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BASIC BOOKS IN SCIENCE

About this book

This book, like the others in the Series1, is written in simple English – the language most
widely used in science and technology. It builds on the foundations laid in earlier Books,
which have covered many areas of Mathematics and Physics.

The present book continues the story from Book 11, which laid the foundations of Quan-
tum Mechanics and showed how it could account succesfully for the motion of a single
particle in a given potential field. The almost perfect agreement between theory and
experiment, at least for one electron moving in the field of a fixed positive charge, seemed
to confirm that the principles were valid – to a high degree of accuracy. But what if we
want to apply them to much more complicated systems, such as many-electron atoms
and molecules, in order to get a general understanding of the structure and properties of
matter? At first sight, remembering the mathematical difficulty of dealing with a single

electron in the Hydrogen atom, we seem to be faced with an impossible task. The aim of
Book 12 is to show how, guided by the work of the pioneers in the field, an astonishing
amount of progress can be made. As in earlier books of the Series, the path to be followed
will avoid a great deal of unnecessary detail (much of it being only of historical interest)
in order to expose the logical development of the subject.

1The aims of the Series are described elsewhere, e.g. in Book 1.
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Looking ahead –

In Book 4, when you started on Physics, we said “Physics is a big subject and you’ll need
more than one book”. Here is another one! Book 4 was mainly about particles, the
ways they move when forces act on them, and how the same ‘laws of motion’ still hold
good for all objects built up from particles – however big they may be. In Book 11 we
moved from Classical Physics to Quantum Physics and again started with the study of
a single moving particle and the laws that govern its behaviour. Now, in Book 12, we
move on and begin to build up the ‘mathematical machinery’ for dealing with systems
composed of very many particles – for example atoms, where up to about 100 electrons
move in the electric field of one nucleus, or molecules, where the electrons move in the
field provided by several nuclei.

• Chapter 1 reviews the priciples formulated in Book 11, along with the concepts
of vector space, in which a state vector is associated with the state of motion of
a particle, and in which an operator may be used to define a change of state. This
chapter uses Schrödinger’s form of quantum mechanics in which the state vectors
are ‘represented’ by wave functions Ψ = Ψ(x, y, z) (functions of the position of the
particle in space) and the operators are typically differential operators. The chapter
starts from the ideas of ‘observables and measurement’; and shows how mea-
surement of a physical quantity can be described in terms of operations in a vector
space. It follows with a brief reminder of the main way of calculating approximate
wave functions, first for one electron, and then for more general systems.

• In Chapter 2 you take the first step by going from one electron to two: the
Hamiltonian operator is then H(1, 2) = h(1) + h(2) + g(1, 2), where only g – the
‘interaction operator’ – depends on the coordinates of both particles. With neglect
of interaction the wave function can be taken as a product Psi(1, 2) = ψa(1)ψb(2),
which indicates Particle 1 in state ψa and Particle 2 in state ψb. This is a first
example of the Independent Particle Model and can give an approximate wave
function for a 2-particle system. The calculation of the ground state electronic
energy of the Helium atom is completed with an approximate wave function of
product form (two electrons in an orbital of 1s type) and followed by a study of the
excited states that result when one electron is ‘promoted’ into the 2s orbital. This
raises interesting problems about the symmetry of the wave function. There are, it
seems, two series of possible states: in one the function is unchanged if you swap the
electrons (it is symmetric) but in the other it changes in sign (it is antisymmetric).
Which must we choose for two electrons?

At this point we note that electron spin has not yet been taken into account.
The rest of the chapter brings in the spin functions α(s) and β(s) to describe an
electron in an ‘up-spin’ or a ‘down-spin’ state. When these spin factors are included
in the wave functions an orbital φ(r) (r standing for the three spatial variables
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x, y, z) is replaced by a spin-orbital ψ(r, s) = φ(r)α(s) (for an up-spin state) or
ψ(r, s) = φ(r)β(s) (for a down-spin state).

The Helium ground state is then found to be

Ψ(x1,x2) = φ(r1)φ(r2)[α(s1)β(s2)− α(s1)β(s2)],

where, from now on, a boldface letter (x) will denote ‘space-and-spin’ variables.
Interchanging Electron 1 and Electron 2 then shows that only totally antisymmetric

wavefunctions can correctly predict the observed properties of the system. More
generally, this is accepted as a fundamental property of electronic systems.

• Chapter 3 starts from the Antisymmetry Principle and shows how it can be
included generally in the Independent Particle Model for an N -electron system.
Slater’s rules are derived as a basis for calculating the total energy of such a sys-
tem in its ‘ground state’, where only the lowest-energy spin-orbitals are occupied
by electrons. In this case, neglecting tiny spin-dependent effects, expressions for
the ground-state energies of the first few many-electron atoms (He, Li, Be, ...) are
easily derived.

• So far, we have not considered the analytical forms of the orbitals themselves,
assuming that the atomic orbitals (AOs) for a 1-electron system (obtained in Book
11) will give a reasonable first approximation. In actual fact that is not so and
the whole of this difficult Chapter 4 is devoted to the Hartree-Fock method of
optimizing orbital forms in order to admit the effects of inter-electron repulsion.
By defining two new one-electron operators, the Coulomb operator J and the
Exchange operator K, it is possible to set up an effective 1-electron Hamiltonian
F (the ‘Fock operator’) whose eigenfunctions will be ‘best possible approximations’
to the orbitals in an IPM wave function; and whose corresponding eigenvalues give
a fairly realistic picture of the distribution of the total electronic energy E among
the individual electrons. In fact, the eigenvalue ǫk represents the amount of energy
‘belonging to’ an electron in orbital φk; and this can be measured experimentally by
observing how much energy is needed to knock the electron out. This gives a firm
basis for the much-used energy-level diagrams. The rest of Chapter 4 deals with
practical details, showing how the Hartree-Fock equation Fφ = ǫφ can be written
(by expanding φ in terms of a set of known functions) in the finite basis form

Fc = ǫc, where F is a square matrix representing the Fock operator and c is a
column of expansion coefficients.

• At last, in Chapter 5, we come to the first of the main themes of Book 12: “Atoms
– the building blocks of matter”. In all atoms, the electrons move in the field of a
central nuclus, of charge Ze, and the spherical symmetry of the field allows us to
use the theory of angular momentum (Chapter 5 of Book 11) in classifying the
possible stationary states. By assigning the Z electrons to the 1-electron states (i.e.
orbitals) of lowest energy we obtain the electron configuration of the electronic
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ground state; and by coupling the orbital angular momentum of individual electrons,
in s, p, d, ... states with quantum numbers l = 0, 1, 2, ... it is possible to set
up many-electron states with quantum numbers L = 0, 1, 2, ... These are called
S, P, D, ... states and correspond to total angular momentum of 0, 1, 2, ... units:
a state of given L is always degenerate, with 2L+1 component states in which the
angular momentum component (along a fixed z-axis) goes down in unit steps from
M = L to M = −L. Finally, the spin angular momentum must be included.

The next step is to calculate the total electronic energy of the various many-electron
states in IPM approximation, using Slater’s Rules. All this is done in detail, using
worked examples, for the Carbon atom (Section 5.2). Once you have found wave
functions for the stationary states, in which the expectation values of observables
do not change in time, you’ll want to know how to make an atom jump from one
state to another. Remember from Book 10 that radiation consists of a rapidly
varying electromagnetic field, carried by photons of energy ǫ = hν, where h is
Planck’s constant and νis the radiation frequency. When radiation falls on an
atom it produces a small oscillating ‘perturbation’ and if you add this to the free-
atom Hamiltonian you can show that it may produce transitions between states
of different energy. When this energy difference matches the photon energy hν a
photon will be absorbed by, or emitted from, the atom. And that is the basis of
all kinds of spectroscopy – the main experimental ‘tool’ for investigating atomic
structure.

The main theoretical tool for visualizing what goes on in atoms and molecules is
provided by certain electron density functions, which give a ‘classical’ picture of
how the electric charge, or the electron spin, is ‘spread out’ in space. These densities,
which you first met in Chapter 4, are essentially components of the density matrix.
The properties of atoms, as atomic number (i.e. nuclear charge, Z) increases, are
usually displayed in a Periodic Table, which makes a clear connection between
electronic and chemical properties of the elements. Here you find a brief description
of the distribution of electrons among the AOs of the first 36 atoms.

This chapter ends with a brief look at the effects of small terms in the Hamiltonian,
so far neglected, which arise from the magnetic dipoles associated with electron
spins. The electronic states discussed so far are eignstates of the Hamiltonian H,
the total angular momentum (squared) L2, and one component Lz. But when spin
is included we must also admit the total spin with operators S2 and Sz, formed by
coupling individual spins; the total angular momentum will then have components
with operators Jx = Lx + Sx etc. The magnetic interactions between orbital and
spin dipoles then lead to the fine structure of the energy levels found so far. The
experimentally observed fine structure is fairly well accounted for, even with IPM
wave functions.

• Atoms first started coming together, to form the simplest molecules, in the very
early Universe. In Chapter 6 “Molecules: the first steps – ” you go back to the
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‘Big Bang’, when all the particles in the present Universe were contained in a small
‘ball’ which exploded – the interactions between them driving them apart to form
the Expanding Universe we still have around us today. The first part of the
chapter tells the story, as best we know it, from the time when there was nothing
but an unbelievably hot ‘sea’ (nowadays called a plasma) of electrons, neutrons and
protons, which began to come together in Hydrogen atoms (1 proton + 1 electron).
Then, when another proton is added, you get a hydrogen molecule ion H +

2 – and
so it goes on!

In Section 6.2 you do a simple quantum mechanical calculation on H +
2 , combining

two hydrogen-like atomic orbitals to form two approximate eigenfunctions for one
electron in the field of two stationary protons. This is your first molecular orbital
(MO) calculation, using ‘linear combination of atomic orbitals’ to obtain LCAO
approximations to the first two MOs: the lower energy MO is a Bonding Orbital,
the higher energy MO is Antibonding.

The next two sections deal with the interpretation of the chemical bond – where does
it come from? There are two related interpretations and both can be generalized at
once to the case of many-electon molecules. The first is based on an approximate
calculation of the total electronic energy, which is strongly negative (describing the
attraction of the electrons to the positive nuclei): this is balanced at a certain
distance by the positive repulsive energy between the nuclei. When the total energy
reaches a minimum value for some configuration of the nuclei we say the system is
bonded. The second interpretation arises from an analysis of the forces acting on
the nuclei: these can be calculated by calculating the energy change when a nucleus
is displaced through an infinitesimal distance. The ‘force-concept’ interpretation is
attractive because it gives a clear physical picture in terms of the electron density

function: if the density is high between two nuclei it will exert forces bringing them
together.

• Chapter 7 begins a systematic study of some important molecules formed mainly
from the first 10 elements in the Periodic Table, using the Molecular Orbital ap-
proach which comes naturally out of the SCF method for calculating electronic wave
functions. This may seem to be a very limited choice of topics but in reality it in-
cludes a vast range of molecules: think of the Oxygen (O2) in the air we breath, the
water (H2O) in our oceans, the countless compounds of Hydrogen, Carbon, Oxygen
that are present in all forms of plant and animal life.

In Section 7.1 we begin the study of some simple diatomic molecules such as Lithium
hydride (LiH) and Carbon monoxide (CO), introducing the idea of ‘hybridization’
in which AOs with the same principal quantum number are allowed to mix in using
the variation method. Another key concept in understanding molecular electronic
structure is that of the Correlation Diagram, developed in Section 7.2, which
relates energy levels of the MOs in a molecule to those of the AOs of its constituent
atoms. Figures 7.2 to 7.5 show simple examples for some diatomic molecules. The
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AO energy levels you know something about already: the order of the MO levels
depends on simple qualitative ideas about how the AOs overlap – which depends
in turn on their sizes and shapes. So even without doing a big SCF calculation it
is often possible to make progress using only pictorial arguments. Once you have
an idea of the probable order of the MO energies, you can start filling them with
the available valence electrons and when you’ve done that you can think about the
resultant electron density! Very often a full SCF calculation serves only to confirm
what you have already guessed.

In Section 7.3 we turn to some simple polyatomic molecules, extending the ideas
used in dealing with diatomics to molecules whose experimentally known shapes
suggest where localized bonds are likely to be found. Here the most important
concept is that of hybridization – the mixing of s and p orbitals on the same centre,
to produce hybrids that can point in any direction. It soon turns out that hybrids of
given form can appear in sets of two, three, or four; and these are commonly found
in linear molecules, trigonal molecules (three bonds in a plane, at 120◦ to each
other) and tetrahedral molecules (four bonds pointing to the corners of a regular
tetrahedron). Some systems of roughly tetrahdral form are shown in Figure 7.7.

It seems amazing that polyatomic molecules can often be well represented in terms
of localized MOs similar to those found in diatomics. In Section 7.4 this mystery is
resolved in a rigorous way by showing that the non-localized MOs that arise from a
general SCF calculation can be mixed by making a unitary transformation – without
changing the form of the total electron density in any way! This is another example
of the fact that only the density itself (e.g. |ψ|2, not ψ) can have a physical meaning.

Section 7.5 turns towards bigger molecules, particularly those important for Organic
Chemistry and the Life Sciences, with fully worked examples. Many big molecules,
often built largely from Carbon atoms, have properties connected with loosely bound
electrons occupying π-type MOs that extend over the whole system.

Such molecules were a favourite target for calculations in the early days of Quantum
Chemistry (before the ‘computer age’) because the π electrons could be considered
by themselves, moving in the field of a ‘framework’, and the results could easily
be compared with experiment. Many molecules of this kind belong to the class
of alternant systems and show certain general properties. They are considered in
Section 7.6, along with first attempts to discuss chemical reactivity.

To end this long chapter, Section 7.7 summarizes and extends the ‘bridges’ estab-
lished between Theory and Experiment, emphasizing the pictorial value of density
functions such as the electron density, the spin density, the current density and so
on.

• Chapter 8 Extended Systems: Polymers, Crystals and New Materials

concludes Book 12 with a study of applications to systems of great current inter-
est and importance, for the Life Sciences, the Science of Materials and countless
applications in Technology.
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Chapter 1

The problem

– and how to deal with it

1.1 From one particle to many

Book 11, on the principles of quantum mechanics, laid the foundations on which we hope
to build a rather complete theory of the structure and properties of all the matter around
us; but how can we do it? So far, the most complicated system we have studied has
been one atom of Hydrogen, in which a single electron moves in the central field of a
heavy nucleus (considered to be at rest). And even that was mathematically difficult:
the Schrödinger equation which determines the allowed stationary states, in which the
energy does not change with time, took the form of a partial differential equation in three
position variables x, y, z, of the electron, relative to the nucleus. If a second electron is
added and its interaction with the first is included, the corresponding Schrödinger equation
cannot be solved in ‘closed form’ (i.e. in terms of known mathematical functions). But
Chemistry recognizes more than a 100 atoms, in which the nucleus has a positive charge
Ze and is surrounded by Z electrons each with negative charge −e.
Furthermore, matter is not composed only of free atoms: most of the atoms ‘stick together’
in more elaborate structures called molecules, as will be remembered from Book 5. From
a few atoms of the most common chemical elements, an enormous number of molecules
may be constructed – including the ‘molecules of life’, which may contain many thousands
of atoms arranged in a way that allows them to carry the ‘genetic code’ from one generation
to the next (the subject of Book 9). At first sight it would seem impossible to achieve
any understanding of the material world, at the level of the particles out of which it is
composed. To make any progress at all, we have to stop looking for mathematically exact
solutions of the Schrödinger equation and see how far we can get with good approximate

wave functions, often starting from simplified models of the systems we are studying. The
next few Sections will show how this can be done, without trying to be too complete
(many whole books have been written in this field) and skipping proofs whenever the
mathematics becomes too difficult.
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The first three chapters of Book 11 introduced most of the essential ideas of Quantum
Mechanics, together with the mathematical tools for getting you started on the further
applications of the theory. You’ll know, for example, that a single particle moving some-
where in 3-dimensional space may be described by a wave function Ψ(x, y, z) (a function
of the three coordinates of its position) and that this is just one special way of representing
a state vector. If we want to talk about some observable property of the particle, such
as its energy E or a momentum component px, which we’ll denote here by X – whatever it
may stand for – we first have to set up an associated operator1 X. You’ll also know that
an operator like X works in an abstract vector space, simply by sending one vector into
another. In Chapter 2 of Book 11 you first learnt how such operators could be defined
and used to predict the average or ‘expectation’ value X̄ that would be obtained from a
large number of observations on a particle in a state described by the state vector Ψ.

In Schrödinger’s form of quantum mechanics (Chapter 3) the ‘vectors’ are replaced by
functions but we often use the same terminology: the ‘scalar product’ of two functions
being defined (with Dirac’s ‘angle-bracket’ notation) as 〈Ψ1|Ψ2〉 =

∫

Ψ∗
1(x, y, z)Ψ2dxdydz

With this notation we often write the expectation value X̄ as

X̄ = 〈X〉 = 〈Ψ|XΨ〉, (1.1)

which is a Hermitian scalar product of the ‘bra-vector’ 〈Ψ| and the ‘ket-vector’ |XΨ〉 –
obtained by letting the operator X work on the Ψ that stands on the right in the scalar
product. Here it is assumed that the state vector is normalized to unity: 〈Ψ|Ψ〉 = 1.
Remember also that the same scalar product may be written with the adjoint operator,
X†, working on the left-hand Ψ. Thus

X̄ = 〈X〉 = 〈X†Ψ|Ψ〉. (1.2)

This is the property of Hermitian symmetry. The operators associated with observ-
ables are self -adjoint, or ‘Hermitian’, so that X† = X.

In Schrödinger’s form of quantum mechanics (Chapter 3 of Book 11) X is usually rep-
resented as a partial differential operator, built up from the coordinates x, y, z and the
differential operators

px =
~

i

∂

∂x
, py =

~

i

∂

∂y
, pz =

~

i

∂

∂z
, (1.3)

which work on the wave function Ψ(x, y, z).

1.2 The eigenvalue equation

– as a variational condition

As we’ve given up on the idea of calculating wave functions and energy levels accurately,
by directly solving Schrödinger’s equation HΨ = EΨ, we have to start thinking about

1Remember that a special typeface has been used for operators, vectors and other non-numerical
quantities.
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possible ways of getting fair approximations. To this end, let’s go back to first principles
– as we did in the early chapters of Book 11

The expectation value given in (1.1) would be obtained experimentally by repeating the
measurement of X a large number of times, always starting from the system in state
Ψ, and recording the actual results X1, X2, ... etc. – which may be found n1 times, n2

times, and so on, all scattered around their average value X̄. The fraction ni/N gives the
probability pi of getting the result Xi; and in terms of probabilities it follows that

X̄ = 〈X〉 = p1X1 + p2X2 ... + piXi + ... + pNXN =
∑

i

piXi. (1.4)

Now it’s much easier to calculate an expectation value, using (1.1), than it is to solve
an enormous partial differential equation; so we look for some kind of condition on Ψ,
involving only an expectation value, that will be satisfied when Ψ is a solution of the
equation HΨ = EΨ.

The obvious choice is to take X = H − EI, where I is the identity operator which leaves
any operand unchanged, for in that case

XΨ = HΨ− EΨ (1.5)

and the state vector XΨ is zero only when the Schrödinger equation is satisfied. The test
for this is simply that the vector has zero length:

〈XΨ|XΨ〉 = 0. (1.6)

In that case, Ψ may be one of the eigenvectors of H, e.g. Ψi with eigenvalue Ei, and the
last equation gives HΨi = EiΨi. On taking the scalar product with Ψi, from the left, it
follows that 〈Ψi|H|Ψi〉 = Ei〈Ψi|Ψi〉 and for eigenvectors normalized to unity the energy
expectation value coincides with the definite eigenvalue.

Let’s move on to the case where Ψ is not an eigenvector of H but rather an arbitrary
vector, which can be expressed as a mixture of a complete set of all the eigenvectors
{Ψi} (generally infinite), with numerical ‘expansion coefficients’ c1, c2, ...ci, .... Keeping
Ψ (without subscript) to denote the arbitrary vector, we put

Ψ = c1Ψ1 + c2Ψ2 + ... =
∑

i

ciΨi (1.7)

and use the general properties of eigenstates (Section 3.6 of Book 11) to obtain a general
expression for the expectation value of the energy in state (1.7), which may be normalized
so that 〈Ψ|Ψ〉 = 1.

Thus, substitution of (1.7) gives

Ē = 〈Ψ|H|Ψ〉 = 〈(
∑

i

ciΨi)|H|(
∑

j

cjΨj)〉 =
∑

i,j

c∗i cj〈Ψi|H|Ψj〉

3



and since HΨi = EiΨi, while 〈Ψi|Ψj〉 = δij (= 1, for i = j ; = 0 for i 6= j), this becomes

Ē〈Ψ|H|Ψ〉 = |c1|2E1 + |c2|2E2 + ... =
∑

i

|ci|2Ei. (1.8)

Similarly, the squared length of the normalized Ψ becomes

〈Ψ|Ψ〉 = |c1|2 + |c2|2 + ... =
∑

i

|ci|2 = 1. (1.9)

Now suppose we are interested in the state of lowest energy, the ‘ground’ state, with E1

less than any of the others. In that case it follows from the last two equations that

〈Ψ|H|Ψ〉 − E1 = |c1|2E1 + |c2|2E2 + ...

−|c1|2E1 − |c2|2E1 + ...

= 0 + |c2|2(E2 − E1) + ... .

All the quantities on the right-hand side are essentially positive: |ci|2 > 0 for all i and
Ei − E1 > 0 because E1 is the smallest of all the eigenvalues. It follows that

Given an arbitrary state vector Ψ, which may be
chosen so that 〈Ψ|Ψ〉 = 1, the energy expectation value

Ē = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉

must be greater than or equal to the lowest eigenvalue, E1,
of the Hamiltonian operator H

(1.10)

Here the normalization factor 〈Ψ|Ψ〉 has been left in the denominator of Ē and the result
then remains valid even when Ψ is not normalized (check it!). This is a famous theorem
and provides a basis for the variation method of calculating approximate eigenstates.
In Schrödinger’s formulation of quantum mechanics, where Ψ is represented by a wave
function such as Ψ(x, y, z), one can start from any ‘trial’ function that ‘looks roughly
right’ and contains adjustable parameters. By calculating a ‘variational energy’ 〈Ψ|H|Ψ〉
and varying the parameters until you can’t find a lower value of this quantity you will
know you have found the best approximation you can get to the ground-state energy E1

and corresponding wave function. To do better you’ll have to use a trial Ψ of different
functional form.

As a first example of using the variation method we’ll get an approximate wave function
for the ground state of the hydrogen atom. In Book 11 (Section 6.2) we got the energy and
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wave function for the ground state of an electron in a hydrogen-like atom, with nuclear
charge Ze, placed at the origin. They were, using atomic units,

E1s = −1
2
Z2, φ1s = N1se

−Zr,

where the normalizing factor is N1s = π−1/2Z3/2.

We’ll now try a gaussian approximation to the 1s orbital, calling it φ1s = N exp−αr2,
which correctly goes to zero for r → ∞ and to N for r = 0; and we’ll use this function
(calling it φ for short) to get an approximation to the ground state energy Ē = 〈φ|H|φ〉.
The first step is to evaluate the new normalizing factor and this gives a useful example of
the mathematics needed:

Example 1.1 A gaussian approximation to the 1s orbital.

To get the normalizing factor N we must set 〈φ|φ〉 = 1. Thus

〈φ|φ〉 = N2

∫ ∞

0

exp(−2αr2)(4πr2)dr, (A)

the volume element being that of a spherical shell of thickness dr.

To do the integration we can use the formula (very useful whenever you see a gaussian!) given in Example
5.2 of Book 11:

∫ +∞

−∞

exp(−ps2 − qs)ds =
√

π

p
exp

(

q2

4p

)

,

which holds for any values (real or complex) of the constants p, q. Since the function we’re integrating is
symmetrical about r = 0 and is needed only for q = 0 we’ll use the basic integral

I0 =

∫ ∞

0

e−pr2dr = 1
2

√
π p−1/2. (B)

Now let’s differentiate both sides of equation (B) with respect to the parameter p, just as if it were an
ordinary variable (even though it is inside the integrand and really one should prove that this is OK).
On the left we get (look back at Book 3 if you need to)

dI0
dp

= −
∫ ∞

0

r2e−pr2dr = −I1,

where we’ve called the new integral I1 as we got it from I0 by doing one differentiation. On differentiating
the right-hand side of (B) we get

d

dp
( 12
√
π p−1/2) = 1

2

√
π(− 1

2p
−3/2) = − 1

4

√
π/p
√
p.

But the two results must be equal (if two functions of p are identically equal their slopes will be equal at
all points) and therefore

I1 =

∫ ∞

0

r2e−pr2dr = 1
2

√
π( 12p

−3/2) = 1
4

√
π/p
√
p,

where the integral I1 on the left is the one we need as it appears in (A) above. On using this result in

(A) and remembering that p = 2α it follows that N2 = (p/π)3/2 = (2α/π)3/2.
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Example 1.1 has given the square of the normalizing factor,

N2 =

(

2α

π

)3/2

, (1.11)

which will appear in all matrix elements.

Now we turn to the expectation value of the energy Ē = 〈φ|H|φ〉. Here the Hamiltonian
will be

H = T+ V = −1
2
∇2 − Z/r

and since φ is a function of only the radial distance r we can use the expression for ∇2

obtained in Example 4.8 of Book 11, namely

∇2 ≡ 2

r

d

dr
+

d2

dr2
.

On denoting the 1-electron Hamiltonian by h (we’ll keep H for many-electron systems)
we then find hφ = −(Z/r)φ− (1/r)(dφ/dr)− 1

2
(d2φ/dr2) and

〈φ|h|φ〉 = −Z〈φ|(1/r)|φ〉 − 〈φ|(1/r)(dφ/dr)〉 − 1
2
(〈φ|(d2φ/dr2)〉. (1.12)

We’ll evaluate the three terms on the right in the next two Examples:

Example 1.2 Expectation value of the potential energy

We require 〈φ|V|φ〉 = −Z〈φ|(1/r)|φ〉, where φ is the normalized function φ = Ne−αr2 :

〈φ|V|φ〉 = −ZN2

∫ ∞

0

e−αr2(1/r)e−αr2(4πr2)dr,

which looks like the integral at “A” in Example 1.1 – except for the factor (1/r). The new integral we
need is 4πI ′0, where

I ′0 =

∫ ∞

0

re−pr2dr (p = 2α)

and the factor r spoils everything – we can no longer get I ′0 from I0 by differentiating, as in Example 1.1,
for that would bring down a factor r2. However, we can use another of the tricks you learnt in Chapter 4
of Book 3. (If you’ve forgotten all that you’d better read it again!) It comes from ‘changing the variable’
by putting r2 = u and expressing I ′0 in terms of u. In that case we can use the formula you learnt long
ago, namely I ′0 =

∫∞

0
(u1/2e−pu)(dr/du)du.

To see how this works with u = r2 we note that, since r = u1/2, dr/du = 1
2u

−1/2; so in terms of u

I ′0 =

∫ ∞

0

(u1/2e−pu)( 12u
−1/2)du = 1

2

∫∞

0
e−pudu.

The integral is a simple standard integral and when the limits are put in it gives (check it!) I ′0 =
1
2 [−e−pu/p]∞0 = 1

2 (1/p).
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From Example 1.2 it follows that

〈φ|V|φ〉 = −4πZN2 1
2

[

− e−pu

p

]∞

0
= −2πZN2/p. (1.13)

And now you know how to do the integrations you should be able to get the remaining
terms in the expectation value of the Hamiltonian h. They come from the kinetic energy
operator T = −1

2
∇2, as in the next example.

Example 1.3 Expectation value of the kinetic energy

We require T̄ = 〈φ|T|φ〉 and from (1.12) this is seen to be the sum of two terms. The first one involves

the first derivative of φ, which becomes (on putting −αr2 = u in φ = Ne−αr2)

(dφ/dr) = (dφ/du)(du/dr) = N(e−u)(−2rα) = −2Nαr e−αr2 .

On using this result, multiplying by φ and integrating, it gives a contribution to T̄ of

T̄1 = 〈φ| − 1

r

d

dr
|φ〉 = N2p

∫ ∞

0

1

r
re−pr2(4πr2)dr = 4πN2p

∫ ∞

0

e−pr2(r2)dr = 4πN2pI1

– the integral containing a factor r2 in the integrand (just like I1 in Example 1.1).

The second term in T̄ involves the second derivative of φ; and we already found the first derivative as
dφ/dr = −Npr e−αr2 So differentiating once more (do it!) you should find

(d2φ/dr2) = −Npe−αr2 −Npr(−pre−αr2).

(check it by differentiating −2Nαre−αr2).

On using this result we obtain (again with p = 2α)

T̄2 = 〈φ| − 1
2

d2

dr2 |φ〉 = − 1
2N

24πp
∫∞

0
r2e−pr2dr + 1

2N
24πp2

∫∞

0
r4e−pr2dr = 2πN2(−p2I2 + pI1).

When the first-derivative term is added, namely 4πN2pI1, we obtain the expectation value of the kinetic
energy as

4πN2pI1 + 2πN2(p2I2 − pI1) = 2πN2(−p2I2 + 3pI1.)

The two terms in the final parentheses are

2πN2p2I2 = 2πN2 3

8

√

π

2α
, 2πN2pI1 = 2πN2 1

4

√

π

2α

and remembering that p = 2α and that N2 is given in (1.1), substitution gives the result T̄ = T̄1 + T̄2 =
2πN2(3/8)

√

π/2α.

The expectation value of the KE is thus, noting that 2πN2 = 2p(p/π)1/2,

〈φ|T|φ〉 = 5

8

√

π

2α
× 2πN2 =

3p

4
. (1.14)
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Finally, the expectation energy with a trial wave function of the form φ = Ne−αr2 becomes,
on adding the PE term from (1.13), −2πZN2(1/2α)

Ē =
3α

2
− 2Z

(

2

π

)1/2

α1/2. (1.15)

There is only one variable parameter α and to get the best approximate ground state
function of Gaussian form we must adjust α until Ē reaches a minimum value. The value
of Ē will be stationary (maximum, minimum, or turning point) when dĒ/dα = 0; so we
must differentiate and set the result equal to zero.

Example 1.4 A first test of the variation method

Let’s put
√
α = µ and write (1.15) in the form

Ē = Aµ2 −Bµ (A = 3/2, B = 2Z
√

2/π)

which makes it look a bit simpler.

We can then vary µ, finding dĒ/dµ = 2Aµ − B, and this has a stationary value when µ = B/2A. On
substituting for µ in the energy expression, the stationary value is seen to be

Ēmin = A(B2/4A2)−B(B/2A),

where the two terms are the kinetic energy T̄ = 1
2 (B

2/2A) and the potential energy V̄ = (B2/2A). The
total energy Ē at the stationary point is thus the sum KE + PE:

Ē = 1
2 (B

2/2A)− (B2/2A) = − 1
2 (B

2/2A) = −T̄

and this is an energy minimum, because d2Ē/dµ2 = 2A –which is positive.

The fact that the minimum energy is exactly −1 × the kinetic energy is no accident: it is a consequence
of the virial theorem, about which you’ll hear more later. For the moment, we note that for a hydrogen-
like atom the 1-term gaussian wave function gives a best approximate energy Ēmin = − 1

2 (2Z
√

2/π)2/3 =
−4Z2/3π.

Example 1.4 gives the result −0.42442Z2, where all energies are in units of eH.

For the hydrogen atom, with Z = 1, the exact ground state energy is −1
2
eH, as we know

from Book 11. In summary then, the conclusion from the Example is that a gaussian
function gives a very poor approximation to the hydrogen atom ground state, the estimate
−0.42442 eH being in error by about 15%. The next Figure shows why:

r-axis

1.0

0.0
0 3.0

Solid line: exact 1s function

Broken line: 1-term gaussian

Figure 1.1 Comparison of exponential and gaussian functions
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φ(r) fails to describe the sharp cusp when r → 0 and also goes to zero much too rapidly
when r is large.

Of course we could get the accurate energy E1 = −1
2
eH and the corresponding wave func-

tion φ1, by using a trial function of exponential form exp−ar and varying the parameter
a until the approximate energy reaches a minimum value. But here we’ll try another
approach, taking a mixture of two gaussian functions, one falling rapidly to zero as r
increases and the other falling more slowly: in that way we can hope to correct the main
defects in the 1-term approximation.

Example 1.5 A 2-term gaussian approximation

With a trial function of the form φ = A exp−ar2 + B exp−br2 there are three parameters that can
be independently varied, a, b and the ratio c = B/A – a fourth parameter not being necessary if we’re
looking for a normalized function (can you say why?). So we’ll use instead a 2-term function φ =
exp−ar2 + c exp−br2.
From the previous Examples 1.1-1.3, it’s clear how you can evaluate all the integrals you need in calcu-
lating 〈φ|φ〉 and the expectation values 〈φ|V|φ〉, 〈φ|V|φ〉; all you’ll need to change will be the parameter
values in the integrals.

Try to work through this by yourself, without doing the variation of all three values to find the minimum

value of Ē. (Until you’ve learnt to use a computer that’s much too long a job! But you may like

to know the result: the ‘best’ values of a, b, c are a = 1.32965, b = 0.20146, c = 0.72542 and the

best approximation to E1s then comes out as Ē = −0.4858Z2eH. This compares with the one-term

approximation Ē = −0.4244Z2eH; the error is now reduced from about 15% to less than 3%.

The approximate wave function obtained in Example 1.5 is plotted in Figure 1.2 and again
compared with the exact 1s function. (The functions are not normalized, being shifted
vertically to show how well the cusp behaviour is corrected. Normalization improves the
agreement in the middle range.)

1.0

0.0
0.0 3.0 6.0r-axis

Figure 1.2 A 2-term gaussian approximation (broken line)
to the hydrogen atom 1s function (solid line)

This Example suggests another form of the variation method, which is both easier to apply
and much more powerful. We study it in the next Section, going back to the general case,
where Ψ denotes any kind of wave function, expanded in terms of eigenfunctions Ψi.
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1.3 The linear variation method

Instead of building a variational approximation to the wave function Ψ out of only two
terms we may use as many as we please, taking in general

Ψ = c1Ψ1 + c2Ψ2 + ... + cNΨN , (1.16)

where (with the usual notation) the functions {Ψi (i = 1, 2, ... N)} are ‘fixed’ and we vary
only the coefficients ci in the linear combination: this is called a “linear variation function”
and it lies at the root of nearly all methods of constructing atomic and molecular wave
functions.

From the variation theorem (1.10) we need to calculate the expectation energy Ē =
〈Ψ|H|Ψ〉/〈Ψ|Ψ〉, which we know will give an upper bound to the lowest exact eigenvalue
E1 of the operator H. We start by putting this expression in a convenient matrix form:
you used matrices a lot in Book 11, ‘representing’ the operator H by a square array of
numbers H with Hij = 〈Ψi|H|Ψj〉 (called a “matrix element”) standing at the intersection
of the ith row and jth column; and collecting the coefficients ci in a single column c. A
matrix element Hij with j = i lies on the diagonal of the array and gives the expectation
energy Ēi when the system is in the particular state Ψ = Ψi. (Look back at Book 11
Chapter 7 if you need reminding of the rules for using matrices.)

In matrix notation the more general expectation energy becomes

Ē =
c†Hc

c†Mc
, (1.17)

where c† (the ‘Hermitian transpose’ of c) denotes the row of coefficients (c∗1 c
∗
2, ... c

∗
N) and

M (the ‘metric matrix’) looks like H except that Hij is replaced by Mij = 〈Ψi|Ψj〉, the
scalar product or ‘overlap’ of the two functions. This allows us to use sets of functions
that are neither normalized to unity nor orthogonal – with no additional complication.

The best approximate state function (1.11) we can get is obtained by minimizing Ē to
make it as close as possible to the (unknown!) ground state energy E1, and to do this we
look at the effect of a small variation c → c + δc: if we have reached the minimum, Ē
will be stationary, with the corresponding change δĒ = 0.

In the variation c→ c+ δc, Ē becomes

Ē + δĒ =
c†Hc+ c†Hδc+ δc†Hc+ ...

c†Mc+ c†Mδc+ δc†Mc+ ...
,

where second-order terms that involve products of δ-quantities have been dropped (van-
ishing in the limit δc→ 0).

The denominator in this expression can be re-written, since c†Mc is just a number, as

c†Mc[1 + (c†Mc)−1(c†Mδc+ δc†Mc)]
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and the part in square brackets has an inverse (to first order in small quantities)

1− (c†Mc)−1(c†Mδc+ δc†Mc).

On putting this result in the expression for Ē + δĒ and re-arranging a bit (do it!) you’ll
find

Ē + δĒ = Ē + c†Mc)−1[(c†Hδc+ δc†Hc)− Ē(c†Mδc+ δc†Mc)].

It follows that the first-order variation is given by

δĒ = c†Mc)−1[(c†H− Ēc†M)δc+ δc†(Hc− ĒMc)]. (1.18)

The two terms in (1.18) are complex conjugate, giving a real result which will vanish only
when each is zero.

The condition for a stationary value thus reduces to a matrix eigenvalue equation

Hc = ĒMc. (1.19)

To get the minimum value of Ē we therefore take the lowest eigenvalue; and the corre-
sponding ‘best approximation’ to the wave function Ψ ≈ Ψ1 will follow on solving the
simultaneous equations equivalent to (1.19), namely

∑

j

Hijcj = Ē
∑

j

Mijcj (all i). (1.20)

This is essentially what we did in Example 1.2, where the linear coefficients c1, c2 gave a
best approximation when they satisfied the two simultaneous equations

(H11 − ĒM11)c1 + (H12 − ĒM12)c2 = 0,

(H21 − ĒM21)c1 + (H22 − ĒM22)c2 = 0,

the other parameters bing fixed. Now we want to do the same thing generally, using a
large basis of N expansion functions {Ψi}, and to make the calculation easier it’s best to
use an orthonormal set. For the case N = 2, M11 = M22 = 1 and M12 = M21 = 0, the
equations then become

(H11 − Ē)c1 = −H12c2,

H21c1 = −(H22 − Ē)c2.

Here there are three unknowns, Ē, c1, c2. However, by dividing each side of the first
equation by the corresponding side of the second, we can eliminate two of them, leaving
only

(H11 − Ē)
H21

=
H12

(H22 − Ē)
.

This is quadratic in Ē and has two possible solutions. On ‘cross-multiplying’ it follows
that (H11 − Ē)(H22 − Ē) = H12H21 and on solving we get lower and upper values Ē1

11



and Ē2. After substituting either value back in the original equations, we can solve to get
the ratio of the expansion coefficients. Normalization to make c21 + c22 = 1 then results in
approximations to the first two wave functions, Ψ1 (the ground state) and Ψ2 (a state of
higher energy).

Generalization

Suppose we want a really good approximation and use a basis containing hundreds of
functions Ψi. The set of simultaneous equations to be solved will then be enormous; but
we can see how to continue by looking at the case N = 3, where they become

(H11 − ĒM11)c1 + (H12 − ĒM12)c2 + (H13 − ĒM13)c3 = 0,

(H21 − ĒM21)c1 + (H22 − ĒM22)c2 + (H23 − ĒM23)c3 = 0,

(H31 − ĒM31)c1 + (H32 − ĒM32)c2 + (H33 − ĒM33)c3 = 0.

We’ll again take an orthonormal set, to simplify things. In that case the equations reduce
to (in matrix form)





H11 − Ē H12 H13

H21 H22 − Ē H23

H31 H32 H33 − Ē









c1
c2
c3



 =





0
0
0



 .

When there were only two expansion functions we had similar equations, but with only
two rows and columns in the matrices:

(

H11 − Ē H12

H21 H22 − Ē

)(

c1
c2

)

=

(

0
0

)

.

And we got a solution by ‘cross-multiplying’ in the square matrix, which gave

(H11 − Ē)(H22 − Ē)−H21H12 = 0.

This is called a compatibility condition: it determines the only values of Ē for which
the equations are compatible (i.e. can both be solved at the same time).

In the general case, there are N simultaneous equations and the condition involves the
determinant of the square array: thus for N = 3 it becomes

∣

∣

∣

∣

∣

∣

H11 − Ē H12 H13

H21 H22 − Ē H23

H31 H32 H33 − Ē

∣

∣

∣

∣

∣

∣

= 0. (1.21)

There are many books on algebra, where you can find whole chapters on the theory of
determinants, but nowadays equations like (1.16) can be solved easily with the help of
a small computer. All the ‘theory’ you really need, was explained long ago in Book 2
(Section 6.12). So here a reminder should be enough:
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Given a square matrix A, with three rows and columns, its determinant can be evaluated as follows. You
can start from the 11-element A11 and then get the determnant of the 2×2 matrix that is left when you
take away the first row and first column:

∣

∣

∣

∣

A22 A23

A32 A33

∣

∣

∣

∣

= A22A33 −A32A23.

– as follows from what you did just before (1.16). What you have evaluated is called the ‘co-factor’ of
A11 and is denoted by A(11).

Then move to the next element in the first row, namely A12, and do the same sort of thing: take away
the first row and second column and then get the determinant of the 2×2 matrix that is left. This would
seem to be the co-factor of A12; but in fact, whenever you move from one element in the row to the next,
you have to attach a minus sign; so what you have found is −A(12).

When you’ve finished the row you can put together the three contributions to get

|A| = A11A
(11) −A12A

(12) +A13A
(13)

and you’ve evaluated the 3×3 determinant!

The only reason for reminding you of all that (since a small computer can do such things
much better than we can) was to show that the determinant in (1.21) will give you a
polynomial of degree 3 in the energy Ē. (That is clear if you take A = H− Ē1, make the
expansion, and look at the terms that arise from the product of elements on the ‘principal
diagonal’, namely (H11− Ē)× (H22− Ē)× (H33− Ē). These include −Ē3.) Generally, as
you can see, the expansion of a determinant like (1.16), but with N rows and columns,
will contain a term of highest degree in Ē of the form (−1)N ĒN . This leads to conclusions
of very great importance – as you’re just about to see.

1.4 Going all the way! Is there a limit?

The first time you learnt anything about eigenfunctions and how they could be used
was in Book 3 (Section 6.3). Before starting the present Section 1.4 of Book 12, you
should read again what was done there. You were studying a simple differential equation,
the one that describes standing waves on a vibrating string, and the solutions were sine
functions (very much like the eigenfunctions coming from Schrödinger’s equation for a
‘particle in a box’, discussed in Book 11). By putting together a large number of such
functions, corresponding to increasing values of the vibration frequency, you were able to
get approximations to the instantaneous shape of the string for any kind of vibration.
That was a first example of an eigenfunction expansion. Here we’re going to use such
expansions in constructing approximate wave functions for atoms and molecules; and
we’ve taken the first steps by starting from linear variation functions. What we must do
now is to ask how a function of the form (1.16) can approach more and more closely an
exact eigenfunction of the Hamiltonian H as N is increased.

In Section 1.3 it was shown that an N -term variation function (1.16) could give an op-
timum approximation to the ground state wave function Ψ1, provided the expansion
coefficients ci were chosen so as to satisfy a set of linear equations: for N = 3 these took
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the form

(H11 − ĒM11)c1 + (H12 − ĒM12)c2 + (H13 − ĒM13)c3 = 0,

(H21 − ĒM21)c1 + (H22 − ĒM22)c2 + (H23 − ĒM23)c3 = 0,

(H31 − ĒM31)c1 + (H32 − ĒM32)c2 + (H33 − ĒM33)c3 = 0.

and were compatible only when the variational energy Ē satisfied the condition (1.16).
There are only three values of Ē which do so. We know that Ē1 is an upper bound to the
accurate lowest-energy eigenvalue E1 but what about the other two?

In general, equations of this kind are called secular equations and a condition like (1.16)
is called a secular determinant. If we plot the value, ∆ say, of the determinant (having
worked it out for any chosen value of Ē) against Ē, we’ll get a curve something like the
one in Figure 1.3; and whenever the curve crosses the horizontal axis we’ll have ∆ = 0,
the compatibility condition will be satisfied and that value of Ē will allow you to solve
the secular equations. For other values you just can’t do it!

∆(Ē)

Ē

Figure 1.3 Secular determinant
Solid line: for N = 3
Broken line: for N = 4

Ē

Ē1

Ē2

Ē3

Ē1

Ē2

Ē3

Ē4

E1

Figure 1.4 Energy levels
Solid lines: for N = 3
Broken lines: for N = 4

On the far left in Fig.1.3, ∆ will become indefinitely large and positive because its ex-
pansion is a polynomial dominated by the term −Ē3 and Ē is negative. On the other
side, where Ē is positive, the curve on the far right will go off to large negative values. In
between there will be three crossing points, showing the acceptable energy values.

Now let’s look at the effect of increasing the number of basis functions by adding another,
Ψ4. The value of the secular determinant then changes and, since expansion gives a
polynomial of degree 4, it will go towards +∞ for large values of Ē. Figure 1.3 shows that
there are now four crossing points on the x-axis and therefore four acceptable solutions
of the secular equations. The corresponding energy levels for N = 3 and N = 4 are
compared in Figure 1.4, where the first three are seen to go down, while one new level
(Ē4) appears at higher energy. The levels for N = 4 fall in between the levels above and
below for N = 3 and this result is often called the “separation theorem”: it can be proved
properly by studying the values of the determinant ∆N(Ē) for values of Ē at the crossing
points of ∆N−1(Ē).
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The conclusion is that, as more and more basis functions are added, the roots of the
secular determinant go steadily (or ‘monotonically’) down and will therefore approach
limiting values. The first of these, E1, is known to be an upper bound to the exact lowest
eigenvalue of H (i.e. the groundstate of the system) and it now appears that the higher
roots will give upper bounds to the higher ‘excited’ states. For this conclusion to be true
it is necessary that the chosen basis functions form a complete set.

1.5 Complete set expansions

So far, in the last section, we’ve been thinking of linear variation functions in general,
without saying much about the forms of the expansion functions and how they can be
constructed; but for atoms and molecules they may be functions of many variables (e.g.
coordinates x1, y1, z1, x2, y2, z2, x3, ... zN for N particles – even without including spins!).
From now on we’ll be dealing mainly with wave functions built up from one-particle
functions, which from now on we’ll denote by lower-case letters {φk(ri)} with the index i
labelling ‘Particle i’ and ri standing for all three variables needed to indicate its position
in space (spin will be put in later); as usual the subscript on the function will just indicate
which one of the whole set (k = 1, 2, ... n) we mean. (It’s a pity so many labels are needed,
and that sometimes we have to change their names, but by now you must be getting used
to the fact that you’re playing a difficult game – once you’re clear about what the symbols
stand for the rest will be easy!)

Let’s start by thinking again of the simplest case; one particle, moving in one dimension,
so the particle label i is not needed and r can be replaced by just one variable, x. Instead
of φk(ri) we can then use φk(x). We want to represent any function f(x) as a linear
combination of these basis functions and we’ll write

f (n)(x) = c1φ1(x) + c2φ2(x) + ... + cnφn(x) (1.22)

as the ‘n-term approximation’ to f(x).

Our first job will be to choose the coefficients so as to get a best approximation to f(x)
over the whole range of x-values (not just at one point). And by “the whole range” we’ll
mean for all x in the interval, (a, b) say, outside which the function has values that can
be neglected: the range may be very small (think of the delta-function you met in Book
11) or very large (think of the interval (−∞,+∞) for a particle moving in free space).
(When we need to show the limits of the interval we’ll just use x = a and x = b.)

Generally, the curves we get on plotting f(x) and f (n)(x) will differ and their difference
can be measured by ∆(x) = f(x) − f (n)(x) at all points in the range. But ∆(x) will
sometimes be positive and sometimes negative. So it’s no good adding these differences
for all points on the curve (which will mean integrating ∆(x)) to get a measure of how
poor the approximation is; for cancellations could lead to zero even when the curves were
very different. It’s really the magnitude of ∆(x) that matters, or its square – which is
always positive.
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So instead let’s measure the difference by |f(x) − f (n)(x)|2, at any point, and the ‘total
difference’ by

D =

∫ b

a

∆(x)2dx =

∫ b

a

|f(x)− f (n)(x)|2dx. (1.23)

The integral gives the sum of the areas of all the strips between x = a and x = b of
height ∆2 and width dx. This quantity will measure the error when the whole curve is
approximated by f (n)(x) and we’ll only get a really good fit, over the whole range of x,
when D is close to zero.

The coefficients ck should be chosen to give D its lowest possible value and you know
how to do that: for a function of one variable you find a minimum value by first seeking
a ‘turning point’ where (df/dx) = 0; and then check that it really is a minimum, by
verifying that (d2f/dx2) is positive. It’s just the same here, except that we look at
the variables one at a time, keeping the others constant. Remember too that it’s the
coefficients ck that we’re going to vary, not x.

Now let’s put (1.17) into (1.18) and try to evaluate D. You first get (dropping the usual
variable x and the limits a, b when they are obvious)

D =

∫

|f − f (n)|2dx =

∫

f 2dx+

∫

(f (n))2dx− 2

∫

ff (n)dx. (1.24)

So there are three terms to differentiate – only the last two really, because the first
doesn’t contain any ck and so will disappear when you start differentiating. These two
terms are very easy to deal with if you make use of the supposed orthonormality of the
expansion functions: for real functions

∫

φ2
kdx = 1,

∫

φkφldx = 0 (k 6= l). Using these
two properties, we can go back to (1.19) and differentiate the last two terms, with respect
to each ck (one at a time, holding the others fixed): the first of the two terms leads to

∂

∂ck

∫

(f (n))2dx =
∂

∂ck
c2k

∫

φk(x)
2dx = 2ck;

while the second one gives

−2 ∂

∂ck

∫

ff (n)dx = −2 ∂

∂ck
ck

∫

f(x)φk(x)dx = −2〈f |φk〉,

where Dirac notation (see Chapter 9 of Book 11) has been used for the integral
∫

f(x)φk(x)dx,
which is the scalar product of the two functions f(x) and φk(x):

〈f |φk〉 =
∫

f(x)φk(x)dx.

We can now do the differentiation of the whole difference function D in (1.18). The result
is

∂D

∂ck
= 2ck − 2〈f |φk〉
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and this tells us immediately how to choose the coefficients in the n-term approximation
(1.17) so as to get the best possible fit to the given function f(x): setting all the derivatives
equal to zero gives

ck = 〈f |φk〉 (for all k). (1.25)

So it’s really very simple: you just have to evaluate one integral to get any coefficient
you want. And once you’ve got it, there’s never any need to change it in getting a better
approximation. You can make the expansion as long as you like by adding more terms,
but the coefficients of the ones you’ve already done are final. Moreover, the results are
quite general: if you use basis functions that are no longer real you only need change the
definition of the scalar product, taking instead the Hermitian scalar product as in (1.1).

Generalizations

In studying atoms and molecules we’ll have to deal with functions of very many variables,
not just one. But some of the examples we met in Book 11 suggest possible ways of
proceeding. Thus, in going from the harmonic oscillator in one dimension (Example 4.3),
with eigenfunctions Ψk(x), to the 3-dimensional oscillator (Example 4.4) it was possible
to find eigenfunctions of product form, each of the three factors being of 1-dimensional
form. The same was true for a particle in a rectangular box; and also for a free particle.

To explore such possibilities more generally we first ask if a function of two variables, x
and x′, defined for x in the interval (a, b) and x′ in (a′, b′), can be expanded in products
of the form φi(x)φ

′
j(x

′). Suppose we write (hopefully!)

f(x, x′) =
∑

i,j

cijφi(x)φ
′
j(x

′) (1.26)

where the set {φi(x)} is complete for functions of x defined in (a, b), while {φ′
i(x

′)} is
complete for functions of x′ defined in (a′, b′). Can we justify (1.26)? A simple argument
suggests that we can.

For any given value of the variable x′ we may safely take (if {φi(x)} is indeed complete)

f(x, x′) = c1φ1(x) + c2φ2(x) + ... ciφi(x) + ....

where the coefficients must depend on the chosen value of x′. But then, because {φ′
i(x

′)}
is also supposed to be complete, for functions of x′ in the interval (a′, b′), we may express
the general coefficient ci in the previous expansion as

ci = ci1φ
′
1(x

′) + ci2φ
′
2(x

′) + ...cijφj(x
′) + ....

On putting this expression for ci in the first expansion we get the double summation pos-
tulated in (1.26) (as you should verify!). If the variables x, x′ are interpreted as Cartesian
coordinates the expansion may be expected to hold good within the rectangle bounded
by the summation limits.

Of course, this argument would not satisfy any pure mathematician; but the further
generalizations it suggests have been found satisfactory in a wide range of applications in
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Applied Mathematics and Physics. In the quantum mechanics of many-electron systems,
for example, where the different particles are physically identical and may be described
in terms of a single complete set, the many-electron wave function is commonly expanded
in terms of products of 1-electron functions (or ‘orbitals’).

Thus, one might expect to find 2-electron wave functions constructed in the form

Ψ(r1, r2) =
∑

i,j

ci,jφi(r1)φj(r2),

where the same set of orbitals {φi} is used for each of the identical particles, the two
factors in the product being functions of the different particle variables r1, r2. Here a
boldface letter r stands for the set of three variables (e.g. Cartesian coordinates) defining
the position of a particle at point r. The labels i and j run over all the orbitals of the (in
principle) complete set, or (in practice) over all values 1, 2, 3, .... n, in the finite set used
in constructing an approximate wave function.

In Chapter 2 you will find applications to 2-electron atoms and molecules where the wave
functions are built up from one-centre orbitals of the kind studied in Book 11. (You can
find pictures of atomic orbitals there, in Chapter 3.)
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Chapter 2

Some two-electron systems

2.1 Going from one particle to two

For two electrons moving in the field provided by one or more positively charged nuclei
(supposedly fixed in space), the Hamiltonian takes the form

H(1, 2) = h(1) + h(2) + g(1, 2) (2.1)

where H(1, 2) operates on the variables of both particles, while h(i) operates on those of
Particle i alone. (Don’t get mixed up with names of the indices – here i = 1, 2 label the
two electrons.) The one-electron Hamiltonian h(i) has the usual form (see Book 11)

h(i) = −1
2
∇2(i) + V (i), (2.2)

the first term being the kinetic energy (KE) operator and the second being the potential
energy (PE) of Electron i in the given field. The operator g(1, 2) in (2.1) is simply the
interaction potential, e2/κ0rij , expressed in ‘atomic units’ (see Book 11) 1 So in (2.1) we
take

g(1, 2) = g(1, 2) =
1

r12
, (2.3)

r12 being the inter-electron distance. To get a very rough estimate of the total energy E,
we may neglect this term altogether and use an approximate Hamiltonian

H0(1, 2) = h(1) + h(2), (2.4)

which describes an Independent Particle ‘Model’ of the system. The resultant IPM
approximation is fundamental to all that will be done in Book 12.

1A fully consistent set of units on an ‘atomic’ scale is obtained by taking the mass and charge of
the electron (m, e) to have unit values, along with the action ~ = h/2π. Other units are κ0 = 4π ǫ0 (ǫ0
being the “electric permittivity of free space”); length a0 = ~

2κ0/me
2 and energy eH = me4/κ 2

0 ~
2.

These quantities may be set equal to unity wherever they appear, leading to a great simplification of all
equations. If the result of an energy calculation is the number x this just means that E = xeH; similarly
a distance calculation would give L = xa0.
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With a Hamiltonian of this IPM form we can look for a solution of product form and
use the ‘separation method’ (as in Chapter 4 of Book 11). We therefore look for a wave
function Ψ(r1, r2) = φm(r1)φn(r2). Here each factor is a function of the position variables
of only one of the two electrons, indicated by r1 or r2, and (to be general!) Electron 1 is
described by a wave function φm while Electron 2 is described by φn.

On substituting this product in the eigenvalue equation H0Ψ = EΨ and dividing through-
out by Ψ you get (do it!)

h(1)φm(r1)

φm(r1)
+

h(2)φn(r2)

φn(r2)
= E.

Now the two terms on the left-hand side are quite independent, involving different sets of
variables, and their sum can be a constant E, only if each term is separately a constant.
Calling the two constants ǫm and ǫn, the product Ψmn(r1, r2) = φm(r1)φn(r2) will satisfy
the eigenvalue equation provided

h(1)φm(r1) = ǫmφm(r1),

h(2)φn(r2) = ǫnφn(r2).

The total energy will then be
E = ǫm + ǫn. (2.5)

This means that the orbital product is an eigenfunction of the IPM Hamiltonian pro-
vided φm and φn are any solutions of the one-electron eigenvalue equation

hφ(r) = ǫφ(r). (2.6)

Note especially that the names given to the electrons, and to the corresponding variables
r1 and r2, don’t matter at all. The same equation applies to each electron and φ = φ(r)
is a function of position for whichever electron we’re thinking of: that’s why the labels 1
and 2 have been dropped in the one-electron equation (2.6). Each electron has ‘its own’
orbital energy, depending on which solution we choose to describe it, and since H0 in
(2.4) does not contain any interaction energy it is not surprising that their sum gives the
total energy E. We often say that the electron “is in” or “occupies” the orbital chosen to
describe it. If Electron 1 is in φm and Electron 2 is in φn, then the two-electron function

Ψmn(r1, r2) = φm(r1)φn(r2)

will be an exact eigenfunction of the IPM Hamiltonian (2.4), with eigenvalue (2.5).

For example, putting both electrons in the lowest energy orbital, φ1 say, gives a wave
function Ψ11(r1, r2) = φ1(r1)φ1(r2) corresponding to total energy E = 2ǫ1. This is the
(strictly!) IPM description of the ground state of the system. To improve on this
approximation, which is very crude, we must allow for electron interaction: the next
approximation is to use the full Hamiltonian (2.1) to calculate the energy expectation
value for the IPM function (no longer an eigen-function of H). Thus

Ψ11(r1, r2) = φ1(r1)φ1(r2). (2.7)
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and this gives

Ē = 〈Ψ11|h(1) + h(2) + g(1, 2)|Ψ11〉 = 2〈φ1|h|φ1〉+ 〈φ1φ1|g|φ1φ1〉, (2.8)

where the first term on the right is simply twice the energy of one electron in orbital φ1,
namely 2ǫ1. The second term involves the two-electron operator given in (2.3) and has
explicit form

〈φ1φ1|g|φ1φ1〉 =
∫

φ∗
1(r1)φ

∗
1(r2)

1

r12
φ1(r1)φ1(r2)dr1dr2, (2.9)

Here the variables in the bra and the ket will always be labelled in the order 1,2 and the
volume element dr1, for example, will refer to integration over all particle variables (e.g.
in Cartesian coordinates it is dx1dy1dz1). (Remember also that, in bra-ket notation, the
functions that come from the bra should in general carry the star (complex conjugate);
and even when the functions are real it is useful to keep the star.)

To evaluate the integral we need to know the form of the 1-electron wave function φ1, but
the expression (2.9) is a valid first approximation to the electron repulsion energy in the
ground state of any 2-electron system.

Let’s start with the Helium atom, with just two electrons moving in the field of a nucleus
of charge Z = 2.

2.2 The Helium atom

The function (2.7) is clearly normalized when, as we suppose, the orbitals themselves
(which are now atomic orbitals) are normalized; for

〈φ1φ1|φ1φ1〉 =
∫

φ∗
1(r1)φ

∗
1(r2)φ1(r1)φ1(r2)dr1dr2 = 〈φ1|φ1〉 〈φ1|φ1〉 = 1× 1.

The approximate energy (2.8) is then

Ē = 2ǫ1 + 〈φ1φ1|g|φ1φ1〉 = 2ǫ1 + J11, (2.10)

Here ǫ1 is the orbital energy of an electron, by itself, in orbital φ1 in the field of the nucleus;
the 2-electron term J11 is often called a ‘Coulomb integral’ because it corresponds to the
Coulombic repulsion energy (see Book 10) of two distributions of electric charge, each
of density |φ1(r)|2 per unit volume. For a hydrogen-like atom, with atomic number Z,
we know that ǫ1 = −1

2
Z2eH. When the Coulomb integral is evaluated it turns out to

be J11 = (5/8)ZeH and the approximate energy thus becomes Ē = −Z2 + (5/8)Z in
‘atomic’ units of eH. With Z = 2 this gives a first estimate of the electronic energy of the
Helium atom in its ground state: Ē = −2.75 eH, compared with an experimental value
−2.90374 eH.
To improve the ground state wave function we may use the variation method as in Section
1.2 by choosing a new function φ′

1 = N ′e−Z′r, where Z ′ takes the place of the actual nuclear
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charge and is to be treated as an adjustable parameter. This allows the electron to ‘feel’
an ‘effective nuclear charge’ a bit different from the actual Z = 2. The corresponding
normalizing factor N ′ will have to be chosen so that

〈φ′
1|φ′

1〉 = N ′2

∫

exp(−2Z ′r)(4πr2)dr = 1

and this gives (prove it!) N ′2 = Z ′3/π.

The energy expectation value still has the form (2.8) and the terms can be evaluated
separately

Example 2.1 Evaluation of the one-electron term

The first 1-electron operator has an expectation value 〈Ψ11|h(1)|Ψ11〉 = 〈φ′1|h|φ′1〉〈φ′1|φ′1〉, a matrix ele-
ment of the operator h times the scalar product 〈φ′1|φ′1〉. In full, this is

〈Ψ11|h(1)|Ψ11〉 = N ′2

∫ ∞

0

e−Z′rhe−Z′r4πr2dr ×N ′2

∫ ∞

0

e−Z′re−Z′r4πr2dr,

where h working on a function of r alone is equivalent to (− 1
2∇2−Z/r) – h containing the actual charge

(Z).

We can spare ourselves some work by noting that if we put Z = Z ′ the function φ′1 = N ′e−Z′r becomes
an eigenfunction of (− 1

2∇2 − Z ′/r) with eigenvalue ǫ′ = − 1
2Z

′2 (Z ′ being a ‘pretend’ value of Z. So

h = − 1
2∇2 − Z/r = (− 1

2∇2 − Z ′/r) + (Z ′ − Z)/r,

where the operator in parentheses is easy to handle: when it works on φ′1 it simply multiplies it by the
eigenvalue − 1

2Z
′2. Thus, the operator h, working on the function N ′e−Z′r gives

h(N ′e−Z′r) =
(

− 1
2Z

′2 + Z′−Z
r

)

N ′e−Z′r.

The one-electron part of (2.8) can now be written as (two equal terms – say why!) 2〈Ψ11|h(1)|Ψ11〉 where

〈Ψ11|h(1)|Ψ11〉 = 〈φ′1|h|φ′1〉〈φ′1|φ′1〉

= N ′2

∫ ∞

0

e−Z′rhe−Z′r4πr2dr ×N ′2

∫ ∞

0

e−2Z′r4πr2dr

= N ′2

∫ ∞

0

e−Z′r
(

− 1
2Z

′2 + Z′−Z
r

)

e−Z′r4πr2dr.

Here the last integral on the second line is unity (normalization) and leaves only the one before it. This
remaining integration gives (check it out!) 〈Ψ11|h(1)|Ψ11〉 = − 1

2Z
′2 +4π(Z ′−Z)N ′2

∫∞

0
(re−2Z′r)dr and

from the simple definite integral
∫∞

0
xe−axdx = (1/a2) it follows that

〈Ψ11|h(1)|Ψ11〉 = − 1
2Z

′2 + 4π(Z ′ − Z)N ′2(1/2Z ′)

and since N ′2 = Z ′3/π the final result is

〈Ψ11|h(1)|Ψ11〉 = − 1
2Z

′2 + Z ′(Z ′ − Z).
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Example 2.1 has given the expectation value of the h(1) term in (2.8), but h(2) must give
an identical result since the only difference is a change of electron label from 1 to 2; and
the third term must have the value J ′

11 = (5/8)Z ′ since the nuclear charge Z has been
given the varied value Z ′ only in the orbital exponent (nothing else being changed).

On putting these results together, the energy expectation value after variation of the
orbital exponent will be

Ē = −Z ′2 + 2Z ′(Z ′ − Z) + (5/8)Z ′ (2.11)

– all, as usual, in energy units of eH.

The variational calculation can now be completed: Ē will be stationary when

dĒ

dZ ′
= −2Z ′ + 4Z ′ − 2Z + (5/8) = 0

and this means that the best estimate of the total electronic energy will be found on
reducing the orbital exponent from its value Z = 2 for one electron by itself to the value
Z ′ = 2− (5/16) in the presence of the second electron. In other words, the central field is
effectively reduced or ‘screened’ when it holds another electron: the screening constant

(5/16) is quite large and the ground state orbital expands appreciably as a result of the
screening.

The corresponding estimate of the ground state energy is

Ē = −(27/16)2 = −2.84765 eH (2.12)

– a value which compares with −2.75 eH before the variation of Z and is much closer to
the ‘exact’ value of −2.90374 eH obtained using a very elaborate variation function.

Before moving on, we should make sure that the value used for the Coulomb integral
J = (5/8)ZeH is correct2. This is our first example of a 2-electron integral: for two
electrons in the same orbital φ it has the form (2.9), namely (dropping the orbital label
‘1’)

J =

∫

φ∗(r1)φ
∗(r2)

1

r12
φ(r1)φ(r2)dr1dr2.

To evaluate it, we start from Born’s interpretation of the wave function |φ(r)|2 = φ∗(r)φ(r)
(the star allowing the function to be complex ) as a probability density. It is the
probability per unit volume of finding the electron in a small element of volume dr at
Point r and will be denoted by ρ(r) = φ∗(r)φ(r). As you know from Book 11, this
interpretation is justified by countless experimental observations.

We now go a step further: the average value of any quantity f(r) that depends only on the
instantaneous position of the moving electron will be given by f̄ =

∫

f(r)ρ(r)dr where,
as usual, the integration is over all space (i.e. all values of the electronic variables). Now
the electron carries a charge −e and produces a potential field Vr′ at any chosen ‘field
point’ r′.

2If you find the proof too difficult, just take the result on trust and keep moving!
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It’s convenient to use r1 for the position of the electron (instead of r) and to use r2 for
the second point, at which we want to get the potential Vr2 . This will have the value
Vr2 = −e/κ0|r21|, where |r21| = |r12| = r12 is the distance between the electron at r1 and
the field point r2.

When the electron moves around, its position being described by the probability density
ρ(r1), the electric potential it produces at any point r′ will then have an average value

V̄ (r2) =
−e
κ0

∫

1

|r21|
dρ(r1)r1.

In words, this means that

The average electric field at point r2, produced by an
electron at point r1 with probability density ρ(r1), can
then be calculated just as if the ‘point’ electron were
‘smeared out’ in space, with a charge density −eρ(r1).

(2.13)

The statement (2.13) provides the charge cloud picture of the probability density. It
allows us to visualize very clearly, as will be seen later, the origin of many properties of
atoms and molecules. As a first application let’s look at the Coulomb integral J.

Example 2.2 Interpretation of the electron interaction.

The integral J can now be viewed as the interaction energy of two distributions of electric charge, both
of density −eρ(r) and of spherical form (one on top of the other). (If that seems like nonsense remember
this is only a mathematical interpretation!)

The two densities are in this case ρ1(r1) = N2 exp−2Zr 2
1 and ρ2(r2) = N2 exp−2Zr 2

2 ; and the integral
we need follows on putting the interaction potential V (r1, r2) = 1/r12 between the two and integrating
over all positions of both points. Thus, giving e and κ0 their unit values, J becomes the double integral

J = ZN4

∫ ∫

exp−2Zr 2
1

1

r12
exp−2Zr 2

2 dr1dr2,

where (1/r12) is simply the inverse distance between the two integration points. On the other hand,
dr1 and dr2 are 3-dimensional elements of volume; and when the charge distributions are spherically
symmetrical functions of distance (r1, r2) from the origin (the nucleus), they may be divided into spherical
shells of charge. The density is then constant within each shell, of thickness dr; and each holds a total
charge 4πr2dr × ρ(r), the density being a function of radial distance (r) alone.

Now comes a nice connection with Electrostatics, which you should read about again in Book 10, Section
1.4. Before going on you should pause and study Figure 2.2, to have a clear picture of what we must do
next.

Example 2.2 perhaps gave you an idea of how difficult it can be to deal with 2-electron
integrals. The diagram below will be helpful if you want to actually evaluate J , the
simplest one we’ve come across.
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r1

r

r2

r12

Figure 2.2 Spherical shells of electron density (blue)

The integral J gives the electrostatic potential energy of two spherical charge distributions.
Each could be built up from spherical ‘shells’ (like an onion): these are shown in blue, one
for Electron 1 having radius r1 and another for Electron 2 with radius r2. The distance
between the two shells is shown with label r12 and this determines their potential energy
as the product of the total charges they contain (4πr 2

1 dr1 and 4πr 2
2 dr2) times the inverse

distance (r−1
12 ). The total potential energy is obtained by summing (integrating) over all

shells – but you need a trick! at any distance r from the nucleus, the potential due to an
inner shell (r1 < r) is constant until r1 reaches r and changes form; so the first integration
breaks into two parts, giving a result which depends only on where you put r (indicated
by the broken line).

Example 2.3 Evaluation of the electron interaction integral, J

To summarize, J arises as the interaction energy of all pairs of spherical shells of charge, shown (blue) in
Figure 2.2, and this will come from integration over all shells. We take one pair at a time.

You know from Book 10 that the electrostatic potential at distance r from the origin (call it V (r)) due
to a spherical shell of charge, of radius r1, is given by

V (r) = Qr1 ×
1

r1
for r < r1,

= Qr1 ×
1

r
for r > r1,

where Qr1 = 4πr 2
1 dr1×ρ(r1) is the total charge contained in the shell of radius r1 and thickness dr1. The

potential is thus constant within the first shell; but outside has a value corresponding to all the charge
being put at the origin.

We can now do the integration over the variable r1 as it goes from 0 to ∞. For r1 < r the sum of the
contributions to J from the shells within a sphere of radius r will be

(1/r)

∫ r

0

exp(−2Zr 2
1 )4πr

2
1 dr1, (A)
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while for r1 > r the rest of the r1 integration will give the sum of contributions from shells of radius
greater than r, namely

∫ ∞

r

exp(−2Zr 2
1 )(1/r1)4πr

2
1 dr1. (B)

You’ve met integrals a bit like these in Chapter 1, so you know how to do them and can show (do it!)
that the sum of A and B is the potential function

V (r) =
4π

r
[2− e−r(2 + r)].

This is a function of r alone, the radius of the imaginary sphere that we used to separate the integration
over r1 into two parts, so now we can put r = r2 and multiply by (4πr 2

2 dr2)Ne
−r2 to obtain the energy

of one shell of the second charge distribution in the field generated by the first.

After that it’s all plain sailing: the integration over all the outer shells (r2) now goes from 0 to ∞ – and
you’re home and dry! Integration over r2, for all shells from r2 = 0 to ∞, will then give (check it out!)

J =
Z

2

∫ ∞

0

[2− e−r2(2 + r2)]e
−r2r2dr2 = (5/8)Z.

Example 2.3 gave you a small taste of how difficult it can be to actually evaluate the
2-electron integrals that are needed in describing electron interactions.

Now you know how to get a decent wave function for two electrons moving in the field
of a single nucleus – the helium atom – and how the approximation can be improved as
much as you wish by using the variation method with more elaborate trial functions. But
following that path leads into difficult mathematics; so instead let’s move on and take a
quick look at some excited states.

First excited states of He

In Book 11 we studied central-field systems, including many-electron atoms, in order to
illustrate the general principles of quantum mechanics. In particular, we looked for sets of
commuting operators associated with observable quantities such as angular momentum,
finding that the angular momentum operators for motion in a central field commuted with
the Hamiltonian H (see Chapter 6 of Book 11) and could therefore take simultaneously
definite eigenvalues, along with the energy. For such a system, the energy eigenstates could
be grouped into series, according to values of the angular momentum quantum numbers
L and M which determine the angular momentum and one of its three components.

But here we are dealing with systems of at most two electrons and the general theory is
not needed: a 2-electron wave function is represented approximately as a product of 1-
electron orbitals. And for the Helium atom we are dealing with spherically symmetrical
wave functions, which involve only ‘s-type’ orbitals, with zero angular momentum.

As a first example of an excited state we suppose one of the two electrons in the ground
state, with wave function Ψ11(r1, r2) = φ1(r1)φ2(r2), is ‘promoted’ into the next higher
orbital φ2 of the s series. According to equation (6.10) of Book 11 Chapter 6, this AO
corresponds to energy E2 = −1

2
(Z2/4), the whole series being depicted in Figure 13.
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Example 2.4 Excited state wave functions and energies

When one of the two electrons is promoted from the lowest-energy AO φ1 into the next one, φ2, there
are clearly two distinct ways of representing the state by an IPM function: it could be either

Ψ12(r1, r2) = φ1(r1)φ2(r2),

in which Electron 2 has been promoted, or

Ψ21(r1, r2) = φ2(r1)φ1(r2),

in which Electron 1 (with coordinates r1) has been put into φ2, the second electron staying in φ1. And
at this point three product functions are available for constructing 2-electron wave functions – those we
have called Ψ11, the IPM ground state, and Ψ12,Ψ21, in which one of the electrons has been promoted.
We could of course set up other products Ψlm, with both electrons promoted to higher-energy AOs, and
suppose these may be used in the first few terms of a complete set expansion of the 2-electron wave
function. The products corresponding to any particular choice of the orbitals e.g. φ1, φ2 are said to
belong to the same electron configuration.

Here, to simplify things, we’ll use a single-subscript notation to denote the first three products: Ψ1 =
φ1φ1, Ψ2 = φ1φ2, Ψ3 = φ2φ1,We can then use the linear variation method (Section 1.3) to get improved
approximations to the three lowest-energy wave functions in the form

Ψ = c1Ψ1 + c2Ψ2 + c3Ψ3.

This involves setting up the secular equations

(H11 − ĒM11)c1 + (H12 − ĒM12)c2 + (H13 − ĒM13)c3 = 0,

(H21 − ĒM21)c1 + (H22 − ĒM22)c2 + (H23 − ĒM23)c3 = 0,

(H31 − ĒM31)c1 + (H32 − ĒM32)c2 + (H33 − ĒM33)c3 = 0,

where, as usual, Hij = 〈Ψi|H|Ψj〉 and Mij = 〈Ψi|Ψj〉. On solving them we obtain, along with the
optimized mixtures, improved approximations to the energies E1, E2, E3 of the first three electronic
states. (Read Section 1.3 again if you need to.)

Here, the approximate ground-state function Ψ1 has a very small overlap with Ψ2 and Ψ3; for example

M12 = 〈Ψ1|Ψ2〉 = 〈φ1φ1|φ1φ2〉 = 〈φ1|φ1〉〈φ1|φ2〉 ≈ 0,

because 〈φ1|φ1〉 = 1 and 〈φ1|φ2〉 ≈ 0 – the 1s and 2s AOs being normalized and lying mainly in different
regions of space. For similar reasons, other off-diagonal terms such as H12, H13, which connect the IPM
ground state Ψ1 with the higher-energy functions Ψ2, Ψ3 are usually small enough to be neglected.

With such approximations (check them out!) the secular equations may be written

(H11 − Ē)c1 = 0,

(H22 − Ē)c2 = −H23c3,

H32c2 = −(H33 − Ē)c3.

The first equation says that Ē ≈ H11 is still an approximation to the ground-state energy E1. The other
equations allow us to eliminate the expansion coefficients and to determine approximate eigenvalues for
two excited states. Thus (you’ve done it all before in Section 1.3 !), on dividing each side of the second
equation by the corresponding side of the third, the coefficients cancel and leave you with

(H22 − Ē)

H32
=

H23

(H33 − Ē)
.
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Now we know that H22 = H33 (say why!) and H32 = H23 (real matrix elements) and if we call these
quantities α and β the equation becomes (α− Ē)2 = β2. The two roots are (α− Ē) = ±β and give two
approximate excited-state energies: Ē(+) = α+ β and Ē(−) = α− β.
To end this example let’s get the energies of these states, just as we did for the ground state, where we
found Ē = 2ǫ1 + J11 in terms of orbital energy ǫ1 and Coulomb interaction J11. (You should read again,
from equation (2.7) to equation (2.8), to remind yourself of how we did it.)

The excited states are linear combinations of the functions Ψ2,Ψ3, which belong to the configuration

1s2s. Thus Ψ
(+)
2 for the ‘plus combination’, with energy Ē

(+)
2 , is obtained by putting Ē

(+)
2 = α + β

back into the second equation, which shows that c3 = c2. This state therefore has the (normalized) form

Ψ
(+)
2 = (Ψ2 +Ψ3)/

√
2 and Ψ

(−)
2 will be similar, with the plus changed to a minus.

The energy expectation value in state Ψ
(+)
2 will be 〈Ψ (+)

2 |H|〈Ψ(+)
2 〉 = 1

2 [H22 + H33 + 2H23], where
H22 = H33 = 〈Ψ2|H|Ψ2〉 and H23 = 〈Ψ2|H|Ψ3〉. Now Ψ2 = φ1φ2 and Ψ3 = φ2φ1, so it follows (check it,
remembering that the order of the variables in an orbital product is always r1, r2) that

H22 = H33 = 〈Ψ2|H|〈Ψ2〉 = ǫ1 + ǫ2 + J12 and H23 = 〈Ψ2|H|Ψ3〉 = K12.

Finally, then, the energy expectation value in state Ψ
(+)
2 will be

E
(+)
2 = 〈Ψ (+)

2 |H|〈Ψ (+)
2 〉 = [ǫ1 + ǫ2 + J12] +K12,

while E
(−)
2 will follow on changing the sign of the K-term.

(Note that the J and K terms are quite different:

J12 = 〈Ψ2|g|Ψ2〉 = 〈φ1φ2|g(1, 2)|φ1φ2〉, K12 = 〈Ψ2|g|Ψ3〉 = 〈φ1φ2|g(1, 2)|φ2φ1〉,

– the ‘ket’ part of the matrix element 〈Ψ2|g|Ψ3〉 containing the orbitals after exchange of the electron

labels. It’s no surprise that K12 is called an “exchange integral”!)

Example 2.4 was tough, but was done in detail because it leads us to tremendously
important conclusions, as you’ll see presently. (If you didn’t manage to get through it
yourself, don’t worry – you can move on and come back to it later.) What matters here is

mainly the way the two wave functions Ψ
(+)
2 and Ψ

(−)
2 behave under symmetry operations

that make no apparent change to the system. The two terms in Ψ
(+)
2 differ only by an

interchange of electronic variables r1, r2 (as you can check from the definitions) and their

sum does not change at all under such an operation: we say the wave function Ψ
(+)
2 is

symmetric under exchange of the electrons. On the other hand the other state,
with energy Ē

(−)
2 = α−β, has a wave function Ψ

(−)
2 = (Φ2−Φ3)/

√
2, which changes sign

on exchanging the electrons and is said to be antisymmetric.

2.3 But what happened to the spin?

We started Book 11, on the basic principles of quantum mechanics, by talking about
the Stern-Gerlach experiment – which showed a moving electron was not fully described
by giving its position variables x, y, z, it needed also a spin variable s with only two
observable values. But it seems as if we’ve completely forgotten about spin, using wave
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functions that depend only on position of the electron in space. The reason is simple:
the spin (identified in Book 11 as some kind of internal angular momentum) has such a
small effect on energy levels that it’s hardly observable! You can solve the Schrödinger
equation, and get meaningful results, because the usual Hamiltonian operator contains
no spin operators and acts only on the position variables in the wave function. But in
dealing with many-particle systems it’s absolutely essential to label states according to
their spin properties: as you will see presently, without spin you and I would not exist –
there would be no Chemistry!

It’s easy to put the spin back into our equations: just as the product function Ψmn(r1, r2) =
φm(r1)φn(r2) was used to describe two independent particles, in states φm and φn, so can
we use a product φ(r)θ(s) to describe a particle in orbital state φ and in spin state θ. If
φ is an eigenstate of the spinless operator h (with eigenvalue ǫ) and θ is an eigenstate
of Sz (with spin component s = Sz along the z-axis), then the product is a simultaneous
eigenstate of both operators:

h[φθ] = (hφ)θ = (ǫφ)θ = ǫ[φθ]

since the operator h doesn’t touch the θ-factor; and similarly

Sz[φθ] = φ(Szθ) = φ(Szθ) = Sz[φθ]

– since the operator Sz doesn’t touch the φ-factor.

Now the ‘spin-space’ is only two-dimensional, with basis vectors denoted by α and β
corresponding to s = +1

2
and s = −1

2
(in units of ~), respectively. So for any given orbital

state φ there will be two alternative possibilities φα and φβ when spin is taken into
account. Products of this kind are called spin-orbitals. From now on let’s agree to use
Greek letters (ψ,Ψ) for states with the spin description included, leaving φ,Φ for ‘orbital’
states (as used so far) which don’t contain any spin factors. The lower-case (small) letters
will be used for one-electron states, upper-case (capital) letters for many-electron states.

As long as we deal only with a two-electron system, the state vector (or corresponding wave
function) can be expressed as a product of space and spin factors: Ψ(1, 2) = Φ(1, 2)Θ(1, 2),
where the electron labels are used to indicate spatial or spin variables for electrons 1 and
2. When we want to be more explicit we’ll use a fuller notation, as below.

Ψ(x1,x2) = Φ(r1, r2)Θ(s1, s2). (2.14)

Here x stands for both space and spin variables together, so x ≡ r, s. This is a neat way
of saying that Ψ(x1,x2) in (2.14) really means Φ(x1, y1, z1, x2, y2, z2)Θ(s1, s2)!

In the following Example we shall be looking for a simultaneous eigenstate of all commut-
ing operators, which will normally include H, S2, Sz. We suppose Φ(1, 2) is an eigenstate
(exact or approximate) of the usual spinless Hamiltonian H(1, 2) and take Θ(1, 2) as an
eigenstate of total spin of the two particles i.e. of the operators S2, Sz.

Before continuing you should turn back to Section 2.2 of Book 11 and make sure you understand the

properties of the total spin operators Sx = Sx(1) + Sx(2), Sy = Sy(1) + Sy(2), Sz = Sz(1) + Sz(2).
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Remember, they follow the same commutation rules as for a single particle and that you can define step-

up and step-down operators S± = (Sx± iSy) in the same way; from them you can set up the operator S2

and show that it has eigenvalues of the form S(S + 1) (in units of ~2), where S = 1 (‘parallel-coupled’

spins) or S = 0 (‘paired’ spins). Study especially Example 2.2, which gives the spin eigenstates for a

2-electron system.

Example 2.7 Symmetry properties of the spin eigenstates

In Example 2.2 of Book 11 it was shown that, for two spin-coupled electrons, the eigenstates of S2 and
Sz with quantum numbers S = 0,±1 were as follows:

• (1,1) Θ1,1 = α(1)α(2)

• (1,0) Θ1,0 = β(1)α(2) + α(1)β(2) • (0, 0) Θ0,0 = β(1)α(2)− α(1)β(2)
• (1,-1) Θ1,−1 = β(1)β(2)

(Here the S- and M- quantum numbers are shown in parentheses and the state symbol Θ has been used
to denote a two-electron spin state)

It’s important to know how these eigenstates change under a symmetry operation which has no
observable effect on the system. In this case, all electrons are identical – we can’t tell one from another –
so exchanging the labels ‘1’ and ‘2’ (call it P12) should be a symmetry operation (P12α(1)β(2) = α(2)β(1)
means that Electron ‘1’ goes into the ‘down-spin’ state, previously occupied by Electron ‘2’, while Electron
‘2’ goes into an ‘up-spin’ state – but the change is not observable).

If you examine all the spin states listed above you’ll see at once that all the states with S = 1 are

unchanged, they are symmetric under the exchange; but the single state with S = 0 changes sign – it is

antisymmetric under exchange, being multiplied by −1.

We’re now ready to go back and look again at the excited states of the Helium atom,
but with spin included. The complete wave function will now be a ‘space-spin’ product of
the form Ψ(1, 2) = Φ(1, 2)Θ(1, 2), where the two factors are now re-named as agreed in
the run-up to (2.16). Possible choices for the orbital factor are then Φ1, for the ground

state, with both electrons in the first (lowest-energy) AO φ1; and Φ
(+)
2 or Φ

(−)
2 , for the

excited states with one electron in the AO φ1 and the other is in the next AO φ2 – with
a ‘plus’ combination or a ‘minus’ combination of Φ2,Φ3. The available energy states for
the two-electron atom, without spin, would seem to be:

• Ground state. Energy = E1, wave function Φ1

• 1st excited state. Energy = E
(−)
2 , wave function (Φ2−Φ3)/

√
2 (normalized ‘minus’

combination),

• 2nd excited state. Energy = E
(+)
2 , wave function (φ2 + Φ3)/

√
2 (normalized‘plus’

combination).

What happens when spin is taken into account? When the two electrons are interchanged,
both space and spin variables change:

r1, r2 → r2, r1 and s1, s2 → s2, s1.
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But the energy levels are determined essentially by the Φ factor; so let’s take the states
as listed above and ask what symmetry each state will have when spin is included.

The space-spin product function Ψ = ΦΘ for the ground state will have Φ = Φ1 which is
symmetric under electron exchange, but may take possible spin factors:

Θ = Θ1,1, or Θ1,0, or Θ1,−1,

which are all symmetric under spin exchange. So three possible Ψ products can be found;
all are ‘totally’ symmetric and correspond to the same energy – suggesting a ‘three-fold
degenerate triplet’ ground state.

On the other hand, Φ1 might have been combined with Θ0,0 = β(1)α(2) − α(1)β(2) and
that would have given a totally antisymmetric space-spin product – a ‘non-degenerate
singlet’ ground state.

The results we’re going to get can be summarized very easily in a diagram showing the first
few energy levels you might expect to find for any two-electron system. The alternatives
we’ve just found for the ground state correspond to the lowest levels in (a) and (b) of
Figure 2.7:

E
n
er
gy
→

Ψsymmetric Ψ antisymmetric

(a) (b)

triplet

singlet

triplet

singlet

triplet

singlet

Figure 2.7 Some electronic states of the He atom

Lowest level (ground state) for configuration 1s2,
upper levels (excited states) for configuration 1s2s.
Multiplicities of the calculated states are shown in
(a) for symmetric Ψ and (b) for antisymmetric Ψ.

What about the excited state with energy E
(−)
2 ? The antisymmetric space factor Φ

(−)
2

could be associated with any of the three symmmetric spin factors, to give three antisym-
metric space-spin products. But it could equally well be attached to the antisymmetric
spin factor Θ0,0 = β(1)α(2)− α(1)β(2) to give a single totally symmetric Ψ-product.

Finally, the excited state with energy E
(+)
2 and symmetric space factor Φ

(+)
2 could be

associated with the antisymmetric spin factor Θ0,0 to give an antisymmetric space-spin
Ψ-product; or equally well combined with any one of the three symmetric spin factors
Θ1,1, Θ1,0, Θ1,−1, to give a three-fold degenerate Ψ, all products being totally antisym-
metric.
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That was quite a lot of work, but the results indicated in Figure 2.7 are rather general
and apply to any two-electron system. As long as there are no spin operators in the
Hamiltonian, the electronic energy depends only on the spatial wave function Φ. But the
nature of any state – whether it is degenerate or non-degenerate and whether or not it
corresponds to definite values of the total spin – depends on the overall symmetry of the
space-spin function Ψ. Remember that a state of total spin S has 2S + 1 degenerate
components (labelled by the quantum number MS) and that this is the multiplicity of
the state.

The remarkable fact is that the experimentally observed states correspond only to those
shown in Figure 2.7(b), where the ground state is a singlet and the first excited state is a
triplet. But wait a minute! How can we be sure the state we’re calling the “first excited
state” really is the lowest excited state? If you look back at Example 2.4 you’ll see that
the first excited state, going up in energy, was taken to be the one with wave function
Φ

(−)
2 , namely the ‘minus’ combination of Φ2 and Φ3; and that is the one with energy

E
(−)
2 = [ǫ1 + ǫ2 + J12]−K12.

On the other hand, the ‘plus’ combination gave an energy

E
(+)
2 = [ǫ1 + ǫ2 + J12] +K12

and since K12 is an essentially positive quantity this energy lies above that of the “first
excited state”. So we got it right! The energy levels on the right-hand side in Figure 2.6
are in complete agreement with experiment, while those on the left simply do not appear!

Overall antisymmetry of an electronic wave function seems to be an intrinsic property of
the electrons themselves – or of the ‘wave field’ Ψ with which they are described. In fact
this conclusion is perfectly general: it applies not just to two-electron systems but to all
the electrons in the universe! – and it is confirmed by countless experiments.

2.4 The antisymmetry principle

This brings us to the last general principle of quantum mechanics that we’re going to need
in Book 12. It wasn’t included in Book 11 because in formulating the basic principles
we were thinking mainly of one-particle systems; but the antisymmetry of many-electron
wave functions is just as important as anything we’ve discovered so far. So let’s state the
antisymmetry principle in the general form which applies to systems of any number
of electrons:
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The wave function Ψ(x1,x2, ...,xN ) describing any
state of an N -electron system is antisymmetric for
any permutation P of the electrons:

PΨ(x1,x2, ...,xN ) = ǫPΨ(x1,x2, ...,xN ),

where ǫP = ±1 for permutations of even or odd
parity, respectively.

(2.15)

Here P is a general permutation, which acts on the numbered electronic variables
x1,x2, ...,xN and changes them into x1′ ,x2′ , ...,xN ′ , where the new numbers 1′, 2′, ..., N ′

are the old ones written in a different order. This permutation can be achieved by making
a series of transpositions (1, 1′)(2, 2′)...(N,N ′), where each (i, i′) interchanges one pair
of numbers, one ‘old’ and one ‘new’: thus (1,3)(4,2) will send 1 2 3 4 into 3 4 1 2. Any
permutation is equivalent to a number of transpositions: when the number is odd the
parity of the permutation is said to be “odd’; when it is even, the parity is “even”. (Note
that, in counting, (i, i) (where a number is interchanged with itself) is not included – not
being a true transposition.)

Section 2.4 opened with the amazing claim that “without spin you and I would not exist
– there would be no Chemistry!” To end this chapter we must ask how this can be so –
and how does the Antisymmetry Principle come into the picture?

During the early development of quantum theory, before Schrödinger’s introduction of the
wave function, the electrons in an atom were assigned to ‘states’ on a basis of experimen-
tal evidence. Atomic spectroscopy had shown that the emission and absorption of light
could be associated with ‘quantum jumps’ of single electrons between energy levels with
characteristic ‘quantum numbers’. (See Book 11 for spectral series and energy level dia-
grams.) A key postulate in accounting for the electronic structures of atoms, was Pauli’s
Exclusion Principle, which stated that no two electrons could be in states with the
same set of quantum numbers.

The Antisymmetry Principle is simply the modern and more general form of Pauli’s Ex-
clusion Principle3 To see how antisymmetry of the wave function contains the idea of ‘ex-
clusion’ it’s enough to go one step beyond the two-electron systems studied in the present
chapter. In an IPM description the first two spin-orbitals might be ψ1 = φ1α, ψ2 = φ1β,
with both electrons in the same orbital φ1, but with opposite spins. The corresponding
antisymmetric 2-electron state, found in Section 2.4, is then seen to be (before normal-
ization) ψ1ψ2 − ψ2ψ1, which is called an “antisymmetrized spin-orbital product”. It can

3Over the years, starting from Pauli himself, there has been much argument about the fundamental
status of the two principles, but that can be found in books on the philosophy of quantum mechanics –
when you’re ready!
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be derived from the leading term, a ‘parent product’, ψ1ψ2, by subtracting the product
obtained after making an electron interchange. The operator A = (1/2)(I− P12) (I being
the usual identity operator and P12 being the interchange of variables for electrons 1 and
2) is called an anti-symmetrizer. There is a more general form of this operator, which
we’ll need in Chapter 3, namely

A =
1

N !

∑

P

ǫPP (2.16)

which acts on a product of N spin-orbitals to produce an antisymmetric N -electron wave
function. Here the summation runs over all N ! permutations and the parity factor ǫP was
defined after (2.15); the extra factor 1/N ! is included simply for convenience (you can
apply the operator a second time without making any difference i.e. AA = A)

Now let’s try to get a wave function for a three-electron system, by adding another
electron to orbital φ1. There are only two possible choices of spin factor and the third
electron can therefore occupy only ψ3 = φ1α or ψ3 = φ1β. The parent product will then
be ψ1ψ2ψ3 and we want to find a function that changes sign under any permutation of
electronic variables. To do it we use (2.16) with N = 3, noting that two spin-orbitals are
identical: for example, ψ3 = ψ1. In that case, the permutations P will act on the parent
product ψ1ψ2ψ1, which can also be replaced by ψ1ψ1ψ2 (it can’t matter which product we
antisymmetrize).

Thus

A[ψ1ψ1ψ2] =
1

N !

∑

P

ǫPP[ψ1ψ1ψ2].

But now think about the effect of the ‘first’ permutation (the order doesn’t matter as
the sum is over all N ! permutations), taking it to be one that interchanges the first two
spin variables. This will leave the product unchanged, and as the parity factor for a
single interchange is −1 the resultant term in the sum will be −[ψ1ψ1ψ2]. But the identity
permutation, included in the summation, leaves the parent product unchanged and the
net result is thus exactly zero! In fact, what we have shown for three electrons is true
for any number (think about it, noting that if P12 leaves the parent function unchanged,
then any permutation can be expressed as P = P′P12 where P′ acts on all the variables
except x1,x2).

To summarize,

The antisymmetrized product function
AΨ(x1,x2, ...,xN ) = Aψ1(x1)ψ2(x2) ... ψN (xN),
representing an IPM approximation to the state of an N -electron system,
can contain no repetitions of any given spin-orbital: every electron must
have its own distinct spin-orbital. A given spatial orbital can hold not
more than two electrons, one with spin factor α, the other with β.

(2.17)
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This is the quantum mechanical equivalent of Pauli’s Exclusion Principle: it excludes the
possibility of finding more than two electrons in the same spatial orbital; and when two
are present they must have opposite spins ±1

2
. It is less general than the Antisymmetry

Principle, because it applies only to approximate wave functions of particular form: but
is very simple to apply and leads directly to conclusions that provide the basis for all
modern theories of the electronic structure of atoms and molecules. The example with
which we introduced it explains at once why the 3-electron Lithium atom does not have
all three electrons in the lowest-energy 1s orbital: because the Helium-like configuration
(1s)2 is already ‘full’ and a third electron must then ‘overflow’ into the higher-energy 2s
orbital, giving the configuration Li[(1s)2(2s)]. Thus, there are two electrons in an inner

shell, tightly localized around the nucleus, and one electron by itself, in a more diffuse
2s orbital. And that is the beginning of Chemistry, and of Life in all forms! Without
antisymmetry and the exclusion property to which it leads, all matter would collapse
– every nucleus would take all the electrons it could hold, becoming an uncharged and
unreactive system, like no atom in the world we know.
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Chapter 3

Electronic structure: the

independent particle model

3.1 The basic antisymmetric spin-orbital products

By the end of Chapter 2 it was already clear that a general antisymmetric wave function
could be built up from products of spin-orbitals ψi(x) = φi(r)θ(s), where φi(r) is a
particular orbital factor and θ(s) is a spin factor (α or β) indicating the spin state
of the electron (‘up-spin’ or ‘down-spin’, respectively); and that this could be a difficult
matter. Only for a 2-electron system was it possible to factorize an eigenfunction Ψ,
corresponding to a state of definite energy and spin, into a product Φ × Θ. However, as
Example xxx showed, a space-spin function could be expressed in terms of antisymmetrized

spin-orbital products. This discovery, by the physicist J.C.Slater (1929), provided a basis
for nearly all electronic structure calculations in the years that followed.

From now on, we’ll be dealing with many-electron systems: so we need to generalize what
was done in Section 2.1, starting from the definition of the Hamiltonian operator. Instead
of (2.1) we’ll use

H =
∑

i

h(i) + 1
2

∑′

i,j g(i, j), (3.1)

where h(i) is the 1-electron Hamiltonian of (3.1), in which the nuclei are treated as if
fixed in space and simply determine the potential field in which the electrons move (the
‘clamped nucleus’ approximation); and g(i, j) is the 2-electron operator of (2.3), which
simply multiplies the wave function by the (classical) interaction energy 1/rij between
electrons i and j separated by a distance rij (remember we normally use ‘atomic units’).
The prime on the summation sign indicates that there is no term when i = j; and the 1

2

is put in to avoid counting every interaction twice (which would happen in summing over
both i and j. As in the case of two electrons, leaving out the electron interaction leads to
an IPM approximation in which the wave function is represented as a single spin-orbital
product. (Read the rest of Section 2.2 if you need to.)
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From the general principle (2.15) we must be sure that any approximate wave function we
may construct is properly antisymmetric. And we already know how this can be done
by making use of the ‘antisymmetrizer’ (2.16). So we start with this operator, already
used in Section 2, and show its basic property.

The name of the permutation P is not important when we’re going to sum over all per-
mutations of the N variables, so (2.16) can be written in two equivalent ways:

A =
1

N !

∑

P

ǫPP =
1

N !

∑

Q

ǫQQ

where there are N ! terms in each sum. The product of the two operators is thus

(

1

N !

)2
∑

PQ

ǫPǫQPQ.

But PQ = R, which is just another permutation that’s been given a different name, and
the last result can thus be written

A2 = AA =

(

1

N !

)

∑

R

ǫRR,

where for each choice of one permutation (Q say) there are the same N ! product permu-
tations R = PQ, appearing in some different order. And this fact has let us cancel one
factor (1/N !) in the previous expression. The remarkable result then is that

A2 = AA =
1

N !

∑

R

ǫRR = A. (3.2)

Operators with this property are said to be idempotent – and you first met them long
ago in Book 1 (Chapter 6)! (The word comes from Latin and means “the same power”
– all powers of A are the same.) You met such operators also in Geometry (Chapter 7 of
Book 2), where they applied to the projection of a vector on some axis in space (if you
do it twice you get the same result as doing it once!).

An immediate result is that A applied to a product of N orthogonal spin-orbitals gives
a wave function which, besides being antisymmetric, can easily be normalized. Let’s call
the basic spin-orbital product

π(x1,x2, ...xN ) = ψ1(x1)ψ2(x2) ... ψN(xN), (3.3)

where all the spin-orbital factors are orthonormal (i.e. individually normalized and
mutually orthogonal) and go ahead as follows.
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Example 3.1 How to normalize an antisymmetrized spin-orbital product

We can get a normalized function easily from the antisymmetric function formed from the product (3.3),
namely

F (x1,x2, ...xN ) =
∑

P

ǫPPψ1(x1)ψ2(x2) ... ψN (xN ).

Thinking about how the normalization integral arises is a good exercise. To make it easier we’ll use
1, 2, 3, ....N to stand for the variables x1,x2, ...xN

To get 〈F |F 〉 you have to integrate, over all space-spin variables, the product of two sums, each containing
N ! spin-orbital products. Typical terms are

ǫPP[ψ1(1)ψ2(2) ... ψN (N)], from the ‘bra’, and

ǫQQ[ψ1(1)ψ2(2) ... ψN (N)] from the ‘ket’.

After making the permutations P and Q, which put the variables in a different order, you may find P has
sent the ‘bra’ product into

ψ1(1
′)ψ2(2

′) ... ψN (N ′),

while Q has sent the ‘ket’ product into

ψ1(1
′′)ψ2(2

′′) ... ψN (N ′′).

And then you have to do the integrations – which seems like an impossible task! (Even for the Carbon

atom, with only six electrons, 6! = 720 and gives you 518400 distinct pairs of products to look at – before

doing anything else.) But in fact the whole thing is very easy because the spin-orbitals are orthonormal.

This means that in every pair of products the variables must be in exactly the same order (i′′ = i′ = i)

for all i – and the integration will always give unity (〈ψi|ψi〉 = 1). So you’ve done – for all matching

pairs of products the result will be unity, and there are N ! of them. Thus the normalization integral

〈F |F 〉 = N ! and to normalize F you only have to divide it by
√
N !.

Example 3.1 has shown how we can produce a normalized wave function from the spin-
orbital product in (3.3): the result is

Ψ(x1,x2, ...xN ) =
1√
N !

∑

P

ǫPPψ1(x1)ψ2(x2) ... ψN(xN)

=
√
N !A[ψ1(x1)ψ2(x2) ... ψN(xN)], (3.4)

where the second form introduces the antisymmetrizer A defined in (2.16).

The next step will be to evaluate the expectation values, in the state with wave function
(3.4), of the 1- and 2-electron operators, h(i), g(i, j), that make up the full Hamiltonian
(3.1). But first we should be sure about what the permutations are actually doing. We’re
thinking about numbered variables x1,x2, ...xN ; and swapping electrons ‘1’ and ‘2’ means
putting Electron 1 where Electron 2 was and vice versa (the other way round). In other
words, in our equations, we replace x1 by the ‘new position’ x2 and x2 by x1: that is the
simple ‘transposition’ denoted by (1,2). But what if there are many electrons? There’s a
general way of describing any P, already used in Example 3.1, in which we simply list the
integers 1, 2, ...N, before the permutation, and the integers 1′, 2′, ...N ′ after putting them
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in a different order. Thus

P =

(

1 2 . . . N
1′ 2′ . . . N ′

)

. (3.5)

Let’s take first the 1-electron sum
∑

j h(j) and focus on 〈Ψ|∑j h(j)|Ψ〉, getting it in the
next example in much the same way as we got the normalization integral. As everything
is symmetrical in the electrons, their ‘names’ don’t matter and we can make things look
easier by taking j = 1 and writing the corresponding operator h(1) = h1 so as not to mix
it up with the other labels. The expectation value for the operator sum will then be N
times that for the single term.

Example 3.2 Getting a 1-electron expectation value

To evaluate 〈Ψ|∑j h1|Ψ〉, with Ψ defined in (3.4), we note that a typical term will be the ‘bra-ket’ with
h1 between two spin-orbital products:

1

N !
〈ψ1(1

′)ψ2(2
′) ... ψN (N ′)|h1|ψ1(1

′′)ψ2(2
′′) ... ψN (N ′′)〉,

where the primed variables result from permutation P and the double-primed from permutation Q.
Now, as in Example 3.1, every such term will be zero unless i′ = i′′, because otherwise the two spin-
orbital products, ψ1(1

′)ψ2(2
′) ... ψN (N ′) and ψ1(1

′′)ψ2(2
′′) ... ψN (N ′′), would lead to zero overlap factors,

〈ψi(i
′)|ψi(i

′′)〉 = 0 for i′′ 6= i′.

The variables in the N spin-orbitals must therefore match exactly and the only non-zero terms in the
last expression will be of the form

1

N !
〈ψ1(1

′)ψ2(2
′) ... ψN (N ′)|h1|ψ1(1

′)ψ2(2
′) ... ψN (N ′)〉.

Note that only the i′ (‘integer-primed’) variables are involved in the permutations and that h1 works

only on the factor with i′ = 1, namely ψi – in position i where the integer 1 has ‘landed’ after the

permutation. You can see that from the list of permuted products: ψ1(1
′)ψ2(2

′)ψ3(3
′) ... . (e.g. if 3′,

after a permutation, has been replaced by 1 it still refers to spin-orbital ψ3.) Putting i′ = 1 fixes one

non-zero factor as 〈ψi|h1|ψi〉, but this will result from all permutations of the remaining N − 1 variables.

So there are N ways of choosing i = 1 and (N − 1)! ways of choosing the other matching pairs of overlap

integrals. That’s all for one term h1 = h(1) in the sum h(1) + h(2) + ... h(N) and every term will appear

N × (N − 1)! = N ! times. Thus the sum of all the 1-electron operators will have an expectation value

〈Ψ|∑j h(j)|Ψ〉 =
∑

j〈ψj |h(j)|ψj〉, where the normalizing factor 1/N ! is conveniently cancelled.

In case you didn’t follow the argument in Example 3.2, run through it with just 3 electrons
instead ofN . With electrons 1,2,3 in spin-orbitals ψ1, ψ2, ψ3, the basic spin-orbital product
will then be π(x1,x2,x3) = ψ1(x1)ψ2(x2)ψ3(x3) or, for short, π(1, 2, 3) = ψ1(1)ψ2(2)ψ3(3),
where again the integer i will stand for the variable xi.

To antisymmetrize the products we need to apply the permutation operators, which give
Pπ(1, 2, 3) = ψ1(1

′)ψ2(2
′)ψ3(3

′) and Qπ(1, 2, 3) = ψ1(1
′′)ψ2(2

′′)ψ3(3
′′), and then put the

results together with parity factors ±1, remembering that i′′ = i′ for all i (= 1, 2, 3).
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The six permuted variables are (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1) and the
expectation value contributions are thus, on putting these indices in place of 1′ 2′ 3′ and
choosing a typical operator h1 = h(j) with j = 1:

〈1 2 3 |h1| 1 2 3〉 = 〈ψ1|h1|ψ1〉〈ψ2|ψ2〉〈ψ3|ψ3〉 = h11,

〈1 3 2 |h1| 1 3 2〉 = 〈ψ1|h1|ψ1〉〈ψ2|ψ2〉〈ψ3|ψ3〉 = h11,

〈2 1 3 |h1| 2 1 3〉 = 〈ψ1|ψ1〉〈ψ2|h1|ψ2〉〈ψ3|ψ3〉 = h22,

〈2 3 1 |h1| 2 3 1〉 = 〈ψ1|ψ1〉〈ψ2|ψ2〉〈ψ3|h1|ψ3〉 = h33,

〈3 1 2 |h1| 3 1 2〉 = 〈ψ1|ψ1〉〈ψ2|h1|ψ2〉〈ψ2|ψ2〉 = h22,

〈3 2 1 |h1| 3 2 1〉 = 〈ψ1|ψ1〉〈ψ2|ψ2〉〈ψ3|h1|ψ3〉 = h33,

Note especially that the labelled ψ-factors do not change their positions: only their arguments
(the electronic variables, not shown) are affected by the permutations. For example, the third
permutation puts 2′ = 1 in the second position, showing that h1 operates on ψ2.

To summarize the conclusion from Example 3.2, in a strictly IPM approximation the expectation
value of the total energy is simply the sum of the individual orbital energies, derived using the
1-electron operator h (which no longer carries the label ‘1’). Thus

ĒIPM =
∑

i

ǫi, (ǫi = 〈ψi|h|ψi〉). (3.6)

The orbital energy ǫi is that for an electron occupying spin-orbital ψi.

The next step will be to allow for the electron interaction energy, represented in the N−electron
Hamiltonian (3.1) by the term

∑

(i,j) g(i, j) given in (2.3) for the case of only two electrons.
Again we focus on a typical term in the sum, calling it g(j, k) (i is getting overworked!), and
proceed as we did in the last Example.

Example 3.3 Getting a 2-electron expectation value

To evaluate 〈Ψ|∑′
j,k g(j, k)|Ψ〉, with Ψ defined in (3.4), we note that the expectation value will be

1

N !
〈ψ1(1

′)ψ2(2
′) ... ψN (N ′)|g(j, k)|ψ1(1

′′)ψ2(2
′′) ... ψN (N ′′)〉,

where the primed variables result from permutation P and the double-primed from permutation Q. (The
prime on the summation symbol is used to indicate that terms with j = k will be excluded – they would
refer to only one electron and there is no self -interaction!)

As in Example 3.2, we first suppose the variables in the two spin-orbital products must match exactly
(i′ = i′′ for all i 6= j, k) to avoid zero overlap factors. In that case, the only non-zero terms in the last
expression will be of the form

1

N !
〈ψ1(1

′)ψ2(2
′) ... ψN (N ′)|g(j, k)|ψ1(1

′)ψ2(2
′) ... ψN (N ′)〉.

Note that only the i′ (‘integer-primed’) variables are involved in the permutations and that g(j, k) works
on the factors with i′ = j or i′ = k, namely ψj , ψk – the j-th and k-th spin-orbitals in the standard order
1, 2, ...N.
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On making this choice, the contribution to the expectation value will contain the 2-electron integral
〈ψjψk|g(j, k)|ψjψk〉, multiplied by N − 2 unit overlap factors, coming from all other matching pairs of
spin-orbitals. And the same result will be obtained on making all permutations of the remaining N − 2
variables. So there are N ways of choosing i′ = j, N − 1 ways of choosing another i′ = k and (N − 2)!
ways of choosing the remaining matching pairs of overlap integrals. That’s all for one term g(j, k) in the
sum

∑′
j,k g(j, k) and every term will thus appear N × (N − 1)× (N − 2)! = N ! times.

The sum of all the 2-electron interactions will therefore have an expectation value, after cancelling the
normalizing factor 1/N !, 〈Ψ| 12

∑′
j,k g(j, k)|Ψ〉 = 1

2

∑′
j,k〈ψjψk|g(j, k)|ψjψk〉. This is the quantity we met in

Section 2.2 (Example 2.4) and called a Coulomb integral because it represents the Coulomb interaction
of two distributions of electric charge, of density |ψj |2 and |ψk|2 respectively. (Look back at (3.1) if you
don’t see where the factor 1

2 comes from.)

That all seems fine – but have we included everything? We started by saying that the permutations P

in the ‘bra’ and Q in the ‘ket’ must put the variables in matching order, as any mis-match would lead to
zero overlap integrals. But with 2-electron operators like g(j, k) it is clear that non-zero contributions to
the expectation value can arise as long as the N − 2 ‘matching pairs’ (for i′ 6= j, k) are not changed by
the permutations. So after getting all the non-zero contributions 〈ψjψk|g(j, k)|ψjψk〉 we must still allow
new permutations, which differ from those already made by a transposition of the indices j, k. When two
indices are swapped, the term just found will be accompanied by another, 〈ψjψk|g(j, k)|ψkψj〉, which is
called an exchange integral. But, in summing over all permutations, those which lead to an exchange
term are of different parity from those that lead to the corresponding Coulomb term; and when they are
included they must be given a minus sign. Consequently, the expectation value of the 2-electron energy
term, namely 〈Ψ| 12

∑′
j,k g(j, k)|Ψ〉, must now include ‘exchange terms’, becoming

1
2

∑′
j,k[〈ψjψk|g(j, k)|ψjψk〉 − 〈ψjψk|g(j, k)|ψkψj〉].

If you still have difficulty with such a long and abstract argument, try repeating it with
just three electrons (1,2,3) in spin-orbitals ψ1, ψ2, ψ3, as we did after Example 3.2, but
replacing h1 by the 2-electron operator g12 = g(1, 2). Note that g12 acts on two spin-
orbitals; thus, for example,

〈2 1 3 |g12| 2 1 3〉 = 〈ψ1ψ2|g12|ψ1ψ2〉〈ψ3|ψ3〉 = 〈ψ1ψ2|g|ψ1ψ2〉.

We can now summarize the conclusions from Examples 3.2 and 3.3 for a state Ψ, rep-
resented by a single antisymmetrized spin-orbital product and normalized to unity in
(3.4):

Given Ψ(x1,x2, ...,xN ) = (1/N !)1/2
∑

P
ǫPPψ1(x1)ψ2(x2) ... ψN (xN),

the 1- and 2-electron contributions to Ē = 〈Ψ|H|Ψ〉 are:

〈Ψ|∑i h(i)|Ψ〉 =
∑

i〈ψi|h|ψi〉
and
〈Ψ|1

2

∑′

i,j g(i, j)|Ψ〉 = 1
2

∑′

i,j[〈ψiψj|g|ψiψj〉 − 〈ψiψj|g|ψjψi〉].

(3.7)
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These results, ‘Slater’s rules’, will be used throughout the rest of Book 12, r so if you had
trouble in getting them just take them on trust – applying them is much easier! (Note
that the summation indices in the 2-electron sum have been changed back to i, j, as used
originally in (3.1), now there’s no longer any risk of confusion.)

3.2 Getting the total energy

Now that we know how to get the expectation energy for a wave function of the form
(3.4) we’ll be wanting to get the best possible approximation of this kind. In Chapter 2
this was done by the variation method, in which the forms of the orbitals were varied
until Ē reached a stationary minimum value.

For a many-electron ground state we can go ahead in the same way; but the details will be
a bit more complicated. Apart from the fact that we now have to use spin-orbitals, N of
them for an N -electron system, the orbital factors may not be simple functions, containing
a few adjustable parameters; they may be complicated functions of electronic positions
(ri) and we’ll be looking for a 1-electron eigenvalue equation to determine the orbitals and
corresponding orbital energies. That’s the problem we face in the next section: here we
have to start by getting an expression for the total electronic energy of the system.

First of all, as long as there are no spin operators in the Hamiltonian – and this first
approximation is the one usually accepted – we can get rid of all the spin factors (α, β)
and spin variables s by doing the spin integrations before anything else in evaluating
the expectation value Ē. Remember that in general, where Ψ = Ψ(x1,x2, ...xN) and
Ē = 〈Ψ|H|Ψ〉, this involves integrating over all variables in the wave function.

Let’s start from the single antisymmetrized spin-orbital product in (3.7) and do the spin
integrations to get a ‘spin-free’ expression for Ē = 〈E〉. In terms of spin-orbitals, we
already know

〈E〉 = 〈Ψ|H|Ψ〉 =
∑

i

〈ψi|h|ψi〉+ 1
2

∑′

i,j [〈ψiψj|g|ψiψj〉 − 〈ψiψj|g|ψjψi〉], (3.8)

so now we only have to substitute ψi(x) = φi(r)α(s), or φi(r)β(s) in this expression and
complete the spin integrations.

Example 3.4 Getting rid of the spins!

In Chapter 2 we found that quantum mechanics was not complete until we allowed for particles with
spin: otherwise it was not possible to describe the fact that electrons are identical particles of a very
special kind – their wave functions must be antisymmetric under exchange of any two particles (an
operation that can make no observable difference to the system). So why should we want to ‘get rid of
spin’? The simple reason is that the observable effects of spin (e.g. on the energy levels of a system) are
tiny and, in good approximation, can often be neglected. That being so, it’s a nuisance to keep them in
the theory for any longer than necessary.

The 1-electron part of the energy in (3.8) depends on the spin-orbitals only through the term 〈ψi|h|ψi〉 =
∫

ψ ∗
i (x1)h(1)ψi(x1)dx1, in which ψi is occupied by the electron we’re calling ‘1′, with space-spin coordi-
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nates x1, and dx1 = dr1ds1. When the Hamiltonian h(1) does not contain spin operators, it works on a
spin-orbital ψi(x1) = φi(r1)α(s1) to give [h(1)φi(r1)]α(s1), without touching the spin factor α(s1). Thus

∫

ψ ∗
i (x1)h(1)ψi(x1)dx1 =

∫

α∗(s1)α(s1)ds1

∫

φi(r1)φ
∗
i (r1)[h(1)φi(r1)]dr1

= 〈α|α〉〈φi|h|φi〉 = 〈φi|h|φi〉.

The spin integration just takes away the spin factors, leaving 〈φi|h|φi〉 in place of 〈ψi|h|ψi〉, and this will
clearly be true also for a spin-orbital with a β spin factor. (Integration limits not shown when obvious.)

What about the 2-electron term in (3.8)? This is 1
2

∑′
i,j [〈ψiψj |g|ψiψj〉− 〈ψiψj |g|ψjψi〉] and is a bit more

difficult, so let’s take the Coulomb and exchange parts separately. If we take ψi(x1) = φi(r1)α(s1) and
ψj(x2) = φj(r2)α(s2), then a single Coulomb term becomes

〈ψiψj |g|ψiψj〉 =

∫

ψ ∗
i (x1)

∫

ψ ∗
j (x2)g(1, 2)ψi(x1)ψj(x2)dx1dx2

=

∫

φ ∗
i (r1)φ

∗
j (r2)g(1, 2)φi(r1)φj(r2)dr1dr2

= 〈φiφj |g|φiφj〉.

– spin factors matching and each giving 〈α|α〉 = 1.

The corresponding exchange term reduces in the same way;

〈ψiψj |g|ψjψi〉 =

∫

ψ ∗
i (x1)

∫

ψ ∗
j (x2)g(1, 2)ψj(x1)ψi(x2)dx1dx2

=

∫

φ ∗
i (r1)φ

∗
j (r2)g(1, 2)φj(r1)φi(r2)dr1dr2

= 〈φiφj |g|φjφi〉.

and could be obtained from the Coulomb term simply by exchanging the two orbitals (no spins!) in the
‘ket’.

(Note that you don’t always have to show everything in such detail, with the variables and integral signs.
A shorter way is to write the spin-orbitals ψi = φiα, ψj = φjα, so

〈(φiα)(φjα)|g|(φjα)(φiα)〉 = 〈α|α〉1〈α|α〉2〈φiφj |g|φjφi〉,

where the first spin scalar product comes from the first spin-orbital and the next one from the second
(it’s enough just to keep the order). As the spin states are normalized both factors are 1 and the ‘short
cut’ gives the same result: 〈ψiψj |g|ψjψi〉 = 〈φiφj |g|φjφi〉.)
Now suppose that ψi and ψj have different spins: ψi = φiα, ψj = φjβ. In this case we get, using the
‘short cut’, an exchange term 〈(φiα)(φjβ)|g|(φjβ)(φiα)〉 = 〈α|β〉1〈β|α〉2〈φiφj |g|φjφi〉. Here, because the
different spin states are orthogonal, there are two factors of 0 and the exchange term is 〈ψiψj |g|ψjψi〉 =
0 × 〈φiφj |g|φjφi〉.) The Coulomb term, on the other hand, again reduces to 〈φiφj |g|φiφj〉, because the
spin factors are both 1 (check it out!).

In summary, Example 3.4 showed how a system whose Hamiltonian contains no spin
operators can be dealt with in terms of orbitals alone, without the spin factors α and β:
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Given Ψ(x1,x2, ...,xN ) =
√
N !Aψ1(x1)ψ2(x2) ... ψN(xN), the

1- and 2-electron energy terms reduce as follows.

When ψi = φiα : 〈ψi|h|ψi〉 → 〈φi|h|φi〉

and when ψi = φiα, ψj = φjα :

[〈ψiψj|g|ψiψj〉 − 〈ψiψj|g|ψjψi〉]→ [〈φiφj|g|φiφj〉 − 〈φiφj|g|φjφi〉].

But when ψi = φiα, ψj = φjβ there is no exchange term:

〈ψiψj|g|ψiψj〉 → 〈φiφj|g|φiφj〉.

(3.9)

Of course, there are similar results if you interchange α and β throughout. The Coulomb
integrals in terms of ψi, ψj give results of the same form in terms of the orbital factors
φi, φj when both spins are the same (α, α or β, β), or different (α, β or β, α): but this is
so for the exchange integrals only when both spins are the same, the exchange integrals
reducing to zero when the spins are different.

The results listed in (3.7) and (3.9) may be used to obtain energy expectation values, in
IPM approximation, for any kind of many-electron system. They apply equally to atoms,
where the occupied orbitals are AOs (centered on a single nucleus), and to molecules,
where the molecular orbitals (MOs) extend over several nuclei.

Here we start by thinking about atoms, whose AOs have been studied in detail in Chapter
6 of Book 11. You’ll remember something about atoms from Book 5 (Sections 1.1 and
1.2, which you might like to read again). In particular, the atomic number Z gives
the number of electrons in the electrically neutral atom and allows us to list all the
known ‘chemical elements’ in increasing order of atomic mass and electronic complexity.
The first 10 (lightest) atoms in the list are of special importance: they are Hydrogen
(H), Helium (He), Lithium (Li), Beryllium (Be), Boron (B), Carbon (C), Nitrogen (N),
Oxygen (O), Fluorine (F) and Neon (Ne). Together they make up most of the world we
live in, including the water of the oceans, the main gases of the Earth’s atmosphere and
even about 99% of our human bodies – so no wonder they are important! In Book 12
we’ll be tryng to understand some of the properties of these few atoms and the ways they
can be put together to form molecules and other structures. The main ‘tool’ for doing
this is provided by quantum mechanics; and by now you know enough about this to get
started.

In the next two examples we’ll get approximate energy expressions for the atoms of
Lithium (Z = 3) and Beryllium (Z = 4) in their lowest-energy ground states.
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Example 3.5 Energy expression for the Lithium atom

Suppose the electrons are added, one at a time, to the bare nucleus with charge Z = 3 (atomic units).
In IPM approximation the first two go into the AO φ1s, one in φ1sα and the other in φ1sβ, giving the
‘helium-like’ electron configuration (1s)2. The third electron is excluded from this closed shell and
must go into the next higher-energy AO φ2s, with ‘up-spin’ or ‘down-spin’. Taking the up-spin state we
have the three spin-orbitals

ψ1 = φ1sα ψ2 = φ1sβ ψ3 = φ2sα (A)

from which we can evaluate the 1- and 2-electron sums in (3.8). To make things easier, we can rewrite
the 2-electron summation as

∑

i<j (which takes away the 1
2 and includes only distinct terms) and denote

[〈ψiψj |g|ψiψj〉 − 〈ψiψj |g|ψjψi〉] by 〈ψiψj ||ψiψj〉. Thus

〈E〉 = 〈Ψ|H|Ψ〉 =
∑

i

〈ψi|h|ψi〉+
∑

i<j

〈ψiψj ||ψiψj〉.

The 1-electron sum (call it Σ1) then becomes

Σ1 = 〈ψ1|h|ψ1〉+ 〈ψ2|h|ψ2〉+ 〈ψ3|h|ψ3〉,

and similarly
Σ2 = 〈ψ1ψ2||ψ1ψ2〉+ 〈ψ1ψ3||ψ1ψ3〉+ 〈ψ2ψ3||ψ2ψ3〉.

With the spin-orbitals listed above in (A), Σ1 becomes (making use of (3.9))

Σ1 = 2〈φ1s|h|φ1s〉+ 〈φ2s|h|φ2s〉;

and similarly
Σ2 = 〈φ1sφ1s||φ1sφ1s〉+ 〈φ1sφ2s||φ1sφ2s〉+ 〈φ1sφ2s||φ1sφ2s〉′,

where the terms that have been given a ‘prime’ are the ones that come from spin-orbitals of different
spin – and therefore include no exchange term. On using the letters J and K to denote Coulomb and
exchange integrals (as in Example 2.4 on a 2-electron system), the last result reduces to (do it!) Σ2 =
J1s,1s + 2J1s,2s −K1s,2s

Finally, then, using ǫ1s and ǫ2s for the 1s and 2s orbital energies, the expectation value of the total energy

in IPM approximation will be Ē = 2ǫ1s + ǫ2s + J1s,1s + 2J1s,2s −K1s,2s.

Example 3.5 has given the expression

Ē = 2ǫ1s + ǫ2s + J1s,1s + 2J1s,2s −K1s,2s (3.10)

for the expectation energy, in the ground state, of a 3-electron system (the Lithium atom),
in terms of the orbital energies

ǫ1s = 〈φ1s|h|φ1s〉, ǫ2s = 〈φ2s|h|φ2s〉,

the Coulomb integrals

J1s,1s = 〈φ1sφ1s|g|φ1sφ1s〉, J1s,2s = 〈φ1sφ2s|g|φ1sφ2s〉,
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and the exchange integral K1s,2s = 〈φ1sφ2s|g|φ2sφ1s〉.
All the terms in (3.10) have a clear physical meaning: ǫ1s is the energy of one electron, by
itself, in the lowest-energy (1s) orbital; ǫ2s is that of one electron in the 2s orbital; J1s,1s
is the Coulomb repulsion energy between the two electrons in the 1s orbital, while J1s,2s
is that between the single 2s electron and one of the the two 1s electrons; the final term
K1s,2s is the exchange part of the interaction between the 2s electron and the 1s electron
of the same spin (there is no term when the spins are different). The ‘charge density’
interpretation of J1s,1s was given in Example 2.2, but more generally

Jφ1,φ2
=

∫

φ ∗
1 (r1)φ

∗
2 (r2)gφ1(r1)φ2(r2)dr1dr2 =

∫

ρ1(r1)ρ2(r2)dr1dr2,

where ρ1(r1) = φ ∗
1 (r1)φ1(r1) is a real quantity and so is ρ2(r2). This interaction integral,

between real charge densities, is often denoted by (φ1φ1, φ2φ2) and has a purely classical
interpretation; Jφ1,φ2

= (φ1φ1, φ2φ2). The corresponding exchange integral does not have
a classical interpretation: it is K(φ1, φ2) = (φ ∗

1φ2, φ
∗
2φ1) where the ‘charge densities’ are,

in general, complex quantities and have their origin in the region of overlap of the two
orbitals.

The next atom Be, with Z = 4, will contain two doubly occupied orbitals, giving it the
electron configuration (1s)2(2s)2. It is the model for all atoms that contain n ‘closed shells’
of doubly occupied orbitals and leads to an important generalization.

Example 3.6 Energy expression for the Beryllium atom

Again suppose the electrons are added, one at a time, to the bare nucleus – now with charge Z = 4 (atomic
units). The first two go into the AO φ1s and the other two into φ2s, giving the electron configuration
(1s)2(2s)2 in which both orbitals are doubly occupied and can accept no more electrons. The atom has
a closed-shell ground state in which the singly occupied spin-orbitals are

ψ1 = φ1sα ψ2 = φ1sβ ψ3 = φ2sα ψ4 = φ2sβ (A)

from which we can evaluate the 1- and 2-electron sums in (3.8).

With the notation used in Example 3.5, the energy expectation value is given by

〈E〉 = 〈Ψ|H|Ψ〉 =
∑

i

〈ψi|h|ψi〉+
∑

i<j

〈ψiψj ||ψiψj〉,

in which the 1-electron sum (Σ1) becomes

Σ1 = 〈ψ1|h|ψ1〉+ 〈ψ2|h|ψ2〉+ 〈ψ3|h|ψ3〉+ 〈ψ4|h|ψ4〉,

and similarly

Σ2 = 〈ψ1ψ2||ψ1ψ2〉+ 〈ψ1ψ3||ψ1ψ3〉+ 〈ψ1ψ4||ψ1ψ4〉
+ 〈ψ2ψ3||ψ2ψ3〉+ 〈ψ2ψ4||ψ2ψ4〉+ 〈ψ3ψ4||ψ3ψ4〉.

With the spin-orbitals listed above in (A), Σ1 becomes (making use of (3.9))

Σ1 = 2〈φ1s|h|φ1s〉+ 2〈φ2s|h|φ2s〉
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and similarly

Σ2 = 〈φ1sφ1s||φ1sφ1s〉′ + 〈φ1sφ2s||φ1sφ2s〉+ 〈φ1sφ2s||φ1sφ2s〉′
+ 〈φ1sφ2s||φ1sφ2s〉′ + 〈φ1sφ2s||φ1sφ2s〉+ 〈φ2sφ2s||φ2sφ2s〉′.

Again the terms that have been given a ‘prime’ are the ones that come from spin-orbitals of different spin
– and therefore include no exchange term.

On using the J and K notation for the Coulomb and exchange integrals, the last result becomes (showing
the terms in the same order) Σ2 = J1s,1s+(J1s,2s−K1s,2s)+(J1s,2s)+(J1s,2s)+(J1s,2s−K1s,2s)+(J2s,2s).
Thus Σ2 = J1s,1s+J2s,2s+4J1s,2s−2K1s,2s, where the first two terms give the Coulomb repulsion energy
within the two doubly occupied AOs while the remainder give the four Coulomb repulsions between the
two electron pairs, (1s2) and (2s2), together with the two exchange terms from the electrons with the
same spin.

The total electronic energy of the Beryllium atom, in IPM approximation, thus has the expectation value

Ē = 2ǫ1s + 2ǫ2s + J1s,1s + J2s,2s + 4J1s,2s − 2K1s,2s.

Example 3.6 has given an expression for the total energy of a system consisting of two
doubly occupied AOs, namely

Ē = 2ǫ1s + 2ǫ2s + J1s,1s + J2s,2s + 4J1s,2s − 2K1s,2s. (3.11)

The beauty of this result is that it can be generalized (with no more work!) and will then
hold good for any atom for which the IPM provides a decent approximate wave function.
It was derived for two doubly occupied AOs, φ1s and φ2s, but for a system with n such
orbitals – which we can call simply φ1, φ2, ... φi, ... φn – the derivation will be just the
same (think about it!). The n orbitals can hold N = 2n electrons and the general energy
expression will be (summation limits, not shown, are normally i = 1, n)

Ē = 2
∑

i

ǫi +
∑

i

Ji,i + 4
∑

i<j

Ji,j − 2
∑

i<j

Ki,j, (3.12)

where the indices now label the orbitals in ascending energy order. The terms being
summed have the same meaning as for only two orbitals: the first is the energy of two
electrons in orbital φi; the next is their Coulomb repulsion energy; and then there is the
repulsion between each electron of the pair in φi and each in φj; the last is the exchange
energy between the two pairs that have the same spin.

At this point we begin to think about how the orbitals might be improved; for we know
that using the AOs obtained for one electron alone, moving in the field of the nucleus,
will give a very poor approximate wave function. Even with only the two electrons of the
Helium atom (Example 2.1) the exponential factor in the 1s orbital is changed quite a lot
by the presence of a second electron: instead of corresponding to nuclear charge Z = 2
a more realistic value turned out to be Zeff = Z − (5/8). This is an ‘effective nuclear
charge’, reduced by the screening constant (5/8) which allows for some of the repulsion
between the electrons.
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Clearly, the 2s AO in the Lithium atom would be much better represented by giving it
an exponent closer to 1 instead of the actual value Z = 3, , to allow for the fact that
the 1s2 inner shell holds two charges of −e close to the nucleus. Of course we can find a
better value of the effective nuclear charge, which determines the sizes of the outer AOs,
by minimizing the expectation value Ē; but we really want to find the best possible IPM
wave function and that means allowing the AOs to take arbitrary – not just hydrogen-like
– forms. That’s a much more difficult job.
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Chapter 4

The Hartree-Fock method

4.1 Getting the best possible orbitals:

Step 1

Note to the reader The next sections contain difficult material and you may need to be reminded
about summations. You’ve been summing numbered terms ever since Book 1: if there are n of them,
t1, t2, ... tn say, you may write their sum as T =

∑i=n
i=1 ti or, when the limits are clear, just as

∑

i ti; but
if the terms are labeled by two indices, i, j you may need to add conditions e.g. i 6= j or i < j to exclude
some of the terms. Thus, with n = 3,

∑

i<j ti,j will give you T = t1,2 + t1,3 + t2,3; and if you want to
sum over one index only you can use parentheses to exclude the one you don’t want to sum over, using
for example

∑

i( 6=2) to keep j = 2 fixed. Think carefully about what you want to do!

When the IPM approximation was first introduced in Chapter 2, it was taken for granted
that the ‘best’ 1-electron wave functions would describe accurately a single electron mov-
ing in some kind of ‘effective field’. That means they would be eigenfunctions of an
eigenvalue equation heffψ = ǫψ, with heff = h + V. Here we’ll suppose the spin variables
have been eliminated, as in Examples 3.5 and 3.6, and start from the energy expression
(3.12), namely

Ē = 2
∑

i

ǫi +
∑

i

Jii + 4
∑

i<j

Jij − 2
∑

i<j

Kij.

where, with the usual notation, ǫi = 〈φi|h|φi〉, Jij = 〈φiφj|g|φiφj〉, Kij = 〈φiφj|g|φjφi〉.
To find the stationary value of the energy we can rewrite Ē as

Ē = 2
∑

i

ǫi + 2
∑

i,j

Jij −
∑

i,j

Kij. (4.1)

(checking that the summations come out right!) and then vary the orbitals one at a time.

Suppose then that φk → φk + δφk, where k is any chosen (‘fixed’) index, for the orbital
we’re going to vary. The corresponding small change in the 1-electron part of Ē will be
easy, since ǫi = 〈φi|h|φi〉 and changes only when we take the term with i = k in the ‘bra’
or in the ‘ket’. The change in the sum is thus 〈δφk|h|φk〉 + (c.c) where (c.c.) stands for
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the complex conjugate of the term before it. But the interaction terms are more difficult:
we’ll deal with them in the next two examples.

Example 4.1 The Coulomb operator

It would be nice to write the J- and K-terms as expectation values of 1-electron operators, for then we
could deal with them in the same way as ǫi. A single Coulomb integral is

Jij = 〈φiφj |g|φiφj〉 =
∫

(1/r12)φ
∗
i (r1))φ

∗
j (r2)φi(r1)φj(r2)dr1dr2,

since g is just a multiplying factor and can be put anywhere in the integrand. We’d like to get one
integration out of the way first, the one that involves the r2 variable, and we can do it by defining an
operator

Jj(1) =

∫

(1/r12)φ
∗
j (r2)φj(r2)dr2

that works on any function of r1, multiplying it by the factor that comes from the integration and
obviously depends on orbital φj .

With Born’s interpretation of the wave function (see Example 2.3), φ ∗
j (r2)φj(r2) = Pj(r2) is the proba-

bility density of finding an electron in orbital φj at point r2. And the integral
∫

(1/r12)Pj(r2)dr2 is the

electric potential at point r1 due to an electron in orbital φj , treating Pj as the density (in electrons/unit

volume) of a ‘smeared out’ distribution of charge.

Example 4.1 has given the expression (putting the volume element dr2 just after the
integration sign that goes with it, so as not to get mixed up)

Jj(1) =

∫

dr2(1/r12)φj(r2)φ
∗
j (r2) (4.2)

for the Coulomb operator associated with an electron in orbital φj, being the electro-
static potential at point r1 arising from its ‘charge cloud’.

And with this definition we can write the Coulomb term as the double integral

Jij =

∫

dr1

∫

dr2(1/r12)φ
∗
i (r1))φ

∗
j (r2)φi(r1)φj(r2)

=

∫

dr1φ
∗
i (r1)) (Jj(1))φi(r1) = 〈φi|Jj(1)|φi〉, (4.3)

which is an expectation value, just as we wished, of the 1-electron operator Jj(1) that gives
the ‘effective field’ provided by an electron in orbital φj. Now we want to do something
similar for the exchange term Kij.

Example 4.2 The exchange operator

The exchange integral is

Kij = 〈φiφj |g|φjφi〉 =
∫

dr1

∫

dr2(1/r12)φ
∗
i (r1)φ

∗
j (r2φj(r1)φi(r2),
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and the interchange of labels in the ‘ket’ spoils everything. We’ll have to invent a new operator!

If you compare the expression for Kij with that for Jij in (5.3) you’ll see where they disagree. Since the
order of the factors doesn’t matter, we can keep the variables in the standard order – swapping the labels
instead. The Jij integral is

Jij =

∫

dr1

∫

dr2(1/r12)φ
∗
i (r1))φ

∗
j (r2)φi(r1)φj(r2),

while Kij , with its interchange of labels in the ‘ket’, is

Kij =

∫

dr1

∫

dr2(1/r12)φ
∗
i (r1))φ

∗
j (r2)φj(r1)φi(r2).

The Coulomb operator (4.2) could be defined that way (as a multiplier) because the integration over r2
could be completed first, leaving behind a function of r1, before doing the final integration over r1 to get
Jij as the expectation value in (5.3). We’d like to do something similar for the exchange integral Kij ,
but the best we can do is to introduce Kj(1), whose effect on any function φ of r1 will be to give

Kj(1)φ(r1) =

∫

dr2(1/r12)φj(r1))φ
∗
j (r2)φ(r2).

This looks very strange, because operating on φ(r1), it first has to change the variable to r2 and then do
an integration which finally leaves behind a new function of r1. To put that in symbols we could say

Kj(1)φ(r1) =

∫

dr2(1/r12)φj(r1))φ
∗
j (r2) (r1 → r2)φi(r1),

where the operator (r1 → r2) means “replace r1 by r2 in any function that follows it”.

Let’s test it on the function φi(r1) by writing the final factor in the expression for Kij as (r1 → r2)φi(r1)
and noting that the integration over r2 is already present. We then find

Kij =

∫

dr1φ
∗
i (r1)

[∫

dr2(1/r12)φj(r1)φ
∗
j (r2) (r1 → r2)φi(r1)

]

=

∫

dr1φ
∗
i (r1)Kj(1)φi(r1),

which is conventionally written in the same form as (5.3): Kij = 〈φi|Kj(1)|φi〉, so the exchange integral

〈φiφj |g|φjφi〉 can also be expressed as the expectation value of an exchange operator.

Example 3.8 has given an expression for the exchange integral 〈φiφj|g|φjφi〉, similar to
that in (5.3) but with the exchange operator

Kj(1) =

∫

dr2(1/r12)φj(r1))φ
∗
j (r2)(r1 → r2). (4.4)

in place of the Coulomb operator. Both operators describe the effect on Electron ‘1’,
in any orbital φ, of another electron (‘2’) in orbital φj, but while the Coulomb operator
has a simple classical interpretation (giving the energy of ‘1’ in the field produced by the
smeared-out charge density associated with ‘2’) the exchange operator is more mysterious.

There is, however, another way of describing an operator like Kj(1). An operator in a function space is
simply a ‘recipe’ for going from one function to another e.g from f(x) to g(x). You’ve used differential

operators a lot, but another way of getting from f(x) to g(x) is to use an integral operator, k say,
defined by means of a ‘kernel’ k(x, x′) which includes a second variable x′: the kernel determines the
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effect of the operator and kf(x) =
∫

k(x, x′)f(x′)dx′ becomes a new function g(x) = kf(x). Clearly,
Kj(1) in (4.4) is an operator of this kind: it contains two electronic variables, r1, r2, and an integration
over the second one (r2).

Here we’ll define the kernel of the operator Kj as the function of two variables

Kj(r1, r2) = (1/r12)φj(r1))φ
∗
j (r2). (4.5)

It then becomes clear that (4.4) can also be written as

Kj(1)φi(r1) =

∫

dr2Kj(r1, r2)φi(r2). (4.6)

(Note: From now on we’ll no longer indicate that the 1-electron operators act on functions
of r1, by writing h(1) etc – as that will always be clear from the function they act on.)

The relationship between the operator and its kernel is usually written Kj → Kj(r1, r2).
Notice that the operator Jj, defined in (4.2) has a similar integrand, except that the
variable r1 has been replaced by r2 and the integration

∫

dr2 has been completed before
going on to get (5.3).

We’re now nearly ready to go back to (4.1), writing the Coulomb and exchange integrals
in terms of the newly defined operators Jj and Kj, given in (4.2) and (4.6). Remember
that ǫi = 〈φi|h|φi〉 in terms of the 1-electron Hamiltonian h; and we now know how to
express Jij = 〈φiφj|g|φiφj〉 and Kij = 〈φiφj|g|φjφi〉 in similar form.

Thus, (4.1) becomes

Ē = 2
∑

i

ǫi + 2
∑

j,i

Jij −
∑

j,i

Kij

= 2
∑

i

〈φi|h|φi〉+ 2
∑

j,i

Jij −
∑

j,i

Kij.

The 1-electron energy (called ǫi only with complete neglect of electron interaction) has
now been written explicitly as the expectation value of the ‘bare nuclear’ Hamiltonian h.

The summations over j can now be done, after putting Jij = 〈φi|Jj|φi〉, Kij = 〈φi|Kj|φi〉
and defining total Coulomb and exchange operators as J = 2

∑

j Jj, K = 2
∑

j Kj. (Re-
member that Jj and Kj are operators for one electron in orbital φj, but here we have
doubly-occupied orbitals.) Thus, on putting J− 1

2
K = G, we find

Ē = 2
∑

i

〈φi|h|φi〉+
∑

i

〈φi|J|φi〉 − 1
2

∑

i〈φi|K|φi〉

= 2
∑

i

〈φi|(h+ 1
2
G)|φi〉 (G = J− 1

2
K) (4.7)

Having found a neat expression for the expectation value of the total energy, the next
step will be to find its variation when the orbitals are changed.
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4.2 Getting the best possible orbitals: Step 2

To find the stationary value of the energy we vary the orbitals one at a time, supposing
φk → φk + δφk and working to the first order of small quantities. The part of Ē, given in
(4.7), that depends on the single orbital φk – the one which is going to be varied – is

Ē(k) = 2ǫk + Jkk +
∑

j( 6=k)

Jkj − 1
2

∑

j( 6=k)

Kkj

= 2〈φk|h|φk〉+
∑

j

Jkj − 1
2

∑

j

Kkj. (4.8)

Here the 1-electron energy (called ǫk only with complete neglect of electron interaction)
has again been written explicitly as the expectation value of the ‘bare nuclear’ Hamiltonian
h.

On making the change φk → φk + δφk, the corresponding first-order change in (4.8) is

δĒ(k) = 2〈δφk|h|φk〉+ (c.c.) +
(

∑

j

〈δφkφj|g|φkφj〉+
∑

i

〈φiδφk|g|φiφk〉
)

+ (c.c.)

−1
2

(

∑

j

〈δφkφj|g|φkφj〉+
∑

i

〈φiδφk|g|φkφi〉
)

+ (c.c.),

where each (c.c.) is the complex conjugate of the term before it.

(Note that the two sums in the parentheses are identical because, for example, the term
〈φiφj|g|φiφj〉 in the expression for E(k) could just as well have been written 〈φjφi|g|φjφi〉
and then, calling the second factor φk, the change φk → φk + δφk would have made the
second sum into

∑

j〈φjδφk|g|φjφk〉) – the same as the first sum if you interchange the
summation indices i, j.)

Thus, noting that the same argument applies on the last line of the equation above, the
first-order change in energy becomes

δĒ(k) =

(

2〈δφk|h|φk〉+ 2
∑

j

〈δφkφj|g|φkφj〉 −
∑

j

〈δφkφj|g|φjφk〉
)

+ (c.c.).

But 〈δφkφj|g|φkφj〉 = 〈δφk|Jj|φk〉 and 〈δφkφj|g|φjφk〉 = 〈δφk|Kj|φk〉; and the last expres-
sion can therefore be written (doing the summations over j)

δĒ(k) = (2〈δφk|h|φk〉+ 2〈δφk|J|φk〉 − 〈δφk|K|φk〉) + (c.c.)

= 2〈δφk|[h+ J− 1
2
K]|φk〉+ (c.c.). (4.9)

The total first-order energy variation, δĒ, will be simply the sum of such changes over
all values of index k. Here, however, we are interested in minimizing the IPM energy
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approximation against infinitesimal variation of any orbital φk, subject to the usual nor-
malization condition. Since this variation is otherwise arbitrary, it follows (see Section
1.2 of Chapter 1) that a solution is obtained when [h+ J− 1

2
K]φk is a multiple of φk. The

operator in square brackets is often denoted by F and called the Fock operator, after
the Russian physicist who first used it. The condition for finding the best orbital φk is
therefore that it be an eigenfunction of F:

Fφk = ǫkφk (F = h+ J− 1
2
K = h+ G), (4.10)

where ǫk, the corresponding eigenvalue, is the orbital energy.

What have we done? Starting from a 1-electron system, with orbitals determined from
a simple 3-dimensional eigenvalue equation hφ = ǫφ, we’ve moved on to a many-electron
system, with an enormous eigenvalue equation HΦ = EΦ (there may be thousands of
electrons), and found that in IPM approximation it can be quite well described in terms
of orbitals that satisfy an ‘effective’ eigenvalue equation Fφ = ǫφ. The ‘effective’ 1-electron
operator that replaces the original h is the Fock operator in (4.10), F = h+G. The presence
of all other electrons in the system is ‘taken care of’ by using this effective Hamiltonian
and dealing with a one-electron problem. That’s a gigantic step forward!

4.3 The self-consistent field

There’s no simple way of solving the eigenvalue equation found in the last section, because
the Fock operator depends on the forms of all the occupied orbitals – which determine
the electron density and consequently the effective field in which all the electrons move!
The best that can be done is to go step by step, using a very rough first approximation
to the orbitals to estimate the J- and K-operators and then using them to set up, and
solve, a revised eigenvalue equation. The new orbitals which come out will usually be a
bit different from those that went in but will hopefully give an improved estimate of the
Fock operator. This allows us to go ahead by iteration until, after several cycles, no
further improvement is needed: at that stage the effective field stops changing and the
‘output’ orbitals agree with the ones used in setting up the eigenvalue equation. This is
the self-consistent field method, invented by Hartree (without the exchange operator)
and Fock (including exchange). It has been employed, in one form or another, ever since
the 1930s in calculations on atoms, molecules and more extended systems, and will serve
us well in the rest of Book 12.

The first thing we need to do is to relate the J- and K-operators to the electron density
functions and we already know how to do that. From (5.3) it follows that the total
Coulomb operator, for the whole system with two electrons in every orbital, is

J = 2
∑

j

Jj = 2

∫

dr2(1/r12)
∑

j

[φj(r2)φ
∗
j (r2)],
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while the total exchange operator is K with kernel

K(r1, r2) = 2
∑

j

Kj(r1, r2) = 2(1/r12)
∑

j

[φj(r1)φ
∗
j (r2)]

Now the sum of all orbital contributions to the electron density at point r2 is P (r2) =
2
∑

j φj(r2)φ
∗
j (r2), and this determines the Coulomb interaction between an electron at r1

and the whole electron distribution. The exchange interaction is similar, but depends on
the same density function evaluated at two points – for which we use the notation P (r1; r2).
The usual density function P (r1) then arises on putting r2 = r1: P (r1) = P (r1; r1).

To summarize, the effect of J and K on any function φ of r1 is given as follows:

The Coulomb and exchange operators for any closed-shell system
are defined by their effect on any 1-electron function φ(r1):

Jφ(r1) =
[∫

dr2(1/r12)P (r2; r2)
]

× φ(r1),

Kφ(r1) =
[∫

dr2(1/r12)P (r1; r2)× φ(r2)
]

,

where P (r1; r2) = 2
∑

j[φj(r1)φ
∗
j (r2)

is a 2-variable generalization of the electron density function P (r1).

(4.11)

To show how the Fock operator depends on G = J − 1
2
K, and therefore on the density

function P (r1; r2), we write

Fφk = ǫkφk (F = h+ G(P )). (4.12)

It is important to note that F is a Hermitian operator and that its eigenfunctions may
therefore be taken as forming an orthogonal set – as we supposed in Section 3.1; but this
is not the case unless the exchange operator is included.

All very well, you might say, but if the Hartree-Fock equations are so difficult to handle
why do we spend so much time on them? And if we do manage to get rough approxi-
mations to orbitals and orbital energies, do they really ‘exist’ and allow us to get useful
information? The true answer is that orbitals and their energies ‘exist’ only in our minds,
as solutions to the mathematical equations we have formulated. In the rare cases where
accurate solutions can be found, they are much more complicated than the simple ap-
proximate functions set up in Chapter 2. Nevertheless, by going ahead we can usually
find simple concepts that help us to understand the relationships among the quantities
we can observe and measure. In Chapter 6 of Book 11 you saw how the idea of orbital
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energies allowed us to interpret the selective absorption of radiation of different colours
in terms of ‘quantum jumps’ between energy levels. The Hartree-Fock method provides
a tool for extending that interpretation from a one-electron system to a many-electron
system, simply by using an ‘effective’ 1-electron Hamiltonian F = h+G, in which G ‘takes
care’ of all the electron interactions.

One very striking example of the value of the orbital energy concept is provided by photo-

electron spectroscopy, an experimental method of directly observing quantum jumps
in an atom adsorbed on a solid surface. In this example, the atom usually belongs to a
molecule embedded in the surface; and when radiation falls on the surface it is struck by
photons of energy hν.
(You should read again Section 6.5 of Book 10, where the electromagnetic spectrum is related to the
frequency ν and wavelength λ of the radiation. There we were using the ‘classical’ picture of radiation in
terms of electromagnetic waves ; but here we use the ‘quantum’ description in which the energy is carried
by ‘wave packets’, behaving like particles called photons. This wave-particle ‘duality’ is dealt with more
fully in Book 11.)

The energy of an X-ray photon is big enough to knock an electron out of an atomic inner
shell, leaving behind an ion with an inner-shell ‘hole’. The ejected electron has a kinetic
energy which can be measured and related to the energy of the orbital from which it came.
The whole process can be pictured as in Figure 4.1, which shows the various energy levels.

p
h
ot
on

en
er
gy

h
ν

BE

W

KE

energy of free electron

escape energy from solid

escape energy from atom

energy of core electron

Figure 4.1 Energy diagram for X-PS (see text)

The name “X-PS” stands for “X-ray Photoelectron Spectroscopy”. The lengths of the
upward-pointing arrows in the Figure correspond to (i) the X-ray photon energy (left) and
(ii) the excitations that lead to the ionization of the system. ‘BE’ stands for the Binding
Energy of an electron in an atomic core orbital, φk say, and for a free atom this would
have the value I = −ǫk in IPM approximation. But when the atom is part of a molecule
attached to a solid surface I will be the ‘escape energy’ for getting the electron out of
the molecule and into the solid. A large system like a solid normally has a continuum
of closely-spaced electron energy levels and if the escaping electron has enough energy
it can reach the level labelled “escape energy from solid”(W) and pass out into space
as a free electron with any remaining kinetic energy (KE) it may have. The general
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energy-conservation principle (which you’ve been using ever since Book 4) then allows
you to write

hν = BE+W+KE.

In this approximation the binding energy ‘BE’ = −ǫk when the electron comes from orbital
φk (ǫk being negative for bound states), while ‘W’ (called the “work function”) is the extra
work that has to be done to get the electron from the level labelled “escape energy from
atom” to the one labelled “escape energy from solid”. At that point the electron really
is free to travel through empty space until it reaches a ‘collector’, in which its KE can
be measured. (Experiments like this are always made in high vacuum, so the electron
released has nothing to collide with.) The work function ‘W’ can also be measured, by
doing the experiment with a clean surface (no adsorbed atoms or molecules) and a much
smaller photon energy, so the electron collected can only have come from the energy levels
in the solid.

The last equation can now be rearranged to give an experimental value of ‘BE’ = −ǫk in
terms of the observed ‘KE’ of the electron reaching the collector:

−ǫk = hν −W−KE.

So even if orbitals don’t really exist you can measure experimentally the energies of the
electrons they describe! Similar experiments can be done with lower photon energies: if
you use ultraviolet radiation instead of X-rays you’ll be using “Ultraviolet Photoelectron
Spectroscopy” (“U-PS”) and will be able to get information about the upper energy levels
of the adsorbed atoms and molecules. Nowadays, such techniques are widely used not
only to find what atoms are present in any given sample (their inner-shell orbital energies
being their ‘footprints’) but also to find how many of them there are in each adsorbed
molecule. For this reason ‘X-PS’ is often known as “Electron Spectroscopy for Chemical
Analysis” (“ESCA”).

It’s now time to ask how the Hartree-Fock equations can be solved with enough accuracy
to allow us to make meaningful comparisons between theory and experiment.

4.4 Finite-basis approximations

In earlier sections we’ve often built up approximate 1-electron wave functions as linear
combinations of some given set of functions. This is one form of the more general proce-
dure for building 1-electron wave functions from a finite basis of functions which, from
now on, we’ll denote by

χ1, χ2, ... χr, ... χm.

Here we suppose there are m linearly independent functions, labelled by a general index
r, out of which we’re going to construct the n occupied orbitals. Usually the functions
will be supposed orthonormal, with Hermitian scalar products 〈χr|χs〉 = 1 for r =
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s; = 0 (otherwise). Very often the scalar product will be denoted by Srs and called an
“overlap integral”. The basis functions are normally set out in a row, as a ‘row matrix’,
and denoted by χ. With this convention, a linear combination of basis functions can be
written

φ = c1χ1 + c2χ2 + ... + crχr + ... + cmχm (4.13)

or, in matrix form, as the row-column product

φ = (χ1 χ2 ... χm)













c1
c2
..
..
cm













= χc, (4.14)

where c stands for the whole column of expansion coefficients and χ for the row of basis
functions. Sometimes it is useful to write such equations with the summation conventions,
so that φ =

∑

r crχr. (Look back at Section 3.1, or further back to Chapter 7 of Book 11,
if you need reminding of the rules for using matrices.)

In dealing with molecules, (4.14) is used to express a molecular orbital (MO) as a linear
combination of atomic orbitals (AOs) and forms the basis of the LCAO method. The
Hartree-Fock equation Fφ = ǫφ is easily put in finite-basis form by noting that Fφ =
∑

s csFχs and, on taking a scalar product from the left with χr, the r-component of the
new vector Fφ becomes

〈χr|F|φ〉 =
∑

s

〈χr|F|χs〉cs.

The quantity 〈χr|F|χs〉 is the rs-element of the square matrix F which ‘represents’ the
operator F in the χ-basis. The next example will remind you of what you need to know
before going on.

Example 4.3 Matrix representations

When an operator A acts on a function φ, expressed as in (4.14), it produces a new function φ′ with a
new set of expansion coefficients, c′r say. Thus φ′ =

∑

s χsc
′
s and to find the r-component of the new

function we form the scalar product 〈χr|φ′〉, getting (with an orthonormal basis)

c′r = 〈χr|φ′〉 = 〈χr|Aφ〉 = 〈χr|A|
(

∑

s

χs〉cs
)

=
∑

s

〈χr|A|χs〉cs.

This is just a sum of products of ordinary numbers:

c′r =
∑

s

〈χr|A|χs〉cs.

So the operator equation φ′ = Aφ is ‘echoed’ in the algebraic equation c′r =
∑

sArscs and this in turn
can be written as a simple matrix equation c′ = Ac. (Remember the typeface convention: A (‘sans serif’)
stands for an operator ; A (‘boldface’) for a matrix representing it; and Ars (lightface italic) for a single
number, such as a matrix element.)
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In the same way, you can show (do it!) that when a second operator B works on Aφ, giving φ′′ = BAφ =

Cφ, the product of operators C = BA is represented by the matrix product C = BA.

To summarize: When a basis set χ is defined, along with linear combinations of the basis
functions of the type (4.13), or (4.14) in matrix form, the operator equality φ′ = Aφ allows
us to say c′ = Ac. In this case we write

φ′ = Aφ → c′ = Ac

and say the equality on the left “implies” the one on the right. But this doesn’t have to
be true the other way round! Each implies the other only when the basis set is complete

(see Section 3.1) and in that case we write

φ′ = Aφ ↔ c′ = Ac.

In both cases we speak of a matrix representation of the operator equation, but only in
the second case can we call it “faithful” (or “one-to-one”). In the same way, the product
of two operators applied in succession (C = BA) is represented by the matrix product BA

and we write BA ↔ BA; but the ‘double-headed’ arrow applies only when the basis is
complete. (Examples can be found in Book 11.)

It’s important to remember that the representations used in the applications of quantum
mechanics are hardly ever faithful. That’s why we usually have to settle for approximate

solutions of eigenvalue equations.

When the eigenvalue equation Fφ = ǫφ is written in matrix form it becomes Fc = ǫc,
the equality holding only in the limit where the basis is complete and the matrices are
infinite. With only three basis functions, for example, the matrix eigenvalue equation is





F11 F12 F13

F21 F22 F23

F31 F32 F13









c1
c2
c3



 = ǫ





c1
c2
c3



 (4.15)

To find the full matrix F associated with the operator given in (??) we need to look
at the separate terms h, J,K. The first one is easy: the matrix h has an rs-element
hrs = 〈χr|h|χs〉 =

∫

χ∗
r(r1)hφs(r1)dr1, but the others are more difficult and are found as

in the following examples.

Example 4.4 The electron density function

Suppose we want the rs-element of the matrix representing J, defined in (4.11), using the χ-basis. When
J acts on any function of r1 it simply multiplies it by

∫

g(1, 2)P (r2, r2)dr2, and our first job is to find
the matrix P representing the density function in the χ-basis. This density is twice the sum over all the
doubly-occupied orbitals, which we’ll now denote by φK (using capital letters as their labels, so as not
to mix them up with the basis functions χr, χsetc.. So the total density becomes

P (r2; r2) = 2
∑

K

φK(r2)φ
∗
K(r2) = 2

∑

K

(
∑

t

cKt χt(r2)(
∑

u

cKu χu(r2))
∗ =

∑

t,u

Ptuχtχ
∗
u ,
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where Ptu = 2
∑

K cKt c
K
u . (Note that the summation indices have been re-named t, u as r, s are already

in use. Also, when there’s no room for ‘K’ as a subscript you can always put it at the top – it’s only a

label!) )

The electron density function P (r1; r2), first used in (4.11), generally contains two inde-
pendent variables, the ordinary density of electric charge in electrons/unit volume arising
on putting r2 = r1. When the function is written in finite basis form as

P (r1; r2) = 2
∑

K

φK(r1)φ
∗
K(r2) = 2

∑

K

(
∑

t

cKt χt(r1)(
∑

u

cKu χu(r2))
∗ =

∑

t,u

Ptuχt(r1)χ
∗
u(r2),

(4.16)
the square array P, here with elements Ptu, is an example of a density matrix. You
will find how important density matrices can be when you begin to study the physical
properties of molecules. Here we’re going to use them simply in defining the Coulomb
and exchange operators.

Example 4.5 The Coulomb operator

To get 〈χr|J|χs〉 we first express the operator J, which is just a multiplying factor, in terms of the χ-basis:

[∫

dr2(1/r12)P (r2; r2) =

∫

g(1, 2)
∑

t,u

Ptuχt(r2)χ
∗
u (r2)dr2.

This multiplier, when substituted in the matrix element expression
∫

dr1dr2χ
∗
r(r1)Jχs(r1) then gives

(check it out!)

〈χr|J|χs〉 =
∑

t,u

Ptu〈χrχu|g|χsχt〉,

where the first indices on the two sides of the operator come from the r1 integration, while the second

indices (u, t) come from the r2.

From Example 4.5, the Coulomb operator in (4.11) is represented in the finite χ-basis by
a matrix J(P) i.e. as a ‘function’ of the electron density matrix, with elements

Jrs =
∑

t,u

Ptu〈χrχu|g|χsχt〉. (4.17)

The matrix defined in this way allows one to calculate the expectation value of the energy
of an electron in orbital φK = χcK , arising from its Coulomb interaction with the whole
electron distribution.

Example 4.6 The exchange operator

To get 〈χr|K|χs〉 we first express the operator K, which is an integral operator, in terms of the χ-basis:
from (4.11), taking the operand φ(r1) to be χs(r1), we get Kχs(r1) =

[∫

dr2(1/r12)P (r1; r2)χs(r2)
]

,
where the integration over r2 is included in this first step. The next step in getting the matrix element
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〈χr|K|χs〉 is to multiply from the left by χ ∗
r (r1) (complex conjugate in the ‘bra’ factor) and then do the

remaining integration over r1. The result is

〈χr|K|χs〉 =
∫

dr1

∫

dr2(1/r12)χ
∗
r (r1)

∑

t,u

Ptuχt(r1)χ
∗
u (r1)χs(r2) =

∑

t,u

Ptu〈χrχu|g|χtχs〉.

Here the first indices (r, t) on the two sides of the operator come from the r1 integration, while the second

indices (u, s) come from the r2; but note the exchange of indices in the ‘ket’.

From Example 4.6, the exchange operator in (4.11) is represented in the finite χ-basis
by a matrix K(P), again as a ‘function’ of the electron density matrix, but now with
elements

Krs =
∑

t,u

Ptu〈χrχu|g|χtχs〉. (4.18)

This result allows one to calculate the expectation value of the energy of an electron
in orbital φK = χcK , arising from its exchange interaction with the whole electron
distribution.

We’ve finished!! We can now go back to the operator forms of the Hartree-Fock equations
and re-write them in the modern matrix forms, which are ideal for offering to an electronic
computer. Equation (4.1), which gave the expectation value of the total electronic energy
in the form

Ē = 2
∑

i

〈φi|h|φi〉+
∑

i

〈φi|J|φi〉 − 1
2

∑

i〈φi|K|φi〉

= 2
∑

i

〈φi|(h+ 1
2
G)|φi〉 (G = J− 1

2
K)

now becomes (dropping the orbital label ‘k’ to the subscript position now there are no
others, and remembering that the ‘dagger’ conveniently makes the column ck into a row
and adds the star to every element)

Ē = 2
∑

k

c
†
khck +

∑

k

c
†
kJck − 1

2

∑

k c
†
kKck

= 2
∑

k

c
†
k (h+ 1

2
G)ck (G = J− 1

2
K) (4.19)

The operator eigenvalue equation (4.10) for getting the best possible orbitals, which was

Fφk = ǫkφk (F = h+ G),

now becomes, in finite basis approximation,

Fck = ǫkck (F = h+G), (4.20)

The last two equations represent the prototype approach in applying quantum mechanics
to the ‘real’ many-electron systems we meet in Physics and Chemistry. Besides providing
a solid platform on which to build all the applications that follow in Book 12, they
provide the underlying pattern for most current developments which aim to go beyond
the Independent-Particle Model.
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Chapter 5

Atoms: the building blocks of matter

5.1 Electron configurations and electronic states

Chapter 6 of Book 11 dealt with the simplest of all atoms – Hydrogen, in which one
electron moves in the field of a positive nucleus of atomic number Z = 1. The eigenstates
of the Hamiltonian H were also eigenstates of the angular momentum operators, L2 and
one component of angular momentum, chosen as Lz. The definite values of the energy
and momentum operators were then En = −1

2
(Z2/n2), L(L + 1) and M (all in atomic

units of eH, ~
2 and ~, respectively), where n, L,M are quantum numbers. But here

we’re dealing with a very different situation, where there are in general many electrons.
Fortunately, the angular momentum operators Lx, Ly, Lz, and similar operators for spin,
all follow the same commutation rules for any number of electrons. This means we
don’t have to do all the work again when we go from Hydrogen to, say, Calcium with 20
electrons – the same rules still serve and very little needs changing. (You may want to
read again the parts of Chapter 5 (Book 11) that deal with angular momentum.)

Here we’ll start from the commutation rules for (orbital) angular momentum in a 1-
electron system. The operators Lx, Ly, Lz satisfy the equations

(LxLy − LyLx) = iLz,

(LyLz − LzLy) = iLx, (5.1)

(LzLx − LxLz) = iLy,

which followed directly from the rules for position and linear momentum operators (see
Example 5.4 in Book 11). For a many-electron system the components of total angular
momentum will be

Lx =
∑

i

Lx(i), Ly =
∑

i

Ly(i), Lz =
∑

i

Lz(i),

where Lx(i) for example is an angular momentum operator for Particle i, while the un-
numbered operators Lx etc refer to components of total angular momentum. We want to
show that these operators satisfy exactly the same equations (4.1).
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Example 5.1 Commutation rules for total angular momentum

From the definitions it follows that

LxLy − LyLx =

(

∑

i

Lx(i)

)





∑

j

Ly(j)



−





∑

j

Ly(j)





(

∑

i

Lx(i)

)

=
∑

i6=j

[Lx(i)Ly(j)− Ly(j)Lx(i)] +
∑

j

iLz(j)

= iLz.

Note that the double sum with i 6= j is zero because the operators commute when they refer to different
particles, but satisfy the equations (5.1) when i = j – giving the single sum which is iLz. (And don’t
confuse i, the imaginary unit, with i as a summation index!)

The other equations in (5.1) arise simply on changing the names of the indices.

Everything we know about the commutation properties of 1-electron operators is now
seen to be true for the N -electron operators obtained by summing over all particles:
in particular H, L2, Lz all commute with each other, for any value of N , when H is a
central-field Hamiltonian. This means that we can find stationary states in which
the electronic energy, the square of the angular momentum and one of its components
(taken by convention as defining the z-axis) can all have simultaneously definite values,
which don’t change in time. This was the conclusion reached in Chapter 5 of Book 11,
for a one-electron system. It was summarized in a ‘semi-classical’ picture (Figure 12),
indicating how the description of orbital motion had to be changed in going from classical
to quantum mechanics.

Other important operators are the ‘step-up’ and ‘step-down’ operators, whose properties
were derived in Examples 1, 2 and 3 of Chapter 6, Book 11. They are defined as L+ =
Lx + iLy and L− = Lx − iLy and work on any angular momentum eigenstate ΨL,M , with
quantum numbers L,M , to change it into one with M ‘stepped up’, or ‘stepped down’,
by one unit. Their properties are thus

L+ΨL,M =
√

(L−M)(L+M + 1)ΨL,M+1,

(5.2)

L−ΨL,M =
√

(L+M)(L−M + 1)ΨL,M−1,

where the numerical multipliers ensure that the ‘shifted’ states, ΨL,M±1 will also be nor-
malized to unity, 〈ΨL,M±1|ΨL,M±1〉 = 1. These operators change only the eigenstates of
Lz, leaving a state vector which is still an eigenstate of H and L2 with the same energy
and total angular momentum. And, from what has been said already, they may be used
without change for systems containing any number of electrons. So we can now start
thinking about ‘real’ atoms of any kind!

The electronic structures of the first four chemical elements are pictured, in IPM ap-
proximation, as the result of filling the two lowest-energy atomic orbitals, called ‘1s’
and ‘2s’. (You should read again the parts of Chapter 6, Book 11,
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cuments/Books/Book12:The electron configurations of the first ten elements, in in-
creasing order of atomic number, are

Hydrogen[1s1] Helium[1s2] Lithium[1s22s1] Beryllium[1s22s2]

in which the first two s-type AOs are filling (each with up to two electrons
of opposite spin component, ±1

2
), followed by six more, in which the p-type

AOs (px, py, pz) are filling with up to two electrons in each.

Boron[1s22s22p1] Carbon[1s22s22p2] Nitrogen[1s22s22p3]

Oxygen[1s22s22p4] Fluorine[1s22s22p5] Neon[1s22s22p6]

Here the names of the AOs are the ones shown in Figure 15 of Book 11, the leading integer
being the principal quantum number and the letter being the orbital type (s, p, d, f, ...).
Remember the letters just stand for the types of series (‘sharp’, ‘principal’, ‘diffuse’, ‘fine’)
found in the atomic spectra of the elements, arising from particular electronic transitions:
in fact they correspond to values 0, 1, 2, 3,.. of the quantum number L. (The energy-level
diagram below (Figure 5.1) will remind you of all that.)

1s

2s

3s

4s

2p

3p

4p
3d
4d

E = 0

E ≈ −1
2Z

2eH

Figure 5.1 Orbital energies in an H-like atom (schematic)
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Note especially that the energy levels differ slightly from those for a strictly Coulombic
central field: the levels of given principal quantum number n normally lie in the energy
order En(s)< En(p)< En(d)<... because in a real atom the orbitals with angle-dependent
wave functions are on the average further from the nucleus and the electrons they hold are
therefore not as tightly bound to it. As the number of electrons (Z) increases this effect
becomes bigger, owing to the ‘screening’ produced by the electrons in the more tightly
bound ‘inner’ orbitals. Thus, the upward trend in the series of levels such as 3s, 3p, 3d
becomes more marked in the series 4s, 4p, 4d, 4f.

The first few atoms, in order of increasing atomic number Z, have been listed above along
with the ways in which their electrons can be assigned to the available atomic orbitals –
in ascending order of energy. The elements whose atoms have principal quantum numbers
going from n = 3 up to n = 10 are said to form a Period, in which the corresponding
quantum shells ‘fill’ with up to two electrons in every orbital. This is the first ‘short

period’. Chemists generally extend this list, to include all the 92 naturally occuring atoms
and a few more (produced artificially), by arranging them in a Periodic Table which
shows how similar chemical properties may be related to similar electronic structures.
More about that later.

Now that we have a picture of the probable electron configurations of the first few
atoms, we have to start thinking about the wave functions of the corresponding electronic
states of a configuration. For the atoms up to Beryllium, with its filled 1s and 2s
orbitals, the ground states were non-degenerate with only one IPM wavefunction. But
in Boron, with one electron in the next (2p) energy level, there may be several states
as there are three degenerate 2p-type wavefunctions – usually taken as 2px, 2py, 2pz, or
as 2p+1, 2p0, 2p−1, where the second choice is made when the unit angular momentum
is quantized so that 〈Lz〉 = +1, 0, −1, respectively. The next element, Carbon, is even
more interesting as there are now two electrons to put in the three degenerate p-orbitals.
We’ll study it in some detail, partly because of its importance in chemistry and partly
because it gives you the key to setting up the many-electron state functions for atoms in
general. (Before starting, you should read again Section 2.2 of Book 11, where we met
a similar problem in dealing with spin angular momentum and how the spins of two or
more particles could be coupled to give a whole range of total spins.)

First we note that the IPM states of the Carbon (2p)2 configuration can all be built
up from spin-orbital products with six factors of the type ψ(li,mi, si|xi) (i = 1, 2, ...6).
Here the 1-electron orbital angular momentum quantum numbers are denoted by lower-
case letters l,m, leaving capitals (L,M) for total angular momentum; and si is used for
the 1-electron ‘up’- or ‘down’-spin eigenvalue, always ±1

2
. For example ψ(1,−1,+1

2
|x5)

means that Electron 5, with space-spin coordinates x5, occupies a 2p−1 orbital with spin
factor α.

Next, it is clear that we don’t have to worry about antisymmetrizing in looking for the
angular momentum eigenfunctions: if a single product is an eigenfunction so will be the
antisymmetrized product (every term simply containing re-named electron labels). So
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we can drop the electronic variables xi, taking the factors to be in the standard order
i = 1, 2, ..., 6, and with this understanding, the typical spin-orbital product for the Carbon
(2p)2 configuration can be indicated as

(l1,m1, s1)(l2,m2, s2)....(l5,m5, s5)(l6,m6, s6).

The first four factors refer to a closed shell in which the first two orbitals, 1s and 2s,
both correspond to zero angular momentum (l1 = l2 = 0) and are each ‘filled’ with
two electrons of opposite spin. With the notation you’re used to, they could be written
as (1sα)(1sβ)(2sα)(2sβ) and define the closed-shell ‘core’. Wave functions for the
quantized electronic states of this configuration are constructed in the following examples.

Example 5.2 The Carbon (2p)2 configuration

The leading spin-orbital product, to which the six electrons are assigned in standard order, can be denoted
by Product = (1sα)(1sβ)(2sα)(2sβ) (l5,m5, s5)(l6,m6, s6). ( We start from the ‘top’ state, in which
the angular momentum quantum numbers have their maximum values l5 = l6 = 1, m5 = m6 = 1 for
the 2p-orbital with highest z-component, and s5 = s6 = 1

2 for the ‘up-spin’ α states. You can check
that this product has a total angular momentum quantum number M = 2 for the orbital operator Lz =
Lz(1)+Lz(2)+ ...+Lz(6) by noting that the first four 1-electron operators all multiply their corresponding
orbital factors by zero, the eigenvalue for an ‘s-type’ function; while the last two operators each give the
same product, multiplied by 1. Thus, the operator sum has the effect Lz(Product) = 2 × (Product). In
the same way, the total spin angular momentum operator Sz = Sz(1) + Sz(2) + ... + Sz(6), will act on
”Product” to multiply it by 1

2 + 1
2 = 1, the only non-zero contribution to the z-component eigenvalue

coming from the last two spin-orbitals, which are each multiplied by 1
2 .

In short, in dealing with angular momentum, we can completely ignore the spin-orbitals of a closed-shell

core and work only on the spin-orbital product of the ‘open shell’ that follows it. We can also re-name
the two electrons they hold, calling them 1 and 2 instead of 5 and 6, and similarly for the operators that
work on them – it can’t make any difference! And now we can get down to the business of constructing
all the eigenstates.

Let’s denote the general state, with quantum numbers L,M and S,MS, by ΨL,M ;S,MS
or

the ‘ket’ |L,M ;S,MS〉. So the ‘top’ state will be |L,L;S, S〉; and we know from above
that in terms of spin-orbitals this is (l1, l1;

1
2
, 1
2
)(l2, l2;

1
2
, 1
2
) = (2p+1α)(2p+1α), showing

only the open-shell AOs. Here we’ve put M = L for the ‘top’ orbital angular momentum
and ms = s = 1

2
for the up-spin state.

First concentrate on the orbital quantum numbers, letting those for the spin ‘sleep’ (we
needn’t even show them). All the theory we need has been done in Chapter 6 of Book
11, where we found that

L−ΨL,M =
√

(L+M)(L−M + 1)ΨL,M−1, (5.3)

So if we apply the step-down operator L− = L−(1) + L−(2) to the ‘top’ state we shall
find (with M = L = 2) L−Ψ2,2 =

√

(2 + 2)(2− 2 + 1)Ψ2,2−1 = 2Ψ2,1. And to express this
result in terms of orbital products we simply have to apply the 1-electron operators L−(1)
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and L−(2) to the individual factors in the orbital product (2p)+1)(2p+1). We’ll do that
next.

Example 5.3 The orbital eigenstates

The many-electron eigenstates of the total spin operators, L2 and Lz, can all be derived from the ‘top’
state ΨL,M with quantum numbers L = 2 and M = 2. From now on, we’ll use p+1, p0, p−1 to denote the
three 2p-functions, with l = 1, and m = +1, 0,−1, so as not to confuse numbers and names!

The 1-electron step-down operator L−(i) (any i) acts as follows:

L−(i)p+1(i) =
√
2p0(i), L

−(i)p0(i) =
√
2p−1(i), L

−(i)p−1(i) = 0× p−1(i),

– according to (5.2) with l,m in place of L,M.

Thus, to get Ψ2,1 from Ψ2,2 we use (5.2) and find L−Ψ2,2 =
√
4× 1Ψ2,1; so Ψ2,1 = 1

2L
−Ψ2,2. To put this

result in terms of orbital products, we note that L− = L−(1) + L−(2) for the two electrons of the open
shell and obtain

Ψ2,1 = 1
2L

−Ψ2,2 = 1
2 [
√
2p0(1)p+1(2) + p+1(1)

√
2p0(2)].

Here the first term in the square brackets results when the operator L−(1) works on the ‘top’ state
Ψ2,2 = p+1(1)p+1(2) and the second term results from the operator L−(2) for Electron 2. (The electron
labels will not always be shown when they refer to the wave function arguments as they are always taken
to be in the order 1, 2.)

Continuing in this way, we find all five states with L = 2. They are shown below, listed according to
their quantum numbers (L,M).

• (2, 2) Ψ2,2 = p+1p+1

• (2, 1) Ψ2,1 = L−Ψ2,2 = (p0p+1 + p+1p0)/
√
2

• (2, 0) Ψ2,0 = L−Ψ2,1 = [p−1p+1 + 2p0p0 + p+1p−1]/
√
3

• (2,−1) Ψ2,−1 = L−Ψ2,0 = (p−1p+1 + p+1p−1/
√
2

• (2,−2) Ψ2,−2 = p−1p−1

The five angular momentum eigenstates obtained in Example 5.3, all with the same total
angular momentum quantum number L = 2, have M values going down from +2 to −2
in unit steps. Remember, however, that they arise from two electrons, each in a p-state
with l = 1 and possible m-values +1, 0 − 1. This is an example of angular momentum

coupling, which we first met in Chapter 6 of Book 11 in dealing with electron spins.
There is a convenient ‘vector model’ for picturing such coupling in a ‘classical’ way. The
unit angular momentum of an electron in a p-type orbital is represented by an arrow of
unit length l = 1 and its components m = 1, 0 − 1 correspond to different orientations
of the arrow: ‘parallel coupling’ of two such angular momenta is shown by putting their
arrows in line to give a resultant angular momentum of 2 units. This angular momentum
vector, with quantum number L = 2, may also be pictured as an arrow but its allowed
(i.e. observable) values may now go from M = L, the ‘top’ state, down to M = −L.
Again, this picture suggests that the angular momentum vector can only be found with
2L + 1 allowed orientations in space; but remember that such ideas are not to be taken
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seriously – they only remind us of how we started the journey from classical physics into
quantum mechanics, dealt with in detail in Book 11.

What we have found is summarized in the Vector diagrams of Figure 5.2.

m

+1•

0•

−1•

l =
1

M

+2•

+1•

0•

−1•

−2•

L =
2

(a) l = 1 (b) L = 2

Figure 5.2
Vector diagrams for angular momentum

Figure 5.2(a) indicates with an arrow of unit length the angular momentum vector for one
electron in a p-orbital (quantum number l = 1). The allowed values of the z-component
of the vector are m = 0,±1 and the eigenstates, are indicated as bold dots at m = +1
(arrow up), m = −1 (arrow down), and m = 0 (arrow perpendicular to vertical axis, zero
z-component).

Figure 5.2(b) indicates with an arrow of length 2 units the resultant angular momentum
of the two ‘p-electrons’ with their unit vectors in line (‘parallel coupled’). The broken line
shows the projection of the L = 2 vector on the vertical axis, the bold dot corresponding
to the eigenstate with L = 2,M = +1.

But are there other states, obtained by coupling the two unit vectors in different ways?
Example 2.2 in Book 11, where we were dealing with spin angular momentum, suggests
that there may be – and suggests also how we might find them. The eigenstate indicated
by the bold dot at M = +1 in Figure 4.2(b) was found to be Ψ2,1 = (p0p+1 + p+1p0)/

√
2

and both terms are eigenstates of the operator Lz = Lz(1) + Lz(2). So any other linear
combination will also be an eigenstate with M = +1. But we are looking for the simul-
taneous eigenstates of the commuting operators L2 and Lz; and we know that two such
states must be orthogonal when they have different eigenvalues. It follows that the state
Ψ = (p0p+1 − p+1p0)/

√
2, which is clearly orthgonal to Ψ2,1, will be the eigenstate we are

looking for with eigenvalues (L = 1,M = 1) i.e. the ‘top state’ of another series. It is
also normalized (check it, remembering that the ‘shift’ operators were chosen to conserve
normalization of the eigenstates they work on) and so we can give Ψ the subscripts 1, 1.
From Ψ1,1 = (p0p+1−p+1p0)/

√
2, we can start all over again, using the step-down operator

to get first Ψ1,0 and then Ψ1,−1.

Finally, we can look for an eigenstate with M = 0 orthogonal to Ψ1,0. This must be a
simultaneous eigenstate with a different value of the L quantum number: it can only be
the missing Ψ0,0.
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Now we have found all the simultaneous eigenstates of the orbital angular momentum
operators we can display them all in the diagram below:

|2,+2〉•

|2,+1〉•

|2, 0〉•

|2,−1〉•

|2,−2〉•

|1,+1〉•

|1, 0〉•

|1,−1〉•

•|0, 0〉

Figure 5.3 Angular momentum eigenstates

|L,M〉 for a p2 configuration

The eigenstates with angular momentum quantum numbers L,M correspond to the bold
dots, arranged as ‘ladders’ for the three cases L = 2, L = 1, L = 0. A state of givenM
can be changed to one with M →M ± 1 by applying a ‘step-up’ or ‘step-down’ operator.
A state of given L can be sent into one with L → L − 1 (a horizontal shift) by making
it orthogonal to the one of given L, the M -value being unchanged. Note how convenient
it is to give the eigenstates in Dirac notation, with their quantum numbers inside a ‘ket’
vector | 〉, instead of using subscripts on a Ψ – even more so when we include other
labels, for energy and spin, so far left ‘sleeping’. Remember also that the vector diagrams
are not in any sense ‘realistic’: for example the square of a total angular momentum, with
operator L2, has an eigenvalue L(L + 1), L being simply the maximum value M = L of
a measured component along an arbitrary z-axis. Nevertheless, we shall soon find how
useful they are in classifying and picturing the origin of atomic spectra.

First of all, however, we must learn how to calculate the energies of the stationary states
of many-electron atoms, using the rules developed in Chapter 3.

5.2 Calculation of the total electronic energy

In Chapter 3 we used Slater’s rules (3.7) to derive an IPM approximation to the en-
ergy expectation value for a wave function expressed as an antisymmetrized spin-orbital
product

Ψ = (1/N !)1/2
∑

P

ǫPP[ψ1ψ2 ... ψN ] (5.4)

of N singly-occupied spin-orbitals (supposed orthonormal). This provided a basis for
Hartree-Fock theory, in which the spin-orbitals are optimized to give a good approximation
to the energy of a closed shell ground state.
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For the Carbon atom, the basic spin-orbital product for this state would seem to have the
explicit form

ψ1ψ2 ... ψ6 = (1sα)(1sβ)(2sα)(2sβ)(2p+1α)(2p+1β),

but now we have to recognise the degeneracy and the need to couple the angular momenta
of the electrons in the p-orbitals. The last section has shown how to do this: we start from
the ‘top state’, with maximum z-component (Lz = 2, Sz = 1 in atomic units) and set up a
whole range of states by applying the shift operators L−, S− to obtain other simultaneous
eigenfunctions with lower quantum numbers (see Fig. 5.3).

The ‘top state’, before antisymmetrizing as in (5.4) will now have the associated product

ψ1ψ2 ... ψ6 = (1sα)(1sβ)(2sα)(2sβ)(2p+1α)(2p+1α) (5.5)

and the states with lower values of M have been found in Example 5.3. The next one
‘down’ will be derived by antisymmetrizing the product

(1sα)(1sβ)(2sα)(2sβ)[(p0α)(p+1α) + (p+1α)(p0α)]/
√
2

and this will give a wavefunction Ψ = (1/
√
2)(Ψ1 +Ψ2), where

Ψ1 =
√
N !A[(1sα)(1sβ)(2sα)(2sβ)(p0α)(p+1α)]

(5.6)

Ψ2 =
√
N !A[(1sα)(1sβ)(2sα)(2sβ)(p+1α)(p0α)].

Here, according to (3.4), each of the two terms is a normalized antisymmetrized product of
six spin-orbitals – but they differ in the choice of the last two. In getting Slater’s rules for
finding the 1- and 2-electron contributions to the expectation value of the Hamiltonian
we considered only the case 〈H〉 = 〈Ψ|H|Ψ〉, where the functions in the ‘bra’ and the
‘ket’ were derived from exactly the same spin-orbital product. So we could use them to
get the diagonal matrix elements H11 and H22 but not an ‘off-diagonal’ element such as
H12 = 〈Ψ1|H|Ψ2〉.
Let’s now look at the general spin-orbital product ψ1ψ2 ... ψR ... ψN , using R, S, T, U, ...
to label particular factors, and try to get the matrix element 〈Ψ′|H|Ψ〉, in which the
antisymmetrized product Ψ′ differs from Ψ by having a spin-orbital ψ′

R in place of ψR

This will be given by an expression similar to (3.7) but the 1-electron part
∑

R〈ψR|h|ψR〉
will be replaced by the single term 〈ψ′

R|h|ψR〉, while the 2-electron part will be replaced
by the single sum

∑

S( 6=R)[〈ψ′
RψS|g|ψRψS〉 − 〈ψ′

RψS|g|ψSψR〉].
When the spin-orbital products contain two non-matching pairs, ψ′

R 6= ψR and ψ′
S 6= ψS,

the 1-electron part will always contain a zero overlap integral 〈ψ′
T |ψT 〉 when T = R or

T = S – so no 1-electron term can arise. On the other hand, the 2-electron part will be
replaced by the single term [〈ψ′

Rψ
′
S|g|ψRψS〉−〈ψ′

Rψ
′
S|g|ψSψR〉]. (To prove all these results

you should go back to Examples 3.2 and 3.3, noting that except in the cases indicated the
products of overlap factors will contain zeros.)

We can now collect all the matrix element rules obtained so far, using the antisymmetrizer√
N !A as defined in (3.4):
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Given Ψ =
√
N !A[ψ1ψ2 ... ψN ],

the diagonal matrix element 〈Ψ|H|Ψ〉 is given by

〈Ψ|H|Ψ〉 =∑R〈ψR|h|ψR〉+ 1
2

∑′

R,S[〈ψRψS|g|ψRψS〉 − 〈ψRψS|g|ψSψR〉],

but with a single replacement, giving Ψ′ =
√
N !A[ψ1ψ2 ... ψ

′
R .. ψN ],

the off-diagonal matrix element 〈Ψ′|H|Ψ〉 is given by

〈Ψ′|H|Ψ〉 = 〈ψ′
R|h|ψR〉+

∑

S( 6=R)[〈ψ′
RψS|g|ψRψS〉 − 〈ψ′

RψS|g|ψSψR〉]

and with two replacements, giving Ψ′ =
√
N !A[ψ1ψ2 ... ψ

′
R .. ψ′

S .. ψN ],
the off-diagonal matrix element 〈Ψ′|H|Ψ〉 is given by

〈Ψ′|H|Ψ〉 = [〈ψ′
Rψ

′
S|g|ψRψS〉 − 〈ψ′

Rψ
′
S|g|ψSψR〉].

(5.7)

Now we know how to get both diagonal and off-diagonal matrix elements of the Hamilto-
nian H, between antisymmetrized spin-orbital products, we can calculate the total elec-
tronic energies of all the many-electron states belonging to a given configuration. As an
example, let’s find the total electronic energy of the Carbon atom ground state. Exper-
imentally, this is known to be triply degenerate, the three states corresponding to the
angular momentum eigenstates |L,M〉 with L = 1, M = 0,±1 (see Fig. 5.3).

The ‘top state’ of the three is an eigenstate of orbital angular momentum, ΨL,M , with
quantum numbers L = M = 1. It was derived, just after Fig.4.2, by antisymmetrizing
the spin-orbital product

(closed shell)× (1/
√
2)(p0p+1 − p+1p0)× (spin factor).

Here the closed-shell spin-orbitals are not shown, while p0, p+1 are the orbital eigenstates
with l = 1,m = 0 and l = 1,m = 1, respectively. (Just as the letters s, p, d, f are used to
denote 1-electron eigenstates with l=0, 1, 2, 3, the corresponding capital letters are used
to label the many-electron eigenstates with L = 0, 1, 2, 3.) So the degenerate ground state
of Carbon is a ‘P state’ and we ’ll use Ψ(P ) to denote its wave function.

Example 5.2 Total electronic energy of the Carbon ground state

There are two spin-orbital products, to which the six electrons are to be assigned. Here we’ll simplify
things by dealing only with the electrons outside the closed-shell 1s22s2 core, re-labelling them as ‘1’
and ‘2’ and taking both to be in α spin states. The corresponding wave function ΨP then arises on
antisymmetrizing the function

(1/
√
2)[p0(r1)p+1(r2)− p+1(r1)p0(r2)]× α(s1)α(s2)
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– which is a linear combination F = (F1 − F2)/
√
2 of the two spin-orbital products

F1 = p0(r1)α(s1)p+1(r2)α(s2)

F2 = p+1(r1)α(s1)p0(r2)α(s2).

The resultant 2-electron wave function is thus Ψ(P ) = (Ψ1 − Ψ2)/
√
2, where the two antisymmetrized

and normalized components are Ψ1 =
√
2AF1 and Ψ2 =

√
2AF2. The energy of the open-shell electrons

in the field of the core will then be

ĒP = 〈Ψ(P )|H|Ψ(P )〉 = (1/
√
2)2(H11 +H22 −H12 −H21),

where H11 etc. are matrix elements of the Hamiltonian between the two components of Ψ(P ) and may
be evaluated in terms of the orbital integrals, using the rules (5.7).

Here we’ll simply indicate the evaluation of H11 etc. with the spin-orbitals ψ1 = p0 α and ψ2 = p+1 α
used in Ψ1 and Ψ2 :

〈Ψ1|H|Ψ1〉 = 〈ψ1|h|ψ1〉+ 〈ψ2|h|ψ2〉+ 〈ψ1ψ2|g|ψ1ψ2〉 − 〈ψ1ψ2|g|ψ2ψ1〉
〈Ψ2|H|Ψ2〉 = 〈ψ2|h|ψ2〉+ 〈ψ1|h|ψ1〉+ 〈ψ2ψ1|g|ψ2ψ1〉 − 〈ψ2ψ1|g|ψ1ψ2〉
〈Ψ1|H|Ψ2〉 = 〈ψ1ψ2|g|ψ2ψ1〉 − 〈ψ1ψ2|g|ψ1ψ2〉

When the Hamiltonian contains no spin operators (the usual first approximation) the diagonal 1-electron
integrals each give the energy ǫ2p of a 2p-electron in the field of the 1s22s2 core, but off-diagonal elements
are zero because they are between different eigenstates. The 2-electron terms reduce to ‘Coulomb’ and
‘exchange’ integrals, similar to those used in Chapter 3, involving different 2p-orbitals. So it’s a long and
complicated story, but the rules in (5.7) provide all that’s needed (apart from a bit of patience!).

The Carbon ground state in Example 5.2 is described as 3P (triplet-P) because it has spin
quantum number S = 1 and therefore 3 components, with MS = 0, ±1. But it is also
degenerate owing to the three possible z-components of the orbital angular momentum,
with M(L) = 0, ±1, for L = 1. As we shall see shortly, this degeneracy is removed –
or ‘broken’ – when small terms are included in the Hamiltonian. First, there is a term
describing the interaction between the magnetic field arising from orbital motion of the
electron (see Book 10) and the magnetic dipole associated with electron spin. This gives
rise to a fine structure of the energy levels, which are separated but remain threefold
degenerate for different values of MS; only when an external magnetic field is applied,
to fix a definite axis in space, is this remaining degeneracy broken – an effect called
“Zeeman splitting” of the energy levels.

The energy-level structure of the lowest electronic states of the Carbon atom is indi-
cated later in Figure 5.4, which shows the positions of the first few levels as determined
experimentally by Spectroscopy.

There are other states belonging to the electron configuration 2p2, whose energies have
not so far been considered. They are singlet states, labelled in Fig. 5.4 as 1D and 1S; why
have we not yet found them? The reason is simply that we started the energy calculation
using a wave function with only ‘spin-up’ electrons outside the closed shell 1s22s2 and
got the other functions by applying only the orbital step-down operator L−: this leaves
unchanged the spin factor α(s1)α(s2) which represents a triplet state with S = 1. In fact,
the Pauli Principle tells us at once that only the 3P state is then physically acceptable: it
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has an orbital factor which is antisymmetric under exchange of electronic variables and
can therefore be combined with the symmetric spin factor to give a wave function which
is antisymmetric under electron exchange. The next example explains the results, which
are indicated in Figure 5.4.

1s22s22p2

(reference)

3P

1D

1S

(a) (b) (c)

Figure 5.4 Lowest levels of Carbon

The Figure is very roughly to scale. In (a) the electron repulsion between the 2p electrons
is left out, while (b) shows the effect of including it through the 2-electron integrals (de-
scribed as “electrostatic splitting”). The levels in column (c) indicate the ‘fine structure’
arising from the coupling of orbital and spin angular momentum (not yet studied). The
Zeeman splitting, caused by applying a magnetic field is even smaller and is not shown.
The remarkable fact is that experiment and theory are usually in fair agreement in giv-
ing us a picture of the electronic structure of free atoms. And, indeed this agreement
extends to our understanding of interacting atoms and therefore to the whole of Chem-
istry – which, as we noted in Section 2.5, wouldn’t even exist without Pauli’s Exclusion
Principle!

So let’s round off the section by looking briefly at the upper states belonging to the
electron configuration 1s22s22p2 of the Carbon atom.

Example 5.3 Importance of the Pauli Principle

For the reasons given above, it’s no use looking for the energies of the 1D and 1S states by starting from
the spin-orbital product (5.5) and using the step-down operator L−: as long as the spin factor α(s1)α(s2)
is left unchanged we can only get triplet states. However, we can reduce the value of MS by applying the
operator S−, which changes the αα-product into (βα+αβ)/

√
2 (check it!). And when we attach this factor

to the orbital eigenstate |2,+2〉 in Fig. 5.3 the result is p+2(r1)p+2(r2)× [β(s1)α(s2) + α(s1)β(s2)]/
√
2.
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This is a linear combination of the two spin-orbital products

F1 = p+1(r1)β(s1)p+1(r2)α(s2)

F2 = p+1(r1)α(s1)p+1(r2)β(s2),

namely F = (F1+F2)/
√
2; but it still cannot give a wave function that satisfies the Pauli Principle, being

totally symmetric under electron exchange. If we antisymmetrize F it just disappears!

Remember, however, that the step-down operator L− changed the quantum number M in a state |L,M〉
but not (see Fig. 5.3) the value of L. To change L we had to find a second combination of the component
states in |L,M〉, orthogonal to the first. It’s just the same for the spin eigenfunctions; and the orthogonal
‘partner’ of (F1 + F2)/

√
2 is clearly (F1 − F2)/

√
2, which has a singlet spin factor with S =MS = 0.

All we have to do, then, to get the singlet D-states is to use the original orbital eigenfunctions but
attaching the spin factor [β(s1)α(s2) − α(s1)β(s2)]/

√
2 in place of the triplet factor α(s1)α(s2). As the

five states are degenerate it’s enough to calculate the electronic energy for any one of them e.g. the
‘top’ state, with (after antisymmetrizing) the wave function Ψ(L=2;S=0). This is the linear combination

Ψ(D) = (Ψ1 −Ψ2)/
√
2 of the antisymmetrized products

Ψ1 =
√
2A[p+1(r1)β(s1)p+1(r2)α(s2)]

Ψ2 =
√
2A[p+1(r1)α(s1)p+1(r2)β(s2)].

The calculation continues along the lines of Example 5.2: the energy of the open-shell electrons in the
field of the core will now be

ĒD = 〈Ψ(D)|H|Ψ(D)〉 = (1/
√
2)2(H11 +H22 −H12 −H21),

where H11 etc. are matrix elements of the Hamiltonian between the two components of Ψ(D) and may
be evaluated in terms of the orbital integrals, using the rules (4.7), just as in the case of Ψ(P ).

A similar calculation can be made for the singlet S state. (Try to do it by yourself!)

You must have been wondering what makes a system ‘jump’ from one quantum state
to another. We met this question even in Book 10 when we were first thinking about
electromagnetic radiation and its absorption or emission by a material system; and again
in the present Book 11 when we first studied the energy levels of a 1-electron atom and the
‘spectral series’ arising from transitions between the corresponding states. The interaction
between radiation and matter is a very difficult field to study in depth; but it’s time to
make at least a start, using a very simple model.

5.3 Spectroscopy: a bridge between experiment

and theory

Notes to the reader

Before starting this section, you should remind yourself of the electromagnetic spectrum (Section 6.5

of Book 10) and of “Hydrogen – the simplest atom of all” (Chapter 6 of Book 11), where you studied the

energy levels of the H-atom and the series of spectral lines arising from transitions between different

levels. We’re now coming back to the question asked at the end of Chapter 6, namely “What makes

an electron jump?” So you already know what the answer will be: eigenstates of the Hamiltonian are
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stationary and remain so until you disturb the sytem in some way. Such a disturbance is a perturbation

and depends on the time at which it is applied.

Suppose the system we’re considering has a complete set of stationary-state eigenfunctions
of its Hamiltonian H. As we know from Book 11, these satisfy the Schrödinger equation
including the time,

HΨ = −~

i

∂Ψ

∂t
, (5.8)

even when H itself does not depend on t. The eigenfunctions may thus develop in time
through a time-dependent phase factor, taking the general form Ψn exp−(i/~)En t,
where En is the nth energy eigenvalue. (You can verify that this is a solution of (5.8),
provided En satisfies the time-independent equation HΨ = EΨ.)

Now suppose H = H0 + V(t), where V(t) describes a small time-dependent perturba-

tion applied to the ‘unperturbed’ system – whose Hamiltonian we now call H0. And let’s
expand the eigenfunctions of H in terms of those of H0, putting

Ψ(t) =
∑

n

cn(t)Ψn exp−(i/~)En t,

where the expansion coefficient cn(t) changes slowly with time (the exponential factor
usually oscillates very rapidly). On substituting this ‘trial function’ in (5.8) it follows
that

−~

i

∑

n

(

dcn
dt
− i

~
Encn

)

Ψn exp−(i/~)En t =
∑

n

HΨn exp−(i/~)En t,

and on taking the scalar product from the left with the eigenvector Ψm we get (only the
term with n = m remains on the left, owing to the factor 〈Ψm|Ψn〉)
(

i~
dcm
dt

+ Emcm

)

exp−(i/~)Em t =
∑

n

cn[〈Ψm|H0|Ψn〉+ 〈Ψm|V(t)|Ψn〉] exp−(i/~)En t.

Since the orthonormal set of solutions of the unperturbed equation H0Ψn = EnΨn must
satisfy 〈Ψm|H0|Ψn〉 = En〈Ψm|Ψn〉 = Enδmn, substitution in the last equation gives (check
it!)

i~
dcm
dt

=
∑

n

cnVmn(t) exp[(i/~)(Em − En)]t, (5.9)

where Vmn(t) is a time-dependent matrix element of the perturbation operator:

Vmn(t) = 〈Ψm|V(t)|Ψn〉.

Now (5.9) is an infinite system of simultaneous equations; and we don’t even know the
exact eigenfunctions of H0 – which, to be complete, will include functions forming a
continuum. So it all looks pretty hopeless! The only way forward is to think about very
special cases which lead to equations you can solve. That’s what we do next.
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We start by supposing that the perturbation V depends on time only through being
‘switched on’ at time t = t0 and finally ‘switched off’ at a later time t, staying constant,
and very small, between the two end points. Note that V may still be an operator (not
just a numerical constant.) If the system is initially known to be in an eigenstate Ψn

with n = i, then the initial values of all cm will be cm(0) = 0 for m 6= i, while ci(0) = 1.

From (5.9), putting all cn’s on the right-hand side equal to zero except the one with n = i,
we find a single differential equation to determine the initial rate of change of all cm(t):
it will be

i~
dcm
dt

= Vmi(t) exp (i/~)(Em − Ei)t,

which is a key equation for the first-order change in the coefficients (and means approxi-
mating all coefficients on the right in (5.9) by their initial values).

When the operator V is time-independent, the initial value ci(0) = 1 will have changed
after time t to

ci(t) = 1− i

~
Vii × t,

while the other coefficients, initially zero, will follow from (5.9) with m 6= i:

cm(t) = − i
~

∫ t

0

Vmi(t) exp[(i/~)(Em − Ei)t]dt

= − i
~
Vmi

[

exp(i/~)(Em − Ei)t

(i/~)(Em − Ei)

]t

0

=
Vmi

Em − Ei

[1− exp(i/~)(Em − Ei)t] (5.10)

Now you know (see Book 11, Chapter 3) that |cm(t)|2 will give the probability of observing
the system in state Ψm, with energy Em, at time t after starting in the initial state Ψi at
t = 0. Thus,

|cm(t)|2 =
|Vmi|2

(Em − Ei)2
[1− exp(i/~)(Em − Ei)t]× [1 + exp(i/~)(Em − Ei)t]

=
|Vmi|2

(Em − Ei)2

(

2 sin
(Em − Ei)

2~
t

)2

,

where in the second step you had to do a bit of trigonometry (Book 2, Chapter 3).

On setting the energy difference (Em − Ei) = x, this result becomes

P (i→ m) = |cm(t)|2 = 4
|Vmi|2
x2

(

sin
t

2~
x

)2

(5.11)

and, if you think of this as a function of x, it shows a very sharp peak at x = 0 (which
means Em ≈ Ei). The form of the peak is like that shown below in Figure 5.5.
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By treating x as a continuous variable we can easily get the total probability,
∑

m P (i→
m), that the system will go into any state close to a final state of ‘given’ energy Ef .
For this purpose, we suppose the states are distributed with density ρ(Em) per unit range
around one with energy Ef . In that case (5.11) will yield a total probability of transition
from initial state Ψi to a final state with energy close to Ef , namely

W (i→ f) =
∑

m

P (i→ m)→
∫

P (i→ m)ρ(Em)dEm.

This quantity can be evaluated by using a definite integral well known to Mathematicians;

∫ +∞

−∞

sin2 αx

x2
F (x)dx = παF (0) (5.12)

where F (x) is any ‘well-behaved’ function of x. This means that the “delta function”

δ(0 ; x) = (πα)−1 sin
2 αx

x2
, (5.13)

when included in the integrand of
∫

F (x)dx, simply picks out the value of the function
that corresponds to x = 0 and cancels the integration. It serves as the kernel of an integral
operator, already defined in Book 11 Section 9, and is a particular representation of the
Dirac delta function.

On using (5.12) and (5.13), with α = (t/2~), in the expression for W (i→ f), we find (do
the substitution, remembering that x = Em − Ei)

W (i→ f) =

∫

P (i→ m)ρ(Em)δ(0, x)dEm = 4V 2
miρ(Em)×

πt

2~
=

2πt

~
V 2
miρ(Ef ) (5.14)

where the delta function ensures that x = Ei−Em = 0 and consequently that transitions
may occur only when the initial and final states have the same energy, Em ≈ Ef = Ei. In
other words, since Em ≈ Ei the Energy Conservation Principle remains valid in quantum
physics, within the limits implied by the Uncertainty Principle.

For ‘short’ times (still long on an ‘atomic’ scale) this quantity is proportional to t and
allows us to define a transition rate, a probability per unit time, as

w(i→ f) = 2π
~
|Vfi|2ρ(Ef ).

(5.15)

This formula has very many applications in quantum physics and is generally known as
Fermi’s Golden Rule. In this first application, to a perturbation not depending on
time, the energy of the system is conserved.
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The form of the transition probability P (i→ f), from which (5.15) was derived, is shown
below in Figure 5.5 and is indeed ‘sharp’. The half-width of the peak is in fact h/t and
thus diminishes with time, being always consistent with what is allowed by Heisenberg’s
uncertainty principle for the energy of the states.

Figure 5.5 Probability of a transition (see text)

P (i→ f)

Efx = 0
(Ef = Ei)

As a second example, let’s think about the absortion and emission of radiation, which lie
at the heart of all forms of Spectroscopy. The quanta of energy are carried by photons,
but in Book 10 radiation was described in terms of the electromagnetic field in which the
electric and magnetic field vectors, E and B oscillate at a certain frequency, depending on
the type of radiation involved (very low frequency for radio waves, much higher for visible
light – ranging from red up to blue – and much higher still for X-rays and cosmic rays).
That was the ‘classical’ picture of light as a ‘wave motion’. But in quantum physics, a ray
of light is pictured as a stream of photons; and much of Book 11 was devoted to getting an
understanding of this “wave-particle duality”. The picture that finally came out was that
a quantum of radiant energy could best be visualized as a highly concentated ‘packet’ of
waves, sharing the properties of classical fields and quantum particles. (Read Chapter 5
of Book 11 again if you’re still mystified!)

So now we’ll try to describe the interaction between an electronic system (consisting of
‘real’ particles like electrons and nuclei) and a photon field in which each photon carries
energy ǫ = hν, where ν is the frequency of the radiation and h isPlanck’s constant. This
is the ‘semi-classical’ picture, which is completely satisfactory in most applications and
allows us to go ahead without needing more difficult books on quantum field theory.

The first step is to think about the effect of an oscillating perturbation of the form

V(t) = Veiωt + V†e−iωt (ω > 0), (5.16)

the operator V being small and time-independent, applied to a system with Hamiltonian
H0 and eigenstates Ψn exp−(i/~)Ent, with energy En.
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Transitions may occur, just as they did in the case where there was no oscillating field
and the frequency-dependent factors were absent. But now there are two terms in the
perturbation and each will have its own effect. The argument follows closely the one used
when the ω-terms were missing, but the equation for the time-dependent coefficient cm(t)
will now be a sum of two parts:

cm(t) = Vmi

[

[1− exp[(i/~)(~ω + Em − Ei)t]

(~ω + Em − Ei)

]

(5.17)

+ V †
mi

[

[1− exp[−(i/~)(~ω − Em + Ei)t]

(~ω − Em + Ei)

]

.

On putting ω = 0, the first term reduces to the result given in (5.10), for a single constant
perturbation: this was large only when Em ≈ Ei, but now it is large only when Em −
Ei + ~ω ≈ 0. The first term can therefore produce a transition from state Ψi to Ψm only
when the radiation frequency ν (= ω/2π) is such that ~ω = (h/2π)(2πν) ≈ (Ei − Em).
The transition will thus occur only when hν ≈ Ei−Em. This corresponds to emission of
a photon, leaving the system in a state with lower energy Em.

In fact, the transition energy will not be exactly Ei − Em but rather Ei − Ef , where Ef

will be an ‘average’ energy of the group of states into which the emitted electron ‘lands’.
The calculation is completed, as in the case of a constant perturbation, by assuming a
density-of-states function ρ(Ef ) for the final state. In the case of emission, the probability
of a transition into state Ψm at time t will be

P (i→ m) = |cm(t)|2 =
|Vmi|2

(hν + Em − Ei)2

(

2 sin
(~ω + Em − Ei)

2~
t

)2

, (5.18)

which you can get using the same argument that follows equation (5.10). Finally, fol-
lowing the same steps (do it!) that led to (5.14) you’ll get the transition rate. The
probability/unit time for emission of a photon of energy hν (= ~ω)

w(i→ f) = (2π/~)|Vfi|2ρ(Ef )δ(hν + Ef − Ei). (5.19)

The absorption of a photon of energy hν is brought about by the second term in (5.16)
and the calculation of the transition rate runs along exactly parallel lines. Thus we find

Emission of a quantum of energy hν :
w(i→ f) = (2π/~)|Vfi|2ρ(Ef )δ(hν + Ef − Ei)
Absorption of a quantum of energy hν :
w(i→ f) = (2π/~)|Vfi|2ρ(Ef )δ(hν − Ef + Ei)

(5.20)
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As the photon energy is a positive quantity, the final state in absorption will have higher

energy than that in the initial state; and, as you can see, this is nicely taken care of by
the delta-function. In (5.20) the Initial and Final states are labelled ‘i’ and ‘f’ and the
delta-function has the form shown in Figure 5.5. Note that the delta-function peak for
emission of a photon is exactly like that shown in the Figure, but the photon-frequency
is given by putting hν + Ef − Ei = 0: this means that hν = Ei − Ef , so the final state
has lower energy than the one the electron comes from; and that corresponds to the peak
being displaced upwards, from energy Ef ≈ Ei in Figure 5.5 to Ef ≈ Ei − hν in the
emission process. In the same way, the absorption of a photon of energy hν would be
shown by displacing the peak at energy Ef to one at Ef ≈ Ei + hν.

It may seem that this chapter, with all its difficult theory, has not taken us far beyond the
IPM picture we started from – where electrons were supposed independent and assigned
to the AOs obtained by solving a 1-electron Schrödinger equation. But in fact we’ve come
a very long way: we’re now talking about a real many-electron system (and not only

an atom!) and are already finding how far it’s possible to go from the basic principles
of quantum mechanics (Book 11) towards an understanding of the physical world. We
haven’t even needed a pocket calculator and we’re already able to explain what goes on
in Spectroscopy! Of course, we haven’t been able to fill in all the details – which will
depend on being able to calculate matrix elements like Vif (that require approximate
wave functions for initial and final states). But we’ve made a good start.

5.4 First-order response to a perturbation

In Section 5.3 we were dealing with the effect of a small change in the Hamiltonian of a
system, from H0 to H = H0 + V, where the operator V was simply ‘switched on’ at time
t = 0 and ‘switched off’ at time t. Now we’ll ask what difference the presence of a time-
independent V will make to the eigenstates Ψn of H0, which we’ll call the ‘unperturbed’
system. All the states will be stationary states and the time-dependent phase factors
exp−(i/~)Ent may be dropped, having no effect on the expectation values of any time-
independent quantities (look back at Section 5.3 of Book 11 if you need to). So we’ll be
dealing with the “Schrödinger equation without the time”, HΨ = EΨ.

We’ll also want to get some picture of what the perturbation is doing to the system; and
that will be provided by various density functions, which can show how the electron
distribution is responding. The probability density P (r) – the probability per unit volume
of finding an electron at point r – is well known to you for a 1-electron system, as the
squared modulus |φ(r)|2 of the wave function. But now we need to generalize the idea to
a many-electron system – and to include the spin variables s1, s2, ... so we still have work
to do.

As in Chapter 1, let’s suppose we have a complete set of functions Φ1,Φ2, ...Φk, ....,
in terms of which any wave function of the particle coordinates of the system can be

80



expressed in the form

Ψ(x1,x2, ...xN ) = c1Φ1(x1,x2, ...xN )+c2Φ2(x1,x2, ...xN )+ ...+ckΦk(x1,x2, ...xN )+ ...,
(5.21)

where the expansion is, in principle, infinite and the functions of the basis are most
conveniently taken to be normalized and orthogonal: 〈Φj|Φk〉 = δjk. Note that the basis
functions have now been renamed as Φs (“Phi”s) so as not to mix them up with the
eigenfunctions Ψs and remember that xk stands for both position and spin variables
(rk, sk).

In Section 1.3 an expansion of this kind was used for 1-electron functions and called
a “linear variation function”. Here, as in dealing with time development of the wave
function in the last section, the basis used may consist of the energy eigenfunctions of the
unperturbed operator H0 (including positive-energy solutions for highly excited states!)
We’re not worrying about how difficult it may be to actually set up and calculate with
such expansions –here it’s enough to use them in building theories!

We know from Section 1.3 that the eigenvalue equation HΨ = EΨ is then equivalent to
an (infinite) set of linear equations, Hc = Ec, of which the first three will be

(H11 − Ē)c1 +H12c2 +H13c3 = 0,

H21c1 + (H22 − Ē)c2 +H23c3 = 0,

H31c1 +H32c2 + (H33 − Ē)c3 = 0.

Here, on solving, Ē will give an upper bound to the lowest energy E1 and c1Ψ1 + c2Ψ2 +
c3Ψ3 will give a best approximation to the corresponding wave function Ψ1. The matrix
elements Hij = 〈Φi|H|Φj〉 must of course be calculated first and that will define how good
the approximation can be.

The Perturbation Approach

In perturbation theory the basis functions are usually taken to be eigenfunctions of
the operator H0 of the unperturbed system, Φk = Ψ0

k, where H0Ψ0
k = E0

kΨ
0. But here

we’ll keep the Φ-notation for the basis functions, bearing in mind that they may be either
the unperturbed eigenfunctions themselves or arbitrary mixtures. In either case, the
perturbation of the Hamiltonian will be denoted by H′, so the perturbed system will have
H = H0 + H′. With the first choice, the matrix elements of H will then be simply

Hkj = 〈Φk|H|Φj〉 = E0
kδkj +H ′

kj (5.22)

and if we start from the matrix form Hc = Ec it is clear that all the off-diagonal elements
of H will be small, containing only the perturbation operator. As a first approximation,
the diagonal part that remains on neglecting them altogether has elements Hkk = E0

k +
H ′

kk. In other words, Ek ≈ E0
k +H ′

kk and the corresponding matrix eigenvalue equation is
satisfied by ck = 1, all other coefficients being zero. This result may be written

δ(1)Ek = H ′
kk = 〈Φk|H′|Φk〉,
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where δ(1)Ek means “first-order change in Ek”. On writing out in full the matrix element
this becomes

δ(1)Ek =

∫

Φ ∗
k (x1,x2, ...xN)H

′Φk(x1,x2, ...xN )dx1dx2 ... dxi ...dxN . (5.23)

This is a very general result. The first-order change in the energy Ek of a state Ψk,
produced by a perturbation H′, can be approximated as the expectation value of the
perturbation in the unperturbed state Φk. (Here, for simplicity, the state is taken to be
non-degenerate.)

How to interpret this result: the electron density function

First we have to think about evaluating the matrix element of H′, the change in the
Hamiltonian, and that brings us back to the old problem of how to go from one particle
to many. We start from the N -electron Hamiltonian H =

∑

i h(i) +
1
2

∑

i,j g(i, j) and
add a perturbation H′. The simplest kind of change is just a change of the field in which
the electrons move, which changes the potential energy function V (i) for every electron
i = 1, 2, ...N . Thus H0 becomes H = H0+H′ with H′ =

∑

i δh(i) =
∑

i δV (i), since the KE
operator is not changed in any way. And the matrix element in (5.23) therefore becomes

〈Φk|H′|Φk〉 =

∫

Φ ∗
k (x1,x2, ...xN )H

′Φk(x1,x2, ...xN)dx1dx2 ... dxi ...dxN

=

∫

Φ ∗
k (x1,x2, ...xN )

∑

i

δV (i)Φk(x1,x2, ...xN)dx1dx2 ... dxi ...dxN .

Remember that a typical integration variable xi really stands for the three components
of the position vector ri of Electron i, together with its ‘spin variable’ si, so the volume
element dxi means dridsi. Remember also that

Φ ∗
k (x1,x2, ...xN)× Φk(x1,x2, ...xN )dx1dx2 ... dxi ...dxN

gives the probability of finding electrons labelled 1, 2, ...i, ...N simultaneously in the
corresponding volume elements. This is the basic interpretation of the Schrödinger wave
function (see Book 11 Chapter 3) extended to a system of many particles.

If we had only two particles, described by a wave function Ψ(x1,x2), the probability of
finding Electron ‘1’ in volume element dx1, and ‘2’ at the same time in dx2, would be
Ψ∗(x1,x2)Ψ(x1,x2)dx1dx2, – the probabilities being “per unit volume”. But the proba-
bility of finding Electron ‘1’ in dx1 and Electron ‘2’ just anywhere would be obtained by
summing (in this case integrating) over all possible positions of the second ‘box’ dx2 i.e.

dx1

∫

Ψ∗(x1,x2)Ψ(x1,x2)dx2.

Owing to the antisymmetry principle, (2.15) in Chapter 2, the same result would follow
if we wanted the probability of finding Electron ‘2’ in ‘box’ dx1, and Electron ‘1’ just
anywhere. (You can prove this by interchanging 1 and 2 in the wave function and noting that
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Ψ∗Ψ will be unchanged.) So, with two electrons, the integration only has to be done once – and
the result then multiplied by 2. The probability of finding an electron, no matter which in dx1

can thus be denoted by ρ(x1)dx1, where ρ(x1) = 2
∫

Ψ∗(x1,x2)Ψ(x1,x2)dx2 and is called the
“one-electron probability density”.

For N electrons a similar result will follow when you think of Electron ‘1’ in ‘box’ dx1 and
don’t care where all the (N − 1) other electrons are: you get the probability of finding it there
by integrating over all positions of the remaining volume elements. And as you’ll get the same
result for whichever electron you assign to ‘box’ dx1 you can define

ρ(x1) = N

∫

Ψ∗(x1 x2, ...xN )Ψ(x1,x2, ...xN )dx2 ... dxi ...dxN . (5.24)

as the probability per unit volume of finding an electron (no matter which) ‘at’ point x1.

Now we can come back to the Physics. The expectation value of H′ in state Ψ = Φk will be the
sum of N identical terms, coming from the 1-electron quantities δV (i). It will thus be

〈Φk|H′|Φk〉 =

∫

Φ ∗
k (x1,x2, ...xN )H′Φk(x1,x2, ...xN )dx1dx2 ... dxi ...dxN

= N

∫

Φ ∗
k (x1,x2, ...xN )δV (1)Φk(x1,x2, ...xN )dx1dx2 ... dxi ...dxN .

This can be nicely expressed in terms of the 1-electron density defined in (5.24) and gives for
the first-order energy change (5.23)

δ(1)Ek = 〈Φk|H′|Φk〉 =
∫

δV (1)ρ(x1)dx1, (5.25)

– all expressed in terms of the space-spin coordinates of a single electron, just as if we were
dealing with a one-electron system!

A generalization: the density matrix

Although (5.25) is a very useful result, as you’ll see presently, you may want to know what
happens if H′ =

∑

i δh(i) where δh(i) is a true operator, not just multiplication by a function
δV (i). In that case it seems that the reduction to (5.25) is not possible because the operator
stands between Ψ∗ and Ψ and will work only on the function that stands to its right. In the
step before (5.25) we were able to bring the wave function and its complex conjugate together,
to get the probability density, because

Φ ∗
k (x1,x2, ...xN )δV (1)Φk(x1,x2, ...xN ) = δV (1)Φk(x1,x2, ...xN )Φ ∗

k (x1,x2, ...xN )

– the order of the factors doesn’t matter when they are just multipliers. But you can’t do that
if δh(1) contains differential operators: ∂/∂z1, for example, will differentiate everything that
stands to its right and contains coordinates of Electron ‘1’. Here we want the operator to work
only on the Ψ factor, which contains x1, and not on Ψ∗. So we have to ‘trick’ the operator by
writing Φ ∗

k (x
′
1,x2, ...xN ), where x′

1 is a new variable, instead of Φ ∗
k (x1,x2, ...xN ), changing it

back to x1 after the operation.

That makes very little difference: the definition of the 1-electron density in (5.24) is replaced by
that of a 1-electron density ‘matrix’, containing the two variables (x1,x

′
1):

ρ(x1;x
′
1) = N

∫

Ψ(x1,x2, ...xN )Ψ∗(x′
1 x2, ...xN )dx2 ... dxi ...dxN (5.26)
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and the expectation value of H′ =
∑

i δh(i) is then given by

〈Ψ|H′|Ψ〉 =
∫

[δh(1)ρ(x1;x
′
1)]x′

1
=x1

dx1, (5.27)

where the integration is done after applying the operator and identifying the variables. So the
generalization needed is very easy to make (you’ve done it before in Section 3.5).

As a first application, however, let’s think of applying a uniform electric field to an atom and
asking how it will change the energy E of any stationary state Ψ. (We’ll drop the state label k
as it’s no longer needed.)

Example 5.5 Application of external field F to an atom

(Note that we’ll be in trouble if we use E for the electric field, as E is used everywhere for energy ; so now
we’ll change to F when talking about the electric field. You may also need to refer back to Book 10.)

The components Fx, Fy, Fz of the field vector arise as the gradients of an electric potential φ(x, y, z)
along the three axes in space,

Fx = −∂φ
∂x
, Fy = −∂φ

∂y
, Fz = −∂φ

∂z

and an obvious solution is φ(x, y, z) = −xFx−yFy−zFz. (Check it by doing the partial differentiations.)

The change in potential energy of an electron (charge −e) at field point (xi, yi, zi), due to the applied
electric field, is thus δV (i) = e(xiFx + yiFy + ziFz). We can use this in (5.25) to obtain the first-order
change in energy of the quantum state Ψ = Φk produced by the field:

δ(1)E = e

∫

(xiFx + yiFy + ziFz)ρ(x1)dx1.

Now the integration
∫

(.....)dx1 is over both space and spin variables dx1 ≡ dr1ds1, but in this example
δh contains no spin operators; and even when the wave function contains spin-orbitals, with spin factors
α(si) and β(si), the spin dependence will ‘disappear’ when the spin integrations are done. A ‘spinless’
density function can therefore be defined as P (r1) =

∫

ρ(x1)ds1 and the last equation re-written as

δ(1)E =

∫

δV (r1)P (r1)dr1 = e

∫

(xiFx + yiFy + ziFz)P (r1)dr1,

where the spinless density P (r1) depends only on the spatial coordinates of a single point in ‘ordinary’
3-space.

Example 5.5 has given a very transparent expression for the first-order energy change
that goes with a modification of the potential field in which the N electrons of a system
move. If the potential energy of a single electron at point r1 is changed by δV (r1), the
first-order energy change of the whole electron distribution will be (dropping the label ‘1’
on the integration variable)

δ(1)E =

∫

δV (r)P (r)dr (5.28)

– just as if the distribution were a ‘smeared out’ charge, with P (r)dr electrons per unit
volume at point r.
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This is an example of the Hellman-Feynman theorem which, as we’ll see in the next
chapter, is enormously important in leading to a simple picture of the origin of the forces
that hold atoms together in molecules. The result is accurate if the wave function is
exact or has been obtained by certain types of variational method, but its main value
lies in providing clear pictorial interpretations of difficult theory. It can also lead to
simple expressions for many quantities that are easily measured experimentally. Thus, in
Example 5.5,

δ(1)E = e

∫

(xFx + yFy + zFz)P (r)dr

allows us to evaluate the components of the electric moment of a system. In classical
physics, a charge qi has an electric moment vector defined as “position vector ri
from origin to charge, × charge” with components µx = xiqi, µy = yiqi, µz = ziqi and
when there are several charges the total electric moment vector will have components
µx =

∑

i xiqi, etc. The potential energy of that system of charges, in an applied field F,
is −µ · F. In quantum physics, the expression given above has exactly this form (check
it out!) provided the electric moment components are calculated as µx =

∫

x(−e)P (r)dr
etc. and again this confirms the ‘charge cloud’ interpretation, following (5.28), with P (r)
electrons/unit volume, each carrying a charge −e.
Before going on to calculate the density functions for a few many-electron atoms we
confirm that (5.24) (and with it (5.26)) are correct for any N-electron system and lead to
simple expectation values of 1-electron quantities.

Example 5.6 The 1-electron density matrix

Probability of Electron 1 in volume element dx1 is

dx1

∫

Ψ(x1 x2, ...xN )Ψ∗(x1,x2, ...xN )dx2 ... dxi ...dxN

where the Ψ∗ function has been written on the right, ready for defining the density matrix.

Since the product ΨΨ∗ is invariant against interchange of electrons, the same result would be obtained
for finding ‘Electron i’ in dx1. With N electrons, the final result for the electron density is thus correctly
given in (5.24) as the sum of N contributions. The corresponding density matrix follows on changing the
variable x1 in the Ψ∗ factor to x′

1, giving

ρ(x1;x
′
1) = N

∫

Ψ(x1 x2, ...xN )Ψ∗(x′
1,x2, ...xN )dx2 ... dxi ...dxN .

The expectation value of any 1-electron operator sum,
∑

i h(i), is thus

〈
∑

i

h(i) 〉 =
∫

x
′

1
→x1

[h(1)ρ(x1;x
′
1)]dx1,

where the prime is removed before doing the integration. We note in passing that this general result
reduces to the one given in (3.7) for an IPM wave function with occupied spin-orbitals ψ1, ψ2, ...ψi, ...ψN .
Thus, on putting

ρ(x1;x
′
1) = ψ1(x1)ψ

∗
1(x

′
1) + ... + ψN (x1)ψ

∗
N (x′

1),
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the expectation value becomes

〈
∑

i

h(i) 〉 = 〈ψ1|h|ψ1〉+ ... + 〈ψN |h|ψN 〉

– exactly as in (3.7).

Example 5.6 has verified the expression for the density function (5.24) and has given its
form in terms of the occupied spin-orbitals in an IPM wave function. Thus

ρ(x1) = ψ1(x1)ψ
∗
1(x1) + ψ2(x1)ψ

∗
2(x1) + ....+ ψN(x1)ψ

∗
N(x1) (5.29)

is the 1-electron density function, while

ρ(x1;x
′
1) = ψ1(x1)ψ

∗
1(x

′
1) + ψ2(x1)ψ

∗
2(x

′
1) + ....+ ψN(x1)ψ

∗
N(x

′
1) (5.30)

is the 1-electron densitymatrix, the two variables corresponding to row and column indices
in a matrix representation of a density operator ρ. The primed and unprimed variables
are shown here in a corresponding ‘standard’ order.

We haven’t forgotten about the spin! If you write x1 = r1 s1 and aren’t interested in
whether the spin is ‘up’ (s = +1

2
) or ‘down’ (s = −1

2
), then you can ‘sum’ over both

possibilities to obtain a spinless density function P (r1) =
∫

ρ(r1, s1ds1. This is the prob-
ability/unit volume of finding an electron, of either spin, at point r1 in ordinary 3-space.
The terms in (5.29) depend on spin-orbitals ψi(x) = φi(r)θ(s) where the spin factor θ
may be α or β; and ρ(x1) may therefore be written as a sum of the form

ρ(x1) = Pα(r1)α(s1)α
∗(s1) + Pβ(r1)β(s1)β

∗(s1), (5.31)

in which the α- and β-terms are

Pα(r1) =
∑

i (α)

φi(r1)φ
∗
i (r1), Pβ(r1) =

∑

i (β)

φi(r1)φ
∗
i (r1). (5.32)

Here the first sum comes from occupied spin-orbitals with α spin factors and the second
from those with β factors. The density matrix may clearly be written in a similar form,
but with an extra variable coming from the ‘starred’ spin-orbital and carrying the prime.

The results (5.29) – (5.32) all followed from Example 5.6 and the definition

ρ(x;x′) =
∑

i

ψi(x)ψ
∗
i (x

′),

which gave

〈Ψ|
∑

i

h(i)|Ψ〉 =
∫

[hρ(x; x′)](x′→x)dx.

These are the IPM forms of the 1-electron density functions and their main properties.
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When electron interaction is admitted we shall need corresponding results for 2-electron
densities: these are derived in the next example.

Example 5.7 The 2-electron density matrix

The derivation follows closely that in Example 5.6: Probability of Electron 1 in dx1 and Electron 2
simultaneously in dx2

= dx1dx2

∫

Ψ(x1 x2, ...xN )Ψ∗(x1,x2, ...xN )dx3 ... dxi ...dxN

Here the Ψ∗ function has been written on the right, ready for defining the density matrix, and the first two
volume elements are kept ‘fixed’. Again, Electrons i and j would be found in dx1 and dx2, respectively,
with exactly the same probability. But the pair could be chosen from the N electrons in N(N − 1)
different ways (with one already chosen there are only N − 1 others to choose from). Adding all these
identical probabilities means that the total probability of finding any two electrons in dx1 and dx2 will
be

dx1dx2

∫

Ψ(x1 x2, ...xN )Ψ∗(x1,x2, ...xN )dx3 ... dxi ...dxN .

Let’s denote this ‘pair’ probability by dx1dx2π(x1,x2) (π being the Greek letter ‘p’), so that – on dropping
the volume elements – the pair density is π(x1,x2) =

∫

Ψ(x1 x2, ...xN )Ψ∗(x1,x2, ...xN )dx3 ... dxi ...dxN .
The corresponding 2-electron density matrix follows when we put primes on the arguments x1 and x2 in
the function Ψ∗ on the right; the result is denoted by π(x1,x2;x

′
1,x

′
2) and the pair probability results on

identifying the primed and unprimed variables. Thus π(x1,x2) = π(x1,x2;x1,x2).

As in Example 5.6, the 2-electron density matrix for a system with an IPM wave function can be written
down by inspection of the results obtained in Chapter 3. Thus, from (3.7) the expectation value of the
electron interaction term

∑′
(i, j)g(i, j) is given as

〈Ψ|
∑′

(i, j)g(i, j)|Ψ〉 =
∑

(i,j)

(〈ψiψj |g(1, 2)|ψiψj〉 − 〈ψiψj |g(1, 2)|ψjψi〉)

where g(1, 2) is the 2-electron operator acting on functions of x1 and x2. (Labels are needed to indicate
two space-spin variables.) Note that the second matrix element has the spin-orbital labels exchanged in
the ket factor, giving the ‘exchange’ term.

The first matrix element can be written

〈ψiψj |g(1, 2)|ψiψj〉 =
∫

ψ∗
i (x1)ψ

∗
j (x2)g(1, 2)ψi(x1)ψj(x2)dx1dx2,

while the second, with a minus sign, is similar but with labels exchanged in the ket factor.

As in the case of the 1-electron densities, we can express this as
∫

ψ∗
i (x1)ψ

∗
j (x2)g(1, 2)ψi(x1)ψj(x2)dx1dx2 =

∫

[g(1, 2)ψi(x1)ψj(x2)ψ
∗
i (x

′
1)ψ

∗
j (x

′
2)](x′

1
→x1,x′

2
→x2)dx1dx2

and similarly for the second term.

Now define

π(x1,x2) =
∑

(i,j)

(ψi(x1)ψj(x2)ψ
∗
i (x

′
1)ψ

∗
j (x

′
2)− ψj(x1)ψi(x2)ψ

∗
i (x

′
1)ψ

∗
j (x

′
2))

as the 2-electron density matrix. With this definition the many-electron expectation value becomes

〈Ψ|
∑′

(i,j)
g(i, j)|Ψ〉 =

∫

[g(1, 2)π(x1,x2;x
′
1,x

′
2)](x′

1
→x1,x′

2
→x2)dx1dx2.
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and when the operator g(i, j) does not touch the spin variables the integrations over spin can be done
first:

〈Ψ|
∑′

(i,j)
g(i, j)|Ψ〉 =

∫

[g(1, 2)Π(r1, r2; r
′
1, r

′
2)](r′1→r1,r′2→r2)dr1dr2,

where the upper-case Greek letter Π is used to denote the spinless 2-electron density matrix. (Remember

that upper-case ”rho”, which is ”P” in the Greek alphabet, was used for the spinless 1-electron density

– that way you won’t get mixed up.)

The conclusions from Examples 5.6 and 5.7 for a state Ψ, represented by a single antisym-
metrized spin-orbital product and normalized to unity as in (3.4), are collected below:

Typical terms in the expectation value of the Hamiltonian (3.1) are

〈Ψ|∑i h(i)|Ψ〉 =
∑

i〈ψi|h|ψi〉 =
∫

[hρ(x;x′)](x′→x)dx,

where the 1-electron density matrix is
ρ(x;x′) =

∑

i ψi(x)ψ
∗
i (x

′)

and 〈Ψ|∑′

(i,j)g(i, j)|Ψ〉 =
∫

[g(1, 2)π(x1,x2;x
′
1,x

′
2)](x′

1
→x1,x′

2
→x2)dx1dx2,

where the 2-electron density matrix is

π(x1,x2) =
∑

(i,j)(ψi(x1)ψj(x2)ψ
∗
i (x

′
1)ψ

∗
j (x

′
2)− ψj(x1)ψi(x2)ψ

∗
i (x

′
1)ψ

∗
j (x

′
2))

(5.33)

Note that the arguments in the density functions no longer serve to label the electrons
– they simply indicate space-spin ‘points’ at which electrons may be found. Now, in the
next Example, we’ll see how things work out in practice.

Example 5.8 Density functions for some atoms

At the beginning of Chapter 5, in Section 5.1, we listed the electron configurations of the first ten atoms of
the Periodic Table. The first four involved only the two lowest-energy AOs, φ1s and φ2s, which were singly
or doubly occupied by electrons. A doubly occupied orbital appeared once with spin factor α and once
with spin factor β, describing electrons with ‘up-spin’ and ‘down-spin’, respectively. The corresponding
spin-orbitals were denoted by ψ1 = φ1sα, ψ2 = φ1sβ, ψ3 = φ2sα, ψ4 = φ2sβ and, on putting in the
space and spin variables, the spin-orbital φ1s(r)α(s) will describe an electron at point r in 3-space, with
spin s. Remember that r = x, y, z (using Cartesian coordinates), while s is a discrete variable with only
two values, s = 1

2 for an ‘up-spin’ electron or − 1
2 for ‘down-spin’. Now we can begin.

The Hydrogen atom (H) has one electron in a doubly degenerate ground state, described by spin-orbital
φ1sα or φ1sβ. The 1-electron density function for the up-spin state will therefore be

ρ(x) = ψ1(x)ψ
∗
1(x) = φ1s(r)φ

∗
1s(r)α(s)α

∗(s)
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and the 1-electron density matrix will be

ρ(x;x′) = ψ1(x)ψ
∗
1(x

′) = φ1s(r)φ
∗
1s(r

′)α(s)α∗(s′).

The ‘spinless’ counterparts of these functions follow, as we guessed in Example 5.5, by integrating over the
unwanted variable (in this case spin) after removing the prime. (Remember we always use orthonormal
spin functions, so 〈α|α〉 = 1, 〈α|β〉 = 0, etc. Thus we find the spinless density

P (r) =

∫

ρ(x)ds = φ1s(r)φ
∗
1s(r)

∫

α(s)α∗(s)ds = φ1s(r)φ
∗
1s(r)

and the spinless density matrix P (r; r′) = φ1s(r)φ
∗
1s(r

′) – just as if the wave function contained orbitals
with no spin factors.

The Helium atom (He) has a non-degenerate ground state, with two electrons in the 1s AO, but to
satisfy the Pauli principle its wave function must be an antisymmetrized spin-orbital product (3.4) and
we must therefore use (5.29) and (5.30). For the ground state, the results are

ρ(x) = φ1s(r)φ
∗
1s(r)α(s)α

∗(s) + φ1s(r)φ
∗
1s(r)β(s)β

∗(s)

and

ρ(x;x′) = φ1s(r)φ
∗
1s(r

′)α(s)α∗(s′) + φ1s(r)φ
∗
1s(r

′)β(s)β∗(s′).

The densities of up-spin and down-spin electrons are clearly, from (5.32),

Pα(r) = φ1s(r)φ
∗
1s(r), Pβ(r) = φ1s(r)φ

∗
1s(r)

and the corresponding density matrices are

Pαα(r, r
′) = φ1s(r)φ

∗
1s(r

′), Pββ(r, r
′) = φ1s(r)φ

∗
1s(r

′).

The up-spin and down-spin components of the total electron density are equal whenever the spin-orbitals
are doubly occupied: Total density = Pα(r)+Pβ(r). But the difference of the densities is also an important
quantity: it is called the spin density and is usually defined as Q(r) = 1

2 (Pα(r) − Pβ(r)). (The
1
2 is

the spin angular momentum in units of ~, so it is sensible to include it – remembering that the electron
charge density −eP (r) is measured in units of charge, with e = 1.)

The Lithium atom (Li) has a degenerate ground state, the third electron being in the 2s orbital with
up-spin or down-spin. The electron density function for the up-spin state follows from (5.29) as

ρ(x) = φ1s(r)φ
∗
1s(r)α(s)α

∗(s) + φ1s(r)φ
∗
1s(r)β(s)β

∗(s) + φ2s(r)φ
∗
2s(r)α(s)α

∗(s).

You can do the rest yourself. The new features of this atom are (i) an inner shell of two electrons, with
equal but opposite spins, in a tightly bound 1s orbital, and (ii) a valence shell holding one electron,
in a diffuse and more weakly bound 2s orbital, with no other electron of opposite spin. This atom has
a resultant spin density, when in the up-spin state, Q(r) = 1

2φ2s(r)φ
∗
2s(r) and this ‘free’ spin density,

almost entirely confined to the valence shell, is what gives the system its chemical properties.

Beryllium (Be) is another ‘closed-shell’ system, with only doubly-occupied orbitals, and like Helium
shows little chemical activity.

Boron (B), with one more electron, must start filling the higher- energy p-type AOs such as 2px, 2py, 2pz

and the next few atoms bring in important new ideas.
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5.5 An interlude: the Periodic Table

In Section 5.2 we listed the first ten chemical elements, in order of increasing atomic
number, together with their electron configurations; and in the following sections we
have developed in detail the methods for constructing IPM approximations to the wave
functions that describe their electronic structures. These methods are rather general and
in principle serve as a basis for dealing in a similar way with atoms of atomic number
Z > 10. Many years ago Mendeleev and other Chemists of the day showed (on purely
empirical grounds) how the elements of all the known atoms could be arranged in a
Table, in such a way as to expose various regularities in their chemical behaviour as
the atomic number Z increased. In particular, the elements show a periodicity in which
certain groups of atoms possess very similar properties even when their Z-values are very
different. As more and more elements were discovered it became important to classify
their properties and show how they could be related to our increasing understanding of
electronic structure. Parts of the resultant Periodic Table, in its modern form, are given
below.

First we indicate the ‘Short Periods’, along with the electron configurations of the atoms
they include (atomic numbers being attached as superscripts to their chemical symbols):

Periodic Table: the two short periods

3Li 4Be 5B 6C 7N 8O 9F 10Ne
2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6

11Na 12Mg 13Al 14Si 15P 16S 17Cl 18A
3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6

In these periods the order in which the available orbitals are filled is exactly as suggested
by the first and second columns of Figure 5.1. The lowest energy AO is occupied by one
electron in Hydrogen and two electrons in Helium – two atoms not usually counted as
forming a Period. The next two AOs, in ascending energy order, come from the quantum
shell with principal quantum number n = 2 and account for the electron configurations of
all the atoms in the first short period. Lithium and Beryllium hold only electrons in an
orbital of 2s type; but the next AO is of 2p type and is three-fold degenerate, so Carbon,
for example, will have the configuration with 2 electrons in the 2s AO and 2 electrons to
be distributed among the 2p AOs (no matter which). When spin is taken into account,
the ground states and low-lying excited states of the atoms in the short periods may be
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set up by angular momentum coupling methods, following the pattern of Example 5.2, to
give all the resultant ‘states of the configuration’.

Things become more complicated in the longer periods because, as Figure 5.1 suggests,
the AO energies of orbitals in quantum shells with n ≥ 3 may be so close together that it is
not easy to guess the order in which they will be filled. The quantum shell with principal
quantum number n = 4 starts with the atoms Potassium (K) and Calcium (Ca), with
the expected configurations 4s1 and 4s2 (outside the filled shells with n = 1, 2, 3), and
continues with the first long period (shown below).

Periodic Table: the first long period

21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn
3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2

− and continuing : 31Ga 32Ge 33As 34Se 35Br 36Kr
−4p1 −4p2 −4p3 −4p4 −4p5 −4p6

If you look at that, along with Figure 5.1, you’ll see that the 3d AOs have started to fill
before the 4s because their orbital energies are in this case slightly lower. The atom of Zinc
(Zn), with electron configuration 3d104s2, has a complete shell with all 3d orbitals full;
the next atom is Gallium (Ga), which starts taking on electrons in the 4p orbitals – on
top of the filled 4s-3d shell (shown as a −). The atoms from Gallium up to Krypton (Kr)
have configurations similar to those in the short periods, in which the three p orbitals are
filling. The chemical properties of the six resultant atoms resemble those of the atoms in
the two short periods shown above, ending with another inert gas (Kr) – like Neon (Ne)
and Argon (A). In fact, such properties depend little on the inner-shell electrons which
simply provide an ‘effective field’ for the electrons occupying the ‘outer-shell’ orbitals.
The role of the atoms in Chemistry, which we begin to study in the next chapter, depends
mainly on their outermost orbitals and that’s why inner shells are often not shown in the
Periodic Table – as listed above, where the Argon-like filled orbitals are shown only as a
dash (−).
The whole Periodic Table, including over a hundred known chemical elements, is of such
fundamental importance in Chemistry that it is nowadays displayed in schools and uni-
versities all over the world. Here you’ve seen how it relates to the electronic stuctures of
the ‘building blocks’ from which all matter is constructed. More of that in later chapters,
but first a bit more quantum mechanics.
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5.6 Effect of small terms in the Hamiltonian

Most atoms do not have closed-shell ground states and, as we saw in the last section, that
makes them much more interesting. In particular, electron configurations with degenerate
AOs that are incompletely filled can show a rich variety of electronic states. Even when
the separation of atomic energy levels is very small it is easy to observe experimentally
with present-day techniques: these usually require the application of strong magnetic
fields which allow one to ‘see’ the effects of coupling between the applied field and any
free spins – which carry magnetic dipoles (see Book 10). The spin-field (Zeeman)
interaction gives rise to a perturbation of the form

H′
Z = gβ

∑

i

B · S(i), (5.34)

where β = e~/2m is called the “Bohr magneton” (don’t confuse it with a spin eigenstate),
B is the flux density of the magnetic field, and g is a number very close to 2 (which
indicates that spin is twice as effective as orbital motion of a charge in producing a
magnetic dipole).

The ‘normal’ interaction between the field and an electron with orbital angular momentum
L(i) gives a perturbation

H′
mag = β

∑

i

B · L(i), (5.35)

which represents a classical field-dipole interaction). In both cases the summation is over
all electrons.

There are many other interaction terms, which you don’t even need to know about, but
for a free atom there are some simplifications and it’s fairly easy to see how the fine
structure of the energy levels can arise and how the states can be classified. So we’ll end
this chapter by using what we already know about spin and orbital angular momenta. The
unperturbed states of a Carbon 2p2 configuration, with energy levels represented in Figure
5.4, were constructed as linear combinations of antisymmetrized products of spin-orbitals
so as to be simultaneous eigenstates of the commuting operators H, L2, Lz, S

2, Sz (all in
IPM approximation). But the fine structure of the triplet P level, indicated in Column
(c), was not accounted for – though it was put down to “spin-orbit coupling”, which could
be admitted as a perturbation. Classically, the interaction energy between two magnetic
dipolesm1,m2 is usually taken to be proportional to their scalar productm1 ·m2, so it will
be no surprise to find that in quantum mechanics the spin-orbit perturbation operator,
arising from the spin dipole and the orbital dipole, takes the approximate form (main
term only)

H′
SL(i) =

∑

i

f(ri)S(i) · L(i), (5.36)

where the factor f(ri) depends on distance ri of Electron i from the nucleus, but is also
proportional to nuclear charge Z and therefore important for heavy atoms.
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To understand the effect of such terms on the levels shown in Fig. 5.4, we remember that
eigenstates of the operators L2, Lz and S2, Sz can be coupled to give eigenstates of total
angular momentum, represented by the operators Jx, Jy, Jz, defined as

Jx = Lx + Sx, Jy = Ly + Sy, Jz = Lz + Sz,

and that these operators have exactly the same commutation properties as all angular
momentum operators (reviewed in Section 5.1). Thus, it should be possible to find simul-
taneous eigenstates of the operators J2 = J2x + J2y + J2z, and Jz, with quantum numbers
(J,MJ), and also the shift operators J+ = Jx + iJy and J− = Jx − iJy. To check that
this really is possible, let’s start from the orbital and spin eigenstates (already found)
with quantum numbers (L,ML) and (S,MS), calling them ΦL,ML

and ΘS,MS
, respectively.

The product of the ‘top’ states, with ML = L and MS = S, is clearly an eigenstate of
Jz = Lz+Sz because each operator works only on ‘its own’ eigenfunction (orbital or spin),
giving Jz(ΦL,ML=LΘS,MS=S) = L+S(ΦL,ML=LΘS,MS=S), and this means the product func-
tion is an eigenfunction of Jz with the maximum available quantum number MJ = L+S,
which implies that J = L + S is the quantum number for the corresponding eigenstate
of J2. This really is the top state because it can’t be stepped up (J+ = L+ + S+ and the
product will be annihilated by one or other of the two operators). On the other hand,
(ΦL,LΘS,S) can be stepped down by using (J− = L− + S−). This will give a function
with L and S unchanged, which is a combination of ΦL,L−1ΘS,S and ΦL,LΘS,S−1 with J
unchanged but MJ reduced by 1.

You’ve done all this before! There will be another combination, orthogonal to the first
and still with the Jz quantum number reduced to MJ − 1, and this must be the top state
of a new series with J = L + S − 1. If you do the same operations all over again you
can reduce the MJ -value to L + S − 2 and then, by finding an orthogonal combination,
arrive at the top state of a new series with J = MJ = L + S − 2. As you can see, this
gets terribly tedious. But it can be done and the conclusion is easy enough to visualize:
you add vectors by adding their corresponding components. In adding orbital and spin
angular momentum vectors you start with the vectors ‘in line’, so J = MJ = ML +MS,
only the quantized z-components being significant; and then you step down by using the
J− operator to get all the 2J + 1 states of the series with the same J = M + S. Then
you move to the series with J =M + S − 1 and MJ going down from J to −J in integer
steps, corresponding to the allowed projections of an arrow of length J on the z-axis. By
carrying on in that way you find all the vector-coupled states with

J = L+ S, L+ S − 1, L+ S − 2, ...., |L− S|.

Since J is a positive number the process must stop when the next step would violate this
condition; that’s why the last state has a J value which is the magnitude of the difference
in lengths of the L- and S-vectors.

We can now come back to Figure 5.4 and the splitting of the energy levels in Column
(c). In principle we could estimate the effect of the perturbation terms (5.34), (5.35) and
(5.36) by getting their matrix elements relative to the unperturbed functions and then
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solving a system of secular equations, along the lines of Section 5.4; but it’s much nicer, if
you don’t want any numerical detail, to use the fact that the 2L+1 orbital eigenstates of
L2 and the 2S + 1 spin eigenstates of S2 may in general be mixed by the perturbation to
produce eigenstates of the operators J2 and Jz, which also commute with the Hamiltonian.
We’ve just found how the vector-coupled states that result can be labelled in terms of the
eigenvalues J and MJ ; and we know that states with different sets of eigenvalues will in
general have different energies.

The levels in Figure 5.4 result from the unperturbed 2-electron states with quantum
numbers L = 1,ML = 1, 0, −1 and S = 1,MS = 1, 0, −1 and for each choice of L and
S we can obtain all the allowed spin-coupled states of given J and MJ . Moreover, the
unperturbed states have been constructed from antisymmetrized spin-orbital products
and the Pauli Principle is thus taken care of from the start. Let’s take the possible states
one at a time:

L = 2, S = 1

In Example 5.3 this case was ruled out, being completely symmetric under electron ex-
change, so J = L+ S = 3 is excluded. But with S = 0 we pass to the next

L = 2 S = 0 J = 2

L = 2 means this is a D state (2 units of orbital angular momentum) and S = 0 means
this is a spin singlet, so the full state label is 1D as shown in Fig.5.4

L = 1 S = 1 J = 2

L = 1 means this is a P state (1 unit of orbital angular momentum) and S = 1 means
this is a spin tripet, so the full state label is 3P as shown in Fig. 5.4 with some fine
structure resulting from spin-orbit coupling. When J = 2 there are 2J + 1 = 5 states
of different MJ : these are the Zeeman states, which are degenerate in the absence of an
external magnetic field. But the top state (J = MJ = 2) can be stepped down to give a
series with J = 1, still 3P states, J being J = L+ S − 1 with L = 1 and S = 1. Another
step down gives J = L+ S − 2 = 0, a single state with the L- and S-vectors anti-parallel
coupled. To label these component states, of which there are 9 (=5+3+1), it is usual to
add a subscript to the ‘term symbols’ shown in Fig. 5.4, giving the value of J. The states
of the 3P multiplet are then labelled 3P2,

3P1,
3P0, in descending order of energy. The

highest-energy state of the multiplet is the one in which the magnetic dipoles point in the
same direction; the lowest is that in which their arrows are opposed – just as in Classical
Physics.

Of course, we’re still using an IPM picture, which is only a poor approximation, but
it’s amazing how much understanding we can get from it – even without any numerical
calculations. The tiny shifts of the energy levels, brought about by the small terms in the
Hamiltonian, are described as “fine structure”. When observed spectroscopically they
give important information about the electronic structure of the atoms: first of all they
tell us what atom we are looking at (no two atoms give exactly the same ‘finger prints’)
and secondly they tell us whether or not there are singly occupied orbitals, containing
un-paired spins that are free to couple with the spins of other atoms. So they are useful
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for both chemical analysis and for understanding chemical reactivity – so much so
that most of our big hospitals have expensive equipment for detecting the presence of
unpaired spins in the atoms of the cells in our bodies!
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Chapter 6

Molecules: first steps –

6.1 When did molecules first start to form?

You first started learning about how atoms could combine, to form molecules, in Chapter
1 of Book 5. Since then, in Book 6, you’ve learnt more about matter in general and the
history of our planet Earth as a member of the Solar System. You must have been struck
by the time-scale on which things happen and the traces they leave behind in the rocks,
like the fossil remains of creatures that lived here many millions of years ago. And in
Books 7-9 you learnt about the evolution of all those creatures (including ourselves!),
starting from the earliest and simplest forms of life. Before studying molecules in more
detail you may be wondering where the atoms themselves came from; and that takes us
back to the beginning of the Universe. We’ll have to tell the story in the light of what we
know now (or at least think we know, on the basis of all the evidence we have).

About 14 billion years ago, all the particles in the present Universe were very close together
in a ‘ball’ of unbelievably dense matter. This ball exploded as a result of the interactions
that drove the particles apart: we now call that event the Big Bang. The particles
spread out in empty space, at great speed, to form an Expanding Universe which is
still getting bigger and bigger. As they interacted, the particles eventually began to form
atoms – first of all those of Hydrogen, the lightest known atom, consisting of one proton
and one electron. So at one stage the Universe could be pictured as a dense cloud of
Hydrogen. But it didn’t stay that way.

What happened in the early Universe?

The atomic nuclei (protons) could also come together in pairs to form new nuclei, those
of the Helium ion He2+ (the 2+ indicating that the neutral Helium atom has lost two
electrons to give a bare nucleus with two units of positive charge). This process is called
nuclear fusion and was first mentioned in Book 4 Section 8.3 (which you should read
again before going on). When two protons fuse in this way the total mass of the system
is reduced by a factor of about 0.7×10−2 and since a proton has a mass ≈ 1.66×10−27 kg
the mass lost will be ≈ (0.7× 10−2)(1.66× 10−27 kg) = 2.324× 10−29 kg
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Now in Section 8.3 of Book 4, you learnt that mass is a form of energy and that the two
things are related by Einstein’s famous formula E = mc2, where c is the speed with which
light travels (≈ 3× 108ms−1). The mass lost when two protons fuse is thus equivalent to
an energy

E = mc2 = (2.324× 10−29 kg)× (9× 1016 m2s−2) = (20.916× 10−13) kgm2 s−2.

But the energy unit here is the Joule: 1 J = 1 kgm2 s−2. That may not seem much, but
if you remember that the ‘chemical’ unit of quantity is the ‘mole’ this must be multiplied
by the Avogadro number L, the number of systems it contains. The fusion energy of 1
mole of proton pairs thus comes out as

(0.602× 1024)× (20.916× 10−13) J = 12.59× 1011 J = 12.59× 108 kJ.

Let’s compare that with the energy released in burning 1 mole of hydrogen gas (often
used as a rocket fuel). In that case (read section 3.2 of Book 5) the reactants are 1 mole
of hydrogen molecules (H2) plus 1 mole of Oxygen molecules (O2); and the products

are 1 mole of water molecules (H2O). The energy change when the reactants go to the
products is ∆H = HP−HR, where H stands for “Heat content per mole”. On putting in
the experimental values of these quantities for Hydrogen, Oxygen and Water, the result is
−571.6 kJ, the minus sign meaning that the total heat content goes down and the energy
released by burning 1 mole of Hydrogen is 571.6 kJ.

That should be compared with the energy released in the fusion of 1 mole of proton pairs,
which we found to be 1.259×109 kJ – over a thousand million kJ. So in the early Universe
there was no shortage of energy; its gaseous contents must have existed at an unbelievably
high temperature!

What happened in the very early stages?

At the beginning of the first 10 billion years after the Big Bang, as it began to cool,
the Universe contained a ‘mish-mash’ of particles with strange names like ‘quarks’ and
‘gluons’ (given to them by the people who discovered them), forming a continuous ‘sea’
called a plasma. That phase lasted only up to about one second after the BB and was
followed by the appearance of heavier particles, mainly protons, electrons and neutrons –
collectively known as ‘baryons’ – composed of quarks ‘glued together’ by the gluons.
(It’s almost impossible to observe the quarks and gluons because if ever they get out of a baryon they
have a vanishingly short lifetime and seem to just disappear – until recently nobody knew that a proton
was composed of three quarks, held together by gluons! To find what was inside a proton or a neutron
you had to smash it open by firing other particles at it and observing what came out; and to give these
‘projectiles’ enough energy to do that they had to be accelerated to speeds close to that of light. Particle

accelerators are nowadays being built, at great expense, to do that job.)

Then, between about 3 and 20 mins after the BB, when the temperature and density of
the plasma had fallen to a low enough level, the baryons started coming together to form
other nuclei, such as He2+, by the fusion reaction described above.

Much later, between about 200 and 400 thousand years after BB, the positively charged
nuclei began to capture electrons from the plasma to form stable neutral particles, mainly
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neutrons, H-atoms and He-atoms together with a few of the other light atoms, like Carbon,
that you’ve already met. These are the atoms needed in building simple molecules, which
we’ll study in detail in the rest of this chapter. (You might like to read a preview of them
in Book 5.)

From that point on there followed a long period, still going on, of ‘structure formation’.
First the atoms came together in small groups, which attracted other groups and became
much bigger (think of a snowball rolling down a hill and picking up more snow on the
way until it becomes a giant snowball): after billions of years these gigantic structures
became the first stars; and started coming together in ‘star-clusters’ or ‘galaxies’. The
galaxy we see in the night sky and call the “Milky Way” was formed in this way between
7 and 10 billion years ago and one of the stars in this galaxy is our Sun. The whole Solar
System, the Sun and the Planets that move in orbits around it, came into existence about
8 or 9 billion years after the Big Bang; so planet Earth, the part of the Universe we feel
we know best, is about 41

2
billion years old!

But how do we know all that?

We see the stars in the night sky because they shine: they emit radiation in the form
of photons, which travel through space at the enormous speed of ≈ 3× 108ms−1 (three
hundred million metres per second!) and the light we observe using ordinary (‘optical’)
telescopes consists only of photons in a very narrow range of frequencies (as you’ll remem-
ber from Book 10, Section 6.5). Most of the light that reaches us is ‘invisible’ but it can
all be ‘seen’ by the instruments available to us nowadays – and it all carries information
about where it came from. We also have radio telescopes, for example, that pick up
the radiation from distant stars. All this radiation can be analised by spectrometers,
which give detailed information about the electronic origins of the light they take in (as
you learnt in Section 5.3 of the present Book 12).

If you really think about all this you’ll come to some amazing conclusions. First of all
the distances between stars are so large that it’s most convenient to measure them in
‘light years’; 1 light year is the distance travelled by a photon in 1 year and is about
9.5×1012km. The nearest stars to our own Sun are about 4 light years away; so the light
that we see coming from them started in processes that happened 4 years ago. But more
distant stars in the Milky Way galaxy were formed as long as 13 billion years ago and
any radiation that comes from them must therefore have been on the way for no less than
about 13 billion years.

The light that reaches us here on the Earth, from the Milky Way, is very dim and its
spectrum is ‘foggy’ showing little sign of the sharp lines found in atomic spectra observed
in the laboratory. But against this background there is always one extremely faint line
at a wavelength of 21.106 cm in the microwave region of the spectrum. Where could it
come from?

When the first atoms began to form, so long ago, they were almost exclusively Hydrogen
(one proton plus one electron). And, as you know from Section 5.3, when one of them
makes a transition from one electronic state to another, of lower energy, a photon of
frequency ν is emitted with hν = Einitial − Efinal. The lowest electronic state is a 2S
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doublet, the two 1s levels differing in spin (±1
2
), but now we must remember that the

proton is also a spin-1
2
particle and that the two spins (S = 1

2
for the electron and I = 1

2

for the proton) can couple to give a total spin angular momentum with quantum number
F , say, with possible values F = 1

2
+ 1

2
= 1 and F = 1

2
− 1

2
= 0. As a result of this nuclear

hyperfine coupling the lowest energy level of the H-atom becomes a doublet with a
minute energy separation, confirmed here and now in the laboratory, of 5.874 ×10−6 eV.
This is the energy of a quantum of radiation of wavelength 21.106 cm.

What does all this mean? When we say “here and now” we mean “here on Earth” and
“now at the time of making the experimental measurement”. But the event we were talk-
ing about – the emission of a photon from an atom in a distant part of the Universe – took
place about 13 billion light years away, which means 13 billion years before our laboratory
experiments! The predicted energy separation comes from calculations that depend on all
the laws of ‘everyday’ Physics (from Classical Mechanics (Book 4) to Electromagnetism
(Book 10) and Quantum Mechanics (Book 11) – as long as extremely high energies or
relativistic velocities are not involved. We can hardly escape the remarkable conclusion
that

The Laws of Physics are invariant against changes of position or

time of the system to which they are applied; and that must have

been true for at least 13 billion years.

Many details remain to be filled in: for example, theory shows that the 21 cm transition is
in fact ‘forbidden’ and would probably take place not more than once in 10 million years!
But the number of H atoms in the Milky Way is so enormous that the total probability
of a transition is enough to account for the observed spectral line.

In summary: the fundamental laws of physics are OK and any variations in the behaviour
of matter are normally due to changes in external conditions such as temperature and
density (which may both reach unimaginable values). Now we’re all set to start thinking
about the next step in the evolution of the Universe: what makes the atoms stick together
to form molecules?

6.2 The first diatomic systems

As you’ve learnt from Section 6.1, the early Universe once consisted of a hot plasma of
electrons, neutrons, and protons (H+) that had not yet picked up electrons to become
neutral Hydrogen atoms (H) – together with a trace of Helium nuclei (He2+) already
formed by proton fusion.

Let’s imagine what can happen when a proton meets a Hydrogen atom. There will
then be a composite system, with two protons sharing one electron, namely a hydrogen

molecule ion.

As usual we apply quantum mechanics to this system by first of all setting up the Hamil-
tonian operator. We should really suppose all three particles are moving, but we’ll use
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an approximation that allows for the fact that a proton has a mass almost 2000 times
that of an electron. The rapidly moving electron then ‘sees’ the nuclei at any instant as
if they were at rest in fixed positions. The three-body problem then becomes in effect a
one-electron problem with Hamiltonian

h = −1
2
∇2 −

(

1
ra

+ 1
rb

)

, (6.1)

where ra and rb denote distances of the electron from nuclei ‘a’ and ‘b’ and atomic units
are used throughout. The ∇2-operator works on the electronic coordinates, to be denoted
by r, and will have a form depending on the coordinate system chosen. The energy levels
of the electron are then found by solving the eigenvalue equation

hφ = ǫφ. (6.2)

The energy of the whole system in this ‘fixed nucleus’ approximation will then be

E = 1/Rab + ǫ, (6.3)

where ǫ denotes the electronic energy eigenvalue and Rab is the internuclear distance.
(Note that in atomic units the proton charges are Za = Zb = 1 and that the first term
in E is their classical Coulomb repulsion energy.) This procedure is called the Born-

Oppenheimer separation of electronic and nuclear motion. Heavy particles (like nuclei)
move in good approximation according to classical physics with E, calculated in this way,
serving as a potential energy function.

But then we meet the next big problem. For an atom we had ‘ready-made’ atomic orbitals,
with the well-known forms (1s, 2s, 2p, 3s, 3p, 3d, etc.) first discussed in Book 11, but
here we know nothing about the forms of the molecular orbitals that will be needed
in building corresponding approximations to the molecular wave functions. First of all,
then, we need to find how to describe the one-electron system that remains when the
electron is taken away. This system is experimentally well-known: it is the Hydrogen
molecule ion, H+

2 .

How can we get a reasonable first approximation to the lowest-energy molecular orbital
(MO)? When the electron is close to Nucleus a, the term 1/ra will be so big that 1/rb
may be neglected in (6.1). The MO will then ‘shrink’ into an atomic orbital (AO) for a
single hydrogen atom. We’ll denote this AO by χa(r), as we’re going to use AOs as basis
functions out of which more general wave functions, such as MOs, can be constructed.
In this process a general MO, call it φ, must change according to φ(r) → caχa(r), since
this will satisfy the same single-atom eigenvalue equation for any value of a numerical
factor c. Similarly, when r is close to the second nucleus φ(r) will approach a numerical
multiple of the AO χb(r). It follows that an electron in the field of both nuclei may be
fairly well represented by an MO of the form

φ(r) = caχa(r) + cbχb(r) (6.4)
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where the constants ca, cb are still to be chosen (e.g. by taking them as variable parameters
and using the variation method of Section 1.3) to find the MO of minimum energy. This
should give at least a rough description of the ground state.

In fact, however, no calculation is needed because the molecule ion is symmetrical across
a plane perpendicular to the molecular axis, cutting the system into two equal halves.
There is no reason to expect the electron to be found with different probability on the
two sides of the symmetry plane and this implies that the values of the coefficients ca, cb
can differ, at most, in sign: cb = ±ca. Two acceptable approximate MOs are thus, putting
cb = ca = NB in one MO and cb = −ca = NA in the other

φB(r) = NB[χa(r) + χb(r)], φA(r) = NA[χa(r)− χb(r)]. (6.5)

This case arises only for homonuclear diatomic molecules – in which the two nuclei are
identical. It is important because very many common diatomic molecules, such as H2,
N2, O2, are of this type.

The solutions just found are typical Bonding and Antibonding MOs; so called for
reasons that will soon become clear. The constantsNA, NB are normalizing factors, chosen
to give unit probability of finding the electron somewhere in space. For normalization we
require

N 2
B〈φB|φB〉 = N 2

B(2 + 2Sab) = 1,

where Sab = 〈χa|χb〉 is the overlap integral between the two AOs. In this way we find
MOs

φB(r) =
χa(r) + χb(r)√

2 + 2Sab

(6.6)

for the Bonding MO, and

φA(r) =
χa(r)− χb(r)√

2− 2Sab

(6.7)

for the Antibonding MO. The following Figure 6.1 gives a very schematic picture of the
two MOs.

Rab

n
o
d
al

p
la
n
e

Rab
+ + + −

Bonding MO Antibonding MO

Figure 6.1 Schematic representation of the two lowest-energy MOs for H+
2 .
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Here, for the ion, H = h, the 1-electron Hamiltonian, and the distinct quantities to be
calculated are (using a common notation and supposing the AOs are normalized)

αa = 〈χa|h|χa〉, βab = 〈χa|h|χb〉, αb = 〈χb|h|χb〉, Sab = 〈χa|χb〉. (6.8)

As in Section 1.3 of Chapter 1, the conditions for a stationary value then reduce to

(αa − Ē)ca = −(βab − ĒSab)cb

(βab − ĒSab)ca = −(αb − Ē)cb.

But when the system is symmetrical, as already noted, we know that cb = ±ca and in that
case just one equation is enough to give us both eigenvalues. Thus, putting αa = αb = α
and choosing cb = ca, the first equation reduces to (α + β) − Ē(1 + S) = 0; while on
choosing cb = −ca it reduces to (α− β)− Ē(1−S) = 0. The approximate energies of the
two states φB(r), φA(r), may then be written

ĒB =
α + β

1 + S
=
α(1 + S) + β − αS

1 + S
, ĒA =

α− β
1− S =

α(1− S)− β + αS

1− S ,

where the numerators have been re-arranged so as to ‘separate out’ the leading terms. In
this way we find

ĒB = α +
β − αS
1 + S

, ĒA = α− β − αS
1− S . (6.9)

Since α is the energy expectation value of an electron very close to one nucleus alone
and (like β) has a negative value, it follows that the Bonding MO φB has a lower energy
(ĒB) than the free- atom AO, while the Antibonding MO φA has a higher energy (ĒA).
Note, however, that the upward displacement of the free-atom energy level in going to
the antibonding level is greater than the downward dispacement in going to the bonding
level, owing to the overlap term. All this is shown very nicely in a correlation diagram

which shows how the energies of the AOs on two identical atoms are related to those of
the MOs which result when the atoms are combined to form a homonuclear diatomic

molecule – a ‘homonuclear diatomic’, for short.

Such a diagram, describing the formation of H2, is shown in Figure 6.2, energy levels for
the separate atoms being indicated on the left and right with the MO energies in the
centre.

Figure 6.2 Energies of orbitals
in a homonuclear diatomic.

AO levels shown left and right
MO levels shown in the centre.
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Remember that we’re still talking about a one-electron system, the hydrogen molecule
positive ion, and that this is homonuclear. But before going to the neutral molecule, with
two electrons, we may want to think also about other 2-electron systems such as HeH+,
with one of the Hydrogens (H) replaced by a Helium atom (He) and one of the three
electrons taken away – giving you the Helium Hydride positive ion. In that case we’ll
have a heteronuclear system in which the two nuclei are different and the forms of the
acceptable MOs must also be changed. Helium hydride is a very rare species, though it
was important in the very early stages of the developing Universe, when there weren’t
many atoms around – only the very lightest ones like hydrogen and helium had already
formed. But it gives us a general ‘pattern’ or prototype for the study of heteronuclear
diatomic systems, which are present in great abundance in today’s world. So it’s worth
looking at the system briefly, in the example that follows:

Example 6.1 A heteronuclear system: HeH+.

HeH+ is a system with two electrons moving in the field of two nuclei, but it differs from the hydrogen
molecule in having a Helium nucleus (with charge Z = 2) in place of one of the protons. Let’s take it
as ‘Nucleus a’ in our study of H2 and ask what MOs can be formed from the AOs χa and χb when the
different atoms come together. We first take one electron away, leaving the doubly-positive ion HeH2+

for which the MOs may be determined. The 1-electron Hamiltonian then looks much the same as in the
case of H+

2 , given in (6.1), except that the (1/ra)-term will have Z = 2 in the numerator instead of Z = 1.
But this is enough to destroy the symmetry and the acceptable MOs will no longer have the simple forms
(6.4). Instead we must go back to the stationary value conditions to determine the mixing coefficients
ca, cb.

Again, using β and S for short (in place of βab, Sab), the coefficients may be eliminated by division to
give the single equation

(αa − Ē)(αb − Ē)− (β − SĒ)2 = 0.

This can be solved by the method you first used in Book 1 (Section 5.3), to give two approximate eigen-
values ĒB (lower energy) and ĒA (upper energy). These correspond to the ‘Bonding’ and ‘Antibonding’
levels for a homonuclear system (see Figure 6.2), but solving the quadratic equation by the standard
method doesn’t give a simple result comparable with (6.4).

Instead, we use a simple approximation which shows directly how much the AO energies for the free
atoms (roughly αa and αb) are respectively ‘pushed down’, to give ĒB , and ‘pushed up’, to give ĒA. The
interaction, which does this, is caused by the term (β − SĒ)2. If we neglect this term, Ē ≈ αa – the
lower of the two AO energies (corresponding to Z = 2) – so let’s use this approximation to estimate the
effect of the other terms : the last equation is then replaced by

(αa − Ē)(αb − αa)− (β − αaS)
2 = 0,

which gives (check it!)

Ē − αa = − (β − αaS)
2

αb − αa
.

This is the approximation to the lowest root of the quadratic equation, which we called ĒB , the energy
of the Bonding MO.

A similar argument (you should try it) shows that the higher AO energy αb is pushed up as a result of
the mixing, giving an approximation to the energy of the Antibonding MO.
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The results from Example 6.1 may be summarized as follows. The Bonding and Antibond-
ing MOs used in describing the interaction of two different atoms to yield a heteronuclear
diatomic molecule have corresponding MO energies

ĒB = αa −
(β − αaS)

2

αb − αa

, ĒA = αb +
(β − αbS)

2

αb − αa

. (6.10)

These results should be compared with those in (6.5) and (6.6), which apply to a homonu-
clear molecule. In particular

• the lower of the two energy levels, in this case αa, is pushed down to give the Bonding
level ĒB. But whereas the shift for a homonuclear molecule was roughly β it is now
roughly proportional to the square of β (neglecting the small overlap term αaS),
divided by the difference of the free-atom energies αb − αa;

• the upper free-atom level is raised by a similar amount, to give the energy ĒA of
the Antibonding MO;

• these effects are both much smaller than in the case of a homonuclear system,
unless the free-atom energies are close together. They are of ‘second order’ in the
interaction term β.

The correlation diagram in Figure 6.2 is now replaced by the one shown below:

Figure 6.3 Energies of orbitals
in a heteronuclear diatomic.

AO levels shown left and right
MO levels shown in the centre.

It’s time to say why we’re talking about “bonding” and “antibonding” orbitals. You’ll
remember from Book 5 that sometimes atoms ‘stick together’ to form molecules and other
structures – gases, liquids, solids and so on. Until the early part of the last century this had
to be accepted as a general ‘property of matter’ and further details had to be investigated
experimentally. Only now, following the development of Quantum Mechanics, are we in
a position to say why atoms behave like that. This property is called valency: when an
atom usually sticks to only one other atom it is said to be mono-valent. But some atoms,
such as Carbon, often combine with one, two, three or more others; they have a variable
valency, making them poly-valent and giving them the possibility of forming a very rich
variety of molecular structures.

The chemical bond

In Book 5, where you first met molecules, they were often represented in terms of ‘ball
and stick models’: the ‘balls’ represented the atoms, while the ‘sticks’ that conected
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them, stood for the chemical bonds that held them together. This is still a widely used
way of picturing molecules of all kinds, ranging from simple diatomics to the gigantic
structures studied in the Life Sciences (see Book 9), where the molecules may contain
many thousands of atoms arranged in long chains and carrying the genetic code.

Here, however, we are concerned with the ‘sticks’ that join the different atoms: what are
they and how do they work? At bottom, they must be associated with the electrons and
nuclei that carry negative and positive electric charge and with their interaction energy.
And we have just seen how it is possible for even the single electron of a Hydrogen atom
to enter a state of lower energy by bringing up a second proton, so that the electron is
attracted to two positive nuclei instead of one. In that case we are imagining the formation
of a molecular ion H+

2 , in which the electron occupies a Bonding MO.

Let’s examine this case in more detail. In equation (6.9) we have an expression for the
energy of an electron in the Bonding MO φB, as a function of the parameters α, β, and
S (the ‘Coulomb’, ‘resonance’, and ‘overlap’ integrals). These parameters depend on the
geometry of the system (i.e. the positions of the two nuclei) and are not too difficult
to calculate in terms of the internuclear separation R. When this is done, the electronic
energy of the system can be plotted against R and is found to increase steadily, going
towards the energy of a free hydrogen atom, namely −1

2
eH, in the long-range limit R→∞.

This is shown in the curve labelled “Electronic energy” in Figure 6.4 (below); but this
has no minimum – which would indicate a stable diatomic system. So what’s wrong?

E = 0

E = −1
2eH

Internuclear distance R→

E
n
er
gy

E
→

Nuclear repulsion energy

Elect
ronic

energ
y

Resultant
energy

Figure 6.4 Energy curves for the Hydrogen molecule ion

Resultant energy E has its minimum at R ≈ 2 a0
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The fact is simply that we haven’t yet included the energy of repulsion between the two
nuclei: this is Enuc ∝ (1/R) and goes from a large positive value, when the nuclei are close
together, to zero when R→∞.We didn’t even include this term in the Hamiltonian (6.1)
as it didn’t depend on the electronic variables. Strictly it should be included (the protons
are part of the system!); but then the expectation value Ē = 〈φ|H|φ〉, for any normalized
state with wave function φ(r) would contain an additive constant Enuc, which can be put
in at the end of the calculation. When this is done, the total energy of the system becomes
the sum of two terms; the repulsion energy Enuc and ĒB, the energy of the electron in the
Bonding MO. The two terms are ‘in competition’, one falling as R increases, the other
rising; and together they give a total energy E(R) which shows a shallow minimum at a
certain value R = R0. This means there is a chemical bond between the two atoms, with
‘bond length’ R0, say. The variation of all three energy terms, as functions of internuclear
distance, is shown in Figure 6.4; and the total energy that results behaves as in the curve
labelled “Resultant energy”.

Of course, this is not for the normal hydrogen molecule but rather the molecule ion

that remains when one electron is taken away. However, the energy of H2 behaves in
a very similar way: the electronic energy expression has just the same form as for any
2-electron system, as given in (2.8). The big difference is that the 1-electron terms,
〈Ψ|h(1)|Ψ〉 and 〈Ψ|h(2)|Ψ〉, and the 2-electon term 〈Ψ|g(1, 2)|Ψ〉, are much more difficult
to evaluate. Remember that the wave function we’re going to use is a product Ψ(r1, r2) =
φB(r1)φB(r2), where both electrons are shown in the Bonding M0 φB, which decribes the
state of lowest energy 2EB when the interelectronic repulsion energy, J = 〈Ψ|g(1, 2)|Ψ〉,
is neglected. Since J is positive the total electronic energy will now have a lowest possible
expectation value

Ē = 2EB + J,

corresponding to the molecular ground state. This has the same form as that for the
2-electron atom; but the 1-electron part, 2EB, will now depend on the attraction of the
electron to both nuclei – and therefore on their separation R, which determines their
positions in space. Apart from this weak dependence on R, the total electronic energy of
the system will behave in much the same way as for the ion H+

2 , while the internuclear
repulsion energy remains unchanged as Enuc.

The relevant energy curves for both the normal molecule and its positive ion are therefore
rather similar in form. Those for the ion are shown above. The value of R at which the
energy has its minimum is usually called the equilibrium bond length and is denoted
by Re while the energy difference between that at the minimum and that for R → ∞
is called the dissociation energy, denoted by De. The term “equilibrium” is of course
not quite correct – the nuclei are in fact moving and it is an approximation to do the
calculation as if they were at rest, for a series of fixed values of R. But it is usually a decent
first approximation which can later be refined to take account of vibration and rotation
of the system around its equilibrium configuration; and anyway we’ve made more serious
approximations already in using such a simple form of the electronic wave function.
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6.3 Interpretation of the chemical bond

Figure 6.4 showed the existence of a minimum energy when the two nuclei of a diatomic
molecule were at a certain distance Re, which we called the equilibrium bond length, but
offers no explanation of how the bond originates – where does it come from? But another
way of saying that the system is in equilibrium is to say that the distribution of electrons
must produce forces, acting on the nuclei, that balance the force of repulsion between
their positive charges. And we know already that the electron density function P (r),
defined in Chapter 5 for a general many-electron system, will give us a way of calculating
the energy of interaction between the nuclei and the electron distribution.

The charges on the two nuclei produce an electric field and the potential energy function
for unit charge at point r in that field will be V (r); so the electron/nuclear interaction
energy for one electron will be −eV (r). When the electronic charge is, in effect, ‘smeared
out’ with a density P (r) electrons/unit volume, the total interaction energy will be

Ven =

∫

−eV (r)dr. (6.11)

We now want to know how the contributions to Ven can arise from different parts of the
electron distribution. We start with a very simple example: one electron in an MO, which
may be of ‘bonding’ or ‘anti-bonding’ type.

Example 6.2 Analysis of the electron density.

Let’s think of an electron in a molecular orbital built up from two atomic orbitals, χ1, χ2, as the linear
combination φ = c1χ1 + c2χ2. The electron density function will then be (using for simplicity normalized
and real MO functions)

P (r) = c 21χ1(r)
2 + 2c1c2χ1(r)χ2(r) + c 22χ2(r)

2.

There are three parts to the density, two ‘orbital densities’ and one ‘overlap density’;

d1(r) = χ1(r)
2, d2(r) = χ2(r)

2, d12(r) = χ1(bfr)χ2(r)/S12,

where S12 = 〈χ1|χ2〉 and all three terms are therefore normalized to unity. On writing c 21 = P11, c
2
2 =

P22, c1c2 = P12, the electron density takes the form

P (r) = q1d1(r) + q2d2(r) + q12d12(r).

Here q1 = P11, q2 = P22, q12 = 2S12P12 are the quantities of charge, in electron units, associated with the
‘orbital’ and ‘overlap’ densities. Provided the MO is correctly normalized, the sum of the qs must be 1
electron: q1 + q2 + q12 = 1. The individual qs indicate in a formal way the electron ‘populations’ of the
various regions in space.

The following Figure 6.5 gives a very schematic picture of the electron distribution in the
H+

2 ion, according to the LCAO approximation, for the two states in which the electron
occupies the Bonding MO (left) or the Anti-bonding MO (right).
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Figure 6.5 Electron density pictures (schematic) see text

The positive nuclei are shown as red dots while the distribution of electronic charge
(negative) is shown in lightblue. In the bonding state the nuclei are attracted towards
the accumulation of negative charge in the bond region (marked by the broken line), the
forces acting on them being indicated by the short black arrows. The ‘overlap density’
in Example 6.5 contains a quantity of negative charge q12 and this provides most of the
attractive force (the separate AO densities being centrosymmetric and giving no net force
on their nuclei). But in the anti-bonding state the overlap density appears with a negative
sign and is therefore ‘scooped out’ of the total electron density, the density removed being
indicated in white i.e. as a ‘hole’ in the total density. Note that normalization of the Anti-
bonding MO requires that the charge removed from the bond region must go into the two
centrosymmetric AO regions. Each nucleus is therefore pulled towards the enlarged outer
parts of the total density, as well as feeling the full Coulomb repulsion of the other nucleus.
In this way the origin of the various energy curves in Figure 6.4 receives a nice physical
explanation.

It is a simple matter to generalize the conclusions from Example 6.5 to a basis containing
any number of AOs χi(r) and to any kind of many-electron wave function. We define
normalized AO and overlap densities

di(r) = χi(r)
2, dij(r) = χi(r)χj(r)/Sij (6.12)

and write the electron density function in the usual form (cf.(5.29)), taking for simplicity
real functions, P (r) =

∑

ij Pijχi(r)χj(r). In terms of the densities defined in (6.12) it
follows that

P (r) =
∑

i

qidi(r) +
∑

i<j

qijdij(r), (6.13)

where the orbital and overlap charges are

qi = Pii, qij = 2SijPij (6.14)

and the restriction of the double summation to terms with i < j makes sure that each
overlap is counted only once.

This conclusion is valid for any N -electron wave function expressed in finite basis form
with any number of basis functions χi, which need not even be AOs (though we often
continue to use the term in, for example, the “LCAO approximation”). Nowadays the
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‘charges’ ‘qi’ and ‘qij ’ are usually called orbital and overlap “populations” of the regions
defined by the functions χi and their products χiχj; and this way of describing the results
of electronic structure calculations is called “electron population analysis”. It will be used
often when we study particular molecules.

6.4 The total electronic energy in terms of density

functions. The force concept in Chemistry

In Chapter 5 we obtained a general expression for the electron density function ρ(x1) for
an N -electron system of particles with spin, using xi to denote the space-spin variables
of Particle i. The probability of finding Particle ‘1’ in volume element dx1 = dr1ds1 was

dx1

∫

Ψ(x1,x2, ...xN )Ψ
∗(x1,x2, ...xN)dx2 ... dxN ,

obtained by integrating over all ‘positions’ of the other particles. And, since the same
result will be obtained for whichever electron is found in volume element dx1 at point
x1, multiplication by N will give equation (5.24). Thus, the probability/unit volume of
finding a particle, no matter which, at point x1 will be

ρ(x1) = N

∫

Ψ(x1,x2, ...xN )Ψ
∗(x1,x2, ...xN)dx2 ... dxN . (6.15)

Remember that this is the probability density with spin variable included. If we’re not
interested in spin it’s enough to sum over both spin possibilities by integrating over the
spin variable s1 to obtain a spinless density function P (r1) =

∫

ρ(x1)ds1. The result
is the probability density for finding a particle, of either spin in a volume element r1
(e.g. dx1dy1dz1) at point r1 in ordinary 3-space. If you look back at Examples 5.6 and
5.7 in the last chapter you’ll find that you’ve done all this before for atoms, thinking
mainly of IPM-type wave functions. But the results apply to any kind of wave function
(approximate or exact and for any kind of system). So now we’re ready to deal with
molecules.

The 1- and 2-electron density matrices, including dependence on spin variables, are

ρ(x1;x
′
1) and π(x1,x2;x

′
1,x

′
2).

They determine the expectation values of operator sums, such as
∑

i h(i) and
∑

i,j g(i, j),
in any state Ψ. For example

〈Ψ|∑i h(i)|Ψ〉 =
∫

x′

1
→x1

h(1)ρ(x1;x
′
1)dx.

From now on, to simplify the text, let’s remember that the primes are only needed when
an operator works on a density matrix, being removed immediately after the operation –
so we’ll stop showing them, writing the expectation values as
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〈Ψ|∑i h(i)|Ψ〉 =
∫

h(1)ρ(x1)dx1,

〈Ψ|∑i,j g(i, j)|Ψ〉 =
∫

g(1, 2)π(x1,x2)dx1dx2.

(6.16)

and remembering what the short forms mean.

When tiny spin-dependent terms are neglected these results may be reduced in terms of
the ‘spinless’ density matrices P (r1; r

′
1) and Π(r1, r2; r

′
1, r

′
2). The counterparts of (6.16)

apply when the operators do not touch the spin variables; they become instead

〈Ψ|∑i h(i)|Ψ〉 =
∫

h(1)P (r1)dr1,

〈Ψ|∑i,j g(i, j)|Ψ〉 =
∫

g(1, 2)Π(r1r2)dr1dr2

(6.17)

and involve only the position variables of typical particles

In what follows we’ll use the reduced forms in (6.17), which apply when relativistic correc-
tions are ignored. The total electronic energy of any system of N electrons, moving around
a set of fixed nuclei, can then be expressed in a very simple and transparent form. The 1-
electron operator for an electron at point r1 in ordinary 3-space is h(1) = −1

2
∇2(1)+V (r1)

(kinetic energy plus potential energy in field of the nuclei), while the 2-electron operator
for electrons at points r1 and r2 is simply the Coulomb repulsion energy, g(1, 2) = 1/r12 (in
atomic units), r12 being the interelectronic distance (the length of the vector separation
r2 − r1). On putting these terms in the energy expectation value formula E = 〈Ψ|H|Ψ〉,
we find (do it!)

E= -1
2

∫

∇2(1)P (r1)dr1 +

∫

V (1)P (r1) +
1
2

∫

g(1, 2)Π(r1, r2)dr1dr2

(6.18)

Here the three terms are, respectively, T the total kinetic energy; Ven, the potential energy
of a smeared out electronic charge in the field of the nuclei; and the average potential
energy Vee due to pairwise repulsions described by the 2-electron density Π(r1, r2).
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The Hellmann-Feynman theorem

In Section 6.3 we gave a pictorial interpretation of the chemical bond in terms of the
electron density function P (r). According to classical physics, the positively charged
nuclei in a molecule would ‘feel’ the forces due to the distribution of negative charge in
which they were embedded. But in quantum mechanics the function P (r) gives only the
probability of finding an electron at point r in 3-space; we must show that the system
behaves as if this function were a density of negative charge. We must define the force
acting on any nucleus in terms of things like the energy – which we know how to calculate.

To do that we first imagine the molecule to be in equilibrium, the total energy being
stationary against small changes of any kind – in the wave function and in the potential
energy function V (r) (e.g. due to a field applied from outside the molecule, or change of
nuclear positions). Since

E =

∫

h(1)P (r1)dr1 +
1
2

∫

g(1, 2)Π(r1, r2)dr1dr2,

the first-order changes to be considered result from δh and the density functions δP (1) and
δΠ(1, 2). The total first-order energy change will therefore be (noting that the operators
∇2(1) and g(1, 2) remain unchanged)

δE =

∫

δh(1)P (r1)dr1 +

∫

h(1)δP (r1)dr1 +
1
2

∫

g(1, 2)δΠ(r1, r2)dr1dr2 (6.19)

and the stationary value condition will follow on equating this quantity to zero.

Now suppose that the density functions have been fully optimized by varying the energy
in the absence of any perturbation term δh(1). In that case only the last two terms remain
in (6.19) and their sum must be equated to zero. Thus

The first-order energy change arising from
the perturbation h(1)→ h(1) + δh(1)

is given by δE =

∫

δh(1)P (r1)dr1,

provided the wave function Ψ is fully optimized
in the absence of the perturbation.

(6.20)

This is usually called the “Hellmann-Feynman theorem in its general form”. It was
discovered by Hellmann (1937) for the special case where the perturbation was due to a
change of nuclear position and independently, two years later, by Feynman. In thinking
about the forces that hold the nuclei together in a molecule we first have to define them: if
we move one nucleus, nucleus n say, through a distance δXn in the direction of the x-axis,
we’ll change the total energy of the molecule by an amount δE given in (6.20). And in
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this case δh(1) = δVn(r1), the corresponding change in potential energy of an electron at
point r1 in the field of the nucleus.

Now the rate of decrease of this potential energy is the limiting value of −δVn(r1)/δXn

as Xn → 0 and measures the x-component of the force acting between Nucleus n and an
electron at point r1. Thus we may write

−∂Vn(r1)
∂Xn

= Fnx(r1)

and this defines the force component on Nucleus n due to an electron at r1.

A similar argument applies to the total electronic energy E due to interaction with all
the electrons: its rate of decrease on moving Nucleus n through a distance Xn will be
−∂E/∂Xn and will give the x-component Fnx of the total force exerted on Nucleus n by
all the electrons. Thus

− ∂E

∂Xn

= Fnx

defines the x-component of total force on Nucleus n due to interaction with the whole
electron distribution.

Having defined the forces, in terms of energy derivatives, we return to (6.20). Here,
putting δh(1) = δVn(r1), dividing by δXn and going to the limit δXn → 0, we find

Fnx =

∫

Fnx(r1)P (r1)dr1. (6.21)

In words, the x-component of the total force on any nucleus (n) may be computed by
adding (integrating) the contributions arising from all elements of the charge cloud. This
is true for any component and therefore the force vector acting on any nucleus in the
molecule can be calculated in exactly the same way: once the electron density has been
computed by quantum mechanics the forces holding the nuclei together may be given
an entirely classical interpretation. When the molecule is in equilibrium it is because
the forces exerted on the nuclei by the electron distribution are exactly balanced by the
repulsions between the nuclei – as they were in Figure 6.4.

This beautiful result seems too good to be true! Apparently only the electron density
function P (r1) is needed and the 2-electron function Π(r1, r2), which is vastly more difficult
to calculate, doesn’t come into the picture. So what have we overlooked?

In deriving (6.21) we simply took for granted that the variational wave function Ψ was
fully optimized, against all the parameters it may contain. But in practice that is hardly
ever possible. Think, for example, of an LCAO approximation, in which the atomic
orbitals contain size parameters (orbital exponents) and the coordinates of the points
around which they are centred: in principle such parameters should be varied in the
optimization, allowing the orbitals to expand or contract or to ‘float away’ from the
nuclei on which they are located. In practice, however, that is seldom feasible and the
Hellmann-Feynman theorem remains an idealization – though one which is immensely
useful as a qualitative tool for understanding molecular structure even at a simple level.
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Chapter 7

Molecules: Basic Molecular Orbital

Theory

7.1 Some simple diatomic molecules

We start this chapter by going back to the simple theory used in Chapter 6, to see how
well it works in accounting for the main features of molecules formed from the elements
in the first row of the Periodic Table.

In Section 6.2 we studied the simplest possible diatomic system, the Hydrogen molecule
positive ion H+

2 , formed when a proton approaches a neutral Hydrogen atom. And even
in Chapter 5 we had a glimpse of the Periodic Table of all the elements: the first ten
atoms, with their electron configurations, are

Hydrogen[1s1] Helium[1s2] Lithium[1s22s1] Beryllium[1s22s2]

in which the first two s-type AOs are filling (each with up to two electrons
of opposite spin component, ±1

2
), followed by six more, in which the p-type

AOs (px, py, pz) are filling with up to two electrons in each.

Boron[1s22s22p1] Carbon[1s22s22p2] Nitrogen[1s22s22p3]

Oxygen[1s22s22p4] Fluorine[1s22s22p5] Neon[1s22s22p6]

Helium, with two electrons in the 1s shell, doesn’t easily react with anything; it is the
first Inert Gas atom. So let’s turn to Lithium, with one 2s electron outside its (1s)2 inner
shell, and ask if this would react with an approaching atom of Hydrogen. We could, for
example, try to calculate the total electronic energy E using the Self-Consistent Field
method (see Chapter 4) and then adding the nuclear repulsion energy, as we did for the
molecule H2 in Section 6.2. Again, as we don’t have any ‘ready-made’ molecular orbitals
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we have to build them out of a set of basis functions, χ1, χ2, ... χi ... and it seems most
reasonable to choose these as the atomic obitals of the atoms we are dealing with, writing
the MO φ as

φ = c1χ1 + c2χ2 + ... ... cmχm (7.1)

for a basis of m functions. This is the famous LCAO (linear combination of atomic
orbitals) approximation, which is the one most widely used in molecular structure cal-
culations. In principle, if the basis set is large enough, this could be a fairly accurate
approximation.

As you learnt in Chapter 4 (you should go back there for the details) the MOs should
really be determined by solving the operator equation

Fφ = ǫφ [the Hartree− Fock equation] (7.2)

but the best we can do, in LCAO approximation, is to choose the expansion coefficients
so as to minimize the calculated value of the total electronic energy E. The best approx-
imate MOs of the form (7.1), along with their corresponding orbital energies (ǫ) are then
determined by solving the secular equations

Fc = ǫc, (7.3)

where c is the column of expansion coefficients in (7.1) and F is the square matrix repre-
senting the effective Hamiltonian F – which has elements Fij = 〈χi|F|χj〉.
(Note that this simple form of the secular equations, depends on using orthogonal basis functions; but
if overlap is not small enough to be neglected it may be removed by choosing new combinations – work
which is easily done by modern computers.)

In a first example, we summarize an early SCF calculation on the LiH system.

Example 7.1 The Lithium Hydride molecule: LiH.

In the SCF calculation by Ransil (1960) the AO basis used consisted of the 1s, 2s and 2p orbitals of
the Lithium atom, together with a single 1s orbital for the Hydrogen. The basis functions were thus
χ1s, χ2s, χ2p, χH , where the first three are centred around the Li nucleus (only one p function is needed,
that with symmetry around the bond axis) and the last is a 1s-type function, centred on the proton. The
Lithium 1s AO is tightly localized around the nucleus (Z = 3) and in good approximation does not mix
with the other functions. The MOs that come from the 4-electron SCF calculation are then found to be

φ1σ ≈ χ1s; φ2σ ≈ 0.323χ2s + 0.231χ2p + 0.685χH .

The electron configuration of the molecule will then be, with four electrons, LiH[1σ22σ2].

This indicates a Lithium inner shell, similar to that in the free atom, and a bonding MO 2σ containing
2 electrons. But the bonding MO is not formed from one 2s AO on the Lithium atom, overlapping with
the Hydrogen 1s AO; instead, it contains two AOs on the Lithium atom. If we want to keep the simple
picture of the bond, as resulting from the overlap of two AOs, one on each atom, we must accept that
the ‘AO’s need not be ‘pure’ but may be mixtures of AOs on a single centre. Ransil’s calculation shows
that a much clearer description of LiH is obtained by rewriting his MO in the form

φ2σ ≈ 0.397χhyb + 0.685χH ,
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where χhyb = 0.813χ2s+0.582χ2p is called a hybrid orbital and this kind of mixing is called hybridization.

The general form of this Lithium hybrid AO is indicated below in Figure 7.1, in which the contour lines

correspond to given values of the function χhyb. The broken line marks the ‘nodal surface’ separating

negative and positive values of χhyb. The energy is lowered by hybridization, which increases the strength

of the bonding by putting more electron density (i.e. negative charge) between the positive nuclei; but

this is offset by the energy ǫ2p − ǫ2s needed to ‘promote’ an electron from a 2s state to a 2p state. So

hybridization is favoured for AOs of similar energy and resisted when their energy difference is large.

Figure 7.1 Contour map for the s-p hybrid orbital χhyb

The capacity of an atom to form chemical bonds with other atoms is known as valency
and is often measured by the number of bonds it can form. Lithium in LiH is mono-

valent, but Oxygen in H2O is di-valent and Carbon in CH4 is quadri-valent. But many
atoms show variable valency, depending on the nature of the atoms they combine with
and on the degree of hybridization involved. In Example 7.1 the Lithium atom is said to
be in a “valence state”, depending on the degree of 2s-2p mixing, and this may usefully
be decribed in terms of the electron populations introduced in Section 6.3. If the hybrid
orbital is written as the mixture χhyb = aχ2s+bχ2p, an electron in χhyb gives a probability
density Phyb = a2χ 2

2s+b
2χ 2

2p+2abχ2sχ2p. Integration over all space gives unity (1 electron),
with a2 coming from the 2s density, b2 from the 2p and nothing from the last term (the
AOs being orthogonal). We can then say that the 2s and 2p AOs have electron populations
a2 and b2, respectively, in the molecule. The electron configuration of the Lithium atom,
in the molecule, could thus be written Li[1s22s0.6612p0.339] (according to Example 7.1)
the numbers being the values of a2 and b2 for an electron in the ‘valence orbital’ χhyb.
The atom never actually passes through a ‘valence state’; but the concept is none the
less valuable. For example, the idea that a fraction of an electron has been ‘promoted’
from a 2s orbital to an empty 2p shows why hybridization, to produce strong bonds, is
most common for elements on the left side of the Periodic Table, where the 2s-2p energy
separation is small.

Now let’s try something a bit more complicated. If we replace Lithium by Carbon we
shall have four electrons outside the tightly-bound 1s shell, two of them in the next-higher
energy 2s orbital and two more in the slightly-higher energy 2p orbitals (2px,2py,2pz).
These four are not too strongly bound to prevent them taking part in bonding with other
atoms, so they are are all available as valence electrons. And if we go two places further
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along the First Row we come to Oxygen, which has six electrons outside its 1s2 inner shell
– all available, to some degree, for bonding to other atoms. The energy difference between
the 2s and 2p orbitals increases, however, with increasing nuclear charge; and as a result
the elements C and O have rather different valence properties. In the next example we’ll
try to understand what can happen when these two atoms come together and begin to
share their valence electrons.

Example 7.2 The Carbon monoxide molecule: CO.

The 1s2 inner shells, or ‘cores’, of both atoms are so strongly bound to their nuclei that the main effect
they have is to ‘screen’ the positive charges (Ze, with Z=6 for the carbon atom and Z=8 for oxygen); the
‘effective’ nuclear charges are then closer to Zeff = 4, for C, and 6 for O. We’ll therefore think about
only the valence electrons, asking first what MOs can be formed to hold them.

We already know that the AOs on two different atoms tend to combine in pairs, giving one bonding
MO along with an anti-bonding partner; and that this effect is more marked the more strongly the AOs
overlap. Think of the 2s AOs as spheres and the 2p AOs as ‘dumbells’,

+−

Here the + and − parts indicate regions in which the wave function χ is positive or negative. Unlike
an s-type AO, one of p-type is associated with a definite direction in space, indicated by the arrow. For
the CO molecule, the 2s AOs on the two centres will not overlap strongly as they come together, owing
to their size difference (the oxygen 2s being smaller – can you say why?). They might give a weakly
bonding MO, consisting mainly of the oxygen 2s AO, which we’ll call 1σ∗

s ) as it would be the first MO
with rotational symmetry around the 2-centre axis. On the other hand, the oxygen 2pz AO pointing
along the axis towards the carbon would have a fairly good overlap with the carbon 2s AO. In that case
we might expect, as usual, two MOs; one bonding (call it 2σs) and the other anti-bonding (2σ∗

s .)

However, there are three 2p AOs on each centre, the 2px and 2py, both transverse to the bond axis (along
which we’ve directed the 2pz AO). They are of π-type symmetry and, when pairs of the same type come
close together, they will have a good side-to-side or ‘lateral’ overlap:

+

−

+

−

In summary, the orbitals available for holding the 10 valence electrons would seem to be

•1σ – the first MO of σ type, mainly Oxygen 2s

•2σ – a bonding MO, formed from Carbon 2s and Oxygen 2pz

•3σ – an anti-bonding MO, the partner of 2σ

•1πx – a π-bonding MO, formed from 2px AOs on C and O

•1πy – a π-bonding MO, formed from 2py AOs on C and O

To assign the electrons to these MOs we look at the probable correlation diagram.
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The correlation diagram for the CO molecule, with neglect of hybridization on one or
both atoms, would seem to be that shown below in Figure 7.2:

2p

2s

Carbon

2π

4σ
3σ

1π

2σ

1σ

CO

2p

2s
Oxygen

Figure 7.2 Correlation diagram for CO, no hybrids

Notice that the 2p AOs take part in both σ− and π-type MOs: the 2σ and 3σ MOs will
each have a 2pz component (also symmetrical around the CO axis) while the 1π MO is
degenerate, with 1πx and 1πy MOs containing only 2px and 2py AOs, respectively. The
1πx and 1πy MOs are formed from the ‘side-by-side’ overlap of 2p AOs perpendicular to
the CO axis (shown pictorially in Example 7.2). The highest occupied MO (often called
the ”HOMO”) is 3σ and is apparently anti -bonding.

This all looks a bit strange, because we know from Example 1 that the mixing of AOs is
likely to be much more widespread, mixtures of AOs on each centre giving 1-centre hybrids
which can better describe the results of a good SCF calculation. Moreover, experiment
shows the picture to be quite wrong! In particular the main CO σ bond is very strong,
while here it would be largely ‘cancelled’ by the anti-bonding effect of the electrons in
the 3σ MO. There is also evidence for a lone pair of electrons smeared out behind the
Carbon, but here there seems to be no MO to hold them. We must ask how this picture
is changed on admitting hybridization: the conclusion is shown in Figure 7.3 below.

2p

2s

Carbon

h2

h1

4σ

3σ

2σ

1σ

CO

2p

2s
Oxygen

h2

h1

Figure 7.3 Correlation diagram for CO, with hybrid AOs

Even without doing a full SCF calculation, a qualitative argument leads easily to the same
conclusion. By allowing for the mixing of 2s and 2p AOs on Carbon and on Oxygen (s and
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p orbital energies being fairly close together), the correlation diagram in Figure 7.2 must
be re-drawn. The result is that shown in Figure 7.3, where the 2s and 2p orbital energies
are again indicated on the extreme left (for Carbon) and extreme right (for Oxygen). But
now, when these AOs are allowed to mix – forming hybrids, the (2s) AO of lower energy
must be raised in energy – owing to the inclusion of a bit of 2p character; while the energy
of an electron in the upper AO must be lowered, by inclusion of 2s character. The effects
of s-p hybridization are indicated by the broken lines connecting the hybrid energies with
the energies of their ‘parent’ AOs.

The probable orbital energies of the MOs in the CO molecule are shown in the centre of
the diagram. The broken lines now show how the MO energy levels arise from the hybrid
levels to which they are connected. The energies of the π-type MOs are not affected by
the hybridization (containing only 2px and 2py AOs) and remain as in Figure 7.2 – with
the 1π level (not shown)lying between the 2σ and 3σ MO energies.

When we assign the 10 valence electrons to these MOs we find

• a pair of electrons in the 1σ MO, which is mainly Oxygen 2s;

• a pair in the 2σ MO, the bonding combination of strongly overlapping hybrids, pointing
towards each other along the bond axis;

• two pairs in the bonding 1π-type MOs, transverse to the bond axis; and

• a pair in the 3σ MO, which is mainly a Carbon hybrid and is too high in energy to mix
with σ-type AOs on the other atom.

Now let’s look at the electron density (density of negative charge), which is given, as a
function of position in space, by |φ|2 for an electron in the MO φ. (If you’re not yet ready
to follow all the details you can skip the following part, in small type, and come back to
it later.)

The first MO (above) gives a density |φ|2 roughly spherical and strongly bound to the Oxygen 1s2 ‘core’,
but leaning slightly away from the Carbon (can you say why?)

The second MO gives a density concentrated on and around the CO axis, between the two atoms,
providing a strong σ bond

The third MO is degenerate, with density contributions |φx|2 and |φy|2 where, for example, φx = caφ
a
2px

+

cbφ
b
2px

– a linear combination of 2px AOs on the two atomic centres. At a general point P(x, y, z), a
2px AO has the form xf(r), where distances are measured from the nucleus and the function f(r) is
spherically symmetrical. If you rotate a 2px AO around the z axis it will change only through the factor
x; and the same will be true of the combination φx.

The whole electron density function will thus change only through a factor x2 + y2 = r 2
z , where rz is the

distance of Point P from the CO bond axis. A ‘slice’ of density, of thickness dz, will be a circular disk of
charge – with a hole in the middle because rz falls to zero on the bond axis. The two π bonds together
therefore form a hollow ‘sleeve’ of electron density, with the σ distribution inside – along the axis.

The 3σ HOMO now comes below the 4σ anti-bonding MO and does not diminish the strong σ bond in
any way. It provides essentially a lone-pair electron density, localized mainly on the Carbon. Moreover,
this density will point away from the CO σ-bond because h2 and h1 stand for orthogonal orbitals – and
h1 points into the bond.

In summary, it seems that when hybridization is admitted everything can be understood!
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The CO molecule should have a triple bond, a strong σ bond supported by two weaker
π bonds; and the Carbon should have a region of lone-pair electron density on the side
away from the C≡O triple bond – all in complete agreement with its observed chemical
properties.

7.2 Other First Row homonuclear diatomics

The CO molecule has 10 (=4+6) valence electrons outside the 1s2 cores and is therefore
‘isoelectronic’ with the Nitrogen molecule, N2, which is homonuclear and therefore has
a symmetrical correlation diagram. The molecules, Nitrogen (N2,) Oxygen (O2) and
Fluorine (F2), with 10, 12 and 14 valence electrons, respectively, all have similar energy-
level diagrams; but differ in the way the levels are filled as electrons are added. This is all
part of the so-called “aufbau approach” (“aufbau” being the German word for “building
up”) in which electrons are added one at a time to the available orbitals, in ascending
order of orbital energy. The First Row atoms use only 1s,2s and 2p AOs, in which only
the 2s and 2p AOs take part in molecule building (see for example Figure 7.2). But in
homonuclear diatomics the two atoms are identical and the correlation diagram is simpler
because orbitals of identical energy interact very strongly and hybridization may often be
neglected. For First Row atoms a typical diagram is shown in Figure 7.4, below.

2p

2s

Nitrogen

1π∗

1π

2σ∗

2σ

1σ∗

1σ

N2

2p

2s

Nitrogen

Figure 7.4 Correlation diagram for N2, no hybrids

Note that the 2s AOs give rise to the bonding and anti-bonding MOs denoted by 1σ and
2σ (first and second valence MOs of σ symmetry, but the 2p AOs, three on each centre,
give MOs of both σ and π type. For clarity it is sometimes useful to use an alternative
notation in which, for example, the first valence MO and its anti-bonding partner are
called 1σ and 1σ∗. The MOs can then be put in order of increasing energy and displayed
as

1σ ⇒ 1σ∗ ⇒ 2σz ⇒ (1πx, 1πy) ⇒ (1π∗
x, 1π

∗
y) ⇒ 2σ∗

z
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where the arrows indicate increasing order of orbital energies and the subscript z refers to
the bond axis, while x and y label the transverse axes. The π-type MOs are degenerate,
x and y components having identical energies.

The electron configurations of most of the homonuclear diatomics in the First Row con-
form to the above order of their MO energy levels. Let’s take them one at a time, starting
again with Nitrogen.

Nitrogen

Following the aufbau procedure, the first two of the ten valence electrons should go into
the 1σ MO with opposite spins; the next two will go into its antibonding partner 1σ∗ –
more or less undoing the bonding effect of the first pair; two more go into the 2σz MO
which is strongly bonding, being formed from 2pz AOs pointing towards each other. But
then there are four MOs, all of π type, formed from the 2px and 2py AOs on the two
atoms, which are perpendicular to the σ bond: they are 1πx, 1πy and their anti-bonding
partners (1π∗

x, 1π
∗
y) – all before we come to 2σ∗

z , which is well separated from 2σz owing
to the strong overlap of the component 2pz AOs. The remaining four of the 10 valence
electrons nicely fill the two bonding MOs and give two bonds of π type.

The end result will be that N2 has a triple bond and the electron configuration

1σ2 1σ∗ 22σ2
z 1π

2
x 1π

2
y .

The next First Row diatomic will be

Oxygen

Here there are 12 valence electrons, two more than in N2, and they must start filling
the anti -bonding π-type MOs. But we know that when two orbitals are degenerate
electrons tend to occupy them singly: so 1π∗

x
1 1π∗

y
1 is more likely than, say, 1π∗

x
2. And

each antibonding π electron will ‘cancel’ half the effect of a bond pair.

The probable result is that O2 will have a double bond and an electron configuration such
as

1σ2 1σ∗2 2σ2
z 1π

2
x 1π

2
y 1π

∗
x
1 1π∗

y
1.

Moreover, the electrons in the singly-occupied MOs may have their spins parallel-coupled
– giving a triplet ground state (S = 1). This means that Oxygen may be a paramagnetic

molecule, attracted towards a magnetic field. All this is in accord with experiments in the
laboratory. Of course, the ‘theory’ we are using here is much too simple to predict things
like spin coupling effects (we haven’t even included electron interaction!) but experiment
confirms that the last two electrons do indeed have their spins parallel-coupled to give a
triplet state.

Fluorine

The electron configuration for the molecule F2 is obtained by adding two more valence
electrons. This will complete the filling of the π-type anti-bonding MOs, to give the
configuration

1σ2 1σ∗2 2σ2
z 1π

2
x 1π

2
y1π

∗
x
21π∗

y
2.
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The pairs of electrons in the 1π∗
x and 1π∗

y MOs then take away the effect of those in the
corresponding bonding MOs, removing altogether the π bonding to leave a single σ bond.
Neon

The molecule Ne2 does not exist! Neon is an inert gas, like Helium, its atoms not forming
covalent bonds with anything. The reason is simply that, on adding two more electrons,
every bonding MO has an anti-bonding partner that is also doubly occupied. Every Row
of the Periodic Table that ends with the filling of a ‘shell’ of s- and p-type AOs has a
last atom of inert-gas type: the inert-gas atoms are Helium (He), Neon (Ne), Argon (A),
Krypton (Kr), Xenon (Xe), Radon (Rn), with values of the principal quantum number n
going from n = 1 up to n = 6.

Here we are dealing only with the First Row, that ends with Neon and contains only the
first 10 elements, but we started from Nitrogen (atomic number Z = 7) and continued in
order of increasing Z. The atom before that is Carbon, the most important of the ones
we left out. So let’s do it now.

Carbon

Carbon has only 4 valence electrons outside its 1s2 core, so if a C2 molecule exists we
should have to assign 8 electrons to energy levels like the ones shown in Figure 7.4 –
corresponding to the MOs

1σ, 1σ∗, 2σz, (1πx, 1πy), (1π∗
x, 1π

∗
y), 2σ∗

z .

Before we start, however, remember that the s- and p-type energy levels get closer together
as the effective nuclear charge (Zeff ≈ Z− 2) gets smaller; and this means that the 2s and
2pz AOs must be allowed to mix, or ‘hybridize’, as in Figure 7.3, where the mixing gives
rise to hybrids h1 and h2. h1 is largely 2s, but with some 2pz which makes it ‘lean’ into
the σ bond; h2, being orthogonal to h1, will be largely 2pz, but pointing away from the
bond. This will be so for both Carbons. The correlation diagram should then have the
form

h2

h1

Carbon

1π∗

1π

2σ∗

2σ
1σ∗

1σ

C2

h2

h1

Carbon

Figure 7.5 Correlation diagram for C2, with hybrids

– where the h1 and h2 levels are now relatively close together and the order of the MO
levels they lead to is no longer ‘standard’. The order in which they are filled up, in the
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‘aufbau’, will now be

1σ, 2σz, 1σ∗, (1πx, 1πy), (1π∗
x, 1π

∗
y), 2σ∗

z ,

as you can see from Figure 7.5.

For C2, however, we have only 8 valence electrons. The expected electron configuration
in the ground state will therefore be

1σ2 2σ2
z 1σ

∗ 2 1π1
x 1π

1
y ,

where the last two electrons have been put in the two degenerate 1π MOs. Electrons in the
1σ MO and its anti-bonding partner should therefore give no effective bonding, the first σ
bond coming from the 2σ MO – which arises from strongly overlapping hybrids, pointing
towards each other along the z axis. The strong σ bond would be supplemented by two
‘half’ π bonds; so the C2 molecule could be pictured as a double-bonded system C=C,
with electron density similar to that in N2 but with the ‘sleeve’ of π density containing
only 2 electrons instead of 4. Moreover, the ground state could be either a triplet, with
S = 1, or a singlet (S = 0), since the Pauli principle does not come in when the two
electrons are in different orbitals. As in the case of Oxygen, the theory is much too
simplified for predicting singlet-triplet energy differences: experiment shows the ground
state is this time a singlet.

But what about the electrons in the 1σ and 1σ∗ MOs? These orbitals are built as com-
binations of hybrids pointing away from the C−C bond (remember h1 is orthogonal to
h2, which points into the bond). You can think of these ‘sleeping’ electrons as lone pairs,
sticking out at the back of each Carbon atom. Consequently, the C2 molecule will be easily
attacked by any positively charged species – attracted by a region of negative charge den-
sity. In fact, C2 is a highly reactive system and does not exist for long as an independent
molecule – as the next example will suggest.

Example 7.3 What will happen if C2 is approached by a proton?

To keep things symmetrical let’s suppose a proton comes close to each of the two Carbons. In that case
all the 8 valence electrons will ‘feel’ an attraction towards two centres, each with effective positive charge
Zeff = 3. This will be similar to that for Nitrogen (Z = 7, Zeff = 7− 2 = 5 and the energy level diagram
would therefore look more like that for the N2 molecule, shown in Figure 7.4.

But in fact we are talking about a system with only 8 valence electrons, which would correspond to the
doubly positive ion N++

2 , and our model is a bit unrealistic – because bare protons do not float about in
space waiting to be put wherever we please! They are usually found in the company of an electron – in
the atom of Hydrogen. And if the protons bring their electrons with them where will they go?

The actual C2 system (forgetting for the moment about the protons we’ve added) would have the electron

configuration 1σ2 2σ2
z 1σ

∗ 2 1π1
x 1π

1
y, – with places waiting for the two extra electrons. When they are

filled, the system will have a closed-shell ground state with all MOs doubly occupied. But the system

is no longer C2: we’ve added two Hydrogen atoms and made a new molecule H−C≡C−H. We’re doing

Chemistry!
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Of course, the orbitals in the new molecule H−C≡C−H, which is called Acetylene, are
not quite the same as in C2: the lone-pair orbitals (h2), which we imagined as “sticking
out at the back of each Carbon atom” now have protons embedded in them and describe
two C−H bonds. Here, in dealing with our first polyatomic molecule, we meet a new
problem: acetylene apparently has two CH single bonds and one CC triple bond. We
are thinking about them as if they were independently localized in different regions of
space; but in MO theory the bonding is described by non-localized orbitals, built up as
linear combinations of much more localized AOs. All the experimental evidence points
towards the existence of localized bonds with characteristic properties. For example,
the bond energies associated with CC and CH links are roughly additive and lead to
molecular heats of formation within a few per cent of those measured experimentally.
Thus, for acetylene, taking the bond energies of C−H and C≡C as 411 and 835 kJ mol−1,
respectively, gives an estimated heat of formation of 1657 kJ mol−1 – roughly the observed
value. (If you’ve forgotten your Chemistry you’d better go back to Book 5; Science is all
one!)

Next we’ll ask if similar ideas can be applied in dealing with other polyatomic molecules.

7.3 Some simple polyatomic molecules;

localized bonds

The discussion of H−C≡C−H can easily be put in pictorial form as follows. Each Carbon
atom can be imagined as if it were in a valence state, with two of its four valence
electrons in hybrid orbitals sticking out in opposite directions along the z axis and the
other two in its 2px and 2py AOs. This state can be depicted as

•
z-axis

x

y

where the Carbon is shown as the bold dot in the centre, while the bold arrows stand for
the hybrids h1 and h2, pointing left and right. The empty circles with a dot in the middle
indicate they are singly occupied. The arrows labelled ‘x’ and ‘y’ stand for the 2px and
2py AOs, pointing in the positive directions (− to +), and the circles each contain a dot
to stand for single occupation.

The electronic stucture of the whole molecule H−C≡C−H can now be visualized as
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•C •C

• •
H C C H

where the upper diagram represents the two Carbon atoms in their valence states (π-type
MOs not indicated); while the lower diagram shows, in very schematic form, the electronic
structure of the molecule H−C≡C−H that results when they are brought together and
two Hydrogens are added at the ends. The C≡C triple bond arises from the σ-type single
bond, together with the πx- and πy-type bonds (not shown) formed from side-by-side
overlap of the 2px and 2py AOs. The two dots indicate the pair of electrons occupying
each localized MO.

Acetylene is a linear molecule, with all four atoms lying on the same straight line. But
exactly the same principles apply to two- and three-dimensional systems. The Methyl

radical contains four atoms, lying in a plane, Carbon with three Hydrogens attached.
Methane contains five atoms, Carbon with four attached Hydrogens. The geometrical
forms of these systems are experimentally well known. The radical (so-called because it
is not a stable molecule and usually has a very short lifetime) has its Hydrogens at the
corners of an equilateral triangle, with Carbon at the centre; it has been found recently
in distant parts of the Universe, by astronomical observation, and suggests that Life may
exist elswhere. Methane, on the other hand, is a stable gas that can be stored in cylinders
and is much used in stoves for cooking; its molecules have four Hydrogens at the corners
of a regular tetrahedron, attached to a Carbon at the middle. These shapes are indicated
in Figure 7.6 below.

2

3

1

4

3

1 2

Figure 7.6 Shapes of the Methyl radical and the Methane molecule

In the Figure the large black dots indicate Carbon atoms, while the smaller ones show
the attached Hydrogens. In the Methyl radical (left) the Hydrogens are at the corners
of a flat equilateral triangle. In Methane (right) they are at the corners of a regular

tetrahedron, whose edges are shown by the solid lines. The tetrahedron fits nicely
inside a cube, which conveniently tells you the coordinates of the four Hydrogens: using
ex ey, ez to denote unit vectors parallel to the cube edges, with Carbon as the origin, unit
steps along each in turn will take you to H4 (top corner facing you) so its coordinates will
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be (1,1,1). Similarly, if you reverse the directions of two of the steps (along ex and ey,
say) you’ll arrive at H3, the ‘back’ corner on the top face, with coordinates (−1,−1, 1).
And if you reverse the steps along ey and ez you’ll get to H1 (left corner of bottom face),
while reversing those along e1 and e3 will get you to H2 (right corner of bottom face).

That’s all a bit hard to imagine, but it helps if you make a better drawing, with ez as
the positive z axis coming out at the centre of the top face, ex as the x axis coming out
at the centre of the left-hand face, and ey as the y axis coming out at the centre of the
right-hand face. Keep in mind the definition of a right-handed system; rotating the x axis
towards the y axis would move a corkscrew along the z axis.

In fact, however, it’s easiest to remember the coordinates of the atoms themselves: they
will be H4(+1,+1,+1) – top corner facing you; H3(-1,-1,+1) – top corner behind it;

H2(+1,-1,-1) – bottom corner right; H1(-1,+1,-1) – bottom corner left and that means
their position vectors are, respectively,

h4 = ex + ey + ez, h3 = −ex − ey + ez, h2 = ex − ey − ez, h1 = −ex + ey − ez,

relative to Carbon at the origin.

The Methyl radical is easier to deal with, being only 2-dimensional. A bit of simple
geometry shows that (taking the Carbon atom as origin (0,0), with Hydrogens on a
unit circle, x axis horizontal and y axis vertical) the Hydrogens have coordinates H1(1, 0),
H2(−1

2
, 1
2

√
3), H3(−1

2
,−1

2

√
3). Their position vectors are thus (given that

√
3 = 1.73205)

h1 = ex, h2 = −0.5ex + 0.8660ey, h3 = −0.5ex − 0.8660ey.

Example 7.4 An sp hybrid pointing in any direction

How can we get sp hybrids that point from the Carbon atoms in Figure 7.6 to all the attached Hydrogens?
Let’s suppose the hybrid pointing towards H1 in the Methyl radical is

h1 = N(s + λp1),

where s and p1 (= px) are normalized s and p AOs. The constant λ determines how much p-character
is mixed in and N is a normalizing factor. An exactly similar hybrid pointing towards H2 will be
h2 = s + λp2, where p2 is obtained by rotating p1 (=px) through +120◦ around a z axis normal to the
plane, while s remains unchanged.

Instead of dealing with things one at a time let’s think of the general case: we want to set up a similar
hybrid pointing in any direction. You’ll remember that a unit vector v of that kind can always be written
v = lex +mey + nez, where l, m, n are called the direction cosines of the vector, relative to the unit
vectors ex, ey, ez along the x-,y-,z-axes. We’ve already found such vectors (h1, h2, ...) for the Hydrogens,
relative to Carbon as the origin, so we don’t need to do the work again.

Whichever vector we choose as v, the hybrid pointing along v will be hv = s+λpv, where pv is constructed
just like p1=r · ex, but with ex replaced by v. Thus pv = (xex + yey + zez) · v – and this will work just as
well in 3 dimensions (e.g. for Methane).

Now px = xF (r), where F (r) is a spherically symmetric function of position with r = xex + yey + zez; so
for the Methyl radical, taking v = h1 = ex gives p1 = xF (r) (as it must!), since ex, ey, ez are orthogonal
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unit vectors. But putting v = h2 gives

p2 = (xex + yey + zez) · (−0.5ex + 0.8660ey)F (r)

= −0.5xF (r) + 0.8660yF (r)

= −0.5px + 0.8660py

and putting v = h3 gives p3 = −0.5px − 0.8660py.

For a 3-dimensional array (e.g. Methane) the same procedure will give

pv = (xex + yey + zez) · (lex +mey + nez)F (r)

= lxF (r) +myF (r) + nzF (r)

= lpx +mpy + npz,

where l, m, n are the direction cosines of the vector pointing to any attached atom.

Now that we know how to make hybrid orbitals that point in any direction we only need
to normalize them. That’s easy because the ‘squared length’ of h1 (in function space!) is
〈h1|h1〉 = N2(1 + λ2), and the s- and p-type orbitals are supposed to be normalized and
orthogonal (〈s|s〉 = 〈px|px〉 = 1, 〈s|px〉 = 0). And it follows that N2 = 1/(1 + λ2).

The amount of s character in a hybrid will be the square of its coefficient, namely 1/(1+λ2),
while the amount of p character will be λ2/(1 + λ2); and these fractions will be the same
for every hybrid of an equivalent set. The total s content will be related to the number
of hybrids in the set: if there are only two, as in Acetylene, the single s orbital must be
equally shared by the two hybrids, giving 2/(1 + λ2) = 1 and so λ2 = 1. With p1 directed
along the positive z axis and p2 along the negative, the two normalized hybrids are thus

h1 =
1√
2
(s + p1), h2 =

1√
2
(s + p2), (7.4)

just as we found earlier.

With three equivalent hybrids, the case of trigonal hybridization, each must have an
s content of 1

3
and a similar calculation shows 3/(1 + λ2) = 1 and so λ2 = 2 On choosing

the axes as in Example 4, we get

h1 =
1√
3
(s +
√
2p1), h2 =

1√
3
(s +
√
2p2), h3 =

1√
3
(s +
√
2p3). (7.5)

Finally, with four equivalent hybrids (the case of tetrahedral hybridization), we get
in the same way (check it!)

h1 =
1
2
(s +
√
3p1), h2 =

1
2
(s +
√
3p2), h3 =

1
2
(s +
√
3p3), h4 =

1
2
(s +
√
3p4), (7.6)

which point towards the corners of a regular tetrahedron, numbered as in Figure 7.6, and
inclined at 109◦28′ to each other.

These definitions apply, in fair approximation, to a wide range of systems in which the
hybrids are not exactly equivalent (e.g. where the attached atoms are not all the same,
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or where some may even be missing). The following are typical examples, all making
use of roughly tetrahedral hybrids: CH4, NH3, H2O, NH +

4 . Figure 7.7 gives a rough
schematic picture of the electronic structure and shape of each of these systems.

H

HH

•

H

C

CH4

HH

•N

H NH3

H

•O

H H2O

H

HH

•

H

N

NH+
4

+

Figure 7.7 Electronic structures of four similar systems

In CH4 the CH bonds are represented as four lobes of electron density, each of them
starting on the Carbon nucleus and containing a Hydrogen nucleus. The angle between
any two bonds is 109◦28′ (the ‘tetrahedral angle’) and all bonds are exactly equivalent.

In NH3, Ammonia, the three NH bonds are equivalent, just changing places under rotation
around the vertical axis; but the fourth lobe of electron density (shown shaded) is different
from the others and contains no nucleus – it represents a ‘lone pair’ of electrons. The NH
bonds are inclined at about 107◦ to each other and so form the edges of an equilateral
pyramid, with the lone pair sticking up from the apex.

The water molecule H2O has two lone pairs (shaded grey) and the H-O-H bond angle
is about 105◦; so the molecule is V-shaped and the bonds are about 4◦ closer than the
tetrahedral angle would suggest.

The fourth system NH +
4 is a positive ion, which could be formed from the Ammonia

molecule by inserting a proton (unit positive charge) into its lone pair. All four NH bonds
then become exactly equivalent, the extra positive charge being equally shared among
them, and H-N-H angle goes back to its tetrahedral value. The capacity of a molecule to
accept a proton in this way means it is able to act as an alkali (or base).

Hybridization is a very important concept: besides allowing us to get a clear picture of
electronic structure and its relationship to molecular shape (stereochemistry) it gives
insight into the probable chemical properties of molecules. More on that in later chapters:
here we only note that the observed variations in bond angles when some of the atoms
in a molecule are replaced by others (called substitution), or are taken away, can also
be interpreted electronically. Thus the trends in bond angle, following the changes C →
N → O, can be understood when electron interactions (not included at the IPM level)
are recognized: in NH3, for example, the lone pair electrons repel those of the bond pairs
and this reduces the H-N-H bond angles from ≈ 109◦ to the observed 107◦.

At this point it seems we are getting a good understanding of molecular electronic struc-
ture in terms of localized MOs, built up from overlapping AOs on adjacent centres in
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the molecule. But we started from a much more complete picture in the general theory of
Chapter 4, where every orbital was constructed, in principle, from a set of AOs centred on
all the nuclei in the molecule. In that case the MOs of an IPM approximation of LCAO
form would extend over the whole system: they would come out of the SCF calculation
as completely nonlocalized MOs. We must try to resolve this conflict.

7.4 Why can we do so well with localized MOs?

That’s a good question, because Chapter 4 (on the Hartree-Fock method) made it seem
that a full quantum mechanical calculation of molecular electronic structure would be
almost impossible to do – even with the help of big modern computers. And yet, starting
from a 2-electron system and using very primitive ideas and approximations, we’ve been
able to get a general picture of the charge distribution in a many-electron molecule and
of how it holds the component atoms together.

So let’s end this section by showing how “simple MO theory”, based on localized orbitals,
can come out from the quantum mechanics of many-electron systems. We‘ll start from
the Hartree-Fock equation (4.12) which determines the ‘best possible’ MOs of LCAO
form, remembering that this arises in IPM approximation from a single antisymmetrized
product of spin-orbitals:

ΨSCF =
√
N !A[ψ1(x1)ψ2(x2) ...ψN(xN). (7.7)

With the usual notation the spin-orbitals for a 10-electron system, such as the water
molecule, are

ψ1(x1) = φ1(r1)α(s1), ψ2(x2) = φ1(r2)β(s2), .... ψ5(x10) = φ5(r10)β(s10),

and the spatial functions are normally taken to be mutually orthogonal.

We know that this many-electron wave function leads to the 1-electron density function
(spin included)

ρ(x1) = ψ1(x1)ψ
∗
1(x1) + ψ2(x1)ψ

∗
2(x1) + ....+ ψN(x1)ψ

∗
N(x1) (7.8)

and that for a closed-shell ground state the spin dependence can be removed by integration
to give the ordinary electron density

P (r1) = 2[φ1(r1)φ
∗
1(r1) + φ2(r1)φ

∗
2(r1) + .... + φ5(r1)φ

∗
5(r1)]

– a sum of orbital densities, times 2 as up-spin and down-spin functions give the same
contributions.

The spinless density matrix (see Chapter 5; and (5.33) for a summary) is very similar:

P (r1; r
′
1) = 2[φ1(r1)φ

∗
1(r

′
1) + φ2(r1)φ

∗
2(r

′
1) + .... + φN(r1)φ

∗
N(r

′
1)] (7.9)
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and gives the ordinary electron density on identifying the two variables, P (r1) = P (r1; r1).
These density functions allow us to define the effective Hamiltonian F used in Hartree-
Fock theory and also give us, in principle, all we need to know about chemical bonding
and a wide range of molecular properties.

The question is now whether, by setting up new mixtures of the spatial orbitals, we can
obtain alternative forms of the same densities, without disturbing their basic property of
determining the ‘best possible’ one-determinant wave function. To answer the question,
we collect the equations in (4.12), for all the orbitals of a closed-shell system, into a single
matrix equation

Fφ = φǫ, (7.10)

where the orbitals are contained in the row matrix

φ = (φ1 φ2 .... φN/2)

and ǫ is a square matrix with the orbital energies ǫ1, ǫ2, ...., ǫN/2 as its diagonal elements,
all others being zeros. (Check this out for a simple example with 3 orbitals!)

Now let’s set up new linear combinations of the orbitals φ̄1, φ̄2, ... φ̄N/2, and collect them
in the row matrix

φ̄ = (φ̄1, φ̄2, ... φ̄N/2).

The set of complex conjugate functions, φ̄∗
i , is then written as a column, obtained by

transposing the row and putting the star on each of its elements – an operation indicated
by a ‘dagger’ (†). With these conventions, which you may remember from Chapter 4, the
new mixtures can be related to the old by the matrix equation

φ̄ = φU (7.11)

where the square matrix U has elements Urs which are the ‘mixing coefficients’ giving
φ̄s =

∑

r φrUrs. The new density matrix can be expressed as the row-column matrix
product

P̄ (r1; r
′
1) = φ̄ φ̄

†

and is then related to that before the transformation, using (7.11), by

P̄ (r1; r
′
1) = φU(φU)†

= φU(U†φ†)

= P (r1; r
′
1) (provided UU† = 1. (7.12)

Here we’ve noted that (AB)† = (B†A†) and the condition on the last line means that U
is a unitary matrix.

That was quite a lot of heavy mathematics, but if you found it tough go to a real appli-
cation in the next Example, where we relate the descriptions of the water molecule based
on localized and non-localized MOs. You should find it much easier.
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Example 7.5 Transformation from localized to non-localized orbitals: H2O

To show what the matrix U looks like let’s use (7.11) to pass from the basis of localized orbitals φ̄, which
we set up by intuition (‘guess work’), to non-localized orbitals similar to those that come from an SCF
calculation – putting them in the row matrix φ.

To do that we need to express (7.11) the other way round, but that’s easy because when both orbital
sets are orthonormal (as we suppose) U will be unitary, UU† = 1. So multiplying from the right by U†

gives φ̄U† = φ.

We want to choose U†, then, so that the orbitals in φ are completely de-localized over the whole molecule;
and we know that these orbitals will be of various types as a result of molecular symmetry. Some will be
symmetric under a reflection that interchanges left and right, others will be anti-symmetric – changing
only in sign – and so on.

In Figure 7.4 the H2O molecule is inscribed in a cube, for comparison with the other systems, and here
it’s convenient to use the same figure. The atoms of H1–O–H2 then lie in the xz-plane, with O as origin
and z-axis pointing upwards (above the H atoms). This plane is a symmetry plane, the molecule being
symmetric under reflection across it; but the xy-plane is a second plane of symmetry, across which the
H atoms simply change places under reflection. The two reflections are both symmetry operations,
which leave the system apparently unchanged. Another kind of symmetry operation may be a rotation,
like that of half a turn (through 180◦) about the z-axis – which also interchanges the H atoms. These
three operations are usually denoted by σ1, σ2 for the reflections and C2 for the rotation; together with
the “identity operation” E (do nothing!) they form the symmetry group of the system. (If you’ve
forgotten about such things,turn back to Chapter 7 of Book 11 – or even to Chapter 6 of Book 1 !)

The localized orbitals we have in mind for the water molecule were constructed from the valence hybrids
h1, h2 overlapping with the Hydrogen 1s AOs (let’s call them H1 and H2) to give two bond orbitals

φ̄1 = ah1 + bH1, φ̄2 = ah2 + bH2.

Here the bonds are equivalent, so the mixing coefficients a, b must be the same for both of them. The
remaining 4 of the 8 valence electrons represent two lone pairs and were assigned to the next two hybrids
h3 and h4, which we may now denote by

φ̄3 = h3 and φ̄4 = h4.

What about the non-localized MOs? These will be put in the row matrix φ = (φ1 φ2 φ3 φ4) and should
serve as approximations to the MOs that come from a full valence-electron SCF calculation. There are
only four occupied SCF orbitals, holding the 8 valence electrons, and for a symmetrical system like H2O
they have simple symmetry properties. The simplest would be symmetric under rotation C2, through
180◦ around the z-axis, and also under reflections σ1, σ2 across the xz- and yz-planes. How can we express
such orbitals in terms of the localized set φ̄ ? Clearly φ̄1 and φ̄2 are both symmetric under reflection σ1
across the plane of the molecule, but they change places under the rotation C2 and also under σ2 – which
interchanges the H atoms. For such operations they are neither symmetric nor anti-symmetric; and the
same is true of φ̄3 and φ̄4. However, the combination φ̄1 + φ̄2 clearly will be fully symmetric. Reflection
sends the positive combination into itself, so φ̄1 + φ̄2 is symmetric, but φ̄1 − φ̄2 becomes φ̄2 − φ̄1 and is
therefore anti-symmetric under C2 and σ2. Moreover, the symmetric and anti-symmetric combinations
are both delocalized over both bonds and can be used as

φ1 = (1/
√
2)(φ̄1 + φ̄2), φ2 = (1/

√
2)(φ̄1 − φ̄2),

where we remembered that all orbitals are supposed to be orthonormal. Similarly, the localized and
non-localized lone-pair orbitals are related by

φ3 = (1/
√
2)(φ̄3 + φ̄4), φ4 = (1/

√
2)(φ̄3 − φ̄4).
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Finally, these results may be put in matrix form, φ = φ̄U†, where the matrix U† is

U† =









x x 0 0
x x̄ 0 0
0 0 x x
0 0 x x̄









(x and x̄ standing for 1
2

√
2 and − 1

2

√
2.) It is easy to confirm that this matrix is unitary. Each column

contains the coefficients of a nonlocalized MO in terms of the four localized MOs; so the first expresses φ1

as the combination found above, namely (1/
√
2)(φ̄1 + φ̄2), while the fourth gives φ4 = (1/

√
2)(φ̄3 − φ̄4).

In each case the sum of the coefficients squared is unity (normalization); and for two columns the sum of

corresponding products is zero (orthogonality).

In summary, Example 7.5 has shown that

φ1 = (1/
√
2)(φ̄1 + φ̄2) and φ2 = (1/

√
2)(φ̄1 − φ̄2) (7.13)

are delocalized combinations of localized bond orbitals, behaving correctly under symme-
try operations on the molecule and giving exactly the same description of the electron
distribution. The same is true of the lone pair orbitals: they may be taken in localized
form as, φ̄3 and φ̄4, which are clearly localized on different sides of a symmetry plane, or
they may be combined into the delocalized mixtures

φ3 = (1/
√
2)(φ̄3 + φ̄4) and φ4 = (1/

√
2)(φ̄3 − φ̄4) (7.14)

The localized and non-localized orbital sets give entirely equivalent descriptions of the
electron distribution, provided they are related by a unitary transformation φ = φ̄U†. In
the case of the water molecule

U† =









x x 0 0
x x̄ 0 0
0 0 x x
0 0 x x̄









, (7.15)

where x and x̄ stand for the numerical coefficients 1
2

√
2 and −1

2

√
2. Thus, for example, the

localized lone pairs are φ̄3 = h3 and φ̄4 = h4, and their contribution to the total electron
density P is 2|h3|2 + 2|h4|2 (two electrons in each orbital).

After transformation to the delocalized combinations, given in (7.14), the density contri-
bution of the lone pairs is expressed as (Note that the ‘square modulus’ |...| is used as the
electron density P is a real quantity, while the functions may be complex.)

2|φ3|2 + 2|φ4|2 = |(h3 + h4)|2 + |(h3 − h4)|2
= (|h3|2 + |h4|2 + 2|h3h4|) + (|h3|2 + |h4|2 − 2|h3h4|)
= 2|h3|2 + 2|h4|2

– exactly as it was before the change to non-localized MOs.
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You can write these results in terms of the usual s, px, py, pz AOs (you should try it!),
getting

φ3 =
√
2(s + pz), φ4 =

√
2(px + py).

Evidently, |φ3|2 describes a lone-pair density lying along the symmetry axis of the molecule
(sticking out above the Oxygen) while |φ4|2 lies in the plane of the molecule and describes
a ‘halo’ of negative charge around the O atom.

The water molecule provided a very simple example, but (7.14) and all that follows
from it are quite general. Usually the transformation is used to pass from SCF MOs,
obtained by solving the Hartree-Fock equations, to localized MOs, which give a much
clearer picture of molecular electronic structure. In that case (7.11) must be used, with
some suitable prescription to define the matrix U that will give maximum localization

of the transformed orbitals. Many such prescriptions exist and may be applied even when
there is no symmetry to guide us, as was the case in Example 7.5: they provide a useful
link between Quantum Mechanics and Chemistry.

7.5 More Quantum Chemistry

– the semi-empirical treatment of bigger molecules

At IPM level, we’ve already explored the use of Molecular Orbital (MO) theory in
trying to understand the electronic structures of some simple molecules formed from
atoms of the First Row of the Periodic Table, which starts with Lithium (3 electrons) and
ends with Neon (10 electrons).

Going along the Row, from left to right, and filling the available AOs (with up to two
electrons in each) we obtain a complete ‘shell’. We made a lot of progress for diatomic

molecules (homonuclear when both atoms are the same, heteronuclear when they are
different) and even for a few bigger molecules, containing 3,4, or more atoms. After finding
the forms of rough approximations to the first few MOs we were able to make pictures

of the molecular electronic structures formed by adding electrons, up to two at a time,
to the ‘empty’ MOs. And, remember, these should really be solutions of the Schròdinger
equation for one electron in the field provided by the nuclei and all other electrons: they
are not ‘buckets’ for holding electrons! – they are mathematical functions with sizes and
shapes, like the AOs used in Section ... to describe the regions of space in which the
electron is most likely to be found.

In the approach used so far, the MOs that describe the possible stationary states of an
electron were approximated as Linear Combinations of Atomic Orbitals on the
separate atoms of the molecule (the LCAO approximation). On writing

φ = c1χ1 + c2χ2 + ... cnχn =
∑

i

ciχi, (7.16)

the best approximations we can get are determined by solving a set of secular equations.
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In the simple case n = 3 these have the form (see equation (4.15) of Section 4)





h11 h12 h13
h21 h22 h23
h31 h32 h13









c1
c2
c3



 = ǫ





c1
c2
c3



 . (7.17)

In Section 4 we were thinking about a much more refined many-electron approach, with
as many basis functions as we wished, and an effective Hamiltonian F in place of the
‘bare nuclear’ operator h. The Fock operator F includes terms which represent interaction
with all the other electrons, but here we use a strictly 1-electron model which contains
only interaction with the nuclei. The matrix elements hij are then usually treated as
disposable parameters, whose values are chosen by fitting the results to get agreement
with any available experimetal data. And the overlap integrals Sij = 〈χi|χj〉 are often
neglected for i 6= j. This is the basis of semi-empirical MO theory, which we explore
further in this section.

Let’s start by looking at some simple hydrocarbons, molecules that contain only Carbon
and Hydrogen atoms, beginning with Acetylene (C2H2) – the linear molecule H − C ≡
C−H, studied in Example 7.3, where the simplest picture of the electronic structure was
found to be

φ 2
CHφ

2
CCσzφ

2
CCπxφ

2
CCπyφ

2
CH.

That means, you’ll remember, that two electrons occupy the MO φCH localized around
the left-hand CH bond; another two occupy φCCσz, a σ-type MO localized around the C–C
(z) axis; two more occupy a π-type MO φCCπx formed from 2px AOs; two more occupy
a similar MO φCCπy formed from 2py AOs; and finally there are two electrons in the
right-hand CH bond. That accounts for all 10 valence electrons! (2 from the Hydrogens
and 2×4 from the Carbons) And in this case the localized MOs are constructed from the
same number of AOs.

Now suppose the MOs came out from an approximate SCF calculation as general linear
combinations of the 10 AOs, obtained by solving secular equations like () but with 10 rows
and columns. What form would the equations have? The matrix elements hij for pairs
of AOs χi, χj would take values hii = αi, say, along the diagonal (j = i); and this would
represent the expectation value of the effective Hamiltonian h for an electron sitting in χi.
(This used to be called a “Coulomb” integral, arising from the electrostatic interaction
with all the nuclei.) The off-diagonal elements hij, (j 6= i) would arise jointly from the
way χi and χj ‘overlap’ (not the overlap integral, which we have supposed ‘negligible’).
It is usually denoted by βij and is often referred to as a ‘resonance’ integral because it
determines how easily the electron can ‘resonate’ between one AO and the other. In
semi-empirical work the αs and βs are looked at as the ‘disposable parameters’ referred
to above.

In dealing with hydrocarbons the αs may be given a common value αC for a Carbon
valence AO αH for a Hydrogen AO. The βs are given values which are large for AOs with
a heavy overlap (e.g. hybrids pointing directly towards each other), but are otherwise
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neglected (i.e. given the value zero). This is the nearest-neighbour approximation.
To see how it works out let’s take again the case of Acetylene.

Example 7.6 Acetylene – with 10 AOs

Choose the AOs as the hybrids used in Example 7.3. Those with σ symmetry around the (z) axis of the
molecule are:

•χ1 = left-hand Hydrogen 1s AO

•χ2 = Carbon σ hybrid pointing towards Hydrogen (χ1)

•χ3 = Carbon σ hybrid pointing towards second Carbon (χ4)

•χ4 = Carbon σ hybrid pointing towards first Carbon (χ3)

•χ5 = Carbon σ hybrid pointing towards right-hand Hydrogen

•χ6 = right-hand Hydrogen 1s AO

The other Carbon hybrids are of x-type, formed by including a 2px component, and y-type, formed by
including a 2py component. They are

•χ7 = x-type hybrid on first Carbon, pointing towards second

•χ8 = x-type hybrid on second Carbon, pointing towards first

•χ9 = y-type hybrid on first Carbon, pointing towards second

•χ10 =y-type hybrid on second Carbon, pointing towards first

You should draw pictures of all these hybrid combinations and decide which pairs will overlap to give

non-zero βs.

To determine the form of the secular equations we have to decide which AOs are ‘nearest
neighbours’, so let’s make a very simple diagram in which the AOs χ1, ... χ10 are indicated
by short arrows showing the way they ‘point’ (usually being hybrids). As the molecule is
linear, the arrows will be arranged on a straight line as in Figure 7.8 below:

•
H

•
C

•
C

•
H

χ1 χ2 χ3 χ4 χ5 χ6

χ7 χ8

χ9 χ10

Figure 7.8 Overlapping orbital pairs in C2H2

From the Figure, the diagonal elements in the matrix of the 1-electron Hamiltonian, h,
will be hii = 〈χi|h|χi〉; so

h11 = αH, h22 = h33 = h44 = h55 = αC, h66 = αH,

(all with σ symmetry around the z-axis) and, if we take all the Carbon hybrids as ap-
proximately equivalent,

h77 = h88 = h99 = h10,10 = αC.

h77 = h88 = h99 = h10,10 = αC.

134



The off-diagonal elements hij = 〈χi|h|χj〉 will be neglected, in nearest-neighbour approx-
imation, except for χiχj pairs that point towards each other. The pairs (1,2) and (5,6)
may be given a common value denoted by βCH, while (3,4),(7,8),(9,10) may be given a
common value βCC. For short, we’ll use just β for the C-C resonance integral and β′ for
the one that links C to H.

Since i and j are row- and column- labels of elements in the matrix h, it follows that the
approximate form of h for the Acetylene molecule is

































α′ β′ 0 0 0 0 0 0 0 0
β′ α 0 0 0 0 0 0 0 0
0 0 α β 0 0 0 0 0 0
0 0 β α 0 0 0 0 0 0
0 0 0 0 α β′ 0 0 0 0
0 0 0 0 β′ α′ 0 0 0 0
0 0 0 0 0 0 α β 0 0
0 0 0 0 0 0 β α 0 0
0 0 0 0 0 0 0 0 α β
0 0 0 0 0 0 0 0 β α

































(7.18)

The secular equations contained in the matrix hc = ǫc then break up into pairs, corre-
sponding to the 2×2 ‘blocks’ along the diagonal of (7.18). The first pair, for example,
could be written

(α′ − ǫ)c1 + β′c2 = 0, β′c1 + (α− ǫ)c2 = 0

and the solution is easy (you’ve done it many times before!): by ‘cross-multiplying’ you
eliminate the coefficients and get

(α′ − ǫ)(α− ǫ)− (β′)2 = 0,

which is a simple quadratic equation to determine the two values of ǫ for which the two
equations can be solved (are ‘compatible’). These values, the ‘roots’, are (look back at
Section 5.3 of Book 1 if you need to!)

ǫ = 1
2
(α + α′)± 1

2

√

(α− α′)2 + 4(β′)2). (7.19)

Since the αs and βs are all negative quantities (do you remember why?) the lowest root
will be ǫ1 = 1

2
− 1

2

√

(α + α′)2 + 4(β′)2 and this will be the orbital energy of an electron
in the localized MO describing the CH bond. To get the form of this bonding MO all
you have to do is substitute ǫ = ǫ1 in either of the two equations leading to (8.4): this
will determine the ratio of the coefficients and their absolute values then follow from the
normalization condition c 21 +c

2
2 = 1. This has been done in detail for some simple diatomic

molecules in Section 6.2, which you may want to read again.

All the localized MOs follow in exactly the same way from the other diagonal blocks in
(7.18). For the bonds involving similar AOs the equations contain no ‘primed’ quantities
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and (7.19) gives ǫ1 = α + β, ǫ2 = α − β for the bonding and antibonding combinations.
In that case the corresponding normalized MOs are

Bonding : φ1 = (χ1 + χ2)/
√
2, Antibonding : φ2 = (χ1 − χ2)/

√
2, (7.20)

just as for a homonuclear diatomic molecule (Section 7.2). In other words the IPM
picture, with nearest-neighbour approximations, views the molecule as a superposition
of independent 2-electron bonds, each one consisting of two electrons in a localized MO
extending over only two centres. In this extreme form of the IPM approximation, the
total electronic energy is represented as a sum

Etotal ≈
∑

rs(pairs)

E(rs), (7.21)

where E(rs) = 2ǫ(rs) and is the energy of two electrons in the bonding MO formed from
an overlapping pair of AOs χr, χs.

The total electronic energy of the Acetylene molecule would thus be

Etotal ≈ 2ECH + 3ECC

– corresponding to 2 CH bonds and 3 CC bonds (taken as being equivalent).

From Acetylene to Ethane and Ethylene

In Acetylene the Carbons, which are each able to form bonds with up to four other atoms
(as in Methane, CH4, shown in Figure 7.7), are each bonded with only one other atom.
The CC triple bond seems a bit strange, with each Carbon using 3 of its 4 valencies to
connect it only with another Carbon! – and the triple bond is apparently quite different
from that in the diatomic Nitrogen molecule N ≡ N, described in Section 7.2 as one
bond of σ type with two somewhat weaker π-type bonds. Instead we’ve described it in
terms of hybrid AOs, one pair (χ3, χ4), pointing directly towards each other, and two
pairs pointing away from the molecular axis and able to form only ‘bent’ bonds. In fact,
however, both descriptions are acceptable when we remember that the hybrid AOs are
simply linear combinations of 2s and 2p AOs and the three pairs of localized MOs formed
by overlapping the hybrids are just alternative combinations. In Section 7.4 we found
how two alternative sets of orbitals could lead to exactly the same total electron density,
provided the mixing coefficients were chosen correctly so as to preserve normalization and
orthogonality conditions. So don’t worry! – you can use either type of MOs and get more
or less the same overall description of the electronic structure. Any small differences will
arise from using one set of ‘standard’ s-p hybrids in a whole series of slightly different
molecular situations (as in Figure 7.7).

Ethane and Ethylene illustrate two main categories of carbon compounds: in Ethane
the Carbon forms four σ-type bonds with other atoms (we say all carbon valencies are
saturated), leading to “saturated molecules”; but in Ethylene only three carbon valencies
are used in that way, the fourth being involved in somewhat weaker π-type bonding, and
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Ethylene is described as an “unsaturated molecule”. Let’s deal first with Ethane and
similar molecules.

The Ethane molecule

Ethane has the formula C2H6, and looks like two CH3 groups with a σ bond between the
two Carbons. Its geometry is indicated in Figure 7.9 below:

•C •C

H

H

H

H

H

H

Figure 7.9 Geometry of the Ethane molecule

Here the molecule is shown sitting inside a rectangular box (indicated by the light blue
broken lines) so you can see its 3-dimensional form. Each Carbon uses one of its four
hybrids to make a sigma bond with the other Carbon, while its three remaining hybrids
connect it with Hydrogens. The right-hand CH3 group is rotated around the C−C axis,
relative to the CH3 on the left; this is called the “staggered conformation” of the molecule.
The energy variation in such a rotation is a tiny fraction of the total electronic energy;
in the “eclipsed conformation”, where each group is the mirror image of the other across
a plane perpendicular to the C−C axis, cutting the molecule in two, the total energy is
about 12 kJ/mol higher – but this is less than (1/20,000)th of the total energy itself!
The energy difference between the two conformations is a rotational ‘barrier height’ but
is clearly much too small to be predicted with the crude approximations we are using.
In IPM approximation with inclusion of only nearest neighbour interactions the total
electronic energy for either conformation would be simply

Etotal ≈ 6ECH + ECC

and this does not depend on rotation of one group relative to the other. (To be reminded
of energy units go back to Book 5, Section 3.1)

Ethane is the second member of the series starting with methane, often called theParaffin

series. The next one is Propane C3H8, formed by adding another CH2 group between the
two Carbons in Ethane. Because there is so little resistence to twisting around a C−C
single bond, such chains are very flexible. They are also chemically stable, not reacting
easily with other molecules as all valencies are saturated. Members of the series with the
shortest chains form gases, becoming liquids as the chain length increases (e.g. gasolene
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with 7-9 Carbons and kerosene with 10-16 Carbons) and finally solid paraffin. Obviously
they are very important commercially.

The Ethylene molecule

In this molecule, with the formula C2H4, each Carbon is connected to only two Hydrogens
and the geometry of the molecule is indicated in Figure 7.10 here two CH2 groups lie in the
same plane (that of the paper) and are connected by a C−C sigma bond. Each Carbon
has three valencies engaged in sigma-bonding; the fourth involving the remaining 2p AO,
sticking up normal to the plane of the molecule and able to take part in π bonding.

. .• •C C

H H

H H

Figure 7.10 Geometry of Ethylene

Molecules with Carbons of this kind are said to be “conjugated” and conjugated molecules

form an important part of carbon chemistry. The Ethylene molecule is flat, with Carbon
2p orbitals normal to the plane and overlapping to give a π bond; there is thus a CC dou-
ble bond, which keeps the molecule flat, because twisting it around the CC bond reduces
the lateral overlap of the 2p orbitals and hence the degree of π bonding. Unsaturated
hydrocarbons like Ethylene are generally planar for the same reason. They can all be

built up by replacing one of the Hydrogens by a trivalent Carbon .• and saturating
two of the extra valencies by adding two more Hydrogens. From Ethylene we obtain in
this way C3H6 (The Allyl radical), which has 3 π electrons and is a highly reactive “free
radical”.

The Butadiene molecule

On replacing the right-most Hydrogen of Allyl by another CH2 group, we obtain the
molecule pictured in Figure 7.11 which is called “Butadiene”:

. .

. .

•C •C

•C •CH

H H

H H

H

Figure 7.11 The Butadiene molecule

As you can see, the chain of Carbons is not straight but ‘zig-zag’ – as a result of the
trigonal symmetry of the electron distribution around each Carbon. But, if we think
about the π electrons alone – as if they moved in the field of a ‘rigid framework’ provided
by the σ-bonded atoms – that’s not important: in a nearest-neighbour approximation all
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that matters is the pattern of connections due to lateral overlap of 2p AOs on adjacent
Carbons. In the early applications of quantum mechanics to molecules this approximation
turned up an amazing number of chemically important results. So let’s use Butadiene to
test our theoretical approach:

Example 7.7 Butadiene: electronic structure of the π-electron system

In the present approximation we think only of the C−C−C−C chain and set up the secular equations
for a π electron in the field of the σ-bonded framework. The effective Hamiltonian has diagonal matrix
elements α for every Carbon and off-diagonal elements β for every pair of nearest neighbours, the rest
being neglected. The equations we need are therefore (check it out!)









α− ǫ β 0 0
β α− ǫ β 0
0 β α− ǫ β
0 0 β α− ǫ

















c1
c2
c3
c4









=









0
0
0
0









There are solutions only for values of ǫ which make the determinant of the square matrix zero. How can
we find them?

The first line of the matrix equation above reads as

(α− ǫ)c1 + βc2 = 0

and it would look better if you could get rid of the α and β, which are just parameters that can take
any values you choose. So why not divide all terms by β, which doesn’t change anything, and denote
(α− ǫ)/β by −x? The first equation then becomes −xc1+c2 = 0 and the whole matrix equation becomes









−x 1 0 0
1 −x 1 0
0 1 −x 1
0 0 1 −x

















c1
c2
c3
c4









=









0
0
0
0









There are solutions only for values of x which make the determinant of the square matrix zero; and if
you know how to solve for x you can get all the energy levels for any values of the adjustable parameters
α, β.

The equation to determine the acceptable values of x is thus
∣

∣

∣

∣

∣

∣

∣

∣

−x 1 0 0
1 −x 1 0
0 1 −x 1
0 0 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (7.22)

You may remember the rule for evaluating a determinant (it was given first just after
equation (6.10) in Book 2). Here we’ll use it to evaluate the 4×4 determinant of the
square matrix on the left in (7.22). Working along the first row and denoting the value
of the 4×4 determinant by ∆4(x) (it’s a function of x) we get in the first step

∆4(x) =

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 0 0
1 −x 1 0
0 1 −x 1
0 0 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

= (−x)

∣

∣

∣

∣

∣

∣

−x 1 0
1 −x 1
0 1 −x

∣

∣

∣

∣

∣

∣

− (1)

∣

∣

∣

∣

∣

∣

1 1 0
0 −x 1
0 1 −x

∣

∣

∣

∣

∣

∣

+ etc.
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The next step is to use the same rule to evaluate each of the 3×3 determinants. You’ll
need only the first two as the others are multiplied by zero. The first one is

∣

∣

∣

∣

∣

∣

−x 1 0
1 −x 1
0 1 −x

∣

∣

∣

∣

∣

∣

= (−x)
∣

∣

∣

∣

−x 1
1 −x

∣

∣

∣

∣

− (1)

∣

∣

∣

∣

1 1
0 −x

∣

∣

∣

∣

+ (0)

∣

∣

∣

∣

1 −x
0 1

∣

∣

∣

∣

The second one is
∣

∣

∣

∣

∣

∣

1 1 0
0 −x 1
0 1 −x

∣

∣

∣

∣

∣

∣

= (1)

∣

∣

∣

∣

−x 1
1 −x

∣

∣

∣

∣

– the other 2×2 determinants being multiplied by zeros.

Any 2×2 determinant
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− cb

– as follows from the rule you’re using (check it) and it’s therefore easy to work back
from this point and so evaluate the original 4×4 determinant ∆4(x). The final result is
(check it!) ∆4(x) = x4 − 3x2 + 1 and depends only on the square of x. That shows at
once that the set of energy levels will be symmetrical around x = 0; and if we put x2 = y
the consistency condition ∆4(x) = 0 becomes y2 − 3y + 1 = 0. This simple quadratic
equation has roots y = (3 ±

√
5)/2, which lead to x = ±

√

(1.618), or x = ±
√

(0.618);
and therefore to energy levels

ǫ = α± xβ = α± 1.272β, or α± 0.786β.

Since α and β are both negative quantities the level for the plus sign is below the ‘datum’ α
and corresponds to a ‘bonding’ state, while that with the negative sign lies symmetrically
above the datum and corresponds to an ‘antibonding’ state.

The calculation above, for a chain of four Carbons, could be repeated for a chain of six
Carbons (called “Hexatriene”) but would involve dealing with a 6×6 determinant; and
with N Carbons we would have to deal with an N × N determinant – quite a lot of
work! Sometimes, however, it is simpler to solve the simultaneous equations directly: the
method is shown in Example 7.8 that follows.

Example 7.8 Butadiene: a simpler and more general method

Again we calculate the electronic structure of the π-electron system of Butadiene, but this time we work
directly from the secular equations, which follow from (7.22) as

(α− ǫ)c1 + βc2 + 0c3 + 0c4 = 0c1

βc1 + (α− ǫ)c2 + βc3 + 0c4 = 0c2

0c1 + βc2 + (α− ǫ)c3 + βc4 = 0c3

0c1 + 0c2 + βc3 + (α− ǫ)c4 = 0c4,

140



where the sum of terms on the left of the equality must vanish for every line. In short,

(α− ǫ)c1 + βc2 = 0, βc1 + (α− ǫ)c2 + βc3 = 0, βc2 + (α− ǫ)c3 + βc4 = 0, βc3 + (α− ǫ)c4 = 0.

Let’s now write cm for the mth coefficient (in the order 1,2,3,4), divide each equation by β, and again
put (α− ǫ)/β = −x. The whole set of equations can then be written as a single one:

cm−1 − xcm + cm+1 = 0,

where m takes the values 1,2,3 and 4 in turn and we exclude any values such as 0 or 5 that lie outside
that range. These are ‘boundary conditions’ which tell us there are no coefficients below m=1 or above
m=4. The number of atoms in the chain (call it N) is not important as long as we insist that c0 and
cN+1 should be zero. So now we can deal with polyene chains of any length!

To complete the calculation we can guess that the coefficients will follow the up-and-down pattern of
waves on a string, like the wave functions of an electron in a 1-dimensional box – behaving like sinmθ or
cosmθ or a combination of the two. It’s convenient to use the complex forms exp(±)imθ and on putting
cm = exp(imθ) in the key equation above we get the condition

exp i(m− 1)θ − x exp mθ + exp i(m+ 1)θ = 0.

Taking out a common factor of exp imθ, this gives eiθ + e−iθ − x = 0, so the ‘wavelength’ θ must be
related to the energy x by x = 2 cos θ.

Since changing the sign of m gives a solution of the same energy, a more general solution will be

cm = A exp(imθ) +B exp(−imθ)

where A and B are arbitrary constants, which must be chosen to satisfy the boundary conditions: the
first of these, c0 = A+B = 0, gives

cm = A[exp(imθ)− exp(−imθ)] = C sin(mθ), (C = 2A)

while the second, taking m = N + 1, becomes

cN+1 = C sin (N + 1)θ = 0.

This is satisfied only when (N + 1)θ = kπ where k is any positive integer and is essentially a quantum

number for the kth state of the system. The wavelength in the kth state is thus θ = kπ/(N + 1); so the
MO φk will be φk =

∑

cmχm with AO coefficient cm = C sin mkπ/(N + 1) and will have corresponding
orbital energy xk = C cos(kπ/(N + 1).

From Example 7.8, the MOs φk for a polyene chain of N Carbons are φk =
∑

c
(k)
m χm,

where the mth AO coefficient is (after normalizing – check it!)

c(k)m = Ck sin

(

mkπ

N + 1

)

(Ck =
√

2/(N + 1)). (7.23)

The corresponding orbital energies are ǫk = α + βxk, with

xk = 2 cos

(

kπ

N + 1

)

. (7.24)

The energy levels are thus symmetrically disposed around ǫ = α, which may be taken as
a reference level. As N → ∞ the levels become closer and closer, eventually forming a
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continuous energy band extending from ǫ = α+ 2β up to α− 2β. (Remember α and β
are both negative.) All this is shown below in Figure 7.12.

It should be noted that when the number of Carbons is odd there is always a Non-
bonding MO: it is very important, giving the molecule its ‘free-radical’ character – the
highest occupied orbital leading to a highly reactive system with a very short lifetime.

N = 1 N = 2 N = 3 N = 4 N →∞

← Non-bonding

l Anti-bonding

l Bonding

Figure 7.12 MO energy levels in a chain of N Carbon atoms

The reference level (N = 1) in Figure 7.12 has ǫ = α. As N →∞ the levels become very
close, forming an energy band extending from ǫ = α + 2β up to α− 2β. (Remember α
and β are both negative.) It should be noted that when the number of Carbons is odd
there is always a Non-bonding MO: it is very important, giving the molecule its ‘free-
radical’ character – the highest occupied orbital leading to a highly reactive system with
a very short lifetime.

It is also interesting to ask what happens if you join the ends of a chain molecule to form
a ring – a ‘cyclic’ molecule. In Example 7.9 we find the question is easily answered by
making a simple change of the boundary conditions used in Example 7.8.

Example 7.9 Making rings – cyclic polyenes

If we join the ends of a chain of N Carbons, keeping the system flat with adjacent atoms connected by
strong σ bonds, we obtain a ring molecule in which every Carbon provides one π electron in a 2p AO
normal to the plane. In nearest neighbour approximation, the equations to determine the MO coefficients
are unchanged – except that the AOs χ1 and χN will become neighbours, so there will be a new non-zero
element in the first and last rows of the matrix h. For a 6-Carbon ring, called Benzene, h16 and h61 will
both have the value β instead of zero. The secular equations will then become

(α− ǫ)c1 + βc2 + βc6 = 0,

βc1 + (α− ǫ)c2 + βc3 = 0,

βc2 + (α− ǫ)c3 + βc4 = 0,

βc3 + (α− ǫ)c4 + βc5 = 0,

βc4 + (α− ǫ)c5 + βc6 = 0,

βc1 + βc5 + (α− ǫ)c6 = 0,

where the terms at the end of the first line and the beginning of the last line are ‘new’: they arise because
now the Carbon with AO cofficient c1 is connected to that with AO coefficient c6.
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On putting (α − ǫ)/β = −x, as before, and dividing throughout by β, the first and last of the secular
equations become, respectively,

−xc1 + c2 + c6 = 0 and c1 + c5 − xc6 = 0,

but all the other equations have the ‘standard’ form

cm−1 − xcm + cm+1 = 0

with m taking values 2, 3, 4, 5. The first equation does not fit this pattern because, putting m = 1, it
would need a term c0 – which is missing. The last equation also does not fit – because with m = 6 it
would need a term c7, which is also missing.

To get round this problem we use a simple trick. We allow them to exist but make a change of inter-
pretation: on counting round the ring in the direction of increasing m we note that m = 6 + 1 brings us
back to the seventh atom, which coincides with the first – so c7 = c1 and c8 = c2 etc. – and in general
cm+N = cm for a ring of N atoms. This is called a periodic boundary condition and on putting
cm = exp(imθ), as before, we must now require that exp(imθ) = exp i(m+N)θ.

The acceptable values of θ are thus limited to the solutions of exp(iNθ) = 1, which are θ = 2πk/N, where
k is an integer (positive, negative, or zero). The MOs and their energies are thus determined in general
by

c(k)m = Ak exp(2πimk/N), xk = 2 cos(2πk/N) (k = 0,±1,±2,±3).

To summarize what came out from Example 7.9, joining the ends of a long polyene chain to
form a ring leaves the formula for the energy levels, namely (7.24), more or less unchanged
–

ǫk = α + 2β cos

(

2πk

N

)

(7.25)

– with N instead of N + 1, but gives a complex MO with AO coefficients

c(k)m = Ak exp

(

2πimk

N

)

(Ak = 1/
√
N). (7.26)

However, changing the sign of k in (7.24) makes no difference to the energy, so the solutions
in (7.26) can be combined in pairs to give real MOs with AO coefficients

a(k)m = Ck sin

(

2πmk

N

)

, b(k)m = Ck cos

(

2πmk

N

)

,

where Ck is again chosen to normalize the function. On putting N = 6, for example, the
three bonding π-type MOs for the Benzene molecule can be written as

φ1 = (1/
√
6)(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

φ2 = −(1/2
√
3)(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6)

φ3 = (1/2)(χ1 − χ3 − χ4 − 2χ5 + χ6). (7.27)

The molecule forms a sweet-smelling liquid of great importance in the chemical industry.
It is used in the manufacture of drugs, dyes, plastics and even explosives and is the first in
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a whole ‘family’ of molecules called polyacenes, formed by joining benzene rings together
with one side in common and the loss of corresponding H atoms. All such molecules have
numerous derivatives, formed by replacing one or more of the attached Hydrogens by
other chemical groups such as −CH3 (methyl) or −OH (the hydroxyl group).

The next two members of the polyacene family are Naphthalene and Anthracene, as shown
below:

Figure 7.13 Naphthalene (left) and Anthracene (right)

Note that in pictures representing molecules of this kind, which are generally called aro-

matic hydrocarbons, the attached Hydrogens are usually not shown. Such molecules
are also important in the chemical industry: Naphthalene forms a solid whose smell re-
pels insects such as moths, which attack woollen garments, and both molecules form a
starting point for preparing biologically important substances such as cholesterol and sex
hormones.

7.6 The distribution of π electrons in alternant hy-

drocarbons

In the early applications of quantum mechanics to chemistry, alternant molecules were of
special importance: they could be dealt with using simple approximations and ‘pencil-
and-paper’ calculations (long before electronic computers were available). Nevertheless
they uncovered many general ideas which are still valid and useful, especially in this field.

An alternant hydrocarbon is one in which the conjugated Carbons, which you first
met in Example 7.5, lie in a plane and each contribute one π electron in a 2p orbital
normal to the plane. The Carbons, all with three sp hybrids involved in σ bonds, fall into
two sets; obtained by putting a star against alternate atoms to get a ‘starred set and an
‘unstarred set’ so that no two stars come next to each other. A chain of N atoms is clearly
of this kind, but a ring with an odd number of atoms is not – for the ‘starring’ would
have to end with two atoms coming next to each other. Alternant molecules have certain
general properties, typical of those found in Example 7.5: the bonding and antibonding
MOs have orbital energies in pairs, with ǫ = α± xβ equally spaced below and above the
reference level α.

When the MOs are filled in increasing order of energy, by one electron from each conju-
gated Carbon, they give a simple picture of the electron density in the molecule. The
MO

φk = c1χ1 + c2χ2 + ... + cNχN
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gives an electron (probability) density contribution c 2
r |χr|2 to atom r and integration

shows that c 2
r represents the amount of electronic ‘charge’ associated with this atom by

an electron in MO φk. Nowadays this quantity, summed over all π-type occupied MOs, is
often called the “π-electron population” of the AO χr and is denoted by qr.

The remarkable fact is that when the N electrons fill the available MOs, in increasing
energy order, qr = 1 for every conjugated Carbon – just as if every atom kept its own
share of π electrons. Moreover, this result remains true even when the highest occupied
MO contains only one electron, the number of conjugated centres being odd.

Just after Example 7.5, it was noted that a chain with an odd number of Carbons must
contain a non-bonding MO, with x = 0 and therefore ǫ = α). Such NBMOs are im-
portant because they give rise to free-radical behaviour. In general they follow from
the secular equations (see, for example, Example 7.5) because the one that connects the
coefficient cr with those of its neighbours cs must satisfy

−xcr +
∑

s(r−s)

cs = 0, (7.28)

where s(r − s) under the summation sign means “ for atoms s connected with atom r”,
and when x = 0 the sum of AO coefficients over all atoms s connected with r must
vanish. In the Allyl radical, for example, we could mark the end Carbons (1 and 3, say)
with a ‘star’ and say that, as they are neighbours of Carbon 2, the NBMO must have
c1 + c3 = 0. The normalized NBMO would then be (with the usual neglect of overlap)
φNBMO = (χ1 − χ3)/

√
2.

A more interesting example is the Benzyl radical where a seventh conjugated Carbon
is attached to a Benzene ring, the ‘starred’ positions and corresponding AO coefficients
are as shown below –

⋆

⋆

⋆

⋆ 1

−1

−1
2

Figure 7.14 The Benzyl radical: starring of positions, and AO coefficients in the
NBMO

To summarize: in the NBMO of an alternant hydrocarbon, the ‘starring’ of alternate
centres divides the Carbons into two sets, ‘starred’ and ‘unstarred’. On taking the AO
coefficients in the unstarred set to be zero, the sum of those on the starred atoms to
which any unstarred atom is connected must also be zero. Choosing the AO coefficients
in this way satisfies the condition (8.13) whenever x = 0 and this lets you write down
at least one NBMO just by inspection! The MO is normalized by making the sum of
the squared coefficients equal to 1 and this means that an electron in the NBMO of the
Benzyl radical will be found on the terminal Carbon with a probability of 4/7, compared
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with only 1/7 on the other starred centres. The presence of this odd ‘unpaired’ electron
accounts for many of the chemical and physical properties of alternant hydrocarbons with
one or more NBMOs. Such electrons easily take part in bonding with other atoms or
chemical groups with singly occupied orbitals; and they are also easily ‘seen’ in electron
spin resonance (ESR) experiments, where the magnetic moment of the spin couples with
an applied magnetic field. The Benzyl radical, with its single loosely bound electron, is
also easily converted into a Benzyl radical anion by accepting another electron, or into a
cation by loss of the electron in the NBMO. The corresponding ‘starred’ centres then get
a net negative or positive charge, which determines the course of further reactions.

To show how easy it is to play with such simple methods you could try to find the NBMO
for the ‘residual molecule’ which results when you take away one CH ‘fragment’ from the
Naphthalene molecule shown in Figure 7.14 The system that remains when you choose
the ‘top’ Carbon on the right is

⋆

⋆

⋆⋆

⋆

where the starred positions have been chosen as shown. You should try to attach the
non-zero AO coefficients in the NBMO.

The NBMO is important in the discussion of chemical reactions. The ‘taking away’
of the CH group in this example actually happens (we think!) when an NO +

2 group
comes close to the Carbon: it is ‘thirsty’ for electrons and localizes two π electrons in the
Carbon 2p AO, changing the hybridization so that they go into a tetrahedral hybrid and
leave only 8 electrons in the 9-centre conjugated system of the residual molecule. The
NO2 group then bonds to the Carbon in this ‘activated complex’, which carries a positive
charge (still lacking 1 electron of the original 10): an electron is then removed from the
attached Hydrogen, which finally departs as a bare proton! Just before that final step, the
energy (E ′) of the residual molecule is higher than the energy (E) of the original molecule
and the difference A = E ′−E is called the Activation Energy of the nitration reaction.

Any change you can make in the original molecule (e.g. replacing another Carbon by a
Nitrogen) that lowers the Activation Energy will make the reaction go more easily; and
that’s the kind of challenge you meet in Chemistry.

(Notice that we’ve been talking always about total π-electron energies, estimated as sums
of orbital energies, and we’re supposing that there are no big changes in the energies of
the σ bonds. These are approximations that seem to work! – but without them there
would be little hope of applying quantum mechanics in such a difficult field.)

It’s time to move on – this is not a Chemistry book! But before doing so let’s remember
that nearly all the molecules we’ve been dealing with in this section have been built up
from only two kinds of atom – Hydrogen, with just one electron, and Carbon, with six.
And yet ‘Carbon chemistry’ is so important in our daily life that we can’t do without it:
hydrocarbons give us the fuels we need for driving all kinds of machines (in our factories)
and vehicles (from scooters to heavy transport); also for heating and cooking; and for
preparing countless other materials (from drugs to plastics and fabrics such as nylon).
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Remember also that our own bodies are built up almost entirely from elements near the
beginning of the Periodic Table, Carbon and Hydrogen in long chain molecules, along with
small attached groups containing Nitrogen and Oxygen, and of course the Hydrogen and
Oxygen in the water molecules (which make up over 50% of body mass). When Calcium
and Phosphorus are added to the list (in much smaller quantities) these six elements
account for about 99% of body mass!

7.7 Connecting Theory with Experiment

The main ‘bridge’ between so much abstract theory and the things we can measure in the
laboratory, the observables, is provided by a number of electron density functions. In
Chapter 4 we introduced a ‘density matrix’, in the usual finite-basis representation, where
it was used to define the Coulomb and exchange operators of self-consistent field (SCF)
theory. But because we were dealing with closed-shell systems, where the occupied
orbitals occurred in pairs (one with spin factor α and a ‘partner’ with spin factor β) we
were able to ‘get rid of spin’ by integrating over spin variables. Then, in studying the
electronic structure and some of the properties of atoms (in Chapter 5), we took the idea
of density functions a bit further and began to see how useful they could be in dealing
with electronic properties. You should look again at the ideas developed in Examples 5.6
and 5.7 and summarized in the ‘box’ (5.33). Finally, in Chapter 6, we were able to extend
the same ideas to molecules; so here you’ll find nothing very new.

It will be enough to remind ourselves of the definitions and fill in some details. The spinless
electron density function, for a system with an N -electron wave function Ψ(x1,x2, ...xN )
is

P (r1) =

∫

ρ(x1)ds1, (7.29)

where ρ(x1) is the density with spin included, as defined in (5.24), and arises from the
product |ΨΨ∗| on integrating over all variables except x1. Although the variable has been
called x1 that’s only because we chose the first of the N variables to keep ‘fixed’ in
integrating over all the others: the electrons are indistinguishable and we get the same
density function whatever choice we make – so from now on we’ll often drop the subscript
in one-electron functions, using just P (r) or ρ(x). The function P (r) is often called, for
short, the “charge density” since it gives us a clear picture of how the total electronic
charge is ‘spread out’ in space.

We’ll continue to use the N -electron Hamiltonian

H =
∑

i

h(i) + 1
2

∑

i 6=j g(i, j), (7.30)

where h(i) and g(i, j) are defined in Chapter 2, through equations (2.2) and (2.3), and
the 1-electron operator h(i) contains a term V (i) for the potential energy of electron i in
the field of the nuclei. The potential energy of the whole system follows in terms of the
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state function Ψ as

〈Ψ|
∑

i

V (i))|Ψ〉 = N

∫

Ψ∗(x1,x2, ...xN )V (1)Ψ(x1,x2, ...xN)dx1dx2 ... dxN

=

∫

V (1)ρ(x1)dx1

=

∫

V (1)P (r1)dr1,

where the first step expresses the expectation value as N times the result for Electron 1;
the next step puts it in terms of the density ρ(x1) with spin included; and finally, since
V (1) is spin-independent, the spin integrations can be done immediately and introduce
the ‘spinless’ density P (r1) defined in (7.14)

The spinless density ‘matrix’ is defined similarly:

P (r1; r
′
1) =

∫

s′
1
=s1

ρ(x1;x
′
1)ds1 (7.31)

where ρ(x1;x
′
1) = N

∫

Ψ(x1,x2, ...xN )Ψ
∗(x′

1,x2, ...xN )dx2, ...xN) is the density matrix
with spin included, as defined in (5.26), the prime being used to protect the variable in
Ψ∗ from the action of any operator. To express the expectation value of an operator sum
you can make similar steps (you should do it!) Thus, for the kinetic energy with operator
T(i) for electron i,

〈Ψ|
∑

i

T(i))|Ψ〉 = N

∫

Ψ∗(x1,x2, ...xN )T(1)Ψ(x1,x2, ...xN)dx1dx2 ... dxN

=

∫

x′

1
=x1

T(1)ρ(x1;x
′
1)dx1

=

∫

r′
1
=r1

T(1)P (r1; r
′
1)dr1.

Those are one-electron density functions, but in Example 5.7 we found it was possible
to generalize to two- and many-electron densities in a closely similar way. Thus a ‘pair’
density (spin included) is defined as

π(x1,x2) = N(N − 1)

∫

Ψ(x1,x2 ...xN)Ψ
∗(x1,x2 ...xN )dx3, ...xN

and the density matrix follows on putting primes on the variables x1,x2 in the Ψ∗ fac-
tor. With this definition, the expectation value of the electron interaction term in the
Hamiltonian becomes (remember, the prime on the Σ means “no term with j = i”)

〈Ψ|
∑′

(i,j)
g(i, j)|Ψ〉 =

∫

[g(1, 2)π(x1,x2;x
′
1,x

′
2)](x′

1
=x1,x′

2
=x2)dx1dx2.
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As g(1, 2) is just an inverse-distance electron repulsion, without spin dependence, the spin
integrations can be performed immediately and the primes can be removed. The result is
thus

〈Ψ|
∑′

(i,j)
g(i, j)|Ψ〉 =

∫

[g(1, 2)Π(r1, r2)]dr1dr2.

(The notation is consistent: Greek letters ρ and π are used for the density functions with
spin included; corresponding capitals, P and Π for their spin-free counterparts.)

In summary, π(x1,x2) = N(N − 1)
∫

Ψ(x1,x2 ...xN )Ψ
∗(x1,x2 ...xN)dx3, ...xN and

Π(r1, r2) =

∫

π(x1,x2)ds1ds2 (7.32)

is a 2-electron probability density: it gives the probability of two electrons (any two)
being found simultaneously ‘at’ points r1 and r2 in ordinary 3-space, with all the others
anywhere. (Remember this function is a density, so to get the actual probability of finding
two electrons in tiny volume elements at points r1 and r2 you must multiply it by the
volume factor dr1dr2.)

The function Π(r1, r2) describes the correlation between the motions of two electrons
and in IPM approximation turns out to be non-zero only when they have the same spin.
This is one of the main challenges to the calculation of accurate many-electron wave
functions. Fortunately we can go a long way without meeting it!

Some applications

So far we’ve been thinking mainly of an isolated system, which can stay in a
definite energy eigenstate ‘forever’ – such states being stationary. To make
the system change you must do something to it; you must disturb it and a
small disturbance of this kind is called a perturbation. The properties

of the system are measured by the way it reacts to such changes.

Response to an applied electric field

The simplest properties of molecules are the ones that depend directly on
the charge density, described by the function P (r) defined in (7.29). And
the simplest perturbation you can make is the one due to an electric field
applied from outside the molecule. This will change the potential energy of
Electron i in the Hamiltonian H, so that (using x, y, z for the components
of an electron’s position vector r,

V (i)→ V (i) + δV (i).

When the ‘external’ field is uniform and is in the z-direction, it arises
from the electric potential φ as Fz = −∂φ/∂z; and we may thus choose
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φ = −Fzz, which takes the value zero at the origin of coordinates. The
potential energy of electron i (of charge −e) due to the applied field is then
−eφ = Fzez and represents the change δV (i) in the electron’s potential
energy. Thus a uniform field in the z-direction will produce a perturbation
δV (i) = Fzezi, for every electron i. (Remember, Fz is used for the field
strength so as not to mix it up with the energy E).

Supposing Fz to be constant, its effect will be to produce a small polar-
ization of the system by urging the electron in the (negative) direction of
the field (since the electron carries a negative charge −e) and this means
the probability function will ‘lean’ slightly in the the field direction. This
effect will be small: if the change in the wavefunction is neglected in a first
approximation the change in expectation value of H will be, summing over
all electrons,

δE = 〈δH〉 = 〈δV 〉 = Fze

∫

zP (r)dr.

This may be written δE = Fzµz where µzis the z-component of the electric
moment of the electron charge density, which is an experimentally mea-
surable quantity. Of course this is a ‘first-order’ result and doesn’t depend
on the perturbation of the density function P (r), which is also proportional
to the applied field but is more difficult to calculate. When that is done the
result becomes δE = FzMz+

1
2F

2
z αzz, where αzz is another experimentally

measurable quantity; it is a component of the electric polarizability

tensor but its calculation requires perturbation theory to second order.

Response to displacement of a nucleus

As a second example let’s think of internal changes in the molecule, where
the change δV in the electronic potential energy function is caused by the
displacement of a single nucleus. Use X, Y, Z for the coordinates of a
nucleus (n, say) and think of the displacement in which X → X + δX.
The change of interaction energy between electron i and nucleus n will be
δV (ri) from electron i. Summing over all electrons gives the total potential
energy change δV (r) at any point r due to the whole electron distribution;
and we again use the result

δE = 〈δH〉 = 〈δV 〉 =
∫

δV (r)dr.
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Now divide both sides by δX and go to the limit where δX → 0, to obtain

Fnx =

∫

Fnx(r)P (r)dr, (7.33)

where you will remember that (by definition)

−(∂E/∂X) = Fnx,

is the total force on nucleus n, and

−(∂Fnx(r)/∂X) = Fnx(r),

is the force due to one electron at point r.

This is the famous Hellmann-Feynman theorem, first derived in Chap-
ter 6: in words it says that the forces acting on the nuclei (which oppose
their mutual electrostatic repulsions –and keep the molecule together) can
be calculated by ‘summing’ the attractions due to the amount of charge
P (r)dr in volume element dr over the whole ‘charge cloud’. The interpre-
tation is purely ‘classical’: the electron probability density may be treated
as a static distribution of negative charge in which the positive nuclei are
embedded. In Chapter 6 we said “This beautiful result seems too good to
be true!” and you should go through the derivation again to understand
what conditions apply and why you must be cautious in using it. At least
it gives a solid foundation for the ideas contained in Section 6.3, where we
introduced electron populations of orbital and overlap regions in LCAO
approximations to the density function P (r).

There are very many other experimentally observable effects that depend
directly on the electron density in a molecule (some already studied, like the
energy shifts of inner shell electrons, perturbed from their free-atom values
by the molecular environment; the response to the approach of charged
chemical groups, such as radical ions and cations; and the whole field of
electronic spectroscopy, which depends on the time-dependent perturba-
tions due to oscillating fields; and so on. But to close this chapter it’s
worth trying to fill one gap in the theoretical methodology built up so far:
we haven’t said very much about magnetic properties – and yet some of
the most powerful experimental techniques for getting information about
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atomic and molecular structure involve the application of strong :mag-
netic fields. One thinks in particular of Nuclear Magnetic Resonance

(NMR) and Electron Spin Resonance (ESR), which bring in the spins

of both electrons and nuclei. So we must start by thinking of how a system
responds to the application of a magnetic field.

Response to an applied magnetic field

Again let’s take the simplest case of a uniform field. Whereas an electric
field – a vector quantity – F with scalar components Fx, Fy, Fz in a Carte-
sian system, can be defined as the gradient of a scalar potential function
φ, that is not possible for a magnetic field. If you look at Chapter 4 of
Book 10 you’ll see why: briefly, divB = 0 at every point in free space;
but if B were the gradient of some scalar potential φmag that wouldn’t be
possible in general. On the other hand, B could be the curl of some vector
quantity, A, say. (If you’ve forgotten about operators such as grad, div
and curl, you’ll need Book 10.)

Now we’re ready to show how the motion of a particle of charge q is modi-
fied by the application of a magnetic field. First of all, remember how the
kinetic energy T is defined: T = (1/2m)

∑

p 2
i , where the index i runs over

components x, y, z and px, for example, is the x-component of momentum
px = mvx = mẋ – ẋ being short for the time-derivative dx/dt. Also, when
there is a potential energy V = V (x, y, z) = qφ(x, y, z) the total energy of
the particle is the Hamiltonian function

E = H(x, y, z, px, py, pz) = T + V,

but the Lagrangian function

L(x, y, z, px, py, pz) = T − V ;

named after the French mathematician Lagrange, is equally important.
Either can be used in setting up the same equations of motion, but here
we’ll use Lagrange’s approach.

The Lagrangian for a single particle in a static electric field is thus

L = 1
2mv

2 − qφ,
in terms of the speed v of the particle. In terms of L, the momentum
components can be expressed as px = (∂L/∂ẋ) = (∂T/∂ẋ), since φ is
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velocity-independent. In the presence of a magnetic field, however, we
know there is a transverse force depending on the particle velocity vector
v and the magnetic flux vector B. We want to add a term to L (which is a
scalar), depending on charge, velocity and B (or A), which can lead to the
correct form of this so-called Lorentz force.

The simplest possibility would seem to be the scalar product q(v ·A), which
leads to

L = 1
2mv

2 + q(v · A)− qφ, (7.34)

and a ‘generalized’ momentum component

px = (∂L/∂ẋ) = mẋ+ qAx − qφ. (7.35)

This leads to the correct Lorentz force

Fmag = qv × B = qv × curlA

when we calculate the rate of change of particle momentum arising from
the term q(v · A) in (7.34), as we show in Example 7.10

Example 7.10 Showing that the new equations lead to the correct Lorentz
force.

We want to show that the field-modified equations, (??) and (??) lead to
the Lorentz force Fmag = qv × B. First we write the Newtonian equations
of motion Fx = mẍ etc. (i.e. Force = mass x acceleration) in Lagrangian
form, taking one component at a time. The left-hand side can be written

Fx = −(∂U/∂x) = (∂L/∂x)

(rate of decrease of potential energy U in the x-direction). The right-hand
side depends only on velocity, through the kinetic energy T = 1

2mẋ
2: thus

∂T/∂ẋ = mẋ and therefore

Fx = mẍ =
d

dt

(

∂T

∂ẋ

)

=
d

dt

(

∂L

∂ẋ

)

,

since the potential energy U does not depend on velocity.
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The Newtonian equations can thus be replaced by

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x

– with similar equations for the y- and z-components.

Example 7.10 Showing that the new equations lead to the correct Lorentz
force.

We want to show that the field-modified equations, (7.34) and (7.35) lead
to the Lorentz force Fmag = qv×B. First we write the Newtonian equations
of motion Fx = mẍ etc. (i.e. Force = mass x acceleration) in Lagrangian
form, taking one component at a time. The left-hand side can be written

Fx = −(∂U/∂x) = (∂L/∂x)

(rate of decrease of potential energy U in the x-direction). The right-hand
side depends only on velocity, through the kinetic energy T = 1

2mẋ
2: thus

∂T/∂ẋ = mẋ and therefore

Fx = mẍ =
d

dt

(

∂T

∂ẋ

)

=
d

dt

(

∂L

∂ẋ

)

,

since the potential energy U does not depend on velocity.

The Newtonian equations can thus be replaced by

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x

– with similar equations for the y- and z-components.

Turning now to the generalized momentum vector p, whose x-component
is given in (??), when the applied fields are time-independent its rate of
change will be

(d/dt)p = (d/dt)mv + q(d/dt)A.

The first term on the right is the usual mass × acceleration of Newton’s
law (the second term being the change resulting from the magnetic field)
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and refers to the ordinary ‘mechanical’ momentum change. So we write
the equation the other way round, as

mv̇ = ṗ− qȦ.

The time derivative of p follows from the Lagrangian equations of motion
(at the beginning of this Example), namely (for the x-component),

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x
.

Thus, (∂L/∂ẋ) – which is the generalized momentum x-component – has
a time derivative ṗx and this is equated to (∂L/∂x). When the magnetic
field is included it follows that

ṗx = (∂L/∂x) = −q(∂φ/∂x) + qvx∂(Ax/∂x).

The second term in the expression for F = mv̇ is −qȦ and as we have taken
A = 1

2B× r, we can easily calculate its time rate of change. On taking the
components one at a time and remembering that the position vector r has
components x, y, z. we obtain
(

dAx

dt

)

=

(

∂Ax

∂t

)

+

(

∂Ax

∂x

)(

dx

dt

)

+

(

∂Ax

∂y

)(

dy

dt

)

+

(

∂Ax

∂z

)(

dz

dt

)

,

with similar expressions for the y- and z-components. Note that the first
term on the right will be zero because A has no explicit dependence on
time. The second term in the expression for F = mv̇ is −qȦ and as we
have taken A = 1

2B× r, we can easily calculate its time rate of change. On
taking the components one at a time and remembering that the position
vector r has components x, y, z. we obtain
(

dAx

dt

)

=

(

∂Ax

∂t

)

+

(

∂Ax

∂x

)(

dx

dt

)

+

(

∂Ax

∂y

)(

dy

dt

)

+

(

∂Ax

∂z

)(

dz

dt

)

,

with similar expressions for the y- and z-components. Note that the first
term on the right will be zero because A has no explicit dependence on
time. The second term in the expression for F = mv̇ is −qȦ and as we
have taken A = 1

2B× r, we can easily calculate its time rate of change. On
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taking the components one at a time and remembering that the position
vector r has components x, y, z. we obtain
(

dAx

dt

)

=

(

∂Ax

∂t

)

+

(

∂Ax

∂x

)(

dx

dt

)

+

(

∂Ax

∂y

)(

dy

dt

)

+

(

∂Ax

∂z

)(

dz

dt

)

,

with similar expressions for the y- and z-components. Note that the first
term on the right will be zero because A has no explicit dependence on
time.

On substituting both terms into the force equation F = mv̇ = ṗ − qȦ the
x-component follows as

Fx = −q
∂φ

∂x
+ q

[(

∂Ay

∂x
− ∂Ax

∂y

)

ẏ −
(

∂Ax

∂z
− ∂Az

∂x

)

ż

]

.

The two terms in round brackets can be recognised as, respectively, the z-
and y-components of the vector curlA; and when the coefficients ẏ and ż
are attached the result in square brackets is seen to be the x-component of
the vector product v × curlA.

Finally, then, in vector notation F = qE+ q(v× B) where the electric field
vector is here denoted by E, while the other term Fmag = q(v × curlA) is
the Lorentz force.

Molecules in magnetic fields

In Section 6 of Chapter 5 we noted that whenever a system contained
unpaired electrons there would be a tiny interaction between the electron

spin, with its resultant magnetic dipole, and any external magnetic field.
A free spin interacts with a magnetic field B through a ‘coupling term’
gβB · S, where the ‘g-value’ is very close to 2 and β = e~/2m (the “Bohr
magneton”). So there will be a small perturbation of the many-electron
Hamiltonian of the form

H′Z = gβ
∑

i

B · S(i), (7.36)

the summation being over all electrons. This is the spin-field “Zeeman
interaction”.

There will also be an interaction between the spin dipole and the magnetic
field produced by motion of the electrons, which will depend on the veloc-
ity with which they are moving. In the case of an atom, the spatial motion
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around the nucleus was represented by an angular momentum operator,
giving rise to spin-orbit coupling through a perturbation

H′mag = β
∑

i

B · L(i). (7.37)

By taking account of these two perturbations we were able to predict the
fine structure of atomic energy levels, which could be ‘seen’ experimen-
tally in electronic spectroscopy.

In the case of a molecule things are a bit more difficult: there will be several
nuclei instead of one, so an electron is not in a spherically symmetrical field
and will not be in a state of definite angular momentum – which is said to be
‘quenched’ by the presence of other nuclei. That means the velocity of the
electron will be variable and spread out through space, corresponding to a
‘current’ of probability density; and in defining this we must take account
of the magnetic field. We also need to generalize the spin density, defined
as the excess of up-spin electron density, Pα(r), over down-spin, Pα(r) (see
(5.32). We can, however, do both things at the same time by going back
to first principles.

Property Densities

Suppose we are interested in some observable quantity, call it X, with
associated operator X(i) for electron i. The expectation value of X, for the
whole N -electron system will be

〈Ψ|X|Ψ〉 =

∫

Ψ∗(x1,x2, ...xN)XΨ(x1,x2, ...xN)dx1dx2 ... dxN

= N

∫

Ψ∗(x1,x2, ...xN)X(1)Ψ(x1,x2, ...xN)dx1dx2 ... dxN .

– since every electron gives the same contribution as ‘Electron 1’. By
moving the Ψ∗ factor to the right and changing variable x1 to x′1 (so the
operator will not touch it), we can rewrite this result as

〈Ψ|X|Ψ〉 =
∫

[X(1)ρ(x1;x
′
1)]x′

1=x1
dx1,

where ρ(x1;x
′
1) is the 1-electron density matrix and the two variables

are identified after the operation with X(1).
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The whole integrand in the last equation is an ordinary density function
and, when integrated over all space, gives the expectation value of X for
the whole system. We’ll call it a property density for X and denote it
by

ρX(x) = [Xρ(x;x′)]x′=x, (7.38)

where the subscripts on the variables in the one-electron density matrix,
no longer necessary, are dropped from now on.

Spinless Properties

You’ve already dealt with similar density functions, usually for properties
that are spin-independent. In that case you can integrate over spin vari-
ables immediately in getting the expectation value and obtain, instead of
(7.38), a spinless density function

PX(r) = [XP (r; r′)]r′=r. (7.39)

If you write V instead of X, for potential energy of the electrons in the
field of the nuclei, and identify the variables straight away (V ) being just a
function of position in ordinary space), then all should be clear: the density
of potential energy becomes

PV (r) = V (r)P (r),

since V is just the multiplier V (r). The density is thus the amount of
potential energy per unit volume for an electron at point r and integration
over all space gives the expectation value of the potential energy of the
whole electron distribution.

Spin Density

Now let’s think of the density of a component of spin angular momen-

tum (if the electron is ‘smeared out’ in space, with probability density
P (r) per unit volume, then so is the spin it carries!). On taking X = Sz,
and using (7.38) we get

ρSz(x) = [Sz ρ(x;x
′)]x′=x.

For any kind of wave function ρ(x;x′) will have the form (Read Example
5.6 again, and what follows it, then think about it!)

ρ(x;x′) = Pα(r; r
′)α(s)α(s′) + Pβ(r; r

′)β(s)β(s′).
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The spin operator in (7.40) will multiply α(s) by 1
2 , but β(s) by −1

2 and
then, removing any remaining primes, (7.40) will become (check it out!)

ρSz(r) =
1
2 [Pα(r)− Pβ(r)]. (7.40)

This result, as you would expect, is simply (in words)

“Density of up-spin electrons minus density of down-spin, times magnitude
of spin angular momentum”.

Since ρ has usually been reserved for functions of the space-spin variable
x, the result is often written instead as

Qz(r) =
1
2 [Pα(r)− Pβ(r)]. (7.41)

Similar densities, Qx, Qy, may also be defined, but in practice the applied magnetic field (e.g. in NMR

and ESR experiments) is usually chosen to fix the ‘z-direction’.

Densities that depend on motion of the electrons

The other density functions needed refer to electronicmotion, for generality
in the presence of a magnetic field: they are a density of kinetic energy
(which is a scalar quantity) and a current density (a vector density arising
from the linear momentum).

Kinetic Energy Density

In (7.34) we proposed the kinetic energy operator T = 1
2mv2−e(v·A) for an

electron moving in a magnetic field B, arising from a vector potential A;
and in this case we also derived a ‘generalized’ momentum operator(7.35),
namely p = mṙ − eA, whose first term is just the Newtonian quantity mv

– usually denoted by p when there is no magnetic field. To avoid confusion
it’s convenient to give the generalized momentum vector a new symbol,
writing it as

π = mṙ − eA (7.42)

and calling it, by its usual name, the “gauge invariant momentum”.

When there is no magnetic field, the 1-electron KE term in the Hamiltonian
can be written T = (1/2m)p2 and it would seem that a kinetic energy
density could be defined (cf. (7.39)) as

PT0
(r) = (1/2m)[p2 P (r; r′)]r′=r,

where subscript zero indicates zero magnetic field.
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Unfortunately this definition is not completely satisfactory because it leads
to a quantity with both real and imaginary parts, whereas the kinetic en-
ergy contributions must be both real and positive at all points in space.
One way out of this difficulty is simply to take the real part of the last
expression as a more satisfactory definition; another is to replace the oper-
ator p2 by p · p†, where the adjoint operator p† (obtained by changing the
sign of i) works on the variables in the wave function Ψ∗. In the second
case the KE density becomes

PT0
(r) = (1/2m)[p · p† P (r; r′)]r′=r. (7.43)

(This is still not absolutely satisfactory if one wants to know how much
KE comes from a finite part of space, when integrating to get the total
expectation value, for it contains terms depending on the surface bounding
the chosen region. But for all normal purposes, which involve integration
over all space, it may be used.)

In the presence of a magnetic field the operator p is replaced by the ‘gen-
eralized’ momentum operator π, defined in (7.42), and the natural gener-
alization of the KE density is

PT(r) = (1/2m)[π · π† P (r; r′)]r′=r. (7.44)

Like the field-free result, this definition is normally satisfactory.

Probability current density

Whenever the probability distribution, described by the 1-electron density
P (r), is changing in time we need to know how it is changing. There will
be a flow of density out of (or into) any volume element dr and it must
be described in terms of a velocity component vα (α = x, y, z) in ordinary
space. (Think of the wave packet discussed in Section ? of Book 11.)

Here we’ll look for a current density function with components Jα(r) such
that

Pvα(r) = (1/m)[pα P (r; r
′)]r′=r,

which we know will lead, on integrating over all space, to the expectation
value 〈vα〉 of electronic velocity along the α direction. Again this gives in
general an unwanted imaginary component, which may be dropped; and
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when the magnetic field is admitted the most satisfactory definition is

Pvα(r) = m−1Re[πα P (r, r
′)]r′=r. (7.45)

This gives a current density which is everywhere real and positive and gives
the correct expectation value on integrating over all space.

Finite basis approximations

Of course, if we want to actually calculate a molecular electronic property
we have to use an approximation in which the orbitals used (e.g. the MOs)
are expressed as linear combinations of basis functions (e.g. AOs centred
on the various nuclei). This finite basis approximation was first introduced
in Chapter 4 (Section 4.4) and allows us to convert all equations intomatrix

equations. For example any MO

φK = cK1χ1 + cK2χ2 + ... + cKrχr + ... + cKmχm

can be expressed in matrix form, as the row-column product

φK = (χ1 χ2 ... χm)













cK1

cK2

..

..

cKm













= χcK , (7.46)

where cK stands for the whole column of expansion coefficients and χ for
the row of basis functions. So the X operator will be represented in the χ-
basis by the matrix X, with elements Xrs = 〈χr|X|χs〉, and its expectation
value for an electron in φK will be

〈φK |X|φK〉 =
∑

r,s

c∗Kr〈χr|X|χs〉cKs

=
∑

r,s

c∗KrXrscKs

= cK
†XcK (7.47)

– so, you see, an operator (set in the special typeface as X) is represented
by a corresponding matrix X (set in boldface), while a function, such as
φK , is represented by a single-column matrix cK containing its expansion
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coefficients; and the complex conjugate of a function is indicated by adding
a ‘dagger’ to the symbol for its column of coefficients. Once you get used
to the notation you can see at a glance what every equation means. As
a simple illustration of how things work out in a finite basis we can use
a very rough approximation to estimate the velocity expectation value for
an electron moving along a 1-dimensional chain of Carbon atoms.

Example 7.11 Calculation of a ring current
In Example 7.9 we joined the ends of a chain of N Carbon atoms to make a ring, considering only
the π electrons (one from each atom) and using Hückel approximations to calculate the MOs φk and
corresponding energy levels ǫk. In the absence of an applied magnetic field, the electron velocity operator
is v = (1/m)p and we’ll choose the momentum operator for a component p in the ‘positive’ direction (i.e.
from Atom n to Atom n+ 1 as you go along the chain.)

Suppose we want the expectation value 〈v〉 for motion in this direction and for any allowed value of k.
Since any velocity operator v = (1/m)p contains a factor (~/i), and is thus pure imaginary, its expectation
value in any state with a real wave function must be zero. But Example 7.9 showed that, for a ring of N
atoms, complex eigenfunctions of the form

φk = Ak

∑

n

χn exp(2πink/N) (Ak = 1/
√
N)

could be found. The MO of lowest energy is φ0 = A0(χ1+χ2+ ...+χ6) and, being real, will have zero value
of the velocity expectation value. But the MOs with k = ±1 form a degenerate pair, whose wave functions

are complex conjugate. The expectation value in state φk will be 〈φk|v|φk〉 =
∑

n,n′ c
(k)∗
n 〈χn|v|χn′〉c(k)n′

and tdo evaluate this quantity, which measures the expected electron probability current, we need only

the matrix elements 〈χn|v|χn′〉 and the AO coefficients c
(k)
n (given above for any chosen k). If we were

doing an energy calculation, with Hückel approximations, we’d have the 1-electron Hamiltonian h in place
of v; and the n-n′ matrix element would be given an empirically chosen value βnn′ for nearest neighbour
atoms, zero otherwise. But here the nearest neighbours of Atom n would have n′ = n + 1 (for positive
direction along the chain) and n′ = n− 1 (for negative direction); and, as the operator v ‘points’ in the
direction of increasing n, the n→ n+ 1 matrix element would have a substantial (but imaginary) value
(iγ, say). With this choice, the most suitable approximations would seem to be 〈χn|v|χn+1〉 = iγ and
〈χn|v|χn−1〉 = −iγ, other matrix elements being considered negligible.

On using this very crude model, the expectation value of the velocity component for an electron in MO
φk, for an N -atom chain, would be

〈φk|v|φk〉 = |Ak|2
n=N
∑

n=1

[exp(−2πink/N)(iγ) exp(2πi(n+ 1)k/N)

+ exp(−2πink/N)(−iγ) exp(2πi(n− 1)k/N)].

This reduces to (Check it out!– noting that the summation contains N terms)

〈φk|v|φk〉 = −2γ sin(2πk/N).

The example confirms that, even without using a computer (or even a simple calculator!),
it’s often possible to obtain a good understanding of what goes on in a complicated many-
electron system. Here we’ve found how an IPM approach with the simplest possible
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approximations can reveal factors that govern the flow of charge density along a carbon
chain: a parameter γ (which depends on overlap of adjacent AOs) should be large and the
flow will be faster in quantum states with higher values of a quantum number k. Pairs of
states with equal but opposite values of k correspond to opposite directions of circulation
round the ring; and the circulating current produces a magnetic dipole, normal to the
plane of the ring. In cyclic hydrocarbons such effects are experimentally observable; and
when the angular momentum operator p is replaced by the ‘gauge invariant’ operator
π (which contains the vector potential of an applied magnetic field) it is possible to
calculate a resultant induced magnetic dipole – again experimentally observable. In
fact, the quantum number k in a ring current calculation is the analogue of an angular

momentum quantum number in an atomic calculation. Chapter 7 has set out most of
the mathematical tools necessary for an ‘in depth’ study of molecular electronic structure
and properties – even if only at IPM level. But, for now, that’s enough!

In Chapter 8, we’ll start looking at more extended systems where there may be many
thousands of atoms. Incredibly, we’ll find it is still possible to make enormous progress.
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Chapter 8

Some extended structures in 1-,2-

and 3-dimensions

8.1 Symmetry properties of extended structures

In earlier chapters of this book we’ve often talked about “symmetry properties” of a
system; these have been, for example, the exchange of two or more identical particles, or
a geometrical operation such as a rotation which sends every particle into a new position.
Such operations may form a symmetry group when they satisfy certain conditions.
We have met Permutation Groups in introducing the Pauli Principle (Section 2.4 of
Chapter 2); and Point Groups, which contain geometrical operations that leave one
point in the system unmoved, in studying molecules (e.g. in Example 7.5 of this book).
But when we move on to the study of extended structures such as crystals, in which
certain structural ‘units’ may be repeated indefinitely (over and over again) as we go
through the crystal, we must admit new symmetry operations – called translations. So
this is a good point at which to review the old and start on the new.

The Point Groups

Here we’ll use one or two simple examples to introduce general ideas and
methods, without giving long derivations and proofs. As a first example
let’s look at the set of operations which, when applied to a square plate
(or ‘lamina’), leave it looking exactly as it did before the operation: these
are the operations which “bring it into self-coincidence”. They are named
as shown in the following Figure 8.1, where those labelled with a C are all
rotations around a vertical axis through the centre of the square, while
those with a σ refer to reflections across a plane perpendicular to it
(the arrow heads indicate a direction of rotation, while the double-headed
arrows show what happens in a reflection). Thus, rotation C4 sends the
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square corners labelled 1, 2, 3, 4 into 2, 3, 4, 1 and similarly σ1 interchanges
corners 2 and 4, leaving 1 and 3 where they were.

1

2

3

4

C2
C4

C4

σ2
σ′2

σ1

σ′1

Figure 8.1 Symmetry operations: square lamina (see text)

Note that subscripts 1 and 2 on the reflection operations label different
reflection planes and, when that is not enough, a prime has been added
to the σ to show a different type of reflection (e.g. one which interchanges
opposite sides of the square instead of opposite corners). The rotations Cn
stand for those in the positive sense (anti- clockwise), through an angle
2π/n, while Cn stands for a similar operation, but in the negative sense
(i.e. clockwise). In this example the operations do not include “turning
the plate over”, because the top and bottom faces may look different; if they
looked exactly the same we’d have to include another symmetry operation
for the interchange.

Note also that symmetry operations aren’t always ones you can actually
do! A reflection, for example, is easy to imagine – sending every point
on the lamina into its ‘mirror image’ on the other side of the reflection
plane – but could only be done by breaking the lamina into tiny pieces and
re-assembling them!

The various operations, defined and named in Figure 8.1, can be collected
and set out in a Table –as below:
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Table 1
E C2 C4 C4

σ1 σ2 σ′1 σ′2

The operations in different boxes in Table 1 belong to different “classes”
(e.g. rotations through the same angle but around different axes; or reflec-
tions across different planes) and E is used for the “identity” operation (do
nothing!), which is in a class by itself.

Definition of a Group

Symmetry operations are combined by sequential performance: first per-
form one and then follow it by a second. Since each makes no observable
change to the system, their combination is also a symmetry operation. The
only way to see what is happening is to put a mark on the object (or to add
numbers as in Figure 8.1). To describe the two operations “C4 following
σ1” and their result we write

C4σ1 = σ′1.

The order in which the operations are made follows the usual convention,
the one on the right acting first. Thus, if C4 acts first, we find σ1C4 = σ′2
and the two ‘products’ do not, in general, commute: σ1C4 6= C4σ1. Note
that every operation has an inverse: for example C4C4 = C4C4 = E and
some operations may be self -inverse, for example, σ1σ1 = E. In general, the
inverse of any operation R is denoted by R−1, just as in ‘ordinary’ algebra.

In the language of Group Theory any collection of ‘elements’, with a law

of combination like the one we’ve been using, containing an identity

element E and an inverse R−1 for every element R, is called a group. The
example we’ve been studying is called the C4v point group: it contains
symmetry operations that leave one point unmoved, have a 4-fold principle
axis of rotation (normally taken as the ‘vertical’ axis) together with ver-
tical reflection planes. There are molecules with symmetry groups more
complicated than Cnv, with an n-fold principle axis, but they can be dealt
with in similar ways.

Subgoups, generators, classes

The elements in the first row of Table 1 form a group in themselves, C4;
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we say C4 is a subgroup of C4v.

All the elements in C4 can be expressed in terms of one element C4: thus
C2 = C4C4(= C 2

4 ), C4 = C 3
4 , E = C 4

4 . We say C4 is a generator of C4.

If we take the elements in the first row of Table 1 and follow them (i.e.
multiply from the left), in turn, with σ1 we generate the elements in the
second row. Thus, the whole group C4v can be generated from only two
elements, C4 and σ1. Often we need to work with only the generators of a
group, since their properties determine the group completely.

The classes within a group each contain symmetry operations which are
similar except that the axis, or reflection plane, to which they refer has
itself been acted on by a symmetry operation. Thus, the reflection plane
for σ2 differs from that for σ1 by a C4 rotation; so σ1 and σ2 are in the
same class – but this class does not include σ′1 or σ

′
2.

Space Groups and Crystal Lattices

So far we’ve been looking only at Point Groups, where one point stays
fixed in all symmetry operations. But in extended structures like crystals
we must admit also the translation operations in which all points are
shifted in the same direction and by the same amount. In symbols, a
translation t sends the point with position vector r into an ‘image’ with
r′ = r + t. Moreover, translations and point group operations (which we’ll
denote generally by R) can be combined. Thus, a rotation followed by a
translation will send a point at r into an image at r′ = Rr+ t. It is usual to
denote this composite operation by (R|t) (not to be confused with a scalar
product in quantum mechanics!), writing in symbols

r′ = (R|t)r = Rr + t. (8.1)

It is then easily shown (do it!) that the law of combination for such oper-
ations is

(R|t)(S|t′) = (RS|t+ Rt′) (8.2)

and that the set of all such operations then forms a Space Group.

In the following example we show how just two primitive translations,
call them a1 and a2, can be used to generate a Crystal Lattice in two
dimensions. On adding a third primitive translation a3 it is just as easy to
generate a lattice for a real three-dimensional crystal.
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Example 8.1 Generating a two-dimensional lattice

Let us take a1 and a2 as unit vectors defining x- and y-axes and combine them, without admitting any
point group operations, to obtain a translation t = an1

1 an2

2 : the translations commute, so the order in
which the shifts are made is not important and the first factor simply means n1 translations a1 (e.g.
a1a1a1a1 = a 4

1 with the usual convention). And this translation moves a point at the origin to an image
point with position vector r′ = n1a1 + n2a2 (it doesn’t matter whether you think of a1, a2 as vectors or
translations – it depends only on what you have in mind!). For n1 = 4, n2 = 2 you go to the top-right
lattice point shown below:

0 1 2 3 4
0

1

2

If you allow n1, n2 to take all positive and negative values, from zero to infinity, you will generate an

infinite square lattice in the xy-plane; the bold dots will then show all the lattice points.

Example 8.1 brings out one very important conclusion: when translations are combined
with point group operations we have to ask which rotations or reflections are allowed.
The combination (R|t) may not always be a symmetry operation – and in that case the
operations will not be acceptable as members of a space group. Looking at the picture it
is clear that if t is a translation leading from point (1,0) to (3,1) it can be combined with
a rotation C4, and then leads to another lattice point; but it cannot be combined with
C3 or C6 because (R|t) would not lead to a lattice point for either choice of the rotation
– and could not therefore belong to any space group. To derive all the possible space
groups, when symmetrical objects are placed in an empty lattice of points, is a very long
and difficult story (there are 320 of them!) – but it’s time to move on.

Lattices and Unit Cells

In three dimensions we need to include three primitive translations (a1, a2, a3)
instead of two; and these vectors may be of different length and not at 90◦

to each other. If we stick to two, for ease of drawing, they will generate a
lattice of the type shown below

a1
a2

Figure 8.2 Lattice generated by translations a1, a2
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A general lattice point will then have the position vector (in 3 dimensions)

r = n1a1 + n2a2 + n3a3, (8.3)

where n1, n2, n3 are integers (positive, negative, or zero). The scalar prod-
uct that gives the square of the length of the vector (i.e. of the distance
from the origin to the lattice point) is then

r · r = n 2
1 (a1 · a1) + n 2

2 (a2 · a2) + n 2
3 (a3 · a3)

+n1n2(a1 · a2) + n1n3(a1 · a3) + n2n3(a2 · a3)
=
∑

i

n 2
i Sii +

∑

i<j

ninjSij (Sij = ai · aj), (8.4)

where the Sij are elements of the usual metric matrix S and i, j go from
1 to 3. When the vectors for the primitive translations are orthogonal and
of equal length S is a multiple of the 3 × 3 unit matrix and the transla-
tions generate a simple cubic lattice, in which (distance)2 has the usual
(Cartesian) form as a sum of squares of the vector components.

Using (8.3), with the oblique axes shown in Figure 8.2, the scalar product
does not have that simple form; but we can get it back by setting up a
new basis of ‘reciprocal vectors’ (not a good name), denoted by b1, b2,

in which a general vector v is expressed as v = v1b1 + v2b2 – and choosing
b1 orthogonal to a2, but with length reciprocal to that of a1, and similarly
for b2. This makes a1 · b1 = a2 · b2 = 1, but a1 · b2 = 0 and a scalar product
(r1a1 + r2a2) · (v1b1 + v2b2) will then take the usual form

r · v = r1v1(a1 · b1) + r2v2(a2 · b2) + r1v2(a1 · b2) + r2v1(a2 · b1) = r1v1 + r2v2,

just as it would be for two general vectors in a (Cartesian) 2-dimensional
space.

The same construction can be made in 3-space, with the primitive trans-
lations described by the vectors a1, a2, a3; and with basis vectors b1, b2, b3
defining the reciprocal space. But in this case the relationship between
the two bases is not so direct: the b vectors must be defined as

b1 =
a2 × a3

[a1 a2 a3]
,
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with permutations 123→ 231→ 312 giving b2, b3. Here [a1 a2 a3] = a1 ·a2×
a3 is the vector triple product which gives the volume of a single unit cell

of the lattice (If you turn back to Section 6.4 of Book 2, you’ll see you did
this long ago!)

Many metals have a crystal structure with a single atom at every lattice
point and in a “free-electron model” we can think of the most loosely bound
electrons as moving freely around the positively charged atomic ‘cores’ from
which they came.

Example 8.2 Simple model of a crystal

Let us consider a ‘fundamental volume’ containing a large number G3 of unit cells, G in each of the
three directions a1, a2 and a3. You can think of this as defining a small crystal of the same shape as the
unit cell.

First we’ll forget about the atom cores and think of completely free electrons moving in a box provided
by the ‘empty lattice’. We know that the energy eigenstates of a free electron are given by φ(r) =
M exp(ir · p/~) where r and p represent its position and momentum vectors (as sets of components),
while ~ = h/2π is Planck’s constant and M is just a normalizing factor.

When we write position and momentum in the form r1a1+ r2a2+ r3a3 and p1b1+ p2b2+ p3b3, the scalar
product r · p keeps its Cartesian form and the free-electron wave function becomes

φ(r) = N exp(ir1p1/~) exp(ir2p2/~) exp(ir3p3/~).

Now on changing r1a1 to (r1 +G)a1 we move from the origin to a point G lattice cells further on in the
a1 direction; and we want to impose the periodic boundary condition that the corresponding factor
in the wave function is unchanged. This means that exp(iGp1/~) must be unity and this requires that
the argument Gp1/~ must be a multiple of 2π. The same argument applies in the other directions, so we
must insist that

Gp1/~ = κ1(2π), Gp2/~ = κ2(2π), Gp3/~ = κ3(2π),

where κ1, κ2, κ3 are arbitrary (but very large) integers. In other words the only allowed momentum
vectors are p = ~k, with components p1 = (2π/G)κ1 etc. – and the vectors are thus

p = (~κ1/G)2πb1 + (~κ2/G)2πb1 + (~κ3/G)2πb3.

It is usual to write the results of Example 8.2 in the form p = ~k where

k = k1(2πb1) + k2(2πb2) + k3(2πb3), (8.5)

Here k is called a vector of k-space and the basis vectors are now taken as 2πb1, 2πb2, 2πb3.

The corresponding 1-electron wave function will then be (adding a normalising factor M)

φ(r) =M exp(ir · p/~) =M exp(ik · r), (8.6)
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with quantized values of the k-vector components. (Remember that vector components,
being sets of numbers, have usually been denoted by bold letters r, while the abstract
vectors they represent are shown in ‘sans serif’ type as r) The energy of the 1-electron
state (8.6) can still be written in the free-electron form ǫk = (~2/2m)|k|2, but when the
axes are oblique this does not become a simple sum-of-squares (you have to do some
trigonometry to find the squared length of the k-vector!) .

Of course an empty box, even with suitable boundary conditions, is not a good model
for any real crystal; but it gives a good start by showing that the ‘fundamental volume’
containing G3 lattice cells allows us to set up that number of quantized 1-electron states,
represented by points in a certain central zone of k-space. Each state can hold two
electrons, of opposite spin, and on adding the electrons we can set up an IPM description
of the whole electronic structure of the crystal.

8.2 Crystal orbitals

In the ‘empty-lattice’ approximation, we have used free-electron wave functions of the form
(8.6) to describe an electron moving with definite momentum vector p = ~k, quantized
according to the size and shape of the fundamental volume.

Now we want to recognize the fact that in reality there is an internal structure due to the
presence of atomic nuclei, repeated within every unit cell of the crystal. We’re going to
find that the 1-electron functions are now replaced by crystal orbitals of very similar
form

φ(r) =M exp(ik · r)fk(r), (8.7)

where fk(r) is a function with the periodicity of the lattice – having the same value at
equivalent points in all the unit cells. This result was first established by the German
physicist Bloch and the functions are also known as Bloch functions.

To obtain (8.7) most easily we start from the periodicity of the potential function V (r):
if we look at the point with position vector r + R, where R is the displacement

R = m1a1 +m2a2 +m3a3

and m1,m2,m3 are integers, the potential must have the same value as at point r. And
let’s define an operator TR such that TRφ(r) = φ(r+R). Applied to the potential function
V (r) it produces TRV (r) = V (r+R), but this must have exactly the same value V (r) as
before the shift: the potential function is invariant against any displacement with integral
m’s. The same is true for the kinetic energy operator T and for the sum h = T+V, which
is the 1-electron Hamiltonian in IPM approximation. Thus

TR(hφ) = hTRφ,

h being unchanged in the shift; and in other words the operators h and TR must commute.
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If we use T1,T2,T3 to denote the operators that give shifts r→ r+a1, r→ r+a2, r→ r+a3
(for the primitive translations) then we have four commuting operators (h,T1,T2,T3) and
should be able to find simultaneous eigenfunctions φ, such that

hφ = ǫφ, T1φ = λ1φ, T2φ = λ2φ, T3φ = λ3φ. (8.8)

Now let’s apply T1 G times to φ(r), this being the number of unit cells in each direction
in the fundamental volume, obtaining (T1)

Gφ = λ G
1 φ. If we put λ1 = eiθ1 this means that

Gθ1 must be an integral multiple of 2π, so we can write θ1 = (κ1/G)× (2π), where κ1 is
a positive or negative integer or zero. This is true also for λ2 and λ3; and it follows that
in a general lattice displacement, R = m1a1 +m2a2 +m3a3,

φ(r+R) = TRφ(r) = Tm1

1 Tm2

2 Tm3

3 φ(r).

On introducing the k-vector defined in (8.6), this result becomes

φ(r+R) = TRφ(r) = exp(ik ·R)φ(r). (8.9)

To show that a function φ(r) with this property can be written in the form (8.2) it is
enough to apply the last result to the function eik·rf(r), where f(r) is arbitrary: thus

eik·Reik·rf(r+R) = eik·Reik·rf(r).

In other words we must have f(r +R) = f(r) and in that case the most general crystal
orbital will have the form

φk(r) = eik·rfk(r) (fk(r) a periodic function) (8.10)

Here the subscript k has been added because the components of the k-vector are essentially
quantum numbers labelling the states. There is thus a one-to-one correspondence between
Bloch functions and free-electron wave functions, though the energy no longer depends in
a simple way on the components k of the k-vector The simplest approximation to a crystal
orbital is a linear combination of AOs on the atomic centres: thus, for a 1-dimensional
array of lattice cells, with one AO in each, this has the general form

φ =
∑

n

cnχn, (8.11)

where the χs are AOs on the numbered centres. We imagine the whole 1-dimensional
crystal is built up by repeating the fundamental volume of G unit cells in both directions,
periodicity requiring that cn+G = cn.

In the following example we assume zero overlap of AOs on different centres and use a
nearest-neighbour approximation for matrix elements of the 1-electron Hamiltonian h.
Thus, introducing the so-called coulomb and resonance integrals

〈χn|h|χn〉 = α, 〈χn|h|χn+1〉 = β (8.12)
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Example 8.3 Crystal orbital for a 1-dimensional chain

With the approximations (8.12), the usual secular equations to determine the expansion coefficients in
(8.11) then become (check it out!)

cn−1β + (cn − ǫ)α+ cn+1β = 0 (all n)

and are easily solved by supposing cn = einθ and substituting. On taking out a common factor the
condition becomes, remembering that eiθ + e−iθ = 2 cos θ, (α − ǫ) + 2β cos θ = 0, which fixes ǫ in terms
of θ.

To determine θ itself we use the periodicity condition cn+G = cn, which gives eiGθ = 1. Thus Gθ must be
an integral multiple of 2π and we can put θ = 2πκ/G, where κ is a positive or negative integer or zero.
Finally, the allowed energy levels and AO coefficients in (8.11) can be labelled by κ:

ǫκ = α+ 2β cos(2πκ/G), c κ
n = exp(2πiκn/G).

The energy levels for a 1-dimensional chain of atoms, in LCAO approximation, should
therefore form an energy band of width 4β, where β is the interaction integral 〈χn|h|χn+1〉
between neighbouring atoms. Figure 8.4, below, indicates these results for a chain of Hy-
drogen atoms, where every χ is taken to be a 1s orbital.

ǫ 4β

(a) (b)

Figure 8.4 Energy Band and part of Crystal Orbital
(schematic, see text)

The energy levels are equally spaced around ǫ for a free atom, G ‘bonding’ levels below and
G ‘anti-bonding’ levels above. When the number of atoms in the fundamental volume is
very large the levels become so close that they form an almost continuous band, indicated
by the shaded area in (a). The crystal orbitals, being linear combinations of the AOs,
have a wave-like form with a wavelength depending on the energy, as indicated in (b).
If the nuclear charges were reduced to zero, the AOs would become broader and broader
and the ‘spiky’ crystal orbital would go over into the plane wave for an empty lattice.

8.3 Polymers and plastics

It’s time to look at some real systems and there’s no shortage of them: even plastic
bags are made up from long chains of atoms, mainly of Carbon and Hydrogen atoms, all
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tangled together; and so are the DNA molecules that carry the ‘instructions’ for building
a human being from one generation to the next! All are examples of polymers.

In Example 8.3 we found crystal orbitals for the π-electrons of a carbon chain, using a
nearest-neighbour approximation and taking the chain to be straight. In reality, however,
carbon chains are never straight, and the C–C sigma bonds are best described in terms of
hybrid AOs, inclined at 120◦ to each other. Polyene chains are therefore usually ‘zig-zag’
in form, even when the Carbon atoms lie in the same plane – as in the case shown below:

H

H

H

H

H

H

H

H

H

H

H

Figure 8.5 Picture showing part of a long polyene chain

In the figure, the black dots in the chain indicate the Carbon atoms of the ‘backbone’, to
which the Hydrogens are attached. The molecule is (ideally) flat and each Carbon provides
one electron in a π-type AO, which can be visualized as sticking up perpendicular to the
plane of the paper. The system is a ‘one-dimensional crystal’ in which each unit cell
contains four atoms, two Carbons and two Hydrogens. As C2H2 is the chemical formula
for Acetylene (which you met in Example 7.3), a polyene of this kind is commonly called
‘polyacetylene’ (“many-acetylenes”.)

In Example 8.3, we used a simplified model in which (i) the zig-zag chain was replaced by
a straight chain; (ii) the unit cell contained only one Carbon atom, the Hydrogens still
being left out; and (iii) each Carbon contributed only one electron to the π-type crystal
orbitals, the more tightly-bound electrons simply providing an ‘effective field’ in the usual
way. With four atoms in every unit cell, we should try to do better.

How to improve the model

If we continue to admit only the valence electrons, we shall need to consider at least
4+4+2 AOs in every unit cell (4 on each Carbon and 1 on each Hydrogen). So with Rn as
the origin of the nth unit cell we shall have to deal with 10 AOs on each atom, indicating
their type and position in the cell. However, to keep things simple, let’s deal with only
the two Carbons, calling them A and B, and taking only one AO on each. Thus χA will
be centred on point rA in the unit cell – i.e. at the position of the ‘first’ Carbon – and χB

on point rB, at the position of the ‘second’. So their positions in the whole crystal lattice
will be Rn,A = Rn + rA and Rn,B = Rn + rB. We can then set up Bloch functions for each
type of AO, such that

φA,k(r) =
1
√
G

3

∑

m

exp(ik ·Rm,A)χA,Rm,A
(r), φB,k(r) =

1
√
G

3

∑

n

exp(ik ·Rn,B)χB,Rn,B
(r).

(8.13)
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These functions will behave correctly when we go from the unit cell at the origin to any
other lattice cell and, provided all χs are orthonormal, they are also normalized over the
whole fundamental volume. The k-vector specifies the symmetry species of a function,
under translations, and only functions with the same k can be mixed. Just as we can
express a π-type MO between the two atoms of the unit cell as a linear combination
cAχA + cBχB, we can write a π-type crystal orbital as

φ = cA,kφA,k + cB,kφB,k, (8.14)

where the mixing coefficients now depend on the k-vector and must be found by solving
a secular problem, as usual.

To complete the calculation, we need approximations to the matrix elements of the 1-
electron Hamiltonian between the two Bloch functions in (8.13): these depend on the
corresponding elements between the AOs in all lattice cells and the simplest approximation
is to take, as in (8.12), 〈χA,Rm,A

|h|χA,Rm,A
〉 = 〈χB,Rn,B

|h|χB,Rn,B
〉 ≈ απ

C (the same value for
all Carbons) and 〈χA,Rm,A

|h|χB,Rn,B
〉 ≈ βπ

CC , for nearest-neighbour Carbons (in the same
or adjacent cells).

The results of Example 8.3 are unchanged, in this case, because the nearest-neighbour
approximation does not depend on whether the two AOs are in the same or adjacent
lattice cells. The forms of the energy band and the crystal orbitals remain as in Figure
8.4, with orbital energies distributed symmetrically around the reference level ǫ = απ

C .
On the other hand, when we include the hybrid AOs on each Carbon and the 1s AOs on
the Hydrogens, we shall obtain several quite new energy bands – all lying at lower energy
than the π band (which describes the most loosely bound electrons in the system). Some
of these results are indicated in the figure below:

ǫ = απ
C 4βπ

cc

ǫ = ασ
C 4βσ

ch

ǫ = ασ
C 4βσ

cc

Figure 8.6 Polyacetylene energy bands

(a) - for Carbon π-type crystal orbitals

(b) - for σ-type orbitals: CH bonds

(c) - for σ-type orbitals: CC bonds

The top band (a) refers to the most loosely bound electrons, the reference level at ǫ = απ
C

being the energy of an electron in a single Carbon 2pπ AO. For a fundamental volume
containing G unit cells the band arising from this AO will contain G levels, but as each
Carbon provides only one π electron only 1

2
G of the crystal orbitals will be filled (2

electrons in each, with opposite spins). That means that electrons will be easily excited,
from the ground state into the nearby ‘empty’ orbitals; so a carbon chain of this kind
should be able to conduct electricity. Polyacetylene is an example of an unsaturated chain
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molecule: such molecules are of industrial importance owing to the electrical properties
of materials derived from them.

Electrons in the lower bands, such as (b) and (c), are more strongly bound – with crystal
orbitals consisting mainly of σ-type AOs, which lie at much lower energy. Figure 8.6 is
very schematic; the same reference level ασ

C is shown for the hybrid AOs involved in the
CH bonds and the CC bonds (which should lie much lower); and the band widths are
shown equal in all three cases, whereas the resonance integrals (β) are much greater in
magnitude for the AOs that overlap more heavily. So in fact such bands are much wider
and may even overlap. On carefully counting the number of energy levels they contain
and the number of atomic valence electron available it appears that the crystal orbitals
in these lower energy bands are all likely to be doubly-occupied. In that case, as we know
from Section 7.4, it is always possible to replace the completely delocalized crystal orbitals
by unitary mixtures, without changing in any way the total electron density they give rise
to, the mixtures being strongly localized in the regions corresponding to the traditional
chemical bonds.

There will also be empty bands at much higher energy than those shown in Figure 8.6,
but these will arise from anti-bonding combinations of the AOs and are usually of little
interest.

Other types of polymer chains

The polyacetylene chain (Figure 8.5) is the simplest example of an unsaturated polymer:
the Carbons in the ‘backbone’ all have only three saturated valences, the fourth valence
electron occupying a 2pπ orbital and providing the partial π bonds which tend to keep
the molecule flat. This valence electron may, however, take part in a 2-electron bond with
another atom, in which case all four Carbon valences are saturated and the nature of the
bonding with its neighbours is completely changed. The simplest saturated polymers are
found in the paraffin series, which starts with methane (CH4), ethane (C2H6), propane
(C3H8), and continues with the addition of any number of CH2 groups. Nowadays, the
paraffins are usually called alkanes.

Instead of the ‘flat’ polyacetylene chains, which are extended by adding CH groups, the
alkanes are extended by adding CH2 groups. The backbone is still a zig-zag chain of
Carbons, but the CC links are now single bonds (with no partial ‘double-bond’ character)
around which rotation easily takes place: as a result the long chains become ‘tangled’,
leading to more rigid materials. If the chain is kept straight, as a 1-dimensional lattice,
the unit cell contains the repeating group indicated below in Figure 8.7 (where the unit
cell contents are shown within the broken-line circle).

Figure 8.7 Repeating group (C2H4)
Individual CH2 groups are perpendicular to
the plane of the Carbon chain (above it and
below it)

(Carbons shown in black, Hydrogens in grey)

The first few alkanes, with few C2H4 groups and thus low molecular weight, occur as
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gases; these are followed by liquid paraffins and then by solid waxes. But the chain
lengths can become enormous, including millions of groups. The resultant high-density
materials are used in making everything from buckets to machine parts, while the lower
density products are ideal for packaging and conserving food. World production of this
low-cost material runs to billions of tons every year!

8.4 Some common 3-dimensional crystals

In Section 8.1 we introduced the idea of a crystal lattice, in one, two and three dimen-
sions, along with the simplest model – in which an ‘empty lattice’ was just thought of as
a ‘box’ containing free electrons. Then, in Section 8.2, we improved the model by defining
the crystal orbitals, as a generalization of the MOs used in Chapter 7 for discussing
simple molecules. Finally, in Section 8.3, we began the study of some ‘real’ systems by
looking at some types of ‘1-dimensional crystal’, namely polymer chains built mainly from
atoms of Hydrogen and Carbon. These simple chain molecules form the basis for most
kinds of plastics – that within the last century have changed the lives of most of us.

Most common crystals, however, are 3-dimensional and bring in new ideas which we are
now ready to deal with. The simplest of all (after solid Hydrogen) is metallic Lithium,
a metal consisting of Lithium atoms, each with one valence electron outside a Helium-like
closed shell. The atoms form a body-centred cubic lattice, with the unit cell indicated
below:

Figure 8.8 Indicating the unit cell of a body-centred cubic lattice

In the figure, atoms are shown as the shaded circles at the corners and centre of a cube.
All lattice cells are identical, differing only by translations along the crystal axes; but the
unit cell, containing only the two atoms shown with dark shading, ‘generates’ the whole
crystal by repetition in that way. Note that the atom at the middle of the cube has eight
nearest neighbours, four on the top face of the cube and four on the bottom face: the
atoms shown with light-gray shading ‘belong’ to the surrounding lattice cells.

Again we’ll use names A and B for the two atoms in the unit cell and suppose they are
at positions rA and rB, relative to the origin of any cell. The ‘global’ position of A in a
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lattice cell with origin at Rm will then be Rm + rA and similarly for B. Bloch functions
can be formed for each atom, just as in (8.13), which we repeat here;

φA,k(r) =
1
√
G

3

∑

m

exp[ik·(Rm+rA)]χA,Rm
(r), φB,k(r) =

1
√
G

3

∑

n

exp[ik·(Rn+rB)]χB,Rn
(r).

(8.15)
These functions are normalized, over the fundamental volume containing G3 cells, pro-
vided all AOs (namely the χs) are normalized and orthogonal.

(Remember that χA,Rm
(r) is an A-type AO centred on point rA in the lattice cell with

origin at Rm and similarly for χB,Rn
(r). Remember also that the wave vector k is defined

in terms of the reciprocal lattice as

k = k1(2πb1) + k2(2πb2) + k3(2πb3)

and that with this definition the scalar products take the usual form with k·rA = k1(rA)1+
k2(rA)2 + k3(rA)3, etc.)

The most general crystal orbital we can construct, using only the two Bloch functions
(8.15), is

φ = cA,kφA,k + cB,kφB,k,

where the mixing coefficients follow from the usual secular equations. But matrix elements
between the Bloch functions may now depend on the wave vector k. Thus,

hAA = hBB = 〈φA,k|h|φA,k〉, hAB = 〈φA,k|h|φB,k〉.

Example 8.4 Reducing the matrix elements

The matrix elements of h between the Bloch functions may be reduced as follows. The diagonal element
becomes, using (8.15),

hAA =
1

G3

∑

m,n

exp[−ik · (Rm + rA)] exp[+ik · (Rn + rA)]

∫

χ∗
A,Rm

hχA,Rn
dr,

where the minus sign in the first exponential arises from the complex conjugate of the function on the
left of the operator h, i.e. the function in the ‘bra’ part of the matrix element. The integral itself is α if
the two functions are identical or β if they are nearest neighbours. Let’s do the summation over n first,
holding m fixed. When the two AOs are identical, the exponential factor is unity and the integral factor
is α. On doing the remaining summation, this result will be repeated G3 times – being the same for every
lattice cell – and the normalizing factor will be cancelled. Thus hAA = αA, hBB = αB . This result does
not depend at all on the wave vector k.

For the off-diagonal element we obtain, in a similar way,

hAB =
1

G3

∑

m,n

exp[−ik · (Rm + rA)] exp[+ik · (Rn + rB)]

∫

χ∗
A,Rm

hχB,Rn
dr,

but this contains the exponential factor

exp[ik · (Rn − Rm + rB − rA)] = exp ik · ρnm,
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where ρnm = (Rn − Rm + rB − rA) is the vector distance from an atom of A-type, in lattice cell at

Rm, to one of B-type in a cell at Rn. The double summation is over all B-neighbours of any A atom,

so taking A in the unit cell at the origin and summing over nearest neighbours will give a contribution

(
∑

n exp(ik·ρnm)×〈χA|h|χB〉. This result will be the same for any choice of the cell at Rm, again cancelling

the normalizing factor on summation. On denoting the structure sum by σAB(k), the final result will

thus be hAB = βABσAB(k), where βAB is the usual ‘resonance’ integral for the nearest-neighbour pairs.

Example 8.4 has given for the matrix elements of the 1-electron Hamiltonian, between
Bloch functions φA,k and φB,k,

hAA = αA, hBB = αB, hAB = βABσAB(k). (8.16)

Here, for generality, we allow the atoms or orbitals at rA and rB to be different; so later
we can deal with ‘mixed crystals’ as well as the Lithium metal used in the present section.

The secular determinant is thus
∣

∣

∣

∣

αA − ǫ βABσAB(k)
βABσ

∗
AB(k) αB − ǫ

∣

∣

∣

∣

= 0, (8.17)

where the ‘star’ on the second sigma arises because hBA is the complex conjugate of hAB

while the AOs are taken as real functions. This quadratic equation for ǫ has roots, for
atoms of the same kind (αA = αB = α),

ǫk = α± βAB|σAB(k)|.

Since α and βAB are negative quantities, the states of lowest energy are obtained by
taking the upper sign. There will be G3 states of this kind, resulting from the solution
of (8.17) at all points in k-space i.e. for all values of k1, k2, k3 in the wave vector k =
k1(2πb1) + k2(2πb2) + k3(2πb3). And there will be another G3 states, of higher energy,
which arise on taking the lower sign. The present approximation thus predicts two energy
bands, of the kind displayed in Figure 8.6 for a 1-dimensional crystal (polyacetylene). We
now look for a pictorial way of relating the energy levels ǫk within a band to the k-vector
of the corresponding crystal orbitals.

Brillouin Zones and Energy Contours

The results in Example 8.3, for a 1-dimensional crystal, are echoed in 2 and
3 dimensions: a 3-dimensional crystal is considered in the next example.

Example 8.5 Bloch functions in three dimensions

A Bloch function constructed from AOs χn1n2n3
at each lattice point Rn will be φ =

∑

n1,n2,n3
cn1n2n3

χn1n2n3

and we try cn1n2n3
= exp i(n1θ1 + n2θ2 + n3θ3).

Each factor cn = einθ will be periodic within the fundamental volume of G lattice cells in each direction
when θ = 2πκ/G, κ being an integer. So the general AO coefficient will be

cκ1κ2κ3

n1n2n3
= exp[2πi(n1κ1 + n2κ2 + n3κ3)/G],
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where the three quantum numbers κ1, κ2, κ3 determine the state; and the energy follows, as in Example
8.3, from the difference equation (in nearest neighbour approximation). Thus, the Bloch orbital energy
becomes a sum of three terms, one for each dimension:

ǫκ1κ2κ3
= α+ 2β1 cos(2πκ1/G) + 2β2 cos(2πκ2/G) + 2β3 cos(2πκ3/G).

In terms of the wave vector k and its components in reciprocal space, the 3-dimensional
Bloch function and its corresponding ǫk can now be written, assuming all atoms have the
same α and all nearest-neighbour pairs have the same β,

φk =
∑

n

exp(ik · Rn)χn, ǫk = α + 2β cos 2πk1 + 2β cos 2πk2 + 2β cos 2πk3, (8.18)

where χn is short for the AO (χn1n2n3
) in the lattice cell at Rn = n1a1 + n2a2 + n3a3.

To get a simple picture of how ǫk depends on the k-vector components let’s take a square
lattice with only one AO per unit cell. In this 2-dimensional case the energy formula in
(8.18) contains only the first two terms and can be written alternatively (simple trigonom-
etry – do it!) as ǫk = α + 4β cos π(k1 + k2) cos π(k1 − k2). On taking the ‘fundamental
volume’ to contain numbered lattice cells going from −1

2
G to + 1

2
G in each direction, the

G2 states will correspond to k1 and k2 each in the range (−1
2
,+1

2
). We can then define a

central zone in k-space by taking 2πb1 and 2πb2 as coordinate axes, along which to plot
values of k1 and k2. This is the Brillouin zone in the following Figure 8.9:

k1
1
2−1

2

k2

1
2

−1
2

Figure 8.9 Zones in k-space

Brillouin zone bounded by the

broken line contains G2 states

(k1, k2 each in range (−1
2 ,+

1
2))

The formula ǫk = α + 4β cos π(k1 + k2) cos π(k1 − k2), obtained from (8.18) in the 2-
dimensional case, then shows that the energy rises from a minimum α + 4β at the zone
centre (where k1 = k2 = 0) to a maximum α − 4β at the zone corners. The ‘top’ and
‘bottom’ states thus define an energy band of width 8β.

Near the bottom of the band (β being negative), k1 and k2 are small and expanding the
cosines in (8.18) gives the approximation (get it!)

ǫk = α + 4β − 4π2β(k 2
1 + k 2

2 ) + ... (8.19)
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– which is constant when k 2
1 + k 2

2 = constant. The energy contours in k-space are
thus circular near the origin where k1 = k2 = 0. Remember that, in a free electron
approximation, ~k represents the momentum vector and that ǫk = (1/2m)~2|k|2 : if we
compare this with the k-dependent part of (8.20) it is clear that ~2/2m must be replaced
by −4π2β – suggesting that the electron in this crystal orbital behaves as if it had an
effective mass

me = −2π2
~
2/β. (8.20)

This can be confirmed by asking how a wave packet, formed by combining functions φk

with k-values close to k1, k2 travels through the lattice (e.g. when an electric field is
appplied). (You may need to read again about wave packets in Book 11.) The result is
also consistent with what we know already (e.g. that tightly-bound inner-shell electrons
are described by wave functions that overlap very little, giving very small (and negative)
β values: (8.20) shows they will have a very high effective mass – and thus almost zero
mobility.

On the other hand, near the corners of a Brillouin zone, where k1, k2 = ±1
2
, things are

very different. On putting k1 =
1
2
+ δ1, k2 =

1
2
+ δ2, (8.19) gives an energy dependence of

the form (check it!)
ǫk = A+B(δ 2

1 + δ 2
2 ) + ... (8.21)

– showing that the energy contours are again circular, but now around the corner points
with ǫk = α − 4β. Such states have energies at the top of the band; and the sign of B,
as you can show, is negative. This indicates a negative effective mass and shows that a
wave packet formed from states near the top of the band may go the ‘wrong way’. In
other words if we accelerate the packet it will be reflected back by the lattice! (Of course
it couldn’t go beyond the boundary of the Brillouin zone, because that is a ‘forbidden’
region.)

The forms of the energy contours are sketched below:

A

B

k1

k2

Figure 8.10 Central zone in k-space: energy contours

The contours of constant energy are indicated by the broken lines. The zone centre is at
k1 = k2 = 0 and is the point of minimum energy Point A (k1 =

1
2
, k2 = 0) marks a corner
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of the square contour on which ǫk = α and Point B (k1 = k2 = 1
2
) corresponds to the

maximum energy ǫk = α− 4β.

Of course, you need practice to understand what the contour maps mean; but if you’ve
used maps in the mountains you’ll remember that walking along a contour means that
you stay ‘on the level’ – the contour connects points at the same height. In Figure 8.10
the energy level depends on the two ‘distances’, k1 and k2, and corresponds exactly to a
height above the energy minimum. So if you measure ǫk along a vertical axis above the
plane of k1 and k2 you can make a 3-dimensional picture like the one below:

O

ǫ = α− 4β

B

ǫ = α

A

ǫ = α+ 4β

Figure 8.11 3D sketch of the energy surface

The sketch shows the part of the energy surface lying above the triangle OAB in Figure
8.10 (O being the centre of the Brillouin zone): the shaded ‘wall’ just indicates the front
boundary of the region considered. If you put 8 pieces like that together you get the whole
energy surface. Notice the symmetry of the contour map in Figure 8.10: on extending
the map outside the zone boundary the contours are simply repeated – the Brillouin zone
is simply the central zone in k-space.

With only one AO per lattice cell, the zone contains just G2 distinct states (we chose
a 2-dimensional crystal for simplicity) but if we took two AOs in each cell and solved
the secular equation (8.18), for every point in k-space, we’d find another G2 states corre-
sponding to the second root. The new states define another energy band, of higher energy
than the first, which are functions of the k-vector components at points within the same
central zone. Mixing of the two Bloch functions has little effect on the states of lower
energy, whose energies lie on the surface in Figure 8.11, but in general the upper surface
will be separated from the lower by an energy gap.

Note that in talking about adding a second AO per cell we were simply thinking of
extending the basis, from G2 to 2G2 basis functions, so we would be doubling the number
of states available – without changing the number of electrons. But if the second AO
belongs to a real monovalent atom, then we also double the number of electrons available.
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Many of the physical properties of real 3-dimensional crystals, such as the way they
conduct heat and electricity, depend strongly on the highest occupied electronic states;
so it is important to know how the available states are filled. Every crystal orbital can
hold only two electrons, of different spin (Pauli Principle), so with only one monovalent
atom per lattice cell there would be 2G3 states available for the G3 valence electrons: the
lowest energy band would be only half full and the next band would be completely empty.
The crystal should be a good conductor of electricity, with electrons easily excited into
upper orbitals of the lower band; and the same would be true with two monovalent atoms
per cell (4G3 states and 2G3 electrons). On the other hand, with two divalent atoms per
cell there would be 4G3 valence electrons available and these would fill the lower energy
band: in that case conduction would depend on electrons being given enough energy to
jump the band gap.

Some mixed crystals

Even simpler than metallic Lithium, is Lithium Hydride LiH, but the molecule does
not crystallize easily, forming a white powder which reacts violently with water – all very
different from the soft silvery metal! On the other hand, Lithium Fluoride forms nice
regular crystals with the same structure as common salt (Sodium Chloride, NaCl); they
have the face-centred cubic structure, similar to that of the metal itself except that the
Fluorine atoms lie at the centres of the cube faces instead of at the cube centre.

Salts of this kind are formed when the two atoms involved (e.g. Li and F; or Na and Cl)
are found on opposite sides of the Periodic Table, which means their electrons are weakly
bound (left side) or strongly bound (right side). You will remember from Section 6.2 that
when the α-values of the corresponding AOs differ greatly the energy-level diagram for a
diatomic molecule looks very different from that in the homonuclear case where the two
atoms are the same: in LiF for example, using A and B to denote Fluorine and Lithium,
the lowest-energy MO (Figure 6.3) has ǫ1 ≈ αA while its antibonding partner has the much
higher energy ǫ2 ≈ αB. The corresponding diatomic MOs, in the same approximation, are
φ1 ≈ χA and φ2 ≈ χB, as you can confirm (do it!) by estimating the mixing coefficients
in φ ≈ cAχA + cBχB. In other words, the lowest-energy MO is roughly the same as the
AO on the atom of greater electron affinity – meaning with the greater need to attract
electrons. When the MOs are filled with electrons (2 in each MO) the Fluorine will grab
two of the valence electrons, leaving the Lithium with none. The bonding between the
two atoms is then said to be ionic, the Fluorine being pictured as the negative ion F−

and the Lithium as the positive ion Li+. In that way both atoms achieve a closed-shell

electronic structure in which their valence orbitals are all doubly occupied. The Fluorine,
in particular, looks more like the inert gas Neon, at the end of this row in the Periodic
Table.

When the salts form crystals similar considerations apply: the electronic structure of
the crystal may be described by filling the available crystal orbitals, written as linear
combinations of Bloch functions, and the mixing coefficients could be calculated by solving
a set of secular equations at every point in k-space. But in the case of ionic crystals such
difficult calculations can be avoided: looking ahead, we can guess that the Fluorine AO
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coefficients in the crystal orbitals will come out big enough to justify a picture in which
the Fluorine has gained an electron, becoming F−, while the Lithium has in effect lost
its valence electron to become Li+. In this way we come back to the ‘classical’ picture of
ionic crystals, put forward long before the development of quantum mechanics!

The unit cell in the LiF crystal, well established experimentally by X-ray crystallography,
has the form shown below.

Figure 8.12 Fluorine ions (F−) in the LiF unit cell

Only the positions of the Fluorine ions, which are much bigger than the Li+ ions, are
indicated in Figure 8.12, one being at a cube corner and three others being at the centers
of three faces. This forms part of the unit cell ‘building block’, from which the whole
crystal can be constructed by adding similar blocks ‘face-to-face’ along the three axes. As
you can see, the next block on the right will supply the missing F− ion on the right-hand
cube face, along with one at the bottom-right cube corner; and so it goes on if you add
blocks in the other two directions (up/down and back/front). In that way every fluorine
ion finds its own position in the lattice, no two ‘wanting’ to occupy the same place. The
Lithium positive ions are added to this face-centred lattice to give the electrically neutral
LiF crystal, with 4 ions of each kind per unit cell. (Three of the Li+ ions are found at the
mid-points of the three cube edges that meet at the bottom-back corner, while the fourth
is at the body-center of the cube; you might like to draw them in on Figure 8.12, along
with all the other ions associated with that cubic cell in the crystal.)

So to do a quantum mechanical calculation, even at IPM level, it would be necessary to
take account of 8 Bloch functions, solving an 8 × 8 secular problem at every point in k-
space! and we’re lucky to be able to understand the structure of the crystal without having
to do such an enormous calculation. In the classical theory of ionic crystals we simply
picture the crystal as an array of negatively and positively charged spheres attracting each
other according to Coulomb’s inverse-distance law. But what stops the ions all collapsing
into each other to make all distances zero and the total energy minus infinity? That’s the
only point at which quantum mechanics must be used – and then it’s enough to show how
two closed-shell ions build up a strong repulsion as soon as their electron distributions
begin to overlap. The classical picture works well if it is supposed that the energy of
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repulsion between two neighbouring ions has the form Erep = B exp(r/ρ) where B and
ρ are constants and r is the distance between the ion centres. Usually the constants are
given empirical values so as to reproduce experimental data such as the unit cell distances
and the total energy of the crystal. Even then the calculations are not simple, because
the crystal contains millions of ions and care must be taken with convergence as more
and more ions are included; but they are by now standard and give a good account of
crystal properties. So let’s now look ar something really new!

8.5 New materials

A few years ago the Nobel Prize in Physics 2010 was awarded jointly to two Russians,
Andre Geim and Konstantin Novoselov, for their groundbreaking experimental work on
the two-dimensional material graphene. Since then, thousands of scientific papers on
this material and its remarkable properties have been published in all the world’s leading
journals. Graphene seems likely to cause a far bigger revolution in Science and Technology
than that made by the discovery of plastics – and yet all the underlying theory was known
more than 50 years ago and can be understood on the basis of what you’ve done so far.

A crystal of solid graphite, which contains only Carbon atoms lying on a 3-dimensional
lattice, consists of 2-dimensional ‘sheets’ or ‘layers’, lying one on top of another. Each
layer contains Carbons that are strongly bonded together, lying at the corners of a hexagon
as in the benzene molecule, while the bonding between different layers is comparitively
weak. Such a single layer forms the 2-dimensional crystal graphene, whose unit cell is
shown in the figure 8.13 (left) along with that for the corresponding k-space lattice (right).
Because graphene is so important it’s worth showing how easy it is to construct all we
need from very first principles.

Example 8.6 A bit of geometry – the hexagonal lattice

Of course you’ve been using simple vector algebra ever since Book 2, usually with a Cartesian basis in
which a vector v = vxi + vyj + vzk is expressed in terms of its components relative to orthogonal unit
vectors i, j, k. So this is the first time you meet something new: the basis vectors we need in dealing with
the graphene lattice are oblique though they can be expressed in terms of Cartesian unit vectors. Thus,
in crystal space, Figure 8.13 (left), we can choose i, j as unit vectors pointing along AB and perpendicular
to it (upwards). We then have

a1 = 1
2

√
3 i− 1

2 j, a2 = 1
2

√
3 i+ 1

2 j.

In reciprocal space (i.e. without the 2π factors), Figure 8.13 (right), we can define

b2 = 1
2 i+

1
2

√
3 j, b1 = 1

2 i− 1
2

√
3 j

where b2 and b1 are respectively (note the order) perpendicular to a1 and a2). Thus, a1 · b2 = a2 · b1 = 0.

On the other hand a1 · b1 = 1
4

√
3 + 1

4

√
3 = 1

2

√
3 and a2 · b2 has the same value. As a result, any pair of

vectors u = u1a1 + u2a2 (in ‘a-space’) and v = v1b1 + v2b2 (in ‘b-space’) will have a scalar product

u · v = u1v1(a1 · b1) + u2v2(a2 · b2) = 1
2

√
3(u1v1 + u2v2),
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since the other terms are zero. We’d like to have a simpler result, like that for two vectors in an
‘ordinary’ (rectangular Cartesian) vector space. And we can get it if we replace the basis vectors b1, b2
by b∗1 = ( 12

√
3)−1b1 and b∗2 = ( 12

√
3)−1b2, for then the factors ( 12

√
3) cancel out. When the vectors u and

v are written as u = u1a1 + u2a2 and v = v1b
∗
1 + v2a2, we find (check it!)

u · v = u1v1 + u2v2

– exactly as for any pair of vectors in a single rectangular Cartesian space.

Let’s collect the two sets of basis vectors obtained in Example 8.6: the a-set define the
‘real’ (‘crystal’) space, while the b∗-vectors define the reciprocal space, which is set up
only for mathematical convenience!

a1 =
1
2

√
3 i− 1

2
j, a2 =

1
2

√
3 i+ 1

2
j

b∗1 = (
√
3)−1i− j, b∗2 = (

√
3)−1i+ j. (8.22)

Thus,

a1 · b∗1 = (a2 · b∗2) = 1

but we still have a1 · b∗2 = a2 · b∗1 = 0. So for any two vectors, u, v, the first expressed in
crystal space and the second in reciprocal space, we have

(u1a1 + u2a2) · (v1b∗1 + v2b
∗
2) = (u1v1 + u2v2)

– just as if the two vectors belonged to an ‘ordinary’ Cartesian space.

Now we know that the vectors set up in (8.22) have the properties we need, we can look
again at Figure 8.13, which shows how they appear in the graphene crystal space and
corresponding k-space lattices:

a2

a1

A B

2πb∗2

2πb∗1

Figure 8.13 Crystal lattices and some unit cells (see text)

186



The left-hand side of Figure 8.13 shows part of the lattice in crystal space; one cell, the
unit cell, contains Carbon atoms at A and B and is lightly shaded. The basis vectors a1
and a2 are shown as bold arrows. The right-hand side shows part of the corresponding
lattice in k-space: the basis vectors 2πb1 and 2πb2 are each perpendicular (respectively)
to a2, a1 and define a unit cell (lightly shaded) in k-space. The central zone in k-space
is hexagonal (shown in darker shading) and is made up from 12 triangular pieces, one of
which is shown, all equivalent under symmetry operations. You can imagine the 12 pieces
come from the unit cell by ‘cutting it into parts’ and sliding them into new positions to
fill the hexagon.

What we want to do next is to calculate the energy ǫ as a function of the coordinates
(k1, k2) in k-space; then we’ll be able to sketch the energy contours within the unit cell
or the equivalent central zone.

Calculation of the energy surfaces

As in dealing with aromatic hydrocarbons, where the highest energy MOs
are built up from π-type AOs and serve to describe electrons moving in
an effective field, provided by a flat σ-bonded ‘framework’, the first ap-
proximation to calculations on a single graphite layer will start from this
model. Again, with only two atoms in the unit cell, we shall need to solve a
secular problem at every point in k-space to determine approximations to
the crystal orbitals. And when we express these 1-electron crystal orbitals
as linear combinations of Bloch functions in the form

φ(k) = cA,kφA,k + cB,kφB,k, (8.23)

the optimum approximation will follow from the secular equation
∣

∣

∣

∣

hAA(k)− ǫ hAB(k)
hBA(k) hBB(k)− ǫ

∣

∣

∣

∣

= 0, (8.24)

The matrix elements are between Bloch functions, namely φA,k, φB,k, where
for example

φA,k =
1

G

∑

m

exp[ik · (rA + Rm)]χA,Rm

and χA,Rm
is the AO at point rA = (1/3)a1 + (1/3)a2 in the lattice cell at

Rm.

They can be reduced to those between the AOs as follows:

hAA =
1

G2

∑

Rm

∫

χ∗A,Rm
(r)hχA,Rm

(r)dr = 〈χA|h|χA〉,
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with an identical result for hBB. (Note that 〈χA|h|χA〉 is for the A-atom in
the unit cell at the origin and that the summation is over G2 equal lattice
cells.) These diagonal matrix elements are independent of k :

hAA = 〈χA|h|χA〉, hBB = 〈χB|h|χB〉. (8.25)

The off-diagonal element, however, does depend on k :

hAB(k) =
1

G2

∑

Rm,Rn

exp[ik · (rB + Rn − rA − Rm)]

∫

χ∗A,Rm
(r)hχB,Rn

(r)dr.

We can make this look simpler by putting Rn + rB − rA = ρn, which is the
vector that goes from atom at A in the unit cell at Rm = 0 to the atom at
B in the lattice cell at Rn. Again there are G2 identical terms in the double
sum and the final result is thus

hAB(k) =
∑

n

exp(ik · ρn)〈χA,0|h|χB,Rn
〉. (8.26)

The summation in the last equation can be broken into terms for A-atoms
and B-atoms in the same or adjacent cells (nearest neighbours) and then in
more distant cells (second and higher order neighbours). Equation (8.26)
may thus be written

hAB(k) = h1σ1(k) + h2σ2(k) + ...,

where the terms rapidly get smaller as the A- and B-atoms become more
distant. Here we’ll deal only with the first approximation, evaluating
h1σ1(k) for nearest-neighbour contributions to σ1(k). We imagine atom A
fixed and sum over the nearest B-type atoms; these will be B, in the same
cell as A, and atoms at points B′ and B′′ in adjacent cells to the left, one
lower for B′ and one higher for B′′. (Study carefully Figure 8.13, where you
will see B′ is at the lower right corner of the next hexagon, while B′′ is
at its upper right corner.) The vector positions of the three B-atoms are
given in terms of the Cartesian unit vectors i, j, by

rB = (2l)i+ 0j, rB′ = 1
2l i− 1

2

√
3l j rB′′ = 1

2l i+
1
2

√
3l j,

where l = 1/
√
3 is the side-length of the hexagon. Their positions relative

to atom A are thus

rB = l i+ 0j, rB′ = −1
2l i− 1

2 j, rB′′ = −1
2 li+

1
2 j,
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or, in terms of the a-vectors given in (8.22).

These are the corresponding ρ-vectors in (8.26); namely

ρB = (a1 + a2)/3, ρB′ = (1/3)a1 − (2/3)a2, ρB′′ = −(2/3)a1 + (1/3)a2.
(8.27)

The contributions to the nearest-neighbour structure sum σ(k) arise from
atoms at the lattice points B, B′, B′′ (from now on we drop the ‘1’ subscript,
standing for first neighbours) and thus give

σ(k) = exp(ik · ρB) + exp(ik · ρB′) + exp(ik · ρB′′).

To evaluate these contributions, which all involve scalar products between
vectors in ‘real’ space and those in k-space, we must remember that the
latter contain a factor of 2π along with the reciprocal space basis vectors
b∗1, b

∗
2. In fact, any v · k will take the usual form

v · k = 2π(v1k1 + v2k2).

On substituting the ρ-vectors given in (8.27) and using this last result, we
obtain finally

σ(k) = [exp(2πi/3)(k1+k2)+exp(2πi/3)(k1−2k2)+exp(2πi/3)(−2k1+k2).
(8.28)

The energy of the crystal orbitals ǫ, as a function of k, follows from the
secular equation (8.24). The diagonal matrix elements of the Hamiltonian
h, given in (8.25), become (with the usual notation) hAA = hBB = α, while
the off-diagonal element (8.26) becomes hAB(k) = βσ(k), β being the usual
‘resonance integral’. The energy eigenvalues ǫ(k) are finally

ǫ(k) = α± β
√

σ(k)σ∗(k), (8.29)

where the upper sign gives the lower -energy solution (that of a bonding
orbital), since β is a negative quantity.

The squared modulus of the structure sum σ(k) in the energy expression
(8.29) has the form

σ(k)σ∗(k) = (exp iθ1+exp iθ2+exp iθ3)× (exp−iθ1+exp−iθ2+exp−iθ3),
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where

θ1 = (2π/3)(k1 + k2), θ2 = (2π/3)(k1 − 2k2), θ3 = (2π/3)(−2k1 + k2).

If you do the multiplication and note the properties of the exponentials
you should find

σ(k)σ∗(k) = 3 + 2 cos 2π(k1) + 2 cos 2π(k2) + 2 cos 2π(k1 + k2)

and hence

ǫ(k) = α± β
√

3 + 2 cos 2π(k1) + 2 cos 2π(k2) + 2 cos 2π(k1 + k2). (8.30)

To get the coordinates (k1, k2) of points in k-space we first draw the hexag-
onal Brillouin zone, indicating the basis vectors b∗1, b

∗
2. Note that k1, k2 are

the coefficients of b∗1, b
∗
2 in the k-vector. The result is shown in Figure 8.14

below (next page), where the end points of some particular k-vectors are
marked with bold dots. The other diamond-shaped areas are the adjacent
cells in k-space.

The higher of the two bold dots is a K-point (corner point of the hexag-
onal filled zone), while the lower is an M-point (mid-point of a side). To
calculate the corresponding energies we must change to reciprocal-space
coordinates, k1, k2, which go with the basis vectors b∗1, b

∗
2.

In fact, the coefficients of b∗1 and b∗2 are, apart from the missing 2π factor,
the components of the properly scaled k-vector, denoted by k1 and k2.

The following picture shows the central zone in k-space and indicates, with
bold dots, two of the most important points (a K-point and an M-point).
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2πb∗2

2πb∗1

Figure 8.14 Filled zone in k-space (see text)

You can find the energy value at any point in k-space, using the energy
expression (8.30) For example, at the centre of the hexagonal Brillouin
zone k1 = k2 = 0 and (8.30) gives for ǫ(k) the value

α± β
√

3 + 2 cos 2π(k1) + 2 cos 2π(k2) + 2 cos 2π(k1 + k2),

In other words, ǫ = α± β
√
9 = α± 3β. The upper sign gives the absolute

minimum ǫ = α+ 3β on the energy surface, while the lower sign gives the
positive maximum energy for orbitals in a second energy band.

At the M-point on the right-hand side you should find k1 = k2 = (3/4) and
this leads to, on using (8.30),

ǫ(k) = α± β
√

3 + 2 cos 2π(3/4) + 2 cos 2π(3/4) + 2 cos 2π(3/2).

The result is thus ǫ = α + β
√
3 + 0 + 0− 2 = α + β at an M-point in

the central Brillouin zone. Now let’s turn to the general form of ǫ(k1, k2)
throughout the zone:

Energy contours in the lowest-energy Brillouin zone

By evaluating (8.30) at a large number of points in k-space we can draw
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in the contour lines on which ǫ(k) is constant. This is of course a tedious
job, but the results look nice and are sketched in the figure that follows.

2πb∗2

2πb∗1

Figure 8.15 Some energy contours in the filled zone (schematic)

The outer hexagon in Figure 8.15 shows the boundary (in k-space) of the
lowest-energy Brillouin zone, which contains G2 1-electron states (see text).
With two Carbons per unit cell, these are filled with the 2G2 π-electrons
they provide. Beyond the boundary, there begins the next zone – contain-
ing orbitals that are normally empty. The energy contours are indicated by
broken lines and the corner-points (K-points) are marked with bold dots.

Notice that around the centre of the filled zone, where the energy has the
absolute minimum value ǫ = α+3β, the contours are almost perfect circles;
but when the energy approaches ǫ = α + β the contour becomes a perfect
hexagon, whose sides join the mid-points (the M-points) of the hexagonal
boundary of the filled zone, and here the surface becomes ‘flat’, all points
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on the hexagon having the same energy as at the M-point. After that, the
energy approaches the value ǫ = α, the highest energy level in the filled
zone, but this is found only at the K-points and close to them – where the
contours again become roughly circular. At these points, something very
unusual happens: the energy surface is just touched by the lowest-energy
points of the next energy surface, whose orbitals have energies going from
ǫ = α up to the maximum ǫ = α − β. At all other points there is a gap
between the lower and upper surfaces.

It is this strange fact that gives graphene its unique properties.

The π electrons serve mainly to ‘stiffen’ the sigma-bonded framework of
Carbon atoms and to give the material the unique properties that arise
from the touching of the two energy surfaces. The Carbon-Carbon bonds in
general can be difficult to break, especially when they form a 3-dimensional
network that can’t be pulled apart in any direction without breaking very
many bonds. This is the case in crystals of diamond, where every Carbon
forms tetrahedral bonds with its four nearest neighbours, as in Figure 7.7.
(Remember that diamonds – which contain only Carbon atoms – are used
in cutting steel!) But in graphite the Carbons have the rare property of
forming separate layers, held together only by very weak bonds – which
allow them to slide over one another, or to be ‘peeled off’ as sheets of
graphene.

The great strength of graphene sheets is often called the “Cat’s Cradle”
property, because a single sheet – one atom thick and weighing almost
nothing! – would support the weight of a sleeping cat!

More useful properties arise from the limited contact (in k-space) between
the filled and empty electronic bands. When the lowest-energy band is
filled and separated from the next band above it by an energy gap greater
than (3/2)kT (which is the average energy of a particle in equilibrium with
its surroundings at temperature T ◦ K – as you may remember from Book
5) an electron with energy at the top of the filled band is unable to jump
across the gap into an orbital of the empty band, where it will be able
to move freely. But at the K-points in graphene the energy gap is zero
and some electrons will be found in the conduction band where they are
free to conduct electricity. In fact, graphene is a perfect semiconductor,
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whose conductivity starts at zero, when it is cold, but rises rapidly as
the temperature increases. You know how valuable semiconductors have
become nowadays, when they form the vital parts of so many electronic
devices such as radios and computers.

Such properties are revolutionizing not only whole fields of experimental
Physics and Technology, but also large parts of Chemistry and Biology.
Tiny sheets of graphene can be wound into ‘tubes’ so small that they can
carry single atoms from one place to another, opening up new fields of
‘molecular engineering’.

“Looking back – ” and “Index” to follow (10 May 2014)
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