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Introduction

We shall consider some heterogeneous topics relating tgrbigps and
the general theory of representations of locally compactjgs. The
first part exclusively deals with some elementary facts ab@igroups
and the last two parts are entirely independent of the nsterntained
in the first. We have rigidly adhered to the analytic approacbstab-
lishing the relations between Lie groups and Lie algebrdmistwe do
not need the theory of distributions on a manifold or the texise of
integral manifolds for an involutory distribution.

The second part concerns itself only with the general thebnyea-
sures on a locally compact group and representations imrge@nly a
passing reference is made to distributions (in the sense $thwartz),
and induced representations are not treated in detail.

In the third part, we first construct the continuous sum (tivect
integral’) of Hilbert spaces and then decompose a unitapyesenta-
tions into a continuous sum of irreducible representation& derive
the Plancherel formula for a separable unimodular grougims of
factorial representations and derive the classical faanmukthe abelian
case.
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Chapter 1

Topological groups

11

We here assemble some results on topological groups whicteaein 1
the sequel.

Definition. Atopological groufs is a topological space with a compo-
sition law Gx G — G, (X,y) — Xy which is

(a) a group law, and

(b) such that the map G G — G defined byx,y) — x 1y is contin-
uous.

The condition (b) is clearly equivalent to the requiremdrat tthe
mapsG x G — G defined by kK y) —» xyandG — G defined by
X — X1 be continuous.

It is obvious that the translations to the right:— xy are homeo-
morphisms ofG. A similar statement is true for left translations also.
We denote byA™, ABthe subset$a™ : ac A}, {ab: ac A b € B} re-
spectively. Itis immediate from the definition that the rdigurhoods
of the identity elemeng satisfy the following conditions:

(V1) For every neighbourhooW of e, there exists a neighbourhood
W of e such thatW~W c V. (This follows from the fact that
(x,y) — xlyis continuous).

3



4 1. Topological groups

(V2) For every neighbourhood of e and for everyy € G, there exists
a neighbourhoodV of e such thatyWy?! c V. (This is because
x — yxy ! is continuous).

These conditions are alsoffigient to determine the topology of the
group. More precisely,

Proposition 1. Let?” be a family of subsets of a groups G, such that
(@) Forevery Ve ¥, ec V.
(b) Any finite intersection of elements¥fis still in 7.
(c) For every Ve 7, there exists W ¥ such that W'W c V.

(d) For every Ve ¥/, and for every ye G there exists WE ¥ such
that ywy! c V.

ThenG can be provided with a unique topologycompatible with
the group structure such that the famityis a fundamental system of
neighbourhoods a

Supposing that such a topology exists, a fundamental sysfem
neighbourhoods af is given by either?’y or y¥'. It is, therefore, a
natural requirement that these two families generate thme $iter. It is
this that necessitates the condition (d).

We may now take the filter generated Yy and 7’y as the neigh-
bourhood system at This can be verified to satisfy the neighbourhood
axioms for a topology. It remains to show thay — x 1y is continu-
ous.
Let Vx;'yo be any neighbourhood ofyo. By (c), (d), there exist
W, Wy € ¥ such thaWW c V andx;lyoWiyg'xo ¢ W. If we take
X € XoW, y € yoWs, we havex'ty € W lyoWy ¢ Wwgly ©
V;yo. This shows thatx, y) — x !y is continuous.

Examples of topological groups.

(1) Any groupG with the discrete topology.
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(2) The additive group of real numbeRsor the multiplicative group
of non-zero real numbeiR* with the ‘usual topology’.

(3) The direct product of two topological groups with the gwot 3
topology.

(4) The general linear groupL(n, R) with the topology induced by
that of R™.

(5) Let X be a locally compact topological space, @ group of
homeomorphisms oK onto itself. This grougs is a topologi-
cal group with the ‘compact open topology’. (The compaatiop
topology is one in which the fundamental system of neighbour
hoods of the identity is given by finite intersections of thetss
uK,U) = {f e G: f(X) e U, fX(x) € U for everyx e K}, K
being compact and an open set containing).

1.2 Topological subgroups.

Let G be a topological group angla subgroup in the algebraic sense.
g with the induced topology is a topological group which wellstall
atopological subgroumf G. We see immediately that the closugés
again a subgroup.

If gis a normal subgroup, so @& Moreover, an open subgroup is

also closed. In fact, ifj is open,G — g = [J xg, which is open as left
X¢g
translations are homeomorphisms. Hegég closed.

Let nowV be a neighbourhood af andg the subgroup generated
by the elements o¥/. g is open containing as it does a neighbourhood
of every element belonging to it. Consequently it is alsseth So that
we have

Proposition 2. If G is a connected topological group, any neighbour-
hood of e generates G.

On the contrary, if5 is not connected, the connected comporiant 4
of eis a closed normal subgroup @f SinceGoxGy — Gc‘)lGo is contin-
uous and5gxGy connectedG(‘)lGo is also connected, and hencesg.



6 1. Topological groups

This shows thaGg is a subgroup. Ax — yxy ! is continuousyGoy *
is a connected set containiegind consequently Go. Therefore Gy is
a normal subgroup.

Proposition 3. Every locally compact topological group is paracom-
pact.

In fact, letV be a relatively compact open symmetric neighbourhood
ofe. G’ = |J V" is an open and hence closed subgroufiofG’ is

n=1
countable ato and therefore paracompact. Sin@ds the topological
union of left cosets modul@’, G is also paracompact.

1.3 Factor groups.

Let g be a subgroup of a topological gro We shall denote by
the right cosegx containingx. On this set, we already have the quotient
topology. Then the canonical map G — G/gis open and continuous.
For, if 7(U) is the image of an open sketin G, it is also the image of
gU which is an open saturated set. Hea¢d) is also open. But this
canonical map is not, in general, closed. The spagg is called a
homogeneous spacH gis a normal subgrouf;/gis a group and is a
topological group with the above topology. This is faetor groupof
Gbyg.

1.4 Separation axiom.

Theorem 1. The homogeneous spaceédds Hausdoff if and only if the
subgroup g is closed.

If G/g is Hausdoff, g = n~%(r(e)) is closed, sincer(e) is closed.
Conversely, legy be closed. Lek, y € G/gandx # y. Sincexy ! ¢ g
andg is closed, there exists a symmetric neighbourhdad the identity
such thatxy 'V N g = ¢. Hencexy ! ¢ gV. Now choose a neighbour-
hoodW of e such thatWwW c y~1Vy. We assert thagxW and gyw
are disjoint. For, if they were nofy, y» € g, Wy, W, € W exist such that

YIXWL = yoyWp; €. v lyiX = ywow;t e yWwWt c vy
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Hencey,yixy ! € V, or xy ™ € y71y2V c gV.

This being contradictory to the choice \¢f gxW, gyW are disjoint
or 7(gxW) N 7(gyW) = ¢. HenceG/g is Hausdoff.

In particular, ifg = {€}, G is Hausdoff if and only if {} is closed. On
the other hand, ife} is not closed{e} is a normal subgroup ar@/{e} is
a Hausddft topological group. We shall hereafter restrict oursehees t

the consideration of groups which satisfy Haugtisaxiom.

1.5 Representations and homomorphisms.

Definition . A representatiorh of a topological group G into a topo-
logical group H is a continuous map : G> H which is an algebraic
representation. In other words(Xy) = h(x) - h(y) for every x, ye G.

Obviously the image o6 by his a subgroup oH and the kerneN
of his a closed normal subgroup Gf The canonical mafh} : G/N —
H is a representation and is one-one.

Definition. A representation h is said to bermmomorphisnif the in-
duced mayh is a homeomorphism.

Proposition 4. Let G and H be two locally compact groups, the former
being countable ato. Then every representation h of @toH is a
homomorphism.

_Itis enough to show that for every neighbourhddaf e in G/N,
h(V) is a neighbourhood df(e) in H. Choose a relatively compact open
neighbourhoodV of e such thatww-! c V. G is a countable union
of compact sets and),.c Wx= G. Therefore, one can find a sequence
{Xj} of points such tha® = (J; Wx. Sincehis onto,H = |J; h(Wx) =

Uj h(W)h(x;). H is a locally compact space and hence a Baire space
(Bourbaki, Topologie générale, Ch. 9). There existsrefuge, an in-
teger j such thath(Wx) has an interior point.h(W) being compact,
h(W) = h(W). Consequentlyh(W)h(x;) and hencé(W) has an interior
pointy. There exists a neighbourhoad of e such thath(W) > Uy.
Now h(V) > h(WW-1) = h((W) - h(W)™* > UyytU-1) = Uu-i.
h(V) is therefore a neighbourhood lafe), which completes the proof of
propositiorC#.







Chapter 2

Local study of Lie groups

2.1
.

Definition. A Lie groupG is a real analytic manifold with a composition
law (x,y) — xy which is

(a) a group law, and
(b) such that the mafx,y) — xly is analytic.

(b) is equivalent to the analyticity of the mapsy) — xy and x—
1

X
Remarks. (1) A Lie group is trivially a topological group.

(2) We may replace ‘real’ by ‘complex and define the notion of a
complex Lie group. We shall not have occasion to study corxple
Lie groups in what follows, though most of the theorems we@ro
remain valid for them.

(3) It is natural to inquire whether every topological groujth the
structure of a topological manifold is a Lie group. This desb
(Hilbert's fifth problem) has been recently solved by Gleajid]
who has proved that a topological groGpwhich is locally com-
pact, locally connected, metrisable and of finite dimensisra
Lie group.
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Examples of Lie groups.

(1) R-real numbersC - complex numbers,

T - the one-dimensional torus ari®l', C" and T" in the usual
notation are all Lie groups.

(2) Product of Lie groups with the product manifold struetig a Lie
group.
(3) GL(n,R) - the general linear group.

2.2 Local study of Lie groups.

We shall assume that is a suficiently small neighbourhood o in
which a suitably chosen coordinate system, which takro the ori-
gin, is defined.

The following notations will be adhered to throughout thése

tures:
If aeV,(ay...,an) will denote the coordinate & a = (ay,...,
an) is a multi-index witha;, non-negative integers.

ol =a1+a2+---+an
[i] will stand for @ with @; = 1 andaj = 0 for j #1i.

al = aq! ... ap!

Xt = XK
oY Hart+an
o o

Let x, y € V be such thaky € V. (xy); are analytic functions of the
coordinate ofx andy.

Q) xy)i = ¢i(X1,...,%n,Y1,...,Yn) Where they; are analytic func-
tions of the & variablesx, y in a neighbourhood of 0 ifR?".
Thesey; cannot be arbitrary functions, as they are connected by
the group relations. These are reflected in the followingaequ
tions:

(x8i=(eXi=x, or
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(2) ¢i(x.€) = yi(e X) = X. 9
They; are analytic functions and so are of the form

ailxy) = > A4, i=12....n
ap

By equation (2), this can be written
(3) ¢i(%Y) = % +¥i + Dalo1 A, gX°V
B=1 ™

By associativity,

(,Oi(Xy, Z) = (,Oi(X, yZ)’ or
SDi(901(X7 y)v s Son(X’ y)v Z) = QDi(X, Qpl(yv Z)’ ERR) Sﬁn(Ya Z))

These may also be written

(4) ¢i(e(x.Y),2) = ¢i(% ¢(y 2).

One is tempted to expect another equatiorpindue to the exis-
tence of the inverse of every element. However, these twatems are
suficient to characterise locally the Lie group, and the exisenf the
inverse is, in a certain sense, a consequence of the asaoddat and
the existence of the identity. To be more precise,

Proposition 1. Let G be the semigroup with an identity element e. If
it can be provided with the structure of an analytic manifeleth that
the map(x,y) — xy of GxG— G is analytic, then there exists an open
neighbourhood of e which is a Lie group.

In fact, the existence of the inverse elemenkafepends upon the
: . i
existence of the solution forof ¢ij(x,y) =0,1=1,...,n. Now a—i' =
. " i
dij+ terms containing positive powers of tge If we puty = e, the
latter terms vanish and

(390i(X,Y)) s
A L4 =i
(9Xj y=e !
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Hence

3= det(asoi(x,y)) _1
y=e

an
J being a continuous function ofandy, J # 0 in some neighbourhood
V'’ of e. Therefore there exists a neighbourhdodf e every element of

which has an inverse. Then the neighbourh@ée: [ J;,(V N vV hHis
a group compatible with the manifold structure.

2.3 Formal Lie groups.

Definition. A formal Lie groupover a commutative ring A with unit el-
ements, is a system of n formal seg# 2n variables with cogicients
in A such that

QDi(X]_,...,Xn,0,0,...):Xi :SDi(O?O""?X].?""Xn)

and

i (QO]_(X, y)’ R SDn(Xa y)’ Z) = QOi(X, Qpl(y’ Z)? ) SDn(Ya Z))

Almost all that we prove in the next few lectures will be valat
formal Lie groups over a field of characteristic zero alsa. &study of
formal Lie groups over a field of characterisfict 0, one may see, for
instance,[[B],[[1D].

2.4 Taylor’s formula.

Let f be a function on an open neighbourhooaddnd letry, o, denote
respectively the right and left translatesfoflefined byry f(x) = f(xy);
o,f(X) = f(z1x) for suficiently smally andz These two operators
commute,
i.e.
Ty(02f) = o7y f)

If fisanalytic inV, 7yf is (fory € W) analytic inW, whereW is a
neighbourhood oé such thatW? c V.
Now,

10
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bi f(X) = f(SDl(X’ y)’ R SDn(Xa y))

with _
TOCY) = X+ Y+ D A XY
=
If we set _
U =Y+ Z A'mﬂx“y"j
[a>1
BI=1

7y f(X) = f(x+u) in the usual notation. This can be expanded as a Taylor
series

1 o04f
f(x) = —u*—(X).
B =3 Sl
We may now substitute for thg in this convergent series.
ut =uf - ug”

=(va+ > AL0y)
[yl=1
[6]>1

=Y+ > GOy

B2l

[e40

where the cofficient of powers ofy are analytic functions ok and
gg(e) = 0. If here we takew = 0, u* = 1, and hencegg = 0 for
everyp. Thus

0109 = 3 =T oo+ 3 ooy

I Ox@
atd Bi=lal

These are uniformly absolutely convergent in a suitablghimur-
hood ofe, on the explicit choice of which we shall not meticulously
insist. Hence the above formula can be written as

10" 16°f
W00 = 2 Y (G 9+ w% 9. (51 55 O
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This we shall denote by
1
oy f(9 = D)~y A (¥

whereA,, is a diferential operator not depending énThis formula is
the generalised Taylor's formula we sought establish.

2.5 Study of the operatorA,.

Now, A, = o, ) gﬁ(x)ﬁa—!

pIve e with 2 (&) = 0. Since atx = e,
1Bi<lol !

(02

0 . . - :
Ay = Fv the A, are linearly independent at the origin. &= 0, A, is
the identity operator and if # 0, A, is without constant term ag = O.

Let us denoté\j; by X;. ThenX; = i+2j aij(X)i, with g (€) =
X1 OXi

i
0. These are vector fields in a neighbourhood.oNow we shall use
the fact that, for every, z € G, the operators-, andry, commute. We
have

Ty ) = 7oA YA = Y a0 M)

and, on the other hand,

o) = Y =Y Bl

Therefore, by the uniqueness of the expansion in poweessany of
oo(tyf) = 1y(0,T), we haver,oA, = A, 00, for everyzin a suficiently
small neighbourhood of. Otherwise stated), is left invariant in this
neighbourhood. This enables us to defieat every pointzin the Lie
group by setting\, f(2 = o,1A,0;f(2), so that the extended operator
remains left invariant.

Theorem 1. The linear diferential operatorsA, form a basis for the
algebra of left invariant dferential operators.
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We have already remarked that thg are linearly independent at
Let D be any left invariant linear élierential operator o®. ThenD =
(o4

0
lelsr ba(X)a?

a—a. Obviously,Aco, = 0;0A. Ate, D = A, and by the left invariance

of bothD andA, D = A everywhere. This proves our contention that

theA, form a basis of the algebra of left invariantférential operators.
We shall hereafter denote this algebra®{G).

, I being some positive integer. Define= 3, <, by (€)

2.6 The Lie algebra of a Lie group G.

Let ¢ be the subspace dff(G) generated by th&;. This is the same
as the subspace composed of vector fields which are lefiamtarThis

is obviously isomorphic as a vector space to the tangentespbe If
there are two vector fieldX, Y, thenXY is an operator of order 2, as
alsoY X But XY — Y Xis a left invariant vector field, as can be easily
verified. Lef [X, Y] stand for this composition law. It is not hard to see
that this bracket operation satisfies

[X,Y] =0, and [X,Y].Z] +[[Y.Z]. X] + [[Z, X]. Y] = Q.
This leads us to the following
Definition. A Lie algebrag over a field, is a vector space with a compo-

sition law[X, Y] which is a bilinear mag x g — g satisfying[X, X] = 0,
and the Jacobi’s identity, viz.

[[X.Y].Z] + [[Y. Z]. X] + [[Z, X]. Y] = O.

Example. (1) The left invariant vector fields of a Lie group form a
Lie algebra.

(2) Any vector spaceld with the composition LawX, Y] = O for
everyX,Y € U is a Lie algebra.

Such an algebra is called abelian Lie algebra 14
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(3) Any associative algebra with the bracket operation
[X,Y] = XY-YX
is a Lie algebra.

In particular, the matrix algebraz,(K) over a fieldK and the space
of endomorphisms of a vector spatéare Lie algebras.

Definition. A subspace# of a Lie algebrag is asubalgebraf for every
X, ye Z,[xyle 7.

A subspacel{d of a Lie algebrag is anideal, if for every x € U,
yeag, [Xy] € U.

Example. (1) The set of all matrices ivZ,(K) whose traces are zero
is an ideal of 7,(K).

(2) The set of all elementse g such thatf, x] = O for everyx € g is
an ideal ofg, calledcentreof g.

If U is an ideal ing, the quotient space/¢, can be provided with
the structure of a Lie algebra by defining§ 2/), (y+ U)] = [x, V] + U.
This is called thdactor algebra ofg by U.

2.7 Representations of a Lie algebra.

Definition. A representatiorf a Lie algebrag in another Lie algebra
g’ is alinear map f such that(fx,y]) = [f(X), f(y)] for every X, ye g.

It can be verified that the image gfby f and the kernel off are
subalgebras of andg respectively. The latter is, in fact, an ideal and
g/ ker f is isomorphic tof (g).

In particular,g” may be taken to the the space of endomorphisms of
a vector spac¥, leading us to the definition of a linear representation
of g.

Definition. A linear representationf a Lie algebrag in a vector space
V is a representation af into the Lie algebra of endomorphisms of V.
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2.8 Adjoint representation.

Let g be a Lie algebra and € g. The mapy — g defined byy — [X, Y]
is a linear map ofy into itself. This map is denoted adx. Thus, adx

) =[xyl

Remarks. (1) Ad xis a derivation of the Lie algebra. We recall here
the definition of a derivation in an algebgaassociative or not. A
linear mapD of g into itself is aderivationif for any two elements
X, ¥ € g, we haveD(xy) = x(Dy) + (DX)y. In a Lie algebra
derivations of the type agare callednner derivations

(2) x — ad xis a linear map ofy into the Lie algebra of endomor-
phisms of the vector spage

This is, moreover, a linear representatiorydfi g. The verification
of the relationad[x,y] = [adx ady] is an immediate consequence of
Jacobi’s identity.

This linear representation will henceforth be referred ddread-
joint representatiorof g.






Chapter 3

Relations between Lie groups
and Lie algebras - |

3.1 Differential of an analytic representation.
16

Definition. Ananalytic representatioof a Lie group G into a Lie group
G’ is an algebraic representation which is an analytic map.

Remark. It is true, as we shall see later (Cor. to Th. 4, Chl 4.5) that
any representation of the underlying topological group Gfris itself
a representation in the above sense.

We now seek to establish a correspondence between anatie-r
sentations of Lie groups and algebraic representatiornsedfitie alge-
bras. As a first step, we prove the following

Proposition 1. To every analytic representation hG — G’ there
corresponds a map dhU(G) — U(G’) which is a representation of
algebras such thaA(f o h) = (dh(A)f) o h.

Lety e G andy = h(y). If f is an analytic function o’, we have
Ty(f o h)(x) = f(h(xy)) = f(h(x)h(y)) = (y f) o h(x).

We may now write down the Taylor formula for both sides of the
equation and equate the ¢heients of powers off (by the uniqueness

19
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of development in power series). We have
1 1., .,
2 Balfol) =, Sy A, foh

But h being an analytic maph(y)); = X v‘Qy“. There is no con-
stant term in this summation sinck(y)); = 0 aty = e. Hencey'® =
Sialsler| HE Y, Wherep? are constants, and on substitution in the above
eguation, we obtain

Z Y A(f o) = Z( D, YA feh

" al=le’|

=2 Wi o

o’ |<]e’|

the series being uniformly absolutely convergenDjfdenotes), |

e ,IA’,, which is a left invariant dferential operator, thef, (f oh) =
(D’ f) o h. Moreover, this equation completely determiri¥ssince its
value ate given by D, f(¢) = A.(f o h)(e). As theA, form a basis
for U(G) in G, we may define a linear magh : U(G) —» U(G’) by
settingdh(A,) = D,,. Itis obvious that\( f o h) = (dh(A)f) o h for any

A € u(G). To complete the proof of propositigh 1, one has only to show
thatdh(A1A2) = dh(A1)dh(Ay). But this is obvious since

(dh(A1A2)F) o h = AjA(f o h)
= A1(dh(A2) f o h)
= (dN(ALd(A2) ) o h.

Now, dh(A,) = X<l pg'Z—,!IA;, is of order less than or equal to
that of A,. By linearity, the same is also true of any operator U(G).
Also, dhpreserves constant terms. The imaggisfin g’, and by Propo-
sition[,dhrestricted tay is a Lie algebra representation. This is said to
be thedifferential of the maph.
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Remarks. (1) If we have another representatibh: G’ — G”, it is
obvious thad(h’ o h) = dh' - dh.

(2) If his an analytic map of a manifold into a manifoldW, then 18
we can define the fferential ofh at x, viz., dhy @ Tx — Try
whereTy, Ty are tangent spaces at the respective points. This
map makes correspond to a tangent veetat X, the vectorxX’
at h(x) such thatX’f = X(f o h) for every functionf analytic at
h(x). However, we cannot, in general, define the image a vector
field. As we have seen, in the case of Lie groups, as long as
one is considering only left invariant vector fields, one talk
of an image vector field. Thus we now have, corresponding to
an analytic representation of a Lie gro@pnto another Lie group
G’, two notions of a dterential map: the linear map of the tangent
space at a into that &i{e) = €, and the representation of the Lie
algebra ofG in that of G’. These two notions are essentially the
same in the following sense. Let ¢’ be the canonical vector
space isomorphisms @f ¢ with T, Te respectively. Then the
diagram

[

o

(4

g ———Te¢
is commutative.

Proposition 2. Let G and G be two connected Lie groups. An analytic
representation of G» G’ is surjective if and only if the gierential map
is surjective.

Proposition 3. A representation h of a Lie group G in another Lie group
G’ is locally injective (i.e. there axises a neighbourhood of e on which
h is injective) if and only if dh is injective.

These two propositions are consequences of the corresgppaip- 19
erties of manifolds, the proofs of which we omit.



20

22 3. Relations between Lie groups and Lie algebras - |

3.2 Subgroups of a Lie group.

Definition. An analytic map f of a manifold U into another manifold
V is said to beregularat a point x in U if the dferential map df is
injective.

Definition . A submanifoldof an analytic manifold U is a paifV, r)
consisting of a manifold V which is countable @tand an injective
analytic mapr of V into U which is everywhere regular.

Remarks. (1) The topology onr(V) is not that induced from the
topology of U in general. For instance, if? is the two - di-
mensional torusyV the space of real numbers, andthe map
t — (t, at) of V into T2, wherea is irrational, it is easy to see that
7 is an injective, analytic, regular map. Buatannot be a home-
omorphism ofV into T2. For, every neighbourhood of ,(0) in
T2 contains pointst(at) with arbitrarily large values of. Hence,
the inverse image of this neighbourhoodrify) with the induced
topology can never be contained in a given neighbourhood of O
in R

(2) Nevertheless, it is true that locally, for every pointf V, there
exist neighbourhoodg/ in V andW* in U which satisfy the fol-
lowing : A coordinate systemxg, ..., X,) can be defined iw*
such thawV is defined by the annihilation of certain coordinates.

Definition. A Lie subgroup of a Lie group G is a submanifdld, r),
n(H) being a subgroup of G.

We define orH the group structure obtained by requiring thaie
a monomorphism. Since the mapof H in G is regular, locally the
analytic structure oH is induced form that o66. Hence the group op-
erations inH are analytic irH, as they are analytic i®. H is therefore
a Lie group.

Proposition 4. The Lie algebra of a Lie subgroup of a Lie group G can
be identified with a subalgebra of the Lie algebra of G.
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In fact, if (H, n) is the subgroupr is a representation d¢f in G and
dr is injective sincer is regular. We identify the Lie algebr&’ of H
with the subalgebrdr(.¥) or g.

3.3 One-parameter subgroups.

Definition. An analytic representatiop of R into G is said to be ane-
parameter subgroupf G.

We know that the representatiprgives rise to a dferential maglp
of the Lie algebra oR (spanned by(%) into the Lie algebra o6G. Let

d , . -
d’o(d_t) = X = 3 1;X;. We now form the dterential equations satisfied

by the functionp.
Let (X1, X2, . .. Xn) be a coordinate system in a neighbourhooé iof
G and Letp; denotex; o p. Now

pi(t+1t) = e1(o(t), p(t"))

d . N i
e+ =250

00,000 L2

Puttingt’ = 0, we get

doi .. < ok, 00
5= zk] &t O3, 0.0

21
If X = Ay, we have

0 o
xiza—)q+zj:a”(x)a—xj with aij(e) = 0.

Since Kf)op = OI%(f o p) for every function analytic a&, we get

doi

i (X%)op by setting = x;.

Hence

41 or — wx) o
<t (@ = (Xx) 2 p(0)
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= X%(€)
= > (%)% (@)
= A;.
To sum upyp satisfies the system offeierential equations

® Loy ‘99"' ' (.9

with the |n|t|al condltlon

(B) pi(0)=0
(A) implies %(0) -

Now, conversely if are given the system oftdrential equationsA)
with the initial condition (B), then by Cauchy’s theorem dretexis-
tence and unigueness of solutions dfeliential equations, there exists
one and only one solution— p(t, 1) which is analytic int anda in a
neighbourhood of (01). We shall now show thai(t + u) = p(t) - p(u)
for suficiently small values of andu.

22 Let

f(t) = ¢i(o(u), p(t)). Then
-3 2 o, PORY

= Z/lk (,o(u) p(t)) (,O(t) €)

since thep; are solutions of (A). On the other hand, we have

ilp(U)o(t).y) = ¢i(p(u), p(t)y)
= ¢i(p(u), ©(o(t). y))

(p(u)p() y) = Z Ay, = (p(u )p(t)Y) (p(t) y)-
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Hence,

dO-I’ aQDI ’
T ;ﬂka—yk(o' 1), e).

.e. o is a solution of (A) with the initial condition (C):

a{(0) = ¢i(e p(u)) = pi(u).

Also, t — o(t) = p(t + u) is a solution of (A) since the fferential
equation (A) is a invariant for translations of it. Alsq0) = p(u).

Henceo ando are two sets of solutions of (A) with the same initial
conditions, and therefore

oi(®) = plt+u), ie gi(o®),p(W) = pit+u).

or p(t)p(u) = p(t + u) for suficiently small values of andu. Also this
mapt — p(t, X) is analytic. We assume the following

Lemma 1. Let H be a connected, locally connected and simply cas-
nected topological and f a local homomorphism ofHG (i.e. a con-
tinuous map of a neighbourhood of e into H such thatyf = f(X) f(y)

for all x, y such that x, y, xg V). Then there exists one and only one
representationf of H in G which coincides with f on V.

We immediately obtain (sincBis simply connected), the

Theorem 1. For every Xe g, there exists one and only one one - pa-

rameter subgroup(t, X) such that @% = X. The functiorp(t, X) is
analytic in t and X.

One can assign to any finite dimensional vector space oveetie
number field a manifold structure which is induced by thathef teal
numbers. In particular, The Lie algebra of a Lie group alse draana-
lytic structure. Whenever we talk of an analytic map intorofi a Lie
algebra, it is to this analytic structure that we refer.

Proof of the Lemma Consider the Cartesian set proditt= H x G.
We provideH with a topology by defining the neighbourhood system at
each point X, y) in the following way:
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Let W be a neighbourhood &in H c V, whereV can be assumed
to be connected sincH is locally connected. The fundamental sys-
tem of neighbourhoods ax,y) is given byN(W, x,y) = {(X,y) : X €
xWy = yf(x1x)}). Itis easily verified that this satisfies the neigh-
bourhood axioms for a topology, and thatwith the usual projection
m . HxG — His a covering space dfl. Let H; be the connected
component ofé e) in H. ThenHj is a connected, covering spacetbf
and sinceH is simply connected,is a homeomorphism dfi; ontoH.
Let 5 be its inverse. Defind(x) = 7 o n(X) for everyx in H where
m . Hx G — Gis the second projectioN(W, x, y) is mapped home-
omorphically byr onto xW. HenceN(W, x,y) c H; if W is connected
and &, y) € Hs. It follows that f is a representation which extentls

3.4 The exponential map.

We shall denotg(t, X) by exp(X).

But such a notation involves the tacit assumption {&tX) de-
pends only ortX. In other words, one has to make sure @t sX) =
o(s, X) before such a notation becomes permissible. But this igoabv

in as much as — p(st X) is a one -parameter subgroup we _d((ds)t) =
X or dp% = sX The one-parameter subgroup such dm(t(% = sX

is, by definition,t — p(t, sX). By uniqueness of the one-parameter sub-
groups,o(st, X) = p(t, sX), or in particularo(s, X) = p(1, sX). Itis easy

to see that expX) expt’X) = expt + t')X and expEX) = (expX) L.
But, in general, ex)y - expY’ # exp(Y + Y’).

Theorem 2. The map h: X — expX of g into G is an analytic iso-

morphism of a neighbourhood 6fin g onto a neighbourhood of e in
G.

In fact, sinceh is an analytic map, it is enough to show that the
Jacobian of the map # 0 in a neighbourhood of the originX{, . .., X,)
form a basis fop, whereX; = Afj;.

h[Z Yi Xi) = eXIO(Zi: yiXi)
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oh; d
E)_yk(o) = d_t(eXthk)j(t = 0) = (XkXj)xze = Ojk-

i.e. the jacobiar= 1 ate. By continuity, the Jacobian does not vanish s
a neighbourhood dd.

Now, let Xy,..., X, be an arbitrary basis af. This can be trans-
ported into a system of coordinates@by means of the above map.
For everyx € G suficiently neare, there exists one and only one system
(X1, ..., %n) near 0 such that = exp(; XiX;).

This system of coordinates is called ttemonical system of coordi-
nateswith respect to any given basis. Hereafter, we will almostagt
operate only with a canonical system of coordinates.

Remark. Let x € V, V being a neighbourhood efin which a canonical
coordinate system exists amds suficiently neare. Now, if

X= eXP(Z X Xi),
X = exp(y | (pX)X).

i.e. the coordinates of® are (pPx, ..., PX)-

Proposition 5. Let h be a representation of G in H, and db — ¥ its
differential. Then the diagram

g
expl

G

dh

S
lexp
H

h

is commutative.
Considert 2 h(exptX).

This is obviously a one-parameter subgroup, dnt = dh o dp.
Therefore

d
h(expX) = explo’ ()
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= exp@dh(X)).

It follows, therefore, that ih(G) = (e), dhis the mapy — (0).

Conversely, ifdh = C, andG connectedh(expX) = e for every
element in a neighbourhood ef andh = e. Again, if G is connected
and two representationtg, h, of G in H are such thatlhy = dh,, then
hy = ho.

Proposition 6. For every analytic function f on a neighbourhood of e,
we have

(o)

flexptx) = %(X”f)(e).
n=0

In fact,
dgtf(exth) = (X f)(exptX).

By induction on n, we have

n

d
T f(exptX) = (X"f)(exptX)

i d—nf(ex tX) = X"f(e)
dt” g o '
Now, f(exptX) is an analytic function of t and by Taylor's formula,
we have

(o)

flexptx) = :]—r:(x”f)(e)

n=0 -

. . a!
Theorem 3. In canonical coordinates, we have, = WSQ where S,
al:

is the cogficient of £ in the expansion ofy); ti X)) and S, € U(G).

|
In fact, it is enough to prove the equality &f andla—l'lsa atesince
al.
bothA, andS,, are invariant. Now,

f0) = 1,10 = ) 2y A, f(@with a, 19 = { 2100}

y=e
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y = exp yi Xi) wherey; are the canonical coordinatesyof
27 Therefore

fy) = fexp( | yix))

(o)

1
=Y ={O wx)pi} (@
oo P
by Prop[®, chaptdi 3, 5.
Taking partial derivatives at = e, we have

aa . a!
@f(y) at y=e is —(S.f)e).

]!

!
Hence Delta, f(e) = |a—|'|Sa f(e) which is what we wanted to prove.
al:






Chapter 4

Relation between Lie groups
and Lie algebras - I

4.1 The enveloping algebras.
28

Letg be a Lie algebra, and the tensor algebra of the underlying vector
space ofy. Consider the two-sided idehlgenerated imT By the ele-
ments of the formx@y—-y® x—[x,y]. Then the associative algebfall

is said to be theniversal enveloping algebraf the Lie algebra.

Definition. Alinear map h of al Lie algebraginto as associative algebra
A is said to be dinearisationif h([x, y]) = h(xX)h(y) — h(y)h(x) for every
X,yeg.

We have obviously a canonical map®in to T/I, which we shall
denote byj.

Proposition 1. To any linearisation f ofi in an associative algebra A,
there corresponds one and only one representafiof T/I in such that
foj=f.

In fact, f being a linear map, it can be lifted uniquely into a rep-
resentationf of the tensor algebra in A. Obviously, the kernel of
contains elements of the forry - y® x—[x,y] and hence containis
Hence this gives rise to a mdpwith the required property.

31
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4.2 The Birkhoff-Witt theorem.

With reference to the universal enveloping algebra of a Igelara of a
Lie group, we have the following

Theorem 1. The algebra of left invariant gferential operatorsi{ is
canonically isomorphic to the universal enveloping algebf the Lie
algebra.

In fact, the inclusion map of the Lie algebganto 7/ can be lifted
to a representation of the enveloping algetbfaof g in U by propo-
sition[. It only remains to show that this map: U’ — 11 is an

isomorphic. IfS, is the codficient oft® in the expansion of}] t; %),

it has been proved (THl 3, ChB.4) ti&t form a basis forL( Sy is an
operators of the fornk(.. )X, --- X, whereX;, ---X;, are obtained
by certain permutations of" - - - X5". Let S}, denote the element of the
form (.. )X, ®...® X, whereS, = (.. )X ...X,. By definition
of h, we haveh(S],) = S,. To prove thath is an isomorphism, it is
therefore sflicient to show that th&), generateld’. We shall do this
showing that theS), for || < r generate the spadg of tensors of order
< r modulol. The statement being trivially true for = 0, we shall
assume it verified forr(— 1) and prove it for. Again, it is enough to
prove thatS), for |o| = r generate the spad& of tensors of ordet r,
modulol + T,_1. LetX;, ® --- ® X;, be an element¢ T/. Then

X, ®Xi,®...0Xj, = Xi,®Xi; ® X, ®...+[Xi,, Xi,|®Xi,®... mod]l.
Hence, ifo is a permutation of (12,...,r),
Xiy,®X,®...0X, = Xi,f(l) .. Xi,f(r) mod (T,_1 + 1)

by successive transpositions. Nd®, = ., UsXi ). .. X (), Where
U, are positive integers. Therefore

O UK, ®...@%, =S, mod ([Tr1+]1).

Since

O U,) #0.X, ®...® X, = kS, mod T,y +1),
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and hence the theorem is completely proved.
Incidentally we have proved that the Lie algebrean be embedded
in its universal enveloping algebra by the natural rhaphis is known
as the Birkhd-Witt theorem, and it true in the more general case when
the Lie algebra is over a principal ideal ring.

4.3 Group law in terms of structural constants.

We now show that the Lie algebra of a Lie group completely atvar
terises the group locally. In other words, the group law$efitie group
can be expressed in terms of thteuctural constantsf its Lie algebra.
(If (X = @)qen be a basis of the Lie algebra, arkl,[Xj] = Ci'fjxk, Ci'fj
are called the structural constants of the Lie algebra).

Theorem 2. Lie groups having isomorphic Lie algebras are locally iso-
morphic. If they are connected and simply connected, theysamor-
phic.

Choose a basiXy, ..., X, of the Lie algebray. If 6;(x) be thei"
coordinates okin the canonical of coordinates with respect to the above
basis we have.

A0%Y) = 609 = 509 = 3 -y A
But A.6i(X) = 7x(Aabi)(€)

=) ﬂ—lixﬁAﬁ(Aaei)(e).
=4 B!

Hence 31

a63) = 3, 2y BB @)
243

AgAy = Z 0 ,A, =d,
Y
are completely known, once the Lie algelprés given, becausa, =
a! H
LS. Since

le!

o Lif r=[i]
Abi(e) = (m)X=e = 0if r#fi]



32

34 4. Relation between Lie groups and Lie algebras - Il

gl

we have ¢i(x,y) = Z af—l’;x@)ﬂ.
L alp!

Thus the group law is completely determined by the const%ats

If two Lie groups have isomorphic Lie algebras, the constdgr]& are
the same for both, and the group operation is given Iocallghb;ébove
formula, which is to say the groups are locally isomorphig.LBmma
[, Ch.[33, if the groups are connected and simply connetitegt,are
isomorphic. _

We can compute the constardg’]a in terms of the structural con-
stants of the Lie algebra and obtain a universal formula (aefor-
mula which is the same for all Lie groups - the Campbell-Hatfgd
formula). For instance, if is a multi-index of order 2 with 1 in th¢"
andk'" indices and O elsewhere, it can easily be seenAhat 3S; =
2 (XX + XiX;j) and ifCij’k are the structural constant of the Lie algebra,

1 1
Xij = E[Xj,xk] + E(ijk + Xka)

1 i 1
= E Z Clj’kxi + E(Xij + Xka)
i

. 1 .
[l _ —ci
and henced;;; 4 = 2CLk.

We have therefore
1 i
ei(Xy) =X +Vi+ > Z CiXjX + terms of order=> 3.

Again, if x = expX, y = expY (X, y; begin canonical coordinates)
andxy = expZ, we have

Z=X+Y+ %[X,Y] + terms of order> 3.

4.4

We have proved (Propl 4, O B.2) that the Lie algebra of allgmup
can be identified with a subalgebra of the Lie algebra. We reiabdish
the converse by proving the following
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Theorem 3. To every subalgebrg# of a Lie algebray of a Lie group G,
there corresponds one and only one connected Lie subgrounaving
it for its Lie algebra.

Let Xy,..., Xy be a basis of the Lie algebrasuch thatXy,..., X;
is a basis of 7. Letd be the subalgebra generatedXywith i < r in
 (G). We assert that the subspatef % (G) generated b, with a =
(a1,...,ano---)is the same a8. By definition ofS,, it is evident that
¥’ c ¥. Itis enough to show that elements of the foXm- - - X, € %’
if 1 < ix < r. We prove this by induction on the length of the product.
Now,

XiygXiy o oo = XipXig oo+ [ Xips Xip [ Xis - - -

and sincg X, X;,] € ¥, _# being a subalgebra, we have, by induction
assumption
Xilxiz... = Xizxil... mod .

If o is any permutation of (2, ..., s), we have
Xil o Xis = Xi,f(l) ... Xi,f(s)( mod 19').

It follows (as in Th[1), that) = ¢'.

Now, letU be a symmetric neighbourhood ®i which the system 33
of canonical coordinates with respectXg, ..., X, is valid. LetN de-
note the subset df consisting of points for whiclx. .1 = --- = X, = 0.

N is obviously a closed submanifold bf. Letx, y € N suficiently near
e
(x9) = Zﬂj = [%de}a

We now show thatxy); = O fori > r. In the summation, unless
botha andg are df the form @4, ...,ar,0...)%%y* = 0. If botha and
B are of the above formj,, Az € ¢ and¢ being generated b, y of
the same forndg}a = 0fori > r. Hence ky)i = 0 fori > r. Thus,
x,y€ N = xye Nandx e= x! e N for x, y sufficiently neare.

Finally, let H be the subgroup algebraically generated by the con-
nected componeriti® of ein N. ThenH can be provided with an an-
alytic structure such that the mab — G is everywhere regular. We
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define neighbourhoods efin H by intersecting neighbourhood efin
G with N2. This system can easily be seen to satisfy the neighbourhood
axioms for a topological group (Prap 1, CA-]1.1). For everg H,
the neighbourhoodN! of x can be provided with an analytic structure
induced by that ofG, sincexN is a closed submanifold ofU. For
X,y € H, these analytic structure agree @N* N yN! because those of
xU andyU agree orxU NnyU. H of course has# as its Lie algebra.
We now prove the uniqueness of such a group. Hkbe another
connected Lie subgroup having for its Lie algebra. Exp# is open
in H1, as the ma — exphis open (Th[R, CH314). Butexy¥ c H.
HenceH is open inH!. AsH is open, it is also closed (CIit_1.2) and
therefore=H*. This completes the demonstration of Theof@m 3.

Remark. We have incidentally proved that if a Lie subgroup hésfor
its Lie algebra, it containkl as an open subgroup.

It has already been proved (Pr@p. 1, Chl 3.1) thdtiflG —» His a
representation of Lie groups, there exists a representdtia g — ¢
of Lie algebras. Now, we establish the converse in the foria of

Corollary. Let G and H be two Lie groups havingand ¢ as their Lie
algebras. If G is connected and simply connected, to evgngsenta-
tion 7 of gin ¢, there corresponds one and only one representation f
of G — H such that df= .

If there exists one such representation, by Pidp. 5, [CH. it3ig,
unique. We shall now prove the existence of suct an

We first remark that iff is a representation @ in H, K the graph
of f in GxHviz the set{(x, f(X)), x € G}, and2 the restriction tK of
the projection olGxH — G, then2 is an analytic isomorphism. Con-
versely, to every subgroup &xH the first projection from which is an
isomorphism tdG, there corresponds one and only one representation
of Gin H. gx_¢ is evidently the Lie algebra @ xH.

Now, Letnr be a representation @fin _¢#. Let K be the subset
{(x,7(X)), x € g} of g x _Z. It can easily be seen th&f is a subalgebra.
Then there exists (TH] 3) a connected Lie subgriupf GxH whose
Lie algebra is isomorphic td¢. Let A be the restriction t&K of the
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projection of G x H — G. Thenda is the mapK — g defined by
da(x, 7(x)) = x. Obviouslydr is an isomorphism. Henceis a local
isomorphism ofK in G. K is therefore a covering space Gfand G
being simply connected} is actually an isomorphism. To this there
corresponds (by our remark above) a representatiari G in H,the
graph of whose dierential isK, i.e.df = .

4.5

Theorem 4 (E. Cartan) Every closed subgroup of a Lie group is a Lie
subgroup.

For proving this, we require the following

Lemma 1. Let G be a Lie group with Lie algebra Letg be the direct
sum of vector subspacesé. Then the map f (A, B) — expAexpB of
g — G is alocal isomorphism.

It is obvious thatf is an analytic map. To prove that it is a local
isomorphism, it is enough to show that the Jacobian of the mdp
in a neighbourhood of (@). Let (X3,...,X;) be a basis oft/ and
Xri1,. .., Xn, @ basis ofs. Let (y1,...,yn) be the canonical coordinate

n
system with respect toXg ... ., X,) andyio = fi. Then, ifX = 3, yiX;,
i=1

fixi = exp O yiX) exp (O X))
i=1 j=r+1

of, . d o 3
6_y|(0) = G (&XP LX)k (t=0) = (X1-X)x-e = 0.

Hence Jacobiag 0 at (Q 0) and by continuity 0 in a neighbour-
hood of the origin. This completes the proof of the lemma.

Let H be a closed subgroup of a Lie gro@ We first construct a 36
subgroup_¢ of ¢ and prove that the Lie subgroup of G with J as
its Lie algebra is relatively open iH. ThenH is the topological union
of cosets oH moduloH* and is hence a closed submanifoldGf

Let ¢ be the setX € g : exptX € H for everyt € R}. We assert
that ¢ is a Lie subalgebra af. To prove this, we have to verify
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(i) Xe ¢ = aXe ¢ foreverya€R
(i) XYe 7 =>X+Ye 7
(i) X,Ye 7 =[XY]e 7.

(a) is a trivial consequence of the definition.
(b) Let nowX,Y € _#. We have seen that (Ch%.3)

expXexpY = expX + Y + %[X’Y] +00)

tX tY X+Y 1t 1
H p— exp—)" = ~—[X Y] +0(= )"
ence (ex - exp n) (expit + 2n2[ , +0(n2})
t2 1

=exp{t(X+Y) + %[X,Y] + O(E)'}

tX tY . tX
But epr, epr € H andH is a subgroup. Therefore (e

tY . . . tX tY
epr)”e H and sinceH is closed, ] Iln(epr epr)n =
expt(X +Y) (by the above formulag H. HenceX + Y e 7.

(iv) As before,

tX tY —tY —tY, 2
XY lim (exp— exp— exp— exp—)" € H.
€ 7 = |im (exp—exp—exp—exp—)" ¢

The right hand side in this case tends to &iX, Y] asn — c.

Hence exp[X, Y] € H for positive values of, and since exp(t
[X,Y]) = (expt[X, Y])~* for all values oft, i.e. [x,y] € .

Let K be the connected Lie subgroup Gfhaving _# for its Lie
algebra (Th.[18, Ch[Z4l4). We now show tHgtis open inH. It is
obviously stfficient to prove thaK contains a neighbourhood efin
H. If U is a vector subspace afsupplementary to#, by LemmaL,
there exists a neighbourho®tiof 0 in g such that the map : (X, A) —
expXexpA, X € ¢, A e U is an isomorphism of/ onto A(V) = W.
Suppose thaK does not contain any neighborhoodein H. Then,
we can find a sequence of poirdg € H N W which are not inK and
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which tend toe. There is no loss of generality in assumiagto be of
the form expAn, An € U NV, Ay # 0. For, Ifa, = expX, expA,, then
(expXn)~ta, = expA, ¢ K. Let V! be a compact neighborhood of 0 in
g c V/2. For stificiently largen, A, € V1. Letr, be the largest integer
for whichrpA, € V3. i.e. (n + 1A, ¢ V™.

But

(tn+ DA =ry(A) + An e V/2+V/2=V  a" e W = 1 (V)

anda™™! ¢ W! bute W. SinceW! is compact, we may assume (by
taking a suitable subsequence) thgtconverges to aa € W!. Now,
we assert tha # e. For,ifa=ea™ =a, ™a, — e Butal cannot
tend toe. Hencea # e € W!. Thereforea = lim anr, = expA with
A#0andAe UnVL

We shall now show thad € _#, which willimply that_# nU # (0)
and hence will give the contradiction we were seeking. Itrisugh
to show that exp/qgA € H for every rational numbep/g. Now let
prn/q = S + tn/Q, Sy an integer and & t, < q.

pA Prn
exp— = lim exp(—A,
Py = am, p( J )

thAn
(q)

= r!im expshAn exp

t . .
Now, exp—nAn — easn — oo, and limexps,A, = lima,® e H 38
n—oo N—oo
asH is closed. Hencé € _#, and Theorerfil4 is completely proved.

Remark. The theorem is not true in the case of complex Lie groups. For
instance, the space of real numbers is a closed subgroup obthplex
plane, but is not a complex Lie group.

Corollary 1. Every continuous representation f of the underlying topo-
logical group of a Lie group G into that of another Lie group Blan
analytic representation.

In fact, the grapiK of f is a closed subgroup of the Lie groGxH,
and hence is a Lie subgroup. Théis the composite of the majis —
K, andK — H, and both of them can be seen to be analytic. As an
immediate consequence, we have the following
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Corollary 2. Lie groups with isomorphic underlying topological group
structures are analytically isomorphic.

4.6 Some examples.

We have seen that the general linear gr@lgn, R) is a Lie group, and
by Theoreni}4, every closed subgroup, and in particular, ttregonal
and symmetric groups are Lie groups. A group matrices defined
some polynomial identities in the cieients of the matrices is a Lie
group.

We proceed to studiL(n,R) in greater detail. I1ix € GL(n,R) is
the matrix @;j), x,j = &, j — dij is a coordinate system which takes the
unit matrix to origin in the spacR”Z. Now,

@i j(X%Y) = Xij +Yij+ Z Xi.kYk.j
K

Tyf(X) = f(x+u)
of & of
= f -
(x)+§y.,,( iy 2w
The left invariant diferential operators of order 1 are therefore gen-
n
erated byxij = 3 ak.i The X j form a basis of the Lie algebra

k=1 '

i
of GL(n,R).Y = Zﬁj Xi.j is a generic element of the Lie algebra. We

associate the matriX = (4i,;) with this elementy. we now have the

Proposition 2. The map Y— Y of the Lie algebra of G(o, R) into the
algebra of all n-square matrices7,(R) is a Lie algebra isomorphism.

Let Y be an element of the Lie algebra @L(n, R). We show that
the mapt — exptY assigns td the usual exponential matrix exjg. It
has been proved (CR_B.3) that exptY satisfies

0X%.j 0pi.j
— = Ak (X(t), €
5 ; gy, 040-9
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= Z A161 (i k + Xik)
kI

= Z A (0ik + Xik)
K

i.e. X is a matrix satisfyingdgtx(t) = x(t)Y with x(O) = I. These two

conditions can easily be seen to be satisfied bytéxBy the unique-
ness theorem on filerential equations, exyy = exptY, where the latter 40
exponential is in the sense of the exponential matrix. LeZ € g the
Lie algebra ofGL(n,R). The mapX — X is trivially a vector space
isomorphism ofy onto.Z,(R). Now,

expYexpZ = exp(Y + Z + %[Y,Z] +---) by Ch.[43.

But  expYexpZ= (Z T,—:)( Z ZHT)

- s Y?
=1+Y+Z+E+-~-

and
1 5.5, 102, o5, 50, 52
exp(Y + Z + E[Y’Z] +-0)= l+Y+Z+§(Y +9Z+2ZY +Z29) +---
Comparing the cd@cients, we get
[YZ] = [V.2].
d
Remarks. (1) Y = d—t(eXptY)t:o-

(2) The Lie algebra of a closed subgrodpof GL(n, R) is simply the
Lie algebra of matrice¥ such that expY € H for everyt € R (by
Theorenl#, CH415).

(3) LetB(a, b) be a bilinear form oR".

Then, the set of all regular matriceswvhich leaveB(a, b) invariant
is a Lie subgrougd of GL(n, R). Then the Lie algebra of this Lie Group
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consists of matrice¥ such thaB(Ya b) + B(a, Yb) = Ofor everya,b e
R". Infact, if Y is in the Lie algebra, exf¥ € H, B being invariant under
H, B (exptY a exptYb) = B(a, b). But

tP+a
-B(YPa, Yb).

B(exptYa exptYh) = Z |

Hence
B(Yab)+B(a, Yb = 0.

Conversely, ifY satisfies this condition, by induction it can be seen
p+q
that ol B(YPa - Y9b) = 0, which proves thaB(exptY a exp
p+a=n P'Q:
tYb = B(a,b), i.e. exptY € H for everyt € R This proves thal
is in the Lie algebra oH.

4.7 Group of automorphisms.

Let G be a connected Lie group. Then the set of automorphisn@ of
(continuous representations @fonto itself), form a group. We shall
denote this group by AG.

Leta@ € AutG. This gives rise to a mage : ¢ — g whereda is an
automorphism of the Lie algebra. We thus have a mapGAut Aut g.
This map is one-one, and, @ is simply connected, onto. We have, in
this case, an isomorphism of ABt— Autg, for d(a1, @2) = day o da>
andda™! = (de)™t. Now, Autg c GL(g). Autg is actually aclosed
subgroupof GL(g). For, if Ci'fj be the structural constants gf A €

Autg & [A(X), A(x))] = zciij(xk) for everyi, j andA e GL(g), {X}
o,

being a basis of. Since Aui is determined by thes@ equations, it is
a closed subgroup @ L(g). Hence, Aut is a Lie group.

Proposition 3. LetT" be the Lie algebra oAutg. Then Xe Hom(g, g)
(which is the Lie algebra of Gg)) is inT if and only ifexptX € Autg
for every tin R. This is obvious from the proof of Theofém 4 [A75.

Proposition 4. X € Hom(g, g) is inT if and only if X is a derivation.
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42 By PropositiorB,
(exptX)[Y, Z] = [exptX - Y, exptX - Z]
. thxn tP*d
e, > —-([v.2]) = > ﬁ[xIDY, X97]
P

n!
X"[Y,Z] = p;n S X
+Q=

for everyn. In particular
X[Y,Z] = [XY. Z] + [Y, XZ]

X is therefore a derivation. Conversely,

|
X[Y.Z] = [XXZ] + [N XZ = XX, 2] = ) —[XPY.XZ]
praen PP

by induction omn = exptX[Y, Z] = [exptX - Y, exptX - Z].

HenceX eT.

In other words, the Lie algebra of Agtis only theLie algebra of
derivations ofg (it is a trivial verification to see that the derivationsgof
form a Lie algebra and the set iminer derivations(Remark 1, Ch[ZZ]8)
form an ideal in that algebra).

Now, corresponding to every € G, there exists an inner automor-
phismpy : X — yxy ! of G. Obviouslyy — py is an algebraic represen-
tation of G in AutG. py induces an automorphisdpy of g. We denote
this byady:.

y — adyis an algebraic representation®fin Autg. We now show
that this is an analytic representation. By Corollary todree4, Chap-
ter[43, it is enough to show that this is continuous, i.ey # e then
adyX — X for every X € g. SinceG andg are locally isomorphic, it
suffices to prove that ag— e, yexpXy ! — expX but this is obvious. 43
This analytic representation @ in AutG = Autg is called thead-
joint representatiorof G. Let 8 be the diferential of the representation
y — ady. We now show that this is actually tleljoint representation
(Ch.[ZB) of the Lie algebra.
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Theorem 5. §(X) = ad X for every Xe g.
By Remark 1, Prod]2, CR 4.6,

d
o(X) = {d_t(eXp t (X))} =0
d
=5 (ad exp t X)t=0
by definition of exponential. We have now to show thgX)Y = [X, Y]

for everyY € g. Letx = exptX - 9(X)Y = dEt(ad Y)i-0. But @dx Y fo
px = Y(f o py) wheref is any analytic function ofs. It follows that

oy10T1adXYf=Yo, 10110 f
or (@dxY) oty =150 0xYo 1
= TxY

sinceY is left invariant
adx Y= 1xY1y1.

But

n

n>|(n f(e) (Prop.[®, Ch[(314)

thm (_t)an
ml n!

7 f(€) = f(exptx) = Zt

Hence adx Y= Z
m,

tm+n

n
- %‘1(—1)n g XMy X0

Therefore
O(X)Y = {dgt(adx V-0 = XY-YX=[XY].

Corollary . Let H be a connected Lie subgroup of G. H is a normal
subgroup if and only if its Lie algebrag# is an ideal ing.
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In fact, if H is a normal subgrougy(H) c H for everyy € G, i.e.
ady # c ¢ foreveryye G. LetX eg. Thenad expX 7 c 7.

dgt(ad exptX)o # =ad X 7 c ¢

l.e. ¢ is anideal.
t"ad X"

Reciprocally, let # be an ideal. ak 7 c ¢ - (X o )J C
J. Butexptad X = ad exptX - (adexptX)H c H for everyXin a
neighborhood oé. SinceG is connectedH is normal.

4.8 Factor groups.

Theorem 6. Let H be a closed subgroup of a Lie group G. The homo-
geneous space B is an analytic manifold in a canonical way. The
operations by G on &H are isomorphisms. If H is a normal subgroup,
is a Lie group, and its Lie algebra is isomorphicgp 7.

Let # be the Lie algebra oH, and let?{ be a vector subspace
of g supplementary to 7. We have seen in the proof of Theoré&in 4,
Ch. [Z3, that there exists a neighborhostiof (0,0) in _# x U such
that the mapt : (X, A) — expXexpA is an isomorphism o¥/! onto
a neighborhoodN?! of ein G. Let U andV be neighborhoods of 0 in
¥ andU respectively such thdt x V ¢ VI andwWw? c W with
W = A(U x V). We now show that = expV is a cross-section of the
canonical map; : G — G/H in the neighborhood®V = 5(W) of n(e).

In other words,L N Hx contains one and only one element for every
x € W. For, we havex = expXexpA with X € U andA € V and
expA € L n Hx. On the other hand, if exfy and expA; belong toH x
(with Ag, A; € V), then expAi(expAz)~t € H N WY; hence there exists4s
anX eVin _#Z such that exp\; = expX expA; and this impliesX = 0,

A; = A, becausel is an isomorphism fronv! onto WX,

We can, therefore, provide&/ with a manifold structure induced
from that of 4. This can be extended globally by translating that on
W. It is easily seen that on the overlapd/, YW, the analytic structures
agree because the analytic structurais induced from that of/. By
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the definition of the manifolds/H, it is obvious that the operations by
G onG/H are analytic isomorphisms.

If H is normal subgroup;/H has also a group structure and is a Lie
group with the above manifold. By Theordih 6, Chl4,8,ia an ideal
of ¢ andifK is the Lie algebra o6/H, the map; :— G/H gives rise
to a representatiodn : _# — K. The kernal of this map is# since
K is isomorphic as a vector space to the tangent spaeefat which
isU. Hences?’/ ¢ is isomorphic toX as a Lie algebra also, i.&/H
has its Lie algebra isomorphic tg ¢ .

Corollary. Let f be a representation of a Lie group G which is count-
able ateo in another Lie group H. Then the imaggG) is a Lie sub-

. . f
group. If N is the kernel of f, then f can be factored inte“6G/N —
H wherer is the canonical map anél an injective regular map.

The proof is an immediate consequence of the isomorphisanghe
on Lie algebras and Theordrh 6.
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Chapter 5

Measures on locally compact
spaces

1.1 Definition of a measure.

In this chapter and the following, we shall give a brief surmynat cer- 46
tain results on measure theory, a knowledge of which is ¢éissenwhat
follows.

Let X be a locally compact topological space &idthe algebra of
continuous complex-valued functions &nwith compact support. Let
K be a compact subset #fand%x the subsetf: support off c K} of
%x. Then%x is a Banach space under the ndrfij = sup| f(X)|.

xeK
Definition. Ameasuren X is a linear form or¢x such that the restric-
tion to %k is continuous for every compact subset K of X. A megsure
is said to bepositiveif u(f) > 0for every f> 0.

Proposition 1. Every positive linear form of# is a measure on X.

In fact, if K is any compact subset &, there exists a continuous
function f on X which = 1 in K, = 0 outside a compact neighbourhood
of Kand 0< f < 1. If gis a function belonging t&k, obviously
—llgllf < g <|glf and hence

=llgllu(f) < (@) < liglu(f).

47
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ie.,
(9l < llgllu(f),

which shows that: is continuous when restricted % .

Onthe other hand, ji is any real measure (i.e. a measuich that
u(f) is real whenevef is real) it can be expressed as th&eatience of
two positive measures. Moreover, a complex meaguan be uniquely
decomposed inte + iv' wherev andy’ are real. Hence a measure can
alternatively be defined as a linear combination of positivear forms
on %x. For a real measung there exists a unique ‘minimal’ decompo-
sition py — uz (u1, 42 positive) in the sense thatif = ) — u), be any
other decomposition, we hay€ = u1 + &, u5, = uz + 7 with & positive.

1.2 Topology on%.

The spac&x = | 6k whereK runs through all the compact subsets of

X can be providgd with the topology obtained by taking thedatilienit

of the topologies orsk. This topology makes o&x a locally convex
topological vector space. The fundamental property ofghace is that

a linear map oféx in a locally convex space is continuous if and only
if its restriction to eacl¥x is continuous. (Bourbaki, Espaces vectoriels
topologiques, Chaptdll 6). A measure is, by definition, ainants
linear form on%x with its topology of direct limit. The space”y of
measures is none other than the duakgf One can provideZx with
several topologies, as for instance, the weak topology iolwh— 0 &

for every f € éx, u(f) — 0.

1.3 Support of a measure.

Definition. Thesupportof a measure: is the smallest closed set S such
that for every function fe €x whose support is contained in XS,

u(f) =0.

Let .#° be the space of measures with compact support. i$f a
continuous function orX, for everyu € .#°, we can definq(f) =
u(af) wherea is a function 1 on a neighbourhood of the supgérof
u, and 0 outside a compact neighbourhoooflt is obvious that the
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value ofu(f) does not depend an We shall denote by the space of
continuous function oiX. &% with the topology of compact convergence
is a locally convex topological vector spacg. defined onéy in the
above manner is continuous with respect to this topologyavEely,
let u be a continuous form o#y. The topology orfé is finer than
that induced from the topology @f;. Henceu restricted tdg is again
continuous and is consequently a measure. We now show thadtah
compact support. Singeis a continuous function o0&, we can find
a neighbourhood/ of 0 such thatu(f)| < 1 for everyf € V. V may
be taken to be of the forrff : |f| < € on K} as the topology o is
the topology of compact convergence. Igee %x be a function 0 on
K. Then|u(g)] < 1. If 2is any complex numbeg(1g) = Au(g), and
lu(1g)| < 1. Henceu(g) = 0, i.e. the support gf is contained irK.

1.4 Bounded measures.

Let 4 ba a measure .#x. We define a positive measuyd in the
following way:

lulf = sup |u(g)| for every positive functionf and extend it by
O<lgi<f

linearity to all functionse ¢x. If u is a real measure with the minimal
decomposition (CHIl 1) = 1 — up, thenju| = u1 + uo.

Definition. A measureu is boundedif and only if there exists a real
number k such that(f)| < k|| f]| with || f|] = sup|f(X)|.
XeX

Obviouslyu is bounded if and only ifu| is boundedy is continuous 49
for this norm and can be extended to the complet@tn(which is only
the space of continuous functions tending to zerept%’x is actually
the adherence ofx in the space of all continuous bounded functions.

The space of bounded measures is a Banach space under thigfierm

sup M |lul] is the smallest numbdesuch thafu(f)| < K||f||. It can

feiﬁx ”f”
proved that every bounded continuous function is integralith respect
to a bounded measure, and we have still the inequiglfth)| < ||u| || f|l

for bounded continuous functiorfs
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1.5 Integration of vector valued functions.

We introduce here the notion of integration of a vector vdlfiection
with respect to a scalar measure, a use of which we will haaguint
occasions to resort to in the sequel. Kebe a compact space akd lo-
cally convex quasi-complete topological vector space évery closed
bounded subset is complete). We shall provide the s@dte E) of
continuous functions oK into E with the topology of uniform conver-
gence.

Theorem 1. Corresponding to every measyieon K, there exists one
and only one continuous linear mamf %' (K, E) in E such thafi(f-a) =
u(f)-afor every continuous complex valued function f on K arda

1 can obviously be lifted to a linear mapof ¢ ® E in E by setting
u(c®e) = u(c)eand extending by linearity. Als&’ ® E can be identified
with a subset of the spac€(K, E) of continuous functions oK into
E. We will now show thaj: is continuous with respect to the induced
topology on%’ ® E and that#’ ® E is dense irg’ (K, E). We will in fact
prove more generally that every functidne ¢ (K, E) is adherent to a
bounded subset ¢f ® E.

Let V be a convex neighbourhood of O b Then there exists a
neighbourhood\ of each poinx € K such thatf (y)-f(x) € V for every
y € Ax. Now theAy cover the compact spateand letAy,, ..., Ay, be
a finite cover extracted from it. Let be positive continuous functions

n

on K such that}] ¢; = 1 and the support af c Ay. If g = X ¢i f(X),
i=1

theng € ¥ ® E, and we have

9y - f0) = D @) - > i)
= > @) - F)]

€ V sinceV is convex.

By allowing V to describe fundamental system of neighbourhoods
of 0, we see that is adherent to the set of such functiansThis setis a
bounded subset &f (K, E). For, 3 ¢i(y)f(X) is in the convex envelope
of f(K) for everyy € K and the convex envelope of a compact set is
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bounded. It follows thad’ ¢; f(x) are uniformly bounded and hence
form a bounded subset &f(K, E). This proves, in particular,th& ® E
is dense ir¢'(K, E).

Now letg = Y gia be a functione ¥ ® E tending to zero in the
topology of (K, E). Then(} gia,a) — 0 uniformly on the compact
setK and on any equicontinuous subsebf the dual ofE.

wga) =u( | g, a)
=u() gi@.a)) = > u(g)a, a)
= (O u(ga, a) = (g, &)

51

Since(g,a) — 0 uniformly onK x H, u(g,a’) — 0 and hence
(g, @) — 0 uniformly on any equicontinuous subgétof E. Conse-
quentlyug — 0. This shows that is continuous or¥’ ® E.

Thereforeu can be extended uniquely to a continuous linear map of
% (K, E) in the completiorE of E. Butif f € ¥(K, E), itis adherent to a
bounded seB andu(B) is also bounded i&. By the quasi-completeness
of E, the closure of«(B) in E andE are the same. Henggf)e u (B)
c u(B) c E. Thus we have extendadto a continuous linear map ~
of ¥(K,E) — E and it is obvious this is unique. Now by Theorem
[, if G be any locally compact space apda measure oG, we can
definef f(X)du = f(f) for every continuous functiorf from G to E
with compact support.

Remark. The measure with this extended meaning is factorial in char-
acter in the following sense: L& andF be two locally convex spaces
and f a continuous map of a compact spidato E. If Ais a continuous
map ofE in F, we haveAf € (K, F) andu satisfieu(Af) = Au(f).






Chapter 6

Convolution of measures

2.1 Image of a measure
52

Definition. Let X, Y be two locally compact topological spaces arad
map X — Y. Letu be a positive measure on X. ThHnis said to be
u— properif for every function fe %, f o x is integrable with respect
tou. The valueu(f o 7r) depends linearly on f and is therefore a linear
form on%,. In other words,u(f o n) defines a positive measure on
Y, which we denote by(u). We have, by definitionﬁ( f(y)dr(u)(y) =

fx f o r(X)du(X).

If 1 is not positive, but is equal tQu{ — o) + i(uz — ua), pa, u2, U3,
g positive, and ifr is |u| - proper, we can define the image measure

m(u) = mlu1) — m(uo) + in(uz) — in(ua).
Examples.

(1) A continuouspropermap ofX — Y (i.e. a map such that inverse
image of every compact set is compactyisproper for everyu.
Infact, f € 6k — f o € €,_1x) andn~1(K) is compact.

(2) Letn be a continuous map — H and letu have compact support

K. Thenr is u-proper; the support of(u) c n(K) and is hence
compact.

53
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If fisa continuous function oH with compact suppotK, f o x
is continuous and hengeintegrable (Ch[ZT]3). This shows that
is u-proper and iff = 0 onn(K), thenfonr = 0 onK and therefore
u(f om) =0, i.e. support ofr(u) c n(K).

(3) More generally, whem is continuous and: bounded,r is u-
proper. Alsar(u) is bounded andr(w)|| < [|ul.

In fact, f o 7 is bounded and in view of the remark in Ch]1f4 =
is integrable with respect {o. Moreover,

@l _ @0 7))

Im(u)ll = sup up ————= < ||ull
g, Dl g%, 9ol

2.2 Convolution of two measures.

Let G, H be two locally compact topological spaces and measures
onG, H respectively. Then there exists one and only measoreG xH
such that iff, g be functions with compact support respectively@n
H we have

f F(a)dA(Y) = ( f F(du() f ) (y)).

A shall be called the product measureucdindy.

If u© andy are two measures on a locally compact gr@jpve denote
the product measure hy® v and, if the group operation: GxG —» G
defined by k,y) — xyisu®v - proper, its image i by u=v. The latter
is said to be theonvolution producbf u andv. The most general class
of measures for which convolution product can be definedrareet for
which f(xy) is integrable with respect to the product measure for every
function f € %s. The following cases are the particular interest to us:

(1) If u andv are bounded, the convolution product exists and is
bounded.

This is almost obviousy being continuous and ® v bounded
(Example 3, Ch[ZZ11).
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54 (2) If u andv are measures o8 with compactsK, K’ respectively,
= v exists and has compact support. In fac® v has support
c K x K’. Hence, convolution product exists, and has support
c KK.

(3) If either u or v has compact support; = v exists. Letf be a
continuous function o with compact supporK and letu have
compact suppotK’. Obviously

[ttt = [ auco [ oo

Hencef(xy) is integrable with respect {@® v. Consequentlyy = v
exists.

We denote as usual hy7?, .#°¢, &2 the spaces of bounded mea-
sures, the space of measures with compact support and tbe cpall
continuous functions o respectively. Lefl, u, v be three measures
onG such that either all three are bounded or two of them have aotmp
support. In any case the functior, ¢,z) — f(xy2 is integrable with
respect tol ® u ® v and hence Fubini’s theorem can be applied.

[[[ 1ovai0u010@ = [[ava [ [ fovadiceue)
_ f () f F(2)d( * )(t)

_ f F()d( * g)Odv(D)

= {(4 = p) = vif
={Ax (uxv)}f

by a similar computation. This shows thmat with the convolution prod-
uct is an associative algebra and that acts on.# on both sides ands5
makes it a two-sided module. Moreove#* is actually a Banach alge-
bra under the usual norm, since we hixe: v|| < [|ull IVl

Remarks. (1) Itis good to point out here that the associativity does
not hold in general. Take,for instand®to be the locally compact
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group andl the Lebesgue measure. Lebee; — € (€5 begin the
Dirac measure at a - see dh.]2.5 and ¢(x)dx wherey is the
Heaviside function vizy = 0 for x < 0 and=1 for x> 1. Then
(Axpu)=v =0anda = (u=*v) = dx Againa = (u = v) may exist
without A = u begin well defined. LeR be the locally compact
group, A andu Lebesgue measures &andv = ¢ — . Then
A (u=v) =0 butd*uis not defined. However, whef(xy2 is
integrable with respect t& ® u ® v then the convolution product
is associative.

The formula for the integration of functions with respéx the

convolution of two measures is valid also for vector-valfigalc-
tion. Thus we have

f F(d(u * v) = f () ().
G

2.3 Continuity of the convolution product.

That the convolution product is continuous.i#? is trivial in virtue of
our remark that it is a Banach algebra. Regarding the catyioéithe
convolution product in the other cases, we have the follgwin

Lemma 1. Let f be a continuous function apda measure on G, one of
them having compact support. Th@nthe function ¢x) = f f(xy)du(y)

is continuous;(ii) the map f— g is a continuous linear map &g in
é"g (with the usual topologiesiii) if 4 has compact support, then the
above map f— f f(xy)du(y) is also continuous frond — &2 and
fromés — 6G.

(1)

Let H andK be two compact subsets & ThenH x K is also
compact and (xy) is uniformly continuous omd x K. For every
€ > 0, and for everyx € H, there exists a neighbourhodd of x
such thaff(x'y) — f(xy)| < e for everyx’ € U n H andy € K.
If f has compact suppo®, we choose a compact neighbourhood
H of x andK such thatHS™! c K. If y ¢ K, thenxy, Xy ¢ S.
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Hence

| {1609~ fo0}du o

G-K

So, we have

9(x) - 909! < fK {10¢y) = 1000 blll() < elul(K)
This shows thagjis continuous. If however has compact support
C, we takeK = C and the same inequality as above results.

(2) Again, as in (i) if we assume thdthas compact suppo88 ans
HS™1 c K, it is immediate that

g0 < fK | (xy)ldll(y) for every x € H

-1
< fK F@)Idi(x L)
< sup| fllul(H*K).

Hence we have sug(x)| < sup|f||u|(H1K).
xeH

It follows that wheneverf — 0 on%s, g(x) — O uniformly on
the compact seid. A similar proof holds when has compact
support.

(3) Let nowC be the support ofi, and f has compact poK; obvi- 57
ouslyg € ¢kc— 1. Since the mafgs — &¢ is continuous, so also
is the mapéx — %kc-1 and by the properly of the direct limit
topology, s — %g is continuous. An analogous proof holds for
the other part.

2.4 Duality and convolution products

Let E be a locally convex topological vector spaceEirits dual. Then
E’ can be provided with several interesting topologies (BakirbEs-
paces vectoriels topologiques, Chagfier 8). The followhmge are of
fundamental importance:
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() Theweak topologyin whichx" € E’ — 0 if and only if (X', X} —
O for everyx € E.

(i) The convex compact topologin which x’ € E’ — 0 if and only
if (X', Xy — 0 uniformly on every convex compact subset, and

(iii) The strong topologywherex’ € E” — 0 if and only if (X', xX) — 0
uniformly on every bounded set.

In general, these topologies are distinctElfs a Banach space, the
usual dual is th&” with the strong topology. However, the convex com-
pact topology is often the most useful, in as much as it shthee'good’
properties of both the weak and the strong topologies. Tdiorebut
one such,£’)” = E is true for the weak, but not for the strong, topology.
The convex compact topology possesses this property. Weadinast
always restrict ourselves to the consideration of this lmpp

In particular, the spaces?, .#° being duals ofég and &g respec-
tively, they can be provided with the convex compact topplo@/ith
reference to the convolution map we have the

Proposition 1. The convolution mafu, v) — u=v is continuous in each
variable separately in the following situations:

MOEX M — MO MO M MMM — M

In fact, letu be fixed in.Z€ andv — 0in .Z. Then

wv(f) = f f(xy)du(x)dv(y)

- [ @) [ 10000,

Denoting byfy(y) the function f f(xy)du(x) the mapf — fyis con-
tinuous fromés — %c (Lemmall, Ch[Z]3). The image of a convex
compact subset being again a convex compact subset, — 0 uni-
formly on a convex compact subset. All other assertionserpiioposi-
tion can be demonstrated in an exactly similar manner.
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2.5 Convolution with the Dirac measure

If xis a point ofG, the Dirac measurey is defined bye(f) = f(X).
This is trivially a measure with compact support. kdie any arbitrary
measure. Then

e () = f F(y2 dex(y) ()

f f(x2dv(2)
v(ox — 1f).

In a similar mannery = x(f) = v(7xf). We may define left and right
translation of a measure by settid@ryv)(y) = dv(yx) andd(oxv)(y) =
dv(xty). It requires a trivial verification to establish thagv(f) = 59
v(ty1 f) andoyv(f) = v(oy-1 ). Hence we have

e*xv=0y, and vxe = T;lv.
In particular,e * 6 = oxey = €y. In other words, the map — &
is a representation in the algebraic sense of the g@inpo the algebra
M Cor #*. As a matter of fact, this can be proved to be a topological
isomorphism (Bourbaki, Intération, Chapiér 7).






Chapter 7

Invariant measures

3.1 Modular function on a group.
60

We assume the fundamental theorem relating to measurescallylo
compact groups, namely the existence and uniqueness (uusitive

constant factor) of a right invariant positive measure.u lifs such a
measure, we have

(6 % 1) * ex = ey % (¥ &) = &y * .

Hencee +u is also a right invariant positive measure. By our remark
above g+ = ku where, of coursek depends ol. We shall denoté& by
A(y)~* whereA(y) is a positive real number. It is immediate tiAgy2) =
A(Y)A(Z). A is therefore a representation®fn the multiplicative group
J 1y Xdu()

[ F(9du(3)
from that off f(y 1x)du(x) (Lemmal, ChZZI3). This representatian
of a locally compact group is said to be itedular function

of R*. In fact, the continuity ofA(y) = follows at once

Proposition 1. If a right invariant positive measure on G is denoted by
dx, then the following identity holds: dx= A(x1)dx

In fact, if du stands forA(x 1)dx, we have
du(y®) = AX Ty Hd(y®) = A(X H)dx = du.

61
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Hencedy is left invariant. So also idx for,
ff(yx)dx‘lzff(x)d(y‘lx)‘lzff(x)d(x‘l).

Sokdx? = A(x1)dx wherek is a constant. We now prove that
k = 1. Whenxis neare, A(x 1) is arbitrarily near 1 and if we takg(x) =
f(x) + f(x1), f being a positive continuous function withf&aiently
small support, we have

fg(x)dx: fg(x)dx‘1 = %fg(x)A(x‘l)dx

k being a fixed number and(x!) arbitrarily near 1; it follows that
k=1.

Definition. A locally compact group G is said to henimodularif its
modular function is a trivial map which maps G onto the unénaént
of R.

The group of triangular matrices of the ty()eél.;.'qio) can be proved

to be non-unimodular.

Examples of unimodular groups.

(1) A trivial example of unimodular groups is that of comntiva
groups.

(2) Compact groups are unimodular. This is due to the fa¢tAf@)
is a compact subgroup &" which cannot but be (1).

(3) Ifin a group the commutator subgroup is everywhere dehsa
the group is unimodular. This again is trivial AsSnaps the com-
mutator subgroup and consequently the whole group onto 1.

(4) A connected semi-simple Lie group is unimodular. (A Lieup
G is said to besemi-simpleif its Lie algebrag has no proper
abelian ideals. Consequently, it dose not have propersdeedh
that the quotient is abelian). The kernél of the representation
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dA of the Lie algebra into the real number is an ideal such that
g/-/ is abelian and is therefore the whole Lie algebra. It follows
that the mapglA maps the Lie algebra onto (0). This shows that
group is unimodular.

3.2 Haar measure on a Lie group.
62

Let G be a Lie group with a coordinate system (..., X,) in a neigh-
bourhood ofe. We now investigate the form of the right invariant Haar
measure on the Lie group. By invariance of a meagunere we mean
that [ f(xy™)du(x) = [ f(x)du(X) for y which are séiciently near

e and for f whose supports are Siciently small. We setlu(x) =
A(X)dx A. .. AdX, and enquire if integration with respect to this measure
is invariant under right translations. For invariance, eguire

f f(x’)/l(xy)‘det O¢i(X.y)

J

Xy AL A dX,

:ff(x)/l(x)dxl/\.../\dm
or still AX) = AxY)I(xy) with J(x,y) = ‘det (x y)‘

For this it is obviously necessary anditient to takel(x) = J™1(e,
X). This gives an explicit construction of the Haar measurth@ncase
of Lie groups.

3.3 Measure on homogeneous spaces.

If G/H is the quotient homogeneous space of a locally compact gsoup
by a closed subgroud, we denote the elements Gfby lettersx,y, ...
those ofH by &,n,... the respective Haar measure 8y dy, ... d&,
dn ... and the respective modular functionsAys. Also r is the canon-
ical mapG — G/H. Let f be a continuous function d& with compact
supportk. Thenf°(x) = fH f(£X)dé is a continuous function o8 (as in
lemmal, Ch[Z]3) and we ha¥&(/x) = f°(x) for everyé € H. There-
fore f° may be considered as a continuous functiorsgil. Obviously

it has supportr(K) which is again compact.
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Proposition 2. The map f— f°is a homomorphism (in the sense of N.
Bourbaki) ofés onto 6 /H.

We prove this with the help of

Lemma 1. There exists a positive continuous function f on G such that
for every compact subset K of G the intersection of HK and tippart
S of f is compact and such thﬁ‘ f(£X)dg = 1 for every xe G.

A locally compact group is always paracompact (Pidp. 3,[CH. 1
part[) and using the fact that the canonical map is open antinte
ous, we see that /8 is also paracompact. L&t be an open relatively
compact neighbourhood @in G. n(UX) is a family of open subsets
coveringG/H. Let (Vj), (V) be two locally finite open refinements of
this covering such that; c V/. Then there exist open relatively compact
subsets (), (W) such thatw; c W andz(W) = Vi. In other words
these are families of subsets such that each poi® ras a saturated
neighbourhood which intersects only a finite number of thesets. We
can moreover say that for every compact sulbsef G, HK intersects
only a finite number of\/. Now, let us define continuous functiogs
such thatg; = 1 onW and 0 outsidéV/, and selg = 3, g;. This last

summation has a sense as the summation is only O\I/er a fineing
set at each point.This is continuous, as every poif® ras a neighbour-
hood in whichg is the sum of a finite number of continuous functions.
Let S be the support of andK any compact subset &. Then HKh S
is the union of a finite number &W; and is hence compact.

Now letg” = [, g(¢x)dé > 0.

This inequality is strict as at each poixt xH intersects som&\,.
Obviously f = g/g° is a continuous function d& with S as its support.
Trivially, f9 = 1 and the proof of the lemma is complete.

Proof of the Proposition[2: That the mapf — f° is continuous from

6 — é"g has already been proved (Lemfa 1, €Chl 2.3) and it is easy
to see that this implies that the map f — f° of 65 — %g/u is also
continuous. We now exhibit a continuous map ég,n — %c such
thaty o ¢ = Identity. For this one has only to define for everg 4cn,

W(g) to bey(g)(X) = g(n(X)) f (X) wheref is the function constructed in
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the lemma. This has suppditK N S whereK is a compact subset &
canonical image iG/H is the support of.

W(@)°(x = f 9w (¢x)) F(£x)ds
H

=g@d@)j;f@mdf
- g(x(x)

by the construction of. Henceyp(y(g)) = g- ¢ is of course continuous.

Every measure’ on G/H gives rise to a measun® on G in the
following way v9(f) = V(f°) for every continuous functiof on G with
compact support.

Corollary to Proposition Bt The image of#s 1 under the map — 1°
is precisely the set of all measure @which vanish on the kernel
of the mapf — 0 of 65 — o).

This is an immediate consequence of the proposition.

Proposition 3. A measurg: on G is zero on/” if and only if du(¢x) =
6(£)du(x) for everyé e H.

By the above corollary is of the formv°® wherev is a measure ones
G/H.
Hence

f f(e P (x) = f 9 1x)dv(X)
G

G/H

_ f f (& Lpx)ddv(x)

G/H H

- [ [ s@temann

G/H H

= f 5(&) FO()dv(x) = fG 5 F(9dv°(%)

G/H



66

66 7. Invariant measures

It follows thatdu(£x) = 6(£)du(X).

Conversely letlu(éx) = 6(£)du(X).

Let f, g be any two continuous functions @ with compact sup-
port. Then

() = fG F() (%) fH g(ex)de
- f (e 1000 du(e 1 0)de
- f (e 19000 L) du(x)de

_ f F(EX)0SE) (o)

(by Prop[, Ch[Z3]1)
= u(f°g).

If fisin.#, one can choosgsuch thag® = 1 on the support of .
Thenu(f) = u(fg®) = u(f%) = 0. Henceu = 0 on.#".

If there exists an invariant measur®n G/H, thenv® must be the
Haar measure and conversely if the Haar measure is of thevfbtnen
v is aninvariant measure ors/H. Henced(¢) = A(¢) is a necessary
and stficient condition for the existence of a right invariant measan
G/H.

3.4 Quasi-invariant measures.

Definition. LetI” be a transformation group acting on a locally compact
space E. We say that a positive measuen E isquasi-invarianby T’

if the transform ofu by everyy € I' is equivalentto i in the sense that
there exists a positive functiol(x,y) on E x I" which is bounded on
every compact subset and measurable for eashich that g(y, X) =

A(X, y)du(x).

If under the above condition#(x, y) is independent ok, the mea-
sure is said to beelatively invariant
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Proposition 4. There always exists a quasi-invariant measure on the
homogeneous space/B.

We prove this by making use of

Lemma 2. There exists a strictly positive continuous functipon G
such thaip(£x) = 6(£)/A€)p(X) for every xe G andé € H.

Let f be the function 016G constructed in Lemnid 1, Ch—B.3. Define

4[] o

Then it is an immediate verification to see thétx) =

o(n)

A()()

and thafo is positive continuous.

Proof of Proposition[: Letu be the measurg(xX)dxonG, wherep is
the function of Lemm@&l2. Then
()
du(éx) = —Sp(X)A(£)dx
A@)
= 6()p(¥)dx = 6(£)du(x).
By proposition[l, Ch[Z]4, there exists a measun G/H such

that
du(x) = dv2(x).

Now (xy) 67
du(xy) = p(id (%)
and hence we get
dv(n() = 29y ().

p(X)

p( Xy) depending only on the coset ®imoduloH. v is therefore quasi-

().

invariant.
This incidentally gives also the following relation betwetbe Haar
measure o1 and the quasi-invariant measure ®yH, viz.

f {(Rp0dx= [ cbla(o) f Xz,

G/H
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If we relax the condition of continuity op, then we can assert that
all the quasi invariant measures GriH can be obtained this wayl[6].
Sov is relatively invariant if and only if there exists a posifunction
o onG Such thap(xy)/p(X) = p(y)/p(€). If we takep(e) = 1, we have
p(xy) = p(X) - p(y) with p(&) = 6(&)/A(£) for everyé € H. In other
words, the one dimensional representation> 5(£)/A(¢) of H can be
extended globally to a representationGof

3.5 Some applications.

Let G be the group product of two closed subgrodpandB such that
the map § b) —» abof Ax B —» G is a homeomorphism. Then the
homogeneous spa€&/A is homeomorphic td. We define a function
on G by settingo(ab) = §(a)/A(a). To this function, there corresponds
a gquasi-invariant measure @yA such that

fG f (ab)s(a)/A(a)dx = fB du(b) fA f(ab)da

If x = ab, we havep(xb)/p(X) = p(ab’b)/ @) = 1 by definition.
Hencedu(b) is right invariant, andlu(b) = db.

Let dr X, d x denote respectively the right and left Haar measures.
Then [, f(ab)o(a)/a@drx = [ d:b [ f(ab)da, or again

a A(a)
j;f(x)drx_f f(ab) 5 chadb

AxB

- f f(ab)A(a)d ad b

AxB

Thus we have got the right Haar measure®im terms of the Left
and right Haar measures @ B respectively and the modular func-
tion onG. This dependence on the modular function can be done away
with if we restrict ourselves to unimodular groups.Thushia tase of a
unimodular grougs, we have the simple formula

fG F(X)d X = f f (ab)dyad b

AxB
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Again whenA is a normal subgroup, we ha¥é) = A(a) or A and

hence
ff(x)dm:f f(ab)d;ad b.
G

AxB

3.6 Convolution of functions

Definition. A function f is said to béocally summablevith respect to a
measureu if for every continuous functiop with compact supportp f
is u-integrable.

This has the property that for compact Bety(K) f is u-integrable.

If f is locally summable, the map — f¢fdy is a continuous
linear form on%s and hence defines a measure denoted:by et now
f be locally summable with respect to the Haar measur&and v
another measure o8. We shall assume that; = v exists. Then for 69
every continuous functiog with compact Support, we have

fr *vig = f 9(xy) F () dxch(y)

- [ @6 [ aoaregax
- [ @0 [ at0oax

Now the map % y) — (xy1,y) obviously preserves the product
measural xdv(y) on GXG because for continuous functionsvith com-
pact support we have

[[ ot padre = [ [ uxydxao)

Hence [[ f(xy 'g(x) dxdv(y) exists and the theorem of Lebesgue-
Fubini can be applied. It therefore results t[fait(xyl)dv(y) exists for
almost everyx and g(X) f f(xy H)dv(y) is integrable, In other words,
[ f(xy1)dv(y) is locally summable. If we denote Byx), [ f(xy*)dv
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(y), this can be expressed Iy = v =un. We can now define the con-
volution of a measure and a locally summable functioby putting
h(x) = f = v(x).One can similarly define a convolutior u; =ux where
k(x)=v = ()= [ f(y XAy H)dv(y). This is unsatisfactory in as much
as itis necessary to choose between left and right beforeamigentify
functions with measures. Thus the notion of convolution &fraction
and a measure is not very useful in groups are not unimodular.

Let now f, g be two locally summable functions @& Then we can
define convolution of and g such thaty * ug = us-g by setting

fegx) = f fxy gy)dy
- f F)aly A Ydy

But we have in Profl1, CE_3.1 thafy 1)dy = dy .

Thus the convolution of andg can be satisfactorily defined even if
the groupG is not unimodular.

Note that the convolutions of two measures and of a measura an
function are uniquely defined, whereas the convolution offuwmctions
is defined only upto a constant factor, as it depends on thecplar
Haar measure we consider.

If f andg are integrabley, ug are bounded and so jg-g. Conse-
quently f « g is also integrable. Thus the mdp— u; is an imbedding
of L1 in .#' as a closed subspace. It is linear and one-one and also
preserves metric, for,

||f||1=f|f(x)|dx=f|duf|snufn and

on the other handjus|| < |/f|l1, trivially. Actually L! is a Banach sub-
algebra of.#1. In .#*, the Dirac measure at the unit element acts as
the unit element of the algebra Wit does not possess any unit element,
unless the group is discrete.
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3.7 Convolutions of distributions

We close this chapter with a brief discussion of convoluiaf dis-
tributions on a Lie group. A detailed account of distribngomay be
found in Schwartz’s ‘Théorie des Distributions’ and de Rf&'Variétés
différentiables’.

Let G be Lie group andDg the space of indefinitely fferentiable
functions onG which have compact support. L&k be the subset of
Dg consist ring of functions whose supports are containedarctm-
pact setk. One can provideDy with the topology of uniform conver-
gence of each derivative, arfls with the topology of direct limit of
those onDk. The topology oDk can be characterised by the fact that
f — 0 on D if for every differential operatob on G with continuous
codficients,Df — 0 uniformly onK. It is enough to consider only the
left invariant diferential operators, or still tha, alone (Ch.CZH, Part
). This topology makes ofDx a Fréchet spacdi.e. a locally convex
topological vector space which is metrisable and complete)

Definition. A distribution on G is a continuous linear form d.

As in the case of measures, one can define the notion of thedupp
of a distribution, distributions with compact support,.etet T, S be
two distributions orG. If one of them has compact support we define
the convolution product as for measufiesS(y) = f f e(xy)dT(X)dS(y).
Let£&” be the space of distributions with compact support. Itislgel@a
with convolution as product and the space of distributiana module
over¢;. We denote by the space of distributions with suppetrt{e}.

Let (X1,...Xn) be a coordinate system at ThenT e £ implies the

existence ofl, € C such thafl (¢) = 3 AQZTf(e), A, being zero except

for a finite number of terms. If is a locally summable function, we
can identify f with the distributionf (x)dx and we can define the notion
of convolution f = T of f and distributionT under some assumptions
on f andT. But this product even when it is defined, is not in general
a distribution of the forng(x)dx, however, if f is indefinitely diferen-
tiable with compact support (or if is indefinitely diferentiable and
has compact supporf) = T is a distribution of the formg(x)dx where
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g(x) is an indefinitely diferentiable function. This function is, in virtue
of the above |dent|f|cat|on given lgfx) = f = T(X) = f f(xy H)dT(y).

72 If T = Z/l a (e) f*T(x)_Z/l {a—f(xyl)}y e
The mapf - fxTisa dfferentlal operator which is left invariant.
We have already seen thgt« u = oy(u) (Ch.[Z5). Hence

(oyf)*T=¢g* =T
= (f+T)
=oy(f+T)

In other words,T commutes with the left translation. At= e we
0 : . . .
havef«T(e) = 3 a//la{a— f()rl)}y:e i.e. every leftinvariant dferential
operator is obtained in the above manner. This leads us to the

Proposition 5. The algebral{(G) is canonically isomorphic to the alge-
bra of distributions with supporte} with convolution as multiplication.



Chapter 8

Regular Representations

4.1 General notions -3

Let G be a locally compact group artel a locally convex topological
vector space.

Definition. A continuous representatiarfi G in E is a map x> Uy of G

into Hom(E, E) such that this is a representation in the algebraic sense
(i.e. Uyy = UyUy and U = identity) and such that the mdp, x) — Uya

of Ex G — E is continuous.

The latter of these conditions, which we denoteRyys equivalent
to the following:

R;: For every compact subs& of G, the set{Ux : x € K} is
equicontinuous, ang;,: for everya € E, the mapx — Uxaof G — E
is continuous.

In fact, R = R; trivially. Let V be a neighbourhood of 0 i&. For
everyx € K, there exists an neighbourhodg of x in G andW, of 0
in E such that for every € A, anda € Wy, Uy a € V. SinceK is
compact, we can choo%g,, ... Ay, which coverK and letW = N W
Now, x € K, b e W = Uyb € V. Hence the sdtUy} is equicontinuous.
We proceed to prove the converse; in fact, we show more gigntrat
R; with the following conditionR}: There exists a dense subsebf E
such that for everna € F, the mapx — Uya of G — E is continuous,
impliesR. It is required to show that the mag &) — Uais continuous

73
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at any point §,a). LetV be any convert neighbourhood of 0 We
seek a neighbourhood/ of 0 in E and a neighbourhood of x in G
such thab e a+ W,y e A= Uyb € Uy a+ V. LetK be a compact
neighbourhood ok in G. Then there exists a neighbourhodg of 0
such thaty € K, b e V1 = Uyb € V/4 (byR)). Letb € (a+ V)N F.
Then we can find a neighbourhoddof x in C contained irkK such that
Uyb—Uyb € V/4 for everyy € A (by R7). Now, ifce a+Vy,y e A we
have

This completes the proof of the equivalence.

Moreover, ifE is a barrelled space (or in particular a Banach space)
then axiomR;, itself = R. For, the mapx — Uy is continuous from
G to Hom(, E) with the topology of simple convergence and hence
the image of a compact subset is again compact Brmbing barrelled,
equicontinuous.

4.2 Examples of representations

(i) Unitary representations. LetU be a representation Gfin a Hilbert
spaceH such thatUy is a unitary operator, i.eUy — 1 = Uj, for
everyx € G. ThenV is calleda unitary representation.

(i) Bounded representations. A representatiort) of G in a Banach
spaceBis said to bvoundedf there existaM such that|Uy|| < M
for everyx € G. It should be remarked here that in general rep-
resentations in Banach spaces are not bounded as for iagtanc
representatiox — €. Id of Rin itself. However, such represen-
tations are bounded on every compact subset.

(i) Regular representations. Left and right translations i, as we
have seen before, give rise to representation& @i the space
%c, LP etc. In fact they give rise to representations@fn any
function space connected wi with a reasonably good defini-
tion and a convenient topology.
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The spacess with the usual topology can easily be seen to be
barrelled. Therefore, in order to verify thats a continuous rep-
resentation, we have only to prove that- 7yf is continuous. 75
It is again stiicient to establish continuity at the poipt= e.
The functionf is uniformly continuous and hence whgn- e,

tyf — f uniformly having its support contained in a fixed com-
pact set.

In the case ofLP(1 < p < o) with respect to the right Haar
measure/|ry|l = 1 by the invariance of the measure and hence
the 7y form an equicontinuous set for € G. Also the map
y — tyf is continuous for the topology of which is finer
than that ofLP and sinceés is dense irLP is a representation of
G in LP. On the other hand, if we considet, we have|oyf|| =
([1f(y1XIPdYYP = (A(y))YPlIfll, and the continuity ofy —
oy f follows as a consequence of the continuity\d¥). Note that
the proof is not valid wheip is infinite as#g is not dense .
In fact the mapy — 7yf of G — L is continuous if and only if
f is uniformly continuous o1®.

(iv) Induced representations. Let H be a closed subgroup of a topo-
logical groupG, andL a continuous representation dfin a lo-
cally convex spac&. Let ¢ be the space of functions @with
values inE which are continuous with compact support modulo
H (i.e. their supports are contained in the saturation of apamn
set), and which satisfy the following equality:

1
2
f(EX) = (%) L f(X) for everyx € G and¢ € H. The factor
5(&)\? ‘
(% , it will be noted, occurs purely for technical reasons and

can without much trouble be done away with. The above egualit
in essence, expresses only the condition of covariandevath
respect to left translations ki On this spaces- we can, as

we have more than once done before, introduce the topology of
direct limit of those on%}'g, the latter being the space of functionss
in ¥- whose supports are containedHrK, with the topology of
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uniform convergence oK. This is again a locally convex space
and right translations by elements Gf give rise to a (regular)
representation o in ¢*. This is called theepresentatiorof G
inducedby L.

(v) Let us again assumk to be a unitary representation éf in a
Hilbert spaceE. Let %" be the space of continuous functions on
G with values inE having compact support modul$ such that

(&)

1
2
f(£x) = (@) L¢ f(X). Naturally one tries to introduce a scalar
product in€" in the usual way, but the possibility ¢{x) not be-

ing square integrable (which it is not in general) foils thiempt.
However, thoughf(x) may not be square integrable, we are in a
position to assert thaf, . [If(X)I[*(o(X))*dx < oo (o of course
is the function defined in Lemniad 2, Ch._1B.4 aaxlthe quasiin-
variant measure o6/H). In fact, the functionj| f (X)I*(o(X)) ! is
invariant modulaH and consequently can be considered as a con-
tinuous function oi/H with compact support. Hence we can de-
finellfIi? = [, IF (I ((0(x))) " dx Let#’- be the completion
of €* under this norm. As usual#’* is the space of measurable
functionsf which satisfy the condition of covariance and are such
thath/H 1 (X)N%(0(X))"tdx < co. This is a Hilbert space in which
the scalar product is given kyf, g) = f (F(X), g(X))(e(x)tdx.

G/H
The right regular representation @fin " is unitary. For,

Iy flI% = fG N I (I ((e(x)) ™ dx

- f 1 (X2 ((,o(xy‘l)))_l ’O(Xy—l)dx by quasi invariance
G/H p(X)

_ f IFORIZ ((0(0)) L dx
G/H

= ||f|I? for every f e "

77 The same proof as in (iv) gives the continuity of the représt@m.
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Thus one can define induced representations in many wayacihn e
case the representation space being so chosen as to refquartic-
ular properties of the representation one wishes to study.shll not
dwell on induced representations any longer, but only dieddllowing
general definition which, it is needles to say, includes #is¢ two cases.

Definition. A representation U of G in F is said to lieducedby rep-
resentation L of H in E if there exists a linear continuous mayf ¢
into F such that

() nisinjective with its image in F everywhere dense, and

(i) n commutes with the representation in the sense thag: nory
for every xe G.

4.3 Contragradient representation

Let U be a continuous representation®in a locally convex spack.

For everyx € G considetty, € Hom(E’, E”) which is continuous for any
‘good’ topology onE’ (weak, strong of convex-compact). We denote by
U the mapx — UL, Regarding this map we have the following

Proposition 1. If U is a continuous representation of G in a quasi com-
plete locally convex space E, thehis also a continuous representation
of G in E; (convex compact topology). We need here the following for-
mulation ofAscoli’'s theorem Let X be a locally compact topological
space, F a uniform Hausdgirspace ands’ (X, F) the space of contin-
uous functions from X— F. Let A be an equicontinuous subset of
% (X, F) such that the sefi(x) : 4 € A} is relatively compact in F
for every xe X. Then (i)A is relatively compact irg’(X, F) with the
topology of compact convergence, and (ii) Arthe topology of com- 78
pact convergence coincides with every Haugtaeaker topology (in
particular, with the topology of simple convergence).

Proof of proposition[ll. LetK be a compact oB. The sefUy : x € K}
is equicontinuous and for evesye E, {Uya : x € K} is compact as the
mapx — Uxa is continuous. Hence by Ascoli’s theorem, the topology
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of simple convergence and the topology of compact convememe
one and the same on this subset«E,E) i.e. X - e = Uya — a
uniformly for a in a compact subset of E.

Let a’ be an element oE;.. We wish to prove thak — Uya' is
continuous. It is enough to prove the continuity at the uldtmente.
Let x —» e. ThenU,a — auniformly on a compact séd and hence
(Uy1a,@) = (3, U @) — (aa) uniformly on H. This shows that
x — Uya is continuous for the convex-compact topology Bh We
have to show moreover that the {#t : x € K} is equicontinuous. If
H be a convex compact subset®fwe seek to prove the existence of
another convex compact skt such thata’ € (H')° = Usa € H°
for everyx € K whereA® denotes the polar ok. But U,a € H° for
everyx € K if and only if |<UX_1a, a’>| < 1 for everyx € K anda € H.
Let H’ be the closed convex envelope of the compact set descriyion
U,-a. Itis obvious thag! € (H')° = (b, a')| < 1 for everyb € H' =
|<Ux—la., a’>| < 1 for everyx € K anda € H. It only remains to show
thatH’ is compact. BuH’ is precompact, and being a closed bounded
set, also complete. This shows titis compact.

This representation i&’ is called thecontragradientof U.

Remark. It will be noted that we have used the quasi completeness of
the spacde only to prove that the closed convex envelope of a compact
set is also compact. Hence the proposition is valid for theengeneral
class of locally convex spaces which satisfy the above tiondi

Example. We have seen that the right and left translations give repres
tations ofG in the function space®s, £°, ¢, etc. By our proposition
above,we see that is continuous in#, .#°, .#* (with the convex
compact topology).

Remark. The regular representation @fin .#? is not continuouswith
respect to thetrongtopology. Forrgee = g and|lex — el = 2if x # e.
Hence ax — g, g does not tend tee.
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4.4 Extension of a representation to#°

Let U be a continuous representation &fin a locally convex quasi
complete spac&. Letu be any measure oB with compact support.
Then we writeU,a = fG Uxadu(x). (The functionx — Uya is a vector-
valued function anq Uyadu(x) has been defined in CA_1.5).

Theorem 1. (1) U, is alinear continuous function of E in itself.
(2) u — U, is an algebraic representation o# in E.

(3) If U is a bounded representation in a Banach space, then this
representation can be extended to a continuous representat
the Banach algebraz* in to the Banach algebrélom(E, E).

(1) Infact, asa — 0, Uxa — 0 uniformly on the compact support of
u and henceJ,, is continuous. Its linearity is trivial.

(2) Again the linearity of the map — U, is obvious.
Ugwa = fUXad(/u  v)(X)

= ffuxyady(x)dv(y) (see Remark 2, CR.2.2)

= fdp(x)Ux(Uva)(Remark, Ch[Tl5)
=U,U,a
80

(3) If u e .4, we have

IU.all = IIIUxadﬂ(X)II

< f 1Usalldia

< Kilall flull
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This proves that the ma@,u) — U,a of E x M€ — E is con-
tinuous. Since#* is only the completion of#© with the topology of
the norm, this map can be extended to a continuous Fnapz* — E,
which proves all that was asserted.

4.5 Convolution of measures

We can get, in particular,representations of the spatef measures
on a groupG by considering regular representationsGf We define
oV = fax(v)dy(x). A is the dual of the barrelled spaég; and is
hence quasi complete. We therefore have

(Foou() = f (o))

_ f () f Fy)dv(xty)
- f £ (xy)u(X)v(y)

=(f,ux*v)

In other words,o,(v) = u * v andr,(v) = v * i wheredu(x) =
du(x1). We have not imposed any conditions enandu has been
assumed to have compact support. Thus convolution of twesunesa
could have been defined ag(v) = f ox(v)du(X) straightaway.

4.6

Proposition 2. Let E be a subspace ofZ with a finer topology such
that

(a) E is invariant byr;
(b) T restricted to E is continuous;
(c) E is quasi complete.

Then for every: € .#© anda € E, we haveasu € E andaxu = 7;a.
If moreoverr is bonded orE, then this true fop e .#7*.



Regular Representations 81

The proposition is immediate in view of our remarks in Chl 4.5

In particular, ifa € LP(p < =), u € .#*, thena*u € LP, and
llax ullp < llallpllull. Again, we may take an integrable functibrnstead
of pand getax f € LP and|lax f||, < |[allpl/fllz. Otherwise stated,! is
represented as an algebra of operators in the Banach kpgre: ).
Another case is that dt = %i. If f is a function and: a measure both
with compact supports, theh= u € 4G.

4.7 Process of regularisation.

LetV be any neighbourhood efin G. LetAy bethe setff € 4, : f >0
andf f(x)dx = 1}. AsV describes the neighbourhood filteretAy
also describes a filteb in the function spac&s.

Proposition 3. If U is a continuous representation of G in a quasi com-
plete space E, then {& — a following @ for every ac E.

InfactUra = f Uxaf(x)dx If Wis a closed convex neighbourhood
of 0 in E, then by the continuity otJ:a one can find a neighbourhood
V of e such thatUya € a+ W for everyx € V. Now Ufa—a =
f(UXa —a)f(X)dx € Wwheneverf € Ay by convexity ofWw.

Remark. Ua has certain properties of continuity stronger than thata
a. For instance if we take fdd the regular representation &fin .7,
i € &% Whend® — e 7iu — u. This is a process of approxi-
mation of a measure, as it were by continuous function§ shtisfies
the first axiom of countability, we can find a sequefég of continu-
ous functions generating the filtér. In particular, ifG is a Lie group,
we have thus an approximation of measures by sequencestofumrs
functions. Finally we remark in passing that the same praedan be
adopted in the case of Lie groups for distributions instefati@asures.
Thus a distribution on a Lie group can be approximated by aesse
of indefinitely diferentiable functions.






Chapter 9

General theory of
representations

5.1 Equivalence of representations
83

Definition. A representation U of a topological group G in locally con-
vex space E is said to muivalentto another representation Un E’

if there exists an isomorphism T of E ontodtich that T = U T for
every xe G.

This is evidently a very strong requirement which fails t@ret-
terise as equivalent certain representations which arwagnot in the
intuitive sense. However, we are interested in the case itdnyrrep-
resentations in Hilbert spaces and the definition is goodigimdor our
purposes.

Definition. Two representations U in H, Un H’ are unitarily equiv-
alentif there exists a unitary isomorphism T H — H’ such that
TUy = U;T for every xe G.

Proposition 1. Two equivalent unitary representations are unitarily
equivalent. In fact, TTU; = TU,T* = U;TT* i.e. Ux commutes with
the positive Hermitian operator T'Tand hence also with H= VTT*.

It can be easily seen that T is a unitary operator which transforms
U into U’.

83
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5.2 Irreducibility of representations

Definition 1 (algebraic irreducibility) A representations U of a group
G in avector space E is said to b&gebraically irreduciblé there exists
no proper invariant subspace of E.

Definition 2 (topological irreducibility) A representation U of a topo-
logical group G in a locally convex space E is said totbpologically
irreducibleif there exists no propetlosedinvariant subspace.

Definition 3 (complete irreducibility) A representation U of a topo-
logical group G in a locally convex space E is said to dmmpletely

irreducibleif any operator inHom(g, E) (with the topology of simple
convergence) can be approximated by finite linear comimnatiof the

Uy.

It is at once obvious that (i (ii) and that (iii) = (ii). It can be
proved that whetk is a Banach space, @ (i) (Proof can be found in
Annals of Mathematics, 1954, Godement). For unitary repregions,
(ii) and (iii) are equivalent (due to von Neumann’s dendlitgdrem, Th.
2. Ch.[&®). Finally, all the three definitions are equivalfem finite
dimensional representations (@ (iii) due to Burnside’s theorem, Th.
@, Ch.[55).

5.3 Direct sum of representations

Definition. A representation U of G in E is said to be thzect sumof
representations PJof G in E if E; are invariant closed subspaces of E
such that the surly, E; is direct and is everywhere dense in E, and jif U
is the restriction of U to E Moreover, if U is a unitary representation
in Hilbert space, U is said to be theilbertian direct sunof the U if E;

is orthogonal to E whenever i |.

Definition . A representation icompletely reduciblef it can be ex-
pressed as a direct sum of irreducible representations.
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5.4 Schur’s lemma*

We give here two formulations (Prof 2 add 3) of Schur’s lemtha
first being trivial and the second more suited to our purposes

Proposition 2. Let U and U be two algebraically irreducible repre-
sentations in E, Erespectively. If T is a linear map: E> E’ such
that TUy = U{T for every xe G, then either T= 0 or an algebraic 85
isomorphism.

From this, we immediately deduce the following

Corollary . Let U be an algebraically irreducible finite - dimensional
representation of a group G in E. The only endomorphisms ohietw
commute with all the Yare scalar multiples of the identity.

In fact, if 1is an eigenvalue of, T — Al is not an isomorphism and
is, by Schur's lemmas 0.

Proposition 3. Let U, U be two unitary topologically irreducible rep-
resentations in H, Hrespectively. If T is a continuous linear map
H — H’ such that TY = U;T for every xe G, then either T= 0
or an isomorphism of Hilbert spaces.

In fact, T* is a continuous operator withiT* = T*U’. H = T*T is
a Hermitian operator commuting with eveldy. HenceU, commutes
with every E, in the spectral decompositiod = f AdE, and conse-
quently leaves every spectral subspace invariant. Thexefbe spec-
tral sub-spaces reduce {0} or E. i.e. H is a scalar= Al. Similarly
H’ = TT* = Al. HenceT is either O or an isometry up to a constant.
The proof of Prop[13 implicitly contains the following

Corollary. Let U be a unitary topologically irreducible representatio
of a group G in a Hilbert space E. The only operators of E which
commute with all the YJare scalar multiples of the identity. This is
immediate since any operator can be expressed as a sum ofitiéerm
operators for which the corollary has been proved in pidp. 3.
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5.5 Burnside’s theorem

Theorem 1(Burnside) Let U be an algebraically irreducible represen-
tation of G into E of finite dimension. Then every operator isE&
linear combination of the U

Consider the algebrd of finite linear combinations of). Let #
be the subset of Hor&( E) consisting of element8 such that TrAB) =
0 for everyA € A. Obviously it is enough to show tha® = {0}. Now
we define a representation of G in % by definingVy(B) = Ux o B
for everyB € #. This is not in general an irreducible representation.
However, if%# + {0}, we can find a non-zero irreducible subspé&ce
of . Now the mapl, : B — B, of ¢ into E is a linear map which
transforms the representatidhinto U. For,

AaoVy(B) = g0 UyoB=UyxoBa=UyxocAB forevery Be %.

Hence by Schur's lemma (prof. 2, h.15.4),= 0 or is an isomor-
phism. If 13 = O for everya € E, B = 0 for everyB € ¥ and hence
% = {0}. But this is contradictory to our assumption tRais non-zero.
Therefore, there exist € E such thatl,, # 0. So,4,, is an isomor-
phism of# ontoE. Let (a1, a;...) be a basis oE. Then/l‘;l1 o Ay, isan
operator orig. This obviously commutes with evekf. Hence by cor.
to prop.[2, Ch[5]4a;11 o Aa, = p2l Wherepsy is a scalar. We shall thus
write da; = pjda, With ug = 1. Now, one can introduce a scalar product
in E such that TiJ4B) = >'(UxBaj, a;) = 0 for everyx € E. But

i

D (UxBay, aj) = > u(UxBay, ay)
j j

= (UxBay, Y pjaj) =0
j

Since theUxBay generateE, 3 uja; = 0 or againu; = O for every
i

j. Butuy = 1. This gives us a contradiction and it follows tigat {O}.
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5.6 Density theorem of von Neumann

Let U be a unitary representation of a topological gr@m a Hilbert
spaceH. We denote byA.the subset of the set Hoi(H) of operators
on H consisting of finite linear combinations of thg,. This is a self
adjoint subalgebra of Horhl, H), but is not in general closed in it. Let
A’ be the set of operators which commute with every elemenfiof
Obviously A’ is also self-adjoint.

Proposition 4. A’ is weakly closed inHom(H, H).

In fact, if A =lim A; (in the weak topology) witth; € A’, then

(BAXY) = lim(BAX,y) = lim(ABx y)
= (ABxy) for every B € A.

HenceAe A'.

Let A” be the commutator of the algeh#d. ThenA” is a weakly
closed self-adjoint subalgebra containisijand hence it contains the
weak closure ofA. We can in fact assert

Theorem 2(von Neumann) A” = weak closure ofA.

We actually prove a stronger assertion, viz. be) e a sequence
of elements irE such thaf) [|X,||? < o and T an operator inA”. Then
for everye > 0, there existé\ € A such thaty ||T %, — Axl|* < €. (This
in particular implies thatA” = strong closure ofA or even the strongest
closure ofA, in the sense of von Neumann).

We first show that for every € E, T xis in the closure ofAx: A e
A}. In fact, F = {Ax is a closed invariant subspace®fand letF+ be 88
its orthogonal complement=+ is also invariant under the self adjoint
algebraA and hence the orthogonal projectiBrof E ontoF commutes
with every element ofA. P therefore belongs tA’ and T leavesF
invariant. Sincex € F, T xis also inF.

Now consider the spade; = E®E®------ (Hilbertian sum). Every
elementx € E; is of the form &, ... Xn- - ) with 3 |[Xa||2 < 0. Let A
be the operator oft; defined byAx = (AX,...AX,...). The map
A — Ais an isomorphism of Honi{, H) into HomH1, H1). Denote the
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image ofA by A. If Bis any operator off,, it can be expressed in the
form B(Xy,... %Xn...) = (Y1,...Yn...) Wherey, = > b pXp andbyp is
p

an operator ofE. We now show thaB € (A) if and only if brp € A

for everyn and p. For, BA(X4, ... Xn,...) = AB(X4, ... X, ...) for every
x € E; implies thatb, ,A = A, , by taking allx,, n # p to be zero.
Conversely, if this is satisfiedyB(x1, ..Xn..)

=AG., D bupXp ) = (.o Y bupAXp,.. )
p p
= B(AX4, ... AX,,...) = BA(Xy, ... Xn,...)

Again, B € (A)” if and only if the diagonal elements of the infinite
matrix by, are equal and itA”, and the rest of the elements are zero.
In fact, if C € (A)”, we have BC)mn = (CB)m for everyB € A,
or 3, bmpCpn = X Cmgbgn for everyb;j € A’. Puttingb;j = 6nidnj,

P q

we getcij = 0if i # jandCym = Cnpy for everymandn. So we have
(A)” = (A7’). Therefore there exists € A such tha || T X,—Axl% < €.
Moreover, in theorerfl2, it is Hermitian we can find &lermitian
operatorA such thaty || T x,— Ax,|I> < €. As before it is enough to prove
this for one vectox. In other words, we have to show the existence of
Hermitian operatoA such thaf|T x — AX| < e. We know thatT is the
strong limit of A € A. HenceT = T* is theweak(and not strong, in

- , - + A A+ A"
general) limit ofA* or again the weak limit OL. Now IS

a Hermitian operator itA. HenceT is weakly adherent to this convex
set. In this case, weak adherence is the same as the wealkchan
the sense of topological vector spaces, but weak and stopudogies
are the same in a convex space.

In particular, if we have a unitary topologically irredulgbrepre-
sentation, by Schur’'s lemma (Propl 3, Gh.]5#) = {11} and hence
A” = Hom(E, E). Therefore every operator is strongly adheren#to
This is the analogue of Burnside’s theorem (Ih. 1, 5.byfdtary
representations.
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Chapter 10

Continuous sum of Hilbert
Spaces-|

1.1 Introduction
90

In the general theory of unitary representations of a lgcatimpact
group, two main problems are (i) to determine all the irréolecunitary
representations of a group, and (ii) to decompose a givaamymiepre-
sentation into irreducible ones. The first of these has beemptetely
solved in certain cases (e.g. abelian groups, compacsicesgmisim-
ple Lie groups), but it is to the latter that we address owueseln the
following pages. We start by giving some Examples.
Let U be the regular representation of the one dimensional torus

T in the spacel? of square summable functions. ff belongs to
L2, it can be expressed in Fourier serigs,e". If x = €', then
oxf = Zo-xanei”Z = Z(anef)e'”Z and we have decomposed a unitary

representatlon into a dlrect sum of irreducible represiemts.
If we takeRinstead off* andF € L2, thenf(y) = [ f(x)€™dxalso
belongs toL?. By the inversion formula, whef is sifficiently regular

(we do not enter into these details) we ha\@) = % [ fy)e™dy.
Hence

1 . .
o,f = fo(y)e—l(xu)ydy

91
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1 A .

_ ZY ~—IXY

= > f f(y)e¥e ™Wdy
1 - ,

_ —IXy

= o f (o f)(y)e™™dy.

Therefore &,f)(y) = €2¥f(y). The regular representation has again
been decomposed into one-dimensional representationkifig not a
discrete sum but a ‘continuous sum’ - a concept which we stedihe
presently.

Before proceeding with the formal definitions, we give onereno
example which is more akin to the theory we are to develop. H.et
be a locally compact space with a positive meaguamd .2 a Hilbert
space. In the spac€(E, 7#) of continuous functions : E — 57 with
compact support, we introduce a semi-norm

|WF({M®WW@f<m

Let .£%(s¢) be the completion of the Hausdbspace associated
with Z(E, #¢). We have also a scalar product in this space given by
(1,0 = [(F(2.9@)du(2).

If u is discrete (i.e. is a linear combination of Dirac measutes a
certain points),Z?(#) becomes a discrete sum of Hilbert spaces asso-
ciated to each of those points, all the Hilbert spaces bsimgorphic to
H.

These considerations motivate some kind of a continuous cfum
Hilbert spaces indexed by points of a locally compact spi¢ethere-
fore assume the following data to start with:

(1) Z, alocally compact space (which will be assumed for simgglici
to be countable ab) with a positive measurg;

(2) For everyz € Z, a Hilbert spaces#’(2). In other words, we
assume given at each point a ‘tangent space’ which is a Hilber
space. Forinstance, in a Riemannian manifold, the metsigias
a scalar product to the tangent space at each poigt @f course
in this case the spaces are of finite dimension. Having in ried
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example above, we seek to find an analogue of the concept of
functions onZ. This is served by the notion ofwector field(in
exactly the same sense as in manifolds) which is an assignmen
to each point, of an element of the associated Hilbert spéte.
would like to have a notion analogous to that of continuounfu
tions in our example. To this end, we introducduadamental
family of vector fields with reference to which the continuity af2
an arbitrary vector field will defined. Thus we suppose given

(3) Afundamental family. of vector fields which satisfies the follow-
ing conditions:

(a) A forms a vector space under the ‘usual’ operations.

(b) For every vector fielK € A, the real valued functioftX(2)||
is continuous. This in particular implies that the map»
(X(2), Y(2) is continuous for everX,Y € A.

(c) For everyz, the vectors(2) for X € A are everywhere dense
in ¢ (2). This only ensures that the systems suficiently
large. Sometimes the fundamental familywill be sup-
posed to satisfy the following stronger condition:

(¢) There exists a countable subges = {X,} of A such that
for everyz € Z, Xn(2) are dense iw#’(2). In particular,
this implies that all the Hilbert space®’(2) are separable.
(We will always assume that the stronger conditiof) {&
valid though some of the results remain true without this
supposition).

1.2 Notion of continuity

We proceed to construct the continuous sum of the sp#€&3. In our
axioms relating to the fundamental family, we have not ingobany
restrictions on its behaviour ab. Consequently it cannot be asserted
that the||X(2)|| are square summable. Moreover, the clasgay be too
small (as they will be if we take them to be constants in ourreda)

to be dense i??(#). This necessitates the extension of this family to
the class otontinuousvector fields by means of the
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Definition. A vector field X is continuous at a poiéy if given ane > 0
there exists ¥ A and a neighbourhood V @f such that|X()-Y(?)l| <
e foreveryl e V.

Remark. When we takeA to be constants in the example, this corre-
sponds to the usual continuity of functions.

Proposition 1. A vector field X is continuous if an onlyjjiX|| is contin-
uous and(X, X,) is continuous for every Xe Ag.

If X is continuous, triviallyj|X]| is continuous. Also iiX and X’ are
continuous, thekiX, X’) is continuous: in fact, for every > 0 and every
¢ € Z, there exist a neighbourhood of £ andY, Y’ € A such that
IX=Y[<e&l|X =Y] <einV.

Hence

KX X7 = (LY < KX = YO XD+ KY, Y = X

< Me in V, whereM is some constant. A&Y,Y’) is continuous, it
follows that (X, X’) is also continuous. To prove the converse, it is
enough to show thaiiX () — Xn ()|l is continuous. BUiX(¢) - Xa(Q)I? =
IXII2 = 2RIX, Xn) + [1Xnl12, all continuous by our assumption.

A continuous vector field can be multiplied by a scalar cardims
function without @ecting its continuity.

Proposition 2. The vector fieldS ¢i(0)Yi(¢) with ¢; € €(Z) and X €
A are dense in the space of continuous vector fields with tredgp of
uniform convergence on compact sets.

At each pointxin a compact sei, there exists a neighbourhodg
in which ||X — Yy|| < € for someYyx € A. We can extract a finite cover
{Ax } from {Ay} and take the partition of unity with respect to this cover.
Hence there exist continuous functiogssuch thatf|X — 3 ¢ Yx|l < €
onk.

1.3 The spacd.?

Our next step is to construct the spdce of square summable vector
fields. We shall say thaX belongs to.2 if given ane > 0 there exists a
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continuous vector fiel?Y with compact support such that

f IX() = Y(O)IPdu(0) < e.

(We do not know a priori whethdfX(¢) — Y(¢)|? is measurable or not
and hence we can only consider the upper integral). In thasespwe
can define

IXI2 = f IX@)IPdu(?) and
XX = f X0 X ()du().

By passing to the quotient space modulo vector fields of nqrwe0
get a Hilbert space (which again we denotellfy. As in the case of
the theory of integration, we have of course to prove the derapess
of L2, but there is no trouble in imitating the proof of the Riesgker
theorem in this case.

L2 is thecontinuous sunof the ;7 (¢) that we wished to construct.

1.4 Measurablility of vector fields

Definition. A vector field X is said to beeasurablé for every compact
K and positivee, there exists a setKc K such thatu(k — ki) < € and
X'is continuous on K

Proposition 3. A vector field X is measurable if and only(K, X) is
measurable for everypXe Ag.

If X is measurable({X, X,) is continuous orK; and hencgX, X,) 95

is measurable. Conversely, 1€ X,) be measurable. TheiX| =

| (X, Xn) | (X, Xn) :
sup———— is also measurable. (Here we =0if |IX =
p Xl ( pﬁw [IXa (Il

0). But(X, X,) are continuous outside a &t — K,} of measure< ¢/2".
If Koo = NK,, it is obvious thaiu(K — K.) < € and all the functions
(X, Xny are continuous oi.,. Hencel|X|| is continuous orK.,. By
prop.[0, ChIR, profil 3 follows.

In particular, this shows that strong measurablility ancikvenea-
surablility are the same in a separable Hilbert space.
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Proposition 4. A vector field X belongs to2Lif and only if X is mea-
surable and[ [X(2)IPdu(¢) < oo.

The proof is exactly similar to that for ordinary integratiof scalar
functions.

1.5 Orthogonal basis

We now find an orthogonal basis for the space of vector fieldsdhymi-
dt's orthogonalisation process. We can of course define

X Xo —(Xo, €1)€1
o= L - 2 (X2, €1)
[IXall [IX2 = (X2, e)ell
where we put; = 0 whenever the numerator is zerol[20]. However, the
process is defective as the basic elements are not continaod the
following orthogonalisation seems preferable:
Put

€1 =Xy, €& =Xy—(Xp,epey,

€, = X - orthogonal projection oX,, on the space generated by

€1,...6h1

These are of course continuous vector fields. At each [oitite
nonzeroe(¢) from an orthogonal basic fa#?(¢).

1.6 Operator fields

Let X be a square summable vector field aq{d) an operator ow?’(¢).
Then we may defineAX)(?) = A()X(,) and get another vector field
AX. The assignment to eachof an operator of77°(0) is called an
operator field However, in order thaé may act as operator dr?, we
have to make sure th#tX is also square summable. Obviously some
restrictions amA(¢) will be necessary to achieve this. In the particular
case when all the space#’(() are the isomorphicA(¢) is a map ofZ
into the set of operators of the Hilbert spag€. Now, Hom (57, 5¢)
can be provided with uniform, strong or weak topologies amdmay
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restrict A to be continuous for one of these topologies. However, the
first topology is too strong and consequently the space ‘gimatator
fields’ will become too restricted to be of any utility. Théoee, in this
particular case, we may require the nfafo be continuous in the weak
or strong topology as the case may be. To transport this tefirtio
the general case, we have to reformulate this in a suitable Wake
for instance the requirement of strong continuity. Thisdsigalent to
requiring that (2)A(¢) is locally bounded (i.e. bounded on compact
sets) and (b) for every continuous functib@) of Z with values ins7,
A T () is continuous.

This motivates the following

Definition. An operator field” — A(¢) is said to bestrongly continuous 97
if (@) A(0) is locally bounded and (b) for every continuous vector field
X(), A(O)X(¢) is also continuous.

Similar considerations for weak continuity give us thedaling

Definition. An operator field A is said to b&eakly continuousdf (a) itis
locally bounded, and (b) for any two continuous vector fid@s), Y(¢),
the mapy — (A(Q)X(2), Y(£)) is continuous.

Proposition 5. An operator field A istrongly continuou# and only if A
is locally bounded and — A()Xn(£) is continuous for every Xe Ag.

This follows straight from the definition.

The strongly continuous operator fields form an algebra kvisc
not however self adjoint, while the weakly continuous opmrdields
do not even form an algebra. In order to ensure that our defisitare
good enough, we should know if there existigiently many non-scalar
continuous operator fields. This is answered by the follgwin

Theorem 1. Let K be a compact subset @ and Yi,...Yn, Za,...Zn,

2n continuous vector fields such tha(y are linearly independent for
every/ € K. Then there exists a continuous operator field A such that
A(Q)Y(¢) = Z;j(¢) for everyZ € K and such that &)* is also continu-
ous.
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We first remark that we can as well assume Kat Z. For, Y;()
are linearly independent if and only & = detY;({), Y;(¢)) # 0. This
being a continuous function &, there exists a compact neighborhood
V of K such thatA] > @ > 0 onV. If the theorem were true for a
compact space, there exists an operatoonV satisfying the conditions
above. SeA = pAg whereg is a continuous function 1 oK, O outside
V; thenA verifies all the conditions.

Now let P(¢) be the space spanned By/). We can then define
A() = 0 on the orthogonal complement B{?) andA(0)Yi() = Zi(0)
and extendA by linearity. If 7 is the projection of77°(¢) onto P(¢), we
have(X, Yj) = (nX Yj) and if X = Y, &Yk, then(X, Yi) = 2 &MYk Yj)
with |deY;j, Vi)l = |A| > @ > 0. On solving the linear equations f&y,
we geték = Ax/A. Since the functions occurring in the linear equations

. . . A
are continuouséy are continuous functions and we hagg = |—k| <

M||X|| whereM is a constant. Henc&(¢)X () = 3. &(¢)Zk(¢) is contin-
uous for every continuous vector fieXd Ais locally bounded by virtue
of the above remark and hendds a continuous operator field.

It is obvious thatA* is also locally bounded. Nowd* maps the
whole of 7 () onto P() and henced*(0)X(¢) = 3, k() Yk(¢) where
then(’) are given by

D UM V) = O )i Y
= (A"(OX(@). Yi(©)
= (X, AQ)Y;()
= (X(©).Zi¢)

The Gram determinant in this case alsais Hence by the same
argument as befordy" is a continuous operator field.

1.7 Measurablility of operator fields

Definition. An operator field A is said to bmeasurablé (a) it is almost
everywhere locally bounded, and (b) for every compact K aositipe
€, there exists Kc K such thatu(K — K1) < € and A¢) is continuous
on K;j.
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If (ep) form an orthogonal basis (CR1L.5), then any operator can be
expressed by means of a matrix with respect to this base. Hbgxm
codficients are onlyAep, &;). We then have

Proposition 6. A locally bounded operator field A is measurable if and
only if the matrix coficients of &) are measurable functions dp.

That a measurable operator field satisfies the above comdgia
trivial consequence of the definition. ConverselyAf,, e;) is measur-
able for everyy, by prop.[B, ch[Tl4Ae, is measurable for every. As
in Prop.[B, Ch[I}4, we can find a compact Ketsuch that the\e, are
continuous ork; andu(K — Kj) < e.

1.8 Decomposed operators

Let A(0) be a measurable operator field bounded almost everywhere.
For everyX(¢) € L2, A(Q)X(¢) is also a measurable vector field and
IAXI < TAQNLIX@Il. Hence [IAQ)X()IIPdu exists and we
have[|AX|| 2 < [IA({)llw|IXll 2. In other wordsA is a continuous opera-
tor onL2 and||Al| < [JAQ)]lco-

If Ais an operator in.2 which arises from an operator field, we say
that it is adecomposed operat@and writeA ~ fz A(Q). In particular if
we takeA(?) = (). Identity wheref € L*(u) we obtain a decomposed
operatorM; ~ f f()1d. This is called ascalar decomposed operatonoo
onL2. We denote the space of all such operators#y This is a self
adjoint subalgebra of Horh¢, L2). For,

(MEX.Y) = f HOXQ). Y(O)du()
_ f X(@). TOY)u(Q)
— (X MfY)
HenceM; = M¢.

We now give a characterisation of decomposed operatorsnstef
this algebra# by means of
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Theorem 2. The set of decomposed operators is precisely the commu-
tator of . If A~ [ AQ), then||All = [|A) -

In fact, if Ais a decomposed operator, it commutes with all the ele-
ments of.# and hence belongs t&’.

Conversely leA be an operator ih2 which commutes wittM; for
every f € L®(u). Let K be a compact subset @&. Theny,en(l) €
L2, {en} being the orthogonal basis (CIL_1L.5). Létbe a compact
nighbourhood oK. Then

Alxy€n) = Alxx1€n)
= AM,,_(x,€n)
= M,, Alx,,€n) by assumption
= xAly,€n) almost everywhere

It is obvious that at the intersection of any two compact Beté?,
the vector fieldsA(y,e,) and A(y.e,) coincide almost everywhere.
Hence there exists a vector fie&en) such thaty, (en)A(en)(Q) =
Ay, en)(¢) almost everywhere. Thus we have a countable family of rela-
tions and hence there exists a Sedf measure 0 such thgf A(en)(£) =
A(x, en)(¢) for everyl ¢ N. Since theX, in the fundamental sequence
Ao are finite linear combinations of theg we havey, A(Xn)() = Al
Xn)(©) for every¢ ¢ N. Also [ [AK(OIPdu(@) = AR XI? <
I|AI2 fK IXnll2(2) for every compact sék. Hence the set of elements
£ such that]A(Xn) () is strictly greater thaijA|| | Xn(£)]] is of measure
zero.

We have thus proved that the algebra of all decomposed opgiat
A’ and we know that# c .#"”. \We can moreover assert

Theorem 3. . is a weakly closed algebra.

In fact, let €,) be an orthogonal basis bf . Then we define for any
two integersp, g, a decomposed operathiy, 4 by setting

Hpg(Q)en(¢) = 0ifn = porq
Hpq()ep(d) = llep(Q)l%eq(2).
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and Hp,()eq(0) = lleq(Q)I7en(2)-

If Bcommutes with every € ., in particular, it commutes with
all the Hp 4 thereforeB(£) commutes withHp 4({) for every fixedp, q
and almost every. Since theH 4 are countableB({) commutes with
Hp.q(¢) for almost every {) and for all p, . Hence outside a set of
measure zero, we have

Bep, Hngs
(B(Q)ep, ep) = % for every p, Q.
= (BHnq €p, ﬁ) (since theH; q are Hermitian)
=0if p#ag
On the other hand, 102
€n
(B({)ep, €p) = (BHn pep, _2>
llenll
llepll?
= (Ben, en)
llenll?

This shows thaB(¢) is a scalar operator for almost every.(Hence
B = f B(2)d(¢) is a scalar decomposed operator and hengé This
shows that# = .#"”" and by Th[R, CH_5l6, Pdd Il, is weakly closed.






Chapter 11

Continuous sum of Hilbert
spaces - I

2.1
103

In the last chapter, given a family?’() of Hilbert spaces indexed by
elementg’ of a locally compact spacg, we constructed the continuous
sum.# = L2. Now we shall decompose a Hilbert spag# into a
continuous sum with reference to a given comutative, weeklged *-
subalgebran of Hom (57, 7).

./ satisfies Gelfand’s conditions and is hence isomorphic sod i
metric to the spac&’(Q2) of continuous complex valued functions on a
compact spac€ which is called thespectrumof .#. By this isomor-
phism, every continuous linear form o# is transformed into a contin-
uous liner form org’(Q) or, what is the same, a measure on the space
Q. In particular, the continuous linear fortMx, y) wherex,y € 5%
gives rise to a measure which we shall denotedpyy i.e. we have
(MX,y) = fQ h?lcy)dyx,y(,\g). This measure is called tlspectral measure
associated ta, y. This depends linearly onand anti linearly ory.

Let.#’ be the commutator ofZ. We now assume that there exists
an element € J# such that the sgtAa : A € .Z’} is dense in/#.
This assumption however isot a real restriction on our theory. For
otherwise, we can decomposg€ into a discrete sum of Hilbert spaces

103
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each of which satisfies the above condition. ketbe any element of
2 and 77 the closed subspace generatedAay, A € .#Z'. 74 is
invariant under both# and.#’. If 2+ is the orthogonal complement
of s7, we can carry out the same process ﬁqi, and so on. Thus
I = 7 @ H5.. where all ther satisfy the above condition.

Now we show that the spectral measdrg ; hasQ as its support.
In fact, if f is a positive continuous function d@ such that its integral
is 0, thenf = 0. We can writef as|M[? and we havel |M[2du(.q =
(M * Ma, a) = [Mal[%. Hence if [ [M[2di(aq = 0, Ma= 0 orAMa= 0
for everyA € .#’, or againM(Aa) = 0. Since the As are dense .if’,
it follows that M = 0. Moreover, this shows that the measdrg , is
positive.

Proposition 1. Corresponding to any operator A.#" there exits one
and only one continuous functigm on Q such that gaaa) = ¢aduaa
and we havédlpall < [|All.

In fact, it is enough to prove the proposition whAris a positive
Hermitian operator since any operator is a finite linear doation of
them. Under this assumption we have

f|M|2duAaa= (M*MAa, a)

= (AMa, Ma)
=< [|AlKMa, Ma)

= ||| f IM[?dua, @

Now duaaa is positive andluaaa < K duaa. Therefore, by Lebesgue
- Nikodym theorem, there exist a measurable funaianL* (us 5) such
thatdupaa = Yaduaa. We also havéiyalle < [IAll.

The proof is complete if we prove the

Lemma. For every bounded measurable functigron Q there exists
one and only one continuous functigrsuch thaty = y a.e.

By the definition ofuyy, we have|uyyll < [IX|| lyl. Therefore
[ w0 duxy(x) < WleolIXI] IV
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Thusf;//cy)duw(,\g) is a sesquilinear map which is continuous in
each of the variableg y. As a consequence of Riesz representation the-
orem, there exits a linear operafbrsuch thatf () duxy(x) = (TXY).

We now show thafl commutes with every element ofZ’. For, if
M e .#’, we have

(MTxy) =(Tx M)
- [ wtodixyto
- [ wtodieya)(sincem € )
~ (TMxy)

Since.# is weakly closedT € .Z.

We have [ y(x)Mduaa = [ TMduaa and hencd = y(y)ae- This
proves the lemma.

The functionga € %€(Q) thus constructed satisfies the following
properties:

(@) @aaruB = AP + ueB.
For,

f @inruBduaa = (1A + uB)a, a) = (Aa a) + u(Ba a)

= f (Apa + pep)duaa

(b) oa = @a.
For,

f pa-Ouaa = (A'a, a) = (Aa a)

= fSEAdlla,a-

(€) ¢ma = Mga 106
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fSDMAd,Ua,a = (MAa a)

szdﬂAaaszSDAdﬂaa
(d) gan=0

In fact, if f is a positive function, we can express itlﬁﬂz.
f M2 auaa = IAMa|* > 0.

(e) lpal < lIA]

This has been proved in the Prgp. 1, Chl 2.1.

2.2

In order to get a decomposition g# into a continuous sum, we need
the following

Lemma.Let 8 be any *-subalgebra oHom( 7, 7#) which is uni-
formly closed. Letp be a positive continuous linear form a8 such
that o(A*) = ¢(A), o(A*A) > 0 and|e(A)| < k||All. Top we can make
correspond a canonical unitary representation of the atgeB.

In fact, because of the conditions we have imposed,a{B*A) is a
positive Hermitian form or#8. Hence we have by the Cauchy-Schwarz
inequality |o(B*A)|I? < ¢(B*B)g(A*A). Thereforep(B*B) = 0 if and
only if ¢(B*A) = 0 for everyA € Hom(z7, 5¢). Hencep(B*B) =
0 = ¢((AB)*AB) = 0. It follows that the seN of elementsB such that
¢(B*B) = 0 is a left ideal. On the spad®/N, ¢ is transformed into a
positive definite Hermitian from and consequentlgives rise to a scalar
product. The completion of this space under this norm sheatldnoted
#,. The canonical magg — 7, is continuous since(B*B) < K||BJ|.

On the other hand we have also a nfap% — Hom(J7;,, ;) defined

by f(A) = UawhereUa(B) = AB. We show that this as also continuous.
ConsiderB*||A|[2B—B*A*AB = B*(||Al|>—A*A)B; (||Al|>—A*A) is positive
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1
Hermitian and hence so i$ = B*||A|°B — B*A*AB. H2 is the uniform
1

limit of polynomials inH and sinceZ is uniformly cIosed,HE €A
Therefore we havey = Puiyd 2 0 by assumption. We have now

proved thatp(B*A*AB) < ||Al?¢(B*B). This shows that the maiga
is continuous. This can be extended to an operatoszaf We have
also shown thafU || < [JAll. It remains to prove that this is a unitary
representation. Lef, B, C € . Then(UaB,C) = ¢((A*C)*B) =
(B,Un = C). HenceU, = Ua which shows that this is unitary.

In fact all the above considerations hold for a Banach akyelith
involution.

2.3

After this lemma in the general set-up, we revert to our dqausition
of s into a continuous sum. For every fixgde Q, pa(y) is a pos-
itive continuous linear from on#’ which satisfies all the conditions
of the lemma. Hence Yve have a unitary representatiovZ6fin the

Hilbert spaces?, = T\I//_ whereN, = {A : paaly) = 0}. In other

words, to each poiny é Q we have assigned a Hilbert spa¢g. If

M € .#, sincegma = Moa, we haveUy(y) = M(y) identity. For,
(Um(¥)B., C) = ¢cme(x) = M(x)¢c-(x) = M(x)(B,C). We have now

all the data necessary for the construction of a continuaus except 108
the fundamental family of vector fields. We have so far oetatith
A, but, in practice, " is very large. For instance it is not in general
separable in the norm. So we assume given a subalgglofa#’ such

that

(a) A is uniformly closed.

(b) There exists a sequenég € A such thatA is generated by the
ArandAN . Z.

(c) There exista € 27 such thafAa: a e o7} is dense ins7. ltis
actually this algebraA which is in general given and the problem
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will then be to find an# c A’ such that the above conditions are
satisfied.

We have a mapA — Hom(s7,, 7Z)). However it is possible that
there are more functiong than would be absolutely necessary. That
is, there may exist elemenis x’ in Q such thatpa(y) = ea(y’) for
everyA € A. In this case, we have two poings y’ in the base space
Q which are in some sense equivalent with respectitdr herefore we
introduce an equivalence relatiéhin Q by settingy ~ x’ whenever
ealy) = oa(y’) for everyA € A. This is a closed equivalence relation
andQ/R = Z is a compact Hausdfirspace. The same procedure for
andA as forQ and.#’ gives a Hilbert spacé, at each point € Z
and a continuous representation of the algehia Hom(J7z, 7). The
image of the measumd:, 5 by the canonical ma@ — Z is denoted by
u. At each point we have a mapA — H, and hence for a fixed € A
we obtain a vector field. This family of vector fields is tiemdamental
family we sought to construct. In fact,

(a) They constitute a vector space, sités an algebra.
() XAl = eaald)? and hencdXa()Il is continuous.

(c) For eachy, Xa(¢) in everywhere dense sincg; is only the com-
pletion of the space ofa(0).

(¢) Consider}, M;B; whereM € AN .# andB is a finite product
Ai1Aiy ... Aip of the An. ThenXy mg = X Um, Xg, With Uy being
scalars{Xg } is only a countable family and the vectofs w,g; (¢)
are dense iv?’({). Consequently the countable famMy g, (£)
where they; are complex numbers with real and imaginary parts
rational is also dense i¥’(¢).

Thus we have now all the data for the construction of a contisu
sum_#2. of course we have still to establish that = 7. In fact,
sinceZ is compact, every continuous vector field is square summable
Therefore, we have

[IXall> = f IXa(IPdu(Q) = f eaa()duaaly) = 1A
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Also Aa = 0 implies Xa = 0. Therefore, the mapa — Xa is an
isometry of a dense subspace.#f and hence can be extended to an
isometryJ : 2 — L2. It remains to prove that this map is surjec-
tive. We have seen (Profi] 2, CA1.2) that vector fields of dinen f
> ¢i(Q)Yi(2) whereg;(¢) are continuous functions gfare dense i.2.
Therefore it is enough to prove thd¢.7#’) contains all such elements
(the image of)(2#) being closed in.2). Let.#, be the self adjoint sub-
algebra of # consisting of elements! such thaiV is constant on cosets
modulo the equivalence relatiéh ConsequentlyM may be considered
as a continuous map af. But we have] 3, MiA?|? = fz IS M Xall2d
and therefore the map* : 3 MAZ — 3 I\7IiXA is an isometry which
coincides withJ on the elementéa. This shows thal MiXa, € J(#) 110
and hence 2 = J(7).

Hereafter we shall identify2 with 7. We now assert tha# is
contained in the space of decomposed operatorszan In fact, we
will show thatA = fUA(g). We have already proved (CIL_R.2) that
VA < [JAll andU A(¢) is hence bounded. Ald0a(£)Xg(4) = Xag($)
is again a continuous vector field and by Pidp. 5,[CH. U4/) is a con-
tinuous operator field. If novk = fUA(g), thenABa= Ua()Xg(() =
Xag({) = ABaby our identification for everyg € A. Since{Ba: B €
A} is dense i, we haveA = A. In other words, every operator
A e A. is decomposable into@ntinuousoperator field.

Now, we have another algehr#’ of operators o7’ Itis natural to
expect then# consists of scalar decomposed operators. It is of course
true, but the proof is not obvious. As before, l#f, be the subalgebra
of .# composed of elements! such thatM € 4(Z). We first prove
that.#( consists of scalar decomposed operators.B,.€ € A. Then
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(MBa Ca) = (MC'Ba.a) = | M(i)dhc-eaaly
- f M () ec- 800 duaaly)

= f M()gc-s(0)du(?)  (since the continuous
z

functions are constant
on the equivalence classes)

= f/ M()(Xs(0), Xc())du(?) by definition of the norm
z

That is to say thaMm = fz M(¢). Identity. We now extend this result
to every elemenM € .. Since we know that the space of scalar oper-
ators is weakly closed, it fiices to prove that# c .. Again by the
Hahn-Banach theorem, it is enough to show that any weakliiramus
linear form which is zero on#, (and hence on/(’) is also zero on
. But any weakly continuous linear form on Hg(w?’, 74y) is of

n
the formU — > (UX.Y;). if 2(MX;,Y;) = 0 for everyM € .,
i=1

then 3, [, M)(Xi(0), Yi()du(@) = 0. HenceX(Xi(0),Yi(¢)) = 0O
for almost everyZ in Z, or again>.(Xi(n(x)), Yi(z(y))) = Oa.e. on
Q wherer is the canonical ma® — Z. Therefore,>(MX;,Y;) =
fQ M(X) 2UXi(X), Yi(X))duaa = O for everyM € u. This completes the
proof of our assertion.

2.4 Irreducibility of the components - Mautner’s theorem

Finally it remains to show that the unitary representatioithe algebra
Ainthe s#; are irreducible. The algebra is at our choice and we are
interested in taking it as large as possible. Thus we assbhateA is a
maximal commutative subalgebra@f and obtain the

Theorem 1(Mautner) LetA be any uniformly closed *-subalgebra of
Hom (57, 5¢) such that
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(a) there exists a sequence Which generateA;

(b) there exists an elementa.s# such that the setAa : a € A} is
dense in7’.

Let.# be any maximal commutative *-subalgebras®f. Then in
the decomposition of# into the continuous sum of thef7 with re-
spect to.# and A, almost every representationa()) of A in () is 112
irreducible.

Let {e,} be the orthogonal basics given in A11.5 with respect to

the fundamental sequeneg and let.#; be the subsetM € .7 : M e

€ (2)} of A4 . If S be the algebra generated Byand.#y, then.# =

#'. In fact, we have seen tha’ c .; (Ch. [Z3) and therefore
M= My HenceZ' = A' N My =A N andA' NA" = M, N
being a maximal subalgebra. We define for any two integersas in
theorenB, Ch[T18, Hermitian decomposed operéatlyg on .7 such
that

Hpa(0)en(¢) =0 if n#p or g
Hpa(£)ep(?) = llep(0)l°eq(£), and
Hpa(0)&g(?) = lleg(Q)IPep(?).

We have already seen (CR]1.8) that any operator which coasmut
with all theH 4(¢) is a scalar operator. Nowjp, 4 is bounded since we
have||Hp oIl < llep()ll lleg(Oll < liepll llegll- Hpg is continuous since
it transforms every vector filed of typg(¢) into another continuous

vector field (Prop[5, Ch1l.6). NoWpq = fz Hpq()du() and this
commutes with every element of. Therefore

Hpgq = fz Hpo(Q)du(l) € 4" = %" .

Let Y, = ev/llenll¥". Then we havel ||, < co and by theorem
[, Ch. [5® Parfll, there exist Hermitian operat@is € % such that

n
SnllHpgYn — BiYall? < 1/k2. Thereforel|Hpqen — Bienll < HBEH -0
ask — oo, i.e., [ TnllHpg(0)Yn(0) = B Ya(Q)IPdu(¢) — 0 ask — co. 113
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As in Riesz-Fisher theorem, we can find a subsequdcsuch that
HpqYn — Bk Yn — 0 ask; — oo outside a set of measure zero. Since the
Hy,q are only countable in number, we can pass to the diagonaéaequ
and get a sequendg; such thafor every pg, HpqYn — By Yn — O as

Kj — oo outside a seN measure zero.

Let/ ¢ N andL be a subspace invariant undé(,) or again under
A)”. LetS be any element afi(/)’. ThenS commutes with every
Ug(¢) whereB € % (whereUg(l) = > Mi(Q)Ua() wheneverB =
i MiA).

So,

(S Hpg(¢)en(4). em(¢)) = lim(S Ug, ({). €n($), em($))
= lim(Ug,({), S &(¢), em(¢))
= im(S¢,(£), Vg, (£), em(2)
= (Se,(£), Hp.a(£), em({))-

or Hp q(¢) commutes with everp e A(L) for almost every,. Hence
A(2) consists only of scalar operators for almost evéryHence the
only invariant subspaces ()" are the trivial ones and the represen-
tation A — Ua(¢) of A in 22({) is irreducible.

The following corollary is more or less immediate:

Corollary. Let U be unitary representation of a separable, locally com-
pact group G in a Hilbert space?’ such that there exists a .77 with

the minimal closed invariant subspace containinga#2’. Then U is

a continuous sum of unitary representations which @raost allirre-
ducible.

In fact, in Mautner’s theorem, we have only to take férthe uni-
form closure of the algebra generated by elements of thefgym € G.

2.5

We have already said that the spdeecould have been used in much
the same way as the spage We now give an illustration to explain our
remark thaf2 is too large for practical purposes and that in the decompo-
sition with respect t@2 the same representations may repeat ‘too often’
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(which is what we sought to avoid by our equivalence relgtibet .77
be the spaceZ?(R) andU the regular representatian, of Rin L%(R).
Let A be the algebra of operatoss; for f € L. It can easily be seen
that.A” contains all operators,, on L2 with u, a bounded measured
andA” are of course commutative. Therefareé > A”. We say take
nY to be A” itself. If Q is the spectrum of#” it contains the spec-
trum of .#*. This is the much larger than the spectrumi_éf whereas
a ‘good’ decomposition of 2(R) into a Fourier transform is given by

f > f(y) = \/%f f(x)eYdx The Fourier in version formula will be

1 N
f = —— [ f(y)eVdy. L2 is the direct integral of Hilbert spacers of
N [ fy)e™vady. g p

dimension 1. I #* denotes the set of bounded measures, tHds an
ideal in.#* and is hence contained in a maximal ideal#t. Thus two
different characters of#* give rise to the same characterlof. Thus

a decomposition witlf2 consists of unnecessarily repeated representa-
tions while that withZ (spectrum ofL? in our example) economises
them and reduces the decomposed representations to a minimu

2.6 Equivalence of representations
115

The decomposition into continuous sum is obviously not uejdgoe-
cause the process depends on the choi@af# such thafAa: A €
A} is dense inz and on this choice of#. The question therefore
arises whether all these decompositions are equivaleminie sense.

Definition . Two decompositions2l, (Z1. 1, A1) and 13,(Z2, 2, A2)

of 7 are said to be equivalent if there exists a measurable ome-on
map t: Z; — Z» and a map Y of J2°({) onto s (t(¢)) such that, the
correspondence to every vector field X @n of a vector field onZ,
defined by Yt(¢)) = U;X(2), is an isomorphism of4, onto L.

It is almost immediate that if the vector a is changed, we gaive
alent decompositions. However, it is not true thatAf is chosen in
different ways the corresponding decompositions are equtvalen






Chapter 12

The Plancherel formula

3.1 Unitary algebras
116

Consider the regular representation of a locally compami® in the
spacel.? and decompose this into a continuous sum of irreducible rep-
resentations. Then we have an isometry> X¢ of L2 onto L2. By
the definition of the norm i, we have ; |f[2d1 = fz IX¢11Pdu(2).
The mapf — X; is in a sense the Fourier transform 8r and the
above equality, the Plancherel formula. As a matter of faetdo get
the classical Plancherel formula from this as a particuéeecvherG
is commutative. However, we have had many choices to makieein t
decomposition and as such this definition of a Fourier t@nsfis not
suficiently unique and consequently uninteresting. We nowgeddo
obtain a Plancherel formula which is unique.

Let G be a separable, locally compact, unimodular group. We have
seen (Ch[d8, Palll) that the regular representatio of L? gives rise
to a representation df! in L2. In fact we have the formula for every
felLlandge L2

9+ f09 = [ gy )10)dy
= 7y(a) whereg(x) = f(x})
If we takex = e, g= f(e) = fe(y) f(y)dy (Since the group is uni-

115
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modular)
= (g, f*y wheref*(x) = f(x1)

By associativity of convolution product, we see that
(g=* f,hy =g=* fxh"(e
=gx(h« ) (e)
=(g,h= f*) foreveryf,g,he L' nL?

117
The « operation we have defined is an involution. Moreok&acts
on L2 or, what is the samd,? is a representations space tof. The
mappingf — T whereT — f(g) = g * f is unitary. Thus.! is a self
adjoint algebra of operator drf = 7. A = L' n L? is a subalgebra
2 with an involutions. This satisfies the following axioms:

@) X y) =y, x*) for everyx,y € A
For,

(f.g) = f (9g09dx
- f D) f(x Yydx

N ECIESE
= (g, f*) forevery f,g,e L' N L2
(b) (x,y2 = (y*x,2), or equivalently
(yx 2) = (y, zX') for everyx,y,z € A.

(c) Ais dense in.

As a consequence the operatiigy) = yxon A can be extended
to operators ow?’.

(d) The identity operator is the strong limit of th.

This is an immediate consequence of pidp. 3,[CH. 4.7[Part I,
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Definition . Let A be subspace of the Hilbert spac#. If A is an
associative with involution satisfying conditions (a)),(fr) and (d),A

is said to be aunitary algebragGodement). (Ambrose with a slightly
different definition calls it an K+ algebra).

3.2
118

Associated with a given unitary algebra, we have a repratient
Ux(y) = xy and an antirepresentation(y) = yx. Axiom (b) asserts
that these two representations are unitary. The rap X* is an isom-
etry by a (a) and consequently can be extended to aSnag” — 7.
The Uy and theVy are related by means of the relatiohig= SUy « S
for everyx € A. Infact, ify, z e A, we have

VY, 2) =(yx 2)
=(Z,Xy")
= (Zk, Ux*yk>
=(SUwSy 2

HenceVy = S U+ S on A and hence o7’. We shall denote b¢/,
V the uniformly closed algebras generated by lthe V, respectively.
Let R be the uniformly closed algebra generated by botH.thand the
VX-

Definition. An element a= .77 is said to beboundedif the the linear
map x— Vya of A — 7 is continuous.

The mapping shall be denotét}, and the set of bounded elements
B.

Remark. To start with, one should have defined right -boundedness and
left-boundedness of elements.j#. But if a is bounded in the above
sense, a trivial computation shows thkx = VS afor everyx € A. So
Sais bounded antls, = U;. Now we havedya = S\, Ss = S U;Sx

and the mapx — Ua is continuous and hence defines a continuous
operatoV, and we have/, = S U;S.
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Proposition 1. .# = {Uy : a € %} is a self adjoint ideal which is 119
weakly dense i9”.

In fact, for everx,y € A, UaVyy = Ua(yx) = Vpya = \wWa =
VyUyoy; thereforeU, commutes withVy; henceU, € V’. Moreover if
T € V’, we haveTUax = TVia = V,Ta henceTais bounded and
Uta = TU, and consequentlyZ is an ideal inV’. SinceU; = Us,,
it is self-adjoint. SinceV’ is weakly closed, it only remains to show
thatV’ c .#”, or again thafll € V’, X € .#’ implies thatT X = XT.
But we have seen that, fore A, TUy € .#. HenceT U, X = XT Uy
and we may now allowy to tend to 1 in the strong topology to obtain
TX = XT.

From this follows at once the

Theorem 1(Godement-Segal)ln the notations?U’ = V", or equiva-
lently V' = U"”.

In fact, sinceV c U’, V > U”. We have only to show that
V" c U”. In other words, we have to prove that every element of
vV’ commutes with every element 8{’. Since theJ,, a € 4 and sim-
ilarly V5, a € & are dense i, U’ respectively, it sffices to establish
the commutativity olV,, Vy, a,b € 4. First we assert thaticb = V¢
for everyc € A.

For,

(Uch, x) = (b,Uscx) = (b, VxS0
= (Vib,S6 = (c,S\Lb)
=(c,UxS B = (c, Vspx) = (VuC, X)

Now, UaVpx = UaUxb = Uy, xb = Vp(UaX) by the above calculation
and the proof of theorefd 1 is complete.

3.3 Factors

A weakly closed self-adjoint subalgebra of operators onlbdii space
2 is said to be dactor if its centre reduces to the scalar operators.



The Plancherel formula 119

If in the above discussion we assud#eo be irreducible, the?’ =
UNYV =U NnU” =Centre ofd”. SinceZ is irreducible, by cor. to
Schur's lemma (Ch. 5.4, Part 157’ = scalar operators. Hend¢" is a
factor.

Example. (1) The set of all bounded operators .é#1 is a factor.

(2) The set of bounded operators o# which is isomorphic to
Hom(s7, 571) where 77 is another Hilbert space is also a fac-
tor. This is said to be &actor of type 1 If 77 is of dimensiom,
this is said oe be if typé,.

3.4 Notion of a trace

If we consider only the operators o’ which are of finite rank, then
we have the notion of a trace defined By(T &,, &,) where thes, form
an orthonormal basis. In the general case, we may definedréammat-
ically in the following way:

Definition. If &2 is the set of positive operators o, traceis a map of
Z into [0, oo] satisfying

(@) Tr(UPU™Y) = Tr P for every unitary operator U, and

(b) If P is a positive operatoe Y, T,, where the T are also posi-
tive operators, and the series in strongly convergent, ffigp =
> TrT,.

In particular, (b) implies that for every positiie Tr(A1P) = ATrP. It 121
is obvious that this is true it is rational and since the rational numbers
are dense iR, by (b), it is also true for all € R*. If Ais any operator
on 7 with a minimal decomposition into positive operators, tirace
can be defined oA by extending by linearity.

Now, instead of Hom¢7’, 7¢’), we may consider any-subalgebra
F of Hom(s7, 2¢) and define the notion of a trace as above. However,
for arbitrary x-subalgebras, neither the existence of a non-trivial trace
nor its uniqueness is assured. For instance7if= J# + 7 is the
direct sum of the Hilbert space#i and 7% andF is the subalgebra
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Hom(s7, 71) + Hom(s43, 74%) of Hom(sZ, 5¢), then the functionp
defined byp(T1 + T2) = A1 TrT1 + Ao Tr T, (whered; and A, are ar-
bitrary positive constants) is a trace. However, wikeis a factor, the
nontrivial trace, if it exists, is unique. Those factors @hdo not pos-
sess a nontrivial trace are said to be of type Il.

A nontrivial trace orF can be proved to have the following proper-
ties:

1. fHeFN 2, TrH =0ofand only ifH = 0; and

2. For every positivad € F, there exist$? € F such that 0< H! <
H and TrH! < co.

Definition. An element A of aalgebra F operators o7, is said to
be normed(or of Hilbert-Schmidt typg with respect to a trace on F, if
Tr(A*A) < co.

Let Fg be the set of operators of finite trace drdthe set of normed
operators irF. Than ifA, B € F1, we haveB*A e Fopand TrB = A) is a
scalar product off;.

In the case of the algebfd”’, one can prove

Theorem 2. There exists ofi{”” one and only one trace such that
(&) AeU” isnormed if and only if A= U, for some & 4.
(b) If A=Ugand B= Uy are normed, thefr(B = A) = (a, b).
The proof may be found in 23] of [12], Ch.§,6, r© 2.
In particular, ifRis irreducible, then the factdi?”’ is not of type IlI.
3.5
We now assume that two more conditions are satisfiedibyiz.

(1) Ais separable i.e. there exists-@ubalgebra everywhere dense
in A, which has a countable basis (in the algebraic sense).

(2) There exists an elemee& A such thae' = eandZ is dense in
A.
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Condition (2), however, is, as in the case of general decaitipn,
not a real restriction, and if it is not satisfie@, can be split up into a
discrete sum of algebras each of which satisfies this camditi

We shall now perform the decomposition . into a continuous
sum of Hilbert spaces with reference to the uniformly cloakgtbraz
of operators oZ. Let A, be the setRe: Re #}.

The fundamental family of vector fields ltf is given bya = Re— 123
a() = Xr(&) € (). We have already seen (Ch. 2) that this map
is an isometry. Consider for everythe setA()) = {&(0) : a € Az}
Ua,a e Ais adecomposed operat@rfZ Ua(O)du(2).

Our object now will be to put orfA(¢) the structure of an algebra and
an involution with respect to whiclt¥i(¢) becomes a unitary algebra,
To this end, we define fof = &,(0) andn = &(),a;,a € Ay, &-

n = Ug(a2(2) and£7&;(Z). Of course we have to prove that these
definitions are independent of the particudar a, we choose. In other
words we have to verify that &) = & () and&(¢) = &(¢), then
Uga, (O)&2(0) = Ual(g)é; and thata( () = &*(£). In order to prove the
former, we show that), (£)&x(¢) = Va,(Oa1(?). If a1 = Rieanday =
Roe, we have

Uay (0)32(0) = (Uay22)() = Xua,Re(0)
=b(¢) where b = U, Roe
= (R1€)(R2€) = Vg,(R1€)

Henceb(¢) = Xvar, ({) = Va,(Q)au(¢). Therefore, we have proved
that the vector fielddJ,, (0)ax(¢) and Vg, (£)a:1(¢) are equal and so we
haveU,, ()a2(0) = Va,(£)a1(¢) for almost every,. But sinceA; has a
countable basis, we can find a $&bf measure zero such that fevery
ay, ap € Ay, we havely, (0)az({) = Vay,(9)ar(¢) for £ ¢ N. Now the left
hand side is unaltered if we replaag by &, while the right hand side
remains the same if we replaagby & . 124

It only remains to prove that* is well-defined for almost alf’. Itis
enough to prove that for eveny, a, € Az, the set o such tha;(¢)
= &(0) andagx(0) # ag*(¢) is of measure zero. L& = {/ : &1(0) =
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ax(0)}. The operator field A defined by

AQ) - {:)dgntity iff € E
if /¢ E

is a Hermitian scalar decomposed operatogghand we haveAy =
Ag. Hence we havéd\a] = Ag, i.e. A({) aj(¢) = A(Q)a(¢) almost
everywhere and: () = a(¢) for almost every. € E.

We shall now prove that with the above operatiohg,) is a unitary
algebra.

(@ & m =, €

We have, in our usual notatiof§, n) = ¢rir,({). @& = SRSe=
SRSe(sincee” = €) anda, = SRSe We have now to prove
thatprr, (£) = p(srs)«sRsS)((). We assert thakl* = S MSfor
everyM € #Z. Infact, if x € A, UyM = MUy = Uyx and
Umssx = M*Ugy = U(Mx)* = Usmx Since the max — Uy is
one-one, we havtl*S X= S Mxor M* = S MS. Therefore

(M(SR) = (SRS)e ) =(MSRSeSRe)
=(Rie RRSMSe¢
=(Rie, RM™ e).

In other words,
(M(SRS) * (SR)e &) = (MR;R;€, €)
for everyM € A. By the definition of the spectral measure,
dusrs) * (SRS)e e = durr.ee
and henc&(SRS) = (SRS) = ¢riR, -

(b) (£182,83) = (£1.€3.£5)-
We have to show thatrirr, = ¢(rsr;) R, Which is obvious.
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(c) A(Q) is dense invZ(?).

This is again evident.

(d) Regarding the existence offBaiently many operators, we cannot
assert that is true for all. However, this is true for almost afl
For this we need a

Lemma 1. In a self adjoint algebraA of operators onsZ, the sefAx:
A e A, x e A} is dense inZ if and only if the Identity is the strong
limit of A e A.

In fact, if x is an element of’#, we denote{A_x} by F. Let F*
be its orthogonal complement. ¥is not inF, let X = X; + X» with
X1 € F, X € F-. ThenAx = Axg + Ax with Ax, € F, Ax € F+
(since A is a self-adjoint algebra). Bubx € F. HenceAx € f+
as well asF. Since the sum is direcAx = O for everyA € A. If
X2 # 0, this contradicts the assumption thatx : A € A, x € I} is
dense ins”. For, spaceE = {x : Ax = O for everyA € Ajis non-
zero. E is invariant underA and thereforeE+ is invariant under.
ConsequentlyfAa : a € H} is contained irE+. Now, {Uyy : X,y € A}
is dense inH and hencégxy : X,y € A} is dense inA;. On the other
hand, there exists a sequenggis Az such that thé?n(g) are dense in
H () for every. EachY, can be approximated by a sequenGgYnp 126
with Xnp, Ynp € Ar. Hence we havérn() = gi_r)”mUXn,p(f)Y;,p(éV) for

almost every and for eacn, since we have only a countable family
Yn. Thereforelén : &, € A(Q)} is dense inA (¢) for almost every.

Thus we have shown that the algebfi&) is unitary for almost ev-
ery /. By Mautner’s theorem, almost all these algebras are igibt
ThusU(¢)” is a factor. We can apply Theordrh 2 to this factor. Thus
the scalar product in the space of bounded elements is givartiace.
More precisely, we have a trace function br{?)” such that(a;(?),
(L)) = Tr(Uy, = (£)Uy,)(L)). But we know that the correspondence
a — ais an isometry and hence one gets

(@20 = | T Ve 0]t
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This is the Plancherel formula which is in a certain sensgumi
However this is obviously not absolutely unique as the tfaoetion is
unigue only upto a constant multiple.

In the case of a locally compact, separable, unimodularp@we
takeA = L' n L2 and.» = L2. In this case Plancherel formula can be
rewritten as

f F(x)g09dx = f THULOUF(©)du(@).
G v

Or againg’ » f(€) = [ Tr(Ug..r(£))du(?).
If we write g* = f = h, we get

h(e) = f THUNOdu()

This is the generalisation of tHeurier inversion formula At any
point x, the value oh(X) is given by

h(x), = fz THUNO UL ()

127 This is of course true not for all functions, but only for ftilon of
the typeg® * f with g, f € L n L? as in the classical case.

3.6 A particular case

We have obtained a Plancherel formula in terms of the faadtoep-
resentations of the group and it would be more desirable to have a
formula in terms of the irreducible representations of tfaug. This is
however possible only in the following particular case.

Definition. A locally compact group is said to bgpe |if every factorial
representation of the group is of type I.

This definition implies that every factorial representatis a dis-
crete multiple of an irreducible representation. In fakck is the factor
corresponding to a factorial representationGfthenF is isomorphic
(algebraically) to Hom4#3, 7%) where 7% is a Hilbert space. IF is
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of type |, it can be proved (see, for instanté [§]8, Ch. 1) thatF’ is
also of type I. by the isomorphism between Hao#ffi( .577) andF’, we
therefore get that for every projectidnin F’, there exists a minimal
projection< P. in other words, every invariant subspac® of s# con-
tains aminimalinvariant subspace. The restriction of the operators of
to any such minimal invariant subspace gives rise to anugibte uni-
tary representation and since the minimal projections inllaeirt space
are conjugate by unitary isomorphisms, these irreducibiéaty rep-
resentations arequivalent On the other hand, the family of invariant
subspaces of# which are direct sums of minimal invariant subspace,
partially ordered by inclusion, is obviously inductive. Bgrn’s lemma,
there exists in it a maximal element sagft. If 21 # 7, 41 is 128
nonempty and consequently contains a minimal invariammn:ﬁ%ﬂll.
Then#! @ 2 again belongs to the family, thereby contradicting the
maximality of 7.

Thus if x € A, the operator of the factorial representation is decom-
posed into irreducibl&? which are all equivalent. The magp, — U9
is an isomorphism. Hence in a group of type 1, we have the flarmu

f F()g0)dx = f THUQ U (0)du()
G Z

where theU () are irreducible representations amat merely factorial
representations, and the trace is tisgialtrace.

The definition of a group of type | seems a little inoccuousibutf
importance since all semisimple lie groups are of type |. prablem
remains however to give an explicit Plancherel measure, etc

It is known in the case of complex semisimple lie groups (2€8)[
and in the case db L(2, R) ([Z], [25]), but not in the general case.

3.7 Plancherel formula for commutative groups

Let Q be the spectrum o’ in this case. We have however to pass to
a quotientZ by means of an equivalence relation. It can be proved that
Z is actually the one point compactification of the spectrurh’ofWe

now assert that every representationLéfin a spaceE arises from a
representation of the group. In fact ifa = Ub, withb e 27, f € L1,
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we putUya = U, .¢b. It can be proved (see for instan¢el[22], [6]) that
the Uy are well defined.

This establishes a one-one correspondence between ararafss
and one dimensional representationLdf Hence the spectrum df!
is only the character group @U{0} to compactify it. In this case,
every factor consists only of scalar operators and hencefatgrial
representation is a discrete multiple of irreducible reprgations of di-
mension 1. If the character group Gfis denoted byG, we have, since

Trx(f) = x(f) = [ F(x(Xdx,

f|[2dx = )12du(y).
fGnn x félx()l ()

It only remains to prove that the Plancherel measure in thsec
is the Haar measure dB. But this is obvious since each character is
of norm 1 and multiplication ok /(f) by another character leaves the
integral invariant. Thus in this case, we have the clasgitzaicherel

formula
f||f||2dx=f|x(f) 2 dy.
G G

Again the Fourier inversion formula becomes in this case

f(x) = féx(f)mdx-
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