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Preface

These lecture notes grew out of a course on elementary differential
geometry which I have given at Lund University for a number of years.
Their purpose is to introduce the beautiful Gaussian geometry i.e. the
theory of curves and surfaces in three dimensional Euclidean space.
This is a subject with no lack of interesting examples. They are indeed
the key to a good understanding of it and will therefore play a major
role throughout this work.

The text is written for students with a good understanding of linear
algebra, real analysis of several variables and basic knowledge of the
classical theory of ordinary differential equations and some topology.
The most important results stated in the text are also proven there.
Others are left to the reader as exercises, which follow at the end of
each chapter. This format is aimed at students willing to put hard
work into the course. For further reading we recommend the excellent
standard text: M. P. do Carmo, Differential geometry of curves and
surfaces, Prentice Hall (1976).

I am grateful to my many enthusiastic students and other readers
who, throughout the years, have contributed to the text by giving
numerous valuable comments on the presentation.

Norra Nöbbelöv the 6th of March 2021.

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

Around 300 BC Euclid wrote ”The Thirteen Books of the Ele-
ments”. These were used as the basic text on geometry throughout
the Western world for about 2000 years. Euclidean geometry is the
theory one yields when assuming Euclid’s five axioms, including the
parallel postulate.

Gaussian geometry is the study of curves and surfaces in three di-
mensional Euclidean space. This theory was initiated by the ingenious
Carl Friedrich Gauss (1777-1855) in his famous work Disquisitiones
generales circa superficies curvas from 1828.

The work of Gauss, János Bolyai (1802-1860) and Nikolai Ivanovich
Lobachevsky (1792-1856) then lead to their independent discovery of
non-Euclidean geometry. This solved the best known mathematical
problem ever and proved that the parallel postulate is indeed indepen-
dent of the other four axioms that Euclid used for his theory.
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CHAPTER 2

Curves in the Euclidean Plane R2

In this chapter we study regular curves in the two dimensional Eu-
clidean plane. We define their curvature and show that this determines
the curves up to orientation preserving Euclidean motions. We then
prove the important isoperimetric inequality for plane curves.

Let the n-dimensional real vector space Rn be equipped with its
standard Euclidean scalar product 〈·, ·〉 : Rn × Rn → R. This is
given by

〈x, y〉 = x1y1 + · · ·+ xnyn
and induces the norm | · | : Rn → R+

0 on Rn with

|x| =
√
〈x, x〉.

Definition 2.1. A map Φ : Rn → Rn is said to be a Euclidean
motion of Rn if it is given by Φ : x 7→ A · x+ b where b ∈ Rn and

A ∈ O(n) = {X ∈ Rn×n| X t ·X = I}.
A Euclidean motion Φ is said to be rigid or orientation preserving
if

A ∈ SO(n) = {X ∈ O(n)| detX = 1}.

Definition 2.2. A differentiable parametrised curve in Rn is a
C1-map γ : I → Rn from an open interval I on the real line R. The
image γ(I) in Rn is the corresponding geometric curve. We say that
the map γ : I → Rn parametrises γ(I). The derivative γ′(t) is called
the tangent of γ at the point γ(t) and

L(γ) =

∫
I

|γ′(t)| dt ≤ ∞

is the arclength of γ. The differentiable curve γ is said to be regular
if γ′(t) 6= 0 for all t ∈ I.

Example 2.3. If p and q are two distinct points in R2 then the
differentiable curve γ : R→ R2 with

γ : t 7→ (1− t) · p+ t · q
parametrises the straight line through p = γ(0) and q = γ(1).
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Example 2.4. If r ∈ R+ and p ∈ R2 then the differentiable curve
γ : R→ R2 with

γ : t 7→ p+ r · (cos t, sin t)

parametrises the circle with center p and radius r. The arclength of
the curve γ|(0,2π) satisfies

L(γ|(0,2π)) =

∫ 2π

0

|γ′(t)|dt = 2πr.

Definition 2.5. A regular curve γ : I → Rn is said to parametrise
γ(I) by arclength if |γ̇(s)| = 1 for all s ∈ I i.e. the tangents γ̇(s) are
elements of the unit sphere Sn−1 in Rn.

We now prove the following fundamental result. This will turn out
to be very useful throughout this work.

Theorem 2.6. Let γ : I = (a, b) → Rn be a regular C1-curve in
Rn. Then the image γ(I) of γ can be parametrised by arclength.

Proof. Define the arclength function σ : (a, b)→ R+ by

σ(t) =

∫ t

a

|γ′(u)|du.

Then σ′(t) = |γ′(t)| > 0 so σ is strictly increasing and

σ((a, b)) = (0, L(γ)).

Let τ : (0, L(γ))→ (a, b) be the inverse of σ such that σ(τ(s)) = s for
all s ∈ (0, L(γ)). By differentiating we get

d

ds
(σ(τ(s)) = σ′(τ(s)) · τ̇(s) = 1.

If we define the curve α : (0, L(γ)) → Rn by α = γ ◦ τ then the chain
rule gives α̇(s) = γ′(τ(s)) · τ̇(s). Hence

|α̇(s)| = |γ′(τ(s))| · τ̇(s)

= σ′(τ(s)) · τ̇(s)

= 1.

The function τ is bijective so α parametrises γ(I) by arclength. �

We now introduce Frenet theory for curves in the plane R2. This
is named after the French mathematician Jean Frédéric Frenet (1816-
1900). His theory has later been generalised and developed for curves
in Rn for any dimension n. For the case n = 3, see the next chapter.
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For a regular planar curve γ : I → R2, parametrised by arclength,
we define its tangent T : I → S1 along γ by

T (s) = γ̇(s)

and its normal N : I → S1 with

N(s) = R ◦ T (s).

Here R : R2 → R2 is the linear rotation by the angle +π/2 satisfying

R :

[
a
b

]
7→
[
0 −1
1 0

]
·
[
a
b

]
.

It follows that for each s ∈ I the set {T (s), N(s)} is an orthonormal
basis for R2. It is called the Frenet frame along the curve.

For a planar curve, its curvature is of fundamental importance. It
is defined as follows.

Definition 2.7. Let γ : I → R2 be a regular C2-curve parametrised
by arclength. Then we define its curvature κ : I → R by

κ(s) = 〈Ṫ (s), N(s)〉.

Note that the curvature is a measure of how fast the unit tangent
T (s) = γ̇(s) is bending in the direction of the normal N(s), or equiva-
lently, out of the line generated by T (s).

Theorem 2.8. Let γ : I → R2 be a C2-curve parametrised by
arclength. Then the Frenet frame satisfies the following system of or-
dinary differential equations.[

Ṫ (s)

Ṅ(s)

]
=

[
0 κ(s)

−κ(s) 0

]
·
[
T (s)
N(s)

]
.

Proof. The curve γ : I → R2 is parametrised by arclength so
the Frenet frame {T (s), N(s)} is an orthonormal basis for R2 along
the curve. This means that the derivatives Ṫ (s) and Ṅ(s) have the
following natural decompositions

Ṫ (s) = 〈Ṫ (s), T (s)〉 T (s) + 〈Ṫ (s), N(s)〉 N(s),

Ṅ(s) = 〈Ṅ(s), T (s)〉 T (s) + 〈Ṅ(s), N(s)〉 N(s).

Furthermore we have

2 〈Ṫ (s), T (s)〉 =
d

ds
(〈T (s), T (s)〉) = 0,

2 〈Ṅ(s), N(s)〉 =
d

ds
(〈N(s), N(s)〉) = 0.
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As a direct consequence we then obtain

Ṫ (s) = 〈Ṫ (s), N(s)〉 N(s) = κ(s) N(s),

Ṅ(s) = 〈Ṅ(s), T (s)〉 T (s) = −κ(s) T (s),

since

〈Ṫ (s), N(s)〉+ 〈T (s), Ṅ(s)〉 =
d

ds
(〈T (s), N(s)〉) = 0.

�

Theorem 2.9. Let γ : I → R2 be a C2-curve parametrised by
arclength. Then its curvature κ : I → R vanishes identically if and
only if the geometric curve γ(I) is contained in a line.

Proof. It follows from Theorem 2.8 that the curvature κ : I → R
vanishes identically if and only if the tangent is constant i.e.

γ̈(s) = Ṫ (s) = 0

for all s ∈ I. Since the curve γ : I → R2 is parametrised by arclength,
this is equivalent to the fact there exists a unit vector Z ∈ S1 and a
point p ∈ R2 such that

γ(s) = p+ s · Z.

This means that the curve parametrises a line in the plane. �

The following result tells us that a planar curve is, up to orientation
preserving Euclidean motions, completely determined by its curvature.

Theorem 2.10. Let κ : I → R be a continuous function. Then
there exists a C2-curve γ : I → R2 parametrised by arclength with
curvature κ. If γ̃ : I → R2 is another such curve, then there exists a
matrix A ∈ SO(2) and an element b ∈ R2 such that

γ̃(s) = A · γ(s) + b.

Proof. See the proof of Theorem 3.11. �

In differential geometry we are interested in properties of geometric
objects which are independent of how these are parametrised. The
curvature of a geometric curve should therefore not depend on its
parametrisation.

Definition 2.11. Let γ : I → R2 be a regular C2-curve in R2 not
necessarily parametrised by arclength. Let t : J → I be a strictly
increasing C2-function such that the composition α = γ ◦ t : J → R2
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is a curve parametrised by arclength. Then we define the curvature
κ : I → R of γ : I → R2 by

κ(t(s)) = κ̃(s),

where κ̃ : J → R is the curvature of α.

Proposition 2.12. Let γ : I → R2 be a regular C2-curve in R2.
Then its curvature κ satisfies

κ(t) =
det[γ′(t), γ′′(t)]

|γ′(t)|3
.

Proof. See Exercise 2.5. �

Corollary 2.13. Let γ : I → R2 be a regular C2-curve in R2. Then
the geometric curve γ(I) is contained in a line if and only if γ′(t) and
γ′′(t) are linearly dependent for all t ∈ I.

Proof. The statement is a direct consequence of Theorem 2.9 and
Proposition 2.12. �

We complete this chapter by proving the isoperimetric inequality
in Theorem 2.17. But first we remind the reader of a few important
topological facts.

Definition 2.14. A continuous map γ : R → R2 is said to para-
metrise a closed curve in the plane if it is periodic with period L ∈ R+.
The image γ(R) is said to be simple if the restriction

γ|[0,L) : [0, L)→ R2

is injective.

The next result is the Jordan Curve Theorem, proven by Ernst
Pascual Jordan (1902 - 1980).

Deep Result 2.15. Let the continuous map γ : R → R2 para-
metrise a simple closed curve. Then the subset R2 \ γ(R) of the plane
has exactly two connected components. The interior Int(γ) of γ is
bounded and the exterior Ext(γ) is unbounded.

Definition 2.16. A regular differentiable map γ : R → R2, para-
metrising a simple closed curve, is said to be positively oriented if
its normal

N(t) = R · γ′(t) =

[
0 −1
1 0

]
· γ′(t)

is an inner normal to the interior Int(γ) for all t ∈ R. It is said to be
negatively oriented otherwise.
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Theorem 2.17. Let C be a regular simple closed curve in the plane
with arclength L and let A be the area of the region enclosed by C. Then

4π · A ≤ L2,

with equality if and only if C is a circle.

Proof. Let l1 and l2 be two parallel lines touching the curve C such
that C is contained in the strip between them. Introduce a coordinate
system in the plane such that l1 and l2 are orthogonal to the x-axis
and given by

l1 = {(x, y) ∈ R2| x = −r} and l2 = {(x, y) ∈ R2| x = r}.
Let γ = (x, y) : R → R2 be a positively oriented curve parameterising
C by arclength, such that x(0) = r and x(s1) = −r for some s1 ∈ (0, L).
Define the curve α : R→ R2 by α(s) = (x(s), ỹ(s)) where

ỹ(s) =

{
+
√
r2 − x2(s) if s ∈ [0, s1),

−
√
r2 − x2(s) if s ∈ [s1, L).

Then this new curve parameterises the circle given by x2 + ỹ2 = r2.
As an immediate consequence of Lemma 2.18 we have

A =

∫ L

0

x(s) · y′(s)ds and π · r2 = −
∫ L

0

ỹ(s) · x′(s)ds.

Employing the Cauchy-Schwartz inequality we then get

A+ π · r2 =

∫ L

0

(x(s) · y′(s)− ỹ(s) · x′(s))ds

≤
∫ L

0

√
(x(s) · y′(s)− ỹ(s) · x′(s))2ds

≤
∫ L

0

√
(x(s)2 + ỹ(s)2) · ((x′(s))2 + (y′(s))2)ds

= L · r.
The inequality

0 ≤ (
√
A− r

√
π)2 = A− 2r

√
A
√
π + πr2

implies that

2r
√
A
√
π ≤ A+ πr2 ≤ Lr

so
4Aπr2 ≤ L2r2

or equivalently
4πA ≤ L2.
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It follows from our construction above that the positive real number
r depends on the direction of the two parallel lines l1 and l2 chosen. In
the case of equality 4πA = L2 we get A = πr2. Since A is independent
of the direction of the two lines, we see that so is r. This implies that
in that case the curve C must be a circle. �

The following result is a direct consequence of Fact 2.19.

Lemma 2.18. Let the map γ : R → R2 parameterise a positively
oriented, piecewise regular, simple and closed curve in the plane. If A
is the area of the interior Int(γ) of γ then

A =
1

2

∫
γ(R)

(x(t)y′(t)− y(t)x′(t))dt

=

∫
γ(R)

x(t)y′(t)dt

= −
∫
γ(R)

x′(t)y(t)dt.

For the readers convenience we here state the celebrated Theorem
of George Green (1793-1841).

Fact 2.19. Let γ = (x, y) : R→ R2 be a positively oriented, piece-
wise regular, simple closed curve in the plane, and let R be the region
enclosed by γ. If P and Q are C1-functions defined on an open region
containing R, then∫

γ(R)

(P · dx+Q · dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y
) · dxdy.
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Exercises

Exercise 2.1. A cycloid is a planar curve parametrised by a map
γ : R→ R2 of the form

γ(t) = r(t, 1) + r(sin(−t),− cos(−t)),

where r ∈ R+. Describe the curve geometrically and calculate the
arclength

σ(2π) =

∫ 2π

0

|γ′(t)|dt.

Is the curve regular ?

Exercise 2.2. An astroid is a planar curve parametrised by a map
γ : R→ R2 of the form

γ(t) = (4r cos3 t, 4r sin3 t) = 3r(cos t, sin t) + r(cos(−3t), sin(−3t)),

where r ∈ R+. Describe the curve geometrically and calculate the
arclength

σ(2π) =

∫ 2π

0

|γ′(t)|dt.

Is the curve regular ?

Exercise 2.3. For a, r ∈ R+ let the curves γ1, γ2 : R→ R2 be given
by

γ1(t) = r(cos(at), sin(at)) and γ2(t) = r(cos(−at), sin(−at)).

Calculate the curvatures κ1, κ2 of γ1 and γ2, respectively. Find a Eu-
clidean motion Φ : R2 → R2 of R2 such that γ2 = Φ◦γ1. Is Φ orientation
preserving ?

Exercise 2.4. Let γ : I → R2 be a regular C3-curve, parametrised
by arclength, with Frenet frame {T (s), N(s)}. For r ∈ R we define its
parallel curves γr : I → R2 by

γr(t) = γ(t) + r ·N(t).

Calculate the curvature κr of those curves γr which are regular.

Exercise 2.5. Prove the curvature formula in Proposition 2.12.

Exercise 2.6. Let γ : R → R2 be the parametrised curve in R2

given by γ(t) = (sin t, sin 2t). Is γ regular, closed and simple ?
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Exercise 2.7. Let the positively oriented γ : R→ R2 parametrise
a simple closed C2-curve by arclength. Show that if the period of γ is
L ∈ R+ then its total curvature satisfies∫ L

0

κ(s)ds = 2π.
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CHAPTER 3

Curves in the Euclidean Space R3

In this chapter we study regular curves in the three dimensional
Euclidean space. We define their curvature and torsion and show that
these determine the curves up to orientation preserving Euclidean mo-
tions.

Let the 3-dimensional real vector space R3 be equipped with its
standard Euclidean scalar product 〈·, ·〉 : R3×R3 → R. This is given
by

〈x, y〉 = x1y1 + x2y2 + x3y3

and induces the norm | · | : R3 → R+
0 on R3 with

|x| =
√
x2

1 + x2
2 + x2

3.

Further we equip R3 with the standard cross product × : R3×R3 →
R3 satisfying

(x1, y1, z1)× (x2, y2, z2) = (y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1).

Definition 3.1. A map Φ : R3 → R3 is said to be a Euclidean
motion of R3 if it is given by Φ : x 7→ A · x+ b where b ∈ R3 and

A ∈ O(3) = {X ∈ R3×3| X t ·X = I}.
A Euclidean motion Φ is said to be rigid or orientation preserving
if

A ∈ SO(3) = {X ∈ O(3)| detX = 1}.

Example 3.2. If p and q are two distinct points in R3 then the
differentiable map γ : R→ R3 with

γ : t 7→ (1− t) · p+ t · q
parametrises the straight line through p = γ(0) and q = γ(1).

Example 3.3. Let {Z,W} be an orthonormal basis for a two di-
mensional subspace V of R3, r ∈ R+ and p ∈ R3. Then then the
differentiable map γ : R→ R3 with

γ : t 7→ p+ r · (cos t · Z + sin t ·W )
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parametrises a circle in the affine 2-plane p + V with center p and
radius r.

Example 3.4. If r, b ∈ R+ then the differentiable map γ : R→ R3

with
γ = (x, y, z) : t 7→ (r · cos(t), r · sin(t), bt)

parametrises a helix. It is easy to see that x2 + y2 = r2 so the image
γ(R) is contained in the circular cylinder

{(x, y, z) ∈ R3| x2 + y2 = r2}
of radius r.

Definition 3.5. Let γ : I → R3 be a regular C2-curve parametrised
by arclength. Then its curvature κ : I → R+

0 of γ is defined by

κ(s) = |γ̈(s)|.

Theorem 3.6. Let γ : I → R3 be a regular C2-curve parametrised
by arclength. Then its curvature κ : I → R+

0 vanishes identically if and
only if the geometric curve γ(I) is contained in a line.

Proof. The curvature κ(s) = |γ̈(s)| vanishes identically if and only
if γ̈(s) = 0 for all s ∈ I. Since the curve γ : I → R3 is parametrised
by arclength this is equivalent to the fact that there exist a unit vector
Z ∈ S2 and a point p ∈ R3 such that

γ(s) = p+ s · Z
i.e. the geometric curve γ(I) is contained in a straight line. �

Definition 3.7. A regular C3-curve γ : I → R3, parametrised
by arclength, is said to be a Frenet curve if its curvature κ is non-
vanishing i.e. κ(s) 6= 0 for all s ∈ I.

For a Frenet curve γ : I → R3 we define its tangent T : I → S2

along γ by
T (s) = γ̇(s),

the principal normal N : I → S2 with

N(s) =
γ̈(s)

|γ̈(s)|
=
γ̈(s)

κ(s)

and its binormal B : I → S2 as the cross product

B(s) = T (s)×N(s).

The Frenet curve γ : I → R3 is parametrised by arclength so

0 =
d

ds
〈γ̇(s), γ̇(s)〉 = 2 〈γ̈(s), γ̇(s)〉.
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This means that for each s ∈ I the set {T (s), N(s), B(s)} is an or-
thonormal basis for R3. It is called the Frenet frame along the curve.

Definition 3.8. Let γ : I → R3 be a Frenet curve. Then we define
its torsion τ : I → R by

τ(s) = 〈Ṅ(s), B(s)〉.

Note that the torsion is a measure of how fast the principal normal
N(s) = γ̈(s)/|γ̈(s)| is bending in the direction of the binormal B(s), or
equivalently, out of the plane generated by T (s) and N(s).

Theorem 3.9. Let γ : I → R3 be a Frenet curve. Then its Frenet
frame satisfies the following system of ordinary differential equations Ṫ (s)

Ṅ(s)

Ḃ(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 ·
T (s)
N(s)
B(s)

 .
Proof. The curve γ : I → R3 is parametrised by arclength and the

Frenet frame {T (s), N(s), B(s)} is an orthonormal basis for R3 along
the curve. This means that the derivatives Ṫ (s), Ṅ(s) and Ḃ(s) have
the following natural decompositions

Ṫ (s) = 〈Ṫ (s), T (s)〉 T (s) + 〈Ṫ (s), N(s)〉 N(s) + 〈Ṫ (s), B(s)〉 B(s),

Ṅ(s) = 〈Ṅ(s), T (s)〉 T (s) + 〈Ṅ(s), N(s)〉 N(s) + 〈Ṅ(s), B(s)〉 B(s),

Ḃ(s) = 〈Ḃ(s), T (s)〉 T (s) + 〈Ḃ(s), N(s)〉 N(s) + 〈Ḃ(s), B(s)〉 B(s).

The following relations show that the matrix in question must be
skew-symmetric

2 〈Ṫ (s), T (s)〉 =
d

ds
(〈T (s), T (s)〉) = 0,

2 〈Ṅ(s), N(s)〉 =
d

ds
(〈N(s), N(s)〉) = 0,

2 〈Ḃ(s), B(s)〉 =
d

ds
(〈B(s), B(s)〉) = 0

and

〈Ṫ (s), N(s)〉+ 〈T (s), Ṅ(s)〉 =
d

ds
(〈T (s), N(s)〉) = 0,

〈Ṫ (s), B(s)〉+ 〈T (s), Ḃ(s)〉 =
d

ds
(〈T (s), B(s)〉) = 0,

〈Ṅ(s), B(s)〉+ 〈N(s), Ḃ(s)〉 =
d

ds
(〈N(s), B(s)〉) = 0.
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The first equation is a direct consequence of the definition of the
curvature

Ṫ (s) = γ̈(s) = |γ̈(s)| ·N = κ(s) ·N(s).

The second equation follows from the skew-symmetry and the fact that

〈Ṅ(s), B(s)〉 =
d

ds
〈N(s), B(s)〉 − 〈N(s), Ḃ(s)〉 = τ(s).

The third equation is an immediate consequence of the skew-symmetry.
�

Theorem 3.10. Let γ : I → R3 be a Frenet curve. Then its torsion
τ : I → R vanishes identically if and only if the geometric curve γ(I)
is contained in a plane.

Proof. We define the function f : I → R by

f(s) = 〈γ(s)− γ(0), B(s)〉.
It follows from the third Frenet equation that if the torsion vanishes
identically then Ḃ(s) = 0 for all s ∈ I. This gives

ḟ(s) =
d

ds
〈γ(s)− γ(0), B(s)〉

= 〈γ̇(s), B(s)〉+ 〈γ(s)− γ(0), Ḃ(s)〉
= 〈T (s), B(s)〉
= 0.

This shows that the function f : I → R is constant and clearly f(0) =
0. It follows that 〈γ(s) − γ(0), B(s)〉 = 0 for all s ∈ I. This means
that γ(s) lies in a plane containing the point γ(0) with constant normal
B(s).

Let us now assume that the geometric curve γ(I) is contained in a
plane i.e. there exists a point p ∈ R3 and a unit normal n ∈ S2 to the
plane such that

〈γ(s)− p, n〉 = 0

for all s ∈ I. When differentiating we get

〈T (s), n〉 = 〈γ̇(s), n〉 = 0

and 〈γ̈(s), n〉 = 0 so
〈N(s), n〉 = 0.

This means that the binormal B(s) is a constant multiple of the unit
normal n and therefore constant. Hence Ḃ(s) = 0 so τ ≡ 0. �

The next result is called the Fundamental Theorem of Curve
Theory. It tells us that a Frenet curve is, up to orientation preserving
Euclidean motions, completely determined by its curvature and torsion.
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Theorem 3.11. Let κ : I → R+ and τ : I → R be two continuous
functions. Then there exists a Frenet curve γ : I → R3 with curvature
κ and torsion τ . If γ̃ : I → R3 is another such curve, then there exists
a matrix A ∈ SO(3) and an element b ∈ R3 such that

γ̃(s) = A · γ(s) + b.

Proof. The proof is based on Theorem 3.9 and a well-known result
of Picard-Lindelöf formulated here as Fact 3.12, see Exercise 3.6. �

Fact 3.12. Let f : U → Rn be a continuous map defined on an
open subset U of R× Rn and L ∈ R+ such that

|f(t, x)− f(t, y)| ≤ L · |x− y|

for all (t, x), (t, y) ∈ U . If (t0, x0) ∈ U then there exists a unique local
solution x : I → Rn to the following initial value problem

x′(t) = f(t, x(t)), x(t0) = x0.

In differential geometry we are interested in properties of geometric
objects which are independent of how these objects are parametrised.
The curvature and the torsion of a geometric curve should therefore
not depend on its parametrisation.

Definition 3.13. Let γ : I → R3 be a regular C2-curve in R3 not
necessarily parametrised by arclength. Let t : J → I be a strictly
increasing C2-function such that the composition α = γ ◦ t : J → R3

is a curve parametrised by arclength. Then we define the curvature
κ : I → R+ of γ : I → R3 by

κ(t(s)) = κ̃(s),

where κ̃ : J → R+ is the curvature of α. If further γ : I → R3 is a
regular C3-curve with non-vanishing curvature and t : J → I is C3,
then we define the torsion τ : I → R of γ by

τ(t(s)) = τ̃(s),

where τ̃ : J → R is the torsion of α.

We are now interested in deriving formulae for the curvature κ and
the torsion τ in terms of γ, under the above mentioned conditions.

Proposition 3.14. Let γ : I → R3 be a regular C2-curve in R3

then its curvature satisfies

κ(t) =
|γ′(t)× γ′′(t)|
|γ′(t)|3

.

21



Proof. By differentiating γ(t) = α(s(t)) we get

γ′(t) = α̇(s(t)) · s′(t),

〈γ′(t), γ′(t)〉 = s′(t)2〈α̇(s(t)), α̇(s(t))〉 = s′(t)2

and

2〈γ′′(t), γ′(t)〉 =
d

dt
(s′(t)2) = 2 · s′(t) · s′′(t).

When differentiating once more we get

s′(t) · α̈(s(t)) =
s′(t) · γ′′(t)− s′′(t) · γ′(t)

s′(t)2

and

α̈(s(t)) =
s′(t)2 · γ′′(t)− s′(t) · s′′(t) · γ′(t)

s′(t)4

=
γ′′(t)〈γ′(t), γ′(t)〉 − γ′(t)〈γ′′(t), γ′(t)〉

|γ′(t)|4

=
γ′(t)× (γ′′(t)× γ′(t))

|γ′(t)|4
.

Finally we get a formula for the curvature of γ : I → R3 by

κ(t) = κ̃(s(t))

= |α̈(s(t))|

=
|γ′(t)| · |γ′′(t)× γ′(t)|

|γ′(t)|4

=
|γ′(t)× γ′′(t)|
|γ′(t)|3

.

�

Corollary 3.15. If γ : I → R3 is a regular C2-curve in R3 then
the geometric curve γ(I) is contained in a line if and only if γ′(t) and
γ′′(t) are linearly dependent for all t ∈ I.

Proof. The statement is a direct consequence of Theorem 3.6 and
Proposition 3.14. �

Proposition 3.16. Let γ : I → R3 be a regular C3-curve with
non-vanishing curvature. Then its torsion τ satisfies

τ(t) =
det[γ′(t), γ′′(t), γ′′′(t)]

|γ′(t)× γ′′(t))|2
.

Proof. See Exercise 3.5. �
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Corollary 3.17. Let γ : I → R3 be a regular C3-curve with non-
vanishing curvature. Then the geometric curve γ(I) is contained in a
plane if and only if γ′(t), γ′′(t) and γ′′′(t) are linearly dependent for all
t ∈ I.

Proof. The statement is a direct consequence of Theorem 3.10
and Proposition 3.16. �
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Exercises

Exercise 3.1. For r, a, b ∈ R+ parametrise the helices γ1, γ2 : R→
R3 by

γ1 : t 7→ (r · cos(at), r · sin(at), b · (at)),
γ2 : t 7→ (r · cos(−at), r · sin(−at), b · (at)).

Calculate their curvatures κ1, κ2 and torsions τ1, τ2, respectively. Find
a Euclidean motion Φ : R3 → R3 of R3 such that γ2 = Φ ◦ γ1. Is Φ
orientation preserving ?

Exercise 3.2. For any κ ∈ R+ and τ ∈ R construct a C3-curve
γ : R→ R3 with constant curvature κ and constant torsion τ .

Exercise 3.3. Prove that the curve γ : (−π/2, π/2)→ R3 with

γ : t 7→ (2 cos2 t− 3, sin t− 8, 3 sin2 t+ 4)

is regular. Determine whether the image of γ is contained in

ii) a straight line in R3 or not,
i) a plane in R3 or not.

Exercise 3.4. Show that the curve γ : R→ R3 given by

γ(t) = (t3 + t2 + 3, t3 − t+ 1, t2 + t+ 1)

is regular. Determine whether the image of γ is contained in

ii) a straight line in R3 or not,
i) a plane in R3 or not.

Exercise 3.5. Prove the torsion formula in Proposition 3.16.

Exercise 3.6. Use your local library to find a proof of Theorem
3.11.

Exercise 3.7. Let γ : R→ R3 be a regular C2-map parametrising
a closed curve in R3 by arclength. Use your local library to find a proof
of Fenchel’s theorem i.e.

L(γ̇) =

∫ P

0

κ(s)ds ≥ 2π,

where P is the period of γ.
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CHAPTER 4

Surfaces in the Euclidean Space R3

In this chapter we introduce the notion of a regular surface in the
three dimensional Euclidean space. We give several examples of regular
surfaces and study differentiable maps between them. We then define
the tangent space at a point and show that this is a two dimensional
vector space. Further we introduce the first fundamental form which
enables us to measure angles between tangent vectors, lengths of curves
and even distances between points on the surface.

Definition 4.1. A non-empty subset M of R3 is said to be a reg-
ular surface if for each point p ∈ M there exist open, connected and
simply connected neighbourhoods U in R2, V in R3 with p ∈ V and a
bijective C1-map X : U → V ∩M such that X is a homeomorphism
and

Xu(q)×Xv(q) 6= 0

for all q ∈ U . The map X : U → X(U) = V ∩M is said to be a local
parametrisation of M and the inverse X−1 : X(U) → U a local
chart or local coordinates on M . An atlas for M is a collection

A = {(Vα ∩M,X−1
α )| α ∈ I}

of local charts on M such that A covers the whole of M i.e.

M =
⋃
α

(Vα ∩M).

Example 4.2. Let f : U → R be a C1-function from an open
subset U of R2. Then X : U →M with

X : (u, v) 7→ (u, v, f(u, v))

is a local parametrisation of the graph

M = {(u, v, f(u, v))| (u, v) ∈ U}

of f . The corresponding local chart X−1 : M → U is given by

X−1 : (x, y, z) 7→ (x, y).
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Example 4.3. Let S2 denote the unit sphere in R3 given by

S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}.

Let N = (0, 0, 1) be the north pole and S = (0, 0,−1) be the south
pole of S2, respectively. Set UN = S2 \ {N}, US = S2 \ {S} and define
the stereographic projection from the north pole σN : UN → R2 by

σN : (x, y, z) 7→ 1

1− z
(x, y)

and the stereographic projection from the south pole σS : US → R2

with

σS : (x, y, z) 7→ 1

1 + z
(x, y).

Then A = {(UN , σN), (US, σS)} is an atlas on S2. Their inverses

XN = σ−1
N : R2 → UN and XS = σ−1

S : R2 → US

are local parametrisations of the unit sphere S2 given by

XN : (u, v) 7→ 1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1),

XS : (u, v) 7→ 1

1 + u2 + v2
(2u, 2v, 1− u2 − v2).

Our next aim is to prove the implicit function theorem which is
a useful tool for constructing surfaces in R3. For this we employ the
classical inverse mapping theorem stated below. Remember that if
F : U → Rm is a C1-map defined on an open subset U of Rn then its
differential

dF (p) : Rn → Rm

at a point p ∈ U is the linear map given by the m× n matrix

dF (p) =

∂F1/∂x1(p) . . . ∂F1/∂xn(p)
...

...
∂Fm/∂x1(p) . . . ∂Fm/∂xn(p)

 .
The classical inverse mapping theorem can be formulated as fol-
lows.

Theorem 4.4. Let r be a positive integer, U be an open subset of
Rn and F : U → Rn be a Cr-map. If p ∈ U and the differential

dF (p) : Rn → Rn

of F at p is invertible then there exist open neighbourhoods Up around
p and Uq around q = F (p) such that the restriction f = F |Up : Up → Uq
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is bijective and its inverse f−1 : Uq → Up is a Cr-map. Furthermore,
the differential df−1(q) of f−1 at q satisfies

df−1(q) = (dF (p))−1

i.e. it is the inverse of the differential dF (p) of F at p.

Before stating the implicit function theorem we remind the reader
of the following useful notions.

Definition 4.5. Let m,n be positive integers, U be an open subset
of Rn and F : U → Rm be a C1-map. A point p ∈ U is said to be
regular for F if the differential

dF (p) : Rn → Rm

is of full rank and critical otherwise. A point q ∈ F (U) is said to be
a regular value of F if every point of the pre-image F−1({q}) of q is
regular and a critical value otherwise.

Remark 4.6. Note that if m ≤ n then p ∈ U is a regular point of

F = (F1, . . . , Fm) : U → Rm

if and only if the gradients ∇F1, . . . ,∇Fm of the coordinate functions
F1, . . . , Fm : U → R are linearly independent at p, or equivalently, the
differential dF (p) of F at p satisfies the following condition

det(dF (p) · dF (p)t) 6= 0.

In differential geometry, the following important result is called the
implicit function theorem.

Theorem 4.7. Let f : U → R be a C1-function defined on an open
subset U of R3 and q be a regular value of f i.e.

(∇f)(p) 6= 0

for all p in M = f−1({q}). Then M is a regular surface in R3.

Proof. Let p be an arbitrary element of M . Then the gradient

∇f(p) = (fx, fy, fz)

of f at p is non-zero so we can, without loss of generality, assume that
fz(p) 6= 0. Now define the map F : U → R3 by

F : (x, y, z) 7→ (x, y, f(x, y, z)).

Then its differential dF (p) at p satisfies

dF (p) =

 1 0 0
0 1 0
fx fy fz

 ,
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so the determinant det dF (p) = fz is non-zero. Following the classical
inverse mapping theorem there exist open neighbourhoods V around p
and W around F (p) such that the restriction F |V : V → W of F to
V is invertible. The inverse (F |V )−1 : W → V is differentiable of the
form

(u, v, w) 7→ (u, v, g(u, v, w)),

where g is a real-valued function on W . It follows that the restriction

X = (F |V )−1|Ŵ : Ŵ → R3

to the planar set

Ŵ = {(u, v, w) ∈ W | w = q}

is differentiable. Since Xu × Xv 6= 0 we see that X : Ŵ → V ∩M
is a local parametrisation of the open neighbourhood V ∩M around
p. Since p was chosen arbitrarily we have shown that M is a regular
surface in R3. �

We shall now apply the implicit function theorem to construct two
important regular surfaces in R3.

Example 4.8. Let f : R3 → R be the differentiable function given
by

f(x, y, z) = x2 + y2 + z2.

The gradient ∇f(p) of f at p satisfies ∇f(p) = 2p, so each positive real
number r ∈ R is a regular value for f . This means that the sphere

S2
r = {(x, y, z) ∈ R3| x2 + y2 + z2 = r2} = f−1({r2})

of radius r is a regular surface in R3.

The torus T 2 is another important regular surface in R3.

Example 4.9. For real numbers r, R ∈ R, satisfying 0 < r < R,
define the differentiable function

f : U = {(x, y, z) ∈ R3| x2 + y2 6= 0} → R
by

f(x, y, z) = z2 + (
√
x2 + y2 −R)2

and let T 2 be the pre-image

f−1({r2}) = {(x, y, z) ∈ U | z2 + (
√
x2 + y2 −R)2 = r2}.

The gradient ∇f of f at p = (x, y, z) satisfies

∇f(p) =
2√

x2 + y2
(x(
√
x2 + y2 −R), y(

√
x2 + y2 −R), z

√
x2 + y2).
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If p ∈ T 2 and ∇f(p) = 0 then z = 0, so

∇f(p) =
2r√
x2 + y2

(x, y, 0) 6= 0.

This contradiction shows that r2 is a regular value for f and hence the
torus T 2 is a regular surface in R3.

We now introduce the useful notion of a regular parametrised sur-
face in R3. This is a map and should not be confused with the notion
of a regular surface as a subset of R3, introduced in Definition 4.1.

Definition 4.10. A differentiable map X : U → R3 from an open
subset U of R2 is said to be a regular parametrised surface in R3

if for each point q ∈ U

Xu(q)×Xv(q) 6= 0.

Definition 4.11. Let M be a regular surface in R3. A differen-
tiable map X : U → M defined on an open subset of R2 is said to
parametrise M if X is surjective and for each q in U there exists an
open neighbourhood Uq of q such that X|Uq : Uq → X(Uq) is a local
parametrisation of M .

Example 4.12. We already know that for 0 < r < R the torus

T 2 = {(x, y, z) ∈ R3| z2 + (
√
x2 + y2 −R)2 = r2}

is a regular surface in R3. It is easily seen that T 2 is obtained by
rotating the circle

{(x, 0, z) ∈ R3| z2 + (x−R)2 = r2}

in the (x, z)-plane around the z-axis. This rotation naturally induces
the regular parametrised surface X : R2 → T 2 with

X : (u, v) 7→

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
R + r cosu

0
r sinu

 .
This parametrises the regular surface T 2 as a subset of R3.

The idea of rotating the circle, in Example 4.12, around the z-axis
will now be generalised to construct surfaces of revolution. They are
important in surface theory because of their nice geometric properties.

Example 4.13. Let γ = (r, 0, z) : I → R3 be a differentiable curve
in the (x, z)-plane such that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all
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s ∈ I. By rotating this curve around the z-axis we obtain a regular
parametrised surface of revolution X : I × R→ R3 with

X(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
r(u)

0
z(u)

 =

r(u) cos v
r(u) sin v
z(u)

 .
This is regular because the two tangent vectors

Xu =

ṙ(u) cos v
ṙ(u) sin v
ż(u)

 and Xv =

−r(u) sin v
r(u) cos v

0


are not only linearly independent but also orthogonal. If the curve
γ = (r, 0, z) : I → R3 is injective then X : I × R→ R3 parametrises a
regular surface M = X(I × R) in R3.

We will now discuss the differentiability of a continuous map be-
tween two regular surfaces in R3. But let us first explain what it means
for a real-value function on a surface to be differentiable.

Definition 4.14. Let M be a regular surface in R3. A continuous
real-valued function f : M → R on M is said to be differentiable
if for all local parametrisations X : U → X(U) of M , the composition
f ◦X : U → R is differentiable.

We now give a simple example of a differentiable real-valued func-
tion, defined on the torus T 2.

Example 4.15. For 0 < r < R, let f : T 2 → R be the real-valued
function on the torus

T 2 = {(x, y, z) ∈ R3| z2 + (
√
x2 + y2 −R)2 = r2},

given by

f : (x, y, z) 7→ x.

For the natural parametrisation X : R2 → T 2 of T 2 with

X : (u, v) 7→

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
R + r cosu

0
r sinu


we see that f ◦X : R2 → R is given by

f ◦X : (u, v) 7→ (R + r cosu) cos v.

This function is clearly differentiable.
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Definition 4.16. A continuous map φ : M1 → M2 between two
regular surfaces in R3 is said to be differentiable at a point p ∈M1

if there exist local parametrisations Xp : Up → Xp(Up) of M1 around p
and Xq : Uq → Xq(Uq) of M2 around q = φ(p) such that the map

X−1
q ◦ φ ◦Xp|W : W → R2,

defined on the open subset W = X−1
p (Xp(Up) ∩ φ−1(Xq(Uq))) of R2, is

differentiable. The map φ : M1 →M2 is said to be differentiable if it
is differentiable at any point p ∈M .

We will later see that the differentiability of a map between two
surfaces, just introduced, is independent of the choice of the two local
parametrisations, see Corollary 4.20. As an immediate consequence of
Definition 4.16 we have the following natural result.

Proposition 4.17. Let φ1 : M1 → M2 and φ2 : M2 → M3 be two
differentiable maps between regular surfaces in R3. Then the composi-
tion φ2 ◦ φ1 : M1 →M3 is also differentiable.

Proof. See Exercise 4.6. �

Example 4.18. For 0 < r < R, we parametrise the torus

T 2 = {(x, y, z) ∈ R3| z2 + (
√
x2 + y2 −R)2 = r2}

with the map X : R2 → T 2 defined by

X : (u, v) 7→

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
R + r cosu

0
r sinu

 .
We can now map the torus T 2 into R3 with the following formula

N :

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
R + r cosu

0
r sinu

 7→
cosu cos v

cosu sin v
sinu

 .
Then it is easy to see that this gives a well-defined map N : T 2 → S2

from the torus onto the unit sphere

S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}.
In the local coordinates (u, v) on the torus, the map N is given by

N(u, v) =

cosu cos v
cosu sin v

sinu

 .
It can be shown that the mapN : T 2 → S2 is differentiable, see Exercise
4.2.
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Next we have the following interesting result with some important
consequences.

Proposition 4.19. Let M be a regular surface in R3 and X : U →
X(U) be a local parametrisation of M . Then its continuous inverse
X−1 : X(U)→ U is differentiable.

Proof. See Exercise 4.3. �

As an important consequence of Proposition 4.19 we have following
result.

Corollary 4.20. Let φ : M1 → M2 be a continuous map between
two regular surfaces. Then the differentiability of φ, given in Definition
4.16, is independent of the choice of the local parametrisations Xp :
Up → Xp(Up) of M1 and Xq : Uq → Xq(Uq) of M2.

Proof. See Exercise 4.4. �

The next useful statement generalises a classical result from real
analysis of several variables.

Proposition 4.21. Let M1 and M2 be two regular surfaces in R3.
Let φ : U → R3 be a differentiable map defined on an open subset of
R3 such that M1 is contained in U and the image φ(M1) is contained
in M2. Then the restriction φ|M1 : M1 → M2 is a differentiable map
from M1 to M2.

Proof. See Exercise 4.5. �

Example 4.22. Let φ : R3 → R3 be the differentiable map with

φ(x, y, z) = (x2 − y2, y2 − z2, z2 − x2).

Then it is clear that the coordinate functions of φ = (φ1, φ2, φ3) satisfy

φ1 + φ2 + φ3 = 0.

This tells us that the image φ(R3) is contained in the plane

π = {(x, y, z) ∈ R3| x+ y + z = 0}.

It then follows from Proposition 4.21 that the restriction

φ|S2 : S2 → π

of φ to the unit sphere S2 is a differentiable map between the two
surfaces S2 and π.
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Definition 4.23. Two regular surfaces M1 and M2 in R3 are said
to be diffeomorphic if there exists a bijective differentiable map φ :
M1 → M2 such that the inverse φ−1 : M2 → M1 is also differentiable.
In that case the map φ is said to be a diffeomorphism between M1

and M2.

Corollary 4.24. Let M be a regular surface in R3. Then any local
parametrisation X : U → X(U) of M is a diffeomorphism.

Proof. This is a direct consequence of Definition 4.1 and Propo-
sition 4.19. �

We now introduce the important notion of the tangent space at a
point of a regular surface and show in Proposition 4.28 that this is
indeed a two dimensional vector space.

Definition 4.25. Let M be a regular surface in R3. A continuous
map γ : I → M , defined on an open interval I of the real line, is said
to be a differentiable curve on M if it is differentiable as a map into
R3.

Definition 4.26. Let M be a regular surface in R3 and p be a
point on M . Then the tangent space TpM of M at p is the set of all
tangents γ′(0) to differentiable curves γ : I →M such that γ(0) = p.

We now determine the tangent space of a generic point on the unit
sphere S2 in R3.

Example 4.27. Let γ : I → S2 be a differentiable curve into the
unit sphere in R3 with γ(0) = p and γ′(0) = Z. Then the curve satisfies

〈γ(t), γ(t)〉 = 1

and differentiation yields

〈γ′(t), γ(t)〉+ 〈γ(t), γ′(t)〉 = 0.

This means that 〈Z, p〉 = 0 so every tangent vector Z ∈ TpSm must be
orthogonal to p. On the other hand if Z 6= 0 satisfies 〈Z, p〉 = 0 then
γ : R→ S2 with

γ : t 7→ cos(t|Z|) · p+ sin(t|Z|) · Z/|Z|

is a differentiable curve into S2 with γ(0) = p and γ′(0) = Z. This
shows that the tangent space TpS

2 is the following 2-dimensional linear
subspace of R3

TpS
2 = {Z ∈ R3| 〈p, Z〉 = 0}.
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Proposition 4.28. Let M be a regular surface in R3 and p be a
point on M . Then the tangent space TpM of M at p is a 2-dimensional
real vector space.

Proof. Let X : U → X(U) be a local parametrisation of M such
that 0 ∈ U and X(0) = p. Let α : I → U be a differentiable curve
in U such that 0 ∈ I and α(0) = 0 ∈ U . Then the composition
γ = X ◦ α : I → X(U) is a differentiable curve in X(U) such that
γ(0) = p. Since X : U → X(U) is a diffeomorphism it follows that any
differentiable curve γ : I → X(U) with γ(0) = p can be obtained this
way.

The chain rule now implies that the tangent γ′(0) of γ : I →M at
p satisfies

γ′(0) = dX(0) · α′(0),

where dX(0) : R2 → R3 is the linear differential of the local parametri-
sation X : U → X(U) of M . If (a, b) ∈ R2 then

dX(0) · (a, b) = dX(0) · (ae1 + be2)

= a dX(0) · e1 + b dX(0) · e2

= aXu(0) + bXv(0).

The condition Xu × Xv 6= 0 shows that dX(0) is of full rank i.e. the
vectors

Xu(0) = dX(0) · e1 and Xv(0) = dX(0) · e2

are linearly independent. This tells us that the image

TpM = {dX(0) · Z| Z ∈ R2}

of the linear map dX(0) : R2 → R3 is a two dimensional subspace of
R3. �

The tangent planes of the torus T 2 in R3 can be determined as
follows.

Example 4.29. For 0 < r < R, we parametrise the torus

T 2 = {(x, y, z) ∈ R3| z2 + (
√
x2 + y2 −R)2 = r2}

by X : R2 → T 2 with

X : (u, v) 7→

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
R + r cosu

0
r sinu

 .
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By differentiating we get a basis {Xv, Xu} for the 2-dimensional tangent
plane TpT

2 at p = X(u, v) with

Xu = r

− sinu cos v
− sinu sin v

cosu

 and Xv = (R + r cosu)

− sin v
cos v

0

 .
Remark 4.30. Remember that if F : U → Rm is a differentiable

map defined on an open subset U of Rn then its differential

dF (p) : Rn → Rm

at a point p ∈ U is the linear map given by the m× n matrix

dF (p) =

∂F1/∂x1(p) . . . ∂F1/∂xn(p)
...

...
∂Fm/∂x1(p) . . . ∂Fm/∂xn(p)

 .
If γ : R → U is a differentiable curve in U such that γ(0) = p and
γ′(0) = Z then the composition F ◦ γ : R → Rm is a differentiable
curve in Rm. According to the chain rule we have

dF (p) · Z =
d

dt
(F ◦ γ(t))|t=0,

which is the tangent vector of the curve F ◦ γ at the image point
F (p) ∈ Rm. This shows that the differential dF (p) of F at p is the
linear map given by the formula

dF (p) : γ′(0) = Z 7→ dF (p) · Z =
d

dt
(F ◦ γ(t))|t=0

mapping the tangent vectors at p ∈ U to tangent vectors at the image
point F (p) ∈ Rm. This formula will now be generalised to the surface
setting.

Proposition 4.31. Let φ : M1 → M2 be a differentiable map be-
tween two regular surfaces in R3, p ∈ M1 and q ∈ M2 with φ(p) = q.
Then the formula

dφp : γ′(0) 7→ d

dt

(
φ ◦ γ(t)

)
|t=0

determines a well-defined linear map dφp : TpM1 → TqM2 between the
two tangent spaces. Here γ : I →M1 is any differentiable curve in M1

satisfying γ(0) = p.

Proof. Let X : U → X(U) and Y : V → Y (V ) be local parametri-
sations of M1 and M2, respectively, such that X(0) = p, Y (0) = q and
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φ(X(U)) contained in Y (V ). Then we define the map F : U → R2

with
F = Y −1 ◦ φ ◦X.

Let α : I → U be a differentiable curve with α(0) = 0 and α′(0) =
(a, b) ∈ R2. If

γ = X ◦ α : I → X(U)

then γ(0) = p and

γ′(0) = dX(0) · (a, b) = aXu(0) + bXv(0).

The image curve φ ◦ γ : I → Y (V ) satisfies φ ◦ γ = Y ◦ F ◦ α so the
chain rule implies that

d

dt

(
φ ◦ γ(t)

)
|t=0

= dY (F (0)) · d
dt

(
F ◦ α(t)

)
|t=0

= dY (F (0)) · dF (0) · α′(0).

This means that dφp : TpM1 → TqM2 is given by

dφp : (aXu(0) + bXv(0)) 7→ dY (F (0)) · dF (0) · (a, b)
and hence clearly linear.

The last fomula shows that the map dφp : TpM1 → Tφ(p)M2 is well-
defined since it does not depend on the choice of the curve γ but only
on its derivative γ′(0) = aXu(0) + bXv(0). �

Definition 4.32. Let φ : M1 → M2 be a differentiable map be-
tween regular surfaces in R3, p ∈ M1 and q = φ(p) ∈ M2. The linear
map dφp : TpM1 → TqM2 is called the differential or the tangent
map of φ at p.

We next state the inverse mapping theorem for surfaces. This
generalises the classical Theorem 4.4 in the case when n = 2.

Theorem 4.33. Let φ : M1 →M2 be a differentiable map between
regular surfaces in R3. If p is a point in M1, q = φ(p) ∈ M2 and the
differential

dφp : TpM1 → TqM2

is bijective then there exist open neighborhoods Up around p and Uq
around q such that φ|Up : Up → Uq is bijective and the inverse (φ|Up)−1 :
Uq → Up is differentiable.

Proof. See Exercise 4.9 �

Our next aim is to introduce the first fundamental form of a regular
surface. This enables us to measure angles between tangent vectors,
lengths of curves and even distances between points on the surface.
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Definition 4.34. Let M be a regular surface in R3 and p ∈ M .
Then we define the first fundamental form Ip : TpM × TpM → R of
M at p by

Ip(Z,W ) = 〈Z,W 〉,
where 〈·, ·〉 is the standard Euclidean scalar product in R3 restricted to
the tangent plane TpM of M at p. Properties of the surface which only
depend on its first fundamental form are called inner properties.

Definition 4.35. Let M be a regular surface in R3 and γ : I →M
be a differentiable curve on M . Then the length L(γ) of γ is defined
by

L(γ) =

∫
I

√
〈γ′(t), γ′(t)〉dt.

As we shall now see a regular surface in R3 has a natural distance
function d. This gives (M,d) the structure of a metric space.

Proposition 4.36. Let M be a path-connected regular surface in
R3. For two points p, q ∈ M let Cpq denote the set of differentiable
curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q and define the
function d : M ×M → R+

0 by

d(p, q) = inf {L(γ)| γ ∈ Cpq}.

Then (M,d) is a metric space i.e. for all p, q, r ∈M we have

(i) d(p, q) ≥ 0,
(ii) d(p, q) = 0 if and only if p = q,

(iii) d(p, q) = d(q, p),
(iv) d(p, q) ≤ d(p, r) + d(r, q).

Proof. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). �

Definition 4.37. A differentiable map φ : M1 → M2 between two
regular surfaces in R3 is said to be isometric if for each p ∈ M1 the
differential dφp : TpM1 → Tφ(p)M2 preserves the first fundamental forms
of the surfaces involved i.e.

〈dφp(Z), dφp(W )〉 = 〈Z,W 〉,

for all Z,W ∈ TpM1. An isometric diffeomorphism φ : M1 → M2 is
called an isometry. Two regular surfaces M1 and M2 are said to be
isometric if there exists an isometry φ : M1 →M2 between them.

We now explain how the first fundamental form of a surface can be
described locally in terms a local parametrisation.
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Remark 4.38. Let M be a regular surface in R3 and X : U →
X(U) be a local parametrisation of M . At each point X(u, v) in X(U)
the tangent plane is generated by the vectors Xu(u, v) and Xv(u, v).
For these we define the matrix-valued map [DX] : U → R3×2 by

[DX] = [Xu, Xv]

and the real-valued functions E,F,G : U → R by the symmetric matrix[
E F
F G

]
= [DX]t · [DX],

containing the scalar products

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 = 〈Xv, Xu〉 and G = 〈Xv, Xv〉.

Since the derivatives Xu and Xv are linearly independent this matrix
is positive definite and induces the so called metric

ds2 = E · du2 + 2F · dudv +G · dv2

in the local parameter region U as follows: For each point q ∈ U we
have a natural scalar product ds2

q : R2 × R2 → R defined by

ds2
q(z, w) = z ·

[
E(q) F (q)
F (q) G(q)

]
· wt.

The following shows that the diffeomorphism X : U → X(U) preserves
the scalar products so it actually is an isometry.

Let α1 = (u1, v1) : I → U and α2 = (u2, v2) : I → U be two
differentiable curves in U meeting at α1(0) = q = α2(0). Further let
γ1 = X ◦α1 and γ2 = X ◦α2 be the differentiable image curves in X(U)
meeting at γ1(0) = p = γ2(0). Then the differential dX(q) is given by

dX(q) : (a, b) = (a · e1 + b · e2) 7→ aXu(q) + bXv(q)

so at q we have

ds2
q(α
′
1, α

′
2) = α′1 ·

[
E F
F G

]
· α′2

t

=
[
u′1 v′1

]
·
[
E F
F G

]
·
[
u′2
v′2

]
= Eu′1u

′
2 + F (u′1v

′
2 + u′2v

′
1) +Gv′1v

′
2

= 〈Xu, Xu〉u′1u′2 + 〈Xu, Xv〉(u′1v′2 + u′2v
′
1) + 〈Xv, Xv〉v′1v′2

= 〈u′1Xu + v′1Xv, u
′
2Xu + v′2Xv〉

= 〈dX(α′1), dX(α′2)〉
= 〈γ′1, γ′2〉.
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It now follows that the length of a curve α : I → U in U is exactly the
same as the length of the corresponding curve γ = X ◦α in X(U). We
have ”pulled back” the first fundamental form on the surface X(U) to
a metric on the open subset U of R2.

Definition 4.39. A differentiable map φ : M1 → M2 between
two regular surfaces in R3 is said to be conformal if there exists a
differentiable function λ : M1 → R such that for each p ∈ M the
differential dφp : TpM → Tφ(p)M satisfies

〈dφp(Z), dφp(W )〉 = e2λ〈Z,W 〉,
for all Z,W ∈ TpM . Two regular surfaces M1 and M2 are said to be
conformally equivalent if there exists a conformal diffeomorphism
φ : M1 →M2 between them.

Deep Result 4.40. Every regular surface M in R3 can locally be
parametrised by isothermal coordinates i.e. for each point p ∈ M
there exists a local parametrisation X : U → X(U) of M such that
p ∈ X(U) and

E(u, v) = G(u, v), F (u, v) = 0,

for all (u, v) ∈ U .

Proof. A complete twelve page proof can be found in the stan-
dard text: M. Spivak, A Comprehensive Introduction to Differential
Geometry, Publish or Perish (1979). �

We conclude this chapter by defining the natural notion of the area
of a surface in R3.

Definition 4.41. Let M be a regular surface in R3 and X : U →
X(U) be a local parametrisation of M . Then we define the area of
X(U) by

A(X(U)) =

∫
U

√
EG− F 2 · dudv.
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Exercises

Exercise 4.1. Determine whether the following subsets of R3 are
regular surfaces or not.

M1 = {(x, y, z) ∈ R3| x2 + y2 = z2},
M2 = {(x, y, z) ∈ R3| x2 + y2 − z2 = 1},
M3 = {(x, y, z) ∈ R3| x2 + y2 = cosh z},
M4 = {(x, y, z) ∈ R3| x sin z = y cos z}.

Find a parametrisation for those which are regular surfaces in R3.

Exercise 4.2. Prove that the map φ : T 2 → S2 in Example 4.18 is
differentiable.

Exercise 4.3. Prove Proposition 4.19.

Exercise 4.4. Prove Corollary 4.20.

Exercise 4.5. Prove Proposition 4.21.

Exercise 4.6. Prove Proposition 4.17.

Exercise 4.7. Construct a diffeomorphism φ : S2 → M between
the unit sphere S2 and the ellipsoid

M = {(x, y, z) ∈ R3| x2 + 2y2 + 3z2 = 1}.

Exercise 4.8. Let U be the open subset of the plane R2 given by

U = {(u, v) ∈ R2| − π < u < π, 0 < v < 1}.

Further define the map X : U →M ⊂ R3 by

X(u, v) = (sinu, sin 2u, v),

where M = X(U). Sketch M and show that X : U → M is differen-
tiable, regular and bijective but the inverse X−1 is not continuous. Is
M a regular surface in R3 ?

Exercise 4.9. Find a proof for Theorem 4.33.

Exercise 4.10. For α ∈ (0, π/2), parametrise the regular surface
Mα in R3 by Xα : R+ × R→Mα with

Xα(r, θ) = (r sinα cos(
θ

sinα
), r sinα sin(

θ

sinα
), r cosα).

Calculate the first fundamental form of Mα and find an equation of the
form fα(x, y, z) = 0 describing the surface.
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Exercise 4.11. Find an isometric parametrisation X : R2 →M of
the circular cylinder

M = {(x, y, z) ∈ R3| x2 + y2 = 1}.

Exercise 4.12. Let M be the unit sphere S2 with the two poles
removed. Prove that Mercator’s parametrisation X : R2 → M of
M with

X(u, v) = (
cos v

coshu
,

sin v

coshu
,

sinhu

coshu
)

is conformal.

Exercise 4.13. Prove that the first fundamental form of a regular
surface M in R3 is invariant under Euclidean motions.

Exercise 4.14. The regular parametrised surfaces X, Y : R2 → R3,
satisfying

X(u, v) = (coshu cos v, coshu sin v, u),

Y (u, v) = (sinhu cos v, sinhu sin v, v),

parametrise the cateniod and the helicoid, respectively. Calculate
their first fundamental forms. Find equations of the form f(x, y, z) = 0
describing these geometric surfaces. Compare with Exercise 4.1.

Exercise 4.15. Calculate the area A(S2) of the unit sphere

S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}.

Exercise 4.16. Calculate the area A(T 2) of the torus

T 2 = {(x, y, z) ∈ R3| z2 + (
√
x2 + y2 −R)2 = r2}.
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CHAPTER 5

Curvature

In this chapter we define the shape operator of an oriented surface
and its second fundamental form. These measure the behaviour of the
normal of the surface and lead us to the notions of normal curvature,
Gaussian curvature and mean curvature.

From now on we assume, if not stated otherwise, that our
curves and surfaces belong to the C2-category i.e. they can
be parametrised locally by C2-maps.

Definition 5.1. Let M be a regular surface in R3. A differentiable
map N : M → S2 with values in the unit sphere is said to be a Gauss
map for M if for each point p ∈ M the image N(p) is perpendicular
to the tangent plane TpM . The surface M is said to be orientable if
such a Gauss map exists. A surface M equipped with a Gauss map is
said to be oriented.

Let M be an oriented regular surface in R3 with Gauss map N :
M → S2. Let p ∈ M and γ : I → M be a regular curve parametrised
by arclength such that γ(0) = p and γ̇(0) = Z ∈ TpM . Then the
composition N ◦ γ : I → S2 is a differentiable curve on the unit sphere
and the linear differential dNp : TpM → TN(p)S

2 of N at p is given by
the formula

dNp : Z = γ̇(0) 7→ d

ds
(N(γ(s)))|s=0 = dNp(Z).

At the point p the second derivative γ̈(0) has a natural decomposition

γ̈(0) = γ̈(0)tan + γ̈(0)norm

into its tangential part, contained in TpM , and its normal part in the
orthogonal complement (TpM)⊥ of TpM . Along the curve γ : I → M
the normal N(γ(s)) is perpendicular to the tangent γ̇(s). This implies
that

0 =
d

ds
(〈γ̇(s), N(γ(s))〉)

= 〈γ̈(s), N(γ(s))〉+ 〈γ̇(s), dNγ(s)(γ̇(s))〉.
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Hence the normal part of the second derivative γ̈(0) satisfies

γ̈(0)norm = 〈γ̈(0), N(p)〉N(p)

= −〈γ̇(0), dNp(γ̇(0))〉N(p)

= −〈Z, dNp(Z)〉N(p).

This shows that the normal component of γ̈(0) is completely deter-
mined by the value of γ̇(0) and the values of the Gauss map along any
curve through p with tangent γ̇(0) = Z at p.

Since N : M → S2 is a Gauss map for the surface M and p ∈ M
we see that N(p) is a unit normal to both the tangent planes TpM and
TN(p)S

2 so we can make the identification TpM ∼= TN(p)S
2.

Definition 5.2. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and p ∈M . Then the shape operator

Sp : TpM → TpM

of M at p is the linear endomorphism given by

Sp(Z) = −dNp(Z)

for all Z ∈ TpM .

Proposition 5.3. Let M be an oriented regular surface with Gauss
map N : M → S2 and p ∈ M . Then the shape operator Sp : TpM →
TpM is symmetric i.e.

〈Sp(Z),W 〉 = 〈Z, Sp(W )〉
for all Z,W ∈ TpM .

Proof. Let X : U → X(U) be a local parametrisation of M such
that X(0) = p and let N : X(U) → S2 be the Gauss map on X(U)
given by

N(X(u, v)) = ± Xu(u, v)×Xv(u, v)

|Xu(u, v)×Xv(u, v)|
.

Then the normal vector N(X(u, v)) at the point X(u, v) is orthogonal
to the tangent plane TX(u,v)M so

0 =
d

dv
〈N ◦X,Xu〉|(u,v)=0 = 〈dNp(Xv), Xu〉+ 〈N(p), Xvu〉

and

0 =
d

du
〈N ◦X,Xv〉|(u,v)=0 = 〈dNp(Xu), Xv〉+ 〈N(p), Xuv〉.

By subtracting the second equation from the first one and employing
the fact that Xuv = Xvu we obtain

〈dNp(Xv), Xu〉 = 〈Xv, dNp(Xu)〉.
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Since {Xu, Xv} is a basis for the tangent plane TpM , the symmetry of
the linear endomorphism dNp : TpM → TpM is a direct consequence
of this last equation and the following obvious relations

〈dNp(Xu), Xu〉 = 〈Xu, dNp(Xu)〉,
〈dNp(Xv), Xv〉 = 〈Xv, dNp(Xv)〉.

The statement now follows from the fact that Sp = −dNp. �

The symmetry of the shape operator has the following important
consequence.

Corollary 5.4. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and p ∈M . Then there exists an orthonormal
basis {Z1, Z2} for the tangent plane TpM such that

Sp(Z1) = λ1Z1 and Sp(Z2) = λ2Z2,

for some λ1, λ2 ∈ R.

Definition 5.5. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and p ∈ M . Then we define the second
fundamental form IIp : TpM × TpM → R of M at p by

IIp(Z,W ) = 〈Sp(Z),W 〉.
Note that it is an immediate consequence of Proposition 5.3 that

the second fundamental form is symmetric and bilinear.

Definition 5.6. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2, p ∈M and Z ∈ TpM with |Z| = 1. Then the
normal curvature κn(Z) of M at p in the direction of Z is defined
by

κn(Z) = 〈γ̈(0), N(p)〉,
where γ : I → M is any curve parametrised by arclength such that
γ(0) = p and γ̇(0) = Z.

Proposition 5.7. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2, p ∈ M and Z ∈ TpM with |Z| = 1. Then
the normal curvature κn(Z) of M at p in the direction of Z satisfies

κn(Z) = 〈Sp(Z), Z〉 = IIp(Z,Z).

Proof. Let γ : I →M be a curve parametrised by arclength such
that γ(0) = p and γ̇(0) = Z. Along the curve the normal N(γ(s)) is
perpendicular to the tangent γ̇(s). This means that

0 =
d

ds
(〈γ̇(s), N(γ(s))〉)

= 〈γ̈(s), N(γ(s))〉+ 〈γ̇(s), dNγ(s)(γ̇(s))〉.
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As a direct consequence we get

κn(Z) = 〈γ̈(0), N(p)〉
= −〈Z, dNp(Z)〉
= 〈Sp(Z), Z〉
= IIp(Z,Z).

�

For an oriented regular surface M , with Gauss map N : M → S2

and p ∈ M , let T 1
pM denote the unit circle in the tangent plane TpM

i.e.
T 1
pM = {Z ∈ TpM | |Z| = 1}.

Then the real-valued function κn : T 1
pM → R is defined by

κn : Z 7→ κn(Z).

The unit circle is compact and κn is continuous so there exist two
directions Z1, Z2 ∈ T 1

pM such that

κ1(p) = κn(Z1) = max
Z∈T 1

pM
κn(Z)

and
κ2(p) = κn(Z2) = min

Z∈T 1
pM

κn(Z).

These are called the principal directions at p and κ1(p), κ2(p) the
corresponding principal curvatures. A point p ∈ M is said to be
umbilic if κ1(p) = κ2(p).

The next interesting result shows how the geometry of the surface
is nicely encoded in the linear and symmetric shape operator.

Theorem 5.8. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and p ∈ M . Then Z ∈ T 1

pM is a principal
direction at p if and only if it is an eigenvector for the shape operator
Sp : TpM → TpM .

Proof. Let {Z1, Z2} be an orthonormal basis for the tangent plane
TpM of eigenvectors to Sp i.e.

Sp(Z1) = λ1Z1 and Sp(Z2) = λ2Z2,

for some λ1, λ2 ∈ R. Then every unit vector Z ∈ T 1
pM can be written

as
Z(θ) = cos θ · Z1 + sin θ · Z2

and

κn(Z(θ)) = 〈Sp(cos θ Z1 + sin θ Z2), cos θ Z1 + sin θ Z2〉
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= cos2 θ〈Sp(Z1), Z1〉+ sin2 θ〈Sp(Z2), Z2〉
+ cos θ sin θ(〈Sp(Z1), Z2〉+ 〈Sp(Z2), Z1〉)

= λ1 cos2 θ + λ2 sin2 θ.

If λ1 = λ2 then κn(Z(θ)) = λ1 for all θ ∈ R so any direction is both
principal and an eigenvector for the shape operator Sp.

If λ1 6= λ2, then we can assume, without loss of generality, that
λ1 > λ2. Then Z(θ) is a maximal principal direction if and only if
cos2 θ = 1 i.e. Z = ±Z1 and clearly a minimal principal direction if
and only if sin2 θ = 1 i.e. Z = ±Z2. �

We are now ready to define the important notions of the Gaussian
and the mean curvatures.

Definition 5.9. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2. Then we define the Gaussian curvature
K : M → R and the mean curvature H : M → R by

K(p) = detSp and H(p) =
1

2
trace Sp,

respectively. The surface M is said to be flat if K(p) = 0 for all p ∈M
and minimal if H(p) = 0 for all p ∈M .

Let M be a regular surface in R3, p ∈ M and {Z1, Z2} be an
orthonormal basis for the tangent plane TpM at p such that

Sp(Z1) = λ1Z1 and Sp(Z2) = λ2Z2,

for some λ1, λ2 ∈ R. Further let α1, α2 : I → M be two curves,
parametrised by arclength, meeting at p i.e. α1(0) = p = α2(0), such
that

α̇1(0) = Z1 and α̇2(0) = Z2.

Then the eigenvalues of the shape operator Sp satisfy

λ1 = 〈Sp(Z1), Z1〉 = 〈α̈1(0), N(p)〉
and

λ2 = 〈Sp(Z2), Z2〉 = 〈α̈2(0), N(p)〉.
If K(p) = λ1λ2 > 0 then λ1 and λ2 have the same sign so the curves

α1, α2 : I →M stay locally on the same side of the tangent plane. This
means that the normal curvature κn(Z) has the same sign independent
of the direction Z ∈ TpM at p so any curve through the point p stays
locally on the same side of the tangent plane.

If K(p) = λ1λ2 < 0 then λ1 and λ2 have different signs so the curves
α1, α2 : I →M stay locally on different sides of the tangent plane TpM
at p.
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Theorem 5.10. Let M be a path-connected, oriented regular sur-
face in R3 with Gauss map N : M → S2. Then the shape operator
Sp : TpM → TpM vanishes for all p ∈M if and only if M is contained
in a plane.

Proof. If M is contained in a plane, then the Gauss map is con-
stant so Sp = −dNp = 0 at any point p ∈M .

Let us now assume that the shape operator vanishes identically i.e.
Sp = −dNp = 0 for all p ∈ M . Then fix p ∈ M , let q be an arbitrary
point on M and γ : I →M be a curve such that γ(0) = q and γ(1) = p.
Then the real-valued function fq : I → R with

fq(t) = 〈q − γ(t), N(γ(t))〉
satisfies fq(0) = 0 and

f ′q(t) = −〈γ′(t), N(γ(t))〉+ 〈q − γ(t), dNγ(t)(γ
′(t))〉 = 0.

This implies that fq(t) = 〈q − γ(t), N(γ(t))〉 = 0 for all t ∈ I, in
particular,

fq(1) = 〈q − p,N(p)〉 = 0

for all q ∈ M . This shows that the surface is contained in the plane
through p with normal N(p). �

We will now calculate the Gaussian curvature K and the mean
curvature H of a surface in terms of a local parametrisation. Let M
be an oriented surface in R3 with Gauss map N : M → S2. Let X :
U → X(U) be a local parametrisation of M such that X(0) = p ∈M .
Then the tangent plane TpM is generated by Xu and Xv so there exists
a 2× 2 matrix

A =

[
a11 a12

a21 a22

]
such that the shape operator Sp : TpM → TpM satisfies

Sp(aXu + bXv) = aSp(Xu) + bSp(Xv)

= a(a11Xu + a21Xv) + b(a12Xu + a22Xv)

= (a11a+ a12b)Xu + (a21a+ a22b)Xv.

This means that, with respect to the basis {Xu, Xv}, the shape operator
Sp at p is given by

Sp :

[
a
b

]
7→
[
a11 a12

a21 a22

]
·
[
a
b

]
.

If we define the matrix-valued maps [DX], [DN ] : U → R3×2 by

[DX] = [Xu, Xv] and [DN ] = [Nu, Nv]
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then it follows from the definition Sp = −dNp of the shape operator
that

−[DN ] = [DX] · A.
Note that the 2× 2 matrix

[DX]t · [DN ]

is symmetric, since

〈Xu, Nv〉 = −〈Xuv, N〉 = −〈Xvu, N〉 = 〈Xv, Nu〉.

To the local parametrisation X : U → X(U) of M we now associate
the functions e, f, g : U → R given by[

e f
f g

]
= −[DX]t · [DN ]

= [DX]t · [DX] · A

=

[
E F
F G

]
· A.

This means that, with respect to the basis {Xu, Xv}, the matrix A
corresponding to the shape operator Sp : TpM → TpM at p ∈ M is
given by

A =

[
E F
F G

]−1

·
[
e f
f g

]
=

1

EG− F 2

[
G −F
−F E

]
·
[
e f
f g

]
.

This implies that the Gaussian curvature K and the mean curvature
H satisfy

K =
eg − f 2

EG− F 2
and H =

1

2

eG− 2fF + gE

EG− F 2
.

The principal curvatures λ1 and λ2 are the eigenvalues of the shape
operator so they are the solutions to the polynomial characteristic equa-
tion

P (λ) = det(A− λ · I) = det
([
e f
f g

]
− λ

[
E F
F G

])
= 0,

or equivalently,

λ2 − 2H · λ+K = 0.

We will now calculate the Gaussian curvature for a general surface
of revolution in R3.

49



Example 5.11. Let γ = (r, 0, z) : I → R3 be a differentiable curve
in the (x, z)-plane such that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I.
Then X : I × R→ R3 with

X(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
r(u)

0
z(u)

 =

r(u) cos v
r(u) sin v
z(u)


is a regular parametrised surface of revolution. The linearly indepen-
dent and orthogonal tangent vectors

Xu =

ṙ(u) cos v
ṙ(u) sin v
ż(u)

 and Xv =

−r(u) sin v
r(u) cos v

0


generate a Gauss map

N(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
 ż(u)

0
−ṙ(u)

 =

ż(u) cos v
ż(u) sin v
−ṙ(u)

 .
Furthermore

[DX]t =

[
ṙ(u) cos v ṙ(u) sin v ż(u)
−r(u) sin v r(u) cos v 0

]
,[

E F
F G

]
= [DX]t · [DX] =

[
1 0
0 r(u)2

]
and [

e f
f g

]
= −[DN ]t · [DX]

=

[
−z̈(u) cos v −z̈(u) sin v r̈(u)
ż(u) sin v −ż(u) cos v 0

]

·

ṙ(u) cos v −r(u) sin v
ṙ(u) sin v r(u) cos v
ż(u) 0


=

[
r̈(u)ż(u)− z̈(u)ṙ(u) 0

0 −ż(u)r(u)

]
.

This means that the 2× 2 matrix A of the shape operator is given by

A =

[
E F
F G

]−1

·
[
e f
f g

]
=

1

r(u)2

[
r(u)2 0

0 1

]
·
[
r̈(u)ż(u)− z̈(u)ṙ(u) 0

0 −ż(u)r(u)

]
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=

[
r̈(u)ż(u)− z̈(u)ṙ(u) 0

0 −ż(u)/r(u)

]
.

Using the fact that the curve (r, 0, z) is parametrised by arclength
we get the following remarkably simple expression for the Gaussian
curvature

K = detA

=
eg − f 2

EG− F 2

=
ż(u)r(u)(z̈(u)ṙ(u)− r̈(u)ż(u))

r(u)2

=
ṙ(u)ż(u)z̈(u)− r̈(u)ż(u)2

r(u)

=
ṙ(u)(−ṙ(u)r̈(u))− r̈(u)(1− ṙ(u)2)

r(u)

= − r̈(u)

r(u)
.

This shows that the function r : I → R satisfies the following second
order linear ordinary differential equation

r̈(s) +K(s) · r(s) = 0.

Theorem 5.12. Let M be a path-connected oriented regular C3-
surface in R3 with Gauss map N : M → S2. If every p ∈ M is an
umbilic point, then M is either contained in a plane or in a sphere.

Proof. Let X : U → X(U) be a local parametrisation of M such
that U is path-connected. Since each point in X(U) is umbilic there
exists a differentiable function κ : U → R such that the shape operator
is given by

Sp : (aXu + bXv) 7→ κ(u, v)(aXu + bXv)

so in particular

(N ◦X)u = −κXu and (N ◦X)v = −κXv.

Furthermore

0 = (N ◦X)uv − (N ◦X)vu

= (−κXu)v − (−κXv)u

= −κvXu − κXuv + κuXv + κXuv

= −κvXu + κuXv.
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The vectors Xu and Xv are linearly independent so κu = κv = 0. The
domain U is path-connected which means that κ is constant on U and
hence on the whole of M since M is path-connected.

If κ = 0 then the shape operator vanishes and Theorem 5.10 tells
us that the surface is contained in a plane. If κ 6= 0 we define the map
Y : U → R3 by

Y (u, v) = X(u, v) +
1

κ
·N(u, v).

Then differentiation gives

Yu = Xu +
1

κ
· dN(Xu) = Xu −

1

κ
· κ ·Xu = 0,

Yv = Xv +
1

κ
· dN(Xv) = Xv −

1

κ
· κ ·Xv = 0.

From this we immediately see that Y is constant and that

|X − Y |2 =
1

κ2
.

This shows that X(U) is contained in the sphere with centre Y and
radius 1/|κ|. Since M is path-connected the whole of M is contained
in the same sphere. �

Theorem 5.13. Let M be a compact regular surface in R3. Then
there exists at least one point p ∈M such that the Gaussian curvature
K(p) is positive.

Proof. See Exercise 5.7. �
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Exercises

Exercise 5.1. Let U be an open subset of R3 and q ∈ R be a
regular value of the C2-function f : U → R. Prove that the regular
surface M = f−1({q}) in R3 is orientable.

Exercise 5.2. Determine the Gaussian curvature and the mean
curvature of the sphere S2

r = {(x, y, z) ∈ R2| x2 + y2 + z2 = r2}.

Exercise 5.3. Determine the Gaussian curvature and the mean
curvature of the parametrised Enneper surface X : R2 → R3 given
by

X(u, v) = (u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2).

Exercise 5.4. Determine the Gaussian curvature and the mean
curvature of the cateniod M parametrised by X : R×R+ → R3 with

X(θ, r) = (
1 + r2

2r
cos θ,

1 + r2

2r
sin θ, log r).

Find an equation of the form f(x, y, z) = 0 describing the surface M .
Compare with Exercise 4.14.

Exercise 5.5. Prove that the second fundamental form of an ori-
ented regular surface M in R3 is invariant under rigid Euclidean mo-
tions.

Exercise 5.6. Let X, Y : R2 → R3 be the regular parametrised
surfaces given by

X(u, v) = (coshu cos v, coshu sin v, u),

Y (u, v) = (sinhu cos v, sinhu sin v, v).

Calculate the shape operators of X and Y and the corresponding prin-
cipal curvatures κ1, κ2. Compare with Exercise 4.14.

Exercise 5.7. Prove Theorem 5.13.

Exercise 5.8. Let γ : R→ R3 be a regular curve, parametrised by
arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of γ, respectively. Let r be a positive real
number and assume that the r-tubeM around γ given by X : R2 → R3

with
X(s, θ) = γ(s) + r(cos θ · n(s) + sin θ · b(s))

is a regular surface in R3. Determine the Gaussian curvature K of M
in terms of s, θ, r, κ(s) and τ(s).
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Exercise 5.9. Let M be a regular surface in R3, p ∈M and {Z,W}
be an orthonormal basis for TpM of eigenvectors for the shape operator
Sp : TpM → TpM . Let κn(θ) be the normal curvature of M at p in
the direction of the unit tangent vector Z(θ) = cos θZ+ sin θW . Prove
that the mean curvature H(p) at p satisfies the following identity

H(p) =
1

2π

∫ 2π

0

κn(θ)dθ.

Exercise 5.10. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2. Let X : U → X(U) be a local parametrisa-
tion of M and A(N ◦X(U)) be the area of the image N ◦X(U) on the
unit sphere S2. Prove that

A(N ◦X(U)) =

∫
X(U)

|K|dA,

where K is the Gaussian curvature of M . Compare with Exercise 3.7.

Exercise 5.11. Let a be a positive real number and U be the open
subset

U = {(x, y, z) ∈ R3| 2a(x2 + y2) < z}
of R3. Prove that there does not exist a regular minimal surface M ,
without boundary, in R3 which is contained in U .
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CHAPTER 6

Theorema Egregium

In this chapter we prove the remarkable Theorema Egregium which
tells us that the Gaussian curvature, of a regular surface, is actually
completely determined by its first fundamental form.

Theorem 6.1. Let M be a regular C3-surface in R3. Then the
Gaussian curvature K of M is determined by its first fundamental
form.

This result has a highly interesting consequence.

Corollary 6.2. It is impossible to construct a distance preserving
planar chart of the unit sphere S2.

Proof. If there existed a local parametrisation X : U → X(U) of
the unit sphere S2 which was an isometry then the Gaussian curvature
of the flat plane and the unit sphere would be the same. But we know
that S2 has constant curvature K = 1. �

We shall now prove Theorem 6.1.

Proof. Let X : U → X(U) be a local parametrisation of M with
first fundamental form determined by[

E F
F G

]
= [DX]t · [DX].

The set {Xu, Xv} is a basis for the tangent plane at each point X(u, v)
in X(U). Applying the Gram-Schmidt process on this basis we get an
orthonormal basis {Z,W} for the tangent plane as follows:

Z =
Xu√
E
,

W̃ = Xv − 〈Xv, Z〉Z

= Xv −
〈Xv, Xu〉Xu

〈Xu, Xu〉

= Xv −
F

E
Xu
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and finally

W =
W̃

|W̃ |
=

√
E√

EG− F 2
(Xv −

F

E
Xu).

This means that there exist functions a, b, c : U → R only depending
on E,F,G such that

Z = a ·Xu and W = b ·Xu + c ·Xv.

If we define a local Gauss map N : X(U)→ S2 by

N =
Xu ×Xv

|Xu ×Xv|
= Z ×W

then {Z,W,N} is a positively oriented orthonormal basis for R3 along
the open subset X(U) of M . This means that the derivatives

Zu, Zv,Wu,Wv

satisfy the following system of equations

Zu = 〈Zu, Z〉Z + 〈Zu,W 〉W + 〈Zu, N〉N,
Zv = 〈Zv, Z〉Z + 〈Zv,W 〉W + 〈Zv, N〉N,
Wu = 〈Wu, Z〉Z + 〈Wu,W 〉W + 〈Wu, N〉N,
Wv = 〈Wv, Z〉Z + 〈Wv,W 〉W + 〈Wv, N〉N.

Using the fact that {Z,W} is an orthonormal basis we can simplify to

Zu = 〈Zu,W 〉W + 〈Zu, N〉N,
Zv = 〈Zv,W 〉W + 〈Zv, N〉N,
Wu = 〈Wu, Z〉Z + 〈Wu, N〉N,
Wv = 〈Wv, Z〉Z + 〈Wv, N〉N.

The following shows that 〈Zu,W 〉 is a function of E,F,G : U → R and
their first order derivatives.

〈Zu,W 〉 = 〈(aXu)u,W 〉
= 〈auXu + aXuu, bXu + cXv〉
= aubE + aucF + ab〈Xuu, Xu〉+ ac〈Xuu, Xv〉

= aubE + aucF +
1

2
abEu + ac(Fu −

1

2
Ev)

It is easily seen that the same applies to 〈Zv,W 〉.
Now employing Lemma 6.3 and the fact that the parametrisation

X : U → X(U) is C3 we obtain

〈Zu,W 〉v − 〈Zv,W 〉u
= 〈Zuv,W 〉+ 〈Zu,Wv〉 − 〈Zvu,W 〉 − 〈Zv,Wu〉
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= 〈Zu,Wv〉 − 〈Zv,Wu〉
= K

√
EG− F 2.

Hence the Gaussian curvature K of M is given by

K =
〈Zu,W 〉v − 〈Zv,W 〉u√

EG− F 2

As an immediate consequence we see that K only depends on the func-
tions E,F,G and their first and second order derivatives. Hence it is
completely determined by the first fundamental form of M . �

Lemma 6.3. For the above situation we have

〈Zu,Wv〉 − 〈Zv,Wu〉 = K
√
EG− F 2.

Proof. If A is the matrix for the shape operator S = −dN , with
respect to the basis {Xu, Xv}, then

−Nu = −dN(Xu) = S(Xu) = a11Xu + a21Xv,

and

−Nv = −dN(Xv) = S(Xv) = a12Xu + a22Xv.

This means that

〈Nu ×Nv, N〉 = 〈(a11Xu + a21Xv)× (a12Xu + a22Xv), N〉
= (a11a22 − a12a21)〈Xu ×Xv, N〉
= K〈(

√
EG− F 2) ·N,N〉

= K
√
EG− F 2.

We also have

〈Nu ×Nv, N〉 = 〈Nu ×Nv, Z ×W 〉
= 〈Nu, Z〉〈Nv,W 〉 − 〈Nu,W 〉〈Nv, Z〉
= 〈Zu, N〉〈N,Wv〉 − 〈Wu, N〉〈N,Zv〉
= 〈Zu,Wv〉 − 〈Zv,Wu〉.

This proves the statement. �

Deep Result 6.4. Let M1 and M2 be two regular surfaces in R3

and φ : M1 →M2 be a diffeomorphism respecting their first and second
fundamental forms i.e.

Ip(X, Y ) = Iφ(p)(dφ(X), dφ(Y ))

and

IIp(X, Y ) = IIφ(p)(dφ(X), dφ(Y )),
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for all p ∈M1 and X, Y ∈ TpM1. Then φ : M1 →M2 is the restriction
φ = Φ|M1 : M1 →M2 of a Euclidean motion Φ : R3 → R3 of R3 to the
surface M1.

The proof of the last result is beyond the scope of these lecture
notes. Here we need arguments from the theory of partial differential
equations.
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Exercises

Exercise 6.1. For α ∈ (0, π/2) define the parametrised surface Mα

by Xα : R+ × R→M by

Xα(r, θ) = (r sinα cos(
θ

sinα
), r sinα sin(

θ

sinα
), r cosα).

Calculate its Gaussian curvature K.

Exercise 6.2. Let M be a regular surface in R3 and X : U → M
be an orthogonal parametrisation i.e. F = 0. Prove that the Gaussian
curvature satisfies

K = − 1

2
√
EG

(
(
Ev√
EG

)v + (
Gu√
EG

)u

)
.

Exercise 6.3. Let M be a regular surface in R3 and X : U → M
be an isothermal parametrisation i.e. F = 0 and E = G. Prove that
the Gaussian curvature satisfies

K = − 1

2E
((logE)uu + (logE)vv).

Determine the Gaussian curvature K in the cases when

E =
4

(1 + u2 + v2)2
, E =

4

(1− u2 − v2)2
and E =

1

u2
.

Exercise 6.4. Equip R2 and R4 with their standard Euclidean
scalar products. Prove that the parametrisation X : R2 → R4

X(u, v) = (cosu, sinu, cos v, sin v)

of the compact torus M in R4 is isometric. What does this tell us
about the Gaussian curvature ofM ? Compare the result with Theorem
5.13.

59





CHAPTER 7

Geodesics

In this chapter we introduce the notion of a geodesic on a regular
surface in R3. We show that locally they are the shortest paths between
their endpoints. Geodesics generalise the straight lines in the Euclidean
plane.

Let M be a regular surface in R3 and γ : I → M be a curve on M
such that γ(0) = p. As we have seen earlier the second derivative γ′′(0)
at p has a natural decomposition

γ′′(0) = γ′′(0)tan + γ′′(0)norm

into its tangential part, contained in TpM , and its normal part in the
orthogonal complement TpM

⊥.

Definition 7.1. Let M be a regular surface in R3. A curve γ : I →
M is said to be a geodesic if for all t ∈ I the tangential part of the
second derivative γ′′(t) vanishes i.e.

γ′′(t)tan = 0.

Example 7.2. Let p ∈ S2 be a point on the unit sphere and
Z ∈ TpS

2 be a unit tangent vector. Then 〈p, Z〉 = 0 so {p, Z} is
an orthonormal basis for a plane in R3, through the origin, which in-
tersects the sphere in a great circle. This circle is parametrised by the
curve γ : R→ S2

γ(s) = cos s · p+ sin s · Z.
Then for all s ∈ I the second derivative γ̈(s) satisfies

γ̈(s) = −γ(s) = −N(γ(s)),

where N : S2 → S2 is the Gauss map pointing out of the unit sphere.
This means that the tangential part γ̈(s)tan vanishes so the curve is a
geodesic on S2.

Proposition 7.3. Let M be a regular surface in R3 and γ : I →M
be a geodesic on M . Then the norm |γ′| : I → R of the tangent γ′ of γ
is constant i.e. the curve is parametrised proportional to arclength.

61



Proof. The statement is an immediate consequence of the follow-
ing calculation

d

dt
|γ′(t)|2 =

d

dt
〈γ′(t), γ′(t)〉

= 2 〈γ′′(t), γ′(t)〉
= 2 〈γ′′(t)tan + γ′′(t)norm, γ′(t)〉
= 2 〈γ′′(t)norm, γ′(t)〉
= 0.

�

Let M be an oriented regular surface in R3 with Gauss map N :
M → S2 and γ : I → M be a curve in M parametrised by arclength.
Along the curve γ : I → M the two vectors γ̇ and N are orthogonal
and both of unit length, so the set

{γ̇(s), N(γ(s)), N(γ(s))× γ̇(s)}

is an orthonormal basis for R3. Since γ : I → M is parametrised
by arclength we know that 〈γ̈, γ̇〉 = 0. This implies that the second
derivative γ̈ : I → R3 has the orthogonal decomposition as follows:

γ̈ = 〈γ̈, γ̇〉γ̇ + 〈γ̈, N × γ̇〉(N × γ̇) + 〈γ̈, N〉N
= 〈γ̈, N × γ̇〉(N × γ̇) + 〈γ̈, N〉N
= γ̈tan + γ̈norm.

Definition 7.4. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and γ : I →M be a curve on M parametrised
by arclength. Then we define the geodesic curvature kg : I → R of
γ by

κg(s) = 〈γ̈(s), N(γ(s))× γ̇(s)〉.

The set {γ̇(s), N(γ(s))× γ̇(s)} is an orthonormal basis for the tan-
gent plane Tγ(s)M of M at γ(s). The curve γ : I →M is parametrised
by arclength so the second derivative is perpendicular to γ̇. This means
that

κg(s)
2 = |γ̈(s)tan|2,

so the geodesic curvature is therefore a measure of how far the curve
is from being a geodesic.

Corollary 7.5. Let M be an oriented regular surface in R3 with
Gauss map N : M → S2 and γ : I →M be a curve on M parametrised
by arclength. Let κ : I → R be the curvature of γ as a curve in R3
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and κn, κg : I → R be the normal and geodesic curvatures, respectively.
Then we have

κ(s)2 = κg(s)
2 + κn(s)2.

Proof. This is a direct consequence of the orthogonal decomposi-
tion

γ̈(s) = γ̈(s)tan + γ̈(s)norm.

�

Example 7.6. LetM be a regular surface of revolution parametrised
by X : I × R→M with

X(s, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
r(s)0
z(s)

 =

r(s) cos v
r(s) sin v
z(s)

 .
Here (r, 0, z) : I → R3 is an injective differentiable curve in the (x, z)-
plane such that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I. Then the
tangent plane at a point X(s, v) is generated by the two vectors

Xs =

ṙ(s) cos v
ṙ(s) sin v
ż(s)

 and Xv =

−r(s) sin v
r(s) cos v

0

 .
For a fixed v ∈ R the curve γ1 : I →M , with

γ1(s) =

r(s) cos v
r(s) sin v
z(s)

 ,
parametrises a meridian on M by arclength. It is easily seen that

〈γ̈1, Xs〉 = 〈γ̈1, Xv〉 = 0.

This means that (γ̈1)tan = 0, so the curve γ1 : I →M is a geodesic.
For a fixed s ∈ R the curve γ2 : I →M , with

γ2(v) =

r(s) cos v
r(s) sin v
z(s)

 ,
parametrises a parallel on M i.e. is a circle contained in a plane
parallel to the (x, y)-plane. A simple calculation yields

〈γ′′2 , Xs〉 = −ṙ(s)r(s) and 〈γ′′2 , Xv〉 = 0.

This means that the curve γ2 : I → M is a geodesic if and only if s is
a critical point of the function r : I → R+ i.e.

ṙ(s) = 0.
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The next result states the important geodesic equations.

Theorem 7.7. Let M be a regular surface in R3 and X : U →
X(U) be a local parametrisation of M with[

E F
F G

]
= [DX]t · [DX].

If (u, v) : I → U is a C2-curve in U then the composition

γ = X ◦ (u, v) : I → X(U)

is a geodesic on M if and only if

d

dt
(Eu′ + Fv′) =

1

2
(Eu(u

′)2 + 2Fuu
′v′ +Gu(v

′)2),

d

dt
(Fu′ +Gv′) =

1

2
(Ev(u

′)2 + 2Fvu
′v′ +Gv(v

′)2).

Proof. The tangent vector of the curve α = (u, v) : I → U is
given by α′ = (u′, v′) = u′e1 + v′e2 so for the tangent γ′ of γ we have

γ′ = dX · α′

= dX · (u′e1 + v′e2)

= u′ dX · e1 + v′ dX · e2

= u′Xu + v′Xv.

Following Definition 7.1 we see that γ : I → X(U) is a geodesic if and
only if

〈γ′′, Xu〉 = 0 and 〈γ′′, Xv〉 = 0.

The first equation gives

0 = 〈 d
dt

(u′Xu + v′Xv), Xu〉

=
d

dt
〈u′Xu + v′Xv, Xu〉 − 〈u′Xu + v′Xv,

d

dt
Xu〉

=
d

dt
(Eu′ + Fv′)− 〈u′Xu + v′Xv,

d

dt
Xu〉.

This implies that

d

dt
(Eu′ + Fv′)

= 〈u′Xu + v′Xv,
d

dt
Xu〉

= 〈u′Xu + v′Xv, u
′Xuu + v′Xuv〉

= (u′)2〈Xu, Xuu〉+ u′v′(〈Xu, Xuv〉+ 〈Xv, Xuu〉) + (v′)2〈Xv, Xuv〉
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=
1

2
Eu(u

′)2 + Fuu
′v′ +

1

2
Gu(v

′)2.

This gives us the first geodesic equation. The second one is obtained
in exactly the same way. �

Theorem 7.7 characterises geodesics as solutions to a second order
non-linear system of ordinary differential equations. For this we have
the following existence and uniqueness result.

Theorem 7.8. Let M be a regular surface in R3, p ∈ M and
Z ∈ TpM . Then there exists a unique, locally defined, geodesic

γ : (−ε, ε)→M

satisfying the initial conditions γ(0) = p and γ′(0) = Z.

Proof. The proof is based on a second order consequence of the
well-known theorem of Picard-Lindelöf formulated here as Fact 7.9. �

Fact 7.9. Let f : U → Rn be a continuous map defined on an open
subset U of R× R2n and L ∈ R+ such that

|f(t, y1)− f(t, y2)| ≤ L · |y1 − y2|
for all (t, y1), (t, y2) ∈ U . If (t0, (x0, x1)) ∈ U and x0, x1 ∈ Rn then
there exists a unique local solution x : I → Rn to the following initial
value problem

x′′(t) = f(t, x(t), x′(t)), x(t0) = x0, x′(t0) = x1.

The following notion of completeness of a regular surface M in R3

is closely related to the existence part of Theorem 7.8.

Definition 7.10. A regular surface M in R3 is said to be complete
if for each point p ∈M and each tangent vector Z ∈ TpM there exists
a geodesic γ : R→M defined on the whole real line such that γ(0) = p
and γ′(0) = Z.

Proposition 7.11. Let M1 and M2 be two regular surfaces in R3

and φ : M1 → M2 be an isometric differentiable map. Then γ1 : I →
M1 is a geodesic on M1 if and only if the composition γ2 = φ◦γ1 : I →
M2 is a geodesic on M2

Proof. See Exercise 7.7 �

Our next result is the famous Theorem of Clairaut (1713 - 1765).
Note that he lived long before the general theory of surfaces was initi-
ated by Gauss.
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Theorem 7.12. Let M be a regular surface of revolution and γ :
I →M be a geodesic on M parametrised by arclength. Let r : I → R+

be the function describing the distance between a point γ(s) and the
axis of rotation and θ : I → R be the angle between γ̇(s) and the
meridian through γ(s). Then the product r(s) sin θ(s) is constant along
the geodesic.

Proof. Let the regular surface of revolution M be parametrised
by X : I × R→ R3 with

X(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
r(u)

0
z(u)

 =

r(u) cos v
r(u) sin v
z(u)

 ,
where (r, 0, z) : I → R3 is an injective differentiable curve in the (x, z)-
plane such that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I. Then the
two vectors

Xu =

ṙ(u) cos v
ṙ(u) sin v
ż(u)

 and Xv =

−r(u) sin v
r(u) cos v

0


generate the tangent plane of M and induce the first fundamental form[

E F
F G

]
= [DX]t · [DX] =

[
1 0
0 r(u)2

]
.

This means that the set

{Xu,
1

r(u)
Xv}

is an orthonormal basis for the tangent plane of M at X(u, v). As a
direct consequence we see that along the geodesic γ : I → M the unit
tangent γ̇(s) can be written as

γ̇(s) = cos θ(s) ·Xu + sin θ(s) · 1

r(s)
Xv,

where r(s) is the distance to the axes of revolution and θ(s) is the angle
between γ̇(s) and the tangent Xu to the meridian. It follows that

Xu × γ̇ = Xu × (cos θ ·Xu +
sin θ

r
·Xv)

=
sin θ

r
· (Xu ×Xv),

but also,

Xu × γ̇ = Xu × (u̇ ·Xu + v̇ ·Xv)

= v̇ · (Xu ×Xv).
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This tells us that

r(s)2v̇(s) = r(s) sin θ(s).

If we now substitute the relations E = 1, F = 0 and G = r(u)2 into
the second geodesic equation

d

ds
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2)

we yield
d

ds
(r(s)2v̇(s)) = 0.

From this it immediately follows that the product r(s) sin θ(s) is con-
stant since

d

ds
(r(s) sin θ(s)) =

d

ds
(r(s)2v̇(s)) = 0.

�

Example 7.13. The following regular surface M in R3 is a one-
sheeted hyperboloid

M = {(x, y, z) ∈ R3| x2 + y2 − z2 = 1}.

Let γ : R → M be the curve on M given by γ(s) = (1, s/
√

2, s/
√

2).
Then γ̇(s) = (0, 1/

√
2, 1/
√

2), |γ̇(s)| = 1 and γ̈(s) = 0. This shows
that γ is a geodesic parametrised by arclength. The surface M is a
surface of revolution and can be parametrised by X : R2 → R3 with

X(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1

 ·
coshu

0
sinhu

 =

coshu cos v
coshu sin v

sinhu

 .
The tangent Xu to the meridian through the point X(u, v) on M is
given by

Xu(u, v) =

sinhu cos v
sinhu sin v

coshu

 .
The geodesic γ : R → M satisfies γ(0) = (1, 0, 0) = X(0, 0). For the
angle θ(0) between the tangent γ̇(0) of the geodesic and the tangent
Xu(0, 0) to the meridian at that point we have

cos θ(0) =
1√
2
〈(0, 1, 1), (0, 0, 1)〉 =

1√
2
.

This implies that sin θ(0) = 1/
√

2. Along the geodesic the distance r(s)

clearly satisfies r(s) =
√

(1 + s2/2). It now follows from the Theorem
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of Clairaut that

r(0) sin θ(0) =
1√
2

= r(s) sin θ(s) =

√
(1 +

s2

2
) sin θ(s).

As an immediate consequence we obtain the following

lim
s→±∞

sin θ(s) = lim
s→±∞

1√
(2 + s2)

= 0.

This tells us that

lim
s→±∞

θ(s) = 0,

so the behavour of the geodesic asymptotically approaches that of a
meridian as s→ ±∞.

We now introduce the hyperbolic plane. This is very interesting
both for its rich geometry but also for its great historical importance.
It is a model for the famous non-Euclidean geometry.

Example 7.14. Let us now assume that M is a regular surface of
revolution parametrised by X : I × R→M with

X(u, s) =

cosu − sinu 0
sinu cosu 0

0 0 1

 ·
r(s)0
z(s)

 =

r(s) cosu
r(s) sinu
z(s)

 .
Here (r, 0, z) : I → R3 is an injective differentiable curve in the (x, z)-
plane such that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I. We have
proven in Example 5.11 that the Gaussian curvature K of M satisfies
the equation

r̈(s) +K(s) · r(s) = 0.

If we put K ≡ −1 and solve this linear ordinary differential equation
we obtain the general solution r(s) = aes + be−s, where a, b ∈ R. By
the particular choice of a = 0 and b = 1 we get r, z : R+ → R satisfying

r(s) = e−s and z(s) =

∫ s

0

√
1− e−2tdt,

and the parametrisation X : R × R+ → M of the famous pseudo-
sphere. The corresponding first fundamental form is[

EX FX
FX GX

]
= [DX]t · [DX] =

[
r(s)2 0

0 1

]
=

[
e−2s 0

0 1

]
.

For convenience, we introduce a new variable v satisfying v(s) = es,
or equivalently, s(v) = log v. This gives us a new parametrisation
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Y : R× (1,∞)→M of the pseudo-sphere, where Y (u, v) = X(u, s(v)).
Then the chain rule gives

Yu = Xu and Yv = sv ·Xs =
1

v
·Xs

and we yield the following nice first fundamental form for Y[
EY FY
FY GY

]
= [DY ]t · [DY ] =

1

v2

[
1 0
0 1

]
.

The corresponding metric ds2
H2 satisfies the following relation

ds2
H2 =

1

v2
(du2 + dv2).

It is clear that this extends to a metric defined in the whole upper half
plane

H2 = {(u, v) ∈ R2| v > 0}.
This is called the hyperbolic metric. The upper half plane H2

equipped with the hyperbolic metric ds2
H2 is called the hyperbolic

plane.

Example 7.15. Let γ : (0, 1)→ H2 be the curve in the hyperbolic
plane satisfying γ(t) = (0, 1− t). Then γ′(t) = (0,−1) and the length
of γ is

L(γ) =

∫ 1

0

√
ds2

H2(γ′(t), γ′(t)) · dt

=

∫ 1

0

√
1

(1− t)2
〈(0,−1), (0,−1)〉 · dt

=

∫ 1

0

1

1− t
· dt

= ∞.

We are now interested in determining the geodesics in the hyper-
bolic plane.

Example 7.16. Let γ = (u, v) : I → H2 be a geodesic in the
hyperbolic plane parametrised by arclength. Then γ̇ = (u̇, v̇) and

|γ̇|2H2 = ds2
H2(γ̇, γ̇) =

1

v2
(u̇2 + v̇2) = 1,

or equivalently, u̇2 + v̇2 = v2. If we now substitute the relations

E =
1

v2
, F = 0 and G =

1

v2
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into the first geodesic equation

d

ds
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

we yield
d

ds

( u̇(s)

v(s)2

)
= 0.

This implies that there exists a real constant R such that

du

ds
= u̇ = v2R.

In the case when R = 0 we see that u̇ = 0 so the function u is
constant along γ. This means that the geodesic γ = (u, v) : R → H2,
with u = u0 ∈ R, parametrises the vertical line u = u0 in the hyperbolic
plane H2.

If R 6= 0, then we have

v4R2 + v̇2 = u̇2 + v̇2 = v2,

or equivalently,
dv

ds
= v̇ = ±v

√
1−R2v2.

This means that
du

dv
= u̇/v̇ = ± Rv√

1−R2v2
,

or equivalently,

Rdu = ± R2v√
1−R2v2

dv.

This can be integrated to

R(u− u0) = ±
√

1−R2v2

which immediately gives

(u− u0)2 + v2 =
1

R2
.

From this we see that the geodesic (u, v) : R→ H2 parametrises a half
circle in the hyperbolic plane with centre at (u0, 0) and radius 1/R.

The following important result tells us that the hyperbolic plane
can not be realised as a surface in the standard Euclidean R3.

Deep Result 7.17 (David Hilbert 1901). There does not exist
an isometric embedding of the hyperbolic plane H2 into the standard
Euclidean R3.
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Proof. See the much celebrated paper: D. Hilbert, Über Flächen
von konstanter Gausscher Krümmung, Trans. Amer. Math. Soc. 2
(1901), 87-99.

�

Our next aim is to prove that locally the geodesics are the shortest
paths between their endpoints, see Theorem 7.22. For this we intro-
duce, in several steps, the exponential map for a regular surface. This
is a very important tool in differential geometry. We start off with the
unit circle.

Example 7.18. Let S1 = {z ∈ C| |z| = 1} be the unit circle in the
complex plane, which we identify with R2. Then the complex number
z = 1 is an element of S1 and the tangent line T1S

1 at 1 satisfies

T1S
1 = {i · t| t ∈ R} ∼= R.

For this we have the classical exponential map exp1 : T1S
1 → S1 with

exp1 : it 7→ eit. The curve γ : R → S1 with γ(s) = eis parametrises
the unit circle S1 and satisfies γ(0) = 1, |γ̇(s)| = |ieis| = 1, so it is
parametrised by arclength. This means that 〈γ̈(s), γ̇(s)〉 = 0 so the
tangential part γ̈(s)tan of γ̈(s) vanishes for all s ∈ R.

We will now extend these ideas to the unit sphere in the 3-dimensional
Euclidean space.

Example 7.19. Let S2 be the unit sphere in R3 and p = (0, 0, 1)
be the north pole. Then the unit circle in the tangent plane TpS

2 is
given by

T 1
pS

2 = {(cos θ, sin θ, 0) ∈ R3| θ ∈ R}.
For each angle θ ∈ R, let eθ be the unit tangent in T 1

pS
2 given by

eθ = (cos θ, sin θ, 0)

and λθ : R→ TpS
2 be the line, through the origin, with

λθ(s) = s · eθ = s · (cos θ, sin θ, 0).

Then there exists exactly one geodesic γθ : R→ S2 such that γθ(0) = p
and γ̇θ(0) = eθ. This satisfies

γθ(s) = cos s · (0, 0, 1) + sin s · (cos θ, sin θ, 0).

We define the exponential map expp : TpS
2 → S2 of S2 at p by

expp : s · (cos θ, sin θ, 0) 7→ cos s · (0, 0, 1) + sin s · (cos θ, sin θ, 0).

This maps the line λθ onto the geodesic γθ and is clearly injective on
the open ball

B2
π(0) = {Z ∈ TpS2| |Z| < π}

71



of radius π. We will see in Theorem 7.22 that the geodesic

γθ : s 7→ expp(s · (cos θ, sin θ, 0))

is the shortest path between p and γθ(r) as long as r < π. Note that
each point on the circle

T πp S
2 = {Z ∈ TpS2| |Z| = π}

is mapped to the south pole (0, 0,−1), so the globally defined expo-
nential map expp : TpS

2 → S2 is not injective.
The exponential map expp takes the origin 0 ∈ TpM to the point

p ∈ S2. This means that its tangent map d(expp)0 at 0 is defined on
the tangent plane T0TpS

2 of TpS
2 at 0 ∈ TpS2, which we identify with

TpS
2. Since the two tangents λ̇θ(0) and γ̇θ(0) satisfy λ̇θ(0) = γ̇θ(0) we

see that the tangent map

d(expp)0 : TpS
2 → TpS

2

is simply the identity map of the tangent plane TpS
2.

We are now ready to define the notion of the exponential map for
any regular surface as follows.

Definition 7.20. Let M be a regular C2-surface in R3, p ∈M and

T 1
pM = {e ∈ TpM | |e| = 1}

be the unit circle in the tangent plane TpM . Then every non-zero
tangent vector Z ∈ TpM can be written as

Z = rZ · eZ ,

where rZ = |Z| and eZ = Z/|Z| ∈ T 1
pM . For a unit tangent vector

e ∈ T 1
pM let

γe : (−ae, be)→M

be the unique maximal geodesic such that ae, be ∈ R+∪{∞}, γe(0) = p
and γ̇e(0) = e. It can be shown that the real number

εp = inf{ae, be| e ∈ T 1
pM}

is positive so the open ball

B2
εp(0) = {Z ∈ TpM | |Z| < εp}

is non-empty. Then the exponential map expp : B2
εp(0)→ M at p is

defined by

expp : Z 7→
{

p if Z = 0
γeZ (rZ) if Z 6= 0.
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Note that for a unit tangent e ∈ T 1
pM the line segment

λe : (−εp, εp)→ TpM,

with λe : s 7→ s · e, is mapped onto the geodesic γe i.e. locally we have

γe(s) = expp(λe(s)) = expp(s · e).
One can prove that the map expp is differentiable and it follows from
its definition that the differential

d(expp)0 : TpM → TpM

is the identity map for the tangent plane TpM . Then Theorem 4.33
tells us that there exists an rp ∈ R+ such that if Up = B2

rp(0) and

Vp = expp(Up) then the restriction

expp |Up : Up → Vp,

of the exponential map expp at p to Up, is a diffeomorphism parametris-
ing the open subset Vp of the surface M .

Remark 7.21. Let M be a complete regular surface in R3, p ∈M
and e ∈ T 1

pM be a unit tangent vector at p. Since M is complete there
exists a unique geodesic γ : R → M , globally defined on R, such that
γ(0) = p and γ̇(0) = e. This implies that for each point p ∈ M the
exponential map expp : TpM →M is globally defined. But as we have
seen in Example 7.19 it is not injective in general.

Theorem 7.22. Let M be a regular surface in R3. Then the
geodesics are locally the shortest paths between their endpoints.

Proof. For p ∈M , choose r > 0 such that the restriction

φ = expp |U : U → expp(U),

of the exponential map at p to the open ball U = B2
r (0) in the tangent

plane TpM , is a diffeomorphism onto the image expp(U). Then define
the metric ds2 on U such that φ is an isometry i.e. for any two vector
fields X, Y on U we have

ds2(X, Y ) = 〈dφ(X), dφ(Y )〉.
It then follows from the construction of the exponential map, that the
geodesics in U through the origin 0 = φ−1(p) are exactly the lines

λZ : t 7→ t · Z,
where Z ∈ TpM .

Now let q ∈ U \ {0} and λq : [0, 1]→ U be the curve λq : t 7→ t · q.
Further let σ : [0, 1] → U be an arbitrary regular C1-curve in U such
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that σ(0) = 0 and σ(1) = q. Along the curve σ we define two vector
fields σ̂ and σ′rad by

σ̂ : t 7→ σ(t) and σ′rad : t 7→ ds2(σ′(t), σ(t))

ds2(σ(t), σ(t))
· σ(t).

Note that σ′rad(t) is the radial projection of the tangent σ′(t) of the
curve σ(t) onto the line generated by the vector σ(t). This means that

|σ′rad(t)|2 =
ds2(σ′(t), σ(t))2 · ds2(σ(t), σ(t))

ds2(σ(t), σ(t))2

=
ds2(σ′(t), σ(t))2

ds2(σ(t), σ(t))
,

so

|σ′rad(t)| = |ds
2(σ′(t), σ(t))|
|σ(t)|

.

Further we have
d

dt
|σ(t)| =

d

dt

√
ds2(σ(t), σ(t))

=
2 · ds2(σ′(t), σ(t))

2 ·
√
ds2(σ(t), σ(t))

=
ds2(σ′(t), σ(t))

|σ(t)|
.

Combining these two relations we obtain

|σ′rad(t)| ≥ d

dt
|σ(t)|.

This means that

L(σ) =

∫ 1

0

|σ′(t)|dt

≥
∫ 1

0

|σ′rad(t)|dt

≥
∫ 1

0

d

dt
|σ(t)|dt

= |σ(1)| − |σ(0)|
= |q|
= L(λq).

This proves that in fact λq is the shortest path connecting p and q. �

In Theorem 7.25 we characterise the geodesics as the critical points
of the length functional. For this we need the following two definitions.
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Definition 7.23. Let M be a regular surface in R3 and γ : I →M
be a C2-curve on M . A variation of γ is a C2-map

Φ : (−ε, ε)× I →M

such that for each t ∈ I we have Φ0(t) = Φ(0, t) = γ(t). If the interval
is compact i.e. of the form I = [a, b], then the variation Φ is said to be
proper if for all r ∈ (−ε, ε) we have Φr(a) = γ(a) and Φr(b) = γ(b).

Definition 7.24. Let M be a regular surface in R3 and γ : I →M
be a C2-curve on M . For every compact subinterval [a, b] of I we define
the length functional L[a,b] by

L[a,b](γ) =

∫ b

a

|γ′(t)|dt.

A C2-curve γ : I → M is said to be a critical point for the length
functional if every proper variation Φ of γ|[a,b] satisfies

d

dr
(L[a,b](Φr))|r=0 = 0.

The reader should note that the following result for geodesics is not
of the same local character as that of Theorem 7.22.

Theorem 7.25. Let γ : I = [a, b]→M be a C2-curve parametrised
by arclength. Then γ is a critical point for the length functional if and
only if it is a geodesic.

Proof. Let Φ : (−ε, ε) × I → M with Φ : (r, t) 7→ Φ(r, t) be a
proper variation of γ : I → M . Then, since I = [a, b] is compact, we
have

d

dr

(
L[a,b](Φr)

)
|r=0

=
d

dr

( ∫ b

a

|γ̇r(t)|dt
)
|r=0

=

∫ b

a

d

dr

(√
〈∂Φ

∂t
,
∂Φ

∂t
〉
)
|r=0 dt

=

∫ b

a

(
〈 ∂

2Φ

∂r∂t
,
∂Φ

∂t
〉/
√
〈∂Φ

∂t
,
∂Φ

∂t
〉
)
|r=0 dt

=

∫ b

a

〈 ∂
2Φ

∂t∂r
,
∂Φ

∂t
〉|r=0 dt

=

∫ b

a

( d
dt

(〈∂Φ

∂r
,
∂Φ

∂t
〉)− 〈∂Φ

∂r
,
∂2Φ

∂t2
〉
)
|r=0 dt
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=
[
〈∂Φ

∂r
(0, t),

∂Φ

∂t
(0, t)〉

]b
a
−
∫ b

a

〈∂Φ

∂r
(0, t),

∂2Φ

∂t2
(0, t)〉 dt.

The variation is proper, so

∂Φ

∂r
(0, a) =

∂Φ

∂r
(0, b) = 0.

Furthermore
∂2Φ

∂t2
(0, t) = γ̈(t),

so
d

dr

(
L[a,b](Φr)

)
|r=0 = −

∫ b

a

〈∂Φ

∂r
(0, t), γ̈(t)tan〉 dt.

The last integral vanishes for every proper variation Φ of γ if and only
if γ̈(t)tan = 0 for all t ∈ I i.e. γ is a geodesic. �
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Exercises

Exercise 7.1. Describe the geodesics on the circular cylinder

M = {(x, y, z) ∈ R3| x2 + y2 = 1}.

Exercise 7.2. Find four different geodesics, as geometric curves,
passing through the point p = (1, 0, 0) on the one-sheeted hyper-
boloid

M = {(x, y, z) ∈ R3| x2 + y2 − z2 = 1}.

Exercise 7.3. Find four different geodesics, as geometric curves,
passing through the point p = (0, 0, 0) on the surface

M = {(x, y, z) ∈ R3| xy(x2 − y2) = z}.

Exercise 7.4. Let X : R2 → R3 be the parametrised surface in R3

given by

X(u, v) = (u cos v, u sin v, v).

Determine for which values of α ∈ R the curve γα : R→M with

γα(t) = X(t, αt) = (t cos(αt), t sin(αt), αt)

is a geodesic on M .

Exercise 7.5. Let X : R2 → R3 be the parametrised surface in R3

given by

X(u, v) = (u, v, sinu · sin v).

Determine for which values of θ ∈ R the curve γθ : R→M with

γθ(t) = X(t · cos θ, t · sin θ)

is a geodesic on M .

Exercise 7.6. Let γ : I → R3 be a regular curve, parametrised by
arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of γ, respectively. Let r ∈ R+ such that the
r-tube M around γ given by X : I × R→ R3 with

X(s, θ) 7→ γ(s) + r(cos θ · n(s) + sin θ · b(s))

is a regular surface. Show that for each s ∈ I the circle γs : R→ R3,
with γs(θ) = X(s, θ), is a geodesic on the surface.

Exercise 7.7. Find a proof of Proposition 7.11.
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Exercise 7.8. Let M be the regular surface in R3 parametrised by
X : R× (−1, 1)→ R3 with

X(u, v) = 2(cosu, sinu, 0) + v sin(u/2)(0, 0, 1)

+v cos(u/2)(cosu, sinu, 0).

Determine whether the curve γ : R→M defined by

γ : t 7→ X(t, 0)

is a geodesic or not. Is the surface M orientable ?

Exercise 7.9. Let M be a regular surface in R3 such that every
geodesic γ : I → M is contained in a plane. Show that M is either
contained in a plane or in a sphere.

Exercise 7.10. Let M be the regular surface in R3 given by

M = {(x, y, z) ∈ R3| x2 + y2 − z2 = 1}.
Show that v = (−1, 3,−

√
2) is a tangent vector to M at p = (

√
2, 0, 1).

Let γ = (γ1, γ2, γ3) : R → M be the geodesic which is uniquely deter-
mined by γ(0) = p and γ̇(0) = v. Determine the value

inf
s∈R

γ3(s).

Exercise 7.11. The regular surface M in R3 is parametrised by
X : R2 → R3 with

X : (u, v) = ((2 + cosu) cos v, (2 + cosu) sin v, sinu).

Let γ = (γ1, γ2, γ3) : R→M be the geodesic on M satisfying

γ(0) = (3, 0, 0) and γ′(0) = (0,
1√
2
,

1√
2

).

Determine the value
inf
s∈R

(γ2
1(s) + γ2

2(s)).
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CHAPTER 8

The Gauss-Bonnet Theorems

In this chapter we prove three different versions of the famous
Gauss-Bonnet theorem. Here we employ a variety of the ideas and
techniques that we have developed in earlier chapters.

At the first glance, the notions of geodesic curvature and that of
Gaussian curvature might seem completely unrelated. The next strik-
ing result clearly contradicts this.

Theorem 8.1. Let M be an oriented regular C3-surface in R3 with
Gauss map N : M → S2. Let X : U → X(U) be a local parametrisation
of M such that X(U) is connected and simply connected. Let γ : R→
X(U) parametrise a regular, closed, simple and positively oriented C2-
curve on X(U) by arclength. Let Int(γ) be the interior of γ and κg :
R→ R be its geodesic curvature. If L ∈ R+ is the period of γ then∫ L

0

κg(s)ds = 2π −
∫
Int(γ)

KdA,

where K is the Gaussian curvature of M .

Proof. Let {Z,W} be the orthonormal basis which we obtain by
applying the Gram-Schmidt process on the basis {Xu, Xv} obtained
from the local parametrisation X : U → X(U) of M . Along the curve
γ : R→ X(U) we define an angle θ : R→ R such that the unit tangent
vector γ̇ satisfies

γ̇(s) = cos θ(s) · Z(s) + sin θ(s) ·W (s).

Then

N × γ̇ = N × (cos θ · Z + sin θ ·W )

= cos θ · (N × Z) + sin θ · (N ×W )

= cos θ ·W − sin θ · Z.
For the second derivative γ̈ we have

γ̈(s) = θ̇(s) · (− sin θ(s) · Z(s) + cos θ(s) ·W (s))

+ cos θ(s) · Ż(s) + sin θ(s) · Ẇ (s).
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This implies that the geodesic curvature satisfies

κg = 〈N × γ̇, γ̈〉
= θ̇ · 〈− sin θ · Z + cos θ ·W,− sin θ · Z + cos θ ·W 〉

+〈− sin θ · Z + cos θ ·W, cos θ · Ż + sin θ · Ẇ 〉
= θ̇ − 〈Z, Ẇ 〉.

If we now integrate the geodesic curvature κg : R→ R over one period
we get ∫ L

0

κg(s)ds =

∫ L

0

θ̇(s)ds−
∫ L

0

〈Z(s), Ẇ (s)〉ds

= θ(L)− θ(0)−
∫ L

0

〈Z(s), Ẇ (s)〉ds

= 2π −
∫ L

0

〈Z(s), Ẇ (s)〉ds.

Let α = X−1 ◦γ : R→ U be the inverse image of the curve γ in the
simply connected parameter region U . The curve α is closed, simple
and positively oriented. Utilising Lemma 6.3 and Green’s theorem we
now get∫ L

0

〈Z(s), Ẇ (s)〉ds =

∫
γ

〈Z, u̇ ·Wu + v̇ ·Wv〉ds

=

∫
α

〈Z,Wu〉du+ 〈Z,Wv〉dv

=

∫
Int(α)

(
〈Z,Wv〉u − 〈Z,Wu〉v

)
dudv

=

∫
Int(α)

(
〈Zu,Wv〉+ 〈Z,Wuv〉

−〈Zv,Wu〉 − 〈Z,Wvu〉
)
dudv

=

∫
Int(α)

(
〈Zu,Wv〉 − 〈Zv,Wu〉

)
dudv

=

∫
Int(α)

K
√
EG− F 2dudv

=

∫
Int(γ)

KdA.

This proves the statement. �
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As an immediate consequence of Theorem 8.1 we have the following
interesting result.

Corollary 8.2. Let γ : R → R2 parametrise a regular, closed,
simple and positively oriented C2-curve by arclength. If L ∈ R+ is the
period of γ then ∫ L

0

κg(s)ds = 2π,

where κg : R→ R is the geodesic curvature of γ.

Proof. This follows directly from the fact that the Euclidean plane
is flat i.e. K ≡ 0. �

Remark 8.3. The reader should compare the result of Corollary
8.2 with Exercise 2.7 and Exercise 3.7.

Our next aim is to generalise the result of Theorem 8.1. For this
we need the following definition of a simple piecewise regular polygon.

Definition 8.4. Let M be a regular surface in R3. A periodic
continuous curve γ : R → M of period L ∈ R+ is said to parametrise
a simple piecewise regular polygon on M if

(1) γ(t) = γ(t∗) if and only if (t− t∗) ∈ L · Z,
(2) there exists a subdivision

0 = t0 < t1 < · · · < tn−1 < tn = L

of the interval [0, L] such that the restriction

γ|(ti,ti+1) : (ti, ti+1)→M

is differentiable for i = 0, . . . , n− 1,
(3) the one-sided derivatives

γ̇−(ti) = lim
t→t−i

γ(ti)− γ(t)

ti − t
, γ̇+(ti) = lim

t→t+i

γ(ti)− γ(t)

ti − t

exist, are non-zero and do not point in the same direction.

With this at hand, we are now ready to prove the following result
generalising Theorem 8.1.

Theorem 8.5. Let M be an oriented regular C3-surface in R3 with
Gauss map N : M → S2. Let X : U → X(U) be a local parametrisation
of M such that X(U) is connected and simply connected. Let γ : R→
X(U) parametrise a positively oriented, simple and piecewise regular
C2-polygon on M by arclength. Let Int(γ) be the interior of γ and
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κg : R → R be its geodesic curvature on each regular piece. If L ∈ R+

is the period of γ then∫ L

0

κg(s)ds =
n∑
i=1

αi − (n− 2)π −
∫
Int(γ)

KdA.

Here K is the Gaussian curvature of M and α1, . . . , αn are the inner
angles at the n corner points.

Proof. Let {Z,W} be the orthonormal basis which we obtain by
applying the Gram-Schmidt process on the basis {Xu, Xv}, obtained
from the local parametrisation X : U → X(U) of M . Let D be the
discrete subset of R corresponding to the corner points of γ(R). Along
the regular arcs of γ : R → X(U) we define an angle θ : R \ D → R
such that the unit tangent vector γ̇ satisfies

γ̇(s) = cos θ(s) · Z(s) + sin θ(s) ·W (s).

We have earlier seen that in this case the geodesic curvature is given
by κg = θ̇ − 〈Z, Ẇ 〉 and integration over one period gives∫ L

0

κg(s)ds =

∫ L

0

θ̇(s)ds−
∫ L

0

〈Z(s), Ẇ (s)〉ds.

As a consequence of Green’s theorem we have∫ L

0

〈Z(s), Ẇ (s)〉ds =

∫
Int(γ)

KdA.

The integral over the derivative θ̇ splits up into integrals over each
regular arc ∫ L

0

θ̇(s)ds =
n∑
i=1

∫ si

si−1

θ̇(s)ds.

This measures the change of angle with respect to the orthonormal
basis {Z,W} along each arc. At each corner point the tangent jumps
by the angle (π−αi) where αi is the corresponding inner angle. When
moving around the curve once the changes along the arcs and the jumps
at the corner points add up to 2π. Hence

2π =

∫ L

0

θ̇(s)ds+
n∑
i=1

(π − αi).

This proves the statement �

Definition 8.6. A piecewise C2-polygon on a regular surface M in
R3 is said to be geodesic if all its edges are geodesics.
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It should be noted that if the piecewise regular polygon in Theorem
8.5 is geodesic then the formula simplifies to

(8.1)
n∑
i=1

αi = (n− 2)π +

∫
Int(γ)

KdA.

This has the following very interesting consequences. First of all
we yield the following classical result of Euclidean geometry. This can
of course be proven by much cheaper means. As we all know this is a
direct consequence of Euclid’s parallelaxiom.

Example 8.7. Let α1, α2, α3 be the angles of a geodesic triangle in
the flat Euclidean plane. As a direct consequence of equation (8.1) we
have the following classical result

α1 + α2 + α3 = π.

In the spherical geometry of the unit sphere S2 the Gaussian cur-
vature is constant K ≡ +1. In this case we have the following.

Example 8.8. Let α1, α2, α3 be the angles of a geodesic triangle ∆
on the unit sphere S2 with constant curvature K ≡ +1. Then equation
(8.1) gives

α1 + α2 + α3 = π + A(∆) > π.

Here A(∆) is the area of the triangle.

In the non-Euclidean geometry of the hyperbolic plane H2 the
Gaussian curvature is constant with K ≡ −1. For this we have the
following striking result.

Example 8.9. Let α1, α2, α3 be the angles of a geodesic triangle
∆ in the hyperbolic plane H2 with constant curvature K ≡ −1. Then
equation (8.1) gives

α1 + α2 + α3 = π − A(∆) < π.

It follows from Theorem 7.8 that the angles are positive. This implies
that the area must satisfy the inequality A(∆) < π.

We will now complete our journey with the astonishing global Gauss-
Bonnet theorem.

Theorem 8.10. Let M be a compact, orientable and regular C3-
surface in R3. If K is the Gaussian curvature of M then∫

M

KdA = 2π · χ(M),

where χ(M) is the Euler characteristic of the surface.
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Proof. Let T = {T1, . . . , TF} be a triangulation of the surface M
such that each Tk is a geodesic triangle contained in the image Xk(Uk)
of a local parametrisation Xk : Uk → X(Uk) of M . Then the integral
of the Gaussian curvature K over M splits∫

M

KdA =
F∑
k=1

∫
Tk

KdA

into the finite sum of integrals over each triangle Tk ∈ T . According
to Theorem 8.5 we now have∫

Tk

KdA =

nk∑
i=1

αki + (2− nk)π

for each of the geodesic triangle Tk. By adding these relations we then
obtain ∫

M

KdA =
F∑
k=1

(
(2− nk)π +

nk∑
i=1

αki
)

= 2πF − 2πE +
F∑
k=1

nk∑
i=1

αki

= 2π(F − E + V ).

This proves the statement. �
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Exercises

Exercise 8.1. Let M be a regular surfaces in R3 diffeomorphic to
the torus. Show that there exists a point p ∈ M where the Gaussian
curvature K(p) is negative.

Exercise 8.2. The regular surface M in R3 is given by

M = {(x, y, z) ∈ R3| x2 + y2 − z2 = 1 and − 1 < z < 1}.
Determine the value of the integral∫

M

KdA,

where K is the Gaussian curvature of M .

Exercise 8.3. For r ∈ R+ let the surface Σr be given by

Σr = {(x, y, z) ∈ R3| z = cos
√
x2 + y2, x2 + y2 < r2, x, y > 0}.

Determine the value of the integral∫
Σr

KdA,

where K is the Gaussian curvature of Σr.

Exercise 8.4. For n ≥ 1 let Mn be the regular surface in R3 given
by

Mn = {(x, y, z) ∈ R3| x2 + y2 = (1 + z2n)2, 0 < z < 1}.
Determine the value of the integral∫

Mn

KdA,

where K is the Gaussian curvature of Mn.
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