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Introduction

Content

This manuscript is based on series of lectures about Nanomagnetism. Parts have
been given at the European School on Magnetism, at the École Doctorale de Physique
de Grenoble, or in Master lectures at the Cadi Ayyad University in Marrakech.

Nanomagnetism may be defined as the branch of magnetism dealing with low-
dimension systems and/or systems with small dimensions. Such systems may display
behaviors different from those in the bulk, pertaining to magnetic ordering, mag-
netic domains, magnetization reversal etc. These notes are mainly devoted to these
aspects, with an emphasis on magnetic domains and magnetization reversal.

Spintronics, i.e. the physics linking magnetism and electrical transport such as
magnetoresistance, is only partly and phenomenologically mentioned here. We will
consider those cases where spin-polarized currents influence magnetism, however not
when magnetism influences the electronic transport.

This manuscript is only an introduction to Nanomagnetism, and also sticking
to a classical and phenomenological descriptions of magnetism. It targets beginners
in the field, who need to use basics of Nanomagnetism in their research. Thus the
explanations aim at remaining understandable by a large scope of physicists, while
staying close to the state-of-the art for the most advanced or recent topics.

Finally, these notes are never intended to be in a final form, and are thus
by nature imperfect. The reader should not hesitate to report errors or
make suggestions about topics to improve or extend further. A consequence
is that it is probably unwise to print this document. Its use as an electronic file is
anyhow preferable to benefit from the included links within the file. At present only
chapters I and II are more or less completed.

Notations

As a general rule, the following typographic rules will be applied to variables:

Characters

• A microscopic extensive or intensive quantity appears as slanted uppercase or
Greek letter, such as H for the magnitude of magnetic field, E for a density
of energy expressed in J/m3, ρ for a density.

• An extensive quantity integrated over an entire system appears as handwritten
uppercase. A density of energy E integrated over space will thus be written
E , and expressed in J.
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6 Introduction

• A microscopic quantity expressed in a dimensionless system appears as a hand-
written lowercase, such as e for an energy or h for a magnetic field normalized
to a reference value. Greek letters will be used for dimensionless versions of
integrated quantities, such as ε for a total energy.

• Lengths and angles will appear as lower case roman or Greek letters, such as
x for a length or α for an angle. If needed, a specific notation is introduced
for dimensionless lengths.

• A vector appears as bold upright, with no arrow. Vectors may be lowercase,
uppercase, handwritten or Greek, consistently with the above rules. We will
thus write H for a magnetic field, h its dimensionless counterpart, k a unit
vector along direction z, M or µ a magnetic moment.

Mathematics

• The cross product of two vectors A and B will be written A×B.

• The following shortcut may be used: ∂xθ for ∂θ/∂x, or ∂nxnθ for ∂nθ
∂xn

.

• The elementary integration volume integration may be written d3r or dτ , and
the surface on: d2r or dS.

Units

• The International system of units (SI) will be used for numerical values.

• B will be called magnetic induction, H magnetic field, and M magnetization.
We will often use the name magnetic field in place of B when no confusion
exists, i.e. in the absence of magnetization (in vacuum). This is a shortcut
for B/µ0, to be expressed in Teslas.

Special formatting

Special formatting is used to draw the attention of the reader at certains aspects,
as illustrated below.

Words highlighted like this are of special importance, either in the local context,
or when they are important concepts introduced for the first time.

The hand sign will be associated with hand-wavy arguments and take-away messages.

The slippery sign will be associated with misleading aspects and fine points.



Chapter I

Setting the ground for
nanomagnetism

Overview

A thorough introduction to Magnetism[1, 2, 3] and Micromagnetism
and Nanomagnetism[4, 5, 6, 7] may be sought in dedicated books. This
chapter only serves as an introduction to the lecture, and it is not com-
prehensive. We only provide general reminders about magnetism, micro-
magnetism, and of some characterization techniques useful for magnetic
films and nanostructures.

1 Magnetic fields and magnetic materials

1.1 Magnetic fields

Electromagnetism is described by the four Maxwell equations. Let us consider the
simple case of stationary equations. Magnetic induction B then obeys two equations:

curl B = µ0 j (I.1)

div B = 0 (I.2)

j being a volume density of electrical current. j appears as a source of induction
loops, similar to electrostatics where the density of electric charge ρ is the source
of radial electric field E. Let us first consider the simplest case for an electric cur-
rent, that of an infinite linear wire with total current I. We shall use cylindrical
coordinates. Any plane comprising the wire is a symmetry element for the current
and thus an antisymmetric element for the induced induction (see above equations),
which thus is purely orthoradial and described by the component Bθ only. In addi-
tion the system is invariant by rotation around and translation along the wire, so
that Bθ depends neither on θ nor z, however solely on the distance r to the wire.
Applying Stokes theorem to an orthoradial loop with radius r (Figure I.1) readily
leads to:

Bθ(r) =
µ0I

2πr
(I.3)

7
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I

r uθ

B=B(r)uθ θ

Figure I.1: So-called Oersted magnetic inductionB, arising from an infinite and
linear wire with an electrical current I.

This is the so-called Oersted induction or Oersted field, named after its discov-
ery in 1820 by Hans-Christian Oersted. This discovery was the first evidence of
the connection of electricity and magnetism, and is therefore a foundation for the
development of electromagnetism. Notice the variation with 1/r. Let us consider
an order of magnitude for daily life figures. For I = 1 A and r = 10−2 m we find
B = 2× 10−5 T. This magnitude is comparable to the earth magnetic field, around
50µT. It is weak compared to fields arising from permanent magnets or dedicated
electromagnets and superconducting magnets.

We may argue that there exists no infinite line of current. The Biot and Savart
law describes instead the elementary contribution to induction δB at point P, arising
from an elementary part of wire δ` at point Q with a current I:

δB(P ) =
µ0I δ`×QP

4πQP 3
(I.4)

Notice this time the variation as 1/r2. This can be understood qualitatively
as a macroscopic (infinite) line is the addition (mathematically, the integral) of
elementary segments, and we have

∫
1/r2 = 1/r. It may also be argued that there

exists no elementary segments of current for conducting wirings, however only closed
circuits (loops), with a uniform current I along its length. When viewed as a distance
far compared to its dimensions, a loop of current may be considered as a pinpoint
magnetic dipole µ. This object is an example of a magnetic moment. For a planar
loop µ = IS where S is the surface vector normal to the plane of the loop, oriented
accordingly with the electrical current. Here it appears clearly that the SI unit for
a magnetic moment is A.m2. The expansion of the Biot and Savart law leads to the
induction arising from a dipole at long distance r:

B(r) =
µ0

4πr3

[
3

(µ.r)r

r2
− µ

]
. (I.5)

Let us note now the variation with 1/r3. This may be understood as the first
derivative of the variation like 1/r2 arising from an elementary segment, due to
nearby regions run by opposite vectorial currents j (e.g. the opposite parts of a
loop).

Table I.1 summarizes the three cases described above.
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Table I.1: Long-distance decay of induction arising from various types of current
distributions

Case Decay
Infinite line of current 1/r

Elementary segment 1/r2

Current loop (magnetic dipole) 1/r3

Table I.2: Main features of a few important ferromagnetic materials: Ordering
(Curie) temperature TC, spontaneous magnetization Ms and a magnetocristalline
anisotropy constant K at 300 K (The symmetry of the materials, and hence the
order of the anisotropy constants provided, is not discussed here)

Material TC (K) Ms (kA/m) µ0Ms (T) K (kJ/m3)

Fe 1043 1730 2.174 48
Co 1394 1420 1.784 530
Ni 631 490 0.616 -4.5

Fe304 858 480 0.603 -13
BaFe12O19 723 382 0.480 250
Nd2Fe14B 585 1280 1.608 4900

SmCo5 995 907 1.140 17000
Sm2Co17 1190 995 1.250 3300
FePt L10 750 1140 1.433 6600
CoPt L10 840 796 1.000 4900

Co3Pt 1100 1100 1.382 2000

1.2 Magnetic materials

A magnetic material is a body which displays a magnetization M(r), i.e. a volume
density of magnetic moments. The SI unit for magnetization therefore appears nat-
urally A.m2/m3, thus A/mI.1. In any material some magnetization may be induced
under the application of an external magnetic field H. We define the magnetic sus-
ceptibility χ with M = χH. This polarization phenomenon is named diamagnetism
for χ < 0 and paramagnetism for χ > 0.

Diamagnetism arises from a Lenz-like law at the microscopic level (electronic
orbitals), and is present in all materials. χdia is constant with temperature and its
value is material-dependent, however roughly of the order of 10−5. Peak values are
found for Bi (χ = −1.66 × 10−4) and graphite along the c axis (χ ≈ −4 × 10−4).
Such peculiarities may be explained by the low effective mass of the charge carriers

I.1We shall always use strictly the names magnetic moment and magnetization. Experimen-
tally some techniques provide direct or indirect access to magnetic moments (e.g. an extraction
magnetometer, a SQUID, magnetic force microscopy), other provide a m ore natural access to mag-
netization, often through data analysis (e.g. magnetic dichroism of X-rays, electronic or nuclear
resonance).
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involved.
Paramagnetism arises from partially-filled orbitals, either forming bands or lo-

calized. The former case is called Pauli paramagnetism. χ is then temperature-
independent and rather weak, again of the order of 10−5. The later case is called
Curie paramagnetism, and χ scales with 1/T . A useful order of magnitude in Curie
paramagnetism to keep in mind is that a moment of 1µB gets polarized at 1 K under
an induction of 1 T.

Only certain materials give rise to paramagnetism, in particular metals or in-
sulators with localized moments. Then diamagnetism and paramagnetism add up,
which may give give to an overall paramagnetic of diamagnetic response.

Finally, in certain materials microscopic magnetic moments are coupled through
a so-called exchange interaction, leading to the phenomenon of magnetic ordering
at finite temperature and zero field. For a first approach magnetic ordering may be
described in mean field theory modeling a molecular field, as we will detail for low
dimension systems in Chapter II. The main types of magnetic ordering are:

• Ferromagnetism, characterized by a positive exchange interaction, end favor-
ing the parallel alignement of microscopic moments. This results in the oc-
currence of a spontaneous magnetization Ms

I.2. In common cases Ms is of the
order of 106 A/m, which is very large compared to magnetization arising from
paramagnetism or diamagnetism. The ordering occurs only at and below a
temperature called the Curie temperature, written TC. The only three pure
elements ferromagnetic at room temperature are the 3d metals Fe, Ni and
Co (Table I.2).

• Antiferromagnetism results from a negative exchange energy, favoring the an-
tiparallel alignement of neighboring momentsI.3 leading to a zero net magneti-
zation Ms at the macroscopic scale. The ordering temperature is in that case
called the Néel temperature, and is written TN.

• Ferrimagnetism arises in the case of negative exchange coupling between mo-
ments of different magnitude, because located each on a different sublatticeI.4,
leading to a non-zero net magnetization. The ordering temperature is again
called Curie temperature.

Let us consider the simple case of a body with uniform magnetization, for ex-
ample a spontaneous magnetization Ms = Msk (Figure I.2). It is readily seen that
the equivalent current loops modeling the microscopic moments cancel each other
for neighboring loops: only currents at the perimeter remain. The body may thus
be modeled as a volume whose surface carries an areal density of electrical current,
whose magnitude projected along k is Ms. This highlights a practical interpretation
of the magnitude of magnetization expressed in A/m.

Let us stress a fundamental quantitative difference with Oersted fields. We
consider again a metallic wire carrying a current of 1 A. For a cross-section of
1 mm2 a single wiring has 1000 turns/m. The equivalent magnetization would be
103 A/m, which is three orders of magnitude smaller than Ms of usual ferromagnetic

I.2The s in Ms is confusing between the meanings of spontaneous and saturation. We will discuss
this fine point in the next paragraph

I.3More complexe arrangements, non-colinear like spiraling, exist like in the case of Cr
I.4Similarly to antiferromagnetism, more complex arrangements may be found
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Figure I.2: Amperian description of a ferro (or ferri-)magnetic material: microscopic
currents cancel each other between neighboring regions, except at the perimeter of
the body.

materials. Thus a significant induction may easily be obtained from the stray field of
a permanent magnet, of the order of µ0Ms ≈ 1 T. It is possible to reach magnitude
of induction of several Teslas with wirings, however with special designs: large
and thick water-cooled coils to increase the current density and total value, or use
superconducting wires however requiring their use at low temperature, or use pulsed
currents with high values, this time requiring small dimensions to minimize self-
inductance.

Let us finally recall the relationship between induction, magnetic field and mag-
netization:

B = µ0(H + M) (I.6)

This relationship may be proven starting from Maxwell’s equations, considering
as two different entities the free electrical charges, and the so-called bound charges
giving rise to the magnetization M.

1.3 Magnetic materials under field – The hysteresis loop

Let us consider a system mechanically fixed in space, subjected to an applied mag-
netic field H. This field gives rise to a Zeeman energy, written EZ = −µ0Ms.H
for a volume density, or EZ = −µ0µ.H for the energy of a magnetic moment. The
consequence is that magnetization will tend to align itself along H, which shall be
attained for a sufficient magnitude of H. This process is called a magnetization
process, or magnetization reversal. The quantity considered or measured may be
a moment or magnetization, the former in magnetometers and the latter in some
magnetic microscopes or in the Extraordinary Hall Effect, for example. It is often
displayed, in models or as the result of measurements, as a hysteresis loop, also
called magnetization loop or magnetization curve. The horizontal axis is often H or
µ0H, while the y axis is the projection of the considered quantity along the direction
of H [e.g.: (M.H)/H].
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Ms

Mr

Hc

Recoil loop

First
loop

H

M
dM

H

(a) (b)

Figure I.3: (a) Typical hysteresis loop illustrating the definition of coercivity Hc,
saturation Ms and remanent Mr magnetization. A minor (recoil) loop as well as a
first magnetization loop are shown in thinner lines (b) The losses during a hysteresis
loop equal the area of the loop.

Hysteresis loops are the most straightforward and widespread characterization
of magnetic materials. We will thus discuss it in some details, thereby introducing
important concepts for magnetic materials and their applications. We restrict the
discussion to quasistatic hysteresis loops, i.e. nearly at local equilibrium. Dynamic
and temperature effets require a specific discussion and microscopic modeling, which
will be discussed in chapter sec.III, p.65.

Figure I.3 shows a typical hysteresis loop. We will speak of magnetization for
the sake of simplicity. However the concepts discussed more generally apply to any
other quantity involved in a hysteresis loop.

• Symmetry – Hysteresis loops are centro-symmetric, which reflect the time-
reversal symmetry of Maxwell’s equations (H → −H and M → −M)

We will see in chapter V that hysteresis loops of certain heterostructured
systems may be non-centro-symmetric, due to shifts along both the field and
magnetization axes. This however does not contradict the principle of time-
reversal symmetry, as such hysteresis loops are minor loops. Application of a
sufficiently high field (let aside the practical availability of such a high field)
would yield a centro-symmetric loop.

• ’Saturation’ magnetization – Due to Zeeman energy the magnetization
tends to align along the applied field when the magnitude of the latter is
large, associated with a saturation of the M(H) curve. For this reason one
often names saturation magnetization the resulting value of magnetization. We
may normalize the loop with its value towards saturation, and get a function
spanning in [−1; 1].
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Two remarks shall be made. First the ’s’ subscript brings some confusion
between spontaneous magnetization, which is a microscopic quantity used in
models such as magnetic ordering and that one may like to determine exper-
imentally, and the experimental quantity estimated at saturation of the loop.
The knowledge of the volume of the system (if a moment is measured) or a
model (in case an experiment probes indirectly magnetization) is needed to
link an experimental quantity with a magnetization. Intrinsic or extrinsic con-
tributions to the absence of true saturation of hysteresis loops are also an issue.

• Remanent magnetization – starting from the application of an external
magnetic field, we call remanent magnetization (namely, which remains) and
write Mr or mr when normalized, the value of magnetization remaining when
the field is removed. After applying a positive (resp. negative) field, mr is
usually found in the range [0; 1].

A negative remanence may occur in very special cases of heterostructured
systems, as we will see in Chapter V.

• Coercive field – We call coercive field (namely, which opposes an action,
here that of an applied magnetic field) and write Hc, the magnitude of field
for which the loop crosses the x axis, i.e. when the average magnetization
projected along the direction of the field vanishes.

• Hysteresis and metastability – We have mentioned that the sign of rema-
nence depends on that of the magnetic field applied previously. This feature
is named hysteresis: the M(H) path followed for rising field is different from
the descending path. Hysteresis results from the physical notion of metasta-
bility: for a given magnitude (and direction) of magnetic field, there may exist
several equilibrium states of the system. These states are often only local
minima of energy, and then said to be metastable. Coercivity and remanence
are two signatures of hysteresis. The number of degrees of freedom increases
with the size of a system, and so may do the number of metastable states in
the energy landscape. The field history describes the sequence of magnetic
fields (magnitude, sign and/or direction) applied before an observation. This
history is crucial to determine in which stable or metastable state the sys-
tem is leftI.5. This highlight the important role played by spatially-revolved
techniques (both microscopies and in reciprocal space) to deeply characterize
the magnetic state of a system. Metastability implies features displayed dur-
ing first-order transitions such as relaxation (over time) based on domain-wall
movement, nucleation and the importance of extrinsic features in these such as
defects. This implies that the modeling and engineering of the microstructure
of materials is a key to control properties such as coercivity and remanence.

I.5The reverse is not true: it is not always possible to design a path in magnetic field liable to
prepare the system in an arbitrary metastable state
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• Energy losses – We often read the name magnetic energy, for a quantity
including the Zeeman energy. This is improper from a thermodynamic point
of view. The Zeeman quantity −µ0M.H is the counterpart of +PV for fluids
thermodynamics: H is the vectorial intensive counterpart of pressure, and M
is the vectorial extensiveI.6 counterpart of volume, i.e. a response of the system
to the external stimulus. Thus, we should use the name density of magnetic
enthalpy for the quantity Eint − µ0M.H, where Eint is the density of internal
magnetic energy of the systemI.7, with analogy to H = U+PV . A readily-seen
consequence is that the quantity +µ0H.dM, analogous to−PdV , is the density
of work provided by the (external) operator and transferred to the system upon
an infinitesimal magnetization process. Rotating the magnetization loop by
90◦ to consider M as x, we see that the area encompassed by the hysteresis
loop measures the amount of work provided to the system upon the loop, often
in the form of heat (Figure I.3b).

• Functionalities of magnetic materials – The quantities defined above al-
low us to consider various types of magnetic materials, and their use for appli-
cations. Metastability and remanence are key properties for memory applica-
tions such as hard disk drives (HDDs), as its sign keeps track of the previously
applied field, defining so-called up and down states. Coercivity is crucial for
permanent magnets, which must remain magnetized in a well-defined direction
of the body with a large remanence, giving rise to forces and torques of crucial
use in motors and actuators. In practice coercivities of one or two Teslas may
be reached in the best permanent-magnet materials such as SmCo5, Sm2Co17

and Nd2Fe14B. The minimization of losses in the operation of permanent mag-
nets and magnetic memories is important, both to minimize heating and for
energy efficiency. Among applications requiring small losses are transformers
and magnetic shielding. To achieve this one seeks both low coercivity and low
remanence, which defines so-called soft magnetic materials. These materials
are also of use in magnetic field sensors based on their magnetic suscepti-
bility, providing linearity (low hysteresis) and sensitivity (large susceptibility
dM/dH). A coercivity well below 10−3 A/m (or 1.25 mT in terms of µ0H)
is obtained in the best soft magnetic materials, typically based on Permalloy
(Fe20Ni80). On the reverse, some applications are based on losses such as in-
duction stoves. There the magnitude of coercivity is a compromise between
achieving large losses and the ability of the stove to produce large enough ac
magnetic fields to reverse magnetization. Finally, in almost all applications
the magnitude of magnetization determines the strength of the sought effect,
such as force or energy of a permanent magnet, readability for sensors and
memories, energy for transformers and induction heating.

• Partial loops – In order to gain more information about the magnetic mate-
rial than with a simple hysteresis loop, one may measure a first magnetization
loop (performed on a virgin or demagnetized sample) or a minor loop (also
called partial loop or recoil loop), see Figure I.3a.

I.6or more precisely, the magnetic moment of the entire system
∫
V
Msdr.

I.7see part 3 for the description of contributions to Eint
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We call intrinsic those properties of a material depending only on its composition and
structure, and extrinsic those properties related to microscopic phenomena related to
e.g. microstructure (crystallographic grains and grain boundaries), sample shape etc.
For example, spontaneous magnetization is an intrinsic quantity, while remanence and
coercivity are extrinsic quantities.

1.4 Domains and domain walls

Hysteresis loop, described in the previous section, concern a scalar and integrated
quantity. It may thus hide details of magnetization (a vector quantity) at the mi-
croscopic level. Hysteresis loops must be seen as one out of many signature of mag-
netization reversal, not a full characterization. Various processes may determine the
features of hysteresis loops described above. It is a major task of micromagnetism
and magnetic microscopies to unravel these microscopic processes, with a view to
improve or design new materials.

For instance remanence smaller than one may result from the rotation of mag-
netization or from the formation of magnetic domains etc. Magnetic domains are
large regions where in each the magnetization is largely uniform, while this direction
may vary from one domain to another. The existence of magnetic domains was pos-
tulated by Pierre Weiss in his mean field theory of magnetism in 1907, to explain
why materials known to be magnetic may display no net moment at the macroscopic
scale. The first direct proof of the existence of magnetic domains came only in 1931.
This is due to the bitter technique, where nanoparticles are attracted by the loci of
domain walls. In 1932 Bloch proposes an analytical description of the variation of
magnetization between two domains. This area of transition is called a magnetic
domain. The basis for the energetic study of magnetic domains was proposed in
1935 by Landau and Lifshitz.

Let us discuss what may drive the occurrence of magnetic domains, whereas
domain walls imply a cost in exchange and other energies, see sec.5. There exists
two reasons for this occurrence, which in practice often take place simultaneously.
The first reason is energetics, where the cost of creating domain walls is balanced by
the decrease the dipolar energy which would be that of a body remaining uniformly
magnetized. This will be largely developed in chap.II. The second reason is magnetic
history, which we have already mentioned when discussing hysteresis loops (see
sec.1.3). For instance upon a partial demagnetization process up to the coercive
field, domain walls may have been created, whose propagation will be frozen upon
removal of the magnetic field.

2 Units in Magnetism

The use of various systems of units is a source of annoyance and errors in magnetism.
A good reference about units is that by F. Cardarelli[8]. Conversion tables for
magnetic units may also be found in many reference books in magnetism, such as
those of S. Blundell[1] and J. M. D. Coey[3]. We shall here shortly consider three
aspects:

• The units – A system of units consists in choosing a reference set of elemen-



16 Chapter I. Setting the ground for nanomagnetism

tary physical quantities, allowing one to measure each physical quantity with
a figure relative to the reference unit. All physical quantities may then be ex-
pressed as a combination of elementary quantities; the dimension of a quantity
describes this combination. For a long time many different units were used,
depending on location and their field of use. Besides the multiples were not
the same in all systems. The wish to standardize physical units arose during
the French revolution, and the Academy of Sciences was in charge of it. In
1791 the meter was the first unit defined, at the time as the ten millionth of
the distance between the equator and a pole. Strictly speaking four types of
dimensions are enough to describe all physical variables. A common choice is:
length L, mass M, time T, and electrical current I. This lead to the emergence
of the MKSA set of units, standing for Meter, Kilogram, Second, Ampère for
the four above-mentioned quantities. The Conférences Générale des Poids et
Mesures (General Conference on Weighs and Measures), an international or-
ganization, decided of the creation of the Système International d’Unités (SI).
In SI, other quantities have been progressively appended, which may in princi-
ple be defined based on MKSA, however whose independent naming is useful.
The three extra SI units are thermodynamic temperature T (in Kelvin, K),
luminous intensity (in candela, cd) and amount of matter (in mole, mol). The
first two are linked with energy, while the latter is dimensionless. Finally,
plane angle (in radian, rad) and solid angles (in steradian, sr) are called sup-
plementary units. Another system than MKSA, of predominant use in the
past, is the cgs system, standing for Centimeter, Gramm, and Second. At
first sight this system has no explicit units for electrical current or charge,
which is a weakness with respect to MKSA, e.g. when it comes to check the
dimension homogeneity of formulas. Several sub-systems were introduced to
consider electric charges or magnetic moments, such as the esu (electrostatic
units), emu (electromagnetic units), or the tentatively unifying Gauss sys-
tem. In practice, when converting units between MKSA and cgs in magnetism
one needs to consider the cgs-Gauss unit for electrical current, the Biot (Bi),
equivalent to 10 A. Other names in use for the Biot are the abampere or the
emu ampere. Based on the decomposition of any physical quantity in ele-
mentary dimensions, it is straightforward to convert quantities from one to
another system. For magnetic induction B 1 T is the same as 104 G (Gauss),
for magnetic moment µ 1 A.m2 is equivalent to 103 emu and for magnetization
M 1 A/m is equivalent to 10−3 emu/cm3. In cgs-Gauss the unit for energy is
erg, equivalent to 10−7 J. The issue of units would remain trivial, if restricted
to converting numerical valus. The real pain is that different definitions exist
to relate H, M and B, as detailed below.

• Defining magnetic field H – In SI induction is most often defined with B =
µ0(H+M), whereas in cgs-Gauss it is defined with B = H+4πM . The dimen-
sion of µ0 comes out to be L.M.T−2.I−2, thus µ0 = 4π×10−7 m.kg.s−2.A−2 in SI.
Using the simple numerical conversion of units one finds: µ0 = 4π cm.g.s−2.Bi−2.
Similar to the absence of explicit unit for electrical current, it is often argued
that µ0 does not exist in cgs. The conversion of units reveals that one may
consider it in the definition of M , with a numerical value 4π. However the def-
inition de H differs, as the same quantity is written µ0H in SI, and (µ0/4π)H
in cgs-Gauss. Thus, the conversion of magnetic field H gives rise to an extra
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4π coefficient, beyond powers of ten. This pitfall explain the need to use an
extra unit, the Oersted, to express values for magnetic field H in cgs-Gauss.
Then 1 Oe is equivalent to (103/4π) A/mI.8. A painful consequence of the
different definitions of H is that susceptibility χ = dM/dH differs by 4π be-
tween both systems, although is is a dimensionless quantity: χcgs = (1/4π)χSI.
The same is true for demagnetizing coefficients defined by Hd = −NM , with
Ncgs = 4πNSI.

• Defining magnetization M – we often find the writing J = µ0M in the
literature. More problematic is the (rather rare) definition to use Ms instead
of µ0Ms. It is for instance the case of the book of Stöhr and Siegmann[9],
otherwise a very comprehensive book. These authors use the SI units, however
define: B = µ0H + M. This can be viewed as a compromise between cgs and
SI, however has an impact on all formulas making use of M .

This section highlights that, beyond the mere conversion of numerical values, formulas
depend on the definition used to link magnetization, magnetic field and induction. It
is crucial to carefully check the system of units and definition used by authors before
copy-pasting any formulas implying M , H or B.

3 The various types of magnetic energy

3.1 Introduction

There exists several sources of energy in magnetic systems, which we review in this
section. For the sake of simplicity of vocabulary we restrict the following discussion
to ferromagnetic materials, although all aspects may be extended to other types of
orders. These energies will be described in the context of micromagnetism.

Micromagnetism is the name given to the investigation of the competition be-
tween these various energies, giving rise to characteristic magnetic length scales, and
being the source of complexity of distributions of magnetization, which will be dealt
with in chap.II.

Micromagnetism, be it numerical or analytical, is in most cases based on two
assumptions: :

• The variation of the direction of magnetic moment from (atomic) site to site
is sufficiently slow so that the discrete nature of matter may be ignored. Mag-
netization M and all other quantities are described in the approximation of
continuous medium: they are continuous functions of the space variable r.

• The norm Ms of the magnetization vector is constant and uniform in any
homogeneous material. This norm may be that at zero or finite temperature.
The latter case may be viewed as a mean-field approach.

Based on these two approximations for magnetization we often consider the func-
tion unitary vector function m(r) to describe magnetization distributions, such that
Ms(r) = Msm(r).

I.8In practice, the absence of µ0 in the cgs system often results in the use of either Oersted or
Gauss to evaluate magnetic field and induction.
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3.2 Zeeman energy

The Zeeman energy pertains to the energy of magnetic moments in an external
magnetic field. Its density is:

EZ = −µ0M.H (I.7)

EZ tends to favor the alignement of magnetization along the applied field. As
outlined above, this term should not be considered as a contribution to the internal
energy of a system, however as giving rise to a magnetic enthalpy.

3.3 Magnetic anisotropy energy

The theory of magnetic ordering predicts the occurrence of spontaneous magneti-
zation Ms, however with no restriction on its direction in space. In a real system
the internal energy depends on the direction of Ms with the underlying crystalline
direction of the solid. This arises from the combined effect of crystal-field effects
(coupling electron orbitals with the lattice) and spin-orbit effects (coupling orbital
with spin moments).

This internal energy is called magnetocrystalline anisotropy energy, whose den-
sity will be written Emc in these notes. The consequence of Emc is the tendency for
magnetization to align itself along certain axes (or in certain planes) of a solid, called
easy directions. On the reverse, directions with a maximum of energy are called hard
axes (or planes). Magnetic anisotropy is at the origin of coercivity, although the
quantitative link between the two notions is complex, and will be introduced in
chap.II.

The most general case may be described by a function Emc = Kf(θ, ϕ), where f
is a dimensionless function. In principle any set of angular functions complying with
the symmetry of the crystal lattice considered may be used as a basis to express
f and thus Emc. Whereas the orbital functions Yl,m of use in atomic physics may
be suitable, in practice one uses simple trigonometric functions. Odd terms do not
arise in magnetocrystalline anisotropy because of time-reversal symmetry. Group
theory can be used to highlight the terms arising depending on the symmetry of the
lattice.

For a cubic material one finds:

Emc,cub = K1cs+K2cp+K3cp
2 + . . . (I.8)

with s = α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1 and p = α2

1α
2
2α

2
3. For hexagonal symmetry

Emc,hex = K1 sin2 θ +K2 sin4 θ + . . . (I.9)

where θ is the (polar) angle between M and the c axis. Here we dropped the
azimuthal dependence because it is of sixth order, and that in practice the magnitude
of anisotropy constants decreases sharply with its order. Thus for an hexagonal
material the magnetocrystalline anisotropy is essentially uniaxial.

Group theory predicts the form of these formulas, however not the numerical
values, which are material dependent. For example for Fe K1c = 48 kJ/m3 so that
the < 001 > directions (resp. < 111 >) are easy (resp. hard) axes of magnetization,
while for Ni K1c = −5 kJ/m3 so that < 001 > (resp. < 111 >) are hard (resp. easy)
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axes of magnetization. In Co K1 = 410 kJ/m3 and the c axis of the hexagon is the
sole easy axis of magnetization.

In many cases one often considers solely a second-order uniaxial energy:

Emc = Ku sin2 θ (I.10)

It is indeed the leading term around the easy axis direction in all above-mentioned
cases. We will see in sec.4 that it is also a form arising in the case of magnetostatic
energy. It is therefore of particular relevance. Notice that it is the most simple
trigonometric function compatible with time-reversal symmetry and giving rise to
two energy minima, this liable to give rise to hysteresis. It is therefore sufficient for
grasping the main physics yet with simple formulas in modeling.

Materials with low magnetic anisotropy energy are called soft magnetic materials, while
materials with large magnetic anisotropy energy are called hard magnetic materials. The
historical ground for these names dates back to the beginning of the twentieth century
where steel was the main source of magnetic material. Mechanically softer materials
were noticed to have a coercivity lower than that of mechanically harder materials.

One should also consider magnetoelastic anisotropy energy, written Emel. Emel is the
magnetic energy associated with strain (deformation) of a material, either compressive,
extensive or shear. Emel may be viewed as the derivative of Emc with respect to strain.
In micromagnetism the anisotropy energy is described phenomenologically, ignoring all
microscopic details. Thus we may consider the sum of Emc and Emel, written for instance
Ea or EK , a standing for anisotropy and K for an anisotropy constant.

3.4 Exchange energy

Exchange energy between neighboring sites may be written as:

E12 = −JS1.S2 (I.11)

i i+1
a

θ

Figure I.4: Expansion of exchange
with θ to link discrete exchange to
continuous theory.

J is positive for ferromagnetism, and
tends to favor uniform magnetization. Let us
outline the link with continous theory used
in micromagnetism. We consider the text-
book case of a (one-dimensional ) chain of
XY classical spins, i.e. whose direction of
magnetization may be described by a single
angle θi (Figure I.4). The hypothesis of slow
variation of θi from site to site legitimates the
expansion:

E12 = −JS2 cos(δθ)

= −JS2

[
1− (δθ)2

2

]
= Cte +

JS2a2

2

(
dθ

dx

)2

(I.12)
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This equation may be generalized to a three dimensional system and moments al-
lowed to point in any direction in space. Upon normalization with a3 to express a
density of energy, and forgetting about numerical factors related to the symmetry
and number of nearest neighbors, one reaches:

Eex = A (∇m)2 . (I.13)

We remind the reader that m(r) is the unit vector field describing the magneti-
zation distribution. The writting (∇m)2 is a shortcut for

∑
i

∑
j(∂xjmi)

2, linked

to Eq. (I.12). A is called the exchange, such as A ≈ (JS2/2a). It is then clear that
the unit for A is J/m, which we find also in Eq. (I.13). The order of magnitude of
A for common magnetic materials such as Fe, Co and Ni is 10−11 J/m.

3.5 Magnetostatic energy

Magnetostatic energy, also called dipolar energy and written Ed, is the mutual
Zeeman-type energy arising between all moments of a magnetic body through their
stray field (itself called dipolar field and written Hd). When considering as a system
an infinitesimal moment δµMsδV the Zeeman energy provides the definition for
enthalpy. However when considering the entire magnetic body as both the source
of all magnetic field (dipolar field Hd) and that of moments, this term contributes
to the internal energy.

Dipolar energy is the most difficult contribution to handle in micromagnetism.
Indeed, due to its non-local character is may be expressed analytically in only a
very restricted number of simple situations. Its numerical evaluation is also very
costly in computation time as all moments interact with all other moments; this
contributes much to the practical limits of numerical simulation. Finally, due to
the non-uniformity in direction and magnitude of the magnetic field created by a
magnetic dipole, magnetostatic energy is a major source of the occurrence of non-
uniform magnetization configurations in bulk as well as nanostructured materials,
especially magnetic domains. For all these reasons we dwell a bit on this term in
the following section.

3.6 Characteristic quantities

In the previous paragraphs we introduced the various sources of magnetic energy,
and discussed the resulting tendencies on magnetization configurations one by one.
When several energies are at play balances must be found and the physics is more
complex. This is the realm of micromagnetism, the investigation of the arrangement
of the magnetization vector field and magnetization dynamics. It is a major branch
of nanomagnetism, and will be largely covered in chap.II.

It is a general situation in physics that when two or more effects compete, char-
acteristic quantities emerge such as energy or length scales, and ratios. Here these
will be built upon combination of Ms and H, a K constant such as Ku and A,
which have different units. Characteristic length scales are of special importance in
nanomagnetism, determining the size below which specific phenomena occur. Here
we only make two preliminary remarks; more will discovered and discussed in the
next chapter, ending with an overview.
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Let us assume that in a problem only magnetic exchange and anisotropy compete.
A and Ku are expressed respectively in J/m and J/m3. The only way to combine
these quantities to express a length scale, which we expect to arise in the problem,
is ∆u =

√
A/Ku. We will call ∆u the anisotropy exchange length[10] or Bloch

parameter as often found in the literature. This is a direct measure of the width
of a domain wall where magnetization rotates (limites by exchange) between two
domains whose direction is set by Ku.

In a problem where exchange and dipolar energy compete, the two quantities at
play are A and Kd = (1/2)µ0M

2
s . In that case we may expect the occurrence of

the length scale ∆d =
√
A/Kd =

√
2A/µ0M2

s , which we will call dipolar exchange
length[6] or exchange length as more often found in the literature.

In usual magnetic materials ∆u ranges from roughly one nanometer in the case
of hard magnetic materials (high anisotropy), to several hundreds of nanometers in
the case of soft magnetic materials (low anisotropy). ∆d is of the order of 10 nm.

4 Handling dipolar interactions

4.1 Simple views on dipolar interactions

To grasp the general consequences of Hd let us first consider the interaction between
two pinpoint magnetic dipoles µ1 and µ2, split by vector r. Their mutual energy
reads (see sec.I.5):

Ed = − µ0

4πr3

[
3

(µ1.r)(µ2.r)

r2
− µ1.µ2

]
(I.14)

We assume both moments to have a given direction z, however with no constraint
on their sign, either positive or negative. Let us determine their preferred respective
orientation, either parallel or antiparallel depending on their locii, that of µ2 being
determined by vector r and the polar angle θ with respect to z (Figure I.5). Equation
I.14 then reads:

E12 =
µ0µ1µ2

4πr3
(1− 3 cos2 θ) (I.15)

The ground state configuration being the one minimizing the energy, we see that
parallel alignement is favored if cos2 θ > 1/3, that is within a cone of half-angle θ =
54.74◦, while antiparallel alignement is favored for intermediate angles (Figure I.5).
Thus, under the effect of dipolar interactions two moments roughly placed along
their easy axis tend to align parallel, while they tend to align antiparallel when
placed next to each other. These rules rely on angles and not the length scale, and
are thus identical at the macroscopic and microscopic scales. The example is that
of permanent magnets, which are correctly approached by Ising spins.

The occurrence of a large part of space where antiparallel alignement is favored
(outside the cone) makes us feel why bulk samples may be split in large blocks
with different (e.g. antiparallel) directions of magnetization. These are magnetic
domains. Beyond these handwavy arguments, the quantitative consideration of
dipolar energy is outlined below in the framework of a continuous medium.
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4.2 Ways to handle dipolar fields

z

rθ

Figure I.5: Interaction be-
tween two Ising spins ori-
ented along z. Parallel
(resp. antiparallel) aligne-
ment is favored inside (resp.
outside) a cone of half-angle
54.74◦.

The total magnetostatic energy of a system with
magnetization distribution M(r) reads :

Ed = −µ0

2

∫
M(r).Hd(r) d3r. (I.16)

The pre-factor 1
2

results from the need not to count
twice the mutual energy of each set of two elemen-
tary dipoles taken together. The decomposition of
a macroscopic body in elementary magnetic mo-
ments and performing a three-dimensional integral
is not a practical solution to evaluate Ed. It is often
better to proceed similarly to electrostatics, with
div E = ρ/ε0 being replaced by div Hd = −div M
(derived from the definition of B, and Maxwell’s
equation div B = 0). Within this analogy, ρ =
−div M are called magnetic volume charges. A lit-
tle algebra shows that the singularity of div M that
may arise at the border of magnetized bodies (Ms

going abruptly from a finite value to zero on either
side of the surface of the body) can be lifted by introducing the concept of surface
charges σ = M.n. One has finally:

Hd(r) =

∫
ρ(r′) (r− r′)

4π|r− r′|3
d3r′ +

∮
σ(r′) (r− r′)

4π|r− r′|3
.dS (I.17)

dS with S oriented towards the outside of the body is the elementary integration
surface. This set, notice that Hd has a zero rotational and thus derives from a
potential: Hd = −gradφd. Equation I.16 may then worked out, integrating in
parts:

Ed =
1

2
µ0

∫
M(r).gradφd(r) d3r (I.18)

=
1

2
µ0

∫
Mi(r).∂xiφd d3r (I.19)

=

[
1

2
µ0φdMi

]∞
− 1

2
µ0

∫
(∂xiMi)φd d3r (I.20)

(I.21)

The first term cancels for a finite size system, and one finds a very practical formu-
lation:

Ed =
1

2
µ0

(∫
ρφd d3r +

∫
σφd dS

)
. (I.22)

Another equivalent formulation may be demonstrated:

Ed =
1

2
µ0

∫
H2

d d3r (I.23)
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where integration if performed other the entire space. From the latter we infer that
Ed is always positive or zero. Equation I.22 shows that if dipolar energy alone si
considered, its effect is to promote configurations of magnetization free of volume
and surface magnetic charges. Such configurations are thus ground states (possibly
degenerate) in the case where dipolar energy alone is involved.

• The tendency to cancel surface magnetic charges implies a very general rule for
soft magnetic materials: their magnetization tends to remain parallel to the edges
and surfaces of the system.

• The name dipolar field is a synonym for magnetostatic field. It refers to all mag-
netic fields created by a distribution of magnetization or magnetic moments in
space. The name stray field refers to that part of dipolar field, occurring outside
the body responsible for this field. The name demagnetizing field refers to that
part of dipolar field, occurring inside the body source of this field; the explanation
for this name will be given later on.

The term dipolar brings some confusion between two notions. The first notion
is dipolar (field or energy) in the general sense of magnetostatic. The name dipolar
stems from the fact that to compute total magnetostatic quantities of a magnetic body,
whatever its complexity, one way is to decompose it into elementary magnetic dipoles and
perform an integration; the resulting calculated quantities are then exact. The second
notion is magnetic fields or energies arising from idealized pinpoint magnetic dipoles, and
obeying Eq. (I.14). When using the name dipolar to refer to the interactions between
two bodies, one may think either that we compute the exact magnetostatic energy based
on the integration of elementary dipoles, or that we replace the two finite-size bodies
with pinpoint dipoles for the sake of simplicity, yielding on the reverse an approach
evaluation. In that latter case one may add extra terms, called multipolar, to improve
the accuracy of the approximation. To avoid confusion one should stress explicitly
the approximation in the latter case, for instance mentioning the use of a
point dipole approximation.

4.3 Demagnetizing factors

Demagnetizing factors (or coefficients) are a simple concept providing figures for the
magnetostatic energy of a body. Eq. (I.17) applied to uniform magnetization retains
only the surface contribution

Hd(r) = Ms

∫
(r− r′)

4π|r− r′|3
mini dS(r′) (I.24)

with M ≡Msm, m = miui and n = niui, with Einstein’s summation notation. n is
the local normal to the surface, oriented towards the outside of the body. Injecting
this equation into Eq. (I.16) yields after straightforward algebra a compact formula
for the density of demagnetizing energy:

Ed = Kd
tm.N.m (I.25)

with Kd = 1
2
µ0M

2
s , and N a 3× 3 matrix with coefficients:
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Table I.3: Demagnetizing factors for cases of practical use

Case Demagnetizing factor Note

Slab Nx = −1 Normal along x

General ellipsoid Nx = 1
2
abc

∫∞
0

[
(a2 + η)

√
(a2 + η)(b2 + η)(c2 + η)

]−1
dη

Prolate revolution ellipsoid Nx = α2

1−α2

[
1√

1−α2
arg sinh

(√
1−α2

α

)
− 1

]
α = c/a < 1

Oblate revolution ellipsoid Nx = α2

α2−1

[
1 − 1√

α2−1
arcsin

(√
α2−1

α

)]
α = c/a > 1

Cylinder with elliptical section Nx = 0, Ny = c/(b + c) and Nz = b/(b + c) Axis along x

Prism Analytical however long formula See: [6] or [13]

Nij =

∫
d3r

∫
ni(u) (r− r′)j

4π|r− u|3
dS(u) (I.26)

N is called the demagnetizing matrix. It may be shown that N is symmetric and
positive, and thus can be diagonalized. The set of xyz axes upon diagonalization are
called the main or major axes. The coefficients N ′ii of the diagonal matrix are called
the demagnetizing coefficients and will be written Ni hereafter as a shortcut. Along
these axes it is readily seen that the following is true for the average demagnetizing
field, providing a simple interpretation of demagnetizing factors:

〈Hd,i〉 = −NiM. (I.27)

N yield a quadratic form, so that only second-order anisotropies can arise from
dipolar energy, at least for perfectly uniform samplesI.9.

It can be shown that Tr(N) = 1, so that Nx + Ny + Nz = 1. Analytical formu-
las for Ni’s may be found for revolution ellipsoids[11], prisms[12, 13] (Figure I.6),
cylinders of finite length[14, 15, 16], and tetrahedrons[17, 18]. Some formulas are
gathered in Table I.3. For other geometries micromagnetic codes or Fourier-space
computations[18] may be used.

While all the above is true for bodies with an arbitrary shape, not even necessarily
connected, a special subset of bodies is worth considering: that of shapes embodied by a
polynomial surface of degree at most two. To these belong slabs, ellipsoids and cylinders
with an ellipsoidal cross-section. In that very special case it may be shown within the
non-trivial theory of integration in space[19] that Eq. (I.27) is then true locally: in the
case of uniform magnetization, Hd is uniform and equal to −NiM when M is aligned
parallel to one of the major directions. This allows the torque on magnetization to be
zero, and thus ensures the self-consistency of the assumption of uniform magnetization.
This makes the application of demagnetizing factors of somewhat higher reliability than
for bodies with an arbitrary shape. Notice, however, that self-consistency does not
necessarily imply that the uniform state is stable and a ground state.

I.9see sec.4.4 for effects due to non-uniformities
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Figure I.6: Numerical evaluation of demagnetizing factors for prisms. (a) is the full
plot, while (b) is en enlargement for flat prisms.
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Demagnetizing factors are derived based on the assumption of uniform magnetization.
While this assumption allows demagnetizing factors to be defined and calculated analyt-
ically or numerically, care should be taken when applying these to practical cases, where
magnetization configurations may not be uniform.

5 The Bloch domain wall

The existence of magnetic domains was suggested by Pierre Weiss in his mean
field theory of Magnetism in 1907. Magnetic domains were postulated to explain
why large bodies made of a ferromagnetic materials could display no net magnetic
moment under zero external magnetic field. Their existence was confirmed only
in 1931 with a bitter technique, based on magnetic nanoparticles decorating the
locii of domain walls because these particles are attracted by the local gradient of
magnetic field. This example highlights the importance of magnetic microscopy in
the progress of micromagnetism. In 1932 Bloch provides an analytical solution in
a simple case to describe the region of transition between two magnetic domains,
which is named a magnetic domain wall. At this stage we do not discuss the origin
of magnetic domains, however focus on the model of a domain wall.

The Bloch model is one-dimensional, i.e. considers a chain of spins. The idea
is to describe the transition between two three-dimensional domains (volumes) in
the form of a two-dimensional object with translational invariance in the plane of
the domain wall. It is assumed that magnetization remains in the plane of the
domain wall, a configuration associated with zero volume charges −div M and thus
associated zero dipolar energy. The only energies at play are then the exchange
energy, and the magnetic anisotropy energy which is assumed to be uniaxial and of
second order. Under these assumptions the density of magnetic energy reads:

E(x) = Ku sin2 θ + A (∂xθ)
2 (I.28)

where x if the position along the chain of spins. The case thus consists in exhibiting
the magnetic configuration which minimizes the total energy

E =

∫ +∞

−∞
[EK(x) + Eech(x)]dx. (I.29)

while fulfilling boundary conditions compatible for a 180◦ domain wall: θ(−∞) = 0
and θ(+∞) = π.

5.1 Simple variational model

This paragraph proposes an approached solution for a domain wall, however appeal-
ing for its simplicity and ability to highlight the physics at play, and a reasonable
numerical result. We consider the following model for a domain wall of width `:
θ = 0 for x < −`/2, θ = π(x + `/2) for x ∈ [−`/2; `/2] and θ = π for x > `/2. In
a variational approach we search for the value `var which minimizes Eq. (I.29), after
integration: E = Ku`/2 + Aπ2/`. The minimization yields `var = π

√
2
√
A/Ku and

Evar = π
√

2
√
AKu is the associated energy.
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Letting aside the factor π
√

2 a simple variational model highlights the relevance of the
Bloch parameter ∆u defined previously. How may we read this formula? Exchange only
would tend to enlarge the domain wall, hence its occurrence at the numerator. To the
reverse, the anisotropy energy gives rise to a cost of energy in the core of the domain
wall. This tends to decrease its width, explaining its occurrence at the denominator.

5.2 Exact model

The exact profile of a Bloch domain wall may be derived using the principle of
functional minimization to find the function θ minimizing E . It may be shown that
the principle of minimization is equivalent to the so-called Euler equation:

∂E

∂θ
=

d

dx

[
∂E

∂( dθ
dx

)

]
(I.30)

Using a condensed notation this reads:

∂θE = dx
(
∂(dxθ)E

)
(I.31)

Considering a magnetic system described by Eq. (I.29) one finds:

dθEK = dx (2A∂xθ) (I.32)

= 2A∂xxθ (I.33)

Upon multiplying both parts by ∂xθ and integration, this reads:

EK(x)− EK(a) = A [∂xθ(x)]2 − A [∂xθ(a)]2

= Eex(x)− Eex(a) (I.34)

a is the origin of integration, here chosen as the center of the domain wall. Consid-
ering two semi-infinite domains with equal local density of energy, E is stationary
(minimum) in both domains, and by convention may be chosen zero with no loss of
generality. Equation I.34 applied to ±∞ shows that EK(a) = Eex(a), and finally:

∀x EK(x) = Eex(x) (I.35)

We hereby reach a general and very important feature of a domain wall separating
two semi-infinite domains under zero applied field: the local density of anisotropy
and exchange energy are equally parted at any location of the system. The
equal parting of energy considerably eases the integration to get the areal density
of the domain wallI.10:

I.10We set arbitrarily ∂xθ > 0 without loss of generality, using the symmetry x→ −x.
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Figure I.7: Exact solution for the profile of the Bloch domain wall (red dots), along
with its asymptote (red line). The lowest-energy solution of the linear variational
model is displayed as a black line.

E = 2

∫ +∞

−∞
A (dxθ)

2 dx

= 2

∫ +∞

−∞
EK(x) dx

= 2

∫ +∞

−∞

√
AEK(x)dxθ dx

= 2

∫ θ(+∞)

θ(−∞)

√
AEK(θ) dθ (I.36)

The energy of the domain wall may thus be expressed from the anisotropy of en-
ergy alone, without requiring solving the profile of the domain wall, which may be
interesting to avoid calculations or when the latter cannot be solved.

Let us come back to the textbook case of the functional I.28. After some algebra
one finds for the exact solution:

θex(x) = 2 arctan [exp(x/∆u)] (I.37)

Eex = 4
√
AKu. (I.38)

∆u =
√
A/Ku is of course confirmed to be a natural measure for the width of

a domain wall. The exact solution along with that of the variational model are
displayed on Figure I.7. Despite its crudeness, the latter is rather good, for both the
wall profile and its energy: the true factor afore

√
AKu equals 4 against π

√
2 ≈ 4.44

in the variational model. It is trivial to notice that Evar > Eex, as the energy of
a test function may only be larger than the energy of the minimum functional. It
shall be noticed that the equal parting of energy is retained in the variational model,
however only in its global form, not locally.

5.3 Defining the width of a domain wall

Several definitions for the width δW of a domain wall have been proposed (see e.g.
Ref.[6], p.219).
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The most common definition was introduced by Lilley[20]. It is based on the
intercept of the asymptotes (the domain) with the tangent at the origin (the wall)
of the curve θ(x). This yields δL = π

√
A/Ku = π∆u for the exact solution, and

δL = `variationel =
√

2∆u for the linear variational model.

Some call ∆u the domain wall width. To avoid any confusion is it advised to keep the
name Bloch parameter for this quantity.

A second definition consists in using the asymptotes of the curve cos θ(x), instead
of that of θ(x). On then finds δm = 2

√
A/Ku, both in the exact and variational

models.
A third definition is δF =

∫ +∞
−∞ sin θ(x)dx. In the present case of a uniaxial

anisotropy of second order one finds δF = δL.
The latter two definitions are more suited for the analysis of domain walls in-

vestigated by magnetic microscopies probing the projection of magnetization in a
given direction. Besides, δF is based on an integration. It can thus be applied to
any type of domain wall, whereas the definitions of Lilley and δm may be ambiguous
in materials with high anisotropy constants, with domain wall profiles potentially
displaying several inflexion points.

The use of cos and sin fonctions in the definitions δm and δF is dependent on the starting
and ending angles of the domain wall, here 0 and π. For other choices or domain walls
with angle differing from 180◦, these definitions shall be modified.

6 Magnetometry and magnetic imaging

There exists many techniques to probe magnetic materials. Due to the small
amounts to be probed, and the need to understand magnetization configurations,
high sensitivity and/or microscopies are of particular interest for nanomagnetism.
There exists no such thing as a universal characterization technique, that would be
superior to all others. Each of them has its advantages and disadvantages in terms of
versatility, space and time resolution, chemical sensitivity etc. The combination of
several such techniques is often beneficial to gain the full understanding of a system.

Here a quick and non-exhaustive look is proposed over some techniques that have
proven useful in nanomagnetism. In-depth reviews may be found elsewhere[6, 21,
22, 23].
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Sample

FB ON

FB OFF

Figure I.8: Principle of the two-pass procedure usually implemented for MFM imag-
ing.

6.1 Extraction magnetometers

6.2 Faraday and Kerr effects

6.3 X-ray Magnetic Dichroism techniques

6.3.a X-ray Magnetic Circular Dichroism

6.3.b XMCD Photo-Emission Electron Microscopy

6.3.c XMCD Transmission X-ray Microscopy

6.4 Near-field microscopies

6.4.a Magnetic Force Microscopy

Magnetic Force Microscopy (MFM) is derived from Atomic Force Microscopy, for
which good reviews are available. Along with Kerr microscopy, it is the most pop-
ular magnetic microscopy technique owing to its combination of moderate cost,
reasonable spatial resolution (routinely 25-50 nm) and versatility. Good reviews are
available for both AFM[24] and MFM[22, 21].

AFM and MFM probe forces between a sample and a sharp tip. The tip is non-
magnetic in the former case, and coated with a few tens of nanometers of magnetic
material in the latter case. The forces are estimated through the displacement of a
soft cantilever holding the tip, usually monitoring the deflection of a laser reflected
at the backside of the cantilever. The most common working scheme of MFM is
an ac technique: while the cantilever is mechanically excited close to its resonance
frequency f0 (or more conveniently written as the angular velocity ω0 = 2πf0), the
phase undergoes a shift proportional to the vertical gradient of the (vertical) force
∂F/∂z felt by the tip: ∆ϕ = −(Q/k)∂zF . In practice magnetic images are gath-
ered using a so-called two-pass technique: each line of a scan is first conducted in
the tapping mode with strong hard-sphere repulsive forces probing mostly topogra-
phy (so-called first pass), then a second pass is conducted flying at constant height
(called the lift height) above the sample based on the information gathered during
the first pass. Forces such as Van der Waals are assumed to be constant during the
second pass, and the forces measured are then ascribed to long-range forces such as
magnetic.
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The difficult point with MFM is the interpretation of the images, and the pos-
sible mutual interaction between tip and sample. A basic discussion of MFM is
proposed in the Problems section, p.37. A summary of the expected signal mea-
sured is provided in Table I.4.

Table I.4: Expected MFM signal with respect to the vertical component Hd,z of the
stray field in static (cantilever deflection) and dynamic (frequency shift during the
second pass) modes versus the model for the MFM tip.

Tip model Static response Dynamic response
Monopole Hd,z ∂Hd,z/∂z
Dipole ∂Hd,z/∂z ∂2Hd,z/∂z

2

6.4.b Spin-polarized Scanning Tunneling Microscopy

6.5 Electron microscopies

6.5.a Lorentz microscopy

6.5.b Scanning Electron Microscopy with Polarization Analysis (SEMPA)

6.5.c Spin-Polarized Low-Energy Electron Microscopy (SPLEEM)



Problems for Chapter I

Problem 1: More about units

Here we derive the dimensions for physical quantities of use in magnetism, and their
conversions between cgs-Gauss and SI.

1.1. Notations

We use the following notations:

• X is a physical quantity, such as force in F = mg. It may be written X for
vectors.

• [X] is the dimension of X. As a shortcut we will use a vector to summarize the
powers of the fundamental units length (L), mass (M), time (T) and electrical
current (I). For example, speed and electrical charges read: [v] = [L] − [T ] =
[1 0 −1 0] and [q] = [I] + [T ] = [0 0 1 1]. We use shortcuts [L], [M ], [T ] and
[I] for the four fundamental dimensions.

• In a system of units α (e.g. SI or cgs-Gauss) a physical quantity is evaluated
numerically based on the unit physical quantities: X = Xα〈X〉α. Xα is a num-
ber, while 〈X〉α is the standard (i.e., used as unity) for the physical quantity
in the system considered. For example 〈L〉SI is a length of one meter, while
〈L〉cgs is a length of one centimeter: 〈L〉SI = 100〈L〉cgs. For derived dimensions
we use the matrix notation. For example the unit quantity for speed in system
α would be written [1 0 − 1 0]α.

1.2. Expressing dimensions

• Based on laws for mechanics, find dimensions for force F , energy E and
power P , and their volume density E and P .

• Based on the above, find dimensions for electric field E, voltage U , resis-
tance R, resistivity ρ, permittivity ε0.

• Find dimensions for magnetic field and magnetization H and M, induction B
and permeability µ0.

32
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1.3. Conversions

Physics does not depend on the choice for a system of units, so doesn’t any
physical quantity X. The conversions between its numerical values Xα and Xβ

in two such systems is readily obtained from the relationship between 〈X〉α and
〈X〉β, writing: X = Xα〈X〉α = Xβ〈X〉β. Let us consider length l as a example.
l = lSI〈L〉SI = lcgs〈L〉cgs. As 〈L〉SI = 100〈L〉cgs we readily have: lSI = (1/100)lcgs.
Thus the numerical value for the length of an olympic swimming pool is 5000 in
cgs, and 50 in SI. For derived units (combination of elementary units), 〈X〉α is
decomposed in elementary units in both systems, whose relationship is known. For
example for speed: 〈v〉α = 〈L〉α〈T 〉−1

α . Notice that in the cgs-Gauss system, the
unit for electric charge current may be considered as existing and named Biot or
abampère, equivalent to 10 A.

Exhibit the conversion factor for these various quantities, of use for magnetism:
• Energy E , energy per unit area Es, energy per unit volume E. The unit for

energy in the cgs-Gauss system is called erg.

• Express the conversion for magnetic induction B and magnetization M , whose
units in cgs-Gauss are called Gauss and emu, respectively. Express related
quantities such as magnetic flux φ and magnetic moment µ.

• Let us recall that magnetic field is defined in SI with B = µ0(H+M), whereas
in cgs-Gauss with B = H + 4πM , with the unit called Oersted. Express the
conversion for µ0 and comment. Then express the conversion for magnetic
field H.

• Discuss the cases of magnetic susceptibility χ = dM/dH and demagnetizing
coefficients defined by Hd = −NM .

Problem 2: More about the Bloch domain wall

The purpose of this problem is to go deeper in the mathematics describing the
textbook case of the Bloch domain wall discussed in sec.5. We recall the following
shortcuts: ∂xθ for ∂θ/∂x and ∂nxθ for ∂nθ/∂xn.

2.1. Euler-Lagrange equation

We will seek to exhibit a magnetization configuration that minimizes an energy
density integrated over an entire system: E =

∫
E(r)dr. Finding the minimum of

a continuous quantity integrated over space is a common problem solved through
Euler-Lagrange equation, which we will deal with in a textbook one-dimensional
framework here.

Let us consider a microscopic variable defined as F (θ, dxθ), where x is the spatial
coordinate and θ a quantity defined at each point. In the case of micromagnetism
we will have:

F (θ, dxθ) = A (dxθ)
2 + E(θ) (I.39)
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When applied to micromagnetism E(θ) may contain anisotropy, dipolar and
Zeeman terms. We define the integrated quantity:

F =

∫ B

A

F (θ, dxθ) dx+ EA(θ) + EB(θ). (I.40)

A and B are the boundaries of the system, while EA(θ) and EB(θ) are surface
energy terms.

Let us consider an infinitesimal function variation δθ(x) of θ. Show that extrema
of F are determined by the following relationships:

∂θF − dx (∂dxθF ) = 0 (I.41)

dθEA − ∂dxθF |A = 0 (I.42)

dθEB + ∂dxθF |B = 0 (I.43)

Notice that equations Eq. (I.42) and Eq. (I.43) differ in sign because a surface
quantity should be defined with respect to the unit vector normal to the surface,
with a unique convention for the sense, such as the outwards normal. Here the
abscissa x is outwards for pointB however inwards at A. An alternative microscopic
explanation would be that for a given sign of dxθ the exchange torque exerted on a
moment to the right (at point B) is opposite to that exerted to the left (at point
A), whereas the torque exerted by a surface anisotropy energy solely depends on θ.

2.2. Micromagnetic Euler equation

Apply the above equations to the case of micromagnetism [Eq. (I.39)]. Starting
from Eq. (I.41) exhibit a differential equation linking E[θ(x)] with dxθ. Equations
I.42-I.43 are called Brown equations. EA(θ) and EB(θ) may be surface magnetic
anisotropy, for instance. Discuss the microscopic meaning of these equations.

Comment the special case of free boundary conditions (all bulk and surface
energy terms vanish at A and B), in terms of energy partition. Now on we switch
back to the physics notation E for the total energy, instead of F . Show that it can
be expressed as:

E = 2

∫ θ(B)

θ(A)

√
AE(θ) dθ (I.44)

2.3. The Bloch domain wall

Let us assume the following free boundary conditions, mimicking two extended
domains with opposite magnetization vectors separated by a domain wall whose
profile we propose to derive here: θ(−∞) = 0 and θ(+∞) = π. We will assume the
simplest form of magnetic anisotropy, uniaxial of second order: E(θ) = Ku sin2 θ.

Based on a dimensional analysis give approximate expressions for both the do-
main wall width δ and the domain wall energy E . What are the SI units for E?
Discuss the form of these quantities in relation with the meaning and effects of
exchange and anisotropy.
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Figure I.9: Bloch domain wall profile: the exact solution (red dots) versus the
asymptotic profile (red line). The solution with linear ersatz is shown as a dark line.

By integrating the equations exhibited in the previous section, derive now the
exact profile of the domain wall:

θ(x) = 2 arctan[exp(x/∆)] (I.45)

and its total energy E .

The most common way to define the Bloch domain wall width δBl is by replacing
the exact θ(x) by its linear asymptotes (red line on Figure I.9). To shorten the
expressions we often use the notation ∆ =

√
A/Ku, called the Bloch parameter.

Derive δBl as a function of ∆.

Let us stress two issues:
• The model of the Bloch wall was named after D. Bloch who published this

model in 1932[25].

• As often in physics we have seen in this simple example that a dimensional
analysis yields a good insight into a micromagnetic situation. It is always
worthwhile starting with such an analysis before undertaking complex ana-
lytical or numerical approaches, which especially for the latter may hide the
physics at play.

• We have exhibited here a characteristic length scale in magnetism. Other
length scales may occur, depending on the energy terms in balance. The
physics at play will often depend on the dimensions of your system with respect
to the length scales relevant in your case. Starting with such an analysis is
also wise.

• when the system has a finite size the anisotropy and exchange energy do not
cancel at the boundaries. The integration of Euler’s equations is more tedious,
involving elliptical functions.
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Problem 3: Extraction and vibration magnetome-

ter

3.1. Preamble

Here we consider the principle of extraction magnetometry, either in full quasi-dc
extraction operation, or in the vibration mode (Vibrating Sample Magnetometer,
VSM). Their purpose is to estimate the magnetic moment held by a sample, possibly
as a function of field, temperature, time etc. The general principle is to move a
sample along the axis of a coil of radius R. This induces a change over time of
the flux in the coil, arising from the sample, which may be measured thanks to
the induced electromotive force (EMF)I.11. In a so-called extraction magnetometer
the sample is moved sufficiently away from end to the other along the axis so as
to nearly cancel the flux, resulting in an absolute measurement of the flux. In a
vibrating sample magnetometer the sample vibrates along the axis at several tens
of hertz close to the coil, inducing a large EMF and opening the use of a lock-
in technic to further reducing the noise, however the full extraction curve is not
measured, resulting in higher sensitivity to artefacts, as will be discussed below.

3.2. Flux in a single coil

Based on the Biot and Savart formula, express as a vector the induction B(z)
arising along the axis of a circular coil of radius R with electrical current I. Below
is reminded the Biot and Savart formula expressing at an arbitrary location M in
space the infinitesimal induction δB arising from a current I on an infinitesimal
element δl at location P :

δB =
µ0Iδl(P )×PM

4πPM3
(I.46)

For reaching a high sensitivity the coil is wound several time, N � 1. In the
following we will assume N = 1000 for numerics. We will assume here that the
location of all loops is the same. Based on the reciprocity theorem for induction,
derive the magnetic flux Φ(z) in the series of coils, arising from a pinpoint magnetic
moment µ located on the axis of the coil. Φ(z) will be expressed as Φ(z) = Kf(z),
with f(z) a dimensionless function. Draw a schematics of f(z)
Numerics: what is the uniform magnetic induction that would be required to
create a flux in these coils, equivalent to that of a square piece of thin film of
iron of lateral size 1 cm and thickness 1 nm (reminder: the magnetization of iron is
≈ 1.73×106 A/m). Comment with respect to the magnitude of the earth magnetic
field.

3.3. Vibrating in a single coil

The sample is now moved periodically along the axis of the coil, around the
location z0: z(t) = z0 + ∆z cos(ωt). Based on a first-order expansion in ∆z/z0,

I.11An alternative and very sensitive device for measuring the flux through a coil is SQUID:
Superconducting Quantum Interference Device
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derive the EMF e(t) induced in the coil. Draw a schematics of this curve. At which
position is found the maximum of magnitude for e(t)?
Numerics: calculate the magnitude of e(t) arising from the iron thin film mentioned
above with a frequency of 30 Hz and ∆z = 1 mm. Comment about this value.

3.4. Noise in the signal

Figure I.10: Geometry for
two coils winded in oppo-
site directions

Owing to a mechanical coupling the coils for mea-
surement vibrate with angular frequency ω in the sup-
posedly static induction B applied to magnetize the
sample. Let us assume that due the coils’ imperfec-
tions or finite size this induction displays an inhomo-
geneity ∆B at the spatial scale for vibration of the
sample. Derive the EMF induced in the measuring
coils due to this inhomogeneity.
Numerics: vibration of magnitude 1µm in an induc-
tion of strength 1 T, with a relative change of 10−3

over a distance of 5 mm. Comment the value.

3.5. Winding in opposition

The above noise can be reduced by using two coils
with same axis, measured in series however wound in
opposite senses (Figure I.10). The measured EMF is
then etot(t) = e2(t)−e1(t), and the sample is vibrated
at equal distance from the two coils, at the position z0

such that the signal is maximum (see above). Why is
the above noise significantly reduced? Comment this
setup with respect to the Helmoltz geometry for two
coils.

Problem 4: Magnetic force microscopy

This problem is an extension of the short paragraph about magnetic force mi-
croscopy in this chapter. This paragraph should be read first, before addressing this
problem.

4.1. The mechanical oscillator

The dynamics of the AM cantilever is modeled by a mechanical oscillator:

m
d2z

dt2
+ Γ

dz

dt
+ k(z − z0) = F (z, t) (I.47)

F (z, t) is a force arising from either the operator or from the tip-sample in-
teraction, and z0 is the equilibrium position without applied force. m, Γ and k
are the oscillator mass, damping and stiffness, respectively. We use the notation
ω0 =

√
k/m and Q =

√
km/Γ, the latter being called the quality factor.

Rewrite Eq. (I.47) with the use of ω0 and Q. The cantilever is excited by the
operator with F (t) = Fexce

jωt. Provide the transfer function H = z/F , the gain G =
|H| and phase shift ϕ = arg(H), as well as the following quantities, at resonance:
angular velocity ωr, magnitude zr and phase ϕr. For the case Q � 1 calculate the
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magnitude at resonance, and the full-width at half maximum (FWHM) ∆ωr of the
resonance peak. Comment.

4.2. AFM in the static and dynamic modes

The cantilever is brought in the vicinity of the surface, inducing a non-zero force
F (z) between the tip and sample, adding up to the sinusoidal from the operator.
For the sake of simplicity we will model the variations of F using a simple affine
function: F (z) = F (z0) + (z − z0)∂zF .

Calculate the new position at equilibrium zeq. Rewrite Eq. (I.47) in this case, and
in the case Q � 1 the normalized change of resonance angular velocity δωr/ω0. In
most cases the cantilever is excited at a constant frequency ωexc and the force gradi-
ent is monitored through the change of frequency ∆ϕ. Show that ∆ϕ = (Q/k)∂zF .

4.3. Modeling forces

We assume here that the magnetization configurations of both the tip and the
sample are not influenced one by another. The vertical component of the force
applied by the sample on the tip is F = −∂zE , where E is the mutual energy. The
tip may be modeled either by a magnetic dipole µ, or by a magnetic monopole q) (in
practice tips may be modeled by a linear combination of both components). For
both models express to which z derivative of the vertical component of the sample
stray field Hd,z are proportional the deflection in the static AFM mode, and the
frequency shift in the dynamic AFM mode.

Numerical evaluation – A typical MFM cantilever has Q = 1000 and k =
4 N/m. Modeling both the tip and samples by a magnetic dipole made of Co with a
diameter 25 nm, and assuming a probing distance of 50 nm, provide a crude estimate
of the frequency shift expected. Comment.



Chapter II

Magnetism and magnetic domains
in low dimensions

1 Magnetic ordering in low dimensions

1.1 Ordering temperature

The main feature of a ferromagnetic body is spontaneous ordering below a critical
temperature TC, called Curie temperature. It was Weiss who first proposed a mean-
field approach to describe the ordering. In this theory it is postulated that the local
moments feel an internal magnetic field

Hi = nWMs + H (II.1)

where H is the external field, and nWMs is the co-called molecular field. This is a
phenomenological representation of magnetic exchange, whose quantum-mechanical
origin was not known at the time. A semi-classical description allows to link the
Heisenberg hamiltonian Ĥ = −2

∑
i>j Ji,jŜi.Ŝj with nW:

2ZJi,j = µ0nWng
2
JµB

2 (II.2)

where Z is the number of nearest neighbors, n the volume density of sites, each
holding a dimensionless spin S bounded between −J and +J , associated with total
magnetic moment µJ = gJJµB

II.1. Based on the site susceptibility related to the
Brillouin functionBJ , the expected ordering temperature may be expressed as:

TC =
2ZJi,jJ(J + 1)

3kB

(II.3)

The expected Curie temperature is therefore proportional to Z. Let us now draw
trends for the Curie temperature in low dimensions. To do this we consider a
thin film as a model system, and extend the mean-field approach to averaging the
number of nearest neighbors over the entire system. For a film with N layers of sites
with magnetic moments we get: ZN = Z + 2(Zs − Z)/N where Zs is the number
of nearest neighbors of each of the two surface/ interface layers (Figure II.1a). As
Zs < Z we immediately see based on Eq. (II.3) that the ordering temperature should

II.1Beware of this local possible confusion between the exchange constant J , and the total angular
momentum J .

39
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Figure II.1: Magnetic ordering in low dimensions, here with N = 5 atomic layers.
(a) Counting the reduced average number of nearest neighbors in a thin film with
N atomic layers. Example of an experimental determination of (b) the temperature
dependence of magnetization and (c) the Curie temperature in various ultrathin film
materials[27].

be reduced with a 1/t law. Our handwavy considerations are confirmed by a more
rigorous layer-dependent mean-field theory[26]. Going beyond mean-field, one may
find other critical exponents λ for TC ∼ t−λ. .

As a rule of thumb, following Eq. (II.3) TC should be decreased to half the
bulk ordering temperature for N equaling one or two atomic layers. Figure II.1b-c
shows the Ms(T ) variation and the Curie temperature measured for several types
of ultrathin films, where the latter prediction appears largely valid, although the
scaling law is best fitted with λ = 1.27± 0.20.

Finally, the Ms(T ) law again depends on the model used (dimensionality, type
of moment, ordering model), and so do critical exponents in both limits of T → 0+

and T → TC
−. In the low temperature range the decay is dominated by spin waves

and follows a Bloch law:

Ms(T ) = Ms(T = 0 Ku)[1− bNT 3/2] (II.4)

whereas mean-field theory predicts an exponentially-weak decay. bN is the spin-
wave parameters, which again happens to be thickness-dependent and well fitted
with a 1/t law[27]. The case of a truly two-dimensional system should clearly be
treated on a different footing due to the absence of out-of-plane excitations. While
Onsager derived an expression for the finite Curie temperature in a 2d array of
Ising spins[28], the Mermin and Wagner theorem states that long-range ordering is
not expected to occur at finite temperature for a 2D array of Heisenberg spins; the
divergence of susceptibility is found only for T → 0 K. This problem has long excited
experimentalists, with no report of absence of ferromagnetism in a 2d system. The
reason is that an energy gap is opened in the spin-wave spectrum as soon as magnetic
anisotropy sets in, of magnetocrystalline origin[29] or even simply magnetostatic[30].

Said in a handwavy fashion, any source of anisotropy mimics Ising spins at sufficiently
low temperature, going in the direction of the Onsager solution.



II.1. Magnetic ordering in low dimensions 41

Figure II.2: Schematics of the effect of band narrowing on Stoner criterium and the
magnitude of the magnetic moment.

In one dimension thermal fluctuations have an even stronger impact, leading to
absence of ordering at any finite temperature even for Ising spins. Thus the corre-
lation length is not expected to diverge until truly zero temperature. Experimental
results pertaining to such systems is available and indeed points at the existence of
finite-size spin blocks[31].

1.2 Ground-state magnetic moment

Here we discuss the magnitude of the ground-state spontaneous magnetization at
zero temperature. The case of itinerant magnetism in 3d metals is particularly well
documented, and the general trend is physically interesting. Let us consider the case
of a free-standing layer, i.e. with no supporting nor capping material. Due to the
loss of coordination at both surfaces, 3d bands are expected to narrow (Figure II.2).
As the total number of electrons is conserved this should help satisfying Stoner
criterium Iρ(εF) where I is the exchange integral and ρ(εF) the density of electrons
for each spin channel. This in turn should enhance the imbalance of the number of
occupied states in both spin channels, and thus magnetization. This trend may be
understood as moving towards free electron magnetism were Hund’s rules apply and
orbital momentum is not quenched, hence giving rise to a larger magnetic moment
per atom. In most systems this trend is confirmed through ab initio calculations
and observed experimentally[27]. Exceptions (reduction of moment with respect to
the bulk) may be explained by phenomena whose consequences are more difficult
to predict such as epitaxial or surface strain, dislocations, hybridization and charge
transfer with an interfacial material, quantum-size effects. . . . Mainly the latter play
a role in more localized magnetism, leading to effects more difficult to predict.

Thin films are easy to model and simulate thanks to translational invariance.
However low-dimensional effects arise equally in other systems such as clusters. The
magnetic moment per atom has been measured to be clearly enhanced in these, evi-
denced in-flight with Stern-Gerlach experiments or capped with sensitive techniques
such as XMCD[32]. The Stoner criterium may even be fulfilled in clusters, while it
is not in the bulk form. A famous case is Rhodium[33, 34].
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Conclusion

We have reviewed the basics of ferromagnetic ordering in low dimensions
for itinerant magnetism. The general trend is that of two competing
effects. The zero-temperature ground state displays a moment gener-
ally larger than that of the bulk, due to band narrowing. An opposite
trend if the enhanced decay of magnetization with temperature. At fi-
nite temperature both effects compete, requiring care in the analysis of
measurements.

2 Magnetic anisotropy in low dimensions

We first consider magnetostatic anisotropy, long-ranged and related to the outer
shape of a system. We then consider the magnetic anisotropy of microscopic origin,
arising from spin-orbit and the crystal electric field. These are magnetocrystalline
and magnetoelastic anisotropies, which were introduced in sec.3. We consider thin
films as a model system, however those concepts apply to all low-dimensional sys-
tems, however in a more complex manner.

2.1 Dipolar anisotropy

In sec.4.3 we introduced the concept of demagnetizing factors. These were calculated
on the assumption that the system under consideration is uniformly magnetized.
Although this may be questionable in some cases even under applied field, in the
present section we will rely on these factors for a first discussion. In this framework
we have seen [Eq. (I.25)] that the dipolar contribution to magnetic anisotropy reads,
after proper diagonalization defining the so-called main directions of anisotropy:
Ed = −KdNimi, and the internal so-called demagnetizing f477ield reads Hd =
−NiMiui, where i runs over all three main directions, and Nx +Ny +Nz = 1.

For thin films Nx = Ny = 0 along the two in-plane directions, resulting in
zero demagnetizing field and demagnetizing energy. Nz=1, resulting in Ed = Kd

and Hd = −Msuz for perpendicular magnetization. The resulting demagnetizing
induction µ0Ms is of the order of one Tesla for common materials (Table I.2).

Unless the material displays a very large microscopic energy, or a very strong field is
applied perpendicular to the plane, the magnetization of a thin film lies preferentially
in-the-plane.

For cases other than films, however of reduced dimension in at least one direction,
we will speak of nanostructures. The demagnetizing factors are all three non-zero,
and again if no microscopic energy or applied field applies, the magnetization will
have a tendency to point along the direction with the lowest demagnetizing factors.

Let us add a fine point often subject to controversy, however of great importance
for domains and magnetization reversal in nanostructures: the range of dipolar in-
teractions. Dipolar interactions are commonly described as long-ranged. This is
so because the stray field from a magnetic dipolar decays with distance like 1/r3.
Thus, an upper bound for the stray field at a given location is of type

∫
(1/r3)4πr2dr,

summing over the entire system magnitudes instead of vectors. This diverges log-
arithmically (however converges if vectors are considered instead of magnitudes),
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Figure II.3: Definition of axes for a cubic crystal projected along the (110) plane.

revealing the long range of dipolar fields. More precisely, it is straightforward to
show that what matters is the solid angle under which a surface density of charges
is seen, not its distance. Let us now consider a flat system, for instance an el-
ement patterned out of a thin film with lithography. The upper bound becomes∫

(1/r3)2πrdr, which converges to a finite value with a radius of convergence scaling
with the sample thickness. In other words:

Dipolar energy is short-ranged in two dimensions. This can be understood in a handwavy
manner as most stray field escapes in the third dimension, not contributing to the self
energy −(1/2)µ0MsHd. This implies that stray- and demagnetizing fields are often
highly non-homogeneous, with important consequences on both magnetization patterns
and magnetization reversal processes. For the same reason, the concept of demagnetizing
factors and shall be used with great care in such cases

Elements with two flat surfaces (made out of a thin film) and with a circular or ellipsoid
shape are not ellipsoids. Their demagnetizing field is therefore highly non-uniform, as
for all flat elements.

2.2 Projection of magnetocrystalline anisotropy due to dipo-
lar energy

One consequence of magnetostatic energy is to favor the alignement of magnetization
in directions with small demagnetizing coefficients. If magnetostatic energy prevails
over magnetocrystalline anisotropy energy, the magnetization will tend to lie in
certain planes or directions imposed by the former, while the latter will play a role
only through its projection in these planes or directions. Let us consider the example
of a cubic material; its magnetocrystalline anisotropy is described by Eq. (I.8), whose
magnitude is measured through the parameter K1c. If K1c is much smaller than Kd

then the direction of magnetization will be imposed by the latter, for instance in-
the-plane for a thin film (sec.4.3). As an example, let us consider a cubic crystal
cut along a (110) plane (Figure II.3). When restricted to ϕ = 90◦, Eq. (I.8) reads:

Emc,cub = K1c sin2 ϕ+ (−3

4
K1c +

1

4
K2c +K3c) sin4 ϕ+ . . . (II.5)

Then, the effective anisotropy in the plane becomes uniaxial.
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We illustrated a feature of symmetries with application to many fields in physics, such
as bulk versus surface crystallography: considering of a function defined in a space with
d dimensions and displaying certains symmetries, its projection or restriction into a
sub-space of dimension lower than d does not necessarily preserve or restrict the initial
symmetry, even if the sub-space is an element of symmetry of the initial function.

2.3 Interface magnetic anisotropy

The local environment of atoms differs at both surfaces of a thin film with respect
to the bulk one. In 1954 L. Néel suggested that this breaking of symmetry induced
by the loss of translational invariance along the normal to the film, should result
in an additional term to magnetic anisotropy. This was well before technology
enabled to produce films so thin and well characterized that experiments could
suggest the effect. This additional term is called surface magnetic anisotropy, or
interface magnetic anisotropy, or also Néel magnetic anisotropy II.2.

As for magnetocrystalline anisotropy, interface anisotropy may favor an easy di-
rection or an easy plane, and be decomposed in angular terms with various orders.
As it applies only once per each interface, its effects becomes vanishingly small at
large thickness. In practice it is observed that its effect becomes negligible beyond
a few nanometers. One speaks of ultra thin films in this range smaller than char-
acteristic length scales, where magnetization is obviously allowed to vary along the
thickness. At a given lateral position its magnetizationII.3 may be described as a sin-
gle vector, the so-called macrospin, on which apply both surface and bulk magnetic
anisotropy. As a simple example let us assume that both terms are uniaxial along
the same axis, with two identical surfaces. The resulting anisotropy then reads
Kvt + 2Ks with Kv and Ks the volume and surface contributions. The effective
density of energy thus reads:

Keff = Kv +
2Ks

t
(II.6)

Following this, the usual way to estimate Ks in theory and experiments is to plot Keff

versus 1/t. The intercept with the y axis should yield the bulk anisotropy, while the
slope should yield Ks (Figure II.4). Interfacial anisotropies between various types of
materials has thus been tabulated[27, 36]. Ks indeed depends on the material, may
be of different sign, and is of the order of 0.1 mJ.m−2.

In its 1954 model Néel proposed the estimation of an order of magnitude for
Ks values, based on the phenomenological analogy between removing the atoms to
create an interface, and pulling them away infinitesimally. Ks was then linked with
magneto-elastic constants of the material, with surprisingly a good agreement on
the order of magnitude, although the exact value and even the sign may be wrong.
The so-called pair model of Néel aims at describing the direction and material-

II.2In principle interface is appropriate to describe a thin magnetic film in contact with another
material while surface is appropriate to describe a free surface (in contact with vacuum). This
latter case is in principle restricted to fundamental investigations performed in situ in UHV, where
a surface may remain free of contaminant for some time. In practice, both terms are often used
interchangeably
II.3More precisely its moment per unit area, thus expressed in Amperes



II.2. Magnetic anisotropy in low dimensions 45

dependence of surface anisotropy by counting the bounds between a surface atom
and the neighbors, and associate them with a uniaxial angular function.

Figure II.4: A historical example
of 1/t plot for evaluating interfa-
cial anisotropy[35].

Theory can also be used to evaluate Ks val-
ues. Letting aside ab initio calculations, for 3d
metals tight binding links magnetocrystalline
anisotropy with the anisotropy or the orbital
magnetic moment. For a uniaxial anisotropy
the energy per magnetic atom is:

κ = α
ξ

4µB

∆µL. (II.7)

ξ is the spin-orbit coupling, defined by con-
tribution −ξŜ.L̂ to the Hamiltonian. ∆µL is
the difference of orbital magnetic moment be-
tween hard and easy directions, and α is a fac-
tor close to unity and only weakly related with
the details of the band structure.

In bulk 3d metals the orbital momentum
is nearly fully quenched because crystal elec-
tric field energy dominates over spin-orbit, and
eigen functions in a cubic symmetry should
have nearly zero orbital momentum. Thus
∆µL are very weak, typically of the order of
10−4 µB/atom, yielding K ≈ 104 J/m3. At
both surfaces and interfaces this anisotropy is enhanced close to 0.1µB/atome, in-
ducing an anisotropy of energy of the order of 1 meV per surface atom, which lies
close to 1 mJ/m2. The link between surface magnetic anisotropy and ∆µL has
been checked experimentally and by ab initio calculations to be essentially valid.
Some experiments hint at a quantitative link between bulk and surface magnetic
anisotropy[37], however the universality of this link remains speculative.

The most dramatic consequence of surface magnetic anisotropy, with also of
technological use, arises when Ks favors the alignement of magnetization along the
normal to a thin film : Es = Ks cos2(θ) with Ks < 0 and θ the angle between mag-
netization and the normal to the film. If Eq. (II.6) is negative and becomes greater
in absolute value than Kd for a realistic critical value of thickness tc, magnetization
will point spontaneously along the normal to the film. This is perpendicular mag-
netic anisotropy (PMA). For a long time the most efficient interfaces to promote
PMA combined 3d elements for the ferromagnet, and a heavy element to bring in
spin-orbit. Prototypical examples are Co/Au, Co/Pt and Co/Pd. tc is of the order
of 2 nm or less. Recently even larger contributions to perpendicular anisotropy, and
thus larger critical thicknesses (up to 3.5 nm), have been reported at the interface
between 3d metals and oxides, with the prototypical case of Co/MgO. If films thicker
than this are needed with perpendicular magnetization, a route is the fabrication of
multilayers[36].
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2.4 Magnetoelastic anisotropy

The concept of magnetic surface anisotropy has been presented above as a textbook
case. In fact it is not the single source of modification of magnetic anisotropy
in ultrathin films. We review here an equally important source, magnetoelastic
anisotropy.

In the bulk form strain may be obtained through stress applied by an external
user. Strain is always present in thin films to some extent even at rest. This is due
to the effect of the supporting material (and to some smaller extent the capping
material), which having a lattice parameter and possibly symmetry different from
that of the overgrown magnetic material, stresses the latter. Stress may also appear
upon cooling (resp. warming up) thin films fabricated at high (resp. low) tempera-
ture. This results in a strain field in the magnetic film, generally not uniform, which
gives rise to a magnetoelastic contribution to the total MAE.

One should not confuse strain with stress. The former is the deformation, the latter is
the force related to the strain.

To first order magnetoelastic anisotropy is proportional to the matrix elements
of strain. Group theory predicts the type of coupling terms[38], not their strength.
In thin films there clearly exists an asymmetry between out-of-plane and in-plane
directions: stress is applied in the latter, while along the former the film is free to
relax. This results in a uniaxial magnetoelastic contribution.

Let us understand the qualitative effect of magnetoelasticity in thin films using a
simple model. We consider the epitaxial growth of a film material (lattice parameter
af) on a substrate (lattice parameter as), the latter being assumed to be rigid. The
lattice misfit is defined as η = (af−as)/as. During growth the deposited material will
tend to relax its strain ε = (a− af)/af through, e.g., the introduction of interfacial
dislocations. We further assume that the linear energy cost per dislocation k does
not depend on the density of dislocations, and that each dislocation allows the
coincidence of N + 1 atoms of the film with N substrate atoms (resp., the reverse),
which corresponds to negative (resp. positive) η. Working in a continuum model,
the density of mechanical energy of the system is :

Emec =
1

2
Cε2 +

k

taf

|η + ε− ε2| (II.8)

where t is the film thickness and C a elastic constant. The equilibrium value for a
is found through minimization of this equation with the constraint |ε| < |η|:

• Below the critical thickness tc = k/(asC|η|) the introduction is dislocation is
unfavorable, and a = as. The layer is said to be pseudomorph. As a rule of
thumb, tc ≈ 1 nm for η ≈ 2 − 5 %. This value is however dependent on the
crystal symmetry, growth temperature and technique of deposition.

• Above ef dislocations are created and reduced strain, following: |ε(e)| =
k/(asCt).

What what have described so far is a structural model, proposed in 1967 by
Jesser[39]. In 1989 Chappert et Bruno applied this model to magneto-elasticity[40].
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They considered linear magneto-elastic termsII.4. As a simple case, let us assume that
all deformations may be expressed in terms of ε, so that Emel = Bε with B a coupling
constant. Based on the structural model of Jesser we derive: Kmel = kB/(asCt).
Beyond the pseudomorphic regime we therefore expect a dependence of Kmel with
1/t, thus exactly like for a contribution of magnetic interface anisotropy. In most
cases magneto-elasticity and surface anisotropy are intermingled in thin films; it
is almost impossible experimentally and conceptually to disentangle them. Never-
theless, it remains common to designate as surface anisotropy the total effective
contribution revealed as a 1/t variation of the density of magnetic anisotropy.

2.4.a Anisotropy resulting from the synthesis process

Following the above, it might be expected that beyond a few nanometers of thickness,
the anisotropy of thin films is similar to that of bulk. While this is often the case,
there are cases of persistence for large thickness of a magnetic anisotropy different
from the bulk one.

A first reason is the the Jesser model considers the minimum of energy. In
practice this minimum may not be reached perfectly due to the energy barriers
required to create dislocations, and it is often the case that thin films retains a
fraction of percent if strain. The exact value strongly depends on the couple of
materials, the orientation of the grains, the conditions and technic of deposition.

A second reason for the persistence of deviations from bulk anisotropy is the often
fine microstructure induced by the growth method. The microstructure may take the
form of grains separated by grains boundaries, incorporated of foreign atoms (like
Ar during sputtering growth), an anisotropic orientation of atomic bounds etc. This
effect has dramatic consequences for materials with large magnetostriction such as
3d-4f compounds, which can be tailored to display perpendicular anisotropy for fairly
thick films. It is also possible to tailor a uniaxial anisotropy between two in-plane
directions, through deposition under an applied field like for Permalloy (Ni80Fe20),
or deposition with oblique incidence or on a trenched surface. Another elegant
technique to tailor the anisotropy of thin films is irradiation with ion of medium
energy. This irradiation may be done during growth or post-growth. When the
irradiation energy is suitably chosen, the ions may either favor the mixing of atoms
or their segregation, depending on the thermodynamics trend for alloying on phase
separation. Irradiating thin films with perpendicular anisotropy, the former leads
to a decrease of anisotropy, while the latter leads to an increase. Irradiation may be
combined with masks to deliver films with patterned anisotropy, however no changes
in topography[42].

Conclusion

Contributions to magnetic anisotropy of energy in thin films include
magnetostatic, magnetocrystalline, interfacial and magnetoelastic ener-
gies. For very thin films the latter two often dominate in the nanometer
range of thickness, opening the way to beating dipolar anisotropy to
display perpendicular magnetization.

II.4It was recently shown that non-linear effects may be important in thin films[41]. This effect
had not been reported in bulk materials, where plastic deformation sets in well before strain values
large enough for non-linearities may be reached
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Figure II.5: Schematics for (a) a Bloch domain wall and (b) a Néel domain wall.

3 Domains and domain walls in thin films

3.1 Bloch versus Néel domain walls

In sec.6.5.csec.?? we considered a textbook case of domain-wall: the Bloch domain
wall, resulting from the competition of exchange energy against magnetocrystalline
anisotropy. A translational invariance along both directions perpendicular to the
domain wall was assumed, so that the problem boiled down to a unidimensional
equation that can be solved.

Translational invariance makes sense in the bulk, where domain walls may ex-
tend laterally on distances much longer than their width. This hypothesis becomes
questionable in thin films, where the core of a Bloch domain wall, displaying perpen-
dicular magnetization, induces the appearance of magnetic charges at both surfaces
of the thin film (Figure II.5a).

L. Néel was first in addressing this issue and providing a rule-of-thumb predic-
tion for a cross-over in the nature of domain walls in thin films[43]. In a thin film of
thickness t he considered a domain wall of bulk width w ≈ ∆u, such as determined
from exchange and anisotropy energies. He took into account the finite size effect
along the normal to the film, modeling the domain wall as a cylinder of perpendicular
magnetization with an elliptical cross-section of axes w×t (Figure II.5). For a Bloch
domain wall the resulting density of magnetostatic energy is Kd w/(w + t), based
on demagnetizing coefficients (Table I.3). When t < w it becomes more favorable
for magnetization in the core of the domain wall to turn in-the-plane, for which the
density of magnetostatic energy is Kd t/(w + t) (Figure II.5b). This configuration
where magnetization turns in-the-plane, i.e. perpendicular to the domain wall, is
called a Néel wall.

In the above model the core of the domain wall was assumed to be rigid and uni-
formly magnetized. Besides, its energy was calculated crudely, and is not suitable for
soft magnetic materials where magnetostatic energy dominates magnetic anisotropy
so that no natural width of the domain wall exists. The phase diagram of Bloch
versus Néel wall can then be refined using micromagnetic simulations. These show
in the case of soft magnetic material that Néel walls become stable for thickness
below 7∆d (already below 15− 20∆d for cross-tie walls, see next paragraph)e.g. for
50 nm for Permalloy and 20 nm for Fe[44].

Micromagnetic simulations also revealed a phase diagram more complex than
merely Bloch versus Néel walls (Figure II.6a). Going towards large thicknesses do-
main walls undergo a breaking of symmetry with respect to a vertical plane; they are
named asymmetric Néel wall and asymmetric Bloch wall, and were first proposed
in 1969 through both micromagnetic simulation[45] and an ersatz model[46]. Let us
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(a) (b)

Figure II.6: (a) phase diagram of domain walls in thin films, calculated for practical
reasons in a stripe of finite width[44] (b) one of the first success of micromagnetic
simulation, predicting the existence of the asymmetric Bloch domain wall[45].

examine the detail of the asymmetric Bloch wall, of higher practical interest (Fig-
ure II.6b). Close to the surface the magnetization turns in-the-plane; this may be
understood from the necessity to eliminate surface magnetic charges to decrease
magnetostatic energy, or in other words to achieve a flux-closure state. The surface
profile of magnetization is similar to that of a Néel wall, later motivating the name
of Néel cap do designate this area of flux-closure[47]. Notice that the center of the
Néel cap is displaced from the vertical of the core of the Bloch wall, explaining the
name asymmetric for this domain wall. This asymmetry arises so as so reduce now
volume magnetic charges, balancing ∂xmx with ∂zmz terms in the divergence of M.
Close to the transition from Bloch to Néel the cross-section of the asymmetric Bloch
wall looks similar to a vortex, so that the name vortex wall is sometimes used.

3.2 Domain wall angle

We define as wall angle θ, the angle between the direction of magnetization in two
neighboring domains. The properties of a domain walls as a function its angle
depend on parameters such as film thickness t, anisotropy strength and symmetry.
Here we restrict the discussion to rather soft magnetic materials in rather thin films,
so that most of the energy of a domain wall is of magnetostatic origin.

The density of volume charges in an extended domain wall is −∂xMx, where x is
the coordinate along the in-plane axis perpendicular to the domain wall (Figure II.7).
Generally a wall is induced to bisect the direction of magnetization of the two
neighboring domains, so that is bears no net magnetic charge and thus does not
contribute significantly to magnetostatic energy through a long-range 1/r decay of
stray field (Figure II.7). Following Néel, we model the core of the domain wall with
a cylinder of elliptical cross-section, and estimate its energy through the suitable
demagnetizing coefficient.

We first consider a Néel wall. The total quantity of charge in each half of the
elliptical cylinder scales with 1− cos(θ/2), which can be replaced with a reasonable
accuracy with θ2/8. As dipolar energy scales with the square of charges, and as-
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Figure II.7: Wall angle and magnetostatic charges. (a) A wall that would not
bisect the direction of magnetization in the neighboring domains would bear a net
charge (b) A wall bisecting the magnetization directions in neighboring domains is
associated with a dipolar line.

suming that the domain wall width does not depend significantly on the wall angle,
we come to the conclusion that the energy of a Néel domain wall varies like θ4.

We now consider a Bloch wall. Volume charges can be avoided if mx is uniform
and equal to cos(θ/2) from one domain to the other, through the domain wall. This
means that, apart from the case θ = 180◦, the core of such a wall has both in-plane
and out-of-plane components, the latter equal to

√
1− cos2(θ/2) = sin(θ/2). Thus

the magnetostatic energy a Bloch wall scales like sin(θ/2) ≈ θ2/4.

The energy of a domain wall depends on its angle θ. In this films the energy of a Néel
wall varies like θ4, much faster than that of a Bloch wall, varying like θ2.

3.3 Composite domain walls

Dramatic consequences result from the convex variation of domain wall energy with
angle outlined above. To set ideas, the cost per unit length of a 90◦ Néel wall is less
than 10 % that of a 180◦ Néel wall. This means that a 180◦ Néel wall may be unstable
and be replaced by walls of smaller angle, even is this implies an increase of the
total length of domain wall. This is confirmed experimentally with the occurrence
of composite domain walls.

One type of composite domain wall is the so-called cross-tie (Figure II.8a-b). It
can be checked that each wall fulfils is bisecting the neighboring domains. Cross-tie
domain walls occur only in soft magnetic material, because the extended domain
with different orientations shall not come at the expense of an anisotropy energy.
Notice also that as the energy of a Bloch wall scales like θ2 whereas that of a Néel
scales like θ4 (see previous paragraph), 180◦ Bloch walls are replaced with cross-tie
walls for a thickness larger than that predicted by the Néel model for the cross-over
between Bloch and Néel.

Another type of composite wall is the zig-zag domain wall. Although domain
walls tend to bisect the direction of neighboring domains, it may happen due to the
history of application of field and nucleation of reversed domains, that two domains
face each other and are each stabilized, e.g. by a uniaxial anisotropy or a gradient
of external field with opposite signs. A 180◦ is unstable as the net magnetostatic
charge carried would be Ms, the largest possible value. In this case the domain
wall breaks into short segments connected in a zig-zag line (Figure II.8c-d). Along
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Figure II.8: Composite domain walls in thin films: (a-b) Schematics and MFM image
(13 × 15µm)[48] of a cross-tie wall. On the schematics open and full dots stand
for vortices and antivortices, respectively (c-d) schematics and Kerr image(350 ×
450µm)[6] of a zig-zag wall.

the segments the walls have a tendency to turn 180◦ to be free of volume charges,
implying some continuous rotation of magnetization in the dihedron formed by two
consecutive segments. The angle of the zig-zag is determined by a complex balance
between the reduction of magnetostatic energy due to the net charge, versus the
increase of energy through the wall length, and anisotropy and exchange energy in
the domains.

3.4 Vortices and antivortex

The inspection of Figure II.8a reveals the existence of loci where, from symmetry
and continuity arguments, the direction of magnetization may be in no direction in
the plane. These were called Bloch lines, consisting of a cylinder of perpendicular
magnetization separating two Néel walls with opposite directions of in-plane mag-
netization. The direction of perpendicular magnetization in a Bloch line is called
the polarity, and summarized by the variable p = ±1. Bloch lines also occur inside
Bloch walls, separating parts of the wall core with opposite directions of perpen-
dicular magnetization. Thus Bloch lines are the one-dimensional analogous domain
walls, separating two objects of dimensionality larger by one unit. In Bloch lines
exchange and dipolar energy compete, yielding a diameter scaling with ∆d, of the
order of 10 nm in usual materials.

It is useful to introduce the concept of winding number defined like:
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n =
1

2π

∫
∂Ω

∇θ.d` (II.9)

where ∂Ω is a path encircling the Bloch line, and θ is the angle between the in-plane
component of magnetization and a reference in-plane direction. Applied to the cross-
tie wall, this highlights alternating Bloch lines with n = 1 and n = −1 (resp. open
and full dots on Figure II.8a). The former are also called vortex and the latter anti-
vortex. Notice that through the transformation of a translation-invariant Néel wall
with no Bloch line into a cross-tie wall, the total winding number is thus conserved.
This is a topological property, which will be further discussed in the framework of
nanostructures (see sec.4).

We also introduce the chirality number:

c = − k

2π
.

∫
∂Ω

∇m× d` (II.10)

where k is the normal to the plane defining its chirality. On Figure II.8a) vortices
have c = +1.

Bloch lines are fully characterized by three numbers: polarity p, winding number n and
chirality c. An antivortex has zero chirality, while vortices have c = ±1 depending on
the sense of rotation of magnetization, either clockwise or anticlockwise.

There exists also a zero-dimensional object, the Bloch point, separating two parts of a
Bloch line with opposite polarities. For topological (continuity) reasons, at the center
of the Bloch point the magnitude of magnetization vanishes, making it a very peculiar
object[49].

3.5 Films with an out-of-plane anisotropy

Here we consider thin films with a microscopic contribution to the magnetic anisotropy
energy, favoring the direction perpendicular to the plane. Most depends on the qual-
ity factor Q = Ku/Kd and film thickness t. For Q < 1 uniform in-plane magnetiza-
tion is a (meta)stable state however with large energy, while uniform out-of-plane
magnetization is not a (meta)stable state. For Q > 1 the situation is reversed. In
all cases a balance between anisotropy energy and shape anisotropy needs to be
found, the best compromise being through non-uniform states. The competition of
all four energy terms leads to a rich phase diagram, see Ref.6 for a comprehensive
theoretical and experimental review. A schematic classification with no applied field
is presented below, and summarized in Table II.1.

In the case of large thickness (see table and below for numbers), in all cases the
state of lowest energy is one of alternating up-and-down domains, with a period
2W (Figure II.9a). This pattern is called strong stripe domains. This situation was
first examined by Kittel[50], and later refined by several authors. The alternance
cancels surface charges on the average, keeping magnetostatic energy at a low level.
Magnetic anisotropy is also kept at a low level as most of magnetization lies along
an easy direction. The remaining costs in energy arise first from the vertical domain
walls (of Bloch type with in-plane magnetization to avoid volume charges), second
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Table II.1: Summary of the magnetization state of films with an out-of-plane con-
tribution to magnetic anisotropy. t and W are the film thickness and the optimum
domain width, respectively.

Q < 1 Q > 1

t > tc Weak to strong stripe domains with
increasing t. W ∼ t1/2 and then
W ∼ t2/3 upon branching

Strong stripe domains. W ∼ t1/2

and then W ∼ t2/3 upon branching.
May be hindered by hysteresis.

tc Second order transition (no hys-
teresis in the case of purely uniax-
ial anisotropy) from uniform in-the-
plane to weak stripes

The minimum value for W is
reached.

t < tc Uniform in-plane magnetization Perpendicular domains with diverg-
ing W , however quickly masked by
hysteresis.

from flux-closure slabs close to the surface with a complex mixture of anisotropy,
dipolar and wall energy. Minimization of this energy yields straightforwardly an
optimum value for W scaling like

√
t, more precisely like

√
t
√
AKu/Kd for Q &

1 (Figure II.9a) and like
√
t
√
A/Ku for Q . 1 (Figure II.9b). At quite large

thicknesses[6], typically hundreds of nanometers or micrometers, this law is modified
due to branching of domains close to the surface (Figure II.9c). Branching decreases
the energy of closure domains, while saving wall energy in the bulk of the film. We
then have W ∼ t2/3.

For decreasing thickness we shall consider separately two cases. For Q > 1 there
exists a critical minimum domain width Wc ≈ 15

√
AKu/Kd, which is reached for

tc ≈ Wc/2. Below this thickness flux-closure between neighboring domains becomes
largely ineffective due to the flat shape of the domains, thereby leading to a sharp
increase of W , with ultimately a divergence for t → 0 (Figure II.9d). For Q < 1
the magnetization in the domains progressively turns in-the-plane, with a second-
order transition towards a uniform in-plane magnetization around t = 2π∆u. This
pattern is called weak stripe domains due to the low angle modulation of direction
of magnetization in neighboring domains. Close to the transition W ≈ t and the
deviations from uniformity are sinusoidal to first order.

In the above, notice that the state with lowest energy may not be reached for Q > 1, as
the uniform state perpendicular to the plane is (meta)stable. Thus strong stripe domains
may not occur even at large thickness, for very coercive materials. Below tc the energy
gain resulting from the creation of domains is very weak, so that the divergence of W is
often hidden again behind coercive effects.

Conclusion

The features of domain walls are different in thin films, compared to



54 Chapter II. Magnetism and magnetic domains in low dimensions

Figure II.9: Stripe domains. Sketches for (a) open domains (initial Kittel’s model,
(b) perfect flux-closure domains and (c) domain branching. (d) predicted width of
domain W with film thickness t, from ref.6. lc = 2

√
AKu/Kd

the bulk. This is mostly related to the need to reduce dipolar energy,
arising because of the loss of translational invariance along the normal
to the film. The thickness of the film has a strong impact, and often
approximations are required to describe the physics analytically.

4 Domains and domain walls in nanostructures

In this section we examine the effect of reducing the lateral dimensions of nanostruc-
tures, from large to small nanostructures. We consider first the domains, followed
by special cases of domain walls.

4.1 Domains in nanostructures with in-plane magnetization

We consider a piece of a thin film of soft magnetic material, quite extended however
of finite lateral dimensions. Under zero applied field these assumptions allow us to
describe the arrangement of magnetization as an in-plane vector field m of norm
unity, and neglect the energy inside and between domain walls. Under these condi-
tions Van den Berg proposed a geometrical construction to exhibit a magnetization
distribution with zero dipolar energy[51, 52]. As dipolar energy is necessary zero or
positive, this distribution is a ground state.

Zero dipolar energy can be achieved by canceling magnetic charges. Absence of
surface charges M.n requires that magnetization remains parallel to the edge of the
nanostructure (Figure II.10); this is a boundary condition. At any point P at the
border, let us consider the cartesian coordinates (x, y) with x and y respectively
tangent and inward normal to the boundary. The density of volume charges reads
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∂xmx + ∂ymy. As m lies along x, ∂xmx = 0. Thus cancelation of volume charges
is achieved if ∂ymy = 0; this is the differential equation to be solved. As my = 0
at the boundary, absence of volume charges is fulfilled by keeping m normal to the
radius originating from P .

Figure II.10: The principle
for building a magnetizaiton
configuration free of dipolar
fields.

Radii originating from different points at the
boundary may intersect, each propagating inwards
magnetization with a different direction, in which
case highlighting the locus of a domain wall. It can
be demonstrated that domain walls in the nanos-
tructure are at the loci of the centers of all circles
inscribed inside the boundary at two or more points.
This geometrical construction satisfies that any do-
main wall is bisecting the direction of magnetization
in the neighboring domains, a requirement pointed
out in sec.3.2. Figure II.11a-b shows examples of the
Van den Berg’s construction. A mechanical anal-
ogy of this construction is sand piles, where lines of
equal height stand for flux lines.

Divide a nanostructure in two or more parts, apply the construction to each of them
before bringing all parts back together: a higher order ground state is found with zero
dipolar energy. An infinity of such states exists. In experiments such states may be
prepared through special (de)magnetization procedures. High order states may also not
be stable in a real sample, because the wall width and energy neglected in the model
will become prohibitively large. Notice also that the construction may still be used in
the case of a weak in-plane magnetic anisotropy in the sample, however suitably dividing
the sample in several parts with lines parallel to the easy axis of magnetization (Fig-
ure II.11)c.

4.2 Domains in nanostructures with out-of-plane magneti-
zation

Although to a lesser extent than for in-plane magnetization, domains of perpendicularly-
magnetized material are influence by lateral finite-size effects. This is obviously the
case for weak-stripe domains, as a significant part of magnetization lies in-the-plane,
calling for effects similar to those highlighted in the previous paragraph. Strong
stripe domains may also be influenced in a flat nanostructure. Two arguments may
be put forward: the local demagnetizing field is smaller close to an edge, with re-
spect to the core of a nanostructure; this would favor uniform magnetization close
to an edge, and thus local alignement of the stripes along this edge. Another argu-
ment is that a stripe with opposite magnetization is ’missing’ beyond the border,
removing a stabilizing effect on the stripe at the border; this would call for orienting
stripes perpendicular to the border to better compensate surface charges. It seems
that in some experiments the stripes display a tendency to align either parallel or
perpendicular to the border, in the same sample[53]. For thick films it seems that
alignement of the stripes parallel to the border is favored[54].
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Figure II.11: The geometrical construction of Van den Berg. (a) first order con-
struction, along with a sand pile analogue (b) higher-order construction, along with
a sand pile analogue (c) Kerr microscopy of an experimental realization of a high
order pattern from a stripe with an in-plane axis of anisotropy (sample courtesy:
B. Viala, CEA-LETI).

4.3 The critical single-domain size

In the above we considered domains in large samples. We now examine down to
which size domains may be expected in nanostructures, called the critical single-
domain size.

Let us consider a rather compact nanostructure, i.e. with all three demagnetizing
coefficient N close to 1/3, and lateral size l. If uniformly magnetized, its total energy
is ESD = NKd

4
3
πR3. We now have to discuss separately the cases of hard versus

soft magnetic materials.
In hard magnetic materials domain walls are narrow and with an areal energy

density γW determined from materials properties. If split in two domains to close
its magnetic flux, the energy of such a nanostructure is ED ≈ εdNKd + l2γW with
εD expressing the residual dipolar energy remaining despite the flux closure. γW =
4
√
AKu in the case of uniaxial anisotropy. Equating ESD and ED yields the critical

single-domain size lSD = γW/[N(1 − εd)Kd] below which the single-domain state
is expected, while above which splitting into two or more domains is expected.
lSD ≈ γW/NKd ≈

√
AKu/Kd. lSD is of the order of one hundred nanometers for

permanent magnet materials.
In soft magnetic materials a flux-closure state often takes the form of a collective

magnetization distribution, implying a slow rotation of magnetization as seen in Van



II.4. Domains and domain walls in nanostructures 57

(a) (b)

Figure II.12: Magnetization states of a disk of permalloy with diameter 100 nm and
thickness 10 nm. The background color codes the y component of magnetization.
Arrows stand for the magnetization vector. (a) near single-domain and (b) vortex
states.

den Berg’s constructions (sec.4.1). The relevant quantities are then exchange and
dipolar energy, so that the critical single-domain size is expected to scale with the
dipolar exchange length ∆d. Numerical simulation provides the numerical factor,
lSD ≈ 7∆d for cubes and lSD ≈ 4∆d for spheres[6, p.156].

Estimating the critical single domain dimensions for non-compact nanostructures
(i.e. with lengths quite different along the three directions) requires specific models.
An important case is the transition from single-domain to the vortex state in a disk
of diameter w and thickness t (Figure II.12). ESD ≈ NKdtw

2 with N ≈ t/w the
in-plane demagnetizing coefficient. As a crude estimate the (lower bound for the)
energy ED of the flux-closure state is the exchange plus dipolar energy of the core,
round 10∆2

dtKd. Equating both we find the scaling law wt ≈ 10∆2
d for the critical

dimensions. Numerical simulation provides an excellent agreement with the scaling
law, however refines the numerics: wt ≈ 20∆2

d[55].

4.4 Near-single-domain

In the previous paragraph we discussed the scaling laws for dimensions, below which
a nanostructure does not display domains. Here we notice that such nanostructures
are often not perfectly uniformly-magnetized. We discuss the origins and the con-
sequences of this effect.

When deriving the theory of demagnetization coefficients in sec.4.3, we noticed
that the self-consistence of the hypothesis of uniform magnetization may be satisfied
only in the case of homogenous internal field. In turn, this may be achieved only
in ellipsoids, infinite cylinders with elliptical cross-section, and slabs with infinite
lateral dimensions. Many samples do not display such shapes, in particular flat
structures made by combining deposition and lithography. Figure II.13 shows the
demagnetizing field in a flat stripe assumed magnetized uniformly across its width.
The field is highly non-homogeneous, being very intense close to the edges (mathe-
matically, going towards Ms/2, and very weak in the center, below its average value
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−NMs
II.5. This is a practical example of the statement found in sec.2.1, about the

short range of dipolar fields for a two-dimensional nanostructure.

Figure II.13: Demagnetizing field in a
stripe magnetized uniformly across the
width, of width 200 nm and thickness
2.5 nm

Due to the high value of demag-
netizing field close to the edges, mag-
netization undergoes a strong torque
and cannot remain uniformly magne-
tized, at least in the absence of an
external field. The resulting areas
are called end domains, with a ten-
dency of magnetization to turn paral-
lel to the edge to reduce edges charges
and instead spread them in the vol-
ume. Although no real domains de-
velop, this is a reminiscence of the Van
den Berg construction. In the case of
elongated elements, so-called ’S’ and
’C’ states arise, named after the shape
of the flux lines, and reflecting the
mostly independence of end domain
when sufficiently apart one from an-
other (Figure II.14a-b).

Non-uniform magnetization configurations may persist down to very small size,
especially close to corners where demagnetizing fields diverge in the mathematical
limit[56, 57]. This leads to the phenomenon of configurational anisotropy, described
both analytically and computationnally[58, 59, 60]: certain directions for the average
moment have an energy lower than others, arising from the orientation-dependant
decrease of dipolar energy (at the expense of exchange) made possible by the non-
uniformity of magnetization. This effect adds up to the quadratic demagnetizing
tensor, and may display symmetries forbidden by the latter, in relation with the
shape of the element: order 3, 4, 5 etc (Figure II.14c-d). In sec.4.1 we will refer to
a method to evaluate experimentally the strength of this anisotropy.

4.5 Domain walls in stripes and wires

We consider nanostructures elongated in one direction, which we will call wires
when the sample dimensions are similar along the other two directions, and stripes
when one of them is much smaller than the other. The latter is the case for most
samples made by lithography, while the former is the case for samples made e.g.
by electrodeposition in cylindrical pores[61]. We restrict the discussion to those
stripes and wires where no magnetocrystalline anisotropy is present, so that shape
anisotropy forces magnetization to lie along the axis. Domain walls may be found
in long objects, called head-to-head or tail-to-tail depending on the orientation of
magnetization in the two segments.

Micromagnetic simulation predicts the existence of two main types of domain
walls for stripes: either the vortex wall (VW) or the transverse wall (TW) (Fig-
ure II.15). The lowest energy is for the latter for tw < 61∆2

d, while the vortex
domain wall prevails at large thickness or width. Although this scaling law is simi-

II.5The analytical derivation of which is proposed in a problem
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Figure II.14: Near-single-domain state in rectangles of dimensions 200×100×10 nm
and squares of dimensions 100×100×10 nm. (a) S state (b) C state (c) flower state
(d) leaf state.

lar to that of the single-domain-versus-vortex phase diagram for disks however with
a larger coefficient (sec.4.3), its ground is slightly different. It was indeed noticed
that most of the energy in both the VW and TV are of dipolar origin[62], resulting
from charges of the head-to-head or tail-to-tail. These charges are spread over the
entire volume of the domain wall. Using integration of H2

d over space to estimate
dipolar energy, and noticing that the surface of the TW is roughly twice as large as
that of the VW and the decay with height of Hd is roughly w, the tw scaling law
is again derived. Although both transverse and vortex domain walls are observed
experimentally, the range of metastability is large so that it is not possible to derive
an experimental energetic phase diagram. TW may for instance be prepared far in
the metastability area through preparation with a magnetic field transverse to the
stripe. For the largest thickness and especially width TW turn asymmetric (ATW)
through a second-order transition.

5 An overview of characteristic quantities

In the course of this chapter we met many characteristic quantities: lengths, energies,
dimensionless ratios etc. Here we make a short summary of them.
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Figure II.15: Head-to-head domain walls in stripes, of (a) transverse and (b) vortex
type.

5.1 Energy scales

• Kd = (1/2)µ0M
2
s is called the dipolar constant. It is a measure of the maxi-

mum dnsity of dipolar energy that can arise in a volume, i.e. for demagnetizing
coefficient N = 1.

• 4
√
AKu is the energy of a Bloch wall per unit area.

5.2 Length scales

• In a situation where only magnetic exchange and anisotropy compete, the two
relevant quantities in energy are A and Ku, expressed respectively in J/m and
J/m3. The typical case is that of a Bloch domain wall (sec.5). The resulting
length scale is ∆u =

√
A/Ku. We call ∆u the anisotropy exchange length[10]

or Bloch parameter, a name often found in the literature. The latter is more
often used, however the former makes more sense, see the note below. Notice
that ∆u is sometimes called the Bloch wall width, which however brings some
confusion as several definitions may be used for this, see sec.6.5.c.

• When exchange and dipolar energy compete, the two quantities at play are
A and Kd. This the case in the vortex (sec.3.4). The resulting length scale
is ∆d =

√
A/Kd =

√
2A/µ0M2

s , which we call dipolar exchange length[6]
or exchange length as more often found in the literature, see again the note
below.

• lSD ≈
√
AKu/Kd is the critical domain size of a compact nanostructure made

of a quite hard magnetic material. It emerges out of the comparison of two
energies, one per unit volume, the other one per unit surface.

• In more complex situations other length scales may arise, taking into account
an applied magnetic field, dimensionless quantities such as the ratio of geo-
metric features etc. For example the pinning of a domain wall on a defect
gives rise to the length scale

√
A/µ0MsH for a soft magnetic material, or√

2A/
√
Kuµ0MsH for a material with significant magnetic anisotropy.
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The name exchange length has historical grounds however is not well suited. Indeed
exchange plays an equal role in both ∆u and ∆d. It is more relevant to name ∆u the
anisotropy length or anisotropy exchange length, and ∆d the dipolar length or dipolar
exchange length. We use the subscripts u (for uniaxial) and d (for dipolar) to account
for this, as suggested in Hubert’s book[6].

5.3 Dimensionless ratios

• A quantity of interest in the quality factor Q = Ku/Kd, which describes
the competition between uniaxial anisotropy and dipolar energy. Q largely
determines the occurrence and type of domains in thin films with an out-of-
plane magnetocrystalline anisotropy.



Problems for Chapter II

Problem 1: Short exercises

1. Consider a cubic material with first-order magnetocrystalline anisotropy con-
stant K1,cub much weaker than Kd, in the form of a thin film with surface
normal (001).

• Express the resulting in-plane magnetic anisotropy E(θ) with θ the in-
plane angle of magnetization with an easy axis, assuming that magneti-
zation lies purely in-the-plane. Comment.

• Find exactly the easy directions of magnetization.

For both items consider both cases of positive and negative K1,cub, and com-
ment.

2. Draw a sketch of the expected contrast in the magnetic microscopy of domain
walls. Consider four types of domain walls: perpendicular anisotropy with
Bloch wall; in-plane anisotropy with Bloch wall and Néel caps, 180◦ Néel wall
and 180◦ Néel wall. Consider four techniques: XMCD-PEEM, Lorentz, MFM,
polar Kerr. The sketches may be presented as an array for clarity.

3. Derive with simple arguments the scaling law W ∼ t1/2 for the period of strong
stripe domains.

Problem 2: Demagnetizing field in a stripe

Here we derive the analytical formula for the in-plane demagnetizing field in
a flat and infinitely-long stripe magnetized in-the-plane, a case that was shortly
discussed in sec.4.4. We call t and w its thickness and width, respectively. We
assume magnetization to be homogeneous and along the transverse direction.

2.1. Deriving the field

Express the stray field Hd arising from a line holding the magnetic charge per
unit length λ. As a first step, we consider only Hd,x(x), the x component of the
demagnetizing field calculated at mid-height of the stripe, arising from the charges

62
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on one of its edges. Write an integral form for this function. Show that it reads,
upon integration:

x

z

θ

M

Figure II.16: Left part of the stripe
considered. The edge holding the
magnetic charges is highlighted as a
bold line. Magnetization is along x,
while a translation invariance is as-
sumed along y.

Hd,x(x) =
Ms

2

[
1− 2

π
arctan

(
2x

t

)]
(II.11)

2.2. Numerical evaluation and
plotting

Derive the limits and first derivative for
Eq. (II.11) for x→ 0 and x→∞, and com-
ment. Provide a hand-drawn qualitative
plot of this function. Without performing
more calculation, discuss how it compares
in magnitude with the z average over the
thickness, i.e. 〈Hd,x,z〉 (x)? What is the
(x, z) average of the latter over the entire
cross-section of the stripe?



Chapter III

Magnetization reversal

1 Coherent rotation of magnetization

Overview

The importance of metastability in magnetism was outlined in 1.3, as
the reason for hysteresis. The determination of energy minima, landscape
and energy barriers is therefore crucial, however difficult or impossible in
extended systems due to the large number of degrees of freedom. Only
simple problems can be tackled analytically. Coherent rotation of mag-
netization is one of the oldest and probably the most useful starting
point.

1.1 The Stoner-Wohlfarth model

The model of coherent rotation was proposed by Stoner and Wohlfarth in 1948 to
describe the two-dimensional angular dependance of magnetization reversal[63, 64,
reprint], and developed in parallel by Néel to describe thermally-activated processes.
Many developments were made later, including clever graphical interpretations[65]and
generalization to three dimensions[66].

The model is based on the hypothesis of uniform magnetization, reducing the
problem to solely one or two angular degrees of freedom. This hypothesis is in
principle very restrictive and would be satisfactorily applicable to closely single-
domain particles. For large systems it is not suitable as it, with for example an
experimental coercivity much smaller than the one predicted. Nevertheless, the
concept introduced for uniform magnetization bear some generality (e.g. exponents,
angular dependance), and may be applied to extended systems with some care, e.g.
to describe nucleation volumes.

We consider a system with volume V , total uniaxial anisotropy energy κ = KuV ,
magnetic moment M = MsV . Its magnetic energy reads:

E = κ sin2 θ − µ0MH cos(θ − θH) (III.1)

where θH is the angle between the applied field and the easy axis and initial direction
of magnetization, and H is positive to promote magnetization reversal. Here we
consider only the usual case of θH = π, and use dimensionless variable:

e = E/κ = sin2 θ + 2h cos θ (III.2)

64
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with Ha = 2K/µ0Ms and h = H/Ha. The equilibrium positions are determined by
solving dθe = 2 sin θ(cos θ − h) = 0, and stability with the sign of d2

e2θ = 4 cos2 θ −
2h cos θ − 2.

Pour h < 1 les positions d’équilibre sont donc θ+
1 = 0, θ−1 = π et θ2 tel que

cos θ2 = h. Pour ces angles la dérivée seconde vaut 2(1− h), 2(1 + h) et 2(1− h2),
respectivement. θ±1 sont donc des positions d’équilibre stables, et θ±2 = ± arccos(h)
est une position d’équilibre instable, qui marque le sommet de la barrière d’énergie
qui empêche le renversement d’aimantation de θ+

1 vers θ−1 . Pour h > 1 il n’existe
plus que θ−1 et θ+

1 comme points d’équilibre, respectivement stable et instable. Le
retournement d’aimantation a donc lieu à h = 1.

1.2 Dynamic coercivity and temperature effects

2 Magnetization reversal in nanostructures

2.1 Multidomains under field (soft materials)

2.2 Nearly single domains

2.3 Domain walls and vortices

3 Magnetization reversal in extended systems

3.1 Nucleation and propagation

3.2 Ensembles of grains

Some features of the magnetization reversal of isolated single-domain grains have
been presented in sec.1. Some consequences may be drawn for media consisting of
assemblies of grains, neglecting inter-grain interactions (dipolar etc). Of easy access
and modeling are the remanence mr and the internal energy at saturation EK ,
derived from the area above the remagnetizing curve (i.e., starting from remanence,
see sec.chap.I.1.3 and later sec.4.1). Both depend on the dimensionality of the
distribution of easy axis. Assuming uniaxial magnetic anisotropy for simplicity, we
consider three common cases:

• The polycrystalline case, i.e. with an isotropic distribution of easy axis in
space. This may correspond to particles diluted in a matrix, or a polycristalline
bulk material. We then find: m3D

r = 1/2 and E3D
K = 2K/3.

• The polytextured case. By this we mean a shared axis with no distribution
for the hard axis, while the easy axis if evenly distributed in the plane per-
pendicular to this axis. This would be the case of Fe(110) grains grown on a
surface, the easy axis lying along the in-plane [001] direction. When the field
is applied in the plane we find: m2D

r = 2/π ≈ 0.64 and E2D
K = K/2.

• The textured case, where all grains share the same direction of easy axis.
When the field is applied along this axis we find the case of a single grain:
m1D

r = 1 and E1D
K = 0.
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The measure of EK provides an indication of K. Besides, comparison of experi-
ments with the expected figure for mr is often used as an indication for interactions,
positive (e.g. through direct exchange between neighboring grains) if the experimen-
tal value exceeds the expectation, negative it it lies below. Systems with coupled
grains will be considered in more detail in chap.V.

4 What do we learn from hysteresis loops?

4.1 Magnetic anisotropy

Measure total anisotropy. Notice/reminder: area above curve. Linear for uniaxial,
other shapes with possibly hysteresis, Cf (110), (001). Trick for these: loops under
transverse field. Show angular curves for anisotropy.

4.2 Nucleation versus propagation

First magnetization curves: nucleation versus propagation
Hc(theta), Kondorski

4.3 Distribution and interactions

Minor loops: reversible versus irreversible; hints for interactions.
Interactions: Henkel plots.
Complex: Preisach, now often called FORC.



Problems for Chapter III

Problem 1: Short exercises

1. Give a realistic example of a magnetically-uniaxial system whose coercivity Hc

is larger than its anisotropy field Ha.

2. Derive the formulas for remanence mr and remagnetization energy EK for the
various cases of texture provided in sec.3.2.

Problem 2: A model of pinning - Kondorski’s law

for coercivity

We consider a one-dimensional framework, identical to the one used to derive the
profile of the Bloch domain wall, see pb. 6.5.c. Starting from a homogeneous material
let us model a local defect in the form of a magnetically softer (i.e. anisotropy
constant K−∆K with ∆K > 0) insertion of width δ`, located at position x. Discuss
what approach should be followed to derive exactly the profile of the domain wall in
that case, especially the boundary conditions at the edges of the defect. To handle
simple algebra we make the assumption of the rigid domain wall, i.e. Eq. (I.37) still
holds, and consider the case where δ`� ∆.

Show that the energy of the domain wall with the defect at location x reads:

E(x) = 4
√
AK

[
1− 1

4

δ`

∆

δK

K

1

cosh2(x/∆)

]
(III.3)

Draw a schematic graph of E(x) and display the characteristic length or energy
scales. An external field is then applied at an angle cos θH with the easy axis direction
in the domains. Assuming that the assumption of rigid wall remains valid, show that
the propagation field of the domain wall over the defect reads:

Hp =
Ha

cos θH

∆K

K

δ`

∆

1

3
√

3
. (III.4)

where Ha = 2K/µ0Ms is the so-called anisotropy field.
Notice:
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• The 1/ cos θH dependence of coercivity is often considered as a signature a
weak-pinning mechanism, a law known as the Kondorski model[67].

• This model had been initially published in 1939 by Becker and Döring[68],
and is summarized e.g. in the nice book of Skomsky Simple models of Mag-
netism[5].

• While coercivity requires a high anisotropy, the latter is not a sufficient condi-
tion to have a high coercivity. To achieve this one must prevent magnetization
reversal that can be initiated on defects (structural or geometric) and switch
the entire magnetization by propagation of a domain wall. In a short-hand clas-
sification one distinguishes coercivity made possible by hindering nucleation,
or hindering the propagation of domain walls. In reality both phenomena are
often intermixed. Here we modeled an example of pinning.

• Simple micromagnetic models of nucleation on defects[69] were the first to be
exhibited to tentatively explain the so-called Brown paradox, i.e. the fact that
values of experimental values of coercivity in most samples are smaller or much
smaller than the values predicted by the ideal model of coherent rotation[63].



Chapter IV

Precessional dynamics of
magnetization

1 Ferromagnetic resonance and Landau-Lifshitz-

Gilbert equation

2 Precessional switching of macrospins driven by

magnetic fields

3 Precessional switching driven by spin transfer

torques

4 Precessional dynamics of domain walls and vor-

tices – Field and current
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Problems for Chapter IV
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Chapter V

Magnetic heterostructures: from
specific properties to applications

1 Coupling effects

2 Magnétotransport

3 Integration for applications
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Problems for Chapter V
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Appendices

Symbols

Kd Dipolar anisotropy Ks = 1
2
µ0M

2
s

Q Quality factor Q = Kmc/Kd

∆u Anisotropy exchange length ∆ =
√
A/K with A the exchange and K the

anisotropy constant. Also called: Bloch wall
parameter

∆d Dipolar exchange length Λ =
√
A/Kd =

√
2A/µ0M2

s with A the ex-
change and Ms the spontaneous magnetiza-
tion. Also called: exchange length.

Acronyms

AFM Atomic Force Microscopy
EMF Electromotive force
MFM Magnetic Force Microscopy
PMA Perpendicular Magnetic Anisotropy
SEMPA Scanning Electron Microscopy with Polarization Analysis (SEMPA)
SPLEEM Spin-Polarized Low-Energy Electron Microscopy
SQUID Superconducting Quantum Interference Device
UHV Ultra-High Vacuum
VSM Vibrating Sample Magnetometer
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74 Appendices

Glossary

erg Unit for energy in the cgs-Gauss system. Is equivalent to 1010 J.
Macrospin The model where uniform magnetization is assumed in a sys-

tem, whose description may thus be restricted to the knowledge
of one or two degrees of freedom, the angular directions of a
hypothetical spin. When formerly written as a variable, the
macrospin may be dimensionless, or have units of A.m2 for a
volume, A.m for magnetization integrated over a surface (e.g.
that of a nanowire), or A for magnetization integrated along a
thickness (e.g. that of a thin film).

Micromagnetism All aspects related the arrangement of magnetization in do-
mains and domain walls, when the latter are resolved (i.e.,
not treated as a plane with zero thickness nor energy). The
term applies to theory, simulation and experiments. Except
some rare cases that may be considered as fine points, micro-
magnetism is based on the description of magnetization by a
continuous function of constant and homogeneous magnitude
equal to the spontaneous magnetization Ms.

Nanomagnetism Broadly speaking, all aspects of magnetism at small length
scale, typically below one micrometer. This concerns ground-
state (intrinsic) properties such as magnetic ordering and mag-
netic anisotropy, as well as magnetization configurations and
magnetization reversal at these small scales. Notice that some
persons restrict the meaning of Nanomagnetism to the former
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A faire...

Finalisation de poly ED

• F/AF: voir historique et références dans talk Bernard Diény, livre conférences
I, p15 (CLN9).

• Citer pour coercitivité SyAF: H. A. M. van den Berg, W. Clemens, G. Gieres,
G. Rupp, and M. Vieth, IEEE Trans. Magn. 32, 4624 (1996) (cité dans Wiese
2004).

• courbe FC/ZFC: traiter le cas à une particule (phy stat et susceptibilités
première et seconde) puis le cas de distribution. Définition de Tb moyen dans
ce cas. Faire le lien avec distribution de champ de renversement, et définition
de Hc comme champ de mi-renversement.

• utilisation de hyperref pour les notes de bas de page?

• Noter superparamagnétisme de bandes étroites: LEE2009b.

•

• Nouvel environnement pour:

– Améliorations

– Exercices et corrigés

– Partie difficile (zigzag dans la marge, Cf bouquin Knuth, ou p.76 de
symbols-a4.pdf, dbend)

– Vérifier présence d’introductions et conclusion locales

– Renversement d’aimantation dans lignes:

∗ Hausmanns2002[70]: note que champ coercitif augmente comme 1/w,
mais pas de modèle.

∗ BRA2006: cite ceux précédents qui ont noté cette loi d’échelle. In-
dique également séparation entre nucléation-propagation, et multido-
maines (ligne très différente de régime transverse-vortex).

∗ Un des premiers modèles: YUA1992

∗ Utiliser: Uhlig

– Interactions dipolaires: Cf études suppression superpara par Cowburn,
et changement énergie démagnétisante dans JAI2010.

• Regarder exemples présentations, et chercher code:

– Thèse Géraud Moulas

– Thèse Fabien Cheynis

– Thèse Aurélien Massebœuf (Cf: p.62)
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Généralités

• Tableau des matériaux: rajouter:

– Permalloy (et supermalloy)

– indiquer échange, longueurs échange et Bloch.

• Changer style de macro lecturePage

• Chercher si package dérivées est défini quelque part.

• Regarder utilisation package vector

• Test page gauche ou droite pour mettre les encadrés et leur image. (utiliser
macro: ifodd)

• Redéfinir un environnement enumerate pour les encadrés, pour éviter espace
vide en haut. Voir The tendency to cancel surface magnetic charges mais en
enlevant aussi la marge.

• Changer police de la légende

• Mentionner temps très raccourci entre développement dans laboratoires, et
mise en application dans l’industrie. Pour certains secteurs la RD est même
plus active que laboratoires fondamentaux, par exemple pour mâıtriser les
processus de renversement d’aimantation dans les nanostructures.

• Employer Configuration magnétique ou État micromagnétique, et introduire
les deux termes. Vérifier dans tout le texte que pas de mélange.

• Normaliser l’usage de termes suivants, pour les renvois:

– Chapitre

– Partie

– Paragraphe

• Mettre un glossaire, et un lien vers le glossaire à chaque fois que le terme est
employé (rechercher dans littérature).

• Vérifier présence: différents modes de propagation des ondes de spin, voir cours
Hillebrands. Traitement classique et quantique des ODS (exercice?).

Exercices possibles

• Position et valeur du maximum pour le J avec règles de Hund, pour ` quel-
conque. Même chose pour valeur de moment magnétique.
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