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ABSTRACT

This project deals with the creation of a computer application that analyzes and designs
structural beams. The project also aims at emphasizing the importance of computers in
the solution of everyday engineering problems.

The program developed analyses one, two and three-span beams and includes a module
for the design of reinforced concrete beams. This program was created using the
relatively new Actionscript language.

The project aso discusses various theoretical analysis techniques that can be
implemented in developing a computer program. The main theoretical methods used in
this project are Moment Distribution and Macaulay’s Method. The Reinforced concrete
design is based on the BS8110 code.

This report acts as a support document for the created software. It describes the program
in detail and highlights the methodologies used in its development.
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CHAPTER 1: INTRODUCTION

1.1 Computer Application in the Civil & Structural Engineering | ndustry

Civil engineers design and construct major structures and facilities that are essentia in
our every day lives. Civil engineering is perhaps the broadest of the engineering fields,
for it dedls with the creation, improvement and protection of the communal environment,
providing facilities for living, industry and transportation, including large buildings,
roads, bridges, canals, railroad lines, airports, water-supply systems, dams, irrigation,
harbors, docks, tunnels, and other engineered constructions. Over the course of history,
civil engineers have made significant contributions and improvements to the environment

and the world we live in today.

The work of acivil engineer requires alot of precision. Thisis mainly due to the fact that
the final result of any project will directly or indirectly affect people's lives; hence safety
becomes a critical issue. Designing structures and developing new facilities may take up
to severa months to complete. The volumes of work, as well as the seriousness of the
issues considered in project planning, contribute to the amount of time required to

complete the development of an adequate, safe and efficient design.

The introduction of software usage in the civil engineering industry has greatly reduced
the complexities of different aspects in the analysis and design of projects, as well as
reducing the amount of time necessary to complete the designs. Concurrently, this leads
to greater savings and reductions in costs. More complex projects that were almost
impossible to work out several years ago are now easily solved with the use of
computers. In order to stay at the pinnacle of any industry, one needs to keep at par with
the latest technological advancements which accelerate work timeframes and accuracy
without decreasing the reliability and efficiency of the results.




1.1.1 Structural Analysis & Design Softwar e:

Currently, there are quite a number of structural analysis and design software applications
present in the market. Although they are rather expensive, their use has become prevalent
amongst amajority of structural engineers and engineering firms.

A majority of these applications are based on the Finite-Element method of analysis. This
method facilitates computations in a wide range of physical problems including heat
transfe, seepage, flow of fluids, and electrical & magnetic potential.

In the finite-element method, a continuum is idealized as an assemblage of finite
elements with specified nodes. In essence, the analysis of a structure by the finite-element
method is an application of the displacement/stiffness method. The use of a computer in
the finite-element approach is essential because of the large number of degrees of
freedom commonly involved. The computerized computations make use of the
systematic sequences executed in a computer program as well as the high processing
Speeds.

Some common Structural Analysis & Design Software available in the market:

STADD I11:

Comprehensive structural software that addresses all aspects of structural
engineering- model development, analysis, design, visualization and verification.
AXISVM: (http://www.axisvm.com)

Structural analysis and design with an updateable database of element sections
and specifications available in the market.

ANSY S: (http://www.ansys.com)

All-inclusive engineering software dealing with structural analysis and other
engineering disciplines such as fluid dynamics, electronics and magnetism and
heat transfer

ETABS:

Offers a sophisticated 3D analysis and design for multistory building structures.




1.2 Scope& A imsof Project

Themain am of this project is to create a computer application for the analysis and
design of reinforced concrete beams. The program is intended to be designed in such a
way that the users will be guided through the analysis and design stages in a straight
forward and understandable manner. The software is intended for use by civil/structural
engineering students but is also quite appropriate for use by professiona structural
engineers. Unlike a majority of the current engineering software applications, it is aimed
to develop the software in such a manner that is very user-friendly and easy to follow
without having to memorize syntax commands or read a user manual.

The project also aims at establishing a relationship between theoretical structural analysis
procedures and possible methods of correlating and implementing these concepts in a
practical computer program.

Personal Objectives:

To develop an in-depth appreciation of theoretical concepts used in structural
anaysis.

To learn the process of systematically creating and developing engineering
software applications.

To create a project that has continuity, i.e. one that can be worked on and
improved by students and other users while being put to good use, not merely
shelved away.




Specific Program Scope:

Analysis of Single Span Beams for Shear, Moment and Deflection values at every
point on the beam span

Anaysis of 2-Span and 3Span Beams; yielding support and midspan moments
along the beam length.

Design of Reinforced Concrete Beams, offers a recommended beam sizing and

calculates the areas of tension and compression steel required.

1.3 Project Overview

This section gives a guide on the main issues covered in the succeeding chapters of this

report.

Chap. 2: Literature Review

This section offers a brief review on the following:

Programming L anguage:

Introduces Actionscript as the programming language of the Macromedia Flash
Software. Explains what the language is all about and gives a brief description on
the fundamentals of the Actionscript language.

Analytical Theory:

Brief explanations on the major structural analysis theories applicable in beam
analysis with main emphasis on the theories used in this project, namely:
Macaulay’s Method & Moment Distribution.

Reinforced Concrete Beam Design:

An introduction to reinforced concrete design concepts. Also includes a summary
of the process of design, with the applicable formulae derived from first
principles. The applicable and relevant points extracted from the BS8110 code
that were used in this project are also mentioned here.




Chap. 3: Program Review & Application

This section summarizes the individua steps of the program. It explains each step in the
Analysis modules as well as the RC Design module by including individual snapshots of
the screen with instructions and information regarding that section. It is more or less like
aguided tour on the use of the software with explanations on what happens at every stage

and in the programming background after every command.

Chap. 4: Discussion

This section displays the code written in the program for the single, double and triple
span beam analyses as well as the code for the RC Design module. Every few lines of the
code are explained in detail. Thus, the code sections become clear, even if the reader is
not too familiar with the Actionscript Syntax. A General Discussion of the Program is
also found in this section.

Chap. 5: Conclusion & Recommendation

The project’s concluding statements are found in this section. Program and general
recommendations are also included here.

Chap. 6: References & Bibliography

A List of al the text books and sources of information used in this project.

Appendices
Printouts of all the code developed for this software.




CHAPTER 2: LITERATURE REVIEW

21 PROGRAMMING LANGUAGE REVIEW

Programming languages are used to send information to and receive information from
computers. Hence, programming may be viewed as communicating with a computer
using representative vocabulary and grammar. A program may be defined as a collection
of code, that when properly executed, performs a required task.

“Actionscript” is the back-end programming language of Macromedia' s Flash Software.
Flash is a relatively new software application. It was mainly created to enable the
development of on-line animations and internet applications. However, the rapid growth
and development of Actionscript has enabled the widespread use of this software in
developing amost any software application.

Like amost any other “new age” programming language, Actionscript involves the use of
variables, operators, statements, conditionals, loops, functions, objects & arrays.

A combination of good use of Flash and good programming in Actionscript allows an
artistic application to be created, whether visually appealing or dynamically interactive.
Actionscript aso has the distinct advantage of being easily understood, even to non

programmers, due to it's, more or less, use of English statements.

2.1.1 BasicElementsof Actionscript

Variables:

An individual piece of data is known as a datum. A datum and the label that defines it are
together known as avariable. A variable' s label is caled its name, and a variable' s datum
is caled its value. We say that the variable stores or contains its value. For this reason,
one may conveniently think of a variable as a container, whether anything is in that
container or not.

eg. BeamLength =5m;

Here, the variable name (container) is “BeamLength”, and its value is 5m.




Arguments;
This is basically a datum sent b a command (also caled parameters). Supplying an

argument to a command is known as passing the argument. In common Actionscript
syntax, arguments are usually enclosed within parentheses.

eg. command (argument);

Operators:

All operators link phrases of code together, manipulating those phrases in the process.
Whether the phrases are text, numbers or some other datatype, an operator nearly always
performs some kind of transformation. Very commonly, operators combine two things
together, as the plus operator does

eg. trace(5+2)

Expressions:

In a program, any phrase of code that yields a single datum when a program runs is
referred to as an expression. They represent simple data that will be used when the
program runs. Expressions get even more interesting when combined with operators. The
expression 4 + 5 for example, is an expression with two operands, 4 and 5, but the plus
operator makes the entire expression yield the single value 9. An expression may even be
assigned to avariable.

eg. Moment=45+67

Conditionals and Loops:

In nearly al programs, conditionals are used to add logic to the program, and loops to
perform repetitive tasks. Conditionals allow a specification of terms under which a
section of code should — or should not — be executed. To perform highly repetitive tasks,
aloop is used. This is a statement that allows a block of code to be repeated an arbitrary
number of times.

eg. While(distance<min){

distance = distance + 1




Functions:

A function is a packaged series of statements. In practice, functions mostly serve as
reusable blocks of code. It allows a clear way of managing code, especially when it
becomes too large & cumbersome. After a function is created, the code it contains may

be run from anywhere in the program by using its name.




2.2 ANALYTICAL THEORIESREVIEW

2.2.1 Macaulay’sMethod

This is a method suggested by W. H. Macaulay to relate the stiffness, radius of curvature,
deflection and the bending moments in a beam by integration methods. The method
enaldes discontinuous bending moment functions to be represented by a continuous
function. It allows the contributions, from individua loads, to the bending moment at any
Ccross section to be expressed as a single function, which takes zero value at those sections

where particular loads don’'t contribute to the bending moment.

Beam Deflections using successive integration
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The bending moment (M) at section X is given by:

where R = Radius of Curvature
| = Second Moment of Area
E = Young's Modulus of Elasticity

More exactly, positive (sagging) bending moment produces negative curvature, /R

Nb.

Curvature= —¢—+= — =—
where y = deflection at section X (measured positive downward)
To obtain the equation of the deflected shape, the bending moment expression (a function
of X) is integrated twice with respect to x. The constants of integration formed are then

evaluated from the boundary conditions.

Hence the differential equation of an elastic curve may be given as.

d’y _ M

dx? El




Macaulay’s method enables discontinuous bending moment functions to be represented
by a continuous function, thus avoiding the need to deal with the beam section by section
between discontinuities in the bending moment function. This is very desirable since it
avoids the need to evaluate, and therefore eiminate, a large number of constants of

integration.

Essentially, the method employs the use of a step function, allowing the individua loads
to contribute to the bending moment.

In this method, the principle of superposition applies in al cases that involve several
concentrated loads or discontinuous UDLs.
There are certain steps & rules that need to be followed in the analysis of a beam using
Macaulay’s method. These can be summarized as follows:
An origin is selected at one end of the beam.
The bending moment is written down for a section in the portion of the beam
furthest from the origin taking the FBD (free body diagram) which includes the
origin.
The individua load contributions are grouped as bracket terms.
(Nb. when the quantity within the bracket is negative, then the total value of the
bracket shall be zero).
It is essential that the bending moment at each & every section in the beam is
expressed in such a way that the bracket concept can be maintained throughout
the length of the beam and throughout the integration process.
i.e. integrate expressions such as [za], which only occur when positive,
as [Y4(za)7.
In other words, bracket terms remain within the brackets throughout the

integration process.




2.2.2 Moment Area Method

This is a method suitable for calculating dope & deflection at selected points on a beam.
It is aso effective for calculating the deflections of beams with various cross sections.

The simplest way to evaluate the fixedend moments, etc, will often be by the use of the
moment area method.

There are two theorems associated with the moment area methods:

First Moment Area Theorem:

“the difference in dope between two points on a beam is equal to the area of the
M/EI diagram between the two points.”

Second Moment Area Theorem:

“the moment about a point A of the M/EI diagram between points A and B will
give the deflection of point A relative to the tangent at point B.”

To obtain the M/EI diagram, each ordinate of the bending-moment diagram is divided by
the corresponding value of the beam flexura rigidity (El) at the ordinate.

The above theorems follow directly from graphical interpretation of the successive
integration technique and are exceptionally useful and easy to apply in severa types of
deflection problems and in deriving other results from the analysis of indeterminate
structures.

Nb. this method is not applicable if there is a hinge (moment release) within the beam
region being considered.




Consider a section of an elastic curve between points A & B:

M=g =Y
dx
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If the origin is now shifted until it is below A;

® Mxdx

= Xale - Ya *Va ... [2™ Theorem]

A

wherex = 0 a A, »Qg isrepresented by CD in the elastic curve figure, and the complete

expression is equa to the distance AD.

The procedure for beam analysis using the moment area method can be summarized as
follows:
calculate the support reactions
draw the M/EI diagram
select the reference tangent; either:
o aknown point with zero slope
0 determining tangential deviation of one support w.r.t. the other & finding
theangle.




2.2.3 Conjugate Beam M ethod

The conjugate beam may also be referred to as a fictitious/imaginary beam. This
conjugate beam has the same length as the real beam but is supported and detailed in such
a manner that when the conjugate beam is loaded by the M/EI diagram of the real beam
as an elastic load, the elastic shear in the conjugate beam at any location is equal tothe
slope of the real beam at the corresponding location and the elastic bending moment in
the conjugate beam is equal to the corresponding deflection of the real beam. These

slopes and deflections of the real beam are measured with respect to its original position.

Two conjugate beam relations are recognized:

The shear force V, in value & sign, at any point on the conjugate beam, is equal to
therotation slope q, at that point on the actual beam
The moment M, in value & sign, at any point on the conjugate beam is equal to

the deflection at that point on the actual beam.

Statically determinate real beams always have corresponding conjugate beams. However,
such conjugate beams turn out to be in equilibrium since they are stabilized by the elastic
loading corresponding to the M/EI diagram for the corresponding real beam.




2.2.4 Virtual Work M ethod

The general mathematical results concerning the virtual work done by an equilibrium
system of forces moving through small virtual (imaginary) displacements are of great use
in obtaining many structural analysis results. In particular, the principle of virtual work
enables equilibrium equations to be written down very smply and is aso useful in
obtaining displacements of beams, frames and trusses.

The work done by external forces moving through small displacements compatible with

the geometry of the structure is called external virtual work.

There are severa principlesinvolved in the virtual work method:

Principle of Virtua Displacements:

If aset of exterral forces acting on a structure are in equilibrium, then any virtual
(imaginary) rigid-body displacements given to the system causes virtual work to

be done by each force, and the total external virtual work is zero.

Principle of Virtual Work:
If any set of virtua (imaginary) displacements given to a body in equilibrium

(these displacements being small and compatible with the geometry of the body
and it’s supports), then the total externa virtual work done by the external forces
moving through the virtual displacements is equal to the total internal work done

by the internal forces moving through corresponding virtual displacements.




2.2.5 TheUnit L oad M ethod

The unit load method considers the product of imaginary (dummy) loads and red
displacements rather than considering the product of real loads & virtual displacements.
To determine the deflection of a beam, a unit load is applied at the point where deflection
is to be determined.

The deflection of an elastic beam may be given as:

|
D:C‘)M_mdz
OF

where M = moment due to external/applied loads

m = applied unit moment




2.2.6 Influence Line Theory

An influence line is a graphical representation of the value taken by an effect as a load
moves along a structure. It is a curve, the ordinake to which, at any point, equals the value
of the particular function for which the line has been constructed.

This is a function whose value at any given point represents the value of some structural
guantity due to a unit force placed at that point. The influence line graphically shows how
changing the position of a single load influences various significant structural quantities.

(Structural quantities: Reactions, Shear, Moment, Deflection, etc.)

Influence lines may be used to advantage in the determinaion of simple beam reactions.
In this case, the use of the unit influence line is necessary. The unit influence line
represents the effects of unit: reactions (displacements), shears (separations) and

moments (rotations) in a beam structure.

Influence lines can be used for two very important purposes;

To determine what position of loading will lead o a maximum vaue of the
particular function for which the influence line has been constructed.
This is especidly important for the design of members in structures that will be
subjected to live loads (which vary in position and intensity)

To compare the value of that function, for which the influence line has been
congtructed, with the loads placed for maximum effects, or for any loading
combination.




Since the ordinate to an influence line equals the value of a particular function due to a
unit load acting at that point where the ordinate is measured, the following theorems
hold:

To obtain the maximum value of a function due to a single concentrated liv e load,
the load should be placed at that point where the ordinate to the influence line for

that function is a maximum.

The value of a function due to the action of a single concentrated live load equals
the product of the magnitude of the load and the ordinate to the influence line for
that function, measured at the point of application of load.




2.2.7 TheThree Moment Equation (Clapeyron’s Theor em)

The three moment equation was first presented in 1857 by the French Engineer
Clapeyron. This equation is a relationship that exists between the moments at three points
on a continuous member. It is particularly helpful in solving for the moments at the
supports of indeterminate beams. The three moment equation is applicable to any three
points on a beam as long as there are no discontinuities, such as hinges, in the beam
within this portion.

Consider three support points, A, B & C with Lag and Lgc (distances), |z and Igc
(stiffnesses) between supports A & B and B & C respectively.

IIITITILIN {
o A A
A B C
|
|

! Las ! Lcs

Free B.M. Fixing
Diagrams

| XaB | | XcB |

Mag, Mga, Mcg = moments in statically indeterminate beam at points A, B, and C,
respectively
lengths of spans AB and BC

Lag,Lcs
Iag, Isc = moments of inertia of beam cross section between A & B and between
C&B




Aas, Acs = areas of moment diagrams, considering sections of beam between
supports to be smply supported, between A & B and between C & B
Xag, Xcg = distance from A and C, respectively, to the centroids of areas A s and
Acs
Dag, Dcg = deflection of A and C above B
E = modulus of elasticity of beam materia

It follows from direct application of the Second Moment Area Theorem that Lagqsa and

LscQgea can be written down in terms of the above parameters.
Hence, two equations can be written down for the quantity gga.
Equating the two results gives one equation linking the unknown support moments Mag,

Mga and M cg in terms of the other (known) parameters:

MABE-I-ZMBAm-_AB'FiQ'FM Les — . 6Axs X 28 . 6A;c X e +6E@AB+DBCQ

- CB -
AB AB I CB @ ICB I ABLAB I BCLBC LAB LBC %]

Thisis the general statement of the three-moment equation which, though cumbersome in
appearance when expressed generally, is particularly easy to apply to individual
problems, especially when D;=D,=0




2.2.8 Stiffness & Flexibility M ethods

Stiffness M ethod (Displacement M ethod of Analysis)

The displacement method can be applied to dtaticaly determinate or indeterminate
structures, but is more useful in the latter, particularly when the degree of statical
indeterminacy is high.

In this method, one must first determine the degree of kinematic indeterminacy. A
coordinate system is then established to identify the location and direction of joint
displacements. Restraining forces equal in number to the degree of kinematic
indeterminacy are introduced at the co-ordinates to prevent the displacement of the joints.
The restraining forces are finally determined as a sum of the fixed end forces for the
members meeting a a joint. (For most practica cases, the fixed-end force can be
calculated with the aid of standard tables)

StiffnessMatrix [ 9]

{p}=[s]*{- F}

The elements of the vector { D} are the unknown displacements.

The elements of the matrix [S] are forces corresponding to unit values of displacements.
The column vector {F} depends on the loading on the structure

In genera cases, the number of restraints introduced in the structure is n, the order of the

matrices { D}, [S] and {F} isn x 1, nxn and n x 1 respectively.

The genera steps followed in an analysis using the stiffness method are as follows:
0 establish arelationship between the element forces and displacements (e.g.
between moments and rotations, forces and deflections)
0 Reassemble the elements to form original structure & apply compatibility
to the joints.

0 Apply equilibrium on the assembled structure at each joint.




Flexibility Method (Force Method of Analysis)

In this method, the degree of statical indeterminacy is initially determined. Thereafter, a
number of releases equal to the degree of datica indeterminacy is introduced, each
release being made by the removal of an externa or internal force. The magnitude of
inconsistencies introduced by the releases is the determined. Next, the displacements in
the released structure due to unit values of the redundants are determined. This allows the
values of the redundant forces necessary to eliminate the inconsistencies in the
displacements to be determined. Hence, the forces on the original indeterminate structure
are caculated as the sum of the correction forces (redundants) and forces on the released

structure.

Flexibility Matrix [f]

[tfF}={D- D}

D represents inconsistencies in deformation while {F} represents the redundants.
D elements represent prescribed displacements at their respective coordinates.

The column vector {D - D} thus depends on the exterral loading.

The elements of the matrix [f] are displacements due to the unit values of the redundants.
Therefore [f] depends on the properties of the structure, and represents the flexibility of
the released structure. For this reason, [f] is called the flexibility matrix and it's elements
are called flexibility coefficients.

The general steps followed in an analysis using the flexibility method are as follows:

0 The structure is rendered indeterminate by the insertion of suitable
releases, and is now caled the primary structure (e.g. insert three releases
for a degree of redundancy of three)

0 By inserting a release, a condition of compatibility at that point is

abandoned. Since the primary structure is now statically determinate, a




solution is carried out and the member forces are calculated by applying
equilibrium conditions only.

0 Releaseforces are introduced in the structure so as to restore conditions of
compatibility at the releases. A complementary solution of the secondary
structure is now carried out. Here, the displacements at the releases due to
the release forces only are calculated.

0 Next, the solutions of the primary structure and the complementary
solution are combined to give the total displacement at the releases due to
both the applied loads and the release forces. Finaly, the member forcesin
the origina structure may be obtained by the superposition effects from

the particular and complementary solutions.

Choice of Force or Displacement Method

In some structures, the formation of one of the matrices— stiffness or flexibility — may be
easier than the formation of the other. This situation arises from the following general
considerations.

In the force method, the choice of the released structure may affect the amount of
calculation. For example, in the analysis of a continuous beam, the introduction of hinges
above indeterminate supports produces a released structure consisting of a series of
simple beams. In other structures, it may not be possible to find a released structure for
which the redundants have alocal effect only.

In the displacement method, generally al joint displacements are prevented regardless of
the choice of the unknown displacement. A displacement of a joint affects only the
members meeting at the given joint. These properties generally make the displacement
method easy to formulate, and it is for this reason that the displacement method is more
suitable for computer programming.




2.2.9 SlopeDeflection M ethod

The slope deflection method was presented by Prof. G. A. Maney in 1915 as a generd
method to be used in the analysis of rigid-jointed structures. The slope deflection method
may be used to analyze al types of statically indeterminate beams or rigid frames. In this
method, all joints are considered rigid. i.e. the angles between members at the joints are

considered not to change in value as the loads are applied.

Thus, the joints at the interior supports of statically indeterminate beams can be

considered as 180° rigid joints.

The fundamental slope deflection equations are derived by means of the moment-area
theorems. These equations consider deformation caused by bending moment but neglect

that due to shear and axial force.

Basically, a number of simultaneous equations are formed with the unknowns taken as
the angular rotations and displacements of each joint. Once these equations have been
solved, the moments at all joints may be determined.
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The slope deflection equations may be written as:
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where @ = rotation of the tangent to the elastic curve at the end of a member

d = rotation of the chord joining the ends of the elastic curve.

FEM = fixed end moments




The fundamental slope deflection equation is written as.
3d &
M pg = 2EK po 205 +0 - |—9+ FEM o
e a

I
L

PQ

where the stiffness factor, K., =
PQ

This fundamental slope deflection equation is an expression for the moment on the end of

amember in terms of four quantities, namely:

The rotation of the tangent at each end of the elastic curve of a member
The rotation of the chord joining the ends of the elastic curve

The external loads applied to the member




2.2.10 The Moment Distribution M ethod

The moment distribution method was first introduced by Prof. Hardy Cross in 1932, and
is withou doubt, one of the most important contributions to structural analysis in the
twentieth century. It is an ingenious & convenient method of handling the stress analysis
of rigid jointed structures.

The method of moment distribution usualy does not involve as many simultaneous
equations and is often much shorter than any of the methods of analysis of indeterminate
beams previously discussed.

Essentially, Moment Distribution is a mechanical process dealing with indeterminate
structures by means of successive approximations in which the moments themselves are
treated directly, and the calculations involved being purely arithmetic.

It is basically a numerical technique which enables successive approximations to the final
set of moments carried by a rigid-jointed structure to be made by a systematic “locking”
and “relaxing” of the joints of the structural element(s). It has the advantage of being
simply interpreted physicaly and of yielding solutions to any required degree of
accuracy.

The method is unique in thet all joints are initially considered to be fixed against rotation.
The fixed end moments are determined for each member as though it were an encastré
beam and then the joints are alowed to rotate, either separately or al at once, the
moments induced by the rotations being distributed among the members until the
algebraic sum of the moments at each internal joint is zero.

The sign convention most commonly adopted for Moment Distribution is that all

moments acting on individual members from supports or other members of a structure are
positive clockwise in application and negative if anti-clockwise.




Consider the following beam:

The three fundamental principles of Moment Distribution applicable to continuous beams
on unyieding supports are listed as follows:

Principle 1:

When a moment is applied at one end of a prismatic beam, that end remaining
fixed in position but not in direction (pinned support), the other end being fixed
both in position and direction (fixed support), a moment of half the amount and

the same sign isinduced at the second (fixed) end.

Principle 2:

When one end of a beam remains fixed in position and direction, the moment
required to produce arotation of a given angle at the other end of the beam, which
remains fixed in position, is proportiona to the value of I/L for the beam,
provided that E is constant. The vaue I/L (known by the symbol, K) is the

stiffness factor for the particular beam in question.
M., =4Etanq If

= 4EqLL ...... for small valuesof q




Principle 3:
When one end of a beam is rotated through a given angle, remaining fixed in
position, and the other end remains fixed in position but not in direction, the
moment required at the first end is %4 of that required if the second end was fixed
both in position and direction, i.e. the equivaent stiffness factor for the beam is
YA/l = YK

i.e. MBA = 3Eq LL ...... for small valuesof q

The three foregoing principles alone are applied when the supports do not yield. Hence,
the previous section applies solely to structures in which the only possible displacement
a the joints is rotation.

The steps of the moment distribution process are summarized as follows:

Sepl

Determine the internal joints which will rotate when the external load is applied to the
frame.

Calculate the relative rotational stiffnesses of the ends of the members meeting at
these joints, as well as the carry over factors from the joints to the far ends of these
members.

Determine the distribution factors using the following equation:

(OF) =—>
o
a S
j=1
where i refersto the near end of the member considered

n = members meeting at the joint

S = Stiffnesses of the beam span being considered S= LL




The rotationa stiffness of either end of a prismatic member is 4EI/L and the COF
(carry over factor) from either end to the other is %% If one end of a prismatic member
is hinged, the rotational end stiffnesses of the other end is 3EI/L, and of course, no
moment is carried over to the hinged end.

In a scerario where al the members are prismatic, the relative rotational end
stiffnesses can be taken as K = I/L; and when one end is hinged, the rotational
stiffnesses at the other end is ¥4(K) = ¥4(1/L)

Sep2:
With dl joint rotations restrained, determine the fixed-end moments due to the lateral

loading on all the members.

Sep3:

Select the joints to be released in the first cycle. It may be convenient to select
dternate internd joints in the case of a framed structure.

Calculate the balancing moment at the selected joints; this is equal to minus the
algebraic sum of the fixed-end moments. If an external clockwise couple acts at any
joint, its value is simply added to the balancing moment.

Sep4:

Distribute the balancing moments to the ends of the members meeting at the released
joints. The distributed moment is equal to the DF (distribution factor) multiplied by
the balancing moment. The distributed moments are then multiplied by the COFs to

give the carry over moments at the far ends. Thus the first cycle is terminated.

SepS:

Release the remaining internal joints, while further rotation is prevented at the joints
released in the first cycle. The balancing moment at any joint is equal to minus the
algebraic sum of FEMs and of the end-moments carried over the first cycle. The
balancing moments are distributed and moments are carried over to the far endsin the
sameway asin Step 3. This completes the second cycle.




Sep6:
The joints released in Step 3 are released again, while the rotation of the other joints

is prevented. The balancing moment at a joint is equal to minus the algebraic sum of

the end-moments carried over to the ends meeting at the joint in the previous cycle.

Sep7:
Repeat Step 6 severa times, for the two sets of joints in turn until e balancing

moments become negligible.

Sep 8:
Sum the end moments recorded in each of the Steps 2 to 7 to obtain the fina end

moments. The mid-span moments may then be calculated separately, depending on
the type of loading within the span being considered. The Law of Superposition holds
good.

VariousM oment Definitions:

Fixed End Moments — these are end moments developed when loads are applied

to the structure with al joints locked against rotation.

Unbalanced Moment — when ajoint is unlocked, it will rotate if the algebraic sum

of al the FEMs acting the joint does not add up to zero. This resultant moment
acting on the joint is therefore called the unbalanced moment (or out-of-balance
moment)

Distributed Moments — when the unlocked joint rotates under this unbalanced

moment, end moments are developed in the ends of the members meeting at the
joint. These finadly restore equilibrium at the joint and are called distributed
moments.

Cary Over Moments — As the joint rotated, and bent these members, end

moments were likewise developed at the far ends of each. These are called carry

over moments.




So far, the theory and methodology considered only caters for conditions where the
supports do not yield. i.e. it applies solely to structures in which the only possible
displacement at the joints is rotation.

However, some rare scenarios do occur when other displacements contribute to the

stresses and hence moments in the beam. These are:

Trandationa Yield

For a beam with fixed ends;

F\A

Mgsa

For a beam with a pinned end:

F

V\MAB




Rotational Yield

For abeam with fixed ends:
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The fixed end moments resulting from these support yields has to be factored in the
moment distribution process. i.e. arithmetically added to the FEMsin Step 2 (above).




2.3 REINFORCED CONCRETE BEAM DESIGN REVIEW

Reinforced concrete is a strong durable building material that can be formed into many
varied shapes and sizes ranging from simple rectangular columns, to curved domes &
shells. Its utility and versatility is achieved by combining the best features of concrete
and stedl.

2.3.1 Compogite Acfion

The tensile strength of concrete is only about 10% of its compressive strength. Because
of this, nearly al reinforced concrete structures are designed on the assumption that the
concrete does not resist any tensile forces, which are transferred by bond between the
interfaces of the two materials. Thus, members should be detailed so that the concrete can
be well compacted around the reinforcement during construction. In addition, some bars
are ribbed or twisted so that there is an extra mechanical grip.

In the analysis and design of the composite reinforced concrete section, it is assumed that
there is perfect bond, so that the strain in the reinforcement is identical to the strain in the
adjacent concrete. This ensures that there is what is known as “compatibility of strains”’

across the cross-section of the member.

Stress-Strain Curves for Concrete & Sted!:

To carry out an analysis and design of a member, it is necessary to have a knowle dge of
the relationship between the stresses and strains of the materials used in the member. This
knowledge is particularly important when dealing with reinforced concrete, which is a
composite material. In this case, the analysis of the stresses on a crass section of a
member must consider the equilibrium of the forces in the concrete and steel, and aso the
compatibility of the strains across the cross-section.

Thestress-strain curves for steel and concrete are given below:
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Concrete is a very variable material, having a wide range of stress-strain curves. A typical
curve for concrete in compression is shown above. As the load is applied, the ratio
between the stresses and strains is amost linear and the concrete behaves like an elastic
material with virtually full recovery of displacement if the load is removed. Eventually,
the curve is no longer linear and the concrete behaves like a plastic material, with
incomplete displacement recovery during load removal at this stage. The ultimate strain
for most structural concrete tends to be a constant value of approximately 0.0035,
irrespective of the strength of concrete.

The figure above aso shows the stress-strain curves for mild steel and high yield steel.
Mild steel behaves asan elastic material up to the yield point, at which, there is a sudden
increase in strain with no change in stress. After the yield point, mild steel becomes a
plastic material and the strain increases rapidly up to the ultimate value.

High yield steel onthe other hand, does not have a definite yield point but shows a more
gradual change from elastic to plastic behavior.

stress

Modulusof Elasticity, E = -
strain

A satisfactory and economic design of a concrete structure depends on a proper
theoretical analysis of individual member sections as well as deciding on a practica over-

al layout of the structure, careful attention to detail and sound constructional practice.




2.3.2 Limit State Design

The design of an engineering structure must ensure that (1) under the worst loadings, the
structure is safe, and (2) during norma working conditions the deformation of the
members does not detract from the appearance, durability or performance of the structure.
The Limit State method involves applying partial factors of safety, both to the loads and
to the material strengths. The magnitude of the factors may be varied so that they may be
used either with the plastic conditions in the ultimate state or with the more elastic stress
range in the working loads.

The two principa types of limit state are the ultimate limit state and the serviceability
limit state.

Ultimate Limit State (UL S)
This requires that the structure must be able to withstand, with an adequate factor of

safety against collapse, the loads for which it is designed. The possibility of buckling or
overturning must also be taken into account, as must the possibility of accidental damage

as caused, for example, by an interna explosion.

Serviceability Limit State (SLS)
This requires that the structural elements do not exhibit any preliminary signs of failure.

Generally, the most important serviceability limit states are: Deflection (appearance or
efficiency of any part of the structure must not be adversely affected by deflections),
Cracking (local damage due to cracking and spalling must not affect the appearance,
efficiency or durability of the structure) and Durability (in terms of the proposed life of
the structure and its conditions of exposure). Other Limit States that may be reached

include: Excessive Vibration, Fatigue & Fire Resistance.

The relative importance of each limit state will vary according to the nature of the
structure. The usual procedure is to decide which the crucia limit state for a particular
structure is, and base the design on this, athough durability and fire resistance

requirements may well influence the initial member sizing and concrete grade selection.




2.3.3 Bending and the Equivalent Rectangular Stress Block

For the design of most reinforced concrete structures it is usua to commence the design
for the conditions at ultimate limit state, which is then followed by checks to ensure that

the structure is adequate at the serviceability limit state.

b 0.0035 0.45fcu
s/2
X s=0.9x 1t T
FCC
B n.a. |
d
z=l.d
As
1 ® e 1
Section Strains Stress block

Singly reinforced section with rectangular stress block

Bending in the section will induce a resultant tensile force F« in the reinforcing steel, and
a resultant compressive force in the concrete F.c which acts through the centroids of the
effective area of concrete in compression, as shown in the figure above.

For equilibrium, the ultimate design moment M, must be baanced by the moment of

resistance of the section so that

M=F, z=F4z - Q)
where z is the lever arm between the resultant forces F.c and F.

F. =stress” areaof section

=0.45f,, " bs

and




2=d- 9 @
Substitution in equation (1);

M =045f,bs" z
and replacing s from equation (2);

M =09f b(d- 2)z .. (3

rearranging and substituting K = M ¢ pg?

(%)2 - (%)+ K090

solving this quadratic equation;

z=d§0.5+4/0.25- %_93 N

which is the equation in the code of practice BS8110 for the lever arm, z, of a singly

reinforced section.
In equation (1);

.

OA  withg, =115
gmﬂ

=0.871,A,

Hence




M
0871,z

As:

. (5)

Equations (4) and (5) are used to design the area of tension reinforcement in a concrete

section to resist an ultimate moment, M.
As specified in BS8110;
z=1,d with (0.775 <1, < 0.95)
using the lower limit (z = 0.775 d) from equation (3);
M =0.156 f ,bd?
Therefore, when:

M

—75 =K >0.156

.. (6)

compression reinforcement is aso required to supplement the moment of resistance of the

concrete.




2.3.4 Rectangular Section with Compression Reinforcement at the Ultimate Limit
State
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Section with compression reinforcement

As previoudly discussed, if K > 0.156 compression reinforcement is required. For this
condition the depth of the neutral axis, x < 0.5d, the maximum value allowed by the code
in order to ensure tension failure with a ductile section.

Therefore;

z:d-ﬁézd-og§é
:d-o.9’o.5d2
=0.775d

For equilibrium of the section in the above figure;
FSI = FCC + FSC

so that with the reinforcement at yield




0.87f,A =045f bs+0.87f A’
or with $=0.9 d2 =0.45d

087 f,A =0.201f bd +0.87f A’ (7

and taking moments about the centroids of the tension steel, As
M=F, z+F,(d-d")
=0.201f,bd" 0.775d +0.87 f A'(d- d") ... (8
=0.156 f,bd* + 0.87 f ,A,'(d - d')

From eguation (8):

_ M - 0.156f bd?

A'= . - (9)
087f,(d-d")
Multiplying both sides of equation (7) by (z = 0.775d) and rearranging;
2
0.156 f,bd .. (10

087f (d- d')

Hence, the areas of compression steel, A¢ and tension steel, As, can be calculated from
equations (9) and (10).




2.3.5 Important points mentioned in the BS8110 code used in this project

Characteristic Strengths of Sted!:
f, = 460 N/mnt, 250 N/mm? (UK) source BS8110
fy= 425N/ mn? , 250 N/ mm? (Kenya) source: Kenya Bureau of Standards

Recommended Grades of Structural Concrete:
Grades 30, 35 and 40 (fo, = 30, 35, 40 N/mm? respectively)

Lower grades are not recommended for use in structures and the use of higher

concrete grades is rarely economicaly justified.

Structural Analysis:

BS8110 allows a structure to be anayzed by partitioning it into subframes. The
subframes that can be used depend on the type of structure being analyzed,
namely braced or unbraced.

A braced frame is designed to resist vertical loads only, therefore the building
must incorporate, in some other way, the resistance to lateral loading and
sidesway. e.g. shear wall, tubular systems, etc.

An unbraced fame has to be designed to resist both vertical and lateral loads. i.e.

the building does not incorporate any stiffening system.

Continuous Beam Simplification (BS8110: Clause 3.2.1.2.4.):

As a more conservative analysis of subframes, the moments and shear forces in
the beams at one level may be obtained by considering the beams as a continuous
beam over supports providing ro restrain to rotation.

Where the continuous beam simplification is used, the column moments may be
calculated by ssmple moment distribution procedure, on the assumption that the
column and beam ends remote from the junction under consideration are fixed

and that the beams possess half their actual stiffnesses.




Points mentioned in thein other refer ences usedthis project

Manual for the Design of Reinforced Concrete Building Structures
(by the Institute of Structural Engineers, U.K.)

Initial Estimations:

“To design even a simply supported beam, the designer needs to guess the beam size
before he can include its self-weight in the analysis.”

Span / Depth Ratios of Beams:

15 - Continuous Beams

12 - Simply Supported Beams
6 - Cantilevers

“Rules of Thumb”

the width (b) of a rectangular beam should be between 1/3 and 2/3 of the effective
length (d). The larger fraction is used for relatively larger design moments.

Degree of Accuracy:

“In every day design, fina results quoted to more than three significant figures

cannot normally be justified”




CHAPTER 3: PROGRAM REVIEW & APPLICATION

In an effort to make the program as simple to use as possible and avoid any confusion, a
color scheme has been adopted:

Any RED object is a button and will perform ataskif clicked.

Any text within a WHITE box can either be selected or altered by clicking in it
and inputting the desired figures.

If it is a blank white box, you will be required to click in it and input the
appropriate figures.

Nb. For purposes of clarity of images in this report, some images have been inverted (e.g.
like a photographic negative). Hence, the white input boxes will appear black.

What follows is a user guide and explanation of what goes on during the computer
analyses processes of the beams.
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Computer Analysis & Reinforced Concrete Design of Beams

3.1 SINGLE SPAN BEAM ANALYSIS

Single Span Beam Analysis

User Instructions

This is the section where the user chooses whether to start with the Analysis or go
straight to the RC Design process. In this step, choose the first button (above) to take you
to the various single span beam analysis options.

(Moving your mouse over any button will pop up a description of what it represents)

Section Information

At this section, no major code has been executed yet. The only active code is the
expressions that pop up the description box and “stick” it to the mouse as long as it is
within the button area.

When the button is clicked, we move to a new section of the program that displays the 9

single span beam analysis options.
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Computer Analysis & Reinforced Concrete Design of Beams

Step 2:

Bearn: Both Ends FIXED
Loading: Paint Load (Waried Pos.)

User Instructions

You will be presentedwith 9 possible single span beams to analyze. If not obvious from
the figures, move your mouse over the buttons to view the pop-up descriptions. For
purposes of this example, the Fixed Ended beam with a noncentral point load has been
selected.

Section Information

Selecting one of the beams here transfers the user to the section of the code where the
user may input the relevant data for the beam type & loading selected. The same section
of code for the “floating” label descriptions is still being executed.
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Step 3:

' Bearn Length (m) :
Point Load (kN :
Position of Load; Dist. a (m) :

EI (kM.rmorm) ¢ e

User Instructions

You are now at the Input Stage of the selected beam. The units relevant to each value are
displayed in brackets alongside the input field. After inputting your beam dimensions and

load vaues, click on the Anayze button.
For this example, a beam length of 5.3m, a load of 45kN at 3.0m from the left support is

chosen.

Section Information

The variables have been initialized in this stage for the user to be able to input data to the
program. In an event where the user inputs wrong data (e.g. distance to point load
exceeds the beam length), an error pop up box has been programmed to display the
wrong inputs to the user before the program can proceed with the analysis.

Once the user clicks the analyze button and the first few lines of code verify that al the
inputted data is workable, the main section of code relevant to this individual beam is
executed and the results displayed in the next step.
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Step 4

Bearn: Both Ends FIXED

Step 2: Loading: Mon-central Point Load

Beam Analysis (Results Stage)

| 3 m | 2.3 m |
I I

|
435 kM
vy

Maxirnurn Morment (edgel @

Mazx., Shearing Force :

Max, Deflection : [EE3ET [l 214 m Fram the laft support

Shear Force Diagram
[values in kM)

12.0683718

—

]

Bearn Analysis Module - Variable Poszitioning 26, 9316751

Bending Mornent Diagram
[values in kM)

T ==

331612673
25.4236383

e

\\/

28.7814773

0,117 marm

User Instructions

Thisisthe analysis results stage where al the calculated values are clearly displayed. The
Shear Force Diagram and the Bending Moment Diagram on the right column are only
sketches showing the important peak vaues and ae not drawn to scae.
The “Beam Analysis Module” on the lower left hand side of the screen alows the red
button to be dragged along the beam length to show the Shear, Moment and Deflection
values at any point on the real beam.
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Section Information

After being processed, the results are displayed at this stage of the program. The Module
that alows the user to drag the analysis across the beam basicaly scales the actua

inputted beam length value to 300 pixes (width of the beam drawn), so that for every
pixel moved, the computer processes a section of code that alows the “new” scaled
position of the actual beam to be displayed on the screen (as “x pos’) as well as

calculating the shear, moment and deflection values at that same point.




Sep 5:

e oesten ]

User Instructions

At the top left corner of the screen, an “RC Design” button is visible. If clicked, this

button picks the maximum moment as well as the beam span length and inputs them for
you in the RC Design module. (you may alter these values at the module input stage if
you wish).

Section Information

Once the button is clicked, it executes several lines of code that pick the maximum
moment value (regardless of being positive and negative) and transfer to user to the
design stage where the relevant results from the analysis stage will be displayed.

In this case, the effective length would be the beam length inputted by the user (5.3m),
the design moment would be the maximum moment in the beam (33.161kN) and the

beam type would be set to a ssmply supported beam.

Design Morment [kMm) @

Bearn Effective Length [rm) :

Bearmn Type - [switch using button] : |5il'l'lp|';' Supported |E||

Steel Strength - Main Reinft. (M/mm2) :

Concrete Grade (Mirmm2) :

™
a
L))
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3.2 TWO SPAN BEAM ANALYSIS

Step 1t

Two Span Bearm Analysis

P e R P e
E M o tot

User Instructions
From the first program screen, the same options of analysis or design are displayed. This

time round, we will select the second beam analysis option which is an analysis of atwo
span beam.

Section Information
Once clicked, the program now moves to the section alowing the user to select his/her

loading types, select the end fixity conditions (fixed or pinned) and input the span lengths
& loading data.
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Step 2:

[A] swap LoADING [E] [4] swap LoaDING [F]
E
e e — s
Man-central Full span UDL
L ip‘:‘i”tLDad I I A B A e &
¥
Span Stiffness Ratio Q Span Stiffness Ratio Q
[«] =]
! ! !
Span Length : [rn) Span Length : _ [ri)
Point Load : (kM) U Load : (kM

Point Load Pas, (a) : {rn)

=< left [FEM] right = _

CkMrm)

User Instructions

The first step here is to select your type of loading using the two red “swap loading”
arrow buttons at the top region of your screen. Once, the load types are selected (in this
example, a point load on one span and a UDL on the other have been selected), you may
wish to alter the end support types using the small red buttons at both ends of the beam.
Next, input your data into the provided text fields (span stiffnesses, lengths, load
positions and intensities) and click the F.EMmt.’s (fixed end moments) buttons. Once
your fixed end moments have been calculated and displayed, click the Analy ze button to
proceed.




Section Information

There are quite a number of activities carried out from the time the user gets into this
stage to the time he/she moves on.

First of al, there are 5 main loading types and 1 extra blank one left open if the user has
an uncommon loading arrangement and wishes to input hisher own FEMs. The blank
loading option is aso used if that span actually has no loading on it (though it may be
rare to exclude the salf weight of a beam from an anaysis). Whatever loading setup a
user may select, the appropriate section of code that calculates the FEM vaues for that
specific loading is prepared. After the user inputs the length, loading arrangement(s) and
intensities for one span, a click on the FEM button would execute the relevant code and
display the FEM values on the same screen.

The user may also wish to introduce fixed end supports instead of the default pin ends.
Changing these supports by clicking the edge buttons does not visualy carry out any task
but in actual sense, alters the whole moment distribution process (since moments cannot
be distributed to pin supports but only to fixed ends).

Once al the input data and FEMs have been set up, the user clicks the Analyze button.
This starts up the whole moment distribution process and displays the results on the next
screen. The moment distribution process for a two span beam consists of only one
iteration. (The full moment distribution code is explained in the Discussion, Chap. 4)




Step 3.

1.3 m
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BMD Sketch: Support & Midspan Moments
[not drawn to scale]
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-29.582 kN -94,10% kM

MD Process

User Instructions

For the data inputted in step 2, the resulting support moments and midspan moments are

displayed on a sketch of the bending moment diagram.
The user may wish to view the details of the moment distribution process. This may be

possible by clicking on the MD Process button at the bottom of the screen.

Section Information

Depending on the fixity conditions and the type of loading initially selected, the
appropriate BMD sketch (per span) is caled up and displayed. The salient moment values

calculated are displayed on their respective positions on the sketch.




The moment distribution process for this example is displayed as follows:

62 kM 16,8 kN/m
J' N T EETIEEEYT

FAY 1.51 ya

i,
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A B C
fixed %

pinned
E:  0,208333 0,369047 0,160714
1 0,.564516 CFs= 0,435483 u]
-42, 8537 15.91710 FEM = -14.525 a
-- -0,728526 M= -0,605623 --
-0,39293 -- COMs -- u]
-4 3, 2466 15.13123 Mrmts -15.1312 a

< BACK

As can be seen, only one distribution was necessary to achieve a moment balance.
It can also be seen that no moments have been carried over to support C since it is a

pinned support.




Step 4:

e oesten ]

User Instructions

Similarly, a linkage between the analysis and design stages is possible at the click of a
button. The RC Design button is located at the same place (top left corner) as it was for
the single span beam analysis. Clicking this button will bring you to the RC Design
section and the selected design values from the analysis will be pre-set for you. Y ou may
ater them if you so wish.

Section Information

Once this button is clicked, it evaluates al the support moments as well as the midspan
moments to obtain the maximum value (regardless of the sign. e.g. Design moment for
thisexample = -94.109). The maximum span length is a so determined and selected as the
effective length of the beam to be designed (7.0m). The last piece of information
swapped between these modules is the beam type, which is continuous in this case.

Cesign Marment [kMm)

Bearn Effective Length [m] :

Bearn Type - [switch using buttan] : |C0ntinunus |E||

Steal Strength - Main Reinft. (M/rmm2] @

Concrete Grade [Mfmm2) : w
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3.3 THREE SPANBEAM ANALYSIS

Step 1t

Three Span Beam Analysis

[ A
du

User Instructions
Back to the opening screen, the last option for analysisis that for a three-span beam.

Section Information
As was with the previous sections, this stage displays the possible modules to the user.
Clicking the three-span button will send the user to the input stages for the analysis of a

three-span beam.
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Step 2:




User Instructions

This setup is exactly the same as the two span process; the only difference is, of course,
the extra span.

In this example, the loading on the first span (left) has been left blank. This could either
denote an unloaded span or may give the user flexibility in inputting FEMs for a unique
loading type not catered for in the “swap loading” element. If you have no loading, you
will be required to input O (zero) in the FEM fields.

Section Information

The same sections of code are executed for the FEM calculations here as were previously
done for the 2-span input stage.

Once the user selects the loading setup, the appropriate section of code that calculates the
FEM values for that specific loading is prepared. After the user inputs the length, loading
arrangement and intensities for one span, a click on the FEM button would execute the
relevant code and display the FEM values under the respective span.

The same conditions apply for changing the end support conditions (fixed or pinned).
Changing these supports by clicking the edge buttons also aters the whole moment
distribution process here (since moments cannot be distributed to pin supports but only to
fixed ends).

Once all the input data and the three sets d FEMs have been set up, the user clicks the
Analyze button. This starts up the whole moment distribution process and displays the
results on the next screen. The moment distribution process for a three span beam
consists of severa iterations. In this case, 12 iterations are carried out before the moment
values are displayed. (The full moment distribution code process for the three span
analysisis aso explained in the Discussion, Chap. 4)
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Step 3:




User Instructions

The bending moment diagrams here are aso not drawn to scale but are representative of
the type of loading selected and the end fixity conditions. The salient moment values
(support and midspan moments) are displayed.

To view the moment distribution process, click on the MD Process button at the bottom.

Q€ oesion ]

To proceed straight to the design stage, click the RC Design button on the top left corner

of the screen.

Section Information

This stage is similar to the two-span display stage. The main difference however isin the
number of iterations (12) in the moment distribution process.

In the example shown above, the dotted BMD on the first span exists because the loading
type was not specified; only a set of FEMs was inputted. Hence, a dotted parabolic shape

with an accompanying comment was seen as suitable.

The moment distribution process for the above three-span example is shown below:
(However, due to screen size limitations, not all 12 iterations can be viewed. Only the
first three distributions are displayed).

It has been attempted to display these moment distribution tables as clearly as possible,

with asimilar arrangement as one would typically adopt in a manual solution.
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Once the user clicks the RC Design button from the results stage of the three-span
analysis, the moment values are evaluated to determine the maximum value and
concurrently, send this value to the RC Design module as the design moment. In our
example, the maximum moment from the analysis is —45.363kN. Similarly, the maximum
span length (6m) is set as the effective length for the design. Finally, the beam type is set

as Continuous.

Cesign Marment [kMm)

Bearn Effective Length (m] :

Bearn Type - [switch using buttan] : |C0ntinunus |E||

Steal Strength - Main Reinft. (M/rmm2] @

475
Concrete Grade [Mfmm2) : _




3.4 REINFORCED CONCRETE DESIGN

There are two ways of accessing the RC design module in this program. One is directly
selecting it from the opening screen and the other is from the various result display stages
in the one, two and three span analysis modules. The latter pre-inputs the design moment,
effective length and beam type depending on the characteristics of the analysis. These

figures may be atered if the user wishes to do so.

As was done for the analysis modules, the following is a user guide and explanation of

what goes on during the computer design process.
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Step 1:

REINFORCED CONCRETE DESIGN

Reinforced Concrete Bearn Design

User Instructions

From the opening screen, selectthe Reinforced Concrete Design button (as shown above)

to proceed to the RC Design module.

Section Information

Apart from the “floating” label code to make the description follow the mouse when the
user moves over a button, no major code is being executed at this stage. When the user
clicks the RC Design button, the input stage is brought to screen where the user inputs the
design parameters as will be seen in the next stage.
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Dezign Morent (kMm) :

on
o

Bearn Effective Length [m) @

Bearn Type - [switch using buttan] |5il'ﬂp|‘;' Supported |E||

Steel Strength - Main Reinft. (Mfmm2) @ B

Concrete Grade [(Mfmm2) :

User Instructions

Here, the required design parameters are to le inputted. The respective value units are
denoted in parentheses beside the respective input field. After all the parameters are

entered, click the Beam Sizing button to proceed.




Section Information

In this stage, severa design parameters necessary for the following stages are inputted. If
the design module is accessed from the opening screen, the Design Moment and Beam
Effective Length are blank and have to be filled by the user. If accessed from the beam
analyses results, the values will already be present, but can be altered.

The steel strength and concrete grade are set to the default values (425N/mn? and
30N/mm? respectively). As can be seen from the above values, these are flexible and can
be changed by the user.

BS8110 specifies three main types of beams that can be designed. These are: Simply
Supported, Continuous and Cantilevered Beams. These selections can be made using the
dropdown button at the Beam Type input field. Every time the button is clicked, a new
set of variables (BS8110 recommended sizing ratios, 20 for simply supported, 26 for
continuous and 7 for cantilevered) is brought forward for use by the next section of code.

In an event where the user inputs wrong data (e.g. a negative beam length), an error pop
up box has been programmed to display the wrong inputs to the user before the program
can proceed with the analysis.

Once the user clicks the analyze button and the first few lines of code verify that al the
inputted data is workable, the main section of code dealing with beam ®ction sizing is
executed and the results displayed in the next step.




Step 3.

Calculated Bearn Width (rmm) :

Suggested Bearn Width [rmm] :

Calculated Effective Depth [mm)

Suggested Effective Depth (mml @

Suggested Concrete Caver [mm) :

Suggested Tolerance [mm) :

2333

240

466, 7

[ £
)
o

RESIZE

dm

2%12

470

510 rmim

Old Design Morment - Excluding Self Weight of Bearn (kMm@ 78,3

Mew Design Morment - Including Self Weight of Bear (kMm@

DESIGN REINMFORCEMENT

User Instructions

The calculated and suggested beam dimensions are displayed. The new design moment,

which includes the self weight of the beam, is also displayed. If you do not wish to factor
the salf weight into the design moment, you may rectify the value to display the old
design moment. The suggested beam breadth and effective depth may be altered but it is

not recommended to input a new dimension smaller than that suggested. This is because

any smaller dimensions will result in a lower concrete capacity and if this is too low, the

design moment may not be resisted by the lowered concrete capacity.
A default cover of 30mm and a tolerance of 10mm are displayed. If you wish to change

any dimension or figure, click the resize button after you input the new value(s). The new
dimensions will be displayed on the figure alongside. The additional design moment will
be ether increased or decreased depending on how much you have increased or

decreased the section area.




Once the resizing is complete and the new design moment attained, click the button at the
bottom of the screen labeled Design Reinforcement to proceed.

Section Information

To arrive at this information, the major part of the beam sizing code dealt with specifying
aminimum effective depth that will:

satisfy the BS8110 ratio values

ensure that the concrete capacity of the section is adequate

limit the excessive deflection for this beam (via modification factor)

avoid a situation where the shearing force governs the design.

Next, the breadth is calculated as ¥ the effective depth.

The calculated minimum effective depth and breadth of the beam section are displayed.
However, the user is not required to follow these exact figures; after al, design is an art.
The calculated dimensions are displayed and the suggested minimum dimensions
displayed immediately below them. These suggested minimum dimensions are arrived at
by rounding off the calculated breadth and effective depth to the nearest higher 10mm.
(i.e. 23mm is rounded off to 30mm rather than 20mm).

The new design moment is essentially a summation of the old design moment inputted by
the user and the moment induced by the self weight of the beam acting as a UDL along
the beam length.

The user may alter any dimensions. After doing so, clicking the Resize button will set the
new dimensions into the scripts as well as recalculate the new design moment by
factoring in the added self weight of the beam.

Once theresizing is complete and the new design moment attained, click the button at the

bottom of the screen labeled Design Reinforcement to proceed.




Step 4

For a Simply Supported Beam with an Effective Length of
S5.6m, An adequate Section size would be: 510 x 240mm

Provide at least S06.4=zq.mm for the Main Reinfocernent
Steel and Morminal (.. 2¥12) Compreszsion Reinfocernent

N

2%12

Az

240 rrm

470

510 rmim

User Instructions

Thisis the final stage of the process that displays the areas of stedl required for the design

parameters specified. The final member sizing and area(s) of reinforcement displayed. If

compression stedl is required, its area will also be calculated and displayed alongside the

area of tension sted.

The areas of steel shown in the figure abovwe should serve as minimum areas of

reinforcement to be provided in such a section. After reading off this area, an adequate

arrangement of steel bars should be determined.




Section Information

To get to this fina stage, the main sections of code dedt with determining the area(s) of
steel required. A check was made to calculate whether compression steel would be
required to supplement the moment of resistance of the concrete. All figures such as K,
lever arm, z, etc were determined in this section. These values facilitated the calculation
of the designed areas of steel. If the design moment did not exceed the moment of
resistance of the concrete, a statement within the script would jump to a different region
of code that would only alow for the specification of a minimum area of steel required
for the section, and provide the standard 2Y 12 bars in the compression zone to act as

shear hangars.




CHAPTER 4: DISCUSSION

This chapter discusses the main code sections of the program. These are:
Code for Single Span Beam Analysis
Code for the Two & Three Span Beam Analysis (smilar)
Code for Reinforced Concrete Design Module

All code written for this program has been printed out in the Appendices.

Note on Code:

Any line starting with two forward slashes indicates that it is a comment.

eg.

/!l this is a conment

All other lines are executable functions, variables, expressions or strings.




4.1 Single Span Beam Analysis

Code on K eyframe 01:

stop();
/'l clearing the Input Field Val ues

[IITI
)

S
W e

The above code sets all text fields to <empty> so asto prepare the error box pop upsin
case the user has not inputted any values and clicks the analyze button.

Codeon the ANALYZE button:

on (release) {

I

this is the function controlling the error nessage popups for

the input fields
function error(nsg) {

}

/1l the function nane is "error"” and the paranmeter is "nmsg"
with (_root.beanDl1. errorbox) {

got oAndSt op(5) ;

_root . beanD1. errorbox. errornsg = neg;

/1 we just assignhed _root.abc.efg to MSG

A function has been created to check the validity of an input figure and display an error
message.

// conditions :
if (s<0) {

}
}

/'l checking for negative |engths

error("Please insert a Positive Beam Length val ue");

/1 calling "error" funct & setting the param "nsg"
else if (s ==0) {

/'l checking if the length is zero...

error("\"Zero\" is not a valid Beam Length");
elseif (s =="") {

error("Please insert a Beam Length val ue");
else if (w==0) {

error("Please insert a |larger Load val ue");

else if (w=="") {
error("Please insert a Load val ue");
el se {

This is the section where the parameters are sent to the error function to set the right
error message for the respective wrong value inputted




/1l here conme the equations
/1 Menory Note: (w=UDL), (s=beam span | ength)

throughout the program, the letter “ " representing length has been avoided because it
can be easily confused with the number “ 1" . In most scripts, “ I” has been replaced with
“* SH .

mrax = (ws*s)/12;

ncentre = (ws*s)/ 24,

dmax = (ws*s*s*s)/(384*ei*0.001);
sf = (ws)/2;

these are the equations for a single span fixed -ended beamwith a UDL.
Namely:

VV|2

Mspt = 12
VVIZ
M =—
midspan 24
4

D = Wl
334El

Shear Force= %

/1l preparing values for display + rounding themoff to 3.d.p.
mmaxval = Math.round(mmax * 1000) / 1000;

ncentreval = Math.round(ncentre * 1000) / 1000;

dmaxval = Math.round(dmax * 1000) / 1000;

sfval = Math.round(sf * 1000) / 1000;

flash usually rounds off valuesto 12 significant figures. Such accuracies are not
required; hence, the values have been rounded off to three decimal places for display.

/1 we'll now go to the display section (Keyfrane 5)
got oAndPIl ay(5);




Code Executed on the Dragger M odule:

onCl i pEvent (enterFrame) {

/1 to obtain the position of the dragger in the BeanmDl1Modul e
di st = 150 + _root. bean01. bOlnodul e. dr agger. _x;
/1l rel. to CenterPoint of BOlModul e, "dragger" MC is -155px (left)

/1l DragButton's _xpos is -5px ... hence the 150 + initially
/'l next, localizing variables to avoid long target paths in egns
X = (dist * _root.beanD1.s) / 300;

the x position is calculated at every pixel value of the drawn beam and the corresponding
real x that would be displayed if the beam wer e actually 300pixels wide is cal culated.

w = _root. beanDl. w,

s = _root. beanDl.s;

ei = _root. beanDl. ei

/1 ... and here come the equations

m = w(6*s*x - s*s - 6*x*x)/12;
dx = ((wrx*x) * ((s - xX)*(s-x)))/(24*ei *0.001);
sfx = w((s/2)-x);

these equations are executed for every pixel moved by the dragger:

M =ﬂ(63x- s?- 6x?)
12

2

DX
24El
Shear, = w(% - X)

(s- )°

/1 next, rounding off to 3.d.p. and preparing results for display
xval = Math.round(x * 1000) / 1000 + " ni

mxval = Math.round(nmx * 1000) / 1000 + " KkNni

dxval = Math.round(dx * 1000) / 1000 + " mmi;

sfxval = Math.round(sfx * 1000) / 1000 + " kN';

Codeon the Button to be Dragged:

on (press) {
/1 dragging the whole "dragger" MC
startDrag("_root. beanDl. bO1nodul e. dragger", false, -150, 5, 150, 5);
/1l spans from -150px(left) to +150px(right) = 300pixels to calculate
/1 Nb. whatever length (s) the user inputted, it will be split into

300 for each pixel nmoved by the dragger

}




this section allows the small red button called “ dragger” to be dragged when pressed
only within the beam length and not to anywhere else on the screen. When the button is
released, the last command stops the dragging process.

on (rel ease, rel easeQutside) {
stopDrag();

}

Code on the RC Design Button:

on (release) {
_root.origin = "anal ysis";
_root.store.m= mrexval ;
_root.store.s = s;
_root.store. beantype = "Sinply Supported";

this section the maximum moment val ues, the beam length and beam type variables are
sent to a temporary storage (called _root.store) so asto be picked up fromthe RC Design
module later on.

with (_root) {
got oAndSt op( 115);
with (_root.design) {
got oAndSt op( 2) ;
}

}

the last few lines send the program to the RC Design module, specifically to the section
whereacodeb it asksfor the 3 variables from the temporary storage.




42 Two & Three Span L oad Swapper M odules

Codeon Keyframe01 of the L oad Swapper M odule:

o
= =—h
-
I
=

TCoT®sOn
TR TR T TR TR TR

- —h
D D

33
» o I

1
1
— nun,

stop();

this code is executed as soon as the user clicks on any of the two or three span beam
analysis modules. Its basic function isto set all the text field values to <empty> so that in
case a user forgetsto input a value, the error box pop up will work properly.

Codeon the FEM button for the First L oading Case (UDL):

on (release) {
/1 the function controlling the error nessages for the input fields
function error(msg) {
/1l the function name is "error"” and the paraneter is "nsg"
with (_root.twospan.errorbox) {
got oAndSt op(5) ;
_root.twospan. errorbox. errornsg = neg;
/! we just assigned _root.bla.bla.bla to MSG

}

thisis almost the same error box function as was discussed earlier in the single span
module. The only differenceisin the naming of the text fields to be called and the
descriptions to the user of what exactly thewrong input is.

/1 conditions :
if (s<0) {
/'l checking for negative |engths
error("Please insert a Positive Beam Length val ue");
/1 calling error funct & setting "nsg" to "Please inse..."

the first condition checks whether the beam length (s) is negative (<0), and if it is, it
displaysthe appropriate error description to the user.

} elseif (s ==0) {

/1 Nb. "=" assigns and "==" is a condition equality
error("\"Zero\" is not a valid Beam Length");
/'l Nb. the code reads \ " as "
} elseif (s =="") {
error("Please insert a Beam Length val ue");
} else if (stiff =="") {

error("Please insert a Stiffness Ratio");




} elseif (stiff < 0) {

error("Please insert a Positive Stiffness Ratio");
} elseif (w==0) {

error("Please insert a |arger Load val ue");

} elseif (w=="") {
error("Please insert a Load Val ue");
} else {

the error checks are now complete. If they all pass, the code proceeds to the next section
which calculates the fixed end moment values as well as the midspan moment according
to the type and intensity of loading chosen as well as the end support conditions.

| eftspt = _root.twospan.|eftsptswapper.|eftspt;
if (leftspt == "pinned") {
femab = O;
fenba = ws*s/ 12 + ws*s/ 24;
} else if (leftspt == "fixed") {
femab = -w's*s/ 12
femba = w*s*s/ 12
}

mm dl eft = ws*s/8;

}

the equations are as follows:

for a fixed ended span: (i.e. the edge support is set as fixed)

midspan moment as a simply supported span with a UDL:

VVI2

AB MIDSPAN —
8

M

Nb. The remaining code sections carry out the exact task asthis bit just discussed; the
only differenceisin the text fields to be checked for errorsand the different moment
equations for the different loading type setups and support conditions.




Code on the FEM button for the Second L oading Case (Partial UDL):

on (release) {

b = parseFl oat (b)
¢ = parseFloat (c);
s = parseFloat (s);

w = parseFl oat (w);
/1 this is the function controlling the error nessage popups for
the input fields
function error(msg) {
/1l the function nane is "error"” and the paranmeter is "nmsg"
wi th (_root.twospan. errorbox) {
got oAndSt op(5) ;
_root.twospan. errorbox. errornmsg = nsg;
/1l we just assigned _root.bla.bla.bla to MSG
}
}
/1 conditions :
if (s<0) {
/'l checking for negative |engths
error("Please insert a Positive Beam Length val ue");
/'l calling error function & setting the param"nsg".
} elseif (s == 0) {
/'l checking if the length is zero..
error("\"Zero\" is not a valid Beam Length");

/1 Nb. the code reads \ " as
} elseif (s =="") {

error("Please insert a Beam Length val ue");
} else if (stiff =="") {

error("Please insert a Stiffness Ratio");
} elseif (stiff < 0) {

error("Please insert a Positive Stiffness Ratio");
} elseif (w==20) {

error("Please insert a |arger Load val ue");
} elseif (w=="") {

error("Please insert a Load Val ue");
} elseif (b =="") {

error("Please insert a Load Position Val ue")
} elseif (b <0) {
error("Please insert a Positive Load Position Value");
} elseif (b >=s) {
error ("Pl ease reduce your Load Position Value");
} elseif (c =="") {
error("Please insert a UDL Length Extent Value");
} else if (c <0) {
error("Please insert a Positive UDL Length Val ue");
} elseif (c >s) {
error ("Please reduce your UDL Length Val ue");
} else if (b+tc > s) {
error("Pl ease reduce Load Position and UDL Length Val ues");
} else {

the code here now includes different equations for the respective loading setup:

d
9

b+c;
s-d;




e = c+g;
d = b+c;
g = s-d;
e = c+g;
| eftspt = _root.twospan.|eftsptswapper.|eftspt;
if (leftspt == "pinned") {
femab = O;
femba = ((w)/(8*s*s*c))*(e*e-g*Qg)*(2*s*s-g*g-e*e)
} else if (leftspt == "fixed") {
femab = ((-wW/(12*s*s))*((e*e*e)*((4*s)-(3*e))-

(9*g*9)*((4*s)-(3%0)));

femba = ((W)/(12*s*s))*(((d*d*d)*((4*s)-(3*d))) -
((b*b*b) *(4*s-3*b))) +
((w)/(24*s*s))*((e*exe)*((4*s)-(3"¢e)) -
(9*g*9) *((4*s)-(3%9)));

rlo= ((wee)/(2%s))*(2%g + ¢);
mridieft = rl*(b + (rl/(2*w))); }

Code on the FEM button for the Third L oading Case (Central Point L cad):

on (release) {
/1 function controlling error nessage popups for the input fields
function error(msg) {
/1l the function nane is "error" and the paraneter is "nsg"
with (_root.twospan. errorbox) {
got oAndSt op(5) ;
_root.twospan. errorbox. errornmsg = neg;
/1 we just assigned _root.bla.bla.bla to MSG
}
}
/1 conditions :
if (s<0) {
/'l checking for negative |engths
error("Please insert a Positive Beam Length val ue");
/1 calling our "error" function and setting the param "nsg
} elseif (s == 0) {

/1 Nb. "=" assigns and "==" is a condition equality
error("\"Zero\" is not a valid Beam Length");
/1 Nb. the code reads \ " as "
} elseif (s =="") {
error("Please insert a Beam Length val ue");
} else if (stiff =="") {

error("Please insert a Stiffness Ratio");
} elseif (stiff < 0) {
error("Please insert a Positive Stiffness Ratio");
} elseif (p ==0) {
error("Please insert a |arger Load val ue");
} elseif (p=="") {
error("Please insert a Load Val ue");
} else {
| eftspt = _root.twospan.|eftsptswapper.|eftspt;
if (leftspt == "pinned") {
femab = O;
fenmba = p*s/8 + p*s/16;




} else if (leftspt == "fixed") {

femab = - p*s/8;
femba = p*s/8;

}

mmi dl eft = p*s/4; }

Code on the FEM button for the Fourth L oading Case (Non-central Point L oad):

on (release) {
a = parseFloat (a);
s = parseFloat (s);
/1l funct controlling the error nessage popups for the input fields
function error(nsg) {
/1l the function name is "error" and the paraneter is "nsg"
with (_root.twospan. errorbox) {
got oAndSt op(5) ;
_root.twospan. errorbox. errornsg = nsg;
/'l we just assigned _root.bla.bla.bla to MSG
}
}
/1 conditions
if (s<0) {
/'l checking for negative |engths
error("Please insert a Positive Beam Length val ue");
/1 calling our "error" function and setting the param "nsg’
} else if (s ==0) {

/1 Nb. "=" assigns and "==" is a condition equality
error("\"Zero\" is not a valid Beam Length");
/'l Nb. the code reads \ " as "
} elseif (s =="")
error("Please insert a Beam Length val ue");
} else if (stiff =="") {

error("Please insert a Stiffness Ratio");
} elseif (stiff <0) {
error("Please insert a Positive Stiffness Ratio");
} elseif (p ==0) {
error("Please insert a |larger Load val ue");
} elseif (p==""){
error("Please insert a Load Val ue");
} elseif (a ==0) {
error("Please insert a |larger Load Position value");
} elseif (a=="")
error("Please insert a Load Position Value");
} else if (a >=5s) {
error("Pl ease reduce your Load Position Value");
} elseif (a <0) {
error("Please insert a Positive Load Position Value");

} else {
h = s-a;
|l eftspt = _root.twospan.| eftsptswapper.|eftspt;
if (leftspt == "pinned") {
femab = O;
femba = (p*h*a*a)/(s*s) + (p*h*h*a)/ (2*s*s);
} else if (leftspt == "fixed") {

femab = (-p*h*h*a)/(s*s)




Lod and Partial L):

femba = (p*h*a*a)/(s*s)

mmi dl eft

VI D

on (release) {

TcswooTw

= par seFl oat
par seFl oat
par seFl oat
par seFl oat
par seFl oat
par seFl oat
/1 funct controlling the error

= p*a*h/s;

(a);
(b);
(c);
(s);
(W,
(p);

function error(nmsg) {

I

the function nane is

}

"error" and the paraneter is "msg"

with (_root.twospan. errorbox) {
got oAndSt op(5) ;

_root.twospan. error box. error neg

/1 we just assigned _root.bla.bla.bla to MSG

}

message popups for the input fields

/1 conditions :
if (s<0) {
/'l checking for negative |engths
error("Please insert a Positive Beam Length val ue");

/'l setting the param "nsg" to "Please insert

else if (s

0) {

/'l checking if the length is zero..

is not a valid Beam

Lengt h");
\ " as "

error("Please insert a Beam Length val ue");

error("\"Zero\"
/1 Nb. the code reads
elseif (s =="")
else if (stiff =="") {
error("Please insert
else if (stiff <0) {
error("Pl ease insert
else if (w==20) {
error ("Please insert
else if (w=="") {
error("Pl ease insert
else if (p==0) {
error("Pl ease insert
elseif (p=="") {
error("Pl ease insert
else if (a==0) {
error("Pl ease insert
else if (a=="") {
error("Pl ease insert
else if (a >=5s) {
error("Pl ease reduce

else if (a

<0) {

a Stiffness Ratio");

a Positive Stiffness Ratio");

Q

| arger Load value");

a Load Val ue");

Q

| arger Load val ue");

a Load Val ue");

3}

| arger Load Position value");
a Load Position Value");

your Load Position Val ue");

error("Please insert a Positive Load Position Value");

else if (b

= "") |

bla bla bla..."



error("Please insert a Load Position Value");
} elseif (b <0) {
error("Please insert a Positive Load Position Value");
} else if (b >=5s) {
error ("M ease reduce your Load Position Value");
} elseif (¢c =="") {
error("Please insert a UDL Length Extent Value");
} elseif (c <0) {
error("Please insert a Positive UDL Length Val ue");
} elseif (c >s) {
error("Pl ease reduce your UDL Length Val ue");
} else if (b+tc > s) {
error("Please reduce your Load Position and UDL Length

all error checks are included here since this combined loading has all possible input
fields for dimensions, stiffnesses

Val ues");
} else {

o

L LI | I TR |

b+c;
s-d;
c+g;
s-a;
tspt = _root.twospan.| eftsptswapper.|eftspt;
if (leftspt == "pinned") {
femab = O;
fenba = ((w)/(12*s*s))*(((d*d*d)*(4*s-3*d)) - ((b*b*b)*(4*s-
3*b))) +(p*h*a*a)/(s*s) +
((W7(24*s*s))*((e*e*e)*((4*s)-(3*e)) -
(9*g*9) *((4*s)-(3*9))) +(p*h*h*a)/(2*s*s);

} else if (leftspt == "fixed") {
femab = ((-w)/(12*s*s))*((e*e*e)*((4*s)-(3*e))-
(9*9*9) *((4*s)-(3*9))) +(-p*h*h*a)/ (s*s);
femba = ((W)/(12*s*s))*(((d*d*d)*(4*s-3*d)) -((b*b*b)*(4*s-
3*b))) +(p*h*a*a)/ (s*s);

g
e
h
e

}

ri = ((wc)/(2%s))*(2*g + c);

mmidleft = rl*(b + (rl/(2*wW))) + p*a*h/s; }
}

the combined equations above use the principle of superposition. They consist of a sum of
the equationsfor a non-central point load and those for a partial UDL superimposed on
the same beam span:

The above 5 sets of code are repeated, with different labeling, for the Right Hand Sde
Spoan of the 2-span Module, the Left Hand Side Span of the 3-span Module and the Right
Hand Side Span of the 3-span Module.

The Central Span of the 3-span Module also hasa similar structure of code but has
excluded the formulae for the propped cantilevers since it’ s edge supports are continuous
and will therefore have Fixed End Moments.




4.3 Two Span Beam Analysis

The code for al Load Swapper Modules in the Two & Three Span Analysesis the same.
(See Sect. 4.1.2 for Details)

Code on the Two -Span ANAL Y ZE button:

on (release) {
/1 this is the function controlling the error nessage popups for
the input fields
function error(msg) {
/1 the function name is "error" and the paraneter is "nmsg"
with (_root.twospan. errorbox) {
got o0AndSt op(5) ;
_root.twospan. errorbox. errornsg = neg;
/!l we just assigned _root.bla.bla.bla to MSG

}

thisis almost the same error box function as was discussed earlier in the both the single
and two -span modules. Difference isin the naming of the text fields to be called to the
error function and the descriptionsto the user of what exactly the wrong input is.

/1 conditions
if (_root.twospan.Isleft.s =="")
error("Please insert the Left Span Length");
} else if (_root.twospan.lsleft.s <= 0) {
error("Please insert a Positive Left Span Length");
} else if (_root.twospan.lsright.s == "") {
error("Pl ease insert the Right Span Length");
} else if (_root.twospan.lsright.s <= 0) {
error("Please insert a Positive Right Span Length");

} else if (_root.twospan.|lsleft.femab == "" or
_root.twospan.lsleft.fenba == "") {
error("Please insert the all FEM values for the Left Span");
} else if (_root.twospan.|lsright.fenmbc == "" or
_root.twospan.lsright.fench == "")
error("Please insert the all FEM values for the Ri ght Span");
} else {

the error function and checks are complete. Now on to the main moment distribution
process:

/1l localizing span stiffnesses (from"stiff" to "iab" or "ibc")
iab = parseFloat (_root.twospan.|lsleft.stiff);

i bc = parseFloat (_root.twospan.|sright.stiff);

/1 localizing dinmensions & | oadings fromthe LoadSwap Mdul es
stiffleft = _root.twospan.|sleft.stiff;

aleft = _root.twospan.Isleft.a + " nf;
bleft = _root.twospan.lsleft.b + " nf
cleft = _root.twospan.lsleft.c + " ni;

s2left = (_root.twospan.Isleft.s)/2 + " ni
pleft = _root.twospan.|lsleft.p + " kN';




wWeft = root.twospan.Isleft.w + " kN nf

Icleft = _root.twospan.|lsleft.lcleft;

/1 .. and for the RHS

stiffright = _root.twospan.|sright.stiff;
aright = _root.twospan.lsright.a + " ni;

bri ght _root.twospan.|sright.b + " ni;

cright _root.twospan.lsright.c + " ni;
s2right = (_root.twospan.lsright.s)/2 + " ni;
pri ght _root.twospan.Isright.p + " kN

wri ght _root.twospan.lsright.w + " kN nf
lcright = _root.twospan.|sright.lcright;

/'l localizing the span |engths

sab = parseFloat (_root.twospan.|sleft.s);

sbc = parseFloat (_root.twospan.!|sright.s);

/'l localizing the end support conditions

|l eftspt = _root.twospan.| eftsptswapper.|eftspt;
rightspt = _root.twospan.rightsptswapper.rightspt;
/1 localizing the FEMs

femab = parseFl oat (_root.twospan.|sleft.femab);
fenba = parseFl oat (_root.twospan.|sleft.fenba);
fembc = parseFl oat (_root.twospan.|sright.fenbc);
fencb = parseFl oat (_root.twospan.|sright.fench)

the basi ¢ function of the chunk of code above is to pick the inputted and cal culated values
fromthe 6 load swapper modules (Discussed in Sect. 3.2), and to localize themin this
code so asto avoid going to and fro every few lines.

the parseFloat (); function converts any string datatype to a number datatype. Thisis
extremely important to avoid gross errors:

Eg. If not converted to number datatypes, 2 + 3would yield* 23" sinceit readsthe
values as letters rather than numbers.

/1 calculating the stiffness factors (K) for each span
if (leftspt == "pinned") {
kab = 0. 75*(i ab/ sab);
} else if (leftspt == "fixed") {
kab = (iab/sab);
/'l note the reduction to 0.75 when an end support is pinned
/1 but remmins I/L when fixed

we are now calculating th e stiffness factors (K) asK = I/L.
asis mentioned in the // comments, a reduction of 3% in the stiffness value occursif an end

support is pinned.

}
if (rightspt == "pinned") {
kbc = 0. 75* (i bc/ sbc);
} else if (rightspt == "fixed") {

kbc = (ibc/sbc);
/'l note the reduction to 0.75 when an end support is pinned
/1l remains |I/L when fixed

}

/!l summing stiffnesses at each end support B
sunkb = kab+kbc;




the stiffnessvalues of the spans meeting at one support are summed to enable the
distribution factors (next step) to be calculated

/1 now to calculate the distribution factors for each end

if (leftspt == "pinned") {
dfab = 0;

} else if (leftspt == "fixed") {
dfab = 1;

/'l basic condition of (1) if fixed
/1 no distribution mts (0) to a pinned support

rule of thumb: no moments can be distributed to a pinned support and the DF at a fixed
endisalways1.

}
df ba = kab/ sunkb;
df bc = kbc/ sunkb
if (rightspt == "pinned") {
dfcb = 0;
} else if (rightspt == "fixed") {
dfcb = 1;
/'l basic condition of (1) if fixed
/1 no distribution mints (0) to a pinned support
}

continuation of calculating the Distribution Factors.
The actual equationis:

DF,; =5 _KAB
a. KB _KAB+KBC

/1 now cal cul ating Distribution Mnents
dmbaOl = - (fenba+fenbc) *df ba;
dnbcO0l = - (fenba+fenbc) *df bc;

the distribution moments can be cal culated as minus the sum of the fixed end moments
meeting at one support multiplied by the directional distribution factor.

/1 and now for the Carry Over Mbnents
/1 can only carry over to a Fixed Support

if (leftspt == "pinned") {
comab0l1l = 0O
femab = 0;

} else if (leftspt == "fixed") {

comab0l1 = 0. 5*dnball;
}

states that if a support is pinned, no moments can be carried over to it. Otherwise, if
fixed, a half of the distributed moment (with the same sign) is carried over to the net
support.

if (rightspt == "pinned") {




conchO1l

= 0‘
femch = O;

note the last line that sets the FEM to zero if pinned, thisisto avoid a situation where the
user intentionally sets a Fixed End Moment, other than zero. This line ensures that the
FEM value does not find its way into the summation as a final moment at a pinned end.

} else if (rightspt == "fixed") {
conch01l = 0.5*dnbc01;
}

since thisis a two span beam, only one distribution and carry over is necessary.

/! the Final Mnment = the sum of colum FEMs, DMs and COWVs

mab = femab + comab01;
nmba = fenba + dnbaOl;
nmbc = fenbc + dnbcO1;
ncb = fenmcbh + conchO1;

the moment distribution process is complete. Next, the midspan moments are cal culated
making use of the principle of superposition.

/'l calculating the M D SPAN MOMENTS:
/1l first, localizing the mdspan mts fromthe input stage
mm dl eft = _root.twospan.|sleft.mrdleft;
nm dright = _root.twospan.|sright.midright;
/'l next, calculating the avg. top-span nonent fromthe end mts
/1 making end mt values +ve (for the follow ng cal cul ation)
pmab = mab;
if (mb < 0) {

pmeb = -1 * mab;
}

pmba = nba;
if (nba < 0) {

pnmba = -1 * nmba;
}

pnbc = nbc;
if (nmbc < 0) {
pnbc = -1 * nbc;

pncb = ncb;
if (nmch < 0) {

pnrch = -1 * ncb;
}

/1 calculating the average top mts

nt opl eft = (pnmab+pnba)/ 2;

m opri ght = (prmbc+pncb)/ 2;

// calculating mdspan mts by subtracting from avg. top nmmts
mmidl eft = nmtopleft - nmdleft;

mm dright = mtopright - nmidright;

as can be observed from the // comments, the midspan moment was calculated from the
superposition of the end support moments and the mid moment being simply supported as
was cal culated back in the load swap modules.

/'l rounding off the MMI values to 3.d.p. for display




mabval = Math.round(mab * 1000) / 1000 + " KkN';
nbaval = Mat h.round(nba * 1000) / 1000 + " KN';
nmbcval = Math.round(nmbc * 1000) / 1000 + " KkN';
nmcbval = Math.round(ncb * 1000) / 1000 + " KkN';

mm dl eftval = Math.round(nmm dleft * 1000) / 1000 + " kN';
mm drightval = Math.round(nm dright * 1000) / 1000 + " kN';

accuracy beyond three decimal placesis not required. The moments are thus rounded off
to 3.d.p and the respective units added to the values for display on the BMDs.

/'l sending the playhead to KFO5 after conpleting the MD Process
got oAnd St op( 5) ;

Code at the Results Display Stage for the Two Span Analysis:

/1 adding the dinensions to the |l engths for display purposes
sabm = sab + " ni;
sbcm = sbc + " nf;
/1 now altering the support displayed at the results stage dependi ng on
that selected initially
if (leftspt == "pinned") {
with (_root.twospan.sptresultleft) {
got oAndSt op(1);

}
} else if (leftspt == "fixed") {
with (_root.twospan.sptresultleft) {
got 0AndSt op( 2) ;
}

}
if (rightspt == "pinned") {
with (_root.twospan.sptresultright) {
got oAndSt op( 1) ;
}

} else if (rightspt == "fixed") {

with (_root.twospan.sptresultright) {
got oAndSt op( 2) ;
}
}

stop();
the above section of code basically initializes what types of end supports the user has

chosen aswell asthe type of loading so that the next section picks thisinformation and
displaysthe appropriate Bending Moment Diagram.

Codeon the BMD Sketch Swapper on the L eft Span:

onCli pEvent (Il oad) {

mab = _root.twospan. mabval ;
nmba = _root.twospan. nbaval ;
nmi dl eft = _root.twospan. nm dl eftval;

I cleft = parseFloat (_root.twospan.lcleft);
if (_root.twospan.|leftspt == "pinned") {




with (_root.twospan. bndl eft) {
got oAndSt op(l cl eft);

} else if (_root.twospan.leftspt == "fixed") {
with (_root.twospan. bndl eft) {
got oAndStop(l cleft + 10);
}

these two sections of code (above & Below) controlling the BMD diagramsto be
displayed basically collect information about the load type and support conditions and
using that information, are able to call up and display the appropriate sketch.

Codeon the BMD Sketch Swapper on the Right Span:

onCl i pEvent (load) {
nmbc = _root.twospan. nbcval ;
ncb = _root.twospan. nchval ;
nmi dri ght = _root.twospan. mm dri ghtval;
I cright = parseFloat (_root.twospan.lcright);
if (_root.twospan.rightspt == "pinned") {
with (_root.twospan. bndright) {
got oAndSt op( | cright);
}

} else if (_root.twospan.rightspt == "fixed") {
with (_root.twospan. bndright) {
got oAndSt op(l cright + 10);
}

Code on the RC Design Button:

on (release) {

/1 function to cal culate the maxi mum value in any array specified
// to be mainly used in the transition between ANALYSIS and DESI GN
/1l i.e. to use the maxi num nmoment in the beam as the Design Mnent
function maxl nArray(checkArray) ({

/1 function name = "maxlnArray", parameter = "checkArray"

var max Val - Nunber . MAX_VALUE;

for (var i 0; i < checkArray.length; i++) {

max Val Mat h. max(checkArray[i], maxVal);
}

return maxVal ;

}

the above function calculatesthe maximumvalue in any array specified later on (to be

usedin deter mining the maximum moments and span lengths) to be mainly used in the
transition between ANALYS Sand DESIGN




/'l renmpving all the "kN' fromthe strings & converting to nunbers

ra = parseFl oat (nabval);
rb = parseFl oat (nbaval);
rc = parseFl oat (nbcval);
rd = parseFl oat (nctbval);
re = parseFloat (nmmdleftval);

rf par seFl oat (rmmidrightval);
/'l creating a funct. called nodulus to transformany -ve no. to +ve
function nodulus(r) {
if (r <0) {
return (-1)*(r);
} elseif (r >=0) {
return r;
}

}

this function allows any set numerical datatypein a array to be converted froma
negative value to a positive integer. It first checksif the number islessthat O, if it is

negative, it will be multiplied by -1 so asto make it positive.

/'l transforming all MMIs to +ve (only for the nmaxlnArray Functions)

ra = nodul us(ra);
rb = nodul us(rb);
rc = nodul us(rc);
rd = nodul us(rd);
re = nodul us(re)

rf modul us(rf);

above, new variables have been cal culated to contain all the moment values that have
been converted to positive integers. These values are converted to positive integers so as

not to create any bias and exclude a negative moment from being selected as the design
moment if it does, in fact have the maximum value as a modulus.

_root.origin = "anal ysis";

_root.store.m= naxlnArray([ra, rb, rc, rd, re, rf]);
_root.store.s = maxl nArray([sab, sbc]);

_root.store. beantype = "Conti nuous"

the design moment, beam length and beam type have just been evaluated and sent to the
_root.storage to be picked up later on by the RC Design module.

with (_root) {
got oAndSt op(115);
with (_root.design) {
got oAndSt op(2) ;
}

}

the last bit of code sends the program to the Section in the RC Modul e that picks up the
design parameter s from the temporary storage.




4.4 ThreeSpan Beam Analysis

The code for all Load Swapper Modules in the Two & Three Span Analysesis the same.
(See Sect. 4.1.2 for Details)

Codefor the Three-Span ANALY ZE Button:

Most of the comments here will borrow from those already encountered in the two-span
discussion; thisis because the code sections that carry out the monent distributions for
the two and three span beams are quite similar. The only difference isin the number of

iterations and the extra span (and support). Otherwise, the code structure and sequence
is exactly the same.

on (release) {
/1 this is the function controlling the error nmessage popups for
the input fields
function error(nsg) {
/1 the function nane is "error" and the paranmeter is "nsg"
with (_root.threespan. errorbox) {
got oAndSt op(5) ;
_root.threespan. errorbox. errornsg = nsg;
/1 we just assigned _root.bla.bla.bla to MSG

}

thisis almost the same error box function as was discussed earlier in the both the single
and two -span modules. Differenceisin the naming of the text fields to be called to the
error function and the descriptions to the user of what exactly the wrong input is.

/1 conditions :
if (_root.threespan.lsleft.s == "") {
error("Please insert the Left Span Length");
} else if (_root.threespan.lsleft.s <= 0) {
error("Please insert a Positive Left Span Length");
} else if (_root.threespan.lsnid.s =="")
error("Please insert the Mddle Span Length");
} else if (_root.threespan.lsmd.s <= 0) {
error("Please insert a Positive Mddle Span Length");
} else if (_root.threespan.lsright.s =="") {
error("Please insert the Right Span Length");
} else if (_root.threespan.lsright.s <= 0) {
error("Please insert a Positive Right Span Length");

} else if (_root.threespan.lsleft.femab == "" or
_root.threespan.lsleft.femba == "") {
error("Please insert the all FEM values for the Left Span");
} else if (_root.threespan.lsmd.fenbc == "" or
_root.threespan.lsmd.fench == "")

error("Please insert the all FEM values for the Mddle Span");




} else if (_root.threespan.lsright.fencd ==

or
_root.threespan.|sright.femdc == "") {

error("Please insert the all FEM values for the Right Span");
} else {

the error function and checks are complete. Now on to the main moment distribution
process:

I

| eft

/1 LOCALI ZI NG dinmensions & | oadings fromthe LoadSwap

span:
stiffleft = _root.threespan.|lsleft.stiff;
aleft = _root.threespan.lsleft.a + " ni;

bleft = _root.threespan.Isleft.b + " ni;

cleft = _root.threespan.Isleft.c + " n;
s2left = (_root.threespan.lsleft.s)/2 + " nf;
pleft = root.threespan.lsleft.p + " kN

weft = _root.threespan.lsleft.w + " kN ni;
Icleft = _root.threespan.|lsleft.lcleft;

/1 md span:

stiffmd = _root.threespan.lsmd.stiff;

amid = _root.threespan.lsmd.a + " ni;

bm d _root.threespan.lsnmd. b + " ni;

cmid _root.threespan.lsmd.c + " ni
s2md = (_root.threespan.lsmd.s)/2 + " ni;

pmid = _root.threespan.lsmd.p + " kN

wnid = _root.threespan.lsmd w+ " kNn;
lcmid = _root.threespan.lsmid.lcnid

/'l right span:

stiffright = _root.threespan.|sright.stiff;
aright = _root.threespan.lsright.a + " nf
bright = root.threespan.lsright.b + " nf
cright = _root.threespan.lsright.c + " ni;

s2right = (_root.threespan.lsright.s)/2 + " ni;

pright = _root.threespan.lsright.p + " kN’
wright = root.threespan.lsright.w + " kN nf
lcright = _root.threespan.|sright.lcright;
/1 .. end of localizing for display

/1 now localizing for Mt Distribution

/'l localizing span stiffnesses (from"stiff" to "iab" or
iab = parseFloat (_root.threespan.lsleft.stiff);

ibc = parseFloat (_root.threespan.lsmd.stiff);

icd = parseFloat (_root.threespan.lsright.stiff);

/1 localizing the span | engths

sab = parseFloat (_root.threespan.lsleft.s);

sbc = parseFloat (_root.threespan.|snid.s);

scd = parseFloat (_root.threespan.lsright.s);

/'l localizing the end support conditions

leftspt = _root.threespan.|eftsptswapper.|eftspt;
rightspt = _root.threespan.rightsptswapper.rightspt;

/'l localizing the FEMs

femab = parseFloat (_root.threespan.lsleft.femb);
femba = parseFloat (_root.threespan.|sleft.fenba);
fenbc = parseFloat (_root.threespan.|snid.fenbc);
fencb = parseFloat (_root.threespan.|smd.fench);
fencd = parseFl oat (_root.threespan.|sright.fentcd);
femdc = parseFl oat (_root.threespan.|sright.fendc);

"ibc")




the basic function of the chunk of code above isto pick the inputted and calculated values
fromthe 6 load swapper modules (Discussed in Sect. 3.2), and to localize themin this
code so asto avoid going to and fro every few lines.

the parseFloat (); function converts any string datatype to a number datatype. Thisis
extremely important to avoid gross errors.

Eg. If not converted to number datatypes, 2+ 3wouldyield “ 23" sinceit readsthe
values as | ettersrather than numbers.

/'l calculating the STIFFNESS FACTORS (K) for each span
/1 depends on support conditions
if (leftspt == "pinned") {
kab = 0. 75*(i ab/ sab);
} else if (leftspt == "fixed") {
kab = (iab/sab);
/'l note the reduction to 0.75 when an end support is pinned
/1l remains |/L when fixed

we are now calculating the stiffness factors (K) asK = I/L.
asis mentioned in the // comments, a reduction of 3% in the stiffness value occursif an end
support is pinned.

}

kbc = (ibc/sbc);

if (rightspt == "pinned") {
kcd = 0. 75*(i bc/ sbc);

} else if (rightspt == "fixed") {
kcd = (ibc/sbc);

}

/1 sumring the stiffnesses at the supports B and C
sunkb kab+kbc;
sumkc kbc+kcd

the stiffness values of the spans meeting at one support are summed to enable the
distribution factors (next step) to be calculated

/1 now to calculate the DI STRI BUTI ON FACTORS for each end

if (leftspt == "pinned") {
dfab = 0;

} else if (leftspt == "fixed") {
dfab = 1;

/'l basic condition of (1) if fixed
/1 no distribution mts (0) to a pinned support
}

rule of thumb: no moments can be distributed to a pinned support and the DF at a fixed
endisalways1.




df ba = kab/ sunkb;
df bc = kbc/ sunkb;
df cb = kbc/ sunkc;
df cd = kcd/ sunkc;

continuation of calculating the Distribution Factors.
The actual equationis:

K
DFp = 5———28
aKB _KAB+KBC

if (rightspt == "pinned") {
dfdc = 0;

} else if (rightspt == "fixed") {
dfdc = 1,

/'l basic condition of (1) if fixed
/Il no distribution mts (0) to a pinned support

}
the moment distribution iterations begin here:

/1 1st | TERATI ON

/1 now cal cul ati ng DI STRI BUTI ON MOMENTS
dmab01 = O;

drmba01 - (f emba+f enbc) *df ba;

dmbc0l1l = - (fenba+fenbc) *df bc;
dnmchb0l = - (fencb+f encd) *df cb;
dntd01 = -(fencth+fencd)*df cd;
drmdc01 = O;

the distribution moments can be cal culated as minus the sum of the fixed end moments
meeting at one support multiplied by the directional distribution factor.

/1 and now for the CARRY OVER MOMENTS
//(can only carry over to a Fixed Suport)

if (leftspt == "pinned") {
comab01l = O;
femab = 0;

} else if (leftspt == "fixed") {
comab0l1 = 0. 5*dnball;

}

conball = O;

conmbc0l1l = 0.5*dntb01;

conch0l = 0. 5*dnbcO01;

concd0l = O;

if (rightspt == "pinned") {
condc0l1 = O;
femdc = O;

} else if (rightspt == "fixed") {

condc01 = 0. 5*dncd01;
}




the previous section calculates the carry over momentsin thefirst iteration. If a support
is pinned, no moments can be carried over to it. Otherwise, if fixed, a half of the
distributed moment (with the same sign) is carried over to the net support.

note the last line that sets the FEM to zero if pinned, thisisto avoid a situation where the

user intentionally sets a Fixed End Moment, other than zero. This line ensures that the
FEM value does not find its way into the summation as a final moment at a pinned end.

/'l 2nd | TERATI ON

dmab02 = 0;

dmba02 = -(conmbaOl+conbc01l) *df ba;

dnbc02 = -(conmbaOl+conmbc0l1) *df bc;

dntb02 = -(conchO0l+concd0l) *df cb;

dnmcd02 = -(concb0l+concd01l) *df cd;

dndc02 = 0;

if (leftspt == "pinned") {
comab02 = 0;

} else if (leftspt == "fixed") {
comab02 = 0. 5*dnba02;

}

combal2 = O;

conmbc02 = 0. 5*dncb02;

conth02 = 0. 5*dnbc02;

concd02 = O;

if (rightspt == "pinned") {
comdc02 = 0;

} else if (rightspt == "fixed") {

condc02 = 0. 5*dncd02;
}

inasimilar pattern, 12 iterations follow

/1 3rd | TERATI ON

dmab03 = 0;

dmba03 = -(conmba02+conbc02) *df ba;

dnbc03 = -(conbal2+conbc02) *df bc;

dnmcb03 = -(concb02+concd02) *df cb;

dnmcd03 = -(concb02+concd02) *df cd;

dndc03 = 0;

if (leftspt == "pinned") {
comab03 = 0;

} else if (leftspt == "fixed") {
comab03 = 0. 5*dnba0l3;

}

combal3 = O;

conbc03 = 0. 5*dncb03;

conch03 = 0. 5*dnbc03;

concd03 = O;

if (rightspt == "pinned") {
conmdc03 = 0;

} else if (rightspt == "fixed") {

condc03 = 0. 5*dncd03;
}




/1 4th | TERATI ON

dmab04 = 0;

dmba04 = -(conba03+conbc03) *df ba;

dmbc04 = - (conba03+conbc03) *df bc;

dnmcb04 = -(concb03+concd03) *df cb;

dntd04 = -(concth03+concd03) *df cd;

dndc04 = 0;

if (leftspt == "pinned") {
comab04 = 0;

} else if (leftspt == "fixed") {
comab04 = 0. 5*dnba04;

}

conbal4 = O;

combc04 = 0.5*dnch04;

conmcb04 = 0. 5*dnbc04;

concd04 = O;

if (rightspt == "pinned") {
comdc04 = O;

} else if (rightspt == "fixed") {
condc04 = 0.5*dncd04;

}

/1 5th | TERATI ON

dmab05 = O;

dmba05 = - (conbaO4+conbc04) *df ba;

dmbc05 = -(conmba04+conbc04) *df bc;

dntb05 = -(conch04+concd04) *df cb;

dnmcd05 = -(concb04+concd04) *df cd;

dndc05 = O;

if (leftspt == "pinned") {
comab05 = 0;

} else if (leftspt == "fixed") {
comab05 = 0. 5*dnba05;

}

conmbalO5 = O;

combc05 = 0. 5*dnctb05;

conth05 = 0. 5*dnbc05;

concd05 = O;

if (rightspt == "pinned") {
condc05 = 0O;

} else if (rightspt == "fixed") {
condc05 = 0. 5*dncd05;

}

/1 6th | TERATI ON

dmab06 = O;

dnba06 = -(conmbaO5+conmbc05) *df ba;

dnbc06 = -(combaO5+conmbc05) *df bc;

dnmcb06 = -(concb05+concd05) *df cb;

dnmcd06 = - (concb05+concd05) *df cd;

dndc06 = O;

if (leftspt == "pinned") {
comab06 = O;

} else if (leftspt == "fixed") {

comab06 = 0. 5*dnba06;
}




conbal6 = O;

conmbc06 = 0. 5*dnchb06;

conth06 = 0.5*dnbc06;

concd06 = O;

if (rightspt == "pinned") {
comdc06 = O;

} else if (rightspt == "fixed") {
condc06 = 0.5*dncdO06;

}

/1 7th | TERATI ON

dmab07 = 0O;

dmba07 = -(conmba06+conbc06) *df ba;

dnbc07 = -(conmba06+conmbc06) *df bc;

dntb07 = -(concb06+contd06) *df cb;

dnmcd07 = -(concb06+concd06) *df cd;

dndc07 = 0;

if (leftspt == "pinned") {
comab07 = 0;

} else if (leftspt == "fixed") {
comab07 = 0. 5*dnmba07;

}

combal7 = O;

conbc07 = 0. 5*dncb07;

conch07 = 0.5*dnbc07;

concd07 = O;

if (rightspt == "pinned") {
condc07 = O;

} else if (rightspt == "fixed") {
condc07 = 0. 5*dncd07;

}

/1 8th | TERATI ON

dnmab08 = 0;

dnba08 = -(conmbal07+conmbc07) *df ba;

dmbc08 = - (conmba07+conbc07) *df bc;

dnmchb08 = -(concb07+concd07) *df cb;

dnmcd08 = -(concb07+concd07) *df cd;

drmdc08 = O0;

if (leftspt == "pinned") {
comab08 = 0;

} else if (leftspt == "fixed") {
comab08 = 0. 5*dnba08;

}

conbal8 = O;

combc08 = 0.5*dnch08;

conmcbh08 = 0. 5*dnbc08;

concd08 = O;

if (rightspt == "pinned") ({
comdc08 = O;

} else if (rightspt == "fixed") {

condc08 = 0. 5*dntd08;
}

/1 9th | TERATI ON




dmab09 = O;

dnba09 = -(conmba08+conmbc08) *df ba;

dmbc09 = - (conba08+conbc08) *df bc;

dnmcb09 = -(concb08+concd08) *df cb;

dncd09 = -(concb08+concd08) *df cd;

dmdc09 = O;

if (leftspt == "pinned") {
comab09 = 0;

} else if (leftspt == "fixed") {
comab09 = 0. 5*dnba09;

}

conbal9 = O;

combc09 = 0.5*dnch09;

concbh09 = 0. 5*dnbc09;

concd09 = O;

if (rightspt == "pinned") {
comdc09 = O;

} else if (rightspt == "fixed") {

condc09 = 0. 5*dntd09;
}

by now, the iterations have eliminated inconsi stencies beween support moments up to the
first decimal place, even for a 3-figure moment.

The following iterations exist to refine the moment further so that when the final moments
are rounded off to the nearest 3.d.p., the end support moments from two different spans
meeting at the same support are the same.

/1 10t h | TERATI ON

dmab10 = O;

dmbal0 = -(conmba09+conbc09) *df ba;

dnbcl0 = -(conmba09+conmbc09) *df bc;

dntb1l0 = -(conch09+concd09) *df cb;

dnmcd10 = -(conctbh09+contd09) *df cd;

dndc10 = O;

if (leftspt == "pinned") {
comabl0 = 0;

} else if (leftspt == "fixed") {
comabl1l0 = 0. 5*dnbalo;

}

combalO0 = O;

conmbcl0 = 0. 5*dnctbl0;

concbhl0 = 0.5*dnbc10;

concdl0 = O;

if (rightspt == "pinned") {
condcl1l0 = O;

} else if (rightspt == "fixed") {
condcl1l0 = 0. 5*dncd10;

}

/1 11th | TERATI ON

dmabll = O;

dmball = -(conmbalO+conbcl0) *df ba;

dnbcll = -(conmbalO+conmbcl0) *df bc;




dncbill -(conchl0+concdl0) *df cb

dntdll -(conchbl0+contdl0) *df cd

dndc1l 0;

if (leftspt == "pinned") {
comabll = 0

} else if (leftspt == "fixed") {
comabll = 0. 5*dnball;

}
comball
conbcll

0;

0.5*dntbll

conchll 0. 5*dnbcl1l

concdll 0;

if (rightspt == "pinned") {
comdcll = O

} else if (rightspt == "fixed") {
condcll = 0. 5*dntdl1l

}

/1 12t h | TERATI ON

dmab12 0;

dnbal2 -(conmball+conbcll) *df ba;

drmbc12 -(conmball+conbcll) *df bc;

dncbl2 -(contbll+conctdll) *df cb

dncdi12 -(conctbll+conctdll) *df cd

dndcl2 = O;

if (leftspt == "pinned") {
comabl2 = 0

} else if (leftspt == "fixed") {
comabl2 = 0. 5*dnbal2;

}

conmbal2 ;

conbcl2 0. 5*dncb12

conchl2 0. 5*dnbc12

concdl?2 0;

if (rightspt == "pinned") {
conmdcl2 = 0

} else if (rightspt == "fixed") {
condcl1l2 = 0.5*dncdl12

}

/1l -- iterations conplete —

O.

The next section calculates the Final Support moments as the sum of the fixed end
moments, distribution moments and carry over moments on each side of a support.

// FINAL MOMENT = sum of the FEMs, DMs and COVs in each colum

mab = femab + dmb0l1 + comab01 + dmab02+ comab02 + dmab03 +
comab03 + dnmab04 + comab04 + dmab05 + comab05 + dmab06 +
comab06 + dmab07 + comab07 + dmab08 + comab08 + dmab09 +
comab09 + dmabl1l0 + comabl0 + dmabll + conmbll + dmabl2 +
comabl1?2;




nchb

ncd

fenmba +
conba03
conmbal6
conbal9
conbal?;
fenbc +
conbc03
conbc06
conbc09
conbcl2
fench +
concth03
concth06
concth09
conchl?;
fencd +
concd03
concd06
conctd09
concdl2
fendc +
comdc03
condc06
condc09
condcl2

dnmbaOl +
+ dnmbaO4
+ dnbaO7
+ dnball

dnmbc0l1l +
+ dnmbc04
+ dnbc07
+ dnbcl0

dncb0l +
+ dncbh04
+ dncb07
+ dncbl10

dncd0l +
+ dncd04
+ dncd07
+ dncdl10

dndc01l +
+ dndc04
+ dnmdc07
+ dnmdcl10

conbaOl + dnba02+ conmbal2 + dnbal03 +
+ conba04 + dnbaO5 + conbaO5 + dnba06
+ conba07 + dnba08 + conbal8 + dnbal9
+ conbal0 + dnball + conball + dnbal2

conbc0l1l + dnbc02+ conmbc02 + dnbc03 +
+ conbc04 + dnmbc05 + conbc05 + dnbc06
+ conbc07 + dnbc08 + conbc08 + dnbc09
+ conbcl0 + dnbcll + conbcll + dnbcl2

conch0l + dncb02+ concb02 + dnth03 +
+ conch04 + dncb05 + concb05 + dnch06
+ contb07 + dnctb08 + conch08 + dnthb09
+ conchl0 + dntbll + contbll + dntbl2

concd0l + dncd02+ concd02 + dncd03 +
+ concd04 + dncd05 + concd05 + dncd06
+ concd07 + dncd08 + concd08 + dncd09
+ concdl0 + dntdll + contdll + dntdl2

condc01l + dndc02+ condc02 + dndc03 +
+ condc04 + dndc05 + condc05 + dndc06
+ condc07 + dndc08 + condc08 + dndc09
+ condcl1l0 + dndcll + condcll + dndcl2

The moment distribution processis complete.

Next, the midspan moments are cal culated making use of the principle of superposition.

/1 calculating the M D SPAN MOVENTS

/f
mi d

mi dmi d
nmi dri ght

/1l n

irst,
| eft

ext,

| ocalizing the mdspan mts fromthe input stage
_root.threespan.lsleft.mdleft;
_root.threespan.|smd. nm dni d;
_root.threespan.|sright.mdright;

cal culating the avg.

top-span nonment fromthe end mts

/1 making end mm values + ve for the follow ng cal cul ation

prmab

if (mab < 0) {

}
pnba

if (nba < 0) {

}
prmbc

if (mbc < 0) {

}
prchb

if (mcb < 0) {

}
pncd

if (nmcd < 0) {

}
pndc

mab;

pmeb = -1

nba;

pnmba = -1

nbc;

pnbc = -1

nchb;

pnch = -1

ncd;

pncd = -1

mdc;

*

mab;

*

nba;

*

nbc;

nch;

*

ncd;




if (mdc < 0) {
pmdc = -1 * ndc;
}

/'l calculating the average top mmts
nmopl eft = (pmab+pnba)/ 2;

mopm d = (pnbc+pnchb)/ 2;

nt opri ght = (pncd+pndc)/ 2;

/1 calculating mdspan nmts by subtracting from avg. top nms
mm dl eft = ntopleft - nmdleft;

mmdmd = nmopmd - nmmdmd;

mm dright = mtopright - nmdright;

as can be observed from the // comments, the midspan moment was calculated from the
super position of the end support moments and the plane mid moment cal culated back in
the load swap modules.

/1 Display Prep:

/'l rounding of the Final Mmt values to 3.d.p. and adding "KkN'
mabval = Math.round(mab * 1000) / 1000 + " KkN';
nmbaval = Math.round(nmba * 1000) / 1000 + " KkN';
mbcval = Math.round(nmbc * 1000) / 1000 + " KkN";
ncbval = Math.round(ncb * 1000) / 1000 + " KkN';
ncdval = Math.round(ncd * 1000) / 1000 + kN";
mdcval = Math.round(ndc * 1000) / 1000 + " KkN';

mm dl eftval = Math.round(nmm dleft * 1000) / 1000 + " kN';
mm dm dval = Math.round(nmmidmid * 1000) / 1000 + " kN';
mmi dri ghtval = Math.round(nm dright * 1000) / 1000 + " kN';

accuracy beyond three decimal placesis not required. The moments are thus rounded off
to 3.d.p and the respective units added to the values for display on the BMDs.

/'l sending the playhead to KFO5 after conpleting the MD Process
got oAndSt op( 5) ;

Code at the Results Display Stage for the Three Span Analysis:

/1 adding the dinensions to the Il engths for display purposes
sabm = sab + " nf;
shcm = sbc + " ni';
scdm = scd + " ni;
/1 now altering the support displayed at the results stage dependi ng on
that selected initially
if (leftspt == "pinned") {
with (_root.threespan.sptresultleft) {
got oAndSt op( 1) ;

}
} else if (leftspt == "fixed") {
with (_root.threespan.sptresultleft) {
got oAndSt op( 2) ;
}




if (rightspt == "pinned") {
with (_root.threespan.sptresultright) {
got oAndSt op( 1) ;

}
} else if (rightspt == "fixed") {
with (_root.threespan.sptresultright) {
got 0AndSt op( 2) ;
}

}
stop();

the above section of code basically initializes what types of end supports the user has
chosen aswell asthe type of loading so that the next section picks thisinformation and
displays the appropriate Bending Moment Diagram.

The next three sections of code control the BMD diagramsto be displayed. They

basically collect information about the load type and support conditions and using that
information, are ableto call up and display the appropriate sketch.

Code on the BMD Sketch Swapper on the L eft Span:

onCl i pEvent (load) {

mab = _root.threespan. mabval ;

nmba = _root.threespan. nbaval ;

mm dl eft = _root.threespan. nm dl eftval;

I cleft = parseFloat (_root.threespan.lcleft);
if (_root.threespan.leftspt == "pinned") {

with (_root.threespan. bndl eft) {
got oAndSt op(l cl eft);

} else if (_root.threespan.leftspt == "fixed") {

with (_root.threespan. bndl eft) {
got oAndSt op(l cl eft + 10);
}

Codeon the BMD Sketch Swapper on the Middle Span:

onCli pEvent (Il oad) {

mbc = _root.threespan. nbcval;
ncb = _root.threespan. nchval ;
nmidm d = _root.threespan. mm dm dval ;

Icmid = parseFloat (_root.threespan.lcmd);
with (_root.threespan. bndnid) {

got oAndSt op(l cmi d);
}




Code on the BMD Sketch Swapper on the Right Span:

onCl i pEvent (load) {
ncd = _root.threespan. ncdval ;
nmdc = _root.threespan. ndcval ;
nmi dright = _root.threespan. mm drightval
I cright = parseFloat (_root.threespan.lcright);
if (_root.threespan.rightspt == "pinned") {
with (_root.threespan. bmdright) {
got oAndSt op( | cright);

} else if (_root.threespan.rightspt == "fixed") {

with (_root.threespan. brdright) {
got oAndSt op(l cright + 10);
}

Codeon the RC Design Button for the Transition between Analysis & Desian:

on (release) {
/1 function to cal cul ate the nmaxi num value in any array specified
/! to be mainly used in the transition between ANALYSI S and DESI GN
/1l i.e. to use the maxi num monment in the beam as the Desi gn Mnent
function maxl nArray(checkArray) {
/1l the function name= "max|lnArray" & paranmeter= "checkArray"

var maxVal = - Nunmber. MAX_VALUE

for (var i = 0; i < checkArray.length; i++) {
maxVal = Math. max(checkArray[i], nmaxVal);

}

return maxVal

}

the above function calculatesthe maximum value in any array specified later on (to be
used in determining the maximum moments and span lengths) to be mainly used in the
transition between ANALYS Sand DESIGN

/'l renoving all the "kN' fromthe strings & converting to nunbers

rg = parseFloat (nmmdleftval);
rh = parseFl oat (mr dm dval);
rk = parseFl oat (nmmdrightval);
ra = parseFl oat (mabval);

rb = parseFl oat (nbaval);

rc = parseFl oat (nbcval);

rd = parseFl oat (ntbval);

re = parseFl oat (nctdval);

rf par seFl oat (ndcval);

the next function allows any set numerical datatypein a array to be converted froma
negative value to a positive integer. It first checksif the number islessthat O, if itis
negative, it will be multiplied by -1 so asto make it positive.




/'l creating a funct. called modulus to transformany -ve no. to +ve

function nodulus(r) {
if (r <0) {
return (-1)*(r);
} elseif (r >=0) {
return r;
}
}

/1l transforming all the MMI values to +ve for the maxlnArray Funct.

rg
rh
rk
ra
rb
rc
rd
re
rf

modul us(rg);
nmodul us(rh);
modul us(rk);
nmodul us(ra);
nmodul us(rb);
nmodul us(rc);
nmodul us(rd);
nmodul us(re);
nmodul us(rf);

above, new variables have been cal culated to contain all the moment values that have
been converted to positive integers. These values are converted to positive integers so as
not to create any bias by excluding a negative moment from being selected as the design
moment if it does, in fact have the maximum value as a modulus

_root.
_root.
_root.
_root.

origin = "anal ysis";

store.m= maxInArray([rg, rh, rk, ra, rb, rc, rd, re, rf]);
store.s = maxl nArray([sab, sbc, scd]);

store. beantype = "Conti nuous"

the design moment, beam length and beam type have just been evaluated and sent to the
_root.storageto be picked up later on by the RC Design module.

with (_root) {
got 0AndSt op(115);

Wi
}
}

th (_root.design) {
got oAndSt op( 2)

thislast section of code sends the programto the Section in the RC Modul e that picks up
the design parameters from the temporary storage.




4.5 Reinfor ced ConcreteBeam Design M odule

Codeon theFirst Keyframe of the RC Design Module

if (_root.origin == "analysis") {
got oAndSt op( 2) ;

} else if (_root.origin == "user") {
s ="",
m nput = "",
stop();

}

thisinitial script checks where the user came from. i.e. from the analysis modules or from
the main screen. If the user came from the main screen, then the beam design parameters
(effective length and design moment) are set to <empty>. If the user came fromthe
analysis modules, the next section of code (below) is executed.

Codeon the Second K eyframe of the RC Design M odule:

m nput = _root.store.m

s = _root.store.s;

beantype = _root.store. beantype
stop();

the above code picks the design parameters fromthe temporary _root.storage. The
parameters had been placed there fromthe analysis modul es.

Codeonthe BEAM SIZING button:

on (release) {
/1l function controlling error nmessage popups for the input fields
function error(nsg) {
/1 the function nane is "error" and the paranmeter is "nsg"
with (_root.design.errorbox) ({
got oAndSt op(5) ;
_root.design.errorbox.errornmsg = nsg;

}

the same error function used before; thistimeround, it is has been customized for the
design module.

// conditions :

if (_root.design.mnput == "") {
error("Please insert the Design Mnent for the Bean');
} else if (_root.design.s =="")

error("Please insert the Effective Length of the Beanl);
} else if (_root.design.s < 0) {

error("Please insert a Positive Length Value for the Beani);
} else if (_root.design.fy =="") {

error("Please insert the Steel Strength Val ue");
} else if (_root.design.fy < 0) {




error("Please insert a Positive Steel Strength Val ue");
} else if (_root.design.fcu =="") {

error("Please insert the Concrete Grade Val ue");
} else if (_root.design.fcu < 0) {

error("Please insert a Positive Concrete Grade Val ue");
} else {

the error checks are now complete.

m = par seFl oat (m nput);
/'l Precaution: Converting the Design Minment to a Positive Val ue
if (m<0) {
m=-1%*m
}

s = parseFl oat (s);
fy = parseFl oat (fy);
fcu = parseFloat(fcu);

as a precaution the design moment has been converted to a positive value if the user has
inputted it as negative. The other design parameters have been converted to numbersto
avoid a situation where the computer readsthe values asfigures (e.g. 2+ 3= " 23")

/'l specifying BS8110 Rati o Val ues dependi ng on Beam Type

if (beantype == "Sinply Supported") {
den = 12;
ratio = 20;

} else if (beantype == "Continuous") {
den = 15;
ratio = 26;

} else if (beamype == "Cantil evered") {
den = 6;
ratio = 7;

}

BS8110 suggested (I/d) and m.f.sizing ratios are set as shown above.

/1 calculating the Effective Depth
/'l according to the Beam Type & Effective Length (BS8110)
d = (s*1000)/ den;

the effective depth has been cal culated using the ratios set in the previousstage.

/1 Checking the M nimm Depth for the Concrete Capacity
//(for a b:d ratio of 1:2)

dm n = Mat h. pow( ((m1000000)/(0.312*fcu)), (1/3));

if (d <dmn) {

to ensure that the design moment can be resisted by the capacity of the concrete section
sized;

M =0.156 f_ bd?

also,d =2b

\ M =0.156f_b(2b)?




rearranging and equating in terms of b:

M
€0.624

8
IQJ:lH

b=

()
Q

this limits the minimum effective depth (as was seen in the above code section) to the
minimum allowably depth (for a b/d ratio of %2)

/1l increasing the initial effective depth
/1 to meet this mnimum+ 10mm extra
d = dmn + 10;

}

if the concrete capacity check failed and the initially sized depth was actually smaller
than the minimum allowabl e effective depth, the code sets a new effective depth as the
minimum allowed, and adds 10mm as a factor of safety.

/'l suggested beam breadth = 1/2 the effective depth
b = 0.5*d;

thisline resets the new breadth from the corrected effective depth.
The next step is the deflection check (via BS3110 Modification Factor):

/1 calculation the Mbdd ratio

nbdd = (m*1000000)/ (b*d*d);

/1 fs is assunmed to be 5/ 8 of fy for Mdesign)= Melastic)
/| above assunption source: BS8110

fs = 5*fy/8;

BS8110 has charts for determining the m.f. value given the steel strengths and the M/bd?
values. However, it also gives a way of actually cal culating the modification factor under
the assumption that: “ for a continuous beam, if the percentage of redistribution is not
known but the design ultimate moment at mid -span is obviously the same as or greater
than the elastic ultimate moment, the stress fs may be taken as5/8f .

Theequationis:

Modification Factor = (477 - f?\/)l - £ 20
12080.9+ —2
é

d? g

where M isthe design ultimate moment at the center of the span, or for a cantilever, at
the support.

/1 Modification Factor (BS8110):

nf = 0.55+((477-fs)/(120* (0. 9+nbdd)));

if (nf >2) {
// Limting the mf. to a maxi numof 2.0
m = 2;




/1 calculating the min eff. depth to Iimt excessive deflection
ddef = (s*1000)/(ratio*nf);

thisfollows fromtherule:
l— £ratio” nf
d

next, if the deflection check fails and the effective depth is smaller than the minimum
depth to limit deflection, a new effective depth is cal culated by setting the minimum depth
to this new depth and adding 10mm to it as a factor of safety.

if (d < ddef) {
/1 increasing d to prevent deflection
/'l increasing d by 10mm nore than the m ni num
d = ddef + 10;

}
/'l readjusting breadth to neet final adjusted effective depth
b = 0.5*d;

the beam dimensi ons are now readjusted to meet any new depth created.

Final effective depth check:

/1 calculating the min d for high Mrits
/'l shear governs design i.e. K < 0.225
dshr = Mat h. pow( ((M1000000)/ (0. 1125*fcu)), 1/3);

thislast check deal s with the minimum effective depth of a beam just before shearing
forces govern the design as opposed to bending.
In the equation:

|, =05+ /0.25- LS
0.9

the value of K needsto be lower than 0.225 to prevent a negative value from occurring

within the square root.

Generally If the value of K exceeds 0.156, compression reinforcement is required
If the value of K exceeds 2.225, shear governsthe design.

From the equation:

K :L
f_bd?

rearranging and setting the max value of K as 0.225.
In terms of the effective depth, d:




M
dmin | ra——
\/0.1125fcu

if (d < dshr) {

/'l increasing d by 10mm nore than that necessary

/1 to prevent K > 0.225

d = dshr + 10;
/'l readjusting breadth to neet final adjusted effective depth
b = 0.5*d;

if this minimum value of d to prevent shearing forces from governing the design was not
met, then a new value of the effective depth is cal culated by assigning this minimum depth
value to the new value and adding 10mm asafactor of safety.

Again, the breadth b, is recalculated as %2 the new effective depth value.

The beam dimensions are now either the suggested by the BS code (calculated from the
ratios for beam types and span lengths), or the minimum dimensions that meet any or all
of the following limitations:

The concrete capacity of the section is not exceeded

The deflection is limited to acceptable values (via the Modification Factor)

The beam dimensions are large enough to prevent shear from governing the

design.

/1 Roundi ng off Cal cul ated Beam Di nensi ons to the nearest 0.1mm
dcal ¢ = Mat h.round(d*10)/10;
bcal ¢ = Mat h. round(b*10)/10;

the suggested minimum beam dimensions are rounded off to the nearest 0.1mm. In RC
Design, this quite an accurate result.

/1 rounding off Suggested Wdth & Effective Depth
/1 to Nearest 10mm (upper 10mmlinit)

dcei | Mat h. cei | (dcal ¢/ 10) *10;

bcei l Mat h. cei | (bcal ¢/ 10) *10;

the practical dimensions are established by rounding the minimum dimensions to the
upper 10mmlimit. (in design, dimensions, areas and loads are always rounded upwards

while material strengths are rounded downwards; for reasons of safety)
i.e. 23mmisrounded up to 30mmrather than 20mm.

/1 Sending the Playhead to the Beam Sizing Display Section
nmol d = parseFl oat (n);
got oAndSt op(5) ;

}

the program now moves to the beam sizing display section where the user has the option
to alter the sizes recommended by the program.




Codeexecuted at the beginning of the Beam Sizing Display Stage:

The purpose of the following code is to prepare the figures obtained in the previous
section for display, aswell as further manipulation in forthcoming sections. It also
calculates the beam self weight and superimposes this as a simply supported UDL
moment to the initial design moment inputted by the user.

mnit = parseFl oat (nol d);
s = parseFl oat(s);

dceil = parseFl oat(dceil);
bceil = parseFl oat(bceil);
c parseFl oat (c);

t par seFl oat (t)

in these first few lines, the values calculated and entered are converted to string
datatypesto avoid errorsin arithmetic operations.

/'l displaying the di mensions on the figure
bfig bceil + " mmit;
dfig dceil + " mmt;

/1 calculating the total beam height as D + Cover + Tol erance
hfig = dceil + ¢ +t + " mmi;

theinitial cover and tolerance have been set to 30mm and 10mm respectively. The above
expression calculates the total beam height as a sum of the effective depth, cover and
tolerance.

The next step deals with increasing the design moment by the effects of the beam self
weight.

/1 calculating the additional UDL due to the Beam Sel f Wi ght
h = dceil +c + t;
wadd = 24*(h/1000)*(bceil/1000);

we havejust calculated the beam' s self weight asa UDL. A density of 24kN/m®is used.

/1 calculating the additional nmonent due to the self weight
madd = wadd*s*s/ 8;

the additional moment has been calculated asa UDL spanning along a simply supported
beam:

w2
add — 8

M

next, Moy isadded to theinitial design moment and the final mmt rounded off to 3.d.p.

/1 adding this additional noment to the initial design noment
mew = mnit + nadd

mmew = Mat h. round( nmew* 1000) / 1000

stop();




Codeon the RESIZE button:

This section of code is executed when the user clicks the resize button. It updates the
dimensions, self weight, additional moment and final moments according to the new
depth, breadth cover and tolerance values entered by the user.

The code follows the same format and performs the same tasks as th e previous section.

on (release) {
mnit = parseFl oat (nol d);
s = parseFl oat (s);
dceil = parseFl oat(dceil);
bceil = parseFl oat(bceil);
c = parseFloat(c);
t = parseFloat (t);

/'l displaying the dimensions on the figure
bfig bceil + " mi;
dfig dceil + " mmi';

/1l calculating the total beam height as D + Cover + Tol erance
hfig = dceil + ¢c +t + " mt;

/1 calculating the additional UDL due to the Beam Sel f Wi ght
h = dceil + c + t;
wadd = 24*(h/1000)*(bceil/1000);

/1 calculating the additional nonent due to the self weight
madd = wadd*s*s/ 8;

/1 adding this additional nonment to the initial design nonment

mew = mnit + madd;
mew = Mat h. r ound( mew* 1000)/ 1000

Codeon the DESIGN REINFORCEMENT button:

After the user has complete the resizing of the beam (if he/she felt it was necessary), the
following chunk of code is executed once the Design Reinforcement button s clicked.

In summary, this section calculates the areas tension and compression steel required for
the beam size and deign parameter s specified.

on (release) {
/1 localizing the Variables and converting themto nunmber val ues

m = par seFl oat (mmew);
b = parseFloat (bceil);
d = parseFl oat (dceil);
fy = parseFloat(fy);

fcu = parseFl oat (fcu);

the common conversion to number datatypes takes place in the above lines.




/1 calculating K
k = (nm1000000)/ (fcu*b*d*d);

the value of K has been calculated as:

M
f_,bd?

K=

/1 calculating the lever arm

la = 0.5+Mat h.sqrt(0.25-(k/0.9));
/] limting 0.77 <la < 0.95

if (la<0.77) {

la = 0.77;

}

if (la>0.95) {
la = 0.95;

}

BSB110 limits the lever armvalueto: (0.77 < |,< 0.95)
The equation for the lever armis given as follows:

|, =05+ /0.25- LS
0.9

/'l calculating Z
z = | a*d;

the dimension z, is essentially the distance between the effective components of the
tension force and the compression force.
It isthe value of the effective depth factored down by the lever arm value:

z=1.d

/1 calculating area of stee

if (k <= 0.156) {
/1 if K< 0.156, then no conpression reinforcement required
ascc = "Nominal (e.g. 2Y12)";
di spa = "2Y12";
di spsc = "";
ast = (n1000000)/(0.87*fy*z);
ast = Math.round(ast*10)/10;

the main choice of whether to design compression steel or not lies on the basis of whether
the value of K calculated is greater than or smaller than 0.156

In the above section, K islessthan 0.156; hence, no compression steel isrequired and
the area of tension steel is calculated using the following equation:

M

A= 0.87f,z




the area of steel required isthen rounded off to 1 decimal point.

} elseif (k > 0.156) {
/'l conpression reinforcenent required if K > 0.156
dconp = parseFl oat (50);
asc = ((mr1000000)-(0.156*fcu*b*d*d))/(0.87*fy*(d-dconp));
ast (0.156*fcu*b*d*d)/ (0.87*fy*z) + asc;
ast Mat h. round(ast*10)/ 10;
ascc = Math.round(asc*10)/10 + "sq.nmi';

the other possibility isthat the value of K exceeds 0.156
Hence, (as can be seen above) compression reinforcement will be required and the areas
of tension and compression steel are calculated using the following equations:

M - 0.156 f_, bd?

A.'= ,
0.87 fy(d -d)
and
0.156 f_, bd? ,
Ay m——=.—tA

O.87fyz

The steel area design are complete.

dispa = "A";
di spsc = "sc";
}
statement01 = "For a " + beantype + " Beamwi th an Effective Length
of " + s + "m An adequate Section size would be: " +
h+"x" +b+ "mi;
statenent 02 = "Provide at least " + ast + "sq.mMm for the Miin

Rei nfocenent Steel and " + ascc + " Conpression
Rei nf ocenment ";

the first and second statements above summarize all the design parameters calculated in
the form of an easy to read paragraph. The minimum areasf tension and compression
steel are also displayed.

All that’ s left is to actually move on to thepart of the program that displays the results;
and that is exactly what the next line does.

got cAndSt op(10) ;




4.6 Program Limitations

TheBeam Analysis Modules are limited to the most common loading cases.
Shear values and deflection profiles are not available for the 2 & 3span beam
analyses.

The profile plotting module is not combined with the main software.

Maximum span moments are not calculated for the 2 & 3-span beam analyses, but
rather, only the mid-span moments.

Shear Reinforcement is not designed in the RC Design Module.




4.7 General Program Discussion

Throughout the creation of this software application, ease-of use has been a major
consideration. A lot of effort has been put to making the program simple to understand
and straight-forward to use. The whole process of the computerized analysis and design

follows the same style and procedure as one would generally follow in a manual solution.

Flexibility was also a major consideration in the execution of this application. Since the
scope of al computer programs is always limited to a certain extent, special alternatives
have been provided for the users to input their own data at different stages of the

program, so as to be able to proceed further with the computerized solution.

Choice of Programming Language

Macromedia Flash was extensively used throughout the programming of this project. The
software was initialy created for web animations but through the years, has developed a
full language, Actionscript, which provides programmers wit h the tools to create almost
any application that they can imagine. The Flash program alows the interactive fusion
between visually appealing graphics created and the backend Actionscript language.

Flash was chosen as the programming language for this project mainly because my
experience with this software has brought forward its main advantages of presenting a
visually appealing and interactive graphical user interface as well as a powerful language
to create code that properly executes the desired tasks when properly programmed.

To demonstrate just how extensive Flash is, all the diagrams and sketches in this report
were created using its illustration tools.




Choice of Structura Theory

The Moment Distribution Method and Macaulay’s Method were bah used as the main
theoretical techniques of analysisin this project.

Macaulay’s method was used mainly in deriving equations for the single span analyses.
The method was chosen for its broad capacity in solving complex beam loading and
support problems. In afew situations, analysis concepts were borrowed from the Moment

Area Method to arrive at the equations of some single span systems.

The Moment Distribution Method was comprehensively used in the two and three span
beam analyses. This method was chosen because of its simple process of arithmetic
iterations in arriving at the final solution. Most structural analysis programs use the
stiffness method. During the initia stages of this project, both methods were considered
for use. The application of the stiffness method in computer solutions required more
research in the proper formation of its large matrices, whereas the moment distribution
method, though limited in it application to structural analysis, proved to be applicable to
the task of beam analysis, as well as smple in understanding. The moment distribution
method was thus decided upon since it seemed more promising in offering a shorter time

for its actua programming vis-a-vis the stiffness approach.




CHAPTER 5: CONCLUSION & RECOMMENDATIONS

5.1 CONCLUSION

During the last few decades, computer software has become more and more critical in the
anaysis of engineering and scientific problems. Much of the reason for this change from
manua methods has been the advancement of computer techniques developed by the

research community and, in particular, universities.

As both the Technology and Engineering industries advance, new methodologies of
interlinking and complementing the industries via computer applications will be created,
with a smilar improvement in hardware capacities. This in turn will facilitate the
implementation of more efficient and professional engineering software. As these
software applications advance in functionality, one can hope that they will be more
affordable so as to pomote their widespread usage amongst civil engineers at a global
scale.

The following are the drawn up conclusions that have emanated from the research and

implementation of this project:

A user-friendly program for the computer analysis and reinforced concrete design
of beams has been successfully created and tested for the following:
0 Single Span Beam Analysis with the following variable input parameters:
» Type of end supports
= Span length
» Type and intensity of loading

» El (modulus of elasticity and moment of inertia)




The program instantaneously calculates and displays the following results

using the above parameters:

Bending Moment diagrams displaying the maximum and salient
moments and their respective locations.

Shear force diagrams showing the salient shear force values along
the beam’ s span.

A variable positioning module that allows the user to easly
determine the bending moment, shear force and deflection values

a any point on that beam span.

0o Two and Three span Beam Analysis with the following variable input

parameters:

Number of spans (either two or three)
Individua span lengths

Loading types and intensities for each span.
Stiffness values for each span

End support types (fixed or pinned)

At the click of a button, the program calculates and disdays the following

output values instantaneously:

Graphical display of al the input data
Support and Midspan Moment values
Bending moment diagram displaying the moment profiles for each

span
Tabulation of the moment distribution process

0 Reinforced Concrete Design of beams with the following variable input

parameters:

Design Moment

Beam Effective Length
Beam Type

Sted Strengths
Concrete Grade




The parameters may also be calculated and picked from any of the
analysis modules.
The following output resultsare calculated and displayed:

= Section Dimensions

» Steel AreaDesign

The overal ease with which a user applies this program to everyday beam anaysis and
design tasks by entering parameters and instantaneously receiving the results in an
understandable manner enables a great time saving, accuracy and hence, an optimized

design.

The final results of this project were in line with the expectations and objectives.




52 RECOMMENDATIONS

The recommendations directly affiliated with this program are given as follows:

To combine the Graphical Profile Plotting Module with the main program. When
combined, this module will alow exact bending moment, shear force and
deflection profiles for each beam to be plotted.

All code developed for this plotting module has been printed in Appendix B.

To continue developing, expanding and improving this software application
hoping that one day, it will be a full structural analysis program catering for the

analysis and design of frames, trusses and other structural elements.

Other general recommendations regarding the developments and advances in computer
applications and civil engineering:

The Department of Civil Engineering at the University of Nairobi should
introduce a computer lab for use by students so as to promote the use of
computers in the engineering profession.

The department should encourage conducting similar final year projects dealing
with computer applications in the future.

More emphasis regarding computer technology and applications to engineering
should be made at an academic level in different courses. This would broaden the
intellect of students as well as expose them to new technologiesin all engineering
disciplines.
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APPENDIX A

Ful | Program Source Code Excluded for Copyright Purposes.

However, If the code already displayed in Chapter 4 (Discussion) is not
suffecient for you (not likely), please feel free to enmail ne:

fadzt er @ahoo. com
Good Luck!

Fady Rostom
Fadzter Media

www. f adzt er. com
www. f adzt er. coml engi neeri ng




