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Introduction

In order to construct a general theory of (non-singular)dgaiic forms 1
and orthogonal groups over a commutative riggne should first in-
vestigate the possible generalizations of the basic clasiols (when
kis a field). These are

() Diagonalization (if chak # 2), and Witt's theorem.

(I) Construction of the classical invariants: dimensidigcriminant,
Hasse invariant.

This course is mostly concerned with the algebraic appasahich
is preliminaryto a generalization of Il, particularly of the Hasse invari-
ant. Consequently, quadratic forms will receive ratheleliattention,
and then only at the end. It will be useful, therefore, toflyieutline
now the material to be covered and to indicate its ultimaleveace to
quadratic forms.

We define aguadratic moduleover k to be a pair P, g) with P €
P, the category of finitely generated projectikemodules, and with

q: P — kamap satisfyingy(ax) = a’q(x) (aek, aeP) and such that
(xy) — q(x+Yy) —q(X) — q(y) is a bilinear form. This form then in-
duces a homomorphisfd — P* = Homy(P, k) (by fixing a variable),
and we call P, ) non-singularif P — P* is an isomorphism.

If (P1,01) and P2, qp) are quadratic modules, we have the “or-
thogonal sum” P1,q1) L (P2,q2) = (P1 & Py, q), whereq(xq, xo) =
O (X1) + G(X2).

GivenP € P, in order to find aq so that €, g) in non-singular we 2
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2 Contents

must at least have ~ P*. Hence for arbitraryP, we can instead take
P& P*, which has an obvious isomorphisnf,* )", with its dual. In-
deed this is induced by the bilinear form associated witthyperbolic
module

H(P) = (P& P".q),

whereqp(x, f) = f(X)(xeP, feP*). The following statement is easily
proved:

(P, g) is non-singulars (P, q) L (P,—q) ~ H(P).

Let Q denote the category of non-singular quadratic modules and

their isometrics. InP we take only thasomorphismsas morphisms.
Then we can vievill as thehyperbolic functor

HZE’—)Q,

where, forf : P — P/, H(f) is the isometryf & £ H(P) — H(P).
Moreover, there is a natural isomorphism

H(P & P’) ~ H(P) L H(P).

With this material at hand | will now begin to describe the isau
In chapter Ll we establish an exact sequence of Grothendieclpsg
of certain categories, in an axiomatic setting. Briefly, mage we are
given a categorys’ in which all morphisms are isomorphisms (i.e. a
groupoid) together with a produat which has the formal properties
of 1L and® above. We then make an abelian group out of@bpn
which L corresponds te-; it is denoted byKe% . A related grouK;%,
is constructed using the automorphisms of object§&of Its axioms
resemble those for a determinantHif. ¥ — %" is a product preserving
functor (i.e.H(A L B) = HA L HB), then it induces homomorphisms
KiH : Ki% — Ki%”,i =0, 1. We introduce a relative categabH, and
then prove the basic theorem:

There is an exact sequence

K]_(g — Kl(g/ — Koq)H - Ko(g i Ko(g’,
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providedH is “cofinal”. Cofinalmeans: giveri'e%”’, there exist8’ —
¢’ andCe% such thathA’ 1 B’ ~ HC. This theorem is a special case of
results of Heller [1].

The discussion above shows that the hyperbolic functosfaeiall
the necessary hypotheses, so we obtain an exact sequence

[H] KiP — KiQ — Ko®H — KoP — KoQ — Wit (k) — 0.

Here we define Wittk) = coker &H). It corresponds exactly to the
classical “Witt ring” of quadratic forms (see Bourbaki [2][The K;P,

i = 0, 1 will be described in chaptéi 1K,Q is related to the stable

structure of the orthogonal groups over

The classical Hasse invariant attaches to a quadratic fwen @ 4
field k an element of the Brauer group B9 ( It was given an intrinsic
definition by Witt [1] by means of the Gtiord algebra. This necessitates
a slight artifice due to the fact that the fidird algebra of a form of odd
dimension is not central simple. Moreover, this complmatienders the
definition unavailable over a commutative. ring in gene@ll.C. Wall
[1] proposed a natural and elegant alternative. Insteadoafifiying the
Clifford algebras he enlarged the Brauer group to accommodate the
and he calculated this “Brauer-Wall” grolW(k) whenk is a field.
Wall's procedure generalizes naturally to adayln order to carry this
out, we present in chaptdrs[2, 3, &hd 4, an exposition of taaeBr\Walll
theory.

ChapteR contains a general theory of equivalences of aagsgof
modules, due essentially to Morita [1] (see also Baks [24) @abriel
[]. Itis of general interest to algebraists, and it yieldsparticular, the
Wedderburn structure theory in a precise and general foris.also a
useful preliminary to chaptét 2, where we deal with the Braweup Br
(k) of azumaya algebras, following the work of Auslander-Guéeh [1].

In chapte¥ we study the categoky, of graded azumaya algebras, and

extend Wall's calculation oBW(K), giving only statements of results,
without proofs.

Here we find a remarkable parallelism with the phenomenon vgit
nessed above for quadratic forms. Egth denote the category of “faith-
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fully projective” k-modulesP (see chaptdi 1 for definition), which have
a grading modulo 2 P = Py @ P;. Then the full endomorphism algebra
END(P) (we reserve End for morphisms of degree zero) has a natural
grading modulo 2, given by maps homogeneous of degree zdrorem
respectively.

Matricially, (38) = (83) + (25). These are the “trivial” algebras
in Az ; that isBW(K) is thegroup of isomorphism classes of algebras in

Az W|th respect tw, modulo those of the forreEND(P). It is a group
because of the isomorphism

A®A* ~ END(A),
whereA* is the (suitably defined) opposite algebrafgffor A € Az
Morever, A is faithfully projective as &-module. Finally we note that

END: FP — Az
=2 =2

is a functor, if in both cases we take homogeneous isomarghis
morphisms. For, iff : P — P” ande € END(P), thenEND(f)(e) =
fef1 e END(P’). Moreover, there is a natural isomorphism

END(P® P’) ~ END(P) ® END(P’).
Consequently, we again obtain an exact sequence:
[END]: KiFP — K;Az — Ko®END — KoFP — KpAz — BW(K) — 0.
=2 =2 =2 =2

Chapteib finally introduces the categd@pyof quadratic forms. The

Clifford algebra is studied, and the basic structure theorennéoCtif-
ford algebra is proved in the following form: The diagram pfqduct-
preserving) functors

P _.Q
/\| Clifford
FP
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commutes up to natural isomorphism. Hereenotes the exterior

algebra, graded modulo 2 by even and odd degrees.

This result simultaneously proves that theffolid algebras lie in
Az , and shows that there is a natural homomorphism of exaceseqs
=2

m o - KP K19 Ko®H KoP KO? — Witt(k) — 0

L] ] ] e

END - KlF:P2 — K1A=Z2 —> Ko®END — KOF:P2 — K0A=Z2 — BW(K) — 0

This commutative diagram is the promised generalizatiorihef
Hasse invariant.






Chapter 1

The exact sequence of
algebraic K-theory

The exact sequence of Grothendieck groups constructed $8 Ba 7
ChapteiB] is obtained here in an axiomatic setting. The sardene
in a considerably, more general setting by A. Heller in Hell§. A
special case of the present version was first worked out byh8s€
(unpublished).

In the last sections we shall describe the Grothendieck pgrat
certain categories of projective modules.

1 Categories with product, and their functors

If ¢ is a category, we shall denote by &9j the class of all objects of
%, and by%'(A, B), the set of all morphismé — B, A, Beobj%. We
shall assume the isomorphism classes in our categoriesnoskets.

A groupoidis a category in which all morphisms are isomorphisms.

Definition . A category with product is a groupoi@’, together with a
“product” functor
1L:EXE - F,

which is assumed to be “coherently” associative and comiiugan
the sense of MacLangl[1].
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That is, we are given isomorphisms of functors
Lo(lgx L) xLlo(L X1ly) : EXEXE > F

and
LoT =1L EXE —>C,

whereT is the transposition o” x €. Moreover, these isomorphisms
are compatible in the sense that isomorphisms of producteaddral
factors obtained from these by a succession of three-falskaziations,
and two-fold permutations, are all the same. This permiteusrite,
unambiguously, expressions likg L --- L A, :i_il A.

A functor F : (¢,1) — (¥’,L’) of categories with product is a
functorF : ¥ — %’ which “preserves the product”. More precisely,
there should be an isomorphism of functdfs L~1’" o(F x F) :
¢ x € — ¢’, which is compatible, in an obvious sense, with the asso-
ciativity and commutativity isomorphisms in the two categs.

Hereafter all products will be denoted by the same symbh@xcept
for special cases where there is a standard notation) andlinesually
write ¢ instead of¢’, 1).

Examples.1) Letkbe a commutative ring and IBtdenote the category

of finitely generated projective modules okawith isomorphisms as
morphisms. It is a category with product if we set .

2) The full subcategoryP of P with finitely generated faithful projec-
tive modules as objects. Here we set ®y.

3) The full subcategoryic of FP whose objects are finitely generated
projective modules of rank 1. We set ®x.

4) The categor of quadratic modules ovdrwith isometries as mor-
phisms. We takeL to be the orthogonal sum of two quadratic mod-
ules.

5) The categonAz of Azumaya algebras ovér(see Chaptdr3). Here
take L= ®. B
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Let (k) denote one of the categories mentioned above, ahkdHet
k' be a homomorphism of rings. Théfgy induces a functo’(k) —
(K') preserving product.

If we neglect naturality conditions, then a category witbdarct is
one whose (isomorphism classes of) objects are a comnmatsdini-
group. TheGrothendieck groups got by formally introducing inverses
and making this semi-group into a group.

Definition. Let% be a category with product. The Grothendieck group
of ¢ is defined to be an abelian group¥, together with a map

(% : 0bj¢ — Ko,
which is universal for maps into abelian groups satisfying

Ko. if A~ B, then(A)(g = (B)(g,
Ki. (AL B)g = (A)¢ + (B)s.

In other words ifG is an abelian group ang: obj4 — G amap sat-
isfying KO andK 1, then there exists a unique homomorphism of groups
W Kg@é — G such thatp = y0( )g.

ClearlyKo% is unique. We can construkiy% by reducing the free 10
abelian group on the isomorphism classes of@Mijy relations forced
by K1.

When% is clear from the context, we shall write (). instead of()

Proposition 1.1. (a) Every element of & has the form(A) — (B) for
some A, Bobj%.

(b) (A) = (B) & there exists G obj% suchthat ALC ~ B L C.
(c) If F: % — ¥’ is afunctor of categories with product, then the map
K()F . Ko(g — Ko(g’,

given by(A)y — (FA)¢ is well defined and makesyké functor
into abelian groups.
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We defer the proof of this proposition, since we are goingrave
it in a more general form (propositién1.2 below).

Definition. A compositionon a categorys” with product is a sometimes
defined composition of objects of#’, which satisfies the following con-
dition: if Ao A" and Bo B’ are defined (A, A B, B € 0bj%), then so
alsois(A L B)o (A’ L B), and

(ALB)o (A LB)=(AcA) 1L (BoB).
When this structure is present, we shall require the fusdimipre-
serve it:F(Ao B) = (FA) o (FB).
Definition. Let% be a category with product and composition.

TheGrothendieck groupf % is defined to be an abelian grodp?’,

together with a map
()¢ : 0bj% — Ko,

which is universal for maps into abelian groups satisfyi K1 and

K2. if Ao Bis defined, then4 o B)y = (A)¢ + (B).

If composition is never defined, we get back #gdefined earlier.

As before we write () instead of ¢)when% is clear from the
context.

We shall now generalize propositibn1l.1.

Proposition 1.2. Let% be a category with product and composition.
(a) Every element of & has the form(A) — (B) for some A, Be
obj%.
(b) (A) = (B) < there exist C, g, D1, Eg, E; € 0bj%, such that
Dg o D1 and Fy o E; are defined, and
A1C 1L (DgoD1) LEgLE;~BLC L DgL DL (EgoEy).
(c) If F : ¥ — ¥’ is a functor of categories with product and com-
position, then the map
K()F . Ko(g — Ko(gl,

given by(A)¢ +— (FA)¢, is well defined and makesg & functor
into abelian groups.
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Proof. (a) Any element oKy% can be written as 12

Z(A-) - z}_](Bj) = (LA) - (1B)).

(b) Let us denote byA] the isomorphism class containin obj%’,

and byM the free abelian group generated by these classes. A re-
lation 3'[A] = X [Bj] in M implies an isomorphism. A; ~1L Bj in
.

Now, if (A) = (B), then we have a relation of the following type in
M:

[A] - [B] = > {[Cro L Cr] — [Cro] — [Chyal}
+ ) MICHl +[Chl - [Cly L Chl)
+ > {[Djo] +[Dja] - [Djo © Dja]}
+ Z{[EIO o Ei1] - [Eio] - [Enal}s

or

[A] + > {[Crol + [Cral} + D [Cp L Ci
+ > [Djoo Dja] + > {[Eio] + [Enl)
= [B] + ) [Cro 1 Cra] + Y ([C}]
+[Clilt+ D {[Djo] + [Dial} + Y [Eio o Enn].

This implies an isomorphism

A1 C1(DgoD1) LEgLE;~B1LC 1L DgLD;1(EgoEy).

where 13

C=( 4 C) L (4 Cw) £ (4 Clp) 1 (1 Cl),
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Do =1 Djo, Eo =1 E1o.
i

D=1 Dj1, E =1 Eq1
J

The other implication is a direct consequence of the defimitf
Ko%.

(c) The map obp” — Ko%” given by A +— (FA)4 satisfiesK0, K1
andK2. This gives rise to the required homomorphigts® —
Ko%”. The rest is straightforward.

i

Now let ¥ be simply a category with product. Fére obj%, we
write
G(A) = €(AA),

the group of automorphisms &. (Recall that% is a groupoid.) If
f : A— B, we have a homomorphism

G(f) : G(A) — G(B),

given byG(f)(e) = faf?.

We shall now construct, out &, a new categorf)%. We take
0bj Q% to be the collection of all automorphismsdh If a € 0bjQ% is
an automorphism of\ € ¥, we shall sometimes writéd( «) instead of
a, to makeA explicit. A morphism A, @) — (B,B) in Q% is a morphism
f : A— Bin % such that the diagram

f
— =B

B

><" >

——B

is commutative, that isS5(f)(e) = 8. We define a product iR% by
setting &, @) L (B,B) = (A L B,a L B). There is a natural composition
0in Q%: if a, BeobjQ¥ are automorphisms of the same objecfin



1. Categories with product, and their functors 13

then we taker o B8 to be the usual of morphisms. The compatibilitylof
and 0 inQ% is the identity

(@ LB)o(a’ LB)=(aoa’) L(Bop),
which simply expresses the fact thats a functor (of two variables).

Definition. If % is a category with product, we define
K1% = KoQ%.

LetF : ¥ — ¥’ be a functor of categories with product. ThEn
inducesQF : Q% — Q%”, preserving product and composition, so we
obtain homomorphisms

KiF : ng — Ki%/ i= 0,1

We propose now to introduce a relative group to connect tbgeab
into a 5-term exact sequence.

First we construct the relative categaby with respect to the func- 15
tor F. Objects of®F are triples A, a, B), A, B € obj% anda : FA —
FB. A morphism @ a,B) — (A',a’,p’) in OF is a pair (,g) of mor-
phismsf: A - A" andg: B — B’ in ¥ such that

Ff
FA—>FA

FB—>FB
¢}

is a commutative diagram. We define product and compositiabH,
by setting

(A,a,B) L (A,o/,B)=(ALA,aLad,BLB),
(B,B,C) o (A a,B) = (A Ba,C).
We shall see il that under some restriction &) the Grothendieck
group of this relative categoF fits into an exact sequence involving

theK{sof ¢ and¢”.
We record here a few facts abdtg®F which we shall need later:
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Remark 1.3.(a) (A, 1ra, A)or = O for any A € obj%. This follows
from the fact A, 1ka, A) o (A, 1k, A) = (A, 1en, A) in OF.

(0) (A a,B)or = —(B,a™ L, A)or for any (A, a, B) € obj®F. This fol-
lows from (a) and the equatioB{a~%, A)O(A, @, B) = (A, 1ga, A).

(c) Any element oKo®F can be written asX, «, B)or. For, by propo-
sition[I.2 (a), any element &y®F can be written asA, «, B)or —
(A,o’,B)or. But this equalsA L B',a L o 5B L A)er, in
view of (b) above, and the axiok1.

We close this section with a lemma about permutations thibbei
needed in§d. Consider a permutatios of {1,...,n}. The axiom of
commutativity forL gives us, for any, ..., A,, a well defined isomor-
phism

AL LAS Aqy L+ L Agn),

which we shall also denote ty/ If o; : Aj — B;, then the diagram

ail...lap

AL L... LA, By L... LBy

As(l)J_...J_AS(n) Bs(l)J_...J_ Bs(n)

ag1)l...Lagn)
is commutative, that is
Slag L -+ Lap) =(asy L ... L agn)s (1.4)

Suppose now that; : Aj > Ai;1, 1<i<n-1,andan : Ay — A
Lets(i)=i—1( modn). andsetx=a3 L --- Lan. Then@g L --- L
An, S)e0bj Q7. If

ﬂ: (1A1 LaIlL cee L (an—l"'al)_l)a
Al LA L - LA A L 1L AL
theng : (A1 L - L Ap,s2) = (A1 L -+ L A, Bsef™) in QF.

Now ot = (@1 L asay L -+ L (an---a1)), and by [I4) above,
Bs=a;t L (aa1)™ L+ L (an-1---a1)™t L 1a. Consequently:
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Lemma 1.5. Supposey; : Ai —» A1, 1 <i<n-1landan An — As
Let s denote the permutatiofi}s= i — 1( modn). Then inQ%

(Ac L LAySa L Lan)
~(Ar L LA, Ip Lo L7 Ap L (an— 1))

In particular, if« : A— B ands: B— C, then
(ALBtlaLa )~ (ALAIL

and
(ALBLCSaLlBL@Ba))~ALALAIL

in Q%, where t and s are the transposition and the three cycle eesp
tively.

2 Directed categories of abelian groups

In the next section we shall see tH&t% can be calculated as a kind
of generalized direct limit. We discuss in this section sameessary
technical preliminaries.

In this sectiorn will denote a category of abelian groups. Also, we
shall assume th#f is a set.

Definition. A direct limit of ¢ is an abelian grougé together with a
family of homomorphismsaf: A — 4. A € obj¥, such that the dia- 18

gram
f
B
N S
%

is commutative for any morphism: fA — B and¥ is universal for this
property.

A
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Clearlyg is unique. Also, it follows tha% is the sum of its sub-

groups fA(A) We can descrlbg as the quotlent ofA eab A by the
eobj¥

subgroup generated by the elements of the ti(jog— a, wheref is any
morphismA — Banda € A.

Lemma 2.1. Let¥ be such that given two objects A, B, there exists an
object C, with (A, C) and¥ (B, C) non-empty. Theff = s,

Proof. Any element of4 can be written as a finite suj fa (&), & €

A;. To establish our assertion, it is enough to express an eleofi¢he
type fa(a) + fg(b) as fc(c) for someC andc € C. We chooseC such
that there are morphisnts: A — C, h: B — C. Thenc = g(a) + h(b)
serves our purpose. i

It follows in particular that, if has a “finial” object, that is, an
objectC such that4(A,C) # ¢ for everyA € obj¥, thenfc : C — %

is surjective. LetN be the subgroup df generated by all elements of
the typefi(a) — f»(a), fi € 4(A,C), a € A. ClearlyN c ker fc and this
induces a ma/N — ¢. On the other hand, all morphisrds —» C

induce the same mafs — C/N, and the latter are clearly compatible
with the morphism#\ — B. The universal mapping property gives now
a map{f — C/N which is easily checked to be the inversésgN — %

ThusC/N - % is an isomorphism, that ity = ker fc.

Definition. ¢ is calleddirected if

(1) given AB € obj¥4, there exists Gz 0bj¥, such thatZ (A, C) and
¢ (B, C) are both non-empty.

(2) given f: A - B,i = 1,2, there exists g B — C such that
gfi =gf.

We note that lemmiaZ.1 is valid for directed categories.

Lemma 2.2. Let¥ be directed and letaa) = O for some Ae obj¥
and ae A. There exists then a morphism § — B such that ¢p) =
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Proof. Since fa(@) = 0, we have, in the direct sum of th&'s, a =
> =(fi(c) — ¢). Since only a finite number of terms appear in the re-

I¢I':1tion, we can find & into which all the intervening groups map. In

particular, if¥¢’ is the full subcategory o whose objects are those

which have a map int€, then¥’ hasC as a final object and we have

fo(@ = 0, wheref, : A — Ef’. Now it follows from the last paragraph

thatif f : A — C, then there is a family of pair§;, fy : Bj —» C,

andb; € B, 1 < i < m, such thatf(a) = E}l fii(bi) — fzi(by). Since
i

¢ is directed, it follows easily, by induction am, that there exists an20
h:C — Bsuch thahf; = hfy, 1<i <m. Thenhf(a) = 0. |

Definition. A subcategory4’ of a directed category is calleddomi-
nating if

(1) given Ac obj¥, there exists Ac obj¥’ and amap A—» A'in ¥,

(2) given f: Al - Bin¥,i = 12 with A € ¢, there exists
g: B — C’ withC’ € 0bj¥’ such that gife ¥’,i = 1,2

We note first thaty’ is also directed. For giveA;, A, € obj¥”,
we can findfi : A' — Bin ¢. There exists theag : B — C’ with
C’ € obj¥”’ such thatgf; is a morphism in¢’, i = 1,2. Next suppose
f1, f : A —» B’ are maps ir¢’. There existg : B — Cin ¢ such
thatgf, = gf,. We can finch : C — D’ with hgin ¢’. Thus we have a
morphismhgin ¢’ with (hg) f; = (hg) fo.

Proposition 2.3. If ¢’ is a dominating subcategory of the directed cat-
egory¥, then the natural map : 4’ — ¢ is an isomorphism.

Proof. Write f,, : A’ — 4" andfa : A — ¢ for the canonical maps. If
A € 0bj¥’, Acobj¥ andA’ 9 Ais a map in either direction i#, then
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iS commutative. O

Given A, we can findg : A —» A’ by (1), so that imfa C Im fa =
imgfa C ime. It follows from lemmdZlL, thap is surjective. Suppose
now x € keryp. Since¥’ is directed, lemmB21 is applicable 3 and
we can writex = fa(@). By lemmaZRP there existg: A’ — A such
thatg(@) = 0. Chooseh : A — B’ in ¢4 such that hg is ir¢’. Thus
hg@) = 0, so thatx = f, & = f, hg@) = 0, which shows thap is
injective.

3 K1% as a direct limit

Let € be a category with product. W is an object of¢’, we write
G(A) for its automorphism group, [A] for the isomorphism clagsfo
and G[A] for the abelianization of5(A), that is, the quotient 0G(A)
by its commutator subgroup. This notation is legitimateduse any
two isomorphism#\ — B induce the same isomorphisgiA] — G[B],
sinceG(A) — G(B) is unique up to inner automorphisms.

We now propose to construct a directed categ@tyof abelian
groups, in the sense @&. The objects of/ are theG[A], A € obj%.
As for morphisms in¢, we set4(G[A], G[B]) = ¢ if there exists no
A with A L A" ~ B. Otherwise leth : A L A’ — B be an isomor-
phism for somed’. We have a homomorphis@(A) — G(B) given by
a — G(h)(e L 1a). This induces a homomorphisin: G[A] — G[B]
which is independent of the isomorphidmchosen and depends only
on the isomorphism clas@\f] of A’. The homomorphisnf will be de-
noted byG[A] L [A']. Now we defineZ(G[A], G[B]) to be the set of all
homomorphism&[A] — G[B] which are of the fornG[A] L [A’] for
someA’ with A L A’ = B.

We define composition of morphismsdby

(G[B] L [BD(G[A] L [A]) = G[A] L[A L BT,
whereA L A’ ~ B.
Since¥(G[A],G[A1 L A]) is not empty fori = 1,2, ¢ satisfies
the condition (1) in the definition of a directed category. vEuify (2),
suppose giveriy, fo : G[A] — G[B],
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fi = G[A] L [A]]l. Then |[A L A] = [B] so if we set
g= G[B] L [A]: G[B] — G[B L A], we have

gf = (G[B] L [A)(GIA] L [A]) = G[A] L [A LAl =G[A] L[B],
which is independent adf

Definition. A functor F: ¥’ — ¥ of categories with product is called
cofinalif every Ae obj% “divides” FB’ for some B € obj%”, that is,
if A L Ay ~ FB' for some object Aof €. A subcategorys” c € is
called cofinal if the inclusion functor is.

Theorem 3.1. Let% be a category with product.

(1) Let¥ be the directed category of abelian groups constructed
above. There is a canonical isomorphism

7 = K%,

(2) Let%” be a full cofinal subcategory &'. The inclusion ofs” in
% induces an isomorphism

K€ = KiF.

Proof. (a) If @ € G(A) let (@) denote its image iKY . 23

Since @B) = (a) + (B), the mapa +— (a) is a homomorphism
G(A) — K1% which, sinceK,% is abelian, inducega; : G[A] —
K1%. In particular, since (&) = 0, we have ¢ L 1a) = (@) +
(1a) = (a) and this implies that thga actually define a map
of the directed category into K14. Hence we have a homo-
morphism{f — K1%. To construct its inverse we need only ob-

serve the obvious fact that the map assinginig to eaik image
(viaG(A) — G[A] — ¥) in ¢ satisfies the axioms definirg;, so
that by universality, we get the desired homomorphi§s” — 4.
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(b) If A andB’ are two objects o’ c %, the symbol€(A’), G[A']
andG[A’] L [B’] are unambiguous sinc€” is full in €. Let¥” be
the directed category associated with. Evidently¥’ c ¢, and
we need only show th&’ is a dominating subcategory ©f (in the
sense offZ), for then we can invoke propositignP.3.

i

GivenGJ[A] € obj¥, chooseA L B~ C’,B € 0bj%,C’ € obj%”.
This is possible becaus€’ is cofinal in%. ThenG[A] L [B] : G[A] —
G[C’], andG[C’] € obj¥’. This verifies condition 1) fo#’ to be dom-
inating in¢. Condition 2) requires that ify, f, : G[A'] —» G[B],
A’ € obj%”, then there existg : G[B] — G[C’] such thatgf is a
morphism ing’,i = 1,2. Letf; = G[A] L [A].

ChooseD € obj% sothatB L D ~ D’ € obj%”. SetC’ = A’ L D’
and letg = G[B] L [A’ L D]. Thengf = (G[B] L [A" L D])(G[A] +
[A]) = GIAT L [A L A L D] = G[A] 1 [B L D] = G[A] L [D]
which is a morphism ii¥.

Definition. An object A of¢” is called basic if the sequencé' A A L
-+ 1L A (n factors) is cofinal; that is, every B obj%¢ divides A for
some n.

If Ais basic the full subcategofy” whose objects are th&, n > 1,
is a full cofinal subcategory (with product) to which we maylgpthe
last theorem. If we assume thaf ~ A" = n = m, then¥’ is an
ordinary direct sequence of abelian groups. The group&phé], n >
1, and there is a unique map[A"] — G[A™™], namelyG[A"] L [A™],

which isinduced by — alam. These are only non-identity morphisms

in¥’.
In this case we can even make a direct system fronG(#é), by

G(A") - G(A"™:a > a L 1am.

If we write
G(A®) = lim G(A")

then it is clear that
lim G[A"] = G(A®)/[G(A™), G(A™].
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Theorem 3.2. Suppose that A is a basic objectdf and that A ~ A™ 25
implies n=m.

(@) K1% is the direct limit
K1€ ~ Iiﬂw (G[A"; G[A"] L [A™] : G[A"] — G[A™™)
~ G(A”)/[G(A®, G(A™)].
(b) If @, B € G(A"), then(a) = (B) in K1¥ < there existy € G(A™)
andés, 62, €1, £2 € G(AP), for some m and p, such that
a L y(6162) L 1ap L &1 L &

and
BLy L6 L L (e182) L 1ap

are conjugate in GAM™4P),
(€) (@) =0in K1% & there existy € G(A™) for some m, such that
alyl y_l
is a commutator. Moreovew? 1 1,m is a product of two com-
mutators.

Proof. (a) Follows directly from Theoreit3.1 and the preceding re-
marks.
(b) The implication< is clear.
For =, we apply Propositiof 112 (b) to the categ&fy consisting 26
of A", and use part (a) above to obtaing1, 62, €1, 2 such that
a=a Ly 1(6162) Lep Lep
and _
B=B Ly L L L (e182)
are isomorphic Writen = n(a) if @ € G(A"), and similarly for
B,7v,.... Our hypothesis shows thata) is well defined and that

n(a) + n(y)+n(6162) + n(e1) + n(e2)
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= n(B) + n(y) + n(d1) + n(d2) + N(e1£2).

Sincen(a) = n(B), n(e1) = n(e2) = N(e1e2) andn(dy) = n(62) =
n(6162), we conclude that(s;) = n(e;); call this integem, and write

m = n(y).
O

Sincea ~ 8, we havea L 1a ~ B L 1ap. Both of these are
in G(A™™4P) and we can conjugate by suitable permutations of the
factors to obtain

@ =alyl(6162) LlapLlerLer

and
B =BLyLérLdr L (e182) L 1ap.

Now, two elements os(A™™4P) are isomorphic if and only if they are
conjugate (recall the definition, i§ill, of isomorphism im2%’). There-
fore o’ andg’ are conjugates. This completes the proof of (b).

Moreover,f/ 1o’ = (Bla) L 1an L 62 L 6,0 L &5t L g is
a commutator. Conjugating by a permutation of factors, wd firat
(B 1) L 1am L (62 L &) L (62 L &5)~tis a commutator. Since we
could have chosem = 2nY, we could takey; = 1am L 62 L &, and a
further conjugation shows that

Bra) Ly Lyg?

is a commutator. Assuming = 1an we have proved the first part of
(€) t @ L y1 L y;tis acommutator. Since L y; L y;* is conjugate
toa L y;* Ly, their producte? L 152my, my = n(y1), is a product of
two commutators. This proves the last assertion in (c).

4 The exact sequence

Throughout this sectiof : ¥ — %" denotes a cofinal functor of cate-
gories with product.
We define
d: Ko®F — Ko(g
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to be the homomorphism induced by the mapd, B) — (A)¢ — (B)¢
from obj®F to Ko%. This is clearly additive with respect to to 0 28
in ®F so it does define a homomorphigin The composite ofl and
KoF : Kg@ — Ko%” sends A, a, B)or to (FA)y — (FB)¢», which is
zero, sincd=A andF B are isomorphic.

Supposel)s — (B)¢ € kerKgF. Using Propositiof 111, we can find
aC' e ¥’ andana : Fa L C' —» FB 1L C’. Cofinality of F permits us
to chooseC’ = FC for someC € obj%. Thendmaps @ L C,«,B L C)
into (A)¢ — (B)¢. Thus we have proved that the sequence

KodF 3 Ko# 25, Ko
is exact.
Let %1 denote the full subcategory &’ whose objects are aifA,
A € obj%. By TheoreniZ311 (b), we have an isomorphism

0: K]_Cgl — chg/.
Let
d]_ . Kl(gl — Ko®F

be the homomorphism induced by the m&@\(a) — (A, a, A)or from
0bj Q%1 to Ko®F. This map is additive with respect toand 0 inQ%7,
so thatd; is well defined. The composité o d; sends EA, a)q; tO
(A)¢ — (A)¢ =0. Thusdo d; = 0.
We define now a homomorphism 29

d: K]_(g/ — Ko®F

by settingd’ = d; o 671

Clearlyd o d = 0. SupposeA, «, B)or € kerd. Then, by Propo-
sition[T1(b), there is an isomorphistn: A L C — B 1L C for some
C € 0bj%. We have then a commutative diagram

1
FALFC—"C.FB.1FC
Flaic Fgt

FAL FCTFAJ_ FC
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for a suitablex’, showing that the triplesX L C,a L 1¢c,B L C) and
(ALC,a,ALC)areisomorphic. Thus

(A, a, B)(I)F = (AJ_ C,alle,BL C)<DF = (A 1Ca AL C)q>|:.

The third member is the image df (A L C), @)y, by d1.
Hence the sequence

Ki?' L Ko®F S Ko#

is exact.

Next we note thatl’ o K;F = 0. This follows from the fact that
d’ o K1F sends A, @)q¢ to (A, F, a, A)or and the triplesA, Fa, A) and
(A, 1k a, A) are isomorphic in view of the commutative diagram

FA—%FA

| |

FA1—> FA

FA

Theorem 4.6.If F : ¥ — ¥’ is a cofinal functor of categories with
product, then the sequence

K1F d’ d KoF
K€ — K16 — Ko®F = Ko& —— K%

is exact.

We have only to show that kdf c im K;F. For this we need an
effective criterion for recognizing the triples,(«, B) with the property
(A, @, B)or = 0. This is given in LemmB4.7 below, for which we now
prepare.

In Q%" let & denote the smallest class of objects such that

() arxpB,ac&=>pe&
(i) a,peE > a 1Le&
(i) a,Be &, aopBdefined= aoBe&
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(iv)

31

v)

(vi)

(vii)

(FA, 1), (FA L FAT) € & for all A, t being the transposition.

These properties imply the following:

If @ € &, then @)qg € IMKyF c kerd'.

We need only note iniy), that”’t = Ft”, with the obvious abuse
of notation.

(FAL--- L FA 9 e & for any permutation s.

Using (), (i), (iii) and {v), this reduces easily to the fact that
transpositions generate the symmetric group.

If «: FA—> FBandB: FB — FC, then
(FALFBt)a La ) e&

and
(FALFBLFC slalppBa)™?)eés,

wheret and S are the appropriate transposition and 3-cycle re-
spectively.

This statement follows from), (iv) and LemmaZ1l5.
Now in ®F we call an object of the formA, «, A) anautomorphism
We call itelementanyf (FA, a) € &. For anya = (A, «, B), we write

a~1

if @ L 1gc = & for somec € ¥ and some elementary automorphism
We also write

a~p

ifand only ifa L 871 ~ 1.

Lemma 4.7. For a,B € ®OF, (a)or = (B)or © a ~ B. In particular, 32
(a)@p =0 ox~ 1.

Before proving this lemma, let us use it to finish the
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Proof of Theorem 4.6.Given (FA, <) such that¢)qay € kerd’ we have
to show that¢)as € im K.F. The hypothesis means thadgr = 0, so
that by Lemmd17, there is@e obj%’, an elementary automorphism
¢ = (E, &, E), and an isomorphismf(g) : @ L 1gc — &. This means
that the diagram

allpc

FALFC——FA_LFC

Ff| Fg

FE FE

€

is commutative. Hence L 1gc = FglFf(Ff)teFf = F(g1f)e,
whereg’ = (Ff)leFf ~ ¢in Q¥”’. By properties (i) and (v) above,
(&)agr € IMK1F, sowe haved)as: = (@ L 1rc)as = (F(@7H))ag +
(e)ag-eiIm K, F, as required.

Proof of Lemma 4.7.1f « ~ B, then @)or = (B)or by virtue of (v)
above. For the converse, we will prove:

() ~ is an equivalence relation
(b) L induces a structure of abelian group n= obj ®F/ ~.
(c) @ oB ~a L pwhenever o g is defined.

Once shown, these facts imply that the map®bBj —» M satisfies
the axioms forKo®F, so it induces a homomorphisiy®F — M,
which is evidently surjective. Injectivity follows from éhfirst part of
the proof above

(1) If @ andB are elementary automorphisms, then soare « L S,
anda o g (if defined).

This is obvious.

(2) If B~ 1landa LB~ 1, thena ~ 1.
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(4)

(®)

For, by adding an identity t@, we can find elementary automor-
phismse; = (Ei1,&1,E7) ande = (E,& E) and an isomorphism
(f,0):a L& — e Thus

FA1LFE; “LFB 1 FE,

Ffl ng

FE FE

&

commutes. Set, = (A L Ey, 1pa L &71 A L E1); &2 = 1pa L &7t

is clearly elementary. Sef, = (E, Ffe,F 1 E). SinceFf :
(FA L FE1, &) — (FE, &) in Q¢”, &, is also an elementary auto-
morphism. Moreover, we have

(f.9) i (@ L&) oex > goéy,

clearly, and & L £1) o &2 = a L 1fg,. Sincee o & is elementary,
we have showm ~ 1, as claimed.

If @ = (A a,B)andg = (B,B,C), then 34
alal~1,
and

alp L (Ba)t~1.
For,

(lagt):aLal = (ALBtleLal)ALB)

and

(laieic. 9 ia LB L (Ba)™
S (ALBLCSa@LBL(Ba)y,ALBLC),

and the latter are elementary by property (vii)sof

Now, for the proof of (a), we note that (4 reflexivity, (1) =

symmetry, and (3) plus (4p transitivity. The statementd) and €)
follow respectively from (1) and (5).
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5 The categoryP

Let k be a commutative ring. We defiri(k) (or P) to be the category

of finitely generated projective k-modules and their isophmisms, with
products.

The group;P are denoted inK, §12] by K;(k). Strictly speaking,
the definitions do not coincide since tkg(k) are defined in terms of
exact sequences, and not jastOf course this makes noftirence for
Ko since all sequences split. FKx, however, the exact sequences of
automorphisms 0-» o’ - @ — o” — 0 need not split. In terms of
matrices this means thathas the form

_(@ B
=[5 2]
Itis clear thatr can be written in the formy = (¢’ ®a”’)e’, whereg is of

the form(i(f)j X ) and the equivalence of the two definitions results from
the fact that £)op = 0 in K1 P. The last fact is seen by adding a suitable

identity automorphism te to put it in GL(n, k), for somen, and then
writing the result as a product of elementary matrices (Se& pelow).
We summarize now some results froKj||
The tensor produeby is additive with respect t@ so that it induces
on KgP a structure of commutative ring.

If % e speck) andP € P, thenPy is a freeky - module and its

rank is denoted byk,(#). The map
rkp : speck) — Z,

given by? — rkp(#), is continuous, and is called tinenk of P. Since
rkpeg = Kp + rkg andrkpgq = rkprko, we have aank homomorphism

rk : K()E)—) C,

whereC is the ring of continuous functions spdq & Z.

(5. 1) The rank homomorphisnk is split by a ring homomorphism
C — KoP, so that we can write

KoP ~ GBKOE’,
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whereKoP = ker(rk). KoP is a nil ideal.
This result is contained irK], Proposition 15.4]. 36

(5.2) Supposeanax() the space of maximal ideals of k, is a noetherian
space of dimension d. Then

(@) If x € KoP andrk(x) > d, thenx = (P)p for someP € P.
(b) If rk(P)p > d and if (P)p = (Q)p, thenP ~ Q.
(©) (RoP)** =0.

Sincekis a basic object foP in the sense of3, we deduce imme-

diately from Theoreni3]2 an| Theoreni31 and Proposition
12.1], that

(5.3) There is a natural isomorphism
K1iP ~ GL(K)/[GL(K), GL(K)],
whereGL(k) = lim GL(n,k)(= AutK") with respect to the maps

TR (g |0 from GL(n, k) to GL(n + mK) - [GL(K), GL(K)] =

E(K), the group generated by all elementary matrice& ir{k),
we have alsdE(k) = [E(k), E(K)]. The determinant map det :
GL(K) — U(K) is split byU (k) — GL(Kk) (defined viaGL(1, K)).
Thus we have a natural decomposition

KiP ~ U(K) ® SK;P,

whereS KsP ~ S L(K)/E(K) = S L(K)/[S L(K). S L(K)].

We have also the following interesting consequence of Tdraor37
B3.
(5.4) If @ € [GL(n,K), GL(n,K)], then for somem and somey € GL
a0 O

(m,K),[ 9> O ]is a commutator ilGL(n + 2m, k) and(“’o2 0 ) is
00y? 2m

a product of two commutators.
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6 The categoryFP

Letk be a commutative ring.

Proposition 6.1. The following conditions on a k-module P are equiv-
alent:

(a) P is finitely generated, projective, and has zero anatbil

(b) Pis finitely generated, projective, and has every whemitjye rank
(thatis Py # Ofor all " € speck)).

(c) There exists a module Q and an-r0 such that Ry Q ~ k™.
Proof. The equivalenced) < (b) is well known. ]

(b) = (c). The moduleP is "defined over” a finitely generated
subringky of k. By this we mean that there exists a finitely generated
projectiveko-modulePg such thaP ~ ke, Po. To see this, we express
as the cokernel of an idempotent endo-morphism of akme®dulek”.

Let a be the matrix of this endomorphism with respect to the cazani
basis ofk". We take forkg, the subring ok generated by the entries
of a. It is easily seen thalPy can be takes to be the cokernel of the
endomorphisms dfj determined byy.

So we can assume thlatis noetherian with dimmakj = d < co.
Let x = (P)p € KoP. Thenrk(x) is a positive continuous functions spec
(k) — Z, and it takes only finitely many values, since splecig quasi
- compact. Hence we can finde C (in the notation of (5.1)) such
thatrk(x)y = m > 0 (the constant functiom). Now x = rk(x) — Z
with Z nilpotent, so thaky = m— z with z = yZ nilpotent. It follows
thatn = m" = wxyfor someh > 0 andw € KgP; for instance we
can takeh > d + 1, in view of (5.2) €). By enlargingh we can make
rk(wy) > d. Then we havevy = (Q)p for someQ by (5.2) @), it follows
thatP ®y Q ~ k™.

(c) = (@. AssumeP ® Q =~ k". There is a finite set of ele-

p
mentsxy,...,Xp € P such thtP® Q = X x ® Q. We have then a
i=1
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homomorphismd : F — P, F a freek-module of finite rank, such that
f®lg: F®ek Q —» P& Q is surjective and therefore splits. Hence
f®logr : F®RQ®P — P® Q® P is surjective and splits. Thus
P& k"(~ P® Q® P), being a direct summand &fek"(~r F® Qe P), is
finitely generated and projective. It follows thRtis finitely generated
and projective.

ThatP has zero annihilator is clear.

Remark . The argument inlf) = (c) can be used to show, more preso
cisely, that ifP is a finitely generated projectide-module of constant
rankr > 0, thenP @ Q =~ K" for some projectivek-module Q and
somed > 0. If max() is a noeterian space of finite dimension, then this
number can be chosen fdr

Modules satisfying (a), (b) and (c) above will be callieihfully
projective They are stable undey(= ®¢). The faithfully projective
modules together with their isomorphisms form a category

EPK) (or EP)

with product®, in the sense offll. Condition (c) in the proposition
above shows thahe free modules are cofinal in FRVe propose now
to calculate the groupl&; FP. o

We write o

Q®; KoP = (QezC) e (Qez K02)

in the notation of (5.1). Thu® ®z C is the ring continuous functions
from specK) (discrete)Q. Let U*(Q ®z KoP) denote the unit whose
“rank” (= projection onQ ® C) is a positive function.

Theorem 6.2. KoFP ~ U*(Q &z KoP) 40
~U*(Q®zC) @ (Q@z KoP).
Example. Suppose spek) is connected, so th& = Z. The
KoEP ~ (positive rationals)® (Q ®z KoP),

the direct sum of free abelian group and a vector space@ver



41

32 1. The exact sequence of algebrdig¢heory

Proof. If P is faithfully projective, therP ® Q ~ k" for somen > 0, so
that P)p(Q)P = nin KoP. It follows that 1® (P)p € U™(Q ®z KoP),
and this homomorphism, being multiplicative with respeab defines
a homomorphism

KoFP — U+(Q ®z KoP). (6.3)

O

We first show that this map is surjective. Any element of tigtri

. . 1 . "
hand side can be written as® x, x € KoP, andrk(x) is a positive

function of specK) into Z. S?ncex is defined over a finitely generated
subring ofk, we can assume without loss of generality, tha finitely
generated with mak] of dimensiond, say. By increasing by a mul-
tiple we can makek(x) exceedd, so thatx = (P)p so someP € P by

(5.2)(a). ClearlyP € EP. Thus% x=(1® (k”)?)‘1(1® (P)p) isin the
image of (6.3).

Next we prove the injectivity of (6.3). Suppose®{P)r = 1 (Q)p.
Then, for some integar > 0, n((P)p — (Q)p) = 0, sO that K" @« P)p =
(kK" ® Q)p. By choosingn large we can make rank(®x P) Iargezand
then invoke (5.2)(b) to obtaik” ® P = k" ® Q. Hence P)rp = (Q)rp.
This establishes the first isomorphism in the theorem. o

To prove the second isomorphism, we note that

U*(Q®z KoP) = U*(Q®z C) x (1 + (Q ®z KoP)),

and, sinced ®; KoP is a nil algebra ove®, we have an isomorphism
exp :Q®z RQP -1+ (Q &z RQP).

In order to comput&;FP, we prove a general lemma about direct lim-
its. Let B
L = (Wh, fanm: Wh = Wam)nmen

be a direct system of abelian groups, indexed by the posiitegers,
ordered by divisibility. We introduce an associated disycttem

L/ = (Wn, flfl, nm Wn - Wnn']),
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wheref; ,,, = mf, nm, and a homomorphism
(nly):L—>L
of direct systems. For the latter we note that 42

n- an

Wh

Wh

fanm M fynm= fnl,nm

is commutative. L’ is a functor ofL. We have an exact sequence of
direct systems
LoL -L"—-0, (6.4)

whereL” = (Wq/Whm, f/nm) is the cokernel of. — L.

Lemma 6.5. With the notation introduced above, the exact sequences
imL - IlimL - ImL”" -0
—_— — —

and
ImL®((Z - Q— Q/Z— 0)
—

are isomorphic. (her® = ®z.).

Proof. Let E = (Zn, &nm) With Z, = Z andey nm = 1z for all n, me N.
Evidently the exact sequence of direct systems

L-L —-L"->0

and
Le(E—-E - E"—>0)

are isomorphic. The lemma now follows from the fact thatlir: Z, 43
lim E’ = Q, and standard properties of direct limit. O
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Theoren 31l allows us to compuig FP using only the free mod-
ules. Let B
and let f, nm and gnnm be the homomorphismg, — Wy, induced

(1/|n 0 o4

0
respectively byr — . anda — ( )from GL(n,Kk) to

I 0
GL(nmK). Then it follows from theoreri 3.1 that
Klg = “_m>(Wn, fn,nm)

and
Klg = M(Wny gn,nm)-

Lemma 6.6. If @ € GL(n, k) and if nm> 3, then

am 0 a 0

In a

mod [GL(n, k), GL(n, K)].
0 In 0 a
(See [K, Lemma 1.7]).

It follows from lemma®.b, thaghnm = f;,m = Mhnm and hence,
using lemm4&%&l5, we have the following

Theorem 6.7. Klg ~ QQ®yz K1|:3
~ (Qez U(k) @ (Qez SKP).
If we pass to the limit before abelianizing, we obtain theugp®
Glg(k) = liM(GL(n.k),a = a @ lm)nmen
which consists of matrices of the type

@ 0



7. The categor&ic 35
whereq is in GL(n, k) for somen. The centre of this group consists of
scalar matrices (the case= 1) and is isomorphic ttJ (k). We write
PGL(K) = GLg(k)/ centre = GLg(K)/U(K).

Now

KiEP = GLg(K)/[GLg(K), GLe(K)] = (Q®z U(K)) ® (Q®z SKiP)
and we have projective on the first summand

det : K1FP — Q&7 U(K),
which is induced by the determinant. Explicitly,afe GL(n, k), then
@ 0
det| =« = %@deta.
0

This evaluates dgtin particular, on elements of the centre (the case.
n = 1); so we see easily that:

coker U(k) — Klg) (6.8)

=(Q/Zez U(k) @ (Q®z SKP)
= PGL(K)/[PGL(K), PGL(K)]
= II_r‘n> PGL(n, k)/[PGL(n k), PGL(n, K)],

where the maps are induced by the homomorphigsms a ® |, from
GL(n, k) to GL(nm k).

7 The categoryPic

Pigk) (or Pig is the full subcategory of P consisting of projectivek-
modules of rank one, witBy as product. We shall denokPic by Pic

().
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A moduleP in Pic satisfies
Py P* = k,

whereP* = Homy(P, k). So any object of Pidn particulark, is cofinal.
TheorenZ31 then shows that o

KiPic ~ Aut (K) ~ U(K).

The inclusion Piacc FP induces homomorphisms

Pick) — KoEP (7.1)o

and

The latter is induced by (k) = GL(1, k) c GLg(k), which identifies
U (k) with the centre ofcLg(k). So the co-kernel i®GL(k). Thus, we
have from [EB),

coker (71); ~ (Q/Z®z U(K) ® (Q®z S Klli’) (7.2)
~ PGL(K)/[PGL(k), PGL(K)],
and

ker(7.1); = the torsion subgroup df (k)
(that is, the roots of unity ik).

The last assertion follows from the fact thafl{){] is the natural map
U (k) —» Q ®z U(Kk) followed by the inclusion of the latter intid; FP =
(QezUK) e (Qez SKP). o

(7.3) The kernel of the natural md@”.T)g Pick) — KoFEP is the
torsion subgroup oPic(k). o

Proof. If (L)pic € ker[(7ZI)g thenL & P = k@ P = P for some
P e FP. By (6.1)(c), we can choos® to bek", in which case we have

L®---®L ~ k". Takingn™" exterior powers, we gdt®--- ® L ~ k, S0
that (L)pic is a torsion element in Pik}. m|
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Conversely, supposé.)pic has orden, thatisthall ® ---® L ~ k.
We have to show thatjgp = 0. This amount to showing that P ~ P
for someP in FP. It is immediate that we can take f&, the module

koLaol®eq.. o L2"D whereL® denotes thé-fold tensor product
of L with itself.






Chapter 2

Categories of modules and
their equivalences

In this chapter we first characterize (up to equivalenceggraies of 48
modules as abelian categories with arbitrary direct sunishawing a
faithfully projective object. Then we show that any equéaraie from
the categoryA-mod of left modules over a ring into the categornB-
mod for another rindg, is of the formP®a, whereP is aB-A-bimodule,
unique up to isomorphism. We deduce a number of consequéitice o
existence of such an equivalence, and we characterize ttieles® that
can arise in this mannef detailed account of the Wedderburn structure
theory for semi-simple algebras is obtained in this conteitally, for

an algebraA over a commutative ring, the study of autoequivalences
of A-mod leads to the introduction of a group i) for ak-algebraA,
which generalizes the usual Picard group Bie{ Pic((k).

Most of this material is folklore. The main sources are Galtl]
and Morita [1]. | have borrowed a great deal from an unpublisexpo-
sition of S.Chase and S.Schanuel.

39
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40 2. Categories of modules and their equivalences

1 Categories of modules; faithfully projective mod-
ules

Let & and 4 be two categories. We recall that and % are said
to beequivalentif there exist functorsl : & —» ZandS :  —» &
such tha TandT S are isomorphic to the identity functors.of and%#
respectively. By abuse of language we shall sayThatan equivalence.
We call a functorT : o/ — £ faithful (resp. full, fully faithful) if
the map
T:Z(XY) > BTXTY) (1.1)

is injective (resp surjective, bijective) for aX, Y € obj.<7, where
&7 (X,Y) denotes the set of morphisms frofiinto Y. If T is an equiv-
alence, then obviously it is fully faithful; also, giveh e obj.#, there
existsX € obj.«/, such thafl X ~ Y. Conversely, these two conditions
together imply thaf is an equivalence. This gives us a

(1.2) Criterion for equivalence: Let T: &/ — 2 be a functor
satisfying the following conditions:

(i) T is fully faithful
(i) Given Ye obj %, there exists X objo with TX~ Y.

Then T is an equivalence.

Proof. Using (ii) we can choose, for eathe obj %4, anSY € obj.«/
and an isomorphism
f(Y):Y>TSY

These induce bijection®(Y,Y’) - Z(TSYTSY), and by (i), we
have bijectionsZ(SYSY) — Z(TSYTSY). The first map, followed
by the inverse of the second, defines a bijection

S: BY,Y) - 4 (SYSY).

It is easy to see the®, so defined, is a functor satisfying our require-
ments. i
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We shall now consider abelian categories. We shall disdwes t
only provisionally, mainly for the purpose of charactergicategories
of modules. Definitions can be found in Gabrigl [1], Frekd, [ahd
Mitchell [].

AfunctorT : & — 2 between abelian categories is caltlitive
if the maps (1.1) are homomorphism3. is left exactif it preserves
kernels,right exactif it preserves cokernels, arekactif it does both.
We call T faithfully exactif it is faithful, exact, and preserves arbitrary
direct sums. We shall often call direct sum@products and use the
symbol]] in place of the more familiap.

Let P be an object of the abelian categasf. Then

hP = /(P )

defines a functor fromy to the category of abelian groups. We dala
generator of.<7 if h” is faithful, projectiveif h” is exact, andaithfully
projectiveif h” is faithfully exact.

Lemma 1.3. Let« be an abelian category with arbitrary direct sums.

(&) An object P of«Z is a generator ofeZ < every object of«7 is a
guotient of a direct sum of copies of P.

(b) A class of objects off which contains a generator is suitable un-
der arbitrary direct sums, and which contains the co-kemiehny
morphism between its members, is the whole of8bj

Proof. (a). =. Let X be any object ofeZ and letS = []cpx)Pt, 51
whereP; = p, with inclusionis : P — S. There is a morphisni :
S — X such thatFi; = f forall f. Letg : X — cokerF. We want
to show thafg = 0, and, by hypothesis, if fices to show thatP(g) =
</ (P,g) = 0. ButhP(g)(f) = gf = gFif = 0.

(a) & Suppose : X — Y be anon-zero morphism. We wad{(g) # O,
i.e. gf # 0 for somef : P —» X. Choose a surjectioR : S — X
with S = [[Pj, eachP; = P. The morphismF is defined by a

|
family of morphismsf; : P — X, and sinceggF # 0, we must have
gfi # 0 for some.
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(b) is atrivial consequence od
i

The theorem below gives a characterization of categoriesaxf-
ules. We shall denote by

A- mod (resp mod - A)
the category of left (resp. right) modules over a rikg

Theorem 1.4(See Gabriell1] of MitchellI1]) Let.es be an abelian cat-
egory with arbitrary direct sums. Supposé has a faithfully projective
object P. Let A= &/ (P, P). Then

hP=#(P.): o/ > mod - A
is an equivalence of categories, an¥{R) = A.
Proof. ClearlyhP(P) = A, and sincéhP is faithful,
hP . &7 (X, Y) = Homa(hPX, hPY) (1.5)

is a monomorphism. Using the criterion for equivalence)(it2emains
to show that

() hPis full (that is, that[Ib) is surjective), and

(i) eachA-module is isomorphic to som#X.
i

For X = P we see easily thaf{1.5) is the standard isomorphism
hP(Y) — Homa(A, hPY). As contravariant functors iX, the two side
of (L.3) are both left exact and convert direct sums intoadipeoducts.
This follows for the functor on the right, becausgis faithfully exact.
It follows from these remarks and the 5-lemma that the ctilacof X
for which (I.3) is an isomorphism satisfies the hypothesi§éld)(b),
and hence is the whole of obf. This proves (i).

If M is anA-module, there is an exact sequeﬁqei Fo—>M-—=0
with F; free. Up to isomorphism we can write, = hPG;, with G;
a direct sum of copies d?. By (i), we can writed = hPg for some
s: Gy — Gq. Then, from exactnes$)l ~ cokerh®g ~ hP cokerg.
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Proposition 1.5. Let P be a right module over a ring A. The following
statements are equivalent:

(i) P is faithfully projective.
(i) P is finitely generated, projective, and is a generatér onod A.
generator of mod — A.

Proof. In view of the definition of faithful projectivity, we have on 53
to show if P is projective thenP is finitely generated if and only the
functor Homp(P, ) preserves coproducts. O

Supposer is finitely generated. Any homomorphism Bfinto a
coproduct has its image in a finite coproduct (a finite numibéaaiors
is enough for catching the non-zero coordinates of the isaga finite
system of generators &). Thus such a homomorphism is a (finite) sum
of a homomorphisms d® into the factors.

Conversely, suppose HtP, ) preserves coproducts. Consider a
homomorphisne : P — [[ A (eachA; = A) with a left inverse (such

|
a map exists sincP is projective). By hypothesi® is a finite sum of
homomorphisms, : P — A, i € S, S a finite set. Thu# is a direct
summand off | A; and hence finitely generated.
ieS
Remark. If Pis not projective, then finite generation is no longer equiv-
alent with Homp(P, ) preserving coproducts. For, we have obviously,

(1.6) P is finitely generateds the proper submodules &f are induc-
tively ordered by inclusion.

On the other hand

(1.7) Homu(P, ) preserves coproducts> the union of any ascending
sequence of proper submodules of P is a proper submodule.

If Pis the maximal ideal of a valuation ring, where the value groa4
has a suitably pathological order type, tHemvill satisfy (1.7) but not
(1.6).
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Proof of (1.7) <. If f : P — [] M; is a homomorphism such th&(P)
il
is not contained in a finite direct sum of th¥'s, then we can choose a
countable subsetof | such thatifg: [ Mj — [] M; is the projection,
jed

i€l
thengf(P) is like wise not in a finite sum. Lettin§ expand through a
sequence of finite subsets &f with J as their union, we find that the

submodulesdf)™1( 2 Mj) violate the assumed chain condition Bn
jeS

=. Suppose’; c P, c --- c P, c --- are proper sub - modules
of P with | J P, = P. The projectionsf, : P — P/P, define a map of

n>1

f : P — []P/Ps, whose image is clearly if] P/Pp, but not in a finite
n
sum of theP/Py.

2 k-categories andk-functors

Let A be a ring and leM be a rightA-module. For an elemerdt €
centreA, the homothetidn(a)y : M — M (defined byh(a)pm (X) = xa) is
A-liner. These homomorphisms define an endomorphism ofluatity
functor ldmog-a.-

Proposition 2.1. The homothetie map
h: centre A—» End(ldmoga)
is an isomorphism of rings.

Proof. If h(c) = 0, thenc = h(c)a(1) = 0. Let f be an endomorphism
of the functor Ighog-a. fa is the left multiplication inA by ¢ = fa().
The element belongs to the centre @& This follows from the fact
that fa commutes with all left multiplications i, sincef is a natural
transformation. Set’ = f — h(c). We shall show that’ = 0. LetM be
a right A-module. For arx € M, consider théA-linear mapt : A - M
given byt(a) = xa We havef{, ot =t o f,. It follows that f{,(x) = 0.
Thusf’ =0. O

The proposition suggests the definition

centree/ = End (Id.,)
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for any abelian category. Letk be a commutative ring arikd— cen-
tre &/ a homomorphism. This converts thé(X, Y) into k-modules so
that the composition ik-bilinear. Conversely, given the latter structure,
we can clearly reconstruct the unique homomorphism centres”
which induces it. An abelian category with a homomorphisnk —
centree/ will be called ak- category A functor T . &/ — 2 be-
tween two such categories will be callek-dunctor if the maps (1.1)
arek-linear. Thek-functors forms a category, which we shall denote by
k-Funct (o7, ).

If Ais ak-algebra, then by virtue of (2.1), moalis ak-category.
Let A andB bek-algebras and suppo$¢ is a left A—, right B-module.
If B-module. Ift € kandx € M, thentx andxt are both defined. The
following statement is easily checked:

(2.2) tx=xtforalltek, xe<e ®M: mod-A— mod-B 56
is ak-functor.

This condition simply means théll can be viewed as left module
over A® BP. We will often follow the Cartan-Eilenberg convention of

k
writing aMg to denote the fact tha¥l is left A—, right B-bimodule, and
when a ground rinds is fixed by the context, it will be understood that
M satisfies (2.2).

Proposition 2.3. h( pAMg) ®a M : mod — A —- mod - B defines a
fully faithful functor

h: (AgB% - mod — k—Func{ mod —A, mod - B).

In particular, AMg ~a Ng as bimoduless @aM ~ ®aN as functors
from mod - Ato mod - B.

Proof. If f: AMg — aNg is a bimodule homomorphism, thégf) =
®af is a morphism of functors. Thusis a functor. Ifh(f) = 0, then
1a®a f =h(f)(1a) =0, i.e,f = 0. Sohis faithful. m]

Supposéd : hM — hNis a natural transformation. We will conclude
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by showing that = h(f), wheref is the uniqueB-morphisms rendering

M N

A®AMt—A>A®AN

commutative. The vertical maps are bimodule isomorphisirsce left
multiplications inA are rightA-linear,ta must respect it, by naturality.
Thusta, and hence alsd, is a bimodule homomorphism, $gf) is
defined. Les=t-h(f): hM — hN. The clas¥ of Xinobj mod -A
for which sx = 0 containsA. SincehM and hN are right exact and
preserve coproducts, it follows from (1.3))(that% = obj mod — A.

3 Right continuous functors

We will here describe the image of the functor of proposilidi Func-
tors of the typeaM : mod — A —» mod - B are (i) right exact,
and (ii) preserve arbitrary coproducts. It follows thatytladso preserve
direct limits. A functor satisfying (i) and (ii) will be cadright contin-
uous.The next theorem says that they are all tensor products.

Theorem 3.1(Eilenberge-Watts) The correspondenceMg — @M
induces a bijection from the isomorphism classes of leftB?- modules
to the isomorphism classes of right continuous k-functorsf mod —
Ato mod - B. In the situation{ AMg, sN¢), A(M®g N)c corresponds
to the composite of the respective functors.

Proof. The last statement follows from
((®8N) o (®aM))(X) = (®s8N)(X ®a M)
= (X ®A M) ®s N
= X®a (M ®B N)
= ®a(M ®g N)(X).

Injectivity is just the last part of propositidn2.3. m|
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LetT: mod — A — mod - B be a right continuoug-functor.
The composite

A — Homa(A, A) — Homg(TA TA),

where the first map is given by left multiplications, is a harmwphism
of k-algebras. This maked = T Ainto a leftA®y B® - module. We will
conclude by showing that the functéfsand®aM are isomorphic. X
is a rightA-module, we have maps

X 5 Homa(A, X) 5 Homg(TA TX) = Homg(M, T X),

and the compositdy is A-linear (for the action ofA on M just con-
structed). Now, there is a canonical isomorphism

Homa(X, Homg(M, T X)) ~ Homg(X ®a M, T X),

and fx is an element of the first member. Lgt be the corresponding
element in the second member. The homomorphigadefine a natural
transformations of functorg: ®aM — T. ForX = A, we havegp as the
obvious isomorphismA ®4 M — TA = M. Using the right continuity
of T and®aM, we now see that the class of objeat$or which gy
is an isomorphism, satisfies the conditions of (118) (Thusg is an
isomorphism of functors.

Definition 3.2. We shall call a bimodulesaMg invertible, if the functor
®M: mod — A— mod - B is an equivalence.

This equivalence is evidently right continuous (indeed; equiv- 59
alence is). It therefore follows from theordml]3.1. that theettibil-
ity of M is equivalent to the existence of a bimodufgNa such that
M®g N ~ AandN ® M ~ B as bimodules (over appropriate rings).
This shows that the definition of in vertibility is left-righymmetric. In
particular,M®g : B— mod — A— mod is also equivalence.

4 Equivalences of categories of modules

We have just seen that an equivalence is, up to isomorph&moting
with an invertible bimodule. We now summarize.



60

48 2. Categories of modules and their equivalences

Proposition 4.1. Let A and B be a k-algebras and suppose

.
mod — A~ mod- B
S

are k-functors such that ST and TS are isomorphic to theilgydanc-
torsof mod —A and mod - B respectively. SetP TA and Q= SB.
Then we are in the situatiohaPg, sQa), and :

(1) T =~ ®aP, and S~ ®gQ.
(2) There are bimodule isomorphisms

f:PegQ—-> Aandg: Qea P — B.

(3) f and g may be chosen to render the diagrams

fel 1
P@s QAP > A®aP QeaPes Q> B®g Q
1P®gl l and 1Q®fl l
PgB——=P Q®aA Q
commutative.

Proof. Statements (1) and (2) follow immediately from theorend 3.1,
since an equivalence is automatically right continuous. pfiave the
statement (3), we first note that all the intervening mapsisomor-
phisms of bimodules. 1&: A®a P —» Pandb : P®g B — P are the
natural maps, then we hab¢l ® g) = ua(f ® 1) for someA — B - au-
tomorphismu of P. In particular,u € Homg(P,P) = Homg(TA TA) ~
Homa(A, A) = A. Souis a left multiplication by a unit irA, which we
shall denote by the same letier Sinceu is also anA-homomorphism,
we must haval € centreA. Now, evidentlyua = a(u® 1p). So if we
replacef by uf we have made the first square commutative. Assume
that this has been done. m]

Write f(p® q) = pgandg(q® p) = gpforpe P, g € Q. We
have arranged thap)p’ = p(gp’), and we will prove that the desired
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equality gpg = q(pq) follows automatically. For, ifp, p’ € P, q,
g € Qwe have

(@Pa)p’ = @p@p)  (gisleft B-linear)
=q(p@'p")) (g is right B-linear)
=q((pg)p’)  (byassumption)
=(@(pd)p) (d®ap=ga®p,acAh).

Hence, ifd = (qp)d —q(pq), thendp = Oforallp’ € P. Leth: A— Q
be defined byn(a) = da. Thenh® 1, : A®a P — Q®a P followed by
the isomorphisng is zero. Sch® 1p = 0. But®aP is a fully faithful
functor. Therefordn = 0, that isd = O.

Definition 4.2. A set of pre-equivalence data,(B,C, P, f, g) consists 61
of k-algebras A and B, bimodulegPg and gQa, bimodule homomor-
phisms

f:PegQ— Aandg: Q®a P — B,

which are “associative” in the following sense: Writindd® q) = pq
and dg® p) = gp, we require that

(pgp" = p(ap) and(@p)a’ = q(pd) p.p € P.a.q € Q.
We call it aset of equivalence dataf and g are isomorphisms.

Theorem 4.3. Let (A, B, P, Q, f, g) be a set of pre-equivalence data. If
f is surjective, then

(1) fis anisomorphism
(2) P and Q are generators as A-modules
(3) P and Q are finitely generated and projective as B-modules

(4) ginduces bimodule isomorphisms

P ~ Homg(Q, B) and Q~ Homg(P, B)
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(5) The k-algebra homomorphisms
Homg(P, P) — A — Homg(Q, Q)°
induced by the bimodule structures, are isomorphisms.

Proof. The hypothesis ori means that we can write

1:2 pig in A

(1) Suppose; p} ®q] € kerf. Then
> pjed = Z(p’j ® 4)pid = Z p| ® (] p)a) =
= Z(p CANELE (Z(p AP @)

- (Z Pl )(Z pid) =0, smceZ P, = 0.

(2) We haveA-linear mapsh; : P — A given byhi(p) = pg. These
define anA-linear maph : [[P; — A (eachP; = P), which is

|
surjective. It follows by (1.3) (a), th& is a generator oA— mod ,
sinceAis so. The argument fdR is similar.

(3) Define P_Tf LI Bi (eachBj = B), by e(p) = (qip) and h((by)) =
— i
2. pibi. Thenhe(p) = 35 pi(aip) = (X pigi)p = p. ThusP s finitely
|
generated and projective. Similayalso is finitely generated and
projective.

(4) ginduces arA-B-bimodule homomorphisrh : P - Homg(Q, B),
given byh(p)(a) = gp. If h(p) = O, thenp = Z(p.ql)p = Z pi
(gip) = 0. If f : Q — Bis B-linear, thenf(q) = f(z q(p,q,)) =
f(g(qn)qi) = 2i(ap)f(a) = ?q(pif(qi)), sof = h(; pi ().
Similarly Q ~ Homg(P, B).
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(5) Defineh : A - Homg(P,P) by h(@p = ap. If h(a) = 0, then
a=Ya(pq) = Z(an)ql = 0. If f : P> PisaB-linear, then

() = f(Z(p.q.)p) = f(Z pi(Gip) = (Z f(pi)a)p, so thatf =
h(Z f(p,)q,) Similarly A ~ HomB(Q Q)° V|a right multiplication.

O

Theorem 4.4. Let (A,B,P,Q, f,g) be a set of equivalence data (see
definition[Z2). Then

(1) The functors Rg,®aP, Q®a, and ®gQ are equivalences between
the appropriate categories of A-modules and B-modules.

(2) P and Q are faithfully projective both as A-modules anthBdules.

(3) f and ginduce bimodule isomorphisms of P and Q with edoérst
duals with respect to A and to B.

(4) The k-algebra homomorphisms
Homg(P, P) — A — Homg(Q, Q)°

and
Homa(P, P)° « B —» Homa(Q, Q),

induced by the bimodule structures on P and Q, are isomonhis

(5) The bimodule endomorphism rings ofBAP and Q are all isomor-
phic to the centres of A, Bnod — Aand mod — B

(6) The lattice of right A-ideals is isomorphic, vid — % P, with the 64
lattice of B-submodules of P, the two sided ideals corredjpanto
A — B-submodels, or equivalently, to fully invariant B-submied.
Similar conclusions apply with appropriate permutatiordigA, B),
(P, Q), (left, right). In particular, by symmetry, A and B have iso-
morphic lattices of two-sided ideals.
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Proof. (1) is immediate.

(2), (3) and (4) follow immediately from (2), (3), (4) and (bj
theoren4.B.

We have isomorphisms

P
centre A= Homa_a(A A) ®%> Homa_g(P. P),

P
centre B~ Homg g(B, B) % Homa_g(P, P),

and similarly forQ also. The statement (5) follows from these isomor-
phisms plus proposition2.1. i

We now prove (6). SincP is A-projective, the canonical may ®a
P — %P is an isomorphism. Tha# +— %P is an isomorphism of
the lattice of right ideals oA onto the lattice ofB-submodules oP,
now follows from the fact tha®aP : mod - A — mod - Bis an
equivalence. The fully invariant riglt-submodules oA, i.e., the two-
sided ideals oA, correspond to the fully invarialB—submodules oP,
which, by virtue of (4), are just thA — B- submodules oP.

The remaining assertions in (6) are clear. The isomorphistwden
the lattices of two-sided ideals éfandB can be made explicitZ < b
if 2P = Pb, where% andb are two-sided ideals i& and B respec-
tively. The conclusion above show that givén, the idealb exists and
iS unique.

5 Faithfully projective modules

Let B be ak—alegbra and leP be right B-module. FromB and P we
will construct a set of pre-equivalence data and then déterin terms
of BandP alone, what it means for them to be equivalence data.
We set
A =Homg(P, P),

and
Q = Homg(P, B).
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ThenAis ak—algebra andP is anA— B-bimodule, that is, a lefA®y BO-
module. MoreoverQ is aB — A - bimodule with the following prescrip-
tion:

(bg)p = b(ap) (5.1)
and

(9a)p = g(ap), (5.2)

acAbeB,peP,ge Q. Nextwe defingpqe Afor pe Pandq e Q,
by requiring that

(PP = p(ap), p'eP (5.3)
This permits us to define a homomorphismfof A-bimodules
fo: P®8Q— A by fp(p®d) = pg
and a homomorphism @& — B-bimodules 66
Op: Q® P — B, bygp(q® p) = qp.

Finally, we claim that
@pa’ = a(pd), (5.4)

forpe P, q,q € Q. Since these are linear maBs— B, we need only
show that they have the same value at phg P. But

(@pa)p’ = (ap(a'p) by (5.1)
=q(p(a'p")) by B - linearity of g
=q((pd)p’) by (5.3)
= (a(pd)p’) by (5.2).

We have now proved

Proposition 5.5. Let B be a k-algebra, P a right B-module, anglaind
gp be as constructed above. Then

(Homg(P, P), B, P, Homg(P, B), f,.0p)

is a set of pre-equivalence data.
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Example.Let P = eB, whereeis an idempotent. TheB = Po(1-€)B.
Any B-linear mapf : P — B can be extended to B-linear mapf :
B — B by settingf(1 — €) = 0. Thus we have inclusions HtP, P)
Homg(P, B) ¢ Homg(B, B). With this identification, Homg(P, P) = eBe
and Hong(P, B) = Be

Proposition 5.6. In the notation of proposition3.5:

(@) im fp = Homg(P, P) & P is a finitely generated projective B-modu-
le, in which case fis an isomorphism.

(b) imgp = B & Pis agenerator of mod - B, in which case gis an
isomorphism.

(c) (Homg(P, P), B, P,Homg(P, B), f,, gp) is a set of equivalence data
& P is faithfully projective.

Proof. (c) follows from (a), (b) and propositidn_1.5.

In view of theoren’413, it remains only to show the implicate=
in (a) and (b).

SupposeP is a finitely generated projectivB—module. We can
find a freeB-module] ], B with a basise;, . .., &,, andB-linear maps

P i I1eB E P such thatyh; = 1p. If g : P — B denotes the com-
posite ofh; and thei™ coordinate linear form oi] g(B), we can write
hi(p) = 2 &(aip). Let pi = hy(e). Thenp = hohip = (X &(g p)) =
2 pi@p = (X pa)p. Sol = X pig € imf,, and the latter is a
two-sided ideal in Hom(P, P). Hence imf, = homg(P.P).

Next, suppos® is a generator of mod- B. ThenBis a quotient of
a sum (which we mau take finite) of copieshfThis means that we can
find g € Homg(P, B) such thafy’, g;P = B. Hencegy, is surjective. O

Lemma 5.7. A right B-module P is projective> there exist pe P,
g € Homg(P, B), i € |, such that

() given pe P, gqp = 0foralmostall i, and

(i) Xip(Gp) =p, peP.
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The family(p;) which arise in this manner are precisely the gener-
ating systems of P. H/ = imgp, then% is generated, as a two-sided
ideal, by the gpj. Moreover, PZ = P and%? =% .

Proof. Projectivity of P is equivalent to the existence of a fidenodule
. h h
[ Iic; €B andB-linear map — [ 6B — P such thatyh; = 1p. The
il
latter condition, in turn, is equivalent to the existencehaf p; andg;.
For, givenp; andg;, one can construdt; andh; in an obvious fashion.
On the other hand, givem andh,, we can takep; to behy(g), andg;
to be the composite df; with thei" coordinate linear form ofi] B.
il

If Pis projective, it is clear that familieg() are precisely the systems
of generators foP. O

SettingQ = Homg(P, B) we can writez = QP (the set of sums
of elements of the forngp, q € Q, p € P). Butqgp = qZ pi(gip) =

ZQ(pJ(quu))(qu P = Z(qu)(qj p)(ip), which shows that is gen-

erated as a two- S|ded ideal, by thepi. Moreover (i) shows that
P = P% = PQP, and therefore” = QP = QPQP= %2.

Lemma 5.8. Let B be a commutative ring, M a finitely generated B9
module, andZ/ an ideal of B such that & = M. Then M1 -a) =
for some ae % .

Proof. If x,..., X, generateM, we can findaj; € % such thatx =
> Xiaij, that is, ¥ xi(6ij — aj) = 0,i = 1,...,n. It follows by a well-

i i
known argument, that; det(i; — &j) = O, that is,M det@;; — &j) = 0
But det@ij — a;) is of the form 1- a for somea € % . o

Proposition 5.9. Let B be a commutative ring and P a projective B-
module. If either B is noetherian or P is finitely generatdoh ideal im
0p of B is generated by an idempotent e, and ana @ - €)B. Hence P

is a generator of mod — B if and only if P is faithful (i.e., anni 0).

Proof. The hypotheses guarantee tht= img; is a finitely generated
ideal of B, using (5.7) in the second alternative. From (5.7) we also



70

71

56 2. Categories of modules and their equivalences

haveP% = Pand%? = %. TakingM = % in (5.8) we find an
ee % such thatZZ (1 - e) = 0. So% = e ande® = e. Moreover,
P = PesoP(1-¢) = 0. If Pa = 0, then, sinces = } q;p;, we have
ea= ) gjpja = 0 and thusa = (1 - e)a. Hence anrP = (1 - €)B.
Finally, P is a generatoes im g, =B e=1 < annP= 0. ]

The following corollary shows that for eommutativering, B, the
concept of a faithfully projective object of modB is the same as that
of faithfully projective B- modules (as defined 8 of ChapteFlL).

Corollary 5.10. Let P be a module over a commutative ring, B. Then P
is a faithfully projective object of mod — B & P is finitely generated,
projective, and faithful.

Example 1.Letk be a field and leB be the ring of matrices of the form
(88).a b,cek Lete=(§3). The right idealP = eBis a finitely
generated, projective, faithflB—module. However, ing, = P # B, so
P not a generator of mod- B. Of course B is not commutative.

Example 2(Kaplansky) Let B be the (commutative) ring of continuous
real valued functions on the interval,[], and letP be the ideal of
all functions vanishing in a neighbourhood of 0. It is knovattP is
projective, and clearly it is faithful. However, it is eagy show that
imgp # B, soP is not a generator of mod- B. Of course,P is not
finitely generated.

6 Wedderburn structure theory

Given a ring,B, we shall denote by,(B), the ring ofn x n matrices
with entries inB. If P is aB-module, we shall writep™ for the direct
sum ofn copies ofP. There is a natural isomorphism

Homg(P™, PM) ~ M,,(Homg(P, P)).

We recall

Schur’s lemma. A homomorphism from a simple module over a ring
into another simple module is either an isomorphism or the z@ap.



6. Wedderburn structure theory 57

Theorem 6.1. Let P be a faithfully projective right module over a ring
B. Suppose further that P is simple (This is rare !). Then

(1) A= Homg(P, P) is a division ring
(2) Pis a finite dimensional left vector space over A, say R".
(3) Ba Homa(P, P)° ~ M(A) (via right multiplication ).

(4) B is a simple ring whose lattice of left ideals is isomacplvia
b — Pb, to the lattice of A-subspaces of P.

(5) Centre B~ Homa_g(P, P) ~ centre A, and these are fields.
(6) Peg: B— mod — A— mod is an equivalence of categories.

Conversely, if P~ Ois a finite dimensional left vector space over a
division ring A, and if B= Homa(P, P°), then P is a faithfully projective
simple right B-module, and A Homg(P, P) (via left multiplication).

Proof. (1) follows from Schur’'s lemma (2), (3), (4), (5) and (6) foNs
from theoreni’Z4 and propositi@nb.6 (c).

If P # 0is afinite dimensional left vector space over a divisiow rirr2
A, then evidenthyP is a finitely generated projective generatoreimod,
that is, a faithfully projectiveA-module. MoreoverB = Homa(P, P)°
operates transitively on the non-zero element8,a&fo thatP is a simple
B-module. It follows, as before, form theordml4.4(4) and psifon
(c), thatA ~ Homg(P, P).

We now describe the classical method for finding as above. O

Lemma 6.2. If P is a minimal right ideal in a ring B, and if P« 0,
then P= eB for some idempotent e.

Proof. SinceP? # 0, there existx € P such thatxP # 0. Schur’s
lemma then implies tha® Ap (left multiplication byXx) is an isomor-
phism, so thak = xefor a uniquee € P. But this impliesx = x&?, so
€ = e. In particular, 0¢ eBc P, and thusP = eB. o
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Proposition 6.3. Let B be a ring having no idempotent two-sided ideals
other than 0 and B, and let P be a minimal right ideal such thae£F0.
Then P is a faithfully projective and simple-Biodule, so we have the
consequences of theoréml6.1.

Proof. Pis finitely generated projective thanks to lemimd 6.2. Moezov
0 # P c imgp is, according to lemmB3.7, an idempotent two sided
ideal. The hypothesis therefore implies thatgg= B, that is,P is a
generator of mod. ThusP is faithfully projective. AlsoP is simple by
hypothesis. m|

Example. A right artinian ringB having no two-sided ideals other than
0 and B satisfies the hypothesis of the above proposition. For,st ha
a minimal right idealP # 0 andP? cannot be zero (otherwise the two-
sided ideaBP # 0 would be distinct fronB since it would be nilpotent).

We now generalize these results to the semi-simple casellFRieat
a module is calledemi-simplef it is a direct sum of simple modules.

Lemma 6.4. Suppose a module M is the sum of a submodule N and a
family (Sj)ie; of simple submodules. Then there is a subset J of | such

that the map
N[ [s)- M
jed
induced by inclusions, is an isomorphism.

Proof. Among the subsetd for which f; is a monomorphism, we can
choose a maximal one, sdy, by Zorn’s lemma. Iff;, is not surjective,
there existsj € | — Jp such thatS; ¢ im fy,. SinceS; is simple, im
f3, N'Sj = 0. ThusJp U {j} contradicts the maximality alo. O

Corollary. A submodule of a semi-simple module is a direct summand.

Proposition 6.5. Suppose B has a faithfully projective right Bhodule
P which is semi-simple. Then

P~ S(lnl) DB SS”'),

where S, ..., S; are a complete set of non-isomorphic simple rBod-
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ules, and each;n> 0. If D; = Homg(S;, Sj), then D is a division ring,
and
Homg(P,P) ~ [ | M (Dy).

1<i<r

Moreover, B is itself a semi-simple-Bnodule.

Proof. SinceP is finitely generated and semi-simple, it is a finite direct
sum of simple modules, and we can wiitex 8(1”1) @---®S™, where
eachS; is simple,S; not isomorphic tdS; for i # j, and eachn; > 0.
If Sis any simple module, the® is a quotient of a coproduct of copies
of P and this clearly implies tha® is isomorphic to somé&;. Since
Homg(S;,Sj) = O fori # j (Schur's lemma), we have Ha(P, P) ~

I1 HomB(Si(”‘), Si(”‘)) ~ [l My (D). SinceBis a quotient, and hence

1<i<n 1<i<r

a direct summand of a coproduct of copiedoB is also semi-simple.
m|

Proposition 6.6. Let B be right artinian and let B have no nilpotent
two-sided idealst 0. Then B is a semi-simple right-Bmodule. As a
ring, B is a finite direct product of full matrix rings over dion rings.

In particular, the center of B is a finite product of fields.

Proof. Once we know thaB is a semi-simple righB— module, the
remaining conclusions follow from (6.5), sin&ds obviously faithfully
B-projective and the ring of endomorphisms of the rihtnoduleB is
isomorphic toB. O

If bis a minimal (i.e. simple) right ideal d&, thenb = eBwith € = 75
e. This follows from lemmd®]2, provideof # 0. Butb? = 0 implies
thatBb # 0 is a nilpotent two-sided ideal contradicting our hypoihes
We note thab, being a direct summand @&, is a direct summand of
any right ideal which contains

Now, if B is not semi-simple we can find a right ide@l minimal
with the property that’ is not semi-simple. Choose a simple right ideal
bin ¢. Then& = b+ ¢’ (direct sum) for some right idead” <

0. Thend” is semi-simple and thug also is semi-simple, which is a
contradiction.
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Proposition 6.7. B is a semi-simple Bmodules every B- module is
projective.

Proof. = Let P be a rightB— module. TherP is a quotient of a free
right B-moduleF which is semi-simple by assumption. It follows from
the corollary to (6.4), thaP a direct summand d¥. m|

< Let ¢ be the sum of all simple right ideals Bf Then? is semi-
simple, by (6.4). By hypothesi®/ ¢ is projective, so thaB = & @ b
for some right ideab. If b # O, then, being finitely generated, it has
a simple quotient module and hence a simple submodule (bedae
simple quotient is projective). This contradicts the definproperty of
0, and henc&’ = B. ThusB is semi-simple.

76 Definition 6.8. We call a ring Bsemi-simpleif it is semi simple as a
right module over itself.

The results above show that is equivalenBtbeing a finite product
of matrix rings over division rings. In particular, the defiion of semi-
simplicity of a ring is left-right symmetric.

7 Autoequivalence classes; the Picard group

If <7 is ak—categoryk a comutative ring, we define
Pia(«)

to be the group of isomorphism class&$ ¢f k—equivalenced : &/ —
/. The group law comes from composition of functors.
If Ais ak—algebra, we define

Pia(A)

to be the group of isomorphism classéy ©f invertible A — A— bi-

modules (see definitidn—3.2) with law of composition indubgdensor

product: P)(Q) = (P ®a Q). It follows from propositiof 4]l and the-

orem[Z%(3), that this is indeed a group wi?)(* = (Homa(P, A)). In

the latter we can use either the left or the rightmodule structure obP.
77 According to theoreri 3 1:
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Proposition 7.1. (P) — (P®a) and(T) — (T A) define inverse isomor-
phisms
Pic(A)— Pig(A— mod )

Let P be an invertibleA — A bimodule. Ifa, 8 € Aui(A) are
k—algebra automorphisms, write

aPﬂ
for the bimodule with additive group and with operations
a-p=a(@p,p-a=ps@ (pePacAh).

ThusP =1 P1.

Supposef : P — Q is aleft A—isomorphism of invertibleA —
A-bimodules. Since, via right multiplicatio® = Homa(aP.a P)O, we
can definer € Aut(A) by

pa(a) = f(f(p)a)

or
f(pa(a@) = f(pa,  psPacA.

Thenf ;1 P, - Qis a bimodule isomorphism. This proves, in particu-
lar, the statement (4) in the following

Lemma 7.2. For a, B, v € Aut(A) we have 78
(1) "B ~ yatyB
(2) 1%a ®a 178 ~ 17ap

(3) 1A, =1 A1 © a € In Aut (A), the group of inner automorphisms of
A.

(In all cases above the symbeldenotes bimodule isomorphism.)

(4) If Pisaninvertible A-A-bimodule and if P+ A as left A- modules,
then P~; A, as bimodules for some e Auf(A).
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Proof. (1) The map,As —,o A,z given by x — y(X) is the required
isomorphism.

(2) Using (1) we haVQAa Ra 1Aﬁ =~ a/—lA]_ a1 Aﬁ X g1 ® 1AQ’3.

(3) If f: 1A, —1 A1 is abimodule isomorphism, then as a lafauto-
morphismf(xX) = xu, whereu = f(1) is a unit inA. Moreover,
f(ax(a)) = f(La) = f(1)a, which givesa(a)u = ua, that is,a(a) =
uaulforallae A

i

Conversely, ife(a) = uau™® for some unitu € A, then f(x) = xu
defines a bimodule isomorphispd, —1 A;.

The group Pig(A— mod )~ Pig(A) operates on the isomorphism
classes of faithfully projective lefA—modules. We now describe the
stability group of a faithfully projective module underghaction.

Proposition 7.3. Let Q be a faithfully projective left-Amodule, and let
B denote the kalgebraHomy(Q, Q)°. Then there is an exact sequence

1= InAut(B) — Aut(B) 2> Pig(A) *)
with
im pq = {(P) € Pia(A)|P®a Q ~ Q as left A- modulgs

Proof. Suppose first tha) = A, so thatB = A. Definepa(a) = (1A,).
LemmaZP tells us that this is a homomorphism with kernelun@®),
and with the indicated image. m|

In the general case, we s€& = Homa(Q,A). Then the func-
torT = Homa(Q, ) =~ Q*®a : A— mod — B- mod is an
equivalence, withTQ = B. This induces an isomorphism R{& —
mod ) — Pia(B — mod ). By propositiol 711, we obtain an isomor-
phism Pig(A) — Pig(B), and this mapsR) € Pig(A) into (Q* ®a P ®a
Q) € Pia(B).

We define nowq : Aui(B) — Pia((A) as the compositéut(B) —
Pig(B) 5 Pia«(A), where the first map is defined as in the special case



7. Autoequivalence classes; the Picard group 63

treated in the beginning, and the second is the inverse oisthreor-
phism just mentioned. The exactness #f follows from the special
case. Also, if P) € Pi(A), thenP ®a Q ~ Q as left A—- modules
© Q" ®aPoaQ~ Q" ®aQ as leftB-modules. Sinc&* ®, Q ~ Bas
B — B—bimodules, the last statement in the proposition followsfithe
special case.
Let C = center A. IfP is an invertibleA — A— bimodule, we can 80
define a map
ap.:C—-C

by requiring that
pt=ap(t)p, pePteC

This is possible because, the mpp— pt, being a bimodule endo-
morphism ofP, is the left multiplication by a unique element in the
centre. Nowap is ak—algebra homomorphisniff = ptfort € k). If
p®ge PesQandteC, then peg)t = p® ag(t)q = pag(t) ®q =
apag(t)(p®q). Thus

apgQ = apaQ.

Since, evidentlyep = Idc, it follows from the invertibility of P, that
ap is an automorphism of, and that P) — ap is a homomorphism
Pig(A) — Aut(C). The kernel is clearly P&(A). Summarization gives

Proposition 7.4. If A is a k-algebra with center C, then there is an exact
sequence
0 — Picc(A) — Pio(A) — Aut(C).

If A is commutative, then
0 — Pica(A) — Pig(A) — Aut(A) - 1
is exact and splits.

Proof. The mapr — (1A,) (see lemma=2) gives the required splittingn
Aut(A) — Pig(A). m|

Example.Let A be the ring of integers in an algebraic number field
and letG(k/Q) be the group of automorphisms kf (k need not be



64 2. Categories of modules and their equivalences

Galois.) EvidentlyAut;(A) ~ G(k/Q), and Pig(A) is just the ideal class
group of A. Thus Pig(A) is the semi-direct product of the ideal class
group of A with G(k/Q), which operates on the ideal group, and hence
on Pi(A). This is also the group of autoequivalences of the category
A-mod. In particular, Pig(A) is finite (finiteness of class number) and
Picz(Z) = {1}. Thus any autoequivalené&—- mod — Z - mod is
isomorphic to the identity functor.



Chapter 3

The Brauer group of a
commutative ring

In this chapter we prove the fundamental theorem on Azuméye as2
bras, following largely the paper of Auslander Goldmian [t].§4 we
obtain Rosenberg and Zelinsky’s generalization of the &kelNoether
theorem (see]1]). Finally we introduce the Brauer grdnék) of a
commutative rink. The functor End £P — Azis cofinal, in the sense

of chaptefll, and we obtain an exact sequence
K{FP — K1Az— Ko® End — KoFP — KgAz— Br(k) — O.

We have computed the grousFP in chaptedL, and we further show
here thato® End~ Pic(). The final result is that the functors Pie
EP — Azyield an exact sequence o

U(K) = K{EP — K1Az— Pick) = KoEP — KoAz— Br(k) — 0,
from which we can extract a short exact sequence
0 (Q/Z®z U(K) @ (Q®z SKiP) — K1Az ' Picl) — 0,

the last group being the torsion subgroup of Bic(This gives a fairly
effective calculation oK;Az

65
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1 Separable Algebras

Let k be a commutative ring. IA is ak—algebra, we writeA? for the
opposite algebra ok, andA® = AgxA°. A two-sidedA- moduleM can
be viewed as a lef @ A° module: We define the scalar multiplication
by

(a®b)x=axh xeM,abeA

In particular,A is a left A*~ module, in a natural manner, and we have
an exact sequence
0-J->A°*-A-0 (1.1)

of A®- linear maps (whera® b € A® goes toab € A). If needed, we
shall make the notation more explicit by writing

A® = (A/K)S,

and
J=J(A) = J(A/K).

We definek-linear map
0:A—J

by settingé(a) =a®l-1Qa.

Lemma 1.2. Im § generates J as a left ideal, ardsatisfiess(ab) =
a(ob) + (6a)b.

Proof. Clearlyims c J. If x= Y, g ®b; € J, that s, if}, ajbj = 0, then
X=X a’b-3 abel = ¥ (ael)((1eh)-(biel) = - X adb;. Finally,
6(ab) = abg1l-1®ab = (a®1)(be®l-1’b)+(a®l)(1”b)—(1®b)(1®a) =
a(sb) + (1 ® b)sa = a(sb) + (sa)b. O

Corollary 1.3. If M is a left A~ module and N is a right &-module,
there are natural isomorphisms

Homa &(A, M) ~ {x € M|ax = xa, for all a € A},
and

N ®ae A~ N/ (Submodule generated by axxa a € A, x € N).
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Proof. Since A ~ A%/J, Homxe(A M) ~ {x € M|Jx = 0} = {x €
M|(6a)x = Ova € A} = {x € M[ax = xa¥a € A}. The other part is
trivial. O

For a two-sidedA—module M we shall denote the subgroyp €
M |ax = xava € A} by MA. Note that ifA is a subalgebra of k-algebra
B, thenB is just the centralizer oA in B. In particular,A* = centreA.

We denote by DefA, M) the k-module of allk—derivations ofA
into M, that is,k—linear mapd : A — M satisfyingd(ab) = ad(b) +
(dab,a,be A If f : M — N is A®~linear, thend — fd defines a
k—linear map Daf(A, M) — Derg(A, N).. For example, ifx e M and if
f : A°* - M is defined byf(1) = x, then the composite

f
AL I AR D M

is a derivation, called thenner derivation ¢ defined byx. Thus, if
ac A dy(a) = (6a)x = ax— xa.

Proposition 1.4. For an A-module M, the map f— fé defines an 85
isomorphism
Homgae(J, M) — Deli(A, M),

with inner derivations corresponding to those f which carektended
to A°.

Proof. Since imé generated, we havef6 =0= f =0. m]

Supposa € Der (A, M). We can define k-linear mapf : A* - M
by settingf(3 a ® b)) = — X ad(b;). This satisfiesfsa = f(a® 1 -
1®a) = —ad(1) + 1d(a) for all a € A. Butd(1) = d(1?) = 1d(1) +
d(1)1 = 2d(1) so thatd(1) = 0. Thusfs = d. It remains to show
that f/J is A®—linear. Ifx = Y, a ® b € J, we must show thaf((a ®
b)x) = (a® b)f(x). But f((a® b)x) = f(3 ag ® bib) = — >, agd(bjb) =
— Y aa(bdb+ d(b)b) = (a® b)f(x).

The derived functors oM — M* are called theHochschild co-
homology groupf A with coeficients in M. We denote them by
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Hi(A, M). By virtue of (1.3),H'(A, M) ~ Ext,.(A, M). The exact se-
guence (1.1) gives us an exact sequence

0 — Hompae(A, M) — Homae(AS, M)

— Homae(J, M) — Extie(A, M) — 0,
which we can rewrite, using (1.3) and (1.4), to obtain:
Proposition 1.5. There is an exact sequence

0 - MA > M — Der(A M) - HYA M) - 0.

so that H(A, M) = the k-module of k-derivations of A into M, modulo
the k-submodule of inner derivations.

If C = AA = centreA, thenC ® 1 ccentreA®, so we can view the
above exact sequence as a sequenéz-ofiodules andC-linear maps.

Proposition and Definition 1.6. A k—algebra A is called separable, if
it satisfies the following conditions, which are equivaient

(1) Ais a projective A-module.

(Lois M — MAis an exact functor on & modules.

(Lxer (A®A = AA = Qs exact.

(2) If M is an A°—module, then everyldderivation A— M is inner.
(2)vis the derivations : A — Jis inner.

Proof. Since MA ~ Hompe(A, M), the implications (1)& (L)is =
(L)er are clear. If Home(A, A%) — Hompae(A,A) — 0 is exact, then
1, factors throughA®, so thatA is A® projective, thus proving (i =
(D). m|

(1) & (2) by virtue of the identifications Ekg(A, M) = HY(A, M) =
derivations modulo inner derivations. Also the implicati@) = (2)is
is obvious. Finally, propositioi=.4 shows thais inner< 1; extends
to a homomorphisnd® — J that is,< the exact sequence (1.1) splits.
This proves (2)is = (1).
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Corollary 1.7. If A/k is separable with centre C, then for afi-Anodule
M, there is a split exact sequence of@odels,

0— MA > M — Der(A M) - 0.
In particular, C is a G-direct summand of A.
This follows directly from (1.5) and the definition above.

Corollary 1.8. If A — B is an epimorphism of-algebras, with Ak
separable, then K is separable, and centre=Bmage of centre A.

Proof. If M is a two-sidedB—module, then evident/® = M4, so that
M — M8 is an exact functor, that i$§ is separable. AlsoA* — BA =
BB — 0is exact. ]

2 Assorted lemmas

The reader is advised to skip this section and use it onlyefi@rences.
fi
Lemma 2.1(Schanuel’s lemma)lf 0 - N; - P - M — 0 are exact
with P; projective, i= 1,2, then R & N, ~ P, & Nj.
Proof. If PaT]P2 = {(x1. %) € P1& Py|fa(x1) = fa(x2)}, then the
M

coordinate projections give us maps[[y P2 — Pi,i = 1,2, and a 88
commutative diagram

0—— Ny ——PillyP —=P,——0

0 N1 Py M 0
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with exact rows and columns, as is easily checked. SincePtlare
projective, we conclude th#t; ® No ~ P1 [ P2 ~ P2 @ Nj. O
M

Let A be a ring. AnA—- moduleM is calledfinitely presentedif
there exists an exact sequence

FioFo—>M->0

of A—linear maps withF; a finitely generated freA— module,i = 0, 1.

Corollary 2.2. (a) If0 » M - M - M” — 0is an exact sequence
of A-modules, with M and Kfinitely presented, then Ms finitely
generated.

(b) If Ais commutative, and M and N are finitely presentedrn@dules,
then so is Mz N.

(c) If Ais an algebra over a commutative ring k, and if A is &hjtpre-
sented as akmodule, then A is finitely presented as d&h-module.

Proof. (a) Case |. SupposM is projective. Then the result follows
easily from the definition and Schanuel’'s lemma.

General Case.Let f : P —» M be surjective withP finitely generated
and projective, and let” : P — M’ be the epimorphism obtained by
composingf with M — M”. We have a commutative diagram

0——=P=—=P——>0
ol
0 M M M 0

with exact rows. The exact sequence
O=kerf — kerf — kerf” — cokerf’ =M’ — cokerf =0

shows thatM’ is finitely generated, since by case |, Kéris.

(b) follows easily from right exactness.
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(c) If Ais finitely presented as la- module, thenA€ is finitely pre-
sented as &—module, This implies thal is finitely generated as
ak-module and a fortiori as aA®*— module.

O

Lemma 2.3. Let K; be a commutative-k algebra and let M N; be 90
Ki—modules, i 1, 2. There is a natural isomorphism

(M1 ®¢ M2) @k, ek, (N1 &k N2) — (Mg ®, Ni1) ® (M2 @k, No)

given by(m; @ mp) ® (N ® Np) = (M ® N1) ® (M ® ny). If the M and
N; are K—algebras, then the above map is an isomorphism p&K
Ko—algebras.

Proof. Straightforward. O

Corollary 2.4. (a) If K; is a commutative k-algebra, and & K;-alge-
bra, i = 1,2, then (2.3) defines a natural isomorphism

(A1/K1)® @ (Ao/K2)® ~ (Ar &k Ao/Ky &k K2)®

(b) If K and A are k-algebras, K commutative, thgiK @« A/K)® =~
K ®k (A/K)E.

Proof. (a) In (2.3) we takeM; = A  andN; = A°. Evidently (A; ®
A2)? = A @y AS.

(b) SetA; = K; =K, Ay = AandKz =kin (a)
O

Lemma 2.5. Let K; be a commutative k-algebra, let Be a K-algebra,
and let M and N be A-modules, i= 1, 2. The k-bilinear magf1, f2)
— f; ® f, defines a K&k Ko>-homomorphism

HomAl(Nl, Ml) Rk HOI’nAZ(Nz, Mz) - HomA1®kA2(N1 ®k No, M1 ®k Mz).
It is an isomorphism in either of the following situations: 91

() N;jis a finitely generated projective;Amodule, i= 1, 2.
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(i) N and M, are finitely generated projective;Amodules, A is
k—flat, and N is a finitely presented A-module.

Proof. The first assertion is clear.

() By additivity we are reduced to the calle= A;,i = 1,2, and then
the assertion is clear.

(i) By additivity again we can assume tHdtf = My = A;.

Write SN = A; @ Homa, (N2, M2), TN2 = Homa, g, A, (A1 ®k N,
A1 ®¢ My). We have a majS N> — TN,. This is a isomorphism for
N2 = Az, and therefore, foN, = AD. Let nowAD — Al" N, — 0
be an exact sequencg.andT being left exact contravariant functors in
No, we obtain a commutative diagram

0 SN SAM SADY

L

0 N, TAM TAD

with exact rows. The second and third vertical maps beinghise
phisms, if follows that the first one is also an isomorphism. ]

Corollary 2.6. If Kj is a commutative kalgebra, and if A/K; is a sep-
arable algebra, i= 1, 2, then A ® Ax/K1 ® K> is a separable algebra
with centre= (centre A) ® (centre A). More generally, if Mis an
(Ai/K;i)® module, then the natural map

M3® @ My2 — (Mg @y M)/ 1exhe
is an isomorphism.

Proof. We have, by hypothesis, (2.4), and (2.5), an isomorphism

M2 @y M52 = Homya, /iy) €A1, M1) @ HOMya, i) (A2, M2) —
HOoMa, /Kky)eer(Ar/Ko)e (AL ®k A2, M1 ®k M2)
= (Mg ® Mp) &



2. Assorted lemmas 73

Applying this to A1/K1)® @k (A2/K2)® = (A1 @k Ax/ K1 ®k K2)® — Ar ®
A, — 0 we get a commutative diagram

(A @k Ag/K1 @ K2)O)A1®Pe — s (A @) Ag)P18kPe
((A/Kn)®)A @i (Ao/K)eYe —— (AT &k AS?)

in which the vertical maps are isomorphisms and the loweizbotal
map is surjective, by hypothesis and right exactnessyoflt follows
that the upper map is also surjective, and this finishes tbefpusing
criterion (1.6)(1y, for separability. O

Corollary 2.7. If Aj/k is a separable algebra,= 1, 2, then(A; ®cA2)/k 93
is separable with centre #®y centre A as its centre.

Corollary 2.8. Suppose K and A are k-algebras. Suppose further that
K is k-flat.

(a) If M and N are A-modules with N finitely presented, then
K ® Homa(N, M) — Homyg, A(K ®« N, K ® M)
is an isomorphism.

(b) If K is commutative, and if A is finitely presented as &n#odule
then for an A-module M, the map

K @k (M*) — (K @ M)
is an isomorphism.

Proof. The statementd) follows from (2.5) (ii) withN; = M1 = A; =
K1 = K, andK; = k. The statement (b) follows from (a) by substituting
A% for A, andA for N. O

Corollary 2.9. Let K and A be k-algebras, with K commutative.

(&) A/xseparable= K®gA/K is separable with centrtK @A) = Ky
(centre A).
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(b) If K is faithfully k-flat and if A is a finitely presentec®-fnodule,
then(K ®x A)/K separable= A/k separable.

Proof. (a) is a special case of (2.6).

(b) SupposeK @ A/K is separable. Corollafy2.4 implies tha ®x
A/K)® — K @ A is isomorphic toK ® ((A/K)® — A). Then
(2.8)(b) further implies that K ®x A/K)E)KEA — (K @ A)KSKA
is isomorphic toK & (((A/K)®)* — AX). Therefore, by hypothesis,
K @k (((A/k®)A — AA) is surjective. Sinc is faithfully k-flat, this
implies that (&/k)®)* — A* is surjective, so tha#\/k is separable
(see (1.6)(1) ter).

i

Example.If K is a noetherian local ring, in (2.9)(b) we can takéo be
completion ofk.

Corollary 2.10. If A/k is a finitely A-presented k-algebra, then/Ris
separable= A /K 4 is separable for all maximal ideals” of k.

Proof. TakeK = [Tk in (2.9)(b). Alternatively, repeat the proof of
Vi

(2.9)(b) and at the end use the fact th&tomomorphisnf is surjec-
tive o f 4 is surjective for all# . m|

Corollary 2.11. Suppose As a k-algebra and that Hs a finitely gen-
erated projective Amodule, i= 1,2. Then

Endy, (P1) ® Enda,(P2) — Enda,ea,(P1 @k P2)
is an algebra isomorphism.
Proof. SetN; = M; = P; andK; = kin (2.5) (i). m|

Corollary 2.12. Suppose Pand B, are finitely generated projective
k-modules. Then

End(P1) ® End(P2) — End(P1 ®« P2)

is an algebra isomorphism.
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Proof. SetA; = kin (2. 11). O

Proposition 2.13. Let P be a finitely generated projective k-module.
Then A= End(P) is a separable algebra with centr¢d&nnP.

Proof. Both centreA andB annP commute with localization, and hence
we can use (2.10) to reduce to the case WRémfree, sayP ~ k", so
that A ~ M(k). Denoting the standard matrix algebra basisdpyy),(we

n

sete= ) g1®6jeA°. Thengs® 1l)e= ) 5681 ® € = &1 ® €5 and
i=1

(1®es)e = Y a1®ei6s = &18€1s. Henceee(A)A. Under @9)* — AA,
emaps intoy, e1€1i = Y = 1. Hence A%)* — A% is surjective. Thus
Alis separable, by (1.6)(L). Theorem[[&11)(5) of chaptEl 2 implies that
centreM (k) = k. O

Lemma 2.14. Let f : M — M be a k-endomorphism, k a commuta-
tive ring. Suppose that M is either noetherian or finitely gqated and
projective. Then, if f is surjective, it is an automorphism.

Proof. If ker f # 0, thenf surjective implies that kef" is a strictly
ascending chain of submodules, an impossibilitiis noetherian, 1M
is projective, therM ~ M@ ker f and localization shows that kér= 0 96
if M is finitely generated. O

Proposition 2.15. Let k be a local ring with maximal idea}”, and let
A be a k-algebra, finitely generated as a k-module. Suppadesither
k is noetherian or that A is k-projective. Then if. & A is a separable
(k/.#)-algebra, A is a separable k-algebra.

Proof. Considers : A —» J = J(A/K). Letk’ denote reduction modulo
A e. 9.k =k/.#. Thens induces &’-derivationd’” : A” — J', where
J is a two-sidedA’-module. By hypothesis and criterion (1.6)(2},
must be innery’(a’) = a'€¢ — €a = a€ — €a = §(a)¢, for somee'ed’,
coming from sayeeJ. It follows thaté(a)e = 6(a) mod.# J, so (1.2)
impliesJ = Je+ .# J. The exact sequence

0-J->A*S5AS0
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shows that] is noetherian ik is, and that] is k-projective and finitely
generated ifA is. Hence we can apply lemmia2.14 to #shomomor-
phism J 5 J, provided the latter is surjective. But this follows from
Nakayama's lemma, sinck= Je+ . J.

Now the compositel — AS Jisan automorphism al, so thatJ
is anA®-direct summand of°. This proves thah is A® -projective, as
required. m|

Lemma 2.16. Let f : P — M be a k-homomorphism with P finitely
generated and projective. Denote the fundtomy(, k) by *. Then f has
a left inverses f* : M* — P* is surjective. If M is finitely presented,
then (coker f)_, = coker(f ,)* sothat f has aleftinverse f , does
for all maximal ideals 7.

Proof. fleftinvertible= f*right invertible= f* surjective= f* right
invertible (becaus®* is projective)= f** : P* — M* left invertible.
The commutative square

P M

|

sk Hk
P* ——=M

f

shows thatf ** left invertible= f left invertible. o
The natural homomorphism

(M%), = (Hom(M,K)).» — (M._4)" = Homy ,(M_z.K z)

is an isomorphism foM finitely presented, by (2.8)(a). Hence sirée
is also finitely presented, we havé*] , ~ (f »)* in this case, so that
by exactness of localization, (cokét) , ~ coker (f ,)*.

Corollary 2.17. If A is a faithfully k-projective k-algebra, then k is a
direct summand of A.
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Proof. We wantk — A to have a left inverse, and (2. 16) plus our
hypothesis makes it fiicient to prove this fok local, say with maxi-
mal ideal.#. Then XA/.Z Ais a part of &k/.# -basis forA/.Z A, so
Nakayama's lemma implies thatA is a part of &-basis ofA. O

Proposition 2.18. Let A and B be k-algebras with A a faithfully projec-
tive k-module. Then &y B/k separable= B/k separable.

Proof. Ais k-projective implies tha#® is k-projective. HenceA ®
B)¢ ~ A®®y B® is B®-projective. Thus, ifA ®x B is (A ® B)®-projective,
then it isB®-projective. CorollanyZ17 and our hypothesis implies-

k@ A’ as ak-module, so thaA ® B ~ B® (A’ ® B) as aB®-module.
ThusB®-projectivity of A®y B < B®-projectivity of B. O

Proposition 2.19. Suppose A is a K-algebra and that K is a k-algebra.
Then

(1) A/K and K/k separable= A/k separable.
(2) A/k separable= A/k separable.

If A faithfully K-projective, then A separable= K/k separable.
Proof. (1) K/k separable means that

0— JK/K - KE—-K—-0
splits as an exact sequencekdFmodules. Hence
0 — (A/K)® ®@ke J(K/K) — (A/K)® = (A/K)® ®ke K — 0

splits as an exact sequence AfK)¢-modules, so that/k)® ®xe K 99

is a projective A/k)®-module. it follows easily from corollarfy_1.3

that (A ® A°) ®ke K ~ A®k A° = (A/K)E. Hence if we further

assume thaf is (A/K)®-projective, it follows from the projectivity
of (A/K)€ over A/K)¢, remarked above, thdtis (A/K)®-projective.



78 3. The Brauer group of a commutative ring

(2) In the commutative diagram with exact rows and columns
(A/K)F——A——=0

L]

(A/K)F—=A——=0

|

0

if the top splits, then so much the bottom. Suppéss faithfully
K-projective. ThenA/k)€ is (K/K)&-projective, so thah is (K/Kk)®-
projective, assuming thaf\(k) is separable. By corollafy 21K is
a K-direct summand, of, hence a/k)¢-direct summand, so we
conclude thaK is (K/k)®-projective, as claimed.

i

Proposition 2.20. (a) If A; and A are k-algebras, then Ax Ay/k is
separables A;/k and A/k are.

(b) If A is a k-algebra, i = 1,2, then A x Ay/k; X ky is separable
s Ai/ky and A and A/k, are.

100 Proof. (a) (ArxAg)® = (A1@kAD) X (Ar@kAd) X (A1 @k Ad) X (Ao @k AD) =
Al x AS x B, andAy x Az is an (1 x Az)®-module annihilated bf.
As such it is the direct sum of th&f-moduesA;. ThusA; x Az is
(A1 X A2)® -projectives A; is AP-projective

(b) Any ki x ko-module or algebra splits canonically into a product of
one overk; and one oveky. In particular @; x Ax/ky X ko)¢ =
(Al/k]_)ex (Az/kz)e, SOA; XAy is (A]_ X Ao /Ky X kz)e-pl'OjECtiV6<:> A
is (Ai/ki)e-projective.

i

3 Local criteria for separability

Theorem 3.1. Let A be a k-algebra, finitely generated as a k-module.
Suppose either that k is noetherian or that A is a projectiraddule.
Then the following statements are equivalent:
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(1) A/kis separable.

(2) For each maximal ideal# of k, &/.# A is a semi-simple k# -
algebra whose centre is a product of separable field extessis
K/ A .

(3) For any homomorphism k> L, L a field, Lk A is a semi-simple
algebra.

We will deduce this form the following special case:

Theorem 3.2. Let A be a finite dimensional algebra over a field k. The
following statements are equivalent:

(1) A/k separable
(2) Lex A is semi-simple for all field extensiongk.

(3) For some algebraically closed fieldk, L ®x A is e product of full 101
matrix algebras over L.

(4) Ais semi-simple and centre A is a product of separabld égten-
sions of k.

We first prove that (2) = (3.1):

Q) = (3). If k —» L, thenL ®¢ A/L is separable, by (2.9), and we
now apply (1)= (4) of (3.2).

3) = (2). Apply (2) = (4) of (3.2), whereL ranges over field
extensions ok/.Z .

(2) = (1). From (4)= (1) of (3.2) we know tha\/.Z A is a sepa-
rable k/.#)-algebra so the hypothesis érand propositioi 215 imply
thatA /K 4 is separable, for allZ. (1) now follows from corollary
2.10.

Proof of Theorem 3.2.(1) = (2). SinceA/k separable implies that
(L ® A)/L is separable, it dfices to show that\/k separable=> A
is semi-simple. LetM, N be left A-modules. Then Hom(M, N) is a
two-sidedA-module, i.e., a®-module, andHomae(A, Hom(M, N)) =
Homa(M, N) clearly (see (1.3)). Sindeis a field, Hom(M, ) is an exact



102

103

80 3. The Brauer group of a commutative ring

functor. SinceA is A®-projective (by assumption), Hog(A, ) is exact.
Hence Hom(M, ) is an exact functor, so evermodule is projective.
Propositior6J7 of Chapt&t 2 now implies thasemi-simple.

(2) = (3). This follows from the structure of semi-simple ringapl
the fact that there are no non-trivial finite dimensionalsion algebras
over an algebraically closed field.

(3) = (1). By assumptionl.®y A is a product of full matrix algebras
overL. PropositionZ13 arldZ.P0 imply thlakyA/L is separable. Since
L is faithfully k-flat (k is a field!), (2.9)(b) implies tha#/k is separable.

The proof of (1)< (4) will be based upon the next two lemmas,
which are special cases of the theorem.

Lemma 3.3. A finite field extension [k is separable as a k-algebra
it is separable as a field extension of k.

Proof. If kK ¢ K c C, thenC/k is separable, in either sense C/K
andK/k are, in the same sense. This follows from proposifion]2.18 in
one case, and from field theory in the other. An induction ogree
therefore reduces the lemma to the c@se k[X]/(f(X)). LetL be an
algebraic closure df, and writef (X) = [T(X-a)® in L[X], with & sdis-

tinct. ThenC is a separable field extenlsi@ﬂ L®k C = L[X]/f(X)L[X]
has no nilpoint elements L®yC is a product of copies df & LexC/L
is separable= C is a separable algebra overby (1) & (3) of (3.2),
which we have already proved. m]

We now prove the implication (1 (4) of (3.2). We have already
proved thatA/k is separable implies tha& is semi-simple. Hence the
centreC of A must be a finite product of field extension kof in par-
ticular A is a faithfully projectiveC-module, so by propositiof_Z119,
A/k separable= C/k separable. The last part of (4) now follows from
propositiorZ2D and lemnia’B.3 above.

Lemma 3.4. Let k be a field, and suppose that A is a finite dimensional
k-algebra, simple and central (i.e.centre=Ak). If B is any k-algebra,
every two-sided ideal of & B is of the form Agy J for some two sided
ideal J of B.
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Proof. According to theoreri 811 chapter 2 there is a division algebr
D and ann > 0 such thatA ~ M,(D) = D ® My(k). Theoren[ 2} of
chapteP contains the lemma whan= My (K), in which caseA ® B =
Mn(B) = Endg(B™M). It therefore stiices to prove the lemma fér = D,

a division algebra. If&) is ak-basis forB, then (1® g) is a leftD-basis
for D ® (B). Let| be a two-sided ideal ob ®¢ B. Thenl is a D-
subspace oD ® B, and it is (clearly) generated by the “primordial”
elements ofl with respect to the basis @ ), i.e. by those elements
X = Y (di®l)(1zg) # 0 of | such thaS(x) = {i|d; # 0} does not properly
containS(y) for anyy # 0 in |, and such that the least ode= 1. If

x such an element anddf # 0 is in D, thenx(d ® 1) € |, becausd is

a two-sided ideal. Now(d® 1) = S(d ®g)(d®1) = Y dd® g so
S(x(d ® 1)) = S(X). Subtractingd’ ® 1)x from x(1 ® d) will therefore
renderS((d’ ® 1)x — X(1 ® d)) a proper subset d&(x), for a suitable
d’eD. O

Since x is primordial, this impliesq’ ® 1)x = x(d ® 1), i.e. that 104
>Sdde®eg = Y dd®eg. Somed; = 1 so we haval’ = d. Moreover,
did = dd for all i. By assumption centr® = k, soxek® B = 1® B.
Setting 1® J = | N (1 ® B), we therefore have= D ® J.

We shall now prove the implication (4» (1) of theorenZ312. Let
C = centreA. To show thatA/k is separable Propositidn 2119 makes it
suficient to show thafA/C andC/k are separable. In each case, more-
over, propositiol 220 reduces the problem to the case @hsm field,
Separability ofC/k then results from the hypothesis and lemimd 3.3.
Let L be an algebraic closure &. Then it follows from lemmd 314
thatL ®c Ais simple, hence a full matrix algebra overSeparability of
A/C now follows from the implication (3} (1) which we have proved.
Thus the proof of the theorem 8.2 is complete.

4 Azumaya algebras

Theorem and Definition 4.1. An azumaya algebra is a k-algebra A
satisfying the following conditions, which are equivalent

(1) Ais afinitely generated k-module angdkAs central and separable.
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(2) A/kis central and A is a generator as arff-fodule.

(3) Alis afaithfully projective k-module, and the naturgbresentation
A® — End(A) is an isomorphism.

(4) The bimodulexcA is invertible (in the sense of definitidnB.2 of
chaptef®), i.e. the functors

(N— A&k N)
k—mod____ A°—mod
(MA<——M)
are inverse equivalences of categories.

(5) Ais a finitely generated projective k-module, and formadiximal
ideals.# of k, A/.# A is a central simple k# -algebra.

(6) There exists a k-algebra B and a faithfully projectivenkdule P
such that Azy B ~ End(P).

Proof. (1) = (2). Let9t be a maximal two-sided ideal &, and set
A = M n k. According to (1.8) and our hypothesigm is a separable
k-algebra with centr&/.# . SinceA/Mt does not have two-sided ideals,
its centre is a field. Thus#Z is a maximal ideal ok, sOA/.ZA is a
central separable algebra ovet#, and it follows from theoreni3.2
that A/.Z A is simple. Consequentlgn = .ZA. Applying this to A,
which, by (2.7), is also a separalitealgebra, we conclude that every
maximal two-sided ideal of® is of the form.# A® for some maximal
ideal .7 of k. O

Viewing A as a leftA®-module we have the pairingh: A ® Hompe
(A, A°) — A®, and its image is a two -sided ideal which equafis=> Ais
a generator as af®-module (see(5.6) of chapter 2).ithgs # A%, then
im ga is contained in some maximal two-sided ideal6f so, according
to the paragraph above, iga c .# A®, for some maximal ideal” of k.
Now lemmd&.J of chapté&l 2, plus our hypothesis it A®-projective,
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imply thatA = (imga)A c . A. But from (1.7),k = centreA is a direct
summand ofA. S0OA = .#ZA = k= .4, which is a contradiction.
(2) = (3). Ais a generator oA®* — mod , so the pairing

ga : Hompe(A, A®) @ A — A®

is surjective. It follows now from theorefin 3.3 and propasitb.6 of
chapter 2 thatA is a finitely generated projectiviemodule, and that
A® — End(A) is an isomorphism. SincA is a faithful k-module k
being centre of\), corollaryl5. 1D of chaptdil 2 implies that it is faithfully
projective.

(3) = (4). This follows directly from proposition 5.6 and defioiti
B2 of chaptel12.

(4) = (1). is trivial once we note that centfe= Homae(A, A).

(1) = (5) follows from (1)= (3) of theoreniz311.

(5) = (1). Theoreniz311 shows thayk is separable.

Let C =centreA. ThenC is aC-direct summand oA, and hence
a finitely generated projectiMemodule, sinceA is so. We have a ho-107
momorphismk — C, and (1.8) implies thak/.# — C/.ZC is an
isomorphism for all maximal ideals# of k. This implies thak — C
is surjective, since the cokernel is zero modulo all maxiidedls ofk,
and hence it splits, becau€ds projective. The kernel df — C is also
zero, since it is zero modulo all maximal idealskofThusk — C is an
isomorphism.

(3) = (6). TakeB = A’ andP = A.

(6) = (1). End(P) is faithfully projective, sinceP is. SinceA ®
B ~ End(P), it follows from proposition&ll of chaptéd 1 th& is
faithfully projective. Propositiofi’Z13 says that k(f@)/k is central and
separable, so that, by proposition 2. 28k is separable. Similarl/k
is separable. It follows from (2.7), that (cen#&y(centreB) = centre
End((P) = k. Hence centré has rank 1, as a projectikemodule, and
so centreA = k, sincek is a direct summand ok ®¢ B and therefore of
centreA.

Corollary 4.2. If A/k is an azumaya algebra, thety — %A is a
bijection from the ideals of k to the two-sided ideals of A.
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Proof. This follows from theoreri 414 of chap{@r 2, since two-sid#et i
als of A are simplyA®-submodules oA. m|

Corollary 4.3. Let A c B be k-algebras with A azumaya. Then the
natural map Agy BA — B is an isomorphism.

Proof. This is a special case of the statement (1) of thedrein 4.10

108 Corollary 4.4. Every endomorphism of an azumaya algebra is an au-
tomorphism.

Proof. Supposef: A — Ais an endomorphism of an azumaya algebra
A/k. By (4.2), kerf = % A for some ideat” of k and hence kef = 0.
Therefore (4.3) implie ~ f(A) ® A'™. Counting ranks we see that
AfA =k, O

Corollary 4.5. The homomorphism
Pig((K) — Pia(A),
induced by L— A® L, is an isomorphism.

Proof. This follows (see (4) of (4.1)) from the fact th&dy : k —
mod — A®*— mod is an equivalence which convegg into ®,; the
latter is just the identity

(Aek M) ®a (A’ N) ~ (A®a A) & (M @ N) ~ Agyk (M ® N).
i

Corollary 4.6 (Rosenberg-Zelinsky)If A/k is an azumaya algebra,
then there is an exact sequence

0 — INAUL(A) — Auty_ag(A) —> PicK),
where inpp = {(L)|A Rk L~ Aasaleft A—modul%

Proof. This follows immediately from (4.5) and propositibnl7.3 bbp-
terl2 O
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Corollary 4.7. If A/k is an azumaya algebra of rank r as a projective
k-module, then Autaig(A)/INAut(A) is an abelian group of exponertt r
for some d> 0.

Proof. Let A®y L = A as a leftA-module, hence askamodule. The re-
mark following propositiof.6]1 of chaptEl 1 provides us vatttmodule
Q such thaQ ®x A ~ k™ for somed > 0. SoL(") ~ k. Takingrdth
exterior powers we have® ~ k. By virtue of (4.6), the corollary is
now proved. O

Corollary 4.8 (Skolem-Noether)If Pic (k) = 0, then all automorphisms
of an azumaya k-algebra are inner.

Corollary 4.9. If A is a k-algebra, finitely generated as a module over
its centre C, then A is separable= A/C and Gk are separable.

Proof. In view of (2.19) it is enough to remark that, A/k is separa-
ble, thenA is faithfully C-projective. This follows from (1) (3) of
theorenZ11. ]

Proposition and Definition 4.10. Call two azumaya k-algebras;A&nd
A, similar, if they satisfy the following conditions, whicrearquivalent:

(1) AL ex A ~ End(P) for some faithfully projective k-module P.

(2) AL @k Endi(P1) = Az ®¢ End(P2) for some faithfully projective k
modules R and PB..

(3) AA—- mod and A - mod are equivalent k-categories.
(4) A1 = Enda,(P) for some faithfully projective right Amodule P.

Proof. (1) = (2). A2 & End(P) ~ A1 ® Az ® A ~ Ap & Endi(A2). 110
(2) = (3). SinceA ® End(Pi) ~ Endy, (A @« (P;) (see (2.8) ),
and sinceA; ®k Pj is a faithfully projectiveA-module, it follows from
theoremZK¥ and propositidn 5.6 of chadiér 2, tAat mod isk-
equivalent to & ®« End(P;) — mod ,i =1, 2.
(3) = (4) follows propositior.Z11 and theordm¥.4 of chajler 2.
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@) = (1). A @A) ~ Enda,(P) ® A9 ~ Endy,g,n0(P &k A).
Now P @ AJ is faithfully projective A, ® AJ-module, soP @ A9 ~
Ar® Q, whereQ = (P®|<Ag)A2 is faithfully projectivek-module. Hence
A1 @ A ~ Endag(Az @ (Q), sinceAz@k: k— mod — AS— mod is
an equivalence. m|

It follows from this proposition that similarly is an equleace re-
lation between azumaya algebras, and thainduces a structure of
abelian group on the set of similarity classes of azumagigebras.
We shall call this group thBrauer group of kand hence denote it by
Br(k). The identity element iBr(k) is the class ok, and the inverse of
the class of an azumayaalgebraA is the class of°.

If K is a commutativek-algebra, therA — K &y A induces a ho-
momorphismBr(k) — Br(K), by virtue of (2.9)(a), and this mak& a
functor from commutative rings to abelian groups.

5 Splitting rings

If P is a projectivek-module, denote its rank byP[: Kk]. This is a
function specK) — Z. If L is a commutativek-algebra, denote by,
the natural map sped.) —spec k). Then, for a projectivik-module
P, we havep o[P : K] = [P® L : L]. If A/kis an Azumaya algebra,
denote its class iBr(k) by (A).

Theorem 5.1. Let A’k be an azumaya algebra.

(@) If L c A is a maximal commutative subalgebra, themAL ~
End_(A) as L-algebras, viewing A as a right L-module. Hence if A
is L-projective, ther(A) € kerBRK) — Br(L)), andg 0[A : K] =
[A: L)% Ifalso L is k-projective, thep oL : K] = [A: L]. If L/k
is separable, A is automatically L-projective.

(b) Suppose L is a commutative faithfully k-projective dreka, and
supposgA) € ker(Br(k) — Br(L)). Then there is an algebra B,
similar to A, which contains L as a maximal commutative sgéal
bra. If End((L) is projective as a right L-module, then so is B.
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Proof. (a) End (A) is the centralizeB in End(A) = A A% of I® L
A® AC. SinceA = A®l c A® L c B, it follows from (4.3), that
B = A® BA. Now B c (Aex A% = | @ A%, andB* commutes
with | ® L, a maximal commutative subalgebralad A°. Hence
BA=1®L, soB=A®L, as claimed.

If Ais L-projective, thenp, o[A: K] = [A®« L : L] = [End.(A) : 112
L] = [A: L] If, further, L is k-projective,¢, o [A: K] = [A®L :

L] = [A®L(LekL) : L] = [A: L].[LekL : L] = [A: L]. (¢Lo[L : K]),
sothat A: L] = ¢ o[L:K].

SupposeE = (0 » J —» L®* - L — 0) splits. ThenA®, E also
splits. SOA = A®_ L is projective ovelA ®, (L ® L) = A®y L.
But A®y L/L is an azumaya algebra, 8 L is projective oveL.
HenceA is L-projective.

(b) If (A)ekerBr(k) — Br(L)), thenA° & L ~ End_(P) for some faith-
fully projective L-moduleP. Using the isomorphism to identity, we
have A° @ L = End (P) c End(P) = D. LetB = D*°. Then
(4.3) implies thatD = A% ®, B. SincelL is faithfully k-projective,
so also isP. SoD/k is a trivial azumaya algebra anB)(= (A) in
Br(k). ClearlyL = |® L c B. SinceB = D*°, B- = D" n D',
Further,D' = End(P)" = End (P), soB- = End (P)". Since
End (P) = A° & L, we have Eng(P)* = centre End(P) = L.
Now D = A% @ Bwith L c B, soD is locally (with respect tk) a
direct sum of copies 0B as anL-module. HenceB is L-projective
as soon as we show thBt = End((P) is. Again we localize (with
respect td), whereuponP becomed.-free andl becomek-free.
Then We can writd® = Py ® L, Pg a freek-module, and we have
D = End(P) = End(Po) ® Endi(L). By hypothesis, EndL) is
right L-projective, sd is L-projective.

m|

6 The exact sequence

We now make out of the azumaykeaalgebras, a category with producti13
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in the sense of chaptEr 1. We write
Az= A2

for the category whose objects are azuméyalgebras, whose mor-
phisms are algebra isomorphisms, and with proguyct
Recall that the categorlyP = FP(Kk) (see$8 of chaptefll) of faith-
fully projective k-modules also hagy as product. More over, (2.12)
says that functor
End=End,: FP — Az

preserves products. (f : P — Qin FP, thenf is an isomorphism,

and End €) : EndP) — End@Q) is defined by Endf)(e) = fef™)
Theorenl 41l (6) asserts that End is a cofinal functor, so we the/five
term exact sequence from theorEnm 4.6 of chdpter 1:

Ky End Ko End
KiFP —— KiAz— K@ End— KcFP—— KoAz - (6.1)

It follows immediately from (4.10)(2), that
coker Ko End) = Br(k). (6.2)

Consider the composite functor

End

Pic<> FP =5 Az (6.3)

[

which sends every object of Pio the algebrk € Az Hence the com-
posites Ki End) o(K;l) = 0 fori = 0,1. We will now construct a con-
necting homomorphisnK1Az — KoPic = Pic(k) and use it to identity
®) with the sequence we will thus obtain fro{6.3).

Recall thatk;Azis derived from the categorf2Az, whose objects
are pairs A, @), A€ Az @ € Aut_ag(A). Let1A, denote the invertible
two-sidedA-module constructed in lemnia¥.2 of chagier 2. We have
1A, ~ Ay L,, wherel, = (1A,)", according to theoreni{4.1)(4). In
this way we have a map

obj QAZz — obj Pic



6. The exact sequence 89

given by A a) ~ L, = (1A)A. If T : (A @) — (B,p) is an isomor-
phism inQAz, thenf induces (by restriction) an isomorphidm — Lg,
thus extending the map above to a functore |8 € Auty_ag(A), then
we have from (ll, (7.2)(2)) a natural isomorphism

1A ® 1A, ®p1 Ag.
SinceA®k : k— mod — A- mod convertsy into ®a, it follows
thatLqys ~ L, ® Lg. Finally, given @, @) and B, 3), we have
Logg = (1(A® B)agp) *®

= (1A ®k 1 B)"* P

= (1A)" @k (1Bp)®

=L, ® L'g.

We have thus proved: 115

Proposition 6.4. (A, @) — L, = (1A,)" defines a functor

J: QAz— Pic

of categories with product, and it satisfies, forg € Aut_iog(A), A €
Az,
o Log ~ Lo ®k Lg.
Now we define a functor.
T : Pic— ®End

by setting TL) = (L, @, k), wherea| is the unigue k-algebra isomor-

phismEnd(L) ~ k - End(k) ~ k. Clearly T preserves products.
Suppos€P, @, Q) € ® End. Thusy : A = EndP) —» B = EndQ)

is an algebra isomorphisnw permits us to view left B-modules as left

A-modules. Sinced : k— modA - mod is an equivalence, the

inverse beindHoma(P, ) : A— mod — k- mod, we can apply this

functor to the B-, hence A-module, Q and obtain a k-module

L = Homa(P, Q)
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such that Q~ P ® L as a left A-module. It follows that,Le Pic.
If (f,0): (P.a,Q) — (P,a’, Q) is in ®End then the mapHomengp)
(P, Q) — Homengp) (P, Q’), given by e— gef?, isinPic, thus giving 116
us a functor o
S:®End—- Pic

Moreover, S preserves products because

HoMengpep) (P ®k P', Q®k Q')
~ Homengp)eende) (P &k P, Q @k Q) by (2.12)
~ Homenge) (P, Q) & Homengpe) (P, Q). by (2.5)(i).

If L € Pic, then ST L= S(L, e, L) = Homy(k, L) ~ L.
We have now proved all but the last statement of

Proposition 6.5. There are product-preserving functors

. T
¥<—S®End

defined by TL= (k,ar, L) and P, a, Q) = Homengp)(P, Q), such that
ST = ldpic. If (PRe,R) € ®End then §P,Ba,R) ~ S(Q,5,R) &
S(P.a,Q).

Proof. The prove the last statement we note that composition dedines
homomorphism

Homend)(Q. R) ® Homenge) (P, Q) —» Homengp) (P, R).

The module above are projective and finitely generated kvédihere-
fore it is enough to check that the map is an isomorphism @&due
class fields/.7 . O

Proposition 6.6. S and T define inverse isomorphisms

PicK) = KoPic & Ko®End
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Proof. ST~ Idpjc SO it sufices to show thakgS is injective. If KoS
(P.a,Q) = k, thenQ ~ Pg¢ k = P as a left EndP)-module. Let
f : Q — P be such an isomorphism. This means that foealEnd({P)
andq € Q, f(a(e)q) = ef(q), that is, that

EndP) —*— EndQ)
End(lp) End(f)
End(P) End(P)

commutes. Thus @ f) : (P, Q) — (P.lendp),P) in ®ENd, so

Theorem 6.7. The sequence of functors

aPic % QFP 255 Az % Pic FP 25 Az

of categories with product defines an exact sequence whittteitop
row of the following commutative diagram:

U(k) — Kli’ — KlA:Z—> PiC(k) e KOQ — KOA:Z—> Bl‘(k) —0

Klg — KlA:Z—> Ko® End— KOQ — KOA:Z

The bottom row is the exact sequence of thedrein 4.6 of ch@pter
for the functor End : FP— Az- KoS and KT are the isomorphisms of

proposition[6.5.

Proof. We first check commutativity: IL € PIC, then K()l(l_)p|c = 118
(L)ep, while KoT (L)pic = (L. a1, L)oena s sent to L):P( Kiep = (Lep

.:,||11

Now that the diagram commutes, exactness of the top rowisllo
from that of the bottom row, wherever the isomorphisms intplg. At
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KoAzandBr(k) exactness has already been remarkeflin (6.2) above. At
K1FP the composite is clearly trivial. So it remains only to shdtt
ker(K; End)c Im Kyl

Now we know that the free moduldé8 are cofinal inFP, and hence
(by cofinality of End) that the matrix algebrad,(k) = Endk") are
cofinal inAz Hence we may use them to complteas a direct limit

(theoreni3M of chaptét 1).
Write GLy(EP) = GL(n,k) = Aui(k"), andGL,(A2 = Auf_agqg
(Mn(K)). We have the “inner automorphism homomorphism”

fo 1 GLa(FP — GLn(A2)

with ker f, = centreGL,(FP = GL1(FP) = U(K)), and imf, ~ PGL
(n, K). T T
Tensoring with an identity automorphism defines maps

GLn(EP) — GLim(EP)

119 and
GLn(A2 - GLim(A2

making (fn)newr @ map of directed systems. Writing
GL(EP) = lim GLy(EP),
GL(A2 = lim GLy(A2),

and
f =lim f, : GL(EP) — GL(A2),

we see thaK; End is just the ablianization df. In §&8 of chaptefIl we
computed

KiEP = GL(EP)/[GL(EP). GL(EP)]
= (Qez UK) ® (Q@z SKP).

MoreoverK; ! is induced by the inclusiobl (k) = GLy(FP) — GL(FP).
Kl is the mapK;Pic = U(k)-Z&zU (k) —» Q®zU(K) c K1FP, so coker
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(K11) = (Q/Z&zU (K))®(Q®zS K1 P = PGL(K)/[PGL(K), PGL(K)]. Thus
exactness & ;FP means that: the inclusioAGL(k) c GL(A2) induces
a monomorphism o

PGL(K)/[PGL(K), PGL(K)] — GL(A2)/[GL(A), GL(A2)].

Supposer, B € GLy(A2 = Aulag(Mn(k)). Letr : K"® K" —
k" — k" be the transposition. WritE(r) for the corresponding inner120
automorphism oM2(K). ThenE(r)(a@ ® Ly,)E(@) ™ = Ly,m ® @
commutes with3 ® ly,q9. Now 7 is just a permutation of the basis
of k" ® k", so it is a product of elementary matrices, provided it has
determinant+1 (which happens whe%n(n —1) is even). For exam-

ple, if we restrict our attention to values afdivisible by 4, thenr
is a product of elementary matrices, hence liesGhk, GL2(K)], so
E(r) € [PGLp(K), PGL2(K)]. It follows that, for n divisible by 4, the
image ofGLy(A2) in GL2(A2)/[PGL2(k), PGL(K)] is abelian. Note
that PGL2(k) = In Aut (My(K)) is normal inGLa(A2), hence so also is

[PGL2(k), PGL2(K)], so the factor group above is defined. Finally, since
then divisible by 4 are cofinalN we can pass to the limit to obtain

[GL(A2, GL(AZ] c [PGL(K), PGL(K)],
are required. Q.E.D.
Proposition 6.8. In the exact sequence of theorem 6.7,

ker(U(k) — K.FP) = the torsion subgroup of (k),
ker(Pick) — KoFP) = the torsion subgroup oPic(k),

Hence there is an exact sequence 121
the torsion
0 - (Q/Z®z UK) ® (Q®z SKP) - KiAz— (S“%g“zk“,p o) )
— j— IC

This sequence splits (not naturally) as sequence of abghaumps.
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Proof. ForKjl : U(k) = K1Pic —» K;FP we have from chaptéd 34,
kerKil = the torsion subgroup df (k),

and
cokerKil = (Q/Z®zU(K)) @ (Q®z S Klg)-

From the same source we have

ker Kol = the torsion subgroup of Pi).

The last assertions now follow from the exact sequence phufact
that the left hand term is divisible, hence an injectiisenodule. O



Chapter 4

The Brauer-Wall group of
graded Azumaya algebras

This chapter contains only a summary of results, withoubfsoThey 122
are included because of their relevance to the followingptdraon Clif-
ford algebras.

1 Graded rings and modules

All graded objects here are gradedZy2Z. A ring A = ApdA; is graded
if AA; c AL, ] € Z2/2Z), and anA-moduleM = Mo® M, is graded
if AM; c Mi. (We always assume modules to be left modules unless
otherwise specified.) I$ is a subset of a graded objeb will denote
the homogeneous elementsfanddx = degree ofx, for x € hS.

If Ais a graded ring, theff will denote the underlying ungraded
ring. If Ais ungraded, then&) denotes the graded ring wihconcen-
trated in degree zero. Aymodule is graded or not according Ass or
is not. If M is anA-module (A graded) we writeM| for the underlying
|Al-module. IfAis not graded, we writeM) for the (A)-module withM
concentrated in degree zero.

Let A be a graded ring. Fa&-modulesM andN,

HOMa(M, N)

95
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is the graded group of additive maps frawh to N defined by: f €
hHOMa(M,N) & (i)f is homogeneous of degreéd (i.e. f(M;) c
Nitof); and (i) fax= (-1)’'%afxa € hA x € M).
The degree zero term of HOMM, N) is denoted by Hom(M, N).
Let A’ denote the graded groupwith new multiplication

a-b=(-1"Pab  (a b, hA).

If M is anA-module letM’ denote thed’-module withM as the under-
lying graded group and operators defined as

a-x=(-1">ax  (a<hA xehM).
Then it is straightforward to verify that
HOMA(M, N) = Homa(IM’], IN']),

an equality of graded groups.
A-mod refers to the category wit-modules as objects and homo-
morphisms of degree zero (i.e. HaM)) as morphisms.

Lemma 1.1. The following conditions on an-Anodule P are equiva-
lent:

(1) Homa(P, ) is exacton A~ mod.
(2) Homga(IPl, ) is exact orfA| — mod.
(3) Homa(P, ) is exact on A~ mod.

(4) Pis a direct summand of'Ae (rA)™) for some | and J, whereA
is the A-module A with grading shifted by one.

This lemma tells us that the statemeRti$ A-projective” is unam-
biguous.

If S c A(graded), we define theentralizerof S in A to be graded
subgroupC such thatt € hC o cs = (-1)%Sscfor all s € hS. Itis
easy to see tha is actually a subring oA. We say that two subrings
of A commuteif each lies in the centralizer of the other.Bf and B>
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are subrings generated by s8tsandS,, respectively, of homogeneous
elements, the®; and B, commutes S; andS, commute. We write

AA = CENTRE (@) = centralizer ofAin A.
The degree zero term will be denote cenfte One must not confuse
centreA, centrelA|, and CENTREA). They are all distinct in general.

Letk be a commutative ring which is graded, but concentrated-in de
gree zero. Even thoudgband|k| are not essentially fferentk— mod
and|kl-mod are. A k-algebra is a graded ring and a homomorphism
k — A of graded rings such that the imake lies in A, and hence in
centreA.

If Al andA? arek-algebras and iM' is an A-modulei = 1,2 we
define thek-moduleM?! ® M? by

(M'e M?), = (Mj® M2) @ (M] ® M2

n+1/+

We define an action o' ® A2 on M1 ® M? by
(a1 ® 3) (X ® %) = (~1)"*™ 8y X1 ® aXs

for g € hA, x; € hM', i = 1,2. This makeA! ® A? a k-algebra (for

M = A) andM! @ M? an A' @ A>module. The subalgebras! ® 1

and 1® A? commute, and the pair of homomorphisiis— Al ® A2is 125
universal for pairs of homomorphisnf$ : A’ — B of k-algebras such
that im f* and im f2 commute. In practice it is useful to observe that: if
Al'is generated by homogeneous elem&itand if 1(S?) and 3(S?)
commute, therf1(A!) and f2(A%) commute.

2 Separable algebras

In this section als& denotes a commutative ring concentrated in degree
zero. IfAis ak-algebra, therA\® denotes the opposite algebra, and we
write

AF = (A/)O — (AO)/

for the algebra with graded groupand multiplication

axb=(-1)%%  (a,behA).
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A right A-moduleM will be considered a leff*-module by setting
ax=(-1)"*xa  (aehA",x e hM).

If M is a leftA-, right B-module such thataX)b = a(xb) andtx = xt for
allae A xe M, b e B,t €k, then we viewM as anA®, B*-module by

(a®b)x = (-1)™*axb  (achAbehB xehM).
In particular, two-sided\-modules will be identified with modules over
A® = Agy A"
126 We have an exact sequence
0-J->A°*->A->0
(a®b)— ab

of A®-modules. We calA a separable kalgebra ifA is A®-projective.
This means that the functor

A® — mod— k- mod
M — MA = HOMgae(A, M)

is exact.

The stability of separability and CENTRES under base chamgke
tensor products all hold essentially as in the ungraded tagarticular
END(P) = HOM(P, P) is separable with CENTRE/annP, for P a
finitely generated projectiviemodule. Moreover :

Proposition 2.1. Let A be finitely generated as akodule and suppose
either that k is noetherian or that A is-krojective. Then A is separable
o (A/#A)/(k/.#) is separable for all maximal idealg? of k.

Suppose now thatis a field. Ifa € k. writek < a >= k[X]/(X?-a),
with gradingk.1@ k- x, X2 = a. It can be shown that if chdr# 2 and if
a # 0, thenk < a > is separable with CENTRE Moreover

ab

the k-algebra with generators, 8 of degree one defined by relations:
ao?=a B%=b,eB = pa.
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Theorem 2.2. Let A be a finite dimensional k-algebra, k a field. Then
the following conditions are equivalent:

(1) A/k is separable.

(2) A = TIA;, where A is a simple (graded) k-algebra andiAiAis a
separable field extension of k, concentrated in degree zero.

(3) For some algebraically closed field & k, L ® A is a product of
algebras of the types

(i) END_(P), P afinite dimensional L-module, and
(i) L <1> @ END,(P), P afinite dimensional L-module with = O.
If char k = 2, then type (ii) does not occur.

Corollary 2.3. Letk be any commutative ring and A a k-algebra finitely
generated as a k-module. Suppose either k is noetherianabrithis
k-projective. Then if A is separablelA, |Ag|, |A%], and|A%| are sepa-
rable |k|-algebras.

3 The group of quadratic extensions

A quadratic extensionf k is a separabl&-algebral which is a finitely
generated projectivieemodule of rank 2. By localizing and extending 1
to ak-basis ofL we see thafl_| is commutative.

Proposition 3.1. If L/k is a quadratic extension, then there is a unique
k-algebra automorphisrr = o-(L) of L such that £ = k.

Proposition 3.2. If L and L? are quadratic extensions of k, then so alste8
is
Ll % L2 — (Ll Rk L2)O'1®0'2’

whereo; = o(L'). Further, * induces on the isomorphism classes of
quadratic extensions the structure of an abelian group,

Q2(K).
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If we deal with|k|-algebras, then we obtain a similar group,

Q(k)

of ungraded quadratic extensions. Each of these can be diewa
graded quadratic extension kf concentrated in degree zero, and this
defines an exact sequence

0- QK — Qxk) —> T,

whereT = continuous functions spek)(— Z/2Z, and right hand map
is induced byl — [L; : K] = the rank of the degree one terin, of L.
In particular, if SpecK) is connected, we have

0— Q(K) — Qaz(k) —» Z/2Z,

and the right hand map is surjective 2 € U(k). In this caseL =
k < u > is a quadratic extension far € U(k). L = k- 1@ k- x
with X2 = u, ando(X) = —x for o = o(L). If ug, u; € U(K), then

Uy, U .
1k 2) hask-basis 1 X1, X2, X3 = X1 X0 = —XoX1

With X3 = Uy, X5 = Up, X3 = —Up. If o = o(k < Ui >), theno ® o2
sendsxy = —Xq1, Xo = —Xo, X3 — X3.
It follows that

k<u1>®kk<u2>=(

K <up > =k < up>=k[—-uzus],
wherek[u] = K[X]/(X? — u), concentrated in degree zero.
Proposition 3.3. Suppose € U(k). Then
(a) the sequence — Q(k) — Q»(k) — Z/2Z — 0Qis exact; and

(b) there is an exact sequence

UK S UK — QK) — Pick) > Pick),

where the map in the middle are defined by-u k[u] and L —
(L/K), respectively.
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Next suppose that char= 2.

Proposition 3.4. Suppose k is a commutative ring of characteristic 2.
Then if ac k, Ka] = k[X]/(X? + X + a) is a quadratic extension, con-
centrated in degree zero[d = k- 1+ k- x with ¥ + x+ a = 0, and
o(X) = x+ 1. Qx(K) ~ Q[K] and there is an exact sequence

k2 k- QK) — 0,

wherep(a) = a® + a, and a— k[a] induces k— Q[K].

4 Azumaya algebras

kis a commutative ring concentrated in degree zero.

Theorem and Definition 4.1. A is an azumaya k- algebra if it satisfies
the following conditions, which are equivalent:

(1) Alis afinitely generated k- module’ A k, and Ak is separable.
(2) A* =k and|A is a generator as atA®-module.

(3) Ais a faithfully projective k-module andf A> END(A) is an iso- 130
morphism.

(4) The functors
(M—— M%)

A® — mod k- mod
(A®xN) =<——N)
are inverse equivalences of categories.

(5) For all maximal ideals.# c k, A/.Z A is simple, and CENTRE
(A/AA) =K/ .

(6) There exists a k-algebra B and a faithfully projectivenkdule P
such that Agx B ~ ENDy(P).
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Corollary 4.2. Let A and B be k-algebras with A azumaya. Thep
A®Dis a bijection from two-sided ideals of B to those afAB.

Corollary 4.3. If A c B are k-algebras with A azumaya, then B
A®y BA.

Call two azumaya algebrasandB similar if A®y B* ~ ENDk(P)
for some faithfully projective modulB. With multiplication induced by
®k, the similarity classes form a group, denoted

Bra(k),
and called thérauer-Wall groupof k.

Theorem 4.4.If A is an azumaya algebra, defindA) = A%. Then
L(A) is a quadratic extension of k, andA®k B) ~ L(A) = L(B). A
L(A) induces an exact sequence

0 — Br(k) — Bra(k) — Qu(k) — O.

5 Automorphisms

If Ais ak-algebraa=ay+a; € Awriteo(a) =& = ag— a. LetU(A)
denote the group of units iy, andhU(A) the subgroup of homogeneous
units. Ifu € hU(A), we define thénner automorphismay, by

ay(@) = usr@ut.

This is clearly an algebra automorphismAyfand a simple calculation
shows thaty,, = ayay. Thus we have a homomorphism

hU(A) — Aut_ag(A); U = ay.

The kernel consists of thosesuch thatus?i(a) = au for all a € A.
Taking a homogeneousr(a) = (-1)a, so the condition becomes
(-1)%2ya = au, for all a € hA, i.e.u e CENTREQ) = AA.

Thus we have an exact sequence

1 — hU(A% — hU(A) — Auiag(A). (5.1)

Now just as in the ungraded case one can prove:
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Theorem 5.2. Let A be an azumaya k-algebra. df € Aut_ag(A),
let 1% denote the Amodule A with action a x- b = axa(b) for
axbeA Thenl, = (1AQ)A is an invertible k-module, and — L, in-
duces a homomorphism g making the sequdneeU (k) —» U(Ag) —

Auti_aig(A) 5, Pic() exact.img = {(L)JA®x L ~ A as left A-modulgs

HereU (k) = U(A®) c U(Ag) c hU(A), and the left hand portion of132
the sequence is induced iy {5.1) above. Rjdq the group of “graded
invertiblek-modules”. Ifuis a unit of degree one iA thenL,, is justk,
but concentrated in degree one. This explains why we hHy®), and
nothU(A), in the exact sequence.

This theorem will be applied, in Chaptigr #, to the study of or-
thogonal groups. We conclude with the following corollary:

Corollary 5.3. Aut_ag(A)/ (inner automorphisms) is a group of expo-
nent @ for some d> 0, where r=[A : K].






Chapter 5

The structure of the Clifford
Functor

In this chapter we introduce the category, Qlaof quadratic forms on 133
projectivek-modules, and the hyperbolic functéf,: P — Quad This
satisfies the conditions of chaplér 1 to yield an exact semjen

KiP — K;Quad— Ko®H — KoP — KoQuad— Witt(k) — 0,
where Witt k) = coker KoH) is the classical “Witt ring” over k.
The Clifford algebra is constructed as a functor from Qumdk-

algebras, graded mod 2, and the main structure theof@nasserts
that the Cliford algebra are (graded) azumaya algebras, in the sense of
Chaptef¥ and that the diagram

P__H._Quad

l Jex

. Az
22 END —2

commutes up to natural isomorphism. Heréenotes exterior algebra,
graded mod 2 by even and odd degrees. The proof is achieved by a
simple adaptation of arguments in Bourbaki [2].

105



134

106 5. The structure of the Glord Functor

This commutative diagram leads to a map of exact sequences

Kllf K;Quad Ko®H KoE KoQuad__. Witt(k) — 0

LT

Ky KiAZ —~ Ke@END —= KoEP, — KoAZ - Bry(k) —0

This map of exact sequences is the “generalized Hasse-Walii
ant.”

In §4 we indicate briefly what the construction of the spinor norm
looks like in this generality.

1 Bilinear modules

We shall consider modules over a fixed commutative kirand we shall
abbreviate,

® = ®k, Hom = Homy, M* = Hom(M, k).

Bil (P x Q) denotes the module &fbilinear mapsP x Q — k.
Let P be ak-module. Ifx € P andy € P* write

¥, Xp = Y(X).
If f:P— Qthenf*: Q" — P*is defined by
(f*y, X)q = (y, T X)p (xe Py e Q).

There are natural isomorphisms

Hom(P, Q") < Bil(P x Q) % Hom(Q, P*)
Sg «— B— dB

defined by

(SeX Y)o = B(X,y) = (dgY, X)p(x € P,y € Q).
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Applying this to the natural pairing
(i PPxP =Kk,
we obtain the natural homomorphism
dp : P — P {dpX, Y)p. = (Y, X)p.

We call P reflexiveif dp is an isomorphism, and we will then oftern3s
identify P andP** via dp.
SupposeBe Bil(P x Q), x € P, andyeQ. Then

<dBya X>P = <SBXa y)Q = <dea SBX>Q* = <S*Bde9 X>P-
From this and the dual calculation we conclude:
dg = sgdo andsg = dgdp. (1.2)

We call B non-singularif dg andsg are isomorphisms. In view di(1.1)
this impliesP andQ are reflexive. Conversely, R andQ are reflexive,
and ifdg is an isomorphism, thefi{].1) shows tlsgtis also.

A pair (P, B), B € Bil(P x P), is called abilinear module f : P, —
P, is amorphism(P1, B1) — (P2, By) if Ba(fx, fy) = Bi(x,y) for X,
yeP;. We define

(P1,B1) L (P2,B2) = (P1® P2,B1 L B))

and
(P1,B1) ® (P2, B2) = (P1® P2, B1® By)

by (B1 L B2)((X1, %2), (Y1,¥2)) = Bi(x1,¥1) + Ba(X2,¥2), and @1 ®
B2)(X1 ® X2, Y1 ® Y2) = Bi(X1,Y1)B2(X2,Y2). Identifying (P1 & Pp)* =
Pi &) P; we I’](':We('jBlJ_B2 = dBl (&) ng- Moreover,d51®52 is dBl ® de
followed by the natural map; ® P; — (P1® P2)*. The latter is an
isomorphism if one of th@; is finitely generated and projective.

If (P, B) is a bilinear module we shall writB*(x,y) = B(y, x). If P 136
is reflexive and we identify? = P** then [1) shows thaig-) = Sg =
(dg)*. We call @, B) or B symmetridf B = B*. For anyB, B + B* is
clearly symmetric.
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If (P, B) is a symmetric bilinear module we have a notiorocthog-
onality. Specifically, ifU is a subset oP, write

PY = {x e PIB(x,y) = 0 Yy € U}.
WhenP is fixed by the context we will sometimes write
ut="pY.
The following properties are trivial to verify:

U+t is a submodule of.
UcV=Vicut
Ucutt

UJ_ — U.J_J_J_

We sayU andV areorthogonalif U c V+, and we call a submodule
U totally isotropicif U c U+, i.e. if B(x,y) = 0 for all x, yeU. The
expressiorP = U 1 V denotes the fact th& is the direct sum of the
orthogonal submoduldd andV.

Lemma 1.2. Let(P, B) be a non-singular symmetric bilinear module. If
U is a direct summand of P then'Us also a direct summand, and B
induces a non-singular pairing on & (P/U%).

137  Proof. Since 0—» U —» P — P/U — 0 splits so does &> (P/U)* —
P* - U* —» 0. By hypothesigdg : P — P* is an isomorphism, so
Ut = dgl(P/U)* is a direct summand dP. Moreover the composite

P d—B> P* — U* is surjective, with kerneU+, soB induces an isomor-
phism P/U+) — U*. SinceU and P/U+) are reflexive this implies the
pairing onU x (P/U%) is non-singular (see(1.1)). m|

Lemma 1.3. Let f : (Py,B1) — (P2, By) be a morphism of symmetric
bilinear modules, and suppose th{&, B1) is hon-singular. Then f is a
monomorphism, and

P, = fPy L PYPY
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Proof. If xekerf then 0= By(fx, fy) = Bi(x,y) forally € P; so
x = 0 becausdB; is non-singular. Now usé to identify P, c P, and
B:1 = By|P1 x P1. ThenP1 N P;’l = 0 becauseB; is non-singular. If
X € P, defineh : Py — k by h(y) = B2(x - y). SinceBs is non-singular
h(y) = B1(x1,y) for somex;eP1, and then we have = x; + (X— X1) with
X— X1 € PZPl. O

Lemma 1.4. Let (P, B) be a non-singular symmetric bilinear module
and suppose that U is a totally isotropic direct summand of P.

(a) We can write P= U+ @V, and, for any suchV, W U@ V is a
non-singular bilinear submodule of P. Hence=PV 1 PW.

(b) V ~ U™, so if U is finitely generated and projective then so is W,
and[W : k] = 2[U : K].

(c) If B= Bo+ Bjand if By(x, X) = O for all xeU then we can choose V
above so that &x, X) = 0 for all xeV also.

Proof. (a) According to Lemm& Il = U+ & V, and for any such 138
V, B induces a non-singular form da x V. ThusB induces iso-
morphismsf : U —» V*andg: V — U*. If By = BIW x W then
ds, : U@V — U” @ V" is represented by a matr({ 4, ), Where
B2 = B|V x V. Evidentlydg, is an isomorphism. Lemn{al.3 now
impliesP =W 1 PV,

(b) is clear

(c) IdentifyingU = U™ andV = V**, the symmetry ofB implies
f* =g. LetBs = Bo|V xV, whereB = By + By, (by hypothesis), and
setk = f~1dg, : V — U. Then forv € V we have

B(v, hv) = (fhv,v)y = (f f~2dg,V, )y = Ba(V,V) = Bo(V, V).
O

Lett : V> UeVbyt(v) = v-h(v). ThenifVy = tV itis still
clearly true thaP = U+ & V; (in fact, W = U & V;). We conclude the
proof by showing thaBg(v, v) = 0 for veV;. Suppose/eV. Then

Bo(tv, tv) = Bo(v — hv, v — hv) = Bg(v, V) + Bg(hv, hv)—
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— Bo(v, hv) — Bg(hv, V).

Sincehv € U andBgy(x, X) = 0 for x € U, by hypothesis, and since
B = Bo + Bf, we haveBo(tv, tv) = Bo(V,V) — Bo(V, hv) — By(v,hv) =
Bo(v, V) — B(v, hv). This vanishes according to the calculation above, so
lemmaLH is proved.

Let P be a module an® € Bil(P x P). We define the function

g=0s: P — K q(x) = B(X, X).
g has the following properties:
gax) = a®x (aek xeP), (1.5)

If Bg(X,y) = a(x+Y) —d(x) — q(y), thenBq € Bil(P x P). Indeed,
direct calculation shows th&#l; = B + B".

Lemma 1.6. Suppose P is finitely generated and projective, and that q:
P — k satisfies[(1]5). Then there is aeBBil(P x P) such that ¢= gg.
In particular, By = B+ B*.

Proof. If P is free with basis &)1<i<n thenq(3 aj&) = ¥ a?q(e) +
| |
Y, &ajBy(e. €). Sethi = qg(a), bij = By(e. €j) fori < j, andbyj =

i<j
0 fori > j. Thenq(;a;a) = %aiajbij = B(?aa,?aie,), where
B(?aa,;qa) = iZ_aiCjbij-

In the general éase chooBéso thatF = P& P’ is free and extend
gtoqr onF by gi(x, x) = q(x) for (x,x) e P@ P’. If g1 = gg, then
q = gg whereB = By|P x P.

We define aguadratic formon a moduleP to be a function of the
form gg for someB € Bil(Px P). Bis then uniquely determined modulo
“alternating forms,” i.e. thos® such thatB(x, x) = O for all x € P.
We shall call the pairK,q) a quadratic moduleand we call itnon-
singular if Bq is non-singular.f : Py — P, is amorphism(P1,q1) —
(P2, gp) of quadratic modules iy (f X) = g1(X) for all xeP1. Evidently f
then induce a morphisnPg, By,) — (P2, By,) of the associated bilinear
modules.
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If fis an isomorphism we call anisometry If g = gg, then we
defineq; L 02 = Qgg, 1B, ON P1 ® P2, andq; ® Gz = Og,eB, ON P1 ® P).
It is easily checked that these definition are unambiguous. ]

2 The hyperbolic functor
Let P be ak-module and define

Bf € Bil((P @ P*) x (P @ P*)) by BE((X1, Y1), (X2, Y2)) = (Y1, X2)p.

and letq® = Ogp be the induced quadratic form:

T (xy) = %p (xePyeP).

Let B = Bf + (Bf)" be the associated bilinear forf} = Bg. Then

BP((X1. Y1), (X2, ¥2)) = (Y1. X2)p + (Y2, X1)p.
If dp : P — P** is the natural map then it is easily checked that
dgr : P& P* = (P® P =P @ P

is represented by the matrix

0 1

d 0/
ConsequentlyBP is non-singular if and only if P is reflexivéf, in this
case, we identifyP = P** then the matrix above becomg§ 5 ).

We will write 141
H(P) = (P& P*.q\)

and call this quadratic module thyperbolic formon P.
Supposéf : P — Qis an isomorphism df-modules. Define

H(f) = f @ (f)1 : H(P) - H(Q).
qRH(F)(x.Y) = q2(Fx, (F)71y) = ((F1)y, fx)q
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=y, f 1 x)p = q°(x,y), SOH(f) is an isometry
If we identify (P1 ® P2)* = P} @ P} so that

(Y1, ¥2), (X1, X2))Ps@P, = (Y1, X1)P; + (Y2, X2)P,

then the natural homomorphism
f: H(P]_) 1 H(Pz) - H(Pl D PZ),

(X1, Y1), (%2.¥2)) = (X1 X2), (Y1.Y2)). is an isometry.

Summarizing the above remark,is a product preserving functor
(in the sense of chaptEr fpm (modules, isomorphisms) to (quadra-
tic modules, isometries,). We now characterize non-singular hyper-
bolic forms.

Lemma 2.1. A non-singular quadratic modul&P, q) is hyperbolic if
and only if P has a direct summand U such thiid ¢ O and U = U+,
In this casg(P, q) ~ H(U) (isometry).

Suppose P is finitely generated and projective. If U is a diseen-
mand such that|ty = 0and[P : kK] < 2[U : K] then(P, g) ~ H(U).

Proof. If (P,q) ~ H(U) = (UsU*, @) then the non-singularity o g)
impliesU is reflexive, and it is easy to check thatc U & U* satisfies
qY|U =0 andU = U+, O

Conversely, suppose given a direct summidnaf P such thaglU =
0 andU = U+. Write g = gg,, SO thatBy = Bp + Bj. According to
LemmaL} we can writ€ = U+ @V = U @ V and By induces a non-
singular pairing orJ x V. Moreover we can arrange thBg(v,v) = 0
forall v e V, i.e. thatqV = 0. Letd : V — U* be the isomorphism
induced byBg; (dv, u)y = By(v,u) forue U,ve V.

Let

f=1yed:P=UosoV ->UasU".

This is an isomorphism, and we want to check that

q” ((u, dv)) = q(u, V) for ueU, veV.g” ((u, dv)) = (dv, upy = Bqy(V, U),
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while q(u,v) = q(u) + q(v) + Bg(u,v) = Bg(u, V), sinceq/U = 0 and
q/V =0.

The last assertion reduces to the preceding ones we shol that
U+. LemmdZLR shows th&i+ is a direct summand of rankJf- : k] =
[P:Kl —[U:K <[U:K], because, by assumptior® [ k] < 2[U : K].
But we also haveg/U = 0 soU c U*, and therefordd = U+, as
claimed.

Lemma 2.2. A quadratic modul€P, g) is non-singular if and only if
provided P is reflexive.

Proof. Preflexive impliesH(P) is non-singular, and hence likewise for43
any orthogonal summand.

Suppose now thaBH( q) is non-singular. Thensoi®(q) L (P,—q) =
(PePor=qL(-0).

LetU = {(x,X)eP @ P|x € P}. Thenq:/U = 0, andU is a direct
summand oP&P, isomorphic toP. If U & U+ we can find a (Qy)eU+,
y # 0. Then, for allx € P,

0 = Bg,((X %), (0,y)) = ou(X, X+ y) — (%, X) = 91(0, y)
=qg(x¥) - q(x+y) +qy)
= —Bq(x’ y)

SinceBy is non-singular this contradicys# 0. Now the Lemma follows
from LemmeZ1L. o

Lemma 2.3. Let P be a reflexive module and (€, g) be a hon-singular
quadratic module with Q finitely generated and projectiveei

H(P) ® (Q.q) ~ H(P® Q).

Proof. The hypothesis o@ permits us to identifyR ® Q)* = P* ® Q*,
so it follows that W, 1) = H(P) ® (Q, g) is non-singular. We shall apply
LemmdZ1L by taking
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U = PeQ c W = (PeQ)®(P*®Q). If 3 Xi®yieU, theng1 (Zx®y;) =
207 (%)) + Zi<j By (X ® Vi, Xj @ Yj) = Yicj BP(%, X))Bq(¥i.yj) = 0,
becauseg®/P = 0 in H(P). ThusU c U*, and to show equality it
sufices clearly to show thatP{ @ Q) N U+ = 0. If Zx ®y € U
andXIw; ® z; € (P*® Q N U* then 0= By, (ZX @Y, ZW; ® ) =
iEJ} BP (%, wj)Bq(¥i. Z)). O

144 Since P* ® Q)* = P® Q* (P is reflexive) the non-singularity af
guarantees that all linear functionals Bhe Q have the forny’; BP(x;,)
Bq(Yi,), sOZw; ® zj is killed by all linear functionals, hence is zero. We
have now showi = U+ so the lemma follows from Lemnia2.1.

A quadratic spacds a non-singular quadratic modul®, ¢) with
P finitely generated and projective, i.€€objP, the category of such

modules. We define the category
Quad= Quadk)
with
objects : quadratic spaces

morphisms . isometries
product L

The discussion at the beginning of this section shows that

H : P — Quad

is a product preserving functor of categories with prodirctlife sense
of chapteil), and Lemnia2.1 shows tliats cofinal. We thus obtain
an exact sequence from TheorEm 4.6 of chdpter 1. We sumntlaisze

Proposition 2.4. The hyperbolic functor
H: P — Quad

is a cofinal functor of categories with product. It therefarduces (The-
orem[4.6 of chaptdi 1) an exact sequence

K1P — KiQuad— Ko®H — KoP — KoQuad— Witt(k) — 0,
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where we define Witk) = coker(KoH).

We close this section with some remarks about the multijiea 145
structures. Tensor products endéiyQuadwith a commutative multi-
plication, and LemmB&2.3 shows that the imageKgil is an ideal, so
Witt (k) also inherits a multiplication. The fliiculty is that, if 2 is not
invertible ink, then these are rings without identity elements. For the
identity should be represented by the fogfx) = x? on k. But then
Bq(X y) = 2xyis not non-singular unless 2 is invertible.

Here is one natural remedy. Let Symbiénote the category of

non-singular symmetric bilinear formsp,B) with Pe objP. If (P, B) €
Symbiland @Q, g)eQuaddefine

(P.B)e(Qa)=(P®Q.B®q), (2.5)

whereB ® q is the quadratic forngggg,, for someBge Bil( Q x Q) such
thatq = gg,. It is easy to see thd@ ® q does not depend on the choice
of Byg. Moreover, the bilinear form associatedB® qis (B® Bp) + (B®
Bo)* = (B® Bp) + (B* ® By) = B® (Bo® Bj) = B® By, becausd = B*.
SinceB andBg are non-singular so iB® By so P ® Q, B® g) € Quad

If aek write (a) for the bilinear modulek, B) with B(x, y) = axyfor
X, yek. If ais a unit thenayeSymbil.

Tensor products in SymhihakeKoSymbila commutative ring, with 146
identity (1), and [Z.b) makeKoQuadaKySymbil-module. The “forget-
ful” functor Quad— Symbil, (P,q) — (P, By), induces &Ko Symbil-

homomorphismKgQuad — KeSymbil, so its image is an ideal. The

hyperbolic forms generate KySymbil submodule, image&oH), of
KoQuad so Witt (k) is a KoSymbilmodule. This follows from an ana-

logue of Lemm&Z]3 for the operatidn(R.5)
Similarly, the hyperbolic forms,R @ P*, BP), generate an ideal in
KoSymbil which annihilatesVitt(k). LemmaZR says thafl) L (1)

also annihilates Wittk).
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3 The Clifford Functor

If Pis ak-module we write
TP =Ko P)o(PeP)e...o(P™e...

for its tensor algebra. IfF q) is a quadratic module then itSliford
algebrais

CI(P, ) = T(P)/1(a),
wherel (q) is the two sided ideal generated by ath x — q(x)(x € P). If

we gradeT (P) by even and odd degree (@/@Z)-grading) therx ® x —
q(x) is homogeneous of even degree, so

CI(P,g) = Clp(P,g) ® Cl1(P,0)

is a graded algebra in the sense of chdgt&véwill consider QIP, q) to
be a graded algebraand this must be borne in mind when we discuss
tensor products.

The inclusionP c T(P) induces &-linear map

Cp:P—-CIP

such thaCp(x)? = q(x) for all x € P, andCp is clearly universal among
such maps oP into ak-algebra.

Cl evidently defines a functor from quadratic modules, andrthei
morphisms, to graded algebras, and their homomorphismdegfee
zero). Moreover it is easy to check that bdthand Cl commute with
base chang& — K. The next lemma saySl is “product preserving,”
in an appropriate sense.

Lemma 3.1. There is a natural isomorphism of (graded) algebras,

CI((P1, 1) L (P2,02)) = Cl(P1, q1) ® CI(P2, 02).

Cpe
Proof. B —» P1® P> o, CI((P1, q1) L (P2, @2)) induces an algebra
homomorphism,

fi 1 CI(Pi,q)) = CI((P1, o) L (P2,a0)),i = 1,2
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If % € P then (fixa + f2%2)? = (O L O2)(X1, X2) = GaXa + UpXp =
(fix1)? + (f2x2)?, so fix1 and fox,, being of odd degree, commute (in
the graded sense). Therefore so also do the algebras thesatgsnmf;
and imf,. Hencef, and f, induce an algebra homomorphism

F : CI(P1,01) ® CI(P2, q2) — CI((P1, 1) L (P2, ),

and this is clearly natural. To construct its inverse let
g: P1®&P2 = CI((P1, 1) L (P2,02)) by g(x1, X2) = C1x1®1+1®CaXp,

whereC; = Cp,. If g extends to an algebra homomorphism fr@nL 148
((P1,q1) L (P2, q)) it will evidently be inverse td-, since this is so

on the generator$p,qp,(P1 @ P2), andC1P1 ® 1 + 1 ® CyP,, respec-
tively. To show thay extends we have to verify thgxy, X2)? = (g1 L

B) (X1, X2). O(X1, %2)? = (C1x1)? ® 1+ 1® (CaoX)? + C1xq ® CoXo +
(—1)deaCra)dedCra)(Cy x; ® CoXp) = OaXa + O2Xe = (01 L G2) (X4, X2).

Examples 3.2lf q is the quadratic forng(x) = ax? on k, denote this
quadratic module byk(a). ThenC1(k,a) = k(@) = k1 ® kx, X* = a.
ThusC1(R,-1) ~ C = R1a Ri, for example.

cummiw@yanmm®mmmz£§) (3.3)

The latter denotes tHealegbra with fre&k-basis 1 x5, X, Y, Where
degxa = degxp = 1,X3 = &, X2 = b, Y = XaXp = —XpXa. The degree zero
component is

ab
(52 =k = -am
0
-1-1
k

For example, as a gradé&dalgebra,C ®g C ~ (
guaternion algebra (plus grading).

), the standard

H(K) = (ko K*, g). (3.4)

Let e, be a basis fok (e.g. e, = 1) ande, the dual basis fok*.
Writing q = ¢ we haveq(a;e; + axey) = aja,. HenceC1l(H(K)) is
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generated by elementg and x, (the images of; ande,) of degree

1 with the relations = 0 = X3 and 1% + XoX1 = 1. In My(k) the
matricesy; = ($ 3) andy, = (9 9) satisfy these relations, so there is 219
homomorphism

CI(H(K)) — M (k)
Xi Y

It is easy to check that this is an isomorphism. This isomigrmh
is the simplest case of Theorem below, which we prepare fahén
following lemmas.

Lemma 3.5. Let P be a k-module. There is a k-linear map-B Homy
(T(P), T(P)), f — dg, where d is the unique map of degre€l on T(P)
such that d(x®y) = f(X)y — x® ds(y) for xeP, y € T(P). Moreover
d? = 0and didg + dgds = O for f, geP*. If g is a quadratic form on
P then d1(g) c 1(g), so & induces a k-linear map, also denoteg, df
degree one on @P, g).

Proof. d is defined orP®(™1) = P @ P@" py induction om, from the
formula given. This shows unigueness, and that

di(%0®...@%) = > (1) FX(0®...0...%).
O<i<n
O
Hence
Exoe...ox)= . DX ]...T...0%)
0<j<i<n
+ O EYTE) (0. T @ X))
O<j<i<n
=0.
150 It is easy to check that — ds is k-linear, so we have & (df+g)2 =

(df + dg)?, and hencel;dg + dgds = O for f, geP*.
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The formula above shows thatxf x,y € hT(P) (the set of homo-
geneous elements) then

di(x®y) = dix®y + (-1)™*x @ dyy.

If qis a quadratic form o write u(x) = x® x—q(X) for xeP. Sinceu(x)
has even degree the formula above showsdh@i(x)®y) = diu(X)®y+
u(x) ® dry, andds (u(x)) = f(X)x — f(X)x = 0, sods(u(x) ®y) € I(qg). If
v e hT(P) thend; (veu(X)®y) = divau(x)@y+(-1)veds (u(X)®y) €
[(g). Sincel(q) is additively generated by all suet® u(x) ®y it follows
thatds1(qg) c 1(q).

Lemma 3.6. If B € BIil(P x P) there is a unigue k-linear mapg :
T(P) — T(P) satisfying

(i) 18(1)=1

(Here Ly denotes left multiplication by x in(P).)Ag also has the fol-
lowing properties:

(a) Ag preserves the ascending filtration ofF) and induces the iden-
tity map on the associated graded module.

(b) For feP*, Agds = di g,
(C) Ao = 1T(p) and/lB_,.B/ = Jdgo Ap for B, Be Bill (P X P).

(d) If gis aquadratic form on P, theigl (g) = 1(g—gs), andAg induces 151
an isomorphism P, q) — CI(P, q — gg) of filtered modules.

Proof. Writing xyin place ofx® yin T(P), (ii) reads:
As(xy) = X1g(Y) + dg(x, ) (18(Y))(XeP, YeT (P)).

Starting withAg(1) = 1 this gives an inductive definition afs on P&,
since the right side i&-bilinear in x andy. Moreover (a) follows also
from this by induction om.
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(b) We prove thatlgds = d;Ag by induction onn, the casen = 0
being clear (from (a)). Foxe P,y € hT(P),

Agds(xy) = As((fX)y — x(d+y))
= (fx)(1gy) — (X(1s(dty) + dp(x, )(18(d}Y)))
diAg(xy) = d(x(ABY) + dB(x, )(1BY))
= (fx)(1gy) — x(ds(AgyY)) + dsdp(x, )(4BY)
Their equality follows fromds gy = Agd:y (induction) and the fact
(Lemmd3b) thadde(K) = _dB(x, )df.
(c) If B=0thendgy ) = 0 for all x so (i) readsigLy = Lyx1o, and
11(p) solves this equation fotg. We provedg0ig = Ag.s by checking
(i) (which is clear) and (ii):

A o A (Xy) = X(Ag o Ap'Y) + dB1B/(x )(1B © AR'Y).
Apdr (Xy) = AB(X(Ap'Y) + dr(x )(AB'Y))
= XAgdp'Y + dgx, )(ABAr'Y) + /(% )(1BB'Y)
= X(AgAp'Y) + (dBx ) + dr(x ))(ABAB'Y).
andds(x ) + ds(x ) = de+)(x)-

(d) Letl = {u e T(P)1s(uel(q — ge)}. As(xU) = X(1gu) +
de(x )(A8U), SO, thanks to Lemnia3.5, | is a left ideak((X? - (qX)y) =
XAg(Xy) + dp(x )18(XY)

= (@X(18Y) = X(X4BY + dg(x )(48X)) + dp(x, ) (X18Y + d&(x, )1BY)

— (@) (AgY) = X*(AY) + Xdg(x, )(A8Y) + B(X, X)(1gY) — Xg(x )(18Y)
—(@X¥(1gy) (we have usedé(x’) =0; Lemmd3b)E

= (% - (gx— gsX))1Y € 1(q - 0g).

Thusl is a left ideal containing alb@ — gX)y, so it containd (g). We
have proved

Agl(q) € 1(q - 0s) = As4-sl(d - ds)  18(I(q - g8 — 0d-8) = 48l (0),

using (c). Now (@) impliestg induces an isomorphisr@I(P,q) —
CI(P, g — gg) of filtered modules. m|
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Corollary 3.7. Giving CI(P, g) the filtration induced by the ascending
filtration on T(P), the structure of QP, q) as a filtered module is inde-
pendent of g. In particular, taking g 0, we have an isomorphism

CI(P.q) ~ A(P)
of filtered modules.

Proof. Writing q = gg for someB € Bil (P x P) we obtain an isomor-
phismCI(P, g) — CI(P, 0) = A(P), induced by1g. O

Corollary 3.8. Cp : P — CI(P, q) is a monomorphism. If U is a direct
summand of P then the map

Cl(U,q/U) — CI(P.q)
induced by the inclusion ¢ P, is a monomorphism.

Proof. The first assertion follows from the commutativity of 153

CI(P.0) — & A(P)
o

and the fact thaP — A(P) is a monomorphism. Leé®’ = B/U x U, so
g/U = gg. Then itis easily checked that

CI(P.q) 22—~ A(P)

|

CI(U. ) — AU)

is commutative, so the second assertion follows singg) — A(P) is
injective. O

A(P) = T(P)/1(), 1(0) being the (homogeneous) ideal generated by
all x® x, xeP.
AP) = ko AlPo A%PG...
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andAP ~ P. LemmdZ3l givens a natural isomorphism

AP ® Q) ~ A(P)® A(Q)

of (Z/2Z)- graded algebrasa therefore defines a product preserving
functor
NP — Ez’

if, for P finitely generated and projective, we viewP) as a faithfully
projective module, graded modulo 2. Similarly, by virtud.eimma3.1L,
the Clifford algebra defines a product preserving functor,

Cl: Quad— (graded algebras)

Theorem 3.9. If (P,g) € objQuad then C{P,q) € objizz, i.e. itis
a graded azumaya algebra. The resulting functorzaﬁjad - izz
renders the diagram o

H_ Quad

1k

- Az
2 END =2

commutative up to natural isomorphism, i.e. for P finitelpgmted and
projective,
CI(H(P)) ~ END (A(P))

as graded algebras.

Corollary 3.10. There is a natural map of exact sequences.

K,P — KiQuad Ko®H KoP KoQuad . wjtt (k) — 0

oL

KiEP, — KiAZ —» Ke@END — KoEP, — = KoAZ — Bry(k) —= 0

In Theorem 4.6 of Chaptél 4 we exhibited an exact sequence

0 — Br(k) — Bra(k) — Qa(k) — O,
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where Q(k) was “the group of graded quadratic extensions of k" The
map above assigns to the class(Bfq) in Witt (k) and elemenp of
Bry(k). The projection of3 in Q2(k) corresponds, in the classical case
when k is a field, to the discriminant, if chark?2, and the Arf invariant

if char k = 2. The remaining contribution from Bk) is essentially the
Hasse invariant.

Proof of 3.9.We want to construct a natural isomorphism 155
ep : CI(H(P)) — END (A(P)).

for P € objP. Suppose this is done. Then ®,() € objQuad we
have @,q) L (P,—q) ~ H(P) (LemmalZR), scCI(P,q) ® CI(P,—q) ~
CI(P,q) L (P,—q)) (Lemmd31) CI(H(P)) = END(A(P)), by assump-
tion. Therefore, by criterion (6) of Theordm¥.1, ChapleCHP, q) is a
graded azumaya algebra. Thus we only have to conspguct

H(P) = (P& P*,q") with q°(x.y) = <y, X)p
=y(x) for (x,y) € P& P*. Define

P® P* — END(A(P))

by (x,y) = Lx + dy. Then, using Lemm@a3.5L{ + dy)? = L,z + Lydy +
dyLyx+dZ = Lxdy +dyLy, because? = 0in A(P) andd? = 0. If u € A(P)
then (xdy + dyLy)u = xdy(u) + dy(xu) = xd,(u) + y(X)u — xd,(u) =
y(X)u. Thus (4 + dy)2 is multiplication byy(x) = q°(x,y) on A(P), i.e.
(Lx + dy)? = g°(x,y) in END (A(P)). Thus we have defined an algebra
homomorphism

¢p : CI(H(P)) —» END(A(P)),

and since x +dy has degree 1, it is a homomorphism of graded algebras.

Supposef : Py — P> is an isomorphism. Then on(P2), Lty =
AHLx A (F)handds: — 1y(x) = (F1y)(x2) = Y(F~'x2), SOA(F)dy A
()x2) = A(F)dy(fx2) = A(FY(F'x2) = dr.-g, (%) for X2 € Py,
because/(f~1x,) has degree zero in(P2). Thereforea(f)(Ly + dy) A 156
(1= Lt + df*_]_(y) so it follows thatep is natural, recalling that
H(f) = feo f*L.
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Next we will show that, fol? = P; ® P, the following diagram is
commutative:

PPoPy

CI(H(P1 @ P2)) END(A(P1 @ P2))

CI(H(P1) L H(Py)) END(AP1 ® AP2)

Cl(H(Pl)) ® Cl(H(Pz)) ?@JSOPZEN D(/\ Pl) ® EN D(/\ Pz)
To see this, we trace the images ofi((x2), (Y1, Y2))
€ (PL®P2)® (P;®P5) c CI(H(PL® Py)) :

(%1, %2), (¥1, ¥2)) F———— L) + diyayo)

Ly,e1 + Ligx,

X1, Y1), (X2,
((x1. Y1), (%2, ¥2)) +dy, ® 11p, + 1ap, ® dy,

((Lx, +dhy) ® Lp,)
(Lup, ® (L, + b))

Since all of these algebras are faithfully projectikrenodules we con-
clude thatyp,ep, is an isomorphism= ¢p, ® ¢p, iS an isomorphism
& ¢p, andpp, are isomorphisms. (In Chapter 2 we showed that the
functor Qg is faithfully exact forQ faithfully projective.)

Now givenP; we choosd; so thatP, &P, ~ k- - -&k, and then the
problem of showing thapp, is an isomorphism reduces to the special
caseP; = k. We do this case now by a direct calculation.

H(K) ~ (key @ key, ) with gq(aze; + ape) = ajap. Hereke, = (kep)*
ande; is the dual basis tey, i.e. ex(e1) = 1. Thereforen(ke)) = K[e1] =
k1@ ke with € = 0, andde, (1) = 0, d,(e1) = 1. MoreoverL¢, (1) = e
andLg (e1) = 0.

(x1,yD) ®1) + (1® (X2, ¥2)) ——
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Cl(H(ker)) = Kler, &] with € = 0 = €3, andeie, + 6 = 1,
because E q(e1 + &) = (€1 + &)°.

¢k - Cl(H(key)) - END(A(key))

is defined bypk(e1) = Le, andgi(ez) = de,. With respect to the basis

1, e, for A(ke)) these endomorphisms are represented by the matrices
(98)and(33), respectively, and these clearly genetlgfk). Thusep

is surjective. On the other hand Corolldry]3.7 says that, amdule,
CI(H(K)) ~ A(ko k*), a free module of rank four (becausék & k*) ~

A(K) ® (K*)). A surjective homomorphism of free modules of the same
finite rank must be an isomorphism, gpis an isomorphism as claimed.

4 The orthogonal group and spinor norm

We assume here that spdg i6 connected. SupposE, ) is a quadratic 158
space (i.e.€ obj Quad(k)) and that P : k] = n. If nis odd then

2 € U(K); otherwise reduceR ) modulo a maximal ideal containing
2k, and we contradict the fact that non-singular forms oved$ielf char
2 have even dimension. We propose to use th&ded algebra,

A=CI(Pa)=A&A
to study theorthogonal group
Q=Q(Pq),

i.e. the group of isometries oP(q).
We take the position from Chapfér 4 that everything is gradéuais

PicK) = Piclkl & Z/2Z (4.1)

is the group of invertibl&k-modules. The first summand describes the
underlying ungraded modul¢ék¢module) and th&/2Z summand des-
ignates the degree (0 or 1) in which it is concentrated.
Write
G(A) = Autcaig(A).
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andhU(A) for the homogeneous units & Recall that ifu € hU(A)
vautif du=0
thenay € G(A) is defined bya,(a) = . Here, for
u ® yau(@) uavtifou=1
a=a+a,a = ag— a;. Thus, for homogeneous a, we can write this
as
ay(@) = (-1)™%2uaut(u € hU(A),a € hA).
According to Theorerfi 318 is azumayék-algebra. Therefore The-
orem[5.2 of chaptdn 4 gives us an exact sequence

1- UK — U(A) - G(A) — Pic(k) (4.2)

u— ay

To apply this we first embef in G(A). Indeed, since the Glord
algebra is a functor ofF g) there is a canonical homomorphism —
C(a), of Q into G(A). If we identify P c A (in fact P c A;) thenC(a)
is the unique algebra automorphism of A such th&)(X) = a(X) for
x € P. For example, the automorphisan— a described above is just
C(-1p). We will use this monomorphism to identify with a subgroup
of G(A). We can characterise it:

Q = {a € G(A)|aP c P.

For if P c P then forx € P we haveg(ax) = (@X)? = a(X?) = a(gX) =
gx, soa induces an isometryy’ : P — P. Evidently therx = C(a”).
Next we introduce th€lifford group

I' = {ue hU(A)lay € Q}.
and thespecial Clfford group
Io=TNA ={ueUA)ay € Q}.

If ue U) c U(A,) thenay = 1, soU(k) c I',. Therefore the exact
sequencd{4l2) induces a sub-exact sequence,

1—= U —= U(A) —G(A) —=Pick)  (43)
| U U H
1—=U(K) T, Q——Pick)
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Now Pick) = Piclk| ® Z/2Z (seel(41)), so we obtain homomorphisms
Q — PicK)

and
Q- 7Z/27Z,

the second being the first followed by projection on the sddantor.
We shall write

SQ = ker(Q — Z/27)

U

VSQ = ker(@Q — Pic(k)),

thespecial andvery special orthogonal groug®f (P, q)), respectively.
With this notation we can extract frofi(#.3) an exact seqeenc

1-UK) »T, >vSQ — 1. (4.49)

If x e Pthenx? = gxin A, therefore also if\°, so the identity map on
P extends to an isomorphis — A°, or, in other words, an antiauto-
morphism ofA. We shall denote it bya — & All @ € Q commute with
this antiautomorphism; just check it ¢h For a& A we will define its
conjugate a, by

a=8=a
and write

Na=aa

The last remark shows thafa) = a(a) for acQ.
Let 161
n={aeANaeKk.

If xe Pthenx= X = X = —xSONXx= —x? = —q(X) € k, andP c n.
Supposea, b € n. ThenN(ab) = (ab)ab = abba = aN(b)a =
aaN(b) = N(a)N(b), becauséN(b) € U(K).

a,b e n= abe nandN(ab) = N(@)N(b).
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Next supposel € I. Then forx € P we havex,(X) = (-1)™uxu?,
or Ux = ay(X)u. Thereforeuay(X) = XU, anday(X) = @u(X) with
X = —x. Settingy = ay(X) we haveuy = aj(y)Ur, so, by definition,
U e I'andag = ogt. In particularayg = ayag = 1 SON(U) = uu €
kerC — G(A)) = U(k). Summarizing, we have proved:

If ue T thenueT andag = ot

MoreoverN(u) € U(Kk) (i.e.T c n) so

ul=N@ultu
ThusN defines a homomorphism
N: T — U(K).
We now introduce the groups
Pin = ker(C - U(K))

and N
Spin= ker([, — U(K)).

If ue U(k) thenu = usoN(u) = u?. Therefore if we applyN to the
exact sequenc€&(4.4) we obtain a commutative diagram witbt emws
and columns:

1 1 1 (4.5)
1 2U(K) Spin VSQ 1
1 U(K) o VSQ 1
N o
1 U(k)? U(K) UK/UK?Z?—1
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Here ,U(K) denotes units of order 2 (square roots ofd).VSQ —
U(k)/U(K)? is called thespinor norm and its kernelV SQ’, the spino-
rial kernel,

So far we have the following subgroups, with indicated sasive
guotients, of:

Q

} c Pick) = PickleZ/2Z

VSQ

} L U(K)/U(K)? (4.6)
VS

} ~ TL/U(K) € U(A)/U(K).

1
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Of course the bulk of the group is the bottom layer. We shall no
investigate this for small values af= [p : K].

n=1(so2cU(K). As =k, A =P, andl’, = U(k). Q = {+1} in
this case.

n=2A; = Psol's, = U(A,). A, is a quadratic extension &f(in
the sense of chaptEl §3,) soI, is abelian group. IfR, g) = H(K) then
A, =kx ksol', = U(k) x U(k) andVSQ ~ U(K).

n=3(so2e U(k). ThenA; = P& L1, whereL; is the degree
one term ofL = |AJ” the centre of the ungraded algetka A, is a
“quaternionk|-algebra,” i.e. azumay#l-algebra of rank 4, anN(a) € k
foralla e A,. If ue U(A,) then. SinceN(u) = uu € U(k), we have 164
u™t = N(u)~u. Therefore, fora € A,

ay(@) = vaul = U tau = (N(wuHtaNuu™)
= vau ! = ().
Consequentlyy, leaves invariant the eigenspaces ofthese behave
nicely becausa = aand 2 U(K).

Now x = —x for x € P. If we localizek thenP has an orthogo-
nal basis,e, &, €3, and it is easy to see thhy = keees, 6663 =
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(-1)Pesere; = (-1)%2*1e ere3. Therefore, under the action of Ay =

P & L, is the eigenspace decomposition. In summary we have olaserve
thatu € U(A,) = Nue U(K) = «a leaves the eigenspaces dfivariant

= o P c p,i.e.ueT,. Therefore

I, = U(A,) andVSQ = U(A,)/U(K).

In caseA, = M (k) we havel', = GLy(K), the normN is just the deter-
minant, and
VSQ = PGLy(K) = GLa(k)/U(K).

n = 4. In this case. = A" is a quadratic extension &f(in the sense
of Chapteil¥ 83), andA, is a quaterniorL-algebra. The nornN takes
values inL. In case 2 U(k) a calculation like that for the case= 3
(localizek and diagonalizeR, g) first) shows that

I = {ue U(A)|Nue U(k)}.

and this is probably in general. In cageMy(L) thenN : U(A.) =
GLy(L) — U(L) is just the determinant. Hencely(L) c I'p and
I'./SL(L) ~ U(K), in this case.VSQ = T'./yw > Slko(L)/2U(K),

165 i.e. modulo element of order 2 in the centre, and modulo this s
groupVSQ lands inU(k)/U (k). Note that ifL = k x k thenS Ly(L) =
S Lo(K) x S Lp(k).

Supposek happens to be a Dedekind ring of arithmetic type in a
global field. Then one knows that Pig(is finite (finiteness of class
number) andJ (K) is finitely generated (Dirichlet unit theorem). Hence
VSQ = TI'p/U(K) is of finite index inQ. The discussion above shows,
therefore, that the finite generation Qfis equivalent to the finite gen-
eration ofl’, and that fom < 4 this is “usually” equivalent to the finite
generation olU(Ag). The point is thatJ(Ag) is often an easily recog-
nized linear group.

One can similarly use this procedure to reduce the study whalo
subgroups of2 to those ofU (Ap), at least in many cases, for< 4.
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