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1 Introduction: Whats Up in Modern High Energy

Physics Theory?

Why are you taking this course? Why am I, or anyone else in the Theoretical Physics
Group, paid? Well here are some reasons. Particle physics, using the machinery of rel-
ativistic quantum field theory, has in some sense produced the most successful scientific
theory ever known: the so-called Standard Model of Particle Physics. It is the most
successful in the sense that no other theory can claim to describe Nature, to such a
high level of accuracy over such a complete range of physical phenomena using such a
modest number of assumptions and parameters. It is unreasonably good and was never
intended to be so successful. Since its formulation around 1970 there has not been a
single experimental result that has produced even the slightest disagreement. Nothing,
despite an enormous amount of effort. But there are skeletons in the closet. Let me
mention just three.

The first is the following: Where does the Standard Model come from? For example it
has quite a few parameters which are only fixed by experimental observation. What fixes
these? It postulates a certain spectrum of fundamental particle states but why these? In
particular these particle states form three families, each of which is a copy of the others,
differing only in their masses. Furthermore only the lightest family seems to have much
to do with life in the universe as we know it, so why the repetition? It is somewhat
analogous to Mendelev’s periodic table of the elements. There is clearly a discernible
structure but this wasn’t understood until the discovery of quantum mechanics. We are
looking for the underlying principle that gives the somewhat bizarre and apparently ad
hoc structure of the Standard Model.

The second problem is that, for all its strengths, the Standard Model does not include
gravity. For that we must use General Relativity which is a classical theory and as such
is incompatible with the rules of quantum mechanics. Observationally this is not a
problem since the effect of gravity, at the energy scales which we probe, is smaller by
a factor of 10−40 than the effects of the subnuclear forces which the Standard Model
describes. You can experimentally test this assertion by lifting up a piece of paper with
your little finger. You will see that the electromagnetic forces at work in your little
finger can easily overcome the gravitational force of the entire earth which acts to pull
the paper to the floor.

However this is clearly a problem theoretically. We can’t claim to understand the
universe physically until we can provide one theory which consistently describes gravity
and the subnuclear forces. If we do try to include gravity into QFT then we encounter
two problems. The first is that the result is non-renormalizable. This means that we
cannot use the methods of QFT as a fundamental principle for gravity. Another problem
is that the Standard Model makes a prediction for the vacuum energy density. Once
gravity is included this will warp spacetime in the form of the so-called cosmological con-
stant. The problem is that the QFT prediction is off by some 10120 orders of magnitude
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1! This is undoubtably the worst prediction of any scientific theory.
The third problem I want to mention is more technical. Quantum field theories

generically only make mathematical sense if they are viewed as a low energy theory.
Due to the effects of renormalization the Standard Model cannot be valid up to all
energy scales, even if gravity was not a problem. Mathematically we know that there
must be something else which will manifest itself at some higher energy scale. All we
can say is that such new physics must arise before we reach the quantum gravity scale,
which is some 1017 orders of magnitude above the energy scales that we have tested to
date. To the physicists who developed the Standard Model the surprise is that we have
not already seen such new physics many years ago.

With these comments in mind this course will introduce string theory, which, for good
or bad, has become the dominant, and arguably only, framework for a complete theory
of all known physical phenomena. As such it is in some sense a course to introduce the
modern view of particle physics at its most fundamental level. Whether or not String
Theory is ultimately relevant to our physical universe is unknown, and indeed may never
be known. However it has provided many deep and powerful ideas. Certainly it has had
a profound effect upon pure mathematics. But an important feature of String Theory
is that it naturally includes gravitational and subnuclear-type forces consistently in a
manner consistent with quantum mechanics and relativity (as far as anyone knows).
Thus it seems fair to say that there is a mathematical framework which is capable of
describing all of the physics that we know to be true. This is no small achievement.

However it is also fair to say that no one actually knows what String Theory really
is. In any event this course can only attempt to be a modest introduction. There will
be much that we will not have time to discuss.

2 Classical and Quantum Dynamics of Point Parti-

cles

2.1 Classical Action

We want to describe a single particle moving in spacetime. For now we simply consider
flat D-dimensional Minkowski space

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + ...+ (dxD−1)2 (2.1)

A particle has no spatial extent but it does trace out a curve - its worldline - in spacetime.
Furthermore in the absence of external forces this will be a straight line (geodesic if you
know GR). In other words the equation of motion should be that the length of the

1This is not quite the correct way to think about it. QFT does not predict the vacuum energy
since in the process of renormalization one can add an arbitrary bare vacuum energy to arrange for any
physical value of the vacuum energy that we like. The point is that to arrange for the observed value
requires an absurd amount of fine-tuning.
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worldline is extremized. Thus we take

Spp = −m
∫
ds

= −m
∫ √

−ηµνẊµẊνdτ

(2.2)

where τ parameterizes the points along the worldline and Xµ(τ) gives the location of the
particle in spacetime, i.e. the embedding coordinates of the worldline into spacetime.

Let us note some features of this action. Firstly it is manifestly invariant under
spacetime Lorentz transformations Xµ → Λµ

νX
ν where ΛTηΛ = η. Secondly it is

reparameterization invariant under τ → τ ′(τ) for any invertible change of worldline
coordinate

dτ =
dτ

dτ ′
dτ ′ , Ẋµ =

dXµ

dτ
=
dτ ′

dτ

dXµ

dτ ′
(2.3)

thus

Spp = −m
∫ √

−ηµν
dXµ

dτ

dXν

dτ
dτ

= −m
∫ √√√√−ηµν

(
dτ ′

dτ

)2
dXµ

dτ ′
dXν

dτ ′
dτ

dτ ′
dτ ′

= −m
∫ √

−ηµν
dXµ

dτ ′
dXν

dτ ′
dτ ′

(2.4)

Thirdly we can see why the m appears in front and with a minus sign by looking at the
non-relativistic limit. In this case we choose a gauge for the worldline reparameterization
invariance such that τ = X0 i.e. worldline ’time’ is the same as spacetime ’time’. This
is known as static gauge. It is a gauge choice since, as we have seen, we are free to take
any parameterization we like. The nonrelativistic limit corresponds to assuming that
Ẋ i << 1. In this case we can expand

Spp = −m
∫ √

1− δijẊ iẊjdτ =
∫
−m+

1

2
mδijẊ

iẊjdτ + . . . (2.5)

where the ellipses denotes terms with higher powers of the velocities Ẋ i. The second
term is just the familiar kinetic energy 1

2
mv2. The first term is simply a constant and

doesn’t affect the equations of motion. However it can be interpreted as a constant
potential energy equal to the rest mass of the particle. Thus we see that the m and
minus signs are correct.

Moving on let us consider the equations of motion and conservation laws that fol-
low from this action. The equations of motion follow from the usual Euler-Lagrange
equations applied to Spp:

d

dτ

 Ẋν√
−ηλρẊλẊρ

 = 0 (2.6)
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These equations can be understood as conservations laws since the Lagrangian is invari-
ant under constant shifts Xµ → Xµ + bµ. The associated charge is

pµ =
mẊµ√

−ηλρẊλẊρ
(2.7)

so that indeed the equation of motion is just ṗµ = 0. Note that I have called this a charge
and not a current. In this case it doesn’t matter because the Lagrangian theory we are
talking about, the worldline theory of the point particle, is in zero spatial dimensions.
So I could just as well called pµ a conserved current with the conserved charge being
obtained by integrating the temporal component of pµ over space. Here there is no space
pµ only has temporal components.

Warning: We are thinking in terms of the worldline theory where the index µ labels
the different scalar fields Xµ, it does not label the coordinates of the worldline. In par-
ticular p0 is not the temporal component of pµ from the worldline point of view. This
confusion between worldvolume coordinates and spacetime coordinates arises through-
out string theory

If we go to static gauge again, where τ = X0 and write vi = Ẋ i then we have the
equations of motion

d

dτ

vi

√
1− v2

= 0 (2.8)

and conserved charge

pi = m
vi

√
1− v2

(2.9)

which is simply the spatial momentum. These are the standard relativistic expressions.
We can solve the equation of motion in terms of the constant of motion pi by writing

vi

√
1− v2

= pi/m ⇐⇒ p2/m2 =
v2

1− v2
⇐⇒ v2 =

p2

p2 +m2
(2.10)

hence

X i(τ) = X i(0) +
piτ√
p2 +m2

(2.11)

and we see that vi is constant with v2 < 1.

2.2 Electromagnetic field

Next we can consider a particle interacting with an external electromagnetic field. An
electromagnetic field is described by a vector potential Aµ and its field strength Fµν =
∂µAν − ∂νAµ. The natural action of a point particle of mass m and charge q in the
presence of such an electromagnetic field is

Spp = −m
∫ √

−ηµνẊµẊνdτ + q
∫
Aµ(X)Ẋµdτ (2.12)
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For those who know differential geometry the vector potential is a connection one-form
on spacetime and AµẊ

µdτ is simply the pull-back of Aµ to the worldline of the particle.
The equation of motion is now

−m d

dτ

 ηµνẊ
ν√

−ηλρẊλẊρ

− q
d

dτ
Aµ + q∂µAνẊ

ν = 0 (2.13)

which we rewrite as

m
d

dτ

 ηµνẊ
ν√

−ηλρẊλẊρ

 = qFµνẊ
ν (2.14)

To be more concrete we could choose static gauge again and we find

m
d

dτ

(
vi

√
1− v2

)
= qFi0 + qFijv

j (2.15)

Here we see the Lorentz force magnetic law arising as it should from the second term
on the right hand side. The first term on the right hand side shows that an electric field
provides a driving force.

At this point we should pause to mention a subtlety. In addition to (2.15) there is also
the equation of motion for X0 = τ . However the reparameterization gauge symmetry
implies that this equation is automatically satisfied. In particular the X0 equation of
motion is

−m d

dτ

(
1√

1− v2

)
= qF0iv

i (2.16)

Problem: Show that if (2.15) is satisfied then so is (2.16)

Problem: Show that, in static gauge X0 = τ , the Hamiltonian for a charged particle is

H =
√
m2 + (pi − qAi)(pi − qAi)− qA0 (2.17)

2.3 Quantization

Next we’d like to quantize the point particle. This is made difficult by the highly non-
linear form of the action. To this end we will consider a new action which is classically
equivalent to the old one. In particular consider

SHT = −1

2

∫
dτe

(
− 1

e2
ẊµẊνηµν +m2

)
(2.18)

Here we have introduced a new field e(τ) which is non-dynamical, i.e. has no kinetic
term. This action is now just quadratic in the fields Xµ. The point of it is that it
reproduces the same equations of motion as before. To see this consider the e equation
of motion:

1

e2
ẊµẊνηµν +m2 = 0 (2.19)
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we can solve this to find e = m−1
√
−ẊµẊνηµν . We now compute the Xµ equation of

motion

0 =
d

dτ

(
1

e
Ẋµ

)

= m
d

dτ

 Ẋµ√
−ẊλẊρηλρ

 (2.20)

This is exactly what we want. Thus we conclude that SHT is classically equivalent to
Spp.

One way to think about this action is that we have introduced a worldline metric
γττ = −e2 and its inverse γττ = −1/e2 so that infinitesimal distances along the worldline
have length

ds2 = γττdτ
2 (2.21)

Note that previously we never said that dτ represented the physical length of a piece of
worldline, just that τ labeled points along the worldline.

There is another advantage to this form of the action; we can smoothly set m2 = 0
and describe massless particles, which was impossible with the original form of the
action.

Now the action is quadratic in the fields Xµ we calculate the Hamiltonian and
quantize more easily. The first step here is to obtain the momentum conjugate to each
of the Xµ

pµ =
∂L

∂Ẋµ

=
1

e
ηµνẊ

ν

(2.22)

There is no conjugate momentum to e, it acts as a constraint and we will deal with it
later. The Hamiltonian is

H = pµẊ
µ − L

=
e

2

(
ηµνp

µpν +m2
)

(2.23)

To quantize this system we consider wavefunctions Ψ(X, τ) and promote Xµ and pµ

to the operators

X̂µΨ = XµΨ p̂µΨ = −i ∂Ψ

∂Xµ
(2.24)

We then arrive at the Schrodinger equation

i
∂Ψ

∂τ
=
e

2

(
−ηµν ∂2Ψ

∂Xµ∂Xν
−m2Ψ

)
(2.25)
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Lastly we must deal with e which we saw has no conjugate momentum. Classically its
equation of motion imposes the constraint

pµpµ +m2 = 0 (2.26)

which is the mass-shell condition for the particle. Quantum mechanically we realize
this by restricting our physical wavefunctions to those that satisfy the corresponding
constraint

−ηµν ∂2Ψ

∂Xµ∂Xν
+m2Ψ = 0 (2.27)

However this is just the condition that ĤΨ = 0 so that the wavefunctions are τ indepen-
dent. If you trace back the origin of this time-independence it arises as a consequence
of the reparameterization invariance of the worldline theory. It simply states that wave-
functions must also be reparameterization invariant, i.e. they can’t depend on τ . This
is deep issue in quantum gravity. In effect it says that there is no such thing as time in
the quantum theory.

This equation should be familiar if you have learnt quantum field theory. In partic-
ular if we consider a free scalar field Ψ in D-dimensional spacetime the action is

S = −
∫
dDx

(
1

2
∂µΨ∗∂µΨ +

1

2
m2Ψ∗Ψ

)
(2.28)

and the corresponding equation of motion is

∂2Ψ−m2Ψ = 0 (2.29)

which is the same as our Schrodinger equation (when restricted to the physical Hilbert
space).

Thus we see that there is a natural identification of a free scalar field with a quantum
point particle. In particular the quantum states of the point particle are in a one-to-
one correspondence with the classical solutions of the free spacetime effective action.
However one important difference should be stressed. The quantum point particle gave
a Schrodinger equation which could be identified with the classical equation of motion
for the scalar field. In quantum field theory one performs a second quantization whereby
particles are allowed to be created and destroyed. This is beyond the quantization of the
point particle that we considered since by default we studied the effective action on the
worldline of a single particle: it would have made no sense to create or destroy particles.
Thus the second quantized spacetime action provides a more complete physical theory.

Here we also can see that the quantum description of a point particle in one dimen-
sion leads to a classical spacetime effective action in D-dimensions. This is an important
concept in String theory where the quantum dynamics of the two-dimensional worldvol-
ume theory, with interactions included, leads to interesting and non-trivial spacetime
effective actions.
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Problem: Find the Schödinger equation, constraint and effective action for a quantized
particle in the background of a classical electromagnetic field using the action

Spp = −
∫ 1

2
e
(
− 1

e2
ẊµẊνηµν +m2

)
− AµẊ

µ (2.30)

3 Classical and Quantum Dynamics of Strings

3.1 Classical Action

Having studied point particles from their worldline perspective we now turn to our main
subject: strings. Our starting point will be the action the worldvolume of a string, which
is two-dimensional. The natural starting point is to consider the action

Sstring =
1

2πα′

∫
d2σ

√
− det(∂αXµ∂βXνηµν) (3.1)

which is simply the area of the two-dimensional worldvolume that the string sweeps out.
Here σα, α = 0, 1 labels the spatial and temporal coordinates of the string: τ, σ. Here√
α′ is a length scale that determines the size of the string.
Again we don’t want to work directly with such a highly non-linear action. We saw

above that we could change this by coupling to an auxiliary worldvolume metric γαβ.

Problem: Show that by solving the equation of motion for the metric γαβ on a d-
dimensional worldsheet the action

SHT = −1

2

∫
ddσ
√
−γ

(
γαβ∂αX

µ∂βX
νηµν +m2(d− 2)

)
(3.2)

one finds the action

SNG = m2−d
∫
ddσ

√
− det (∂αXµ∂βXνηµν) (3.3)

for the remaining fields Xµ, i.e. calculate and solve the γαβ equation of motion and then
substitute the solution back into SHT to obtain SNG. Note that the action SHT is often
referred to as the Howe-Tucker form for the action whereas SNG is the Nambu-Goto
form. (Hint: You will need to use the fact that δ

√
−γ/δγαβ = −1

2
γαβ

√
−γ). If you have

not yet learnt much about metrics just consider the case of d = 1 where γαβ just has a
single component γττ .

So we might instead start with

Sstring = − 1

4πα′

∫
d2σ
√
−γγαβ∂αX

µ∂βX
νηµν (3.4)

where we have taken d = 2 in (3.2).
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Problem: What transformation law must γαβ have to ensure that Sstring is reparame-
terization invariant? (Hint: Use the fact that

∂σ′γ

∂σα

∂σβ

∂σ′γ
= δβ

α (3.5)

why?)

However this case is very special. If we evaluate the γαβ equation of motion we find

Tαβ = ∂αX
µ∂βX

νηµν −
1

2
γαβγ

γδ∂γX
µ∂δX

νηµν = 0 (3.6)

Once again we see that γαβ = b∂αX
µ∂βX

νηµν for some b. However in this case nothing
fixes b, it is arbitrary. This occurs because there is an addition symmetry of the action
that is unique to two-dimensions: it is conformally invariant. That means that under a
worldvolume conformal transformation

γαβ → e2ϕγαβ (3.7)

(here ϕ is any function of the worldvolume coordinates) the action is invariant.
There are other features that are unique to two-dimensions. The first is that, up

to a reparameterization, we can always choose the metric γαβ = e2ρηαβ. To see this we
note that under a reparameterization we have

γ′αβ =
∂σγ

∂σ′α
∂σδ

∂σ′β
γγδ (3.8)

Thus we simply choose our new coordinates to fix γ′01 = 0 and γ′00 = −γ′11. This requires
that

∂σγ

∂σ′0
∂σδ

∂σ′1
γγδ = 0 (3.9)

and
∂σγ

∂σ′1
∂σδ

∂σ′1
γγδ +

∂σγ

∂σ′0
∂σδ

∂σ′0
γγδ = 0 (3.10)

These are two (complicated) differential equation for two functions σ0(σ′0, σ′1) and
σ1(σ′0, σ′1). Hence there will be a solution (at least locally).

The second feature is that in two-dimensions the Einstein equation

Rαβ −
1

2
γαβR = 0 (3.11)

vanishes identically. The reason for this is that in two-dimensions there is only one
independent component for the Riemann tensor: R0101 = −R0110 = −R1001 = R1010.
Therefore R00 = R0101γ

11, R11 = R0101γ
00 and R01 = −R0101γ

01. Thus we see that

R = 2R0101(γ
00γ11 − γ01γ01)

= 2R0101 det(γ−1)

=
2

det(γ)
R0101 (3.12)
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Now we note that (
γ00 γ01

γ01 γ11

)
=

1

det(γ)

(
γ11 −γ01

−γ01 γ00

)
(3.13)

and the result follows.
Thus Einstein’s equation

Rαβ −
1

2
γαβR = Tαβ (3.14)

will imply that Tαβ = 0. Hence even if we include two-dimensional gravity the γαβ

equation of motion imposes the constraint that the energy-momentum tensor vanishes

Tαβ =
∂L
∂γαβ

= 0 (3.15)

These facts together imply that the worldvolume metric γαβ actually decouples from
the fields Xµ. This conformal invariance of two-dimensional gravity coupled to the
embedding coordinates (viewed as scalar fields) will be our fundamental principle. It
allows us to simply set γαβ = ηαβ. Thus to consider strings propagating in flat spacetime
we use the action (known as the Polyakov action)

Sstring = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν (3.16)

subject to the constraint (3.15) which becomes

∂αX
µ∂βX

νηµν −
1

2
ηαβη

γδ∂γX
µ∂δX

νηµν = 0 (3.17)

3.2 Spacetime Symmetries and Conserved Charges

We should also pause to outline how the spacetime symmetries lead to conserved currents
and hence conserved charges in the worldsheet theory.

First we summarize Noether’s theorem. Suppose that a Lagrangian L(ΦA, ∂αΦA),
where we denoted the fields by ΦA, has a symmetry: L(ΦA) = L(ΦA + δΦA). This
implies that

∂L
∂ΦA

δΦA +
∂L

∂(∂αΦA)
δ∂αΦA = 0 (3.18)

This allows us to construct a current:

Jα =
∂L

∂(∂αΦA)
δΦA (3.19)

which is conserved

∂αJ
α = ∂α

(
∂L

∂(∂αΦA)

)
δΦA +

∂L
∂(∂αΦA)

∂αδΦA

= ∂α

(
∂L

∂(∂αΦA)

)
δΦA −

∂L
∂ΦA

δΦA

= 0

(3.20)
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by the equation of motion. This means that the integral over space of J0 is a constant
defines a charge

Q =
∫

space
σJ0 (3.21)

which is conserved

dQ

dt
=

∫
space

∂0J
0

= −
∫

space
∂iJ

i

= 0

Let us now consider the action

Sstring = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν (3.22)

This has the spacetime Poincare symmetries: translations δXµ = aµ and Lorentz trans-
formations δXµ = Λµ

νX
ν . In the first case the conserved current is

Pα
aµ = − 1

2πα′
∂αXµa

µ (3.23)

The associated conserved charge is just the total momentum along the direction aµ and
in particular there are D independent choices

pµ =
1

2πα′

∫
dσẊµ (3.24)

We can also consider the spacetime Lorentz transformations which lead to the conserved
currents

Jα
Λ = − 1

2πα′
∂αXµΛµ

νX
ν (3.25)

The independent conserved charges are therefore given by

Mµ
ν =

1

4πα′

∫
dσẊµXν −XµẊν (3.26)

The Poisson brackets of these worldsheet charges will, at least at the classical level,
satisfy the algebra Poincare algebra. In the quantum theory they are lifted to operators
that commute with the Hamiltonian.

3.3 Quantization

Next we wish to quantize this action. Unlike the point particle this action is a field
theory in (1 + 1)-dimensions. As such we must use the quantization techniques of
quantum field theory rather than simply constructing a Schrodinger equation. There
are several ways to do this. The most modern way is the path integral formulation.
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However this requires some techniques that are presumably unfamiliar. So here we will
use the method of canonical quantization.

Canonical quantization is essentially the Heisenberg picture of quantum mechanics
where the fields Xµ and their conjugate momenta Pµ are promoted to operators which
satisfy the equal time commutation relations

[X̂µ(τ, σ), P̂ν(τ, σ
′)] = iδ(σ − σ′)δµ

ν

[X̂µ(τ, σ), X̂ν(τ, σ′)] = 0

[P̂µ(τ, σ), P̂ν(τ, σ
′)] = 0

(3.27)

as well as the Heisenberg equation

dX̂µ

dτ
= i[Ĥ, X̂µ]

dP̂µ

dτ
= i[Ĥ, P̂µ] (3.28)

In the case at hand we have

L̂ =
1

4πα′

∫
dσηµν

˙̂
X

µ ˙̂
X

ν

− ηµνX̂
′µX̂ ′ν (3.29)

hence

P̂µ =
1

2πα′
ηµν

˙̂
X

ν

(3.30)

and

Ĥ =
∫
dσP̂µ

˙̂
X

µ

− L̂

=
∫
dσ2πα′ηµνP̂µP̂ν −

∫
dσ

1

4πα′
(2πα′)2ηµνP̂µP̂ν +

1

4πα′
ηµνX̂

′µX̂ ′ν

=
∫
dσπα′ηµνP̂µP̂ν +

1

4πα′
ηµνX̂

′µX̂ ′ν

(3.31)

We can now calculate

˙̂
X

µ

(σ) = i[Ĥ, X̂µ(σ)]

= πα′i
∫
dσ′ηλν [P̂λ(σ

′)P̂ν(σ
′), X̂µ(σ)]

= 2πα′i
∫
dσ′ηλνP̂λ(σ

′)[P̂ν(σ
′), X̂µ(σ)]

= 2πα′
∫
dσ′ηλνP̂λ(σ

′)δµ
ν δ(σ − σ′)

= 2πα′ηµνP̂ν(σ)

(3.32)
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which we already knew. But also we can now calculate

˙̂
P µ(σ) = i[Ĥ, P̂µ(σ)]

=
i

4πα′

∫
dσ′ηλν [X̂

′λ(σ′)X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

∫
dσ′ηλνX̂

′λ(σ′)[X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

∫
dσ′ηλνX̂

′λ(σ′)
∂

∂σ′
[X̂ν(σ′), P̂µ(σ)]

= − i

2πα′

∫
dσ′ηλνX̂

′′λ(σ′)[X̂ν(σ′), P̂µ(σ)]

=
1

2πα′

∫
dσ′ηλνX̂

′′λ(σ′)δν
µδ(σ − σ′)

=
1

2πα′
ηµνX̂

′′ν(σ)

(3.33)

or equivalently

− ¨̂
X

µ

+ X̂ ′′µ = 0 (3.34)

Of course this is just the classical equation of motion reinterpreted in the quantum
theory as an operator equation. In two-dimensions the solution to this is simply that

X̂µ = X̂µ
L(τ + σ) + X̂µ

R(τ − σ) (3.35)

i.e. we can split X̂µ into a left and right moving part.
To proceed we expand the string in a Fourier series

X̂µ = xµ + wµσ + α′pµτ +

√
α′

2
i
∑
n6=0

(
aµ

n

n
e−in(τ+σ) +

ãµ
n

n
e−in(τ−σ)

)
(3.36)

The various factors of n and α′ will turn out to be useful later on. We have also included
linear terms since X̂µ need not be periodic (more on this later). Or if you prefer

X̂µ
L = xµ

L +
1

2
(α′pµ + wµ)(τ + σ) +

√
α′

2
i
∑
n6=0

aµ
n

n
e−in(τ+σ)

X̂µ
R = xµ

R +
1

2
(α′pµ − wµ)(τ − σ) +

√
α′

2
i
∑
n6=0

ãµ
n

n
e−in(τ−σ)

(3.37)

Note that we have dropped the hat on the operators aµ and ãµ since they will appear
frequently. But don’t forget that they are operators! Note also that we haven’t yet
said what n is, e.g. whether or not it is an integer, we will be more specific later.
The aµ

n and ãµ
n have the interpretation as left and right moving oscillators. Just as in
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quantum mechanics and quantum field theory these will be related to particle creation
and annihilation operators.

Since Xµ is an observable we require that it is Hermitian in the quantum theory.
This in turn implies that

(aµ
n)† = aµ

−n , (ãµ
n)† = ãµ

−n (3.38)

and (xµ)† = xµ, (wµ)† = wµ, (pµ)† = pµ. In this basis

P̂ µ =
1

2πα′
˙̂
X

µ

=
1

2πα′

α′pµ +

√
α′

2

∑
−n6=0

aµ
ne

−in(τ+σ) +

√
α′

2

∑
n6=0

ãµ
ne

−in(τ−σ)

 (3.39)

We can work out the commutator. First we take xµ = wµ = pµ = 0

[X̂µ(τ, σ), P̂ν(τ, σ
′)] =

i

4π

∑
n

∑
m

1

n
e−i(n+m)τe−i(nσ+mσ′)[aµ

n, a
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τei(nσ+mσ′)[ãµ

n, ã
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τei(nσ−mσ′)[ãµ

n, a
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τe−i(nσ−mσ′)[aµ

n, ã
ν
m]

(3.40)

In order for the τ -dependent terms to cancel we see that we need the commutators to
vanish if n 6= −m. The sum now reduces to

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

∑
n

1

n
e−in(σ−σ′)[aµ

n, a
ν
−n]

+
i

4π

∑
n

1

n
ein(σ−σ′)[ãµ

n, ã
ν
−n]

+
i

4π

∑
n

1

n
ein(σ+σ′)[ãµ

n, a
ν
−n]

+
i

4π

∑
n

1

n
e−in(σ+σ′)[aµ

n, ã
ν
−n]

(3.41)

Next translational invariance implies that the σ + σ′ terms vanish and hence

[aµ
n, ã

ν
m] = 0 (3.42)

A slight rearrangement of indices shows that we are left with

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

∑
n

1

n
e−in(σ−σ′)([aµ

n, a
ν
−n] + [ãµ

n, ã
ν
−n]) (3.43)
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In a Fourier basis

δ(σ − σ′) =
1

2π

∑
n

e−in(σ−σ′) (3.44)

Note that there is a contribution from n = 0 here that doesn’t come from the oscillators,
we’ll deal with it in a moment. Therefore we see that we must take

[aµ
n, a

ν
m] = nηµνδn,−m , [ãµ

n, ã
ν
m] = nηµνδn,−m (3.45)

Next it remains to consider the zero-modes (including the n = 0 contribution in (3.44)).

Problem: Show that if xµ, wµ, pµ 6= 0 then we also have

[xµ, pν ] = iηµν (3.46)

with the other commutators vanishing.
We also have to consider the constraint T̂αβ = 0. Its components are

T̂00 =
1

2
˙̂
X

µ ˙̂
X

ν

ηµν +
1

2
X̂ ′µX̂ ′νηµν

T̂11 =
1

2
X̂ ′µX̂ ′νηµν +

1

2
˙̂
X

µ ˙̂
X

ν

ηµν

T̂01 =
˙̂
X

µ

X̂ ′νηµν

(3.47)

It is helpful to change coordinates to

σ+ = τ + σ
σ− = τ − σ

⇐⇒
τ = σ++σ−

2

σ = σ+−σ−

2

(3.48)

Problem: Show that in these coordinates

T̂++ = ∂+X̂
µ∂+X̂

νηµν

T̂−− = ∂−X̂
µ∂−X̂

νηµν

T̂+− = T−+ = 0

(3.49)

Let us now calculate T++ in terms of oscillators. We have

∂+X̂
µ =

√
α′

2

∞∑
n=−∞

aµ
ne

−in(τ+σ) (3.50)

where we have introduced

aµ
0 =

√
α′

2
pµ +

√
1

2α′
wµ (3.51)
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thus

T̂++ =
α′

2

∑
nm

aµ
na

ν
me

−i(n+m)(τ+σ)ηµν

= α′
∑
n

Lne
−in(τ+σ)

(3.52)

with

Ln =
1

2

∑
m

aµ
n−ma

ν
mηµν (3.53)

where again we’ve dropped a hat on Ln, even though it is an operator. Similarly we
find

T−− = α′
∑
n

L̃ne
−in(τ−σ) (3.54)

with

L̃n =
1

2

∑
m

ãµ
n−mã

ν
mηµν (3.55)

and

ãµ
0 =

√
α′

2
pµ −

√
2

α′
wµ (3.56)

We can rewrite the commutators (3.45) using (3.38) as

[aµ
n, a

ν
n
†] = nηµν [ãµ

n, ã
ν
n
†
] = nηµν (3.57)

with n > 0. Thus we can think of aµ
n and ãµ

n annihilation operators and aµ
n
† and ãµ

n
†

as creation operators. Following the standard practice of QFT we consider the ground
state |0 > to be annihilated by an and ãn:

an|0 >= 0 , ãn|0 >= 0 , n > 0 (3.58)

The zero modes also act on the ground state. Since xµ and pµ don’t commute we can
only chose |0 > to be an eigenstate of one, we take

p̂µ|0 >= pµ|0 > ŵµ|0 >= wµ|0 > (3.59)

when we want to be precise we label the ground state |0; p, w >. You will have to excuse
the clumsy notion where I have reintroduce a hat on an operator to distinguish it from
its eigenvalue acting on a state. We can now construct a Fock space of multi-particle
states by acting on the ground state with the creation operators aµ

−n and ãµ
−n. For

example
aµ
−1ã

ν
−1|0 > , aµ

−2ã
λ
−1ã

ρ
−1|0 > , etc. (3.60)

These elements should be familiar from the study of the harmonic oscillator. In a
string theory each classical vibrational mode is mapped in the quantum theory to an
individual harmonic oscillator with the same frequency.
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Note that we really should considering normal ordered operators, where the annihi-
lation operators always appear to the right of the creation operators. For Ln and L̃n

with n 6= 0 there is no ambiguity as aµ
m and aν

n−m will commute. However for L0 and

L̃0 one finds

L0 =
1

2
aµ

0a
ν
0ηµν +

∑
m>0

aµ
−ma

ν
mηµν −

1

2

∑
m>0

[aµ
−m, a

ν
m]ηµν (3.61)

The last term is an infinite divergent sum This can be thought of as sum over the
zero-point energies of the infinite number of harmonic oscillators. We must renormalize.
Clearly L̃0 has the same problem and this introduces the same sum. Since this is just a
number the end result is that we define the normal ordered L0 and L̃0 to be

: L0 : =
1

2
aµ

0a
ν
0ηµν + α′

∑
m>0

aµ
−ma

ν
mηµν

: L̃0 : =
1

2
ãµ

0 ã
ν
0ηµν + α′

∑
m>0

ãµ
−mã

ν
mηµν

(3.62)

In string theory : Ln : and : L̃n : play a central role.
How do we deal with constraints in the quantum theory? We should proceed by

reducing to the so-called physical Hilbert space of states which are those states that are
animated by : T̂αβ :. However this turns out to be too strong a condition and would

remove all states. Instead we impose that the positive frequency components of : T̂αβ :
annihilates any physical state

: Ln : |phys >=: L̃n : |phys >= 0 , n > 0 (: L0 : −a)|phys >= (: L̃0 : −a)|phys >= 0
(3.63)

Here we have introduced a parameter a since : L0 : differs from L0 by an infinite constant
that we must regularize to the finite value a. For historical reasons the parameter a is
called the intercept (and α′ the slope). However it is not a parameter but rather is fixed
by consistency conditions. Indeed it can be calculated by a variety of methods (such as
ζ-function regularization or by using the modern BRST approach to quantization). We
will see that the correct value is a = 1.

This is then sufficient to show that the expectation value of : T̂αβ : vanishes

< phys| : Ln : |phys >=< phys| : L̃n : |phys >= 0 ∀n 6= 0 (3.64)

since the state on the right is annihilated by the postiche frequency parts where as by
taking the Hermitian conjugates one sees that the state on the left is annihilated by the
negative frequency part.

It is helpful to calculate the commutator [: Lm :, : Ln :]. There will be a similar
expression for [: L̃m :, : L̃m :] and clearly one has [: Lm :, : L̃n :] = 0. To do this we first
consider the case without worrying about normal orderings

[Lm, Ln] =
1

4

∑
pq

[aµ
m−pa

ν
p, a

λ
n−qa

ρ
q ]ηµνηλρ
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=
1

4

∑
pq

ηµνηλρ

(
[aµ

m−pa
ν
p, a

λ
n−q]a

ρ
q + aλ

n−q[a
µ
m−pa

ν
p, a

ρ
q ]
)

=
1

4

∑
pq

ηµνηλρ

(
aµ

m−p[a
ν
p, a

λ
n−q]a

ρ
q + [aµ

m−p, a
λ
n−q]a

ν
pa

ρ
q

+aλ
n−qa

µ
m−p[a

ν
p, a

ρ
q ] + aλ

n−q[a
µ
m−p, a

ρ
q ]a

ν
p

)
=

1

4

∑
p

ηµρ

(
paµ

m−pa
ρ
n+p + (m− p)aµ

pa
ρ
n+m−p

+paρ
n+pa

µ
m−p + (m− p)aρ

n+m−pa
µ
p

)
=

1

2

∑
p

ηµρ

(
(p− n)aµ

m+n−pa
ρ
p + (m− p)aµ

pa
ρ
n+m−p ηµρ

)
(3.65)

Here we have used the identities

[A,BC] = [A,B]C +B[A,C] , [AB,C] = A[B,C] + [A,C]B (3.66)

and shifted the p=variable in the sum. Thus we find

[Lm, Ln] = (m− n)Lm+n (3.67)

This is called the classical Virasoro algebra and is of crucial importance in string theory
and conformal field theory in general. Recall that it is the algebra of constraints that
arose from the condition T̂αβ = 0 which is the statement of conformal invariance.

In the quantum theory we must consider the issues associated with normal ordering.
We saw that this only affected : L0 :. It follows that the only effect this can have on
the Virasoro algebra is in terms with an : L0 :. Since the effect on : L0 : is a shift by
an infinite constant it won’t appear in the commutator on the left hand side. Thus any
new terms can only appear with : L0 : on the right hand side. Thus the general form is

[: Lm :, : Ln :] = (m− n) : Lm+n : +C(n)δm −n (3.68)

The easiest way to determine the C(n) is to note the following (one can also perform a
direct calculation but it is notoriously complicated and messy). First one imposes the
Jacobi identity

[: Lk :, [: Lm :, : Ln :]] + [: Lm :, [: Ln :, : Lk :]] + [: Lm :, [: Ln :, : Lk :]] = 0 (3.69)

If we impose that k +m + n = 0 with k,m, n 6= 0 (so that no pair of them adds up to
zero) then this reduces to

(m− n)C(k) + (n− k)C(m) + (k −m)C(n) = 0 (3.70)

If we pick k = 1 and m = −n− 1 one finds

−(2n+ 1)C(1) + (n− 1)C(−n− 1) + (n+ 2)C(n) = 0 (3.71)
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Now we note that C(−n) = −C(n) by definition. Hence we learn that C(0) = 0 and

C(n+ 1) =
(n+ 2)C(n)− (2n+ 1)C(1)

n− 1
(3.72)

This is just a difference equation and given C(2) it will determine C(n) for n > 1
(note that it can’t determine C(2) given C(1)). We can look for a solution to this by
considering polynomials. Since it must be odd in n the simplest guess is

c(n) = c1n
3 + c2n (3.73)

In this case the right hand side becomes

(n+ 1)(c1n
3 + c2n)− (2n+ 1)(c1 + c2)

n− 1
=

c1n
4 + 2c1n

3 + c2n
2 − 2c1n− (c1 + c2)

n− 1

=
(n− 1)(c1n

3 + 3c1n
2 + (3c1 + c2)n+ c1 + c2)

n− 1
(3.74)

Expanding out the left hand side gives

c1(n+ 1)3 + c2(n+ 1) = c1n
3 + 3c1n

2 + (3c1 + c2)n+ c1 + c2 (3.75)

and hence they agree.
Note that if we shift L0 by a constant l then C(n) is shifted by 2nl (note that in

so doing we’d have to shift a as well). This means that we can change the value of
c2. Therefore we will fix it to be c1 = −c2. Finally we must calculate c1. To do this
we consider the ground state with no momentum |0; 0, 0 > This state is annihilated by
: Ln : for all n ≥ 0. Thus we have

< 0, 0; 0| : L2 :: L−2 : |0; 0, 0 > = < 0, 0; 0|[: L2 :, : L−2 :]|0; 0, 0 >

= 4 < 0, 0; 0| : L0 : |0; 0, 0 > +6c1 < 0, 0; 0|0; 0, 0 >

= 6c1 (3.76)

where we assume that the ground state has unit norm.

Problem: Show that

< 0, 0; 0| : L2 :: L−2 : |0; 0, 0 >=
D

2
(3.77)

So we deduce that

[: Lm :, : Ln :] = (m− n) : Lm+n : +
D

12
(m3 −m)δm −n (3.78)

Of course there is a similar expression for [: L̃m :, : L̃m :]. This is called the central
extension of the Virasoro algebra and D is the central charge which has arisen as a
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quantum effect. From now on we will always take operators to be normal ordered and
we will drop the :: symbol, unless otherwise stated.

Let us return to our Fock space of states. It is built up out of the ground state which
we take to have unit norm < 0|0 >= 1. One sees that the one-particle state aµ

−1|0 >
has norm

< 0|aµ
1a

µ
−1|0 >=< 0|[aµ

1 , a
µ
−1]|0 >= ηµµ (3.79)

where we do not sum over µ. Thus the state a0
−1|0 > has negative norm!

Problem: Show that the state (a0
−1 + a1

−1)|0 > has zero norm.

Thus the natural innerproduct on the Fock space is not positive definite because
the time-like oscillators come with the wrong sign. This also occurs in other quantum
theories such as QED and doesn’t necessarily represent any kind of sickness.

There are stranger states still. A physical state |χ > that satisfies < χ|phys >= 0 for
all physical states is called null (or spurious if it only satisfies the n = 0 physical state
condition). It then follows that a null state has zero norm (as it must be orthogonal to
itself).

There are many such states. To construct an example just consider

|χ >= L−1|0; p > with p2 = 0 (3.80)

Note that the zero-momentum ground state satisfies Ln|0; 0 >= 0 and for all n ≥ 0 and
this remains true if for |0; p > if p2 = 0. First we verify that |χ > is physical. We have
For m ≥ 0

Lm|χ > = LmL−1|0; p >

= [Lm, L−1]|0; p >

= (m+ 1)Lm−1|0; p > +
D

12
(m3 −m)δm1|0; p >

(3.81)

The last term will vanish automatically whereas the first term can only be non-zero for
m = 0 (since Ln|0; p >= 0 for all n ≥ 0). Here we find L0|χ >= |χ > which is the
physical state condition for a = 1 which will turn out to be the case. Next we see that
< χ|phys >=< 0|L1|phys >= 0. Note that we could have used any state instead of
|0; p > that was annihilated by Ln for all n ≥ 0 to construct a null state.

Thus if we calculate some amplitude between two physical states < phys′|phys >
we can shift |phys >→ |phys > +|χ > where |χ > is a null state. The new state
|phys > +|χ > is still physical but the amplitude will remain the same - for any other
choice of physical state |phys′ >. Thus we have a stringy gauge symmetry whereby
two physical states are equivalent if their difference is a null state. This will turn out
to be the origin of Yang-Mills and other gauge symmetries within string theory. And
furthermore one can prove a no-ghost theorem which asserts that there are no physical
states with negative norm (at least for a = 1 and D = 26).
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3.4 Open Strings

Strings come in two varieties: open and closed. To date we have tried to develop as
many formulae and results as possible which apply to both. However now we must make
a decision and proceed along slightly different but analogous roots. Open strings have
two end points which traditionally arise at σ = 0 and σ = π. We must be careful to
ensure that the correct boundary conditions are imposed. In particular we must choose
boundary conditions so that the boundary value problem is well defined. This requires
that

ηµνδX
µ∂σX

ν = 0 (3.82)

at σ = 0, π.

Problem: Show this!

There are essentially two boundary conditions that one can impose. The first is
Dirichlet: we hold Xµ fixed at the end points so that δXµ = 0. The second is Neumann:
we set ∂σX

µ = 0 at the end points. The first condition implies that somehow the end
points of the string are fixed in spacetime, like a flag to a flag pole. At first glance
this seems unphysical and we will ignore it for now, although such boundary conditions
turn out to be profoundly important. So we will start by considering second boundary
condition, which states that no momentum leaks off the ends of the string.

The condition that ∂σX̂
µ(τ, 0) = 0 implies that

wµ = 0 , aµ
n = ãµ

n (3.83)

i.e. the left and right oscillators are not independent. If we look at the boundary
condition at σ = π then we determine that∑

n6=0

aµ
ne

inτ sin(nπ) = 0 (3.84)

Thus n is indeed an integer. The mode expansion is therefore

Xµ = xµ + 2α′pµτ +
√

2α′i
∑
n6=0

aµ
n

n
einτ cos(nσ) (3.85)

(Note the slightly redefined value of pµ as compared to before.)
For the open string the physical states are constrained to satisfy

Ln|phys >= 0 , n > 0 and (L0 − 1)|phys >= 0 (3.86)

in particular there is only one copy of the constraints required since the L̃n constraints
will automatically be satisfied. The second condition is the most illuminating as it gives
the spacetime mass shell condition. To see this we note that translational invariance
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Xµ → Xµ + xµ gives rise to the conserved current P̂ µ = 1
2πα′

Ẋµ. This is a worldsheet
current and hence the conserved charge (from the worldsheet point of view) is

pµ =
1

2πα′

∫ π

0
dσẊµ

=
1

2πα′

∫ π

0
dσ2pµ +

√
2α′

∑
n6=0

aµ
ne

inτ cos(nσ)

= pµ

(3.87)

where again we have abused notation and confused the operator p̂µ that appears in the
mode expansion of Xµ with its eigenvalue pµ which we have now identified with the
conserved charge. In any case we do this because we have shown that pµ is indeed the
spacetime momentum of the string. Note that this also explains why we put in the extra
factor of 2 in front of pµτ in the mode expansion.

Next we let
N =

∑
n>0

ηµνa
µ
−na

ν
n (3.88)

Which is the analogue of the number operator that appears in the Harmonic oscillator.
Again this is an operator even though we are being lazy and dropping the hat. It is
easy to see that for m > 0

[N, aλ
−m] =

∑
n>0

ηµνa
µ
−n[aν

n, a
λ
−m]

= maλ
−m (3.89)

Thus if |n > is a state with N |n >= n|n > then

Naλ
−m|n > = ([N, aλ

−m] + aλ
−mN)|n >

= (maλ
−m + aλ

−mn)|n >
= (m+ n)aλ

−m|n > (3.90)

Therefore aλ
−m|n > is a state with N -eigenvalue n+m. You can think of N as counting

the number of oscillator modes in a given state.
With this definition we can write the physical state condition (L0− 1)|phys >= 0 as

(pµp
µ +

1

α′
(N − 1))|phys >= 0 (3.91)

Thus we can identify the spacetime mass-squared of a physical state to be the eigenvalue
of

M2 =
1

α′
(N − 1) (3.92)

We call the eigenvalue of N the level of the state. In other words the higher oscillator
modes give more and more massive states in spacetime. In practice one takes a−1/2 to
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be a very high mass scale so that only the massless modes are physically relevant. Note
that the number of states at level n grows exponentially in n as the number of possible
oscillations will be of order of the number of partitions of n into smaller integers. This
exponentially growing tower of massive modes a unique feature of strings as opposed to
point particles.

Of course we must not forget the other physical state condition Ln|phys >= 0 for
n > 0. This constraint will take the form of a gauge fixing condition . Let us consider
the lowest lying states.

At level zero we have the vacuum |0; p >. We see that the mass-shell condition is

p2 − α′
−1

= 0 (3.93)

The other constraint, Ln|0; p >= 0 with n > 0, is automatically satisfied. This has a
negative mass-squared! Such a mode is called a Tachyon. Tachyons arise in field theory
if rather than expanding a scalar field about a minimum of the potential one expands
about a maximum. Thus they are interpreted as instabilities. The problem is that
no one knows in general whether or not the instability associated to this open string
tachyon is ever stabilized. We will simply ignore the tachyon. Our reason for doing this
is that it naturally disappears once one includes worldsheet Fermions and considers the
superstring theories. However the rest of the physics of Bosonic strings remains useful
in the superstring. Hence we continue to study it.

Next consider level 1. Here we have

|Aµ >= Aµ(p)aµ
−1|0; p > (3.94)

Since these modes have N = 1 it follows from the mass shell condition that they are
massless (for a = 1!), i.e. the L0 constraint implies that p2Aµ = 0. Note that this
depends crucially on the fact that a = 1. If a > 1 then |Aµ > would be tachyonic
whereas if a < 1 |Aµ > would be massive. In either case there is no known constituent
theory of a massive (or tachyonic) vector field.

But we must also check that Ln|A >= 0 for n > 0. Thus

Ln|Aµ > =
1

2
Aµ

∑
m

ηνλa
ν
n−ma

λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

∑
m≤1

aν
n−ma

λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

∑
n−1≤m≤1

aν
n−ma

λ
ma

µ
−1|0; p >

(3.95)

In the second line we’ve noted that if m > 1 we can safely commute aλ
m past aµ

−1 where
it annihilates the vacuum. In the third line we’ve observed that if n−m > 1 then we can
safely commute aν

n−m through the other two oscillators to annihilate the vacuum (recall
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that for n > 0 aν
n−m always commutes through aλ

m). Thus for n > 1 we automatically
have Ln|Aµ >= 0. For n = 1 we find just two terms

L1|A > =
1

2
Aµηνλ(a

ν
1a

λ
0a

µ
−1 + aν

0a
λ
1a

µ
−1)|0; p >

= Aµa
µ
0 |0; p >

=
√

2α′pµAµ|0; p >

(3.96)

Thus we see that |Aµ > is represent a massless vector mode with pµAµ = 0. In position
space this is just ∂µAµ = 0 and this looks like the Lorentz gauge condition for an
electromagnetic potential.

Indeed recall that before we found the null state, with p2 = 0,

|Λ > = iΛ(p)L−1|0; p >

= iηµνΛa
µ
0a

ν
−1|0; p >

= i
√

2α′pµΛaµ
−1|0; p >

(3.97)

provided that p2 = 0. Thus we must identify Aµ ≡ Aµ + i
√

2α′pµΛ which in position
space is the electromagnetic gauge symmetry Aµ ≡ Aµ +

√
2α′∂µΛ. Again this occurs

precisely when a = 1, otherwise L−1|0; p > is not a null state and their would not be a
gauge symmetry.

There is one more thing that can be done. Since and open string has two preferred
points, its end points, we can attach discrete labels to the end points so that the ground
state, of the open string carries two indices

|0; p, ab > (3.98)

where a = 1, .., N refers the σ = 0 end and b = 1, ..., N refers to the σ = π end. It then
follows that all the Fock space elements built out of |0; p, ab > will carry these indices.
These are called Chan-Paton indices. The level one states now have the form

|Aab
µ >= Aab

µ a
µ
−1|0; p, ab > (3.99)

The null states take the form

|Λab >= iΛabL−1|0; p, ab > (3.100)

and the gauge symmetry is
Aab

µ ≡ Aab
µ +

√
2α′∂µΛab (3.101)

These are the gauge symmetries of a non-Abelian Yang-Mills field with gauge group
U(N) (at lowest order in the fields). Thus we see that we can obtain non-Abelian gauge
field dynamics from open strings.
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3.5 Closed Strings

Let us now consider a closed string, so that σ ∼ σ + 2π. The resulting “boundary
condition” is more simple: we simply demand that X̂µ(τ, σ + 2π) = X̂µ(τ, σ). This is
achieved by again taking n to be an integer and wµ = 0. However we now have two
independent sets of left and right moving oscillators. Thus the mode expansion is given
by

Xµ = xµ + α′pµτ +

√
α′

2
i
∑
n6=0

(
aµ

n

n
e−in(τ+σ) +

ãµ
n

n
e−in(τ−σ)

)
(3.102)

note the absence of the factor of 2 in front of pµτ . The total momentum of such a string
is calculated as before to give

pµ =
1

2πα′

∫ 2π

0
dσẊµ

=
1

2πα′

∫ 2π

0
dσpµ +

√
α′

2

∑
n6=0

aµ
ne

−in(τ+σ) + ãµ
ne

−in(τ−σ)

= pµ

(3.103)

so again pµ is the spacetime momentum of the string.
We now have double the constraints:

(L0 − 1)|phys > = (L̃0 − 1)|phys >= 0

Ln|phys = L̃n|phys >= 0

(3.104)

with n > 0. If we introduce the right-moving number operator Ñ

Ñ =
∑
n>0

ηµν ã
µ
−nã

ν
n (3.105)

then the first conditions can be rewritten as

(pµp
µ +

4

α′
(N − 1))|phys >= 0 (N − Ñ)|phys >= 0 (3.106)

where we have recalled that, if wµ = 0, aµ
0 = ãµ

0 =
√

α′

2
pµ and L0 = 1

2
ηµνa

µ
0a

ν
0 + N ,

L0 = 1
2
ηµν ã

µ
0 ã

ν
0 + Ñ . The second condition is called level matching. It simply says that

any physical state must be made up out of an equal number of left and right moving
oscillators. Again the remaining constraints will give gauge fixing conditions.

Let us consider the lowest modes of the closed string. At level 0 (which means level 0
on both the left and right moving sectors by level matching) we simply have the ground
state |0; p >. This is automatically annihilated by both Ln and L̃n with n > 0. For
n = 0 we find

p2 − 4

α
= 0 (3.107)
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Thus we again find a tachyonic ground state. No one knows what to do with this
instability. It turns out to be much more serious than the open string tachyon that we
saw, which can sometimes be dealt with. Most people today would say that the Bosonic
string is inconsistent although this hasn’t been demonstrated. However for us the cure
is the same as for the open string: in the superstring this mode is projected out. So we
continuing by simply ignoring it, as our discussion of the other modes still holds in the
superstring.

ext we have level 1. Here the states are of the form

|Gµν >= Gµνa
µ
−1ã

ν
−1|0; p > (3.108)

Just as for the open string these will be massless, i.e. p2 = 0 (again only if a = 1). Next
we consider the constraints Lm|Gµν >= L̃m|Gµν >= 0 with m > 0.

Problem: Show that these constraints imply that pµGµν = pνGµν = 0

The matrix Gµν is a spacetime tensor. Under the Lorentz group SO(1, D− 1) it will
decompose into a symmetric traceless, anti-symmetric and trace part. What this means
is that under spacetime Lorentz transformations the tensors

gµν = G(µν) −
1

D
ηλρGλρηµν

bµν = G[µν]

φ = ηλρGλρ (3.109)

will transform into themselves

Problem: Show this.

Thus from the spacetime point of view there are three independent modes labeled
by gµν , bµν and φ. Just as for the open string there is a gauge symmetry

|Gµν >→ |Gµν > +iξµL−1ã
µ
−1|0; p > +iζµL̃−1a

µ
−1|0; p > (3.110)

where we have used the fact that ξµL−1ã
µ
−1|0; p > and ζµL̃−1a

µ
−1|0; p > are null states,

provided that p2 = 0. The proof of this is essentially the same as it was for the open
string. We need only ensure that the level matching condition is satisfied, which is clear,
and that L̃nL−1ã−1|0; p >= LnL̃−1a−1|0; p >= 0 for n > 0. Thus we need only check
that

LnL̃−1a
µ
−1|0; p > =

1

2
L̃−1

∑
m

ηλρa
λ
n+ma

ρ
−ma

µ
−1|0; p >= 0

(3.111)
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Just as before the n > 1 terms will vanish automatically. So we need only check

L1L̃−1a
µ
−1|0; p > =

1

2
L̃−1

∑
m

ηλρa
λ
1+ma

ρ
−ma

µ
−1|0; p >

= L̃−1ηλρa
λ
0a

ρ
1a

µ
−1|0; p >

= L̃−1ηλρa
λ
0 [a

ρ
1, a

µ
−1]|0; p >

= L̃−1a
µ
0 |0; p >

=

√
α′

2
L̃−1p

µ|0; p >

(3.112)

Similarly for L̃nL−1ã
µ
−1|0; p >. Thus we also find that pµξµ = pµζµ = 0. This of course

is required to preserve the condition pµGµν = pνGµν = 0.
In terms of Gµν this implies that

Gµν → Gµν + i

√
α′

2
pµξν + i

√
α′

2
pνζµ (3.113)

or, switching to coordinate space representations and the individual tensor modes, we
find

gµν → gµν +
1

2

√
α′

2
∂µ(ξν + ζν) +

1

2

√
α′

2
∂ν(ξµ + ζµ)

bµν → Bµν +
1

2

√
α′

2
∂µ(ξν − ζν)−

1

2

√
α′

2
∂ν(ξµ − ζµ)

φ → φ+ 2

√
α′

2
∂µ(ξµ + ζµ)

(3.114)

If we let vµ = 1
2

√
α′

2
(ξµ + ζµ) and Λµ = 1

2

√
α′

2
(ξµ − ζµ) and use ∂µξµ = pµζµ = 0 then we

find

gµν → gµν + ∂µvν + ∂νvµ

bµν → bµν + ∂µΛν − ∂νΛµ

φ → φ

(3.115)

The first term line gives the infinitesimal form of a diffeomorphism, xµ → xµ − vµ

and thus we can identify gµν to be a metric tensor. The second line gives a generalization
of and electromagnetic gauge transformation. The analogue of the gauge invariant field
strength is

Hλµν = ∂λbµν + ∂µbνλ + ∂νbλµ (3.116)
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Thus the massless field content at level 1 consists of a graviton mode gµν , an anti-
symmetric tensor field bµν and a scalar φ, subject to the gauge transformations (3.114).
Finally the massless condition p2Gµν = 0 leads to

∂2gµν = 0

∂2bµν = 0

∂2φ = 0

(3.117)

The conditions pµGµν = pνGµν = 0 now reduce to the linearized equations

∂µgµν = 0

∂µbµν = 0

∂µφ = 0

(3.118)

The first two equations can be viewed as gauge fixing conditions whereas the second
states that φ is a constant. The fields gµν , bµν and φ are known as the graviton (metric),
Kalb-Ramond (b-field) and dilaton respectively.

3.6 Light-cone gauge and D = 26!

So far we have quantized a string in flat D-dimensional spacetime. Apart from D we
have the parameters a and α′. In fact α′ is not a parameter, it is a dimensional quantity
- it has the dimensions of length-squared - and simply sets the scale. What is important
are unitless quantities such as p2α′. For example small momentum means p2α′ << 1.

We are left with D and a but actually these are fixed: quantum consistency demands
that D = 26 and a = 1. We have seen that things would go horribly wrong if a 6= 1.

The easiest way to see this is to introduce light-cone gauge. Recall that the action we
started with had diffeomorphism symmetry. We used this symmetry to fix γαβ = e2ρηαβ.
However there is still a residual symmetry. In particular in terms of the coordinates σ±

then under a transformation

σ′
+

= σ′
+
(σ+) σ′

−
= σ′

−
(σ−) (3.119)

we see that γ′αβ = e2ρ′ηαβ with

ρ′ = ρ+
1

2
ln

(
∂σ+

∂σ′+
∂σ−

∂σ′−

)
(3.120)

i.e. this preserves the conformal gauge. In terms of the worldsheet coordinates σ, τ we
see that

τ ′ =
1

2
(σ′

+
+ σ′

−
) (3.121)
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and since σ′± are arbitrary functions of σ± we see that any τ that solves the two-
dimensional wave equation can be obtained by such a diffeomorphism. Therefore, with-
out loss of generality, we can choose the worldsheet ’time’ coordinate τ to be any of the
spacetime coordinates (since these solve the two-dimensional wave-equation). Of course
there are many choices but the usual one is to define

X̂+ =
1

2
(X0 +XD−1) X̂− =

1

2
(X0 −XD−1) (3.122)

and then take
X̂+ = x+ + α′p+τ (3.123)

This is called light cone gauge.
Next we evaluate the conformal symmetry constraints (3.15). We observe that in

these coordinates the spacetime ηµν is

η−+ = η+− = −2 ηij = δij (3.124)

Thus we find that

T00 = T11 = −2α′p+Ẋ− +
1

2
Ẋ iẊjδij +

1

2
X ′iX ′jδij = 0

T01 = T10 = −2α′p+X̂ ′− + Ẋ iX ′jδij = 0

(3.125)

where i, j = 1, 2, 3, ..., D − 2. This allows one to explicitly solve for X− in term of the
mode expansions for X i.

Problem: Show that with our conventions

X− = x− + α′p−τ + i

(∑
n

a−n
n
e−inσ+

+
ã−n
n
e−inσ−

)
(3.126)

where

a−n =
1

2p+

∑
m

ai
n−ma

j
mδij (3.127)

and the massshell constraint is

−4α′p+p− + α′pipjδij + 2(N + Ñ) = 0 (3.128)

with

N + Ñ =
1

2
δij
∑
n6=0

ai
na

j
−n + ãi

nã
j
−n (3.129)

To continue we note that in the quantum theory there is a normal ordering ambiguity
in the definition of a−0 and we must include our constant a again into the definition.
Hence we must take

: a−0 :=
1

p+

(∑
m>0

ai
ma

j
−mδij − a

)
: ã−0 :=

1

p+

(∑
m>0

ãi
mã

j
−mδij − a

)
(3.130)
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This will also show up in the mass shell constraint as

−4α′p+p− + α′pipjδij + 2(N + Ñ − 2a) = 0 (3.131)

Note that −4p+p−+pipjδij = ηµνp
µpν so this really just tells us that the mass of a state

is

M2 =
2

α′
(N + Ñ − 2a) (3.132)

We still have a level matching condition for closed strings

N = Ñ (3.133)

This arises because we only have one spacetime momentum pµ (not separate ones for
left and right moving modes) and hence aµ

0 = ãµ
0 . This implies that a−0 = ã−0 and hence

N = Ñ .
Note that this breaks the SO(1, D − 1) symmetry of our flat target space since we

choose X0 and XD−1 whereas any pair will do (so long as one is timelike). Thus we
will not see a manifest SO(1, D − 1) symmetry but just an SO(D − 2) symmetry from
rotations of the X̂ i. However it is important to realize that the SO(1, D− 1) symmetry
is not really broken, we have merely performed a kind of gauge fixing (recall there was
this underlying gauge symmetry of the string spectrum). It is just no longer manifest.

On the other hand the benefit of this procedure is that the physical Hilbert space is
manifestly postive definite because we remove the oscillators a0

n, ã
0
n, a

D−1
n , ãD−1

n . This is
often a helpful way to determine the physical spectrum of the theory.

For example we can reconsider the low lying states that we constructed above. The
ground states are unchanged as they do not involve any oscillators. For the open string
we find the D − 2 states at level one

|Ai >= ai
−1|0; p > (3.134)

These are the transverse components of a massless gauge field. For the closed string we
find, at level one,

|Gij >= Gija
i
−1ã

j
−1|0; p > (3.135)

These correspond to the physical components, in a certain gauge, of the metric, Kalb-
Ramond field and dilaton Note however that there is no remnant at all of gauge sym-
metry which is a crucial feature of dynamics

Now formally a is given by

a = −1

2

∞∑
m=1

[ai
m, a

j
−m]δij

= −D − 2

2

∞∑
m=1

m

(3.136)
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This is divergent however it can be regularized in the following manner. We note that

a = −D − 2

2
ζ(−1) (3.137)

where ζ(s) is the Riemann ζ-function

ζ(s) =
∞∑

m=1

1

ms
(3.138)

This is analytic for complex s with Re(s) > 1. Thus it can be extended to a holomorphic
function of the complex plane, with poles at a discrete number of points. Analytically
continuing to s = −1 one finds ζ(−1) = −1/12 and hence

a =
D − 2

24
(3.139)

We have seen that in order to have a sensible theory we must take a = 1. Hence we
must take D = 26.

This is not a very satisfactory derivation of the dimension of spacetime but it is
rather useful in other circumstances. In light cone gauge it can be summarized by the
statement that a periodic scalar field has a zero point energy of −1/24. Sometimes one
is interested in anti-periodic scalars Xµ(σ + 2π) = −Xµ(σ). The difference is that the
n which appear in the mode expansion are half-odd-integers. Following the same logic
one finds the ground state energy of such a scalar field is

a = −1

2

∞∑
m=1,odd

m

2

(3.140)

Now we could write

∞∑
m=1

m =
∑

m odd

m+
∑

m even

m

=
∑

m odd

m+ 2
∞∑

m=1

m

(3.141)

hence ∑
m odd

m = −
∞∑

m=1

m =
1

12
(3.142)

and we see that for an anti-periodic scalar

a = −1

4

1

12
= − 1

48
(3.143)
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So the zero-point energy of anti-periodic scalar is 1/48.
A more convincing argument is the following. Light cone gauge is just a gauge.

Therefore although the manifest spacetime Lorentz symmetry is no longer present there
is still an SO(1, D − 1) Lorentz symmetry, even though only an SO(D − 2) subgroup
is manifest in light cone gauge. It is too lengthy a calculation to do here, but one can
show that the full SO(1, D − 1) Lorentz symmetry, generated by the charges (3.26) is
preserved in the quantum theory, i.e. once normal ordering is taken into account, if and
only if a = 1 and D = 26. You are urged to read the section 2.3 of Green Schwarz and
Witten or section 12.5 of Zwiebach where this is shown more detail.

4 Curved Spacetime and an Effective Action

4.1 Strings in Curved Spacetime

We have considered quantized strings propagating in flat spacetime. This lead to a
spectrum of states that included the graviton as well as other modes. More generally
a string should be allowed to propagate in a curved background with non-trivial val-
ues for the metric and other fields. Our ansatz will be to consider the most general
two-dimensional action for the embedding coordinates Xµ coupled to two-dimensional
gravity subject to the constraint of conformal invariance. This later condition is required
so that the two-dimensional worldvolume metric decouples from the other fields. We
will consider only closed strings in this section. We will return to open strings in the
next section. The reason for this is that these days one views open strings as description
soliton like objects, called Dp-branes, that naturally sit inside the closed string theory.

Before proceeding we note that

SEH =
1

4π

∫
d2σ
√
−γR = χ (4.1)

is a topological invariant called the Euler number, i.e. the integrand is locally a total
derivative. Thus we could add the term SEH to the action and not change the equations
of motion.

With this in mind the most general action we can write down for a closed string is

Sclosed = − 1

4πα′

∫
d2σ
√
−γ

(
φ(X)R + γαβ∂αX

µ∂βX
νgµν(X) +

1√
−γ

εαβ∂αX
µ∂βX

νbµν(X)

)
(4.2)

where φ is a scalar, gµν symmetric and bµν antisymmetric. These are precisely the correct
degrees of freedom to be identified with the massless modes of the string. One can think
of this worldsheet theory as two-dimensional quantum gravity coupled to some matter
in the form of scalar fields. More generally one can think of and conformal field theory
(with central charge equal to 26) as defining the action for a string.

Furthermore this action has the diffeomorphism symmetry Xµ → X ′µ(X)

∂αX
′µ =

∂X ′µ

∂Xν
∂αX

ν g′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν gλρ b′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν bλρ φ′ = φ (4.3)
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automatically built in. It also incorporates the b-field gauge symmetry

b′µν = bµν + ∂µλν − ∂µλν (4.4)

however to see this we note that

δSclosed = − 1

2πα′

∫
d2σεαβ∂αX

µ∂βX
ν∂µλν

= − 1

2πα′

∫
d2σ∂α(εαβ∂βX

νλν)

= 0 (4.5)

where we used the fact that εαβ∂α∂βX
ν = 0 in the second to last line and the fact that

the worldsheet is a closed manifold in the last line, i.e. the periodic boundary conditions.
Notice something important. If the dilaton φ is constant then the first term in the

action is a topological invariant, the Euler number. In the path integral formulation the
partition function for the full theory is defined by summing over all worldsheet topologies

Z =
∞∑

g=0

∫
DγDXe−S (4.6)

Here the path integral is over the worldsheet fields γαβ and Xµ. Now each genus g
worldsheet will appear suppressed by the factor e−φχg = e−2φ(g−1). Thus gs = eφ can
be thought of as the string coupling constant which counts which genus surface is con-
tributing to a calculation. In particular for gs → 0 one can just consider the leading
order term where the worldsheet is a sphere.

However if one wants to consider the splitting and joining of strings then one must
take gs > 0 and include higher genus surfaces. In particular the first non-trivial string
interactions arise when the worldsheet is a torus. To see the analogy with quantum
field theory note that a torus can be thought of as the worldvolume of a closed string
that has gone around in a loop. Thus it is analogous to 1-loop processes in quantum
field theory. Similarly higher genus surfaces incorporate higher loop processes. One of
the great features of string theory is that each of these contributions is finite. So this
defines a finite perturbative expansion of a quantum theory which includes gravity!

As stated above our general principle is the conformal invariance of the worldsheet
theory, which ensures that the worldsheet metric γαβ decouples. The action we just
wrote down is conformal as a classical action. However this will not generically be the
case in the quantum theory. Divergences in the quantum theory require regularization
and renormalization and these effects will break conformal invariance by introducing an
explicit scale: the renormalization group scale. It turns out that conformal invariance
is more or less equivalent to finiteness of the quantum field theory. This restriction
leads to equations of motions for the spacetime fields φ, gµν and bµν (which from the
worldvolume point of view are just fancy coupling constants). It is beyond the scope
of this course to show this but the constraints of conformal invariance at the one loop
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level give equations of motion

Rµν = −1

4
HµλρH

λρ
ν + 2DµDνφ

DλHλµν = 2DλφHλµν

4D2φ− 4(Dφ)2 = R +
1

12
H2 (4.7)

where Hµνλ = 3∂[µbνλ]. In general there will be corrections to these equations coming
from all orders in perturbation theory, i.e. higher powers of α′. However such terms will
be higher order spacetime derivatives and can typically be safely ignored.

4.2 A Spacetime Effective Action

A string propagating in spacetime has an infinite tower of massive excitations. However
all but the lightest (massless) modes will be too heavy to observe in any experiment that
we do. Thus in many cases one really just wants to consider the dynamics of the massless
modes. This introduces the concept of an effective action. This is a very general concept
(ubiquitous in quantum field theory) whereby we introduce an action for the light modes
that we are interested in (below some scale M). The action is constructed so that it
has all the correct symmetries of the full theory and its equations of motion reproduce
the correct scattering amplitudes of the light modes that the full theory predicts. In
general effective actions need not be renormalizable and they are not expected to be
valid at energy scales above the scale M where the massive modes we’ve ignored can
be excited and can no longer be ignored. Often one says that the massive modes have
been integrated out. Meaning that one has performed the path integral over modes with
momenta larger than M and is just left with a path integral over the low momentum
modes.

In our case we have considered a string propagating in a curved spacetime that can
be thought of as a background coming from a non-trivial configuration of its massless
modes. In particular in our discussion we implicitly assumed that the massive modes
were set to zero. The result was that quantum conformal invariance predicted the
equations of motion (4.7). These are the on-shell conditions for a string to propagate
in spacetime as derived in the full quantum theory. Note that they pick up an infinite
series of α′ corrections and also an infinite series of gs corrections (where we allow the
splitting an joining of strings). In other words, at lowest order in α′ and gs these are
the equations of motion for the spacetime fields. Furthermore these equations of motion
can be derived from the spacetime action

Seffective = − 1

2α′12

∫
d26x

√
−ge−2φ

(
R− 4(∂φ)2 +

1

12
HµνλH

µνλ
)

+ . . . (4.8)

Problem: Show that the equations of motion of (4.8) are indeed (4.7). You may need
to recall that δ

√
−g = −1

2

√
−ggµνδg

µν and gµνδRµν = DµDνδg
µν − gµνD

2δgµν .
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This is therefore the effective action for the massless modes of a closed string. The
ellipsis denotes contributions from higher loops which will contain higher numbers of
derivatives and which are suppressed by higher powers of α′. Note that string theory also
predicts corrections to the effective action from string loops, that is from higher genus
Riemann surfaces. These terms will come with factors of e−2gφ where g = 0,−1,−2, ...
and can be ignored if the string coupling gs = eφ is small.

Thus we have derived a gravitational theory from the low energy dynamics of closed
strings. As such we expect to see such features as black holes and cosmology. Next we
return to the discussion of open strings.

5 D-branes

5.1 D-branes from Dirichlet Boundary Conditions

So far we have primarily considered the effective action of closed strings. We note that
once we consider string interactions, where two strings can join or split, then one can
no longer consider just open strings. Indeed it is geometrically obvious that two open
strings can join up and form a closed string. From the physical point of view closed
strings give gravitational modes and since everything gravitates, in particular Yang-
Mills fields, this statement is simply the fact that turning on a Yang-Mills field will lead
to a non-vanishing energy-momentum tensor and hence warp spacetime.

However it has become clear that even a theory of closed string fields should naturally
contain sectors with open strings. In particular it is natural to consider a Dp-brane in
closed string theory. This will turn out to have the interpretation as a solitonic state
within the closed string theory.

By definition a Dp-brane is a (p + 1)-dimensional worldvolume in spacetime upon
which open strings can end. In practice this means that within closed string theory
we include objects where open strings can end, i.e. we allow for Dirichlet boundary
conditions δX i = 0 at σ = 0, π

To be precise consider a Dp-brane parallel to the x0, x1, ..., xp dimensions. This means
that it sits at a specific location in the xp+1, ..., x25 dimensions, say (xp+1, ..., x25) =
(ap+1, ..., a25). Thus one imposes Dirichlet boundary conditions on the fieldsXp+1, ..., X25.
However the X0, ..., Xp coordinates are freely allowed to move and hence and are sub-
jected to Neumann boundary conditions, i.e. ∂σX

µ = 0 at σ = 0, π and µ = 0, ..., p.
Thus the mode expansion for these fields is as before:

Xµ = xµ + 2α′pµτ +
√

2α′i
∑
n6=0

aµ
n

n
einτ cos(nσ) (5.1)

On the other hand for the transverse coordinates to the Dp-brane we have the boundary
condition that X i = ai at σ = 0, π. Starting from the expansion

X̂ i = xi + wiσ + α′piτ +

√
α′

2
i
∑
n6=0

(
ai

n

n
e−in(τ+σ) +

ãi
n

n
e−in(τ−σ)

)
(5.2)
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and setting σ = 0 we see that xi = ai and pi = 0. We also find ai
n = −ãi

n. Next we
consider the σ = π end. Here we find wi = 0 and

ai
ne

−inπ + ãi
ne

inπ = 0 (5.3)

Using the fact that ai
n = −ãi

n we see that we need sinnπ = 0. Thus once again we see
that the n are integers. In summary we find

X i = ai +
√

2α′i
∑
n6=0

ai
n

n
einτ sin(nσ) (5.4)

The main difference with the Xµ coordinates are the lack of a momentum zero mode
pi. This means that the states of these open strings cannot move away from xi = ai,
but they can move parallel to the Dp-brane. We denote the ground state of this open
string by |D; p > to distinguish it from the ground state of other open strings or closed
strings.

What are the low lying states? Well they are very similar to before. Only now the
SO(1, 25) symmetry is broken to SO(1, p)×SO(25−p). There is still a tachyon |D; p >
at level 0 with mass-squared −1/α′. At level 1 there are two types of massless states:

|Aµ >= Aµa
µ
−1|D; p > |Yi >= Yia

i
−1|D; p > (5.5)

where we now have µ = 0, 1, ..., p and i = p+ 1, ..., 25.
Note that the gauge symmetry that we saw above is also suitably reduced. In

particular the null state that we used above is now

iΛL−1|0; p > =
i

2
Λ
∑
m

ηµνa
µ
−1+ma

ν
−m|0; p >

= i
√

2α′pµΛaµ
−1|0; p >

(5.6)

The point to note here is that pµ is only nonvanishing for µ = 0, 1, 2, ..., p. Hence the
modes |Yi > are not subject to a gauge symmetry, however |Aµ > still plays the role of
a gauge Boson. The states |Yi > have the interpretation as 25− p massless scalar fields.
They parameterize fluctuations of the Dp-brane in the transverse coordinates.

The importance of D-branes was not appreciated until 1994. Dp-branes should be
thought of as solitonic-like states that appear in the closed string theory. As such they
are like p-dimensional hypersurfaces in space, which are constant in time. In general
we can consider configurations made up of several types of Dp-branes lying in different
planes and intersecting with each other. The rules of string theory tell us that for each
pair of brane (or for a brane and itself) we must consider the open string that stretches
between the two. Each such string leads to additional particle like degrees of freedom.

We can also consider situations with N Dp-branes all parallel to each other. In
this case we must label the end points of the open strings by an index a = 1, ..., N to
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indicate which Dp-brane they end on. Indeed one sees that this is a geometric origin for
the Chan-Paton factors that we discussed about and leads to a U(N) gauge symmetry.
The D-brane ground state can therefore be denote by |D; p, ab >, with one Chan-Paton
index for each end point. It follows that all the states in the Fock space created using
the string oscillators will carry ab indices and hence can be thought of as matrix valued.

The modern view on string theory is that one thinks of the bulk, 26-dimensional,
dynamics are governed by closed strings, whose massless modes are a graviton, Kalb-
Ramond field and dilaton. However in addition there are these soliton like D-brane
state. On the worldvolume of these D-branes one finds U(N) gauge vector fields, as
well as scalars. It may happen that in some cases the D-branes are spacetime filling,
meaning that they

For example a D0-brane is essentially a point particle. The open strings are confined
to end at a particular point in space (but not time). One also has D1-branes which are
much like strings themselves. A D25-brane is simply the original notion of open strings,
but now these are viewed as a state within the closed string theory.

Problem: Determine the mode expansion for an open string that stretches between a
D1-brane located at x2 = ... = x25 = 0 and a D25-brane, which fills all of spacetime. By
considering light cone gauge (along the direction X0, X1) describe the lightest physical
states, what are their masses?

5.2 The D-brane Effective action

How can we include the open string massless modes in an effective action? Well if
we consider a 25-brane, that is a space-filling D-brane then this is essentially just the
original definition of open strings and there is a massless vector Aµ. Given the Neumann
boundary condition there is a natural coupling ofAµ to the worldsheet of a string through
its boundary:

Sopen = Sclosed +
∫

endpoints
dτAµẊ

µ (5.7)

where Sclosed is the closed string σ-model that we discussed above.
For D-branes one finds a vector field Aµ, living on a (p + 1) dimensional subspace,

plus the scalars Yi. The corresponding worldvolume action is

SDp = Sclosed +
∫

endpoints
dτAµẊ

µ + YiX
′i (5.8)

Just as for the closed string modes one must impose that this defines a conformal
field theory. However rather than being defined on a compact 2-dimensional surface,
it is now defined on a 2-dimensional surface with boundary. In other words we have a
boundary conformal field theory.

The requirement of conformal invariance will give an infinite series of α′ perturbation
expansion in general. At lowest order in α′ the effective action is given by

SDp = −Tp

∫
dp+1xe−φTr

(
1 +

1

4
(Fµν + (2πα′)−1bµν)(F

µν + (2πα′)−1bµν)
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+
1

2
DµYiD

µY i − 1

4

∑
i,j

[Y i, Y j][Y i, Y j]
)

(5.9)

where Tp ∼ α′−
p+1
2 is the tension of a Dp-brane i.e. the energy per unit p-volume. Here

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (5.10)

is the Yang-Mills field strength and

DµYi = ∂µYi + i[Aµ, Yi] (5.11)

is the gauge covariant derivative. Note that due to the Chan-Paton factors the gauge
field Aµ and scalars Yi carry ab indices and as such are best viewed as matrix-valued,
i.e. we really mean that Aµ = Aab

µ and

[Aµ, Aν ]
ab =

N∑
k=1

Aac
µ A

cb
ν − Aac

ν A
cb
µ (5.12)

and similarly for Yi = Y ab
i

Note that the b-field enters here (multiplied by the identity matrix in the Lie-algebra,
i.e. bµνδ

ab). The reason for this is that although we saw that there was a gauge symmetry
of the closed strings

b′µν = bµν + ∂µλν − ∂νλµ (5.13)

This symmetry is broken in the presence of Dp-branes. The point is that if the worldsheet
has a boundary then

δSopen = − 1

2πα′

∫
d2σεαβ∂αX

µ∂βX
ν∂µλν

= − 1

2πα′

∫
d2σ∂α(εαβ∂βX

νλν)

=
1

2πα′

∫
endpoints

dτ∂0X
νλν

(5.14)

This no longer vanishes. However one sees that it can be canceled by a shift

Aab
µ → Aab

µ −
1

2πα′
λµδ

ab (5.15)

so that
2πα′Fµν + bµν (5.16)

is gauge invariant. Note that this only affects the part of Fµν proportional to the identity
element in U(N).

This action has a generalization of the usual electromagnetic gauge symmetry:
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Problem: Show that SDp is invariant under the gauge transformation

Aµ → −ig−1∂µg + g−1Aµg Yi → g−1Yig (5.17)

where g is an element of U(N).

This is called a Yang-Mills of non-Abelian gauge symmetry A very special case is
to consider 1× 1 matrices, i.e. just numbers. Now U(1) is the space of number g such
that g−1 = g∗ so that g = eiθ for a real (and periodic) θ . Here we simply recover the
electromagnetic gauge transformation Aµ = Aµ + ∂µθ i.e. electromagnetism is a U(1)
gauge theory.

So far we have just taken Aµ and Yi to be matrix valued. Matrix multiplication
arises naturally from the joining of two open strings to form a third. Consider a string
starts on the first D-brane and ends on a second one. Its described by a non-vanishing
matrix entry M12. Next consider an open string that starts on the second D-brane and
ends on a third D-brane. Its matrix entry will be M23. Combing these to open strings
produces a longer open string that starts on the first D-brane and ends on the third one,
the corresponding matrix is M12M23. Following the usual rules of quantum mechanics
we should sum over all possible choices of the second, intermediate D-brane. Thus the
natural product of two open strings that start on the first D-brane and end on the third
is
∑

aM
1aMa3. This is just matrix multiplication.

However we shouldn’t just let the open strings be described by any matrices. Open
strings are oriented so that the string that goes from the ath D-brane to the bth D-brane
is described by Mab whereas the open string that goes from the bth D-brane to the ath
D-brane is described by M ba. These two strings are different so we do not want to say
that Mab = M ba, i.e. M = MT . However we would like a string that starts on the
ath D-brane and ends on the bth D-brane to join up with an open string that starts of
the bth D-brane and ends on the ath D-brane to create a closed string. This would be
described by MabM ba = Tr(M2). If this is to be a closed string it should just be a real
number, i.e. with no Chan-Paton index. Therefore we must take M∗ = MT . In other
words we restrict to Hermitian matrices. Note that if M is Hermitian then so is g−1Mg
if g ∈ U(N).

Finally let us consider the potential on the coordinates Yi

V = −Tp

∑
i,j

Tr ([Yi, Yj])
2 (5.18)

Note that since Y †
i = Yi we have [Yi, Yj]

† = −[Yi, Yj]. Thus the potential is minus the
sum of the square of an anti-Hermitian matrix. Therefore V ≥ 0. It follows that the
vacuum states of this action correspond to [Y i, Y j] = 0 for all i, j. Therefore, up to a
gauge transformation, we can write

Y i = diag(ai
1, ..., a

i
n) (5.19)

We interpret the ai
a as the location of the ath Dp-brane in the xi direction. Thus even

though the open strings that stretch between N parallel D-branes carry N2 degrees of
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freedom, the vacuum moduli space just consists of N independent vectors (ap+1
a , ..., a25

a )
which parameterize the position of the ath D-brane in the transverse space. The other
modes will generically be massive as a consequence of the Higg’s effect. Geometrically
this occurs because the open string that stretches between two separated D-branes must
have a non-zero length and hence is massive. However whenever two or more D-brane
coincide there is an enhanced symmetry and additional massless fields arise.

Thus in general the total action is

S =
1

2α′12

∫
d26x

√
−ge−2φ

(
R− 4(∂φ)2 +

1

12
HµνλH

µνλ
)

+
∑
Dp

SDp (5.20)

where the second term is a sum over all the Dp-branes in the background. We emphasize
that this is just the lowest order term in an effective action with otherwise contains
contributions from higher powers of α′ and gs = eφ.

In the Abelian case, where Fµν = ∂µAν−∂νAµ, it is known that, up to terms involving
two derivatives acting on the fields,

SDp = SBDI = −Tp

∫
dp+1xe−φ

√
− det(gµν + Fµν + (2πα′)−1bµν + ∂µY i∂νY jδij) (5.21)

This action had been studied well before string theory and is known as the Dirac-Born-
Infeld action. It has two interesting special cases. If the gauge fields and dilaton are set
to zero and the metric to that of Minkowski space then we obtain

SDp = −Tp

∫
dp+1x

√
− det(ηµν + ∂µY i∂νY jδij) (5.22)

Problem: Show that this is a gauge fixed form of the action

SNG = −Tp

∫
dp+1x

√
− det (∂αXµ∂βXνηµν) (5.23)

where we take Xµ = xµ if µ = 0, ..., p and Xµ = Y i if µ = i = p+ 1, ..., 25.

This describes an extended object in spacetime whose action is simply its volume
and indeed the Y i give the position of the Dp-brane in the transverse space. Thus
indeed we should think of a Dp-brane as a p-dimensional extended object in space, that
propagates through time.

On the other hand if we set the scalars Y i to zero (again with φ = bµν = 0 and
gµν = ηµν) then the effective action is

SDp = SBI = −Tp

∫
dp+1x

√
− det(ηµν + Fµν) (5.24)

This action is known as the Born-Infeld action. It was proposed many years ago as a
non-linear version of electrodynamics.
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6 Compactification

6.1 Closed String Spectrum on a Circle

We have seen that string theory lives in 26 dimensions. Although it has all the features
we want, such as gauge symmetries and gravitation, this would seem to contradict
experiment badly. Well the point is that no one said that these dimensions had to be
very big. Indeed the natural scale of string theory, the string scale, is ls =

√
α′ and

this is somewhere slightly larger than the Plank length (depending on gs). Thus if a
dimension was to be small it could be very small indeed. However this in itself is a
problem as we cannot use effective field theory if the length scales are of order ls. This
is because the effective theory is the theory of the massless modes and these correspond
to low oscillations of the string. The higher modes resolve substringy distances and can
typically be ignored on larger scales.

First let us consider the spectrum of closed strings if some dimensions, labeled by
X i, are circles: X i ∼ X i +2πRi. Returning to our mode expansion we see that X i need
not be single valued but rather

X i(σ + 2π) = X i(σ) + 2πniRi (6.1)

for some integer ni. Such a string is wound around the X i dimension. Thus we see that
in our original mode expansion we can have wi = niRi for an integer ni. Furthermore
the momentum around a circle must be quantized (so that the wavefunction is single
valued) and hence pi = mi/R. It then follows that

ai
0 =

√
α′

2
miR−1

i +

√
1

2α′
niRi ãi

0 =

√
α′

2
miR−1

i −
√

1

2α′
niRi (6.2)

and

aµ
0 =

√
α′

2
pµ (6.3)

for the non-compact directions. Now that wi 6= 0 we see that

L0 − 1 =
1

2
aµ

0a
ν
0ηµν +N − 1

=
α′

4
p2 +

1

2

∑
i

(
α′

2

(
mi

Ri

)2

+
1

2α′

(
niRi

)2
+ nimi

)
+N − 1

(6.4)

On the other hand we have

L̃0 − 1 =
1

2
aµ

0a
ν
0ηµν +N − 1

=
α′

4
p2 +

1

2

∑
i

(
α′

2

(
mi

Ri

)2

+
1

2α′

(
niRi

)2
− nimi

)
+ Ñ − 1

(6.5)
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Level matching is now slightly shifted to

(N − Ñ + nimi)|phys >= 0 (6.6)

And the spacetime mass shell is p2 +M2 = 0 with

M2 =
∑

i

((
mi

Ri

)2

+
1

α′2

(
niRi

)2
)

+
2

α′
(N + Ñ − 2) (6.7)

You should notice an interesting symmetry. The spectrum is invariant under ni ↔ mi

Ri ↔ α′/Ri, i.e. under the interchange of momentum and winding quantum numbers.
In fact this symmetry extends to the full interacting theory and is know as T-duality. It
implies that there is a sort of minimum length scale built into string theory as a string
on a circle of radius R is equivalent to a string on a circle of radius α′/R. Physically
the problem is that for distances smaller than

√
α′ the string behaves more and more

like an extended object and cannot resolve smaller distances.
In any case one sees that for each circular dimension there is a double tower of

increasingly massive states (in addition to the exponentially growing tower of states).
In particular each mode in the stringy tower of states now carries two extra integral
charges. These are the momentum and winding numbers about each compact dimension.
It follows that all but the zero-modes are massive, with a mass-squared of order α′−1.
Therefore at low energy only the zero-modes will be physically relevant.

Note that the momentum modes get heavier as we shrink the radii whereas the
winding mode will get lighter. However so long as the string length

√
α′ is small we can

ensure that all these extra massive momentum and winding modes are too massive to
observe.

First let us make a digression in to the size of the Planck scale - the scale at which
quantum gravity is important - relative to the string scale given by the size of the strings.
Recall that the string coupling constant is gs = eφ and the string length scale is

√
α′.

Thus we see that the spacetime effective behaves as

Seffective ∼
1

g2
sα

′12

∫
dx26√−gR ∼ 1

l24P

∫
d26√−gR (6.8)

where the right-most expression gives the conventional definition of the Planck length

lp. From this we see that lP = g
1
12
s

√
α′. Therefore at weak string coupling, where string

perturbation theory is valid, we have gs << 1 and hence the Planck length is much
smaller than the string length. This means that it is sensible to talk about strings
without worrying about the effects of quantum gravity.

The Planck length is about lP ∼ 10−19GeV −1 therefore we are safe if we take
√
α′ ∼

10−17GeV −1 - a hundred times larger. In which case the mass of smallest massive string
modes (at oscillator level 2) are m ∼ 1/

√
α′ ∼ 1017GeV . This is well beyond any

experimental observation. Next consider compactification so that the massless modes
pick up massive momentum and winding partners with mass-squared

M2 =
∑

i

((
mi

Ri

)2

+
1

α′2

(
niRi

)2
)

(6.9)
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The lightest mode will be the ones with a single unit of momentum and winding so that

M ∼ 1

R
and M ∼ R

α′
(6.10)

We wish to make these too heavy to observe in accelerators, say M >> 103GeV .
In the first case we must take R << 10−3GeV −1. In the second case we must have
R >> 103α′GeV ∼ 10−31GeV −1. Thus for radii in the range 10−31GeV −1 << R <<
10−3GeV −1 all but the massless stringy modes will be too heavy to have observed. This
is clearly a very wide range of values for the internal radii.

6.2 Dimensional Reduction of the Effective Action

Now we can consider how to reduce the effective action to lower dimensions by compact-
ification on a torus. In effective we want to throw away the massive momentum modes
that one finds (the winding modes where never included in (4.8) in the first place). The
idea of extra dimensions is not at all new and first appeared in the work of Kaluza and
Klein within the context of gravity.

To illustrate the point let us consider a real free scalar field theory in D dimensions
with action

S = −1

2

∫
dDx∂µφ∂

µφ (6.11)

Let us suppose that one of the dimensions, labeled by y is a circle with radius R. We
can therefore write φ as a Fourier series

φ(x, y) =
∑
n

φn(x)e−iny/R (6.12)

Since φ is real it follows that φ∗n = φ−n. Substituting back into the action gives

S = −1

2

∫
dD−1xdy

∑
nm

(
∂µφn∂

µφm −
mn

R2
φnφm

)
e−i(n+m)y/R (6.13)

where now µ only labels the noncompact directions. Now we have that∫ 2πR

0
dye−iny/R =

{
2πR n = 0

0 n 6= 0
(6.14)

Thus we find

S = −πR
∑
n

∫
dD−1x

(
∂µφn∂

µφ−n +
n2

R2
φnφ−n

)

= −πR
∑
n

∫
dD−1x

(
∂µφn∂

µφ∗n +
n2

R2
φnφ

∗
n

)
(6.15)
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This is a (D − 1) dimensional action with an infinite tower of massive, complex scalar
fields with masses

m2
n =

n2

R2
(6.16)

However the zero-mode φ0 is real and massless. This is just as we’d expect from our
string discussion. At energies below that set by the extra dimension, i.e. at energy scales
below 1/R, only the massless mode is physically relevant. Thus we see that in this case
the effective action for the massless field is simply

S0 = −πR
∫
dD−1x∂µφ0∂

µφ0 (6.17)

The higher dimensional field theory is said to be compactified. This generally means that
only the lowest, massless, modes are retained. For a simply scalar field this reduction
does not seem very interesting (unless one keeps the Kaluza-Klein tower of states).
However we will see that for tensor fields, such as vector fields, Kalb-Raymond field and
gravitons, one does see qualitative changes. However one fact that remains is that, at
least for circle reductions, the lightest fields are always independent of the coordinate
along the circle.

We need to compactify the string effective action on a circle. Let us denote the
26-dimensional quantities by a hat and 25-dimensional quantities without a hat. We
will use µ, ν, λ to denote all 26 and 25 dimensions, which is meant exactly should be
clear from whether or not it appears with or without a hat. We have seen that we can
simply set φ̂ = φ to be independent of y. However we also need to consider b̂µν and the
metric ĝµν . We will assume that all fields are independent of y.

First we must reduce the metric. A D-dimensional metric can be written as

dŝ2 = ds2 + e2ρ(dy + Aµdx
µ)2 (6.18)

or

ĝµν =
(
gµν + e2ρAµAν e2ρAν

e2ρAµ e2ρ

)
(6.19)

We note that

ĝµν =
(
gµν −Aν

−Aµ e−2ρ + A2

)
(6.20)

and √
−ĝ = eρ√−g (6.21)

Here we are taking all fields to be independent of y. Including such a dependence
would lead to an infinite tower of massive Fourier modes which we can ignore at low
energy. Note that eρ controls the physical size of the compact dimension since the proper
circumference is ∫ 2πR

0
dŝ =

∫ 2πR

0

√
ĝyydy = 2πReρ (6.22)

and Aµ determines the angle between the compact dimension and the noncompact di-
mensions. However the residual diffeomorphism symmetries of the compact dimension
lead to an electro-magnetic like gauge symmetry:
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Problem: Show that the diffeomorphism symmetry acting on the coordinate y, viz.
y → y+λ(x) appears in the (D−1)-dimensional theory as a U(1) gauge transformation
Aµ → Aµ − ∂µλ

The appearance of this electromagnetic gauge field from gravity in higher dimensions
was originally pointed out by Kaluza and Klein why back in the 1920’s.

Note that the Bosonic string effective action only depends on the metric and Ricci
scalar R. Therefore our next job is to work out the 26-dimensional curvature scalar in
terms of the 25-dimensional Ricci scalar, Aµ and ρ. A fairly lengthy calculation (try it)
shows that

R̂ = R− 2(∂ρ)2 − 2D2ρ− 1

4
e2ρF 2 (6.23)

where Fµν = ∂µAν − ∂νAµ and all term on the right hand side are evaluated using the
metric gµν .

Putting Ĥµνλ = 0 for now we find that

Seffective = − πR

α′13

∫
d25xeρ−2φ

(
R− 2(∂ρ)2 − 2D2ρ− 1

4
e2ρF 2 − 4(∂φ)2

)
(6.24)

Next consider b̂µν . This leads to the 25-dimensional fields

b̂µν = bµν

b̂µy = −b̂yµ = Bµ

(6.25)

The field string Ĥµνλ is therefore

Ĥµνλ = ∂µbνλ + ∂νbλµ + ∂λbµν

= Hµνλ

Ĥµνy = ∂µb̂νy + ∂ν b̂yµ

= ∂µBν − ∂νBµ

= Gµν (6.26)

where we have used the fact that ∂y = 0. Thus in 25 dimensions we find a 2-form Bµν

and in addition a vector field Bµ with field strength Gµν .

To complete the reduction of the effective action we need only evaluate ĤµνλĤ
µνλ.

ĤµνλĤ
µνλ = gµµ′gνν′gλλ′ĤµνλĤµ′ν′λ′ + 3gµµ′gνν′gyyĤµνzĤµ′ν′y

+6gµµ′gyν′gλyĤµyλĤµ′ν′y + 6gµµ′gνν′gλyĤµνλĤµ′ν′y

= HµνλH
µνλ + 3(e−2ρ + A2)GµνG

µν − 6GµνG
µλAνAλ − 6HµνλG

µνAλ

(6.27)
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where it is understood that on the right hand side all metric contractions only involve
the 25-dimensional metric gµν whereas on the left hand side the 26-dimensional metric
ĝµν is used. This expression can be cleaned up slightly by writing

Kµνλ = Hµνλ − 3G[µνAλ] (6.28)

so that
Ĥ2 = KµνλK

µνλ + 3e−2ρGµνG
µν (6.29)

Thus the compactified effective action is

Seffective = − πR

α′13

∫
d25xeρ−2φ

(
R− 2(∂ρ)2 − 2D2ρ− 1

4
e2βρF 2 − 4(∂φ)2

+
1

12
KµνλK

µνλ +
1

4
e−2ρGµνG

µν
)

(6.30)

note that one can integrate by parts to remove the D2ρ term from the action. In so
doing one sees that there will be cross term ∂µρ∂

µφ in the kinetic energy. However by
rotating the scalar fields into each other one can write the action without such cross
terms. However this is not particularly illuminating and so we won’t do it here.

Of course one can repeat this process to compactify on n circles reduce to 26 −
n dimensions. This will lead to more and more massless modes. In fact something
remarkable happens. These massless modes organize themselves so that they admit an
O(n, n) symmetry. This is essentially a combination of diffeomorhisms of the circles as
well as T-dualities. However one could compactify on circles all the way down to three
dimensions. Here the only propagating degrees of freedom are scalar fields (the vectors
can be dualized into scalars). Remarkably one finds that the dimensionally reduced
action in three dimensions has an O(24, 24) symmetry, rather than just an O(23, 23)
symmetry.

Furthermore one need not reduce on circles but general compact manifolds. On such
spaces the Laplacian will generically have a discrete spectrum and again one is only
interested in the massless modes, with the massive modes have masses of order of the
inverse size of the manifold. In addition one must find the massless modes for the 3-form
field H. This is related to the topology of the compact manifold.

Problem: Show that, in a background with gµν = ηµν , bµν = φ = 0, the Dp-brane
effective action (5.9) is the dimensional reduction of the D25-brane effective action

SD25 = −T25

∫
d26xTr

(
1 +

1

4
FµνF

µν
)

(6.31)

to p + 1 dimensions. For simplicity you may treat the closed string fields as non-
dynamical and simply take gµν = ηµν , bµν = φ = 0.
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7 Superstrings, M-theory and the Big Picture

In the final section let us try to give an overview of superstrings and M-theory. We can
only provide a superficial treatment here but it is important to note that the superstrings
can be described in great detail and fairly rigorously (see Green Schwarz and Witten,
or Polchinski). M-theory is still undefined and hence that part of the notes might seem
particularly vague. In some sense M-theory is a collection of interrelated results that
strongly support the existence of an underlying and well-defined quantum theory.

7.1 On the Worldsheet

The starting point for the superstring is include Fermions ψµ on the worldsheet so as to
construct a supersymmetric action (see for example the supersymmetry notes)

S = − 1

4πα′

∫
d2σ∂αX

µ∂βX
νηµνη

αβ + iψ̄µγα∂αψ
νηµν (7.32)

This action is also conformally invariant and in addition has the supersymmetry

δXµ = iε̄ψµ , δψµ = γα∂αX
µε (7.33)

for any constant ε.
The mode expansion for the Xµ remains as before with the aµ

n and ãµ
n oscillators.

When we expand the Fermionic fields we can allow for two types of boundary conditions
(let us just consider boundary conditions consistent with a closed string where σ ∼ σ+2π
and Xµ(τ, σ) = Xµ(τ, σ + 2π)):

R : ψµ(τ, σ + 2π) = ψµ(τ, σ)

NS : ψµ(τ, σ + 2π) = −ψµ(τ, σ)

(7.34)

these are known as the Ramond and Neveu-Schwarz sectors respectively. Thus we find

R : ψµ(τ, σ + 2π) =
∑
n∈Z

dne
−inσ+

+ d̃ne
−inσ−

NS : ψµ(τ, σ + 2π) =
∑

r∈Z+ 1
2

bre
−irσ+

+ b̃re
−irσ−

(7.35)

One finds that these satisfy the anti-commutation relations

{dµ
m, d

ν
n} = ηµνδm,−n {bµr , bνs} = ηµνδr,−s

{d̃µ
m, d̃

ν
n} = ηµνδm,−n {b̃µr , b̃νs} = ηµνδr,−s

(7.36)
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with all other anti-commutators vanishing.
Let us compute the intercept a. As before we go to light-cone gauge where we fix

two of the coordinates Xµ and their superpartners ψµ. We then compute the vacuum
energy of the remaining D − 2 Bosonic and Fermionic oscillators. The result depends
on the boundary conditions we use. Noting that the sign of the Fermionic contribution
is opposite to that of a Boson one finds

aR = −D − 2

2

∞∑
n=1

n+
D − 2

2

∞∑
n=1

n

= −D − 2

2

(
− 1

12
+

1

12

)
= 0

(7.37)

and

aNS = −D − 2

2

∞∑
n=1

n+
D − 2

2

∞∑
r=1

(
r +

1

2

)

= −D − 2

2

∞∑
n=1

n+
D − 2

4

∞∑
n=odd

n

= −D − 2

4

(
− 2

12
− 1

12

)
=

D − 2

16
(7.38)

The vanishing of aR is a direct consequence of the fact that there is a Bose-Fermi
degeneracy in the R-sector.

Let us now look at the lightest states. There is a different ground state for each sector
which we denote by |R; p > and |NS; p > where pµ labels the spacetime momentum.
As before we assume that these states are annihilated by any oscillator with positive
frequency.

We see that |R; p > is massless and hence all the higher level states created from
it by the action of a creation operator will be massive with a mass of order the string
scale. However the Ramond ground state |R; p > is degenerate. In particular we see
that there are Fermion zero-modes dµ

0 which satisfy {dµ
0 , d

ν
0} = ηµν , µ, ν = 1, ..., D − 2

in light cone gauge. This is a Clifford algebra and it is known that there is a unique
representation and it is 2[D−2

2
]-dimensional. Thus the Ramond ground state is in fact a

spinor with 2[D−2
2

] independent components.
Let us look at the Neveu-Schwarz ground state |NS, p >. It is clear that since

aNS > 0 this state is a tachyon. We can then consider the higher level states (for
simplicity we just consider open strings)

aµ
−1|NS, p > M2 = 1 +

D − 2

16
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bµ− 1
2

|NS, p > M2 =
1

2
+
D − 2

16

Thus the next lightest state is bµ− 1
2

|NS, p > and its mass-squared is M2 = D−10
16

. Thus if

D < 10 then these states are also tachyonic. However as before the magic (that is gauge
symmetries from null states) happens when these states are massless, i.e. D = 10. In
this case the states aµ

−1|NS, p > are massive. Thus we take D = 10 and aNS = 1/2.
Indeed as before this is forced upon us if we want the SO(1, D − 1) Lorentz symmetry
of spacetime to be preserved in the quantum theory.

Nevertheless we are still left with some bad features. For one the Neveu-Schwarz
ground state is still a tachyon. There is also another puzzling feature: |NS, p > is a
spacetime scalar and hence it must be a Boson. We can then construct the spacetime
vector bµ− 1

2

|NS, p >. From the spacetime point of view this state should be a Boson

since it transforms under Lorentz transformations as a vector. However it is created
from |NS, p > by a Fermionic operator and thus will obey Fermi-statistics. This is
contradictory.

The solution to both these problems is to project out the odd states and in particular
|NS, p >. This is known as the GSO projection. More specifically we declare that
|NS, p > is a Fermionic state. Mathematically we introduce the operator (−1)F which
acts as (−1)F |NS, p >= −|NS, p > and {ψµ, (−1)F} = 0, [Xµ, (−1)F ] = 0. We then
project out all Fermionic states, i.e. states in the eigenspace (−1)F = −1. Thus |NS, p >
and aµ

−1|NS, p > are removed from the spectrum but the massless states bµ− 1
2

|NS, p >
remain.

Let us now consider the Ramond sector states. We already saw that the ground
state here is massless but degenerate. Indeed it is a spinor of SO(8), that is to say
it can be represented by a vector in the 16-dimensional vector space that furnishes a
representation of the Clifford algebra relation {dµ

0 , d
ν
0} = ηµν , µ, ν = 1, ..., 8 (in light-cone

gauge). We need to discuss how (−1)F acts here. There is a natural candidate where we
take (−1)F = ±Γ9, the chirality operator in the 8-dimensional Clifford algebra. Thus
after the GSO projection |R, p > is a chiral spinor with 8 independent components. In
the Ramond sector we project out Bosonic states with (−1)F = 1

In the Ramond sector of the open superstring either choice of sign is equivalent to
the other, it is just a convention. Thus for the open superstring the lightest states are
massless and consist of a spacetime vector (and hence a Boson) bµ− 1

2

|NS, p > along with

a spacetime Fermion |R, p > which can be identified with a chiral spinor. Note that
there is a Bose-Fermi degeneracy: we find 8 Bosonic and 8 Fermionic states.

Let us consider closed strings. Here the states are essentially obtained by taking a
tensor product of left and right moving modes and hence there are four possibilities:

|NS >L ⊗ |NS >R

|R >L ⊗ |R >R

|NS >L ⊗ |R >R

|R >L ⊗ |NS >L
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(7.39)

In this case the relative sign taken in the GSO projection is important. There are two
choices: either we chose the same chirality projector for the left and right moving modes
or the opposite. This leads to two distinction theories known as the type IIB and type
IIA superstring respectively. The states one find are of the form

|NS >L ⊗ |NS >R

|R+ >L ⊗ |R− >R

|NS >L ⊗ |R− >R

|R+ >L ⊗ |NS >L

(7.40)

for type IIA and

|NS >L ⊗ |NS >R

|R+ >L ⊗ |R+ >R

|NS >L ⊗ |R+ >R

|R+ >L ⊗ |NS >L

(7.41)

for type IIB. Here the ± sign corresponds to the different choice of GSO projector for
the left and right moving modes.

The spacetime Bosons come from either the NS-NS or R-R sectors whereas the
spacetime Fermions from the NS-R or R-NS sectors. One sees that in the type IIA
theory there are Fermionic states with both spacetime chiralities but in the type IIB
theory only one chirality appears.

Let us look more closely at the Bosonic states. The NS-NS sector is essentially the
same as the spectrum of the Bosonic string the we considered before and contains a
graviton, Kalb-Ramond field and a dilaton. This sector is universal to all closed string
theories. However we also have R-R fields. These give rise to spacetime n-form field
strengths Fµ1...µn with n even for type IIA and n odd for type IIB.

We motivated superstrings by considering a worldsheet action that was supersym-
metric and hence had an equal number of Bosons and Fermions. However it turns out
that, after the GSO projection, these theories also have spacetime supersymmetry, i.e.
their spectrum of states and interactions is supersymmetric in ten-dimensions.

Furthermore on can introduce Dp-branes into the type II string theories. These are
supersymmetric and stable if p is even for type IIA and odd for type IIB. In distinction
to the Bosonic string case these stable D-branes are electrically or magnetically charged
with respect to the R-R fields F(p+2). Here one again finds massless U(N) gauge fields
but in addition massless Fermions that live on the D-brane and transform under the
adjoint representation of U(N). Again one can construct very complicated intersect-
ing configurations of D-branes and hopefully even find the Standard Model of Particle
Physics.
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This has been a short summary of the type II string theories. There are three
other possibilities. For example one can introduce open strings. Since open strings can
combine into a closed string this theory must also contain closed strings but the presence
of open strings leads to SO(32) gauge fields in spacetime. A more bizarre construction
is to exploit the fact the left and right moving modes sectors of the string worldsheet
do not talk to each other (in a closed string). Thus one could take the left moving
modes of a superstring living in 10 dimensions and tensor them with the right moving
modes of a Bosonic string, which live in 26 dimensions. Remarkably this can be made
to work and leads to two types of string theories known as the Heterotic strings. These
theories contain E8 × E8 or SO(32) spacetime gauge fields. The most important point
about these other three theories is that they have chiral Fermions that are charged under
the gauge group and such fields are known to be an important feature of the Standard
Model.

7.2 The Spacetime Effective Action

The superstrings have a spacetime supersymmetry and include gravity. Therefore their
low energy effective actions are those of a supergravity. Such theories are so tightly
constrained by their symmetries that, at least to lowest order in derivatives, their action
is unique and known. In particular the Bosonic section of these theories is given by

SIIA =
1

α′4

∫
d10x

√
−g

(
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )− 1

4
F 2

2 −
1

48
F 2

4

)
+ . . .

SIIB =
1

α′4

∫
d10x

√
−g

(
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )− 1

2
F 2

1 −
1

12
F 2

3 −
1

240
F 2

5

)
+ . . .

where the ellipsis denotes additional terms (known as Chern-Simons terms) and the
subscript n = 1, 2, 3, 4, 5 indicates the number of anti-symmetric indices of the field
strength Fn = Fµ1...µn . Note that in the SIIB case there is field strength Fµ = ∂µa which
can be thought of as arising from an additional scalar. In addition the equation of motion
that arises from SIIB must be supplemented by the constraint that the five-index field
strength Fµ1µ2µ3µ4µ5 is self-dual:

Fµ1µ2µ3µ4µ5 =
1

5!

√
−gεµ1µ2µ3µ4µ5ν1ν2ν3ν4ν5F

ν1ν2ν3ν4ν5 (7.42)

Earlier we saw that when compactified on a circle the Bosonic string admits a new
duality known as T-duality. In the superstring case one finds that type IIA string theory
on a circle of radius R is equivalent to type IIB string theory on a circle of radius α′/R.
However one finds more remarkable dualities. It turns out that the type IIB supergravity
has a symmetry φ↔ −φ.2 From the point of view of the string theory this is suggests
a duality between strongly coupled strings with gs large and weakly coupled stings with
gs small. This self-duality of the type IIB string is known as S-duality.

2This is simplifying things if the R-R-scalar a is not zero but a more general statement is true in
that case.
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What happens in the strong coupling limit, gs → ∞ of the type IIA superstring?
Well is it conjectured that

√
α′e2φ/3 can be interpreted as the radius of an extra, eleventh,

dimension. There is a unique supergravity theory in eleven dimensions and indeed the
type IIA string effective action comes from dimensional reduction of this theory on a
circle. However there is now a great deal of evidence that the whole of type IIA string
theory arises as an expansion of an eleven-dimensional theory about zero-radius (in on
of its dimensions). This theory is known as M-theory and is rather poorly understood.
However it’s existence does seem be justified. The lowest order term is in a derivative
expansion is fixed by supersymmetry to be

SM =
1

κ9

∫
d11x

√
−g(R− 1

48
G2

4) + . . . (7.43)

where again the ellipsis denotes Chern-Simons and Fermionic terms.
Furthermore it promises to be very powerful as if controls not only the strong coupling

limit of the type IIA string but, as a consequence of T-duality and S-duality, as well as
some other dualities, the strong coupling limit of all the five known string theories. Thus
one no longer thinks of there being five separate string theories but instead one unique
theory, M-theory, which contains five different perturbative descriptions depending on
what one considers to be a small parameter.

There are no D-branes in M-theory as there is no microscopic description in terms
of open strings. However there are supersymmetric 2-brane and 5-brane solutions which
are electrically and magnetically charged with respect to the 4-index field G4. These
are known as the M2-brane and M5-brane.

Appendix: Conventions

We work in D-dimensional spacetime with “mostly plus” signature

ηµν = ηµν =


−1

+1
+1

...
+1

 (7.44)

We use Greek indices from the middle of the alphabet for D-dimensional spacetime
xµ, µ = 0, 1, , 2, ..., D − 1 and Roman ones for space alone xi, i = 1, 2, ..., D − 1. We
use Greek letters from the beginning of the alphabet for worldvolume coordinates σα,
α = 0, 1 say. Repeated indices are summed over. For a metric γαβ we use γ = det(γαβ).
In two dimensions there is the anti-symmetric ε-symbol εαβ = −εβα which is defined
to have ε01 = 1. We use a, b = 1, ..., N to label parallel D-branes, i.e. as Chan-Paton
indices. We use units where h̄ = c = 1.
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