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1 Introduction

Particle Physics is the study of matter at the smallest scales that can be accessed
by experiment. Currently energy scales are as high as 100GeV which corresponds to
distances of 10−16cm (recall that the atomic scale is about 10−9cm and the nucleus is
about 10−13cm). Our understanding of Nature up to this scale is excellent1. Indeed it
must be one of the most successful and accurate scientific theories and goes by the least
impressive name “The Standard Model of Elementary Particle Physics”. This theory
is a relativistic quantum theory which postulates that matter is made up of point-sized
particles (in so far as it makes sense to talk about particles as opposed to waves). The
mathematical framework for such a theory is quantum field theory. There are an infinite
list of possible quantum field theories and the Standard Model is one of these, much like
a needle in a haystack.

Technically the Standard Model is a relativistic quantum gauge field theory. What
does this mean? The word quantum presumably requires no explanation. The term
relativistic refers to the fact that it is consistent with special relativity.

What does is mean to be a gauge theory? The precise meaning of this is a substantial
part of this course. In a nutshell a gauge theory means that there are symmetries which
are ‘local’. I hope that you are familiar with a symmetry. This is transformation of the
fields that leaves the action invariant. If we denote the fields of the theory by ΦA then
this means that there is an infinitesimal transformation

δΦA = εrTAr BΦB , (1.1)

where εr are constant infinitesimal parameters labeled by r, such that

δL =
∑
A

∂L
∂ΦA

δΦA = 0 (1.2)

(up to a possible total derivative). To be a gauge symmetry means that this is still true
when εr is allowed to become arbitrary functions of spacetime, i.e. a different symmetry
transformation is allowed at each point in spacetime! This seems remarkable (at least
it does to me). But what is more remarkable is that this is how Nature really works.

In fact one can prove that the only renormalization four-dimensional quantum field
theories are gauge theories. What does this mean? Well it is sometimes said that
quantum field theories only make sense if they are renormalizable. Renormalizable
means that all the divergences that arise in calculations can be compensated for by a
(divergent) shift of the parameters of the theory (coupling constants etc.). This isn’t
the modern picture. Following Wilson we now suppose that there is some better, or
more fundamental, theory at high energy that doesn’t have divergences. As one does
to lower energies it is necessary to average out over the higher energy modes above
some cut-off Λ. This process is referred to as ‘integrating out’. As a result the various

1This ignores important issues that arise in large and complex systems such as those that are studied
in condensed matter physics.
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parameters of the theory ‘run’ via the renormalization group as a function of the energy
scale Λ. Renormalizable interactions remain finite as Λ→ 0 whereas non-renormalizable
interactions have their coupling constants run to zero when Λ→ 0. Thus at low energies
the only interactions that we observe are renormalizable ones (these are sometimes called
relevant or marginal where as non-renormalizable interactions are call irrelevant). So
whatever the final theory of Nature is it contains gauge symmetries and interactions
and only this part of the theory is observable at the low scales that we have observed.

In this language the statement that gravity is non-renormalizable turns into the
statement that it can be neglected at low energy as a force that acts between two
particles. Of course this interpretation of renormalization presupposes that there is a
good theory at high energy (know as a ‘UV completion’). Such a theory may be provided
by String Theory.

There is currently a great deal of interest focused on the LHC (Large Hadron Col-
lider) in CERN. In a year or two these experiments will probe higher energy scalars and
therefore shorter distances. The great hope is that new physics, beyond that predicted
by the Standard Model, will be observed. One of the main ideas, in fact probably the
most popular, is that supersymmetry will be observed. There are a few reasons for this:

• The Hierarchy problem: The natural scale of the Standard Model is the electro-
weak scale which is at about 1TeV (hence the excitement about the LHC). In a
quantum field theory physical parameters, such as the mass of the Higg’s Boson,
get renormalized by quantum effects. Why then is the Higg’s mass not renormal-
ized up to the Planck scale? The masses of Fermions can be protected by invoking
a symmetry but there is no such mechanism for scalar fields. To prevent this
requires and enormous amount of fine-tuning (parameters in the Standard Model
must be fixed to an incredible order or magnitude). However in a supersymmetric
model these renormalizations are less severe and fine-tuning is not required (or at
least is not as bad).

• Unification: Another key idea about beyond the Standard Model is that all the
gauge fields are unified into a single, simple gauge group at some high scale, roughly
1015GeV . There is some non-trivial evidence for this idea. For example the particle
content is just right and also grand unification gives an accurate prediction for the
Weinberg angle. Another piece of evidence is the observation that, although the
electromagnetic, strong and weak coupling constants differ at low energy, they
‘run’ with energy and meet at about 1015GeV . That any two of them should meet
is trivial but that all three meet at the same scale is striking. In fact they don’t
quite meet in the Standard Model but they do in a supersymmetric version.

• Dark Matter: It would appear that most, roughly 70%, of the matter floating
around in the universe is not the stuff that makes up the Standard Model. Super-
symmetry predicts many other particles other than those observed in the Standard
Model, the so so-called superpartners, and the lightest superpartner (LSP) is con-
sidered a serious candidate for dark matter.
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• Sting Theory: Although there is no empirical evidence for String Theory it is a
very compelling framework to consider fundamental interactions. Its not clear that
String Theory predicts supersymmetry but it is certainly a central ingredient and,
symbiotically, supersymmetry has played a central role in String Theory and its
successes. Indeed there is no clear boundary between supersymmetry and String
Theory and virtually all research in fundamental particle physics involves both of
them (not that this is necessarily a good thing).

If supersymmetry is observed in Nature it will be a great triumph of theoretical
physics. Indeed the origin of supersymmetry is in string theory and the two fields have
been closely linked since their inception. If not one can always claim that supersym-
metry is broken at a higher energy (although in so doing the arguments in favour of
supersymmetry listed above will cease to be valid). Nevertheless supersymmetry has
been a very fruitful subject of research and has taught us a great deal about mathe-
matics and quantum field theory. For example supersymmetric quantum field theories,
especially those with extended supersymmetry, can be exactly solved (in some sense)
at the perturbative and non-perturbative levels. Hopefully this course will convince the
student that supersymmetry is a beautiful and interesting subject.

2 Gauge Theory

2.1 Electromagnetism

Our first task is to explain the concept of a gauge theory. The classic example of a
gauge theory is Maxwell’s theory of electromagnetism.

However we will start by considering quantum mechanics and the Schrödinger equa-
tion:

i
∂Ψ

∂t
= − 1

2m
∂i∂

iΨ + V (x)Ψ (2.3)

As you are no doubt familiar in quantum mechanics the overall phase of the the wave
function Ψ has no physical interpretation what so ever. Thus the physical state space is
actually a quotient L2(R3)/U(1) where L2(R3) is the Hilbert space of square integrable
functions on R3 and U(1) acts by

Ψ→ eiqθΨ (2.4)

for some constant q.2 Clearly the Schrödinger equation respects this transformation.
To gauge such a symmetry we suppose that now the parameter θ is allowed to

be a function of spacetime: θ(x). The problem with Schrödinger’s equation is that
∂µ(eiqθΨ) 6= eiqθ∂µΨ but rather

∂µ(eiqθΨ) = eiqθ(∂µΨ + iq∂µθΨ) (2.5)

2This quotient is also known as a projective Hilbert space.
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To remedy this we introduce a covariant derivative

Dµ = ∂µ − iqAµ (2.6)

where we have also introduced a new field Aµ(x) that is called a gauge field.3 Let us
suppose that under the transformation (2.4) Aµ transforms as Aµ → Aµ + δAµ. What
we want is to choose δAµ such that DµΨ → eiqθDµΨ, i.e. we want DµΨ to transform
covariantly, which means to say that it transforms in the same was as Ψ. This will be
the case if

eiqθ(∂µΨ + iq∂µθΨ− iqAµΨ− iqδAµΨ) = eiqθ(∂µΨ− qAµΨ) (2.7)

Thus we see that δAµ = ∂µθ so that

Aµ → Aµ + ∂µθ (2.8)

You will have seen such a transformation before in Maxwell’s Theory and indeed we
will see that our resulting equations describe a particle in a background electromagnetic
field.

To continue now note that we can write a modified Schrödinger equation that is
invariant under (2.4):

iDtΨ = − 1

2m
DiD

iΨ + V (x)Ψ (2.9)

If we recall that the Schrödinger equation corresponds to the classical equation E =
p2

2m
+ V then we see that our new equation comes from the classical equation

E + qA0 =
1

2m
(pi − qAi)(pi − qAi) + V (2.10)

This is precisely what one expects for a particle with charge q moving in a background
electromagnetic field described by the vector potential Aµ (for example this is derived
in the String Theory and Brane course).

Next we set the potential to zero and consider a relativistic generalization, namely
the Klein-Gordon equation:

DµD
µΨ = 0 (2.11)

Problem: Show that this equation comes from the action

S = −1

2

∫
d4x(DµΨ)∗DµΨ (2.12)

Our next step is to introduce some dynamics for the gauge field Aµ. Our first step
is to notice that the combination

Fµν = ∂µAν − ∂νAµ (2.13)

3Mathematically Dµ is known as a connection and Aµ is the connection one-form.
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is gauge invariant; Fµν → Fµν under Aµ → Aµ + ∂µθ. It is helpful to see this from a
different perspective. An elementary theory in calculus states that [∂µ, ∂ν ] = 0 (indeed
this is why Fµν is gauge invariant). However we now find

[Dµ, Dν ]Ψ = (∂µ − iqAµ)(∂ν − iqAν)Ψ− (µ↔ ν)

= ∂µ∂νΨ− iqAµ∂νΨ− iq∂µAνΨ− iqAν∂µΨ− q2AµAνΨ− (µ↔ ν)

= −iq(∂µAν − ∂νAµ)Ψ (2.14)

Thus we can write
[Dµ, Dν ]Ψ = −iqFµνΨ (2.15)

From here its easy to see that, under (2.4), the left hand side transforms as [Dµ, Dν ]Ψ→
eiqθ[Dµ, Dν ]Ψ while the right hand side transforms as −iqFµνΨ → −iqF ′µνeiqθΨ. Since
these must be equal we find

F ′µν = eiqθFµνe
−iqθ = Fµν (2.16)

Fµν is called the field strength of Aµ and is of course familiar from Electromagnetism.
Since Fµν involves a derivative acting on Aµ it can be used to give a kinetic term.

Thus we are lead to the action

SScalarQED = −
∫
d4x

1

4
FµνF

µν +
1

2
(DµΨ)∗DµΨ (2.17)

Problem: Calculate the equations of motion of this Lagrangian to derive Maxwell’s
equations

∂µFµν = jν ∂[µFνλ] = 0 (2.18)

What is jν in terms of Ψ?

Note that the second equation is trivially true by the definition of Fµν in terms of
Aµ. It is called a Bianchi identity.

2.2 Yang-Mills Theory

We can now try to generalize this construction. Before we do so let us repeat what
have. We had a complex scalar field φ that transforms under a local (i.e. spacetime
dependent) U(1) group element as4

φ→ eiqθφ (2.19)

Here q is an arbitrary parameter that we latter identified with the electric charge. More
abstractly one sees that the map

Uq : θ → eiqθ (2.20)

4Note that we are now using φ instead of Ψ to denote the scalar field. This is more in line with
standard practice, which we will follow below, where ψ is used to denote a Fermion.
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for any fixed q, provides a representation of U(1). In other words the scalar field φ takes
values in vector space (here C) that is endowed with representation of U(1). We also
introduced a gauge field Aµ that defined a covariant derivative

Dµφ = ∂µφ− iqAµφ (2.21)

We constructed a field strength through the formula

[Dµ, Dν ] = −iqFµν (2.22)

Clearly we could also introduce many scalar fields, each with a different charge q. The
resulting action is

S = −
∫
d4x

1

4
FµνF

µν +
1

2

∑
q

(Dµφq)
∗Dµφq (2.23)

Mathematically this corresponds to allowing fields with different representations of U(1).
Under a gauge transformation Fµν had a trivial transformation. However given the

discussion around (2.16) we see that it can be thought of as

Fµν → eiqθFµνe
−iqθ (2.24)

where the two phase factors cancel. This corresponds to the adjoint action of the group

Uad(g) : X → gXg−1 (2.25)

Because U(1) is Abelian this group action is trivial.
We can now see how to try to generalize this by replacing U(1) by any Lie group

G and taking the scalars to take values in a space that carries a representation U(g)
of G. Recall that this means that U(g) is a matrix U(g)ab that acts on a vector space.
This in turn means that the scalars will be vectors in some complex vector space (not a
vector in spacetime!) that we denote by φa. Although in some cases, where the group G
admits a real representation, they can be real. To make equations clearer we will often
drop the a, b, ... indices and matrix multiplication will be understood to apply.

Thus we postulate the gauge symmetry

φ→ U(g)φ = φ′, i .e. φa → U(g)abφ
b = φ′a (2.26)

where g(x) is allowed to depend on spacetime. Next we need to construct a covariant
derivative. To this end we postulate

Dµφ = ∂µφ− iU(Aµ)φ (2.27)

and require that (Dµφ)′ = D′µφ
′. This is equivalent to

U(g)(∂µφ− iU(Aµ)φ) = ∂µ(U(g)φ)− iU(A′µ)U(g)φ (2.28)
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This implies that
U(A′µ)U(g) = −i∂µU(g) + U(g)U(Aµ) (2.29)

and hence
U(A′µ) = −i∂µU(g)U(g−1) + U(g)U(Aµ)U(g−1) (2.30)

We need this to apply regardless of the representation that the scalar fields live in.
Hence we take

A′µ = −i∂µgg−1 + gAµg
−1 (2.31)

Problem: Show that (2.31) can be written as

A′µ = ig∂µg
−1 + gAµg

−1 (2.32)

We next need to obtain a field strength. Again we consider

[Dµ, Dν ]φ = (∂µ − iU(Aµ))(∂ν − iU(Aν))φ− (µ↔ ν)

= ∂µ∂νφ− iU(Aµ)∂νφ− i∂µU(Aν)φ− iU(Aν)∂µφ− U(Aµ)U(Aν)φ− (µ↔ ν)

= −i(∂µU(Aν)− ∂νU(Aµ)− i[U(Aµ), U(Aν)])φ (2.33)

= −iU(Fµν)φ

where
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (2.34)

How does Fµν change under a gauge transformation? Well we have

[D′µ, D
′
ν ]φ
′ = −iU(g)[Dµ, Dν ]φ = −iU(g)U(Fµν)φ (2.35)

as well as
[D′µ, D

′
ν ]φ
′ = −iU(F ′µν)φ

′ = −iU(F ′µν)U(g)φ (2.36)

Since these must be equal we find

F ′µν = gFµνg
−1 (2.37)

Now consider the special case of constant, i.e. global symmetry transformations. In this
case we can neglect the derivative term and we see that Aµ is in the adjoint representation
of the group G. This implies that Aµ and Fµν take values in Lie-algebra L(G) and indeed
we see the presence of the commutator.

To construct an action we require that the representation vector space where the
representation U(g) acts has an invariant inner-product

〈φ1, φ2〉 = hab(φ
a
1)∗φb2 (2.38)

for some matrix hab (which we will always take to simply be the identity matrix).
Invariance means that

〈U(g)φ1, U(g)φ1〉 = 〈φ1, φ2〉 (2.39)
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Note that the inner-product will depend on the representation. This gives rise to a norm
which we simply denote by |φ|2 = 〈φ|φ〉.

For the gauge field we require that the Lie-algebra L(G) has also has an invariant
inner-product. This is sometimes called a trace-form; Tr(X, Y ). Invariance means that
Tr(gXg−1, gY g−1) = Tr(X, Y ).

The classic example is to consider φ to be a complex vector in CN with 〈φ1, φ2〉 =
φ†1φ2, where † is the ordinary matrix Hermitian conjugate, i.e. transpose and complex
conjugated. The invariance of the inner-product corresponds to the condition

φ†1U(g)†U(g)φ2 = φ†1φ2 (2.40)

Thus invariance means that U(g) is a unitary matrix: U(g)−1 = U(g)†, i.e. G ⊆ U(N).
Note that G need not be all of U(N). In this case the invariant trace-form on the Lie-
algebra L(G) is simple the usual matrix trace when we view Aµ as an N ×N matrix.

Thus we find a gauge invariant action by taking

SYM = − 1

g2
YM

∫
d4x

1

4
Tr(Fµν , F

µν) +
1

2
|Dµφ|2 (2.41)

and again one could include additional fields in different representations of G. This is
the celebrated Yang-Mills action (although we haven’t yet included Fermions). The case
without any scalar (of Fermion) fields is called pure Yang-Mills (or sometimes pure glue
in the case of QCD).

Note that we have included an arbitrary constant 1/g2
YM in front known as the

coupling constant. Don’t confuse this gYM which is a real constant, with the g ∈ G
that we have used for a group element. Perhaps it would be best to choose a different
variable for the coupling constant however gYM is more or less exclusively used in the
literature. We could have introduced separate constants in front of each term however
by rescaling the fields we can always put the action in this form. Indeed we can still
make the rescaling

Aµ → gYMAµ φ→ gYMφ (2.42)

Problem: Show that the result of this rescaling puts the action in the form

SYM = −
∫
d4x

1

4
Tr(F̃µν , F̃

µν) +
1

2
|D̃µφ|2 (2.43)

where F̃µν = ∂µAν − ∂νAµ − igYM [Aµ, Aν ] and D̃µφ = ∂µφ− igYMU(Aµ)φ.

In this form one sees that gYM controls the strength of the non-linear - interacting
- terms. More generally we could add a potential to the action, so long as it is gauge
invariant. This is the case if V = V (|φ|2).

What are the interacting terms? Well we see that if G is non-Abelian then there
are terms that involve ∂µAν [Aµ, Aν ] and [Aµ, Aν ][Aµ, Aν ]. Thus the gauge fields interact
with themselves. This is in distinction to electromagnetism where the photons propagate
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freely away from sources. There are also interactions ∂µφU(Aµ)φ and U(Aµ)φU(Aµ)φ
between the scalars and gauge fields.

Problem: Calculate the equations of motion that result from SYM .

In the physics literature one often doesn’t write the Yang-Mills action in this form.
Physicists like indices and rather than looking at finite transformations they content
themselves with infinitesimal variations. To do this we represent g = exp(iθrTr) =
1 + iθrTr + . . . where Tr are a matrix representation of the Lie-algebra of G, i.e. (Tr)

a
b,

r = 1, ..., dim(G), a, b,= 1, ..., dim(U). Here θr are spacetime dependent parameters
which we take to be infinitesimal. The generators Tr satisfy a commutation relation

[Tr, Ts] = ifrs
tTt (2.44)

This remains true for all representations although the nature and size of the matrices
Tr will change from representation to representation. The factor of i is to ensure that
the Tr are Hermitian. We can now write

Dµφ
a = ∂µφ

a − iArµ(Tr)
a
bφ
b (2.45)

F r
µν = ∂µA

r
ν − ∂νArµ + fst

rAsµA
t
ν

Problem: Derive this second formula by computing

[Dµ, Dν ]φ
a = −iU(Fµν)

a
bφ
b = −iF r

µν(Tr)
a
bφ
b (2.46)

We now have that

Tr(Fµν , F
µν) = F r

µνF
sµνTr(T adr , T ads ) (2.47)

where T adr are the representation matrices in the adjoint representation. The adjoint
representation of a Lie-algebra acts as

adT (X) = [T,X] (2.48)

The Jacobi identity ensures that this is indeed a representation:

[adT , adS](X) = [T, [S,X]]− [S, [T,X]]

= −[[S,X], T ]− [[X,T ], S] (2.49)

= [[T, S], X]

= ad[T,S](X)

To see what the matrix representation is we expand an element X = XsT ads

[Tr, X] = [Tr, Ts]X
s = ifrs

tXsTt = (T adr )tsX
sTt (2.50)
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Note that here the a, b indices are the r, s indices since the representation space is the
Lie-algebra itself. This means

(T adr )ts = ifrs
t (2.51)

and hence
Tr(Fµν , F

µν) = F r
µνF

sµνκrs κrs = −frptfstp (2.52)

In general one finds κrs = Cδrs for a compact Lie-group G, where C > 0.

We can now write the Yang-Mills action as

SYM = − 1

g2
YM

∫
d4x

1

4
F r
µνF

sµνκrs +
1

2
hab(D

µφa)∗Dµφ
b (2.53)

or equivalently

SYM = −
∫
d4x

1

4
F̃ r
µνF̃

sµνκrs +
1

2
hab(D̃

µφa)∗D̃µφ
b (2.54)

Problem: Determine δArµ under and infinitesimal gauge transformation.

3 Fermion: Clifford Algebras and Spinors

We are still not in a position to write down the Standard Model since we haven’t
discussed Fermions. Since the details are crucial before proceeding it is necessary to
review in detail the formalism that is needed to describe spinors and Fermions. We
shall now do this. It is helpful to generalize to spacetime with D dimensions. The
details of spinors vary slightly from dimension to dimension (although conceptually
things are more or less the same). To help highlight the differences between vectors and
spinors it is useful to consider a general dimension.

Fermions first appeared with Dirac who thought that the equation of motion for
an electron should be first order in derivatives. Hence, for a free electron, where the
equation should be linear, it must take the form

(γµ∂µ −M)ψ = 0 (3.1)

Acting on the left with (γµ∂µ +M) one finds

(γµγν∂µ∂ν −M2)ψ = 0 (3.2)

This should be equivalent to the Klein Gordon equation (which is simply the mass-shell
condition E2 − p2 −m2 = 0)

(∂2 −m2)ψ = 0 (3.3)

Thus we see that we can take m = M to be the mass and, since ∂µ∂νψ = ∂ν∂µψ, we
also require that

{γµ, γν} = γµγν + γνγµ = 2ηµν (3.4)

This seemingly innocent condition is in fact quite deep. It first appeared in Mathematics
in the geometrical work of Clifford (who was a student at King’s). The next step is to find
representations of this relation which reveals an ‘internal’ spin structure to Fermions.
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3.1 Clifford Algebras

Introducing Fermions requires that we introduce a set of γ-matrices. These furnish a
representation of the Clifford algebra, which is generically taken to be over the complex
numbers, whose generators satisfy the relation

{γµ, γν} = 2ηµν (3.5)

Note that we have suppressed the spinor indices α, β. In particular the right hand
side is proportional to the identity matrix in spinor space. We denote spinor indices
by α, β.... Although we will only be interested in the four-dimensional Clifford algebra
in this course it is instructive to consider Clifford algebras in a variety of dimensions.
Each dimension has its own features and these often play an important role in the
supersymmetric theories that can arise.

One consequence of this relation is that the γ-matrices are traceless (at least for
D > 1). To see this we evaluate

2ηµνTr(γλ) = Tr({γµ, γν}γλ)
= Tr(γµγνγλ + γνγµγλ)

= Tr(γµγνγλ + γµγλγν)

= Tr(γµ{γν , γλ})
= 2ηνλTr(γµ) (3.6)

Choosing µ = ν 6= λ immediately implies that Tr(γλ) = 0

Theorem: In even dimensions there is only one non-trivial irreducible representation
of the Clifford algebra, up to conjugacy, i.e. up to a transformation of the form γµ →
UγµU

−1. In particular the (complex) dimension of this representation is 2D/2, i.e. the
γ-matrices will be 2D/2 × 2D/2 complex valued matrices.

Without loss of generality one can choose a representation such that

γ†0 = −γ0 , γ†i = γi (3.7)

which can be written as
γ†µ = γ0γµγ0 (3.8)

An even-dimensional Clifford algebra naturally lifts to a Clifford algebra in one
dimension higher. In particular one can show that

γD+1 = cγ0γ1...γD−1 (3.9)

anti-commutes with all the γµ’s. Here c is a constant which we can fix, up to sign, by
taking γ2

D+1 = 1. In particular a little calculation shows that

γ2
D+1 = −(−1)D(D−1)/2c2 (3.10)
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Here the first minus sign comes from γ2
0 whereas the others come from anti-commuting

the different γµ’s through each other. In this way we find that

c = ±i(−1)D(D−1)/4 (3.11)

Thus we construct a Clifford Algebra in (D + 1)-dimensions. It follows that the
dimension (meaning the range of the spinor indices α, β...) of a Clifford algebra in
(D + 1)-dimensions is the same as the dimension of a Clifford algebra in D-dimensions
when D is even.

In odd dimensions there are two inequivalent representations. To see this one first
truncates down one dimension. This leads to a Clifford algebra in a even dimension
which is therefore unique. We can then construct the final γ-matrix using the above
procedure. This leads to two choices depending on the choice of sign above. Next
we observe that in odd-dimensions γD+1, defined as the product of all the γ-matrices,
commutes with all the γµ’s. Hence by Shur’s lemma it must be proportional to the
identity. Under conjugacy one therefore has γD+1 → UγD+1U

−1 = γD+1. The constant
of proportionality is determined by the choice of sign we made to construct the final γ-
matrix. Since this is unaffected by conjugation we find two representation we constructed
are inequivalent.

We can also construct a Clifford algebra in D + 2 dimensions using the Clifford
algebra in D dimensions. Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.12)

be the ubiquitous Pauli matrices. If we have the Clifford algebra in D-dimensions given
by γµ, µ = 0, 1, 2, ..., D − 1 then let

Γµ = 1⊗ γµ
ΓD = σ1 ⊗ γD+1

ΓD+1 = σ3 ⊗ γD+1

(3.13)

where we have used Γµ for (D + 2)-dimensional γ-matrices. One readily sees that
this gives a Clifford algebra in (D + 2)-dimensions. Note that this gives two algebras
corresponding to the two choices of sign for γD+1. However these two algebras are
equivalent under conjugation by U = σ2⊗1. This is to be expected from the uniqueness
of an even-dimensional Clifford algebra representation.

Having constructed essentially unique γ-matrices for a given dimension there are
two special things that can happen. We have already seen that in even dimensions one
finds an “extra” Hermitian γ-matrix, γD+1 (so in four dimensions this is the familiar
γ5). Since this is Hermitian it has a basis of eigenvectors with eigenvalues ±1 which are
called the chirality. Indeed since the γ-matrices are traceless half of the eigenvalues are
+1 and the other half −1. We can therefore write any spinor ψ uniquely as

ψ = ψ+ + ψ− (3.14)
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where ψ± has γD+1 eigenvalue ±1. A spinor with a definite γD+1 eigenvalue is called a
Weyl spinor.

The second special case occurs when the γ-matrices can be chosen to be purely real.
In which case it is possible to chose the spinors to also be real. A real spinor is called a
Majorana spinor.

Either of these two restrictions will cut the number of independent spinor components
in half. In some dimensions it is possible to have both Weyl and Majorana spinors
simultaneously. These are called Majorana-Weyl spinors. This reduces the number
of independent spinor components to a quarter of the original size. Spinors without
any such restrictions are called Dirac spinors. Which restrictions are possible in which
dimensions comes in a pattern which repeats itself for dimensions D modulo 8.

Let us illustrate this by starting in low dimensions and work our way up. We will
give concrete example of γ-matrices but it is important to bare in mind that these are
just choices - there are other choices.

3.1.1 D=1

If there is only one dimension, time, then the Clifford algebra is the simple relation
(γ0)2 = −1. In other words γ0 = i or one could also have γ0 = −i. It is clear that there
is no Majorana representation.

3.1.2 D=2

Here the γ-matrices can be taken to be

γ0 =
(

0 1
−1 0

)
γ1 =

(
0 1
1 0

)
(3.15)

One can easily check that γ2
0 = −γ2

1 = −1 and γ0γ1 = −γ1γ0.
Here we have a real representation so that we can choose the spinors to also be real.

We can also construct γ3 = cγ0γ1 and it is also real:

γ3 = −γ0γ1 =
(

1 0
0 −1

)
(3.16)

Thus we can have Weyl spinors, Majorana spinors and Majorana-Weyl spinors. These
will have 2, 2 and 1 real independent components respectively whereas a Dirac spinor
will have 2 complex, i.e. 4 real, components.

3.1.3 D=3

Here the γ-matrices can be constructed from D = 2 and hence a natural choice is

γ0 =
(

0 1
−1 0

)
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γ1 =
(

0 1
1 0

)
γ2 =

(
1 0
0 −1

)
(3.17)

(we could also have taken the opposite sign for γ2). These are just the Pauli matrices
(up to a factor of i for γ0). Since we are in an odd dimension there are no Weyl spinors
but we can choose the spinors to be Majorana with only 2 real independent components.

3.1.4 D=4

Following our discussion above a natural choice is

γ0 = 1⊗ iσ2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



γ1 = 1⊗ σ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



γ2 = σ1 ⊗ σ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



γ3 = σ3 ⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (3.18)

By construction this is a real basis of γ-matrices. Therefore we can chose to have
Majorana, i.e. real, spinors.

Since we are in an even dimension we can construct the chirality operator γ5 =
iγ0γ1γ2γ3. Note the factor of i which is required to ensure that γ2

5 = 1. Thus in our
basis γ5 is purely imaginary and, since it is Hermitian, it must be anti-symmetric. This
means that it cannot be diagonalized over the reals. Of course since it is Hermitian it
can be diagonalized over the complex numbers, i.e. there is another choice of γ-matrices
for which γ5 is real and diagonal but in this basis the γµ cannot all be real.

Thus in four dimensions we can have Majorana spinors or Weyl spinors but not both
simultaneously. In many books, especially those that focus on four-dimensions, a Weyl
basis of spinors is used. Complex conjugation then acts to flip the chirality. However
we prefer to use a Majorana basis whenever possible (in part because it applies to more
dimensions).
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3.2 Lorentz and Poincare Algebras

We wish to construct relativistic theories which are covariant with respect to the Lorentz
and Poincare symmetries. These consists of translations along with the Lorentz trans-
formations (which in turn contain rotations and boosts). In particular the theory is
invariant under the infinitesimal transformations

xµ → xµ + aµ + ωµνx
ν i .e. δxµ = aµ + ωµνx

ν (3.19)

Here aµ generates translations and ωµν generates Lorentz transformations. The principle
of Special relativity requires that the spacetime proper distance ∆s2 = ηµν∆x

µ∆xν

between two points is invariant under these transformations. Expanding to first order
in ωµν tells us that

∆s2 → ηµν(∆x
µ + ωµλ∆x

λ)(∆xν + ωνρ∆x
ρ)

= ηµν∆x
µ∆xν + ηµνω

µ
λ∆x

λ∆xν + ηµνω
ν
ρ∆x

µ∆xρ

= ∆s2 + (ωµν + ωνµ)∆xµ∆xν (3.20)

where we have lowered the index on ωµν . Thus we see that the Lorentz symmetry
requires ωµν = −ωνµ.

Next we consider the algebra associated to such generators. To this end we want to
know what happens if we make two Poincare transformations and compare the difference,
i.e. we consider δ1δ2x

µ − δ2δ1x
µ. First we calculate

δ1δ2x
µ = ωµ1 νa

ν
2 + ωµ1 λω

λ
2 νx

ν (3.21)

from which we see that

(δ1δ2 − δ2δ1)xµ = (ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1) + (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν)x

ν (3.22)

This corresponds to a new Poincare transformation with

aµ = ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1 ωµν = ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν (3.23)

note that ω(µν) = 1
2
(ωµν + ωνµ) = 0 so this is indeed a Poincare transformation.

More abstractly we think of these transformations as being generated by linear op-
erators Pµ and Mµν so that

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) (3.24)

The factor of 1
2

arises because of the anti-symmetry (one doesn’t want to count the same
generator twice). The factors of i are chosen for later convenience to ensure that the
generators are Hermitian. These generators can then also be though of as applying on
different objects, e.g. spacetime fields rather than spacetime points. In other words we
have an abstract algebra and its action on xµ is merely one representation.
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This abstract object is the Poincare algebra and it defined by the commutators

[Pµ, Pν ] = 0

[Pµ,Mνλ] = −iηµνPλ + iηµλPν

[Mµν ,Mλρ] = −iηνλMµρ + iηµλMνρ − iηµρMνλ + iηνρMµλ

(3.25)

which generalizes (3.22).

Problem: Using (3.24) and(3.25) show that (3.22) is indeed reproduced.

The Poincare group has two clear pieces: translations and Lorentz transformations.
It is not quite a direct product because of the non-trivial commutator [Pµ,Mνλ]. It
is a so-called a semi-direct product. Translations by themselves form an Abelian and
non-compact subgroup. On physical grounds one always takes Pµ = −i∂µ. This seems
obvious from the physical interpretation of spacetime. Mathematically the reason for
this is simply Taylor’s theorem for a function f(xµ):

f(x+ a) = f(x) + ∂µf(x)aµ + . . .

= f(x) + iaµPµf(x) + . . . (3.26)

Thus acting by Pµ will generate a infinitessimal translation. Furthermore Taylor’s the-
orem is the statement that finite translations are obtained from exponentiating Pµ:

f(x+ a) = eia
µPµf(x)

= f(x) + aµ∂µf(x) +
1

2!
aµaν∂µ∂νf(x) + . . . (3.27)

However the other part, the Lorentz group, is non-Abelian and admits interesting
finite-dimensional representations. For example the Standard Model contains a scalar
field H(x) (the Higg’s Boson) which carries a trivial representation and also vector fields
Aµ(x) (e.g. photons) and spinor fields ψα(x) (e.g. electrons). A non-trivial representation
of the Lorentz group implies that the field carries some kind of index. In the two cases
above these are µ and α respectively. The Lorentz generators then act as matrices with
two such indices (one lowered and one raised). Different representations mean that there
are different choices for these matrices which still satisfies (3.25). For example in the
vector representation one can take

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ (3.28)

Notice the dual role of µ, ν indices as labeling both the particular Lorentz generator as
well as it’s matrix components. Whereas in the spinor representation we have

(Mµν)
β
α = − i

2
(γµν)

β
α = − i

4
(γµγν − γµγν) β

α (3.29)
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Here (γµ) β
α are the Dirac γ-matrices. However in either case it is important to realize

that the defining algebraic relations (3.25) are reproduced.

Problem: Verify that these two representation of Mµν do indeed satisfy the Lorentz
subalgebra of (3.25).

3.3 Spinors

Having defined Clifford algebras we next need to discuss the properties of spinors in
greater detail. We will see later that Mµν = i

2
γµν gives a representation of the Lorentz

algebra, known as the spinor representation. A spinor is simply an object that transforms
in the spinor representation of the Lorentz group (it is a section of the spinor bundle
over spacetime). Hence it carries a spinor index α. From our definitions this means that
under a Lorentz transformation generated by ωµν , a spinor ψα transforms as

δψα =
1

4
ωµν(γµν)

β
α ψβ (3.30)

Note that we gives spinors a lower spinor index. As such the γ-matrices naturally come
with one upper and one lower index, so that matrix multiplication requires contraction
on one upper and one lower index.

Let us pause for a moment to consider a finite Lorentz transformation. To begin
with consider an infinitesimal rotation by an angle θ in the (x1, x2)-plane,

δ


x0

x1

x2

x3

 = θ


x0

−x2

x1

x3

 (3.31)

i.e.

ω12 = −ω21 = θ M12 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 (3.32)

A finite rotation is obtained by exponentiating M12:

xµ → (eω
λρMλρ)µνx

ν (3.33)

Since M2
12 = −1 one finds that, using the same proof as the famous relation eiθ =

cos θ + i sin θ,
eθM12 = cos θ +M12 sin θ (3.34)

In particular we see that if θ = 2π then e2πM12 = 1 as expected.
How does a spinor transform under such a rotation? The infinitesimal transformation

generated by ω12 is, by definition,

δψ =
1

4
ωµνγµνψ =

1

2
θγ12ψ (3.35)
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If we exponentiate this we find

ψ → e
1
2
θγ12ψ = cos(θ/2) + γ12 sin(θ/2) (3.36)

We see that now, if θ = 2π, then ψ → −ψ. Thus we recover the well known result that
under a rotation by 2π a spinor (such as an electron) picks up a minus sign.

Let us now try to contract spinor indices to obtain Lorentz scalars. It follows that
the Hermitian conjugate transforms as

δψ† =
1

4
ψ†ωµνγ†νγ

†
µ =

1

4
ψ†ωµνγ0γνµγ0 =

1

4
ψ†ωµνγ0γµνγ0 (3.37)

Here we have ignored the spinor index. Note that the index structure is (γ0γµνγ0) β
α and

therefore it is most natural to write (ψ†)α = ψ∗α with an upstairs index.
However we would like to contract two spinors to obtain a scalar. One can see that

the naive choice
λ†ψ = λ∗αψα (3.38)

will not be a Lorentz scalar due to the extra factors of γ0 that appear in δλ† as compared
to δψ. To remedy this one defines the Dirac conjugate

λ̄ = λ†γ0 (3.39)

In which case on finds that, under a Lorentz transformation,

δλ̄ = −1

4
λ̄ωµνγµν (3.40)

and hence

δ(λ̄ψ) = δλ̄ψ + λ̄δψ

= −1

4
λ̄ωµνγµνψ +

1

4
λ̄ωµνγµνψ

= 0 (3.41)

Thus we have found a Lorentz invariant way to contract spinor indices.
Note that from two spinors we can construct other Lorentz covariant objects such

as vectors and anti-symmetric tensors:

λ̄γµψ , λ̄γµνψ , . . . (3.42)

Problem: Show that Vµ = λ̄γµψ is a Lorentz vector, i.e. show that δVµ = ω ν
µ Vν under

the transformation (3.30).

So far our discussion applied to general Dirac spinors. In much of this course we
will be interested in Majorana spinors where the γµ are real. The above discussion
is then valid if we replace the Hermitian conjugate † with the transpose T so that
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γTµ = −γ0γµγ
−1
0 . More generally such a relationship always exists because if {γµ} is a

representation of the Clifford algebra then so is {−γTµ }. Therefore, since there is a unique
representation up to conjugacy, there must exist a matrix C such that −γTµ = CγµC

−1.
C is called the charge conjugation matrix. The point here is that in the Majorana case it
is possible to find a representation in which C coincides with Dirac conjugation matrix
γ0.

Problem: Show that, for a general Dirac spinor in any dimension, λTCψ is Lorentz
invariant, where C is the charge conjugation matrix.

One way to think about charge conjugation is to view the matrix Cαβ as a metric
on the spinor indices with inverse C−1

αβ . In which case ψα = ψβC
βα.

Finally we note that spinor quantum fields are Fermions in quantum field theory
(this is the content of the spin-statistics theorem). This means that spinor components
are anti-commuting Grassmann variables

ψαψβ = −ψβψα (3.43)

We also need to define how complex conjugation acts. Since ultimately in the quantum
field theory the fields are elevated to operators we take the following convention for
complex conjugation

(ψαψβ)∗ = ψ∗βψ
∗
α (3.44)

which is analogous to the Hermitian conjugate. This leads to the curious result that,
even for Majorana spinors, one has that

(ψ̄χ)∗ = (ψ∗αC
αβχβ)∗ = χβC

αβψα = −ψαCαβχβ = −ψ̄χ (3.45)

is pure imaginary!

3.4 QED, QCD and the Standard Model

We are now in a position to give the actions for QED and QCD. We will also describe
the Standard Model however it has many ’bells and whistles’ that mean that it would
take too long for this course to write the full action out. We will simply sketch it.

First consider QED - quantum electrodynamics, the quantum theory of light inter-
acting with electrons. This theory was developed by Feynman, Schwinger and Tomanga
(and others) in the 1940’s and is very successful. It is simply Maxwell’s theory coupled
to Fermions (the electrons). As such it is a U(1) gauge theory. The action is

SQED = −
∫
d4x

1

4
FµνF

µν +
i

2
ψ̄γµDµψ +

i

2
mψ̄ψ (3.46)

Here ψ is a Dirac Fermion (and ψ̄ = ψ†γ0) that represents the electron field with mass
m and Dµψ = ∂µψ − ieAµψ. Thats it! Quite simple and yet it describes a vast amount
of our physical world very accurately. It is successful because the electric charge e that
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acts as a coupling constant is small. The number relevant for perturbation theory is
the so-called fine structure constant α = e2/4π ∼ 1/137. In addition there is only one
interaction: ψ̄γµAµψ corresponding to an electron emitting a photon.

Problem: Show the the equations of motion of SQED are

∂µFµν =
e

2
ψ̄γµψ

γµ∂µψ +mψ − ieAµψ = 0 (3.47)

Next consider QCD - quantum chromodynamics, this is the quantum theory of
quarks. The quarks are taken to be Fermions which are live in the fundamental repre-
sentation of SU(3), i.e. each quark field qi is a spinor which takes values in C3. There
are 6 quarks (u,d,c,s,t,b) and they are labeled by i = 1, 2, ..., 6. Thus if we write all
the indices we have qiaα where i is the flavour index, a = 1, 2, 3 the colour index and
α = 1, 2, 3, 4 is the spinor index. There are also gauge fields Gr

µ known as gluons
r = 1, ..., 8 = dim(SU(3)). The action is

SQCD = − 1

g2

∫
d4x

1

4
F r
µνF

sµνκrs +
i

2

∑
i

δab(q̄
a
i γ

µDµq
b
i +

i

2
miψ̄

a
i ψ

b
i ) (3.48)

where mi are the quark masses and Dµq
b
i = ∂µq

b
i − iGr

µT
b
r aq

a
i with (Tr)

a
b a complex,

3 × 3 basis of L(SU(3)). Again the Fermions are Dirac and q̄ = q†γ0. QCD is highly
non-linear and in addition the relevant coupling constant αQCD = g2/4π is not small. So
there are many interactions between quarks and gluons and also gluons with gluons, all
of which happen relatively strongly (hence the name of the strong force). It is believed
but still not proven that the quarks are confined to colour neutral states so that a single
quark cannot be observed. Things are slightly better at higher energies where αQCD
gets smaller. This allows one to test QCD against experiment.

Lastly some words about the Standard Model. This includes both QED and QCD.
However it also includes another gauge theory based on SU(2). It also has a scalar field
known as the Higg’s H and additional Fermions called neutrinos. The total gauge group
is SU(3)×SU(2)×U(1). Here SU(3) is the SU(3) of QCD that only acts on the quarks.
All the (left-handed) fields transform under SU(2)× U(1). There are four gauge fields
but three are made massive by a Higg’s mechanism (more about this later). These are
called W±, Z0 and Aµ. Aµ is the massless photon of QED however it is not the gauge
field for the U(1) in SU(2) × U(1). Instead it corresponds to a linear combination of
this U(1) and the T 3 generator of SU(2). W± and Z0 are massive. The Higgs field
has not yet been scene and it one of the main motivations for the experiments at LHC
in CERN. The action is rather involved as it contains all sorts of mixings between the
various fields and many so-called Yukawa terms of the form ψ̄Hλ where H is the Higgs
and ψ, λ represent Fermions.

Problem: Why are their factors of i in front of the Fermion terms in these actions?
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4 Supersymmetry

4.1 Symmetries, A No-go Theorem and How to Avoid It

Quantum field theories are essentially what you get from the marriage of quantum
mechanics with special relativity (assuming locality). A central concept of these ideas is
the notion of symmetry. And indeed quantum field theories are thought of and classified
according to their symmetries.

The most important symmetry is of course the Poincare group of special relativity
which we have already discussed. To say that the Poincare algebra is fundamental in
particle physics means that everything is assumed fall into some representation of this
algebra. The principle of relativity then asserts that the laws of physics are covariant
with respect to this algebra.

The Standard Model and other quantum field theories also have other important
symmetries. Most notably gauge symmetries that we have discussed above. These
symmetries imply that there is an additional Lie-algebra with a commutation relation
of the form

[Tr, Ts] = if t
rs Tt (4.49)

where the Tr are Hermitian generators and f t
rs are the structure constants. This means

that every field in the Standard model Lagrangian also carries a representation of this
algebra. If this is a non-trivial representation then there is another ‘internal’ index
on the field. For example the quarks are in the fundamental (i.e. three-dimensional)
representation of SU(3) and hence, since they are spacetime spinors, the field carries
the indices ψaα(x).

Finally we recall Noether’s theorem which asserts that for every continuous symmetry
of a Lagrangian one can construct a conserved charge. Suppose that a Lagrangian
L(ΦA, ∂αΦA), where we denoted the fields by ΦA, has a symmetry: L(ΦA) = L(ΦA +
δΦA). This implies that

∂L
∂ΦA

δΦA +
∂L

∂(∂αΦA)
δ∂αΦA = 0 (4.50)

This allows us to construct a current:

Jα =
∂L

∂(∂αΦA)
δΦA (4.51)

which is, by the equations of motion,

∂αJ
α = ∂α

(
∂L

∂(∂αΦA)

)
δΦA +

∂L
∂(∂αΦA)

∂αδΦA

= ∂α

(
∂L

∂(∂αΦA)

)
δΦA −

∂L
∂ΦA

δΦA

= 0

(4.52)
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conserved. This means that the integral over space of J0 is a constant defines a charge

Q =
∫
space

J0 (4.53)

which is conserved

dQ

dt
=

∫
space

∂0J
0

= −
∫
space

∂iJ
i

= 0

Thus one can think of symmetries and conservations laws as being more or less the same
thing.

So the Standard Model of Particle Physics has several symmetries built into it (e.g.
SU(3)× SU(2)× U(1)) and this means that the various fields carry representations of
various algebras. These algebras split up into those associated to spacetime (Poincare)
and those which one might call internal (such as the gauge symmetry algebra). In fact
the split is a direct product in that

[Pµ, Ta] = [Mµν , Ta] = 0 (4.54)

where Ta refers to any internal generator. Physically this means the conserved charges
of these symmetries are Lorentz scalars.

Since the Poincare algebra is so central to our understanding of spacetime it is natural
to ask if this direct product is necessarily the case or if there is, in principle, some deeper
symmetry that has a non-trivial commutation relation with the Poincare algebra. This
question was answered by Coleman and Mandula:

Theorem: In any spacetime dimension greater than two the only interacting quantum
field theories have Lie algebra symmetries which are a direct product of the Poincare
algebra with an internal symmetry.

In other words the Poincare algebra is apparently as deep as it gets. There are no
interacting theories which have conserved charges that are not Lorentz scalars. Intu-
itively the reasons is that tensor-like charge must be conserved in any interaction and
this is simply too restrictive as the charges end up being proportional to (products of)
the momenta. Thus one finds that the individual momenta are conserved, rather than
the total momentum.

But one shouldn’t stop here. A no-go theorem is only as good as its assumptions.
This theorem has several assumptions, for example that there are a finite number of
massive particles and no massless ones. However the key assumption of the Coleman-
Mandula theorem is that the symmetry algebra should be a Lie-algebra. We recall that
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a Lie-algebra can be thought of as the tangent space at the identity of a continuous
group, so that, an infinitessimal group transformation has the form

g = 1 + iεA (4.55)

where A is an element of the Lie-algebra and ε is an infinitessimal parameter. The
Lie-algebra is closed under a bilinear operation, the Lie-bracket,

[A,B] = −[B,A] (4.56)

subject to the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (4.57)

If we relax this assumption then there is something deeper - Supersymmetry. So how
do we relax it since Lie-algebras are inevitable whenever you have continuous symmetries
and because of Noether’s theorem we need a continuous symmetry to give a conserved
charge?

The way to proceed is to note that quantum field theories such as the Standard
Model contain two types of fields: Fermions and Bosons. These are distinguished by
the representation of the field under the Lorentz group. In particular a fundamental
theorem in quantum field theory - the spin-statistics theorem - asserts that Bosons must
carry representations of the Lorentz group with integer spins and their field operators
must commute outside of the light-cone whereas Fermions carry half-odd-integer spins
and their field operators are anti-commuting. This means that the fields associated
to Fermions are not ordinary (so-called c-number) valued field but rather Grassmann
variables that satisfy

ψ1(x)ψ2(x) = −ψ2(x)ψ1(x) (4.58)

So a way out of this no-go theorem is to find a symmetry that relates Bosons to
Fermions. Such a symmetry will require that the ‘infinitessimal’ generating parameter
is a Grassmann variable and hence will not lead to a Lie-algebra. More precisely the
idea is to consider a Grassmann generator (with also carries a spinor index) and which
requires a Grassmann valued spinorial parameter. One then is lead to something called
a superalgebra, or a Z2-graded Lie-algebra. This means that the generators can be
labeled as either even and odd. The even generators behave just as the generators of a
Lie-algebra and obey commutation relations. An even and an odd generator will also
obey a commutator relation. However two odd generators will obey an anti-commutation
relation. The even-ness or odd-ness of this generalized Lie-bracket is additive modulo
two: the commutator of two even generators is even, the anti-commutator of two odd
generators is also even, whereas the commutator of an even and an odd generator is
odd. Schematically, the structure of a superalgebra takes the form

[even, even] ∼ even

[even, odd] ∼ odd

{odd, odd} ∼ even (4.59)
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In particular one does not consider things that are the sum of an even and an odd
generator (at least physicists don’t but some Mathematicians might), nor does the com-
mutator of two odd generators, or anti-commutator of two even generators, play any
role. Just as in Lie-algebras there is a Jacobi identity. It is a little messy as whether or
not one takes a commutator or anti-commutator depends on the even/odd character of
the generator. It can be written as

(−1)ac[A, [B,C]±]± + (−1)ba[B, [C,A]±]± + (−1)cb[C, [A,B]±]± = 0 (4.60)

where a, b, c ∈ Z2 are the gradings of the generators A,B,C respectively and [ , ]± is a
commutator or anti-commutator according to the rule (4.59).

There is a large mathematical literature on superalgebras as abstract objects. How-
ever we will simply focus on the case most relevant for particle physics. In particular
the even elements will be the Poincare generators Pµ,Mνλ and the odd elements su-
persymmetries Qα. The important point here is that the last line in (4.59) takes the
form

{Q,Q} ∼ P +M (4.61)

(in fact one typically finds only P or M on the right hand side, and in this course just
P ). Thus supersymmetries are the square-root of Poincare transformations. Thus there
is a sensible algebraic structure that is “deeper” that the Poincare group. Surely this is
worth of study.

One final comment is in order. Although we have found a symmetry that underlies
the Poincare algebra one generally still finds that supersymmetries commute with the
other internal symmetries. Thus a refined version of the Coleman-Mandula theorem still
seems to apply and states that the symmetry algebra of a non-trivial theory is at most
the direct product of the superalgebra and an internal Lie-algebra.5

5 Elementary Consequences of Supersymmetry

The exact details of the supersymmetry algebra vary from dimension to dimension, de-
pending on the details of Clifford algebras, however the results below for four-dimensions
are qualitatively unchanged. If there are Majorana spinors then the algebra is, in addi-
tion to the Poincare algebra relations (3.25),6

{Qα, Qβ} = −2(γµC−1)αβPµ

[Qα, Pµ] = 0

[Qα,Mµν ] =
i

2
(γµν)

β
α Qβ

5Note that one should be careful here, while this statement is true in spirit it is imprecise and in
some sense counter examples can be found (e.g. in gauged supergavity).

6More precisely this is the minimal N = 1 super-Poincare algebra. One can have N -extended
supersymmetry algebras and centrally extended supersymmetry algebras, which we will come to later.
There are also superalgebras based on other Bosonic algebras than the Poincare algebra, e.g., the
anti-de-Sitter algebra.
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(5.62)

The primary relation is the first line. The second line simply states that the Qα’s are
invariant under translations and the third line simply states that they are spacetime
spinors.

At first sight one might wonder why there is a C−1 on the right hand side. The
point is that this is used to lower the second spinor index. Furthermore it is clear that
the left hand side is symmetric in α and β and therefore the right hand side must also
be symmetric. To see that this is the case we observe that, since we have assumed a
Majorana basis where C = −CT = γ0,

(γµC
−1)T = (C−1)TγTµ = −(C−1)TCγµC

−1 = γµC
−1 (5.63)

is indeed symmetric.
Let us take the trace of the primary supersymmetry relation∑

α

{Qα, Qα} = 8P0 (5.64)

Here we have used the fact that C−1 = γ0, Tr(γµν) = 0 and Tr(1) = 22. We can identify
P0 = E with the energy and hence we see that

E =
1

4

∑
α

Q2
α (5.65)

SinceQα is Hermitian it follows that the energy is positive definite. Furthermore the only
states with E = 0 must have Qα|0 >= 0, i.e. they must preserve the supersymmetry.

Supersymmetry, like other symmetries in quantum field theory, can be spontaneously
broken. This means that the vacuum state |vacuum >, i.e. the state of lowest energy,
does not satisfy Qα|vacuum >= 0. We see that in a supersymmetric theory this will be
the case if and only if the vacuum energy is positive.

Next let us consider the representations of supersymmetry. First we observe that
since [Pµ, Qα] = 0 we have [P 2, Qα] = 0. Thus P 2 is a Casmir, that is to say irreducible
representations of supersymmetry (i.e. of the Q’s) all carry the same value of P 2 = −m2.
Thus all the particles in a supermultiplet (i.e. in a irreducible representation) have the
same mass.

Let us first consider a massive supermultiplet. We can therefore go to the rest frame
where Pµ = (m, 0, 0, 0). In this case the algebra becomes

{Qα, Qβ} = 2mδαβ (5.66)

We can of course assume that m > 0 and rescale Q̃α = m−1/2Qα which gives

{Q̃α, Q̃β} = 2δαβ (5.67)

This is just a Clifford algebra in 4 Euclidean dimensions! As such we know that it has
24/2 = 4 states. We can construct the analogue of γ5:

(−1)F = Q1Q2Q3...Q4 (5.68)
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Since we are in 4 Euclidean dimensions we have that ((−1)F )2 = 1. Again (−1)F is
traceless and Hermitian. Therefore it has 2 eigenvalues equal to +1 and 2 equal to
−1. What is the significance of these eigenvalues? Well if |± > is a state with (−1)F

eigenvalue ±1 then Qα|± > will satisfy

(−1)FQα|± >= −Qα(−1)F |± >= ∓Qα|± > (5.69)

Thus acting by Qα will change the sign of the eigenvalue. However since Qα is a
Fermionic operator it will map Fermions to Bosons and vise-versa. Thus (−1)F measures
whether or not a state is Fermionic or Bosonic. Since it is traceless we see that a
supermutliplet contains an equal number of Bosonic and Fermionic states. This is only
true on-shell since we have assumed that we are in the rest frame.

Next let us consider massless particles. Here we can go to a frame where Pµ =
(E,E, 0, 0) so that the supersymmetry algebra becomes

{Qα, Qβ} = 2E(δαβ + (γ01)αβ) (5.70)

We observe that γ2
01 = 1 and also that Tr(γ01) = 0. Therefore the matrix 1 − γ01 has

half its eigenvalues equal to 0 and the others equal to 2. It follows the algebra splits
into two pieces:

{Qα′ , Qβ′} = 4Eδα′β′ {Qα′′ , Qβ′′} = 0 (5.71)

where the primed and doubled primed indices only take on 2 values each. Again by
rescaling, this time Q̃α′ = (2E)−1/2Qα′ we recover a Clifford algebra but in 2 dimensions.
Thus there are just 2 states. Again we find that half are Fermions and the other half
Bosons.

Finally we note that the condition [Qα,Mµν ] = i
2
(γµν)

β
α Qβ implies that states in a

supermultiplet will have spins that differ in steps of 1/2. In an irreducible mutliplet
there is a unique state |jmax > with maximal spin (actually helicity). The remaining
states therefore have spins jmax − 1/2, jmax − 1, ....

It should be noted that often these multiplets will not be CPT complete. For example
if they are constructed by acting with lowering operators on a highest helicity state then
the tend to have more positive helicity states than negative ones. Therefore in order to
obtain a CPT invariant theory, as is required by Lorentz invariance, one has to add in a
CPT mirror multiplet (for example based on using raising operators on a lowest helicity
state).

In higher dimensions the number of states in a supermultiplet grows exponentially
quickly. This is essentially because the number of degrees of freedom of a spinor grow
exponentially quickly. However the number of degrees of freedom of Bosonic fields (such
as scalars and vectors) do not grow so quickly, if at all, when the spacetime dimension
is increase. Although one can always keep adding in extra scalar modes to keep the
Bose-Fermi degeneracy this becomes increasingly unnatural. In fact one finds that if
we only wish to consider theories with spins less than two (i.e. do not include gravity)
then the highest spacetime dimension for which there exists supersymmetric theories is
D = 10. If we do allow for gravity then this pushes the limit up to D = 11.
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We can also consider the Witten index:

W = TrH(−1)F (5.72)

where the trace is over all states in the Hilbert space of the theory. This is not necessarily
zero. What we have shown above is that there is a Bose-Fermi degeneracy among
states with a non-zero energy. However there need not be such a degeneracy between
supersymmetric, i.e. zero energy, vacuum state and hence

W = # of Bosonic vacua−# of Fermionic vacua (5.73)

By definition this is an integer. Therefore, since it cannot be continuously varied, it
cannot receive corrections as the coupling constants are varied (so for example it is
unaffected by perturbation theory).

Problem: Show that in four-dimensions, where Qα is a Majorna spinor, the first line
of the supersymmetry algebra (5.62) can be written as

{QWα, QWβ} = 0

{Q∗Wα, Q
∗
Wβ} = 0

{QWα, Q
∗
Wβ} = −((1 + γ5)γµC

−1)αβPµ

{Q∗Wα, QWβ} = −((1− γ5)γµC
−1)αβPµ

(5.74)

where QWα is a Weyl spinor and Q∗Wα is its complex conjugate. (Hint: Weyl spinors
are chiral and are obtained from Majorana spinors QM through QW = 1

2
(1 + γ5)QM ,

Q∗W = 1
2
(1− γ5)QM .)

In Weyl notation one chooses a different basis for the four-dimensional Clifford Al-
gebra. In particular one writes, in terms of block 2× 2 matrices,

γ5 =
(

1 0
0 −1

)
, γ0 =

(
0 1
−1 0

)
, γi =

(
0 σi
σi 0

)
(5.75)

where σi are the Pauli matrices. Note that the charge conjugation matrix, defined by
γTµ = −CγµC−1, is no longer C = γ0. Rather we find

C = γ0γ2γ5 .

Since Weyl spinors only have two independent components one usually introduces a new
notation: a, ȧ = 1, 2 so that a general 4-component Dirac spinor is decomposed in terms
of two complex Weyl spinors as

ψD =
(
λa
χȧ

)
(5.76)

i.e. the first two indices are denoted by a and the second two by ȧ.
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Let us define σµ
aḃ

= 1
2
((1 − γ5)γµC−1)aḃ, σ̄

µ
ȧb = 1

2
((1 + γ5)γµC−1)ȧb. In this case the

algebra is

{Qa, Qb} = 0

{Q∗ȧ, Q∗ḃ} = 0

{Qa, Q
∗
ḃ
} = −2σµ

aḃ
Pµ

{Q∗ȧ, Qb} = −2σ̄µȧbPµ

(5.77)

Here we have dropped the subscript W since the use of a and ȧ indices implies that we
are talking about Weyl spinors. This form for the algebra appears in many text books
and is also known as the two-component formalism.

Problem: Show that

(σµ)aḃ =
(
δaḃ, σ

i
aḃ

)
(σ̄µ)aḃ =

(
δaḃ,−σ

i
aḃ

)
(5.78)

And therefore

γµ =
(

0 σ̄µ
−σ̄µ 0

)
. (5.79)

Recall that we defined two Lorentz invariant contractions of spinors; Dirac: ψ†γ0ψ
and Majorana: ψTCψ? In the Majorana notation with real spinors these are manifestly
the same (but not if ψ isn’t real). In two component notation these are

ψ†γ0ψ = λ†χ− χ†λ
ψTCψ = λTσ2χ+ χTσ2λ .

Finally, what is a Majorana spinor in this notation? Well its one for which the Dirac
conjugate and Majorana conjugate coincide:

ψ†γ0 = ψTC .

Taking the transpose leads to ψ∗ = γ2γ5ψ. In terms of two-component spinors this gives:

λ∗ = −σ2χ , χ∗ = σ2λ .

6 Super-Yang Mills

We can now start to construct a version of Yang-Mills theory that has supersymmetry.
Since we must have a gauge field in the adjoint representation we see that supersymmetry
will force us to have a Fermion that is also in adjoint representation. We can then add
Fermions in other representations provided that we also include scalar superpartners for
them.
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6.1 Super-Maxwell

We start our first construction of a supersymmetric theory by looking at a very simple
theory: Electromagnetism coupled to a Majorana Fermion in the adjoint. Since the
adjoint of U(1) is trivial the Fermion is chargeless and we have a free theory!

Why these fields? We just saw that the simplest supermultiplet is massless with 2 real
Fermions and 2 real Bosons on-shell. Furthermore since supersymmetries commute with
any internal symmetries we see that the Fermions need to be in the same representation
of the gauge group as the Bosons. In Maxwell theory the gauge field is in the adjoint
so the Fermion must also be in the adjoint.

Let us now check that the number of degrees of freedom is correct. We fix the
gauge to Lorentz gauge ∂µAµ = 0. Maxwell’s equation is then just ∂2Aµ = 0. However
this only partially fixes the gauge since we can also take Aµ → Aµ + ∂µθ so long as
∂2θ = 0. This allow us to remove one component of Aµ, say A3. However imposing
∂µAµ = 0 provides a further constraint leaving 2 degrees of freedom. In particular in
momentum space choosing pµ = (E, 0, 0, E) we see that pµAµ = E(A0 + A3) = 0 and
hence A0 = A3 = 0 leaving just A1 and A2.

For the Fermion λ we have the Dirac equation γµ∂µλ = 0. In momentum space this
is pµγµλ = 0. Choosing pµ = (E, 0, 0, E) we find

E(γ0 + γ3)λ = 0 (6.80)

For E 6= 0 this implies γ03λ = λ. Since γ03 is traceless and squares to one we see that
this projects out 2 of the 4 components of λ.

The action is

SSuperMaxwell = −
∫
d4x

1

4
FµνF

µν +
i

2
λ̄γµ∂µλ (6.81)

where λ̄ = λTC. Not very exciting except that it has the following symmetry

δAµ = iε̄γµλ

δλ = −1

2
Fµνγ

µνε (6.82)

To see this we first note that, since Cγµ is symmetric,

δλ̄γµ∂µλ = ∂µ(δλ̄γµλ)− ∂µδλ̄γµλ
= ∂µ(δλ̄γµλ) + λ̄γµ∂µδλ (6.83)

We can drop the total derivative term in the action and find

δS = −
∫
d4xF µν∂µδAν + iλ̄γρ∂ρδλ

= −
∫
d4xF µνiε̄γν∂µλ−

i

2
λ̄γρ∂ρFµνγ

µνε (6.84)
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To continue we note that Cγµ is symmetric and γργµν = γρµν + ηρµγν − ηρνγµ. Thus we
have

δS = −
∫
d4x− F µνi∂µλ̄γνε−

i

2
λ̄∂ρFµν(γ

ρµν + 2ηρµγν)ε (6.85)

Now γρµν∂ρFµν = γρµν∂[ρFµν] = 0 so we are left with

δS = −
∫
d4x− F µνi∂̄µλγνε− iε̄∂µFµνγνλ

=
∫
d4x∂µ(iF µνλ̄γνε) (6.86)

= 0

Our next task is to show that these symmetries do indeed close into the supersym-
metry algebra. First we compute the closure on the gauge field

[δ1, δ2]Aµ = iε̄2γµ(
1

2
F λργλρε2)− (1↔ 2)

= iε̄2(
1

2
γµλρ + ηµλγρ)F

λρε1 − (1↔ 2) (6.87)

Now consider the spinor contractions in the first term. We note that

(Cγµλρ)
T = −CγρλµC−1CT = Cγρλµ = −Cγµλρ (6.88)

Thus ε2γµλρε1 is symmetric under 1↔ 2 and hence doesn’t contribute to the commuta-
tor. Hence

[δ1, δ2]Aµ = −2iε̄2γ
νε1Fµν

= (2iε̄2γ
νε1)∂νAµ − ∂µ(2iε̄2γ

νε1Aν) (6.89)

We recognize the first term as a translation and the second a gauge transformation.
Thus the supersymmetry algebra closes correctly on Aµ.

Next we must look at the Fermions. Here we find

[δ1, δ2]λ = −2∂µ(
i

2
ε̄1γνλ)γµνε2 − (1↔ 2)

= −iγµν(ε̄1γν∂µλ)ε2 − (1↔ 2) (6.90)

The problem here is that the spinor index on λ is contracted with ε̄1 on the right
hand side and the free spinor index comes from ε2 whereas the left hand side has a free
spinor coming from λ. There is a way to rewrite the right hand side using the so-called
Fierz identity, valid for any three, anti-commuting, spinors ρ, ψ and χ in four spacetime
dimensions,

(ρ̄ψ)χα = −1

4
(ρ̄χ)ψα −

1

4
(λ̄γ5χ)γ5ψα −

1

4
(ρ̄γµχ) (γµψ)α

+
1

4
(ρ̄γµγ5χ) (γµγ5ψ)α +

1

8
(ρ̄γµνχ) (γµνψ)α (6.91)
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The proof of this identity is given in appendix B and you are strongly encouraged to
read it. The point of this identity is that the free spinor index is moved from being on
χ on the left hand side to being on ψ on the right hand side.

Returning to the case at hand we can take ρ = ε1, χ = ε2 and ψ = γν∂µλ. This leads
to

[δ1, δ2]λ =
i

4
γµν(ε̄1ε2)γν∂µλ+

i

4
γµν(ε̄1γ5ε2)γ5γν∂µλ+

i

4
γµν (ε̄1γρε2) γργν∂µλ

− i
4
γµν (ε̄1γργ5ε2) γργ5γν∂µλ−

i

8
γµν (ε̄1γρσε2) γρσγν∂µλ− (1↔ 2)

(6.92)

Problem: Show that

ε̄1ε2 − ε̄2ε1 = 0

ε̄1γ5ε2 − ε̄2γ5ε1 = 0

ε̄1γργ5ε2 − ε̄2γργ5ε1 = 0 (6.93)

ε̄1γρσε2 + ε̄2γρσε1 = 0

Given this we have

[δ1, δ2]λ =
i

2
(ε̄1γρε2) γµνγργν∂µλ−

i

4
(ε̄1γρσε2) γµνγρσγν∂µλ (6.94)

Now look at the first term

γµνγργν = −γµνγνγρ + 2γµρ

= −3γµγρ + 2γµρ

= −3ηµρ − γµρ (6.95)

= −4ηµρ + γργµ

And the second

γµνγρσγν = [γµν , γρσ]γν + γρσγµνγν

= 2(ηνργµσ − ηµργνσ + ηµσγνρ − ηνσγµρ)γν + 3γρσγµ

= 2γµσγρ + 6ηµργσ − 6ηµσγρ − 2γµργσ + 3γρσγµ (6.96)

= 2γµσρ + 2γµηρσ + 4ηµργσ − 2γµρσ − 2γµηρσ − 4ηµσγρ + 3γρσγµ

= 4γσρµ + 4ηµργσ − 4ηµσγρ + 3γρσγµ

= 4γσργµ + 3γρσγµ

= −γρσγµ (6.97)

In the second line we used a result from the problems that showed − i
2
γµν satisfy the

Lorentz algebra.
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Putting this altogether we find

[δ1, δ2]λ = −2i (ε̄1γ
µε2) ∂µλ+

i

2
(ε̄1γ

νε2) γνγ
µ∂µλ (6.98)

+
i

4
(ε̄1γρσε2) γρσγµ∂µλ

We recognize the first term as a translation (the same one since ε̄1γ
µε2 = −ε̄2γµε1).

Since λ has a trivial gauge transformation we do not expect anything else. But there
clearly is stuff. However this extra stuff vanishes if the Fermion is on-shell: γµ∂µλ = 0.
Thus we say that the supersymmetry algebra closes on-shell.

This is good enough for us since this course is classical (indeed it is often good
enough in the quantum theory too). In fact we can see that it couldn’t have closed
off-shell since the degrees of freedom don’t match. In particular Aµ has four degrees of
freedom but one is removed by a gauge transformation whereas λα also has four degrees
of freedom but none can be removed by a gauge transformation. On-shell however Aµ
has two degrees of freedom and λ also has two.

6.2 Super-Yang-Mills

Our next task is to find an interacting supersymmetric theory. To this end we try to
generalize the previous action to an arbitrary Lie group G. In particular we take have
a gauge field Aµ and Fermion λ, both of which are in the adjoint representation

SsusyYM = − 1

g2
YM

∫
d4x

1

4
tr(Fµν , F

µν) +
i

2
Tr(λ̄, γµDµλ) (6.99)

with Dµλ = ∂µλ− i[Aµ, λ]. The natural guess for the supersymmetry transformation is

δAµ = iε̄γµλ

δλ = −1

2
Fµνγ

µνε (6.100)

Note that although this looks the same as in the Abelian case above it is in fact rather
complicated and interacting. Nevertheless the steps to prove invariance are very similar
but more involved.

The first thing to note is that there is a term in δS coming from λ̄γµ[δAµ, λ] that is
cubic in λ. This is the only term that is cubic in λ and hence must vanish:

Tr(λ̄, γµ[(ε̄γµλ), λ]) = 0 (6.101)

Problem: Using the Fierz identity show that, in four dimensions,

Tr(λ̄, γµ[(ε̄γµλ), λ]) = fabcλ̄cγ
µ(ε̄γµλa)λb = 0. (6.102)
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This is a crucial condition, without it we would be sunk. In fact it is only true in a few
dimensions (D = 3, 4, 6, 10) and hence what is called pure super-Yang Mills (i.e. super
Yang-Mills with the minimum number of fields) only exists in these dimensions. Super-
Yang-Mills theories exist in lower dimensions but they always contain additional fields
such as scalars (you can construct them by compactification one of the pure theories).
Ultimately the reason for this is that these are the only dimensions where one can match
up the number of Bose and Fermi degrees of freedom on-shell.

Okay now we can proceed. We first note that

Tr(δ̄λ, γµDµλ) = ∂µTr(δ̄λ, γµλ) + Tr(λ̄, γµDµδλ) (6.103)

We have see that this is true when Dµ = ∂µ so we now need to check the Aµ term. The
left hand side gives

−iTr(δ̄λ, γµ[Aµ, λ]) = iTr([Aµ, λ̄], γµδλ)

= −iTr([λ̄, Aµ], γµδλ) (6.104)

= −iTr(λ̄, γµ[Aµ, δλ])

and this is indeed the right hand side. Note that in the first line we used the fact that
Cγµ is symmetric to interchange the two spinors with a minus sign and in the last line
we used the fact that Tr([A,B], C) = Tr(A, [B,C])

Thus we find that, up to boundary terms,

δS = −
∫
d4x

1

2
Tr(F µν , δFµν) + iTr(λ̄, γρDρδλ)

Next we need to compute

δFµν = ∂µδAν − i[Aµ, δAν ]− (µ↔ ν)

= iε̄γνDµλ− (µ↔ ν) (6.105)

Thus we have

δS = −
∫
d4xiTr(F µν , ε̄γνDµλ)− i

2
Tr(λ̄, γρDργµνF

µνε) (6.106)

Again we can use the identity

γργµν = γρµν + ηρµγν − ηρνγµ (6.107)

so that we find

δS = −
∫
d4x− iTr(F µν , Dµλ̄γνε)− iTr(λ̄, DµF

µνγνε)

− i
2

Tr(λ̄, γρµνDρFµνε) (6.108)
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The first line adds up to a total derivative and hence can be dropped. This leaves us
the the final line. This indeed vanishes because of the so-called Bianchi identity

D[µFνλ] = 0 (6.109)

Problem: Prove the Bianchi identity D[µFνλ] = 0, where DµFνλ = ∂µFνλ − i[Aµ, Fνλ].

Thus we have established that the action is supersymmetric. It is also important to
show that the supersymmetry variations close (on-shell). Let us consider the gauge field
first. Little changes from the above Abelian calculation and we find

[δ1, δ2]Aµ = −(2iε̄2γ
νε1)Fµν

= 2i(ε̄2γ
νε1)∂νAµ −Dµ(2iε̄2γ

νε1Aν) (6.110)

Here we have used the fact that Fµν = DµAν − ∂νAµ.

Problem: Show that the transformations (6.100) close on-shell on the Fermions to
Poincare transformations and gauge transformations.

6.3 Super-Yang-Mills with Matter

The Lagrangian we constructed is supersymmetric but it is not particularly relevant
for the real world as the Fermions are necessarily in the adjoint. In the real world the
Fermions are in the fundamental representation of the gauge group. More generally we
are interested in constructing a supersymmetric theory with Fermions in an arbitrary
representation R of the gauge group. In order to accommodate this we must also
include superpartners for such Fermions. These must also be in the representation
R. Furthermore these superpartners should be scalars (any vectors must be gauge
Bosons and hence in the adjoint). Such matter multiplets must therefore have two
scalars (why?) and are generically called matter multiplets. We won’t discuss these
Lagrangians in detail here (the complete answer is rather complicated). However we
can discuss come features.

Let us denote the fields in the matter multiplet by ψaα and φa. Here ψα is a Fermion
and φa a complex Boson. Both are taken to be in some representation of the gauge
group with generators (Tr)

a
b. A natural guess for the action is

S = − 1

g2

∫
d4x

1

4
κrsF

r
µνF

sµν +
i

2
κrsλ̄

rγµDµλ
s +

i

2
δabψ̄

aγµDµψ
b +

1

2
δabDµφ

∗aDµφ
b

(6.111)
with the supersymmetries

δArµ = iε̄γµλ
r

δλr = −1

2
F r
µνγ

µνε

δφa = iε̄ψa (6.112)

δψa = γµDµφ
aε
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Note that this is just a guess, we expect that they will be corrected by additional terms.
However one can see that this won’t work. There will be a cubic Fermion term that

comes from the supervariation of the gauge field in ψ̄γµDµψ of the form

δ3S =
i

2
δabψ̄

aγµ(ε̄γµλ
r)(Tr)

b
cψ

c (6.113)

The Feirz transformation won’t kill this term off now. To get rid of it we must introduce
other terms that give a suitable cubic Fermion term. Such a term must have two
Fermions and a Boson so that the supervariation of the Boson gives a term that can
cancel δ3S. Such a term is

SY ukawa =
∫
d4xhabψ̄

aλr(Tr)
b
cφ

c + c.c. (6.114)

Here +c.c. denotes the complex conjugate since the first term is clearly not real on its
own. This can indeed be made to cancel δ3S. However we now find additional terms
coming from the supervariation of the Fermions in SY ukawa. These in turn need to
be canceled by introducing a potential term of the form V (φ, φ∗) and then also by a
correction to the λ and ψ supervariation. The Lagrangian now takes the form

Smatter = − 1

g2

∫
d4x

1

4
κrsF

r
µνF

sµν +
i

2
κrsλ̄

rγµDµλ
s +

i

2
δabψ̄

aγµDµψ
b +

1

2
δabDµφ

∗aDµφ
b

+
(
ihabψ̄

aλr(Tr)
b
cφ

c + c.c.
)
− 1

2

∑
r

|φ∗a(Tr)abφb − ξr|2 (6.115)

Here the ξr are constants known as Fayet-Illiopoulos parameters.
In fact there are even more things that can be added and one can include an entire

holomorphic function W (φa) known as the superpotential. This gives additional Yukawa
terms of the form

SWY ukawa =
∫
d4x∂a∂bW (ψa)TCψb + c.c. (6.116)

as well as an additional contribution to the potential

SWpotential = −
∫
d4xhab∂aW (∂bW )∗ (6.117)

The complete action is then S = Smatter + SWY ukawa + SWpotential.
The upshot of all this is that matter fields can be incorporated into a supersymmetric

theory. However we see that these always lead to Yukawa interactions as well as a
potential for the scalars. These theories can also be made to be chiral, i.e. have the left
and right handed Fermions transform under different representations of the gauge group.
These are the sorts of models that are proposed to be supersymmetric extentions of the
Standard Model. Indeed there is a so-called minimal extension known as the MSSM.
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7 Extended Supersymmety

The supersymmetry algebra that we discussed above is not quite unique. It turns out
that one can have more than one supersymmetry generator QI

α, with I = 1, 2, .., N . The
superalgebra is

{QI
α, Q

J
β} = −2(γµC−1)αβPµδ

IJ + ZIJ
αβ (7.118)

The remaining commutators in (5.62) are unchanged (except that there is now a super-
script I on Qα). This is just N copies of the minimal supersymmetry algebra except
that there is an extra term on the right hand side. This term is called the central charge
where the term central refers to the fact that ZIJ

αβ commutes with all the generators.
Since it a Lorentz scalar we can write

ZIJ
αβ = U IJC−1

αβ + iV IJ(γ5C
−1)αβ (7.119)

with U (IJ) = V (IJ) = 0. Thus ZIJ
αβ is anti-symmetric in I ↔ J and also anti-symmetric

under α↔ β. Thus is can only exist if I, J = 1, 2, .., N with N > 1 (although there can
be non-Lorentz invariant ’central’ charges even for N = 1).

Without central charges a massive state cannot preserve any of the supersymmetries.
To see this suppose that ε̄αIQ

I
α|susy >= 0 for some εIα (which is commuting) then from

the algebra we see that, in the rest frame,

0 = ε̄αI < susy|{QI
α, Q

J
β}|susy >= 2Mε̄βJ < susy|susy > (7.120)

where we have used the fact that ε̄αIQ
I
α will either annihilate |susy > from the left or from

the right. In the massless case we see that this is possible provided that ε̄I(1 + γ01) = 0
i.e. γ01ε = ε.

However central charges offer a way out of this. Since ZIJ
αβ is Hermitian we can find

a commuting spinor ε̄αJ such that ε̄αJZ
IJ
αβ = zε̄Iβ. Then we see that, in the rest frame,

{Q,Q} = 2Q2 = 2M |ε|2 + z|ε|2 (7.121)

where Q = ε̄αIQ
I
α and |ε̄|2 = δαβδ

IJ ε̄αI ε̄
β
J . Note that we take ε̄αI to be an ordinary

commuting spinor so that |ε̄|2 ≥ 0. Now take the expectation value of this expression

< state|Q2|state >= (M +
1

2
z)|ε̄|2 < state|state > (7.122)

The left hand side is positive definite and vanishes iff Q|state >= ε̄αIQ
I
α|state >= 0.

Therefore we see that M ≥ −1
2
z. Since ZIJ

αβ is traceless there are equal number of
positive and negative eigenvalues z hence we learn that

M ≥ 1

2
|z| (7.123)

with equality iff Q|state >= ε̄αIQ
I
α|state >= 0, i.e. iff the state preserves some of the

supersymmetries.
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Let us now consider the effect of turning on central charges on the representations
of extended supersymmetry. Generically we find an algebra that is isomorphic to the
appropriate Clifford algebra but now in 4N dimensions, corresponding to the 4N super-
symmetry generator. Therefore we find multiplets with 22N states, half of which will be
Bosons and the other half Fermions.

However there are special cases where the eigenvalues of the central charges agree
with the mass eigenvalues. In this case there is cancelation when one goes to the rest
frame and {QI

α, Q
J
β} will have zero eigenvalues. This is essentially the same as what

happened in the case of massless representations. The result is a Clifford algebra in a
lower dimension and hence a smaller representation. In particular if n of the central
charge eigenvalues Z are degenerate and equal to the mass m then one finds a Clifford
algebra in 4N−n dimensions and these will have 22N−n/2 states. Again half of these will
be Bosons and half Fermions. In addition, as before, there will be a highest spin state
and the rest of the states can be obtained by acting with the 2N−n/4 lowering operators.

The massless case then corresponds to n = 2N . The central charge terms are
traceless so that at most 2N of the eigenvalues can be degenerate (and non-vanishing).
Therefore the smallest possible short representation has half has many generators, just
as in the massless case.

Representations for which the mass is equal to one or more eigenvalues of the the
central charge are called short representations and the states are known as BPS states.
The important point about them is that since the dimension of the representation is
an integer it cannot be altered by varying the parameters of the theory in a continuous
fashion. In particular it cannot pick up any quantum corrections. Thus a relation of
the form m = Z (that the mass is degenerate with the central charge) is not corrected
by quantum effects (although m and hence Z too may well pick up corrections). This
turns out to be a very powerful technique in understanding non-perturbative features
of supersymmetric quantum theories and M-theory in particular. For example this
property is what allows one to calculate the Beckenstein-Hawking entropy of a black
hole by counting the number of microstates in string theory. At weak coupling some D-
brane states are described by a gauge theory and the degeneracy can be easily counted,
whereas at strong coupling such states appear as black hole solutions. If the D-brane is
superymmetric then the various states are in short multiplets and hence their counting
is unaffected by going to strong coupling.

7.1 N = 4 Super-Yang-Mills

How can we construct a theory with additional supersymmetries? Clearly any theory
with extended supersymmetry also has just ordinary N = 1 supersymmetry. Therefore
these theories must be of the same type that we already considered, i.e. they consist of
a Yang-Mills gauge multiplet coupled to some matter with some potential and Yukawa
terms. What is special is that there must matter in the adjoint representation since there
will be Fermion and scalar modes that are in the same supermultiplet as the gauge fields
(although for N = 2 supersymmetry it is also possible to have additional matter which
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is not in the adjoint but a general representation). Furthermore the various coupling
constants that appear in the potential and Yukawa terms must be related.

Let us then give an example of such a theory. In four-dimensions one can have
N = 1, 2, 4 supersymmetries. We have studied N = 1 so let us jump to the other end and
consider N = 4. N = 4 means that there are 4 supersymmetries QI

α, I = 1, 2, 3, 4. Since
α = 1, 2, 3, 4 we see that there are a total of 16 QI

α’s. What is the easiest way to construct
such a theory? Well we can start with super-Yang-Mills is a higher dimension where
the spinors have more components and 16 is the number of components of a Majorana-
Weyl spinor in 10 dimensions (recall that a general Dirac spinor in 10 dimensions has
32 complex components, Majorana reduces this to 32 real components and Weyl then
reduces this to 16).

In 10 dimensions the super-Yang-Mills action is

SsusyYM = − 1

g2
YM

∫
d10x

1

4
tr(Fmn, F

mn) +
i

2
Tr(Λ̄,ΓmDmΛ) (7.124)

This is just as before except that the indices m,n,= 0, ..., 9 and the spinors Λ and Γm
are those of 10 dimensions, i.e. 32-component. As mentioned we can chose a Majorana
basis and also, simultaneously, restrict to Weyl spinors Γ11Λ = Λ, where Γ11 = Γ0Γ1...Γ9

is the 10-dimensional analogue of γ5.
To prove that this is supersymmetric we can follow the same argument that we did

for the four-dimensional case. The variations are taken to be

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (7.125)

Note that the preserve Γ11Λ = Λ we must also impose

Γ11ε = ε

The only time that the dimension of spacetime showed up was in the cubic variation.
As mentioned above, in 10-dimensions, we also have that

Tr(Λ̄,Γm[(ε̄ΓmΛ),Λ]) = fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb = 0. (7.126)

provided that Γ11Λ = Λ and Γ11ε = ε .

Problem: Show this. You may assume the Fierz transformation in 10 dimensions is
(why?)

(χ̄ψ)λ = − 1

32

[
(χ̄λ)ψ + (χ̄Γ11λ)Γ11ψ + (χ̄Γmλ)Γmψ − 1

2!
(χ̄Γmnλ)Γmnψ

−(χ̄ΓmΓ11λ)ΓmΓ11ψ −
1

3!
(χ̄Γmnpλ)Γmnpψ − 1

2!
(χ̄ΓmnΓ11λ)ΓmnΓ11ψ

+
1

4!
(χ̄Γmnpqλ)Γmnpqψ +

1

4!
(χ̄ΓmnpΓ11λ)ΓmnpΓ11ψ +

1

5!
(χ̄Γmnpqrλ)Γmnpqrψ

+
1

4!
(χ̄ΓmnpqΓ11λ)ΓmnpqΓ11ψ

]
(7.127)
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Thus the 10-dimensional action is supersymmetric. In fact we should also check that
the supersymmetry closes on-shell. The calculation for the gauge fields is just as it was
in 4-dimensions. For the Fermions we again need to use the Fierz transformation. This
introduces several more terms but nevertheless it all works out (this is to be expected
as the Lagrangian is invariant, hence what ever the supersymmetry algebra closes into
must be a symmetry of the Lagrangian too).

Problem: Show that in ten-dimensions, with Γ11Λ = Λ, the transformations close on-
shell on Λ.

Our next task is to dimensionally reduce this theory to 4 dimensions. All this means
is that we simply imagine that there is no motion along the x4, x5, ..., x9 directions. This
is related to the idea of compactification except that we don’t imagine there is an infinite
tower of Kaluza-Klein states. We are just using this as a trick to obtain a theory in 4
dimensions with N = 4 supersymmetry.

Let us consider the Bosons. We have the 10-dimensional adjoint-valued gauge vector
field Am. From the 4-dimensional point of view this can be viewed as a vector gauge field
Aµ, µ = 0, 1, 2, 3 along with 6 scalar adjoint-valued fields φA = AA, A = 4, 5, .., 9. We
note that if we assume that there are no derivatives then under a gauge transformation
(that only depends on xµ) we have

A′µ = −i∂µgg−1 + gAµg φ′A = gφg−1 (7.128)

Thus indeed the components φA = AA behave as scalar fields from the 4-dimensional
point of view. In addition the field strength reduces to

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]
FµA = ∂µφA − i[Aµ, φA] = DµφA (7.129)

FAB = −i[φA, φB]

The 10-dimensional kinetic term can be written as

1

4
Tr(Fmn, F

mn) =
1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA)− 1

4

∑
A,B

Tr([φA, φB], [φA, φB])

(7.130)
Thus the Bosonic part of the action reduces that of a gauge field and six adjoint-valued
scalars in 4 dimensions, along with the potential

V = −1

4

∑
A,B

Tr([φA, φB], [φA, φB]) . (7.131)

Next we need to look at the Fermions. We can write the Fermionic term as

i

2
Tr(Λ̄,ΓmDmΛ) =

i

2
Tr(Λ̄,ΓµDµΛ) +

1

2
Tr(Λ̄,ΓA[φA,Λ]) (7.132)
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The second term is a Yukawa-type term in 4 dimensions. The 4-dimensional action of
N = 4 super-Yang-Mills is

SN=4SYM = − 1

g2

∫
d4x

1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA) +

i

2
Tr(Λ̄,ΓµDµΛ)

+
1

2
Tr(Λ̄,ΓA[φA,Λ])− 1

4

∑
A,B

Tr([φA, φB], [φA, φB]) (7.133)

In principle we are done. However it is a good idea to rewrite the Fermion Λ in terms
of 4-dimensional spinors.

To reduce the Fermions we decompose the 10-dimensional Clifford algebra in terms
of the 4-dimensional γµ’s as

Γµ = γµ ⊗ 1

ΓA = γ5 ⊗ ρA (7.134)

Here ρA are a Euclidean Clifford algebra in 6-dimensions which we take to be pure imag-
inary so that Γm are Majorana (recall that γ5 is pure imaginary in a four-dimensional
Majorana basis). This is indeed possible and is called a pseudo-Majorana representation.
For example we could take

ρ1 = 1⊗ 1⊗ σ2 ρ2 = 1⊗ σ2 ⊗ σ3

ρ3 = σ2 ⊗ σ3 ⊗ σ3 ρ4 = σ2 ⊗ σ1 ⊗ σ3 (7.135)

ρ5 = σ3 ⊗ σ2 ⊗ σ1 ρ6 = σ2 ⊗ 1⊗ σ1.

Since σ2 is pure imaginary and σ1 and σ3 are real we have a pseudo-Majorana represen-
tation of 8× 8 matrices.

Similarly we decompose spinors as

Λ = λI ⊗ ηI (7.136)

ε = εI ⊗ ηI

where ηI are a basis of spinors in six-dimensions (which are 8-dimensional). However
we note that we require Λ and ε to be chiral with respect to Γ11 = −iγ5⊗ ρ1...ρ6. Thus
the chirality of ηI with respect to iρ1...ρ6 needs to be correlated with the chirality of λI
with respect to γ5. This projects out half of the six-dimensional spinors and so there
are only four independent values of I. To see this we note that since the ηI are a basis
we can write

−iρ1...ρ6ηI = RI
JηJ

for some pure imaginary 8× 8 matrix RI
J . Thus the chirality constraint becomes

λI = γ5RJ
IλJ

A similar constraint applies to εI too. This means that there are no longer 8 independent
λI and εI but rather just 4. Finally we assume that these are normalized to (ηI)TηJ =
δIJ .
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We can now compute

Λ̄ΓµDµΛ = λTI ⊗ (ηI)T (Cγµ ⊗ 1)DµλJ ⊗ ηJ
= δIJ λ̄Iγ

µDµλJ (7.137)

and

Λ̄ΓA[φA,Λ] = λTI ⊗ (ηI)T (Cγ5 ⊗ ρA)[φA, λJ ⊗ ηJ ]

= (ηI)TρAη
J λ̄Iγ5[φA, λJ ] (7.138)

= ρIJA λ̄Iγ5[φA, λJ ]

where ρIJA = (ηI)TρAη
J are the chiral-chiral matrix components of ρA. Thus the action

can be written as

SN=4SYM = − 1

g2

∫
d4x

1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA) +

i

2
δIJTr(λ̄I , γ

µDµλJ)

+
1

2
ρIJA Tr(λ̄Iγ5[φA, λJ ])− 1

4

∑
A,B

Tr([φA, φB], [φA, φB]) (7.139)

Note that we have raised and lowed IJ indices freely with δIJ and δIJ .
Our last task is to write the supersymmetry transformations in terms of 4-dimensional

spinors.

Problem: Show that the ten-dimensional supersymmetry

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (7.140)

becomes

δAµ = iε̄IΓµλ
I

δφA = −ε̄Iγ5λJρ
IJ
A (7.141)

δλI = −1

2
Fµνγ

µνεI − γµγ5Dµφ
AρIJA εJ +

i

2
[φA, φB]ρJIABεI .

where ρJIAB = (ηJ)TρABη
I . Here we see that there are indeed 4 supersymmetry parame-

ters εI .
Thus we find a theory in 4 dimensions with one vector field (spins = ±1) 4 Fermions

(spin = ±1/2) and 6 scalars (spin 0). This is what we expect from our previous dis-
cussion. In the fixed (massless) momentum frame there are 4× 4 = 16 supersymmetry
generators:

{QI
α, Q

J
β} = 2E(1− γ01)αβδ

IJ

However since γ01 can be diagonalized to the form diag(1, 1,−1,−1) we see that we can
find 8 linear combinations of the QI

α, which we denote by Qα̈ that satisfy {Qα̈, Qβ̈} = 0.
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These must act trivially Qα̈|state〉 = 0. Thus there are 8 nontrivial Q′s that we denote
by Qα̇, α̇ = 1, ..., 8 and satisfy

{Qα̇, Qβ̇} = 4Eδα̇β̇

If we rewrite these as

Q1 = Q1 + iQ2 Q2 = Q3 + iQ4 Q3 = Q5 + iQ6 Q4 = Q7 + iQ8

then the algebra becomes

{QI ,QJ} = {Q†I ,Q
†
J} = 0 {QI ,Q†J} = 4EδIJ

This is four copies of the algebra of Fermionic harmonic oscillator with creation and
annihilation operators. To construct the represention we start with a highest spin state
|s >. The QI lower the spin by 1/2 whereas the Q†I raise it. Thus Q†I |s >= 0. Thus the
states and their helicites are obtained by acting on |s > with QI :

s |s > (7.142)

s− 1/2 QI |s > (7.143)

s− 1 QIQJ |s > (7.144)

s− 3/2 QIQJQK |s > (7.145)

s− 2 Q1Q2Q3Q4|s > (7.146)

Note that since the QI anticommute these states must be antisymmetric in I, J,K.
Thus there are 1, 4, 6, 4, 1 states in each row respectively leading to 24 = 16 states. Note
that we require |s| ≤ 1 to remain in field theory without gravity. Therefore we see that
we must have precisely s = 1 in order that the lowest state has s ≥ −1. We then find
a vector (with states |1 > and | − 1 >), 6 scalars (states |0 >) and 4 Fermions (states
|1/2 >).

8 Physical Features of Yang-Mills Theories

8.1 Vacuum Moduli Space

A key feature of supersymmetric theories, especially those with extended supersym-
metry, is that the vacua are not isolated but rather one finds a continuous family of
connected vacua. This set is called the vacuum moduli space. More specifically it is the
set of all zero-energy field configurations, modulo gauge transformations.

As an example we will look at N = 4 Super-Yang-Mills. Zero-energy states are
invariant under all the supersymmetries and hence also translations. Thus only the
scalars φA can be non-vanishing (but constant). Setting the potential to zero we see
that

[φA, φB] = 0 (8.147)
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for all pairs A,B. Note also that this leads to δAµ = δφA = δλI = 0 for any εI . Hence
these configurations are invariant under all the supersymmetries.

The solutions to (8.147) are found by taking the φA to be mutually commuting
elements in L(G). This space is known as the Cartan subalgebra.

For example we can consider G = SU(N). If we write an element of SU(N) as
g = eiA then g−1 = e−iA and g† = e−iA

†
. Thus g−1 = g† implies A† = A. Furthermore

the restriction to det(g) = 1 gives tr(A) = 07. So L(SU(N)) is the space of all Hermitian
traceless N×N complex matrices. To count the number of linearly independent elements
of L(SU(N)) we can consider diagonal elements which must therefore be real and have
the sum of the diagonal entries equal to zero. This gives N − 1 independent elements.
Because A† = A we see that the lower-triangular elements of A are just the complex
conjugates of the upper-triangular elements. Thus there are N(N − 1)/2 complex off-
diagonal elements giving N(N − 1) real elements. So we find the total dimension is
N − 1 +N(N − 1) = N2 − 1.

What is the Cartan subalgebra of L(SU(N))? Mutually commuting matrices can
be made to be all diagonal by a similarity transform (in this case this corresponds
to a gauge transformation). Thus the Cartan subalgebra is spanned by real, traceless
diagonal matrices and has dimension is N − 1.

However we must consider the space of zero-energy states modulo gauge transforma-
tions. As we mentioned we can use gauge transformation φA → gφAg

−1 to ensure that
all the φA are diagonal. Let us write

φA = vRAHR , (8.148)

where HR, R = 1, ..., rank(G) span the Cartan subalgebra. Let us look at gauge transfor-
mations that leave this form of φA invariant. If we exponentiate the Cartan subalgebra
then we obtain a subgroup of G generated by elements of the form g = eiθ

RHR . However
this is clearly just the Abelian group U(1)rank(G) and is adjoint action on φA is trivial:

φ′A = gφAg
−1 = φA . (8.149)

Acting with a general element of G will not preserve the form (8.148). However there
are typically some discrete elements which do preserve (8.148) under the adjoint action.
These form a finite subgroup W(G) of G called the Weyl group (this is not the usual
definition of the Weyl group but it is equivalent for our purposes). Thus the vacuum
moduli space of N = 4, four-dimensional super-Yang-Mills is the space (8.148), i.e.
(R6)rank(G) modulo the Weyl group W(G).

Let us look closely at SU(2). L(SU(2)) is spanned by the Pauli matrices. Without
loss of generality we can take the Cartan subalgebra to be generated by σ3. Thus (8.148)
is simply

φA = vAσ3 (8.150)

with vA parameterizing a point in R6. However there are further gauge transformations
that preserve the form of φA.

7Here we have used the formula deteX = etrX .
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Problem: Show that given any element g = eiθ
RσR ∈ SU(2) which preserves φA = vAσ3,

i.e. φ′A = gvAσ3g
† = v′Aσ3 then v′A = ±vA.

Thus the Weyl group of SU(2) is Z2 and the vacuum moduli space is

MN=2 = R6/Z2 . (8.151)

For SU(N) the Weyl group is the symmetric group on N elements and we find

MN = R6(N−1)/SN (8.152)

Thus the vacuum moduli space is somewhat subtle due to global gauge transforma-
tions. I say global here because the Weyl group is not obtained by looking at elements
of G that are infinitesimally close to the identity.

Clearly one can consider other theories with more general potentials and scalar fields
in various representations. The vacuum moduli space will then of course be rather
different.

8.2 Global Symmetries and Spontaneous Symmetry Breaking

We have constructed actions which are invariant under arbitrary local symmetries. How-
ever it is important to note that gauge symmetries are not really symmetries. They don’t
relate two physically distinct field configurations. Rather two field configurations that
differ by a gauge transformation should be viewed as physically equivalent.

The actions we have constructed clearly also admit global symmetries where the
gauge transformation is constant (and hence does not vanish at infinity). However the
vacuum need not respect these symmetries. In particular, suppose that we have theory
with a potential V (φ). Suppose that that φ take values in some representation of the
group G (which in this subsection we just take to be a global symmetry). For example
we could have

V (φ) = λ(|φ|2 − a2)2 (8.153)

where φ is in some representation of the gauge group (symmetry group) and |φ|2 is a
gauge invariant norm. The point of this expression is that although the potential and
indeed the whole theory is invariant under global symmetry transformations, any given
vacuum solution (satisfying |φ| = a) is not.

Thus the vacuum breaks the symmetry. Furthermore the low energy fluctuations
about such a vacuum also break the symmetry. The symmetry is said to be sponta-
neously broken. Although the full theory has a symmetry this symmetry is broken by
the vacuum. There is an important theorem for spontaneously broken symmetry

Goldstone Theorem In a theory with symmetry group G in a vacuum that only
preserves a subgroup H ⊂ G then there will be dim(G)−dim(H) massless fields. These
massless fields are called Goldstone Bosons.
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To prove this we note that the potential is invariant under δφa = iηr(Tr)
a
bφ
b and

hence

0 =
∂V

∂φa
δφa = iηr(Tr)

a
b
∂V

∂φa
φb (8.154)

We can drop the parameter iηr and differentiate again

0 =
∂2V

∂φa∂φc
(Tr)

a
bφ
b +

∂V

∂φa
(Tr)

a
c (8.155)

Now if we expand V about a vacuum state φa = va where ∂V/∂φa = 0 then we see that

∂2V

∂φa∂φc
(Tr)

a
bv
b = 0 (8.156)

Now ∂2V /∂φa∂φc = (M2)ac is the mass-matrix of small fluctuations about the vacuum
(it is positive if the vacuum is a minimum). Thus

δφa = iGr(Tr)
a
bv
b (8.157)

is a zero mode of the mass matrix for any parameter Gr. Since r = 1...dim(G) there are
in principle dim(G) such modes. However if the vacuum state is preserved by a subgroup
H ⊂ G then (Tr)

a
bv
b = 0 for dim(H) values of r. Thus we find dim(G)− dim(H) zero-

modes. Each of these corresponds to a massless particle.
For example consider N = 4 super-Yang-Mills with gauge group SU(2). However let

us forget the fact that it is a gauge theory for the moment. We will reconsider the gauge
symmetry in the next section. In particular we could just consider the scalar sector the
theory:

L = −1

2

∑
A

tr(∂µφA∂
µφA) +

1

4

∑
AB

tr([φA, φB]2)

This theory has a global symmetry SU(2)×SO(6), where the SO(6) comes from rotating
the scalar fields into each other and the SU(2) is what’s left of the gauge symmetry
without the gauge fields (so the generators cannot depend on spacetime). We saw
that the vacuum corresponds to [vA, vB] = 0 however the diagonal U(1) ⊂ SU(2) acts
trivially on the scalars since they are in the adjoint (in other words the symmetry group
of the vacuum is just SO(5) and not U(1) × SO(5)). Furthermore a non-zero vacuum
expectation value for vA breaks SO(6) to SO(5) (for example we assume that only
v1 6= 0). Thus we expect dim(SU(2) × SO(6)) − dim(SO(5)) = (3 + 15) − (10) = 8
massless Goldstone Bosons.

Problem: Write the scalar fields as traceless, Hermitian matrices and expand them
about the vacuum as

φA =
1√
2

(
mA 0
0 −mA

)
+

(
φ1
A φ2

A + iφ3
A

φ2
A − iφ3

A −φ1
A

)
(8.158)

with only m1 6= 0. Show that there is a mass for φ2
A and φ3

A, A 6= 1 but no mass for φ2
1

and φ3
1 and φ1

A, A = 1, 2, 3, 4, 5, 6.

This gives us the 8 massless Goldstone Bosons.
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8.3 The Higg’s Mechanism

Let us now return to gauge theories and for concreteness consider (the Bosonic part
of) N = 4 super-Yang-Mills. Here there is an important effect. Notice that in a gauge
theory there is no room to add a mass term of the gauge fields as

m2Tr(Aµ, A
µ) (8.159)

is not be gauge invariant. Since the only massless gauge field observed in Nature is
the photon of Electromagnetism the role of Yang-Mills theories was not clear for a long
time. It wasn’t really until is was proven that the only renormalizable four-dimensional
quantum field theories as Yang-Mills theories with some matter content that their role
was solidified (actually another feature was asymptotic freedom).

But let us look at a generic,i.e. vRA 6= 0, point in the vacuum moduli space of N = 4
super-Yang-Mills. The covariant derivative of φA contains a term, assuming ∂µφA = 0;

DµφA = −i[Aµ, φ] = −ivRA [Aµ, HR] + . . . (8.160)

where the ellipses denote fluctuations of the φA away from its vacuum expectation value.
Since the action contains a (DµφA)2 term we see that there is an effective mass for Aµ
of the form

−vRAvSAAsµAtµTr([HR, Ts], [HS, Tt]) (8.161)

This gives a mass of order vRA to the components of Arµ that are not in the Cartan
subalgebra. Thus in a generic vacuum most of the gauge fields are massive (most
because there are always more generators that are not in the Cartan subalgebra than
those that are in it).

We’ve used the word generic here because it could be that some of the vA are van-
ishing. This would then lead to massless gauge Bosons and an enhancement of the
symmetry group of the vacuum.

This is an example of the famous Higg’s mechanism. More generally suppose we have
some scalar fields φa in an arbitrary representation of the gauge group and some gauge
invariant potential V (|φ|). As we have seen the vacuum can break the global symmetry
if there is a non-zero vacuum expectation value va for φa. However in a gauge theory
there is always a coupling coming from the covariant derivative

Dµφ
a = −iArµ(Tr)

a
bv
b + . . . (8.162)

where the ellipsis denotes fluctuations of φa away from the vacuum value va. Again we
see that this gives a mass term for the gauge fields:

ArµA
rµ(Tr)

a
b(Tr)

a
cv
bvc (8.163)

Note that the gauge fields which are massive are those that correspond to non-trivial
Goldstone Bosons, i.e. to directions where (Tr)

a
bv
b 6= 0. The gauge symmetries preserved

by the vacuum remain massless.

48



For example in N = 4 super-Yang-Mills the gauge fields corresponding to the
U(1)rank(G) ⊂ G symmetry group of the vacuum are still massless. However in theories
with other matter content it is possible to break the gauge group to smaller subgroups.

You might complain that a massive vector field has three and not two degrees of
freedom in four-dimensions (the gauge choice can only remove one massive degree of
freedom as opposed to two massless ones). So where does this extra degrees of freedom
come from to make the vector field massive? The answer is that the gauge fields ‘eat’
the massless Goldstone mode associated to breaking the symmetry generated by the
non-flat directions. Here ‘eat’ means that one can show that the associated Goldstone
mode can be gauged away.

To see this we note that the Goldstone fields Gr(x) are related to the scalars φa

through (see (8.157))
φa(x) = va + iGr(x)(Tr)

a
bv
b

where we have now introduced a spacetime dependence on the parameters Gr. For
simplicity let us suppose that Gr is a infinitesimal perturbation about the vacuum
solution φa = va. We can then consider an infinitesimal gauge transformation:

δφa = iθr(Tr)
a
bφ
b = iθr(Tr)

a
bv
b + . . .

where the ellipsis denotes higher order terms. Here we see that we can indeed set
the gauge parameters θr = −Gr to ‘gauge away’ the Goldstone fields Gr. Thus in a
particular gauge there are no Goldstone Bosons. However, as we have seen, The vector
gauge fields associated to the same directions in the Lie algebra have become massive.

8.4 BPS Monopoles

Finally let us return to the issue of BPS states in the particular example of N = 4
Super-Yang-Mills. We saw above there there are special states where the mass saturates
a bound determined by the central charges. These states are identified by the fact that
they preserve a fraction of the supersymmetry. This means that they solve δAµ = δφA =
δλI = 0 for some εI .

We look for classical field configurations where λI = 0. It follows that δAµ = δφA =
0. Thus we need to solve

−1

2
Fµνγ

µνεI − γµγ5Dµφ
AρIJA εJ +

i

2
[φA, φB]ρIJABεJ = 0 (8.164)

We will consider static solutions with F0i = D0φA = 0 and write Fij = εijkB
k, in analogy

with the magnetic field in electromagnetism. Let us also assume that only one φA, say
φ1 is non-zero so that [φA, φB] = 0. This equation reduces to

−1

2
εijkB

kγijεI = γiγ5Diφ
1ρIJ1 εJ (8.165)

Next we note that γij = iεijkγkγ0γ5 so that

−iBkγkγ0γ5ε
I = γkγ5Dkφ

1ρIJ1 εJ (8.166)
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If we set
Bk = ±Dkφ1 (8.167)

then our equation reduces to
±iγ0ρ

IJ
1 εJ = εI (8.168)

This is a projection onto a subset of all the εI . In particular recall that

γ0 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (8.169)

Thus is we write

εI =


ε1I
ε2I
ε3I
ε4I

 (8.170)

then we find

ε1I = ±iρIJ1 ε2J ε2I = ∓iρIJ1 ε1J (8.171)

ε3I = ±iρIJ1 ε4J ε4I = ∓iρIJ1 ε3J

These equations determine ε2I and ε4I in terms of ε1I and ε3I . Thus half of the super-
symmetries are preserved.

There is a second way to arrive at the same equations, without discussing supersym-
metry due to Bogomol’nyi. Let us look for static, Bosonic solutions which minimize the
energy (since we are assuming no time-dependence this means the Classical equations
of motion will be satisfied). We may choice a so-called Coulomb gauge where A0 = 0
and hence D0 = 0. The total energy can be written as (again assuming Ei = 0)

E =
1

g2
YM

∫
d3x

1

4
tr(FijF

ij) +
1

2
tr(DiφAD

iφA)

=
1

g2
YM

∫
d3x

1

2
tr(BiB

i) +
1

2
tr(DiφAD

iφA) (8.172)

=
1

g2
YM

∫
d3x

(1

2
tr((Bi ∓Diφ1)(Bi ∓Diφ1)) +

1

2

6∑
A=2

tr(DiφAD
iφA)

±tr(BiDiφ1)
)

We see that the terms on the first line are squares and hence positive definite. The final
term is in fact a total derivative:

tr(BiDiφ1) = ∂itr(B
iφ1) (8.173)

Problem: Show this!
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Since the remaining terms are sums of squares we find a bound on the energy

E ≥ ± 1

g2
YM

∫
d3xtr(BiDiφ1)

= ± 1

g2
YM

∫
d3x∂itr(B

iφ1) (8.174)

= ± 1

g2
YM

∫
S2
∞

r2 sin θdθdϕ tr(Brφ1)

where ni is a unit normal vector to the boundary at infinity. This is called the Bogo-
mol’nyi bound. Furthermore we see that the bound is saturated whenever

Bi = ±Diφ1 DiφA = 0 (A 6= 1) (8.175)

These are precisely the equations we previously derived. We see that they are the
minimum energy solutions for a fixed boundary condition. In particular at infinity the
fields will behave as

φa1 = va1 + . . . Ba
r =

Qa
M

4πr2
+ . . . (8.176)

so that the bound becomes

E ≥ ± va1
4πg2

YM

∫
S2
∞

sin θdθdϕ Qa
M =

∣∣∣∣∣va1Qa
M

g2
YM

∣∣∣∣∣ (8.177)

Note that since Bi = ±Diφ1 the right-hand-side of (8.174) is positive definite and we
can therefore put an absolute value sign. This states that the mass of a state is bounded
below by its magnetic charge (and is proportional to 1/g2

YM , i.e. is very large at weak
coupling).

Note that there is one final condition to be satisfied. Since we have been dealing
directly with the field strength and not the gauge fields we must ensure that the Bianchi
identity is satisfied:

D[iFjk] = 0 (8.178)

(recall that we have set D0 = 0). Contracting this with εijk gives

DiBi = 0 (8.179)

Thus we must have
DiDiφ1 = 0. (8.180)

The exact solutions to these equations are rather difficult to describe (although there
is a complete analytic solution available in principle). They describe magnetic monopole
states in a non-Abelian gauge theory.

We have seen that these states preserve half of the supersymmetries and therefore fall
into short multiplets. That is to say there are additional states in the theory which, along
with the monopole, fill out a short multiplet. These other solutions can be obtained by
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acting on the monopole solution with the broken supersymmetries (so they correspond
to turning on the Fermions). It is not hard to show that the multiplet is that of a vector
multiplet with highest spin 1. Indeed one essentially just repeats the discussion at the
end of section 7. However there is one change. Rather than restricting to highest spin
1 because of not wanting to include gravity (this isn’t needed if the states are massive)
we require that since the theory is CPT invariant the soliton specturm must be CPT
self-conjugate. Thus the highest spin of the monopole multiplet is minus the lowest spin.
This fixes s = 1. Thus the monopole spectrum is the same as the original perturbative
spectrum of the field theory (in N = 4 Super-Yang-Mills). These states are conjectured
to be the strong coupling duals to the perturabative states.

Appendix A: Conventions

In these notes we are generally in 4 spacetime dimensions labeled by xµ, µ = 0, 1, 2, ..., 3.
When we only want to talk about the spatial components we use xi with i = 1, ..., 3.
We use the the “mostly plus” convention for the metric:

ηµν =


−1

1
1

1

 (8.1)

Spinor indices will in general be denoted by α, β = 1, ..., 4. When we talk about Weyl
spinors we will use the spinor indices a, ȧ = 1, 2. We will briefly talk about more general
D dimensions. In this case µ = 0, 1, 2, ..., D − 1 and α, β = 1, ..., 2[D/2].

We also assume, according to the spin-statistics theorem, that spinorial quantities
and fields are Grassmann variables, i.e. anti-commuting. We will typically use Greek
symbols for Fermionic Grassmann fields, ψ, λ, ... and Roman symbols for Bosonic c-
number fields.

Appendix B: The Fierz Transformation

The γ-matrices have several nice properties. Out of them one can construct the addi-
tional matrices

1, γµ, γµγD+1, γµν , γµνγD+1, .... (8.1)

where γµνλ... is the anti-symmetric product over the given indices with weight one, e.g.

γµν =
1

2
(γµγν − γνγµ) (8.2)

Because of the relation γ0γ1...γD−1 ∝ γD+1 not all of these matrices are independent.
The list stops when the number of indices is bigger than D/2. It is easy to convince
yourself that the remaining ones are linearly independent.
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Problem: Using the fact that < M1,M2 >= Tr(M †
1M2) defines a complex inner prod-

uct, convince yourself that the set (8.1), where the number of spacetime indices is no
bigger than D/2, is a basis for the space of 2[D]/2 × 2[D]/2 matrices ([D/2] is the integer
part of D/2).

Thus any matrix can be written in terms of γ-matrices. In particular one can express

δβαδ
δ
γ =

∑
ΓΓ′

cΓΓ′(γΓ) β
γ (γΓ′) δ

α (8.3)

for some constants cΓΓ′ . Here Γ and Γ′ are used as a indices that range over all inde-
pendent γ-matrix products in (8.1).

To proceed one must determine the coefficients cΓΓ′ . To do this we simply multiply
(8.3) by (γΓ′′) γ

β which gives

(γΓ′′) δ
α =

∑
ΓΓ′

cΓΓ′Tr(γΓγΓ′′)(γΓ′) δ
α (8.4)

Now we have observed that Tr(γΓγΓ′′) = 0 unless Γ = Γ′′ so we find

(γΓ′′) δ
α =

∑
Γ′′Γ′

cΓ′′Γ′Tr(γ2
Γ′′)(γΓ′) δ

α (8.5)

From here we see that cΓ′′Γ′ = 0 unless Γ′ = Γ′′ and hence

cΓΓ =
1

Tr(γ2
Γ)

= ±Γ
1

2[D/2]
(8.6)

Here the ±Γ arises because γ2
Γ = ±1 and 2[D/2] = Tr(1) is the dimension of the repre-

sentation of the Clifford algebra.
The point of doing all this is that the index contractions have been swapped and

hence one can write

(λ̄ψ)χα = λ̄γψδχβδ
β
αδ

δ
γ

= −
∑
Γ

cΓΓλ̄
γ(γΓ) β

γ χβ(γΓ) δ
α ψδ

= − 1

2[D/2]

∑
Γ

±Γ

(
λ̄γΓχ

)
(γΓψ)α (8.7)

here the minus sign out in front arises because we must interchange the order of ψ and
χ which are anti-commuting. This is called a Fierz rearrangement and it has allowed us
to move the free spinor index from χ to ψ. Its draw back is that it becomes increasingly
complicated as the spacetime dimension D increases, but generally speaking there isn’t
an alternative so you just have to slog it out.

In particular consider four dimensions. The independent matrices are

1, γ5, γµ, γµγ5, γµν (8.8)
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One can see that this is the case by noting that γµν5 = i
2
εµνλργ

λρ. You can check that
the Fierz identity is

(λ̄ψ)χα = −1

4
(λ̄χ)ψα −

1

4
(λ̄γ5χ)γ5ψα −

1

4

(
λ̄γµχ

)
(γµψ)α (8.9)

+
1

4

(
λ̄γµγ5χ

)
(γµγ5ψ)α +

1

8

(
λ̄γµνχ

)
(γµνψ)α

note the extra factor of 1
2

in the last term that is there is ensure that γµν and γνµ don’t
contribute twice. We will use this at various points in the course.

Problem: Show that in three dimensions the Fierz rearrangement is

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2

(
λ̄γµχ

)
(γµψ)α (8.10)

Using this, show that in the special case that λ = χ one simply has

(λ̄ψ)λα = −1

2
(λ̄λ)ψα (8.11)

for Majorana spinors. Convince yourself that this is true by considering the explicit 3D
γ-matrices above and letting

λ =
(
λ1

λ2

)
, ψ =

(
ψ1

ψ2

)
(8.12)

What is the Fierz rearrangement in two dimensions (Hint: this last part should take
you very little time)?
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