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V Holešovičkách 2, 180 00 Prague 8
Czech Republic
e-mail: zm@karel.troja.mff.cuni.cz

Original: May 9, 2003
Updated: January 11, 2011



Preface

This text is suitable for a two-semester course on Continuum Mechanics. It is based on notes
from undergraduate courses that I have taught over the last decade. The material is intended for
use by undergraduate students of physics with a year or more of college calculus behind them.

I would like to thank Erik Grafarend, Ctirad Matyska, Detlef Wolf and Jǐŕı Zahradńık, whose
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b entropy source per unit mass
~f body force per unit mass
~F Lagrangian description of ~f
h heat source per unit mass
~n normal at κ
~N normal at κ0

~q heat flux at κ
~Q heat flux at κ0

s bounding surface at κ
S bounding surface at κ0

~s flux of entropy at κ
~S flux of entropy at κ0

t time
~t(~n) stress vector on a surface with the external normal ~n

t(~x, t) Eulerian Cauchy stress tensor

t( ~X, t) Lagrangian Cauchy stress tensor

T (1) first Piola-Kirchhoff stress tensor

T (2) second Piola-Kirchhoff stress tensor
v volume at κ
V volume at κ0

~v velocity at κ
~V Lagrangian description of ~v
~x Eulerian Cartesian coordinates
~X Lagrangian Cartesian coordinates
E total internal energy
H total entropy
K total kinetic energy
W total mechanical power
ε internal energy density per unit mass
η entropy density per unit mass
% mass density at κ
% Lagrangian description of %
%0 mass density at κ0

κ present configuration
κ0 reference configuration
σ singular surface at κ
Σ singular surface at κ0

θ temperature
~ν the speed of singular surface σ
Γ total entropy production
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1. GEOMETRY OF DEFORMATION

1.1 Body, configurations, and motion

The subject of all studies in continuum mechanics, and the domain of all physical quantities, is
the material body. A material body B = {X} is a compact measurable set of an infinite number
of material elements X , called the material particles or material points, that can be placed in a
one-to-one correspondence with triplets of real numbers. Such triplets are sometimes called the
intrinsic coordinates of the particles. Note that whereas a ”particle” in classical mechanics has
an assigned mass, a ”continuum particle” is essentially a material point for which a density is
defined.

A material body B is available to us only by its configuration. The configuration κ of B is the
specification of the position of all particles of B in the physical space E3 (usually the Euclidean
space). Often it is convenient to select one particular configuration, the reference configuration κ0,
and refer everything concerning the body to that configuration. Mathematically, the definition
of the reference configuration κ0 is expressed by mapping

~γ0 : B → E3

X → ~X = ~γ0(X ) ,
(1.1)

where ~X is the position occupied by the particle X in the reference configuration κ0, as shown
in Figure 1.1.

The choice of reference configuration is arbitrary. It may be any smooth image of the body
B, and need not even be a configuration ever occupied by the body. For some choice of κ0, we
may obtain a relatively simple description, just as in geometry one choice of coordinates may
lead to a simple equation for a particular figure. However, the reference configuration itself has
nothing to do with the motion it is used to describe, just as the coordinate system has nothing
to do with geometrical figures themselves. A reference configuration is introduced so as to allow
us to employ the mathematical apparatus of Euclidean geometry.

Under the influence of external loads, the body B deforms, moves and changes its configura-
tion. The configuration of body B at the present time t is called the present configuration κt and
is defined by mapping

~γt : B → E3

X → ~x = ~γt(X , t) ,
(1.2)

where ~x is the position occupied by the particle X in the present configuration κt.
A motion of body B is a sequence of mappings ~χ between the reference configuration κ0 and

the present configuration κt:
~χ : E3 → E3

~X → ~x = ~χ( ~X, t) .
(1.3)

This equation states that the motion takes a material point X from its position ~X in the reference
configuration κ0 to a position ~x in the present configuration κt. We assume that the motion ~χ is
continuously differentiable in finite regions of the body or in the entire body so that the mapping
(1.3) is invertible such that

~X = ~χ−1(~x, t) (1.4)

holds.
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�~X

~x

X

~X = ~γ0(X )

~x = ~γt(X , t)

~x = ~χ( ~X, t)

Reference
configuration κ0

Present
configuration κt

Abstract body B

Figure 1.1. Body, its reference and present configurations.

The functional form for a given motion as described by (1.3) depends on the choice of the
reference configuration. If more than one reference configuration is used in the discussion, it
is necessary to label the function accordingly. For example, relative to two reference config-
urations κ1 and κ2 the same motion could be represented symbolically by the two equations
~x = ~χκ1( ~X, t) = ~χκ2( ~X, t).

It is often convenient to change the reference configuration in the description of motion. To see
how the motion is described in a new reference configuration, consider two different configurations
κτ and κt of body B at two different times τ and t:

~ξ = ~χ( ~X, τ) , ~x = ~χ( ~X, t) , (1.5)

that is, ~ξ is the place occupied at time τ by the particle that occupies ~x at time t. Since the
function ~χ is invertible, that is,

~X = ~χ−1(~ξ, τ) = ~χ−1(~x, t) , (1.6)

we have either
~ξ = ~χ(~χ−1(~x, t), τ) =: ~χt(~x, τ) , (1.7)

or
~x = ~χ(~χ−1(~ξ, τ), t) =: ~χτ (~ξ, t) . (1.8)

The map ~χt(~x, τ) defines the deformation of the new configuration κτ of the body B relative
to the present configuration κt, which is considered as reference. On the other hand, the map
~χτ (~ξ, t) defines the deformation of the new reference configuration κτ of the body B onto the
configuration κt. Evidently, it holds

~χt(~x, τ) = ~χτ
−1(~x, t) . (1.9)
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The functions ~χt(~x, τ) and ~χτ (~ξ, t) are called the relative motion functions. The subscripts t and
τ at functions χ are used to recall which configuration is taken as reference.

We assume that the functions ~γ0, ~γt, ~χ, ~χt and ~χτ are single-valued and possess continuous
partial derivatives with respect to their arguments for whatever order is desired, except possibly
at some singular points, curves, and surfaces. Moreover, each of these function can uniquely be
inverted. This assumption is known as the axiom of continuity, which refers to the fact that the
matter is indestructible. This means that a finite volume of matter cannot be deformed into a
zero or infinite volume. Another implication of this axiom is that the matter is impenetrable, that
is, one portion of matter never penetrates into another. In other words, a motion caries every
volume into a volume, every surface onto a surface, and every curve onto a curve. In practice,
there are cases where this axiom is violated. We cannot describe such processes as the creation
of new material surfaces, the cutting, tearing, or the propagation of cracks, etc. Continuum
theories dealing with such processes must weaken the continuity assumption in the neighborhood
of those parts of the body, where the map (1.3) becomes discontinuous. The axiom of continuity
is mathematically ensured by the well-known implicit function theorem.

1.2 Description of motion

Motion can be described in four ways. Under the assumption that the functions ~κ0, ~κt, ~χ, ~χt
and ~χτ are differentiable and invertible, all descriptions are equivalent. We refer to them by the
following:

• Material description, given by the mapping (1.2), whose independent variables are the
abstract particle X and the time t.

• Referential description, given by the mapping (1.3), whose independent variables are the
position ~X of the particle X in an arbitrarily chosen reference configuration, and the time t.
When the reference configuration is chosen to be the actual initial configuration at t = 0, the
referential description is often called the Lagrangian description, although many authors
call it the material description, using the particle position ~X in the reference configuration as
a label for the material particle X in the material description.

• Spatial description, whose independent variables are the present position ~x occupied by the
particle at the time t and the present time t. It is the description most used in fluid mechanics,
often called the Eulerian description.

• Relative description, given by the mapping (1.7), whose independent variables are the
present position ~x of the particle and a variable time τ , being the time when the particle
occupied another position ~ξ. The motion is then described with ~ξ as a dependent variable.
Alternatively, the motion can be described by the mapping (1.8), whose independent variables
are the position ~ξ at time τ and the present time t. These two relative descriptions are actually
special cases of the referential description, differing from the Lagrangian description in that
the reference positions are now denoted by ~x at time t and ~ξ at time τ , respectively, instead of
~X at time t = 0.
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Figure 1.2. Lagrangian and Eulerian coordinates for the reference configuration κ0 and the present
configuration κt.

1.3 Lagrangian and Eulerian coordinates

Consider now that the position ~X of the particle X in the reference configuration κ0 may be
assigned by three Cartesian coordinates XK , K = 1, 2, 3, or by a position vector ~P that extends
from the origin O of the coordinates to the point P , the place of the particle X in the reference
configuration, as shown in Figure 1.2. The notations ~X and ~P are interchangeable if we use only
one reference origin for the position vector ~P , but both ”place” and ”particle” have meaning
independent of the choice of origin. The same position ~X (or place P ) may have many different
position vectors ~P corresponding to different choices of origin, but the relative position vectors
d ~X = d~P of neighboring positions will be the same for all origins.

At the present configuration κt, a material particle X occupies the position ~x or a spatial
place p. We may locate place p by a position vector ~p extending from the origin o of a new set
of rectangular coordinates xk, k = 1, 2, 3. Following the current terminology, we shall call XK

the Lagrangian or material coordinates and xk the Eulerian or spatial coordinates. In following
considerations, we assume that these two coordinate systems, one for the reference configuration
κ0 and one for the present configuration κt, are nonidentical.

The reference position ~X of a point P in κ0 and the present position ~x of p in κt, respectively,
when referred to the Cartesian coordinates XK and xk are given by

~X = XK
~IK , ~x = xk~ik . (1.10)

where ~IK and ~ik are the respective unit base vectors in Figure 1.2. (The usual summation
convention over repeated indices is employed.) Since Cartesian coordinates are employed, the
base vectors are mutually orthogonal,

~IK · ~IL = δKL , ~ik ·~il = δkl , (1.11)
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where δKL and δkl are the Kronecker symbols, which are equal to 1 when the two indices are equal
and zero otherwise; the dot ‘·’ stands for the scalar product of vectors. 1

When the two Cartesian coordinates are not identical, we shall also express a unit base vector
in one coordinates in terms of its projection into another coordinates. It can be readily shown
that

~ik = δkK~IK , ~IK = δKk~ik , (1.12)

where
δkK :=~ik · ~IK , δKk := ~IK ·~ik (1.13)

are called shifters. They are not a Kronecker symbol except when the two coordinate systems
are identical. It is clear that (1.13) is simply the cosine directors of the two coordinates xk and
XK . From the identity

δkl~il =~ik = δkK~IK = δkKδKl~il ,

we find that
δkKδKl = δkl , δKkδkL = δKL . (1.14)

The notation convention will be such that the quantities associated with the reference con-
figuration κ0 will be denoted by capital letters, and the quantities associated with the present
configuration κt by lower case letters. When these quantities are referred to coordinates XK , their
indices will be majuscules; and when they are referred to xk, their indices will be minuscules. For
example, a vector ~V in κ0 referred to XK will have the components VK , while when it is referred
to xk will have the components Vk, such that

VK = ~V · ~IK , Vk = ~V ·~ik . (1.15)

Using (1.12), the components VK and Vk can be related by

VK = VkδkK , Vk = VKδKk . (1.16)

Conversely, considering vector ~v in κt that, in general, differs from ~V , its components vK and vk
referred to XK and xk, respectively, are

vK = ~v · ~IK , vk = ~v ·~ik . (1.17)

Again, using (1.12), the components vK and vk can be related by

vK = vkδkK , vk = vKδKk . (1.18)

1.4 Lagrangian and Eulerian variables

Every scalar, vector or tensor physical quantity Q defined for the body B such as density, tem-
perature, or velocity is defined with respect to a particle X at a certain time t as

Q = Q̂(X , t) . (1.19)

1If a curvilinear coordinate system is employed, the appropriate form of these equations can be obtained by
the standard transformation rules. For example, the partial derivatives in Cartesian coordinates must be replaced
by the partial covariant derivatives. However, for general considerations, we shall rely on the already introduced
Cartesian systems.
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Since the particle X is available to us in the reference or present configurations, the physical
quantity Q is always considered a function of the position of the particle X in the reference or
present configurations. Assuming that the function (1.2) is invertible, that is X = ~γ−1

0 ( ~X), the
Lagrangian representation of quantity Q is

Q = Q̂(X , t) = Q̂(~γ−1
0 ( ~X), t) =: Q( ~X, t). (1.20)

Alternatively, inverting (1.3), that is X = ~γ−1
t (~x, t), the Eulerian representation of quantity Q is

Q = Q̂(X , t) = Q̂(~γ−1
t (~x, t), t) =: q(~x, t), (1.21)

We can see that the Lagrangian and Eulerian variables Q( ~X, t) and q(~x, t) are referred to the
reference configuration κ0 and the present configuration κt of the body B, respectively. In the
Lagrangian description, attention is focused on what is happening to the individual particles
during the motion, whereas in the Eulerian description the emphasis is directed to the events
taking place at specific points in space. For example, if Q is temperature, then Q( ~X, t) gives
the temperature recorded by a thermometer attached to a moving particle ~X, whereas q(~x, t)
gives the temperature recorded at a fixed point ~x in space. The relationship between these two
descriptions is

Q( ~X, t) = q(~χ( ~X, t), t) , q(~x, t) = Q(~χ−1(~x, t), t) , (1.22)

where the small and capital letters emphasize different functional forms resulting from the change
in variables.

As an example, we define the Lagrangian and Eulerian variables for a vector quantity ~V. Let
us assume that ~V in the Eulerian description is given by

~V ≡ ~v(~x, t) . (1.23)

Vector ~v may be expressed in the Lagrangian or Eulerian components vK(~x, t) and vk(~x, t) as

~v(~x, t) = vK(~x, t)~IK = vk(~x, t)~ik . (1.24)

The Lagrangian description of ~V, that is the vector ~V ( ~X, t), is defined by (1.22)1:

~V ( ~X, t) := ~v(~χ( ~X, t), t) . (1.25)

Representing ~V ( ~X, t) in the Lagrangian or Eulerian components VK( ~X, t) and Vk( ~X, t),

~V ( ~X, t) = VK( ~X, t)~IK = Vk( ~X, t)~ik , (1.26)

the definition (1.25) can be interpreted in two possible component forms:

VK( ~X, t) := vK(~χ( ~X, t), t) , Vk( ~X, t) := vk(~χ( ~X, t), t) . (1.27)

Expressing the Lagrangian components vK in terms of the Eulerian components vk according to
(1.18) results in

VK( ~X, t) = vk(~χ( ~X, t), t)δkK , Vk( ~X, t) = vK(~χ( ~X, t), t)δKk . (1.28)

An analogous consideration may be carried out for the Eulerian variables vK(~x, t) and vk(~x, t) in
the case where ~V is given in the Lagrangian description ~V ≡ ~V ( ~X, t).
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1.5 Deformation gradient

The coordinate form of the motion (1.3) is

xk = χk(X1, X2, X3, t) , k = 1, 2, 3 , (1.29)

or, conversely,
XK = χ−1

K (x1, x2, x3, t) , K = 1, 2, 3 . (1.30)

According to the implicit function theorem, the mathematical condition that guarantees the
existence of such an unique inversion is the non-vanishing of the jacobian determinant J , that is,

J( ~X, t) := det

(
∂χk
∂XK

)
6= 0 . (1.31)

The differentials of (1.29) and (1.30), at a fixed time, are

dxk = χk,KdXK , dXK = χ−1
K,kdxk , (1.32)

where indices following a comma represent partial differentiation with respect to XK , when they
are majuscules, and with respect to xk when they are minuscules, that is,

χk,K :=
∂χk
∂XK

, χ−1
K,k :=

∂χ−1
K

∂xk
. (1.33)

The two sets of quantities defined by (1.33) are components of the material and spatial deformation
gradient tensors F and F−1, respectively,

F ( ~X, t) := χk,K ( ~X, t)(~ik ⊗ ~IK) , F−1(~x, t) := χ−1
K,k(~x, t)(

~IK ⊗~ik) , (1.34)

where the symbol ⊗ denotes the dyadic product of vectors. Alternatively, (1.34) may be written
in symbolic notation as 2

F ( ~X, t) := (Grad ~χ)T , F−1(~x, t) := (grad ~χ−1)T . (1.35)

The deformation gradients F and F−1 are two-point tensor fields because they relate a vector
d~x in the present configuration to a vector d ~X in the reference configuration. Their components
transform like those of a vector under rotations of only one of two reference axes and like a two-
point tensor when the two sets of axes are rotated independently. In symbolic notation, equation
(1.32) appears in the form

d~x = dxk~ik = F · d ~X , d ~X = dXK
~IK = F−1 · d~x . (1.36)

The material deformation gradient F can thus be thought of as a mapping of the infinitesimal vec-
tor d ~X of the reference configuration onto the infinitesimal vector d~x of the current configuration;
the inverse mapping is performed by the spatial deformation gradient F−1.

2The nabla operator ~∇ is defined as ~∇ := ~ik
∂

∂xk
. With this operator, the gradient of a vector function ~φ is

defined by the left dyadic product of the nabla operator ~∇ with ~φ, that is, grad ~φ := ~∇⊗ ~φ. Moreover, the gradients
”Grad” and ”grad” denote the gradient operator with respect to material and spatial coordinates, respectively, the
time t being held constant in each case. Hence, F = (~∇⊗ ~χ)T .
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Through the chain rule of partial differentiation it is clear that

χk,Kχ
−1
K,l = δkl , χ−1

K,kχk,L = δKL , (1.37)

or, when written in symbolic notation:

F · F−1 = F−1 · F = I , (1.38)

where I is the identity tensor. Strictly speaking, there are two identity tensors, one in the
Lagrangian coordinates and one in the Eulerian coordinates. However, we shall disregard this
subtlety. Equation (1.38) shows that the spatial deformation gradient F−1 is the inverse tensor
of the material deformation gradient F . Each of the two sets of equations (1.37) consists of nine
linear equations for the nine unknown χk,K or χ−1

K,k. Since the jacobian is assumed not to vanish,

a unique solution exists and, according to Cramer’s rule of determinants, the solution for χ−1
K,k

may be written in terms of χk,K as

χ−1
K,k =

cofactor (χk,K )

J
=

1

2J
εKLM εklmχl,Lχm,M , (1.39)

where εKLM and εklm are the Levi-Cività alternating symbols, and

J := det (χk,K ) =
1

3!
εKLM εklmχk,Kχl,Lχm,M = detF . (1.40)

Note that the jacobian J is identical to the determinant of tensor F only in the case that both
the Lagrangian and Eulerian coordinates are of the same type, as in the case here when both
are Cartesian coordinates. If the Lagrangian coordinates are of a different type to the Eulerian
coordinates, the volume element in these coordinates is not the same and, consequently, the
jacobian J will differ from the determinant of F .

By differentiating (1.39) and (1.40), we get the following Jacobi identities:

d J

dχk,K
= Jχ−1

K,k ,

(Jχ−1
K,k),K = 0 , or (J−1χk,K ),k = 0 .

(1.41)

The first identity is proved as follows:

d J

dχr,R
=

1

3!
εKLM εklm

[
∂χk,K
∂χr,R

χl,Lχm,M + χk,K
∂χl,L
∂χr,R

χm,M + χk,Kχl,L
∂χm,M
∂χr,R

]

=
1

3!

[
εRLM εrlmχl,Lχm,M + εKRM εkrmχk,Kχm,M + εKLRεklrχk,Kχl,L

]
=

1

2
εRLM εrlmχl,Lχm,M = cofactor (χr,R) = Jχ−1

R,r .

Furthermore, differentiating this result with respect to XK yields

(Jχ−1
K,k),K =

1

2
εKLM εklm(χl,LKχm,M + χl,Lχm,MK )

= εKLM εklmχl,LKχm,M
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=
1

2
εklmχm,M

(
εKLMχl,LK + εKLMχl,LK

)
=

1

2
εklmχm,M

(
εKLMχl,LK − εLKMχl,LK

)
=

1

2
εklmχm,M

(
εKLMχl,LK − εKLMχl,KL

)
= 0 ,

hence proving the second identity in (1.41). In the last step, we have assumed that the order of
differentiation with respect to XK and XL can be interchanged.

The Jacobi identities can be expressed in symbolic notation: 3

d J

dF
= JF−T ,

Div (JF−1) = ~0 , or div (J−1F ) = ~0 .

(1.42)

Furthermore, with the help of the basic properties of the Levi-Cività alternating symbols 4,
equations (1.39) and (1.40) may be rewritten in the following form:

JεKLMχ
−1
K,k = εklmχl,Lχm,M ,

JεKLM = εklmχk,Kχl,Lχm,M ,
(1.43)

or, symbolically,

JF−T · ( ~A× ~B) = (F · ~A)× (F · ~B) ,

J( ~A× ~B) · ~C = [(F · ~A)× (F · ~B)] · (F · ~C) ,
(1.44)

that is valid for all vectors ~A, ~B and ~C.
The differential operations in the Eulerian coordinates applied to Eulerian variables can be

converted to the differential operations in the Lagrangian coordinates applied to Lagrangian
variables by means of the chain rule of differentiation. For example, the following identities can
be verified:

grad • = F−T ·Grad • ,
div • = F−T .. Grad • ,

div grad • = F−1 · F−T .. Grad Grad •+divF−T ·Grad • ,
(1.45)

3Note that F−T ≡
(
F T
)−1 ≡

(
F−1

)T
.

4The product of two alternating symbols defines a sixth-order tensor with the components

εKLM εRST = det

(
δKR δLR δMR

δKS δLS δMS

δKT δLT δMT

)
.

The successive contraction of indeces yields

εKLM εKST = δLSδMT − δLT δMS ,
εKLM εKLT = 2δMT ,
εKLM εKLM = 6 .

9



where the symbol .. denotes the double-dot product of tensors. To show it, let us consider a tensor
T represented in the Eulerian variables as t(~x, t). The corresponding Lagrangian representation
of T is T ( ~X, t) = t(~χ( ~X, t), t). Then

grad t =~ik ⊗
∂t

∂xk
=~ik ⊗

∂T

∂XK

∂XK

∂xk
= χ−1

K,k
~ik ⊗

∂T

∂XK
=
(
~IK · F−1

)
⊗ ∂T

∂XK

=
(
F−T · ~IK

)
⊗ ∂T

∂XK
= F−T ·

(
~IK ⊗

∂T

∂XK

)
= F−T ·GradT ,

hence proving the first identity in (1.45). Replacing dyadic product by scalar product, we have

div t =~ik ·
∂t

∂xk
=~ik ·

∂T

∂XK

∂XK

∂xk
= χ−1

K,k
~ik ·

∂T

∂XK
= χ−1

K,k(
~ik⊗~IK) ..

(
~IL ⊗

∂T

∂XL

)
= F−T .. GradT ,

that proves the second identity. The last identity in (1.45) may be verified by using (A.23). The
inverse relations are

Grad • = F T · grad • ,
Div • = F T .. grad • ,

Div Grad • = F · F T .. grad grad •+DivF T · grad • .
(1.46)

1.6 Polar decomposition of the deformation gradient

The basic properties of the local behavior of deformation emerge from the possibility of decompos-
ing a deformation into a rotation and a stretch which, roughly speaking, is a change of the shape
of a volume element. This decomposition is called the polar decomposition of the deformation
gradient 5, and is summarized in the following theorem.

A non-singular tensor F (detF 6= 0) permits the polar decomposition in two ways: 6

F = R ·U = V ·R , (1.47)

where the tensors R, U and V have the following properties:

1. The tensors U and V are symmetric and positive definite.

2. The tensor R is orthogonal, R ·RT = RT ·R = I, i.e., R is a rotation tensor.

3. U , V and R are uniquely determined.

4. The eigenvalues of U and V are identical; if ~e is an eigenvector of U , thenR·~e is an eigenvector
of V .

As a preliminary to proving these statements, we note that an arbitrary tensor T is positive
definite if ~v · T · ~v > 0 for all vectors ~v 6= ~0. A necessary and sufficient condition for T to be
positive definite is that all of its eigenvalues are positive. In this regard, consider the tensor C,

5Equation (1.47) is analogous to the polar decomposition of a complex number: z = reiϕ, where r = (x2 +y2)1/2

and ϕ = arctan(y/x). For this reason, it is referred as the polar decomposition.
6The polar decomposition may be applied to every second-order, non-singular tensor as the product of a positive-

definite symmetric tensor and an orthogonal tensor.
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C := F T ·F . Since F is assumed to be non-singular (detF 6= 0) and F ·~v 6= ~0 if ~v 6= ~0, it follows
that (F · ~v) · (F · ~v) is a sum of squares and hence greater than zero. Thus

0 < (F · ~v) · (F · ~v) = ~v · F T · F · ~v = ~v ·C · ~v ,

and C is positive definite. By the same arguments, we may show that the tensor b, b := F ·F T ,
is also positive definite.

The positive roots of C and b define two tensors U and V , such that

U :=
√
C =

√
F T · F , V :=

√
b =

√
F · F T . (1.48)

The tensors U and V , called the right and left stretch tensors, are symmetric, positive definite
and are uniquely determined.

Next, two tensors R and R̃ are defined by

R := F ·U−1 , R̃ := V −1 · F . (1.49)

We recognize that both are orthogonal since by definition we have

R ·RT = (F ·U−1) · (F ·U−1)T = F ·U−1 ·U−1 · F T = F ·U−2 · F T =

= F · (F T · F )−1 · F T = F · F−1 · F−T · F T = I .

Complementary,

RT ·R = (F ·U−1)T · (F ·U−1) = U−1 · F T · F ·U−1 = U−1 ·U2 ·U−1 = I .

Similar proofs hold for R̃.
So far we have demonstrated two decompositions F = R · U = V · R̃, where U and V are

symmetric, positive definite and R and R̃ are orthogonal. From

F = V · R̃ = (R̃ · R̃T
) · V · R̃ = R̃ · (R̃T · V · R̃) = R̃ · Ũ ,

it may be concluded that there may be two decompositions of F , namely F = R·U and F = R̃·Ũ .

However, if this were true we would be forced to conclude that C = F T · F = Ũ
2

= U2, hence
concluding that Ũ = U because of the uniqueness of the positive root. This therefore implies
that R̃ = R, leading to the consequence that U , V and R are unique.

Finally, we assume ~e and λ to be an eigenvector and eigenvalue of U . Then, we have λ~e = U ·~e,
as well as λR ·~e = (R ·U) ·~e = (V ·R) ·~e = V · (R ·~e). Thus λ is also eigenvalue of V and R ·~e
is an eigenvector. This completes the proof of the theorem.

It is instructive to write the relation (1.47) in componental form as

FkK = RkLULK = VklRlK , (1.50)

which means that R is a two-point tensor while U and V are ordinary (one-point) tensors.
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Figure 1.3. Polar decomposition of the deformation gradient.

Equation d~x = F · d ~X shows that the deformation gradient F can be thought of as a mapping
of the infinitesimal vector d ~X of the reference configuration into the infinitesimal vector d~x of
the current configuration. The theorem of polar decomposition replaces the linear transformation
d~x = F · d ~X by two sequential transformations, by rotation and stretching, where the sequence
of these two steps may be interchanged, as illustrated in Figure 1.3. The combination of rotation
and stretching corresponds to the multiplication of two tensors, namely, R and U or V and R,

d~x = (R ·U) · d ~X = (V ·R) · d ~X . (1.51)

However, R should not be understood as a rigid body rotation since, in general case, it varies from
point to point. Thus the polar decomposition theorem reflects only a local property of motion.

1.7 Measures of deformation

Local changes in the geometry of continuous bodies can be described, as usual in differential
geometry, by the changes in the metric tensor. In Euclidean space, it is particularly simple to
accomplish. Consider a material point ~X and an infinitesimal material vector d ~X. The changes in
the length of three such linearly independent vectors describe the local changes in the geometry.

The infinitesimal vector d ~X in κ0 is mapped onto the infinitesimal vector d~x in κt. The metric
properties of the present configuration κt can be described by the square of the length of d~x:

ds2 = d~x · d~x = (F · d ~X) · (F · d ~X) = d ~X ·C · d ~X = C .. (d ~X ⊗ d ~X) , (1.52)

where the Green deformation tensor C defined by

C( ~X, t) := F T · F , (1.53)
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has already been used in the proof of the polar decomposition theorem. Equation (1.52) describes
the local geometric property of the present configuration κt with respect to that of the reference
configuration κ0. Alternatively, we can use the inverse tensor expressing the geometry of the
reference configuration κ0 relative to that of the present configuration κt. We have

dS2 = d ~X · d ~X = (F−1 · d~x) · (F−1 · d~x) = d~x · c · d~x = c .. (d~x⊗ d~x) , (1.54)

where c is the Cauchy deformation tensor defined by

c(~x, t) := F−T · F−1 . (1.55)

Both tensors c and C are symmetric, that is, c = cT and C = CT . We see that, in contrast to
the deformation gradient tensor F with generally nine independent components, the changes in
metric properties, following from the changes of configuration, are described by six independent
components of the deformation tensors c or C.

Apart from the Cauchy deformation tensor c and the Green deformation tensor C, we can
introduce other equivalent geometrical measures of deformation. Equation (1.52) and (1.54)
yield two different expressions of the squares of element of length, ds2 and dS2. The difference
ds2 − dS2 for the same material points is a relative measure of the change of length. When this
difference vanishes for any two neighboring points, the deformation has not changed the distance
between the pair. When it is zero for all points in the body, the body has undergone only a rigid
displacement. From (1.52) and (1.54) for this difference we obtain

ds2 − dS2 = dX · 2E · dX = dx · 2e · dx , (1.56)

where we have introduced the Lagrangian and Eulerian strain tensors, respectively,

E( ~X, t) :=
1

2
(C − I) , e(~x, t) :=

1

2
(I − c) . (1.57)

Clearly, when either vanishes, ds2 = dS2. Hence, for a rigid body motion, both strain tensors
vanish, but F = R. The strain tensors are non-zero only when a strain or stretch arises. Both
tensors e and E are symmetric, that is, e = eT and E = ET . Therefore, in three dimensions
there are only six independent components for each of these tensors, for example, E11, E22, E33,
E12 = E21, E13 = E31, and E23 = E32. The first three components E11, E22, and E33 are called
normal strains and the last three E12, E13, and E23 are called shear strains. The reason for this
will be discussed later in this chapter.

Two other equivalent measures of deformation are the reciprocal tensors b and B (known as
the Finger and Piola deformation tensors, respectively) defined by

b(~x, t) := F · F T , B( ~X, t) := F−1 · F−T . (1.58)

They satisfy the conditions

b · c = c · b = I , B ·C = C ·B = I , (1.59)

which can be shown by mere substitution of (1.53) and (1.55).
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We have been using the notion tensor for quantities such as C. Tensor refers to a set of
quantities that transform according to a certain definite law upon coordinate transformation.
Suppose the Lagrangian Cartesian coordinates XK are transformed onto X ′K according to

XK = XK(X ′1, X
′
2, X

′
3) . (1.60)

The left-hand side of (1.52) is independent of the coordinate transformations. If we substitute

dXK =
∂XK

∂X ′M
dX ′M ,

on the right-hand side of (1.52), we obtain

ds2 = CKLdXKdXL = CKL
∂XK

∂X ′M

∂XL

∂X ′N
dX ′MdX

′
N

!
= C ′MNdX

′
MdX

′
N .

Hence

C ′MN ( ~X ′, t) = CKL( ~X, t)
∂XK

∂X ′M

∂XL

∂X ′N
(1.61)

since dX ′M is arbitrary and CKL = CLK . Thus, knowing CKL in one set of coordinates XK , we
can find the corresponding quantities in another set X ′K once the relations (1.60) between XK

and X ′K are given. Quantities that transform according to the law of transformation (1.61) are
known as absolute tensors.

1.8 Length and angle changes

A geometrical meaning of the normal strains E11, E22 and E33 is provided by considering the
length and angle changes that result from deformation. We consider a material line element d ~X
of the length dS that deforms to the element d~x of the length ds. Let ~K be the unit vector along
d ~X,

~K :=
d ~X

dS
. (1.62)

The relative change of length,

E( ~K) :=
ds− dS
dS

, (1.63)

is called the extension or elongation 7 . Dividing (1.56)1 by dS2, we have

ds2 − dS2

dS2
= ~K · 2E · ~K . (1.64)

Expressing the left-hand side by the extension E( ~K), we get the quadratic equation for E( ~K):

E( ~K)(E( ~K) + 2)− ~K · 2E · ~K = 0 . (1.65)

From the two possible solutions of this equation, we choose the physically admissible option:

E( ~K) = −1 +

√
1 + ~K · 2E · ~K . (1.66)

7Complementary to the Lagrangian extension E( ~K), the Eulerian extension e( ~K) can be introduced by

e( ~K) :=
ds− dS
ds

.
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Figure 1.4. Deformation of an infinitesimal rectilinear parallelepiped.

Since ~K is a unit vector, ~K · 2E · ~K + 1 = ~K · C · ~K. As proved in Section 1.6, the Green
deformation tensor C is positive symmetric, that is, ~K ·C · ~K > 0. Hence, the argument of the
square root in (1.66) is positive, particularly when ~K is taken along the X1−axis. This gives

E(1) = −1 +
√

1 + 2E11 . (1.67)

The geometrical meaning of the shear strains E12, E13, and E23 is found by considering the
angles between two directions ~K(1) and ~K(2),

~K(1) :=
d ~X(1)

dS(1)
, ~K(2) :=

d ~X(2)

dS(2)
. (1.68)

The angle Θ between these vectors in the reference configuration κ0,

cos Θ =
d ~X(1)

dS(1)
· d

~X(2)

dS(2)
, (1.69)

is changed by deformation to

cos θ =
d~x(1)

ds(1)
· d~x

(2)

ds(2)
=
F · d ~X(1)

ds(1)
· F · d

~X(2)

ds(2)
=
d ~X(1) ·C · d ~X(2)

ds(1) ds(2)
. (1.70)

From (1.62) and (1.63), we obtain

cos θ = ( ~K(1) ·C · ~K(2))
dS(1)

ds(1)

dS(2)

ds(2)
=

~K(1) ·C · ~K(2)

(E( ~K1) + 1)(E( ~K2) + 1)
, (1.71)

which can be rewritten in terms of the Lagrangian strain tensor as

cos θ =
~K(1) · (I + 2E) · ~K(2)√

1 + ~K(1) · 2E · ~K(1)

√
1 + ~K(2) · 2E · ~K(2)

. (1.72)
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When ~K(1) is taken along X1−axis and ~K(2) along X2−axis, (1.72) reduces to

cos θ(12) =
2E12√

1 + 2E11

√
1 + 2E22

. (1.73)

1.9 Surface and volume changes

The change in surface and volume with deformation will now be determined. The oriented surface
element in the reference configuration built on the edge vectors d ~X(1) and d ~X(2),

d ~A := d ~X(1) × d ~X(2) , (1.74)

after deformation becomes the oriented surface element with edge vectors d~x(1) and d~x(2):

d~a := d~x(1) × d~x(2) = (F · d ~X(1))× (F · d ~X(2)) = JF−T · (d ~X(1) × d ~X(2)) ,

where we have used the identity (1.44)1. Substituting for d ~A, the transformation of a surface
element from the reference configuration to the present configuration is

d~a = JF−T · d ~A , or dak = JXK,kdAK . (1.75)

To express the interface conditions at discontinuity surfaces in the Lagrangian description, we
need to find the relation between the unit normals ~n and ~N to the deformed discontinuity σ and
the undeformed discontinuity Σ. Considering the transformation (1.75) between the spatial and
referential surface elements, and writing d~a = ~nda and d ~A = ~NdA, we readily find that

da = J

√
~N ·B · ~N dA , (1.76)

where B is the Piola deformation tensor, B = F−1 · F−T . Combining (1.75) with (1.76) results
in

~n =
~N · F−1√
~N ·B · ~N

. (1.77)

To calculate the deformed volume element, an infinitesimal rectilinear parallelepiped in the
reference configuration spanned by the vectors d ~X(1), d ~X(2) and d ~X(3) is considered (see Figure
1.4). Its volume is given by the scalar product of d ~X(3) with d ~X(1) × d ~X(2):

dV := (d ~X(1) × d ~X(2)) · d ~X(3) . (1.78)

In the present configuration, the volume of the parallelepiped is

dv := (d~x(1)× d~x(2)) · d~x(3) = [(F · d ~X(1))× (F · d ~X(2))] · (F · d ~X(3)) = J(d ~X(1)× d ~X(2)) · d ~X(3) ,

where we have used the identity (1.44)2. Substituting for dV , the transformation of volume
element from the reference configuration to the present configuration is

dv = JdV . (1.79)

Consequently, the determinant J of the deformation gradient F measures the volume changes of
infinitesimal elements. For this reason, J must be positive for material media.
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1.10 Strain invariants, principal strains

In this section, a brief account of the invariants for a second-order symmetric tensor is given. The
Lagrangian strain tensor E is considered as a typical example of this group. It is of interest to
determine, at a given point ~X, the directions ~V for which the expression ~V ·E · ~V takes extremum
values. For this we must differentiate ~V ·E ·~V with respect to ~V subject to the condition ~V ·~V = 1.
Using Lagrange’s method of multipliers, we set

∂

∂VK

[
~V ·E · ~V − λ(~V · ~V − 1)

]
= 0 , (1.80)

where λ is the unknown Lagrange multiplier. This gives

(EKL − λδKL)VL = 0 . (1.81)

A nontrivial solution of the homogeneous equations (1.81) exists only if the characteristic deter-
minant vanishes,

det (E − λI) = 0 . (1.82)

Upon expanding this determinant, we obtain a cubic algebraic equation in λ, known as the
characteristic equation of the tensor E:

−λ3 + IE λ
2 − IIE λ+ IIIE = 0 , (1.83)

where

IE := E11 + E22 + E33 ≡ trE ,

IIE := E11E22 + E11E33 + E22E33 − E2
12 − E2

13 − E2
23 ≡

1

2

[
(trE)2 − tr (E2)

]
, (1.84)

IIIE := detE .

The quantities IE , IIE and IIIE are known as the principal invariants of tensor E. These
quantities remain invariant upon any orthogonal transformation of E, E∗ = Q ·E ·QT , where Q
is an orthogonal tensor. This can be deduced from the equivalence of the characteristic equations
for E∗ and E:

0 = det (E∗ − λI) = det (Q ·E ·QT − λI) = det
[
Q · (E − λI) ·QT

]
= detQdet (E − λI) detQT = (detQ)2 det (E − λI) = det (E − λI) .

A second-order tensor E in three dimensions possesses only three independent invariants.
That is, all other invariants of E can be shown to be functions of the above three invariants. For
instance, three other invariants are

ĨE := trE , ĨIE := trE2 , ˜IIIE := trE3 . (1.85)

The relationships between these to IE , IIE and IIIE are

IE = ĨE , ĨE = IE ,

IIE = 1
2

(
Ĩ2
E − ĨIE

)
, ĨIE = I2

E − 2IIE ,

IIIE = 1
3

(
˜IIIE − 3

2 ĨE ĨIE + 1
2 Ĩ

3
E

)
, ˜IIIE = I3

E − 3IE IIE + 3IIIE .

(1.86)
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The roots λα, α = 1, 2, 3, of the characteristic equation (1.83) are called the characteristic
roots. If E is the Lagrangian or Eulerian strain tensor, λα are called the principal strains. With
each of the characteristic roots, we can determine a principal direction ~Vα, α = 1, 2, 3, solving the
equation

E · ~Vα = λα~Vα , (1.87)

together with the normalizing condition ~Vα · ~Vα = 1. For a symmetric tensor E, it is not difficult
to show that (i) all characteristic roots are real, and (ii) the principal directions corresponding
to two distinct characteristic roots are unique and mutually orthogonal. If, however, there is
a pair of equal roots, say λ1 = λ2, then only the direction associated with λ3 will be unique.
In this case, any other two directions which are orthogonal to ~V3, and to one another so as to
form a right-handed system, may be taken as principal directions. If λ1 = λ2 = λ3, every set
of right-handed orthogonal axes qualifies as principal axes, and every direction is said to be a
principal direction. Thus we can see that it is always possible to find at point ~X, at least three
mutually orthogonal directions for which the expression ~V ·E · ~V takes the stationary values.

The tensor E takes a particularly simple form when the reference coordinate system is selected
to coincide with the principal directions. Let the component of tensor E be given initially with
respect to arbitrary Cartesian axes XK with the base vectors ~IK , and let the principal axes of
E be designated by Xα with the base vectors ~Iα ≡ ~Vα. In invariant notation, the tensor E is
represented in the form

E = EKL(~IK ⊗ ~IL) = Eαβ(~Vα ⊗ ~Vβ) , (1.88)

where the diagonal elements Eαα are equal to the principal values λα, while the off-diagonal
elements Eαβ = 0, α 6= β, are zero. The projection of the vector ~IK on the base of vectors ~Vα is

~IK = (~IK · ~Vα)~Vα , (1.89)

where ~IK · ~Vα are the direction cosines between the two established sets of axes XK and Xα. By
carrying (1.89) into (1.88), we find that

Eαβ = (~IM · ~Vα)(~IN · ~Vβ)EMN . (1.90)

Hence, the determination of the principal directions ~Vα and the characteristic roots λα of a tensor
E is equivalent to finding a rectangular coordinate system of reference in which the matrix ||EKL||
takes the diagonal form.

1.11 Displacement vector

The geometrical measures of deformation can also be expressed in terms of the displacement
vector ~u that extends from a material points ~X in the reference configuration κ0 to its spatial
position ~x in the present configuration κt, as illustrated in Figure 1.5:

~u := ~x− ~X +~b . (1.91)

This definition may be interpreted in either the Lagrangian or Eulerian descriptions of ~u:

~U( ~X, t) = ~χ( ~X, t)− ~X +~b , ~u(~x, t) = ~x− ~χ−1(~x, t) +~b . (1.92)

Taking the scalar product of both sides of (1.92)1 and (1.92)2 by~ik and ~IK respectively, we obtain

Uk( ~X, t) = χk − δkLXL + bk , uK(~x, t) = δKlxl − χ−1
K +BK , (1.93)
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Figure 1.5. Displacement vector.

where bk = ~b·~ik and BK = ~b·~IK . Here again we can see the appearance of shifters. Differentiating
(1.93)1 with respect to XK and (1.93)2 with respect to xk, we find

Uk,K( ~X, t) = χk,K − δkLδLK , uK,k(~x, t) = δKlδlk − χ−1
K,k .

In view of (1.14), this can be simplified as

Uk,K( ~X, t) = χk,K − δkK , uK,k(~x, t) = δKk − χ−1
K,k . (1.94)

In principle, all physical quantities representing the measures of deformation can be expressed
in terms of the displacement vector and its gradient. For instance, the Lagrangian strain tensor
may be written in indicial notation as

2EKL = CKL − δKL = χk,Kχk,L − δKL = (δkK + Uk,K)(δkL + Uk,L)− δKL ,

which reduces to
2EKL = UK,L + UL,K + Uk,KUk,L . (1.95)

Likewise, the Eulerian strain tensor may be written in the form

2ekl = δkl − ckl = δkl − χ−1
K,kχ

−1
K,l = δkl − (δKk − uK,k)(δKl − uK,l) ,

which reduces to
2ekl = uk,l + ul,k − uK,kuK,l . (1.96)

It is often convenient not to distinguish between the Lagrangian coordinates XK and the
Eulerian coordinates xk. In such a case, the shifter symbol δKl reduces to the Kronecker delta
δkl and the displacement vector is defined by

~U( ~X, t) = ~χ( ~X, t)− ~X . (1.97)
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Consequently, equation (1.94)1 can be written in symbolic form:

F = I +HT , (1.98)

where H is the displacement gradient tensor defined by

H( ~X, t) := Grad ~U( ~X, t) . (1.99)

Furthermore, the indicial notation (1.95) of the Lagrangian strain tensor is simplified to symbolic
notation to have

E =
1

2
(H +HT +H ·HT ) . (1.100)

1.12 Geometrical linearization

If the numerical values of all components of the displacement gradient tensor are very small
compared to one, we may neglect the squares and products of these quantities in comparison to
the gradients themselves. A convenient measure of smallness of deformations is the magnitude of
the displacement gradient,

|H| � 1 , (1.101)

where
|H|2 = HklHkl = H .. HT . (1.102)

In the following, the term small deformation will correspond to the case of small displacement
gradients. Geometrical linearization is the process of developing all kinematic variables correct
to the first order in |H| and neglecting all terms of orders higher than O(|H|). In its geometrical
interpretation, a small value of |H| implies small strains as well as small rotations.

1.12.1 Linearized analysis of deformation

Let us decompose the transposed displacement gradient into the symmetric and skew-symmetric
parts:

HT = Ẽ + R̃ , (1.103)

where

Ẽ :=
1

2
(H +HT ) , R̃ :=

1

2
(HT −H) . (1.104)

The symmetric part Ẽ = ẼT is the linearized Lagrangian strain tensor, and the skew-symmetric
part R̃ = −R̃T is the linearized Lagrangian rotation tensor. Carrying this decomposition into
(1.100), we obtain

E = Ẽ +
1

2
(Ẽ − R̃) · (Ẽ + R̃) . (1.105)

It is now clear that for E ≈ Ẽ, not only the strains Ẽ must be small, but also the rotations R̃
so that products such as ẼT · Ẽ, ẼT · R̃, and R̃T · R̃ will be negligible compared to Ẽ.

In view of the decomposition (1.103), the deformation gradient may be written in the form

F = I + Ẽ + R̃ , (1.106)
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Thus, we can see that for small deformations, the multiplicative decomposition of the defor-
mation gradient into orthogonal and positive definite factors is approximated by the additive
decomposition into symmetric and skew-symmetric parts.

In the geometrical linearization, other deformation and rotation tensors take the form:

F−1 = I −HT +O(|H|2) ,

detF = 1 + trH +O(|H|2) ,

C = I +H +HT +O(|H|2) ,

B = I −H −HT +O(|H|2) , (1.107)

U = I +
1

2
(H +HT ) +O(|H|2) ,

V = I +
1

2
(H +HT ) +O(|H|2) ,

R = I +
1

2
(HT −H) +O(|H|2) .

The transformation (1.45) between the differential operations applied to the Eulerian variables
and those applied to the Lagrangian variables can be linearized by the following:

grad • = Grad • −H ·Grad •+O(|H|2) ,

div • = Div • −H .. Grad •+O(|H|2) ,

div grad • = Div Grad • −2H .. Grad Grad • −DivH ·Grad •+O(|H|2) ,

(1.108)

or, conversely,

Grad • = grad •+H · grad •+O(|H|2) ,

Div • = div •+H .. grad •+O(|H|2) ,

Div Grad • = div grad •+2H .. grad grad •+DivH · grad •+O(|H|2) .

(1.109)

Equation (1.96) shows that the geometrical linearization of the Eulerian strain tensor e results
in the linearized Eulerian strain tensor ẽ:

e ≈ ẽ =
1

2

[
grad ~u+ (grad ~u)T

]
. (1.110)

Because of (1.108)1, the tensor ẽ is, correct to the first order of ‖H‖, equal to the tensor Ẽ,

ẽ = Ẽ +O(|H|2) . (1.111)

Thus, in the linearized theory, the distinction between the Lagrangian and Eulerian strain tensors
disappears.

1.12.2 Length and angle changes

Expanding the square root in (1.67) by the binomial theorem and neglecting the square and
higher powers of E11, we obtain

E(1) ≈ E11 ≈ Ẽ11 . (1.112)
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Similar results are of course valid for E22 and E33, which indicates that the infinitesimal normal
strains are approximately the extensions of the fibers along the coordinate axes in the reference
configuration. Likewise, the geometrical linearization of (1.73) yields

cos θ(12) ≈ 2E12 ≈ 2Ẽ12 . (1.113)

Hence, writing cos θ(12) = sin Γ(12) ≈ γ(12), we have

γ(12) ≈ 2E12 ≈ 2Ẽ12 . (1.114)

Similar results are valid for E13 and E23. This provides geometrical meaning for shear strains. The
infinitesimal shear strains are approximately one half of the angle change between the coordinate
axes in the reference configuration.

1.12.3 Surface and volume changes

Substituting the linearized form (1.107) for the spatial deformation gradient F−1 and the jacobian
J into (1.75), we obtain the linearized relation between d~a and d ~A:

d~a = [I + (trH)I −H] · d ~A+O(|H|2) . (1.115)

We may also linearize the separate contributions to d~a. Using the linearized form (1.107) for the
Piola deformation tensor B, we can write

1√
~N ·B · ~N

=
1√

1− 2 ~N ·H · ~N
= 1 + ~N ·H · ~N +O(|H|2) . (1.116)

Employing this and the linearized forms of the spatial deformation gradient F−1 and the jacobian
J , the unit normal ~n to the deformed surface σ and the surface element da of σ may, within the
framework of linear approximation, be written as

da = (1 + trH − ~N ·H · ~N)dA+O(|H|2) , (1.117)

~n = (1 + ~N ·H · ~N) ~N −H · ~N +O(|H|2) . (1.118)

where ~N is the unit normal to the undeformed surface Σ, the Lagrangian description of the
deformed surface σ. The first equation accounts for the change of surface element, the second
gives the deflection of the unit normal.

The linearized expressions for the deformed surface element can also be expressed in terms
of the surface-gradient operator GradΣ and the surface-divergence operator DivΣ defined in Ap-
pendix B. For example, the surface gradient and the surface divergence of the displacement vector
~U are given by (B.30) and (B.31):

GradΣ
~U = H − ~N ⊗ ( ~N ·H) , (1.119)

DivΣ
~U = trH − ~N ·H · ~N , (1.120)

where H = Grad ~U and trH = Div ~U . In terms of the surface displacement gradient and
divergence, equations (1.115), (1.117) and (1.118) have the form

d~a = [I + (DivΣ
~U)I −GradΣ

~U ] · d ~A+O(|H|2) , (1.121)

da = (1 + DivΣ
~U)dA+O(|H|2) , (1.122)

~n = (I −GradΣ
~U) · ~N +O(|H|2) . (1.123)
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Equation (1.122) is the surface analogue of the volumetric relation (1.79); the deformed and
undeformed volume elements dv and dV are related by

dv = (1 + Div ~U)dV +O(|H|2) . (1.124)
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2. KINEMATICS

2.1 Material and spatial time derivatives

In the previous chapter we discussed the geometrical properties of the present configuration κt
under the assumption that the parameter t describing time changes of the body is kept fixed.
That is, the function ~χ was considered as a deformation map ~χ(·, t). Now we turn our attention
to problems for the case of motion, that is where the function ~χ is treated as the map ~χ( ~X, ·) for
a chosen point ~X. We assume that ~χ( ~X, ·) is twice differentiable.

If we focus our attention on a specific particle XP having the material position vector ~XP ,
(1.3) takes the form

~xP = ~χ( ~XP , t) (2.1)

and describes the path or trajectory of that particle as a function of time. The velocity ~vP of the
particle along this path is defined as the time rate of change of position, or

~V P :=
d~xP

dt
=

(
∂~χ

∂t

)∣∣∣∣∣
~X= ~XP

, (2.2)

where the subscript ~X accompanying a vertical bar indicates that ~X is held constant (equal to
~XP ) in the differentiation of ~χ. In an obvious generalization, we may define the velocity of the
total body as the derivative

~V ( ~X, t) :=
d~x

dt

∣∣∣∣
~X

=

(
∂~χ

∂t

)∣∣∣∣∣
~X

. (2.3)

This is the Lagrangian representation of velocity. The time rate of change of a physical quantity
with respect to a fixed, but moving material particle is called the material time derivative. Hence,
the velocity of the material particle is defined as the material time derivative of its position ~x.
Similarly, the material time derivative of ~v defines the Lagrangian representation of acceleration,

~A( ~X, t) :=
d~v

dt

∣∣∣∣
~X

=

(
∂~V

∂t

)∣∣∣∣∣
~X

=

(
∂2~χ( ~X, t)

∂2t

)∣∣∣∣∣
~X

. (2.4)

By using (1.92)1 we may also write

~V ( ~X, t) =

(
∂~U

∂t

)∣∣∣∣∣
~X

, ~A( ~X, t) =

(
∂2~U

∂2t

)∣∣∣∣∣
~X

. (2.5)

The material particle with a given velocity or acceleration is, in the Lagrangian representation,
identifiable, such that, both the velocity and acceleration fields are defined with respect to the
reference configuration κ0. This is frequently not convenient, for instance, in classical fluid me-
chanics. When the present configuration κt is chosen as the reference configuration, the function
~χ( ~X, t) cannot be specified. Thus, in the Eulerian description, the velocity and acceleration at
time t at a spatial point are known, but the particle occupying this point is not known.

Since the fundamental laws of continuum dynamics involve the acceleration of particles and
since the Lagrangian formulation of velocity may not be available, the acceleration must be
calculated from the Eulerian formulation of velocity. To accomplish this, only the existence of
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the unknown trajectories, ~x = ~χ( ~X, t), must be assumed. By the substitution of (1.4) for ~X in
(2.3), we have

~v(~x, t) = ~V (~χ−1(~x, t), t) , (2.6)

where the particle, which at time t occupies the position ~x, is held fixed. This relation gives
the velocity field at each spatial point ~x at time t with no specification of its relationship to the
material point ~X. This is the Eulerian representation of velocity.

Based on the same assumption of the existence of the trajectories ~x = ~χ( ~X, t), the Eulerian
representation of velocity (2.6) may be considered in the form ~v = ~v(~x( ~X, t), t). By the chain
rule of calculus, we obtain

d~v

dt

∣∣∣∣
~X

=
∂~v

∂t

∣∣∣∣
~x

+
∂~v

∂xk

dxk
dt

∣∣∣∣
~X

+
∂~v

∂xk

∂xk
∂XK

dXK

dt

∣∣∣∣
~X
.

Since dXK/dt| ~X = 0, the last expression reduces to

d~v

dt

∣∣∣∣
~X

=
∂~v

∂t

∣∣∣∣
~x

+ ~v · grad~v , (2.7)

where differentiation in the grad-operator is taken with respect to the spatial variables. 8 This is
the desired equation for the Eulerian representation of acceleration, which is expressed in terms
of the Eulerian representation of velocity,

~a(~x, t) =
∂~v

∂t

∣∣∣∣
~x

+ ~v · grad~v . (2.8)

In this equation, the first term on the right-hand side gives the time rate of change of velocity at
a fixed position ~x, known as the local rate of change or spatial time derivatives. The second term
results from the particles changing position in space and is referred to as the convective term.
Note that the convective term can equivalently be represented in the form

~v · grad~v = grad
v2

2
− ~v × rot~v . (2.9)

The material time derivative of any other field quantity can be calculated in the same way if
its Lagrangian or Eulerian representation is known. This allows the introduction of the material
time derivative operator

D

Dt
≡
.

( ):=
d

dt

∣∣∣∣
~X

=


∂
∂t

∣∣∣
~X

for a field in the Lagrangian representation ,

∂
∂t

∣∣∣
~x

+ ~v · grad for a field in the Eulerian representation ,

(2.10)
which can be applied to any field quantity given in the Lagrangian or Eulerian representation.

2.2 Time changes of some geometric objects
8The components of grad~v in the Cartesian coordinates xk are (grad~v)kl = vl,k.
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All of the geometric objects that we discussed in Chapter 1 can be calculated from the deformation
gradient F . For this reason, we begin with an investigation of the material time derivative of F .
In indicial notation, we can write

Dχk,K
Dt

=
D

Dt

( ∂χk
∂XK

)
=

∂

∂t

( ∂χk
∂XK

)∣∣∣∣
~X

=
∂

∂XK

(∂χk
∂t

)∣∣∣∣
~X

=
∂Vk
∂XK

= Vk,K = vk,lχl,K , (2.11)

where we have used the fact that XK are kept fixed in material time derivative so that material
time derivative D/Dt and material gradient ∂/∂XK commute. In addition, we have employed
the Lagrangian and Eulerian representations of velocity (2.3) and (2.6), respectively. In symbolic
notation, we have

.
F= l · F , or l =

.
F ·F−1 , (2.12)

where l is the transpose spatial velocity gradient,

l(~x, t) := gradT~v(~x, t), or lkl(~x, t) :=
∂vk(~x, t)

∂xl
. (2.13)

A corollary of this lemma is
(F−1)· = −F−1 · l . (2.14)

To prove it, we take the material time derivative of F · F−1 = I. Hence,

.
F ·F−1 + F · (F−1)· = 0 .

Using (2.12), we obtain (2.14).
The material time derivative of the Jacobian is given by

.
J= J div~v = J tr l . (2.15)

To show this, we have

.
J= (detχk,K)· =

∂J

∂χk,K
(χk,K)· =

∂J

∂χk,K
vk,lxl,K .

Using (1.41)1, this gives (2.15).
The velocity gradient l determines the material time derivatives of the material line element

d~x, surface element d~a and volume element dv according to the formulae:

(d~x)· = l · d~x , (2.16)

(d~a)· =
[
(div~v)I − lT

]
· d~a , (2.17)

(dv)· = div~v dv . (2.18)

The proof is immediate. We take the material time derivative of (1.36)1 and substitute from
(2.12):

(d~x)· =
.
F · d ~X = l · F · d ~X .

Replacing d ~X by d~x proves (2.16). By differentiating (1.75) and using (2.14) and (2.15), we have

(d~a)· =
[ .
J F

−T + J(F−T )·
]
· d ~A =

[
J div~vF−T − J lT · F−T

]
· d ~A .
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Replacing d ~A by d~a we obtain (2.17). The third statement can be verified by differentiating (1.79)
and using (2.15):

(dv)· =
.
J dV = J div~v dV = div~v dv ,

which completes the proofs of these statements.
As with any 2nd order tensor, the spatial velocity gradient l can be uniquely decomposed into

symmetric and skew-symmetric parts
l = d+w , (2.19)

where

d :=
1

2
(l+ lT ) , w :=

1

2
(l− lT ) . (2.20)

The symmetric tensor d, d = dT , is called the strain-rate or stretching tensor and the skew-
symmetric tensor w, w = −wT , is the spin or vorticity tensor.

To highlight the meaning of the spin tensor w, we readily see that any skew-symmetric 2nd-
order tensor w,

w =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (~ik ⊗~il) ,

can be represented in terms of the so-called vorticity vector ~w in the form:

wkl = εlkmwm , or wk =
1

2
εklmwml .

Since wkl = 1
2(vk,l − vl,k), we find that the vorticity vector ~w is equal to one-half of the curl of

the velocity vector ~v:

~w =
1

2
rot~v . (2.21)

Hence the name spin, or vorticity, given to the tensor w. The scalar product of w with a vector
~a is given by

w · ~a = ~w × ~a.

Equation (2.16) can now be written in the form

(d~x)· = d · d~x+ ~w × d~x . (2.22)

The physical significance of the spin tensor may be seen by considering the case when the strain-
rate tensor is zero, d = 0. Then (d~x)· = ~w×d~x, according to which the spin tensor w describes an
instantaneous local rigid-body rotation about an axis passing through a point ~x; the corresponding
angular velocity, the direction and the sense of this rotation is described by the spin vector ~w.
If, on the other hand, the spin tensor is zero in a region, w = 0, the velocity field is said to be
irrotational in the region.

The material time derivative of the Lagrangian strain tensor is given by

.
E=

1

2

.
C= F T · d · F . (2.23)

To show this, we have

.
C= (F T · F )· = (F T )· · F + F T ·

.
F= F T · lT · F + F T · l · F = F T · (l+ lT ) · F = 2F T · d · F .
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The material time derivative of strain tensor E is determined by the tensor d, but not by the
tensor w. This is why d is called the strain-rate tensor.

The material time derivative of the Eulerian strain tensor is given by

.
e= −1

2

.
c= d− (e · l+ lT · e) . (2.24)

To show it, we have

.
c= (F−T ·F−1)· = (F−T )· ·F−1 +F−T ·(F−1)· = −lT ·F−T ·F−1−F−T ·F−1 · l = −lT ·c−c · l .

By substituting from (1.57)2, we obtain (2.24). Note that
.
e does not equal to d.

Likewise, it can readily be shown that the material time derivative of the Piola deformation
tensor B = F−1 · F−T is .

B= −F−1 · 2d · F−T . (2.25)

In view of this, the material time of the unit normal ~n to surface σ in the present configuration is

(~n)· = −~n · l+ (~n · l · ~n)~n . (2.26)

To show this, we take the material time derivative of (1.77) and use (2.14) and (2.25):

(~n)· =
~N · (F−1)·

( ~N ·B · ~N)1/2
−

~N · F−1

2( ~N ·B · ~N)3/2
( ~N ·

.
B · ~N)

= −
~N · F−1 · l

( ~N ·B · ~N)1/2
+

~N · F−1

( ~N ·B · ~N)3/2
( ~N · F−1 · d · F−T · ~N) .

By substituting from (1.77), we obtain (2.25).
The material time derivative of the square of the arc length is given by

(ds2)· = 2 d~x · d · d~x . (2.27)

The proof follows from (1.52):

(ds2)· = (d~x · d~x)· = (d ~X ·C · d ~X)· = d ~X·
.
C · d ~X = (F−1 · d~x) ·

.
C · (F−1 · d~x)

= d~x · F−T ·
.
C ·F−1 · d~x .

Using (2.23), this gives (2.27).
Higher-order material time derivatives can be carried out by repeated differentiation. There-

fore, the nth material time derivative of ds2 can be expressed as

(ds2)(n) = d~x · an · d~x , (2.28)

where

an(~x, t) := F−T ·
(n)

C ·F−1 (2.29)

are known as the Rivlin-Ericksen tensors of order n. The proof of (2.28) is similar to that of

(2.27). Note that
(n)

C is the nth material time derivative of the Green deformation tensor. The
first two Rivlin-Ericksen tensors are

a0 = I , a1 = 2d . (2.30)
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The Rivlin-Ericksen tensors are used in the formulation of non-linear viscoelasticity, and, in
particular, in the description of non-Newtonian fluids (see Chapter 5).

2.3 Reynolds’s transport theorem

In this section we will prove that the material time derivative of a volume integral of any scalar
or vector field φ over the spatial volume v(t) is given by

D

Dt

∫
v(t)

φdv =

∫
v(t)

(
Dφ

Dt
+ φ div~v

)
dv . (2.31)

To prove this, we firstly transform the integral over the spatial volume to an integral over the
material volume V . Under the assumption of existence of the mapping (1.3), and by using (1.79),
we have

D

Dt

∫
v(t)

φdv =
D

Dt

∫
V

ΦJdV ,

where Φ( ~X, t) = φ(~x( ~X, t), t). Since V is a fixed volume in the Lagrangian configuration, the
differentiation D/Dt and the integration over V commute and the differentiation D/Dt can be
performed inside the integral sign,

D

Dt

∫
V

ΦJdV =

∫
V

D

Dt
(ΦJ) dV =

∫
V

(
DΦ

Dt
J + Φ

DJ

Dt

)
dV =

∫
V

(
DΦ

Dt
+ Φdiv~v

)
JdV .

By converting this back to the spatial formulation by (1.79), we prove (2.31). Equation (2.31) is
often referred to as the Reynolds transport theorem.

This theorem may be expressed in an alternative form. We firstly determine the material time
derivative of a scalar field φ,

Dφ

Dt
=
∂φ

∂t
+ ~v · gradφ , (2.32)

and substitute this back into (2.31). With the product rule

φ div~v + ~v · gradφ = div (~vφ) , (2.33)

which is valid for a scalar field φ, we then arrive at

D

Dt

∫
v(t)

φdv =

∫
v(t)

(
∂φ

∂t
+ div (~vφ)

)
dv .

Arranging the second term on the right-hand side according to the Gauss theorem∫
v

div ~u dv =

∮
s
~n · ~u da , (2.34)

where ~u is a vector-valued function continuously differentiable in v, s is the surface bounding
volume v and ~n is the outward unit normal to s, we arrive at the equivalent form of the Reynolds
transport theorem

D

Dt

∫
v(t)

φdv =

∫
v(t)

∂φ

∂t
dv +

∮
s(t)

(~n · ~v)φda , (2.35)

where both φ and ~v are again required to be continuously differentiable in v.
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The same form (2.35) holds also for a vector-valued function φ. The only difference is that
the product rule

φ div~v + ~v · gradφ = div (~v ⊗ φ) , (2.36)

must be applied instead of (2.33) and the Gauss theorem must be used for a 2nd-order tensor A
in the form ∫

v
divA dv =

∮
s
~n ·A da . (2.37)

To prove it, we apply the Gauss theorem (2.34) to vector A ·~c, where ~c is a vector with constant
magnitude and constant but arbitrary direction:∫

v
div (A · ~c) dv =

∮
s
~n ·A · ~c da .

Using the identity div (A · ~c) = divA · ~c, valid for a constant vector ~c, we may further write[ ∫
v

divA dv −
∮
s
~n ·A da

]
· ~c = 0 .

Since |~c| 6= 0 and its direction is arbitrary, meaning that the cosine of the included angle cannot
always vanish, the term in brackets must vanish, which verifies (2.37).

The material time derivative of a flux of a vector ~q across a surface s(t) is

D

Dt

∫
s(t)

~q · d~a =

∫
s(t)

(
D~q

Dt
+ (div~v)~q − ~q · grad~v

)
· d~a . (2.38)

To prove this transport theorem, the integral over the spatial surface s(t) is transformed into
the referential, time-independent surface S, the derivative D/DT is carried inside of the integral,
(1.75) is applied and then it is proceed in a similar manner as in the proof of (2.17).

2.4 Modified Reynolds’s transport theorem

In the preceding section, we derived the Reynolds’s transport theorem under the assumption that
field quantities φ and ~v are continuously differentiable within volume v(t). This assumption is
also implemented in the Gauss theorems (2.34) and (2.37) for field variables ~u andA, respectively.
When a field variable does not satisfy the continuity conditions at a surface intersected volume
v(t), the two integral theorems must be modified.

The surface within a material body across which a physical quantity undergoes a discontinuity
is called a singular surface. In particular, if the singular surface within a body is formed by the
same material elements or particles at all times, it is called the material surface.

Let σ(t) be a singular surface, not necessarily material, across which a physical variable may
be discontinuous, but in the remaining part of a material body the variable is supposed to be
continuously differentiable. Let us assume that σ(t) moves with velocity ~w, not necessarily equal
to the material velocity ~v. We will derive a condition for time evolution of σ(t).

The moving singular surface σ(t) can be defined implicitly by the equation

fσ(~x, t) = 0 ~x ∈ σ(t) , (2.39)

where fσ is differentiable. Let us assume that there is a surface Σ in the reference configuration
κ0 such that surfaces σ(t) and Σ are related by an one-to-one mapping of the form

~x = ~χσ( ~X, t) ~x ∈ σ(t), ~X ∈ Σ . (2.40)
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Since σ(t) moves with velocity ~w, in general different from the material velocity ~v, the mapping
~x = ~χσ( ~X, t) may differ from the motion ~x = ~χ( ~X, t). The Lagrangian and Eulerian representa-
tions of the velocity of points of σ(t) are given by (2.3) and (2.6), respectively, but now applied
to the mapping (2.40):

~W ( ~X, t) =

(
∂~χσ
∂t

)∣∣∣∣∣
~X

, ~w(~x, t) = ~W (~χ−1
σ (~x, t), t) . (2.41)

In view of (2.10), the material time derivative of the implicit equation (2.39) is

∂fσ
∂t

+ ~w · grad fσ = 0 , (2.42)

where the differentiation in gradient is with respect to ~x. Introducing the unit normal ~n to σ(t)
by

~n(~x, t) =
grad fσ
|grad fσ|

~x ∈ σ(t) , (2.43)

we can alternatively write
∂fσ
∂t

+ |grad fσ|(~n · ~w) = 0 . (2.44)

The condition (2.42) or (2.44) is called the kinematic condition for time evolution of moving surface
σ(t). The velocities ~w and ~W of singular surface σ(t) in the reference and present configurations
are known as the displacement velocity and the propagation velocity, respectively.

Consider a material volume v which is intersected by a moving singular surface σ(t) across
which a tensor-valued functionA undergoes a jump. The surface σ(t) divides the material volume
v in two parts, namely v+ into which the normal ~n is directed and v− on the other. Figure 2.1
demonstrates this concept and the rule of sign convection. The Gauss theorem (2.37) is then
modified to become ∫

v−σ
divA dv =

∮
s−σ

~n ·A da−
∫
σ
~n · [A]+− da . (2.45)

The volume integral over v − σ refers to the volume v of the body excluding the material points
located on the singular surface σ. Similarly, the integral over the surface s− σ excludes the line
of intersection of σ with s, that is,

v − σ := v+ + v− , s− σ := s+ + s− . (2.46)

The brackets indicate the jump of the enclosed quantity across σ(t),

[A]+− := A+ −A− . (2.47)

To prove (2.45), we apply the Gauss theorem (2.37) to the two volumes v+ and v− bounded by
s+ + σ+ and s− + σ−, respectively. Hence∫

v+
divA dv =

∫
s+
~n ·A da+

∫
σ+
~n+ ·A+ da ,

∫
v−

divA dv =

∫
s−
~n ·A da+

∫
σ−
~n− ·A− da ,
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Figure 2.1. The moving singular surface σ(t).

where ~n+ and ~n− are the exterior normals to σ+ and σ−, respectively. Adding these two equations,
we find ∫

v++v−
divA dv =

∮
s++s−

~n ·A da+

∫
σ+
~n+ ·A+ da+

∫
σ−
~n− ·A− da .

From Figure 2.1 we can deduce that

~n+ = −~n− = −~n .

The negative sign at ~n appears since the normal vector at the singular surface is directed to its
positive side. Finally, letting σ+ and σ− approach σ, we obtain∫

σ+
~n+ ·A+ da+

∫
σ−
~n− ·A− da =

∫
σ
~n ·
(
A− −A+) da = −

∫
σ
~n · [A]+− da .

The Reynolds transport theorem (2.31) has also to be modified once the singular surface σ(t)
moves with velocity ~w which differs from the material velocity ~v. The modification of (2.31) reads

D

Dt

∫
v−σ

φdv =

∫
v−σ

(
Dφ

Dt
+ φ div~v

)
dv +

∫
σ
~n · [(~v − ~w)⊗ φ]+− da . (2.48)

Both φ and ~v are required to be continuously differentiable in v − σ. To prove (2.48), we apply
(2.35) to the two volumes v+ and v− bounded by s+ + σ+ and s− + σ−, respectively. Hence

D

Dt

∫
v+
φdv =

∫
v+

∂φ

∂t
dv +

∫
s+

(~n · ~v)φda+

∫
σ+

(
~n+ · ~w

)
φ+ da ,

D

Dt

∫
v−
φdv =

∫
v−

∂φ

∂t
dv +

∫
s−

(~n · ~v)φda+

∫
σ−

(
~n− · ~w

)
φ− da .
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Adding these two equations, letting σ+ and σ− approach σ and realizing that ~n+ = −~n− = −~n,
we obtain

D

Dt

∫
v++v−

φdv =

∫
v++v−

∂φ

∂t
dv +

∮
s++s−

(~n · ~v)φda−
∫
σ
(~n · ~w) [φ]+− da .

Replacing the second term on the right-hand side from the Gauss theorem (2.45) applied to
A = ~v ⊗ φ, we get

D

Dt

∫
v++v−

φdv =

∫
v++v−

(
∂φ

∂t
+ div (~v ⊗ φ)

)
dv +

∫
σ
~n · [(~v − ~w)⊗ φ]+− da .

To complete the proof, the first term on the right-hand side needs to be arranged by making use
of (2.36).
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3. MEASURES OF STRESS

3.1 Mass and density

Mass is a physical variable associated with a body. At the intuitive level, mass is perceived to
be a measure of the amount of material contained in an arbitrary portion of body. As such it is
non-negative scalar quantity independent of the time. Mass is additive, that is the mass of a body
is the sum of the masses of its parts. These statetments imply the existence of a scalar field %,
assigned to each particle X such that the mass of the body B currently occupying finite volume
v(B) is determined by

m(B) =

∫
v(B)

%dv . (3.1)

% is called the density or the mass density of the material composing B. As introduced, % defines
the mass per unit volume. If the mass is not continuous in B, then instead of (3.1) we write

m(B) =

∫
v1(B)

%dv +
∑
α

mα , (3.2)

where the summation is taken over all discrete masses contained in the body. We shall be dealing
with a continuous mass medium in which (3.1) is valid, which implies that m(B)→ 0 as v(B)→ 0.
We therefore have

0 ≤ % <∞ . (3.3)

3.2 Volume and surface forces

The forces that act on a continuum or between portions of it may be divided into long-range
forces and short-range forces.

Long-range forces are comprised of gravitational, electromagnetic and inertial forces. These
forces decrease very gradually with increasing distance between interacting particles. As a result,
long-range forces act uniformly on all matter contained within a sufficiently small volume, so that,
they are proportional to the volume size involved. In continuum mechanics, long-range forces are
referred to as volume or body forces.

The body force acting on B is specified by vector field ~f defined on the configuration B. This
field is taken as measured per unit mass and is assumed to be continuous. The total body force
acting on the body B currently occupying finite volume v(B) is expressed as

~F (B) =

∫
v(B)

%~fdv . (3.4)

Short-range forces comprise several types of molecular forces. Their characteristic feature is
that they decrease extremely abruptly with increasing distance between the interacting particles.
Hence, they are of consequence only when this distance does not exceed molecular dimensions. As
a result, if matter inside a volume is acted upon by short-range forces originating from interactions
with matter outside this volume, these forces only act upon a thin layer immediately below its
surface. In continuum mechanics, short-range forces are called surface or contact forces and are
specified more closely by constitutive equations (Chapter 5).
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3.3 Cauchy traction principle

A mathematical description of surface forces stems from the following Cauchy traction principle.
We consider a material body b(t) which is subject to body forces ~f and surface forces ~g. Let

p be an interior point of b(t) and imagine a plane surface a∗ passing through point p (some-
times referred to as a cutting plane) so as to partition the body into two portions, designated
I and II (Figure 3.1). Point p is lying in the area element ∆a∗ of the cutting plane, which is
defined by the unit normal ~n pointing in the direction from Portion I into Portion II, as shown
in Figure 3.1. The internal forces being transmitted across the cutting plane due to the action
of Portion II upon Portion I will give rise to a force distribution on ∆a∗ equivalent to a resul-
tant surface force ∆~g, as also shown in Figure 3.1. (For simplicity, body forces and surface forces

acting on the body as a whole are not drawn in
Figure 3.1.) Notice that ∆~g are not necessar-
ily in the direction of the unit normal vector ~n.
The Cauchy traction principle postulates that the
limit when the area ∆a∗ shrinks to zero, with p
remaining an interior point, exists and is given by

~t(~n) = lim
∆a∗→0

∆~g

∆a∗
. (3.5)

Obviously, this limit is meaningful only if ∆a∗

degenerates not into a curve but into a point p.
The vector ~t(~n) is called the Cauchy stress vec-
tor or the Cauchy traction vector (force per unit

area). It is important to note that, in general, ~t(~n) depends not only on the position of p on ∆a∗

but also the orientation of surface ∆a∗, i.e., on its external normal ~n. This dependence is there-
fore indicated by the subscript ~n. 9 Thus, for the infinity of cutting planes imaginable through
point p, each identified by a specific ~n, there is also an infinity of associated stress vectors ~t(~n) for
a given loading of the body.

�p

∆a∗

a∗

~n

∆~g

I

II

b(t)

Figure 3.1.
Surface force on surface element ∆a∗.

We incidentally mention that a continuous distribution of surface forces acting across some
surface is, in general, equivalent to a resultant force and a resultant torque. In (3.5) we have made
the assumption that, in the limit at p, the torque per unit area vanishes and therefore there is no
remaining concentrated torque, or couple stress. This material is called the non-polar continuum.
For a discussion of couple stresses and polar media, the reader is referred to Eringen, 1967.

3.4 Cauchy lemma

To determine the dependence of the stress vector on the exterior normal, we next apply the
principle of balance of linear momentum to a small tetrahedron of volume ∆v having its vertex
at p, three coordinate surfaces ∆ak, and the base ∆a on a with an oriented normal ~n (Figure
3.2). The stress vector 10 on the coordinate surface xk = const. is denoted by −~tk.

9The assumption that the stress vector ~t(~n) depends only on the outer normal vector ~n and not on differential
geometric property of the surface such as the curvature, has been introduced by Cauchy and is referred to as the
Cauchy assumption.

10Since the exterior normal of a coordinate surface xk = const. is in the direction of −xk, without loss in
generality, we denote the stress vector acting on this coordinate surface by −~tk rather than ~tk.
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Figure 3.2. Equilibrium of an infinitesimal tetrahedron.

We now apply the equation of balance of linear momentum (Sect.4.1) to this tetrahedron,∫
∆v
%~fdv −

∫
∆ak

~tkdak +

∫
∆a

~t(~n)da =
D

Dt

∫
∆v
%~vdv .

The surface and volume integrals may be evaluated by the mean value theorem:

%∗ ~f∗∆v − ~t∗k∆ak + ~t∗(~n)∆a =
D

Dt
(%∗~v∗∆v) , (3.6)

where %∗, ~f∗, and ~v∗ are, respectively, the values of %, ~f , and ~v at some interior points of the
tetrahedron and ~t∗(~n) and ~t∗k are the values of ~t(~n) and ~tk on the surface ∆a and on coordinate
surfaces ∆ak. The volume of the tetrahedron is given by

∆v =
1

3
h∆a , (3.7)

where h is the perpendicular distance from point p to the base ∆a. Moreover, the area vector
∆~a is equal to the sum of coordinate area vectors, that is,

∆~a = ~n∆a = ∆ak~ik . (3.8)

Thus
∆ak = nk∆a . (3.9)

Inserting (3.7) and (3.9) into (3.6) and canceling the common factor ∆a, we obtain

1

3
%∗ ~f∗h− ~t∗knk + ~t∗(~n) =

1

3

D

Dt
(%∗~v∗h) . (3.10)
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Now, letting the tetrahedron shrink to point p by taking the limit h→ 0 and noting that in this
limiting process the starred quantities take on the actual values of those same quantities at point
p, we have

~t(~n) = ~tknk , (3.11)

which is the Cauchy stress formula. Equation (3.11) allows the determination of the Cauchy stress
vector at some point acting across an arbitrarily inclined plane, if the Cauchy stress vectors acting
across the three coordinate surfaces through that point are known.

The stress vectors ~tk are, by definition, independent of ~n. From (3.11) it therefore follows
that

−~t(−~n) = ~t(~n) . (3.12)

The stress vector acting on a surface with the unit normal ~n is equal to the negative stress vector
acting on the corresponding surface with the unit normal −~n. In Newtonian mechanics this
statement is known as Newton’s third law. The calculations show that this statement is valid for
stress vector.

We now introduce the definition of the Cauchy stress tensor. The tkl component of the Cauchy
stress tensor t is given by the lth component of the stress vector ~tk acting on the positive side of
the kth coordinate surface:

~tk = tkl~il or tkl = ~tk ·~il . (3.13)

The first subscript in tkl indicates the coordinate surface xk = const. on which the stress vector ~tk
acts, while the second subscript indicates the direction of the component of ~tk. For example, t23

is the x3-components of the stress vector ~t2 acting on the coordinate surface x2 = const.. Now,
if the exterior normal of x2 = const. points in the positive direction of the x2-axis, t23 points
in the positive direction of the x3-axis. If the exterior normal of x2 = const. is in the negative
direction of the x2-axis, t23 is directed in the negative direction of the x3-axis. The positive stress
components on the faces of a parallelepiped built on the coordinate surfaces are shown in Figure
3.3. The nine components tkl of the Cauchy stress tensor t may be arranged in a matrix form

t =

 t11 t12 t13

t21 t22 t23

t31 t32 t33

 (~ik ⊗~il) . (3.14)

Considering (3.13), the Cauchy stress formula (3.11) reads

~t(~n) = ~n · t , (3.15)

which says that the Cauchy stress vector acting on any plane through a point is fully characterized
as a linear function of the stress tensor at that point. The normal component of stress vector,

tn = ~t(~n) · ~n = ~n · t · ~n , (3.16)

is called the normal stress and is said to be tensile when positive and compressive when negative.
The stress vector directed tangentially to surface has the form

~tt = ~t(~n) − tn~n = ~n · t− (~n · t · ~n)~n . (3.17)

The size of ~tt is known as the shear stress. For example, the components t11, t22 and t23 in Figure
3.3 are the normal stresses and the mixed components t12, t13, etc. are the shear stresses.
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Figure 3.3. The components of the stress tensor.

If, in some configuration, the shear stress is identically zero and the normal stress is inde-
pendent of ~n, the stress is said to be spherical. In this case, there is a scalar field p, called the
pressure, such that

~t(~n) = −p~n and t = −pI . (3.18)

3.5 Other measures of stress

So far, we have represented short-range intermolecular forces in terms of the Cauchy stress vector
~tk or tensor t. There are, however, two other ways of measuring or representing these forces, each
of which plays a certain role in the theory of continuum mechanics. The Eulerian Cauchy stress
tensor gives the surface force acting on the deformed elementary area da in the form

d~g = ~t(~n)da = (~n · t)da = d~a · t . (3.19)

The Cauchy stress tensor, like any other variable, has both an Eulerian and a Lagrangian descrip-
tion; the corresponding Lagrangian Cauchy stress tensor is defined by T ( ~X, t) := t(~x( ~X, t), t).
We make, however, an exception in the notation and use t( ~X, t) for the Lagrangian description
of the Cauchy stress tensor. The Eulerian Cauchy stress tensor t(~x, t) arises naturally in the
Eulerian form of the balance of linear momentum; the corresponding Lagrangian form of this
principle cannot, however, be readily expressed in terms of the Lagrangian Cauchy stress tensor
t( ~X, t).

A simple Lagrangian form of the balance of linear momentum can be obtained if a stress
measure is referred to a surface in the reference configuration. This can be achieved by introducing
the so-called first Piola-Kirchhoff stress tensor T (1) as a stress measure referred to the referential
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area element d ~A:
d~g = d~a · t =: d ~A · T (1) . (3.20)

Here, the tensor T (1) gives the surface force acting on the deformed area d~a at ~x in terms of
the corresponding referential element d ~A at the point ~X. Thus, T (1) is a measure of the force
per unit referential area, whereas both the Eulerian and Lagrangian Cauchy stresses t(~x, t) and
t( ~X, t) are measures of the force per unit spatial area. The relationship between T (1) and t is
found using the transformation (1.75) between the deformed and undeformed elementary areas.
The result can be expressed in either of the two equivalent forms

T (1)( ~X, t) = JF−1 · t( ~X, t) , t( ~X, t) = J−1F · T (1)( ~X, t) . (3.21)

The surface-force vector d~g in (3.20) acts upon the displaced point ~x, whereas the surface-element
vector d ~A is referred to the reference point ~X. The first Piola-Kirchhoff stress tensor T (1) is
therefore a two-point tensor. This can also be observed from the componental form of (3.21):

T
(1)
Kl (

~X, t) = JXK,ktkl( ~X, t) , tkl( ~X, t) = J−1xk,KT
(1)
Kl (

~X, t) . (3.22)

The constitutive equations for a simple materials (see equation (5.37) in Chapter 5) are
expressed most conveniently in terms of another measure of stress, known as the second Piola-
Kirchhoff stress tensor. This quantity, denoted by T (2), gives, instead of the actual surface force
d~g acting on the deformed area element d~a, a force d~G related to d~g in the same way as the
referential differential d ~X is related to the spatial differential d~x. That is

d~G = F−1 · d~g , (3.23)

in the same manner as d ~X = F−1 · d~x. Defining T (2) by

d~G =: d ~A · T (2) , (3.24)

we find the first and second Piola-Kirchhoff stresses are related by

T (2) = T (1) · F−T , T (1) = T (2) · F T . (3.25)

Comparing this result with (3.21), we obtain the corresponding relationship between the second
Piola-Kirchhoff stress tensor and the Lagrangian Cauchy stress tensor:

T (2)( ~X, t) = JF−1 · t( ~X, t) · F−T , t( ~X, t) = J−1F · T (2)( ~X, t) · F T . (3.26)

Since the transformed surface force d~G may be considered to act at the referential position ~X
rather than at the spatial position ~x, the second Piola-Kirchhoff stress tensor is an ordinary (a
one-point) rather than a two-point tensor. This can also be seen from the componental form of
(3.25):

T
(2)
KL( ~X, t) = JXK,kXL,ltkl( ~X, t) , tkl( ~X, t) = J−1xk,Kxl,LT

(2)
KL( ~X, t) . (3.27)

The foregoing expressions may be used as a source for the linearized theory in which the
displacement gradient H is much smaller when compared to unity, hence justifying linearization.
To this end, we carry the linearized forms (1.106)1,2 into (3.21)1 and (3.26)1 and obtain

T (1) = (1 + trH) t−HT · t+O(‖H‖2) ,

T (2) = (1 + trH) t−HT · t− t ·H +O(‖H‖2) .
(3.28)
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The last equation demonstrates that the symmetry of tensor T (2) has not been violated by
linearization process. Conversely,

t = (1− trH)T (1) +HT · T (1) +O(‖H‖2)

= (1− trH)T (2) +HT · T (2) + T (2) ·H +O(‖H‖2) .
(3.29)

Supposing, in addition, that stresses are small compared to unity (the infinitesimal deformation
and stress theory), then

T (1) ∼= T (2) ∼= t , (3.30)

showing that, when considering infinitesimal deformation and stress, a distinction between the
Cauchy and the Piola-Kirchhoff stresses is not necessary.
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4. FUNDAMENTAL BALANCE LAWS

4.1 Global balance laws

The fundamental laws of continuum mechanics are principles dealing with the conservation of
some physical quantity. These balance laws, as they are often called, are postulated for all material
continua, irrespective of material constitution and geometry, and result in equations that must
always be satisfied. These conservations laws deal with mass, linear and angular momentum,
energy and entropy. They are valid for all bodies subject to thermomechanical effects.

The balance laws are usually formulated in global (integral) form derived by a consideration
of the conservation of some property of the body as a whole. The global equations then may be
used to develop associated field equations that are valid at all points within the body and on its
boundary.

Fundamental Principle 1 (Conservation of Mass). The total mass of a body is unchanged
with motion.

This principle assumes that the mass production and supply is zero. Hence, the mass of a
body is invariant under motion and remains constant in every configuration:∫

V
%0 dV =

∫
v(t)

% dv , (4.1)

where V and v(t) are the reference and the current volumes of the body, respectively, %0( ~X) is
the mass density of the body in the reference configuration and %(~x, t) is the mass density of
the body in the present configuration. Applying the material derivative to (4.1) results in the
alternative form

D

Dt

∫
v(t)

% dv = 0 . (4.2)

Fundamental Principle 2 (Balance of Linear Momentum). The time rate of change of the
total linear momentum of a body is equal to the resultant force acting on the body.

Let a body having a current volume v(t) and bounding surface s(t) with exterior unit normal
~n be subject to surface traction ~t(~n) and body force ~f (body force per unit mass of the body).
The resultant force acting on the body is∮

s(t)

~t(~n) da+

∫
v(t)

%~f dv .

In addition, let the body be in motion under the velocity field ~v(~x, t). The linear momentum of
the body is defined by the vector ∫

v(t)
%~v dv .

Thus the balance of linear momentum states that

D

Dt

∫
v(t)

%~v dv =

∮
s(t)

~t(~n) da+

∫
v(t)

%~f dv . (4.3)

41



Fundamental Principle 3 (Balance of Angular Momentum). The time rate of change of
the total angular momentum of a body is equal to the resultant moment of all forces acting on the
body.

Mathematically, this principle is expressed as

D

Dt

∫
v(t)

~x× %~v dv =

∮
s(t)

~x× ~t(~n) da+

∫
v(t)

~x× %~f dv , (4.4)

where the left-hand side is the time rate of change of the total angular momentum about the
origin, which is also frequently called the moment of momentum. On the right-hand side the
surface integral is the moment of the surface tractions about the origin, and the volume integral
is the total moment of body forces about the origin.

Fundamental Principle 4 (Conservation of Energy). The time rate of change of the sum
of kinetic energy K and internal energy E is equal to the sum of the rate of work W of the surface
and body forces and all other energies Uα that enter and leave body per unit time.

Mathematically, this principle is expressed as

D

Dt
(K + E) =W +

∑
α

Uα . (4.5)

The total kinetic energy of the body is given by

K =
1

2

∫
v(t)

%~v · ~v dv . (4.6)

In continuum mechanics, the existence of the internal energy density ε is postulated such that

E =

∫
v(t)

%ε dv . (4.7)

The mechanical power, or rate of work of the surface traction ~t(~n) and body forces ~f is given by

W =

∮
s(t)

~t(~n) · ~v da+

∫
v(t)

%~f · ~v dv . (4.8)

Other energies Uα (α = 1, 2, ..., n) that enter and leave the body may be of thermal, electro-
magnetic, chemical, or some other origin. In this text, we consider that the energy transfer in
continuum is thermo-mechanical and thus only due to work or heat. The heat energy consists of
the heat flux per unit area ~q that enters or leaves through the surface of the body and the heat
source, or heat supply, h per unit mass produced by internal sources (for example, radioactive
decay). Thus we set Uα = 0 except for

U1 := −
∮
s(t)

~q · ~n da+

∫
v(t)

%h dv , (4.9)

where the unit normal ~n is directed outward from the surface of the body. The negative sign at
the surface integral is needed because the heat flux vector ~q is pointing from high temperature
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toward lower temperature, so that
∮
s(t) ~q · ~n da is the total outward heat flux. Thus the principle

of conservation of energy states that

D

Dt

∫
v(t)

(%ε+
1

2
%~v · ~v) dv =

∮
s(t)

(~t(~n) · ~v − ~q · ~n) da+

∫
v(t)

(%~f · ~v + %h) dv , (4.10)

which is the statement of the first law of thermodynamics.

Fundamental Principle 5 (Entropy inequality). The time rate of change of the total entropy
H is never less than the sum of the flux of entropy ~s through the surface of the body and the entropy
B supplied by the body forces. This law is postulated to hold for all independent processes.

Mathematically, this principle is expressed as

Γ :=
DH

Dt
−B +

∮
s(t)

~s · ~n da ≥ 0 , (4.11)

where Γ is the total entropy production. Note that ~s is the outward entropy flux vector. In
classical continuum mechanics, the entropy density η per unit mass and the entropy source b per
unit mass and unit time are postulated to exist such that

H =

∫
v(t)

%η dv , B =

∫
v(t)

%b dv .

The entropy inequality then becomes

D

Dt

∫
v(t)

%η dv −
∫
v(t)

%b dv +

∮
s(t)

~s · ~n da ≥ 0 . (4.12)

The inequality implies internal entropy production in an irreversible process; the equality holds
for a reversible process.

At the first moment is seems unclear why we consider an additional variable - the entropy -
for a complete description of thermomechanical phenomena. Experience tell us, however, that the
real physical processes are directional, that is, they can proceed only in a certain chronology but
not in the reverse of this. This principle of irreversibility can be accounted for by the introduction
of the balance statement for entropy, in which it is required that its specific production can always
have only one sign for all realistic thermomechanical processes. More precise specifications of this
phenomenological idea will be given later. Hence, we consider the entropy (or its density) and
temperature as primitive variables the existence of which is unquestioned.

The five laws are postulated to hold for all bodies, irrespective of their geometries and consti-
tutions. To obtain local equations, further restrictions are necessary, as will be discussed in the
next section.

4.2 Local balance laws in the spatial description

4.2.1 Continuity equation

The application of the Reynolds transport theorem (2.48) with φ = % to (4.2) results in∫
v(t)−σ(t)

(
D%

Dt
+ %div~v

)
dv +

∫
σ(t)

~n · [%(~v − ~w)]+− da = 0 . (4.13)
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We now assume that density %(~x, t), velocity ~v and [%(~v − ~w)]+− are continuously differentiable
functions of the spatial variables xk and time t in the volume v(t)− σ(t) and across the discon-
tinuity σ(t), respectively. This implies that the integrands of the volume and surface integrals in
(4.13) are continuous in xk and t. Moreover, we postulate that all global balance laws are valid
for an arbitrary part of the volume and of the discontinuity surface (the additive principle). 11

Applied to (4.13), this implies that integrands of each of the integral must vanish identically.
Thus

D%

Dt
+ %div~v = 0 in v(t)− σ(t) , (4.14)

~n · [%(~v − ~w)]+− = 0 on σ(t) . (4.15)

These are the equations of local conservation of mass and the interface condition in spatial form.
Equation (4.14) is often called the continuity equation. Writing the material time derivative of %
as

D%

Dt
=
∂%

∂t
+ ~v · grad %

allows (4.14) to be expressed in the alternative form

∂%

∂t
+ div (%~v) = 0 in v(t)− σ(t) . (4.16)

Equation (4.15) means that the mass flux (the amount of mass per unit surface and unit
time) entering the discontinuity surface must leave it on the other side, that is, there is no mass
cummulation on the discontinuity. In other words, the quantity in square brackets in (4.15) is the
amount of mass swept through a running discontinuity in relation to the motion of body behind
and ahead of the surface. According to (4.15), they must be equal.

4.2.2 Equation of motion

By substituting for the Cauchy stress vector ~t(~n) from (3.15), the equation of global balance of
linear momentum (4.3) reads

D

Dt

∫
v(t)−σ(t)

%~v dv =

∮
s(t)−σ(t)

~n · t da+

∫
v(t)−σ(t)

%~f dv . (4.17)

By applying the modified Gauss’s theorem (2.45) to the surface integral on the right-hand side,
we obtain

D

Dt

∫
v(t)−σ(t)

%~v dv =

∫
v(t)−σ(t)

(div t+ %~f) dv +

∫
σ(t)

~n · [t]+− da , (4.18)

which upon using Reynolds’s transport theorem (2.48) with φ = %~v yields∫
v(t)−σ(t)

(
D(%~v)

Dt
+ %~v div~v − div t− %~f

)
dv +

∫
σ(t)

~n · [%(~v − ~w)⊗ ~v − t]+− da = ~0 . (4.19)

11For nonlocal continuum theories this postulate is revoked, and only the global balance laws (valid for the entire
body) are considered to be valid.
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This is postulated to be valid for all parts of the body (satisfying the additive principle). Thus,
the integrands vanish separately. By using (4.14), this is simplified to

div t+ %~f = %
D~v

Dt
in v(t)− σ(t) , (4.20)

~n · [%(~v − ~w)⊗ ~v − t]+− = ~0 on σ(t) . (4.21)

Equation (4.20) is known as Cauchy’s equation of motion, expressing the local balance of linear
momentum in spatial form, and (4.21) is the associated interface condition on the singular surface
σ.

4.2.3 Symmetry of the Cauchy stress tensor

The angular momentum of the surface tractions about the origin occurring in the global law of
balance of the angular momentum (4.4), can be rewritten using the Cauchy stress formula (3.15),
the tensor identity

~v × (~w ·A) = −~w · (A× ~v) , (4.22)

where ~v, ~w are vectors, A is a second-order tensor, and the modified Gauss theorem (2.45), to
the form ∮

s(t)−σ(t)
~x× ~t(~n) da = −

∫
v(t)−σ(t)

div (t× ~x) dv −
∫
σ(t)

~n · [t× ~x]+− da . (4.23)

By making use of the two differential identities,

div (t× ~v) = div t× ~v + tT
.
× grad~v , (4.24)

grad ~x = I , (4.25)

where the superscript T at tensor t stands for transposition,
.
× denotes the dot-cross product of

the 2nd order tensors, and I is the second-order identity tensor, we can write∫
v(t)−σ(t)

div (t× ~x) dv =

∫
v(t)−σ(t)

(div t× ~x+ tT
.
× I) dv .

Upon carrying this and (4.23) into the equation of balance of the angular momentum (4.3) and
using the Reynolds transport theorem (2.48) with φ = ~x× %~v, we obtain∫

v(t)−σ(t)

(
D(%~x× ~v)

Dt
+ (%~x× ~v) div~v + div t× ~x+ tT

.
× I − %~x× ~f

)
dv

+

∫
σ(t)

~n · [(~v − ~w)⊗ (~x× %~v)]+− da+

∫
σ(t)

~n · [t× ~x]+− da = ~0 ,

which can be arranged to the form∫
v(t)−σ(t)

[
(~x× ~v)

(
D%

Dt
+ %div~v

)
+ %

D~x

Dt
× ~v + ~x×

(
%
D~v

Dt
− div t− %~f

)
+ tT

.
× I

]
dv

−
∫
σ(t)

~n · [%(~v − ~w)⊗ ~v − t]+− × ~x da = ~0 . (4.26)
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Considering
D~x

Dt
× ~v = ~v × ~v = ~0

along with the local laws of conservation of mass (4.14), the balance of linear momentum (4.20),
and the associated interface condition (4.21), equation (4.26) reduces to∫

v(t)−σ(t)
tT

.
× I dv = ~0 . (4.27)

Again, postulating that this to be valid for all parts of v(t) − σ(t), the integrand must vanish,
such that

tT
.
× I = ~0 or tT = t in v(t)− σ(t) . (4.28)

Thus, the necessary and sufficient condition for the satisfaction of the local balance of angular
momentum is the symmetry of the Cauchy stress tensor t. We have seen that the associated
interface condition for the angular momentum is satisfied identically.

Note that in formulating the angular principle by (4.4) we have assumed that no body or
surface couples act on the body. If any such concentrated moments do act, the material is said
to be a polar material and the symmetry property of t no longer holds. However, this is a rather
specialized situation, and we will not consider it here.

4.2.4 Energy equation

The same methodology may be applied for the equation of energy balance (4.10). The integrand
of the surface integral on the right-hand side of (4.10) is expressed by the Cauchy stress formula
(3.15). The surface integral is then converted to the volume integral by the Gauss theorem (2.45):∮

s(t)−σ(t)
(~t(~n) · ~v − ~q · ~n) da =

∫
v(t)−σ(t)

(div (t · ~v)− div ~q) dv +

∫
σ(t)

~n · [t · ~v − ~q]+− da . (4.29)

The divergence of vector t · ~v will be arranged by making use of the identity

div (t · ~v) = div t · ~v + tT .. grad~v , (4.30)

where .. denotes the double-dot product of tensors. The left-hand side of the equation of energy
balance (4.10) can be arranged by Reynolds’s transport theorem (2.48) with φ = %ε+ 1

2%~v · ~v as

D

Dt

∫
v(t)−σ(t)

(%ε+
1

2
%~v · ~v) dv

=

∫
v(t)−σ(t)

[
D

Dt
(%ε+

1

2
%~v · ~v) + (%ε+

1

2
%~v · ~v) div~v

]
dv +

∫
σ(t)

~n ·
[
(~v − ~w)(%ε+

1

2
%~v · ~v)

]+

−
da

=

∫
v(t)−σ(t)

[
(ε+

1

2
%~v · ~v)

(
D%

Dt
+ %div~v

)
+ %

Dε

Dt
+ %

D~v

Dt
· ~v
]
dv+

∫
σ(t)

~n·
[
(~v − ~w)(%ε+

1

2
%~v · ~v)

]+

−
da

which, by the law of mass conservation (4.14), reduces to

D

Dt

∫
v(t)−σ(t)

(%ε+
1

2
%~v·~v)dv =

∫
v(t)−σ(t)

%

(
Dε

Dt
+
D~v

Dt
· ~v
)
dv+

∫
σ(t)

~n·
[
(~v − ~w)(%ε+

1

2
%~v · ~v)

]+

−
da .

(4.31)
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In view of (4.29)–(4.31), the equation of motion (4.20), the symmetry of the Cauchy stress tensor
(4.28), and upon setting the integrand of the result equal to zero, we obtain

%
Dε

Dt
= t .. l− div ~q + %h in v(t)− σ(t) , (4.32)

~n ·
[
(~v − ~w)(%ε+

1

2
%~v · ~v)− t · ~v + ~q

]+

−
= 0 on σ(t) , (4.33)

where l is the transposed velocity gradient tensor introduced by (2.13). Because of the symmetry
of the Cauchy stress tensor t, equation (4.32) can be written in the alternative form

%
Dε

Dt
= t .. d− div ~q + %h in v(t)− σ(t) , (4.34)

where d is the strain-rate tensor introduced by (2.20)1. Equation (4.34) is the energy equation
for a thermomechanical continuum in spatial form and (4.33) is the associated interface condition
on the discontinuity σ.

4.2.5 Entropy inequality

The same methodology may be applied for the global law of entropy to derive its local form.
Using again the Reynolds transport theorem, the Cauchy stress formula and the Gauss theorem,
and assuming that the global law of entropy (4.12) is valid for any part of the body, we obtain
the local form of the entropy inequality

%
Dη

Dt
+ div~s− %b ≥ 0 in v(t)− σ(t) , (4.35)

~n · [%η(~v − ~w) + ~s]+− ≥ 0 on σ(t) . (4.36)

4.2.6 Résumé of local balance laws

In summary, all local balance laws may be expressed in the spatial description by:

(i) Conservation of mass

∂%

∂t
+ div (%~v) = 0 in v(t)− σ(t) , (4.37)

~n · [%(~v − ~w)]+− = 0 on σ(t) . (4.38)

(ii) Balance of linear momentum

div t+ %~f = %
D~v

Dt
in v(t)− σ(t) , (4.39)

~n · [%(~v − ~w)⊗ ~v − t]+− = ~0 on σ(t) . (4.40)

(iii) Balance of angular momentum

t = tT in v(t)− σ(t) . (4.41)
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(iv) Conservation of energy

%
Dε

Dt
= t .. d− div ~q + %h in v(t)− σ(t) , (4.42)

~n ·
[
(~v − ~w)(%ε+

1

2
%~v · ~v)− t · ~v + ~q

]+

−
= 0 on σ(t) . (4.43)

(v) Entropy inequality

%
Dη

Dt
+ div~s− %b ≥ 0 in v(t)− σ(t) , (4.44)

~n · [%η(~v − ~w) + ~s]+− ≥ 0 on σ(t) . (4.45)

4.3 Interface conditions in special cases

If there is a moving discontinuity surface σ(t) sweeping the body with a velocity ~w in the direction
of the unit normal ~n of σ(t), then the interface conditions (4.38), (4.40) (4.43) and (4.45) must
be satisfied on the surface σ(t). Some of these interface conditions will now be applied to two
special cases:

(i) The discontinuity surface is a material surface, that is, the surface frozen in the body (i.e.
always containing the same material points). In this case, ~w = ~v, (4.38) is satisfied identically,
(4.40) and (4.43) reduce to

~n · [t]+− = ~0 , (4.46)

~n · [t · ~v − ~q]+− = 0 . (4.47)

With the help of (4.46), the interface condition (4.47) may also be written in the form

~n · t · [~v]+− − ~n · [~q]
+
− = 0 . (4.48)

Hence, on a material interface between two media the surface traction ~n · t is continuous, and
the jump on the energy of tractions across this interface is balanced with that of the normal
component of the heat vector.

The dynamic interface conditions (4.46) and (4.47) must be supplemented by the kinematic
interface conditions. At a welded interface, like on a discontinuity between two solids, there is no
tangential slip across the interface and the spatial velocity must be continuous:

[~v]+− = ~0 . (4.49)

Consequently, the interface condition (4.48) is further reduces to

~n · [~q]+− = 0 , (4.50)

which states the continuity in the normal component of the heat vector across σ. Tangential slip
is allowed at an interface between a solid and an inviscid fluid or it may also occur on an idealized
fault surface separating two solids. At such a slipping interface, equation (4.49) is replaced by

[~n · ~v]+− = 0 . (4.51)
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The last condition guarantees that there is no separation or interpenetration of the two materials
at the interface.

A frictionless interface of two materials is the material discontinuity across which the motion
from one of its side runs without friction. This means that the shear stresses of the Cauchy stress
tensor t are equal to zero from one of discontinuity side (e.g., with superscript ‘−’),

~n− · t− ·
(
I − ~n− ⊗ ~n−

)
= ~0 or ~n− · t− =

(
~n− · t− · ~n−

)
~n− . (4.52)

Carrying this into (4.46) and considering that ~n = ~n− = −~n+ across σ, the stress vector ~n · t
from both side of a frictionless discontinuity is of the form

~n · t = −p~n , (4.53)

where p is the negative normal component of the stress vector, p = −(~n · t · ~n). The condition
(4.46) reduces to the condition of the continuity p across σ,

[p]+− = 0 . (4.54)

(ii) The discontinuity surface coincides with the surface of the body. In this case %+ = 0,
~v− = ~w. Again (4.38) gives an identity and the others reduce to

~n · [t]+− = ~0 , (4.55)

~n · [t · ~v − ~q]+− = 0 , (4.56)

where ~n · t+ is interpreted as the external surface load and t+ · ~v+ as the energy of this load. If
the external surface load is equal to zero, t+ = 0, then ~n · t− = ~0, and the first term on the left
of (4.56) is equal to zero. Hence, we obtain the boundary condition

~n · [~q]+− = 0 (4.57)

involving the heat alone.

4.4 Local balance laws in the referential description

In the previous section, the local balance laws have been expressed in spatial form. These equa-
tions may also be cast in the referential form, which we now introduce.

4.4.1 Continuity equation

The referential form of continuity equation can be derived from (4.1) by using the transformation
law dv = JdV : ∫

V

(
%0 −%J

)
dV = 0 , (4.58)

where V is the volume of the body in the reference configuration and %( ~X, t) is the Lagrangian
description of the density,

%( ~X, t) := %(~χ( ~X, t), t) . (4.59)

But V is arbitrary, so that,
%0 = %J in V − Σ , (4.60)
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which is equivalent to
D%0

Dt
= 0 in V − Σ , (4.61)

Equations (4.60) and (4.61) are called the referential form of the continuity equation.
The relation (4.60) can be considered as the general solution to the continuity equation (4.14).

To show it, let a body occupies the reference configuration κ0 and the present configuration κt at
time t = 0 and at time t, respectively. Making use of the relation for the material time derivative
of the jacobian,

.
J= J div~v, the continuity equation (4.14) can be written in the form

.
%

%
+

.
J

J
= 0 .

Integrating this equation with respect to time from t = 0 to t and realizing that J = 1 for t = 0,
we find that

ln
%

%0
+ ln J = 0.

This gives (4.60) after short algebraic manipulation. Hence, in the case that the deformation
gradient F is given as the solution to the other field equations, the mass density % can be
calculated from (4.60) after solving these field equations. It means that equation (4.60) does
not have to be included in the set of the governing equations. Such a situation appears in
the Lagrangian description of solids. This is, however, not the case if we employ the Eulerian
description. Since the initial configuration is not the reference configuration, neither F nor J
follow from the field equations, and the continuity equation (4.14) must be included in the set of
the governing equations in order to specify %.

To express the spatial interface conditions (4.15) in the referential form, we must first modify
(4.15) such that

[~nda · %(~v − ~w)]+− = 0 on σ(t) , (4.62)

where we have inserted the spatial surface element da into equation (4.15) since it appears as the
surface element in the surface integral in (4.13). Moreover, we have involved the unit normal ~n
into the square brackets assuming that ~n points towards the + side of the discontinuity σ(t) on
both sides of σ(t). Since the spatial surface element da of σ(t) changes continuously across σ(t),
that is, da+ = da−, the interface condition (4.62) is equivalent to the form (4.15). Considering
the transformation (1.75) between the spatial and referential surface elements, d~a = Jd ~A · F−1,
(4.62) transforms to [

%0( ~NdA · ~W )
]+
−

= 0 on Σ , (4.63)

where Σ is the surface discontinuity in the reference configuration and

~W ( ~X, t) := F−1 · (~v − ~w) . (4.64)

In contrast to the spatial surface element da, the referential surface element dA may change
discontinuously on Σ, dA+ 6= dA−, if there is a tangential slip on this discontinuity, like on a
fluid-solid discontinuity (see Figure 8.1). On the other hand, at a discontinuity with no tangential
slip, like on a solid-solid discontinuity, dA+ = dA−, and this factor can be dropped from the
interface condition (4.63).

4.4.2 Equation of motion
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A simple form of the Lagrangian equation of motion can be obtained in terms of the first Piola-
Kirchhoff stress tensor that is related to the Lagrangian Cauchy stress tensor by (3.26). Applying
the divergence operation on (3.26)2 and making use of the following differential identity

div (A ·B) = (divA) ·B +AT .. gradB , (4.65)

which is valid for all differentiable tensors A and B, the divergence of the Cauchy stress tensor
can be arranged as follows

div t = div (J−1F · T (1)) = div (J−1F ) · T (1) + J−1F T .. gradT (1) .

The first term is equal to zero because of the Jacobi identity (1.42)2 and the second term can be
arranged according to the differential identity (1.46)2. Hence

div t = J−1DivT (1) . (4.66)

Using (4.60), the equation of motion (4.20) can be expressed in the referential form as

DivT (1) + %0
~F = %0

D~v

Dt
in V − Σ , (4.67)

where ~F ( ~X, t) is the Lagrangian description of the body force,

~F ( ~X, t) := ~f(~χ( ~X, t), t) . (4.68)

Note that the divergence of the Eulerian Cauchy stress tensor div t( ~X, t) in (4.20) is tranformed
into the divergence of the first Piola-Kirchhoff stress tensor DivT (1)( ~X, t) in (4.67). In fact, the
original definition (3.25) of T (1) was motivated by this simple transformation.

In similar way as for the conservation of mass, the interface condition (4.21) can be expressed
in the referential form. Using (1.75), (4.64) and (3.26)2, we obtain[

%0( ~NdA · ~W )~v − ~NdA · T (1)
]+
−

= ~0 on Σ . (4.69)

Note that the Lagrangian equation of motion and the interface conditions can also be written in
terms of the second Piola-Kirchhoff stress tensor rather than in terms of the first Piola-Kirchhoff
stress tensor by substituting T (1) = T (2) · F T .

4.4.3 Symmetries of the Piola-Kirchhoff stress tensors

Upon (3.21)2 and (3.26)2, the symmetry of the Cauchy stress tensor t = tT has two different
forms (

T (1)
)T

= F · T (1) · F−T ,
(
T (2)

)T
= T (2) . (4.70)

It shows that T (2) is symmetric whenever t is symmetric (nonpolar case), but T (1) is in general
not symmetric.

4.4.4 Energy equation

Let ~Q be defined as the heat flux with respect to the surface element d ~A in the reference config-
uration:

~q · d~a = ~Q · d ~A , (4.71)
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where ~q is the heat flux with respect to the surface element d~a in the present configuration. By us-
ing the transformation rule for surface elements between the present and reference configurations,
d~a = Jd ~A · F−1, the referential and spatial heat fluxes are related by

~q = J−1F · ~Q , ~Q = JF−1 · ~q . (4.72)

The referential heat flux and the Piola-Kirchhoff stress tensors will be employed to transform
the energy equation from the spatial form to the referential form. First, the divergence of heat
flux ~q can be arranged by making use of the differential identity (4.30) as follows

div ~q = div (J−1F · ~Q) = div (J−1F ) · ~Q+ J−1F T .. grad ~Q .

The first term is equal to zero because of the Jacobi identity (1.42)2 and the second term can be
arranged according to the differential identity (1.45)2. Hence

div ~q = J−1Div ~Q . (4.73)

Next, the stress power per unit volume in the present configuration, t .. d, can be referred back
to the reference configuration. Using two tensor identities

(A ·B) .. C = A .. (B ·C) , (A ·B) .. (C ·D) = (D ·A) .. (B ·C) , (4.74)

valid for the 2nd order tensors A, B, C and D, equations (2.12)2 and (3.26)2, we have

t .. d = t .. l = J−1(F · T (1)) .. (
.
F ·F−1) = J−1(F−1 · F ) .. (T (1)·

.
F ) = J−1I .. (T (1)·

.
F )

= J−1(I · T (1)) ..
.
F ,

or,

t .. d = J−1T (1) ..
.
F , (4.75)

where
.
F is the material time derivative of the deformation gradient tensor. Introducing the

second Piola-Kirchhoff stress tensor T (2) instead of T (1), the stress power can alternatively be
expressed as

t .. d = J−1(T (2) · F T ) ..
.
F= J−1T (2) .. (F T ·

.
F ) = J−1T (2) .. (F T · l · F ) = J−1T (2) .. (F T · d · F ),

or,

t .. d = J−1T (2) ..
.
E , (4.76)

where
.
E is the material time derivative of the Lagrangian strain tensor E given by (2.23).

We are now ready to express the conservation of energy (4.34) in the referential form. Using
(4.73) and (4.76), along with (4.60), we obtain

%0
Dε

Dt
= T (2) ..

.
E −Div ~Q+ %0h in V − Σ . (4.77)

The dissipative term is also equal to T (1) ..
.
F .
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The referential form of energy interface condition (4.33) can be derived by substituting (4.62)
and (4.64) into (4.33) and considering (4.71):[

%0( ~NdA · ~W )(ε+
1

2
%~v · ~v)− ~NdA · T (1) · ~v + ~NdA · ~Q

]+

−
= 0 on Σ . (4.78)

4.4.5 Entropy inequality

The same program can be applied to the entropy inequality to carry out it to the referential form.
Let ~S be defined as the entropy influx with respect to the surface element d ~A in the reference
configuration:

~s · d~a = ~S · d ~A , (4.79)

where ~s is the heat flux with respect to the surface element d~a in the present configuration.
Considering the transformation between the spatial and referential surface elements, d~a = Jd ~A ·
F−1, the referential and spatial entropy influxes are related by

~s = J−1F · ~S , ~S = JF−1 · ~s . (4.80)

In an analogous way as in the preceding section, the entropy inequality (4.35) and the entropy
interface condition (4.36) may then be expressed in the referential form as

%0
Dη

Dt
+ Div ~S − %0b ≥ 0 in V − Σ , (4.81)[

%0η( ~NdA · ~W ) + ~NdA · ~S
]+
−
≥ 0 on Σ . (4.82)
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5. MOVING SPATIAL FRAME

5.1 Observer transformation

In Chapter 6, we will require that the form of the constitutive equations is independent of the
movement of an observer. The notion of frame helps us to formulate this requirement mathe-
matically. A frame can be understood as an observer who is equipped to measure position in
Euclidean space. To every frame belongs a reference point, the so-called origin, from which an
observer measures distances or defines position vectors in space.

Let us consider two different frames, one fixed (unstarred) and the other one in motion
(starred). Both are later considered to describe the present configuration of a material body and
are, therefore, called the spatial frames. Figure 5.1 shows two such frames and the relationship
between the position vectors of the same observer measured in both frame. Let ~x be a position

vector of the observer P in the present
configuration relative to the fixed frame
and ~x∗∗ the position vector of the same
observer in the moving frame. They are
hence connected by the relationship

~x∗∗ = ~x+~b∗∗ , (5.1)

where ~b∗∗ gives the displacement between
the unstarred and the starred reference
points (origins). Notice that this rela-
tion is independent of the choice of co-
ordinate system. However, the observer
may refer his position vector not only to
the origin, but also to a coordinate sys-
tem, which is attached to the origin. The
coordinate system can be chosen arbitrar-
ily or matched to a realistic situation. In
Figure 5.1, these coordinate systems are
Cartesian.

�~i1 ~i2

~i3

P

~x ~x∗∗

~b∗∗

~i∗1

~i∗2

~i∗3

Present configuration of B

ofixed

o∗moving

Figure 5.1. Observer transformation.

The component form of (5.1) is
x∗k∗~i

∗
k∗ = xk~ik + b∗k∗~i

∗
k∗ . (5.2)

The Cartesian base vectors ~ik and ~i∗k∗ associated with the unstarred and starred spatial frames
are related by (1.12):

~ik = δkk∗~i
∗
k∗ , ~i∗k∗ = δk∗k~ik , (5.3)

where δkk∗ and δk∗k are the shifters between the two spatial frames. Substituting for ~ik from
(5.3)1 into (5.2) and comparing the components at ~i∗k∗ , we obtain

x∗k∗ = δkk∗xk + b∗k∗ . (5.4)

Multiplying by ~ik∗ and defining two vectors

~x∗ := x∗k∗~ik∗ ,
~b∗ := b∗k∗~ik∗ , (5.5)
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we obtain 12

~x∗ = δkk∗xk~ik∗ +~b∗ . (5.6)

Making use of xk =~ik · ~x, the identity ~ik∗(~ik · ~x) = (~ik∗ ⊗~ik) · ~x and introducing tensor O,

O := Ok∗k(~ik∗ ⊗~ik) , Ok∗k = δkk∗ , (5.7)

equation (5.6) may be rewritten in invariant notation as

~x∗ = O(t) · ~x+~b∗(t) . (5.8)

This equation shows that the same point can be represented by its components x∗k in the moving
coordinate system as well as by xk in the fixed coordinate system. This expresses a rigid motion of
the starred spatial frame. In fact, ~b∗(t) corresponds to the translation and O(t) to the rotation of
this frame. As indicated, both ~b∗(t) and O(t) can be time-dependent. The transformation (5.8) is
often referred to as the observer transformation or the Euclidean transformation (x, t)→ (x∗, t).
13

In view of (5.3)2, the tensor O(t) may be expressed as the tensor product of the starred and
unstarred base vectors:

O(t) =~i∗k(t)⊗~ik . (5.9)

The transposed tensor to O(t) is

OT (t) = δk∗k(~ik∗ ⊗~ik) =~ik ⊗~i∗k(t) . (5.10)

This implies that O(t) is an orthogonal tensor since

O(t) ·OT (t) = OT (t) ·O(t) = I , (5.11)

where I is the identity tensor. Strictly speaking, there are two identity tensors, one in the
unstarred frame, I = ~ik ⊗~ik, and one in the starred frame I∗ = ~i∗k ⊗~i∗k; we shall, however,
disregard this subtlety.

We say that a scalar-, vector- and tensor-valued quantity φ is objective or frame indifferent if
it is invariant under all observer transformation (5.8), that is, if φ∗∗ = φ. For instance, tensor a
is objective if its components transform under the observer transformation (5.8) according to the
relation

a∗k∗l∗ = Ok∗k(t)aklOl∗l(t) , (5.12)

where akl and a∗k∗l∗ are components of a relative to the unstarred and starred frames, respectively.
To see it, let us rewrite the transformation relation (5.3) for the base vectors in terms of the
components of the tensor O. By (5.7)2, the relation (5.3) may be rewritten in the form

~ik = Ok∗k~i
∗
k∗ , ~i∗k∗ = Okk∗~ik . (5.13)

12Note that we distinguish between three different vectors, ~x = xk~ik, ~x∗ = x∗k~ik and ~x∗∗ = x∗k~i
∗
k. Vector notation

becomes ambiguous if the vectors ~x∗ and ~x∗∗ are denoted by the same symbol ~x∗. Compare (5.1) and (5.8) in this
case.

13The most general change of frame (x, t)→ (x∗, t∗) is, in addition, characterized by a shift in time:

t∗ = t− a ,

where a is a particular time.
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Then
a = akl(~ik ⊗~il) = aklOk∗kOl∗l(~i

∗
k∗ ⊗~i∗l∗)

!
= a∗∗ = a∗k∗l∗(~i

∗
k∗ ⊗~i∗l∗) ,

which yields (5.12). Introducing tensor a∗,

a∗ := a∗k∗l∗(~ik∗ ⊗~il∗) , (5.14)

the component form (5.12) may be written in invariant form 14

a∗ = O(t) · a ·OT (t) . (5.15)

In an analogous way, a scalar- and vector-valued physical quantities λ and ~u are called objective
if they transform under a rigid motion of spatial frame according to

λ∗ = λ ,
u∗k∗ = Ok∗k(t)uk , or, invariantly, ~u ∗ = O(t) · ~u . (5.16)

5.2 Objectivity of some geometric objects

Let us now examine the objectivity property of different geometric objects. We begin with the
Eulerian velocity ~v and the Eulerian acceleration ~a. Suppose that the motion is represented in
the unstarred frame by (1.29), xk = χk(XK , t). Then, in view of (5.8), it is given in the starred
frame by

~χ∗( ~X, t) = O(t) · ~χ( ~X, t) +~b∗(t) . (5.17)

where ~χ∗( ~X, t) := χ∗
k∗

( ~X, t)~ik∗ . Differentiation of (5.17) with respect to t yields the following
connection between the velocities and accelerations in the starred and unstarred frames:

~v∗(~x∗, t) = O(t) · ~v(~x, t)+
.
O(t) · ~x+

.
~b∗(t) , (5.18)

~a∗(~x∗, t) = O(t) · ~a(~x, t) + 2
.
O(t) · ~v(~x, t)+

..
O(t) · ~x+

..
~b∗(t) . (5.19)

Let us introduce the angular velocity tensor Ω which represents the spin of the starred frame
with respect to the unstarred frame:

Ω(t) :=
.
O(t) ·OT (t) . (5.20)

The relation

0 = (O ·OT )· =
.
O · OT +O ·

.
O
T

=
.
O · OT + (

.
O · OT )T = Ω + ΩT

shows that Ω is a skew-symmetric tensor. Moreover,

.
Ω= (

.
O · OT )· =

..
O · OT+

.
O ·

.
O
T

=
..
O · OT+

.
O · (OT · O) ·

.
O
T

=
..
O · OT+Ω·ΩT =

..
O · OT−Ω·Ω ,

which yields
..
O · OT =

.
Ω +Ω ·Ω . (5.21)

14Note again that we distinguish between three different tensors a, a∗ and a∗∗.
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With the aid of (5.8), (5.20) and (5.21), the transformation formulae for the velocity and accel-
eration can be expressed in the forms

~v∗ = O · ~v + Ω · (~x∗ −~b∗)+
.
~b∗ , (5.22)

~a∗ = O · ~a+ 2Ω · (~v∗−
.
~b∗)−Ω ·Ω · (~x∗ −~b∗)+

.
Ω ·(~x∗ −~b∗)+

..
~b∗ . (5.23)

Inspection of these equations shows that both the velocity and the acceleration are not objective
vectors. The additional terms causing the failure of objectivity have the following names:

Ω · (~x∗ −~b∗) - relative angular velocity of the starred frame with respect to unstarred frame,
.
~b∗ - relative translational velocity of these two frames,

2Ω · (~v∗−
.
~b∗) - Coriolis acceleration,

−Ω ·Ω · (~x∗ −~b∗) - centrifugal acceleration,
.
Ω ·(~x∗ −~b∗) - Euler acceleration,
..
~b∗ - relative translational acceleration.

Among all Euclidean transformations, we can choose transformations that transform the ac-
celeration in the objective way. In such a case, we have

~a∗ = O · ~a ⇔ Ω = 0 ,
..
~b∗= ~0 ⇔ ~b∗(t) = ~V t+~b∗0 , O(t) = O , (5.24)

where ~V , ~b∗0 and O are time-independent. The change of frame defined by such constants,

~x∗ = O · ~x+ ~V t+~b∗0 , (5.25)

is called the Galilean transformation. It means that the starred frame moved with a constant
velocity with respect to the unstarred frame. Certainly, the acceleration is objective with respect
to the Galilean transformation, whereas the velocity is not.

In contrast to the velocity field which is frame dependent (non-objective), the divergence of
the velocity field is an objective scalar,

div∗ ~v∗ = div~v . (5.26)

To show it, we have

div∗ ~v∗ =
∂v∗k∗

∂x∗k∗
=

∂

∂x∗k∗

[
Ok∗kvk + Ωk∗k(x

∗
k − b∗k)+

.
b∗k

]
= Ok∗k

∂vk
∂x∗k∗

+Ωk∗k
∂x∗k
∂x∗k∗

= Ok∗k
∂vk
∂x∗k∗

+Ωkk

= Ok∗k
∂vk
∂x∗k∗

= Ok∗k
∂vk
∂xl

∂xl
∂x∗k∗

= Ok∗k
∂vk
∂xl

Ok∗l = δkl
∂vk
∂xl

=
∂vk
∂xk

= div~v .

To study the effect of an observer transformation on the basic balance equations derived in
Chapter 3, let us show that (i) the spatial gradient of an objective scalar is an objective vector, (ii)
the spatial divergence of an objective vector is an objective scalar, and (iii) the spatial divergence
of an objective tensor is an objective vector.

(i) Using (5.8) and (5.16)1, we have

(grad∗ λ∗)k∗ =
∂λ∗

∂x∗k∗
=

∂λ

∂xk

∂xk
∂x∗k∗

= Ok∗k
∂λ

∂xk
= Ok∗k (gradλ)k .
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Multiplying by ~ik∗ and introducing a new vector gradλ∗ :=
∂λ∗

∂x∗k∗
~ik∗ , we obtain

gradλ∗ = O(t) · gradλ . (5.27)

(ii) Next, from (5.8) and (5.16)2, we have

div∗ ~u∗ =
∂u∗k∗

∂x∗k∗
=
∂(Ok∗lul)

∂xk

∂xk
∂x∗k∗

= Ok∗l
∂ul
∂xk

Ok∗k = δkl
∂ul
∂xk

=
∂uk
∂xk

= div ~u . (5.28)

(iii) And lastly, (5.8) and (5.12) give

(div∗ a∗)l∗ =
∂a∗k∗l∗

∂x∗k∗
=
∂(Ok∗kaklOl∗l)

∂xm

∂xm
∂x∗k∗

= Ok∗kOl∗l
∂akl
∂xm

Ok∗m = δkmOl∗l
∂akl
∂xm

= Ol∗l(diva)l .

Multiplying by ~il∗ and introducing a new vector diva∗ :=
∂a∗k∗l∗

∂x∗k∗
~il∗ , we obtain

diva∗ = O(t) · diva . (5.29)

The transformation rule for the deformation gradient is given by

F ∗( ~X, t) = O(t) · F ( ~X, t) , (5.30)

where F ∗( ~X, t) := χ∗
k∗,K

(~ik∗⊗~IK). To show it, we express the deformation gradient in the starred

frame according to (1.34)1 and substitute from (5.17):

F ∗k∗K =
∂χ∗k∗

∂XK
=

∂

∂XK

(
Ok∗k χk + b∗k∗

)
= Ok∗k

∂χk
∂XK

= Ok∗kFkK .

Multiplying by the tensor product ~ik∗ ⊗ ~IK , we obtain (5.30). Thus, the two-point deformation
gradient tensor F is not an objective tensor. However, three columns of F (for K = 1, 2, 3) are
objective vectors.

Let us verify that the jacobian J , the Green deformation tensor C, the right stretch tensor U
are all objective scalars, the rotation tensor R is an objective vector and the left stretch tensor
V , the Finger deformation tensor b and strain-rate tensor d are all objective tensors:

J∗ = J, C∗ = C, U∗ = U , (5.31)

R∗ = O(t) ·R, (5.32)

V ∗ = O(t) · V ·OT (t), b∗ = O(t) · b ·OT (t), d∗ = O(t) · d ·OT (t) . (5.33)

On contrary, the spatial velocity gradient l is not an objective tensor:

l∗ = O(t) · l ·OT (t) + Ω(t) . (5.34)

The proof is immediate by making use of (1.40), (1.48), (1.49), (1.53), (1.58), (2.12), (2.20), (5.11)
and (5.30):

J∗ = detF ∗ = det(O · F ) = detO detF = detF = J,
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C∗ = (F ∗)T · F ∗ = F T ·OT ·O · F = F T · F = C,

U∗ =
√
C∗ =

√
C = U ,

R∗ = F ∗ · (U∗)−1 = O · F ·U−1 = O ·R,
V ∗ = R∗ ·U∗ · (R∗)T = O ·R ·U ·RT ·OT = O · V ·OT ,

b∗ = F ∗ · (F ∗)T = O · F · F T ·OT = O · b ·OT ,

l∗ = (F ∗)· · (F ∗)−1 = (O ·
.
F +

.
O · F )(O · F )−1 = O ·

.
F ·F−1 ·OT+

.
O · OT = O · l ·OT + Ω,

d∗ =
1

2
(l∗ + l∗T ) =

1

2
(O · l ·OT +O · lT ·OT + Ω + ΩT ) = O · 1

2
(l+ lT ) ·OT = O · d ·OT .

5.3 Objective material time derivative

Let us now deal with the material time derivative of an objective scalar, an objective vector and
an objective tensor. For an objective scalar λ, for which λ∗∗ = λ∗ = λ, it trivially holds that

.
λ∗=

.
λ , (5.35)

that is, the material time derivative of an objective scalar is again an objective scalar.
For an objective vector ~u, for which ~u∗ = O(t) · ~u, the material time derivative is

.
~u∗= O ·

.
~u +

.
O · ~u = O ·

.
~u +

.
O · OT · ~u∗ ,

or, with the help of Ω =
.
O · OT , we have

.
~u∗= O ·

.
~u +Ω · ~u∗ . (5.36)

This means that the material time derivative of an objective vector is not an objective vector.
There are a few possibilities where one can define time derivative of an objective vector to be
again objective, and to obey a property of time derivative.

For example, the Jaumann-Zaremba or corotational time derivative of a vector ~v is defined as:

DJau~u

Dt
:=

.
~u ,

(5.37)
DJau~u

∗

Dt
:=

.
~u∗ −Ω · ~u∗ .

An immediate consequence of (5.36) is that

DJau~u
∗

Dt
= O(t) · DJau~u

Dt
, (5.38)

that is, the Jaumann time derivative of an objective vector is again objective vector.
Likewise, the material time derivative of an objective tensor a, for which a∗ = O(t) ·a ·OT (t),

is

.
a∗= O · .a · OT+

.
O · a ·OT +O ·a ·

.
O
T

= O · .a · OT+
.
O · OT ·a∗ ·O ·OT +O ·OT ·a∗ ·O ·

.
O
T
,
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or, with the help of Ω =
.
O · OT , we have

.
a∗= O · .a · OT + Ω · a∗ − a∗ ·Ω . (5.39)

Hence, the material time derivative of an objective tensor is not objective.
The Jaumann-Zaremba or corotational time derivative of tensor a is defined as follows:

DJaua

Dt
:=

.
a ,

(5.40)
DJaua

∗

Dt
:=

.
a∗ −Ω · a∗ + a∗ ·Ω .

An immediate consequence of (5.39) is

DJaua
∗

Dt
= O(t) · DJaua

Dt
·OT (t) , (5.41)

that is, the Jaumann time derivative of an objective tensor is again an objective tensor.
The Oldroyd derivative is another possibility to introduce the objective time derivative of

vectors and tensors. Let ~u and a be an objective vector and tensor, respectively. The Oldroyd
derivative of ~u and a is defined by the respective formulae

DOld~u

Dt
:=

.
~u −l · ~u , (5.42)

DOlda

Dt
:=

.
a −l · a− a · lT , (5.43)

where l is the spatial velocity gradient defined by (2.13). The objectivity of the Oldroyd derivative
of an objective vector follows from (5.20), (5.34), (5.36):

DOld~u
∗

Dt
=

.
~u∗ −l∗ · ~u∗ = O ·

.
~u +

.
O · ~u− (O · l ·OT + Ω) ·O · ~u

= O ·
.
~u +

.
O · ~u−O · l ·OT ·O · ~u−Ω ·O · ~u = O ·

.
~u −O · l · ~u .

Hence,
DOld~u

∗

Dt
= O(t) · DOld~u

Dt
. (5.44)

Likewise, making use of (5.20), (5.34), (5.39), we have

DOlda
∗

Dt
=

.
a∗ −l∗ · a∗ − a∗ · l∗T

= O · .a · OT+
.
O · a ·OT +O · a ·

.
O
T

− (O · l ·OT + Ω) ·O · ~a ·OT −O · ~a ·OT · (O · lT ·OT + ΩT )

= O · .a · OT −O · l · a ·OT −O · a · lT ·OT .

Hence,
DOlda

∗

Dt
= O(t) · DOlda

Dt
·OT (t) . (5.45)
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6. CONSTITUTIVE EQUATIONS

6.1 The need for constitutive equations

Basic principles of continuum mechanics, namely, conservation of mass, balance of momenta, and
conservation of energy, discussed in Chapter 4, lead to the fundamental equations:

∂%

∂t
+ div (%~v) = 0 , (6.1)

div t+ %~f = %
D~v

Dt
, t = tT , (6.2)

%
Dε

Dt
= t .. d− div ~q + %h . (6.3)

In total, they constitute 5 independent equations (one for mass, three for linear momentum and
one for energy) for 15 unknown field variables, namely,

• mass density %,

• velocity ~v,

• Cauchy’s stress tensor t,

• internal energy ε,

• heat flux ~q,

• temperature θ

provided that body forces ~f and distribution of heat sources h are given. Clearly, the forego-
ing basic equations are not adequate for the determination of these unknowns except for some
trivial situations, for example, rigid body motions in the absence of heat conduction. Hence, 10
additional equations must be supplied to make the problem well-posed.

In the derivation of the equations (6.1) to (6.3) no differentiation has been made between var-
ious types materials. It is therefore not surprising that the foregoing equations are not sufficient
to explain fully the motions of materials having various type of physical properties. The character
of the material is brought into the formulation through the so-called constitutive equations, which
specify the mechanical and thermal properties of particular materials based upon their internal
constitution. Mathematically, the usefulness of these constitutive equations is to describe the
relationships among the kinematic, mechanical, and thermal field variables and to permit the
formulations of well-posed problems of continuum mechanics. Physically, the constitutive equa-
tions define various idealized materials which serve as models for the behavior of real materials.
However, it is not possible to write one equation capable of representing a given material over its
entire range of application, since many materials behave quite differently under changing levels of
loading, such as elastic-plastic response due to increasing stress. Thus, in this sense it is perhaps
better to think of constitutive equations as representative of a particular behavior rather than of
a particular material.

6.2 Formulation of thermomechanical constitutive equations

In this text we deal with the constitutive equations of thermomechanical materials. The study
of the chemical changes and electromagnetic effects are excluded. A large class of materials does
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not undergo chemical transition or produce appreciable electromagnetic effects when deformed.
However, the deformation and motion generally produce heat. Conversely, materials subjected
to thermal changes deform and flow. The effect of thermal changes on the material behavior
depends on the range and severity of such changes.

The thermomechanical constitutive equations are relations between a set of thermomechanical
variables. They may be expressed as an implicit tensor-valued functional R of 15 unknown field
variables:

R
~X′ ∈ B
τ ≤ t

[
%( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), t( ~X ′, τ), ~q( ~X ′, τ), ε( ~X ′, τ), ~X

]
= 0 , (6.4)

where τ are all past times and t is the present time. The constraints ~X ′ ∈ B and τ ≤ t express the
principle of determinism postulating that the present state of the thermomechanical variables
at a material point ~X of the body B at time t is uniquely determined by the past history of the
motion and the temperature of all material points of the body B. The principle of determinism
is a principle of exclusions. It excludes the dependence of the material behavior on any point
outside the body and any future events.

We shall restrict the functional in (6.4) to be of a type that does not change with time, that
is, that does not depend on the present time t explicitly but only implicitly via thermomechanical
variables. Such a functional is invariant with respect to translation in time. The materials
described by (6.4) possess time-independent thermomechanical property.

The constitutive functional R describes the material property of a given material particle X
with the position ~X. The functional form may, in general, be different for different particles and
R may thus change with the change of position within the body B; such a material is called
heterogeneous. If functional R is independent of ~X, material is homogeneous.

For a simple material (see the next section), the implicit functional equation (6.4) is supposed
to be solved uniquely for the present values of thermomechanical variables. In this case, the
implicit functional equation (6.4) is replaced by a set of explicit functional equations:

t( ~X, t) = F
~X′ ∈ B
τ ≤ t

[
%( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), ~X

]
,

~q( ~X, t) = Q
~X′ ∈ B
τ ≤ t

[
%( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), ~X

]
,

ε( ~X, t) = E
~X′ ∈ B
τ ≤ t

[
%( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), ~X

]
,

(6.5)

where F , Q and E are respectively tensor-valued, vector-valued and scalar-valued functionals.
Note that all constitutive functionals F , Q and E are assumed to depend on the same set of
variables %( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ) and ~X. This is known as the principle of equipresence.

However, the implicit functional equation (6.4) need not be of such a nature as to determine
t, ~q and ε at ( ~X, t) explicitly. For instance, the stress at ( ~X, t) may depend not only on the
motion and temperature at all other points of the body but also on the histories of the stress,
the heat flux and the internal energy. Various types of approximations of (6.4) exist in which the
dependence on t( ~X ′, τ) is replaced by the history of various order of stress rates, heat rates, etc.
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For example, in a special case the constitutive equation (6.4) may be written explicitly for the

stress rates
.
t at ( ~X, t):

.
t ( ~X, t) = F

~X′ ∈ B
τ ≤ t

[
t( ~X, t), %( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), ~X

]
. (6.6)

More generally, we may have

t(p)( ~X, t) = F
~X′ ∈ B
τ ≤ t

[
t(p−1)( ~X, t), t(p−2)( ~X, t), . . . , t( ~X, t), %( ~X ′, τ), ~χ( ~X ′, τ), θ( ~X ′, τ), ~X

]
, (6.7)

which involves the stress rates up to the pth order at ( ~X, t). This type of generalization is, for
instance, needed to interpret creep data.

Except the Maxwell viscoelastic solid, we shall consider the explicit constitutive equations
(6.5). Together with 5 basic balance equations (6.1)–(6.3) they form 15 equations for 15 un-
knowns. Since t, ~q, and ε are expressed explicitly in (6.5), it is, in principle, possible to eliminate
these variables in (6.1)–(6.3). Then we obtain 5 equations (the so called field equations of ther-
momechanics) for 5 unknown field variables: mass density %, velocity ~v and temperature θ.

We now proceed to deduce the consequence of additional restrictions on the functionals F , Q
and E . Since the procedure is similar for all functionals, for the sake of brevity, we carry out the
analysis only for stress functional F . The results for Q and E are then written down immediately
by analogy.

6.3 Simple materials

The constitutive functionals F , Q and E are subject to another fundamental principle, the prin-
ciple of local action postulating that the motion and the temperature at distant material points
from ~X does not affect appreciably the stress, the heat flux and the internal energy at ~X. Suppose
that the functions %( ~X ′, τ), ~χ( ~X ′, τ) and θ( ~X ′, τ) admit Taylor series expansion about ~X for all
τ < t. According to the principle of local action, a relative deformation of the neighborhood of
material point ~X is permissible to approximate only by the first-order gradient

%( ~X ′, τ) ≈ %( ~X, τ) + Grad %( ~X, τ) · d ~X ,

~χ( ~X ′, τ) ≈ ~χ( ~X, τ) + F ( ~X, τ) · d ~X , (6.8)

θ( ~X ′, τ) ≈ θ( ~X, τ) + Grad θ( ~X, τ) · d ~X ,

where F ( ~X, τ) is the deformation gradient tensor at ~X and time τ , and d ~X = ~X ′ − ~X. Since
the relative motion and temperature history of an infinitesimal neighborhood of ~X is completely
determined by the history of density, deformation and temperature gradients at ~X, the stress
t( ~X, t) must be determined by the history of Grad %( ~X, τ), F ( ~X, τ) and Grad θ( ~X, τ) for τ ≤ t.
Such materials are called simple materials. We also note that if we retain higher-order gradients
in (6.8), then we obtain nonsimple materials of various classes. For example, by including the
second-order gradients into argument of F we get the theory of couple stress. In other words, the
behavior of the material point ~X within a simple material is not affected by the histories of the
distant points from ~X. To any desired degree of accuracy, the whole configuration of a sufficiently
small neighborhood of the material point ~X is determined by the history of Grad %( ~X, τ), F ( ~X, τ)
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and Grad θ( ~X, τ), and we may say that the stress t( ~X, t), which was assumed to be determined
by the local configuration, is completely determined by Grad %( ~X, τ), F ( ~X, τ) and Grad θ( ~X, τ).
That is, the general constitutive equation (6.5)1 reduces to the form

t( ~X, t) = F
τ≤t

[
%( ~X, τ),Grad %( ~X, τ), ~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ),Grad θ( ~X, τ), ~X

]
. (6.9)

Given the deformation gradient F , the density in the reference configuration is expressed
through the continuity equation (4.60) as

%( ~X, τ) =
%0( ~X)

detF ( ~X, τ)
. (6.10)

We can thus drop the argument %( ~X, τ) in the functional F since %( ~X, τ) is expressible in terms
of F ( ~X, τ) (the factor %0( ~X) is a fixed expression – not dependent on time – for a given reference
configuration). Moreover, by applying the gradient operator on (6.10), the term Grad %( ~X, τ) can
be expressed in term of GradF ( ~X, τ). For a simple material, however, GradF can be neglected
with respect to F . In summary, the principle of local action applied for a simple material leads
to the following constitutive equation:

t( ~X, t) = F
τ≤t

[
~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
, (6.11)

where ~Gθ stands for the temperature gradient, ~Gθ := Grad θ.

6.4 Material objectivity

The change of an observer frame to another observer frame was studied in Chapter 5, where the
quantities such as velocity, acceleration and other kinematic quantities were tranformed from a
fixed observer frame to a moving observer frame. The most general form of a transformation
between two observer frames moving against each other is the observer transformation discussed
in Section 5.1. 15

We now will specify the behavior under the observer transformation of the fields which rep-
resent the primitive concepts of mass, force, internal energy and heating. Of these the density
%, the stress vector ~t(~n), the internal energy ε and the heat flux ~h(~n) := ~q · ~n, being associated
with the internal circumstances of a material body, are expected to appear the same to equivalent
observers. They are accordingly taken to be objective, an assumption which may properly be
viewed as a part of the principle of objectivity. From this assumption, we will show that the
Cauchy stress tensor t and the heat flux vector ~q are objective. The objectivity of ~t(~n) means
that

[~t∗(~n∗)]k∗ = Ok∗k[~t(~n)]k , (6.12)

or, by the Cauchy stress formula (3.15), [~t(~n)]k = nltlk, it holds

n∗l∗t
∗
l∗k∗ = Ok∗knltlk . (6.13)

15Note that an observer frame is a spatial frame of reference.
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Making use of the objectivity of the normal vector ~n, 16 that is n∗l∗ = Ol∗lnl leads to

Ol∗lnlt
∗
l∗k∗ = Ok∗knltlk . (6.14)

Introducing a new tensor t∗ := t∗k∗l∗(
~ik∗ ⊗~il∗), we have

~n · (OT t∗ − t ·OT ) = ~0 , (6.15)

which must hold for all surface passing through a material point. Hence OT t∗− t ·OT = 0. With
the orthogonality property of O, we finally obtain

t∗ = O(t) · t ·OT (t) , (6.16)

which shows that the Cauchy stress tensor is an objective tensor. Likewise, the objectivity of ~q ·~n
implies that the heat flux vector ~q is an objective vector,

~q∗ = O(t) · ~q . (6.17)

Let us verify that the referential heat flux vector ~Gθ and the second Piola-Kirchhoff stress
tensor T (2) are both objective scalars:

~G∗θ∗ = ~Gθ, T (2)∗ = T (2). (6.18)

The proof is immediate by making use of (3.26)1, (5.30), (5.31)1 and (6.16):

~G∗θ∗ = Grad θ∗ = Grad θ = ~Gθ,

T (2)∗ = J∗(F ∗)−1 · t∗ · (F ∗)−T = JF−1 ·QT ·Q · t ·QT ·Q · F−T = JF−1 · t · F−T = T (2).

The constitutive functionals are subject to yet another fundamental principle. It has become
practical evidence that there are no known cases in which constitutive equations are frame depen-
dent. The postulate of the indifference of the constitutive equations against observer transforma-
tions is called the principle of material objectivity. This principle states that a constitutive
equation must be form-invariant under rigid motions of the observer frame or, in other words,
the material properties cannot depend on the motion of an observer. To express this principle
mathematically, let us write the constitutive equation (6.11) in the unstarred and starred frames:

t( ~X, t) = F
τ≤t

[
~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
,

t∗( ~X, t) = F∗
τ≤t

[
~χ∗( ~X, τ),F ∗( ~X, τ), θ∗( ~X, τ), ~G∗θ(

~X, τ), ~X
]
,

(6.19)

where χ( ~X, t) and χ∗( ~X, t) are related by (5.17). In general, the starred and unstarred functionals
F and F∗ may differ, but the principle of material objectivity requires that the form of the
constitutive functional F must be the same under any two rigid motions of observer frame.
Mathematically, no star is attached to the functional F :

F [ · ] = F∗[ · ] , (6.20)

16The normal vector to a surface may be defined as the gradient of a scalar function. From (5.27) it then follows
that ~n is an objective vector.
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where the arguments are those of (6.19). 17 Written it in the form (6.16), we have

O(t) · F
τ≤t

[
~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·OT (t)

= F
τ≤t

[
~χ∗( ~X, τ),F ∗( ~X, τ), θ∗( ~X, τ), ~G∗θ(

~X, τ), ~X
]
.

Taking into account the transformation relations (5.17), (5.30) and (6.18)1, the restriction placed
on constitutive functional F is

O(t) · F
τ≤t

[
~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·OT (t)

= F
τ≤t

[
O(τ) · ~χ( ~X, τ) +~b∗(τ),O(τ) · F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
.

(6.21)

This relation must hold for any arbitrary orthogonal tensor-valued functions O(t) and any arbi-
trary vector-valued function ~b∗(t).

In particular, let us consider a rigid translation of the observer frame such that the origin of
the observer frame moves with the material point ~X:

O(τ) = I , ~b∗(τ) = −~χ( ~X, τ) . (6.22)

This means that the reference observer frame is translated so that the material point ~X at any
time τ remains at the origin of this frame. From (5.17) it follows that ~χ∗( ~X, τ) = ~0 and (6.21)
becomes

F
τ≤t

[
~χ( ~X, τ),F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
= F
τ≤t

[
~0,F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
, (6.23)

which must hold for all deformation and temperature histories. Thus the stress at the material
point ~X and time t cannot depend explicitly on the history of motion of this point. It also implies
that velocity and acceleration and all other higher time derivatives of the motion have no influence
on the material laws. Consequently, the general constitutive equation (6.11) reduces to the form

t( ~X, t) = F
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
. (6.24)

The restriction (6.21) is now reduced to the form

O(t) · F
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·OT (t) = F

τ≤t

[
O(τ) · F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
,

(6.25)
which must hold for all orthogonal tensor-valued functions O(t), all deformation F ( ~X, t), tem-
perature θ( ~X, t) and temperature gradient ~Gθ( ~X, t) processes.

6.5 Reduction by polar decomposition

The condition (6.25) will now be used to reduce the constitutive equation (6.24). Let us recall the
polar decomposition (1.47) of the deformation gradient F ( ~X, t) = R( ~X, t)·U( ~X, t) into a rotation

17This is a significant advantage of the Lagrangian description, since material properties are always associated
with a given material particle X with the position vector ~X, while, in the Eulerian description, various material
particles may pass through a given spatial position ~x.
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tensor R and the right stretch tensor U =
√
C =

√
F T · F . We now make a special choice for

the orthogonal tensor O(t) in (6.25). For any fixed reference place ~X, we put O(t) = RT ( ~X, t)
for all t. This special choice of O(t) in (6.25) yields:

RT ( ~X, t) · F
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·R( ~X, t)

= F
τ≤t

[
RT ( ~X, τ) · F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
,

(6.26)

which with U = RT · F reduces to

F
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
= R( ~X, t) · F

τ≤t

[
U( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·RT ( ~X, t) .

(6.27)
This reduced form has been obtained for a special choice of O(t) in the principle of material
objectivity (6.25). This means that (6.27) is a necessary relation for satisfying the principle of
material objectivity. Now, we shall prove that (6.27) is also a sufficient relation for satisfying
this principle. Suppose, that F is of the form (6.27) and consider an arbitrary orthogonal tensor
history O(t). Since the polar decomposition of O · F is (O ·R) ·U , (6.27) for O · F reads

F
τ≤t

[
O(τ) · F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
= O(t) ·R( ~X, t) · F

τ≤t

[
U( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·
[
O(t) ·R( ~X, t)

]T
,

which in view of (6.27) reduces to (6.25), so that (6.25) is satisfied. Therefore the reduced form
(6.27) is necessary and sufficient to satisfy the principle of material objectivity.

We have proved that the constitutive equation of a simple material may be put into the form

t( ~X, t) = R( ~X, t) · F
τ≤t

[
U( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·RT ( ~X, t) . (6.28)

A constitutive equation of this kind, in which the functionals are not subject to any further
restriction, is called a reduced form. The result (6.28) shows that while the stretch history of a
simple material may affect its present stress, past rotations have no effect at all. The present
rotation enters (6.28) explicitly.

There are many other reduced forms for the constitutive equation of a simple material. Re-
placing the stretch U by the Green deformation tensor C, U =

√
C, and denoting the functional

F(
√
C, · · ·) again as F (C, · · ·), we obtain

t( ~X, t) = R( ~X, t) · F
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
·RT ( ~X, t) . (6.29)

Likewise, expressing rotationR through the deformation gradient, R = F ·U−1, and replacing the
stretch U by Green’s deformation tensor C, equation (6.29), after introducing a new functional
F̃ of the deformation history C, can be put into another reduced form

t( ~X, t) = F ( ~X, t) · F̃
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
· F T ( ~X, t) . (6.30)

We should emphasize that F and F̃ are materially objective functionals.
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The principle of material objectivity applied to the constitutive equations (6.5) for the heat
flux and the internal energy in analogous way as for the stress results in the following reduced
forms:

~q( ~X, t) = R( ~X, t) · Q
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
,

ε( ~X, t) = E
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
.

(6.31)

Another useful reduced form may be obtained if the second Piola-Kirchhoff stress tensor T (2)

defined by (3.26)1,
T (2) = (detF )F−1 · t · F−T , (6.32)

is used in the constitutive equation instead of the Cauchy stress tensor t. With

J = detF = det (R ·U) = detU =
√

detC , (6.33)

and defining a new functional G of the deformation history C, the constitutive equation (6.30)
can be rewritten for the second Piola-Kirchhoff stress tensor as

T (2)( ~X, t) = G
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
. (6.34)

According to this result, the second Piola-Kirchhoff stress tensor depends only on the Green
deformation tensor and not on the rotation. Likewise, the constitutive functional for the heat
flux vector in the reference configuration,

~Q = JF−1 · ~q , (6.35)

is of the form
~Q( ~X, t) = Q̃

τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ), ~X

]
. (6.36)

6.6 Kinematic constraints

A condition of kinematic constraint is a geometric restriction on the set of all motions which are
possible for a material body. A condition of constraint can be defined as a restriction on the
deformation gradients:

λ(F (t)) = 0 , (6.37)

where to lighten notations in this section we drop the place ~X from the notation as in F (t) ≡
F ( ~X, t). The requirement that kinematic constraints shall be materially objective implies that
equation (6.37) has to be replaced by

λ(C(t)) = 0 . (6.38)

In the context of kinematic constraints, the principle of determinism must be modified; it postu-
lates that only a part of the stress tensor is related to the history of the deformation. Thus the
stress tensor (6.24) obtains an additional term

t(t) = π(t)+ F
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
. (6.39)
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The tensor t−π is called the determinate stress because it is uniquely determined by the motion.
The tensor π is called indeterminate stress and represents the reaction stress produced by the
kinematic constraint (6.38). It is not determined by the motion. In analogy with analytical
mechanics, it is assumed that the reaction stress does not perform any work, that is the stress
power vanishes for all motions compatible with the constraint condition (6.38):

π(t) : d(t) = 0 , (6.40)

where d is the strain-rate tensor defined by (2.20)1.
To derive an alternative form, we modify the constitutive equation (6.34) for the second

Piola-Kirchhoff stress tensor as

T (2)(t) = Π(t)+ G
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
. (6.41)

If we take into account (2.23) and (3.26)2, the double-dot product π : d can be expressed in terms
of the reaction stress Π as

π : d =
1

J
(F ·Π · F T ) :

1

2
(F−T ·

.
C ·F−1) =

1

2J
(Π :

.
C) ,

where (4.74) has been applied in the last equality. Hence, the constraint (6.40) takes the referential
form

Π(t) :
.
C (t) = 0 . (6.42)

This says that the reaction stress Π has no power to work for all motions compatible with the
constraints (6.38). This compatibility can be evaluated in a more specific form. Differentiating
(6.38) with respect to time, we obtain

dλ(C(t))

dCKL

.
CKL= 0 or, symbolically,

dλ(C(t))

dC
:
.
C= 0 . (6.43)

This shows that the normal dλ/dC to the surface λ(C)=const. is orthogonal to all strain rates
.
C which are allowed by the constraint condition (6.38). Equation (6.43) suggests that just the
same orthogonality holds for the reaction stress Π, whence follows that Π must be parallel to
dλ/dC:

Π(t) = α(t)
dλ(C(t))

dC
. (6.44)

Here, the factor α is left undetermined and must be regarded as an independent field variable in
the balance law of linear momentum.

The same arguments apply if simultaneously more constraints are specified. For

λi(C(t)) = 0 , i = 1, 2, . . . , (6.45)

we have
T (2)(t) =

∑
i

Πi(t)+ G
τ≤t

[C(τ), θ(τ),Grad θ(τ)] (6.46)

with

Πi(t) = αi(t)
dλi(C(t))

dC
. (6.47)
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As an example, we consider the volume-preserving motion for which J = 1. Since J = %0/%
due to (4.60), the volume-preserving motion is identical to the density-preserving motion for
which the mass density of a particle remains unchanged during motion. The volume- or density-
preserving constraints are traditionaly regarded as the constraint of incompressibility. However,
the incompressibility may also mean that the equation of state for density, that is the equation
expressing the density as a function of temperature and pressure, % = %(θ, p), is independent
of pressure, that is % = %(θ). Combining (1.40) and (1.53), the volume-preserving constraint
becomes

J =
√

detC = 1 . (6.48)

This condition places a restriction on C, namely, the components of C are not all independent.
In this particular case, the constraint (6.38) reads

λ(C) = detC − 1 . (6.49)

Making use of the identity
d

dA
(detA) = (detA)A−T , (6.50)

which is valid for all invertible second-order tensors A, we derive

d

dC
(detC − 1) = (detC)C−1 = C−1 . (6.51)

Equation (6.44) then implies
Π(t) = α(t)C−1(t) . (6.52)

Instead of α we write −p in order to indicate that p is a pressure. Equation (6.41) now reads

T (2)(t) = −p(t)C−1(t)+ G
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
. (6.53)

Complementary, the Cauchy stress tensor is expressed as

t(t) = −p(t)I +R(t) · F
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
·RT (t) . (6.54)

This equation shows that for an incompressible simple material the stress is determined by the
motion only to within a pressure p.
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x3

~x = ~χR( ~X, t)

~x = ~χR̂( ~̂X, t)

~̂X = ~Λ( ~X)

Ref. configuration R

Ref. configuration R̂

Present configuration

Figure 6.1. Motion of a body with respect to two different reference configurations.

6.7 Material symmetry
In this section, we will confine ourselves to the homogeneous material. We say that the material
is homogeneous if the constitutive equations do not depend on the translations of the origin the
reference configuration. In other words, there is at least one reference configuration in which a
constitutive equation of a homogeneous material has the same form for all particles. It means that
the explicit dependence of constitutive functionals on the position ~X disappears. For instance,
equation (6.24) for a homogeneous material reduces to

t( ~X, t) =FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.55)

Note that the functional F is labelled by the subscript R since F depends on the choice of
reference configuration.

Material symmetry or material isotropy, if it exists, can be characterized by invariance prop-
erties of the constitutive equations with respect to a change of reference configuration. To make
this statement more precise and to exploit its consequences, denote by R and R̂ two different
reference configurations (see Figure 6.1) related by the one-to-one mapping

~̂X = ~Λ( ~X) ⇐⇒ ~X = ~Λ−1( ~̂X) , (6.56)

where ~X and ~̂X are the positions of the particle X in the reference configurations R and R̂,

respectively, ~X = XK
~IK and ~̂X = X̂K̂

~̂IK̂ . Then the motion of the particle in the present
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configuration ~x = ~χR( ~X, t) takes the form ~x = ~χR̂( ~̂X, t), and we obtain the identity

~χR( ~X, t) = ~χR̂(~Λ( ~X), t) , (6.57)

which holds for all ~X and t. Differentiating ~x = ~χR( ~X, t) and θ( ~X, t) with respect to ~X leads to
the transformation rule for the deformation and temperature gradients:

FkK =
∂χk
∂XK

=
∂χk
∂ΛL̂

∂ΛL̂
∂XK

= F̂kL̂PL̂K ,

(~Gθ)K =
∂θ

∂XK
=

∂θ

∂ΛL̂

∂ΛL̂
∂XK

= ( ~̂Gθ)L̂PL̂K ,

or, in invariant notation,

F ( ~X, t) = F̂ ( ~̂X, t) · P ( ~X) ,

θ( ~X, t) = θ̂( ~̂X, t) , (6.58)

~Gθ( ~X, t) = ~̂Gθ̂(
~̂X, t) · P ( ~X) .

Here,

F̂ ( ~̂X, t) := (Grad ~χR̂ ( ~̂X, t))T (6.59)

denotes the transposed deformation gradient of the motion ~x = ~χR̂( ~̂X, t), and

P ( ~X) := (Grad ~Λ( ~X))T = PK̂L( ~X)(~̂IK̂ ⊗ ~IL) , PK̂L( ~X) =
∂ΛK̂
∂XL

, (6.60)

is the transposed gradient of the transformation ~Λ that maps the configuration R onto the con-
figuration R̂. The deformation and temperature gradients therefore depend on the choice of
configuration. Likewise, the Green deformation tensor C, C = F T · F , transforms according to
the rule:

C( ~X, t) = P T ( ~X) · Ĉ( ~̂X, t) · P ( ~X) . (6.61)

The constitutive equation (6.55) for the reference configuration R̂ is of the form

t( ~̂X, t) =FR̂
τ≤t

[
F̂ ( ~̂X, τ), θ̂( ~̂X, τ), ~̂Gθ̂(

~̂X, τ)

]
. (6.62)

Under the assumption that two different deformation and temperature histories are related by the
same mapping as the associated reference configurations, the relation between the two different
functionals FR and FR̂ is given by the identity

FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
=FR̂
τ≤t

[
F̂ ( ~̂X, τ), θ̂( ~̂X, τ), ~̂Gθ̂(

~̂X, τ)

]
, (6.63)

where (6.58) is implicitly considered. Thus, the arguments in configuration R can be expressed
in terms of those in configuration R̂:

FR
τ≤t

[
F̂ ( ~̂X, τ) · P ( ~X), θ̂( ~̂X, τ), ~̂Gθ̂(

~̂X, τ) · P ( ~X)

]
=FR̂
τ≤t

[
F̂ ( ~̂X, τ), θ̂( ~̂X, τ), ~̂Gθ̂(

~̂X, τ)

]
. (6.64)
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Since (6.64) holds for any deformation and temperature histories, we obtain the identity

FR
τ≤t

[
F ( ~X, τ) · P ( ~X), θ( ~X, τ), ~Gθ( ~X, τ) · P ( ~X)

]
=FR̂
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.65)

This identity can alternatively be arranged by expressing the arguments in configuration R̂ in
terms of those in configuration R:

FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
=FR̂
τ≤t

[
F ( ~X, τ) · P−1( ~X), θ( ~X, τ), ~Gθ( ~X, τ) · P−1( ~X)

]
. (6.66)

To introduce the concept of material symmetry, consider a particle which at time t = −∞ was
in configuration R and subsequently suffered from certain histories of the deformation gradient
F , the temperature θ and the temperature gradient ~Gθ. At the present time t, the constitutive
equation for the stress is

t( ~X, t) =FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.67)

Let the same particle but now in the configuration R̂ is experienced the same histories of defor-
mation gradient, temperature and temperature gradient as before. The resulting stress at present
time t is

t̂( ~X, t) =FR̂
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.68)

Since FR and FR̂ are not, in general, the same functionals, it follows that t 6= t̂. However, it
may happen that these values coincide, which expresses a certain symmetry of material. The
condition for this case is

FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
=FR̂
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.69)

By expressing the right-hand side according to identity (6.65), we obtain

FR
τ≤t

[
F ( ~X, τ) · P ( ~X), θ( ~X, τ), ~Gθ( ~X, τ) · P ( ~X)

]
=FR
τ≤t

[
F ( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
. (6.70)

If this relation holds for all deformation and temperature histories, we say that the material at
the particle X is symmetric with respect to the transformation P : R→ R̂.

It shows that any such P as in (6.70) corresponds to a static local deformation (at a given par-
ticle X ) from R to another reference configuration R̂ such that any deformation and temperature
histories lead to the same stress in either R or R̂ (at a given particle X ). Hence P corresponds to
a change of reference configuration which cannot be detected by any experiment at a given parti-
cle X . The matrices P , for which (6.70) applies, are called the symmetry transformations. Often
the constitutive functionals remain invariant under volume-preserving transformations, that is,
the transformations with detP = ±1. A transformation with this property is called unimodu-
lar. From now on, we will consider changes of reference configuration for which the associated
deformation gradient P is unimodular. We point out that the unimodularity condition on the
transformation of reference configuration could, in principle, be omitted. However, no materials
are known that satisfy the symmetry condition (6.70) for a non-unimodular transformation.
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The properties of material symmetry can be represented in terms of the symmetry group.
The set of all unimodular transformations which leave the constitutive equation invariant with
respect to R, that is, for which (6.70) holds forms a group. 18 This group is called the symmetry
group gR of the material at the particle X whose place in the reference configuration R is ~X:

gR :=
{
H| detH = ±1 and

FR
τ≤t

[
F (τ) ·H, θ(τ), ~Gθ(τ) ·H

]
=FR
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
for ∀F (τ), ∀θ(τ), ∀~Gθ(τ)

}
,

(6.71)
where we have dropped the place ~X from the notation as, for instance, in F ( ~X, τ) ≡ F (τ). The
operation defined on gR is the scalar product of tensors and the identity element is the identity
tensor.

To show that gR is a group, let H1 and H2 be two elements of gR. Then we can replace F
in (6.71) with F ·H1, ~Gθ with ~Gθ ·H1 and take H = H2 to find

FR
τ≤t

[
F (τ) ·H1 ·H2, θ(τ), ~Gθ(τ) ·H1 ·H2

]
=FR
τ≤t

[
F (τ) ·H1, θ(τ), ~Gθ(τ) ·H1

]
.

Since H1 ∈ gR, we find that

FR
τ≤t

[
F (τ) ·H1 ·H2, θ(τ), ~Gθ(τ) ·H1 ·H2

]
=FR
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
.

This shows that the scalar product H1 ·H2 ∈ gR. Furthermore, the identity tensor H=I clearly
satisfies (6.71). Finally, if H ∈ gR and F is invertible, then F ·H−1 is an invertible tensor. Hence
(6.71) must hold with F replaced by F ·H−1 (and ~Gθ with ~Gθ ·H−1):

FR
τ≤t

[
F (τ) ·H−1 ·H, θ(τ), ~Gθ(τ) ·H−1 ·H

]
=FR
τ≤t

[
F (τ) ·H−1, θ(τ), ~Gθ(τ) ·H−1

]
.

Hence we find that

FR
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
=FR
τ≤t

[
F (τ) ·H−1, θ(τ), ~Gθ(τ) ·H−1

]
, (6.72)

which shows that H−1 ∈ gR. We have proved that gR has the structure of a group. Note that
(6.72) is an equivalent condition for the material symmetry.

6.8 Material symmetry of reduced-form functionals

We now employ the definition of the symmetry group to find a symmetry criterion for the func-
tionals whose forms are reduced by applying the polar decomposition of the deformation gradient.
As an example, let us consider the constitutive equation (6.30) for the Cauchy stress tensor. For

18A group is a set of abstract elements A, B, C, · · ·, with a defined operation A ·B (as, for instance, ‘multipli-
cation’) such that: (1) the product A ·B is defined for all elements A and B of the set, (2) this product A ·B is
itself an element of the set for all A and B (the set is closed under the operation), (3) the set contains an identity
element I such that I · A = A = A · I for all A, (4) every element has an inverse A−1 in the set such that
A ·A−1 = A−1 ·A = I.
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a homogeneous material, this constitutive equation in the reference configurations R and R̂ has
the form

t( ~X, t) = F ( ~X, t) · F̃R
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
· F T ( ~X, t) ,

(6.73)
t( ~̂X, t) = F̂ ( ~̂X, t) · F̃R̂

τ≤t

[
Ĉ( ~̂X, τ), θ̂( ~̂X, τ), ~̂Gθ̂(

~̂X, τ)

]
· F̂ T

( ~̂X, t) ,

where the subscripts R and R̂ refer to the underlying reference configuration. With the help of the
transformation relation (6.58) for the deformation gradient, the temperature and the temperature
gradient, and (6.61) for the Green deformation tensor, the functional F̃R satisfies the identity
analogous to (6.66):

P ( ~X) · F̃R
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
· P T ( ~X)

=F̃R̂
τ≤t

[
P−T ( ~X) ·C( ~X, τ) · P−1( ~X), θ( ~X, τ), ~Gθ( ~X, τ) · P−1( ~X)

]
.

(6.74)

Since F̃R and F̃R̂ are not, in general, the same functionals, the functional F̃R̂ on the right-hand

side of (6.74) cannot be replaced by the functional F̃R. However, it may happen, that F̃R = F̃R̂,
which expresses a certain symmetry of material. The condition for this case is

P ( ~X) · F̃R
τ≤t

[
C( ~X, τ), θ( ~X, τ), ~Gθ( ~X, τ)

]
· P T ( ~X)

=F̃R
τ≤t

[
P−T ( ~X) ·C( ~X, τ) · P−1( ~X), θ( ~X, τ), ~Gθ( ~X, τ) · P−1( ~X)

]
.

(6.75)

We say that a material at the particle X (whose place in the reference configuration is ~X) is
symmetric with respect to the transformation P : R → R̂ if the last relation is valid for all
deformation and temperature histories. The symmetry group gR of a material characterized by
the constitutive functional F̃R is defined as

gR :=
{
H| detH = ±1 and

H · F̃R
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
·HT =F̃R

τ≤t

[
H−T ·C(τ) ·H−1, θ(τ), ~Gθ(τ) ·H−1

]
for ∀C(τ), ∀θ(τ), ∀~Gθ(τ)

}
,

(6.76)

where we have dropped the place ~X from the notation as, for instance, in C( ~X, τ) ≡ C(τ).
By an analogous way, it can be shown that the condition of material symmetry for the ma-

terially objective constitutive functional GR in constitutive equation (6.34) is similar to that of
F̃R:

H · GR
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
·HT =GR

τ≤t

[
H−T ·C(τ) ·H−1, θ(τ), ~Gθ(τ) ·H−1

]
. (6.77)

6.9 Noll’s rule

The symmetry group gR generally depends upon the choice of reference configuration, since the
symmetries a body enjoys with respect to one configuration generally differ from those it enjoys
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with respect to another. However, the symmetry groups gR and gR̂ (for the same particle) relative

to two different reference configurations R and R̂ are related by Noll’s rule:

gR̂ = P · gR · P−1 , (6.78)

where P is the fixed local deformation tensor for the deformation from R to R̂ given by (6.60).
Noll’s rule means that every tensor Ĥ ∈ gR̂ must be of the form Ĥ = P ·H · P−1 for some

tensor H ∈ gR, and conversely every tensor H ∈ gR is of the form H = P−1 · Ĥ · P for some
Ĥ ∈ gR̂. Note that P not necessarily be unimodular, because P represents a change of reference
configuration, not a member of symmetry group. Noll’s rule shows that if gR is known for one
configuration, it is known for all. That is, the symmetries of a material in any one configuration
determine its symmetries in every other.

To prove Noll’s rule, let H ∈ gR. Then (6.71) holds and it is permissible to replace F by
F · P and ~Gθ by ~Gθ · P :

FR
τ≤t

[
F (τ) · P ·H, θ(τ), ~Gθ(τ) · P ·H

]
=FR
τ≤t

[
F (τ) · P , θ(τ), ~Gθ(τ) · P

]
.

By applying identity (6.66) to the both side of this equation, we obtain

FR̂
τ≤t

[
F (τ) · P ·H · P−1, θ(τ), ~Gθ(τ) · P ·H · P−1

]
=FR̂
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
,

which holds for all deformation and temperature histories. Thus, ifH ∈ gR, then P ·H ·P−1 ∈ gR̂.
The argument can be reversed which completes the proof of Noll’s rule.

By definition, the symmetry group is a subgroup of the group of all unimodular transforma-
tions,

gR ⊆ unim. (6.79)

The ‘size’ of a specific symmetry group is the measure for the amount of material symmetry.
The group of unimodular transformations contains the group of orthogonal transformations (as,
for instance, rotations or reflections) but also the group of non-orthogonal volume-preserving
transformations (as, for instance, torsions), i.e.,

orth. ⊂ unim. (6.80)

The smallest symmetry group {I,−I}, {I,−I} ⊂ gR , corresponds to a material that has no
(nontrivial) symmetries. Such a material is called triclinic. Obviously,

P · {I,−I} · P−1 = {I,−I} . (6.81)

Hence a triclinic material has no symmetries relative to any reference configuration: no transfor-
mation can bring this material into a configuration that has a nontrivial symmetry.

The largest symmetry group is the group of all unimodular transformations. Noll’s rule shows
that if P is an arbitrary invertible tensor, then P ·H · P−1 is unimodular for all unimodular
H, and if H is any unimodular tensor, the tensor P−1 · H · P is a unimodular tensor, and
H = P ·H · P−1. Therefore,

P · unim. · P−1 = unim. (6.82)

76



Hence, the maximum symmetry of such a material cannot be destroyed by deformation.

6.10 Classification of the symmetry properties

6.10.1 Isotropic materials

We will now classify material according to the symmetry group it belongs to. We say that a
material is isotropic if it possesses a configuration R, in which the symmetry condition (6.71) or
(6.76) applies at least for all orthogonal transformations. In other words, a material is isotropic
if there exists a reference configuration R such that

gR ⊇ orth. (6.83)

where orth. denotes the group of all orthogonal transformation. For an isotropic material, (6.79)
and (6.83) can be combined to give

orth. ⊆ gR ⊆ unim. (6.84)

All groups of isotropic bodies are thus bounded by the orthogonal and unimodular groups. A
question arises of how many groups bounded by orth. and unim. may exist. The group theory
states that the orthogonal group is a maximal subgroup of the unimodular group. Consequently,
there are only two groups satisfying (6.84), either orthogonal or unimodular; no other group exists
between them. Hence, there are two kinds of isotropic materials, either those with gR = orth. or
those with gR = unim. All other materials are anisotropic and possess a lower degree of symmetry.

The concept of the symmetry group can be used to define solids and fluids according to Noll.

6.10.2 Fluids

Fluids have the property that can be poured from one container to another and, after some time,
no evidence of the previous circumstances remains. Such a change of container can be thought as
a change of reference configuration, so that for fluids all reference configurations with the same
density are indistinguishable. In other words, every configuration, also the present configuration,
can be thought as a reference configuration. According to Noll, a simple material is a fluid if
its symmetry group has a maximal symmetry, being identical with the set of all unimodular
transformations,

gR = unim. (6.85)

Moreover, Noll’s rule implies that the condition gR = unim. holds for every configuration if it
holds for any one reference configuration R, so a fluid has maximal symmetry relative to every
reference configuration. A fluid is thus a non-solid material with no preferred configurations. In
terms of symmetry groups, gR̂ = gR (= unim.). Moreover, a fluid is isotropic, because of (6.80).

The simple fluid and the simple solid do not exhaust the possible types of simple materials.
There is, for instance, a simple material, called liquid crystal which is neither a simple fluid nor
a simple solid.

6.10.3 Solids

Solids have the property that any change of shape (as represented by a non-orthogonal trans-
formation of the reference configuration) brings the material into a new reference configuration
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from which its response is different. Hence, according to Noll, a simple material is called a solid
if there is a reference configuration such that every element of the symmetry group is a rotation,

gR ⊆ orth. (6.86)

A solid whose symmetry group is equal to the full orthogonal group is called isotropic,

gR = orth. (6.87)

If the symmetry group of a solid is smaller than the full orthogonal group, the solid is called
anisotropic,

gR ⊂ orth. (6.88)

There is only a finite number of symmetry group with this property, and it forms the 32 crystal
classes.

6.11 Constitutive equation for isotropic materials

Every material belonging to a certain symmetry group gR must also be objective. Thus, the
objectivity condition (6.25) and the condition of material symmetry (6.72) must be satisfied
simultaneously. Combining them, the material functional must satisfied the following condition

O(t) · F
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
·OT (t) = F

τ≤t

[
O(τ) · F (τ) ·H−1, θ(τ), ~Gθ(τ) ·H−1

]
(6.89)

for all orthogonal transformation O(t) of the reference frame and all symmetry transformation
H ∈ gR. Note that the subscript R at the functional F is omitted since we will not consider
more than one reference configuration in the following text. For an isotropic material, the set
of unimodular transformations is equal to the set of full orthogonal transformations, H = Q ∈
orth. In contrast to O(t), the orthogonal tensor Q is time independent. Restricting the last
transformation to constant-in-time element Q, (6.89) becomes

Q · F
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
·QT = F

τ≤t

[
Q · F (τ) ·QT , θ(τ),Q · ~Gθ(τ)

]
, (6.90)

where we have identified Q · ~Gθ(τ) ≡ ~Gθ(τ) · QT . Similar constraints can be derived for the
constitutive functionals Q and E of the heat flux and the internal energy, respectively:

Q · Q
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
= Q

τ≤t

[
Q · F (τ) ·QT , θ(τ),Q · ~Gθ(τ)

]
,

E
τ≤t

[
F (τ), θ(τ), ~Gθ(τ)

]
= E

τ≤t

[
Q · F (τ) ·QT , θ(τ),Q · ~Gθ(τ)

]
.

(6.91)

Functionals which satisfy constraints (6.89) and (6.91) are called tensorial, vectorial and scalar
isotropic functionals with respect to orthogonal transformations. All these functionals represent
constitutive equations for an isotropic body. Note that the conditions (6.89)–(6.91) are neces-
sary for the material objectivity of isotropic functionals, but not necessarily sufficient, since the
principle of the material objectivity is satisfied for a constant, time-independent Q ∈ orth, but
not for a general O(t) ∈ orth. In many cases, the functionals are also materially objective for all
O(t) ∈ orth, but this must be examined in every individual case.
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6.12 Current configuration as reference

So far, we have employed a reference configuration fixed in time, but we can also use a reference
configuration varying in time. Thus one motion may be described in terms of any other. The
only time-variable reference configuration useful in this way is the present configuration. If we
take it as reference, we describe past events as they seem to an observer fixed to the particle X
now at the place ~x. The corresponding description is called relative and it has been introduced
in section 1.2.

To see how such the relative description is constructed, consider the configurations of body B
at the two times τ and t:

~ξ = ~χ( ~X, τ) ,

~x = ~χ( ~X, t) ,
(6.92)

that is, ξ is the place occupied at time τ by the particle that occupies ~x at time t. Since the
function ~χ is invertible, that is,

~X = ~χ−1(~x, t) , (6.93)

we have either
~ξ = ~χ(~χ−1(~x, t), τ) =: ~χt(~x, τ) , (6.94)

where the function ~χt(~x, τ) is called the relative motion function. It describes the deformation of
the new configuration κτ of the body B relative to the present configuration κt, which is considered
as reference. The subscript t at the function ~χ is used to recall this fact. The relative description,
given by the mapping (6.94), is actually a special case of the referential description, differing from
the Lagrangian description in that the reference position is now denoted by ~x at time t instead of
~X at time t = 0. The variable time τ , being the time when the particle occupied the position ξ,
is now considered as an independent variable instead of the time t in the Lagrangian description.

The relative deformation gradient F t is the gradient of the relative motion function:

F t(~x, τ) := (grad ~χt(~x, τ))T , (F t)kl :=
∂(~χt)k
∂xl

. (6.95)

It can be expressed in terms of the (absolute) deformation gradient F . Differentiating the fol-
lowing identity for the motion function,

~ξ = ~χ( ~X, τ) = ~χt(~x, τ) = ~χt(~χ( ~X, t), τ) ,

with respect to XK and using the chain rule of differentiation, we get

∂χk( ~X, τ)

∂XK
=
∂(~χt)k(~x, τ)

∂xl

∂χl( ~X, t)

∂XK
or (F )kK( ~X, τ) = (F t)kl(~x, τ)(F )lK( ~X, t) ,

which represents the tensor equation

F ( ~X, τ) = F t(~x, τ) · F ( ~X, t) , or F t(~x, τ) = F ( ~X, τ) · F−1( ~X, t) . (6.96)

In particular,
F t(~x, t) = I . (6.97)
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The Green deformation tensor C = F T · F may also be developed in terms of the relative
deformation gradient:

C( ~X, τ) = F T ( ~X, τ) · F ( ~X, τ) = F T ( ~X, t) · F T
t (~x, τ) · F t(~x, τ) · F ( ~X, t) .

Defining the relative Green deformation tensor by

ct(~x, τ) := F T
t (~x, τ) · F t(~x, τ) , (6.98)

we have
C( ~X, τ) = F T ( ~X, t) · ct(~x, τ) · F ( ~X, t) . (6.99)

6.13 Isotropic constitutive functionals in relative representation

Let now the motion be considered in relative representation (6.94). Thus, the present configu-
ration at the current time t serves as reference, while the configuration at past time τ , (τ ≤ t),
is taken as present. The relative deformation gradient F t(~x, τ) can be expressed in terms of the
absolute deformation gradient according to (6.96). Similarly, the relative temperature gradient,
~gθ := grad θ, can be expressed in terms of the absolute temperature gradient, ~Gθ := Grad θ, as 19

~Gθ( ~X, τ) =
∂θ( ~X, τ)

∂XK

~IK =
∂θ(~x, τ)

∂xk

∂χk( ~X, t)

∂XK

~IK = [~gθ(~x, τ)]k [F (~x, t)]kK
~IK

= ~gθ(~x, τ) · F ( ~X, t) = F T ( ~X, t) · ~gθ(~x, τ) .

To abbreviate notations, ( ~X, t) and (~x, t) will be dropped from notations and ( ~X, τ) and (~x, τ)
will be shortened as (τ):

~Gθ(τ) = F T · ~gθ(τ) . (6.100)

With the help of the polar decomposition F = R ·U , (6.99) and (6.100) can also be written in
the form

C(τ) = U ·RT · ct(τ) ·R ·U ,

~Gθ(τ) = U ·RT · ~gθ(τ) .
(6.101)

We consider the reduced form (6.29) of the constitutive equation for the Cauchy stress tensor:

t = R · F
τ≤t

[
C(τ), θ(τ), ~Gθ(τ)

]
·RT . (6.102)

Making use of (6.101) together with C = U2, we obtain

t = R · F
τ≤t

[√
C ·RT · ct(τ) ·R ·

√
C, θ(τ),

√
C ·RT · ~gθ(τ)

]
·RT . (6.103)

The information contained in the last constitutive equation can alternatively be expressed as

t = R · F
τ≤t

[
RT · ct(τ) ·R, θ(τ),RT · ~gθ(τ);C

]
·RT , (6.104)

19The temperature, like any other variable, has both an Eulerian and a Lagrangian description; the corresponding
Eulerian temperature is defined by ϑ(~x, t) := θ( ~X(~x, t), t). We make, however, an exception in the notation and
use θ(~x, t) for the Eulerian description of temperature.
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where the present strain C(t) appears in the functional F as a parameter. This shows that it
is not possible to express the effect of deformation history on the stress entirely by measuring
deformation with respect to the present configuration. While the effect of all the past history
is accounted for, a fixed reference configuration is required, in general, to allow for the effect of
the deformation at the present instant, as indicated by the appearance of C(t) as a parameter in
(6.104).

We are searching for a form of functional F for isotropic materials only. In this case, the
functional F satisfies the isotropy relation analogous to (6.76) (show it):

Q · F
τ≤t

[
RT · ct(τ) ·R, θ(τ),RT · ~gθ(τ);C

]
·QT

(6.105)

= F
τ≤t

[
Q ·RT · ct(τ) ·R ·QT , θ(τ),Q ·RT · ~gθ(τ);Q ·C ·QT

]
,

where Q is an orthogonal tensor. Since ~X and t are fixed in the relative description of motion,
we may choose Q( ~X) = R( ~X, t), or more explicitly, QK̂L( ~X) = QkL( ~X) = RkL( ~X, t):

F
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] = R · F
τ≤t

[
RT · ct(τ) ·R, θ(τ),RT · ~gθ(τ);C

]
·RT , (6.106)

where b is the Finger deformation tensor, b = F ·F T = R ·C ·RT . Equations (6.104) and (6.106)
can be combined to give

t = F
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] . (6.107)

This is a general form of the constitutive equation for a simple homogeneous isotropic materials
expressed in relative representation. It remains to show that this constitutive equation is invariant
to any orthogonal transformation Q of reference configuration R, not only to our special choice
Q = R( ~X, t). Since none of the arguments in (6.107) does depend on the reference configuration
R, this requirement is satisfied trivially. For instance, the Finger deformation tensor does not
change by the orthogonal transformation of the reference configuration R onto R̂:

b̂ = F̂ · F̂ T = (F ·Q−1) · (Q−T · F T ) = F ·Q−1 ·Q · F T = F · F T = b .

By construction, the constitutive functional F is not automatically materially objective. The
material objectivity (6.16) of the Cauchy stress tensor implies that the functional F must trans-
form under a rigid motion of (spatial) observer frame as

F
τ≤t

[c∗t (τ), θ∗(τ), ~g∗θ∗(τ); b∗] = O(t) · F
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] ·OT (t) . (6.108)

The transformation rules for the relative deformation tensor, the relative Green deformation
tensor, the relative temperature gradient and the Finger deformation tensor are

F ∗t (τ) = O(τ) · F t(τ) ·OT (t) ,

c∗t (τ) = O(t) · ct(τ) ·OT (t) ,

~g∗θ∗(τ) = O(t) · ~gθ(τ) , (6.109)

b∗(t) = O(t) · b(t) ·OT (t) .
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The proof is immediate:

F ∗t (τ) = F ∗(τ) · [F ∗(t)]−1 = O(τ) · F (τ) · F−1(t) ·O−1(t) = O(τ) · F t(τ) ·OT (t) ,

c∗t (τ) = [F ∗(t)]−T ·C∗(τ) · [F ∗(t)]−1 = O(t) · F−T (t) ·C(τ) · F−1(t) ·O−1(t) = O(t) · ct(τ) ·OT (t) ,

~g∗θ∗(τ) = [F ∗(t)]−T · ~G∗θ∗(τ) = O(t) · F−T (t) · ~Gθ(τ) = O(t) · ~gθ(τ) .

By this and realizing that the temperature θ(τ) as a scalar quantity is invariant to any transfor-
mation of observer frame, the constraint (6.108) reduces to

F
τ≤t

[
O(t) · ct(τ) ·OT (t), θ(τ),O(t) · ~gθ(τ);O(t) · b ·OT (t)

]
(6.110)

= O(t) · F
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] ·OT (t) .

This shows that the functional F must be a spatially isotropic functional of the variables ct(τ),
θ(τ), ~gθ(τ) and a spatially isotropic function of b for F to be materially objective. 20

An analogous arrangement can be carried out for the constitutive equation (6.31) for the heat
flux and the internal energy:

~q = Q
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] ,

ε = E
τ≤t

[ct(τ), θ(τ), ~gθ(τ); b] .
(6.111)

Note that the constitutive equations in relative representation will be used to describe material
properties of a fluid, while for a solid we will employ the constitutive equation (6.29) in referential
representation.

6.14 A general constitutive equation of a fluid

A fluid is characterized through the largest symmetry group, being identical with the set of all uni-
modular transformations, gR = unim. Mathematically, the condition for the material symmetry
of functional F in (6.107) under unimodular transformation H is expressed as

F
τ≤t

[
ct(τ), θ(τ), ~gθ(τ);F · F T

]
= F
τ≤t

[
ct(τ), θ(τ), ~gθ(τ);F ·H ·HT · F T

]
, (6.112)

since the Finger deformation tensor b = F · F T transforms under unimodular transformation
H as F ·H ·HT · F T . This general characterization of a fluid must also hold for the special
unimodular transformation

H = (detF )1/3 F−1 =

(
%0

%

)1/3

F−1 , (6.113)

where %(~x, t) and %0( ~X) is the mass density of a body in the present and reference configuration,
respectively. The transformation (6.113) is indeed unimodular since

detH =
[
(detF )1/3

]3
detF−1 = 1 .

20Note that this is spatial isotropy, not material isotropy discussed in previous sections.
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For such H, F ·H ·HT · F T = (detF )2/3 I = (%0/%)2/3I, and the constitutive equation (6.107)
for an isotropic body can be rewritten with new denotation:

t =Ft
τ≤t

[ct(τ), θ(τ), ~gθ(τ); %] . (6.114)

This is a general form of the constitutive equation for a simple fluid in relative representation.
It shows that the Cauchy stress tensor for fluid depends on the relative deformation history, the
temperature and temperature gradient histories, and on the present mass density as a parameter.
Since none of ct(~x, τ), θ(~x, τ), ~gθ(~x, τ) and %(~x, t) does depend on the reference configuration,
constitutive equation (6.114) is invariant to any transformation of the reference configuration.
Hence, it satisfies trivially the requirement that gR = unim. In other words, a fluid is a body
for which every configuration that leaves the density unchanged can be taken as the reference
configuration.

6.15 The principle of bounded memory

This principle states that deformation and temperature events at distant past from the present
have a very small influence on the present behavior of material. In other words, the memory of
past motions and temperatures of any material point decays rapidly with time. This principle
is the counterpart of the principle of smooth neighborhood in the time domain. No unique
mathematical formulation can be made of this principle. The following limited interpretation
suffices for our purpose.

To express the boundedness of a memory, let h( ~X, τ) be a function in the argument of consti-
tutive functional. Suppose that h( ~X, τ) is an analytical function such that it possesses continuous
partial derivatives with respect to τ at τ = t. For small τ − t, it can be approximated by the
truncated Taylor series expansion at τ = t:

h( ~X, τ) =
N∑
n=0

1

n!

∂nh( ~X, τ)

∂τn

∣∣∣∣∣
τ=t

(τ − t)n . (6.115)

If a constitutive functional is sufficiently smooth so that the dependence on h( ~X, τ) can be
replaced by the list of functions

(n)

h ( ~X, t) :=
∂nh( ~X, τ)

∂τn

∣∣∣∣∣
τ=t

for n = 0, 1, . . . , N , (6.116)

that is,
(n)

h is the nth material time derivative of h,
(n)

h = Dnh/Dτn, we say that the material is of
the rate type of degree N with respect to the variable h. If the material is of the rate type in all
its variables, the constitutive equation (6.34) for a homogeneous solid can be approximated by

T (2) = T̂ (2)(C,
.
C, . . . ,

(NC)

C , θ,
.
θ, . . . ,

(Nθ)

θ , ~Gθ,
.
~Gθ, . . . ,

(NG)

~Gθ ) . (6.117)

The number of time derivatives for each of the gradients depends on the strength of the memory
of these gradients. We note that T̂ (2) is no longer functional. It is a tensor-valued function of the
arguments listed. They involve time rates of the deformation gradient up to the order NC and
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temperature and its gradient up to order Nθ and NG, respectively. The degrees NC , Nθ and NG

need not be the same. 21

The general constitutive equation for a fluid is given by (6.114). We again assume that the
relative Green deformation tensor ct(τ) can be approximated by the truncated Taylor series
expansion of the form (6.115):

ct(τ) = a0(t) + a1(t)(τ − t) + a2(t)
(τ − t)2

2
+ . . . . (6.118)

Using (6.99), the expansion coefficient

an(~x, t) :=
∂nct(~x, τ)

∂τn

∣∣∣∣
τ=t

(6.119)

can be shown to be the Rivlin-Ericksen tensor of order n defined by (2.29). It is an objective
tensor:

a∗n(~x, t) = O(t) · an(~x, t) ·OT (t) . (6.120)

To show this, we use (6.109)2:

a∗n(~x, t) =
∂nc∗t (~x, τ)

∂τn

∣∣∣∣
τ=t

=
∂n

∂τn

(
O(t) · ct(~x, τ) ·OT (t)

)∣∣∣∣
τ=t

= O(t) · ∂
nct(~x, τ)

∂τn

∣∣∣∣
τ=t
· OT (t) ,

which, in view of (6.119), gives (6.120).
We again assume that all the functions in the argument of functional Ft in (6.114) can

be approximated by the truncated Taylor series expansion. Then the functional for a class of
materials with bounded memory may be represented by functions involving various time derivative
of the argument functions:

t = t̂(a1, . . . ,aNC , θ,
.
θ, . . . ,

(Nθ)

θ ,~gθ,
.
~gθ, . . . ,

(Ng)

~gθ ; %) , (6.121)

where the dependence on a0 = I has been omitted because of its redundancy. Note that t̂ is
again no longer functional, but a tensor-valued function. This is an asymptotic approximation of
the most general constitutive equation (6.114) for a fluid. Coleman and Noll (1960) showed that
this approximation is valid for sufficiently slow deformation processes.

Similar expressions hold for the heat flux vector ~q and the internal energy ε. The number
of time derivatives for each of the gradients depends on the strength of the memory of these
gradients. According to the axiom of equipresence, however, all constitutive functionals should
be expressed in terms of the same list of independent constitutive variables.

21The functions in the argument of constitutive functionals may not be so smooth as to admit truncated Taylor
series expansion. Nevertheless, the constitutive functionals may be such as to smooth out past discontinuities in
these argument functions and/or their derivatives. The principle of bounded memory, in this context also called
the principle of fading memory, is then a requirement on smoothness of constitutive functionals.

The principle of fading memory, mathematically formulated by Coleman and Noll (1960), starts with the as-
sumption that the so-called Frechét derivatives of constitutive functionals up to an order n exist and are continuous
in the neighborhood of histories at time t in the Hilbert space normed by an influence function of order greater
than n+ 1

2
. Then, the constitutive functionals can be approximated by linear functionals for which explicit math-

ematical representations are known. The most important result of the fading memory theory is the possibility to
approximate asymptotically a sufficiently slow strain and temperature histories by the Taylor series expansion.
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6.16 Representation theorems for isotropic functions

We are now looking for the representation of a scalar-, vector- and tensor-valued function which
are isotropic, that is, form-invariant for all orthogonal transformations.

6.16.1 Representation theorem for a scalar isotropic function

A scalar-valued function a depending on symmetric tensor S and vector ~v is called isotropic if it
satisfies the identity

a(S, ~v) = a(Q · S ·QT ,Q · ~v) (6.122)

for all orthogonal tensors Q. This means that a does not depend on components Skl and vk
arbitrarily, but it can only be considered as a function of scalar invariants that are independent
of any orthogonal transformation.

Hence, we have to determine the set of all independent invariants of variables S and ~v. There
are three independent invariants of tensor S, namely,

IS = trS , IIS =
1

2

[
(trS)2 − tr (S2)

]
, IIIS = detS , (6.123)

and one invariant of vector ~v, the scalar product ~v · ~v. Combining S and ~v, we can create a
number of other invariants,

~v · S · ~v , ~v · S2 · ~v , ~v · S3 · ~v , . . . , ~v · Sn · ~v , . . . ; (6.124)

of course, not all of them are mutually independent. According to the Cayley-Hamilton theorem
saying that any matrix satisfies its characteristic polynom, we have

S3 − IS S2 + IIS S − IIIS I = 0 , (6.125)

where I and 0 are the unit and zero tensors of the same order as S. Multiplying this equation
from left and right by vector ~v, we obtain

~v · S3 · ~v − IS (~v · S2 · ~v) + IIS (~v · S · ~v)− IIIS (~v · ~v) = 0 . (6.126)

We see that ~v ·Sn · ~v for n ≥ 3 can be expressed in terms of ~v ·S2 · ~v, ~v ·S · ~v and ~v · ~v but these
cannot be used to express three invariants of S. Hence, the set of all independent invariants of
variables S and ~v is

IS , IIS , IIIS , ~v · ~v, ~v · S · ~v, ~v · S2 · ~v . (6.127)

We can conclude that scalar isotropic function a can be represented in the form

a(S, ~v) = a(IS , IIS , IIIS , ~v · ~v, ~v · S · ~v, ~v · S2 · ~v) . (6.128)

6.16.2 Representation theorem for a vector isotropic function

A vector-valued function ~b depending on symmetric tensor S and vector ~v is called isotropic if it
satisfies the identity

Q ·~b(S, ~v) = ~b(Q · S ·QT ,Q · ~v) (6.129)
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for all orthogonal tensors Q. For an arbitrary vector ~c, let us define function F ,

F (S, ~v,~c) := ~c ·~b(S, ~v) . (6.130)

This function is a scalar isotropic function of variables S, ~v and ~c which follows from

F (Q·S ·QT ,Q·~v,Q·~c) = Q·~c·~b(Q·S ·QT ,Q·~v) = Q·~c·Q·~b(S, ~v) = ~c·QT ·Q·~b(S, ~v) = F (S, ~v,~c) .

In analogy to the preceding section, the set of all independent invariants of S, ~v and ~c is

IS , IIS , IIIS , ~v · ~v, ~v · S · ~v, ~v · S2 · ~v,
~c · ~v, ~c · S · ~v, ~c · S2 · ~v,
~c · ~c, ~c · S · ~c, ~c · S2 · ~c .

(6.131)

If function F was an arbitrary function of S, ~v and ~c, it could be represented in terms of these
12 invariants in an arbitrary manner. Function F is, however, linearly dependent on ~c, so that it
can be represented in terms of the invariants that are linear functions of ~c only:

F = a0 ~c · ~v + a1 ~c · S · ~v + a2 ~c · S2 · ~v , (6.132)

where the coefficients ai depend on the six invariant that are independent of ~c. Since ~c was
an arbitrary vector in (6.130)–(6.132), we can conclude that vector isotropic function ~b can be
represented in the form

~b = a0 ~v + a1 S · ~v + a2 S
2 · ~v , (6.133)

where
ai = ai (IS , IIS , IIIS , ~v · ~v, ~v · S · ~v, ~v · S2 · ~v) . (6.134)

6.16.3 Representation theorem for a symmetric tensor-valued isotropic function

(a) Symmetric tensor-valued isotropic function of symmetric tensor and vector. First, let us
consider symmetric tensor-valued function T depending on symmetric tensor S and vector ~v.
Tensor T is called isotropic if it satisfies the identity

Q · T (S, ~v) ·QT = T (Q · S ·QT ,Q · ~v) (6.135)

for all orthogonal tensors Q. For a tensor A, let us define function F ,

F (S, ~v,A) := tr(A · T (S, ~v)) . (6.136)

This function is a scalar isotropic function of variables S, ~v and A which follows from

F (Q · S ·QT ,Q · ~v,Q ·A ·QT ) = tr(Q ·A ·QT · T (Q · S ·QT ,Q · ~v))

= tr(Q ·A ·QT ·Q ·T (S, ~v) ·QT ) = tr(Q ·A ·T (S, ~v) ·QT ) = tr(A ·T (S, ~v) ·QT ·Q) = F (S, ~v,A) .

Under the same argument as in the previous case, function F must be represented as a linear
combination of all independent invariants that are linear functions of A only, that is, in terms of

trA, tr(A · S), tr(A · S2), ~v ·A · ~v, ~v ·A · S · ~v, ~v ·A · S2 · ~v. (6.137)
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Note that it is possible, but not easy to prove that there are no more independent invariants
linearly dependent on A. Hence, we can write

F = a0 trA+ a1 tr(A ·S) + a2 tr(A ·S2) + a3 ~v ·A · ~v+ a4 ~v ·A ·S · ~v+ a5 ~v ·A ·S2 · ~v , (6.138)

where the coefficients ai depend on the invariants that are independent of A, that is, on the six
invariants of S and ~v. Because of the identity

~v ·A · ~v = tr(A · ~v ⊗ ~v) , (6.139)

where ~v ⊗ ~v is the dyadic product of vector ~v by itself, we also have

F = a0 trA+a1 tr(A ·S)+a2 tr(A ·S2)+a3 tr(A ·~v⊗~v)+a4 tr(A ·S ·~v⊗~v)+a5 tr(A ·S2 ·~v⊗~v) .
(6.140)

The comparison of (6.140) with (6.136) results in the representation of a symmetric tensor-valued
isotropic function T in the form

T (S, ~v) = a0I + a1S + a2S
2 + a3 ~v ⊗ ~v + a4 sym(S · ~v ⊗ ~v) + a5 sym(S2 · ~v ⊗ ~v) , (6.141)

where
ai = ai(IS , IIS , IIIS , ~v · ~v, ~v · S · ~v, ~v · S2 · ~v) (6.142)

and the symbol ‘sym’ stands for the symmetric part of tensor.
(b) Symmetric tensor-valued isotropic function of two symmetric tensors. Second, let us con-

sider symmetric tensor-valued function T depending on two symmetric tensors A and B. Tensor
T is called isotropic if it satisfies the identity

Q · T (A,B) ·QT = T (Q ·A ·QT ,Q ·B ·QT ) (6.143)

for all orthogonal tensors Q. For a tensor C, let us define function F ,

F (A,B,C) := tr(C · T (A,B)) . (6.144)

This function must be a scalar isotropic function of variables A, B and C. The set of all
independent invariants of these three symmetric tensors that are linear functions of C is

trC, tr(C·A), tr(C·A2), tr(C·B), tr(C·B2), tr(C·A·B), tr(C·A·B2), tr(C·A2·B), tr(C·A2·B2) .
(6.145)

Hence, function F can be represented in the form

F = a0 trC + a1 tr(C ·A) + a2 tr(C ·A2) + a3 tr(C ·B) + a4 tr(C ·B2) + a5 tr(C ·A ·B)

+ a6 tr(C ·A ·B2) + a7 tr(C ·A2 ·B) + a8 tr(C ·A2 ·B2) , (6.146)

where the coefficients ai depend on the invariants that are independent of C, that is, on the ten
invariants of A and B:

IA, IIA, IIIA, IB, IIB, IIIB, tr(A ·B), tr(A ·B2), tr(A2 ·B), tr(A2 ·B2) . (6.147)
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The comparison of (6.146) with (6.144) yields the representation of a symmetric tensor-valued
isotropic function T in the form

T (A,B) = a0 I + a1A+ a2A
2 + a3B + a4B

2 + a5 sym(A ·B) + a6 sym(A ·B2)

+ a7 sym(A2 ·B) + a8 sym(A2 ·B2) , (6.148)

where

ai = ai(IA, IIA, IIIA, IB, IIB, IIIB, tr(A ·B), tr(A ·B2), tr(A2 ·B), tr(A2 ·B2)) . (6.149)

6.17 Examples of isotropic materials with bounded memory

6.17.1 Elastic solid

A solid is called elastic if the stress tensor t depends only on the deformation gradient F at the
present time, not on the temperature θ and not on the entire past thermomechanical history:

t = t̂(F ) . (6.150)

Hence, the stress in an elastic material at each particle is uniquely determined by the present
deformation from a fixed reference configuration. The material objectivity requires that the
dependence on F is not arbitrary, but it has the form (6.29):

t = R · t̂(C) ·RT . (6.151)

For isotropic materials, t̂ must be an isotropic function of C. Making use of the representation
theorem for a tensor isotropic function, we have

t = R · (a0I + a1C + a2C
2) ·RT , (6.152)

where ai are scalar functions of three principal invariants of C,

ai = ai(IC , IIC , IIIC) . (6.153)

With the help of the Finger deformation tensor b and its second power,

b = F · F T = V 2 = V T · V = R · F T · F ·RT = R ·C ·RT ,

b2 = R ·C ·RT ·R ·C ·RT = R ·C2 ·RT ,

and the fact that the tensors C and b have the same invariants since the tensors U and V have
the same eigenvectors, we obtain a general form of the constitutive equation of an isotropic elastic
material:

t = a0I + a1b+ a2b
2 , ai = ai(Ib, IIb, IIIb) . (6.154)

This does not imply that the constitutive equation can only be a quadratic in the components of
b, since scalar functions ai may be non-linear in terms of the components of b.

If the Lagrangean description is considered instead of Eulerian representation, the second
Piola-Kirchhoff stress tensor T (2) is employed. The constitutive equation (6.34) for an elastic
material (even without isotropy) is reduced to the simple form:

T (2) = T̂ (2)(C) . (6.155)
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The function T̂ (2) for isotropic materials can be represented in the form:

T (2) = a0I + a1C + a2C
2 , ai = ai(IC , IIC , IIIC) , (6.156)

which is another general form, equivalent to (6.154), of the constitutive equation for isotropic
elastic solids.

We now have a look at the case of small deformation when the displacement gradient H is
sufficiently small such that the geometric linearization can be applied and the difference between
the reference configuration and the present configuration is not necessary to consider. Within the
limit of geometric linearization, the Finger deformation tensor is equal to the Green deformation
tensor. Consequently, the linearized constitutive equation for the second Piola-Kirchhoff tensor
coincides with that for the Cauchy stress tensor. Let us, for instance, linearize the constitutive
equation (6.156). Because of (1.106), we have

C = U2 = I+2Ẽ , C2 = I+4Ẽ , IC = 3+2 trẼ , IIC = 3+4 trẼ , IIIC = 1+2 trẼ ,
(6.157)

where Ẽ is the infinitesimal strain tensor. Then the constitutive equations (6.156) and (6.154)
may be linearized as

T (2) ∼= t = λ(trẼ)I + 2µẼ . (6.158)

This is the constitutive equation of a linear, isotropic elastic material, known also as Hooke’s law.
The both parameters λ and µ are called the Lamé elastic parameters.

6.17.2 Thermoelastic solid

The effect of heat conduction can be incorporated in the behavior of elastic materials by including
temperature and temperature gradients among the constitutive variables. From (6.117) we deduce
that the classical (non-classical) thermoelastic solid is defined by NC = 0, Nθ = 0(1) and Ng = 0.
Hence, the constitutive equation for a thermoelastic solid will have the form:

T (2) = T̂ (2)(C, θ,
.
θ, ~Gθ) , ~Q = ~̂Q(C, θ,

.
θ, ~Gθ) , ε = ε̂(C, θ,

.
θ, ~Gθ) . (6.159)

For isotropic materials, functions T̂ (2), ~̂Q and ε̂ must be isotropic functions of their arguments:

T (2) = a0I + a1C + a2C
2 + a3

~Gθ ⊗ ~Gθ + a4 sym(C · ~Gθ ⊗ ~Gθ) + a5 sym(C2 · ~Gθ ⊗ ~Gθ) ,

~Q = −κ ~Gθ + c1C · ~Gθ + c2C
2 · ~Gθ , (6.160)

ε = ε̂(θ,
.
θ, IC , IIC , IIIC , ~Gθ · ~Gθ, ~Gθ ·C · ~Gθ, ~Gθ ·C2 · ~Gθ) ,

where the scalar function ai, κ and ci depend on the same set of arguments as the function ε̂ of
the internal energy. We can see that the heat flux vector ~Q depends linearly on the temperature
gradient ~Gθ but contains two non-linear terms as the Green deformation tensor arises together
with ~Gθ. The coefficient κ is called the heat conductivity, the remaining coefficients c1 and c2 do
not have separate names.

6.17.3 Kelvin-Voigt viscoelastic solid

In general, under the viscoelastic solid we understand the material for which the stress is dependent
on the strain, strain rate and stress rate tensors and not on the temperature. From (6.117) we
deduce that the simplest viscoelastic solid is defined by NC = 1:

T (2) = T̂ (2)(C,
.
C ) . (6.161)
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This simple strain-rate dependent solid is called the Kelvin-Voigt viscoelastic solid. Since the
Piola-Kirchhoff stress tensor depends on two symmetric tensors, for isotropic materials it may be
represented according to (6.148):

T (2) = a0 I + a1C + a2C
2 + a3

.
C +a4

.
C

2
+a5 sym(C·

.
C) + a6 sym(C·

.
C

2
)

+ a7 sym(C2·
.
C) + a8 sym(C2·

.
C

2
) , (6.162)

where

ai = ai(trC, trC
2, trC3, tr

.
C, tr

.
C

2
, tr

.
C

3
tr(C·

.
C), tr(C·

.
C

2
), tr(C2·

.
C), tr(C2·

.
C

2
)) . (6.163)

6.17.4 Maxwell viscoelastic solid

A special case of constitutive equation (6.6) expressed in terms of the second Piola-Kirchhoff
stress tensor is

(T (2))
.

= T̂ (2)(T (2),
.
C ) . (6.164)

This simple stress-rate dependent solid is called the Maxwell viscoelastic solid. Since T (2) is an
objective scalar, see (6.18)2, and the material time derivative of an objective scalar is again an
objective scalar, the constitutive equation (6.164) satisfies the principle of material objectivity. If
T̂ (2) is an isotropic function, we can proceed similarly as for the Kelvin-Voigt viscoelastic solid.

6.17.5 Elastic fluid

An elastic material may be a solid or a fluid. For an elastic fluid, the functions in the argument
of the constitutive function t̂ in (6.121) are reduced to the dependence on the current density %:

t = t̂(%) , ~q = ~̂q(%) , ε = ε̂(%) . (6.165)

According to the assumption of material objectivity, we have

t∗ = t̂(%∗) , ~q∗ = ~̂q(%∗) , ε∗ = ε̂(%∗) (6.166)

under a change of observer frame. Because %∗ = %, t∗ = O · t ·OT , ~q∗ = O · ~q, and ε∗ = ε, this
implies that

O · t̂(%) ·OT = t̂(%) , O · ~̂q(%) = ~̂q(%) (6.167)

for all orthogonal tensors O. The only isotropic tensor and isotropic vector satisfying these
identities are a spherical tensor and the zero vector, respectively,

t = −p(%)I , ~q = ~0 , ε = ε̂(%) . (6.168)

Therefore the stress in an elastic fluid is always a pressure depending on the density alone. It is
a matter of the second law of thermodynamics to show that there is a relationship between the
internal energy and the pressure function.

6.17.6 Thermoelastic fluid

The effect of heat conduction can be incorporated in the behavior of elastic fluid by including
temperature and temperature gradients among the constitutive variables. From (6.121) we deduce
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that the classical (non-classical) thermoelastic (heat-conducting) fluid is defined by NC = 0,
Nθ = 0(1) and Ng = 0. Hence, the constitutive equation for a thermoelastic fluid will have the
form:

t = t̂(θ,
.
θ,~gθ, %) , ~q = ~̂q(θ,

.
θ,~gθ, %) , ε = ε̂(θ,

.
θ,~gθ, %) . (6.169)

Making use of the representation theorems for isotropic functions, we obtain

t = σI + τ ~gθ ⊗ ~gθ ,
~q = −κ~gθ , (6.170)

ε = ε̂(%, θ,
.
θ,~gθ · ~gθ) ,

where
σ, τ, κ = σ, τ, κ(%, θ,

.
θ,~gθ · ~gθ) . (6.171)

6.17.7 Viscous fluid

Taking NC = 1 in (6.121), we obtain a viscous fluid, an analog to a simple viscoelastic solid:

t = t̂(a1, %) = t̂(d, %) , (6.172)

since a1 = 2d. This constitutive equation can further be simplified by applying the representation
theorem for a symmetric isotropic tensor:

t = a0I + 2µvd+ a2d
2 , ai, µv = ai, µv(%, Id, IId, IIId) , (6.173)

where µv is the so-called (shear) viscosity.
Now, we wish to show that the constitutive equation (6.173) is materially objective. Multi-

plying (6.173) from the left by O and from the right by OT , we obtain

O ·t ·OT = a0O ·I ·OT +2µvO ·d ·OT +a2O ·d ·OT ·O ·d ·OT , ai, µv = ai, µv(%, Id, IId, IIId) .
(6.174)

Since t and d are objective tensors and % as well as the invariants of d are objective scalars, it
holds

t∗ = a0I + 2µvd
∗ + a2(d∗)2 , ai, µv = ai, µv(%

∗, I∗d , II
∗
d , III

∗
d) , (6.175)

which is of the same form as that in the unstarred frame. This completes the proof.
Fluids characterized by the above non-linearity are called Stokesian or non-Newtonian fluids.

On the other hand, linear behavior is generally referred to as Newtonian behavior. To get a
linear relationship between stress tensor t and the strain-rate tensor d, the material coefficients
in (6.173) must be chosen as follows:

a0 = −p(%)trd , µv = µv(%) , a2 = 0 . (6.176)

The stress tensor for a compressible Newtonian fluid becomes

t = −p(%)(trd) I + 2µv(%)d . (6.177)

6.17.8 Incompressible viscous fluid
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For an incompressible fluid we have the kinematic constraint that the density is constant, equal
to a known value: % = %0. The mass-conservation principle then yields: Id = trd = div~v = 0.
Combining (6.54) and (6.121), the constitutive equation of an incompressible viscous fluid is

t = −pI + tD . (6.178)

The pressure p is an additional unknown independent field variable and it would be determined
through solutions of field equations under a given set of boundary conditions. On contrary, the
deviatoric part tD of the stress tensor t is given by a constitutive equation analogous to (6.173):

tD = 2µvd+ a2d
2 , ai, µv = ai, µv(IId, IIId) . (6.179)

The dependencies on % and Id are dropped since % is a known constant and Id = 0. Notice that
constitutive relation (6.179) has been postulated in such a way that any spherical part of stress
tensor t may, without loss of generality, be absorbed in the pressure. 22

6.17.9 Viscous heat-conducting fluid

A classical (non-classical) viscous heat-conducting fluid is defined by NC = 1, Nθ = 0(1) and
Ng = 0, so that (6.121) reduces to

t = t̂(d, θ,
.
θ,~gθ, %) , ~q = ~̂q(d, θ,

.
θ,~gθ, %) , ε = ε̂(d, θ,

.
θ,~gθ, %) . (6.180)

Making use of the representation theorems for isotropic functions, we obtain

t = a0I + 2µvd+ a2d
2 + a3 ~gθ ⊗ ~gθ + a4 sym(d · ~gθ ⊗ ~gθ) + a5 sym(d2 · ~gθ ⊗ ~gθ) ,

~q = −κ~gθ + c1 d · ~gθ + c2 d
2 · ~gθ , (6.181)

ε = ε̂(%, θ,
.
θ, Id, IId, IIId, ~gθ · ~gθ, ~gθ · d · ~gθ, ~gθ · d2 · ~gθ, ) ,

where the scalars ai, µv, κ and ci depend on the same set of arguments as the function ε̂ of the
internal energy. The proof of the material objectivity of these constitutive equations is similar to
that for the viscous fluid.

22The stress tensor t may, in general, be decomposed into isotropic spherical tensor σI and the deviatoric stress
tensor tD:

t = σI + tD .

Under the choice of σ = tr t/3, the trace of the deviatoric stress vanishes, tr tD = 0. The scalar σ is thus the mean
of the normal-stress components and is called mechanical pressure. A characteristic feature of a fluid at rest is that
it cannot support shear stresses. Consequently, the deviatoric stress identically vanishes. Choosing p := −σ, we
obtain t = −pI. Therefore, the stress in a fluid at rest is the so-called hydrostatic pressure.
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7. ENTROPY PRINCIPLE

The preceding analysis makes no use of thermodynamic considerations. The treatment of
the second law of thermodynamics is a part of the material theory since the entropy principle
places restrictions on material properties. Thus, the entropy principle would belong to Chapter 6.
Thermodynamic requirements are, however, so important that we prefer to deal with them in a
separate chapter.

7.1 The Clausius-Duhem inequality

The second law of thermodynamics states that the entropy production cannot be negative. Equa-
tion (4.35) expresses this law in spatial form,

%γ := %
.
η +div~s− %b ≥ 0 , (7.1)

where γ is the local entropy production. This law does not, however, define internal dissipation
mechanisms uniquely. We must bring additional information to be able to draw conclusions on
material properties. In continuum thermodynamics, there are many other dissipation postulates,
some of which do not even involve entropy as a field variable. In sections 7.1–7.4, we will confine
ourselves to considerations that lead to the Clausius-Duhem inequality.

• We will postulate the existence of a non-negative valued absolute temperature T as a measure
of hotness and assume that T is a frame indifferent scalar and vanishes only at absolute zero.
Moreover, based the concepts of classical thermostatics for a simple adiabatic system, it was
shown that on the basis of very weak assumptions that function T = T (θ), where θ is the
empirical temperature θ, exists, is independent of the material for which is defined and changes
monotonically with degree of coldness, that is, with the empirical temperature. It is evident that
T = T (θ) possesses some degree of universality, and was therefore called absolute temperature.
It was identified with the temperature of an ideal gas which obeys equal universal properties.
The absolute temperature may differ from the empirical temperature θ that can be measured
in the Celsius scale and may, in contrast to T , take negative values. Later on we will present
one possible way how to relate the absolute and empirical temperatures.

• We shall be dealing with simple thermodynamic processes for which the entropy flux ~s and
entropy source b are taken as

~s =
~q

T
, b =

h

T
. (7.2)

This postulate is reasonable for a one-component body. In mixtures, a more general form of
the entropy flux is necessary to postulate, for instance, a further term is added in (7.2)1 such
that the entropy flux and heat flux are not collinear vectors.

In general, these two postulates are not provable, but they have been adopted as certain gener-
alizations of results of special problems, such as the kinetic theory of gases. Their validity can
only be proved by physical experiments.

The entropy inequality (7.1) for a simple thermodynamic process then becomes

%
.
η +div

(
~q

T

)
− %h

T
≥ 0 , (7.3)
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which is known as the Clausius-Duhem inequality. This inequality need not be satisfied for all
densities %, motions ~x and temperatures T , but for all possible thermodynamic processes, that
is for all solutions of the balance laws for mass, linear momentum and energy, that is for all
solutions of the field equations of thermomechanics. To satisfy these additional constraints when
the Clausius-Duhem inequality is applied, we can follow two different points of view.

• The balance laws for linear momentum and energy contain two free field variables, namely, body
force ~f and heat supply h, which may be assigned arbitrary values. It implies that arbitrary
histories of density %, motion ~x and temperature T can be chosen and still appropriate body
force ~f and heat supply h can be found to satisfy identically the linear momentum and energy
equations. Hence, the linear momentum and energy equations do not raise any restrictions
when the Clausius-Duhem inequality is applied. It remains to satisfied the continuity equation
which may be considered as an additional constraint to the Clausius-Duhem inequality. For
instance,

.
% cannot be chosen arbitrarily, but such that

.
%= −%div~v.

• For a given physical problem, body force ~f and heat supply h are specified as the input
information that cannot be altered during the solution of the problem. The linear momentum
and energy equations must then be considered as additional constraints to the Clausius-Duhem
inequality.

Though the second criterion is more acceptable from physical point of view, the first criterion is
usually applied because of its simplicity. Here, we also start with this criterion in the application
of the Clausius-Duhem inequality, but later on we introduce the entropy principle in modern
understanding that employs the second criterion.

With the help of the energy equation (4.34), the heat source h can be eliminated from (7.3).
The entropy inequality then takes the form

%(T
.
η − .ε) + t .. d− ~q · gradT

T
≥ 0 , (7.4)

which is known as the reduced Clausius-Duhem inequality in spatial form. The reduced Clausius-
Duhem inequality referred to the reference configuration can be obtained by combining the ref-
erential form of the energy equation (4.77) and the entropy inequality (4.81):

%0(T
.
η − .ε) + T (2) ..

.
E −

~Q ·GradT

T
≥ 0 . (7.5)

7.2 Application of the Clausius-Duhem inequality to a classical
viscous heat-conducting fluid

The constitutive equations for a classical viscous heat-conducting fluid are introduced in section
6.18.9:

t = t̂(d, T, gradT, %) , ~q = ~̂q(d, T, gradT, %) , ε = ε̂(d, T, gradT, %) , (7.6)

where, instead of the empirical temperature θ, the absolute temperature T is employed as a mea-
sure of hotness. The Clausius-Duhem inequality introduces a new variable, the entropy density
η. Since η is not determined by the field equations, a constitutive relation must be established for
it. According to the principle of equipresence, we choose the same set of independent variables:

η = η̂(d, T, gradT, %) . (7.7)
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Because of frame indifference and isotropy, the constitutive functions have the form (6.184). This
form will be applied later.

We carry out time differentiation of ε and η according to the chain rule of differentiation and
substitute the result into the reduced Clausius-Duhem inequality (7.4). This yields

%

[(
T
∂η̂

∂%
− ∂ε̂

∂%

)
.
% +

(
T
∂η̂

∂T
− ∂ε̂

∂T

) .
T +

(
T
∂η̂

∂d
− ∂ε̂

∂d

)
..
.
d

+

(
T

∂η̂

∂(gradT )
− ∂ε̂

∂(gradT )

)
· (gradT )·

]
+ t .. d− ~q · gradT

T
≥ 0 .

(7.8)

The inequality must be satisfied for all thermodynamic processes, that is for all solutions of the
balance laws for mass, linear momentum and energy as well as the constitutive equations. As
we explained before, the linear momentum and energy equations do not raise any restrictions
when the Clausius-Duhem inequality is applied. On contrary, the balance law of mass imposes an
additional constraint to possible thermodynamic process in such a way such that, for instance,

.
%

cannot be chosen arbitrarily, but in accordance with the continuity equation:

.
%= −%div~v = −% trd = −% I .. d .

Substituting this value for
.
% into inequality (7.8), the first term and the term t .. d may be put

together:

%

[(
T
∂η̂

∂T
− ∂ε̂

∂T

) .
T +

(
T
∂η̂

∂d
− ∂ε̂

∂d

)
..
.
d+

(
T

∂η̂

∂(gradT )
− ∂ε̂

∂(gradT )

)
· (gradT )·

]

+

[
t− %2

(
T
∂η̂

∂%
− ∂ε̂

∂%

)
I

]
.. d− ~q · gradT

T
≥ 0 .

(7.9)

This inequality must hold for all fields %, ~x and T without any additional restrictions.

The quantities
.
T ,
.
d and (gradT )· are not considered as independent variables in the constitu-

tive equations for a classical viscous heat-conducting fluid, see (7.6) and (7.7), so that they occur

explicitly as linear functions only the first three constituents in (7.9). Since
.
T ,

.
d and (gradT )·

may take any arbitrary values, the inequality (7.9) would be violated unless the factors standing

at
.
T ,
.
d and (gradT )· vanish. This argument gives the following constraints:

∂η̂

∂T
=

1

T

∂ε̂

∂T
,

∂η̂

∂d
=

1

T

∂ε̂

∂d
,

∂η̂

∂(gradT )
=

1

T

∂ε̂

∂(gradT )
. (7.10)

By this, (7.9) reduces to the so-called residual inequality

Γ(%, T,d, gradT ) ≥ 0 , (7.11)

where

Γ(%, T,d, gradT ) :=

[
t− %2

(
T
∂η̂

∂%
− ∂ε̂

∂%

)
I

]
.. d− ~q · gradT

T
. (7.12)

The differentiation of (7.10)1 with respect to d and (7.10)2 with respect to T yields

∂2η̂

∂d ∂T
=

1

T

∂2ε̂

∂d ∂T
,

∂2η̂

∂T ∂d
=

1

T

∂2ε̂

∂T ∂d
− 1

T 2

∂ε̂

∂d
.
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By assuming the exchange of the order of partial derivatives of η̂ and ε̂ with respect to d and T ,
we obtain

1

T

∂2ε̂

∂d ∂T
=

1

T

∂2ε̂

∂d ∂T
− 1

T 2

∂ε̂

∂d
,

which shows that ε̂ cannot be a function of d,

∂ε̂

∂d
= 0 . (7.13)

Because of (7.10)2, it also holds
∂η̂

∂d
= 0 . (7.14)

Likewise, the cross-differentiation of (7.10)1 and (7.10)3 with respect to gradT and T , respectively,
provides an analogous result:

∂ε̂

∂(gradT )
= 0 ,

∂η̂

∂(gradT )
= 0 . (7.15)

This is the first result of the entropy principle. The constitutive functions ε̂ and η̂ cannot depend
on d and gradT , and, consequently, the constitutive equations (7.6)3 and (7.7) reduces to

ε = ε̂(%, T ) , η = η̂(%, T ) . (7.16)

Functions ε̂ and η̂ are still subject to constraints (7.10). Since (7.10)2,3 are satisfied identically,
it remains to satisfied (7.10)1:

∂η̂

∂T
=

1

T

∂ε̂

∂T
. (7.17)

We continue with the exploitation of the residual inequality (7.11). First, we define the
thermodynamic equilibrium as a time-independent thermodynamic process with uniform (constant
in space) and stationary (constant in time) velocity and temperature fields. Mathematically, the
thermodynamic equilibrium is defined through equations

~v( ~X, t) = ~v(~x, t) = const , T ( ~X, t) = T (~x, t) = const , (7.18)

which implies that
d = 0 , gradT = ~0 . (7.19)

Then (7.12) shows that
Γ(%, T,0,~0) = 0 (7.20)

in thermodynamic equilibrium. Together with the residual inequality (7.11) we can see that Γ
is minimal in thermodynamic equilibrium and the value of this minimum is zero. According to
the theory extrema of functions of several variables, the necessary condition that Γ reaches a
minimum is that the first derivatives of Γ with respect to d and gradT vanish, and the matrix of
the second partial derivatives is positive semi-definite:

∂Γ

∂d

∣∣∣∣
E

= 0 ,
∂Γ

∂(gradT )

∣∣∣∣
E

= ~0 , (7.21)
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and the matrix

A :=


∂2Γ

∂d ∂d

∣∣∣∣∣
E

∂2Γ

∂d ∂(gradT )

∣∣∣∣∣
E

∂2Γ

∂d ∂(gradT )

∣∣∣∣∣
E

∂2Γ

∂(gradT ) ∂(gradT )

∣∣∣∣∣
E

 (7.22)

is positive semi-definite. The subscript E denotes the state of thermodynamic equilibrium, that
is, the state with d = 0 and gradT = ~0.

Let us first have a look at the constraints in (7.21). Differentiating (7.12) with respect to d
and gradT , respectively, and taking the result in thermodynamic equilibrium yields

∂Γ

∂d

∣∣∣∣
E

= t|E −%
2
(
T
∂η̂

∂%
− ∂ε̂

∂%

)∣∣∣∣
E

I ,
∂Γ

∂(gradT )

∣∣∣∣
E

= − ~q|E
T

.

Using this in (7.21), we obtain

t|E = −p|E I , ~q|E = ~0 , (7.23)

where p(%, T ) is the thermodynamic pressure,

p(%, T ) := −%2
(
T
∂η̂

∂%
− ∂ε̂

∂%

)
. (7.24)

The result (7.23) shows that in thermodynamic equilibrium the stress is isotropic and determined
by the entropy and internal energy, and the equilibrium heat flux vanishes. The latter result
does not bring any new information since the reduced constitutive equation (6.184)2 involves this
feature. Note that, though the thermodynamic pressure was introduced for the thermodynamic
equilibrium, it can equally be defined by (7.24) for all thermodynamic processes since ε and η
are, in general, that is for all thermodynamic processes only functions of % and T . 23

The constitutive equation (6.184)1 in thermodynamic equilibrium reduces to

t|E = a0|E (%, T )I . (7.25)

Comparing this with (7.23)1 shows that

a0|E (%, T ) = −p(%, T ) , (7.26)

which motivates to decompose function a0 in (6.184)1 as

a0(%, T, Id, IId, IIId, . . .) = −p(%, T ) + ν0(%, T, Id, IId, IIId, . . .) . (7.27)

Consequently, the non-equilibrium part ν0 of stress vanishes in thermodynamic equilibrium,

ν0|E = 0 . (7.28)

In view of (7.16)2, the total differential dη of η is

dη =
∂η̂

∂%
d%+

∂η̂

∂T
dT . (7.29)

23This is typical property of the entropy principle in the Clausius-Duhem form. In other entropy principles
different results may be obtained.
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Let us arrange (7.24) for ∂η̂/∂%,
∂η̂

∂%
=

1

T

(
∂ε̂

∂%
− p

%2

)
,

substitute it for the first term on the right-hand side of (7.29), and use (7.17) for the second term.
We end up with

dη =
1

T

(
∂ε̂

∂%
− p

%2

)
d%+

1

T

∂ε̂

∂T
dT , (7.30)

which is known as a Gibbs relation for a classical viscous heat-conducting fluid. Alternatively, in
view of (7.16)1, we may write the total differential dε of ε:

dε =
∂ε̂

∂%
d%+

∂ε̂

∂T
dT . (7.31)

By this, the total differential dη in (7.30) can be simplified as

dη =
1

T
dε− p

T

d%

%2
. (7.32)

Introducing the specific volume v := 1/% and dv = −d%/%2, we have

dη =
1

T
dε+

p

T
dv , (7.33)

which is equivalent to
dε = T dη − p dv . (7.34)

This is another form of the Gibbs relation, in which ε is considered as a function of η and v.
The necessary and sufficient condition that dη in (7.30) is an exact differential is

∂

∂%

(
1

T

∂ε̂

∂T

)
=

∂

∂T

[
1

T

(
∂ε̂

∂%
− p

%2

)]
,

or
1

T

∂2ε̂

∂%∂T
=

1

T

(
∂2ε̂

∂T∂%
− 1

%2

∂p

∂T

)
− 1

T 2

(
∂ε̂

∂%
− p

%2

)
.

After some manipulations, we obtain

∂

∂T

(
p(%, T )

T

)
= −

(
%

T

)2 ∂ε̂(%, T )

∂%
. (7.35)

The material equation p = p(%, T ) is usually called the thermal equation of state and the equation
ε = ε̂(%, T ) the caloric equation of state. Equation (7.35) shows that the derivative ∂ε̂/∂% need not
be sought by caloric measurements if the thermal equation of state is known. The measurements
of the latter are much simpler than the caloric measurements of ∂ε̂/∂%.

Let us summarize the results following from the application of the entropy principle.
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• The constitutive equations (6.184) for a classical viscous heat-conducting fluid are reduced to

t = (−p+ ν0)I + 2µvd+ a2d
2 + . . . ,

~q = −κ gradT + c1 d · gradT + c2 d
2 · gradT ,

ε = ε̂(%, T ) ,

η = η̂(%, T ) ,

(7.36)

where
p = p(%, T ) ,

ν0, µv, ai, κ, ci = ν0, µv, ai, κ, ci(%, T, Id, IId, IIId, . . .) ,

ν0|E = 0 .

(7.37)

• Functions p, ε̂ and η̂ are mutually related,

∂η̂

∂T
=

1

T

∂ε̂

∂T
,

∂η̂

∂%
=

1

T

(
∂ε̂

∂%
− p

%2

)
,

∂

∂T

(
p

T

)
= −

(
%

T

)2 ∂ε̂

∂%
. (7.38)

• Further constraints can be drawn from the positive definiteness of matrix A defined by (7.22).

We will now confine ourselves to a special type of classical viscous heat-conducting fluid which
is linear with respect to d and gradT . In this case, the constitutive equations (7.36) reduce to

t = (−p+ λv trd)I + 2µvd ,

~q = −κ gradT ,

ε = ε̂(%, T ) ,

η = η̂(%, T ) ,

(7.39)

where
p, λv, µv, κ = p, λv, µv, κ(%, T ) . (7.40)

The fluid characterized by the constitutive equation (7.39)1 is known as the Newton viscous fluid,
equation (7.39)2 is known as Fourier’s law of heat conduction. The parameters λv and µv are
called, respectively, the dilatational and shear viscosities.

To draw conclusions from (7.22), we substitute the constitutive equations (7.39)1 and (7.39)2

into (7.12) and consider (7.24):

Γ(%, T,d, gradT ) = (t+ pI) .. d− ~q · gradT

T

= λvtrd (I .. d) + 2µv(d .. d) + κ
(gradT )2

T

= λv(trd)2 + 2µv(d .. d) + κ
(gradT )2

T
. (7.41)

We proceed to calculate the second derivatives of Γ occurring in (7.22). The first derivatives of
Γ are

∂Γ

∂dii
= 2λvtrd+ 4µvdii ,

∂Γ

∂dij
= 4µvdij ,

∂Γ

∂(gradT )i
= 2κ

(gradT )i
T

, (7.42)
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where i, j = 1, 2, 3 and i 6= j in the second term. Then the second derivatives of Γ are

∂2Γ

∂dii∂djj
= 2λv + 4µvδij ,

∂2Γ

∂dij∂dk`
= 4µvδikδj` ,

∂2Γ

∂(gradT )i ∂(gradT )j
=

2κ

T
δij , (7.43)

where i 6= j and k 6= ` in the second term. Moreover the cross-derivative of Γ with respect to
d and gradT vanishes. The matrix of the second derivatives of Γ, defined by (7.22), is then
block-diagonal:

A =


2λv13×3 + 4µvI3×3 0 0

0 4µvI6×6 0

0 0
2κ

T
I3×3


∣∣∣∣∣∣∣∣
E

, (7.44)

where I3×3 and I6×6 are the identity matrices of the third- and sixth-order, respectively, and the
matrix 13×3 is composed of 1 only. Consider a 12 component vector ~z = (~u,~v, ~w), where ~u, ~v and
~w have 3, 6 and 3 components, respectively. The positive semidefiniteness of A then means that
~z ·A · ~z ≥ 0 for all vectors ~z 6= ~0, or

2λv|E (~u · 13×3 · ~u) + 4µv|E (~u · ~u) + 4µv|E (~v · ~v) +
2κ

T

∣∣∣∣
E

(~w · ~w) ≥ 0 ∀~u,~v, ~w . (7.45)

Since ~u · 13×3 · ~u = (u1 + u2 + u3)2, the necessary and sufficient conditions that A is positive
semi-definite is

λv|E ≥ 0 , µv|E ≥ 0 , κ|E ≥ 0 . (7.46)

We can conclude that to satisfy the Clausius-Duhem inequality for a linear classical viscous heat-
conducting fluid, the bulk viscosity kv, the shear viscosity µv and the heat conductivity κ must
be non-negative functions of % and T .

The constitutive equation (7.39)1 can be written in an alternative form if the strain-rate tensor
d is decomposed into spherical and deviatoric parts, d = (trd) I/3 + dD:

t = (−p+ kvtrd)I + 2µvd
D , (7.47)

where

kv := λv +
2

3
µv (7.48)

is the bulk viscosity. The constraint (7.46) on the non-negativeness of λv and µv implies that

kv|E ≥ 0 . (7.49)

Moreover, the functions ε̂, η̂ and p must satisfy constraints (7.38). If we introduce the
Helmholtz free energy

ψ := ε− Tη = ψ̂(%, T ) , (7.50)

we can then deduce that (7.38) are satisfied if

η = −∂ψ̂
∂T

, p = %2∂ψ̂

∂%
= −∂ψ̂

∂v
. (7.51)

This demonstrates that ψ serves as a thermodynamic potential for the entropy and the pressure.
The internal energy is also derivable from potential ψ by (7.50). This is one of the main results
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of the second law of thermodynamics: it yields the existence of the thermodynamic potential ψ
which reduces the number of required constitutive relations.

7.3 Application of the Clausius-Duhem inequality to a classical
viscous heat-conducting incompressible fluid

For an incompressible material, the density % remains unchanged, equal to a known value, % = %0.
It implies that, compared to the preceding case, the density is excluded from a list of independent
constitutive variables. The stress constitutive equation of an incompressible fluid is given by
(6.181),

t = −pI + tD . (7.52)

Note that, in contrast to the thermodynamic pressure p(%, T ), pressure p is now an unknown field
variable. The constitutive equations for tD, ~q, ε and η have the same form as (7.6) and (7.7)
except that all functions are now independent of %, 24

tD = t̂D(d, T, gradT ) , ~q = ~̂q(d, T, gradT ) , ε = ε̂(d, T, gradT ) , η = η̂(d, T, gradT ) ,
(7.53)

and are subject to the additional constraint

div~v = trd = 0 . (7.54)

Under this constraint, the term t .. d occurring in the Clausius-Duhem inequality can be arranged
as follows:

t .. d = (−pI + tD) .. d = −p trd+ tD .. d = tD .. d .

The entropy inequality (7.8) then takes the form

%

[(
T
∂η̂

∂T
− ∂ε̂

∂T

) .
T +

(
T
∂η̂

∂d
− ∂ε̂

∂d

)
..
.
d

+

(
T

∂η̂

∂(gradT )
− ∂ε̂

∂(gradT )

)
· (gradT )·

]
+ tD .. d− ~q · gradT

T
≥ 0 .

(7.55)

This inequality is linear in the variables
.
T ,
.
d and (gradT )· which may have arbitrarily assigned

values. Thus the factors at these variables must vanish, which yields

∂η̂

∂T
=

1

T

∂ε̂

∂T
,

∂η̂

∂d
=

1

T

∂ε̂

∂d
,

∂η̂

∂(gradT )
=

1

T

∂ε̂

∂(gradT )
. (7.56)

By cross-differentiation of (7.56), we again obtain that

∂ε̂

∂d
= 0 ,

∂η̂

∂d
= 0 ,

∂ε̂

∂(gradT )
= 0 ,

∂η̂

∂(gradT )
= 0 , (7.57)

which shows that the internal energy and entropy are functions of temperature only,

ε = ε̂(T ) , η = η̂(T ) . (7.58)

24but may, in principle, be dependent on pressure p. Does it make a sense?
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Functions ε̂ and η̂ are still subject to the constraint

∂η̂

∂T
=

1

T

∂ε̂

∂T
. (7.59)

We remain with the residual inequality

Γ(T,d, gradT ) := tD .. d− ~q · gradT

T
≥ 0 . (7.60)

In thermodynamic equilibrium, it again holds

Γ(T,0,~0) = 0 , (7.61)

which shows that the conditions (7.21) for the minimum of Γ are also valid here. From (7.21)1 it

follows that tD
∣∣∣
E

= 0 which implies that

t|E = −pI . (7.62)

The second constraint in (7.21) yields
~q|E = ~0 . (7.63)

We can conclude that also in this case the stress is isotropic and the heat flux vanishes in ther-
modynamic equilibrium.

7.4 Application of the Clausius-Duhem inequality to a classical
thermoelastic solid

The constitutive equations for a classical thermoelastic solid are introduced in section 6.18.2:

T (2) = T̂ (2)(E, T,GradT ) , ε = ε̂(E, T,GradT ) ,

~Q = ~̂Q(E, T,GradT ) , η = η̂(E, T, gradT ) .
(7.64)

Since C = 2E + I, we replaced the dependence on the Green deformation tensor C in (6.164)
by an equivalent representation in terms of the Lagrangian strain tensor E. Note that the
continuity equation does not play any role here, since the balance of mass results in the statement
%0 = %0( ~X).

We carry out time differentiation of ε and η according to the chain rule of differentiation and
substitute the result into the reduced Clausius-Duhem inequality (7.5). This yields

%0

[(
T
∂η̂

∂T
− ∂ε̂

∂T

) .
T +

(
T
∂η̂

∂E
− ∂ε̂

∂E
+

1

%0
T̂ (2)

)
..
.
E

+

(
T

∂η̂

∂(GradT )
− ∂ε̂

∂(GradT )

)
· (GradT )·

]
−
~Q ·GradT

T
≥ 0 .

(7.65)

Since
.
T ,

.
E and (GradT )· are not considered as independent variables in the constitutive equation

(7.64), the coefficients standing at
.
T ,

.
E and (GradT )· are independent of these quantities.
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Hence,
.
T ,

.
E and (GradT )· occur only linearly in the inequality (7.65). This inequality cannot

be maintained for all
.
T ,

.
E and (GradT )· unless the coefficients at these terms vanish. Hence,

∂η̂

∂T
=

1

T

∂ε̂

∂T
,

1

%0
T̂ (2) =

∂ε̂

∂E
− T ∂η̂

∂E
,

∂η̂

∂(GradT )
=

1

T

∂ε̂

∂(GradT )
. (7.66)

By this and since T > 0, inequality (7.65) reduces to

− ~Q ·GradT ≥ 0 . (7.67)

This is the classical statement of the second law of thermodynamics saying that the heat flux has
the orientation opposite to the temperature gradient, that is the heat energy flows from hot to
cold regions.

The differentiation of (7.66)2 with respect to GradT and (7.66)3 with respect to E and
assuming the exchange of the order of differentiation of ε̂ and η̂ with respect to E and GradT
results in

∂T̂ (2)

∂(GradT )
= 0 ,

which shows that the second Piola-Kirchhoff stress tensor is independent of GradT . By an
analogous procedure, it may be shown that ε̂ and η̂ are functions of E and T only. Except the
heat flux, the constitutive equations (7.64) reduces to

T (2) = T̂ (2)(E, T ) , ε = ε̂(E, T ) , η = η̂(E, T ) . (7.68)

The total differential dη of η is

dη =
∂η̂

∂E
.. dE +

∂η̂

∂T
dT . (7.69)

Substituting from (7.66), we obtain

dη =
1

T

[
∂ε̂

∂T
dT +

(
∂ε̂

∂E
− 1

%0
T̂ (2)

)
.. dE

]
. (7.70)

This is the Gibbs relation for a classical thermoelastic solid. If the constitutive equations for ε
and T (2) are known, it allows to determine the entropy η.

Moreover, the functions T̂ (2), ε̂ and η̂ must satisfy constraints in (7.66). Since (7.66)3 is
satisfied identically, it remains to satisfy (7.66)1,2. To accomplish it, we introduce the Helmholtz
free energy

ψ := ε− Tη = ψ̂(E, T ) , (7.71)

and compute its differential

dψ =
∂ψ̂

∂E
.. dE +

∂ψ̂

∂T
dT . (7.72)

Differentiating (7.71) with respect to E and T , respectively, and substituting the result to (7.72),
we obtain

dψ =

(
∂ε̂

∂E
− T ∂η̂

∂E

)
.. dE +

(
∂ε̂

∂T
− T ∂η̂

∂T
− η̂

)
dT , (7.73)
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which, in view of (7.66)1,2, read as

dψ =
1

%0
T̂

(2) .. dE − η̂dT . (7.74)

By comparing this with (7.72), we can deduce that

T (2) = %0
∂ψ̂

∂E
, η = −∂ψ̂

∂T
. (7.75)

The internal energy is also derivable from potential ψ by (7.71),

ε = ψ̂ − T ∂ψ̂
∂T

. (7.76)

The constraints (7.66)1,2 are now satisfied identically, which demonstrates that ψ serves as a
thermodynamic potential for the second Piola-Kirchhoff stress tensor, the entropy and the internal
energy.

In thermodynamic equilibrium, which is defined as a process with GradT=0, it is reasonable
to assume that there can be no heat conduction, that is, ~Q|E = 0. This condition is satisfied
provided that

~Q = −κ ·GradT , (7.77)

where κ is the so-called tensor of thermal conductivity, which depends, in general, on E, T and
GradT . The residual inequality (7.67) then becomes GradT · κ · GradT ≥ 0 . Decomposing
tensor κ into the symmetric and skew-symmetric parts, this inequality reduces to

GradT · sym(κ) ·GradT ≥ 0 , (7.78)

which states that tensor sym(κ) must be positive semi-definite. As far the skew-symmetric part
of κ is concerned, nothing can be concluded from the entropy inequality. It is the statement
of the so-called Onsager reciprocity relations that the skew-symmetric part of κ is equal to zero
making κ symmetric. This assumption is extensively adopted.

We will now confine ourselves to a special type of classical thermoelastic solid for which the
constitutive functions are isotropic and linear with respect to E, T and GradT . The isotropy
requirement means that thermodynamic potential ψ is a function of invariants of E (and tem-
perature T ),

ψ = ψ̂(ĨE , ĨIE , ˜IIIE , T ) , (7.79)

where
ĨE = trE , ĨIE = trE2 , ˜IIIE = trE3 . (7.80)

To obtain the stress and entropy constitutive equations which are linear and uncoupled in E and
T , function ψ̂ can, at most, include polynomials of second degree in E and T , that is,

%0ψ̂ = %0ψ0 + π ĨE +
1

2
λ
(
ĨE
)2

+ µ ĨIE − βT ĨE − %0η0T −
1

2
γT 2 , (7.81)

where ψ0, π, β, λ, µ, η0 and γ are constants independent of E and T . The third-order terms,

T 3, T 2ĨE , T Ĩ
2
E , T ĨIE ,

˜IIIE ,
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and higher-order terms would generate non-linear terms in the constitutive equations and are
therefore omitted from ψ̂ in linear case. Substituting (7.81) into (7.75) and using the relations

∂ ĨE
∂E

= I ,
∂ ĨIE
∂E

= 2E , (7.82)

we obtain the constitutive equations for T (2) and η:

T (2) = (π + λtrE − βT )I + 2µE , η = η0 +
β

%0
trE +

γ

%0
T . (7.83)

The constitutive equation for the internal energy can be derived by using (7.76):

%0ε = %0ψ0 + π ĨE +
1

2
λ
(
ĨE
)2

+ µ ĨIE +
1

2
γT 2 . (7.84)

Moreover, comparing (6.165)2 with (7.77) we can deduce that for a linear, isotropic thermoe-
lastic solid the tensor of heat conduction must be a spherical tensor, that is, κ = κI. Hence,
(7.77) reduces to

~Q = −κGradT , (7.85)

where the non-negative thermal conductivity κ,

κ ≥ 0 , (7.86)

does not depend on E, T and GradT . We can conclude that equations (7.83) and (7.84) form the
constitutive equations for a linear isotropic classical thermoelastic solid. The inequality (7.86)
expresses the fact that heat flows from hot to cold in such a solid.

7.5 The Müller entropy principle

Even of a broad use of the Clausius-Duhem inequality, this contains certain limitations that might
be violated in some physical situations. Recall that it comes out from

• special choice (7.2) of the entropy flux ~s and the entropy source b,

• the necessity to postulate the existence of the absolute temperature,

• simplified treating of the balance law for mass, linear momentum and energy as additional
constraints when the entropy inequality is applied (see the discussion after equation (7.3)).

We will be now dealing with a modern concept of the entropy inequality, formulated by Müller
(1968), that imposes a different type of additional information to the entropy inequality. The
Müller entropy principle also comes out from the second law of thermodynamics (7.1) and, in
addition, assumes:

• The specific entropy η and entropy flux ~s are frame indifferent scalar and vector, respectively.

• η and ~s are material quantities for which, according to the principle of equipresence, the
constitutive equations depend on the same variables as the constitutive equations for t, ~q
and ε.
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• The source terms occurring in the balance equations do not influence the material behaviour.
In particular, the entropy source b vanishes if there are no internal body forces, ~f = ~0, and
no internal energy sources, h = 0. This requirement is, in particular, satisfied if the entropy
source is linearly proportional to the body force and the heat source,

b = ~λf · ~f + λhh , (7.87)

where ~λf and λh are independent of ~f and h, respectively. Note that the entropy source in the
Clausius-Duhem inequality was postulated as b = h/T , where T is the absolute temperature.
This is obviously a special case of (7.87).

• There are impenetrable thin walls across which the empirical temperature and the normal
component of the entropy flux are continuous,

[θ]+− = 0 , [~n · ~s ]+− = 0 , (7.88)

meaning that there are no long-range temperature interactions between two materials separated
by the wall and the entropy does not concentrate on the wall.

In view of (7.87), the entropy inequality (7.1) reads

%
.
η +div~s− %(~λf · ~f + λhh) ≥ 0 . (7.89)

This inequality must be satisfied for all possible thermodynamic processes that are solutions of
the balance laws for mass, linear momentum and energy. In contrast to the Clausius-Duhem
inequality, the Müller entropy principle considers all these balance laws as additional restrictions
to the entropy inequality (7.89). To satisfy inequality (7.89) subject to the constraints (4.37),
(4.39) and (4.42), we create a new unconstrained inequality

%
.
η +div~s−%(~λf · ~f+λhh)−λ%( .% +%div~v)−~λv ·(%

.
~v −div t−%~f)−λε(% .ε −t .. d+div ~q−%h) ≥ 0 ,

(7.90)
which must be satisfied for all densities %, motions ~x and temperatures θ, and also for all Lagrange
multipliers ~λf , λh, λ%, ~λv and λε without any additional constraints.

It seems reasonable to think that all solutions of the balance laws for mass, linear momentum
and energy which satisfy the original entropy inequality (7.1) also satisfy the extended entropy
inequality (7.90). The inverse statement is also true, which was proved by Liu (1972). The
Liu’s theorem states that both statements: (i) Satisfy the extended entropy inequality (7.90) for
unconstrained fields, and (ii) satisfy simultaneously both the original entropy inequality (7.1) and
the field equations for mass, linear momentum and energy are equivalent. It is easy, but laborious
to fulfill the extended inequality by determining the unknown Lagrange multipliers.

7.6 Application of the Müller entropy principle to a classical ther-
moelastic fluid

In section 6.18.6 we introduced a classical thermoelastic fluid as the material with the constitutive
variables %, θ and grad θ:

t = t̂(%, θ, grad θ) , ~q = ~̂q(%, θ, grad θ) , ε = ε̂(%, θ, grad θ) . (7.91)
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According to the principle of equipresence, we choose the same set of constitutive variables for
the entropy η and the entropy flux ~s:

η = η̂(%, θ, grad θ) , ~s = ~̂s(%, θ, grad θ) . (7.92)

Note that, in contrast to the Clausius-Duhem inequality, the existence of the absolute temperature
T as a measure of the empirical temperature θ is not postulated in the Müller entropy principle.
The reduced form of the constitutive equations (7.91) and (7.92) can be obtained from (6.175):

t = σI + τ grad θ ⊗ grad θ , η = η̂(%, θ, g) ,

~q = −κ grad θ , ~s = −γ grad θ ,

ε = ε̂(%, θ, g) , σ, τ, κ, γ = σ, τ, κ, γ(%, θ, g) ,

(7.93)

where, for the sake of brevity, we introduced g := grad θ · grad θ. The reduced constitutive
equations for η and ~s which are not included in (6.175) are set up analogously to that of ε and ~q
since we assume that η and ~s are a frame indifferent scalar and vector, respectively.

When the constitutive equations (7.91) and (7.92) are brought into (7.90) and the time dif-
ferentiation is carried out according to the chain rule of differentiation, we have

%

(
∂η̂

∂%

.
% +

∂η̂

∂θ

.
θ +

∂η̂

∂θ,i

.
θ,i

)
+
∂ŝi
∂%

%,i +
∂ŝi
∂θ

θ,i +
∂ŝi
∂θ,j

θ,ji − %(λfi fi + λhh)− λ%( .% +%vi,i)

−λvi %
.
vi +λvi

(
∂t̂ij
∂%

%,j +
∂t̂ij
∂θ

θ,j +
∂t̂ij
∂θ,k

θ,kj

)
+ λvi %fi (7.94)

−λε%
(
∂ε̂

∂%

.
% +

∂ε̂

∂θ

.
θ +

∂ε̂

∂θ,i

.
θ,i

)
+ λεt̂ijvj,i − λε

(
∂q̂i
∂%

%,i +
∂q̂i
∂θ

θ,i +
∂q̂i
∂θ,j

θ,ji

)
+ λε%h ≥ 0 ,

which can be rearranged to the form(
%
∂η̂

∂%
− λ% − %λε ∂ε̂

∂%

)
.
% +

(
%
∂η̂

∂θ
− %λε ∂ε̂

∂θ

) .
θ +

(
%
∂η̂

∂θ,i
− %λε ∂ε̂

∂θ,i

)
.
θ,i − (%λvi )

.
vi

+

(
∂ŝj
∂%

+ λvi
∂t̂ij
∂%
− λε∂q̂j

∂%

)
%,j +

(
∂ŝj
∂θ,k

+ λvi
∂t̂ij
∂θ,k

− λε ∂q̂j
∂θ,k

)
θ,kj (7.95)

+
(
−%λ%δij + λεt̂ij

)
vj,i +

(
λvi − λ

f
i

)
%fi +

(
λε − λh

)
%h+

(
∂ŝj
∂θ

+ λvi
∂t̂ij
∂θ
− λε∂q̂j

∂θ

)
θ,j ≥ 0 .

According the third postulate of the entropy principle, that is assuming that the material prop-
erties can not be influenced by the source terms, the Lagrange multipliers λ%, λvi and λε are

independent of b, ~f and h. Moreover, according to Liu’s theorem, these Lagrange multipliers
are only dependent on the independent constitutive variables %, θ and grad θ. Hence, the above

inequality is linear with respect to
.
%,
.
θ,
.
θ,i,

.
vi, %,j , θ,kj , vj,i, fi and h, since these variables are

not contained in the set of constitutive variables, but it is non-linear with respect to θ,j , since θ,j
is the constitutive variable and the factor at the last term in (7.95) implicitly contains θ,j . To
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maintain this inequality for all values of the variables which enter (7.95) linearly, the factors at
these terms must vanish. This yields

λvi = 0 , sym

(
∂ŝj
∂θ,k

− λε ∂q̂j∂θ,k

)
= 0 ,

λ% = %

(
∂η̂
∂% − λ

ε ∂ε̂
∂%

)
, λεt̂ij = %λ%δij ,

∂η̂
∂θ = λε ∂ε̂∂θ , λh = λε ,

∂η̂
∂θ,i

= λε ∂ε̂∂θ,i
, λfi = λvi = 0 ,

∂ŝj
∂% = λε

∂q̂j
∂% ,

(7.96)

which must be satisfied identically. These relations constrain the constitutive equations for t̂, ~̂q,
ε̂, η̂ and ~̂s, but they can also be viewed as determining equations for λ%, λvi and λε. The last
interpretation implies that the Lagrange multipliers are determined by the constitutive quantities,
hence they can only be dependent on the independent constitutive variables %, θ, and grad θ, and
cannot be dependent on

.
vi. Consequently, inequality (7.95) is also linear in

.
vi which implies

that the Lagrange multiplier λvi = 0, which has been already considered in (7.96). By this, the
inequality (7.95) reduces to (

∂ŝj
∂θ
− λε∂q̂j

∂θ

)
θ,j ≥ 0 . (7.97)

Equations (7.96)8,9 imply that the entropy source in a classical thermoelastic fluid is of the form

b = λεh , (7.98)

which also means that the body force ~f in linear model (7.87) does not contribute to the internal
entropy sources.

In the next step, we determine the Lagrange multiplier λε. The relation (7.96)6 together with
(7.93)2,5, represented in indicial notation, sj = −γθ,j and qj = −κθ,j , can be arranged as follows:

(γ − λεκ)δjk + sym

(
∂γ

∂θ,k
− λε ∂κ

∂θ,k

)
θ,j = 0 .

This, along with
∂κ

∂θ,k
=
∂κ

∂g

∂g

∂θ,k
= 2

∂κ

∂g
θ,k ,

results in

(γ − λεκ)δjk + 2

(
∂γ

∂g
− λε∂κ

∂g

)
θ,jθ,k = 0 .

This equation is satisfied if both the diagonal and off-diagonal elements vanish,

γ − λεκ+ 2

(
∂γ

∂g
− λε∂κ

∂g

)
θ,jθ,j = 0 ,

∂γ

∂g
− λε∂κ

∂g
= 0 ,

which can be simplied as

γ = λεκ ,
∂γ

∂g
= λε

∂κ

∂g
. (7.99)
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Upon differentiating the first equation with respect to g, we obtain

∂γ

∂g
= λε

∂κ

∂g
+
∂λε

∂g
κ . (7.100)

Since we assume that κ 6= 0 (otherwise our fluid would not conduct heat), we equate (7.100) with
(7.99)2 and obtain

∂λε

∂g
= 0 . (7.101)

Substituting (7.99)1 into the reduced constitutive equations (7.93)2,5 for ~q and ~s, we have

~s = λε~q . (7.102)

The entropy flux is thus collinear with the heat flux, whereby the proportionality factor is given
by the Lagrange multiplier of the energy equation. Considering this result in (7.96)5 yields

∂λε

∂%
= 0 . (7.103)

Equation (7.96)3 can formally be understood as the determining equation for λε. Since the factors
occurring in this equation are functions of the three constitutive variables %, θ and g, also λε can
only depend on these variables, λε = λε(%, θ, g). Moreover, because of (7.101) and (7.103), λε is
only θ-dependent and we employ λε for the definition of absolute temperature T (θ) as follows

λε = λε(θ) =:
1

T (θ)
. (7.104)

This results approaches the Clausius-Duhem assumption very closely, however, λε is a still mate-
rially dependent function of the empirical temperature.

Differentiating (7.96)3 with respect to grad θ and (7.96)4 with respect to θ, exchanging the
order of partial derivatives of η̂ and ε̂ with respect to grad θ and θ, and equating the results, we
obtain

1

T (θ)

∂2ε̂

∂(grad θ) ∂θ
=

1

T (θ)

∂2ε̂

∂θ ∂(grad θ)
− 1

T 2(θ)

dT (θ)

dθ

∂ε̂

∂(grad θ)
, (7.105)

which shows that
∂ε̂

∂(grad θ)
= 0 . (7.106)

In view of (7.96)4, we also have
∂η̂

∂(grad θ)
= 0 . (7.107)

Consequently, the internal energy and the entropy are functions of % and θ only. In addition, by
(7.96)2, the same holds for the Lagrange multiplier λ%, hence

ε = ε̂(%, θ) , η = η̂(%, θ) , λ% = λ̂%(%, θ) . (7.108)

Equation (7.96)7 yields the representation of the stress tensor in the form

t = −p(%, θ)I , (7.109)
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where p is referred to as the thermodynamic pressure,

p(%, θ) := −λ
%(%, θ)

λε(%)
%

= −%2
(
T (θ)

∂η̂

∂%
− ∂ε̂

∂%

)
. (7.110)

By equating (7.109) with the constitutive equation (7.93)1, we obtain

σ(%, θ, g) = −p(%, θ) , τ(%, θ, g) = 0 . (7.111)

Equation (7.110) can be solved for ∂η̂/∂%:

∂η̂

∂%
=

1

T (θ)

(
∂ε̂

∂%
− p

%2

)
. (7.112)

With the help of this and (7.96)3, we can express the total differential of the entropy η = η̂(%, θ)
in the form

dη =
1

T (θ)

(
∂ε̂

∂θ
dθ +

(∂ε̂
∂%
− p

%2

)
d%

)
, (7.113)

which is known as the Gibbs relation.
An integral

∫
dη is assumed to be path-independent, which means that dη must be a total

differential. Hence, the integrability condition for the Gibbs relation (7.113) must hold in the
form

1

T (θ)

∂2ε̂

∂% ∂θ
=

1

T (θ)

(
∂2ε̂

∂θ ∂%
− 1

%2

∂p

∂θ

)
− 1

T 2(θ)

dT (θ)

dθ

(
∂ε̂

∂%
− p

%2

)
.

This equation can be solved for the derivative of T (θ),

d lnT (θ)

dθ
=

−∂p
∂θ

%2 ∂ε̂

∂%
− p

.

and integrating with respect to θ:

T (θ) = T (θ0) exp


θ∫

θ0

−∂p
∂θ

%2 ∂ε̂

∂%
− p

dθ

 . (7.114)

Choosing integration constant T (θ0) positive, function T (θ) is a positive-valued function, as
expected for an absolute temperature. To show that T (θ) is a meaningful absolute temperature,
we need to prove that (i) T (θ) is a universal function of θ, that is, it is not different for two
different materials, and (ii) T (θ) is a strict monotonic function of θ, that is, TA > TB means that
”A is warmer than B”.

Universality

We now employ the postulate of the existence of impenetrable thin walls with the property (7.88).
Let us consider two different classical thermoelastic fluids that are separated by an impenetrable
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thin wall. Let fluid I be placed on the positive side and fluid II on the negative side of the wall.
In view of (7.102) and (7.104), the continuity condition (7.88)2 of the normal component of the
entropy flux across the wall becomes [

1

T (θ)
~n · ~q

]+

−
= 0 . (7.115)

By an impenetrable wall we mean that no portion of matter from one side can penetrate into
the matter on the other side, that is, ~n · ( [~v]+− − ~ν) = 0. In the terminology of section 4.3, an
impenetrable thin wall is a material discontinuity surface. Moreover, we assume that there is no

tangential slip across the wall, so that,
[
~v‖
]+
−

= ~0, where ~v‖ := (I − ~n ⊗ ~n) · ~v. According to

(4.50), the normal component of the heat flux is continuous at a welded material surface, that is
~n · [~q]+− = 0, which implies that the interface condition (7.115) can be rewritten as[

1

T (θ)

]+

−
~n · ~q = 0 . (7.116)

Since, in general, ~n · ~q 6= 0, we finally obtain[
1

T (θ)

]+

−
= 0 , or T I(θ) = T II(θ) . (7.117)

We can conclude that T (θ) is the same function of empirical temperature on both sides of the ideal
wall. Since the fluids on both sides of the ideal wall can be arbitrary classical thermoelastic fluids,
then it means that T (θ) is material independent within this class of materials. The same property
of the function T (θ) can be proved for other materials. Hence, T (θ) is a material independent,
universal function of the empirical temperature θ.

Monotony

First, we define the ideal gas as a classical thermoelastic fluid with the following thermal and
caloric equations of state:

p(%, θ) =
%

µ
f(θ) , ε(%, θ) ≡ ε(θ) =

β1

µ
f(θ) + β2 , (7.118)

where a positive-valued, strict monotonic function f(θ), which is universal for all ideal gases,
only depends on the choice of a measure of empirical temperature; µ is the moll-mass, and β1

and β2 are characteristic constants of a particular ideal gas. For instance, in the Celsius scale of
temperature, we have

f(θ) = R(θ + θm) , (7.119)

where the universal gas constant R=8.314 J/(mol oC), and θm = 273.15oC. In this case, the
equations of state are of the form

p = %
R

µ
(θ + θm) , ε = β1

R

µ
(θ + θm) + β2 . (7.120)
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With the help of (7.114), we calculate function T (θ) for the ideal gas:

T (θ) = T (θ0) exp


θ∫

θ0

−%
µ

df(θ)

dθ

−%
µ
f(θ)

dθ

 = T (θ0) exp


θ∫

θ0

d ln f(θ)

dθ
dθ

 = T (θ0) exp

{
ln

f(θ)

f(θ0)

}
.

Hence,

T (θ) =
T (θ0)

f(θ0)
f(θ) . (7.121)

Choosing integration constant T (θ0) positive, T (θ) has the same property as function f(θ), that
is, T (θ) is a positive-valued, strict monotonic function. Because of the universality of T (θ),
this result holds not only for ideal gases but in general. Thus the function T (θ) satisfies both
requirements of a meaningfully defined absolute temperature.

Let us have a look at the Celsius scale as a measure of empirical temperature. Putting
θ0 = 0oC and choosing the integration constant as

T (θ0) = T (0oC) = 273.15 K , (7.122)

equation (7.121) along with (7.119) yields

T (θ) =
T (θ0)

Rθm
R(θ + θm) =

273.15 K

273.15oC
(θ + 273.15oC) ,

that is,

T (θ) = 273.15 K + 1
K
oC

θ . (7.123)

This measure of the absolute temperature is called the Kelvin scale. 25 Using it, the empirical
temperature θ can be replaced by the absolute temperature T ,

To complete the exploitation of the Müller entropy principle for a classical thermoelastic fluid,
it remains to evaluate the reduced inequality (7.97). With ~s = ~q/T (θ), see (7.102) and (7.104),
we have (

1

T (θ)

∂~q

∂θ
− 1

T 2(θ)

dT (θ)

dθ
~q − 1

T (θ)

∂~q

∂θ

)
· grad θ ≥ 0 ,

which reduces to
−~q · grad θ ≥ 0 .

Substituting for ~q from the constitutive equation (7.93)2, we can see that the thermal conductivity
is non-negative,

κ ≥ 0 . (7.124)

Let us summarize the results following from the application of the Müller entropy principle
to a classical thermoelastic fluid.
• For the empirical temperature θ, it is possible to construct a positive-valued, strict monotonic

and universal function T (θ),

T (θ) =
T (θ0)

f(θ0)
f(θ) , (7.125)

which may serve as a measure of the absolute temperature.

25This relation was suggested by lord Kelvin.
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• The constitutive equations (7.93) reduce to

t = −pI , η = η̂(%, θ) ,

~q = −κ grad θ , ~s = ~q
T (θ)

,

ε = ε̂(%, θ) , p = p(%, θ) , κ = κ(%, θ, g) .

(7.126)

• Functions p, ε, η and T are mutually related:

∂η̂

∂θ
=

1

T (θ)

∂ε̂

∂θ
,

∂η̂

∂%
=

1

T (θ)

(
∂ε̂

∂%
− p

%2

)
, (7.127)

d lnT (θ)

dθ
=

−∂p
∂θ

%2 ∂ε̂

∂%
− p

.

• The entropy source b and the heat source h are related as

b =
h

T (θ)
. (7.128)

Aside the possibility (7.125) to construct the universal absolute temperature T for a given em-
pirical temperature θ, there is a particular choice to put

T = θ . (7.129)

Under this choice, the results of the Müller entropy principle for a classical thermoelastic fluid
coincide with those of the Clausius-Duhem inequality. In particular, the relations ~s = ~q/T and
b = h/T , postulated by the Clausius-Duhem inequality, follow from the Müller entropy principle
as the results (7.126)5 and (7.128). However, these two principles do not, in general, provide
equivalent restrictions on material properties. For instance, for a non-classical heat-conducting

fluid (for which the constitutive equations also depend on
.
θ), the Clausius-Duhem inequality yields

that τ(%, θ,
.
θ, g) ≡ 0 in the stress constitutive equation, an analog to the classical case, while the

Müller entropy principle allows non-vanishing τ of the stress tensor. Hence, the Clausius-Duhem
inequality imposes stronger restrictions on constitutive equations than those resulting from the
application of the Müller entropy principle.
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8. CLASSICAL LINEAR ELASTICITY

8.1 Linear elastic solid

In section 7.4 we found that the most general constitutive equations of a classical thermoelastic
solid have the forms expressed by equations (7.75)–(7.77). If thermal effects are not considered,
the Helmholtz free energy and the second Piola-Kirchhoff stress tensor are functions of strain
alone. According to section 6.17.1, this solid is called elastic. For an elastic solid, the constitutive
equation (7.75)1 reduces to

T (2) =
∂W

∂E
, (8.1)

where the so-called elastic strain energy density (strain energy per unit undeformed volume) is
defined by

W := %0ψ = Ŵ (E) . (8.2)

It is worthwhile noting that elastic behavior is sometimes defined on the basis of the existence
of a strain energy function from which the stress may be determined by the differentiation in
(8.1). A material defined in this way is called a hyperelastic material. The stress is still a unique
function of strain so that this “energy approach” is compatible with our earlier definition of elastic
behavior in section 6.17.1.

By using the constitutive equation (8.1) of nonlinear elastic solid, we can derive various
approximation theories. Expanding W about the configuration κ0 from which the strain E is
reckoned, we have

W (E) = W (0) +
∂W (0)

∂E
.. E +

1

2
E ..

∂2W (0)

∂E ∂E
.. E +O(|E|3) , (8.3)

and, from (8.1),

T (2) =
∂W (0)

∂E
+
∂2W (0)

∂E ∂E
.. E +O(|E|2) . (8.4)

Using different notation, we can shortly write

T (2) = T 0 +C .. E +O(|E|2) , (8.5)

where T 0 is the stress in the configuration κ0 from which the strain E is reckoned,

T 0 :=
∂W (0)

∂E
. (8.6)

In the classical linear theory, the configuration κ0 is used as reference and the stress T 0 is
considered as a tensor-valued function of the Lagrangian coordinates, T 0 = T 0( ~X). The fourth-
order tensor C, introduced in (8.5), is defined by

C :=
∂2W (0)

∂E ∂E
, CKLMN :=

∂2W (0)

∂EKL ∂EMN
. (8.7)

Due to the symmetry of both the stress and strain tensors, it is clear that

CKLMN = CLKMN = CKLNM , (8.8)
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which reduces the 34 = 81 components of C to 36 distinct coefficients CKLMN at most. Moreover,
as a consequence of the equality of the mixed partial derivatives of W , the coefficients CKLMN

satisfy the further symmetry relation:

CKLMN = CMNKL , (8.9)

which is known as the Maxwell relation. Thus, the existence of a strain energy function reduces
the number of distinct coefficients CKLMN from 36 to 21. Further reduction for special types
of elastic behavior are obtained from the material symmetry properties. Note that the same
material may, in general, have different coefficients CKLMN for different configurations κ0.

In the classical linear theory, we consider only infinitesimal deformations from the reference
configuration κ0, and then the last term on the right-hand side of (8.5) is dropped. Moreover, the
strain tensor E is replaced by the infinitesimal strain tensor Ẽ, so that, the constitutive equation
(8.5) reduces to

T (2) = T 0 +C .. Ẽ . (8.10)

Within the framework of the classical infinitesimal model, we may study the effects of an in-
finitesimal deformation superimposed upon a reference configuration κ0 with a finite pre-stress
T 0. Then (8.10) is taken as the exact constitutive equation defining the classical linear (in-
finitesimal) model of elasticity. However, within the framework of the general theory of elastic
simple materials, we see that (8.10) is an approximation, for small deformations, of the exact
stress relation (8.1).

In fact, we have considerable extent in the choice of tensor C. The only requirement is that
we satisfy the symmetries (8.8) and (8.9). It is easily verified that these relations are satisfied by
a fourth-order tensor Ξ of the form

ΞKLMN = CKLMN + a [T0,KLδMN + T0,MNδKL]

+ b [T0,KMδLN + T0,LNδKM ]

+ c [T0,KNδML + T0,MLδKN ] ,

(8.11)

or, in symbolic notation, 26

Ξ = C + a [(T 0 ⊗ I)1234 + (I ⊗ T 0)1234]

+ b [(T 0 ⊗ I)1324 + (I ⊗ T 0)1324]

+ c [(T 0 ⊗ I)1432 + (I ⊗ T 0)1432] ,

(8.12)

where a, b and c are arbitrary scalars. The expressions in parentheses multiplying a, b and c are
the only three linear combinations of permutations of T 0⊗ I satisfying the symmetries (8.8) and
(8.9). Every choice of the scalars a, b and c defines the behaviour of a linear elastic solid. We
may thus replace the tensor C in the constitutive equation (8.10) by the tensor Ξ:

T (2) = T 0 + Ξ .. Ẽ

= T 0 +C .. Ẽ + a[(tr Ẽ)T 0 + (T 0
.. Ẽ)I] + (b+ c)(T 0 · Ẽ + Ẽ · T 0) .

(8.13)

26The symbols ( )1324, ( )1432, etc., denote the transpose of a quadric, e.g. (~a⊗~b⊗ ~c⊗ ~d)1324 = ~a⊗ ~c⊗~b⊗ ~d.
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The linearized constitutive equations for the Cauchy stress tensor and the first Piola-Kirchhoff
stress tensor can be obtained from (8.13)2 using the relation (3.25)2 and (3.29)2:

T (1) = T 0 + T 0 ·H +C .. Ẽ + a[(tr Ẽ)T 0 + (T 0
.. Ẽ)I] + (b+ c)(T 0 · Ẽ + Ẽ · T 0) , (8.14)

t = T 0 − (trH)T 0 +HT · T 0 + T 0 ·H +C .. Ẽ + a[(tr Ẽ)T 0 + (T 0
.. Ẽ)I]

+ (b+ c)(T 0 · Ẽ + Ẽ · T 0) . (8.15)

By the decomposition HT = Ẽ + R̃, where R̃ is the infinitesimal rotation tensor, the represen-
tations (8.14) and (8.15) become

T (1) = T 0 − T 0 · R̃+C .. Ẽ + a[(tr Ẽ)T 0 + (T 0
.. Ẽ)I] + (b+ c)(Ẽ · T 0)

+ (b+ c+ 1)(T 0 · Ẽ) , (8.16)

t = T 0 + R̃ · T 0 − T 0 · R̃+C .. Ẽ + (a− 1)(tr Ẽ)T 0 + a(T 0
.. Ẽ)I

+ (b+ c+ 1)(T 0 · Ẽ + Ẽ · T 0) . (8.17)

The first terms in (8.16) and (8.17) can be identified as the rotated initial stress, whereas the
remaining terms represent the perturbation in stress due to the infinitesimal strain Ẽ.

Upon substituting equations (8.6) and (8.7) into (8.3) and replacing the tensor C by the
tensor Ξ, the strain energy density can be rewritten, correct to second order in Ẽ, in the form

W (Ẽ) = W (0) + T 0
.. Ẽ + 1

2 Ẽ
.. Ξ .. Ẽ

= W (0) + T 0
.. Ẽ + 1

2 Ẽ
.. C .. Ẽ + a(tr Ẽ)(T 0

.. Ẽ) + (b+ c)tr (Ẽ · T 0 · Ẽ) .
(8.18)

The terms on the right-hands side of (8.18) proportional to T 0 represent the work done against
the initial stress, whereas the term 1

2Ẽ
.. C .. Ẽ is the classical elastic energy density in the

absence of any initial stress.

8.2 The elastic tensor

A stress-free configuration is called a natural state. If such a configuration is used as reference,
then T 0 = 0, and (8.13)–(8.15) reduce to

τ = C .. ε , (8.19)

where τ can be interpreted as either t, T (1) or T (2) and ε either as the infinitesimal Lagrangian
or Eulerian strain tensor, Ẽ or ẽ. This classical linear elastic stress–strain relation is known
as generalized Hooke’s law and the fourth-order tensor C is called the elastic tensor. The linear
stress-strain constitutive relation for infinitesimal deformations of an anisotropic solid in its stress–
free natural state are specified by 21 independent components of C. In the more general case
of an incremental stress superimposed upon the zeroth-order initial stress T 0, the stress-strain
relation is specified by 27 coefficients: the 21 components of C and 6 components of the initial
stress tensor T 0. Equations (8.16) and (8.17) constitute the generalization of Hooke’s law to the
case of a pre-stressed elastic medium.

In the particular case T 0 = 0, the strain energy density reduces to

W (ε) = W (0) +
1

2
τ .. ε . (8.20)
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8.3 Isotropic linear elastic solid

The highest symmetry of a solid is reached if the solid possesses no preferred direction with
respect to its elastic property. This also means that the linear elasticity C is invariant under any
orthogonal transformation of the coordinate system. We called such a solid isotropic. In section
6.17.1, we showed the number of independent elastic constants reduces to 2 and the constitutive
equation of an isotropic linear elastic solid is of the form

τ = λϑI + 2µε , (8.21)

where λ and µ are the Lamé elastic constant,

ϑ := tr ε = div ~u , (8.22)

and ~u is the displacement vector. Now, we will show, independently of considerations in section
6.17.1, that the generalized Hooke’s law (8.19) reduces to the form (8.21) for an isotropic linear
elastic solid.

In the linear theory, it is not necessary to distinguish between the Lagrangian and Eulerian co-
ordinate systems. We will follow this concept and use Cartesian coordinates xk for the coinciding
coordinate systems. Any orthogonal transformation of the coordinate system may be expressed
by the Euclidean transformation (5.8) with ~b′ = ~0, that is, by the transformation equation

x′k = Qklxl (8.23)

subject to
QklQml = QlkQlm = δkm , detQkl = ±1 . (8.24)

The components of a second-order Cartesian tensor τ transform under the orthogonal transfor-
mation of the coordinate system according to (5.12):

τ ′kl = QkmQlnτmn , (8.25)

which may readily be inverted with the help of the orthogonality conditions (8.24) to yield

τkl = QmkQnlτ
′
mn . (8.26)

Note carefully the location of the summed indices m and n in (8.25) and (8.26).
Proof of Hooke’s law (8.21) for an isotropic linear elastic solid will be accomplished in four

steps. First, we show that for an isotropic linear elastic solid the principal axes of the stress
and infinitesimal strain tensors coincide. To proof it, we take, without loss of generality, the
coordinate axes xk in the principal directions of strain tensor ε. Then ε12 = ε13 = ε23 = 0. We
shall now show that τ23 = 0. We first have

τ23 = Aε11 +Bε22 + Cε33

with A := C2311, B := C2322, and C := C2333. We now rotate the coordinate system through an
angle of 180o about the x3-axis. Then x′1 = −x1, x′2 = −x2, and x′3 = x3, and the matrix of this
transformation is

Q =

 −1 0 0
0 −1 0
0 0 1

 .
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In view of (8.25), we therefore have

τ ′23 = Q2mQ3nτmn = −τ23 ,

ε′11 = Q1mQ1nεmn = ε11 ,

ε′22 = Q2mQ2nεmn = ε22 ,

ε′33 = ε33 .

The relation
τ ′23 = Aε′11 +Bε′22 + Cε′33 = Aε11 +Bε22 + Cε33 = τ23

is now the consequence of isotropy since the constants A, B, and C do not depend on the reference
configuration of a solid. Thus

−τ23 = τ ′23 = τ23 ,

which implies that τ23 = 0. Likewise, it can be shown that τ12 = τ13 = 0. We have proved that
the principal axes of stress and strain coincide. Note that the principal stresses and strains are,
in general, different.

Second, consider the component τ11. Taking the coordinate axes in principal directions of
strain, we obtain

τ11 = a1ε11 + b1ε22 + c1ε33 ,

with a1 := C1111, b1 := C1122, and c1 := C1133. We now rotate the coordinate system through an
angle 90o about the x1-axis in such a way that

x′1 = x1 , x′2 = x3 , x′3 = −x2 .

The matrix of this transformation is

Q =

 1 0 0
0 0 1
0 −1 0

 ,

and we have

τ ′11 = Q1mQ1nτmn = τ11 ,

ε′11 = ε11 ,

ε′22 = Q2mQ2nεmn = ε33 ,

ε′33 = ε22 .

In view of isotropy, the constants a1, b1, and c1 do not depend on the reference configuration, so
that

τ ′11 = a1ε
′
11 + b1ε

′
22 + c1ε

′
33 ,

and substituting for ε′kk, we get

τ ′11 = a1ε11 + b1ε33 + c1ε22 .

This implies that b1 = c1 since τ11 = a1ε11 + b1ε22 + c1ε33. We can thus write τ11 as

τ11 = a1ε11 + b1 (ε22 + ε33) = λ1ϑ+ 2µ1ε11 ,
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where
λ1 := b1 = C1122 , 2µ1 := a1 − b1 = C1111 − C1122 .

The same relations can be obtained for subscripts 2 and 3:

τ22 = λ2ϑ+ 2µ2ε22 ,

τ33 = λ3ϑ+ 2µ3ε33 ,

where λ2 := C2222, 2µ2 := C2211 − C2222, λ3 := C3322, 2µ3 := C3311 − C3322.
Third, rotate the coordinate system through an angle 90o about the x3-axis in such a way

that
x′1 = x2 , x′2 = −x1 , x′3 = x3 .

The matrix of this transformation is

Q =

 0 1 0
−1 0 0

0 0 1

 ,

and we have

τ ′11 = τ22 , ε′11 = ε22 ,

τ ′22 = τ11 , ε′22 = ε11 ,

τ ′33 = τ33 , ε′33 = ε33 .

Combining the results of previous steps, we can write

τ ′22 = λ2ϑ
′ + 2µ2ε

′
22

= λ2ϑ+ 2µ2ε
′
22

= λ2ϑ+ 2µ2ε11

!
= τ11

= λ1ϑ+ 2µ1ε11 .

This implies that λ2 = λ1 and µ2 = µ1. Likewise, it can be shown that λ3 = λ1 and µ3 = µ1. In
summary, we have

τ11 = λϑ+ 2µε11 ,

τ22 = λϑ+ 2µε22 ,

τ33 = λϑ+ 2µε33 ,

τkl = 0 for k 6= j ,

which is the generalized Hooke’s law for an isotropic body in principal directions. Shortly written,

τkl = λϑδkl + 2µεkl .

Fourth, we now rotate the coordinate system with the axes xk coinciding with principal
directions of strain to arbitrary coordinate system with the axes x′k and show that Hooke’s
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law for an isotropic solid also holds in a rotated coordinate system x′k. Denoting by Qkl the
transformation matrix of this rotation, the stress and strain tensor transform according to the
transformation law (8.25) for second-order tensors. Multiplying the above equation by QmkQnl,
using the transformation law (8.25) and the orthogonality property (8.24) of Qkl, we have

τ ′mn = λϑδmn + 2µε′mn .

Moreover,
ϑ′ = ε′mm = QmkQmlεkl = δklεkl = εkk = ϑ .

We finally have
τ ′mn = λϑ′δmn + 2µε′mn ,

which proves Hooke’s law (8.21) for an isotropic linear elastic solid.

We have seen that the Lamé coefficients are expressed in terms of the elastic coefficients as

λ = C1122 , λ+ 2µ = C1111 . (8.27)

We note without proof that the most general form of a fourth-order isotropic tensor A is

Aklmn = λδklδmn + µ (δkmδln + δknδlm) + ν (δkmδln − δknδlm) , (8.28)

where λ, µ, and ν are scalars. If A is replaced by the linear elasticity C, the symmetry relations
Cklmn = Clkmn = Cklnm imply that ν must be zero since by interchanging k and l in the expression

ν (δkmδln − δknδlm) = ν (δlmδkn − δlnδkm)

we see that ν = −ν and, consequently, ν = 0. Thus, the linear elasticity for an isotropic solid has
the form

Cklmn = λδklδmn + µ (δkmδln + δknδlm) . (8.29)

The Hooke’s law for an isotropic solid takes a particularly simple form in spherical and devi-
atoric parts of ε and τ . Let us decompose the infinitesimal strain tensor ε into the spherical and
deviatoric parts:

ε =
1

3
ϑI + εD , (8.30)

where the mean normal strain ϑ is defined by (8.22), and the deviatoric strain tensor εD is a
trace-free, symmetric, second-order tensor:

εD := ε− 1

3
ϑI . (8.31)

The same decomposition of the stress tensor τ reads

τ = −pI + τD , (8.32)

where the scalar p is the negative of the mean normal stress and called mechanical pressure,

p := −1

3
tr τ , (8.33)
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and the deviatoric stress tensor τD is a trace-free, symmetric, second-order tensor, defined by

τD := τ + pI . (8.34)

By substituting (8.30) and (8.32) into (8.21), Hooke’s law for an isotropic linear elastic solid
may be written separately for the spherical and deviatoric parts of the stress and strain:

−p = kϑ , τD = 2µεD , (8.35)

where

k := λ+
2

3
µ (8.36)

is referred to as the elastic bulk modulus. Finally, we derive the strain energy density function for
an isotropic linear elastic solid. For this purpose, we successively substitute (8.21) into (8.20),
giving

W (ε) = W (0) +
1

2
λϑ2 + µ(ε .. ε) , (8.37)

which, using (8.31) and (8.36), can be rewritten as

W (ε) = W (0) +
1

2
kϑ2 + µ(εD .. εD) . (8.38)

8.4 Restrictions on elastic coefficients

In this section, we analyze several hypothetical experiments and consequent restrictions that must
be placed upon elastic moduli in order that they may represent a real material adequately.

We first assume that Hooke’s law (8.21) for an isotropic linear elastic solid is invertible for ε.
Applying the trace operator on this equation gives

tr τ = (3λ+ 2µ)tr ε . (8.39)

Now, by solving (8.21) for ε and substituting from (8.39) for tr ε, we obtain the inverse form of
Hooke’s law for an isotropic solid,

ε =
τ

2µ
− λ

2µ(3λ+ 2µ)
tr τ I . (8.40)

We observe that for ε to be uniquely determined by τ we must have

µ 6= 0 , 3λ+ 2µ 6= 0 . (8.41)

(i) Hydrostatic pressure. Experimental observations indicate that under hydrostatic pres-
sure the volume of an elastic solid diminishes. For hydrostatic compression, the stress tensor has
the form

τ = −pI , p > 0 . (8.42)

From (8.35)1 we see that
p = −kϑ , (8.43)
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where ϑ := tr ε = div ~u = J − 1 = (dv − dV )/dV is the cubical dilatation. In the case of
hydrostatic pressure, clearly dv < dV and hence ϑ < 0. We must thus have k > 0 which implies
that

3λ+ 2µ > 0 . (8.44)

(ii) Simple shear. Consider a simple constant shear in which

τ12 6= 0 , τkl = 0 otherwise. (8.45)

In this case (8.40) gives
τ12 = 2µε12 . (8.46)

Experimental observations of small deformations of elastic solids subjected to simple shear indi-
cate that τ12 and ε12 have the same direction. Consequently,

µ > 0 . (8.47)

Under conditions (8.44) and (8.47) and provided that the strain energy density function
vanishes at the unstrained natural state, W (0) = 0, the strain energy density function W (ε) for
an isotropic linear elastic solid is a positive definite, quadratic function of the infinitesimal strain
ε. This fact is basic for the proof of the uniqueness of solution of boundary-value problems in
elastic equilibrium.

The conditions (8.44) and (8.47) can be shown to be sufficient but not necessary for an
isotropic linear isotropic solid to get plausible results from the infinitesimal field theory. The
necessary and sufficient conditions for an isotropic linear elastic solid are weaker than (8.44) and
(8.47), namely,

λ+ 2µ > 0 , µ > 0 . (8.48)

It can be shown that these conditions give positive wave speeds in isotropic linear elastic solids. A
number of special a priori inequalities have been proposed based on certain “reasonable” physical
expectations when an isotropic elastic solid is subjected to pressure, tensions, and shears. For a
discussion of these we refer the reader to Truesdell and Noll (1965).

In the classical infinitesimal theory of elasticity other material constants are often used in
place of the Lamé constants λ and µ. Following are relations among some of these constants:

E := µ(3λ+ 2µ)/(λ+ µ) , ν := λ/2(λ+ µ) ,

λ = Eν/(1 + ν)(1− 2ν) = 2Gν/(1− 2ν) , µ ≡ G = E/2(1 + ν) ,

k = λ+ 2
3µ = E/3(1− 2ν) ,

(8.49)

where E is called Young’s modulus, G is the elastic shear modulus, or modulus of rigidity, which,
as noted, is identical to the Lamé constant µ, and ν is Poisson’s ratio. The inequalities

G > 0 , −1 < ν <
1

2
, (8.50)

are equivalent to (8.44) and (8.47).

8.5 Field equations
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The field equations in continuum mechanics consist of the balance laws, valid for all continua,
and a particular constitutive equation. Here we shall consider isotropic linear elastic or linear
thermoelastic solids. The field equations may be expressed in Lagrangian or Eulerian form but
for the linearized theory of elasticity the two forms are identical.

8.5.1 Isotropic linear elastic solid

Within the frame of the infinitesimal strain theory, the continuity equation (4.60) in the referential
form can be arranged as follows

% =
%0

J
=

%0

1 + tr Ẽ
+O(|Ẽ|2) = %0 +O(|Ẽ|) . (8.51)

Making use of this approximation and provided, in addition, that the volume force ~f is also
infinitesimally small, the equation of motion (4.39) in the present configuration coincides with
the equation of motion (4.67) in the referential configuration:

div τ + %0
~f = %0

∂2~u

∂t2
, (8.52)

where we have substituted for ~v = ∂~u/∂t since ~u = ~u( ~X, t) and the partial derivative with respect
to the material coordinates held constant. We can see that in the infinitesimal strain and stress
theory the distinction between the reference and present configuration of a material disappears.
Moreover, the continuity equation does not play any role here, since the balance of mass results
in the statement %0 = %0( ~X).

We substitute Hooke’s law (8.21) for an isotropic linear elastic solid into the equation of motion
(8.52). With the help of vector differential identities introduced in Appendix A, the divergence
of the stress tensor τ can be arranged as follows

div τ = div (λϑI + 2µε)

= grad (λϑ) + 2µdiv ε+ 2gradµ · ε
= λ grad div ~u+ div ~u gradλ+ µdiv(grad ~u+ grad T~u) + gradµ · (grad ~u+ grad T~u)

= (λ+ µ) grad div ~u+ µ∇2~u+ div ~u gradλ+ gradµ · (grad ~u+ grad T~u)

= (λ+ 2µ) grad div ~u− µ rot rot ~u+ div ~u gradλ+ gradµ · (grad ~u+ grad T~u) .

The linearized equation of motion (8.52) can now be expressed in the form

(λ+2µ) grad div ~u−µ rot rot ~u+div ~u gradλ+gradµ · (grad ~u+grad T~u)+%0
~f = %0

∂2~u

∂t2
, (8.53)

which is known as the Navier–Cauchy equation of an isotropic linear elastic solid. It consists of
three second-order differential equations for the three displacement components. Note that the
vector form (8.53) is independent of the coordinate system and may be expressed in curvilinear
coordinates by the methods of Appendix C. In particular, for a homogeneous solid, λ and µ are
constants (independent of ~X) and the Navier-Cauchy equation reduces to

(λ+ 2µ) grad div ~u− µ rot rot ~u+ %0
~f = %0

∂2~u

∂t2
, (8.54)
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or, alternatively,

(λ+ µ) grad div ~u+ µ∇2~u+ %0
~f = %0

∂2~u

∂t2
. (8.55)

Note that elastostatics is restricted to those situations in which inertia forces %0∂
2~u/∂t2 may be

neglected. Since (8.52) does not involve displacements, an alternative formulation of elastostatic
problems in terms of stresses alone is possible.

8.5.2 Incompressible isotropic linear elastic solid

For incompressible solids we have
div ~u = 0 , (8.56)

and the density remains unchanged, equal to a known value, % = %0. Hooke’s law (8.21) need to
be modified such that

τ = −pI + 2µε , (8.57)

where p is a new unknown field variable. The Navier-Cauchy equation of motion (8.53) transforms
to the form

−grad p+ µ∇2~u+ gradµ · (grad ~u+ grad T~u) + %0
~f = %0

∂2~u

∂t2
. (8.58)

Hence, (8.56) and (8.58) represents four differential equations for four unknown field variables:
pressure p and three components of displacement vector ~u.

8.5.3 Isotropic linear thermoelastic solid

Equation (7.83)–(7.86) form the constitutive equations for an isotropic linear thermoelastic solid.
We now substitute these constitutive equations to the energy equation in the referential form
(4.77). We obtain

π(ĨE)·+λ(Ĩ2
E)·+2µ(ĨIE)·+γT

.
T= (π+λĨE−βT )(ĨE)·+2µE ..

.
E +Div (κGradT )+%0h . (8.59)

The material time derivatives of principal invariants of strain can be arranged as follows:

(ĨẼ)· = Div
.
~u ,

(Ĩ2
E)· = 2ĨE(ĨE)· ,

(ĨIE)· = (trE2)· = tr (E2)· = 2tr (E ·
.
E ) .

(8.60)

In view of these expressions, equation (8.59) is non-linear with respect to E. Within the frame-
work of linear theory, we consider only infinitesimal deformations from the reference configuration.
Then the non-linear terms in (8.59) can be omitted and the strain tensor is replaced by the in-
finitesimal strain tensor Ẽ. The linearization with respect to strain brings (8.59) into the form

γT
.
T= −βT Div

.
~u +Div (κGradT ) + %0h . (8.61)

This equation is still non-linear with respect to temperature. Further linearization can be made
by assuming that the instantaneous absolute temperature T in the present configuration differs
from the temperature T0( ~X) (> 0) in the reference configuration by a small quantity, that is,

T = T0 + T1 , |T1| � T0 . (8.62)
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The linearization of (8.62) with respect to T yields

γT0

.
T1= −βT0 Div

.
~u +Div (κGradT1) + Div (κGradT0) + %0h . (8.63)

If we introduce the specific heat cv at constant deformation Div
.
~u= 0 and no heat supply h = 0

through the equation

Div ~Q = %0cv
.
T1 , (8.64)

then γT0 = %0cv and the energy equation becomes

%0cv
.
T1= −βT0 Div

.
~u +Div (κGradT1) + Div (κGradT0) + %0h . (8.65)

This equation, known as the coupled heat conduction equation, gives the relationship between the
rate of change of the temperature and the strain with the heat conduction.

Under the decomposition (8.62)1, the linearized constitutive equation (7.83)1 for the second
Piola-Kirchhoff stress tensor becomes

T (2) = (π − β T0)I + λ(trE)I + 2µE − β T1I . (8.66)

Again, in the infinitesimal theory T (2) and E can be replaced by the infinitesimal stress tensor τ
and the infinitesimal strain tensor ε, respectively. Note that when the reference configuration is
stress free then π−β T0 = 0. The constitutive equation (8.66) is known as the Duhamel-Neumann
form of Hooke’s law. It may be inverted to give

E = − 1

3λ+ 2µ
(π − β T0)I +

1

2µ
T (2) − λ

2µ(3λ+ 2µ)
trT (2) I +

β

3λ+ 2µ
T1I , (8.67)

where
α := β/(3λ+ 2µ) (8.68)

is the linear coefficient of thermal expansion.
The coupled heat conduction equation, along with the equation of motion and thermoelas-

tic stress–strain equation constitute the basic set of field equations for coupled thermoelastic
problems. There are, however, problems in which the heat conduction equation can further be
simplified. For instance, if the reference configuration of the thermoelastic solid coincides with
the thermostatic equilibrium, then GradT0 = ~0 and the third term on the right-hand side of
(8.65) vanishes. Another simplification arises when the isotropic linear thermoelastic solid is also

incompressible. Then Div ~u = 0, and also Div
.
~u= 0, so that, the first term on the right-hand side

of (8.65) vanishes. In this case, the heat conduction equation is decoupled from the equation of
motion and the thermoelastic problem is decomposed into two separate problems, which must be
solved consecutively, but independently.

8.5.4 Example: The deformation of a plate under its own weight

We consider a two-dimensional inclined plate of constant thickness H (slab) infinitely extended
in the x- and y-directions and tightly connected to the bed (Figure 8.1). The material of slab is
isotropic and linear elastic. We aim to determine the deformation of the slab by its own weight.

Solution. We assume that the inclination angle α of the slab is constant. Because of this, infinite x-
and y-dimensions and constant thickness of the slab, the field variables can only depend on the ver-
tical coordinate z; all derivatives with respect to x and y must vanish, (∂/∂x)(·) = (∂/∂y)(·) = 0.
Moreover, the y-component of the displacement vector is taken as zero, and the remaining
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Figure 8.1. The deformation of a plate under its own weight.

components are considered as functions of z only,

ux = ux(z) , uz = uz(z) . (8.69)

Consequently, the strain components εxx = εxy = εyz = εyy = 0, while εzz and εxz are functions
of z only,

εzz =
duz
dz

, εxz =
1

2

dux
dz

. (8.70)

Moreover, we neglect the inertia forces and treat the problem as elastostatic.
As far the boundary conditions are concerned, the displacement vector vanishes at the bed,

and the surface traction vanishes at the upper free surface, that is,

ux = uz = 0 for z = 0 (8.71)

τxz = τzz = 0 for z = H. (8.72)

Since div ~u = duz/dz, the stress components have the form

τxz = 2µεxz = µ
dux
dz

,

τzz = λdiv ~u+ 2µεzz = (λ+ 2µ)
duz
dz

.

In view of this, the boundary conditions (8.72) reduce to

dux
dz

∣∣∣∣
z=H

=
duz
dz

∣∣∣∣
z=H

= 0 . (8.73)

Under the above simplifications, the x− and z-component of the Navier-Cauchy equation
(8.55), that is,

(λ+ µ)
∂

∂x
(div ~u) + µ∇2ux + %0fx = %0

∂2ux
∂t2

,

(λ+ µ)
∂

∂z
(div ~u) + µ∇2uz + %0fz = %0

∂2uz
∂t2

,
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where fx and fz are components of the constant gravity acceleration g,

fx = g sinα , fz = −g cosα , (8.74)

reduce to the form

d2ux
dz2

+
%0g sinα

µ
= 0 ,

d2uz
dz2

− %0g cosα

λ+ 2µ
= 0 . (8.75)

The double integration with respect to z yields a general solution of these equations:

ux(z) = −%0g sinα

2µ
z2 + C1z + C2 , uz(z) =

%0g cosα

2(λ+ 2µ)
z2 + C3z + C4 , (8.76)

where Ci, i = 1, . . . , 4, are constants. The boundary condition (8.71) yields C2 = C4 = 0, while
(8.73) implies that C1 = %0gH sinα/µ and C3 = −%0gH cosα/(λ + 2µ). The solution for the
displacement components can finally be written in the form

ux(z) =
%0gH sinα

µ

(
z − z2

2H

)
, uz(z) = −%0gH cosα

λ+ 2µ

(
z − z2

2H

)
. (8.77)

We can see that the displacement components increase monotonically from zero values at the
base to their maximum values at the upper free surface. The parabolic displacement ux(z) within
the slab is sketched in Figure 8.2. Note that the y-component of the Navier-Cauchy equation is
identically satisfied. Hence, the problem is fully solved by (8.77).

�α

x
y

z

~g

ux

τxz

Figure 8.2. The displacement ux and stress τxz in the elastic plate deformed by its own weight.

We further determine the components of the stress tensor by Hooke’s law (8.21) for a linear
elastic, isotropic body:

τxx = λ
∂uz
∂z

= − λ

λ+ 2µ
%0gH cosα

(
1− z

H

)
,

τyy = τxx ,
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τzz = (λ+ 2µ)
∂uz
∂z

= −%0gH cosα
(
1− z

H

)
, (8.78)

τxy = τyz = 0 ,

τxz = µ
∂ux
∂z

= %0gH sinα
(
1− z

H

)
.

The stress components are linear functions of the height of the elastic slab and vanish at the
upper free surface. Figure 8.2 shows schematically the linear behaviour of stress τxz within the
slab. It is interesting to note that the normal component τyy does not vanish even all the strain
components vanish in y-direction.

In the particular case when the plate is not inclined (α = 0), equation (8.77) reduces to

ux(z) = 0 , uz(z) = − %0gH

λ+ 2µ

(
z − z2

2H

)
; (8.79)

the upper free surface deforms due to the own weight of the plate by

uz(H) = − %0gH
2

2(λ+ 2µ)
. (8.80)

For the Earth’s lithosphere of 100 km thickness with material parameters λ = 1.5× 1011 N/m2,
µ = 0.67× 1011 N/m2 and %0 = 3300 kg/m3, we have

uz(H) = −3300 kg/m3 × 9.81 m/s2 × 1010 m2

5.68× 1011 N/m2 ≈ −570 m .
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9. SMALL MOTIONS IN A MEDIUM WITH A FINITE
PRE-STRESS

9.1 Equations for the initial state

We consider a body B to be composed of a number of solid and fluid regions. We denote the
volume of solid regions by VS, and the volume of fluid regions by VF. The entire volume of the body
will be denoted by V = VS ∪ VF. The solid and fluid regions are separated by non-intersecting,
smooth and closed surfaces, called internal discontinuities. We denote all the internal welded
solid-solid discontinuities between solid regions by ΣSS, and all the internal slipping fluid-solid
discontinuities between fluid and solid regions by ΣFS. The union of all internal discontinuities
will be denoted by Σ = ΣSS ∪ ΣFS. The exterior surface of B will be denoted by ∂V .

Let the body B occupy at time t = 0 the volume V in the configuration κ0, which we hereafter
use as the reference configuration of the body. We suppose that this configuration does not
correspond to the natural, stress-free state of the body B but the body in the configuration κ0 is
pre-stressed by a finite stress in such a way that B is in a static equilibrium. In this configuration,
the Cauchy stress and the two Piola-Kirchhoff stresses coincide; we denote this initial static stress
by t0( ~X), where ~X denotes the position of a material particle in the configuration κ0. The static
equilibrium is guaranteed by the static linear momentum equation:

Div t0 + %0
~f0 = 0 in V − Σ , (9.1)

where %0( ~X) is the density of the body in the configuration κ0 and ~f0( ~X) is the body force per
unit mass in κ0. Since the body B contains fluid regions, it is convenient to decompose the initial
static stress t0 into the isotropic and deviatoric parts,

t0 = −p0I + tD0 , (9.2)

where the pressure p0 = −1
3tr t0 and the trace of the deviatoric part vanishes, tr tD0 = 0. Equation

of static equilibrium then transforms to the form

−Grad p0 + Div tD0 + %0
~f0 = 0 in V − Σ . (9.3)

Since a fluid is unable to support shear stresses when it is in the static equilibrium, the static
stress deviatoric tD0 vanishes in fluid regions and the static linear momentum equation reduces
to:

−Grad p0 + %0
~f0 = 0 in VF − ΣFS . (9.4)

The internal discontinuities Σ within the body are assumed to be material surfaces. The
interface condition at welded discontinuities between two solids and at slipping discontinuities
between a solid and a fluid is given by (4.46):[

~N · t0
]+
−

= ~0 on Σ , (9.5)

where ~N is the unit outward normal to the discontinuity Σ. In addition, at a slipping discontinuity
between a solid and a fluid, there can be no shear stresses in the static equilibrium on the fluid
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side and the stress vector ~N · t0 must be in the direction of the normal ~N ; the stress vector can
be expressed on the both sides of the discontinuity in the form (4.53):

~N · t0 = −p0
~N on ΣFS , (9.6)

where the initial pressure p0, p0 = −( ~N · t0 · ~N), passes through ΣFS continuously,

[p0]+− = 0 on ΣFS . (9.7)

On the outer free surface of B, the stress vector must vanish,

~N · t0 = ~0 on ∂V . (9.8)

9.2 Application of an infinitesimal deformation

We now consider a time and space dependent infinitesimal deformation field, characterized by
the displacement ~u( ~X, t), superimposed upon the initial configuration κ0. The superimposed
displacement field deforms the body into another time-dependent configuration κt, which occu-
pies volume Vt. Because of the smallness of the superimposed displacement field, the present
configuration κt is very closed to the reference configuration κ0. This motivates us to use the
same coordinates to describe the position of particles in both the configurations κ0 and κt. We
adopt the Lagrangian description of motion and write the position of a material particle in the
configuration κt in the form

~x = ~X + ~u( ~X, t) . (9.9)

We will apply the principle of geometrical linearization and develop field equations and interface
conditions correct to first order in ‖H‖, H = Grad ~u, and neglect all terms of higher order than
O(‖H‖). From mathematical point of view, the subsequent linearization process is self-consistent,
and correct to first order in ‖H‖, if the ratio of an incremental stress caused by the infinitesimal
deformation (9.9) compared to the initial static stress is also of the order of O(‖H‖), see Section
9.5.

9.3 Lagrangian and Eulerian increments

Time changes of any physical quantity Q that has a non-zero initial static value can be described
by the Eulerian (local) or Lagrangian (material) increments qE and qL, defined by

qE(~x, t) := q(~x, t)− q(~x, 0) ,

qL( ~X, t) := Q( ~X, t)− q( ~X, 0) ,
(9.10)

where q(~x, t) and Q( ~X, t) are the Eulerian and Lagrangian descriptions of quantity Q at the
present configuration κt, respectively, and q(~x, 0) and q( ~X, 0) are the initial static values of Q at
the configurations κt and κ0, respectively. The former are related by (1.22) and the latter by

q(~x, 0) = q( ~X + ~u, 0)

= q( ~X, 0) + ~u ·Grad q( ~X, 0) +O(|~u|2) .
(9.11)
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Note that the initial static values of Q at the configuration κ0 can be denoted by either q( ~X, 0)
or Q( ~X, 0), that is q( ~X, 0) ≡ Q( ~X, 0). Inserting (9.9)–(9.11) into (1.22)1 yields

Q( ~X, t) = q(~x( ~X, t), t)

= q( ~X + ~u, 0) + qE( ~X + ~u, t)

= q( ~X, 0) + ~u ·Grad q( ~X, 0) + qE( ~X + ~u, t) +O(|~u|2)

= q( ~X, 0) + ~u ·Grad q( ~X, 0) + qE( ~X, t) +O(|~u|2)
!

= q( ~X, 0) + qL( ~X, t) .

Hence, correct to first order in |~u|, the Lagrangian and Eulerian increments are related by

qL = qE + ~u ·Grad q0( ~X) , (9.12)

where q0( ~X) ≡ q( ~X, 0). Note that we have dropped the dependence of qL and qE on the positions
~X and ~x, respectively, since, in first-order theory, it is immaterial whether the increments qL and
qE are regarded as functions of ~X or ~x.

9.4 Linearized continuity equation

Adopting the above concept, the Eulerian and Lagrangian increments in density are defined by

%E := %(~x, t)− %0(~x) ,

%L := %( ~X, t)− %0( ~X) ,
(9.13)

where %(~x, t) and %( ~X, t) is the Eulerian and Lagrangian description of the density, respectively;
they can be converted to each other by (1.22). The increments satisfy the first-order relation

%L = %E + ~u ·Grad %0( ~X) . (9.14)

These two increments can be expressed in terms of displacement ~u by linearizing the Eulerian
and Lagrangian conservation of mass laws. Inserting the decomposition (9.13)1 into the Eulerian
continuity equation (4.16) and integrating it with respect to time, we find that

%E = −Div [%0( ~X)~u] , (9.15)

correct to first order in ‖H‖. Inserting (1.106) together with (9.13)2 into the Lagrangian conser-
vation of mass equation (4.60) yields

%L = −%0( ~X) Div ~u , (9.16)

correct to the same order. It is easy to validate that the last two expressions for the Eulerian and
Lagrangian increments in density are consistent with the general expression (9.14).

9.5 Increments in stress

We now consider the state of stress in the present configuration κt. The stress in κt referred to
the area element in the reference configuration κ0 is characterized by the first Piola-Kirchhoff
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stress tensor T (1) (see section 3.5). Since the initial static stress for T (1) (and also for the Cauchy
stress tensor t) is t0( ~X), we express T (1) in the form analogous to (9.10)2

T (1)( ~X, t) = t0( ~X) + T (1),L , (9.17)

where T (1),L is the Lagrangian increment of the first Piola-Kirchhoff stress tensor caused by
the infinitesimal displacement ~u( ~X, t). We assume that the increment in stresses caused by the
infinitesimal deformation is also small, of the order of O(‖H‖:

‖T (1),L‖
‖t0‖

≈ O(‖H‖) . (9.18)

The Lagrangian Cauchy stress tensor t is related to T (1) by (3.21)2:

t( ~X, t) = J−1F · T (1)( ~X, t) , (9.19)

where J and F is the Jacobian and the deformation gradient of the infinitesimal deformation
(9.9), respectively. Correct to the first order in ‖H‖, relation (9.19) can be expressed by (3.29)1:

t = (1− trH)T (1) +HT · T (1) +O(‖H‖2) . (9.20)

Substituting from (9.17) into (9.20) yields the decomposition:

t( ~X, t) = t0( ~X) + tL , (9.21)

where tL is the Lagrangian increment of the Lagrangian Cauchy stress tensor t( ~X, t), which is
related to the Lagrangian increment of the first Piola-Kirchhoff stress tensor by the relation

tL = T (1),L − (trH)t0( ~X) +HT · t0( ~X) +O(‖H‖2) . (9.22)

Equations (9.17) and (9.22) can be combined to give

T (1)( ~X, t) = t0( ~X) + (trH)t0( ~X)−HT · t0( ~X) + tL +O(‖H‖2) . (9.23)

Therefore, the knowledge of displacement gradients, the initial stress distribution and the incre-
ment in the Cauchy stress tensor determine the first Piola-Kirchhoff stress tensor.

Beside the Lagrangian increment tL of the Cauchy stress tensor we can introduce the Eulerian
increment tE of the Cauchy stress tensor by definition

tE := t(~x, t)− t0(~x) , (9.24)

where t(~x, t) is the Eulerian description of the Cauchy stress tensor. At a fixed point in space,
the Lagrangian and Eulerian increments are related by the first-order relation (9.12):

tL = tE + ~u ·Grad t0( ~X) . (9.25)

9.6 Linearized equation of motion
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The exact form of the equation of motion in the Lagrangian description is given by (4.67):

DivT (1) + %0
~F = %0

∂2~u

∂t2
in V − Σ , (9.26)

where ~F ( ~X, t) is the Lagrangian description of the body force per unit mass. Time changes of the
body force can be described by either the Eulerian increment ~fE or the Lagrangian increments
~fL, defined by

~fE := ~f(~x, t)− ~f0(~x) ,

~fL := ~F ( ~X, t)− ~f0( ~X) ,
(9.27)

where ~f(~x, t) is the Eulerian description of the body force, ~f(~x, t) = ~F ( ~X(~x, t), t). The increments
satisfy the usual first-order relation:

~fL = ~fE + ~u ·Grad ~f0( ~X) . (9.28)

To obtain the equation of motion in the Lagrangian increments, we substitute the representation
(9.17) and (9.27)2 into the exact relation (9.26). Subtracting the static equilibrium equation
(9.1), we obtain

DivT (1),L + %0
~fL = %0

∂2~u

∂t2
in V − Σ . (9.29)

This equation of motion is exactly valid in the initial configuration κ0 of the body, that is,
everywhere in the volume V − Σ.

We shall now use this form for linearization in order to express the equation of motion in
terms of the Lagrangian increment of the Cauchy stress tensor, which is more convenient to be
defined by the constitutive equation than the Lagrangian increment of the first Piola-Kirchhoff
stress tensor. We substitute (9.22) into (9.29), neglect the terms of second order in ‖H‖, and
obtain

Div tL + Div [(trH)t0]−Div (HT · t0) + %0
~fL = %0

∂2~u

∂t2
in V − Σ . (9.30)

By making use of the differential identities (A.14), (A.22) and (A.24), and recalling that trH =
Div ~u, the second and the third term on the left-hand side of (9.30) can be simplified as

Div [(trH)t0]−Div (HT · t0) = (trH)Div t0 −H .. Grad t0 .

In view of this and the static linear momentum equation (9.1), the equation of motion (9.30)
becomes

Div tL + %0
~fL + %L ~f0 −H .. Grad t0 = %0

∂2~u

∂t2
in V − Σ . (9.31)

Decomposing the initial static stress t0 into the isotropic and deviatoric parts according to (9.2),
the second term on the left-hand side of (9.31) can be arranged as

H .. Grad t0 = −H ·Grad p0 +H .. Grad tD0 .

Eliminating Grad p0 by means of (9.3), the linearized form of the Lagrangian equation of motion
can finally be written in the form

Div tL + %0(~fL +H · ~f0) + %L ~f0 −H .. Grad tD0 +H ·Div tD0 = %0
∂2~u

∂t2
in V − Σ . (9.32)
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In the fluid regions tD0 = 0, and the equation of motion reduces to

Div tL + %0(~fL +H · ~f0) + %L ~f0 = %0
∂2~u

∂t2
in VF − ΣFS . (9.33)

The equation of motion (9.31) can be rewritten explicitly in terms of the Eulerian increment
in the Cauchy stress. Applying operator Div on (9.25), using the differential identity (A.23) and
substituting for Div t0 from the static momentum equation (9.1), we obtain

Div tL = Div tE +H .. Grad t0 − ~u ·Grad (%0
~f0) .

In view of this, the differential identity (A.2) and the relation (9.28) between the Lagrangian and
Eulerian increments in body force, the equation of motion (9.31) transforms to

Div tE + %0
~fE + %E ~f0 = %0

∂2~u

∂t2
, (9.34)

where %E is the Eulerian increment in density. Strictly speaking, this equation is valid at a point
~x within the volume v(t)−σ(t) of the present configuration κt of the body rather than at a point
~X within the volume V − Σ of the initial configuration κ0. However, correct to first order in
‖H‖, this distinction is immaterial.

The final interesting form of the equation of motion in this context is

Div tL + Grad (%0~u · ~f0) + %0
~fE + %E ~f0 + Grad (~u ·Div tD0 )−Div (~u ·Grad tD0 ) = %0

∂2~u

∂t2
, (9.35)

which can be derived from (9.32) by making use of the identity

−H .. Grad tD0 +H ·Div tD0 = Grad (~u·Div tD0 )−Div (~u·Grad tD0 )+Grad (%0
~f0)·~u−~u·Grad (%0

~f0).
(9.36)

The most suitable forms of the equation of motion valid within the volume V −Σ are summarized
for convenience in Table 9.1.

Field variables Linearized equation of motion

T (1),L, ~fL, ~u DivT (1),L + %0
~fL = %0

∂2~u
∂t2

(exact)

tL, ~fL, ~u Div tL + %0
~fL + %L ~f0 −Grad ~u .. Grad t0 = %0

∂2~u
∂t2

Div tL + %0(~fL + Grad ~u · ~f0) + %L ~f0

−Grad ~u .. Grad tD0 + Grad ~u ·Div tD0 = %0
∂2~u
∂t2

tL, ~fE , ~u Div tL + %0(~fE + ~u ·Grad ~f0) + %L ~f0 −Grad ~u .. Grad t0 = %0
∂2~u
∂t2

Div tL + Grad (%0~u · ~f0) + %0
~fE + %E ~f0

+Grad (~u ·Div tD0 )−Div (~u ·Grad tD0 ) = %0
∂2~u
∂t2

tE , ~fE , ~u Div tE + %0
~fE + %E ~f0 = %0

∂2~u
∂t2

Table 9.1. Summary of various forms of the equation of motion.
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9.7 Linearized interface conditions

The linearized equation of motion must be supplemented by the kinematic and dynamic interface
conditions at the internal discontinuities.

9.7.1 Kinematic interface conditions

The kinematic interface condition on the welded solid-solid discontinuities is given by (4.49). We
transform the Eulerian form (4.49) to the Lagrangian form and obtain

[~V ]+− = ~0 on ΣSS , (9.37)

where ~V ( ~X, t) := ~v(~x( ~X, t), t) is the Lagrangian description of the velocity. We substitute for
~V ( ~X, t) from (2.5)1 and integrate the result with respect to time. Choosing ~u( ~X, 0) = ~0, the
interface condition (9.37) transforms to

[~u]+− = ~0 on ΣSS . (9.38)

Note that the interface condition (9.38) is exact, like the incremental Lagrangian linear momentum
equation (9.29).

On the fluid-solid discontinuities, tangential slip is allowed and, hence, the interface condition
(4.49) must be replaced by (4.51). Considering the transformation (1.123) between the unit
normal ~n to the deformed discontinuity σ and the unit normal ~N to the undeformed discontinuity
Σ and integrating (4.51) with respect to time, we obtain

[ ~N · ~u]+− = 0 on ΣFS , (9.39)

correct to first order in ‖H‖. This equation is the first-order condition that guarantees that there
is no separation or interpenetration of the material on either side of the fluid-solid discontinuity
ΣFS.

9.7.2 Dynamic interface conditions

The dynamic interface condition on the welded boundaries ΣSS can readily be obtained from
the interface condition (4.69). Realizing that ΣSS are material non-slipping discontinuities across
which the initial surface element dA changes continuously, scalar factor dA can be dropped from
(4.69) and we have

[ ~N · T (1)]+− = ~0 on ΣSS . (9.40)

Substituting for T (1) from (9.17) and subtracting the static interface condition (9.5), we obtain

[ ~N · T (1),L]+− = ~0 on ΣSS . (9.41)

The corresponding condition on the outer free surface ∂V is simply

~N · T (1),L = ~0 on ∂V . (9.42)

Both (9.41) and (9.42) are exact, like the kinematic interface condition (9.38).
The dynamic interface condition on the slipping fluid-solid discontinuities ΣFS requires more
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consideration. Figure 9.1 shows a small portion of a slipping boundary; ~N+dA+ and ~N−dA−

are two initial elements of surface area
centered on particles ~X+ and ~X− lying
on the upper and lower side of an un-
deformed discontinuity ΣFS. Upon de-
formation, both particles ~X+ and ~X−

move to the same point ~x and the sur-
face elements ~N+dA+ and ~N−dA−

merge to form the continuous element
~nda on the deformed discontinuity σ.
Since ΣFS are material discontinuities,
the interface condition (4.69) reduces
to[

~NdA · T (1)
]+
−

= ~0 on ΣFS .

(9.43)
Substituting for T (1) from (9.17) and for dA from (1.117), this exact condition can be written,
correct to first order in ‖H‖, in the form

�~X+

dA+

~N+

~X−

dA−

~N−

~x da

~n

[~u]+−

~u+ ~u−

ΣFS

σFS

Figure 9.1. A small portion of a fluid-solid disconti-
nuity before (ΣFS) and after (σFS) deformation.

[
~N · (t0 + T (1),L)(1−DivΣ~u)da

]+
−

= ~0 on ΣFS . (9.44)

where da = da( ~X, t) is the Lagrangian description of the deformed surface element of the dis-
continuity σ. The continuity of the Eulerian surface element da(~x, t) on σ, that is, the condition
[da(~x, t)]+− = 0 on σ, implies the continuity of the Lagrangian surface element da( ~X, t) on Σ, that

is, the condition
[
da( ~X, t)

]+
−

= 0 on Σ. Consequently, the factor da can be dropped from the

condition (9.44). In addition, since the initial static stress vector ~N · t0 is continuous, the offset
quantities ~N+ · t+0 and ~N− · t−0 are related by

~N+ · t+0 = ~N− · t−0 − [~u]+− ·GradΣ( ~N · t0) on ΣFS , (9.45)

where the superscripts ± denote evaluation at ~X±. Correct to first order in |~u|, it is immaterial
whether the tensor GradΣ( ~N · t0) is taken at ~X±. Using (9.45) and the differential identity
(B.18)5, equation (9.44) can be put into the form[

~N · T (1),L −DivΣ [~u⊗ ( ~N · t0)]
]+
−

= ~0 on ΣFS . (9.46)

This linearized interface condition guarantees the continuity of stress vector across a slipping
boundary. At a welded discontinuity, which experiences zero slip, the displacement ~u is continuous
and condition (9.46) reduces to (9.41).

In addition, on the fluid-solid boundaries, the initial stress vector is of the form (9.6). Using
this, (9.46) reduces to[

~N · T (1),L + DivΣ(p0~u⊗ ~N)
]+
−

= ~0 on ΣFS , (9.47)

which, by making use of the differential identity (B.18)5, can also be written as[
~N · T (1),L + ~N DivΣ(p0~u) + p0~u ·GradΣ

~N
]+
−

= ~0 on ΣFS . (9.48)
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The kinematic condition (9.39) requires the normal component of displacement ~u to be continuous
across ΣFS. This means that the changes in ~N · ~u must be equally large on both sides of the
discontinuity ΣFS, that is, [

GradΣ( ~N · ~u)
]+
−

= ~0 on ΣFS . (9.49)

Employing the identity (B.18)2 and the symmetry of surface curvature tensor, (GradΣ
~N)T =

GradΣ
~N , equation (9.49) can be considered in the form[

GradΣ~u · ~N + ~u ·GradΣ
~N
]+
−

= ~0 on ΣFS . (9.50)

If we substitute this form for the last term in the condition (9.48) and use the continuity of the
pressure p0, the condition (9.48) can be written in the alternative form[

~N · T (1),L + ~N DivΣ(p0~u)− p0GradΣ~u · ~N
]+
−

= ~0 on ΣFS . (9.51)

This is the most useful form of the linearized dynamical continuity condition on ΣFS.
If the fluid-solid boundary is, in addition, frictionless, the Cauchy stress vector ~n · t must be

in the direction of normal ~n to the deformed fluid-solid boundary σFS , that is, its projection on
σFS must vanish:

~n · t · (I − ~n⊗ ~n) = ~0 on σFS . (9.52)

Making use of (1.118), (9.21) and (9.22), the Eulerian Cauchy stress vector ~n · t at the deformed
discontinuity σFS can be expressed in terms of the first Piola-Kirchhoff stress tensor on the
undeformed discontinuity ΣFS. Correct to first order in ‖H‖, it holds

~n · t = [ ~N + ( ~N ·H · ~N) ~N −H · ~N ] · [t0 + T (1),L − (trH)t0 +HT · t0]

= ~N · t0 + ~N · T (1),L − (trH)( ~N · t0)+ ~N · (HT · t0)+( ~N ·H · ~N)( ~N · t0)−(H · ~N) · t0
= ~N · t0 + ~N · T (1),L − (trH − ~N ·H · ~N)( ~N · t0) ,

where we have abbreviated t0 ≡ t0( ~X) and used the identity ~N · (HT · t0) = (H · ~N) · t0. The
last term in the above equation can further be expressed in terms of the surface divergence of the
displacement ~u, see (1.120):

~n · t = ~N · t0 + ~N · T (1),L − (DivΣ~u)( ~N · t0) on ΣFS . (9.53)

The dyadic product ~n ⊗ ~n occurring in the interface condition (9.52) can be written, correct to
first order in ‖H‖, in the form

~n⊗ ~n = ~N ⊗ ~N − (GradΣ~u · ~N)⊗ ~N − ~N ⊗ (GradΣ~u · ~N) . (9.54)

Substituting (9.53) and (9.54) into (9.52) yields

[ ~N ·t0+ ~N ·T (1),L−(DivΣ~u)( ~N ·t0)]·(I− ~N⊗ ~N)+( ~N ·t0)·[(GradΣ~u· ~N)⊗ ~N+ ~N⊗(GradΣ~u· ~N)] = ~0 ,

which is valid on ΣFS. At this discontinuity, the initial stress vector ~N · t0 has the form (9.6),
which helps to reduce the last equation:

( ~N · T (1),L) · (I − ~N ⊗ ~N)− p0(GradΣ~u · ~N) = ~0 .
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Using the identity (B.33), we can also write

[ ~N · T (1),L − p0(GradΣ~u · ~N)] · (I − ~N ⊗ ~N) = ~0 .

Finally, we can add the term ~N DivΣ(p0~u) · (I − ~N ⊗ ~N) = ~0 for convenience:

[ ~N · T (1),L + ~N DivΣ(p0~u)− p0(GradΣ~u · ~N)] · (I − ~N ⊗ ~N) = ~0 . (9.55)

Correct to first order in ‖H‖, this equation guarantees that there is no shear stress vector on the
fluid-solid boundary ΣFS.

By comparing condition (9.51) and (9.55), we see that the quantity

~τ (1),L := ~N · T (1),L + ~N DivΣ(p0~u)− p0(GradΣ~u · ~N) (9.56)

is a continuous, normal vector on ΣFS:[
~τ (1),L

]+
−

= ~0 , (9.57)

~τ (1),L = ( ~N · ~τ (1),L) ~N . (9.58)

At a solid-solid discontinuity ΣSS, the last two term in the definition (9.56) of ~τ (1),L are continuous
and the condition (9.54) coincides with the condition (9.41). Therefore, frictionless fluid-solid and
welded solid-solid discontinuities are distinguished by the normality condition (9.58) only.

All above derived condition can be expressed in terms of the incremental Lagrangian Cauchy
stress vector ~N · tL rather than ~N · T (1),L using the relation (9.22). The left scalar product of
(9.22) with the normal ~N yields

~N · T (1),L = ~N · tL + (trH)( ~N · t0)− (t0 ·H) · ~N ,

where we have used the identity ~N · (HT · t0) = (t0 ·H) · ~N which follows from the symmetry
of t0. Decomposing the initial stress into the isotropic and deviatoric parts, see (9.2), and using
(B.30) and (B.31) results in

~N · T (1),L = ~N · tL + p0(GradΣ~u · ~N − ~N DivΣ~u) + (trH)( ~N · tD0 )− (tD0 ·H) · ~N , (9.59)

which is valid for both the solid-solid interface ΣSS and the fluid-solid interface ΣFS. Moreover,
the auxiliary vector ~τ (1),L, which is defined at the fluid-solid interface ΣFS, can be expressed in
the form

~τ (1),L = ~N · tL + (GradΣp0 · ~u) ~N . (9.60)

The complete set of the interface conditions on Σ is summarized for convenience in Table 9.2.
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Discontinuity type Exact and linearized interface condition

∂V : free surface ~N · T (1),L = ~0 (exact)

ΣSS: solid-solid [~u]+− = ~0 (exact)

[ ~N · T (1),L]+− = ~0 (exact)

ΣFS: fluid-solid [ ~N · ~u]+− = 0

[~τ (1),L]+− = [ ~N · ~τ (1),L]+−
~N = ~0

~τ (1),L := ~N · T (1),L + ~N DivΣ(p0~u)− p0(GradΣ~u · ~N)

Table 9.2. Summary of exact and linearized interface conditions.

9.8 Linearized elastic constitutive equation

All of the equations we have derived so far can be regarded as linearized balance laws of ei-
ther geometry or physics. They are valid regardless of the constitution of the material. To
complete these equations, we specify the constitutive relation between the incremental stresses
and displacement gradient. Here we will assume that the material behavior for the infinitesimal
superimposed deformation is linear and elastic, as discussed in section 8.1.

The linearized constitutive equations for the incremental first Piola-Kirchhoff stress T (1),L

the incremental Lagrangian Cauchy stress tL can be obtained from (8.16) and (8.17) using the
decompositions (9.17) and (9.21):

T (1),L = C .. Ẽ − t0 · R̃+ a[(tr Ẽ)t0 + (t0 .. Ẽ)I] + (b+ c)(Ẽ · t0)

+ (b+ c+ 1)(t0 · Ẽ) , (9.61)

tL = C .. Ẽ + R̃ · t0 − t0 · R̃+ (a− 1)(tr Ẽ)t0 + a(t0 .. Ẽ)I

+ (b+ c+ 1)(t0 · Ẽ + Ẽ · t0) . (9.62)

Every choice of the scalars a, b and c defines the behavior of a linear elastic solid. The most
convenient alternative, adopted by Dahlen and Tromp (1998), is

a = −b = −c =
1

2
. (9.63)

Under this choice, the equation (9.61) and (9.62) reduce to

T (1),L = C .. Ẽ − t0 · R̃− Ẽ · t0 +
1

2
(tr Ẽ)t0 +

1

2
(t0 .. Ẽ)I , (9.64)

tL = C .. Ẽ + R̃ · t0 − t0 · R̃−
1

2
(tr Ẽ)t0 +

1

2
(t0 .. Ẽ)I . (9.65)

By the decomposition (9.2) of the initial static stress into the isotropic and deviatoric parts, we
also have

T (1),L = C .. Ẽ + p0[Ẽ + R̃− (tr Ẽ)I]− tD0 · R̃− Ẽ · tD0 +
1

2
(tr Ẽ)tD0 +

1

2
(tD0

.. Ẽ)I, (9.66)

tL = C .. Ẽ + R̃ · tD0 − tD0 · R̃−
1

2
(tr Ẽ)tD0 +

1

2
(tD0

.. Ẽ)I . (9.67)
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It deserves to note that the incremental Lagrangian Cauchy stress tL does not depend explicitly
on the initial pressure p0, but only on the elastic tensor C and the initial deviatoric stress tD0 . In
fact, this is what motivated us to set a = −b = −c = 1/2 in equations (9.61) and (9.62). This is
the only choice that completely eliminates the explicit dependence of tL on p0.

9.9 Gravitational potential theory
So far we have not specified a body force acting in body B. We will now assume that the Newton
gravitational attraction is the body force acting in the body B; we call B a self-gravitating body.
Since the Newton gravitation is a conservative force, the Eulerian gravitational force per unit
mass ~g(~x, t) is deriveable from an Eulerian gravitational potential φ(~x, t):

~g = −gradφ . (9.68)

Given an instantaneous Eulerian density distribution %(~x, t), we can find φ(~x, t) by the Newton
integral:

φ(~x, t) = −G
∫
v(t)

%(~x′, t)

‖~x− ~x′‖
dv′ , (9.69)

whereG is Newton’s gravitational constant and the primes denote the dummy point of integration.
The integration in (9.69) is carried out over the volume v(t) which is filled in by a material body
at time t, that is over all point ~x′ where %(~x′, t) > 0. By combining (9.68) and (9.69), we obtain
the gravitational attraction ~g(~x, t):

~g(~x, t) = −G
∫
v(t)

%(~x′, t)(~x− ~x′)
‖~x− ~x′‖3

dv′ . (9.70)

It can be verified that the gravitational potential satisfies Poisson’s equation:

div gradφ = 4πG% in v(t)− σ(t) . (9.71)

At the internal discontinuities across which the density % has a jump, the Poisson equation (9.71)
must be supplemented by the interface conditions

[φ]+− = 0 on σ(t) , (9.72)

[~n · gradφ]+− = 0 on σ(t) . (9.73)

Note that the continuity of the scalars φ and (~n ·gradφ) implies the continuity of the gravitational
attraction vector ~g = −gradφ.

Classical gravitational potential theory, as summarized above, is an inherently Eulerian theory.
The quantities φ and ~g are the gravitational potential and gravitational attraction at a fixed
point ~x in space. The corresponding Lagrangian variables can, however, readily be found from
the relation

Φ( ~X, t) := φ(~x( ~X, t), t) ~G( ~X, t) := ~g(~x( ~X, t), t) . (9.74)

Using (1.79) and (4.60), we transform (9.69) and (9.70) into integrals over the corresponding
reference volume V,

Φ( ~X, t) =−G
∫
V

%0( ~X ′)

‖~x( ~X, t)− ~x( ~X ′, t)‖
dV ′ , (9.75)

~G( ~X, t) =−G
∫
V

%0( ~X ′)[~x( ~X, t)− ~x( ~X ′, t)]

‖~x( ~X, t)− ~x( ~X ′, t)‖3
dV ′ . (9.76)
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Making use of (1.46)3, it is straightforward to rewrite the Poisson equation (9.71) in the La-
grangian form:

F−1 · F−T .. Grad Grad Φ + divF−T ·Grad Φ = 4πG% in V − Σ , (9.77)

where %( ~X, t) is the Lagrangian description of the density %(~x, t). To transform the interface
conditions (9.72) and (9.73) to the undeformed discontinuity Σ, we apply (1.46)1 and (1.77) and
obtain:

[Φ]+− = 0 on Σ , (9.78)[
~N · F−1 · F−T√

~N ·B · ~N
·Grad Φ

]+

−
= 0 on Σ . (9.79)

9.9.1 Equations for the initial state

Let the density %0( ~X) in the initial configuration κ0 generates the initial gravitational potential
φ0( ~X), and let

~g0 = −Gradφ0 (9.80)

denote the corresponding initial gravitational attraction. The two fields φ0 and ~g0 are given in
terms of %0 by

φ0( ~X) = −G
∫
V

%0( ~X ′)

‖ ~X − ~X ′‖
dV ′ , (9.81)

and

~g0( ~X) = −G
∫
V

%0( ~X ′)( ~X − ~X ′)

‖ ~X − ~X ′‖3
dV ′ . (9.82)

The density %0 is assumed to vanish outside the body, but φ0 and ~g0 are both non-zero everywhere
outside and inside the body. The potential φ0 satisfies Poisson’s equation 27

∇2φ0 = 4πG%0 in V − Σ , (9.83)

together with the interface conditions at the internal discontinuities across which the density %0

has a jump:

[φ0]+− = 0 on Σ , (9.84)[
~N ·Gradφ0

]+
−

= 0 on Σ . (9.85)

In the region outside the body, the potential is harmonic,

∇2φ0 = 0 outside V . (9.86)

9.9.2 Increments in gravitation

27∇2 ≡ Div Grad ; we do not introduce a nabla operator for the Eulerian operator div grad .

141



The Eulerian and Lagrangian increments in gravitational potential are defined by

φ(~x, t) =: φ0(~x) + φE ,

Φ( ~X, t) =: φ0( ~X) + φL ,
(9.87)

where φ(~x, t) and Φ( ~X, t) is the Eulerian and Lagrangian description of the gravitational potential,
respectively; they are related to each other by (9.74)1. The increments satisfy the usual first-order
relation

φL = φE + ~u ·Gradφ0( ~X) . (9.88)

Applying the operator −grad on (9.87)1, the Eulerian gravitation attraction can be arranged as
follows:

~g(~x, t) = −gradφ(~x, t) = −gradφ0(~x)− gradφE = ~g0(~x)− gradφE = ~g0(~x)−GradφE ,

where, in the last step, we have neglected the term H · GradφE , as can be seen from (1.108)1.
Defining the Eulerian increment in gravitation in accordance with (9.10)1,

~gE := ~g(~x, t)− ~g0(~x) , (9.89)

the above result shows that ~gE is expressible as the gradient of the corresponding potential
increment:

~gE = −GradφE . (9.90)

The corresponding result for ~gL is more complicated. Writing the Lagrangian description of
the gravitational attraction in the form

~G( ~X, t) = ~g(~x( ~X, t), t) = ~g( ~X + ~u, t) = ~g0( ~X + ~u, t) + ~gE = ~g0( ~X) + ~u ·Grad~g0( ~X) + ~gE ,
!

= ~g0( ~X) + ~gL ,

it shows that the two increments in gravitation are related by

~gL = ~gE + ~u ·Grad~g0( ~X) (9.91)

in agreement with the general relation (9.12). Inserting for ~gE from (9.90) and for ~g0( ~X) from
(9.80), we obtain

~gL = −GradφE − ~u ·Grad Gradφ0( ~X) . (9.92)

On the other hand, applying the operator Grad on (9.88) and using the identity (A.3), we obtain

GradφL = GradφE + Grad ~u ·Gradφ0( ~X) + Grad Gradφ0( ~X) · ~u .

Combining the last two relations and using the symmetry of tensor Grad Gradφ0, the Lagrangian
increment in gravitation can be expressed in an alternative form

~gL = −GradφL + Grad ~u ·Gradφ0( ~X) . (9.93)

The difference between the two relations (9.90) and (9.93) reflects the inherently Eulerian nature
of classical gravitational field theory.
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9.9.3 Linearized Poisson’s equation

To obtain the linearized form of Poisson equation, we apply geometrical linearization (1.108)3 of
the Laplace operator to the exact relation (9.71) and find that

∇2Φ− 2H .. Grad Grad Φ−DivH ·Grad Φ = 4πG% in V − Σ , (9.94)

correct to the first order in ‖H‖. Substituting for Φ from (9.87)2 and for % from (9.13)1,
subtracting Poisson’s equation (9.83) for the initial configuration, we obtain

∇2φL − 2H .. Grad Gradφ0 −DivH ·Gradφ0 = 4πG%L in V − Σ , (9.95)

where %L is the Lagrangian increment in density. Making use of the differential identities (A.37)
and (A.38), and the symmetry of tensor Grad Gradφ0, we can derive the identity

∇2(~u ·Gradφ0) = 2H .. Grad Gradφ0 + DivH ·Gradφ0 + ~u ·Grad (∇2φ0) . (9.96)

Substituting for the expression 2H .. Grad Gradφ0 + DivH · Gradφ0 from (9.96) into (9.95),
using Poisson’s equation (9.83) for the initial potential, and considering (9.15) for the Lagrangian
increment in density, Poisson’s equation for φL can be put into an alternative form

∇2φL +∇2(~u · ~g0) = −4πGDiv (%0~u) in V − Σ . (9.97)

The linearized Poisson equation can also be written in terms of the Eulerian increments in
potential and density. By inspection of (9.14), the right-hand side of (9.97) is proportional to the
Eulerian increment in density %E . Moreover, taking into account (9.89), φL = φE −~u ·~g0, and we
obtain

∇2φE = 4πG%E in V − Σ . (9.98)

9.9.4 Linearized interface condition for potential increments

The exact continuity condition (9.78) for the potential on the undeformed discontinuity Σ can be
expressed in terms of the Lagrangian increment in potential as[

φ0( ~X) + φL
]+
−

= 0 on Σ . (9.99)

At a welded discontinuity ΣSS, which experiences zero slip, the initial potential φ0 is continuous
and the condition (9.99) reduces to[

φL
]+
−

= 0 on ΣSS . (9.100)

At a fluid-solid discontinuity ΣFS, which may exhibit a tangential slip, the offset quantities φ+
0

and φ−0 are related by an expansion analogous to (9.45). Correct to first order in ‖~u‖, it holds

φ+
0 = φ−0 − [~u]+− ·GradΣφ0 on ΣFS , (9.101)

where the superscripts ± denote evaluation at ~X±. Within the same accuracy, it is immaterial
whether GradΣφ0 is taken at ~X+ or ~X−. Substituting (9.101) into (9.99) yields[

φL − ~u ·GradΣφ0

]+
−

= 0 on ΣFS . (9.102)

143



Since the normal component of displacement and the normal component of the initial gravitation
are continuous across ΣFS, we can subtract the term ( ~N · ~u)( ~N ·Gradφ0) from the left-hand side
of (9.102) for convenience and obtain[

φL − ~u ·Gradφ0

]+
−

= 0 on ΣFS . (9.103)

Note that equation (9.100) is exact whereas (9.103) is correct to first order in ‖~u‖.
The corresponding results for φE can be obtained from the relation (9.88) between the incre-

ments φE and φL. At a welded discontinuity ΣSS, we have[
φE + ~u ·Gradφ0

]+
−

= 0 .

Since the displacement and the initial gravitation are continuous on ΣSS, the interface condition
simplifies to [

φE
]+
−

= 0 on ΣSS . (9.104)

At a fluid-solid discontinuity ΣFS, the interface condition (9.103) transforms to a condition of
the same form as (9.104). Hence, for the both types of discontinuities, the Eulerian increment in
potential satisfies the interface condition of the form[

φE
]+
−

= 0 on Σ , (9.105)

where Σ = ΣSS ∪ ΣFS.

9.9.5 Linearized interface condition for increments in gravitation

To obtain the linearized form of the interface condition for gravitation, we apply the geometrical
linearization (1.107)1 of F−1 and the linearized equation (1.116) in the exact interface condition
(9.79) and find that[
~N ·Grad Φ− ~N ·H ·Grad Φ−Grad Φ ·H · ~N + ( ~N ·H · ~N)( ~N ·Grad Φ)

]+
−

= 0 on Σ

(9.106)
correct to the first order in ‖H‖. Upon inserting the decomposition (9.87)2 of the Lagrangian
gravitational potential into (9.106), we find, correct to first order in ‖~u‖ that[

− ~N · ~g0 + ~N ·GradφL + ~N ·H · ~g0 + ~g0 ·H · ~N − ( ~N ·H · ~N)( ~N · ~g0)
]+
−

= 0 , (9.107)

where the initial gravitation ~g0 is introduced for convenience. On the other hand, equations (B.5)
and (B.28) can be combined to give

~g0 ·H · ~N − ( ~N ·H · ~N)( ~N · ~g0) = GradΣ( ~N · ~u) · (~g0)Σ , (9.108)

where (~g0)Σ is the tangential part of ~g0. Since both the vectors on the right-hand side of (9.108)
are continuous on Σ, we obtain[

~g0 ·H · ~N − ( ~N ·H · ~N)( ~N · ~g0)
]+
−

= 0 on Σ . (9.109)
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In view of this, the interface condition (9.107) reduces to[
− ~N · ~g0 + ~N ·GradφL + ~N ·H · ~g0

]+
−

= 0 on Σ . (9.110)

Note that the interface condition (9.110) is valid at all discontinuities Σ. At a welded discontinuity
ΣSS, the normal component of the initial gravitation is continuous and the condition (9.110)
further reduces to [

~N ·GradφL + ~N ·H · ~g0

]+
−

= 0 on ΣSS . (9.111)

At a fluid-solid discontinuity ΣFS which admits a tangential slip, the quantities ~N± · ~g±0 are
related by an expansion analogous to (9.101):

~N+ · ~g+
0 = ~N− · ~g−0 − [~u]+− ·GradΣ( ~N · ~g0) on ΣFS , (9.112)

correct to first order in ‖~u‖. Substituting (9.112) into (9.110) yields[
~N ·GradφL + ~N ·H · ~g0 + ~u ·GradΣ( ~N · ~g0)

]+
−

= 0 on ΣFS . (9.113)

The last term in the brackets can be developed by means of the differential identity (B.18)2

resulting in:[
~N ·GradφL + ~N ·H · ~g0 + ~u ·GradΣ~g0 · ~N + ~u ·GradΣ

~N · ~g0

]+
−

= 0 on ΣFS . (9.114)

In view of (9.50) and the continuity of the initial gravitation, the last term in the brackets can
be rewritten in a slightly different form[
~N ·GradφL + ~N ·H · ~g0 + ~u ·GradΣ~g0 · ~N − ~g0 ·GradΣ~u · ~N

]+
−

= 0 on ΣFS . (9.115)

By combining (B.32) and the interface condition (9.111), it is readily to show that the last term
in the brackets is continuous on Σ and can, thus, be dropped from the brackets, leaving[

~N ·GradφL + ~N ·H · ~g0 + ~u ·GradΣ~g0 · ~N
]+
−

= 0 on ΣFS . (9.116)

The corresponding results for φE can be obtained from the relation (9.88) between the incre-
ments φE and φL. Substituting (9.88) into (9.111) and employing the differential identity (A.3),
we obtain [

~N ·GradφE − ~N ·Grad~g0 · ~u
]+
−

= 0 on ΣSS . (9.117)

Making use of the identity (B.37), the continuity of ~u, φ0 and the normal component of ~g0 on
ΣSS, and the Poisson’s equation (9.83), we find that[

~N ·Grad~g0 · ~u
]+
−

=
[
( ~N · ~u)Div~g0

]+
−

= −4πG[%0]+−( ~N · ~u) on ΣSS . (9.118)

The interface condition (9.118) can then be put into the form[
~N ·GradφE + 4πG%0( ~N · ~u)

]+
−

= 0 on ΣSS . (9.119)
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At a fluid-solid discontinuity ΣFS, condition (9.119), expressed in terms of φE , becomes[
~N ·GradφE − ~N ·Grad~g0 · ~u+ ~u ·GradΣ~g0 · ~N

]+
−

= 0 on ΣFS . (9.120)

Because of the symmetry of the second-order tensor Grad~g0 = −Grad Gradφ0, we can write
~N ·Grad~g0 · ~u = ~u ·Grad~g0 · ~N . Moreover, the identity (B.32), applied to the initial gravitation
vector ~g0, yields

Grad~g0 · ~N −GradΣ~g0 · ~N = ~N( ~N ·Grad~g0 · ~N) . (9.121)

The interface condition for the expression ~N · Grad~g0 · ~N follows from the identity (B.37), the
continuity of the initial potential and normal component of initial gravitation, and Poisson’s
equation (9.83): [

~N ·Grad~g0 · ~N
]+
−

= [Div~g0]+− = −4πG[%0]+− on ΣFS . (9.122)

A combination of (9.123) and (9.124) results in[
~N ·Grad~g0 · ~u− ~u ·GradΣ~g0 · ~N

]+
−

= −4πG[%0]+−( ~N · ~u) on ΣFS . (9.123)

In view of this, the interface condition (9.122) for gravitation at a discontinuity ΣFS takes the form
(9.121), that is valid at a discontinuity ΣSS. In summary, for the both types of discontinuities,
the linearized form of the interface condition for gravitation is[

~N ·GradφE + 4πG%0( ~N · ~u)
]+
−

= 0 on Σ . (9.124)

The complete set of linearized interface conditions at a density discontinuity is summarized for
convenience in Table 9.3.
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Discontinuity type Linearized interface condition

∂V : free surface
[
φL
]+
−

= 0 (exact)[
φE
]+
−

= 0[
~N ·GradφL

]+
−
− ~N ·Grad ~u− · ~g−0 = 0[

~N ·GradφE
]+
−
− 4πG%−0 ( ~N · ~u−) = 0

ΣSS: solid-solid
[
φL
]+
−

= 0 (exact)[
φE
]+
−

= 0[
~N ·GradφL + ~N ·Grad ~u · ~g0

]+
−

= 0[
~N ·GradφE + 4πG%0( ~N · ~u)

]+
−

= 0

ΣFS: fluid-solid
[
φL + ~u · ~g0

]+
−

= 0[
φE
]+
−

= 0[
~N ·GradφL + ~N ·Grad ~u · ~g0 + ~u ·GradΣ~g0 · ~N

]+
−

= 0[
~N ·GradφE + 4πG%0( ~N · ~u)

]+
−

= 0

Table 9.3. Summary of linearized gravitational interface conditions.

9.9.6 Boundary-value problem for the Eulerian potential increment

The gravitational increments φE and φL can be obtained as a function of particle displacement
~u in two ways. Either by solving the boundary-value problem for linearized Poisson’s equations
or by the linearization of the exact Newton integrals. We consider both approaches here and
demonstrate their equivalence.

The Eulerian potential increment φE is the solution to the linearized Poisson’s equation

∇2φE = 4πG%E in V − Σ , (9.125)

subject to the interface conditions derived above:[
φE
]+
−

= 0 on Σ , (9.126)[
~N ·GradφE

]+
−

= −4πG[%0]+−( ~N · ~u) on Σ . (9.127)

Outside the body B, where %E = 0, the incremental potential is harmonic, ∇2φE = 0. The
solution to the boundary-value problem (9.127)–(9.130) is

φE = −G
∫
V

%E ′

L
dV ′ +G

∫
Σ

[%′0]+−( ~N ′ · ~u ′)
L

dΣ′ , (9.128)
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where L is the distance between the computation point ~X and a dummy point of integration ~X ′,

L := ‖ ~X − ~X ′‖ . (9.129)

The first term in (9.130) accounts for the volumetric density distribution %E in V and the second
term accounts for the surface mass distribution due to the normal displacement of the boundary
Σ. Substituting %E ′ = −Div ′(%′0~u

′) in (9.130) and applying Green’s theorem,∫
V

Div ′~v ′

L
dV ′ = −

∫
Σ

[ ~N ′ · ~v ′]+−
L

dΣ′ −
∫
V
~v ′ ·Grad ′

( 1

L

)
dV ′ , (9.130)

which is valid for a differentiable vector function ~v, we find that the surface integrals cancel,
leaving simply

φE = −G
∫
V
%′0~u

′ ·Grad ′
( 1

L

)
dV ′ . (9.131)

By direct differentiation we find that

Grad ′
( 1

L

)
=

~X − ~X ′

‖ ~X − ~X ′‖3
. (9.132)

Equation (9.133) is the most convenient explicit analytical representation of the Eulerian potential
increment φE as a linear function of the particle displacement ~u. The corresponding representation
of the incremental Eulerian gravitation ~gE = −GradφE can be written in the form

~gE = G

∫
V
%′0(~u ′ ·Π)dV ′ , (9.133)

where

Π :=
I

‖ ~X − ~X ′‖3
− 3( ~X − ~X ′)⊗ ( ~X − ~X ′)

‖ ~X − ~X ′‖5
. (9.134)

9.9.7 Boundary-value problem for the Lagrangian potential increment

The Lagrangian potential increment φL satisfies the linearized Poisson’s equation

∇2φL = −∇2(~u · ~g0)− 4πGDiv (%0~u) in V − Σ , (9.135)

subject to the interface conditions derived above:[
φL
]+
−

= 0 on ΣSS , (9.136)[
~N ·GradφL

]+
−

= − ~N · [H]+− · ~g0 on ΣSS , (9.137)[
φL
]+
−

= −[~u]+− · ~g0 on ΣFS , (9.138)[
~N ·GradφL

]+
−

= − ~N · [H]+− · ~g0 − [~u]+− ·GradΣ~g0 · ~N on ΣFS . (9.139)

Outside the body B, where %0 = 0 and ~u = ~0, the incremental potential is harmonic, ∇2φL = 0.
The solution to the boundary-value problem (9.137)–(9.141) is

φL =
1

4π

∫
V

∇2 ′(~u ′ · ~g0
′) + 4πGDiv ′(%′0~u

′)

L
dV ′ +

1

4π

∫
ΣSS

~N ′ · [H ′]+− · ~g0
′

L
dΣ′
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(9.140)

+
1

4π

∫
ΣFS

~N ′ · [H ′]+− · ~g0
′ + [~u ′]+− ·Grad′

Σ
~g0
′ · ~N ′

L
dΣ′− 1

4π

∫
ΣFS

([~u ′]+− ·~g0
′)
(
~N ′ ·Grad ′

( 1

L

))
dΣ′ .

The first two surface integrals on the right-hand side of (9.142) can be regarded as the gravitational
potentials of single layers placed on ΣSS and ΣFS with surface densities 1

4πG( ~N · [H]+− · ~g0) and
1

4πG( ~N · [H]+− ·~g0 +[~u]+− ·GradΣ~g0 · ~N), respectively. The last surface integral in (9.142) represents

the potential of a double layer placed on ΣFS with the density − 1
4πG [~u]+− · ~g0.

Applying Green’s theorem (9.132) on the volume integral, we obtain

φL = − 1

4π

∫
ΣSS

~N ′ · [Grad ′(~u ′ · ~g0
′) + 4πG%′0~u

′]+−
L

dΣ′

+
1

4π

∫
ΣSS

~N ′ · [H ′]+− · ~g0
′

L
dΣ′

− 1

4π

∫
ΣFS

~N ′ · [Grad ′(~u ′ · ~g0
′) + 4πG%′0~u

′]+−
L

dΣ′

+
1

4π

∫
ΣFS

~N ′ · [H ′]+− · ~g0
′ + [~u ′]+− ·Grad′

Σ
~g0
′ · ~N ′

L
dΣ′

− 1

4π

∫
ΣFS

([~u ′]+− · ~g0
′)
(
~N ′ ·Grad ′

( 1

L

))
dΣ′

− 1

4π

∫
V

[Grad ′(~u ′ · ~g0
′) + 4πG%′0~u

′] ·Grad ′
( 1

L

)
dV ′ .

It is necessary to apply Green’s theorem to each sub-volumes of the volume V separately, and add
the results, since the expression ∇2(~u ·~g0) + 4πGDiv (%0~u) in the integrand may possess different
jumps at the discontinuities ΣSS and ΣFS. Making use of the identity

Grad ′(~u ′ · ~g0
′) = H ′ · ~g0

′ + Grad ′~g0
′ · ~u ′ ,

and the continuity of the initial gravitation, the surface integrals containing the displacement
gradient H ′ cancel. Moreover, the last contribution in the volume integral is exactly the Eulerian
potential increment φE referred to the particle position ~X. Hence, we have

φL = φE − 1

4π

∫
ΣSS

~N ′ · [Grad ′~g0
′ · ~u ′ + 4πG%′0~u

′]+−
L

dΣ′

− 1

4π

∫
ΣFS

~N ′ · [Grad ′~g0
′ · ~u ′ + 4πG%′0~u

′]+−
L

dΣ′

+
1

4π

∫
ΣFS

[~u ′]+− ·Grad′
Σ
~g0
′ · ~N ′

L
dΣ′

− 1

4π

∫
ΣFS

([~u ′]+− · ~g0
′)
(
~N ′ ·Grad ′

( 1

L

))
dΣ′

− 1

4π

∫
V

Grad ′(~u ′ · ~g0
′) ·Grad ′

( 1

L

)
dV ′ .
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The surface integral over ΣSS and the first two surface integrals over ΣFS vanish because of the
interface condition (9.120) and (9.125), respectively. As a result, we have

φL = φE − 1

4π

∫
ΣFS

([~u ′]+− · ~g0
′)
(
~N ′ ·Grad ′

( 1

L

))
dΣ′ − 1

4π

∫
V

Grad ′(~u ′ · ~g0
′) ·Grad ′

( 1

L

)
dV ′ .

(9.141)
We now intend to apply the following Green’s theorem to the volume integral on the right-hand

side of (9.144). For a differentiable scalar function φ, it holds∫
V

Grad ′φ′ ·Grad ′
( 1

L

)
dV ′ = −

∫
Σ

[φ′]+−

(
~N ′ ·Grad ′

( 1

L

))
dΣ′ −

∫
V
φ′∇2 ′

( 1

L

)
dV ′ . (9.142)

Since

∇2 ′
( 1

L

)
= −4πδ( ~X − ~X ′) , (9.143)

where δ( ~X − ~X ′) is the three-dimensional delta function with the property∫
V
φ( ~X ′)δ( ~X − ~X ′)dV ′ = φ( ~X) , (9.144)

the Green’s theorem (9.144) is simplified to∫
V

Grad ′φ′ ·Grad ′
( 1

L

)
dV ′ = 4πφ−

∫
Σ

[φ′]+−

(
~N ′ ·Grad ′

( 1

L

))
dΣ′ . (9.145)

Applying (9.147) to the volume integral in (9.143), we find that the surface integrals over ΣFS

cancel, leaving

φL = φE − ~u · ~g0 +
1

4π

∫
ΣSS

[~u ′ · ~g0
′]+−

(
~N ′ ·Grad ′

( 1

L

))
dΣ′ .

The surface integral over ΣSS vanishes because of the continuity of ~u and ~g0 on the discontinuity
ΣSS. This equation becomes precisely φL = φE − ~u · ~g0 in agreement with the general relation
(9.88). Substituting for φE from (9.133) and for ~g0 from (9.82), we finally obtain

φL = −G
∫
V
%′0(~u ′ − ~u) ·Grad ′

( 1

L

)
dV ′ . (9.146)

9.9.8 Linearized integral relations

Alternatively, we can obtain gravitational increments φL, ~gL, φE and ~gE by linearizing the exact
Newton integrals (9.75) and (9.76). Considering (9.75), for example, we rewrite it in the form

φ0( ~X) + φL = −G
∫
V

%′0

‖ ~X + ~u− ~X ′ − ~u ′‖
dV ′ , (9.147)

and expand the right-hand side in powers of ~u−~u ′. The zeroth-order term is simply φ0, whereas
the first-order term is

φL = −G
∫
V

%′0(~u ′ − ~u) · ( ~X − ~X ′)

‖ ~X − ~X ′‖3
dV ′ . (9.148)
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which is identical to (9.148). The expansion of

~g0( ~X) + ~gL = −G
∫
V

%′0( ~X + ~u− ~X ′ − ~u ′)
‖ ~X + ~u− ~X ′ − ~u ′‖3

dV ′ (9.149)

likewise leads to

~gL = G

∫
V
%′0(~u− ~u ′) ·Π dV ′ , (9.150)

which is identical to ~gL = ~gE + ~u ·Grad~g0 = −GradφE − ~u ·Grad Gradφ0.

9.10 Equation of motion for a self-gravitating body

We now deduce the linearized equation of motion describing infinitesimal deformation of a body
initially pre-stressed by its own gravitation. For this purpose, the general theory presented in
Section 9.6 will be applied to a particular case that the gravitational force is the only force acting
in the body. In particular, we substitute the initial gravitational attraction ~g0 for the initial body
force ~f0 in static linear momentum equation (9.1), that is

~f0 = −Gradφ0 . (9.151)

The Lagrangian increments in body force φL, defined by (9.27)2, that occurs in the equation of
motion will be replaced by the Lagrangian increments in gravitation ~gL which can be expressed
either in terms of the Eulerian increment in gravitational potential φE , see (9.92), or in terms of
the Lagrangian increment in gravitational potential φL, see (9.93):

~fL = −GradφE − ~u ·Grad Gradφ0

= −GradφL + Grad ~u ·Gradφ0 .
(9.152)

Likewise, the Eulerian increments in body force φE , defined by (9.27)1, is replaced by the Eulerian
increments in gravitation ~gE which can be expressed either in terms of the Eulerian increment in
gravitational potential φE , see (9.90), or in terms of the Lagrangian increment in gravitational
potential φL, see (9.88):

~fE = −GradφE

= −GradφL + ~u ·Gradφ0 .
(9.153)

All forms of the equation of motion derived in Section 9.6 can be expressed in terms of the
Lagrangian or Eulerian incremental gravitational potential using relations (9.153)–(9.155). Since
this substitution is straightforward, we shall not write explicitly the resulting relations.
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Appendix A. Vector and tensor differential identities

Let φ and ψ be differentiable scalar fields, ~u and ~v differentiable vector fields, A and B dif-
ferentiable second-order tensor fields and I the second-order unit tensor. The following vector
differential identities can be verified:

grad (φψ) = φ gradψ + ψ gradφ (A.1)

grad (φ~u) = φ grad ~u+ gradφ⊗ ~u (A.2)

grad (~u · ~v) = grad ~u · ~v + grad~v · ~u (A.3)

grad (~u× ~v) = grad ~u× ~v − grad~v × ~u (A.4)

grad (~u⊗ ~v) = grad ~u⊗ ~v + (~u⊗ grad~v)213

(A.5)
= grad ~u⊗ ~v + (grad~v ⊗ ~u)132

~w · grad (~u⊗ ~v) = (~w · grad ~u)⊗ ~v + ~u⊗ (~w · grad~v) (A.6)

grad (φA) = φ gradA+ gradφ⊗A (A.7)

grad (A · ~u) = gradA · ~u+ grad ~u ·AT (A.8)

grad (~u ·A) = grad ~u ·A+ ~u · (gradA)213 (A.9)

grad~v · ~u− ~u · grad~v = ~u× rot~v (A.10)

grad ~u− (grad ~u)T = −I × rot ~u (A.11)

div (φ~u) = φ div ~u+ gradφ · ~u (A.12)

div (~u× ~v) = rot ~u · ~v − ~u · rot~v (A.13)

div (~u⊗ ~v) = (div ~u)~v + ~u · grad~v (A.14)

div (φA) = φ divA+ gradφ ·A (A.15)

div (φI) = gradφ (A.16)

div (A · ~u) = divA · ~u+AT .. grad ~u (A.17)

div (~u ·A) = grad ~u .. A+ ~u · divAT (A.18)

div (A× ~u) = divA× ~u+AT .
× grad ~u (A.19)

div (~u×A) = rot ~u ·A− ~u · rotA (A.20)

div (I × ~u) = rot ~u (A.21)

div rot ~u = 0 (A.22)

div (A ·B) = divA ·B +AT .. gradB (A.23)

div (~u · gradA) = grad ~u .. gradA+ ~u · grad divA (A.24)

div [(grad ~u)T ] = grad div ~u (A.25)

rot (φ~u) = φ rot ~u+ gradφ× ~u (A.26)

rot (~u× ~v) = ~v · grad ~u− ~u · grad~v + ~udiv~v − ~v div ~u (A.27)

rot (~u⊗ ~v) = rot ~u⊗ ~v − ~u× grad~v (A.28)

rot (φA) = φ rotA+ gradφ×A (A.29)

rot (φI) = gradφ× I (A.30)

rot (~u× I) = rot (I × ~u) = (grad ~u)T − (div ~u)I (A.31)

rot rot ~u = grad div ~u− div grad ~u (A.32)
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rot gradφ = ~0 (A.33)

rot (grad ~u)T = (grad rot ~u)T (A.34)

I .. grad ~u = div ~u (A.35)

I
.
× grad ~u = rot ~u (A.36)

∇2(φψ) = ψ∇2φ+ φ∇2ψ + 2(gradφ) · (gradψ) (A.37)

∇2(~u · ~v) = (∇2~u) · ~v + ~u · ∇2~v + 2(grad ~u)T .. grad~v (A.38)

∇2(gradφ) = grad (∇2φ) (A.39)

∇2(rot ~u) = rot (∇2~u) (A.40)

∇2(rot rot ~u) = rot rot (∇2~u) . (A.41)

The symbols .. and
.
× denote, respectively, the double-dot product of vectors and the dot-cross

product of vectors. The symbols ( )T , ( )213 and ( )132 denote, respectively, the transpose of a
dyadic, the left transpose of a triadic and the right transpose of a triadic, e.g. (~u⊗ ~v)T = ~v ⊗ ~u,
(~u⊗ ~v ⊗ ~w)213 = (~v ⊗ ~u⊗ ~w), (~u⊗ ~v ⊗ ~w)132 = (~u⊗ ~w ⊗ ~v).
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Appendix B. Fundamental formulae for surfaces

In a three-dimensional space, let Σ be an oriented surface with the unit normal ~n. Let (ϑ1, ϑ2)
be the orthogonal curvilinear coordinates on Σ with the coordinate lines tangent to Σ in the
directions of the principal curvatures of Σ with principal curvature radii %1 and %2. If ϑ1 and ϑ2

are chosen as angles, the elements of length on the surface in the principal curvature directions
are given by

dsα = %αdϑα , α = 1, 2 . (B.1)

The vectors defined by

~eα :=
∂~n

∂ϑα
, α = 1, 2 . (B.2)

are tangent to the curvilinear coordinate lines on the surface. Due to the definition of (ϑ1, ϑ2),
the coordinate lines on the surface coincide with two lines of principal directions. Hence, ~e1 and
~e2 are mutually perpendicular. In addition, they are perpendicular to ~n,

~n · ~eα = ~e1 · ~e2 = 0 . (B.3)

We assume that the surface Σ is sufficiently smooth such that, for instance, the curvature of Σ
is bounded at all points of Σ. Because of this regularity assumption, we can imagine an auxiliary
surface Σ + dΣ that is parallel with Σ at a differential distance dn reckoned along the normal
~n. A local three-dimensional orthogonal curvilinear coordinates (n, ϑ1, ϑ2) with the coordinate n
measured in the direction of the normal ~n can be employed to describe the position of a point in
the layer bounded by surfaces Σ and Σ + dΣ. Consequently,

∂~n

∂n
= ~0 (B.4)

at all points in the layer.

B.1 Tangent vectors and tensors

An arbitrary vector defined on an oriented surface Σ with the unit normal ~n can be decomposed
into a normal and a tangential part:

~u = ~nun + ~uΣ , (B.5)

where un = ~n · ~u and ~uΣ = ~u · (I − ~n⊗ ~n). Obviously, ~n · ~uΣ = 0. The quantity un is the normal
component of ~u. Any vector ~uΣ with the property ~n · ~uΣ = 0 is referred to as a tangent vector to
Σ. The component form of a tangent vector is

~uΣ =
∑
α

uα~eα , (B.6)

where the summation index α takes values 1 and 2. An arbitrary second-order tensor T can be
decomposed in an analogous manner:

T = (~n⊗ ~n)Tnn + ~n⊗ ~TnΣ + ~TΣn ⊗ ~n+ TΣΣ , (B.7)

where Tnn = ~n · T · ~n. The quantities ~TnΣ and ~TΣn are tangent vectors satisfying ~n · ~TnΣ =
~n · ~TΣn = 0, whereas TΣΣ is a so-called tangent tensor, defined by ~n · TΣΣ = TΣΣ · ~n = ~0. The
transpose of T is given by

T T = (~n⊗ ~n)Tnn + ~TnΣ ⊗ ~n+ ~n⊗ ~TΣn + (TΣΣ)T . (B.8)
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If T is a symmetric tensor, then ~TΣn = ~TnΣ and (TΣΣ)T = TΣΣ. The component form of tangent
vectors ~TnΣ, ~TΣn, and tangent tensor TΣΣ are

~TnΣ =
∑
α

Tnα~eα , ~TΣn =
∑
α

Tαn~eα , TΣΣ =
∑
αβ

Tαβ(~eα ⊗ ~eβ) . (B.9)

The scalar product of two vectors is

~u · ~v = unvn + ~uΣ · ~vΣ , (B.10)

and the left or right scalar product of a tensor and a vector is

T · ~u = ~n(Tnnun + ~TnΣ · ~uΣ) + ~TΣnun + TΣΣ · ~uΣ ,

~u · T = ~n(Tnnun + ~TΣn · ~uΣ) + ~TnΣun + ~uΣ · TΣΣ .
(B.11)

Obviously, it holds

T · ~n = ~nTnn + ~TΣn ,

~n · T = ~nTnn + ~TnΣ ,
(B.12)

and
~n · T · ~u− (~n · T · ~n)(~n · ~u) = ~TnΣ · ~uΣ ,

~u · T · ~n− (~n · T · ~n)(~n · ~u) = ~TΣn · ~uΣ .
(B.13)

B.2 Surface gradient

The three-dimensional gradient operator can also be decomposed into a normal and a tangential
part:

grad = ~n
∂

∂n
+ grad

Σ
, (B.14)

where ∂
∂n := ~n · grad and ~n · grad

Σ
= 0. The tangential part grad

Σ
is called the surface gradient

operator; its component form is

grad
Σ

=
∑
α

~eα
%α

∂

∂ϑα
. (B.15)

Since grad
Σ

involves only differentiation in directions tangent to the surface Σ, it can be applied
to any scalar, vector or tensor field defined on Σ, whether that field is defined elsewhere or not.
Likewise, the three-dimensional divergence operator can be decomposed into a normal and a
tangential part:

div = ~n · ∂
∂n

+ divΣ . (B.16)

The component form of the surface divergence operator is

divΣ =
∑
α

~eα
%α
· ∂
∂ϑα

. (B.17)

B.3 Identities
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Let φ and ψ be differentiable scalar fields, ~u and ~v differentiable vector fields and T a differentiable
second-order tensor field. The following vector differential identities can be verified:

grad
Σ

(φψ) = φ grad
Σ
ψ + ψ grad

Σ
φ ,

grad
Σ

(~u · ~v) = grad
Σ
~u · ~v + grad

Σ
~v · ~u ,

grad
Σ

(φ~u) = φ grad
Σ
~u+ (grad

Σ
φ)⊗ ~u , (B.18)

divΣ(φ~u) = φ divΣ~u+ grad
Σ
φ · ~u ,

divΣ(~u⊗ ~v) = (divΣ~u)~v + ~u · grad
Σ
~v ,

divΣ(φT ) = φ divΣT + grad
Σ
φ · T .

B.4 Curvature tensor

The surface gradient of the unit normal grad
Σ
~n, the so-called surface curvature tensor, is often

used to classify the curvature of the surface Σ. Combining (B.2) and (B.15), we obtain

grad
Σ
~n =

∑
α

1

%α
(~eα ⊗ ~eα) . (B.19)

Obviously, grad
Σ
~n is a symmetric tensor,

(grad
Σ
~n)T = grad

Σ
~n . (B.20)

The surface divergence of the unit normal can be obtained from (B.2) and (B.17):

divΣ~n =
1

%1
+

1

%2
=: 2c , (B.21)

where c is the mean curvature of Σ. Another relation of interest in this context is

divΣ(~n⊗ ~n) = (divΣ~n)~n , (B.22)

where the identity (B.18)5 has been used.

B.5 Divergence of vector, Laplacian of scalar

In applying the operators (B.15) and (B.17) to decomposed vectors and second-order tensors
of the form (B.5) and (B.7), it must be remembered that the surface gradient acts on the unit
normal ~n. For instance, the surface divergence of a vector field is given by

divΣ~u = divΣ(~nun + ~uΣ) = (divΣ~n)un + grad
Σ
un · ~n+ divΣ~uΣ ,

where the identity (B.18)4 has been used. In view of the orthogonality property (B.3)1, the second
term on the right-hand side vanishes, and we obtain

divΣ~u = (divΣ~n)un + divΣ~uΣ . (B.23)

This enables us to express the three-dimensional divergence of a vector field as

div ~u = ~n · ∂~u
∂n

+ divΣ~u = ~n ·
(∂~n
∂n
un + ~n

∂un
∂n

)
+ divΣ~u .

156



In view of (B.4), this can be written in the form

div ~u =
∂un
∂n

+ divΣ~u . (B.24)

The equations derived above will now be employed to decompose the three-dimensional Lapla-
cian operator of a three-dimensional scalar field φ. Since the normal and tangential part of

gradient of φ is ∂φ∂n and grad
Σ
φ, respectively, (B.23 and (B.24) yield

div gradφ =
∂2φ

∂n2
+ (divΣ~n)

∂φ

∂n
+ divΣgrad

Σ
φ , (B.25)

where divΣgrad
Σ

is usually called the Beltrami surface operator.

B.6 Gradient of vector

The surface gradient of a decomposed vector field of the form (B.5) is given by

grad
Σ
~u = (grad

Σ
un)⊗ ~n+ ungrad

Σ
~n+ grad

Σ
~uΣ , (B.26)

where the identity (B.18)3 has been used. This enables us to express the three-dimensional
gradient of a vector field in the form:

grad ~u = ~n⊗ ∂~u

∂n
+ grad

Σ
~u = ~n⊗

(∂~n
∂n
un + ~n

∂un
∂n

+
∂~uΣ

∂n

)
+ grad

Σ
~u ,

or, in view of (B.4),

grad ~u = (~n⊗ ~n)
∂un
∂n

+ ~n⊗ ∂~uΣ

∂n
+ grad

Σ
~u . (B.27)

Combining (B.26) and (B.27), grad ~u can be put to a general form (B.7):

H := grad ~u

= (~n⊗ ~n)Hnn + ~n⊗ ~HnΣ + ~HΣn ⊗ ~n+HΣΣ ,
(B.28)

where
Hnn := ∂un

∂n , ~HΣn := grad
Σ
un ,

~HnΣ :=
∂~uΣ
∂n , HΣΣ := ungrad

Σ
~n+ grad

Σ
~uΣ .

(B.29)

Note that ~n · HΣΣ = ~0, but, in general, HΣΣ · ~n 6= ~0 since the vector ∂~eα/∂ϑβ may have
a component in the direction normal to Σ. Equations (B.24) and (B.27) can alternatively be
written in the form

divΣ~u = div ~u− (~n · grad ~u · ~n) , (B.30)

grad
Σ
~u = grad ~u− ~n⊗ (~n · grad ~u) . (B.31)

The right scalar product of the last equation with the unit normal ~n results in an important
identity

grad ~u · ~n− grad
Σ
~u · ~n = ~n(~n · grad ~u · ~n) . (B.32)
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Obviously, ~n · (grad
Σ
~u · ~n) = 0, and vector grad

Σ
~u · ~n is tangent to Σ. This implies that

grad
Σ
~u · ~n = (grad

Σ
~u · ~n) · (I − ~n⊗ ~n) . (B.33)

B.7 Divergence of tensor

The surface divergence of a decomposed second-order tensor field of the form (B.7) is given by

divΣT = divΣ [(~n⊗ ~n)Tnn + ~n⊗ ~TnΣ + ~TΣn ⊗ ~n+ TΣΣ]

= TnndivΣ(~n⊗ ~n) + (grad
Σ
Tnn) · (~n⊗ ~n) + (divΣ~n)~TnΣ + ~n · grad

Σ
~TnΣ

+(divΣ
~TΣn)~n+ ~TΣn · grad

Σ
~n+ divΣTΣΣ ,

where the identity (B.19)5,6 have been used. The second and the fourth terms vanish because of
the orthogonality property (B.3)1. Simplifying the first term according to (B.22), we obtain

divΣT = Tnn(divΣ~n)~n+ (divΣ
~TΣn)~n+ (divΣ~n)~TnΣ + ~TΣn · grad

Σ
~n+ divΣTΣΣ . (B.34)

B.8 Vector ~n · grad gradφ

We are now interested in changing the order of differentiation of a scalar field φ with respect to
n and with respect to surface curvilinear coordinates ϑα. Taking the derivative with respect to n
of (B.15) applied to φ, we obtain

∂

∂n

(
grad

Σ
φ
)

=
∑
α

∂

∂n

(~eα
%α

∂φ

∂ϑα

)
=
∑
α

[ ∂
∂n

(~eα
%α

) ∂φ
∂ϑα

+
~eα
%α

∂2φ

∂n∂ϑα

]
.

Introducing tensor CΣ,

CΣ :=
∑
α

%α
∂

∂n

(~eα
%α

)
⊗ ~eα , (B.35)

that classifies the curvature of the surface Σ, we obtain

∂

∂n

(
grad

Σ
φ
)

= grad
Σ

(∂φ
∂n

)
+CΣ · grad

Σ
φ , (B.36)

which shows that the operators ∂
∂n and grad

Σ
do not, in general, commute.

We are now ready to decompose vector (~n · grad gradφ) into a normal and a tangential part.
We have

~n · grad gradφ =
∂

∂n
(gradφ) =

∂

∂n

(
~n
∂φ

∂n
+ grad

Σ
φ
)

=
∂~n

∂n

∂φ

∂n
+ ~n

∂2φ

∂n2
+

∂

∂n

(
grad

Σ
φ
)
.

Making use (B.4) and (B.35), the last equation can be put to the form

~n · grad gradφ = ~n
∂2φ

∂n2
+ grad

Σ

(∂φ
∂n

)
+CΣ · grad

Σ
φ . (B.37)

The first term on the right-hand side of (B.37) is a normal part and the sum of the second and
the third terms is a tangential part of vector (~n · grad gradφ), respectively. The final relation of
interest in this context arises when the second derivative of φ with respect to n is eliminated from
(B.37) by means of (B.25):

~n ·grad gradφ = ~ndiv gradφ−(divΣ~n)
∂φ

∂n
~n−~ndivΣgrad

Σ
φ+grad

Σ

(∂φ
∂n

)
+CΣ ·grad

Σ
φ . (B.38)
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Appendix C. Orthogonal curvilinear coordinates

The concepts of strain, deformation, stress, general principles applicable to all continuous media
and the constitutive equations were developed in Chapters 1 through 7 using almost exclusively
rectangular Cartesian coordinates. This coordinate system is the simplest system in which the
three Cartesian unit base vectors have a fixed orientation in space. These coordinates, however,
are suitable only for the solution of boundary-value problems involving bodies of rectangular
shape. We often need to treat finite configurations with spherical, spheroidal, ellipsoidal, or
another type of symmetric boundaries. We must therefore learn how to write the components
of vectors and tensors in a wider class of coordinates. Here, we make a section on orthogonal
curvilinear coordinates.

C.1 Coordinate transformation

In a three-dimensional space of elementary geometry, we can define a system of curvilinear coor-
dinates by specifying three coordinate transformation functions xk of the reference system of the
rectangular Cartesian coordinates yl:

28

xk = xk(y1, y2, y3), k = 1, 2, 3. (C.1)

We assume that the three functions xk of yl have continuous first partial derivatives and that the
jacobian determinant does not vanish, that is,

j := det

(
∂xk
∂yl

)
6= 0; (C.2)

exceptions may occur at singular points or curves but never throughout any volume. Then the
correspondence between xk and yl is one-to-one and there exists a unique inverse of (C.1) in the
form

yk = yk(x1, x2, x3), k = 1, 2, 3. (C.3)

If x1 is held constant, the three equations (C.3) define parametrically a surface, giving its
rectangular Cartesian coordinates as a function of the two parameters x2 and x3. The first
equation in (C.1), x1 = x1(y1, y2, y3), defines the same surface implicitly. Similarly, for fixed
values of x2 and x3 we obtain other two surfaces. The three surfaces so obtained are the curvilinear
coordinate surfaces. Each pair of coordinate surfaces intersect at a curvilinear coordinate line,
along which only one of the three parameters xk varies. In contrast to the rectangular Cartesian
coordinates, the curvilinear coordinate lines are space curves. The three coordinate surfaces (and
also all three coordinate lines) intersect each other at a single point P marked with specific values
of x1, x2 and x3. We may take the values of x1, x2 and x3 as the curvilinear coordinates of point
P (Figure C.1). If at each point P the coordinate lines through point P are mutually orthogonal,
we have a system of orthogonal curvilinear coordinates.

Example. The spherical coordinates r, ϑ, λ, (r ≡ x1, ϑ ≡ x2, λ ≡ x3), are defined by their
relations to the rectangular Cartesian coordinates yk by equations

y1 = r sinϑ cosλ, y2 = r sinϑ sinλ, y3 = r cosϑ, (C.4)

28More generally, the coordinate transformation functions can be introduced between any two curvilinear systems.
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Figure C.1. Curvilinear coordinates.

or, inversely,

r =
√
y2

1 + y2
2 + y2

3, ϑ = arctan

(√
y2

1 + y2
2

y3

)
, λ = arctan

(
y2

y1

)
. (C.5)

The ranges of values are 0 ≤ r < ∞, 0 ≤ ϑ ≤ π, and 0 ≤ λ ≤ 2π. The inverse of the jacobian j
is given by

j−1 =

∣∣∣∣∣∣∣
sinϑ cosλ sinϑ sinλ cosϑ

r cosϑ cosλ r cosϑ sinλ −r sinϑ
−r sinϑ sinλ r sinϑ cosλ 0

∣∣∣∣∣∣∣ = r2 sinϑ. (C.6)

Hence, the unique inverse of (C.4) exists everywhere except at r = 0, ϑ = 0 and ϑ = π. The
coordinate surfaces are the concentric sphere r=const. centered at the origin, the circular cones
ϑ=const. centered on the y3-axis, and the half planes λ=const. passing through the y3-axis. The
r-coordinate lines are half straights, the ϑ-coordinate lines are circles, the meridians, and the
λ-coordinate lines are again circles, the parallels.
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C.2 Base vectors

We now intend to introduce a set of base vectors ~ek in the curvilinear system. We observe that
if we move along a curvilinear coordinate line, only one of the three curvilinear coordinates varies.

For instance, along the x1-coordinate line only x1

varies while x2 and x3 are kept fixed. In analogy
to the definition of the base vectors in the rect-
angular Cartesian coordinates, the unit base vec-
tor ~e1 in curvilinear coordinates will be defined
as the tangent vector to the x1-coordinate line.
Similarly, ~e2 and ~e3 are the unit tangent vectors
to the curvilinear coordinate lines of varying x2

and x3, respectively. The direction cosines of the
base vector ~e1 are given by (see Figure C.2)

cosα =
1

h1

∂y1

∂x1
, cosβ =

1

h1

∂y2

∂x1
, cos γ =

1

h1

∂y3

∂x1
,�y1

y2

y3

α

β

~e1

x1-coordinate
line

Figure C.2. The unit base vector ~e1.

where, for instance, α is the angle between the positive x1-direction and the positive y1-direction.
A scale factor h1 is introduced to satisfy the orthonormality condition for the direction cosines,

cos2 α+ cos2 β + cos2 γ = 1.

In view of this, the scale factor is

h1 =

√√√√ 3∑
l=1

(
∂yl
∂x1

)2

.

Here and throughout this appendix, we will suspend the Einstein summation convention and
explicitly indicate all summations over the range (1,2,3) when it is necessary. The unit base
vector ~e1 can now be written in the form

~e1 =
1

h1

(
∂y1

∂x1

~i1 +
∂y2

∂x1

~i2 +
∂y3

∂x1

~i3

)
,

where ~i1, ~i2 and ~i3 are the rectangular Cartesian unit base vectors. If we express the position
vector ~p of point P in terms of the rectangular Cartesian coordinates by

~p =
3∑

k=1

yk~ik, (C.7)

the curvilinear coordinate unit base vector ~e1 can be expressed in the form

~e1 =
1

h1

∂~p

∂xk
.

Similar consideration can be carried out for the unit base vectors ~e2 and ~e3. Hence, for k = 1, 2, 3,
we have

~ek =
1

hk

∂~p

∂xk
. (no summation over k !) (C.8)
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The function hk are called the scale factors, or the Lamé coefficients. They are defined by relation

hk :=

√
∂~p

∂xk
· ∂~p
∂xk

. (C.9)

They are non-negative functions of positions for a given curvilinear coordinate system.
In what follows, we shall consider only orthogonal curvilinear coordinates, and we will order

the three curvilinear coordinates so that when each base vector ~ek points in the direction of
increasing xk, the three base vectors form a right-hand system:

~ek · ~el = δkl, ~ek × ~el = εklm~em, (C.10)

where δkl and εklm is the Kronecker delta and the Levi-Civita permutation symbol, respectively.
An infinitesimal vector at any point P can be expressed as

d~p =
3∑

k=1

∂~p

∂xk
dxk =

3∑
k=1

hk~ekdxk, (C.11)

where we have substituted for ∂~p/∂xk from (C.8). The scalar product of this with itself gives the
square of the distance between two neighboring points, that is, the infinitesimal element of arc
length on an arbitrary curve through point P :

(ds)2 = (h1dx1)2 + (h2dx2)2 + (h3dx3)2. (C.12)

In particular, along the xk-coordinate line the only increment dxk differs from zero, while the
others are equal to zero. The elementary distance along the xk-coordinate line is then

dsk = hkdxk. (no summation over k). (C.13)

Note that three curvilinear coordinates xk need not be lengths and the scale factors hk may have
dimensions. The products hkdxk must, however, have dimension of length.

From (C.13) we may immediately develop the area element of coordinate surface and the
volume element,

dakl = dskdsl = hkhldxkdxl, (C.14)

and
dV = ds1ds2ds3 = h1h2h3dx1dx2dx3. (C.15)

Example. The scale factors in the spherical coordinates r, ϑ, λ are

hr = 1, hϑ = r, hλ = r sinϑ. (C.16)

The square of the arc length is given by

(ds)2 = (dr)2 + r2(dϑ)2 + r2 sin2 ϑ(dλ)2. (C.17)

The unit vectors ~er, ~eϑ and ~eλ in the direction of increasing r, ϑ, λ form a local right-handed
orthonormal basis related to the rectangular Cartesian unit base vectors ~i1, ~i2 and ~i3 by

~er = sinϑ cosλ~i1 + sinϑ sinλ~i2 + cosϑ~i3,

~eϑ = cosϑ cosλ~i1 + cosϑ sinλ~i2 − sinϑ~i3, (C.18)

~eλ = − sinλ~i1 + cosλ~i2.
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Conversely,
~i1 = sinϑ cosλ~er + cosϑ cosλ~eϑ − sinλ~eλ,

~i2 = sinϑ sinλ~er + cosϑ sinλ~eϑ + cosλ~eλ, (C.19)

~i3 = cosϑ~er − sinϑ~eϑ.

C.3 Derivatives of unit base vectors

Since the unit base vectors ~ek are functions of position, they vary in direction as the curvilinear
coordinates vary. Hence they cannot be treated as constants in differentiation. We shall next
evaluate the derivatives ∂~ek/∂xl. Because this is a vector quantity, it can be represented as a
linear combination of the base vectors ~em:

∂~ek
∂xl

=
3∑

m=1

(m
k l

)
~em, (C.20)

where the expansion coefficients
(m
k l

)
are known as the Christoffel symbols. Their meaning is

simply the mth components of the derivative of the kth unit base vector along the lth coordinate.
Another common notation for the Christoffel symbols is

Γmkl ≡
(m
k l

)
,

but we will not use it in this text because the Γmkl look like mixed components of a third-order
tensor, which they are not. 29

Each Christoffel symbol is a function of the scale factors only. To establish the explicit form
of this functional dependence, we take the scalar product of (C.20) with the unit base vector
~en, use the orthonormality relation (C.10)1, and denote the index n again by m. We obtain the
explicit expression for the Christoffel symbol:(m

k l

)
=
∂~ek
∂xl
· ~em. (C.21)

By substituting for the unit base vectors from (C.8), we can successively write(m
k l

)
=

∂

∂xl

(
1

hk

∂~p

∂xk

)
· 1

hm

∂~p

∂xm

= − 1

h2
khm

∂hk
∂xl

(
∂~p

∂xk
· ∂~p
∂xm

)
+

1

hkhm

(
∂2~p

∂xl∂xk
· ∂~p
∂xm

)

= − 1

hk

∂hk
∂xl

δkm +
1

hkhm

(
∂2~p

∂xl∂xk
· ∂~p
∂xm

)
,

29In general curvilinear coordinates, the Christoffel symbols of the first kind, [kl,m], and the Christoffel symbols
of the second kind, {kl,m}, are usually introduced. In orthogonal curvilinear coordinates, we can avoid the need

of the two kinds of Christoffel’s symbols, and can operate only with the Christoffel symbol
(
m
k l

)
. It should be,

however, emphasized that neither the symbol [kl,m] nor the symbol {kl,m} does not reduce to the symbol
(
m
k l

)
when general curvilinear coordinates are orthogonal.
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since the base vectors are orthogonal. Let us find an explicit form for the second term on the
right-hand side. Differentiating the orthonormality relation

∂~p

∂xk
· ∂~p
∂xm

= hkhmδkm

with respect to xl, we have

∂2~p

∂xl∂xk
· ∂~p
∂xm

+
∂~p

∂xk
· ∂2~p

∂xl∂xm
=
∂(hkhm)

∂xl
δkm.

By permuting indices in the last equation, we obtain other two equations,

∂2~p

∂xm∂xl
· ∂~p
∂xk

+
∂~p

∂xl
· ∂2~p

∂xm∂xk
=
∂(hlhk)

∂xm
δlk.

∂2~p

∂xk∂xm
· ∂~p
∂xl

+
∂~p

∂xm
· ∂2~p

∂xk∂xl
=
∂(hmhl)

∂xk
δml.

The last three equations can be combined to yield

∂2~p

∂xk∂xl
· ∂~p
∂xm

=
1

2

[
∂(hkhm)

∂xl
δkm +

∂(hmhl)

∂xk
δml −

∂(hlhk)

∂xm
δlk

]
.

The Christoffel symbols can now be written in the form

(m
k l

)
= − 1

hk

∂hk
∂xl

δkm +
1

2hkhm

[
∂(hkhm)

∂xl
δkm +

∂(hmhl)

∂xk
δml −

∂(hlhk)

∂xm
δlk

]
.

Simple manipulation with this expression finally results in

(m
k l

)
=

1

hk

∂hl
∂xk

δlm −
1

hm

∂hk
∂xm

δkl. (C.22)

If k, l and m are all different, k 6= l 6= m, then

(m
k l

)
=
( k
k k

)
=
( k
k l

)
= 0. (C.23)

The last equality is the consequence of the fact that the vector ∂~ek/∂xl is orthogonal to the
xk-coordinate line and, thus, has no component in the direction of ~ek (but may have components
in both directions orthogonal to ~el). Because of (C.23), at most 12 of the 27 Christoffel symbols
are non-zero: ( l

k l

)
=

1

hk

∂hl
∂xk

,
( l
k k

)
= − 1

hl

∂hk
∂xl

if k 6= l. (C.24)

Of these, only six can be independent since it holds:

( l
k l

)
= −

( k
l l

)
. (C.25)
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We have shown that the Christoffel symbols are fully defined in terms of the scale factors. Since
the scale factors are constant in a Cartesian coordinate system (rectangular or skew), (C.24)
shows that all the Christoffel symbols vanish in a Cartesian system.

Example. Only six Christoffel symbols are non-zero in the spherical coordinates r, ϑ, λ, namely:

( ϑ
r ϑ

)
= 1,

( λ
r λ

)
= sinϑ,

( λ
ϑλ

)
= cosϑ,( r

ϑ ϑ

)
= −1,

( r
λ λ

)
= − sinϑ,

( ϑ
λλ

)
= − cosϑ.

(C.26)

The partial derivatives of the unit base vectors ~er, ~eϑ and ~eλ are given by

∂~er
∂r

= 0,
∂~eϑ
∂r

= 0,
∂~eλ
∂r

= 0,

∂~er
∂ϑ

= ~eϑ,
∂~eϑ
∂ϑ

= −~er,
∂~eλ
∂ϑ

= 0,

∂~er
∂λ

= ~eλ sinϑ,
∂~eϑ
∂λ

= ~eλ cosϑ,
∂~eλ
∂λ

= −~er sinϑ− ~eϑ cosϑ.

(C.27)

C.4 Derivatives of vectors and tensors

With the formulae available for differentiating the unit base vectors we can write the partial
derivatives of any vectors or tensors as follows.

Let ~v be an arbitrary vector represented in the form ~v =
∑
k vk~ek. Then the partial derivative

of ~v can be calculated by

∂~v

∂xl
=

∂

∂xl

(∑
k

vk~ek

)
=
∑
k

(
∂vk
∂xl

~ek + vk
∂~ek
∂xl

)
=
∑
k

[
∂vk
∂xl

~ek + vk
∑
m

(m
k l

)
~em

]
.

By interchanging the summation indices k and m in the last term we may write the vector ∂~v/∂xl
in a compact form,

∂~v

∂xl
=
∑
k

vk;l~ek, (C.28)

where

vk;l :=
∂vk
∂xl

+
∑
m

( k
m l

)
vm (C.29)

is the balanced or (neutral) derivative of vk with respect to xl.
The partial derivatives of higher-order tensors are defined in a similar fashion. For example,

if we represent a second-order tensor T as a dyadic, that is, as the linear combination of the nine
dyads formed from three curvilinear coordinate unit base vectors 30 ,

T =
∑
kl

Tkl(~ek ⊗ ~el), (C.30)

30This is the Gibbs dyadic notation applied to orthogonal curvilinear coordinates.
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the partial derivatives of T can then be calculated by

∂T

∂xm
=

∑
kl

[
∂Tkl
∂xm

(~ek ⊗ ~el) + Tkl
∂~ek
∂xm

⊗ ~el + Tkl~ek ⊗
∂~el
∂xm

]

=
∑
kl

[
∂Tkl
∂xm

(~ek ⊗ ~el) + Tkl
∑
n

( n
km

)
(~en ⊗ ~el) + Tkl

∑
n

( n
lm

)
(~ek ⊗ ~en)

]
,

where we have substituted for the derivatives of the unit base vectors from (C.20). We interchange
the summation indices n and k in the second term and n and l in the last term to obtain

∂T

∂xm
=
∑
kl

Tkl;m(~ek ⊗ ~el), (C.31)

where

Tkl;m =
∂Tkl
∂xm

+
∑
n

( k
nm

)
Tnl +

∑
n

( l
nm

)
Tkn (C.32)

is the balanced or (neutral) derivative of Tkl with respect to xm. Higher-order tensors can be
treated in the same way by writing them as polyadics.

C.5 Invariant differential operators

The results of previous section on derivatives of unit base vectors, arbitrary vectors and tensors
will now be used to formulate expressions for the gradient, divergence and curl in orthogonal
curvilinear coordinates.

C.5.1 Gradient of a scalar

We start to derive the basic differential expression for the gradient operator. Let φ(x1, x2, x3) be
a scalar function. Then the gradient of a scalar φ, denoted by gradφ, is defined as a product of
the nabla operator with φ,

gradφ := ∇φ. (C.33)

Note that this definition makes no reference to any coordinate system. The gradient of scalar
is thus a vector invariantly independent of coordinate system. To find its components in any
orthogonal curvilinear system, we first express the nabla operator in the rectangular Cartesian
coordinates,

∇ =
∑
k

~ik
∂

∂yk
. (C.34)

The gradient of scalar function can then be calculated by the chain rule of calculus,

gradφ =
∑
l

~il
∂φ

∂yl
=
∑
kl

~il
∂φ

∂xk

∂xk
∂yl

,

where φ = φ(xk(yl)) in the second term and φ = φ(xk) in the third term.
Let us now find the explicit expression for ∂xk/∂yl. In view of (C.7) and (C.8), the orthogo-

nality relation (C.10)1 has the form

∑
m

∂ym
∂xk

∂ym
∂xl

= hkhlδkl.
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Multiplying this by ∂xl/∂yn and summing the result over l, we obtain

∑
m

∂ym
∂xk

∑
l

∂ym
∂xl

∂xl
∂yn

=
∑
l

hkhlδkl
∂xl
∂yn

.

Because of the one-to-one mappings (C.1) and (C.3), it holds

∑
l

∂ym
∂xl

∂xl
∂yn

= δmn,

so that, we have
∂yn
∂xk

= h2
k

∂xk
∂yn

. (C.35)

The gradient of a scalar φ can now be arranged as follows

gradφ =
∑
kl

1

h2
k

∂φ

∂xk

∂yl
∂xk

~il =
∑
k

1

h2
k

∂φ

∂xk

∂~p

∂xk
.

Substituting for the orthogonal curvilinear unit base vector ~ek, we finally obtain

gradφ =
∑
k

1

hk

∂φ

∂xk
~ek. (C.36)

Thus, the nabla operator can be expressed in an orthogonal curvilinear coordinate system in the
form

∇ =
∑
k

~ek
hk

∂

∂xk
. (C.37)

Example. The gradient of scalar φ in the spherical coordinates r, ϑ, λ is

gradφ =
∂φ

∂r
~er +

1

r

∂φ

∂ϑ
~eϑ +

1

r sinϑ

∂φ

∂λ
~eλ. (C.38)

C.5.2 Divergence of a vector

The divergence of vector ~v is a scalar function, defined in any orthogonal curvilinear coordinate
system as the scalar product of the nabla operator and vector ~v:

div~v := ∇ · ~v. (C.39)

This definition can successively be arranged as follows.

div~v =
∑
k

~ek
hk
· ∂~v
∂xk

=
∑
k

~ek
hk
·
∑
l

vl;k~el =
∑
kl

vl;k
hk

δkl =
∑
k

vk;k

hk
=
∑
k

1

hk

[
∂vk
∂xk

+
∑
m

( k
mk

)
vm

]

=
∑
k

1

hk

(
∂vk
∂xk

+
∑
m

m 6= k

1

hm

∂hk
∂xm

vm

)
=

1

h1

∂v1

∂x1
+

1

h1h2

∂h1

∂x2
v2 +

1

h1h3

∂h1

∂x3
v3

+
1

h2

∂v2

∂x2
+

1

h2h3

∂h2

∂x3
v3 +

1

h2h1

∂h2

∂x1
v1 +

1

h3

∂v3

∂x3
+

1

h3h1

∂h3

∂x1
v1 +

1

h3h2

∂h3

∂x2
v2,
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or, in a more compact form,

div~v =
1

h1h2h3

[
∂

∂x1
(h2h3v1) +

∂

∂x2
(h3h1v2) +

∂

∂x3
(h1h2v3)

]
. (C.40)

Example. The divergence of vector ~v in the spherical coordinates r, ϑ, λ is

div~v =
1

r2

∂

∂r
(r2vr) +

1

r sinϑ

∂

∂ϑ
(sinϑ vϑ) +

1

r sinϑ

∂vλ
∂λ

. (C.41)

The divergence of the spherical unit base vectors is presented in the form

div~er =
2

r
, div~eϑ =

1

r
cotϑ, div~eλ = 0. (C.42)

C.5.3 Curl of a vector

The curl of vector ~v is a vector, defined by the cross-product of the ∇ and ~v:

rot~v := ∇× ~v. (C.43)

We can successively write

rot~v =
∑
k

~ek
hk
× ∂~v

∂xk
=
∑
k

~ek
hk
×
∑
l

vl;k~el =
∑
klm

vl;k
hk

εklm~em =
∑
klm

εklm
hk

[
∂vl
∂xk

+
∑
n

( l
n k

)
vn

]
~em

=
∑
klm

εklm
hk

[
∂vl
∂xk

+
( l
k k

)
vk

]
~em +

∑
klm

εklm
hk

∑
n

n 6= k

( l
n k

)
vn~em =

∑
klm

εklm
hk

(
∂vl
∂xk
− 1

hl

∂hk
∂xl

vk

)
~em

=
∑
klm

(
εklm
hk

∂vl
∂xk

+
εlkm
hkhl

∂hk
∂xl

vk

)
~em =

∑
klm

(
εklm
hk

∂vl
∂xk

+
εklm
hkhl

∂hl
∂xk

vl

)
~em,

or, in a more compact form,

rot~v =
∑
m

[∑
kl

εklm
hkhl

∂(hlvl)

∂xk

]
~em. (C.44)

Thus, for example, the coefficient of ~e1 is

(rot~v)1 =
1

h2h3

[
∂(h3v3)

∂x2
− ∂(h2v2)

∂x3

]
.

The other components can be written down by the cyclic permutation of indices. It is often
convenient to write the curl of a vector in determinant form:

rot~v =
1

h1h2h3

∣∣∣∣∣∣∣∣∣
h1~e1 h2~e2 h3~e3

∂

∂x1

∂

∂x2

∂

∂x3

h1v1 h2v2 h3v3

∣∣∣∣∣∣∣∣∣ . (C.45)
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Example. The curl of vector ~v in the spherical coordinates r, ϑ, λ is

rot~v =

[
1

r sinϑ

∂(sinϑ vλ)

∂ϑ
− 1

r sinϑ

∂vϑ
∂λ

]
~er+

[
1

r sinϑ

∂vr
∂λ
− 1

r

∂(r vλ)

∂r

]
~eϑ+

[
1

r

∂(r vϑ)

∂r
− 1

r

∂vr
∂ϑ

]
~eλ,

(C.46)
or, in determinant form,

rot~v =
1

r2 sinϑ

∣∣∣∣∣∣∣∣∣
~er r ~eϑ r sinϑ~eλ
∂

∂r

∂

∂ϑ

∂

∂λ

vr r vϑ r sinϑ vλ

∣∣∣∣∣∣∣∣∣ . (C.47)

The curl of the spherical unit base vectors is presented in the form

curl~er = 0, curl~eϑ =
1

r
~eλ, curl~eλ =

1

r
cotϑ~er −

1

r
~eϑ. (C.48)

C.5.4 Gradient of a vector

The gradient of vector ~v is a non-symmetric, second-order tensor, defined by the left-dyadic
product of the nabla operator with a vector,

grad~v := ∇⊗ ~v. (C.49)

In any orthogonal curvilinear coordinates, we can successively write,

grad~v =
∑
k

~ek
hk
⊗ ∂~v

∂xk
=
∑
k

~ek
hk
⊗
∑
l

vl;k~el =
∑
kl

1

hk

[
∂vl
∂xk

+
∑
m

( l
m k

)
vm

]
(~ek ⊗ ~el)

=
∑
k

1

hk

[
∂vk
∂xk

+
∑
m

( k
mk

)
vm

]
(~ek ⊗ ~ek) +

∑
k

∑
l

l 6= k

1

hk

[
∂vl
∂xk

+
∑
m

( l
m k

)
vm

]
(~ek ⊗ ~el)

=
∑
k

1

hk

(
∂vk
∂xk

+
∑
m

m 6= k

1

hm

∂hk
∂xm

vm

)
(~ek ⊗ ~ek) +

∑
k

∑
l

l 6= k

1

hk

(
∂vl
∂xk
− 1

hl

∂hk
∂xl

vk

)
(~ek ⊗ ~el).

Hence, the orthogonal curvilinear components of the second-order tensor grad~v are

(grad~v)kl =



1

hk

(
∂vk
∂xk

+
∑
m

m 6= k

1

hm

∂hk
∂xm

vm

)
if l = k,

1

hk

(
∂vl
∂xk
− 1

hl

∂hk
∂xl

vk

)
if l 6= k.

(C.50)

The symmetric part of grad~v is the tensor 1
2 [grad~v + (grad~v)T ]; its components are given by

1

2
[grad~v + (grad~v)T ]kl =



1

hk

(
∂vk
∂xk

+
∑
m

m 6= k

1

hm

∂hk
∂xm

vm

)
if l = k,

1

2

(
1

hk

∂vl
∂xk

+
1

hl

∂vk
∂xl
− 1

hkhl

∂hk
∂xl

vk −
1

hkhl

∂hl
∂xk

vl

)
if l 6= k.

(C.51)
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Example. The symmetric part of the gradient of vector ~v in the spherical coordinates r, ϑ, λ
is

1

2
[grad~v + (grad~v)T ] =

∂vr
∂r

(~er ⊗ ~er) +
1

r

(
∂vϑ
∂ϑ

+ vr

)
(~eϑ ⊗ ~eϑ)

+
1

r

(
1

sinϑ

∂vλ
∂λ

+ vr + cotϑ vϑ

)
(~eλ ⊗ ~eλ)

+
1

2

(
∂vϑ
∂r

+
1

r

∂vr
∂ϑ
− vϑ

r

)
(~er ⊗ ~eϑ + ~eϑ ⊗ ~er) (C.52)

+
1

2

(
∂vλ
∂r

+
1

r sinϑ

∂vr
∂λ
− vλ

r

)
(~er ⊗ ~eλ + ~eλ ⊗ ~er)

+
1

2r

(
∂vλ
∂ϑ

+
1

sinϑ

∂vϑ
∂λ
− cotϑ vλ

)
(~eϑ ⊗ ~eλ + ~eλ ⊗ ~eϑ).

C.5.5 Divergence of a tensor

The divergence of second-order tensor T is a vector, given in orthogonal curvilinear coordinates
as follows.

divT = ∇ · T =
∑
m

~em
hm
· ∂T
∂xm

=
∑
m

~em
hm
·
∑
kl

Tkl;m(~ek ⊗ ~el) =
∑
klm

Tkl;m
hm

(~em · ~ek)~el =
∑
kl

Tkl;k
hk

~el

=
∑
kl

1

hk

[
∂Tkl
∂xk

+
∑
m

( k
mk

)
Tml +

∑
m

( l
m k

)
Tkm

]
~el

=
∑
kl

1

hk

[
∂Tkl
∂xk

+
∑
m

m 6= k

( k
mk

)
Tml +

( l
k k

)
Tkk +

∑
m

m 6= k

( l
m k

)
Tkm

]
~el

=
∑
kl

1

hk

[
∂Tkl
∂xk

+
∑
m

m 6= k

( k
mk

)
Tml

]
~el +

∑
l

∑
k

k 6= l

1

hk

( l
k k

)
Tkk~el +

∑
k

∑
m

m 6= k

1

hk

( k
mk

)
Tkm~ek

=
∑
kl

1

hk

[
∂Tkl
∂xk

+
∑
m

m 6= k

( k
mk

)
Tml

]
~el +

∑
l

∑
k

k 6= l

[
1

hk

( l
k k

)
Tkk +

1

hl

( l
k l

)
Tlk

]
~el

=
∑
kl

1

hk

(
∂Tkl
∂xk

+
∑
m

m 6= k

1

hm

∂hk
∂xm

)
~el +

∑
l

∑
k

k 6= l

1

hkhl

(
∂hl
∂xk

Tlk −
∂hk
∂xl

Tkk

)
~el.

The sum of the first two terms can be arranged in the same way as the divergence of a vector,
see Section C.5.2. The lth component of the result is given by

(divT )l =
1

h1h2h3

[
∂

∂x1
(h2h3T1l) +

∂

∂x2
(h3h1T2l) +

∂

∂x3
(h1h2T3l)

]
+
∑
k

1

hkhl

(
∂hl
∂xk

Tlk −
∂hk
∂xl

Tkk

)
.

(C.53)
We should emphasize that tensor T has not been assumed symmetric.
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Example. The divergence of a second-order tensor T in the spherical coordinates r, ϑ, λ is

divT =

[
1

r2

∂

∂r
(r2Trr) +

1

r sinϑ

∂

∂ϑ
(sinϑTϑr) +

1

r sinϑ

∂Tλr
∂λ
− 1

r
(Tϑϑ + Tλλ)

]
~er

+

[
1

r2

∂

∂r
(r2Trϑ) +

1

r sinϑ

∂

∂ϑ
(sinϑTϑϑ) +

1

r sinϑ

∂Tλϑ
∂λ

+
1

r
(Tϑr − cotϑTλλ)

]
~eϑ (C.54)

+

[
1

r2

∂

∂r
(r2Trλ) +

1

r sinϑ

∂

∂ϑ
(sinϑTϑλ) +

1

r sinϑ

∂Tλλ
∂λ

+
1

r
(Tλr + cotϑTλϑ)

]
~eλ.

C.5.6 Laplacian of a scalar and a vector

We may obtain the Laplacian of scalar φ by combining (C.36) and (C.40), using ~v = gradφ. This
leads to

∇2φ ≡ div grad φ =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂φ

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂φ

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂φ

∂x3

)]
.

(C.55)
Example. The Laplacian of scalar φ in the spherical coordinates r, ϑ, λ is

∇2φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂φ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2φ

∂λ2
. (C.56)

In curvilinear coordinates, the Laplacian of a vector is more complicated than the Laplacian
of a scalar due to the spatial dependence of the unit base vectors. Occasionally, the Laplacian
of a vector is needed in spherical coordinates. It is best obtained by using the vector differential
identity (A.32). Without detailed derivation, we introduce

(∇2~v)r = ∇2vr −
2

r2
vr −

2

r2

∂vϑ
∂ϑ
− 2

r2

cosϑ

sinϑ
vϑ −

2

r2 sinϑ

∂vλ
∂λ

,

(∇2~v)ϑ = ∇2vϑ −
1

r2 sin2 ϑ
vϑ +

2

r2

∂vr
∂ϑ
− 2

r2

cosϑ

sin2 ϑ

∂vλ
∂λ

, (C.57)

(∇2~v)λ = ∇2vλ −
1

r2 sin2 ϑ
vλ +

2

r2 sinϑ

∂vr
∂λ

+
2

r2

cosϑ

sin2 ϑ

∂vϑ
∂λ

.
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