forms a forest of trees.

Kruskal's algorithm is conceptually quite simple. The edges are selected and added to the spanning tree
in increasing order of their weights. An edge is added to the tree only if it does not create a cycle.

The beauty of Kruskal's algorithm is the way that potential cycles are detected. Consider an undirected

graph . We can view the set of vertices, , as a universal set and the set of edges, , as the

definition of an equivalence relation over the universe . (See Definition). In general, an
equivalence relation partitions a universal set into a set of equivalence classes. If the graph is connected,
there is only one equivalence class--all the elements of the universal set are equivalent. Therefore, a
spanning tree is a minimal set of equivalences that result in a single equivalence class.

Kruskal's algorithm computes, , a sequence of partitions of the set of vertices .

(Partitions are discussed in Section). The initial partition consists of sets of size one:

Each subsequent element of the sequence is obtained from its predecessor by joining two of the elements
of the partition. Therefore, has the form

for .

To construct the sequence the edges in are considered one-by-one in increasing order of their weights.

Suppose we have computed the sequence up to and the next edge to be considered is . If v and

w are both members of the same element of partition , then the edge forms a cycle, and is not part of

the minimum-cost spanning tree.

http://www.brpreiss.com/books/opus6/html/page581.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:20]

http://www.brpreiss.com/books/opus6/index.html

Kruskal's Algorithm

On the other hand, suppose v and w are members of two different elements of partition , say and

(respectively). Then must be an edge in the minimum-cost spanning tree. In this case, we

compute by joining and . That is, we replace and in by the union .

Figure illustrates how Kruskal's algorithm determines the minimum-cost spanning tree of the graph

 shown in Figure . The algorithm computes the following sequence of partitions:

http://www.brpreiss.com/books/opus6/html/page581.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:20]

Kruskal's Algorithm

Figure: Operation of Kruskal's algorithm.

● Implementation
● Running Time Analysis

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page581.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:20]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

An implementation of Kruskal's algorithm is shown in Program . The KruskalsAlgorithm
method takes as its argument an edge-weighted, undirected graph. This implementation assumes that the
edge weights are ints. The method computes the minimum-cost spanning tree and returns it in the form
of an edge-weighted undirected graph.

http://www.brpreiss.com/books/opus6/html/page582.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:21]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Kruskal's algorithm.

The main data structures used by the method are a priority queue to hold the edges, a partition to detect

cycles and a graph for the result. This implementation uses a BinaryHeap (Section) for the priority

queue (lines 11-12), a PartitionAsForest (Section) for the partition (line 19) and a
GraphAsLists for the spanning tree (line 7).

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page582.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:21]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Running Time Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Running Time Analysis

The KruskalsAlgorithm method begins by creating an graph to hold the result spanning tree
(lines 7-9). Since a spanning tree is a sparse graph the GraphAsLists class is used to represent it.

Initially the graph contains vertices but no edges. The running time for lines 7-9 is .

Next all of the edges in the input graph are inserted one-by-one into the priority queue (lines 11-17).

Since there are edges, the worst-case running time for a single insertion is . Therefore, the

worst-case running time to initialize the priority queue is

when adjacency lists are used, and

when adjacency matrices are used to represent the input graph.

The main loop of the method comprises lines 20-33. This loop is done at most times. In each iteration

of the loop, one edge is removed from the priority queue (lines 22-23). In the worst-case this takes

 time.

Then, two partition find operations are done to determine the elements of the partition that contain the

two end-points of the given edge (lines 24-27). Since the partition contains at most elements, the

running time for the find operations is . If the two elements of the partition are distinct, then

an edge is added to the spanning tree and a join operation is done to unite the two elements of the

partition (lines 28-32). The join operation also requires time in the worst-case. Therefore, the

total running time for the main loop is .

Thus, the worst-case running time for Kruskal's algorithm is

http://www.brpreiss.com/books/opus6/html/page583.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:22]

http://www.brpreiss.com/books/opus6/index.html

Running Time Analysis

when adjacency lists are used, and

when adjacency matrices are used to represent the input graph.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page583.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:22]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Application: Critical Path Analysis

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Application: Critical Path Analysis
In the introduction to this chapter it is stated that there are myriad applications of graphs. In this section
we consider one such application--critical path analysis . Critical path analysis crops up in a number of
different contexts, from the planning of construction projects to the analysis of combinational logic
circuits.

For example, consider the scheduling of activities required to construct a building. Before the foundation
can be poured, it is necessary to dig a hole in the ground. After the building has been framed, the
electricians and the plumbers can rough-in the electrical and water services and this rough-in must be
completed before the insulation is put up and the walls are closed in.

We can represent the set of activities and the scheduling constraints using a vertex-weighted, directed
acyclic graph (DAG). Each vertex represents an activity and the weight on the vertex represents the time
required to complete the activity. The directed edges represent the sequencing constraints. That is, an
edge from vertex v to vertex w indicates that activity v must complete before w may begin. Clearly, such
a graph must be acyclic.

A graph in which the vertices represent activities is called an activity-node graph . Figure shows an
example of of an activity-node graph. In such a graph it is understood that independent activities may
proceed in parallel. For example, after activity A is completed, activities B and C may proceed in parallel.
However, activity D cannot begin until both B and C are done.

Figure: An activity-node graph.

Critical path analysis answers the following questions:

http://www.brpreiss.com/books/opus6/html/page584.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:23]

http://www.brpreiss.com/books/opus6/index.html

Application: Critical Path Analysis

1. What is the minimum amount of time needed to complete all activities?
2. For a given activity v, is it possible to delay the completion of that activity without affecting the

overall completion time? If yes, by how much can the completion of activity v be delayed?

The activity-node graph is a vertex-weighted graph. However, the algorithms presented in the preceding
sections all require edge-weighted graphs. Therefore, we must convert the vertex-weighted graph into its
edge-weighted dual . In the dual graph the edges represent the activities, and the vertices represent the
commencement and termination of activities. For this reason, the dual graph is called an event-node
graph .

Figure shows the event-node graph corresponding to the activity node graph given in Figure .
Where an activity depends on more than one predecessor it is necessary to insert dummy edges.

Figure: The event-node graph corresponding to Figure .

For example, activity D cannot commence until both B and C are finished. In the event-node graph
vertex 2 represents the termination of activity B and vertex 3 represents the termination of activity C. It is
necessary to introduce vertex 4 to represent the event that both B and C have completed. Edges
and represent this synchronization constraint. Since these edges do not represent activities, the
edge weights are zero.

For each vertex v in the event node graph we define two times. The first is the earliest event time for

event v. It is the earliest time at which event v can occur assuming the first event begins at time zero. The
earliest event time is given by

where is the initial event, is the set of incident edges on vertex w and C(v,w) is the weight on

vertex (v,w).

http://www.brpreiss.com/books/opus6/html/page584.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:23]

Application: Critical Path Analysis

Similarly, is the latest event time for event v. It is the latest time at which event v can occur The

latest event time is given by

where is the final event.

Given the earliest and latest event times for all events, we can compute time available for each activity.
For example, consider an activity represented by edge (v,w). The amount of time available for the
activity is and the time required for that activity is C(v,w). We define the slack time for an

activity as the amount of time by which an activity can be delayed with affecting the overall completion
time of the project. The slack time for the activity represented by edge (v,w) is given by

Activities with zero slack are critical . That is, critical activities must be completed on time--any delay
affects the overall completion time. A critical path is a path in the event-node graph from the initial
vertex to the final vertex comprised solely of critical activities.

Table gives the results from obtained from the critical path analysis of the activity-node graph shown

in Figure . The tabulated results indicate the critical path is

activity C(v,w) S(v,w)

A 3 0 3 0

B 1 3 7 3

C 4 3 7 0

D 1 7 8 0

E 9 8 17 0

F 5 8 17 4

http://www.brpreiss.com/books/opus6/html/page584.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:23]

Application: Critical Path Analysis

G 2 17 18 0

Table:Critical path analysis
results for the activity-node

graph in Figure .

● Implementation

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page584.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:23]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Implementation

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Implementation

Given an activity-node graph, the objective of critical path analysis is to determine the slack time for
each activity and thereby to identify the critical activities and the critical path. We shall assume that the
activity node graph has already been transformed to an edge-node graph. The implementation of this

transformation is left as a project for the reader (Project). Therefore, the first step is to compute the
earliest and latest event times.

According to Equation , the earliest event time of vertex w is obtained from the earliest event times of
all its predecessors. Therefore, must compute the earliest event times in topological order. To do this, we

define the EarliestTimeVisitor shown in Program .

http://www.brpreiss.com/books/opus6/html/page585.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:24]

http://www.brpreiss.com/books/opus6/index.html

Implementation

Program: Critical path analysis--computing earliest event times.

The EarliestTimeVisitor has one field, earliestTime, which is an array used to record the
 values. The Visit method of the EarliestTimeVisitor class implements directly Equation

. It uses an IncidentEdges enumerator to determine all the predecessors of a given node and

computes .

In order to compute the latest event times, it is necessary to define also a LatestTimeVisitor. This
visitor must visit the vertices of the event-node graph in reverse topological order. Its implementation

follows directly from Equation and Program .

Program defines the method called CriticalPathAnalysis that does what its name implies.
This method takes as its argument a Digraph that represents an event-node graph. This implementation
assumes that the edge weights are ints.

http://www.brpreiss.com/books/opus6/html/page585.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:24]

Implementation

Program: Critical path analysis--finding the critical paths.

The method first uses the EarliestTimeVisitor in a topological order traversal to compute the
earliest event times which are recored in the earliestTime array (lines 7-10). Next, the latest event
times are computed and recorded in the latestTime array. Notice that this is done using a
LatestTimeVisitor in a postorder depth-first traversal (lines 12-15). This is because a postorder
depth-first traversal is equivalent to a topological order traversal in reverse!

Once the earliest and latest event times have been found, we can compute the slack time for each edge. In

http://www.brpreiss.com/books/opus6/html/page585.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:24]

Implementation

the implementation shown, an edge-weighted graph is constructed that is isomorphic with the the original

event-node graph, but in which the edge weights are the slack times as given by Equation (lines 17-
26). By constructing such a graph we can make use of Dijkstra's algorithm find the shortest path from
start to finish since the shortest path must be the critical path (line 27).

The DijkstrasAlgorithm method given in Section returns its result in the form of a shortest-

path graph. The shortest-path graph for the activity-node graph of Figure is shown in Figure . By
following the path in this graph from vertex 9 back to vertex 0, we find that the critical path is

.

Figure: The critical path graph corresponding to Figure .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page585.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:24]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exercises

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exercises

1. Consider the undirected graph shown in Figure . List the elements of and . Then, for each

vertex do the following:

1. Compute the in-degree of v.
2. Compute the out-degree of v.

3. List the elements of .

4. List the elements of .

Figure: Sample graphs.

2. Consider the directed graph shown in Figure .

1. Show how the graph is represented using an adjacency matrix.
2. Show how the graph is represented using adjacency lists.

3. Repeat Exercises and for the directed graph shown in Figure .

4. Consider a depth-first traversal of the undirected graph shown in Figure starting from vertex

a.
1. List the order in which the nodes are visited in a preorder traversal.
2. List the order in which the nodes are visited in a postorder traversal.

Repeat this exercise for a depth-first traversal starting from vertex d.

http://www.brpreiss.com/books/opus6/html/page586.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

http://www.brpreiss.com/books/opus6/index.html

Exercises

5. List the order in which the nodes of the undirected graph shown in Figure are visited by a

breadth-first traversal that starts from vertex a. Repeat this exercise for a breadth-first traversal
starting from vertex d.

6. Repeat Exercises and for the directed graph shown in Figure .

7. List the order in which the nodes of the directed graph shown in Figure are visited by a

topological order traversal that starts from vertex a.

8. Consider an undirected graph . If we use a adjacency matrix A to represent the

graph, we end up using twice as much space as we need because A contains redundant information.
That is, A is symmetric about the diagonal and all the diagonal entries are zero. Show how a one-

dimensional array of length can be used to represent G. Hint: consider just the part of

A above the diagonal.
9. What is the relationship between the sum of the degrees of the vertices of a graph and the number of

edges in the graph.
10. A graph with the maximum number of edges is called a fully connected graph . Draw fully connected,

undirected graphs that contain 2, 3, 4, and 5 vertices.
11. Prove that an undirected graph with n vertices contains at most n(n-1)/2 edges.
12. Every tree is a directed, acyclic graph (DAG), but there exist DAGs that are not trees.

1. How can we tell whether a given DAG is a tree?
2. Devise an algorithm to test whether a given DAG is a tree.

13. Consider an acyclic, connected, undirected graph G that has n vertices. How many edges does G
have?

14. In general, an undirected graph contains one or more connected components . A connected component
of a graph G is a subgraph of G that is connected and contains the largest possible number of vertices.
Each vertex of G is a member of exactly one connected component of G.

1. Devise an algorithm to count the number of connected components in a graph.
2. Devise an algorithm that labels the vertices of a graph in such a way that all the vertices in a

given connected component get the same label and vertices in different connected components
get different labels.

15. A source in an directed graph is a vertex with zero in-degree. Prove that every DAG has at least one
source.

16. What kind of DAG has a unique topological sort?
17. Under what conditions does a postorder depth-first traversal of a DAG visit the vertices in reverse

topological order.
18. Consider a pair of vertices, v and w, in a directed graph. Vertex w is said to be reachable from vertex

v if there exists a path in G from v to w. Devise an algorithm that takes as input a graph, ,

and a pair of vertices, , and determines whether w is reachable from v.

19. An Eulerian walk is a path in an undirected graph that starts and ends at the same vertex and
traverses every edge in the graph. Prove that in order for such a path to exist, all the nodes must have
even degree.

20. Consider the binary relation defined for the elements of the set as follows:

http://www.brpreiss.com/books/opus6/html/page586.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

Exercises

How can we determine whether is a total order?
21. Show how the single-source shortest path problem can be solved on a DAG using a topological-order

traversal. What is the running time of your algorithm?

22. Consider the directed graph shown in Figure . Trace the execution of Dijkstra's algorithm as it

solves the single-source shortest path problem starting from vertex a. Give your answer in a form

similar to Table .

Figure: Sample weighted graphs.

23. Dijkstra's algorithm works as long as there are no negative edge weights. Given a graph that contains
negative edge weights, we might be tempted to eliminate the negative weights by adding a constant
weight to all of the edge weights to make them all positive. Explain why this does not work.

24. Dijkstra's algorithm can be modified to deal with negative edge weights (but not negative cost cycles)
by eliminating the known flag and by inserting a vertex back into the queue every time its tentative

distance decreases. Explain why the modified algorithm works correctly. What is the running time

of the modified algorithm?

25. Consider the directed graph shown in Figure . Trace the execution of Floyd's algorithm as it

solves the all-pairs shortest path problem.
26. Prove that if the edge weights on an undirected graph are distinct, there is only one minimum-cost

spanning tree.

27. Consider the undirected graph shown in Figure . Trace the execution of Prim's algorithm as it

finds the minimum-cost spanning tree starting from vertex a.

28. Repeat Exercise using Kruskal's algorithm.

29. Do Exercise .

http://www.brpreiss.com/books/opus6/html/page586.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

Exercises

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page586.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Projects

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Projects
1. Devise a graph description language. Implement a method that reads the description of a graph

and constructs a graph object instance. Your method should be completely generic--it should not
depend on the graph implementation used.

2. Extend Project by writing a method that prints the description of a given graph object
instance.

3. Complete the implementation of the GraphAsMatrix class introduced in Program by
providing suitable definitions for the following operations: GraphAsMatrix (constructor),
Purge, AddVertex, GetVertex, AddEdge, GetEdge, IsEdge, Vertices, Edges,
IncidentEdges, and EmanatingEdges. Write a test program and test your implementation.

4. Repeat Project for the GraphAsLists class.
5. The DigraphAsMatrix class can be implemented by extending the GraphAsMatrix class

introduced in Program to implement the Digraph interface defined in Program :

public class DigraphAsMatrix : GraphAsMatrix, Digraph
{
 // ...
}

Implement the DigraphAsMatrix class by providing suitable definitions for the following
methods: DigraphAsMatrix (constructor), Purge, AddEdge, GetEdge, IsEdge,
and Edges. You must also have a complete implementation of the base class GraphAsMatrix

(see Project). Write a test program and test your implementation.

6. Repeat Project for the DigraphAsLists class.
7. Add a method to the Digraph interface that returns the undirected graph which underlies the

given digraph. Write an implementation of this method for the AbstractGraph class

introduced in Program .
8. Devise an approach using an enumerator and a stack to perform a topological-order traversal by

doing a postorder depth-first traversal in reverse.
9. The single-source shortest path problem on a DAG can be solved by visiting the vertices in

topological order. Write an visitor for use with the TopologicalOrderTraversal method
that solves the single-source shortest path problem on a DAG.

10. Devise and implement an method that transforms a vertex-weighted activity-node graph into an
edge-weighted event-node graph.

http://www.brpreiss.com/books/opus6/html/page587.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

http://www.brpreiss.com/books/opus6/index.html

Projects

11. Complete the implementation of the critical path analysis methods. In particular, you must
implement the LatestTimeVisitor along the lines of the EarliestTimeVisitor

defined in Program .

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page587.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:26]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

C# and Object-Oriented Programming

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

C# and Object-Oriented Programming

This appendix is a brief overview of programming in C#. It identifies and describes the features of C#
that are used throughout this text. This appendix is not a C# tutorial--if you are not familiar with C#, you
should read one of the many C# programming books.

● Variables
● Parameter Passing
● Objects and Classes
● Nested Classes
● Inheritance and Polymorphism
● Exceptions

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page588.html [2002-11-17 ｿﾀﾈﾄ 11:09:27]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Variables

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Variables
A variable is a programming language abstraction that represents a storage location. A C# variable has
the following attributes:

name
The name of a variable is the label used to identify a variable in the text of a program.

type
The type of a variable determines the set of values that the variable can have and the set of
operations that can be performed on that variable.

value
The value of a variable is the content of the memory location(s) occupied by that variable. How
the contents of the memory locations are interpreted is determined by the type of the variable.

lifetime
The lifetime of a variable is the interval of time in the execution of a C# program during which a
variable is said to exist. Local variables exist as long as the method in which they are declared is
active. Non-static fields of a class exist as long as the object of which they are members exist.
Static fields of a class exist as long as the class in which they are defined remains loaded in the C#
common language runtime.

scope
The scope of a variable is the range of statements in the text of a program in which that variable
can be referenced.

Consider the C# variable declaration statement:

int i = 57;

This statement defines a variable and binds various attributes with that variable. The name of the
variable is i, the type of the variable is int, and its initial value is 57.

Some attributes of a variable, such its name and type, are bound at compile time. This is called static
binding. Other attributes of a variable, such as its value, may be bound at run time. This is called
dynamic binding.

There are two kinds of C# variables--local variables and fields. A local variable is a variable declared
inside a method. A field is a variable declared in some struct or class. (Classes are discussed in Section

http://www.brpreiss.com/books/opus6/html/page589.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:27]

http://www.brpreiss.com/books/opus6/index.html

Variables

). The type of a C# variable is either one of the value types or it is a reference type .

● Value Types
● References Types

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page589.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:27]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Value Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Value Types

The C# value types are the simple types, the enumerated types, and structs. The simple types are bool,
char, byte, sbyte, short, ushort, int, uint, long, ulong, float, double, and decimal.
The C# language specification[22] defines the range of values for each simple type and the set of
operations supported by each type. The enumerated types are declared using the C# enum construct. C#
structs are declared using the struct construct.

Every variable of a value type is a distinct instance of that type. Thus, an assignment statement such as

y = x;

takes the value of the variable x and copies that value into the variable y. After the assignment, x and y
remain distinct instances that happen to have equal values.

A comparison of the the form

if (x == y)
 { /* ... */ }

tests whether the values contained in the variables x and y are equal.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page590.html [2002-11-17 ｿﾀﾈﾄ 11:09:28]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

References Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

References Types

In C#, every variable that is not one of the value types is a reference type . Such a variable can be
thought of as a reference to (or a pointer to) an object of the appropriate type.

Every object to which a reference variable refers is an instance of some C# class. In C#, class instances
must be explicitly created. An instance of a class is created using the new operator like this:

Foo f = new Foo();

If we follow this with an assignment statement such as

Foo g = f;

then both f and g refer to the same object! Note that this is very different from what happens when you
assign one value type to another.

A comparison of the the form

if (f == g)
 { /* ... */ }

usually tests whether the f and g refer to the same object instances (provided the equality operator has
not be overriden). If f and g refer to distinct object instances that happen to be equal, the test still fails.
To test whether two distinct object instances are equal, it is necessary to invoke the Equals method like
this:

if (f.Equals(g))
 { /* ... */ }

http://www.brpreiss.com/books/opus6/html/page591.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:28]

http://www.brpreiss.com/books/opus6/index.html

References Types

● Null References

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page591.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:28]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Null References

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Null References

In C#, it is possible for a reference type variable to refer to nothing at all. A reference that refers to
nothing at all is called a null reference . By default, an uninitialized reference is null.

We can explicitly assign the null reference to a variable like this:

f = null;

Also, we can test explicitly for the null reference like this

if (f == null)
 { /* ... */ }

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page592.html [2002-11-17 ｿﾀﾈﾄ 11:09:29]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Parameter Passing

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Parameter Passing
Parameter passing methods are the ways in which parameters are transfered between methods when one
method calls another. C# provides two parameter passing methods--pass-by-value and pass-by-
reference .

● Pass By Value
● Passing By Reference
● In and Out Parameters
● Passing Reference Types

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page593.html [2002-11-17 ｿﾀﾈﾄ 11:09:29]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Pass By Value

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Pass By Value

Consider the pair of C# methods defined in Program . On line 7, the method One calls the method
Two. In general, every method call includes a (possibly empty) list of arguments. The arguments
specified in a method call are called actual parameters . In this case, there is only one actual parameter--
y.

Program: Example of pass-by-value parameter passing.

On line 11 the method Two is defined as accepting a single argument of type int called y. The
arguments which appear in a method definition are called formal parameters . In this case, the formal
parameter is a value type.

The semantics of pass-by-value work like this: The effect of the formal parameter definition is to create a
local variable of the specified type in the given method. For example, the method Two has a local
variable of type int called y. When the method is called, the values of the actual parameters are used

http://www.brpreiss.com/books/opus6/html/page594.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:30]

http://www.brpreiss.com/books/opus6/index.html

Pass By Value

assigned to the formal parameters before the body of the method is executed.

Since the formal parameters give rise to local variables, if a new value is assigned to a formal parameter,
that value has no effect on the actual parameter. Therefore, the output obtained produced by the method

One defined in Program is:

1
2
1

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page594.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:30]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Passing By Reference

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Passing By Reference

Consider the methods One and Two defined in Program . The only difference between this code and

the code ginve in Program is the the use of the keyword ref in the definition and use of the method
Two. In this case, the formal parameter y is declared to be a reference to an int. Therefore, when the
method is called, the actual parameter must also be a reference to an int. The expression ref x on
line 7 provides a reference to the variable x. Thus, in this case the parameter passing is pass-by-
reference.

Program: Example of pass-by-reference parameter passing.

A reference formal parameter is not a variable. When a method is called that has a reference formal
parameter, the effect of the call is to associated the reference with the corresponding actual parameter.
That is, the reference becomes an alternative name for the corresponding actual parameter.

A reference formal parameter can be used in the called method everywhere that a variable can be used. In
particular, if the reference formal parameter is used where its value is required, it is the value of the

http://www.brpreiss.com/books/opus6/html/page595.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:31]

http://www.brpreiss.com/books/opus6/index.html

Passing By Reference

actual parameter that is obtained. Similarly, if the reference parameter is used where a reference is
required, it is a reference to the actual parameter that is obtained. Therefore, the output obtained

produced by the method One defined in Program is:

1
2
2

● The Trade-off

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page595.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:31]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The Trade-off

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The Trade-off

Clearly, the parameter passing approach used constrains the functionality of the called method: When
pass-by-value is used, the called method cannot modify the actual parameters; when pass-by-reference is
used, the called method is able to modify the actual parameters. In addition, the two approaches have
different time and space requirements that need to be understood in order to make the proper selection.

Pass-by-value creates a local variable and initializes that local variable by copying the value of the actual
parameter. This means that space is used (on the stack) for the local variable and that time is taken to
initialize that local variable. For small variables these penalties are insignificant. However, if the variable
is a large struct, the time and space penalties may become prohibitive.

On the other hand, pass-by-reference does not create a local variable nor does it require the copying of
the actual parameter. However, because of the way that it must be implemented, every time a reference
formal parameter is used to access the corresponding actual parameter, a small amount of extra time is
taken to dereference the reference. As a result, it is typically more efficient to pass small variables by
value and large variables by reference.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page596.html [2002-11-17 ｿﾀﾈﾄ 11:09:31]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

In and Out Parameters

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

In and Out Parameters

C# actually supports three different flavours of pass-by-reference: ref , in , and out . The latter two
are special cases of the first.

An in parameter is a parameter that is passed by reference in to a method. Specifically, the actual
parameter must already have a value and that value is assigned to the formal parameter of the method.
Furthermore, it is not possible to assign a new value to an in parameter in the body of the method.

An out parameter is a parameter that is passed by reference out from a method. Specifically, the formal
parameter must be assigned a value by the method before the method is called, and that value is then
returned to the actual parameter of the calling method. It is not possible to use the value of an out
parameter in the method body until a value has been assigned to that parameter.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page597.html [2002-11-17 ｿﾀﾈﾄ 11:09:32]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Passing Reference Types

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Passing Reference Types

Program illustrates parameter passing of reference types. In this case, the variables x, y and z are all
reference types. The type of x, y and y is Obj. Thus, x, y and y refer to instances of the Obj class
defined on lines 3-6.

http://www.brpreiss.com/books/opus6/html/page598.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:32]

http://www.brpreiss.com/books/opus6/index.html

Passing Reference Types

Program: Parameter passing example: passing reference types.

The semantics of parameter passing for reference types work exactly as they do for value types: In pass-
by-value, the effect of the formal parameter definition is to create a local variable of the specified type in
the given method. For example, the method Two has a local variable of type Obj called y. When the
method is called, the actual parameters are assigned to the formal parameters before the body of the
method is executed. Since x and y are reference types, when we assign y to x, we make them both refer
to the same instance of the Obj class. Therefore, the Two method modifies the original Obj instance.

In pass-by-reference, the formal parameter ends up being a reference to a reference type. For example, in
the method Three the formal parameter z refers to the reference parameter x. Thus, when we create a
new Obj instance and assign it to z, the referenced variable x is modified.

The output obtained produced by the method One defined in Program is:

1
2
2
1
1

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page598.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:32]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Objects and Classes

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Objects and Classes

A C# class defines a data structure that contains fields, methods, and nested types. Every type in C# has
is a class that is directly or indirectly derived from the object class. The class of an object determines
what it is and how it can be manipulated. A class encapsulates data, operations, and semantics. This
encapsulation is like a contract between the implementer of the class and the user of that class.

The class construct is what makes C# an object-oriented language. A C# class definition groups a set
of values with a set of operations. Classes facilitate modularity and information hiding. The user of a
class manipulates object instances of that class only through the methods provided by that class.

It is often the case that different classes possess common features. Different classes may share common
values; they may perform the same operations; they may support common interfaces. In C# such
relationships are expressed using derivation and inheritance.

● Class Members: Fields and Methods
● Constructors
● Properties and Accessors
● Operator Overloading

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page599.html [2002-11-17 ｿﾀﾈﾄ 11:09:33]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Class Members: Fields and Methods

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Class Members: Fields and Methods

A class groups a set of values and a set of operations. The values and the operations of a class are called
its members. Fields implement the values and methods implement the operations.

Suppose we wish to define a class to represent complex numbers . The Complex class definition shown

in Program illustrates how this can be done. Two fields, real and imag, are declared. These

represent the real and imaginary parts of a complex number (respectively). Program also defines two
properties, Real and Imag, each of which provide get and set accessors that can be used to access
the real and imaginary parts of a complex number (respectively).

Program: Complex class fields, Real and Imag properties.

Every object instance of the Complex class contains its own fields. Consider the following variable
declarations:

http://www.brpreiss.com/books/opus6/html/page600.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:34]

http://www.brpreiss.com/books/opus6/index.html

Class Members: Fields and Methods

Complex c = new Complex();
Complex d = new Complex();

Both c and d refer to distinct instances of the Complex class. Therefore, each of them has its own
real and imag field. The fields of an object are accessed using the dot operator. For example, c.real
refers to the real field of c and d.imag refers to the imag field of d.

Program also defines the properties Real and Imag. In general, a property is an attribute of an
instance of the class. Again, the dot operator is used to specify the object on which the operation is
performed. For example, c.Real = 1.0 invokes the set accessor of the Real property on c and
Console.Writeline(d.Imag) invokes get accessor of the Imag property on d.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page600.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:34]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Constructors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Constructors

A constructor is a method that has the same name as its class (and which has no return value). Three

constructors are defined in Program . The purpose of a constructor is to initialize an object. A
constructor is invoked whenever a new instance of a class is created using the new operator.

Consider the following sequence of variable declarations:

Complex c = new Complex(); // calls Complex ()
Complex d = new Complex(2.0); // calls Complex (double)
Complex i = new Complex(0, 1); // calls Complex (double, double)

Consider the constructor that takes two double arguments, x and y (lines 6-10). This constructor
initializes the complex number by assigning x and y to the real and imag fields, respectively.

● The No-Arg Constructor

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page601.html [2002-11-17 ｿﾀﾈﾄ 11:09:34]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

The No-Arg Constructor

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

The No-Arg Constructor

The constructor which takes no arguments is called the no-arg constructor . For example, the no-arg
constructor is invoked when a variable is declared like this:

Complex c = new Complex();

If there are no constructors defined in a C# class, the C# compiler provides a default no-arg
constructor . The default no-arg constructor does nothing. The fields simply the retain their initial,
default values.

Program: Complex constructors.

Program gives an implementation for the no-arg constructor. of the Complex class (lines 12-13).
This constructor uses the an initializer called this. In C# one constructor can invoke another
constructor by calling using the this initializer. In this case, the no-arg constructor invokes the two-arg

http://www.brpreiss.com/books/opus6/html/page602.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:35]

http://www.brpreiss.com/books/opus6/index.html

The No-Arg Constructor

constructor to set both real and imag fields to zero.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page602.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:35]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Properties and Accessors

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Properties and Accessors

A C# property defines one or two methods for accessing an object. A property that provides a get
accessor can be used to access the contents of an object. A property that provides a set accessor can be
used to modify an object.

An get accessor is a method that accesses the contents of an object but does not modify that object. In
the simplest case, a get accessor just returns the value of one of the fields. In general, a get accessor
performs some computation using the fields as long as that computation does not modify any of the
fields.

A set accessor is a method that modifies an object. A method that modifies an object is also known as
a mutator . In the simplest case, a set accessor modifies a single field of an object. In general, a set
accessor may modify any number of the fields of an object.

Program defines two more properties of the Complex class--getR and Theta. The R and Theta
properties provide get and set accessors that access a complex number using polar coordinates .

http://www.brpreiss.com/books/opus6/html/page603.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:36]

http://www.brpreiss.com/books/opus6/index.html

Properties and Accessors

Program: Complex class R and Theta properties.

By defining suitable accessors, it is possible to hide the implementation of the class from the user of that
class. Consider the following statements:

Console.WriteLine(c.real);
Console.WriteLine(c.Real);

The first statement depends on the implementation of the Complex class. If we change the
implementation of the class from the one given (which uses rectangular coordinates) to one that uses

http://www.brpreiss.com/books/opus6/html/page603.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:36]

Properties and Accessors

polar coordinates, then the first statement above must also be changed. On the other hand, the second
statement does not need to be modified, provided we reimplement the Real property when we switch to
polar coordinates.

● Member Access Control

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page603.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:36]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Member Access Control

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Member Access Control

Every member of a class, be it a field or a method, has an access control attribute which affects the
manner in which that member can be accessed. The members of a class can be private, public,
protected, internal, or protected internal. For example, the fields real and imag

declared in Program are both private. Private members can be used only by methods of the
class in which the member is declared.

On the other hand, public members of a class can be used by any method in any class. All of the

operations defined in Programs , and all declared to be public.

In effect, the public part of a class defines the interface to that class and the private part of the class
encapsulates the implementation of that class. By making the implementation of a class private, we
ensure that the code which uses the class depends only on the interface and not on the implementation of
the class. Furthermore, we can modify the implementation of the class without affecting the code of the
user of that class.

Protected members are similar to private members. That is, they can be used by methods of the
class in which the member is declared. In addition, protected members can also be used by methods
of all the classes derived from the class in which the member is declared. The protected category is

discussed again in Section .

An internal member can be accessed by any method in the same program in which the member is
declared. Finally, a protected internal member can be accessed by methods in the class in which
the member is declared, by methods in classes dervied from the class in which the member is declared,
and any method in the same program in which the member is declared.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page604.html [2002-11-17 ｿﾀﾈﾄ 11:09:36]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Operator Overloading

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Operator Overloading

Program illustrates operator overloading in C#. Operator overloading allows the programmer to use
the built-in operators for user-defined types.

Program: Complex class operators.

To overload the built-in + and * operators so that they may be used with Complex operands, we define
static methods called operator+ and operator*. Given Complex variables c, d and e the
expression c+d*e calls the method operator* to compute the product of d and e, and then calls the
method operator+ to compute the final sum.

http://www.brpreiss.com/books/opus6/html/page605.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:37]

http://www.brpreiss.com/books/opus6/index.html

Operator Overloading

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page605.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:37]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Nested Classes

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Nested Classes
In C# it is possible to define one class inside another. A class defined inside another one is called a
nested class .

Consider the following C# code fragment:

public class A
{
 int y;

 public static class B
 {
 int x;

 void F() {}
 }
}

This fragment defines the class A which contains the nested class B.

A nested class behaves like any ``outer'' class. It may contain methods and fields, and it may be
instantiated like this:

A.B obj = new A.B ();

This statement creates an new instance of the nested class B. Given such an instance, we can invoke the F
method in the usual way:

obj.F();

Note, it is not necessarily the case that an instance of the outer class A exists even when we have created
an instance of the inner class. Similarly, instantiating the outer class A does not create any instances of
the inner class B.

The methods of a nested class may access all the members (fields or methods) of the nested class but

http://www.brpreiss.com/books/opus6/html/page606.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:38]

http://www.brpreiss.com/books/opus6/index.html

Nested Classes

they can access only static members (fields or methods) of the outer class. Thus, F can access the field x,
but it cannot access the field y.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page606.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:38]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Inheritance and Polymorphism

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Inheritance and Polymorphism

● Derivation and Inheritance
● Polymorphism
● Multiple Inheritance
● Run-Time Type Information and Casts

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page607.html [2002-11-17 ｿﾀﾈﾄ 11:09:38]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Derivation and Inheritance

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Derivation and Inheritance

This section reviews the concept of a derived class. Derived classes are an extremely useful feature of C#
because they allow the programmer to define new classes by extending existing classes. By using derived
classes, the programmer can exploit the commonalities that exist among the classes in a program.
Different classes can share values, operations, and interfaces.

Derivation is the definition of a new class by extending an existing class. The new class is called the
derived class and the existing class from which it is derived is called the base class . In C# there can be
only one base class (single inheritance).

Consider the Person class defined in Program and the Parent class defined in Program .
Because parents are people too, the Parent class is derived from the Person class. Derivation in C# is
indicated by a colon followed by the name of the base class in the declaration of the derived class.

http://www.brpreiss.com/books/opus6/html/page608.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:39]

http://www.brpreiss.com/books/opus6/index.html

Derivation and Inheritance

Program: Person class.

Program: Parent class.

http://www.brpreiss.com/books/opus6/html/page608.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:39]

Derivation and Inheritance

A derived class inherits all the members of its base class. That is, the derived class contains all the fields
contained in the base class and the derived class supports all the same operations provided by the base
class. For example, consider the following variable declarations:

Person p = new Person();
Parent q = new Parent();

Since p is a Person, it has the fields name and sex and method ToString. Furthermore, since
Parent is derived from Person, then the object q also has the fields name and sex and method
toString.

A derived class can extend the base class in several ways: New fields can be defined, new methods can
be defined, and existing methods can be overridden . For example, the Parent class adds the field
children and the method GetChild.

If a method is defined in a derived class that has exactly the same signature (name and types of
arguments) as a method in a base class, the method in the derived class overrides the one in the base
class. For example, the ToString method in the Parent class overrides the ToString method in the
Person class. Therefore, p.ToString() invokes Person.ToString, whereas
q.ToString(...) invokes Parent.ToString. Note that C# requires the use of the keyword
overrides in the declaration of a method that overrides an inherited method.

An instance of a derived class can be used anywhere in a program where an instance of the base class
may be used. For example, this means that a Parent may be passed as an actual parameter to a method
in which the formal parameter is a Person.

It is also possible to assign a derived class object to a base class variable like this:

Person p = new Parent();

However, having done so, it is not possible to call p.GetChild(...), because p is a Person and a
Person is not necessarily a Parent.

● Derivation and Access Control

http://www.brpreiss.com/books/opus6/html/page608.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:39]

Derivation and Inheritance

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page608.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:39]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Derivation and Access Control

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Derivation and Access Control

Members of a class can be private, public or protected. As explained in Section , private
members are accessible only by methods of the class in which the member is declared. In particular, this
means that the methods of a derived class cannot access the private members of the base classes even
though the derived class has inherited those members! On the other hand, if we make the members of the
base class public, then all classes can access those members directly, not just derived classes.

This is where protected access control comes in. Protected members can be used by methods of
the class in which the member is declared as well as by methods of all the classes derived from the class
in which the member is declared.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page609.html [2002-11-17 ｿﾀﾈﾄ 11:09:39]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Polymorphism

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Polymorphism

Polymorphism literally means ``having many forms.'' Polymorphism arises when a set of distinct classes
share a common interface. Because the derived classes are distinct, their implementations may differ.
However, because the derived classes share a common interface, instances of those classes are used in
exactly the same way.

● Interfaces
● Abstract Methods and Abstract Classes
● Method Resolution
● Abstract Classes and Concrete Classes
● Algorithmic Abstraction

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page610.html [2002-11-17 ｿﾀﾈﾄ 11:09:40]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Interfaces

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Interfaces

Consider a program for creating simple drawings. Suppose the program provides a set of primitive
graphical objects, such as circles, rectangles, and squares. The user of the program selects the desired
objects, and then invokes commands to draw, to erase, or to move them about. Ideally, all graphical
objects support the same set of operations. Nevertheless, the way that the operations are implemented
varies from one object to the next.

We implement this as follows: First, we define a C# interface which represents the common operations
provided by all graphical objects. A C# interface declares a set of methods. An object that supports an
interface must provide

Program defines the GraphicsPrimitives interface comprised of three methods, Draw,
Erase, and MoveTo. the methods declared in the interface.

Program: GraphicsPrimitives interface.

The Draw method is invoked in order to draw a graphical object. The Erase method is invoked in order
to erase a graphical object. The MoveTo method is used to move an object to a specified position in the

drawing. The argument of the MoveTo method is a Point struct. Program defines the Point struct
which represents a position in a drawing.

http://www.brpreiss.com/books/opus6/html/page611.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:41]

http://www.brpreiss.com/books/opus6/index.html

Interfaces

Program: Point struct.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page611.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:41]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Methods and Abstract Classes

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Methods and Abstract Classes

Consider the GraphicalObject class defined in Program . The GraphicalObject class
implements the GraphicsPrimitives interface. This is indicated by a colon followed by the name
of the interface in the declaration of the abstract class.

Program: GraphicalObject class.

The GraphicalObject class has a single field, center, which is a Point that represents the
position in a drawing of the center-point of the graphical object. The constructor for the

http://www.brpreiss.com/books/opus6/html/page612.html (1 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:42]

http://www.brpreiss.com/books/opus6/index.html

Abstract Methods and Abstract Classes

GraphicalObject class takes as its argument a Point and initializes the center field accordingly.

Program shows a possible implementation for the Erase method: In this case we assume that the
image is drawn using an imaginary pen. Assuming that we know how to draw a graphical object, we can
erase the object by changing the color of the pen so that it matches the background color and then
redrawing the object.

Once we can erase an object as well as draw it, then moving it is easy. Just erase the object, change its

center point, and then draw it again. This is how the MoveTo method shown in Program is
implemented.

We have seen that the GraphicalObject class provides implementations for the Erase and
MoveTo methods. However, the GraphicalObject class does not provide an implementation for the
Draw method. Instead, the method is declared to be abstract. We do this because until we know what
kind of object it is, we cannot possibly know how to draw it!

Consider the Circle class defined in Program . The Circle class extends the
GraphicalObject class. Therefore, it inherits the field center and the methods Erase and
MoveTo. The Circle class adds an additional field, radius, and it overrides the Draw method. The

body of the Draw method is not shown in Program . However, we shall assume that it draws a circle
with the given radius and center point.

Program: Circle class.

Using the Circle class defined in Program we can write code like this:

Circle c = new Circle(new Point(0, 0), 5);
c.Draw ();
c.MoveTo(new Point(10, 10));

http://www.brpreiss.com/books/opus6/html/page612.html (2 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:42]

Abstract Methods and Abstract Classes

c.Drase ();

This code sequence declares a circle object with its center initially at position (0,0) and radius 5. The
circle is then drawn, moved to (10,10), and then erased.

Program defines the Rectangle class and Program defines the Square class. The
Rectangle class also extends the GraphicalObject class. Therefore, it inherits the field center
and the methods Erase and MoveTo. The Rectangle class adds two additional fields, height and

width, and it overrides the Draw method. The body of the Draw method is not shown in Program .
However, we shall assume that it draws a rectangle with the given dimensions and center point.

Program: Rectangle class.

The Square class extends the Rectangle class. No new fields or methods are declared--those
inherited from GraphicalObject or from Rectangle are sufficient. The constructor simply
arranges to make sure that the height and width of a square are equal!

Program: Square class.

http://www.brpreiss.com/books/opus6/html/page612.html (3 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:42]

Abstract Methods and Abstract Classes

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page612.html (4 of 4) [2002-11-17 ｿﾀﾈﾄ 11:09:42]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Method Resolution

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Method Resolution

Consider the following sequence of instructions:

GraphicalObject g1 = new Circle(new Point (0,0), 5);
GraphicalObject g2 = new Square(new Point (0,0), 5);
g1.Draw();
g2.Draw();

The statement g1.Draw() calls Circle.Draw whereas the statement g2.Draw() calls
Rectangle.Draw.

It is as if every object of a class ``knows'' the actual method to be invoked when a method is called on
that object. E.g, a Circle ``knows'' to call Circle.Draw, GraphicalObject.Erase and
GraphicalObject.MoveTo, whereas a Square ``knows'' to call Rectangle.Draw,
GraphicalObject.Erase and GraphicalObject.MoveTo.

In this way, C# ensures that the ``correct'' method is actually called, regardless of how the object is
accessed. Consider the following sequence:

Square s = new Square(new Point(0,0), 5);
Rectangle r = s;
GraphicalObject g = r;

Here s, r and g all refer to the same object, even though they are all of different types. However,
because the object is a Square, s.Draw(), r.Draw() and g.Draw() all invoke
Rectangle.Draw.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page613.html [2002-11-17 ｿﾀﾈﾄ 11:09:42]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Abstract Classes and Concrete Classes

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Abstract Classes and Concrete Classes

In C# an abstract class is one that does not provide implementations for all its methods. A class must be
declared abstract if any of the methods in that class are abstract. For example, the

GraphicalObject class defined in Program is declared abstract because its Draw method is
abstract.

An abstract class is meant to be used as the base class from which other classes are derived. The derived
class is expected to provide implementations for the methods that are not implemented in the base class.
A derived class that implements all the missing functionality is called a concrete class .

In C# it is not possible to instantiate an abstract class. For example, the following declaration is illegal:

GraphicalObject g = new GraphicalObject(new Point(0,0)); // Wrong.

If we were allowed to declare g in this way, then we could attempt to invoke the non-existent method
g.Draw().

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page614.html [2002-11-17 ｿﾀﾈﾄ 11:09:43]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Algorithmic Abstraction

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Algorithmic Abstraction

Abstract classes can be used in many interesting ways. One of the most useful paradigms is the use of an

abstract class for algorithmic abstraction . The Erase and MoveTo methods defined in Program are
examples of this.

The Erase and MoveTo methods are implemented in the abstract class GraphicalObject. The
algorithms implemented are designed to work in any concrete class derived from GraphicalObject,
be it Circle, Rectangle or Square. In effect, we have written algorithms that work regardless of
the actual class of the object. Therefore, such algorithms are called abstract algorithms.

Abstract algorithms typically invoke abstract methods. For example, both MoveTo and Erase
ultimately invoke Draw to do most of the actual work. In this case, the derived classes are expected to
inherit the abstract algorithms MoveTo and Erase and to override the abstract method Draw. Thus, the
derived class customizes the behavior of the abstract algorithm by overriding the appropriate methods.
The C# method resolution mechanism ensures that the ``correct'' method is always called.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page615.html [2002-11-17 ｿﾀﾈﾄ 11:09:43]

http://www.brpreiss.com/books/opus6/index.html
http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Multiple Inheritance

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Multiple Inheritance

In C# a class can be derived from only one base class. That is, the following declaration is not allowed:

class A {}
class B {}
class C : A, B // Wrong;
{
}

Nevertheless, it is possible for a class to extend a base class and to implement one or more interfaces:

class A {}
interface D {}
interface E {}
class C : A, D, E
{
}

The derived class C inherits the members of A and it implements all the methods defined in the interfaces
D and E.

It is possible to use derivation in the definition of interfaces. And in C# it is possible for an interface to
extend more than one base interface:

interface E {}
interface F {}
interface D : E, F
{
}

In this case, the derived interface D comprises all the methods inherited from E and F as well as any new
methods declared in the body of D.

http://www.brpreiss.com/books/opus6/html/page616.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:44]

http://www.brpreiss.com/books/opus6/index.html

Multiple Inheritance

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page616.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Run-Time Type Information and Casts

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Run-Time Type Information and Casts

Consider the following declarations which make use of the Rectangle and Square classes defined in

Programs and :

Rectangle r = new Rectangle(new Point(0,0), 5, 10);
Square s = new Square(new Point(0,0), 15);

Clearly, the assignment

r = s;

is valid because Square is derived from Rectangle. That is, since a Square is a Rectangle, we
may assign s to r.

On the other hand, the assignment

s = r; // Wrong.

is not valid because a Rectangle instance is not necessarily a Square.

Consider now the following declarations:

Rectangle r = new Square(new Point(0,0), 20);
Square s;

The assignment s=r is still invalid because r is a Rectangle, and a Rectangle is not necessarily a
Square, despite the fact that in this case it actually is!

In order to do the assignment, it is necessary to convert the type of r from a Rectangle to a Square.
This is done in C# using a cast operator :

s = (Square)r;

The C# common language runtime checks at run-time that r actually does refer to a Square and if it

http://www.brpreiss.com/books/opus6/html/page617.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:44]

http://www.brpreiss.com/books/opus6/index.html

Run-Time Type Information and Casts

does not, the operation throws a ClassCastException. (Exceptions are discussed in Section).

To determine the type of the object to which r refers, we must make use of run-time type information .
In C# the is operator can be used to test whether a particular object is an instance of some class. Thus,
we can determine the class of an object like this:

if (r is Square)
 s = (Square)r;

This code does not throw an exception because the cast operation is only attempted when r actually is a
Square.

Alternatively, we may use the as operator to do the conversion like this:

s = r as Square;

The as operator returns null (and does not throw an exception) if the object to which r refers is not a
Square.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page617.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:44]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Exceptions

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Exceptions

Sometimes unexpected situations arise during the execution of a program. Careful programmers write
code that detects errors and deals with them appropriately. However, a simple algorithm can become
unintelligible when error-checking is added because the error-checking code can obscure the normal
operation of the algorithm.

Exceptions provide a clean way to detect and handle unexpected situations. When a program detects an
error, it throws an exception. When an exception is thrown, control is transfered to the appropriate
exception handler . By defining a method that catches the exception, the programmer can write the code
to handle the error.

In C#, an exception is an object. All exceptions in C# are ultimately derived from the base class called

System.Exception. For example, consider the class A defined in Program . Since the A class
extends the System.Exception class, A is an exception that can be thrown.

http://www.brpreiss.com/books/opus6/html/page618.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:45]

http://www.brpreiss.com/books/opus6/index.html

Exceptions

Program: Using exceptions in C#.

A method throws an exception by using the throw statement: The throw statement is similar to a
return statement. A return statement represents the normal termination of a method and the object
returned matches the return value of the method. A throw statement represents the abnormal
termination of a method and the object thrown represents the type of error encountered. The F method in

Program throws an A exception.

Exception handlers are defined using a try block: The body of the try block is executed either until an
exception is thrown or until it terminates normally. One or more exception handlers follow a try block.
Each exception handler consists of a catch clause which specifies the exceptions to be caught, and a
block of code, which is executed when the exception occurs. When the body of the try block throws an
exception for which an exception is defined, control is transfered to the body of the exception handler.

In this example, the exception thrown by the F method is caught by the G method. In general when an
exception is thrown, the chain of methods called is searched in reverse (from caller to callee) to find the
closest matching catch statement. When a program throws an exception that is not caught, the program
terminates.

http://www.brpreiss.com/books/opus6/html/page618.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:45]

Exceptions

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page618.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:45]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Class Hierarchy Diagrams

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Class Hierarchy Diagrams

Figure: Key for the class hierarchy diagrams.

http://www.brpreiss.com/books/opus6/html/page619.html (1 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:46]

http://www.brpreiss.com/books/opus6/index.html

Class Hierarchy Diagrams

Figure: Complete class hierarchy diagram.

http://www.brpreiss.com/books/opus6/html/page619.html (2 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:46]

Class Hierarchy Diagrams

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page619.html (3 of 3) [2002-11-17 ｿﾀﾈﾄ 11:09:46]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Character Codes

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

Character Codes

bits 2-0

bits 6-3 0 1 2 3 4 5 6 7

0 NUL SOH STX ETX EOT ENQ ACK BEL

1 BS HT NL VT NP CR SO SI

2 DLE DC1 DC2 DC3 DC4 NAK SYN ETB

3 CAN EM SUB ESC FS GS RS US

4 SP ! " # $ % & '

5 () * + , - . /

6 0 1 2 3 4 5 6 7

7 8 9 : ; < = > ?

010 @ A B C D E F G

011 H I J K L M N O

012 P Q R S T U V W

013 X Y Z [\] ^ _

014 ` a b c d e f g

015 h i j k l m n o

016 p q r s t u v w

017 x y z { | } ~ DEL

Table:7-bit ASCII character set.

http://www.brpreiss.com/books/opus6/html/page620.html (1 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

http://www.brpreiss.com/books/opus6/index.html

Character Codes

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page620.html (2 of 2) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

References

Data Structures and Algorithms with Object-Oriented Design Patterns in C#

References

1
Alfred V. Aho, John E. Hopcropft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

2
Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science. Computer Science
Press, New York, NY, 1992.

3
Ben Albahari, Peter Drayton, and Brad Merrill. C# Essentials. O'Reilly & Associates, Inc.,
Cambridge, MA, 2001.

4
ANSI Accredited Standards Committee X3, Information Processing Systems. Working Paper for
Draft Proposed International Standard for Information Systems--Programming Language C++,
December 1996. Document Number X3J16/96-0225 WG21/N1043.

5
Ken Arnold and James Gosling. The Java Programming Language. The Java Series. Addison-
Wesley, Reading, MA, 1996.

6
Borland International, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95067-0001.
Borland C++ Version 3.0 Programmer's Guide, 1991.

7
Timothy A. Budd. Classic Data Structures in C++. Addison-Wesley, Reading, MA, 1994.

8
Computational Science Education Project. Mathematical optimization. Virtual book, 1995.
http://csep1.phy.ornl.gov/CSEP/MO/MO.html.

9
Computational Science Education Project. Random number generators. Virtual book, 1995.

http://www.brpreiss.com/books/opus6/html/page621.html (1 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

http://www.brpreiss.com/books/opus6/index.html

References

http://csep1.phy.ornl.gov/CSEP/RN/RN.html.

10
Gaelan Dodds de Wolf, Robert J. Gregg, Barbara P. Harris, and Matthew H. Scargill, editors.
Gage Canadian Dictionary. Gage Educational Publishing Company, Toronto, Ontario, Canada,
1997.

11
Rick Decker and Stuart Hirshfeld. Working Classes: Data Structures and Algorithms Using C++.
PWS Publishing Company, Boston, MA, 1996.

12
Adam Drozdek. Data Structures and Algorithms in C++. PWS Publishing Company, Boston,
MA, 1996.

13
Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, MA, 1990.

14
James A. Field. Makegraph user's guide. Technical Report 94-04, Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, Ontario, 1994.

15
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

16
Michel Goosens, Frank Mittelbach, and Alexander Samarin. The LaTeX Companion. Addison-
Wesley, Reading, MA, 1994.

17
James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series.
Addison-Wesley, Reading, MA, 1996.

18
James Gosling, Frank Yellin, and The Java Team. The Java Application Programming Interface,
Volume 1: Core Packages. The Java Series. Addison-Wesley, Reading, MA, 1996.

19
James Gosling, Frank Yellin, and The Java Team. The Java Application Programming Interface,
Volume 2: Window Toolkit and Applets. The Java Series. Addison-Wesley, Reading, MA, 1996.

http://www.brpreiss.com/books/opus6/html/page621.html (2 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

References

20
Irwin Guttman, S. S. WIlks, and J. Stuart Hunter. Introductory Engineering Statistics. John Wiley
& Sons, New York, NY, second edition, 1971.

21
Gregory L. Heileman. Data Structures, Algorithms, and Object-Oriented Programming. McGraw-
Hill, New York, NY, 1996.

22
Anders Hejlsberg and Scott Wiltamuth. Microsoft C# Language Specifications. Microsoft Press,
Redmond, WA, 2001.

23
Ellis Horowitz and Sartaj Sahni. Data Structures in Pascal. W. H. Freeman and Company, New
York, NY, third edition, 1990.

24
Ellis Horowitz, Sartaj Sahni, and Dinesh Mehta. Fundamentals of Data Structures in C++. W. H.
Freeman and Company, New York, NY, 1995.

25
Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, New York, NY, 1996.

26
Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

27
Leonard Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons, New York, NY,
1975.

28
Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, second edition, 1973.

29
Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, 1973.

30

http://www.brpreiss.com/books/opus6/html/page621.html (3 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

References

Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, second edition, 1981.

31
Donald E. Knuth. The METAFONTbook. Addison-Wesley, Reading, MA, 1986.

32
Donald E. Knuth. The TeXbook. Addison-Wesley, Reading, MA, 1986.

33
Elliot B. Koffman, David Stemple, and Caroline E. Wardle. Recommended curriculum for CS2,
1984. Communications of the ACM, 28(8):815-818, August 1985.

34
Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley, Reading, MA,
second edition, 1994.

35
Yedidyah Langsam, Moshe J. Augenstein, and Aaron M. Tenenbaum. Data Structures Using C
and C++. Prentice Hall, Upper Saddle River, NJ, second edition, 1996.

36
Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, MA, 1996.

37
Kenneth McAloon and Anthony Tromba. Calculus, volume 1BCD. Harcourt Brace Jovanovich,
Inc., New York, NY, 1972.

38
Thomas L. Naps. Introduction to Program Design and Data Structures. West Publishing, St. Paul,
MN, 1993.

39
Stephen K. Park and Keith W. Miller. Random number generators: Good ones are hard to find.
Communications of the ACM, 31(10):1192-1201, October 1988.

40
P. J. Plauger. The Draft Standard C++ Library. Prentice Hall, Englewood Cliffs, NJ, 1995.

41
Stephen R. Schach. Classical and Object-Oriented Software Engineering. Irwin, Chicago, IL,

http://www.brpreiss.com/books/opus6/html/page621.html (4 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

References

third edition, 1996.

42
G. Michael Schneider and Steven C. Bruell. Concepts in Data Structures and Software
Development. West Publishing, St. Paul, MN, 1991.

43
Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, second
edition, 1991.

44
Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.

45
Allen B. Tucker, Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J. Thomas
Cain, Susan E. Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke, Michael C. Mulder,
Jean B. Rogers, Eugene H. Spafford, and A. Joe Turner. Computing Curricula 1991: Report of the
ACM/IEEE-CS Joint Curriculum Task Force. ACM/IEEE, 1991.

46
Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, New York, NY, 1997.

47
Larry Wall and Randal L. Schwartz. Programming perl. O'Reilly & Associates, Sebastopol, CA,
1991.

48
Mark Allen Weiss. Data Structures and Algorithm Analysis. Benjamin/Cummings, Redwood
City, CA, second edition, 1995.

49
Mark Allen Weiss. Algorithms, Data Structures and Problem Solving with C++. Addison-
Wesley, Menlo Park, CA, 1996.

50
Geoff Whale. Data Structures and Abstraction Using C. Thomson Nelson Australia, Melbourne,
Australia, 1996.

http://www.brpreiss.com/books/opus6/html/page621.html (5 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

References

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/page621.html (6 of 6) [2002-11-17 ｿﾀﾈﾄ 11:09:47]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

Footnotes

...102#102.
The notation 103#103 denotes the floor function , which is defined as follows: For any real
number x, 104#104 is the greatest integer less than or equal to x. While we are on the subject,
there is a related function, the ceiling function , written 105#105. For any real number x, 106#106
is the smallest integer greater than or equal to x.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...119#119.
In fact, we would normally write 120#120, but we have not yet seen the 1#1 notation which is

introduced in Chapter .

.

http://www.brpreiss.com/books/opus6/html/footnode.html (1 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...rule
Guillaume François Antoine de L'Hôpital, marquis de Sainte-Mesme, is known for his rule for
computing limits which states that if 357#357 and 358#358, then

359#359

where f'(n) and g'(n) are the first derivatives with respect to n of f(n) and g(n), respectively. The
rule is also effective if 360#360 and 361#361.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (2 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...commensurate.
Functions which are commensurate are functions which can be compared one with the other.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (3 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...436#436.
This notion of the looseness (tightness) of an asymptotic bound is related to but not exactly the

same as that given in Definition .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (4 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

...numbers.
Fibonacci numbers are named in honor of Leonardo Pisano (Leonardo of Pisa), the son of
Bonaccio (in Latin, Filius Bonaccii), who discovered the series in 1202.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (5 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

...numbers.
These running times were measured on an Intel Pentium III, which has a 1 GHz clock and 256MB
RAM under the WindowsME operating system. The programs were compiled using the C#
compiler provided with the Microsoft .NET beta SDK (csc) and run under the Microsoft
common language runtime.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...represents.
The address attribute is sometimes called its l-value and the value attribute is sometimes called is
r-value . This terminology arises from considering the semantics of an assignment statement such
as y = x. The meaning of such as statement is ``take the value of variable x and store it in

http://www.brpreiss.com/books/opus6/html/footnode.html (6 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

memory at the address of variable y.'' So, when a variable appears on the right-hand-side of an
assignment, we use its r-value; and when it appears on the left-hand-size, we use its l-value.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...class
For a complete list of the methods defined in the System.Object class, you should consult
The C# Language Specifications[22].

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (7 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...NAME=7497> .
The word deque is usually pronounced like ``deck'' and sometimes like ``deek.''

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (8 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...order
A total order is a relation, say <, defined on a set of elements, say 798#798, with the following
properties:

1. For all pairs of elements 799#799, such that 800#800, exactly one of either i<j or j<i
holds. (All elements are commensurate).

2. For all triples 801#801, 802#802. (The relation 394#394 is transitive).

(See also Definition).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (9 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

825#825

This is the Swedish word for the number two. The symbol å in the Unicode character set can be
represented in a C# program using the Unicode escape ``u00E5''.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (10 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

...

825#825

I have been advised that a book with out sex will never be a best seller. ``Sex'' is the Swedish
word for the number six.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (11 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

...prime
Two numbers x and y are relatively prime if there is no number other than one that divides both x
and y evenly.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...i.
What else would it be?

http://www.brpreiss.com/books/opus6/html/footnode.html (12 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...NAME=14631> .
Isomorphic is a fancy word that means being of identical or similar form or shape or structure.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (13 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Landis
Russian mathematicians G. M. Adel'son-Vel'skiı and E. M. Landis published this result in 1962.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (14 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

...trees.
Obviously since B-Trees are M-way trees, the ``B'' in B-Tree does not stand for binary. B-Trees
were invented by R. Bayer and E. McCright in 1972, so the ``B'' either stands for balanced or
Bayer-take your pick.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (15 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

...HREF="page386.html#exercisepqueuesbinom">).
Isaac Newton discovered the binomial theorem in 1676 but did not publish a proof. Leonhard
Euler attempted a proof in 1774. Karl Friedrich Gauss produced the first correct proof in 1812.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...subsets.
Stirling numbers of the second kind are given by the formula

http://www.brpreiss.com/books/opus6/html/footnode.html (16 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

1619#1619

where n>0 and 1620#1620.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...structures.
Mark-and-sweep garbage collection is described by John McCarthy in a paper on the LISP
language published in 1960.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (17 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...space.

The reader may find it instructive to compare Program with Program and Program .

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (18 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...space.

The reader may find it instructive to compare Program with Program and Program .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (19 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

...NAME=33188> .
The table is named in honor of Blaise Pascal who published a treatise on the subject in 1653.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (20 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

...number!
Prime numbers of the form 1917#1917 are known as Mersenne primes .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...1920#1920.
For convenience, we use the notation 1921#1921 to denote 1922#1922.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (21 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...NAME=35116> .
Unfortunately, the fame of bubble sort exceeds by far its practical value.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (22 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...zero.
There is also the symmetrical case in which i is always n-1.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.brpreiss.com/books/opus6/html/footnode.html (23 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

Footnotes

.

.

.

.

.

.

.

.

.

Copyright © 2001 by Bruno R. Preiss, P.Eng. All rights reserved.

http://www.brpreiss.com/books/opus6/html/footnode.html (24 of 24) [2002-11-17 ｿﾀﾈﾄ 11:09:49]

http://www.brpreiss.com/books/opus6/copyright.html
http://www.brpreiss.com/books/opus6/signature.html

	brpreiss.com
	Data Structures and Algorithms with Object-Oriented Design Patterns in C#
	Colophon
	Dedication
	Preface
	Goals
	Approach
	Contents
	Index
	Introduction
	Acknowledgments
	Outline
	Suggested Course Outline
	Online Course Materials
	What This Book Is About
	Object-Oriented Design
	Abstraction
	Encapsulation
	Object Hierarchies and Design Patterns
	Containers
	Enumerators
	Visitors
	Cursors
	Adapters
	Singletons
	The Features of C# You Need to Know
	Variables
	Value Types and Reference Types
	Parameter Passing
	Classes and Objects
	Inheritance
	Interfaces and Polymorphism
	Other Features
	How This Book Is Organized
	Models and Asymptotic Analysis
	Foundational Data Structures
	Abstract Data Types and the Class Hierarchy
	Data Structures
	Algorithms
	Algorithm Analysis
	A Detailed Model of the Computer
	The Basic Axioms
	A Simple Example-Arithmetic Series Summation
	Array Subscripting Operations
	Another Example-Horner's Rule
	Analyzing Recursive Methods
	Solving Recurrence Relations-Repeated Substitution
	Yet Another Example-Finding the Largest Element of an Array
	Average Running Times
	About Harmonic Numbers
	Best-Case and Worst-Case Running Times
	The Last Axiom
	A Simplified Model of the Computer
	An Example-Geometric Series Summation
	About Arithmetic Series Summation
	Example-Geometric Series Summation Again
	About Geometric Series Summation
	Example-Computing Powers
	Example-Geometric Series Summation Yet Again
	Exercises
	Projects
	Asymptotic Notation
	An Asymptotic Upper Bound-Big Oh
	A Simple Example
	Big Oh Fallacies and Pitfalls
	Properties of Big Oh
	About Polynomials
	About Logarithms
	Tight Big Oh Bounds
	More Big Oh Fallacies and Pitfalls
	Conventions for Writing Big Oh Expressions
	An Asymptotic Lower Bound-Omega
	A Simple Example
	About Polynomials Again
	More Notation-Theta and Little Oh
	Asymptotic Analysis of Algorithms
	Rules For Big Oh Analysis of Running Time
	Example-Prefix Sums
	Example-Fibonacci Numbers
	Example-Bucket Sort
	Reality Check
	Checking Your Analysis
	Exercises
	Projects
	Foundational Data Structures
	Arrays
	Extending C# Arrays
	Constructors
	Copy Method
	DynamicArray Indexers
	DynamicArray Properties
	Resizing an Array
	Multi-Dimensional Arrays
	Array Subscript Calculations
	An Implementation
	Constructor
	MultiDimensionalArray Indexer
	Matrices
	Dense Matrices
	Canonical Matrix Multiplication
	Singly-Linked Lists
	An Implementation
	List Elements
	LinkedList Default Constructor
	Purge Method
	LinkedList Properties
	First and Last Properties
	Prepend Method
	Append Method
	Copy Method
	Extract Method
	InsertAfter and InsertBefore Methods
	Exercises
	Projects
	Data Types and Abstraction
	Abstract Data Types
	Design Patterns
	Class Hierarchy
	C# Objects and the IComparable Interface
	Abstract Comparable Objects
	Comparison Operators
	Wrappers for Value Types
	Containers
	Abstract Containers
	Visitors
	The IsDone Property
	Abstract Visitors
	The AbstractContainer Class ToString Method
	Enumerable Collections and Enumerators
	Enumerators and foreach
	Searchable Containers
	Abstract Searchable Containers
	Associations
	Exercises
	Projects
	Stacks, Queues, and Deques
	Stacks
	Array Implementation
	Fields
	Constructor and Purge Methods
	Push and Pop Methods, Top Property
	Accept Method
	GetEnumerator Method
	Linked-List Implementation
	Fields
	Constructor and Purge Methods
	Push and Pop Methods, Top Property
	Accept Method
	GetEnumerator Method
	Applications
	Evaluating Postfix Expressions
	Implementation
	Queues
	Array Implementation
	Fields
	Constructor and Purge Methods
	Enqueue and Dequeue Methods, Head Property
	Linked-List Implementation
	Fields
	Constructor and Purge Methods
	Enqueue and Dequeue Methods, Head Property
	Applications
	Implementation
	Deques
	Array Implementation
	The ``Head'' Operations
	The ``Tail'' Operations
	Linked List Implementation
	The ``Head'' Operations
	The ``Tail'' Operations
	Doubly-Linked and Circular Lists
	Exercises
	Projects
	Ordered Lists and Sorted Lists
	Ordered Lists
	Array Implementation
	Fields
	Creating a List and Inserting Items
	Finding Items in a List
	Removing Items from a List
	Positions of Items in a List
	Finding the Position of an Item and Accessing by Position
	Inserting an Item at an Arbitrary Position
	Removing Arbitrary Items by Position
	Linked-List Implementation
	Fields
	Inserting and Accessing Items in a List
	Finding Items in a List
	Removing Items from a List
	Positions of Items in a List
	Finding the Position of an Item and Accessing by Position
	Inserting an Item at an Arbitrary Position
	Removing Arbitrary Items by Position
	Performance Comparison: OrderedListAsArray vs. ListAsLinkedList
	Applications
	Sorted Lists
	Array Implementation
	Inserting Items in a Sorted List
	Locating Items in an Array-Binary Search
	Finding Items in a Sorted List
	Removing Items from a List
	Linked-List Implementation
	Inserting Items in a Sorted List
	Other Operations on Sorted Lists
	Performance Comparison: SortedListAsArray vs. SortedListAsList
	Applications
	Implementation
	Analysis
	Exercises
	Projects
	Hashing, Hash Tables, and Scatter Tables
	Hashing-The Basic Idea
	Example
	Keys and Hash Functions
	Avoiding Collisions
	Spreading Keys Evenly
	Ease of Computation
	Hashing Methods
	Division Method
	Middle Square Method
	Multiplication Method
	Fibonacci Hashing
	Hash Function Implementations
	Integral Keys
	Floating-Point Keys
	Character String Keys
	Hashing Containers
	Using Associations
	Hash Tables
	Abstract Hash Tables
	Separate Chaining
	Implementation
	Constructor, Length Property and Purge Methods
	Inserting and Removing Items
	Finding an Item
	Average Case Analysis
	Scatter Tables
	Chained Scatter Table
	Implementation
	Constructor, Length Property, and Purge Methods
	Inserting and Finding an Item
	Removing Items
	Worst-Case Running Time
	Average Case Analysis
	Scatter Table using Open Addressing
	Linear Probing
	Quadratic Probing
	Double Hashing
	Implementation
	Constructor, Length Property, and Purge Methods
	Inserting Items
	Finding Items
	Removing Items
	Average Case Analysis
	Applications
	Exercises
	Projects
	Trees
	Basics
	Terminology
	More Terminology
	Alternate Representations for Trees
	N-ary Trees
	Binary Trees
	Tree Traversals
	Preorder Traversal
	Postorder Traversal
	Inorder Traversal
	Breadth-First Traversal
	Expression Trees
	Infix Notation
	Prefix Notation
	Postfix Notation
	Implementing Trees
	Tree Traversals
	Depth-First Traversal
	Preorder, Inorder, and Postorder Traversals
	Breadth-First Traversal
	Accept Method
	Tree Enumerators
	Constructor
	MoveNext Method and Current Property
	General Trees
	Fields
	Constructor and Purge Methods
	Key Property and GetSubtree Method
	AttachSubtree and DetachSubtree Methods
	N-ary Trees
	Fields
	Constructors
	IsEmpty Property
	Key Property, AttachKey and DetachKey Methods
	GetSubtree, AttachSubtree and DetachSubtree Methods
	Binary Trees
	Fields
	Constructors
	Purge Method
	Binary Tree Traversals
	Comparing Trees
	Applications
	Implementation
	Exercises
	Projects
	Search Trees
	Basics
	M-Way Search Trees
	Binary Search Trees
	Searching a Search Tree
	Searching an M-way Tree
	Searching a Binary Tree
	Average Case Analysis
	Successful Search
	Solving The Recurrence-Telescoping
	Unsuccessful Search
	Traversing a Search Tree
	Implementing Search Trees
	Binary Search Trees
	Fields
	Find Method
	Min Property
	Inserting Items in a Binary Search Tree
	Insert and AttachKey Methods
	Removing Items from a Binary Search Tree
	Withdraw Method
	AVL Search Trees
	Implementing AVL Trees
	Constructor
	AdjustHeight Method, Height and BalanceFactor Properties
	Inserting Items into an AVL Tree
	Balancing AVL Trees
	Single Rotations
	Double Rotations
	Implementation
	Removing Items from an AVL Tree
	M-Way Search Trees
	Implementing M-Way Search Trees
	Implementation
	Constructor and M Property
	Inorder Traversal
	Finding Items in an M-Way Search Tree
	Linear Search
	Binary Search
	Inserting Items into an M-Way Search Tree
	Removing Items from an M-Way Search Tree
	B-Trees
	Implementing B-Trees
	Fields
	Constructor and AttachSubtree Methods
	Inserting Items into a B-Tree
	Implementation
	Running Time Analysis
	Removing Items from a B-Tree
	Applications
	Exercises
	Projects
	Heaps and Priority Queues
	Basics
	Binary Heaps
	Complete Trees
	Complete N-ary Trees
	Implementation
	Fields
	Constructor and Purge Methods
	Putting Items into a Binary Heap
	Removing Items from a Binary Heap
	Leftist Heaps
	Leftist Trees
	Implementation
	Fields
	Merging Leftist Heaps
	Putting Items into a Leftist Heap
	Removing Items from a Leftist Heap
	Binomial Queues
	Binomial Trees
	Binomial Queues
	Implementation
	Heap-Ordered Binomial Trees
	Adding Binomial Trees
	Binomial Queues
	Fields
	AddTree and RemoveTree
	MinTree and Min Properties
	Merging Binomial Queues
	Putting Items into a Binomial Queue
	Removing an Item from a Binomial Queue
	Applications
	Discrete Event Simulation
	Implementation
	Exercises
	Projects
	Sets, Multisets, and Partitions
	Basics
	Implementing Sets
	Array and Bit-Vector Sets
	Basic Operations
	Union, Intersection, and Difference
	Comparing Sets
	Bit-Vector Sets
	Basic Operations
	Union, Intersection, and Difference
	Multisets
	Array Implementation
	Basic Operations
	Union, Intersection, and Difference
	Linked-List Implementation
	Union
	Intersection
	Partitions
	Representing Partitions
	Implementing a Partition using a Forest
	Implementation
	Constructor
	Find and Join Methods
	Collapsing Find
	Union by Size
	Union by Height or Rank
	Applications
	Exercises
	Projects
	Garbage Collection and the Other Kind of Heap
	What is Garbage?
	Reduce, Reuse, Recycle
	Reduce
	Reuse
	Recycle
	Helping the Garbage Collector
	Reference Counting Garbage Collection
	When Objects Refer to Other Objects
	Why Reference Counting Does Not Work
	Mark-and-Sweep Garbage Collection
	The Fragmentation Problem
	Stop-and-Copy Garbage Collection
	The Copy Algorithm
	Mark-and-Compact Garbage Collection
	Handles
	Exercises
	Projects
	Algorithmic Patterns and Problem Solvers
	Brute-Force and Greedy Algorithms
	Example-Counting Change
	Brute-Force Algorithm
	Greedy Algorithm
	Example-0/1 Knapsack Problem
	Backtracking Algorithms
	Example-Balancing Scales
	Representing the Solution Space
	Abstract Backtracking Solvers
	Abstract Solvers
	Depth-First Solver
	Breadth-First Solver
	Branch-and-Bound Solvers
	Depth-First, Branch-and-Bound Solver
	Example-0/1 Knapsack Problem Again
	Top-Down Algorithms: Divide-and-Conquer
	Example-Binary Search
	Example-Computing Fibonacci Numbers
	Example-Merge Sorting
	Running Time of Divide-and-Conquer Algorithms
	Case 1 (#tex2html_wrap_inline67826#)
	Case 2 (#tex2html_wrap_inline67840#)
	Case 3 (#tex2html_wrap_inline67850#)
	Summary
	Example-Matrix Multiplication
	Bottom-Up Algorithms: Dynamic Programming
	Example-Generalized Fibonacci Numbers
	Example-Computing Binomial Coefficients
	Application: Typesetting Problem
	Example
	Implementation
	Randomized Algorithms
	Generating Random Numbers
	The Minimal Standard Random Number Generator
	Implementation
	Random Variables
	A Simple Random Variable
	Uniformly Distributed Random Variables
	Exponentially Distributed Random Variables
	Monte Carlo Methods
	Example-Computing #tex2html_wrap_inline68478#
	Simulated Annealing
	Example-Balancing Scales
	Exercises
	Projects
	Sorting Algorithms and Sorters
	Basics
	Sorting and Sorters
	Abstract Sorters
	Sorter Class Hierarchy
	Insertion Sorting
	Straight Insertion Sort
	Implementation
	Average Running Time
	Binary Insertion Sort
	Exchange Sorting
	Bubble Sort
	Quicksort
	Implementation
	Running Time Analysis
	Worst-Case Running Time
	Best-Case Running Time
	Average Running Time
	Selecting the Pivot
	Selection Sorting
	Straight Selection Sorting
	Implementation
	Sorting with a Heap
	Implementation
	Building the Heap
	Running Time Analysis
	The Sorting Phase
	Merge Sorting
	Implementation
	Merging
	Two-Way Merge Sorting
	Running Time Analysis
	A Lower Bound on Sorting
	Distribution Sorting
	Bucket Sort
	Implementation
	Radix Sort
	Implementation
	Performance Data
	Exercises
	Projects
	Graphs and Graph Algorithms
	Basics
	Directed Graphs
	Terminology
	More Terminology
	Directed Acyclic Graphs
	Undirected Graphs
	Terminology
	Labeled Graphs
	Representing Graphs
	Adjacency Matrices
	Sparse vs. Dense Graphs
	Adjacency Lists
	Implementing Graphs
	Vertices
	Enumerators
	Edges
	Graphs and Digraphs
	Accessors and Mutators
	Enumerators
	Graph Traversals
	Directed Graphs
	Abstract Graphs
	Implementing Undirected Graphs
	Using Adjacency Matrices
	Using Adjacency Lists
	Comparison of Graph Representations
	Space Comparison
	Time Comparison
	Graph Traversals
	Depth-First Traversal
	Implementation
	Running Time Analysis
	Breadth-First Traversal
	Implementation
	Running Time Analysis
	Topological Sort
	Implementation
	Running Time Analysis
	Graph Traversal Applications: Testing for Cycles and Connectedness
	Connectedness of an Undirected Graph
	Connectedness of a Directed Graph
	Testing Strong Connectedness
	Testing for Cycles in a Directed Graph
	Shortest-Path Algorithms
	Single-Source Shortest Path
	Dijkstra's Algorithm
	Data Structures for Dijkstra's Algorithm
	Implementation
	Running Time Analysis
	All-Pairs Source Shortest Path
	Floyd's Algorithm
	Implementation
	Running Time Analysis
	Minimum-Cost Spanning Trees
	Constructing Spanning Trees
	Minimum-Cost Spanning Trees
	Prim's Algorithm
	Implementation
	Kruskal's Algorithm
	Implementation
	Running Time Analysis
	Application: Critical Path Analysis
	Implementation
	Exercises
	Projects
	C# and Object-Oriented Programming
	Variables
	Value Types
	References Types
	Null References
	Parameter Passing
	Pass By Value
	Passing By Reference
	The Trade-off
	In and Out Parameters
	Passing Reference Types
	Objects and Classes
	Class Members: Fields and Methods
	Constructors
	The No-Arg Constructor
	Properties and Accessors
	Member Access Control
	Operator Overloading
	Nested Classes
	Inheritance and Polymorphism
	Derivation and Inheritance
	Derivation and Access Control
	Polymorphism
	Interfaces
	Abstract Methods and Abstract Classes
	Method Resolution
	Abstract Classes and Concrete Classes
	Algorithmic Abstraction
	Multiple Inheritance
	Run-Time Type Information and Casts
	Exceptions
	Class Hierarchy Diagrams
	Character Codes
	References
	Footnotes

