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BASIC BOOKS IN SCIENCE

About this book

This book, like the others in the Series1, is written in simple English – the language most
widely used in science and technology. It builds on the foundations laid in Books 1-4,
which covered many parts of Mathematics and Physics, and on some parts of Book 5,
which refers to the structure and properties of matter in general.

The present book takes up the story from Book 4, which introduced the science of Me-
chanics and showed how it could account for the motion of objects ranging from particles
to planets. Things move under the action of applied forces (like ‘pushes’ and ‘pulls’).
But some forces, like the one due to ‘gravity’, arise from the attraction between massive
objects. You can feel the force due to gravity, which makes a body fall to the ground
even when nothing is touching it, but you can’t see it. We say there is a field of force at
any point in space and it is proportional to the mass m of the body on which it acts.

Besides having a mass m, a body may carry an electric charge q; and another kind of
force may act on the body when it is placed in an electric field. If you double the quantity
of charge q the force is also doubled; so the electric field felt by a charge is proportional
to the charge. The electric field is so similar to the gravitational field that you’ll be able
to take over from Book 4 many things you know about already. In Book 5 you learnt
that electric charge is carried by elementary particles such as the electron and the
proton; and that their charges are of two kinds, negative and positive respectively. So
you’re already well on the way to understanding electricity.

Much of this book is about fields. Electricity plays an important part in everyday life:
think of electric lights, power stations where electricity is generated in dynamos, and
electric motors, which use electricity to drive the machines in our factories; think of
radios and the telephone, through which we can communicate with people all over the
world – and even beyond, in space! When you speak into the telephone, the sound of
your voice sets up vibrations and these are used to make electrons move along wires;
the currents produced can be used to send radio signals through space; and these can
be picked up by a radio receiver millions of miles away and converted back into sounds!
By the end of this book you’ll be ready to start understanding how all this is possible.

1The aims of the Series are described elsewhere, e.g. in Book 1.
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Looking ahead –

In Book 4, when you started on Physics, we said “Physics is a big subject and you’ll need
more than one book”. Here is the next one! Book 4 was mainly about particles, the
ways they move when forces act on them, and how the same ‘laws of motion’ still hold
good for objects built up from particles – however big.

In Book 10 we’ll be more interested in the fields that govern the interactions between
particles. The only field we knew about in Book 4 was that ‘due to gravity’, which acts
on the mass of a particle and makes it fall, but now we’ll be thinking about the fields
which act on particles that carry an electric charge.

• Chapter 1 explains how two kinds of electric charge, positive and negative, can
be defined in terms of the forces between particles that carry charge. The force law
(F = q1q2/r

2) is so similar to that for masses that you can still use most of what
you already know, provided you put in the + or − signs and take a positive force as
a repulsion, tending to increase the separation (r) of the particles, and a negative
one as an attraction, tending to decrease the separation. It’s as simple as that! And
it all links up with Book 5, where you first met the electron and the proton – the
basic negative and positive charges that are found in Nature.

In this chapter the charges are at rest: we’re talking about electrostatics. You’ll
learn about machines for making ‘static’ electricity and about how it can be stored
in condensers and used to make sparks. And you’ll learn how all of electrostatics
can be understood in terms of a single basic principle – Gauss’s law.

• In Chapter 2 you’ll be thinking about charges in motion, which produce electric
curents. The currents are carried through conductors – materials which allow
charges, usually electrons, to flow through them. Other materials, which don’t
allow charge to pass, are called insulators; and in between there are resistances,
which allow some charge to pass but are not very good at it!

Long thin copper wires are good conductors and are used in all electrical gad-
gets. You’ll study some simple electric circuits, in which ‘circuit elements’ like
condensers and resistances are connected by wires so that current can flow between
them.

Finally, we’ll make a connection with Chemistry (Book 5). Batteries make a plentiful
supply of electricity from certain chemical reactions which depend on the transfer
of electrons between the atoms taking part.

• Chapter 3 again starts from discoveries made over 3000 years ago! – that certain
heavy stones could attract small pieces of iron, and that the iron itself could be given
the same property by stroking the stone with it. The property is called magnetism
and a piece of iron with this property is a magnet. When a magnet is free to move,
one end of it always points the same way – towards the ‘North pole’ of the axis
around which the Earth turns; so magnets were first used in steering ships at sea.
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From such simple beginnings the whole theory of the magnetic field was built up
over the centuries. The magnetic field (B), like the electric field (E), is a vector;
but unlike the electric field it acts only on a moving charge, pushing it away from
the direction of motion. As a moving charge is an electric current, magnetism and
electricity are closely related: you’ll discover how an electric current can produce
a magnetic field; and how a magnetic field can exert a force on a current-carrying
wire.

• You’re now ready to put all these ideas together and look at Maxwell’s equa-
tions – one of those great breakthroughs that happen perhaps only once in a hun-
dred years. In Chapter 4 you’ll find how the fields E and B, and the electric charges
and currents that produce them, can all be related through just four equations, set
up by Maxwell about 130 years ago. This is difficult stuff, but if you’ve got so far
you’re ready to make the last step into electromagnetism.

You’re going to need many of the ideas you’ve picked up about fields, that vary
from point to point in space (and in time!), and the differential equations that they
obey. You don’t have to solve them at this point; it’s enough just to understand
what they mean. Then, in the rest of the book, you’ll find they tell you how to
build electric power stations, electric motors, radio transmitters, and many other
things that can be found ready-made nowadays – thanks to the work of all the other
people who’ve made the rest of the journey from the principles to the practice.

• Coming up, in Chapter 5, you’ll see how just one of Maxwell’s equations (which
can be written on the back of a bus ticket!) says all we need to know about dynamos
and electric motors. As usual, we start from a simple ‘model’ in which we imagine a
loop of wire spinning in a magnetic field. Faraday discovered that the changing flux
of the magnetic field, passing through a wire loop, could produce an electric field
that moves charge round the wire. Maxwell set up the equation that describes this
effect; and this leads to two types of dynamo (usually called “generators” nowadays).
One type gives direct current – always flowing in the same direction – while the other
gives alternating current – flowing alternately backwards and forwards. The DC and
AC types differ only through a simple change in the generator.

The electric motor is like a generator running in reverse: instead of using mechanical
power to turn the loop and generate an electric current it takes in electric current
and generates power! It’s as easy as that.

Power, as you know already from Book 4, is the rate of doing work. The generator
works by turning mechanical energy into electrical energy; and you’ll find that the
principle of energy conservation still holds good: you never make energy – you
just push it around, from one form to another! By the end of Chapter 5 you’ll
understand how electric power can be distributed – being carried into thousands
of homes and factories.

• Chapter 6 is about sending electric and magnetic effects through space, without
using wires. Fields can go through space in the form of waves, so we have to start
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by thinking about waves in general. All kinds of ‘wave motion’ are very similar,
involving ideas like wavelength, frequency, and the velocity with which they
travel. And they are described by the same equations – so when you’ve studied
one you’ve done them all! You’ll find examples of setting up and solving the wave
equation e.g. for waves on a vibrating string, which produce sound waves.

Then we come back to Maxwell’s equations and show that any disturbance of the
electromagnetic field travels out through space (is “propagated”) with the enor-
mous speed of almost 300 million metres per second! And it turns out that elec-
tromagnetic waves are of many different kinds, some with wavelengths of several
kilometres (in radio) and others going down to ‘atomic’ dimensions – with ordinary
‘daylight’ coming in between!

• In Chapter 7 we specialize on radio waves and how they can be produced by
electric circuits. We look at the way different circuit elements behave when a voltage
is applied to them: for a resistance R the applied voltage V and the current I
passing through it are related by V = RI; but for a condenser, with capacity C,
and a coil with ‘inductance’ L, things are different. Instead of R we need to use an
impedance Z, which turns out to be a complex number – which you first learnt
about in Book 1. This is the beginning of AC circuit theory, which is the ‘backbone’
of radio. With simple oscillator circuits you can make electrical oscillations of any
frequency you choose! This allows you to send out radio waves of that frequency
from a transmitter and to ‘pick them up’ with a reciver, which can be adjusted
(or ‘tuned’) to select only that frequency.

iv



CONTENTS

Chapter 1 Charges at rest: Electrostatics

1.1 Electric charges and fields

1.2 Some properties of the electric field

1.3 Visualizing the field

1.4 A general principle and some applications

1.5 Making electricity and storing it

1.6 Differential form of Gauss’s law

1.7 Integral form of Gauss’s law

Chapter 2 Charges in motion: Electric currents

2.1 Flow of charge in a conductor

2.2 Conductivity

2.3 Some simple circuits

2.4 Electricity, Chemistry, and Batteries

2.5 Power from electric currents

Chapter 3 Magnetism

3.1 Another bit of history

3.2 The magnetic field

3.3 Circulation and the flux of current

3.4 Magnetic field near a current-carrying wire

3.5 Magnetic field along the axis of a solenoid

3.6 Force between two straight current-carrying wires

3.7 How magnetism differs from electrostatics

Chapter 4 Getting it all together: Maxwell’s equations

4.1 More on differential operators and functions

4.2 A reminder of the equations for E and B

4.3 And if E and B vary with time? – Maxwell’s complete equations

Chapter 5 Dynamos, motors, and electric power

5.1 Where can we go from the principles? – and how?

5.2 AC and DC generators

5.3 Electric motors

5.4 Electric power – and how we can move it around

Chapter 6 Waves that travel through empty space

6.1 What is a wave?

6.2 The wave equation

6.3 Separable solutions

v



6.4 Electromagnetic waves

6.5 The electromagnetic spectrum

Chapter 7 More on electric circuits – making the waves

7.1 Electric circuits: more circuit elements

7.2 A cool way of doing it: complex numbers

7.3 Connecting circuit elements together

7.4 Oscillator circuits

7.5 Transmitting and receiving the waves

vi



Chapter 1

Charges at rest: Electrostatics

1.1 Electric charges and fields

Electric charges

About 3000 years ago people began to notice that certain materials had ‘magical’ prop-
erties: if a piece of amber was rubbed with a woollen cloth it would attract small objects,
such as bits of straw, and pick them up; and a rod made of glass and rubbed with a silk
cloth would have a similar property. Much later, the rubbed objects were described as
“charged with electricity” – thought to be an invisible fluid of which there were two kinds,
‘negative’ for the amber, ‘positive’ for the glass.

Nowadays we know (see Section 1.2 of Book 5) that matter of all kinds is built up from
atoms and that the atoms contain elementary particles: electrons, which carry a unit
of negative charge, and protons, which carry a unit of positive charge. The electrons are
very light and move easily, while the protons are nearly 2000 times heavier and stay inside
the nuclei of the atoms. There’s another kind of heavy particle, with almost exactly the
same mass as the proton but with zero charge: it’s called the neutron. The two kinds of
heavy particle (protons and neutrons) are nucleons: they have almost exactly the same
mass and together they account for nearly all the mass of the atom.

The atomic number is the number of protons in the nucleus and is usually denoted by
Z: so if we write −e for the charge of the electron the charge on the nucleus will be +Ze.
The whole atom, nucleus plus electrons, is normally uncharged, the positive charge on the
nucleus being exactly cancelled by the charge −Ze of Z electrons outside the nucleus.

There are more than ninety different kinds of atom, one for each of the chemical ele-
ments: they are usually listed, along with their names and main properties, in a Periodic
Table. The first two atoms in the Table are

Hydrogen(Atomic number Z = 1, atomic mass 1.0 mu),

Helium (Atomic number Z = 2, atomic mass 4.0 mu),

where mu is the atomic mass unit. After that, the atoms are listed in rows, the values
of Z increasing along each row in unit steps. The first row starts with Lithium (atomic
number Z = 3, atomic mass 7.0 mu) and goes up to Neon with Z = 10. It’s now clear
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why the atomic masses, which go in the order 1,4,7,... can be so much ‘out of step’
with the atomic numbers Z = 1, 2, 3, .... The mass of the nucleus depends simply on the
number of heavy particles (both types of ‘nucleon’) which it contains. For example, the
nucleus of the He atom must contain 4 nucleons, two of them protons, the other two being
neutrons; and similarly the Li nucleus (Z = 3) must contain 3 protons, the remaining 4
being neutrons.

Figure 1. Constituents of a Carbon atom (schematic)

Figure 1 will remind you of how things stand in the case of an atom of carbon: the red
spots indicate the protons, the black spots stand for neutrons. The 6 electrons outside
the nucleus give carbon its chemical properties, which you began to study in Book 5. The
7 neutrons (black spots in the Figure) contribute only to the mass of the atom.

What about the much lighter particles, the electrons? It used to be thought that they
moved around the nucleus in orbits, like the planets around the sun (studied in Book
4); but now it’s known that they don’t follow definite paths. Think of them instead as
buzzing around the nucleus like a swarm of bees: the number of electrons is definite and
is equal to Z; but you can never know exactly where they are!

Figure 1 may help you to get a picture of what’s inside an atom, but remember this picture
is very schematic: the light blue ball just indicates the region in which the electrons
are most likely to be found. The diameter of the carbon atom is around 1 Å unit, 1
ten-millionth of a centimeter – so it’s no surprise that you can’t see atoms. And the
diameters of their nuclei are roughly ten thousand times smaller still! So the white area
in Fig.1 really gives no idea of the size of nucleus; it’s there only to indicate the contents
of the nucleus. The red spots represent the protons and the black spots the neutrons, but
again you mustn’t think of them being placed at particular positions to form some kind
of structure: like the electrons, they’re always on the move and there’s no way of knowing
exactly where they are. In Chemistry all that doesn’t matter: what counts is the atomic
number Z, the number of red spots in Fig.1, which determines the ‘chemistry of carbon’.

Now we’re back in Physics and starting to think in more detail about the effects of electric
charge. The first thing to remember is the enormous numbers of particles involved: 1 mole
(the unit of quantity used in Chemistry) contains about 6×1023 atoms. Let’s talk about
the metal copper, which is used a lot in electrical gadgets because it allows electrons to
flow through it very easily. It is a good conductor of electricity, whereas many things (like
glass or silk or dry wood) don’t have that property and are called insulators. (You’ve
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probably seen power lines, which carry electricity from one place to another, hanging
from glass insulators so that the electricity doesn’t leak away.)

The next thing we need to remember, from Book 5, is that the forces between particles
which carry an electric charge are very much bigger than those that arise from gravi-
tational attraction. The gravitational force Fgrav between two masses, m1 and m2, is
proportional to the product of the masses, but inversely proportional to the square of the
distance between them. The force Felec between two particles carrying electric charges, q1

and q2, is given by a law of exactly the same form. So we can write

Fgrav ∝ m1m2

r2
(a), Felec ∝

q1q2

r2
(b). (1.1)

But whereas masses are always positive quantities, and the force Fgrav is an attraction, the
charges can be either positive or negative: if both have the same sign Felec is a repulsion
(tending to increase the separation r); while if q1 and q2 are of opposite sign Felec is
an attraction (tending to reduce the separation r). In short, like charges repel one
another, unlike charges attract.

As we said above, there is normally an almost exact balance between the negative and
positive charges in the atoms of matter in any form. What people discovered long ago was
that the balance could sometimes be disturbed by rubbing some kinds of material with a
different material. For example, some of the atoms may lose an electron and the numbers
of negative and positive charges then get out of balance: in that case the material is left
with an excess of positive charge. But the important thing is that the disturbance is
extremely small ; perhaps only one atom in every 500 million loses an electron, but that’s
enough to have an enormous effect! To find how enormous is easy. Let’s work it out as
an Example:

Example 1. Forces between charged bodies

There are about 6×1023 atoms in the mole of copper, so if one in 500 million of them loses an electron the
mole of copper will get an excess positive charge of ≈ 1.2× 1016e, where the magnitude of the charge on
an electron is e ≈ 1.6× 10−19 C (C being the unit of electric charge, which is called the “Coulomb”).
So the mole of copper will, in that case, get a charge of about (1.92 × 10−2 C.

Now let’s get the force between two such charged bits of copper, two small disks 1cm apart. The
experimentally defined proportionality constant in the force law given in (??), which we come back to
later, has the approximate value 9× 109N m2 C−2 (if you’ve forgotten about physical dimensions and
SI units you’d better look back at Books 4 and 5) and if we take the charges as q1 = q2 = 1.92× 10−2 C
the result will be

Felec ≈ (9 × 109N m2 C−2) × (1.92 × 10−2C)2 × (10−2m)−2.

If you do the arithmetic (Do it! – thinking carefully about the units and noting that the answer, which
is a force, comes out correctly in Newtons, the SI unit of force), you’ll find

Felec ≈ 33.18 × 103N.

To put this in units of “kilogram weight”, which you can ‘feel’, remember (Book 4) that 1 kg wt = 9.81
N. So the force between the two copper disks, 1 cm apart, is the force you’d have to apply to lift an
object weighing about 3.38 × 103 kg, or nearly 4 metric tons! And that’s all because you took away –
in your imagination – an electron from one copper atom in every 5 hundred million. So a little bit of
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electric charge goes a long way; moving those charges around is enough to drive heavy machinery, as
you’ll discover in later chapters.

One last thing: you may be wondering if the force between two particles depends on their
masses, as well as any charges they may carry. The answer is simply that the gravitational
force is so small (by a factor of 10−20 or more), compared with the electric force, that in
Book 10 you can just forget about it!

Electric fields

In Book 4 you studied bodies moving under the action of applied forces, including the
force due to gravity; and learnt that a force F , acting on a particle of mass m, made
it move with an acceleration a such that F = ma. You also learnt that force and
acceleration are vector quantities, depending on direction in space, and that the vector
equation F = ma (special symbols are used for quantities of this kind) means the same as
three ‘ordinary’ equations, one for each component:

F = ma means Fx = max, Fy = may, Fz = maz, (1.2)

where Fx, ax etc. are the components of the vectors F, a in the x-direction. Remember
that the mass is a property of the particle, not depending on how you choose the x-, y-,
and z-axes: it is a scalar quantity and the three equations relating the components in
(??) are scalar equations. We also used calculus notation for rates of change, so that the
x-component equation in (??) can be written as

Fx = max = m
dvx

dt
= m

d2x

dt2
, (1.3)

with similar equations for the y- and z-components. (Remember that acceleration is the
rate of change of velocity, with respect to time, and that vx is already the rate of change
of distance x; so ax is the second derivative of x with respect to time.)

If you’re not yet comfortable with vectors and calculus, you’d better go back to Books 2, 3, and
4, where everything you need has been explained and used.

From now on we’ll be neglecting gravity and the only forces we need will be those arising from
electric charges on the particles. The interaction between particles carrying charges q1, q2 will
thus result in the force Felec in (??) and ths subscript “elec” will be dropped as the forces we
talk about will all be electric in origin.

If a particle with electric charge q is put at some point in space and feels a force F , proportional
to the charge, we say that F measures the electric field E at that point. Once the unit of charge
has been agreed on, the unit of field intensity – also called field strength – is thus defined
experimentally: it is the force acting on unit charge placed at the field point. The physical
dimensions of E are also defined as those of (force/electric charge): [E] = MLT−2Q−1

From the experimental fact that two charged particles exert a force on each other, according to
(??), if follows that any charged particle produces an electric field, besides being able to ‘feel’
one. Thus, the force law in (??) may be written (using k for the proportionality constant)

F = k
q1q2

r2
12
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and gives the force between two particles, at Points 1 and 2, at a distance r12, when they carry
charges q1 and q2. This means that the particle at Point 1 feels a force of magnitude

F1 = q1 ×
(

k
q2

r2
12

)

,

due to the presence of the second particle. But from the definition of electric field intensity as
the force per unit charge this tells us that the field at Point 1 is E1 = F1/q1. The proportionality
constant, which we’ve just called ‘k′, is very fundamental and is always denoted by (1/4πǫ0)
(“one over four pi epsilon zero”) – more about that later. For now, we’ll write our result in the
form:

Electric field at Point 1, due to presence of a charge q2 at Point 2, is given by

E1 =

(

1

4πǫ0

)(

q2

r2
12

)

,

where r12 is the distance between Points 1 and 2.

We mustn’t forget that here the field is a vector, pointing from 1 to 2 – but which way round?
The unit ‘test charge’ at Point 1 is taken positive; so if q2 is negative the force, and the field,
will point in the direction 1 → 2. That’s easy to remember, so we won’t use vector notation for
fields when it’s not needed. as here. This is a key equation, so we’ll put it in a box:

Field intensity E at distance r
from point charge q is given by

E = (1/4πǫ0)(q/r2),

(1.4)

where the labels (1,2) are left out, as q is any charge and r is its distance from it the field point.

One place where we do need to use vector notation is when we think about combining fields. We
know (see Chapter 1 of Book 4) that forces are combined by using the laws of vector addition;
and since electric fields are measured by the forces acting on a test charge we expect that when
two fields act on a charge they will have a resultant which is simply their vector sum.

This is exactly what is found by experiment. It is called a superposition principle and in its
general form states that:

The resultant field E at any given point in space,
when any number of fields E1, E2, E3, ... act at
the same time, is simply their vector sum:
E= E1 + E2 + E3 + ...

(1.5)
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Now let’s look at a simple example to show how you can use the principle to get the field, at
any point in space, due to to any given set of electric charges.

Example 2. Calculation of a field vector E

Calculate the field vector E at one corner of a square, with sides of length L = 10 cm, when charges
of 1×10−10 C are placed at the three other corners. (Use the known value of the fundamental constant
(1/4πǫ0) ≈ 9 × 109 N m2 C−2)

Take the corner where you want to get the field as origin of coordinates and the coordinates of the
three other corners as (10, 0), (10

√
2, 10

√
2), (0, 10), all in units of 1 cm. Then the field (E1) due to

the first charge will have magnitude (1/4πǫ0) × (1 × 10−10 C)/(0.1m)2 and will point along the x-axis
towards the origin; that (E2) due to the second charge will 1×10−10 C have magnitude (1/4πǫ0) × (1 ×
10−10 C)/(0.1

√
2 m)2 and will be directed along the diagonal towards the origin; and E3 will be like E1,

but lying along the y-axis. (Draw a picture to make this clear and get the field contributions one at a
time: the first one is (9 × 109 N m2 C−2) × (1 × 10−10 C) × (0.1m)−2) = 90 rmN C−1, directed towards
the origin along the x-axis. Note that the unit of field strength is 1 Newton per Coulomb and that the
numerical value comes out large owing to the enormous value of (1/4πǫ0), as in Example 1.

Get the other two field vectors and then the vector sum of all three, as in (). (If you’ve forgotten how to
work with vectors go back to Section 1.5 of Book 4.)

1.2 Some properties of the electric field

In Chapter 2 of Book 4, we first met the ideas of work and energy and found how they
could be defined and used. We now need to extend these ideas to particles carrying an
electrric charge and moving in an electric field (or, more exactly, an electrostatic field
as we first take the case of a field produced by charges at rest).

Remember that when a force F is applied to a particle and moves it through a distance
d, in the direction of the force, mechanical work is done – by the force, on the particle.
The force does work W = Fd. When the force and the displacement are not in the same
direction it’s convenient to use vector methods, as in Book 4 (Chapter 3). In a very small
displacement, represented by a displacement vector ds, the work done by the force is

w = F · ds = Fxdx + Fydy + Fzdz, (1.6)

where the second form expresses the scalar product F · ds in terms of the x- y- and
z-components (Fx, Fy, Fz) and (dx, dy, dz) of the vectors F and ds. In general, ds points
along the path followd by the particle – it is a path element – while the force vector
may be in any direcction.

When the force F was due to gravity, acting on the particle mass, it was found useful to
define a potential energy function V (x, y, z) for every point P (x, y, z) in space, such
that the difference in PE between two points A and B measures the work you have to do
in carrying the particle slowly from A to B

VB − VA = W (A → B). (1.7)

The work you have to do gives the increase in PE, just as if you’re climbing a hill; and
you must carry the particle slowly because if you let go it will accelerate under the force
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due to the field and all the energy arising from the field will be ‘lost’ as kinetic energy.
The important thing about the gravitational field was that the work W (A → B) didn’t
depend at all on the path followed in going from A to B. Fields of this kind are called
conservative: they allow us to define path-independent functions, with a unique value
for every choice of the variables x, y, z. Now, we’re thinking of a test particle with electric
charge q0, in an electric field, but everything goes in exactly the same way. We define
an electrostatic potential function, call it φ(x, y, z), as the potential energy per unit
charge of q0 at the field point; so φ(x, y, z) = V (x, y, z)/q0 and we can say

VB − VA = q0φB − q0φA = W (A → B), (1.8)

where W (A → B) is the work you must do in carrying the charge slowly between the
two field points. If Point A is taken as a ‘reference point’, at which φA is defined to be
zero, then φB will have a unique value for any point in the field. Usually the electrostatic
potential is chosen to be zero at a point, with coordinates (x0, y0, z0), an infinite distance
from all sources of electric fields: φ(x0, y0, z0) = 0. As an Example let’s calculate the
electric potential due to a point charge q:

Example 3. Electric potential due to a point charge q

Start from the experimental law, Coulomb’s law, for the force between two particles, at a distance r
and carrying electric charges q, the ‘given’ charge, and q0, the ‘test’ charge:

F =

(

1

4πǫ0

)

(q0q

r2

)

.

Here q0 is put at the point where we want to find the potential due to the given charge q which is
producing the field.

To move the test charge slowly we must apply a force −F, to hold it in equilibrium against the field. The
work we have to do as we go along the path from A to B, will then be

W (A → B) = −
(

q0q

4πǫ0

)
∫ rB

rA

(

1

r2

)

dr,

where the definite integral (see Book 3) goes from r = rA (start of the path) to r = rB (end of the path).
Since

∫

(1/r2)dr = −1/r it follows easily that

W (A → B) =

(

q0q

4πǫ0

) (

1

rB
− 1

rA

)

.

On putting this result in (??) and dividing both sides of the equation by q0 it follows that

φB − φA =

(

q

4πǫ0

)(

1

rB
− 1

rA

)

.

As for the gravitational potential energy, we choose a ‘reference point’ at which to define the potential
as zero. In the case of the electric field of a point charge q, let’s first imagine the charge being taken
away to an infinite distance without moving q0, and put VA → 0 when rA → ∞ in the last equation. The
result is

φB =

(

q

4πǫ0

)(

1

rB

)

.
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This is true for any field point rB at which the test charge is put, so the label B is not needed:

Example 3 leads us to another key result:

‘

Electric potential φ at any point
distant r from point charge q, is
φ(r) = (1/4πǫ0)(q/r)

(1.9)

This result gives a simple way of getting the potential at any point in space due to any
distribution of electric charges. Thus, the electric potential due to a collection of charges
q1, q2, ... at points r1, r2, ..., respectively, is

φ = φ(r1) + φ(r2) + ... =

(

1

4πǫ0

) (

q1

r1

+
q2

r2

+ ...

)

, (1.10)

where ri is the length of the vector ri pointing from the field point (where φ is evaluated) to
the charge qi. It is clearly much easier to get the potential at a point than to get the field
intensity E, given in (??), because E is a sum of vectors (perhaps involving complicated
geometry) whereas φ is just a sum of scalar quantities (which depend only on distances).
At this point, however, you should think about units – numbers by themselves are not
enough!

————————

A note on units

The unit of charge, first used in Section 1.1, was called the Coulomb and the electric field
intensity, being force per unit charge, was therefore measured in “Newtons per Coulomb”
i.e. unit field = 1 N C−1. More usually, however, the field intensity is measured using the
potential φ: from (??) this has the dimensions of work per unit charge, or force×distance
per unit charge, and is therefore measured in N m C−1. The SI unit of potential is called
the “Volt”, so in summary.

Unit of potential = 1 V = 1 N m C−1

Unit of field intensity = 1 N C−1 = 1 V m−1

————————

When the field E itself is required, it can always be obtained from φ by differentiating.
Thus, suppose unit charge moves a distance dx along the x-axis, so the field does work
Exdx on it. This is the loss of potential for doing work, so we call it −dφ and write (in
the limit of infinitely small changes) Ex = −dφ/dx. In words “the x-component of the
electric field at any point is given by the rate of decrease of potential φ in the x-direction”.
The next Example shows how this can be done:
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Example 4 Potential and field due to several charges

Use (??) to get the electric potential φ at the origin in Example 3 due to charges q = 1× 10−10 C at each
of the three other corners of the square. What are the units in which φ is given?

Repeat the calculation to get the potential at points 1 cm away from the origin in the x- and y-directions,
in turn. Then make rough estimates of the field components Ex and Ey at the origin.

For a point displaced from the origin by a small vector dr, a similar result holds good for
each of the three components, provided the derivatives are replaced by partial derivatives.
Thus, with φ = φ(x, y, z), the field at the origin has components

Ex = −∂φ

∂x
, Ey ==

∂φ

∂y
, Ez = −∂φ

∂z
. (1.11)

The operation of getting the vector components (Ex, Ey, Ez), from a scalar function
φ(x, y, z) of the three spatial coordinates, is called taking the gradient of the function.
And the result (??) is often written in the short form

E = −grad φ. (1.12)

To visualize the electric field – to get a picture of it – we can either work in terms of
the vector E and the way it varies in space; or in terms of the scalar potential function
φ(x, y, z).

1.3 Visualizing the electric field

The Examples above illustrate two direct methods of calculating the electric field from a
number of point charges. To get a picture of the field let’s start from the simplest example
– a single point charge. The potential φ is in this case a function of one variable alone,
the distance r of the field point from the charge q at the origin, and has the same value
at all points on a spherical surface of radius r. Such surfaces are called equipotential
surfaces: they are indicated below as circles centred on the charge q (shown as a red
spot).

9



Figure 2.
Electric field around point charge

– showing equipotentials (spheres)
– and lines of force (radii)

Note that the equipotentials become further apart as r increases and have not been shown
near to the charge as they become so close together. The potential has a singularity(see
Book 3) at any point charge: φ → ∞ as r → 0. The radial lines, shown as arrows pointing
out from the charge, are always perpendicular (or ‘normal’) to the equipotential surfaces.
They are called “lines of force” because, as they follow the direction of the field vector E,
they follow the force that the field would exert on a test charge.

These properties are general and apply to the fields produced by any distribution of
electric charges. The lines of force (shown by the arrows) come out from a positive
charge, but go into a negative charge. They were very much used in the early days of
electrostatics, by Michael Faraday and others, though nowadays they are used only in
getting a general picture of the field. They do, however, lead us to define an important
quantity called the flux of the vector field.

In Fig.2 the equipotential surfaces, indicated in the Figure by circles, are in fact spheres
and the magnitude of the field intensity E = |E| has the same value at all points on the
surface, being a function of r alone. The vector E is normal to the surface and if you
think of the field as something ‘coming out’ from the charge q then lines of force, crossing
the surface, show you the way it is ‘flowing’ at that point. When the distance from the
charge is small the lines of force are close together and E is large; further from the charge
the lines are far apart and E is small.

Let’s define the flux generally with the help of Figure 3.
E

E
⊥

E
‖

Figure 3. Definition of flux
E = field vector
E⊥ = normal component
E‖ = parallel component

The flux of E across a small bit of surface, of area dS, is (area)× (component of E

normal to surface). With the notation used in Fig.3, this will be E⊥dS, where E⊥ is the
perpendicular component of E.

We can also think of charge as a creator of flux and rewrite the ‘boxed’ statement (??)
as
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Flux created by point charge q (field at r
times area of spherical surface at r) is q/ǫ0.

(1.13)

– which looks nicer with no 4π and r2 to remember.

Now take another Example, a bit more complicated than a single point charge, using a
system of two point charges, one negative but the other positive: this is called an electric
dipole.

Example 5. Electric field outside a dipole

For two charges of equal but opposite sign the electric potential at any point can be found easily from
(??). Let’s also use Cartesian coordinates (Book 2), putting the two charges on the z-axis at a small
distance ±δ above and below the xy-plane, as in Fig.4. The potential at a field point P, with coordinates
(x, y, z), will then follow as

φ(x, y, z) =

(

1

4πǫ0

)(

q

r1
− q

r2

)

,

where P lies in the xz-plane and the two charges are q1 = q and q2 = −q.

x-axis

z-axis

θ

P

O

r1

r2
r

q1

q2

Figure 4. For calculating field outside a dipole

The squared distances are r2
1 = x2 + (z − δ)2 and r22

2 = x2 + (z + δ)2; and thus, neglecting terms in δ2,

r2
1 = x2 + (z2 − 2zδ) = r2 − 2zδ = r2[1 − (2zδ/r2)],

r2
2 = x2 + (z2 + 2zδ) = r2 + 2zδ = r2[1 + (2zδ/r2)].

The two terms in the φ-equation may now be expanded, using the binomial theorem (Book 3) to write

(1/r1) = (r2
1)

−
1
2 as an expansion in powers of the small quantity 2zδ/r2 and similarly for (1/r2).

If you do that (and you should do it!) you’ll find the two terms become

q

r

(

1 +
zδ

r2

)

− q

r

(

1 − zδ

r2

)
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and their sum leads to a final expression for the potential φ at point P in Fig.4:

φ(x, y, z) =

(

1

4πǫ0

)

q

r

2zδ

r2
=

(

1

4πǫ0

)

d cos θ

r2
,

where d = 2δ×q = (charge-separation)×(charge-magnitude) is called the electric moment of the dipole
and θ is the angle shown in Figure 4.

The result given in Example 5 can be put in vector form (see Book2, Section 5.2) by
defining an electric dipole vector d, of magnitude d and pointing from −q to +q. The
result then becomes

φ(r) =

(

1

4πǫ0

)

d · r
r3

, (1.14)

where φ(r) just means that φ depends on the three components x, y, z of the position
vector r of Point P.

To get the electric field intensity E, which is a vector, we must get the three components
Ex, Ey, Ez. These are given in (??) and involve partial differentiation (see Section 6.1,
Book 3). The results are

Ex =

(

d

4πǫ0

)

3zx

r5
, Ey =

(

d

4πǫ0

)

3zy

r5
, Ez =

(

d

4πǫ0

)

3z2 − r2

r5
. (1.15)

By putting trial values of the coordinates of P into these formulas you can find the field
direction at any point and (with a lot of patience!) work your way along any line of force
to see where it goes. Just do it for a few points and then study the picture that follows
(Fig.5).

z-axis

Figure 5. Electric field around a dipole
– showing some lines of force
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1.4 A general principle. Some applications

There’s another way of finding the field due to a distribution of charge: it’s based on a
very general principle, which you can understand by looking at Fig.2 for the field arising
from a single point charge. The flux of the field E, through a small element of surface dS,
was defined in Fig.3 as (normal component of field)× (area of surface) i.e. Eperp × dS.
Now look at any equipotential surface, of radius r, in Fig.2: the total flux through it will
be E × S = E × (4πr2), because the vector E is already normal to the surface and the
whole area (which you get by summing all the little bits dS) is simply that of a sphere. On
putting in the value of E, which follows from (??), the total flux of E across any spherical
surface in Fig.2 is found as

Total flux =

(

1

4πǫ0

)

q

r2
× 4πr2 =

q

ǫ0

. (1.16)

This is a very remarkable result: whichever surface you choose, the total flux of field
intensity through it is the same – it’s just the amount of charge it encloses, divided by the
universal constant ǫ0. But the result is much more general than you could ever imagine:
it’s still true even if you could chop the charge into pieces and put the bits anywhere
within the surface, not just at the centre! And the surfaces you choose don’t have to be
spheres, or even equipotentials, they can be of any shape whatever as long as they are
closed. We can’t yet be sure that this is always true, but the idea is so beautiful that we’ll
write it down as a general principle – calling it “Gauss’s law” – and then start using it to
show how well it works:

The total flux of electric field intensity
out of any closed surface is equal to
the total charge it encloses, divided by ǫ0.

(1.17)

Note that the numerical value of 1/ǫ0 in the formula depends on how the units are chosen:
the physical dimensions of (1/ǫ0) are, from (??), [force×length2 /charge2], so in SI units
it will be measured in Newton metre2 per Coulomb2 i.e. N m2 C−2.

To use the principle (??) to find the field at some point you must look for a suitable
‘box’ (called a “Gaussian box”) to enclose the charges you have. Then you can often find
a simple argument that will give you the field at the surface of the box. The following
examples involve the fields in and around conducting materials, such as copper and
other metals. The first thing to note is that since charges move freely in a conductor the
field intensity E must be zero at all points inside it – for otherwise the charges could never
come to rest. The fields outside metal objects, however, are very important: we look at
three examples.
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Example 6. Field at surface of a charged conductor

Suppose we want the field intensity E just outside a charged conductor, whose surface is plane if we look
at a small enough part of it. In this case we can imagine a Gaussian box with two plane faces, both
parallel to the surface, one inside the conductor and the other just outside, as in Fig.6. To get the field
at a ‘field point’, marked by the black dot on the surface, we argue as follows.

The field E just outside the conductor must be normal to the surface, because any component parallel to
it would keep surface charges in constant motion – whereas we are considering what happens when they
have come to rest. The fields on the other surfaces of the Gaussian box (shown in white) must also be
zero, as they are inside the conducting material

E

Figure 6.
Gaussian box (shown in white)
enclosing piece of surface
E = field vector normal to surface

We can then use (??) by considering a piece of surface of area S, forming the top of the box. The total
flux of E out of the box will be E × S, from the top side – and nothing else. The electric charge on
the piece of surface that lies just inside the box will be q = S× (amount of charge per unit area); and
the quantity in parentheses is the surface density of charge, usually denoted by σ ( the Greek letter
“sigma”). From (??) it follows that E × S = S × σ/ǫ0 and, dividing by the area S, that E = σ/ǫ0. This
result is general, because any small enough piece of surface at the point where we want to know the field
is ‘flat’.

From Example 6 we conclude that the electric field at the surface of a conducting
material is equal to the surface charge density divided by ǫ0:

E = σ/ǫ0. (1.18)

This is true for a conductor of any size and shape, as long as the bit of surface we’re
looking at is more or less flat (no sharp points sticking out from it! – something we’ll
come back to later).

Example 7. Field outside a charged wire

Wires are very important in all electrical gadgets: they are long strings of conducting material (usually
copper, often with a plastic cover) for carrying electric charge from one place to another. We often want
to know how strong the field E is near a wire, and again we can get it by using a Gaussian box. In Fig.7
the thick black line represents part of a wire, of length l, which we can imagine surrounded by a box in
the form of a cylindrical tube of radius r. Let’s ask for the field E at distance r from the wire i.e. at the
surface of the Gaussian box. In Example 6 the important thing was the surface density of charge; but
here it’s going to be the line density, which we’ll call λ (Greek “lambda”) – the charge per unit length.
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E

r
Figure 7.
Gaussian box (tube) around wire
E = field vector normal to wire
(box ends shown in grey)

If we take a small piece of wire, of length l, it will contain charge q = lλ. As in Example 6 this is the
total charge inside the Gaussian box; and this is what produces the total flux out of the box. To get
the flux we first note that the field E, at all points on the wire (which look exactly the same), must be
perpendicular to the wire and therefore the flux from the box ends will be zero. The only non-zero flux
will thus be from the curved surface of the tube: it will be (field E⊥ = E) × (surface area of tube). And,
as you’ll remember from Book 2, the area will be (length) × (2πr). Putting it all together, (??) gives for
the total outward flux E × 2πrl = lλ/ǫ0. Thus, re-arranging the equation, we find E = (λ/2πǫ0)(1/r).

The result from Example 7 is that the field intensity at distance r from a conducting wire,
carrying charge λ per unit length (the ‘line density’), is given by

E =

(

λ

2πǫ0

) (

1

r

)

(1.19)

– so the field goes down slowly (like 1/r) as you go away from the wire.

As a last example let’s take a charged spherical surface with nothing inside it – a hollow
metal sphere.

Example 8. Field around a closed spherical conductor

Suppose the conductor carries a charge Q and has radius R. The surface density of charge is then Q/4πR2

and according to (??) the field intensity at the surface is E = (1/4πǫ0)(Q/R2). This agrees with the
formula (??), which gives

E = F/q0 = (1/4πǫ0)(q/r2)

for the field of a point charge q at distance r, provided we put all the charge Q at a single point and use
the point-charge formula with r = R, the radius of the big sphere. In other words, the charged sphere
(however big!) behaves like a point charge at all points outside i.e. with r ≥ R.

But what about points inside the sphere in Example 8? (We said it was hollow.) Is there
a charge at any point on the inner surface? And is there a field E at any point inside the
surface – in the empty part? To answer these questions it’s best to use the idea of electric
potential (see Section 1.2), as follows in Example 9.

Example 9. Field inside a closed spherical conductor

When we draw a “line of force” it connects points between which there is a difference of potential; and
E at any point on the line shows the rate of decrease of the potential as you go along the line. On the
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surface of a conductor there is no parallel component E‖ because the charges are in equilibrium (we’re
talking about electrostatics; and this is the same as saying the conducting surface is an equipotential – φ
has the same value at all points on it, φ0 say.

If there was a positive charge at some point on the inner surface of the hollow conductor, then a line
of force would start from that point (look at Fig.6 for example). But where would it end? Following
the direction of E, the potential φ would continually decrease: the line of force would be ‘looking for’ a
negative charge to connect with! But there are no charges in the empty space; and if the line reaches
another point on the inner surface it will be at potential φ = φ0. There will be zero potential difference
between starting point and end point; and no charge will flow if you connect them with a wire. It was
therefore wrong to imagine a surface charge at any point on the inner surface of a hollow conductor:
there can be no surface charge and the whole inner region must be at the constant potential φ = φ0.
Moreover, the same argument applies for a hollow conductor of any shape, not just for a sphere.

From Example 9 it follows that the electric field intensity must be zero at all points inside
a hollow conductor. You can sit inside a metal box, charged to a potential of ten million
volts, without getting an electric shock! And it works the other way round: any electrical
experiments you may do will have no effects outside the box.

1.5 Making electricity – and storing it

It seems a long way from principles to practice. Rubbing pieces of amber or some kinds
of plastic with a woollen cloth isn’t a very good way of generating electricity but that’s
how it all started; and we have to go step by step.

The first step was to invent simple devices for detecting electric charges, moving them
around, and storing them.

The electroscope

The electroscope detects electric charge, either positive or negative, by using the prin-
ciple (Section 1.1) that charges of the same sign repel one another.

Figure 8.
Simple electroscope
– glass jar shown in light grey,
insulating lid in dark grey,
conducting material in black.

To see if an object is charged you touch the electroscope with it (i.e. the metal plate at
the top). The charge flows freely into the conducting material, which ends with a small
plate and (lying against it) a thin metal ‘leaf’ (usually ‘gold-leaf’). Both the fixed plate
and the leaf are then charged, either with negative or positive electricity, and repel each
other. The leaf then sticks out at an angle, as shown in Fig.6, the small weight of the
leaf being overcome by the repulsion: the bigger the angle, the bigger the charge. (When
such a device is used for measuring the charge it’s called an ‘electrometer’.)
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The electrophorus

This was one of the first devices for carrying electricity from one place to another (‘phoros’
being the Greek word for ‘carrier’). Figure 9 shows how it works.

− − − − −

(a)

− − − − −
+ + + + +

(b)

+
+

+
+

+

(c)

↓
→

→

Figure 9. Using the Electrophorus
(a) Put metal plate on −ve charged insulator
(b) Touch top surface. Carry +ve charge away
(c) Put charge into store (Leyden jar) – see text.

You start by rubbing the insulating material (shown in dark grey) to give it an electric
charge: if it’s amber or any other ‘resinous’ material you’ll use a woollen cloth and the
charge on the surface will be negative (there will be extra electrons there). Then, in (a),
you put the metal plate of the electrophorus, which has a glass (insulating) handle, down
on top of the charged insulator. The plate won’t be smooth enough to touch at every
point on the surface, so over most of it there will be a small gap between the metal and
the surface charge on the insulator.

What happens? The negative charge repels the electrons in the metal and drives them
away from the surface, which then gets a positive charge. This, shown in (b) as + +
+ + + , is what you want to carry away and store somewhere. But you don’t want
it to get mixed up with the negative charge that was driven away; and that’s why you
have to touch the top surface of the metal plate to let the electrons escape through your
body - which is a conductor - and finally through the ground you’re standing on into the
Earth, which is an infinite conductor and can absorb any amount of charge. This is called
“earthing” the top surface of the electrophorus. Then, when you take it away, the plate
will be left with the positive charge. But there’s not much of it and where can you store
it?

In the last picture (c) you can see the answer to the question. The glass jar, shown in
light grey, has a metal lining (black) and also stands in a metal container. This a charge
storage device or condenser; this particular one being a ‘Leyden jar’, named after
the place in Holland where it was invented. If you touch the central metal rod with the
charged plate of the electrophorus, the positive charge it carries will run freely into the
Leyden jar, accumulating on the inner lining. Notice also that the charge you started
with, in (a), is still there; it hasn’t been used up in any way. In fact, it’s charge of the
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opposite sign (in this example positive) that has been produced, carried away, and stored
in the condenser. The positive charge on the plate of the electrophorus was ‘induced’ by
the nearby negative charge, which attracts it: and we say it was put there by induction
– nothing like ‘conduction’, which depends on contact.

You can go through the steps (a), (b), and (c) many times (until finally the original charge
‘leaks away’, because no material is a perfect insulator). In this way, the charge in the
condenser can be gradually built up; and the electric potential φ, defined in Section 1.2 in
terms of work done in moving a test charge, will also build up. Eventually, the condenser
will hold a charge Q, say, on the inner surface and −Q on the outer surface (the whole
system being electrically ‘neutral’. The outer surface in (c) is usually ‘earthed’ and its
potential φ is taken as a convenient ‘zero’. The potential of the inner surface may then
reach thousands of volts and if you replace the electrophorus in Fig.9(c) by an earthed
wire you will get a bright blue spark – a tiny flash of lightning – between it and the
central conductor.

Other electrostatic devices

It’s quite tiring to build up a lot of charge by using the electrophorus, because you may
have to go through the (abc)-cycle hundreds of times and whenever you move electric
charge through a field you have to do work (remember Section 1.2). So people had to in-
vent ways of doing the job automatically. Two machines for doing it are (1) the Wimshurst
machine, and (2) the van de Graaff generator, both named after their inventors.

The Wimshurst machine

Here the insulating material of the electrophorus is replaced by a circular disk, with metal
plates stuck onto its surface so that by rotating the disk they can be put in contact with
‘brushes’ (made of thin metal wires). These charge collectors can pick up or put down
electric charge as the plates pass them, as shown (very schematically) in Figure 10.

+ −

Figure 10. Wimshurst Machine (schematic)
Insulating disk (dark grey), attached metal plates (white)
Leyden Jars as in Fig.9 (cut open to show interior)
Curved arrow shows rotation, from − to + (see text).
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Each metal plate, sitting on the electrified disk, is like a small electrophorus and as it
passes the right-hand collector it loses the electrons that were driven onto its top surface.
The induced positive charge remains as the plate moves onwards, to the left. The same
thing happens to the next plate as it comes along. When the charged plates reach the left-
hand collector the brush picks up the positive charge from each plate in turn. The charges
which are collected are then led away, through the conducting rods, onto the inner surfaces
of the Leyden Jars; and as the plates continue on their way they again become positively
charged, underneath, by induction (the big insulating disk still having its original negative
charge). What a clever invention! No wonder Volta called his electrophorus “ a perpetual
electricity carrier”. After a while the right-hand Leyden Jar stores a lot of negative
electricity, the other one holding all the positive charge. Usually, a Wimshurst Machine
has a pair of disks, rotating in opposite directions, and picks up twice as much charge in
every rotation. And if you try to connect the positive and negative ‘terminals’, which may
have a potential difference of several thousand volts, all the electricity you’ve produced
will discharge in a spark.

The van der Graaf Generator

This is a more modern way of generating high voltages, still using the same idea of
transporting charge (either + or −) into a metal container, where it is to be stored. It
was invented only in the 1930s and is still in use for high-voltage experiments.

Instead of a Leyden Jar, the electricity is stored in a single large metal sphere, with an
opening in the bottom just big enough to let charge be carried in. Think of the plate of
an electrophorus being replaced by a metal disk or ball, a large number of them being
carried on a continuous belt of insulating material (e.g. strong nylon fabric). Suppose a
small metal ball, carrying positive charge (some electrons having being removed), is taken
into the large conducting sphere and is touched by a wire connected to the inside of the
sphere. Will it give up its charge or not? That will depend on the potential difference
between the two ends of the wire: the charge will go only in the direction of decreasing
potential. But in the following Example you’ll be able to show that the electric potential
always decreases in going from the small sphere to the large one; so the electric charge
will always go that way, however much positive charge has already accumulated on the
big sphere!

Example 10. Which way will the charge go?

From Example 3 we know that the field outside a spherical conductor, carrying a total charge Q, is the
same as if Q were a point charge at the centre of the sphere. This result followed from (??), with a
Gaussian surface just outside the charged sphere, and didn’t depend on how Q was made up – as long as
was the total charge enclosed. Now suppose the big sphere (of radius R, say) has a small sphere (radius
r) inside it, carrying its own charge q.

The total charge to be used in getting the field ouside the big sphere is then Q + q and this means the
potential φ at any point on the surface will be

φR =
1

4πǫ0

Q + q

R
=

1

4πǫ0

Q

R
+

1

4πǫ0

q

R
,

where the first term comes from the charge Q on the big sphere itself, while the second comes from the
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charge q carried by the small sphere.

Example 3 also showed that the potential from Q was constant inside the hollow sphere, with the surface
value

1

4πǫ0

Q

R
.

The potential at the surface of the small sphere, however, will be

1

4πǫ0

q

r
,

due to its own charge q, plus
1

4πǫ0

Q

R
,

coming from Q on the large sphere. The total potential at the surface of the small sphere will be the sum
of the two terms:

φr =
1

4πǫ0

q

r
+

1

4πǫ0

Q

R
.

On comparing this with the expression for φR, the potential difference comes out as

V = φr − φR =
q

4πǫ0

(

1

r
− 1

R

)

.

Assuming q positive, V must also be positive (since R > r), which means that charge will always flow
‘downhill’ from the small sphere to the large – however large Q may be.

From this result, it follows that the charge on the big sphere of a van der Graaf machine,
and its electric potential φ, will both go on increasing as long as the belt is being driven.
Of course there is a limit: as the potential increases the field outside the big sphere gets
bigger and bigger and it gets hard to carry more positive charge towards it. And even
before that, when the potential reaches millions of volts, there will be a discharge in the
form of a flash of lightening between the sphere and the ground, or the nearest object at
a lower potential – and all the work you’ve done in building up the charge will be wasted.

Condensers in general

In the machines we’ve just looked at the electricity generated has been stored, either
in Leyden jars or in a large metal sphere: these storage devices are both simple forms
of condenser, of which there are many other kinds. One which shows up the general
principles, which apply to all of them, is the parallel plate condenser. Figure 11
indicates how it works.

Ed

Figure 11.
Parallel-plate condenser
Top plate, area A, surface charge Q
Bottom plate, surface charge −Q
d = separation, E = typical field vector

If the top conducting plate. of area A, is given a positive charge Q and the bottom plate
a charge −Q, the charges will spread out uniformly until (when equilibrium is reached)
they sit on the inner surfaces of the two plates. The lines of force between them connect
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the positive and negative charges and the field intensity E will have a magnitude E given
by equation (??), E = σ/ǫ0, where σ is the surface charge per unit area.

Let φ1 and φ2 be the potentials of the upper and lower plates: then (see Section 1.2) the
PD φ1 − φ2 measures the work done when unit positive charge moves through distance
d in the direction of the field: φ1 − φ2 = Ed. Putting charge in is called “charging the
condenser” and it’s useful to know how much charge has to be put in to get a voltage
difference V between the two plates. The next Example shows how you can find this.

Example 11. Capacity of a parallel-plate condenser

Suppose charge Q has been put on the top plate in Fig.11. The surface charge density is σ = Q/A for a
plate of area A, all the charge being on the inner surface only. From Example 6 the field E between the
plates has magnitude E = σ/ǫ0 = Q/ǫ0A and the PD will thus be

φ1 − φ2 = Ed =
Qd

ǫ0A
= V,

where the PD, which is measured in Volts, is also indicated by V and called the voltage difference
between the plates. The amount of charge on either plate, Q. is thus directly proportional to the voltage
difference: Q = CV .

The proportionality constant C is called the capacity of the condenser. For a parallel-plate condenser,
the previous equation shows that C = ǫ0A/d. This is an approximate result because we haven’t worried
about ‘edge effects’, small corrections that are needed when the plates are not infinitely large and the
lines of force near the edge are not straight but bent.

The important conclusion from Example 11 is that: for any electric storage device that
works by separating charges ±Q and setting up a PD V between them the magnitude of
the charge is directly proportional to the PD between the separated charges:

Q = CV (1.20)

This is true for condensers of all kinds and gives us a general definition of capacity. But
Example 11, for a parallel-plate device is also of practical interest because it shows how
you can change the capacity. For a parallel-plate condenser we found that C has the value

C = ǫ0A/d (1.21)

where A is the area of overlap of the two plates and d is their distance of separation.
Thus, you can increase C (i) by increasing the overlap-area of the plates, or (ii) by
bringing them closer together (decreasing the separation d, or (iii) by putting a different
insulating material between the plates, to change ǫ0 (the “permittivity of free space”)
to ǫ, the permittivity of the material. More about this later; but condensers are very
important, being found in nearly all electrical gadgets, and it’s very useful to be able to
vary their capacity for holding charge. Note that the unit of capacity will be, from (??),
1 coulomb per volt; this unit is called the ‘farad’ (after Faraday), so 1 farad = 1 C V−1.

Energy of a charged condenser

Nothing much has been said so far about the amount of energy stored in a condenser.
But the change in potential energy VB − VA, of a charge moved from point A to point B,
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was used in (??) to define the electric potential in terms of the work done. In the next
Example, we’ll use this this procedure to find how much work has to be done to charge
a parallel-plate condenser by moving an infinitesimal amount dq from Plate 1 to Plate 2
and then repeating this (over and over again) until the condenser has +Q on Plate 2 and
−Q on Plate 1.

Example 12. Building up the energy in a condenser

The work done in moving dq from Plate 1 to Plate 2 is dq φ2 − dq φ1 = dq V where V is the PD between
the plates at that time – when charge has already built up to q, say.

The total work done in building up the final charge on each plate then follows (go back to Book 3 if
you’ve forgotten about integration!) as

W =

∫

dw =

∫ Q

0

(q/C)dq = |12q2/C|Q0 = 1
2Q2/C

– and that is the electrical energy of the charged condenser. Since, from (??), the total charge is Q = CV ,
this can be written W = 1

2CV 2.

Now where is that energy actually stored? The condenser looks exactly the same as it did before we
started putting charge into it: it is only the electric field that has changed from zero to E at all points in
space. So perhaps the energy is stored in the field? and, if so, how much is stored in an element dV of
volume? For the condenser in Fig.11, the field is uniform throughout the space between the plates and
negligible outside: so the volume in which the field is non-zero will be (area of each plate)×(separation),
A × d. If W is divided by the volume Ad it will give the field energy per unit volume i.e. the energy

density of the field, usually denoted by u

To complete the calculation we need only substitute for the capacity C, given in (??), and divide by Ad.
The result (check it!) is u = 1

2ǫ0E
2.

The important results from Example 12 are the expressions for the energy of a charged
condenser (W ), which is the work you must do to charge it, and the energy density
formula, expressing this energy in terms of the electric field you’ve created. In summary

W = 1
2
CV 2, (1.22)

for the work done in charging a condenser of capacity C, and

u = 1
2
ǫ0E

2, (1.23)

for the energy density.

Of course the ‘proofs’ are valid (and only roughly so) for a very special case, the parallel-
plate condenser, but – remarkably! – the results are widely valid. In particular, the
energy density formula (??) applies to the electrostatic field arising from any distribution
of electric charge.

1.6 Differential form of Gauss’s law

A note to the reader. The next two sections bring in some new and difficult ideas.
Skip them on first reading and come back to them when you’re ready.
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The flux of a vector field across a surface was defined with the help of Fig.3 and some
of its remarkable properties were noted just after equation (1.13). We used the idea in
formulating Gauss’s law in a very general way in (??) and found how easily it could
give expressions for the field around conductors like plates and wires. But the law in that
form can be applied only in very special cases, where the whole system has a simple shape.
Later we’re going to need a differential form of the law, which will let us talk about fields
that change rapidly from point to point. The differential calculus (Book 3) has been used
so far only in showing how a vector field, like E, could be derived from a scalar field φ
by means of the gradient operation, according to equation (??). Now we want to know
about the variation of a vector field as we go from point to point; and again we’ll need
the calculus.

Let’s start by talking about the flux of the field out of a very small ‘box’, a volume element
dV = dxdydz, like the ones you’ve used in Book 3. Think of the box as a cube, with six
faces which we can call A, B, C, D, E, F, all with the same surface area S – just to make
things simple. Take the first pair (A and B, perpendicular to the x-axis) on which the
field vectors are EA and EB as indicated in Figure 12.

A B

nA nB

EA EB

x-axis

Figure 12.
Volume element, faces A and B
perpendicular to x-axis,
showing fields EA, EB and
outward normals nA, nB.

The important thing to keep in mind is the direction of the vectors. In this example the
field hasn’t changed in going from Face A to Face B, so the vectors are equal (same length,
same direction). But the flux out of a volume is defined relative to the outward-pointing
normal; so for Face B it is S × E⊥

B (with the notation of Fig.3) and is counted positive
because the perpendicular projection points along the positive x-axis. On the other hand,
for Face A, the flux is counted negative because the vector EA points into the cube while
the outward normal is along the negative x-axis.

In vector language, which you first used in Sections 5.4 and 6.3 of Book 2, the projection of

a vector E along the direction of the unit vector n is the scalar product E · n.); it is the
magnitude E of the vector times the cosine of the angle it makes with n. If you reverse
the direction of the normal you must change the sign of the projection. So if you use the
scalar-product definition the signs are taken care of automatically!

The flux of E out of the cube, through the faces A and B, can now be calculated as follows,
using n for the unit vector along the positive x-axis:

Outward flux of EA at Face A = SEA · nA = −SEA · n,

outward flux of EB at Face B = SEB · nB = SEBn.

When the two field vectors are equal. they make equal but opposite contributions to the
flux out of the volume element – if no field is created (or destroyed) inside it, then what
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goes out must equal what comes in! All this is true for each pair of opposite faces and
by adding the contribtions we can get the total flux of field intensity out of the volume
element dV . And, if no flux is created or destroyed inside it, this total outward flux must
be zero.

But what if there is some charge in the volume element? We started in Section 1.1 from
the idea that the field was created by ‘something’ that we called ‘electric charge’; and that
there were two kinds of charge, negative (meaning rich in electrons) and positive (short of
electrons). The field was defined in terms of forces (which we knew how to measure) and
this led, in Section 1.1, to the definition of the unit of charge – the Coulomb. In Coulomb’s
law (??) we were thinking of charge as a generator of the field, but after getting the idea
of flux (Figure 3) we found another interpretation:

Electric charge at any point in space creates an outward flux at the point
– which can be positive, for positive charge; negative, for negative charge; or
zero, if there is no charge there. The flux created by a point charge q is q/ǫ0.

Now let’s go back to Fig.12 and suppose the volume element contains charge q, which
will create an outward flux q/ǫ0 if it’s a positive charge or destroy the same amount if it’s
negative. Everything is beginning to fall into place! All we have to do now is to express
these ideas in mathematical form. The x-axis is perpendicular to both Face A and Face
B of the cube, so EA · n can be called instead EA

x – the x-component of the vector EA

(where the label ‘A’ has been moved upstairs to keep it out of the way); and in general
the field will depend on position, so if we suppose the bottom left-hand corner of the cube
in Fig.12 is at point (x,y,z) then the field vectors EA and EB will correspond to E(x, y, z)
and E(x + dx, y, z), respectively. Note that x = 0 at points on Face A, x = x + dx at
points on Face B, and the x-components are thus Ex(x, y, z) and Ex(x + dx, y, z). Here
dx is the infinitesimal change in x in going from Face A to Face B; it is a differential
(See Section 2.3 of Book 3). The corresponding increase in the x-component of the field
is (rate of change)×dx or

dEx =
∂Ex

∂x
dx,

where the derivative on the right is a partial derivative because only x has been changed,
the other variables being kept fixed. (Section 6.1 of Book 3 will remind you of such
things.)

There will be a similar increase in the component Ey in going from Face C to Face D, by
changing y alone, both faces perpendicular to the y-axis,

dEy =
∂Ey

∂y
dy.

The same is true for Ez as you go from Face E to Face F, both perpendicular to the z-axis.
Now multiply all field components by the areas out of which they point and add together
the results for all three directions (noting that in general these areas will be dydz, dzdx,
and dxdy). The result will be (check it!)

Total flux of E out of dxdydz =

(

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)

dxdydz. (1.24)
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This formula for the flux of the field out of a volume element dV = dxdydz, at any point
in 3-dimensional space where there is no charge, is very important. It arises whenever we
talk about vector fields and the way they can change. The quantity it defines is given a
special name: it is the divergence of the field. Here it measures how quickly the lines of
force move apart (i.e. ‘diverge’) as they go out from any point in space.

Just as the gradient of a scalar field φ(x, y, z) was defined in (??) in terms of its first
derivatives, the divergence of a vector field (with three components) is defined in terms
of first derivatives of its three components: we write (for short)

div E =

(

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)

. (1.25)

The total outward flux from dV , given in (??), appears in the form (flux density)×(volume).
We now see that the statement divE = 0 at some point P is a neat mathematical way of
saying that there is zero outward flux per unit volume at that point.

If, on the other hand, there is some charge (q say) inside dV we can write q = ρdV , where
the letter ρ is the usual name for the charge per unit volume and is called the charge
density at the point where dV is located. We started by talking only about point charges,
but now we’re thinking of the charge as being ‘smeared out’ – and as long as ρ = ρ(x, y, z)
is concentrated inside the box dxdydz it won’t make any difference. However, (??) will
now give, using the quantity div E defined in (??)

Total flux of E out of dxdydz = div E dV = ρdV/ǫ0.

This applies even when electric charge is spread out all over space, with a density ρ which
is any function of position. The volume elements may be cancelled and the final equation,
which applies when charge is present, becomes

div E = ρ/ǫ0. (1.26)

This is the differential form of Gauss’s law: it is a partial differential equation. (See
also Chapter 6 of Book 3.)

We already guessed the general form of the law in (??), which referred not to a point in
space but rather to a volume of any size enclosing any number of charges. How are the
two ideas connected? We’re now going to start from charges and fields at a point and
build up to whole systems in which the charges may be spread out in any way. This will
give us a proof of the general form – the ‘integral’ form.

1.7 Integral form of Gauss’s law

The key step in finding the law is to add a second box to the one used in Fig.12; then we
can continue and build up the whole system out of tiny boxes. In Figure 13, we look at
the first two volume elements – showing them slightly separated so as to see what’s going
on.
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A B

1

nA

nB

EA EB EB′

x-axisnB′

B′ C

2

nC

EB′

EC

Figure 13. For proof of Gauss’s theorem

– showing two adjacent volume elements

Example 13. Building up the boxes

Think of the flux coming out of each box in Fig.13 (which have been labelled 1 and 2) and for the moment
let’s suppose the boxes are ‘empty’, containing no charge. As in Fig.12, the faces of the cubes can be
named A, B, C, etc. but we first consider only the faces perpendicular to the x-axis: we’ll call them A
and B, for Box 1, B′ and C, for Box 2. The surfaces B and B′ are not really separate: when the boxes are
put together there’s only one and it’s called the interface between the two. The field intensity at each
face is shown as a vector coming out from its centre and you’ll note that EB and EB′ are shown equal, in
both length and direction, because they are the same vector. Now let’s list the flux contributions for the
four surfaces, using n for a unit vector along the positive x-axis, just as we did for Fig.12.

The flux of E out of the first cube, through the faces A and B, can now be calculated as follows, again
using n for the unit vector along the positive x-axis:

Outward flux of EA at Face A = SEA · nA = −SEA · n,

outward flux of EB at Face B = SEB · nB = SEB · n.

The flux of E out of the second cube, through the faces B′ and C, are:

Outward flux of E′
B at Face B′ = SEB′ · nB′ = −SEB′ · n,

outward flux of EC at Face C = SEC · nC = SECn.

By adding all four fluxes, we get the x-part of the total flux out of both volume elements taken together.
But the contributions from B and B′, which is really a single interface when the cubes are put together,
is clearly zero: SEB · n − SEB′ · n = 0, because EB = EB′ , the two vectors being identical. The result is
that: Total outward flux in x-direction = flux from face A + flux from face C

The conclusion from Example 13 can be stated generally as follows:

The total flux of E out of two adjacent volume elements, put together, can be
calculated as either (i) the sum of the two separate fluxes, or (ii) the total flux
from both together – but not counting their common interface.

And if this is true for two volume elements it must be true for any number, as we add
them one at a time and in any way we please. Whenever two faces come together, forming
one interface, we can simply forget about their flux contributions – which will cancel out.
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By putting together a large number of very small volume elements, we can build up a good
approximation to a solid object of any shape; and as the elements become infinitesimal
the approximation becomes more and more perfect. This is the method of the Integral
Calculus (Book 3, Section 3.2). The important thing is that, in getting the flux out of
the whole object, we have to think only of volume elements at the surface. The total
outward flux will then be the sum of contributions from all elements of volume and this
becomes, in the limit, a volume integral. The presence of charge at any point in space
also contributes to the flux, as in the displayed statement just before (??), giving a volume
integral of the charge density. The final result is then

Total flux of E out of volume V =

∫

V

div E dV =

∫

V

ρdV/ǫ0, (1.27)

where
∫

V
simply means “integral over the whole volume”. This is a new mathematical

statement of Gauss’s law in the form original form (??), the integral on the right-hand
side giving the total charge contained within the volume, divided by ǫ0.

It only remains to express the outward flux as a surface integral. The flux arises from
the exposed faces of all the volume elements at the surface; but as the boxes become
infinitely small they will, in the limit, approach a smooth surface. The flux out of a
surface element dS = dS n (where n is the outward-pointing unit vector normal to the
surface) is just E · dS: the total flux is thus the surface integral

Total flux of E out of volume V =

∫

S

E · dS. (1.28)

On putting this alternative expression for the flux into (??) we get a very fundamental
result, called Gauss’s Theorem:

∫

S

E · dS =

∫

V

div E dV. (1.29)

This is usually proved in books on Mathematics: here it comes out naturally, along with
its meaning, in talking about fields in Physics. Even if we didn’t have it we’d need to
invent it!

What the theorem does is to relate a surface integral of the field vector E to a volume
integral of another quantity, div E, which can be derived from the field: in this way a
2-dimensional integral is expressed as a 3-dimensional integral of a density, which is a
scalar quantity defined at all points within the volume enclosed by the surface. The vector
and its divergence are both important quantities in Physics and it’s often useful to be
able to pass from one to the other.

There’s a similar theorem which relates the line integral of a field vector, around a closed
circuit, to the integral of another quantity taken over any surface bounded by the circuit
(giving a 1-dimensional integral in terms of a 2-dimensional one). You might be guessing
that this has something to do with the idea of a path integral, which we met in talking
about the electric potential – and you would be right.
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If you read Section 1.2 again, you’ll remember that the electric potential φ(x, y, z) at any
point, with coordinates x, y, z, was defined by a path integral: the work you have to do
in taking unit positive charge from Point A to Point B is

W (A → B) =

∫ B

A

E · ds

where the tiny vector ds represents an element of displacement along the path and the
scalar product E · ds is the work done in that small step. The integral gives you the total
change in potential, ∆φ(A → B). The fundamental property of this quantity is that it
doesn’t depend on which path you take from A to B and this means that the potential is
a unique function of position x, y, z. So if you come back to the starting point (putting
B = A) there will be zero change. This property of the field is often expressed by writing
the work equation (above) as

∮

E · ds = 0, (1.30)

where the symbol
∮

simply means the integral “taken round any closed circuit”. Equation
(??) is what ensures that the scalar quantity φ(x, , y, z) can be defined and that it is related
to the field E by (??), namely E = −grad φ.

To end this long chapter, let’s squeeze the whole of Electrostatics (everyhing to do with
charges at rest and the fields they produce) into one simple-looking statement:

The electric field E(x, y, z) at any point
(x, y, z) in space, due to a static distribution
of charge, of density ρ(x, y, z) per unit volume,
can be obtained by solving the single equation
div E = ρ/ǫ0.

(1.31)

Of course this is not easy to solve (it’s a partial differential equation in three variables),
but it represents an enormous step forward in our understanding.
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Chapter 2

Charges in motion: Electric currents

2.1 Flow of charge in a conductor

In the last chapter, we were thinking mainly about charges in equilibrium i.e. when they
had come to rest. The charges may be positive or negative, like those on the two plates
of a condenser (Fig.11), and an electrically neutral body will have zero net charge (equal
amounts of positive and negative charge). But if the charges are allowed to mix (e.g.
by putting a conductor between the two plates of a condenser) they will reach a new
equilibrium: current flow will take place until finally there is no longer any electric
field at any point in the conductor. In this first section we want to understand what is
happening.

Suppose then we have a continuous medium which conducts electricity and is exactly
the same at all points. During the time that currents are flowing, the charge density ρ will
be changing as charge moves from one place to another: it may be positive or negative at
any point (more + charge than − charge, or the other way round) and it will depend on
time t as well as position x, y, z. As an equation

ρ = ρ(x, y, z, t). (2.1)

The electric field components Ex, Ey, Ez and the potential φ will all be functions of the
same four variables.

At any instant t, every little bit of charge q (or ρdV if it is spread out continuously) will
feel the electric field E which tries to move it. Suppose it moves with velocity v, a vector
pointing in the direction of the field: then qv gives the velocity with which the charge is
being moved – and this is an electric field.

When the charge is spread out with density ρ per unit volume, a current density vector
may be defined as

j = ρv. (2.2)

This is a current density because it is “per unit volume”: the amount of charge being
moved (in volume element dV ) is ρdV .

In a continuous conductor, charge may be flowing in any direction and we may want to
know how much crosses any bit of surface, of area dS, per second. This will be called the

29



flux of current density across the surface element. And flux is something we know about
already from Chapter 1, Figure 3. Here, instead of the electric field E, we’ll be thinking
of charge moving with velocity v across dS as in the Figure below.

n v

(a)

n v

(b)

Figure 14. The flux vector

In Fig.14(a) the charge coming out of dS in 1 second, will have travelled a distance v
along the vector v and will occupy the long thin ‘box’ shown, closed at its bottom end
by the surface element dS and at its top end by a parallel piece of surface (shown in
pale grey). The amount of charge in that box will be (volume of box)× (charge per unit
volume); but what is the volume of such an odd shape?

This is something you did long ago in Book 2. If you imagine the long thin box cut
into thin slices, parallel to the base, it could be pushed over to one side as in Fig.14(b),
where the unit vector n is normal to the surface element. It then stands on the same
base and has the same vertical height (the same number of slices, of the same thickness)
as before you pushed it. The volume is thus invariant – dV =(area of base)×(vertical
height)= dS × v · n – and the amount of charge it holds is ρdV . This will be the charge
passing through dS in 1 second; and this is the flux density,

Flux of j across dS = j · ndS = j · dS, (2.3)

where dS in the last form is called (Book 2, Section 6.3) the vector area of the surface
element. (dS combines the magnitude of the area with the direction n of the normal,
dS = ndS.)

For a continuous surface of any kind, not just a tiny element dS, the total current
through the surface may be found by summing the flux out of every small element into
which it may be divided. The result is written

I =

∫

S

j · ndS =

∫

S

j · dS, (2.4)

where
∫

S
is the notation for a surface integral, as used already in (??)for total flux of

the field E.

For a closed surface containing no charges (which generate the field), the surface integral
of the field intensity E must be zero. And in the same way the total outward flux of the
current density j will be zero whenever no current is put in (or taken away) at points
inside the surface. In other words

∫

S

j · dS (no source or sink of current within S). (2.5)
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Here ‘source’ means a point where current enters the system, ‘sink’ being a point where
it exits : such points usually correspond to electrodes or terminals. More about that
later. First we need to know how currents are related to the electric fields that produce
them.

2.2 Conductivity

We know from Chapter 1 that the field intensity E can be related to the electric potential
φ: the field vector at any point measures the rate of decrease of φ and it is often convenient
to introduce the potential difference (in Volts), so that E will be in “Volts per metre”.
For a given PD, the rate of current flow is found experimentally to be very variable: it
is high for a good conductor, like copper, but very low for many non-metals, such as dry
wood or silk. Moreover, it is usually proportional, in good approximation, to the PD.
This suggests a general relationship of the form

j = σE. (2.6)

The proportionality constant σ depends only on the material (and to some extent on
the temperature), but has nothing to do with the shape of the conductor: it is the
conductivity of the material. The experimental result (??) is called Ohm’s law.

One special kind of conductor is a long thin wire, used for carrying electricity from one
place to another. The total current through the wire is then given by (??). If you have
a current supply (e.g. a battery, like the one in your torch or portable radio) you can
send current into a conductor of any size and shape, through a terminal, and take it
out through another. What happens inside can then be determined by the equations we
already have. Of course this can be complicated for conductors of any shape – but we
shalln’t need to do it here! We’ll only deal with simple electric circuits in which wires
are used to connect things like condensers; and we’ll do that in a later section. However,
it’s nice to know that the basic equations can very easily be extended to allow for currents
flowing into and out of a continuous medium. (You can skip the next bit at this point if
you like!)

Example 1. Conduction in a continuous medium

Suppose the conductor, of volume V is enclosed within a surface S and contains charge, smeared out
with a density ρ. The total charge it holds is then

∫

V
ρdV and this will change with time at a rate

∫

V
(∂ρ/∂t)dV ; and this rate of decrease must be equal to the amount of charge flowing out across the

surface S. As an equation,

−
∫

V

(∂ρ/∂t)dV =

∫

S

j · dS. (2.7)

This doesn’t look very promising! But remember Gauss’s theorem (??), which relates the surface integral
of a vector field to the volume integral of the divergence of the field. If we put j in place of E, the theorem
gives

∫

S

j · dS =

∫

V

div jdV
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and putting this result in the previous equation leads to

∫

V

(

div j − ∂ρ

∂t

)

dV = 0.

Now this must be true for any volume whatever ; and that can be so only if the coefficient of dV is zero
for all volume elements i.e. at all points in space. The integrand must therefore be zero everywhere.

The final result from Example 1 is thus

(

div j − ∂ρ

∂t

)

= 0. (2.8)

Let’s repeat: this equation simply says that “the rate of decrease of charge, within any
volume V enclosed by a surface S is equal to the rate at which charge flows out across the
surface” – which is just common sense! Of course, in a steady state, where the charge
density is everywhere independent of the time, ∂ρ/∂t = 0. In that case, (??) reduces
to the simpler equation div j = 0. which is much easier to solve. In later sections we’ll
usually be dealing with steady states in which there may be potentials (φ), fields (E), and
currents (j) at any point in space – but they don’t depend on time.

2.3 Some simple circuits

In Chapter 1 it was noted that one specially simple and useful kind of conductor was
a long thin wire, which could carry charge from one place to another. In this section
we start to look at electric circuits in which things like condensers and other circuit
elements are connected together by wires. You can think of a wire as a long cylinder of
conducting material (usually metal) with a circular cross-section. It can be bent into any
shape you wish, as in Figure 15 below, and the total current going into or out of it at its
ends can be calculated as a surface integral of the flux density j. The nice thing about
this current I is that I1 and I2 are the same, even when the wire is bent, because of the
‘conservation equation’ (??): this says that what goes in equals what comes out – even
when the currents point in different directions (as in Fig.15) they must have the same
magnitude. (The flux density j is zero over the sides of the wire, because that’s where the
metal stops, so the only contributions to the outward flux are those from the ends, giving
I2 − I1 = 0 in a steady state.)

I1 I2

Figure 15. Wire, bent into semi-circle
I1 = current vector in
I2 = current vector out
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Now that we know about wires we can go back to the example considered at the beginning
of Section 2.1 and ask what happens if we connect the two plates of a charged condenser.
When we’re thinking of wires, carrying current from one place to another, it’s useful to
work with the total current I and to ask how it depends on the potential difference between
the two ends of the wire. Instead of (??), which defines the conductivity of a material
under the influence of an electric field, we measure the resistance R of a conducting wire
by writing

I = V/R, (2.9)

where V is the PD, usually measured in volts, between the ends (or terminals) of the
wire, and I is the current it produces. The current is thus inversely proportional to the
resistance: the bigger the resistance, the smaller the rate of charge flow. This equation
is also often referred to as “Ohm’s law”, being simply another way of putting (??). The
unit of R is 1 Volt per Coulomb and is called the “Ohm”: its symbol is the Greek capital
letter Ω, pronounced “omega”. (And an easy way of remembering (??) is by saying to
yourself “Volts equal Amps times Ohms”.)

Let’s draw a circuit diagram to show what we’re talking about. Figure 16 shows the
two plates of a charged condenser, on the left, which can be connected by a wire, through
a switch. The switch is shown ‘open’ so as to make a break in the conducting wire, but
by ‘closing’ it the current can pass from one side to the other. After the switch the wire
can be as long as you like, so as to offer a bigger resistance, and is shown as a ‘jimpy’
line. After that, going clockwise, the wire finally connects with the other plate of the
condenser. So when the switch is open the plates are not connected and the charge on
them has nowhere to go; but on closing the switch the circuit between the top plate and
the bottom plate is completed and current can flow. When the charges +Q and −Q meet
they make a total charge zero: the condenser is then fully discharged and there will be
zero potential difference between the plates.

C R

Figure 16. Discharge of condenser C
Condenser plates (left) are connected,
when switch (top) is closed, through
resistance R (‘saw-tooth’ line on right)

But what is happening in the short time it takes to discharge the condenser? To find
out we have to solve a simple differential equation, of the kind we first met in Book 3
(Section 6.2). This will be our first example of how to deal with an electric circuit.
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Example 2. Discharge of a condenser

The rate at which the charge Q ‘decays’ is, in calculus notation, −(dQ/dt) and this rate of outflow of
charge is the current I in the wire connecting the plates when the switch is closed:

I = −dQ

dt
.

But we know from (??) that I is related to the PD (also called the “voltage”) across the plates of the
condenser by I = V/R and that V = Q/C in terms of the capacity C; so I = Q/(RC). On putting this
last expression for I into the previous equation we find

dQ

dt
= − Q

RC

and this is the differential equation we need: Q varies with time, as the condenser discharges, but R
and C are constants. The solution of this equation is a standard result (Section 3.4 of Book 3). It is
Q = A exp

(

− 1
RC t

)

, where A is any constant. To fix the value of A let’s use Q0 for the value of Q when
the condenser is fully charged at t = 0. The last equation then says Q0 = A, telling us what the constant
means. end of small

The conclusion from Example 2 is that when the plates of a charged condenser are con-
nected through a ‘resistance’ R the initial charge Q0 (at t = 0) falls exponentially to
zero as t → ∞:

Q = Q0 exp

(

− 1

RC
t

)

. (2.10)

The charge Q goes down quite slowly if the capacity C and resistance R are big, so that
1/(RC) is small; but very fast if they are small, so that the coefficient of t is large.

Before looking at other examples, we need to add another circuit element, a battery,
in order to generate an electric current. So let’s replace the condenser in Fig.16 by a
battery, as in Fig.17, where it stands in the same position, without changing the rest of
the circuit except that we’ll include a lamp in it – just to show when a current is flowing.

Example 3. Circuit with a battery and a lamp.

You’ll find how batteries work in Section 2.4, but for now it’s enough to know that they produce a
voltage between their two terminals, indicated by the + on the upper plate in Fig.17 (higher potential)
and the − on the other plate (lower potential). The charges on the two plates don’t just disappear when
the switch is closed: they give a steady electric current that runs around the circuit until the switch is
opened again – or until the battery is ‘run down’. And if you put a small lamp in the circuit, as shown
in the Figure, it lights up.
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+

− B R

L

Figure 17.
Circuit with battery B and lamp L
When switch is closed, current goes from
+ to −, first through resistance R, then
through lamp filament (see text).

The light can be switched on or off whenever you like: it’s not like the condenser discharge, which can
happen only once. And instead of just giving a spark the battery is doing useful work.

Electric circuits can become very complicated if many different elements are connected
together (think of your portable radio) but they can all be understood by using two simple
principles, which we already know about from earlier sections. Both apply to properties
of the electric field E, and the potential φ, inside a conductor; so they are important also
for wires.

The first thing to remember is that the wires are there only to connect the circuit elements:
if they were ‘perfect’ they wouldn’t hold any charge in themselves and they wouldn’t offer
any resistance to a current passing through them – they would be perfect conductors. We
can only imagine them, so we call them “ideal wires”. Thin wires of copper are pretty
good approximations.

The field inside a wire, that makes electric charge move, is often called the electromotive
force, or “emf” for short, and is denoted by E to make it different from the field vector
E at any point in the conducting material. It is measured in volts (not volts per unit
distance) and the voltage between the terminals of a battery is the emf it can produce.
If unit positive charge passes through a circuit element, the work done on it is just the
PD between its terminals i.e. the ‘voltage drop’ across the element. If it passes through
any number of circuit elements, getting back finally to the starting point, then the total
work done must be zero (its potential is the same as at the start). To include a battery
as one of the circuit elements you only need include its emf E as one of the voltage drops,
getting the signs right by noting the direction of the current flow (from positive to negative
potential). This is one of “Kirchoff’s laws”: the sum of the voltage drops, going round
any closed circuit must be zero.

Of course, if two or more wires join at a point, the currents flowing into that point must
add up to zero – for otherwise charge at that point would go on building up forever!

These conclusions apply to any network in which circuit elements are connected by ideal
wires. They are usually stated as follows, where the word “node” is used to mean any
connected set of terminals:
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Kirchoff’s first law:
The sum of the currents flowing into any “node” n
in a network of elements connected by ideal wires
must be zero:

∑

n In = 0.

Kirchoff’s second law:
The sum of the potential drops VN across the circuit
elements N in any closed circuit within a network must
be zero:

∑

N VN = 0.

The next two Examples show how easy it is to apply these two rules.

Example 4. Resistances in series.

This example shows what happens if you connect two resistances ‘in series’ – one after the other, as in
Fig.18 where the current goes through R1 and then on through R2.

+

−
R1

R2

Figure 18. Resistances in series.
Current I passes first through R1,
then through R2, and finally through
the lamp.

When the switch is closed, the (positive) current flows from the top plate of the battery towards points
at lower potential: call it I when it enters the resistance R1. By Kirchoff’s first law the current leaving
R1 will also be I – what goes in must equal what comes out – and by (??) the potential drop between
entering and leaving will be V1 = IR1. The current I continues on through R2 and when it comes out
there will be another voltage drop, again from (??), V2 = IR2. Then there will be a voltage drop, VL

say, when the current goes through the lamp and gets back to the bottom terminal of the battery. The
total potential change on reaching that point will thus be −V1 − V2 − VL, with the minus signs because
the potential is dropping. But then, to complete the circuit, there will be a positive change in potential
– namely the emf of the battery, which keeps the top plate at potential E above that of the lower plate.
So the total change in coming back to the starting point will be

E − V1 − V2 − VL = E − VL − I(R1 + R2)

and by Kirchoff’s second law this must be zero.

The important thing to note from Example 4 is that the potential drop across the two
resistances in series is just the same as a single term IR: in other words you can replace
the two resistances, connected that way, by a single resistance R = R1 + R2. And if you
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connect any number of resistances in series they will clearly give you a similar result,

R = R1 + R2 + R3 + ... =
∑

i

Ri. (2.11)

Next look at Figure 19, which shows the same circuit, but with the resistances connected
‘in parallel’.

Example 5. Resistances in parallel.

This example shows what happens if you connect two resistances ‘side-by-side’. Here all the circuit
elements are just the same as in Fig.18 and we can go ahead, using Kichoff’s laws in exactly the same
way.

+

−
R1R2

Figure 19. Resistances in parallel.
Current I passes through R1 and R2,
connected ‘in parallel’, before going
through the lamp.

In this case, however, there is an important node where the top terminals of R1 and R2 are both
connected by wires to the wire coming from the switch. At the point where the three wires meet, the
current coming in is I while the currents going out are I1 (into resistance R1) and I2 (into resistance R2).
So Kirchoff’s first law tells us that I − I1 − I2 = 0: the sum of the currents through the two resistances
is therefore I1 + I2 = I (the current coming from the battery, when the switch is closed).

To apply Kirchoff’s second law, let’s use V for the voltage drop between the node at the top of the two
resistances and that at the bottom. We can then say, using (??), that V = I1R1, V = I2R2. But since
we just found that I1 + I2 = I we can also say

V

R1
+

V

R2
= I.

Now think of the two resistances in parallel as a single circuit element. If you divide all terms in the last
equation by V you find

1

R1
+

1

R2
=

I

V
=

1

R
,

where, according to (??), R is the value of a single resistance equivalent to R1 and R2 connected in
parallel. If we go round the whole circuit, as we did in Example 4444 for resistances in series, the second
law will give

E − VL − I

(

1

R1
+

1

R2

)

.

Here VL is again the resistance offered by the lamp, but the last term is now −IR where 1/R is the sum
of the reciprocals of the parallel-connected resistances.
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The result in Example 6 extends to any number of resistances connected in parallel:

1

R
=

(

1

R1

+
1

R2

+
1

R3

+ ...

)

=
∑

i

1

Ri

. (2.12)

The above Examples are enough to give you a start: now draw a few other circuits (fairly
simple!), with circuit elements connected together in various ways, to get new networks.
By applying Kirchoff’s two laws you can always get enough equations to find all the
currents and voltage drops in all parts of a network – no matter how complicated!

2.4 Electricity, Chemistry, and Batteries

Just over 200 years ago it was found that electricity could be produced in a new way,
completely different from the one used in making ‘static electricity’ (Chapter 1). Alessan-
dro Volta, an Italian, noticed that two plates of different metals, separated by absorbent
material soaked in saltwater, came to different electric potentials. This combination of
two plates with a salt solution between them came to be known as a “voltaic cell”.

The potential difference (PD) produced is very small (around 1 volt), compared with
the thousands of volts coming from electrostatic generators. But by piling up a large
number of plates, alternating the two metals and separating every pair with a layer of
salty material, you get a voltaic pile or battery in which the PD between the top and
bottom plates (of different metals) can easily reach 100 V or more: this is enough to
feel if you touch one plate with each hand (especially if your two hands are wet to give
good contact); and if you connect them with a wire you’ll get a spark. The electricity is
exactly the same ‘stuff’ as you get by rubbing a piece of amber with a woollen cloth; but
now it comes from a chemical reaction (see Book 5) between the metal plates and the
salt solution. The study of the relationship between electricity and chemistry is called
electrochemistry. (You may need to look back at some parts of Book 5 before going on
with this section.)

Remember (Section 1.1 of Book 5) that some kinds of solid matter, like common salt
(sodium chloride, NaCl) consist of ions (atoms that have lost or gained one or more
electrons, becoming +ve or −ve ions respectively). In the solid state the ions form a
regular ‘lattice’ as in Fig.9(a) of Book 5 and are held together by electric forces. But if
the salt is dissolved in water the ions are ‘loosened’ and can go away and get mixed up
with the molecules (H2O) of the liquid, giving an aqueous solution of the salt.

The positive and negative ions in the solution can be moved apart by putting two con-
ductors into the solution and keeping them at different electric potentials – supposing you
have some way of doing that. The two conductors are then called electrodes: the one at
higher potential, with positive charge, is the anode, while the one at lower potential is
the cathode. This process of separation is called electrolysis and the solution between
the electrodes is said to be the electrolyte.

In the example of sodium chloride, the positive ions Na+ go towards the electrode of lower
potential, while the negative ions Cl− go towards that of higher potential. The positive
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ions are ‘neutralized’ by regaining the lost electron (Na+ → Na) from the negatively
charged cathode, while the Cl− ions lose their extra electron to the positive electrode:
the neutral atoms, Na and Cl, finally form sodium (metal) and chlorine (gas) at their
respective electrodes.

Keeping this picture in mind, let’s think about the voltaic cell with two electrodes, zinc
(chemical symbol Zn) and copper (Cu), metals which are both easy to find. The metal
atom Zn loses two electrons very easily to form the ion Zn2+, while the atom Cu can take
on 2 electrons to form Cu2−. These processes can be written as ‘chemical reactions’

Zn→ Zn2+ +2e− ↑, Cu +2e− ↓ → Cu2−

where → means “goes to”, ↑ means “goes out”, and ↓ means “comes in”.

Whereas electrolysis takes place only when an electric current is put into the system,
the voltaic cell works the other way round, as Volta discovered: the voltaic cell lets a
chemical reaction ‘go by itself’, delivering electricity to the electrodes – from which it can
be taken out of the system through wires. In other words, Electrolysis needs an input

of electrical energy. The voltaic cell gives an output of electrical energy.

What we want to know next is How much? – and can we get a quantitative understanding
of how chemical energy is changed into electrical energy?

First, remember that the ‘chemical’ unit of quantity is the “mole” (short form ‘mol’),
which means that 1 mole of zinc is L zinc atoms (L being Avogadro’s number, 6.024×1023),
and similarly for 1 mole of Zn2+ ions. In the same way, we can talk about 1 mole of
electrons ; and since each electron carries an electric charge e ≈ −1.6 × 10−19 C we can
say

One mole of electrons carries an electric charge of
(6.024×1023) × (1.6 × 10−19) C ≈ 96, 500 coulombs

The charge carried by 1 mole of electrons is so large and important that it is given a
special name:

1 faraday = 96, 500 C, (2.13)

after Faraday the scientist who laid the foundations of electrochemistry.

All this makes it clear that by using the power of chemical reactions we can expect to
produce quantities of electricity very much greater then those we were dealing with in
Chapter 1. The charge carried by an electrophorus (Section 1.2 of Chapter 1) may be
only a very small fraction of a coulomb! In the rest of this section we’ll be talking about
a very simple form of voltaic cell, based on Volta’s original invention. It uses electrodes of
Zinc and Copper, instead of Zinc and Silver; and the electrodes dip into a solution formed
from water and a little “hydrochloric acid” (so we use a weak – ‘dilute’ – acid instead of
common salt). All you need know about the acid is that the molecules of HCl are then
almost completely ‘dissociated’ into the ions H+ and Cl−. The whole cell is indicated in
the Figure below, along with a lamp connected between the two electrodes:
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Zn Cu

Lamp Figure 20.
A simple voltaic cell
– glass jar shown in light grey,
– zinc anode (shown red) on left
– copper cathode (blue) on right
– electrolyte shown yellow

How does it work? The lamp, shown as an open circle at the top, lights up as soon as
it is connected to the two electrodes, because the anode, which is short of electrons, can
take them in from the cathode, which is electron-rich. As the electrons pass through the
lamp, on their way to the anode, which needs them, they heat a fine wire filament inside
the glass bulb until it becomes ‘white-hot’. And that’s what makes the light.

The anode is short of electrons because the zinc surface is attacked by the acid: the surface
atoms lose electrons according to Zn → Zn2+ + 2e−, so the metal becomes electrically
positive and the electrons can move into solution, being picked up by anything that can
carry them.

Back in the solution, there are H+ ions which are repelled by the positive anode (helping
them on their way, through the solution, towards the cathode. But there are also Cl−

ions which are attracted by the anode and stay close to it until they meet up with the zinc
positive ions who are looking for positive partners. When that happens there’s another
reaction: Zn2+ + 2Cl− → ZnCl2, a neutral molecule called zinc chloride.

But what about the H+ ions, journeying towards the electron-rich cathode? When they
finally get there they find a negative surface charge of electrons waiting for them. The
reaction that follows is H+ + e− → H, which gives a neutral hydrogen atom – a new-born
species called “nascent hydrogen”. It doesn’t stay that way for long because two of them
get together immediately, forming the neutral hydrogen molecule H2 which comes out of
solution in the form of gas bubbles.

That’s the end of the story – a sort of love story on an atomic scale, where everyone
finds the right partner in the end! The driving force is chemistry: neutral species come
together, have a short life as ions, generate electricity, and are partly used up in the
process – some of the zinc electrode being ‘eaten away’ by the acid and converted into
the salt, zinc chloride.

Some other kinds of battery

Nowadays there are many kinds of battery, often made from dry materials (like the small
‘dry batteries’ used in calculators and portable radios) so they can be carried around
without spilling. Some (like the ones for driving an electric motor, to start a car or to
operate an electric drill – which both need a lot of power) may also be re-chargeable. A
rechargeable battery, or accumulator, needs an input of current to charge it, by changing
its chemical condition, but then releases its charge when connected to an external circuit
– providing power as it discharges. Many small cars and trucks are now driven in this way,
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which is very much cleaner than by burning oil and making the air in our cities almost
unbreathable.

But, basically, all such batteries work on the principles explained in this Section. It
remains only to ask how much power electricity can give us – and where does it all go to
when it’s done its job?

2.5 Power from electric currents

In Section 1.2, you got used to the idea of electric potential, which has since been
used many times. If a point charge q is taken from Point A to Point B, by doing work
W (A → B), then the change of potential energy is as given in (??):

VB − VA = W (A → B) = qφB − qφA. (2.14)

(Don’t get mixed up with the letter ‘V’, used here for potential energy, with its use
to mean ‘voltage’ in talking about electric circuits! or used for the Volt as the unit of
potential. The meaning will always be clear if you really think about what you’re doing.)

If the charge is positive and φB > φA, then work W (A → B) is also positive – meaning
the particle has gone from Point A to a Point B with higher potential energy: you have
done work on the charge to get it there. But if φB < φA, then the work term is negative
and the charge has gone to a position of lower potential energy: negative work done on the
charge means that the charge was able to do work on its surroundings. Remember also
that positive charge always flows in the direction of decreasing potential i.e. ‘downhill’.

Now look at a typical circuit, Fig.17, where a current I is flowing from the top terminal
of the battery round the circuit in a clockwise direction (as long as the switch is closed),
finally reaching the negative terminal. The electric potential φ is going down at each
circuit element: when unit positive charge goes into the resistance R at terminal A, and
comes out at terminal B, its potential energy will change by φB − φA and this will be a
voltage drop.

Since I is the amount of charge passing through the resistance per second, the work done
per unit time by the moving charge will be V ×I. But we know from (??) that V = I×R
and it therefore follows that

Work done per unit time when current
I flows through a resistance R is

Work done per second = RI2.
This is called the power consumed.

(2.15)

The unit of power is called the watt, as in Book 4 – where we were dealing with mechanical
systems. Here, where electricity is involved, the watt is most naturally defined as 1 unit
of current (1 amp) flowing between points at unit potential difference (1 volt).
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You can do the same with other circuit elements, each being defined in terms of the
voltage drop between its terminals and the current flowing through it. Thus, if the lamp
bulb in Fig.17 is rated as 100 W and is operating on an electricity supply at 230 V, the
current through the filament will be given by I × 230 = 100 which gives I = 0.43 A.

But what does electric power really mean?

In Chapter 1 we talked about machines that generated static electricity at potentials
of thousands, or millions, of volts. Surely they give us a lot of power? But in fact
they don’t. Power depends on both the potential difference between two terminals (the
‘potential drop’) and the electric charge that’s dropping through that PD in every second.
Let’s make a comparison between the Wimshurst machine (Section 1.5), supposing it gives
an output at 100,000 volts; and the humble battery in your electric torch, which gives an
output at little more than 1 volt from each single cell.

Example 7. Power from a Wimshurst machine

The Wimshurst machine can easily produce 100,000 volts, as you can see from the sparks if gives – which
may be several centimetres long! The electricity is taken off the disks and stored in condensers (Leyden
jars), so we need to know how much charge they can hold. It’s hard to calculate the capacity C of a jar,
so let’s approximate it by using instead a parallel-plate condenser (Figure 11), with two square plates
20 cm × 20 cm separated by 0.5 cm.

From equation (??), the capacity would be C = ǫ0× (Area/separation); but that’s for plates separated
only by air, with ǫ0 ≈ 9 × 10−12 F m−1.

Now a Leyden jar has glass between the metal conductors, not air – which would ‘break down’ and allow
sparks to pass and discharge the condenser completely. With glass insulation between the plates, the
constant ǫ0 must be multiplied by about 5; and the formula for C then gives

Capacity C ≈ 5 × (9 × 10−12 (F/m) × 400 cm2/ 0.5 cm ≈ 3.6 ×10−10 F.

(Check the calculation for yourself, noting that F is the usual abbreviation for the Farad and that the
constant ǫglass ≈ 5ǫ0 is an experimentally measured constant.)

Suppose now that the Leyden jars are charged to a potential of 100,000 V and have a joint capacity of the
order 2C ≈ 10−9 F. How much charge will they hold? From the formula (??) we get Q = CV ≈ 10−9×105

C – where we remember the unit F V−1 is the Coulomb (C).

In summary, our 100,000 V generator has given us only about 10−4 C of electric charge!

Now let’s compare this result with what you can get from a voltaic cell. Go back to the
circuit in Fig.17, using a single cell of the kind studied in Section 2.4 as the battery. It
produces a PD of roughly 1 V and we’ll suppose it gives an electric current of about 0.1 A,
passing through the resistance (R) and the lamp (L): the two things together, connected
in series, would then have a combined resistance of R = (1.0/0.1) V A−1 = 10 Ω. We can
then argue as follows:

Example 8. Power from a single Voltaic cell

When unit charge (1 C) falls through a PD of 1 V the energy it loses is 1 J, the unit of energy. The joule
was first defined in Book 4, in terms of ‘mechanical’ quantities like force and work; but here it’s expressed,
still in the same terms, using Coulomb’s law for the force between electric charges. The power, as noted
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above, is the rate at which work is being done. When I units of charge fall through voltage V per second

the current is I and the rate of working is I V J s−1 (joules per second). With the values taken above,
the power used is P = IV = 0.1 × 1.0 J s−1.

The conclusion from Examples 7 and 8 is clear: the Voltaic cell is sending round the
circuit in Fig.17, in every second, a charge of 0.1 coulomb – an amount a thousand times
greater than that used by the high voltage generator in producing a single spark! So don’t
be misled by sparks alone! What counts, in using electricity, is the useful work it can do
for you; and that usually depends on the wattage you can get from a device, which is a
product of amps and volts. And remember that the old ‘mechanical’ unit of working was
1 ‘horse power’ – the work per second that a very large horse was expected to give you!
In the units we use nowadays that’s about 746 W.

And where does the electricity go to when it’s done its job?

This is the last question we have to think about. Remember that in Physics one of the
great principles is that of energy conservation (look back at Section 2.4 in Book 4).
When energy seems to be lost it doesn’t just disappear: it simply changes from one form
to another. In the Wimshurst machine, the mechanical work you have to do in turning
the handle reappears as electric charge, which is stored at a certain potential – giving you
electrical energy. In the Voltaic cell, the chemical energy, released in the reactions taking
place, reappears as the electric charge going round the circuit. Sometimes the energy
produced is put to good use, like lighting a lamp; sometimes it doesn’t do anything very
useful, like making a spark; but it is never lost. Very often it reappears as heat, which
you learnt about in Book 5.

Look again at Example 8, the Voltaic cell driving electric current (I) through circuit
elements with a combined resistance R. The calculation of the power used led to an
expression for the power P , which gave the work done per second as 10−1 W. This reminds
us that the Joule was first used in Book 5 (Section 3.1) as a unit of thermal energy, being
related to the older unit, the calorie, by 1 calorie ≈ 4.2 J. As Joules are used up in an
electric circuit it is therefore not surprising that they are being transformed into heat.
Some of the power used may be spent usefully (e.g. in cooking or in heating the room with
an ‘electric fire’ – which is a long high-resistance wire wound round a bar of heat-proof
insulating material); but part of it is always wasted, because even an almost ‘ideal wire’
has a small but non-zero resistance.

What form does the thermal energy take? As you’ll remember from Book 5, matter of all
kinds is composed of atoms and molecules which can store energy in the form of vibrations
or other forms of internal motion. If you dig even deeper the atoms and their nuclei are
themselves built up out of the fundamental particles, some of which (e.g. electrons
and protons) carry their own electric charges – which keep their special values, whatever
may happen to the matter they compose. You can think of many other questions to
ask – why only those very special values of charges and masses? – and why are these
particular groups of interacting particles only allowed to take certain special ‘quantized’
energy values? There’s no end to it. But these are problems for present-day Physics, for
which you’ll need a few more books!
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Chapter 3

Magnetism

3.1 Another bit of history

Roughly 2500 years ago both the Greeks and the Chinese discovered that certain heavy
stones would attract pieces of iron; and that this property could be passed on to the
iron itself by stroking the stone with it. The property is what we now call ‘magnetism’
and when it is given to a piece of iron the iron is said to be ‘magnetized’ – it becomes a
‘magnet’.

If a small iron needle is magnetized in this way the attracting power seems to be strongest
near the two ends – at points which were called ‘poles’. And if the needle hangs from a
thread, attached to its midpoint, it has the mysterious property of always pointing in the
same direction. The end which points to the North is called the ‘north-seeking pole’, while
the other one is the ‘south-seeking pole’: they are the ‘N-pole’ and ‘S-pole’, respectively.

As you will know, this device – with the magnetic needle free to turn about a vertical axis
– is a compass. And compasses have been in use for many hundreds of years as a means
of finding your direction (e.g. in navigation, when your ship is in mid-ocean with no land
in sight). It seems that the Earth itself is an enormous magnet and that all magnets,
wherever they are, line up in the same way.

Other strange things are that, if a magnetized wire is chopped into small pieces every
piece becomes a separate magnet, with its poles keeping the same direction; and that
similar poles (both N or both S) repel each other, while opposite poles attract, always
with an ‘inverse-square’ law – like that between electric charges.

People went on making and using magnets for centuries, without understanding what
magnetism was, or where it came from. So magnetism developed as a purely experimental
science, until the idea of a field as a means of transmitting force between different objects
came to be accepted. At first, the N and S poles were thought of as some kind of ‘magnetic
charge’ (like the + and − charges in electrostatics). This idea was supported by the fact
that the force law was very similar to that for electric charges: like poles repelled each
other, with a force inversely proportional to the square of the distance between them,
while unlike poles attracted each other in just the same way.
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But then, just less than two hundred years ago, Oersted (in Denmark) noticed that
a current-carrying wire was moved by the presence of a magnet. In other words, the
moving electric charges in a conducting wire must be ‘pushed’ by a magnetic field:
they experienced a force perpendicular to the direction of the current and this pushed
the wire to one side, in the direction of the magnetic field. There followed many other
discoveries, by Ampère, Faraday, and others which proved beyond all doubt that electriciy
and magnetism were closely related. The strength of a magnetic field could thus be
measured by the force it exerted on a moving charge: if a charge q moves with velocity v,
through a magnetic field B, the force acting on it will be

Fmag = qv × B. (3.1)

The cross (×) here means the vector product of qv and the field vector B, which gives the
third vector F; so the field will have physical dimensions [B]= [force][charge]−1 [velocity]−1.
The three vectors are related as shown in Figure 21.

I = qv

B

F

Figure 21. Force on a current-carrying wire
Applied field B is taken perpendicular to wire.
Resultant force F is perpendicular to both I, B.

You met vector products in Section 5.4 of Book 2: F is perpendicular to the plane con-
taining v and B. Here I = qv is the current vector in a wire and all three vectors are
mutually perpendicular. The magnitude of B will be measureable in units of Newton
Amp−1. (Notice that various names are used for the electric and magnetic fields: E is
often called the “electric field intensity” or “electric field strength”, while B is also called
the “magnetic flux density” – for reasons that will be clear later. Usually, however, we’ll
just call them the “electric field” and the “magnetic field”.)

With the discoveries of the early 17th century, everything seemed to be falling into place:
but there was one big mystery – nobody ever found a single magnetic pole! They always
came in pairs, one N and one S, no matter how small you made the bits of magnetized
iron wire when you chopped it into pieces!

3.2 The magnetic field

How was it possible to make sense of all the experimental observations on magnets and
the way they behaved? It seemed clear that the interactions between magnets were due to
fields between them, and that the fields must be similar to those we met in electrostatics
(as they lead to force laws of the same mathematical form).

So in this Section let’s start looking for field equations which now include the magnetic
field B, but are not very different from the ones we’ve already met. Most of electrostatics
comes out of Gauss’s law: that the flux of the electric field E out of any closed surface is
proportional to the total amount of charge it encloses. So let’s take the basic property
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of the magnetic field to be that the flux of B out of any closed surface enclosing any
distribution of ‘magnetic material’ must be zero. This simply says that any ‘poles’ could
only be found in N-S pairs and would give only equal but opposite flux contributions. As
in Chapter 1, for the electric field, there will be two mathematical forms of this statement:
one ‘integral’ and one ‘differential’. The first form applies to any finite volume, bounded
by a closed surface:

The total flux of magnetic field intensity B

out of any closed surface is equal to zero.

(3.2)

The second form applies when the volume ‘shrinks’ to zero: at any point in space

div B = 0, (3.3)

where the ‘divergence’ of a vector field is defined in (??). The zero arises, in each case,
because there is no ‘magnetic charge’ to create the field B. Instead, it is found experi-
mentally that B arises whenever there are electric currents.

The key experiment, first made by Ampère, demonstrates the production of a magnetic
field by an electric current (see Figure 22).

B

I

r

Figure 22.
Field B near current-carrying wire.
Vectors r, B lie in plane perpendicular to I.
Lines of force are circles with wire as axis
– like the one shown.

In Section 2.3 we used the idea of ‘lines of force’ in visualizing the electric field: every line
of force followed an electric field vector from a it ended. The points on any line could be
found by experiment (noting the force acting on a small ‘test charge’ at each point), or by
calculation (provided the charges that produce the field, and their positions, are known).
But the magnetic field is easier: a simple experiment lets you actually ‘see’ the field!

You stick the current-carrying wire in Fig.22 through a stiff white card and sprinkle the
card with ‘iron filings’ (the small bits of metal that fall off when you file an iron bar to
make it smooth); and then you switch on the current and gently shake the card. What
will you see? Each small piece of iron is a tiny magnet, which lines up in the field like
a compass needle in the field of the Earth. The magnets set themselves ‘head-to-tail’ (N
pole to S pole) to show you a line of force for the field B! You’ll see a whole ‘family’ of
lines marked out in this way.

The vertical wire in Fig.22 gives you circles, all with their centres on the wire. They have
no ends, showing there are no free poles (div B = 0). The lines of force always circulate
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around the wire in horizontal planes, to which the wire is normal; and the field vector B

– wherever you look – always points along a tangent to one of the circles.

To describe all this mathematically we’ll go along the same lines as we did for the electric
field in Chapter 1, noting carefully the differences. The magnetic field is produced by
electric currents, described by the current density, j, instead of the scalar density of
charge ρ. And the main property of B is that it circulates around the currents that
produce the field (think of the current-carrying wire and the field lines that go round
it). So in general we need to think about the circulation of B around any closed path
encircling the currents that produce it. This should make you remember the idea of a
path integral, touched on at the end of Section 1.7.

Let’s make a ‘shot in the dark’, replacing (??) by a similar sort of principle that we suspect
might describe the magnetic field. Using similar language we’ll suppose that

The circulation of magnetic field intensity B,
round any closed circuit, is equal to
the total current passing through the circuit,
divided by µ̄0.

(3.4)

Here “passing through the circuit” means passing through the area which has the circuit
as its boundary – no matter what shape it has; and the proportionality constant (µ̄0)
has been chosen simply to make the equation look more like (??). (The ‘bar’ has been
put on the Greek letter ‘mu’ only because ‘mu’ without the bar is the standard name for
something else – called the ‘magnetic permeability’.)

Now we’ll look at this principle more closely to see if it works.

3.3 Circulation and the flux of current

In Section 1.2 we were able to define the electric potential φ(x, y, z) at any point in space
P(x, y, z) by studying the work done W (A → B) in taking unit charge along any path
leading from A to B. This was our first example of a path integral. For a tiny path element
ds the work done was E · ds, while for the whole path we were able to write

W (A → B) =

∫

E · ds.

For a closed path, the integral was zero (potential change zero on returning to the starting
point) and this allowed us to define another basic property of the electric field:

Circulation of E round any closed path =

∮

E · ds = 0. (3.5)
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The circulation of B in (??) is defined in exactly the same way, but it is not zero when
there is a flow of electric current across the area bounded by the closed path: instead

Circulation of B round any closed path =

∮

B · ds

=
1

µ̄0

× total current through area bounded by the path. (3.6)

And since the total current I across any surface is given as an integral of the normal
component of the flux vector j, as in (??), this leads to a very neat mathematical form of
(??):

∮

B · ds =
1

µ̄0

∫

S

j · dS. (3.7)

The relationship (??) between field B and the density vector j of the electric currents
which produce it corresponds closely to that between E and the density ρ of the charge
distribution which produces it, given in (??). This is called ‘Ampère’s law, after its
discoverer; and it is just as important as Gauss’s law in electrostatics. The Examples
that follow will show how it can be used. First, however, we’d better be sure we get the
units right!

A note on units (If you get confused by these things, jump straight to the end of the
small print – you can come back to it when you’ve worked through some of the Examples
How do we measure B? If you go back to (??), where the magnetic field was first mentioned, you’ll be
able to find its physical dimensions. (The idea has been used quite a lot in Book 4, and in Section 1.1
of the present book; so go there if you need to.)

In an equation F = q v B (“force equals charge times velocity times B”), each factor has certain ‘dimen-
sions’: thus, velocity is distance per unit time and we write [v]= L/T=L T−1 and say “the dimensions
of velocity are distance over time or L T−1”; similarly acceleration a is an increase of velocity per unit
time and we write [a]= LT−2; and force f is mass times acceleration, so we write [f ]= M LT−2. The
basic quantities M,L,T are measured in the primary units, kilogrammes, metres, and seconds (kg, m, s):
these allow us to assign dimensions to all ‘mechanical’ quantities and to fix the units in which to measure
them. Thus, force will be measured in units of kg m s−2.

Now we are including electric and magnetic effects and have already introduced one more basic quantity,
the electric charge Q, calling the unit of charge the “Coulomb” C. We also found units of electric field
intensity and electric potential in Section 1.3, namely 1 N C−1 (“1 newton per coulomb”) and 1 N m
C−1 (“1 newton-metre per coulomb”, respectively. But what about the ‘magnetic’ quantities?

Returning to (??), the quantities on the two sides of the equation must have the same dimensions
(otherwise they wouldn’t stay equal if the units were changed) and this means [F]= [q][v][B]= Q LT−1

[B]. But we know [F]= MLT−2. So if we suppose the dimensions of B are [B]=MrLsTtQu then the only
way to make the exponents match is to choose 1 + r = 1, 1 + s = 1, −1 + t = −2, 1 + u = 0. In other
words, the dimensions of the magnetic field are [B]=M0 L0 T−1 Q−1

Instead of using always the primary units it is often more convenient to use derived units, like force
or energy; any combination of units will do – as long as the dimensions are equivalent. For example,
from (??) it follows also that the dimensions of B are those of force/(charge×velocity) and this can be
measured in units of newtons/(coulombs×m/s). Since 1 C = 1 amp-second this can be re-arranged (do
it!) to give

1 unit of field intensity (B) = 1 newton per amp-metre = 1 T.

This is the unit most commonly used: it is called the “tesla” in honour of Nikola Tesla (1856-1941) and

is the last new unit you’re going to need for a long time!
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3.4 Magnetic field near a current-carrying wire

Let’s start from Ampère’s first experiment (see Figure 22), in which the electric current
I is simply the surface integral of the flux density j over a cross-section of the wire. (The
idea was used already in Section 2.3, Figure 15)

Here the path integral of the field vector B is most naturally made by simply following
B round a circle of, say, radius r with its centre on the wire. The field is directed along
the tangent to the circle and will have the same magnitude at all points ‘by symmetry’
(all points looking just the same as you go round the circle); and the length of the path
is 2πr, as you’ll remember from Book 2.

The field magnitude B at distance r from the wire therefore gives a path integral B×2πr
(supposing (??) is correct!) and this should be equated to I/µ̄0. Thus, the magnetic field
is directed along the tangent to any circle, at distance r from the wire and in a plane
normal to the wire; and it has magnitude

B =

(

1

4πµ̄0

)

2I

r
(3.8)

which you can compare with that for the electric field E at distance r from a charged
wire, with charge/unit length λ as given in (??).

There’s another way of getting this result, which we’ll need later. It depends on knowing
the field dB due to a little bit dx of the current-carrying wire, pointing along the x-axis;
and then summing the contributions from all such bits in the whole wire by doing an
integration (see Book 3). The formula we need will give the contribution to the field B,
at P, that comes from the current in the element dx of the wire. This tiny contribution is
given, in vector language, by

dB =

(

1

4πµ̄0

)

Idx × r

r3
=

(

1

4πµ̄0

)

Idx

r2
sin θ n̂. (3.9)

Here the field dB is normal to the plane containing the wire and the vector r, which points
from the element dx to the field point P – as in Figure 23. Note that r is not perpendicular
to the wire, in general, but makes an angle θ with it; and the ‘cross’ in (??) means the
vector product of dx and r – a new vector pointing along the unit vector n̂ normal to
the plane. (Look back at Section 5.4 of Book 2 if you need to be reminded!)

dx

x-axis

θ
r

R P
Figure 23. Alternative calculation of the field
Vertical wire (x-axis) carries current I.
Field B at Point P is perpendicular to plane and is
obtained by integration over x in interval (−∞, +∞).

The result (??) is called the Biot-Savart law, after the people who first used it. You
needn’t try to prove it: we’ll just show how it leads to the right answer (??) for an
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infinitely long straight wire. The details are a bit difficult, but they’re given in the next
Example – to be kept for later.

Example 1. Field near a current-carrying wire

Look at Figure 23. Here the field contribution dB is normal to the plane containing the wire and the vector
r, which points from the wire to P – as indicated in the Figure. Remember that r is not perpendicular to
the wire, but makes an angle θ with it. However, x can be measured from the foot of the perpendicular
from P to the wire and by changing its value we can move the element dx along the whole wire.

To do this we first note that all contributions dB are in the same direction (along the upward normal n̂,
so we only need their magnitudes dB and can write for their infinite sum

B =
I

4πµ̄0

∫ x→+∞

x→−∞

sin θ

r2
dx

Also, from Fig.23, r2 = R2 + x2. Since R is a constant, for all elements, and sin θ = x/r the integral
becomes

B =
I

4πµ̄0

∫ x→+∞

x→−∞

x

(R2 + x2)3/2
dx.

This is quite a tricky thing to evaluate, but when it’s done the result agrees perfectly with (??) where r

(not R) now means the perpendicular distance of P from the wire. The point of doing all this is to show

that every little bit of the current path makes ‘its own’ contribution to the field at any point P, according

to the Biot-Savart law (??). This law is very general and applies to any current-carrying wire, not just

a straight one (and the current needn’t even be inside a wire!). As a second example, let’s take
a wire in the form of a circular ring and calculate the field at any point on the axis (see
Figure 24).

P

r
a

R

θ

dB

dB‖

θ

Figure 24. Field at Point P on the axis
of a current-carrying ring of radius a:
B at Point P is perpendicular to plane
of the ring and points along the axis.

Example 2. Field near a current-carrying ring

For an element of the ring of length ds, carrying the current I, the Biot-Savart law shows it will give a
field contribution dB at Point P as shown in the Figure. This will be at some angle θ to the axis, but
will have components dB⊥ and dB‖ perpendicular and parallel to the axis.

All elements on the circular ring will give contributions of the same magnitude ‘by symmetry’ but, on
summing to get the resultant field, the components perpendicular to the axis will cancel out to give zero.
The components pointing along the axis, however, will all have the same magnitude dB cos θ = dB(a/r)
and may simply be added together to get the total field B.

The axial field due to an element ds will be

dB =
I

4πµ̄0
× a

(a2 + x2)3/2
× ds
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– from (??), with a factor cos θ = a/
√

a2 + x2 included to give the axial component. Since all elements
ds on the ring give identical contributions, summation gives only a factor 2πa.

The end result for the axial field at distance x from the ring centre will thus be B = 1
2µ̄0

× Ia2

(a2+x2)3/2
.

Later we shall find how useful this important result can be.

Example 2 shows that the B-field at any point on the axis of a circular current-carrying
ring will point along the axis and have a magnitude

B =
1

2µ̄0

× Ia2

(a2 + x2)3/2
, (3.10)

x being the distance of the point from the ring centre. Later we shall find how useful this
important result can be.

3.5 Magnetic field along the axis of a long solenoid

If you wind a long wire round the outside of a tube of insulating material, as indicated
below in Figure 25, you get a solenoid.

d

I(in)

I(out)

B

Figure 25.
A long solenoid: N turns of wire
tightly wound round insulating tube
d = tube diameter, L = length for N turns

Note that the wire itself must also be covered with insulating material (e.g. silk or enamel)
so that current can’t jump from one turn of wire to the next – causing a ‘short circuit’.
Solenoids are very important, as we’ll see later. In the next Example we calculate the
B-field produced inside when a current passes through the wire.

In order to use Ampère’s law let’s look at what’s going on inside the solenoid, taking
away the wires to get the picture below.

d B

L

Figure 26
Solenoid: cross-section to show path
for calculating field B along the axis
d = tube diameter, L = length for N turns

Example 3. Field inside a long solenoid

Inside the solenoid the lines of force must all go along parallel to the axis (the field has zero divergence)

and we can calculate it easily by choosing a path like the one shown as a broken line. This goes along
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the axis of the tube, where the field is B say, then perpendicular to the axis where B has zero component

along the path, and then back outside the solenoid – where the field is very small and can be neglected.

So the complete path integral will have the value B × L and this gives you the left side of (??). This

path encircles N wires, all carrying the same current I, so the flux integral on the right will be simply

N × I/µ̄0. When you equate the two things you find at once B = nI
µ̄0

(n = N/L).

The conclusion from Example 3 is that the B-field inside a long solenoid (length L) points
along the axis and has magnitude

B =
nI

µ̄0

(n = N/L), (3.11)

where n = N/L is the number of turns per unit length.

Solenoids are very useful things: simply by switching on an electric current you can
generate a strong magnetic field inside the tube, so the solenoid becomes a magnet until
you switch the current off and the field disappears. A solenoid of this kind becomes an
electromagnet. If the air inside it is replaced by an iron ‘core’ (e.g. a bundle of ‘soft’ iron
wires), which has a different value of the constant µ̄0, you can make a powerful magnet.
Electromagnets are widely used in industry. Remember something similar happened in
electrostatics: by changing the material between the plates of a condenser from air (with
permittivity ǫ ≈ ǫ0) to glass, with a much higher ǫ, the capacity could be increased
enormously. The iron core in an electromagnet has a similar effect in concentrating the
field and making it much stronger. And if the core is properly treated it may even keep
its magnetization when the current is switched off – becoming a ‘permanent magnet’.

3.6 Force between two current-carrying wires

So far we’ve been using both coulombs (C) and amps (A) in talking about electric charges,
but the amp was defined as the unit of current which would carry unit charge when it
flowed for unit time (i.e. 1 A s = 1 C). In practice, now that we know about magnetic
effects, it’s more convenient to express coulombs in terms of amps: 1 C = 1 A-s; and
current is most easily measured in terms of its ‘mechanical’ effects. For this purpose we
can combine the result (??), from Example 1, with the basic force law (??) which gives
the force acting on a moving charge q in a magnetic field of intensity B.

Let’s think of a current-carrying wire as a cylinder of conducting material containing bits
of flowing charge: call them ‘charge particles’, it doesn’t matter what they are, so we’ll
just suppose they all carry charge q and that there are N of them per unit volume of the
wire. In time t the amount of charge flowing across the area A (cross-section of the wire)
will be Q = Nq(A × vt) (v being the magnitude of the velocity vector). But Nqv is the
magnitude of the current density vector j and Q can thus be re-written as Q = j × t×A;
or, since jA is the total current in the wire, Q = It.

Now (??) tells us that the total transverse force on the charge in volume V = LA
(length×area) of the wire will be F = LA(j × B) = LI × B. In other words,
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The force F per unit length on an ideal wire
carrying current I, in a transverse field
B, is given by F = IB. The vectors F, I,
and B are all mutually perpendicular.

(3.12)

Finally, we come back to the definition of the unit of current, the amp, and calculate the
force between two current-carrying wires, as in the next Example.

Example 4. Force between current-carrying wires

We imagine two ideal parallel wires, carrying curents I1 and I2. The force per unit length on Wire 2, due
to current I1 in Wire 1, will be – using (??) and (??) –

F2 = I2B2 = I2
1

4πµ̄0
× 2I1

r12
,

where r12 is the distance between the parallel wires, Wire 1 and Wire 2. And if you do things the other
way round, to find the force on Wire 1, due to current I2 in Wire 2, you get the same result (check it!)
– the forces are equal but may be in opposite directions (think about the directions of the three vectors
in the vector product! will the wires attract or repel each other?).

From the result in Example 4 we could say that two straight parallel wires, each carrying
a current of 1 Amp, would attract or repel each other with a force of 1 newton per metre.
This would mean taking the value of 2/(4πµ̄0) in Example 4 to be 1 N A−2. In the SI
system, however, the standard definition of the amp is chosen to make 1/(4πµ̄0) equal to
1×10−7 N A−2. This means simply that all ‘magnetic’ units are fixed by international
convention through the choice

µ0

4π
=

1

4πµ̄0

= 10−7NA−2. (3.13)

Here the constant µ̄0, used so far, has been eliminated by using the internationally ac-
cepted µ0 = 1/µ̄0, which is called the magnetic permeability of free space. (Note,
however, that sometimes we’ll still use µ̄0 when it helps to make things clearer.)

Why did it take so long for SI units to be agreed on by (almost!) all the world’s scientists?
In this case it was because so many mistakes were made in talking about electric and
magnetic effects – with two systems growing up independently, each with its own concepts
and sets of units. When people realized that electricity and magnetism were closely related
it was not easy to change old names and habits – so we still use some of the ideas and
names from long ago, and perhaps they will stay with us for another generation or two.
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3.7 How magnetism differs from electrostatics

Before ending this Chapter we should compare the laws that give E (in terms of charges)
and B (in terms of currents). First think of a static charge q at the origin of coordinates:
the field it generates at point P(x, y, z) with position vector r is given by

E =
1

4πǫ0

qr

r3

– written in vector notation. (Note that this is not an inverse-cube law, because r = rr̂, r̂

being a unit vector in the direction of r.) The magnitude of the field is thus given by the
old familiar inverse-square law

E = |E| =
1

4πǫ0

q

r2
(3.14)

– as written long ago in (??).

In the next Example we’ll get the B-field produced by a circulating current, in which
charge q moves around the origin in a circular orbit of radius a, giving a current I = qv
in each element of path ds.

Example 5. Field due to charge moving in a circular orbit

We ask for the magnetic field B at a point P on the axis of the orbit and at a distance x from its centre
(as in Fig.24). In this case, using (??), the magnitude of the axial field due to the orbital current will be

B =
1

2µ̄0
× Ia2

(a2 + x2)3/2

(with the notation used in Fig.24) but for an orbit of ‘atomic’ dimensions a can safely be neglected in
the denominator. On using r instead of x for the axial distance and noting that πa2 = A, the area of the
orbit, this result for the field magnitude B becomes (check it!)

B =
1

4πµ̄0
× 2IA

r3
,

which should be compared with (??).

The final result from Example 5 is that the magnetic field due to a point charge moving
in a tiny circular orbit has magnitude

B =
1

4πµ̄0

× 2IA

r3
, (3.15)

where I is the current due to the moving charge. The field is directed along the axis of the
orbit and (??) gives its magnitude at a distance r from it. Note that the magnetic field
B falls off as the cube of the distance from the object producing it (the tiny circulating
current) and the proportionality factor is 1/4πµ̄0 instead of 1/4πǫ0 for the field E produced
by an electric charge.

To interpret this result, look back at Section 1.3 where we studied the field created by
an electric dipole consisting of two charges (+ and −) a short distance apart. The
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electric field at points along the axis of the dipole (the z-axis in Fig 4) was found to have
z-component

Ez =
d

4πǫ0

× 3z2 − r2

r5

where d is the dipole ‘strength’ or electric moment, the magnitude of each charge times
their distance apart. For any point P on the z-axis, where x = y = 0, z = r, the axial
electric field is therefore

E =
1

4πǫ0

× 2d

r3

and shows an inverse-cube dependence on distance from the dipole.

We can make (??) look similar by writing it as

B =
1

4πµ̄0

× 2dmag

r3
, (3.16)

where
dmag = IA (3.17)

is the magnetic dipole moment arising from electric current I circulating around the
perimeter of an area A.

The key quantity in producing a magnetic field is in fact a magnetic dipole; and the
components of the field B produced follow from the same formulas we found in Section
1.3, provided the constant ǫ0 for the electric permittivity of free space is changed to its
magnetic counterpart µ̄0 and the electric dipole moment d is changed to the magnetic
moment dmag. Current I, circulating round the boundary of an area A, is equivalent to
a magnetic shell in which imaginary ‘North poles’ and ‘South poles’ lie close together
on the two sides of the surface and every dipole makes its own contribution to the field
B at any point P. You’ll never need to use this picture but it helps us to understand why
separate ‘magnetic charges’, N and S, are never found; and in Chapter 4 we’ll see how all
our ideas about electric and magnetic fields can be unified in a single ‘framework’ called
electromagnetism.

Energy density in a magnetic field

You may be wondering why, in comparing electric and magnetic effects, nothing has been
said about energy density – to compare it with that given in equation () for an electric
field. The reason is only that this is not something you can do easily, even for a simple
example. But it can be done quite generally; and here we’ll just note that there is a very
similar expression for the energy density in a magnetic field B. Instead of () the density
is found to be

umag = 1
2
µ̄0B

2, (3.18)

where again µ̄0, the reciprocal of the conventional magnetic permeability of free space, is
used to show up the perfect similarity of the two expressions.
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Chapter 4

Getting it all together: Maxwell’s
equations

4.1 More on differential operators and functions

The idea of a differential operator was first used in Book 3, where the rate of change
of some quantity y = f(x), depending on a single variable x, was written as y′(x) =
f ′(x) = dy/dx. The process of finding f ′(x) from f(x) was regarded as applying to it the
‘operator’ D = d/dx: written in full,

f ′(x) = Df(x) =
d

dx
f(x) (4.1)

and the symbol D stood for the whole process of increasing the variable x by a tiny amount
dx, finding the corresponding increase in f(x), dividing it by dx, and getting the limit of
this ratio as dx → 0 –which is called the first derivative f ′(x) of the function f(x). So
D stands for quite a lot!

Later in Book 3 the idea was extended to functions of several independent variables,
such as the coordinates x, y, z of a point P in 3-dimensional space, and partial differential
operators were defined in a similar way but with only one variable at a time being changed.
Thus

Dxf(x, y, z) =
∂

∂x
f(x, y, z) (4.2)

would indicate the rate of change of f(x, y, z) with respect to variation of x alone, y and
z being left unchanged. In Section 6.1 (of Book 3) many properties of partial differential
operators were found; and they appeared again and again in Book 4 (– in Physics) and
Book 5 (– in Chemistry). Here, in Book 10, it’s clear that they give us the language we
need in talking about electric and magnetic fields. For example, the electric potential
φ = φ(x, y, z) is a function of position in 3-space, depending on the coordinates x, y, z
of a field point P, and the components of the fields E and B are all functions of x, y, z.
Moreover, when the fields vary with time, all such quantities will be functions of four
variables:

Ex = Ex(x, y, z, t), Ey = Ey(x, y, z, t), .... Bz = Bz(x, y, z, t). (4.3)
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(Remember that a quantity and the function which describes it mathematically are often
given the same symbol (e.g. Ex) – something you should be used to by now!)

For a field with three components (apart from the time, which need not be shown when
the field it not varying) there are three partial differential operators

Dx =
∂

∂x
, Dy =

∂

∂y
, Dz =

∂

∂z
(4.4)

and, as we saw in Section 6.1 of Book 3, these ‘first-order’ operators can be combined to
give ‘higher-order’ operators. To do this, they are allowed to work on the function one
after the other. Thus, for any function f(x, y) we can define second-order operators by,
for example,

DxDyf =
∂

∂x

∂f

∂y
.

This defines the product of the two operators Dx and Dy and has the same meaning for
any function f(x, y); so the f may be left out and we simply write

DxDy =
∂

∂x

∂

∂y
. (4.5)

– where the operators are left ‘hungry’ for something to work on. For all ‘well-behaved’
functions, the order in which Dx and Dy are applied is unimportant: DyDx = DxDy and
we say the operators commute.

In Section 1.2, the gradient of the electric potential φ = φ(x, y, z) was defined as the
vector with three components, given in (??): the vector is the electric field E and the
operation of finding its components is described in (??) by writing E = −grad φ. The
gradient is a vector operator, producing a vector field from the scalar function φ (which
depends only on position of the field point).

And in Section 1.6 the divergence of a vector field was defined according to (??), namely

div E =

(

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)

. (4.6)

This operation works the other way round, producing a scalar from a vector field.

The physical meaning of the divergence rests on the way it was first defined, in (??), in
terms of the flux of E out of a volume element dV = dxdydz. For a finite volume V ,
it was shown in Section 1.7 that the total flux of E out of V could be expressed as the
integral of its divergence over the whole volume. And this led to an ‘integral form’ of
Gauss’s law that the total outward flux was proportional to the amount of electric charge
within the volume. Towards the end of Section 1.7 we obtained Gauss’s Theorem (??),
that the integral of the flux over a closed surface was equal to the volume integral of the
divergence, over the volume enclosed by the surface. And we guessed that there might
be a similar theorem relating an integral of ‘something’ along a closed path (i.e. a line
integral) to a surface integral of ‘something else’ over a surface bounded by the path. In
Section 1.7 the ‘something’ was E ·ds, the work done in moving unit positive charge along
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an element of path ds in field E. Now, we want to find the ‘something else’: it will turn
out to be another vector, defining a new vector field related to E and called curl E – the
‘curl’ of E.

The ‘curl’ of a vector field

In Chapter 1 we studied the work done in moving a particle through a field of force: the
work done by the force F in displacing the particle through a small element of path ds is

w = F · ds = Fxdx + Fydy + Fzdz

and the total work done in moving the particle from Point A to Point B is the line integral
∫

s
F · ds – obtained by summing the work done in every elementary step ds in going from

A to B. For a closed curve, where B is the same as A (you’ve come back to the starting
point) the work done, which gives the total change of potential energy (a function of
position only), must be zero. The result is then written

Circulation of F round closed path =

∮

F · ds. (4.7)

Now let’s think of the circulation round the perimeter of a small, rectangular area of
surface, dS, lying in the xy-plane, as in Figure 27.

A B

CD

dx

dy

Figure 27. For calculation of the curl.
Rectangular surface element is ABCD,
with corners at A(x,y), B(x+dx,y),
C(x+dx,y+dy), D(x,y+dy).
Surface area is dS = dxdy.
Arrows show direction of circulation.

The following Example shows how to calculate the circulation around a surface element
dS = dxdy.

Example 1. Circulation of a field-vector F around dS

The field components Fx and Fy on the four sides of dS in Fig.27 are FAB
x , FAB

y , for AB, FBC
x , FBC

y ,
etc. and the circulation round the surface element will be

FAB
x dx + FBC

y dy − FCD
x dx − FDA

y dy,

where the minus signs arise for steps in the negative directions. This is

(FBC
y − FDA

y )dy − (FCD
x − FAB

x )dx.

But the y-component of F increases by (∂Fy/∂x)dx when x increases by dx (going from side AD to side
BC); so

(FBC
y − FDA

y ) ≈ (∂Fy/∂x)dx.
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And the x-component of F increases by (∂Fx/∂y)dy when y increases by dy (going from side AB to side
DC); so

(FCD
x − FAB

x ) ≈ (∂Fx/∂y)dy.

When these two terms are put into the expression for the total circulation the result is

Circulation of F round ABCD =

(

∂Fy

∂x
− ∂Fx

∂y

)

dxdy.

The expression obtained in this way becomes exact in the usual limit where dx and dy tend to zero and

all derivatives are evaluated at the point A(x, y). )

For a surface element in the xy-plane the circulation corresponds to a right-handed ‘screw’
motion around the upward normal to the plane – in this case the z-axis. When the x-,
y-, and z-axes are defined in this way the coordinate system is said to be right-handed.
The circulation is then counted positive and represented by a vector pointing along the
normal. Example 1 shows that this vector has magnitude

Circulation of F round ABCD =

(

∂Fy

∂x
− ∂Fx

∂y

)

dxdy. (4.8)

Now let’s define the more general vector, called curl F, with components

(curl F)x =

(

∂Fz

∂y
− ∂Fy

∂z

)

,

(curl F)y =

(

∂Fx

∂z
− ∂Fz

∂x

)

,

(curl F)z =

(

∂Fy

∂x
− ∂Fx

∂y

)

. (4.9)

As you can see, the z-component is the one we found first in (??), where it multiplied the
element of area dxdy in the xy-plane. The others can be written down easily by noting
that the labels x, y, z in the first term follow the ‘cyclic order’ x y z → y z x, → z x y as
you go from one component to the next. Thus, the first component in (??) starts with

(curl F)x = DyFz ...

and you can fill in the rest using the rule for cyclic order (close the book and do it
yourself!)

Now (??) is the circulation round an element of area dS = dxdy in the xy-plane: as a
vector element of area it is dS = dSn, where the unit vector n points along the z-axis.
In this case the vector dS has only one component; and so has curl F – in both cases the
z-component. And the elementary circulation in (??) is now seen to be a scalar product
of the two (single-component) vectors, curl F and dS.

In words,

The circulation of a vector field F round the perimeter of an element of area
dS is equal to the scalar product (curl F) · dS.
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This is a remarkable result because, although derived for a very special case – a surface
element lying flat in the xy-plane – it must be true even if the whole picture is rotated,
because we know (Section 6.1 of Book 2) that a scalar product is invariant against such
a change.

An even more amazing result follows when we integrate the last one! The circulation
round the perimeter of the element dS is

∮

F · ds, where ds is an element of path as you
go round the curve and back to the starting point; and for this tiny circuit we’ve shown
that

∮

F · ds = curl F · dS.

(Note that ds is a path element, while dS is a surface element!)

When we want to deal with a whole surface, of any size and shape, and the closed circuit
that forms its edge, we can go ahead much as we did in proving Gauss’s Theorem in
Section 1.7 (where we divided the whole volume into elements dV = dxdydz). But now
we divide the whole surface into tiny rectangular pieces dS, where every piece may share
one or more sides with other pieces as in the Figure below.

A B

CD

E

F
F

1 2

Figure 28. For Stokes’s Theorem.
Adjacent surface elements, ABCD and BEFC
Side BC common to both elements (1 and 2)
Circulation direction shown by arrows.
Field F on BC same for both elements.

Note that on any shared side, like BC, there is a common field vector F but the contribu-
tions to the circulation round Element 1 and Element 2 from that side are of opposite sign:
they cancel in taking the sum and only elements at the outer edge of the ‘double-element’
contribute to the surface integral.

Any surface can be divided in this way into a great number of tiny rectangular elements,
provided you take enough of them, and all the ‘internal’ elements that share sides with
their neighbours can be ignored because their circulations cancel: only elements at the
boundary of the surface need be taken into account – and these give a ‘jimpy’ line from
which the actual line integral can be approximated as accurately as you wish. The final
conclusion then is that

∮

s

F · ds =

∫

S

curl F · dS. (4.10)

This result is called Stokes’s Theorem, which was mentioned at the end of Section 1.7 after
getting Gauss’s Theorem. If you compare Figure 28 with Figure 13 you’ll see how similar
these two important results are: the flux of a vector field out of any volume, bounded by
a closed surface, is equal to the volume integral of the divergence of the field; and the
circulation of a vector field round any closed curve is equal to the surface integral of the
curl of the field, taken over any surface bounded by the closed curve. We haven’t really
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proved either of these theorems – that’s stuff for professional mathematicians – but we
can say we’ve understood what they’re about and what they allow us to do. As you begin
to use them in talking about electric and magnetic fields you’ll find how far we can go
with little more than the basic ideas developed in the first three Chapters of this Book.

In fact, armed with the three operations symbolized by ‘grad’, ‘div’, and ‘curl’, we’re all
set to come to grips with Maxwell’s famous equations – which underpin so much of the
science and technology of the present day.

4.2 A reminder of the equations for E and B

Let’s start by writing down, in vector language, the things we know already. The field E is
created by electric charge and the outward flux of E from any closed volume containing
a total amount of charge Q is given by Gauss’s law (??):

Flux of E =

∫

S

E · dS = Q/ǫ0. (4.11)

When the charge is spread out continuously, with density ρ per unit volume, Q =
∫

V
ρdV

– a volume integral. Gauss’s law then becomes

∫

S

E · dS = (1/ǫ0)

∫

V

ρdV. (4.12)

This is the ‘integral form’ of the law, applying to volumes of any size and shape. But after
introducing the idea of divergence in Section 1.6, which refers to the field at a single
point in space, we were able to express the flux integral on the left as a volume integral of
div E, obtaining (??), which is equivalent to (??). The ‘differential form’ of Gauss’s law
applies at all points in space:

div E = ρ/ǫ0. (4.13)

This simple-looking partial differential equation can be solved to give the electric field
throughout the whole of empty space, created by any distribution of static charges.

In Chapter 1 (Section 1.2) the idea of electric potential was introduced by thinking
about the work done when unit positive charge moves from one point to another: the work
done (w) defines the change of potential (φ) as a path integral of the force acting on the
charge; and for a closed path the change was zero. Since the force acting is represented
by the vector qE, this means that

∮

E · ds = 0

and this is the reason why it is possible to define a potential function φ(x, y, z), depending
only on position in space. And now that we know about the ‘curl’ operator this integral
statement can be expressed in a differential form much more like (??). Thus, from Stokes’s
theorem (??) it follows that

∫

S

curl E · dS = 0 (4.14)
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for any surface element, however small, on which the field is evaluated. This means

curl E = 0 (4.15)

at all points in empty space.

The two equations (??) and (??) – that the divergence of E at any point is equal to the
density of charge at the point, divided by ǫ0, while the curl of E is zero – are the first
two of Maxwell’s equations for stationary fields in empty space. There are two more,
which determine the magnetic field created by electric currents. They have been given in
Chapter 3, in the ‘integral form’ which involves the flux of B out of the volume bounded
by any closed surface (see (??)) and the circulation of B round any closed path through
which there is a flux of electric current (see (??) – which we called Ampère’s law.

The zero flux of div B led at once to the differential form div B = 0, which means there
are no single ‘magnetic poles’ (only N-S pairs). But a differential form of (??) was not
given. Now that the curl operator has been defined, Stokes’s theorem in (??) can be used
to replace the line integral

∮

s
B · ds by a surface integral of curl B; and the rest follows on

shrinking the surface element to zero, as in the derivation of (??). This results (check it
all for yourself!) in the differential form, which applies at any point in space.

curl B = j/µ̄0, (4.16)

where µ̄0 is the analogue of ǫ0 in electrostatics.

Let’s collect all the key equations, which contain all of electrostatics and magnetostat-
ics, together in one nice little box. On introducing µ0 = 1/µ̄0, which is the magnetic
permeability of free space, we obtain the standard forms:

(a) div E = ρ/ǫ0

(b) curl E = 0

(c) div B = 0

(d) curl B = µ0j

(4.17)

That’s all we need in order to calculate the E and B fields arising from any given distribu-
tion of charges and steady currents – throughout the whole of empty space! They contain
Gauss’s law, Ampère’s law, and everything we’ve done so far, including the applications
we’ve made to particular systems like charged spheres and plates. current-carrying wires,
and so on.

By thinking only of empty space we must leave out the charges and currents themselves
by supposing they are non-zero only within very small volumes (e.g. points and lines).
This may seem strange; but the ‘empty space’ we want to talk about is normally vast
compared with the objects that create the fields.
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Something looks odd, however; because the fields E and B seem to be completely inde-
pendent. Equations (??a) and (??b) allow us to find E at all points in space, given the
distribution of electric charge, without knowing anything about B; while B can be found
from (??c) and (??d), for any given set of currents, without reference to E. In fact, many
simple experiments tell us that when the fields are changing all this is no longer true. In
particular, if the flux of B through the area bounded by a closed circuit changes with time,
then the circulation of E round the circuit is not zero – and this means that curl E 6= 0,
contradicting (??b).

4.3 And if E and B vary with time? – Maxwell’s

complete equations

The first thing we need to change is (??b) – because Faraday discovered long ago that
changing the magnetic field passing through a closed loop of wire produced an electric
field in the wire. The field set up in this way moved the charges in the wire, making
an electric current; and if the magnetic field was changed fast enough the current set up
was big enough to be measured. Faraday’s experiment showed that the circulation of E

round the closed circuit was not always zero, but depended on the rate of change of any
magnetic flux passing through the area bounded by the wire.

We have to be careful here, because Faraday used wires in his work – whereas now we’re talking about

fields E and B in empty space, and our ‘circuits’ may be simply imaginary paths. Remember Section 1.3,

where the current I was the current density j integrated over the cross-section of the wire; and instead

of E we used E for the electromotive force (emf), measured in volts, that pushed it along the wire.

To make things easier we’ll usually express Faraday’s results in terms of the fields themselves.

Finding how to improve (??b), to take account of a changing magnetic field, will be our
“Step 1”. But then equation (??d) will look odd, because it doesn’t show any dependence
of the B-field on how the electric field is changing. To put that right we’ll have to take a
second step – “Step 2”. We’ll take these steps in the next two Examples

Example 2. Faraday’s experiment on changing magnetic flux

Let’s assume that the E produced in Faraday’s experiment is directly proportional to the rate of change
of the B-flux through the circuit. The new rule will then be

(

circulation of E

round closed circuit

)

= ±
(

rate of increase of B−flux
through area bounded by circuit

)

,

where the ± sign depends, as usual, on directions of the vectors. Experiment shows that the minus sign
applies: the directions of E, ds, and B are then related by the usual ‘corkscrew rule’. How can this
statement be put in mathematical form?

The E-field due to changing flux is what propels charge along the wire and gives an induced current.
The above result can be written in symbols, using the definitions of circulation and flux in (??) and (??),
as

∮

E · ds = − d

dt

∫

S

B · dS,
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which is the ‘integral form’ of the relationship, the term on the right replacing the zero in (??). The
corresponding ‘differential form’ is obtained by looking at a single infinitesimal element dS and going
from the integrals to their point values:

curl E = − ∂

∂t
B

and this will be the equation that replaces (??b) when the field B is varying with time. Note that the
partial derivative (∂B/partialt) has been used here, because B is a function of four variables x, y, z, t, but
at any particular point in space only the time is changing – the other variables being held fixed.

The conclusion from Example 2 is that, when the magnetic field is changing with time,
the equation curl E = 0 in (??) should be replaced by

curl E = − ∂

∂t
B. (4.18)

You can make a simple experiment, like the one Faraday did, to show that an electric
current can be set up in this way. Take a loop of copper wire, or even better wind it into
a solenoid (see Fig.26) with several loops, and connect the ends to a small lamp (like one
from an electric torch). If you can get a ‘bar magnet’, plunge it quickly in and out of
the solenoid – and the lamp will glow as the current heats its filament. Here, instead of
using an electric current to produce a magnetic field (as in Section 4.4) you’re doing the
reverse, using the field from a rapidly moving permanent magnet to produce an electric
field. This is the principle used in the dynamo, which runs the lights on your bicycle,
or the enormous generators found at the power stations in our cities: both do the same
job, using mechanical energy to produce electrical energy.

Much more about this later! – but first let’s take the next step, by asking how the
circulation of B round a closed circuit might depend on the rate of change of the E-flux
through it. One of Maxwell’s great discoveries was to find this missing term.

Example 3. The missing term in the equation for curl B

To show why there must be a missing term in (??d) it’s enough to look at one simple experiment – the
charging of a parallel-plate condenser, like the one shown in Fig.11, where current I is flowing onto the
top plate and building up a charge Q. Current I flows away from the bottom plate, building up negative

charge on it.

The situation is as shown in Figure 29 below:

I

I

Figure 29. For Maxwell’s new term.
Top circuit (broken line) encircles the wire,
carrying current I to top plate of condenser.
Upper plate holds positive charge, current I
leaves from lower (negative) plate.

When the path used in getting the line integral of E is the circle indicated with a broken line in Fig.29,
the integral form of Ampère’s law in (??) becomes

∮

B · ds =
1

µ̄0

∫

S

j · dS =
1

µ̄0
I.
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Now in terms of the current density j the total current I in the wire is simply the flux of j over the
cross-section of the wire. The last equation thus gives a first form (call it (A)) for the current I:

But what if the plane surface, whose edge is indicated by the broken line in Fig.29, is moved down between

the plates of the condenser? The current passing through it is then zero – there’s only a field between
the plates; and the field B can’t depend on where the imaginary surface is drawn! The missing term in
(??d), on the right-hand side of the equation, must clearly ‘take over’ at points where the current density
j vanishes – i.e.where there is a ‘gap’ in the conducting path.

To find its form we try to express the total current I in terms of the field in the gap between the plates,
noting that I gives the rate at which charge Q builds up on the top plate in Fig.29. Thus, I = dQ/dt;
and we know from (1.20) that the field outside a plate of area A with surface charge density σ = Q/A is
given by E = σ/ǫ0. It follows that there must be an alternative form (call it (B)) of the total current.

(B) : I = ǫ0
d

dt
(EA) = ǫ0

d

dt

(

flux of E across surface
between condenser plates

)

.

The First and Second forms are simply alternatives: the first one applies when a real current passes
through the surface you have in mind; and the second one when there is only a field, the current being
zero. Both give I as the flux of a current density across a surface; in the First form, the current j is in
a conducting medium (the wire) and the surface is the cross-section of the wire; but in the Second form
the ‘real’ current is replaced by jD = ǫ0

∂
∂tE and the surface is imaginary, being in the ‘gap’ between the

condenser plates.

Maxwell called this term the displacement current: it replaces the real current when charge is
displaced, building up on the conducting plates and producing the field betwen them. (A): I =
fluxof jovercross − sectionofwire=

∫

j · d.

But what if the plane surface, whose edge is indicated by the broken line in Fig.29, is moved
down between the plates of the condenser? The current passing through it is then zero –
there’s only a field between the plates; and the field B can’t depend on where the imaginary

surface is drawn! The missing term in (??d), on the right-hand side of the equation, must
clearly ‘take over’ at points where the current density j vanishes – i.e.where there is a ‘gap’
in the conducting path.

To find its form we try to express the total current I in terms of the field in the gap between
the plates, noting that I gives the rate at which charge Q builds up on the top plate in
Fig.29. Thus, I = dQ/dt; and we know from (1.20) that the field outside a plate of area A
with surface charge density σ = Q/A is given by E = σ/ǫ0. It follows that there must be an
alternative form (call it (B)) of the total current.

(B) : I = ǫ0
d

dt
(EA) = ǫ0

d

dt

(

flux of E across surface
between condenser plates

)

.

The First and Second forms are simply alternatives: the first one applies when a real current
passes through the surface you have in mind; and the second one when there is only a field,
the current being zero. Both give I as the flux of a current density across a surface; in
the First form, the current j is in a conducting medium (the wire) and the surface is the
cross-section of the wire; but in the Second form the ‘real’ current is replaced by jD = ǫ0

∂
∂tE

and the surface is imaginary, being in the ‘gap’ between the condenser plates.

Maxwell called this term the displacement current: it replaces the real current when charge

is displaced, building up on the conducting plates and producing the field betwen them.

To be on the safe side, we should allow for both alternatives in Example 3 by using j + jD
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in place of j. This would mean that (??d) should be replaced by the more general equation

curl B =
1

µ̄0

(

j + ǫ0
∂E

∂t

)

. (4.19)

We can now collect the equations, as Maxwell left them 130 years ago, for fields in empty
space. They provide a solid foundation for the science of Electromagnetism and have been
verified by countless applications to systems of many kinds. Their final forms are:

(a) div E = ρ/ǫ0

(b) curl E = −∂B/∂t

(c) div B = 0

(d) curl B = µ0 (j + ǫ0∂E/∂t)

(4.20)

In the remaining chapters of this book you’ll begin to understand just how important they
are. Like Newton’s laws, Maxwell’s equations are here to stay: they’ll still be serving the
needs of humanity, long after today’s politicians, dictators, generals and warlords are dead
and forgotten.

Before going to Chapter 5 we’ll put on record one important result that comes directly
from the free-space form (??) of Maxwell’s equations. Now that time variation of the fields
is included we can ask if equations like (??), for the energy density in an electrostatic
field, and (??), for the density in a magnetic field, remain true. The proof is too difficult
to give here, but the result looks very simple: the energy stored in the electromagnetic
field can be calculated from the single energy density formula

u = uelec + umag = 1
2
ǫ0|E|2 + 1

2
µ̄0|B|2 (4.21)

– just as if the energies of the E-field and the B-field were simply additive and spread out
through all space with an amount u per unit volume. And this is true even when the
fields are varying with time!
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Chapter 5

Dynamos, motors, and electric power

5.1 Where can we go from the principles?

– and how?

You’ve all seen dynamos, like the one on your bike that gives enough electric power to
light the lamps, so you can see where you’re going at night. They change mechanical
energy, supplied by pedalling, into electrical energy.

You may also have seen electric motors, often used in driving the pumps that bring
water from deep wells, or smaller ones (usually running on batteries) in electric drills for
boring holes in wood or stone. In this case electrical energy is changed into mechanical
energy: the motor does the exact opposite of what the dynamo does.

Both depend on the same basic principles, discovered experimentally by Faraday and
others and neatly packed away in Maxwell’s equations. In this chapter we want to show
how just one equation

curl E = −∂B/∂t, (5.1)

set up in Chapter 4 as equation (??b), can tell us everything we need to know about
dynamos and motors of all kinds!

To do this, we’ll start from a very simple ‘model’ in which a loop of wire is rotating
in a magnetic field. But first let’s remember that (??) is the differential expression of
Faraday’s discovery that changing the magnetic flux through a wire loop could set up
an electric current in it. The ‘integral form’ of this discovery was used in Example 2 of
Chapter 4: we’ll write it out again as

E =

∮

E · ds = − d

dt

∫

S

B · dS. (5.2)

Here E represents the emf set up in any closed circuit, while the term on the right rep-
resents the rate of change of B-flux through that circuit – which in Faraday’s experiment
really was a loop of wire. (Notice that d/dt appears in (??), instead of ∂/∂t, because the
thing being differentiated is a function of one variable only – the others being ‘used up’
in doing the integration.)
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In many cases equation (??) gives the easiest way of getting a result – so it’s the one
we’ll use. Figure 30 shows (very schematically) a rectangular loop turning around its long
axis, which is shown as the broken vertical line. The magnetic field is indicated by the
magnetic intensity vector B, directed at right angles to the axis of rotation and (in this
drawing) perpendicular to the plane of the loop. The area of the loop will be S = ab,
where a, b are the lengths of its short and long sides, repectively.

B

y-axis

x-axis

z-axis

q p

1 2

Figure 30. Principle of the dynamo
Broken line indicates rotation axis of loop,
which lies in plane perpendicular to field.
Brushes, indicated by arrows, carry charge from
the loop to the terminals (large black dots).
On connecting them, a current flows. (See text)

The picture also shows other things: the bottom side of the wire loop is cut in the middle
and vertical wires go down from each side of the cut, to give a way of getting current
into it or out of it. The left-hand wire ends on a metal disk, with a hole in it to let the
right-hand wire pass through on its way down to the lower disk. The ‘brushes’ (often
short sticks of carbon, which is a conductor) rub on the two disks and let electricity pass
to the terminals of the dynamo. The ‘beginning’ and ‘end’ of the loop, going round it
in the positive (anticlockwise) direction, are indicated by letters ‘p’ and ‘q’.

(Remember that whenever two conductors are at a different potential and come into
contact a current will flow between themi. So if you don’t want that to happen the
conductors must be insulated from each other: that’s why the right-hand wire is shown
passing through a hole in the top disk, not touching it; and if the disks are mounted on
the same axle they must be carefully insulated from it (e.g. by plastic ‘sleeves’). But
these are small details and are important only if you want to make a dynamo.)

Example 1. Principle of the dynamo

How does the thing shown in Fig.30 actually work? In the position shown, with the plane of the loop
perpendicular to B, the flux through it has its maximum value SB (area×normal component of field),
the normal making an angle θ = 0◦ with the field B. But for any other value of the angle θ the flux
through the loop. which we’ll call Φmag, will be SB cos θ and the (negative) rate of change of flux as the
loop rotates – which appears in (??), will be (Do the differentiation yourself, going back to Chapter 3 of
Book 3 if you need to)

E = −dΦmag

dt
= − d

dt
SB cos ωt = SBω sinωt,

where ω = dθ/dt is the rate of rotation or angular velocity of the rotating loop. Note that when
θ (= ωt) is an integer n ×π the plane of the loop has its normal along the field direction and the flux
through it has its greatest or least (positive or negative) value. In such cases, the equation shows that
E = 0.

Notice that the emf generated at any instant t depends also on ω and that E now arises from the field
induced in an actual wire – rather than in empty space.
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As already noted, the circuit in Fig.30 has been cut on its bottom side, to allow charge to pass into and

out of the wire loop; but the gap can be as small as we wish and the line integral of E, on going round

the circuit, will still give the difference of potential between the two sides of the cut i.e. between the two

ends of the wire loop. Also, since E points round the loop in the anticlockwise direction (the ‘right-hand

screw rule’ corresponding to B as shown in the Figure), positive charge will be urged in the direction

p→q: so Terminal ‘1’ will be at the higher potential – positive relative to Terminal ‘2’.

The conclusion from Example 1 is that the the emf produced by the rotating loop is

E = SBω sin ωt. (5.3)

This means that when the magnetic flux through the loop is changing a PD will be induced
between its ends: the ‘dynamo’ is behaving like a battery (Section 2.4) in setting up a
PD (or ‘voltage’) between its two terminals. The PD is generated, in the present case,
by the changing magnetic flux instead of by chemical reactions. But the action of the
dynamo (or ‘generator’) is similar to that of a voltaic battery in the sense that it creates
a discontinuity of potential at the point where it is inserted into a circuit. In Section 2.4
the battery was symbolized by its positive and negative plates, as in Fig.17. If the battery
is replaced by a generator the corresponding circuit will be shown as in Figure 31:

∼ G R

L

Figure 31.
Circuit with generator G and lamp L
When switch is closed, current goes
first through resistance R and then
through lamp filament.

The PD set up by a battery is what pushes electric charge round a circuit. Section 2.4
was where we first called it the electromotive force, ‘emf’ for short, and denoted it by
E to remind us that it’s not the same as the field E (Can you explain why?).

The PD set up between the terminals of a dynamo has the same effect and that’s why we
use the same symbol in (??). The final result is given in (??) E = SBω sin ωt. That’s the
form of the emf produced by any kind of dynamo in which a circuit is rotating with anglar
velocity ω, with its axis perpendicular to a magnetic field B. So it’s a pretty important
result – think of the enormous dynamos, nowadays called generators (the word we’ll use
from now on for all kinds of dynamo) at the power stations which supply electricity to
whole cities. Of course, it’s a long way from the rotating loop of wire to a real generator,
but the principle is the same in each case. Let’s look at some of the steps along the way.
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Example 2. From loops to coils

First it’s clear that a single loop of wire won’t have much flux going through it, even if the field B is big,

because the area enclosed by the circuit will be small. But remember the solenoid in Section 3.5, which

looks like N circular loops of wire, each one joined to the next so that current can flow from one to the

other. In a generator we can put N loops side-by-side to make a coil by winding N turns of a continuous

wire round a short cylinder of area A. The flux through the whole circuit will then be NA×B and when

it rotates in a field B, directed along the axis, every loop will produce its own contribution to the emf

in the circuit – namely E given in (??). (Why is that? – think of the line integral of E along the whole

circuit.) So, by using a coil of N turns instead of a single loop of wire, the voltage produced across the

terminals is multiplied by N .

Using V for the voltage produced by the generator with an N -turn coil rotating in the
field, Example 2 tells us that

V = V0 sin ωt (V0 = NSBω). (5.4)

The next important thing to notice is that the output voltage V is not steady, as it would
be for a battery, but wiggles up and down between limits +V0 and −V0: V = 0 when
ωt = nπ (n being any integer), but then

V = V0 when ωt = (n − 1
2
)π (n odd),

V = −V0 when ωt = (n + 1
2
)π (n even).

The sinusoidal variation of voltage, as the coil rotates, is shown in Figure 32:

θ (= ωt)

V = V0

V = −V0

0 π 2π

Figure 32. Output voltage V from an AC generator.

That’s why the symbol ∼ (in a circle) has been used to stand for the generator in the circuit
diagram of Fig.31 – because it produces an alternating current in the circuit to which
it is connected. Most of the generators in our big power stations are AC Generators;
but you can also get direct current (which always flows in one direction, from + to − as
with a battery) by reversing the direction of current flow every time the coil has turned
through 180◦ (i.e. π radians) – as you’ll see in the next Section. That way, you can get a
DC Generator. Both AC and DC generators depend on the same principles, so we’ll deal
with them both together.

First, however, let’s note that the speed of rotation is also important because V0 in (??)
is directly proportional to the angular velocity ω: if you pedal your bike twice as fast the
lights get twice as bright!
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5.2 AC and DC generators

A simple AC generator

In a real generator, the loop of wire in Fig.30 is replaced by a coil consisting of many
turns of wire (all insulated from each other) wound around a slab of insulating material
to make the armature. This is shown below, in Figure 33, lying in a vertical plane with
an axle through the middle for making it spin (indicated by the large black dot). The
magnetic field B is perpendicular to the axle, so when the armature spins the flux through
the coil varies rapidly and creates an emf in the wire. The wires from the two ends of
the coil (marked ‘p’ and ‘q’ as in Fig.30) are led to two metal disks, mounted on the
same axle but carefully insulated from it. (The connections to the disks are not shown in
Fig.33) A brush (shown in black) rides on each disk. The brushes are connected to the
output terminals (just as they were in Fig.30) so that Terminal 1 will be at the voltage
corresponding to ‘q’ and Terminal 2 will be at the same voltage as ‘p’.

B

q

p

n

1 2

Figure 33. Diagram of AC generator
Axle of armature is horizontal (indicated by large
black dot) and is perpendicular to field B.
Armature shown here with normal n along B

and spins in direction shown by curved arrow
Brushes ride on the separate red and blue disks,
as in Fig.31, taking current to terminals 1 and 2.

Example 3. Analysing the output from an AC generator

What happens as the armature turns? In the vertical position shown, the normal n to the plane of the
coil makes an angle θ = 0 with the field B. The flux through the coil will be at a maximum, but its rate
of change will be zero and the induced emf will thus also be zero by (??).

Let’s start the rotation from this position. As θ begins to increase the flux will decrease and the emf (V ),
given by its rate of decrease, will go on increasing until it reaches a maximum when θ = π/2, according
to (??). This corresponds to the first maximum in the graph of Fig.32. As rotation continues the voltage
starts to fall, becoming zero at θ = π where the curve in Fig.32 crosses the x-axis. After that, V goes
negative and reaches its lowest negative value (V = −V0) when θ = 3π/2.

The armature has then reached the position shown in Fig.33, except that ‘p’ and ‘q’ have changed places:
the flux has changed sign – the normal n then pointing in the opposite direction to the B-vector. At that
point, the induced emf takes its largest negative value, corresponding to the first minimum in Fig.32.
As θ = ωt goes on increasing the sinusoidal (‘sine-wave’) form of V continues indefinitely. The voltage
passes through a whole cycle of values, all in the range V0 to −V0, whenever θ increases by 2π; and this
pattern of values is repeated over and over again as long as the armature goes on turning. The time
taken for completing a cycle is clearly τ = 2π/ω, because when t → t + τ the angle θ (= ωt) increases
by ω × τ (= 2π). The time for a complete up-down ‘oscillation’ is called its period; and the number of
such oscillations per second (namely 1/τ) is called its frequency. These numbers are important for any
kind of periodic change. You may remember meeting them in Section 6.2 of Book 4, in talking about the
vibrations that make musical sounds.

Here, the alternating emf produces an alternating current in any circuit connected to the output terminals;

and it goes on for as long as the armature is turning – unlike the battery which runs down when the
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chemical reaction is completed. Usually, the electricity that comes from the power station has a frequency

of around 50 or 60 cycles/second and is supplied at between 100 and 250 volts.

The very simple AC generator described above can be improved in many ways. For exam-
ple, by winding the armature coil on a material such as iron, with a magnetic permeability
much bigger than µ0 (for free space), it becomes much more effective in concentrating the
magnetic flux (see Section 3.5). And by increasing the strength of the static field B, not
so far considered, it follows from (??) that the output emf can also be greatly increased.
In most big generators, the field B is produced by an electromagnet – not by a small
permanent magnet of the kind used in the dynamo on your bike. But these are matters
for a whole new field of applied science – “Electrical Engineering”. Here we’ll have to be
content with the basic Physics.

DC generators

Some way back we said that direct current (DC) could also be obtained from a spinning
coil in a magnetic field, provided we could change the direction of flow (and that means
reversing the voltage) after every half turn. To see why, look again at Fig.32 which shows
the emf or ‘voltage difference’ between the ends of the coil as it rotates. Suppose we start
from θ = 0. where the flux through the coil is a maximum. As θ increases from 0 to
π/2 the voltage across the terminals goes from 0 to V0, as (??) shows. At that point the
voltage is a maximum; but then it falls to zero as θ goes from π/2 to π, where n, the
normal to the plane of the coil, points in the direction opposite to the field B. The flux
and its rate of change then start to grow, but their values carry a negative sign. The first
negative hump in Fig.32 is at θ = 3π/2 and the voltage stays negative until θ reaches the
value 2π. After that, as you can see from the graph, the voltage changes sign whenever θ
increases by an integer times π – which means the current will change direction. You may
have wanted DC (e.g. for charging a battery, where getting the direction wrong would
ruin the battery), but you can only get AC from the generator in Fig.33 – unless you can
think of some way of changing the output voltage so that it will always be positive.

In fact, you can do that very easily, without having to start again at the beginning and
build a completely different kind of generator. Just look at the next Figure, which shows
almost the same generator, but with the armature in two different positions. In Fig.34a
the armature stands at 10◦ to the right of the vertical position shown in Fig.31, while in
Fig.34b it is 10◦ to the left.

p

q

B

1 2

p

q

BB

1 2

Figure 34a Figure 34b
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These positions correspond to points just to the left and just to the right of the first
crossing point of the graph in Fig.32 (at θ = π), where the armature has rotated to
θ = 180◦ − 10◦ and θ = 180◦ + 10◦, respectively.

Now it’s clear why we said the picture showed almost the same generator. In fact it’s not
exactly the same, because the brushes in Fig.31 rested on two separate disks, while here
there is only one disk (called a commutator) but it’s divided into two halves (insulated
from each other at the ‘white line’).

Such a simple change makes an enormous difference. Instead of leading the wires from
the coil ends to different disks (shown ‘red’ and ‘blue’ in Fig.31) they are taken to the
two halves of the commutator. The wires coming from the coil ends, at ‘p’ and ‘q’, are
shown in ‘red’ just to indicate that they carry current. In Fig.34a, the end marked with
a ‘p’ represents the beginning of the coil (where you start winding the wire anticlockwise
around the direction of the normal) and ‘q’ marks the end where the wire comes out (just
as in Fig.30). In that case ‘q’ will again be at a higher potential than ‘p’ and you’ll see
that with the same setup the emf produced points in the direction q→p). The voltage
difference V = Vq − Vp during this part of the rotation is shown in the first ‘hump’ of
the curve in Fig.31, where the top of the hump comes for rotation angle θ = π/2. Up
to that point, V is always positive; but then it begins to go down – and when θ passes
π it goes negative which we don’t want! But the commutator is waiting for it. When
θ is between 0 and π (Fig.34a) ‘p’ is connected to Terminal 1 (as you can see if you
follow the red-blue-black conducting path) while ‘q’ is connected to Terminal 2; so 1 is
negative and 2 is positive. But when θ is just a little bit bigger than π the commutator
becomes a switch: the red-blue-black path from ‘p’ then goes through the other half,
below the white line, and connects the lower potential output (from ‘p’) to Terminal 2
– where it should go! In the same way, Terminal 1 is connected to ‘q’, which is now
the higher potential output from the coil. Whenever V = Vp − Vq goes negative, the
commutator switches the connections to the two output terminals, so that Terminal 1 is
always negative and Terminal 2 positive. What a clever trick! The output voltage never
changes sign. Example 3 shows that the output voltage from a DC generator is always
in the same direction, never changing sign (see Fig.35). And since the output voltage is
always positive the current through any external circuit will flow from Terminal 2 (the
higher potential) down to Terminal 1 : it will be Direct Current, even though it goes up
and down.

θ (= ωt)

V = V0

0 π 2π

Figure 35. Output voltage V from a DC generator.

There are many ways of improving a DC generator, smoothing the up-down ‘ripple’ and
increasing the power of the output. But the important thing is that we now know how
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DC current can be produced without limit – we can throw away the chemical cells, except
when we need a small and portable supply of electric power.

5.3 Electric motors

Before going on to talk about electric motors, which are used throughout our homes, in
doing mechanical work on a small scale, and in industry for large scale applications –
like driving heavy machinery – we should stop for a minute and look again at anything
that may have troubled you. If you want to construct an enormous generator for a power
station it’s not enough to make a giant armature, by winding thousands of turns of copper
wire round a block of iron with an axle on which it can spin; you have to supply enough
power to get it spinning in a uniform magnetic field B. But how can you get the field
when the armature is really big, weighing perhaps half a ton? Small bars of magnetized
iron, like the ones in the dynamo on your bike, can’t do that kind of job!

Instead, you have to build an electromagnet big enough to hold the whole rotating
armature; and to supply it with enough current to produce a strong B-field over the
whole volume that contains it. That sounds like a tall order! But you already know
about solenoids (Section 3.5); and you know that by winding many turns of wire round
an iron ‘core’ instead of an empty cylinder you can easily produce a very strong magnetic
field. (Remember that µiron has a value thousands of times bigger than µ0 for empty
space.) All you have to do now is cut the solenoid into two halves, putting the spinning
armature between them as in the Figure below, and supply it with DC current. That way
you can get an approximately uniform B-field over the whole armature.

Figure 36 shows a spinning armature between two field coils which produce the strong
magnetic field: the current supply comes from Terminals 3 and 4. The same picture can
be used for both the generator and the electric motor. The big difference is that for the
generator you must put mechanical energy into it, to make the armature spin and send
out electrical energy from Terminals 1 and 2; while for the motor you must do the opposite
– putting electrical energy into it, through Terminals 1 and 2, to make the armature spin
and drive any machinery connected to it (e.g. through pulleys or gear wheels mounted on
the same axle). In that way electrical energy will be converted into mechanical energy.

1 2

B

3 4

Figure 36. Motor with electromagnets
Armature in the centre, with field coils on
both sides of it.
Brushes etc. (not shown) carry current
to it from the input terminals 1 and 2.
Input to field coils is from 3 and 4.

Now we’re talking about energy you’ll be wondering how much energy it takes to keep
that strong magnetic field in place. The surprising answer is “very little”! That’s because
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the field is not doing any work and is therefore not using any energy. The little bit of
energy used is really wasted energy, just enough to overcome the resistance offered by
the field coils, and in doing so it is turned into heat. We look at the details in the next
Example.

Example 4. The Joule heat

In Section 2.3 the resistance (R) of a circuit was defined in terms of the voltage (V ) applied to it and the
current (I) forced through it, by the equation

V = IR.

But I is the amount of charge passing per second; and when unit charge goes from potential V1 to
potential V2 the work done on it is the PD V = V2 − V1. So the work done per second on the flowing
charge – the rate of working – is given by

dW/dt = IV = I2R,

where the value of R depends only on the nature of the circuit. The work done gives the charge carriers

(electrons, ions, or whatever they may be) kinetic energy, which is dissipated in collisions with the

atoms of the conducting material (in this case the wire); and re-appears as heat – the so-called “Joule

heat”.

What Example 4 tells us is that, when current I passes round any circuit with total
resistance R, the rate of production of heat is given by

dW/dt = IV = I2R. (5.5)

The Joule heat produced in this way may keep you warm but isn’t much good for
anything else, like running machinery, and in that sense is ‘wasted’. Nevertheless (??) is
an important equation: it gives you the wattage, the rate of electric power production
of your generator in watts (joules per second); and if you want to turn all that energy
into heat by sending it through a high-resistance material it gives you the heat output of
your radiator. A common domestic radiator will have a power of a few kilowatt, while
a light bulb may be marked “100 watt”.

On the other hand, the electricity produced at the power station is going to be used
in many other ways. In particular we may want to turn it back into mechanical energy,
which is what the electric motor is supposed to do. How can we put all that electric power
to use in doing mechanical work. An electric motor depends on just the same principles
as a generator, but you can’t always make one simply by running a generator in reverse –
putting a voltage across the output terminas and expecting the armature to start turning.
To find out more about the ‘inter-conversion’ of electrical and mechanical energy let’s go
back to the simple generator sketched in Fig.30.

Example 5. Energy inter-conversion

When the wire loop in Fig.3 is rotated in the field B charges are set in motion by the forces arising from
the emf induced in the circuit. But, at bottom, a charge moves because a force acts on it; and the basic
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equation needed is the one first used in defining the magnetic field, namely (??). That’s where we should
start from and we’ve already found (Section 3.6) how it leads to an expression for the force per unit
length on an ideal wire in a magnetic field. Here we’ll use the same ‘model’ in which a current-carrying
wire is pictured as a collection of moving charges, N of them per unit length of wire, each carrying charge
q and having (on average) velocity v along the wire. The work done per second on the N moving charges,
the rate of working, must be

dW/dt = N

∮

v × (force acting)ds = N

∮

vq × (F/q)ds = Nvq

∮

Eds,

where ds is an element of path around the circuit and Nvq is the charge flow per second, which is the
current I. The path integral of the electric field intensity (E = F/q) is the emf in the circuit (E) and it
follows that the rate of producing electrical energy is

(A) : dW/dt = IE , (E =

∮

Eds)

E being simply another name for the generator voltage V in (??).

Where does this energy come from? Of course it can only come from the rotational motion of the loop
of wire, which is the only source of mechanical energy. We’d like to express this rate of working in terms
of quantities like forces and torques, which we used in mechanics (Book 4). To do so, look down on the
simple dynamo, indicated in Fig.30, from the top. You’ll see only the top side of the loop of wire, shown
in the picture below (Fig.37) as a thick black line with a dot marking the axis of rotation.

•
•

•
θ

F1

F2

B
n

Figure 37.
Simple dynamo (Fig.30), seen from above.
Thick line indicates top of wire loop,
central dot marks rotation axis and
outer dots mark tops of side-wires.
Torque on loop (see text) is given by
τ = ISBω sinωt

(Note: You may need to turn back to Book 4 to be reminded of ‘torques’ and ‘moments’ etc.; and to
Section 3.2 of Book 2 for something on ‘angles’.)

The normal (n) to the plane of the loop is shown at an angle of 45◦ to the field B. The outer dots mark
the tops of the vertical side-wires of the loop: they each have length b and carry current I, and we already
know from (??) that each of them will feel a transverse force of magnitude F = IbB. The mechanical
‘turning force’ or torque acting on the loop is simply the total moment of the forces around the axis of
rotation. As you can see from Fig.37, both F1 and F2 apply the same torque (a/2) sin θ × F around the
upward axis in the clockwise sense. (Work this out for yourself!) The total torque is thus

τ = IabB sin θ = ISB sin ωt

– noting that the whole angle turned through (at constant angular velocity ω) is θ = ωt at time t.

Now the work done in turning the loop through a tiny angle dθ is dW = τdθ; and if this is done in the
short time dt, the rate of working will be

(B) :
dW

dt
= ISB sin ωt

dθ

dt
= ISBω sin ωt.
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This equation tells us the rate at which mechanical work must be done to keep the armature of the
generator spinning and producing electricity; while (A) (above) told us the electric power it could put
out into any circuit connected to the output terminals. Both equations are about the rate of ‘doing work’
or ‘supplying energy’. The two kinds of energy seem very different, but they are measured in the same
units (the joule) and the rate at which one kind is converted into the other is also measured in the same
units (1 joule/second is 1 watt). So we can easily compare them: from equation (??) we get the emf
generated in the spinning armature; and on putting this into (A) we find the rate of sending electrical
energy into any circuit connected to the output terminals is

dW

dt
= ISB sin ωt

dθ

dt
= ISBω sinωt.

This is exactly the same expression as (B)!

The conclusion from Example 5 is simply that

The rate of production of electrical energy by an ideal generator is exactly
equal to the rate at which mechanical energy must be supplied in turning the
armature

It doesn’t matter how the mechanical work is being done – by bullocks turning a wooden
wheel, or water coming down a pipe from a lake high up in the hills and driving a ‘turbine’
– and it doesn’t matter how the electrical energy produced is being used. The generator
simply changes one form into another – without changing the amount of energy
converted. This is just another example of the principle of Conservation of Energy,
which we meet so often in Physics (see Books 4 and 5). The energy we get out of a system
is the same as the energy we put in, provided none of it is lost in the form of un-usable
energy like the Joule heat mentioned above. If such losses were negligible a dynamo would
be ‘ideal’: its efficiency would be 100%.

When we’re thinking of motors instead of generators it’s only the direction of energy flow
that changes. With an electric motor, electrical energy goes in and mechanical energy
comes out. But it’s not always possible to reverse the direction: if you try to run an AC
generator as a motor, by putting an alternating voltage across the output terminals (1
and 2 in Fig.36), it just won’t go. As long as the voltage is positive, the torque on the
armature is in the same direction and it begins to rotate: but when the voltage falls to zero
(the first crossing point in Fig.32) there is no longer any torque and the moving armature
slows down; and when the voltage goes negative the torque direction reverses and tries to
send the armature back. The heavy armature can’t keep up with the alternating current
and eventually stops: the current has no work to do except producing Joule heat – so
much of it that the armature gets hot and its insulated windings may even catch fire! So
you always have to keep in mind the basic physics of what is happening.

With a DC generator, that doesn’t happen because (thanks to the commutator) the
current you put in gives a torque always in the same direction, the armature builds up
speed and can safely drive machinery. Fortunately we know, by now, how to produce
both AC and DC power. And it’s time to turn to the last Section of this Chapter – on
electric power and how to move it from one place to another.
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5.4 Electric power – and how we can

move it around

Suppose a huge generator has been built, big enough to produce electric power for a whole
city, but it’s housed in a power station somewhere up in the mountains and is driven by
water from a large dam. That’s hydro-electric power – and it can’t be carried around!
The power it produces is needed mainly in the cities, for heating and lighting and for
running the machines in factories. The big problem is how to bring electric power to
those homes and factories; and to the many far-away farms where it will also be needed.

The first thing you will think of is the use of wires. But that will bring many problems
which all have to be solved: first you have to set up a ‘national grid’ of wires, extending
over the whole country, keeping them safely out of the way of people and animals. Then
you have to make sure that the system will be efficient; and that means you have to think
about the Joule heat wasted in miles of curent-carrying copper wires.

We know that the rate of working (i.e. the power) transmitted through a wire carrying
current I, resulting from an emf E (measured in volts and often denoted by V ) will be

P = (dW/dt) = IV. (5.6)

(For example, a 1kW electric heater connected in a circuit with emf 230 volts, will take a
current I (= P/V ) of (1000/230) amps.)

On the other hand a wire carrying current I in a circuit with emf V will lose energy, as
Joule heat, at the rate

dW/dt = IV = I2R, (5.7)

where R is the resistance of the wire and is determined by its thickness and the kind of
conducting material (e.g. copper is better than steel). To keep the heat loss small, R
should be as small as possible: but there is a limit set by the cost per metre of the wire,
which depends on how strong and thick it must be to do its job. Anyway, for given R, it
is clearly best to keep the current I down to an absolute minimum.

Suppose now we want the wire to transmit power P of, say, 1000 kW. In that case the
current will be I = P/V – inversely proportional to the voltage at which it is
transmitted. For whatever power is needed we shall have to choose the highest possible
emf – even if it’s many thousands of volts! That’s why you see the wires of the national
grid trailing across the countryside, hanging from tall pylons at a great height to keep
them out of harm’s way: they may be carrying current at 250,000 volts!

This brings us to the last problem in this chapter: if the generator at the power station
produces electricity at only, say, 500 volts how can we change the voltage of the supply
by a factor of 500? This can be done easily by using a ‘transformer’, but only for AC
current; and that’s why all large scale power transmission calls for AC generators.

Inductance and Transformers

We’ve come a long way from Faraday’s discovery that a changing magnetic flux through
a coil of wire can produce an emf in it, and Maxwell’s neat expression of it in equation
(??). But what if the changing flux is produced by an emf, and the circulating current it
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produces, in another coil of wire? The changing flux induces an emf and we now need to
study this property of inductance in more detail.

Suppose we have two coils and we put an AC current I1 through Coil 1: being an alter-
nating current means it will produce a changing magnetic field all around it and therefore
changing flux through Coil 2, which will give it an emf and thus, when the circuit is
closed, an induced current I2.

Suppose Coil 1 is a solenoid, like the one pictured in Figure 25 of Section 3.5, consisting
of N1 turns of wire wound round a cylinder of length L and cross-sectional area A. Then
suppose we wind N2 turns of a second wire on top of it. This particular arrangement
is a very simple and basic form of transformer, so called because it gives us a way of
transforming electric current from one voltage to another – just what we need to do! How
does it work?

•

I1

•
I1I2 I2

B

Figure 38. A simple transformer (see text)

In the device pictured above, N1 turns of wire are wound round a cylinder, to make a
‘primary coil’. On top of this, N2 turns of thicker wire are wound, to make a ‘secondary
coil’. When an emf E1, is applied to the primary (e.g. from an AC generator) it sets up
a current I1. But an emf E2 is also induced in the secondary, by the changing magnetic
flux passing through it, and appears as a voltage between the ‘output terminals’ (shown
as large black dots). If you connect an external circuit to the terminals a current I2 will
flow – but at a voltage corresponding to E2 instead of the input voltage V1 = E1.

We want to know how this thing works, but we have to do a bit more work first. We know
from Section 3.5 that the B-field along the axis of the solenoid, formed when a current I1

passes through the primary coil (Coil 1) will be

B1 = µ0(N1/L)I1. (5.8)

Here µ0 (the magnetic permeability of free space) can easily be changed by using, for
example, an iron ‘core’ instead of an empty cylinder.

To find the induced emf in the secondary coil (Coil 2), we start from

E2 = − d

dt

∫

S2

B1 · dS2,
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which is the ‘integral form’ of the Maxwell equation (??). Here quantities relating to Coil
2 carry a subscript ‘2’ and

E2 =

∮

E2 · ds2

is the induced emf in Coil 2. (Note that B1 is the field produced by Coil 1, and that’s
why it carries the subscript ‘1’.) On substituting for B1 from (??), the induced emf in the
second coil becomes

E2 = µ0(N1N2)(S/L)
dI1

dt
(5.9)

– since the surface integral which gives the flux of B1 through Coil 2 is just (area,
S)×(normal component, B1)×(number of turns, N2). Notice that only the rate of change
of the current appears, the other quantities being independent of t.

This formula will lead us to everything we need! It is usually written

E2 = M21
dI1

dt
= M21İ1 (5.10)

where the constant M21 is called the mutual inductance of the two coils and the I1

with a dot over it is short for “the rate of change of I1”.

The mutual inductance depends only on the ‘geometry’ of the setup (S, L), together with
the numbers of turns in the coils, and the magnetic permeability of the ‘core’ (e.g. µ0 for
an empty cylinder or µiron – which may be thousands of times bigger – for one with an
iron ‘core’). For the transformer shown in Fig.38, the mutual inductance of the two coils
is

M21 = µ0(N1N2)(S/L), (5.11)

– as you will see if you compare (??) with (??) – but the subscripts are usually dropped
because (although it’s not easy to prove) M12 = M21 if the coils change places. (This is
true for any kinds of coil – not just the setup shown in Fig.38.)

Even when there is only one coil, the changing flux due to changes in the current passing
through it will also induce an emf: this is called a ‘back-emf’ and arises from the self-
inductance of the coil. The back-emf set up is again proportional to the rate of change
of current going through the coil and is given by a formula similar to (??) except that the
proportionality coefficient is negative, meaning that the emf is in the opposite direction
to the one producing the field. The self-inductance is usually denoted by −L, so as not
to mix it up with M for mutual inductance. For simple coils like the ones we’re talking
about here the self-inductance follows from a formula very similar to (??) – but less easy
to prove:

L = µ0(N
2)(S/L), (5.12)

– just as if you had two coils and put N1 = N2 = N . When there really are two coils of
the same kind, their self- and mutual-inductances will be

L1 = µ0(N
2
1 )(S/L), M = µ0(N1N2)(S/L). L2 == µ0(N

2
2 )(S/L) (5.13)

Before going on we should think for a minute about units.
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A note on units

From (??, remembering that the emf is measured in volts (V) and the current in amps (A), the
inductance will have the same dimensions as V/(dI/dt) and will be expressed in volts/amps per
sec. If the current in one circuit is changing at the rate of 1 A s−1 and induces an emf of 1 V in
another circuit, the two circuits will have 1 unit of mutual inductance. This unit is called the
‘henry’, after the American scientist Henry who discovered the effect at about the same time as
Faraday; so the unit is

Unit of inductance is the henry: 1 H = 1 V A−1 s.

Now, at last, we’re ready to understand the transformer in Fig.38 – which gives us a good
Example on solving the equations.

Example 6. A simple transformer (Fig.38)

If you connect the primary coil (Coil 1) to a source of voltage (V1), the emf E1 = V1 and this will set up a
curent I1 the coil. If now the current is made to vary (e.g. by rapidly ‘making and breaking’ the circuit,
or simply by using AC current – which goes up and down anyway) what will happen? An emf will be
induced in Coil 2 and, according to (??,) this will be proportional to M21 and to the rate at which the
primary current is changing – because the changing flux of B through Coil 1 is also felt by Coil 2.

Let’s write down the total emf driving electric charge round each of the two circuits, primary and sec-
ondary. In the primary, we have E1 from the generator providing a voltage V1; but then there is a
back-emf −L1İ1 due to the changing current; and also another −Mİ2 due to the changing current in the

secondary. (Note that the inductance is mutual as it arises from interaction between the two coils.)

What do the two emfs do? They drive current around the two circuits, the input circuit which includes
the generator and the output circuit which includes anything connected to the ouput terminals (usually
called the ‘load’). And each emf is used to overcome the resistance of the conducting circuit to the
current being pushed through it. Putting all this together, and remembering Ohm’s law (??), we get two
equations:

(A) : E1 − L1İ1 −Mİ2 = R1I1

(B) : E2 − L2İ2 −Mİ1 = R2I2.

These look like very nasty differential equations, worse than the ones you came across in Books 3 and
3A. The two of them are even coupled together! But we’re going to find that, for the simple transformer,
a solution comes out very easily.

What we want to find is the output voltage V2 measuring the total emf in the secondary coil, but the first
term (E in the second equation is usually missing – the generator belongs only to the primary circuit,
giving the input. So we put that term to zero. And next we can make an approximation, by neglecting
the resistance R1 of the primary coil: this is reasonable because we always try to use good conducting
wires anyway, to keep the wasted Joule heat to a minimum. If we do this, putting R1 and E2 to zero in
the last two equations, we are left with

(C) : E1 − L1İ1 −Mİ2 = 0

(D) : − L2İ2 −Mİ1 = R2I2.

According to Ohm’s law V2 = R2I2, so that’s the term we must focus on in the second equation. We
don’t know anything about the two terms on the left of the = sign except that İ1 and İ2 are both found
in the first equation: so let’s work on that one. The steps are as follows: Multiply (C) by L2 and you’ll
get

E1L2 = L2L1İ1 + L2Mİ2.
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But (??) shows that L2L1 = M2, so the last equation can be rewritten as E1L2 = M(Mİ1 + L2İ2) and
the thing in brackets, apart from a negative sign, is just what you have in (D). So you can get rid of the
nasty time derivatives, replacing (Mİ1 + L2İ2) by −R2I2.

We’re getting somewhere! At this point we have

E1L2 = −MR2I2

and R2I2 is what we’re looking for – the output voltage in the secondary circuit.

All we have to do now is put in the values of the inductances L2 and M, given in (??), to get

V2 = R2I2 = −E1

(L2

M

)

= −E1
N2

N1
.

Of course, V1 is just another name for the emf E1 supplied by the generator in Circuit 1, and the final
result is therefore (writing E1 = V1 and dropping a minus sign, which only tells you that V1 and V2 are
in opposite directions)

N1V2 = N2V1.

What a beautifully simple result after all that work!

What Example 6 has shown us is that for any simple transformer, where heat losses are
neglected, the output and input voltages stand in the same ratio as the numbers of turns
of wire in Coil 2 (the secondary) and Coil 1 (the primary):

V2

V1

=
N2

N1

. (5.14)

If you want to reduce the voltage of the power supplied to your home (probably about 250
V) to a safe level, so it won’t kill you when you try to use it, you’d better be sure there are
at least ten times as many turns in the primary (input) coil as in the secondary. That way
you’ll get an output at not more than 25 V. But remember you’re not reducing the power.
As we noted in talking about the Joule heat, the power supplied by current I flowing
between points at a difference of potential V is P = V I and is measured in watts: it’s
the rate of doing work – transfering energy – and in an ideal transformer (which is what
we’re always talking about) the small amount of wasted Joule heat is neglected. In that
case the principle of Energy Conservation says that what comes out (of the secondary)
equals what goes in (from the primary): V2I2 = V1I1. So if the input voltage is divided
by 10, the input current will be multiplied by 10: (I2/I1) = (V1/V2).

Now it’s clear why the wire of the secondary coil in Fig.38 is shown much thicker than
that of the primary; it has to carry a current ten times as heavy and that means that the
Joule heat produced will be a hundred times as great! The coil would over-heat and the
wire might even melt! Sometimes, in fact, this is useful: in electric welding you have to
melt two pieces of metal where they come into contact and this is done by passing a heavy
current through them. In that case you are using a step-down transformer (stepping
down the voltage to increase the current).

In other cases, you may want to step up the voltage. This is what has to be done at
the power station, to transform the voltage produced at the generator to the very high
voltage used in long distance power trnamission – possibly 250,000 V. But however you
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may need to change the voltage you can do it using transformers. There will be many
technical problems of course, keeping things cool when they carry heavy currents and
keeping wires well insulated when they are at a high voltage; but as long as you know the
principles the difficulties can always be overcome.
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Chapter 6

Waves that travel through empty
space

6.1 What is a wave?

Most people think first of waves on the sea, or of the smaller waves set up when you drop
a stone in a pond; but then there are sound waves, where there is nothing to see, but
a noise may come to your ears when someone calls you from a distance. In both cases
‘something’ (let’s call it a ‘disturbance’) travels from one point to another at a certain
speed, which determines how long it takes to get there. In the first example, the waves
travel through water and it’s an up-and-down motion that travels; in the second, the
waves travel though the air and although you can’t see anything happening your ears can
feel the arrival of the noise as a kind of ‘vibration’ of your eardrums. In both cases the
waves are carried by a ‘medium’ (water or air) and the disturbance is passed on directly
from one bit of the medium to the next bit. But in this chapter we’ll be thinking of
disturbances you can neither see nor hear; they travel through empty space in which
there’s no ‘stuff’ of any kind to carry them. They are carried by fields and what they
carry is not an up-and-down motion of stuff, but rather a variation of field strengths
as you go from one point to the next.

What do all these kinds of wave have in common? They all involve a ‘disturbance’ in
which something we can measure, call it φ, varies with time – it is a function of time:
φ = φ(t); and it also depends on the point in space, with coordinates x, y, z say, where it is
measured. The function we’re talking about may be the height of a water wave above the
water level on a still day; or the pressure of the air at point x, y, z in a sound wave. But
whatever it may be it will increase or decrease (that’s the ‘disturbance’) as time passes;
so it is correct to say

φ = φ(x, y, z, t) (6.1)

– which is general enough to show all the main properties of wave motion.

Although this is a function of four variables, three for space and one for time, we can go
a long way by looking at the simplest possible case of a 1-dimensional system, where the
wave travels along the x-axis and no other coordinates need be shown: φ = φ(x, t). At
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any given moment (e.g. t = 0) the wave will have a certain ‘shape’

φ(x, 0) = f(x) (6.2)

which shows how φ varies with x alone. at the initial time t = 0. We don’t know what
mathematical form the function will take: that’s what we want to find in any particular
problem.

Next we’ll suppose that the wave moves along the x-axis with constant speed c, without
changing its shape. So ‘photographs’ of the wave, taken at t = 0 (the initial time) and at
time t, might look as in Figure 39. The graph on the left shows the shape of the wave,
called the wave profile, at t = 0 when it sets off, while the one on the right shows the
same profile pushed along the positive x-axis through a distance ct – the distance it has
travelled in time t.

O x-axis

φ-axis

Frame 1

O′ x′-axis

φ′-axis

Frame 2

Figure 39. Travelling wave profile.

Each wave profile has been put in its own ‘picture frame’. The profile shown in Frame
1 shows what the wave looked like when it set off at t = 0. The one shown in Frame 2
shows the wave profile at time t. It is exactly the same function of x′, we are supposing,
where the distance x′ is measured from the origin O′ at the bottom left-hand corner of
Frame 2; so φ = f(x′). But x′ is related to x measured from the origin O, fixed in space,
by x′ = x − ct as you can see from Fig.39. It follows that for the moving wave

φ = f(x − ct), (6.3)

which is referred to the fixed origin and now includes the time dependence.

Equation ?? gives the standard description of a wave moving with constant velocity c
along the positive x-axis, without change of shape. The equation for a similar wave
moving in the negative direction is obtained simply by changing the sign of the velocity
and is thus

φ = f(x + ct). (6.4)

In Section 5.1 of the last chapter, we already found an example of ‘wavelike’ behaviour
in the voltage variation from an AC generator: the voltage was a function of time alone,
with the form V = V0 sin ωt, ω being a constant that determines the frequency with which
V goes up and down. This wavelike variation is shown in Fig.32 and a function with a
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cosine instead of the sine has a similar form, but starting at the maximum V = V0 instead
of at V = 0. Let’s play with a function of the cosine form

φ = A cos ax, (6.5)

where A and a are simply constants, and pretend that it is a wave profile for some
disturbance moving along the positive x-axis. This will be very different from the function
in Fig.39, which was localized in a small region of space; for the sine and cosine functions
go on forever, in both directions. But it has the same property of looking exactly the
same when you shift it through a certain distance along the x-axis. Both φ and the slope
dφ/dx repeat their values when the argument of the function (ax) increases in value by
any integer multiple (positive or negative) of 2π – for ax plays the part of an angle and the
‘circular functions’ (like sine and cosine) are unchanged under any complete revolution.
Thus, whenever x changes to x + ∆x such that a∆x = n × 2π the function (??) will
appear to be unchanged: the smallest non-zero value of ∆x with this property follows
when n = 1. It is called the wavelength and is usually denoted by the letter ‘lambda’:
λ = 2π/a. The wave function (??) can therefore be written in terms of wavelength as

φ = A cos(2πx/λ). (6.6)

The constant A is called the amplitude of the wave: the value of φ ‘oscillates’ between
±A. One complete ‘up-down’ oscillation extends over one wavelength, but φ itself con-
tinues indefinitely in both directions.
(Note that in talking about ‘wavelength’ we’re now thinking of only a small part of the whole wave profile – the part in
which φ runs through all its possible values just once, as x increases by λ – before being repeated over and over again. Such
functions are said to be periodic and you met them long ago in Section 1.3 of Book 3. If you want to make it clear that
you’re talking about the whole function, with all its repetitions, you can call it a ‘wave train’.)

There is still no time variable in equation (??): this φ gives only the shape of a wave, not
saying whether or not it is moving. The general form of a wave moving along the positive
x-axis at velocity c, without change of shape, is given in (??), so to get a ‘travelling wave’
of this shape we only need to replace x by x − ct. The following Example shows what
happens when you use the cosine function (??).

Example 1. Making the wave move

When x is replaced by x − ct we get a new wave function

φ = A cos(2π/λ)(x − ct).

Now it’s clear how φ will vary with time. If you look at one point (fixing x) but wait for time to pass,
letting t → t + ∆t, the argument of the cosine function will change by −(2πc/λ)∆t; and whenever this
is an integral multiple of 2π (negative or positive makes no difference) the form of the wave is exactly
repeated. The smallest value of ∆t is called the period T of the wave: T = λ/c. So the wave function
may be written in other forms:

φ = A cos 2π

(

x

λ
− t

T

)

= A cos 2π(kx − νt).

The reciprocals of the period and the wavelength also have a clear meaning and are given special names:
they are

frequency ν =
1

T
, wave number k =

1

λ
.
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Thus ν is the number of oscillations per unit time, while k is the number of waves per unit distance in
the direction of propagation. The ‘argument’ of the cosine function (call it θ) is the phase of the wave.
Two wave functions, φ1 and φ2, with the same value of θ are said to be ‘in phase’: if θ1 6= θ2 they show
a ‘phase difference’. The phase of the functions in the form given above is

θ = 2π

(

x

λ
− t

T

)

= 2π(kx − νt).

Important results from Example 1, for a wave of cosine form travelling along the x-axis
with velocity c, are collected below:

Simplest form : φ = A cos(2π/λ)(x − ct), (6.7)

Other forms : φ = A cos 2π

(

x

λ
− t

T

)

= A cos 2π(kx − νt) (6.8)

The phase of the wave function in the forms given above (the argument of the cosine
factor) is

θ = 2π

(

x

λ
− t

T

)

= 2π(kx − νt).

– showing that the wave function is periodic in both space and time. What this means
will be clear if you study Figure 40 below:

φ
φ = +A

φ = −A

λ

0 1 x/λ

φ T

0 1 t/T

Figure 40. Periodic variation of a wave, in space (left) and in time (right).

The picture on the left shows how φ varies as x changes, at any given time, while that on
the right shows how it varies with time at any given point.

It is important to note that ν ×λ is the distance travelled by the wave in unit time. This
is the velocity of propagation, being the number of waves going out every second times
the length of each one:

ν × λ =
ν

k
= c. (6.9)

This relationship is true for any kind of wave propagation without change of shape.

6.2 The wave equation

Now we know how to describe certain simple kinds of wave motion it’s time to start
thinking about where the mathematical description comes from. Usually the description
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comes from the solution of a wave equation. Every kind of wave motion will have its
own equation, one for water waves, one for sound waves, one for waves on a vibrating
string, and so on; but the same equation will usually apply to many different kinds of
wave – only the physical meaning of the symbols changing. So you only have to study
one problem and find how to solve it and you can use the solutions over and over again.

We’re now going to look for a wave equation that could lead to a solution like those we’ve
been looking at it the last section. This is really very easy because we’re going ‘backwards’
from a function that represents, from the way it was set up, a disturbance travelling along
the positive x-axis with velocity c and without change of shape: we’re starting from what
must be a solution, φ, of the differential equation we want. And since it’s going to involve
rates of change of the wave function with respect to the only variables, x and t, we can
simply try differentiating φ and look for a relationship between

φ, ∂φ/∂x, ∂φ/∂t, ∂2φ/∂x2, ...etc.

which must always be satisfied. And that will be the equation we want! To see how easy
it is, let’s do it.

Example 2. Setting up a wave equation

We can take A = 1 (why?) and start from the form (??) with 1/λ = k and 1/T = ν. So we start with

φ = cos 2π(kx − νt)

and play around with partial derivatives (as we have two independent variables). You find easily (look
back at Book 3 if you need help)

∂φ

∂x
= − sin 2π(kx − νt) × 2πk

∂2φ

∂x2
= − cos 2π(kx − νt) × (2πk)2 = −(2πk)2φ

∂φ

∂t
= − sin 2π(kx − νt) × (−2πν)

∂2φ

∂t2
= − cos 2π(kx − νt) × (−2πν)2 = −(2πν)2φ

and that’s all you’ll need.

It follows at once that
1

(2πk)2
∂2φ

∂x2
=

1

(2πν)2
∂2φ

∂t2
= −φ

and therefore that
∂2φ

∂x2
=

k2

ν2

∂2φ

∂t2
.

That’s an equation relating the second derivatives of φ with respect to the two independent variables x

and t: it’s the wave equation we want.

Now from (??) it is known that k/ν = 1/c and Example 2 therefore tells us that the
standard wave equation

∂2φ

∂x2
=

1

c2

∂2φ

∂t2
(6.10)
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has, among its possible solutions, functions of the kind we’ve been looking for. In fact (??)
is the standard partial differential equation for propagation of any kind of disturbance
along the x direction, with velocity c and without change of shape!

Of course we live in a 3-dimensional world and a 1-dimensional equation may seem too
special to be useful: sound waves, for example, spread out in all directions. But you
already know enough to be able to guess the more general equation.

Waves in 3 dimensions

In earlier chapters all equations for the electric and magnetic fields have been written
for 3-space, where any point is labelled by its x-,y- and z-coordinates and any vector by
its corresponding components. We also know that space is isotropic, so that (roughly
speaking) ‘what’s good for one direction is good for any other’. For example, the equation
for a wave travelling along the positive y-axis can be obtained from (??) just by changing
x to y.

To get a 3-dimensional form of the wave equation, we need to replace the differential op-
erator (∂2φ/∂x2) by an ‘equivalent’ operator for working on a function of all the variables
φ(x, y, z, t). We’ve already come across such operators in Section 1.4 of this book, namely
the gradient, the divergence and the curl.

Suppose now that φ stands for the electric potential at some point (x, y, z) in space. We
know from earlier Sections that −grad φ = E defines a vector field with components

Ex = −∂φ

∂x
, Ey = −∂φ

∂y
, Ez = −∂φ

∂z
.

We know also that div E is obtained from E by differentiating each component with respect
to ‘its own’ coordinate and adding the results:

div E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
.

Like the potential φ, this is a scalar function of position.

If now we start from φ and operate first with ‘grad’ and then with ‘div’ we’ll find the
result of a compound operation ‘div grad’:

div grad φ =

(

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

)

. (6.11)

This operator is often denoted by ∇·∇, or ∇2, and called ‘del-squared’, but take care not
to think of it as ‘del’ or ‘div’ applied twice: it is simply the operator defined in (??) and
it gives us the correct generalization of the single term ∂2φ/∂x2 when we want to study
waves in three dimensions (in ‘3-space’) instead of just one.

To see how this can be, let’s try replacing (??) by what seems might work when φ depends
on all three spatial variables. If we suppose the right equation is

∇2φ =

(

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

)

=
1

c2

(

∂2φ

∂t2

)

, (6.12)
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then it’s easy to check that the one-dimensional solutions we already know will also satisfy
this new equation. (You may need reminding of the 3-dimensional geometry you studied
in Book 2, but you can skip the details if you want to keep moving.)

The wave defined in (??) travels along the x-axis with velocity c, but now we’re thinking
of 3-space and on the x-axis the y- and z-coordinates are always zero. If, however, we
move off the x-axis, letting y and z take any values we wish, but keeping x constant, the
points we’re thinking of will all lie on the same plane. This plane defines a wavefront:
it’s where the wavefront setting out from the plane with x = 0 will have got to at time
t. The whole travelling wave will be a procession of wavefronts, all parallel to each other
and perpendicular to the x-axis – along which they move with velocity c.

With this picture in mind let’s go back to (??) and see what happens when φ = φ(x, y, z, t)
and we look for a wavefront moving along the x-axis.

Example 3. Going into three dimensions

All the differential operators are now partial, so Dy = ∂/∂y and Dz = ∂/∂z will just destroy φ when they
act at points on a wavefront, because φ is constant for all values of y and z on that surface. The second
and third terms in (??) will thus disappear, leaving us with

∇2 φ =
∂2φ

∂x2
=

1

c2

∂2φ

∂t2
.

But this looks like the one-dimensional equation we set up in (??) – the y and z variables are just
‘sleeping’ and are not even shown! Moreover, the solution given in (??) is now seen to satisfy also the
3-space equation (??).

In just the same way you can show (do it!) that the same equation (??) has three ‘families’ of plane-wave
solutions, all with wavenumber k and frequency ν. They are:

(a): φ = A cos 2π(kx − νt)

– wavefronts propagating along the x-direction, φ independent of y, z,

(b): φ = A cos 2π(ky − νt)

– wavefronts propagating along the y-direction, φ independent of z, x,

(c): φ = A cos 2π(kz − νt)

– wavefronts propagating along the z-direction, φ independent of x, y.

These are not the only solutions of (??). Think of sound waves, for example, where the sound from an
explosion at the origin O spreads out in spherical waves, so that the noise arrives at all points at the
same distance r = ct at the same time t: in that case all points (x, y, z) for which x2 + y2 + z2 = (ct)2

will lie on a spherical wavefront of radius ct. But even the plane-wave solutions do not all belong to the
families indicated above. Plane wavefronts travelling along a rotated x-axis, with direction cosines l,m, n
(see Section 5.4 of Book 2), would also be solutions – all directions in space being just as acceptable. In
that case the distance travelled in the direction of the rotated x-axis is x′ = lx+my +nz and if x in (??)
is replaced by x′ we’ll find an exactly similar plane wave (same frequency, wavelength, speed, and shape)
of the form

φ = A cos 2π[k(lx + my + nz) − νt],

where (by definition, see Section 5.4 of Book 2) the direction cosines take any values, provided l2 + m2 +

n2 = 1.

90



The last result in Example 3 shows that

φ = A cos 2π[k(lx + my + nz) − νt] (6.13)

describes a plane wave travelling along an axis with direction cosines l,m, n, all wavefronts
being perpendicular to the axis.

It’s not easy to see the connection between this result and the three families listed above,
but it’s already clear that the general solution of (??) must contain a large number of
particular solutions, with various values of any ‘parameters’ such as k, ν, l, m, n. You
may remember that in Book 3 (Section 6.2 Example 3 on ‘making music’) we set up
a wave equation for waves on a vibrating string; and we even found a useful way of
getting solutions by ‘separating the variables’. Here we can start off along the same lines,
exploring other kinds of solution.

6.3 Separable solutions

In Section 6.2 of Book 3 we studied the partial differential equation

∂2y

∂x2
=

1

c2

∂2y

∂t2
,

where y was the displacement at point x of a stretched string, pulled aside and then left
to vibrate. That equation was the same as (??) except that the ‘disturbance’ was called
y, while in this chapter we’re calling it φ, It’s the equation that matters, not what the
symbols may stand for! So let’s start again with the general wave equation (??) and use
what we learnt in Book 3 about ‘separating the variables’.

Forget about plane-wave solutions! Instead we can do as we did in Book 3, looking for
solutions of an altogether different kind, trying

φ(x, y, z, t) = X(x)Y (y)Z(z)T (t) (6.14)

– a product of four factors, one for each of the independent variables. Here we’ll suppose
X is a function of x only, not depending in any way on the values of y, z, t, and so on.
Only the last factor will depend on the time t at which we look at the disturbance φ. It
may not be possible to find solutions of this particular form – but it’s worth a try! In
Section 6.2 of Book 3 the idea worked well: for 1-dimensional waves on a string it was
possible to satisfy the wave equation with a function of the form F (x)T (t), provided each
factor was chosen as the solution of a simple differential equation in one variable.

Remember how the argument went? We supposed that the displacement y of the vibrating
string, at a point distant x from one end and at time t, could perhaps be written as
y(x, t) = F (x)T (t). By substituting this product in the wave equation (∂2y/∂t2) =
(1/c2)(∂2y/∂t2), and then dividing both sides by the same product, it was possible to
rewrite the equation in the separated form

1

F

(

d2F

dx2

)

=
1

c2T

(

d2T

dt2

)

. (6.15)
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The two sides of the equation are entirely independent: the left-hand side involves only
the variable x, the right-hand side involves only t. (Note also that partial derivatives are
no longer needed because F and T are each functions of only one variable.) The two sides
can only be equal for all values of x and t if both are equal to the same constant, C say.
The equation that the function T (t) must satisfy is thus

1

T

(

d2T

dt2

)

= Cc2

and you already found the general solution of this equation in Section 6.2 of Book 3
(Example 2). When the constant C is given a negative value (call it −ω2) the solution is
oscillatory and is in general

T (t) = A sin ωct + B cos ωct, (6.16)

where A and B are arbitrary constants.

This showed us that solutions of the separated form y(x, t) = F (x)T (t) could indeed be
found, with a ‘shape’ factor F (x) and a time factor T (t) which simply moved the shape
up and down with a frequency ν = ω/2π. (You’ll remember that ω is often called the
‘angular frequency’ because whenever the ‘angle’ ωt, in the sine and cosine functions,
increases by 2π the time factor has gone through a whole cycle of possible values and
starts repeating: t = 2π/ω is the period of a complete oscillation and its reciprocal is the
number of cycles per unit time i.e. the frequency ν.)

Now let’s move on to the 3-dimensional case in which the disturbance (??), namely
φ(x, y, z, t) = X(x)Y (y)Z(z)T (t), must satisfy the equation (??). The next Example
will show how the four factors in the product can be found.

Example 4. Separating the equation in three dimensions

We’re going to put the product X Y Z T in place of φ on both sides of the equation ∇2φ = (1/c2)φ and
then try to choose the four factors so that the equation is satisfied.

By putting that product into ∇2φ on the left-hand side and noting that each term in the operator works
on only one of the four factors, leaving the others unchanged, you’ll find

∇2φ = Y ZT

(

d2X

dx2

)

+ XZT

(

d2Y

dy2

)

+ XY T

(

d2Z

dz2

)

and this must be equal to the term on the right-hand side, namely

1

c2

∂2φ

∂t2
=

1

c2
XY Z

(

d2T

dt2

)

.

Now set the two things equal and divide everything by the product XY ZT . This will give you (do it
yourself!) the ‘separated equation’ in which each term depends only on one variable:

(A) :
1

X

(

d2X

dx2

)

+
1

Y

(

d2Y

dy2

)

+
1

Z

(

d2Z

dz2

)

=
1

c2T

(

d2T

dt2

)

.

The term on the right-hand side must be a constant, as in the 1-dimensional case above where we called
it C and were led to the simple differential equation

1

c2T

(

d2T

dt2

)

= C, or

(

d2T

dt2

)

= −ω2c2T.
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Here C has again been chosen negative (−ω2), as we’re interested only in oscillatory solutions, and the
solution is again (??).

The terms on the left in (A) must also be constants, each one being completely independent of the others,
but their sum must be equal to the constant on the right (that’s what the equation tells us!). As long
as we’re looking for oscillating (i.e. wave-like) solutions, these constants must also be negative numbers;
so we write them as −α2,−β2,−γ2 and require that α2 + β2 + γ2 = c2ω2. When these conditions are
satisfied the product

φ(x, y, z, t) = X(x)Y (y)Z(z)T (t)

will certainly be a solution of the wave equation (??).

We’re now ready to put down a rather general solution of the wave equation in three
dimensions. It can be written in the form

φ(x, y, z, t) =

(

sin
cos

)

(αx)

(

sin
cos

)

(βy)

(

sin
cos

)

(γz)

(

sin
cos

)

(ωct). (6.17)

This means that any product of the four factors indicated, using either the sine or the
cosine in any of the four, will satisfy the wave equation (??). For example, taking once
again the case of a vibrating string, stretched along the x-axis with its ends at x = 0 and
x = L it is easy to get back the particular solution we found in Book 3.

Example 5. Waves on a stretched string

In this case we choose the product (two factors only, one for x and one for t): φ(x, t) = sin αx sin ωct. But
although this is a particular solution it still isn’t particular enough! Where does the length of the string
come in? and how do we know the value of the frequency factor ω. In fact, to complete the solution we
have to satisfy any boundary conditions that there may be. Here the ends of the vibrating string are
fixed (remember it is stretched!) and this means φ = 0 at both x = 0 and x = L. The first condition
rules out a cosine solution, which would give φ = 1 at x = 0, while the second requires that sinωcL = 0,
which means that ωcL = nπ where n is any integer.

The particular solutions that satisfy the boundary conditions are thus (remembering the condition α2 =
c2ω2)

φ(x, t) = A sin(nπx/L) sin(nπct/L), (n integral).

There are many solutions, corresponding to different choices of the integer n, all of the same kind – with

φ = 0 at the two ends of the string. They are called “standing waves”. You should sketch their forms

for a few values of n (e.g. n = 1, 2, 3) and calculate the vibration frequencies, which correpond to different

musical notes.

You may be wondering why nothing was said in Example 5 about details like the material
of the string, or how heavy it is, or how tightly it is stretched. That’s because they don’t
matter: all that we need to know in talking about vibrations and wave motion of any
kind is the velocity of propagation c – the other things are important only in determining
the value of c. That’s Physics, the rest is just Mathematics. Now it’s time to turn back
to Physics and the way electric and magnetic fields propagate through space.
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6.4 Electromagnetic waves

In Chapter 5 you learnt how electricity could be generated in great quantities and carried
over great distances through metal conductors in the form of wires; but you also know,
from everyday experience with radio and television, that even without wires it’s possible
to send electric and magnetic effects from one place to another. How is it possible? You
can perhaps imagine that electric charges and currents, rushing up and down in wires,
generate rapidly changing fields and that these ‘disturbances’ can travel through space like
other kinds of wave motion. In this Section we want to prove, from Maxwell’s equations,
that this is all possible and that even the speed with which an electromagnetic wave
travels can be predicted from the equations.

We’ll be talking about the difficult part, where the space is really empty – no conductors
that can hold charge, no wires that can carry current. So we can leave out the charge
density ρ and the current density j and start from Maxwell’s equations in the form:

(a) div E = 0

(b) curl E = −∂B/∂t

(c) div B = 0

(d) curl B = µ0ǫ0 (∂E/∂t)

(6.18)

These look quite a bit simpler than the complete Maxwell equations (??). But, simple
as they may be, they will hold good from here to the stars! It’s only where you start the
waves off (at a transmitter) and where you ‘pick them up’ (at a receiver) that you’ll
need to worry about wires and currents.

What do we want to do with the equations? We’re not trying to solve them, to find the
fields at all points in space: all we want is a single quantity – perhaps one component
of the electric field – and to set up an equation that will describe how it travels through
space. That will be a wave equation, like (??) and should contain something that stands
in place of c – a velocity of propagation. But to focus on one quantity in (??) and separate
it from the others is not easy: we have to learn how to play with the differential operators.

We know that the curl operation takes us from one vector field to another; from E, say,
to curl E, and the components of the vectors are related by

(curl E)x =
∂

∂y
Ez −

∂

∂z
Ey, (curl E)y =

∂

∂z
Ex −

∂

∂x
Ez, (curl E)z =

∂

∂x
Ey −

∂

∂y
Ex.

Now let’s start from (??b) and try to get rid of the term in B, so as to concentrate on the
E-field. To do that we can use the curl operator again, getting

(curl curl E) = − ∂

∂t
curl B (6.19)
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and then using the last equation in (??) to replace curl B by a term depending only on E.
Thus

(curl curl E) = −ǫ0µ0 (∂2E/∂t2) (6.20)

and we’re halfway there! – with a differential equation involving only one field and a
second derivative with respect to the time t, just as we had in the general wave equation
(??).

The second half of the story is more difficult. We’ll take it bit by bit in the next Example,
which shows how you can handle equations like these. Skip it on first reading and come
back to it when you feel like trying it!

Example 6. Whatever does “curl curl” mean?

The left-hand side of (??) needs a bit of work, but you can do it if you try hard. Break it down one
component at a time, using the curl formula, given a few lines earlier, to get the curl of the vector field
v = curlE.

Thus, for the x-component,

(curl curlE)x =
∂

∂y
vz −

∂

∂z
vy

=
∂

∂y

(

∂

∂x
Ey − ∂

∂y
Ex

)

− ∂

∂z

(

∂

∂z
Ex − ∂

∂x
Ez

)

.

This doesn’t look very promising, but it does contain two terms of the ‘del-squared’ operator you’ve
already met: they are (∂2/∂y2) and ∂2/∂z2), both with a − sign and working on the field component
Ex. This suggests that you re-group the terms in the last equation, writing it in the form

(

−∂2Ex

∂y2
− ∂2Ex

∂z2

)

+

(

∂2Ey

∂y∂x
+

∂2Ez

∂z∂x

)

and then start jiggling things around until they look nicer. (You have to do this a lot in difficult
mathematics – when it ‘looks nice’ you’ve probably got it right!)

So let’s add a term −(∂2Ex/∂x2) in the first parentheses (.....) and +(∂2Ex/∂x2) in the second – so
you’re adding zero to the whole thing. The first parenthesis then contains −∇2 Ex, while the second
becomes

(

∂2Ex

∂x2
+

∂2Ey

∂y∂x
+

∂2Ez

∂z∂x

)

.

That looks quite nasty; but you may remember from Book 3 that, as long as they work on ‘well-behaved’
functions, the order in which (∂/∂x), (∂/∂y), etc. are applied doesn’t matter (the operators commute.
The field components are normally of that kind, varying smoothly throughout space, and in that case
the last expression can be re-written as

∂

∂x

(

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)

.

Check this out carefully to be sure it’s true! and then you’ll see that it’s just ∂/∂x of the divergence of
the electric field E.

Now you can go back to equation (??) and see how far we’ve come. We were trying to find a wave
equation and got stuck with the left-hand side, which was curl curlE. But now we know that

(A) : (curl curlE)x =
∂

∂x
(div E) −∇2 Ex
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and there will be a similar equation for each of the other components. And if an equation is satisfied by
all the vector components it must be satisfied by the vectors themselves, which means that

(B) : (curl curlE) = grad div E −∇2 E

– since the derivatives in the first term of (A) are the components of the gradient operator, working on

the scalar field (div E.)

The conclusion from Example 6 is an important and general result, applying to any vector
field that arises as the gradient of a scalar potential:

curl curl E = grad div E −∇2 E (6.21)

That’s the end of the difficult bit! We’ll use the result straight away to get the final wave
equation we’ve been looking for.

Going back to (??) we can now use (??) to evaluate the ‘curl-curl’ term; and we can also
use the fact that in free space, which is what we’re talking about, div E is everywhere
zero.

The final result is thus

∇2 E = ǫ0µ0
∂2E

∂t2
, (6.22)

which means that any component (call it φ) of the electric field E must satisfy the standard
wave equation

∇2 φ =
1

c2

∂2φ

∂t2
,

with the velocity of propagation c given by

c2 =
1

ǫ0µ0

. (6.23)

The permittivity and permeability of free space, ǫ0 and µ0, were defined long ago (Sections
1.1 and 3.6) in terms of experiments in the laboratory (forces on charged particles and
between current-carrying wires). They have experimentally determined values:

ǫ0 = 8.8542 × 10−12 farad per metre

µ0 = 4π × 10−7 henry per metre

and when you put these into (??) you come out with the incredibly large value

c = 2.9979×!08 metre per second

– very nearly 300 million metres every second! That is also the speed with which light
travels (also determined by experiments in the laboratory). But we were talking about
electric and magnetic fields: now it seems clear that light, whether it comes from the
sun or from a white-hot filament in an electric light bulb, is simply an electromagnetic
disturbance! As you probably know, it’s also the speed with which radio waves travel:
all these different kinds of wave travel at exactly the same speed (in empty space), the
differences between them being their frequency ν – or their wavelength λ, for we know that
the two are related by ν λ = c. These travelling waves are all forms of electromagnetic
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radiation but your eye is only sensitive to radiation whose wavelength falls within a
very small range: space is full of radiation of all kinds, with wavelengths going from
almost zero to amost infinity and we feel hardly any of it! The entire range is called the
electromagnetic spectrum.

(So many things are going on in the universe and the most amazing thing of all is that
they are all related and all conform to a few basic rules!)

6.5 The electromagnetic spectrum

Maxwell’s equations have shown that any disturbance of the electromagnetic fields E

and B will be propagated, even through empty space (containing no electric charges or
currents), with the enormous speed c = 1/

√
ǫ0µ0 in the form of travelling waves. Now

we have to find out more about the nature of the waves. Then, in Chapter 7, we’ll turn
to radio waves in particular and ask how they can be produced by transmitters, sent out
into space, and ‘picked up’ by receivers.

What does an electromagnetic wave look like? Nothing at all, of course, because we can’t
see it; we only know it’s there because the electromagnetic field, at any point in space, is
described by giving the components of the two vectors, E and B, and we can picture in
our minds the little arrows representing the fields at any point. The arrows indicate the
forces acting on a moving charge at that point: the E -arrow shows the force arising from
the presence of other charges, while the B-arrow shows the force due to their motion (i.e.
to currents). Some E-arrows are shown in Figure 41 below.

z-axis

x
-a

x
is

n

y-axis

Figure 41. Illustrating plane-polarized light
– here travelling along the z-axis, with E always
in the x-direction. The vector E is the same at all
points in any plane of given z (i.e. on a wavefront).

In the last Section we studied one field component Ex and found that it satisfied a wave
equation (??) with particular solutions describing plane waves travelling along the x-
axis. We need a bit more detail: what about the other components (Ey, Ez) and the
components Bx, By, Bz of the magnetic field? From the components we can work out
which way the E- and B-vectors point and how big they are.

For a plane wave we usually take the direction of propagation as the z-axis, so the wave
front will be a plane, with its normal n pointing in the z-direction as in Figure 41. The x-
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and y-axes will then be perpendicular to n. Note that the E-vectors are transverse to the
direction of propagation (shown by the arrow n on the wavefront at z = 0). The three axes
are related by the ‘right-hand screw rule’ (turning the x-axis towards the y-axis would
move a corkscrew along the z-axis). In fact the three vectors E, B, n form a ‘right-handed
system’, with B pointing along the y-direction in Fig.41.

All this follows from Maxwell’s equations. We know that in free space div E = 0; and
in Section 6.2 we found plane-wave solutions with E perpendicular to the propagation
direction. On a wavefront, E has components Ex, Ey with constant values at all points,
so

∂Ex

∂x
,

∂Ey

∂x
,

∂Ex

∂y
,

∂Ey

∂y

must all be zero. The first two terms in div E therefore vanish – and the third must also
be zero: (∂Ez/∂z) = 0. In words, the E-vector can have no component in the propagation
direction; it must be transverse.

What about the B-field? Again div B = 0 and a similar argument applies. It shows
that B also has zero component in the propagation direction, but by using the equation
curl B = µ0ǫ0(∂E/∂t) it gives you much more: it shows that when E at any point on a
wavefront is in the x-direction B points in the y-direction and that as they vary with time,
as well as distance along the z-axis, they stay in phase. That’s getting a bit complicated!
(Just think about it and try to put these ideas into a diagram like Fig.41: that’s about
the best picture you can get of a plane wave propagating along the z-axis. If you want
the details, try the next Example by yourself.)

Example 7. Field vectors for a plane-polarized wave

For a plane wave travelling in the z-direction, polarized in the x-direction, you can take Ex = E0 cos 2π(kz−
ν t) and use

curlB =
1

c2

∂E

∂t

to relate the B and E vectors.

Hints The curl equation for the B-field becomes −∂By/∂z = (1/c2)(∂Ex/∂t). To obtain By in terms of

Ex you have to do one differentiation with respect to t and one integration with respect to z. To make

things easier, use the phase θ = 2π(kz − νt) as a new variable. (You may need to look at Book 3.)

Different kinds of electromagnetic waves

What’s the difference between one kind of electromagnetic wave and another? The main
differences arise from the frequency ν or the wavelength λ: you can use either one in
describing the wave, as λµ = c (the velocity of light, ≈ 3 × 108 m s−1). One complete
oscillation per second is called ‘1 Hertz’ (1 Hz) and the observable part of the spectrum
extends from about 105 Hz up to more than 1020 Hz. This corresponds to wavelengths
running from about 3 km down to far less than ‘atomic’ dimensions.

To make a ‘picture’ of the whole spectrum one usually works in powers of 10, adopting
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a logarithmic scale. Figure 42 shows the frequency spectrum in this form, labelling
different ranges with their conventional names.
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Figure 42. The electromagnetic spectrum (in hertz)
(frequency range from 105 Hz to 1020 Hz)

Starting from the long-wave end (ν = 105 Hz, λ ≈ 3 km), the Radiofrequency range (used
in commercial radio broadcasting) is followed by the Microwave range (used in microwave
ovens), which goes from about 109 to 1011 Hz. There it enters the Infrared (IR) range,
corresponding to heat radiation from fires or red-hot electric filaments. This is followed
by the Visible range, the only part of the spectrum your eye can detect, marked in Fig.42
as the narrow band labelled “visible”. The visible band is shown in magnified form, below
the whole spectrum and contains all the colours you can see, going from red (on the left)
to violet (on the right). The mixture of all colours is “white light”, which is ordinary
‘daylight’. Beyond violet, as the frequency increases, comes the Ultra-Violet (UV) range;
like the Infra-Red (IR), radiation in this range is invisible, but both IR and UV are
absorbed by your skin, IR being felt as heat, UV producing ‘sunburn’ and (if you get too
much of it) serious damage. Above frequencies of about 1017 Hz comes the X-Ray range,
of radiation that can pass through your body and show (on a photographic plate) shadows
of your internal organs. At still higher frequencies there are Gamma(γ)-rays, produced
by ‘radioactive’ chemical elements like radium, and finally Cosmic rays, which arrive from
other parts of the Universe, when stars explode and ‘die’. When we go outside and are
not protected by clouds, tents, buildings and other materials that can absorb radiation,
we get it all! Lucky for us that most of all this radiation is very weak by the time it
reaches us.

Radiation and energy flow

You’ll be wondering what happens to all that radiation which the Universe is so full of.
It’s only just now that we’ve started talking about radiation being absorbed ; but that’s
because we’ve been thinking only of empty space, with no atoms or molecules or matter
of any kind. In order to include things like that in our model of the Universe, we have
to think about the interaction between radiation and matter. That’s a very difficult
business, but usually we can manage quite well with simple approximations. The first
rule is to deal separately with the things that we know about: radiation in empty – or
nearly empty – space (which is what Maxwell’s equations are about); and particles of
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matter, from which atoms and molecules can be built up (as we’ve seen in Book 5); and
finally think about the ways they can interact, using the Physics we know from Book 4.

Radiation is a form of energy. In Chapter 1 we saw how the energy of the electric field
could be ‘divided out’ over all space, with so much per unit volume at any given point:
that amount is the energy density of the electric field. And equation (1.25) gave us
a simple formula for getting this amount: uelec = 1

2
ǫ0E

2. We ‘guessed’ this formula, on
the basis of a simple example – a parallel plate condenser holding electric charge; but it
turns out to be true for any kind of field arising from static charges.

Of course in radiation the field includes a magnetic part B; and both fields vary with
time. But (although we didn’t derive it in Chapter 3) we noted a very similar formula for
the energy density of the magnetic field due to a distribution of steady currents, namely

umag = 1
2
µ̄0B

2, (6.24)

where µ̄0, defined in equation (3.4) of Ch.3, is the reciprocal of the conventional magnetic
permeability µ0 and corresponds more closely to ǫ0 in electrostatics.

But one of the most amazing things to come out of Maxwell’s equations is an expression
for the energy density of electromagnetic radiation, which is universally true and looks
just like the sum of the two terms for static electric and magnetic fields respectively:

u = 1
2
ǫ0E

2 + 1
2
µ̄0B

2. (6.25)

A second result follows if you calculate the rate at which field energy comes out of any
volume throughout which the E and B vectors are defined. You may remember that
this kind of flux follows (remember Gauss’s theorem back in Chapter 1) by taking the
divergence of the scalar quantity u. This is difficult stuff, but the result is very simple.
The energy flow is represented by a vector S, called the Poynting vector, whose normal
component S · n gives the field energy flowing across unit area, per unit time, in the
direction of n. The Poynting vector is defined by

S = µ̄0E × B. (6.26)

Let’s take one example to show how things work out.

Example

For the plane wave indicated in Fig.41, with Ex = E0 cos 2π(kz − ν t), the B and E vectors are perpen-
dicular and their magnitudes are related by B = (1/c)E. Thus

S = (ǫ0c
2)(E2/c) = ǫ0cE

2.

The field is rapidly changing however, while the value just given is instantaneous – with Ex going up
and down as in Fig.40 – and the average value of E2

x over a complete cycle is just half the amplitude E0

squared (check it by doing the integration). Finally, then,

〈S〉av = 1
2ǫ0cE

2
0

100



and this average rate of energy flow is the same at all points in the beam of light.

To end this chapter let’s come back to the question of where does all that radiation go?
It seems it should go on forever, in all directions, once it’s been started off. But, as we
guessed earlier, that’s only because we’ve been thinking of what happens in empty space;
and in empty space there’s nothing to stop it.

Here on Earth there are plenty of material objects that can interact with radiation and
take in some of its energy. It’s not possible to fully understand what happens until you’ve
studied more Physics. but everyday experience tells you a lot about the absorption of
radiation. If you’re in a darkened room and let a beam of sunlight come in through a
small hole you’ll feel the energy flow (the Poynting vector!) when it falls on your hand.
The light that doesn’t get into the room is absorbed by the shutters – and they get hot
from the energy, especially that in the infra-red part of the spectrum, when they take it in.
Where does that energy go? If you look back at Book 5 you’ll remember that heat can be
taken in by atoms and molecules and can be stored as the mechanical energy associated
with vibrational and rotational motions. You also learnt that much of that energy is ‘lost’
forever in the sense that we can never get it back in a form that can do useful work. We
say the energy has been ‘dissipated’ or ‘degraded’. These ideas are fundamental to a large
part of Science; they are built into the principles of Thermodynamics and led us in Book
5 to the concept of entropy; and they show us that all natural changes take place in such
a way that the entropy of the world inreases; they make us think about time and the way
the world is ‘running down’ like a clock!

In real space, even outside the Earth’s atmosphere, there are countless millions of atoms
and molecules that can interact with any radiation that comes their way. So there’s no
real danger of the Universe getting overcrowded with all the radiation we’re producing.
In the next, and last, chapter we’ll start thinking about how electromagnetic radiation
can be produced and used, in giving us the means of communication through radio and
television.
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Chapter 7

Creating electromagnetic waves –
the beginnings of radio

7.1 Electric circuits: more circuit elements

Maxwell’s equations have shown that any disturbance of the electromagnetic fields E

and B will be propagated, even through empty space (containing no electric charges or
currents), with the enormous speed c = 1/

√
ǫ0µ0 in the form of travelling waves. In this

last chapter we’ll be asking how such waves can be set up; and we’ll be thinking mostly of
those in the radio-frequency range (Fig.42) which are produced by using electric circuits.

As you’ve probably guessed, the waves can be created by rapidly moving electric charges
in a special form of conductor called an antenna; often this consists of a vertical metal
bar or tube, held up high in an open space (e.g. on a hill top) with no buildings or other
nearby obstacles that would absorb the radiation coming from it. The antenna must of
course be insulated from everything except the wires that supply it with electric power
by sending charge into it. When charge moves from one end of the antenna to the other
an electric dipole is created and when the charge goes backwards and forwards you get
an oscillating dipole. This creates an electromagnetic field, oscillating with the same
frequency as the dipole, and this is the field that propagates outward with the speed of
light c. The only thing we have to do now is produce the oscillating dipole. In Section
1.3 we studied some simple circuits, containing circuit elements such as resistances
(R), capacities (C) (often called by their older name “condensers”), and inductances (L),
connected by wires: these are ‘passive’ elements, since they only allow current to pass
through them. Other circuit elements, like batteries and generators, may actually produce
currents by setting up a potential difference between their terminals. This discontinuity
of potential (or voltage, V ) arises from the emf which urges charge from one terminal
towards the other: in Chapter 2 the PD was produced by a battery and was constant,
giving a steady direct current (DC); but in Chapter 5 it was produced by a generator
and varied like a sine or cosine function (see Fig.32), giving an alternating current
(AC). We’ll suppose the generator produces an output voltage

V = V0 cos ωt, (7.1)
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which will be applied to various circuits.

The passive circuit elements may behave in different ways, depending on whether the
current passing through them is DC or AC. Now we’re going to deal with oscillating
currents, so we need to know their AC behavior. Let’s take them one at a time, starting
with resistance R, and take the case of ‘slow’ variation (valid for all the frequencies we
need to deal with).

Resistance (R).

When the PD across a resistance is constant, with value V , the relationship between
current and voltage is given by Ohm’s law as V = RI. For alternating currents the same
law holds good, provided V and I are corresponding instantaneous values of voltage and
current.

In the AC-case, however, the instantaneous values of V and I are not very interesting
because they’re always varying between extreme values ±V0 and ±I0, respectively, often
with a very high frequency. What matters, usually, is an average value, taken over a
whole cycle of possible values. For example, the power dissipated as ‘Joule heat’ when a
generator sends current through a resistance is given in (??) as

P = dW/dt = V I = I2R (7.2)

and, on substituting the alternating values of voltage and current, this becomes

P = (V0 cos ωt)(I0 cos ωt) = (V 2
0 /R) cos2 ωt.

The time average of this quantity, indicated as 〈P 〉 is then

〈P 〉 = (V 2
0 /R)〈cos2 ωt〉.

To evaluate the mean value of cos2 ωt we remember the identity cos 2θ = 2 cos2 θ−1 (Read
again Chapter 4 of Book 2.) and write cos2 ωt = 1

2
(cos 2θ + 1). The average of the cosine

term over a whole cycle of values is zero (look at its graph), while that of the constant
term is just 1

2
. Thus,

〈P 〉 =
V 2

0

R

1

2
=

V 2
rms

R
, (Vrms =

V0√
2
) (7.3)

where, instead of the maximum voltage V0, we’ve introduced the root mean square
value Vrms. In working with AC circuits the output voltage from a generator is usually
taken to mean Vrms, so if you say “a 100 volt AC generator” you mean one in which the
voltage oscillates between ±100

√
2 volts i.e. between ±141.4 volts.

Capacity (C).

We’ve already done the work in earlier Sections! In Section 4.2 we introduced the idea
of “displacement current” by studying the charging and discharging of a condenser when
the applied voltage across its plates was changing. When the condenser is connected to
an AC generator, as in Figure 43, there is a displacement current arising from alternately
charging and discharging the condenser – the current changing direction when the voltage
reverses. That doesn’t happen when you use a battery instead of the AC generator: in
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that case the constant PD across the plates produces a current for a very short time, until
the condenser is fully charged; but then it stops when the voltage comes up to that of the
battery.

∼C Figure 43. AC circuit with condenser C
Condenser plates (left) are connected
to an AC generator on the right.

In a DC circuit the steady state is one in which there is no current flow : the condenser
acts like an insulator. Back in Section 2.3 we discovered that on connecting the plates
of a charged condenser with a wire a current did flow, but only for a very short time –
until the charge had disappeared and the condenser was fully discharged. In fact, at time
t after making the connection, the charge left was only

Q = Q0 exp

(

− 1

RC
t

)

, (7.4)

where Q0 is the charge at t = 0, R is the resistance of the connecting wire, and C the
capacity of the condenser. If you really want to discharge the condenser fast you make R
small (e.g. use a short piece of thick copper wire – after disconnecting the battery, or you’ll
discharge that too!); the fraction in front of the t is then very big and the exponential
falls rapidly to zero.

Now, however, we ask what happens if a condenser is connected to a source of alternating
voltage? This will produce an alternating current (AC) as the condenser alternately
charges and discharges. And if the condenser is going to be used in an AC circuit we
need to know how voltage and current will be related. For a simple resistance, V and
I are related by Ohm’s law V = IR and this remains so even when both voltage and
current depend on time – as long as we use their instantaneous values. But this simple
proportionality may not apply to other circuit elements. In the two Examples that follow
we’ll suppose a condenser, or a coil, is connected to an AC generator (see Chapter 5)
which produces a voltage (??), namely V = V0 cos ωt. This goes up and down between V0

and −V0 and has the same form as in Fig.40, of Chapter 6 (second picture). Here V is
plotted on the y-axis and ωt along the x-axis. (Remember that ωt is called the phase of
the variation and V runs through all possible values between ±V0 as the phase goes from
0 to 2π.)

Example 1. Capacity (C) in an AC circuit

If the charge on the positive plate of a condenser is Q, at time t, the current flowing into it will be
I = dQ/dt. On the other hand we know from (??) that the charge is related to the voltage between the
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plates by Q = CV , the constant C being the capacity of the condenser. Thus

I =
dQ

dt
= C

(

dV

dt

)

.

This is a differential equation whose solution leads to both I and V as functions of the independent
variable t. When you first make the connection (“switch on”) I jumps up and down a bit, but things
soon settle down into a steady state – which is what we’re looking for. The steady-state solution is
easy to find: differentiating the generator voltage V = V0 cos ωt gives (look back at Book 3 if you need
to) dV/dt = −ωV0 sinωt and the equation for I is therefore satisfied by

I = −ωV0C sin ωt.

The current going in thus varies with the same angular frequency as the voltage; but I is not directly
proportional to V , as it would be with a simple resistance R in place of the capacity.

To understand this result it’s enough to look back at the properties of the ‘circular’ or ‘trigonometric’
functions you first met in Book 2: at the end of Chapter 4 you found that for any two angles, A and
B, the sine and cosine of their sum could be expressed in terms of the sines and cosines of the separate
angles. For example,

cos(A + B) = cos A cos B − sin A sin B.

You also know that cos π/2 = 0, sin π/2 = 1 and that that’s all you need: think of ωt as the angle A and
take B = π/2. The formula then gives

cos(ωt + π/2) = − sin ωt

and, on putting this result in the current equation we just found, it becomes instead I = ωV0C cos(ωt +

π/2).

The conclusion from Example 1, namely

I = ωV0C cos(ωt + π/2), (7.5)

can thus be put in words as

The current passing through a capacity C, in an AC circuit, has the same
cosine-variation as the voltage across its plates, except for a phase shift in
which ωt is changed to ωt + π/2.

The time variation shows up nicely in a ‘vector diagram’ where V is shown as a vector, of
length V0, rotating around the origin with angular velocity ω, so that at time t it makes
an angle θV = ωt with the x-axis. The current I is then represented by a vector of length
I0, making an angle θI = ωt + π/2 with the x-axis. The actual values of the voltage
and current, at time t, are given as the projections of the two vectors on the x-axis. The
situation is shown in Figure 44:

x-axis

V

I

Figure 44. Vector diagram
for AC circuit with condenser (Fig.43)
Vectors V and I rotate anti-
clockwise with angular frequency ω.
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Note that the phase of the current leads that of the voltage by π/2, so that when the volt-
age reaches its maximum value V0 the current (which is putting charge into the condenser)
has already fallen to zero – the condenser being fully charged at that instant. Also, in
terms of maximum values, I0 = ωCV0, whereas for a circuit containing only a resistance
Ohm’s law gives I0 = V0/R. Thus, (1/ωC) plays the part of an ‘effective resistance’. At
the same time, current and voltage are no longer in phase.

Inductance (L)

Let’s next look at the situation when the condenser of capacity C is replaced by a coil
of inductance L. In this case the emf of the generator will immediately (at t = 0) begin
to force current round the circuit, the coil being a continuous wire connecting the output
terminals. The new circuit is shown in Figure 45 below:

•
•

∼L
Figure 45. AC circuit with inductance L
Coil (on left) is connected to
an AC generator on the right.

In this case we know from Section 5.4 that when the current through a coil is changing
it sets up a “back-emf”, which is proportional to the rate of change, dI/dt, and opposes
the emf V applied to the terminals. The proportionality constant was called the “self-
inductance” of the coil and was denoted by L: we’ll now just use L and write the voltage
change between the terminals of the coil as −L(dI/dt). Since the sum of the voltage
changes in going round any closed circuit is zero (Kirchoff’s first law in Section 2.3) the
circuit diagram in Fig.45 shows that

V − L
dI

dt
= 0. (7.6)

Example 2. Inductance (L) in an AC circuit.

When the generator applies the voltage (??) substitution in (??) leads to the differential
equation

L
dI

dt
= V0 cos ωt,

which can be integated immediately (Chapter 3 of Book 3). For any function y = sin ax,
we know the ‘standard form’ (dy/dx) = a cos ax and this tells us that y =

∫

a cos ax dx.
But the result above then says that

∫

(V0/L) cos ωt dt = I; so on changing the names of
the variables (y → I, x → t) we find I = (V0/Lω) sin ωt. Going ahead just as in Example
1 (do it!), then leads finally to I = (V0/Lω) cos(ωt − π/2).
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The result from Example 2 is

I =
V0

Lω
cos(ωt − π/2) (7.7)

The relationship between the applied AC voltage (??) and the current through the coil,
I, is then clear from Figure 46:

x-axis

V

I

Figure 46. Vector diagram
for AC circuit with inductance (Fig.45)
Vectors V and I rotate anti-
clockwise with angular frequency ω.

Maximum values of current and voltage are now related by I0 = V0/ωL, as if the induc-
tance were an ‘effective resistance’ of magnitude ωL. And again there is a phase difference
of π/2, though this time the current lags behind the voltage by π/2. When the voltage
across the coil has its maximum value, the V-vector – of length V0 – pointing along the
+ve x-axis, the current through it is only just starting to grow (the I-vector pointing
vertically down, with zero projection on the x-axis).

7.2 A cool way of doing it: complex numbers

For more complicated circuits there’ll be more and more equations to set up and solve –
but don’t get into a sweat, thinking about all that trigonometry! There’s an easy way of
avoiding it.

In Figures 44 and 46, the voltage and current were represented as vectors rotating anti-
clockwise around the origin in a vector diagram with angular velocity ω radians per second;
but the actual voltage and current at any instant were measured by the projections of V

and I on the x-axis. This may have reminded you of complex numbers, which you first
met long ago in Books 1 and 2. (Look again at Section 5.2 in Book 1 and at Chapter 4
in Book 2. Just to remind you, the following note will help to get you through.)

A note on complex numbers

A ‘complex’ number is a combination of ‘ordinary’ (real) numbers and a ‘new’ number, called the imag-
inary unit and denoted by i, with the property i2 = −1. When x, y belong to the field of real numbers
the combination x + iy belongs to the field of complex numbers. Usually the letter z is reserved for a
complex number and when z = x + iy x and y are called the “real and imaginary parts” of z. If x and y
are measured along the usual x- and y-axes, then z may be pictured as a vector in an Argand diagram,
with x and y as the horizontal and vertical components. This way of representing a complex number in
a diagram is described as cartesian (as in plane geometry). Figure 47 shows the representation of z as
a vector of length r, with components x (horizontal axis) and y (vertical axis). The length of the vector
is called the modulus of z, denoted by |z|.
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In Chapter 4 of Book 2, another way of describing the complex number was also used: instead of giving
the cartesian components of the vector (x, y) the same object is described by giving its length (r) and its
inclination (θ) to the x-axis. This is described as the polar form of z (corresponding to polar coordinates
in plane geometry). The (r, θ) form is also clear from Fig.47, along with the relations

x = r cos θ, y = r sin θ, |z|2 = x2 + y2.

real axis
x

y

im
ag

in
ar

y
ax

is

θ

(|z|
=

r)
z Figure 47. Argand diagram for z = x + iy

z represented as vector of length |z| = r
Real part (x) is projection on x-axis,
Imaginary part (y), that on vertical axis.

The importance of complex numbers in talking about AC circuits is that they give you a
natural language for describing the behaviour of the voltage and current vectors V and I

(see Figs.44 and 46) – even in the most complicated circuits. To show how things work
out, let’s look again at what we did in the last Section; and then go on to study circuits
that can produce oscillating currents and voltages.

Look again at Fig.47 and suppose the angle θ is set equal to ωt: in that way you can put
in a time factor which will make the complex number z (or rather the vector representing
it) rotate as time passes. But in Fig.44, for example, we repesented an alternating voltage
by a vector V = V0 cos ωt, such that the actual voltage at any instant was the projection
of the vector on the x-axis. Now it’s clear that we could equally well represent the voltage
by a complex number V = V0e

iωt and use its real part to represent the voltage we actually
measure between the terminals of the generator. The nice thing about complex numbers
is that they obey the same basic rules as real numbers (that’s how they were invented!)
and can therefore be handled using the normal rules of mathematical analysis (see for
example Book 3).

Suppose we now take

V = V0e
iωt, I = I0e

iωt, (7.8)

as the (complex) quantities standing for voltages and currents at any points in an AC
circuit, V0 and I0 being independent of time. The circuit elements we’ve studied already
are resistances (R), capacities (C), and inductances (L). Let’s look at them again:

Resistance (R)

When current I passes through a resistance R the voltage (PD) set up between its termi-
nals is V = RI, where R is a simple proportionality constant. This is not changed in any
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way if the current is alternating, provided instantaneous values are used; so if time factors
are included it makes no difference and we can continue to use the complex quantities in
(??). As time passes these rotate with the same factor eiωt and thus always point in the
same direction: V = RI.

Capacity (C)

When the circuit element is a condenser of capacity C the current is related to the
building up of charge on the plates; I = dQ/dt and we know that the charge at time t
is proportional to the voltage, with proportionality constant C, so the basic equation is
I = CdV/dt.

Now we take account of the time variation by using the complex quantities in (??). No
more sines and cosines, we just do the differentiation in the last equation, getting

I = CV0(iω)eiωt = iωCV.

This looks a bit like Ohm’s law, but instead of V = RI we have

V =

(

1

iωC

)

I =

( −i

ωC

)

I

(after muliplying top and bottom by i, with i2 = −1). The factor in parentheses, which
plays the part of some kind of ‘effective resistance’, is called the complex impedance
of the condenser: we denote it by

ZC = −i(1/ωC). (7.9)

But what does a complex impedance mean? Before thinking about that let’s use the
complex representation of current and voltage in (??) to deal with a coil of inductance L.

Inductance (L)

Remember, when the output from an AC generator is applied to a coil, as in the circuit
shown in Fig.45, the changing magnetic flux results in a ‘back emf’ which opposes the
applied voltage V . By Kirchoff’s first law, the sum of the PDs round the closed circuit
must be zero and this gives the basic equation V = L(dI/dt). When voltage and current
are oscillating as, in (??), it follows that

V = L
d

dt
I0e

iωt = LI0(iω)eiωt = i(ωL)I

Thus, V = (iωL) = ZLI, where
ZL = iωL (7.10)

is the complex impedance of an inductance L. Now we can come back to the question of
what it all means.

Interpretation of a complex impedance

Start from the example we’ve just looked at, namely the inductance of a coil. The
complex impedance has the property that, when current I passes, it produces a voltage
V = ZLI = iωLI between the terminals of the coil (Fig.45). The real factor (ωL) simply
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multiplies the modulus of I, leaving its direction unchanged – but what does the factor i
do?

If you multiply any complex number z = x+ iy by i it changes into z′ = ix−y; and if you
draw the vectors representing z and z′ you’ll find (check it!) that z′ looks like z rotated
by +90◦. In the same way, multiplying z by −i rotates it by −90◦. Figure 48 shows the
effect of multiplying the z in Fig.47 by i.

zz′

Figure 48. Effect of muliplying z by i
Any z is rotated anticlockwise by 90◦

without change of modulus (‘length’).

Having dealt with resistance, capacity, and inductance, we’re ready to go ahead and
study the way any kind of circuit will work when it’s connected to a source of AC power
– however these three kinds of circuit elements may be connected together! But before
going on you may want to be sure that using complex numbers leads to the same results
as before – summarized in Figs.44 and 46.

In defining the complex impedance Z we’ve supposed that the voltage across a circuit
element is related to the current passing through it by V = ZI, so that Z will look like
some kind of ‘effective’ resistance, replacing the R in Ohm’s law V = RI. But we started
this Chapter by thinking of V (the generator voltage) as the independent variable, taking
I as the dependent quantity and writing I = constant × V.

Now that we’re using the impedance Z, the current/voltage relationship would be written
as I = Z−1V . The reciprocal of the impedance is called the admittance and sometimes
it’s convenient to put things this way round – as long as you don’t get mixed up! The
following Example shows how you can get back the results in Figs.44 and 46.

Example 3. Using complex impedance – capacity and inductance

To write I in terms of V , so that I = Z−1V , we note that:

for capacity C ZC
−1 = iωC for inductance L ZL

−1 =
−i

ωL
.

The effect of ZC
−1 on a voltage vector V is thus to multiply its length V0 by ωC and then to rotate it

by 90◦, as shown in Fig.44 – giving the current I in (??). The current leads the voltage by 1
2π.

On the other hand, the effect of ZL
−1 on a voltage vector V is to multiply its length V0 by (1/ωL and

then to rotate it by −90◦, as shown in Fig.46 – giving the current I in (??). The current lags behind the
voltage by 1

2π.

In short, representing the current and voltage vectors by complex numbers gives results in perfect agree-

ment with those found in Section 7.1 – only the language is a bit different.

Now we know how to deal with simple circuit elements, like capacity and inductance,
using complex numbers. But suppose we have a box, with two terminals, and something
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inside it that we don’t know about: all we can say is that it’s an impedance which
can be represented by a complex number Z = X + iY . This simply means that when a
voltage V is applied across the terminals a current I will flow and that the voltage-current
relationship will be

V = ZI, (Z = X + iY, X and Y real). (7.11)

In an AC circuit, the current and voltage will contain a complex factor exp iωt and ZI
will thus be a product of two complex numbers, Z usually being expressed in Cartesian
form, but I in the polar form I = I0 exp iωt. Figure 47 shows how such products can be
handled: the simplest way is to put both factors in polar form, for if

z1 = r1 exp iθ1, z2 = r2 exp iθ2, then z1z2 = r1r2 exp i(θ1 + θ2). (7.12)

In other words, to multiply two complex numbers you must multiply their moduli (or
‘lengths’), r1 = |z1| and r2 = |z2|, and then give the result a ‘phase factor’ exp iθ formed
by adding their phases (θ = θ1 + θ2).

To get the moduli and the phases from the Cartesian forms is easy if you look at Fig.47
and remember your geometry:

r2 = |z|2 = x2 + y2, tan θ = y/x. (7.13)

In later Sections there will be Examples to show how these methods can be used.

7.3 Connecting circuit elements together

In Section 2.3 we first met some simple circuits in which various circuit elements were
connected together by ideal wires, in such a way that on connnecting the ends of the
circuit to a DC voltage source (such as a battery) current could flow through all the
elements. In the Examples we studied, the only ‘passive’ elements were resistances and
condensers; and the currents were usually taken to be steady – not changing with time.
A complicated network could be set up by connecting many elements in many diferent
ways, but two kinds of connection were of special importance. For instance, resistances
R1, R2, R3, ...) could be connected in series, where the same current I passes through
each one in turn; or in parallel, where the different elements are ‘side-by-side’ but with
the same voltage drop V between their ends. The two cases are indicated in the Figure
below:

• R1 R2 R3 • I

(a) Resistances in series

•
V R1 R2 R3

•
(b) Resistances in parallel

Figure 49

The results we found for the two cases (a) and (b) were that
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(a) resistances connected in series are equivalent to a single resistance

R = R1 + R2 + R3 + ... ;

(b) resistances connected in parallel are equivalent to a single one with R given by

(1/R) = (1/R1) + (1/R2) + (1/R3) + ... .

What we want to show next is that, on replacing the DC power supply (usually a battery)
by an AC generator and the resistances by impedances Z1, Z2, Z3, ... of any kind, Kirchoff’s
laws still apply and allow us to calculate the currents and voltages throughout the network.
The networks illustrating series and parallel connections will then be as in the Figure
below. (Note that the “impedances” we’re talking about are usually complex, so we won’t
always say so.)

• Z1 Z2 Z3 • I

(a) Impedances in series

•
V Z1 Z2 Z3

•
(b) Impedances in parallel

Figure 50

In (a) the circuit elements are separated by nodes, where they are connected together, and
the current going into any node must be the same as that going out (otherwise charge
at that point would build up continually without limit); that’s often called Kirchoff’s
second law. The same current I must therefore go through every circuit element, giving
V1 = Z1I, V2 = Z2I, and so on. And the total voltage drop in following the current round
the circuit must equal the voltage V applied across the terminals. That means

V = V1 + V2 + ... = Z1I + Z2I + ... = (Z1 + Z2 + ...)I.

But the impedance (Z) of the whole circuit is defined so as to make ZI = V . It follows
that

Z = Z1 + Z2 + ... (impedances in series) (7.14)

– the impedances must be added together, just as if they were simple resistances, but now
they are complex numbers!

In (b), every circuit element feels the same applied voltage V ; but the current passing
through it is related to V by V = Z1I1, for the first element, by V = Z2I2 for the second,
and so on. The total current going into the circuit at the top node in Fig.50(b) (and
coming out at the bottom) is then

I = I1 + I2 + ... =
V

Z1

+
V

Z2

+ ... = V

(

1

Z1

+
1

Z2

+ ...

)

.
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But the impedance Z of the whole circuit is defined by V = IZ; so I on the left-hand
side of the sum can be replaced by I = V/Z. The last equation then tells us (cancelling
the common factor V ) that

1

Z
=

(

1

Z1

+
1

Z2

+ ...

)

(impedances in parallel) (7.15)

– again just as if the impedances were simple resistances.

As a first example of connecting impedances let’s think about an AC generator, forcing
current I through a resistance (R), a condenser (of capacity C) and a coil (of inductance
L), all connected in series. The whole circuit will be as shown below (Figure 51).

∼

R

C

• •
L

Figure 51. AC circuit (R-C-L)
(AC generator on left)

The impedances are all in series; so they will be equivalent to a single impedance Z =
ZR + ZC + ZL, with ZR = R (the usual real resistance), ZC = −i/ωC by (??) and
ZL = iωL by (??). The impedance of the whole circuit is thus

Z = R + i

(

ωL − 1

ωC

)

, (7.16)

which has the form Z = X + iY , where X and Y are the real quantities

X = R, Y =

(

ωL − 1

ωC

)

.

And now we have everything we need to know!

The applied voltage from the generator is V = ZI and all quantities are complex; but
remember that I is of the form I0e

iθ and only the real part of I has any physical meaning,
the phase factor just making I go round and round in our vector diagram, as its real part
varies between ±I0.

Now what does Z do when it multiplies I? The answer is given in (??): you multiply
the modulus of I, namely |I| = I0, by the modulus of Z; and you change the phase angle
θ = ωt, contained in I, to θ + φ where φ is the phase of Z.

When Z has the form given above in (??), as X + iY , it’s easy to find both |Z| and φ
(look at Fig.47 if you need reminding how): here |Z|2 = X2 + Y 2 (Pythagoras!) and
tan φ = Y/X. Thus

|Z|2 = R2 +

(

ωL − 1

ωC

)2

, (7.17)

tan φ =
1

R

(

ωL − 1

ωC

)

. (7.18)
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It’s easy to visualize our conclusions by drawing a vector diagram to show the relationship
V = ZI.

real axis

XI

Y I

im
ag

in
ar

y
ax

is

φ

V
=

ZI

Figure 52. Vector diagram for V = ZI
V is for R-L-C circuit (Fig. 51)
V = ZI = voltage vector
XI = projection on real-axis,
Y I = that on vertical axis.

In the Figure, I points along the x-axis, corresponding to t = 0 and phase θ = ωt also
zero; its modulus is the maximum value I0 of the current as time passes and the vectors
rotate. The vector V leads the current vector I by the phase angle φ, whose tangent is
given in (??); and the magnitude of the voltage vector is |Z|I0 where |Z| is given in (??);
finally RI represents the voltage drop across the resistance. Note that the exact form of
the vector diagram depends on the actual values of R, C and L: Fig.52 corresponds to
the case ωL > (1/ωC), which makes the phase angle φ positive. If L is reduced enough
the sign of the phase may be changed and the voltage vector will then lag behind the
current vector.

Even this fairly simple circuit, with only three elements connected in series, is enough to
show the main principles on which all forms of radio communication depend. More of
that in the next Section!

7.4 Oscillator circuits

The circuit indicated in Fig.51 describes an electric oscillator with remarkable properties.
The current from the generator oscillates with angular frequency ω, going through a
complete cycle of values when ωt increases by 2π i.e. when t increases by 2π/ω. We
remember that T = 2π/ω is the period of the oscillation and ν = (1/T ) = (ω/2π) is its
frequency, the number of oscillations per unit time. The generator ‘drives’ the circuit
at this frequency.

The first thing to note is that the oscillator has a very special angular frequency ω = ω0

which makes
(

ωL − 1

ωC

)

vanish. This is called the natural frequency of the oscillator and has nothing to do
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with the frequency of the alternating current that is driving it. Clearly

ω0 =

√

(

1

LC

)

. (7.19)

(The frequency, as usually defined in cycles per second (i.e. in herz), is then ν0 = ω0/2π.)

If the AC generator supplies power at this frequency, (??) shows that the circuit behaves
like a pure resistance R – as if the coil and condenser were not there! The impedance |Z|
has its smallest possible value (R) and the phase difference φ between current and voltage
is zero – the I and V vectors always point in the same direction and rotate at the same
speed.

The next Example shows how much power is used in keeping things going.

Example 4. Power used in driving an oscillator.

According to Fig.52 the voltage vector, in general, leads the current by the angle φ defined in (??).
Taking the instantaneous value of the current as the real part of I0e

iωt, namely I0 cos ωt, that of the
voltage will be V0e

i(ωt+φ), namely V0 cos(ωt + φ).

The rate at which work is being done, at the instant t, will therefore be dW/dt = V I = V0 cos(ωt + φ)×
I0 cos ωt. But this quantity is oscillating with frequency ω. What we need is the average value, taken
over a whole period, and this rate of working will be the power consumed:

P = 〈dW/dt〉 = V0I0〈cos(ωt + φ) cos ωt〉.

To get the average value (indicated as usual by the ‘angle brackets’) we have to integrate as time goes
from 0 to T and then divide by the whole time interval T . (See if you can do this for yourself, using Book
3 if you need to and remembering the ‘sum-rule’ for cosA + B – as used in Example 1.) You should find
the simple result

P = 1
2V0I0 cos φ

and you can evaluate this for any values of resistance, capacitance and inductance. end small

We said that the oscillator had some remarkable properties: the first one comes straight
out of Example 4, which gave the result

Power consumed by a simple oscillator = 1
2
V0I0 cos φ. (7.20)

Here V0 and I0 are the amplitudes of the input voltage and current, while φ is their phase
difference which follows from

tan φ =
1

R

(

ωL − 1

ωC

)

.

It’s now clear that if the oscillator is being driven at its natural frequency ω0, defined
in (??), the generator has to supply very little power. As the generator frequency ω
approaches ω0, the voltage and currnt ‘come into phases’ (φ → 0) and the impedance Z
in (??) goes to its minimum value R. This is called the case of resonatnce – when the
frequency of the applied voltage exactly matches the natural frequency of the circuit.
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In fact R is often just the resistance of the wire connecting it to the circuit elements L and
C – and for an ‘ideal’ wire this would be zero! Once the circuit was oscillating it would
go on by itself forever! If the generator was still applying a voltage of amplitude V0 the
current (and the power absorbed) would ‘blow up’ as ω → ω0 – just as if the generator
were short-circuited by connecting its terminals directly. Nobody would want to destroy
an expensive generator in that way!

On the other hand (for other values of ω), a large inductance is often used to control the
currenttaken from a power supply, since it acts by providing a back-emf to oppose the
applied voltage; unlike an ordinary resistance, which simply wastes energy by producing
Joule heat.

Next we’ll do a simple experiment (in our minds) by taking the generator away at the
moment when the condenser is fully charged, with voltage V0 across its plates, and allowing
it to discharge through the coil. First we put R = 0, for the case of ‘ideal’ wires:

Example 5. Discharge of a condenser through a coil.

We now think of the circuit in Figure 51, but without the generator (just replacing it by a connecting
wire) and suppose the wires have very small resistance, so we can put R = 0. Remember that VC across
the condenser is related to the current I by I = C(dVC/dt), while VL between the teminals of the coil
depends on its inductance L and is related to I by VL = L(dI/dt).

With neglect of resistance R and with no generator voltage (V = 0), Kirchoff’s first law for the circuit
becomes VC + VL = 0. If this must be zero, at all times, then its rate of change must also be zero:

dVC

dt
+

dVL

dt
= 0.

But, from above, the first term is I/C, while the second term will be

dVL

dt
= L

d2I

dt2
,

where the current I is now differentiated twice with respect to the time t. On setting the sum of the two
terms equal to zero, we get a differential equation which must be satisfied by I:

I

C
+ L

d2I

dt2
= 0.

Perhaps you remember meeting this equation before, in Chapter 6 of Book 3. There, in Example 2, the

dependent variable was called y and denoted the displacement of a swinging weight from it equilibrium

position. The equation describing the swinging ‘pendulum’ was written Ly = D2y − ω2y = 0, where

L = D2 − ω2 is a linear operator and D2 is short for “differentiate twice with respect to time”. The

pendulum is in fact a mechanical oscillator with natural frequency ω/2π. If you replace the displacement

y by the current I, and the positive constant ω2 by 1/LC, what do you get? You’ll find exactly the

differential equation for the electrical oscillator, as given above. Note that ω has the value ω0 found in

(??): it is indeed the frequency with which the circuit oscillates when left to itself, with no generator

driving it (provided of course the resistance of the connecting wires is negligible).

The last Example has shown us that when a charged condenser, of capacity C, is dis-
charged by connecting its plates by a coil of inductance L, the current doesn’t go smoothly

116



down to zero. Instead I satisfies the differential equation

I

C
+ L

d2I

dt2
= 0 (7.21)

which has an oscillating solution I ∝ exp±iω0t, where ω0 is the natural frequency given
in (??). For a circuit with ideal wires (R = 0) the oscillation would continue forever.
The next Example will show what happens when R 6= 0. In that case Kirchoff’s first law
becomes VC + VL + VR = 0, where the extra term (voltage drop across the resistance) is
simply IR. The rate of change of the sum must also be zero and this gives, instead of
(??) the new differential equation

I

C
+ L

d2I

dt2
+ R

dI

dt
= 0 (7.22)

Let’s see what difference the new term makes:

Example 6. Discharge through a coil, resistance included.

The differential equation we must solve is now (rearranging the terms to make it look nice)

L
d2I

dt2
+ R

dI

dt
+

I

C
= 0.

A standard way of solving an equation of this type (you don’t need to go into the details) is to make a
‘trial’, choosing something you think might fit, containing one or more parameters that you can adjust.
The ‘something’ must be easy to differentiate, so you can try it out easily. In this case a good ‘trial
function’ might be I = Aeωt, which is pretty general if the parameter ω is allowed to take complex
values. Substituting this function in the above equation and doing the differentiations (do them!) you’ll
find

Lω2 I + Rω I + (1/C) I = 0.

The thing on the left is quadratic in the unknown ω and we know from Book 1 Section 5.3 that it will
only be zero for two possible values. called the “roots” of the equation. If you look back at Book 1 you’ll
find that the standard quadratic equation is usually written

ax2 + bx + c = 0, with roots x =
−b ±

√
b2 − 4ac

2a
.

So we must use ω instead of x as the quantity we’re looking for and put a = L, b = R, c = 1/C as the
known constants. When you do that you’ll find the two solutions (taking the upper or lower signs in the
±)

ω =
−R ±

√

R2 − 4L/C

2L
.

The result looks nicer if you do a bit of algebra, introducing

ω2
0 =

1

LC
, k2 =

R2

4L2
,

where ω0 is the natural frequency of the circuit with R = 0. The two solutions then become (check it all
carefully!)

ω = −k ±
√

k2 − ω2
0 = −k ∓ i

√

ω2
0 − k2.
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The sum of the two is also a solution and gives finally (you’ll need to use exp±iθ = cos θ ± i sin θ)

I = I0 e−kt cos ω′
0t.

The beautifully simple result from Example 6 shows that when the small resistance of
the connecting wires is included (i) the current still oscillates in time (the factor cos ω′

0t),
though the frequency is slightly less than the natural frequency ω0, and (ii) the amplitude
I0 is replaced by I0

′ = I0e
−kt and therefore goes down slowly with time. In fact

I = I0 e−kt cos ω′
0t, (7.23)

where k = R/2L and ω′
0
2 = ω0

2 − k2. The behaviour of the current, before it dies out, is
indicated in the Figure below.

I

time

Figure 53. Decaying pulse from oscillator.
– schematic representation of

I = I0 e−kt cos ω′
0t.

7.5 Transmitting and receiving the waves

We started Chapter 7 by thinking about what is possible today, when radio signals can be
sent out from transmitters and ‘picked up’ by observers in satellites, using receivers.
But a hundred years ago all this would have seemed unbelievable: this branch of Applied
Science, Radio Communication, was just at its beginning and it was a great achievement
to send signals even a few hundred metres. To connect all this with Maxwell’s equations
has been part of a great adventure, and we’re only just at the beginning. So let’s go back
100 years and look at the first steps.

At the beginning of the chapter we were wanting to produce oscillating charges in a con-
ductor called an antenna, in the hope that the resulting oscillating dipole would produce
an oscillating electromagnetic field. We know from Maxwell’s equations that it should
and that the waves set up in this way would travel outwards from the dipole with the
speed of light. And we guessed that we’d need a source of high voltage, oscillating
at high frequency. Now, having learnt how to produce electric oscillations in a circuit
containing a capacity (C) and an inductance (L), at any frequency we wish, we must fill
in the details. Why, for example, will we need high voltages? Because the charges ±Q at
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the ends of an antenna must be moved backwards and forwards at high frequency by an
emf (measured in volts); that needs a lot of work and the bigger the oscillating voltage
the faster it can be done.

The theory of radiation from an oscillating dipole was worked out by Hertz about 120
years ago, as an early application of Maxwell’s equations. Hertz showed that wavefronts
(Chapter 6) would move outwards from the dipole in all directions except along the axis
of the dipole; so by keeping the dipole vertical waves would go out in all directions along
the surface of the earth. The wavelength would depend on the length of the dipole and
in the early days of radio it was expected that the longer the wavelength the further it
would reach. Long waves were best produced by using very long vertical antennas, or
“aerials”, in the form of ‘masts’ (“antenna” is in fact the Greek word for a ship’s mast);
but times have changed and nowadays tall masts are not often seen.

Here we’ll look at the earliest examples of radio transmitters and receivers.

Early radio transmitters

The earliest attempts to send out signals using electromagnetic waves (before the days of
power stations and AC generators) depended on the use of batteries to produce the high
voltages needed. We know that high voltages can be produced easily, using the principle
of the transformer (see Section 5.4), but only from an alternating current (AC) source.
If you have only a battery, which is a direct current (DC) source, then you have to make
the input current vary rapidly – because the transformer action depends on the rate of
change of the magnetic flux produced by the current in the primary coil. In the induction
coil this rapid variation is produced by an interruptor which ‘makes and breaks’ the
connection to the primary coil; at one moment the current is flowing in, but at the next
moment the connection is broken and the input current is zero. The next Figure shows
how this can be done.

spark
gap

Figure 54. Induction coil (schematic)
Primary coil (dark grey) wound over core
Secondary (light grey) surrounds both.
Input terminals and wires at bottom,
connecting path shown in black (see text).

Current is supplied to the primary coil from the input terminals, passing round the circuit
shown in black. On the right of Fig.54 you see a pillar, with a pointed screw going through
it and pressing on the vertical spring of the interruptor (or ‘vibrator’). From there the
current enters the primary coil, which is a solonoid, and produces magnetic flux along
its axis. The core (a bundle of iron wires) then becomes a powerful electromagnet and
attracts the iron disk at the top of the vibrator spring, pulling it towards the core. That
breaks the circuit at the point where the screw touches the spring; the current falls to
zero, switching off the electomagnet, and the spring goes back to the upright position; as

119



soon as it touches the screw contact is restored, the magnet is switched on, and everything
begins again. At the same time a bright blue spark jumps across the ‘spark gap’ shown
at the top of Fig.54. Where does it come from?

Remember the transformer you studied in Section 5.4, which changed the input voltage
V1 applied to a primary coil into an output voltage V2 of the emf induced in the secondary
coil? The ratio of the two voltages came out to be the same as the ratio of the numbers
of turns in the two coils: V2 = (N2/N1)V1. That result didn’t depend on how the primary
current was changing or on whether the voltage was being stepped up or stepped down.
So if we now have 10,000 times as many turns in the secondary coil as in the primary, and
jiggle the input voltage up and down in any way we please, a 6 V car battery will give us
a 60,000 V spark! We don’t need a power station, with its big AC generators, if we only
need to send radio signals – which is just as well, because the earliest transmitters were
used for signalling between ships at sea and batteries are much more portable then power
stations!

Now we know how to get the high voltages we can return to the problem of making the
high frequency oscillations and launching them into space from some kind of antenna.
The simplest form of transmitter, in use about 100 years ago, consisted of an induction
coil to supply the power and a ‘tuned’ oscillator, whose frequency could be changed by
adjusting the values of the capacity C and the inductance L in a circuit of the kind shown
in Fig.51. The oscillating high voltage was applied to an antenna, usually in the form of a
vertical ‘aerial’ with the lower end embedded in the earth (i.e. ‘earthed’ – fixing the zero
of potential). A typical transmitter circuit of the day would be as indicated in Figure 55.

Aerial
•

•

Earth

Induction
coil

spark
gap

C L

switch

Figure 55. Circuit diagram for a spark-gap transmitter

How does it work? The induction coil is in the grey box, with input from the battery
(on the left) through a switch. When it’s switched on it produces a high voltage across
the output terminals. Between them is a condenser which charges up until the PD across
the spark-gap is so big that a spark strikes (like a flash of lightening) between the two
metal balls. The spark completes the circuit connecting the condenser and the coil; and
this starts a high-voltage oscillation exactly as in Example 6 of Section 7.4 (the small
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resistance of the wires is not shown – but it’s always there). The result is a ‘pulse’ in
which current and voltage vary rapidly; and this is followed by another pulse as soon as
the condenser has had time to re-charge and discharge again through the coil. This series
of voltage oscillations across the coil feeds the Aerial and Earth sides of the dipole, shown
on the right with the usual symbols. The train of voltage pulses obtained in this way is
indicated in Figure 56.

V

time

Figure 56. Series of pulses – schematic representation of
antenna voltage V = V0 e−kt cos ω′

0t.

The ‘switch’ indicated in Fig.55 is really a Morse key, which lets the operator send out
coded messages by switching the induction coil on and off. (Morse was the name of the
inventor.) When the coil is switched on it charges the condenser, which discharges and
produces the voltage oscillations that go to the antenna. When the pulse has decayed it
is followed by another – and so on, for as long as the switch is closed. Fig.56 shows three
pulses in a shaded box, extending over a short time; then an interval when the switch is
opened and the voltage falls to zero; and then another boxful of pulses when the switch
is closed. In this way signals can be sent out from the antenna. The next thing to do is
to find a way of receiving them – many miles away.

Early radio receivers

The signals that come from a transmitter arrive at the point where you want to receive
them in the form of pulses of radio waves. If you look back at Fig.42 you’ll see that
such waves have oscillation frequencies going from about 105 Hz to 108 Hz. On the other
hand, the frequencies of sound waves are very much lower, being of the order of only a
few hundred cycles per second (102 Hz). So there are two problems in changing the radio
waves into something you can hear : you have to detect the incoming signal, using it to
set up electrical oscillations in the receiver, at the same frequency; and then you have to
use the electric circuit to drive some mechanical device at a frequency perhaps a thousand
times lower.

The high frequency oscillations in each pulse of radiation (see Fig.56) are those of the
carrier wave, but the amplitude of the wave may vary – as it does in Fig.53 where it
falls slowly to zero. In that case the amplitude is said to be modulated and the modulation
can be as slow as we please. This tells us how we can change the frequency. Instead of
looking at the frequency of the oscillations within each decaying pulse of the carrier wave
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(Fig.53) we could use the frequency with which ‘boxfuls’ of pulses come out from the
oscillator – which could be thousands of times smaller. Or we could use the frequency
with which any modulated bits of the carrier wave come out. If we want to transmit
the low-frequency sounds of speach all we have to do is impress on the carrier wave the
pattern of the noises we make. That can be done by speaking into a microphone, which
changes mechanical vibrations into electrical oscillations.

Let’s look first at the circuit diagram for the simplest kind of radio receiver, the crystal
set – so called because it used the special property of a crystal called galena. The
diagram is shown in Figure 57, starting with the antenna on the left which picks up the
waves from the transmitter.

Aerial

•
•

•
•

L C

Crystal
detector

C0 head
phones

Earth

Figure 57. Circuit diagram for an early form of radio receiver, the ‘crystal set’.

What happens in this circuit? The electromagnetic waves induce tiny electric currents
in the aerial wire. These pass through a coil, on their way down to Earth, and this is
‘inductively coupled’ to a second coil (you’ll remember about ‘mutual inductance from
Chapter 5) and this is part of the basic oscillator circuit which also contains aa condenser
(marked C). This is a special kind of condenser, whose capacity can be varied (that’s
indicated in the diagram by putting an ‘arrow’ through it). You learnt about simple
condensers in Section 1.5 of Chapter 1; those with variable capacity usually work by
changing the overlap area of their plates when you turn a knob. That means you can
change the resonance frequency of the circuit until it matches the frequency of the
signal coming from the aerial. When you’ve done that, the tiny oscillating current coming
in sets up a much bigger one in the circuit – big enough to measure!

That brings us to the second part of the problem: we’ve ‘trapped’ a high-frequency carrier
wave coming from the aerial, but we still have to make it do something useful – like making
a noise that would correspond to the lower-frequency signals impressed on the carrier wave
at the transmitter. And that’s where the crystal detector comes in! On the right of
Fig.57 you’ll see the symbol for a pair of headphones, one for each ear with a headband to
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hold them in place. Each headphone has a very thin soft-iron disk, called a “diaphragm”,
which can vibrate like the membrane of a drum when you touch it with a drum-stick.
Underneath the diaphragm, but very close to it, is an electromagnet in the form of a
letter ‘U’ with a current-carrying coil round one of the ‘legs’, as shown in Fig.58 below.

Figure 58.
Section through a headphone
– thin iron diaphragm attracted by magnet
– energized by varying current in coil.
(connecting wires not shown.)

The magnetic field goes up and down as the electric current varies. It attracts the di-
aphragm, in proportion to the field strength, and produces a mechanical vibration –
making sound. That can only happen if the variation is slow (low frequency) and always
pulls the diaphragm in the same direction. (Remember the problem we met in Section
5.3 of making an AC generator run as a motor – it just wouldn’t go when the impulse
was rapidly changing direction.)

Here, the current in the oscillator circuit is modulated – at a low frequency compared with
that of the carrier wave (see Fig.56). But it still [ alternates, changing sign within every
square pulse. To make sure we don’t have the ‘AC-motor’ problem we have to rectify
the current so it won’t change direction. That is done by the crystal detector in Fig.57,
which only allows current to flow in the direction of the ‘point’. The galena crystal, with
a pointed bronze wire pressing on it, is in fact an ‘ancester’ of the transistor, the device
used nowadays in nearly all electronic gadgets like radios and computers. The incoming
signal shows a voltage alternation like that in Fig.56, but when the voltage wants to send
current in the ‘wrong’ direction it just won’t go! The result is that only the positive
part of the modulated carrier wave in Fig.56 gets through to the headphones – on the
right in Fig.57 – and that’s just what is needed to produce the low frequency mechanical
vibrations of sound.

There’s only one small thing left that may still seem mysterious: what is the second
condenser (C0) doing there? connected across the input to the headphones in Fig.57.
You’ll find the answer if you go back to Section 7.1 where you learnt about complex
impedance. Remember this is a kind of ‘effective’ resistance. In Example 3 you found
that the current passing through a condenser was given by I = V/ZC , where V is the
voltage across its terminals, and that ZC = −i/ωC. Thus, I = iωC × V .

What does it mean? The magnitude of the voltage that drives the headphones, making
sound, is multiplied by C0ω to give you the magnitude of the current going through the
condenser (the factor i only telling you that V and I are 90◦ out of phase). So low-
frequency voltage variation (ω → 0) sends very little current through C0: it all goes to
the headphones – as it should. But any high-frequency variation (that may have slipped
through the crystal detector) is ‘short-circuited’ through the impedance, C0ω being large.
The condenser C0 simply acts as a filter, taking out any unwanted (high-frequency)
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components that may be left in the incoming signal. Without that condenser the receiver
will still work, but it will give very poor, noisy reception.
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Looking back –

When you started this book you knew only about the Physics you learnt in Book 4, mainly
‘Classical Mechanics’, which is concerned with the principles governing the motion of
objects that possess mass. Now you know that was only a small part of Physics. Objects
may possess electric charge, as well as mass, and when they do they behave differently:
the principles and ‘laws’ need to be extended.

• In Chapter 1 you learnt about charges and the fields they produce when they
are at rest (relative to the ‘observer’). All this is part of Electrostatics You
can visualize the field using pictures like the one on the front cover of this book,
which show ‘lines of force’ indicating the direction of the force acting on a unit
charge at any point in space. You learnt how to calculate the field, using a single
principle – ‘Gauss’s law’; and how to build machines for making and storing static
electricity. Finally, you found two mathematical ways of expressing Gauss’s law
(a bit more mathematics that you’ll need again and again).

• When charges are in motion, in a conducting material, you had to learn (in
Chapter 2) about the currents they set up – the flux of charge and how to describe
it. This led you to the study of electric circuits in which the currents flow through
metal wires. You learnt to distinguish between current (I) and voltage (V ), which
drives it along the circuit. In electrostatics, the voltage (which is a difference of
electric potential – a ‘PD’) may be very high, while the current is usually very
small. On the other hand, in the study of ‘current electricity’, it’s the other way
round: low voltage moving a lot of charge and giving a high current. You learnt
about batteries, which can produce heavy currents – from chemical reactions – but
at a low voltage. This made you thinkg about electric power and how to define
it.

• Chapter 3 started (again!) from a bit of history – the experimental discovery of
magnetism and the invention of the compass. You found that the magnetic field
was very similar to the electric field – except that there was nothing corresponding
to a ‘magnetic charge’. Instead there were magnetic ‘poles’, which always came
in pairs – a ‘North pole’, where a line of force started, and a ‘South pole’, where it
ended. The magnetic field was generated by a current – in other words a moving
electric charge, not from a static charge.

Instead of Gauss’s law, relating the flux of electric field E out of any closed surface to
the total charge enclosed by the surface, you learnt that the circulation of magnetic
field vector B around any closed circuit is proportional to the total current passing
through it. (This is a difficult idea to grasp; but if you’ve studied the Examples of
fields produced by current-carrying wires you’ll begin to understand it.) The rest
of Chapter 3 got you ready for the next big jump!

• In Chapter 4, the most mathematical in the whole of Book 10, you really reached
the heart of electromagnetic theory. The four equations formulated by Maxwell
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about 130 years ago ‘pull together’ into just a few lines all the concepts and principles
built up so far. You’ll have to look back at them (and the way they were set up!)
many times before you can say you completely understand them. But they give
you a solid ‘platform’ on which to build everything else you’ll need in applying the
principles. The rest of the book contains only applications – no really new ideas!

• The first application is enormously important in Applied Science, because it
showed how just one of Maxwell’s equations could be used in designing and building
generators big enough to supply all the electric power needed in our cities; and
the electric motors for turning that power back into mechanical power, for driving
machinery in homes and factories. You found there were two main types of output
from a generator, direct current (DC), always flowing in the same direction; and
alternating curent (AC), alternately changing direction. In studying the trans-
mission of power over large distances you found that AC had great advantages: by
using very high voltages less power was wasted as heat; and the voltage could easily
be changed (stepped up or down) in transformers (again depending on Maxwell’s
equations!)

• A second, and equally important, application is to the transmission of energy
through space – without wires! Chapter 6 started by formulating the general ideas
of wave motion, introducing frequency, wavelength, amplitude, and so on.
You spent a lot of time on types of wave equation, whose solutions gave various
kinds of wave propagation. Then finally you came to electromagnetic waves,
which go through empty space, not needing any kind of ‘medium’ – like air or water
– to carry them. They arise from disturbance of the field at any point and you
were able to see how they followed from Maxwell’s equations – with a predicted
velocity c, the velocity of light, which could be determined in the laboratory. You
were able to follow up with a quick ‘tour’ of the whole spectrum, extending from
long-wavelength radiation down to wavelengths of less than ‘atomic’ dimensions;
verifying that all types of radiation carried energy.

• As a final application you studied the first successful attempts at radio com-
munication. You had to prepare for this with a bit more work on AC circuits,
containing circuit elements such as condensers and coils – whose behaviour de-
pends on the frequency of the incoming or outgoing waves. It was probably a
surprise that the complex numbers you learnt about years ago in Book 1 now
came back into the picture! But that’s always happening in Science –you can’t keep
things in separate boxes, the most unexpected things often turn out to be closely
related. In this case the capacities and inductances of condensers and coils turned
out to be similar to resistances (defined first for DC circuits), except that for AC
circuits they have complex values! – they are complex impedances.

Now, after all that hard work, you’ve come close to the finishing line! You’ve
looked at the circuit diagrams for a radio transmitter and a radio receiver and
discovered you can work your way round each circuit and see just how it works!
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Before closing this book and putting it aside for a while, you may be worried that there
are many questions that we haven’t even asked. We’ve nearly always been talking about
electric and magnetic fields in free space – in a perfect vacuum with no particles in it
except the ones that we’re studying. But the space we live in is not like that: usually it’s
filled with air or water or other kinds of material; and in some cases we’ve thought about
materials such as glass and iron, noting only that Maxwell’s equations and everything else
we’ve done still seem to work, provided the fundamental constants ǫ0 and µ0 are replaced
by ǫ and µ for whatever material we’re dealing with. How can that be true?

The fact is that, as far as we can detect, the free-space equations are always true (that’s
why we studied them in such detail); but as soon as we start filling space with real
materials we have to accept that materials are made up from atoms and molecules, and
that they in turn are made up from electrons and atomic nuclei – and so it goes on!

This brings us to another big and growing area of Science – the Science of Materials,
which will need other books in the Series. And before we can enter that field, we’ll need to
study a whole new area of fundamental Physics –quantum physics. We’ll start on this in
Book 11, where we begin to look at matter on an atomic scale and find that the ‘classical
physics’ developed so far must be extended. Nothing you’ve learnt so far, however, has
to be thrown away: it still holds good as far as it goes and forms the starting point for
going on into new areas. And in these new areas we’ll have to create new ‘models’ to
represent the atoms and molecules that ‘space’ is full of: quantum physics will give us
the tools for understanding how such systems respond to the fields that we’ve studied in
Book 10. Only then will it be possible to fully understand the properties of matter in its
many forms.

Before closing this book and putting it aside for a while, you may be worried that there
are many questions that we haven’t even asked. We’ve nearly always been talking about
electric and magnetic fields in free space – in a perfect vacuum with no particles in it
except the ones that we’re studying. But the space we live in is not like that: usually it’s
filled with air or water or other kinds of material; and in some cases we’ve thought about
materials such as glass and iron, noting only that Maxwell’s equations and everything else
we’ve done still seem to work, provided the fundamental constants ǫ0 and µ0 are replaced
by ǫ and µ for whatever material we’re dealing with. How can that be true?

The fact is that, as far as we can detect, the free-space equations are always true (that’s
why we studied them in such detail); but as soon as we start filling space with real
materials we have to accept that materials are made up from atoms and molecules, and
that they in turn are made up from electrons and atomic nuclei – and so it goes on!

This brings us to another big and growing area of Science – the Science of Materials,
which will need other books in the Series. And before we can enter that field, we’ll need to
study a whole new area of fundamental Physics –quantum physics. We’ll start on this in
Book 11, where we begin to look at matter on an atomic scale and find that the ‘classical
physics’ developed so far must be extended. Nothing you’ve learnt so far, however, has
to be thrown away: it still holds good as far as it goes and forms the starting point for
going on into new areas. And in these new areas we’ll have to create new ‘models’ to
represent the atoms and molecules that ‘space’ is full of: quantum physics will give us
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the tools for understanding how such systems respond to the fields that we’ve studied in
Book 10. Only then will it be possible to fully understand the properties of matter in its
many forms.
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Index

Absorption (of energy), 101
Accumulator, 40
Ampère (unit, A),
Ampère’s law, 48, 104, 136
Angstrom (unit, Å), 2, 83
Angular velocity, 68, 230
Anode, 38
Antenna 102
Aqueous solution, 38
Argand diagram, 108
Armature, 71
Atom, 1
Atomic mass unit, 1
Atomic number, 1
Avogadro’s number, 39

Battery, 34, 73, 81
Biot-Savart law, 49-51
Boundary conditions, 93

Calculus notation, 4
Calorie, 43
Capacity, 21
Cathode, 38
Charge (electric),

positive and negative, 1
Charge density,

line, 15
surface, 14
volume, 25

Chemical element, 2
Chemical reaction, 38, 83
Circuits, 32, 102
Circuit elements, 32, 34, 102

active and passive, 224
Circulation (of vector), 47

using the ‘curl’, 58-60
of B-field, 47-48
of E-field, 47

Coil (Inductance), 154

Complex numbers, 107-8
Commutator, 73
Complex impedance, 109

meaning of, 109-111
Condenser, 17
Condenser, parallel-plate, 20
Conductivity, 31-32, 70
Conductor, 2
Conservation of energy, 77
Conservative field, 14
Coulomb (unit, C), 3
Coulomb’s law, 7
Crystal detector, 122
Crystal set, 122
Curl operator, 58-60, 206
Current (electric), 29

alternating (AC), 70, 102
direct (DC), 70, 102

Current density, 29
Current-carrying wires,

forces on, 52-53

Differential equation, 34, 105-106, 116-117
Differential operators, 253
Differentials, 51
Dimensions (physical), 3, 48
Dipole,

electric, 22
magnetic, 55

Discharge (condenser), 34, 116-117
Divergence operator, 25, 57
Dynamo (Generator), 67

Electric field (E),
due to continuous charge,
in hollow conductor,
due to point charges, 5, 6
due to dipole, 11-12
intensity (strength) of, 4
of spherical conductor, 15-16
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near charged surface, 14
near charged wire, 14
properties of, 9, 12

Electric motor, 147, 163
Electric potential, 14, 61
Electrochemistry, 38
Electrode, 38, 82
Electrolysis, 38
Electrolyte, 38
Electromagnet, 52

in generator, 74
in headphone, 123

Electromotive force (emf), 35, 67
Electron, 1
Electrophorus, 17
Electroscope, 32
Electrostatic field

(see Electric field)
Electrostatic generator,

van de Graaff, 19-20
Wimshurst, 18, 42

Element (chemical), 2
Elementary particles, 1, 43
Energy,

conservation of, 77
dissipation of, 75, 101
of charged condenser, 22

Energy density, 22, 55, 66, 100
see also Field energy)

Energy flux, 100
Energy interconversion,

electro-mechanical, 75-77
Entropy, 101
Equilibrium (of charges), 15, 61
Equipotentials, 9-10

Farad (unit, F), 22
Faraday’s law (induction)
Faraday (electrochemistry), 39
Field,

conservative, 13
due to gravity, 8

Field, electrostatic,
see Electric field.

Field energy,
electric, 45
magnetic, 55, 100
electro-magnetic, 100

Flux, definition of, 10

of B-field, 100

of current, 30

of E-field, 57

of energy, 100

Force (unit, N), 7

Force on a moving charge, 45

Fundamental particles

(see Elementary particles)

Gaussian ‘box’, 13

Gauss’s law, 13

differential form of, 22-25

integral form of, 25-27

Gauss’s theorem, 27, 61

Generator (‘dynamo’),

alternating current, 71-72

direct current, 72-73

Gradient operator, 9, 23

Headphones, 122

Heat, due to current, 43

Heat, energy dissipation, 75, 101

Hertz (unit, Hz), 98

Impedance (complex), 109-111

Impedances,

connection of, 112-113

Induced charge, 36

Induced current, 79

Inductance, 79, 106, 109

mutual, 80, 122

self, 80

unit (henry, H), 81

Induction (electrostatic), 36

Induction coil, 119

as transmitter, 120

Infrared (IR) radiation, 99

Insulator, 2

Intensity of field, 9

Interaction, radiation-matter, 99

Ion, 81

Joule (unit, J), 93

Joule heat, 43, 75, 171

Kirchoff’s laws, 35-36, 112

Kinetic energy (KE), 166
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Laplacian operator, 195
Leyden jar, 17, 37
Light,

see Radiation,
Line (‘path’) integral, 58
Lines of force, 19, 52, 101

Magnet, 44
Magnetism, 44
Magnetic field, 45-48

calculations of, 49-52
Mass (unit, kg),
Maxwell’s equations, 62, 66
Mole (unit, mol), 4, 39
Molecule, 38
Moment, of a force, 76
Moment, of dipole,

electric, 23
magnetic, 55

Motor (electric), 74-77
Mutual inductance, 80, 122

Natural frequency, 114
Network, 35, 111
Neutron, 1
Newton (force unit, N), 7
Node, 35, 112
Nucleon, 1
Nucleus, nuclei, 1

Ohm (unit), 33
Ohm’s law, 31, 33, 70
Operators,

commuting, 57
differential, 56-61
linear, 116
(see also named operators)

Oscillation, 114
frequency, 114
period, 114

Oscillator circuit, 114, 122

Partial derivative, 51
Path integral, 27-28
Path-independent function, 7
Pendulum, 253
Period (see Oscillation)
Periodic Table, 1

Permanent magnet, 52
Permeability, 53, 62, 96
Permittivity, 21, 96
Poles (magnetic), 55
Potential (electric), 7-9
Potential difference (PD), 21
Potential energy (PE), 6
Power (electric), 41-43, 78, 115
Power transmission, 78
Poynting vector, 100-101
Proton, 1

Radiation,
electromagnetic, 94
spectrum of, 97-99

Radio,
receiver, 118
transmitter, 118

Rectifier, 123
Resistance, 33, 70
Resistances,

connection of, 36-38, 111
Resonance, 115, 122
Resultant, 5
Root-mean-square (rms) value, 103
Rotation (energy of), 76

Scalar product, 13
Sinusoidal variation, 71
Spectrum (of radiation), 97-99
Steady state, 32, 105
Superposition (of fields), 5
Surface integral, 27, 30
Stokes’s theorem, 60

Tesla (unit, T), 48
Torque, 76-77
Transistor, 123
Transmission (of energy), 78
Transformer, principle of, 78-83

Ultraviolet (UV) radiation, 99

Vector sum, 21
Vector product, 45
Velocity vector, 63
Volume integral, 27, 57
Volt (unit, V), 8
Voltaic cell, 40, 42
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Voltaic pile, 38

Watt (unit, W), 41
Wave, 84

amplitude, 86
electromagnetic, 94-97
frequency, 71, 86
on a string, 92,93
period, 71, 86
phase, 87
plane, 90-91, 97
polarized, 97
profile, 85
sinusoidal, 71
spherical, 90
standing, 93
travelling, 86, 97, 102
velocity, 87
wavelength, 86
wave number, 86

Wave equation, 87-89, 96
solution by separation, 91-93

Wavefront, 90
Wavelength, 86
Wire, 31
Work, 6-17

X-rays, 99
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