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Chapter 1

Introduction

In this course, we will be describing all optical phenomena classically within the
framework of macroscopic Maxwell’s equations written in terms of macroscopic elec-
tromagnetic fields. The latter are obtained by averaging rapidly varying microscopic
fields over spatial scales much larger than characteristic material microstructure scales
(atomic size, lattice scale, etc). The averaging procedure is examined in detail in stan-
dard electrodynamics textbooks1. Within the framework of such a phenomenological
approach, which circumvents a detailed microscopic light-matter interaction descrip-
tion, external or driving volume charge and current densities, ρex and Jex, give rise to
the electromagnetic fields obeying the Maxwell equations in the form

∇ ·D = ρex, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂tB (1.3)

and
∇×H = Jex + ∂tD. (1.4)

The set of equations (1.1) through (1.4) is not closed, however, until we provide any
information about the material media. Such information is furnished by supplying phe-
nomenological constitutive relations among the four fields, E, D, B, and H. Without
much loss of generality we will assume hereafter that all material media are nonmag-
netic, which holds true for virtually all natural media at optical frequencies 2. We can
then represent the magnetic constitutive relation in its simplest form as

B = µ0H, (1.5)

with µ0 being the free space permeability in the SI units we will be employing hereafter.
A general electric constitutive relation states

D = ε0E + P; P = P(E), (1.6)
1J. D. Jackson, Classical Electrodynamics (Wiley, New York, NY, 1999) 3rd edition.
2This criterion, however, breaks down for some artificial materials, the so-called metamaterials, which

we will not consider in this course.
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where ε0 is the free space permittivity and P is a macroscopic polarization field. The
latter is in turn a function of the applied electric field. For sufficiently weak applied
fields, P is a linear function of E; this is a regime of linear optics. However, even in
the linear optics regime, the dependence of the polarization on the applied electric field
can be rather complicated to account for possible medium anisotropy and–temporal
and sometimes even spatial–dispersion. While the former implies that the medium
response in a particular direction can be affected by the electric field components or-
thogonal to this direction, the latter acknowledges the fact that the medium response
at a given space-time point can depend on the applied electric field in the past (tem-
poral dispersion) and/or on the fields in the neighborhood of the spatial point (spatial
dispersion). We will study all these cases in detail in the subsequent chapters.

As the magnitude of the applied electric field increases, the linear relationship be-
tween P and E breaks down and we enter the realm of nonlinear optics. If the electric
field intensity is far below a critical value, Ecr ∼ 109 V/cm needed to ionize a material
atom, the resulting polarization can be expressed as a series in increasing powers of the
electric field. Schematically, such a series can be expressed as

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . .), (1.7)

where we ignored the vector nature of the fields as well as dispersion, for simplicity.
The expansion coefficients, χ(1) and χ(2), etc., are identified as linear and nonlinear
susceptibilities, respectively. The linear and nonlinear susceptibilities should be treated
as phenomenological constants in our classical description. The condition E � Ecr is
typically met with a vast majority of laser sources which rarely generate fields in excess
of 106 V/cm. However, even if the applied field does not exceed Ecr, the power series
expansion can fail, provided the carrier frequency of the field lies close to any internal
resonance of the medium. In the latter case, the material response tends to saturate
at high enough field intensities. The proper quantitative description of such nonlinear
saturation phenomena calls for a quantum mechanical treatment of the medium. When-
ever, the power expansion of P is valid, though, we shall refer to the lowest-order term
in the expansion as a linear contribution and designate the rest to be nonlinear polar-
ization such that

P = PL + PNL. (1.8)

Next, the external charge and current densities are not independent from each other.
Rather they are related by another fundamental law, the charge conservation law, which
takes the form of a well-known continuity equation viz.,

∂tρex +∇ · Jex = 0. (1.9)

The external ρex and Jex drive the electromagnetic fields which, in turn, induce internal
charge and current densities, ρ and J, inside a medium. The induced charges and
currents can be of either free (conduction) or bound (polarized) type and they also
obey the continuity equation,

∂tρ+∇ · J = 0. (1.10)

We stress that charge conservation (1.9) amounts to a fundamental law which does
not follow from Maxwell’s equations. The electromagnetic energy conservation law,
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however, does follow from the Maxwell equations by the same token as the mechanical
energy conservation follows from Newton’s laws.

To derive the electromagnetic energy conservation law or the Poynting theorem, we
take dot products of the both sides of Eqs. (1.3) and (1.4) with H and E, respectively,
and use the constitutive relations (1.5) and (1.6), yielding

H · (∇×E) = −µ0H · ∂tH (1.11)

and
E · (∇×H) = Jex ·E + ε0E · ∂tE + E · ∂tP. (1.12)

On subtracting Eq. (1.11) from Eq. (1.12) term by term, we obtain

ε0
2 ∂tE

2 + µ0

2 ∂tH
2 + Jex ·E = E · (∇×H)−H · (∇×E)−E · ∂tP. (1.13)

Further, using the vector identity

∇ · (E×H) = H · (∇×E)−E · (∇×H) (1.14)

we arrive, after minor algebra, at a differential form of the electromagnetic energy
conservation equation

∂twem +∇ · S = −Jex ·E−E · ∂tP. (1.15)

Here the electromagnetic energy density wem is defined in the same way as in free
space,

wem = 1
2ε0E

2 + 1
2µ0H

2, (1.16)

and we introduced the electromagnetic energy flux density, the so-called Poynting vec-
tor, by the expression

S = E×H. (1.17)

Equation (1.15) is often referred to as Poynting’s theorem. In essence, it implies that
the time rate of change of the electromagnetic energy density is determined by the
energy flux density minus losses associated with external as well as internal currents.
The second term on the r.h.s of Eq. (1.15) describes Ohmic losses associated with
external currents and the third one is identified with the energy loss caused by induced
polarization currents, including the ones associated with the generation of nonlinear
polarizations. To reexpress the right-hand side of Eq. (1.15) in a more symmetric from,
we can explicitly define the induced polarization currents as

J = ∂tP, (1.18)

and introduce the corresponding induced charge densities as

ρ = −∇ ·P, (1.19)

such that the continuity equation (1.10) is respected. We emphasize that our separation
of the charges into external (driving) and internal (induced) is much more natural at
optical frequencies than the standard separation into free and bound charges. The latter
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is a rather arbitrary division3 which can be confusing at optical frequencies, especially
for metals4. We will then unify free and bound induced charges and currents under the
umbrella of ρ and J.

To better understand Eq. (1.15), we transform it into the integral form

dWem

dt
= −

∮
σ

dσ · S−
∫
v

dv(Jex + J) ·E. (1.20)

where
Wem =

∫
v

dvwem, (1.21)

is the total energy of electromagnetic field inside a given volume v, and we used a
divergence theorem to convert a volume integral on the the r.h.s of (1.20) into the
surface one. Equation (1.20) then implies that the total energy change inside a finite
region of the medium can occur as a result of the energy outflow through the boundary
surface of the region as well as via energy losses inside the region associated with
driving and induced currents. This situation is schematically illustrated in Fig. 1.

emW

EJ c .

t

P
E

∂
∂

.

S

Figure 1.1: Schematic illustration of energy conservation in nonlinear media.

In many practical situations in nonlinear optics one deals with pulse or beam fields
with their carriers oscillating at optical frequencies. Such fast oscillations can never
be detected by even the fastest modern detectors whose response time is much larger

3Yu. A. Illinskii, L. V. Keldysh, Electromagnetic response of material media (Plenum Press, New York,
NY, 1994).

4S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, Berlin, 2007).
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that an optical period. Consequently, it makes sense to talk about the field quantities
averaged over many optical cycles – it is those quantities that can actually be registered
in optical measurements anyway. In the absence of external currents, Jex = 0, we can
rewrite the time-averaged Poynting theorem as

〈∂twem〉+∇ · 〈S〉 = −〈E · ∂tP〉 . (1.22)

Here we define time-averaged quantities such as the average Poynting vector by the
expression

〈S〉 = 〈E×H〉 ≡ 1

T

∫ t+T/2

t−T/2
dt (E×H), (1.23)

where T is an optical period. In case of monochromatic fields, which can be conve-
niently represented via complex amplitudes as

E = 1
2 (Ee−iωt + c. c.), (1.24)

and
H = 1

2 (He−iωt + c. c.), (1.25)

Eq. (1.23) can be shown to reduce to

〈S〉 = 1
2 Re(E ×H∗). (1.26)
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Chapter 2

Plane electromagnetic waves in
linear media

2.1 Plane waves in free space
In the absence of external charges and currents, Maxwell’s equations in free space take
the form

∇ ·E = 0, (2.1)

∇ ·H = 0, (2.2)

∇×E = −µ0∂tH, (2.3)

and
∇×H = ε0∂tE. (2.4)

Linearity, stationarity, and homogeneity of Maxwell’s equations in free space point to
the existence of plane-wave solutions in the form

E(r, t) = Re{Eei(k·r−ωt)}, H(r, t) = Re{Hei(k·r−ωt)}. (2.5)

By linearity of Maxwell’s equations in free space, we can drop the real part and deal
with complex phasors describing the waves directly. The real part can be taken at the
end of all calculations to yield physical (real) electric and magnetic fields of a plane
wave.

The Maxwell equations in the plane-wave form can be rewritten as

k · E = 0, (2.6)

k ·H = 0, (2.7)

k× E = ωµ0H, (2.8)

and
k×H = −ωε0E. (2.9)
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In Eqs. (2.6) – (2.9) we dropped plane-wave phasors on both sides.
Next, we can exclude the magnetic field from the fourth Maxwell equation leading

to
k× (k× E) = −ε0µ0ω

2E. (2.10)

Rearranging the double cross-product on the left-hand side of Eq. (2.10), we arrive at

k(k · E)− k2E = −ε0µ0ω
2E. (2.11)

With the aid of Eq. (2.6), we obtain

(k2 − µ0ε0ω
2)E = 0, (2.12)

implying that
k = ω

√
ε0µ0 = ω/c (2.13)

where we introduced the speed of light in vacuum

c =
1

√
ε0µ0

= 3× 108 m/s. (2.14)

Equation (2.13) is a dispersion relation for plane electromagnetic waves in free
space; it relates the wave number to the wave frequency. The complex amplitudes E
and H–which determine the directions of E and H–are not independent, but are related
by the Maxwell equations (2.8) or (2.9). For instance, from the knowledge of E one
can determine H using Eq. (2.8),

H =
(ek × E)

η0
, (2.15)

where ek = k/k and η0 is the free space impedance defined as

η0 =

√
µ0

ε0
' 377 Ω. (2.16)

By the same token, E0 can be inferred from H0 with the help of Eq. (2.9):

E = −η0(ek ×H). (2.17)

It follows at once from Eqs. (2.15) and (2.17) that E , k and H are mutually orthogonal
for a plane wave in free space.

By convention, the wave polarization is associated with the time evolution of the
electric field vector. Let us consider a plane wave propagating along the z-axis in free
space. As, k = kez , and E⊥k, the electric field in the phasor form reads

E(z, t) = Re{(ex|Ex|eiφ0x + ey|Ey|eiφ0y )ei(kz−ωt)}, (2.18)

We will now show that, in general, the tip of the electric field vector moves around
an ellipse as the time evolves. This general polarization is called elliptic. To proceed,
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K


E


Η


Figure 2.1: Mutual orientation of E, H and k of a plane wave propagating in free
space.

we rewrite the complex amplitude in the rectangular form as

Exex + Eyey = (ex|Ex| cosφ0x + ey|Ey| cosφ0y)︸ ︷︷ ︸
U

+ i (ex|Ex| sinφ0x + ey|Ey| sinφ0y)︸ ︷︷ ︸
V

. (2.19)

Note that U and V are not orthogonal which makes the situation tricky. We can how-
ever introduce a transformation from U and V to u, v involving an auxiliary parameter
θ such that

U + iV = (u + iv)eiθ, (2.20)

It follows at once from Eq. (2.20) that

U = u cos θ − v sin θ, V = u sin θ + v cos θ. (2.21)

Inverting Eqs. (2.21), we obtain

u = U cos θ + V sin θ, v = U sin θ −V cos θ. (2.22)

We can now use our freedom to choose θ wisely. In particular, choosing it such that
u · v = 0 (orthogonal axes), we obtain by taking the dot product of u and v,

tan 2θ =
2U ·V
U2 − V 2

=⇒ θ =
1

2
tan−1

(
2U ·V
U2 − V 2

)
. (2.23)

Here we made use of the trigonometric identities, sin 2θ = 2 sin θ cos θ and cos 2θ =
cos2 θ − sin2 θ. By combining Eqs. (2.19) and (2.20), we can rewrite our field as

E(z, t) = Re{(u + iv)ei(kz−ωt+θ)}. (2.24)

Using the orthogonality of u and v, we can write the two orthogonal components of
the field, Eu and Ev as

Eu = u cos(kz − ωt+ θ), Ev = v sin(kz − ωt+ θ). (2.25)
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It follows from Eq. (2.25) that
E2
u

u2
+
E2
v

v2
= 1, (2.26)

where u and v are given by Eq. (2.22) and θ by Eq. (2.23). Eq. (2.26) manifestly
represents an ellipse with the semi-major axis making the angle θ with the x-axis as is
shown in Fig. 3.6. The tip of E can move either clockwise or counterclockwise along

E


vE



uE

Figure 2.2: Illustrating elliptic polarization.

the ellipse; depending on the direction of motion of E, the polarization is left-hand
or right-hand elliptical. In the left-hand (right-hand) elliptical polarization, the fingers
of your left (right) hand follow the direction of rotation and the thumb points to the
wave propagation direction. Thus, for a general elliptic polarization, the electric field

E


xE



yE

xâ

yâ

Figure 2.3: Illustrating linear polarization.

amplitude takes the form

E(z, t) = ex|Ex| cos(kz − ωt+ φ0x) + ey|Ey| cos(kz − ωt+ φ0y). (2.27)

Although, in general, the electric field is elliptically polarized, there are two impor-
tant particular cases. The electric field is said to be linearly polarized if the phases of
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two orthogonal components of the field in Eq. (2.18) are the same, φ0x = φ0y .
In this case,

E(z, t) = (ex|Ex|+ ey|Ey|) cos(kz − ωt+ φ0), (2.28)

and the electric field is always directed along the line making the angle

α = tan−1(|Ey|/|Ex|) (2.29)

with the x-axis as is shown in Fig. 3.7.
If the phases of the two orthogonal components in Eq. (2.19) differ by π/2, and |E0x| =
|E0y|, the wave is said to be circularly polarized. In this case

E(z, t) = |E|[ex cos(kz − ωt+ φ0)∓ ey sin(kz − ωt+ φ0)]. (2.30)

In a circularly polarized wave, the E has the same magnitude but is moving along

E


xE

yE

o

Figure 2.4: Illustrating circular polarization.

the circle. In the case of “-” sign in Eq. (2.30), E moves counterclockwise around the
circle and the wave is left circularly polarized; for the “+” sign it is right circularly
polarized.

2.2 Plane waves in homogeneous dielectrics
We now consider general phenomenological electric constitutive relations for station-
ary, homogeneous linear media. As a medium can be anisotropic and dispersive, we
can introduce the relative permittivity and conductivity tensors, εij and σij and express
D and J in terms of E as

Di(r, t) = ε0
∑

j=x,y,z

∫ ∞
−∞

dt′
∫
dr′ εij(r− r′, t− t′)Ej(r′, t′), (2.31)
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and

Ji(r, t) =
∑

j=x,y,z

∫ ∞
−∞

dt′
∫
dr′ σij(r− r′, t− t′)Ej(r′, t′). (2.32)

In Eqs. (2.31) and (2.32), the permittivity and conductivity tensors depend only on co-
ordinate and time differences because of homogeneity and stationarity of the medium:
All properties of such media are invariant with respect to translations in time and dis-
placements in space.

The translational invariance of the system prompts the use of plane-wave expan-
sions via Fourier transforms, i. e.,

D(r, t) =

∫
dω

∫
dkD(k, ω)ei(k·r−ωt), (2.33)

with similar expressions for the other fields. In physical terms, Fourier expansions give
all possible plane waves allowed to propagate in such media; the Fourier coefficients
specify field amplitudes of these plane waves. Introducing also Fourier expansions of
the permittivity and conductivity tensors viz.,

εij(r, t) =

∫
dω

∫
dk εij(k, ω)ei(k·r−ωt), (2.34)

and
σij(r, t) =

∫
dω

∫
dkσij(k, ω)ei(k·r−ωt), (2.35)

we can use convolution properties of Fourier transforms to cast Eqs. (2.31) and (2.32)
to

Di(k, ω) = ε0
∑

j=x,y,z

εij(k, ω)Ej(k, ω), (2.36)

and
Ji(k, ω) =

∑
j=x,y,z

σij(k, ω)Ej(k, ω). (2.37)

Next, on taking Fourier transforms of Eqs. (1.6), and (1.18) and combining Eqs. (2.36)
as well as (2.37), we can establish a relation between the permittivity and conductivity
tensors in the Fourier space,

εij(k, ω) = δij +
i

ε0ω
σij(k, ω). (2.38)

Exercise 2.1. Derive Eq. (2.38).
Thus, we conclude that the permittivity and conductivity tensors are actually related
and one can be eliminated in favor of the other. In condensed-matter calculations, it
is the conductivity tensor that is typically employed. On the other hand, optical wave
propagation in the media is more conveniently examined in terms of the permittivity
tensor. In the absence of external charges and currents, the Maxwell equations (1.1)
through (1.4) can be greatly simplified in the Fourier space to read

k ·D = 0, (2.39)
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k ·H = 0, (2.40)

k× E = µ0ωH, (2.41)

and
k×H = −ωD. (2.42)

Next, eliminating the magnetic field from Eqs. (2.39) - (2.42), and using the con-
stitutive relation (2.36), we can express Eqs. (1.1) and (2.41) in the component form
as ∑

i,j=x,y,z

kiεij(k, ω)Ej(k, ω) = 0, (2.43)

and ∑
j=x,y,z

[
k2δij − kikj − ω2

c2 εij(k, ω)
]
Ej(k, ω) = 0. (2.44)

Eqs. (2.43) and (2.44) determine all possible plane electromagnetic waves supported
by a given medium.
Exercise 2.2. Show that Eqs. (2.43) and (2.44) are always compatible.
Eq. (2.43 is called a generalized transversality condition, whereas Eq. (2.44) is a dis-
persion relation for the waves. The existence of nontrivial plane-wave solutions to
Eq. (2.44) can be expressed in terms of a determinant condition as

Det
[
k2δij − kikj − ω2

c2 εij(k, ω)
]

= 0. (2.45)

Let us now consider the important limiting case of an isotropic dielectric. It can be
inferred by inspection that the dielectric permittivity tensor of an isotropic medium can
only be composed of δij and kikj implying that

εij(k, ω) = δijA(k, ω) + kikjB(k, ω), (2.46)

where A(k, ω) and B(k, ω) are scalar functions. Instead of using A and B, however,
it will prove convenient to divide εij into a part transverse to the ek = k/k direction,
and that longitudinal to ek. Such a decomposition can be accomplished via

εij(k, ω) = ε⊥(k, ω)
(
δij − kikj

k2

)
+ ε‖(k, ω)

kikj
k2 . (2.47)

On substituting from Eq. (2.47) into Eqs. (2.43) and (2.44), the latter can be trans-
formed to

ε‖(k, ω)(k · E) = 0, (2.48)

and [
k2 − ω2

c2 ε⊥(k, ω)
] [

E − k(k·E)
k2

]
−
(
ω2

k2c2

)
ε‖(k, ω)k(k · E) = 0. (2.49)

Eqs. (2.48) and (2.49) then imply the existence of a family of purely transverse plane
waves,

k · E = 0, (2.50)
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with the dispersion relation,

k = ±ωc
√
ε⊥(k, ω), (2.51)

and a family of the waves which have longitudinal component(s) of the electric field,
k · E 6= 0, with the dispersion relation determined by a common solution of Eq. (2.51)
and of the following equation

ε‖(k, ω) = 0. (2.52)

In Eq. (2.51) the two signs on the right-hand side correspond to two plane waves at a
given frequency ω propagating the the opposite directions.
Exercise. 2.3. As we will see in Sec. 2.5., dielectric response of metals at high frequen-
cies can be modeled by the permittivity

εij(ω) = δij

(
1−

ω2
p

ω2

)
, (2.53)

where ωp is the so-called plasma frequency. Determine the frequency(s) and dispersion
relation of longitudinal electromagnetic waves propagating in metals at such ultravi-
olet frequencies and interpret your results in physical terms. Show that transverse
electromagnetic waves can only propagate if ω > ωp. What is their dispersion rela-
tion?

Note that the dispersion relation (2.51) is, in general, in the implicit form due to
spatial dispersion of the medium. It is then instructive to examine the limiting case
of local media which lack spatial dispersion. In reality the vast majority of inorganic
media are made of atoms or molecules with the size significantly smaller than the
optical wavelength. Hence, spatial nonlocality of their dielectric response to the applied
field is negligible, resulting in the absence of spatial dispersion in such media. Under
the circumstances, the permittivity tensor can be simplified as

εij(r− r′, t− t′) = δ(r− r′)εij(t− t′). (2.54)

It then follows at once from Eqs. (2.34) and (2.54) that the permittivity tensor in Fourier
space is independent of k, implying that

ε(k, ω) = ε(k = 0, ω) ≡ ε(ω). (2.55)

The dispersion relation for transverse electromagnetic waves can be expressed in the
explicit form as

k = ±ωc
√
ε⊥(ω), (2.56)

and the generalized transversality condition states

ε‖(ω) = 0. (2.57)

In the following sections, we will explore several commonly occurring types of linear
optical media.
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2.2.1 Plane waves in homogeneous isotropic media with no spatial
dispersion

Medium isotropy and locality imply a greatly simplified form of the permittivity tensor,

εij(k, ω) = ε(ω)δij . (2.58)

It then follows from Eqs. (2.47) and (2.58) that ε‖(ω) = ε⊥(ω) = ε(ω). Assuming
further that in the spectral range of interest, ε(ω) 6= 0, we conclude that in this case, the
only allowed plane waves in such media must be transverse, governed by the dispersion
relation

k = ±ωc
√
ε(ω), (2.59)

Representing the dielectric function in terms of its real and imaginary parts,

ε(ω) = ε′(ω) + iε′′(ω), (2.60)

we can express the wave number of the propagating wave as

k = β± + iα±/2. (2.61)

Here
β± = ±ωc

√√
ε′2+ε′′2+ε′

2 , (2.62)

and
1
2α± = ±ωc

√√
ε′2+ε′′2−ε′

2 . (2.63)

Exercise 2.4. Derive the equations (2.62) and (2.63).
Let us choose the z-axis of our coordinate system along propagation direction of

the wave, k = kez . It then follows from the Maxwell equations (2.39) through (2.42)
that the electric and magnetic field amplitudes are related as

E = −η(ez ×H), (2.64)

or, alternatively,

H =
(ez × E)

η
, (2.65)

where η is a complex impedance of the lossy medium, defined as

η(ω) =

√
µ0

ε0ε(ω)
=

η0√
ε(ω)

. (2.66)

To illustrate the plane wave propagation in such a medium, let us focus now on a
particular case of a linearly polarized in the x-direction plane wave which propagates
in the positive z-direction. The electric and magnetic fields of the wave can then be
represented as

E(z, t) = 1
2ex[Ee−α+z/2ei(β+z−ωt) + c. c., ] (2.67)

and
H(z, t) = 1

2ey

[
E
|η|e
−α+z/2ei(β+z−ωt−θη) + c. c

]
, (2.68)
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Figure 2.5: Inhomogeneous plane wave propagating in a lossy medium.

which describe inhomogeneous plane waves thanks to losses. Here we chose β+ and
α+ which describe a plane wave propagating to the right and exponentially decaying
on propagation into the medium; the magnitude and phase of the complex impedance
can be expressed as

|η| = η0

(ε′2 + ε′′2)1/4
, tan θη = −ε′′/ε′. (2.69)

We can then infer from Eqs. (2.67) and (2.68) that the presence of losses introduces a
phase lag between the magnetic and electric fields in such media as well.

Finally, we can work out the time-averaged energy flux density (Poynting vector),
and hence the optical intensity, associated with the inhomogeneous plane wave. On
substituting from Eqs. (2.67) and (2.68) into Eq. (1.26), we obtain for the optical inten-
sity

I = |〈S〉| = |E|
2

2|η|
e−z/δ cos θη. (2.70)

Eq. (2.70) is known as Beer’s absorption law, and by measuring the intensity extinction,
one can infer the Beer absorption length, or skin depth

δ =
1

α+
. (2.71)

We note that Beer’s absorption length is then a directly measurable quantity. We can
also define a complex refractive index by the expression

N (ω) =
√
ε(ω) = n(ω) + iκ(ω), (2.72)

where n is a real refractive index which can be determined from reflectivity measure-
ments and κ is a so-called extinction coefficient, closely related to Beers’ absorption
length. In fact, it readily follows from Eqs. (2.59), (2.61) and (2.72) that

δ−1(ω) =
2κ(ω)ω

c
. (2.73)

17



The magnitudes of real and imaginary parts of ε can then be inferred from the knowl-
edge of n and κ, i.e.,

ε′ = n2 − κ2, ε′′ = 2nκ. (2.74)

In particular, in the transparent regions of the spectrum, where ε′′ � ε′, ε′ ' n2 and
the optical intensity of a plane wave can be expressed as

I =
ε0nc

2
|E|2. (2.75)

2.2.2 Plane waves in uniaxial crystals
We will now explore the families of plane waves that can propagate in transparent
dispersionless anisotropic media. Most crystals fall into this category in the optical
frequency range. We will limit ourselves to the case of uniaxial crystals. Dielectric
properties of uniaxial crystals along a special axis, usually defined by a unit vector n,
are different from those in any direction orthogonal to the axis. The special direction is
called an optical axis of the crystal. In the absence of spatial dispersion, the dielectric
permittivity tensor can only depend on δij and ninj and can be conveniently expressed
in terms of transverse ε⊥ and longitudinal ε‖ components as

εij = ε⊥(δij − ninj) + ε‖ninj . (2.76)

One can always choose a coordinate systems such that the optical axis of the crystal
coincides with one of the axes, the z-axis, say. In these coordinates, the dielectric
tensor transforms to its canonical (diagonal) form represented by the matrix

εij =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 (2.77)

If ε‖ > ε⊥, the crystal is said to be a positive uniaxial crystal, and if ε‖ < ε⊥ the crystal
is referred to as a negative uniaxial one.

Let us assume, for simplicity that the wave vector lies in the xz-plane, k = kxex+
kzez . It then follows from Eqs. (2.44) and Eq. (2.77) that(

k2
z − ω2

c2 ε⊥

)
Ex − kxkzEz = 0, (2.78)

−kxkzEx +
(
k2
x − ω2

c2 ε‖

)
Ez = 0, (2.79)

and (
k2 − ω2

c2 ε⊥

)
Ey = 0. (2.80)

The generalized transversality condition (2.43) can then be cast into the form

kxε⊥Ex + kzε‖Ez = 0. (2.81)

The analysis of Eqs. (2.78) through (2.81) reveals that there are two possible polariza-
tions: ordinary and extraordinary one. For the ordinary polarization, it follows at once
from Eq. (2.80) that the ordinarily polarized wave is transverse,

E = Eyey, (2.82)
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and ita dispersion relation is given by the expression

ko = ω
c

√
ε⊥. (2.83)

We observe that ordinary waves in uniaxial crystals have all the same properties as
plane waves supported by transparent isotropic media.

xk

zk
zk

xk

0k ek

Figure 2.6: Graphical representation of the wave vectors of ordinary (left) and extraor-
dinary (right) waves in a uniaxial crystal.

The polarization of the extraordinary waves can be inferred from

E = Exex + Ezez, (2.84)

where Ex and Ez are related by Eq. (2.81). We can also derive their dispersion relation
from the determinant condition for Eqs. (2.78) and (2.79). The resulting dispersion
relation reads

k2
xc

2

ω2ε‖
+
k2
zc

2

ω2ε⊥
= 1. (2.85)

Using kx = ke sin θ, and kz = ke cos θ, we can cast Eq. (2.85) into the form

ω2

k2
ec

2
=

sin2 θ

ε‖
+

cos2 θ

ε⊥
. (2.86)

Thus the wave vector magnitude of an extraordinary wave depends on its propagation
direction which is a novel propagation feature arising in anisotropic media. The differ-
ence between ordinary and extraordinary waves can be best visualized by comparing
their dispersion relations. It is seen from Eqs. (2.83) and (2.86) that in the k-plane
the dispersion relations of ordinary and extraordinary waves can be represented by a
sphere of radius (ω/c)

√
ε⊥ and ellipse with the semi-axes (ω/c)

√
ε⊥ and (ω/c)

√
ε‖,

respectively. The situation is schematically depicted in the figure above.
Exercise 2.5. Using Maxwell’s equations show that the wave vector of the extraordi-
nary wave is not parallel to the Pointing vector, S = E ×H. In other words, demon-
strate that the direction of propagation of such a wave does not, in general, coincide
with the direction of the energy flow.
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2.2.3 Faraday effect and polarization rotation
We will now consider light propagation in an isotropic, weakly dispersive–and hence
lossless–dielectric medium with a weak homogeneous static magnetic field, B, applied
along the z−axis such that B = Bez . We assume that the influence of magnetic
field can be treated as a perturbation and we seek a phenomenological expression for
a dielectric permittivity tensor of an isotropic medium with a small correction due to
the magnetic field. The lowest-order correction is assumed to linear in the magnetic
field. Therefore, the second-order permittivity tensor can only be comprised of δij and
a component linear in Bi. Recall that both D and E are physical vectors that change
their sign upon reflections with respect to the origin of a coordinate system. It then
follows from Eq. (2.31) that εij should be invariant upon reflections. To respect the
reflectional invariance of the permittivity tensor, the correction term can only be of the
form

∑
k eijkBk, where

eijk =

{
1, clockwise permutation
−1, counterclockwise permutation (2.87)

is an antisymmetric Levi-Chivita symbol; exyz = 1, eyxz = −1 and so on up to a
cyclic permutation. Thus, on phenomenological grounds, the dielectric permittivity
tensor describing an isotropic dispersionless medium perturbed by a weak magnetic
field can be written as

εij(ω) = ε(ω)δij + ig(ω)
∑

k=x,y,z

eijkBk, |gB| � ε. (2.88)

where g(ω) is a phenomenological constant. In the end of this chapter, we will derive
Eq. (2.88) using a simple classical microscopic model of a medium. The permittivity
tensor (2.88) can be written in a matrix form as

εij(ω) =

 ε(ω) ig(ω)B 0
−ig(ω)B ε(ω) 0

0 0 ε

 . (2.89)

Let us now assume, for simplicity that the wave propagates along the magnetic
field, k = kez . It then follows from Eqs. (2.44) and (2.43) that[

k2 − ω2

c2 ε(ω)
]
Ex − ig(ω)B

(
ω2

c2

)
Ey = 0, (2.90)

ig(ω)B
(
ω2

c2

)
Ex +

[
k2 − ω2

c2 ε(ω)
]
Ey = 0, (2.91)

and
−ω

2

c2 Ez = 0. (2.92)

Exercise 2.6. Derive Eqs. (2.90) – (2.92) from Eqs. (2.44), (2.43), and (2.88).
We can then show that up to the first order in fB/ε � 1, wave vector magnitude of
any wave existing in such media is given by

k± = k ±∆k, (2.93)
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where we introduced the notations

k =
ω

c

√
ε(ω); ∆k =

ωg(ω)B

2c
√
ε(ω)

. (2.94)

The plane waves supported by the media must be circularly polarized, i. e.,

Ez = 0, Ey = ±iEx, (2.95)

where the upper (lower) sign on the right-hand side of Eq. (2.95) corresponds to the
upper (lower) subscript on the left-hand side of Eq. (2.93). In other words, the medium
supports left- and right-circularly polarized waves with slightly different wave num-
bers.

We will now explore how a linearly polarized wave evolves in the medium. As-
suming the wave is polarized along the x-axis, say, at the entrance to the medium,

E0 = 1
2exE0e

−iωt + c.c, (2.96)

we can represent the incident electric field as

E0 = 1
2
E0√

2
(e+ + e−)e−iωt + c.c, (2.97)

where
e± =

ex ± iey√
2

, (2.98)

are the unit vectors associated with the two circular polarizations. We can now examine
wave propagation in the medium. The electric field in any transverse plane z = const
can be written as

E = (Ae+e
ik+z +Be−e

ik−z)e−iωt + c.c. (2.99)

It follows from the initial conditions that A = B = E0/2
√

2. Thus, we obtain subse-
quently the propagated wave expression in the form

E = 1
2
E0√

2
(e+e

i∆kz + e−e
−i∆kz)ei(kz−ωt) + c.c. (2.100)

We can transform Eq. (2.100) to

E = 1
2E0ep(z)e

i(kz−ωt) + c.c, (2.101)

where
ep(z) = ex cos ∆kz − ey sin ∆kz. (2.102)

Exercise 2.7. Derive Eq. (2.101) from Eq. (2.100)
It can be inferred from Eqs. (2.101) and (2.102) that the wave remains linearly po-
larized, but the plane of polarization rotates. Alternatively, one can conclude that the
polarization vector rotates in the transverse plane as the wave propagates along the z-
axis. This phenomenon is called Faraday rotation. The rate of rotation is customary
characterized by the Verdet constant V defined by the expression

∆k = V B, (2.103)

21



It then follows at once from Eqs. (2.94) and (2.103) that for a plane wave propagating
along the magnetic field, the Verdet constant is given by

V =
ωg(ω)

2c
√
ε(ω)

. (2.104)

Exercise 2.8. Generalize the discussion of this section to the case when a plane wave
propagates at an angle θ to the magnetic field. Derive a generalized dispersion relation
and determine the Verdet constant in this case.

2.3 Refraction and reflection of plane waves at the in-
terface of homogeneous media

2.3.1 Reflection of plane waves at oblique incidence: Generalized
Snell’s law
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Figure 2.7: Illustrating Snell’s law for oblique incidence of a plane wave.

We now explore refraction and reflection of plane electromagnetic waves at an
interface of two homogeneous media. To reflect a typical physical situation, we will
assume that a plane wave is incident from a transparent medium with the permittivity ε1
onto a flat interface separating the medium from a lossy medium 2, characterized by the
complex permittivity ε2(ω) = ε′2(ω)+iε′′2(ω). We choose a coordinate system with the
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unit normal to the interface pointed along the z-axis. The geometry of the problem is
sketched in Fig. 2.3.1. Note that the incidence, refraction, and transmission angles, θi,
θr, and θt, respectively, are real angles only in the transparency window of the second
medium, ε′′2(ω) = 0. Otherwise, all sines and cosines of θt are complex. For this
reason, we will not use the angles hereafter. Rather, we will derive the Fresnel formulas
for transmission and reflection amplitudes in terms of the corresponding projections of
k-vectors which can, in general, be complex. Next, it will prove convenient hereafter
to introduce the notations

k1 = k0n1, k2 = k0N2, (2.105)

where k0 = ω/c and N2 is a complex refractive index of medium 2, c. f. Eq. (2.72).
The boundary conditions at the flat interface z = 0 should hold at any point in the
xz-plane and at any instant of time t, implying that

ei(ki·r−ωit)|z=0 = ei(kr·r−ωrt)|z=0 = ei(kt·r−ωtt)|z=0. (2.106)

Here the subscripts i, r, and t stand for incident, reflected and transmitted waves, re-
spectively. It follows at once from Eq. (2.106) that

ωi = ωr = ωt = ω, (2.107)

that is the frequencies of the incident, reflected and transmitted waves must match.
Further, it can be inferred from the boundary conditions (2.106) that

kix = krx = ktx = kx, (2.108)

In other words, the in-plane components of the wave vectors must match as well. No-
tice that since medium 1 is assumed to be transparent, Eq. (2.108) stipulates that in-
plane components of the wave vectors of all the involved waves be real. We stress that
Eq. (2.108) is a generalized Snell’s law. We shall also introduce the notations

kiz = −kir = k1z, ktz = k2z. (2.109)

It then follows from Eqs. (2.105) (2.108), and (3.113) that

ki = kxex + k1zez, (2.110)

kr = kxex − k1zez, (2.111)

and
kt = kxex + k2zez, (2.112)

where
k1z =

√
k2

1 − k2
x, and k2z =

√
k2

2 − k2
x. (2.113)

It is easy to see from the geometry of Fig. 2.3.1 that in the transparency window of
medium 2, all angles are real and Eq. (2.108 reduces to

θi = θr ≡ θ1, θt ≡ θ2 (2.114)
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and
n1 sin θ1 = n2 sin θ2. (2.115)

Put another way, the incidence and reflection angles should be equal and the Snell law
should simplify to its familiar form for refraction at the interface of two transparent
media.

2.3.2 Reflection of plane waves at oblique incidence: Fresnel For-
mulae

There are two important special cases of the incident polarization that should be distin-
guished: transverse magnetic (TM), or p-polarization, and transverse electric (TE), or
s-polarization. In the first instance, the magnetic field of an incident wave is directed
perpendicular to the plane of incidence, whereas in the second case it is the incident
electric field that is orthogonal to this plane. We will examine the two cases separately.
Note that an arbitrarily polarized incident field can be decomposed into a TM and TE
polarized components which are mutually orthogonal.

Transverse magnetic (TM) or p-polarization. – Consider first the TM case. Mag-
netic fields of the incident, reflected and transmitted TM waves are assumed to be
polarized along the y-axis, such that we can express their complex amplitudes as

Hs = Hsey, s = i, r, t. (2.116)

Since the magnetic field of a TM-polarized wave has only one component, it is conve-
nient to express the electric field in terms of the magnetic one. It follows at once from
the Maxwell equations (2.41) and (2.42) that

Es = −ηs(eks ×Hs), (2.117)

where ηi,r = η0/
√
ε1 and ηt = η0/

√
ε2 are relevant media impedances. We can then

infer from Eqs. (2.116) and (2.117) as well as Eqs. (2.109) through (2.113) that the
complex amplitudes of the incident, reflected, and transmitted fields can be represented
as

Hi = Hiey,

Ei =
η0Hi

k0ε1
(k1zex − kxez), (2.118)

Hr = Hrey,

Er =
η0Hr

k0ε1
(−k1zex − kxez), (2.119)

and

Ht = Htey,

Et =
η0Ht

k0ε2
(k2zex − kxez), (2.120)
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respectively.
The boundary conditions for the tangential components of the fields across the

interface state
Hi +Hr = Ht (2.121)

and
Hi

ε1
k1z −

Hr

ε1
k1z =

Ht

ε2
k2z. (2.122)

It then follows from Eqs. (2.121) and (2.122) that

Hr =
ε2k1z − ε1k2z

ε2k1z + ε1k2z
Hi, (2.123)

and
Ht =

2ε2k1z

ε2k1z + ε1k2z
Hi. (2.124)

Using (2.117) we arrive at the expressions for the electric fields in the form

Ei = η1Hi, Er = η1Hr, Et = η2Ht. (2.125)

Finally, the complex reflectivity and transmittance can be represented as

rp ≡
Er
Ei

=
ε2k1z − ε1k2z

ε2k1z + ε1k2z
, (2.126)

and

tp ≡
Et
Ei

=
2ε2k1z

ε2k1z + ε1k2z

√
ε1
ε2
. (2.127)

Equations (2.126) and (2.127) are the celebrated Fresnel formulas for the TM case.
Let us now focus on the situation when the wave is incident normally to the inter-

face, such that kx = 0, ksz = ks, s = 1, 2. It then follows from Eqs. (2.105), (2.126)
and (2.127) that

r⊥ =
N2 − n1

N2 + n1
, and t⊥ =

2n1

N2 + n1
. (2.128)

There are two instructive limiting cases here. First, the second medium is transparent,
N2 = n2, such that the reflectivity and transmittance are purely real,

r⊥ =
n2 − n1

n2 + n1
, and t⊥ =

2n1

n2 + n1
, (2.129)

and the latter relations simply quantify the relative amplitudes of the reflected and
transmitted waves. Note that no energy will be lost in transmission in this case.
Exercise 2.9. A plane wave is normally incident at an interface separating two trans-
parent media. Show that the electromagnetic energy fluxes on both sides of the interface
are the same.

Another interesting situation arises when medium 2 behaves as a good conductor
in a certain spectral range. As is seen from Eqs. (2.38), 2.60), (2.72), and (2.74), κ2 �
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max(n1, n2) in this case. Thus, the reflectivity and transmittance may be approximated
as

r⊥ ' 1− 2in2

κ2
and t⊥ ' −

2in1

κ2
. (2.130)

It follows that most of the incident wave power is reflected from the interface of a good
conductor; only is its tiny fraction transmitted into the conductor.
Exercise 2.10. Consider a plane wave incident normally at the interface separating air
from a good conductor. Determine the portion of the incident wave power absorbed by
the conductor.

2

z

x

Kâi
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Figure 2.8: Normal incidence of a plane wave onto an interface separating a dielectric
and a perfect conductor.

In the extreme case of a perfect conductor, κ2 → ∞, such that r⊥ → 1–the wave
is perfectly reflected from the interface. The situation is sketched in the Fig. 2.3.2. The
electric and magnetic fields of the incident and reflected waves can then be represented
as

Ei(z, t) = exη1Hie
i(k1z−ωt), (2.131)

Hi(z, t) = eyHie
i(k1z−ωt). (2.132)

and
Er(z, t) = exη1Hie

−i(k1z+ωt), (2.133)

Hr(z, t) = −eyHie
−i(k1z+ωt), (2.134)

respectively. The total electric and magnetic fields in medium 1 can then be trans-
formed to

E1 = Re(Ei + Er) = 2exη1|Hi| sin k1z sinωt, (2.135)
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and
H1 = Re(Hi + Hr) = 2ey|Hi| cos k1z cosωt. (2.136)

These equations describe standing waves carrying no energy which conforms to our
intuitive picture for reflection from a perfect conductor: The counterpropagating inci-
dent and reflected waves of equal amplitudes interfere to form a standing wave pattern
in medium 1.
Exercise 2.11. A right-hand circularly polarized wave, propagating in the positive
z-direction is normally incident on a perfect conductor wall z = 0. Determine (a) the
polarization of the reflected wave and (b) the induced current on the conducting wall.

Transverse electric (TE) or s-polarization. – In the TE case, the electric field is
normal to the incidence plane,

Ei = Eiey, (2.137)

and it is convenient to work with complex amplitudes of electric fields, expressing the
the magnetic field amplitudes as

Hs =
(es × Es)

ηs
; s = i, r, t. (2.138)

Similarly to the p-polarization case, we can obtain the expressions

Ei = Eiey

Hi =
Ei
η0k0

(−k1zex + kxez), (2.139)

Er = Erey,

Hr =
Er
η0k0

(k1zex + kxez), (2.140)

and

Et = Etey,

Ht =
Et
η0k0

(−k2zex + kxez), (2.141)

for the complex amplitudes of incident, reflected, and transmitted fields, respectively.
The continuity of tangential components of electric and magnetic fields across the in-
terface leads to

Ei + Er = Et, (2.142)

and
(−Ei + Er)k1z = −Etk2z (2.143)

Solving the last pair of equations, we arrive at the complex reflectivity and transmit-
tance of an s-polarized incident wave in the form

rs ≡
Er
Ei

=
k1z − k2z

k1z + k2z
, (2.144)

and
ts ≡

Et
Ei

=
2k1z

k1z + k2z
. (2.145)
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2.3.3 Brewster angle and surface plasmon polaritons  
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Figure 2.9: Surface electromagnetic wave (surface plasmon polariton) at a metal-
dielectric interface. The electric and magnetic field decay fast away from the interface

Let us return to the general case of p-polarized wave reflection form the interface
and study the behavior of reflectivity in more detail. We will assume both media to
be transparent, for simplicity. It can be inferred from Eq. (2.126) that the reflectivity
attains zero under the condition

ε2k1z = ε1k2z. (2.146)

Solving Eq. (2.146), together with (2.113), we obtain expressions for the in-plane and
normal components of the wave vectors as

kx =
ω

c

√
ε1ε2
ε1 + ε2

, (2.147)

and

kjz =
ω

c

√
ε2j

ε1 + ε2
, j = 1, 2. (2.148)

The analysis of Eqs. (2.147) and (2.148) reveals two options. First, if both media
permittivities are positive, εj > 0, we may introduce real refractive indices, nj =√
εj . It then follows at once from Eqs. (2.147) and (2.148) that there exists a special

incidence angle θB, given by the expression

tan θB = kx/k1z = n2/n1, (2.149)

such that there is no p-polarized reflected wave. This special incidence angle is known
as the Brewster angle. Alternatively, Eqs (2.147) and (2.148) describe a surface wave
propagating along the interface, k2

x > 0 and exponentially decaying in the direction
normal to the interface such that kjz is purely imaginary (for transparent media), k2

jz <
0, Eqs. (2.147) and (2.148) imply that this is possible under the conditions,

ε1 + ε2 < 0, (2.150)
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and
ε1ε2 < 0. (2.151)

In other words, at least one of the permittivities must be negative. Usually, the wave is
incident form a dielectric medium, ε1 > 0, implying that ε2 < 0. The latter condition
can be realized for metals as we will see in Sec. 5.

These surface electromagnetic waves are known as surface plasmon polaritons
(SPP). Using Eqs. (2.118), (2.120), and (2.148), the electromagnetic fields of SPPs
on each side of the interface can be expressed as

H(r, t) =

{
eyHie

−|k2z|zei(kxx−ωt), z > 0;
eyHie

|k1z|zei(kxx−ωt), z < 0,
(2.152)

and

E(r, t) =

{
η0Hi
k0ε2

(i|k2z|ex − kxez)e−|k2z|zei(kxx−ωt), z > 0,
η0Hi
k0ε1

(−i|k1z|ex − kxez)e|k1z|zei(kxx−ωt), z < 0.
(2.153)

Thus, SPP fields propagate along the interface and exponentially decay away from the
interface which is a characteristic signature of surface electromagnetic waves. In case
the second medium is an ideal metal, its permittivity can be successfully modeled by
the expression

ε2(ω) = 1−
ω2
p

ω2
, (2.154)

where ωp is the so-called plasma frequency. It can be seen from Eqs. (2.147) that in
the short wavelength approximation, kx → ∞, the SPP frequency tends to a constant
value, ω∞ given by the expression

ω∞ =
ωp√

1 + ε1
. (2.155)

In this case, the SPP approaches its quasi-static limit termed a surface plasmon (SP).
Exercise 2.12. Show that Eq. (2.155) can be derived in the quasi-static limit by solving
Laplace’s equation for the electrostatic potential and matching the appropriate bound-
ary conditions.

So far, we have assumed that the SPPs propagate on the interface of two transpar-
ent media. In reality, of course, all metals are lossy, albeit losses are usually small at
optical frequencies. Realistic metals can then be properly described by complex di-
electric permittivities to account for Joules’ losses. Introducing a complex permittivity
of medium 2 viz.,

ε2 = ε′2 + iε′′2 , (2.156)

and assuming that under at optical frequencies of interest |ε′′2 | � |ε′2|, we can express
the in-plane component of the SPP wave vector as

kx = k′x + ik′′x , (2.157)

where

k′x ' k0

√
ε1ε′2
ε1 + ε′2

, (2.158)
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and

k′′x ' k0

√
ε1ε′2
ε1 + ε′2

[
ε′′2ε1

2ε′2(ε1 + ε′2)

]
. (2.159)

Here the imaginary part specifies a characteristic inverse damping distance of the SPP,

LSPP = 1/k′′x . (2.160)

Exercise 2.13. Derive Eqs. (2.158) and (2.159).

It follows from Eq. (2.147) that a plane wave in the air with ε1 = 1 can never
excite a plasmon because of the wave vector mismatch: the plasmon wave vector com-
ponent along the interface is always greater than that of a plane wave in the air. One
way to generate an SPP then will be to nano-engineer the surface by creating periodic
imperfections such as grooves. The modified surface can serve as a diffraction grating
by shifting the in-plane wave vector component of the incident wave to achieve phase
matching. Introducing the lattice constant of the grooves a and assuming that the light
wave is incident from air, we can write down the matching condition

kxSPP = k0 sin θi + 2π/a, (2.161)

where θi is the incidence angle. This excitation scheme is sketched in the figure.

2.3.4 Total internal reflection
We saw in the previous section that a TM-polarized surface electromagnetic wave can
be excited at an interface of a metal and transparent dielectric. In this section, we
show that surface wave generation is also possible at an interface of two transparent
media with refractive indices n1 and n2, when light is incident form a more optically
dense medium, n1 > n2. This phenomenon is referred to as total internal reflection. It
follows from Eq. (2.113) and the geometry of Fig. 2.3.1 that

k2
2z = k2

0(n2
2 − n2

1 sin2 θ1). (2.162)

It can be readily inferred from Eq. (2.162) that the in-plane component of the wave
vector in medium 2 becomes purely imaginary,

k2z = i|k2z| = ik2

√
n2

1

n2
2

sin2 θ1 − 1, (2.163)

whenever the incidence angle exceeds the threshold,

θc = sin−1(n2/n1), (2.164)

It then follows at once from Eqs. (2.126) and (2.163) that the for any wave incident at an
angle grater than the critical angle given by Eq. (2.164), the reflectivity is unimodular,
i. e.,

rp∗ =
ε2k1z − iε1|k2z|
ε2k1z + iε1|k2z|

. (2.165)
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Alternatively, the reflectivity of a totally internally reflected wave can be expressed as

rp∗ = e−2iφp∗ , (2.166)

where the phase can be expressed in terms of the incidence angle and refractive indices
of the media as

φp∗ = tan−1

(
ε1|k2z|
ε2k1z

)
. (2.167)

To better understand the behavior of the transmitted wave, we derive explicit ex-
pressions for its electric and magnetic fields. Using Eq. (2.163) in Eqs. (2.120), we can
cast complex amplitudes of the transmitted magnetic and electric fields into

Ht(r, t) = Hteye
−|k2z|zei(kxx−ωt), (2.168)

and
Et(r, t) =

η0Ht

ε2k0
(i|k2z|ex − kxez)e−|k2z|zei(kxx−ωt). (2.169)

We can conclude from Eqs. (2.168) and (2.169) that the transmitted wave fields ex-
ponentially decay into medium 2. Next, let us determine the magnitude and direction
of the energy flow specified by the time-averaged Poynting vector. It follows from
Eqs. (1.26) (2.168), and (2.169) after some algebra that

〈St(z)〉 = ex
4ε2k

2
1zkx

k0(ε22k
2
1z + ε21|k2z|2)

Iie
−2|k2z|z, (2.170)

where Ii is an optical intensity of the incident wave. It can be concluded from Eq. (2.170)
that the power of the wave incident at an angle greater than the total internal reflection
angle does not flow into the less optically dense medium. Rather, it propagates along
the interface separating the two media, exponentially decaying in the direction normal
to the interface. This is a signature of a surface wave. Such surface waves generated by
total internal reflection are known as evanescent waves. The evanescent waves play a
prominent role in generating surface plasmon polaritons in the laboratory. Indeed, one
of the approaches to SPP generation employs evanescent waves. In practice, one uses
a device referred to as a Kretschmann prism shown in the figure below. The refractive
index of the prism makes it possible to match the in-plane wave vector components
for a plane wave launched through the Kretschmann prism under the conditions of to-
tal internal reflection to that of the SPP. The launch angle is then determined by the
matching condition,

kxpr = kxSPP, (2.171)

implying that

npr sin θSPP =

√
εdεm
εd + εm

, (2.172)

where npr is the refractive index of the prism, typically it is equal to 1.5 for a glass
prism, and εd and εm are the permittivities of the dielectric and metal on the two sides
of the interface supporting the SPP. In the figure, the SPP is produced at the metal-air

31



Figure 2.10: Illustrating SPP excitation with Kretschmann method. Reproduced from
Novotny& Hecht, Principles of Nanooptics.

interface by an evanescent wave tunneling across the metal film from the glass prism.
Exercise 2.14. Show that the reflectivity of a totally internally reflected TE-wave is
given by the expression

rs∗ = e−2iφs∗ , (2.173)

where
φs∗ = tan−1(|k2z|/k1z). (2.174)

Derive an expression for the transmitted energy flux.

2.4 Refraction and reflection from dielectric slab: Multi-
wave interference

We will now examine a situation when two unbounded, homogeneous isotropic media–
media 1 and 3–are separated by a slab of finite thickness d filled with a third medium,
medium 3; for simplicity, we assume that the plane coincides with the xz-plane. The
situation is illustrated in the figure below. Suppose further that a plane wave is incident
from medium 1 onto the interface separating media 1 and 2 and limit ourselves to the
instructive case of a p-polarized incident wave throughout this section. We will seek to
determine the complex reflectivity and transmittance of the system. Next, we introduce
the reflectivity and transmittance of each individual interface, rij and tij , i, j = 1, 2, 3,
respectively, which are determined by Eqs. (2.126) and (2.127).

The incident, reflected, and transmitted magnetic field amplitudes can be expressed
as

Hs = Hsey, s = i, r, t. (2.175)
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Figure 2.11: Illustrating the multi-wave reflection and transmission through a film.

We will then find the reflected magnetic field in terms of the incident field by adding
up the contributions from reflected waves of all orders. Let us consider several lowest-
order reflected waves, labeling the reflection order with the corresponding superscript
assigned to Hr. The first-order reflected field is simply the field reflected from the first
interface once. Thus,

H(1)
r = r12Hiey. (2.176)

Next, the second-order reflected field is twice transmitted trough the first interface and
once reflected from the second one, i. e.,

H(2)
r = t12t21r23e

i2k2zdHiey, (2.177)

where we also included the accrued phase due to the optical path difference. By the
same token, the third- and fourth-order reflected waves can be represented as

H(3)
r = t12t21r

2
23r21e

i4k2zdHiey (2.178)

and
H(4)
r = t12t21r

3
23r

2
21e

i6k2zdHiey. (2.179)

Summing up the contributions to all orders, we obtain

Hr = eyHi

(
r12 + r23t12t21e

i2k2zd
∞∑
s=0

rs21r
s
23e

i2sk2zd

)
. (2.180)

Observe that as follows from Eqs. (2.126) and (2.127),

r12 = −r21, and t12 = t21. (2.181)
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Hence, performing the summation on the right-hand side of Eq. (2.180) and employing
Eq. (2.181), yields, after minor algebra, the expression

Hr = eyHi
r12 + r23e

i2k2zd

1 + r12r23ei2k2zd
. (2.182)

Thus introducing the complex reflectivity,

r ≡ Er/Ei, (2.183)

and using Eqs. (2.125), (2.182), we arrive at

r =
r12 + r23e

2ik2zd

1 + r12r23e2ik2zd
. (2.184)

Eq. (2.184) gives the reflectivity of the slab. The outlined method for reflectivity cal-
culation using reflected wave summations of all orders is known as Airy technique.

The analysis of Eqs. (2.184) reveals two instructive particular cases which emerge
whenever the reflectivity attains zero,

r12 + r23e
2ik2zd = 0. (2.185)

First, we consider the reflectionless transmission of a homogeneous plane wave through
a transparent film. This is a multi-wave analog of the Brewster regime except it can
occur even for normal incidence. Indeed, as follows from Eq. (2.185) the reflectionless
transmission is possible for normal incidence, k2z = k2, provided that

2k2d = π, (2.186)

implying a constraint on the slab thickness,

d =
λ

4n2
. (2.187)

Eqs. (2.185) and (2.187) are compatible if the refractive index of the slab satisfies the
condition

n2 =
√
n1n3. (2.188)

The constraints (2.187) and (2.188) establish requirements for reflectionless transmis-
sion of a normally incident plane wave through a dielectric film. In practice, these
conditions are taken advantage of in fabricating antireflection coatings of dielectric
surfaces such as antireflection glass coating to protect against glare or improve night
vision.

The second instance of no reflectivity corresponds to the generation of SPPs on
both surfaces of the film. Under the circumstances, the waves multiply reflected from
the film interfere constructively to transfer their energy into the SPPs. Thus all power
of the incident wave is channeled into the surface waves, resulting in no reflection.
In this case, the normal components of all wave vectors must be purely imaginary, a
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signature of surface waves. In particular, the normal components of k in media 1 and
3 can be represented as

k1z = −iq1 = −i
√
k2
x − k2

1, (2.189)

and
k3z = iq3 = i

√
k2
x − k2

3, (2.190)

to ensure the exponential decay of the waves away from the interfaces. Note that these
definitions imply that q1,3 > 0 since the positive root is taken on the right-hand sides
of Eqs. (2.189) and (2.190). On the other hand, there exist both exponentially growing
and decaying waves inside the slab, implying that

k2z = iq2 = ±i
√
k2
x − k2

2. (2.191)

The SPP dispersion relation follows at once from Eqs. (2.126), (2.185) and Eqs. (2.189)
through (2.191):

e−2q2d =

(
ε1q2 + ε2q1

ε1q2 − ε2q1

)(
ε3q2 + ε2q3

ε3q2 − ε2q3

)
. (2.192)

In general, Eq. (2.192) describes a rather complicated dispersion relation. To gain
a better insight into the SPPs in the film, let us consider a particular case when media
1 and 3 are the same such that ε1 = ε3 and q1 = q3. It can then be inferred from
Eq. (2.192) after a minor algebra that two families of SPPs exist in this case with the
dispersion relations governed by the equations

tanh

(
q2d

2

)
= −ε1q2

ε2q1
, (2.193)

and

tanh

(
q2d

2

)
= −ε2q1

ε1q2
. (2.194)

Exercise 2.15. Derive Eqs. (2.193)and (2.194).
It follows at once from Eqs. (2.193) and (2.194) that as the film thickness increases
without limit, d→∞, both dispersion relations reduce to

ε1q2 = −ε2q1. (2.195)

Since in this case, q2 < 0, one of the permittivities ought to be negative, ε2 < 0, say.
Comparison of Eq. (2.195) with (2.146) leads to the conclusion that the SPPs on both
sides of a very thick film are uncoupled and have the same dispersion relation as the
SPP at the interface of two unbounded media.

In the other extreme of very thin films, d → 0, particularly simple results can be
obtained under the condition

1
2q2d� 1. (2.196)

In other words, the characteristic penetration depth in medium 2, δ ' |q2|−1 is much
smaller than half the film thickness. In physical terms, this condition implies strong

35



coupling between SPPs propagating on both sides of the film. Eqs. (2.193) and (2.196)
then yield an approximate expression

q1 ' −
2ε1
ε2d

, (2.197)

for the normal component of the wave vector in medium 1. Further, the in-plane com-
ponent of the wave vector is given by

kx '

√
k2

0ε1 +
4ε21
ε22d

2
, (2.198)

and the other normal component of the wave vector is

q2 ' ±

√
k2

0(ε1 − ε2) +
4ε21
ε22d

2
. (2.199)

In particular, we apply our results to a thin metal film sandwiched between insulator
media (IMI). Such a thin-film IMI geometry implies the following conditions

0 < ε1 � |ε2|, ε2 < 0. (2.200)

Eqs. (2.196) through (2.200) will be consistent for genuinely thin films d� λ0, yield-
ing

|q2| '

√
k2

0|ε2|+
4ε21
ε22d

2
. (2.201)

such that the light penetration depth into the metal and dielectric are approximately
given by

δm '
1

|q2|
, δd '

|ε2|d
2ε1

. (2.202)

This case would correspond to a 20 nm thin metal film, say, with ε2 ∼ −20 illuminated
from glass ε1 ' 1.25 by a light beam with λ0 ∼ 500 nm, for example. The SPP con-
finement is still rather tight δd ∼ 200 nm, and δm ∼ 50 nm.
Exercise 2.16. Plot an explicit dispersion relation curve ω = ω(kx) given by Eq. (2.198).
What happens in the static limit, kx → ∞? You may assume an ideal metal with
ε(ω) = 1− ω2

p/ω
2.

Exercise 2.17. Use the Airy technique to show that the transmittance of the slab exam-
ined in this section is given by the expression

t =
t12t23e

ik2zd

1 + r12r23e2ik2zd
. (2.203)

Suppose a dielectric film made of a transparent material is placed in the air. Define the
transmission coefficient of the film by the expression

T ≡ |Et|
2

|Ei|2
, (2.204)
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and show that T can be expressed as

T =
T 2

(1−R)2

1

1 + F sin2 δ
. (2.205)

Here
δ = δr +

2πnd

λ
cos θt, (2.206)

and we introduced the transmission and reflection coefficients for each interface of the
slab, T and R, respectively, and the interferometer finesse F by the expression

F =
4R

(1−R)2
. (2.207)

The considered system serves as a basis for a Fabry-Perot interferometer used to pre-

Figure 2.12: Fabry-Perot transmittance dependence on the detuning ∆.

cisely measure the wavelength of light. It can be inferred from Eq. (2.205) –(2.207)
that for large enough reflectance, R ' 1, T has very sharp maxima at

δ = πm, m = 0, 1, 2, . . . . (2.208)

In the ideal case, T = 1 at the maxima and T = 1/F at the minima. Thus boosting
the finesse, one can increase the contrast of the interferometer. The distance between
the adjacent maxima can be determined from Eqs. (2.206) and (2.208) to be

dm+1 − dm =
λ

2n cos θ
. (2.209)

For sufficiently small angles, θ ' 0, the latter reduces to

dm+1 − dm '
λ

2n
. (2.210)

Eq. (2.210) can be used to infer the value of λ from the measurements of the maxima
positions.
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2.5 Classical theory of optical dispersion and absorp-
tion

2.5.1 Lorentz-Kramers expression for dielectric permittivity
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Figure 2.13: Schematic of a trapping Coulomb potential (solid) for an electron in an
atom and its harmonic approximation (dashed) near the electron equilibrium position;
x is a scalar displacement away from equilibrium.

As we saw in Sec. 2.2, atoms or molecules of realistic media do not respond instan-
taneously to an applied external electric field. The time lag between the applied electric
field and induced polarization manifests itself as frequency dispersion when one exam-
ines the frequency behavior of medium response to a harmonic applied electric field,

E(t) = Eωe
−iωt. (2.211)

To drive this point home, we develop a simple classical model of matter response to
an external time-harmonic field. In this model atoms are treated as simple harmonic
oscillators. A linear restoring force proportional to an electron displacement from its
equilibrium position–in the classical sense, of course–is due to a harmonic interaction
potential between an electron and the other electrons in an atom as well as the atomic
nucleus. In reality each atomic electron is trapped by a complicated electrostatic po-
tential which is strongly anharmonic. However, so long as the applied electric field
is sufficiently weak such that the electron displacement from its equilibrium position
is small compared to the characteristic atomic size, the electrostatic Coulomb poten-
tial in the vicinity of the electron equilibrium position can be well approximated by a
harmonic one. The situation is schematically depicted in the figure.

Further, we assume that each atom has Z bound electrons. Assume also that there
are fs electrons per atom having the binding frequency ωs which corresponds to a
particular type of the trapping harmonic potential. The quantities {fs} are referred to
as the oscillator strengths.
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Whenever an electron having the binding frequency ωs is displaced by the displace-
ment vector rs in response to the external electric field, it experiences three forces: the
restoring force, Fr = −mω2

s rs, the damping force, Fd = −2mγsṙs–where γs is a
phenomenological damping constant–and the force due to the external electric field,
Fe = −eEωe−iωt.

The equation of electron motion (second law of Newton) is then

mr̈s = −mω2
s rs − 2mγsṙs − eEωe−iωt. (2.212)

Here each “dot” stands for a time derivative. We seek a driven solution to Eq. (2.212)
in the form,

rs(t) = rsωe
−iωt. (2.213)

It follows from Eqs. (2.212) and (2.213) that the electron displacement amplitude is

rsω = − eEω
m(ω2

s − ω2 − 2iωγs)
, (2.214)

implying that

rs(t) = − eE(t)

m(ω2
s − ω2 − 2iωγs)

. (2.215)

The induced individual dipole moment of the electron of this type will be ps = −ers.
Next, if there are N atoms per unit volume, the induced polarization is

P(t) = N
∑

s

fsps(t) = −Ne
∑

s

fsrs(t) =
Ne2

m

∑
s

fsE(t)

(ω2
s − ω2 − 2iωγs)

.

(2.216)
Note that the oscillator strengths satisfy the so-called sum rule∑

s

fs = Z. (2.217)

On comparing Eqs. (1.6), (2.36) and (2.216), we infer that

ε(ω) = 1 +
Ne2

ε0m

∑
s

fsLs(ω), (2.218)

where we introduced a complex Lorentzian line-shape factor by the expression

Ls(ω) =
1

(ω2
s − ω2 − 2iωγs)

. (2.219)

Eqs. (2.218) and (2.219) give a classical expression for the dielectric permittivity of
materials as a function of frequency of the applied electric field. The real part describes
dispersion while the imaginary part accounts for light absorption by medium atoms.
The latter simply because we identified the imaginary part of ε with losses as the light
propagates through the medium (c.f. Sec. 2.3). Clearly, the light wave loses its energy
to the medium atoms which is a classical picture of light absorption.
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Let us now explore what happens if the frequency of the applied electric field is
close to a particular resonant frequency of the material. For the sake of clarity, let that
be the lowest bound frequency of the dielectric, ω0 6= 0, i.e, ω ≈ ω0. In this case, we
can single out the resonant term in Eq. (2.218) implying that

ε(ω) = εNR(ω) +
Ne2f0

ε0m

1

(ω2
0 − ω2 − 2iωγ0)

. (2.220)

As typically γs � ωs, the contribution to the permittivity due to non-resonant terms,
εNR is a purely real and only weakly frequency dependent. It can be expressed as

εNR(ω) ' 1 +
∑
s 6=0

Ne2fs

ε0m(ω2
s − ω2)

. (2.221)

Notice that close to resonance, we can approximate

−ω2 + ω2
0 − 2iγ0ω ' 2ω(ω0 − ω − iγ0) ' 2ω0(ω0 − ω − iγ0). (2.222)

It can be inferred from Eqs. (2.221) and (2.222) that the permittivity near optical reso-
nance can be represented as

ε(ω) = ε′(ω) + iε′′(ω), (2.223)

where

ε′(ω) = εNR(ω) +
Ne2f0

2ε0mω0

[
(ω − ω0)

(ω − ω0)2 + γ2
0

]
, (2.224)

and

ε′′(ω) =
Ne2f0

2ε0mω0

[
γ0

(ω − ω0)2 + γ2
0

]
. (2.225)

The real and imaginary parts of the permittivity are sketched as functions of the fre-
quency in Fig. 2.5.

As is seen in Fig. 2.5., the real part of the permittivity sufficiently far below and
above the resonance frequency increases with the frequency. Such a behavior is known
as normal dispersion. In the vicinity of resonance, however, ε′ decreases with the fre-
quency which is referred to as anomalous dispersion. Optical absorption is generally
small far from resonance, but is seen to sharply increase as we approach the reso-
nance frequency. Notice also that in regions of weak dispersion are nearly transparent,
whereas strong dispersion is accompanied with pronounced absorption as well. This
connection is not accidental. In fact, we show in the following chapters that there are
fundamental quantitative relations, the Kramers-Kronig relations that link dispersive
and absorptive properties of optical media.

The difference between realistic conductors and dielectrics can be attributed to the
presence of free electrons in the former. Indeed, by looking into the low-frequency
limit, we notice that for pure dielectrics the lowest bound frequency must be nonzero,
while conductors can have a fraction of electrons, f0, say, that have ω0 = 0; those
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Figure 2.14: Imaginary (top) and real (bottom) parts of the electric permittivity as
functions of frequency near resonance.

are essentially free electrons. Consequently, the dielectric permittivity of conductors is
given by the expression

εc(ω) = εb(ω) + i
Nf0e

2

ε0mω(2γ0 − iω)
, (2.226)

where εb is the overall contribution of the bound electrons with ωs 6= 0. Since free
electrons can conduct currents, we can use Eq. (2.215) to determine the current density
to be

J = −Nef0ṙ0 =
Nf0e

2

m(2γ0 − iω)
E. (2.227)

On comparing Eqs (2.37) and (2.227), we infer the expression for the conductivity,

σ(ω) =
Nf0e

2

m(2γ0 − iω)
. (2.228)

It is seen from Eq. (3.47) that in the dc limit ω → 0, we arrive at

σ → Nf0e
2

2mγ0
= σ0, (2.229)

the conductivity is real, describing dc currents. In view of Eq. (2.229), the expression
for σ can be cast into the form

σ(ω) =
σ0

1− iωτ
, (2.230)
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where τ = 1/2γ0 is a characteristic time for current relaxation in conductors.
Next, comparing Eqs. (2.226) and (2.228), we can express the former as

εc(ω) = εb(ω) + i
σ

ε0ω
. (2.231)

Eq. (2.231) implies that losses in real conductors/metals come in two guises: absorp-
tion of electromagnetic waves by bound electrons–which is described by the imaginary
part of εb–and ohmic losses due to generating electric currents as described by the sec-
ond term on the right-hand side of Eq. (2.231).
Exercise 2.18. Use the limiting case of Eq. (2.38) for isotropic media with no spatial
dispersion and Eq. (2.231) to relate real and imaginary parts of permittivity and con-
ductivity. Thus, you may argue that the distinction between conductors and dielectrics
is rather artificial at optical frequencies.

Next, we note that at the frequencies far exceeding the highest bound frequency,
ω � max(ωs), dielectrics and conductors respond to the applied electric field the same
wave. In this limit, we can neglect all {ωs} and {γs} in the denominator of Eq. (2.218),
leading to

εc(ω) = 1−
ω2
p

ω2
, (2.232)

where we used Eq. (2.217) and introduced the plasma frequency

ωp =

√
NZe2

m
. (2.233)

Incidentally, Eq. (2.232) is a simplified form of the so-called Drude expression for
a dielectric constant of a metal. The Drude model describes well noble metals; it
follows from Eq. (2.232) that ε becomes negative for the frequencies above the plasma
frequency.

Finally, we note that the polarization caused by a monochromatic applied electric
field in an isotropic linear medium can be represented as

P(r, ω) = ε0χ(ω)E(r, ω), (2.234)

where χ(ω) is a linear susceptibility of the medium. In case of an optical pulse, con-
sisting of many monochromatic components, the electric field of the pulse can be rep-
resented as a Fourier integral viz.,

E(r, t) =

∫ ∞
−∞

dω

2π
E(r, ω)e−iωt, (2.235)

where E(r, ω) is the spectral amplitude of the pulse. The polarization field induced by
each spectral component of the pulse is given by

P(r, ω) = ε0χ(ω)E(r, ω). (2.236)

It follows at once from Eqs. (2.235) and (2.236) that the overall polarization field in-
duced by the pulse is given by a time convolution,

P(r, t) = ε0

∫ ∞
−∞

dt′χ(t− t′)E(r, t′). (2.237)
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We will return to Eq. (2.237) in Chap. 4 where we will present a general theory of opti-
cal response of nonlocal noninstantaneous nonlinear media to electromagnetic pulses.

2.5.2 Classical theory of Faraday effect
Let us now consider the optical response of an isotropic dielectric to an applied static
magnetic field B0. We will use the Lorentz-Kramers harmonic oscillator model of
the medium elaborated in the previous subsection. We will assume that the external
magnetic field is weak enough such that it can be treated as a small perturbation. The
driven harmonic oscillator equation of motion of each electron can then be rewritten as

r̈s + 2γsṙs + ω2
s rs = − e

m
Eωe

−iωt − ν e
m

[ṙs ×B0]. (2.238)

Here we assume that the Lorentz force experienced by an electron due to the external
magnetic field B0 is a small perturbation to the force exerted by the driving harmonic
electric field. Instead of using an explicit small dimensionless parameter, we introduced
a book-keeping parameter ν to aid keeping track of the same order terms in B0; we will
let ν = 1 at the end of our calculation. We can then represent the electron displacement
as a perturbation series in the formal parameter ν as

rs = r(0)
s + νr(1)

s + ν2r(2)
s + . . . (2.239)

We will seek a driven solution to Eq.(2.238) in the form (2.213). On substituting
Eq. (2.239) into (2.238), we can recover, to the first order in ν, the result of the previous
subsection, i. e.,

r(0)
sω = − e

m
Ls(ω)Eω. (2.240)

To the first order in ν, we obtain from Eq. (2.238)

r̈(1)
s + 2γsṙ

(1)
s + ω2

s r
(1)
s =

e

m
[ṙ(0)

s ×B0]. (2.241)

Solving Eq. (2.241) in the steady-state regime, we arrive at the correction term as

r(1)
sω = − ie

2ω

m2
L2
s(ω)[Eω ×B0]. (2.242)

Combining Eqs. (1.6) and (2.36, which furnish a macroscopic description of permittiv-
ity, with the classical microscopic picture of Eqs. (2.216) as well as with Eqs. (2.239)
through (2.242), we finally obtain the following expression for the permittivity tensor,

εij(ω) = ε(ω)δij + ig(ω)
∑
p

eijpB0p. (2.243)

Here

ε(ω) = 1 +
Ne2

ε0m

∑
s

fsLs(ω), (2.244)
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is a dielectric permittivity of an isotropic medium and

g(ω) =
Ne3ω

ε0m2

∑
s

fsL2
s(ω), (2.245)

is a Faraday coefficient which determines the rate of Faraday polarization rotation; it
is related to the previously introduced Verdet constant, c. f., Sec. 2.2.3. Notice that
Eq. (2.243) is identical to the expression (2.88) which we have introduced before on
purely phenomenological grounds. Thus, the presented classical theory of Faraday’s
effect justifies the phenomenological approach of Sec. 2.3.3. Note also that the micro-
scopic theory furnishes a classical expression for the rotation coefficient g as well.
Exercise 2.19. Fill in missing steps in the derivation of Eq. (2.243).
Exercise 2.20. Extend the above discussion to determine the permittivity tensor correct
to the second-order of perturbation theory. Show that the quadratic correction solely
determines the rate of polarization rotation of a wave propagating orthogonally to the
external magnetic field. This is known as Cotton-Mouton effect.
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Chapter 3

Pulses and beams in linear
optics

3.1 Pulse propagation in dispersive media: non-resonant
case

Let us consider propagation of electromagnetic waves in nonmagnetic media with fre-
quency dispersion. The constitutive relation for the electric flux density in the space-
frequency representation reads

D̃(r, ω) = ε0ε(ω)Ẽ(r, ω), (3.1)

where frequency dispersion enters through the dependence of the dielectric permittivity
on the wave frequency. The corresponding wave equation takes the form

∇2Ẽ + ε(ω)ω
2

c2 Ẽ = 0. (3.2)

We seek a linearly polarized spatially homogeneous frequency-dependent wave propa-
gating in the positive z-direction, i.e,

Ẽ(r, ω) = exẼ(ω, z)eik0z. (3.3)

Here k0 is a wave number associated with the carrier frequency ω0, and a slowly-
varying envelope is assumed such that

∂zẼ � k0Ẽ , (3.4)

Eqs. (3.3) and (3.4) represent a spectral envelope amplitude of a slowly varying optical
pulse. On substituting from Eqs. (3.3) and (3.4) into Eq. (3.2), we arrive at the paraxial
wave equation in the space-frequency representation,

2ik0∂zẼ + [k2(ω)− k2
0]Ẽ = 0, (3.5)
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where we introduced the frequency-dependent wave number viz.,

k2(ω) = ε(ω)
ω2

c2
. (3.6)

Suppose now the bandwidth of the pulse is small compared to the carrier frequency,
i.e,

∆ω = 2|ωmax − ω0| � ω0, (3.7)

where ωmax is the frequency of the highest harmonic within the pulse associated with
a finite amplitude. The combined approximations (3.4) and (3.7) constitute the slowly
varying envelope approximation (SVEA) for optical pulses. The SVEA implies that

Ẽ(ω, z) ' Ẽ(ω − ω0, z) = Ẽ(ω′, z), (3.8)

that is the pulse envelope changes slowly over an optical cycle. To this level of accu-
racy, we can then expand the wave number in a Taylor series as

k(ω) ' k0 + k′(ω0)︸ ︷︷ ︸
k1

(ω − ω0) +
1

2!
k′′(ω0)︸ ︷︷ ︸
k2

(ω − ω0)2. (3.9)

Assuming further that
k(ω) + k0 ' 2k0,

we can cast Eq. (3.5) into the form

i∂zẼ + k1ω
′Ẽ + 1

2k2ω
′2Ẽ = 0. (3.10)

The overall electric field can then be factorized into a fast carrier wave and slowly
varying pulse envelope as

E(t, z) = ex e
i(k0z−ω0t)︸ ︷︷ ︸

carrier wave

∫ +∞

−∞
dω′e−iω

′tẼ(ω′, z)︸ ︷︷ ︸
slow envelope

. (3.11)

Introducing a Fourier transform of the pulse envelope spectrum by

E(t, z) =

∫ +∞

−∞
dω′e−iω

′tẼ(ω′), (3.12)

we can derive, using Fourier transform properties, a paraxial wave equation for the
temporal envelope

2i(∂zE + k1∂tE)− k2∂
2
ttE = 0. (3.13)

It is now convenient to transfer to a moving reference frame by introducing the coordi-
nate transformation

ζ = z; τ = t− k1z, (3.14)

One can then re-calculate the derivatives using the chain rules

∂tE = ∂τE ; ∂2
ttE = ∂2

ττE , (3.15)
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and
∂zE = ∂ζE − k1∂τE , (3.16)

to arrive at the final form of the governing pulse propagation equation in linear disper-
sive media

2i∂ζE − k2∂
2
ττE = 0. (3.17)

To elucidate physical meaning of each term in Eq. (3.17), we observe that if one
assumes that at the carrier frequency, k2(ω0) = 0, we arrive at the greatly simplified
equation

∂ζE = 0, (3.18)

with the solution
E(t, z) = E0(t− z/vg), (3.19)

where E0(t) is a pulse envelope in the source plane, and we introduced

k1 ≡ v−1
g . (3.20)

It can be concluded from Eq. (3.19) that the pulse maintains its shape and its peak
moves inside the medium with the speed vg . This velocity is referred to as the group
velocity of the pulse. To understand the role of k2, it is sufficient to observe that
Eq. (3.17) is a temporal analog of the paraxial wave equation governing beam diffrac-
tion in free space we have studied before. Hence the second derivative term in Eq. (3.17)
describes pulse spreading in dispersive media. The group velocity dispersion co-
efficient k2 then sets a spatial scale of the problem, the so-called dispersion length,
Ldis = t2p/k2, where tp is a characteristic duration of the pulse in the source plane
z = 0.

In the preceding development, we ignored spatial distribution of the pulse, which
is justified in a plane wave geometry. Alternatively, pulse propagation in single-mode
dispersive fibers can be of interest. In this case, the spatial distribution of the pulse is
dictated by the fiber mode such that a more appropriate Ansatz for the field,

Ẽ(r, ω) = exẼ(ω, z)φ(r⊥, ω) eiβ0z, (3.21)

should be considered instead. Here β0 is a carrier propagation constant in the fiber
and φ(r⊥, ω) is a fiber mode field distribution. Substituting from Eq. (3.21) into (3.2),
separating spatial and temporal degrees of freedom and assuming the SVEA (3.4), we
obtain the set of equations for the field amplitude

2iβ0∂zẼ + [β2(ω)− β2
0 ]Ẽ = 0, (3.22)

and the fiber mode
∇2
⊥φ+ [k2(ω)− β2(ω)]φ = 0. (3.23)

Next, assuming (3.7) and that the only allowed fiber mode is excited at the carrier
frequency, we can approximate

φ(r⊥, ω) ' φ(r⊥, ω0), (3.24)
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and replace k(ω) and β(ω) in the equation for the fiber mode by their values at the
carrier frequency, i.e,

∇2
⊥φ+ [k2(ω0)− β2

0 ]φ = 0. (3.25)

The resulting eigenvalue equation, subject to the appropriate boundary conditions at
the fiber boundaries, determines the spatial distribution of the fiber mode and the mode
propagation constant. Further, expanding the frequency dependent propagation con-
stant β(ω) in a Taylor series up to the second order

β(ω) ' β0 + β′(ω0)︸ ︷︷ ︸
β1

(ω − ω0) +
1

2!
β′′(ω0)︸ ︷︷ ︸

β2

(ω − ω0)2, (3.26)

and following exactly the same procedure as before, we can arrive at the paraxial wave
equation for pulse propagation in linear fibers as

2i∂ζE − β2∂
2
ττE = 0. (3.27)

3.2 Resonant pulse propagation in linear absorbers

3.2.1 Resonant interaction of short pulses with linear media: Ho-
mogeneous line broadening

Let us now discuss a more general case of a near-resonant optical pulse, propagating in
the medium in the positive z-direction. The displacement x of each Lorentz oscillator
induced by the pulse is governed by the equation

∂2
t x+ 2γ∂tx+ ω2

0x = −eE/m, (3.28)

where E is the electric field of the pulse in the scalar approximation. In the slowly-
varying envelope approximation (SVEA), the pulse field and atomic dipole moments
can be represented as

E(z, t) = 1
2 [E(z, t)ei(kz−ωt) + c.c]; ex(z, t) = 1

2 [d0σ(z, t)ei(kz−ωt) + c.c],
(3.29)

where ω is a carrier frequency of the pulse, and d0 = ex0 is a characteristic dipole
moment amplitude. Further, E and σ are slowly varying envelope fields in the sense
that

∂zE � kE , ∂tE � ωE (3.30)

and
∂tσ � ωσ. (3.31)

On substituting from (3.29) into (3.28) and using (3.31), we obtain the equation

−ω2σ − 2iω∂tσ − 2iγωσ + ω2
0σ = −eE/mx0. (3.32)

Next, we have near resonance,

ω2
0 − ω2 ' 2ω(ω0 − ω) = 2ω∆, (3.33)

48



where ∆ is a detuning of the carrier wave frequency ω from the atomic resonance fre-
quency ω0. On substituting from Eq. (3.33) into (3.32), we obtain, after some algebra,
the SVEA equation for atomic dipole envelope evolution as

∂tσ = −(γ + i∆)σ + iΩ, (3.34)

where we introduced the field envelope in frequency units, Ω = −eE/2mωx0.
Alternatively, Eq. (3.34) can be written in a real form by introducing the in-phase

U and quadrature V components of the dipole moment viz.,

σ(t, z) = U(t, z)− iV (t, z), (3.35)

such that provided Ω∗ = Ω,
∂tU = −γU + ∆V, (3.36)

and
∂tV = −γV −∆U + Ω. (3.37)

Thus in the absence of pulse modulation, only the imaginary part of the dipole moment
is directly coupled to the electric field amplitude, and it determines the pulse intensity
evolution. For this reason, V is termed the absorptive part of σ. The real part U is
referred to as dispersive part because it is coupled to the field only via the absorptive
part. It will however govern pulse modulation dynamics, if any initial pulse modulation
is present.

To better understand physical implications of Eq. (3.34), let us study a particular
case of a cw electric field–which has induced the atomic dipole moments in the past–
being suddenly switched off. In this case, Ω(t) = θ(−t)Ω0(z), where θ(t) is a unit
step function. It then follows that for t > 0, Ω = 0 and, as follows from Eq. (3.34),
each dipole moment exponentially decays with time according to

σ(t, z) = σ(0, z)θ(t)e−γteiω0t. (3.38)

This is called free-induction decay of an individual dipole moment. One can introduce
a characteristic time T0 = 1/γ which is known as a dipole relaxation time.

A Fourier transform of σ can be defined as

σ̃(ω, z) ≡
∫ ∞
−∞

dt σ(t, z)e−iωt. (3.39)

The spectral response, S0(ω, z) ∝ |σ̃(ω, z)|2, obtained in a typical set of absorption
measurements, is then given by

S0(ω, z) ∝ |σ(0, z)|2

(ω − ω0)2 + γ2
(3.40)

The characteristic absorption spectral width is thus γ = 1/T0 and is referred to as the
width of homogeneous broadening as it is the same for each individual atom.
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3.2.2 Inhomogeneous broadening
Consider the polarization of a macroscopic sample of atoms. Generally, in solid state
samples, the resonant frequency ω0 of atoms will vary from atom to atom due to local
defects which perturb the atomic transition frequencies. As a result, the polarization is
determined as an average over the resonant frequency fluctuations such that

P (t, z) = 1
2 [P(t, z)ei(kz−ωt) + c.c], (3.41)

where
P(t, z) = Nd0〈σ(t, z, ω0)〉, (3.42)

and the averaging is defined as

〈σ(t, z, ω0)〉 =

∫ ∞
0

dω0 f(ω0)σ(t, z, ω0). (3.43)

Here the distribution function f(ω0) is normalized to unity as∫ ∞
0

dω0 f(ω0) = 1.

In reality, the distribution function is often sharply peaked around some value of ω0

which we denote by ω0, say, i. e.,

f(ω0) ' f(ω0 − ω0) = f(∆).

It then follows by changing the integration variable to ∆ that for any average,∫ ∞
0

dω0f(ω0)(. . .) =

∫ ∞
−ω0

d∆ f(∆)(. . .) '
∫ ∞
−∞

d∆ f(∆)(. . .).

Thus,

P(t, z) = Nd0

∫ ∞
−∞

d∆ f(∆)σ(t, z,∆). (3.44)

In gases or atomic vapors, Doppler’s effect is at the origin of the frequency detuning
distribution. To make this point clear, suppose a plane wave propagating in a laboratory
frame has the form ei(k·r−ωt). In the reference frame moving with the atom at the
velocity v, the plane wave has the form ei(k·r

′−ω′t), where r′ = r − vt is a position
of the atom at time t. It then follows that the wave form will be the same in the two
frames–which it should as it is the same wave–if the frequencies ω′ and ω in the moving
and laboratory frames, respectively, are related as ω′ = ω − k · v. The frequency shift
of the wave in a moving reference frame is known as the Doppler effect. For a plane
wave propagating in the positive z-direction, the Doppler shifted frequency is

ω′ = ω − kvz. (3.45)

Next, the pulse field and atomic dipole moment distributions in the moving refer-
ence frame are

E(z, t) = 1
2 [E(z, t)ei[kz−(ω−kvz)t]+c.c]; ex(z, t) = 1

2 [d0σ(z, t)ei[kz−(ω−kvz)t]+c.c],
(3.46)
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and we dropped the prime over z to simplify the notation. The derivation along the
lines outlined in the previous Lecture would yield the dipole evolution equation in the
form

∂tσ = −(γ + i∆)σ + iΩ, (3.47)

where
∆ = ω0 − ω + kvz. (3.48)

Assuming that ω = ω0–the light is tuned to the atomic transition at rest–we obtain the
dependence of the detuning on the atom velocity,

∆ = kvz. (3.49)

The atom velocities are distributed according to Maxwell’s distribution such that for
the z-component of velocity, we have

f(vz) ∝ exp

(
− mv2

z

2kBT

)
, (3.50)

where kB is the Boltzmann constant and T is the temperature. It then follows from
Eqs. (3.49) and (3.50) that the detuning distribution is Maxwellian in this case,

f(∆) ∝ exp

(
− m∆2

2k2kBT

)
, (3.51)

Let us now revisit the free-induction decay experiment and examine the polariza-
tion evolution,

P(t, z) = Nd0

∫ ∞
−∞

d∆ f(∆)σ(t, z), (3.52)

which can be rewritten in the free-induction decay as

P (t, z) ∝ Nd0e
−t/T0eiω0t

∫ ∞
−∞

d∆ f(∆)ei∆t + c.c. (3.53)

Suppose, for simplicity, the detuning distribution is Lorentzian,

f(∆) ∝ 1

∆2 + 1/T 2
∆

, (3.54)

where 1/T∆ characterizes the width of g(∆). Using a Fourier transform table integral,

F
{

1

∆2 + 1/T 2
∆

}
∝ e−|t|/T∆ ,

we obtain for t > 0,
P (t, z) ∝ Nd0e

−t/Teff eiω0t + c.c. (3.55)

Here
1

Teff
=

1

T0︸︷︷︸
homogeneous

+
1

T∆︸︷︷︸
inhomogeneous

. (3.56)
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The second term on the rhs describes inhomogeneous broadening which would occur
in the spectral domain due to fluctuations of atomic detunings; its nature is atom spe-
cific (distribution of resonant frequencies, velocity distributions, etc.) The functional
form of g(∆) and the magnitude of a characteristic damping time T∆ associated with
inhomogeneous broadening depend on a specific broadening mechanism.

3.2.3 Maxwell-Lorentz pulse evolution equations and classical area
theorem

We start by considering propagation of an optical pulse in a resonant medium. As-
suming linear polarization, the electromagnetic field E of the pulse obeys the wave
equation in the form

∂2
zzE − c−2∂2

ttE = µ0∂
2
ttP, (3.57)

where the medium polarization P can be expressed as

P = −Ne〈x〉. (3.58)

In Eq. (3.58), the angle brackets denote averaging over detunings of the pulse from the
resonance frequency ω0.

In the slowly varying envelope approximation, we can use the representation (3.46)
and assume that

∂zE � kE , ∂tE � ωE (3.59)

and
∂tσ � ωσ. (3.60)

On substituting from Eq. (3.46) into (3.57) and using the SVEA (3.59), we can obtain
the reduced wave equation for the slowly-varying field envelope as

∂zΩ + c−1∂tΩ = iκ〈σ〉. (3.61)

which should be coupled with the derived dipole moment evolution equation (3.47). In
Eq. (3.61), we introduced a coupling constant, κ = ω2

pe/4c, where ωpe = (Ne2/ε0m)1/2

is the electron plasma frequency.
Exercise 3.1. Derive Eq. (3.61).
Transforming to the moving reference frame via τ = t − z/c and ζ = z just as we
did in the derivation of nonresonant pulse propagation equation, we finally arrive at the
coupled Maxwell-Lorentz propagation equations

∂ζΩ = iκ〈σ〉, (3.62)

and
∂τσ = −(γ + i∆)σ + iΩ. (3.63)

To solve Eqs. (3.62) and (3.63) we use the familiar now Fourier transform tech-
nique. First, we introduce temporal Fourier transforms of the field and dipole moment
as

Ω(τ, ζ) =

∫ ∞
−∞

dω Ω̃(ω, ζ)e−iωτ , (3.64)

52



and

σ(τ, ζ) =

∫ ∞
−∞

dω σ̃(ω, ζ)e−iωτ , (3.65)

Substituting those back into our evolution equations, we obtain the algebraic expression
for σ̃ in the form

σ̃(ω, ζ) =
iΩ̃(ω, ζ)

γ + i(∆− ω)
. (3.66)

It then follows from Eq. (3.66) and a Fourier transformed Eq. (3.62) that

∂ζΩ̃ = −κR Ω̃, (3.67)

where the spectral material response function is defined as

R(ω) =

〈
1

γ + i(∆− ω)

〉
. (3.68)

Integrating Eq. (3.67) at once, we arrive at

Ω̃(ω, ζ) = Ω̃(ω, 0) exp[−κR(ω)ζ]. (3.69)

Hence the field envelope at any propagation distance can be expressed as

E(τ, ζ) =

∫ ∞
−∞

dω Ẽ(ω) exp[−iωτ − κR(ω)ζ], (3.70)

where

Ẽ(ω) =

∫ ∞
−∞

dt′

2π
eiωt

′
E(t′, 0). (3.71)

On combining Eqs. (3.70) and (3.71), we can express the answer in the original vari-
ables in the form

E(t, z) =

∫ ∞
−∞

dt′

2π
E(t′, 0)

∫ ∞
−∞

dω eiω(t′−t) exp[iωz/c− κR(ω)z]. (3.72)

Exercise 3.2. Fill in missing steps in the derivation of Eq. (3.72).
Note that in the absence of inhomogeneous broadening (the so-called sharp line limit),
f(∆) = δ(∆) and

Rhom(ω) =
1

(γ − iω)
. (3.73)

The so-called classical area theorem follows directly from Eq. (3.72). Indeed, let
us introduce the classical area, A as

A(z) =

∫ ∞
−∞

dt E(t, z). (3.74)

Integrating Eq. (3.72) over time and using the integral representation of the delta func-
tion,

δ(ω) =

∫ ∞
−∞

dω

2π
e−iωt, (3.75)
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we arrive at the area theorem

A(z) = A0 exp[−κR(0)z], (3.76)

whereA0 = A(0) is the initial area under the pulse profile. In general, the area theorem
can be cast into the form

A(z) = A0e
−αz/2eiβz/2, (3.77)

where we introduced a characteristic attenuation decrement α and the phase accumu-
lation factor β by the expressions

α =

〈
2κγ

γ2 + ∆2

〉
, (3.78)

and

β =

〈
2κ∆

γ2 + ∆2

〉
. (3.79)

Thus, regardless of the incident pulse shape, the area under the pulse will exponentially
decay on pulse propagation in linear resonant absorbers as a consequence of medium
absorption manifested, in general, through homogeneous and inhomogeneous broad-
ening.
Exercise 3.3. Derive Eqs. (3.76) and (3.77).

Finally, we examine the case of very long pulses such that the characteristic pulse
width Tp is much longer than the longer of homogeneous or inhomogeneous damping
times,

Tp � max(T0, T∆). (3.80)

It then follows from Eq. (3.63) that the dipole moment can be adiabatically eliminated:
It decays fast to its dynamic equilibrium value determined by the pulse amplitude.
Mathematically, we can formally set ∂τσ ' 0 in Eq. (3.63) and conclude that

σ ' iΩ

γ + i∆
, (3.81)

On substituting back into Eq. (3.62) we arrive at the pulse evolution equation as

∂ζE = −κ
〈

1

γ + i∆

〉
E . (3.82)

The latter implies that

E(t, z) = e−αz/2eiβz/2E0(t− z/c), (3.83)

where E0(t) is a pulse profile in the source plane.
Exercise 3.4. Derive Eq. (3.83).
Equation (3.83) is Beer’s absorption law, familiar from elementary optics treatment
of absorbers. It states that sufficiently long pulses propagate in absorbers undistorted
except that their amplitudes decay exponentially with the propagation distance; the
typical damping distance is known as Beers’ absorption length, LB = α−1.
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3.3 Paraxial wave equation and Gaussian beam optics
We consider evolution of a monochromatic electromagnetic field in free space. The
electric and magnetic fields can be represented as

E(r, t) = E(r, ω)e−iωt, H(r, t) = H(r, ω)e−iωt. (3.84)

Thus Maxwell’s equations for the field envelopes read

∇× E = iµ0ωH, (3.85)

∇×H = −iε0ωE, (3.86)

and
∇ · E = 0, ∇ ·H = 0. (3.87)

Eliminating the magnetic field in favor of the electric in Eqs. (3.85) – (3.87), we arrive
at the equation for the electric field envelope in the form

∇2E + k2 E = 0, (3.88)

where k = ω/c.
We seek a plane polarized beam-like solution to (3.88):

E = eyE(x, z)eikz. (3.89)

Physically, the solution (3.89) represents a beam of light propagating in the z-direction
with an homogeneous electric field in the y-direction and an inhomogeneous inten-
sity distribution in the x-direction. It automatically satisfies the transversality condi-
tions (3.87). Note that in the limiting case when E = const, we have a plane wave.
The beam is different in that its field amplitude should in some sense be a slowly vary-
ing function of coordinates. To make this requirement more quantitative we stipulate
that for the intensity distribution to represent a beam, the complex envelope E change
slowly at the wavelength scale, i. e.,

∂zE � kE , (3.90)

The latter condition is referred to as a slowly-varying amplitude approximation (SVEA).
On substituting from Eq. (3.89) and taking the SVEA into account, we arrive at the
paraxial wave equation for the beam envelope in the form

2ik∂zE + ∂2
xxE = 0. (3.91)

Let us now study the evolution of the beam with a Gaussian field profile in the
source plane z = 0,

E(x, 0) = E0e−x
2/2w2

0 , (3.92)

where w0 characterizes the width of the source intensity profile. We use a Fourier
transform method to address the problem. Consider a Fourier decomposition of the
beam amplitude in the transverse direction,

E(x, z) =

∫ +∞

−∞
dqeiqx Ẽ(q, z), (3.93)
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where the Fourier (spectral) amplitude can be determined by the inverse transformation,

Ẽ(q, z) =

∫ +∞

−∞

dx

2π
e−iqx E(x, z). (3.94)

In particular, for the Gaussian beam of (3.92), we can obtain

Ẽ(q, 0) = E0
√
w

2π
e−q

2w2
0/2. (3.95)

Here we used the following standard integral∫ +∞

−∞
dxe−ax

2+bx =

√
π

a
eb

2/4a, (3.96)

where a and b are arbitrary complex numbers.
Next, we use the properties of Fourier transforms to convert Eq. (3.91) to the k-

space,
2ik∂zẼ − q2Ẽ = 0. (3.97)

Solving the latter, we obtain

Ẽ(q, z) = Ẽ(q, 0) exp

(
− iq

2z

2k

)
. (3.98)

Combining Eqs. (3.95) and (3.98) and using the inverse Fourier transform (3.94), we
obtain after some algebra the expression for the Gaussian beam envelope at any z,

E(x, z) =
E0√

1 + iζ
exp

[
− x2

2w2
0(1 + iζ)

]
. (3.99)

Here
ζ = z/zR, zR = kw2

0. (3.100)

Exercise 3.5. Derive Eq. (3.99).

To discuss the solution (3.99) it is convenient to represent it in the form where the
complex phase and real amplitude are expressed explicitly as

E(x, z) = E0
√

w0

w(z)
eiΦ(z) exp

[
ikx2

2R(z)

]
exp

[
− x2

2w2(z)

]
. (3.101)

Exercise 3.6. Derive Eq. (3.101).
Here we introduced the beam width w(z) as

w(z) = w0

√
1 + z2/z2

R, (3.102)

the radius of the wavefront curvature R(z),

R(z) = z(1 + z2
R/z

2), (3.103)
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and the accrued phase Φ(z),

Φ(z) = − 1
2 arctan(z/zR). (3.104)

Notice first that although the intensity of a Gaussian beam steadily decreases upon
diffraction in free space, the beam profile remains Gaussian in any transverse plane
z = const. Further, the diffraction length zR sets the characteristic spatial scale for
the problem. It is equal to the distance over which the beam width doubles from its
minimal value w0 at the source. The plane where the beam width is the smallest is
called the beam waist and the diffraction length is often referred to as the Rayleigh
range.

Consider now the wavefront Ψ(x, z) of the beam which is defined as a surface of
constant phase. It follows from Eq . (3.101) that

Ψ(x, z) = Φ(z) +
kx2

2R(z)
= const (3.105)

We observe that near the waist of the beam, z � zR, the radius of the curvature is very
large, R ' z2

R/z, implying that in the limit z → 0, R →∞, and the wavefront is flat.
In the opposite limit, z → +∞, the accrued phase is Φ = −π/4. This is the so-called
Gouy phase shift of a Gaussian beam. Finally for large but finite propagation distances,
z � zR such that R(z) ' z, the wavefront is parabolic

z ∝ x2/λ, (3.106)

with the curvature decreasing in the inverse proportion to the propagation distance. The
curvature attains its maximum at the Rayleigh range.

Finally, we mention that a natural generalization of the paraxial equation to two
transverse dimensions is

2ik∂zE +∇2
⊥E = 0, (3.107)

where ∇2
⊥ is a Laplacian operator in the transverse plane defined as

∇2
⊥ ≡ ∂2

xx + ∂2
yy. (3.108)

3.4 Plane wave decomposition of beams: Angular spec-
trum

Let us now approach beam propagation in free space from a different perspective. To
this end, we consider any linearly polarized electromagnetic field–which, for simplic-
ity, is assumed to be uniform in the polarization direction–as a linear superposition of
plane waves in the form

E(x, z) = ey

∫ +∞

−∞

∫ +∞

−∞
dkxdkz Ã(kx, kz)e

i(kxx+kzz). (3.109)

The electromagnetic field is supposed to propagate in free space into the half space
z > 0. The representation of the field by Eq. (3.109) is known as the angular spectrum:
The field is composed of plane waves propagating at different angles to the z-axis.
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Substituting from Eq. (3.109) into the wave equation, we obtain the equation for
the spectral amplitude A as

Ã(kx, kz)(−k2
x − k2

z + k2) = 0. (3.110)

It follows at once from Eq. (4.184) that A is constrained to lie on the circle in the
k-space, i.e,

Ã(kx, kz) = A(kx)δ(k2
x + k2

z − k2). (3.111)

The circle in the k-space determines the dispersion relation for the wave vector com-
ponents,

k2
x + k2

z = k2 =⇒ kz =
√
k2 − k2

x. (3.112)

It can then be inferred from Eq. (3.112) that

kz =

{ √
k2 − k2

x, kx < k

±i
√
k2
x − k2, kx > k

(3.113)

Combining Eqs. (3.109) and (3.113), we arrive at the angular spectrum representation
of any linearly polarized (1 + 1)D electromagnetic field in the half-space z > 0

E(x, z) = ey

∫
kx<k

dkxA(kx)ei(kxx+
√
k2−k2

x z)︸ ︷︷ ︸
homogeneous waves

+ey

∫
kx>k

dkxA(kx)eikxe−
√
k2
x−k2 z︸ ︷︷ ︸

evanescent waves

.

(3.114)
The first and second terms provide contributions of homogeneous and evanescent plane
waves; the latter exponentially decay away from the source plane z = 0. Notice inci-
dentally that we chose “ + ” sign to have the evanescent waves decay into z > 0 as the
exponentially growing solution does not obviously make any sense.

Next, the evanescent waves quickly damp out as the field propagates sufficiently
far from the source and their contribution is negligible outside of the source vicinity.
Thus, we have

E(x, z) = ey

∫
kx<k

dkxA(kx)ei(kxx+
√
k2−k2

x z). (3.115)

Let us now specialize to the beam case whereupon all the plane waves making up the
field propagate close to the z-axis such that kx � k. It then follows upon a Taylor
series expansion in Eq. (3.113) that√

k2 − k2
x ' k −

k2
x

2k
,

Therefore we can rewrite our plane wave decomposition as

E(x, z) ' eye
ikz

∫ +∞

−∞
dkxA(kx) eikxx exp

(
− ik

2
xz

2k

)
. (3.116)

On comparing Eqs. (3.116) and

E(x, z) = eyE(x, z)eikz, (3.117)
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we conclude that we can represent electric fields of optical beams as

E(x, z) =

∫ +∞

−∞
dkxA(kx) eikxx exp

(
− ik

2
xz

2k

)
. (3.118)

It then follows from the Fourier transform definition that

E(x, z) =

∫ +∞

−∞
dkx Ẽ(kx, 0) exp

(
− ik

2
xz

2k

)
eikxx. (3.119)

Hence,

Ẽ(kx, z) = Ẽ(kx, 0) exp

(
− ik

2
xz

2k

)
, (3.120)

which coincides with Eq. (3.98). Thus our angular spectrum representation treatment
is equivalent to the paraxial equation approach. While the latter is usually more con-
venient to solve practical problems and is straightforwardly generalized to nonlinear
situations, the former brings up more insight into the physics of beam propagation in
free space.

Finally, applying the convolution theorem of Fourier transforms to Eq. (3.120) and
using Eq. (3.96) we can derive the Fresnel representation for any (1 + 1)D beam evo-
lution in free space:

E(x, z) =

√
k

2πiz

∫ +∞

−∞
dx′ E(x′, 0) exp

[
ik(x− x′)2

2z

]
. (3.121)

Exercise 3.7. Derive Eq. (3.121).
A natural generalization of the latter to two transverse dimensions is

E(ρ, z) =

(
k

2πiz

)∫
dρ E(ρ′, 0) exp

[
ik(ρ− ρ′)2

2z

]
, (3.122)

where ρ = xex + yey is a radius vector in the transverse plane of the beam.
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Chapter 4

Nonlinear optics

4.1 Introduction. Qualitative description of nonlinear
optical processes

Whenever an external electric field is applied to matter, it induces or reorients dipole
moments of atoms or molecules of the matter, resulting in a nonzero average dipole
moment per unit volume or polarization of the material. If the applied electric field is
not too large, the polarization is proportional to the field strength, i.e,

P = ε0χ
(1)E, (4.1)

where χ(1) is the usual susceptibility of linear optics. In writing Eq. (4.1) we ignored,
for simplicity, the vector nature of both the applied field and the resulting polarization.

As the magnitude of the field increases though, the simple linear relation (4.1)
no longer holds. However, typical electric fields generated by all but most powerful
modern lasers are in the range of 106 to 107 V/cm, whereas the electrons bound to
atoms or molecules experience far greater fields of the order of 109 to 1010 V/cm.
Consequently, one can assume the induced electron displacements in laser fields to be
rather small; the latter circumstance justifies using a power series representation for the
induced polarizations as

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . .), (4.2)

where χ(2) and χ(3) are referred to as second- and third-order susceptibilities, respec-
tively.

To estimate orders of magnitude of the nonlinear susceptibilities, we consider non-
linearity of electronic origin. In this case, the nonlinear polarization depends on the
displacements of the electrons from the nuclei. One could expect that the second-order
contribution to the polarization would definitely be of the same order as the first one
if the electrons are displaced a distance as large as the atomic size, which is roughly
of the order of the Bohr radius, a0 = h̄2/me2 ' 5 × 10−9 cm. The correspond-
ing electric field would be comparable with the field binding electrons to a nucleus,
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Eat = e/4πε0a
2
0 ' 5× 1011 V/m. As the linear susceptibility is of the order of unity,

χ(1) ∼ 1, it follows that the second-order susceptibility can be estimated as

χ(2) ∼ E−1
at ∼ 10−12, m/V. (4.3)

By the same token, a typical value of the third-order susceptibility for condensed-
matter systems would be

χ(3) ∼ 10−21 to 10−22, m2/V2. (4.4)

It can be readily inferred from Eqs. (4.3) and (4.4) that (a) one needs very large fields
indeed to probe nonlinear response of dielectric materials and (b) for most laser field
strengths encountered in practice, each higher-order contribution to the polarization
field P is much smaller than the corresponding lower-order one, enabling us to take
into account only the lowest order nonvanishing contribution to P in a given nonlinear
medium.

In the following subsection, we are going to discuss nonlinear optical susceptibil-
ities semi-quantitatively. A note of caution is due before we proceed any further: The
just introduced expansion (4.2) fails in the vicinity of any internal atomic resonance
of the medium, where nonlinear saturation effects start playing a role. Hence, a more
subtle quantum theory has to be developed to describe such resonant light-matter in-
teractions. Hereafter, we assume that frequencies of all electric fields involved are far
away from any material resonance.

We now qualitatively examine second-order processes, starting with the second
harmonic generation (SHG). To this end, consider a monochromatic input field,

E(t) = 1
2 (Ee−iωt + c.c),

The second-order polarization associated with the field is

P (2)(t) = ε0χ
(2)E2(t) = 1

2ε0χ
(2)|E|2 + 1

4 (ε0χ
(2)E2e−i2ωt + c.c).

The first process describes generation of a dc field, optical rectification while the
second is second harmonic generation. It is schematically illustrated in the block-
diagram below.

ω
ω

ω2

)2(χ

Figure 4.1: Illustrating the second harmonic generation.

In the SHG process an input wave of frequency ω generates an output at double
frequency in a nonlinear medium. Sum- and difference-frequency generation are
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more general processes taking place if two different input frequencies ω1 and ω2 are
present. The input field is then

E(t) = 1
2 (E1e−iω1t + E2e−iω2t + c.c).

The generated output polarization takes the form

P (2)(t) = 1
2

∑
s P(ωs)e

−iωst + c.c, (4.5)

where the summation is over all possible combinations s of two frequency components
and

PSHG(2ωj) = 1
2ε0χ

(2)E2
j ,

PSFG(ω1 + ω2) = ε0χ
(2)E1E2,

PDFG(ω1 − ω2) = ε0χ
(2)E1E∗2 ,

POR(0) = ε0χ
(2)(|E1|2 + |E2|2).

While the first and last terms describe SHG and OR, the second and third correspond

1ω

2ω

1ω

2ω
213 ωωω +=)2(χ

Figure 4.2: Schematic illustration of the sum-frequency generation process.

to new processes of sum- and difference frequency generation, to be abbreviated as
(SFG) and (DFG), respectively. The block diagrams of the processes are displayed in
Figs. 4.2 and 4.3.

1ω

2ω

1ω

2ω
213 ωωω −=

)2(χ

Figure 4.3: Schematic illustration of the difference-frequency generation process.

The fundamental difference between the two processes can be seen from the energy-
level in Figs. 4.4 and 4.5.

In the SFG process two input photons at frequencies ω1 and ω2 annihilate giving
rise to one photon at the sum frequency, ω3 = ω1 + ω2. In the DFG process, however,
annihilation of a pump photon at frequency ω1 and generation of a difference frequency
photon ω3 = ω1−ω2–sometimes referred to as signal–go hand in hand with generation
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Figure 4.4: Energy-level description of sum-frequency generation.

of an idler photon at frequency ω2, say. Thus the DFG production is accompanied by
the amplification of one of input fields at the expense of the other. For this reason,
DFG is often referred to as optical parametric amplification. SHG, SFG and DFG are
collectively known as three-wave mixing processes.

2ω

3ω
1ω

)(a )(b

3ω

2ω
1ω

Figure 4.5: Energy-level diagram of difference-frequency generation.

Next, we briefly consider another three-wave mixing process, stimulated Raman
scattering (SRS) which can be quantitatively described quantum-mechanically. In the
SRS a pump photon of frequency ω gets blue-(Stokes mode) or red-shifted (anti-Stokes
mode) such that ωS = ω − ωv and ωA = ω + ωv exciting some medium degrees of
freedom on the way. As it was first studied in molecules where SRS causes medium vi-
brations, we used the subscript “v” to indicate the frequency ωv of generated molecular
vibrations. The process can be described by energy-level diagrams in Fig. 4.6.

Further, we consider the third-order processes, associated with χ(3). As there are
plethora of those–all falling into a general category of four-wave mixing–we will limit
ourselves in this course to only third harmonic generation (THG) and self-focusing
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Figure 4.6: Illustrating stimulated Raman scattering; the subscripts “s” and “as” stand
for the Stokes and anti-Stokes modes, respectively.

(SF), both excited by a monochromatic input field,

E(t) = 1
2 (Ee−iωt + c.c),

The third-order polarization,

P (3)(t) = ε0χ
(3)E3(t)

The application of the trigonometric identity, cos3 ωt = 1
4 cos 3ωt+ 3

4 cosωt results in

P (3)(t) = 1
2 [P(3ω)e−i3ωt + P(ω)e−iωt + c.c.],

where the THG polarization field is

PTHG(3ω) = 1
2ε0χ

(3)E3,

and the SF polarization field takes the form

PSF (ω) = 3ε0
2 χ(3)|E|2E .

The THG process is a third-order analog of the THG process; the THG block diagram
is as follows The SF process is so called because the input field modifies the refractive

ω

ω

ω

ω
ω3)3(χω

Figure 4.7: Illustrating the third harmonic generation.
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index of the medium to
n = n0 + n2|E|2,

leading to self-lensing of a light beam. The self-induced “medium lens” is a posi-
tive one if n2 > 0 and a negative one otherwise. Thus, either self-focusing or self-
defocusing ensues. Another third-order process that, in general, accompanies SF is
two-photon absorption (TPA). In the TPA process, two photons can be absorbed from
a light wave by a medium atom, promoting the latter to an excited state which cannot be
related to the ground state by a dipole transition. The situation is illustrated in Fig. 4.8.

Figure 4.8: Illustrating two-photon absorption.

4.2 Nonlinear processes generated by arbitrary fields:
Spatial and temporal dispersion

In general, the input field can have an arbitrary space-time dependence. Suppose, how-
ever, that the medium is stationary and homogeneous. This is a fairly general assump-
tion which holds for most situations of practical interest. Under these conditions, the
most general form of linear response is as follows

P(1)(r, t) = ε0

∫
dr′
∫ ∞
−∞

dt′χ(1)(r− r′, t− t′)
...E(r′, t′), (4.6)

where we have assumed that the polarization is invariant with respect to translations in
space and shifts in time, thanks to stationarity and homogeneity of the medium. By the
same token, the second-order nonlinear polarization can be represented as

P(2)(r, t) = ε0

∫
dr1

∫
dr2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

×χ(2)(r− r1, r− r2; t− t1, t− t2)
...E(r1, t1)E(r2, t2), (4.7)
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The expressions for higher-order nonlinear polarization fields can be expressed in a
similar fashion.

To proceed further, we will assume the medium response to be spatially local; this
is a reasonably good approximation for a vast majority of optical media which we will
rely on hereafter. In these conditions, the susceptibility tensors can be simplified to

χ(1)(r− r′, t− t′) = δ(r− r′)χ
(1)
t (t− t′), (4.8)

and

χ(2)(r− r1, r− r2; t− t1, t− t2) = δ(r− r1)δ(r− r2)χ
(2)
t (t− t1, t− t2). (4.9)

The corresponding contributions to the polarization field are greatly simplified as well:

P(1)(r, t) = ε0

∫ ∞
−∞

dt′χ(1)(t− t′)
...E(r, t′), (4.10)

P(2)(r, t) = ε0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2χ
(2)(t− t1, t− t2)

...E(r, t1)E(r, t2). (4.11)

In equations (4.10) and (4.11) we dropped, for brevity, the subscript “t” for the temporal
parts of the linear and nonlinear susceptibilities.

The manifest translational invariance of susceptibilities prompts the introduction of
Fourier transforms

χ̃(1)(ω) =

∫ ∞
−∞

dtχ(1)(t)eiωt, (4.12)

and

χ̃(2)(ω1, ω2) =

2∏
s=1

∫ ∞
−∞

dtsχ
(2)(t1, t2)ei

∑2
s=1 ωsts . (4.13)

An obvious generalization to the nth order is

χ̃(n)(ω1, . . . ωn) =

n∏
s=1

∫ ∞
−∞

dtsχ
(n)(t1, . . . tn)ei

∑n
s=1 ωsts . (4.14)

Using Eqs. (4.10) – (4.13), we can obtain in the component form

P̃
(1)
i (r, ω) = ε0

∑
j

χ̃
(1)
ij (ω)Ẽj(r, ω), (4.15)

and

P̃
(2)
i (r, ω3) = ε0

∑
jk

∫ ∞
−∞

dω1

2π
χ̃

(2)
ijk(−ω3, ω1, ω2)Ẽj(r, ω1)Ẽk(r, ω2), (4.16)

where ω3 = ω1 + ω2.
Exercise. 4.1 Derive Eq. (4.16).
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Generalizing Eq. (4.16) to any order n, we can write down

P̃
(n)
jn

(r, ωn) = ε0
∑

j1...jn−1

n−1∏
s=1

∫ ∞
−∞

dωs
2π

χ̃
(n)
jnj1j2...jn−1

(−ωn, ω1, ω2, . . . ωn−1)

×Ẽj1(r, ω1) . . . Ẽjn−1
(r, ωn−1), (4.17)

with ωn =
∑n−1
s=1 ωs. In particular, the third-order polarization contribution is

P̃
(3)
i (r, ω4)=ε0

∑
jkl

2∏
s=1

∫ ∞
−∞

dωs
2π

χ̃
(3)
ijkl(−ω4, ω1, ω2, ω3)Ẽj(r, ω1)Ẽk(r, ω2)Ẽl(r, ω3),

(4.18)
where ω4 = ω1 + ω2 + ω3.

4.3 Formal properties of nonlinear optical susceptibili-
ties

We now list generic properties of optical susceptibilities which follow from their defi-
nitions.

• Intrinsic permutational symmetry:

χ̃
(n)
jj1...jn

(−ω, ω1 . . . ωn) = Pt · χ̃(n)
jj1...jn

(−ω, ω1 . . . ωn). (4.19)

where ω =
∑n
s=1 ωs, and Pt · (. . .) stands for a permutation of the n index pairs

(j1, ω1) . . . (jn, ωn) with the exclusion of the pair (j,−
∑
s ωs). This property fol-

lows at once from the definition of nonlinear optical susceptibilities (4.17): Indeed the
indices (j1 . . . jn) are dummy ones, and hence the polarization field does not change
upon interchanging any pair of them as long as we simultaneously exchange the corre-
sponding frequencies.

Example: χ̃(2)
ijk(−ω, ω1, ω2) = χ̃

(2)
ikj(−ω, ω2, ω1).

• Reality of χ in the time-domain:

The reality of χ(n) in time domain implies the following relation in the Fourier domain

χ̃
(n)∗
jj1...jn

(−ω, ω1, . . . , ωn) = χ̃
(n)
jj1...jn

(ω,−ω1, . . . ,−ωn), (4.20)

where ∗ denotes, as usual, complex conjugation.

Example: χ̃(2)∗
ijk (−ω, ω1, ω2) = χ̃

(2)
ijk(ω,−ω1,−ω2).

Exercise 4.2. Derive Eq. (4.20).

• Causality:
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For the response of a physical medium to be causal, the polarization field must be equal
to zero at any instant before the electric field is applied, which implies, in accord with
Eq.(4.17) that

χ
(n)
jj1...jn

(t− τ1, . . . t− τn) = 0, for any τs > t. (4.21)

Let us now exhibit very tangible constraints on the functional form of the real and
imaginary parts of the susceptibility functions in the Fourier domain, stemming from
causality.

We begin by considering the linear susceptibility. It follows from Eq. (4.21) that a
causal linear response function must obey

χ(1)(τ) = χ(1)(τ)θ(τ), (4.22)

where θ(τ) is a Heaviside step function defined as

θ(τ) =

{
1 τ ≥ 0,
0 τ < 0.

(4.23)

On introducing Fourier transforms of χ and θ by the expressions

χ̃(1)(ω) =

∫ ∞
−∞

dτ χ(1)(τ)eiωτ , (4.24)

and

θ̃(ω) =

∫ ∞
−∞

dτ θ(τ)eiωτ , (4.25)

we conclude from Eq. (4.22) that

χ̃(1)(ω) =

∫ ∞
−∞

dω′

2π
χ̃(1)(ω′)θ̃(ω − ω′). (4.26)

Recall further that

θ̃(ω − ω′) = P
[

1

i(ω − ω′)

]
+ πδ(ω − ω′), (4.27)

where P stands for a principal value, excluding the singularity in the denominator. It
follows from Eqs. (4.26) and (4.27), after simple algebra, that

χ̃(1)(ω) =
1

πi
P
∫ ∞
−∞

dω′
χ̃(1)(ω′)

ω − ω′
. (4.28)

Eq. (4.28) implies that real and imaginary parts of the linear susceptibility tensor are
related vie the following Kramers-Kronig relations

Re χ̃(1)(ω) =
1

π
P
∫ ∞
−∞

dω′
Im χ̃(1)(ω′)

ω − ω′
, (4.29)
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and

Im χ̃(1)(ω) = − 1

π
P
∫ ∞
−∞

dω′
Re χ̃(1)(ω′)

ω − ω′
. (4.30)

Relations (4.29) and (4.30) not only impose a constraint on the functional form of the
real and imaginary parts of the linear susceptibility tensor, but they also enable one to
reconstruct the real part – describing dispersion – from the imaginary one, which is
much easier to measure as it relates to absorption in the medium.

Kramers-Kronig relations can also be derived for some second-order susceptibili-
ties. In particular, starting from the causality condition

χ(2)(τ1, τ2) = χ(2)(τ1, τ2)θ(τ1)θ(τ2), (4.31)

and following the same line of argument as above, we obtain

χ̃(2)(−ω3, ω1, ω2) =
1

πi
P
∫ ∞
−∞

dω′1
χ̃(2)(−ω′3, ω′1, ω2)

ω1 − ω′1
. (4.32)

Here ω3 = ω1 + ω2 and ω′3 = ω′1 + ω2. This process is referred to as a sum-frequency
generation. By the same token, the Kramers-Kronig relations for a difference-frequency
generation are

χ̃(2)(−ω3, ω1,−ω2) =
1

πi
P
∫ ∞
−∞

dω′2
χ̃(2)(−ω′3, ω1,−ω′2)

ω2 − ω′2
, (4.33)

where in this case, ω3 = ω1 − ω2 and ω′3 = ω1 − ω′2.
Exercise 4.3. Derive Eqs. (4.32) and (4.33) .
Exercise 4.4.∗ Consider a degenerate case of the sum-frequency generation, ω1 =
ω2 = ω, and derive the following Kramers-Kronig relations

χ̃(2)(−2ω, ω, ω) =
1

πi
P
∫ ∞
−∞

dω′
χ̃(2)(−2ω′, ω′, ω′)

ω − ω′
. (4.34)

This case corresponds to an important second-order nonlinear process we will study
in detail later on – it is referred to as the second-harmonic generation.

Unfortunately, no general Kramers-Kronig relations can be derived for higher-
order nonlinear susceptibilities. Moreover, there are nonlinear processes for which
no Kramers-Kronig relations exist, one of the most prominent cases being the self-
focusing/self-defocusing process – specified by χ(3)(−ω, ω,−ω, ω) – which is the
most common nonlinear process in isotropic media with inversion symmetry.

The symmetry properties of nonlinear susceptibilities we have studied so far hold
quite generally. In addition, there are other symmetry properties of χ which depend
on the symmetries of underlying physical systems. First, consider the multitude of
orthogonal transformations – such as rotations, translations and inversions – that leave
the medium unchanged. It follows that the corresponding susceptibility tensor of any
rank must be invariant with respect to such transformations, implying for any n

χ
(n)
ii1...in

=
∑

jj1...jn

TijTi1j1 . . . Tinjn χ
(n)
jj1...jn

, (4.35)
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where the summation over the dummy indices is implied as usual. For instance,

χ
(1)
ij =

∑
kl

TikTjl χ(1)
kl , (4.36)

or
χ

(2)
ijk =

∑
lsm

TisTjlTkm χ(2)
slm, (4.37)

and so on.
Exercise 4.5. A rotation with respect to the z-axis can be described by the matrix

Tij =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Assume the medium is invariant with respect to rotations by θ = π/2. Determine the
constraints on the components of χ(1) imposed in this case.

One of the most important orthogonal transformations is inversion such that for an
every point in the medium r → −r implying Tij = −δij . It follows at once from
Eq. (4.35) that if the medium is symmetric with respect to inversions – i.e., if it has an
inversion center – then for any susceptibility tensor of odd rank , or for an even n = 2k,
we obtain

χ
(2k)
ii1...i2k

= −χ(2k)
ii1...i2k

= 0. (4.38)

In particular, in media with the inversion centers the lowest-order nonlinear response
is cubic, described by χ(3)

ijkl. Such inversion symmetric media are referred to as cen-
trosymmetric. Most gases and liquids as well as many solids possess such properties.

Another important constraint is imposed by requiring that media be lossless. In
lossless media, equations of motions are symmetric with respect to time reversal –
there are no losses and the microscopic evolution can in principle be reversed. Under
such conditions,

χ(n)(τ1 . . . τn) = χ(n)(−τ1 . . .− τn). (4.39)

It can then be readily inferred from Eq. (4.14) that

χ̃
(n)
jj1...jn

(−ω, ω1, . . . ωn) = χ
(n)∗
jj1...jn

(−ω, ω1, . . . ωn), (4.40)

that is a Fourier image of χ is real.
Exercise 4.6. Derive Eq. (4.40).
Exercise 4.7. Show that in lossless media εij must be symmetric.

Moreover, in lossless nonlinear media, there is an overall permutation symmetry
of the susceptibility tensor, similar to that expressed in Eq. (4.19), except the pair
(j,−

∑
s ωs) is included.

Example: χ̃(3)
ijkl(−ω4, ω1, ω2, ω3) = χ̃

(3)
jlik(ω1, ω3,−ω4, ω2).

Finally, if all frequencies involved in the interaction are well below the lowest resonant
frequency of the medium, there exists a permutation symmetry of the Cartesian indices
alone, known as the Kleinmann symmetry.
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Example: χ̃(2)
ijk(−ω3, ω1, ω2) = χ̃

(2)
jki(−ω3, ω1, ω2) = χ̃

(2)
kij(−ω3, ω1, ω2).

We stress though that Kleinman’s symmetry is only an approximation valid far from
any internal resonances where dispersive properties of nonlinear media are negligible
such that one can virtually neglect frequency dependence of the nonlinear susceptibili-
ties. The Kleinman symmetry breaks down, for instance, if there is an absorption band
sandwiched between a pair of frequencies involved with a nonlinear interaction. In the
latter case, dispersive properties of the medium would be important at those frequencies
near the absorption band.

4.4 Nonlinear wave equation approach: Classical coupled-
wave equations

We now proceed to deriving general nonlinear wave equations governing second-order
nonlinear processes. To this end, we recall the Maxwell equations in charge- and
current-free environment,

∇ ·D = 0; ∇ ·B = 0, (4.41)

∇×H = ∂tD, ∇×E = −∂tB. (4.42)

In the optical frequency range, natural materials are nonmagnetic, allowing us close
the set of Eqs. (4.41) and (4.42) with the constitutive relations

B = µ0H; D = ε0E + P = DL + PNL, (4.43)

where we found it convenient to decompose the polarization field P into linear and
nonlinear components as

P = PL + PNL. (4.44)

DL = ε0E+PL in Eq. (4.43) refers to the linear electric flux density. Using Eq. (4.43)
in Eqs. (4.41) and (4.42) and eliminating H from Maxwell’s equations in favor of E,
we arrive at the set of continuity and wave equations

∇ · (DL + PNL) = 0, (4.45)

and
∇× (∇×E) = −µ0∂

2
ttE− µ0∂

2
ttP. (4.46)

We now assume a plane-wave geometry, that is all fields are harmonic and they de-
pend only on one spatial coordinate z, say, along the wave propagation direction, which
incidentally coincides with the optical axis of the system. Under these assumption, the
relevant fields can be expressed as

E(z, t) = Ẽ(z, ωs)e
−iωst, (4.47)

DL(z, t) = D̃L(z, ωs)e
−iωst, (4.48)
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and
PNL(z, t) = P̃NL(z, ωs)e

−iωst. (4.49)

Here ωs is the frequency of the wave we arbitrarily assign as a signal; hence the sub-
script “s”. Henceforth, it will prove convenient to break all fields into longitudinal and
transverse components as

Ẽ(z, ωs) = ezẼ
‖(z, ωs) + Ẽ⊥(z, ωs), (4.50)

and likewise,
D̃L(z, ωs) = ezD̃

‖
L(z, ωs) + D̃⊥(z, ωs), (4.51)

and
P̃NL(z, ωs) = ezP̃

‖
NL(z, ωs) + P̃⊥NL(z, ωs). (4.52)

It can be shown–see the exercise–that under the circumstances, ∇×∇ × Ẽ(z, ωs) =
−∂2

zzẼ
⊥(z, ωs).

Exercise 4.8. By expressing the field in the cylindrical coordinates, Ẽ(z, ωs) = ezẼ
‖(z, ωs)+

eρẼρ(z, ωs) + eφẼφ(z, ωs), show that∇×∇× Ẽ(z, ωs) = −∂2
zzẼ

⊥(z, ωs).
It then follows that Eqs. (4.45) and (4.46) can be cast into the form

D̃
‖
L(z, ωs) + P̃

‖
NL(z, ωs) = 0, (4.53)

and
−∂2

zzẼ
⊥(z, ωs) = µ0ω

2
s [D̃⊥L (z, ωs) + P̃⊥NL(z, ωs)]. (4.54)

Let us now assume that a generally anisotropic medium–anisotropy is needed for phase-
matching in some cases–is uniaxial with the optical axis coinciding with the z-axis.
The dielectric tensor of such a medium is known from Sec. 2.2.2. Using the results of
this section, it is easy to see that

D
‖
L = ε‖(ωs)Ẽ

‖, D⊥L = ε⊥(ωs)Ẽ
⊥; (4.55)

implying that
ε‖(ωs)Ẽ

‖(z, ωs) + P̃
‖
NL(z, ωs) = 0, (4.56)

and

−∂2
zzẼ

⊥(z, ωs) +
ω2
s

c2 ε⊥(ωs)Ẽ
⊥(z, ωs) + µ0ω

2
sP̃
⊥
NL(z, ωs) = 0. (4.57)

It can be inferred from Eqs. (4.56) and (4.57) that while the longitudinal field compo-
nent can be determined from a simple algebraic equation, following from Gauss’s law,
the transverse field component is governed by a wave equation. We will now focus on
the transverse fields.

Hereafter, we will restrict ourselves to the case of linearly polarized waves in the
plane transverse to the optical axis. As optical nonlinearities far from internal res-
onances of any natural media are fairly weak, it is reasonable to assume the fields
profiles change very slowly – at the wavelength scale – in the plane, transverse to the
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propagation direction. Hence, the electric field of a signal wave can be expressed as a
slowly-varying envelope times a fast carrier plane wave,

Ẽ⊥(z, ωs) = e(ωs)E(z, ωs)e
iksz, (4.58)

which induces the polarization field such that

P̃⊥NL(z, ωs) = e(ωs)PNL(z, ωs)e
iksz. (4.59)

Here, the wave number satisfies the usual linear dispersion relation,

k2(ωs) = ε⊥(ωs)
ω2
s

c2 . (4.60)

Substituting from Eqs. (4.58) – (4.60), and using the slowly-varying envelope approxi-
mation (SVEA),

∂zE � ksE ; ∂2
zzE � k2

sE , (4.61)

we arrive at the nonlinear wave equation for the signal wave in the form

2iks∂zE = −µ0ω
2
sPNL. (4.62)

Our treatment has been general so far. We will now specialize to the second-order
processes. Recall that

P̃
(2)
i (z, ωs) = ε0c

(2)(ω1, ω2)
∑
jk

χ̃
(2)
ijk(−ωs;ω1, ω2)Ẽj(z, ω1)Ẽk(z, ω2), (4.63)

with ωs = ω1 + ω2 and the so-called degeneracy factor

c(2)(ω1, ω2) =

{
1, ωs 6= 2ω1;

1/2, ωs = 2ω1.
(4.64)

Using Eqs. (4.63) and (4.59), we obtain for the slowly-varying second-order polariza-
tion field the expression

P(2)(z, ωs) = ε0c
(2)(ω1, ω2)

∑
ijk

χ̃
(2)
ijk(−ωs;ω1, ω2)ei(ωs)

×ej(ω1)ek(ω2)E(z, ω1)E(z, ω2)ei∆kz, (4.65)

where
∆k ≡ k(ω1) + k(ω2)− k(ωs). (4.66)

Utilizing Eq. (4.65) and introducing

χ
(2)
eff (−ωs;ω1, ω2) ≡ c(2)(ω1, ω2)

∑
ijk

χ̃
(2)
ijk(−ωs;ω1, ω2)ei(ωs)ej(ω1)ek(ω2),

(4.67)
we finally arrive at the set of coupled-wave equations governing the second-order non-
linear processes:

∂zEs =
iω2
s

2k(ωs)c2
χ

(2)
eff (−ωs;ω1, ω2)E1E2ei∆kz. (4.68)

Here we adopted the convention

Ej(z,−ωj) = E∗j (z, ωj),

and introduced short-hand notations Ej ≡ E(z, ωj), j = s, 1, 2.
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4.5 Second-harmonic generation

4.5.1 Coupled wave equations and phase matching considerations
The process of second harmonic generation involves the interaction of two waves at
frequency ω to produce a wave with the frequency 2ω. It is schematically illustrated in
Fig. 1 below.

ω
ω

ω2

)2(χ

Figure 4.9: Illustrating the second harmonic generation.

The coupled wave equations governing the second harmonic generation (SHG) in
lossless media can be obtained directly from the general coupled-mode equations de-
rived in the previous Lecture by specializing to the case of two identical mixing fre-
quencies. The resulting wave equations for the fundamental Eω and the second har-
monic E2ω fields are

∂zEω = iω2

2kωc2
χ

(2)
eff (−ω, 2ω,−ω)E2ωE∗ωe−i∆kz. (4.69)

and
∂zE2ω = i4ω2

2k2ωc2
χ

(2)
eff (−2ω, ω, ω) E2

ω e
i∆kz, (4.70)

where the wave number mismatch is now defined as

∆k = 2kω − k2ω. (4.71)

In Eqs. (4.69) – (4.71), we have introduced the notations

kω =
ωn(ω)

c
, k2ω =

2ωn(2ω)

c
. (4.72)

It follows from general properties of susceptibilities in the absence of losses that

χ
(2)
eff (−ω, 2ω,−ω) = 2χ

(2)
eff (−2ω, ω, ω) ≡ χ(2)

eff . (4.73)

Using (4.73), we can transform the SHG coupled wave equations in the plane wave
geometry to

dEω
dz

=
iω2

2kωc2
χ

(2)
eff E2ωE

∗
ωe
−i∆kz. (4.74)

and
dE2ω
dz

=
iω2

k2ωc2
χ

(2)
eff E

2
ω e

i∆kz. (4.75)
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Let us now study the second harmonic generation in the undepleted pump approx-
imation, which implies that the power of the fundamental wave is high enough and
the efficiency of the second harmonic generation is low enough that we can neglect
the power depletion of the fundamental wave. As the efficiency ηSHG of the second
harmonic generation can be defined as the ratio of the second harmonic intensity at the
output to the input intensity of the fundamental,

ηSHG ≡
I2ω(L)

Iω(0)
, (4.76)

we can define a quantitative criterion for the undepleted pump approximation to hold:

ηSHG � 1. (4.77)

In the undepleted pump approximation, Eq. (4.75) can be integrated at once with
the result

E2ω(L) =
iω2

k2ωc2
χ

(2)
eff E

2
ω

ei∆kL − 1

i∆k
=
ω2Lχ

(2)
eff

k2ωc2
E2
ωe
i∆kL/2 e

i∆kL/2 − e−i∆kL/2

2i(∆kL/2)
,

(4.78)
whereL is the length of the interaction region and Eω = const. Further, equation (4.78)
can be simplified as

E2ω(L) =
ω2Lχ

(2)
effE2

ω

k2ωc2
ei∆kL/2

sin(∆kL/2)

∆kL/2
. (4.79)

It can be readily inferred from Eq. (4.79) that the intensity of the second harmonic is
given by

I2ω(L) =
ω2L2χ

(2)2
eff I

2
ω

2ε0n2ωn2
ωc

3
sinc2

(
∆kL

2

)
, (4.80)

where we defined
sinc(x) ≡ sinx

x
. (4.81)

The analysis of Eq. (4.80) reveals that if the phases of the fundamental and second
harmonic waves are matched, the intensity of the second harmonic is proportional to
the square of the interaction length, I2ω(L) ∝ L2. Physically, it can be interpreted
by observing that if all N polarized atomic dipoles in the interaction volume – whose
total number is proportional to L – radiate in phase, their resulting fields interfere
constructively; consequently the total intensity of the second harmonic is such that
I2ω(L) ∝ N2 ∝ L2. On the other hand, if the phase matching condition (4.82) is
not met, the efficiency of the second harmonic generation decreases dramatically, as is
shown in Fig. 2.

Let us now discuss the efficiency of the SHG process. It follows from Eqs. (4.77)
and (4.80) that under the best possible condition of the perfect phase matching

∆k = 0, (4.82)
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Figure 4.10: Second harmonic output as a function of the interaction length in the
undepleted pump approximation

the undepleted pump approximation is valid provided

ηSHG =
ω2L2χ

(2)2
eff Iω

2ε0n2ωn2
ωc

3
� 1, (4.83)

which can be physically interpreted as a limitation on the allowed interaction length
for a (large) given power of the fundamental wave: the power depletion of the funda-
mental can no longer be neglected for sufficiently large interaction lengths. To estimate
the efficiency of the SHG under typical experimental conditions, we can estimate the
intensity of the fundamental as

Iω =
P

πw2
0

, (4.84)

where P is the laser power and w0 is the spot size of the laser output beam, which we
choose by stipulating that the corresponding diffraction length, Ld ' kw2

0 , be much
greater that the interaction length,

Ld � L, (4.85)

for the plane wave approximation to hold. Using typical values, for moderate-to-high
power lasers P ∼ 1 W, and χ2

eff ∼ 5× 10−23 m2/V2, for LiNbO3, say; with the other
parameters being chosen as follows: L ∼ 1 cm, nω ∼ n2ω ∼ 2, λ ∼ 5×10−5 cm, and
the spot size w0 ∼ 100 µm, such that Ld ∼ 10 cm, we obtain the order-of-magnitude
estimate as ηSHG ∼ 10−3 � 1. Clearly, the undepleted pump approximation is a
good one even for relatively high power laser sources in the plane wave geometry. To
increase the SHG conversion efficiency, it is advised that (a) pulsed lasers be employed
to augment the input power and (b) source light beam be tightly focused into the inter-
action volume to significantly increase the intensity of the fundamental input wave. In
general, the analysis of the SHG with such tightly focused laser beams requires a more
careful consideration of diffraction effects. With this in mind, however, we could still
make a rough order-of-magnitude estimate of the efficiency using Eq. (4.83) by taking
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the spot size of a focused beam to be w0 ∼ 10 µm, even though Ld � L. The resulting
efficiency is of the order of 10%, which is already quite an improvement.

Due to the importance of phase matching, we briefly discuss the ways of realizing
the condition (4.82), which, when translated in terms of the refractive indices, implies

n(2ω) = n(ω). (4.86)

First, we note that the requirement (4.86) cannot be satisfied in an isotropic medium
because of frequency dispersion: Typically, the refractive index of a nonlinear medium
far below absorption resonances is a monotonically increasing function of frequency, a
phenomenon referred to as normal dispersion. Thus isotropic media are in general not
phase matchable.

Phase matching can be realized in anisotropic media, which is referred to as bire-
fringence phase matching. As we previously mentioned, the distribution of the ordi-
nary wave vectors is spherically symmetric–which is graphically illustrated in Fig. 3–
where we assumed, for simplicity, the wave vector lies in the xz-plane–and one can
introduce the corresponding frequency-dependent refractive index no(ω) by the ex-
pression

no(ω) ≡ koc

ω
=
√
ε⊥(ω). (4.87)

The extraordinary wave vector, on the other hand, does depend on the propagation
direction, and the associated extraordinary refractive index is given by

ne(θ, ω) ≡ kec

ω
=

(
sin2 θ

ε⊥(ω)
+

cos2 θ

ε‖(ω)

)−1/2

. (4.88)

The surface ne(θ, ω) = const is, in general, an ellipsoid, but it reduces to an ellipse if
we restrict the extraordinary wave vector to lie in the xz− plane, see Fig. 3.

xk

zk
zk

xk

0k ek

Figure 4.11: Graphical representation of the wave vectors of ordinary (left) and ex-
traordinary (right) waves in a uniaxial crystal.

Assume now that the fundamental is an ordinary wave and the second harmonic is
an extraordinary one. It can then be inferred from Fig. 4 that provided the extraordinary
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Figure 4.12: Illustrating phase matching for the SHG in uniaxial crystals.

refractive index for the SH along the crystal axis is smaller than the ordinary refractive
index of the fundamental, which can be mathematically expressed by the inequality

ε‖(2ω) < ε⊥(ω), (4.89)

the phase matching is possible at the angle θ∗ which can be determined from Eqs. (4.86),
(4.87) and (4.88) to be

tan θ∗ =

√√√√ 1
ε‖(2ω) −

1
ε⊥(ω)

1
ε⊥(ω) −

1
ε⊥(2ω)

. (4.90)

Unfortunately, whenever the angle between the ordinary and extraordinary wave
vectors is other than 90deg, a spatial walkoff accrues on propagation of the two waves
as a consequence of directional mismatch between the Poynting vector and propagation
direction of an extraordinary wave. The walkoff reduces spatial overlap between the
polarization modes, thereby drastically reducing the SHG efficiency. Fortunately, some
nonlinear crystals, such as lithium niobate, have a pronounced dependence of their
birefringence on the temperature. Thus, one can achieve phase matching by keeping
the angle between the modes fixed at 90deg and varying the temperature of the crystal.
This is called temperature phase matching.

In the situations when neither birefringence nor temperature phase matching is pos-
sible, the most powerful phase matching technique is used, the so-called quasi-phase-
matching. The technique involves periodically polling χ(2) samples to modulate the
second-order susceptibility. The latter can then be expanded in a Fourier series

χ(2)(z) =

∞∑
m=−∞

χ(2)
m ei2πmz/Λ,

where Λ is a spatial period of the structure. The phase mismatch is then modified to
∆keff = ∆k − 2πm/Λ. As χ(2)

m decreases with m, reducing the SH intensity, it is
preferable to work with m = 1 harmonic and choose the period Λ to phase match the
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interaction, i.e.,
Λ = 2π/∆k.

If ∆k is so large, ∆k ∼ k that it is impossible to attain perfect phase matching, quasi-
phase-matching allows to extend, at least, the effective interaction length to

Leff = L(1 + 2π/Λ∆k),

where the smallest available Λ should be used.

4.5.2 Second-harmonic generation: Beyond the undepleted pump
approximation

In this section, we describe the second harmonic generation process under general
conditions. To this end, we rewrite the governing coupled wave equations in the form

dEω
dz

=
iω2

2kωc2
χ

(2)
eff E2ωE

∗
ωe
−i∆kz, (4.91)

dE2ω
dz

=
iω2

k2ωc2
χ

(2)
eff E

2
ω e

i∆kz. (4.92)

Let us now introduce the total optical intensity of the fundamental and second harmonic
waves as

I = I1 + I2. (4.93)

It is convenient to transform to dimensionless real amplitudes A and phases φ, related
to the complex amplitudes of the fundamental and second harmonic waves by the ex-
pressions

Eω =

√
I

nωε0c
Aωeiφω , (4.94)

and

E2ω =

√
I

n2ωε0c
A2ωe

iφ2ω . (4.95)

Using the definitions (4.94) and (4.95), one can derive from Eqs. (4.91) and (4.92)
the equations for the real amplitudes as

dAω
dz

=
AωA2ω

l
sin θ, (4.96)

dA2ω

dz
= −A

2
ω

l
sin θ, (4.97)

where
θ = 2φω − φ2ω + ∆kz, (4.98)

and we have introduced the characteristic spatial period l of the power exchange be-
tween the fundamental and second harmonic by the expression

1

l
=
ωχ

(2)
eff

2c

√
I

n2
ωn2ωε0c

. (4.99)

79



Similarly, the equations for the phases take the form

dφω
dz

=
A2ω

l
cos θ, (4.100)

dφ2ω

dz
=
A2
ω

lA2ω
cos θ. (4.101)

Introducing ζ = z/l, we can cast our equations into the following dimensionless form

dAω
dζ

= AωA2ω sin θ, (4.102)

dA2ω

dζ
= −A2

ω sin θ, (4.103)

dφω
dζ

= A2ω cos θ, (4.104)

dφ2ω

dζ
=
A2
ω

A2ω
cos θ. (4.105)

It can be inferred at once from Eqs. (4.104) and (4.105) as well as from Eq. (4.98) that
θ obeys the equation

dθ

dζ
= ∆s+

(
2A2ω −

A2
ω

A2ω

)
cos θ, (4.106)

where we have introduced the quantity

∆s = ∆kl. (4.107)

We can easily see from Eqs. (4.102) and (4.103) that the set possesses the integral
of motion

A2
ω +A2

2ω = 1, (4.108)

which implies the power conservation in the SHG process in a lossless medium. It then
follows from Eqs. (4.102) and (4.103) that

A2ω =
1

sin θ

d

dζ
lnAω, (4.109)

and
A2
ω

A2ω
= − 1

sin θ

d

dζ
lnA2ω. (4.110)

Substituting from the last two equations into Eq. (4.98), we obtain the equation for the
phase difference in the form

dθ

dζ
= ∆s+ cot θ

d

dζ
ln(A2

ωA2ω). (4.111)
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Hereafter we focus on the perfect phase matching situation, ∆s = 0. In this case,
we can transform Eq. (4.111), with the aid of Eq. (4.103) to

d ln cos θ

dζ
= − d

dζ
ln(A2

ωA2ω), (4.112)

which can be integrated at once yielding the second integral of motion as

A2
ωA2ω cos θ = Γ. (4.113)
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Figure 4.13: Intensity of the fundamental and second harmonic as functions of the
interaction distance in the case of perfect phase matching.

Suppose now that Γ = 0 implying a fixed phase difference between the FW and
SH, θ = −π/2. It then follows that the equations of motion for the mode amplitudes
simplify to

dAω
dζ

= AωA2ω, (4.114)

dA2ω

dζ
= −A2

ω, (4.115)

Using Eq. (4.108), we can eliminate the fundamental from Eq. (4.115) resulting in

dA2ω

dζ
= −(1−A2

2ω), (4.116)

which can be integrated at once yielding

A2ω = tanh ζ; Aω = sechζ. (4.117)

The intensities of the fundamental and second harmonic are displayed in the Fig. 5.
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4.6 Sum-frequency generation

4.6.1 Coupled wave equations and their solution in the undepleted
pump approximation

In this Lecture, we examine the sum-frequency generation (SFG), which involves mix-
ing a signal wave at frequency ω1 with a pump wave at frequency ω2 to yield a har-
monic oscillating at ω3 = ω1 + ω2, to be referred to as the sum-frequency (SF) wave.
The SFG process is schematically illustrated in Fig. 1.

1ω

2ω

1ω

2ω
213 ωωω +=)2(χ

Figure 4.14: Schematic illustration of the sum-frequency generation process.

The wave equations governing the SFG can be readily obtained from the general
coupled wave equations, yielding the following set

∂zE1 =
iω2

1

2k1c2
χ

(2)
eff (−ω1;ω3,−ω2)E3E∗2 e−i∆kz. (4.118)

∂zE2 =
iω2

2

2k2c2
χ

(2)
eff (−ω2;ω3,−ω1)E3E∗1 e−i∆kz. (4.119)

and
∂zE3 =

iω2
3

2k3c2
χ

(2)
eff (−ω3;ω1, ω2) E1E2 ei∆kz. (4.120)

Here Ej = E(z, ωj), kj = k(ωj); we also introduced the wave number mismatch ∆k

∆k = k1 + k2 − k3. (4.121)

Exercise 4.9. Using general symmetry properties of the second-order susceptibilities,
show that

χ
(2)
eff (−ω2;ω3,−ω1) = χ

(2)∗
eff (−ω3;ω1, ω2), (4.122)

and
χ

(2)
eff (−ω1;ω3,−ω2) = χ

(2)∗
eff (−ω3;ω1, ω2). (4.123)

The situation is further simplified if we neglect diffraction by focusing on a plane
wave geometry. In these circumstances and taking account of the properties (4.122)
and (4.123) to drop arguments of χ(2)

eff , we can reduce Eqs. (4.118) – (4.120) to the set
of ODEs in the form

dE1
dz

=
iω2

1

2k1c2
χ

(2)∗
eff E3E

∗
2 e
−i∆kz, (4.124)

dE2
dz

=
iω2

2

2k2c2
χ

(2)∗
eff E3E

∗
1 e
−i∆kz, (4.125)
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dE3
dz

=
iω2

3

2k3c2
χ

(2)
effE1E2e

i∆kz. (4.126)

Although Eqs. (4.124) – (4.126) can be solved in general, the solution is very compli-
cated and not too instructive. Instead, we will study the SFG process in the so-called
undepleted pump approximation, i.e, when the amplitude of the pump wave E2 is so
much larger than those of the other waves that we can neglect the pump depletion –
that is we will assume E2 = const – which enables us to rewrite Eqs. (4.124) – (4.126)
as

dE1
dz

= κ1E3e−i∆kz, (4.127)

and
dE3
dz

= κ3E1ei∆kz. (4.128)

Here we introduced the notations

κ1 =
iω2

1χ
(2)∗
eff

2k1c2
E∗2 , κ3 =

iω2
3χ

(2)
eff

2k3c2
E2. (4.129)

Let us then assume perfect phase matching, ∆k = 0. In this case, we can eliminate
one of the fields from Eqs. (4.127) and (4.128) in favor of the other, reducing the set to
a second-order ODE; for instance,

d2E1
dz2

+ κ2
effE1 = 0, (4.130)

with

κ2
eff = −κ1κ3 =

ω2
1ω

2
3 |χ

(2)
eff |2|E2|2

4k1k3c4
. (4.131)

A general solution to (4.130) is

E1 = C1 cosκeffz + C2 sinκeffz, (4.132)

where C1 and C2 are arbitrary constants. It then follows from Eqs. (4.127), (4.128)
and (4.132) that

E3 = −κeffC1

κ1
sinκeffz +

κeffC2

κ1
cosκeffz. (4.133)

Specifying the initial conditions, E1(z = 0) = E1(0) and E3(z = 0) = 0 – there is
no SF at the entrance to the medium – we obtain the expressions for the signal and the
SF waves as

E1 = E1(0) cosκeffz, (4.134)

and
E3 = −E1(0)

κeff
κ1

sinκeffz, (4.135)

In physical terms, the SFG in the undepleted pump approximation describes periodic
power exchange between the signal and the SF waves. The periodic character of the
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power exchange between the signal and the SF can be explained by observing that to
create an SF photon, a signal photon has to be annihilated, ω3 = ω1 +ω2, such that the
more the power residing with the SF, the less the power of the signal and vice versa.
Exercise 4.10. Solve Eqs. (4.127) and (4.128) for ∆k 6= 0 in the case when initially
all power resides with ω1 harmonic. Determine the SF intensity and show that its
maximum reduces precipitously as ∆k increases. Comment on the importance of phase
matching for efficient SFG. Hint: look for solutions in the form

E1 = A1e
−i∆kz/2, E3 = A3e

i∆kz/2, (4.136)

and show that (4.127) and (4.128) reduce to homogeneous equations

dA1

dz
=
i∆k

2
A1 + κ1A3, (4.137)

and
dA3

dz
= − i∆k

2
A3 + κ3A1, (4.138)

which can be solved by usual methods.

4.6.2 Manley-Rowe relations
Consider now the SFG in a lossless medium such that

χ
(2)
eff = χ

(2)∗
eff . (4.139)

The wave equations in the plane wave geometry, (4.124) – (4.126), can then be cast
into the form

dE1
dz

=
iω2

1

2k1c2
χ

(2)
effE3E

∗
2 e
−i∆kz, (4.140)

dE2
dz

=
iω2

2

2k2c2
χ

(2)
effE3E

∗
1 e
−i∆kz, (4.141)

and
dE3
dz

=
iω2

3

2k3c2
χ

(2)
effE1E2e

i∆kz. (4.142)

Let us now study relations among the energy fluxes associated with the mixing waves.
To this end, we derive the following equations for the wave intensities

d|E1|2

dz
=

ω1

n1c
χ

(2)
eff Im(E∗1E∗2E3ei∆kz), (4.143)

d|E2|2

dz
=

ω2

n2c
χ

(2)
eff Im(E∗1E∗2E3ei∆kz), (4.144)

d|E3|2

dz
= − ω3

n3c2
χ

(2)
eff Im(E∗1E∗2E3ei∆kz), (4.145)

where we introduced kj = njωj/c.
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Further, we introduce the optical intensities of the signal, pump and the SF waves
as

Ij =
ε0njc

2
|Ej |2, (4.146)

with j = 1, 2, 3. It can then be inferred from Eqs. (4.143) – (4.146) that

dI1
dz

=
ε0ω1

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz), (4.147)

and
dI2
dz

=
ε0ω2

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz), (4.148)

as well as
dI3
dz

= −ε0ω3

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz). (4.149)

It follows at once by adding Eqs. (4.147), (4.148) and (4.149) that
3∑
j=1

Ij = const, (4.150)

which is tantamount to energy conservation for the SFG in lossless media. We can also
infer from Eqs. (4.147) – (4.149) that

d

dz

(
I1
ω1
− I2
ω2

)
= 0, (4.151)

d

dz

(
I1
ω1

+
I3
ω3

)
= 0, (4.152)

and
d

dz

(
I2
ω2

+
I3
ω3

)
= 0. (4.153)

The preceding differential laws are equivalent to the three new invariants for the SFG
process, which are known as the Manley-Rowe relations; the latter take the form

I1
ω1
− I2
ω2

=M1 = const, (4.154)

I1
ω1

+
I3
ω3

=M2 = const, (4.155)

I2
ω2

+
I3
ω3

=M3 = const. (4.156)

The physical interpretation of Eqs. (4.154) – (4.156) can be best furnished using the
photon picture. To this end, one can introduce the photon number fluxes – the number
of photons at frequency ωj created or annihilated per second – by the expression,Nj =
Ij/h̄ωj . It then follows from Eq. (4.154) – (4.156) that the numbers of signal and idler
photons generated per unit time in any SFG process must be separately equal to the
number of pump photons destroyed per unit time. Summarizing, we can say that to
generate one SF photon, a signal and a pump photon must be destroyed. The qualitative
photon picture of the SFG is exhibited in the form of a simple three-photon diagram in
Fig. 2.
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Figure 4.15: Illustrating Manley-Rowe relations with a photon diagram.

4.7 Difference-frequency generation (parametric down-
conversion)

Let us now look into the difference-frequency generation (DFG), a second-order pro-
cess of generating a difference frequency (DF) wave at frequency ω3 = ω1 − ω2 from
the pump wave at frequency ω1 and the idler wave at frequency ω2 so named as its
mere presence is required for realization of the process. The DF wave is often referred
to as the signal. The DF generation is schematically illustrated in Fig. 1.

1ω

2ω

1ω

2ω
213 ωωω −=

)2(χ

Figure 4.16: Schematic illustration of the difference-frequency generation process.

The paraxial wave equations governing DFG can be shown to take the form

∂zE1 =
iω2

1

2k1c2
χ

(2)
eff (−ω1;ω2, ω3)E2E3ei∆kz, (4.157)

and
∂zE2 =

iω2
2

2k2c2
χ

(2)
eff (−ω2;ω1,−ω3)E1E∗3 e−i∆kz, (4.158)

as well as
∂zE3 =

iω2
3

2k3c2
χ

(2)
eff (−ω3;ω1,−ω2) E1E∗2 e−i∆kz, (4.159)

where the wave number mismatch is now defined as

∆k = k1 − k2 − k3, (4.160)
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and the signal frequency is given by

ω3 = ω1 − ω2. (4.161)

Using general symmetries of nonlinear susceptibilities it can be demonstrated that

χ
(2)
eff (−ω3;ω1,−ω2) = χ

(2)∗
eff (−ω1;ω2, ω3) = χ

(2)
eff (−ω2;ω1,−ω3). (4.162)

It follows from Eqs. (4.157) – (4.159) and (4.162) that in the plane wave geometry, one
can obtain the following set of DFG wave equations

dE1
dz

=
iω2

1

2k1c2
χ

(2)
effE2E3e

i∆kz, (4.163)

dE2
dz

=
iω2

2

2k2c2
χ

(2)∗
eff E1E

∗
3 e
−i∆kz, (4.164)

and
dE3
dz

=
iω2

3

2k3c2
χ

(2)∗
eff E1E

∗
2 e
−i∆kz. (4.165)

We will restrict ourselves to studying DFG in the undepleted pump approximation,
E1 = const, implying that

dE2
dz

= ζ2E∗3 e−i∆kz, (4.166)

and
dE3
dz

= ζ3E∗2 e−i∆kz. (4.167)

Here we introduced the quantities

ζj =
iω2
j

2kjc2
χ

(2)∗
eff E1, j = 2, 3. (4.168)

Assuming, for simplicity, there is perfect phase matching, ∆k = 0, we can reduce
Eqs. (4.166) and (4.167) to

d2E3
dz2

− ζ2
effE3 = 0, (4.169)

where

ζ2
eff =

ω2
2ω

2
3 |χ

(2)
eff |2|E1|2

4k2k3c4
. (4.170)

A general solution to (4.169) is

E3(z) = D1 cosh ζeffz +D2 sinh ζeffz. (4.171)

Stipulating that initially all power reside with the idler, E3(z = 0) = E3(0) and E2(z =
0) = 0, yields the solution

E3(z) = E3(0) cosh ζeffz, (4.172)

87



2ω

3ω
1ω

)(a )(b

3ω

2ω
1ω

Figure 4.17: Schematic illustration of the difference-frequency generation process.

and

E2(z) =
ζeffE∗3 (0)

ζ∗3
sinh ζeffz. (4.173)

It can be easily inferred from Eq. (4.172) and (4.173) that both the signal and the
idler monotonically grow with the distance z. Such a behavior – which is in sharp
contrast with the SFG – is graphically presented in the diagram in Fig. 2. To explain
the diagram, it is sufficient to notice that in the DFG process, the signal and idler
photons are created and annihilated in pairs, ω1 = ω3 +ω2. In other words, the greater
the power of one wave – be it the signal or the idler – the greater the power of the other.
The two possibilities are illustrated in Figs. 2(a) and 2(b), respectively.

We can show that the monotonic character of the signal and idler wave growth
depends on the pump power level in case of finite mismatch ∆k 6= 0. To this end, we
transform Eqs. (4.166) and (4.167) to

dE∗2
dz

= ζ∗2E3e−i∆kz. (4.174)

dE3
dz

= ζ3E∗2 e−i∆kz. (4.175)

Introducing the new variables viz.,

E∗2 = E2e
i∆kz/2, E3 = E3e

−i∆kz/2, (4.176)

we arrive at the equations
E ′2 + 1

2 i∆kE2 = ζ∗2E3, (4.177)

and
E ′3 − 1

2 i∆kE2 = ζ3E2. (4.178)

Seeking solutions to Eqs. (4.177) and (4.178) in the form

E2(z) = E(0)

2 eΩeffz; E3(z) = E(0)

3 eΩeffz, (4.179)

we obtain from the determinant condition, the expression for Ωeff :

Ωeff =
√
ζ2
eff − (∆k/2)2. (4.180)
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The latter implies that in the presence of phase mismatch, there exists a power threshold
for simultaneous amplification of the signal and idler modes,

Ith =
2ε0n1n2n3c

3

ω2ω3|χ(2)
eff |2

(
∆k

2

)2

. (4.181)

Thus, for a given phase mismatch, the pump intensity must be greater than a certain
critical value, I1 ≥ Ith, for parametric amplification to take place.

Next, general solutions for the idler and signal modes can be expressed above
threshold as

E2(z) = E∗2 (0) cosh Ωeffz +A sinh Ωeffz, (4.182)

and
E3(z) = E3(0) cosh Ωeffz +B sinh Ωeffz. (4.183)

Substituting from Eqs. (4.182) and (4.183) into Eqs. (4.177) and (4.178), we determine
the coefficients A and B:

A =
ζ∗2E3(0)− 1

2∆kE∗2 (0)

Ωeff
, (4.184)

and

B =
ζ3E∗2 (0) + 1

2∆kE3(0)

Ωeff
, (4.185)

Finally, on substituting from Eqs. (4.184) and (4.185) into (4.182) and (4.183) we ob-
tain, upon a slight rearrangement, the signal and idler fields in the form

E3(z) =

[
E3(0)

(
cosh Ωeffz +

i∆k

2Ωeff
sinh Ωeffz

)
+
ζ3E∗2 (0)

Ωeff
sinh Ωeffz

]
e−i∆kz/2,

(4.186)
and

E2(z) =

[
E2(0)

(
cosh Ωeffz +

i∆k

2Ωeff
sinh Ωeffz

)
+
ζ2E∗3 (0)

Ωeff
sinh Ωeffz

]
e−i∆kz/2.

(4.187)
Exercise 4.11. Show that below threshold, the solutions can be obtained with the

substitutions,

Ωeff → iΩeff ; cosh iΩeffz → cos Ωeffz, sinh iΩeffz → i sin Ωeffz,

yielding

E3(z) =

[
E3(0)

(
cos Ωeffz +

i∆k

2Ωeff
sin Ωeffz

)
+
ζ3E∗2 (0)

Ωeff
sin Ωeffz

]
e−i∆kz/2,

and

E2(z) =

[
E2(0)

(
cos Ωeffz +

i∆k

2Ωeff
sin Ωeffz

)
+
ζ2E∗3 (0)

Ωeff
sin Ωeffz

]
e−i∆kz/2.
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How can you reconcile the periodic power exchange between the signal and idler
modes with the photon diagram of Fig. 2 demanding that signal and idler photons
be created or annihilated in pairs?

The DFG process is also known as parametric down-conversion: A high-frequency
pump photon generates a signal-idler photon pair at lower frequencies. It is the key
process to generate a pair of entangled photons from a single pump photon in χ(2)

nonlinear media; the latter finds numerous applications in quantum optics.
Exercise 4.12. Show that the Manley-Rowe relations for the DFG without the unde-
pleted pump approximation take the form

I1
ω1

+
I2
ω2

=M1 = const,

I1
ω1

+
I3
ω3

=M2 = const,

I2
ω2
− I3
ω3

=M3 = const.

and interpret your results using the photon diagram of Fig. 2.

4.8 Four-wave mixing: General considerations
In general, third-order nonlinear processes are much weaker than their second-order
counterparts. For example, in solids the ratio of the third- to the second-order suscep-
tibility is of the order of 10−9 m/V, implying that the fields as large as 103 MV/m are
required to make the influence of the third-order nonlinearities felt in presence of the
second-order ones. On the other hand, if the medium atoms do have the center of in-
version, the third-order nonlinearity makes the dominant contribution to the nonlinear
polarization. As most isotropic nonlinear media fall into this category, the third-order
nonlinear interactions, involving mixing of four waves with, in general, different fre-
quencies, are of the utmost importance both for our fundamental understanding of non-
linear optical processes and in potential applications. Quite generally, the third-order
nonlinear processes are commonly referred to as four-wave mixing. We will study four-
wave mixing in isotropic lossless media by deriving coupled wave equations describing
the interaction of four quasi-monochromatic paraxial waves with different carrier fre-
quencies. We will assume the beams to be linearly or circularly polarized. The electric
field of a beam with the carrier frequency ωs can be represented as

Ẽ(z, ωs) = e(ωs)E(z, ωs)e
iksz. (4.188)

Since a linearly –or circularly – polarized field maintains its state of polarization in an
isotropic medium, the induced polarization field is then given by the expression

P̃NL(z, ωs) = e(ωs)PNL(z, ωs)e
iksz, (4.189)

where
k2
s = ε(ωs)

ω2
s

c2 . (4.190)

90



The coupled nonlinear wave equations governing the field evolution can be expressed
as

2iks∂zEs = −µ0ω
2
sPNL. (4.191)

Here we introduced the notation

Es ≡ E(z, ωs). (4.192)

Recall that the third-order polarization field can be expressed as

P̃
(3)
i (z, ωs) = ε0c

(3)(ω1, ω2, ω3)
∑
jkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)

×Ẽj(z, ω1)Ẽk(z, ω2)Ẽl(z, ω3), (4.193)

with ωs = ω1 + ω2 + ω3. Using Eqs. (4.193) and (4.189), we obtain for the slowly-
varying third-order polarization field the expression

P(3)
i (z, ωs) = ε0c

(3)(ω1, ω2, ω3)
∑
jkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)ei(ωs)

×ej(ω1)ek(ω2)el(ω3)E(z, ω1)E(z, ω2)E(z, ω3)ei∆kz,(4.194)

where the phase mismatch is defined as

∆k ≡ k(ω1) + k(ω2) + k(ω3)− k(ωs). (4.195)

Introducing the notation

χ
(3)
eff (−ωs;ω1, ω2, ω3) ≡ c(3)(ω1, ω2, ω3)

∑
ijkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)

×ei(ωs)ej(ω1)ek(ω2)el(ω3), (4.196)

we finally arrive at the paraxial wave equation governing the four-wave mixing pro-
cesses

∂zEs =
iω2
s

2k(ωs)c2
χ

(3)
eff (−ωs;ω1, ω2, ω3)E1E2E3ei∆kz. (4.197)

The family of third-order processes is very large; each particular process is specified
by a choice of four mixing frequencies. In the following, we will only consider two
commonly encountered processes: third-harmonic generation and self-focusing.

4.9 Third harmonic generation
Third harmonic generation (THG) is a process of producing a wave that oscillates at
the frequency 3ω by mixing three waves, each having the same carrier frequency ω as
is indicated in the diagram below.

The set of THG governing equations can be easily obtained from (4.197) to be

∂zEω = iω2

2kωc2
χ

(3)
eff (−ω; 3ω,−ω,−ω)E3ωE∗2ω e−i∆kz. (4.198)
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Figure 4.18: Illustrating the third harmonic generation.

and
∂zE3ω = 9iω2

2k3ωc2
χ

(3)
eff (−3ω;ω, ω, ω) E3

ω e
i∆kz, (4.199)

where the phase mismatch is given by

∆k = 3k(ω)− k(3ω). (4.200)

The analysis reveals that the degeneracy factors associated with the corresponding mix-
ing processes, (3ω = ω + ω + ω) and (ω = 3ω − ω − ω) are related as

c(3)(3ω,−ω,−ω) = 3c(3)(ω, ω, ω), (4.201)

implying the relation between the effective susceptibilities as

χ
(3)
eff (−ω; 3ω,−ω,−ω) = 3χ

(3)
eff (−3ω;ω, ω, ω) ≡ 3χ

(3)
eff (4.202)

Using Eq. (4.202) and assuming a plane wave geometry, we can transform the
governing coupled wave equations, Eqs. (4.198) and (4.199), into the form

dEω
dz

=
3iω

2nωc
χ

(3)
eff E3ωE

∗2
ω e−i∆kz. (4.203)

and
dE3ω
dz

=
3iω

2n3ωc
χ

(3)
eff E

3
ω e

i∆kz. (4.204)

The last equations are very similar to those describing second harmonic generation.
Unfortunately, though, third harmonic generation is a rather weak process. There-
fore relatively high optical intensities are required to generate THG in a crystal with a
reasonable efficiency. To estimate the THG efficiency, we consider the THG process
in the undepleted pump approximation, Eω = const. Under these conditions, equa-
tions (4.203) and (4.204) can be easily integrated to give an expression for the third
harmonic field in the form

E3ω(L) =
i3ω

2n3ωc
χ

(3)
effE

3
ωe
i∆kL/2sinc(∆kL/2). (4.205)

In complete analogy with the SHG theory, we introduce the THG efficiency by the
expression

ηTHG =
I3ω(L)

Iω(0)
. (4.206)
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It follows from Eqs. (4.205) and (4.206), assuming perfect phase matching that in the
undepleted pump approximation,

ηTHG = 36π2

(
L

λ

)2 χ
(3)2
eff I

2
ω

n3ωn3
ωε

2
0c

2
. (4.207)

Even if we assume the fundamental field intensity is as large as a typical breakdown
intensity in solids, I ∼ 100 MW/cm2 and take realistic values of the other parameters:
L ∼ 1 cm, nω ∼ n3ω ∼ 1.5, λ ∼ 5× 10−5 cm, and χ(3)

eff ∼ 10−21 m2/W2, we arrive
at an estimate

ηTHG ∼ 5× 10−7 � 1, (4.208)

which is tiny for all practical purposes. Moreover, it is hard to achieve phase matching
in crystals; all of which effectively precludes the laboratory THG realization in most
solid media.

However, THG can be generated in gases, such as sodium or rubidium vapors, in the
vicinity of an optical resonance where the magnitude of χ(3) is significantly enhanced.
Unfortunately, such an enhancement is, in general, accompanied by the increase in
linear as well as nonlinear absorption that must also be reckoned with whenever third
harmonic generation in gases is attempted. As linear absorption dominates at reso-
nance, the best way to boost the THG efficiency is to tune the laser to a two-photon
resonance as is indicated in Fig. 2(a).

ω

ω

ω

ω3 ω3ω3

ω

ω

ω
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ω

ω

ω

Figure 4.19: Illustrating the third-harmonic generation in gases under resonant excita-
tion conditions. The laser is tuned to either two- or one- or else three-photon resonance
in parts (a), (b) and (c), respectively.

4.10 Self-focusing, nonlinear absorption, and spatial soli-
tons

Whenever a light beam propagates inside a nonlinear medium whose refractive index
depends on the beam intensity, the light rays near the beam center, where the inten-
sity is the highest, experience stronger refraction – assuming the nonlinear refractive
index of the medium increases with the intensity – causing the rays to bend toward the
center. As a result, the intensity increases toward the beam center on propagation in
the medium. The light evolution looks as if the rays were focused by a positive lens
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toward the beam center. Such a behavior is termed self-focusing of light in a nonlinear
medium, and the medium with a positive nonlinear refractive index forming a focusing
lens, self-focusing. As a consequence of self-focusing, the beam narrows and its peak
intensity is enhanced with the propagation distance. On the other hand, every beam
tends to spread due to diffraction which tends to decrease light intensity at the center.
The two opposing trends are characterized by different spatial scales. We can easily es-
timate such scales – referred to as nonlinear and diffraction lengths, respectively – from
elementary considerations. The characteristic diffraction length was defined before in
the studies of Gaussian beam diffraction in free space:

LD ' kw2
0, (4.209)

where k = n0ω/c, ω being the carrier frequency of the beam.
On the other hand, the intensity-dependent nonlinear refractive index modulates the

optical phase of the beam electric field. This phenomenon is known as the self-phase
modulation. Further, due to coupling of the intensity and phase dynamics of the field
in nonlinear media, the change in the phase of the optical field induces modifications
of the beam intensity profile. The influence of nonlinearity becomes important over
distances such that the phase accretion is of the order of, at least, one radian, i. e.,

k∆nNLLNL ∼ 1, (4.210)

where the nonlinear change in the refractive index ∆nNL can be estimated using the
peak intensity of the beam as

∆nNL ∼ n2I0. (4.211)

Here I0 is the peak intensity and n2 > 0 is a nonlinear refractive index coefficient to
be discussed in greater detail below. It follows from Eqs. (4.210) and (4.211) that

LNL ∼
1

kn2I0
. (4.212)

The beam evolution scenario entirely depends on the relative sizes of the two char-
acteristic lengths. In particular, if LD < LNL, diffraction dominates, and the beam
spreads. However, if the diffraction and nonlinearity operate at the characteristic scales
of the same order, exact balance of the two opposing trends is possible, leading to the
formation of spatial solitons, i. e., the beams whose spatial profiles and widths do not
change upon propagation in self-focusing nonlinear media. A soliton can be formed
if the optical power of the beam is exactly equal to a certain critical power such that
the nonlinearity can arrest diffraction-induced spreading. We can estimate the critical
power necessary for soliton formation by imposing the balance condition

LD ' LNL. (4.213)

It follows at once from Eqs. (4.209), (4.212) and (4.213) that the critical power, Pcr =
Icrπw

2
0 is given by

Pcr '
λ2

0

4πn0n2
, (4.214)
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where λ0 = 2π/k0 = 2πc/ω.
Exercise 4.13. The magnitude of the nonlinear refractive index for carbon disulfide

(CS2) is n2 ' 3× 10−14 cm2/W, the linear refractive index is equal to 1.63. Estimate
the critical power for spatial soliton formation at λ0 ' 1 µm. Compare your results
with Pcr for silica glass for which n2 ' 5× 10−16 cm2/W, and n0 ' 1.4.

stθ
0w

stz

Figure 4.20: Illustrating the focal length in the self-focusing regime.

If the characteristic nonlinear length is smaller than the diffraction length, the non-
linearity prevails, causing self-focusing of the beam. One can estimate a characteristic
self-focusing distance in the limit LNL � LD. In this case, diffraction is negligible,
and geometrical optics approach would suffice for a rough estimate. According to Fer-
mat’s principle, any ray traveling from the wavefront up to the focusing point must
traverse the same optical path,

∫
dsn(s) = const. As a result, we obtain for the paths

exhibited in Fig. 3,

(n0 + δn)zf =

(
n0 +

δn

2

)√
z2
f + w2

0 ' n0zf

(
1 +

δn

2n0

)(
1 +

w2
0

2z2
f

)
, (4.215)

where we have assumed that the refractive index along the central ray is n0 + δn,
whereas the peripheral ray experiences the refractive index strength of roughly n0 +
δn/2. It then follows from (4.215) after simple algebra that the self-focusing distance
is

zf ' w0

√
n0

δn
' w0

√
n0

n2I0
. (4.216)

Finally, using the expressions for the beam power and the critical power as

P = Iπw2
0, Pcr = I0πw

2
0, (4.217)

we obtain the estimate

zf '
LD
2

√
Pcrn0

P
, P � Pcr. (4.218)

Note that our approximate result (4.218) is consistent with our premise that diffraction
is negligible, zf � LD in the given power range. In reality, high-power optical beams,
P � Pcr, will disintegrate into multiple filaments, each carrying approximately the
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power of Pcr, long before the self-focusing distance is reached. The filamentation is
caused by a transverse instability resulting from the growth of tiny imperfections of the
beam wave front.

To quantitatively describe self-focusing, nonlinear absorption, and and soliton for-
mation, we can derive the nonlinear wave equation corresponding to the self-action
process by a fundamental wave of frequency ω. Mathematically, the corresponding
susceptibility tensor is χ(3)(−ω;ω,−ω, ω). The resulting equation takes the form

∂zEω − i
2kω
∇2
⊥Eω = iω2

2kωc2
χ(3)(ω)|Eω|2Eω, (4.219)

where we have introduced the quantities

χ(3)(ω) =
3

4
χ

(3)
eff (−ω;ω,−ω, ω), (4.220)

and

χ
(3)
eff (−ω;ω,−ω, ω) ≡

∑
ijkl

χ̃
(3)
ijkl(−ω;ω,−ω, ω)ei(ω)ej(ω)ek(ω)el(ω). (4.221)

Notice that there is no phase mismatch involved in the process of self-focusing, ∆k =
k(ω) + k(−ω) + k(ω) − k(ω) = 0, because k(−ω) = −k(ω) in lossless media.
Physically, this is the consequence of the fact that there is only one fundamental wave
involved in the process which implies automatic conservation of the energy and mo-
menta at the photon level.

Let us now focus on the situation when LNL � LD such that diffraction effects
can be neglected. Mathematically, the absence of diffraction effects implies that the
second term on the l. h. s. of Eq. (4.219) can be dropped leading to

∂zEω = iω2

2kωc2
χ(3)(ω)|Eω|2Eω. (4.222)

Recall that we assumed the medium to be transparent. We now lift that restriction by
allowing for linear and nonlinear losses in the medium. In physical terms, linear losses
lead to exponential decay of the field amplitude as we saw in Sec. 2. 2 with a decrement
α/2 determined by the imaginary part of the complex refractive index. Mathematically,
linear losses can then be easily incorporated into Eq. (4.222) introducing the transfor-
mation

Eω = Ẽω e−α(ω)z/2, (4.223)

implying that
∂zẼω = iω2

2kωc2
χ(3)(ω)e−α(ω)z |Ẽω|2Ẽω. (4.224)

Nonlinear losses are accounted for by assuming a complex χ(3) such that

χ(3)(ω) = χ(3)
r (ω) + iχ

(3)
i (ω). (4.225)

Next, introducing the amplitude and phase of Eω viz., Eω = |Eω|eiΦω , and separating
real and imaginary parts in Eq. (4.224), we arrive at

∂zΦ =
3k0χ

(3)
r

8n0
|Ẽ |2e−αz, (4.226)
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and
∂z|Ẽ | = −

3k0χ
(3)
i

8n0
|Ẽ |3e−αz. (4.227)

Here we dropped frequency subscripts, for notational simplicity, introduced k0 = ω/c,
kω ' k0n0, where n0 is the real part of the linear refractive index, and assumed linear
losses to be sufficiently weak, α(ω) � kω which is a reasonably good assumption at
optical frequencies far from any internal resonances of the medium. It is customary to
introduce the optical intensity,

Ĩ =
ε0n0c

2
|Ẽ |2. (4.228)

It then follows that
∂zΦ = k0n2Ĩe

−αz, (4.229)

and
∂z Ĩ = −β2Ĩ

2e−αz, (4.230)

where we introduced the nonlinear refractive index n2 and the two-photon absorption
(TPA) coefficient β2 by the expressions

n2 =
3χ

(3)
r

4ε0n2
0c
, (4.231)

and

β2 =
3k0χ

(3)
i

2ε0n2
0c
. (4.232)

The two-photon coefficient is so called because the absorption rate on the r.h.s of
Eq. (4.230) is proportional to the square of intensity, implying, in the photon picture,
that two photons are absorbed in each elementary nonlinear absorption act as is de-
picted in Fig. 4.8. TPA processes play an important role in the optical excitation of
semiconductor materials whenever the energy of a photon pair is greater than a semi-
conductor energy gap as is sketched in Fig. 4.21.

Integrating Eq. (4.230) with the initial condition, I(ρ, 0) = I0(ρ) at the source, we
obtain the beam intensity at any z = const > 0 as

I(ρ, z) =
I0(ρ)e−αz

1 + β2I0(ρ)Leff(z)
, (4.233)

where the effective propagation length is defined as

Leff =
1

α
(1− e−αz). (4.234)

It can be inferred from Eq. (4.233) that the beam energy is monotonically decreasing
on propagation in the medium.

The beam phase obeys the equation

∂zΦ =
k0n2I0(ρ)e−αz

1+β2I0(ρ)Leff (z)
. (4.235)
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Figure 4.21: Illustrating two-photon absorption in direct-gap semiconductor materials.
Photo-excitation is possible whenever 2h̄ω ≥ Eg , where Eg is the gap energy.

To gain a better qualitative understanding of beam phase behavior, let us restrict our-
selves again to the transparent case, α = β2 = 0 and assume, for simplicity, the beam
has a Gaussian intensity profile at the source,

I0(ρ) = I0 exp

(
− ρ2

2w2
0

)
. (4.236)

In most practical situations the nonlinear refractive index is quite small. Assuming fur-
ther the medium sample thickness to be small as well–this is referred to as a thin sample
approximation–the resulting nonlinear phase shift can be evaluated by expanding the
Gaussian envelope in Eq. (4.236) in a Taylor series to the first order. On substituting
the resulting expansion into Eq. (4.235) and integrating, we obtain the nonlinear shift

∆Φ(ρ) ' −k0n2I0ρ
2

2w2
0

∆L, (4.237)

where ∆L is a medium sample thickness. On comparing this expression with a quadratic
phase acquired by a diffracting Gaussian beam, we can conclude that the transparent
nonlinear medium works as a thin lens, imparting a quadratic phase shift on a beam
wavefront. The latter corresponds to a converging spherical wave for n2 > 0 causing
self-focusing of the beam, or a diverging spherical wave in the self-defocusing case,
n2 < 0. The self-focusing case is sketched in Fig. 4.22.

To explain the identification of n2 with a nonlinear refractive index, we shall con-
sider the polarization field. To this end, we assume, for simplicity, a transparent
medium and linear polarization of the beam – such that any polarization effects can
be ignored – and introduce the scalar polarization field Ptot ≡ Piei, by the expression

Ptot = ε0

(
χ(1)E +

3

4
χ(3)|E|2E

)
= ε0χtotE , (4.238)
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Figure 4.22: Self-phase modulation in self-focusing nonlinear media resulting in the
extra beam focusing, the so-called nonlinear lens effect.

where the total susceptibility is given by

χtot = χ(1) +
3

4
χ(3)|E|2. (4.239)

We can then defines the total refractive index as

n2 = 1 + χtot, (4.240)

and the nonlinear refractive index by the expression

n = n0 + n2|E|2. (4.241)

It follows from Eq. (4.239) and (4.240) and the fact that the nonlinear refraction is
always a small effect as compared with the linear one that

(n0 + n2|E|2)2 ' n2
0 + 2n0n2|E|2. (4.242)

On comparing Eqs. (4.239) and (4.242), we infer that

n2 =
3χ(3)

8n0
, (4.243)

which provides a relation between the third-order susceptibility and the nonlinear re-
fractive index.

The nonlinear refractive index associated with the optical intensity is introduced
viz.,

n = n0 + n2I, (4.244)

The nonlinear refractive index n2 has the units of m2/V2 whereas the other one, n2, is
measured in m2/W2. The two indices are related as

n2 =
2

ε0n0c
n2. (4.245)

It follows from Eqs. (4.243), (4.244) and (4.245) that n2 is given by Eq. (4.231) with
χ

(3)
r = χ(3) in the transparent case, and hence its identification with the nonlinear

refractive index.
The nonlinear wave equation for self-focusing in a transparent medium can be

rewritten as
i∂zE + 1

2k∇
2
⊥E + kn2

n0
|E|2E = 0. (4.246)
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Equation (4.246) is referred to as the nonlinear Schrödinger equation (NLSE) because
of its formal similarity with the Schrödinger equation in quantum mechanics. We can
now introduce dimensionless variables, Z = z/LD, U = E/E0, R⊥ = r⊥/w0, E0 =
(2I0/ε0cn0)1/2, and transform the NLSE to the dimensionless form

i∂ZU + 1
2∇

2
⊥U +N 2|U |2U = 0. (4.247)

Here we have introduced the only dimensionless parameter – the soliton parameterN ,
governing the dynamics of the system. It is defined as follows

N 2 ≡ LD
LNL

, (4.248)

where the diffraction and nonlinear lengths, LD and LNL are given by the expressions

LD = kw2
0, LNL =

1

kn2I0
. (4.249)

A numerical analysis of Eq. (4.247) confirms formation of a spatial soliton for
the beam power such that N = 1. However, the soliton turns out to be unstable with
respect to small perturbations. Stable solitons can be formed in two-spatial dimensions,
provided the saturation of nonlinear refractive index is allowed. Stable spatial solitons
can be generated in Kerr-like nonlinear media in a planar waveguide geometry where
trapping in one spatial dimension is realized by the nonlinear medium whereas the
other spatial dimension is trapped by the waveguide. The dimensionless NLSE in the
planar waveguide geometry takes the form

i∂ZU + 1
2∂

2
XXU +N 2|U |2U = 0. (4.250)

The lowest order soliton corresponds to the exact balance between the nonlinearity and
diffraction, N = 1, and its spatial profile is given by

U(Z,X) = sechX e−iZ/2. (4.251)

Higher-order solitons also exist. They correspond to more intense beams, N > 1. In
such cases, the nonlinearity dominates at first, causing self-focusing of the beam. How-
ever, in (1 + 1)D geometry – indicating one transverse dimension plus one dimension
along the waveguide unaffected by the waveguide trapping – the initial self-focusing
can be slowed down and eventually reversed by increased diffraction of a more tightly
focused beam. As a result, the periodic pattern of contraction and expansion of the
soliton manifests itself, with the soliton returning to its initial shape and transverse size
every half-period. Such solitons are called optical breathers. An example of a breather
is displayed in Fig. 4(b) for N = 3.

Exercise 4.14. Show that the 1D NLSE is invariant with respect to the Galilean
transformation,

X ′ = X − vZ; Z ′ = Z,

for an arbitrary speed v. In other words, demonstrate that Eq. (4.250) has the same
form in the “primed” variables, provided the fields in the two coordinate systems are
related by a gauge transformation,

U(Z,X) = V (Z ′, X ′)eif(Z′,X′).
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Figure 4.23: Intensity of the fundamental (a) and the third-order (b) soliton as function
of the propagation distance.

Determine the phase f . Draw conclusions about the functional form of a moving soli-
ton field.

4.11 Z-scan measurement of nonlinear refractive index
The so-called z−scan technique for nonlinear refractive index measurement is based
on examining self-focusing (defocusing) of a Gaussian light beam transmitted through
a thin nonlinear sample. If the sample is placed behind the beam focal plane, the self-

Figure 4.24: Schematic illustration of the z-scan experimental arrangement. The self-
focusing sample is placed behind beam focus.

focusing medium causes additional focusing of the beam and hence a stronger beam
divergence past the focal plane. Therefore, the fraction of the beam power passing
through a detector pinhole on the axis reduces. Thus, the on-axis beam intensity at the
detector decreases. The situation is depicted in Fig. 4.24. On the other hand, if the
sample is placed in front of the focal plane, the additional focusing due to the nonlinear
medium results in the increased power fraction captured by the on-axis detector and
hence the on-axis intensity increase as is seen in Fig. 4.25. In practice, the on-axis
intensity is always normalized to its magnitude in the absence of the sample, yielding
a transmittance. The latter is greater than one for the in-front-of-the-focus sample
position and less than one for the behind-the-focus position. The situation is reversed
for a self-defocusing nonlinear sample.
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Figure 4.25: Schematic illustration of the z-scan experimental arrangement. The self-
focusing sample is placed in front of the beam focus.

To develop a quantitative theory, let us recall Gaussian beam characteristics in free
space. A straightforward generalization of the results of Sec.3.1. to two-dimensional
beams yields the field profile in any transverse plane as

E(ρ, z) =
E0

(1 + iζ)
exp

[
− ρ2

2w2
0(1 + iζ)

]
, (4.252)

where we introduced dimensionless variables in terms of the Rayleigh range zR as

ζ = z/zR, zR = kw2
0. (4.253)

The Gaussian beam field can be cast into the form

E(ρ, z) = E0
[
w0

w(z)

]
eiΦ(z) exp

[
ikρ2

2R(z)

]
exp

[
− ρ2

2w2(z)

]
. (4.254)

Here we introduced the beam width w(z) as

w(z) = w0

√
1 + z2/z2

R, (4.255)

the radius of the wavefront curvature R(z),

R(z) = z(1 + z2
R/z

2), (4.256)

and the accrued phase Φ(z),

Φ(z) = − arctan(z/zR). (4.257)

The freely propagating Gaussian beam intensity in the sample plane zs can then be
expressed as

I(ρ, zs) =
I0

(1 + z2
s/z

2
R)

exp

[
− ρ

2

w2
s

]
, (4.258)

where ws ≡ w(zs). It then follows from Eq. (4.229) that the phased picked up by
a beam upon passing through a thin sample of length ∆L of a transparent nonlinear
medium placed in the plane zs is given by

∆ΦNL(ρ,∆L) =
k0n2I0∆L

(1 + z2
s/z

2
R)

exp

[
− ρ

2

w2
s

]
, (4.259)
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where we assumed that ∆L� min(zs, zR) (thin sample). The accrued nonlinear phase
can be expressed through its value on the axis as

∆ΦNL(ρ,∆L) = ∆Φ0 exp

[
− ρ

2

w2
s

]
. (4.260)

The on-axis value can in turn be written in the form

∆Φ0 =
∆φ

(1 + z2
s/z

2
R)
, (4.261)

where
∆φ = k0n2I0∆L. (4.262)

is the on-axis phase shift for the sample placed in the focal plane, z = 0.
The Gaussian beam envelope emerging from the sample can then be written as

E(ρ, zs) = Es exp

[
ikρ2

2Rs

]
exp

[
− ρ2

2w2
s

]
exp[i∆ΦNL(ρ,∆L)], (4.263)

where Φs ≡ Φ(zs) and Rs ≡ R(zs) and we combined all factors independent on ρ
into Es. Let us now expand the nonlinear phase shift term on the r.h.s. of Eq. (4.263)
into a Taylor series and using Eqs. (4.260) though (4.262), we obtain

exp[i∆ΦNL(ρ,∆L)] =

∞∑
m=0

(i∆Φ0)m

m!
exp

[
−mρ

2

w2
s

]
. (4.264)

It follows from Eqs. (4.263) and (4.264) that the Gaussian beam envelope at the exit to
the sample is then

E(ρ, zs) = Es exp

[
ikρ2

2Rs

] ∞∑
m=0

(i∆Φ0)m

m!
exp

[
− ρ2

2w2
s

(1 + 2m)

]
. (4.265)

Employing the Fourier transform technique discussed in Sec. 3.1, we can determine
the beam envelope in the detector aperture plane, located a distance La away from the
sample, in the form

E(ρ, La) = Es
∞∑
m=0

(i∆Φ0)m

qmm!
exp

(
− ρ2

2qmσ2
m

)
, (4.266)

where
1

σ2
m

=
1 + 2m

w2
s

− ik

Rs
, (4.267)

and

qm = 1 +
La
Rs

+
i(1 + 2m)La

zR
. (4.268)
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Exercise. 4. 15. Derive Eqs. (4.266) through (4.268).
It follows from Eq. (4.266) that the beam envelope on the axis at the aperture location
is then

E(0, La) = Es
∞∑
m=0

(i∆Φ0)m

qmm!
. (4.269)

The actually measured quantity is the on-axis detector transmittance defined as

T (La,∆φ) ≡ I(zs + La, ρ = 0,∆φ)

I(zs + La, ρ = 0,∆φ = 0)
. (4.270)

Figure 4.26: Typical transmittance curve in the z-scan experiment.

We assume that the detector aperture is placed in the far zone of the sample such
that La � zR and the sample is placed sufficiently close to the focal plane of the beam,
zs � zR to ensure the beam divergence is not too large and there is enough power
captured by the detector aperture to guarantee a reasonable signal-to-noise ratio. Next,
the nonlinearity is typically small, implying the accumulated phase shifts |∆φ| � 1.
Therefore one can expand the r.h.s. of Eq. (4.269) in a Taylor series and keeping the
lowest nontrivial contribution in Eq. (4.270), we arrive, after minor algebra, at the
expression

T (x,∆φ) ' 1 +
4x∆φ

(x2 + 9)(x2 + 1)
, (4.271)

where x = zs/zR. The analysis of Eq. (4.267) reveals that it has a maximum (peak)
and a minimum (valley) as is sketched in Fig. 4.26. The difference between the two is
given by

Tmax − Tmin ≈ 0.406 ∆φ. (4.272)

By measuring the curve T as a function of x and determining the peak-value difference,
one can determine the nonlinear phase shift on the beam axis and hence infer the non-
linear refractive index using Eq. (4.262). This is the essence of the z−scan technique.
Exercise. 4. 16. Derive Eq. (4.271).

104



The necessity to determine the whole T -curve to infer the peak-valley difference is
a disadvantage of the traditional z−scan approach. In practice, an experimentalist has
to translate a sample by translating a stage which entails some technical limitations.
Exercise 4. 17. Assuming your a translation stage allows for a 20 cm travel, how tight
a focus is required such that you could capture a typical z−scan signature (peak-to-
valley) of the transmittance curve? What is a maximum sample thickness such that the
thin sample approximation, ∆L� zR, is satisfied for a 632 nm laser beam?
As an alternative, one can tightly focus a Gaussian beam and apply the so-called
quadratic phase approximation (QPA) for the accumulated nonlinear phase shift

exp[i∆ΦNL(ρ,∆L)] ' ei∆Φ0e−i∆Φ0ρ
2/w2

s , (4.273)

which is obtained by expanding the exponent in the last term on the r.h.s. of Eq. (4.263)
into a Taylor series and keeping only quadratic term in ρ/ws. The QPA can be justi-
fied by observing that it is very accurate near the beam axis, ρ � ws. As one moves
away from the axis, the QPA accuracy decreases. However, it is largely irrelevant as
the diffraction pattern contribution from the beam tails is practically negligible due to a
very fast (Gaussian) fall off of the field intensity towards the beam periphery. The QPA
is expected to be particularly accurate for tightly focused Gaussian beams, typically
employed in the z-scan measurements in most practical situations.

It then follows at once from Eqs (4.263) and (4.273) that

E(ρ, zs) = Esei∆Φ0 exp

[
ikρ2

2Reff

]
exp

[
− ρ2

2w2
s

]
, (4.274)

where the effective radius of wavefront curvature Reff is defined as

1

Reff
=

1

Rs

(
1− 2∆Φ0zR

zs

)
. (4.275)

It can be inferred from Eq. (4.275) that for n2 > 0, Reff > Rs, resulting in partial
diffraction suppression by self-focusing in the sample. Conversely, if n2 < 0, Reff <
Rs causing additional beam spreading due to self-defocusing in the sample. Thus, the
sample works as a thin lens.

Having elucidated the thin sample effect on the beam in the QPA approximation
in physical terms, we can proceed to study beam propagation from the sample to the
aperture. The beam envelope at the aperture can be derived, given its expression at the
sample exit (4.274). The resulting on-axis aperture transmittance takes the form

TQPA(∆Φ0) =
1 +

z2
s

z2
R

(
1 +

z2
R

zsLa

)2

1 +
z2
s

z2
R

(
1− 2∆Φ0

zR
zs

+
z2
R

zsLa

)2 . (4.276)

Eq. (4.276) can be easily inverted, yielding the expression for the nonlinear phase shift
as

∆Φ0 =
zs

2zR

1 +
z2
R

zsLa
− zR
zs

√√√√1− TQPA +
z2
s

z2
R

(
1 +

z2
R

zsLa

)
TQPA

 . (4.277)
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Expressions (4.261), (4.262), and (4.277) make it possible to extract both the sign–
determined by the sign of ∆Φ0 in Eq. (4.277)–and magnitude of n2 from a single
measurement of the relative transmittance in the Fresnel zone, a distance La away from
the sample placed at the position zs. There is no need for sample position scanning in
this approach.

Let us discuss key restrictions on relevant distances under the QPA. First, the sam-
ple must be thin, implying that ∆L� zs. Second, the beam emerging from the sample
must still be tightly focused for the QPA to hold well, leading to the restriction on the
sample position relative to the beam Rayleigh range, zs � zR. Third, the beam should
not have significantly diverged on arrival at the aperture to avoid substantial power loss,
implying that La ≤ zR. Combining these criteria, we arrive at

∆L� zs � La ≤ zR. (4.278)

Note also that if Eq. (4.278) is met, ∆Φ0 ' ∆φ, yielding

∆φ =
zs

2zR

1 +
z2
R

zsLa
− zR
zs

√√√√1− TQPA +
z2
s

z2
R

(
1 +

z2
R

zsLa

)
TQPA

 . (4.279)

It might be possible to adjust the measurement setup such that

z2
R

zsLa
� 1, (4.280)

is fulfilled. Under the circumstances, Eq. (4.279) can be simplified to yield a particu-
larly compact working formula

∆φ ' zR
2La

(
1− La

zR

√
1− TQPA + zs/La

TQPA

)
. (4.281)

Exercise 4.18. Derive Eq. (4.277).

4.12 Polarization dynamics of third-order processes
So far we have ignored tensor properties of nonlinear optical susceptibilities by consid-
ering linearly or circularly polarized light whose polarization properties do not change
on propagation in isotropic media. Whenever elliptically polarized light is launched
into such media, its state of polarization does in general change despite the isotropy of
the medium. Thus, we shall be interested in polarization dynamics of light propagating
in isotropic nonlinear media. If the isotropic medium possesses reflectional symmetry,
the lowest order of the optical susceptibility tensor is the third. Remarkably, the mere
isotropy and reflectional symmetry of the medium are sufficient to determine a gen-
eral form of the third-order susceptibility tensor which we will do following a seminal
work of Maker and Tehrune. In the next subsection, we examine tensor properties of
the third-order susceptibility in the media with isotropic linear and nonlinear responses,
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while we will then explore the influence of linear anisotropy of the nonlinear medium
– whose nonlinear properties can still be assumed isotropic – on light polarization dy-
namics in such media.

We begin by observing that since there is no privileged direction in such a medium,
the third-order susceptibility tensor cannot have an index – corresponding to a given
Cartesian coordinate – repeat an odd number of times: In other words, χ(3)

ijjj = 0 for
any j = x, y, z. To demonstrate this property, consider a polarization component, Px,
say. If χ(3)

xyyy 6= 0, it follows that Px = ε0χ
(3)
xyyyEyEyEy 6= 0. On the other hand, po-

larization along the x−axis in an isotropic medium should not be affected by reflections
with respect to the xz−plane. The latter affect the y-component of the field, though,
Ey → −Ey . Consequently, Px = ε0χ

(3)
xyyyEyEyEy = (−1)3ε0χ

(3)
xyyyEyEyEy , im-

plying that χ(3)
xyyy = 0. By the same token, all the other tensor components containing

three repeated indices can be shown to be zero.
Further, we conclude by inspection that there are four kinds of nonzero tensor ele-

ments which are mutually related by the symmetry relations as

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz, (4.282)

χ(3)
xxyy = χ(3)

xxzz = χ(3)
yyxx = χ(3)

yyzz = χ(3)
zzyy = χ(3)

zzxx, (4.283)

χ(3)
xyxy = χ(3)

xzxz = χ(3)
yzyz = χ(3)

zxzx = χ(3)
zyzy = χ(3)

yxyx, (4.284)

χ(3)
xyyx = χ(3)

yxxy = χ(3)
xzzx = χ(3)

zxxz = χ(3)
yzzy = χ(3)

zyyz. (4.285)

Moreover, as χ(3)
ijkl must be invariant with respect to rotations, the diagonal and off-

diagonal elements of the susceptibility tensor can be shown to satisfy the relations

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyyx + χ(3)

xyxy, (4.286)

with similar ones for χ(3)
yyyy and χ(3)

zzzz . We can then infer from Eqs. (4.282) – (4.285)
as well as Eq. (4.286) that the third-order susceptibility tensor in isotropic media with
inversion symmetry takes a general form

χ
(3)
ijkl = χ(3)

xxyyδijδkl + χ(3)
xyxyδikδjl + χ(3)

xyyxδilδjk. (4.287)

The expression (4.287) can be simplified even further for particular nonlinear pro-
cesses if one recalls intrinsic symmetries of χ(3) with respect to frequency permuta-
tions. We will focus here on the self-focusing (SF) process, ω1 = ω2 = −ω3 =
−ω4 = ω. The intrinsic permutation symmetry then implies

χ
(3)
ijkl(−ω, ω,−ω, ω) = χ

(3)
ilkj(−ω, ω,−ω, ω). (4.288)

It follows at once that

χ(3)
xxyy(−ω, ω,−ω, ω) = χ(3)

xyyx(−ω, ω,−ω, ω). (4.289)
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We can then arrive at the final form for the third-order susceptibility for SF in isotropic
media,

χ
(3)
ijkl(−ω, ω,−ω, ω) = χ(3)

xxyy(−ω, ω,−ω, ω)(δijδkl + δilδjk)

+ χ(3)
xyxy(−ω, ω,−ω, ω)δikδjl. (4.290)

Exercise 4.19. Use intrinsic permutation symmetries of χ(3)
ijkl to determine a general

form of the susceptibility tensor χ(3)
ijkl(−3ω, ω, ω, ω) for the third harmonic generation

in isotropic media.

The third-order polarization field for self-focusing takes the form

Pi(ω) =
3ε0
4

∑
jkl

χ
(3)
ijkl(−ω, ω,−ω, ω)Ej(ω)Ek(−ω)El(ω), (4.291)

where
Ek(−ω) = E∗k (ω). (4.292)

Substituting from Eqs. (4.290) into (4.291) we obtain, after some algebra, the expres-
sion

Pi =
3ε0
2
χ(3)
xxyyEi

∑
k

EkE∗k +
3ε0
4
χ(3)
xyxyE∗i

∑
l

ElEl. (4.293)

The latter can be written in the vector form as

PNL = ε0[A(E · E∗)E + 1
2B(E · E)E∗], (4.294)

where we have introduced the notations of Maker and Terhune (1965)

A ≡ 3

2
χ(3)
xxyy, B ≡ 3

2
χ(3)
xyxy. (4.295)

Equation (4.294) gives the most general form of the third-order polarization response to
an applied field of any polarization for a self-focusing process in an isotropic non-chiral
nonlinear medium.

To better understand the role of the two terms entering the expression (4.294), we
consider an elliptically polarized wave, propagating in the positive z-direction, which
can be conveniently represented as a linear superposition of the right- and left-handed
circular polarizations as

E = E+e+ + E−e−, (4.296)

where the unit vectors associated with the circular polarizations are defined as

e± =
ex ± iey√

2
; e− = e∗+. (4.297)

It follows from (4.297) that

e± · e± = 0, e± · e∓ = 1. (4.298)
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The dot product of the two electric field vectors can then be expressed as

E · E = 2E+E−, E · E∗ = |E+|2 + |E−|2. (4.299)

Let us define the nonlinear polarization field in the circular polarization basis by
the expression

PNL = P(+)
NLe+ + P(−)

NLe−, (4.300)

It can be inferred from (4.294), (4.299) and (4.300) that

P(±)
NL = ε0[A|E±|2 + (A+B)|E∓|2]E±. (4.301)

Further, we can represent the total polarization field as a linear superposition of the
circular polarization components as

P = P+e+ + P−e−, (4.302)

where P+ and P− are effectively decoupled – there is an indirect coupling, though, via
the nonlinear susceptibility – such that each polarization component is proportional to
the corresponding electric field viz.,

P± = ε0

[
χL + χ

(±)
NL

]
E±. (4.303)

Here the nonlinear susceptibility of each component is given by

χ
(±)
NL = A|E±|2 + (A+B)|E∓|2. (4.304)

The corresponding effective refractive index, including linear as well as nonlinear parts,
can be defined as

n2
± = 1 + χL + χ

(±)
NL. (4.305)

Since in practice, χNL � χL, we can make the approximation

n± ' nL +
χ

(±)
NL

2nL
. (4.306)

The analysis of Eqs. (4.302) – (4.306) reveals that in the circular polarization basis,
the nonlinear wave equation in isotropic media can be effectively decoupled into the
two as

∂2E±
∂t2

−
n2
±
c2

∂2E±
∂z2

= 0, (4.307)

where we have neglected any spatial dependence in the transverse directions. Equa-
tions (4.307) are satisfied by the plane wave solutions

E±(z, t) = E±ei(k±z−ωt), (4.308)

where
k± =

n±ω

c
. (4.309)
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On substituting from Eq. (4.306) into (4.308), and using the identities

n± = n±∆n/2, (4.310)

where
n ≡ n+ + n−

2
, ∆n = n+ − n−; (4.311)

we obtain the expression for the total field as

E(z, t) = [E+ei∆nωz/2ce+ + E−e−i∆nωz/2ce−]eiω(nz/c−t). (4.312)

Here we have introduced the average effective refractive index

n = nL +
(2A+B)

4nL
(|E+|2 + |E−|2), (4.313)

and the refractive index difference,

∆n = n+ − n− =
B

2nL
(|E−|2 − |E+|2), (4.314)

respectively. The electric field can be represented as

E(z, t) = [E+e+(z) + E−e−(z)]eiω(nz/c−t), (4.315)

where the rotating circular polarization basis is

e±(z) =
ex(z)± iey(z)√

2
, (4.316)

with
ex(z) = cos(∆nωz/2c)ex + sin(∆nωz/2c)ey, (4.317)

ey(z) = cos(∆nωz/2c)ey − sin(∆nωz/2c)ex. (4.318)

Exercise 4.20. Verify that the representation of the field in terms of rotating polar-
ization vectors, given by Eqs. (4.315) – (4.318), does indeed correspond to our field of
Eq. (4.312).

Analyzing Eqs. (4.316) – (4.318), we can conclude that the electric field is ellipti-
cally polarized at any position z, according to Eq. (4.315); yet the polarization ellipse
rotates in the xy− plane at the rate proportional to the differences of refractive indices
along the two principal axes. The latter is referred to as birefringence; it is the nonlin-
ear birefringence of the medium that gives rise to polarization rotation even in isotropic
optical media. Notice also that the rate of polarization rotation depends only on the co-
efficient B as is evidenced by Eqs. (4.314) and (4.317), (4.318). Hence the second
term on the r.h.s. of Eq. (4.294) is wholly responsible for nonlinear birefringence ef-
fects. The first term on the r.h.s of (4.294) contributes to the overall phase accretion
factor which is proportional to n, but it does not affect polarization rotation.
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Exercise 4.21. In the fiber optical case, the nonlinear response of the medium is
of electronic type such that A = B. Silica-glass optical fibers can serve as an im-
portant particular example. Linear birefringence of the fiber is typically introduced –
either intentionally or inadvertently – at the fabrication stage. On account of linear
birefringence, the most general field propagating in such a fiber can be represented as

E =
1

2

(
exExeiβxz + eyEyeiβyz

)
e−iωt + c. c,

where βx,y is the propagation constant of the corresponding linear polarization com-
ponent; the field components are assumed to be polarized along the principal axes of
the fiber. Show that the polarization field at the frequency ω is then given by

PNL =
1

2

(
exPxeiβxz + eyPyeiβyz

)
e−iωt + c. c., (4.319)

where

Px =
3ε0
4
χ(3)
xxxx

[
(|Ex|2 +

2

3
|Ey|2)Ex +

1

3
E∗xE2

ye
−2i∆βz

]
, (4.320)

Py =
3ε0
4
χ(3)
xxxx

[
(|Ey|2 +

2

3
|Ex|2)Ex +

1

3
E∗yE2

xe
2i∆βz

]
. (4.321)

Here ∆β = βx − βy .

4.13 Electro-optical Kerr effect
In this section, we study the electro-optical Kerr effect which manifests itself in the
modification of a linear refractive index of an isotropic non-chiral media in presence
of an electrostatic field. The effect becomes possible due to the second-order (Kerr)
nonlinearity – which is the leading nonlinearity in such media – and hence the name,
electro-optical Kerr effect. Classically, the corresponding polarization reads

PNLi = 3ε0
∑
jkl

χ
(3)
ijkl(−ω, ω, 0, 0)Ej(ω)Ek(0)El(0). (4.322)

Substituting from Eq. (4.287) into Eq. (4.322), we obtain

PNLi = 3ε0χ
(3)
xxyyEi(ω)

∑
k

E2
k(0) + 3ε0χ

(3)
xyxyEi(0)

∑
j

Ej(0)Ej(ω)

+ 3ε0χ
(3)
xyyxEi(0)

∑
j

Ej(ω)Ej(0). (4.323)

The intrinsic permutation symmetry, χ(3)
ijkl(−ω, ω, 0, 0) = χ

(3)
ijlk(−ω, ω, 0, 0), implies

that
χ(3)
xyxy = χ(3)

xyyx, (4.324)
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Using Eq. (4.324), Eq. (4.323) can be written in the vector form as

PNL = 3ε0[χ(3)
xxyy E(E0 ·E0) + 2χ(3)

xyxy E0(E ·E0)], (4.325)

where we have introduced the notations,

E ≡ E(ω) and E0 ≡ E(0). (4.326)

Equation (4.325) represents the general form of the polarization associated with the
electro-optical Kerr effect for the electrostatic and optical fields of any polarizations.
Let us focus on the case of linear polarization of the dc field such that

E0 = E0ex, E = Exex + Eyey. (4.327)

Under the circumstances, the polarization components take the form

PNLx = 3ε0[χ(3)
xxyyExE2

0 + 2χ(3)
xyxyE

2
0Ex]

= 3ε0[(χ(3)
xxyy + 2χ(3)

xyxy)]E2
0Ex = 3ε0χ

(3)
xxxxE

2
0Ex, (4.328)

and
PNLy = 3ε0χ

(3)
xxyyE

2
0Ey. (4.329)

It can be inferred from Eqs. (4.328) and (4.329) that the components of the total polar-
ization field can be represented as

Px,y = ε0χx,yEx,y, (4.330)

where the components of the effective susceptibility tensor are

χx = χ(1) + 3χ(3)
xxxxE

2
0 , (4.331)

and
χy = χ(1) + 3χ(3)

xxyyE
2
0 . (4.332)

The corresponding components of the total refractive index are given by

nx ' n+
3χ

(3)
xxxx

2n
E2

0 , (4.333)

and

ny ' n+
3χ

(3)
xxyy

2n
E2

0 . (4.334)

It follows from Eqs. (4.330) – (4.332) that in electro-optical Kerr effect with the
dc field breaking the azimuthal symmetry, it is the Cartesian components of the optical
field that are decoupled; each satisfies the wave equation – neglecting spatial depen-
dence in the transverse plane – of the form

∂2Ex,y
∂t2

−
n2
x,y

c2
∂2Ex,y
∂z2

= 0, (4.335)
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The plane-wave solutions to Eq. (4.335) are

Ex,y(z, t) = Ex,yei(kx,yz−ωt), (4.336)

where
kx,y =

nx,yω

c
. (4.337)

The evolution of the optical field can then be represented as

E(z, t) = Ex[ex + ey tan θe−i∆nωz/c]eiω(nxz/c−t), (4.338)

where tan θ = Ey/Ex, and

∆n =
3χ

(3)
xyxyE2

0

n
. (4.339)

The analysis of Eq. (4.338) reveals that the Kerr effect is present in two guises:
the dc field breaks the symmetry of the isotropic medium turning the medium into a
uniaxial one and it generates effective linear birefringence which manifests itself in the
polarization rotation. The latter can be seen by observing, for instance, that if the wave
is initially linearly polarized at 45◦ to the dc field, such that tan θ = 1, it can acquire
a circular polarization provided, e−i∆nωL/c = ±i at the exit to the medium, z = L.
In general, the polarization rotation angle for the beam having traversed a distance L
inside the medium is given by

∆φL =
∆nωL

c
=

3ω

nc
χ(3)
xyxyE

2
0L. (4.340)

In experimental work, the so-called Kerr constantK is often introduced via the relation

∆n = KλE2
0 . (4.341)

The Kerr constant is related to relevant components of the susceptibility tensor by the
expression

K =
3χ

(3)
xyxy

nλ
. (4.342)

Exercise 4.22. Determine the dc field strength needed to produce a circular polariza-
tion by a 10 cm long Kerr cell filled with carbon disulfide, CS2. For carbon disulfide,
K = 3.6× 10−14 m/V2.
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4.14 Spontaneous and stimulated Raman scattering: CW
case

Figure 4.27: Illustrating a photon picture of Raman scattering.

Spontaneous Raman scattering is an inelastic scattering process of an electromag-
netic wave off of individual molecules such that part of the electromagnetic wave en-
ergy is lost to the medium excitations. The excitations are typically come in the form
of molecular vibrations or rotations. If a particular molecule was in the ground state
with the energy Eg prior to an elementary scattering act, it can absorb a photon from
the incident laser beam and re-emit a photon of a lower frequency. The energy differ-
ence is lost to exciting a vibrational or rotational phonon, a quantum of vibration or
rotation. On the other hand, if the molecule was thermally excited to the state Ef–
the probability of this event is determined by the Gibbs factor e−(Ef−Eg)/kT –it can
emit a photon of a greater frequency than the laser beam photon to return to its ground
state. In the first instance, the generated photon is said to belong to the Stokes mode,
and in the second–to anti-Stokes one. This photon picture of the scattering process is
schematically illustrated in Fig. 5.1. We note that medium excitations in the Raman
case are optical phonons.

Unfortunately, there is no simple classical picture of spontaneous Raman scattering
that can adequately describe the process. We will only point out that the total scattered
power P can be described in terms of the scattering cross-section σ, which has area
units, through the expression

P = σI0, (4.343)

where I0 is the incident intensity of the laser beam. If we consider the scattered power
dP flowing through an infinitesimal area dS on a sphere of radius R centered at the
molecule, we can determine the power flux,

dP

dS
=

1

R2

dP

dΩ
=

I0
R2

dσ

dΩ
. (4.344)

Here dΩ is an infinitesimal solid angle shown in Fig. 5.2 and we have introduced a dif-
ferential cross-section dσ/dΩ. In most experimental situations, there is a finite number
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Figure 4.28: Illustrating the concept of scattering cross-section.

N ≥ 1 of the medium molecules within the interaction region and the collection solid
angle ∆Ω is typically rather small such that the overall power scattered into ∆Ω can
be evaluated approximately as

P∆ =

∫
dΩ

dP

dΩ
' NI0∆Ω

dσ

dΩ
. (4.345)

It follows at once from Eq. (4.345) that the scattered power can be calculated from the
knowledge of the differential cross-section which is tabulated in the table below1 for
common gases and liquids, relative to its value for nitrogen.

Molecule Raman shift (cm−1) dσ
dΩ/

dσ
dΩ

∣∣
N2

N2 2330 1
H2 4156 3.2
O2 1556 1.23

CO2 1388 1.51
CO 2143 0.98
NO 1876 0.49
H2O 3657 2.5
SO2 1151 4.9
O3 1103 3.0

CH4 2917 7.3

The nitrogen differential cross-section at λp = 488 nm is

dσ

dΩ

∣∣∣∣
N2

= 5.5× 10−31 cm2/Sr/molecule. (4.346)

Note that as is customary in spectroscopy, Raman shifts are measured in cm−1, i. e.,
in the inverse vacuum wavelengths in cm. One can convert these units to Raman shifts

1Source: S. A. Danchkin et.al., “Raman scattering parameters for gas molecules (survey),” Journal of
Applied Spectroscopy, 35, 1057-1066 (1981).

115



∆λ in wavelength units of µm through

∆λ [µm] = 104/shift[cm−1], (4.347)

where 104 comes from the difference between nm and cm. The corresponding Raman
frequency shift is then

∆ν = c/∆λ. (4.348)

It can be inferred from the table that due to tiny magnitudes of dσ/dΩ spontaneous
Raman scattering is an extremely weak process with the scattered power being propor-
tional to the incident intensity.

Figure 4.29: Classical picture of stimulated Raman scattering. The number of
molecules Nf in the excited (final) state is negligible as compared to the number Ng
of unexcited ones, Nf � Ng .

The scattering strength can be dramatically enhanced in presence of stimulating
laser and Stokes/anti-Stokes beam. In this situation the scattering process is referred to
as stimulated Raman scattering (SRS). SRS can be described entirely in classical terms
in the weak molecular excitation limit. In this limit, the number of excited molecules
Nf is much smaller than that Ng in the ground state. Hence we can neglect the level
population dynamics and treat each molecule as a simple harmonic oscillator, weakly
excited away from its ground state. The molecular excitation is due to a dipole moment
induced by the external laser fields. The polarized molecule is assumed to vibrate or
rotate around its center of mass which can be described as a ”spring” deviation from
its equilibrium position quantified by a generalized coordinate Q, see Fig. 5.3.

The potential energy of a polarized molecule can be expressed as

W = − 1
2pE, (4.349)

where the induced dipole moment p can be expressed in terms of the molecular polar-
izability α,

p = ε0α(Q)E. (4.350)
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For sufficiently small vibrations, the polarizability can be expanded into a Taylor series
in terms of the generalized coordinate as

α ' α0 +

(
dQ
dα

)
0

Q. (4.351)

On combining Eqs. (4.350) and (4.351), we arrive at

p ' ε0
[
α0 +

(
dQ
dα

)
0

Q
]
E. (4.352)

The force can be determined as a gradient of the energy. It then follows from Eqs. (4.349)
and (4.352) that

Fd = −∇QW =
ε0
2

(
dQ
dα

)
0

E2, (4.353)

Within the oscillator model framework, the vibrational equation of motion can be writ-
ten as

∂2
tQ+ 2γ∂tQ+ ω2

0Q = Fd/m, (4.354)

where ω0 and γ are the resonant frequency and damping rate, and m is a molecule
mass.

The external electric field is due to traveling pump and Stokes waves,

E(t, z) = 1
2 [Epei(kpz−ωpt) + Esei(ksz−ωst) + c. c.], (4.355)

It follows from (4.355) that

E2(t, z) = 1
2 [EpE∗s ei(kp−ks)ze−i(ωp−ωs)t +NR+ c. c.], (4.356)

where “NR” stands for non-resonant terms we are not interested in. We seek a driven
solution to the molecular vibration in the form

Q(t, z) = 1
2Qωe

i(kp−ks)ze−i(ωp−ωs)t + c. c. (4.357)

On substituting from Eq. (4.357) into (4.354) we obtain that

Qω =
ε0(dα/dQ)0EpE∗s

2m(ω2
0 − ω2

∆ − 2iγω∆)
. (4.358)

Here we introduced the Raman frequency change as

ω∆ = ωp − ωs. (4.359)

The Raman interaction is only efficient near resonance such that ω∆ ≈ ω0. Assuming
the pump and Stokes frequency difference falls in the vicinity to resonance, it follows
that

ω2
0 − ω2

∆ − 2iγω∆ ' 2ω0(ω0 − ω∆ − iγ). (4.360)

On substituting from Eq. (4.360) into (4.358), we obtain

Qω = − ε0(dα/dQ)0EpE∗s
4mω0[(ω∆ − ω0) + iγ]

. (4.361)
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We can now determine the induced polarization,

PNL = NpNL = ε0N

(
dQ
dα

)
0

QE, (4.362)

which can be expressed in terms of the Stokes, pump, and non-resonant frequency
components as

PNL = 1
2 [PNL(ωs)e

−iωst + PNL(ωp)e
−iωpt +NR+ c. c.] (4.363)

We can infer from Eqs. (4.355), (4.357), (4.361) through (4.363) that the polarization
component oscillating at the Stokes frequency is given by the expression

PNL(ωs) = − ε20N(dα/dQ)2
0|Ep|2Es

8mω0[(ω∆ − ω0)− iγ]
eiksz. (4.364)

By the same token, the pump frequency component to polarization takes the form

PNL(ωp) = − ε20N(dα/dQ)2
0|Es|2Ep

8mω0[(ω∆ − ω0) + iγ]
eikpz (4.365)

On the other hand, the third-order polarization corresponding to the annihilation of a
Stokes photon and creation of a pump photon stimulated by the presence of a pump
photon can be written as

PNL(ωs) =
3ε0
2
χ(3)
s (−ωs;ωp,−ωp, ωs)|Ep|2Eseiksz (4.366)

It then follows on comparing Eqs. (4.364) and (4.366) that the nonlinear susceptibility
of this process is

χ(3)
s (−ωs;ωp,−ωp, ωs) = − ε0N(dα/dQ)2

0

12mω0[(ω∆ − ω0)− iγ]
. (4.367)

Similarly, the pump frequency polarization can be expressed as

PNL(ωp) =
3ε0
2
χ(3)
p (−ωp;ωs,−ωs, ωp)|Es|2Epeikpz, (4.368)

and the corresponding nonlinear susceptibility takes the form

χ(3)
p (−ωp;ωs,−ωs, ωp) = − ε0N(dα/dQ)2

0

12mω0[(ω∆ − ω0) + iγ]
, (4.369)

Thus,
χ(3)
p = χ(3)∗

s = χ∗s. (4.370)

Let us now write down coupled-wave equations for the stimulated Raman scattering
process,

2ikj∂zEj = −µ0ω
2
jPNL(ωj)e

−ikjz, j = p, s. (4.371)
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Explicitly, we obtain for the pump and Stokes field amplitudes the equations

i
dEp
dz

= −
3ω2

p

4kpc2
χ∗s|Es|2Ep, (4.372)

and

i
dEs
dz

= − 3ω2
s

4ksc2
χs|Ep|2Es. (4.373)

Assume that the amplitude of the pump field is very large and can be treated as unde-
pleted during the SRS process. Under the undepleted pump approximation, the Stokes
field is governed by the equation

i
dEs
dz

= −3ω2
sχs|Ep|2

4ksc2
Es. (4.374)

After a simple algebra, Eq. (4.374) can be cast into the Stokes intensity evolution equa-
tion as

dIs
dz

=
3ωsIpIm{χs}

2ε0npnsc2
Is. (4.375)

Eq. (4.375) can be integrated, yielding an exponential growth of the Stokes mode,

Is(z) = Is0 exp(gRIpz), (4.376)

where the gain factor can be expressed as

gR ≡
3ωsIm{χs}
2ε0npnsc2

, (4.377)

where

Im{χs} =
ε0γN(dα/dQ)2

0

12mω0[(ω∆ − ω0)2 + γ2]
. (4.378)

The gain factor in Eq. (4.377) can be expressed as

gR = gR0L(ω∆), (4.379)

where

gR0 =
ωsN(dα/dQ)2

0

8mω0γc2npns
, (4.380)

is a gain factor at the line center and the gain spectrum is Lorentzian,

L(ω∆) =
γ2

[(ω∆ − ω0)2 + γ2]
. (4.381)

Typical values of center-line gain factors for gases are around a few cm/GW. For in-
stance, gR0 ≈ 1.5 cm/GW for molecular hydrogen H2.

Whenever pump depletion cannot be neglected, coupled pump and Stokes wave
dynamics must be studied using the full coupled-wave equations

dIs
dz

=
3ωsIm{χs}
2ε0npnsc2

IpIs, (4.382)
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Figure 4.30: Photon number fractions in the Stokes (red) and pump (blue) pulses as
functions of Gz beyond the undepleted pump approximation with x = 0.1.

and
dIp
dz

= −3ωsIm{χs}
2ε0npnsc2

IpIs. (4.383)

It follows from Eqs. (4.382) and (4.383) after some algebra that

1

ωp

dIp
dz

+
1

ωs

dIs
dz

= 0. (4.384)

Eq. (4.384) implies that

Ns +Np = Np0 +Ns0 = N0 = const, (4.385)

where Nj = Ij/h̄ωj is a photon flux of the pump (Raman) beam. In other words, the
total photon flux is conserved because in an elementary act of Raman scattering a death
of a pump photon corresponds to birth of a Stokes photon and vice versa.

Eq. (4.385) can be used to eliminate the Stokes intensity, say, in favor of the pump
intensity viz.,

Is = N0h̄ωs − Ipωs/ωp. (4.386)

On substituting from Eq. (4.386) into (4.382) and (4.383), we can integrate the latter,
yielding

Np(z)/N0 =
(1− x)e−Gz

x+ (1− x)e−Gz
, (4.387)

and
Ns(z)/N0 =

x

x+ (1− x)e−Gz
. (4.388)
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Here we introduced the initial photon number fraction x = Ns0/N0 in the Stokes
pulse that indicates the percentage of photons carried by the incident Stokes pulse of
the overall input photon number. The total gain is given by

G = G0L(ω∆), (4.389)

where

G0 =
N0h̄ωsωpN(dα/dQ)2

0

8mω0γc2npns
, (4.390)

is the gain at the center-line of the gain spectrum. The behavior of the Stokes and
pump intensities is sketched in the Fig. 5.4. It is seen either in the figure or from
Eqs. (4.387) and (4.388) that the Stokes intensity starts off growing exponentially at
short interaction distances. As the interaction distance increases, though, the Stokes
mode growth saturates and the pump mode becomes depleted, transferring energy into
the Stokes mode and medium molecule vibrations.

We have so far focused on the Stokes mode. Let us include the anti-Stokes mode
into our framework as well. To this end, we consider an input field comprised of the
there components, the pump, Stokes and anti-Stokes modes such that

E(t, z) = 1
2 [Epei(kpz−ωpt) + Esei(ksz−ωst) + Easei(kasz−ωast) + c. c.]. (4.391)

Let us also introduce the Raman frequency change

ω∆ = ωp − ωs = ωas − ωp. (4.392)

It follows at once from Eq. (4.391) that

E2(t, z) = 1
4{[EpE

∗
s e
i(kp−ks)z + EasE∗pei(kas−kp)z]e−iω∆t +NR+ c. c.]. (4.393)

Therefore, we seek the driven solution for the generalized molecule vibration coordi-
nate in the form

Q(t, z) = 1
2{[Qωse

i(kp−ks)z +Qωasei(kas−kp)z]e−iω∆t + c. c.}. (4.394)

On substituting from Eq. (4.394) into (4.354), we obtain for the spectral amplitude of
the Stokes mode

Qωs = − ε0(dα/dQ)0EpE∗s
4mω0[(ω∆ − ω0) + iγ]

, (4.395)

and for the anti-Stokes one

Qωas = −
ε0(dα/dQ)0EasE∗p

4mω0[(ω∆ − ω0) + iγ]
. (4.396)

The nonlinear polarization then can be expressed as

PNL = 1
2 [PNL(ωs)e

−iωs + PNL(ωas)e
−iωas + PNL(ωp)e

−iωp + c. c.], (4.397)

where the Stokes and anti-Stokes components take the form

PNL(ωs) =
ε20N(dα/dQ)2

0e
iksz

8mω0[(ω∆ − ω0)− iγ]

(
|Ep|2Es + E2

pE∗asei∆kz
)
, (4.398)

121



and

PNL(ωas) =
ε20N(dα/dQ)2

0e
ikasz

8mω0[(ω∆ − ω0) + iγ]

(
|Ep|2Eas + E2

pE∗s ei∆kz
)
. (4.399)

The coupled-mode equations can then be written as

2ikj∂zEj = −µ0ω
2
jPNL(ωj)e

−ikjz, j = p, s, as, (4.400)

or explicitly for the Stokes mode:

i∂zEs = −ξs
(
|Ep|2Es + E2

pE∗asei∆kz
)
, (4.401)

and for the ant-Stokes mode:

i∂zEas = −ξas
(
|Ep|2Eas + E2

pE∗s ei∆kz
)
. (4.402)

Here

ξs =
ε0ωsN(dα/dQ)2

0

16mω0nsc[(ω∆ − ω0)− iγ]
, (4.403)

ξas =
ε0ωasN(dα/dQ)2

0

16mω0nasc[(ω∆ − ω0) + iγ]
, (4.404)

are the corresponding coupling constants and the wave-vector mismatch is defined as

∆k = 2kp − ks − kas. (4.405)

In the undepleted pump approximation and with very large wave-vector mismatch,
the fast oscillating second term on the r. h. s of Eqs. (4.401) and (4.402) can be dropped
and the resulting decoupled wave equations for the Stokes and anti-Stokes modes can
be written as

i∂zEs = −κs|Ep|2Es, (4.406)

and
i∂zEas = −κas|Ep|2Eas. (4.407)

The equation for the Stokes mode is equivalent to Eq. (4.375) describing exponential
gain, and the anti-Stokes mode evolution is governed by

dIas
dz

= −γasIpIas, (4.408)

where the anti-Stokes loss factor is defined as

γas = γas0L(ω∆), (4.409)

with the center-line loss factor given by

γas0 =
ωasN(dα/dQ)2

0

8mω0γc2nasnp
. (4.410)

It follows from Eqs. (4.408) through (4.410) that for sufficiently large phase mismatch,
the anti-Stokes mode decays exponentially with the decrement γas,

Ias = Ias0 exp(−γasIpz). (4.411)

Thus unless one takes care to phase-match the anti-Stokes mode, it exponentially de-
cays on propagation. This is the reason one usually focuses on the Stokes mode.

122



4.15 Transient stimulated Raman scattering
We present a semiclassical theory2 of transient SRS in a hollow-core photonic crystal
fiber (HCPCF) geometry. We consider a single-mode HCPCF filled with a molecular
gas such as hydrogen. The single-mode HCPCF use guarantees a very large interaction
length as light diffraction is arrested and its energy is squeezed into a tight fiber mode.
Further, a properly engineered HCPCF can ensure all higher-order Stokes mode sup-
pression such that the SRS excitation process engages only the first-order Stokes mode,
thereby allowing to focus on the basic two-mode, pump and Stokes, situation. Quan-
tum mechanically, a pump pulse photon absorption promotes a molecule from its initial
state, labelled as “1”, to one of the intermediate excited states, labelled as “i”, that are
far off resonance with both laser and Stokes pulses. As the excited molecule emits a
photon at the Stokes frequency, it descends to a final state “3” which differs from the
ground state. The released energy h̄(ωi1 − ωi3) excites molecular vibration/rotation;
ωi1 and ωi3 are transition frequencies characterizing dipole allowed transitions from
the initial and final levels, respectively, to any intermediate level. The appropriate en-
ergy level diagram is sketched in Fig. 4.31

Figure 4.31: Energy level diagram for stimulated Raman scattering.

We will make two assumptions. First, the pump and Stokes pulse frequencies are
tuned to exact Raman resonance such that ω31 ≡ ω3 − ω1 = ωp − ωs, where ω1,3 =
E1,3/h̄ describe initial/final energies, E1,3 in frequency units, and ωp as well as ωs
are pump and Stokes pulse frequencies, respectively. The exact resonance implies that
ωi1−ωi3 = ωp−ωs. The exact Raman resonance is desirable to increase SRS efficiency
and it can be attained in HCPCFs thanks to homogeneous line broadening there. This
is because molecule collisions with the fiber core walls are the dominant mechanism of

2Some quantum mechanics background is required to understand the material of this section–see, for
instance, Chaps. 2, 3, 4 & 14 of “Quantum Mechanics for Scientists & Engineers,” by D. A. B. Miller,
Cambridge University Press, 2008.
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Figure 4.32: Forward-and backward-propagating SRS geometries

spectral line broadening in the system for sufficiently high gas pressures. The second
assumption, corresponding to realistic experimental conditions, is weak excitation such
that all excited level populations–including that of the final level–are negligible. The
lack of population transfer implies that

ρ11 ' 1; ρ33 ' 0, (4.412)

and consequently, the off-diagonal density matrix elements (coherences) are small as
well,

ρi1, ρi3, ρ31 � 1. (4.413)

The density matrix evolution is governed by the Schrödinger equation that reads

∂tρmn = −(γmn + iωmn)ρmn − i
h̄

∑
k(Vmkρkn − ρmkVkn). (4.414)

Here ωmn ≡ ωm−ωn and we introduced a phenomenological damping rates γmn; Vij
is a matrix element of the dipole interaction Hamiltonian.

We will consider two experimentally feasible regimes: the co-propagating regime
when pump and Stokes pulses propagate in the same direction and counter-propagating
regime of the pump pulse propagating the direction opposite to the Stokes pulse propa-
gation direction. To increase the Raman interaction efficiency, one has to maximize the
pulse profile overlap. In the co-propagating geometry with the pump and Stokes pulses
travelling together at the same speed β1p = β1s = β, which can be engineered by de-
signing a dispersion flat fiber at the frequency range of interest, this can be achieved for
nearly identical temporal profiles of the two pulses. In the counter-propagating geom-
etry, one usually takes a long pump pulse which allows a passing by short Stokes pulse
extract as much energy from it as possible. The two excitation regimes are sketched in
Fig. 4.33.

The interaction Hamiltonian can then be written in the usual rotating-wave approx-
imation in the compact form, encompassing both regimes as

V̂ = 1
2

[
Epei(±kpz−ωpt)di1|i〉〈1|+ Esei(ksz−ωst)di3|i〉〈3|+ h. c.

]
(4.415)

Here +(−) sign in the first term on the r.h.s. corresponds to the co-propagating
(counter-propagating) geometry of Fig. 4.32; Ep and Es are the pump and Stokes
pulse amplitudes, respectively, and di1 and di3 are the corresponding dipole matrix
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Figure 4.33: Forward-and backward-propagating SRS excitation geometries.

elements. Finally “h.c.” is a shorthand for Hermitian conjugate. It follows at once from
Eq. (4.415) that the only nonzero matrix elements of V̂ are

Vi1 = 1
2di1Epe

i(±kpz−ωpt), V1i = V ∗i1; (4.416)

and
Vi3 = 1

2di3Ese
i(ksz−ωst), V3i = V ∗i3, (4.417)

The corresponding density operator matrix elements obey the evolution equations

∂tρi1 = −(γi1 + iωi1)ρi1 − i
h̄ (Vi1 + ρ31Vi3), (4.418)

∂tρi3 = −(γi3 + iωi3)ρi3 − i
h̄Vi1ρ

∗
31, (4.419)

and
∂tρ31 = −(γ31 + iω31)ρ31 − i

h̄

∑
i(V3iρi1 − ρ3iVi1). (4.420)

Here we took into account the approximations introduced by Eqs. (4.412) and (4.413).
Further, transforming to the interaction picture by introducing slowly varying coher-
ences viz.,

ρi1 = ρ̃i1e
i(±kpz−ωpt), ρi3 = ρ̃i3e

i(ksz−ωst), (4.421)

and
ρ31 = ρ̃31e

i(kp−ks)ze−i(ωp−ωs)t, (4.422)

we can transform the density matrix evolution equations to

∂tρ̃i1 = −[γi1 + i∆]ρ̃i1 − idi1Ep
2h̄ −

(
idi3Es

2h̄

)
ρ̃31 (4.423)

∂tρ̃i3 = −[γi3 + i∆]ρ̃i3 −
(
idi1Ep

2h̄

)
ρ̃∗31, (4.424)

and
∂tρ̃31 = −γ31ρ̃31 − i

2h̄

∑
i(d3iE∗s ρ̃i1 − di1Epρ̃3i). (4.425)

Here we introduced ∆ = ωi3 − ωs = ωi1 − ωp.
Let us now recall that all intermediate levels are far off resonance with the two

dipole-allowed transitions. Mathematically, this implies large frequency detuning such
that

γi1 � ∆, γi3 � ∆. (4.426)
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We can then adiabatically eliminate the intermediate levels. This term implies that
the far-off resonance density matrix elements ρ̃i1 and ρ̃i3 rapidly oscillate around their
local equilibrium values, determined by the pulse field amplitudes and the molecular
coherence between the initial and final states, ρ31. We can then formally drop the time
derivatives on the l.h.s of Eqs. (4.423) and (4.424) to obtain

ρ̃i1 = −di1Ep
2h̄∆

− di3Es
2h̄∆

ρ̃31, (4.427)

and
ρ̃i3 = −di1Ep

2h̄∆
ρ̃∗31. (4.428)

It follows from Eq. (4.413) that to the leading order in the small parameter, ρ̃31, the
off-diagonal matrix elements read

ρ̃i1 ' −
di1Ep
2h̄∆

, ρ̃i3 ' 0. (4.429)

On substituting from Eq. (4.429) into (4.425), we arrive at

∂tρ̃31 = −γ31ρ̃31 −
i

4h̄2

∑
i

(
d3idi1

∆

)
EpE∗s . (4.430)

Finally, recalling that at Raman resonance ωi1 − ωi3 = ωp − ωs, implying that ∆ =
1
2 (ωi1+ωi3−ωp−ωs), introducing the Raman transition dipole moment matrix element
by the expression,

reff =
1

h̄

∑
i

d3idi1
(ωi1 + ωi3 − ωp − ωs)

, (4.431)

and rescaling the dipole matrix elements di1 and di3, we obtain for the Raman density
matrix element ρ̃31, the governing equation

∂tσ = −γσ +
(
ireff

4h̄

)
EpE∗s . (4.432)

Here we redefined ρ̃31 = σ and γ31 = γ to simplify the notation.
Recall now that as we show in Secs. 3.1 and 3. 2, in the absence of group-velocity

dispersion of the fiber–or in cases the dispersion length is so long that dispersion is
negligible–pulses propagate inside fibers with their group velocities. On the other
hand, we describe the effect of pure nonlinearities on plane wave propagation within
the framework of coupled-wave theory. Combining the two effects, slowly-varying
envelope evolution equations for the Stokes and pump fields take the form

2iks(∂zEs + β1s∂tEs) = −µ0ω
2
sPNL(ωs)e

−iksz, (4.433)

and
2ikp(±∂zEp + β1p∂tEp) = −µ0ω

2
pPNL(ωp)e

∓ikpz, (4.434)

where β1p,s are group velocities of the pump and Stokes pulses. The nonlinear polar-
ization field can then be expressed as

PNL = N〈d̂〉 = PNL(ωp)e
−iωpt + PNL(ωs)e

−iωst + c.c.. (4.435)
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Here the average dipole moment is determined by

〈d̂〉 = Tr{ρd̂}, (4.436)

where the dipole moment operator reads

d̂ =
∑
i

di1|1〉〈i|+ di3|3〉〈i|+ h.c. (4.437)

It then follows from Eqs. (4.435) through (4.437) after some straightforward albegra
that

PNL(ωp) = N
∑
i

di1ρ̃i1e
ikpz, (4.438)

and
PNL(ωs) = N

∑
i

di3ρ̃i3e
iksz. (4.439)

On substituting the approximate expressions (4.427) and (4.428) for the density
matrix elements into Eqs. (4.433) and (4.434) and using Eqs. (4.438) and (4.439), we
arrive, after some algebra, at the following set of coupled-wave equations for the pump
and Stokes pulse amplitudes,

±∂zEp + β1p∂tEp =

(
iωpNreff

2ε0cnp

)
σEs, (4.440)

and

∂zEs + β1s∂tEs =

(
iωsNreff

2ε0cns

)
σ∗Ep. (4.441)

Note that in deriving the last two equations we dropped a term on the l.h.s of Eq. (4.440)
linear with respect to Ep. This term arises when the first term on the r.h.s. of Eq. (4.427)
is substituted to the r.h.s. of Eq. (4.433). One can show the dropped linear term leads to
a common global phase of the pump and Stokes fields which does not affect the Raman
dynamics.
Exercise 4.23. Re-derive the coupled-wave equations for transient SRS by keeping the
term linear in the pump pulse amplitude. Show that by a gauge transformation, Ep =

Ẽpeiαz and Es = Ẽse−iαz with the appropriate α to be determined, the linear term can
be eliminated from your equations and Eqs. (4.440), (4.441) can be recovered. Notice
also that the Raman density matrix evolution, Eq. (4.432), is unaffected by the gauge
transformation.
Let us now consider co- and counter-propagating cases separately.

Co-propagating geometry. – We assume the fiber is engineered to be dispersion-flat,
implying that β1p = β1s = β1. We can then transform to a reference frame co-moving
with the pulses and introduce new variable, ζ = z and τ = t− β1z. The resulting SRS
equations read

∂ζEp =
(
iωpNreff

2ε0cnp

)
σEs, (4.442)

∂ζEs =
(
iωsNreff

2ε0cns

)
σ∗Ep, (4.443)
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and
∂τσ = −γσ +

(
ireff

4h̄

)
EpE∗s . (4.444)

We can then introduce the pulse peak optical intensities viz.,

Is0,p0 =
ε0ns,pc|Es0,p0|2

2
, (4.445)

and proceed normalizing the pulse fields to the peak pump intensity at the source,
Ep = (2Ip0/ε0cnp)

1/2Ep and Es = (2Ip0/ε0cnp)
1/2Es and introducing dimensionless

distance and time, Z = ζ/LSRS and T = τ/TSRS. We introduced here characteristic
SRS interaction distance and time viz.,

LSRS =

(
Nreff

2ε0c

√
ωpωs
npns

)−1

, TSRS =

(
reffIp0

2h̄ε0cnp

)−1

. (4.446)

The dimensionless SRS equations can then be written as

∂ZEp = iκσEs, (4.447)

∂ZEs = iκ−1σ∗Ep, (4.448)

and
∂Tσ = −Γσ + iEpE

∗
s. (4.449)

Here κ =
√
ωpns/ωsnp and Γ = γTSRS is a key dimensionless parameter governing

the SRS process.
Counter-propagating geometry. – Assuming a dispersion-flat fiber, we can arrive at the
dimensionless SRS field equations as

−∂ZEp + δ ∂TEp = iκσEs, (4.450)

and
∂ZEs + δ ∂TEs = iκ−1σ∗Ep, (4.451)

where δ = β1LSRS/TSRS. Note that whereas in the co-propagating case one can
transform away the drift term, the latter is not possible in the counter-propagating case
even if the two group velocities are identical. Physically, this drift term indicates that
any fixed points in pulse profiles, the peak intensity positions, say, shift relative to their
positions at the fiber inputs as the Stokes pulse zaps by the pump one.

Let us now briefly discuss order-of-magnitude values of relevant parameters for
SRS in HCPCF. For simplicity, we assume the fiber is filled with molecular hydrogen.
Typically nanosecond pump pulses, 1 ≤ tp ≤ 10 ns carrying from 10 to 100 µJ are
employed. The Raman dipole moment matrix element can be estimated as reff '
1.4×10−41 C m2/V. Typical gas densities and relaxation time at 1 bar of pressure are3

N ' 2× 1020 cm−3 and TR = γ−1 ' 5 ns.
Finally, we can derive an approximate expression for the threshold gain required

to jumpstart the SRS process from noise. To this end, we need an expression for a

3Source: F. Flora and L. Giudicotti, Appl. Opt. 26, 4001-4008 (1987).
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linear gain in the cw case. The latter can be easily obtained by looking int a cw limit of
Eqs. (4.442) through (4.444) in the undepleted pump approximation. Namely, assum-
ing, Ep = const and letting ∂τσ = 0, we can derive an expression for the amplified
Stokes pulse intensity and comparing with Eq. (4.376), we can infer conclude that

gR =
ωsN |reff |2

4ε20c
2nsnph̄γ

. (4.452)

Exercise 4.24. Derive Eq. (4.452) and compare with Eq. (4.380).
We can finally estimate a critical power required for SRS generation with a cw laser

source in an HCPCF. The input intensity can be estimated as Ip0 ' P/Aeff , where P is
the pump power and Aeff is a an effective HCPCF core area which takes into account
the spatial pump mode distribution in the fiber. At the threshold, Raman gain is

G = gRIp0L = Gth. (4.453)

The threshold gain is determined empirically to fall in the range 20 ≤ Gth ≤ 30,
yielding the power estimate

Pth '
GthAeff

gRL
. (4.454)

4.16 Spontaneous Brillouin scattering
Brillouin scattering arises as light scattering from collective oscillation modes in the
media such as pressure or acoustic waves. Spontaneous Brillouin scattering is caused
by thermal density fluctuations in the media which induce dielectric permittivity fluc-
tuations. The latter, in turn, give rise to macroscopic medium polarization. To describe
the phenomenon quantitatively, let us consider the medium density ρ and temperature
T as independent thermodynamic variables and express the permittivity fluctuations as

ε′ =

(
∂ε

∂ρ

)
T

ρ′ +

(
∂ε

∂T

)
ρ

T ′. (4.455)

We assume that the medium is isotropic which is an adequate model for gases and
liquids. The first (large) term on the r.h.s. of Eq. (4.455) describes the contribution due
to electrostriction, i. e, the tendency of the dielectric constant to vary with the medium
density, whereas the second–smaller–term is due to temperature variations caused by
absorption in the medium. In practice, the second term on the r.h.s of Eq (4.455) is
negligible for transparent or nearly transparent media which we assume to be the case
hereafter. Thus, to good accuracy, we can write

ε′ =

(
∂ε

∂ρ

)
ρ′ =

γe
ρ
ρ′, (4.456)

where we dropped the subscript T for notational simplicity and introduced the elec-
trostriction constant γe, defined as

γe ≡ ρ
(
∂ε

∂ρ

)
. (4.457)
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Figure 4.34: Illustrating momentum conservation in a single photon-phonon scattering
act.

The induced polarization field reads

PNL = ε0ε
′E, (4.458)

where in the absence of the input Stokes mode, the electric field is represented by the
pump wave such that

E = 1
2Ee

i(kp·r−ωpt) + c.c., (4.459)

and the density fluctuations constitute a propagating acoustic wave,

ρ′ = 1
2 ρ̃e

i(q·r−Ωt) + c.c. (4.460)

Here q and Ω are the wave vector and frequency of an acoustic (Brillouin) phonon
which are related by the dispersion relation

Ω = |q|cs, (4.461)

where cs is the speed of sound.
It follows from Eqs. (4.456) through (4.460) that the induced polarization has two

shifted frequencies such that

PNL = 1
2P(ωs)e

−iωs + 1
2P(ωas)e

−iωas + c.c., (4.462)

where
ωs = ωp − Ω, ωas = ωp + Ω, (4.463)

are the generated Stokes and anti-Stokes frequencies. The Stokes polarization compo-
nent, for example, can be written explicitly as

P(ωs) =
(
ε0γe
2ρ E ρ̃

∗
)
eiks·r, (4.464)
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where
ks = kp − q. (4.465)

As Ω� ωp, ωs due to phonon sluggishness, cs � c, it is reasonable to assume that the
magnitude of photon momentum does not appreciably change at each scattering event,
kp ≈ ks. It then follows from Eqs. (4.461), (4.463) and (4.465) and the geometry of
Fig. 5. 6 that

Ω = 2kp sin θ/2, (4.466)

where θ is a photon scattering angle. It follows at once from Eq. (4.466) that the most
energetically efficient Stokes wave generation–because ΩB is maximized–takes place
in the backward direction, θ = π. Moreover, the energy-momentum conservation
laws in each scattering event explicitly prohibit Stokes wave generation in the forward
direction, θ = 0.

4.17 Brillouin phonon propagation
Let us now briefly examine the generated phonon propagation. As phonons are acoustic
waves, their evolution is governed by linearized fluid dynamics equations. We postulate
that in 1D geometry we are going to study, the mass and momentum conservation of
the fluid can be expressed as

∂tρ+ ∂z(ρv) = 0, (4.467)

and
∂tv + v∂zv = − 1

ρ∂zpeff + (ζ + 4
3ν)∂2

zzv (4.468)

Here we assumed that the acoustic wave propagates along the z-axis, ζ and ν are bulk
and shear kinematic viscosity coefficients, and the effective pressure can be expressed
in the form

peff = p− γe
ε0E

2

2
. (4.469)

The first term on the r. h. s. of Eq. (4.469) is the static fluid pressure, whereas the
second term represents an electrostriction pressure which describes a force per unit
area that tends to pull fluid particles toward regions of the strong electric field E. The
electrostriction forces arise due to the density dependence of the dielectric constant.

Eqs. (4.467) and (4.468) are not closed until a relationship, the so-called equation
of state, between the pressure p and density ρ is specified. To this end, we can express
the pressure p in Eq. (4.469) in terms of any two independent thermodynamic variables.
In our case, it is convenient to use the density and entropy such that

∂p

∂z
=

(
∂p

∂ρ

)
S

∂ρ

∂z
+

(
∂p

∂S

)
ρ

∂S

∂z
. (4.470)

In the absence of heat transfer in transparent media, we can assume that acoustic waves
are adiabatic, that is the entropy is conserved, S = const. It then follows that the
pressure gradient can be expressed as

∂p

∂z
= c2s

∂ρ

∂z
, (4.471)
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where

cs =

√(
∂p

∂ρ

)
S

, (4.472)

is the adiabatic speed of sound in the medium.
We can now linearize Eqs. (4.467), and (4.468), subject to the equation of state (4.471),

by considering small density ρ′ and velocity v deviations from the equilibrium state,
v = 0–the fluid is at rest–and ρ = ρ0. Thus, we substitute from

ρ = ρ0 + ρ′, ρ′ � ρ0, (4.473)

into Eqs. (4.467) and (4.468) and keep only terms linear with respect to either ρ′ or v,
leading to the acoustic approximation:

∂tρ
′ + ρ0∂zv = 0, (4.474)

and
∂tv = −

(
c2s
ρ0

)
∂zρ
′ +
(
ε0γe
2ρ0

)
∂zE

2 + (ζ + 4
3ν)∂2

zzv (4.475)

Taking the time and space derivatives on both sides of Eqs. (4.474) and (4.475), respec-
tively, we can transform our acoustic equations to

∂2
ztv = −

(
1
ρ0

)
∂2
ttρ
′, (4.476)

and

∂2
tzv = −

(
c2s
ρ0

)
∂2
zzρ
′ +
(
ε0γe
2ρ0

)
∂2
zzE

2 +
(ζ+

4
3ν)
ρ0

∂3
tzzρ

′. (4.477)

In deriving Eq. (4.477), we eliminated the fluid velocity on the r. h. s., with the help of
Eq. (4.474). Equating the mixed velocity derivatives from Eq. (4.476) and (4.477), we
eliminate the velocity field and arrive at the wave equation for the density variations
alone in the form

∂2
ttρ
′ − c2s∂2

zzρ
′ − Γ∂3

tzzρ
′ = − 1

2ε0γe∂
2
zzE

2. (4.478)

Here we introduced the effective damping rate,

Γ = ζ +
4

3
ν. (4.479)

The electrostriction term on the r.h.s of Eq. (4.478) plays the role of a driving source.
Let us focus on the acoustic wave propagation in the absence of driving, E = 0.

Eq. (4.478) with E = 0 has a plane-wave solution of the form,

ρ′ ∝ ei(qz−Ωt). (4.480)

On substituting from Eq. (4.480) into (4.478) with E=0, we arrive at the dispersion
relation

−Ω2 + c2sq
2 − iΓΩq2 = 0. (4.481)
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Or,

q2 =
Ω2/c2s

1− iΓΩ
c2s

' Ω2

c2s

(
1 +

iΓΩ

c2s

)
, (4.482)

where we assumed that ΓΩc2s � 1. At the same level of approximation, we can obtain
the wave number as

q ' Ω/cs + iα/2, (4.483)

where we introduced the inverse phonon damping length α as

α = Γq2/cs. (4.484)

We can now estimate characteristic parameters of Brillouin acoustic waves noticing that
as follows from Eqs. (4.465) for backward propagating Stokes modes, q ' 2kp ∼ 4π×
106 m−1 for the pumping wavelength of the order of 1µm. Assuming further typical
values: Γ ∼ ζ ∼ ν = η/ρ0 with ρ0 ∼ 103 kg/m3 and the dynamic sheer viscosity
η ∼ 10−3 N s/m2 as well as cs ∼ 103 m/s, we estimate the Brillouin frequency to
be Ω/2π ∼ qcs/2π ∼ 2 GHz, and the inverse damping length α ∼ 1.6 × 105 m−1,
implying that phonons are damped over a characteristic length α−1 of just 5 µm. Thus,
generated ultrasound phonons are strongly damped over a characteristic length over
which the fluid density or the applied electric field amplitude changes.

4.18 Stimulated Brillouin scattering
Consider now the situation when both the pump and Stokes pulses are present and
their coupling through the electrostriction causes sound wave generation. Resonance
interaction of the sound waves with the pump and Stokes modes causes amplification
of the latter at the expense of the former. This process is known as stimulated Brillouin
scattering (SBS). The electric field can be expressed as

E(t, z) = 1
2 [Ep(t)ei(kpz−ωpt) + Es(t)ei(−ksz−ωst) + c. c.], (4.485)

where Ep and Es are slowly varying pump and Stokes pulse amplitudes, and we as-
sume that the Stokes mode propagates in the backward direction to maximize the SBS
efficiency. The electrostriction coupling is specified by the term

E2(t, z) = 1
2 [EpE∗s ei(kp+ks)ze−i(ωp−ωs)t +NR+ c. c.], (4.486)

where NR, as before, stands for non-resonant terms. The generated acoustic wave can
be described in terms of the medium density variations as

ρ′ = 1
2 ρ̃e

i(qz−Ωt) + c.c. (4.487)

Here,
q = kp + ks ' 2k, Ω = ωp − ωs, (4.488)

where k = kp ' ks.
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On substituting from Eq. (4.485) through (4.487) into the acoustic wave equa-
tion (4.478), we obtain

−2iΩ∂tρ̃+ (Ω2
B − Ω2 − iΓΩq2)ρ̃ = 1

2ε0γeq
2EpE∗s , (4.489)

where ΩB = csq. In deriving Eq. (4.489) we dropped the spatial derivative of ρ̃ because
generated Brillouin phonons are ultrasound, and hence are strongly damped, as we
showed in the previous section. Introducing ΓB = Γq2 and assuming Ω ' ΩB to
ensure resonant SBS enhancement, we can simplify,

Ω2
B − Ω2 − iΓΩq2 ' 2ΩB(ΩB − Ω− iΓB/2). (4.490)

Combining Eqs. (4.489) and (4.490), we arrive, after a simple rearrangement, at

∂tρ̃ = −(ΓB/2 + i∆)ρ̃+
(
iε0γek

2

ΩB

)
EpE∗s , (4.491)

where we introduced frequency detuning as

∆ = ΩB − Ω. (4.492)

Eq. (4.491) is the material evolution equation for the SBS process.
The coupled-wave equations for the pump and Stokes pulses can be derived in strict

analogy with the SRS wave equations. Specifically, starting from Maxwell’s equations
an applying SVEA, we obtain

2iks(−∂zEs + βs∂tEs)e−iksz = −µ0ω
2
sPNL(ωs), (4.493)

and
2ikp(∂zEp + βp∂tEp)eikpz = −µ0ω

2
pPNL(ωp). (4.494)

Here βs and βp are the inverse group velocities of the Stokes and pump pulses. The
induced polarization field can be expressed as

PNL = 1
2PNL(ωs)e

−iωst + 1
2PNL(ωp)e

−iωpt + c.c., (4.495)

where using Eqs. (4.456), (4.458) and (4.487), we obtain, by analogy with Eq. (4.464),

PNL(ωs) =
(
ε0γe
2ρ0

)
Epρ̃∗e−iksz, (4.496)

and
PNL(ωp) =

(
ε0γe
2ρ0

)
Esρ̃eikpz. (4.497)

On substituting from Eqs. (4.496) and (4.497) into Eqs. (4.494) and (4.495), we obtain,
after simple algebra, the following equations

2iks(−∂zEs + βs∂tEs) = −ω
2
s

c2

(
γe
2ρ0

)
Epρ̃∗, (4.498)

and

2ikp(∂zEp + βp∂tEp) = −
ω2
p

c2

(
γe
2ρ0

)
Esρ̃. (4.499)
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Introducing ω = ωp ' ωs, n = np ' ns, we can cast Eqs. (4.498) and (4.499) to

−∂zEs + βs∂tEs =
(
iωγe
4cnρ0

)
Epρ̃∗, (4.500)

and
∂zEp + βp∂tEp =

(
iωγe
4cnρ0

)
Esρ̃. (4.501)

Eqs. (4.500) and (4.501), together with Eq. (4.491) form the basis for quantitative de-
scription of SBS.

In the cw limit, the stationary solution to Eq. (4.491) can be easily obtained drop-
ping the time derivative of ρ̃, yielding

ρ̃ss =
iε0γek

2EpE∗s
ΩB(ΓB/2 + i∆)

. (4.502)

On substituting from Eq, (4.502) into (4.500) and (4.501), and dropping the time
derivatives of the field amplitude, we obtain

∂zEs = − ε0ωγ
2
ek

2

4ΩBcnρ0(ΓB/2− i∆)
|Ep|2Es, (4.503)

and

∂zEp = − ε0ωγ
2
ek

2

4ΩBcnρ0(ΓB/2 + i∆)
|Es|2Ep, (4.504)

The latter can be transformed to the evolution equations for the optical intensities, by
analogy with the SRS case, yielding

dzIs = −gBIsIp, (4.505)

and
dzIp = −gBIsIp, (4.506)

where we introduced the SBS gain coefficient as

gB = gB0
Γ2
B/4

Γ2
B/4 + ∆2

. (4.507)

In Eq. (4.507), gB0 is the center-line gain defined as

gB0 =
ω2γ2

e

nc3csρ0ΓB
. (4.508)

Let us estimate a typical value of gB0. Consider CS2 at 1 µ as a characteristic medium
for SBS. Taking typical values ω/2π = 3×1014 Hz, γe = 2.4, n ' 1.7, cs ' 103 m/s,
ρ0 ' 1300 kg/m3, and Γ−1

B ' 4× 10−9 s, we obtain an estimate gB0 ' 0.2 cm/MW.
In the undepleted pump approximation, Ip = const and a straightforward integra-

tion of Eq. (4.505) yields,

Is(z) = Is(L) exp[gBIp(L− z)]. (4.509)

135



It follows at once from Eq. (4.509) that the Stokes mode intensity grows exponen-
tially on its propagation backward from the exit to the interaction volume towards its
entrance.

Whenever pump depletion is no longer negligible, Eqs. (4.505) and (4.506) must
be considered together. It can be easily inferred that

dzIs = dzIp, (4.510)

implying that
Ip(z) = Is(z) + C, (4.511)

whereC = Ip0−Is0 is determined by initial conditions. Eliminating the pump intensity

Figure 4.35: Intensity transfer characteristics of SRS beyond the undepleted pump
approximation.

from Eq. (4.505) with the help of Eq. (4.516), we obtain

dzIs = −gBIs(Is + C). (4.512)

Eq. (4.512) can be readily integrated yielding

Is(z) =
Is0(Ip0 − Is0)

Ip0 exp[gBz(Ip0 − Is0)]− Is0
. (4.513)

However, as the Stokes mode propagates backwards, we must express the Stokes inten-
sity at the input Is0 in terms of its value at the output Is(L) which serves as the proper
initial condition. It follows from Eq. (4.513) that

Is(L) =
Is0(Ip0 − Is0)

Ip0 exp[gBL(Ip0 − Is0)]− Is0
, (4.514)
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which is a transcendental equation giving the unknown reflection coefficient at the
input, Is0/Ip0 in terms of Is(L)/Ip0. Instead of solving it however, we can simply plot
gBIp0L as a function of Is0/Ip0 and swap the axes. The result is displayed in Fig 5.7.
It is seen from the figure that significant pump depletion takes place when the overall
gain G = gBIp0L exceeds the value of 20.

In general, there are two possible SBS setups illustrated in Fig. 5.8. If both pump
and Stokes fields are present–as is seen in Fig. 5.8 on the left–the process is referred to
as SBS amplification whereby the initially Stokes mode is amplified while propagating
in the backward direction. In the second instance, shown in Fig. 5.7 on the right,

Figure 4.36: Illustrating two SBS modalities: SBS amplification (left) and SBS gener-
ation (right).

no Stokes component is initially present and SBS generation starts off from thermal
noise near distributed throughout the interaction region. The process then starts as
spontaneous Brillouin scattering triggered by thermal noise. The key metric for such
SBS generation efficiency is the reflection coefficient defined as

R =
Is0
Ip0

. (4.515)

In the initial stage of the process pump depletion is negligible. Hence, the Stokes
intensity at the output face z = 0 is related to its magnitude at the input z = L
according to Eq. (4.509):

Is0 = Is(L)eG, (4.516)

where the overall gain at the Brillouin resonance is defined as

G = gB0Ip0L. (4.517)

A convenient figure-of-merit to indicate a threshold for the SBS generation is Rth =
0.01, i. e., the generated Stokes mode at the output has the intensity equal to 1% of the
input pump intensity. Experiments carried out with a variety of SBS materials show
that Gth lies in a fairly narrow interval from 25 to 30 under rather general conditions.

We can finally estimate a critical power required for SBS generation with a focused
cw laser beam. The input intensity can be estimated as Ip0 ' P/πw2

0 , where P is the
pump power and w0 is a spot-size of the focused beam. The characteristic interaction
length for a focused beam is determined by its Rayleigh range, zR ' kpw

2
0 , assuming

the beam to be Gaussian. Substituting this to Eq. (4.517) with L ∼ zR, we arrive at

G ' 2gB0P/λp. (4.518)
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The critical power is determined by G = Gth such that

Pth '
Gthλp
2gB0

. (4.519)

For CS2, for example, gB0 ' 0.2 cm/MW and using Gth = 28 and λp = 1 µm, we
arrive at Pth ' 7 kW.
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