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0 INTRODUCTION

1905 was Einstein’s magical year. In that year, he published three articles, on light
quanta, on Brownian motion, and on the foundations of the theory of Special Relativity
(and, almost as an afterthought, a short note containing a first derivation of the iconic

E = mc?), each one separately worthy of a Nobel prize.

Immediately after his work on Special Relativity, Einstein started thinking about gravity
and how to give it a relativistically invariant formulation. He kept on working on this
problem during the next ten years, doing little else. This work, after many trials and
errors, culminated in his masterpiece, the General Theory of Relativity, presented in
1915/1916. It is widely considered to be one of the greatest scientific and intellectual
achievements of all time, a beautiful theory derived from pure thought and physical
intuition, capable of explaining, or at least describing, still today, more than 100 years

later, every aspect of gravitational physics ever observed.

Einstein’s key insight was what is now known as the Finstein Equivalence Principle, the
(local) equivalence of gravitation and inertia. This ultimately led him to the realisation
that gravity is best described and understood not as a physical external force like the
other forces of nature but rather as a manifestation of the geometry and curvature of
space-time itself. This realisation, in its simplicity and beauty, has had a profound
impact on theoretical physics as a whole, and Einstein’s vision of a geometrisation of

all of physics is still with us today.

The aim of these lecture notes is to provide a reasonably self-contained introduction to
General Relativity, including a variety of applications of the theory, ranging from the

solar system to gravitational waves, black holes and cosmology.

These lecture notes for an introductory course on General Relativity are based on a
course that I originally gave in the years 1998-2003 in the framework of the Diploma
Course of the ICTP (Trieste, Italy). Currently these notes form the basis of a course
that T teach as part of the Master in Theoretical Physics curriculum at the University

of Bern.

In the intervening years, I have made (and keep making) various additions to the lecture
notes, and they now include much more material than is needed for (or can realistically
be covered in) an introductory 1- or even 2-semester course, say, but I hope to have
nevertheless preserved (at least in parts) the introductory character and accessible style

of the original notes.

Invariably, any set of (introductory) lecture notes has its shortcomings, due to lack of
space and time, the requirements of the audience and the expertise (or lack thereof)
and interests of the lecturer. These lecture notes are, of course, no exception. In

particular, the emphasis in these notes is on developing the theory (I am a theoretical
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physicist), not on experiments or connecting the theory with observation, but stops
short of doing real mathematical general relativity (i.e. proving theorems), as this would
require significantly more mathematical sophistication and machinery than I want to
assume (or can develop) in these notes. I hope that these lecture notes nevertheless
provide the necessary background for studying these or other more advanced topics not

covered in these notes.

I should also stress that I have written these notes primarily for myself, and for my
students. I am making them publicly available just in case somebody else happens to
find them useful, and because I know that previous versions of these notes have enjoyed
some popularity. However, if you do not like these notes or my way of explaining things,
or do not find what you are looking for, please do not complain to me (yes, this has
happened in the past). There will occasionally be further additions and updates to these
notes, reflecting however my personal preferences and taste rather than any (futile) aim

for completeness.

Lecture notes of this length unavoidably contain some minor mistakes somewhere. How-
ever, | hope that these notes are free of major conceptual errors and blunders. I am
of course grateful for any constructive criticism and corrections. If you have such com-
ments, or also if you just happen to find these notes useful, please let me know (blau

at itp.unibe.ch).

In these notes, the pronoun “we” is used to refer to the author along with you, the reader
(whereas, as you may have already noticed, I unashamedly use “I” to refer to myself,

the author - no pluralis auctoris or pluralis modestiae, let alone a pluralis maiestatis

).

0.1 PREREQUISITES

General Relativity may appear to be a difficult subject at first, since it requires a
certain amount of new mathematics and takes place in an unfamiliar arena. However,

this course is meant to be essentially self-contained, requiring only a familiarity with

e Special Relativity,
e Lagrangian mechanics,

e vector calculus and calculus in R™.

To be precise, by special relativity I mean the covariant formulation in terms of the
Minkowski metric and Lorentz tensors etc.; special relativity is (regardless of what
you may have been taught) not fundamentally a theory about people changing trains
erratically, running into barns with poles, or doing strange things to their twins; rather,

it is a theory of a fundamental symmetry principle of physics, namely that the laws of
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physics are invariant under Lorentz transformations and that they should therefore also
be formulated in a way which makes this symmetry manifest.

[Litmus Test: does the content of section 1.2 look familiar to you?]

I will thus attempt to explain every single other thing that is required to understand
the basics of Einstein’s theory of gravity. However, this also means that I will not be
able to discuss some mathematically more advanced and yet equally important aspects

of General Relativity.

0.2 OVERVIEW

Currently, these notes are organised into 7 parts, namely

Physics in a Gravitational Field and Tensor Calculus
General Relativity and Geometry

Dynamics of the Gravitational Field

General Relativity and the Solar System

Black Holes

Cosmology

Q@ = = 9 Q v =

Varia

I refer to the Table of Contents for rather detailed information about the contents of
the individual parts and sections of these notes and want to just provide some remarks

here for a first orientation.

Part A of the lecture notes is dedicated to explaining and exploring the consequences
of Einstein’s insights into the relation between gravity and space-time geometry, and
to developing the machinery (of tensor calculus and Riemannian geometry) required to

describe physics in a curved space-time, i.e. in a gravitational field.

From about section 4 onwards, Part A can be read in parallel with other parts of
these notes which deal with various applications of General Relativity. In particular,
at this point in the course I find it useful to develop in parallel (and suggest to read in
parallel) the more formal material on tensor analysis in Part A, and Part D (dealing
with solar system tests of general relativity) — cf. the more detailed suggestions at the
end of section 3. Not only does this provide an interesting and physically relevant
application and illustration of the machinery developed so far, it also serves to provide

an appropriate balance between physics and formalism in the lectures.
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The topics covered in Parts A and D, together with the first section 19 of Part C
dealing with the Einstein field equations, probably form the core of most introductory
courses on general relativity. This provides (or is meant to provide) the basis for other
applications or investigations of general relativity, and other sections of Part C and

Parts E-G provide a reasonably large variety of topics to choose from.

In Part B of the lecture notes I have collected a number of different more mathematical
topics that develop the formalism of tensor calculus and differential geometry in one
way or another. Stricly speaking, none of these topics are essential for understanding
some of the more elementary aspects of general relativity to be treated later on (so Part
B can also be regarded as a mathematical appendix to the notes). However, some of
them are required at a later stage to understand, or even formulate, certain somewhat
more advanced aspects of general relativity (and it is perhaps best to then go back to
this section if and when needed), and others are included simply because they are fun

or beautiful (or, usually, both).

0.3 LITERATURE

Most of the material covered in these notes, in particular in the introductory parts, is
completely standard and can be found in many places. While my way of explaining
things is my own, and numerous gratuitous “Remarks” throughout the notes as well
as the selection of more advanced topics reflect my own interests, I make no claim to

major originality in these notes and have not attempted to reinvent the wheel.

In particular, in earlier versions of these notes the presentation of much of the intro-

ductory material followed quite closely the treatment in Weinberg’s classic
e S. Weinberg, Gravitation and Cosmology

and readers familiar with this book may still recognise the similarities in some places.
Even though my own way of thinking about general relativity is much more geometric
(and this has definitely influenced later versions of and additions to these notes), I have
found that the pragmatic approach adopted by Weinberg is ideally suited to introduce

general relativity to students with little mathematical background.

As far as more recent and modern books are concerned, here is a short personal selection

of my favourites:

1. At an introductory level, a book that I like and highly recommend is
e J. Hartle, Gravity. An Introduction to Finstein’s General Relativity

2. At an intermediate level (i.e. more or less at the level of these notes), my favourite

modern book is
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e S. Carroll, Spacetime and Geometry: An Introduction to General Relativity
3. At a more advanced level, my favourites are

e S. Hawking, G. Ellis, The large scale structure of space-time
e E. Poisson, A Relativist’s Toolkit: the Mathematics of Black Hole Mechanics
e R. Wald, General Relativity

and I will frequently refer to these books in the body of the notes for discussions

of more advanced and/or more mathematical topics.

4. The history of the development of general relativity is an important and complex
subject, crucial for a thorough appreciation of general relativity. My remarks
on this subject are scarce and possibly even misleading at times and should not
be taken as gospel. For an authoritative and informative account, I strongly

recommend the scientific biography of Einstein

e A. Pais, Subtle is the Lord: the science and life of Albert Einstein

0.4 REFERENCES AND FOOTNOTES

As mentioned before, much of the material covered in these notes is quite standard,
and can be found in many places, and I have not attempted to provide references or

attributions for this.

Nevertheless, these lecture notes contain a large number of footnotes, with significantly
higher density in the sections of the notes dealing with more advanced and, specifically,
more recent developments. For the most part, these are meant as pointers to the

literature for further reading and with more information.

However, I have also attempted to indicate explicitly in footnotes whenever I have
knowingly used or adopted something specific from a specific source that should perhaps
not be considered common knowledge. If you feel that somewhere in these notes I have
written or used something that should not be considered common knowledge and that

has not been properly attributed, please let me know.

For referencing I have adopted the following procedure:

e When referring to textbooks, I usually just refer to them in the form “Author,
Title” (as above), without indicating publisher, year, ...If you actually need this

information, it will be easy for you to find it.

e When referring to articles, if they are available from the preprint server at

https://arXiv.org/
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I usually just refer to the arXiv number, regardless of whether or not that article
has been published elsewhere (this just reflects the by now standard practice that
people are more likely to first go there rather than to the library to look for or at

an article).

e References to pre-arXiv articles are given in the traditional complete “Author(s),

Title, Journal, ...” form.

0.5 EXERCISES

Exercises are, of course, an indispensable part of any course, in particular a course on
general relativity, since it is impossible to familiarise oneself with the formalism (of
tensor calculus) without actually doing calculations. Nevertheless, these lecture notes

contain no exercises, or at least none that are explicitly labelled as such.

This simply reflects my own style of teaching, where exercises are very much integrated
into the course and mainly serve the purpose of getting students to look at what was done
in the course and to perhaps fill in some details that I skipped in class. In particular,
I am no fan of exercises that go significantly beyond what is covered in class or in the
notes (if it is relevant, I should explain or include it, if it is not then we may as well not
bother).

However, most (sub-)sections contain numerous “Remarks”, and many of them con-
tain supplementary and/or more advanced information and material, and these may be

regarded as (annotated) exercises or used as a basis for exercises.

If that does not provide enough or satisfactory material, see also

e A. Lightman, W. Press, R. Price, S. Teukolsky, Problem Book in Relativity and

Gravitation

for almost 500 fully solved problems in relativity.

16



A: PHYSICS IN A GRAVITATIONAL FIELD

AND TENSOR CALCULUS
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1 EINSTEIN EQUIVALENCE PRINCIPLE: FROM GRAVITY TO GEOMETRY

1.1 MOTIVATION: THE EINSTEIN EQUIVALENCE PRINCIPLE

The highly successful Newtonian theory of gravity can be succinctly summarised by
two sets of differential equations, one describing the dynamics (motion) of particles in
a given gravitational field (described by a potential ¢), and the other describing the
dynamics of the gravitational field itself, namely how ¢ is to be determined from a

given mass configuration. The former takes the standard Newtonian form
mz = ﬁg = —mV¢ (1.1)

(but we will come back in some detail below to the question if/why the same mass
parameter m appears on both sides of this equation, so as to incorporate the observation,
going back to Galileo, that “all bodies fall at the same rate in a a gravitational field”).

The latter is the Poisson equation
A¢ = 4rGnp = (4nGn/P)p (1.2)

with Gy denoting, here and throughout, Newton’s constant, i.e. the gravitational cou-
pling constant, and where x is the mass density, and p = uc? the associated rest mass

energy density - I will set ¢ = 1 in the following and use p.

Let us start with the field equation. It is immediately evident that this cannot be the
final story. Not only is this equation not Lorentz invariant. Because of the absence
of time-derivatives in (1.2), it actually describes an “action at a distance” and an in-
stantaneous propagation of the gravitational field to every point in space (if you wiggle
your mass distribution here now, this will immediately effect the gravitational potential
arbitrarily far away). This is something that Einstein had just successfully exorcised

from other aspects of physics, and clearly Newtonian gravity had to be revised as well.

It is then also immediately clear that what would have to replace Newton’s theory is
something rather more complicated. The reason for this is that, according to Special
Relativity, mass is just another form of energy. Then, since gravity couples to masses, in
a relativistically invariant theory gravity will also have to couple to energy. In particular,
therefore, gravity would have to couple to gravitational energy, i.e. to itself. As a
consequence, the new gravitational field equations will, unlike Newton’s, have to be
non-linear: the field of the sum of two masses cannot equal the sum of the gravitational
fields of the two masses because it should also take into account the gravitational energy

of the two-body system.

Now, having realised that Newton’s theory cannot be the final word on the issue, how

does one go about finding a better theory?

I will first very briefly discuss (and then dismiss) what at first sight may appear to

be the most natural and naive approach to formulating a relativistic theory of gravity,

18



namely the simple replacement of Newton’s field equation (1.2) by its relativistically
covariant version

A¢p =4rGyp — O =47Gpnp , (1.3)

where [ is the Lorentz invariant d’Alembert or wave operator. While this looks promis-
ing, something can’t be quite right about this equation. We already know (from Special
Relativity) that p is not a scalar but rather the 00-component of a tensor, the energy-
momentum tensor Tgp, so if actually p appears on the right-hand side, ¢ cannot be a

scalar, while if ¢ is a scalar something needs to be done to fix the right-hand side.

Turning first to the latter possiblility, one option that suggests itself is to replace p by
the trace 7' = T'¢ of the energy-momentum tensor. This is by definition / construction
a scalar, and it will agree with p in the non-relativistic limit (where rest mass dominates
over other contributions). Thus a first attempt at fixing the above equation might look
like

O¢ = 4AnGNT . (1.4)

This is certainly an attractive equation, but it definitely has the drawback that it is
too linear. Recall from the discussion above that the universality of gravity (coupling
to all forms of matter) and the equivalence of mass and energy lead to the conclusion
that gravity should couple to gravitational energy, invariably predicting non-linear (self-
interacting) equations for the gravitational field. However, the left hand side could be
such that it only reduces to [J or A of the Newtonian potential in the Newtonian limit
of weak time-independent fields. Thus a second attempt at fixing the above equation
might look like

O0®(¢) = AnGNT (1.5)

where ®(¢) ~ ¢ for weak fields.

Such scalar relativistic theories of gravity (or rather some minor variants thereof) were
proposed and studied among others by Abraham, Mie, and Nordstrgm. As it stands,
the field equation appears to be perfectly consistent (and it may be interesting to discuss
if/how the Einstein equivalence principle, which will put us on our route towards metrics

and space-time curvature is realised in such a theory).

However, regardless of this, this theory is incorrect simply because it is ruled out ex-
perimentally. The easiest way to see this (with hindsight) is to note that the energy-
momentum tensor of Maxwell theory (7.47) is traceless (7.121), and thus the above
equation would predict no coupling of gravity to the electro-magnetic field, in partic-
ular to light, hence in such a theory there would be no deflection of light by the sun

etc.!

LFor more on the history and properties of scalar theories of gravity see the review by D. Giulini,
What is (not) wrong with scalar gravity?, arXiv:gr-qc/0611100.

19



The other possibility to render (1.3) consistent is the, a priori perhaps much less com-
pelling, option to think of ¢ and A¢ or (¢ not as scalars but as (00)-components of
some tensor, in which case one could try to salvage (1.3) by promoting it to a tensorial
equation

{Some tensor generalising A¢}qp ~ ATGNT - (1.6)

This appears to require not just one potential, but actually 10 of them,

¢ — ¢ab = ¢ba (17)

and this seems to be a rather crazy thing to do at this stage (in particular, without any
insight into the nature of these potentials). However, this is indeed the form of the field
equations for gravity (the Einstein equations) we will ultimately be led to (see section
19.4), but Einstein arrived at this in a completely different, and much more insightful,

way.

Let us now, very briefly and in a streamlined way, try to retrace (one aspect of ) Einstein’s
thoughts, namely on the relation between inertial and gravitational mass, which, as we
will see, will lead us rather quickly to the geometric picture of gravity sketched in the

Introduction.

To that end we return to the Newtonian equation of motion (1.1). Recall that in this

Newtonian theory, there are two a priori completely independent concepts of mass:

e inertial mass m; (or acceleration mass), which accounts for the resistance of a body
or particle against acceleration and appears universally on the left-hand-side of

the Newtonian equation of motion
md = F (1.8)
in conjunction with the acceleration a;

e gravitational mass m, which is the mass the gravitational field couples to, i.e. it

is the gravitational charge of a particle,

—

F,=—myVo . (1.9)

Now it is an important empirical fact that the inertial mass of a body is equal to its
gravitational mass. This realisation, at least with this clarity, is usually attributed
to Newton, although it goes back to experiments and observations by Galileo usually
paraphrased as “all bodies fall at the same rate in a gravitational field”. (It is not true,
though, that Galileo dropped objects from the leaning tower of Pisa to test this - he

used an inclined plane, a water clock and a pendulum).

These experiments were later on improved, in various forms, by Huygens, Newton,

Bessel and others and reached unprecedented accuracy with the work of Baron von
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E6tvos (starting in 1889), who was able to show that inertial and gravitational mass of
different materials (like wood and platinum) agree to one part in 10°. In the 1950/60’s,
this was still further improved by R. Dicke to something like one part in 10''. More
recently, rumours of a ‘fifth force’, based on a reanalysis of Eotvos’ data (but buried
in the meantime) motivated experiments with even higher accuracy and no difference

between m; and my was found.

Newton’s theory would in principle be perfectly consistent with m; # mg, just as the
formally analogous equation for an electrically charged particle with charge ¢, in an
electrostatic field E = —ﬁ(ﬁ,

i = —q.Vo | (1.10)

is perfectly acceptable for any ratio ¢./m;, and Einstein was very impressed with the
observed equality of m; and mg,. This should, he reasoned, not be a mere coincidence

but is probably trying to tell us something rather deep about the nature of gravity.

To see what this could be, let us recall that there is a very common class of “forces” for
which the equality between the inertial mass and the coupling constant is actually built
in and automatic. These are the “pseudo-forces” or “fictitious forces” P (like centrifugal
forces) which arise when one transforms the Newtonian equations of motion via a non-

linear coordinate transformation to accelerated (or other non-Cartesian) coordinates,
b= 2™ = 2 (2h) (1.11)

(like spherical coordinates). These “forces” arise from the non-trivial transformation
behaviour of the acceleration & under such non-linear coordinate transformations, and

are therefore inevitably and automatically proportional to m;,

—

mi=F = miZ=F+P with P~m; . (1.12)

To be explicit, note that if we perform such a time-independent coordinate transforma-

tion, the velocity and acceleration of a particle with trajectory x?(t) transform as

sm azm X
T (1.13)
m _ oz™ i a2zm -iij .

oxt Tt 83:"8339'33

(cf. section 1.5 for an analogous calculation in relativistic mechanics in Minkowski
space). The first line expresses the fact that velocities transform linearly (with the Ja-
cobi matrix) under arbitrary coordinate transformations (and are thus the protyotype
of what we will call vectors or tensors later on). In the coordinates 2™, the equations

of motion thus take the form

0z ;
: Fz Pm — Fm Pm 1.14
dx ’ (1.14)

m,zm
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Figure 1: Experimenter and his two stones freely floating somewhere in outer space, i.e.

in the absence of forces.

where it is the second term in the second line of (1.13) that gives rise to the (centrifugal

etc.) pseudo-force

0%zm
= mimlﬂllﬂj s (115)

manifestly proportional to m;. Conversely, such pseudo-forces can be eliminated by

Pm

transforming the equations of motion to a suitable (inertial) coordinate system or reter-

ence system.

With his unequalled talent for discovering profound truths in such simple observations,
he concluded (calling this “der gliicklichste Gedanke meines Lebens” (the happiest
thought of my life)) that the equality of inertial and gravitational mass suggests a
close relation between inertia and gravity itself, suggests, in fact, that locally effects
of gravity and acceleration (or non-linear transformations of the reference system) are

indistinguishable,
gravitational mass = inertial mass because (locally) GRAVITY = ACCELERATION

He substantiated this with some classical thought experiments, Gedankenexperimente,
as he called them, which in the meantime have morphed into and have come to be

known as the elevator thought experiments, which we will now discuss.

1. Consider somebody in a small sealed box (elevator) somewhere in outer space. In
the absence of any forces, this person will float. Likewise, two stones he has just

dropped (see Figure 1) will float with him.

2. Now assume (Figure 2) that somebody on the outside suddenly pulls the box up
with a constant acceleration. Then of course, our friend will be pressed to the
bottom of the elevator with a constant force and he will also see his stones drop
to the floor.
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Figure 2: Constant acceleration upwards mimics the effect of a gravitational field: ex-

perimenter and stones drop to the bottom of the box.

3. Now consider (Figure 3) this same box brought into a constant gravitational field.
Then again, the experimenter will be pressed to the bottom of the elevator with a
constant force and will see the stones drop to the floor. There is no experiment in-
side the elevator that permits him to decide if this is actually due to a gravitational

field or due to the fact that somebody is pulling the elevator upwards.
Thus our first lesson is that, indeed, locally the effects of acceleration and gravity

are indistinguishable.

4. Now consider somebody cutting the cable of the elevator (Figure 4). Then the
elevator will fall freely downwards but, as in Figure 1, our experimenter and his

stones will float as in the absence of gravity.

Thus lesson number two is that, locally the effect of gravity can be eliminated
by going to a freely falling reference frame (or coordinate system). This should
not come as a surprise. In the Newtonian theory, if the free fall in a constant

gravitational field is described by the equation
& =g (+ other forces) , (1.16)
then in the accelerated coordinate system
E(z,t) = x — gt?/2 (1.17)
the same physics is described by the equation

£ =0 (+ other forces) , (1.18)

and the effect of gravity has been eliminated by going to the freely falling coordi-

nate system &. The crucial point here is that in such a reference frame not only our

23



Figure 3: Effect of a constant gravitational field: indistinguishable for our experimenter

from that of a constant acceleration in Figure 2.

Figure 4: Free fall in a gravitational field has the same effect as no gravitational field

(Figure 1): experimenter and stones float.
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Figure 5: Experimenter and his stones in a non-uniform gravitational field: the stones

will approach each other slightly as they fall to the bottom of the elevator.

observer will float freely, but because of the equality of inertial and gravitational
mass he will also observe all other objects obeying the usual laws of motion in the

absence of gravity.

5. In the above discussion, I have put the emphasis on constant accelerations and
on ‘locally’. To see the significance of this, consider our experimenter with his
elevator in the gravitational field of the earth (Figure 5). This gravitational field
is not constant but spherically symmetric, pointing towards the center of the
earth. Therefore the stones will slightly approach each other as they fall towards

the bottom of the elevator, in the direction of the center of the gravitational field.

6. Thus, if somebody cuts the cable now and the elevator is again in free fall (Figure
6), our experimenter will float again, so will the stones, but our experimenter will
also notice that the stones move closer together for some reason. He will have to

conclude that there is some force responsible for this.

This is lesson number three: in a non-uniform gravitational field the effects of
gravity cannot be eliminated by going to a freely falling coordinate system. This
is only possible locally, on such scales on which the gravitational field is essentially
constant.

Einstein formalised the outcome of these thought experiments in what is now known as

the Finstein Equivalence Principle which roughly states that physics in a freely falling
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Figure 6: Experimentator and stones freely falling in a non-uniform gravitational field.
The experimenter floats, so do the stones, but they move closer together, indicating the

presence of some external force.

frame in a gravitational field is the same as physics in an inertial frame in Minkowski

space in the absence of gravitation. Two formulations are

At every space-time point in an arbitrary gravitational field it is possible
to choose a locally inertial (or freely falling) coordinate system such that,
within a sufficiently small region of this point, the laws of nature take the
same form as in unaccelerated Cartesian coordinate systems in the absence

of gravitation.?
and

Experiments in a sufficiently small freely falling laboratory, over a sufficiently
short time, give results that are indistinguishable from those of the same
experiments in an inertial frame in empty space.’

There are different versions of this principle depending on what precisely one means by
‘the laws of nature’. If one just means the laws of Newtonian (or relativistic) mechanics,
then this principle essentially reduces to the statement that inertial and gravitational

mass are equal. Usually, however, this statement is taken to imply also Maxwell’s theory,

2S. Weinberg, Gravitation and Cosmology.
3J. Hartle, Gravity. An Introduction to Einstein’s General Relativity.
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quantum mechanics etc. What it pragmatically asserts in one of its stronger forms is
that

[...] there is no experiment that can distinguish a uniform acceleration from

a uniform gravitational field. (J. Hartle, loc. cit.)

The power of the above principle, which we will regard as a heuristic guideline, rather
than trying to (prematurely) give it a mathematically precise formulation, lies in the
fact that we can combine it with our understanding of physics in accelerated reference
systems to gain insight into the physics in a gravitational field. Two immediate conse-
quences of this (which cannot be derived on the basis of Newtonian physics or Special

Relativity alone) are

e light is deflected by a gravitational field just like material objects;

e clocks run slower in a gravitational field than in the absence of gravity.

To see the inevitability of the first assertion, imagine a lightray entering the rocket /
elevator in Figure 1 horizontally through a window on the left hand side and exiting
again at the same height through a window on the right. Now imagine, as in Figure 2,
accelerating the elevator upwards. Then clearly the lightray that enters on the left will
exit at a lower point of the elevator on the right because the elevator is accelerating
upwards. By the equivalence principle one should observe exactly the same thing in
a constant gravitational field (Figure 3). It follows that in a gravitational field the
lightray is bent downwards, i.e. it experiences a downward acceleration with the (locally

constant) gravitational acceleration g.

To understand the second assertion, one can e.g. simply appeal to the so-called “twin-
paradox” of Special Relativity: the accelerated twin is younger than his unaccelerated
inertial sibling. Hence accelerated clocks run slower than inertial clocks. Hence, by
the equivalence principle, clocks in a gravitational field run slower than clocks in the

absence of gravity.

Alternatively, one can imagine two observers at the top and bottom of the elevator,
having identical clocks and sending light signals to each other at regular intervals as
determined by their clocks. Once the elevator accelerates upwards, the observer at
the bottom will receive the signals at a higher rate than he emits them (because he
is accelerating towards the signals he receives), and he will interpret this as his clock
running more slowly than that of the observer at the top. By the equivalence principle,

the same conclusion now applies to two observers at different heights in a gravitational

4For a discussion of different formulations of the equivalence principle and the logical relations
among them, see E. di Casola, S. Liberati, S. Sonego, Nonequivalence of equivalence principles,
arXiv:1310.7426 [gr-qc].
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field. This can also be interpreted in terms of a gravitational redshift or blueshift
(photons losing or gaining energy by climbing or falling in a gravitational field), and we

will return to a more quantitative discussion of this effect in section 3.5.

1.2 LORENTZ-COVARIANT FORMULATION OF SPECIAL RELATIVITY (REVIEW)

What the equivalence principle tells us is that we can expect to learn something about
the effects of gravitation by transforming the laws of nature (equations of motion) from
an inertial Cartesian coordinate system to other (accelerated, curvilinear) coordinates.
As a first step, we will, in section 1.3 below, discuss the above example of an observer

undergoing constant acceleration in the context of special relativity.

As a preparation for this, and the remainder of the course, this section will provide a
lightning review of the Lorentz-covariant formulation of special relativity, mainly to set
the notation and conventions that will be used throughout, and only to the extent that

it will be used in the following.

1. Minkowski space(-time)

(a) The arena of special relativity is Minkowski space-time [henceforth Minkowski
space for short, the union of space and time is implied by uttering the word
“Minkowski”]. It is the space of events, labelled by 3 Cartesian spatial coor-

dinates zF and a time-coordinate t or, more usefully, by the coordinates

(€)= (" =ct, ¢ =a") | (1.19)

where c is the speed of light. Typically in these notes £* will indicate such
a (locally) inertial coordinate system, whereas generic coordinates will be

called z* etc. We will almost always work in units in which ¢ = 1.

(b) Minkowski space is equipped with a prescription for measuring distances,

encoded in a line-element which, in these coordinates, takes the form

ds® = —(dg)? + ) "(de¥)? . (1.20)
k
(¢) This can be written as
ds® = —(d€°)? + ) (d€¥)? = nap de°dE" . (1.21)
k
with metric (n,) = diag(—1,+1,+1,+1) or, more explicitly,

-1 0 0 0

0 +1 0 O
= 1.22
M0 0 410 (1.22)

0 0 0 +1

(thus we are using the “mostly plus” convention).
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2. Lorentz Transformations

(a) Lorentz transformations are by definition those linear transformations

¢ £ = L9¢ (1.23)
that leave the Minkowski line-element invariant,
d5° = pdEdE® = npd€®de® = ds* & ppLiLl=n . (1.24)

In matrix notation this can also be written as

E=L¢ , L'nL=n (1.25)
where L! is the transpose of L. This is the defining condition for Lorentz
transformations, and the Lorentz signature analogue of the condition R'1R =
1 for an orthogonal transformation (rotation or reflection) in Euclidean space,
with metric 1, — Lix = dik.

Alternative notation:
E=L%" o =Ly (1.26)

Strictly speaking £% and £% may be considered to refer to two different quan-
tities, to the coordinates of the new point & in the old coordinate system
versus the coordinates of the old point £ in the new coordinate system. How-
ever, for many elementary purposes this difference between what is known
as the active (moving points) versus the passive (relabelling points) point of
view is not crucial, and one should not be hung-up on notation: coordinates
are fundamentally just bookkeeping devices so use whatever is convenient for
current bookkeeping or other purposes.

Infinitesimal Lorentz rotations, i.e. Lorentz transformations with L of the

form L = 1 4+ w, w infinitesimal, are characterised by
I+winl+w) =n = (w)+(Ow)'=0. (1.27)

Thus the matrix nw is anti-symmetric. In components, an infinitesimal
Lorentz transformation therefore has the form

08t = w%éb with  wep = NG = —Wha - (1.28)

Poincaré transformations are those affine transformations that leave the Min-
kowski line-element invariant. They are composed of Lorentz transformations

and arbitrary constant translations and thus have the form
£ £ = L8P+ ¢, (1.29)
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infinitesimally
06T = Wil + e . (1.30)

Any two inertial systems in the sense of the equivalence principle of special
relativity are related by a Poincaré transformation.

3. Distance & Causal Structure

(a)

(b)

()

The Minkowski metric defines the Lorentz (and Poincaré) invariant distance

(A)? = nap (€D — €8)(Ep — €B) (1.31)

betwen two events P and @ with coordinates £% and £¢ respectively.

Depending on the sign of (A¢)?, the two events P,Q are called, spacelike,
lightlike (null) or timelike separated,

> 0 spacelike separated
(A€)? = =0 lightlike separated (1.32)
< 0 timelike separated

The set of events that are lightlike separated from P define the lightcone
at P. It consists of two components (joined at P), the future and the past
lightcone, distinguished by the sign of 522 — 5?3 (positive for @ on the future
lightcone, 522 > 5103, negative for @ on the past lightcone).

4. Curves and Tangent Vectors

(a)

A parametrised curve is given by a map A — £%(\). The tangent vector to

the curve at the point {(\g) has components

&% Ng) = %g“(A)h:AO ) (1.33)

It is called spacelike, lightlike (null) or timelike, depending on the sign of

Naps*€",
> (0 spacelike

1€ *€"  { =0 lightlike (1.34)
< 0 timelike

This sign (and hence this classification) depends only on the image of the

curve, not its parametrisation.

A curve whose tangent vector is everywhere timelike is called a timelike curve
(and likewise for lightlike and spacelike curves). A curve whose tangent
vector is everywhere timelike or null (i.e. non-spacelike) is called a causal
curve. Worldlines of massive particles are timelike curves, those of massless
particles (light) are null curves.
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(¢) A natural Lorentz-invariant parametrisation of timelike curves is provided by

the Lorentz-invariant proper time 7 along the curves,

£ =¢&4r) , (1.35)

with

cdr = \/—ds? = \/—ngpd€adeb = /=€ dA

dgo(r) de'(r) 4 (1.36)
R s

Likewise spacelike curves are naturally parametrised by proper distance ds.

The derivative with respect to proper time will be denoted by an overdot,
a d a
£(r) = —£%(r) . (137
T

Because 7 is Lorentz-invariant, 7 = 7, tangent vectors £* of T-parametrised
curves transform linearly under Lorentz transformations,

o(r) = 28 (r) = Sy ) = L) (139

These are the prototypes of what are called Lorentz vectors or, more gener-
ally, Lorentz tensors.

5. Lorentz Vectors

(a) Lorentz vectors (or 4-vectors) are objects with components v® which trans-
form under Lorentz transformations with the matrix L9 (to be thought of as

the Jacobian of the transformation relating £ and &%),
7% = L% . (1.39)

(b) M4 can be regarded as defining an indefinite scalar product on the space of
Lorentz vectors, and the Minkowski norm 7,,v%® and the Minkowski scalar
product nabv“wb of Lorentz vectors are invariant under Lorentz transforma-
tions,

Nap 02" = napv®® a0’ = napv®uw’ . (1.40)

A vector is called, spacelike, lightlike (null) or timelike depending on the sign
of its Minkowski norm.

(c) One can identify Minkowski space with its “tangent space”, i.e. with the
vector space V. = R3 of 4-vectors equipped with the quadratic form or

scalar product 74, with signature (1,3).

6. Other Lorentz Tensors
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(a) Lorentz scalars are objects that are invariant under Lorentz transformations.

Examples are scalar products and norms of Lorentz vectors.

(b) Lorentz covectors are objects u, that transform under Lorentz transforma-

tions with the dual (or contragredient = transpose inverse) representation
A= (L)' =nLy~" (1.41)

i.e.
Ug = Aluy , AL =ne L™ (1.42)

where 7% denotes the components of the inverse metric '

In terms of
A, the condition that L is a Lorentz transformation (i.e. preserves 7,,) can

evidently be written as
L'nL=n & AA'=n & AN =nw - (1.43)

Covectors can be regarded as elements of the dual V* of the space V of

4-vectors, with u, defining the Lorentz-invariant linear mapping
u:veViuw) =uv* €R . (1.44)

Examples are u, = 1gv°? = v, with v® a Lorentz vector, the scalar product
Nap defining the isomorphism V* = V.,

(c¢) Lorentz (p, q)-tensors are objects that transform under Lorentz transforma-

tions like a product of p vectors and ¢ covectors,

aj...a a1 ...a a d d b1...b
Tolied = Telied = L9 LYPAS A Ty f (1.45)
In particular, direct products of vectors and covectors like V¢W?PU, are ten-
sors. A special case is 745, which is a Lorentz-invariant (0, 2)-tensor by defi-
nition,

Nab = AacAbdncd = Nab - (146)

Linear combinations of (p, ¢)-tensors are again (p, ¢)-tensors. Arbitrary prod-
ucts and contractions of Lorentz tensors are again Lorentz tensors (and the
tensor type can be read off from the number and position of the “free” in-

dices).
7. Tensor Fields

(a) Lorentz tensor fields are assignments of Lorentz tensors to each point of
Minkowski space,
T:&—To ek (E) . (1.47)
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(b)

Given a vector field V(€), 0 V(€)V?P(€) is an example of a scalar field, and

given a scalar field f(&), its partial derivatives give a covector field

Ua(§) = Oga f(§) = 0uf(§) (1.48)
(providing the justification for abbreviating Oca = 0,). More generally, the

partial derivatives of the components of a (p, ¢)-tensor,
Teler(€)  — 0 Tei ek (€) (1.49)
are the components of a (p,q + 1)-tensor, and the wave operator
O = 1%9,0, (1.50)

is a Lorentz-invariant differential operator mapping (p,q) tensor fields to

(p,q) tensor fields.

Tensorial equations of the form
Tel e (€) =0 (1.51)

are Lorentz invariant in the sense that they are satisfied in one inertial system
iff they are satisfied in all inertial systems. (Here and throughout these notes

“iff” is the usual mathematicians’ shorthand for “if and only if”.)

8. Worldlines of Massive Particles

(a)

In the covariant formulation, the timelike worldline of a massive particle is

parametrised by proper time, £* = £%(7). The velocity (tangent) vector
u® = %) (1.52)
is a Lorentz vector, normalised as
g = neputu’ = —c? . (1.53)

The Lorentz-covariant acceleration is the 4-vector

C d [ d2 C
and the equation of motion of a massive free particle is
d2

We will study this equation further (in any arbitrary coordinate system) in
section 1.5. For observers with non-zero acceleration it follows from (1.53)

by differentiation that a° is orthogonal to u?,
a‘ue = nepaub =0 (1.56)

and therefore spacelike,
ncbacab =a2>0 . (1.57)

Observers with constant acceleration will be the subject of section 1.3.
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(c) The action for a free massive particle with worldline £*(7) is essentially the

total proper time along the path,

S[E] = —mcz/dT = —mc/\/ —Napd€edEl | (1.58)

worldlines of free massive particles extremising (maximising) the proper time.
In terms of an arbitrary parametrisation {* = £*(\) of the path, this action

can be written as

a b 1/2
de” de > (1.59)

S[g] = /d)‘ Ly , Ly=-mc <_Tlabﬁﬁ

A special choice is A = ¢, for which
Li=—mc\/1—R]2  §=di/dt = dz/dt . (1.60)

9. Energy-Momentum 4-Vector

(a) The covariant momenta p, are defined by

_ & _ b a __ a __ a
Da = BdE ) =mngpu’ = p®=mu® =m(d¢*/dr) (1.61)

(independently of the choice of \).
(b) Its components are
P’ =Efc , pF=pl* (1.62)
where p(©*% are the canonical momenta associated to the Lagrangian Ly,

() OLy

b, = g =m0k (1.63)

with v(v) = (1 — #%/c?)~'/2, and E = H is the corresponding energy or
Hamiltonian
H = (e), k — L, = 2
=pp v = Ly =my(v)e” . (1.64)

(¢c) The p* are the components of a Lorentz vector, the energy-momentum 4-

vector. It satisfies the mass-shell relation
nap’p’ = —m? &  E*=mid +pP (1.65)

1.3 ACCELERATED OBSERVERS IN MINKOWSKI SPACE AND THE RINDLER METRIC

We return to the issue discussed in the context of the Einstein equivalence principle in
section 1.1, namely physics as experienced by an observer undergoing constant accel-
eration (as a precursor to studying this observer in a genuine gravitational field), now

specifically within the framework of special relativity.
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Specialising (1.56) to an observer accelerating in the ¢!-direction (so that in the mo-
mentary restframe of this observer one has u* = (1,0,0,0),a® = (0,a,0,0)), we will say
that the observer undergoes constant acceleration if a is time-independent. To deter-
mine the worldline of such an observer, we note that the general solution to (1.53) with
u? =ud =0,
napuu® = —(u®)? + (wh)? = -1, (1.66)
is
u’ =cosh F(r) , wu'=sinhF(7) (1.67)

for some function F'(7). Thus the acceleration is

a® = F(7)(sinh F'(7),cosh F(7),0,0) , (1.68)
with norm
a?=F?% | (1.69)
and an observer with constant acceleration is characterised by F(7) = ar,
u®(T) = (coshar,sinhat,0,0) . (1.70)
This can now be integrated, and in particular

£%(r1) = (a~!sinhar,a” ! coshar,0,0) (1.71)

is the worldline of an observer with constant acceleration a and initial condition £%(7 =
0) = (0,a=',0,0). The worldlines of this observer is the hyperbola

nap€"E" = — (") + (¢1)* =a~? (1.72)
in the quadrant &' > |9 of Minkowski space-time.

We can now ask the question what the Minkowski metric or line-element looks like in
the restframe of such an observer. Note that one cannot expect this to be again the
constant Minkowski metric 74: the transformation to an accelerated reference system,
while certainly allowed in special relativity, is not a Lorentz transformation, while 7.

is, by definition, invariant under Lorentz-transformations.

We are thus looking for coordinates that are adapted to these accelerated observers
in the same way that the inertial coordinates are adapted to static observers (£° is
proper time, and the spatial components & remain constant). In other words, we seek a
coordinate transformation (£°,£') — (n, p) such that the worldlines of these accelerated
observers are characterised by p = constant (this is what we mean by restframe, the
observer stays at a fixed value of p) and ideally such that then 7 is proportional to the

proper time of the observer.

Comparison with (1.71) suggests the coordinate transformation
& (n,p) = psinhn  &'(n,p) = pcoshy . (1.73)
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worldline of a
- dtationary observer

"~ eta constant

rho constant

Figure 7: Rindler metric: Rindler coordinates (1, p) cover the first quadrant ¢! >
|€0]. Indicated are lines of constant p (hyperbolas, worldlines of constantly accelerating
observers) and lines of constant 7 (straight lines through the origin). The quadrant is
bounded by the lightlike lines £° = £¢! < i = +00. An inertial observer reaches and

crosses the line 1 = oo in finite proper time 7 = &Y.

It is now easy to see that in terms of these new coordinates the 2-dimensional Minkowski
metric ds? = —(d€®)? 4 (d¢')? (we are now suppressing, here and in the remainder of
this subsection, the transverse spectator dimensions 2 and 3) takes the form

ds® = —p2dn? + dp® . (1.74)
This is the so-called Rindler metric.

Let us try to gain a better understanding of these Rindler coordinates (illustrated in

Figure 7 - see also Figure 25 in section 28.4 for a Penrose Diagram illustration).

e The Rindler coordinates p and 7 are obvisouly in some sense hyperbolic (Lorentzian)
analogues of polar coordinates (z = 7cos¢,y = rsing,ds®> = dz? + dy?> =

dr? + r?d¢?). In particular, since

(51)2 - (50)2 = P2 ) 1 tanh?? ) (175)

by construction the lines of constant p, p = pg, are hyperbolas, (£1)% — (£9)% = p2,
while the lines of constant n = 7y are straight lines through the origin, ¢ =

(tanh)&.

e The null lines €% = 4£! correspond to = +o0o0. Thus the Rindler coordinates
cover the first quadrant &' > |¢°| of Minkowski space and can be used as coordi-

nates there.
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e The metric in these new coordinates is time-independent, where time means 7,
and time-independent means that the coefficients of the metric or line-element in
(1.74) do not depend on 1. This is due to the fact that the generator 9, of n-
“time evolution” is actually the generator of a Lorentz boost in the (¢£°,£!)-plane

in Minkowski space,
oy = (8,750)850 + (8,751)851 = 51850 + 50851 . (1.76)

Since a Lorentz boost leaves the Minkowski metric invariant, the latter has to be
invariant under translations in 7, i.e. it has to be n-independent, as is indeed the

case.

e Along the worldline of an observer with constant p one has dr = pgdn, so that his

proper time parametrised path is

€%() = pgsinh 7/ pg €'(1) = pocosh7/pg (1.77)
and his 4-velocity is given by

1 d

= —¢(r) =sinh7/py . (1.78)

d
ud = ESO(T) = cosh 7/po u

These satisfy —(u?)?+4(u')? = —1 (as they should), and comparison with (1.70,1.71)

shows that the observer’s (constant) acceleration is a = 1/py.

Even though (1.74) is just the metric of Minkowski space-time, written in accelerated
coordinates, this metric exhibits a number of interesting features that are prototypical

of more general metrics that one encounters in general relativity:

1. First of all, we notice that the coefficients of the line element (metric) in (1.74)
are no longer constant (space-time independent). Since in the case of constant
acceleration we are just describing a “fake” gravitational field, this dependence
on the coordinates is such that it can be completely and globally eliminated by
passing to appropriate new coordinates (namely inertial Minkowski coordinates).
Since, by the equivalence principle, locally an observer cannot distinguish between
a fake and a “true” gravitational field, this now suggests that a “true” gravitational

field can be described in terms of a space-time coordinate dependent line-element
ds? = gap(x)da®da’ | (1.79)

where the coordinate dependence on the x® is now such that it cannot be elimi-

nated globally by a suitable choice of coordinates.

2. We observe that (1.74) appears to be ill-defined at p = 0. However, in this case

we already know that this is a mere coordinate singularity at p = 0 (akin to the
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coordinate singularity at the origin of standard polar coordinates in the Cartesian
plane). More generally, whenever a metric written in some coordinate system
appears to exhibit some singular behaviour, one needs to investigate whether this

is just a coordinate singularity or a true singularity of the gravitational field itself.

. The above coordinates do not just fail at p = 0, they actually fail to cover large
parts of Minkowski space. Thus the next lesson is that, given a metric in some
coordinate system, one has to investigate if the space-time described in this way
needs to be extended beyond the range of the original coordinates. One way to
analyse this question (which we will make extensive use of in sections 26 and
27 when trying to understand and come to terms with black holes) is to study

lightrays or the worldlines of freely falling (inertial) observers.

In the present case, an example of an inertial observer is a static observer in
Minkowski space, i.e. an observer at a fixed value of ¢!, say, with ¢° = 7 his proper
time. In Rindler coordinates this is described by the condition that £! = pcoshn

is a constant, so this is most certainly not a straight line in an (7, p)-diagram.

Such an observer will of course “discover” that 7 = +o00 is not the end of the world
(indeed, he crosses this line at finite proper time 7 = ¢!) and that Minkowski
space continues (at the very least) into the quadrant &% > |£!] (see Figure 7 for

an illustration of this).

. Related to this is the behaviour of lightcones when expressed in terms of the
coordinates (7, p) or when drawn in the (7, p)-plane (do this!). These lightcones
satisfy ds? = 0, i.e.

pldn? =dp?* = dn=+ptdp . (1.80)

describing outgoing (p grows with 7)) respectively ingoing (p decreases with in-
creasing n) lightrays. These lightcones have the familiar Minkowskian shape at
p = 1, but the lightcones open up for p > 1 and become more and more narrow for
p — 0, once again exactly as we will find for the Schwarzschild black hole metric

(see Figure 16 in section 26).

. It follows from (1.76) that the Minkowski norm of 9, is
0917 = (€°)* = (€") . (1.81)

Thus this generator of Rindler time-translations really is timelike in the region
¢1 > |€0] covered by the Rindler coordinates, but it actually becomes lightlike on
the lightlike boundary ¢! = |€9] of that region. As we will discuss in section 27.10,
such a Killing horizon also happens to be one of the characteristic properties of a
black hole.
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6. Finally we note that there is a large region of Minkowski space that is “invisible”
to the constantly accelerated observers. While a static observer will eventually
receive information from any event anywhere in space-time (his past lightcone
will eventually cover all of Minkowski space ...), the past lightcone of one of
the Rindler accelerated observers (whose worldlines asymptote to the lightcone
direction ¢° = ¢!) will asymptotically only cover one half of Minkowski space,
namely the region €% < ¢!, Thus any event above the line €0 = ¢! will forever be
invisible to this class of observers. Such an observer-dependent horizon has some
similarities with the event horizon characterising a black hole (see section 27.5 for

a first encounter with such an object, and section 32 for a detailed discussion).

For more on Rindler coordinates, see sections 3.4 and 7.8.

1.4 GENERAL COORDINATE TRANSFORMATIONS IN MINKOWSKI SPACE I: METRIC

In order to move away from constant accelerations (as models of observers in constant
gravitational fields only), we now consider the effect of arbitrary (general) coordinate
transformations on the laws of special relativity and the geometry of Minkowski space.
This may look like a somewhat exaggerated move at this point (should we perhaps
not just look at coordinate transformations to coordinates that somehow correspond to

adapted coordinates for some arbitrary accelerated observer?), but

e it is actually easier to just do this than to understand what is meant precisely by

this parenthetical remark and how to implement it;
e there are many useful things that one can learn from doing this;

e and we will see later (when discussing the relation between the Finstein Equiva-
lence Principle and the Principle of General Covariance in section 4.1), that the
relation between the description of physics in an arbitrary gravitational field and
the behaviour of this description under arbitrary coordinate transformations is
much closer and more far-reaching than we perhaps have the right to expect at

the moment.

Let us see what things looks like when written in some other (non-inertial, accelerating)
coordinate system. It is extremely useful for bookkeeping purposes and for avoiding
algebraic errors to use different kinds of indices for different coordinate systems. Thus
we will usually call the new coordinates z*(£%) or %(£%), and not, say, %(£°) (although

there would be nothing wrong with that).

We start with the definition of proper time, as described in inertial coordinates by the
Minkowski line element,

dr? = —ngdetde? (1.82)
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First of all, this proper time should not depend on which coordinates we use to describe
the motion of the particle, but only on the world line of the particle itself. After all,
the particle could not care less what coordinates we experimenters or observers use to
describe the particle’s proper time.

[By the way: this is the best way to resolve the so-called “twin-paradox”, which should
really be referred to (and presented) as the “twin-non-paradox” or simply the “twin-
fact” - everything else is deliberate and unhelpful obfuscation! It does not matter which
reference system you use - the accelerating twin in the rocket will always be younger
than her brother when they meet again.]

Thus all we need to know is how the same proper time 7 is expressed in terms of the

new coordinates, which simply follows from

a b
07 = € dE = —ma oo S dotdnt (1.83)
Here oo
JZ(x) — @ (184)

is the Jacobi matrix associated to the coordinate transformation £* = £*(a*), and we
will make the assumption that (locally) this matrix is non-degenerate, thus has an
inverse J&' (z) or Ji(£) which is the Jacobi matrix associated to the inverse coordinate

transformation z# = z#(£%),
JZJ;‘ = 0p JETS =68 . (1.85)

We see that in the new coordinates, proper time and distance are no longer measured

by the Minkowski metric in its standard form (the constant matrix 74), but by
dr* = —gy (z)datdz” (1.86)
where the metric tensor (or metric for short) g, (x) is

oge o¢b
guu($) = nabﬁ o (1.87)

REMARKS:

1. The fact that the Minkowski metric written in the coordinates x* in general de-
pends on x should not come as a surprise - after all, this also happens when one

writes the Euclidean metric in spherical coordinates etc.

2. Even though the components of the metric are not those of the Minkowski metric
in inertial coordinates, this metric or line element (with its associated presciption
for time- and space-measurements) still describes exactly the same Minkowskian
geometry as the standard Minkowski metric 7, (just as passing from Cartesian to

spherical coordinates in R? does not change the Euclidean geometry of the space).
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3. It is easy to check, using (1.85), that the inverse metric, which we will denote by

g,
gwj(:p)gu)\(x) = 5}3 s (188)
is given by
Oxt Ox”
uv — pab 1.

In terms of Jacobi matrices we have

G = Je ey . g =TT (1.90)

We will have much more to say about the metric below and, indeed, throughout this

course.

1.5 GENERAL COORDINATE TRANSFORMATIONS IN MINKOWSKI SPACE II: FREE
PARTICLE

We now turn to the equation of motion of a free particle, given in inertial coordinates
by

d2
a _
28 (1) =0 (1.91)
The usual rules for a change of variables give
d ., 0& dxt
—&0 = —_ 1.92
d7'5 Oxt dr '’ (1.92)
where J;; = g% is the invertible Jacobi matrix. This shows that, as usual, velocities

transform in a particularly simple (linear, vectorial) way under arbitrary coordinate

transformations, namely just with the Jacobi matrix,

£ = Jyat . (1.93)
Differentiating once more, one finds
B 0P P e o
dr? Ozt dr? 0 QxvOx dr dr
o0& %t . 0%t dav da?

OxH dr? b9zv 92> dr dr
a 2, .1 m 2 ¢b v A
_ o0& [d°x +8m 0°¢° dx¥ dx ' (1.94)
Ozt | dr?2 ~ 0&b 9xvox> dr dr

Thus, since the matrix appearing outside the square bracket is invertible, in terms of
the coordinates x* the equation of motion, or the equation for a straight (and, in the

case at hand, timelike) line in Minkowski space, becomes

Azt Ozt 9% dx¥ dx?

0Tt g B dr dr = (1.95)
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We will write this as
2P u dxV dx?

—_— — =0 1.96
dr? T dr dr ’ ( )
or just
N A (I (1.97)
where 5 o
“w a
R ii 1
Vor T g7 oo (1.98)
REMARKS:

1. Of course the statement (1.93) regarding the linear transformation rule of veloc-
ities under coordinate transformations remains true for transformations between
arbitary coordinate systems in Minkowski space, {z#} and {y®}, say, i.e. one has

)¢ = %x’“ = Jyat . (1.99)

In general this simply follows from the chain rule. It can also be deduced (in a

somewhat unnecessarily long way included here only for later reference purposes)

from what we have already done, namely by simply repeating the calculation

leading to (1.93), but now for the coordinates y,

€= Jiy* . (1.100)
This now implies
g = JgEs = JgISEr = Jgak (1.101)
where G 9E° e
go = Q08 _ Oy (1.102)

B 9ga Qe Ok
and in the last step the chain rule (or multiplicativity of the Jacobi matrix under

consecutive coordinate transformations) was used.

2. While (1.97) looks a bit complicated and unattractive, it is simply the general
variant of a calculation that you have probably done numerous times before in
various specific contexts. In particular, the second term in this equation, is just
the general expression for a pseudo-force or fictitious gravitational force (like a
centrifugal force or the Coriolis force) that arises whenever one describes inertial

motion in non-inertial coordinates.
3. More compactly, this pseudo-force term can be written as
A\ = TR0 TN = JEONTS = T TS (1.103)
It is absent precisely for linear coordinate transformations £%(x*) = M, e

/yl:/)\ =0 (V N’ lM)\) ~ ga = MS"E” (1104)
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for some constant matrix M9, In particular, this means that the equation of

motion for a free particle is invariant under Lorentz transformations, as it should

be.

4. By the same reasoning, the quantity ’y‘:A is independent of the choice of reference
inertial coordinate system £°. Le. if (* = L“bgb for some Lorentz (or more general
linear) transformation matrix L%, then

ozt 9%¢e ozt 92(¢?

D€ Dxvdz™  OC DV OxH (1.105)

5. In the same way that the equation of motion for a free particle in inertial co-
ordinates follows from the extremisation of the proper time (written in inertial

coordinates),

5/d7 = 5/\/—nabd£“d§b =0 = =0, (1.106)

the equation of motion for a free particle in noninertial coordinates follows from

the extremisation of the proper time (written in these noninertial coordinates),

(5/d7’ — 5/ /—gudrida =0 = i+ i7ir =0 | (1.107)

It is a straightforward exercise to establish this, and simply reflects the well-
known covariance of the Euler-Lagrange equations under coordinate transforma-
tions. The proof will not be given here also because we will straightaway establish
a more general statement (for a space equipped with an arbitrary metric) in section
2.3 below.

1.6 GENERAL COORDINATE TRANSFORMATIONS IN MINKOWSKI SPACE III: LESSONS

Even though the resulting equations look a bit uninviting at the moment, that is just
what you get when you do write things in arbitrary coordinates. Moreover, there are at

least two very useful things that we can extract or anticipate from this, namely

1. candidates for the appropriate generalisation of the Newtonian gravitational po-
tential
2. the prototypical general covariance of physical equations
in any theory of gravity satisfying the Einstein equivalence principle. Let us now discuss

these features in turn (relegating some uninspiring calculational details to the end of

this subsection):
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1. the Metric as a Candidate for the Gravitational Potential

Recall that in non-inertial coordinates the metric takes the form

Guw = T T Mab (1.108)

v

and the equation of motion of a free particle is (1.97) with the pseudo-force term
(1.103)
A= JEO, TN . (1.109)

It turns out that this term can be expressed in terms of the partial derivatives of
the metric. Indeed, defining
L= 9""Tpx

s (1.110)
sz/)\ = §(gp1/7>\ +gp)\au _gz/)\ap)

(this definition is such that it remains valid for an arbitary metric), one finds
G =TT = Th =~ . (1.111)

It is an elementary but nevertheless useful exercise to check this (see below - but

do try this yourself as well).

This shows that the components of the metric appear to play the role of “poten-
tials” for the gravitational pseudo-force. In particular, since in principle all com-
ponents of the metric can contribute to I',, ), we learn the interesting fact that
in order to achieve this a single scalar potential is completely insufficient (and
one could have discovered the possiblility or necessity of a multitude of potentials

simply by the study of pseudo-forces in non-gravitational Newtonian mechanics).

It is enormously pleasing to note that the “number” of potentials that we seem
to have discovered, namely 10 (for the symmetric (4 x 4)-matrix g, (z)), agrees
with the number of potentials anticipated in our discussion of section 1.1 when
we contemplated a tensorial generalisations (1.6) of the Poisson equation (with

source Typ).

If the metric indeed plays the role of the gravitational potential, as suggested
by these considerations, then it will play the role of the fundamental dynamical
variable of gravity. Since the metric encodes what one usually refers to as the
geometry of a space(-time), as we will discuss in much more detail below, namely
the information required to determine distances, areas, volumes etc., this means
that we are being led to the conclusion that any theory of gravity based on the

equivalence principle is a theory of dynamical geometry. Wow ...

2. the General Covariance of the Equation of Motion

The equation of motion (1.97) has one other fundamental redeeming and attractive

feature which will also make it the prototype of the kind of equations that we will
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be looking for in general. This feature is its covariance under general coordinate
transformations, i.e. its general covariance, which means that the equation takes
the same form in any coordinate system. Indeed, this covariance is in some sense
tautologically true since the coordinate system {x*} that we have chosen is indeed
arbitrary. However, it is instructive to see how this comes about by explicitly

transforming (1.97) from one coordinate system z* to another, say y.
If one does this (cf. below for a proof), one finds that the equations of motion

(1.97) in the coordinates z* and y“ are related by

By o [ et
dr? Y dr dr Ozt | dr? VA dr dr

(1.112)

Thus the geodesic equation transforms in the simplest possible non-trivial way

under coordinate transformations x — y, namely with the Jacobi matrix

oy”

o __

W= (1.113)
We will see later that this transformation behaviour characterises/defines tensors,

in this particular case a vector (or contravariant tensor of rank 1).

In particular, since this matrix is assumed to be invertible, we reach the conclusion
that the left hand side of (1.112) is zero if and only if the term in square brackets

on the right hand side is zero,

LN S Y P T
dr2 B dr dr dr? VA dr dr

=0 (1.114)

This is what is meant by the statement that the equation takes the same form
in any coordinate system, and is therefore satisfied in one coordinate system if
and only if it is satisfied in all coordinate systems. We see that in this case this
is achieved by having the equation transform in a particularly simple way under

coordinate transformations, namely as a tensor.

1. Proof of (1.111):

e From
Guw = Nav I} (1.115)
one deduces
Guox = Nab (T T) + T T0y) (1.116)
where
a __ b a __ 625& _ 70
Jun = 0J, = Py S (1.117)
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e Therefore, form the definition (1.110) of the I'-symbols, one has

Fuu)\ = %(g/u/,)\ + Jurv — gl/)\,u)
= Inap(JOTE + JOTE + T8 TY 4+ TS, — Ja I8 — JegY,)  (1118)
= nabJ;ij)\ s

v

where the cancellations in passing to the last line arise from the symmetries
Tab = TMbas J3, = Ty etc.

e Thus, finally (and writing out everything in detail for once),

T = g""T pun = 0 TE Timap T8I0\ = 1 TE 6 map Ton

A (1.119)
=0 Nab Sy = 0 Ty = Ty Jyn s

as was to be shown.
2. Proof of (1.112):

e We proceed as in the proof of (1.99). Thus consider transforming the free
particle equation of motion in inertial coordinates (1.55) not to the coordi-
nate systsem x*, as we did before, but to another coordinate system {y“}.
Following the same steps as above, one arrives at the y-version of (1.94),
namely

o [dPy™ | dy* ¢ dyf dy

d2
& ga— W 1.12
d7'2§ oy | dr? * oL OyboyY dr dr (1.120)

e Equating this result to (1.94) and using the chain rule for partial derivatives

dy®  Oy® 0&°
= 1.121
oxt O oz’ ( )
one finds
d?y® dyP dy? oy [dPaxH p dr” da?
A @ <2 27— 7 | _ 1.122
dr? Ty dr dr Ozt | dr? T dr dr ( )

as claimed.
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2 METRICS, GEOMETRY AND GEODESICS

Above we saw that the motion of free particles in Minkowski space in curvilinear coordi-
nates is described in terms of a modified metric, g,,,, and a force term ~* | representing
the “pseudo-force” on the particle. Thus the Einstein Equivalence Principle suggests
that an appropriate description of true gravitational fields is in terms of a metric tensor
guv () (and its associated I'-symbols) which can only locally be related to the Minkowski
metric via a suitable coordinate transformation (to locally inertial coordinates). We

adopt this as our working hypothesis.

2.1 METRICS AND GEOMETRY I: DEFINITION AND EXAMPLES

Thus our starting point will now be a space-time equipped with some metric g, (),
which (by analogy with the Euclidean and Minkowski metrics) we will assume to be

symmetric and non-degenerate, i.e.

g;w(x) = gl/u(x) det(g/u/(x)) #0 . (2’1)

The metric encodes the information how to measure (spatial and temporal) distances,

as well as areas, volumes etc., via the associated line element
guw(x) = ds* = g (v)detds” . (2.2)

As an example, the most general 2-dimensional line element (on a space with local

coordinates (z') = (2!, 2?)) has the form
ds? = gijda‘dr! = gi1(dz')? + (g22)(dz?*)? + 2g19dx* da® (2.3)

(which is non-degenerate if 11922 — (g12)% # 0).

A metric determines a geometry (in the literal sense of a prescription for measuring dis-
tances etc.), but different metrics may well determine the same geometry, namely those
metrics which are just related by coordinate transformations. In particular, distances
should not depend on which coordinate system is used. Hence, changing coordinates

from the {z#} to new coordinates {y®(z*)} and demanding that
guv(@)datdz” = gop(y)dy®dy” (2.4)
one finds that under a coordinate transformation a metric transforms as
Ozt dz”
gaﬁ(y) = guu(aj)a—yaa—yg = Jgt]ﬁy Juv - (2’5)

Objects which transform in such a nice and simple way under coordinate transformations

are known as tensors - the metric is an example of what is known as (and we will get to
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know as) a covariant symmetric rank two tensor. We will study tensors in much more

detail and generality later, starting in section 4.

REMARKS:

1. Here I have denoted the components of the metric in the new coordinates y“ simply
by gag. Occasionally it is more convenient to use a more elaborate notation, such
as

==y = g — gfxﬁ = JNI59m (2.6)

which allows one to distinguish notationally specific components of the metric in 2
different coordinate systems, such as ¢}; (the (11)-component of the metric in the
y-coordinates) from g1; (the (11)-component of the metric in the z-coordinates).
As mentioned before, indices and other decorations are primarily bookkeeping
devices; therefore I will usually not be overly-pedantic about these things in the

following and will use whatever notation is more convenient in the case at hand.

2. As a consequence of the non-degeneracy condition, pointwise g,,, (x) possesses an

inverse, whose components we will denote by ¢g"”(x), i.e.
N7 M VA A
" (@)gua(z) =0y, guw(2)g" (x) =7, . (2.7)

Clearly, the inverse metric then transforms inversely, i.e. with the inverse Jacobi
matrices Jy7, and this is now nicely compatible with the convention to denote the

inverse metric by upper indices,
g%f = Jﬁ‘Jfg‘“’ . (2.8)

This is also the rationale for writing the invese metric with “upper” indices: the
positioning of indices is used to indicate how an object transforms under coordinate
transformations (and we will formalise this in the discussion of section 4 on tensor

algebra).

3. A space-time equipped with a metric tensor g,, () is called a metric space-time
or (pseudo-)Riemannian space-time. Here “Riemannian” usually refers to a space
equipped with a positive-definite metric (all eigenvalues positive), while pseudo-
Riemannian (or Lorentzian) refers to a space-time with a metric with one negative

and 3 (or 27, or whatever) positive eigenvalues.

4. One point to note about the tensorial transformation behaviour is that pointwise

it is a similarity transformation in the sense of linear algebra, in matrix notation
g JigJ . (2.9)

In particular, therefore, if in one coordinate system the space-time metric tensor

has one negative and three positive eigenvalues (as in a locally inertial coordinate
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system), then the same will be true in any other coordinate system (even though
the eigenvalues themselves will in general be different) - this statement should be
familiar from linear algebra (e.g. as Sylvester’s law, but it also goes under various

other names).

Here are some examples of Riemannian metrics that you may already be familiar with.
EXAMPLES:

1. The Euclidean metrics or line-elements on R? or R®, but written in polar or

spherical coordinates,

ds*(R?) = da? + dy® = dr? + r?d¢*

2.10
ds*(R*) = da® + dy”® + dz* = dr® + 1% (d6” + sin” 6d¢?) . (210)

E.g. for the latter case one has
(x,y,2) = (rsinf cos ¢, rsin @ sin ¢, r cos ) | (2.11)

and plugging this into the Euclidean line-element dx? + dy? + dz?, one finds the

above result.

Denoting the Cartesian coordinates by =% and the spherical coordinates by y<,
with (y! = r,y? = 6,3® = ¢), the non-vanishing components of the metric in the

two coordinate systems are thus (using the prime notation (2.6))

gi=gn=gs3=1 , di=1, gh=1", ghy=rsin’0 . (2.12)

Alternatively, it is often more informative (and very common) to use the coor-
dinates themselves, rather than indices, as the labels of the components of the
metric tensor. In this case one can dispense with the prime notation and simply

write the components of the metric in spherical coordinates as

grr =1, ggg = r?  Gpp = r?sin?6 . (2.13)

2. Restricting the first example above to constant radius r = R, this gives us the

line-element on the circle S}% of radius R,
ds*(SE) = R*de* . (2.14)
Restricting the second to the 2-sphere 512% of radius R,
P4y +2=r"=R> or r=R, (2.15)
one finds the line-element
ds*(S%) = R?(d#* + sin’ 0d¢?) = R%d0? . (2.16)
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Here
dQ? = db* + sin® Odg? (2.17)

is usually called the solid angle, and we can now interpret it as the line element
on the unit 2-sphere. We will use the notation / abbrevation d2? for this line

element throughout the notes.

This example provides a nice illustration of the fact that by drawing the coordinate
grid / infinitesimal parallelograms determined by the metric tensor, one can get
a feeling for the geometry and can in particular convince oneself that in general a
metric space or space-time need not or cannot be flat, i.e. is not the flat Euclidean

space of Euclidean geometry.

Indeed, the coordinate grid of the metric d8? + sin? #d¢? cannot be drawn in
flat space because the infinitesimal parallelograms described by ds? degenerate
to triangles not just at & = 0 (as would also be the case for the flat metric
ds® = dr? + r?2d¢® in polar coordinates at » = 0), but also at § = 7. This

coordinate grid can, on the other hand, of course be drawn on the 2-sphere.

. This line-element on the unit 2-sphere generalises to the line-element on a unit
3-sphere,
ds?(S3) = dip? + sin? 9 (d6? + sin® §d¢p?) . (2.18)

This can be obtained by simply generalising the construction of spherical coor-
dinates from R3 to R%, and (if required) this can be continued iteratively to yet

higher-dimensional spheres.
Alternatively, by thinking of the 3-sphere as the locus
2y 2w =1 (2.19)
in R*, and “solving” this equation by first setting
2

2?2+ 9? =sin®a , 22+w?=cosla, (2.20)

and then refining this to

r=sinacosfS , y=sinasinf , z=cosacosy , w=cosasiny ,
(2.21)
one finds that the standard Euclidean line-element
ds? = da® + dy? + dz* + dw? (2.22)
induces the line-element
ds?(S3) = da® + sin® adB? + cos? ady? (2.23)

on the sphere. This is the same metric on S3 as above (2.18), namely the one

induced from the Euclidean metric on R*, but written in different coordinates.
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In particular, both are invariant under 4-dimensional rotations, i.e. under SO(4)-

transformations.

However, we can obtain genuinely different metrics on the 3-sphere e.g. by starting
with different metrics on R*. One of the simplest possiblilities is to replace (2.22)
by

d3? = a*(d2® + dy?) + b*(dz* + dw?) | (2.24)

with a,b real non-zero parameters. Then the induced metric on the 3-sphere
:E2+y2—|—z2—|—w2 =1is

d5?(53) = (a® cos® a + b?sin® a)da® + a*sin® adB? + b? cos?® ady? . (2.25)

For a? # b%, this metric is not invariant under full 4-dimensional rotations, but
only under rotations in the (z,y) and (z,w) planes, i.e. under SO(2) x SO(2)
transformations. Thus this equips the 3-sphere with a genuinely different geometry
(and is an example of what is sometimes referred to as a “squashed 3-sphere

geometry” ).

. If instead of the unit 2-sphere one considers the “unit” hyperboloid H?, defined
by
P24+ =41 — 24yt =-1, (2.26)

then this is naturally thought of as being embedded not in R? but in R™?, i.e. into

the 3-dimensional vector space with line-element
ds® = da® 4 dy? — d2* . (2.27)
The hyperbolic analogues (r, o, ¢) of the spherical coordinates, defined by
(z,y,z) = (rsinh o cos ¢, rsinh o sin ¢, r cosho) (2.28)
are naturally adapted to this situation, because
2?42 =22 =2 (2.29)

so that the unit hyperboloid is evidently just the surface » = 1. In these coordi-
nates, the metric (2.27) takes the form

ds®* = —dr? + r?(do”® + sinh? o d¢?) | (2.30)
and therefore the induced metric on the unit hyperboloid r =1 is

ds*(H?) = do® + sinh? o d¢* . (2.31)
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2.2 METRICS AND GEOMETRY II: LORENTZIAN (PSEUDO-RIEMANNIAN) METRICS

We now turn to Lorentzian (pseudo-Riemannian) metrics and geometries. These will
of course occupy and accompany us throughout these notes, so this section is meant to

just provide a first brief encounter with these objects.

For a metric with Lorentzian signature, and with coordinates z® = (2 = ¢, z¥), say, the
metric has components goo, gor = gro and g;r = gr;, and the corresponding line element
has the form

ds® = goodt® + 2godt dz* + gipda’da® (2.32)

Without any further conditions on the coefficients (except those ensuring non-degeneracy),
this could a priori be a metric of any signature, and the signature of the metric may not

always be readily apparent even when the coefficients of the metric are given explicitly.

Before looking at this in somewhat more detail, here are some simple examples, where

the Lorentzian signature of the metrics is reasonably manifest:
EXAMPLES:

1. Of course any of the Riemannian metrics of the previous section can be promoted
to space-time metrics by simply adding a (—dt?) (i.e. by taking the direct product
with the time-axis). Thus the Minkowski metric in spatial spherical coordinates

has the form
ds?(RY3) = —dt? + dr? + r*(d6* + sin® 0d¢?) . (2.33)

2. A generalisation of this is provided by the so-called ultrastatic metrics, i.e. metrics
that are just a product of the standard metric —dt? along the time-direction and

a spatial metric g;;(z)
ds? = —dt* + g;j(z)dz'da? (2.34)

(i.e. the components depend only on the spatial coordinates x%, not on t).

3. Somewhat more generally, the spatial components of the metric can depend non-
trivially on time. For example, a space-time metric describing a spatially spherical
universe with a time-dependent radius (expansion of the universe!) might be

described by the line element
ds* = —dt* + a(t)® (dy® + sin® ¢(d6” + sin® 0d¢?)) (2.35)

and more generally one can consider the corresponding generalisation of (2.34),

namely metrics of the form
ds? = —dt* + a(t)*gij(z)dx'da? . (2.36)

This describes a space-time with spatial metric f]ij(:z:)dznidznj and a time-dependent

overall scale factor a(t); in particular, such a space-time metric can describe an
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expanding universe in cosmology. We will discuss such metrics in detail later on

in the context of cosmology, sections 33-38.

. The (time-time)-component of the metric can of course in general depend non-
trivially on the spatial coordinates. We already encountered this in the example
of the Rindler metric (1.74), which has the form

ds? = —p?dn® + dp? . (2.37)

. A particularly prominent example is the Schwarzschild Metric
ds®* = —(1 — 2m/r)dt*> + (1 — 2m/r) " Ldr? + r2(d6? + sin® 0dp?) . (2.38)

It is of fundamental importance for General Relativity, and perhaps the most
important exact solution of the Einstein field equations for the gravitational field,
as it describes the gravitational field outside a spherical star (as well as black
holes, as it turns out ...). We will discuss this metric in great detail in sections
24-27.

The characteristic feature of metrics with Lorentzian signature is of course the presence

of timelike and null (lightlike) directions, and thus in a pseudo-Riemannian space-time

one has the same distinction between spacelike, timelike and lightlike separations as in

Minkowski space(-time). Infinitesimal

e spacelike distances correspond to ds? > 0,
e timelike distances to dr? = —ds?> > 0,

e and null or lightlike distances to ds® = dr? = 0.

Likewise, a vector V#(z) at a point z is called

e spacelike if g, (2)V*(z)V"(x) >0,
o timelike if g, (2)V*(z)V"(xz) <0,

e and null or lightlike if g, (2)V*(z)V¥(z) = 0,

and a curve x#(\) is called spacelike if its tangent vector is everywhere spacelike etc.

Using the definition of a vector in general relativity (to be introduced in section 4),

namely an object that transforms in the obvious way, with the Jacobi matrix, under

coordinate transformations, one sees that g, (x)V#(x)V¥(x) is a scalar, i.e. invariant

under coordinate transformations, and hence the statement that a vector is, say, space-

like is a coordinate-independent statement, as it should be.
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REMARKS:

1. When the metric (2.32) is (time-space) block-diagonal, i.e. when the mixed com-
ponents gor, = 0 (as in all of the above examples), then the timelike and spacelike
directions are easy to distinguish by inspection. Typically then the “spatial” met-

ric g; is positive definite, and thus necessarily ggg < 0.

2. When some of the ggr are non-zero, on the other hand, one has a more intri-
cate mixing of time- and space-directions. For example, consider the simple 2-
dimensional metric

ds® = dz?* + dy? + 2a dx dy (2.39)

for some real parameter a. For any a, the coordinate lines of x and y are spacelike
curves. However, this does not imply all by itself that the metric is Euclidean
(just like the sum of two spacelike vectors in Minkowski space is not necessarily
spacelike: it may be spacelike, timelike or null: e.g. if v = (0,1), choose w =
(0,1),(1/2,-1), (1, —2) respectively).

Indeed, by calculating the determinant of the metric,

1
det ( “) =1-a?, (2.40)
a 1

one sees that

e when a? < 1, the metric has Euclidean signature
(it is actually related to the standard 2-dimensional Euclidean metric by a
linear transformation)

e when a? = 1, the metric is degenerate
(in this case, the line element can be written as ds? = d(z & y)?, which is a
1-dimensional metric for the single coordinate = + y)

e when a? > 1, the metric has Lorentzian signature

(it is actually related to the standard 2-dimensional Minkowski metric by a

linear transformation)

3. This mixing of time- and space-directions for a metric which is not block-diagonal

can also be seen from the components of the inverse metric. Indeed, from (2.7),

one finds
9009"* = go0g™ + g0ig™ = 5 =0 , (2.41)
and thus (for goo # 0)
g = _LQOigik . (2.42)
goo

Likewise from (2.7) one deduces
9ivg”" = 9i0g”™ + g1’ = oF . (2.43)
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In particular, this shows that in general (i.e. unless the off-diagonal components
gor are all zero), the spatial components g% of the inverse metric are not the

inverse of the spatial components g;; of the metric. Rather, using (2.42) one has

1 _
(%’ - gEgiogjo> gt =6 . (2.44)

Outlook:

This ends our first brief encounter with metrics and geometries. At this point the
question naturally arises how one can tell whether a given (perhaps complicated looking)
metric is just the “flat” (Euclidean or Minkowski) metric written in other coordinates

or whether it describes a genuinely new geometry.

We will see later that there is an object, the Riemann curvature tensor, constructed
from the metric and its 1st and 2nd derivatives, which has the property that all of its
components vanish if and only if the metric is a coordinate transform of the flat space
Minkowski metric. Thus, given a metric, by calculating its curvature tensor one can
decide if the metric is just the flat metric in disguise or not. The curvature tensor will

be introduced in section 8, and the above statement will be established in section 11.2.

2.3 GEODESIC EQUATION FROM THE EXTREMISATION OF PROPER TIME

We have seen that the equation for a straight line in Minkowski space, written in arbi-

trary coordinates, is
d%zH da? da?

H———=0 2.45
drz TG ar ’ (245)

where the pseudo-force term ~”, is given by (1.98). We have also seen in (1.111)

(provided you checked this) that 4, can be expressed in terms of the metric (1.87) as

A %gup(gpuﬂx +gp)\au _gz/)\ap) . (2'46)

This gravitational force term is fictitious since it can globally be transformed away by
going to the global inertial coordinates £*. The equivalence principle suggests, however,
that in general the equation for the worldline of a massive particle, i.e. a path that
extremises proper time, in a true gravitational field described by a non-trivial metric
guv () (not related to the Minkowski metric by a coordinate transformation) is also of

the above form.

We will now confirm this by deriving the equations for a timelike path that extremises
proper time from a variational principle. These paths will be referred to as (timelike)
geodesics. We will briefly return below to the (delicate) issue to which extent these can

be regarded as world lines of actual massive particles.

95



Recall first of all from special relativity that the Lorentz-covariant description of the
dynamics of a massive particle is based on describing the timelike worldline of the

particle in the parametric form

£ =¢"() (2.47)
where 7 is the proper time along the worldline,
dr? = —ngdetde’ . (2.48)
In particular, the 4-velocity
dg* (1)
e — 2.4
u - (2.49)
is normalised as
Naputu’ = —1 . (2.50)

The Lorentz-invariant action for a free massive particle with mass m is

So = —m/dT . (2.51)

We can adopt the same set-up and action in the present setting. Thus we parametrise
the worldlines by
at =zt (r) , (2.52)

with 7 the proper time
dr* = —gy (z)datdz” (2.53)

invariant under general coordinate transformations (provided that one transforms the

metric appropriately). The corresponding 4-velocity

dx*
W= — 2.54
= (2.54)

is again normalised as
gm/uﬂu’/ =-1, (255)

and we are led to consider the coordinate-invariant Lagrangian

x] = —m/dT = —m/ \/—gu,,(x)dx“dx” . (2.56)

Of course m drops out of the variational equations (as it should by the equivalence

principle) and we will therefore ignore m in the following.

In order to perform the variation, it is useful to introduce an arbitrary auxiliary param-

eter \ in the initial stages of the calculation via

dr = (— g BB EN/2g) (2.57)

and to write

/ dr = / dr/d\)d\ = / — G N2\ (2.58)

56



We are varying the paths
(1) — k(1) + ozt (7) (2.59)

keeping the end-points fixed, and will denote the 7-derivatives by @#(7). Under this

variation, the metric g, (x) varies as
6g/u/ = Guvr szt . (260)

By the standard variational procedure one then finds, first of all,

dxt dx” doxt dx¥
dxt dz¥ \—1/2
5/(17' = %/(_gﬂyd_; N ) / d\ |:—5g“yﬁﬁ — QQHVWK] (261)
Already at this stage we can revert from A to 7, and the expression simplifies to
m
5 / dr =1 / dr [—(5guy)$“a§” - 2gu,,d(;—$j;”} (2.62)
T

Integration by parts of the 2nd term (in order to eliminate the derivative of the variation)
and use of (2.60) then leads to

1
5 / dr = 3 / dr [—gW,A P30 + 2,0 51H + 2guy,,\ab’\ab”5a:“]

(2.63)
= /dT [gpufﬁ” + 2(Guwor FGurw —Goru )iuik} St
after a suitable relabelling of the indices.
If we now adopt the definition (2.46) for an arbitrary metric,
T\ = "T pun = 39" (Govr T9p20 —Gursp) (2.64)

we can write the result as
5/d7' = /dTg“,,(i”+F”p/\:tp:tA)5x“ . (2.65)

Thus we see that indeed the equations for a timelike geodesic in an arbitrary gravita-
tional field are ) \

dzt dx¥ dx

—4+IH, ———— =0 . 2.66
dr? A dr dr (2.66)

REMARKS:

1. Given a metric g,,, the quantities I, and F’f»\ defined in (2.64) are known as
the Christoffel Symbols of the 1st kind and 2nd kind.

2. The Christoffel symbols (2.64) play the role of the gravitational force term, and
thus in this sense the components of the metric play the role of the gravita-
tional potential. These Christoffel symbols play an important role not just in the
geodesic equation but, as we will see later on, more generally in the definition of
a covariant derivative operator and the construction of the curvature tensor, and
thus ultimately also in the generally covariant description of the dynamics of the

gravitational field itself.
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3. Two elementary important properties of the Christoffel symbols are that they are

symmetric in the second and third indices,
Pur=Tuw , T =T, (2.67)

(this follows simply from the definition), and that symmetrising I, \ over the first
pair of indices one finds

Fuu)\ + Fl/u)\ = Guv,\ (268)

(and this follows from noting that 4 of the 6 partial derivative terms of the metric

cancel in this linear combination while 2 add up)

4. One can also consider spacelike paths that extremise (minimise) proper distance,
by using the action

So ~ / ds (2.69)

where
ds* = g, (x)dz*dz” (2.70)

is the proper distance (or arc-length in the traditional terminology of the differ-

netial geometry of curves).

One should also consider massless particles, whose worldlines will be null (or
lightlike) paths. However, in that case one can evidently not use proper time or
proper distance, since these are by definition zero along a null path, ds? = 0. We
will come back to this special case, and a unified description of the massive and
massless case, below (section 2.5). In all cases, we will refer to the resulting paths
as geodesics. If required, we add the qualifier “timelike”, “spacelike” or “null”,
and this is meaningful and unambiguous since, as we will see below, a geodesic

that is initially timelike will always remain timelike etc.

5. By definition, massive test particles are those particles that satisfy the above
geodesic equation, i.e. that follow timelike geodesics in space-time. However, it
needs to be borne in mind that this notion of a test particle is a fiction, in particular
as it neglects the backreaction, i.e. the change in the background gravitational field
due to the mass of the particle. Moreover, real particles either have a finite extent
(in which case this finite size should play a role in their equations of motion) or
are considered to be point-like. However, the notion of a point-like particle is
extremely dangerous and delicate in general relativity: as we will see later, if a
given total mass is concentrated in a sufficiently small region of space-time (and
“point-like” certainly qualifies as “sufficiently small”), then one will end up with a
black hole rather than with the description of a particle. The correct description
of point particles in general relativity is a complicated issue and an active area of
research.’

°See e.g. E. Poisson, A. Pound, I. Vega, The Motion of Point Particles in Curved Spacetime,
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2.4 CHRISTOFFEL SYMBOLS AND COORDINATE TRANSFORMATIONS

Knowing how the metric transforms under coordinate transformations, we can now also
determine how the Christoffel symbols (2.64) and the geodesic equation transform. A
straightforward but not particularly inspiring calculation (which you should nevertheless
do) shows that under z# — y the Christoffel symbols are related by

o p Oy oz” o oy O%at

BT T Az 9yP Dy o dyBoy" @71)

or
%, = JOTE T |+ JS0s Tl (2.72)

Thus, IT' | transforms inhomogenously under coordinate transformations. If only the
first term on the right hand side were present, then F’f»\ would be a tensor. However,
the second term is there precisely to compensate for the fact that &* is also not a tensor
- the combined geodesic equation turns out to transform in a nice way under coordinate
transformations.

Namely, after another not terribly inspiring calculation (which you should nevertheless

also do at least once in your life) , one finds

>y o dyP dy? B % d?xt p dx” da?

ey WY _ ar do dr 2.73
dr? P dr dr — Ozt | dr? vAdr dr (2.73)

This is analogous to the result (1.112) that we had obtained before in Minkowski space,
and the same remarks about covariance and tensors etc. apply. An explicit proof of
(2.72) and (2.73) is given at the end of this subsection. A more general result along
these lines will be established in section 5.1 below, when we introduce the covariant

derivative of a vector field.

REMARKS:

1. That the geodesic equation transforms in this simple way (namely as a vector)
should not come as a surprise. We obtained this equation as a variational equation.
The Lagrangian itself is a scalar (invariant under coordinate transformations), and

the variation dz* is (i.e. transforms like) a vector,

_ o

oy = oxH

oxtt = Jjoxh . (2.74)
Putting these pieces together, one finds the desired result.

2. General covariance, i.e. form-invariance under general coordinate transformations,

as exhibited e.g. by the geodesic equation, is of course a desirable feature regardless

arXiv:1102.0529 [gr-qc] for a detailed discussion and many references (but you will need to acquire
a solid understanding of tensor analysis first).
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of whether or not one is attempting to describe gravity. After all, the particle could
not care less which coordinates we use to describe its motion, and therefore we
should also formulate the equations of motion for a particle in a way that does not
single out some preferred coordinate system or class of coordinate systems. This

is precisely what is achieved by general covariance.

However, here general covariance seems to have arisen somewhat coincidentally
and spontaneously, and the relation between general covariance and gravity, or
general covariance and the equivalence principle, may still appear to be somewhat
mysterious at this point. The precise relation between the two concepts will be

explained in section 4.1.

. There is of course a very good physical reason for why the force term in the
geodesic equation (quadratic in the 4-velocities) is not tensorial. This simply
reflects the equivalence principle that locally, at a point (or in a sufficiently small
neighbourhood of a point) you can eliminate the gravitational force by going to
a freely falling (inertial) coordinate system. This would not be possible if the

gravitational force term in the equation of motion for a particle were tensorial.

. Proof of (2.72)

For partial derivatives one has the chain rule 0, = Jff‘(%\ (“Ox is a covector”).

Therefore for the partial derivatives of the metric one has
9oy = (JETEGu) iy = GuupnJETETS + (JE T4 + TETE) g - (2.75)
Adding up the 3 terms comprising the Christoffel symbol I', ., one obtains

2Tapy = gapy + 9ov,8 — 98v,0
= 2JK T4 T (2.76)

+ (ST + JE Ty + gy + JETYs = Tao Ty = T Iya)

In the last line, the 3rd term cancels against the 5th (because J. 55 is symmetric),
the 1st term cancels against the 6th (because J4, and guv are symmetric), while
the 2nd and 4th term add up, so that one finds

Topy = JETETT o + JHTE G - (2.77)

Now the hard work has been done. Raising the 1st index of the Christoffel symbol,
using the inverse metric
g0 = g”pJg‘Jg , (2.78)

it is now simple to see that one obtains the claimed result (4),

%y = 9" sy = JgJEI T + T35 (2.79)
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For example, for the 2nd term one has (just using properties of inverse Jacobi
matrices and metrics)
9IS T = 9P IS T IE T G = 970 T8 T G (2.80)
= gU“JgJEngV = 53‘]3‘]5”7 = JI?JBVW
2. Proof of (2.73)

The 4-velocities transform as vectors (the chain rule again), y* = Jg@#. Therefore
for the acceleration one has
g = Jyat + Jgatit (2.81)
Therefore
P = T ORGP S I T
= JS(E + T 83N + (T T+ o, T4 )i '

The 1st term will give us the desired result, and cooperatively the 2nd term is

identically zero because (use d, = J¥9, again)

0= (68)y = (JOT4) = Jo JVTH + JSTH . (2.83)

Apology and Outlook:

You may feel that, after a promising start, some of the things that we have done subse-
quently (in particular in this subsection) look terribly messy. I agree, indeed they are!
However, I can assure you that this is by far the messiest part of the entire lecture notes

and that things will improve dramatically rather quickly.

Indeed, the main purpose and benefit of developing tensor calculus in the next couple

of sections is to develop a formalism in the framework of which (among other things)

e one can avoid having to deal explicitly with objects that transform in complicated

ways under coordinate transformations

e the transformation behaviour of any object is manifest (and does not have to be
checked)

e it is straightforward to write down equations that are generally covariant, i.e.
independent of the coordinate system in the sense that they are satisfied in all

coordinate systems if and only if they are satisfied in one.

This tensor calculus formalism is simple, elegant and efficient and will then allow us
to make rapid progress towards describing the dynamics in a (and subsequently of the)

gravitational field in a way compatible with the Einstein equivalence principle.
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2.5 ALTERNATIVE ACTION PRINCIPLES FOR GEODESICS

As we have already noted in section 2.3, there is a problem with the action S ~ m [ dr
(2.56) for massless particles (null geodesics). For this reason and many other practical
purposes (the square root in the action is awkward) it is much more convenient to use,

instead of the action

a dpB
Solz] = —m/dT = —m/d)\\/—gaﬁ%% = /d)\ £ (2.84)

the simpler Lagrangian

dz® dxP
L= 35908 % (2.85)
and action
Si[2] = / AL | (2.86)

Let us first verify that S; really leads to the same equations of motion as Sy. Either by

direct variation of the action, or by using the Euler-Lagrange equations

d oL oL

Doy o (287)

one finds that the action is extremised by solutions to the equation

d dz” 1 dz® daP
& -1 - 2.88
d\ (-g'YB d)\ > 2906677 d\ d)\ ( )
The terms involving first derivatives of the metric cooperatively combine into the Christof-

fel symbols,

NG At detd? L detde? | detde?
a7 ) Tax T 29BN Tan T BTN Ty T 29BN A T T A
(2.89)
Here we have used the fact that we can write
dz® dxP 1 dz® dxP
g’yﬁ,aﬁﬁ = 5 (98,0 + Gya,8) N dh (2.90)
because 5 5
dx® dx dx® dz®
o T T T 2.91
d)\ d\ d\ d)\ (2.91)
is symmetric. Therefore one has
d?zP dz® daP
9z TTves o =0 (2.92)

By raising the index (or multiplying with the inverse metric) one can write this as

A2z 5 dz® dxP

dat |y damdem 9.
oz e =0 (2.93)
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This is identical to the geodesic equation derived from Sy (with A — 7, the proper

time).

We will make extensive use of this simpler Lagrangian for geodesics throughout these
notes. In particular, in practice the version (2.88) of the geodesic action is much more
efficient and user-friendly than the standard form, because everything is expressed di-
rectly in terms of the metric and its first derivatives (neither does one need the inverse
metric, nor does one have to assemble the derivatives of the metric into Christoffel
symbols first).

Moreover, as will be explained in section 3.1 below, (2.88) actually also provides one
with a fairly efficient method to determine (essentially read off) the Christoffel symbols,
simply by comparing (2.88) with (2.92) or (2.93).

One important consequence of (2.93) is that the quantity £ is a constant of motion, i.e.
constant along the geodesic,
d%x dz® daP d < dz® dmﬂ) _0

(2.94)

y &4 il o
d\2 s dX dX = ax \ %N Tax

This useful result can be understood and derived in a variety of ways:

e The least insightful way is just direct calculation. Nevertheless, this is straight-

forward and a good exercise in I'-ology (and as such is left as an exercise).

e Alternatively, noting that £ does not depend explicitly on A, this result can be
derived (as the corresponding conserved “energy”) from Noether’s theorem (cf.

section 2.6 below for this argument).

e Yet another derivation will be given in section 5.8, using the concept of “parallel

transport”.

One obvious consequence of (2.94) is that, if one imposes the initial condition

dxt dx”
} —c, 2.
gM d)\ d)\ \—0 € ( 95)

then this condition will be satisfied for all A\. This is as it should be. After all, something
that starts off as a massless particle will remain a massless particle etc. In particular,
therefore, even though with this choice of Lagrangian A is a priori unrelated to proper
time, say, this shows that one can choose € = F1 for timelike (spacelike) geodesics, and
A can then be identified with proper time (proper distance), while the choice € = 0 sets
the initial conditions appropriate to massless particles (for which A is then not related

to proper time or proper distance).

Moreover, the constancy of L for solutions of the Euler-Lagrange equations is the reason
(or one explanation for) why £ and v/££ (more generally any monotonic function f(£)

of L) give rise to equivalent equations of motion.
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Indeed, this can be seen by simply comparing the Euler-Lagrange equations for f(£)
with those for £. Denoting the Euler-Lagrange equations for a Lagrangian £ by

d oL oL

L_ _
&y = d\O(dxv/dN\)  OxY (2.96)
for any £ and any f one has
d oL
F(L) — ¢ L " o« = 92
& (L + (L) <d)\£> d JdN) (2.97)
Thus, if
d
L __ —
& =0 = 55—0 , (2.98)
then one has
=0 = &W=o0, (2.99)
and if f is monotonic (f’ # 0 everywhere), then one also has the converse,
A0 = (g5=0 e gO=0) . (2.100)

2.6 ON THE RELATION BETWEEN THE TWO ACTION PRINCIPLES

Even though not strictly required in the following, it is nevertheless quite instructive in
its own right to try to understand and establish the precise relation between the two

actions Sy and S, and this is the subject of this subsection.

The first thing to notice is that Sy is manifestly parametrisation-invariant, i.e. indepen-

dent of how one parametrises the path. The reason for this is that
dr = (d7/d\)d\ (2.101)

is evidently independent of A. This is not the case for S;, which changes under
parametrisations or, put more positively, singles out a preferred parametrisation (more

precisely, as we will see below, a special class of parametrisations).

Thus, what is the relation (if any) between the two actions? In order to explain this, it
will be useful to introduce an additional field e()) (i.e. in addition to the x®())), and a
“master action” (or parent action) S which we can relate to both Sy and S;. Consider
the action

dz® daP
Slz,e] =1 / dA <e(A)‘1ga/3;—A;—A = m2e(A)> - / dX (e(N)1L — Lm2e(N))
(2.102)
The crucial property of this action is that it is parametrisation invariant provided that
one declares e(\) to transform appropriately. It is easy to see that under a transforma-
tion A — X\ = f(\), with

N\ =2%(\)  dh= f/(\)dA (2.103)
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the action S|z, €] is invariant provided that e(\) transforms such that e(A)d\ is invariant,
ie.

NN =e(Ndr = e\ =e(N)/F(N) . (2.104)

Indeed, this is evident when one writes the action (2.102) in the form

® da®
Slx,e] = %/e()\)d)\ <€()\)_2gaﬁdd—)\dd—/\ - m2> (2.105)

and notes that d\ and e(\) only appear in the combinations e(A)dA and e(A)~!(d/d)\).

Now what is the relation between the action S[z,e] and the two “standard” actions
So[z] and Si[x]?

e Courtesy of this parametrisation invariance, we can always choose a “gauge” in
which e(\) = 1. With this choice, the action S[z,e] manifestly reduces to the

action S[z] modulo an irrelevant field-independent constant,
Slz,e=1] = /d)\ L— %m2/d/\ = Si[x] 4 const. . (2.106)

Thus we can regard S; as a gauge-fixed version of S (no wonder it is not parametri-
sation invariant ...). We will come back to the small residual gauge invariance

(reparametrisations that preserve the gauge condition e(\) = 1) below.

e Alternatively, instead of fixing the gauge, we can try to eliminate e(\) (which
appears purely algebraically, i.e. without derivatives, in the action) by its equation

of motion. Varying S|z, e] with respect to e(\), one finds the constraint

dz® dxP 9 9
o ~ 4+ mfe(\)? =0 . 2.1
Yop d\ d\ () 0 (2.107)

This is just the usual mass-shell condition in disguise. It suggests that a better
gauge fixing than e()\) = 1 would have been e(\) = m~!. However, the sole effect
of this would have been to replace £ in (2.106) by mZL,

eN=1—=eN)=m" = L-omL. (2.108)

In any case, for a massive particle, m? # 0, one can alternatively solve (2.107) for

e(N),
1/ dz® dzP

Using this to eliminate e(\) from the action, one finds

a B
Slz,e=m™1 /] = —m/d/\ —gagddi/\% = —m/dT = Solz] . (2.110)

Thus for m? # 0 we find exactly the original action (integral of the proper time)
Solz] (and since we have not touched or fixed the parametrisation invariance, no

wonder that Sp is parametrisation invariant).
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Thus we have elucidated the common origin of the actions Sy and S; for a massive

particle.

The perspective provided by the parent action S|z, e] also gives some further insights.
For example, an added benefit of the parent action S|z, e] is that it also makes perfect

sense for a massless particle. For m? = 0, the mass shell condition

dz® dzP
ar 4 _ 2.111
o630 (2.111)

says that these particles move along null lines, and the action reduces to

_ dz® dxP
Slw,e] = 1 / AX () gap - (2.112)

which is parametrisation invariant but can (as in the massive case) be fixed to e(\) =1,

upon which the action reduces to Si[z]. Thus we see that Si[z] indeed provides a

simple and unified action for both massive and massless particles, and in both cases the

resulting equation of motion is the (affinely parametrised) geodesic equation (2.93),
d?z® dz? dx”

2 e T 0 2.113
D2 BT ( )

REMARKS:

1. The infinitesimal form of the invariance of the action S[z,e] under (2.103) and
(2.104) is obtained by considering the infinitesimal transformation of x®(\) and

e(\) induced by an infinitesimal transformation A = X\ + ¢(\),

A =e(A) = dz%(\) =€) dm;(\A) (2.114)
Se(N) = d;(;\)e()\) + e(A)dZ&A)

Here the (at first perhaps somewhat peculiar looking) transformation behaviour of

the auxiliary field e(\) arises from the transformation behaviour (2.104) by setting
de(X) = e(N) —e(N) (2.115)

and calculating (keeping at most linear terms in €(\))

e(N)E(N)) (2.116)

Le=eN)'L— tm%e(N) (2.117)



of the action S[x,e] (2.102) transforms as

_ 4
~

implying the invariance of the action.

5L, (eMNLe) | (2.118)

. We saw in (2.94), that the Lagrangian L itself is a constant of motion,

a .8
% <ga5%%> =0 (2.119)
for a solution to the geodesic equation. From the present (action-based) perspec-
tive it is most useful to think of this as the conserved quantity associated (via
Noether’s theorem) to the invariance of the action Sp[z] under translations in A.
Note that evidently Sp[z] has this invariance (as there is no explicit dependence
on A) and that this invariance is precisely the residual parametrisation invariance
F(A) = X+a, f/(A) =1, that leaves invariant the “gauge” condition e(\) = 1. For
an infinitesimal constant A-translation one has dz%(\) = dz®/d\ etc., so that

0 d d oL  da®
(

—L=0 = L= T N K) + FEuler — Lagrange .

(2.120)

Thus via Noether’s theorem the associated conserved charge for a solution to the

) DE= Do

Euler-Lagrange equations is the Legendre transform
oL dz®
===——7 - 2.121
# <8(dma/d)\) dA > £ ( )

of the Lagrangian (also known as the Hamiltonian, once expressed in terms of
the momenta). In the case at hand, with the Lagrangian £ consisting of a purely
quadratic term in the velocities (the dx®/d)\), the Hamiltonian is equal to the

Lagrangian, and hence the Lagrangian L itself is conserved,

d
7'[ - ﬁ ’ aﬁlsolution =0 . (2122)

. The above non-trivial Hamiltonian associated to the Lagrangian £ should be con-
trasted with the Hamiltonian associated to the action Sy with Lagrangian (2.84)

dx® dzP
Ly =—my 9B N (2.123)

which turns out to be zero identically. Indeed, the canonical momenta are

/ dz® dxP
Do = MGas(dz’ /dN)/ ~9aB N = mgap(da? /dT) (2.124)

which evidently satisfy the mass shell condition

Pap™ +m* =0 (2.125)
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and lead to the Hamiltonian
Ho = po(dz®/dN\) — L) =0 . (2.126)

This vanishing of the Hamiltonian is strictly related to the reparametrisation in-
variance of the action Sp.

2.7 AFFINE AND NON-AFFINE PARAMETRISATIONS

To understand the significance of how one parametrises the geodesic, observe that the
geodesic equation itself,
Pt TH i =0, (2.127)

is not reparametrisation invariant. Indeed, consider a change of parametrisation 7 —
o = f(7). Then

det  df dx*
_= = 2.128
dr dr do ( )
and therefore the geodesic equation written in terms of o reads
2 b vV A g n
d“x p dx’ dx _ f dx ‘ (2.129)

do?> ' Mdo do  f2do

Thus the geodesic equation retains its form only under affine changes of the proper time
parameter 7, f(7) = at + b, and parameters 0 = f(7) related to 7 by such an affine

transformation are known as affine parameters.

From the first variational principle, based on Sy, the term on the right hand side arises
in the calculation of (2.63) from the integration by parts if one does not switch back
from A to the affine parameter 7. The second variational principle, based on S; and the
Lagrangian £, on the other hand, always and automatically yields the geodesic equation

in affine form.

Conversely, if we find a curve that satisfies

d?zt dx? da? dz#
—— P ———— =k(o)— , (2.130)
do " do do do

for some function k(o) (the inaffinity), we can deduce that this curve is the trajectory
of a geodesic, but that it is simply not parametrised by an affine parameter (like proper
time in the case of a timelike curve). Comparison of (2.129) and (2.130) shows that,
given k(c0), an affine parameter 7 is determined by

f d _dr
/ =

e k(o) =—1In

k(f(T)) = 7 o (2.131)

or

dr 7 ds k(s
== )7 ds K(s) (2.132)
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The two integration constants, the first hidden in the lower limit of integration in the
exponent and the second in the additive constant arising from integrating dr/do, are
precisely the two constants a,b that parametrise the freedom in the choice of affine

parameter, 7 — at + b.

In the following, whenever we talk about geodesics we will practically always have in
mind the variational principle based on S; leading to the geodesic equation (2.113) in

affinely parametrised form.

However, it should be kept in mind that sometimes non-affine parameters appear nat-
urally. For instance, it is occasionally convenient to parametrise timelike geodesics in a
geometry with coordinates z® = (20 = ¢, 2%) not by 2% = 2%(7), where 7 is the proper
time along the geodesic, but rather as 2% = 2#(¢). This is the same curve, but described
with respect to coordinate time (which could for instance agree with the proper time of
some other, perhaps static, observer). The curve t — (¢, 2%(t)) will not be an affinely

parametrised curve unless ¢ itself satisfies the geodesic equation
t=0 & t=ar+b. (2.133)

One occasion where this will play a role (and from where I have borrowed the symbol
k for the “inaffinity”) is in our discussion, much later, of the horizon of a black hole,
where the lack of a certain coordinate to be an affine parameter is directly related to
the physical properties of black holes (see section 27.10). In this context x is known as

the surface gravity of a black hole.

2.8 EXAMPLE: GEODESICS IN R2 IN POLAR COORDINATES

It is high time to consider an example. We will consider the simplest non-trivial metric,
namely the standard Euclidean metric on R? in polar coordinates. Thus the line element
is

ds* = dz® + dy? = dr® + r2d¢* (2.134)

and the non-zero components of the metric are

and
gr =1, Gop=1". (2.136)
respectively. Since this metric is diagonal, the non-zero components of the inverse metric
gh¥ are
gt =g" =1 (2.137)
and
gr=1 , ¢*=r7? (2.138)
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respectively.

A reminder on notation (cf. the discussion leading to (2.13)): since p,v in g, are
coordinate indices, we should really have called z' = r, 22 = ¢, say, and written
g11 = 1, gao = r?, etc. However, writing g, etc. is more informative and useful since one
then knows that this is the (rr)-component of the metric without having to remember if

1

one called 7 = z! or r = 22. In the following we will frequently use this kind of notation

when dealing with a specific coordinate system, while we retain the index notation g,

etc. for general purposes.

Let us now look at the geodesic equations for this metric, first in the Cartesian coordi-

nates (x,y) and then in the polar coordinates (7, ¢).

1. Cartesian coordinates

Since the metric in Cartesian coordinates is the constant Euclidean metric g, =
duv, all the partial derivatives of the metric are zero, and therefore also all the

Christoffel symbols are zero. The geodesic equations thus take the form
T=4=0 . (2.139)

These equations could also have been obtained as the Euler-Lagrange equations
of the Lagrangian
L£=1L1E+9% . (2.140)

The general solution is
z(s)=as+b , y(s)=cs+d . (2.141)
Combining these two, one finds the standard representation
y=kx+e (2.142)
for a straight line in R?, with slope k and intercept e.

2. Polar coordinates

Now let us consider the same problem in polar coordinates. The crucial point here

is that in these coordinates the geodesic equations will not simply be # = ¢ = 0,

but that there are additional terms arising

e cither from the non-linear coordinate transformation between Cartesian and

polar coordinates

e or equivalently from the fact that the coefficients of the metric are not con-

stant in polar coordinates.
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Taking the latter point of view, the Christoffel symbols of this metric are to be

calculated from
Fuu)\ = %(g/u/,)\ + Jurw — .gl/)\,u) . (2143)

Since the only non-trivial derivative of the metric is g¢4, = 2r, only Christoffel

symbols with exactly two ¢’s and one r are non-zero,

Urgp = 5(9rop + Grop — Goo.r) = =7
F¢¢T = F¢r¢ =T . (2144)

Thus, since the metric is diagonal, the non-zero I‘“V )\ are

Ugp = 9" Tpoo = 9" Trpp = =7
1
T, =T% = g%Ts = 9Ty = - (2.145)
Note that here it was even convenient to use a hybrid notation, as in ¢g"*, where

r is a coordinate and p is a coordinate index. Once again, it is very convenient to

permit oneself to use such a mixed notation.

In any case, having assembled all the Christoffel symbols, we can now write down
the geodesic equations (one again in the convenient hybrid notation). For r one
has

i+, 2" =0, (2.146)

which, since the only non-zero I, is s reduces to

P—rd?=0 . (2.147)
Likewise for ¢ one finds

. 9.

o+ ;qﬁf’ =0 . (2.148)

Here the factor of 2 arises because both Fd; " and T .= I‘q; " contribute.

REMARKS:

(a) This equation is supposed to describe geodesics in R?, i.e. straight lines. This
can be verified in general (but, in general, polar coordinates are of course not
particularly well suited to describe straight lines). However, it is easy to
find a special class of solutions to the above equations, namely curves with

¢ =7 = 0. These correspond to paths of the form

(r(s),¢(s)) = (s,90) , (2.149)

which are a special case of straight lines, namely straight lines through the

origin.
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(b)

()

remarks.

The geodesic equations can of course also be derived as the Euler-Lagrange
equations of the Lagrangian

L£=1(+r%%) . (2.150)
Indeed, one has
daoL oL . o
sor o~ Torer=0
doL oL o+ S

which are obviously identical to the equations derived above.

You may have the impression that getting the geodesic equation in this way,
rather than via calculation of the Christoffel symbols first, is much simpler.
I agree wholeheartedly. Not only is the Lagrangian approach the method of
choice to determine the geodesic equations. It is also frequently the most
efficient method to determine the Christoffel symbols. This will be described

in section 3.1.

Another advantage of the Lagrangian formulation is, as in classical mechan-
ics, that it makes it much easier to detect and exploit symmetries. Indeed,
you may have already noticed that the above second-order equation for ¢ is
overkill. Since the Lagrangian does not depend on ¢ (i.e. it is invariant under

rotations), one has

d
—% =0, (2.152)
ds 9¢
which means that 0L/ d¢ is a constant of motion, the angular momentum L,
oL _ =1L . (2.153)
o

This equation is a first integral of the second-order equation for ¢. We will

come back to this in somewhat more generality below.

The next simplest example to discuss would be the two-sphere with its standard metric

df? +sin? @d¢?. Tt will appear, in bits and pieces, in section 3.1 to illustrate the general

2.9 EXAMPLE: GEODESICS FOR ULTRASTATIC AND DIRECT PRODUCT METRICS

As another example, let us consider the ultrastatic metrics introduced in (2.34) with

coordinates z# = (t,z*) and line-element

ds? = —dt? + g (x)da'da® . (2.154)
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Because gg9 = —1, gor = 0, and the g;. = g;; are time-independent, all Christoffel

0

symbols with at least one z"- or t-index are zero,

FO/M/ = I‘;101/ = Fqu =0, (2155)

and the purely spatial components of the Christoffel symbols agree with those of the
spatial metric,
Iy =T, . (2.156)
Therefore the geodesic equations read, for the t-component,
t=0, (2.157)
and for the spatial components

B4 Talih =0 (2.158)

where the dot denotes a derivative with respect to the affine parameter 7. The first
equation tells us that
t=0 & tr)=ar+ty . (2.159)

Thus provided that a # 0 we can use ¢ instead of 7 to parametrise the paths (and in
the present case t is then also an affine parameter, cf. the discussion in section 2.7 in
connection with (2.133)), and then one can rewrite the spatial equations as equations
for 2t = 2%(t), - .

i J
CZTO; + F’jk%ddit =0 . (2.160)
Therefore the solutions to the space-time geodesic equations have the form

(1) = (t, 2'(t)) (2.161)

where z°(t) is an affinely parametrised geodesic for the metric gij- When a = 0, one
cannot change variables from 7 to t because t = tg is fixed. One is then necessarily

dealing with spacelike geodesics in space-time and the solutions have the form
() = (to, 2" (7)) (2.162)

where 2%(7) is again an affinely parametrised geodesic for the metric Gij-

These sorts of considerations evidently generalise to more general metrics of this direct

product form,
ds® = gap(y)dy*dy’ + gig(z)da’ da® (2.163)

with the conclusion that geodesics in such space-times have the form (y®(7), 2*(7)) with
y*(7) and z(7) individually solutions of the geodesic equations for the metric gu(y)

respectively g, (x).
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3 GEODESICS AND MOTION IN A GRAVITATIONAL FIELD

3.1 CONSEQUENCES AND USES OF THE EULER-LAGRANGE EQUATIONS

Recall from above that the geodesic equation for a metric g,, can be derived from the
Lagrangian £ = (1/2)g, &#a”

d oL oL _,

i il wi (3.1)

This has several immediate consequences which are useful for the determination of

Christoffel symbols and geodesics in practice.

1. Conserved charges / first integrals of the geodesic equation

Just as in classical mechanics, a coordinate the Lagrangian does not depend on
explicitly (a cyclic coordinate) leads to a conserved quantity, associated with the
translation invariance of the system in that direction. In the present context this
means that if, say, 9£/0z' = 0 (this means that the coeffcients of the metric do

not depend on z'), then the corresponding momentum
p1 = 0L/0i" = g1,i” (3.2)
is conserved along the geodesic.

REMARKS:

(a) One might perhaps have wanted to argue that the definition (and interpre-

tation) of conserved momenta should be based on the physical Lagrangian

(2.84)
/ dx® dzP
A g T
£0 =—-m Jap d\ d\ (33)
with action S = —m [ dr, but this makes no difference since the two momenta

are essentially equal: one has

oL}

=0 _ 34
a(dat/dyy (34)

with p; as defined in (3.2), so that this just supplies us with the additional

information that the momenta obtained from the Lagrangian £ should (for a

massive particle) be interpreted as momenta per unit mass. This discrepancy

could have been avoided by working with the Lagrangian m/L (alternatively:

1in section 2.5, see (2.108)), but unless or until

fixing the gauge e(\) = m~
one starts coupling the particle to fields other than the gravitational field it

is unnecessary (and a nuisance) to carry m around all the time.
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(b) For example, on the two-sphere the Lagrangian reads
L= 1(0%+sin?0¢?) . (3.5)

The angle ¢ is a cyclic variable and the angular momentum (actually angular

momentum per unit mass for a massive particle)

Do = g—g = sin 0 (3.6)

is a conserved quantity. This generalises to conservation of angular momen-
tum for a particle moving in an arbitrary spherically symmetric gravitational
field.

(c) Likewise, if the metric is independent of the time coordinate z° = ¢, the

corresponding conserved quantity
po = goyi” = —F (3.7)

has the interpretation as minus the energy (per unit mass) of the particle,
“minus” because, with our sign conventions, pg = —FE in special relativity.
We will discuss the relation between this notion of energy and the notion
of energy familiar from special relativity (this requires an asymptotically

Minkowski-like metric) in more detail in section 25.3.

(d) We will discuss in more detail in section 3.2 (and then again in sections 9
and 10) how to detect and describe symmetries and conserved charges in
coordinate systems in which the symmetries are not as manifest (via cyclic

variables) as above.

2. Reading off (some) geodesics directly from the metric

Another immediate consequence is the following: consider a space or space-time

with coordinates {y,z*} and a metric of the form
ds® = +dy® + v (,y)dxtdx” . (3.8)

Then the coordinate lines of y are geodesics.

The quickest way to see this is (as usual) from the Lagrangian point of view.

Indeed, since the Lagrangian is
L= %(iy2 =+ guu(ya ;E)j;l‘j;’/) ) (3'9)
the Euler-Lagrange equations are of the form

+ i — Lg,, 2Hd" =0
2y (3.10)
I* + terms proportional to & =0 .
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Therefore z# = 0, ¢ = 0 is a solution of the geodesic equation, and it describes

motion along the coordinate lines of y.

Alternatively, this special form of the metric implies that any Christoffel symbol
with at least two y-indices is zero, and the conclusion then follows in the same

way as above.

REMARKS:

(a) In the case of the two-sphere, with its metric ds?> = df? + sin® #d¢?, this
translates into the familiar statement that the great circles, the coordinate

lines of y = 0, are geodesics.

(b) The result is also valid when y is a timelike coordinate. For example, consider

a space-time with coordinates (¢, ') and metric (2.36)
ds? = —dt* + a(t)*§;;(v)dz'da? . (3.11)

In such a cosmological space-time, there is, according to the above result, a
privileged class of freely falling (i.e. geodesic) observers, namely those that
stay at fixed values of the spatial coordinates z*. For such comoving observers,

the coordinate-time ¢ coincides with their proper time 7.

(c¢) In general, these preferred geodesics are orthogonal to the hypersurfaces of
constant y, and coordinates in which the metric (locally) takes such a form in
the neighbourhood of some timelike or spacelike hypersurface are occasionally

called Gaussian normal coordinates.

3. Using the Euler-Lagrange equations to determine the Christoffel symbols

Finally, as mentioned and observed above, the Euler-Lagrange form of the geodesic
equations frequently provides the most direct way of calculating Christoffel sym-
bols - by comparing the Euler-Lagrange equations with the expected form of the
geodesic equation in terms of Christoffel symbols. More precisely, by rewriting

the Euler-Lagrange equations (2.88)

d dxP 1 dz® dz
— — ) = 59— —— - 3.12
in the form
Z7 + terms proportional to @i =0 (3.13)
and comparing with the geodesic equation
d?x 5 dz® dz”
o Pl =0 (3:.14)

.
one can read off the I B
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REMARKS:

(a) Careful - in this and similar calculations beware of factors of 2:
@it =T, (81?2 + 203t a% + ... (3.15)

(b) For example, once again in the case of the two-sphere, for the f-equation one

has

doL _y; 0L
dr 90 00

Comparing the resulting Euler-Lagrange equation

= sin 6 cos 0¢? . (3.16)

0 — sin 6 cos 0% = 0 (3.17)
with the geodesic equation

one can immediately read off that

F€¢¢ = — SinHCOSH s PGGG = F€9¢ = O . (319)
Likewise, from
d oL 0L - s
o 99 =0 < sin?6(¢ +2cotBhp) =0 (3.20)
one deduces that
I =T% =cot , TG =T% =0 (3.21)

(¢) As another example, which will turn out to be of considerable importance

later on, consider a space-time metric of the form
ds? = —A(r)dt* + B(r)dr? 4 r?dQ?* . (3.22)

As will be discussed in section 24.2, this is the general form of a static spher-
ically symmetric metric, and as such will provide us with the starting point
for describing the gravitational field of a star. The corresponding Lagrangian
is

L=1 <—A(r)i2 + B(r)i? + r2(62 + sin? 9@2)) , (3.23)

and therefore the Euler-Lagrange equations for ¢ (a cyclic variable) are

d

OZE

(—A@r)E) = —A(r) (t + i((:)) ﬁ') (3.24)

(a prime denoting an r-derivative), from which one can immediately read off

A/
rt,=rt = 51 I, =0 otherwise . (3.25)
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Likewise, the equation for r takes the form

. B’ .9 Al D)
7’+ﬁ7” +ﬁt +—O, (326)
and from this one can read off that
B’ A’
o= I, = — 2
rr 2B ) tt 2B ) (3 7)

As we will need them anyway in section 24.3, it is a good exercise to determine
all the Christoffel symbols in this way.

3.2 CONSERVED CHARGES AND (A FIRST ENCOUNTER WITH) KILLING VECTORS

In the previous section we have seen that cyclic coordinates, i.e. coordinates the metric
does not depend on, lead to conserved charges, as in (3.2). As nice and useful as this
may be (and it is nice and useful), it is obvioulsy somewhat unsatisfactory because it
is an explicitly coordinate-dependent statement: the metric may well be independent
of one coordinate in some coordinate system, but if one now performs a coordinate
transformation which depends on that coordinate, then in the new coordinate system

the metric will typically depend on all the new coordinates. Nevertheless,

e the statement that a metric has a certain symmetry (a translational symmetry in

the first coordinate system) should be coordinate-independent, and

e thus there should be a corresponding first integral of the geodesic equation in any

coordinate system.

To see how this works, let us reconsider the situation discussed in the previous section,
namely a metric which in some coordinate system, we will now call it {y*}, has com-
ponents g,,, which are independent of y', say. Translation invariance of the geodesic
Lagrangian is the statement that the Lagrangian is invariant under the infinitesimal
variation dy! = €, dy* = 0 otherwise, and via Noether’s theorem this leads to a con-
served charge g1,9", as in (3.2).

Now we ask ourselves what this statement corresponds to in another coordinate system.
Note that in the y-coordinates, invariance is the statement that the metric is invariant
under the (infinitesimal) coordinate transformation y' — y! + ¢ or 6y = ¢, dy* = 0
otherwise,

0Gu = €0, G =0 . (3.28)

It is then clear that in another coordinate system, infinitesimal y'-translations must also
correspond to some infinitesimal coordinate transformation (but not necessarily just a
translation),

ox® = eV x) . (3.29)
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In particular, if (as in the above example) in y-coordinates V# has the components

V1 =1, V# =0 otherwise, then in any other coordinate system one has
oz = (0z%/oy™) oyt = e(9z™ /Oy") (3.30)
so that
Ve =Jp (3.31)
is just the corresponding column of the Jacobi matrix.

In order to determine how to characterise the translational symmetry (3.28) of the
metric in an arbitrary coordinate system, we will now proceed in two (as it turns out

ultimately equivalent) ways.

1. We can investigate directly, under which conditions on the V¢ the transformation

(3.29) leads to an invariance of the Lagrangian (2.85). Using

0z = €70,V (3.32)
one straightforwardly finds
6 (ga5i0") = € (8 gug) 3" (3.33)
where
W gas = V70v908 + (0aV7)gys + (08V7)gay (3.34)

Thus the condition for the infinitesimal transformation (3.29) to leave the La-
grangian invariant is
v gap =0 . (3.35)

Noether’s theorem then leads to the corresponding conserved charge
Qv = paV® = gapVi® . (3.36)

Note that for constant components V¢, (3.35) is simply the statement that the

metric is constant in the direction V', V70, g.5 = 0.

2. Alternatively, we can determine the variation dy g,g of the components g, of the
metric in z-coordinates from the variation (3.28) of the components g, of the
metric in y-coordinates by demanding that under a coordinate transformation the
variation (3.28) of the metric transforms like the metric. Since we know how the

metric transforms (2.5), and we also know how 9,1 transforms,
G =I5 T gap . Op = (0,12%) 06 = J00 = V04 (3.37)
we find the condition

! o
Oyr G = Jf(%(Jﬁ‘Jfgag) =J, Jf‘svgaﬁ

; (3.38)
= 5\/9(16 = JngJf&y(JuJﬁg&) .
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In order to disentangle this, one can make use of identities such as
J10, TS = 00T = 0,7 = 0,V = J30.V° (3.39)

to show that this expression for dy g,p is identical to that given in (3.34).

All of this may seem a bit ham-handed at this point, and indeed it is. However, we
will see later how these results can be written and understood in a much more pleasing
and covariant way. In particular, we will see in section 5.5 how to write (3.34) in a way
that makes it completely manifest that it transforms like the metric under coordinate
transformations. Moreover, we will discover in section 9 that (3.34) is a special case of
the Lie derivative of a tensor field along a vector field V', denoted by Ly . Continuous
symmetries of a metric correspond to vector fields along which the Lie derivative of the
metric vanishes. Such vectors are known as Killing vectors, and are thus vectors V¢

satisfying the Killing equation (3.35),

Lygap =0vgap =0 . (3.40)

3.3 NEWTONIAN LIMIT OF THE GEODESIC EQUATION

We saw that the 10 components of the metric g,,, appear to play the role of potentials for
the gravitational force. In order to substantiate this, and to show that in an appropriate
limit this setting is able to reproduce the Newtonian results, we now want to find the
relation of these potentials to the Newtonian potential, and the relation between the
geodesic equation and the Newtonian equation of motion for a particle moving in a

gravitational field.

First let us determine the conditions under which we might expect the general relativistic
equation of motion (namely the non-linear coupled set of partial differential geodesic

equations) to reduce to the linear equation of motion

d? -
T = Vo (3.41)
of Newtonian mechanics, with ¢ the gravitational potential, e.g.
GNM
¢=— Ji . (3.42)

Thus we are trying to characterise the circumstances in which we know and can trust
the validity of Newton’s equations, such as those provided e.g. by the gravitational field
of the earth or the sun, the gravitational fields in which Newton’s laws were discovered

and tested. Two of these are fairly obvious:

1. Weak Fields: our first plausible assumption is that the gravitational field is in a
suitable sense sufficiently weak. We will need to make more precise by what we

mean by this, and we will come back to this below.
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2. Slow Motion: our second, equally reasonable and plausible, assumption is that the
test particle moves at speeds at which we can neglect special relativistic effects, so
“slow” should be taken to mean that its velocity is small compared to the velocity
of light.

Interestingly, it turns out that one more condition is required. Note that the gravita-
tional fields we have access to are not only quite weak but also only very slowly varying

in time, and we will add this condition,

3. Stationary Fields: we will assume that the gravitational field does not vary sig-

nificantly in time (over the time scale probed by our test particle).

The very fact that we have to add this condition in order to find Newton’s equations
(as will be borne out by the calculations below) is interesting in its own right, because
it also shows that general relativity predicts phenomena deviating from the Newtonian
picture even for weak fields, provided that they vary sufficiently rapidly (e.g. quickly
oscillating fields), and one such phenomenon is that of gravitational waves (see section
23).

Now, having formulated in words the conditions that we wish to impose, we need to
translate these conditions into equations that we can then use in conjunction with the

geodesic equation.

1. In order to define a notion of weak fields, we need to keep in mind that this is
not a coordinate-independent statement since we can simulate arbitrarily strong
gravitational fields even in Minkowski space by going to suitably accelerated co-
ordinates, and therefore a “weak field” condition will be a condition not only on
the metric but also on the choice of coordinates. Thus we assume that we can
choose coordinates {z#} = {t,2'} in such a way that in these coordinates the
metric differs from the standard constant Minkowski metric 7, only by a small
amount,

G = Ty + (3.43)

where we will implement “by a small amount” in the calculations below by drop-

ping all terms that are at least quadratic in h, (and/or its derivatives).
2. The second condition is obviously (with the coordinates chosen above) da?/dt < 1
or, expressed in terms of proper time,

dat < ﬁ
dr dr

(3.44)

3. The third condition of stationarity we implement simply by considering time-
independent fields,
9aps0 = 0 = hag,o =0 (3.45)
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(for a discussion and explanation of the difference betwen the term “stationary”
used here and the term “static” used e.g. to describe the metric (3.22), see section

16.4 - it is not crucial here).

Before embarking on the calculation, we note that for the inverse ¢®° of the metric

9o = NaB + hap, With hog “small”, one evidently has
9ap =Map +has = g =0 +0O(0) , (3.46)

where % is just the inverse Minkowski metric. The explicit expression of the order h

term (which we will not need) is given in (3.65) below.
Now we look at the geodesic equation
Pt TH N =0 . (3.47)

From the decomposition g,,, = 1, +h,, we see that F’f/)\ is at least linear in h,,,, and by

the weak field condition (condition 1) we will only retain the terms linear in h,,,. Then

the condition of slow motion (condition 2) implies that among the quadratic terms &

we need to only retain the leading term, namely #£. Thus the geodesic equation can be
approximated by
it 4+ THe2 =0 . (3.48)

Thus we need to determine

Mo = 29" (9v0,0 + Gvo,0 — Goow) - (3.49)
Stationarity (condition 3) tells us that the first two terms are zero, and

I = =39 ug00 = — 59" igoo - (3.50)

Now 0;g00 = 0;hqo is already of order h. Therefore, by the weak field condition, working
to linear order in h we can can replace the inverse metric g** by the inverse Minkowski

metric n**, so that in this approximation
I = —30"0:hoo - (3.51)
Thus the relevant Christoffel symbols are
I =0, T'y=-30h , (3.52)
and the geodesic equation splits into

t =0
it = L0ihoot® . (3.53)

The first of these just says that ¢ is constant, or that ¢ is also an affine parameter,

t(r)=ar+b . (3.54)
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In other words, in the Newtonian limit there is essentially (up to a choice of scale/units)
no difference between coordinate time and proper time. We can use this in the second

equation to convert the 7-derivatives into derivatives with respect to the coordinate

time t,
. 1d> 1d1d d?
t = = T 5 — v T T, =— —% .
0 2dr?2  tdrtdr dt? (3.55)
Hence we obtain P
':L'Z
— = 5100 (3.56)

(the spatial index 7 in this expression is raised or lowered with the Kronecker symbol,

n'* = §'). Comparing this with the Newtonian equation (3.41),

R
e — s (3.57)
leads us (with the constant of integration absorbed into an arbitrary constant term in

the gravitational potential) to the key identification
hoo = —2¢ (3.58)

between the Newtonian gravitational potential and the (00)-component of the deviation

of the space-time metric from the Minkowski metric. By relating this back to g.g,

goo = —(1 + 2(}5) . (359)

we find the sought-for relation between the Newtonian potential and the space-time
metric. Thus Newtonian gravity can be captured or described by a space-time metric
of the form

ds® = —(1 4 26(Z))dt* + dz* . (3.60)

For a radial gravitational field, with ¢ = ¢(r), it is also natural to write this in terms

of spatial spherical coordinates as

ds? = —(1 + 2¢(r))dt? + dr? 4+ r2dQ3 . (3.61)

REMARKS:

1. With the speed of light not set equal to ¢ = 1, the dimensionally correct form
of this identification is (recall that kinetic and potential energy have the same
dimension so that the dimension of ¢, the energy per unit mass, is that of a

velocity-squared; thus ¢/c? is dimensionless)
goo = —(1+2¢/c*) . (3.62)

2. For the gravitational field of isolated systems, it makes sense to choose the in-
tegration constant in such a way that the potential goes to zero at infinity, and
this choice also ensures that the metric approaches the flat Minkowski metric at

infinity.
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3. Restoring the appropriate units, in particular the above factor of ¢2, one finds
that the dimensionless factor ¢/c? ~ 1079 on the surface of the earth, 107% on
the surface of the sun (see section 24.4 for some more details), so that the distor-
tion in the space-time geometry produced by gravitation is in general quite small

(justifying our approximations).

4. Just for the record, here is the explicit expression for the inverse g®? of a metric of

the form gog = Mo + hag, With hog “small”. In analogy with the series expansion
I+z)t=1—a+22F... (3.63)

for a real number z with |z| < 1, the exact result for g® can be written as an
infinite power series in h,3. We will not need the exact result here, but only the

result to linear order in h,g.

In linear algebra notation, if I is an invertible matrix and A is sufficiently small
so that I + A is still invertible, one has (as a matrix generalisation of the power
series (3.63) for (1 +z)71)

(IT+A) =11 —TTAT7 + 0(A?) . (3.64)
In the case at hand (with I — n, A — h), this is
9o = Nap + haﬁ = gaﬁ = 770‘5 — h*P + O(h2) ) (3.65)

where
he® = Ph s (3.66)

Indeed it is now easily verified that this satisfies

9P g5, = oy + O(h?) . (3.67)

5. Within this Newtonian approximation, we cannot distinguish the above result
goo = —(1 + 2¢) from gop = —(1 + ¢)?, say (or a host of other possibilities).

6. Likewise, in this approximation it does not make sense to inquire about the other
subleading components of the metric. As we have seen, a slowly moving particle
in a weak static gravitational field is not sensitive to them, and hence can also not

be used to probe or determine these components.

7. In this approximation, the modification of the space-time geometry can equiva-
lently be described as, or attributed to, a space-time dependent speed of light in

Minkowski space, along the lines of
ds® = —c(z)?dt?* + dz? | (3.68)

with
A(z) = (1+26(z)/2)? . (3.69)
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Einstein realised fairly early on (1911) in his search for a relativistic theory of
gravity that this would have to be part of the story. However, this interpretation
is neither useful nor tenable when considering gravitational fields beyond the static
Newtonian approximation (which requires one to go beyond a theory with a single

scalar potential).

. Later on, we will determine the exact solution of the Einstein equations (the field
equations for the gravitational field, i.e. for the metric) for the gravitational field
outside a spherically symmetric mass distribution with mass M (the Schwarzschild
metric). The metric turns out to have the simple form (24.31)

20GN M 2G M\t
ds? = — (1 268MN 5on (26N dr? + r2dQ? . (3.70)
cr c2r

From this expression one can read off that the leading correction to the flat metric

indeed arises from the 00-component of the metric,

2GN M
ds? ~ —dt® + dr? +r2dQ% + N 2

T
(3.71)
2GN M
= Nagdr®da’ + GN2 (dz®)? + ...
rc

This is indeed precisely of the above Newtonian form, with the standard Newto-

nian potential
GNM
o(r) = - (3.72)

r

One can then also determine the subleading (known as “post-Newtonian”) correc-
tions to the general relativistic gravitational field, which are evidently suppressed

by additional inverse powers of c2.

. The key relation (3.58) can also be obtained at the level of the action. Starting
with the action Sy (the integral of the proper time), and using the time-coordinate
t as the parameter, using the same approximations as above one finds that the

action can be written as (keeping c explicit for a change, so that 2° = ct)

Solz] = —me / dt /=g (dar ) (da /dt)
= —mec / At~y (da dt) (da” ) — by, (dat i) (da” )
= —mc/dt\/02 — g (dxt /dt)(dx® /dt) — hgoc?

:—mc2/dt\/1—z7'2/c2—hoo .

(3.73)

Expanding the square root and dropping the first (irrelevant) term, one finds that

in this limit the action reduces to

2
Solz]  — / dt (%vﬂ%ho@) (3.74)
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which is precisely the Newtonian action for a particle in a gravitational potential

b,
Syla] = / dt (%62 - mgb) (3.75)

provided that one makes the identification (3.58),
hoo = —2¢/c¢* . (3.76)

In this compact (but slightly dubious) derivation of this relation, the significance
of the stationarity condition is not manifest: it enters through the condition of
the equivalence of the 4-dimensional and 3-dimensional variational principles (with
respect to the fields z#(7) and z*(t) respectively), guaranteed by the affine relation

between t and 7 implied by requiring in addition stationarity.

3.4 RINDLER COORDINATES REVISITED

In section 1.3 we had discussed the Minkowski metric in Rindler coordinates, i.e. in
coordinates adapted to a constantly accelerating observer. For an observer accelerating
in the x!-direction, the metric took the form (1.74),

ds? = —p2dn® + dp* + di? (3.77)

with 7 = (22,23) denoting the transverse spectator coordinates (which will again be

suppressed in the following).

What is the relation, if any, between this metric and the metric describing a weak
gravitational field, as derived above (after all, small accelerations should mimic weak
gravitational fields)? At first sight, the only thing they appear to have in common
is that the departure from what would be the Minkowski-metric in these coordinates
is encoded in the time-time component of the metric, p? in one case, (1 + 2¢) in the
other, but apart from that p? and (1 4 2¢) look quite different. This difference is,
however, again a coordinate artefact and the Rindler metric can be made to look like

the weak-field metric with the help of a suitable further redefinition of the coordinates.

For starters, it will be convenient, for this purpose and for a generalisation which we
will discuss below, to introduce the acceleration a explicitly into the coordinates by
redefining the coordinate transformation (1.73) to (I will now also call the Minkowski
coordinates ¢° = ¢ and ¢! = x)

t(n.p) = (p/a)sinhan  z(n,p) = (p/a)coshan (3.78)

(so this differs by p — p/a,n — an from the transformation given in (1.73)). Thus, now
it is the observer at p = 1 who has acceleration a and whose proper time is 7 = 7. The

Rindler metric now has the form

ds? = —dt? + dz? = —p?dn® + o 2dp? . (3.79)
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Now the transformation p = 1+ a# (reminding us that we are talking about acceleration

in the x = x! direction), leads to
ds® = —(1 + az)?dn® + di* (3.80)

and it is the observer at & = 0 who has proper time 7 = 1 and constant acceleration a.

If one now assumes that the acceleration a is sufficiently small, one can approximate
(1+a2)*~1+2a8 =1+ 26(2) , (3.81)

and in ¢ = aZ we recognise precisely the Newtonian potential for a constant force a in

the z-direction. Thus the Rindler and weak field form of the metric agree in this case.

REMARKS:

1. Remarkably, this same form of the metric remains valid for an arbitrary time-
dependent acceleration a = a(7), and thus is capable of reproducing the weak
field form of the metric for general potentials. To see this, consider the worldline

(t(1),z(7)) with general 4-velocity (actually 2-velocity in this case)
u® = (1) = coshv(r) , u'=i(r)=sinhv(r) , (3.82)

which satisfies
(W)? = (@W')? =1, (3.83)

as it should, and has the time-dependent acceleration a(7) = v(7),
(W) — (@) =i -2 =0(r)  =a(r)* . (3.84)
We can pass to adapted coordinates (7, &), as above, by setting

(t(n,z),z(n,z)) = (t(n) + sinhv(n), z(n) + & coshv(n)) (3.85)

leading to the metric
ds® = —dt* + dz* = —(1 + a(n)z)?dn? + di? . (3.86)

This is indeed the direct generalisation of (3.80) to arbitrary accelerations, the
original worldline manifestly corresponding to the observer at fixed £ = 0, with

17 = 7, and the same remarks regarding the weak field limit / small accelerations

apply.

2. Another useful alternative coordinate transformation for constant a is p = exp ag,
leading to
ds? = o208 (_an?® 1 dg?) . (3.87)

Note that in these coordinates the metric is conformally flat, i.e. it differs from the

flat Minkowski metric —dn? + d€? in these coordinates only by an overall factor.
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Moreover, for small values of a the time-component of the metric again reduces

to something like the Newtonian limit expression (3.81), namely
208 1 + 2af . (3.88)

For the record, and for later use, we note that the complete coordinate transfor-
mation between the Minkowski coordinates (¢, z) and the conformally flat Rindler

coordinates (1, &) is
(t,z) = (a_lea€ sinh an, a~1e% cosh an) . (3.89)
The generator of Rindler time evolution in these coordinates is
Oy = a(t0y + x0;) . (3.90)
This is a boost in the (¢, x)-plane, but the limit a — 0 appears to be singular.

. A simple and useful way to rectify this is to introduce a further constant shift of

x, x = x — 1/a, into the 1-parameter family (3.89) of coordinate transformations,
(t,z) = (a_leag sinh an, a~te% cosh an—a~') . (3.91)

This transformation now has the desirable property that as a — 0 it continuously

connects the Rindler and Minkowski coordinates,
a—-0 = t—=n , z—=E. (3.92)
As a consequence, also the Rindler time evolution generator
Oy = 0 + a(t0, + x0y) (3.93)
now has a non-singular limit as a — 0, namely the Minkowski time generator 0.
. In terms of the Minkowski null (or advanced and retarded time) coordinates
uy=t—z , vy=t+z = ds>=—dupy doy , (3.94)
and their Rindler counterparts
uR=n—€ , vp=n+¢& = ds?=—e VR UR)dupdvy | (3.95)
the transformation (3.89) takes the form
tFz= a~leds (sinh an F coshan) = $a_1ea(S F1) (3.96)
or, compactly,
_a-le—QUR

up = . um =—+a e TWR (3.97)
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Note that the range of the coordinates is —co < 1, < 400 or —00 < uR,vR <
+o00, and that the coordinates (n,&) or (ug,vg) cover (and can be used in) the
right-hand quadrant = > |t| of Minkowski space-time, corresponding to —oo <
uy =t—x<0and 0 <wvy =t+x <400, the so called (right) Rindler wedge.

As we will see in section 7.8, these null Rindler coordinates are particularly useful

for studying the solutions of the scalar wave equation in the Rindler wedge.

Let me close this section with some comments on other versions of (3 + 1)-dimensional
Rindler space. First of all, instead of looking at acceleration in the z!-direction, say,
one can consider radial accelerations. To that end one first writes the metric in spatial
spherical coordinates,

ds? = —dt* + dr® + r?dQ3 | (3.98)

and introduces Rindler coordinates (p, 7), say, via
(t,r) = (psinh 7, pcosh ) , (3.99)
leading to the (3 4+ 1)-dimensional spherical Rindler metric
ds? = —p?d7® + dp? + p? cosh® 7 dQ3 . (3.100)
This form of the metric is adapted to the hyperboloids
r? —t? = p? (3.101)

i.e. to a family of constantly radially accelerating observers whose worldlines asymptot-
ically approach the lightcone through the origin (¢ = 0,7 = 0). These coordinates cover
precisely the region of Minkowski space outside this lightcone, i.e. the region of events
at spacelike distance from the origin while the region that is not covered is the past and

future of the origin.

The “complementary” metric (adapted to the hyperboloids with 72 —#2 < 0 and covering
precisely the interior of the lightcone) is the so-called Milne metric to be discussed in
section 37.1.

A non-trivial variant of this metric® is obtained by shifting » — r — 7 in the above

coordinate transformation,
(t,r) = (psinh 1,79 + pcoshT) | (3.102)
leading to the metric

ds? = —p?d7® + dp® + (ro + pcosh 7)2dQ3 (3.103)

6V. Balasubramanian, B. Czech, B. Chowdhury, J. de Boer, The entropy of a hole in spacetime,
arXiv:1305.0856 [hep-th], V. Balasubramanian, B. Chowdhury, B. Czech, J. de Boer, M. Heller, A
hole-ographic spacetime, arXiv:1310.4204 [hep-th].
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(an analogous shift x — x — x( for acceleration in the z-direction would have had no
effect on the metric since such a translation is a symmetry of the Minkowski metric,
whereas a translation in the radial direction is not). This form of the metric is adapted
to the hyperboloids

(r—mo)? —t* = p? (3.104)

and now describes radially accelerating observers, each one asymptotically approaching
the radial lightray emanating from a distance rg from the origin (and correspondingly
the region of space-time covered by these coordinates is the complement of the past and

future of the 2-sphere of radius rg at the origin, a “hole” in space-time).

3.5 GRAVITATIONAL REDSHIFT

Following Einstein, the gravitational redshift (i.e. the fact that photons appear to lose
or gain energy when rising or falling in a gravitational field) is usually presented as
a direct consequence of the Einstein Equivalence Principle (and is therefore also said
to provide an experimental test of the Einstein Equivalence Principle itself). It can
indeed be derived in this way (see Remark 2 at the end of this section for one such
argument, albeit not the original one). However, here we will derive this effect within
the framework that we have already adopted, inspired by the equivalence principle,

namely in terms of the description of the gravitational field by a metric.

This has several advantages. It allow us to further familiarise ourselves with the formal-
ism and to illustrate how to extract physical effects from our description of lightrays as
null geodesics (much as we employed timelike geodesics above to study the Newtonian
limit). Moreover, it allows us to derive formulae for this effect in quite some generality
and I will actually give 3 different derivations in increasing order of generality. In con-
junction with the Newtonian approximation to the gravitational field these then reduce
to the result in the form in which it is usually presented, e.g. as in (3.130) or (3.131)

(and as then rederived on the basis of the equivalence principle in (3.137)).

To set the stage, note that it is manifest from the expression
dr* = —gop(z)dzdz” (3.105)

for the proper time that e.g. the rate of clocks is affected by where one is in a gravita-
tional field. However, as by the universality of gravity everything is (and in particular
all ideal clocks are) affected in the same way by gravity, it is impossible to measure this
effect locally, at a fixed point in a gravitational field. In order to find an observable

effect, one needs to compare data from two different points in a gravitational potential.

The situation we could consider is that of two observers A and B moving on worldlines

(paths) v4 and vp, A sending light signals to B. In general the frequency, measured
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in the observers rest-frame at A (or in a locally inertial coordinate system there) will

differ from the frequency measured by B upon receiving the signal.

In order to separate out Doppler-like effects due to relative velocities, we consider two
observers A and B at rest radially to each other, at radii 74 and rp, in a static spherically
symmetric gravitational field. This means that the metric depends only on a radial

coordinate r and we can choose it to be of the form
ds® = goo(r)dt* + g, (r)dr? + r2dQ? | (3.106)

where d)? is the standard volume element on the two-sphere (see section 24 for a more

detailed justification of this ansatz for the metric).

Observer A sends out light of a given frequency v4, say n pulses per proper time unit
ATys. Observer B receives these n pulses in his proper time A7p and interprets this
as a frequency vp. Thus the relation between the frequency v4 emitted at A and the
frequency vp observed at B is

Z—g - i—z . (3.107)
I will now give two arguments to show that this ratio depends on the metric (i.e. the
gravitational field) at 74 and rp through

va _ (Con(rs)'? (3.108)

VB (‘900(@1))”2

and then a 3rd argument establishing a slightly more general result.

1. The first argument is essentially one based on geometric optics (and is best ac-
companied by drawing a (1+41)-dimensional space-time diagram of the lightrays

and worldlines of the observers).

The geometry of the situation dictates that the coordinate time intervals recorded
at A and B are equal, Aty = Atp as nothing in the metric actually depends on
t. In equations, this can be seen as follows. First of all, the equation for a radial

lightray is

— goo(r)dt® = g, (r)dr? | (3.109)
. dt Grr (1) 1/2
dr * <—900(7")> . (3410

From this we can calculate the coordinate time for the lightray to go from A to
B. Say that the first light pulse is emitted at point A at time ¢(A); and received
at B at coordinate time ¢(B);. Then

t(B)1 —t(A) = /TB dr(—grr(r)/goo(r))"/? (3.111)

91



The right hand side obviously does not depend on ¢, so we also have

B

H(B)s — t(A); = / 0 (—gor () 00 (1)) /2 (3.112)

TA

where t5 denotes the coordinate time for the arrival of the n-th pulse. Therefore,
t(B) —t(A) =t(B)2 —t(A)2 , (3.113)

or

t(A)g — t(A) = t(B)s — t(B); , (3.114)

as claimed. Thus the coordinate time intervals recorded at A and B between the
first and last pulse are equal. However, to convert this to proper time, we have to
multiply the coordinate time intervals by an r-dependent function,

dz® dz?

Atap = (_QaB(TA,B)WW)lﬂAtA,B , (3.115)

and therefore the proper time intervals will not be equal. For observers at rest,
dz/dt = 0, one has
Atap = (—goo(rap))?Atas . (3.116)

Since Atq = Atp, (3.108) now follows from (3.107).

. The second argument uses the null geodesic equation, in particular the conserved
quantity associated to time-translations (recall that we have assumed that the
metric (3.106) is time-independent), as well as a somewhat more covariant looking,

but equivalent, notion of frequency.

First of all, let the lightray be described by the wave vector k%. In special relativity,
we would parametrise this as k¢ = (w, l;) with w = 27v the frequency. This is the
frequency observed by an inertial observer at rest, with 4-velocity u® = (1,0,0,0).
A Lorentz-invariant, and in our context now coordinate-independent, notion of

the frequency as measured by an observer with velocity u® is thus
w=—u"%ky . (3.117)
This includes as special cases

e the standard (special) relativistic Doppler effect (where one compares w with
w = —u%q, u® the 4-velocity of a boosted observer),
e and the gravitational redshift between static observers we want to discuss

here,

but more generally also the redshift for observers with arbitrary 4-velocity u®.

And indeed we will employ this method in section 26.4 to look at
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o the redshift between a static and a freely falling observer in the Schwarzschild

geometry.

Returning to the case at hand, a static observer in the spherically-symmetric and
static gravitational field (3.106) is described by the 4-velocity

u® = (u°,0,0,0) gaguauﬁ = goo(u®)?=—-1 . (3.118)
Thus for the static observer at r = r 4, say, one has
u% = (—goo(ra)) "/ (3.119)

(and likewise for the observer at r = rp). The wave vector k* is a null tangent

vector, k#k, = 0, to a null geodesic corresponding to the Lagrangian
L= 19,55 = Jgoo(r)i* + ... (3.120)

Since the metric is time-independent, there is (cf. the discussion in section 3.1)

the corresponding conserved quantity
E=—""=—goo(r)t (3.121)

(the minus sign serving only to make this quantity positive for £ > 0). Then one

finds that the frequency measured by the static observer at r = r4 is

wa = —uGka = — (—go0(ra)) " * ko = — (—goo(ra)) " goa(ra)i®
= — (—go0(ra)) 2 goo(ra)i = E (—goo(ra)) =/

Since F is a conserved quantity, i.e. the same for the lightray at r =r4 or r = rp,

(3.122)

one sees that wa/wp = va/vp is given by (3.108), as claimed.

Note that this derivation shows that the relation between w and FE is exactly
like the relation (3.116) between (A7)~! and (At)~!, which provides us with an
interpretation of the conserved quantity F for a massless particle / photon: it
is the frequency measured with respect to coordinate time (as the momentum

conjugate to the time-coordinate ¢ this should not be too surprising).

. Even with the restriction to static observers in static gravitational fields, the above
derivation is not completely general, and still not completely covariant, because
we used the explicit form of the metric (which is the general form of a metric
with a time-translation invariance in spherical symmetry, but not in general). We
can improve this somewhat by using the more general characterisation of time-
translation invariance in terms of Killing vectors (section 3.2) and the associated

conserved charge (3.36).

Thus assume that we have a timelike Killing vector V*. Then by definition a

static observer is one whose 4-velocity u® is proportional to V¢,

u ~ Ve (3.123)
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For V' = 0; this evidently reduces to the statement that only ¢ changes along the
worldline, i.e. that the observer remains at fixed values of the spatial coordinates,
and this is the sense in which we have informally used the term “static observer”

so far. Denoting the norm of V' by

V= (=VeV, )2, (3.124)
the normalisation condition u®u, = —1 fixes the proportionality factor between
u® and V to be

u* =Vv . (3.125)

Given the null wave vector £k, we have the conserved energy (3.36),
E=—k,V* . (3.126)

Therefore, adopting the definition (3.117), the frequency observed by a static
observer is

w=—uky = -k V*/V=E/V . (3.127)

Since FE is constant along the lightray, frequencies observed by two different static
observers are related by
wa_ Vs (3.128)
wp Va
For this reason, the norm V is also known as the redshift factor associated with a

timelike Killing vector.

Note that this result reduces to (3.108) if the metric has the form (3.106) and
V = 0, since then

V=08 = V) = (—go)? . (3.129)

Having derived (3.108) in 3 different ways, let us now look at what the result tells us in

specific situations of interest. Since on earth and in the solar system we only have access

to gravitational fields that are to a reasonably high degree of precision well described

by Newtonian gravity, we can use the Newtonian approximation (3.59). The (3.108)

becomes

goo = —(1 + 2(25) = Z—g ~ 1+ ¢(TB) - ¢(TA) ) (3-130)

or, with ¢(r) = —GNyM/r,

VA — VB :GNM(TB—TA) (3.131)
VB TATB '

Thus for rg > r4 one has

rg>ra = vp<Uva, (3.132)
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so that, as expected, a photon loses energy when rising in (and against the pull of) a

gravitational field, and conversely one has the gravitational blueshift effect
rg<ra = vB>Us . (3.133)

for photons falling in a gravitational field.

REMARKS:

1. Note that the general result (3.108) depends only on the value of the gravitational
field at the points r4 and rp, not on the gravitational field inbetween. This
reinforces the interpretation that the gravitational redshift is only due to the
different rate of clocks / proper time at the positions r4 and rp, and not due to the
fact that “something happens to the lightray as it travels through a gravitational
field” (which should lead to a cumulative effect depending also on the intermediate
gravitational field).

2. The Newtonian limit (3.130) of the exact result (3.108) can also be deduced from
energy conservation applied to Newtonian gravity. By the Einstein Equivalence
Principle a local inertial observer at the emitter A will see a change in the internal
mass of the emitter Am4 = —hv when a photon of frequency of v4 is emitted.
Likewise, the absorber at point B will experience an increase in inertial mass by

Amp = hvg, but the total internal plus gravitational potential energy
m+meo =m(l+ ¢) (3.134)

must be conserved, i.e.

ma(l+¢(ra))+mp(l+é(rp)) = (mat+Ama)(1+d(ra))+(mp+Amp)(1+¢(rp)) -

(3.135)
Thus
0=Ama(l+ ¢(ra)) + Amp(l +¢(rp)) , (3.136)
leading to (rs)
va 1+ o(rp
vs 1+ 6(ra) ~1+¢(rp) —d(ra) , (3.137)

as before. This “derivation” (in quotes, because we are wildly mixing Newto-
nian gravity, special relativity and quantum mechanics - do take this “derivation”
with an appropriately sized grain of salt, please) shows that gravitational redshift
experiments test the Einstein Equivalence Principle in its strong form, in which
the term ‘laws of nature’ is not restricted to mechanics (inertial = gravitational
mass), but also includes quantum mechanics in the sense that it tests if in an
inertial frame the relation between photon energy and frequency is unaffected by

the presence of a gravitational field.
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3. While difficult to observe directly (by looking at light form the sun), this predic-

3.6

tion has been verified in the laboratory, first by Pound and Rebka (1960), and
subsequently, with one percent accuracy, by Pound and Snider in 1964 (using the

Mossbauer effect).

Let us make some rough estimates of the expected effect. We first consider light
reaching us (B) from the sun (A). In this case, we have rg > r4, where 14 is the

radius of the sun, and (also inserting a so far suppressed factor of c?) we obtain

va—ve GNM(rg—ra) N GnM

~ 3.138
VB c2rarg c2rp ( )
Using the approximate values
ra =~ 0.7 x10° km
Mom ~ 2x10% g
Gy ~ 7x107 8 g tem?s2
Gye™? ~ 7x107% g lem =7 x107** g~ tkm (3.139)
one finds A
2P 9% 1076 . (3.140)
v

In principle, such a frequency shift should be observable. In practice, however, the
spectral lines of light emitted by the sun are strongly effected e.g. by convection in
the atmosphere of the sun (Doppler effect), and this makes it difficult to measure

this effect with the required precision.

In the Pound-Snider experiment, the actual value of Av/v is much smaller. In
the original set-up one has rg — r4 ~ 20m (the distance from floor to ceiling of

the laboratory), and r4 = Tearth ~ 6.4 X 10m, leading to

A
L 25x 1071 (3.141)
14

However, here the experiment is much better controlled, and the gravitational

redshift was verified with 1% accuracy.

EQUIVALENCE PRINCIPLE REVISITED: EXISTENCE OF LOCALLY INERTIAL Co-
ORDINATES

Central to our initial discussion of gravity was the Einstein Equivalence Principle which

postulates the existence of locally inertial (or freely falling) coordinate systems in which

locally at (or around) a point the effects of gravity are absent. Now that we have decided

that the arena of gravity is a general metric space-time, we should establish that such

coordinate systems indeed exist. Looking at the geodesic equation, it is clear that at

least in this context “absence of gravitational effects” is tantamount to the existence
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of a coordinate system {£?} in which at a given point p the metric is the Minkowski

metric, gqp(p) = Nap and the Christoffel symbols are zero, I'} .(p) = 0,

9ab(P) =Map >, The(p) =0 . (3.142)

Owing to the identity
Guvsx = F;w)\ + Fy,u)\ ) (3.143)

the latter condition is equivalent to gup,.(p) = 0. Below (after the Remarks) I will
sketch three arguments establishing the existence of such coordinate systems, each one

having its own virtues and providing its own insights into the issue.

REMARKS:

1. Actually it is physically plausible (and fortuitously moreover true) that one can
always find coordinates which embody the equivalence principle in the stronger
sense that the metric is the flat metric 7., and the Christoffel symbols are zero
not just at a point but along the entire worldline of an inertial (freely falling)

observer, i.e. along a geodesic -,

Gably = Nab 5 Thely =0 . (3.144)

Such coordinates, based on a geodesic rather than on a point, are known as Fermi
normal coordinates. The construction is similar to that of Riemann normal coor-

dinates (based at a point) to be discussed below.”

2. In this mathematically idealised realisation of the equivalence principle, nothing
is said about the metric and the Christoffel symbols in a neighbourhood of that
point (or of the geodesic), and nothing is said about the 2nd and higher derivatives
of the metric at that point.

3. In particular, thinking of the 1st derivatives of the metric as encoding the gravi-
tational force, the 2nd derivatives of the metric must then correspond to gravita-
tional tidal forces. (We will see this in more detail in section 8.4, where these tidal
forces are related to components of the Riemann curvature tensor, a tensor that
involves up to 2nd derivatives of the metric.) Such tidal forces are objective, i.e.
physically real, as they lead to stresses in (or deformations of) extended bodies.
One can and should therefore not expect to be able to eliminate such tidal forces

by a suitable choice of reference system.

"Most discussions of Fermi coordinates in the literature follow the presentation given in F. Menasse,
C. Misner, Fermt normal coordinates and some basic concepts in differential geometry, J. Math. Phys.
4 (1963) 735-745; for a geometrically transparent treatment see also section 1.11 of E. Poisson, A
Relativist’s Toolkit; Fermi coordinates for null geodesics are constructed in M. Blau, D. Frank, S.
Weiss, Fermi Coordinates and Penrose Limits, arXiv:hep-th/0603109.
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4. Therefore, physically what the equivalence principle says (or should say) is that
in a gravitational field there is locally a reference system in which the effects of
gravity are absent, provided that you choose the spacetime region to be sufficently

small so that you can neglect the effect of gravitational tidal forces.

Here is a sketch of 3 arguments establishing the existence of locally inertial coordinate

systems:

1. Direct Construction

We know that given a coordinate system {£?} that is inertial at a point p, the
metric and Christoffel symbols at p in a new coordinate system {z#} are deter-
mined by (1.87,1.98). Conversely, we will now see that knowledge of the metric
and Christoffel symbols at a point p is sufficient to construct a locally inertial

coordinate system at p.

We will construct this coordinate system £* = £%(z) locally around the point p
(with coordinates x{, say, in the original coordinate system) by a Taylor series

expansion,
§'(x) =d" + (x — z0) "% + 3(x — 20)° (x — o) f§, + ... - (3.145)

Here
d* = £%(zo) = &§ (3.146)

are the (arbitrary) coordinate values of the point p in the new coordinates &%,

a

og”
e. =

* Oz~

is the Jacobi matrix of the coordinate transformation at x = xg, and

(z0) (3.147)

82 Sa
a __
fﬁﬁ/ = 925007 (o) (3.148)
is its 1st derivative at zq.
Form the tensorial transformation behaviour of the metric we know that
9as(0) = gap(&o)elel . (3.149)
Requiring that g.,(£0) = nap leads to the condition
9ab(&0) =N = gap(x0) = Napelel . (3.150)

This shows that the e%, thought of as a matrix, are an invertible (4 x 4)-matrix
in GL(4,R). Denoting its inverse by €%, with
eqel =0 , elel=6p | (3.151)
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we see that the inverse matrix diagonalises (and scales) the metric at the point p

in such a way that
gag(xo)egeg = Nap - (3.152)

Since gop(xo) is a symmetric non-degenerate matrix, such matrices always exist
(and are unique up to similarity transformations that leave 7y, invariant, i.e. up
to Lorentz transformations). The notation e and e2 reflects the fact that these
matrices are the components of an orthonormal vierbein (or vielbein) at the point

p, which are traditionally denoted this way (cf. the discussion in section 4.8 below).

Taking stock, we see that the condition gu,(p) = 74 determines the coordinate
system to 1st order in a Taylor series expansion, up to translations (the choice of

d®) and Lorentz transformations, i.e. up to Poincaré transformation.

We now turn to the 2nd condition characterising a locally inertial coordinate
system, namely I'} (p) = 0. We can write the inhomogeneous transformation

behaviour of the Christoffel symbols as
aga ra " agb agc 825@

= 3.153
oz By ¢ 9B Oz | OxPOxY ( )

Thus at the point p we have
eal %, (10) = De(Eo)ehes + £, - (3.154)

Requiring I'}.(p) = 0 now uniquely determines the 2nd order Taylor coefficients,
() =0 = f§, =eal'%,(z0) - (3.155)

Thus to 2nd order in a Taylor series expansion, the transformation from arbitrary

coordinates x® to inertial coordinates £ at the point p is given by
) = &5 + (x — 20)%e% + 3(z — 20)P (@ — )72 Gy(T0) +.. . (3.156)
To this order we can also write the inverse coordinate transformation as

2®(€) = a§ + (€ — &)%S — (€ — £0)°(€ — €0)T%, (zo)ejel +... . (3.157)

We have therefore established that for an arbitrary point p in an arbitrary gravi-
tational field one can always introduce local coordinates which are inertial at that
point, and that up to 2nd order in a Taylor series expansion such a coordinate

system is unique up to Poincaré transformations.

Since this leaves the infinite number of higher-order terms of the Taylor expansion
undetermined, this shows that inertial coordinate systems are highly non-unique,

and raises the following questions:
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e Can one continue in this vein and choose the (so far undetermined) higher-
order terms in the Taylor expansion such that also e.g. the 2nd derivatives

of the metric at p are equal to zero,
37 fa(x) : gabacd(p) =07 (3158)

The answer to this is a resounding “no”, as the 3rd (numerological) argument
below will show. In fact, as we will see (and study in detail) later on, the 2nd
derivatives of the metric contain important coordinate-invariant information

about the curvature of the metric.

e Are there nevertheless preferred inertial coordinate systems, i.e. preferred
choices for the higher-order terms in the Taylor expansion? The answer to
this is “yes”. Omne such preferred and geometrically natural class of inertial
coordinate systems are e.g. Riemann normal coordinates, based on geodesics

at the point p, and briefly discussed below.

2. Geodesic (or Riemann Normal) Coordinates

A slightly more insightful way of constructing a locally inertial coordinate system,
rather than by directly solving the relevant differential equation, makes use of
geodesics at p. Recall that in Minkowski space the metric takes the simplest pos-
sible form in coordinates whose coordinate lines are (orthogonal) geodesics. One
might thus suspect that in a general metric space-time the metric will also (locally)

look particularly simple when expressed in terms of such geodesic coordinates.

Roughly speaking (I will give a more detailed argument below), since locally
around p we can solve the geodesic equation with four linearly independent initial
conditions, we can assume the existence of a coordinate system {£%} in which
the coordinate lines are geodesics £%(7) = £%7. This means that in these coordi-
nates geodesics satisfy é“ = 0. Comparing with the full geodesic equation in these

coordinates, one sees that this implies that
@£ =0 . (3.159)

As at p the f“ were chosen to be linearly independent, this implies '} (p) = 0,
as desired. It is easy to see that the coordinates £ can also be chosen in such a
way that gup(p) = 14 (by choosing the four directions at p to be orthonormal unit
vectors).

Before turning to the more detailed construction, let us look at an example. Con-
sider the standard metric ds?> = df? + sin® #d¢? on the two-sphere. Any point
is as good as any other point, and one can construct an inertial coordinate sys-
tem at the north pole § = 0 in terms of geodesics shot off from the north pole
into the ¢ = 0 (¢') and ¢ = /2 (£2) directions. The affine parameter along

a great circle (geodesic) connecting the north pole to a point (0,¢) is 6, and
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thus € is also the geodesic distance, and the coordinates of the point (6, ¢) are
(€' = O cos ¢, &% = Osin¢). In particular, the north pole is the origin ¢! = ¢2 = 0.
Note that one could have guessed these coordinates from the fact that near 8 = 0
the metric is df? + 02d¢?, which is the Euclidean metric in polar coordinates

(0 cos ¢, 0sin ).

Calculating the metric in these new components, using
(€' =0cos g, = Osing) = (€7 + (62> = 0%,2/6" = tang)  (3.160)

and thus

_ glag + ¢2dg? _ gldg? — gtag!

P vErrer - YT ey G
one finds
dO? + sin? 0d¢?® = (d€*)? + (d€?)* + O(£%d¢?) (3.162)
i.e.
9ab(§) = bap + O(E?) . (3.163)
Therefore
9ab(§ =0) =0ap » Gabe((=0)=0, (3.164)

as required.

We now (re)turn to the general construction of such coordinates, starting with the
geodesic equation
i+ %4087 =0 . (3.165)

We consider geodesics passing through (or emanating from) the point p with co-

ordinates x{ at 7 = 0, and with initial 4-velocity ug,
2(r=0)=z5 , (7 =0)=uy . (3.166)
It then follows that the 2nd derivative at 7 = 0 is given by
#%(r = 0) = —I'%, (xo)uguy . (3.167)

Hence in a Taylor expansion around 7 = 0 we can write the solution to the geodesic
equation as

(1) = xf + Tuf — %TQF%W(xO)ugug +.o (3.168)
We can expand the (arbitrary) initial 4-velocity u§ in terms of 4 linearly indepen-

dent (and orthonormal, say) vectors at p as

ug = Ny, gag(xo)egef = Nap - (3.169)

We can then think of the Taylor expansion (3.168) as defining a coordinate trans-
formation

2(€) = 2§ + (€ — &)%S — 5(€ — €0)°(€ — €0)T%, (zo)ej el +... ,  (3.170)

which has the following properties:
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(a) First of all, for
ENT) =&+ T (3.171)

this reduces to the Taylor-expanded solution (3.168) of the geodesic equation
with uf = A\*e;. Thus in this coordinate system in particular the 4 coordinate
lines

ggb)(r) =& +716 ., b=0,1,2,3 (3.172)

are (affinely parametrised) geodesics, as desired.

(b) Moreover, up to quadratic order in the Taylor expansion (3.170) is identi-
cal to the coordinate transformation (3.157). In particular, this establishes
that the geodesic coordinates constructed here are a special class of inertial

coordinates, with
9ab(€0) =Mav » T%:(&0) =0 . (3.173)

(¢) From the present point of view, the 2nd condition arises from the fact (men-
tioned above) that in these coordinates the geodesic equation for the above

geodesics reduces to
4T85 =0 = T4 (L+TAYNN =0 . (3.174)

At &, i.e. for 7 = 0, the Christoffel symbols are independent of the A%, and
therefore
Ge(E)NA =0 YA* = T%.(&%) =0, (3.175)

as claimed.

(d) In contrast to the previous construction leading to (3.157), here the higher-
order terms in the Taylor expansion of the coordinate transformation are now
determined by the higher-order terms in the Taylor expansion of the solution
(3.168) of the geodesic equation. These higher-order terms will depend on
2nd and higher derivatives of the metric g,5(x) at xg, and these in turn will
also determine the quadratic and higher terms of the Taylor expansion of the

metric in these coordinates,

9ab(€) = gab(0) + (€ = £0) Gabs c(&0) + 3 (€ — €0)°(€ — €0) v ca(&0) + - .-

= Nab + 5(€ — €0)°(€ = £0) Gabs ca(&0) + - ..
(3.176)

We will determine the quadratic term in this expansion (expressed in terms
of the Riemann curvature tensor) in section 8.9.
3. A Numerological Argument

This is my favourite argument because it requires no calculations and at the same

time provides additional insight into the nature of curved space-times.
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Assuming that the local existence of solutions to differential equations is guaran-
teed by some mathematical theorems, it is frequently sufficient to check that one
has enough degrees of freedom to satisfy the desired initial conditions (one may
also need to check integrability conditions). Here we are looking at something
even more elementary, namely the functional freedom contained in the coordinate
transformations to impose certain conditions at one point. In the present context,
this argument is useful because it also reveals some information about the ‘true’

curvature hidden in the second derivatives of the metric. It works as follows:

(a) Zero’th Derivatives:
Consider a Taylor expansion of the metric around p in the sought-for new co-
ordinates. Then the metric at p will transform with the matrix (9z#/0¢%)(p).
This matrix has (4 x 4) = 16 independent components, precisely enough to

impose the 10 conditions gu,(p) = Mgp up to Lorentz transformations.

(b) First Derivatives:
The derivative of the metric at p, gup,c (p), will appear in conjunction with
the second derivative 9%z /9¢*0€%. The 4 x (4 x 5)/2 = 40 coefficients are
precisely sufficient to impose the 40 conditions gup,. (p) = 0.

(c) Second Derivatives:
Now let us look at the second derivatives of the metric. ggp,cq has (10 x
10) = 100 independent components, while the third derivative of z#(&) at
p, 3aHJOELDEPOEC has 4 x (4 x 5 x 6)/(2 x 3) = 80 components. Thus 20
linear combinations of the second derivatives of the metric at p cannot in
general be set to zero by a coordinate transformation. Thus these encode the
information about the real curvature at p. This agrees nicely with the fact
that the Riemann curvature tensor we will construct later turns out to have

precisely 20 independent components.

Repeating this argument in space-time dimension D = d + 1, one finds that the

number of 2nd derivatives of the metric modulo coordinate transformations is

(D(D + 1)>2 _ DD+ 1)(D+2)

1
= _D*D?*-1) . 1
2 6 12 ( ) (3.177)

Again this turns out to agree with the number of independent components (8.27)

of the curvature tensor in D dimensions.
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Note:

At this point in the course I find it useful to develop in parallel (and suggest to read in

parallel)

e the more formal material on tensor analysis in sections 4, 5, 6, 7, 8 and 11, say

(and then moving on to the Einstein equations themselves)

e and a detailed discussion of the basic properties of the Schwarzschild metric (sec-
tions 25 - 27),

since much of the latter (in particular geodesics, solar system tests of general relativity,
even the issues that arise in connection with the Schwarzschild radius) can be understood
just on the basis of what has been done so far (if, for the time being, one accepts on
faith that the Schwarzschild metric is the unique spherically symmetric vacuum solution
of the Einstein field equations).

Not only is this an interesting and physically relevant application of the machinery
developed so far, it also provides an appropriate balance between physics and formalism
in the lectures. More advanced material in the intervening sections can then be covered
and dealt with if and when needed or desired (or, ideally, both).

104



4 TENSOR ALGEBRA

4.1 PRINCIPLE OF GENERAL COVARIANCE

The Einstein Equivalence Principle tells us that the laws of nature (including the effects
of gravity) should be such that in an inertial frame they reduce to the laws of Special
Relativity. As we have seen in the case of a free particle, this can be implemented by
transforming the laws of Special Relativity to arbitrary coordinate systems and declaring

that these be valid for arbitrary coordinates and metrics.

However, it may not yet be completely clear at this stage what is the precise relation
between this procedure and the incorporation of a gravitational field via the equivalence
principle. Moreover, this is a somewhat tedious procedure in general (e.g. to obtain the
correct form of the Maxwell equations in the presence of gravity) and not particularly

enlightning.

In order to fill this gap (and overcome these shortcomings), we will now introduce the
Principle of General Covariance and show that it provides us with a concrete way of

implementing the Einstein Equivalence Principle. One textbook formulation of this is®
Principle of General Covariance

By virtue of the Einstein Equivalence Principle, a physical equation holds

in an arbitrary gravitational field if

1. the equation holds in the absence of gravity, i.e. when g,,, = 1., F’f»\ =
0, and

2. the equation is generally covariant, i.e. preserves its form under a gen-

eral coordinate transformation.

We will turn momentarily to a proof of (a slightly modified version of) this statement.
First, however, I would like to add a caveat to the 1st and a clarification to the 2nd

condition (starting with the latter):

ad 2: We first need to clarify (and then reformulate slightly) the 2nd condition, as
the statement “preserves its form under a general coordinate transformation” is
neither completely unambiguous (without further explanation or definitions) nor

totally to the point.

Concretely, the 2nd condition means the following: assume that you have some
physical equation that in some coordinate system takes the form T = 0, where

T = 0 could be some multi-component (thus T is adorned with various indices)

83. Weinberg, Gravitation and Cosmology section 4.1
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ad 1:

differential equation. Now perform a coordinate transformation =z — y(x), and

assume that the new object 7" has the form
T' = (...)T + junk (4.1)

where the term in brackets is some invertible matrix or operator. Then clearly
the presence of the junk-terms means that the equation 7" = 0 is not equivalent
to the equation 1" = 0. An example of an object that transform in this way is, as
we have seen, the Christoffel symbols. On the other hand, if these junk terms are
absent, so that we have

T =(.)T (4.2)

then one might like to say that the equation has preserved its form under a general

coordinate transformation.

As a consequence of this, one also has 7" = 0 if and only if T'= 0, i.e. the equation
is satisfied in one coordinate system if and only if it is satisfied in any other (or
all) coordinate systems. An example of this is the geodesic equation which, as we
have seen, transform precisely in such a way, with the term (...) in brackets being

the Jacobi matrix.

However, if this is what one desires (and it is), then one may as well say this

directly. Thus, to be more concrete, we can replace the 2nd condition above by

2’ the equation is generally covariant, i.e. it is satisfied in one coordi-

nate system iff it is satisfied in all coordinate systems.

The argument below will invoke general covariance in order to be able to look at
a given equation at the origin of an inertial (freely falling) coordinate system. As
we have seen in various ways in section 3.6, at that point p, the effects of gravity
are absent to the extent that the metric at that point is the Minkowski metric,
9ab(P) = Nap, and that the derivatives of the metric (or Christoffel symbols) at that
point are zero, g (p) = 0. However, as also noted there, higher derivatives of the
metric can in general not also be chosen to be zero at that point (and indeed the
second derivatives of the metric at that point will turn out to contain coordinate

independent information about the curvature of the space-time).

In that sense, looking at an equation at the origin of an inertial coordinate system
is not strictly identical to looking at that same equation in the absence of gravity
(i.e. in Minkowski space), where all these higher derivatives of the metric are
also zero (in inertial coordinates). For the purposes of the argument below we
will ignore this difference, and thus allow for the possibility that the Einstein
Equivalence Principle holds only to first order in derivatives of the metric. Indeed,
as discussed in more detail in section 8.4, and as could be anticipated from our

identification of the metric with the potential of the gravitational field, second
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derivatives of the metric encode tidal gravitational forces (which one cannot expect
to be able to eliminate by passing to a freely falling reference system), so this is
a plausible relaxation of some stricter interpretation of the Finstein Equivalence

Principle. We will look at the implications of this in the remarks below.

With these remarks in mind, let us now establish the above statement, namely that the
Einstein equivalence principle implies that an equation that satisfies the conditions 1

and 2 (or 2’) is valid in an arbitrary graviational field:

e consider some equation that satisfies these conditions, and assume that we are in

an arbitrary gravitational field;

e condition 2’ implies that this equation is true (or satisfied) in all coordinate sys-

tems if it is satisfied just in one coordinate system;

e now we know that we can always (locally) construct a freely falling coordinate

system in which the effects of gravity are absent;

e the Einstein Equivalence Principle now posits that in such a reference system the

physics is that of Minkowski space-time;
e condition 1 means that the equation is true (satisfied) there;
e thus it is valid in all coordinate systems;

e since we started off by considering an arbitrary graviational field, it follows that
the equation is now valid in an arbitrary gravitational field, as claimed in the

Principle of General Covariance.

REMARKS:

1. Note that general covariance alone is an empty statement since any equation
(whether correct or not) can be made generally covariant simply by writing it in
an arbitrary coordinate system (cf. also the discussion in section 6.4). It develops
its power only when used in conjunction with the Einstein Equivalence Principle
as a statement about physics in a gravitational field, namely that by virtue of its
general covariance an equation will be true in a gravitational field if it is true in

the absence of gravitation.

2. As alluded to above, the principle of general covariance does not fix the equations
uniquely because there are generally covariant objects that one can construct e.g.
from the (second) derivatives of the metric (via the Riemann curvature tensor to
be introduced in section 8) that can therefore be added to an equation and which

vanish for Minkowski space, i.e. in the absence of gravitation.
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3. In section 6.1 we will introduce a recipe / algorithm, the principle of minimal

4.2

coupling, that allows us to produce generally covariant equations from those of
special relativity. However, as we will discuss in section 8.10, also this description
is ambiguous. The upshot is that there is no unique way of implementing the

principle of general covariance, but this was probably too much to hope for anyway.

TENSORS AND TENSOR FIELDS

In order to construct generally covariant equations, we need objects that transform in a

simple way under coordinate transformations. The prime examples of such objects are

tensors.

If you are already familiar with Lorentz tensors from special relativity (as briefly recalled

in section 1.2, these are objects which transform in a particularly simple multi-linear way

under Lorentz transformations), then hardly anything in this or the subsequent section

4.3 should be new or unexpected (but interesting new features will arise in particular

when we move on from tensor algebra to tensor analysis in section 5).

1. Scalars

The simplest example of a tensor is a function (or scalar) f which under a coor-

dinate transformation z* — y* (z*) simply transforms as

f'ly@) = fx) (4.3)

or f'(y) = f(xz(y)). One frequently suppresses the argument, and thus writes
simply, f' = f, expressing the fact that, up to the obvious change of argument,

functions are invariant under coordinate transformations.

Vectors

The next simplest case are vectors V#(x) transforming as

_ oy

v (ya)) = S V) (4.49)

A prime example is the tangent vector * to a curve, for which this transformation

behaviour

’

;o Oyt
Py gt — i
oyt =50t (4.5)

is just the familiar one.

REMARKS:

(a) One comment on terminology: it is sometimes useful to distinguish vectors

from vector fields and, likewise, tensors from tensor fields. A vector is then
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just a vector V#(z) at some point x of space-time whereas a vector field is

something that assigns a vector to each point of space-time,
vector field : = +— VH(x) (4.6)

and likewise for scalars and scalar fields, and more general tensors and tensor
fields.

(b) One way of thinking about vector fields is as tangent vector fields to families of
curves on a space or space-time which arise as the solutions to the differential

equation

(o) = V¥ (a(o)) (47)

(and we take local existence and uniqueness of these solutions under suitable
regularity and differentiability conditions for granted). These curves x*(s)
are the integral curves (or orbits) of the vector field V#  and by by con-
struction they are characterised by the fact that at any point x the tangent
vector to the curve passing through that point is the vector V#(z) at that
point. Thus vector fields also generate a flow on the space(-time), namely

the motion of points along these integral curves, z#(o) — a#(o+s) for s € R.

(¢) An extremely useful related way of thinking about vectors (vector fields) is

as first order differential operators, via the correspondence
Vi e Vi.=VHIo, . (4.8)

One of the advantages of this point of view is that the object V is com-
pletely invariant under coordinate transformations as the components V* of
V transform inversely to the basis vectors 0,. For more on this see sections

4.6 and 4.8 on the coordinate-independent interpretation of tensors below.

3. Covectors

A covector (field) is an object U, (z) which under a coordinate transformation

transforms inversely to a vector, i.e. as

ozt

FUL(z) (4.9)

U,/u (y(r)) = W

A familiar example of a covector is the derivative U, = 0, f of a function (scalar)

which of course transforms as

ozt
O f'(y(x)) = Wauf(l’) : (4.10)

REMARKS:

(a) As in the case of covectors of special relativity (1.44), one should think of

covectors pointwise as elements of the dual vector space V* to the space of
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vectors V, i.e. as linear functionals on the space of vectors, given by
Ux): VHMx) — Uu(z)V¥(z) € R . (4.11)

The transformation properties of U, and V# guarantee that the result is a

scalar (function) under coordinate transformations.

(b) Just as it was useful to think of a vector field V#(z) in a more coordinate
independent way as the components of the coordinate-independent object
V = V#0, with respect to the basis d,,, one can think of covector fields U,

as the components of an object
U=U,dz" (4.12)

(which is invariant under coordinate transformations) with respect to the

basis dz*. The prime example is again the differential
df = 0uf (x)dz" = Oy f'(y)dy"” (4.13)

of a scalar.

(c) Combining the two points of view in the remarks above, one can thus think
of df as the linear functional on vector fields that assigns to a vector field V'

the scalar which is the derivative of f along V,

df : vector fields — scalar fields

(4.14)
df(V)=Vrof=VF .

4. Covariant 2-Tensors

Clearly, given the above objects, we can construct more general objects which
transform in a nice way under coordinate transformations by taking products of
them. Tensors in general are objects which transform like (but need not be equal

to) products of vectors and covectors.
In particular, a covariant 2-tensor, or (0,2)-tensor, is an object A, that transforms
under coordinate transformations like the product of two covectors, i.e.

Oxt Oz¥

I will from now on use a shorthand notation in which I drop the prime on the trans-
formed object and also omit the argument. In this notation, the above equation

would then become
ox* Ozx¥

We already know one example of such a tensor, namely the metric tensor g,

Ay = (4.16)

(which happens to be a symmetric tensor).
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5. Contravariant 2-Tensors

Likewise we define a contravariant 2-tensor (or a (2,0)-tensor) to be an object B*”

that transforms like the product of two vectors,

1.0 ay”l ayl/
W iy
BET = Oxt OxV B

(4.17)
An example is the inverse metric tensor gh”.

6. (p,q)-Tensors

It should now be clear how to define a general (p, ¢)-tensor - namely as an object
T ,,ll'jjff,’; with p contravariant and g covariant indices which under a coordinate

transformation transforms like a product of p vectors and ¢ covectors,

P _ Oy Oy 02 03", (4.18)
1/{...1/[1 Ot Ot ay”i 8yV‘II vi..Vg -+ .

REMARKS:

1. Note that, in particular, a tensor is zero (at a point) in one coordinate system if
and only if the tensor is zero (at the same point) in another coordinate system.
Thus, any law of nature (field equation, equation of motion) expressed in terms of
tensors, say in the form T " ,,11' ’f,’; = 0, preserves its form under coordinate trasfor-
mations and is therefore automatically generally covariant,

- TR
T, =0T, ") =0 (4.19)

2. An important special example of a tensor is the Kronecker tensor §%,. Together
with scalars and products of scalars and Kronecker tensors it is the only tensor
whose components are the same in all coordinate systems. l.e. if one demands that
8", transforms as a tensor, then one finds that it takes the same numerical values
in all coordinate systems, i.e. 5,5,/ = 5‘:,,. Conversely, if one posits that 5,5,/ = 5‘5,,

one can deduce that &, transforms as (i.e. is) a (1, 1)-tensor.

3. A covariant 2-tensor T}, say, is said to be symmetric if 7, = T,, and anti-
symmetric if T}, = —T,,. This is well-defined because it is a generally covariant
notion: a tensor is symmetric in all coordinate system iff it is symmetric in one

coordinate system, etc.

This definition can be extended to any or all pairs of covariant indices or pairs of
contravariant indices. Thus e.g. a tensor TH1#» is called totally symmetric (or
totally anti-symmetric) if it is symmetric (anti-symmetric) under the exchange of

any pair of indices.
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4.3

On the other hand, it is not meaningful to talk of the symmetry of a (1,1)-tensor,

say, as an equation like T = 1%, does not make any sense.

Symmetrisation and anti-symmetrisation of tensors will be discussed in section
4.3 below.

The number of independent components of a general (p,q)-tensor is 4719, The
number of independent components is reduced if the tensor has some symmetry
properties. Thus a symmetric (0,2)- or (2,0)-tensor has 4 x 5/2 = 10 independent
components, an anti-symmetric (0,2)- or (2,0)-tensor has 4 x 3/2 = 6 independent
components, and a totally anti-symmetric (0,4)-tensor 7,  ,, has only got one
independent component, namely Tp123 (all the others being determined by anti-

symmetry).

Important examples of non-tensors are the Christoffel symbols. Another impor-
tant example is the the ordinary partial derivative of a (p, q)-tensor, 8>\T”,,11'jjfff;
which is not a (p, ¢+ 1)-tensor unless p = ¢ = 0. This failure of the partial deriva-
tive to map tensors to tensors will motivate us below to introduce a covariant
derivative which generalises the usual notion of a partial derivative and has the

added virtue of mapping tensors to tensors.

TENSOR ALGEBRA

Tensors can be added, multiplied and contracted in certain obvious ways. The basic

algebraic operations are the following:

1. Linear Combinations

Given two (p, q)-tensors A”},’lf,’ﬁ’,’q and B"}; 7 5, their sum
Chts, = AN + B, (4.20)

is also a (p, ¢)-tensor.

. Direct Products

Ay L
Given a (p, g)-tensor A"} "7 and a (p/, ¢')-tensor B ,1,1,,,5(1,, their direct product

AL A
Aulljl..;:tlqu ;1‘“5q’ (421)

isa (p+p,q+ ¢)-tensor,

Contractions

Given a (p, q)-tensor with p and ¢ non-zero, one can associate to it a (p—1,¢—1)-

tensor via contraction of one covariant and one contravariant index,

B1-e-Bp H1-Bp—1 _ gH1---Hp—1A
ATy = BT = AT T (4.22)
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This is indeed a (p — 1,q — 1)-tensor, i.e. transforms like one. Consider, for ex-
ample, a (1,2)-tensor A", and its contraction B, = A’,,. Under a coordinate

transformation B, transforms as a covector:

oM
BV’ — AI/’/.L’
! A
oyt oxz” ox*
Ak Oy’ oy VA
ox”

_ A

- 8yu’ 0 HA/f/)\
ox” lokind

= —A* =_—DB, . 4.23
8yu’ v ayu’ ( )

A particular example of a contraction is the scalar product between a vector and

a covector which is a scalar.

Note that contraction over different pairs of indices will in general give rise to
different tensors. E.g. A’fju and A‘L,, will in general be different.

. Raising and Lowering of Indices

These operations can of course be combined in various ways. A particular impor-
tant operation is, given a metric tensor, the lowering of indices with the metric,

and the raising of indices with the inverse metric.

From the above we know that given a (p, q)-tensor AFLH v,» the product plus
contraction with the metric tensor gm,,A“ ,1,1“ by 1S a (p —1,q + 1)-tensor. It will
be denoted by the same symbol, but with one index lowered by the metric, i.e. we

write

guluAull/i....Hlfq = Auug;:.}z’q . (424)

REMARKS:

(a) Note that there are p different ways of lowering the indices, and they will in
general give rise to different tensors. It is therefore important to keep track of
this in the notation. Thus, in the above, had we contracted over the second

index instead of the first, we should write
G AL D = AR (4.25)

(b) In particular, given a vector field V#(x), we can associate to it the “dual”

(with respect to the metric) covector field V,(x) with covariant components
Vi=9uwV", (4.26)
and likeweise for covectors A, (z),

AP =g A, (4.27)
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(c) Interpreted in terms of covectors as linear functions on vectors, this perhaps
somewhat obscure convention and notation has a perfectly natural interpre-
tation. Namely, recall that even though a vector space V and its dual V* are
isomorphic (in finite dimensions), there is no natural isomorphism between
them, i.e. no natural identification of vectors in V with covectors in V*. How-
ever, if one has a scalar product (metric) < v,w > on V, then this provides
an identification of V and V* through

veVa, eV ay(w) =<v,w> . (4.28)

Thus a metric allows one to associate a covector to a vector, and in the
notation of tensor algebra favoured by physicists this is conveniently just
written as V# — V.

(d) Finally note that this notation of raising and lowering indices with the metric

is consistent with denoting the inverse metric by raised indices because

7" =99 9o - (4.29)
and raising one index of the metric gives the Kronecker tensor,

9" =g =0, (4.30)

5. Symmetrisation and anti-Symmetrisation

Given any (0,2)-tensor 7T}, one can decompose it into its symmetric and anti-

symmetric parts as
T = %(Tw +Tou) + %(Tw —Ty) = Tyw) + T - (4.31)

The decomposition into symmetric and anti-symmetric parts is invariant under
coordinate transformations. In particular, when 7}, is a tensor, also T(,,) and
1}, are tensors, and thus (anti-)symmetrisation is yet another linear operation

that one can perform on tensors.

The factor % is chosen such that the symmetrisation of a symmetric tensor is the

same as the original tensor,
ij = Tuu = T(HV) = T/W , T[;w] =0 (4.32)

(and likewise for the anti-symmetrisation of anti-symmetric tensors).

This can be generalised to the (anti-)symmetrisation of any pair of (contravariant

or covariant) indices; e.g.

T(;w))\ = %(Tw/}\ + TVM)\) (4.33)

is the symmetrisation of 7}, in its first and second index.
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It can also be generalised to the total (anti-)symmetrisation of a higher-rank ten-
sor; e.g.
T(;w)\) = %(T;w)\ + Tuu)\ + T)\I/M + TV)\u + Tu)\u + T)\/u/) (4'34)

is totally symmetric, i.e. symmetric under the exchange of any pair of indices, and

Uy %(THW\ = Topx = Dowp + Torg = Tynw + Do) (4.35)

is totally anti-symmetric. The prefactor % is again there to ensure that the total
symmetrisation of a totally symmetric tensor is the original tensor (and likewise for
the total anti-symmetrisation of totally anti-symmetric tensors). This generalises

in an evident way to higher rank p tensors, with the combinatorial prefactor 1/p!.

An observation we will frequently make use of to recognise when some object is a tensor

is the following (occasionally known as the quotient theorem or quotient lemma):

Assume that you are given some object A ,1,1“ ve- Then if for every covector U, the

contracted object U, A"} "7 transforms like a (p — 1,g)-tensor, A*,;"% is a (p,q)-
tensor. Likewise for contractions with vectors or other tensors so that if e.g. in an
equation of the form

A;w = BuuApcAp (4.36)

you know that A transforms as a tensor for every tensor C, then B itself has to be a

tensor.

An elementary and ham-handed proof of this statement can be obtained by contradic-
tion: assume that B does not transform as a tensor and write its transformation, as in
(4.1), as

B'=(...)B + junk . (4.37)

If “junk” # 0, then there will be some C such that “junk” contributes to the contraction
B'C’. That means that “junk” contributes to A’, the transformed A, contradicting the

premise that A is a tensor.

4.4 GENERALLY COVARIANT INTEGRATION AND VOLUME ELEMENTS

While tensors are the objects which, in a sense, transform in the nicest and simplest
possible way under coordinate transformations, they are not the only relevant objects.
An important class of non-tensors (but “almost” tensors) are so-called tensor densities.
They will play a crucial role for us in order to have a generally-covariant notion of
integration at our disposal, and thus ultimately also a way of writing down generally

covariant action principles for fields etc.

In this section we will address the issue of generally covariant integration in a space-time

equipped with a metric. This will be accomplished with the help of a particular tensor
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density constructed from the metric. Having thus established that tensor densities are
objects of legitimate interest in their own right, we will then discuss their properties in

more generality in section 4.5 below.

To set the stage, consider once again first the situation in special relativity. In that
case, the integral of a Lorentz scalar f(£) with respect to the volume element d*¢ (or
d*¢ ...) is itself a Lorentz scalar, i.e. independent of the inertial reference frame in

which the integral is evaluated,
[dcno - [acie @ -1 (4.38)
The reasons for this are that

1. f is a scalar by assumption,

f&) =1, (4.39)

2. by the fundamental theorem of integral calculus, under an arbitrary coordinate
transformation ¢ — & = £(€) the volume element transforms with the Jacobian,
the (absolute value of the) determinant of the Jacobi matrix,

dé = detg—g‘d% , (4.40)

3. for a Lorentz transformation one has
3
det =|=|detL| =1 . 4.41
et 5| = laet (1.41)
and thus the volume element is invariant under Lorentz transformations,

dt€ = d¢ . (4.42)

Turning now to general relativity and general covariance, it is immediately apparent
that the integral of a scalar [ d*z f(x) will not be generally covariant, i.e. under a

general coordinate transformation © — y = y(z) generically one has

[ @2 [ty £ (4.43)
because of the non-trivial Jacobian,

d4y =

dy 4
det <8x> ‘ d*z . (4.44)

One way out would be to abandon the idea that one should integrate scalars and to
require that the integrand f(x) should transform in such a way that it cancels the

Jacobian arising from the measure, namely as

f'ly) = ‘det (%)
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This is indeed an option, and we will return to this below (see remark 1 in section
4.5), but at this stage this is rather unintuitive and not particularly useful, in particular
because it is not clear how one should go about finding or constructing such objects in

the first place.

Therefore let us approach this question in a different way. Integrals are used to cal-
culate or measure volumes (or areas, or lenghts, or ...). Such integrals should have a
coordinate-independent meaning, but they should depend on the prescription one uses
for measuring volumes, areas, lenghts, ... These prescriptions are concisely encoded in
the metric. Thus it is plausible that in order to define a generally covariant notion of
integration one may need to specify the metric, but that this is all that one should need
to know (while the Jacobian between two coordinate systems should fundamentally be

irrelevant and be considered to be a red herring).

With this in mind, let us recall the standard tensorial transformation behaviour of the
metric under coordinate transformations,
oz 0x”
/ e P S—

It follows from this that the absolute value of the determinant of the metric

g := | det(gu ()] (4.47)

does not transform like a scalar or some other tensor at all, but instead transforms as
dz\” d

det | — det ¢y
dy ox
In particular, its square-root /g transforms as
dy
"= |det [ ==

Vi = faer ()

Therefore the combined expression \/§d4:17 is tnwariant under general coordinate trans-

-2

g = g= (4.48)

-1

N (4.49)

formations,
Vodty = gd's (4.50)
and can therefore be used to define integrals of scalars in a generally covariant (but

metric-dependent) way,

/ VFdy f(y) = / Jad'z f(z) | (4.51)

This will of course be important in order to formulate action principles etc. in a space-

time equipped with a metric in a generally covariant way.

REMARKS:

1. This is also frequently the quickest way to determine the volume element in non-

Cartesian coordinates in Euclidean space. Thus, to determine what is the volume
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element in spherical coordinates {y*} = (r,0,¢), say, instead of laboriously de-
termining the Jacobi matrix for the coordinate transformation, and then (equally
laboriously) calculating its determinant (which would be the standard uninspiring
and uninspired procedure), all one needs to know is the metric in these coordinates

(which one usually needs to determine anyway) to deduce
ds® = dr? +r?(df* + sin>d¢?) = g=r"sin’0 (4.52)
and therefore
dPr = /g d®y =r*sin dr df dp . (4.53)
This is of course the standard result.

. As a variation of this theme, it is now also easy to construct a spherical (i.e. radial
+ angular) coordinate system z*
d®z = d®z (without any Jacobian factors). To that end it suffices to let (4.53)

suggest to introduce a new radial variable p = p(r) by

in which /g = 1, i.e. which is such that simply

dp=7r%dr = p=1r3/3¢€(0,00) (4.54)
and a new angular variable 1) = ¢(0) by
dip =sinfdd = Y =—cosfe[-1,1) . (4.55)
In these coordinates, the Euclidean line element takes the form

ds® = r(p)"dp® + 1(p)*(de? / sin® 6(v) + sin® 6(4))do)

dip? (4.56)
= (3p)"*dp® + (3p)** (1_7%2 +(1- wQ)dqﬁQ)
It is now manifest that in these coordinates {z*} = (p, 1, ) one has
Vi=1 = dr=d2=dpdde . (4.57)

The Euclidean metric in these coordinates will make a brief appearance in the
discussion of the derivation of the Schwarzschild metric in section 24.3 (cf. the
discussion leading to (24.33)).

. More generally, given any metric g,g, one can find a coordinate system in which
g = |det(gap)] = 1. Such a (“unimodular”) coordinate system is highly non-
unique. In fact, given any such coordinate system x, any other coordinate system
y with unit Jacobi matrix | det(dy/dz)| = 1 will also satisfy this condition. Such
coordinate transformations form an infinite-dimensional subgroup of the group of
all coordinate transformations, known as the group of volume-preserving coordi-
nate transformations.

In particular, the above transformation from Cartesian coordinates z* to the co-

k

ordinates z" is a non-trivial example of a volume-preserving coordinate transfor-

mation.
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4.5 TENSOR DENSITIES AND VOLUME ELEMENTS

In the previous section we have encountered certain not strictly tensorial objects which
nevertheless turned out to be useful. Having thus established the basic credentials of

such objects, we will now formalise this somewhat.

Thus the prime example of what we will call a tensor density is the (absolute value of

the) determinant g := | det g, | of the metric tensor, which, as we have seen, transforms

Jy

An object which transforms in such a way under coordinate transformations is called

as
—2

g = g . (4.58)

a scalar tensor density of weight w = +2, and the square root of the determinant /g

transforms as, and hence is, a tensor density of weight w = +1.
In general, a tensor density of weight w is an object that transforms as

1947 s (2)

Oz

TUoygt oyt 0at 0at Ly, (4.59)
Ok " ke gyvi T gyra s T '

In particular, this implies that ¢~%/2T" transforms as (and hence is) a tensor,

w2t Oyt Oy gz O ey A (4.60)

g vieVq  Qxka T Qxte gyt T OyYa vetae

Conversely, therefore, any tensor density of weight w can be written as a tensor times
+w/2
g )

T a tensor density of weight w < T = ¢*/>T with T a tensor . (4.61)

The algebraic rules for tensor densities are strictly analogous to those for tensors. Thus,
for example, the sum of two (p, q) tensor densities of weight w (let us call this a (p, ¢; w)
tensor) is again a (p, ¢; w) tensor, and the direct product of a (p1, ¢1; w1 ) and a (p2, g2; w2)
tensor is a (p1 + p2, @1 + q2; w1 + we) tensor. Contractions and the raising and lowering

of indices of tensor densities can also be defined just as for ordinary tensors.

REMARKS:

1. Generalising the argument in section 4.4, we now learn that if f is any scalar
density of weight w = +1, then its integral is well-defined and coordinate inde-

pendent,
/ diz f = / dix’ f (4.62)

See remark 4 below for one way of constructing such objects without taking re-

course to a metric.
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2. There is one more important tensor density which - like the Kronecker tensor - has
the same components in all coordinate systems. This is the totally anti-symmetric
Levi-Civita symbol €,,,, (taking the values 0,%1) which is a tensor density of
weight w = —1. Then /g €., is a tensor (strictly speaking it is a pseudo-tensor
because of its behaviour under reversal of orientation - see below).

To see this, recall first of all the definition of the Levi-Civita symbol: it is totally
anti-symmetric,

G)\uupze[)\,uz/p} ) (463)
and has therefore only got one independent component which we will normalise

to be
€o123= +1 . (4.64)

Thus €y,,,= +1 if the indices (Aurp) are an even permutation of (0123), €5,,=
—1 if the indices (Auvp) are an odd permutation of (0123), and €,,,= 0 iff any
two indices are equal. This definition makes no reference to any coordinate system
whatsoever, and thus tautologically the purely combinatorial object €y, has the

same components in all coordinate systems.

This evidently extends to other dimensions, and we will define the D = (d + 1)-

dimensional Levi-Civita symbol in the same way,

e#l---MDZE[/.u...,u,D} »  €01.d= +1 . (465)

Next, recall one possible definition of the determinant det M of a (D x D)-matrix
M, namely as the coefficient (proportionality factor) on the right-hand side of

Cpropp MY MEP = (det M) €, 0, - (4.66)

Now choose M to be the Jacobi matrix (0y/0x). Then the above equation shows
that

oy \ Ox™ Ox¥P
GullmulD— det (@) ayl/«ll e ay—l/«lD GylmyD s (467)
i.e. that €,,. ., transforms as a tensor density of weight w = —1, provided that

det(dy/0x) > 0. The latter condition means that the coordinate transformation
preserves the orientation. Thus, €,, ,, transforms as a tensor density under
orientation-preserving coordinate transformations but picks up a sign when the
orientation is reversed. Thus strictly speaking €,, ., is not a tensor density but

a pseudo-tensor density.

Going back to 4 dimensions, it follows that

Expvp = \/g GAqu (468)

is a totally anti-symmetric (0,4) (pseudo-)tensor.
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Likewise, the totally anti-symmetric symbol é™"? is a tensor density of weight
w = +1 and

E)\,uup = 1

V9
is a totally anti-symmetric (4,0) (pseudo-)tensor. Here, as usual, we have raised

the indices of the tensor on the left-hand side with the metric, and €**? is totally
0123
(- =

M (4.69)

anti-symmetric, with —1. The minus-sign arises because the contraction

with the metrics on the right-hand side produces a factor of

Vadet(g") = \/g(det(gu)) ! = —% . (4.70)

We could have chosen to not absorb the minus sign into the definition of €7,
at the expense of an explicit minus sign on the right-hand side of (4.69). The
convention we have adopted is more convenient, however, in particular since it
is compatible with the standard practice in special relativity to (tacitly) identify
Exuvp =Exuvp, the minus sign arising from raising the indices on €),,, with the
Minkowski metric n** with 7700 = —1, so that €02B— _ (19s.

. There is an intimate relation between the preceding observations regarding the
Levi-Civita symbol (remark 2) and those in section 4.4 above regarding invariant
volume elements. Namely, the usual coordinate volume element d*z can be written
as

1
dirz = 1 SV dxrdztdz’ daP . (4.71)

This is not a tensor but transforms like a scalar density. On the other hand, if
one works instead with the tensor €),,, one obtains a scalar, and this scalar is

precisely the invariant volume element (4.50),

%eAuypda:Adx“daz”dmp = gd'z . (4.72)
. More generally (and without invoking a metric to provide the weight w = +1 den-
sity required for an invariant integration) this can be phrased in the following way:
Let A, .., be a totally anti-symmetric (0, 4)-tensor. Thus it will be proportional
to the metric dependent Levi-Civita tensor €, .. ,, but we will now not make use of
this fact (which would return us to the setting of the previous remark). Rather, we
consider its contraction with the contravariant Levi-Civita symbol €**? (which

exists independently of any additional structure like a metric),
Aﬂl---m - f =gl Am---/m . (4'73)

This is a scalar density of weight w = +1. As a consequence, its integral (4.62) is
well-defined and coordinate independent, without reference to any metric. Thus
totally anti-symmetric (0, 4)-forms provide natural 4-dimensional volume elements
(and likewise for totally anti-symmetric (0,p) tensors and p-dimensional volume
elements).

121



4.6 ToOwWARDS A COORDINATE-INDEPENDENT INTERPRETATION OF TENSORS

There is a more invariant and coordinate-independent way of looking at tensors than
we have developed so far. The purpose of this section (and the subsequent section
4.7) is to briefly explain this point of view, even though it is not indispensable for an

understanding of the remainder of the course.

Consider first of all the derivative df of a function (scalar field) f = f(x). This is
clearly a coordinate-independent object, not only because we didn’t have to specify a

coordinate system to write df but also because

of(x) Of(y(x) ,
df = ——=dzt = ——dy" 4.74
f = dr g7 WY (4.74)
which follows from the fact that 0, f (a covector) and da* (the coordinate differentials)
transform inversely to each other under coordinate transformations. This suggests that
it is useful to regard the quantities d, f as the coefficients of the coordinate independent
object df in a particular coordinate system, namely when df is expanded in the basis

{dxH}.

We can do the same thing for any covector A,. If A, is a covector (i.e. transforms like
one under coordinate transformations), then A := A, (x)dxz* is coordinate-independent,
and it is useful to think of the A, as the coefficients of the covector A when expanded
in a coordinate basis, A = A,dx#. Linear combinations of dz* built in this way from

covectors are known as 1-forms.

From this point of view, we interpret the {A,} simply as the (coordinate dependent)
components of the (coordinate independent) 1-form A when expressed with respect to
the (coordinate dependent) differentials {dz*}, considered as a basis of the space of

covectors.

Something similar can be done for vector fields. Just as covectors transform inversely to

coordinate differentials, vectors V# transform inversely to partial derivatives d,,. Thus

V= V“(x)a;; (4.75)

is coordinate-independent - a coordinate-independent linear first-order differential op-
erator. One can thus always think of a vector field as a 1st order differential operator

and this is a very fruitful point of view.

Acting on a function (scalar) f, V produces the derivative of f along V',
Vf=V"o.f . (4.76)

This is also a coordinate independent object, a scalar, arising from the contraction of a
vector and a covector. And this is as it should be because, after all, both a function and

a vector field can be specified on a space-time without having to introduce coordinates
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(e.g. by simply drawing the vector field and the profile of the function). Therefore also
the change of the function along a vector field should be coordinate independent and,

as we have seen, it is.

So far we have only discussed vectors and covectors. All this can, in principle, be
extended to higher rank tensors, but at this point it would be very useful to introduce
the notion (or at least the notation) of tensor products. I will briefly describe this in

section 4.7 below.

For those who do not want to delve into this (and it is not required for the following):

fact of the matter is that any (p, q)-tensor T”l,ll'::ff,’; can be thought of as the collection

of components of a coordinate independent object 7" when expanded in a particular

coordinate basis in terms of the dz* and (9/0x*).

Any choice of coordinate system {z*} gives rise to such a basis {dz*}, and such bases
are known as coordinate bases or natural bases. This is not the only possible choice of

basis, however, and we will return to this issue in section 4.8.

4.7 MULTILINEAR ALGEBRA AND TENSORS

In (multi-)linear algebra, the tensor product is used to describe multilinear maps. Let
V be a vector space, and V* its dual, consisting of the linear maps V' — R, and denote
the action of a € V* on v € V by

acViveV — a(v)eR. (4.77)
In components, with respect to a basis Ej, in V and its dual basis € in V*,
e'(Ey) = 6L, (4.78)
this would be written as
(a;e) (V" Ey) = apfel (Ey) = apw®6l = apo® . (4.79)

Then a bilinear map on the Cartesian product V' x V' can be considered as an element
of V* ® V*, the tensor product being defined by

(a ®@b)(v,w) = a(v) b(w) . (4.80)
Note that this is not symmetric, i.e.
aRb#b®a . (4.81)
Again in components this would read

(a ® b)(v,w) = a;byv'w® | (4.82)
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and a general element of V* ® V* can be written as an object with components a;; (a
covariant tensor),
a=ape’ @ek | (4.83)

acting as
a(v,w) = ajviw® . (4.84)

From these definitions it follows that the tensor product is evidently linear,
a®(b+c)=a®b+a®c (4.85)
(and likewise for the first factor), and R-linear, i.e. for r € R one has
rla®b) = (ra) ®b=a® (rd) . (4.86)

The R-linearity is in a sense the characteristic feature of the tensor product V @ W of
two vector spaces (here V* ® V*) that sets it apart from the direct (Cartesian) product
V x W of vector spaces (here V* x V*), which consists of the pairs (v, w), and for
which there is obviously no identification between (rv,w) and (v,rw) since these are

just distinct points of the Cartesian product.

This can be straightforwardly extended to a description of general multilinear maps on
vector spaces:

e Using the canonical isomorphism (V*)* = V for finite-dimensional vector spaces,
veV =soe(VH*: o(a) =alv) , (4.87)

one can also in the same way define the tensor product V ® V as the space of

bilinear functions on V* x V*,

(v ®@w)(a,b) = a(v) bw) , (4.88)
and a general elelement of V' ® V' can be represented in terms of its components
Tik

T=T"E;®E; , (4.89)
acting as
T(a,b) = T%a;by, . (4.90)

e By the same token, the tensor product V ® W is the space of bilinear maps on
Ve W,

e Multilinear maps from V x ... x V' to R are elements of

PV =V'®...V" (4.91)
N————

p times

(and can be represented as covariant tensors of rank p), etc.
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e These multilinear maps can be added and multipled and thus form an algebra,
the tensor algebra of V*, denoted by T'(V*). As a vector space, it consists of the

sums of all the p-linear maps,

T(V*) = @p=o &P V* . (4.92)
The tensor product can also be used to describe multilinear maps between vector spaces:

e An element a ® v of V* ® V can be regarded as a linear map from V to itself via
(a®v1)(v2) = a(v2)v1 (4.93)

and a general element of V* ® V (a “matrix” M%) can be written as a linear

combination of such maps,
M=ME;®e: M@)=Me@E =(Mv)E; . (4.94)
e Likewise a linear map from V to some other vector space W can be regarded as
an element of V* ®@ W.

e Multilinear maps from V' to W (“W-valued multilinear maps”) are elements of
V'@... V'@ W, etc.

Clearly, in general, given a basis of V' and a dual basis of V*, the tensor product can

be used to construct a basis

(B, ®...0 E)® (e ®...eM) (4.95)
in the space
™i=V®..0V)(V'®.. .0V (4.96)
p times q times
of (p, q)-tensors,
TeTr':T=T""F (E,®. . 0E)®E" .. od). (4.97)

This is the way we will use the tensor product notation below, as a multilinear operation

providing us with a basis for higher rank tensor fields.

Now, as we have seen above, in the standard component/index formulation of general
relativity, say, a (p,q)-tensor is defined as an object with components T’,f}jjﬁ;’ which
transforms multi-linearly with the Jacobi matrix under coordinate transformations, i.e.

under z#* — y® one has

TGS () = o T 5T TR (a(y)) (4.98)

where Jﬁ‘ = Oy /0" is the Jacobi matrix and J& = dx#/dy* is its inverse.
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The reason for introducing and working with tensors, defined in this way, is that tensorial
equations have the virtue that they are generally covariant, i.e. that they are satisfied
in all coordinate system if and only if they are satisfied in one coordinate system. The
emphasis in this formulation is thus not on tensors as multilinear maps but on how they
transform under coordinate transformations. This seems to be somewhat at odds with
the definition of tensors in multilinear algebra, but as we will see below this is simply
due to the choice of a particular class of bases (coordinate bases), with respect to which
multilinear maps indeed transform in this way under changes of the coordinate basis,

i.e. under changes of coordinates.

We had already noted above, that there is a more coordinate independent way of looking

at covector fields and vector fields, by associating to them the objects
Ay(x) = Ax) = Ay(x)dx”  , V) = V(z) =V¥(2)0n - (4.99)

which are completely invariant under coordinate transformations, with the da* and the

0, providing a basis for the space of covector and vector fields respectively.

This perspective can now be extended to higher-rank and mixed tensors. In particular,

associated with the metric g,, (x) we have the coordinate independent line element
ds?* = g datda” . (4.100)
which we can now also think of as the tensor
g = gudr" @dz" . (4.101)

where ® is now again the tensor product.

Since we are now dealing with tensor fields rather than just with tensors (multilinear
maps at a given point), the tensor product in this context is required to be multilinear

not just over R, but over functions (scalars) so that e.g.
dzt @ (f(x)dx") = (f(x)dx*) @ dz¥ . (4.102)

Now let us return to (4.101). If one wants to emphasise that the metric is a symmetric

(0,2)-tensor, one can also expand it with respect to the symmetrised basis as
9= g (dzt @ dz” + dz" @ dz*)/2 (4.103)

but for the metric the tensor-product is often omitted and one simply writes it as the
line element (4.100).

If one has a non-symmetric (0,2)-tensor T}, say, then one can also group these coeffi-
cients into the components of a coordinate-invariant object, but now the tensor product

notation
Ty —T= ijd:z:“ ® dx¥ (4.104)
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is more useful than just writing 7}, dz#dz", simply to emphasise the fact that all com-
ponents of T},,, not just the symmetric part of 7),,, contribute to T' because dz* ® dx”
is not symmetric,

dzt @ dz¥ # dx¥ @ dat | (4.105)
(whereas just writing dz*dx” might lead one to believe that dz* and dz” commute).

More generally, to a (0, p)-tensor we can associate the object
T=T,. ude" ®.. @dH . (4.106)

IfT),, ..., is totally anti-symmetric, the resulting object is also referred to as a p-form. As
we have already seen above, such p-forms provide natural and invariant p-dimensional
volume elements. In particular, applying this to the Levi-Civita tensor discussed in
section 4.5, we reproduce the statement (4.50) that (4.72)

1
Ze,\u,,pda:Adx“dx”dmp = /gd'x (4.107)

is a space-time volume element that is invariant under coordinate transformations.

The tensor product notation is also useful for higher-rank contravariant or mixed tensors.
Given a (2,0)-tensor with components TH” say, one really does not want to write
the corresponding coordinate-invariant object as T"”0,0,, say, because this may be
interpreted as a second order differential operator whereas what one really means is a

bilinear first order differential operator, which one writes as
T=T"0,®0, , (4.108)

and whose components with respect to the basis J, ® 9, are the T"".

In general, we can thus think of a (p, ¢)-tensor field, as given in (4.98), as the components

of a coordinate-independent object
T =Ty 0 (x) (O ®...0,,)® (2" ®...0dz") | (4.109)

when expanded with respect to the coordinate basis in the space of tensor fields gener-
ated by dz# and 0, = Oy».

4.8 VIELBEINS AND ORTHONORMAL FRAMES

As we saw in section 4.6, a choice of coordinates provides one with a choice of basis for
vectors, covectors and other tensors, and a quantity like V# is then interpreted as the
collection of components of an object V' = V#0,, with respect to the coordinate basis J,,.
In classical tensor calculus one always works in such a basis, and with the components
of tensors with respect to such a basis. This is very convenient and natural, but this is
now clearly not the only choice.
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Indeed, the above point of view suggests a reformulation and generalisation that is
extremely natural and useful (but that I will nevertheless hardly ever make use of in

these notes).

Namley, let {e";(x)} be such that it is an invertible matrix for every point x. Then

another possible choice of basis for the space of covectors are the linear combinations
e = edat . (4.110)

A general such basis is called a wvielbein, which is German for multileg, quite appropriate
actually, as one should visualise this as a bunch of linearly independent (co-)vectors at

every point of space-time.

In two, three, and four dimensions these are also known more specifically as zweibeins,
dreibeins and wvierbeins respectively. In four dimensions, the Greek word tetrads is
also commonly used. The e™ are sometimes also referred to as frame fields, mostly in

the context of orthonormal frames (see below).

In general, this new basis is not a coordinate basis, i.e. there does not exist a coordinate

system {y™} such that e™ = dy™. If such a coordinate system does exist, then one has

m_ Oy"
o Oxr (4.111)
= &,emu = 0ue’,

1 2

et =dy™ = e

and locally also the converse is true. In particular, if

ove’, —oue’y #0 = €™ is not a coordinate basis . (4.112)

For many purposes, bases other than coordinate bases can also be extremely useful and

natural, in particular the orthonormal bases we will introduce below.

The inverse relation to (4.110) is

dat = el e™ | (4.113)
where ¢/}, () is (pointwise) the inverse matrix of ¢]'(z),
e, en =0y ebelt =0oh . (4.114)

With respect to this basis, one can expand a covector A as
A=A,dxt = Ayel) ™ = Ape™ (4.115)
so that the components of A with respect to the new basis {e™} are

A = Ayt (4.116)
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Likewise, the vielbeins allow us to pass from a natural (or coordinate) basis for vector
fields, the {0,}, to another basis

E, =¢€,0u , (4.117)
allowing us to write the coordinate independent vector field
V =V*2x)0,=V"E, (4.118)
with
Vit =el v (4.119)

Note that, unlike the 9,,, the E,,, do not commute in general, i.e.
[Em,En] #0 . (4.120)

In fact, a ‘dual’ characterization of a coordinate basis is that the corresponding F,, do
commute. This is clearly a necessary condition and, as above, locally it is also sufficient
to ensure that there is a coordinate system y™ such that E,, = 9/0y™.

We can apply the same reasoning to any other tensor field, e.g. to the metric tensor

itself. We can write the invariant line element as

uov om,n

ds? = g datdat = gyt e e™e” = gmpe™e" (4.121)

so that the components of the metric with respect to the new basis are

Imn = gpue%eun . (4122)

Given a metric, there is a preferred class of bases {e”} which are such that the corre-

a
o

which are such that g, = 14 or

sponding matrices e (z) diagonalise (and normalise) the metric at every point z, i.e.

Gab = MNab = guy($)€’2($)eyb(l‘) = Nab - (4'123)

Such a basis e?, with respect to which the components of the metric are the Minkowski

metric 74, is known as an orthonormal basis or orthonormal frame.

In the more mathematical literature, the e are also referred to as soldering forms
because they identify (solder, glue) an abstract space of (co-)vectors at each point x,
labelled by a, b, ... with the concrete space of (co-)vectors tangent to the space-time at

the point z, labelled e.g. by the indices u, v, .. ..

For a general metric, a basis which achieves this cannot be a coordinate basis (because
this would mean that the metric is equivalent to the Minkowski metric by a coordinate
transformation). However, clearly there is no obstacle to finding a more general basis

which will do this: for every point x we can find a matrix e“u(:n) which achieves (4.123)
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a
I

smoothly with x, and hence we can put them together to define the smooth matrix-

As the metric varies smoothly with z, we can also choose the matrices e%,(x) to vary

valued function e (z) for all z. [I am ignoring some global (topological) issues here.

We will not need to worry about them here.]

The reason why I referred to a “class of bases” above is that, clearly, such an orthonormal

basis is not unique. At every point x it is determined up to a Lorentz transformation

e*(z) = A (2)e’(x)

A4 (@) AG(@)Nac = Mba - (4.124)

Thus a given metric does not determine a unique orthonormal basis, but only an or-

thonormal basis up to Lorentz transformations

e*(z) — A%(z)eb(z) . (4.125)
Conversely, however, an orthonormal basis uniquely determines a metric via

ds® = e (x)eb(x) . (4.126)

If one wants the components of the metric in a given coordinate system {x*}, one

expands the orthonormal basis e® in terms of the natural basis dz* as above as
e’(z) = e, (z)dz" (4.127)
to find, as above,
g () = €% ()€’ (2)nap - (4.128)

Thus instead of the metric one can choose orthonormal vielbeins as the basic variables
of General Relativity. In that case one has to demand not only general covariance but
also invariance under local Lorentz transformations (acting on the orthonormal indices
a,b,...). [One could also allow for general vielbeins, in which case one would have to

replace Lorentz transformations by the larger group of general linear transformations.]
EXAMPLES:

Here are a few examples to illustrate that orthonormal frames are not something mys-

terious but can usually be read off very easily from the metric in a coordinate basis.

1. The 2-Sphere Metric (2.16)

The standard metric on a sphere of radius R is
ds? = R*(d6* + sin® 0d¢?) . (4.129)

Now define
e! =Rd) , ¢*=Rsinfdo , (4.130)
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ie.

e = e, dz® (4.131)
with
1_ 1_ 2 _ 2 _ po
eg=R , e,=0, ¢g=0, e; =Rsinf . (4.132)
Then the metric can be written as
ds? = etel 4 e%e? = Jpeel | (4.133)

so the e® are an orthonormal basis. They are obviously not a coordinate basis
because (4.112)
89635 = Rcosf # dyef =0 . (4.134)

Likewise, we can introduce an orthonormal basis

E, = E;0, (4.135)
for vectors. A simple choice is
Ey=R'9 , Ey=(Rsind)"'9, , (4.136)
which satisfies
9o ECED = 6up (4.137)

That this is not a coordinate basis is reflected in the fact that the commutator
[E4, Es] # 0,

[E1, Bs) = R™%(9p(sin ) 1)0s = —R ' cot 0§ By . (4.138)

. The Schwarzschild Metric (2.38)

The metric is
ds®> = —(1 — 2m/r)dt® + (1 — 2m/r) " Ldr? + r2(d6? + sin® 0dp?) . (4.139)
With
(e2,e!, €%, e%) = <(1 — 2Tm)1/2dt, (1- sz)_1/2dr, rdf, rsin quﬁ) (4.140)
the metric can be written as
ds® = ngpee’ | (4.141)

so the e® are an orthonormal basis for the Schwarzschild metric.
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3. The Kaluza-Klein Metric (section 44)

Here is an example of a non-diagonal metric. The five-dimensional Kaluza-Klein
metric is
ds i = gudatdz” + (da® + A,dat)? . (4.142)

Let €9, a = 0,1,2,3, be vielbeins (tetrads) for the four-dimensional space-time

metric g,,,. Then an orthonormal frame é4 for the Kaluza-Klein metric is

e =eldat | € =da’+ Ayda . (4.143)

REMARKS:
1. Consider the timelike trajectory x* = x”(7) of an observer, parametrised by proper
time 7. Then his 4-velocity u* = dz*/dr satisfies (2.55)
gwutu” =1 . (4.144)

Recalling the defining relation for an orthonormal frame,

guweleey, =nw = guwe_oeh—o =m0=—1, (4.145)

we see that the 4-velocity u# can be interpreted as the timelike component e
of an orthonormal frame along the worldline,

ut =el_, (4.146)

with the spacelike components providing an orthonormal laboratory reference sys-
tem. At this point there is still considerable freeedom in the choice of the spatial
components of the orthonormal frame. This freedom can be significantly reduced
(to rigid 7-independent rotations) by adopting a particular “parallel transport”
condition of these vectors along the worldline, such as the Fermi-Walker parallel

transport to be discussed in section 5.10.

In any case, however the laboratory system is defined, the frame components
Ve =el, VI (4.147)

of a vector now acquire the physical interpretation as the components of V as
measured with respect to the observer’s proper time and his laboratory frame.
Note that this generalises the fact, already used in our second derivation of the
gravitational redshift in section 3.5, that the frequency of a wave with wave vector

k* as measured by an observer with 4-velocity u# is (3.117)

w=—ulk, = —e"_ k, = e’fok’“ = k=0 | (4.148)
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2. The € can in some sense be regarded as the square-root of the metric. In par-

ticular denoting the determinant of the matrix €, by
e(x) := det(e, (7)) , (4.149)
(4.123) implies

g(z) = |det(gap(2))| = e(2)” & le(2)] = Vg(a) - (4.150)

3. Coordinate indices can, as usual, be raised and lowered with the space-time metric
guv and its inverse, and Minkowski (tangent space) indices with the Minkowski

metric 7, and its inverse.

Note that this is consistent with the notation for e““ and its inverse e/, because

et = 9" nave’, (4.151)
One also has other fairly evident relations like
g = et (4.152)

etc. The reason why I have called the basis of vector fields in a general frame F,,
rather than e,, is that ¢ and FE,, are of course not related just by lowering or
raising the indices of the metric, F,;, # gmne™. The former are linear combinations
of the dx#, the latter linear combinations of the J,, so they are very different

objects.

One could now go ahead and develop the entire machinery of tensor calculus (covariant
derivatives, curvature, ...) that we are about to develop in the following sections in
terms of vielbeins as the basic variables instead of the metric. This is rather straight-
forward. For example, given the expression for the Christoffel symbols in terms of the
metric, and for the metric in terms of the vielbeins, one can express the Christoffel
symbols (and hence covariant derivatives and curvatures) in terms of vielbeins, but the

resulting expressions are rather unenlightning and not of much use in practice.

The real power of the vielbein formalism emerges when one combines it with the for-
malism of differential forms. And in practice the most useful and efficient alternative
to working in components in a coordinate basis is working with differential forms in an

orthonormal basis.

I do most of my (curvature) calculations in the latter framework (and e.g. only then
translate them into coordinate components for the purposes of inserting them into these

notes), but this is (for the time being) not something I will develop further here.”

9See e.g. W. Thirring, Classical Mathematical Physics for a presentation of general relativity entirely
in the coordinate-independent formalism of differential forms, and N. Straumann, General Relativity,
where differential forms are used whenever it is convenient or useful (and also occasionally when it is

not ...).
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4.9 EPILOGUE: INDICES? INDICES!

Having reached this point, you may have the impression that the notation we have
introduced for tensors, T’ﬁjjj’,fé’ say, and which, as you might have noticed by looking
ahead, we will continue to use in these notes, with its morass of indices, is somewhat
cumbersome and unelegant. And perhaps you might prefer to at the very least see
everything written in terms of the index-free coordinate-invariant objects like V' = V#0,

or A= A,dz" introduced in section 4.6.

I cannot disagree with the sentiment that using all these indices does not appear to be
particularly elegant. Mathematicians abhor it. Physicists, however, are pragmatists by
nature - they will use whatever turns out to be useful or efficient for what they want
to achieve, regardless of whether or not it is considered or perceived to be beautiful or

elegant according to some external criteria.

In particular, in the case at hand, the index-laden notation would not be that commonly
used and widespread if it did not have some distinct advantages over other options.
Indeed, this notation is an extremely useful and informative bookkeeping device that
conveys a lot of information in a very compact way. In particular, as we have seen, the
index notation allows one to reliably read off what kind of tensor one is dealing with,
along the lines of “if it has p upper and ¢ lower indices, it transform like, hence is, a
(p, q)-tensor”. Moreover, as we will see below, it provides one with a much more concise
and informative way of describing and performing algebraic manipulations of tensors

than some index-free notation is capable of.

Let me first make clear what the issue is and what it is not when one writes something

like V¥ or V#(x), as this can be interpreted in (at least) 2 distinct ways:

1. On the one hand, V* may refer to the numerical values of the components of a

specific vector V in a specific coordinate system.

2. On the other hand, the notation V* may be used to indicate that the object V

transforms like a vector.

The first use of V* is completely uncontentious: if one wants to write down the compo-
nents of some object with respect to some basis, one has to write down the components

of that object with respect to that basis, there is no way around that.

It is mainly the second use and interpretation of the notation that is at stake, and it is
also mainly in this sense that the index notation is used for tensor algebra and tensor

calculus in general and in these notes in particular.

To a somewhat lesser extent the fact that the notation itself does not indicate whether
one has in mind the first or the second interpretation is also an issue (even though this

is usually clear from the context). It is actually not so much an issue (if desired this
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is something that can easily be remedied - I will come back to this at the end of this
section) as possibly the source of a major misunderstanding between mathematicians
and physicists - namely that a dislike of the index notation arises from the (false!) belief
that it means that one is always writing down objects with respect to a particular basis.
If this were the case, this would indeed be clumsy and silly, and quite contrary to the
spirit of general covariance. However, as interpretation 2 indicates, this is absolutely

not what is meant.

Returning to the use of indices as a way to indicate tensorial type and tensorial oper-
ations (like contractions), let us consider the alternatives. If one wants to indicate in
symbols that some object V is a vector field, then as a mathematician one might write
something like V' € T'(T'M), stating that V is a section of the tangent bundle of the
space or space-time (manifold) M. This is fine, but if the space M is clear from the
context, why not declare once and for all that writing V# means the same thing? And

perhaps use different kinds of indices to refer to tensors on different spaces?

If this were all then this would hardly be an issue and even physicists could be convinced
to write “V € I'(T'M)”, at least when talking to mathematicians. Where the index
notation really pays off, however, is when it comes to algebraic manipulations such as
those discussed in section 4.3 (and even more so when it comes to tensor analysis, which

is the subject of section 5, but tensor algebra will be enough to illustrate this).

As examples consider the contractions of a (1,2) tensor T, say, with itself and with
a vector V. With indices one would write T‘lf)\ and V* and the possible contractions

would be written as
© B w
T, — T A A "

y v Lo (4.153)
T\, vt — T\vr o, Thvh

the first line indicating the two distinct covectors one obtains as contractions of T itself,
and the second the two distinct possibilities of contracting 7" and V' to obtain a (1, 1)-
tensor. In an index-free notation one would have to invent some operation like C7"* to
indicate a contraction over the m’th upper and n’th lower index.'” In this notation, the

four objects above would then be written as

T — CHT) , CHT)

(4.154)
(T,V) — C}T®V) , CHT®V) .

Is this superior? It does not even allow one to read off the tensor type of the resulting
objects unless one remembers what the tensor types of T and V were to begin with,

whereas this is completely manifest in (4.153).

10T am not making this up - see e.g. section 2.2 of The large scale structure of space-time by S. Hawking
and G. Ellis, in all other respects a wonderful book.
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Moreover, imagine how untransparent this would become were one to perform even the

simplest sequence of such elementary operations: compare
AgVoWw?  «—  ClC3(AeVeoW) . (4.155)

If you prefer the right-hand side, or some variant of it, feel free to use it. However, you
should be aware of the fact that the left-hand side contains an equivalent amount of
information, simply packaged in a more digestible way that is both more informative
(“it’s a scalar!”) and easier to manipulate. For most intents and purposes the index
notation is really extremely convenient and it is for this reason that we will continue to

make use of it in these notes.

One other reason for concern may be that by exclusively working with local coordinates
and coordinate bases one may be missing some global aspects of a space or space-
time. This is certainly true to a certain extent but is not primarily a notational issue.
Rather, it means that in addition one needs to make use of more advanced notions from
topology, global analysis etc. This is not something I will attempt here (cf. the book by
Hawking and Ellis in the previous footnote for a description of the groundbreaking early
applications of global analysis to general relativity). One related, but more elementary,
issue is the introduction and use of the term manifold when referring to spaces or space-
times of the kind we are dealing with in these notes. This is something I will very briefly

come back to in section 5.11 below.

Let me, to conclude this £ant section, come back to the issue of the notational ambiguity
when one writes something like V#, which can occasionally be a source of confusion.
Even though, as mentioned above, usually it is clear from the context what one means,
one might imagine wanting to write down a couple of equations with indices which
are only valid in spherical coordinates, say, and are therefore not to be understood as
tensorial equations. Then it might be helpful to have a notation which reveals that

information as well.

This can for instance be accomplished by inventing a new notation like = (or whatever)
to indicate an equality only in a special or specified coordinate system, but while this
may add clarity it does not address the fundamental issue that just writing V¢ does

not unambiguously specify what one has in mind.

Alternatively, and more elegantly and attractively, this can e.g. be accomplished with
very little effort with the help of what is known as the Penrose abstract index notation.
The idea is to still indicate the tensor type of an object by a certain kind of indices, but
with these indices only serving that purpose and not simultaneously referring to any
particular kind of basis. Thus for example, one would indicate a vector by an object
V@ where the fact that one has a single upper index a just means that this is a (1,0)-
tensor, and nothing else (exactly as in interpretation 2 above). For the components of
this vector with respect to some basis (coordinates z*) one could then continue to use
the traditional V*.
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The advantage of this “abstract index” notation is that for tensorial operations one never

needs to specify a basis anyway, so they can all be performed at the level of the abstract

indices and tensorial equations look identical when written with these abstract indices

or when written with concrete component indices. Thus V¢W, is used to indicate the

scalar one obtains by contraction of a vector V¢ with a covector W,. Likewise, instead
a

of T ‘;)\ (which may look basis dependent) one would write 7'¢,, and this is completely

equivalent to writing something like C1 (T,
@ CHT) (4.156)

but much more informative and user-friendly, and all the usual rules of tensor algebra

apply to these abstract indices.

Whenever one wants or needs to specify a basis or coordinate system, this can be
accomplished by using other kinds of indices. Thus g4, could e.g. be used to refer to
the metric tensor in general, while g,,, could then be used to refer to its components in

the basis x#. From this we see that

“[...] the distinction between the index notation and the component notation
is much more one of spirit (i.e., how one thinks of the quantities appearing)

than of substance (i.e., the physical form the equations take).”!!

While I will not make use of the abstract index notation in these notes (with the hope
that this will not cause any confusion), the use of abstract indices appears to be an
ideal (“eat the cake and have it t00”) compromise combining the best of both worlds
and should actually keep both camps happy. It does not yet appear to have found

widespread acceptance among mathematicians, however.

An alternative compromise solution is the already mentioned use of differential forms (in
an orthonormal basis, say), which is manifestly covariant and minimises clutter, display-
ing only the (essential and informative) Lorentz Lie algebra indices while suppressing

the component indices of forms (anti-symmetric tensors).

HR. Wald, General Relativity. See section 2.4 of this book for a more detailed explanation of the
abstract index notation, which is systematically used throughout the book. For a detailed treatment of
the abstract index notation and a discussion of some minor subtleties with this notation see R. Penrose,
W. Rindler, Spinors and Space-Time, Vol. 1: Two-Spinor Calculus and Relativistic Fields.

137



5 TENSOR ANALYSIS (GENERALLY COVARIANT DIFFERENTIATION)

Tensors transform in a nice and simple way under general coordinate transformations.
Thus these appear to be the right objects to construct equations from that satisfy the
Principle of General Covariance.

However, the laws of physics are differential equations, so we need to know how to
differentiate tensors. This is not an issue of particular concern in Special Relativity,

because (cf. (1.49)) the partial derivative of a Lorentz tensor
T ar(€) = 0I5 nar(€) (5.1)

is again a Lorentz tensor. This relies on 2 facts, namely first that the partial derivative
transforms as a covector under Lorentz transformations and secondly that the associated

Jacobi matrix of Lorentz transformations is constant.

The former generalises to arbitrary coordinate transformations and implies, in partic-
ular, that the partial derivative of a scalar field is a covector field (4.10). However,
because in general the Jacobi matrix is not constant, the ordinary partial derivative
does not map tensors to tensors.

This is easy to see: take for example a vector V#. Under a coordinate transformation,

its partial derivative transforms as

: oz 9 oy
v - 9 Y ym
%0V oyv' Oxv Ozt
_ %OL}/ By ox” Py
oyv Ozr oyv' OxHOxv

Ve (5.2)
The appearance of the second term shows that the partial derivative of a vector is not
a tensor.

As the second term is zero for linear transformations, you see that partial derivatives
transform in a tensorial way e.g. under Lorentz transformations, so that partial deriva-

tives are all one usually needs in special relativity.

We also see that the lack of covariance of the partial derivative is very similar to the
lack of covariance of the equation Z* = 0, and this suggests that the problem can be

cured in the same way - by introducing Christoffel symbols. This is indeed the case.

5.1 COVARIANT DERIVATIVE FOR VECTOR FIELDS

Let us define the covariant derivative V,V# of a vector field V# by

V,VE=0,VF+TH V. (5.3)
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It follows from the non-tensorial behaviour (2.71), (2.72) of the Christoffel symbols
under coordinate transformations z# — y® that V,V*#, as defined above, is indeed a
(1,1) tensor.

In order to establish that this, we transform
Vﬁva = 85Va + Paﬁﬁfv'y (5.4)

to z-coordinates, using the tensorial transformation behaviour of d, and V and the

non-tensorial transformation behaviour (2.72) of the Christoffel symbols, to arrive at

V" = JE0uISVP) + (TS TSI + TR0 T VP (5:5)

v

The obstructions to tensoriality are the 2 terms involving the derivatives of the Jacobi

matrix, but these cooperatively combine to give
Jg@ng‘ + J3 (05 JL) ) = Jg(?pJﬁ‘ + Jﬁ(@ng)J;’
= Jg(?pJﬁ‘ — (Z?VJﬁ“)JgJ;’ (5.6)
= Jg(?pJﬁ‘ — (Z?pJﬁ‘)J” =0 .

Here we have used the symmetry

o_ Py a
8qu - m - apJu (57)
and
JeI =05 = TN, = —(0,02) T (5.8)

The remaining terms in (5.5) then just give rise to the tensorial transformation of a
(1,1)-tensor. Thus we have shown that (5.3) indeed defines a tensor. Moreover, in a
locally inertial coordinate system this reduces to the ordinary partial derivative, and we
have thus, as desired, arrived at an appropriate tensorial generalisation of the partial

derivative operator.

REMARKS:

1. Analysing the above argument for the tensoriality of the covariant derivative, we
see that it relies exclusively on the specific non-tensorial form of the transformation
behaviour of the Christoffel symbols, not on the explicit form of the Christoffel
symbols themselves.

Thus any other object f’f,)\ could also be used to define a covariant derivative
(generalising the partial derivative and mapping tensors to tensors) provided that
it transforms in the same way as the Christoffel symbols, i.e. provided that one
has

=/ _ Oyt Bzv Bzt oyt §%ak

I BV H 7 F T+ / /
VA vA9zh Oyv OyN Ozt OyY Oyt

(5.9)
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This implies (and is equivalent to the fact) that the difference
le»\ = flf/,\ - Flf/,\ (5.10)

transforms as a tensor. Thus, any such I is of the form

Mo =T+ (5.11)
where C"; \ is a (1,2)-tensor, and could be used to define a corresponding covariant

derivative V.

Therefore the question arises if the covariant derivative defined in terms of the
Christoffel symbols is somehow singled out or preferred. We will return to this

question on various occasions below, in particular in section 5.4.

. We could have arrived at the above definition of the covariant derivative (using
the Christoffel symbols) in a somewhat more systematic way by appealing to the
equivalence principle and/or general covariance. Namely, let {{} be an inertial
coordinate system. In an inertial coordinate system we can just use the ordinary
partial derivative 9,V*. We now define the new (improved, covariant) derivative
V,V*# in any other coordinate system {z*} by demanding that it transforms as a

(1,1)-tensor, i.e. we define

ozt b
JVH = Ve . 12
VeV e gar® (5.12)
By a straightforward calculation one finds that
V,VE=9,VF T VA (5.13)
where I'" | is our old friend
oxh  9%¢?
M, = 5.14
vA T 9ga Qv Oz (5.14)

We can thus adopt (5.13) as our definition of the covariant derivative in a general
metric space or space-time (with the Christoffel symbols calculated from the metric

in the usual way).

That V V¥, defined in this way, is indeed a (1, 1) tensor, now follows directly from
the way we arrived at the definition of the covariant derivative. Indeed, imagine
transforming from inertial coordinates to another coordinate system {y“l}. Then

(5.12) is replaced by

’ 8:[/”/ 8£b
p VH = —— 0V . 5.15
\ Bga oy (5.15)
Comparing this with (5.12), we see that the two are related by
/ oyt dx”
VV# = —_—V, V¥ | 5.16
ozt Oyv ( )

as required.

140



3. Notation: frequently, the covariant derivative V,V* is also denoted by a semi-
colon,

V,VEk=VH,, . (5.17)

Since covariant derivatives do not necessarily commute (as we will discuss in detail
in section 8), when using this notation one has to pay attention to the order (and

reversal of the order) of indices,
VAV, VE=VH .\ . (5.18)

One can also define the covariant directional derivative of a vector field V' along
another vector field X* by

Vi VFE = X'V, VH . (5.19)

4. The appearance of the Christoffel-term in the definition of the covariant derivative
may at first sight appear a bit unusual (even though it also appears when one
just transforms Cartesian partial derivatives to polar coordinates etc.). There
is a more invariant way of explaining the appearance of this term, related to
the more coordinate-independent way of looking at tensors explained in section
4.6. Namely, since the V#(x) are really just the coefficients of the vector field
V(xz) = V#*(x)0, when expanded in the basis J,, a meanigful definition of the
derivative of a vector field must take into account not only the change in the
coefficients but must also include a prescription how bases at (infinitesimally)
neighbouring points are related (or connected). Such a prescription is provided by

the Levi-Civita connection T" | (or a general connection T ).

Indeed, writing

V.,V

V., (V*9,)

= (8,VM0, +VAV.,0) , (5.20)
we see that the covariant derivative of the coordinate basis vector dy (i.e. VA =1,
VH = 0 otherwise), is the linear transformation (a prescription for a change of

basis)
V,or=T",0, . (5.21)

5.2 EXTENSION OF THE COVARIANT DERIVATIVE TO OTHER TENSOR FIELDS

So far we have defined the covariant derivative for vector fields, and we now want to
extend the definition of the covariant derivative to other tensor fields. In order to achieve

this, we now adopt a more systematic and axiomatic approach.

Our basic postulates for the covariant derivative are the following:
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1. Linearity and Tensoriality

V. is a linear operator that maps (p, g)-tensors to (p,q + 1)-tensors

2. Generalisation of the Partial Derivative

On scalars ¢, the covariant derivative V,, reduces to the ordinary partial derivative
(since 0,,¢ is already a covector),

Vu¢ = 8u¢ . (5.22)

3. Leibniz Rule (or Product Rule)

Acting on the direct product of tensors, V, satisfies a generalised Leibniz rule,

V(AR BAY ) = V(AR B AR N B (5.23)

We will now see that, demanding the above properties, in particular the Leibniz rule,
there is a unique extension of the covariant derivative on vector fields to a differential

operator on general tensor fields, mapping (p, q)- to (p, q + 1)-tensors.

To define e.g. the covariant derivative for covectors U,, we note that U,V* is a scalar

for any vector V* so that
V(U VY) =0,(U, V") = (0,U,)VY + U, (0, V") (5.24)
(since the partial derivative satisfies the Leibniz rule), and we demand
v, v") =NV,0,) V' +U,V, V" . (5.25)
As we know V, V¥, these two equations determine V,U, uniquely to be

V.U, = 0,U, —T7,,U . (5.26)

That this is indeed a (0, 2)-tensor can either be checked directly or, alternatively, is a

consequence of the quotient theorem:.

The extension to other (p, q)-tensors is now immediate. Here are two ways to proceed:

1. If the (p,q)-tensor is the direct product of p vectors and ¢ covectors, then we
already know its covariant derivative (using the Leibniz rule again). We simply

adopt the same resulting formula for an arbitrary (p, ¢)-tensor.

2. Alternatively, contract the (p,q)-tensor with p covectors and ¢ vectors to turn it

into a scalar, and proceed as above for a covector.

142



Either way, the result is that the covariant derivative of a general (p,q)-tensor is the
sum of the partial derivative, a Christoffel symbol with a positive sign for each of the p

upper indices, and a Christoffel with a negative sign for each of the ¢ lower indices. In

equations
vievp V1-Up
VI = 9T,
Avg-e-v 12 V1 Up—1A
V1 2 D D 1 p—1
+ T u/\T propg T+ L ;L)\T p1-Pq
p terms
A Ve A
Dot T appg =~ Viaog T pypgoan (5.27)
q terms

Having defined the covariant derivative for arbitrary tensors, we are also ready to define
it for tensor densities. For this we recall that if T is a (p,q;w) tensor density, then

g /2T is a (p, q)-tensor. Thus V,(¢~*/?T) is a (p,q + 1)-tensor. To map this back to

a tensor density of weight w, we multiply this by ¢*/2

, arriving at the definition
VT =g %V, (¢ v/?T) . (5.28)
Working this out explictly, one finds

_ w tensor
V,.T = —%(%Q)T + Viensorp (5.29)

where fo“sor just means the usual covariant derivative for (p, ¢)-tensors defined above.
For example, for a scalar density ¢ one has

w
Vyud = 0ud — %(Gug)qﬁ . (5.30)

In particular, since the determinant g is a scalar density of weight +2, it follows that
Vug=0, (5.31)

which obviously simplifies integrations by parts in integrals defined with the measure
\/§d4x. However, it should be kept in mind that the crucial property that makes an
integral like [ \/gVa(...)* a total derivative is not this fact but the fact that in this
expression the /g cancels and the integrand becomes an ordinary total derivative (cf.

the discussion of the Gauss Theorem (5.61) below).

5.3 MAIN PROPERTIES OF THE COVARIANT DERIVATIVE

The main properties of the covariant derivative, in addition to those that were part of

our postulates (like linearity and the Leibniz rule) are the following:
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1. V,, Commutes with Contraction

This means that if A is a (p, ¢)-tensor and B is the (p — 1, ¢ — 1)-tensor obtained
by contraction over two particular indices, then the covariant derivative of B is
the same as the covariant derivative of A followed by contraction over these two
indices. This comes about because of a cancellation between the corresponding
two Christoffel symbols with opposite signs. Consider e.g. a (1,1)-tensor A", and
its contraction A%,. The latter is a scalar and hence its covariant derivative is
just the partial derivative. This can also be obtained by taking first the covariant
derivative of A,

VuAY, = 0, AY + TV A =T, A% (5.32)
and then contracting:

VuAY, = 9, A% + TV A, — T, A% = 9, A%, . (5.33)

The most transparent way of stating this property is that the Kronecker delta is
covariantly constant, i.e. that
V05 =0 . (5.34)

To see this, we use the Leibniz rule to calculate

VA V(A7 65)

= (Vu A1), + A%V 6,

= (VA5 (5.35)
which is precisely the statement that covariant differentiation and contraction
commute. To establish that the Kronecker delta is covariantly constant, we follow
the rules to find

Vudh = 9%+ 17,05 — 17,8,
— PV/J,)\ - PVH)\ — 0 . (536)

This property does not rely on the specific form of the F’f»\, and is thus true for

any covariant derivative defined by some choice of connection I‘”V Ao

2. The Metric is Covariantly Constant: Vg, = 0

This is one of the key properties of the covariant derivative V,, we have defined.

I will give two arguments to establish this:

(a) Since V,g,) is a tensor, we can choose any coordinate system we like to
establish if this tensor is zero or not at a given point x. Choose an inertial
coordinate system at x. Then the partial derivatives of the metric and the
Christoffel symbols are zero there. Therefore the covariant derivative of the
metric is zero. Since Vg, is a tensor, this is then true in every coordinate

system.
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(b) The other argument is by direct calculation. Recalling the identity
aug,,)\ = FuAu + P)\V“ R (5.37)

we calculate

v,ugu)\ = a,ugu)\ - prjgp)\ - Fpu)\gup
= FV)\;L + P)\V,u - F)\,uu - Puu)\
= 0. (5.38)

3. V,, Commutes with Raising and Lowering of Indices

This is really a direct consequence of the covariant constancy of the metric. For
example, if V, is the covector obtained by lowering an index of the vector V#,
V.= guwV", then

VaV, = Va9 V") = g VaVY . (5.39)

4. Covariant Derivatives Commute on Scalars

This is of course a familiar property of the ordinary partial derivative, but it is
also true for the second covariant derivatives of a scalar and is a consequence of
the symmetry of the Christoffel symbols in the second and third indices and is
also knowns as the no torsion property of the covariant derivative. Namely, we

have

VuVid = VuVup = V0,0 — V0.0
= 0.0,6 —T17%,000 — 0,0, + 17,000 =0 . (5.40)

Note that the second covariant derivatives on higher rank tensors do not commute

- we will come back to this in our discussion of the curvature tensor later on.

5.4 UNIQUENESS OF THE LEVI-CIVITA CONNECTION (CHRISTOFFEL SYMBOLS)

We noted before that the postulates for a covariant derivative (a linear tensorial operator
reducing to the partial derivative on scalars and satisfying the Leibniz rule) do not

determine it uniquely but only up to the addition of a tensor to the connection,
Jz DL a” I
FV}\%FV)\_FV)\—FOV)\ ’ (541)

where C"f/ y is a (1,2)-tensor. Is there anything special or preferred about the Levi-Civita

connection using the Christoffel symbols?

In some sense, the answer is an immediate yes because it is this particular covariant
derivative (or connection) that enters in determining the paths of freely falling particles

(the geodesics which extremise proper time).
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Not unrelated to this is the fact that it is the unique connection that can be built
from only the metric and its 1st derivatives (and which thus vanishes in an inertial
coordinate system in Minkowski space or at the origin of an inertial coordinate system

in an arbitrary gravitational field).

Moreover, as we have seen, this covariant derivative has two important properties,

namely that

1. the metric is covariantly constant, Vg, = 0, and

2. the torsion is zero, i.e. the second covariant derivatives of a scalar commute.

In fact, it turns out that these two conditions uniquely determine the I' to be the
Christoffel symbols. The second condition implies that the f“u)\ are symmetric in the
two lower indices,

VuVie=0 < I,=0,,. (5.42)

A
1%

the metric, leading uniquely to the familiar expression for the Christoffel symbols F’f»\:

The first condition now allows one to express the I'*  in terms of the derivatives of

First of all, by definition / construction one has (e.g. from demanding the Leibniz rule
for V,,)
vugu)\ = 8ugu)\ - PpyugpA - Pp)\ugup = 8ugu)\ - P)\u,u - Pu)\,u . (543)

Requiring that this be zero implies in particular that

0= @ugu)\ + @Vg,u)\ - ﬁ>\g/u/
= OuGuvx + 8Vgu)\ - 8)\9;“/ - f)u/u - quu - fA;u/ - fu)u/ + fl/uA + f;u/)\ (544)
= 2(P)\;w - fA,uu)

(where the cancellations are entirely due to the assumed symmetry of the coefficients
in the last two indices). Thus [ = I. This unique metric-compatible and torsion-free
connection is also known as the Levi-Civita connection. It is the connection canonically
associated to a space-time (manifold) equipped with a metric tensor, and it is the

connection used in general relativity.

It is possible to relax either of the conditions (1) or (2), or both of them and this will

be discussed in section 11.5, and subsequently also in section 20.7.

5.5 TENSOR ANALYSIS: SOME SPECIAL CASES

In this section we will look at some common and useful special cases of the Levi-Civita
covariant derivative (simply “the covariant derivative” in the following), such as the

covariant curl and divergence etc.

146



1. The Covariant Curl of a Covector

One has
v.u,-v,U,=9,U,-9,U0, , (5.45)

because the symmetric Christoffel symbols drop out in this anti-symmetric linear
combination. Thus in particular the Maxwell field strength

Fu = 9,4, — 0,4, (5.46)

is a tensor under general coordinate transformations, no metric or covariant deriva-
tive is needed to make it a tensor in a general space-time. The fact that the (ordi-
nary) curl of a covector is, i.e. transforms like, a tensor under general coordinate
transformations can of course also be checked directly (and then “explains” the
above identity). We will come back to this below.

2. The Covariant Curl of an Antisymmetric Tensor

Let A,)... be completely anti-symmetric. Then, as for the curl of covectors, the

metric and Christoffel symbols drop out of the expression for the curl, i.e. one has
V[“A,,)\___] = 8[;#41/)\---} . (547)

Here the square brackets on the indices denote complete anti-symmetrisation. In
particular, the Bianchi identity for the Maxwell field strength tensor is independent
of the metric also in a general metric space-time.

3. The Covariant Divergence of a Vector

By the covariant divergence of a vector field one means the scalar
A
V., V#H=0,VF + F”MV . (5.48)

Now a useful identity for the contracted Christoffel symbol is
1
V9

I will give a proof of this identity in an appendix to this section (subsection 5.6).

T\ = —=0\G - (5.49)

Thus the covariant divergence can be written compactly as
1
vV, V¥ =—0,L/gV") , 5.50
o \/g /J(\/7 ) ( )

and one only needs to calculate g and its derivative, not the Christoffel symbols

themselves, to calculate the covariant divergence of a vector field.

This formula is also useful (and provides the quickest way of arriving at the result)
if one just wants to write the ordinary flat space divergence of vector calculus on

R3 in, say, polar or cylindrical coordinates.
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In Cartesian coordinates (z!,z2,2%), the divergence of a 3-vector V is of course

given by the familiar expression
div‘? = 81‘/1 + (92V2 + 83V3 . (5.51)

However, as you also know, e.g. in spherical coordinates (7,6, ¢) the divergence is

not simply of this form,
divV # 8, V" +9yV0 + 9,V? . (5.52)

Rather, going through the coordinate transformation and Jacobians etc., one finds
that calculating the divergence in spherical coordinates one picks up additional

terms, the result taking the somewhat unintuitive form
~ 2
divV = 8, V" + 3V0 + 9,V? + ~V' + cot ov? . (5.53)

The easy and quick way to obtain this, which provides a rationale for and expla-
nation of the origin of these additional terms, is from the result (5.50). Using
V9= r2sin 6, one has

divlV = L [87,(7*2 Sin V") + p(r* sin OV?) + 9y(r? sin OV?)
) (5.54)
=0V + 3V + 9,V + —V7 + cot ATa

This thus produces the correct result on the nose and with very little effort.

. The Covariant Laplacian of a Scalar

How should the Laplacian be defined? Well, the obvious guess (something that
is covariant and reduces to the ordinary Laplacian for the Minkowski metric) is

U= gV ,V,, which can alternatively be written as
0=¢"V,V,=V'V,=V,V'=V,¢"V, (5.55)

etc. Note that, even though the covariant derivative on scalars reduces to the

ordinary partial derivative, so that one can write
O¢ =V,g" 0,9 , (5.56)

it makes no sense to write this as V,0"¢: since 0, does not commute with the
metric in general, the notation 0" is at best ambiguous as it is not clear whether
this should represent ¢"”d, or d,¢g"" or something altogether different. This am-
biguity does not arise for the Minkowski metric, but of course it is present in

general.
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A compact yet explicit expression for the Laplacian follows from the expression
for the covariant divergence of a vector:
O¢ = ¢g"V,V,¢
= V(" 0,9)
g_l/Qau(gl/Qg“”(‘),,gb) . (5.57)
Again, this formula is also useful (and provides the quickest way of arriving at the

result) if one just wants to write the ordinary flat space Laplacian on R? in, say,

polar or cylindrical coordinates.

To illustrate this, let us calculate the Laplacian for the standard metric on R**+!
in polar coordinates. The standard procedure would be to first determine the
coordinate transformation z‘ = z‘(r,angles), then calculate 9/0z’, and finally
assemble all the bits and pieces to calculate A = " ,(9/02%)?. This is a pain.

To calculate the Laplacian, we do not need to know the coordinate transformation,

all we need is the metric. In polar coordinates, this metric takes the form

ds*(R™) = dr? + r2dQ2 |

(5.58)

where d)2 is the standard line-element on the unit n-sphere S™. The determinant
of this metric is g ~ 72" (times a function of the coordinates (angles) on the
sphere). Thus, for n = 1 one has ds? = dr? + r2d¢? and therefore

A=r710u(rg"0,) = r10p(rdy) + 1205 = OF + 70 4720 L (5.59)

In general, denoting the angular part of the Laplacian, i.e. the Laplacian of S™,

by Agn, one finds analogously
A=02+nr10, +r ?Agn . (5.60)
I hope you agree that this method is superior to the standard procedure.

. The Covariant Form of the Gauss Theorem

Let V¥ be a vector field, V,V# its divergence and recall that integrals in curved

space are defined with respect to the integration measure \/§d4x. Thus one has

/ VgdtaV V= / d*z0,(\/gV*) . (5.61)

Now the second term is an ordinary total derivative and thus the integral of this
over some domain can be written as an integral over the boundary of that demain.
In particular, if the integral is over all of space-time and if V# vanishes sufficiently

rapidly at infinity one has

/ VodtaV, Vi =0 . (5.62)

A somewhat more precise statement of this theorem, including the boundary con-

tributions to the integral, will be given in section 16.3.
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6. The Covariant Divergence of an Antisymmetric Tensor

For a (p,0)-tensor T* one has

VT = 9T 4 Th T 4 T TR 4
g 20u(g Ty 4 T TN L (5.63)

In particular, if A# is completely anti-symmetric, the Christoffel terms disap-

pear and one is left with

VA = g7V, (g2 (5:64)

7. The Lie derivative of the Metric

In section 3.2 we had encountered the expression (3.34) for the variation of the

metric under an infinitesimal coordinate transformation dx® = eV,
0vgas = V70y9a8 + (0aV7)gys + (08V7)gay - (5.65)

While we saw that this expression could be understood and deduced from the
requirement that the variation of the metric is itself a tensorial object that trans-
forms like the metric, the tensorial nature of the above expression is far from
manifest. However, it has a very nice and simple expression in terms of covariant

derivatives of V', namely
Wgap = VaVa + VgV, (5.66)

(as is easily verified).

Thus a vector field K* generates a symmetry of the metric (such vectors are called

Killing vectors) if it satisfies the Killing equation
K Killing Vector << V,Kg+ VgK, =0 . (5.67)

We can also obtain this condition as the covariantisation of the statement that in
a particular coordinate system the coefficients of the metric do not depend on one
of these coordinates, say vy,

Oygap =0 , (5.68)

so that the metric is then manifestly invariant under translations in y. In such
a coordinate system adapted to the symmetry at hand, these translations are
generated by K = 0, and for a vector of this form (in particular, thus, with

constant coefficients) one has

K=0, = V.K’'=19
= VaKﬁ = Fﬁay (5.69)
= VaKg + V@Ka = Oy9agp
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(where in the last step the basic relation (2.68) was used). Thus we find that the
fact that the metric is y-translation invariant can be characterised covariantly as
the statement that K = 0, satisfies

8yga5 =0 < VaKﬁ + VﬁKa =0 . (5.70)

This is again the Killing equation (5.67). As this equation is now tensorial it is
valid in any coordinate system, in particular independently of whether or not the

coordinate system is adapted to K in the way described above.

The expressions (5.66) and (5.70) will be rederived (and placed into the general
context of Lie derivatives and Killing vectors) in section 9 - see in particular section
9.5.

You will have noticed that many equations simplify considerably for completely anti-
symmetric tensors. In particular, their curl can be defined in a tensorial way without
reference to any metric. This observation is at the heart of the coordinate indepen-
dent calculus of differential forms. In this context, the curl is known as the exterior

derivative.
Indeed, it is also straightforward to show directly, i.e. without going through the illogi-
cal loop of introducing the covariant derivative in order to obtain something manifestly

pApspy) 18
a tensor, i.e. transforms as a tensor under coordinate transformations: what happens

tensorial only to find it disappear again from the final expression, that 0

is that the possible obstructions to the tensorial behaviour, namely derivatives of Ja-
cobians, drop out after anti-symmetrisations because they are are really 2nd partial
derivatives of the coordinates, which are symmetric and thus do not survive the anti-

symmetrisation.

To see this completely explicitly, consider a covector A, (z) and a coordinate transfor-
mation z# = z#(y®), with Jacobi matrix
ox+

JH =

« a—ya . (571)

As a covector, A, transforms as A, = JE A, and therefore its derivative transforms as
(using 9p = J50,)

Ay =JEA, = 0gAs= J(‘;JB”OVAM + (0JE)A, . (5.72)
Because of
dgi = LTy (5.73)
ﬁ o ayaayﬁ - Yo 9 .

for the anti-symmetrised derivative one finds the tensorial transformation behaviour

05 An — OudAg = JLT5 (0, Ay — 0,A,) . (5.74)
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Likewise, Lie derivatives of tensors in general (section 9) are, as the special case of
the Lie derivative of the metric mentioned above - see (5.66), automatically tensorial
objects (and one can, but need not, make their tensorial nature manifest by writing

these derivatives in terms of covariant derivatives).

5.6 APPENDIX: A FORMULA FOR THE VARIATION OF THE DETERMINANT

Here is an elementary proof of the identity (5.49), and a useful more general formula

for the variation of the determinant of the metric, namely
89 = 99" gy, or g 69 =g" g - (5.75)

This proof is based on the standard cofactor or minor expansion of the determinant of
a matrix (an alternative standard proof can, as also outlined below, be based on the
identity det G = exptrlog G and its derivative or variation). The cofactor expansion
formula for the determinant is

9= Z(_l)u—i_uguulmwx‘ ) (5.76)

v

for a fixed (but arbitrary) value of the index p. Here |my, | is the determinant of the
minor of g,,, i.e. of the matrix one obtains by removing the p’th row and »’th column

from g,,,,.

As a consequence of (5.76) one also has
YDl =0 AF (5.77)
14
since this is, in particular, the determinant of a matrix with g, = gy,, i.e. of a matrix
with two equal rows. Together, these two results can be written as
S (1 gaslmy| = Gxug - (5.78)
14
This shows that the coefficients of the inverse metric g"” are given by
gt = (—1)“+”—‘m’“””
g
a formula that should also be familiar from linear algebra.

: (5.79)

In order to now determine the variation (or derivative) of the determinant with respect
to the matrix elements g,,,, for each value of p we can use (5.76), and we then have to
also perform the summation over p. Noting that, by construction, m,, does not depend

on g,,, one then finds

69 = > (~D ¥ 8gulmyu| = 99" 69 - (5.80)
uwoov

For a symmetric matrix, in particular for the metric, this reduces to the formula (5.75)

we set out to establish. Here are some variations and applications of this formula:

152



. When the determinant g is viewed as a (smooth) function of the coefficients g,
this shows that

dg u
= gg'* . 5.81
g~ %9 (5.81)

. It also implies
6\/§ = %\/ggyuéguu ) (582)

a particularly useful result that we will repeatedly make use of.

. An equally useful variant of this equation is an expression for the variation of /g
expressed in terms of the variations dg"” of the components of the inverse metric.

As a consequence of
g gn =0 = 6g" = —g"gng” (5.83)

or
-gwjgl“’ =4 = (59“11)9;111 = _guyég,uu (5-84)

one can equivalently write (5.82) as
39 = %\/ggl’“éguy = —%ﬁguudg“” ) (5.85)

. It follows from (5.81) that if the variation is the partial derivative (“how does the

determinant g = g(x) of the metric vary with x?”) one has

0
8)\9 = a—gaAg;w = gglwa)\g/u/ . (586)
Guv
or
97 '0hg = g™ Orgw (5.87)
and therefore also
MNVG = 399" g - (5.88)

. On the other hand, the contracted Christoffel symbol is

1 v
= Eg“ NG - (5.89)

Therefore )
Iy = =09 (5.90)

V9
which establishes the identity (5.49).

The result (5.80) can also be written in matrix form, with G denoting the matrix with

components (G),, = guv, as

Slogdet G = tr G710G . (5.91)
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In this form, the result can also be derived from variation of the remarkably useful
identity
det G = efrlog G (5.92)

This identity, in turn, can be derived in an elementary way for diagonalisable G by
noting that it holds trivially for diagonal matrices, and therefore, by the conjugation
invariance of det and tr, also for diagonalisable matrices (like the metric). [And if
desired, this can in turn be extended to all matrices by topological arguments involving
extensions of continuous functionals from the dense set of diagonalisable matrices to the

space of all matrices ... ]

5.7 COVARIANT DIFFERENTIATION ALONG A CURVE

So far, we have defined covariant differentiation for tensors defined everywhere in space-
time. Frequently, however, one encounters tensors that are only defined on curves - like
the momentum of a particle which is only defined along its world line. In this section we
will see how to define covariant differentiation along a curve. Thus consider a curve x*(7)
(where 7 could be, but need not be, proper time) and the tangent vector field X*(z(7)) =

@#(7). Now define the covariant derivative D, along the curve, covariantising d/dr, by
d

T =0, = D-=X'V,=#'V, . (5.93)

Frequently one also uses the (suggestive, but ugly) notation
D.=D/Dr or DJdr . (5.94)
For example, for a vector one has
DV = Y9, VHF 43T, VA
= V() + Doy (a(r)a (VA a(r) (5.95)

For this to make sense, V* needs to be defined only along the curve and not necessarily

everywhere in space-time.

This notion of covariant derivative along a curve permits us, in particular, to define the
(covariant) acceleration a* of a curve z#(7) as the covariant derivative of the velocity
ut = zh,

a = D,i* = i +T" i3 = u’V,ut . (5.96)
Thus we can characterise (affinely parametrised) geodesics as those curves whose co-

variant acceleration is zero,
Geodesics: o =u"V,u' =0 (5.97)

a reasonable and natural statement regarding the movement of freely falling particles.

If they are not affinely parametrised, as in (2.130), then instead of u*V,u* = 0 one has

u’'Vyut = kut . (5.98)
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5.8 PARALLEL TRANSPORT AND GEODESICS

We now come to the important notion of parallel transport of a tensor along a curve.
Note that, in a general (curved) metric space-time, it does not make sense to ask if two
vectors defined at points x and y are parallel to each other or not. However, given a
metric and a curve connecting these two points, one can compare the two by dragging

one along the curve to the other using the covariant derivative.

We say that a tensor 17" is parallel transported along the curve z#(r) if

DT =0 . (5.99)
Here are some immediate consequences of this definition:

1. In a locally inertial coordinate system along the curve, this condition reduces to
dT/dT = 0, i.e. to the statement that the tensor does not change along the curve.
Thus the above is indeed an appropriate tensorial generalisation of the intuitive

notion of parallel transport to a general metric space-time.

2. The parallel transport condition is a first order differential equation along the

curve and thus defines 7" (7) given an initial value 7" (7).

3. Taking T to be the tangent vector u* = z* to the curve itself, the condition for

parallel transport becomes
Dut=0 & @4+ %t =0, (5.100)

i.e. precisely the geodesic equation. We have already seen that geodesics are
precisely the curves with zero acceleration. We can now equivalently characterise
them by the property that their tangent vectors are parallel transported (do not

change) along the curve. For this reason geodesics are also known as autoparallels.

4. Since the metric is covariantly constant, it is parallel along any curve. Thus, in
particular, if V# is parallel transported, also its length remains constant along the

curve,

d
DV* =0 = —(guV"V*) = Dr(guV'V*) =0 . (5.101)

In particular, we rediscover the fact claimed in (2.94) that the quantity g, <"&"

is constant along a geodesic,

d
Db =0 = d_T(gWx'ﬂj;”) =0 . (5.102)

5. Now let z#(7) be a geodesic and V# parallel along this geodesic. Then, as one

might intuitively expect, also the angle between V# and the tangent vector to the
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curve u* remains constant. This is a consequence of the fact that both the norm

of V' and the norm of u are constant along the curve and that

d
d—T(gWu“V”) = D (9uu"V") = g (D7u" )V + guu' D VY =0 (5.103)

5.9 EXAMPLE: PARALLEL TRANSPORT ON THE 2-SPHERE

As usual, the simplest non-trivial example is provided by the 2-sphere with its standard
line element
ds? = dQ* = db? + sin? 0 d¢? | (5.104)

with the non-zero Christoffel symbols (determined e.g. from the geodesic equation, as
in (3.16) - (3.21))
%, =—sinf cos® , T%, =T% =cotf . (5.105)

Let us consider parallel transport of some vector V = V%0, along a circle with 8 = 6
constant, choosing the angle ¢ to parametrise the curve, i.e. we consider the family of
paths

z%(1) = (0(7), ¢(7)) = (60, 7) (5.106)
with tangent vector

i =(0,1) . (5.107)

Note that this is not normalised in the standard way,
Jopi®i? =sin?6y | (5.108)

so proper distance would be measured not by ¢ but, as is also pictorially evident, by
s = ¢sinfy (which agrees with ¢ on the equator 6y = 7/2).
A vector V0, with coordinate components (V¥ V?) parallel transported along such a
curve thus satisfies the equations

0=0,V* +T%,i"V = 0,V* + T4, V" (5100)

0 .

= gV + T V? + T3V

Using the explicit form of the Christoffel symbols, the parallel transport equations are

thus
0= 8¢V0 —sinf cosf V®

5.110
0=0,V?+cotf VO . (5:110)

Differentiating once more, these equations can be decoupled and take the form of har-

monic oscillator equations with frequency cos 6,

(03 + cos® )V =0 . (5.111)
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The general solution of this 2nd order differential equation is of course
Ve = A%sin(¢ cos y) + B cos(¢pcos bp) . (5.112)

Plugging this into the 1st order equations to reduce the spurious 4 to 2 integration

constants, and relating them to the intial values at ¢ = 0, say,
Vg, =0) =0 | (5.113)
one finally finds the result

V90, ¢) = v sin by sin(¢cos Oy) + 07 cos(¢ cos )

(5.114)
V2 (6o, $) = —(v?/sinby) sin(¢ cosby) +v° cos(¢cosby) .

REMARKS:

1. In the special case of parallel transport along the equator 6y = 7/2, one has

cos By = 0, and therefore
bp=m/2 = VHw/2,¢)=0v" . (5.115)

In other words, the components are constant under parallel transport along the
equator. This is inuitively obvious on the basis of spherical symmetry. Since
among the family of constant § = 6 curves only the equator is a geodesic (great
circle), this is also in agreement with the general results obtained above, which
imply that upon parallel transport along the equator the angle between the vector
and the equator remains constant. In 2 dimensions, this condition, together with
the fact that the lenght of a vector remains invariant under parallel transport
in general, is sufficient to imply that the parallel transported components are
constant along the path.

2. While the above is not unexpected, perhaps the most interesting consequence
of the above result (5.114) is that, in general, not only are the components not
constant but that actually, after having completed the 27-circuit along the path to
return to the starting point, the parallel transported vector will not agree with the
initial vector. Indeed, the components at ¢ = 27 are related to the components
v at ¢ =0 by

V9(0y, ¢ = 21) = v®sin by sin(27r cos ) + v? cos(2m cosby)

(5.116)
VP (6o, = 2m) = —(v¥/sin ) sin(2m cosby) +v® cos(2m cosfy) .

3. As we will see in section 11.1, this fact that parallel transport along closed paths is
non-trivial (equivalently that parallel transport from one point to another depends
on the path) can be directly attributed to (and is the smoking gun of)) the presence
of curvature.
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4. If desired, the result can be written in terms of proper distance s along the circle,
rather than the angle ¢, by the substitution

¢ cosby=s cotby . (5.117)

5. The result (5.114) takes on a more transparent form when written in terms of
the components of V' and v with respect to an orthonormal basis (section 4.8) E,

rather than the coordinate basis d,. Such an orthonormal basis is provided by
Egy=0y , E,=(sin0) 10y , (5.118)
since one evidently has
9opB§Ey = gapESE) =1 | gapB§E, =0 . (5.119)

The components with respect to this orthonormal basis are related to the coordi-

nate components by
V=V9,=V®E, = V/'=V% | V®=singV? (5.120)

(and likewise for v = v*9, = 0*E,). Then (5.114) can be written in matrix form

as a rotation (orthogonal transformation)

VO (6o, p) [ cos(¢cosby) sin(¢cosby) (07 (5.121)
V% (0o,0)) \ —sin(¢pcosby) cos(dpcosby) ) \o? '
by the angle
a(p) = ¢pcosby . (5.122)

Thus parallel transport amounts to a continuous rotation of the orthonormal com-

ponents along the path.

6. In particular, the angle that one picks up after a 2m-rotation,
a(2m) = 2mcos by (5.123)

is known as the deficit angle or holonomy of the parallel transport along the given
loop. With this terminology we can say that the holonomy along the equator is

trivial.

7. At the other extreme, we see that there is a non-trivial holonomy as 8y — 0, i.e. for
parallel transport along an infinitesimal loop around the north pole, along which
the parallel transported vector performs a complete 27-rotation, a(27) = 2m. As
shown in section 11.1, parallel transport along infinitesimal loops at or around a

point provides a precise measure of the curvature at that point.
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8. Curiously, as shown by Rothman, Ellis and Murugan, the holonomy along circular
equatorial orbits in the Schwarzschild geometry (such orbits are geodesics at the
critical points of the effective potential for geodesic motion, to be discussed in sec-
tion 25.6), is non-trivial, even though again intuitive reasoning based on spherical
symmetry might have led one to expect a trivial result (and would thus have led

one astray).'?

5.10 FERMI-WALKER PARALLEL TRANSPORT

The properties of parallel transport established in section 5.8 show that this is a natural
prescription for transporting tensorial objects along a geodesic. However, it is important
to keep in mind that this is just one possible description, obtained by imposing the

differential equation (5.99), e.g. for a vector
D,V =0 . (5.124)
If the curve is not a geodesic,
a® = Dyu® = iPVgi® #£0 | (5.125)

however, this prescription has some shortcomings. For example, parallel transport of a
tangent vector to the curve at a point to another point at the curve will not give rise to
the tangent vector at the second point, simply because D,.V® = 0 with initial condition
V®(19) = u*(19), say (parallel transport) is evidently not the same as D,u® = a® (the
equation satisfied by the tangent vector). Likewise, the scalar product between the
tangent vector to the (non-geodesic) curve and some parallel-transported vector along

it will not remain constant in general,
d ay/ B «

A vivid illustration of this is provided by the example of the previous section:

e As we have seen, parallel transporting a pair of orthonormal vectors along a circle

0 = 0y # 7/2 results in a continuous rotation of these two basis vectors.

e On the other hand, it is clearly possible to transport an orthonormal basis along
the circle in such a way that, for example, one basis vector always points forwards
along the latitude (a tangent vector to the curve), and the other always points

northwards along the longitude.

127 Rothman, G. Ellis, J. Murugan, Holonomy in the Schwarzschild-Droste Geometry,
arXiv:gr-qc/0008070.
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The latter procedure appears to be much more natural in this case than rotating one’s
basis as one goes around the sphere. Analogously, for an observer along a timelike curve
it would be desirable to be able to set up once and for all a local reference system on
the worldline, consisting of the (unit) tangent vector Ey = u*0, in the time-direction,
and three orthogonal and mutually orthogonal vectors Ej in the spatial directions (the
laboratory system of the observer), regardless of whether the observer is in free fall or

not (indeed, for perfectly good reasons most laboratories are not ... ).

This procedure can be formalised by replacing the parallel transport condition (5.124)

along a timelike curve by the Fermi- Walker Transport prescription
V=D, V*+FyvP =0, (5.127)
with
% = a"ug —uag . (5.128)

Indeed, parallel transport according to this prescription has the following desirable

features:

1. Fermi-Walker transport evidently reduces to parallel transport if the curve is a
geodesic, i.e. for a® = 0. It obligingly does this even when the geodesic is not

affinely parametrised, i.e. if one has a® ~ u®,

a® = uPVpu® ~u® = F=0. (5.129)

2. The tangent vector to a curve is Fermi-Walker transported for any curve,
Fru*=0 . (5.130)

Proof:
Fu® =D u® + ]:Oéuﬁ
(5.131)
= a® + (a®ug — u®ag)u’ = a® —a® =0
because uBuﬁ = —1 and aguﬁ = 0. Thus the solution to the Fermi-Walker trans-

port prescription for V() = u®(7) is just the tangent vector u®,
FVY=0 , V%¥mn)=u%1) = VYr)=u(1) . (5.132)

3. If V¢ is Fermi-Walker transported along the curve, then instead of (5.126) one

obtains
D =a* , D V*=-F%VF = %(gaﬁu']vﬁ) =0 . (5.133)
Proof:
(%_(Qaﬁuavﬁ) = D7 (gapu®V?) = gag(a®VP —uFIV7) (5134
= aoV* — aqu®u V7 +uqua, V' = alV* —a V7 =0
beause a,u® = 0 and u,u® = —1.

160



4. Similarly, if V' and W are Fermi-Wallker transported, one has

d
FVY=FW*=0 = d—(gaﬁvawﬁ) =0 . (5.135)
T
Proof:
L (GupV W) = o~ FSV WP — FP qvow)
dr 7 (5.136)
= —(Fay + Fa)VWT =0
because F, is anti-symmetric.
REMARKS:
1. The signs chosen here are appropriate for timelike curves with u“u, = —1. As the

proofs of the above statements show, in the spacelike case one needs to replace
Fh— —F%.

2. The above manipulations can be formalised (and then subsequently trivialised) by

e extending the action of F; to arbitrary rank tensors in the same way as
the covariant derivative, i.e. by requiring that on scalars it reduces to the
ordinary derivative,

F.f = %f ) (5.137)

e extending it to arbitrary tensors by requiring the Leibniz rule, so that e.g.
on covectors one has

FrAp = D;Ag — FSA, | (5.138)

e and then showing that as a consequence

(5.139)
__(]:ocﬁ_‘_}-ﬁoc) =0
Then assertions like (5.133),
(0% (0% d (6%
FPu*=FV*=0 = d—(uaV )=0 . (5.140)
T
or (5.135) become a triviality.
3. Note that the properties 2-4 in the above list rely on the 3 properties

}'O‘Buﬁ =—a" |, uwFh=ag , Fap+Fpa=0 (5.141)

of F respectively. These conditions determine F% up to rotations in the plane

orthogonal to u®, i.e. up to the ambiguity
% — Fh+wh (5.142)
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with
uwap = wapt’ =0, Wag+wa =0 . (5.143)

Since there is no such rotation term in the prescription for Fermi-Walker transport,
and no natural candidate for it either with only u® and a® at one’s disposal, it
is natural to think of Fermi-Walker transport as a prescription for transporting

objects in a non-rotating way.

4. In particular, if one uses the Fermi-Walker prescription to construct an orthonor-
mal basis (Ey, F)) along the worldline, the spatial vectors can be interpreted as

providing a non-rotating choice of axes.'

5.11 EPILOGUE: MANIFOLDS? THINK GLOBALLY, ACT LOCALLY!

In section 4.9 I had already briefly discussed some issues regarding the use of indices (and
thus in some sense of local coordinates), and had advocated them as a useful bookkeeping
device that also provides a transparent way of performing algebraic operations (tensor
algebra). In the meantime we have seen that this extends to tensor analysis, and I can
only reiterate that for most purposes and in most cases it is much more convenient to
perform calculations in this notation than in some supposedly more elegant index-free

notation.

There is one issue, however, that is worth commenting upon, and that in the end actually
provides further justification for being allowed to adopt this procedure. Namely, in using
local (Cartesian, say) coordinates z* to describe a space or space-time (I will use “space”

in the following) one is implicitly assuming the following 3 things:

1. first of all, that one can always locally introduce Cartesian coordinates on that

space (so as to then be able to perform tensor algebra, tensor analysis etc.);

2. secondly, that different choices of local coordinates will give compatible descrip-

tions of that space;

3. and finally, that in principle one can obtain complete information about the space

by covering it with such local coordinate systems.

When these assumptions are satisfied, then one is justified in using local coordinates to
describe such a space. The point of this brief section is just to point out that (modulo
some topological fine-points) these conditions amount precisely to the definition of a

(differentiable or smooth) manifold in mathematics.

13And according to S. Hawking, G. Ellis, The large-scale structure of space-time, section 4.1, these
“could be realised physically by small gyroscopes pointing in the direction of each vector”.
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Thus while I could have started off these notes with an introduction to and definition
of smooth manifolds (and numerous textbooks do), for all local intents and purposes
this is then really equivalent to (consistently) working in local coordinates, as we have
done and will continue to do. It is true that the notion of manifolds, of vector bundles
on them etc. becomes indispensable for certain more advanced questions dealing with
the global structure of a space-time, or theorems about the existence and uniqueness of
solutions to differential equations on some manifold, say, but these are not topics that

will be addressed in these notes.

The idea of a manifold is that an n-dimensional manifold is a sufficiently nice topological
space that locally looks like (i.e. can be modelled on) the simple and nice topological
space R"™, and that this allows one to do calculus on this space by importing the relevant

concepts from R".

The usual textbook definition of a manifold consists essentially of the following steps:'*

1. Topological Spaces
A topological space is a set S together with a collection of subsets U of S (called

open sets) which includes S and the empty set, and which is closed under union
and finite intersection. This set of open sets defines the topology of the space
and a corresponding notion of continuous maps (the inverse image of any open
set is open) and homeomorphisms (bijective maps ¢ such that both ¢ and ¢!
are continuous) between topological spaces. In particular there is a notion of

continuity for (real-valued, say) functions
f: SoR (5.144)
(with R equipped with its standard topology).

2. Charts

However, in this context there is no notion of differentiability or differentiation.
In order to have such things at one’s disposal one needs topological spaces that
locally “look like” R™. The essential building blocks of such a topological space

are “charts”:

A chart C on a topological space S is the pair C' = (U, ¢) where U C S is an open

set of S and ¢ is a homeomorphism
UcS—¢U)CR" . (5.145)

The homeomorphism condition implies in particular that ¢(U) is open in R™. The

integer n is then known as the dimension of U (it does not depend on ¢).

1This presentation is adapted from the concise and clear description in S. Mukhi, N. Mukunda,
Lectures on Advanced Mathematical Methods for Physicists, but equivalent descriptions can be found in
many other places.
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3. Topologial Manifolds

A topological manifold is a topological space M that is locally homeomorphic to
R™ in the sense that for each point p there is a chart C' = (U, ¢) with p € U
(and that satisfies some further topological regularity conditions we are not inter-
ested in, such as Hausdorff and usually either second countable or paracompact).
Equivalently, a topological space has the structure of a topological manifold when

it possesses a covering by open sets U, with charts C, = (Uy, ¢q)-

4. Local Coordinates and Local Coordinate Transformations

The notion of a chart allows (and is equivalent to and the formalisation of) the
introduction of local coordinates on the open set U C M. The coordinates of a
point p € U in this chart are by definition simply the Cartesian coordinates &), of
the point ¢(p) € R™.

If one has two charts on M, C; = (U1, ¢1) and Cy = (U, ¢2), and Uy N Uy # 0,
then the “transition functions”

1oyt Ga(Un NU2) — ¢1(Uy NUa)
paodrt s P1(Ur NUa) — do(Uy N o)

are automatically continous maps between open subsets of R"™. These can be

(5.146)

interpreted as local coordinate transformations,
(d2 0 ¢7 ") () = dalp) = T (5.147)

5. Local Functions and Differentiation

In particular, with the help of charts we can express functions on M in terms of

“local oordinates” on R™. More precisely, given a (continuous) function
f: M—=R (5.148)
and a chart C' = (U, ¢), we can associate to the restriction of f to U the function
fu=foop™t: HU)CR" =R . (5.149)
ie.
pelU = )= Jfu(@) . (5.150)

For such functions on R"™ we now not only have a notion of continuity at our

disposal, but also the notions of differentiability, smoothness, differentiation etc.

On the intersection of 2 charts we can represent the function f in 2 different ways

in terms of local coordinates, namely by the functions fy, = f, for a = 1,2,
on UyNUsz: f=fiogr=faods = fo=fio(pro¢y")
fi=fro(p2007h)

This is just the change of variables formula for a function (scalar), namely

fa(B) = f1(T)) (5.152)

(5.151)
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6. Compatibility of Charts

In order to be able to extend the notion of smoothness (C*°-differentiability),
say, of a function from a local chart consistently to all of M, we need to impose

compatibility conditions on intersecting charts.

It is evident from (5.151) that the notion of smoothness of a function around a
point p will only be independent of the chart if the transition functions ¢ o ¢y !
and ¢ o¢1_1 (i.e. the coordinate transformations) are also smooth. Thus we define
2 charts to be smoothly compatible if either U; NU, is empty or, otherwise, if these

maps are smooth.
Note that for topological manifolds and the condition of continuity any 2 charts
are automatically compatible since the transition functions are continuous.
7. Smooth Atlas and Compatibility and Equivalence of Atlases
A smooth atlas A(M) of M is now naturally a family of charts C, = (Uy, ¢q)

which cover M and such that all charts are mutually smoothly compatible.

2 smooth atlases A (M) and Ay (M) for the same topological manifold M are said
to be compatible with each other if all the charts of A; are compatible with all

the charts of As. This defines an equivalence relation on atlases.

8. Smooth Structure and Smooth Manifold

A smooth structure on a topological manifold M is an equivalence class
S(M) = [A(M)] (5.153)

of smooth atlases on M. A smooth manifold is a topological manifold M equipped

with a smooth structure S.

9. Smooth Functions and Smooth Maps

A function
f: M-—>R (5.154)
on a smooth manifold M is then said to be smooth if all its local coordinate
representatives
fa=fod;': é(U,) - R (5.155)
are smooth, and a map
w: M—N (5.156)

from a smooth manifold M (with charts (U, ¢,)) of dimension m to a smooth
manifold N (with charts (Viy, 1)) of dimension n is said to be smooth if all of its

local coordinate representatives

,Uab’ = Q/Jb’ O Iu O gb;l . ¢a(Ua) C Rm — Qf)b/(%/) C Rn (5157)
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are smooth. Such smooth functions can be differentiated by differentiating their
local coordinate representatives and mapping the result back to M using the charts

(and likewise for maps).

Topological fine-points aside we see that a smooth manifold is by definition a space on
which one can consistently do calculus in local coordinates. Hence in these notes we
were, are and will be dealing with (smooth) manifolds, regardless of whether or not we

state this explicitly.

Analogously one can define C*-differentiable manifolds (transition functions are required
to be of degree C¥), real analytic manifolds (transition functions are required to be real
analytic), complex manifolds (modelled on open subsets of C™, with holomorphic tran-
sition functions), etc., as well as submanifolds (modelled on subspaces of R™), manifolds

with boundary (modelled on the half-space R’}) etc.
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6 PHYSICS IN A GRAVITATIONAL FIELD AND MINIMAL COUPLING

6.1 PRINCIPLE (OR ALGORITHM) OF MINIMAL COUPLING

Recall that the Principle of General Covariance (section 4.1) says that, by virtue of
the Einstein Equivalence Principle, a generally covariant equation will be valid in an
arbitrary gravitational field provided that it is valid in Minkowski space in inertial

coordinates (i.e. in the absence of gravity and/or acceleration).

We now have all the tools at our disposal to construct such equations. In particular, the
fact that the covariant derivative V maps tensors to tensors and reduces to the ordinary
partial derivative in a locally inertial coordinate system suggests the following procedure

or algorithm for obtaining equations that satisfy the Principle of General Covariance:

1. Write down the Lorentz invariant equations or expressions of Special Relativity
you are interested in (e.g. those of relativistic mechanics, Maxwell theory, rela-
tivistic hydrodynamics, ...) in terms of inertial coordinates £%, the Minkowski

metric 7, and other Lorentz tensors 1'% .

2. Replace the coordinates £ by arbitrary coordinates x*,

£ gk (6.1)

3. Wherever the Minkowski metric 7, appears, replace it by the metric g,,,, describing
the gravitational field,

Nab guu($) . (6.2)

4. Promote the Lorentz tensors T} to tensors T under general coordinate trans-
formations,
T (&) — TH (x) . (6.3)

5. Wherever a partial derivative 0, = Oc« appears, replace it by the covariant deriva-

tive V,
Oq =V, . (6.4)
6. In particular, for the proper-time derivative along a curve this entails replacing
d/dr by D,
d .
E — DT = ZEMV/J . (65)

7. Wherever an integral [ d*¢ appears, replace it by J \/§d4:17,

/¢@+/¢m%. (6.6)
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By construction, the resulting equations or expressions are tensorial (generally covari-
ant) and true in the absence of gravity and hence satisfy the conditions for the Principle
of General Covariance to apply. As a consequence they will be true in the presence of
gravitational fields, at least on scales small compared to those of the gravitational fields.
This procedure can thus be regarded as providing us with a prescription how to couple

matter (particles, fields) to the gravitational field.

REMARKS:

1. This procedure is analogous to the perhaps more familiar “minimal coupling”
algorithm for the coupling of matter to gauge fields (“replace partial by gauge
covariant derivatives”), and hence also in the current context this procedure is

referred to as minimal coupling.

2. The reasons for the “at least on small scales” caveat in the paragraph above is
that if one considers higher derivatives of the metric tensor then there are other
equations that one can write down, involving e.g. the curvature tensor, that are

tensorial but reduce to the same equations in the absence of gravity.

3. Thus “minimal coupling”, as formulated here, is not a unique and unambiguous
description, but it is nevertheless a pragmatic and effective procedure. We will see
an example of the ambiguity in the minimal coupling prescription in the discussion
of Maxwell theory in a gravitational field in section 6.6, and we will briefly return

to the issue in section 8.10.

6.2 PARTICLE MECHANICS IN A GRAVITATIONAL FIELD REVISITED

We can see the power of the formalism we have developed so far by rederiving the laws
of particle mechanics in a general gravitational field. In Special Relativity (SR), the
motion of a free particle with mass m is governed by the equation

B du®

SRZ a = E =0 s (67)

where u® = d€®/dr is the 4-velocity and a® the 4-acceleration. Thus, using the principle
of minimal coupling, the equation of motion of a free particle in a general gravitational
field is

GR: a"=Dyu'=0 & &+ i"%*=0, (6.8)

where u* = da*/dr. Thus we rediscover the familiar geodesic equation, but we see
that it follows much faster from demanding general covariance (as made precise by the
principle of minimal coupling) than from our previous somewhat more convoluted and

roundabout considerations based e.g. on the equivalence principle.
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We could also have arrived at this equation for a free particle in a gravitational field by
applying the minimal coupling description not at the level of the equations of motion
but rather (and perhaps conceptually more satisfactorily) at the level of the action, i.e.

by replacing

S = —m/dT: —m/\/ —napdéede  — —m/dT = —m/\/—gu,,dxl‘dx” ,
(6.9)
and this is exactly what we already did back in section 2.3 where we showed that this

also leads to the geodesic equation (6.8).

6.3 KLEIN-GORDON SCALAR FIELD IN A GRAVITATIONAL FIELD

Here is where the formalism we have developed really pays off. We will see once again
that, using the minimal coupling rule, we can immediately rewrite the equations for a
scalar field (here) and the Maxwell equations (in section 6.6 below) in a form in which

they are valid in an arbitrary gravitational field.

1. The action for a (real) free massive scalar field ¢ in Special Relativity is
SR:  S[g] = / a¢ [~ 30,000 — Sm*6?] (6.10)

To covariantise this, we replace d*¢ — \/§d4x, n® — ¢ and we can replace 0,
by V, or 9, (since this makes no difference on scalars). Therefore, the covariant

action in a general gravitational field is

GR: 5[0, gasl = / Vad'e [—%gaﬁaawﬁqs—%m%? : (6.11)

Here I have also indicated the dependence of the action on the metric g,5. This

is not (yet) a dynamical field, though, just the gravitational background field.

2. The equations of motion for ¢ one derives from this are

0

2 Sl6.0sl=0 = (Oy-m?)o=0 (0.2
where [, = g™h V.V, the Laplacian associated to the metric g,5. This is pre-
cisely what one would have obtained by applying the minimal coupling description

to the Minkowski Klein-Gordon equation (0, — m?)¢ = 0.

REMARKS:

(a) A comment on how to derive this: if one thinks of the J, in the action as
covariant derivatives, 9, — V., then the calculation is identical to that in

Minkowski space provided that one remembers that V,./g = 0. If one sticks
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with the ordinary partial derivatives, then upon the usual integration by
parts one picks up a term ~ aa(\/ggaﬁ 0p¢) which then evidently leads to the
Laplacian in the form (5.57).

(b) If the relative sign of 0, (or 0,) and m? in the Klein-Gordon equation looks
unfamiliar to you, then this is probably due to the fact that in a course where
you first encountered the Klein-Gordon equation the opposite (particle physi-
cists’) sign convention for the Minkowski metric was used, with its negative

definite spatial metric.

(c) All of this generalises in a straightforward way to (self-)interacting scalar

fields, described by a potential V' (¢). In particular, the action is
Stovgos] = [ Vs [~ 00050 - Vie)] . (613)

Logically the next thing to discuss would be the energy-momentum tensor, e.g. the
minimally coupled counterpart of the special relativistic (Noether) energy-momentum
tensor

SR: Tu = 0,00p0 + Nap L (6.14)

and its properties. However, it turns out that there is more to say about this than meets

the eye, and we will therefore return to this issue in more detail in section 7.

6.4 INTERLUDE: GENERAL COVARIANCE IN MINKOWSKI SPACE?

Before turning to our next example, I want to briefly comment on the issue of general
covariance in Minkowski space, as this tends to generate quite a bit of confusion and
unnecessary debates. I will discuss this issue in the context of the above example of a

scalar field, but the discussion is valid more generally.

On the one hand, the action (6.10) is generally considered to be invariant (only) under
Lorentz or Poincaré transformations, while by construction the action (6.11) is invariant
under arbitrary coordinate transformations. Does this really mean that the theory of a
scalar field in a non-trivial gravitational background has more invariances than that in
a Minkowski background?

On the other hand, certainly nothing prevents one from using e.g. spherical (and thus in
particular non-inertial) coordinates in Minkowski space to write down the Klein-Gordon
equation or action. But does this mean that the action (6.10) is actually (secretly)

invariant also under such non-Lorentz transformations?

Well, that depends ... While this sounds like (and generally is correctly considered to

be) a somewhat unsatisfactory answer, I can be more specific:

e it depends on what one means by “invariance” (or “covariance”)
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e and it depends on how one treats or regards the Minkowski metric.

From the current point of view, the natural answer is that the action (6.11) is generally
covariant in any gravitational field, in particular therefore also in the absence of a
true gravitational field, i.e. in a purely fictitious gravitational field or, equivalently, in
Minkowski space. If we specialise the action (6.11) to such a gravitational field, i.e. to

the Minkowski metric written in some perhaps non-inertial coordinates, we get

S[b,nas] = / NG [—%naﬁaawm— tm?¢?| . (6.15)

Here it is important to keep in mind that 7,4 refers to the components of the Minkowski
metric in the not-necessarily inertial coordinates x®, as in

o€ oeb

Nap = @W% . (6-16)

As a consequence, also /7 is not necessarily equal to 1. This action is invariant under
arbitrary coordinate transformations, provided that one transforms the fields and the

metric appropriately.

If one now chooses to write this action in inertial coordinates, z® — £, with 1,3 — 14
and thus \/7 — 1, then the action (6.15) appears to reduce to the special relativistic
action (6.10). So is this action, which is simply a generally covariant action written
in some particular coordinates, invariant under Lorentz (or Poincaré) transformations

only or under all coordinate transformations?

1. If one looks for the transformations of the coordinates £* and the fields ¢ that
leave the action invariant (with fixed metric components 7,5) then none too sur-
prisingly one finds that the action is invariant under Poincaré transformations of
the coordinates provided that the scalar fields transform as scalars, but not under

more general transformations.

2. If one looks for the transformations of the coordinates £¢ and the fields ¢ and
the metric n. that leave the action invariant, then one finds that the action is

invariant under arbitrary coordinate transformations

e provided that one also transforms 7,, — 1,3 like a (0,2)-tensor

e and provided that one either thinks of d*¢ as the invariant volume element

\/ﬁd‘l{ , or equivalently one treats the Lagrangian L as a scalar density |/nL.

Sometimes option (1) is taken to define the invariance group (Poincaré transformations)
while option (2) refers to the covariance group. In this sense, special relativity is in-
variant under Poincaré transformations but is at the same time generally covariant. In

philosophy of science or epistemological terms whether one has option (1) or option (2)
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is related to the question whether or not the Minkowski metric is regarded as an absolute
element of the theory. With 7, promoted to an absolute element, general covariance
is reduced to Poincaré invariance (those transformations that, from the generally co-

15

variant “n,g transforms” point of view, leave 7, invariant).” Unfruitful discussions

ensue when tacitly conflicting assumptions are made about what are considered to be

the absolute elements of a theory.

6.5 LORENTZ-COVARIANT FORMULATION OF MAXWELL THEORY (REVIEW)

In order to discuss the formulation of Maxwell theory in a gravitational field, we will
need to quickly recall the Lorentz-covariant formulation of Maxwell theory in Minkowski

space. This will also fix our conventions for Maxwell theory.

In the traditional non-covariant formulation one has

1. the homogeneous equations

V-B=0 , VXxE+8B=0 (6.17)

V-E=ple . VxB- 50B=p] (6.18)
3. the ensuing continuity equation
Op+V.J=0 (6.19)
4. the vector and scalar potentials A and o,
B=VxA , E=-V¢-08A (6.20)

5. and the corresponding gauge transformations leaving E and B invariant,

A5 A4+VY | ¢5¢—-0V = E—E , B—B. (6.21)

The charge density and current can be packaged into a Lorentz vector

—

J = (cp,J) (6.22)

(note that in signature (-+++) one has to choose whether to identify J° or Jy = —J°
with the charge density, here we choose the former), and the continuity equation can

be written in the manifestly Lorentz-invariant form

B J* =0 . (6.23)

5For more erudite discussions of these and related issues, see e.g. section 2.5 (“On Covariance and
Invariance”) of N. Straumann, General Relativity or D. Giulini, Some remarks on the notions of general

covariance and background independence, arXiv:gr-qc/0603087.
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Likewise, the scalar and vector potential can be packaged into a Lorentz covector

—,

Atl = (_¢/Cv A) ’ (624)
and the gauge transformations can be compactly written as
Ay = Ay + 9,9 . (6.25)

The gauge invariant Maxwell field strength tensor Fy; is defined by

Fyp = 0,4y — OpA, (6.26)
and has the components
Fop = —Fyo = —Ex/c , Fy = €ire By (6.27)
or, in matrix form,
0 —El/C —EQ/C —Eg/c
E 0 B -B
() = | TEVE T ’ (6.28)
+E2/C —Bg 0 +Bl
+E3/c  +Bs —-By 0
and
0 —I—El/C +E2/C —I—E3/C
-F 0 B -B
(pavy = | ~E/E i 2 (6.29)

—EQ/C —Bg 0 +B;
—Eg/C + By —B; 0
In terms of these Lorentz tensors, the homogeneous Maxwell equations can be written

as
OaFog =0 &  OuFie+ OcFuy + OpFou =0 | (6.30)

and these equations are identically satisfied if Fy; derives from a potential,
Fab = aaAb — abAa = 8[anC] =0 . (6.31)

The inhomogeneous Maxwell equations can (suppressing o, i.e. setting up = 1) be
written as
D F?P =—J" o OA, —0.(0,A% = —J, . (6.32)

These equations can be derived from the Lorentz-invariant action
S[A,J) = S[A] + Si[A, J] = — L / die FFob 4 / A A,J% . (6.33)
with the Maxwell Lagrangian
—AF Y = LRy F% - L ik = L(E? ) - B?) . (6.34)

This is essentially all we will need (some facts regarding the Noether versus covariant

energy-momentum tensor of Maxwell theory will be recalled below).
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6.6 MAXWELL THEORY IN A GRAVITATIONAL FIELD

Mutatis mutandis we can now proceed in the same way as for a scalar field.

1. The basic dynamical field is the vector potential A,. Given the vector potential

A, the Maxwell field strength tensor in Special Relativity is
SR:  Fu = 0, Ay — OpA, - (6.35)

Therefore in a general metric space-time (gravitational field) one is led to (or
tempted to) define the field strength tensor as

GR:  F = VA, — V,A, = 0,A, — 9,4, . (6.36)

e A cautionary remark: Actually, this is a bit misleading. The field strength
tensor (two-form) in any, Abelian or non-Abelian, gauge theory is always
given in terms of the gauge-covariant exterior derivative of the vector po-
tential (i.e. it is the curvature of the connection), and as such has nothing
whatsoever to do with a metric on space-time. So you should not really
regard the first equality in the above equation as the definition of F,,, but
you should regard the second equality as a proof that F},,, always defined by
F =90,A, — 0,A,, is a tensor.

The mistake of adopting V,A, — V,A,, as the definition of F},, in a curved
space-time has led some poor souls to believe, and even claim in published
papers, that in a space-time with torsion, for which the second equality does
not hold, the Maxwell field strength tensor is invariably modified by the
torsion. This is nonsense.

If there is torsion, one is of course free to consider non-minimal couplings of
the torsion tensor to other tensor fields (like the Maxwell field strength ten-

sor), but this is not required by either gauge invariance or general covariance.

2. In Special Relativity, the Maxwell equations read

SR: O F = —J°
OaFpg =0 . (6.37)

Thus in a general gravitational field (curved space-time) these equations become

GR: V,F* = —J"

(6.38)
Vi Fox =0,

where now of course all indices are raised and lowered with the metric g,,,

FM = gt g"PFy, . (6.39)
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REMARKS:

(a)

(b)

Regarding the use of the covariant derivative in the second equation, the

same caveat as above applies.

In particular, using the results derived in section 5.5, we can rewrite these

two equations as

GR: O, (VGF™) = —\/gJ"
OuFa =0 . (6.40)

It is clear from the first of these equations that the Maxwell equations imply

that the current is covariantly conserved: since
0, 0u(v/gF") =0 (6.41)
by anti-symmetry of F*¥, it follows that
0(vgJ")=0 & V,J"=0. (6.42)

From the covariant version V,F* = —J" this follows in the seemingly more
roundabout way from the identity (8.47) for the commutator of covariant
derivatives that we will establish later, in the context of our discussion of the

Riemann curvature tensor in section 8.

In Special Relativity, the inhomogeneous Maxwell equations can be decoupled
by imposing the Loren(t)z (see footnote 64 in section 23.5) gauge condition
0, A% =0,

0, A =0 = G FP=—Jb — 04, =—J, . (6.43)

This gauge condition has the virtue of preserving Lorentz invariance. Simi-

larly, its covariantised version
VAR =0 (6.44)

has the virtue of preserving general covariance, because V,A* is a scalar.
However, the inhomogeneous Maxwell equations in this gauge do not take
the form JA, = —J, one might perhaps have anticipated on the basis of
minimal coupling. Rather, using the covariant Lorenz gauge condition (6.44),
the covariant divergence of the Maxwell field strength tensor can be written

as

VA =0 = VP = V(TR - VA = DAY - [V, VA
(6.45)
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where LA, = VYV, A, is the “naive” Laplacian on scalars. The second
term would of course be zero in Minkowski space, but here it is not. Indeed,
as we will see in section 8, the quintessence of a non-trivial geometry is
that covariant derivatives do not commute on tensors other than scalars.
In particular, here one finds that as a consequence of (8.40) the Maxwell

equations in the covariant Lorenz gauge can be written as
OA” — R‘LA“ =-J", (6.46)

where R, is the Ricci tensor, a particular contraction of the Riemann cur-

vature tensor, constructed from the second derivatives of the metric.

(e) Thus, these equations appear to display a non-minimal coupling to the grav-
itational field, even though we started off with the minimally coupled equa-
tions which we can also derive, see below, from the minimally coupled action.

We will return to a discussion of this issue in section &.10.

3. The electromagnetic force acting on a particle of charge e is given in Special

Relativity by the Lorentz force
SR: f%=eF%" . (6.47)
Thus in General Relativity it becomes
GR: fF=eg" F\2" . (6.48)
4. The Lorentz-invariant action of (vacuum) Maxwell theory is
SR:  S[A) = —3 / d*¢ FyF* (6.49)
in Special Relativity, and thus becomes

GR:  S[Aa,Gas) = —3 / Vod'z F, F" = —1 / Vodiz ¢"*¢"PF,, Fy, (6.50)

in General Relativity.

As for the scalar field, depending on whether one writes the field strength tensor
as F,, = 0,A, —0,A, or as F,, = V,A, —V,A,, by varying this action with
respect to the A, one obtains the vacuum Maxwell equations V, F*" = 0 in either
of the 2 forms

0
0A,

Bu(/GF™) =0

(6.51)
YV, Fr =0

S[Aa, gag] =0 = {
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REMARKS:

(a) Writing out explicitly the Lagrangian in terms of its components (with re-

spect to some coordinate system z = (¢, z*)) one finds

—1F5F = — LRy For (g g™ — g% ¢"%)
— LF Fug™ g (6.52)
— $FyiFu(g™g" — g"g™)

While the 1st and 2nd lines look just like “gravitationally dressed” standard
terms ~ E2 and ~ BQ, the last line appears to suggest a gravitationally
induced coupling between the electric and magnetic fields. This, however,
is misleading and simply not a meaningful way of expressing things. After
all, even in Minkowski space the decomposition of the electro-magnetic field
into electric and magnetic fields depends on the choice of inertial reference

system.

(b) In order to add sources, one can add [ \/§d4:17 A, JH to the Maxwell action,
thus coupling the matter current to the Maxwell gauge field. Instead of just
adding such a (phenomenological) source-term by hand, a more coherent mi-
croscopic approach (which also provides the sources with their own dynamics)

is to consider a matter action (minimally) coupled to the Maxwell field,

Sule] = Sulé, Aa] - (6.53)

The combined Maxwell 4+ matter action will then give rise to the Maxwell
equations with a source provided that one defines the current J% as the

variation of the matter action with respect to the gauge field,

~ 5SM [(by Aa]

J 0A,

(6.54)
As in the case of scalar fields, we will postpone a discussion of the energy-momentum
tensor and how to properly define it (something that is already an issue in Minkowski
space because for Maxwell theory the Noether energy-momentum tensor turns out to

be neither symmetric nor gauge-invariant!) to section 7.

In anticipation of this I just want to point out that, by the same rationale as that
leading to (6.54), perhaps we should define the source term for the gravitational field
by the variation of the gravitationally minimally coupled matter action with respect to
the metric. If we now call this source term the energy-momentum tensor, then we have
a candidate definition of the energy-momentum tensor which is natural and appropriate

from the gravitational point of view. We will pursue this point of view in section 7.6.
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6.7 MINIMAL COUPLING AND (QUASI-) TOPOLOGICAL COUPLINGS

In all the cases considered so far, the minimal coupling prescription resulted in a mini-
mally coupled matter action that depends explicitly on the metric - this is as it should
be and is not a surprise. What would be more of a surprise would be to find minimally
coupled and hence generally covariant contributions to an action that do not depend
on the metric, but such examples do indeed exist (and play an important role in many
branches of physics and even mathematics, ranging from the strong-CP problem in QCD
to high-T. superconductors to topology). Such terms in the action are usually referred
to as “topological terms” in the physics literature but as they need not be (and usually
are not) purely topological in the mathematics sense, for lack of a better name I refer

to them as “quasi-topological”.

Here are 2 prototypical examples illustrating this phenomenon:

1. Axionic Coupling in (3+1) Dimensions

The first toy-model we will consider consists of Maxwell-theory coupled to a neu-
tral scalar field through what is known as an axionic coupling only (with analogous

considerations for the more interesting case of a non-Abelian Yang-Mills field),
S[p, Al = Ss[¢] + Sm[A] + Sa[8, 4] (6.55)

with
Silo) = [ dte L.(6,0.0) (6.56)

some arbitrary standard scalar field action (of the type already discussed), Sp,[4]

the usual Maxwell action,
Sin[A] = / d's Lim(0aAp) = —1% / d'z F*°F,p5 (6.57)

and the axionic coupling term is

Sal A] = —1 / d' () F Fop (6.58)

where
Fof =1 2P F ;s (6.59)

with €2#79= 0, 1 the Levi-Civita symbol, a tensor density (cf. remark 2 in section
4.5) and f(¢) some function of the scalar field ¢. Note that for f(¢) =1 (or in
the absence of a scalar field) the axionic term would be (locally) a total derivative
and would hence not contribute to the equations of motion. For non-trivial f(¢),

on the other hand, the axionic term is itself non-trivial.
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Minimal coupling for the first two (standard) terms proceeds as already discussed
above. For the third, axionic term, we make the usual replacement d*z — \/§d4:17
and recall from (4.69) that

1
afyd — afBvyd
€ = —c 6.60

is a (4,0) tensor, so that the generally covariant generalisation of the axionic action
is

Sul6 A, gos) = =} [ VA F(O) 5o

(6.61)

=—1/d @B F 5 Fag = Salo, A

8 $f(¢) € v ap a[¢a ]

We see that, as announced, the metric dependence drops out of the minimally cou-
pled generally covariant action. The reason for this is that the axionic Lagrangian
is already all by itself a scalar density of weight w = 41, and that therefore
its integral (4.62) is well-defined and generally covariant without having to take

recourse to a metric to construct an auxiliary weight-one object like ,/g.

. Maxwell - Chern-Simons Theory in (2+1) Dimensions

The second prominent example involves the addition of what is known as an
Abelian Chern-Simons term to the Maxwell action in (2+1) dimensions (with
analogous considerations for the more interesting case of a non-Abelian Yang-
Mills field). The Minkowski space Lagrangian of this model is

L=Ly+kLe=—3F"YF5+ 1k €7 A Fs, . (6.62)

Minimal coupling for the first term is standard and for the 2nd term one finds,
as above, that the generally covariant minimally coupled Chern-Simons action is
actually metric independent (since the Chern-Simons Lagrangian is a density of

weight w = 1),

SuslA,gag] = Lk / Vide P Ao Fs,
(6.63)
=ik / B €V A Fg, = Ses[A]

As an aside note that the above theory is also known as topologically massive
Maxwell theory, since the CS term provides a gauge-invariant mass term for the

photon. One quick way to see this is to note that the equations of motion are
OuFP 4k PP Es;=0 . (6.64)
and that in terms of the dual field strength

GP =1eP F (6.65)
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the equations of motion and the Bianchi identity take the form
0aGps — 095G = 2k €o5, G7 |, 05G° =0 (6.66)

respectively. Acting with 9% on the equation of motion and using the Bianchi

identity and again the equation of motion one finds

OGs = 2k Eapy °GT =k Eapy (0°GY — DG

(6.67)
=2k% €45,€™"° G5 = 4k*Gp

so that the theory describes excitations of mass m? = 4k2.

These quasi-topological terms modify the equations of motion. Moreover, since they
depend on the derivatives of the fields, they will contribute to the canonical Noether
energy-momentum tensor. On the other hand, since they do not depend on the metric,
they do not contribute to the covariant energy-momentum tensor, defined in section 7
in terms of the variation of the matter action with respect to the metric (and as such

playing the role of the source term for the Einstein gravitational field equations).

How it nevertheless conspires that this tensor is conserved on-shell (meaning: for a
solution to the matter equations of motion) even though the equations of motion have
been modified and how the improved canonical energy-momentum tensor nevertheless
ends up agreeing with the covariant energy-momentum tensor on-shell will be explored

and explained in section 22.5.

6.8 CONSERVED CHARGES FROM COVARIANTLY CONSERVED CURRENTS

In Special Relativity a conserved current J is characterised by the vanishing of its
divergence, i.e. by 9,J% = 0. It leads to a conserved charge @ by integrating J® over a

spacelike hypersurface, say the one described by t = tg,

Q= Bz J0 . (6.68)

t=to
That () is conserved, i.e. independent of ¢y, is a consequence of the fact that by virtue

of the Gauss theorem

Q(t1) — Qto) = /Vd4£ 9aJ* =0, (6.69)

where V is the four-volume R? x [tg,#1]. This holds provided that .J vanishes at spatial
infinity.

Now in General Relativity, the conservation law will be replaced by the covariant conser-
vation law V,J# = 0, and one may wonder if this also leads to some conserved charges
in the ordinary sense. The answer is yes because, recalling the formula for the covariant
divergence of a vector,

V. JH =g 120, (g 2 TH) | (6.70)
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we see that
V. JP=0e d,(g"2I") =0, (6.71)

so that ¢*/2J# is a conserved current in the ordinary sense. We then obtain conserved
quantities in the ordinary sense by integrating J* over a spacelike hypersurface . We
will develop a more precise formula for this, an appropriate version of the Gauss theorem

for hypersurfaces in curved space-times, in section 16.3.

The factor ¢'/2 apearing in the current conservation law can be understood physically.
To see what it means, split J# into its space-time direction u*, with uu, = —1, and
its magnitude p as

JH = put . (6.72)

This defines the average four-velocity of the conserved quantity represented by J* and
its density p measured by an observer moving at that average velocity (rest mass density,
charge density, number density, ...). Since u* is a vector, in order for J* to be a vector,
p has to be a scalar. Therefore this density is defined as per unit proper volume. The

1/2

factor of ¢g*/# transforms this into density per coordinate volume and this quantity is

conserved (in a comoving coordinate system where JO = p, J* = 0).

We will come back to this in the context of cosmology later on in this course, but
for now just think of the following picture (Figure 44 in section 34): take a balloon,
draw lots of dots on it at random, representing particles or galaxies. Next choose some
coordinate system on the balloon and draw the coordinate grid on it. Now inflate
or deflate the balloon. This represents a time dependent metric, roughly of the form
ds® = r2(t)(d6? + sin® d¢?). You see that the number of dots per coordinate volume
element (area element in this case) does not change, whereas the number of dots per

unit proper volume (area) will.
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7 ENERGY-MOMENTUM TENSOR I: BASICS

7.1 INTRODUCTION

Newton’s gravitational field equation for the gravitational potential ¢ is the Poisson
equation A¢ = 4rGnpu, with p the mass density. Thus in Newton’s theory, mass is the
source of gravity. We can also more usefully, and thinking relativistically, write this in

terms of the energy density p = uc? as

e c=1
Ad = C2Np(:)47TGNp . (7.1)

Now we already noted in section 1.1 that in Special Relativity p is not a scalar but

rather just one component of a tensor, the energy-momentum tensor
Twp: Too=p , (7.2)

with the components Ty, transforming into each other under Lorentz transformations

according to the transformation rules for Lorentz tensors.

It is therefore entirely plausible that in a relativistic theory of gravity the source of
gravity should be the entire energy-momentum tensor. In particular, also the other
components of Ty, Tor (~ energy flux), Tro (~ momentum density) and Tj; (~ stresses
or pressure) are a source of gravity. Clearly, therefore, the notion of energy-momentum
tensor will play a crucial role in the following. This then immediately raises the question

how to find or define an energy-momentum tensor.

Within the framework of special relativity and relativistic field theories there are (at
least) 2 common approaches to constructing or defining an energy-momentum tensor,

namely

1. a Macroscopic Phenomenological Description

2. a Microscopic Lagrangian Prescription

and we will now briefly discuss these in turn.

7.2 PERFECT FLUID ENERGY-MOMENTUM TENSOR IN SPECIAL RELATIVITY

A macroscopic phenomenological description is useful when one does not know (or does
not care about) the microscopic description of the matter one is dealing with but rather
tries to characterise its properties in terms of the specification of some macroscopic
(thermodynamic, hydrodynamic) parameters such as energy (density), pressure, viscos-
ity etc. For many purposes this is the appropriate language for describing e.g. gases or
fluids.
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In this case, one constructs the energy-momentum tensor in such a way that it encodes
the physics one is trying to describe (primarily conservation laws and dynamics). As
a simple example of this (not by coincidence the one which is of most relevance for

gravitational physics and thus also later on in these notes), we consider a perfect fluid.

By definition, a perfect fluid is one in which a comoving observer (i.e. an observer in a
local rest-frame of the fluid) sees the fluid around him as isotropic (rotation-invariant).
This means that in this reference system the components of the energy-momentum
tensor have the form (any non-zero Ty, would break rotation invariance, and d;; is the

unique rotation-invariant symmetric (0, 2)-tensor)
To=p , Tor=0 , Ty =poi - (7.3)

Here p and p are any functions of the coordinates, interpreted as the energy density and

the pressure of the fluid .

To specify the kind of fluid one is working with, one should supplement this by an
equation of state which provides a relation between p and p. Typically this amounts to

specifying p as a function of p,
Equation of State: p = p(p) (7.4)

(and possibly other parameters).

In terms of the 4-velocity u® of the fluid, which in the local rest frame has the components
u® = (1,0,0,0) , (7.5)

one can combine the components of the energy-momentum tensor into the expression,
Tap = (p + P)uats + Pllab (7.6)

(note that energy density and pressure = force per unit area have the same dimensions).
As this is now a tensorial equation it is now valid in any inertial system. It defines the

energy-momentum tensor of a perfect fluid. The conditions
0T, =0 (7.7)

imply a continuity equation and (as we will see below) a relativistic generalisation of
the Euler equations for a perfect fluid. These are usually supplemented by a further

continuity equation for the fluid density current
Jj¢ =nu® (7.8)
with n e.g. the number density or particle density, say, namely

Baj® =0 . (7.9)



Now let us look at the consequences of these equations. Since

Wug = —1 = (Qqup)u’ = 0, (upul)/2 =0 , (7.10)
the u-component of (7.7) can be written as

(Tl =0 & up+ (p+p)du® =0 . (7.11)

With the help of the current conservation equation, this equation can be recast into the

form
0 =u0ap + (p+1p)9u(j*/n)

=u0up+ (p+p)j*0a(1/n)
= u[Bup + (p + p)nda(1/n)]
= nu[pda(1/n) + da(p/n)]

The point of rewriting the equation in this way is that (assuming a situation of ther-

(7.12)

modynamic equilibrium) the 2nd law of thermodynamics says that pressure p, energy
density p and the volume per particle (1/n) are related by

Tds = pd(1/n) +d(p/n) . (7.13)

where T is the temperature and s the specific entropy, i.e. the entropy per particle.'

Thus the above equation says that the specific entropy s is constant along the flow,
U0ys =0 . (7.14)

The significance of the spatial (transverse to u) components of (7.7) is easier to decipher

if one writes the equations non-covariantly by setting
W =), u =7 =vul (7.15)

so that
w8y = y(v) (8 + T.V) (7.16)

is (y(v) times) the usual convective derivative or comoving time-derivative, and the

above equation for the conservation of the specific entropy can be written as

(8 +7.V)s =0 . (7.17)
Moreover, the continuity equation for the current j* with components
P =am, j = (o) (7.18)

becomes
A, (v(v)n) + V.(y(v)n®) =0 , (7.19)

16See e.g. J. van Holten, Relativistic Fluid Dynamics, http://www.nikhef .n1/~t32/relhyd.pdf for
a derivation of this and further discussion.
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and the time-component of (7.7) can be written as
0(p —1(©)*(p+p) = V.y(0)*(p+p)d] =0 . (7.20)
Using this equation the spacelike components of (7.7) can then be written as
Y(0)%(p + p) (8T + T.VT) + 08p+Vp=0 . (7.21)
In a suitable non-relativistic limit (v < 1,p < p), this latter equation reduces to
p(0 T+ TNT) +Vp=0 , (7.22)
which is the non-relativistic Euler equation for a perfect fluid.

As we will see, it is straightforward to promote such a perfect fluid energy-momentum
tensor by minimal coupling to the energy-momentum tensor describing a perfect fluid

in a gravitational field, and we will come back to this below.

For a covariant rendition and elementary covariant derivation of the ensuing equations
of motion in a general gravitational field from the conservation of the energy-momentum

tensor, see e.g. the derivation of (35.81) and (35.82) in sections 35.4 and 35.5.

7.3 NOETHER ENERGY-MOMENTUM TENSOR IN SPECIAL RELATIVITY (REVIEW)

A microscopic Lagrangian description is the method of choice when one has a Poincaré-
invariant Lagrangian field theory description of the matter one is trying to describe.
In particular, this applies to the scalar and Maxwell field theories we have already
discussed and, more generally, to the modern microscopic and action-based description

of the fundamental interactions of particle physics.

In this case, there is a canonical procedure for constructing an energy-momentum ten-
sor, namely from Noether’s theorem applied to translations, resulting in what is then
appropriately known as the Noether energy-momentum tensor or the canonical energy-

momentum tensor O .

For a Lagrangian L = L(¢,0,¢) depending on some fields ¢ and their 1st derivatives
(these could be scalar, vector, ... fields), this tensor is defined by

oL
0}, =———0 0L 7.23
sign conventions are such that ©gy rather than O, is the energy density). It is built
0
from the 4 Noether currents

4= Jg (7.24)

associated to translation invariance in the z’-direction, dp)¢ = Op¢. By calculating its

divergence, one finds

. 0L
00 = 5000 (7.25)
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where dL /¢ is the Euler-Lagrange variational derivative,

0L OL oL

S W 7.26

5~ 06 900 (720
Thus O, is on-shell (meaning: for a solution to the matter equations of motion) con-
served,

0,0% =0 on-shell , (7.27)

and leads to the conserved energy-momentum 4-vector
P, = / dw T = / d3z 09 . (7.28)

This procedure and prescription is perfectly adequate and sufficient for scalar (spin 0)
fields, but it turns out to be far from satisfactory and far from the end of the story for
other fields (e.g. for Maxwell theory, for which ©,, turns out to be neither symmetric
nor gauge invariant). In this more general situation one is then required to “improve”
this prescription in order to obtain an energy-momentum tensor 7,; with the desired

properties.

As a first example where everything works out nicely, consider the energy-momentum

tensor of a Klein-Gordon scalar field in Minkowski space. In this case,

Ous = 0utDod + N L = DadO — iy (100000 + m?6?)  (7.20)

with
B0 = 2($* + (V)? + m?¢?) . (7.30)

This energy-momentum tensor is conserved for ¢ a solution to the equations of motion,
(O,-m?)¢=0 = 0°©uk=0. (7.31)

This energy-momentum tensor is also manifestly symmetric (off-shell, i.e. without using

the equations of motion),

Ope = Oy - (7.32)
In particular, this implies that the angular momentum current associated to an infinites-
imal Lorentz transformation (1.28) with parameters wp. = —wcp, namely
L = Jwp. L (7.33)
with
L% = 2P0 — 20 | (7.34)

is on-shell conserved,
DL =k — 9P =0 . (7.35)
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Since O is symmetric (and gauge invariance is not an issue), in this example there is
no need to “improve” the Noether energy-momentum tensor, and we thus denote it by
Tap,

Tap = Oab = 0adOp® + Nap L (7.36)

As we will see below, it is also straightforward to promote this tensor by minimal
coupling to a (covariantly conserved) energy-momentum tensor of a scalar field in a

gravitational field,

Now let us take a look at Maxwell theory in Minkowski space. In this case the canonical

Noether energy-momentum tensor is

oL
@ab == —mabflc + nabL = FacabAc - %nachdFCd N (737)

It is of course on-shell conserved by construction,
0%©4, =0 on-shell (7.38)

(note that both sets of Maxwell equations are required to derive this), but it is neither
symmetric nor gauge-invariant. In particular, therefore, the angular momentum current
(7.34) is not conserved (even though Maxwell theory is Lorentz invariant), and the
expression for the energy-density is not gauge-invariant and does not agree with the
standard expression

Ou # S(E2 + B?) . (7.39)

This can be rectified by manipulating ©, as

Oup = Fac(abAc - acf4b) - %nachdFCd + Fue0° Ay

(7.40)
= F, Foe — jnabFeaF! + Focd° Ay
and noting that the last term can be written as a sum of two terms,
Fuc0°Ap = 0°(FucAp) — (0°Fuc) Ay (7.41)
the first of which is identically conserved because of F,. = —F,,,
0%0°(Fuelp) =0 (7.42)
and the second of which vanishes on-shell,
(0°Fue)Ap =0 on-shell. (7.43)
Therefore one can redefine the energy-momentum tensor in a first step to
Oub = Oqp — O°(FacAp) (7.44)
and notes that this energy-momentum tensor is still conserved on-shell,
9*©4 =0 on-shell | (7.45)
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as well as on-shell gauge invariant,

éab = FachC - %nachdFCd - (86Fac)Ab

(7.46)
= Fo by — %nachdFCd on-shell .
Therefore one can define the “improved” energy-momentum tensor
Top = FocFy* — nap FoaF™ (7.47)
in such a way that
e T, is still on-shell conserved,
0Ty, =0 on-shell (7.48)

(again both sets of Maxwell equations are required to establish this; with an
external source,

OuFpg =0 , 0, F"=-J (7.49)
one has the non-conservation law
0Ty, = JF (7.50)

instead, which becomes a conservation law when one adds to Ty, the energy-

momentum tensor of the source fields + interaction terms);

e T, is off-shell symmetric,
Tap = Tha (751)

e T, is gauge-invariant and correctly gives the gauge-invariant and positive-definite
energy-density as
Too = L(E* + B?) . (7.52)

Moreover, the components of Ty, are the components of the Poynting vector and the
spatial components Tj;. are the components of the Maxwell stress tensor. Thus Ty is

the correct energy-momentum tensor of Maxwell theory.

This procedure to obtain Ty, from ©,4 can be understood in a more general and sys-
tematic way, via the so-called Belinfante improvement (or symmetrisation) procedure.

A brief synopsis of this construction will be provided in section 7.4 below.

One of the many useful properties of a symmetric, conserved energy-momentum tensor,
and one that is occasionally used in general relativity, e.g. in the discussion of the energy
and energy flux of gravitational waves, is the Laue Theorem (or tensor virial theorem).
It states that for such an energy-momentum tensor and a localised source (so that one

can integrate by parts with impunity) one has the relation

Ty =0, Tup=Tha - -
b b b } — /d3$ Tzk:%(80)2/d3$ T(]ol‘ll‘k (7‘53)

localised source
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between the integrated spatial components T;; and the “quadrupole moments”
Q*(t) = / d3x Toox'zk (7.54)

of the energy density Ty,

The proof of this identity is a straightforward repeated application of the conserva-
tion law and integration by parts. Indeed, using the symmetry, the time and space

components of the conservation law
Ty=0 < 0Tp=0Toy , 0Tyu=0 < Ty =0"Ty (7.56)
and discarding boundary terms, one calculates
%(80)2 /d?’x Toox'zk = —i—%(‘)o/d?’m O Toox'z*
= +%80/d3x (@-T%):E%k

= —%80/d3x (Tha* + Tha?)
| | (7.57)
__1 / Pr (0Tha* + 8oTEa)

=-3 /d?)x ((0;,T7)a* + (9;T%)a")

=+/d3xTik .

7.4 SYNOPSIS OF THE BELINFANTE IMPROVEMENT PROCEDURE (REVIEW)

The procedure to obtain a symmetric and conserved T, from the canonical Noether
energy-momentum tensor O, of a Poincaré-invariant field theory, illustrated above in
the case of Maxwell theory, can be understood in a more general and systematic, but also
somewhat round-about way by appealing to the Lorentz-invariance of the action and
taking into account the non-trivial transformation behaviour of the fields with spin # 0
under Lorentz transformations. This recipe is known as the Belinfante improvement

17

procedure. Here is, just for reference purposes, a brief description of the general

features of this construction:

7This is explained in many places, with varying degree of comprehensibility or comprehension. For
a detailed explanation, geared also towards applications to general relativity, see section 2 of T. Ortin,
Gravity and Strings; for a succinct description, and an extension of the usual procedure to Lagrangians
depending also on second derivatives of the fields, see section II of D. Bak, D. Cangemi, R. Jackiw,

Energy-Momentum Conservation in General Relativity, arXiv:hep-th/9310025.
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In general (with the exception of spin zero scalar fields), Ou = 7,09 is not
symmetric,

@ab 7£ @ba . (758)

As a consequence, the would-be angular momentum current (7.34) is now not
on-shell conserved,
D, L% =@ — 9P £0 . (7.59)

By Lorentz invariance of the action and Noether’s theorem, the total (orbital +
spin) angular momentum should be conserved, and the above (purely orbital)
angular momentum current fails to be conserved because it does not take into
account the spin, i.e. the fact that the ¢ are possibly non-trivial Lorentz tensors
(an irrelevant fact as far as the translational symmetries and hence the Noether

energy-momentum tensor are concerned).

This can be rectified by constructing the conserved total angular momentum cur-
rent J%¢ directly from Noether’s theorem applied to Lorentz transformations
d¢ = dp¢ of the fields and coordinates. This gives rise to an additional (spin)
contribution to the current, schematically of the form

oL bl _ rab
Ja — Jgrbit + a(aa(b) 5L¢ s J(()lrbft = La C ) (760)
From the conservation of this current one can then via some gymnastics deduce
and extract a candidate energy-momentum tensor O, which is such that the total

angular momentum current J¢ takes the form
Jabe — gb@ac _ ge@ed (7.61)

Note that the spin-contribution to the total angular momentum has in this way
been transformed into an orbital contribution with respect to the new energy-

momentum tensor © 4.

This tensor O, turns out to differ from the canonical energy-momentum tensor

O4 by an identically conserved term,

Oup = Ogp + 9, T | (7.62)
with
\I/cab — _\I,acb = aaac\I/cab =0 (763)
so that
9,0% =0 on-shell = 9,0%=0 on-shell . (7.64)

Addition of such a term to the energy-momentum tensor is always possible as it

does not violate the conservation law. While this changes the definition of the
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local energy and momentum densities, with suitable fall-off conditions on the wabe

this has no effect on the total energy-momentum P, (7.28),

fﬂéﬂ+/&w&”:#+/fumwﬁ

(7.65)
:ﬁ+%ﬁmm.
e Angular momentum conservation together with (7.64) now implies
0, J% =0 onshell = O, =06,, onshel . (7.66)

e Thus on-shell (:)ab agrees with a tensor T,;, which can be chosen to be symmetric

(off-shell) and on-shell conserved,

~

Ow — Tup: T =Ty, off-shell

(7.67)
0,79 =0 on-shell .

e This tensor Ty, (or occasionally just @ab) is known as the Belinfante improve-
ment of the energy-momentum tensor, and 9,¥°® as the (identically conserved)
improvement term,

Tap = {Improvement of O}, . (7.68)

T.p is then generally considered to be the “correct” choice of energy-momentum tensor
for the Lagrangian field thory at hand, but it should be clear from the above discussion
that this somewhat round-about procedure for finding and obtaining it leaves something

to be desired (to put it mildly), already in the framework of Special Relativity.

7.5 ENERGY-MOMENTUM TENSOR FROM MINIMAL COUPLING?

Given the success of the minimal coupling prescription, it is natural to try to define the
matter energy-momentum tensor in a gravitational field in the same way. While this is
certainly possible to a certain extent (as the examples will show), this procedure also

leaves something to be desired (as the examples will also show).

Let us start by considering the “phenomenological” perfect fluid energy-momentum
tensor (7.6),

Tap = (p + p)taus + Pliab - (7.69)

Following the minimal coupling rules, we promote this to the energy-momentum tensor

Top = (p+ P)uatp + Pgas (7.70)

where u® denotes the proper-time normalised velocity field of the fluid, gaﬁuauﬁ =—1.
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The covariantisation of the conservation law (7.7) evidently reads
G“Tab =0 — VaTaﬁ =0 . (7.71)

This generalises the continuity equation and the relativistic Euler equations to a fluid
moving in a gravitational field and reduces to the special relativistic laws at the origin

of a freely falling coordinate system, as it should.

There are neither conceptual nor technical complications in this example, and we will
adopt this perfect fluid energy-momentum tensor, supplemented by an appropriate equa-
tion of state, to model the interior of a star (section 24.7) and the matter content of
the universe (in our discussion of cosmology). In both of these examples, such a phe-
nomenological description is quite appropriate and sufficient (although for more detailed
investigations one may need to go beyond the perfect fluid approximation). For a de-
tailed analysis of the conservation equations in the context of cosmology, see sections
35.4 and 35.6.

Let us now turn to energy-momentum tensors for Lagrangian field theories, starting
with the example of the Klein-Gordon scalar field. As we saw above, in Minkowski

space its (Noether = improved) energy-momentum tensor is given by

Tup = DaOs + Nl = 0D — i (n°°0:00u0 + m*¢?) . (1.72)

The corresponding minimally coupled energy-momentum tensor in a gravitational field

is then evidently

Taﬁ = 8a¢86¢ + .goeBL = aa¢aﬁ¢ - %gaﬁ (.gwjau¢au¢ + m2¢2) 3 (773)

and it is easy to check that it is covariantly conserved for ¢ a solution to the equations

of motion in a gravitational background,
(Oy—m?)¢=0 = VTpu=0. (7.74)

For the action (6.13) with a potential V(¢), the energy-momentum tensor of course also
has the form (7.73) with m2¢?/2 unsurprisingly replaced by V(¢),

Top = aa¢aﬁ¢ - %gaﬁ gwja;ﬂsau(ﬁ - gaﬁv(¢) ) (7.75)

with
Og0 = V'i(p) = VT ,s =0 . (7.76)

So far so good. However, the significance of this energy-momentum tensor outside the
realm of special relativity is not clear. In special relativity, it encodes the conserved
quantities associated to translation invariance, but in a general gravitational field there
is no translation invariance (or other symmetry). In particular, in a general gravitational

field
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e one cannot even derive the energy-momentum tensor (7.73) from Noether’s theo-

rem applied to translations

e and, related to this is the fact that one does not obtain an ordinary conservation

law but the covariant conservation law V7% = 0.

Regarding the first point, it is fair to wonder if T(,5 possesses an intrinsic gravitational
significance beyond being merely the non-conserved minimally coupled counterpart of
something that happens to have a significance in the absence of gravity. We will see

below that, yes indeed, it is precisely the source of gravity arising from scalar fields.

Regarding the second point, we will see in sections 7.9 and 10.1 below that to any con-
tinous symmetry of a gravitational field (metric) and the covariantly conserved energy-
momentum tensor one can associate a covariantly conserved current and thus also (as

discussed in section 6.8) a conserved charge.

Now let us turn to Maxwell theory. Here the situation is a priori a bit murkier, because

in principle we have both the canonical Noether energy-momentum tensor O, (7.37),
Oup = F,L0pAc — Iy FraF™ (7.77)
and its Belinfante-improved symmetric gauge-invariant sibling T, (7.47),
Top = Fac By — gllanFeaF? (7.78)

at our disposal. Let us start with the latter, not only because it is the nicer object but
also because it turns out to give the “correct” result. Applying the rules of minimal

coupling, one finds the tensor
Top = ForFy — L gapFysF° (7.79)

where indices of the (metric independent) field strength tensor Fyz are of course raised
with the aid of the inverse metric ¢®?. This object turns out to have all the right
properties to qualify as a candidate energy-momentum tensor of Maxwell theory in a
gravitational field. In particular, it is off-shell symmetric and moreover on-shell covari-
antly conserved,

VoT*? =0 on-shell , (7.80)

where “on-shell” of course refers to the equations of motion (6.38) in a gravitational
field. Again both sets of vacuum Maxwell equations are required to verify this. In the

presence of an external current, this is modified to
Vol = J,F*®  on-shell . (7.81)

While one may have anticipated these last two equations on the basis of the minimal

coupling recipe, it is important (and a useful exercise) to verify by direct calculation that

193



they indeed hold. The point of this verification is to make sure that no commutators
of covariant derivatives, i.e. “curvature terms”, arise in and mess up this equation, as

they will in the calculation below involving the Noether energy-momentum tensor.

So let us take a brief look at the covariantised or minimally coupled Noether energy-

momentum tensor, namely
Oap = FJVsA ., — LgugFysF?° . (7.82)

While the canonical energy-momentum tensor in Minkowski space had some undesirable
properties, its one redeeming feature was that it was on-shell conserved. In contrast
to this, ©,p is neither on-shell conserved nor on-shell covariantly conserved. In order
to establish 0°©, = 0 in Minkowski space, one uses the fact that partial derivatives
commute. Thus, analogously, in calculating V*©,3 one encounters the commutator of

covariant derivatives. Explicitly on-shell one finds
V0% = %F“V[VQ,VV]AQ ) (7.83)

However, as we will discuss at length in section 8, the characteristic and defining feature
of a non-trivial curved space-time is that these covariant derivatives do not commute
when acting on tensors other than scalars (their commutator defining the curvature

tensor of the space-time).

Likewise the covariant version of the improvement term in
Oub = Oup — O°(FucAyp) (7.84)
namely V7(Fu,Ag) is not identically conserved anymore, rather one has
VOV (FayAg) = $FVa, V445 (7.85)

so that it would not qualify as an “improvement term” in the standard sense. Neverthe-
less, subtracting this term from the (non-conserved) Noether energy-momentum tensor,
one finds that this indeed cancels the commutator term arising form (7.83), thus giving
rise to an on-shell covariantly conserved (;)ag or T,,3. From the present perspective,
however, this must be considered to be somewhat of a miracle or fluke. For some more

comments on this, see section 22.2.

Thus we adopt (7.79),
Top = FaryFy — L gapFosF° (7.86)

as our (preliminary) definition of the energy-momentum tensor of Maxwell theory in
a gravitational field, but we now face the same issue as in the case of scalar fields,
namely the question what, if any, is the intrinsic gravitational significance of this energy-

momentum tensor.
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7.6 COVARIANT ENERGY-MOMENTUM TENSOR: THE SOURCE OF GRAVITY

As we have seen, there are some irritating conceptual and technical issues associated
with the “Noether + minimal coupling” procedure in general. These irritants turn
out to be a good thing, though, because they motivate us to rethink this issue from
scratch, and this will now lead us to a much more compelling and both conceptually
and technically perfectly satisfactory general definition of the energy-momentum tensor

of any Lagrangian field theory in a gravitational field.

Thus let us think about this issue from a Lagrangian, action-based, perspective. So
far we have discussed what is the appropriate form of the action for matter fields in a

gravitational field, namely a generally covariant action

Smatter = SM [¢7 gaﬁ] = /\/§d4l‘ LM(¢7 aaqb, -y 9a8 - - ) (787)

for the matter fields ¢ in a gravitational background g,g, obtained e.g. by the minimal
coupling description and thus describing the dynamics of the fields in a gravitational
background and encoding the coupling of the matter fields to gravity. Ultimately, this
action should then be one part of the total gravitational + matter action describing the

dynamics of the matter fields and of the gravitational field,

Stotal = Sgravity + Smatter - (788)

Since the gravitational field is described by the (now dynamical) variables gqg(x), we

can write this marginally more explicitly as

S1gap: @] = Sglgas] + Sn[d; gas] - (7.89)

The precise form of the gravitational action S; will not be relevant here - this is some-
thing that we will discuss at length in section 20. All we need to keep in mind is that
this action is to provide us with the gravitational part of the gravitational field equa-
tions, i.e. with the appropriate tensorial generalisation of the left-hand side A¢ of the

Newtonian field equation A¢ = 47Gpnp.

Variation of this total action with respect to the matter fields ¢ is equivalent to the

variation of the matter action S3; alone with respect to the matter fields,

0S[gas, ] 0 0Sn [B; gap]
5o 50

and will thus simply give rise to the equations of motion of the matter fields in a

=0, (7.90)

gravitational field, as required.

Now let us consider the variation of the total action with respect to the gravitational

dynamical variables g.g,

05[9ag, ¢ _ 054(9as] L 08u (93 9as] 1 (7.91)
59015 59a6 590&5
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Variation of the gravitational action with respect to the gravitational field g, will give
us the gravitational part of the field equations. Thus variation of the matter action with
respect to the gravitational field will give us the source term for the gravitational field

equations provided by the matter fields,

0S5 [9; gas)

= Source of Gravity . (7.92)
5gaﬁ

On the other hand, as recalled in the introduction to this section (section 7.1), we expect
the energy-momentum tensor to act as the source of gravity. Therefore we should simply

define the energy-momentum tensor by this relation,

T°? := Source of Gravity
559 gag] (7.93)

T
59&5
We will fix the proportionality factor momentarily.

Note that this is precisely analogous to the way a source term for the Maxwell equations,
a current J<, arises from the variation of the coupled matter-Maxwell action with respect

to the gauge field A, (6.54),
N 5SM [qb, Aa]

J 0A,

(7.94)

In order to test this suggestion, let us take a look at our two standard examples, a scalar

field and Maxwell theory. For a scalar field, the minimally coupled action is (6.13)

S16.905) = [ Vad'e (~490,0036 - V(9)) . (7.95)

Since the action depends explicitly on the inverse metric, it is more convenient to de-

termine the variation of the action under variations
9P — g 4 59 (7.96)
of the inverse metric. Under such a variation, the volume factor /g varies as (5.85)
5v/G = —3\/990569"° . (7.97)

Thus the metric-variation of the scalar field action is
0Snm [gb, gaﬁ] = _% / \/§d433 (aa¢8ﬁ¢ + gag(—%guya“qb&,(ﬁ - V(¢))) 59a5 s (7'98)

Comparison with the minimally coupled energy-momentum tensor (7.75) of a scalar
field,

Top = aa¢aﬁ¢ - %gaﬁ gwja,tﬂsaz/(ﬁ - gaﬁv(¢) ) (7.99)

shows that this is precisely what we have obtained from the metric-variation of the

matter action,

5500, gap] = —3 / Vodiz Thdg®® . (7.100)
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Now let us look at Maxwell theory, our litmus test. In this case, the action is (6.50)

S[Aa: gas) = — 7 / Vod'z g" g"  FLu Fy, (7.101)

The variation of /g is as before, and as regards the variation of the inverse metric, there
is now an additional relative factor of two compared with the calculation for the scalar

fields because the action depends quadratically on the inverse metric. Thus one has
65[Aa Gap) = —3 / V3d*z (9" Fa Fgp — 290 Fu F™) 5% . (7.102)
Comparing with (7.79),
Top = ForFy — L gapFysF° (7.103)

we see that we once again have

550 (¢, gapl = —3 / Vod'z Topog™ . (7.104)

Thus the metric variation of the matter action has given us on the nose the symmetric,
gauge invariant, on-shell conserved energy-momentum tensor of Maxwell theory, without

any need to appeal to any improvement procedures!

Thus, when it comes to defining the energy-momentum tensor for Maxwell theory, the
above approach based on the variation of the matter action with respect to the metric
wins hands down over the painful canonical definition based on Noether’s theorem for
translations and the Belinfante improvement procedure combined with minimal cou-

pling.

Encouraged by this, we now define the energy-momentum tensor 7; 5 in general by

5mctricSM[¢agaB] = _% / \/§d4l‘ Taﬁégag ) (7-105)
or, equivalently,
2 46
Thgi=———— ,9aB] - 1
3= = e s Sul6.ges (7.106)

Even though, as we have seen, there are other definitions of the energy-momentum ten-
sor, this is the modern, and by far the most useful, definition of the energy-momentum
tensor, namely as the response of the matter action to a variation of the metric (equiv-

alently, as the source of gravity).

Moreover, crucially for the present context, whatever the virtues of other definitions
may be, from the variational principle for general relativity it is this energy-momentum

tensor that plays the role of the source term for the Einstein equations.

REMARKS:

1. The energy-momentum tensor as defined by (7.105) or (7.106) is frequently called

the metric energy-momentum (or stress-energy) tensor, or also the Hilbert or
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Rosenfeld energy-momentum tensor. It is sometimes also referred to as the gravi-
tational energy-momentum tensor, but that is confusing as it does not describe the
energy-momentum of the gravitational field itself, a more mysterious and elusive

quantity we will briefly look at and for in section 22.6.

I prefer the attribute covariant, to distinguish it from what is usually called the
canonical Noether energy-momentum tensor. Thus, even though this terminology
is not standard, I will henceforth refer to T4 as defined by (7.105) or (7.106), as

the Covariant Energy-Momentum Tensor.

. One of the many advantages of this definition is that it automatically and in
general gives a symmetric and gauge invariant tensor (no improvement terms or

similar gymnastics required). This is obvious from the definition.

. This energy-momentum tensor turns out to also automatically be covariantly con-
served (on-shell, i.e. for matter fields satisfying their Euler-Lagrange equations of
motion). We will establish this latter fact in section 20.6 below where we will see
that this is simply a consequence of the general covariance of the matter action
S,

general covariance of S)y = V*T,g =0 on-shell . (7.107)

. When the minimally coupled matter Lagrangian depends only on the metric and

not on the first derivatives of the metric (i.e. not on the Christoffel symbols),

Ly () = Lar(9(2), 0u¢(), g (%)) (7.108)

as in the case of scalar or Maxwell gauge fields, then more explicitly the covariant

energy-momentum tensor can be written as (and calculated from)

Tyuli) =~ 2O SR g () (109
T () = 2% + g™ (@) L (x) . (7.110)

Here the sign change is due to the fact that dg"” denotes the variation of the
inverse metric, not the contravariant components of dg,,. Thus it is not the same

as g“)‘g"pégAp, but rather minus this expression,
o = —g“)‘g”pdgAp ) (7.111)
as can be seen by varying ¢"’g,\ = 5’;,

0=10(g""gur) = (09" )gur + g 0gpn & g = —g“)‘g”’)(sg)\p . (7.112)
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5. The definition (7.105) or the explicit expression (7.109) also provides an efficient
strategy to determine the energy-momentum tensor even if one is just interested

in Poincaré-invariant field theories in Minkowski space:

In order to determine a symmetric, gauge invariant, and on-shell conserved energy-

momentum tensor 7, for such a theory, one

e temporarily minimally couples the theory to a metric gog(x),
e uses (7.105) or (7.106) or (7.109) to determine T3,

e and then replaces gog — 7ap etc. again at the end.

In equations, one defines T, by

Top = (Tap)|zosée gopsney - (7.113)

It can be shown that for fields of any spin this energy-momentum tensor agrees
on-shell with what one could have also obtained by invoking the Belinfante im-

provement procedure of the Noether energy-momentum tensor,

N

Ouw = Toyp on-shell (7.114)

(see the discussion and references in section 7.4).

6. When the minimally coupled matter action depends also on the first derivatives
of the metric, through the covariant derivative V, 1 of some (non-scalar) field v,
say, by the usual rules of variational calculus there will be additional contributions

to the energy-momentum tensor, arising from an integration by parts of

Ly (z)
d*z ( OV ) (z
[ Vit (<25 6V, w)
where §(V,1)) = (V)Y denotes the variation of the covariant derivative in-
duced by the metric-variation (e.g. via the corresponding variation (20.14) of the
Christoffel symbols). The precise form of the resulting contribution to the energy-

momentum tensor depends on the tensorial type of v, is rarely needed, and it is

unedifying to attempt to write down a general formula for this.

7.7 ON THE ENERGY-MOMENTUM TENSOR FOR WEYL-INVARIANT ACTIONS

Another general feature of the energy-momentum tensor that is readily understood by

adopting the definition
2 5Smatter

VI gt

is the relation between Weyl invariance and the trace of the energy-momentum tensor.

Top = (7.115)
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We consider the situation where the minimally coupled matter action happens to be

invariant under Weyl rescalings, i.e. under rescalings of the metric

2w(x)

gap(z) — € Jap () (7.116)

by a positive definite function, or infinitesimally

utos () = 20()gap () - (7.117)

In particular, thus, we consider the (admittedly very special) situation where one has
such a symmetry without any accompanying transformation of the matter fields. The
discussion can be extended to the case where also a transformation of the matter fields
is required, but for present purposes this special case is good enough (see the end of

this section for a comment on the general case).
Examples of such actions are e.g. the action of a massless scalar field (6.11) in D = 2

(space-time) dimensions

S[¢, gap] = —3 / d*x \/9g°P Db (7.118)

and that of Maxwell theory (6.50) in D = 4 dimensions,

S[Aar gas) = — 7 / d*z \/gg*P g’ For Fas . (7.119)

Indeed, in that case the metric dependence of the action is precisely such that the
combination of of the determinant /g and the inverse metric that appears is invariant

under Weyl rescalings,

D=2 /39°" = /39"

(7.120)

9ap — e2wgaﬁ = {

This is reflected in the fact that the corresponding energy-momentum tensor is traceless

precisely in these dimensions: from (7.73) and (7.79) one finds

Taﬁ = aa¢aﬁ¢ - %gaﬁ (glwau(bau(b) = T% = - (D - 2)91“/8#(2581/(25

1
A1 Ao e} f uv (7121)
Taﬁ = Foe)\Fﬁ — ZgagF)\JF = Ta = _Z(D — 4)FH,,F .

The relation between these two observations / assertions is provided by noting that if

the matter action is invariant under Weyl rescalings one has

0= 6w5matter - _% / \/ade Taﬁ(x)éwgaﬁ(x)

(7.122)
— [ VA Tp()g @ota) = [ VGdPa T (@la)
Since this is to be zero for all functions w(x), this proves
invariance under Weyl rescalings of the metric = 7T =0 . (7.123)
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In the special case that we have considered here (invariance under scalings of the metric
alone, without transforming the matter fields), this is true off-shell, i.e. without using
the equations of motion for the matter fields. In the more general case of an invariance
under joint Weyl rescalings of the metric and accompanying scalings of the matter fields,
in the above chain of arguments one would need to also vary the matter action with
respect to the matter fields to establish the invariance of the action. The term arising
from the variation of the matter fields is evidently proportional to the Euler-Lagrange
equations of the matter fields, and therefore in that case one could only conclude that
TS = 0 on-shell,

invariance under joint Weyl rescalings } 7% — 0 oneshell (7.124)

of the metric and the matter fields

An example of this is provided by the so-called conformally coupled scalar field. This
conformal coupling involves a space-time dependent mass term that represents a non-
minimal coupling of the scalar field to the scalar curvature (a contraction of the Riemann
curvature tensor to be introduced in section 8), and understanding the Weyl invariance
of this model requires a formula for the variation of the scalar curvature with respect
to the metric which we will derive in section 20.2. Therefore we will need to postpone

a discussion of this model to section 22.3.

7.8 KLEIN-GORDON SCALAR FIELD IN (1+1) MINKOWSKI AND RINDLER SPACE

As an aside, but as a concrete, and the simplest non-trivial, example, and an illustration
of the above remarks regarding Weyl invariance, let us consider a massless scalar field
in (14+1)-dimensions, in either the usual Minkowski coordinates, or in the Rindler coor-
dinates discussed in sections 1.3 and 3.4 (we will in particular make use of the results

in section 3.4).

In inertial coordinates in (1+4-1)-dimensional Minkowski space-time, ds? = —dt? + dx?,

the action and equation of motion of a massless scalar field are
Suld) = 3 [ 20,0000 > Do= (- +o=0.  (1129)

Thus a natural basis of solutions to this equation is provided by the plane waves fi ~
exp(—iwt + ikx), with k? = w?, i.e. k = £w,w > 0, and their complex conjugates. For

a given w there are thus two linearly-independent positive frequency solutions,

1 —tw(t —=
fw(t,l‘) = We (t ) 1o
g (t l‘) — —iw(t+x) ( ‘ )
v (47w)1/2

(the normalisation factors are inserted for QFT-pedantry reasons only and are irrelevant

for the following). Thus the basis of solutions splits into right-movers or right-moving
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modes f, and left-movers g,,. It is thus convenient to introduce the corresponding null
coordinates uy; =t — x,vyy =t +x as in (3.94), in terms of which the solutions can be

written as

1 .
Jo = folunm) = 1 e WM
/2
(47”;) ‘ (7.127)
_ _ —iwvpr
Juw 9w (UM) (47‘('0.))1/2

That the solutions split in this way could have also been deduced from the form of the
wave operator in these lightcone (null) coordinates, namely O = —40,,,0,,,, and the

ensuing solutions to the equation of motion,
Op=0 = o¢=f(um)+gvm) . (7.128)
Here f and g can now be arbitrary wave packets constructed from the solutions f, and

g respectively.

The energy-density pas = T3 of the scalar field with respect to Minkowski time is

put = 5((8:9)” + (9:0)%) (7.129)

and in terms of lightcone coordinates this splits into a sum of left-moving and right-

moving contributions,
PM = (8uM¢)2 + (8UM¢)2 > (7130)

with f(ups) evidently only contributing to the former and g(vas) to the latter.

Now let us consider the same issue in Rindler coordinates. In terms of the coordinates
(n,€) (3.89), the metric takes the form (3.87)

ds? = ezag(—aln2 + d€?) . (7.131)

Note that, as mentioned in section 3.4, the metric in these coordinates is conformally
flat. Thus, by the reasoning above, in section 7.7, in particular the discussion around
equation (7.120), we know that the action and equation of motion for a scalar field
in Rindler coordinates will look just like those in Minkowski coordinates, with the

replacement (¢,x) — (1, £),

Srl¢] = =3 / Vadndé g* 0,056 = —4 / dndé 1% 9,056 (7.132)

and
Og0=0 & (=0;+82)¢=0 . (7.133)

Thus by the same reasoning as above, the solutions can be split into left- and right-

movers and are conveniently written in terms of the Rindler lightcone coordinates (3.95)

(ur,vr) =nFE , (7.134)
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i.e. one has
O =0 < 0y,00z,0=0 <& o= f(ur)+g(vr) . (7.135)

The energy-density pr = Ty, of the scalar field with respect to Rindler time is

pr = 5((049)" + (9¢0)°) (7.136)

and in terms of lightcone coordinates this splits into a sum of left-moving and right-

moving contributions,
PR = (Oup®)” + (00p0)* (7.137)
with f(ugr) evidently only contributing to the former and g(vg) to the latter.

The interest in these (fairly trivial) considerations lies in the fact that the exponential

relation (3.97) between the Minkowski and Rindler null coordinates

uy = —a e TRy = +a le TAVR , (7.138)

reflecting the exponential redshift of a Rindler relative to an inertial observer (and vice-
versa) has a number of non-trivial and remarkable implications. I will just mention 2

of them here:

1. The exponential redshift expressed by (7.138) implies that the right-moving energy

densities in Minkowski and Rindler coordinates are related by

ou 1
e = e = (00 0) = 5 (Bun)? (7.139)
M

Oup
(and likewise for the left-movers). Thus essentially any classical solution that is
regarded as regular by the Rindler observer (finite and non-zero pgr) corresponds
to a divergent Minkowski energy-density as uy; — 0, i.e. on the future boundary
(horizon) t = x of the Rindler wedge.

2. The exponential redshift expressed by (7.138) also implies that the notions of
positive frequency with respect to Minkowski and Rindler time are inequivalent,
e.g. in the sense that f,(uas), restricted to the right Rindler-wedge ups < 0, say,
cannot be written as a superposition of Rindler right-moving positive frequency

waves alone,

fuluar) # /000 dw'a(w,w’) fur (uR) - (7.140)

Of course, the f,(ur) and their complex conjugates f*(ur) provide a basis of
solutions for the right-moving modes (in the right Rindler-wedge), so that one can

certainly expand the Minkowski plane waves as
fulunr) :/ dw' (e(w,w") fur(ur) + Bw, ') fi (ur)) (7.141)
0
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but necessarily with some of the 3(w,w’) # 0.

If you know a little bit of quantum field theory, you will be able to anticipate that
this means that the notions of creation and annihilation operators are inequivalent,
and that therefore what is the vacuum, say, for an inertial observer, will not be

seen as the vacuum by the accelerating observer (and vice-versa).

Combining the two facts, one also arrives at the conclusion that the “Rindler
vacuum” is singular both at the future horizon (from right-movers) and at the

past horizon (from left-movers).

In the spirit of the equivalence principle (“before studying gravity, let us study accelera-
tions in flat space”), this Unruh Effect is a fascinating and rewarding first step towards
understanding (or appreciating the difficulties encountered by) quantum field theory
in curved space-times, i.e. in non-trivial gravitational fields. For more on this see the

references given in section 27.7.

As further examples of scalar fields in particular gravitational backgrounds, in section
26.7 we will consider scalar fields in the Schwarzschild space-time, and in section 34.10
we will look at the equations of motion of scalar fields in a cosmological gravitational
background.

7.9 CONSERVED CURRENTS FROM THE ENERGY-MOMENTUM TENSOR?

In section 6.8 we had discussed how to obtain conserved charges from covariantly con-
served currents. Now in special relativity one can construct conserved currents (cor-
responding to the generators of Poincaré transformations) from the conserved energy-
momentum tensor, and hence from there the corresponding conserved charges like en-
ergy, momentum and angular momentum. In this section we will take a first look at
the question if or to which extent we can also obtain such conserved currents from the

covariantly conserved energy-momentum tensor in a gravitational field.

To set the stage, recall that in Special Relativity, if 7% is the energy-momentum tensor

of a physical system, it generally satisfies an equation of the form
0, 7% =G | (7.142)

where G® represents the density of the external forces acting on the system. In par-
ticular, if there are no external forces, the divergence of the energy-momentum tensor
is zero. For example, in the case of Maxwell theory and a current corresponding to a

charged particle we have

Gt = J,F® = —F4Jb ~ — g (7.143)
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which is indeed the relevant external (Lorentz) force density (in writing this I have
suppressed the d-function that localises the current to the worldline £ = £%(7) of the

particle).

When there are no external forces, i.e. when one has taken into account the complete
matter action, the total energy-momentum tensor is conserved. In that case, 7% = Jj(b)a
defines four conserved currents, more or less (modulo Belinfante improvement terms, see
e.g. the discussion in sections 7.4 and 22.2 and the references given there) the currents
associated to translation invariance of the action via Noether’s theorem. One is thus in
the setting of conserved currents of section 6.8, and one can define conserved quantities
like total energy and momentum, P? and angular momentum J, by integrals of
T0% or £ — ¢bT0% (the latter being conserved if T, is symmetric) over spacelike
hypersurfaces.

The situation in general relativity is somewhat different (exactly how different it is
perceived to be is partly a matter of personal preconceptions or desires). In particular,
in general relativity, and assuming that 7}, is the complete matter energy-momentum
tensor (otherwise we certainly cannot expect to derive any conservation law), we will

have a “conservation law” of the form
VT =g 20,(g" 2T + T\ T* = 0 . (7.144)

We see that, due to the second term, this does not define four conserved currents in the
ordinary or covariant sense (and we will return to the interpretation of this equation,
and the related issue of energy and energy density of the gravitational field, in section
22.6).

Nevertheless, in analogy with special relativity, one might like to attempt to define
conserved quantities like total energy and momentum, P*, and angular momentum
JH by integrals of T or z#T% — 2VT% over spacelike hypersurfaces. However, these

quantities are rather obviously not covariant, and nor are they conserved.

This should perhaps not be too surprising because, after all, for a Poincaré-invariant field
theory in Minkowski space these quantities are preserved as a consequence of Poincaré
invariance, i.e. because of the symmetries (isometries) of the Minkowski metric (as well
as of the action).

A generic metric has no isometries whatsoever (the explicit examples of metrics in these
notes not withstanding, all of which exhibit at least some symmetries). As it has no
symmetries, we have no reason to expect to find associated conserved quantities in

general.

However, if there are symmetries then one should indeed be able to define conserved
quantities (think of Noether’s theorem again), one for each symmetry generator. In

order to implement this we need to understand how to define and detect isometries of
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the metric. For this we need the concepts of Lie derivatives and Killing vectors. These
already made occasional brief appearances in previous sections and will be discussed
more systematically in section 9, the corresponding conserved charges then being the

subject of section 10.

Alternatively, one might try to just go ahead optimistically and attempt to construct
a covariant current-like object (with a corresponding conservation law and the ensuing
possibility to define conserved charges) by contracting the energy-momentum tensor not

with the coordinates but with a vector field V*, along the lines of
Jb=Thv* . (7.145)

At least this now has the merit of clearly being a vector field, but is it conserved?
Calculating its covariant divergence, and using the fact that T is symmetric and
conserved, one finds

Vi = 3T (V,V, + V,V,) . (7.146)

Thus we would have a conserved current (and associated conserved charge by the pre-
vious section) for any conserved energy-momentum tensor if the vector field V* were
such that it satisfies

V.V, +V,V,=0 = V,(ThVY) =0 . (7.147)

The link between this observation and the one in the preceding paragraph regarding
symmetries is that this is precisely the condition characterising (infinitesimal) symme-

tries of metric:

e First of all, this is the condition we already found and encountered in (3.35), as
reformulated in (5.66), for the infinitesimal coordinate transformation dx# = eVH*
to generate a symmetry of the metric, thus leading to a conserved charge for

geodesics.

e More generally, as we will discuss in detail in section 9 below, vector fields satisfy-
ing the equation V,V, + V,V, = 0 are indeed in one-to-one correspondence with

infinitesimal generators of continuous symmetries of a metric (isometries).

Thus this gives a satisfactory and coherent overall picture of symmetries and conserva-

tion laws in a gravitational field.
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8 CURVATURE I: THE RIEMANN CURVATURE TENSOR

8.1 CURVATURE: PRELIMINARY REMARKS

We now come to one of the most important concepts of General Relativity and Rie-
mannian Geometry, that of curvature and how to describe it in tensorial terms. Among
other things, this will finally allow us to decide unambiguously if a given metric is just
the (flat) Minkowski metric in disguise or the metric of a genuinely curved space (but
a proof of this statement is postponed to section 11). More importantly (for present
purposes) it will allow us to construct tensors that depend on the 2nd derivatives of
the metric and will thus allow us to construct tensorial (generally covariant) differen-
tial equations for the metric. In particular, this will then lead us fairly directly to the

Einstein equations (section 19), i.e. to the field equations for the gravitational field.

Recall that the equations that describe the behaviour of particles and fields in a gravi-
tational field involve the metric and the Christoffel symbols determined by the metric.
Thus the equations for the gravitational field should be generally covariant (tensorial)

differential equations for the metric.

At first, here we seem to face a dilemma. How can we write down covariant differential
equations for the metric when the covariant derivative of the metric is identically zero?
Having come to this point, Einstein himself reached an impasse and required the help
of his mathematician friend Marcel Grossmann (“Grossmann, you have to help me, or
else I'll go crazy!”) whom he had asked to investigate if there were any tensors that

could be built from the second derivatives of the metric.

Grossmann soon found that this problem had indeed been addressed and solved in the
mathematics literature, in particular by Riemann (generalising work of Gauss on curved
surfaces), Ricci-Curbastro and Levi-Civita. It was shown by them that there are indeed
non-trivial tensors that can be constructed from (ordinary) derivatives of the metric.

These can then be used to write down covariant differential equations for the metric.'®

The most important among these are the Riemann curvature tensor and its various
contractions. In fact, it is known that these are the only tensors that can be constructed
from the metric and its first and second derivatives, and they will therefore play a central

role in all that follows.

Technically the most straightforward way of introducing the Riemann curvature tensor is
via the commutator of covariant derivatives. In this section we will adopt this pragmatic

(and relatively streamlined) approach, as it is sufficient to

180f course, the story is not as simple and straightforward as that. For an account of Marcel Gross-
mann’s (often overlooked) contributions to tensor calculus and the development of general relativity, see
T. Sauer, Marcel Grossmann and his contribution to the general theory of relativity, arXiv:1312.4068

[physics.hist-ph].
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e determine the most important algebraic and differential properties of the curvature

tensor (symmetries and Bianchi identities)

e assess its physical significance (gravitational tidal forces) via the influence of the

curvature tensor on the motion of (families of) freely falling particles

e and to thus provide us with all the information and ingredients we need to then
discuss the Einstein equations (section 19) and their formulation in terms of an

action principle (section 20).

However, this is not geometrically the most intuitive way to introduce the concept
of curvature, and it downplays the extent to which the curvature tensor reflects and
encodes the geometric properties of space-time and, more generally, does not do justice
to the fundamental differential geometric notion and significance of curvature. Some of
these aspects are discussed in Part B of these notes, in particular in sections 11, 12, 13
and 14.

8.2 RIEMANN TENSOR FROM THE COMMUTATOR OF COVARIANT DERIVATIVES

As mentioned before, second covariant derivatives do not commute on (p,q)-tensors
unless p = ¢ = 0. However, the fact that they do commute on scalars has the pleasant
consequence that e.g. the commutator of covariant derivatives acting on a vector field
V*# does not involve any derivatives of V#. In fact, I will first show, without actually

calculating the commutator, that
Vi Vil (0V?) = 61V, Vo VA (8.1)

for any scalar field ¢. This implies that [V, V,]V?* cannot depend on derivatives of V

because if it did it would also have to depend on derivatives of ¢.

Hence, the commutator can be expressed purely algebraically in terms of V. As the
dependence on V is clearly linear, the commutator of covariant derivatives must then

act like a linear transformation. There must therefore be an object R);,W such that

V., VIV =R V7 . (8.2)

opuv

This can of course also be verified by a direct calculation, and we will come back to
this below. For now let us just note that, since the left hand side of this equation is

clearly a tensor for any V', the quotient theorem implies that the quantities R, re

A
opuy a
the components of a tensor.

Let us first verify (8.1). We have

V. VoV = (V V) VA + (V) (V. V) + (Vi) (V, V) + 6V, V, VY L (83)
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Thus, upon taking the commutator the 2nd and 3rd terms drop out (because the 3rd is
the symmetrisation of the 2nd), and we are left with
Vi VoloVA = (Vi Vo)V + 6]V, V VA
= ¢V, VIV, (8.4)

where the last line follows from the fact that 2nd covariant derivatives do commute on
scalars. Thus we have established (8.1).

By explicitly calculating the commutator, one can confirm the structure displayed in
(8.2). This explicit calculation shows that the Riemann-Christoffel Curvature Tensor

(or Riemann tensor for short) is given by

R, =00%, —0,1, +1%,1%, — T3, T", (8.5)

REMARKS:

1. Note how useful the quotient theorem is in this case. It would be quite unpleasant
to have to verify the tensorial nature of this expression by explicitly checking its

behaviour under coordinate transformations.

2. Note also that this tensor is clearly zero for the Minkowski metric written in
Cartesian coordinates. Hence it is also zero for the Minkowski metric written in
any other coordinate system. We will prove the converse, that vanishing of the
Riemann curvature tensor implies that the metric is (locally) equivalent to the

Minkowski metric, in section 11.2.

3. In the above we have defined the Riemann tensor by the relation (8.2) and then
deduced the explicit expression (8.5). While this is, pragmatically speaking, a
useful way of proceeding, it may be more logical to initially define the Riemann
tensor in a different way, e.g. directly by (8.5) (for instance because by painful
calculations one has discovered that this particular combination of non-tensorial
objects miraculously happens to transform as a tensor). In that case, (8.2) is a

result rather than a definition, known as the Ricci identity.

It is straightforward to extend the above to an action of the commutator [V, V,] on
arbitrary tensors. For covectors we have, since we can raise and lower the indices with
the metric with impunity,
Vi, ViV, = gp,\[V,“V,,]V)‘
= gpAR)(\)'/u/VO-

= RyouV?
= R7WVs . (8.6)
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We will see later that the Riemann tensor is anti-symmetric in its first two indices.
Hence we can also write

Vi, ViV, =—-R%,, Vs . (8.7)

The extension to arbitrary (p, q)-tensors now follows the usual pattern, with one Rie-
mann curvature tensor, contracted as for vectors, appearing for each of the p upper
indices, and one Riemann curvature tensor, contracted as for covectors, for each of the
q lower indices. Thus, e.g. for a (2,0)-tensor 7% one has

V., V)T =R, TP + RS, T (8.8)
and for a (1,1)-tensor A);) one has

A A o o A
Vu, VA, = RE,, A% — RY,,,A (8.9)
I will give two other versions of the fundamental formula (8.2) which are occasionally
useful and used.

1. Instead of looking at the commutator [V, V, | of two derivatives in the coordinate
directions z* and x”, we can look at the commutator [Vx, Vy]| of two directional
covariant derivatives. Evidently, in calculating this commutator one will pick up
new terms involving VxY* — Vy X*#. Denoting this vector field by [X,Y]* (the
rationale for this notation will be explained in section 9.3), we can also write the
formula for the curvature tensor as

([Vx,Vy] — V[X,y])V)‘ = R);WVX“YVVU . (8.10)

2. Secondly, one can consider a net of curves z#(sq, s2) parametrising, say, a two-
dimensional surface, and look at the commutators of the covariant derivatives
along the s;- and sg-curves. The formula one obtains in this case (it can be
obtained from (8.10) by noting that X and Y commute in this case) is

dx* dx¥
(D51D52 - D82D81) V)\ = RA - ivg

o1 Jay dsg (8.11)

where Dy, denotes the covariant derivative along the curve parametrised by sz,

i.e. (section 5.7)

ox*(s1,s
, = 2o 52) . (8.12)

D
ask

8.3 SYMMETRIES AND ALGEBRAIC PROPERTIES OF THE RIEMANN TENSOR

A priori, the Riemann tensor has 256 = 4% components in 4 dimensions. However,
because of a large number of symmetries, the actual number of independent components

is much smaller.
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In general, to read off all the symmetries from the formula (8.5) is difficult. One way
to simplify things is to look at the Riemann curvature tensor at the origin zg of a
Riemann normal coordinate system (or some other inertial coordinate system). In that
case, all the first derivatives of the metric disappear and only the first two terms of (8.5)

contribute. One finds

Roprs(x0) = gar(05T75 — 05177, ) (20)
= (0yLags — 5T apy)(w0)
= 1(gas:8y T98y206 —Jarys85 —9pssay ) (T0) - (8.13)

In principle, this expression is sufficiently simple to allow one to read off all the symme-
tries of the Riemann tensor. However, it is more insightful to derive these symmetries
in a different way, one which will also make clear why the Riemann tensor has these

symmetries.

1. Anti-symmetry in the second pair of indices:
Ropys = —Rapsy (8.14)
This is obviously true from the definition or by construction.
2. Anti-symmetry in the first pair of indices:
Rogys = —Rgans (8.15)

This is a consequence of the fact that the metric is covariantly constant. In fact,

we can calculate

0 = [V4,Vslgas
= R\soas+ Rﬁ’\»ycsga,\
= (Raﬁ'yé + Rﬁa'\/é) . (8'16)

As mentioned before, this implies that we can write the commutator of covariant

derivatives on a covector as

I:Vu, VV:IVP = RPJHVVU = _Ro—pul/VU . (8.17)

3. Cyclic permutation symmetry (or first Bianchi identity)

Ra[ﬁyé} =0 <« Ragfyg + Ra(sg-y + Ra»ﬂgg =0 (8.18)

This Bianchi identity is a consequence of the fact that there is no torsion. In fact,

applying [V, Vs] to the covector Vg¢, ¢ a scalar, one has

Vi, VsVgo=0 = R}Mvm =0 . (8.19)
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As this has to be true for all scalars ¢, this implies R,(g.5 = 0 (to see this you
could e.g. choose the (locally defined) coordinate functions ¢ (z) = 2# with
v /\¢(u) — 5’3)_

In turn this identity now implies that for any covector (not necessarily a gradient)

one has the identity (also called Bianchi identity)

V[’YV5VB} = _Ro[{ﬁwcﬂ Vo=0. (8.20)

4. Symmetry under exchange of the two pairs of indices

Rapys = Rysap (8.21)

This identity, stating that the Riemann tensor is symmetric in its two pairs of
indices, is not an independent symmetry but can be deduced from the three other
symmetries by some not particularly interesting algebraic manipulations. One

(quite possibly not optimal or minimal) possibility is

3
Rysa © —Ryaps — Rygsa

2
D Ravps + Rado

(
= _Roe&yﬁ - Raﬁé’y - Rﬁa'y6 - RB&YY

(

=

) (8.22)
= 2Rapys + Rsayp + Ropay

3
2 2Rapss — Riypa

1,2
(:) 2Raﬁfy5 - Rﬁ/éaﬁ ’
from which the claim follows.

Slightly more elegant (but equally obtuse) is the following argument.'” Consider

the matrix
Rapys  Raspy  Ransp
R = R&xﬁ'y R&yaﬁ R(SB'yoa (823)

where the first column consists of the 4 cyclic permutations of all 4 indices of the
Riemann tensor, while each row consists of the 3 cyclic permutations of the last
3 indices. Thus the sum oy, of the entries of the k’th row is zero for all k£ (by
symmetry (3)),

3
o = ZRM (3:) 0, (8.24)
=1
while
(1,2)
o1+09—03—04 =" 2Ropvs — 2R 508 - (8.25)

19See e.g. D. Bleecker, Gauge Theory and Variational Principles.
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We can now count how many independent components the Riemann tensor really has.
(1) implies that the second pair of indices can only take N = (4 x 3)/2 = 6 independent
values. (2) implies the same for the first pair of indices. (4) thus says that the Riemann
curvature tensor behaves like a symmetric (6 X 6) matrix and therefore has (6 x7)/2 = 21
components. We now come to the remaining condition (3): if two of the indices in (3)
are equal, (3) is equivalent to (4) and (4) we have already taken into account. With
all indices unequal, (3) then provides one and only one more additional constraint. We

conclude that the total number of independent components is 20.

REMARKS:

1. Note that this agrees precisely with our previous counting in section 3.6 of how
many of the second derivatives of the metric cannot be set to zero by a coordinate
transformation: the second derivative of the metric has 100 independent compo-
nents, to be compared with the 4 x (4 x 5 x 6)/(2 x 3) = 80 components of the
third derivatives of the coordinates. This also leaves 20 components. We thus see
very explicitly that the Riemann curvature tensor contains all the coordinate in-
dependent information about the geometry up to second derivatives of the metric.

In fact, it can be shown that in a Riemann normal coordinate system one has
G (T) =M + 0+ %Ruxay(xo)(x —zo) M —20)” + O((x —x0)®) . (8.26)

2. Just for the record, I note here that in general dimension D = d 4+ 1 the Riemann

tensor has D?(D? — 1)/12 independent components. This number arises as

D*D?-1)  N(N+1) (D
12 B 2 <4>
N = % (8.27)

and describes (as above) the number of independent components of a symmetric
(N x N)-matrix, now subject to (Z ) conditions which arise from all the possibilities
of choosing 4 out of D possible distinct values for the indices in (3). Just as for
D = 4, this number of components of the Riemann tensor coincides with the
number of second derivatives of the metric minus the number of independent

components of the third derivatives of the coordinates determined in (3.177),

D(D +1) y D(D +1) D DD +1)(D+2) D*D?-1)
2 2 2 x 3 N 12

(8.28)

For D = 2 this formula predicts one independent component, and this is as it
should be. Rather obviously the only independent non-vanishing component of
the Riemann tensor in this case is R1s12. We will discuss curvature in 2 dimensions

in more detail in sections 8.6 and 11.3 below.
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Finally, a word of warning: there are a large number of sign conventions involved
in the definition of the Riemann tensor (and its contractions we will discuss below),
so whenever reading a book or article, in particular when you want to use results or
equations presented there, make sure what conventions are being used and either adopt
those or translate the results into some other convention. As a check: the conventions
used here are such that Rygee as well as the curvature scalar (to be introduced below)

are positive for the standard metric on the two-sphere.

8.4 TIDAL FORCES: INFLUENCE OF CURVATURE ON PARTICLE TRAJECTORIES

In a certain sense the main effect of curvature (or gravity) is that initially parallel
trajectories of freely falling non-interacting particles (dust, pebbles,...) do not remain
parallel, i.e. that gravity is an attractive force that has the tendency to focus matter.
This statement find its mathematically precise formulation in equations describing the

influence of space-time curvature on the behaviour of (families of) geodesics.

Let us, as we will need this later anyway, recall first the situation in the Newtonian
theory. One particle moving under the influence of a gravitational field is governed by

the equation
Lol = - ¢(x) | (8.29)

where ¢ is the potential. Now consider a family of particles, or just two nearby particles,
one at z(t) and the other at z(t) + dz’(t). The other particle will of course obey the
equation

L (' 4 82ty = & p(x + dx) . (8.30)

From these two equations one can deduce an equation for dx itself, namely

ox' = —0'0;¢(x)dx) . (8.31)

dt2

It describes the effect of gravitational tidal forces (the gradient of the gravitational force)

on a family of particles moving in a gravitational field.

In particular, when there is no gravitational force, and the trajectories are straight lines,
one has

dt2 26t =0 = 6= (62%)o + (00')t . (8.32)
Thus one recovers Euclid’s parallel axiom, that two straight lines intersect at most once
(for suitable choices of dv® # 0) and that they never intersect when they are initially
parallel (§v° = 0). Any departure from this equation or its Minkowskian counterpart
55“ = (8.33)

d7'2

will therefore indicate a departure from Euclidean geometry!
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It is the counterpart of (8.31) that we will be seeking in the context of General Rela-
tivity. One derivation of this can be modelled on the Newtonian derivation above. It
is elementary but looks non-covariant (and therefore somewhat messy) at intermediate

stages of the calculation (see section 12.1 for a manifestly covariant derivation).

The starting point is of course the geodesic equation for x* and for its nearby partner
xt + ozt
2 A
#m“ + F‘Z/\(:E)d%x”%a: =0, (8.34)

and
B (@ 4 2) + T (2 + 02) L (2 + 6a”) L (2 + 02M) =0 . (8.35)

As above, from these one can deduce an equation for dx, namely
difg&n“ + ZF’ZA(:E)diTx”%&EA + OPF‘Z/\(:E)&EP%x”%x)‘ =0 . (8.36)

Now this does not look particularly covariant. Thus instead of in terms of d/dr we

would like to rewrite this in terms of the covariant operator D, with

Dot = Logn e 9500 (8.37)
T dr YA dr ' '
Calculating (D,)26z", replacing #* appearing in that expression by —Th & i (be-
cause z* satisfies the geodesic equation) and using (8.36), one eventually finds the nice
covariant geodesic deviation equation

(D;)?6at = R\ &7 6x” (8.38)

REMARKS:

1. This shows very clearly that curvature, as captured by the Riemann curvature
tensor, leads to non-Euclidean geometry in which e.g. the parallel axiom is not

necessarily satisifed.

2. In general, solutions to the geodesic deviation equation are called Jacobi fields.
They describe the difference between the given geodesic and a (hypothetical) in-

finitely close neighbouring geodesic.

3. Clearly the present derivation of this result leaves something to be desired. It
is also possible to give a manifestly covariant, and thus perhaps slightly more
satisfactory, derivation of the above geodesic deviation equation, and we will return

to this in section 12.1.
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8.5 (CONTRACTIONS OF THE RIEMANN TENSOR: Riccl TENSOR AND RICCI SCALAR

The Riemann tensor, as we have seen, is a four-index tensor. For many purposes this
is not the most useful object, but we can create new tensors by contractions of the
Riemann tensor. Due to the symmetries of the Riemann tensor, there is essentially only

one possibility, namely the Ricci tensor
Ry =Ry, = 9" Ropnw - (8.39)

It arises naturally from the definition (8.2) of the Riemann tensor in terms of commu-

tators of covariant derivatives, when one considers a contracted commutator,

[V, VV*=RY V7 = [V,V, )V =R\ V=R,V . (8.40)

ouv opuv

In particular, this identity explains why the Maxwell equations in the covariant Lorenz

gauge (6.45) take the non-minimally coupled form (6.46).

It follows from the symmetries of the Riemann tensor that R, is symmetric. Indeed
Ruu = g)\URJV)\M = g)\UR)\MO'V = R(Lcru = Rul/ . (8'41)

Thus, for D = 4, the Ricci tensor has 10 independent components, for D = 3 it has 6,
while for D = 2 there is only 1 because there is only one independent component of the

Riemann curvature tensor to start off with.

There is one more contraction of the Riemann tensor we can perform, namely on the

Ricci tensor itself, to obtain what is called the Ricci scalar or curvature scalar

R:=g"R,, . (8.42)

REMARKS:

1. One might have thought that at least in four dimensions there is another way
of constructing a (pseudo-)scalar, by contracting the Riemann tensor with the
Levi-Civita tensor, but

P Ripe =0 (8.43)

because of the Bianchi identity (cyclic symmetry of the Riemann tensor).

2. Note that for D = 2 the Riemann curvature tensor has as many independent
components as the Ricci scalar, namely one, and that for D = 3 the Ricci tensor
has as many components as the Riemann tensor, namely 6. Thus in D = 2 one
can express the entire Riemann tensor in terms of the Ricci scalar (and the metric)

alone, and one has
_ 9. _1
D=2: Raﬁ'yé = 5(90@966 - gaégﬁ'y)R (8'44)
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(we will establish this relation in section 11.3, see (11.29)), while in D = 3 one

has

D =3: Rusy = (9ayRas + Rary985 — 9asRay — Rasgpy) (8.45)

+ %(gac&gﬁ“/ - gorygﬁcS)R

(and we will prove this in section 11.4).

. It is thus only in four (and more) dimensions that there are strictly less components
of the Ricci tensor than of the Riemann tensor. This has profound implications
for the dynamics of gravity in these dimensions. In fact, we will see that it is only
in dimensions D > 3 that gravity becomes truly dynamical, where empty space

can be curved, where gravitational waves can exist etc.

. Contracting (8.8), one consequence of the symmetry of the Ricci tensor is the

useful general result
Vi, VT = R, (TH —T"") =0 (8.46)

for any tensor TH. If THY = FM is anti-symmetric, F*¥ = —F"" it is not

necessary to take the commutator, so one also has
FW = —F" = Y, (V,F") =3[V, V,]JF" =0 . (8.47)

Note that this can also be deduced (without knowing anything about curvature
in general or the Ricci tensor in particular) from the general expression (5.64) for

the divergence of an anti-symmetric tensor,

VP =g 20,(g PPy = VYR = g 20,0,(g"PFM) =0
(8.48)
This is how we had shown in section 6.6 that the Maxwell equations imply covari-

ant current conservation,
V., " =—J" = V,J'=0. (8.49)

Now we see that we can alternatively directly use the identity (8.47) to arrive at

this result.

. There are other scalars that can be built from the curvature tensor, but these
are necessarily of higher order in the curvature tensor, such as (trivially) R? or
(somewhat less trivially) R, R* or the square of the Riemann tensor, the so-
called Kretschmann scalar

K = Ry, R'"P7 . (8.50)

Analogously, scalars can be built from higher powers of the Riemann tensor and or
from powers of covariant derivatives of the Riemann tensor (R being the simplest

example).
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6. Such scalars are useful in analysing a given metric because, since they are scalars
they are invariant under coordinate transformations. Thus they directly provide
coordinate-invariant information about a metric. For instance if K is singular at
some point in some coordinate system then it will be singular at that point in all
coordinate systems, and thus such a singularity is not an artefact of a bad choice
of coordinate system but a property of the space(-time) itself described by that
metric. A prominent example is the singularity at the origin r = 0 of the Schwarz-
schild metric, unambiguously unveiled by the singularity of its Kretschmann scalar
(27.163).

7. Contracting (8.40) with V¥, one finds
Vv,V vk -vrv, v, V¥ =R, VIVY . (8.51)
Rewriting the first term as
VYV, VL, VE =V, (VIV,VE) = (V V)V, VH) (8.52)
this identity can be written as
VIV (VVE) + (VL V) (VIVE) =V (VIVLVE) + R, VEVY =0 . (8.53)

This is a very useful and versatile “master equation” which provides valuable in-
formation about the relation between vector fields and curvature when specialised
e.g. to geodesic vector fields, V¥V, V# = 0, or Killing vector fields, V,V,, = -V, V),
and V,V# = 0. Various specialisations of this equation will therefore appear later
on in these notes, and even though we will then usually rederive them from scratch
in the case at hand, it is good to keep in mind that e.g. (12.22) (our starting point
for the discussion of the Raychaudhuri equation in section 12.2) and (13.12) (a

useful identity relating Killing vectors and curvature) are special cases of (8.53).

8. As an a(far)side, and as an illustration of what one can do with (8.53), assume
that V' is such that its curl V,V, — V,V,, = 0 and its divergence V,V# = 0
are zero. Locally, the first condition has the solution V,, = 0,f, and then the
second condition says that (1f = 0, i.e. that f is harmonic. Therefore let us call a
VH harmonic if it satisfies the above two conditions (to the mathematically more
sophisticated: yes, I know that this is backwards, but we will specialise to the

compact Riemannian case below ...).

For V harmonic in this sense, (8.53) reduces to
(VMVV)(VMVV) + RMVVMVV = VM(VVV,/VM) . (854)

The simplest (albeit perhaps not of most direct relevance for physics) situation

where one can deduce something of substance from this equation is when one
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has a Riemannian (i.e. positive-definite) metric and the space one is dealing with
is compact, without boundary. Then (a) the first term is non-negative, and (b)
upon integration over the space the total derivative term on the right-hand side
gives zero upon use of the Gauss theorem (5.62) (discussed in some more detail in
section 16.3).

This implies that for a harmonic V to exist on such a space, the integral of

R, VHVY must be non-positive. In particular,

e if the Ricci tensor is positive (as a quadratic form), there are no harmonic

vector fields at all,

e and if R, V#V" =0, then a harmonic vector field is necessarily covariantly
constant, V,V,, = 0.

In more mathematical terms this means that the first Betti number of a compact
manifold admitting a metric with positive Ricci curvature is equal to zero. A

variant of this kind of argument for Killing vectors will be given in section 13.3.2°

8.6 EXAMPLE: CURVATURE TENSOR OF THE 2-SPHERE

To see how calculations of the curvature tensor can be done in practice, let us work out

the example of the two-sphere of unit radius, i.e. with line element
ds? = df? + sin® 0d¢?* = gapda®da® . (8.55)

We already know that the non-zero Christoffel symbols necessarily have two ¢-indices

and one f-index (from g4 = sin?#), and are given by
Fq;e =cotf , F‘gd)d) = —sinfcosf . (8.56)

We also know that the Riemann curvature tensor has only one independent component.
Let us therefore work out Re(w o From the definition we find

6 0 0 6 1c 0 c
The second and third terms are manifestly zero, and we are left with
R9¢9¢ = Jp(—sinf cos §) + sin @ cos O cot § = sin® 6 . (8.58)

Thus we have
R€¢9¢ = R9¢9¢ = Sin2 0

8.59)
¢ o (
Rfyp=1.

20Theorems of this kind, and proved with the help of these kinds of techniques, were pioneered by S.
Bochner and K. Yano in the 1930s - 1950s. See e.g. S. Bochner, K. Yano, Curvature and Betti Numbers

or W. Poor, Differential Geometric Structures for more details, rigour and applications.
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Therefore the Ricci tensor R, has the components

Rogg = 1
R9¢ =0
Ryy = sin?6 . (8.60)

These equations can succinctly be written as

Rab = Gab (8.61)

showing that the standard metric on the two-sphere is what we will later call an FEinstein
metric. The Ricci scalar R is

R=g"Rgy+ g*Ryp =1+ sin2f =2 . (8.62)

sin®

In particular, we have here our first concrete example of a space with non-trivial, in fact

positive, curvature.

The result for the Riemann tensor can be written succinctly as
Req = 0%9bd — 6%49bc (8.63)
which also immediately implies (8.61),
Rpq = R0 = 9ba - (8.64)
We will see later on, in section 14, that this form of the curvature tensor, or its equivalent,

Rabcd = Gac9bd — GadGbc (865)

is characteristic of the curvature tensor of the sphere in any dimension.

8.7 MORE EXAMPLES: CURVATURE TENSOR AND POLAR/SPHERICAL COORDINATES

We now turn to some variations of the above theme (and some other generalisations are

discussed in section 11.3 below).

1. First of all, let us address the question what is the curvature (scalar) of a sphere

of radius L, i.e. of the space with line element
ds? = L*(df? + sin® 0dp?) . (8.66)
There are at least 3 ways to answer this question:

e The first is to simply and blindly redo the above calculations in this case and

to see what one gets.
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e Alternatively, and somewhat more insightfully, rather than redoing the cal-
culation in that case one can argue as follows. Let us observe first of all that
the Christoffel symbols are invariant under constant rescalings of the metric
because they are schematically of the form ¢g~'dg. Therefore the Riemann
curvature tensor, which only involves derivatives and products of Christoffel
symbols, is also invariant. Hence the Ricci tensor, which is just a contraction

of the Riemann tensor, is also invariant:

gy — L?gsy = T9%. —T9% = RY,—R%; = Ru— Ry .
(8.67)
However, to construct the Ricci scalar, one needs the inverse metric. This
introduces an explicit L-dependence and the result is that the curvature
scalar of a sphere of radius L is R = 2/L?,

R(L?ga) = L?R(gap) = 2/L* . (8.68)

In particular, the curvature scalar of a large sphere is smaller than that of
a small sphere, something which makes intuitve sense, a very large sphere
locally “looking flatter” than a small sphere. However, one should use this
intuition with care since, as we have seen, e.g. the Ricci tensor is independent
of the size of the sphere.

e Finally, this result could also have been obtained on purely dimensional
grounds. The curvature scalar is constructed from second derivatives of the
metric. Hence it has length-dimension (-2). Therefore for a sphere of radius
L, R has to be proportional to 1/L?. Comparing with the known result for
L =1 determines R = 2/L?, as before.

2. Now let us consider, instead of the unit 2-sphere, the unit hyperboloid H? with
metric (2.31)
ds*(H?) = do? + sinh® o d¢? . (8.69)

It is clear that, apart from a few sign changes here and there, the calculation
of the Riemann curvature tensor is identical to that for S2. These sign changes
ultimately lead to the conclusion that the curvature scalar of H? is (-2). While
the sphere is the prototypical example of a space with positive curvature, the

hyperboloid is the prototypical example of a space with negative curvature.

Instead of just doing the calculation for this specific example, it is slightly more
instructive to do it for the class of metrics

ds® = dz® + f(x)%de? | (8.70)

for some (for the time being unspecified) function f = f(z). Denoting the deriva-

tive with respect to x by a prime, f’(x) = df /dz, one finds (this is a simple but
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constructive exercise) that the Ricci tensor and Ricci scalar are

Rap = =(f"/Pga » R(z)=-2f"(z)/f(x) . (8.71)

In particular, for the Euclidean metric and the standard metrics on the sphere
and the hyperboloid one finds

x (R?) 0
f(x)=1< sinz (S?) = R=( +2 (8.72)
sinhx (H?) —2

In 2 dimensions, R is related to the Gauss Curvature K of a surface by K = R/2
so that K = 0,41 in these examples. See section 11.3 for some more information.

. Now let us promote the constant radius L of S? to a new radial coordinate r
and ask the question what is the curvature tensor of the 3-dimensional space with

coordinates (r,z%) = (1,6, ¢) and line element
ds® = dr® + r?(df? + sin® 8d¢?) . (8.73)

On the one hand, because one seems to have just added a trivial r-direction to the
2-sphere, one might be tempted to suspect that also this 3-dimensional space has
non-trivial curvature. On the other hand, we recognise the above metric as the
Euclidean metric on R3, written in spherical coordinates, and as such we expect

its curvature (in fact, all components of the Riemann tensor) to be zero.

The latter expectation is of course borne out, but it is instructive to see explicitly
how this cancellation occurs. In fact, it will be even more instructive to consider
an apparently harmless and innocuous modification of the above metric which

consists in replacing dr? by some constant multiple of dr?,
ds® = p dr® + r?(d6* + sin® 0d¢?) . (8.74)

Equivalently, up to a truly harmless overall constant factor, we can think of this
as the Euclidean metric, but with the metric on the unit-sphere replaced by that
of a sphere of radius 1/,/p # 1),

ds* =p (dr® + (r*/p)(d6® + sin® 0d¢?)) . (8.75)
Proceeding in a pedestrian way, we thus have a metric g,g with components

9r=0 5 Gar=0 , Gu= T2’7ab > (8'76)

with 74 in this example denoting the components of the metric on the unit sphere
(and with ~9. and 7, its associated Christoffel symbols and components of the
Riemann curvature tensor determined in the previous section). From these we can

deduce that for r > 0 the non-trivial Christoffel symbols are

Frab = _p_l’r’yab ) abr = T_lé% ’ I‘abc = /7%0 . (877)
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From this, in turn, one finds that all the components of the Riemann tensor
involving at least one r-index are zero, whereas for the purely angular components
one finds

Riyeq = 7%ea + 1o a = T Mo - (8.78)

Using (8.63) and (8.77), one sees that

Gea = (1 =0 )r%eq = (1 =7 )(0%Y0a — 0%e) - (8.79)
Therefore precisely for p = 1 the two contributions to the curvature tensor indeed
cancel and the curvature tensor is identically zero, as expected.

Equally interesting is the fact that for p % 1 the curvature is non-zero even away
from r = 0 (in addition, there is a conical deficit angle singularity at » = 0, as in
the next example below, but this shall not be our concern here). In particular it
follows from the above result that the only non-vanishing components of the Ricci

tensor of this 3-dimensional space are
bea=(1=p")r%% = Ru=0-p ra=0-p")ma - (880
Therefore also its Ricci scalar is non-zero,
R=g"Rus = g"Rypy =21 —p Hr 2 . (8.81)

We also see from this that this space actually has a curvature singularity as » — 0.
Since the Ricci scalar is a scalar (under coordinate transformations), this diver-
gence cannot be an artefact of a bad choice of coordinates, and indicates that

there is a genuine geometric singularity for » — 0.
Extended to a four-dimensional space-time metric via
ds* = —dt* + p dr? + r*(d6? + sin® 0d¢?) | (8.82)

this describes the gravitational field outside a “monopole”.?!

4. As a final variation of this theme, we consider the above example in one dimension
less, i.e. we look at the metric one obtains if one replaces the Euclidean metric on

R? written in polar coordinates by
dr? + r2d¢? — p dr? + r2d¢? | (8.83)

where the angle ¢ has period 27.

In this case there is an interesting twist (pun intended) and the situation is some-
what different. Pulling out the factor of p, one sees that (up to this irrelevant

overall constant factor) the metric can be written as

ds? = dr® +r%d(¢//p)* = dr? + C*r2dy? . (8.84)

2IM. Barriola, A. Vilenkin, Gravitational Field of a Global Monopole, Phys. Rev. Lett. 63 (1989)
341-343.
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This would be the standard Euclidean metric on R? either for p = 1 or if the angle ¢
had periodicity 27,/p, but since ¢ has period 27, this results in a misidentification
of the points in a plane, like when one rolls up a flat piece of paper into a cone.
Away from r = 0, this space is intrinsically flat (all the components of the Riemann
curvature tensor are zero, as one can easily calculate - see section 11.1 for an
explanation of this use of the word “intrinsic”). There is, however, a conical
singularity at the tip of the cone r = 0, which can be thought of as a d-function
contribution to the curvature localised at r = 0. Extended to a four-dimensional

space-time metric,
ds? = —dt? + dz* + dr? + C*r2d¢? | (8.85)

it can be interpreted as the space-time metric of an idealised cosmic string ex-

tended in the z-direction.??

8.8 BIANCHI IDENTITIES AND THE EINSTEIN TENSOR

So far, we have discussed algebraic properties of the Riemann tensor. The Riemann
tensor also satisfies some differential identities which, in particular in their contracted

form, will be of fundamental importance in the following.

The first identity is easy to derive. As a (differential) operator the covariant derivative

clearly satisfies the Jacobi identity
(Vi [V, Vyll = 0 (8.86)

(total anti-symmetrisation over all 3 indices). Since the commutator [V,,V,] is al-
ready anti-symmetric in the indices v, A, this anti-symmetrisation is equivalent to cyclic

permutation of the 3 indices,
[v[,uv [Vw V)\]H =0 < [Vuv [Vva V)\H+ O (:uv v, )‘) =0. (887)

If you do not believe this identity (valid for any 3 associative linear operators), you can

just write out the twelve relevant terms explicitly to see that there is indeed a complete

221t is far from straightforward, however, to find a formalism which allows one to calculate and derive
the distributional Riemann tensor of this space-time - see R. Geroch, J. Traschen, Strings and other
distributional sources in general relativity, Phys. Rev. D36 (1987) 1017-1031 for a general analysis of
the problem and issues arising in this and related contexts, C. Clarke, J. Vickers, J. Wilson, Generalized
functions and distributional curvature of cosmic strings, Class. Quantum Grav. 13 (1996) 2485-2498
for one approach (based on the Colombeau algebra of distributions), and D. Garfinkle, Metrics with
distributional curvature, arXiv:gr-qc/9906053 for a different approach. We will (mostly) stay away
from distributional curvatures in these notes.
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cancellation:

Vi [V, Vall ~ VV,VA =V, VAV, =V, VAV, + VAV, V,
VaVuVy = VoV, V, + V,V, V) = V,V, V)
V,VaV, =V, V.V — VaV,V, + V, VsV,
= 0. (8.88)

To determine the implications of this identity for the Riemann tensor, we apply it to a
vector field V, say. The first term in (8.87) is

[V, Vo, VAIVP = Vu(R? [\ V) = [V, VAl(V,.V?)

= (V.R",\)V° + R’ \V, V' — R’ \V,V°+R%,\V,V’ (8.89)

oV oV oV
= (VHRPJV)\)VU + RCLV)\VUVP .

Upon taking the cyclic permutations, the sum of the 2nd terms vanishes by the cyclic

symmetry of the Riemann tensor, and therefore one finds

(VR Vo4O (v, A) =0 . (8.90)

oV

Since this holds for any V', one deduces the Bianchi identity

VR A+ O (v,A) =0 < VR

o =0 (8.91)

(where |o| indicates that this index is to be excluded from the anti-symmetrisation).

Using the symmetry (IV) of the Riemann tensor, this can equivalently be written as
ViR =0 . (8.92)

We will mainly be interested in a (double) contraction of this identity. To that end we

write out (8.91) explicitly as
VaRosuw + ViRagyu + ViuRoguy =0 . (8.93)
By contracting this with g®* we obtain
VaRg, — VyRgy + VR, =0 . (8.94)

This is not yet particularly useful. To also turn the last term into a Ricci tensor we

contract once more, with ¢g®* to obtain the contracted Bianchi identity
VAR), - V,R+V,R", =0 , (8.95)

or

VH(Ruw — 39w R) =0 . (8.96)

The tensor appearing in this equation is the so-called Einstein tensor G,

G;w = R,Lw - %Q;WR . (897)
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It is the unique divergence-free tensor that can be built from the metric and its first

and second derivatives (apart from g, itself, of course),
VEG,, =0, (8.98)

and this is why it will play the central role in the Einstein equations for the gravitational
field.

A minor caveat regarding the above statement about the uniqueness of the Einstein
tensor is that, as it stands, it is only true in D = 4 space-time dimensions. In D > 4,
there are other tensors with this property, but they are non-linear in 2nd derivatives of
the metric. The uniqueness statement continues to be true for D > 4 if one adds the
requirement that the tensor is linear in 2nd derivatives of the metric. I will briefly come

back to this in the discussion of the action principle for general relativity in section 20.1.

8.9 RIEMANN NORMAL COORDINATES REVISITED

In section 3.6 we had introduced Riemann normal coordinates as a special class of
inertial coordinate systems, based on geodesics. The main idea was to introduce new
coordinates % — £% in such a way that the coordinate lines of the new coordinates £*
are geodesics passing through the point p at which one wants to erect this coordinate

system.

In particular,

1. we considered the Taylor expansion (3.168)
(1) = xf + Tug — %T2F%7($0)u€ug +..., (8.99)
of a solution to the geodesic equation;

2. this led us to consider the coordinate transformation (3.170)

(&) = af + (€ — &0)"eq — 5(€ — €0)"(€ — &) T, (wo)epel +...  (8.100)
which has the property that the lines
M) =&+ TAY (8.101)

are geodesics for any constant A%;
3. for these geodesics the geodesic equation reduces to
1+ T5.E%°=0 = T +TAINN =0, (8.102)
implying at 7 =0
Ge()AAT =0 VAT =T (&) =0 (8.103)
(and we will look at the implications of the next term in the Taylor expansion of

(8.102) below).
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Therefore the Taylor expansion of the metric around & = &y has the form

9ab(&) = Nap + 3(& = €0)°(€ — €0) gavs cal(&0) + - -+ (8.104)

and we will now determine the quadratic term in this expansion (and be able to express
it in terms of the components of the Riemann tensor Rgpcq(§o) at the point p in these
coordinates). To that end we look at the next term in the Taylor expansion of (8.102).
Thus we differentiate (8.102) along the geodesic, i.e. with respect to 7, and evaluate the

results at 7 = 0 to deduce
Dal% (E)AINNE =0 ¥ AP (8.105)
or, equivalently
Ial'pe) (o) =0 & 0al'}e(S0) + I 4(S0) + Ol (§0) =0 . (8.106)
This condition, and the analogous conditions
Id...el'bey(§0) = 0 (8.107)

arising from the higher-order terms in the Taylor expansion of (8.102) impose constraints
on the Christoffel symbols and their derivatives that are satisfied in Riemann normal

coordinates (but not in general inertial coordinate systems).

A useful way of reexpressing the condition (8.106) is the following (a certain amount of
hindsight or trial-and-error is required for this): because I'}_(£o) = 0, from the definition

of the Riemann tensor we have

bea(80) + Rpa(€0) = 0% (80) — 0al' % (§0) + T 0a(€0) — 9al 4 (60)
= 0cI"%4(80) + T %0q(E0) — 20al%(60)

and using (8.106) this can be written as

Aal % (&0) = =5 (R%ea(é0) + Rpa(0)) - (8.109)

On the other hand, from

(8.108)

Gab, c(f) = Pabc(g) + Fbac(f) (8.110)
we have

YGab, cd(g) = adrabc(g) + adrbac(g) (8'111)

and at & we can use (8.109) and the symmetries of the Riemann tensor to deduce

1
abs ¢ = 73 Rac +Rac +Rac +Rca
Gabs cd(&0) ;1),( bed bd bacd bead) (§0) (8.112)

= —2(Racbd + Ricaa)(&0) = —3(Racba + Raave) (o) -

We have thus found that, to quadratic order in a Taylor expansion of the metric around

the origin of a Riemann normal coordinate system, the metric can be written as

9ab(&) = ap — & (Racba(&0) + Raave(€0)) (€ — €0)°(€ — &) + O(€?)

8.113
= Nab — 5 Racha(£0) (€ — &0)°(€ — &) + O(&?) . | )
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If required, higher order terms can be determined analogously with the help of the
higher order terms in the Taylor expansion of (8.102), and (with a steady hand) can be

expressed in terms of the covariant derivatives of the Riemann tensor at &.

8.10 PRINCIPLE OF MINIMAL COUPLING REVISITED

In sections 4.1 and 6.1 on the principles of general covariance and minimal coupling
respectively, I mentioned that these do not necessarily fix the equations uniquely. In
other words, there could be more than one generally covariant equation which reduces
to a given equation in Minkowski space. Having the curvature tensor at our disposal

now, we can construct examples of this kind.

Given some tensorial equation, obtained by the minimal coupling prescription, say,
one can always contemplate the possiblity to add additional terms to it involving the
curvature tensor. Since such terms take the form of higher derivative corrections to the
original equation, multiplied by appropriate dimensionful constants, one can usually
get away with ignoring such terms when dealing with weak fields and other low-energy
phenomena, and under such conditions the minimal coupling rule can usually be trusted.
However, such terms are not negligible under extreme conditions involving e.g. very

strong or strongly fluctuating gravitational fields.

An example which shows very clearly that the minimal coupling prescription, at least
the way we have formulated it, is itself ambiguous is, as already briefly pointed out in
section 6.6, provided by Maxwell theory. In that case, we saw that in the covariant

Lorenz gauge one has (6.45)
VAR =0 = VM =V, (VFAY — VVAR) = OAY — [V,, VV]A* | (8.114)

where JA” = V#V,A". Tt thus follows from (8.40) that the Maxwell equations in the

covariant Lorenz gauge can be written as (6.46)
VAl =0 = V., F"=-J" — [DOA-RHA'=-J" . (8.115)

What this shows is that “minimal coupling” all by itself is not a unique prescription, as
we would have obtained (8.115) without the curvature terms by applying the minimal
coupling prescription to the special relativity Maxwell equation in the Lorenz gauge,

namely just A, = —J,.

In the present situation, (6.46) is superior to the equation without the curvature term

because

e it follows from a variational principle (involving the minimally coupled counterpart

of the Maxwell action)
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e and (related to this) because (8.115) implies that the current is covariantly con-
served (as we had verified in section 6.6 in an arbitrary gauge), while for the
equation without the curvature term covariant current conservation would then

be violated by a curvature term (as can easily be verified).

Thus occasionally some such additional criteria can be used to eliminate (or reduce) the

ambiguity in the minimal coupling prescription, but this need not always be the case.

As another example, consider the wave equation for a (massless, say) scalar field ®. In
Minkowski space, this is the Klein-Gordon equation which has the obvious curved space
analogue (5.56)

0o =0 (8.116)

obtained by the minimal coupling description. However, one could equally well postulate
the equation
(O4+&R)P =0, (8.117)

where ¢ is a (dimensionless) constant and R is the scalar curvature. This equation is
generally covariant, and reduces to the ordinary Klein-Gordon equation in Minkowski
space, so this is an acceptable curved-space extension of the wave equation for a scalar

field. This equation of motion arises (in D sapce-time dimensions) from the action

Sel®, gap) = —%/\/ﬁd% (9" 0,00,¢ + ER) (8.118)

exhibiting the non-minimal (yet generally covariant) coupling of the scalar field to grav-

ity via the term ¢R¢? (which acts as an 2-dependent mass term for the scalar field).

Moreover, £ is dimensionless, so one cannot argue that on dimensional grounds this
ambiguity is irrelevant for weak fields. Indeed, one frequently postulates a specific non-
zero value for £ which makes the wave equation conformally invariant (invariant under
position-dependent Weyl rescalings of the metric) for massless fields, and this criterion
can be imposed to select a particular non-zero value for £ (e.g. for a 4-dimensional
space-time this turns out to be the value £ = 1/6). This will be discussed and explained

in section 22.3.

Thus in general such ambiguities are present and are something one has to live with.
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B: GENERAL RELATIVITY AND GEOMETRY

In this second part of the lecture notes I have collected a number of different topics that
develop the formalism of tensor calculus in one way or another. This does not mean,
however, that one necessarily needs to digest all these topics before continuing with the

physical applications of general relativity, and I do not even recommend this.

Stricly speaking none of these topics are essential for understanding some of the more
elementary aspects of general relativity to be treated later on, e.g. the discussion of
the Einstein equations, the field equations for gravity, in section 19, the discussion
of gravitational waves in section 23, or the analysis of geodesics in the Schwarzschild

geometry and the corresponding solar system tests of general relativity in section 25.

Some of the topics treated below will reappear frequently in subsequent sections, e.g.
Killing vectors (section 9) and their associated conserved quantities (section 10), or the
Gauss integral formula derived in section 16.3, and it will be useful to develop at least

some nodding acquaintance with these things.
Other topics have been included for a variety of reasons:
e cither to illustrate the relation between the Riemann curvature tensor, a central
object of interest in general relativity and defined in a somewhat pragmatic and

perhaps unintuitive fashion in section 8, and more intuitive and/or geometric

concepts of curvature;

e or because they provide an improved understanding of the tensor calculus we have

developed so far;

e or because they are required at a later stage to understand, or even formulate,

certain somewhat more advanced aspects of general relativity;

e or simply because they are fun or beautiful (or both), and provide an invitation

to the wonderful world of differential geometry;

e or (usually) a combination thereof.

230



9 LIiE DERIVATIVE, SYMMETRIES AND KILLING VECTORS

9.1 SYMMETRIES OF A METRIC (ISOMETRIES): PRELIMINARY REMARKS

Symmetries and their consequences play a fundamental role in physics. In the present

context, these are symmetries of the gravitational field or of the space-time metric.

Before trying to figure out how to detect symmetries of a metric, or so-called isometries,

let us decide what we mean by symmetries of a metric.

For example, we would say that the Minkowski metric has the Poincaré group as a group
of symmetries, because the corresponding coordinate transformations leave the metric

invariant.

Likewise, we would say that the standard metrics on the two- or three-sphere have
rotational symmetries because they are invariant under rotations of the sphere. We can
look at this in one of two ways: either as an active transformation, in which we rotate
the sphere and note that nothing changes, or as a passive transformation, in which we
do not move the sphere, all the points remain fixed, and we just rotate the coordinate
system. So this is tantamount to a relabelling of the points. From the latter (passive)
point of view, the symmetry is again understood as an invariance of the metric under a

particular family of coordinate transformations.

Thus consider a metric g, () in a coordinate system {z*} and a change of coordinates
a# — yH(z¥) (for the purposes of this and the following section it will be convenient
not to label the two coordinate systems by different sets of indices). Of course, under
such a coordinate transformation we get a new metric g:w, with (since here we do
not distinguish coordinate indices associated to different coordinate systems, we now
momentarily put primes on the objects themselves in order to keep track of what we
are talking about) R
o

9 (y(@)) = g—;g—;gﬁ(w) : (9.1)

However, so far this by itself has nothing to do with possible symmetries of the metric.

Thinking actively, in order to detect symmetries, we should e.g. compare the geometry,
given by the line-element ds? = g dxtdz”, at two different points x and y related by

y*(x). Thus we are led to consider the difference
guu(y)dyudyu - guu(l‘)dl‘udl‘u . (9.2)

Using the invariance of the line-element under coordinate transformations, i.e. the usual
tensorial transformation behaviour of the components of the metric, we see that we can

also write this as the difference

(9 (y) — 9,0 () dytdy"” . (9.3)
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Thus we deduce that what we mean by a symmetry, i.e. invariance of the metric under

a coordinate transformation, is the statement

9w () = g () - (9.4)

From the passive point of view, in which a coordinate transformation represents a rela-
belling of the points of the space, this equation compares the new metric at a point P’
(with coordinates y*) with the old metric at the point P which has the same values of

the old coordinates as the point P’ has in the new coordinate system, y*(P’) = z#(P).

The above equality then states that the new metric at the point P’ has the same
functional dependence on the new coordinates as the old metric on the old coordinates
at the point P. Thus a neighbourhood of P’ in the new coordinates looks identical to
a neighbourhood of P in the old coordinates, and they can be mapped into each other
1sometrically, i.e. such that all the metric properties, like distances, are preserved. Thus

either actively or passively one is led to the above condition.

Note that to detect a continuous symmetry in this way, we only need to consider infinites-
imal coordinate transformations. In that case, the above amounts to the statement that
metrically the space-time looks the same when one moves infinitesimally in the direction

given by the coordinate transformation.

9.2 LIE DERIVATIVE FOR SCALARS

We now want to translate the above discussion into a condition for an infinitesimal

coordinate transformation
at =yt (x) = 2t + eVH(x) (9.5)

to generate a symmetry of the metric. Here you can and should think of V#* as a
vector field because, even though coordinates themselves of course do not transform like

vectors, their infinitesimal variations dz* do,

i

/ / ’ u
2 =2t (x) = o2t = %&v“ (9.6)

and we think of dz# as eVH.

In fact, we will do something slightly more general than just trying to detect symmetries
of the metric. After all, we can also speak of functions or vector fields with symmetries,
and this can be extended to arbitrary tensor fields (although that may be harder to
visualise). So, for a general tensor field 7" we will want to compare T"(y(z)) with
T(y(z)) - this is of course equivalent to, and only technically slightly more convenient

in the following than, comparing 7"(z) with T'(x).
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As usual, we start the discussion with scalars. In that case, we want to compare ¢(y(z))
with ¢'(y(x)) = ¢(x). We find

o(y()) — &' (y(2)) = d(x + V) = p(x) = eV g + O(¢*) . (9.7)

We now define the Lie derivative of ¢ along the vector field V* to be

$y()) — ¢'(y(z))

€

Ly¢ = lim (9.8)

Evaluating this, we find
Lyvp=V"d,o . (9.9)

Thus for a scalar, the Lie derivative is just the ordinary directional derivative, and this
is as it should be since saying that a function has a certain symmetry amounts to the

assertion that its derivative in a particular direction vanishes.

9.3 Li1E DERIVATIVE FOR VECTOR FIELDS

We now follow the same procedure for a vector field W#. We will need the matrix

Oyt /0x") and its inverse for the above infinitesimal coordinate transformation. We
Y

have Gk
Y su i
o = AV (9.10)
and -
s n 2
By o, —ed, VI +O(e) . (9.11)
Thus we have
L
Wh(y(a) = W)
= WH(z)+ eW"(x)0,V*(z) , (9.12)
and
WH(y(x)) = WH(z) + eVV9,WH(z) + O(e?) . (9.13)

Hence, defining the Lie derivative Ly W of W by V by

WH(y(x)) — W (y(x))

LyWH := lim , (9.14)
e—0 €
we find
LyWH =VY9,WHF —-W"9,V# . (9.15)

There are several important things to note about this expression:
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1. The result looks non-covariant, i.e. non-tensorial, but as a difference of two vectors
at the same point (recall the limit € — 0) the result should again be a vector. This
is indeed the case. One way to verify this is to check that it indeed transforms as a
vector under coordinate transformations. Indeed, by a straightforward calculation
one finds that under a coordinate transformation z# — y® with Jacobi matrix Jj

one has
VW] = J VW 4 o (VEWY — VW) = SV (9.16)

because
Jﬁ‘l, =0,J) = JS;L (9.17)

is symmetric.

2. Alternatively, to make the tensorial character of thet Lie derivative manifest, one

can rewrite (9.15) in terms of covariant derivatives,

LyWHt = VYV,WF— W'V, V#
= VyWHE—Vy Ve . (9.18)

This shows that Ly W* is again a vector field. Note, however, that the Lie deriva-
tive, in contrast to the covariant derivative, is defined without reference to any

metric.

3. There is an alternative, and perhaps more intuitive, derivation of the above ex-
pression (9.15) for the Lie derivative of a vector field along a vector field, which
makes both its tensorial character and its interpretation manifest (and which also
generalises to other tensor fields; in fact we had already applied it to the metric
in section 3.2 to deduce (3.34)).

Namely, let us assume that we are initially in a coordinate system {y“/} adapted
to V in the sense that V = 9/dy® for some particular a, i.e. V¥ = 5" (so that
we are locally choosing the flow-lines of V' as one of the coordinate lines). In
this coordinate system we would naturally define the change of a vector field W*

along V' as the partial derivative of W along y°,

0 /

LyWH .= wH 9.19
v 9y (9.19)

We now consider an arbitrary coordinate transformation z% = xa(y“,), and require
that Ly W transforms as a vector under coordinate transformations. This will then

give us the expression for Ly W in an arbitrary coordinate system:

O yyw _ 02" 0 <8y” Wﬂ>

oy oy Oz \ OxP
T o
= S (Lvw)e (9.20)
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Disentangling this, using V¢ = 0x*/dy® and
Oz 9%y 0z 0 oy oV oy (0.21)
Oye 0z2dxP  Oye 0P Oz OxP Oz '

one recovers the definition (9.15).

. Note that (9.15) is anti-symmetric in V' and W. Hence it defines a commutator
[V, W] on the space of vector fields,
[V,WH = LyWHt = —Ly V# . (9.22)
This is actually a Lie bracket, i.e. it satisfies the Jacobi identity
V. W, X]|* + [ X, [V.W]}} + [W,[X, V]! =0 . (9.23)

This can also be rephrased as the statement that the Lie derivative is also a

derivation of the Lie bracket, i.e. that one has
Ly [W, X¥ = [LyW, X]# + [W, Ly X]# . (9.24)

. I want to reiterate at this point that it is extremely useful to think of vector fields
as first order linear differential operators, via V# — V = V#9,,. In this case, the
Lie bracket [V, W] is simply the ordinary commutator of differential operators,
V,W] = [VF0,,W"0,]

= V¥oWw")o, +Vtwvro,o, - W¥(0,V*)o, — W"V*#9,0,

= (VYo,WH —-W"9,V*)0,

= (LyW)to, =[V,W}*o, . (9.25)
From this point of view, the Jacobi identity is obvious.
. From the above it is evident that if one has two vector fields of the form V(z) = Oy,
they commute as differential operators, i.e. their Lie bracket is zero,

V(k) = 8yk = [V(l), V(g)] =0 . (9.26)

Conversely it is also true that locally this is a sufficient condition for the existence

of such coordinates,

V), Vil =0 & 3 (locally) Y Viky = Oy (9.27)

. For example, if one has a 2-parameter surface z# = z#(7, o), which one can think
of as a 1-parameter family of curves z#(7) labelled by o, then the tangent vector
field 0, = ##0,, to the family of curves and the connecting vector field (or deviation

vector field) Oy = 2™, have vanishing Lie bracket.

Conversely this also provides a good visualisations of what it means for two vector
fields to Lie commute, namely that locally they span a 2-dimensional surface and
generate a coordinate grid on that surface. We will make use of this in section

12.1 when discussing the so-called geodesic deviation equation.
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8. Having equipped the space of vector fields with a Lie algebra structure, in fact
with the structure of an infinite-dimensional Lie algebra, it is fair to ask ‘the
Lie algebra of what group?’. Well, we have seen above that we can think of
vector fields as infinitesimal generators of coordinate transformations. Hence,
formally at least, the Lie algebra of vector fields is the Lie algebra of the group
of coordinate transformations (passive point of view) or diffeomorphisms (active
point of view).?> We will briefly come back to this below, in remark 1 of section
9.4.

9. In section 8.2 we had obtained the formula (8.10),
(IVx, Vy] = Vixy)V* = R, XFYVV (9.28)

for the relation between the commutator of directional covariant derivatives and
the Riemann curvature tensor. There we had used the abbreviation [X, Y] for the
vector field VxY* — Vy X#. Comparing with (9.18), we see that this is indeed
just the Lie bracket [X,Y]*. Thus one way of interpreting the Riemann tensor
is that the curvature measures the failure of the covariant derivative to provide a

representation of the Lie algebra of vector fields.

9.4 LiE DERIVATIVE FOR OTHER TENSOR FIELDS

To extend the definition of the Lie derivative to other tensors, we can proceed in one of

two ways. We can either extend the above procedure to other tensor fields by defining

LyT = lim (@) = T2 (y (@)

e—0 €

(9.29)

Or we can extend it to other tensors by proceeding as in the case of the covariant
derivative, i.e. by demanding the Leibniz rule. The Lie derivative on an arbitrary tensor

is then uniquely determined by its action on scalars and vectors.

In either case, the result can be rewritten in manifestly tensorial form in terms of

covariant derivatives. For example, for a covector one finds
LvA,=V"0,A,+ (0, V')A, =V"V, A, + (V. VV)A, . (9.30)

The general result is that the Lie derivative of a (p,q)-tensor T is, like the covariant
derivative, the sum of three kinds of terms: the directional covariant derivative of T
along V', p terms with a minus sign, involving the covariant derivative of V' contracted
with each of the upper indices, and g terms with a plus sign, involving the convariant

derivative of V' contracted with each of the lower indices (note that the plus and minus

2Gee e.g. H. Glockner, Fundamental problems in the theory of infinite-dimensional Lie groups,
arXiv:math/0602078 [math.GR] for an introduction and a survey of the problems that arise when
dealing with or trying to define infinite-dimensional Lie groups.
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signs are interchanged with respect to the covariant derivative). Thus, e.g., the Lie

derivatives of a (0,2) and a (1,2)-tensor are

LyT,\ = vapTV)\ + TPAV,,V” + TVpV)\Vp

(9.31)
LyT:, = VPV, T, —T0, Y, Vi + TV, VP + T VAV

REMARKS:

1. While it is not obvious from the somewhat pedestrian definition of the Lie deriva-
tive that we have given here, the Lie derivative is an extremely natural operation
on tensors. In differential geometry textbooks (and mathematically more sophis-

ticated accounts of general relativity) it is defined as follows:

(a) Given a vectorfield V', associate to it the l-parameter family of diffeomor-
phisms ®!, it generates (with ®{7° the idenitity), i.e. the flow along the

integral curves of this vector field.

(b) This diffeomorphism induces an action on tensor fields (by pull-back), de-
noted by (®%,)*,
T — (®4)*T . (9.32)

(c¢) Define the Lie derivative to be the infinitesimal generator of this action,

d
LyT := £(®§/)*T\t:0 : (9.33)

While this definition can be shown to be equivalent to the definition of the Lie
derivative given above in terms of coordinates, Taylor expansions etc., this defi-
nition is evidently more compact, more illuminating and somewhat more to the
point. In particular, it makes the tensorial nature of the Lie derivative manifest.
However, in order to arrive at explicit expressions for the Lie derivative of the
components of a tensor, one then still needs to perform a calculation equivalent
to (9.29).

2. The fact that the Lie derivative provides a representation of the Lie algebra of
vector fields by first-order differential operators on the space of (p,q)-tensors is

expressed by the identity
[Lv,Lw] = L[V,W} . (934)

While it is a bit painful to verify this explicitly on arbitrary tensors, in view
of the fact that by the Leibniz rule the Lie derivative of an arbitrary tensor is
determined by its action on scalars and vectors, it is actually sufficient to verify
(9.34) on scalars and vectors. This is trivial because it is just the statement that

the Lie bracket is the commutator of first order differential operators (9.25),

[Lv,Lw]f = [V*0u, WP0s]f = [V, W]*0uf = Ly f (9.35)
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and that this commutator satisfies the Jacobi identity (9.24),

[Lv,Lw|Z = Ly[W, Z] — Lw[V, Z] = [V, [W, Z]] — [W, [V, Z]|

=[V\W],Z] = LywZ . (9.36)

9.5 LI1E DERIVATIVE OF THE METRIC AND KILLING VECTORS

The above general formula (9.31) for the Lie derivative of a tensor becomes particularly
simple for the metric tensor g,,. The first term is not there (because the metric is
covariantly constant), so the Lie derivative is the sum of two terms (with plus signs)

involving the covariant derivative of V/,
Ly g = 9wV V> + gV, V. (9.37)
Lowering the index of V' with the metric, this can be written more succinctly as
Lyguw =V, V, +V,V, . (9.38)

The not manifestly covariant avatar of this equation (recall that fundamentally the Lie

derivative requires no notion of a covariant differentiation) is
LVg/u/ = V)\aAg/w + 8uv)\g)uj + auv)\gu)\ . (939)

A quick alternative way to arrive at this result is to look directly at the infinitesimal
version of the difference
guu(y)dyudyu - guu(x)dl‘udl‘u (9'40)

which was the starting point of our discussion in section 9.1 above. Namely, we consider
the infinitesimal coordinate transformation
Syt =VH = Sydzt = dVF = (0 VH)dz?

N (9.41)
5V.g,uz/(x) =V 8)\g;w($) s

and define the Lie derivative of the metric by the change this operation dy induces in
the line element,
Ov (gudatdz”) = (Ly gy )datdz” . (9.42)

This leads directly to (9.39) and thus to (9.38).

We are now ready to return to our discussion of isometries (symmetries of the metric).
Evidently, an infinitesimal coordinate transformation is a symmetry of the metric if
Ly g, = 0. By (9.38) this can be written as (see also (5.67))

V' generates an isometry < Ly g, =0

(9.43)
s VIV +V,V,=0 .
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Vector fields V' satisfying this equation are called Killing vectors - not because they
kill the metric but after the 19th century mathematician W. Killing.

The alternative non-covariant way (9.39) of writing the Killing equation makes it man-
ifest that only components and derivatives of the metric in the V-direction enter in this

condition,
VoV + VoV, =0 & Vg + 9,V gn + 8,V g =0 . (9.44)

This is precisely the condition (3.35) we had encountered first in our discussion of first
integrals of motion for the geodesic equation, and which we had already rewritten in

terms of covariant derivatives, as in (9.38) above, in (5.66).

Since they are associated with symmetries of space-time, and since symmetries are
always of fundamental importance in physics, Killing vectors will play an important
role in the following. Our most immediate concern (in section 10, in particular section
10.1) will be with the conserved quantities associated with Killing vectors. Other aspects
of Killing vectors and their interplay with the geometry of a space-time will be discussed

in sections 13 and 14. For now we just note the following simple facts and examples:

1. Note that by virtue of (9.34) Killing vectors form a Lie algebra, i.e. if V and W

are Killing vectors, then also [V, W] is a Killing vector,

Lvguw = Lwgu = 0= Lyw)guw =0 . (9.45)
Indeed one has

Lyw1 9w = LvLw g — Lw Ly g, =0 . (9.46)
An explicit proof of this fact will be given later on in section 13.2.

2. The resulting algebra of Killing vectors is the Lie algebra of the isometry group

of the metric. For example, the collection of all Killing vectors of the Minkowski
metric generates the Lie algebra of the Poincaré group. Indeed, for the Minkowski

space-time in inertial (Cartesian) coordinates £%, i.e. with the constant standard

metric 74, the Killing condition simply becomes
0V + 0V, =0 (9.47)

which is solved by
Ve =wd b4 e (9.48)

where the €% are constant parameters and the constant matrices w9 satisfy wqp, =
—wpe. These are precisely the infinitesimal Lorentz transformations and transla-

tions of the Poincaré algebra, as given e.g. in (1.30).

Choosing as a basis for the Killing vectors of Minkowski space the vectors

Pa = 8[1 ) Mab = gaab - gbaa s (949)
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so that the general Killing vector V' (9.48) can be expanded as
V =V, = 1w My, + P, (9.50)
the Lie algebra (algebra of Lie brackets) is given by
[P as P, b] =0
[Maba Pc] - _nach + lecPa (951)
[Maba Mcd] = nadec + nbcMad - nachd - nbdMac .
This is of course the Lie algebra of the Poincaré group.

. Another simple example is provided by the two-sphere: as mentioned before, in
some obvious sense the standard metric on the two-sphere is rotationally invariant.
In particular, with our new terminology we would expect the vector field Jy, i.e.
the vector field with components V® = 1,V? = 0 to be Killing. Let us check
this. With the metric df? + sin? §d¢?, the corresponding covector V., obtained by

lowering the indices of the vector field V#, are
Vo=0, V,=sin?60 . (9.52)
The Killing condition breaks up into three equations, and we verify
VoV = 86‘/6 - F“ggv,u
= —F%e sin?6 =0
V@V¢+V¢V9 = 89V¢—F%¢Vu—|—a¢V9—F%¢VH
= 2sinfcosf —2cotfsin0 =0
VoVy = 0pVy — I‘“(M)Vu =0 . (9.53)

Alternatively, using the non-covariant form (9.44) of the Killing equation, one
finds, since V¢ = 1,V? = 0 are constant, that the Killing equation reduces to

D =0 (9.54)

which is obviously satisfied. This is clearly a simpler and more efficient argument.

By solving the Killing equations on S2, in addition to Jy = V(3) one finds two
other linearly independent Killing vectors V(1) and V(z), namely

V1) = sin ¢dy + cot 6 cos ¢y
Vi) = cos ¢y — cot 0 sin ¢y (9.55)

Note that V(3 evidently relates these two other Killing vectors by

Vi, Vinl=Viey » V) Vil = Vo - (9.56)
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Since one also has
Vay, Vil = Vi) (9.57)

the V{,) form the Lie algebra
[‘/(a)7 ‘/(b)] = 6abc‘/(c) . (958)

This is the Lie algebra of infinitesimal rotations, i.e. of the rotation group SO(3),

which is the isometry group of the standard metric on S2.

. In general, if the components of the metric are all independent of a particular

coordinate, say y, then by the above argument V' = 9, is a Killing vector,
Oygu =0V p,v = V=0, is a Killing Vector (9.59)

Such a coordinate system, in which one of the coordinate lines agrees with the
integral curves of the Killing vector, is said to be adapted to the Killing vector (or
isometry) in question. For any given Killing vector V' one can always introduce
local coordinates such that V' takes the form V = 0,. It suffices to choose as y
the parameter along the integral curves of V', using the remaining coordinates to

label the individual integral curves.

. If one has two Killing vector fields V(1) and V), then the necessary and sufficient
condition that one can introduce local coordinates (y',y?,...) that are adapted
to both of them, i.e. such that V{z) = d, is that they commute as differential
operators, i.e. that they have vanishing Lie bracket,

[‘/(1)’ ‘/(2)] = O g El (loca‘HY) yk : ‘/(k) - ayk ) aykg;u/ - 0 . (960)

. As we did in section 3.2, one can also take the above equations (9.59) as the
starting point for what one means by a symmetry of the metric (isometry) and
then simply transform it to an arbitrary coordinate system by requiring that it
transforms as a (0, 2)-tensor. Then one arrives at the Killing condition in the form
(9.44).

. Because by definition the geometry of a space-time does not change along the
orbits of a Killing vector, it is intuitively obvious that in particular the norm of
a Killing vector V should be constant along (the orbits of) V, and this is indeed
easy to prove. Here are two simple proofs of this statement, one using covariant
derivatives and the other using Lie derivatives:

(a) Using covariant derivatives, one calculates
Ve, (VPVE) = VOV (VPVE) = 2VoVPV, V5 = 0 (9.61)
by anti-symmetry of V,Vj.
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(b) Using Lie derivatives, one calculates

Ve, (VPV5) = Ly (gapVVP) (9.62)
= (Lv9ap)V VP + 2005 (Ly V)VF =0 '

because Ly gos = 0 (V is a Killing vector) and Ly V® = [V, V]* = 0 (which

is true for any V).

8. An occasionally useful result that provides an interesting relation between geodesics
and Killing vectors (different from the one to be discussed below in section 10.1)
and that is straightforward to establish, is the fact that a Killing vector field is
geodesic if and only if it is of constant length. This follows by contracting the

Killing equation with V# and writing
0=VHV,V,+V,V,) =VIV,V,+ iV, (V*V,) . (9.63)

Since by definition V# is geodesic iff V#V,V, = 0 (5.97), the result follows. In
particular, this implies that the integral curves of null Killing vector fields are

always automatically (affinely parametrised) geodesics.

9. As an aside: a minimal variation of this proof establishes the same result for
gradient vector fields V,, = 0,5 instead of Killing vector fields, namely that a
gradient vector field is geodesic if and only if it is of constant length. Since a

gradient vector field satisfies
V=0, = V,V,-V,V,=0 (9.64)

(instead of the Killing vector equation V,V, + V,V,, = 0), it suffices to change
one sign in (9.63),

0=VHV,V, =V, V,) =V*V,V, — sV, (VV,) , (9.65)

from which the claimed result follows.

9.6 LIE DERIVATIVE FOR TENSOR DENSITIES

It is straightforward to extend the Lie derivative to tensor densities. Given the fact
expressed in (4.61) that any tensor density can be written as tensor times a suitble
power of the determinant g of the metric, all we need to know is the Lie derivative

acting on g. For this we can use the general variational formula (5.75) to deduce
Lv g=99"Lvgas - (9.66)
With the aid of (9.38) this can be simplified to

Ly g=99*°(VaVs + VsVa) =29 VoV | (9.67)
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and for the ubiquitous volume element /g one finds
Ly g =g V.V . (9.68)
It follows for example that for a scalar density of weight 1 \/gF', F' a scalar, one has
Ly (/g F) = \/g(VOVF + FV,VY) = /g Vo (VOF) . (9.69)

Using (5.50), this can also be written as a total derivative

Ly(vG F) = 8a(\/g V°F) . (9.70)

This identity lies at the heart of the general covariance of actions built from scalars or

scalar densities, and we will discuss this aspect in more detail in sections 20.6 and 22.2.

Analogously, the Lie derivative can be extended to tensor densities of any rank and
weight.
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10 KILLING VECTORS, SYMMETRIES AND CONSERVED CHARGES

10.1 KILLING VECTORS AND CONSERVED CHARGES

We are used to the fact that symmetries lead to conserved quantities (Noether’s theo-
rem). For example, in classical mechanics, the angular momentum of a particle moving
in a rotationally symmetric gravitational field is conserved. In the present context, the
concept of ‘symmetries of a gravitational field’ is replaced by ‘symmetries of the met-
ric’, and we therefore expect conserved charges associated with the presence of Killing

vectors. Here are the two most important classes of examples of this phenomenon:

1. Killing Vectors, Geodesics and Conserved Charges
Let K* be a Killing vector field, and x#(7) be a geodesic. Then the quantity

Qi = K" (10.1)

is constant along the geodesic. Indeed,

d d . . .
Qi = (K,d") = (DK, + K, Dri"

dr
= V,K,2"i" +0
= 2(VuK,+V,K,))i'i" =0 . (10.2)
Note that this is precisely the conserved quantity Qv (3.36) with V' — K deduced
from Noether’s theorem and the variational principle for geodesics in section 3.2.
2. Conserved Currents from the Energy-Momentum Tensor

Let K* be a Killing vector field, and T* the covariantly conserved symmetric

energy-momentum tensor, V,T#” = 0. Then the current
Ji =T"K, (10.3)
is covariantly conserved. Indeed,

Ve = (V,T")K,+T"V,K,
= 0+ i7" (V,K, +V,K,)=0 . (10.4)
Hence, as we now have a conserved current, we can associate with it a conserved
charge in the way discussed above.

The argument evidently does not rely on T being an energy-momentum tensor
but only on the properties 7" = T"# and V,TH" = 0.
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10.2 CONFORMAL KILLING VECTORS AND CONSERVED CHARGES

Another situation of interest occurs when one has a theory invariant under Weyl rescal-
ings and thus a traceless energy-momentum tensor (section 7.7). In that case one can
associate conserved currents not only to Killing vectors fields but also to conformal

Killing vectors C*, satisfying
Leguw = V0, +V,0, = 2w() g (10.5)
for some function w(x). Such conformal Killing vectors generate coordinate transfor-

mations that leave the metric invariant up to an overall (Weyl) rescaling.

If the theory is invariant under such Weyl rescalings, then the energy-momentum tensor

is traceless and there should also be a corresponding conserved current. Indeed, we have

2" Let C* be a conformal Killing vector field, and T* a covariantly conserved sym-

metric and traceless energy-momentum tensor, V,T"" =T g,,, = 0. Then
Jh=THC, (10.6)
is a covariantly conserved current. Indeed,

V. JE = (V. T")C, + TV ,C,
= 0+ %TWJ(VMCV + VVCM) = w(x)T“VgMV =0 (10’7)

We will look at the example of the conformal Killing vectors of Minkowski space in more

detail in section 10.3 below.

There is also a counterpart of statement 1 (conserved charges for geodesics) in the case
of conformal Killing vectors, namely for null geodesics (this condition replacing the

assumption in statement 2’ that the energy-momentum tensor is traceless):

1’ Let C* be a conformal Killing vector field, and let z#(7) be a null geodesic. Then

the quantity
Qc = Cpat (10.8)

is constant along the geodesic. Indeed, repeating the calculation leading to state-

ment 1, for a null geodesic one has

d

d—T(Cua':“) =3(V,C, + V,C))iti" = w(z)gudti” =0 . (10.9)

d
d_TQC =

We will make use of (10.9) in the discussion of the cosmological redshift in section
34.8.
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As an aside, note that if K* is a true Killing vector for a metric g,,, say, then it is at

least a conformal Killing vector for any conformally rescaled metric
Juv = GZQ(x)guu . (1010)

Indeed, writing the Killing equation in the non-covariant form (9.44) (in order to avoid
having to determine the covariant derivatives or Christoffel symbols of conformally
rescaled metrics)

K*O\Gw + 0K Gay + 0, K Gun = 0 (10.11)

and expressing this in terms of the metric g, one finds
K*0rgu + 0,K gay + 0, K gun = 2(K*0ra) g - (10.12)
This is precisely the conformal Killing vector equation with
w(z) = K oya(z) . (10.13)

Alternatively, and more simply, we could have just used the Lie derivative directly to
conclude that
LK.&#V =0 = LKgW = 2(LKa)gW . (10.14)

Either way we see thus K* will be a true Killing vector field for the rescaled metric
if the conformal factor a(z) is constant along the orbits (integral curves) of K*, and
will otherwise be a conformal Killing vector field. Conformal Killing vector fields that
do not arise from true Killing vector fields in this way are called essential. In the
Riemannian case it is known that (under some technical assumptions) metrics admitting
essential conformal vector fields are conformal to the standard metric on the sphere
or the Euclidean space. In the pseudo-Riemannian (Lorentzian signature) case the
situation turns out to be quite different (with an interesting connection with the plane

wave metrics that are the subject of section 43).%*

More generally, by the same argument as above we can conclude that if C' is a conformal
Killing vector of the metric §,, it will (at the very least) be a conformal Killing vector

of any conformally rescaled metric,

Loguw = 2wiw = Loguw =2(Leca + w)gu - (10.15)

2See  e.g. F. Belgun, A. Moroianu, L. Ornea, FEssential points of conformal
vector  fields, arXiv:1002.0482 [math.DG] and references therein, as  well as W.
Kiihnel, H. Rademacher, FEssential conformal field in pseudo-Riemannian  geometry,
http://www.math.uni-leipzig.de/ rademacher/Paper/j-math-pures.pdf, Conformal  transfor-

mations of pseudo-Riemannian manifolds, http://www.math.uni-leipzig.de/ rademacher/esi.pdf.
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10.3 CoONFORMAL GROUP AND CONFORMAL ALGEBRA OF MINKOWSKI SPACE

As an example, let us consider 4-dimensional Minkowski space. In that case there are
5 conformal Killing vectors (in addition to the 10 true Killing vectors (9.48) generating

Poincaré transformations).

e One is the generator
D =¢£%,: 0,Dp+ 0Dy = 204 (10.16)
of dilatations,
€9 5 et = ds? = pgdetdet — e2Nds? (10.17)

In this case w(x) = 1 is constant, and such a conformal symmetry is called a
homothety (see also section 10.4 below). Provided that one has a symmetric
traceless conserved energy-momentum tensor, one has a corresponding conserved
current

J& =T3Db = T4 . (10.18)

e The other 4 conformal Killing vectors are
Ol = (267" — ™ €%)q (10.19)

where &2 = 1,&%P. Indeed, is is straightforward to see that these vector fields
satisfy
8,0 + 8,0 = ae™ny, | (10.20)

so that in this case there is a nontrivial conformal factor w(™ (£) = 26™.
The C"™) generate what are known as special conformal transformations,

Y

14 2c.6 4 c2¢2 (10.21)

with the evident short-hand notation c.& = 7,c*€? and ¢ = g, Simple

algebra shows that this transformation can be written in the form

Ea a

_ a

Thus a special conformal transformation can be understood as an inversion £* —
€2/€2, followed by a translation (with respect to the “point at infinity”), and

another inversion.

Provided that one has a symmetric traceless conserved energy-momentum tensor,

the associated conserved currents are

Ty = Teomy = THCTP (10.23)
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The dilatation and the special conformal transformation enlarge the Poincaré algebra
(9.51) of translations and Lorentz transformations to the conformal algebra. Adding the
generators D and Cj, = C® to the generators P, and M, of the Poincaré algebra, one
finds the extended algebra

[Paa Pb
[ abs _nach + lecPa
[May, Meq] = nadec + MoeMad — NacMpa — MbaMac

]

Pe] =

| =

[D, Fa]
[Map, D] = (10.24)

]

Ce] =

Cal

]

[Pa, Cy] = (me Mqp)
[Map, NacCh + MeCa
[D,Cu] = Cq

[Ca, Cb] =

Here

e the first three relations just define the Poincaré algebra;

e the fourth expresses the obvious fact that P, = Oga is homogeneous of degree (-1)

under the dilatation generated by D
e the fifth says that D is a scalar under Lorentz transformations;
e the seventh just expresses the fact that C, is a Lorentz vector;

e the eighth says that C, is homogeneous of degree (41) under the dilatation gen-
erated by D.

e the last relation says that special conformal transformations generate an Abelian

algebra (corresponding to the fact that they generate inverted translations).

Thus the only relation that is not a priori obvious is the sixth, [P,, Cy] = 2(n. D — M),
but this follows simply from

[Py, Cp)¢ = 04 (2656 — 65€%) = 2nap€S — 2(£465 — E05) . (10.25)

It is perhaps also not obvious at first sight that this conformal Lie algebra is isomorphic
to the Lie algebra of SO(2,4), or SO(2,D) in D space-time dimensions. This is the
group of rotations in the (D+2)-dimensional pseudo-Euclidean space R?? preserving the
metric n4p with signature (—+...+—), i.e. the indices have the range A = 0,1, ..., D+1,
and npp = —np41)(p+1) = +1. Its Lie algebra is just the obvious counterpart of the
D-dimensional Lorentz Lie algebra (9.51), namely

[Map, Mcp) = napMpe +npcMap —nacMpp — nppMac (10.26)
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Concretely, with z4 Cartesian coordinates on R, this Lie algebra can be realised as

the algebra of rotational Killing vectors of the metric n4p, given by
Map =nacz¥0p —npc2C04 = 240 — 2304 = —Mpa . (10.27)
Returning to the conformal algebra, it is now easy to see that with the identification
Py =Mup + Mypy1y , Co=Mup —Mypiy , D= DMprps (10.28)

the Lie algebra relations (10.24) and (10.26) are mapped precisely into each other.

Thus, when one has a conserved, symmetric, traceless energy-momentum tensor, one
can construct conserved currents for the entire conformal group and thus has a (at least

classically) conformally invariant field theory (or conformal field theory for short).

As we have seen in section 7.7, when the matter action is invariant under Weyl rescalings
of the metric alone, the covariant energy-momentum tensor is conserved, symmetric and
traceless, and thus the specialisation of the theory to Minkowski space should define a

conformal field theory.

There is an interesting twist to this story when one also needs to transform the matter
fields (and modify the action by non-minimal couplings to the gravitational field) which

will be discussed in section 22.3.

10.4 HOMOTHETIES AND CONSERVED CHARGES

Finally, let us consider the special case that the conformal factor w(x) in (10.5) is
constant, w(x) = wo,
V,.C, +V,Cp = 2wog,u (10.29)

In that case, the transformation generated by the conformal Killing vector is called a

homothety.

An example of a homothetic Killing vector is the generator of dilatations (10.16)
D = ¢, (10.30)

in Minkowski space. Other examples of space-times admitting homotheties are for
example the exact gravitational plane waves (to be discussed in detail much later, in
section 43), for which the metrics take the form (43.19)

ds® = 2dudv + Agy(u)z®z’du® + di* | (10.31)
with Agp(u) an arbitrary function of w. These metrics have the homothety

(u,v,2%) — (u, N0, %) = ds* — \ds? (10.32)
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for any choice of plane wave “profile” Ay, (u), and this homothety is generated by
C =200y + 2%0ga . (10.33)

Whenever one has such a homothety, there is an explicitly 7-dependent conserved quan-

tity even for non-null geodesics:

1”7 Let C*" be a homothetic Killing vector field, with factor wg, and let #(7) be a
geodesic. Then the quantity

Qc = Cui'u - TWO.g,uui'ujfy (10.34)

is constant along the geodesic. Indeed, repeating the calculation leading to state-

ment 1’, and using the fact that g, 2" is constant, one finds

d
pich wo Gt — wogu it E’ =0 . (10.35)

REMARKS:

1. Note that for a null geodesic (10.34) reduces to the conserved charge C,&# (10.8)

in 1’ above (which does not explicitly depend on 7).

2. The existence of this constant of motion can also be understood from the Noether
theorem (applied now to transformations of the “fields” z*(7) and the “coordi-

nate” 7). Indeed, when one has a homothety, one has
gudxtdx” — )\zguyda:“da:" , (10.36)
so that the action is invariant when one also scales 7 — A7,
T N1 = dr gudtiY — dT g, dtiY (10.37)
and (10.34) is the corresponding Noether charge.

3. Typically such explicitly 7-dependent constants of motion are somewhat trivial or
tautological, in the sense that they can be written in terms of “trivial” constants

of integration like initial positions and velocities.

4. For example, for the homothety of Minkowski space-time generated by D (10.30),

the conserved charge is explicitly

Qp = Nap€"E" — TN € . (10.38)
For a free particle with é‘” =0 and nabfaéb = —1 this is rather obviously conserved,
since then p
— =—-14+1=0. 10.
dTQD + 0 (10.39)
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Parametrising £(7) as
§4r) = & + (p*/m)7 (10.40)

with the constant momenta satisfying the mass shell condition
Ppa = —m* | (10.41)

one finds that
Qp = naw&ip’/m (10.42)

which is about as manifestly constant as it gets.

5. Nevertheless, in other circumstances this explicitly 7-dependent constant of mo-
tion (allowing one to integrate a 7-independent 2nd order equation to a 7-dependent

1st order equation) can be useful.

10.5 CONSERVED CHARGES FROM KILLING TENSORS AND KILLING-YANO TENSORS

When a metric possesses sufficiently many symmetries (Killing vectors), the geodesic
equations (or the associated Hamilton-Jacobi equation) or, say, the Klein-Gordon equa-
tion or some other field equation in that background are separable and can hence be
reduced to quadratures of ordinary differential equations. It is not uncommon, how-
ever, in particular in the context of black hole physics, to encounter space-times in which
these equations can be separated even though there appear not to be enough isometries
(symmetries of the metric) to explain this. In many cases, this phenomenon can be
explained via (or deduced from) the existence of additional (hidden) symmetries of the
problem, associated not to Killing vectors but to certain higher-rank generalisations
thereof. Most prominent among them are (totally symmetric) Killing tensors (occa-
sionally also called Killing-Stdckel tensors), and (totally anti-symmetric) Killing- Yano

tensors.
To set the stage, recall from above that a Killing vector satisfies

ViaKg =0 < VoK =V|,Kg (10.43)
and that using the geodesic equation £V ,&? = 0 this leads to a first integral Qx =

K Bx'ﬁ of the geodesic equations of motion via the simple chain of manipulations

%(Kﬁiﬁ) = 2V, (Kgi?) = i%#PV K5 = 0 (10.44)

by symmetry of £*4° and anti-symmetry of VoK 3

This has the following two immediate (and, as it turns out, actually useful in practice)

generalisations:
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1. Killing Tensors (or Killing-Stéckel Tensors)

Let Kpg,. s, be totally symmetric rank-n tensor satisfying the Killing tensor equa-
tion
ViaEs.5,)=0 . (10.45)

This is evidently one possible generalisation of the Killing vector equation (10.43)
to higher rank tensors (generalising the first formulation in (10.43)). Then

Qx = Kg,. g, & .. .iPn (10.46)

is constant along the geodesic. Indeed,
d a3 .3
d—QK = (VoKp,. p,)T%" ... 2" =0 (10.47)
-

because evidently %451 ... 45" is totally symmetric.

2. Killing-Yano Tensors

Let Yjg,. g, be totally anti-symmetric rank-n tensor satisfying the Killing-Yano
equation
v(ayﬁl)mBn =0 < Vayﬁl--ﬂn = V[ayﬁlnﬂn] (10'48)

This is evidently another possible generalisation of the Killing vector equation
(10.43) to higher rank tensors. Then the tensorial charges

Zg,. por =" Yap, 5, (10.49)

are constant (parallel transported) along the geodesic. Indeed,

d o
—Zpy oy = 3 VaYps 5, =0 (10.50)

because evidently #®4? is symmetric while by definition of a Killing-Yano tensor

VaYs8,..8,_, is totally anti-symmetric.

REMARKS:

1. Trivial examples of Killing tensors are the metric g,s (whose associated conserved
quantity gaga';a:'vﬁ we already know), and products of Killing vectors K, ... Kz
which do not yield any new independent constants of motion beyond those pro-
vided by the Killing vectors. New constants of motion are associated with Killing

tensors that cannot be constructed from the metric and the Killing vectors alone.

Trivial Killing-Yano tensors are Killing vectors K, and the Levi-Civita tensor (in

four dimensions €,gs)-

252



2. There are interesting relations between Killing-Yano tensors and Killing tensors.
For example, it is not difficult to check that if Y, 3 is a rank-2 Killing-Yano tensor,
then its square

Kop = Yoy Y, (10.51)

(which is symmetric) is a rank-2 Killing tensor (and squares of trivial Killing-
Yano tensors give rise to trivial Killing tensors, as in K, — K,K3). Indeed, the
totally symmetrised covariant derivative of this K, can be expressed in terms of
partially symmetrised covariant derivatives of Y, 5, but by definition of a Killing-

Yano tensor its covariant derivatives are totally anti-symmetric, and hence
VYo =V Yag = VK =0 . (10.52)

3. There are conformal generalisations of these Killing(-Yano) tensor equations, anal-
ogous to the conformal Killing equations (10.5),

ViaCp) = w(T)gas (10.53)

and just as the latter these turn out to be useful for massless particles or fields.

For example, a rank 2 conformal Killing tensor satisifies an equation of the form
V(aCsy) = 9(asVy) (10.54)

for some (co-)vector field V. Repeating the calculation (10.47) in the case at hand
for the quantity Qo = Cags'vaj;ﬁ , one finds
d

—Qc = V(aCiydi?i" = gogVyi®ila (10.55)

which evidentliy vanishes for null geodesics (go52%3” = 0).

4. Historically, the discovery of (conformal) Killing and Killing-Yano tensors for the
Kerr metric, the metric describing a rotating black hole (see section 30.1) and
their relation to the separability of the geodesic and field equations in the Kerr

background played a decisive role in the development of the subject.?

Z5For more information about and examples and applications of Killing(-Yano) tensors, see e.g. section
35.3 of H. Stephani, D. Kramer, M. MacCallum, C. Hoenslaers, E. Herlt, Fzact Solutions to Einstein’s
Field Equations - Second Edition or the articles O. Santillan, Killing-Yano tensors and some applica-
tions, arXiv:1108.0149 [hep-th], F. Larsen, C. Keeler, Separability of Black Holes in String Theory,
arXiv:1207.5928 [hep-th] and the references therein.
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11 CURVATURE II: GEOMETRY AND CURVATURE

In this section, we will first discuss two properties of the Riemann curvature tensor
that illustrate its geometric significance and thus, a posteriori, justify equating the
commutator of covariant derivatives with the intuitive concept of curvature. These

properties are

e the path-dependence of parallel transport in the presence of curvature,

e the fact that the space-time metric is equivalent to the (in an obvious sense flat)

Minkowski metric if and only if the Riemann curvature tensor vanishes.

We then briefly discuss some other general aspects of the relation between geometry
and curvature (while the interplay between geodesics and curvature and Killing vectors

and curvature will be discussed in sections 12 and 13 respectively).

11.1 INTRINSIC GEOMETRY, CURVATURE AND PARALLEL TRANSPORT

The Riemann curvature tensor and its relatives, introduced above, measure the intrinsic
geometry and curvature of a space or space-time. This means that they can be calculated
by making experiments and measurements in the space itself. Such experiments might

involve things like checking if the interior angles of a triangle add up to 7 or not.

This intrinsic geometry and curvature described above should be contrasted with the
extrinsic geometry which depends on how the space may be embedded in some larger
space. As we have no intention of embedding space-time into something higher dimen-
sional, we will mainly be concerned with intrinsic geometry in the following. However,
if you would for example be interested in the properties of spacelike hypersurfaces in
space-time, then aspects of both intrinsic and extrinsic geometry of that hypersurface

would be relevant. See section 18 for some further comments on this.

Let us return to intrinsic geometry. An even better method, the subject of this section,
to determine the curvature is to check the properties of parallel transport. The tell-tale
sign (or smoking gun) of the presence of curvature is the fact that parallel transport is
path dependent, i.e. that parallel transporting a vector V from a point A to a point B
along two different paths will in general produce two different vectors at B. Another
way of saying this is that parallel transporting a vector around a closed loop at A will

in general produce a new vector at A which differs from the initial vector.

This is easy to see in the case of the two-sphere, for which we also worked out explicitly
the parallel transport in section 5.9 (see Figure 8). Since all the great circles on a
two-sphere are geodesics, in particular the segments N-C, N-E, and E-C in the figure,

we know that in order to parallel transport a vector along such a line we just need to
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Figure 8: Figure illustrating the path dependence of parallel transport on a curved
space: Vector 1 at N can be parallel transported along the geodesic N-S to C, giving
rise to Vector 2. Alternatively, it can first be transported along the geodesic N-E (Vector
3) and then along E-C to give the Vector 4. Clearly these two are different. The angle

between them reflects the curvature of the two-sphere.

make sure that its length and the angle between the vector and the geodesic line are
constant. Thus imagine a vector 1 at the north pole N, pointing downwards along the
line N-C-S. First parallel transport this along N-C to the point C. There we will obtain
the vector 2, pointing downwards along C-S. Alternatively imagine parallel transporting
the vector 1 first to the point E. Since the vector has to remain at a constant (right)
angle to the line N-E, at the point E parallel transport will produce the vector 3 pointing
westwards along E-C. Now parallel transporting this vector along E-C to C will produce
the vector 4 at C. This vector clearly differs from the vector 2 that was obtained by
parallel transporting along N-C instead of N-E-C.

To illustrate the claim about closed loops above, imagine parallel transporting vector 1
along the closed loop N-E-C-N from N to N. In order to complete this loop, we still have
to parallel transport vector 4 back up to N. Clearly this will give a vector, not indicated
in the figure, different from (and pointing roughly at a right angle to) the vector 1 we
started off with.

The precise statement regarding the relation between the path dependence of parallel
transport and the presence of curvature is the following. If one parallel transports a
covector V), (I use a covector instead of a vector only to save myself a few minus signs

here and there) along a closed infinitesimal loop z#(7) with, say, z(79) = z(m1) = o,
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then one has
Vi(m1) — Vilro) = A( jq{ PR, (20)Va() - (11.1)

Thus an arbitrary vector V* will not change under parallel transport around an arbitrary
small loop at zq only if the curvature tensor at xq is zero. This can of course be extended
to finite loops, but the important point is that in order to detect curvature at a given

point one only requires parallel transport along infinitesimal loops.

Before turning to a proof of this result, I just want to note that intuitively it can be

understood directly from the definition of the curvature tensor (8.2). Imagine that the

infinitesimal loop is actually a tiny parallelogram made up of the coordinate lines z'

and z2. Parallel transport along z! is governed by the equation V;V# = 0, that along
22 by VoV# = 0. The fact that parallel transporting first along z!' and then along x>
can be different from doing it the other way around is precisely the statement that V1
and V3 do not commute, i.e. that some of the components R, 12 of the curvature tensor

are 1non-zero.

To establish (11.1) we first reformulate the condition of parallel transport,

d
DVy=0 & V= I, 3" Vi (11.2)

with the initial condition at 7 = 7y as the integral equation
Vi(r) = Vi(mo) + / dr' T, (a(r))i* (7 YA() (11.3)
70

As usual, such an equation can be ‘solved’ by iteration (leading to a time-ordered

exponential). Keeping only the first two non-trivial terms in the iteration, one has

Vi(r) = Vi(r)+ / "' T, (e (r)i (Vi)

/ ar / 45" T, (o )i (70 (e () (5" Vi (o)
(11.4)

For sufficiently small (infinitesimal) loops, we can expand the Christoffel symbols as
D (2(7)) = T, (20) + (2(7) — 20)?(8,17),,) (0) + . .- (11.5)

The linear term in the expansion of V,(7) arises from the zero’th order contribution
F)‘W(ajo) in the first order (single integral) term in (11.4),
T1

[Viu(m1) = Viu(r0)] ) = PAW(HJO)V,\(TO)(/ dr' & (7)) . (11.6)
70

Now the important observation is that, for a closed loop, the integral in brackets is zero,

E dr'i" (") = 2¥(m1) — 2¥(10) =0 . (11.7)

70
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Thus the change in V},(7), when transported along a small loop, is at least of second
order. Such second order terms arise in two different ways, from the first order term
in the expansion of F);“, (x) in the first order term in (11.4), and from the zero’th order

terms F);“, (z9) in the quadratic (double integral) term in (11.4),
V() = Vil = @)@ Valm)(| i (o) = a0 (0

+ (I),1%,)(@0)V. TO/ dT/ dr" & ()P (") (11.8)

The 7”-integral can be performed explicitly,

/ ar’ / dr" ¥ ()i (") = / dr' (7Y (w(r") — o)? = / dr' ¥ (1")a? (')
(11.9)

and therefore we find

T1

V(1) = Viu(mo) = (9,1, + 19,19 )(xo)Vo(To)(/ dr’ ¥ ()" (7)) (11.10)

70

The final observation we need is that the remaining integral is anti-symmetric in the

indices v, p, which follows immediately from

/TldT' (@ (") (") + 2¥ (7 / dr’ @ (xP(r) =0 .  (11.11)

It now follows from (11.10) and the definition of the Riemann tensor that

Vilr) = Vi) = 3 0P da”) S, (o) V() (1112)

Simply by raising and lowering of the indices, and using the symmetry properties of
the Riemann tensor, we can deduce that the corresponding equation for the parallel

tansport of vectors is
VH(r) — V(1) = —%(% aPdz”)RY, ,, (20)V 7 (10) (11.13)

As an example, recall that in section 8.6 we already determined explicitly the parallel
transport of vectors on the 2-sphere along the circles with fixed § = 3. Choosing 6
infinitesimal corresponds to an infinitesimal loop around the north pole. Expanding the

result (5.116) for small 6, in particular using
sin(2m cos f) =~ sin(2m(1 — 03/2)) ~ —1(2m)65 (11.14)

one finds complete agreement between (11.13) and the components of the Riemann

tensor of the 2-sphere, determined in (8.59),
g =sin?0 | =1, (11.15)

257



evaluated for 8y — 0. In verifying this, some care should be taken with the fact that 6 =
0 is a coordinate singularity so that one should never strictly set 89 = 0. Alternatively,
and to be on the safe side, one can rewrite (11.13) as an equation for orthonormal frame
components and use the result (5.121) for the parallel transport of the frame components

(which is not sensitive to coordinate singularities).

11.2 VANISHING RIEMANN TENSOR AND EXISTENCE OF FLAT COORDINATES

We are now finally in a position to prove the converse to the statement that the
Minkowski metric has vanishing Riemann tensor. Namely, we will see that when the
Riemann tensor of a metric vanishes, locally there are coordinates in which the metric
is the standard Minkowski metric. Since the opposite of curved is flat, this then allows
one to unambiguously refer to the Minkowski metric as the flat metric (locally at least),

and to Minkowski space as flat space(-time).

So let us assume that we are given a metric with vanishing Riemann tensor. Then, by
the above, parallel transport is path independent and we can, in particular, extend a
vector V#(xzg) to a vector field everywhere in space-time: to define V#(x1) we choose any
path from x( to x1 and use parallel transport along that path. In particular, the vector
field V#, defined in this way, will be covariantly constant or parallel, V,V" = 0. We can
also do this for four linearly independent vectors V{' at o and obtain four covariantly

constant (parallel) vector fields which are linearly independent at every point.
An alternative way of saying or seeing this is the following: The integrability condition
for the equation VMV)‘ =0is

V.V =0 = [V,V,JV}=RY V°=0 . (11.16)

ouv

This means that the (4 x 4) matrices M (u, v) with coefficients M (u,v)? = R’\UW have
a zero eigenvalue. If this integrability condition is satisfied, a solution to VuV’\ can be
found. If one wants four linearly independent parallel vector fields, then the matrices
M (p,v) must have four zero eigenvalues, i.e. they are zero and therefore R’\UW = 0.
If this condition is satisfied, all the integrability conditions are satisfied and there will
be four linearly independent covariantly constant vector fields - the same conclusion as

above.

We will now use this result in the proof, but for covectors instead of vectors. Clearly
this makes no difference: if V# is a parallel vector field, then g,, V" is a parallel covector
field.

Fix some point zg. At z¢, there will be an invertible matrix e}, such that

g“”(:no)efje,b, = . (11.17)
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Now we solve the equations

V,El =0 0,E; =1",FE% (11.18)
with the initial condition EZ(xO) = e}, This gives rise to four linearly independent
parallel covectors EV.

Now it follows from (11.18) that
0,E% = 9,E" . (11.19)

Therefore locally there are four scalars £ such that
o _ 0¢°
B Qe

These are already the flat coordinates we have been looking for. To see this, consider

(11.20)

the expression g’ EZES This is clearly constant because the metric and the E} are
covariantly constant,
(9" ESE)) = V(9" ELE)) =0 . (11.21)

At xg, this is just the flat metric and thus
(" ELED)(x) = (9" ELED)(w0) = n™ . (11.22)

Summing this up, we have seen that, starting from the assumption that the Riemann
curvature tensor of a metric g, is zero, we have proven the existence of coordinates £*
in which the metric takes the Minkowski form,
a b

uv = %%T/ab . (11'23)
The argument given above is local in the sense that the existence of these coordinates
&% is only guaranteed locally, i.e. in the neighbourhood of some point. Whether or
not these coordinates can be used to cover the space-time globally depends on gobal
(topological) properties of the space-time which are not captured by the intrinsic local
and locally determined Riemann tensor.

For example, imagine starting with Minkowski space R with inertial coordinates &2,

and then making a periodic identification of ¢!, say,
el vorl; = RV SRV xSH. (11.24)

Since the Minkowksi metric is translation-invariant, it gives rise to a well-defined metric
on the periodically identified space-time, and the metric of this space-time still has zero

curvature tensor. Nevertheless, in this case

e in the new space-time the coordinate &', which is now an angular variable, is not
globally well defined,

e and the space-time looks like Minkowski space only locally, not globally.
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11.3 CURVATURE OF SURFACES: EULER, GAUSS(-BONNET) AND LIOUVILLE

We can generalise the example of the curvature of the 2-sphere, discussed in section
8.6, somewhat, in this way connecting our considerations with the classical realm of
the differential geometry of surfaces, in particular with the Gauss Curvature, the Euler

characteristic, the Gauss-Bonnet theorem and the Liouville Equation.

For any 2-dimensional metric g, it is a simple exercise to derive the relation between the
one independent component, say R1212, of the Riemann tensor, and the scalar curvature.

First of all, the Ricci tensor is
Rupy = R, = Ry, + R%y, (11.25)

so that the scalar curvature is
R(gap) = 9" Rap = 9" R%9y + g2 Rl 15 + g% RY%,1 + g Rl (11.26)

Using the fact that in 2 dimensions the components of the inverse metric are explicitly

1 —
(gab> - - [ 9 e (11.27)
911922 — 912921 \ —g21 911

and the (anti-)symmetry properties (1) and (2) of the Riemann tensor, one finds

2
R(gap) = ——————Ri212 - (11.28)
911922 — 912921

given by

This is precisely the relation (8.44) between the Riemann tensor and Ricci scalar. The
factor of 2 in this equation is a consequence of our (and the conventional) definition of
the Riemann curvature tensor, and is responsible for the fact that the scalar curvature

of the unit 2-sphere is R = +2. We can also write this result as

Raped = 5(GacGvd — Jadgbe)R & Req = 5(6%ga — 0%gue) R - (11.29)

In two dimensions, it is often convenient and natural to absorb this ubiquitous factor
of 2 into the definition of the (scalar) curvature, and what one then gets is the classical
Gauss Curvature .

K = §R(gab) (11.30)

of a two-dimensional surface.

It follows from (11.29) that the Ricci tensor is related to the Ricci scalar by
Rap = (R/2)gab = Kgap - (11.31)

This generalises the result for the standard metric on the 2-sphere found by explicit
calculation in section 8.6. It shows that in complete generality the Ricci tensor of a

two-dimensional space or space-time, thought of as the linear map

¢ = K& : v~ Ry, (11.32)
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has only one (double) eigenvalue, namely the Gauss curvature K. It can also be inter-

preted as saying that in 2 dimensions the Einstein tensor (8.97) is identically zero,

Gab = Rap — 39asR =0 . (11.33)

We will now briefly look at two important and interesting consequences of the above
formulae, one related to the FEuler characteristic of a surface and its integral represen-
tation (the Gauss-Bonnet theorem), and the other to the Liouville equation describing

metrics with constant Gauss curvauter K = k = +1.

1. Euler Characteristic and the Gauss-Bonnet Theorem

Let us consider a compact closed surface S, i.e. topologically something like a
sphere, or a torus (a sphere with one handle), or a sphere with several handles. A

surface Sy with h handles is called a surface of genus h.

Given a metric on Sy, we can associate to Sy, its area with respect to the metric,
A(Sy) == Vodiz . (11.34)
Sh,

Clearly, this areas depends on a choice of metric, and under a variation J, of the

metric it transforms as
54A(Sy) = / Sg\/9d%x = %/ Vad2z ¢®6g., (11.35)
Sh Sh

Given a metric on Sy, we can also naturally associate to it the real number

x(Sp) = % /\/gd% K= ﬁ/\/gd% R . (11.36)

Remarkably, this number turns out to be independent of the metric, in particular

X(Sh) is invariant under variations of the metric gqp,
5,x(Sh) =0 . (11.37)
Here are two rather explicit ways of establishing this remarkable result:

(a) The variation of the integrand is

dg(VgR) = 5g(\/§9abRab) . (11.38)

Since R = g™ Ry, it is convenient to express variations of the metric in terms

of variations of the inverse metric, with (5.85)

39 = %g“bégab = —%gabdg“b . (11.39)

261



Then one finds
34(v/gR) = (05v/9)9™ Ra + /3(09™") Rat + /99" 04 Rat
= \/g(_%Rgab + Rab)égab + \/ggabégRab (11'40)
— VGGar09™ + /59" 5y Rap, -
Now, as shown above, in 2 dimensions the Einstein tensor is identically zero,

Ga = 0. Moreover, in section 20.2 we will show that in any dimension the
2nd term is a total derivative (20.18),

gabégRab = VaBa (1141)

for some well-defined B® built from the covariant derivatives of the variations
of the metric, as in (20.19). Taken together, these two facts imply that for a

closed surface S}, (without boundary) one has

5,x(Sp) = /\/_d 2(Gapdg™ + V4B*) =0 | (11.42)

as was to be shown.

Alternatively, somewhat less covariantly but very explicitly, one can show
that the integrand /gK or \/gR can itself locally be written as a total deriva-
tive. Indeed, using (11.29) to write

R212 - lelR & K= g_R 121 (1143)

and simply writing out explicitly this Riemann curvature tensor component
in terms of the Christoffel symbols,

Ry = 9oT%) — 0117, + T%, 1%, — 17,1, (11.44)
one finds that \/gK can be written as
VIK =€® 8,5, (11.45)

with €12= — €2!= 1 the Levi-Civita symbol, and

g
By = —;{ r?, . (11.46)

The fact that the integrand is locally a total derivative does not mean that
the integral is zero (because of the non-tensorial nature of (,, which will
typically exhibit coordinate singularities). It does mean however, that the
integral of the metric variation of this expression is zero (because that is
tensorial and well-defined on Sy,),

VIK =®0.8, = 6,x(Sh) = / d*285,(/gK) =0 . (11.47)
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Either way we have seen that the real number x(S}y) is independent of the metric
one uses to calculate it. For example, for h = 0 and for the standard metric on
the sphere S? one finds

S0 =87 = - [var=o- [vi=2. L

and this will therefore be the result for any metric on S2. Likewise, for h = 1, i.e.
a torus, by choosing the flat metric on 72 (see e.g. the discussion and construction

in section 18.1), one finds
X(Sp=1) = x(T%) =0, (11.49)

and this will therefore be the result for any metric on 72 (and it is instructive
to check this explicitly for the non-trivial, non-flat metric on 72 induced by its
embedding into R3 constructed in section 18.1). I am not aware of an equally
elementary calculation to determine x(Sy) for A > 1 in this way but fact of the
matter is that

x(Sp) =2—2h (11.50)

is the Fuler characteristic of Sy, which can also be defined purely combinatorially
as the number
X(S) =np —ng+ny (11.51)

of faces minus vertices plus edges of any cubist rendition of a surface S (and
x(S) is independent of such a cubist realisation or triangulation). The remarkable
fact that this topological invariant of a surface S can be calculated in terms of
differential geometric quantities, namely as the integral of the curvature scalar, is

known as the Gauss-Bonnet theorem.

. Constant Curvature and the Liouville Equation

When we specialise the above to the class of conformally flat metrics with line

element
ds? = e 2h(@,Y) (dz? +dy®) < gap = exp 2h(x,y)da (11.52)

the calculation of the Riemann tensor is particularly simple and one finds the
(easy to memorise) results

R, =—Ah (11.53)

and
K=—e20ap (11.54)

where A = 8%—#85 is the 2-dimensional Laplacian with respect to the flat Euclidean
metric dz? + dy?. Thus a surface with constant curvature K = k is given by a

solution to the non-linear differential equation

Ah+ke2l =0 (11.55)
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This is the (in-)famous Liouville equation, which plays a fundamental role in many

branches of mathematics (and mathematical physics).

In terms of the intrinsic Laplacian A, associated to the metric gq, the Gaussian

cuvature and the Liouville equation can also simply be written as
K =-A4h , Agh+k=0, (11.56)

since, due to the peculiarities of 2 dimensions, \/gg“b in independent of h, i.e. is
conformally invariant (as we already observed in a different context in section 7.7,
cf. (7.120)),

\/ggab — 62h6—2h5ab — 5ab
1 1 —2h
= Ay = —0,(v/99™0) = —=8,(678) = e A .
g \/§ (\/_ b) \/g ( b)

I will not attempt to say anything about the general (local) solution of this equa-

(11.57)

tion (which roughly speaking depends on an arbitrary meromorphic function of
the complex coordinate z = x + iy), but close this section with some special (and

particularly prominent) solutions of this equation.

(a) It is easy to see that

2h(z,y) 2

e =y * & h(z,y =—-Iny (11.58)

solves the Liouville equation with K = —1. The corresponding space of
constant negative curvature is the Poincaré upper-half plane model of the

hyperbolic geometry,

B dx? + dy?

2
ds 7

((z,y)eR* y>0) . (11.59)

By the coordinate transformation y = e® this is mapped to the equivalent

metric
ds? = dz? + e 2% dg? (11.60)
on the entire (z, z)-plane.
(b) Another solution (for any k) is the rotationally invariant function
e2h(@,y) — 41+ k(2> +9*)? &  h=—In(1+k(z*+y?) + const.
(11.61)
i. For k = 0 one finds the flat (zero curvature) Euclidean metric on R2.
ii. For kK = 41, one obtains the metric

dz? + dy?

ds? =4—" 7
y (1 + 22 4 y2)2

(11.62)
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This is the constant positive curvature metric on the Riemann sphere one
gets by stereographic projection of the standard metric on the two-sphere
S? to the (z,y)-plane.

In terms of polar coordinates (r,¢) on the Euclidean plane, this metric

takes the form
ds? — dr? + r2d¢?
(1+r2)2 7

and the further change of variables r = tan 6/2 shows that this is indeed

(11.63)

the standard line element d2? on the 2-sphere,
r=tanf/2 = ds*>=db? +sin?®0dp* = dQ* . (11.64)

Read backwards, this can also be read as the statement that via the

above change of variables the Euclidean metric on R? can be written as

(L +r(0)*)?
4

(d6? 4 sin® 9dp?) = L (11.65)

2, 27,2 _
dr” +ridg” = ~ 4costh)2

In this process the points “at infinity” in R? (where r — co) are mapped
to the south pole § = 7 of the sphere (where the conformal factor in front
of the line element of the sphere diverges accordingly). This exhibits S?
as the conformal compactification of R2.
iii. For kK = —1, one finds
dz? + dy?
(1= (2*+y%))?

This is the Poincaré disc model of the hyperbolic geometry, defined in

ds® =4 ({z,yy eR* 2 +y*> <1) . (11.66)

the interior of the unit disc in R%. In terms of polar coordinates, it can

also be written as

dr? + r2d¢?
(1—1r2)2

The two metrics (11.59) and (11.66) are isometric, i.e. related by a (albeit

not completely evident) coordinate transformation.

ds* =4 (0<r<1) (11.67)

(c) As our final example, one other solution (given here only for £k = —1) is

2z
o2h(x,y) — J2h(x) _y_ © = — 12 . (11.68)
(1 —e2517)2 sinh” z

While this may look obscure, it is straightforward to verify that h = — log | sinh z|

satisfies the Liouville equation with k& = —1,
h=—log|sinhz| = &?h= e2h (11.69)
This leads to the form (2.31) of the unit metric on H?,

ds* = do? + sinh? o d¢? . (11.70)
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Indeed, we can write this in conformally flat form as
ds® = sinh? o (z) (dz? + d¢?) (11.71)

where
x = logtanh(c/2) = dr =do/sinho . (11.72)
Performing the exponential / hyperbolic gymnastics required to write the
conformal factor sinh? o as a function of z, one finds
. 12 1
sinh®o(z) = ——— (11.73)
sinh” x

giving rise to the solution given in (11.68).

It is worth remarking that the Poincaré upper-half plane model of a space with constant
negative curvature readily generalises to arbitrary dimensions and signature. Thus
o AT+ dy?
=——
Y

is the metric of a D = (d+1)-dimensional space(-time) with constant negative curvature.

ds d7? = bpdz?dz® or dF? = ngpdartda (11.74)

The Lorentzian metric will reappear later as a solution to the Einstein equations with a
negative cosmological constant, and is in this context known as the anti-de Sitter metric
(in Poincaré coordinates, which cover only a part of the complete space-time), and we

will discuss this solution in some detail in section 39.

11.4 THE WEYL TENSOR AND ITS USES

In section 8 from the Riemann tensor we have extracted its traces, the Ricci tensor and
the Ricci scalar, as well as a particular linear combination of them, the Einstein tensor.
We can therefore also explicitly decompose the Riemann tensor into these trace parts
and the remaining traceless part.

We noted in section 8.5 that for D = 2 and D = 3 the Riemann tensor would be “pure
trace”, i.e. could be written entirely in terms of the Ricci tensor and Ricci scalar. For
D = 2 we have already established this explicitly by proving the relation (11.29),

D=2: Ropy = 5(9ar985 — Yas9py) R (11.75)
in section 11.3.

We now look at this issue for D > 3. Simply by linear algebra one finds, for D > 3, the
decomposition

Rul/pa = Luvpo

1

+ m(ﬂupr + RyupGve — Guplue — Rupgpo) (11.76)

1
- (D _ 1)(D — 2) R(gupgua - gupg,w) .
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This definition is such that C), s has all the symmetries of the Riemann tensor (this is

manifest) and such that all of its traces are zero, i.e.

Cch =0, (11.77)

Vo

as is easily verified. This traceless part C),, o of the Riemann tensor is called the Weyl

tensor.

Occasionally it is more convenient and transparent to decompose the Riemann tensor not
into the Weyl tensor, the Ricci tensor and the Ricci scalar, but to perform an orthogonal
decomposition (with respect to the metric) into the Weyl tensor, the traceless part S,

of the Ricci tensor,

1
Sul/ = Ruu - BQW/R ) (1178)

and the trace R. Then the decomposition becomes
Ruupo’ = O,uzxpo

1
+ m(gupsw + Supgve = GupSuo = SvpGuo) (11.79)

1
+ mR(gupguo - gupguo) .
One other common and convenient decomposition is in terms of a tensor P, such that
(11.76) takes the form

Rywpo = Cuvpo + (9upPro + PupGve — 9vpPuc — PupGuo) - (11.80)
Comparison with (11.76) shows that this is accomplished by the choice
%ZJ—@M‘l w@- (11.81)
D—2 2(D — 1)
This tensor P, is known as the Schouten Tensor.

Regardless of how we write the trace part of the Riemann tensor, it turns out that for

D = 3 the Weyl tensor vanishes identically,
D=3: Cuywu=0 (11.82)

(I will give an elementary proof of this momentarily). Therefore, for D = 3 one has the
decomposition

D=3: R, = (ga~Rgs + Ry, — gusRsy — Ry
8v6 = (Jary Rgs ~985 — Gas Ry 598) (11.83)

+ 2(90598y — Gar9ps) R
This is precisely the result claimed previously in (8.45).

To establish (11.82), in order to trivialise the algebra let us fix a point z¢ and choose
coordinates there such that gog(x9) = dap (or 748, depending on the signature of the
metric, but let us assume that we are in the case of Euclidean signature - the same argu-
ment works in the Lorentzian case). Now the proof consists of the following elementary

steps:
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e Since we are in D = 3, at least two of the indices in Cyg,5 must be equal. Since the
Weyl tensor has all the symmetries of the Riemann tensor, if more than two indices
are equal, the Weyl tensor component is zero. Thus we only need to consider the
components where 2 indices are equal and we can without loss of generality choose
these to be Cia15, say, with 3,0 # 1.

e Because the Weyl tensor is traceless, one has the relation
Cip15 = —Cap2s — C3p3s - (11.84)
This implies that C1213 = Ci312 = 0, s0 a non-zero component requires 8 = 4.

e For 8 =, one derives from this
Cr212 = —C3232 and Ci313 = —C2323 (11.85)

and likewise for « =y =2 and a =y = 3.

e Thus all in all the Weyl tensor can have only 3 independent non-zero components,
namely Cho12 = Ca191, C1313 = C3131, Cag23 = C3232, and they are all required to

be pairwise negatives of each other. This is impossible for non-trivial Cyg.s,
Ci212 = —C3232 = +C3131 = —C2121 = —C1212 =  Ci212 =0,  (11.86)
and implies that all of the components of the Weyl tensor are identically zero in

D =3.

Thus the Weyl tensor is only non-trivial for D > 4. Using the Bianchi identies discussed

in section 8.8, in particular also (8.94),
VERuvpe = VoRye —VeRy), (11.87)
from (11.76) one finds a simple expression for the divergence, namely
VECpe = (D —3) (VpPye —VoP,p) . (11.88)

The tensor appearing on the right-hand side also has its own name. It is called the
Cotton Tensor Cy g,
Cl/pa = vaVU - VUPup . (1189)

The content of (11.88) is evidently trivial in D = 3, but the Cotton tensor itself is not
(and I will briefly come back to this below).

The Weyl tensor plays an important role in many aspects of gravitational physics:

1. For example, the Weyl tensor has traditionally been one of the central objects

of interest in the invariant algebraic classification of gravitational fields and in
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the characterisation of what are known as algebraically special solutions to the
Einstein equations (the so-called Petrov classification and related procedures).
Originally, this was (of course) developed for D = 4, and this case has a number of
special features. It is based on the classification of the properties of the eigenvalues
A of the Weyl tensor (at a point xg), thought of as a map on the space of anti-

symmetric (2,0)-tensors (bivectors),
1CoP ;X7 = \x°P (11.90)

or
CLXB = x4 (11.91)

with Cqgys = Cap thought of as a symmetric (6 x 6) matrix.”°

An equivalent (as it turns out) classification arises from determining the number

and multiplicity of linearly independent null vectors ¢ satisfying the condition
U Copla it =0 . (11.92)

Such £¢ are called the principal null directions of the Weyl tensor. More recently,
this classification scheme (based on the latter approach) has been (partially) ex-

tended to higher dimensions.?"

2. As we will see in section 19.6, the Einstein equations imply that the Weyl tensor
describes the gravitational field in vacuum. Specifically, when (or where) the
energy-momentum tensor is zero, the Riemann curvature tensor is equal to the
Weyl tensor,

Top@) =0 =  Raps(@) = Caprole) - (11.93)

The Weyl tensor thus encodes the information about things like gravitational
waves and the asymptotic behaviour of a gravitational field and has been studied

extensively from this point of view.

3. In the presence of matter, on the other hand, (11.88), in conjunction with the
Finstein equations, becomes an evolution equation for these vacuum components

of the gravitational field in terms of the sources - see equations (19.57) and (19.58).

The Weyl tensor also plays an important role in geometry, as it is conformally invariant,

i.e. C%yy is invariant under conformal (Weyl) rescalings of the metric,

gpu(x) — e2f(x)gw,(x) = cH - CH (1194)

vpo vpo

26See e.g. sections 7.16 and 11 of J. Plebanski, A. Krasinski, An Introduction to General Relativity
and Cosmology, or section 4 of H. Stephani, D. Kramer, M. MacCallum, C. Hoenslaers, E. Herlt, Ezact
Solutions to Einstein’s Field Equations (2nd Edition) for recent expositions of this subject.

%"See A. Coley, R. Milson, V. Pravda, A. Pravdova, Classification of the Weyl Tensor in Higher
Dimensions, arXiv:arXiv:gr-qc/0401008; A. Coley, Classification of the Weyl Tensor in Higher Di-
mensions and Applications, arXiv:0710.1598 [gr-qcl; M. Ortaggio, V. Pravda, A. Pravdova, Algebraic
classification of higher dimensional spacetimes based on null alignment, arXiv:1211.7289 [gr-qc].
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equivalently
() = 2@ g 2) = Cupe 20, . (11.95)

In particular, the Weyl tensor is zero if the metric is conformally flat, i.e. related by a

conformal transformation to the flat metric 7, (of any signature),

g/u/(x) = e2f(x)77;w($) = Ct _=0. (11.96)

vpo

This can be established by brute force calculation and is not per se particularly enlight-

ning.

Conversely for D > 4 vanishing of the Weyl tensor is also a sufficient condition for a
metric to be (locally) conformal to the flat metric. This is a non-trivial result because
at face value one seems to obtain a completely overdetermined system of equations for

the single function f, of the form
P,, = {1st and 2nd derivatives of f},, . (11.97)

However, it turns out that the integrability conditions for this system of equations are
equivalent to the vanishing of the Weyl tensor, and then a variant of the Frobenius
integrability theorem (mentioned in a different context in section 15.5) can be used to

establish the local existence of a solution f.

For D = 3, the situation is slightly (but not fundamentally) different. We see from
(11.89) that for any D > 4 conformal flatness implies vanishing of the Cotton tensor.
It turns out that for D = 3 the Cotton tensor takes over the role of the Weyl tensor
(which, as proven above, is itself trivial for D = 3), i.e. one has the statement that for

D = 3 a metric is (locally) conformally flat if and only if the Cotton tensor vanishes.

11.5 GENERALISATIONS: TORSION AND NON-METRICITY

In section 5.4 we had seen that the Levi-Civita connection (defined by the Christoffel
symbols) is characterised by the fact that

1. the metric is covariantly constant, Vg, = 0, and

2. the torsion is zero, i.e. the second covariant derivatives of a scalar commute.
It is of course possible to relax either of the conditions (1) or (2), or both of them and,
in particular, connections with torsion (relaxation of condition 2) are popular in certain

circles and/or arise naturally in certain generalised (gauge) theories of gravity and in
string theory.

To discuss this a bit more systematically, we consider a general connection

=T +Cc", (11.98)
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with I | the canonical Levi-Civita connection, and C*, a (1,2)-tensor. We will also

use the corresponding (0, 3)-tensor
Cuvr = gupChy - (11.99)

Associated with f“f,)\ we have the covariant derivative @“. Since f’f»\ will in general not
be symmetric in its lower indices, in this section we need to be particularly careful with
(and choose a convention for) the ordering of the lower indices in the covariant derivative.
We will choose the convention that the last index always refers to the direction along

which one is differentiating, i.e.
VWY =0,V +1%,V* (11.100)

etc. The reason for this choice is that one should think of the collection of objects FV)\M
(and f"’)\u) as the coefficients of a matrix-valued 1-form (cf. section 4.6) I''y = Iy da*,

the matrices acting by rotation on vectors (and more general tensors), as in (5.21).

We now define the torsion tensor Ti‘“, by

Vi Vilg =T3,000 . Tow = 93170, (11.101)
and the non-metricity tensor Q,x, by
Vugor = —Quau - (11.102)
In terms of the C"f/ y these tensors can be written as
T)\,uz/ = C)\;w - C)\uu = 20}\[;111} (11103)

Ql/)\u = Cuap T+ C)\Vu = 2C(V)\)u :

Thus the torsion is zero iff C)/‘W (and hence f);\w) is symmetric in its lower indices, and
the connection is compatible with the metric iff C, ), is anti-symmetric in its first two

indices. In particular, if the torsion is zero and the connection is metric-compatible, one
has

Cyw =Cxyp and Cyy =-Cuy = Chuw =0, (11.104)
as one can see by the gymnastics
Oy = COxwp = —Cuap = —Cpun = Cun = Cuny = —Chy - (11.105)

Conversely, since the absence of torsion and non-metricity characterises the Levi-Civita
connection, it should be possible to express the deviation C),, from the Levi-Civita
connection entirely in terms of torsion and non-metricity. This is indeed the case. By

repeating the calculation (5.44) in this more general context, one finds

2C\ () = Quan + Quav — Quur — Tpnw — Toay - (11.106)

271



Combining this with 2C)(,,; = T, one obtains

with

and

C)\;u/ = %(T)\uu - T;,L)\I/ - TI/)\M) + %(Qu)\u + Ql/)\u - Q/u/)\)

> . (11.107)

= T)\;w + Q)\;w )
T)\;w = %(T)\,uu - T;L)\u - Tz/)\p) = _Tu)\y (11108)
QN)\,LW = %(Q,u)\u + Qu)\,u - Q,u,u)\) = QN)\V;L . (11109)

Thus we can now split a general connection more informatively into the 3 pieces

D =T+ T+ Q- (11.110)

REMARKS:

1.

The tensor T' \uv 18 known as the contorsion tensor (frequently (mis-)spelled as
“contortion” tensor). I am not aware of a commonly used name for Q Auvs and
will not try to invent one. The contorsion tensor is the linear combination of
components of the torsion tensor that appear as the connection coefficents of a

general metric-compatible connection with torsion,
Qnw =0 = T9,=01,+T), . (11.111)
In general it can have both symmetric and anti-symmetric components,

T)\(uu) = _%(Tu)\u + TI/)\M) = T(,w))\ 5 T?;w] = %Ti\w s (11.112)

but it cannot be symmetric (if the contorsion were symmetric, the torsion, and
hence the contorsion, would be zero). If its symmetric part vanishes, then T/\uv is

completely anti-symmetric,

. - -
T ) = 0 = T)\wj = T[)\HV} . (11.113)
Since I'y,,, contains a part that is antisymmetric in the first 2 indices,

Dy = 590w + 3(9au = Guu) (11.114)

one might be tempted to think that that part can be cancelled (or absorbed)
by a metric-compatible C),, = C[y,),, so that a very simple metric-compatible
connection would be

2

Iy, £ 1 ™ X
Apv = 59 uy s uy

= 10 o - (11.115)

However, the term that one has cancelled (or absorbed) is not a tensor. Therefore,
this candidate “connection” does not transform as (and therefore does not qualify

as) a connection and cannot be used to define a covariant derivative.
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3. In general, for a connection V, the notions of autoparallels (section 5.8),
V. XH=0 & F+T1 @it =0, (11.116)

(i.e. curves characterised by the fact that their tangent vectors are parallel trans-
ported along the curve - this depends on a choice of connection) no longer coincides
with the notion of geodesics (which are obtained by extremising proper time or
distance, and which always lead to the Levi-Civita connection). However, this
difference disappears if C‘:A happens to be anti-symmetric in its lower indices
(e.g. for a metric-compatible connection with totally anti-symmetric contorsion

tensor), as one then has

it +TH @it =it 4+ T Vit (11.117)

We have defined the Riemann tensor via the commutator of covariant derivatives (8.2)

[V, VIV = RY VO (11.118)

ouv
associated to the Levi-Civita connection (Christoffel symbols), or, equivalently, by the

relation (8.5) (now being careful with the positioning of the lower indices)

R, =0.%, — 0,7, +T°, 10, —T 1% . (11.119)

o
In order to show explicitly (rather than by appealing to (11.118)) that this transforms as
a tensor, all that one needs is the characteristic non-tensorial transformation behaviour
of the Christoffel symbols F);w. As discussed in section 5.4 and above, an arbitrary
connection f)‘wj that can be used to define a tensorial covariant derivative has the same
non-tensorial transformation behaviour. Therefore

Ry = Ry (D) = 0%, — 8,17, + I, 1, — T, T,

. (11.120)

defines a tensor for any connection, namely the curvature tensor of the connection F’\W.

It is related to the commutator of covariant derivatives by

Vo,V VA =R, VT + (T4, —T4,)V,V} =R} VO + T, V,V* | (11.121)

ouv ouv
where T%,, is the torsion tensor. As before, one can also define the Ricci tensor and

Ricci scalar by

R, =R,[T) =R, , R=RT)=¢"R,, . (11.122)

However, it is crucial to keep in mind that the symmetry properties and Bianchi iden-
tities satisfied by these generalised curvature tensors will in general differ from those of
the Riemann-Christoffel tensor. This should be clear from the way we derived the sym-
metries of the Riemann tensor in section 8.3, where we related the symmetries to the
properties (metricity, no torsion) that characterise the canonical Levi-Civita connection
(Christoffel symbols). For example, in general the Ricci tensor will not be symmetric,
the Bianchi identity R,(g,s5) = 0 will be replaced by an identity relating Ra[ﬁwﬂ to the

torsion (and its covariant derivative), etc.?®

Z8For more on this and related topics, see e.g. section 1 of T. Ortin, Gravity and Strings.
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For some further discussion of connections with non-metricity or torsion and their cur-

vature tensors see section 20.7.
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12 CURVATURE lII: CURVATURE AND GEODESIC CONGRUENCES

In section 8.4 we had already encountered the so-called geodesic deviation equation
(8.38),
(D;)*62# = Rh, @i oaf (12.1)

describing the evolution of a separation (or deviation) vector along a given geodesic. In
this section we will rederive this result in a more satisfactory and covariant manner and
also use the same covariant framework to discuss the extension of these results to the
so-called Raychaudhuri equation, which descibes the focussing properties of congruences

of geodesics.

12.1 COVARIANT DERIVATION OF THE GEODESIC DEVIATION EQUATION

The starting point is a geodesic with tangent vector field u®,
uBVBuO‘ =0, (12.2)
and a deviation vector field dz® = £“ characterised by the condition
[u, €] = uPVe® —PVu* =0 & D% =¢PVau” . (12.3)

The rationale for this condition is that, if x®(7, s) is a family of geodesics labelled by s,

one has the identifications

o 0 o a_g a
ut = oo (r,s) , ¢ =352 (1,5) . (12.4)

Since second partial derivatives commute, this implies the relation

0 0
Efa(Ta S) = %ua(7—7 S) ) (125)

(implicit in the identification d& = (d/d7)dx employed in the derivation in section 8.4).
Condition (12.3) is nothing other than the covariant way of writing (12.5).

Introducing the tensor
B.s = Vgu, (12.6)

we can write (12.3) as
D% = B%¢P (12.7)

so the matrix B,g describes the evolution and deformation of the deviation vector £*

along the geodesic. Because u® is affinely geodesic, it satisfies
Baguﬁ = UBVBUQ =0 (12.8)

and
u*Bag = 5V(uuq) =0 , (12.9)
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and is thus transverse to u®. This is a crucial property we will come back to in the

discussion of the Raychaudhuri equation below. As a consequence one has
U DE* =0 (12.10)

(i.e. D;EY is transverse to u®) and therefore

d a o o
E(uaf ) = Dr(ual®) = uaD-* =0 . (12.11)

This means that the u-component of a geodesic deviation vector £ in the sense of u,&“

is simply constant and contains no interesting information about the geodesic itself.

In the timelike case this means that a vector of the form &% = £u® is a deviation vector
only if £ is constant, and then £% is simply a translation along the geodesic and therefore
not a deviation vector of interest (and certainly anyhow not a vector of the kind one
has in mind when thinking about a deviation vector, which should point away from the
geodesic). In the null case, the interpretation is slightly different (and we will return to
this in section 12.4), but the fact that u,£® is simply constant for a deviation vector
remains, and we can without loss of information choose the deviation vector to satisfy
the condition £%uy = 0.
Given this set-up, we now want to calculate

(D:)%" = (D, B%)¢? + B4 D, &* (12.12)
= (D-B% + B%B)E .

Note that, along with D,£%, also D2£% is automatically transverse to u®, u, D2£% = 0,

regardless of whether or not one imposes the condition £%u, = 0.
For the term in brackets we find, using the geodesic equation for u®,
D;B% + B%B@Y = uPVV.u® + (V,uP)V gu®
= u’VaVu® + V., (4P Vu®) — PV, Vau® (12.13)
= (VyV,y =V, Vp)u® = Ry ufu’

and plugging this back into (12.12), we obtain straightaway the covariant version (8.38)

of the geodesic deviation equation in the form
(D7)%€* = R%5,u'u’e . (12.14)
Note that this result is automatically transverse to u®,

ua(D7)%€% = Rusprutu’uPe =0 . (12.15)

REMARKS:

1. T hope you agree that this derivation is somewhat more satisfactory than the one

given in section 8.4.
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2. The object we have called B,g in (12.6) and its evolution equation (12.13) will
play a central role in our derivation of the Raychaudhuri equation below.

3. When considering a null geodesic, the condition £*u, = 0 does not eliminate
the component of £* tangent to the geodesic. In that case it is convenient to
introduce an auxiliarly linearly independent null vector field in order to be able
to project the deviation vector £ and its derivatives D,£% and D2£Y into some
spatial codimension 2 plane transverse to these null directions. This transverse

null geodesic equation will be derived and discussed in section 12.3.

4. If the curve is not a geodesic (but still parametrised by proper time, so that
u®uy = —1), then the above derivation shows that in addition to the force exerted
by the space-time curvature the deviation vector feels a force proportional to the

change of the acceleration a® = u? Vgu® along the curve,
(D7)%€* = R%5,u'u’¢" + Dra® | (12.16)

In flat space, only the last term is present and describes the (tidal) forces arising
from the possible non-uniformity of the external force acting on the particle (or,
better: on the extended object described by a family of worldlines) to produce
the acceleration a®. Thus, in precise analogy with the Newtonian situation, the
gravitational (i.e. here now Riemann curvature tensor) contribution to the geodesic

deviation equation should be interpreted as the gravitational tidal force.

12.2 RAYCHAUDHURI EQUATION FOR TIMELIKE GEODESIC CONGRUENCES

A congruence of curves is a (locally) space-time filling family of curves, i.e. it is such
that locally for any space-time point there is a unique curve passing through that point.

A (timelike) geodesic congruence is then a congruence of (timelike) geodesics.

Manipulations similar to those leading to (12.14) allow one to derive an equation for
the rate of change of the divergence V,u® of a family of geodesics along the geodesics.
This simple result, known as the Raychaudhuri equation, has important implications and
ramifications in general relativity, in particular in the context of the so-called singularity
theorems of Penrose, Hawking and others, none of which will, however, be explored here

(see footnote 96 of section 29.3 for some references).

Thus u® now denotes a tangent vector field to an affinely parametrised geodesic con-
gruence, uVau? =0 (and u®uy, = —1 or u®u, = 0 everywhere for a timelike or null

congruence). As in section 12.1, we introduce the tensor field (12.6)
Bag = Vﬁua . (12.17)
Recall from section 12.1 that B,g satisfies (12.8), (12.9),

Bosu® = u®Bas =0 (12.18)
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and therefore only has components in the directions transverse to u®. Its trace

0 = B% = g’ B.g = V,u® (12.19)
is the divergence of u® and is known as the ezpansion of the (affinely parametrised)
geodesic congruence.

The key equation governing the evolution of B,z along the integral curves of the geodesic
vector field is (12.13)
é
D,B% + B4BY = Rg v u’ . (12.20)
By taking the trace of this equation, we evidently obtain an evolution equation for the

expansion 6, namely

diﬁ = —(Vaug)(VPu®) — Rupguu® . (12.21)
-

Note that this equation, written in the form
UV 5(Vau®) + (Vaug) (VPu®) + Rogu®u® =0 . (12.22)

is a special case of the “master equation” (8.53) for V — u® with u” Vgu® = 0.

To gain some more insight into the geometric significance of this equation, we now
consider the case that the geodesic congruence u® is timelike and normalised in the

standard way as u“u, = —1 (so that 7 is proper time).

Given this timelike geodesic congruence, we can introduce the tensor
hag = gap + uaug . (12.23)

The properties of this tensor are closely related to those of the (induced metric) tensor
hog = gap — €eNoNpg (16.1) studied in section 16.1 in the context of hypersurfaces.
The main difference in the present context is that u, is not necessarily hypersurface-
orthogonal (section 15.5) and therefore, in particular, not necessarily a normal vector
field to a familiy of spacelike hypersurfaces. Therefore h,g does not necesarily have an
interpretation as the induced metric on some hypersurface. Nevertheless, pointwise it
can be interpreted as a metric on the space of vectors transverse to the geodesic and its

purely algebraic properties are identical to those of the induced metric.

In particular,
e hop has the characteristic property that it is orthogonal to u®,
Uhas = hapu® =0 . (12.24)

e It can therefore be interpreted as the spatial projection of the metric in the direc-

tions orthogonal to the timelike vector field u®. This can be seen more explicitly
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in terms of the projectors
hOZ; = Oé + UOCUQ
a1 B _ o
ghy = h% . (12.25)
On directions tangential to u® they act as
hu’ =0 | (12.26)
whereas on vectors £ orthogonal to u®, u,&® = 0 (spacelike vectors), one has

hGeh = ¢ . (12.27)

«

e Thus, acting on an arbitrary vector field V<, v* = h%vﬁ is the projection of

this vector into the plane orthogonal to u®. In the same way one can project an

arbitrary tensor to a spatial or transverse tensor. E.g.
ta...ﬁ = Tﬁ/.,,é hﬂya cee héﬁ (1228)

satisfies
Wty g=...=uPty 5 =0 . (12.29)

e In particular, the projection of the metric is
Gap — gﬁ/éhﬂyahég = gap T UqUg = haﬁ 5 (12.30)

as anticipated above. Whereas for the space-time metric one obviously has g®? 9o =
4, the trace of hag is (in the 4-dimensional case)

9°hap = 6°Pgas + 9 uqus =4 —1=3 = h*%h,s . (12.31)

Thus for an affinely parametrised congruence the properties (12.8) and (12.9) show that

B,z is automatically a spatial or transverse tensor in the sense above,
bap = hJhiBys = Bag - (12.32)

Note that the affine parametrisation of the timelike geodesic congruence, expressed
by the normalisation condition u®u, = —1, is crucial for this entire set-up, since the
projection operator requires a unit vector field. This is to be contrasted with the
situation for null geodesic congruences £, to be discussed below, where the property
0?4, = 0 is independent of the parametrisation and one can (and we will) also consider
the case of non-affine parametrisations.

In the spirit of elasticity theory, we now decompose b,g into its anti-symmetric, sym-
metric traceless and trace part,

bag = Wap + 0ap + 30hap (12.33)
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with

Wap = 3(bag — bagp)
0ap = 3(bap +bap) — 50hap
0 = h*¥bus=g*"Bas = Vou® . (12.34)

The quantities w,g, 0ap and 6 are known as the rotation tensor, shear tensor, and

expansion of the congruence (family) of geodesics defined by u®.

In terms of these quantities we can write the evolution equation (12.7) for deviation
vectors as
D% = whe? + 0%EP + 10> (12.35)

and the evolution equation (12.21) for the expansion 6 as

d
d—@ = —%92 — O'aﬁO'aﬁ + Waﬁwaﬁ - Raﬁuauﬁ . (1236)
-

This is the Raychaudhuri equation for timelike geodesic congruences.

REMARKS:

1. The expansion 6 can be written as

0 = h*bas = h*P B,g = h*PV gu,

(12.37)
= 2h (Vgua + Vaug) = 1h*’ Lygag

where L, denotes the Lie derivative along the vector field u. Substituting g.g =

hag — uqug, one finds
0 = 2h*P Ly(hap — uaqug) = 3R’ Lyhag (12.38)

Recalling the formula
5v/9 = /997 090p/2 (12.39)

for the variation of a volume element induced by a variation of the metric, morally
speaking the above equation says that # measures the change of a transverse (cross-
sectional) volume of the congruence with volume element v/ as one moves along
the geodesics,

1 d
6= EE\/E : (12.40)

The statement as such is correct and provides the correct intuition for the meaning
of 8, but the definition of the cross-sectional volume and its volume element require
a bit of care. When the congruence is hypersurface orthogonal, with the induced
metric (16.6)

hap = ESEL hagp (12.41)
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then (12.40) with h = det(hyp) follows from (12.38), because

h® Lyhay = WLy (ESEy hag) (12.42)
_ habEsEbBLuhaﬁ = haﬁLuhaﬁ . '

Here we have made use of the fact that u and E, have vanishing Lie bracket,

because (introducing 7 and y* as coordinates, instead of the z®)
_ ox® o _ ox®
or @ oy

and the Lie bracket gives the commutator of the second partical derivatives of z¢.

ua

(12.43)

When the congruence is not hypersurface orthogonal, one can still construct a
transverse cross-sectional volume, but one can only choose it to be orthogonal at
a given geodesic. Introducing in a neighbourhood of a point on this geodesic coor-
dinates y* labelling the geodesics, as well as the parameter 7 along the geodesic,

the above calculation will then still go through.?”

2. If required and desired, from (12.20) similar (but somewhat less transparent)
equations can be derived for the evolution of the shear and rotation tensors along
the geodesic congruence, i.e. for (d/dr)o.s and (d/dT)wegs.

3. Since w,g and o, are purely spatial tensors, their squares are non-negative,
0P >0, wPwus >0, (12.44)

with 05,5 = 0 only for 0,5 = 0 (and likewise for the rotation). They thus enter

the Raychaudhuri equation with opposite signs.

4. In the presence of both these terms it is difficult to say something general about the
evolution of #. Since the first term (—62/3) is non-positive, an important special
case of the Raychaudhuri equation arises when the rotation is zero, w,g = 0. This
happens for example when u, = 0,5 is the gradient co-vector of some function
S. In this case u, is orthogonal to the level-surfaces of S. In fact, more generally
we have the statement that

weg =0 & u® hypersurface orthogonal . (12.45)
Indeed, assume that u,, is hypersurface orthogonal, i.e. (15.55)

uaVpuy =0 & waplly + wWyta + wyaug =0 . (12.46)

Contracting this with «” and using u"u, = —1 and u"w,g = 0, only the first term

survives and one finds on the nose that w,s = 0,

UV, =0 = wap =0, (12.47)

2For a more careful proof of this statement see the discussion in section 2.4.8 of E. Poisson, A
Relativist’s Toolkit.
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and the Frobenius theorem provides one with the converse statement. Alter-
natively, w,g = 0 follows from assuming that wu, has the explicit hypersurface-
orthogonal form u, = f0,5. Then one has (15.52)

Wha = V[Q’LLB} = (V[a log f)’LLm (12.48)
and by contraction with u® one deduces

Onf = —(WPOsf)ug ~us = wag =0 . (12.49)

. Either way, for a hypersurface orthogonal congruence of timelike geodesics one has
4y _1g2_ oo Rogu®u 12.50
d_T =3 — 0 " 0aB — agu u- . ( . )
The first two terms on the right hand side are manifestly non-positive (recall that
0qp is a spatial tensor and hence JQBJO‘B > 0). Thus, if one assumes that the

geometry is such that
Rogu®u’ >0 (12.51)

(by the Einstein equations to be discussed in the section 19, this translates into a
positivity condition on the energy-momentum tensor known as the strong energy

condition, cf. section 22.1), one finds

d
-

This means that the divergence (convergence) of geodesics will decrease (increase)
in time. The interpretation of this result is that gravity is an attractive force (for

matter satisfying the strong energy condition) whose effect is to focus geodesics.

. According to (12.52), df/dr is not only negative but actually bounded from above
by

d
—0 < —10% . 12.53
dr — 3 ( )
Rewriting this equation as
dl _ 1
— > 12.54
dro — 3’ ( )
one deduces immediately that
1 1 T
— >+ = 12.55
6(r) = 9(0) 3 (12.55)

This has the rather dramatic implication that, if 6(0) < 0 (i.e. the geodesics are
initially converging), then 6(7) — —oo within finite proper time 7 < 3/]6(0)|,

O(1) —» —oo for 7 <3/]0(0)] (12.56)
provided that the geodesics can be extended that far.
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7. If one thinks of the geodesics as trajectories of physical particles, this is obviously
a rather catastrophic situation in which these particles will be infinitely squashed.
In general, however, the divergence of 8 only indicates that the family of geodesics

develops what is known as a caustic where different geodesics meet.

8. Simple non-catastrophic examples of such caustics are e.g. the poles of a sphere
where great circles meet, or even just the origin in Euclidean space R"™ when
considering the family of radial geodesics passing through the origin. E.g. in the

latter case the tangent vector field is simply 0,, and its divergence is

Va(0)* = %aa(\/g(ar)a) e (12.57)

which diverges as » — 0. This divergent behaviour is strictly related to the
breakdown at the origin r = 0 of spherical coordinates adapted to this congruence

(cf. also the related discussion in section 43.6).

9. Nevertheless, the above result plays a crucial role in establishing the occurrence of
true singularities in general relativity if supplemented e.g. by conditions which en-
sure that such “harmless” caustics cannot appear, as this means that the geodesic
cannot be extended to where one would find # — —oo. This kind of argument
(leading to the conclusion of geodesic incompleteness of a space-time) is one of the
typical ingredients of the singularity theorems of general relativity (see footnote

96 of section 29.3 for some references).

10. The adaptation of this formalism in general and the Raychaudhuri equation in
particular to congruences of null geodesics requires some more care (and is ul-
timately expressed in terms of 2-dimensional rather than 3-dimensional spatial

tensors), and we will discuss this in section 12.4 below.

12.3 TRANSVERSE NULL GEODESIC DEVIATION EQUATION

In section 12.4 we will derive the null counterpart of the Raychaudhuri equation for
timelike geodesic congruences discussed in section 12.2 above. The set-up we will use
is a suitable combination of that for timelike geodesics and the formalism of projectors
adapted to null directions. As a preparation for this, and a useful by-product, in this
section we will first derive a variant of the geodesic deviation equation for null geodesics,

the transverse null geodesic deviation equation.

Thus we consider a null geodesic (or congruence of null geodesics), with tangent vector
field £, and we will initially choose these null geodesics to be affinely parametrised so

that one has
(=0 , VP =0 . (12.58)
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The affine parameter along the null geodesics of this congruence will (for lack of imagi-

nation) be called 7.

Now recall from the discussion of the geodesic deviation equation in section 12.1 that

for any geodesic deviation vector £%, i.e. a vector satisfying the condition
D,€% = PV gu” (12.59)

the quantity £“u,, is constant along the geodesic,

%(éaua) = (D7E"ua = EPuVgu® =0 (12.60)

because u“u, = € is constant, regardless of whether u® is timelike or null. However,
the interpretation of this and its implications depend on whether one is dealing with a

timelike geodesic (congruence) or a null geodesic (congruence):

1. In the timelike case the quantity (—£%u,) is the uninteresting component of £
along the geodesic u®, and there was clearly no point in not setting it to zero. The
transversality condition £“u, = 0 on the deviation vector could be consistently

imposed and was sufficient to remove this component.

2. In the null case, however, the condition £*¢, = 0 does not accomplish this, i.e.
does not remove the component of ¢ pointing in the direction of /% because it
imposes no condition precisely on that component. Thus we expect the deviation
vector £ to have two uninteresting components in the null case, £“¢, and the

component of £ in the direction of £%:

e Indeed, as recalled above, we already know in general that £*¢, is constant,

d
T (€%a) =0 . (12.61)

e To verify this also for a component of £ along /¢, we impose the condition

that £ be a deviation vector on the vector
£ =& (12.62)
(note once again that this £ is completely unrelated to £*¢,). Since £, is a

geodesic, we have

d
Dre* = ()t L PVl = PVt =0 . (12.63)

Thus £* = &0“ is a (boring non-) deviation vector iff £ is constant, and one

should impose the condition & = 0.
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Therefore it is natural to project out both these components from &,. In order to
construct a suitable projection operator, one can proceed as in section 17.4 and introduce

a complementary null vector (field) n® with
nng =0 , n%% =-1. (12.64)

Then
E="+... = {=-(%, (12.65)

and we can elininate both boring components by imposing the transversality conditions
Mo = &% =0 (12.66)

on the deviation vector £, in addition to the deviation vector condition (12.3),
1OV &P = €2V 08 . (12.67)

As in (12.6) we introduce
Bus = Vila (12.68)

so that the above condition that £% is a deviation vector can be written as
D,£&* = B%¢P . (12.69)
Because (¢ is null and (affinely) geodesic, one has
(*Bug = Bagl® =0 , (12.70)

but B,g is not automatically orthogonal to n® (and we will come back to and recitify

this below). Exactly the same calculation as (12.13) in section 12.1 now shows that

D;Bus + BB = R, 5010 (12.71)

so that one also has the null counterpart of (12.14), namely
(D;)%6* = R 5070°¢" . (12.72)
Again this equation is automatically transverse to ¢, in the sense that
o(D7)%€% = Ragypl®00°¢P =0 | (12.73)

but not transverse to n®.

In order to pick up only the transverse components of D,£% in (12.69) (and in subse-
quent equations), we thus need to project B,g onto its transverse components. The

construction of this projector is identical to that in section 17.4:
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e Associated with a choice of n® we have a decomposition of the metric into a

longitudinal and a transverse spatial part,

JaB = Sapf — (&xng + Kgna) , (12.74)
with the properties
Sagﬁﬁ = sagnﬁ =0 (12.75)
and
9505 = 5505 = 5% =2 . (12.76)

(we are considering the case D = 4).

e We then also have the corresponding transverse (spatial) projectors

(12.77)

With the aid of these projectors, we can now write the fully projected version of (12.69)
as
s% D7 (s7£7) = b%eP (12.78)

where b, is the projection of B,g,
bag = 5354 Bys - (12.79)

Likewise the purely transverse (to £ and n) variant of the null geodesic equation (12.72)
can be written as
2 §
s%(D7)*(s7€7) = s%s K RO, 007" . (12.80)
While this is essentially the final result, it is not particularly transparent yet. We will
put this equation into a somewhat more attractive form below, in which manifestly only

the transverse components of the deviation vector and Rﬁuwf"ﬁ” appear.

First of all, note that the auxiliary normal vector n® is not unique. For a fixed choice
of /%, at a point on the geodesic, that is for a given value of 7, it is uniquely determined
up to null rotations around ¢,

0=t , n—on+p'E,+ 38 |, E,— E,+Bal (12.81)

where E, are (necessarily spatial) vectors orthogonal to ¢ and n, and 8, = B,(7). This
ambiguity does not affect any of the results in this section, so in principle one can make
any choice of auxiliary n®. In particular, one can choose n® to be parallel-transported
along /¢,

(OVan® =0 . (12.82)

Then the properties of parallel transport obtained in section 5.8 imply that the con-

ditions (12.64) on n® hold everywhere along the null geodesic (or congruence of null
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geodesics) if they are satisified initially. This reduces the ambiguity in (12.81) to 7-

independent null rotations.

In fact, one can do even better than that and choose (see also the discussion at the end

of section 17.4, in particular around (17.57)) an entire pseudo-orthonormal frame
{EA} = {E+ = e? E_= naEa} : gaﬁEﬁEg = NAB (1283)
where

Nyt =N—=0 , mp—=-1 1, Moy =0a-=0 , Nap=0dap - (12.84)

If one selects such a frame at one point along the geodesic and then parallel transports
the frame along the geodesic, the orthogonality relations (12.83) will hold everywhere

along the geodesic. Thus we can always choose a basis £/ 4 such that
D:ES=0 , gapBESES =145 . (12.85)

With this choice, a transverse geodesic deviation vector is simply one which has com-

ponents only in the E,-directions,
E =& =0 & £ =¢"EY (12.86)
or simply
§=¢"E, . (12.87)
Since D, E,=0, one has

d
D:E,=0 = Dig"=—¢", (12.88)

so that with respect to this basis covariant differentiation along the curve reduces to
ordinary differentiation of the components. Then the null geodesic deviation equation

(12.80) can simply be written as

d—2§a =R & =—-R%,, ¢ (12.89)
dr2s T s T +b+5 :
where the R,4p+ are the frame components of the Riemann tensor,

Rarps = ECEYEJEY Rousy = ESEL Royp '0° . (12.90)

Thus the transverse null geodesic deviation equation has the form of a (D—2)-dimensional

(transverse) harmonic oscillator equation,
e = e (1291)
dr2> b5 ’
with the time-dependent symmetric frequency matrix
(Q)(1)% = R, (7) (12.92)
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The notation used here is perhaps suggestive but it is not meant to imply that Q2 is
necessarily positive - the frequencies can be real or imaginary. Using the decomposition

(11.76) of the Riemann tensor into its traceless and trace parts, we can (with D = 4,

Nat = N+ = 0,Map = dap) decompose Ryqpq as
Ra+b+ == Ca+b+ + %5abR++ . (1293)

In particular, if the Ricci tensor is zero (as we will see this means that the metric
solves the vacuum Einstein equations), the frequency matrix 2 is symmetric traceless
and thus necesarily has positive and negative eigenvalues (corresponding to real and

imaginary frequencies).

12.4 RAYCHAUDHURI EQUATION FOR AFFINE NULL GEODESIC CONGRUENCES

We now consider a null geodesic congruence, with tangent vector field again denoted by
%, and we will initially choose these null geodesics to be affinely parametrised so that

one has
(=0 , oV 0P =0 . (12.94)

We use the same framework as in the previous setion, with an auxiliary null vector field

n® with £*n, = —1, the associated projectors etc.

In (12.79) we introduced the transverse projection b,g of the tensor Bng = Vgla,
bag = 5354 Bys - (12.95)

Performing this projection explicitly, one sees that this spatial projection b,z is equal
to
bap = so']sgBM; = Bog +lon' Bz + Kgn‘SBa(; + Eaﬁgnyn‘SB,ﬂg . (12.96)

This has two useful immediate consequences that we will make use of in the following,
namely
e that the spatial trace of b,g with respect to s,s is equal to the space-time trace

of B,g (with respect to gag),

9°?Bap = §*Pbag = s%Pbog (12.97)
e and that the square of b,z is identical to that of B,g,
B*Bgy = 0*Pbg, (12.98)

We can now, as in the timelike case, decompose b,g orthogonally into its irreducible

(trace, symmetric traceless, anti-symmetric) parts,

bap = 3005ap + 5 (bag + bsa — 015a3) + 5 (bap — bsa)

X (12.99)
= iegsag + 0o +Wap -
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Here 6, is the expansion
0r = 5% = 5PV gl = gPV ol = VU, | (12.100)

REMARKS:

1. As in the timelike case (12.38), the expansion #; can be written as
00 =15 Lysag (12.101)

and leads to an analogous interpretation of 6, as measuring the change in the

cross-sectional area element /s of the congruence (12.40),
1
NG

2. The equivalence between the spatial and space-time traces of Vg in the above

0= —Lp/5 . (12.102)

equation is due to the fact that we have chosen £ to be affinely parametrised. We
will always define 6 to be the spatial trace (divergence) of V,/g, even when ¢ is
not affinely parametrised, but in that case § and V,¢% are no longer equal (see
(12.126)). We will return to this issue below.

3. As regards the other terms, 0,3 and w,g are again known as the shear tensor and

rotation tensor respectively.

4. As in the timelike case, the rotation is zero if £% is hypersurface orthogonal. We
will establish this result below.

5. Because the above decomposition is orthogonal, we have

B Bgy = 0"bgy = +107 + 0005 — wPwas (12.103)

6. Because the tensors appearing on the right-hand side of this equation are spatial

tensors, their squares are non-negative,

0P >0, wPuwus >0 . (12.104)

We now want to determine p
—0) =10V ,0, . 12.105
il abe ( )

We can do this either by again deriving an evolution equation for all of byg, as in (12.71),
or by calculating directly the derivative of 8, along ¢. Adopting the latter procedure
here, just following one’s tensor calculus nose one finds

d
Ay o 8
dTHg 2V o (Vpl?)

= "V, Vall# + 07V 3V o 0 (12.106)
= —Raﬁfo‘fﬁ _ (Vﬁga)vagﬁ + vﬁ(gavaéﬁ) ‘
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The 2nd term is just —BQBBBQ and the 3rd term is zero because ¢ is geodesic. Thus

one finds the Raychaudhuri equation for null congruences

d
EQ@ = —Ragfafg — %9? — UaﬁO'ag + waﬁwag . (12.107)

Using (12.102) in the form
%\/g — 05 (12.108)
we can also write this as an equation for the change in the expansion rate of the cross-
sectional area /s of the congruence. This leads to an additional +67 in the evolution
equation, and thus flips the sign of the 2nd term of (12.107), resulting in
a2

s = (—Ragl®0? + 367 = 0005 + w0 Puas) V5 (12.109)

REMARKS:

1. If the geometry is such that
Ropl®0? >0 (12.110)

(by the Einstein equations to be discussed in the section 19, this translates into
a positivity condition on the energy-momentum tensor known as the null energy
condition, cf. section 22.1), this gives a negative contribution to the right-hand
side of the Raychaudhuri equation (indicating the focussing effect of gravity on

lightrays).

2. If moreover the rotation w,g is zero, for an affinely parametrised null congruence

one has p
00 = —Ropt™lP — 307 — 00,5 (12.111)
and therefore, in particular,
d 192
Eeé <-16;<0 . (12.112)

In Minkowski space-time (with zero curvature) we would have an equality instead
of the first inequality sign, so (12.112) is the (reasonable) statement that the
expansion is smaller /slower than in Minkowski space, i.e. that (reasonable) matter

has the tendency to focus lightrays.

3. Analogously to the timelike case, (12.112) has the consequence that if one has an

initially converging null congruence, 6;(7) < 0, then because of

d 1 T — T
—0p < —367 > 0 12.11
I RN e Ry e S (12.113)
1/0(1) — 0_ or §(1) — —oo at the latest at
0i(1) = —oo  for T < 70+ 2/|0,(70)] (12.114)
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(if the geodesics can be extended that far). As in the timelike case, this usually

indicates the formation of a (harmless) caustic where these null geodesics cross.

. E.g. in Minkowski space radially outgoing lightrays ¢ = 9,, v = t + r, have

expansion
1 2
0p = Vu(0,)" = ﬁaa(ﬁ(at +0)%) =+->0, (12.115)
while radially ingoing lightrays n = d,, u =t — r, have expansion
1 2
0, = Vo (0u)* = ﬁaa(ﬁ(at —0,)%) = —-<0, (12.116)

reflecting the fact that outgoing lightrays expand while ingoing lightrays contract.
Both expansions diverge as r — 0, but this evidently does not indicate a pathology
of Minkowski space-time, but only of the chosen congruences at the origin (where

all the lightrays of the congruence meet).

Note also that e.g. 6, satisfies the Raychaudhuri equation

d
00 =10V0b0 = 0, (+2/r) = —2/r* = -167 | (12.117)
-
as it should (no curvature, no shear, no rotation). With cross-sectional area
/s ~ 1% one also has
1 & 1 99 2 12

—_ S = — 8 T :—:+—6 ; 12118

\/g d7'2 \/7 7‘2( T’) 7‘2 2Y¢ ( )
illustrating the variant (12.109) of the Raychaudhuri equation: while 8 ~ 7= — 0
as r — oo, indicating that the cross-sectional spheres become flatter and flatter
for large 7, the cross-sectional area grows like 1/s ~ 72, leading to an acceleration
of its growth.

. An argument similar to that in the timelike case shows that the rotation vanishes

if (and locally only if, by Frobenius) ¢ is hypersurface orthogonal
wep =0 & (% hypersurface-orthogonal . (12.119)
In order to establish this we begin with the condition
oVl =0 << Bagly + Bgyla + Blyals =0 . (12.120)

Contracting this with £7, we would get 0 = 0, which is true but unenlightning. To
get something non-trivial and more useful, we contract with n” instead. Then we
deduce

B[am - B[B,y]nﬂyfa - B[W}nWB =0 . (12121)

Disentangling this, one sees that this is precisely the statement that the anti-
symmetric part of b,g is zero, i.e. that w,g = 0, so we have established the desired
result

E[OCVBE.Y] =0 = wep=0. (12.122)
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6. The expansion properties of families of null geodesics play a crucial role both in
the singularity theorems of general relativity (where for example so-called trapped
surfaces are characterised by negative expansions for both ingoing and “outgoing”
families of lightrays), and in the study of black holes and the laws governing the
evolution of their event horizons (where the interest is in the null geodesic congru-
ences generating the horizon). In particular, in the latter case the Raychaudhuri
equation is one crucial ingredient in the proof of the statement (Hawking’s theo-
rem) that under reasonable conditions the cross-sectional area of the event horizon

of a black hole cannot decrease.

12.5 RAYCHAUDHURI EQUATION FOR NON-AFFINELY PARAMETRISED NULL GEODESICS

Let us now look at the case when the null geodesic congruence is not affinely parametrised,
i.e. when, instead of (12.94), the starting point is a null vector field /¢ satisfying

(% =0 , OV 08 = kpt? (12.123)

with Ky the inaffinity. Then a couple of things change in the derivation, but the end
result (12.129) turns out to differ from (12.107) by only one term (and I will give an

alternative and much quicker derivation of the result below).

As before, we can choose an auxiliary null vector field n®, construct the projectors 30‘6
etc. Defining again B,g = Vgl,, one still has /*B,g = 0 (because this is implied by
*¢,, = 0), but instead of Bagﬁﬁ = 0 one now has

Bagl® = kely (12.124)

While the projection (12.96) remains unchanged, i.e. the relation between b,g and B,g
has the same form as in (12.96), the equations (12.97) and (12.98) for the trace and
square of B,g differ. Instead of (12.97) one has

5Pbag = (9% + £°n” + °n®)B,p

(12.125)
=Vl + knUly =V % — Ky .

Thus, if we define the expansion 6, as the spatial trace of b,s, instead of (12.100) we
find
Vol =0, +kp . (12.126)

Analogously, for the square of B, one finds, instead of (12.98),

BBy = b*Pbge + K7 (12.127)
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Putting everything together and calculating (d/dr)V,¢* as in (12.106), one then finds

é%w+n0:—RMWW—GﬁWWh%+VMWVJ%

= —Ropl®lP? — BogBP® + Vs (rl°)
d (12.128)
= —Ropl™lP — bopgb?™ — k7 + Trie+ k(0 + )

d
= —Ragfafﬁ — bagbﬁa -+ d—/{g + /ﬂg@g .
T

Thus the net effect of dealing with a non-affinely parametrised null congruence is that
one just picks up one additional term on the right-hand side of the Raychaudhuri equa-
tion,

d
— 0y = Ky — Ropl®l® — 102 — 6% 5 + wPw,s . 12.129
e 8 20 G 8

A quick(er) way to derive (12.129) is from the result (12.107) for affinely parametrised
null geodesics, by determining how the quantities appearing in (12.107) change under a
reparametrisation

e (12.130)

(with ¢% affinely parametrised, say).
e On the one hand, for the inaffinity one has
oy 8 (4 B = . B
1OV P = ?log|f| 7=k l7 (12.131)
T
where 7 is the non-affine parameter along ¢¢,
if = 0OV, f (12.132)
7 ¢ '
e On the other hand for the expansion parameter etc one deduces from
Bag = Vgla = fBas + laVsf (12.133)

that the transverse projection is simply

bap = fbas (12.134)
which implies
) 0; = fb
baﬁ = fbaﬁ = 5a5 = fO'aB (12.135)
‘Daﬁ = fwoaﬁ

Plugging these results into (12.107) one obtains on the nose (12.129) (with 7 — 7,0 — £
etc.).
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12.6 EXPANSIONS AND INAFFINITIES OF RADIAL NULL CONGRUENCES

In this section, we look at some general properties of radial null congruences in a spher-
ically symmetric space-time. All of the results of the previous sections 12.4 and 12.5
are of course also valid in this case, but the spherically symmetric case also has some

special and simplifying features.

Thus we consider a spherically symmetric metric. Such a metric could always be written

in the form

ds® = —A(t,r)dt* + B(t,r)dr* + r?dQ? (12.136)

by a suitable choice of coordinates. However, we will not need to commit ourselves to

this particular choice of coordinates. By making an arbitrary coordinate transformation
(t,r) — 2%(t,r) (12.137)

preserving the manifest spherical symmetry, this metric can be written in the form
ds® = gap(2)dz2d2" + r(2)2dQ> (12.138)

for some 2-dimensional Lorentzian metric gq(2), and with 7 = r(2%) now a function of

the new coordinates.

We now consider two linearly independent radial and spherically symmetric null vector

fields ¢¢ and n®, which we choose to be cross normalised such that
1% =n"ne =0 , {ng=-1. (12.139)

REMARKS:

1. Here “radial” means that it has components only in the d,.-directions transverse
to the sphere, and “spherically symmetric” that the coefficients only depend on
the z* and not on the coordinates of the sphere (this can of course also, if desired,
be phrased in a more coordinate-independent way, e.g. as the statement that the
Lie derivatives of /¢ and n® along the Killing vectors generating the rotational

symmetry vanish, but for present purposes not much is gained by this).

2. In concrete applications we will choose n® to be ingoing (in the sense that future
directed null rays tangent to n® will move towards smaller values of r) and ¢“ to

be (asymptotically) outgoing.

3. The minus sign in the cross normalisation is such that both vector fields are either

future or past oriented (and we will of course choose the former).

4. Note that the individual normalisation of the /* and n® is not fixed by the above

conditions, i.e. one can still perform the boost

0P s etal@)gs . = e—a(@) s (12.140)
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This can e.g. be used to select a preferred normalisation for one of them. If £
has been fixed, then, in spherical symmetry and with the assumption that n® is
also purely radial (longitudinal), n® is uniquely determined by the 2 conditions
n%n, = 0 and n*¢, = —1. This should be contrasted with the situation without
spherical symmetry where, as discussed in section 12.3, there is still the additional

freedom to perform null rotations on n®.

Spherical symmetry (and the choice of spherically symmetric null vector fields) also has
other implications. For instance, it follows from spherical symmetry that (2V¢° will
be some linear combination of £2 and n? (i.e. no component tangent to the transverse
sphere),

1oV 08 = AlP + Bnf (12.141)

(and likewise for n®). Taking the scalar product with ¢, and using
(ValP) g =4V, (0%05) =0, (12.142)

one finds that B = 0, so that automatically £*V,¢? ~ ¢8. Thus ¢* is automatically a
geodesic null vector field, but perhaps not affinely parametrised. The proportionality

constant A is then the inaffinity A = k; (and likewise for n®). Thus one has

OV L = kpl? nVan® = k0 . (12.143)
The boost freedom can then e.g. be used to choose either ¢* or n® to be affinely
parametrised (but usually not both of them simultaneously).

The same argument as above leads to the conclusion that necessarily n®V 0% ~ (8
as well, and in this case the constant of proportionality is fixed by taking the scalar
product with ng (and likewise with £ <+ n), leading to the conclusions
Vn” = —km® , nOV P = —k, 08 . (12.144)
In particular, if Kk, = 0, say, this implies that n® is parallel transported along ¢,
2V, nf =0.
It follows from either (12.143) or (12.144) that k; and &, can be written as
ke = —0onPV ol = (20PN 40
ap s (12.145)
Ky = —naﬁﬁvang = nanﬁvaﬁg ,
or
ke = 30 (Vang + Vane) = 30°0° Lugag (12.146)
Ky = %nang(vaﬁg + Vgly) = %nannggag

Here L, and L, are the Lie derivatives. Thus the inaffinities encode the information
about the longitudinal projections of the derivatives V,fg and V,ng, or of the Lie
derivatives Lygn.g and Ly, gag.
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Other useful information is contained in the transverse (i.e. parallel to the sphere)
projections of these objects. To define them, note that, as in section 12.3, associated

with a choice of /¢ and n® we have the decomposition of the metric
9aB = Sap — (lang + Lang) (12.147)
with s,g the transverse spatial metric (on the sphere),
sapdr®da’® = r(2)2dQ? | (12.148)

but that in the current context this decomposition and the corresponding projectors 5%

are now unique as the combination £,ng is boost-invariant.

The expansions of /¢ and n® are defined as the transverse spatial projections of the

divergence of ¢“ respectively n®, i.e.
00 =5Vl , 0, =5"Vng . (12.149)

As in (12.101) and (12.102) of section 12.4, these can be written as

1
9( = %SOCBL@SOCB = %Lg\/g
(12.150)
Lnv/s

0, = %So‘ﬁLnsag =

With /s = r(z)?sin , one finds more explicitly

2 2
0y = —£%yr , 6,= ;no‘aar . (12.151)
r
If one works with r as one of the coordinates, then this can also succinctly be written
as 5 5
Op=—-0" , 6,=-n". (12.152)
r r

As in (12.126) of section 12.5, we also have the relations

V% =0;+kKs , V%6 =0,+kK, . (12.153)
Turning now to the Raychaudhuri equation for a spherically symmetric radial null con-
gruence ¢, the general result (12.129) (for k; # 0), i.e.

d
0= riebe — Ropt®l® — 107 — 0™ 505 + wPwag (12.154)
-

simplifies considerably. Spherical symmetry implies that the spatial shear and rotation
tensors are zero (a spatial rotationally invariant 2-tensor is proportional to d;; which

has neither a traceless nor an anti-symmetric part),
Oaf = Wag =0 . (12.155)

The vanishing of the rotation can also be deduced from the fact that ¢ is hypersurface
orthogonal (specifically orthogonal to the family of null hypersurfaces generated by /).

Thus the Rauchaudhuri equation reduces to

C%eg = kefy — Rapl™l’ — 307 . (12.156)
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13 CURVATURE IV: CURVATURE AND KILLING VECTORS

In (pseudo-)Riemannian geometry the rich interplay between symmetries and geometry
is reflected in relations between the curvature tensor and Killing vectors of a metric.

Here we will explore some of these relations and their consequences.

13.1 USsgeFUL IDENTITIES RELATING CURVATURE AND KILLING VECTORS

Using the defining relation of the Riemann curvature tensor,
(VuV, =V, V)V = —RPAWVP (13.1)
and its cyclic symmetry (8.18), it is possible to deduce that for a Killing vector K*,
VK, +V, K, =0, (13.2)
one has the following basic identity relating Killing vectors and the curvature tensor,
VK, =R, K, . (13.3)

Indeed, proceeding as in the proof of the cyclic permutation identity (8.18), we deduce
that

Vi VuKy ~ Ry Ky =0 . (13.4)

Since V,K) is anti-symmetric, the total anti-symmetrisation is equivalent to cyclic

permutation, and we therefore have
V.V,K\+V,V K, +V,\V,K,=0 . (13.5)
Using the Killing property in the second term, we can write this as
VAV, K, = =V, V,]K)\ = RPAWKP (13.6)
which is (13.3).

This identity can be interpreted as the statement (and can alternatively be derived from
the fact) that the Lie derivative of the Christoffel symbols of a metric along a Killing
vector of the metric is zero.

Indeed, first of all it is easy to see that under a general variation of the metric, the
induced variation of the Christoffel symbol can be written as (20.14)

STh = 39" (Vudgpr + Vadgo — Vpigun) - (13.7)

(this is easy to derive and also easy to remember as it takes exactly the same form as
the definition of the Christoffel symbol, only with the metric replaced by the metric

variation and the partial derivatives by covariant derivatives - see section 20.2 for a
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derivation and discussion of this identity). In particular, this exhibits the fact that the
metric variation of the Christoffel symbols is a tensor (as could have been anticipated
from the fact that the non-tensorial term in the transformation of the Christoffel symbols
is independent of the metric), and additionally provides us with an explicit expression

for this tensor.

Next, if the variation 6g,,, = L¢g,, is the Lie derivative, i.e. the variation in the metric

induced by an infinitesimal coordinate transformation dx* = £, one can write this as
Lgf‘f»\ = %g“p(v'/[]igﬁ)\ + VaLegp — vpogu)\) . (13.8)

Note that in general the Lie derivative of a non-tensorial quantity is not well defined
(or at least its definition requires a bit more thought). Here, however, it is natural to
use the general formula (13.7) for the variation of the Christoffel symbols under metric
variations to in particular define their Lie derivative (as the change in the Christoffel

symbols induced by the Lie derivative of the metric).

Thus, adopting this definition and using L¢g,, = V& + V&, the right-hand side can

(upon using the definition and cyclic symmetry of the Riemann tensor) be written as

Lelsy = VAV = R 0

(13.9)
=V, V.\&* —I—R“)\pufp .
In particular, if £ = K* is a Killing vector, one has
Lggw =0 = LKF!LA =0 & WVLW,K,= R;w)\pr , (13.10)

which is equivalent to (13.3).

Contracting (13.3) over A and v, one obtains the next useful and frequently used identity
V'V,.K, =K"R,, . (13.11)

In turn, one immediate consequence of this identity is (contract with K#, “integrate by

parts” and use the anti-symmetry of V,K,)
R,K'KY = (VFK")(V,K,) + V,(K'V,KY) . (13.12)

Note that this can also be deduced directly from (8.53) for V# — K* a Killing vector.

We will now look at various consequences of the identities (13.3), (13.11) and (13.12)
which are useful and interesting in their own right. The implications of these identities
for mazximal symmetry and mazximally symmetric spaces will be discussed separately in

section 14 below.
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13.2 KILLING VECTORS FORM A LIE ALGEBRA

As the first application, we will explicitly prove the assertion (9.45) of section 9.5 that
the Lie bracket of two Killing vectors is again a Killing vector. While this follows from
the general property (9.34) of the Lie derivative, which itself can (with some work)
be deduced from the general definition of the Lie derivative (as the generator of the
action of coordinate transformations on tensors), it is instructive and reassuring to
verify this by an explicit calculation, also because similar manipulations are required
when extending the analysis from Killing vectors to Killing tensors or Killing-Yano

tensors briefly mentioned in section 10.5.%"

Thus consider two Killing vectors A* and B*, say, i.e. vector fields satisfying
VA, +V,A, =V,B, +V,B, =0 (13.13)

or, equivalently,
VA, = V[uAy] , VB, = V[uBy} . (13.14)

Explicitly, from (9.18) their Lie bracket is the vector field
CHt =1A,B" = A¥V,B* — B"V A" | (13.15)
and the claim is that C* is also Killing, i.e. that V,C, is anti-symmetric,
cCt=I[ABF = V.C,=VC, . (13.16)

In calculating V,C, one encounters new first derivatives of A* and B* (which can be
manipulated by the Killing equations), as well as second covariant derivatives, which

can be reduced to zero-derivative terms by using the fundamental identity (13.3),

V.0, = (V, ANV B, — (V,By)V A, + AV, VB, — B\V,V*4, (13.17)
= —(VaA,)V B, + (V*B,)VAA, + Ry (AXBP — B2 AP) . '

The first two terms are already manifestly anti-symmetric (the second being the anti-
symmetrisation of the first), and by the cyclic identity and other symmetries of the

Riemann tensor, so is the last term,
Rpuxw = Bappw = Ruxow — Rupyw = Ruwnp = =Ry - (13.18)

Thus the Lie bracket of two Killing vectors is indeed again a Killing vector, as claimed.

30The interesting question if or when Killing-Yano tensors form a Lie algebra, extending and gener-
alising the Lie algebra of the isometry group generated by the Killing vectors, is analysed in D. Kastor,
S. Ray, J. Traschen, Do Killing-Yano tensors form a Lie Algebra?, arXiv:0705.0535 [hep-th].
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13.3 ON THE ISOMETRY ALGEBRA OF A COMPACT RIEMANNIAN SPACE

In this section we will look at one immediate application of the identity (13.12),
R, K'K" = (V*K")(V,K,) + V,(KI'V,K") | (13.19)

namely an analogue of the Bochner-Yano type argument (given in remark 8 of section
8.5) for Killing vectors. Again, in order to be able to say something of substance we as-
sume that the space we are dealing with is compact without boundary, and Riemannian,
i.e. equipped with a positive-definite metric. In spite of this, the result we will derive
is relevant also for physics, at least as long as one is willing to entertain the possibility
that some higher-dimensional generalisations of general relativity (such as Kaluza-Klein
theories discussed in section 44) plays a role in some more fundamental description of

nature.

With the above assumptions, the first term on the right-hand side of (13.19) is non-
negative and the second is a total derivative term that vanishes upon integration.
Therefore for a Killing vector to exist on a compact Riemannian space, the integral

of R, V#V" must be non-negative as well.

This has two immediate implications:

1. If the Ricci tensor (regarded as a quadratic form) of a Riemannian metric on a
compact space is negative, that metric can have no continuous isometries whatso-

ever.

2. If the metric on a compact Riemannian space has vanishing Ricci tensor, R, = 0,

then any Killing vector is covariantly constant, VK, = 0.

Since the Lie bracket of two covariantly constant vector fields is zero,
vV, =V,W¥V,=0 = [V WI=V'VWI-W'V,V¥=0, (13.20)

this means that continuous isometries of a space with vanishing Ricci tensor can at
most be Abelian. An example is provided by the torus 7" equipped with the flat metric
it inherits from regarding 7™ as the periodic identification of R™. This metric has
vanishing Ricci tensor (because evidently even the Riemann tensor is zero), but there
are n linearly-independent (covariantly) constant translational Killing vectors (inherited
from R™) that generate the Abelian isomtery group U(1)™.

In Kaluza-Klein theory, one of the basic ideas is that gauge symmetries arise from
isometries of the “internal” space living in the extra dimensions. This internal space
is usually assumed to be compact (so as to be sufficiently small to have escaped our
attention). Thus, if one wants to generate non-Abelian gauge theories in this way
the above results provide one of the most basic constraints on the internal geometry,
namely that the Ricci tensor should not be non-positive (but it does not have to be

strictly positive everywhere).
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13.4 INVARIANCE OF THE CURVATURE ALONG KILLING DIRECTIONS

It should be obvious and obviously true that for any Killing vector of a metric the scalar
curvature of the metric inherits the corresponding symmetries of the metric, i.e. that it
does not change along the orbits of that Killing vector,

VK, +V,K,=0 = K'V,R=0, (13.21)

or
LKgW =0 = LKR =0 (13.22)

(with analogous statements for the Riemann and Ricci tensors).

While true, a covariant proof of this is a bit roundabout:

e One can start with the contracted Bianchi identity V#G,,, = 0, and contract it
with K" to find

0= (V*Guw)K" = (V*R,)K” — $K'V,R . (13.23)

e Using the Killing equations, i.e. the anti-symmetry of VK, and the symmetry

of the Ricci tensor, one can write this as

K"V,R =2VMK"R,,) . (13.24)

e Using (13.11), one finally arrives at
K"V,R=2V*(V"V,K,) =[V!,V"]V,K, =0 (13.25)

by (8.46).

Alternatively (and more quickly but somewhat less covariantly) one could have simply
locally introduced an adapted coordinate system (9.59) in which K = 0, and dyg,, = 0,
to immediately deduce that then necessarily also d,R = 0. However, on general grounds,
and with an eye towards possible generalisations, it is always useful to have different

arguments at one’s disposal, in particular among them one which is covariant.

Analogously one can prove, either covariantly or non-covariantly (recommended in this
case), that the Lie derivative of the Riemann tensor and the Ricci tensor along a Killing

vector are zero,

LKg/,u/ =0 = LKR)\O'/M/ =0 s LKR“V =0 . (1326)

301



13.5 CALCULATING KILLING COMPONENTS OF THE RIccl TENSOR

Since VK, is anti-symmetric, one can write (13.11) more explicitly with the help of

the formula (5.64) for the covariant divergence of an anti-symmetric tensor as
1
v

This can be a quite efficient way to calculate certain components of the Ricci tensor

RAKY = —0,(/GV'K") . (13.27)

of a metric, namely those which are of the form R/, K" for some Killing vector (the
components referred to glibly as the “Killing components of the Ricci tensor” in the
heading). In spite of this, this shortcut does not appear to be widely known or commonly

used.

As an illustration of how this works, consider again the general static spherically sym-

metric metric (3.22),
ds®> = —A(r)dt? + B(r)dr? + r?dQ? . (13.28)

Among the Killing vectors of this metric is the vector field £ = 9, generating time-
translations, and thus we can use (13.27) to determine the components R’; of the Ricci

tensor.
Since the only non-trivial component of &, is & = —A(r), one has

Viby = 8uby — Do = 9y + AT, (13.29)
and since according to (3.25) the only non-trivial component of Ftwj is

Al
r‘,=r!, = 51 I, =0 otherwise , (13.30)

the only non-trivial components of V¢, are
Vi€ = —V,.& = A'/2 . V& =0 otherwise . (13.31)
Thus the only non-zero components of V#£¥ are
Ve = Vi = A'J2AB . (13.32)

With
V9= VABr?sing (13.33)

one then has 1

Ri = Oy (VABr?vHe" 13.34
t \/ET2 ( f ) ( )

so that evidently
RE=0 with %= (r0,9¢) (13.35)
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while 1
R, =——— 0.(r’A'/VAB) . 13.36
t 2\/@7"2 ( / ) ( )
Explicitly one can write this as
A// A/ A/ B/ A/
Ry = —ARtt = — —

_2B_E(Z+B)+E . (13.37)

REMARKS:

1. As you can check for yourself, this way of determining Ry is much quicker than
working it out from the general formula for the Ricci tensor involving the Christof-
fel symbols squared as well as their derivatives. In fact it is the quickest and slickest

way to obtain Ry by a calculation in coordinate components that I am aware of.

2. In the same way, one can also determine the angular components R‘fﬁ, say, using
the Killing vector 7 = 0.

3. The only not obviously vanishing component of R, (see the discussion in section

24.3) that cannot be obtained in this way is R,..

13.6 KILLING VECTORS AS SOLUTIONS TO THE MAXWELL EQUATIONS

A cute application of the identity (13.11) is the following. Recall that in the covariant
Lorenz gauge

VA" =0 (13.38)
the vacuum Maxwell equations
VFF, =V*(V,A, —V,A,) =0 (13.39)
can be written as (8.115)
V'V, A* = RH AV | (13.40)

while a Killing vector automatically satisfies
VuK, +V,K, =0 = V,K'=0 (13.41)
and the identity (13.11),
V'V, K" =R,K" <& V'V,K!'=-R{ K" . (13.42)

Thus the sign of the Ricci tensor in (13.40) and (13.42) is different, but evidently this
difference disappears for a metric with vanishing Ricci tensor. This does not imply at
all that the Riemann tensor is zero. Indeed, we will learn in section 19 that the vacuum
Einstein equations (i.e. the gravitational field equations without or outside of matter

sources) are simply the “Ricci flatness” conditions R, =0 (19.36).
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In that case (13.42) reduces to V¥V, K, = 0 which is of the same form as (13.40).
Alternatively, because of the anti-symmetry of V, K, we can equivalently write (13.42)
as

R,=0 = VAV,K,-V,K,)=0, (13.43)

which, with the dictionary
A=K, , F,=V,K,-V,K, = V'F, =0, (13.44)
is identical to (13.39).

This means that any Killing vector of a solution to the vacuum Einstein equations auto-
matically gives rise to a solution of the vacuum Maxwell equations in that gravitational
background. Depending on the Killing vector this may or may not be a non-trivial
(Fuw # 0) solution to the Maxwell equations, “rotational” Killing vectors typically giv-
ing rise to non-trivial solutions while for “translational” Killing vectors A, is pure gauge
(see section 14.1 for a more precise characterisation of what is meant by “rotational”

and “translational” Killing vectors at a given point).

For example, taking the general Killing vector (9.48) of Minkowski space (which certainly
has vanishing Ricci tensor),

Ko‘:w%aﬁﬁ+ea = A=Ky =wasr’ e, , (13.45)
one finds that the associated Maxwell field strength tensor is
Fog = 0aKg — 08Ky = —2wag3 - (13.46)

Thus it vanishes for a purely translational Killing vector while a boost is associated
with a constant electric field (Ej ~ wqr) and a spatial rotation gives rise to a constant
magnetic field (Bj ~ €xijwij).

13.7 KILLING VECTORS AND KOMAR CURRENTS

Because the Einstein tensor G, (8.97) is symmetric and conserved (the contracted
Bianchi identity (8.96)), to any Killing vector one can associate (cf. the discussion in

section 10.1) the conserved current

JI'=GH K" = RMK” — $R6% K = R KY — LRK" . (13.47)
However, because K* is Killing, one has V,K*# = 0 identically, as well as K*V,R =0
(as shown above), and hence one has a conserved current

J¢=RHK” — 3aRK" | V,JF¢=0, (13.48)

for any value of the real parameter a. Among this 1-parameter family of conserved
currents, the choice
Ji, = JHK)=R"K, (13.49)

a
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(the Komar current) is singled out by the fact that, by (13.11), it is not only conserved

but can actually be written as the divergence of an anti-symmetric tensor,
JHK) =V, A" | AW = AV = VI KY (13.50)

(which also shows directly, by (8.47), that V,J*(K) = 0).

Thus the corresponding conserved charge, written as a hypersurface integral, can actu-
ally be written as a surface integral of components of A,,. These define the so-called
Komar charges associated to symmetries of the metric. They will make a brief appear-

ance in section 23.4.

As an aside, note that while in the above we started off with Killing vectors, a similar
story is actually true for any vector field. Namely, for any vector field &* define the
current

JH(E) = V, (Vi) = Ly, (wrey — vver) (13.51)

Note that this reduces to (13.50) for {# = K* a Killing vector. Moreover, by (8.47) this
current is conserved,
VuJHE) =0 Vg . (13.52)

When &* = K* is a Killing vector, the current can alternatively be written in terms of

the Ricci tensor as in (13.49). For a general £ one has, instead,

JH(E) = §V, (VI — VVEH) = V,VHEY — 3V, (VVEH 4 VHEY)
= [V, VHE, + VI (V) — IV, (VVEr + VIEY) (13.53)
= REE + L(g™P g — 9" g"" )V (Vals + Via)

where we made use of (8.40). Note that this indeed reduces to (13.49) for a Killing

vector, for which the second term on the right-hand side is absent.

The existence of these identically conserved currents and the corresponding surface
charge densities VI*¢") reflects the fact that in general relativity (more generally, in
any generally covariant theory) all vector fields can be considered as the generators of
symmetries (in the sense of coordinate transformations). Indeed, the currents J#(£) can
be shown to be precisely the corresponding Noether currents arising from the Lagrangian
formulation of general relativity to be discussed in section 20. We will establish this
result in section 20.6. Nevertheless, the currents and charges associated with Killing
vectors turn out to play a privileged role, and we will in particular relate the Komar
charge for a timelike Killing vector to the ADM mass of an isolated (asymptotically)
static system in section 23.4.
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14 CURVATURE V: MAXIMAL SYMMETRY AND CONSTANT CURVATURE

As a preparation for our discussion of cosmology in sections 33 - 38, in this section we
will discuss some aspects of what are known as mazimally symmetric spaces. These
are spaces that admit the maximal number of Killing vectors (which turns out to be

n(n + 1)/2 for an n-dimensional space or space-time).

As we will discuss later on, in the context of the Cosmological Principle, such spaces,
which are simultaneously homogeneous (“the same at every point”) and isotropic (“the
same in every direction”) provide an (admittedly highly idealised) description of space

in a cosmological space-time.

If you already know (or are willing to believe) that in any spatial dimension n there
are essentially only 3 such spaces, namely the Euclidean space R"™, the sphere S", and
its negative curvature counterpart, the hyperbolic space H™ (all equipped with their
standard metrics), you can skip this section, and may just want to refer to section 14.3
where it is shown that these 3 standard metrics can be written in a unified way as

2

2 _
ds 1 —kr2

+r2dQ2 (14.1)

for k = 0, =1 respectively.

The discussion of maximally symmetric spaces and, in particular, space-times will be
taken up again and continued in section 39 (which can also be read as a direct sequel

to this section, without the intervening sections 33 - 38 on cosmology).

14.1 HOMOGENEOUS, ISOTROPIC AND MAXIMALLY SYMMETRIC SPACES

In order to understand how to define and characterise maximally symmetric spaces, we

will need to obtain some more information about how Killing vectors can be classified.

Our starting point is, as in the previous section, the identity (13.3), reproduced here

with the explicit z-dependence included for present purposes,
VAV K, (z) = R, (2)Kp(2) . (14.2)

In particular, this shows that the second derivatives of the Killing vector at a point g
are again expressed in terms of the value of the Killing vector itself at that point. This
means (think of Taylor expansions) that, remarkably, a Killing vector field K#(z) is
completely and uniquely determined everywhere by the values of K, (x¢) and VK, (o)

at a single point x.

A set of Killing vectors {K ,(j) (x)} is said to be linearly independent if any linear relation

of the form

chKﬁl)($) =0, (14.3)
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with constant coefficients ¢; implies ¢; = 0 (the reason for insisting on constant coeffi-
cients rather than functions ¢;(z) in this definition is of course that if K* is a Killing

vector, then so is cK* iff ¢ is constant).

Since, in an n-dimensional space(-time) there can be at most n linearly independent
vectors (K, (x¢)) at a point, and at most n(n—1)/2 independent anti-symmetric matrices
(VuK,(x0)), we reach the conclusion that an n-dimensional space(-time) can have at
most

- n(n2— 1) n(n;— 1) (14.4)

independent Killing vectors. A space(-time) with this maximal number of Killing vectors

is called maximally symmetric.

An example of a metric with the maximal number of Killing vectors is, none too sur-
prisingly, n-dimensional Minkowski space, where n(n + 1)/2 agrees with the dimension
of the Poincaré group, the group of transformations that leave the Minkowski metric

invariant.

Other examples of spaces that are maximally symmetric spaces are provided by spheres
with their standard metric (e.g. we already know that the 2-sphere has 3 = 2(2 +1)/2
linearly independent Killing vectors, given explicitly in (9.55)). We will show below that
spheres and their negative curvature hyperbolic counterparts are the unique non-trivial
maximally symmetric spaces (with a corresponding statement for maximally symmetric

space-times, which we will study in detail in section 39).

We will now see how the data K*(x¢) and V,K,(x¢) are related to translations and
rotations:

e We define a homogeneous space to be such that it has infinitesimal isometries that
carry any given point g into any other point in its immediate neighbourhood (this
could be stated in more fancy terms!). Thus the metric must admit Killing vectors
that, at any given point, can take all possible values. Thus we require the existence
of Killing vectors for arbitrary K, (o). This means that the n-dimensional space

admits the maximal number n of translational Killing vectors.

e We define a space to be isotropic at a point xg if it has isometries that leave
the given point z( fixed and such that they can rotate any vector at zg into any
other vector at xg. Therefore the metric must admit Killing vectors such that
K, (z9) = 0 but such that V,K,(x¢) is an arbitrary anti-symmetric matrix (for
instance to be thought of as an element of the Lie algebra of SO(n)). This means
that the n-dimensional space admits the maximal number n(n —1)/2 of rotational

Killing vectors.

e Finally, we define a mazimally symmetric space to be a space with a metric with

the maximal number n(n + 1)/2 of Killing vectors.
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For example, as mentioned before, the 2-sphere is maximally symmetric, with 3 linearly
independent Killing vectors, given explicitly e.g. in (9.55). The decomposition of these
3 Killing vectors into 1 rotational and 2 translational Killing vectors depends on the
point on the 2-sphere, the rotational Killing vector always being associated with the
rotations around the axis through that point, and the translational Killing vectors being
formed by the remaining 2 linearly independent combinations of Killing vectors. The
decomposition given in (9.55) is adapted to rotations around the north (or south) pole,
with Vig) = J the corresponding rotational Killing vector. Note that this Killing vector
acts as a rotation at / around the poles but that it acts as a translation away from
the poles (where some other linear combination of the 3 Killing vectors would be the
rotational Killing vector). We will come back to this in slightly more general terms

below.

Some simple and fairly obvious consequences of these definitions are the following:

1. A homogeneous and isotropic space is maximally symmetric.
2. A space that is isotropic for all x is also homogeneous.

3. (1) and (2) now imply that a space which is isotropic around every point is max-

imally symmetric.

4. Finally one also has the converse, namely that a maximally symmetric space is

homogeneous and isotropic.

Property (2) is a consequence of the fact that constant linear combinations of Killing
vectors are again Killing vectors and that, as mentioned above in the context of the
2-sphere, away from the origin of the rotation a rotation acts just like a translation.
Technically, the difference between two rotational Killing vectors at « and x + dz can
be shown to be a translational Killing vector. To see this (roughly), consider 2 Killing
vectors K and L describing rotations about a point xg and a point xy + dx respectively,
ie.

Kt(zg) =0 , L*(zo+dx)=0 . (14.5)

and, in particular,
(VuLy)(xo +dx) #0 . (14.6)

Now consider the difference
MH¥(z) = K*(z) — LF(x) (14.7)
which is still a Killing vector. At x = xy one has

MHF(zy) = KH(xo) — LH(x0) = —L¥ (29 + dz — dx) . (14.8)
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Now expanding L*(x) around the point x+dx, one has (in an inertial coordinate system
at xg, say)
M, (z0) = dz*V L, (o + dz) # 0 (14.9)

while its matrix of covariant derivatives VM vanishes there due to the crucial identity
VVL ~ L (14.2). Thus M defines a translational Killing vector at z.

In practice the characterisation of a maximally symmetric space which is easiest to use is
(3) because it requires consideration of only one type of symmetries, namely rotational

symmetries.

14.2 CURVATURE TENSOR OF A MAXIMALLY SYMMETRIC SPACE

On the basis of these simple considerations we can already determine the form of the
Riemann curvature tensor of a maximally symmetric space. We will see that maxi-
mally symmetric spaces are spaces of constant curvature in the sense that the Riemann

curvature tensor is simply and purely algebraically related to the metric by

Riji = k(9ingjt — 9u9jk) (14.10)
for some constant k.

This result could be obtained by making systematic use of the higher order integrability
conditions for the existence of a maximal number of Killing vectors. The argument

given below is less covariant but more elementary.

Assume for starters that the space is isotropic at xzg and choose a Riemann normal
coordinate system centered at zg. Thus the metric at g is g;;(xo) = 7;; where we may

just as well be completely general and assume that

mi; = diag(—1,...,—1+1,...,+1) , (14.11)

p times q times

where p + ¢ = n and we only assume n > 2.

If the metric is supposed to be isotropic at x( then, in particular, the curvature tensor
at the origin must be invariant under Lorentz rotations. Now we know (i.e. you should
know from your Special Relativity course) that the only invariants of the Lorentz group
are the Minkowski metric and products thereof, and the totally anti-symmetric Levi-

Civita tensor. Thus the Riemann curvature tensor has to be of the form

Rijii(zo) = anignr + bnanji + cnanjx + degjp (14.12)

where the last term is only possible for D = 4. The symmetries of the Riemann tensor

imply that a = d = b+ ¢ = 0, and hence we are left with
Rijri(wo) = b(mirmji — nanjx) (14.13)
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Thus in an arbitrary coordinate system we will have

Rijri(zo) = b(gir(z0)gj1(x0) — gau(x0)gjr(z0)) (14.14)

If we now assume that the space is isotropic around every point, then we can deduce
that

Rijra(x) = b(x)(gir(x)gj1(z) — g (x)gjk(x)) (14.15)
for some function b(x). Therefore the Ricci tensor and the Ricci scalar are

Rij(z) = (n—1)b(z)g;
n(n —1)b(z) . (14.16)

=y
—~
8
~—

I

and the Riemann curvature tensor can also be written as

= (g — gug) 14.1
Rijki n(n_l)(gkggl 9i9jk) (14.17)

while the Einstein tensor is
Gy =b[(n—1)(1 —n/2)]gi; - (14.18)

For n > 2 the contracted Bianchi identity V‘G;; = 0 now implies that b(x) has to be a
constant, and we have thus established (14.10). Note that we also have

so that a maximally symmetric space(-time) is automatically a solution to the vacuum
Einstein equations with a cosmological constant. In the physically relevant case p =1
these are known as de Sitter or anti de Sitter space-times. We will come back to them

in detail later on, in section 39.

14.3 MAXIMALLY SYMMETRIC METRICS I: SOLVING THE CONSTANT CURVATURE
CONDITIONS

We are interested not just in the curvature tensor of a maximally symmetric space but in
the metric itself. T will give you two derivations of the metric of a maximally symmetric

space, one by directly solving the differential equation

for the metric g;;, the other by a direct geometrical construction of the metric which

makes the isometries of the metric manifest.

As a maximally symmetric space is in particular spherically symmetric, we can write
its metric in the form
ds? = B(r)dr* + r2dQ%n_1) ) (14.21)
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where dQ%n_l) = df? + ... is the volume-element for the (n — 1)-dimensional sphere or
its counterpart in other signatures. For concreteness, we now fix on n = 3, but the

argument given below goes through in general.

It is straighforward to calculate the components of the Ricci tensor of this metric. This
can be viewed as a special case of the calculations leading to the Schwarzschild metric
in section 24, setting the function called A(r) there to zero (of course before having

divided by it anywhere ...).

The only independent components are R,.. and Rgy,

1B
B = g
1 rB’
= =414+ —= . 14.22
Ry 511553 ( )

We now want to solve the equations

R, = ZkgTTZZkB(T)
Rog = 2kgog = 2kr? . (14.23)

From the first equation we obtain
B' =2krB* | (14.24)

and from the second equation we deduce

1 rB’
2 f— P — _—
2kr = B +1+2B2

_ _i+1+2k7’72B2
B 282

1
= —pt+l+ kr? . (14.25)

This is an algebraic equation for B solved by

1

B=— _
1— kr2

(14.26)

(and this also solves the first equation). Therefore we have determined the metric of a

a maximally symmetric space to be

dr?

ds®> = ———
s 1 — kr?

+ %A,y (14.27)

Clearly, for k = 0 this is just the flat metric on R™. For k = 1, this should also look
familiar as the standard metric on the sphere. If not, don’t worry, we will be more

explicit about this below.

We will also rederive these metrics in the next section in a way that makes the isometries

of the metric manifest (and which thus also excludes the possibility, not logically ruled
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out by the arguments given so far, that the metrics we have found here for k # 0 are
spherically symmetric and have constant Ricci curvature but are not actually maximally

symmetric).

REMARKS:

1. First of all let us note that for k # 0 essentially only the sign of k£ matters as
|k| only affects the overall size of the space and nothing else (and can therefore
be absorbed in the scale factor a(t) of the metric (33.1) that will be the starting
point for our investigations of cosmology). To see this note that a metric of the
form (14.27), but with k replaced by k/L?,

ds® = _ + r2dQ> (14.28)
1 —kr2?/L2? ’ ’
can, by introducing 7 = r/L, be put into the form
dr? di?
2 2 702 2 =2 12
& = Ty T <1—k:f2+rd > (14.29)

We now see explicitly that a rescaling of £ by a constant factor is equivalent to
an overall rescaling of the metric, and thus we will just need to consider the cases
k = 0,£1. However, occasionally it will also be convenient to think of k as a
continuous parameter, the 3 geometries then being distinguished by k¥ < 0,k =0
and k > 0 respectively.

2. For k = +1, we have
B dr?
1 —r2

Thus, obviously the range of r is restricted to » < 1 and by the change of variables

ds® +r2dQE, ) (14.30)

r = sin4, the metric can be put into the standard form of the metric on S™ in
polar coordinates,
ds? = dQ2 = dy® +sin? dQ2_, . (14.31)

This makes it clear that the singularity at » = 1 is just a coordinate singularity.

3. For k = —1, on the other hand, we have

dr?

ds? =
T T I

+r2d2_, . (14.32)

Thus the range of r is 0 < r < 0o, and we can use the change of variables r = sinh ¢

to write the metric as
ds? = dQ2 = dy? +sinh? dQ2_, . (14.33)

This is the standard metric of a hyperboloid H™ in polar coordinates, and I have
introduced the notation df)i for the line-element on the “unit” n-hyperboloid in

analogy with the standard notation d2? for the line-element on the unit n-sphere.
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4. Thus, collectively we can write the three metrics as

dr?
45 = T + 0%, ) = dy? + g()P) (14.34)
where
v k=0
ge(¥) =4 sing k=+1 (14.35)
sinhy k=-1

5. Finally, by making the change of variables
r=71+kr?/4)7" (14.36)
one can put the metric into the isotropic form
ds® = (14 ki? /4)72(dP® + 72O, ) = (1 + k& /4) 7% d2 . (14.37)

Note that this differs by the conformal factor (1 + k7?/4)=2 > 0 from the flat
metric. One says that such a metric is conformally flat. Thus what we have
shown is that every maximally symmetric space is conformally flat. Conformally
flat, on the other hand, does not by any means imply maximally symmetric (the

conformal factor could be any function of the radial and angular variables).

Note also that the metric in this form is just the 3- (or n-) dimensional general-
isation of the 2-dimensional constant curvature metric on the 2-sphere in stere-
ographic coordinates (11.62) (for k = +1) or of the Poincaré disc metric of H?
(11.66) (for k = —1).

14.4 MAXIMALLY SYMMETRIC METRICS II: EMBEDDINGS

Recall that the standard metric on the n-sphere can be obtained by restricting the flat
metric on an ambient R"*! to the sphere. We will generalise this construction a bit to

allow for k < 0 and other signatures as well.

Consider a flat auxiliary vector space V' of dimension (n + 1) with metric

1
ds* = d7* + EdzZ , (14.38)
where ¥ = (z!,...,2") and di* = n;;dz’da?. Thus the metric on V has signature
(p,q + 1) for k positive and (p + 1,q) for k negative. The group G = SO(p,q + 1)
or G = SO(p+ 1,q) has a natural action on V by isometries of the metric. The full
isometry group of V' is the semi-direct product of this group with the Abelian group of

translations (just as in the case of the Euclidean or Poincaré group).

Now consider in V' the hypersurface ¥ defined by

e (14.39)
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This equation breaks all the translational isometries, but by the very definition of the
group G it leaves this equation, and therefore the hypersurface X, invariant. It follows
that G will act by isometries on ¥ with its induced metric. Since dim G = n(n+1)/2, the

n-dimensional space has n(n+1)/2 Killing vectors and is therefore maximally symmetric.

REMARKS:

1. In fact, G acts transitively on 3 (thus 3 is homogeneous) and the stabiliser at a
given point is isomorphic to H = SO(p, q) (so X is isotropic), and therefore ¥ can

also be described as the homogeneous space

Yko = SO(p+1,9)/S0(p,q) - (14.40)

2. The Killing vectors of the induced metric are simply the restriction to X of the

standard generators of GG on the vector space V.

3. For Euclidean signature, these spaces are spheres for £ > 0 and hyperboloids for
k < 0, and in other signatures they are the corresponding generalisations. In
particular, for (p,q) = (1,n—1) we obtain de Sitter space-time for k = 1 and anti-
de Sitter space-time for k = —1. We will discuss their embeddings, and coordinate

systems for them, in much more detail in section 39.

It just remains to determine explicitly this induced metric. For this we start with the
defining relation of 3 and differentiate it to find that on ¥ one has

_ ka.dx

dz = 14.41
= - (14.41)
so that K27 )2
9 Z.d7
= 14.42
= =5 0m (14.42)
Thus the metric (14.38) restricted to X is
1
ds’ly = di* + EdzZ\g
k(Z.dx)?
—2
= _— 14.4
dz* + 1 (14.43)
Passing from Cartesian coordinates Z to spherical coordinates (r,0, ¢), with
r? = =nya'ed , rdr=7d7 , dr’ = (Z.d7)%/3* (14.44)
this metric can also be written as
dr?
ds? = et r2dQ¢, - (14.45)

This is precisely the metric (14.27) we obtained in the previous section.
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15 HYPERSURFACES I: BAsSIcS

Hypersurfaces play important roles in general relativity, appearing in many different
contexts, e.g. in the form of hypersurfaces of constant time (for some choice of time
coordinate), or as boundaries of space-time regions over which one would like to integrate

some quantity, etc.

In this section I will describe some of the basic aspects of what is known as the intrinsic
geometry of such hypersurfaces. The geometry of surfaces is of course a classical subject
of geometry, the study by Gauss of 2-dimensional surfaces embedded in R3 and his
Theorema Egregium regarding the intrinsic nature of the curvature of a surface marking
the birth of differential geometry, and as such is described in many places. We will just
barely scratch the surface of this subject and concentrate on those aspects that are of

evident (rather than just potential) relevance for general relativity.*!

Strictly speaking very little of this is needed or used in the elementary applications of
general relativity in the later parts of these notes, and therefore this section could also
be skipped at first. However, this is a subject which is interesting in its own right and
which also leads to an improved understanding of the things that we have done so far

regarding tensors and tensor calculus.

Moreover, some results of this section, and its accompanying sections 16 and 17, come in
handy e.g. when one needs to integrate some quantity (like a component of a conserved
current) over a hypersurface, say. Moreover, some basic familiarity with this subject
is required to better understand certain slightly (but not terribly) advanced aspects of
general relativity like the Hamiltonian formulation of general relativity (section 21, this
also requires a knowledge of the extrinsic geometry of hypersurfaces to be discussed in
section 18) or the event horizon of the Schwarzschild black hole geometry (which turns
out to be a null hypersurface with certain special features to be discussed in more detail

in section 32).

15.1 BASIC DEFINITIONS: EMBEDDINGS AND EMBEDDED HYPERSURFACES

We start by defining what we mean (at least roughly speaking) by a hypersurface and

an embedding or an embedded hypersurface.

A hypersurface ¥ = ¥, is an n-dimensional subspace (submanifold) ¥ of a D = n + 1-
dimensional space(-time) (manifold) M = M1y, ¥ C M (one also says that ¥ has

codimension 1).

31For an excellent introduction to the intrinsic and extrinsic geometry of hypersurfaces geared towards
applications to general relativity, see section 3 of E. Poisson, A Relativist’s Toolkit: the Mathematics
of Black Hole Mechanics. A compact summary of the relevant results can also be found in Appendices
C-E of S. Carroll, Spacetime and Geometry.
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Ther are two distinct ways of describing and thinking about hypersurfaces.

1. Embeddings

On the one hand, one can describe a hypersurface in terms of an embedding
o Y= E(n) — M = M(n—l—l) (15.1)

of ¥ into M, specified by the map ® (which will need to satisfy some appropriate

regularity conditions - we will come back to this below).

2. Embedded Hypersurfaces

On the other hand one can think of a hypersurface concretely as a subspace of M,

i.e. as an (already) embedded hypersurface
Y= E(n) CcCM= M(n+1) s (15.2)

specified e.g. by
Y={zxeM: Sx)=0} . (15.3)

for some real-valued function S on M.

The 1st description may look a bit abstract, in particular since it seems to grant some
autonomy and independent existence to Y outside the space-time. However, if one
equips X with coordinates y¢, say, and M is described by coordinates z®, then such an
embedding ® is given very concretely by specifying the point in M with coordinates x®
that corresponds to a point in > with coordinates y®. Thus an embedding is given by

the functions or parametric equations
O ¥ =2x%(y") . (15.4)

Typically in general relativity, at least as far as its more elementary aspects are con-
cerned, hypersurfaces naturally arise as concretely embedded subspaces of space-time
(without an independent existence outside of the space-time), for example in the guise of
hypersurfaces of constant time ¢t = ¢y for some time coordinate ¢, or as slices of constant

r for some radial coordinate r etc.

Nevertheless, for certain purposes it is useful even then to also have the 1st description
at one’s disposal, in particular when it comes to questions of relating tensors on M
to tensors on Y, determining induced metrics and volume elements on X etc. All of
this is more transparent when expressed in terms of local coordinates on ¥ and M
and the relations among them. These are precisely the data z%(y*) locally defining an
embedding.

EXAMPLES:

1. As the first and most basic example, let us consider a spacelike hypersurface ¥ of
constant time in Minkowski space M, the latter equipped with standard inertial
coordinates z® = (t,2%).
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e In the Ist description one has in mind that one is given the space ¥ = R3
with Cartesian coordinates y*, and that one embeds it into Minkowski space

e.g. via the relations % = z%(y) given explicitly by
ty) =to , ="y =y" . (15.5)

e In the 2nd description, one defines the same spacelike hypersurface by the
equation
S(t,z®)=t—tg=0 . (15.6)

2. The second example example is the standard 2-sphere S? of radius ro in R3. This

can be described

e cither in terms of an embedding x®(y®), where % = (2!, 22, 23) are Cartesian

coordinates on R? and y® = (6, ¢) are coordinates on S?, e.g.

z%(y?) : x'(0,¢) = rosinfcos ¢
z1(0, ¢) = rosinfsin ¢ (15.7)
23(0,¢) = rgcosf
e or by the equation
S(@*) = (z')* + (2*)* + (2)> = (r0)> =0 . (15.8)
If one works in spherical coordinates z® = (r,0;,¢,) on R? from the outset,

then both the parametric and the embedding description simplify accordingly, the
former taking the form

dy)y=ro . 2=y , Pl =y, (15.9)

or

r=mro , 0% =0 ) ¢IE = qb ) (1510)

and the latter being the obvious
S(*)=S(r)=r—ro=0. (15.11)

This shows that it is probably a good idea to try to introduce and use coordinates
on the ambient space-time that are somehow adapted to the hypersurface one is

interested in.

3. As the third example consider the future lightcone of a point in Minkowski space
M. Without loss of generality we can choose that point to be the origin of the
coordinate system. Using spherical coordinates (z¥ = t,2! = r, 22 = 0, 2% = ¢) on

M, we can describe the future lightcone X
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e cither by introducing coordinates (y' = v,y?,»3) on ¥ and specifying the

embedding as
t(v,yk) =v , r(v,yk) =v xk(v,yk) = yk (15.12)
e or by requiring the constraint
Sy =a"—2'=t—r=0. (15.13)

As we will see later, this is an example of a null (or lightlike) surface.

It should be clear from these examples that the description of a hypersurface as an
embedded surface S = 0 typically looks a bit simpler or more usable but that, depending
on what one wants to do, one or the other description may be more convenient, and

that it is useful to be able to pass back and forth betwen them.

REMARKS:

1. A simple and simple-minded way of seeing the relation betwen the two descriptions
and passing from one to the other, generalising the above embedding of the sphere
in terms of spherical coordinates on the ambient space, is to use S(z%) as a new
coordinate, at least in a neighbourhood of the hypersurface ¥, i.e. to trade any
one of the coordinates S(x) depends on for S. Calling the new coordinates (S, z?),
where the ¢ are arbitrary independent coordinates, one may as well use the % as
coordinates on the surface 3 defined by S = 0. Then the parametric description

x*(y) of the surface S = 0 can be chosen to be
Sy)=0 , a"(y)=y", (15.14)

or % = f%y) for some functions f® (this just amounting to a coordinate trans-

formation y* — f%(y) of the coordinates y* on ).

It is frequently convenient to introduce such a coordinate system adapted to X at
least at intermediate stages of a calculation, and we will occasionally make use of
this.

2. One important and recurrent theme is the relation between tensors on a hyper-
surface 3 and tensors on the ambient space(-time) M, i.e. the relation provided
by the embedding of ¥ into M between

e Y-tensors: objects which transform like tensors under transformations of the
coordinates y® on 3 and are scalars (invariant) under transformations of the

coordinates =% on M, and

e M-tensors: objects which transform (as usual) like tensors under transfor-
mations of the coordinates z* on M and are scalars (invariant) under trans-

formations of the coordinates y* on ..
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3. The X-tensor of principal interest is, as in the case of the ambient space M,
the metric tensor hgp(y) of . In general the metric tensor (and its associated
curvature tensor, discussed at length in sections 8 and 11) provide a complete
local characterisation of the intrinsic geometry of a space (or space-time), i.e.
the properties that can be deduced by measuring lengths, areas, volumes, angles,

performing parallel transport etc in that space.

4. In the case at hand, when we do not equip X with any independent a priori metric
but we embed ¥ into M, the latter equipped with a metric go5(z), the metric on
> will be the induced metric, i.e. the metric induced on X by the ambient metric
gap(x) (in a way to be described below), and it is this metric that describes the
intrinsic geometry of the hypersurface 3.

5. The reason for insisting on the word “intrinsic” in this context is that when it
comes to embedded hypersurfaces there is another aspect of the geometry of X
that goes beyond its purely intrinsic geometry, namely how it is embedded into the
ambient space M, i.e. how it bends inside M. A brief discussion of some aspects
of this so-called eztrinsic geometry of ¥ appears in section 18. In this section we

will focus on the intrinsic geometry of a hypersurface.

The study of the relation between M-tensors and Y-tensors has a somewhat different
flavour for embeddings ® and embedded hypersurfaces {S(z) = 0}, and we will consider

both points of view in turn in the following.

15.2 EMBEDDINGS: TANGENT AND NORMAL VECTORS AND THE INDUCED METRIC

In this section we will look at some aspects of the geometry of hypersurfaces from the
point of view of embeddings ®, i.e. in terms of the parametric description x(y®) of a

hypersurface X.

First of all, let me start by giving a slightly more precise characterisation of what
is meant (or deserves to be called) an embedding. Clearly we want to impose some
regularity conditions on ® as for example the map which sends all of 3 to a single point
x € M might be entertaining to contemplate but does not quite capture what one has

in mind when one thinks of hypersurfaces.

In practice the conditions we will use are

e that ® is injective (or one-to-one), i.e. that distinct points in 3 are mapped to

distinct points in M,

e and that the Jacobian of ®, the (n + 1) x n matrix

(15.15)



has maximal rank n.

REMARKS:

1. Strictly speaking, such a map is called an (injective) immersion, while an em-
bedding has to satisfy a slightly stronger topological condition, but since we are
not concerned with global issues, and since I have not even tried to define what a
manifold is (beyond the remarks in section 5.11), it would be ridiculous to worry

about such things here and this is more than good enough.

Actually (and as an aside (of an aside)), if one is just working locally, the first con-
dition is superfluous, i.e. roughly speaking when the Jacobian is non-degenerate,
the map ® can at most lead to a discrete identification of points and is thus locally
invertible on its image (some version of the implicit function theorem). However,
since (local) injectivity is something we want and will use, we may as well list it
explicitly, regardless of whether or not one can prove a theorem that shows that

it is implied by some other condition.

2. For our purposes the most important consequence of this definition is that it
implies that the images in M of the tangent vector fields 0y« to ¥, the vector

fields
ox®

e
(which are tangent to the image ®(X) of ¥ in M) are linearly independent. Here

Oye = By = B0y = —— 04 (15.16)

“tangent” means that they are tangent to some curve in ®(X), which is evidently
the case since one can take the required curve to be the image under ® of a suitable

curve in X.

3. We have thus been able to push forward the 0y« from X to M. Such a push-forward
operation induced by a map ® is usually denoted by ®., so that we can also write

the above as
P, (0ye) = By = Ef0q - (15.17)

4. Since we have not equipped ¥ with any other structure than the coordinates y%,
the 0y« are the only objects we will be pushing forward to ¥. In fact, as we will

see below, it is not even meaningful to try to push forward the differentials dy®.

Since the ES are linearly independent tangent vectors to (the image of) ¥ in M, normal

vectors to 3, i.e. vectors £% orthogonal to Y, are characterised by

9apEEP = B3¢, =0 . (15.18)
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REMARKS:

1.

Note that in order to define normal vectors to > we used the metric g,5 on M.
Without a metric on M (or without specifying a metric on M) one can only define

the normal covectors &, characterised by £, ES = 0.

If £¢ is a normal vector field, i.e. a vector field on M normal to X at points of X,

then so is f¢“ for any scalar f (non-zero on X).

The normal vector is only defined somewhat implicitly through (15.18). We will
see below, in section 15.4, that it has a much more concrete description in the

case of embedded hypersurfaces.

If the normal vector is everywhere timelike on ¥ (this statement is independent of
the choice of f), then the E, and therefore all tangent vectors to ¥ are spacelike,
and then it is reasonable to call ¥ a spacelike hypersurface. Assuming that the
character of £% (i.e. whether it is timelike, spacelike or null) is constant over X,

this terminology generalises to

spacelike if £, <0
Y is called timelike if €%, >0 (15.19)
lightlike or null if £%¢, =0

I will mostly use the term “null surface” for a surface with a null or lightlike normal
vector. The null case is somewhat special and peculiar, and we will occasionally

have to treat it separately from the timelike and spacelike case in the following.

When ¥ is not null, the freedom in the choice of f can be used to normalise
the normal vector to unit length +1. This normalisation condition determines the

normalised normal vector N® uniquely up to a choice of sign, one possibility being

ga
N= ——
‘gaga‘l/z

—1 if ¥ is spacelike

) .. . (15.20)
+1 if ¥ is timelike

= NQNQZEZ{

One common convention for fixing the sign ambiguity in the case of an embedded

hypersurface ¥ = {S(z) = 0} will be mentioned in section 15.4.

One of the main advantages of the parametric (embedding) description of a hypersurface

is that it is utterly straightforward to determine the induced metric hqy(y) on X, i.e. the

metric on ¥ induced by a metric go5(z) on M. This is simply obtained by restricting

the metric to ¥ (better, to its image ®(X) in M), and also restricting the displacements

dxz® to displacements in (the image of) X,

d82|g = gag(:n)d$°‘dx6|g

Dz 0z b ) (15.21)
= Gop—— ——dy*dy’ = h “qyb
908 5,7 Oyb dy*dy ab(y)dy“dy
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Thus the induced metric is

9 2w
oy° 4 oyt v -

hab(y) = gap(z(y)) (15.22)

In terms of the tangent vectors E, (15.16) the induced metric can be written as (and

determined from)
hay = 9o ESE} (15.23)

REMARKS:

1. While gop is a (0,2)-tensor under space-time coordinate transformations (and
evidently a scalar under transformations of the coordinates y® on X), hyp is now
a (0,2)-tensor on X, i.e. under coordinate transformations of the y®, while it has
become a scalar under space-time coordinate transformation (as is evident from

the space-time contractions in (15.23)).

2. We see that here we have been able to pull back (restrict) a tensor on M to a tensor
on X, an operation usually denoted by ®*, so that one also frequently writes this

as
hab = (D*9)ab = gap ESE, . (15.24)

3. This induced metric is non-degenerate when X is spacelike or timelike, but turns
out to be degenerate in the null case. Intuitively this degeneracy in the null case is
reasonably obvious (once one has come to terms with the uninituitive properties of
null vectors), since a null vector is normal to itself, and therefore a normal vector
that is null is also tangent to the surface. The induced metric is then necessarily
degenerate in that null tangent direction. This will be discussed in more detail in

section 17.2.

This is really all we need and will make use of in the following, while for the restriction
of other tensor fields from M to ¥ we will principally use the formulation of embedded

hypersurfaces rather than that of embeddings of hypersurfaces.

However, in order to better understand why e.g. the operation of pulling back a metric,
described above, works so simply, and if or how this can be extended to other tensor
fields, it is useful, even though not strictly necessary, and certainly not indispensable
for the following, to look at this from a slighly more general perspective (and we will

do this in section 15.3 below).

15.3 EMBEDDINGS AND PULL-BACKS

Given an embedding ® : ¥ — M, pull-back refers to the operation of restricting (pulling
back) tensors on M to tensors on X. The simplest prototype of this kind of pull-back
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operation is the restriction or pull-back of a function (scalar) f on M,
fi M-SR, (15.25)

from M to a function on . Thinking temporarily about embedded hypersurfaces
> C M this ought to be straightforward as the restriction to ¥ clearly defines a scalar
on X,

fle: X—=>R. (15.26)

In terms of the embedding ® this can be phrased as the statement that the embedding
map ® can be used to pull back the function f on M to a function ®*f on X defined by

df: LR

(15.27)
(@ f)(y) = f(2(y)) -

Now let us move on from scalars to vectors and covectors. Thinking of covectors as
linear functions on vectors, it is clear that upon restiction a covector field on M to
> one obtains a covector field on X since its action on any vector at x € ¥ C M is
well-defined, therefore in particular its action on vectors tangent to 3 (which is all that
is required to make it a well-defined covector on X). In equations this amounts to the
statement that if U, is a covector field on M, then it can be pulled back to a covector
field u, on X via
N ox®

Ug = (P*U), = a—yaUa = EJU, . (15.28)
This is indeed (rather evidently now) a covector field on ¥, i.e. transforms as such (while
it has become a scalar under coordinate transformations in M). This construction can
also be understood in terms of the differentials dz® and the restriction of the generally
covariant object U,dx®. Just as in our discussion of the induced metric, one can simply

restrict the dz® to X to obtain
Updz®|s, = U ES dy® = ugdy® . (15.29)
In the same way one can pull back higher rank covariant tensor fields U,.. g on M to X,
(®* U)o p=ES...E} Uspp - (15.30)

A special case of this is the pull-back of the (covariant components of the) metric (15.24).

Characteristic features of hypersurfaces, and what one can and cannot do on them, arise
from the fact that the Jacobian E¢ of ® is not a square matrix and is therefore not
invertible even when it has maximal rank (as we assumed). We had used this before
to push forward vectors from ¥ to M (the map Oy« — E, in (15.17)) and we have
now been able to use it to pull back covectors from M to X. However, because of the
non-invertibility of the Jacobian, neither can we use it on the nose to push forward
covectors on X, or their basis dy® (I will not dwell on this, though), nor can we use it
(all by itself) to restrict (pull back) vectors on M to vectors on 3.
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Indeed, given a vector field V*(z) on M its restriction to ¥ or ®(X) is not all by itself
a vector field there because it need not be tangent to X (or ®(X)). This can be rectified
by projecting out the components normal to X but this requires a metric, whereas the
pull-back of covariant tensors did not require this. I consider this projection procedure
to be somewhat simpler and more transparent from the “embedded hypersurface” point

of view, and we will discuss this in section 16.1.

I want to conclude this section with some (even less indispensable) remarks on the gener-
ality of the pull-back procedure and the difference between covariant and contravariant

tensor fields with respect to this operation:

1. Note that the pull-back of a scalar, as defined in (15.27), would be well-defined
and unambiguous even if ® were not injective, as the pull-back ®*(f) would then
just happen to assign to two points y; and ys with ®(y1) = ®(y2) the same value
of the function,

D(y1) = (y2) = (D*f)(v1) = (2" f)(y2) , (15.31)

something that is unproblematic.

Thus, more generally whenever one has some (suitably differentiable, say) map
F: N—=>M (15.32)

between two spaces N and M, functions on M can always be pulled back to

functions on N via
F*f(n) = f(F(n)) (15.33)

forme M,n € N.

2. On the other hand, in general functions cannot be pushed forward from N to M,
not even onto the image F'(N) C M of N: if F' is not injective, m = F(n;) =
F(n3), say, which point n; € N should one choose to assign a value of the (would-
be) pushed forward function Fi f to m € M: (F.f)(m) =7.

3. More generally, covariant tensors can always be pulled back under arbitrary (dif-
ferentiable) maps by precisely the same procedure and formulae (15.30) as in the
case of embeddings. On the other hand, we already saw above that even with
an embedding one cannot simply pull back vector fields (or other contravariant
tensor fields).

4. This highlights a crucial distinction between covariant and contravariant tensors,
the former behaving in a natural (functorial) way under maps between spaces and

the composition of maps.
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The ability to pull back covariant tensors endows these tensors with a
crucial operation that is not available to the contravariant ones. It is

difficult to overemphasize the importance of this advantage.®”

5. This is also one aspect of the naturality of the calculus of differential forms, based
on totally anti-symmetric covariant tensors, briefly mentioned in sections 4.6, 4.8

and 5.5.

6. This crucial distinction between covariant and contravariant tensors did not ap-
pear in our general discussion of tensors in section 4.3, because we were dealing
with coordinate transformations x®(y*) on M. These can be thought of as (local)
diffeomorphisms)

o: M—->M (15.34)

or

d: UcCM—dU)CM, (15.35)

i.e. suitably differentiable (smooth) and (locally) invertible maps. In that case,
the push-forward is as well-defined as the pull-back since one can set ®, = (®~1)*,
and therefore both covariant and contravariant tensors could be transformed back

and forth between the coordinate systems x® and y*.

7. In the case at hand, where ® : ¥ — M is locally given by x®(y®), a priori the
relation between the x® and the y® is evidently less democratic. The simple rule

of thumb regarding what one can and cannot do is:

e What you can do with E by contracting indices you are allowed to do.

e If what you want to do would require the inverse of that matrix, or at least
something with the opposite index structure, you cannot do it (or at least

not without using some additional structure like a metric).

Nevertheless, for embeddings into spaces equipped with a metric the crucial dis-
tinction between pull-backs and push-forwards and between covariant and con-

travariant tensors is blurred by two facts, namely

e by the assumption that (locally) ® is injective, i.e. invertible on its image,

e and crucially by the fact that with the additional structure of a metric on
M we can in any case freely convert contravariant into covariant tensors and

vice-versa.

Thus in the following we can and will proceed without worrying too much about these
matters, and perhaps pragmatically speaking the only benefit of having suffered through

this section is that you may have gained a better understanding of why we can get away

327, Frankel, The Geometry of Physics (2nd edition), section 2.7a.
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with this in the case at hand, i.e. for embeddings into space-times equipped with a

metric.

15.4 EMBEDDED HYPERSURFACES AND NORMAL VECTORS

In the following, in order not to have to introduce separate coordinates on ¥ from the
outset, for the most part we will use the 2nd description of a hypersurface, i.e. we will
work with embedded hypersurfaces defined by (15.3)

S={zxeM: S) =0} (15.36)

for some function S(x) on M, rather than with embeddings (and we will see later how

e.g. the induced metric can be described and recovered from this point of view).

Implicitly the characterisation (15.36) of ¥ implies not only that S(z) = 0 on ¥ but
that {S(x) = 0} actually defines a codimension 1 hypersurface, i.e. that S(x) is not zero
when one moves off 3. We will furthermore choose the defining function S(z) in such a
way that it has a 1st order zero on S. This is not necessary in order to define X, but it
avoids unnecessary complications (why would one want to define a horizontal plane in
R? (with coordinates (z,y, z), say) by z? = 0 rather than by z = 07?).

Then at any point = € 3 the gradient 0,5 (x) is not zero on X,
(0aS)|s=0 # 0 . (15.37)

One advantage of this description of ¥ and choice of S is that one can now at once, and

very concretely, describe the normal vectors to the hypersurface 3.

Indeed, if the hypersurface is described by S(z%) = 0, then by definition S does not
vary along directions in (tangent to) ¥. Thus a vector field V¢ tangent to ¥ at points
of ¥ is such that it satisfies

xreX , V% x) tangent to ¥ at * = V(x)0,S(x) =0 . (15.38)

This means that any such tangent vector is orthogonal to the gradient vector g2 038
which is non-zero on ¥ by assumption. Thus on X this gradient vector field is normal

to ¥ (and actually normal to the family of hypersurfaces ¥ defined by S(z) = const).
As in section 15.2,

spacelike  if g 0,5 055 < 0
Y is called timelike  if g* 0,8 955 >0 (15.39)
null if g% 08 058 =0

everywhere on Y. If one introduces S(z) as a new coordinate, as described in section
15.1, then by the usual tensorial transformation rules the norm of the gradient of S is

simply the component
9°%0,8 958 = ¢°° (15.40)
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of the inverse metric. In particular this shows that in these coordinates the locus where

a member of the family of surfaces g of constant S becomes null is determined by

Ys isnull o ¢%5=0. (15.41)

Evidently, with ¢®? 0pS also any vector field of the form £* = f g8 0pS for some scalar

f(x) (non-zero on X)) is normal to X,
£ = fgaﬁﬁgS = gagﬁaVﬁ =0 V V tangent to X | (15.42)

and in the case that X is spacelike or timelike this freedom in the rescaling of the normal
vector can be used to normalise it in such a way that N, = f0,S has unit length e = +£1.

This determines N% uniquely up to a choice of sign. Explicitly, the choice

O0aS

N, = 6|g‘158a5855|1/2 (15.43)
is such that
LTS B w500
and such that N® points in the direction of increasing S,
NS = |9*0,5855Y2 > 0 . (15.45)

This is a common but by no means mandatory or universal sign convention.

REMARKS:

1. For spacelike hypersurfaces of constant time, say, given in suitable coordinates
1 = (t,2%) by S(t,2%) = t —t¢, this convention is such that N is future pointing
(but it would be past-oriented if one chose S to decrease towards the future, e.g.
S(t,zF) =ty —t).

2. In the null case there is in general no such preferred choice of normal vector,
because any normal vector £ satisfies £%¢, = 0. We will return to that case in

section 17.1.
3. As noted in section 15.2, if the hypersurface is given in parametric form z® =
x*(y®), normal vectors £ are characterised by the condition

ox®

gaa—ya =0 = gaEa =0 . (1546)

Thus the defining function S is related to the parametric description by the con-

dition that its gradient covector field 9,5 is in the kernel of the Jacobian,

E9,8=0 . (15.47)
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A priori, given a hypersurface > C M, the normal vector field is only defined on X,
not on all of M and not even in a neighbourhood of X. It is frequently desirable in the
timelike or spacelike case, however, to have the normalised normal vector N¢ defined

at least in a neighbourhood of 3. There are two standard ways to achieve this:

e If asin the situation considered here, the hypersurface X is specified by S(z%) = 0,
and S(z®) = c defines a family of hypersurfaces ¥. around ¥, then the normal
vector field N¢ is automatically defined in a neighbourhood of X.

e If only ¥ is given, and thus N? is initially only defined on X, there is a natural

way to extend it to a neighbourhood of ¥ when ¥ is not null.

Indeed, noting that N“N, = € is precisely the correct normalisation condition for
the tangent vector to an affinely parametrised timelike or spacelike geodesic, one
way to extend N off ¥ is to consider the geodesics in M which emanate from X
with initial velocity (tangent vector) N®(x) for z € X, and to define N*(z) in a
neighbourhood of ¥ (chosen sufficiently small so that geodesics do not intersect)

to be the tangent vector field to this family (congruence) of geodesics.

Either way, the normal vector now satisfies N,N% = € in a neighbourhood of X.

This prescription does not work for null hypersurfaces because for a null hypersurface
a normal vector has the, for a null vector tpyical counter-intuitive, property that it is
also tangent to X and thus generates null curves in ¥ rather than away from X - these
turn out to be geodesics, a fact which is interesting in its own right and which will be

established and explored in section 17.2.

15.5 HYPERSURFACE ORTHOGONALITY AND FROBENIUS INTEGRABILITY

The unnormalised gradient normal vector field g®? 08 to a hypersurface X defined by
S(z) =0 (or S(z) = const.) satisfies the equation

VQOBS — VBOQS = &1655 — 858,15 =0 . (15.48)
Conversely if one has a vector field that satisfies
Vafg - nga =0 < 8a§g — 85§a =0, (15.49)

then this is the necessary integrability condition for &, to be of the form 9,5 for some
function S. This condition is metric-independent, as it should be. It is well known from
standard (vector) calculus that locally this condition is also sufficient (if the curl of a
vector field is zero then locally it can be written as a gradient vector field etc.), i.e. one
has

0aég —086a =0 = (locally) 35 : &, = 0,5 . (15.50)
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A general normal vector field &, = f0,S to a hypersurface X, in particular usually also
the normalised normal vector N (when it exists, i.e. when ¥ is not null), will not satisfy

(15.49). However, it satisfies a generalised equation of this type. Namely, it follows from
o = f 0.S = Vafﬁ — nga = Vaf (955 — Vﬁf 0aS (15.51)
that &, satisfies

Viaés = (Vialog f)&g) (15.52)

While this is true, in this form it is not a particularly useful characaterisation of hy-
persurface orthogonality because given £ it may not be straightforward to see if such a
function f exists or not. A more useful condition is the integrability condition implied
by this, namely

V[afﬁ] = (V[a log f)fﬁ] = S[QVQSA{] =0, (15.53)

which itself is a trivial consequence of {,§g = 0. This is the necessary integrability
condition for a vector field to be of the form £, = fd,S for some functions f and .S, and
the advantage of this condition is that it depends only on ¢ (and can thus be checked if

one is just given §).

In strict analogy with the above story for gradient vectors, this condition is also sufficient

to establish that locally &, can be written as &, = f0,.5 for some functions f and S,
§aVpéy =0 = (locally) 3S,f: &a=f0.5 . (15.54)

Since &, = [0, is precisely the statement that £¢ is orthogonal to the family of

hypersurfaces S(x) = const, the condition

f[aV5£ﬂ =0 <« f[aagfﬂ =0 (15.55)

is known as the hypersurface orthogonality condition and a vector field that satisfies

(15.55) is called hypersurface orthogonal.

REMARKS:

1. The assertion (15.54) is known as Frobenius’ theorem, and the hypersurface orthog-

onality condition is therefore also known as the Frobenius integrability condition.

2. If we do not just have {,Vp,) = 0 but actually Vg §,) = 0, then, as we saw

before, we can draw the stronger conclusion
Vig& =0 = (locally) 3S: & =08 , (15.56)

which is a fortiori orthogonal to the hypersurfaces of constant S.
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16 HYPERSURFACES II: INTRINSIC GEOMETRY OF NON-NULL HYPERSUR-
FACES

16.1 PROJECTORS FOR NON-NULL HYPERSURFACES AND THE INDUCED METRIC

In the case of spacelike or timelike hypersurfaces X, with the normalised normal vectors
N at our disposal we can now construct the induced metric from the metric g,g on the
ambient space M. More generally, we will construct projectors that allow us to project

tensors on M restricted to ¥ onto directions (co-)tangent to X.

Thus, with N*N, = € = £1, consider the tensor h,g defined on (or in a neighbourhood
of) ¥ by
hag = GaB — eNaNg . (16.1)

This tensor has the following characteristic properties:
1. It is orthogonal to N¢,
N =0 , hogNP =0 . (16.2)

Indeed,
hasNP = gogNP — eNyNsgNP = N, — 2N, =0 ; (16.3)

2. For vectors V@ orthogonal to N, i.e. tangent to X, the scalar product with respect

to hqp is identical to that with respect to gag.

VNG =0 = hasV’ =gasV’ . (16.4)

These two properties together imply that essentially hog (restricted to X) is the metric
induced on ¥ by g,5. The precise relation to the induced metric (15.23)

hav = gop ESEY . (16.5)
provided by the parametric (embedding) description of a hypersurface is given by

hab = Jap EgEbB
= (hap + €Ny Ng)ESE (16.6)
= hos ESE)

where the 2nd equality follows from the fact that N is orthogonal to the Ef.

REMARKS:

1. Thus, given the covariant tensor h,g orthogonal to N%, we can equivalently think
of it as the tensor hy, on Y. The difference between the two are essentially only
that
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e hp(z) as a matrix is degenerate (as it has the null vector N¢), while hg, is

non-degenerate;
e hqpis an M-tensor of type (0,2) and a YX-scalar while hgy, is an M-scalar and

a X-tensor of type (0,2).

. In particular, while it makes sense to write h®?, as usual simply defined by
h? = g*7g%has (16.7)

this h*? is not the inverse of the induced metric hep (indeed, as we just noted,

hap does not even have an inverse). Rather, one finds
h*Phg, = 6% — eN°N,, | (16.8)

so it is only the inverse on the orthogonal complement to N, as expected. Note
also that (16.8) implies
9P has = h*Phepg =3, (16.9)

as behoves a 3-dimensional metric. Below we will reinterpret these equations in

terms of projectors into the directions orthogonal to N¢.

. We see in this example (and we will see and make use of this more generally
below) that on covariant tensors that are orthogonal to N in the sense that any
contraction with N is zero, we can convert space-time indices to hypersurface
indices using the ES, i.e. we can convert such tensors into tensors on . For such
tangential space-time tensors this conversion does not lose any information (i.e.

one is not throwing away any components).
. Dual to the relation (16.6) one has
heP = h*ES B (16.10)

which is manifestly orthogonal to N, and (up to the conversion of indices) acts in

the same way on tangent covectors as h®.

. Using this expression for h®?, we can write (and interpret) the defining relation
hag = gap—€NoNg for hog as a completeness relation for the linearly independent

vectors N and E, namely

g*? = hESE] + eN“NP . (16.11)

. In the terminology of section 15.3, hgy, is the pull-back of g.g or heg to X, while
hoB is the push-forward of h® from ¥ to M.
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The tensor h,g also provides us with the projectors allowing us to project a general
tensor onto its tangential components to 3. Indeed, first of all we can reinterpret the
result (16.8) as the statement that the tensors

% = g*hyp = 8% — eN“Njg (16.12)

are projection operators,
U =he . (16.13)

More precisely, as a consequence of the properties of h,g already established, in par-
ticular the orthogonality (16.2), they are projection operators onto vectors tangent to

P
VONa =0 = h%V7I=Vv"

(16.14)
VX~ N = hRVP=0,

while it follows from (16.12) that e N“Ng is a projector onto the orthogonal complement,

namely the normal direction,

VON, =0 = eN*NgV? =0

(16.15)
V= fN* = eN°NgVF = fNYeNsgNP) =V* .

These projectors now allow one to map / project an arbitrary covariant or contravariant

space-time tensor field onto its components (co-)tangent to X:

e E.g. for a vector V¢ one has
Vs 0® =h%GVP | 0"Na=0 . (16.16)

Such a v* which is tangent to ¥ must be a linear combination of the EY, i.e. it is

related to some vector v® on X by

v* = EJv . (16.17)

e For a covariant 2-tensor, say, one has
Bog + bag = hJhSBys | (16.18)
where b,z satisfies

VAN, =WONy=0 = bugVeWP? = B,gVoW?»

(16.19)
Ve~V N = bVP=0.

A covariant tensor which is tangential in this sense can equivalently be regarded

as a covariant tensor on X via
bap = ESEbag - (16.20)
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We see that the projection procedure is quite straightforward and simple in terms of the
normal vector provided by the defining function S of an embedded hypersurface. Using
(16.10), we can also write and interpret this projection in terms of the embedding data
x*(y®), in particular the E$ and the induced metric hgy,. Let us take a look at that in

the case of a vector field. Then we can write the projection (16.16) as
vt = hVE = h* g, VY = EShE g5,V (16.21)

Taking this apart, we see that from the embedding point of view the projection procedure
(which is a single step procedure when expressed in terms of ho‘ﬁ) consists of the following

sequence of steps:

e use the space-time metric gg, to convert the vector field V7 into the covector field
Vs,
Vi = gBFYV’Y (16.22)

e use Ebﬁ to pull back V3 to a covector field vy, on 3,

v = EJVs (16.23)

e use the inverse h® of the induced metric to turn this into a vector field v® on X,

v? = hy, (16.24)

e Finally use EY to push this forward to a tangent vector field v® on the image
(X)) C M,
v* = EJv? . (16.25)

This is a perfectly logical sequence of operations, but you may now understand why I
said in section 15.3 that “I consider this projection procedure to be somewhat simpler

and more transparent from the “embedded hypersurface” point of view”.

16.2 INTRINSIC = PROJECTED COVARIANT DIFFERENTIATION

Given the induced metric h,, on X, one has the associated canonical Levi-Civita co-
variant derivative (i.e. the unique torsion-free metric-compatible connection) at one’s
disposal to define covariant derivatives of Y-tensor fields. Let us temporarily denote

this intrinsic covariant derivative by V" so that e.g.

VWb = g0 + T e Wy = g, — TR 0, (16.26)
where
L 1P (0chaq + Oahed — Oghac) - (16.27)
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On the other hand, given a space-time vector field V¢ that is tangent to ¥ (on X), i.e.
VW =hGVP =V & VO=Eh" (16.28)

we can define its projected covariant derivative along X by taking its covariant derivative

and then projecting it to ¥. Let us denote this covariant derivative by V, so that e.g.
Vavs = hJh§Vvs . (16.29)

Since this is now a projected tensor, it can be pulled back without loss of information

to X, i.e. pragmatically speaking we can convert its indices using £,

Vavg — O (Vo)a = ESE)V,ug . (16.30)

Given that we now appear to have two natural notions of differentiation of »-tensor
fields, the obvious question that arises at this point is what is the relation between the

two, and the (reassuring, and perhaps not too surprising) answer is that they are equal,
ESE]V qvs = VM, (16.31)

The quickest way to see this is to prove that the projected covariant derivative is sym-
metric (torsion-free, covariant derivatives commute on scalars) and compatible with the

induced metric. The first property is obvious since
[Va, Vlf =hJhS[V4, Vsl f =0, (16.32)
and the second property follows from
hag = gap — €NaNg = Vahgy = —€((ValNg)N, + Ng(VoNy)) (16.33)

since this expression vanishes after projection into the directions orthogonal to N,.

Thus for projected tensors the projected covariant derivative is equal to the intrinsic
covariant derivative (up to pull-back), and the obvious next questions are e.g. “what
are the normal components of the covariant derivative of a projected tensor?” or “what
are the projections of the covariant derivative of a non-tangential tensor, i.e. a tensor
with a normal component”? These are legitimate and interesting questions. However,
they go beyond the intrinsic geometry of hypersurfaces and bring us into the realm of

extrinsic geometry, a subject that will be addressed (briefly) in section 18.

16.3 INTEGRATION ON NON-NULL HYPERSURFACES AND THE GAUSS THEOREM

Let ¥ be a non-null hypersurface, with local coordinates y®, and h,;, a metric on X, e.g.
the metric induced by a metric g,3 on the ambient space-time M. Then Vhd™y, with

h :=|det hgp| (16.34)
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is an invariant volume element on Y and integration of Y-scalars f can be defined by

/Z fim [Vhd'y f) (16.35)

Integrals over hypersurfaces arise in particular from applications of the Gauss theo-
rem (or Gauss-Stokes theorem) which allows one to express the volume integral over
some space-time region V of a covariant divergence as an integral over the boundary
hypersurface

X =0V (16.36)

of that space-time region. This is usually written as something like

/ VgdPa V% = jq{ dogJ® | (16.37)
v ov

where do, is some oriented surface (volume/area/...) element. The proof of this
identity can be reduced to the proof of the corresponding statement in standard multi-
variable calculus in Euclidean space by making use of the fact, already noted in (5.61),
that

/ VadPx VI = / dPx 9,(\/g7%) . (16.38)
v v

is an ordinary total derivative. Assuming momentarily that we are working in adapted
coordinates #® = (S,z") in which $g = 9V is a surface S(x) = ¢ of constant S, we can

write this somewhat more explicitly as

/\/§de VaJ“:/de (0s(vFTS) +...)
% %

(16.39)
= / d"x /g g7 T, .
Xs
It thus remains to understand the relation between the surface element
do® = d"z /g g°* (16.40)

appearing in this integral, and the intrinsic invariant volume element vhd"y. To that
end, we note that in the adapated coordinates (.S, %) one has (with the sign convention
(15.43))

Ny~04S , N®Ny=¢ = N*=eg"%/\/eg55 . (16.41)

Moreover, by the usual cofactor / minor formula for the components of the inverse

metric (5.79), one has

= ety —det(hir)/g (16.42)

where h;, = g, refers to the (ik)-components of the induced metric hqg in the adapted
coordinates (S, z?),
Jas = hag +eNoNg = gix = hit . (16.43)
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Therefore we can write the factor \/ﬁgso‘ appearing in (16.39) as

V9 9% = g eN*\/|g55]
— e/[det(hap) N .

(16.44)

Finally, noting that

hay = ELEfhy, = /| det(hg)|d"x = /| det(hg)|d"y (16.45)

(the tangent F, having no normal S-component in these coordinates), we conclude that
do® = d"z \/g g°* = eVhd'yN® | (16.46)

so that we can also write the Gauss theorem in the convenient and transparent form

/ \/§de VaoJ% = e/ d"y Vh N, J* = / dooJ® . (16.47)
V $=0V b

A standard application of this formula is to conserved charges associated to (covariantly)
conserved currents, V,J% = 0, discussed in section 6.8. Indeed, let us consider a space-

time volume V bounded by two spacelike hypersurfaces
oV ={E1}u{-X0} (16.48)

(the minus sign indicating that we equip 3 with the opposite orientation to that induced
by V so that e.g. both surfaces ¥y have future-pointing normal vectors). Then one finds
that
Ql —Q(] = dO'aJa— dO'aJa
> >o (16.49)
= / VgdPr Vo, J* =0 |
%

so that (under suitable asymptotic conditions) covariantly conserved currents will lead
to conserved charges. Analogously, and somewhat more generally, this shows that if
one has a family . of hypersurfaces, sweeping out a space-time volume V = U.X., the

integral

Qec= [ dogJ” (16.50)
P

is independent of ¢, i.e. the charge in invariant under deformations of the hypersurface.

16.4 SPACELIKE HYPERSURFACES AND STATIONARY VS STATIC METRICS

One common instance where the issue of hypersurface orthogonality discussed in section
15.5 plays a crucial role is in the distinction between what are known as stationary
metrics (or space-times, or gravitational fields) versus static metrics (or space-times, or
gravitational fields). Both terms refer to gravitational fields that are in a suitable sense

time-independent, but “static” is a stronger condition than “stationary”.
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I used the word “static” in connection with the metric (3.22),
ds®> = —A(r)dt* + B(r)dr? + r*dQ? | (16.51)

while in the discussion of the Newtonian limit of the geodesic equation in section 3.3 I
used the term “stationary” to refer to the condition (3.45) that the coefficients of the
metric be time-independent. In general, we will define a metric to be stationary if it has
a time-translation invariance, in the sense that one can find coordinates 2 = (t,z"%),
say, such that { = 0; is timelike and that none of the coefficients g,3 of the metric
depend on t,

Stationary Metric: 0;gag =0 . (16.52)

Thus the general form of a stationary metric, without assuming the existence of any
further symmetries, is just

Stationary Metric:  ds? = gog(z")dz®dz”? (z% = (t, %)) . (16.53)

This can be stated in a geometrically more invariant way as the condition that the metric
admits a timelike Killing vector £ (cf. the discussion in sections 3.2 and 9.5). Locally,
one can then always introduce coordinates such that the Killing vector has the form
& = Oy (see the discussion after (9.59)), so that in these coordinates the symmetry is that
of t-translation invariance, as in (16.52). For present purposes this locally equivalent

characterisation of the existence of a time-translation symmetry is good enough.

It will nevertheless be useful (even for present purposes) to be able to write the condition
(16.52) in a somewhat more covariant form. To that end, note that for a vector field of
the form & = J; one has (repeating the calculation leading to (5.69))
=0 = Vu&f=1"
S=a o8 =t (16.54)
= Vafﬁ + vﬁga = 8tgaﬁ

Thus we find that the fact that the metric is ¢-translation invariant can be characterised

covariantly as the statement that & = 0; satisfies
Ogap =0 &  Valp+Vpla =0 . (16.55)

Unsurprisingly, this is the expression we had already found in (5.70).

The metric (16.51) of course has the property that all the metric coefficients are ¢-
independent so it is certainly stationary, but it also has the further property that & = 9,
is hypersurface orthogonal. Indeed, in this case £ = 0; is evidently normal to the

constant time hypersurfaces t — ty = 0.

This need not be the case, however. To set the stage, consider an arbitrary metric
written in coordinates 2® = (t,2*) and let £ be the vector & = 0y, i.e. £ = 0. Then

its metric dual covector has the covariant components
=0 = &= ga655 = Gat - (16.56)
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In particular, & is also the norm-squared of &,

& = gut = gap@EP = €%¢, (16.57)

as can also be seen directly from (16.56),

of, = gog, — { & by “p.ullingadovvli the index” (16.58)
g by using £* = 0%
It will also be convenient to write (16.56) in the form
Eodr® = goudz® = gudt + gda® = (g1t Oat + gtkaaa:k)dzno‘ . (16.59)
If the metric is such that g4, = 0, then clearly
g =0 = &a = gulat (16.60)
which is of the characteristic form of a hypersurface orthogonal vector field
9ol = f 0aS (16.61)

so that 0, is orthogonal to the surfaces of constant ¢, S(z%) =t — .

In general, a static metric is by definition a metric which is stationary and which is such
that the vector field £ = 0, generating the time-translation symmetry is hypersurface

orthogonal,
Static Metric:  Oigog =0 and 0; hypersurface orthogonal . (16.62)
As we have just seen, this will be the case e.g. if g;, = 0,
Ot9ap =0 and gy =0 = static . (16.63)

The converse to this is also true, i.e. given a stationary metric such that £ = 0; is
hypersurface orthogonal, one can find a coordinate transformation (really just ¢ — T'),
such that 0; = Or, Orgap = 0, and such that gr, = 0 so that J; is manifestly orthognoal

to the surfaces of constant 7.

I will give two proofs of this, one using the “integrated” version &, = f0,S of the
hypersurface orthogonality condition, and the other using the integrability condition
(15.55) for hypersurface orthogonality, in conjunction with the covariant characterisa-

tion (16.55) of a stationary metric.

1. The first proof is somewhat pedestrian and not particularly elegant but has the
virtue that it is clear from the beginning where one wants to go and what one is
doing to get there. We begin with the hypersurface orthogonality condition in the
form

€ = gor = [0S . (16.64)
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In particular,

=& =gu=foS#0 . (16.65)

The idea will be to change variables from t to T" = S(z%) (because then ¢ is
orthogonal to the surfaces of constant 7'), but before doing this we will need a
preliminary result following from the assumption that the metric is stationary.

Namely, (16.64) and stationarity evidently imply
8tga5 =0 = E?t(faaS) =0 and 8t(8k5/8t5) =0 . (1666)

Now, since 05 # 0, S has to depend on ¢, but this dependence needs to drop out
of the ratio 9yS/9;S. This implies that, as far as its t-dependence is concerned, S
is a linear function of ¢ with constant coefficients,

S(t,zF) = at + b+ s(z*) | (16.67)
and this in turn implies that f is ¢-independent,

Without loss of generality we can assume that b = 0 (either because £ only depends
on 9,5, or by absorbing it into s(x¥)), and that a = 1 (by absorbing the constant

a into f, say). Thus we can assume that S(z®) has the form
S(t,af)=t+s@®) = St ") =1 , 95t aF) =ds(z¥) . (16.69)
Using got = f0.S and 0;S = 1, one has
fdS = fdt + fOpsdz® = gudt + gda® | (16.70)

and
gt/ g = kS (16.71)

Therefore we can write the metric as
ds® = gudt® + 2gtkdtd33k + gikdxidxk

= gtt(dt + (gtk/gtt)dxk)2 + (gik - gtigtk/gtt)dxidxk (16-72)
= f(dS)? + (gix — fO;s0ks)dz'dz" .

This again strongly suggests that the right thing to do is to introduce a new

time-coordinate T' through
T =S(t,z") =t + s(z*) , (16.73)
with

8155 =1 = aT = 815 . (1674)
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Then the metric is
ds? = f(z®)dT? + (gir (%) — f(2")0ss(2¥) s (")) da da® (16.75)

with
Orgap = O0igap =0 , grr =0 . (16.76)

and 9; = Or is manifestly orthogonal to the surfaces of constant 7'= 5.

. For the second proof, we start with the integrability condition (15.55). Using
the fact that V,&g is anti-symmetric, we can write it in a way which makes its

anti-symmetry in the indices («, ) manifest,

£aV ity — E5Valy + 5&(Vals — V) =0 . (16.77)

Contracting this expression with £7, and using the abbreviation £2 = §7¢, for the

norm of &, one deduces

€aV5(€%) — £5Val(€?) + E(Vals — Vpla) =0 (16.78)

which can also be written as

Va(€s/€%) — V(€a/E?) =0 . (16.79)

Thus £%/£2 is (locally) a gradient vector, i.e.
Eo = £20,8 (16.80)

for some function S. This is the integrated version &, = f0,.5 of the hypersurface
orthogonality condition, with the additional information that f = &2, so that in
particular it is independent of ¢t. The proof could now follow the lines of the first

argument, but variatio delectat, and we will proceed in a slightly different way.

First of all, we note that & = &2 (16.57) implies
G=¢ = aS=1, (16.81)

a condition which thus arises here seemingly in a somewhat different way than
before. We can then deduce that S is of the form

S(t,z*) =t + s(z¥) | (16.82)

so that
&k = gt = &S = gulis . (16.83)

We now change variables from (, %) to (T, 2%) with T' = S(¢,2*) and 2% = z*,
or
HT,2%) =T — s(z®) |, 28T, 2%) =25 . (16.84)
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Then we can deduce that Or = 0; and that in the new coordinates the off-diagonal
component of the metric g is
_ 0x® 9P _ 0x°
IKT = 9uK 1 928 = gk Jot (16.85)
= gkt — gutOks =0 .

Either way we have shown that the general form of a static metric, without assuming

the existence of any further symmetries, can be chosen to be of the block-diagonal form
Static Metric:  ds? = gy (z¥)dt? + gip (z¥)da? dz® (% = (t,z%)) . (16.86)

This is known as the standard form of a static metric.

REMARKS:

1. We will see in section 24.2 that a stationary and spherically symmetric metric is
automatically static. This follows easily from the fact that for a stationary metric,
and in spherical symmetry, in coordinates (¢,r,0, ¢) suitable for expressing both
these facts, the only allowed off-diagonal gu-term of the metric is C(r) = g4 (r),
so that the (t,7)-part of the metric takes the form

ds? = —A(r)dt* + B(r)dr? 4+ 2C(r)dt dr . (16.87)

Then C(r) can be eliminated by a coordinate transformation T'(¢,r) = ¢ + ¢ (r),

and 0; = Or is thus orthogonal to the surfaces of constant 7.
2. Evidently the ultrastatic metrics (2.34),
ds* = —dt* + g;j(z)dx'da? | (16.88)

whose geodesics were discussed in section 2.9, are the special case of static metrics

for which the norm of £ = 9, is constant.

3. We see from a comparison of (16.53) and (16.86) that an equivalent way of char-
acterising static metrics is that they are invariant under time translations (sta-

tionary) and invariant under time reflections t — —t or t — c—t

4. Even though the discrete time-reflection invariance is by no means implied by
the continuous time-translation invariance, it may at first be difficult to imagine a
situation that does not change in time (the stationarity condition) but that is nev-
ertheless not invariant under time-reflections. Intuitively, a stationary non-static
situation can arise when one has e.g. something like a stationary (unchanging)
stream or flow in one direction. Time-reversal means inverting the direction of
the flow, and even though this is again a stationary situation the difference be-
tween the two is of physical significance, and can be detected e.g. by throwing a

(test-)twig into the stream and observing its motion.
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5. The prime example of a stationary but not static metric is precisely of this kind.
This is the Kerr metric describing the gravitational field outside a rotating star
(or black hole), briefly mentioned in section 30.1. This solution is stationary and
axially symmetric (around the axis of rotation), but it turns out that the space-
time is distorted in the direction of the rotation. In suitable coordinates (¢,r,6, ¢)
this manifests itself in the fact that the metric coefficients are independent of ¢
(stationarity) and ¢ (axial symmetry), but do depend not only on 7 but also on 6.

Thus, in agrement with the remark above, the metric is not spherically symmetric.

Under t — —t, the sense of rotation is changed and the corresponding metric
cannot be invariant under this operation because the gravitational field is now
distorted in the opposite angular direction. In fact, in these coordinates the metric

turns out to have a non-vanishing g4(r,6), and gty — —gt4 under t — —t.
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17 HYPERSURFACES III: INTRINSIC GEOMETRY OF NULL HYPERSURFACES

17.1 NuULL HYPERSURFACES

We now look at null hypersurfaces, which we will denote by ¥ = A. Null hypersur-
faces have some special and peculiar properties, as a consequence of the fact that for a
null hypersurface the normal vectors are orthogonal to themselves, £*¢, = 0, and are
therefore not only normal to the hypersurface but simultaneously also tangent to the

hypersurface,
£* normal to N and £%, =0 = £“ tangent to N . (17.1)

The scalar product between a null and a timelike vector is always non-zero, because it
picks out the time-component of the the null vector. Thus we also learn that a tangent

vector to a null hypersurface cannot be timelike and is thus either null or spacelike.
One consequence of this is also a converse to the above statement, namely that a null
tangent vector to a null hypersurface N is also normal to N/,
n® tangent to N and n*n, =0 = 7% normal to N , (17.2)
or
n® tangent to N and n%n, =0 = n%~&* . (17.3)

Intuitively, this is clear, because if n® were null, tangent and not proportional to the
normal £%, there would be 2 linearly independent null vectors tangent to N, but for
that to be possible N” would need to be timelike.

Formally, one can prove this by expanding n® as
n® tangent to NN = 7%= f&+s° (17.4)
for some function f and spacelike vector s%, and noting that the 2 requirements
n® tangent = 0%, = s, 20 (17.5)

and
g mull = % = 2f5%a + 5% = 0 (17.6)

imply s*s, = 0 and hence (because s* is spacelike), s* = 0, so that n® = f&%, as

claimed.

Since in general for a null hypersurface one has £*¢, = 0 for any normal vector £,
we cannot normalise it as in the spacelike or timelike case, However, given the defining

function S, a convenient and natural choice for a normal vector is

lo = —8aS | (17.7)



where the sign has been chosen in such a way that ¢* is future-oriented for a function
S that increases towards the future (for an illustration of this see the examples below
where S =t —x or S =t — r have this property). All other normal vectors are then of
the form

£ = f o~ (17.8)
for some function f nowhere vanishing on N.
EXAMPLES:

1. To see an illustration of these facts in the simplest case, consider (141)-dimensional
Minkowski space in lightcone coordinates u = t —x,v = (t+ x)/2, say, so that the

line element takes the form
ds* = —dt* + dz* = —2du dv . (17.9)

One could have also made a more symmetric choice for (u,v), of course, this is
irrelevant for what follows and the present asymmetric choice just serves to avoid
some other factors of 2 further down. The signs of the lightcone coordinates have
been chosen in such a way that the null vector fields 0, and 0, are future-oriented

(i.e. u and v grow with increasing t).

Now consider the family of hypersurfaces (straight lines) defined by
S(t,x) =t —x = u = const. (17.10)

On the one hand, the complementary null coordinate v provides a good coordi-
nate on each null line © = const. On the other hand, a normal vector to this
hypersurface is

¢ = —g*P95S = —gPogu = —g™ (17.11)

ie.

=00y = —g™" 00 = +0, . (17.12)
We see that

e the normal vector ¢ = 9, is evidently also tangent to the hypersurface, as it

points in the direction of varying v, i.e. along the lines of constant wu;

e due to the choice of sign the normal vector ¢ = +0, is future oriented.

2. If we add further spatial directions (y, z), then the null hypersurface (hyperplane
in this case) u = const. would be parametrised by the null coordinate v and the
spatial coordinates (y, z). A slightly more interesting higher-dimensional example
of a null surface is provided by introducing spherical coordinates for 4-dimensional
Minkowski space,

ds® = —dt* + dr® + r2dQ* | (17.13)
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and replacing S(¢,x) =t — x by its 4-dimensional radial counterpart
S(t,r,0,¢0)=t—r . (17.14)

We can also introduce the coordinates uw =t —r,v = (t +r)/2, in terms of which

the metric takes the form
ds* = —2dudv + (v — u/2)*dQ?* . (17.15)

Then S = 0 defines the future lightcone of the origin (see also example 3 in section

15.1), and it is clearly a null surface. Indeed, the normal vector ¢, = —0,S has
components

(bo) =y =—1,0, =4+1,lg =0, =0) = (U =0 . (17.16)
Moreover, as in the previous example ¢ = (%0, = +0,, so that £ is again future

pointing. A point on the lightcone is then specified by the spatial coordinates
(0, ¢) and the parameter v along the null lines with « = 0 and constant (6, ¢).

17.2 NULL HYPERSURFACES AND THEIR NULL GEODESIC GENERATORS
Since % is tangent to the hypersurface or family of hypersurfaces A/, the integral curves
x®(\) of £%, characterised by

2= @) L 20 EN (17.17)

lie entirely in the null hypersurface /. These curves turn out to be null geodesics,

although not necessarily affinely parametrised,
0PN 0™ ~ 1 (17.18)
and the same thing is true for any other choice of normal vector £<,
Vg™ ~ £ (17.19)
I will give 3 proofs of this fact, in increasing order of generality,
1. first for the canonical choice of normal vector £, = —39,5,

2. then for any normal vector £* = f£<,

3. and then for any null vector field £ satisfying the hypersurface orthogonality

condition (15.55).

Proof:
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1. Let ¢, = —0,S. Then

0PN gl = PV olg = 4V, (£°15) . (17.20)

Since EBEB = 0 everywhere on N, EBEB is constant along directions tangent to N .

Now there are two possibilities:

e V,o(Plg) =0on N

In this case clearly ¢ is not only geodesic but even affinely parametrised,

PV =0 . (17.21)

e Vo (lPlg) #0 on N

In that case V, (¢£2¢ 3) is normal to V. Since it is normal to AV, it is necessarily

proportional to the normal vector £,
Va(lPlg) ~ 1, (17.22)

and thus one deduces (17.18).

Fither way, we have shown that

0PN 50 () = kp(2)E® (17.23)

for some scalar function ry(z) measuring the inaffinity (lack of affinity) of the

family of geodesics (geodesic congruence) defined by the normal vector field ¢ (as

in (2.130) for a single geodesic curve).

REMARKS:

(a)

The situation in the 1st case arises if S(z) = ¢ defines a family of null
hypersurfaces, i.e. not just the surface A/ defined by S(z) = 0 is null but also
the surfaces S(x) = ¢ for ¢ in some interval around 0, because then £,¢(* =0
not just on the surface S(x) = 0 but in a neighbourhood of N.

In the 2nd case one could have chosen
S =544 (17.24)

as a defining function of the surface N'. This is natural if one is initially given
a vector field and looks at the locus where this vector field becomes null. A
prominent example of this we will come back to later is the Killing Horizon
of a black hole (section 32.5).
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2. Now let £€* = f{* be any normal vector to N. To establish (17.19), it is sufficient
to note that
§PVpE" = [PV (%)

= fOP (V)™ + f20PV 5>

= (fLP0sf + fPre)®

= ((90sf + froOg™ = ke £ .
Thus we have shown that £¢ is geodesic iff /% is geodesic and that the inaffinities
of £ and & = f¢ are related by

(17.25)

E=fU* = ke =0"0uf+ fre . (17.26)

In particular, if f(z) is a solution of the differential equation ¢*0, log f + Ky = 0
(along any orbit of £ this reduces to the differential equation in (2.131)), the normal
vector field £* = f¢¢ is affinely parametrised,

0%(2) 0 log f(x) = —ry(z) = EPVger=0 . (17.27)

3. Let us assume that we are given a hypersurface orthogonal vector field £€*. Ex-

plicitly, we can write the condition (15.55) as

£a(VEy = VaE8) +E8(Vba — Va&y) + & (Vals — Véa) =0 . (17.28)

Contracting this with €% and assuming that £%¢, = 0 on some hypersurface N,

one finds that on A one has the condition

5(68V4(§76) — & V5(§%6a)) + (686 Vay — §:6Vagp) =0 (17.29)

containing two kinds of terms. The 1st term is of the familiar type already dealt
with above. Either £*¢, = 0 also off the surface, or V. (£%¢,) ~ &,. Either way,

the 1st term is zero. We are thus left with the condition

fg&ava&/ = gvgavagﬁ . (17.30)

In general, if one has two vector fields V' and W satistying V,Wg = V3W,, and

neither of them is identically zero, it follows that V' and W are proportional,
VaWg =VgWso = Wa=fV, (17.31)
for some scalar f. Here is a low-brow proof of this statement:

e The condition is empty for e = §; thus fix a #  (and let us choose o = 1,
say):
o If V1 =0, it follows that VW7 = 0 for all 3, and therefore W7 = 0 as well.

o If Vi # 0, one can write Wg = (W;/V1)Vp for all B. Thus Wy # 0, and
therefore W3 = fVj3 for some non-zero scalar f, as claimed
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In the case at hand, this implies
(17.30) = £&*Va& ~ & (17.32)

which is precisely the statement we set out to prove, namely that on A the null

normal vector field is (possibly non-affinely) geodesic.

Since any point on N lies on one of these null geodesics, one says that the null surface
is generated by these null geodesics. The null geodesics, in turn, are known as the null

generators of N.

REMARKS:

1. Returning to the examples discussed at the beginning of this section, in both cases

the normal and geodesic null vector field £ = 9, is actually affinely parametrised,
(=09, = FPVg*=1% =0, (17.33)

i.e. the null coordinate v is an affine parameter along these (right-moving respec-
tively radial outgoing null geodesics), and is thus e.g. a natural coordinate to use
on N. The reason one finds affinely parametrised geodesics in this case is that

S(u) = u = ¢ defines a family of null hypersurfaces.

2. In this general context of null surfaces, the inaffinity x¢ associated with a particular
choice £€* = f£“ of normal vector field has no particular significance since, as we

have seen, it can be changed at will by changing f.

3. However, these geodesics and their associated inaffinity acquire a particular impor-
tance when the normal vector field in question cannot be rescaled in an arbitrary

way by a scalar f.

This arises for example when one has a Killing vector £ that becomes normal
to some null hypersurface, and is thus in particular null there (this hypersurface
is then called a Killing horizon). Since f(x)§ will then not be a Killing vector
unless f(z) = a is constant, the ambiguity in the inaffinity is greatly reduced, to

multiplication of k¢ by a constant,
§—al = K¢ —arg . (17.34)

This remaining ambiguity can e.g. be fixed completely by demanding that £4¢, —
—1 asymptotically if £ is asymptotically timelike. In this case k¢, known as the
surface gravity associated with the Killing horizon, carries intrinsic information
about the space-time itself and plays an important role in the study of black holes
- an illustration of this in the simplest possible case of the Schwarzschild metric
is given in section 27.10, and a more general discussion of Killing horizons and

surface gravity can be found in sections 32.5 and 32.6.
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17.3 ADAPTED COORDINATES AND INDUCED METRIC FOR NULL HYPERSURFACES

Since in general the null geodesics which are the generators of a null surface are naturally
associated with the null surface, it is also convenient to adapt the coordinates y* on N

to ¢ by choosing the coordinates to be
y = (w=X\y" (17.35)

where ) is the (not necessarily affine) parameter along the null geodesics and y* are
spatial coordinates labelling the individual null geodesics. In particular, therefore, the
y* are constant along the null geodesics and can be constructed e.g. from the constants

of motion or the constants of integration of the null geodesic equation.
In these coordinates, the tangent vectors E, (15.16) to the null surface are

e, g9 (17.36)

ox®
ES =
oy

)Y

and therefore the induced metric (15.23) has the components
hoo = gapt™* =0, hop = gagl® B =0, hyn = st = gagERES, . (17.37)

where h,;, = 0 follows because by construction the Ef are tangent to the surface while by
definition £% is normal to the surface and therefore in particular normal to the tangent

vectors B}

Thus the metric is clearly degenerate (a characteristic feature of null surfaces) and the

line element takes the form
ds® | = skmdy*dy™ = gap EY Efdy*dy™ . (17.38)

Note that this form of the metric is independent of whether one chooses A to be the
original (perhaps non-affine) parameter or the affine parameter, as this just amounts to
changing (¢ — &% = f{* for a suitable choice of f, so that one still has hy, = hyr = 0.

Returning to the example of the future lightcone in Minkowski space (example 3 in
section 15.1 and example 2 in section 17.1), we find that in the coordinates (v, 6, ¢)
the metric induced on the lightcone by the ambient Minkowski metric is the degenerate

metric with line element
ds? = v?(d6* + sin® 0d¢?) | (17.39)

as could also have been deduced directly by restricting the metric (17.15) tou = t—r = 0,

(—2dudv + (v — u/2)2dQ2) lu—o = v2dQ? . (17.40)
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17.4 PROJECTORS FOR NULL HYPERSURFACES

As in the case of non-null hypersurfaces, one can also study the induced metric from
the point of view of embedded hypersurfaces and projection operators. However, the
construction is somewhat different in this case because the tangent directions £ and
the normal direction ¢¢ are not independent. It is clear that, in order to e.g. have a
completeness relation akin to (16.11), we should adjoin to the spatial tangent directions
E} and the null tangent direction ¢* to the surface another linearly independent vector
which can conveniently be chosen to be a null vector n® on N, but of course not tangent
to N, such that

nen® =0 , noEf =0 , nt*#0 . (17.41)

We can always rescale n® in such a way that n,¢“ = —1, and this is a convenient choice
we will adapt in the following (the minus sign having been chosen such that n® is future
directed iff £* is future directed). Thus, given a choice of spatial basis vectors Ef}, the

set-up is the set of vectors {¢*,n®, E}'} satisfying the relations
nan® =Ll =0 |, noEf =l,Ef =0 | nyl*=-1. (17.42)

Given ¢“ and a choice of EY¥ (up to purely spatial coordinate transformations of the
y*), the complementary null vector n® is uniquely determined by these conditions. The
freedom % — £“ in the choice of normal vector to multiply it by a non-zero function

amounts to a boost in the (¢, n)-plane,

P yetald)p o pf oy emalT)ys (17.43)

With these vectors we can define the tensor s,z on N by
JoB = SaB — (ﬁanﬁ + €5na) , (17.44)

or
Sap = Jap + (Eanﬁ + Eﬁna) . (1745)

Note that s,g is invariant under the boost (17.43). This tensor has the properties
Sagﬁﬁ = sagnﬁ =0 (17.46)

and
V%=V =0 = gugV’ =s5,5V" . (17.47)

It thus defines the induced metric in the directions orthogonal to ¢ and n®, and is thus

the induced (degenerate, spatial) metric on the surface N, the properties
s = ERES P s = BRES sap (17.48)
being the analogues of (16.10) and (16.6) respectively. One also has

g%F = sFmESEP — (19nf 4 Pn®) | (17.49)
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which is the null analogue of the completeness relation (16.11). The properties (17.46)
and (17.47) also imply

9P s0p = P50 =54 =n—1 . (17.50)

We can now introduce the projectors
s =0%+ (g +ns) , %5 =s% (17.51)
onto the transverse space. They satisfy, in particular,
sBt’ = s%n’ =0, (17.52)

and are therefore such that if e.g. V¢ is a space-time vector, v* = S%Vﬁ is a spatial

vector tangent to N, i.e. orthogonal to /¢ and n®,
v = S%Vﬁ = Y% =1"n,=0 . (17.53)
Note that v® = El‘j‘vk is a purely spatial vector so that, in particular,
v#0 = 1%, >0 (17.54)

and likewise for other tensors.

A variant of the set-up in this section (in particular the auxiliary complementary null
vector n® and the corresponding projectors) appeared in the discussion of the Ray-

chaudhuri equation for null geodesic congruences in section 12.4.

As an aside (a useful aside, though), note that this entire set-up can be phrased in
a somewhat more satisfactory manner in terms of an orthonormal basis or frame FE,
(section 4.8) rather than in terms of the basis E} associated to the choice of coordinates
y* (similar remarks apply to the timelike case). Namely, by introducing suitable linear
combinations

E® = EFER (17.55)

of the £} which diagonalise the spatial metric sy,
EFE St =00 = GapESE) = duy (17.56)
one obtains the (pseudo-)orthonormal basis (12.83)
(Ba} ={Ey =0,E_ =n,E}: gapESE? = nag (17.57)
with

Nt =n-——=0 , ny_=-1 1, Moy =0Ne—=0 , Nap =0 - (17.58)
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Then the boost (17.43) really is a Lorentz boost (in the tangent space), and the ambigu-
ity in the identification of a choice of null vector n and complementary spatial directions

can be identified as the possibility to perform a null Lorentz rotation (12.81) around ¢,
(=0 , non+pE,+3i |, E,— E,+ Bl , (17.59)

where 32 = §,,3%8%. Note that this transformation leaves invariant ¢ and the orthonor-

mal frame counterpart
Nan® =Ll =0 | naES =0,ES=0 , nyl®=-1 (17.60)

a

of the conditions (17.42).

In Minkowski space, with £ = 9, n = 0, and F, = 0,a, say, so that the metric has the

standard lightcone form

ds? = —2dudv + d7? = —2dudv + d4,dz"d2> (17.61)
this null Lorentz rotation is generated by the Lorentz transformation

(v, 2'%) = (u,v + Ba2" + %52% 2%+ %) (17.62)

— 2du/ dv’ 4 G4pd2"*d2"" = —2dudv + Spdzdz" . (17.63)
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18 HYPERSURFACES IV: EXTRINSIC GEOMETRY OF NON-NULL HYPERSUR-
FACES

In this section we will briefly touch upon some aspects of extrinsic geometry, more
specifically of the extrinsic geometry of non-null hypersurfaces. One can also develop
the extrinsic geometry of null hypersurfaces and of surfaces of higher codimension, but
we will not do this here.

18.1 INTRODUCTION: INTRINSIC VS EXTRINSIC GEOMETRY

As mentioned before, the (local) intrinsic geometry of a space, i.e. the properties that
can be deduced by measuring lengths, areas, volumes, angles, performing parallel trans-
port etc in that space, is completely described by the metric and objects that can be
derived from it, like the Riemann curvature tensor. In particular, the intrinsic geometry
of a hypersurface ¥, is completely described by its metric, e.g. by the metric induced

on it by a metric on the ambient embedding space M.

However, for hypersurfaces there is another aspect of the geometry of ¥ beyond its
purely intrinsic geometry, namely how it is embedded into the ambient space M, i.e.
how it bends inside M. As one needs to be able to move off ¥ to even detect that there
is such an embedding, this aspect of the geometry is something that cannot be captured

by intrinsic measurements on ¥ alone, and is therefore known as the eztrinsic geometry
of X.

Before developing this, let us look at some simple examples of embedded hypersurfaces:

1. Cylinder C C R3

For example, a cylinder
C=RxS! (18.1)

with circumference 2L along the circle can be obtained by “rolling up” R2, i.e.

by performing the periodic identification
(z',2%) ~ (2!, 2% +27L) . (18.2)

In this way it clearly inherits the flat metric from R?. This flat metric is the
induced metric on the cylinder when one embeds it in the standard way into R3.
Indeed, introducing cylindrical coordinates (r, ¢, z) in R3, the metric on R? takes
the form

ds® = dr? + r?d¢® + d=* . (18.3)

Identifying the points
(r,¢,2) ~ (r,¢ + 2, 2) (18.4)
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and restricting to constant r = L, one obtains a cylinder with circumference 27 L
and induced metric
ds?|,=p = L*d¢?® + dz* . (18.5)

Since the components of this metric are constant, the Christoffel symbols and the
curvature tensor are zero. Thus, the intrinsic curvature of the cylinder is zero, it is
flat (and locally looks just like Euclidean space). In particular, parallel transport
is rather obviously path independent. The fact that it looks curved to an outside
observer is therefore not something that can be detected by somebody performing

local measurements on the cylinder.

. Torus T2 ¢ R? and T2 c R*

Let us now consider the 2-torus 72. If one visualises it in the standard way as (the
surface of a doughnut) embedded in R3, then it inherits a non-flat metric from the
ambient flat metric on R3. To see this explicitly, place the torus around the origin
of the above cylindrical coordinates, i.e. such that its “center” is at r = z = 0
and such that it is invariant under rotations in ¢ around the z-axis. Fixing ¢,
the cross-section of the torus is a circle of radius Lo, say, centered at a distance
r = L1 > Ly from the orgin at the point (r = Ly, z = 0). Thus the points on this
circle, and therefore, by including ¢, the points on the 72 are described by the
equation

S(r,z,¢) = 2>+ (r—L1)> —L3=0 . (18.6)

(Check: r = Ly = z = +Ly,r = L1 £ Ly = z = 0). Then, eliminating z, say, the
induced metric is
L3

d2 2d2 d2 P
(dr® 4+ r°d¢” + dz°)|s=o 2= —L)?

dr® + r2d¢? | (18.7)
with L1 — Ly <r < Lj + Lo (and the standard range for ¢). This 2-dimensional
metric is not flat (in fact you can check that e.g. its scalar curvature is R =
Grrr/7(grr)?), and in this case both the intrinsic and the extrinsic geometry of the

torus are non-trivial.

If, on the other hand, one thinks of the 2-torus 72 simply as a doubly periodically
identified R2, with periods 2w L; and 27 Lo, say, then it certainly inherits the flat

metric from R2,
da* +dy* = (L1)*(de1)” + (L2)*(de2)®  (dk ~ ok +27) . (18.8)

It is thus intrinsically flat, but at the moment we have not embedded this flat
torus into any higher-dimensional space. It is not possible to embed T2 into R3
in such a way that the induced metric is this flat metric, but it is easy to see that

it is possible to achieve this via an embedding into R?.
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Indeed let us introduce polar coordinates (r1,¢;) in the (12)-plane, and (ra, ¢2)
in the (34)-plane, so that the Euclidean metric on R* has the form

ds® = (dz')? + (dz*)? + (dz®)* + (da?)?

18.9
= (dr1)* + (r1)*(d1)? + (dr2) + (r2)*(dg2)* . e

We now identify the points
(11, 1,72, P2) ~ (11,1 + 27,79, 2) ~ (11, P1,72, P2 + 27) . (18.10)

Then all the lines of constant (11,2, ¢2) and of constant (r1,79,¢$1) are circles in
orthogonal (12)- and (34)-planes in R, Thus the surfaces of constant r; and ro
are tori, and choosing ;1 = Ly and ro = Lo, one finds that the metric induced
on this torus by the ambient flat metric on R? is precisely the above flat metric
(18.8),

ds?|ry=r, = (L1)*(den)” + (L2)*(dga)? . (18.11)

In a parametric description z%(¢1, ¢2), with respect to the Cartesian coordinates
z® on R?, this Clifford embedding of T? into R* is given by

(@%(¢1,¢2)) = (L1 cos ¢1, Ly sin 1, Ly cos ¢, Lasin da) (18.12)

In particular, while these flat tori cannot be realised as codimension-1 hypersurface
of R3, this parametrisation shows that they can be realised as codimension-1
hypersurfaces of the 3-sphere

()2 + (%) + (2%)° + (2)? = (L1)* + (L2)* | (18.13)

with the standard non-flat induced metric on S? in turn inducing the flat metric
on the embedded T2.

. Circle ST c R?

In order to understand how to quantify that both for the flat cylinder and the flat
torus the extrinsic geometry is non-trivial it is sufficient to look at the simplest
possible lower-dimensional counterpart of this example, namely a 1-dimensional

closed space (a loop S') embedded into R? as a circle of constant radius L.

This one-dimensional space is evidently intrinsically flat (because the Riemann
tensor vanishes identically in 1 dimension), but equally evidently the circle seems
to bend / curve around in 2 dimensions (in order to be able to form a circle in
the first place).

In order to quantify this somewhat, one possible strategy is to determine how the
(unit) normal vector N = 0, to the circle changes as one moves along the circle.

The change in J, in the ambient space is given (in polar coordinates) by
Vedr =1%5(0,)%0, =19, 0, . (18.14)
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This vector is already tangent to the circle (had it not been, we could have now

projected it back), and the result can be written as

Alternatively, in order to explore how the embedded circle sits inside the ambient

geometry, one can study how the induced metric changes in the normal direction,
Or9gplr=1 = 2L . (18.16)

These are equivalent characterisations and quantifications of the extrinsic geome-

try of the circle (and hence also of the cylinder or the flat torus).

18.2 EXTRINSIC CURVATURE TENSOR

In order to capture this extrinsic aspect of the geometry in general, we are thus led to

define the extrinsic curvature of 3 in M either by

K') = hJhgV,Ns (18.17)

e}

or (with a judicious and conventional factor of 1/2) by
2
K(iﬁ) = 1hJhiLngys (18.18)

where, as in section 16.1,
% =0%—eN"Ng (18.19)
is the tangential projector, and Ly gqg denotes the Lie derivative of the metric g3 along

the normal direction N.

Cooperatively and conveniently, the two tensors defined in (18.17) and (18.18) turn out

to be identical in general. To see this, we first make use of the formula (9.38)

LNgaB = VaNg + VgNa (18.20)
for the Lie derivative of the metric to write KSB) as
K = $hJh(VoNs + V5N,) (18.21)

This already resembles (18.17), apart from the explicit symmetrisation in (18.21). This
symmetrisation, however, is not necessary: since N, is by definition hypersurface or-

thogonal, its anti-symmetrised derivative satisfies (15.52)
ViaNg = Vo Ng (18.22)

for some (gradient) vector V,, and therefore the tangential projection of the anti-

symmetric part of V,N3 is equal to zero, and we can simplify (18.21) to

K = hyhgv Ns = K . (18.23)

« aB
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We can therefore drop the labels on K, and define the (symmetric) extrinsic curvature
tensor K,g by
Kog = $hJhSLngys = hJhSV N5 = K, (18.24)

REMARKS:

1. Due to the tangential projections, this definition is independent of how the normal
vector N is extended off the hypersurface . If it is extended in such a way
that N*N, = € also off ¥ (e.g. if N® is the normal vector field to a family of
hypersurfaces), then (V,Ng)N? = 0 and the 2nd projection in the above definition

is unnecessary. In that case one finds
Kaﬁ = hJV-yNﬁ = VaNg - eNaag (18.25)

where
ag = NVVWNB (18.26)

is the “acceleration” of N, and the 2nd term is simply there to subtract this
normal component of the 1st term. In particular if, as suggested in section 15.4,
N® is extended off the hypersurface as an affinely parametrised geodesic vector

field, one simply has K,3 = V,N3.

2. If the surface is given in parametrised form z%(y®), then one can equivalently
think of the extrinsic curvature tensor as (or define the extrinsic curvature tensor

by)
Kup = ESE)V,Ng = ESE) K5 . (18.27)

If one adopts the first of these as the definition of K, then its symmetry follows
from
ElNsy=0 = E/VoNg=—(VoE))Ns . (18.28)

Indeed, using this identity, as well as E$0, = 0, and the explicit expression for

the covariant derivative V, one has

ESE)VaNg = —ES(VoEy )N

5 5 (18.29)
= —(0uE} + T}, ES N5
which is manifestly symmetric in the indices a, b because
2.8
8 0°x
8aEb = W (1830)

and because of the symmetry of the Christoffel symbols.

3. The induced metric hg, and the extrinsic curvature tensor K, (or equivalently
hop and K,g) are also known as the Ist fundamental form and 2nd fundamental

form of X respectively.
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4. Writing the hypersurface orthogonal N, as
Ny = f0uS (18.31)
(so that it is orthogonal to the surfaces of constant S), one has
VaNg = (0af/f)Ng+ (0,085 — Fvaﬁ(%S) . (18.32)

The first term is killed by the tangential projection, and we see that the remaining
second term is manifestly symmetric. In adapted coordinates, i.e. choosing S to

be one of the coordinates, one evidently has 9,935 = 0, and therefore
Ko = —fESE)T 40,8 = —fT7%, . (18.33)

Therefore K, essentially consists of the normal components of the Christoffel
symbol. The minus sign in this equation is due to our choice of sign convention in
the definition of K3 or K., but frequently it is also defined with an additional

minus sign, which then results in K ~ +Ffb.

5. The extrinsic curvature also depends on a choice of orientation convention for the
normal vector (such as “inward pointing” versus “outward pointing” in situations
where this makes sense). When one has several boundary components, some of
them timelike and some of them spacelike, say, each one with its own extrinsic
curvature tensor, sorting out one’s signs in extrinsic geometry provides one with

a practically unlimited source of entertainment and/or frustration.

6. The trace of the extrinsic curvature tensor is identical to the space-time divergence
of the vector field N¢,

K = gaﬁKaﬁ = haﬁKaﬁ = Vo N* . (1834)

In particular if N® is extended off the hypersurface as a geodesic vector field,
K = 0 measures the expansion of this geodesic congruence, as defined in section
12.2.

The sign convention adopted here is such that e.g. K > 0 for the sphere with
its standard metric, with the outward pointing normal vector. This sign agrees
with the sign of the Ricci scalar (and this is one of the reasons for adopting this
convention). The property K = 6 > 0 indicates that the congruence of geodesics

piercing the sphere diverges (rather than converges) in the outgoing direction.

7. In the case of the circle S' C R? of radius L discussed above, the only non-zero
component of K,z is
Kyy =L (18.35)

and the trace of the extrinsic curvature of a circle of radius L is

K= gaﬁKaﬁ = vozA]\[OC|7":L = 1/L . (1836)
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8.

10.

More generally, the trace of the extrinsic curvature of the sphere Sp C R+ of

radius R, with its standard metric
hapdy®dy® = R2dQ2 (18.37)

is
K = 30 @)= = 5 - (18.38)

An elementary property of the extrinsic curvature is that K,g = 0 if the normal

vector happens to also be a Killing vector,
VQNB = —VBNa = Kag =0, (18.39)

because then K,3 would have to be symmetric as well as anti-symmetric. While
this (a Killing vector of constant length, hence also geodesic) is an exceedingly rare
situation, N, only needs to be proportional to a Killing vector for this conclusion
to hold,

Ny, =fK, VQKB + VgKa =0 = Kag =0, (18.40)
because the second term in
VaNs = [Vaks + (Vaf/f)Ns (18.41)

will not contribute to the tangential projection of V,Ng.

Now recall from section 16.4 that a static space-time is a space-time with a hyper-
surface orthogonal timelike Killing vector. Therefore concrete examples of hyper-
surfaces with vanishing extrinsic curvature tensor are provided by the spacelike
hypersurfaces in static space-times orthogonal to the orbits of the timelike Killing

vector.

Another useful property of K,g is that if u® is the tangent vector field to a
congruence of geodesics that are tangent to X, that then the diagonal component

of K,p in the direction of u® is zero,
UV’ =uNy =0 =  Kogu®u® =0 . (18.42)
Indeed, if u*N, = 0 one has u®h,y = u” and thus
Kopu®u? = uuPV o Ny = u*V o0 (uP Ng) — (uVau’)Ng =0 . (18.43)

One also sees that the geodesics need not be affinely parametrised for this to hold;

if one has u®Vau?® ~ u?, one still has Kaguo‘uﬁ = 0.

Roughly speaking this says that geodesics do not “bend” in the ambient space, and

this can be made more precise in the context of the extrinsic geometry of surfaces
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of higher codimension (like curves). In that case (which we will not develop here),
one can define extrinsic curvatures associated with all of the normal directions to
the surface (“K,p takes values in the normal bundle”), and for a curve the geodesic

equation turns out to be the condition that this extrinsic curvature tensor vanishes.

We will briefly return to this issue in the next section.

18.3 EXTRINSIC CURVATURE AND THE NORMAL COMPONENTS OF THE CONNECTION

In section 16.2 we had already seen that the tangential projection of the covariant
derivative of a tangential vector field V%, i.e. V¥N, = 0 or V¢ = ESv?, agrees with

the intrinsic covariant derivative defined by the induced metric hg, i.e.
VW, = (Vo V3)ESE, = Vauy (18.44)

where

VoV =hlhiV, Vs . (18.45)

The extrinsic curvature captures other components of the covariant derivative:

1. For example, if the vector V¢ is not tangent to 3, then one can decompose V3

into a tangent and normal part according to
VP = EPv® 4+ ¢(N'V,)NP . (18.46)
Then there is a 2nd contribution to (18.44), namely

ESE)N Vs = Vaup + ESEV o (e(NV,)Ng)
= Vaup + (NV,)ES BV o Ny (18.47)
= Vavp + e(N'V,)Kgp
2. The extrinsic curvature tensor also enters when one inquires about the normal
component of the simply-projected quantity E$V,V3 (with V3 again assumed to

be tangential, say, VgN # = 0). This normal component is given by the scalar

product with N?, and can be written as
(EXV,V3)NP = —EVPV,Ng = —~K,,V?° (18.48)
so that one has the decomposition
ESVL VP =V El — eKgo"NP (18.49)

Both (18.47) and (18.49) illustrate that the extrinsic curvature tensor is essentially
the same as a Y-tensorial repackaging of the normal components of the connection
(Christoffel symbols I'} ), as already anticipated in (18.33).
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3. Note that (18.48) implies that for a vector field V* tangent to X, V4N, = 0 one
has
KosVoVP  (or Kgv™®) = —(VeV,VA)Ng | (18.50)

and thus in particular
Vv VP =0 = K.pVevi=o0, (18.51)
which is the statement (18.43) already established in the previous section.

4. From (18.49) one can deduce a stronger statement. Namely, contracting with v®

one has
VOVLVE = (0'V, ") B} — eK 0" NP (18.52)

Thus we see that all geodesics on ¥ (with respect to the induced metric hyp) are
also geodesics of the embedding space if and only if K,3 = 0. Such hypersurfaces
are called totally geodesic. In particular, by the comment in the previous section,
made in connection with (18.40), constant time surfaces in static space-times are

examples of such totally geodesic hypersurfaces.

18.4 GAuUss-CopAzzl EQUATIONS

Similar manipulations to those performed above allow one to obtain the so-called Gauss-
Codazzi equations, which express certain components of the space-time curvature tensor

(restricted to X) in terms of the intrinsic and extrinsic curvatures Rag-y(s and K,g (or

Rapeq and Kgp) of the hypersurface X.

We first consider the space-time Riemann tensor with purely spatial components and
its relation to the intrinsic Riemann curvature tensor Ramg (or Rypeq) of the metric hag
(or hgp) on X. For example, if V¢ is tangent to X, then one can define the Riemann

curvature tensor of h,g by
Ve, VIV = R, 5V° (18.53)

where the term ?Q?BV'Y on the left-hand side is the fully projected expression
VaVeV7 = he 1y h), Vo (B 1) VsV©) (18.54)
Analysing this bit by bit, for example the term hg/ hglva/ hg, evaluates to

h W Varhly = —ehd B Vo (Ny N?)
= —h? hf} (Vor Ny )N (18.55)
= —eKogN°
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and this vanishes after anti-symmetrisation in o and 8 because K,z is symmetric.

Another contribution is (by the same calculation as above, and using N*V,, = 0)

he Y (VarhS)hG by VsVe = —eKoy NG VsV,

= +€Ko, VhVsN, (18.56)
= +eKon Kps VO .
Therefore
Rysas = W 03 hy 1) Rysrarpr + e(KyaKps — KypKas) - (18.57)

This result can also be written in terms of Y-tensors as
Raped = ESE] EJESRupys + €(KacKpg — KaaKpe) - (18.58)
It thus expresses the purely tangential components of the space-time curvature tensor

in terms of the intrinsic and and extrinsic curvature tensors of X.

It requires significantly less effort to express the component of the space-time Riemann
tensor with 1 normal component and 3 tangential components in terms of the extrinsic

curvature. Indeed, simply calculating th ] one finds on the nose

VoK — VaKya = h Wy h) (Vo Kgrar — VarKya)
= W W3 1] (V¥ No — ViV Nov) (18.59)
= h3 ) By (—R’,. 5 N5)
or
Rsapy N ES B EY = VKo — ViKae - (18.60)

REMARKS:

1. We could have set up the calculations in such a way that we obtain directly
the Y-tensorial form (18.58) or (18.60) of the results, by starting with V,Vyve,
say, but then we would have had to deal with covariant derivatives of the E& at
intermediate stages of the calculation - the derivation given above appears to be

somewhat simpler in that respect (but this may be a matter of taste).

2. In particular, for a hypersurface embedded into a flat (Euclidean or Minkowski)

space from (18.58) one has the relation

Rapea = E(I(ac[(bd - Kadec) (18.61)

between the intrinsic and extrinsic curvature tensors. This can be directly verified
e.g. for the sphere ™ C R™*! of radius L, for which one has e = +1 and

Rabcd - L_2(gacgbd - gadgbc) 5 Kab - L_lgab . (1862)
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We also see that if the induced metric on such a hypersurface is flat, then nec-
essarily the extrinsic curvature tensor is also zero. This also substantiates the
claim, made in the introduction to this section, section 18.1, that there can be no
embedding of the flat torus 72 into R3, because such an embedding would have

to be both intrinsically and extrinsically flat.

3. Note that the above (purely tangential, or 3 tangential and 1 normal) components
of the Riemann tensor could be expressed in terms of Ryped, Kap and VKyp, i.e.
in terms of the tangential and 1st normal derivatives of the metric. In general the
Riemann tensor depends on all the second derivatives of the metric, in particular
also on the second normal derivatives of the metric. Thus the remaining compo-
nents of the Riemann tensor (with two normal and two tangential directions) are
more complicated and cannot be expressed solely in terms of the intrinsic and ex-
trinsic curvatures of ¥ and their tangential derivatives, and we will not determine

their explicit form here.
4. In particular, the space-time Ricci tensor
Rap = 9" Ryasp = W’ Ryasp + eNVN° R 055 (18.63)

depends explicitly on the components of the Riemann tensor with 2 normal com-

ponents.

This previous remark notwithstanding, certain components of the Ricci tensor and cer-
tain components of the Einstein tensor can be expressed entirely in terms of the intrinsic

and extrinsic curvature tensors of X.

For example, contracting (18.59) with h*Y or g7 (this has the same effect on tangential

tensors), one finds
VOKap — VK% = h§RoyNT & RagEYNP =V Kg — VK¢ | (18.64)

which expresses the mixed normal / tangential components of the space-time Ricci
tensor in terms of the (tangential derivatives of the) extrinsic curvature tensor of X.
Because N“ and E¢ are orthogonal with respect to the space-time metric, one has the

same expression for the mixed components of the Einstein tensor
Gop = Rop — 39asR | (18.65)
namely
GupEONP = VoK — VoK . (18.66)
Moreover, from (18.63) one finds, using the symmetries of the Riemann tensor, that the
Ricci scalar and the normal-normal component of the Ricci tensor can be written as
R =g Rap = h°hP R o055 + 2¢h’ NTN° R, 155

(18.67)
RosNONP = i NTN°R .55 .
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It follows that the normal-normal component of the Einstein tensor has the simple form

GagN*NP = RogN*NP — 19,3 N*NPR
= Rog NN — 1R (18.68)
S
= —3e W°hP R 055

Using (18.57), this can be written as

—ZEGagNaNﬁ = haﬁ/hﬁé(Rag.yg - E(KOWKB(S - KaéKB’Y))

_ 18.69
= R+ e(KopK*® — K?) . (18.69)

Finally, we will also derive a useful expression for the Ricci scalar. First of all, from
(18.67) and (18.69) we have

R=R+ e(KopK* — K?) + 2ch’ NTN°R. 055

_ 18.70
=R+ e(Kap K™ — K?) + 2¢Rog NN . (18.70)

The first two terms in this expression are already of the desired form, depending only
on the intrinsic and extrinsic curvature of X, while the third is not. However, it turns
out that, up to a total derivative, we can trade R,gN“N B for a term depending only
on K,g. Indeed, it is straightforward to establish the identity

Vo(NPVsN® — N*V3NP) = (VoNg) VAN + NPV, VN — (Vo N*) VNP
= RogN°NP + K 3K — K? .
(18.71)
The only minor subtlety is to verify that no normal components of V,Ng contribute to
(VoNg)VPN®, so that one indeed has

(VaNg)VPN® = K s K (18.72)

and this in turn follows from N°V,N, 3 = 0 etc. With the help of this identity we can
eliminate R,gN“N B from (18.70) and write the scalar curvature (now with the opposite

sign for the K2-term) as
R=R+e(K? -~ K*K,p) +2eVo(NPV3N® — N°V4NP) . (18.73)

These relations play an important role in particular in the Hamiltonian and initial value
formulations of the Einstein equations, where the first step is the choice of an initial
spacelike hypersurface 3 and an accompanying 4 — 3+ 1 decomposition of the curvature

tensor and the Einstein equations. This will be discussed in section 21.
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C: DYNAMICS OF THE GRAVITATIONAL FIELD
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19 THE EINSTEIN EQUATIONS

19.1 HEURISTICS

We expect the gravitational field equations to be non-linear second order partial dif-
ferential equations for the metric. If we knew more about the weak field equations of
gravity (which should thus be valid near the origin of an inertial coordinate system) we
could use the Einstein equivalence principle (or the principle of general covariance) to

deduce the equations for strong fields.

However, we do not know a lot about gravity beyond the Newtonian limit of weak time-
independent fields and low velocities, simply because gravity is so ‘weak’. Hence, we
cannot find the gravitational field equations in a completely systematic way and some

guesswork will be required.

Nevertheless we will see that with some very natural assumptions (and the benefit of
hindsight) we will arrive at an essentially unique set of equations. Further theoretical
(and aesthetical) confirmation for these equations will then come from the fact that they
turn out to be the Euler-Lagrange equations of the absolutely simplest action principle

for the metric imaginable.

Recall that, way back, in section 1.1, we had briefly discussed the possibility of a scalar
relativistic theory of gravity described by an equation of the form (1.3)

A¢:47TGNp — D¢:47TGN/) . (19.1)

We had noted there that one way to render this equation (tensorially) consistent is to
think of both the left and the right hand side as (00)-components of some tensor, which

we expressed in (1.6) as
{Some tensor generalising A¢}ap ~ 4rGNTop - (19.2)

While this appeared to be an exotic proposal back in section 1.1, we now understand
that this is exactly what is required, and we have a fairly precise idea of what this tensor
on the left-hand side should be.

Indeed, recall from our discussion of the Newtonian limit of the geodesic equation that

the weak static field produced by a non-relativistic mass density p is

goo = —(1+29) , (19.3)

With the identification
Too=p , (19.4)

the Newtonian field equation A¢ = 47G xp can now also be written as

Ag(]o = —87TGNT00 . (19.5)
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This suggests that the weak-field equations for a general energy-momentum tensor take

the form
E.3 = {Some tensor generalising (—Agoo)}tag = 8TGNTas , (19.6)

where E,3 is constructed from the metric and its first and second derivatives.

By the Einstein equivalence principle, if this equation is valid for weak fields (i.e. near
the origin of an inertial coordinate system) then also the equations which govern gravi-
tational fields of arbitrary strength must be of this form, with E,, a tensor constructed

from the metric and its first and second derivatives.

Another way of anticipating what form the field equations for gravity may take is via
an analogy, a comparison of the geodesic deviation equations in Newton’s theory and
in General Relativity. Recall that in Newton’s theory we have

o ; i 5. d

ﬁdaz = —K'o02

K, = 000 , (19.7)

whereas in General Relativity we have

(D;)%*6zt = —KHox¥
K% = RA, i . (19.8)

Now Newton’s field equation is
TrK = A¢p =4nGnp (19.9)
while in General Relativity we have
Tr K = Ry a"'a" . (19.10)

This suggests that somehow in the gravitational field equations of General Relativity, A¢
should be replaced by the Ricci tensor R,,. Note that, at least roughly, the tensorial
structure of this identification is compatible with the relation between ¢ and ggy in
the Newtonian limit, the relation between p and the 0-0 component Tyg of the energy

momentum tensor, and the fact that for small velocities R, ##&" ~ Rgo.

We will now turn to a somewhat more precise argument along these lines which will

enable us to determine E,, .

19.2 MORE SYSTEMATIC APPROACH
Let us take stock of what we know about E,,, .

1. E,, is a tensor
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2. E,, has the dimensions of a second derivative. If we assume that no new dimen-
sionful constants enter in E,, then it has to be a linear combination of terms
which are either linear in second derivatives of the metric or quadratic in the first
derivatives of the metric. (Later on, we will see that there is the possibility of
a zero derivative term, but this requires a new dimensionful constant, the cos-
mological constant A. Higher derivative terms or higher non-linearities could in

principle appear but would only be relevant at very high energies.)
3. k), is symmetric since T}, is symmetric.
4. Since T}, is covariantly conserved, the same has to be true for £,,,

V" =0= V,E" =0 . (19.11)

5. Finally, for a weak static gravitational field and non-relativistic matter we should
find
Eoo = —Agoo - (19.12)

Now it turns out that these conditions (1)-(5) determine E,,, uniquely! First of all, (1)

and (2) tell us that E,, has to be a linear combination
Eu =aRu, +bguR (19.13)

where R, is the Ricci tensor and R the Ricci scalar. Then condition (3) is automatically
satisfied.
To implement (4), we rewrite the above as a linear combination of the Einstein tensor
(8.97) and g R,

E, = aGpy + cguwR = a(Ry — 29,0 R) + cgu R (19.14)
and recall the contracted Bianchi identity (8.95,8.96),

VEGL, =0 . (19.15)

It follows that (4) is satisfied iff ¢V, R = c0, R = 0. We therefore have to require either
V,R =0 or ¢ = 0. That the first possibility is ruled out (inconsistent) can be seen by
taking the trace of (19.6),

B" = (4c — a)R = 8nGNT", . (19.16)

Thus, R is proportional to T, and since this quantity need certainly not be constant
for a general matter configuration, we are led to the conclusion that ¢ = 0. Thus we
find

E =aG,, . (19.17)

We can now use condition (5) to determine the constant a.
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19.3 NEWTONIAN WEAK-FIELD LiMIT

By the above considerations we have determined the field equations to be of the form
aG = 8tGNT,, (19.18)

with a some, as yet undetermined, constant. We will now consider the Newtonian
weak-field limit of this equation. We need to find that Gyg is proportional to Aggy and
we can then use the condition (5) to fix the value of a. The following manipulations
are somewhat analogous to those we performed in section 3.3 when considering the
Newtonian limit of the geodesic equation. The main difference is that now we are
dealing with second derivatives of the metric rather than with just its first derivatives

entering in the geodesic equation.

As in section 3.3, let us begin by stating the assumptions that we make when considering

the Newtonian limit:

1. Weak Fields

We take this to mean that there exists a coordinate system x® = (2%, %) in which

the metric takes the form
Jap = Nop + haﬁ (19.19)

with 7,4 the standard form of the Minkowski metric and hqg and its derivatives
small. In practice this means that in the following we will neglect terms that are

quadratic or of higher order in h,g.

2. Tine-independent Fields

We assume that in these coordinates the gravitational field is time-independent,
i.e. that one has
8oga5 = aohaﬁ =0 . (19.20)

3. Non-relativistic Matter Source

This replaces the condition that particles move non-relativistically (with coor-
dinate speeds v < ¢), and we take this to mean that the only non-negligible
contribution to the energy-momentum tensor 7i,3 comes from the energy density
Too = p,

Too=p#0 , T,3=0 otherwise . (19.21)

So we need to determine
G(]o = Ro(] — %QOOR . (19.22)

Since the scalar curvature is at least linear in h,g, to leading order in h,g we can replace
goo — Moo = —1 to obtain
Goo = Roo + 3R , (19.23)
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where here and in the remainder of this calculation equality signs signify equalities to
leading order in h,g.

To bootstrap the calculation of Gy, we start from
T;;=0 = Gy=0 & Ry=3gR, (19.24)
and by the same reasoning as above we can write this as
Rij = 364 R . (19.25)

Therefore, for the scalar curvature we find

R=¢*°Rap = N Rag = —Roo + 8" Rij = —Roo + 3R, (19.26)
or
R=2Ry . (19.27)
Thus
Goo = Roo + 3R = 2Ry (19.28)

and it just remains to calculate this one component of the Ricci tensor. In the weak
field limit, R is given by
Roo = RE o = 0% Rigro - (19.29)

Moreover, in this limit only the linear (second derivative) part of R, 5, will contribute,
not the terms quadratic in first derivatives. Thus we can use the expression (8.13) for
the curvature tensor. Additionally, in the static case we can ignore all time derivatives.
Then only one term (the third) of (8.13) contributes and we find

Rioko = —3900ik (19.30)

and therefore
ROO = —%Aggo . (1931)

Putting everything together, we get

G()O = 2R00 = —Agoo . (19.32)

Thus we obtain the correct functional form of Eyp and comparison with condition (5)
determines a = +1 and therefore E,3 = G,g. See also section 23.3 for a somewhat
more streamlined and covariant derivation of this result from the linearised Einstein

equations.
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19.4 EINSTEIN EQUATIONS

We have finally arrived at the Einstein equations for the gravitational field (metric) of

a matter-energy configuration described by the energy-momentum tensor 7j,,. It is

Ry — 19w R=81Gn Ty (19.33)

These are the equations that replace the Newtonian (Poisson) equation for the gravita-

tional potential.
Another common way of writing the Einstein equations is obtained by taking the trace
of (19.33), which yields
R—-2R=8rGN 1", =8rGN T (19.34)
and substituting this back into (19.33) to obtain
Ry, =87GN (T — 29,0 T) . (19.35)
In particular, for the vacuum, 7}, = 0, the Einstein equations are
Tw=0 = R, =0, (19.36)
and this condition is equivalent to the vanishing of the Einstein tensor,
Gw=0 & R, =0. (19.37)

A space-time metric satisfying this equation is, for obvious reasons, said to be Ricci flat.

A priori, the Einstein equations constitute 10 coupled non-linear (actually quasi-linear,
since they are linear in second derivatives) second order partial differential equations
for the metric g, (z), which appears both in the Einstein tensor on the left-hand side
of these equations as well as usually also on the right-hand side in the matter energy-
momentum tensor (we will see below, in section 19.7, that these 10 equations are linked
by 4 differential identities, the contracted Bianchi identities).

This is a tremendously complicated set of equations, and trying to learn and say some-

thing about general properties of solutions to these equations is very challenging.?

33The current state of knowledge and understanding of the mathematical structure of the Einstein
equations, in particular regarding the properties of the Cauchy (initial value) problem for the Einstein
equations, is described in detail in the awe-inspiring ceuvre General Relativity and the Einstein Equations
by Y. Choquet-Bruhat (warning: not for the faint of heart). A readable historical introduction to the
Cauchy problem for the Einstein equations is given by her in Y. Choquet-Bruhat, Beginnings of the
Cauchy problem, arXiv:1410.3490 [gr-qc].
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Even the vacuum FKinstein equations still constitute a complicated set of non-linear
coupled partial differential equations whose general solution is not, and probably will
never be, known. Usually one makes some assumptions, in particular regarding the
symmetries of the metric, that reduce the number of independent variables from 10
functions gog(x) of 4 variables to a smaller number of functions depending on a smaller
number of variables, and which then simplify the equations to the extent that they can
be analysed explicitly, either analytically, or at least qualitatively or numerically. How
to do this in practice (in the simplest non-trivial situations), will be explained in detail

later on in these notes.

REMARKS:

1. With ¢ not set equal to one, and with the convention that Tyg is normalised such
that it gives the energy-density rather than the mass-density, one finds that the
factor 87 Gy on the right hand side should be replaced by

81G N
1

8GN — (19.38)

c
A note on dimensions: Newton’s constant has dimensions (M mass, L length, T
time) [Gn] = M7IL3T~2 5o that

[GN]=MTI3T2 = [Gn/c]=L"'M7IT2 . (19.39)
Moreover, an energy density p = uc?, i a mass density, has dimensions
[p] = [uc?] = ML3LAT 2 = ML™IT72 | (19.40)

Thus
[pGn /') =17 = [Ru)] , (19.41)

as it should be. Frequently, an alternative (and equally reasonable) convention
is used in which Ty is a mass density, so that then Ty = ¢*Tyg is the energy
density. In that case, the factor on the right-hand side of the Einstein equations
is 871G /2.

2. The streamlined “derivation” of the Einstein equations given here may give the
misleading impression that also for Einstein this was a straighforward affair. Noth-
ing could be further from the truth. Not only do we have the benefit of hindsight.
We also have a much more systematic and advanced understanding of Rieman-
nian geometry and tensor calculus than was available to Einstein at the time.
This concerns in particular things like the contracted Bianchi identities and their
importance for energy-momentum (non-)conservation and for general covariance

(to be briefly discussed in section 19.7 below).**

34For an illuminating brief account of the torturous and convoluted route and crucial final stages
that led Einstein (and Grossmann) to the correct field equations, see N. Straumann, Einstein’s ‘Zirich
Notebook’ and his Journey to General Relativity, arXiv:1106.0900v1 [physics.hist-ph].
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3. As an aside, note that the trace (19.34) of the Einstein equations
R=-81GNT , (19.42)

is a scalar generally covariant differential equation for the metric (but it is of course
far from sufficient to determine 10 independent components of the metric up to
coordinate transformations). If one assumes, however, that the space-time metric
can be parametrised by a single scalar v, say (somewhat like in the Newtonian
limit), e.g. by stipulating that it only differs from the Minkowski metric by a

conformal factor, as in
Juv = 1/}277;w ) (19.43)

then a scalar equation like (19.42) (the numerical constant needs to be adjusted
appropriately in order to obtain the correct Newtonian limit) provides a differential
equation for ¢ and thus a generally covariant scalar theory of gravity. A theory
of this kind, a geometrisation and covariantisation of previous scalar theories of
gravity, was proposed by Einstein and Fokker in 1913/14, some two years before
Einstein arrived at the final (tensorial) form of the field equations. In this theory,
there is no coupling of gravity and Maxwell theory (which has a traceless energy-
momentum tensor), and null lines are identical to null lines in Minkowski space
(because of conformal flatness), so for either of these reasons there is no bending

of lightrays by the gravitational field in such a theory.

4. As we saw before, in two and three dimensions, vanishing of the Ricci tensor
implies the vanishing of the Riemann tensor. Thus in these cases, space-times are
necessarily flat away from where there is matter, i.e. at points at which T}, (z) = 0.

Thus there are no true gravitational fields and no gravitational waves.

In four dimensions, however, the situation is completely different. As we saw,
the Ricci tensor has 10 independent components whereas the Riemann tensor has
20. Thus there are 10 components of the Riemann tensor which can curve the
vacuum, as e.g. in the field around the sun, and a lot of interesting physics is

already contained in the vacuum Einstein equations.

5. If for whatever reason one is interested in studying solutions to the matter +
Einstein equations in dimensions other than D = 3 + 1, this is straightforward

and there are just a a few small points to pay attention to:

e The Einstein tensor, i.e. the (unique) rank-2 tensor that can be constructed
from the Riemann curvature tensor which has vanishing covariant divergence,

has the same form in any dimension, G, = R, — (1/2)g,u R.

o Likewise, what will appear on the right-hand side of the equations is the

appropriate generally covariant energy-momentum tensor.
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e However, in the higher-dimensional analogue of the Finstein equations the
constant of proportionality between the Einstein and energy-momentum ten-
sors should not be called 87G . After all, this factor was determined from
the Newtonian limit of the (3 + 1)-dimensional Einstein equations where e.g.
a factor 47 has, via the Poisson equation for a point mass, its origin in the
fact that the area of a unit 2-sphere is 47. Thus we will just call it x (which
is then related in a dimension-dependent way to however one wants to nor-
malise the D-dimensional gravitational coupling constant). Thus precisely

as in 4 dimensions one can write the Einstein equations as
1
G =Ry — 3 guwR =T, . (19.44)

e If one wants to use the analogue of (19.35), one should pay attention to the
fact that it is less symmetric with respect to (19.44) than its 4-dimensional
counterpart since in D = n + 1 dimensions it takes the form

1
R“y = K’(T;U'V — m g:U'VT)S\) . (1945)

19.5 CoSMOLOGICAL CONSTANT

As mentioned before, there is one more term that can be added to the Einstein equations
provided that one relaxes the condition (2) that only terms quadratic in derivatives
should appear. This term takes the form Ag,,. This is compatible with the condition
(4) (the conservation law) provided that A is a constant, the cosmological constant. Tt

is a dimensionful parameter with dimension [A] = L=2 one over length squared.
The Einstein equations with a cosmological constant now read
R, — %g“,,R + Agu = 8nGNT), . (19.46)

To be compatible with condition (5) ((1), (3) and (4) are obviously satisfied), A has to

be quite small (and observationally it is very small indeed).

REMARKS:
1. The vacuum Einstein equations with a cosmological constant read
R, — %QuuR = —Aguu . (19.47)
Taking traces, this implies (and is equivalent to)
Ry = Aguw (19.48)

which is the counterpart of the Ricci-flatness condition for vacuum solutions of the
Einstein equations without a cosmological constant. In general, solutions to the
equation R, = cg,, for some constant ¢ (and either Riemannian or Lorentzian

signature) are known as Einstein manifolds in the mathematics literature.
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. A gives a contribution to the energy-momentum tensor that, in Minkowski space,
would be proportional to the Minkowski metric and Lorentz-invariant, thus com-
patible with the symmetries of the vacuum, and A is often said to play the role
of a vacuum energy density (more precisely vacuum energy should perhaps be
considered as one possible contribution to the cosmological constant - see section

38.4 for further discussion of this issue).

. Comparing with the energy-momentum tensor of, say, a perfect fluid (see (7.70)

in section 7.5 or section 35.2),

T = (p+ p)upuw + PG (19.49)

we see that A corresponds to the energy density and pressure values

A
= —pA = 19.50
PA PA 7Gx ( )
and to an energy-momentum tensor
T,Li\u = —PAGuv - (19.51)

Thus, depending on the sign of A either the energy density or the pressure is
negative,
A<O = pa<0 , A>0 = pa<0. (19.52)

. The cosmological constant was originally introduced by Einstein because he was
unable to find static cosmological solutions without it. We will review this Finstein
Static Universe in section 37.2. After Hubble’s discovery of the expansion of the
universe, a static universe fell out of fashion and the cosmological constant was

no longer required.

. However, things are not as simple as that. Just because it is not required does not
mean that it is not there. In fact, one of the biggest puzzles in theoretical physics
today is why the cosmological constant is so small. According to standard quan-
tum field theory lore, the vacuum energy density should be many many orders of
magnitude larger than astrophysical observations allow. Now usually in quantum
field theory one does not worry too much about the vacuum energy as one can
normal-order it away. However, as we know, gravity is unlike any other theory in
that not only energy-differences but absolute energies matter (and cannot just be

dropped).

The question why the observed cosmological constant is so small (and recent
astrophysical observations appear to favour a tiny non-zero value) is one aspect of
what is known as the Cosmological Constant Problem. See section 38.4 for a brief

discussion of this profound issue and some references.

. We will consider the possibility that A # 0 only in the sections on cosmology (in
all other applications, A can indeed be neglected).
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19.6 WEYL TENSOR AND THE PROPAGATION OF GRAVITY

The Einstein equations
G = 8GN T}, (19.53)

can, taken at face value, be regarded as ten algebraic equations for certain traces of
the Riemann tensor R,,,s. Rups has, as we know, twenty independent components,
so how are the other ten determined? The obvious answer, already given above, is of
course that we solve the Einstein equations for the metric g, and then calculate the

Riemann curvature tensor of that metric.

However, this answer leaves something to be desired because it does not really provide
an explanation of how the information about these other components is encoded in the
Einstein equations. It is interesting to understand this because it is precisely these
components of the Riemann tensor wich represent the effects of gravity in vacuum, i.e.

where T}, = 0, like tidal forces and gravitational waves.

The more insightful answer is that the information is encoded in the Bianchi identities
which serve as propagation equations for the trace-free parts of the Riemann tensor

away from the regions where 7}, # 0.

Let us see how this works. Recall from section 11.4 the decomposition of the Riemann
tensor into the traceless Weyl tensor and the trace parts, the Ricci tensor and Ricci
scalar,

C;wpcr = Ruupo’

1
- m(gupRW + Ryupgvo — GvpRue — Rupuo)
1

In the vacuum, R, = 0, and therefore at points where the energy-momentum tensor

vanishes one has

Tw(x) =0 = Rups(r) =Cups(z) . (19.54)

As anticipated, the Weyl tensor thus encodes the information about the gravitational

field in vacuum.

The question thus is how €}, is determined everywhere in space-time by an energy-
momentum tensor which may be localised in some finite region of space-time. To address

that question we make use of the relation (11.88) derived in section 11.4,
VECpe = (D —3) (VpPye —VoP,,) . (19.55)

Here P, is the Schouten tensor (11.81),

1 1
Pl“’ = m <R;U'V — mguyR> . (1956)
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Using the D-dimensional Einstein equations (19.44), (19.45) to replace the Ricci ten-
sor and Ricci scalar by the energy-momentum tensor, one now obtains a propagation

equation for the Weyl tensor of the form
VECpo = Jups (19.57)

where J,,, depends only on the energy-momentum tensor and its derivatives,

D -3 1
Jopr =k s |ViTvr = Volup = 5 VT g00 VJT/)\\g,,pH . (19.58)
This is the equation which determines the Weyl tensor components in terms of the

sources. It is reminiscent of the Maxwell equation
VFF, =—J, (19.59)

and provides an intuitive (as well as, if required, detailed analytical) understanding of

the propagation properties of the gravitational field.

19.7 GENERAL COVARIANCE AND SIGNIFICANCE OF THE BIANCHI IDENTITIES

Let us try to understand in a bit more detail, but necessarily at a very superficial and

unsophisticated level, the structure of the Einstein equations.

As a first step, let us do something that we should have perhaps done rightaway, namely

count the number of dynamical variables and the number of equations we have:

e the dynamical variables are the components g,3(x) of the metric, i.e. 10 functions

of 4 variables.

e the Ricci or Einstein tensor is symmetric; therefore the Einstein equations consi-
tute a set of ten algebraically independent second order differential equations for

the metric gog.

At first, this “ten 2nd order equations for ten unknowns” looks exactly right: specifying
the values of the metric and its first time-derivative as initial values on some (constant
“time”) hypersurface, say, this should then uniquely determine the ten components of

the metric in some region to the future of that hypersurface.

At second sight, however, this cannot possibly be right and the end of the story and, if
true, would actually be a major disaster. After all, the Einstein equations are generally
covariant. Thus, given one metric that is a solution to the Einstein equations, one should
be able to perform an arbitrary coordinate transformation and still have a (physically
equivalent) solution to the Einstein equations. That means that the (ten?) Einstein

equations should not determine the ten components of the metric uniquely but only
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up to arbitrary coordinate transformations, i.e. up to four arbitrary functions of four
variables.

Phrased in terms of initial values, one should be able to perform arbitrary time-dependent
coordinate transformations on a solution, but if these coordinate transformations hap-
pen to be the identity transformation on the initial hypersurface, then these solutions

related by (future) coordinate transformations should arise from the same initial data.

Either way we should expect only six independent generally covariant equations for the
metric, determining the 10 components of the metric up to 4 arbitary functions. How
does that happen? Here we should recall the contracted Bianchi identities. They tell
us that

VGop =0 . (19.60)
We see that, even though the ten Einstein equations are algebraically independent, there

are actually four differential relations among them, so this is just right.

It is no coincidence, by the way, that the Bianchi identities come to the rescue of
general covariance. We will see in section 20.6 that the Bianchi identities can in fact be
understood as a consequence of the general covariance of the Einstein equations (and

of the corresponding action principle).

The general covariance of the Einstein equations is reflected in the fact that only six
of the ten equations are truly dynamical 2nd-order differential equations while four of
them constrain the initial values of the fields on some spacelike hypersurface. Indeed, in

terms of some choice (%) = (¢, z*) of time and space coordinates, the Bianchi identities
VoG = 0,G +T%,G7 + T8 G =0 (19.61)

can be written as
BGY = —,G" — 1%, GPT T8, G . (19.62)

Since the 3 terms on the right-hand side contain at most 2nd time derivatives of the
metric, the 4 components Gz of the Einstein tensor can contain at most 1lst time
derivatives of the metric. Thinking of initial data as being given by the metric and
its 1st time-derivative on some initial hypersurface, this means that the components
Gis = 0 of the Einstein equations (or their counterpart in the presence of matter)
impose constraints on these initial data and do not provide evolution equations for
these initial data.

The perhaps more familiar counterpart of these constraints in the case of Maxwell theory
is the Gauss Law constraint V.E = 0, which arises as the O-component of the Maxwell
equations 9, F* = 0,

O F° = 9 F" = VE=0 , (19.63)

and which also involves at most 1st time-derivatives of the dynamical field (the gauge
field), and thus constitutes a constraint on the initial conditions rather than a true

evolution equation.
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In this case, the obvious (“contracted Bianchi”) identity
DO F? =0 <  9y(;FP) = —0,(0,FF) (19.64)

implies

1. that the 4 Maxwell equations are not independent (as required by gauge invariance
as they should only determine the 4 components A, of the gauge field up to gauge
transformations) and

2. that the Gauss Law contraint equation is “propagated”, i.e. that by virtue of the

true equations of motion it will hold at all times if it holds initially:
(0aF )0 =0 = (Op(aF™))co =0 = (9p(8;F°))=o =0 , (19.65)
and likewise for the higer t-derivatives,

(000aF®)i=0 =0 = (0k00(0aF™))i=0 =0 = (F5(0iF"))i=0 =0,
(19.66)
etc. Thus if the true dynamical equations are satisfied at all times, the constraints
will be satisfied at all times provided that they are satisfied initially.

Analogously, for the Einstein equations the contracted Bianchi identity in the form
(19.62) implies not only 4 relations among the 10 field equations (as required by general
covariance) but also that the constraints of general relativity are again “propagated” in
this sense. One simple way to see this (or that this is plausible, at least - in order to
prove a theorem one would need te be more precise about the initial value formulation
and make sure that it leads to a well-defined time evolution etc.) is to note that by
(19.62) G =0 at t =ty (thus also 9,G*? =0 at t = t;) implies

GPlicty =0 = (0,GP)]=t, =0 (19.67)

(and likewise for higher t-derivatives).

We will discuss this and related issues in some more detail from a slightly different

(Hamiltonian) perspective in section 21.
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20 EINSTEIN EQUATIONS FROM AN ACTION PRINCIPLE

20.1 EINSTEIN-HILBERT ACTION

To increase our confidence that the Einstein equations we have derived above are in fact
reasonable and almost certainly correct, we can adopt a more modern point of view.
We can ask if the Einstein equations follow from an action principle or, alternatively,

what would be a natural action principle for the metric.

After all, for example in the construction of the Standard Model, one also does not start
with the equations of motion but one writes down the simplest possible Lagrangian with

the desired field content and symmetries.

We will start with the gravitational part, i.e. the Einstein tensor G,g of the Einstein

equations, and deal with the matter part, the energy-momentum tensor 7,4, later.

By general covariance, an action for the metric g,g will have to take the form

S = /\/§d4x ®(gap) (20.1)

where ® is a scalar constructed from the metric. So what is ® going to be? Clearly,
the simplest choice is the Ricci scalar R, and this is also the unique choice if one is
looking for a scalar constructed from not higher than second derivatives of the metric.

Therefore we postulate the beautifully simple and elegant action

SeH|9as] = /\/g_]d4$ R (20.2)

known as the Einstein-Hilbert action. It was presented by Hilbert practically on the
same day that Einstein presented his final form (19.33) of the gravitational field equa-
tions. Discussions regarding who did what first and who deserves credit for what have
been a favourite occupation of historians of science ever since. However, Hilbert’s work
would certainly not have been possible without Einstein’s realisation that gravity should
be regarded not as a force but as a property of space-time and his physical insight that
Riemannian geometry and tensor analysis provide the correct framework for embodying
the equivalence principle. Regarding the action principle for general relativity, in his

superb scientific biography of Einstein, A. Pais says

Hilbert was not the first to apply this principle to gravitation. Lorentz had
done it before him. So had Einstein, a few weeks earlier. Hilbert was the

first, however, to state this principle correctly.*”

35 A. Pais, Subtle is the Lord (chapter 14.d, which also contains a detailed account of the interaction
between Einstein and Hilbert in the crucial November 1915 period).

380



We will now prove that the Euler-Lagrange equations following from the Einstein-Hilbert
Lagrangian indeed give rise to the Einstein tensor and the vacuum FEinstein equations.
It is truly remarkable, that such a simple Lagrangian is capable of explaining practically

all known gravitational, astrophysical and cosmological phenomena.
Before turning to a proof of this statement, I need to make one preliminary remark:

In this discussion we will at first ignore total derivative (or boundary) terms that one
picks up from integration by parts of the variations and concentrate on the bulk Euler-
Lagrange equations of motion. In standard variational problems one usually justifies
this by appealing to the fact that one can e.g. choose the variations of the fields to
vanish on the boundary and that therefore such boundary terms are zero. In the case
at hand, things are a bit more complicated since the boundary terms that one picks up
in the process of performing the variations turns out to depend both on the variation
of the field (i.e. the metric) on the boundary and on its normal derivative, and it is
not consistent to require both to be zero (i.e. to impose both Dirichlet and Neumann
boundary conditions). This whole issue is interesting in its own right and warrants a
separate discussion, and therefore we will deal with it afterwards, in sections 20.4 and
20.5.

Returning to the Einstein-Hilbert action, we now need to determine its behaviour under
a variation of the metric. Since the Ricci scalar is R = g®? R, it turns out to be more
convenient to consider variations 6¢®° of the inverse metric instead of 0gap- This is of

course equivalent, the two variations being related by

5(9°%g5y) = 0(0%) =0 = 5g* = —g*(3g,5)9"" . (20.3)

Thus, as a first step we write
6Spm = 6 / Vadiz ¢®P Ryp
= [t (V)" R + V(66" s + V38" 3Res) (200
Now we make use of the identity (5.75)

0G = 33/99°%890p = —31/990509" . (20.5)

to deduce
5SEH = /\/§d4$ [(_%QQBR + Raﬁ)égaﬁ + gaﬁéRaﬁ]
= [ Vit (Rus — bausmiig® + [ Vo' 5Ras . (206)

The first term all by itself would already give the Einstein tensor. Thus we need to show

that the second term is a total derivative. I do not know of any particularly elegant
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argument to establish this (in a coordinate basis - written in terms of differential forms
this would be completely obvious), so this will require a little bit of work, but it is not
difficult.

Postponing the proof of this statement to the next section 20.2, we have established
that (ignoring boundary terms) the variation of the Einstein-Hilbert action gives the

gravitational part (left hand side) of the Einstein equations,

0SEH[9as] = 5/\/g_]d433 R = /\/§d4$ Gag(sgaﬁ —I—j{ . (20.7)

REMARKS:

1. If one wants to include the cosmological constant A, then the action gets modified
to

SpHA = /\/gd% (R—2A) . (20.8)

Indeed, the only effect of including A is to replace R — R — 2A in the Einstein

equations, so that
Gap = Rop — %QQBR — Rapg — %gag(R —2A) = Gag + Agag , (20.9)
which gives rise to the modified Einstein equation (19.46).

2. Of course, once one is working at the level of the action, it is easy to come up

with covariant generalisations of the Einstein-Hilbert action, such as
S = / Vad'z (R+ c1R* + caRap R + c3Rap,5 R + c4,ROR+...) , (20.10)

with dimensionful coefficients ¢, but these invariably involve higher-derivative
terms and/or higher non-linearities and are therefore irrelevant for low-energy
physics and thus the world we live in. Such terms could be relevant for the early
universe, however, and are also typically predicted by quantum theories of gravity
like string theory.

3. A particular class of such higher-order actions has attracted some attention. As
already briefly mentioned at the end of section 8.8, in D > 4 space-time dimensions
there are other candidate tensors that could replace the Einstein tensor, provided
that one is willing to give up linearity of the 2nd derivative terms of the metric.
These tensors can be obtained from a variational principle involving very special
linear combinations of higher order terms in the action, e.g. the Gauss-Bonnet
term

Lgp = R*P°R,p.5 — 4R*PRop + R? . (20.11)

In D = 4 this term is (locally) a total derivative, and thus does not contribute to

the equations of motion. It is non-trivial in D > 4, however, but nevertheless (a
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priori totally non-obviously) leads to equations of motion that are no higher than

2nd order in derivatives.>°

20.2 APPENDIX: A FORMULA FOR THE VARIATION OF THE RIccl TENSOR

The purpose of this technical appendix to the previous section is to derive a formula
for the metric variation of the Ricci tensor which shows that indeed g*” 0R,p is a total

derivative.
First of all, we need the explicit expression for the Ricci tensor in terms of the Christoffel
symbols, which can be obtained by contraction of (8.5),

Ry = 0\, — 0,1\ + T3, I, —T%,T7% . (20.12)

Now we need to calculate the variation of R,,,. We will not require the explicit expression
in terms of the variations of the metric, but only in terms of the variations 6I' | induced

by the variations of the metric. This simplifies things considerably.

Obviously, 0 R, will then be a sum of six terms,

ORyu = 0x0T7, — 0,617\ + 0T, T, + T3 0T%,, — 6%, T%  —T7,,6T% . (20.13)

Now the crucial observation is that (51“2)\ is a tensor. This follows from the arguments
given in section 5.4, but I will repeat it here in the present context. Of course, we know
that the Christoffel symbols themselves are not tensors, because of the inhomogeneous
(second derivative) term appearing in the transformation rule under coordinate trans-
formations, but this term is independent of the metric. Thus the metric variation of the

Christoffel symbols indeed transforms as a tensor.

This can also be confirmed by explicit calculation. Just for the record, I will give an
expression for (H‘“V)\ which is easy to remember as it takes exactly the same form as
the definition of the Christoffel symbol, only with the metric replaced by the metric

variation and the partial derivatives by covariant derivatives, i.e.
0T\ = 39" (Vudgor + Vadgo — Vi) - (20.14)

It turns out, none too surprisingly, that Rz, can be written rather compactly in terms

of covariant derivatives of 0T" |, namely as
SRy = VAT, — V617, . (20.15)

Thus one simply needs to replace the partial derivatives in (20.13) by covariant deriva-

tives and drop the other terms that involve the undifferentiated Christoffel symbols.

36For a review of these so-called Lanczos-Lovelock models, see e.g. T. Padmanabhan, D. Kothawala,

Lanczos-Lovelock models of gravity, arXiv:1302.2151 [gr-qc].
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In fact, this could not have been otherwise as (20.13) depends on the partial derivatives
of the dI" but must at the same time be tensorial. The expression (20.15) is the unique
possibility that fulfills these requirements. If you don’t trust this argument (which
essentially amounts to working at the origin of an inertial coordinate system where
partial = covariant derivatives), you can also check this in detail (and thus perhaps in

this way learn to trust and appreciate the quick argument):

As a first check on (20.15), note that the first term on the right hand side is manifestly
symmetric and that the second term is also symmetric because of (5.49) and (6.70). To
establish (20.15), one simply has to use the definition of the covariant derivative. The

first term is

Vadl?, = 0x017, + 14,01, — T 617, — T o1 (20.16)

pr

which takes care of the first, fourth, fifth and sixth terms of (20.13). The remaining
terms are
— 0,01\ + 6T 1%, = =V, 01", | (20.17)

which establishes (20.15).
What we really need is the contraction g"”0R,,,, which we can now write as
9" Ry = VA(g"017,) — V., (g"6T,,)
ST Y (20.18)
=V (9013, — g1, )

This establishes the claim that this term is a total derivative and hence gives rise to
a boundary term in the variation of the Einstein-Hilbert action, a boundary term that

does, however, require further discussion - see sections 20.4 and 20.5 below.

Using the explicit expression for 511’; ) given above, we see that we can also write (20.18)

rather neatly and explicitly as
g""oR,, = (VIVY — ¢ )ég,
= (9"9"" — 9" 9*")V .V, 0gap (20.19)
=V (69" — 9™6°7) V6905

This result will turn out to be useful on a couple of occasions later on in these notes,
e.g. for the discussion of Noether currents associated to general covariance in section
20.6 and for the derivation of the energy-momentum tensor of a non-minimally coupled
scalar field in section 22.3.

One can also use the identity (20.19) to rather painlessly determine the metric vari-
ation of some more complicated Lagrangians of the type (20.10). Consider e.g. the
class of Lagrangians known as “F(R) Lagrangians” where the Lagrangian is (none too

surprisingly) some function F(R) of the scalar curvature R,
S = / Vgd*z F(R) (20.20)
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(for no particularly compelling reason, at least as far as I can see (“it can be done” is
not a compelling reason ...), a lot of work has been dedicated to such Lagrangians in

the last ten years, as a quick look at the arXiv will reveal).

The metric variation of this action is evidently
68 = / Vadtz /g <—%guyF(R)5g‘“’ + F’(R)5R> . (20.21)
Using (20.19) in the form
0R = R,,,69"" — (V,Vy, — guD)dgh” | (20.22)

and assuming there are no (or ignoring) boundary terms, so that we can integrate by

parts the differential operator acting on dg*” and let it act on F’(R) instead, one finds

58 = /\/g <—%guyF(R) + F'(R)Ry — (V,V, — gWD)F/(R)> gt . (20.23)

From this one can immediately read off the vacuum field equations.

One evident consequence of this is that for non-pathological choices of F/(R), a solution
of the vacuum Einstein equations (R, = 0, R = 0, such as the Schwarzschild solution)
will continue to be a solution of this F'(R)-gravity theory, so that such proposed modi-
fications of the Finstein-Hilbert action do not immediately run afoul of precision solar

system tests of general relativity.

20.3 MATTER ACTION AND THE COVARIANT ENERGY-MOMENTUM TENSOR

In order to obtain the non-vacuum Einstein equations, we need to decide what the matter
Lagrangian should be. Now there is an obvious choice for this. If we have matter, then
in addition to the Finstein equations we also want the equations of motion for the matter
fields. Therefore we should add to the Einstein-Hilbert action the standard minimally

coupled matter action

SM[gby gaﬁ] = /\/§d4l‘ LM(¢($), 8)\(15(33), oo ?guu(x)v a)\g;w($)7 .o ) ) (20'24)

¢ representing any kind of (scalar, vector, tensor, ...) matter field, obtained by suitable
covariantisation of the corresponding matter action in Minkowski space via the principle
of minimal coupling (section 5). Thus e.g. the matter action for a Klein-Gordon field
would be (6.11),

Sulo.gup) = [ Vid's [~19"0u0050 — me?] | (2025

and that for Maxwell theory would be (6.50),
S[Aa,gap] = -1 / Vadtz ¢"* " F, Fy, (20.26)
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Of course, the variation of the matter action with respect to the matter fields will
give rise to the covariant equations of motion of the matter fields. If we now want
to derive the coupled gravity-matter equations from a variational principle, then the
matter contribution to the gravitational field equations (i.e. the source terms for the
gravitational field) will necessarily be given by the metric variation of the matter action.
As already discussed in detail in section 7.6, we may as well simply define the covariant

energy-momentum tensor to be the source of the gravitational field equations (7.105),

20
V9 ogH

SM[¢7 gaﬁ] )

(20.27)
In particular, we had already seen in section 7.6 that this definition reproduces the

5metriCSM[¢agaB] = _% / \/§d4x Tuuagwj - T;u/ =

known results in the case of a scalar field or Maxwell theory, and that in general it
automatically gives a symmetric and gauge invariant tensor without the need for some
improvement procedure. It is also automatically covariantly conserved on-shell as a

consequence of general covariance of the matter action (cf. section 20.6).

Therefore, the complete gravity-matter action for General Relativity is

1
with
55[90!57 (b]
597 =0 = G“,, = SWGNTHV . (2029)
REMARKS:

1. If one were to try to deduce the gravitational field equations by starting from a
variational principle, i.e. by constructing the simplest generally covariant action
for the metric and the matter fields (and this would be the modern approach to
the problem, had Einstein not already solved it for us a 100 years ago), then one

would also invariably be led to the above action.

The relative numerical factor 16mG n between the two terms would of course then
not be fixed a priori, because this approach will not (and cannot possibly be
expected to) determine Newton’s constant. The prefactor could once again be

determined by looking at the Newtonian limit of the resulting equations of motion.

2. As we saw above, a cosmological constant term can be included by adding a
constant term to the Finstein-Hilbert Lagrangian. One can equally well add a
constant term to the matter Lagrangian instead (and this clearly reveals its inter-
pretation as a constant shift of the energy, e.g. by a vacuum energy contribution,
of the matter fields).
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20.4 EINSTEIN ACTION

As we have seen above, the variation of the Einstein-Hilbert action leads to a boundary
term that depends not just on the metric but also on the derivatives of the metric. This
is related to the fact that the action itself depends also on the second derivatives of the
metric. Indeed, it follows from the explicit expression for the scalar curvature in terms
of the Christoffel symbols and the metric, obtained by contracting (8.5),

R=g" (A, — 0,1\ +TA, 1%, —T0,T%,) (20.30)

that the Einstein-Hilbert action contains terms that are quadratic in first derivatives of

the metric, as well as terms that depend linearly on the second derivatives.

In ordinary Lagrangian field theory, such linear second derivative terms can usually be
introduced or eliminated (depending on what one wants to achieve) by the addition of
suitable boundary terms to the action. As an example, consider the action of a free

scalar field (in Minkowski space, say):

e The standard action is

&wkz—a/&%&m. (20.31)

When one uses this action, the boundary term arising from the variation of the

action will depend on d¢ but not on its derivatives,

55[¢] = / (D)5 — / D (560°$) = / (O6)56 — /(é doa(560°6) . (20.32)

where the boundary of the integration region is denoted by Y. This is thus the

appropriate action for

Dirichlet boundary conditions: (d¢)|s, =0 . (20.33)

e One can also consider the action
silé) =4 [ 900 . (20.34)
This action differs from Sy by a total derivative (or boundary) term,
Si[¢] = Solp] + 3 / Ou(00°¢) = So[4] + & ]é doo(¢0%¢) . (20.35)

It will therefore give rise to the same Euler-Lagrange bulk equations of motion.
In this case, however, the boundary term arising from the variation of the action

will depend both on d¢ and its derivatives,
651[¢] = / (O¢)d¢ + 5 ]é doo($0*6p — 50 ) . (20.36)

There are no obvious (or at least no obviously useful) boundary conditions com-

patible with this form of the action.

387



e Another option is the action

Salo / On(60%¢) = / 03t + / ¢0p 2037)
= 25[p . '

Its variation is

5521] = / (O6)d6 + 74 doo (60%56) . (20.38)

In this case, the boundary term only depends on the normal derivative of the
variation,

oo ($058) ~ SN0l | (20.39)

and therefore Sa[¢] is the appropriate choice of action for

Neumann boundary conditions: (N%0,0¢)|s =0 . (20.40)

Let us now return to the case at hand, the action for gravity. In this case second
derivative terms are required by general covariance of the action (since there is no
scalar that can be constructed solely from the metric and its first derivatives). However,
the fact that that the second derivatives appear linearly and that ¢*? 0R,p is a total
derivative reflect the fact that these second derivatives are spurious in the sense that
they can be eliminated by an integration by parts or by adding a suitable boundary or

total derivative term, albeit at the expense of general covariance.
In fact, by straightforward manipulation of (20.30), using identities such as
NG = —g"* Ngap ¢ = —(Th, 0" +T"509™) (20.41)
and Ox(\/9) = /9 F‘:M, one finds that the Lagrangian density ,/gR can be written as
VIR = 25 g (TH, T 5 — T T ) + 03(,/5 BY) (20.42)

where
B =g"T), — ¢"1%,, . (20.43)

With due care, one can also write the total derivative term as
(/g BY) = g VaB* | (20.44)

as long as one remembers that B* is not a tensor. Either way, we see that instead of the
generally covariant Einstein-Hilbert action one can use the non-covariant but quadratic
action

Senl9as] — SElgas] = / Vadte 297 (TH T, =TV T, ) (20.45)

This action was originally considered by Einstein himself and is therefore also known as

the Finstein action.
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It will be useful for the following to write this in the form

Silges] = Spilges] — / Jid"e V2B = Splgas] — 74 dor B (20.46)

in which the non-covariant terms are now manifestly confined to the boundary of the
region of integration. This is now a reasonably respectable action, but there is a more

attractive variant of this construction which we will discuss in the next section.

20.5 (GIBBONS-HAWKING-YORK BOUNDARY TERM

In section 20.2 we have seen that the metric variation of the Einstein-Hilbert action has

the form
Seulgos) = [ Vid's Gasdg® + [ Vad'z V@B (2047

where
(AB)A = g“"&F)‘ — g“A(SF"

= (59" = 9" 9*")Vbgas -
The reason for this notation, and the relation between this object (AB)* and the quan-

tity B* introduced in (20.43) will be explained below. The first (bulk) term gives us as

the Euler-Lagrange equations the vacuum Einstein equations G5 = 0, while the second

(20.48)

term is a total derivative.

Thus, when one performs the integral over a space-time region ¥V bounded by the hy-
persurface Y = ¥ (which we shall assume to be spacelike or timelike), upon use of the
Gauss integral formula (16.47) one finds that the second (total derivative) term can be

written as

/ Vadiz Vy(AB) jq{ doy(AB)A
= ejq{ d"y Vb N\(AB)*
%

where Ny is the normal vector to the boundary ¥ in V and hg is the induced metric

(20.49)

on the boundary. Explicitly the boundary integrand is
NA(AB)* = (NPg"™ — N g"" )V 1,09, - (20.50)
Using the decomposition
W = p# 4 eNFNY (20.51)

of the metric on ¥ (with N*N,, = €), one sees that the terms with 3 N’s cancel, and
one is left with
NA(AB)* = NPR*™N .6 — NPhP'N 116G (20.52)

The first term only depends on the variations dg,, on the boundary, and its tangential
derivatives h*"V dg,,. Therefore that term is zero if one imposes standard Dirichlet
boundary conditions

dgaply =0 (20.53)
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on the metric at 3. The second term, on the other hand, depends on dg,, and its normal

derivative N#V ,0g,,, and is therefore non-zero,
89apls =0 = NA(AB)s = =N*h"V .69 lx = —h* N 009, s - (20.54)

Therefore with Dirichlet boundary conditions the variation of the Einstein-Hilbert action

gives rise to a non-zero boundary term,

5SEH[gas] = / Vadtz Gapdg™ + 7{ Vhdy (= N*9,89,,) . (20.55)
)
It is therefore not true that the variation of the Einstein-Hilbert action is the Einstein
tensor,
1)
547 Sei # ViGap - (20.56)

In fact, the presence of this boundary term means that the functional Sgu(gas] is not

even differentiable (in the sense of variational calculus).

The way to resolve this issue is, as for the scalar field discussed above, to add a suitable
boundary term to the action itself. This will not change the bulk variation, and it turns
out that e.g. for Dirichlet boundary conditions the boundary term can be chosen in such

a way that its variation cancels the boundary term above.

Actually, we already have one candidate for the boundary term, namely the one relating
the Einstein and Einstein-Hilbert actions in (20.46). The variation of the Einstein action

1S
55E]gas) = 05 H[gas] — 0 jq{ dos BN

— / Vadtz Gapdg™ + 7{ d™y Vh eNx(AB)* — §( 7§ d"y Vh eNyB*) .
b by
(20.57)
Calculating the variation in the second term for Dirichlet boundary conditions on 3,

one finds

5( f{ d"y V'h eNyB*) = jé d"y Vh eN\6B | (20.58)
b b
with
A VA ATV vV STA A STV A
0B" = o(g"' Ty, —g*'1I",,) =g"ily,, —g" 01", = (AB)" . (20.59)

Thus for Dirichlet boundary conditions, the variation of B* on the boundary equals the
quantity (AB)* (20.48) arising from the variation of the Einstein-Hilbert action. As
a consequence, there is no boundary term in the variation of the Einstein action for

Dirichlet boundary conditions,

3lgns) = [ Vd's Gasdg® (20.60)
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and the Einstein action leads to a well-defined variational principle (with a differentiable

action).

Although this is progress, the boundary term that one adds to the Einstein-Hilbert
action to obtain the Einstein action is not particularly attractive, in particular as it is
non-covariant not only with respect to bulk coordinate transformations but also with
respect to boundary coordinate transformations (i.e. the integrand is not a X-scalar in

the terminology of section 15.1).

This is something one would have to live with if one could not do better. However,
such a boundary term achieving this is not unique as it is evidently only defined up
to terms whose variations vanish for Dirichlet boundary conditions, in particular up to
terms that only depend on the intrinsic geometry of . Among these candidates there
is a preferred, geometrically transparent, boundary term, the Gibbons-Hawking- York

boundary term,
SGHYI:gOcB:I = 26% \/Ed?’y K . (20.61)
by

Here
K = h" Ky = h*PV,Ng

= (g*” + N*NP)V,N; (20.62)
= ¢*PV4Ng = V,N©
is the trace of the extrinsic curvature K, of 3 (discussed in section 18).

One way to prove that this is a good boundary term is to determine its variation and
to show that it cancels against the variation arising from the Einstein-Hilbert action for
Dirichlet boundary conditions. Alternatively one should show that the above boundary
term differs from the boundary term for the Einstein action only by expressions that

depend on the metric g, and its tangential derivatives.

Since usually one does the former, let us do the latter. The difference between the two

boundary integrands is
2K + N\B* = 2V,\N* + N\B* . (20.63)
A calculation identical to the one leading to Ny(AB)* in (20.52) shows that
NAB» = NPh" 3, — N*h™ 8,9, - (20.64)

Here the first term only depends on the metric and its tangential derivatives, while the
second term involves normal derivatives of the metric. On the other hand, for K we

have
2K = h"’Lngy, = h"?N"0,g9,, + 2h',0,N" | (20.65)

where we have used the non-covariant way (9.39) of writing the Lie derivative,

LNg;w = N)\a)\g;w + a/JN)\g)\V + aVN)\gu)\ . (20'66)
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Thus the first term cancels the normal derivative term in (20.64) and the remaining
terms in (20.64) and (20.65) only involve fields gog, i.e. hqp and Ny, and their tangential

derivatives that are fixed on the boundary.

This establishes that the Gibbons-Hawking-York boundary term is an acceptable choice
of boundary term. This is also the standard choice, and gives rise to the standard

gravitational action
Sg(9as] = SEH[Gap] + ScHy [9as]
:/\/§d4xR—|-267{ Vhddy K,
b

expressed purely in terms of the intrinsic and extrinsic scalar curvatures R and K, with

35 lg0s) = [ V3" Guasby™ (20.68)

(20.67)

for Dirichlet boundary conditions.

REMARKS:

1. In addition, one can add terms to the action that do not depend on the dynam-
ical fields (as this will certainly change neither the variation with respect to the
dynamical fields nor the equations of motion). A common choice is a kind of
“background subtraction”, designed to associate the numerical value S = 0 to a
particular background metric 925.37 Thus one could define the “physical” action
to be

S19ag) = S4[9as] — Sglgas] - (20.69)
In particular, if one is interested in asymptotically flat space-times, say, then the

appropriate reference background metric is just the flat Minkowski metric, and
then (20.69) takes the simple form

Slgap] = /\/§d4x R+ 2ej§2 Vhd}y (K — K°) | (20.70)

where KU is the trace of the extrinsic curvature of the boundary (isometrically)
embedded into Minkowski space. In section 21.12 we will be led to a similar

subtraction prescription at the level of the Hamiltonian.

2. Another way to motivate (or arrive at) the Gibbons-Hawking-York boundary term

is to start from the decomposition (18.73)
R=R+e(K*— K*K,p) +2eVo(NPV3N® — NOV4zNP) . (20.71)

of the Ricci scalar provided by the Gauss-Codazzi equations. This turns out to be
a convenient starting point for the canonical (Hamiltonian) formulation of general

relativity, and we will therefore discuss this in that context in section 21.2.

37See e.g. S. Hawking, G. Horowitz, The Gravitational Hamiltonian, Action, Entropy, and Surface
Terms, arXiv:gr-qc/9501014, for a brief discussion.
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20.6 GENERAL COVARIANCE AND NOETHER IDENTITIES

The variational (i.e. action or Lagrangian based) formulation of general relativity has a
number of significant conceptual and technical advantages, and we will explore some of

them in this section.

e [ mentioned before, in section 19.7, that it is no accident that the Bianchi identities
come to the rescue of the general covariance of the Einstein equations in the sense
that they reduce the number of independent equations from ten to six. We will now
see that indeed the Bianchi identities are a consequence of the general covariance
of the Einstein-Hilbert action.

e Virtually the same calculation will show that the covariant (metric, Hilbert)
energy-momentum tensor, as defined above, is automatically conserved (on shell)

by virtue of the general covariance of the matter action.

e This argument can also be turned around to show that (generically, at least) the
Finstein equations imply the matter equations of motion, a very characteristic

feature of generally covariant gravitational field equations.

e Simple variants of these arguments will also provide us with the Noether currents

associated with the general covariance of the Einstein-Hilbert action.

e Analogous considerations, but now applied to the minimally coupled generally co-
variant matter action, will provide us with some insight into the relation between
the (Belinfante improved) canonical and covariant energy-momentum tensors in-

troduced in section 7.

To set the stage, we need to discuss how to express general covariance of an action,
either of the Einstein-Hilbert gravitational action Sgg[gag] or of some (minimally)
gravitationally coupled general covariant matter action Siz[¢, go ], in a form that allows

us to explore its consequences in a Lagrangian formalism.

At first, the statement that an action is generally covariant means that it is invariant
under transformations z® — z/® of the coordinates (for present purposes it will for once
be more convenient to use the same indices on the old and new coordinates and to distin-
guish transformed objects by primes), and the accompanying tensorial transformation

of the fields, given e.g. by

roa = ¢@) > () = ola)

o Oz (20.72)
gaﬁ(x) — 9:15(33/) = 9272 928 gws(iﬂ) .

So far, this is utterly familiar, but since in the action one is integrating over the co-

ordinates x%, say, we would like to express this invariance not as a statement between
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transformed fields at 2’ and the old fields at = but in terms of transformations of the
fields at a point x (which we can then plug into the Lagrangian or action). This means
that we do not want to consider the transformation ¢(z) — ¢'(2’) (and its counterpart

for the metric) but rather the transformations

o(@) = ¢'(2) . gap(x) = gapl@) - (20.73)
In particular, for infinitesimal coordinate transformations of the form
' =2 + () (20.74)
or (suppressing the €)
dex® =¢%(x) (20.75)

the infinitesimal variations of the fields are then precisely the Lie derivatives of the fields

discussed in section 9,
ded(x) = Leg(z) = £"0ad(2) (20.76)

for a scalar field,

0¢gap(x) = Legap(r) = Vola(x) + Vgéa(x) (20.77)

for the metric, etc.

As a reminder, a quick way to derive this transformation of the metric is to start with

the tensorial transformation behaviour in the form
(gap (@) — ghp(a'))da'*da’’ = gop(2')da'*da’® — gop(z)da®dz’ (20.78)

and to then apply this to the infinitesimal transformation (20.74). Expanding the
differentials
dz'® = dz® + €(0,£%)dx” (20.79)

and the components go(z’) of the metric to first order in e,

9ap (‘/El) = Gap (l‘) + E{Ya’ygaﬁ (‘/E) ; (20'80)

one finds (20.77) (in its not manifestly covariant form (9.39)).

To see that this indeed leads to a symmetry for any generally covariant action, i.e. any

action of the form

S = / Vadtz L(z) (20.81)

where L is a scalar, note that for any density /gF, I a scalar, one has, by the by now
familiar identity for the variation of /g,

5(VIF) = (Oer/DF + G0 F = $/59° (Legap) F + \/GLcF

(20.82)
— VG(Va®)F + \/GE 0 F = 0(\/G E°F) |
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0e(VIF) = 0a(/g " F) = /g Val§F) (20.83)

a result previously obtained in (9.69). Thus the variation of a generally covariant action,

5eS = / Vadtz Vo (€°L) (20.84)

is a total derivative and d¢ = L¢ certainly generates a symmetry in the usual Lagrangian
/ Noether sense. On the other hand, J¢(,/gL) can also be expressed in terms of the
d¢-variations of the fields, and combining this with the invariance of the action (up
to boundary terms), one can now deduce the consequences of general covariance for a
given theory, either for £ that vanish at the boundary of the integration region or, more
generally, for £ that are non-trivial there. We will now discuss these possibilities in turn

for the Einstein-Hilbert and matter actions.

1. Contracted Bianchi Identities

As our first application we consider the Einstein-Hilbert action, and its associated
invariance under all infinitesimal coordinate transformations generated by & that
vanish on the boundary. In that case, from the considerations above we know that

the Einstein-Hilbert action is strictly invariant,
0¢SEn =0 . (20.85)

On the other hand we also know that, modulo boundary terms,

§SpH = / Vadiz Gopdg™ = — / Vadiz GPsgas (20.86)

for any metric variation. Combining these two facts we arrive at the conclusion
that

0= 0¢Sp = — / Vadiz GPocgas
= -2 / Vadir GPV &5 (20.87)
= +2 / Vadiz (VoG5
Since this has to hold for all £ (vanishing on the boundary), we deduce
5eSpr =0 Y& = VoGa=0 . (20.88)

As promised and anticipated, the contracted Bianchi identities are a consequence

of the general covariance of the Einstein-Hilbert action.

To further strengthen the analogy with the gauge invariance of Maxwell theory
emphasised in the discussion in section 19.7, note that also the relevant “contracted

Bianchi” identity 9,0, F% = 0 can be derived from gauge invariance of the Maxwell
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action (although this is of course not the most economical way of arriving at this
identity in the case at hand).

Indeed, the general variation of the Maxwell action (for variations vanishing on
the boundary) is

5S[A] = / P (0, F™)5 A, (20.89)
The action is invariant under gauge transformations
OpAg =0,V , (20.90)
i.e. one has

0 = 6yS[A] = / (0, )0y — / (0,0, ™) (20.91)

(for any ¥ vanishing at the boundary), and thus 9,0, F* = 0.

. Identically Conserved Noether Currents

The fact that one obtains kinematical identities rather than non-trivially conserved
currents (non-trivial in the sense that their conservation requires the validity of
some dynamical equations of motion) is a characteristic feature of Noether’s the-
orem applied to local (gauge) symmetries. We can also see this when we consider
general vector fields £ (not constrained by the requirement that they give rise to
vanishing boundary terms for the given integration domain). In that case, d¢Sgn
will not be identically zero but will be a total derivative, and also the correspond-

ing Noether currents will turn out to be identically conserved.

Thus we now consider again the Einstein-Hilbert action, but now with £s that are

allowed to be non-zero on the boundary,
6¢SpH = / Vgd's Vo (E°R) . (20.92)

By explicitly performing this variation, as above, the bulk (Einstein tensor) term
is identically zero by the contracted Bianchi identity, but we obtain one total

derivative term from (20.19),

9*P6¢ Rapg = V(9" "7 — " 9*7 )V L gag) (2093)
= Vul(g" 9" — ¢" 9°")V(Vals + Vs&a)]
and a second total derivative term
Vu(—2G1E") = V,(-2RAE" + ER) (20.94)

from the integration by parts performed in the course of the calculation in (20.87).

The term involving the scalar curvature is identical to, and cancels against, the
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scalar curvature term arising from (20.92). One is thus left with the statement

that for any vector field £ and any integration domain one has

[ VBT, 2 (g — VT + Vs =0 - (2095)
Thus for any &* one has the conserved Noether current
JH(E) = REEY + (g™ g™ — g"g"P)V,(Vas + Vi&a) - (20.96)
This is precisely the identically conserved current (13.51), (13.53)
THE) =V, (V) = v, JH(E) =0 (20.97)

already mentioned in section 13.7. We thus learn that the generalised Komar
currents of that section are indeed, as anticipated there, precisely the identically
conserved Noether currents associated to the general covariance of the Einstein-
Hilbert action.

Note that, as mentioned above, it is a general feature of Noether currents as-
sociated to local (gauge) symmetries that they are in fact identically conserved:
the current J*(§) (or its conterpart for some local symmetry of another theory)
cannot possibly be conserved for all possible £#(z) unless it is actually identically
conserved.®® In particular, this implies that the conserved charges associated with

these currents can always be expressed as surface integrals.

. On-Shell Covariant Conservation of the Energy-Momentum Tensor

Now let us play the same game with the matter action Sy, (20.24). Once again,
the variation ¢Sy, expressed in terms of the Lie derivatives L¢g,,, and d¢¢ = L¢og
of the matter fields should be identically zero, by general covariance of the matter
action (for the time being we again at first only consider £ which are such that any
boundary terms vanish). Proceeding as before, and using the definition (7.105) of

the energy-momentum tensor, we find
0 = 0¢Sm

, oL
= /\/§d4x (— 5T, 0eg" +5—£45§¢)

= - / Vad's (VIT,,)E" + / Vad's 2L

0o

S . (20.98)

38Gee e.g. B. Julia, S. Silva, Currents and Superpotentials in classical gauge invariant theories I:

Local results with applications to Perfect Fluids and General Relativity, arXiv:gr-qc/9804029 for a

rather explicit elementary argument, and R. Wald, On identically closed forms locally constructed
from a field, J. Math. Phys. 31 (1990) 2378, R. Wald, Black Hole Entropy is Noether Charge, arXiv:
gr-qc/9307038, V. Iyer and R. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, arXiv:gr-qc/9403028 and references therein for related considerations and further

developments.
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Now once again this has to hold for all £, and as the second term is identically
zero ‘on-shell’, i.e. for ¢ satisfying the matter Euler-Lagrange equations of motion
0Ly /00 = 0, we deduce that

0eSuy=0 V¢ = VMT,, =0  on-shell . (20.99)

This should be contrasted with the contracted Bianchi identities which are valid
‘off-shell’. The more general situation with the & not restricted to vanish on the
boundary will be analysed in detail in section 22.2.

. Einstein Equations Imply (generically) the Matter Equations of Motion

Note that, to a certain extent, this argument can also be turned around to show
that the equations of motion of the gravitational field generated by some matter

fields imply the equations of motion of these matter fields!

Indeed, we already know that the Einstein equations imply covariant conservation

of the energy-momentum tensor,
Gop =871GN Ty = VT =0. (20.100)

Hence, by the above reasoning, the Einstein equations imply

5L
Gop =87GN Topg = /\/§d4x 5(;” Sep =0 (20.101)

for all compactly supported £. Excluding certain non-generic cases (like for ex-

ample a constant scalar field for which é¢¢ = 0), one sees that

generically (5LM
09
This should be contrasted with the Maxwell equations in the presence of (charged)

Gap = 8GN Tup =0 . (20.102)

matter fields, say, which only imply current conservation,
O " ~ i = 8,5 =0, (20.103)

but not the complete equations of motion of the matter fields.

To explain what is special about the generally covariant gravitational field equa-
tions in this respect, I will conclude this section with a quote by Misner, Thorne

and Wheeler, since I could not possibly state this more eloquently:

The Maxwell equations are so constructed that they automatically fulfill
and demand the conservation of charge; but not everything has charge.
The Einstein field equation is so constructed that it automatically ful-
fills and demands the conservation of momentum-energy; and everything
does have energy. The Maxwell field equations are indifferent to the in-

terposition of an “external” force, because that force in no way threatens
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the principle of conservation of charge. The Einstein field equation cares
about every force, because every force is a medium for the exchange of
energy.

Electromagnetism has the motto, “I count all the electric charge that’s

here.” All that bears no charge escapes its gaze.

“I weigh all that’s here” is the motto of spacetime curvature. No physical

entity escapes this surveillance.?”

20.7 FIRST ORDER FORM OF THE ACTION, TORSION AND THE PALATINI PRINCIPLE

For certain purposes (e.g. as a precursor to a Hamiltonian formulation) it can be useful
to put an action leading to 2nd order differential equations into “1st order form” by the
introduction of some auxiliarly variables. The prototypical example is Maxwell theory,

whose original action (cf. section 6.5)
S[A] = -1 / die Fy,Fe (20.104)

depends quadratically on the 1st derivatives of the gauge field A,, and leads to the 2nd
order equations of motion
. F =0 . (20.105)

To put this into 1st order form, one treats A, and F,, — Fu as a priori independent

fields and considers the action

S[A, F] = / die <—(8aAb)}'“b+ ifabfab)
(20.106)
= [t (~h@uAr - AN + LFuF)

which depends purely algebraically on F,; and only linearly on the 1st derivatives of A,.

The equations of motion arising from the variation of A, are the 1st order equations
A = 9, F%=0. (20.107)

However these are not (yet) the vacuum Maxwell equations because Fy;, is not (yet) to
be identified with the Maxwell field stength tensor of A,. This identification now results

from the (purely algebraic) equation of motion associated with variations of Fgp,
OF = Fap = 0uAy — OpAa = Fup - (20.108)

Plugging this result into the previous equations then gives rise to the standard Maxwell
equations (and plugging it into the 1st order action S[A, F| reduces it to the standard
Maxwell action S[A]).

39C. Misner, K. Thorne, J. Wheeler, Gravitation, section 20.6.
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Something similar (but more interesting and somewhat more subtle) can be done in the

case of general relativity.

Recall from sections 5.4 and 11.5 that a priori a metric g,,, and a connection f);w are
independent concepts, and that the notion of curvature (curvature and Ricci tensors)
can be defined for an arbitrary connection,

RY,,@) =0,I%, - 0,1, +1),I%, —T7, %, . Ru(@) =R}, (T) . (20.109)

General relativity employs and is formulated in terms of the canonical Levi-Civita con-
nection described by the Christoffel symbols f‘iw = F/\uw characterised by the fact that
the connection is compatible with the metric and has no torsion. It is thus easy to
come up with various generalisations of general relativity in which these requirements

are relaxed. We will not get into these matters here.*’

However, it is a curious, and occasionally calculationally or conceptually useful, fact
that it is possible to relax somewhat the a priori identification of the connection with
the Levi-Civita connection and nevertheless reproduce general relativity by treating the

connection and metric as independent variables.

Specifically, we will consider an action of the generalised Einstein-Hilbert-like form
Slgu 1] = / Vadtz R(T) = / Vad*z " R, (T) (20.110)

for a (yet to be specified) class of connections T, with g and f‘)/‘w to be treated

B
as independent variables. Since R, (I') does then not depend on the metric, the ac-
tion depends purely algebraically on the metric, and on at most 1st derivatives of the

connection (linearly!).

One key simplification of this kind of action is that the variation with respect to the
metric is elementary (and identical to the variation of the ,/gg"” terms of the Einstein-

Hilbert Lagrangian density ,/gg"” R, ), namely

89S T,] = / Vod'a (R,w(f) - %gWR(f)) SgH" (20.111)

(no integration by parts or identification of total derivative terms required). Thus, in
the absence of the coupling of the metric (or of gravity) to other fields we find the
equations of motion

Guw(@) = Ruw(T) — 390 R(I) =0 . (20.112)

These are, however, not yet the vacuum Einstein equations because the independent

connection I' is not the Levi-Civita connection.

OMany of these generalisations (including theories with non-symmetric metrics) were originally
explored by Einstein and his collaborators in their futile and (at least by the 1930s) ill-motivated
attempts to find a unified field theory of gravity and Maxwell theory. For details, see e.g. the
review H. Goenner, On the History of Unified Field Theories, Living Rev. Relativity 7 (2004) 2,
http://wuw.livingreviews.org/lrr-2004-2.
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It remains to look at the equations of motion imposed by stationarity of the action with

respect to variations of I'. It turns out (the Palatini principle) that

1. if one chooses the connections to be torsion-free and imposes the I-equations of
motion, then the connections are forced to also be compatible with the metric and

thus I is uniquely determined to be the Levi-Civita connection

2. if one chooses the connections to be compatible with the metric and imposes the
I-equations of motion, then the connections are forced to also be torsion-free and

thus T is uniquely determined to be the Levi-Civita connection

In terms of the notation introduced in section 11.5, this amounts to the assertions

Tyvw(@@) =0 and 6:S[¢,[]=0 = ,M=0 = I =1
)\u( ) T [g ] Q)\M (~) uv 1% (20113)

Quuw() =0 and 6:5[g,T]=0 = Tl)=0 = I, =T,

In either case, the metric equations of motion (20.112) then reduce to the vacuum

Einstein equations.

In order to establish the assertions (20.113), we need two preparatory results. The first

is that the generalisation of the formula (20.15),
0Ry (T) = VAT, — V.67, (20.114)
for the variation of the Ricci tensor in terms of the variation of the connection is
6By (T) = V2ol = Vo0 + (1, — 1%, ) 017, - (20.115)

The second is that when the connection is not the Levi-Civita connection, an expression
like V,J?* is not a total derivative in the integral, this being only true for the Levi-Civita

connection thanks to the identity

/\/§d4:1: VaJ = /d4x IN/GT) . (20.116)

Writing
FA A A
My =1 +Cu (20.117)
we have
VAVHE = V,\VF + CH VY (20.118)
and, in particular,
VaJr = Vo Jr +C0, T (20.119)

only the first term on the right-hand side giving rise to a total derivative.

What we are interested in is g"” 5RW(1;), and with the above results and notation we
can write this as
& A A A A
9 0Ry (F) =g (C)\0Ch, — C,0C%, = C5,8C0, +ChC),) (20.120)
+ total derivative terms
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Thus the variation of the action with respect to the I is

7819, T] = /\/§d4ﬂf g (C?Aéc";w —Ch\0C%, — CL,6C5, + Cﬁué(}%) ( )
20.121
= / Vad's (g7PCN 4 P 0Ny — 0P — 0 6C 0

If we were to consider arbitrary T’ and hence unconstrained variations 0C, a3, the con-

dition for the action to be stationary with respect to variations of I' would be

0:S[g,T] =0 &  ¢*PCM\+ gPC*\ —CP* — CPT = . (20.122)

However, these equations do not determine the C’%ﬁ/ uniquely (we will explicitly parametrise
this non-uniqueness below), and hence in this case the Einstein-Hilbert-like action

(20.110) alone does not give rise to acceptable equations of motion for the fields.

The situation changes if one imposes some a priori constraints on the allowed T', and
hence on their variations 6C,,3. We now consider separately the two cases mentioned

above:

1. T are restricted to be symmetric (torsion-free)
In terms of the coefficients Cgﬁ, this amounts to the condition
Y
Cly=C, (20.123)
and the same condition should be imposed on their variations,
50716 =0C, (20.124)
Thus, symmetrising appropriately, from (20.121) one obtains the constraints

29°PCN\ + PO\ + geCPN, —20P — 20987 = . (20.125)

Taking traces, once by contraction with g,s and once by contraction with g, (or,
equivalently, with gg,), one obtains two linearly independent conditions on the

traces CMy and C** requiring both to vanish,
traces = CYy=0 , C\ =0. (20.126)
Then, upon symmetrisation, (20.125) reduces to the condition
CPY L CPY =0 & Cpay + Capy =0 (20.127)

As we have seen in (11.103) of section 11.5, this is precisely the condition that the

non-metricity tensor is zero,
Qaﬁﬁf = Cga«, + Cagfy =0, (20.128)
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i.e. that the connection is compatible with the metric.

Since we started off with a torsion-free (symmetric) connection, this means that
the equations of motion fix the connection T' to be the Levi-Civita connection.
Alternatively, (20.123) and (20.127) imply that C,,s = 0 This concludes the
proof of the first assertion in (20.113).

. T are restricted to be compatible with the metric

This is largely analogous. In terms of the coefficients C:’lﬁ, metric compatibility

amounts (as just recalled) to the condition
Crap = —Canp (20.129)
and the same condition should be imposed on their variations,
0C 0 = —0Cap (20.130)

Thus
Crap = Cryiap) + Crag) = Tap)yy + 3Thas (20.131)

is the contorsion tensor. In this case, anti-symmetrisation of (20.121) leads to

ghCMy — gPCry 4 CPr — P = . (20.132)

Taking traces, one finds C,\,YA = 0 (the other trace CAM is identically zero because
of anti-symmetry), and thus (20.132) reduces to

CPY —CP1* =0 & Chay = Chya (20.133)
which is precisely the symmetry (no torsion) condition
Thoy = Chay — Ciya = 0 . (20.134)

Since we started off with metric-compatible connection, this means that the equa-
tions of motion fix the connection I' to be the Levi-Civita connection. Alterna-
tively, (20.129) and (20.133) imply that C,a3 = 0. This concludes the proof of

the second assertion in (20.113).

Alternatively, and perhaps somewhat more insightfully, one can first determine the

general solution to the (under-determined) equation (20.122),

g*P My + gPoor, — P — P =0 | (20.135)

and then analyse the properties of the solution and the consequences of imposing some

conditions on Caﬁﬁ,.“ To disentangle this equation, we proceed as in the proof of the

41See e.g. A. Bernal et al., On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-

Palatini formalism, arXiv:1606.08756 [gr-qc] and references therein.

403



uniqueness of the Levi-Civita connection in section 5.4 and take sums and differences

of cyclic permutations of the above equation. Then one ends up with the equation
20°P7 = g*P(AY + BY) + ¢"7(A% — B*) + g7*(B” - AP) | (20.136)

where

AY=C"P5 | B =P (20.137)

are two of the (a priori independent) traces of C“%7. Performing either of these con-

tractions in (20.136), one finds the condition
A% =B* | (20.138)

and therefore
0B = g*P AT & C%, = 6%A, . (20.139)

Thus the general solution to the equation of motion (20.122) is
[, =T%, +0%A, | (20.140)

with A, an arbitrary covector.

This family of connections has the properties

V4908 = —2449a8 (20.141)

and
0‘67 - I‘Ofyﬁ = 5%/17 - 50,‘YA5 . (20.142)

It is now obvious that requiring either metric compatibility or the symmetry of the
connection enforces A, = 0 and thus r=T.

REMARKS:

1. When one couples either of these theories to matter, one will find the standard
Einstein equations with source the usual matter energy-momentum tensor, pro-
vided that the minimally coupled matter action depends only on the metric and
not on the connection. As we have seen, this is satisfied in the case of scalar or
Maxwell gauge fields (for which the minimally coupled action in the usual setting
could be written in such a way that it depends only on the metric but not on the
derivatives of the metric). However, typically the connection appears explicitly in
the action for spinors, and in this case variation of the matter action will produce
a non-zero contribution to the torsion, say. Thus in that case the Einstein-Hilbert
approach (no torsion as a kinematical constraint) and the Palatini approach (tor-

sion determined dynamically) are inequivalent.
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2. Within the present framework, it is not possible to relax both the no-torsion
and the metricity constraints simultaneously and to simultaneously regain them
dynamically, but one can attempt to achieve this either with the aid of additional
auxiliary (Lagrange multiplier) fields, or “spontaneously” by adding potentials
that force the connection in the ground state to either zero torsion or zero non-

metricity.*?

3. Once one contemplates and permits the presence of non-metricity and/or tor-
sion, there are many more terms that one can in principle use to build an action
(by using scalars built from the torsion and non-metricity tensors Tyx and Qo
and their covariant derivatives). Thus, unless one imposes additional symmetry
requirements, say, there is no good reason to focus attention exclusively on the
Einstein-Hilbert-like action (20.110), and many generalisations of general relativ-
ity suggested and discussed in the literature can and should be either rejected or

amended simply on these grounds.*?

12Gee e.g. R. Percacci, Geometry of Nonlinear Field Theories for an exploration of some of these ideas.
“3In his review of gauge theories of gravity, F. Hehl, Gauge Theories of Gravity and Spacetime,

arXiv:1204.3672 [gr-qc], also emphasises this: “Numerous pages of printed pages could be saved if
our colleagues would [...] just motivate their choice of the unknown constants.” In that review it is also
pointed out that what is generally referred to (and I also called and will continue to call) the Palatini
formalism should properly also be attributed to Einstein (1925).

405



21 HAMILTONIAN FORMULATION OF GENERAL RELATIVITY

In mechanics or field theory, a common alternative to the standard Lagrangian or action-
based formulation is the canonical or Hamiltonian formulation. Over the years, a lot
of effort has gone into developing a framework for the canonical Hamiltonian (phase
space) formulation of General Relativity. The most well known and most influential of
these is the so-called ADM (Arnowitt, Deser, Misner 1959 - 1962) formalism.**

No other body of work on classical general relativity has single-handedly had such an
impact and influence on research in this field: it awoke general relativity from its (to
a large extent rather uninspiring and uninspired) “finding exact solutions” phase; it
brought it to the renewed attention of a wider theoretical physics community since it
provided a field theorists’ analysis, perspective and understanding of the basic structures
of general relativity; it presented a clean and clear 1st-order (canonical) formulation of
the theory (the ADM formalism), which is crucial in understanding the Cauchy (initial
value) problem in general relativity and which also provided the basis for (in)numerous
subsequent attempts at a canonical quantisation of gravity; it provided groundbreaking
work and insights on questions related to the notions of energy and radiation in general

relativity, etc. etc.

In this section, I will sketch some aspects of the Hamiltonian or canonical formulation of
general relativity, without however attempting to develop this in a completely systematic
way and without being able to do justice to the depth and importance of this subject
and body of work.*”

For a concrete illustration of some of the facts and statements encountered in this
section, see the discussion of the simple cosmological toy model (or “minisuperspace

model” in more fancy terminology) in sections 35.8 and 35.9.

The canonical formalism has been developed in particular with an eye towards canonical
quantisation of gravity and in recent years a variant of the ADM canonical variables
(the Ashtekar variables) has become very popular and forms the basis of the so-called
loop quantum gravity approach to quantum gravity (but I will have nothing more to

say about this in these notes).*

In this section, we will (have to) freely make use of the results on the geometry of

hypersurfaces obtained in sections 15 - 18, in particular the extrinsic geometry and

4 This body of research is summarised in the 1962 article R. Arnowitt, S. Deser, C. Misner, The
Dynamics of General Relativity, kindly made available on the arXiv as arXiv:gr-qc/0405109.

15See e.g. section 10 and Appendix E of R. Wald, General Relativity, or sections 3.6 and 4 of E.
Poisson, A Relativist’s Toolkit (which I have found enormously helpful in preparing this section), or
sections 3 and 4 of C. Kiefer, Quantum Gravity (2nd edition) for modern textbook treatments of this
subject.

465ee e.g. A. Ashtekar, Lectures on non-perturbative canonical gravity, or C. Rovelli, Quantum Gravity
for textbook accounts, as well as numerous review articles by these and other authors on the arXiv.
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Gauss-Codazzi equations described in section 18.

21.1 GENERAL COVARIANCE AND CONSTRAINTS

We had previously seen in sections 19.7 and 20.6 that general covariance of the Einstein
equations is related to the Bianchi identities, i.e. to the existence of 4 differential rela-
tions among the 10 components of the Einstein equations. We had also seen in section
19.7 that this is reflected in the fact that the Bianchi identities imply that only six of the
ten equations are truly dynamical 2nd-order differential equations while four of them

constrain the initial values of the fields on some spacelike hypersurface.

We can also see this directly (i.e. without going via the Bianchi identities) from the
Gauss-Codazzi equations we derived in section 18.4. We choose a foliation of the space-
time by spacelike hypersurfaces ¥ and choose one of them as the surface on which
we will specify initial data, with the time direction pointing off (but not necessarily
normal to) the hypersurface ¥. These initial data will be the spatial metric hy, on 2
and something like the time-derivative of hgy, i.e. something like the extrinsic curvature
tensor K. The Einstein equations should then evolve these initial data forward from
3, i.e. they should determine the space-time metric g,g in such a way that hg, is the

induced metric on X and K its extrinsic curvature.

It turns out, however, that these initial data cannot be specified freely but are subject
to some constraints. This can be immediately seen from the expressions (18.66) and
(18.69) for the “time-time” and “time-space” components of the Einstein tensor we had

obtained in section 18.4, namely
GNN = GapNON" = JR + §(K? — K K®) (21.1)
Gan = G EONP = VP Ky, — VoK, '

These just depend on the values of hy, and K, on X, and therefore these components of
the Einstein equations are not evolution equations at all but rather provide 4 constraints

among the initial data. These constraints
R+ K? - KK = 167Gy Tpg NN (21.2)
VP Ky, — VoKY = 871Gy Tag ESN? '

(on X)) reflect the underlying general covariance of the Einstein equations.

The remaining (space-space) components of the Einstein tensor depend on the 2nd time
derivatives of the metric, i.e. on the time-derivatives of K,;, and therefore the remaining
6 space-space components

Gap = 81GN Ty (21.3)

of the Einstein equations are true evolution equations for h,,. Due to their non-linearity,
and due to the presence of the constraints, these equations are highly non-trivial and

mathematically extremely challenging.
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In a canonical (Hamiltonian, first-order) formulation of the problem, the first step is
a 3+1 dimensional decomposition of the space-time into “space” (a hypersurface or
family of spacelike hypersurfaces ¥) and “time”, and a corresponding decomposition
of the dynamical variables. Among the dynamical variables one would then have the
“spatial” metric hg, on X, and phase space variables and initial data would then include

the configuration variable hgy;, and its canonically conjugate momentum 7.

In the ADM formalism, a more detailed analysis, starting from the Lagrangian formu-
lation of the theory and then using the Gauss-Codazzi expression (18.73) for the Ricci
scalar (Einstein-Hilbert Lagrangian) R shows that, more specifically, the canonically

conjugate variables are hg, and
7% = Vh(K® — Kh) (21.4)

(see (21.70) in section 21.6). Since 7 can be expressed in terms of hy, and Ky, (and
conversely K, can be expressed in terms of hg, and %), initial data can also be
specified by specifying hy, and 7% on ¥ (so these variables span the phase space of the
theory).

Of course, these variables need to satisfy the constraints. In a Hamiltonian formulation
these constraints are known as the Hamiltonian constraint and the Momentum con-
straints respectively. Presence of such constraints in the Hamiltonian formulation is a
characteristic feature of gauge theories and/or generally covariant theories, and we will
see below how precisely they arise from a canonical formulation of the theory, and what
their significance is from this perspective. Roughly speaking, they turn out to generate
the time evolution and the action of spatial coordinate transformations on the fields
via Poisson brackets. This is the way 4-dimensional general covariance is implemented
in a foliation-dependent way in the (foliation-dependent) 341 dimensional Hamiltonian

formulation of the theory.

21.2 GAUss-CODAZZI ACTION AND THE GIBBONS-HAWKING-YORK BOUNDARY TERM

As we saw above, the Gauss-Codazzi decomposition of the curvature tensor already
provides a reasonably clean separation of the Einstein equations into constraints and
true dynamical evolution equations. It is therefore also natural to take the corresponding

decomposition (18.73) of the Ricci scalar, i.e. the of the Einstein-Hilbert Lagrangian,
R=R+e(K?— KK,p) + 2eVo(NPVzN* — N®VzNP) | (21.5)
as the starting point of a canonical Hamiltonian analysis of the theory.

In order to be able to use this, let us assume that we do not just have a single hypersur-
face ¥ but a foliation of the space-time into such hypersurfaces. We thus assume that
the space-time is of the form > x R, with R representing the time-direction, and . are

the constant time slices equipped with some fixed spatial coordinates 1.
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On each of these slices of constant time the scalar curvature takes the above form
(21.5). The first term R only depends on the intrinsic geometry of 3 (and thus contains
no normal derivatives), while the extrinsic curvature term contains squares of terms
with first normal derivatives but no second normal derivatives. These second normal
derivatives can then only appear in the third term, which is a total derivative. Thus this
decomposition is reminiscent of, and serves the same purpose as, say the addition of the
Gibbons-Hawking-York boundary term (20.61) to the Einstein-Hilbert action discussed

in section 20.5.

Indeed, if the boundary consists of one (or two, initial and final, say) of these spacelike
hypersurfaces X, this already leads to an appropriate decomposition of the Einstein-

Hilbert action, namely the Gauss-Codazzi form of the action
Saclgas] = /\/§d43§ (R—I— 6(K2 — KaﬁKaB))
= Spilgas] - 267{ doo (NPVsN® = N*VsN7) (21.6)
by

= SpHlgap] — 2]{ Vhd*y No(NVsN® — N*V5NP)
¥

As we will now see, for spacelike boundaries addition of this total derivative term
is equivalent to the addition of the Gibbons-Hawking-York term. Indeed, looking
at the boundary term more closely, we see that, as a consequence of N*VgN, =
V3(N“Ny)/2 =0, it reduces to

—2 jq{ Vhd®y No(NPVGN® — NOVgNP) = 2¢ jq{ Vhddy VsNP | (21.7)
which is precisely the Gibbons-Hawking-York term (20.61), (20.62).

With respect to such a foliation and boundary, the Gauss-Codazzi form of the action is

therefore identical to the standard gravitational action (20.67),

Saclgasl = Sglgas] = Ser[9ap] + Scry[9as] - (21.8)

REMARKS:

1. Thus another way to motivate (or arrive at) the Gibbons-Hawking-York boundary
term is to start from the decomposition (18.73) of the Ricci scalar provided by

the Gauss-Codazzi equations.

2. Once expressed in terms of the so-called ADM variables - see section 21.4 below -
I will refer to the form (21.6) of the action as the ADM action.

3. Ifin addition there are timelike (asymptotic) boundaries B3, then additional bound-
ary terms are required, because the contribution of such a boundary to the bound-

ary term in the action, schematically something like

—274 Vhsd3y 1o (NPVgNY — N*V5NP)
B
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(with r® the normal to B and hg the absolute value of the determinant of the
(Lorentzian signature) metric induced on B), will not equal the standard Gibbons-
Hawking-York boundary term for this boundary (the integral over B of the trace
of the extrinsic curvature of B). In the following we will, until further notice,
assume that there is no such boundary component B, and will then return to this

issue in sections 21.10 and 21.11.

21.3 ADM DECOMPOSITION OF THE METRIC (ADM VARIABLES)

The next step is to find a parametrisation of the space-time metric adapted to a given
choice of foliation of the space-time by (constant time) hypersurfaces. In order to achieve
this, we first assume that the spatial hypersurfaces of this foliation of the space-time
are hypersurfaces of “constant time”, i.e. they are the level sets of some time function
t(x®),

Yo = {z%: t(z%) =to} , (21.9)

with timelike (future-oriented) normal vector N, N, ~ Jut.

We can now introduce coordinates (t,y®) on the space-time via a coordinate transfor-

mation
% = z%(t,y*) (21.10)

in the following way:

e We stipulate that for any fixed value t = tg,
g, (y*) = 2% (to, y") (21.11)

gives us the embedding (cf. (15.4) and the discussion in sections 15.1 and 15.2) of

a hypersurface ¥ (with coordinates y®) as the hypersurface ¥4, in space-time,

Tyt X =Ny CM . (21.12)

e The curves
wy, (1) = 2(t, y5) (21.13)
then connect points on different hypersurfaces with the same values of the spatial
coordinates y* = y{, and thus provide us with a notion (or encode a choice) of

“time evolution” from one hypersurface to the next.

Given z® = z%(t,y*) for some choice of foliation and time-evolution,

oz
o= (22 21.14
( aya>t (21.14)
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gives us the tangent vectors (15.16) to the surfaces Xy, while
8 a
(9 = <i> (21.15)
at ),

gives us the components of the time-evolution vector field d;. The curves (21.13) are not
required to be normal to the hypersurface. In general, therefore, d; can be decomposed

into a normal and tangential part as
(0p)* = NN®+ ESN? . (21.16)

The function N and spatial vector field N'® appearing in this expression are known as
the lapse function and shift vector field respectively. They parametrise the freedom in

the choice of the time-evolution vector.

We thus have

dz® = (NN® + ESN®)dt + ESdy®
(21.17)
= NN%t + ES (dy® + N°dt) .

Plugging this into the line element for the space-time metric and using gog NN B =1,
one finds

ds? = gapdr®da’ = —N2dt® + hoy(dy® + N°dt)(dy® + NPdt) | (21.18)

where
hap = Gap ESE) (21.19)

is the induced metric. This is the so-called ADM decomposition of the metric, and
is the usual point of departure for developing the Hamiltonian formulation of general

relativity (and of field theories in a gravitational background).

The following facts are easy to establish:

1. The components of the metric and its inverse are explicitly
gt = _N2 + habNaNb y  Yat = habNb = Na y  Yab = hap (2120)
and

gtt — _N—2 , gat — N—QNG , gab — hab _ N_2NaNb ) (2121)

2. The normalised timelike normal vector field to the surfaces of constant ¢, thus
N, ~ 04t is given by
N, = =Nt . (21.22)

3. Thus in the ADM coordinates (t,y*) one has
Ny=—-N , N,=0 (21.23)

as well as
(21.24)



4. In terms of these variables, the 4-dimensional volume element /g takes the simple
factorised form

Vi=NVh . (21.25)

5. Moreover, in terms of these variables the extrinsic curvature tensor of the surfaces

of constant ¢ can be written as

1 .
Kapy = —=(hay — Lyhyg 21.2
b 2N( b — Lahap) (21.26)
where
hav = Lo,hap = Othay (21.27)

is the time (Lie) derivative of h,p, and in terms of the intrinsic = induced covariant

derivative V the 2nd term can be written as

Lhay = VaNy + VoNg (21.28)

It is perhaps only the derivation of the last result (21.26) that requires some comment.

Here is a sketch of 2 derivations:

ba Start with the definition (18.27),
Ku = ESE)V 4N (21.29)
and use (21.22) and EY, = 0 (21.24) to write this as
Koy = —NESE)V,05t = NECEJT' 5 . (21.30)

Now use the explicit expressions for the components of the metric and its inverse
to write this as
Kap= N+ NNTeyp (21.31)

Noting that

2Fmb = 8a-/\/'b + 8b-/\/'a - 8thab 5 I‘cab - I‘cab (2132)

this leads directly to (21.26).

5b Alternatively, start with

hav = Lo,hay = Lo, (9apES ) (21.33)
and use
L&:EZ - [@, aya]a =0 (2134)
to write this as
hab = (Lo, gas)ESE) = (Va(00)p + V5(0)a) ESEY (21.35)
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Now use (21.16) in the form
(Or)s = NNg + N

with
N5 = ggaN“ = gga LGN

and N, ES =0 and (21.29) to deduce
hay = 2N Kap + VaNy + VN

which is equivalent to (21.26).

21.4 ADM AcCTION AND THE DEWITT METRIC

(21.36)

(21.37)

(21.38)

With these preliminaries out of the way, let us now turn our attention to the gravitational

action. The starting point is the Gauss-Codazzi action (21.6), but now of course viewed

as a functional of the ADM variables (hgp, N, N®). Since the extrinsic curvature tensor

K,z is a spatial tensor, one has
K =g K.5 = h"Kg

and
K*Kog = K" Kg,

where
Kuy = ESE Kop

Thus we can write the action (21.6) as

Saps[hap, N, Ny = /dt Bz VAN (R + KK, — K?)

(21.39)

(21.40)

(21.41)

(21.42)

This is what I will refer to as the (2nd order form of the) ADM action. We can write

this as an integral of a Lagrangian Lapys or a Lagrangian density Lapas as

Sapmlhay, N, N] = /dt Lapm = /dt d*x Lapy -
Note that in terms of the so-called DeWitt metric
Gabcd — %(hachbd + hadhbc _ Qhabhcd)
the “kinetic” (extrinsic curvature) term
KoK — K? = K3 K% — K?

can be written as
KpK® — K? = G Ky Keq
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Thus the Lagrangian density
Lapy = VAN(GY K K.+ R) . (21.47)

now has the standard “kinetic minus potential energy” form.

REMARKS:

1. As this DeWitt metric determines the form of the kinetic term, it also plays the role
of a natural metric on the space of spatial metrics or, better, metric deformations

Ohgp, in the sense that one can define
(61h, 2h) = / Vhd®z G (8 hap) (02heq) - (21.48)
b

This metric is not positive definite. The “negative” direction in the space of
deformations of a spatial metric hy, turns out to be associated with overall volume

deformations.

2. This can be seen very explicitly in the case of simple cosmological models, where
this overall scaling of the spatial metric is the only degree of freedom (the cosmic
scale factor) and thus the gravitational kinetic contribution to the action is strictly
non-positive (see the discussion in section 35.8 for an explicit illustration of this
fact).

21.5 SyNoOPSIS OF THE CANONICAL FORMULATION OF MAXWELL THEORY

At this point, for comparison purposes it will be useful to have some at least very
superficial familiarity with the canonical formulation of Maxwell theory. I will therefore
briefly summarise this here (more sophisticated treatments of this standard subject can

be found in many places).

We start with the Lorentz-invariant Lagrangian (density) of Maxwell theory,
L=—1F,zF" (21.49)

but break manifest Lorentz invariance by choosing a particular inertial frame with co-
ordinates (2° = ¢,2?), and a corresponding slicing of space-time by constant time hy-

persurfaces. Then the Lagrangian takes the form

L= %(52 ~- B?) (21.50)

where
FOa = a(]Aa - 8[1140 = —Ea 5 Fab = Eachc . (2151)

Now we proceed as follows:
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e The canonical momenta conjugate to the fields (A, A,) are

a

_ 9L
04y

° =" =
A,

—E° | (21.52)

)

The latter allows us to express the “velocities” A, in terms of the momenta,

Ay =T, + 9,40 | (21.53)

The former, on the other hand, is a constraint, known as a primary constraint,

that arises because the action does not depend on Aj.
e The Legendre transform of the Lagrangian density is thus the Hamiltonian density

H =1%A, — £ = 11, + %0, Ay — L

ey (21.54)
= L([2 4 B2) — Ag(8al1?) + 0a(AoIT?) .

In constructing the Hamiltonian
H = /d%;% : (21.55)

with suitable boundary conditions we can ignore the total derivative term. Thus

we can work instead with the Hamiltonian density

H = L(I12 + B?) — Ap(0,11%)

I 21.56
(E? + B?) + Ag(0.E*) . ( )

N[—= D=

o (Ay, E%) are standard canonically conjugate variables satisfying the canonical

Poisson bracket relations

{Aa(@), B ()} = —0b 6¥(&,7) . (21.57)

e Hamilton’s equations of motion

A, = {A,, H =11, + 9, A
o = {4, H} ° (21.58)
[ = {11°, H}

reproduce the relation (21.53) between the velocities and momenta, and the spatial

components of the Maxwell equations 9, F*? = 0,
= {11 H} & 09,F*=0 . (21.59)
e Ay acts as a Lagrange multiplier, imposing the time-component of the Maxwell

equations,
DE =0 & 0, F°=0 . (21.60)
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Alternatively, this equation arises from requiring that the primary constraint 110 =

0 be preserved under time-evolution,
0= {11 H} 20 = G=0,E"=0. (21.61)

This condition does not contain time-derivatives of the canonical variables, and
therefore it is not an evolution equation for the phase space variables but rather
a secondary constraint on the initial data on a fixed time hypersurface, the Gauss

Law Constraint.

The name derives from the fact that in the presence of matter one would instead
have
E“=p | (21.62)

with p the charge density, and this relation allows one to express the total charge
contained in a spatial volume as a surface integral (a statement usually known as
the Gauss Law).

This Gauss law constraint reflects the underlying gauge invariance of Maxwell
theory. In particular, via Poisson brackets it generates the action of the gauge

transformations on A, (and E?),

buAa(T) = {Aa(@), / &y WHHE )} = 0,9(7) s
21.63

b0 E%(T) = {E°(2), / iy V(HOE ) =0 .

Thus the physical (reduced) phase space of the system consists of the pairs (A,, E%)
satisfying the Gauss law constraint, modulo gauge transformations. Gauge invari-
ant observables are those functions on phase space that have vanishing Poisson

brackets with the Gauss law constraint.

Since these smeared Gauss law constraints
o) = [ &'y ¥@AE'®) (21.64)

depend only on the electric field, not on the vector potential, they satisfy the
constraint algebra

{G[W1],G[Ws]} =0 (21.65)

which reflects the Abelian U(1) gauge invariance of Maxwell theory (whereas the
corresponding Gauss law generators in a non-Abelian gauge theory would have

formed a Poisson bracket realisation of the gauge algebra).

Finally we note that the on-shell value of the Hamiltonian gives the energy (den-

sity) of a solution,

(21.66)



In the following, you should see that there is a close analogy betweeen the Gauss Law
constraint G (and its associated Lagrange multiplier Ag) of Maxwell theory, and the
so-called Momentum Constraint H, (and its associated Lagrange multiplier, the shift
vector N'*) on the gravity side (but I will refrain from constantly pointing out these

analogies in the following, as that can become rather obnoxious).

On the other hand, there is no good Maxwell analogue of the so-called Hamiltonian
Constraint, whose presence is instead a characteristic feature of general relativity (and

other parametrisation invariant theories).

21.6 BACK TO GRAVITY: CONJUGATE MOMENTA AND PRIMARY CONSTRAINTS
Let us now return to gravity, in particular to the ADM Lagrangian (21.47)
Lapy = VIN(G*KpKea+ R) . (21.67)

The (genuine, unconstrained) conjugate momenta to hg, are (the definition adopted

here is that the canonical momenta are tensor densities)

ab _ OLADM

ADM 21.68
Ohap ( )
From (21.67) and (21.26), one sees that
Lapy = VANGY (/2N + .. Koy + ... . (21.69)
so that explicitly the conjugate momenta are
7% = VhG K g = Vh(K® — hK) | (21.70)
as anticipated in (21.4).
By taking the trace, one finds that
7 = hgr® = —2VhK (21.71)
so that one can invert (21.70) and express K, in terms of 7% as
VhKay, = Tap — Shapr (21.72)
This can also be written as
\/EKab = GabchCd , (21.73)
where
Gabed = 5 (hachvd + haahve — haphea) (21.74)

is indeed the inverse of the DeWitt metric (21.44) in the sense of a metric on symmetric

2-tensors,
GG ey = 2(650% + 6500) (21.75)
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Using (21.26) in the form

hay = 2N Koy + Lahgy (21.76)

one sees that the “velocities” hyy, can be written in terms of the coordinates and momenta
as oN

hay = ﬁGabcdﬂ-Cd + Lahap - (2177)
Turning now to the other variables N and N%, note that the action does not depend
on their time-derivatives at all since the intrinsic scalar curvature R is completely inde-
pendent of these variables while the extrinsic curvature involves only N and the spatial

covariant derivatives of N'®. Thus the conjugate momenta to these variables are zero,

_ OLApM
ON

OLADM
ONa

Since the action does not depend on the time-derivatives of these variables, they act

DN =0 ,  DPNa = =0 . (2178)

as Lagrange multipliers and variation of the action with respect to the lapse function
and shift vector gives rise to the Hamiltonian constraint H = 0 and the Momentum

Constraints H, = 0 already mentioned in section 21.1.

e Variation of the lapse function N

Variation of the lapse function N leads to
H=Vh(K4pK® - K* - R) = V(G K Keqg — R) =0 (21.79)

(it is convenient to define the constraints as tensor densities; this accounts for the
factor of v/h). Comparison with (21.1) shows that

H=-2VhGnn (21.80)

so vanishing of this constraint is precisely this component of the Einstein equa-

tions.

Note the relative sign flip between the “kinetic” (extrinsic curvature) and “poten-
tial” (intrinsic scalar curvature) terms between L£apys (21.47) and H. This arises

because due to the N~! in the expression (21.26) for the extrinsic curvature
VANG" KyKeg~N"1' | VANR~N . (21.81)

Thus variation of the action with respect to N (i.e. differentiation of the La-
grangian density with respect to N in the case at hand) simply changes the rel-
ative sign of the 2 terms, giving rise to the Hamiltonian constraint A = 0. This
Hamiltonian constraint will indeed turn out to be part of the Hamiltonian of
the theory. In this sense, variation with respect to N implements the Legendre

transformation.
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e Variation of the shift vector N,

The Momentum constraint arises from the variation of the shift vector A in
Lapy = VANGPH—N"V Ny £ .. )Keg+ ... (21.82)
(and a (spatial) integration by parts). Thus the Momentum constraint is
H® = —2VAV(K?® — h*K) = —2VhV (G K 4) = 0 . (21.83)
Again comparison with (21.1) shows that
H, = —2VhGng | (21.84)

so that the Momentum constraint impose these components of the Einstein equa-
tions. Written in terms of the canonical momenta (21.70), the Momentum con-
straint is simply

HE = —2V, . (21.85)

Note that this is a tensor density because of the v/A in the definition (21.70) of

mab,

21.7 LEGENDRE TRANSFORM AND ADM HAMILTONIAN
One can now pass to a Hamiltonian formulation in the standard manner, by

e performing the Legendre transformation,
e expressing the velocities in terms of the momenta,

e and thinking about how the constraints are to be implemented.
We start with the Legendre transform

Hapy = m™Phay — LapM (21.86)

(because of (21.78), whether or not we also formally include py N etc. in this expression
makes no difference). Now from (21.26) 7%h,;, consists of 2 kinds of terms, namely

7®hgy = TP (2N K g + 2V N3) (21.87)
The first of these, combined with the kinetic term, gives
INTPKyp — NVRGP Ky Koqg = NVRGP Ky K,y (21.88)
To write this in terms of the momenta 7, note that

T =hgr® = —2VhK | 7%y = h(K®PKy + K?) | (21.89)
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so that
V(KK — K?) = (1% — 373 /Vh . (21.90)

We can also write this in terms of the inverse DeWitt metric (21.74) as
VhG® Ky Koq = Gapear™n/Vh (21.91)
Taking into account the scalar curvature term in the Lagrangian, we thus arrive at
INT® K, — Lapy = NVR(Gapeqn®nd/h — R) (21.92)

This is precisely (N times the) the Hamiltonian constraint (21.79), now expressed in

terms of the canonical variables (hgqp, 7%),

INTPK oy — Lapy = NH (21.93)

with -
H = Vh(Gapeam®7 /b — R)
= (17a — 27%)/V'h — VR .

The other contribution from (21.87) is up to an integration by part simply equal to

(21.94)

MV N, = —2(Ver®N, = NpHD (21.95)
Thus the Hamiltonian density has the striking form
Hapyv = NH+NH, (21.96)
and the Hamiltonian is
Hapy = /d3$ Hapm = /d?’x (NH+N"H,) . (21.97)
We can also use these results to write the ADM action in 1st-order form as

Sapm = / dt &z (1%hgy — NH — NH,) . (21.98)

REMARKS:

1. As anticipated in the previous section, the Hamiltonian constraint (21.94) looks

exactly like a standard Legendre transform of the Lagrangian (21.47)

LAapym = N\/E(GadeKachd + R)

_ (21.99)
—  NH = NVh(Gapegm®n/h — R)
2. If one starts with the correctly normalised action
1
Spy = d'z R 21.100
EH 167Gx / Vgd'z R, ( )
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then what is only an overall normalisation factor of the action manifests itself
as a relative factor between the kinetic and potential terms of the Hamiltonian
constraint. Indeed, with this normalisation the momenta 7% (21.70) carry an
additional factor of 1/167G,

Vh

1

ab abed ab ab

= hGY“K. g = —— (K% — h*K) . 21.101
T 167G N Vh d 167TGN( ) ( )

It is then common to also rescale the constraints by a factor of (167G y)~!, so

that the (rescaled) Hamiltonian constraint is

(167TGN) ab,_cd \/ﬁ >

while the rescaled Momentum constraint continues to take the form H, = —V 7%

H = (21.102)

with respect to the rescaled momenta.

3. With this rescaling, there is then no explicit factor of (167Gpy) in the ADM

Hamiltonian, i.e. one continues to have (21.97)
Hapm = /d?’x Hapm = /d3x (NH+NH,) . (21.103)

4. If one now includes matter, then a comparison with the (rescaled) (21.80) and
(21.84),

(167GN)H = —2VhGny , (167GNn)He = —2VEG N, (21.104)

shows that correspondingly there is no explicit factor of (167G ) in the constraints
either, which will be modified to

H4+VhTyny =0 , Ho+ VhTng =0 . (21.105)

21.8 SECONDARY CONSTRAINTS: THE HAMILTONIAN AND MOMENTUM CONSTRAINTS
From the 1st-order form (21.98)
Sapy = / dt d®z (1%hgy, — NH — NH,,) (21.106)

of the ADM action, it is now manifest that variations of the action with respect to the

lapse and shift give rise to the Hamiltonian and Momentum constraints respectively,

)
S(;“]@M =0 = H=0
59 (21.107)
ADM .
GNa 0 = H,=0
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In the Hamiltonian picture, these constraints arise and are implemented by demanding

that the so-called primary constraints (21.78)
PN = 0 y  DNe = 0 ) (21108)

are preserved under the Hamiltonian time-evolution. This indeed gives rise precisely to
the Momentum and Hamiltonian constraints as secondary constraints,
PN ={pn,Hapu} =0 & H=0 & Gyy=0

. . (21.109)
pNa:{pNa7HADM}:0 = Ha:() g GNaZO .

The remaining (true evolution) equations G, = 0 are then the Hamilton equations for
the spatial metric (configuration variable) hg, and its conjugate momentum 7. These

can either be written in the form

. OH ADM - ab OH apm
e ab — 21.110
ab (57Tab ; 7T 6hab ( )
or in terms of Poisson brackets as
hay = {havs Hapm} , % ={x", Hapu} , (21.111)

where the non-vanishing Poisson brackets between the canonical variables hg, and rob

are
{has (@), 74(y)} = L(8L00 + 3955)5(a, y) - (21.112)

Inserting the explicit expression for the Hamiltonian, one finds (unsurprisingly) that
the equation for hy, simply reproduces the definition of 7%, i.e. the relation (21.77).

Indeed, from the kinetic term of the Hamiltonian constraint one finds

N
{hap, / B3z NGapeam®nd/\V/h} = ﬁGabcdde , (21.113)

and the Poisson bracket with the potential term is zero
{hap, / 3z NVhR} =0 (21.114)

(because R = R(h) is only a function of hy, and its spatial derivatives). Finally, the
Poisson bracket with the momentum constraint part of the ADM Hamiltonian gives

(s, / B (—2NT 7D} = {ho, / P (+2(F N 7o)
= ?a/\fb + ?bNa .

(21.115)

Putting everything together, one sees that this indeed reproduces (21.77) in the form

. IN _ _
hap = —=Gapea™® + VaNp + VN, . 21.116
b \/ﬁ bed b b ( )
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The equation for 72,

b _ _OHapum
5hab

is now equivalent to G4 = 0. The explicit expression can of course be worked out in

= {7 Hapn} , (21.117)

analogy with the above and from the results obtained so far, but it is rather complicated
(these are, after all, the non-linear coupled Einstein equations) and not particularly
enlightning, at least not upon first sight, and will not be given here. A partial result,
however, namely the Poisson bracket of 7® with the momentum constraint part of the
Hamiltonian, {7, [ N®H,}, will be given below as it illustrates the significance of the

momentum constraint.

21.9 PROPERTIES AND SIGNIFICANCE OF THE CONSTRAINTS

Above we saw that consistency of the primary constraints (21.108)
pN=0 , pye=0, (21.118)

i.e. the condition that they are preserved under the time-evolution generated by the
ADM Hamiltonian, leads to the secondary Hamiltonian and Momentum constraints
(21.109),

PN=0 , pre=0 = H=0 , H,=0. (21.119)

One now needs to inquire whether further (tertiary, ...) constraints are generated by
the requirement that these secondary constraints are preserved under time-evolution.
It turns out that the story ends here and that no further constraints are required. Thus
the Hamiltonian and Momentum constraints will be satisfied at all times provided that
they are satisfied on the initial value surface. This is the Hamiltonian counterpart of the
statement about propagation of the constraints discussed in section 19.7 in connection

with the Bianchi identities and their implications.

From the form of the ADM Hamiltonian,

Hapw = [ d (N()H(w) + V() Ho(w) (21.120)
and
GH@) = [ @y N M)+ [y N HE). W) .
GiHal@) = [y N Ha(a). M) + [ @y V) o) 1)}

it is clear that checking this amounts to calculating the Poisson brackets among the
constraints and verifying that these are zero when the constraints themselves are satis-
fied, i.e. that the Poisson bracket algebra of the secondary constraints actually “closes”

on the secondary constraints.
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Even though this fact, and the resulting “surface deformation algebra”, are in some
sense one of the most interesting aspects of this entire story, we will skip the direct
calculation of the Poisson bracket algebra of the constraints here as it is somewhat
painful. However, it is useful to at least display the algebra of constraints (and we will

then at least partially verify it afterwards).

The Poisson brackets among the “naked” constraints H(x), H(y), Ha(z), Hp(y), as they
appear in (21.121), will involve delta-functions §(z,y) and their derivatives and are a
bit unattractive (see e.g. (21.130) and (21.138) below). In order to exhibit the Pois-
son bracket algebra and clarify its structure, it is more instructive and convenient to

explicitly introduce the “smeared” constraints
H[N] = /d% NH , P[N]= /d%; NH, (21.122)
in terms of which the ADM Hamiltonian takes the form
Hapy[N,N| = H[N]+ P|N] . (21.123)

Then the Poisson bracket algebra of the constraints is found to be

{H([N1], H[N>]} = P[N1V Ny — NoV Ny
(PN, HINT} = H[LyN] (21.124)
{PIN1], PIN2]} = PN, N2]]

Here the new lapse function and shift vectors appearing on the right-hand side are

1. the lapse function
LyN = N°9,N (21.125)

i.e. the (Lie) derivative of the lapse N along the shift vector field N'%;

2. the shift vector field
W1, No] = Ly N2 = =L, N1, (21.126)

i.e. the Lie bracket (9.22) among the shift vector fields N7 and N, with compo-

nents

N1, N2)® = NPOWNG — N2OWNE (21.127)

3. and finally a shift vector constructed from the two lapse functions N7 and Ny (and
the metric!), denoted by N1V Ny — N,V Ny, which has the components

(N1V Ny — NaVNp)* = N1VeNy — NoVON;

, (21.128)
= ha (NlabNg - Ngale)
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There are many things that can and should be said about this algebra, its properties,
its interpretation, its deeeper meaning, and its consequences, but in the following I will

just make some rather elementary and simplistic comments.

First of all, recall that we expect the Hamiltonian and Momentum constraints to re-
flect the general covariance of general relativity. This general covariance is manifest in
the covariant 4-dimensional Lagrangian formulation, but the Hamiltonian formulation
requires a split of the 4-dimensional space-time into space and time via the choice of a
foliation of space-time by spacelike hypersurfaces Y;, encoded in the choice of a time
evolution vector field 9; with (21.16)

(8,)* = NN® 4+ ESN® | (21.129)

In this Hamiltonian formulation, spatial general covariance is still manifest, and this is
reflected in the fact that the part of the constraint algebra that is easiest to understand

is the algebra among the momentum constraints, or its “naked” counterpart
{Ha(z), Ho(y)} = Ho(2)02a0(z, y) + Ha(2)0p06(2,y) (21.130)

Indeed, the Momentum constraint P[] associated to some vector field £ on ¥ implements

the action of (infinitesimal) spatial diffeomorphisms
dex® =& (21.131)

on the phase space variables, and thus on functions on phase space, namely the Lie

derivative L¢, via Poisson brackets,
8¢ F (hap, ) = {F (hap, 7°), P[E]} = LeF (hqp, ©*°) (21.132)

(a proof of this is postponed to the very end of this section). As discussed in various
ways in section 9, the Lie derivative provides a representation of the Lie algebra of

vector fields (with respect to the Lie bracket) on tensors,
[Leys Le,) = Ligy ) (21.133)

and the momentum constraint algebra shows that on phase space variables this repre-

sentation is lifted to a representation at the level of Poisson brackets,

{Pl&1], Pl&a]} = P61, &) - (21.134)

Correspondingly, the Poisson bracket
{HN], PI§}} = —HILeN) (21.135)
among the Hamiltonian and Momentum constraints, in its “half-naked” form
{H(2), P[£]} = 0a(E*H)(2) (21.136)
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simply expresses the fact that A is (and hence transforms as) a scalar density (9.70),
O¢H = LeH = 0,(§“H) . (21.137)
The remaining Poisson bracket relation, among the Hamiltonian constraints,

{H[N1], H[N2]} = P[N1V Ny — N,V N |

(21.138)
& {H(z), H(y)} = (W (@) Ho(x) + h(y)Ho(y))Duad(2,y)

is somewhat more enigmatic. In particular, since the right-hand side is field-dependent
(as it depends on h), the Hamiltonian constraint does not complete the 3-dimensional
diffeomorphism Lie algebra of spatial vector fields (represented by the momentum con-

straints) to the 4-dimensional diffeomorphism Lie algebra of space-time vector fields.

Rather, the Poisson bracket algebra of the constraints represents what is known as the
surface deformation algebra, subtly different from the algebra of space-time diffeomor-
phisms, as it acts not on the space-time but on the space of embeddings of spatial
hypersurfaces.

Thinking of the surfaces ¥ in terms of an embedding x®(y®), with
E%(y) = Oye® (21.139)

this surface deformation algebra is essentially the algebra generated by the

Caly) = E5(y) (21.140)

oz (y)

(which do indeed generate coordinate transformations on the hypersurface), and the

5
oz (y)

with N the unit normal vector field to the hypersurfaces (generating normal deforma-

Cly) = N“

(21.141)

tions of the hypersurfaces).

REMARKS:

1. From the surface deformation algebra and the requirement that evolution from
a hypersurface XJ; to a hypersurface X should be independent of how one slices
/ foliates the space-time between the two hypersurfaces, one can derive that the
vanishing of the generators H and H, of this algebra must be imposed as con-

straints.*’

47S. Hojman, K. Kuchar, C. Teitelboim, Geometrodynamics regained, Ann. Phys. (NY) 96 (1976)
88-135. For a detailed discussion of this and further references, see e.g. chapters 3 and 4.1 of C. Kiefer,
Quantum Gravity (2nd edition).
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2. The momentum constraint arising in general relativity is the exact counterpart of
the Gauss law constraint in the canonical formulation of Maxwell theory discussed

in section 21.5.

3. The Hamiltonian constraint, on the other hand, has no counterpart in Maxwell
theory, and is a characteristic general feature of generally covariant (reparametri-
sation invariant) systems. Indeed, in a generally covariant system time evolution
is in a sense a gauge symmetry because time-translation is the coordinate trans-
formation ¢ — t 4+ ¢. As a consequence, the generator of time-evolution, i.e. the
Hamiltonian H, is also a constraint, i.e. constrained to be zero H = 0. This
is something we already saw in (2.126) for the time-reparametrisation invariant

action principle for geodesics in section 2.5.

4. Taken at face value, this suggests that in a generally covariant theory there is no
dynamics, or that the dynamics is “frozen”, and that the only allowed observables
are functions on the phase space that Poisson-commute with the Hamiltonian, i.e.
that are in some sense constants of motion. This cannot be strictly correct, of
course, and the problem appears in a different light once one fixes a gauge, i.e.
makes a choice of coordinates. Nevertheless, this does not solve all the problems
and there are endless debates in the literature about these issues. In particular, the
debate over what are acceptable observables in a generally covariant (quantum)

theory continues to this day.*®

We now turn to the proof of the relation (21.132), In order to establish (21.132), it is
sufficient to show that the canonical Poisson brackets (21.112),

{ha(), 7 (y)} = 5(620¢ + 6365)8(2,y) (21.142)

imply that

d¢hab = {hav, P[§]} = Lehap 21.143
5 ab — ab P =L ab ( ‘ )
T = {7T ) [g]} = Lem :

The first relation is equivalent to the identity (21.115) already derived above, since
Lehay = Valp + Vs - (21.144)

The proof of the 2nd relation is a bit more complicated as it also involves the metric vari-
ation of the Christoffel symbols appearing in the covariant derivative V7%, Recalling

that 7°? is a tensor density,

7TCd _ \/E(ch _ hch) = \/Epcd , (21145)

48See e.g. C. Rovelli, Quantum Gravity or S. Giddings, D. Marolf, J. Hartle, Observables in effective
gravity, arXiv:hep-th/0512200 for different points of view and discussions of these issues.
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this covariant derivative is
Var = VAV gpd = 9gm°d 4+ T¢, m°? . (21.146)
Likewise, the Lie derivative of this tensor density is (cf. sections 9.4 and 9.6)

Len® = (LeVh)p™ + VhLep™
— %\/ﬁ(thLghcd)pab + \/Eprab

_ _ _ _ 21.147
— \/E(vcgc)pab + \/E(chcpab - pCchfa - pacvcgb) ( )
— ﬁc(gcﬂ_ab) _ ﬂ_cbﬁcga _ ,n_acﬁcgb )
Now, to calculate
{ﬂ“b(x), Pl¢]} = —2/d3y {Wab(:E),ﬁc(y)vdWCd(y)} (21.148)

we make the hg,-dependence more explicit (but suppress the y-dependence in this equa-
tion),

{ﬂ-ab(x)v Sc?dﬂ-Cd} = {ﬂ_ab(x)7 hcefevdﬂ'Cd}

, i} (21.149)
_ {Wab($),hce}£evclﬂ'6d+hcege{ﬂ'ab, cdf},n.df .

From the 1st term, one immediately obtains (from the canonical Poisson brackets, and
with the factor of (-2) and the integration over y from (21.148))

{(7P(2), hee }EV gt = €0V m 4 €97 4t (21.150)

For the calculation of the 2nd term, we observe that taking the Poisson bracket with 7%
is equivalent to taking (minus) the variation with respect to h,,. We can therefore use

the formula (20.14) for the variation of the Christoffel symbols under metric variations,
hce5hfcdf = %(?,«Shed + ?déhef — ?eéhdf) . (21.151)

Now an integration by parts (moving the derivatives off the delta-functions) shows that

the 2nd term contributes
hcefe{ﬂab, I_’Cdf}ﬂdf = ?c(fcﬂ“b) — ?d(faﬂbd) — ?d(gbwad) ) (21.152)
Putting everything together, one finds precisely the Lie derivative (21.147),

3em® = {7, PE]} = Ve(£n™) = 7V £" = 19V " = Lem® (21.153)

21.10 BOUNDARY TERMS IN THE ADM ACTION AND HAMILTONIAN

So far in this section we have assumed that the spatial slices ¥ have no boundary,

0% = (), and we have therefore also ignored possible boundary terms that are required
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or generated by the presence of such a boundary. In the remainder of this section, i.e.
here and in subsections 21.11 and 21.12 below, we will look at some of the issues and

features that arise when one takes these into account.

To set the stage, recall that we saw in section 20.5 that differentiability of the gravita-

tional action in the sense of variational calculus, i.e. (20.68)

05g[9a8] = / V9 Gapdg™® (21.154)

without boundary terms on the right-hand side for Dirichlet boundary conditions, can
be achieved e.g. by adding the Gibbons-Hawking-York boundary term to the Einstein-
Hilbert action (20.67),

Sgl9a8) = SEH[9ap) + Sany[9as]

:/\/§R+2ejé\/ﬁK.

Moreover, we saw in section 21.2 that the Gauss-Codazzi decomposition of the Ricci

scalar (21.5) ,

(21.155)

R=R+e(K?~ K*K,5) — 2V (NPVsN® — N*VzNP) | (21.156)

automatically takes care of the Gibbons-Hawking-York boundary term for “initial” and
“final” spacelike hypersurfaces ¥; and ¥ which are part of the foliation of the space-

time M into spacelike hypersurfaces ¥;, with normal vector N, since
Nuo(NPVsN® — N°VgNP) = —N,N°VzNP = Ky, . (21.157)
We also noted in section 21.2 that, if in addition to initial and final spacelike boundaries
Y there is a timelike boundary B,
oM = {3;}U{-%;}UB , (21.158)

then additional boundary terms are required in the action (and also in the Hamiltonian).
We will assume in the following that the boundary B is orthogonal to the spatial slices

Y in the sense that the normal N® to X is orthogonal to the normal r* to B,
N4, =0 . (21.159)

Specifically, if the constant time hypersurfaces ¥ = ¥, have (asymptotic) boundary
S; = 0%, then the timelike boundary B is the union of all these surfaces S;.*

“For a discussion of boundary terms for non-orthogonal boundaries see e.g. S. Hawking, C. Hunter,
The Gravitational Hamiltonian in the Presence of Non-Orthogonal Boundaries, arXiv:gr-qc/9603050,
and I. Booth, R. Mann, Moving Observers, Non-orthogonal Boundaries, and Quasilocal Enerygies,

arXiv:gr-qc/9810009, and references thereto.
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Tracing back through the various derivations in this section, one finds that there are 2
contributions to this boundary term for the action on B (in addition, later on we will
identify a boundary term contribution to the Hamiltonian, and thus to the 1st order
Hamiltonian form of the ADM action):

1. Gibbons-Hawking-York Boundary Term

One contribution to the gravitational action not (completely) accounted for yet is
the Gibbons-Hawking-York boundary term associated with the boundary B, i.e.

the term

S = 26}1{ Kp = 274 Vhs(g®? — PV ars (21.160)
B

Here r? is the unit (outward-pointing) normal to B, r®r, = +1, hg is the absolute

value of the determinant of the metric

hBas = (9ap — Tam8)lB , hBagr” =0 (21.161)

induced on B. The projection term in the expression for the trace of the extrinsic

curvature is not strictly speaking necessary, since r*r, = 1 implies
(9°% = 198\ org = ¢*PVars = Var® (21.162)
but it will be instructive to keep it.

2. Gauss-Codazzi Boundary Term

Adopting the Gauss-Codazzi decomposition of the Einstein-Hilbert Lagrangian,
there is an additional boundary-term contribution at B from the total-derivative

term, namely
Sy = —274 Vh5 7o(NPVsN® — N*VgNP) . (21.163)
B

This is not equal to the standard Gibbons-Hawking-York boundary term for this
boundary component (which would be expressed solely in terms of 7%, not also
N®). Using the assumption of orthogonality r,N® = 0, and N*N, = —1, this

can by an integration by parts be written as
Sy =+2 ]4 Vhs N*NOV 15 (21.164)
B

These two contributions combine into

Sy + Sy = 2% Vhs sV ars (21.165)
B
where
SaB = JaB + NaNB —Talp (21166)
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with
5apNP = 505m7 =0 . (21.167)

Thus s,g represents the metric induced on the boundary surfaces
S =0 =%X:NB . (21.168)

As a consequence, we have
Vhs = Ny/s (21.169)

and
ks = sV g (21.170)

is the extrinsic curvature of Sy in ¥;. Thus this new boundary term modifies the 2nd

order ADM form (21.42) of the complete gravitational action to

SADMZ/dt [/ 3z \/EN(R+K“bKab—K2)+2]é
s

d2x\/§NkS] . (21171)
St

The Legendre transform of the ADM Lagrangian to the Hamiltonian will thus, in partic-
ular, also lead to a boundary term in the ADM Hamiltonian (21.97), namely (reinserting

the coupling constant)

Lapy — Lapa + Vsd*z Nkg
87TGN Sy
) (21.172)
= Hapm — Hapm — Vsd?z Nkg .
87TGN Sy

However, in performing the Legendre transformation, we obtained (rather: neglected)

yet one more boundary term, namely from the integration by parts in (21.95),
21V Ny = 2V o (1N + NH, . (21.173)

Therefore the total Hamiltonian in the presence of timelike boundaries (or: when the

spatial slices ¥ have boundaries) has the form

HADM:/dgﬂf (NH+NaHa)
P

1
8rG N

(21.174)

d?z Nymw®ry

7{ Vsd*z Nks +
S

87TGN Sy

REMARKS:

1. The necessity of these boundary terms in the Hamiltonian can also be under-
stood form the requirement of having a differentiable Hamiltonian in the sense of
variational calculus and, as we will see in section 21.11 below, this provides an

alternative route to determining these boundary terms.
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2. The other significance of these boundary terms lies in the fact that they give the
“on-shell” value of the Hamiltonian, i.e. the value of the Hamiltonian on a solution

satisfying (in particular) the Hamiltonian and Momentum constraints, namely

H=H,=0 = Hppy=-

1 2 ab
87rGNf€d - (N\/Ek:s N rb) . (21.175)

In particular, as such they provide a candidate definition of the “energy” of a

solution. This will be briefly discussed in section 21.12 below.

21.11 ALTERNATIVE DERIVATION OF THE HAMILTONIAN BOUNDARY TERMS

Turning to the 1st issue, recall that the Hamiltonian equations of motion are assumed

to be (21.110)

1 _ 6HADM .ab 5HADM
hab = W s ™ = —Tab (21176)

However, validity of these equations (differentiability of the Hamiltonian in the sense of
variational calculus) requires that the variation of the Hamiltonian with respect to the

canonical variables hgy, and 7% has the form
aby __ 3 ab ab
SHaparlhay, 7] = /d - [(. )8y + (. a0 (21.177)

without any boundary terms. Analysing the bulk Hamiltonian

HADM;/d?’J} (N’H—FNWHG) 5 (21.178)
Y
with (21.102)
(167Gy) b Vh o
= Qe — ———R 21.179
& Ve T T GGy ( )
and
HE = —2Vnte (21.180)

we see that

e no boundary term arises from the variation of the 1st (kinetic) term in the Hamilto-

nian constraint, as it does not depend on the derivatives of the canonical variables;

e a boundary term will arise from the variation of the 2nd (potential) term R, as it

depends on the 2nd derivatives of hg;

e a boundary term will arise from the integration by parts required to express the

variation of the Momentum constraint as (...)67.

432



The latter issue is obviously taken care of by simply reinstating the total derivative term
in (21.173) and adding it to Happs. This immediately leads to the 2nd boundary term
n (21.174),

H — H
ADM ADM + StGN

In order to resolve the issue arising from the variation of R, we can observe that this is

74 Pz Num®ry, (21.181)
S

simply the 3-dimensional counterpart of the issue that arises when varying the Einstein-
Hilbert action with Lagrangian R. Thus we can appeal to the discussion of the Gibbons-
Hawking-York boundary term in section 20.5 to conclude that the required boundary
term to be added involves the trace kg of the extrinsic curvature of the boundary
Sy = 0% in ;. Noting that (a) the normal vector is spacelike (e = +1), and (b) that
the Hamiltonian involves (—NR) rather than (+R), we deduce from (21.155), say, that
this requires modifying the bulk Hamiltonian H 4pas according to

Hapy — Hapm —

2x Nkg . 21.182
8GN7§fd:c ks (21.182)

We thus conclude that validity of the Hamiltonian equations of motion in the presence
of a spatial boundary S = 0% requires adding boundary terms to the bulk Hamiltonian
according to

HADM:/d?’x (NH+NaHa)
(21.183)

7{\/_612:17 Nkg + ?éd?x Nom®ry

This is identical to the result (21.174) obtained before by different means.

87TGN 87"'GN
21.12 SIGNIFICANCE OF THE HAMILTONIAN BOUNDARY TERMS: ADM ENERGY

As mentioned at the end of section 21.10, the value of the Hamiltonian on a configuration

(hap, ™) satisfying the Hamiltonian and Momentum constraints is

1
Hapu[N N = - 7@ & (N\/Eks —Nawabrb) . (21.184)

While in the spatially closed case, 9% = (), this on-shell value of the Hamiltonian is zero,
it has a significance e.g. for asymptotically flat space-times (the prototypical example
being the Schwarzschild metric). While in this case there is no spatial boundary 0¥ = S
in the strict sense, in the asymptotically flat context variations of hg;, should be restricted
to preserve this asymptotic flatness. The boundary terms in the Hamiltonian derived
above are also appropriate in this setting (as one is essentially imposing the Dirichlet
condition hgp = 64 “at infinity”).?"

50Defining and implementing the conditions for asymptotic flatness requires and merits more care.
See e.g. R. Wald, General Relativity, chapter 11, for a careful discussion of all the issues we are glossing
over in the following.
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For a given configuration (g, 7*), the Hamiltonian H,pys is a functional of (the
asymptotic values of) the lapse N and shift vector N'*. Recalling (21.16),

(8,)* = NN® + ESN® | (21.185)

and noting that asymptotically the time-evolution of static observers in the Minkowskian
geometry at infinity is orthogonal to the spatial directions, the choice N = 1 and
N = 0 (asymptotically) gives the value of the Hamiltonian associated to asymptotic
time-translations. As such, it provides a candidate definition of the gravitational energy

of a configuration (hqp, 7%), the ADM energy

?

E

1 d? ks . 21.1
87TGN 1m?§ z /skg (21.186)

For a boosted observer at infinity, his proper time would correspond to a non-trivial
linear combination of the 2 terms in (21.185), hence to a non-trivial shift vector N®.
The second term in (21.184), depending on N'® is therefore naturally associated with a
linear momentum (and other choices of lapse and shift can be used analogously to define

candidate notions of angular momentum etc.), but we will not explore this further here.

The above candidate expression (21.186) for the energy still requires some improvements.
First of all, the limit here refers to taking the boundary 2-sphere S to infinity. This can
be implemented more concretely by introducing asymptotically a Cartesian coordinate
system on X, with an associated notion of radial distance r and considering the limit of
the coordinate spheres Sg of radius r = R as R — oo. Thus we can write a somewhat

improved version of (21.186) as

jojs lim }[ d®z /sks . (21.187)

87TGN R—

The problem with this expression is that unfortunately it diverges even for the flat

metric hgb = 04p ON 2,
B0, dy®dy® = Sapdy®dy® = dr? + r2dQ? . (21.188)

Indeed, the trace of the extrinsic curvature of a 2-sphere Sg of radius R is (18.38)

2
== 21.189
S R Y ( )
while /s = R?sin#), so that
2 0 2 2
7{ d°z \/skg = 4TR” = = 87TR — oo . (21.190)
Sk R

It is natural to assign the energy F = 0 to Minkowski space (and its flat slices), and
it is therefore also reasonably natural to subtract this divergent contribution from F in
(21.187). We thus finally arrive at the definition of the ADM Energy

lim Pz /s(ks — k2) . (21.191)

87TGN R—o0 Sk

Expy = —
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Here k‘g is defined to be the extrinsic curvature of S embedded in flat space R? in such
a way that the induced metric on S is the same as that induced on S by the metric A,
on X (in particular, then, /s is the same for both terms and therefore only appears as

an overall factor in the integrand).

Note the similarity with the background-subtracted gravitational action (20.70)

S(gap] = /\/§d4x R+ 2672 Vhdy (K — K°) | (21.192)

briefly mentioned in section 20.5, and which would have also led us to (21.191).

To see that (21.191) gives a finite and meaningful result in cases of interest, we con-
sider the prime example of an asymptotically flat solution to the Einstein equations,
namely the Schwarzschild solution describing the exterior of a spherically symmetric
star (see section 24 and subsequent sections for a detailed derivation and discussion of

this metric).

In the standard Schwarzschild coordinates, this metric has the form (24.37)

ds* = —f(r)dt* + f(r)"'dr* +r2dQ* | f(r)=1- — (21.193)

where the parameter m is related to the mass M of the star by m = GyM (in units
with ¢ = 1). We can directly work with the (sufficiently simple) exact expression for
the metric, but it will be sufficient to look at the asymptotic (large r) behaviour of
the spatial metric on the slices > of constant time ¢t. As a consequence, the following
analysis applies not just to the Schwarzschild metric but to any metric of the above

general form, with

firy=1- 2Tm +0(1/r?) . (21.194)

To first order in an expansion in m/r, the metric on a hypersurface ¥ is given by
ds?|i=t, ~ (1 + 2m/r)dr? +r2dQ? . (21.195)

Alternatively, in so-called isotropic coordinates, the metric takes the form given in
(24.46), and the asymptotic form of the spatial metric on the slices ¥; of constant time

t is (calling the radial coordinate r again)
ds®|i=ty = (1 + 2m/r)(dr? + r2dQ?) . (21.196)

Note that even though the (rr)-components of the metric (and hence the radial normal

vector to the spheres) is the same in both coordinate systems,
ro = (14 2m/r)Y20,r ~ (1 + m/r)0ar | (21.197)

the induced metric on the spheres is different. Thus even though in both cases the flat

reference metric is simply

(d80)2 — d?"2 + 7"2dQ2 , 7‘0 = 0OuT , (21198)

«
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also the required isometric embedding into flat space will have to be different in the
two cases, and we will now see how these things conspire to give the same (and highly
reasonable) result

Eapy =M . (21.199)

We will use that the trace of the extrinsic curvature can be written as
ks = $5*8r°05(saB)|r=r (21.200)
where sap is the induced metric, and that

e =1 = 19 ~0+m/r) P~ (1—m/r) . (21.201)

1. Schwarzschild coordinates
The induced metric on S is R?dQ)? and thus the extrinsic curvature is

2q_m

7z1-7) - (21.202)

kS’r:R ~

In the flat reference metric, one obtains the same induced metric if one also chooses

the radius r = R, and (as above)

2

S —— 21.203
S R Y ( )

so that 5

m
ks — kg ~ ~ 57 (21.204)
Thus the ADM energy is
_ : 2(_ 2y _ _

Bavy =g fim_ 0 R /R =Gy =M (21209

In particular, this is finite (and reasonable).

We also see from this that any subleading terms in a (1/r)-expansion would not
have contributed to the integral in the limit, so it was consistent to ignore them

throughout.

2. Isotropic Coordinates

In isotropic coordinates, the induced metric on a sphere of radius r = R is
(1+2m/R)R*d0? = (R? + 2mR)dQ* . (21.206)

Therefore the trace of the extrinsic curvature is
2 2m

ks~ (1 —2m/R)(1/R*)r*0a(r? + 2mr)|r—g ~ =01 -7 (21.207)

(note that this is not the same as the corresponding expression (21.202) in Schwarz-

schild coordinates). The reference term k% is the extrinsic curvature of a 2-sphere
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embedded in flat space whose induced metric is equal to (21.206), i.e. it is the

extrinsic curvature of a sphere with radius R° characterised by

(R%)?=(1+2m/R)R* = R~ (1+m/R)R . (21.208)
Thus ) 0 Y
Kg= g~ 51— = 21.2
s=m~gl-%7), (21.209)
and therefore 5
m
kg — k2 ~ ~ 7 (21.210)

as in Schwarzschild coordinates. In the R — oo limit, only the leading term of
the induced volume element will contribute, and therefore the result is indeed

identical to that obtained in Schwarzschild coordinates,

li Q(R?+2 —2m/R?
87TGNR1—I>rcl>o SRd (R*+2mR)(—2m/R?)

R S 2/ 2y _ _
- 87TGNR11_13C1>O£RdQ(R J(—2m/R2) = m /Gy = M .

Expyu = —
(21.211)

In section 23.4 we will encounter a seemingly different expression for the ADM energy,
deduced and extrapolated there not from a canonical analysis but rather from the

linearised Einstein equations, namely (23.33)

1
167G N

Eapy = f{ dS; (VEhgy, — Vih) . (21.212)
53

As mentioned there, it can be shown that this agrees with the canonical expression

when the induced metrics on S, agree. Moreover, in section 24.8 we will evaluate this

expression for the Schwarzschild metric, again both in Schwarzschild and in isotropic

coordinates, and reassuringly also find Eapys = M in this way.
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22  ENERGY-MOMENTUM TENSOR II: SELECTED TOPICS

22.1 ENERGY CONDITIONS

When confronted with the Einstein equations
Gop =8mGN Top (22.1)

one can either try to find exact solutions in certain specific situations, or one can try to

learn or prove something in general about solutions to the Einstein equations.

For the former, one usually starts by specifying the matter content and the energy-
momentum tensor (either phenomenologically or microscopically), and then furthermore
imposes some symmetry conditions, and this is how we will usually proceed in other
parts of these notes, when discussing e.g. solar system physics, black holes or cosmology.
In this case, one thus in particular chooses (or is at least well-advised to choose) an
energy-momentum tensor with reasonable and well-motivated physical properties from
the outset.

For the latter, it is clear that in order to be able to say anything of substance at all, one
needs to impose some conditions on the energy-momentum tensor Ti,3. After all, any
metric whatsoever can be considered to be a solution of the Einstein equations, with

“energy-momentum tensor” defined by

1
= Gag -
8GN p

Tos (22.2)

The problem with this approach (this is sometimes referred to as the poor man’s way of
solving the Einstein equations, but this is too charitable a characterisation and maligning
poor men) is that generically this candidate “energy-momentum tensor” will not have
any of the very general properties one would usually associate with reasonable forms of
matter.

Examples of such general requirements or reasonable properties are

positivity of energy or energy density
e causal propagation of the energy flow of matter

e giving rise to an attractive (rather than repulsive) gravitational force

It turns out that (various combinations, or variants, of) such conditions can be imple-
mented by imposing some simple general constraints on the energy-momentum tensor
known as Energy Conditions. The simplest and most common among these take the

form of pointwise conditions on the contraction of an energy-momentum tensor with
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causal (i.e. timelike or null, or non-spacelike) vectors. One can also consider weaker
“averaged” versions of these conditions, averaged either along geodesics or over regions

of space(-time), say, but we will only consider the pointwise conditions here.

1. Weak Energy Condition (WEC)

Given an energy-momentum tensor 7,3, the energy density seen by an observer
with timelike (and future directed) 4-velocity tangent vector t* is Tagto‘tﬁ . The
weak energy condition is the (plausible) statement that this is non-negative for
any such observer,

Topt®t® >0 Vit: 1%, <0 . (22.3)

By continutiy, this inequality is then also valid for null vectors £¢