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Introduction

We shall consider some heterogeneous topics relating to Liegroups and
the general theory of representations of locally compact groups. The
first part exclusively deals with some elementary facts about Lie groups
and the last two parts are entirely independent of the material contained
in the first. We have rigidly adhered to the analytic approachin estab-
lishing the relations between Lie groups and Lie algebras. Thus we do
not need the theory of distributions on a manifold or the existence of
integral manifolds for an involutory distribution.

The second part concerns itself only with the general theoryof mea-
sures on a locally compact group and representations in general. Only a
passing reference is made to distributions (in the sense of L. Schwartz),
and induced representations are not treated in detail.

In the third part, we first construct the continuous sum (’thedirect
integral’) of Hilbert spaces and then decompose a unitary representa-
tions into a continuous sum of irreducible representations. We derive
the Plancherel formula for a separable unimodular group in terms of
factorial representations and derive the classical formula in the abelian
case.
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Chapter 1

Topological groups

1.1

We here assemble some results on topological groups which weneed in 1

the sequel.

Definition. A topological groupG is a topological space with a compo-
sition law G×G→ G, (x, y) → xy which is

(a) a group law, and

(b) such that the map G×G→ G defined by(x, y) 7→ x−1y is contin-
uous.

The condition (b) is clearly equivalent to the requirement that the
mapsG × G → G defined by (x, y) → xy and G → G defined by
x→ x−1 be continuous.

It is obvious that the translations to the right:x → xy are homeo-
morphisms ofG. A similar statement is true for left translations also.
We denote byA−1, AB the subsets{a−1 : a ∈ A}, {ab : a ∈ A, b ∈ B} re-
spectively. It is immediate from the definition that the neighbourhoods
of the identity elementesatisfy the following conditions:

(V1) For every neighbourhoodV of e, there exists a neighbourhood
W of e such thatW−1W ⊂ V. (This follows from the fact that
(x, y)→ x−1y is continuous).

3



4 1. Topological groups

(V2) For every neighbourhoodV of e and for everyy ∈ G, there exists
a neighbourhoodW of e such thatyWy−1 ⊂ V. (This is because
x→ yxy−1 is continuous).

These conditions are also sufficient to determine the topology of the
group. More precisely,

Proposition 1. LetV be a family of subsets of a groups G, such that2

(a) For every V∈ V , e∈ V.

(b) Any finite intersection of elements ofV is still in V .

(c) For every V∈ V , there exists W∈ V such that W−1W ⊂ V.

(d) For every V∈ V , and for every y∈ G there exists W∈ V such
that yWy−1 ⊂ V.

ThenG can be provided with a unique topologyΦ compatible with
the group structure such that the familyV is a fundamental system of
neighbourhoods ate.

Supposing that such a topology exists, a fundamental systemof
neighbourhoods aty is given by eitherV y or yV . It is, therefore, a
natural requirement that these two families generate the same filter. It is
this that necessitates the condition (d).

We may now take the filter generated byyV andV y as the neigh-
bourhood system aty. This can be verified to satisfy the neighbourhood
axioms for a topology. It remains to show that (xy) → x−1y is continu-
ous.

Let Vx−1
0 y0 be any neighbourhood ofx−1

0 y0. By (c), (d), there exist
W, W1 ∈ V such thatW−1W ⊂ V andx−1

0 y0W1y−1
0 x0 ⊂ W. If we take

x ∈ x0W, y ∈ y0W1, we havex−1y ∈ W−1x−1
0 y0W1 ⊂ W−1Wx−1

0 y0 ⊂
Vx−1

0 y0. This shows that (x, y) → x−1y is continuous.

Examples of topological groups.

(1) Any groupG with the discrete topology.
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(2) The additive group of real numbersR or the multiplicative group
of non-zero real numbersR∗ with the ‘usual topology’.

(3) The direct product of two topological groups with the product 3

topology.

(4) The general linear groupGL(n,R) with the topology induced by
that ofRn2

.

(5) Let X be a locally compact topological space, andG a group of
homeomorphisms ofX onto itself. This groupG is a topologi-
cal group with the ‘compact open topology’. (The compact-open
topology is one in which the fundamental system of neighbour-
hoods of the identity is given by finite intersections of the sets
u(K,U) = { f ∈ G : f (x) ∈ U, f −1(x) ∈ U for every x ∈ K}, K
being compact andU an open set containingK).

1.2 Topological subgroups.

Let G be a topological group andg a subgroup in the algebraic sense.
g with the induced topology is a topological group which we shall call
a topological subgroupof G. We see immediately that the closure ¯g is
again a subgroup.

If g is a normal subgroup, so is ¯g. Moreover, an open subgroup is
also closed. In fact, ifg is open,G − g =

⋃
x<g

xg, which is open as left

translations are homeomorphisms. Henceg is closed.
Let now V be a neighbourhood ofe andg the subgroup generated

by the elements ofV. g is open containing as it does a neighbourhood
of every element belonging to it. Consequently it is also closed. So that
we have

Proposition 2. If G is a connected topological group, any neighbour-
hood of e generates G.

On the contrary, ifG is not connected, the connected componentG0 4

of e is a closed normal subgroup ofG. SinceG0xG0→ G−1
0 G0 is contin-

uous andG0xG0 connected,G−1
0 G0 is also connected, and hence⊂ G0.
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This shows thatG0 is a subgroup. Asx→ yxy−1 is continuous,yG0y−1

is a connected set containingeand consequently⊂ G0. Therefore,G0 is
a normal subgroup.

Proposition 3. Every locally compact topological group is paracom-
pact.

In fact, letV be a relatively compact open symmetric neighbourhood

of e. G′ =
∞⋃

n=1
Vn is an open and hence closed subgroup ofG. G′ is

countable at∞ and therefore paracompact. SinceG is the topological
union of left cosets moduloG′, G is also paracompact.

1.3 Factor groups.

Let g be a subgroup of a topological groupG. We shall denote by ˙x
the right cosetgxcontainingx. On this set, we already have the quotient
topology. Then the canonical mapπ : G→ G/g is open and continuous.
For, if π(U) is the image of an open setU in G, it is also the image of
gU which is an open saturated set. Henceπ(U) is also open. But this
canonical map is not, in general, closed. The spaceG/g is called a
homogeneous space. If g is a normal subgroup,G/g is a group and is a
topological group with the above topology. This is thefactor groupof
G by g.

1.4 Separation axiom.

Theorem 1. The homogeneous space G/g is Hausdorff if and only if the
subgroup g is closed.

If G/g is Hausdorff, g = π−1(π(e)) is closed, sinceπ(e) is closed.5

Conversely, letg be closed. Letx, y ∈ G/g andx , y. Sincexy−1
< g

andg is closed, there exists a symmetric neighbourhoodV of the identity
such thatxy−1V ∩ g = φ. Hencexy−1

< gV. Now choose a neighbour-
hoodW of e such thatWW−1 ⊂ y−1Vy. We assert thatgxW andgyW
are disjoint. For, if they were not,γ1, γ2 ∈ g, w1, w2 ∈W exist such that

γ1xw1 = γ2yw2; i.e. γ−1
2 γ1x = yw2w−1

1 ∈ yWW−1 ⊂ Vy.
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Henceγ−1
2 γ1xy−1 ∈ V, or xy−1 ∈ γ−1

1 γ2V ⊂ gV.
This being contradictory to the choice ofV, gxW, gyW are disjoint

or π(gxW) ∩ π(gyW) = φ. HenceG/g is Hausdorff.
In particular, ifg = {e}, G is Hausdorff if and only if {e} is closed. On

the other hand, if{e} is not closed,{e} is a normal subgroup andG/{e} is
a Hausdorff topological group. We shall hereafter restrict ourselves to
the consideration of groups which satisfy Hausdorff’s axiom.

1.5 Representations and homomorphisms.

Definition . A representationh of a topological group G into a topo-
logical group H is a continuous map : G→ H which is an algebraic
representation. In other words, h(xy) = h(x) · h(y) for every x, y∈ G.

Obviously the image ofG by h is a subgroup ofH and the kernelN
of h is a closed normal subgroup ofG. The canonical map̄{h} : G/N→
H is a representation and is one-one.

Definition. A representation h is said to be ahomomorphismif the in-
duced map̄h is a homeomorphism.

Proposition 4. Let G and H be two locally compact groups, the former6

being countable at∞. Then every representation h of Gonto H is a
homomorphism.

It is enough to show that for every neighbourhoodV of e in G/N,
h̄(V) is a neighbourhood ofh(e) in H. Choose a relatively compact open
neighbourhoodW of e such thatW̄W̄−1 ⊂ V. G is a countable union
of compact sets and

⋃
x∈G Wx= G. Therefore, one can find a sequence

{x j} of points such thatG =
⋃

j Wxj. Sinceh is onto,H =
⋃

j h(Wxj) =⋃
j h(W)h(x j ). H is a locally compact space and hence a Baire space

(Bourbaki, Topologie générale, Ch. 9). There exists, therefore, an in-
teger j such thath(Wxj) has an interior point.h(W̄) being compact,
h(W̄) = h(W). Consequently,h(W̄)h(x j ) and henceh(W) has an interior
point y. There exists a neighbourhoodU of e such thath(W̄) ⊃ Uy.
Now h(V) ⊃ h(W̄W̄−1) = h( ¯(W) · h ¯(W)−1 ⊃ Uy(y−1U−1) = UU−1.
h(V) is therefore a neighbourhood ofh(e), which completes the proof of
proposition 4.





Chapter 2

Local study of Lie groups

2.1
7

Definition. A Lie groupG is a real analytic manifold with a composition
law (x, y)→ xy which is

(a) a group law, and

(b) such that the map(x, y)→ x−1y is analytic.

(b) is equivalent to the analyticity of the maps(x, y) → xy and x→
x−1.

Remarks. (1) A Lie group is trivially a topological group.

(2) We may replace ‘real’ by ‘complex and define the notion of a
complex Lie group. We shall not have occasion to study complex
Lie groups in what follows, though most of the theorems we prove
remain valid for them.

(3) It is natural to inquire whether every topological groupwith the
structure of a topological manifold is a Lie group. This problem
(Hilbert’s fifth problem) has been recently solved by Gleason [18]
who has proved that a topological groupG which is locally com-
pact, locally connected, metrisable and of finite dimension, is a
Lie group.

9



10 2. Local study of Lie groups

Examples of Lie groups.

(1) R - real numbers,C - complex numbers,

T - the one-dimensional torus andRn, Cn and Tn in the usual
notation are all Lie groups.

(2) Product of Lie groups with the product manifold structure is a Lie8

group.

(3) GL(n,R) - the general linear group.

2.2 Local study of Lie groups.

We shall assume thatV is a sufficiently small neighbourhood ofe in
which a suitably chosen coordinate system, which takene into the ori-
gin, is defined.

The following notations will be adhered to throughout theselec-
tures:

If a ∈ V, (a1, . . . , an) will denote the coordinate ofa. α = (α1, . . . ,

αn) is a multi-index withαi, non-negative integers.

|α| = α1 + α2 + · · · + αn

[i] will stand for α with αi = 1 andα j = 0 for j , i.

α! = α1! . . . αn!

xα = xα1
1 . . . xαn

n

∂α

∂xα
=

∂α1+···+αn

∂xα1
1 · · · ∂xαn

n

Let x, y ∈ V be such thatxy ∈ V. (xy)i are analytic functions of the
coordinate ofx andy.

(1) (xy)i = ϕi(x1, . . . , xn, y1, . . . , yn) where theϕi are analytic func-
tions of the 2n variablesx, y in a neighbourhood of 0 inR2n.
Theseϕi cannot be arbitrary functions, as they are connected by
the group relations. These are reflected in the following equa-
tions:

(x e)i = (e x)i = xi , or
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(2) ϕi(x, e) = ϕi(e, x) = xi . 9

Theϕi are analytic functions and so are of the form

ϕi(x, y) =
∑

α,β

λi
αβ

xαyβ, i = 1, 2, . . . , n

By equation (2), this can be written

(3) ϕi(x, y) = xi + yi +
∑
|α|≥1
|β|≥1

λi
α,β

xαyβ.

By associativity,

ϕi(xy, z) = ϕi(x, yz), or

ϕi(ϕ1(x, y), . . . , ϕn(x, y), z) = ϕi(x, ϕ1(y, z), . . . , ϕn(y, z)).

These may also be written

(4) ϕi(ϕ(x, y), z) = ϕi(x, ϕ(y, z)).

One is tempted to expect another equation inϕi , due to the exis-
tence of the inverse of every element. However, these two equations are
sufficient to characterise locally the Lie group, and the existence of the
inverse is, in a certain sense, a consequence of the associative law and
the existence of the identity. To be more precise,

Proposition 1. Let G be the semigroup with an identity element e. If
it can be provided with the structure of an analytic manifoldsuch that
the map(x, y) → xy of GxG→ G is analytic, then there exists an open
neighbourhood of e which is a Lie group.

In fact, the existence of the inverse element ofx depends upon the

existence of the solution fory of ϕi(x, y) = 0, 1 = 1, . . . , n. Now
∂ϕi

∂x j
=

δi j+ terms containing positive powers of theyi . If we put y = e, the
latter terms vanish and

(
∂ϕi(x, y)
∂x j

)

y=e

= δi j .
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Hence 10

J = det

(
∂ϕi(x, y)
∂x j

)

y=e

= 1

J being a continuous function ofx andy, J , 0 in some neighbourhood
V′ of e. Therefore there exists a neighbourhoodV of eevery element of
which has an inverse. Then the neighbourhoodW =

⋃∞
n=1(V ∩ V−1)n is

a group compatible with the manifold structure.

2.3 Formal Lie groups.

Definition. A formal Lie groupover a commutative ring A with unit el-
ements, is a system of n formal seriesϕi in 2n variables with coefficients
in A such that

ϕi(x1, . . . , xn, 0, 0, . . .) = xi = ϕi(0, 0, . . . , x1, . . . , xn)

and

ϕi(ϕ1(x, y), . . . , ϕn(x, y), z) = ϕi(x, ϕ1(y, z), . . . , ϕn(y, z)).

Almost all that we prove in the next few lectures will be validfor
formal Lie groups over a field of characteristic zero also. For a study of
formal Lie groups over a field of characteristicp , 0, one may see, for
instance, [9], [10].

2.4 Taylor’s formula.

Let f be a function on an open neighbourhood ofe, and letτy,σz denote
respectively the right and left translates off defined byτy f (x) = f (xy);
σz f (x) = f (z−1x) for sufficiently smally andz. These two operators
commute,

i.e.
τy(σz f ) = σz(τy f )

If f is analytic inV, τy f is (for y ∈ W) analytic inW, whereW is a
neighbourhood ofesuch thatW2 ⊂ V.

Now,11
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ϕi f (x) = f (ϕ1(x, y), . . . , ϕn(x, y))

with
τi(x, y) = xi + yi +

∑

|α|≥1
|β|≥1

λi
α,βxαyβ.

If we set
ui = yi +

∑

|α|≥1
|β|≥1

λi
α,βxαyφ

τy f (x) = f (x+u) in the usual notation. This can be expanded as a Taylor
series

τy f (x) =
∑

α

1
α!

uα
∂α f
∂xα

(x).

We may now substitute for theui in this convergent series.

uα = uα1 · · · u
αn
n

=

(
y1 +

∑

|γ|≥1
|δ|≥1

λ1
γ,δx

γyδ
)α1

. . .

= yα +
∑

|β|≥|α|
gαβ (x)yβ

where the coefficient of powers ofy are analytic functions ofx and
gα
β
(e) = 0. If here we takeα = 0, uα = 1, and henceg0

β
= 0 for

everyβ. Thus

τy f (x) =
∑

α

1
α!
∂α f
∂xα

(x)(yα +
∑

|β|≥|α|
gαβ (x)yβ).

These are uniformly absolutely convergent in a suitable neighbour-
hood of e, on the explicit choice of which we shall not meticulously
insist. Hence the above formula can be written as

τy f (x) =
∑

α

yα(
1
α!
∂α f
∂xα

(x) +
∑

|β|≤|α|
gβα(x)

1
β!
∂β f

∂xβ
(x)).
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This we shall denote by

τy f (x) =
∑

α

1
α!

yα∆α f (x)

where∆α is a differential operator not depending onf . This formula is12

the generalised Taylor’s formula we sought establish.

2.5 Study of the operator∆α.

Now, ∆α =
∂α

∂xα
+

∑
|β|≤|α|

gβα(x)
∂β

∂xβ
α!
β!

with gβα(e) = 0. Since atx = e,

∆α =
∂α

∂xα
, the∆α are linearly independent at the origin. Atα = 0,∆α is

the identity operator and ifα , 0,∆α is without constant term asg0
α = 0.

Let us denote∆[i] by Xi. ThenXi =
∂

∂x1
+
∑

j ai j (x)
∂

∂x j
, with ai j (e) =

0. These are vector fields in a neighbourhood ofe. Now we shall use
the fact that, for everyy, z ∈ G, the operatorsσz andτy commute. We
have

σz(τy f ) = σz(
∑ 1

α!
yα∆α f ) =

∑ 1
α!

yα(σz ◦ ∆α)( f )

and, on the other hand,

τy(σz f ) =
∑ 1

α!
yα∆α(σz f ).

Therefore, by the uniqueness of the expansion in power-series inyof
σz(τy f ) = τy(σz f ), we haveσz◦∆α = ∆α◦σz, for everyz in a sufficiently
small neighbourhood ofe. Otherwise stated,∆α is left invariant in this
neighbourhood. This enables us to define∆α at every pointz in the Lie
group by setting∆α f (z) = σz−1∆ασz f (z), so that the extended operator
remains left invariant.

Theorem 1. The linear differential operators∆α form a basis for the
algebra of left invariant differential operators.
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We have already remarked that the∆α are linearly independent ate.
Let D be any left invariant linear differential operator onG. ThenD =13
∑
|α|≤r bα(x)

∂α

∂xα
, r being some positive integer. Define∆ =

∑
|α|≤r bα(e)

∂α

∂xα
. Obviously,∆◦σz = σz◦∆. At e, D = ∆, and by the left invariance

of both D and∆, D = ∆ everywhere. This proves our contention that
the∆α form a basis of the algebra of left invariant differential operators.

We shall hereafter denote this algebra byU(G).

2.6 The Lie algebra of a Lie group G.

Let G be the subspace ofU(G) generated by theXi . This is the same
as the subspace composed of vector fields which are left invariant. This
is obviously isomorphic as a vector space to the tangent space ate. If
there are two vector fieldsX, Y, thenXY is an operator of order 2, as
alsoYX. But XY− YX is a left invariant vector field, as can be easily
verified. Lef [X,Y] stand for this composition law. It is not hard to see
that this bracket operation satisfies

[X,Y] = 0, and [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.

This leads us to the following

Definition. A Lie algebrag over a field, is a vector space with a compo-
sition law[X,Y] which is a bilinear mapg×g→ g satisfying[X,X] = 0,
and the Jacobi’s identity, viz.

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.

Example. (1) The left invariant vector fields of a Lie group form a
Lie algebra.

(2) Any vector spaceU with the composition Law [X,Y] = 0 for
everyX,Y ∈ U is a Lie algebra.

Such an algebra is called anabelian Lie algebra. 14
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(3) Any associative algebra with the bracket operation

[X,Y] = XY− YX

is a Lie algebra.

In particular, the matrix algebraMn(K) over a fieldK and the space
of endomorphisms of a vector spaceU are Lie algebras.

Definition. A subspaceJ of a Lie algebrag is asubalgebraif for every
x, y∈J , [x, y] ∈J .

A subspaceU of a Lie algebrag is an ideal, if for every x ∈ U,
y ∈ g, [x, y] ∈ U.

Example. (1) The set of all matrices inMn(K) whose traces are zero
is an ideal ofMn(K).

(2) The set of all elementsz ∈ g such that [z, x] = 0 for everyx ∈ g is
an ideal ofg, calledcentreof g.

If U is an ideal ing, the quotient spaceg/U can be provided with
the structure of a Lie algebra by defining [(x+U), (y+U)] = [x, y]+U.
This is called thefactor algebra ofg byU.

2.7 Representations of a Lie algebra.

Definition . A representationof a Lie algebrag in another Lie algebra
g
′ is a linear map f such that f([x, y]) = [ f (x), f (y)] for every x, y∈ g.

It can be verified that the image ofg by f and the kernel off are
subalgebras ofg′ andg respectively. The latter is, in fact, an ideal and
g/ ker f is isomorphic tof (g).

In particular,g′ may be taken to the the space of endomorphisms of15

a vector spaceV, leading us to the definition of a linear representation
of g.

Definition. A linear representationof a Lie algebrag in a vector space
V is a representation ofg into the Lie algebra of endomorphisms of V.
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2.8 Adjoint representation.

Let g be a Lie algebra andx ∈ g. The mapg→ g defined byy −→ [x, y]
is a linear map ofg into itself. This map is denoted adx. Thus, adx
(y) = [x, y].

Remarks. (1) Ad x is a derivation of the Lie algebra. We recall here
the definition of a derivation in an algebrag, associative or not. A
linear mapD of g into itself is aderivationif for any two elements
x, y ∈ g, we haveD(xy) = x(Dy) + (Dx)y. In a Lie algebra
derivations of the type adx are calledinner derivations.

(2) x → ad x is a linear map ofg into the Lie algebra of endomor-
phisms of the vector spaceg.

This is, moreover, a linear representation ofg in g. The verification
of the relationad[x, y] = [adx, ady] is an immediate consequence of
Jacobi’s identity.

This linear representation will henceforth be referred to as thead-
joint representationof g.





Chapter 3

Relations between Lie groups
and Lie algebras - I

3.1 Differential of an analytic representation.
16

Definition. Ananalytic representationof a Lie group G into a Lie group
G′ is an algebraic representation which is an analytic map.

Remark . It is true, as we shall see later (Cor. to Th. 4, Ch. 4.5) that
any representation of the underlying topological group G inG′ is itself
a representation in the above sense.

We now seek to establish a correspondence between analytic repre-
sentations of Lie groups and algebraic representations of their Lie alge-
bras. As a first step, we prove the following

Proposition 1. To every analytic representation h: G −→ G′ there
corresponds a map dh: U(G) → U(G′) which is a representation of
algebras such that∆( f ◦ h) = (dh(∆) f ) ◦ h.

Let y ∈ G andy′ = h(y). If f is an analytic function onG′, we have

τy( f ◦ h)(x) = f (h(xy)) = f (h(x)h(y)) = (τy′ f ) ◦ h(x).

We may now write down the Taylor formula for both sides of the
equation and equate the coefficients of powers ofy (by the uniqueness

19
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of development in power series). We have

∑

α

1
α!

yα∆α( f ◦ h) = (
∑

α′

1
α′!

y′α
′
∆′α′ f ) ◦ h.

But h being an analytic map, (h(y))i =
∑
α′ ν

i
αyα. There is no con-

stant term in this summation since (h(y))i = 0 at y = e. Hencey′α
′
=∑

|α|≥|α′ | µ
α′
α yα, whereµα

′
α are constants, and on substitution in the above17

equation, we obtain

∑

α

1
α!

yα∆α( f ◦ h) =
∑

α′
(

1
α′!

∑

|α|≥|α′ |
µα
′
α yα∆′α′ f ) ◦ h

=
∑

α

yα(
∑

|α′ |≤|α′ |
µαα

1
α′!
∆′α′ f ) ◦ h.

the series being uniformly absolutely convergent. IfD′α denotes
∑
|α′ |≤|α′ |

µαα
α!
α′!
∆′
α′ , which is a left invariant differential operator, then∆α( f ◦h) =

(D′α f ) ◦ h. Moreover, this equation completely determinesD′α since its
value ate given by Dα f (e′) = ∆α( f ◦ h)(e). As the∆α form a basis
for U(G) in G, we may define a linear mapdh : U(G) → U(G′) by
settingdh(∆α) = D′α. It is obvious that∆( f ◦ h) = (dh(∆) f ) ◦ h for any
∆ ∈ µ(G). To complete the proof of proposition 1, one has only to show
thatdh(∆1∆2) = dh(∆1)dh(∆2). But this is obvious since

(dh(∆1∆2) f ) ◦ h = ∆1∆2( f ◦ h)

= ∆1(dh(∆2) f ◦ h)

= (dh(∆1dh(∆2) f ) ◦ h.

Now, dh(∆α) =
∑
|α′ |≤|α| µ

α′
α

α!
α′!
∆′
α′ is of order less than or equal to

that of∆α. By linearity, the same is also true of any operator∆ ∈ U(G).
Also,dhpreserves constant terms. The image ofg is in g′, and by Propo-
sition 1,dh restricted tog is a Lie algebra representation. This is said to
be thedifferentialof the maph.
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Remarks. (1) If we have another representationh′ : G′ → G′′, it is
obvious thatd(h′ ◦ h) = dh′ · dh.

(2) If h is an analytic map of a manifoldV into a manifoldW, then 18

we can define the differential ofh at x, viz., dhx : Tx → Th(x)

whereTx, Th(x) are tangent spaces at the respective points. This
map makes correspond to a tangent vectorX at x, the vectorX′

at h(x) such thatX′ f = X( f ◦ h) for every function f analytic at
h(x). However, we cannot, in general, define the image a vector
field. As we have seen, in the case of Lie groups, as long as
one is considering only left invariant vector fields, one cantalk
of an image vector field. Thus we now have, corresponding to
an analytic representation of a Lie groupG into another Lie group
G′, two notions of a differential map: the linear map of the tangent
space at a into that ath(e) = e′, and the representation of the Lie
algebra ofG in that ofG′. These two notions are essentially the
same in the following sense. Letϕ, ϕ′ be the canonical vector
space isomorphisms ofg, g′ with Te, Te′ respectively. Then the
diagram

g

dh
��

ϕ
// Te

dhe

��

g
′ ϕ′

// Te′

is commutative.

Proposition 2. Let G and G′ be two connected Lie groups. An analytic
representation of G→ G′ is surjective if and only if the differential map
is surjective.

Proposition 3. A representation h of a Lie group G in another Lie group
G′ is locally injective(i.e. there axises a neighbourhood of e on which
h is injective) if and only if dh is injective.

These two propositions are consequences of the corresponding prop- 19

erties of manifolds, the proofs of which we omit.
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3.2 Subgroups of a Lie group.

Definition . An analytic map f of a manifold U into another manifold
V is said to beregularat a point x in U if the differential map d fx is
injective.

Definition . A submanifoldof an analytic manifold U is a pair(V, π)
consisting of a manifold V which is countable at∞ and an injective
analytic mapπ of V into U which is everywhere regular.

Remarks. (1) The topology onπ(V) is not that induced from the
topology of U in general. For instance, ifT2 is the two - di-
mensional torus,V the space of real numbers, andπ the map
t → (t, αt) of V into T2, whereα is irrational, it is easy to see that
π is an injective, analytic, regular map. Butπ cannot be a home-
omorphism ofV into T2. For, every neighbourhood of (0, 0) in
T2 contains points (t, αt) with arbitrarily large values oft. Hence,
the inverse image of this neighbourhood inπ(U) with the induced
topology can never be contained in a given neighbourhood of 0
in R.

(2) Nevertheless, it is true that locally, for every pointx of V, there
exist neighbourhoodsW in V andW1 in U which satisfy the fol-
lowing : A coordinate system (x1, . . . , xn) can be defined inW1

such thatW is defined by the annihilation of certain coordinates.

Definition . A Lie subgroup of a Lie group G is a submanifold(H, π),20

π(H) being a subgroup of G.

We define onH the group structure obtained by requiring thatπ be
a monomorphism. Since the mapπ of H in G is regular, locally the
analytic structure ofH is induced form that ofG. Hence the group op-
erations inH are analytic inH, as they are analytic inG. H is therefore
a Lie group.

Proposition 4. The Lie algebra of a Lie subgroup of a Lie group G can
be identified with a subalgebra of the Lie algebra of G.
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In fact, if (H, π) is the subgroup,π is a representation ofH in G and
dπ is injective sinceπ is regular. We identify the Lie algebraS of H
with the subalgebradπ(S ) or g.

3.3 One-parameter subgroups.

Definition. An analytic representationρ of R into G is said to be aone-
parameter subgroupof G.

We know that the representationρ gives rise to a differential mapdρ

of the Lie algebra ofR (spanned by
d
dt

) into the Lie algebra ofG. Let

dρ(
d
dt

) = X =
∑
λ jX j. We now form the differential equations satisfied

by the functionρ.
Let (x1, x2, . . . xn) be a coordinate system in a neighbourhood ofe in

G and Letρi denotexi ◦ ρ. Now

ρi(t + t′) = ϕ1(ρ(t), ρ(t′))

∂

∂t′
(ρi(t + t′)) =

∑

k

∂ϕi

∂y1
(ρ(t), ρ(t′)).

dρk

dt
(t)

Puttingt′ = 0, we get

dρi

dt
(t) =

∑

k

dρk

dt
(0)

∂ϕi

∂yk
(ρ(t), e).

21

If Xi = ∆[i] , we have

Xi =
∂

∂xi
+

∑

j

ai j (x)
∂

∂x j
with ai j (e) = 0.

Since (X f) ◦ ρ = d
dt( f ◦ ρ) for every function analytic ate, we get

dρi

dt
= (Xxi) ◦ ρ by settingf = xi .

Hence

dρi

dt
(0) = (Xxi) ◦ ρ(0)
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= Xxi(e)

=
∑

(λ jX j)xi(e)

= λi .

To sum up,ρ satisfies the system of differential equations

(A)
dρi

dt
=

∑
k λk

∂ϕi

∂yk
(ρ(t), e)

with the initial condition

(B) ρi(0) = 0.

(A) implies
dρi

dt
(0) = λi .

Now, conversely if are given the system of differential equations (A)
with the initial condition (B), then by Cauchy’s theorem on the exis-
tence and uniqueness of solutions of differential equations, there exists
one and only one solutiont → ρ(t, λ) which is analytic int andλ in a
neighbourhood of (0, λ). We shall now show thatρ(t + u) = ρ(t) · ρ(u)
for sufficiently small values oft andu.

Let22

σ′i (t) = ϕi(ρ(u), ρ(t)). Then

dσ′i
dt
=

∑

l

∂ϕi

∂yi
(ρ(u), ρ(t))

dρl

dt
(t)

=
∑

k, j

λk
∂ϕi

∂yl
(ρ(u), ρ(t))

∂ϕl

∂yk
(ρ(t), e)

since theρi are solutions of (A). On the other hand, we have

ϕi(ρ(u)ρ(t), y) = ϕi(ρ(u), ρ(t)y)

= ϕi(ρ(u), ϕ(ρ(t), y))

∂ϕi

∂yk
(ρ(u)ρ(t), y) =

n∑

l=1

∂ϕi

∂yl
(ρ(u), ρ(t)y)

∂ϕl

∂yk
(ρ(t), y).
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Hence,
dσ′i
dt
=

∑

k

λk
∂ϕi

∂yk
(σ′(t), e).

i.e.σ′i is a solution of (A) with the initial condition (C):

σ′i (0) = ϕi(e, ρ(u)) = ρi(u).

Also, t → σ(t) = ρ(t + u) is a solution of (A) since the differential
equation (A) is a invariant for translations of it. Alsoσ(0) = ρ(u).

Henceσ′i andσi are two sets of solutions of (A) with the same initial
conditions, and therefore

σ′i (t) = ρ(t + u), i.e. ϕi(ρ(t), ρ(u)) = ρi(t + u).

or ρ(t)ρ(u) = ρ(t + u) for sufficiently small values oft andu. Also this
mapt → ρ(t,X) is analytic. We assume the following

Lemma 1. Let H be a connected, locally connected and simply con-23

nected topological and f a local homomorphism of H→ G (i.e. a con-
tinuous map of a neighbourhood of e into H such that f(xy) = f (x) f (y)
for all x, y such that x, y, xy∈ V). Then there exists one and only one
representationf̃ of H in G which coincides with f on V.

We immediately obtain (sinceR is simply connected), the

Theorem 1. For every X∈ g, there exists one and only one one - pa-

rameter subgroupρ(t,X) such that dρ
(d)
dt
= X. The functionρ(t,X) is

analytic in t and X.

One can assign to any finite dimensional vector space over thereal
number field a manifold structure which is induced by that of the real
numbers. In particular, The Lie algebra of a Lie group also has an ana-
lytic structure. Whenever we talk of an analytic map into of from a Lie
algebra, it is to this analytic structure that we refer.

Proof of the Lemma Consider the Cartesian set productĤ = H × G.
We provideĤ with a topology by defining the neighbourhood system at
each point (x, y) in the following way:
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Let W be a neighbourhood ofe in H ⊂ V, whereV can be assumed
to be connected sinceH is locally connected. The fundamental sys-
tem of neighbourhoods at (x, y) is given byN(W, x, y) = {(x′, y′) : x′ ∈
xW, y′ = y f(x−1x′)}. It is easily verified that this satisfies the neigh-
bourhood axioms for a topology, and thatĤ with the usual projection
π : H × G → H is a covering space ofH. Let H1 be the connected
component of (e, e) in Ĥ. ThenH1 is a connected, covering space ofH
and sinceH is simply connected,π is a homeomorphism ofH1 onto H.
Let η be its inverse. Definẽf (x) = π2 ◦ η(x) for every x in H where24

π2 : H ×G → G is the second projection.N(W, x, y) is mapped home-
omorphically byπ onto xW. HenceN(W, x, y) ⊂ H1 if W is connected
and (x, y) ∈ H1. It follows that f̃ is a representation which extendsf .

3.4 The exponential map.

We shall denoteρ(t,X) by exp(tX).
But such a notation involves the tacit assumption thatρ(t,X) de-

pends only ontX. In other words, one has to make sure thatρ(1, sX) =
ρ(s,X) before such a notation becomes permissible. But this is obvious

in as much ast → ρ(st,X) is a one -parameter subgroup withdρ
(d)

d(st)
=

X or dρ
(d)
dt
= sX. The one-parameter subgroup such thatdρ

(d)
dt
= sX

is, by definition,t → ρ(t, sX). By uniqueness of the one-parameter sub-
groups,ρ(st,X) = ρ(t, sX), or in particular,ρ(s,X) = ρ(1, sX). It is easy
to see that exp(tX) exp(t′X) = exp(t + t′)X and exp(−X) = (expX)−1.
But, in general, expY · expY′ , exp(Y + Y′).

Theorem 2. The map h: X → expX of g into G is an analytic iso-
morphism of a neighbourhood of0 in g onto a neighbourhood of e in
G.

In fact, sinceh is an analytic map, it is enough to show that the
Jacobian of the maph , 0 in a neighbourhood of the origin. (X1, . . . ,Xn)
form a basis forg, whereXi = ∆[i] .

h


∑

i

yiXi

 = exp(
∑

i

yiXi)
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∂h j

∂yk
(0) =

d
dt

(exptXk) j(t = 0) = (Xkx j)x=e = δ jk.

i.e. the jacobian= 1 ate. By continuity, the Jacobian does not vanish in25

a neighbourhood ofe.
Now, let X1, . . . ,Xn be an arbitrary basis ofg. This can be trans-

ported into a system of coordinates inG by means of the above map.
For everyx ∈ G sufficiently neare, there exists one and only one system
(x1, . . . , xn) near 0 such thatx = exp(

∑
i xiXi).

This system of coordinates is called thecanonical system of coordi-
nateswith respect to any given basis. Hereafter, we will almost always
operate only with a canonical system of coordinates.

Remark. Let x ∈ V, V being a neighbourhood ofe in which a canonical
coordinate system exists andx is sufficiently neare. Now, if

x = exp(
∑

i

xiXi),

xp = exp(
∑

i

(pxi)Xi),

i.e. the coordinates ofxp are (px1, . . . , pxn).

Proposition 5. Let h be a representation of G in H, and dh: g→ F its
differential. Then the diagram

g

exp
��

dh
// S

exp

��

G
h

// H

is commutative.

Considert
ρ′

−→ h(exptX).
This is obviously a one-parameter subgroup, anddρ′ = dh ◦ dρ.

Therefore

h(expX) = exp(dρ′(
d
dt

))
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= exp(dh(X)).

It follows, therefore, that ifh(G) = (e), dh is the mapg→ (0).
Conversely, ifdh = C, andG connected,h(expX) = e for every26

element in a neighbourhood ofe, andh = e. Again, if G is connected
and two representationsh1, h2 of G in H are such thatdh1 = dh2, then
h1 = h2.

Proposition 6. For every analytic function f on a neighbourhood of e,
we have

f (exptX) =
∞∑

n=0

tn

n!
(Xn f )(e).

In fact,
d
dt

f (exptX) = (X f)(exptX).

By induction on n, we have

dn

dtn
f (exptX) = (Xn f )(exptX)

or {
dn

dtn
f (exptX)

}

t=0
= Xn f (e).

Now, f(exptX) is an analytic function of t and by Taylor’s formula,
we have

f (exptX) =
∞∑

n=0

tn

n!
(Xn f )(e)

Theorem 3. In canonical coordinates, we have∆α =
α!
|α|! Sα where Sα

is the coefficient of tα in the expansion of(
∑n

i=1 tiXi)|α| and Sα ∈ U(G).

In fact, it is enough to prove the equality of∆α and
α!
|α|! Sα atesince

both∆α andSα are invariant. Now,

f (y) = τy f (e) =
∑

α

1
α!

yα∆α f (e) with ∆α f (e) =

{
∂α

∂yα
f (y)

}

y=e
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y = exp(
∑

yiXi) whereyi are the canonical coordinates ofy.
Therefore27

f (y) = f (exp(
∑

yiXi))

=

∞∑

p=0

1
p!

{
(
∑

yiXi)pf

}
(e)

by Prop. 6, chapter 3, 5.
Taking partial derivatives aty = e, we have

∂α

∂yα
f (y) at y = e is

α!
|α|! (Sα f )(e).

Hence,Deltaα f (e) =
α!
|α|! Sα f (e) which is what we wanted to prove.





Chapter 4

Relation between Lie groups
and Lie algebras - II

4.1 The enveloping algebras.
28

Let g be a Lie algebra, andT the tensor algebra of the underlying vector
space ofg. Consider the two-sided idealI generated inT By the ele-
ments of the formx⊗ y− y⊗ x− [x, y]. Then the associative algebraT/I
is said to be theuniversal enveloping algebraof the Lie algebrag.

Definition. A linear map h of al Lie algebrag into as associative algebra
A is said to be alinearisationif h([x, y]) = h(x)h(y) − h(y)h(x) for every
x, y∈ g.

We have obviously a canonical map ofg in to T/I , which we shall
denote byj.

Proposition 1. To any linearisation f ofg in an associative algebra A,
there corresponds one and only one representationf̄ of T/I in such that
f̄ ◦ j = f .

In fact, f being a linear map, it can be lifted uniquely into a rep-
resentationf̂ of the tensor algebraT in A. Obviously, the kernel off̂
contains elements of the formx⊗ y− y⊗ x− [x, y] and hence containsI .
Hence this gives rise to a map̄f with the required property.

31
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4.2 The Birkhoff-Witt theorem.

With reference to the universal enveloping algebra of a Lie algebra of a
Lie group, we have the following

Theorem 1. The algebra of left invariant differential operatorsU is29

canonically isomorphic to the universal enveloping algebra of the Lie
algebra.

In fact, the inclusion map of the Lie algebrag intoU can be lifted
to a representation of the enveloping algebraU′ of g in U by propo-
sition 1. It only remains to show that this maph : U′ → U is an

isomorphic. IfSα is the coefficient of tα in the expansion of (
n∑

i=1
tiXi)|α|,

it has been proved (Th. 3, Ch. 3.4) thatSα form a basis forU. Sα is an
operators of the form

∑
(. . .)Xi1 · · ·Xi |α| , whereXi1 · · ·Xi |α| are obtained

by certain permutations ofxαi
1 · · ·X

αn
n . Let S′α denote the element of the

form
∑

(. . .)Xi1 ⊗ . . . ⊗ Xi |α| , whereSα =
∑

(. . .)Xi1 . . . xi |α| . By definition
of h, we haveh(S′α) = Sα. To prove thath is an isomorphism, it is
therefore sufficient to show that theS′α generateU′. We shall do this
showing that theS′α for |α| ≤ r generate the spaceTr of tensors of order
≤ r modulo I . The statement being trivially true forr = 0, we shall
assume it verified for (r − 1) and prove it forr. Again, it is enough to
prove thatS′α for |α| = r generate the spaceT′r of tensors of order= r,
moduloI + Tr−1. Let Xi1 ⊗ · · · ⊗ Xir be an element∈ T′r . Then

Xi1 ⊗Xi2 ⊗ . . .⊗Xir ≡ Xi2 ⊗Xi1 ⊗Xi3 ⊗ . . .+
[
Xi1,Xi2

]⊗Xi3 ⊗ . . . mod I .

Hence, ifσ is a permutation of (1, 2, . . . , r),

Xi1 ⊗ Xi2 ⊗ . . . ⊗ Xir ≡ Xiσ(1) . . .Xiσ(r) mod (Tr−1 + I )

by successive transpositions. Now,S′α =
∑
σUσXiσ(1) . . . xiσ(r), where30

Uσ are positive integers. Therefore

(
∑

σ

Uσ)Xi1 ⊗ . . . ⊗ Xir ≡ S′α mod (Tr−1 + I ).

Since

(
∑

σ

Uσ) , 0,Xi1 ⊗ . . . ⊗ Xir ≡ kSα mod (Tr−1 + I ),
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and hence the theorem is completely proved.
Incidentally we have proved that the Lie algebrag can be embedded

in its universal enveloping algebra by the natural maph. This is known
as the Birkhoff-Witt theorem, and it true in the more general case when
the Lie algebra is over a principal ideal ring.

4.3 Group law in terms of structural constants.

We now show that the Lie algebra of a Lie group completely charac-
terises the group locally. In other words, the group laws of the Lie group
can be expressed in terms of thestructural constantsof its Lie algebra.
(If (X−α)α∈A be a basis of the Lie algebra, and [Xi ,X j] =

∑
k Ck

i, jXk,Ck
i, j

are called the structural constants of the Lie algebra).

Theorem 2. Lie groups having isomorphic Lie algebras are locally iso-
morphic. If they are connected and simply connected, they are isomor-
phic.

Choose a basisX1, . . . ,Xn of the Lie algebrag. If θi(x) be theith

coordinates ofx in the canonical of coordinates with respect to the above
basis we have.

ϕi(x, y) = θi(xy) = τyθi(x) =
∑ 1

α!
yα∆αθi(x)

But ∆αθi(x) = τx(∆αθi)(e)

=
∑

β

1
β!

xβ∆β(∆αθi)(e).

Hence 31

ϕi(x, y) =
∑

α,β

1
α!

1
β!

yαxβ(∆β∆αβi)(e).

If
∆β∆α =

∑

γ

dγ
β,α
∆γ = dγ

β,α

are completely known, once the Lie algebrag is given, because∆α =
α!
|α|! Sα. Since

∆rθi(e) = (
∂r

∂xr xi
)x=e =

1 if r=[i]
0 if r,[i]
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we have ϕi(x, y) =
∑

α,β

d[i]
β,α

α!β!
xβyα.

Thus the group law is completely determined by the constantsd[i]
β,α

.

If two Lie groups have isomorphic Lie algebras, the constants d[i]
β,α

are
the same for both, and the group operation is given locally bythe above
formula, which is to say the groups are locally isomorphic. By Lemma
1, Ch. 3.3, if the groups are connected and simply connected,they are
isomorphic.

We can compute the constantsd[i]
β,α

in terms of the structural con-
stants of the Lie algebra and obtain a universal formula (i.e. a for-
mula which is the same for all Lie groups - the Campbell–Hausdorff
formula). For instance, ifδ is a multi-index of order 2 with 1 in thejth

andkth indices and 0 elsewhere, it can easily be seen that∆δ =
1
2Sδ =

1
2(X jXk +XkX j) and ifCi

j,k are the structural constant of the Lie algebra,

X jXk =
1
2
[
X j ,Xk

]
+

1
2

(X jXk + XkX j)

=
1
2

∑

i

Ci
j,kXi +

1
2

(X jXk + XkX j)

and henced[i]
[ j],[k] =

1
2

Ci
j,k.

We have therefore

ϕi(x, y) = xi + yi +
1
2

∑
Ci

j,kx j xk + terms of order≥ 3.

Again, if x = expX, y = expY (xi , yi begin canonical coordinates)32

andxy= expZ, we have

Z = X + Y+
1
2

[X,Y] + terms of order≥ 3.

4.4

We have proved (Prop. 4, Ch. 3.2) that the Lie algebra of a Lie subgroup
can be identified with a subalgebra of the Lie algebra. We now establish
the converse by proving the following
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Theorem 3. To every subalgebraJ of a Lie algebrag of a Lie group G,
there corresponds one and only one connected Lie subgroup H,having
it for its Lie algebra.

Let X1, . . . ,Xn be a basis of the Lie algebrag such thatX1, . . . ,Xr

is a basis ofJ . Let ϑ be the subalgebra generated byXi with i ≤ r in
U (G). We assert that the subspaceϑ of U (G) generated bySα with α =
(α1, . . ., αn ◦ · · · ) is the same asϑ. By definition ofSα, it is evident that
V ′ ⊂ V . It is enough to show that elements of the formXi1 · · ·Xis ∈ U ′

if 1 ≤ ik ≤ r. We prove this by induction on the length of the product.
Now,

Xi1Xi2 . . . = Xi2Xi1 . . . +
[
Xi1,Xi2

]
Xi3 . . .

and since
[
Xi1,Xi2

] ∈ ϑ, J being a subalgebra, we have, by induction
assumption

Xi1Xi2 . . . ≡ Xi2Xi1 . . . modϑ′.

If σ is any permutation of (1, 2, . . . , s), we have

Xi1 . . .Xis ≡ Xiσ(1) . . . xiσ(s) ( modϑ′).

It follows (as in Th. 1), thatϑ = ϑ′.
Now, letU be a symmetric neighbourhood ofe in which the system 33

of canonical coordinates with respect toX1, . . . ,Xn is valid. LetN de-
note the subset ofU consisting of points for whichxr+1 = · · · = xn = 0.
N is obviously a closed submanifold ofU. Let x, y ∈ N sufficiently near
e.

(xy)i =
∑

α,β

1
α!

1
β!

xβyαd[i]
β,α

We now show that (xy)i = 0 for i > r. In the summation, unless
bothα andβ are off the form (α1, . . . , αr , 0 . . .)xβyα = 0. If bothα and
β are of the above form,∆α,∆β ∈ ϑ andϑ being generated by∆γ, γ of
the same formd[i]

β,α
= 0 for i > r. Hence (xy)i = 0 for i > r. Thus,

x, y ∈ N ⇒ xy ∈ N andx ∈⇒ x−1 ∈ N for x, y sufficiently neare.
Finally, let H be the subgroup algebraically generated by the con-

nected componentN1 of e in N. ThenH can be provided with an an-
alytic structure such that the mapH → G is everywhere regular. We



36 4. Relation between Lie groups and Lie algebras - II

define neighbourhoods ofe in H by intersecting neighbourhood ofe in
G with N1. This system can easily be seen to satisfy the neighbourhood
axioms for a topological group (Prop 1, Ch. 1.1). For everyx ∈ H,
the neighbourhoodxN1 of x can be provided with an analytic structure
induced by that ofG, since xN is a closed submanifold ofxU. For
x, y ∈ H, these analytic structure agree anxN1 ∩ yN1 because those of
xU andyU agree onxU ∩ yU. H of course hasJ as its Lie algebra.

We now prove the uniqueness of such a group. LetH1 be another
connected Lie subgroup havingJ for its Lie algebra. ExpJ is open
in H1, as the maph→ exph is open (Th. 2, Ch. 3.4). But expJ ⊂ H.34

HenceH is open inH1. As H is open, it is also closed (Ch. 1.2) and
therefore=H1. This completes the demonstration of Theorem 3.

Remark. We have incidentally proved that if a Lie subgroup hasJ for
its Lie algebra, it containsH as an open subgroup.

It has already been proved (Prop. 1, Ch. 3.1) that iff : G→ H is a
representation of Lie groups, there exists a representation d f : g →J
of Lie algebras. Now, we establish the converse in the form ofa

Corollary. Let G and H be two Lie groups havingg andJ as their Lie
algebras. If G is connected and simply connected, to every representa-
tion π of g in J , there corresponds one and only one representation f
of G→ H such that d f= π.

If there exists one such representation, by Prop. 5, Ch. 3.4,it is
unique. We shall now prove the existence of such anf .

We first remark that iff is a representation ofG in H, K the graph
of f in GxHviz. the set{(x, f (x)), x ∈ G}, andλ the restriction toK of
the projection ofGxH → G, thenλ is an analytic isomorphism. Con-
versely, to every subgroup ofGxH the first projection from which is an
isomorphism toG, there corresponds one and only one representation
of G in H. gxJ is evidently the Lie algebra ofGxH.

Now, Let π be a representation ofg in J . Let K be the subset
{(x, π(x)), x ∈ g} of g ×J . It can easily be seen thatK is a subalgebra.
Then there exists (Th. 3) a connected Lie subgroupK of GxH whose
Lie algebra is isomorphic toK . Let λ be the restriction toK of the35
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projection ofG × H → G. Thendλ is the mapK → g defined by
dλ(x, π(x)) = x. Obviouslydπ is an isomorphism. Henceλ is a local
isomorphism ofK in G. K is therefore a covering space ofG andG
being simply connected,λ is actually an isomorphism. To this there
corresponds (by our remark above) a representationf of G in H,the
graph of whose differential isK , i.e. d f = π.

4.5

Theorem 4 (E. Cartan). Every closed subgroup of a Lie group is a Lie
subgroup.

For proving this, we require the following

Lemma 1. Let G be a Lie group with Lie algebrag. Letg be the direct
sum of vector subspaces℘, δ. Then the map f: (A, B)→ expAexpB of
g→ G is a local isomorphism.

It is obvious thatf is an analytic map. To prove that it is a local
isomorphism, it is enough to show that the Jacobian of the map, 0
in a neighbourhood of (0, 0). Let (X1, . . . ,Xr) be a basis ofU and
Xr+1, . . . ,Xn, a basis ofδ. Let (y1, . . . , yn) be the canonical coordinate

system with respect to (X1 . . . ,Xn) andyi◦ = fi. Then, ifX =
n∑

i=1
yiXi,

f {X} = exp (
r∑

i=1

yiXi) exp (
n∑

j=r+1

y jX j)

∂ fk
∂yl

(0) =
d
dt

( exp t Xl)k (t = 0) = (Xl .xk)x=e = δk,l .

Hence Jacobian, 0 at (0, 0) and by continuity,, 0 in a neighbour-
hood of the origin. This completes the proof of the lemma.

Let H be a closed subgroup of a Lie groupG. We first construct a 36

subgroupJ of G and prove that the Lie subgroupH1 of G with J as
its Lie algebra is relatively open inH. ThenH is the topological union
of cosets ofH moduloH1 and is hence a closed submanifold ofG.

Let J be the set{X ∈ g : exp tX ∈ H for everyt ∈ R}. We assert
thatJ is a Lie subalgebra ofg. To prove this, we have to verify
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(i) X ∈J ⇒ αX ∈J for everyα ∈ R

(ii) X,Y ∈J ⇒ X + Y ∈J

(iii) X,Y ∈J ⇒ [X,Y] ∈J .

(a) is a trivial consequence of the definition.

(b) Let nowX,Y ∈J . We have seen that (Ch. 4.3)

expX expY = exp(X + Y +
1
2

[X,Y] + · · · )

Hence (exp
tX
n

exp
tY
n

)n = (exp{t X + Y
n
+

1
2

t2

n2
[X,Y] + 0(

1

n2
})n

= exp
{
t(X + Y) +

t2

2n
[X,Y] + 0(

1
n

).
}

But exp
tX
n

, exp
tY
n
∈ H andH is a subgroup. Therefore (exp

tX
n

exp
tY
n

)n∈ H and sinceH is closed, lim
n→∞

(exp
tX
n

exp
tY
n

)n =

expt(X + Y) (by the above formula)∈ H. HenceX + Y ∈J .

(iv) As before,

X,Y ∈J ⇒ lim
n→∞

(exp
tX
n

exp
tY
n

exp
−tY
n

exp
−tY
n

)n2 ∈ H.

The right hand side in this case tends to expt2[X,Y] asn→ ∞.

Hence expt[X,Y] ∈ H for positive values oft, and since exp(−t
[X,Y]) = (expt[X,Y])−1 for all values oft, i.e. [x, y] ∈J .

Let K be the connected Lie subgroup ofG having J for its Lie37

algebra (Th. 3, Ch. 4.4). We now show thatK is open inH. It is
obviously sufficient to prove thatK contains a neighbourhood ofe in
H. If U is a vector subspace ofg supplementary toJ , by Lemma 1,
there exists a neighbourhoodV of 0 in g such that the mapλ : (X,A)→
expX expA, X ∈ J , A ∈ U is an isomorphism ofV ontoλ(V) = W.
Suppose thatK does not contain any neighborhood ofe in H. Then,
we can find a sequence of pointsan ∈ H ∩W which are not inK and
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which tend toe. There is no loss of generality in assumingan to be of
the form expAn,An ∈ U ∩ V, An , 0. For, If an = expXn expAn, then
(expXn)−1an = expAn < K. Let V1 be a compact neighborhood of 0 in
g ⊂ V/2. For sufficiently largen, An ∈ V1. Let rn be the largest integer
for which rnAn ∈ V1. i.e. (rn + 1)An < V1.

But

(rn + 1)An = rn(An) + An ∈ V/2+ V/2 = V · arn
n ∈W1 = λ(V1)

andarn+1
n < W1 but ∈ W. SinceW1 is compact, we may assume (by

taking a suitable subsequence) thatarn
n converges to ana ∈ W1. Now,

we assert thata , e. For, if a = e, a
rn+1
n = an

rnan → e. But arn
n cannot

tend toe. Hencea , e ∈ W1. Thereforea = lim anrn = expA with
A , 0 andA ∈ U ∩ V1.

We shall now show thatA ∈J , which will imply thatJ ∩U , (0)
and hence will give the contradiction we were seeking. It is enough
to show that expp/qA ∈ H for every rational numberp/q. Now let
prn/q = sn + tn/q, sn an integer and 0≤ tn ≤ q.

exp
pA
q
= lim

n→∞
exp(

prn

q
An)

= lim
n→∞

expsnAn exp(
tnAn

q
)

Now, exp
tn
q

An → e asn → ∞, and lim
n→∞

expsnAn = lim
n→∞

an
sn ∈ H 38

asH is closed. HenceA ∈J , and Theorem 4 is completely proved.

Remark. The theorem is not true in the case of complex Lie groups. For
instance, the space of real numbers is a closed subgroup of the complex
plane, but is not a complex Lie group.

Corollary 1. Every continuous representation f of the underlying topo-
logical group of a Lie group G into that of another Lie group H is an
analytic representation.

In fact, the graphK of f is a closed subgroup of the Lie groupGxH,
and hence is a Lie subgroup. Thenf is the composite of the mapsG→
K, andK → H, and both of them can be seen to be analytic. As an
immediate consequence, we have the following
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Corollary 2. Lie groups with isomorphic underlying topological group
structures are analytically isomorphic.

4.6 Some examples.

We have seen that the general linear groupGL(n,R) is a Lie group, and
by Theorem 4, every closed subgroup, and in particular, the orthogonal
and symmetric groups are Lie groups. A group matrices definedby
some polynomial identities in the coefficients of the matrices is a Lie
group.

We proceed to studyGL(n,R) in greater detail. Ifx ∈ GL(n,R) is39

the matrix (ai j ), xi, j = ai, j − δi, j is a coordinate system which takes the
unit matrix to origin in the spaceRn2

. Now,

ϕi, j(x, y) = xi, j + yi, j +
∑

k

xi,kyk, j

Settingui, j = yi, j +
∑

k xi,kyk, j , we have

τy f (x) = f (x+ u)

= f (x) +
∑

i, j

yi, j(
∂ f
∂xi, j

+

xk,i∑

k

∂ f
∂xk, j

)

The left invariant differential operators of order 1 are therefore gen-

erated byxi, j =
n∑

k=1
ak.i

∂

∂xk, j
. The Xi, j form a basis of the Lie algebra

of GL(n,R).Y =
∑λ

i, j Xi, j is a generic element of the Lie algebra. We

associate the matrix̂Y = (λi, j) with this elementY. we now have the

Proposition 2. The map Y→ Ŷ of the Lie algebra of GL(n,R) into the
algebra of all n-square matricesMn(R) is a Lie algebra isomorphism.

Let Y be an element of the Lie algebra ofGL(n,R). We show that
the mapt → exptY assigns tot the usual exponential matrix exptY. It
has been proved (Ch. 3.3) thatx = exptY satisfies

∂xi. j

∂t
=

∑

k,l

λk,l
∂ϕi, j

∂yk,l
(x(t), e)
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=
∑

k,l

λk.lδ j,l (δi,k + xi,k)

=
∑

k

λk, j(δi,k + xi,k)

i.e. x is a matrix satisfying
d
dt

x(t) = x(t)Ŷ with x(O) = I . These two

conditions can easily be seen to be satisfied by exptŶ. By the unique-
ness theorem on differential equations, exptY = exptŶ, where the latter 40

exponential is in the sense of the exponential matrix. LetY, Z ∈ g the
Lie algebra ofGL(n,R). The mapX → X̂ is trivially a vector space
isomorphism ofg ontoMn(R). Now,

expYexpZ = exp(Y + Z +
1
2

[Y,Z] + · · · ) by Ch. 4.3.

But expYexpZ =
(∑ Ŷn

n!

)(∑ Ẑm

m!

)

= 1+ Ŷ+ Ẑ +
Ŷ2

2!
+ · · ·

and

exp(Y + Z +
1
2

[Y,Z] + · · · ) = 1+ Ŷ+ Ẑ +
1
2

(Ŷ2 + ŷẐ + ẐŶ + Ẑ2) + · · ·

Comparing the coefficients, we get

[ ˆY,Z] = [Ŷ, Ẑ].

Remarks. (1) Y =
d
dt

(exptY)t=0.

(2) The Lie algebra of a closed subgroupH of GL(n,R) is simply the
Lie algebra of matricesY such that exptY ∈ H for everyt ∈ R (by
Theorem 4, Ch. 4.5).

(3) Let B(a, b) be a bilinear form onRn.

Then, the set of all regular matricesx which leaveB(a, b) invariant
is a Lie subgroupH of GL(n,R). Then the Lie algebra of this Lie Group
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consists of matricesY such thatB(Ya, b)+B(a,Yb) = O for everya, b ∈
Rn. In fact, if Y is in the Lie algebra, exptY ∈ H, B being invariant under
H, B (exptYa, exptYb) = B(a, b). But

B(exptYa, exptYb) =
∑

p,Q

tp+q

p!q!
B(Ypa,Yqb).

Hence
B(Ya, b) + B(a,Yb) = 0.

Conversely, ifY satisfies this condition, by induction it can be seen41

that
∑

p+q=n

tp+q

p!q!
B(YPa · Yqb) = 0, which proves thatB(exptYa, exp

tYb) = B(a, b), i.e. exptY ∈ H for every t ∈ R. This proves thatY
is in the Lie algebra ofH.

4.7 Group of automorphisms.

Let G be a connected Lie group. Then the set of automorphisms ofG
(continuous representations ofG onto itself), form a group. We shall
denote this group by AutG.

Let α ∈ Aut G. This gives rise to a mapdα : g → g wheredα is an
automorphism of the Lie algebra. We thus have a map; AutG→ Aut g.
This map is one-one, and, ifG is simply connected, onto. We have, in
this case, an isomorphism of AutG→ Aut g, for d(α1, α2) = dα1 ◦ dα2

anddα−1 = (dα)−1. Now, Autg ⊂ GL(g). Aut g is actually aclosed
subgroupof GL(g). For, if Ck

i, j be the structural constants ofg, A ∈
Aut g ⇔ [

A(xi),A(x j)
]
=

∑
k

Ck
i, jA(xk) for every i, j andA ∈ GL(g), {xi}

being a basis ofg. Since Autg is determined by thesen2 equations, it is
a closed subgroup ofGL(g). Hence, Autg is a Lie group.

Proposition 3. Let Γ be the Lie algebra ofAut g. Then X∈ Hom(g, g)
(which is the Lie algebra of GL(g)) is in Γ if and only ifexptX ∈ Aut g
for every t in R. This is obvious from the proof of Theorem 4, Ch. 4.5.

Proposition 4. X ∈ Hom(g, g) is in Γ if and only if X is a derivation.
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By Proposition 3,42

(exptX)[Y,Z] = [exptX · Y, exptX · Z]

i.e.,
∑ tnXn

n!
(
[Y,Z]

)
=

∑

p,q

tp+q

p!q!
[xpY,XqZ]

Xn[Y,Z] =
∑

p+q=n

n!
p!q!

[XpY,XqZ]

for everyn. In particular

X[Y,Z] = [XY,Z] + [Y,XZ]

X is therefore a derivation. Conversely,

X[Y,Z] = [XY,Z] + [Y,XZ] ⇒ Xn[Y,Z] =
∑

p+q=n

n!
p!q!

[XpY,XqZ]

by induction onn⇒ exptX[Y,Z] = [exptX · Y, exptX · Z].
HenceX ∈ Γ.
In other words, the Lie algebra of Autg is only theLie algebra of

derivations ofg (it is a trivial verification to see that the derivations ofg
form a Lie algebra and the set ofinner derivations(Remark 1, Ch. 2.8)
form an ideal in that algebra).

Now, corresponding to everyy ∈ G, there exists an inner automor-
phismρy : x→ yxy−1 of G. Obviouslyy→ ρy is an algebraic represen-
tation ofG in Aut G. ρy induces an automorphismdρy of g. We denote
this byady.

y→ ady is an algebraic representation ofG in Aut g. We now show
that this is an analytic representation. By Corollary to Theorem 4, Chap-
ter 4.5, it is enough to show that this is continuous, i.e. ify → e then
adyX→ X for everyX ∈ g. SinceG andg are locally isomorphic, it
suffices to prove that asy→ e, yexpXy−1 → expX but this is obvious. 43

This analytic representation ofG in Aut G = Aut g is called thead-
joint representationof G. Let θ be the differential of the representation
y → ady. We now show that this is actually theadjoint representation
(Ch. 2.8) of the Lie algebrag.
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Theorem 5. θ(X) = ad X for every X∈ g.

By Remark 1, Prop. 2, Ch. 4.6,

θ(X) = { d
dt

(exp t θ(X))}t=0

=
d
dt

(ad exp t x)t=0

by definition of exponential. We have now to show thatθ(X)Y = [X,Y]

for everyY ∈ g. Let x = exptX · θ(X)Y =
d
dt

(ad Y)t=0. But (adx Y f) ◦
ρx = Y( f ◦ ρx) where f is any analytic function onG. It follows that

σx−1 ◦ τx−1 adx Y f= Yσx−1 ◦ τx−1 ◦ f

or (adx Y) ◦ τx = τx ◦ σxYσx−1

= τxY

sinceY is left invariant

adx Y= τxYτx−1.

But

τx f (e) = f (exptx) =
∑

n

tnXn

n!
f (e) (Prop. 6, Ch. 3.4)

Hence adx Y=
∑

m,n

tmXm

m!
(−t)nXn

n!

=
∑

m,n

(−1)n
tm+n

m!n!
XmYXn

Therefore

θ(X)Y = { d
dt

(adx Y)}t=0 = XY− YX= [X,Y].

Corollary . Let H be a connected Lie subgroup of G. H is a normal
subgroup if and only if its Lie algebraJ is an ideal ing.
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In fact, if H is a normal subgroup,ρy(H) ⊂ H for everyy ∈ G, i.e.44

adyJ ⊂J for everyy ∈ G. Let X ∈ g. Then ad exptXJ ⊂J .

d
dt

(ad exptX)t=0J = ad XJ ⊂J

i.e. J is an ideal.

Reciprocally, letJ be an ideal. adXJ ⊂ J · (∑ tnadXn

n!
)J ⊂

J . But expt ad X = ad exptX · (adexptX)H ⊂ H for everyX in a
neighborhood ofe. SinceG is connected,H is normal.

4.8 Factor groups.

Theorem 6. Let H be a closed subgroup of a Lie group G. The homo-
geneous space G/H is an analytic manifold in a canonical way. The
operations by G on G/H are isomorphisms. If H is a normal subgroup,
is a Lie group, and its Lie algebra is isomorphic tog/J .

Let J be the Lie algebra ofH, and letU be a vector subspace
of g supplementary toJ . We have seen in the proof of Theorem 4,
Ch. 4.5, that there exists a neighborhoodV1 of (0, 0) in J × U such
that the mapλ : (X,A) → expX expA is an isomorphism ofV1 onto
a neighborhoodW1 of e in G. Let U andV be neighborhoods of 0 in
J andU respectively such thatU × V ⊂ V1 andWW−1 ⊂ W1 with
W = λ(U × V). We now show thatL = expV is a cross-section of the
canonical mapη : G → G/H in the neighborhooḋW = η(W) of η(e).
In other words,L ∩ Hx contains one and only one element for every
x ∈ W. For, we havex = expX expA with X ∈ U and A ∈ V and
expA ∈ L ∩ Hx. On the other hand, if expA1 and expA2 belong toHx
(with A1, A2 ∈ V), then expA1(expA2)−1 ∈ H ∩W1; hence there exists45

anX ∈ V1∩J such that expA1 = expX expA2 and this impliesX = 0,
A1 = A2 becauseλ is an isomorphism fromV1 ontoW1.

We can, therefore, providėW with a manifold structure induced
from that ofU. This can be extended globally by translating that on
W. It is easily seen that on the overlaps ˙xẆ, ẏẆ, the analytic structures
agree because the analytic structure onẆ is induced from that ofU. By
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the definition of the manifoldG/H, it is obvious that the operations by
G onG/H are analytic isomorphisms.

If H is normal subgroup,G/H has also a group structure and is a Lie
group with the above manifold. By Theorem 6, Ch. 4.8,J ia an ideal
of J and ifK is the Lie algebra ofG/H, the mapη :→ G/H gives rise
to a representationdη : J → K . The kernal of this map isJ since
K is isomorphic as a vector space to the tangent space ate of L which
isU. HenceH /J is isomorphic toK as a Lie algebra also, i.e.G/H
has its Lie algebra isomorphic tog/J .

Corollary. Let f be a representation of a Lie group G which is count-
able at∞ in another Lie group H. Then the image f(G) is a Lie sub-

group. If N is the kernel of f , then f can be factored into G
π−→ G/N

f̄
−→

H whereπ is the canonical map and̄f an injective regular map.

The proof is an immediate consequence of the isomorphism theorem
on Lie algebras and Theorem 6.
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Chapter 5

Measures on locally compact
spaces

1.1 Definition of a measure.

In this chapter and the following, we shall give a brief summary of cer- 46

tain results on measure theory, a knowledge of which is essential in what
follows.

Let X be a locally compact topological space andCX the algebra of
continuous complex-valued functions onX with compact support. Let
K be a compact subset ofX andCK the subset{ f : support off ⊂ K} of
CX. ThenCK is a Banach space under the norm|| f || = sup

x∈K
| f (x)|.

Definition. A measureon X is a linear form onCX such that the restric-
tion to CK is continuous for every compact subset K of X. A measureµ

is said to bepositiveif µ( f ) ≥ 0 for every f≥ 0.

Proposition 1. Every positive linear form onCX is a measure on X.

In fact, if K is any compact subset ofX, there exists a continuous
function f on X which= 1 in K, = 0 outside a compact neighbourhood
of K and 0 ≤ f ≤ 1. If g is a function belonging toCK, obviously
−||g|| f ≤ g ≤ ||g|| f and hence

−||g||µ( f ) ≤ µ(g) ≤ ||g||µ( f ).

47
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i.e.,
|µ(g)| ≤ ||g||µ( f ),

which shows thatµ is continuous when restricted toCK .
On the other hand, ifµ is any real measure (i.e. a measureµ such that

µ( f ) is real wheneverf is real) it can be expressed as the difference of
two positive measures. Moreover, a complex measureµ can be uniquely47

decomposed intoν + iν′ whereν andν′ are real. Hence a measure can
alternatively be defined as a linear combination of positivelinear forms
on CX. For a real measureν, there exists a unique ‘minimal’ decompo-
sition µ1 − µ2 (µ1, µ2 positive) in the sense that ifν = µ′1 − µ′2 be any
other decomposition, we haveµ′1 = µ1 + π, µ′2 = µ2 + π with π positive.

1.2 Topology onCX.

The spaceCX =
⋃
K

CK whereK runs through all the compact subsets of

X can be provided with the topology obtained by taking the direct limit
of the topologies onCK. This topology makes ofCX a locally convex
topological vector space. The fundamental property of thisspace is that
a linear map ofCX in a locally convex space is continuous if and only
if its restriction to eachCK is continuous. (Bourbaki, Espaces vectoriels
topologiques, Chapter 6). A measure is, by definition, a continuous
linear form onCX with its topology of direct limit. The spaceMX of
measures is none other than the dual ofCX. One can provideMX with
several topologies, as for instance, the weak topology in whichµ→ 0⇔
for every f ∈ CX, µ( f )→ 0.

1.3 Support of a measure.

Definition. Thesupportof a measureµ is the smallest closed set S such
that for every function f∈ CX whose support is contained in X− S ,
µ( f ) = 0.

Let M c be the space of measures with compact support. Iff is a
continuous function onX, for everyµ ∈ M c, we can defineµ( f ) =
µ(α f ) whereα is a function 1 on a neighbourhood of the supportK of48

µ, and 0 outside a compact neighbourhood ofK. It is obvious that the
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value ofµ( f ) does not depend onα. We shall denote byE ◦X the space of
continuous function onX. E ◦X with the topology of compact convergence
is a locally convex topological vector space.µ defined onE ◦X in the
above manner is continuous with respect to this topology. Conversely,
let µ be a continuous form onE ◦X . The topology onCX is finer than
that induced from the topology ofE ◦X . Henceµ restricted toCX is again
continuous and is consequently a measure. We now show that this has
compact support. Sinceµ is a continuous function onE ◦X , we can find
a neighbourhoodV of 0 such that|µ( f )| < 1 for every f ∈ V. V may
be taken to be of the form{ f : | f | < ǫ on K} as the topology onE ◦X is
the topology of compact convergence. Letg ∈ CX be a function 0 on
K. Then |µ(g)| < 1. If λ is any complex number,µ(λg) = λµ(g), and
|µ(λg)| < 1. Henceµ(g) = 0, i.e. the support ofµ is contained inK.

1.4 Bounded measures.

Let µ ba a measure∈ MX. We define a positive measure|µ| in the
following way:
|µ| f = sup

0≤|g|≤ f
|µ(g)| for every positive functionf and extend it by

linearity to all functions∈ CX. If µ is a real measure with the minimal
decomposition (Ch. 1.1)µ = µ1 − µ2, then|µ| = µ1 + µ2.

Definition . A measureµ is boundedif and only if there exists a real
number k such that|µ( f )| ≤ k|| f || with || f || = sup

x∈X
| f (x)|.

Obviouslyµ is bounded if and only if|µ| is bounded,µ is continuous 49

for this norm and can be extended to the completionC X (which is only
the space of continuous functions tending to zero at∞). C X is actually
the adherence ofCX in the space of all continuous bounded functions.
The space of bounded measures is a Banach space under the norm||µ|| =
sup
f∈CX

|µ( f )|
|| f || . ||µ|| is the smallest numberk such that|µ( f )| ≤ k|| f ||. It can

proved that every bounded continuous function is integrable with respect
to a bounded measure, and we have still the inequality|µ( f )| ≤ ||µ|| || f ||
for bounded continuous functionsf .
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1.5 Integration of vector valued functions.

We introduce here the notion of integration of a vector valued function
with respect to a scalar measure, a use of which we will have frequent
occasions to resort to in the sequel. LetK be a compact space andE a lo-
cally convex quasi-complete topological vector space (i.e. every closed
bounded subset is complete). We shall provide the spaceC (K,E) of
continuous functions ofK into E with the topology of uniform conver-
gence.

Theorem 1. Corresponding to every measureµ on K, there exists one
and only one continuous linear mapµ̃ ofC (K,E) in E such that̃µ( f ·a) =
µ( f ) ·a for every continuous complex valued function f on K and a∈ E.

µ can obviously be lifted to a linear map ¯µ of C ⊗ E in E by setting
µ̄(c⊗e) = µ(c)eand extending by linearity. Also,C ⊗E can be identified
with a subset of the spaceC (K,E) of continuous functions ofK into50

E. We will now show that ¯µ is continuous with respect to the induced
topology onC ⊗ E and thatC ⊗ E is dense inC (K,E). We will in fact
prove more generally that every functionf ∈ C (K,E) is adherent to a
bounded subset ofC ⊗ E.

Let V be a convex neighbourhood of 0 inE. Then there exists a
neighbourhoodAx of each pointx ∈ K such thatf (y)− f (x) ∈ V for every
y ∈ Ax. Now theAx cover the compact spaceK and letAx1, . . . ,Axn be
a finite cover extracted from it. Letϕi be positive continuous functions

on K such that
n∑

i=1
ϕi = 1 and the support ofϕ ⊂ Axi . If g =

∑
ϕi f (xi),

theng ∈ C ⊗ E, and we have

g(y) − f (y) =
∑

ϕi(y) f (xi ) −
∑

ϕi(y) f (y)

=
∑

ϕi(y)[ f (xi ) − f (y)]

∈ V sinceV is convex.

By allowing V to describe fundamental system of neighbourhoods
of 0, we see thatf is adherent to the set of such functionsg. This set is a
bounded subset ofC (K,E). For,

∑
ϕi(y) f (xi ) is in the convex envelope

of f (K) for everyy ∈ K and the convex envelope of a compact set is
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bounded. It follows that
∑
ϕi f (xi) are uniformly bounded and hence

form a bounded subset ofC (K,E). This proves, in particular,thatC ⊗E
is dense inC (K,E).

Now let g =
∑

giai be a function∈ C ⊗ E tending to zero in the
topology ofC (K,E). Then〈∑giai , a′〉 → 0 uniformly on the compact
setK and on any equicontinuous subsetH of the dual ofE.

µ〈g, a′〉 = µ〈
∑

giai , a
′〉

= µ(
∑

gi〈ai , a
′〉) =

∑
µ(gi)〈ai , a

′〉

= 〈
∑

µ(gi)ai , a
′〉 = 〈µg, a′〉

51

Since〈g, a′〉 → 0 uniformly on K × H, µ〈g, a′〉 → 0 and hence
〈µg, a

′〉 → 0 uniformly on any equicontinuous subsetH of E. Conse-
quentlyµg→ 0. This shows thatµ is continuous onC ⊗ E.

Thereforeµ can be extended uniquely to a continuous linear map of
C (K,E) in the completionÊ of E. But if f ∈ C (K,E), it is adherent to a
bounded setBandµ(B) is also bounded inE. By the quasi-completeness
of E, the closure ofµ(B) in Ê andE are the same. Henceµ(f)∈ µ (B)
⊂ µ(B) ⊂ E. Thus we have extendedµ to a continuous linear map ˜µ

of C (K,E) → E and it is obvious this is unique. Now by Theorem
1, if G be any locally compact space andµ a measure onG, we can
define

∫
f (x)dµ = µ̃( f ) for every continuous functionf from G to E

with compact support.

Remark. The measure with this extended meaning is factorial in char-
acter in the following sense: LetE andF be two locally convex spaces
and f a continuous map of a compact spaceK into E. If A is a continuous
map ofE in F, we haveA f ∈ C (K, F) andµ satisfiesµ(A f) = Aµ( f ).





Chapter 6

Convolution of measures

2.1 Image of a measure
52

Definition. Let X, Y be two locally compact topological spaces andπ a
map X→ Y. Letµ be a positive measure on X. ThenΠ is said to be
µ− properif for every function f∈ CY, f ◦ π is integrable with respect
to µ. The valueµ( f ◦ π) depends linearly on f and is therefore a linear
form on CY. In other words,µ( f ◦ π) defines a positive measure on
Y, which we denote byπ(µ). We have, by definition,

∫
Y

f (y)dπ(µ)(y) =∫
X

f ◦ π(x)dµ(x).

If µ is not positive, but is equal to (µ1 − µ2) + i(µ3 − µ4), µ1, µ2, µ3,
µ4 positive, and ifπ is |µ| - proper, we can define the image measure

π(µ) = π(µ1) − π(µ2) + iπ(µ3) − iπ(µ4).

Examples.

(1) A continuouspropermap ofX → Y (i.e. a map such that inverse
image of every compact set is compact) isµ - proper for everyµ.

In fact, f ∈ CK → f ◦ π ∈ Cπ−1(K) andπ−1(K) is compact.

(2) Letπ be a continuous mapG→ H and letµ have compact support
K. Thenπ is µ-proper; the support ofπ(µ) ⊂ π(K) and is hence
compact.

53
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If f is a continuous function onH with compact supportK, f ◦ π
is continuous and henceµ-integrable (Ch. 1.3). This shows thatπ
is µ-proper and iff = 0 onπ(K), then f ◦π = 0 onK and therefore
µ( f ◦ π) = 0, i.e. support ofπ(µ) ⊂ π(K).

(3) More generally, whenπ is continuous andµ bounded,π is µ-53

proper. Alsoπ(µ) is bounded and||π(µ)|| ≤ ||µ||.

In fact, f ◦ π is bounded and in view of the remark in Ch. 1.4,f ◦ π
is integrable with respect toµ. Moreover,

||π(µ)|| = sup
g∈CY

|πµ(g)|
||g|| = sup

g∈CY

|µ(g ◦ π)|
||g ◦ π|| ≤ ||µ||

2.2 Convolution of two measures.

Let G, H be two locally compact topological spaces andµ, ν measures
onG, H respectively. Then there exists one and only measureλ onG×H
such that if f , g be functions with compact support respectively onG,
H we have

∫
f (x)g(y)dλ(x, y) = (

∫
f (x)dµ(x))(

∫
g(y)dν(y)).

λ shall be called the product measure ofµ andν.
If µ andν are two measures on a locally compact groupG, we denote

the product measure byµ⊗ ν and, if the group operationπ : G×G→ G
defined by (x, y)→ xy is µ⊗ν - proper, its image inG byµ∗ν. The latter
is said to be theconvolution productof µ andν. The most general class
of measures for which convolution product can be defined are those for
which f (xy) is integrable with respect to the product measure for every
function f ∈ CG. The following cases are the particular interest to us:

(1) If µ and ν are bounded, the convolution product exists and is
bounded.

This is almost obvious,π being continuous andµ ⊗ ν bounded
(Example 3, Ch. 2.1).
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(2) If µ andν are measures onG with compactsK, K′ respectively,54

µ ∗ ν exists and has compact support. In fact,µ ⊗ ν has support
⊂ K × K′. Hence, convolution product exists, and has support
⊂ KK′.

(3) If either µ or ν has compact support,µ ∗ ν exists. Let f be a
continuous function onG with compact supportK and letµ have
compact supportK′. Obviously

"
f (xy)dµ(x)dν(y) =

∫

K′
dµ(x)

∫

KK′−1
f (xy)dν(y)

Hencef (xy) is integrable with respect toµ ⊗ ν. Consequently,µ ∗ ν
exists.

We denote as usual byM 1, M c, E 0
G the spaces of bounded mea-

sures, the space of measures with compact support and the space of all
continuous functions onG respectively. Letλ, µ, ν be three measures
onG such that either all three are bounded or two of them have compact
support. In any case the function (x, y, z) → f (xyz) is integrable with
respect toλ ⊗ µ ⊗ ν and hence Fubini’s theorem can be applied.
$

f (xyz)dλ(x)dµ(y)dν(z) =
∫

dν(z)
∫ ∫

f (xyz)dλ(x)dµ(y)

=

∫
dν(z)

∫
f (tz)d(λ ∗ µ)(t)

=

"
f (tz)d(λ ∗ µ)(t)dν(z)

= {(λ ∗ µ) ∗ ν} f
= {λ ∗ (µ ∗ ν)} f

by a similar computation. This shows thatm1 with the convolution prod-
uct is an associative algebra and thatM c acts onM on both sides and55

makes it a two-sided module. Moreover,M 1 is actually a Banach alge-
bra under the usual norm, since we have||µ ∗ ν|| ≤ ||µ|| ||ν||.

Remarks. (1) It is good to point out here that the associativity does
not hold in general. Take,for instance,R to be the locally compact
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group andλ the Lebesgue measure. Letµ beǫ1 − ǫ0 (ǫa begin the
Dirac measure at a - see Ch. 2.5 andν = ϕ(x)dx whereϕ is the
Heaviside function viz.ϕ = 0 for x < 0 and=1 for x ≥ 1. Then
(λ ∗ µ) ∗ ν = 0 andλ ∗ (µ ∗ ν) = dx. Againλ ∗ (µ ∗ ν) may exist
without λ ∗ µ begin well defined. LetR be the locally compact
group,λ andµ Lebesgue measures onR andν = ǫ1 − ǫ0. Then
λ ∗ (µ ∗ ν) = 0 butλ ∗ µ is not defined. However, whenf (xyz) is
integrable with respect toλ ⊗ µ ⊗ ν then the convolution product
is associative.

(2) The formula for the integration of functions with respect to the
convolution of two measures is valid also for vector-valuedfunc-
tion. Thus we have

∫

G
f (x)d(µ ∗ ν) =

"
f (xy)dµ(x)dν(y).

2.3 Continuity of the convolution product.

That the convolution product is continuous inM 1 is trivial in virtue of
our remark that it is a Banach algebra. Regarding the continuity of the
convolution product in the other cases, we have the following

Lemma 1. Let f be a continuous function andµ a measure on G, one of
them having compact support. Then(i) the function g(x) =

∫
f (xy)dµ(y)

is continuous;(ii) the map f→ g is a continuous linear map ofCG in56

E 0
G (with the usual topologies);(iii) if µ has compact support, then the

above map f→
∫

f (xy)dµ(y) is also continuous fromE ◦G → E ◦G and
from CG → CG.

(1) Let H andK be two compact subsets ofG. ThenH × K is also
compact andf (xy) is uniformly continuous onH × K. For every
ǫ > 0, and for everyx ∈ H, there exists a neighbourhoodU of x
such that| f (x′y) − f (xy)| < ǫ for every x′ ∈ U ∩ H andy ∈ K.
If f has compact supportS, we choose a compact neighbourhood
H of x andK such thatHS−1 ⊂ K. If y < K, thenxy, x′y < S.
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Hence ∫

G−K

{
f (x′y) − f (xy)

}
dµ(y) = 0.

So, we have

|g(x′) − g(x)| ≤
∫

K

{
f (x′y) − f (xy)

}
d|µ|(y) 6 ǫ|µ|(K).

This shows thatg is continuous. If howeverµ has compact support
C, we takeK = C and the same inequality as above results.

(2) Again, as in (i) if we assume thatf has compact supportS ans
HS−1 ⊂ K, it is immediate that

|g(x)| ≤
∫

K
| f (xy)|d|µ|(y) for every x ∈ H

≤
∫

K
| f (y)|d|µ|(x−1y)

≤ sup| f ||µ|(H−1K).

Hence we have sup
x∈H
|g(x)| ≤ sup| f ||µ|(H−1K).

It follows that wheneverf → 0 on CS, g(x) → 0 uniformly on
the compact setH. A similar proof holds whenµ has compact
support.

(3) Let nowC be the support ofµ, and f has compact portK; obvi- 57

ouslyg ∈ CKC−1. Since the mapCG → E ◦G is continuous, so also
is the mapCK → CKC−1 and by the properly of the direct limit
topology,CG → CG is continuous. An analogous proof holds for
the other part.

2.4 Duality and convolution products

Let E be a locally convex topological vector space anE′ its dual. Then
E′ can be provided with several interesting topologies (Bourbaki, Es-
paces vectoriels topologiques, Chapter 8). The following three are of
fundamental importance:
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(i) The weak topology, in which x′ ∈ E′ → 0 if and only if 〈x′, x〉 →
0 for everyx ∈ E.

(ii) The convex compact topology, in which x′ ∈ E′ → 0 if and only
if 〈x′, x〉 → 0 uniformly on every convex compact subset, and

(iii) The strong topology, wherex′ ∈ E′ → 0 if and only if 〈x′, x〉 → 0
uniformly on every bounded set.

In general, these topologies are distinct. IfE is a Banach space, the
usual dual is theE′ with the strong topology. However, the convex com-
pact topology is often the most useful, in as much as it sharesthe ‘good’
properties of both the weak and the strong topologies. To mention but
one such, (E′)′ = E is true for the weak, but not for the strong, topology.
The convex compact topology possesses this property. We shall almost
always restrict ourselves to the consideration of this topology.

In particular, the spacesM , M c being duals ofCG andE ◦G respec-58

tively, they can be provided with the convex compact topology. With
reference to the convolution map we have the

Proposition 1. The convolution map(µ, v)→ µ∗ν is continuous in each
variable separately in the following situations:

M c ×M c→M c; M c ×M →M ; M ×M c→M .

In fact, letµ be fixed inM c andν→ 0 in M . Then

µ ∗ ν( f ) =
"

f (xy)dµ(x)dν(y)

=

∫
dν(y)

∫
f (xy)dµ(x).

Denoting byf0(y) the function
∫

f (xy)dµ(x) the mapf → f0 is con-
tinuous fromCG → CG (Lemma 1, Ch. 2.3). The image of a convex
compact subset being again a convex compact subset,µ ∗ ν → 0 uni-
formly on a convex compact subset. All other assertions in the proposi-
tion can be demonstrated in an exactly similar manner.
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2.5 Convolution with the Dirac measure

If x is a point ofG, the Dirac measureǫx is defined byǫx( f ) = f (x).
This is trivially a measure with compact support. Letν be any arbitrary
measure. Then

ǫx ∗ ν( f ) =
"

f (yz)dǫx(y)dν(z)

=

∫
f (xz)dν(z)

= ν(σx − 1 f ).

In a similar manner,ν ∗ ǫx( f ) = ν(τx f ). We may define left and right
translation of a measure by settingd(τxν)(y) = dν(yx) andd(σxν)(y) =
dν(x−1y). It requires a trivial verification to establish thatτxν( f ) = 59

ν(τx−1 f ) andσxν( f ) = ν(σx−1 f ). Hence we have

ǫx ∗ ν = σxν, and ν ∗ ǫx = τ
−1
x ν.

In particular,ǫx ∗ ǫy = σxǫy = ǫxy. In other words, the mapx→ ǫx

is a representation in the algebraic sense of the groupG into the algebra
M c or M 1. As a matter of fact, this can be proved to be a topological
isomorphism (Bourbaki, Intération, Chapter 7).
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Invariant measures

3.1 Modular function on a group.
60

We assume the fundamental theorem relating to measures on locally
compact groups, namely the existence and uniqueness (upto apositive
constant factor) of a right invariant positive measure. Ifµ is such a
measure, we have

(ǫy ∗ µ) ∗ ǫx = ǫy ∗ (µ ∗ ǫx) = ǫy ∗ µ.

Henceǫy∗µ is also a right invariant positive measure. By our remark
above,ǫy∗µ = kµwhere, of course,k depends ony. We shall denotek by
∆(y)−1 where∆(y) is a positive real number. It is immediate that∆(yz) =
∆(y)∆(z). ∆ is therefore a representation ofG in the multiplicative group

of R+. In fact, the continuity of∆(y) =

∫
f (y−1x)dµ(x)
∫

f (x)dµ(x)
follows at once

from that of
∫

f (y−1x)dµ(x) (Lemma 1, Ch. 2.3). This representation∆
of a locally compact group is said to be itsmodular function.

Proposition 1. If a right invariant positive measure on G is denoted by
dx, then the following identity holds: dx−1 = ∆(x−1)dx

In fact, if dµ stands for∆(x−1)dx, we have

dµ(yx) = ∆(x−1y−1)d(yx) = ∆(x−1)dx= dµ.

61
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Hencedµ is left invariant. So also isdx−1 for,
∫

f (yx)dx−1 =

∫
f (x)d(y−1x)−1 =

∫
f (x)d(x−1).

So kdx−1 = ∆(x−1)dx wherek is a constant. We now prove that
k = 1. Whenx is neare,∆(x−1) is arbitrarily near 1 and if we takeg(x) =
f (x) + f (x−1), f being a positive continuous function with sufficiently61

small support, we have
∫

g(x)dx=
∫

g(x)dx−1 =
1
k

∫
g(x)∆(x−1)dx

k being a fixed number and∆(x−1) arbitrarily near 1; it follows that
k = 1.

Definition . A locally compact group G is said to beunimodularif its
modular function is a trivial map which maps G onto the unit element
of R.

The group of triangular matrices of the type
(

a11...0
......
...ann

)
can be proved

to be non-unimodular.

Examples of unimodular groups.

(1) A trivial example of unimodular groups is that of commutative
groups.

(2) Compact groups are unimodular. This is due to the fact that ∆(G)
is a compact subgroup ofR+ which cannot but be (1).

(3) If in a group the commutator subgroup is everywhere dense, then
the group is unimodular. This again is trivial as∆ maps the com-
mutator subgroup and consequently the whole group onto 1.

(4) A connected semi-simple Lie group is unimodular. (A Lie group
G is said to besemi-simpleif its Lie algebrag has no proper
abelian ideals. Consequently, it dose not have proper ideals such
that the quotient is abelian). The kernelN of the representation
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d∆ of the Lie algebra into the real number is an ideal ing such that
g/N is abelian and is therefore the whole Lie algebra. It follows
that the mapd∆ maps the Lie algebra onto (0). This shows that
group is unimodular.

3.2 Haar measure on a Lie group.
62

Let G be a Lie group with a coordinate system (x1, . . . , xn) in a neigh-
bourhood ofe. We now investigate the form of the right invariant Haar
measure on the Lie group. By invariance of a measureµ here we mean
that

∫
f (xy−1)dµ(x) =

∫
f (x)dµ(x) for y which are sufficiently near

e and for f whose supports are sufficiently small. We setdµ(x) =
λ(x)dx1∧. . .∧dxn and enquire if integration with respect to this measure
is invariant under right translations. For invariance, we require

∫
f (x′)λ(x′y)

∣∣∣∣∣ det
∂ϕi(x′, y)
∂x′j

∣∣∣∣∣x
′
1 ∧ . . . ∧ dx′n

=

∫
f (x)λ(x)dx1 ∧ . . . ∧ dxn,

or still λ(x) = λ(xy)J(x, y) with J(x, y) =
∣∣∣∣∣det

∂ϕi

∂x j
(x, y)

∣∣∣∣∣.

For this it is obviously necessary and sufficient to takeλ(x) = J−1(e,
x). This gives an explicit construction of the Haar measure inthe case
of Lie groups.

3.3 Measure on homogeneous spaces.

If G/H is the quotient homogeneous space of a locally compact groupG
by a closed subgroupH, we denote the elements ofG by lettersx, y, . . .
those ofH by ξ, η, . . . the respective Haar measure bydx, dy, . . . dξ,
dη . . . and the respective modular functions by∆, δ. Alsoπ is the canon-
ical mapG→ G/H. Let f be a continuous function onG with compact
supportK. Then f o(x) =

∫
H

f (ξx)dξ is a continuous function onG (as in
lemma 1, Ch. 2.3) and we havef o(ζx) = f o(x) for everyξ ∈ H. There-
fore f o may be considered as a continuous function onG/H. Obviously
it has supportπ(K) which is again compact.
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Proposition 2. The map f→ f 0 is a homomorphism (in the sense of N.63

Bourbaki) ofCG ontoCG/H.

We prove this with the help of

Lemma 1. There exists a positive continuous function f on G such that
for every compact subset K of G the intersection of HK and the support
S of f is compact and such that

∫
H

f (ξx)dξ = 1 for every x∈ G.

A locally compact group is always paracompact (Prop. 3, Ch. 1.2.
part I) and using the fact that the canonical map is open and continu-
ous, we see that G/H is also paracompact. LetU be an open relatively
compact neighbourhood ofe in G. π(Ux) is a family of open subsets
coveringG/H. Let (Vi), (V′i ) be two locally finite open refinements of
this covering such that̄Vi ⊂ V′i . Then there exist open relatively compact
subsets (Wi), (W′i ) such thatWi ⊂ W′i andπ(Wi) = Vi . In other words
these are families of subsets such that each point inG has a saturated
neighbourhood which intersects only a finite number of the subsets. We
can moreover say that for every compact subsetK of G, HK intersects
only a finite number ofW′i . Now, let us define continuous functionsgi

such thatgi = 1 on Wi and 0 outsideW′i , and setg =
∑
i

gi . This last

summation has a sense as the summation is only over a finite indexing
set at each point.This is continuous, as every point inG has a neighbour-
hood in whichg is the sum of a finite number of continuous functions.
Let S be the support ofg andK any compact subset ofG. Then HK∩ S
is the union of a finite number ofWi and is hence compact.

Now let g0 =
∫

H
g(ξx)dξ > 0.

This inequality is strict as at each pointx, xH intersects someWi.64

Obviously f = g/g0 is a continuous function ofG with S as its support.
Trivially, f 0 = 1 and the proof of the lemma is complete.

Proof of the Proposition 2: That the mapf → f 0 is continuous from
CG → E 0

G has already been proved (Lemma 1, Ch. 2.3) and it is easy
to see that this implies that the mapϕ : f → f 0 of CG → CG/H is also
continuous. We now exhibit a continuous mapψ : CG/H → CG such
thatϕ ◦ ψ = Identity. For this one has only to define for everyg ∈ CGH,
ψ(g) to beψ(g)(x) = g(π(x)) f (x) where f is the function constructed in
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the lemma. This has supportHK ∩ S whereK is a compact subset ofG
canonical image inG/H is the support ofg.

(ψ(g))0(x) =
∫

H
g(π(ξx)) f (ξx)dξ

= g(π(x))
∫

H
f (ξx)dξ

= g(π(x))

by the construction off . Henceϕ(ψ(g)) = g · ψ is of course continuous.
Every measureν on G/H gives rise to a measureν0 on G in the

following wayν0( f ) = V( f 0) for every continuous functionf onG with
compact support.

Corollary to Proposition 2: The image ofMG/H under the mapν→ ν0

is precisely the set of all measure onG which vanish on the kernelN
of the mapf → f 0 of CG → CG/H.

This is an immediate consequence of the proposition.

Proposition 3. A measureµ on G is zero onN if and only if dµ(ξx) =
δ(ξ)dµ(x) for everyξ ∈ H.

By the above corollaryµ is of the formν◦ whereν is a measure on65

G/H.
Hence
∫

G
f (ξ−1x)dν0(x) =

∫

G/H

f 0(ξ−1x)dν(x)

=

∫

G/H

∫

H

f (ξ−1ηx)dηdν(x)

=

∫

G/H

∫

H

δ(ξ) f (ηx)dηdν(x)

=

∫

G/H

δ(ξ) f 0(x)dν(x) =
∫

G
δ(ξ) f (x)dν0(x)
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It follows thatdµ(ξx) = δ(ξ)dµ(x).
Conversely letdµ(ξx) = δ(ξ)dµ(x).
Let f , g be any two continuous functions onG with compact sup-

port. Then

µ(g0 f ) =
∫

G
f (x)dµ(x)

∫

H
g(ξx)dξ

=

"
f (ξ−1x)g(x)dµ(ξ−1x)dξ

=

"
f (ξ−1x)g(x)δ(ξ−1)dµ(x)dξ

=

"
f (ξx)g(x)δ(ξ)dµ(x)δ(ξ−1)dξ

(by Prop. 1, Ch. 3.1)

= µ( f ◦g).

If f is in N , one can chooseg such thatg0 = 1 on the support off .
Thenµ( f ) = µ( f g0) = µ( f 0g) = 0. Henceµ = 0 onN .

If there exists an invariant measureν on G/H, thenν0 must be the
Haar measure and conversely if the Haar measure is of the formν0 then
ν is an invariant measure onG/H. Henceδ(ξ) = ∆(ξ) is a necessary
and sufficient condition for the existence of a right invariant measure on
G/H.

3.4 Quasi-invariant measures.
66

Definition. LetΓ be a transformation group acting on a locally compact
space E. We say that a positive measureµ on E isquasi-invariantby Γ
if the transform ofµ by everyγ ∈ Γ is equivalentto µ in the sense that
there exists a positive functionλ(x, γ) on E× Γ which is bounded on
every compact subset and measurable for eachγ such that dµ(γ, x) =
λ(x, γ)dµ(x).

If under the above conditionsλ(x, γ) is independent ofx, the mea-
sure is said to berelatively invariant.
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Proposition 4. There always exists a quasi-invariant measure on the
homogeneous space G/H.

We prove this by making use of

Lemma 2. There exists a strictly positive continuous functionρ on G
such thatρ(ξx) = δ(ξ)/∆(ξ)ρ(x) for every x∈ G andξ ∈ H.

Let f be the function onG constructed in Lemma 1, Ch. 3.3. Define

ρ(x) =
∫

H

(
δ(ξ)
∆(ξ)

)−1

f (ξx)dξ.

Then it is an immediate verification to see thatρ(ηx) =
δ(η)
∆(η)

ρ(x)

and thatρ is positive continuous.

Proof of Proposition 4: Let µ be the measureρ(x)dx onG, whereρ is
the function of Lemma 2. Then

dµ(ξx) =
δ(ξ)
∆(ξ)

ρ(x)∆(ξ)dx

= δ(ξ)ρ(x)dx= δ(ξ)dµ(x).

By proposition 1, Ch. 2.4, there exists a measureν on G/H such
that

dµ(x) = dν0(x).

Now 67

dµ(xy) =
ρ(xy)
ρ(x)

dµ(x)

and hence we get

dν(π(xy)) =
ρ(xy)
ρ(x)

dν(π(x)),

ρ(xy)
ρ(x)

depending only on the coset ofx moduloH. ν is therefore quasi-

invariant.
This incidentally gives also the following relation between the Haar

measure onG and the quasi-invariant measure onG/H, viz.
∫

G
f (x)ρ(x)dx =

∫

G/H

dν(π(x))
∫

H

f (ξx)dξ.
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If we relax the condition of continuity onρ, then we can assert that
all the quasi invariant measures onG/H can be obtained this way [6].
Soν is relatively invariant if and only if there exists a positive function
ρ on G Such thatρ(xy)/ρ(x) = ρ(y)/ρ(e). If we takeρ(e) = 1, we have
ρ(xy) = ρ(x) · ρ(y) with ρ(ξ) = δ(ξ)/∆(ξ) for every ξ ∈ H. In other
words, the one dimensional representationξ → δ(ξ)/∆(ξ) of H can be
extended globally to a representation ofG.

3.5 Some applications.

Let G be the group product of two closed subgroupsA andB such that
the map (a, b) → ab of A × B → G is a homeomorphism. Then the
homogeneous spaceG/A is homeomorphic toB. We define a function
on G by settingρ(ab) = δ(a)/∆(a). To this function, there corresponds
a quasi-invariant measure onG/A such that

∫

G
f (ab)δ(a)/∆(a)dx =

∫

B
dµ(b)

∫

A
f (ab)da.

If x = ab′, we haveρ(xb)/ρ(x) = ρ(ab′b)/ρ(ab′) = 1 by definition.68

Hencedµ(b) is right invariant, anddµ(b) = db.
Let dr x, dl x denote respectively the right and left Haar measures.

Then
∫
G

f (ab)δ(a)/∆(a)dr x =
∫

drb
∫

f (ab)dra, or again
∫

G
f (x)dr x =

"

AxB

f (ab)
∆(a)
δ(a)

dradrb

=

"

AxB

f (ab)∆(a)dl adrb

Thus we have got the right Haar measure onG in terms of the Left
and right Haar measures onA, B respectively and the modular func-
tion onG. This dependence on the modular function can be done away
with if we restrict ourselves to unimodular groups.Thus in the case of a
unimodular groupG, we have the simple formula

∫

G
f (x)dr x =

"

AxB

f (ab)dladrb
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Again whenA is a normal subgroup, we haveδ(a) = ∆(a) or A and
hence ∫

G
f (x)dr x =

"

AxB

f (ab)dradrb.

3.6 Convolution of functions

Definition. A function f is said to belocally summablewith respect to a
measureµ if for every continuous functionϕ with compact support,ϕ f
is µ-integrable.

This has the property that for compact setK, χ(K) f is µ-integrable.
If f is locally summable, the mapϕ →

∫
ϕ f dµ is a continuous

linear form onCG and hence defines a measure denoted byµ f . Let now
f be locally summable with respect to the Haar measure onG and ν
another measure onG. We shall assume thatµ f ∗ ν exists. Then for 69

every continuous functiong with compact Support, we have

µ f ∗ ν(g) =

"
g(xy) f (x)dxdν(y)

=

∫
dν(y)

∫
g(xy) f (x)dx

=

∫
dν(y)

∫
g(x) f (xy−1)dx

Now the map (x, y) → (xy−1, y) obviously preserves the product
measuredxdν(y) onGxGbecause for continuous functionsu with com-
pact support we have

"
u(xy−1, y) dxdν(y) =

∫ ∫
u(x, y)dxdν(y).

Hence
!

f (xy−1g(x) dxdν(y) exists and the theorem of Lebesgue-
Fubini can be applied. It therefore results that

∫
f (xy−1)dν(y) exists for

almost everyx and g(x)
∫

f (xy−1)dν(y) is integrable, In other words,∫
f (xy−1)dν(y) is locally summable. If we denote byh(x),

∫
f (xy−1)dν
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(y), this can be expressed byµ f ∗ ν =µh. We can now define the con-
volution of a measure and a locally summable functionf by putting
h(x) = f ∗ ν(x).One can similarly define a convolutionν ∗ µ f =µk where
k(x)=ν ∗ f (x)=

∫
f (y−1x)∆(y−1)dν(y). This is unsatisfactory in as much

as it is necessary to choose between left and right before onecan identify
functions with measures. Thus the notion of convolution of afunction
and a measure is not very useful in groups are not unimodular.

Let now f , g be two locally summable functions onG. Then we can
define convolution off and g such thatµ f ∗ µg = µ f ∗g by setting

f ∗ g(x) =
∫

f (xy−1)g(y)dy

=

∫
f (y)g(y−1x)∆(y−1)dy

But we have in Prop. 1, Ch. 3.1 that∆(y−1)dy= dy−1.

Thus the convolution off andg can be satisfactorily defined even if70

the groupG is not unimodular.

Note that the convolutions of two measures and of a measure and a
function are uniquely defined, whereas the convolution of two functions
is defined only upto a constant factor, as it depends on the particular
Haar measure we consider.

If f andg are integrable,µ f , µg are bounded and so isµ f ∗g. Conse-
quently f ∗ g is also integrable. Thus the mapf → µ f is an imbedding
of L1 in M 1 as a closed subspace. It is linear and one-one and also
preserves metric, for,

|| f ||1 =
∫
| f (x)|dx=

∫
|dµ f | ≤ ||µ f || and,

on the other hand,||µ f || ≤ || f ||1, trivially. Actually L1 is a Banach sub-
algebra ofM 1. In M 1, the Dirac measure at the unit element acts as
the unit element of the algebra butL1 does not possess any unit element,
unless the group is discrete.
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3.7 Convolutions of distributions

We close this chapter with a brief discussion of convolutions of dis-
tributions on a Lie group. A detailed account of distributions may be
found in Schwartz’s ‘Théorie des Distributions’ and de Rham’s ‘Variétés
différentiables’.

Let G be Lie group andDG the space of indefinitely differentiable
functions onG which have compact support. LetDK be the subset of
DG consist ring of functions whose supports are contained in the com-
pact setK. One can provideDK with the topology of uniform conver-
gence of each derivative, andDG with the topology of direct limit of
those onDK . The topology onDKcan be characterised by the fact that71

f → 0 onDK if for every differential operatorD onG with continuous
coefficients,D f → 0 uniformly onK. It is enough to consider only the
left invariant differential operators, or still the∆α alone (Ch. 2.4, Part
I). This topology makes ofDK a Fréchet space(i.e. a locally convex
topological vector space which is metrisable and complete).

Definition. A distribution on G is a continuous linear form onDG.

As in the case of measures, one can define the notion of the support
of a distribution, distributions with compact support, etc. Let T, S be
two distributions onG. If one of them has compact support we define
the convolution product as for measures:T∗S(ϕ) =

!
ϕ(xy)dT(x)dS(y).

Let ξ′ be the space of distributions with compact support. It is an algebra
with convolution as product and the space of distributions is a module
overξ′G. We denote byξ′e the space of distributions with support= {e}.
Let (x1, . . . xn) be a coordinate system ate. ThenT ∈ ξ′e implies the

existence ofλα ∈ C such thatT(ϕ) =
∑
λα
∂αϕ

∂xα
(e), λα being zero except

for a finite number of terms. Iff is a locally summable function, we
can identify f with the distributionf (x)dx and we can define the notion
of convolution f ∗ T of f and distributionT under some assumptions
on f andT. But this product even when it is defined, is not in general
a distribution of the formg(x)dx; however, if f is indefinitely differen-
tiable with compact support (or iff is indefinitely differentiable andT
has compact support)f ∗ T is a distribution of the formg(x)dx where
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g(x) is an indefinitely differentiable function. This function is, in virtue
of the above identification, given byg(x) = f ∗ T(x) =

∫
f (xy−1)dT(y).

If T =
∑
α
λα

∂α

∂xα
(e), f ∗ T(x) =

∑
α
λα

{ ∂α
∂yα

f (xy−1)
}
y = e.72

The mapf → f ∗ T is a differential operator which is left invariant.
We have already seen thatǫy ∗ µ = σy(µ) (Ch. 2.5). Hence

(σy f ) ∗ T = ǫy ∗ f ∗ T

= ǫy ∗ ( f ∗ T)

= σy( f ∗ T)

In other words,T commutes with the left translation. Atx = e we

have f ∗T(e) =
∑
αλα

{ ∂α
∂yα

f (y−1)
}
y=e i.e. every left invariant differential

operator is obtained in the above manner. This leads us to the

Proposition 5. The algebraU(G) is canonically isomorphic to the alge-
bra of distributions with support{e} with convolution as multiplication.



Chapter 8

Regular Representations

4.1 General notions
73

Let G be a locally compact group andE a locally convex topological
vector space.

Definition. A continuous representationof G in E is a map x→ Ux of G
into Hom(E,E) such that this is a representation in the algebraic sense
(i.e. Uxy = UxUy and Ue = identity) and such that the map(a, x) → Uxa
of E×G→ E is continuous.

The latter of these conditions, which we denote byR, is equivalent
to the following:

R′1: For every compact subsetK of G, the set{Ux : x ∈ K} is
equicontinuous, andR′2: for everya ∈ E, the mapx→ Uxa of G → E
is continuous.

In fact, R⇒ R′2 trivially. Let V be a neighbourhood of 0 inE. For
every x ∈ K, there exists an neighbourhoodAx of x in G andWx of 0
in E such that for everyy ∈ Ax anda ∈ Wx, Uy a ∈ V. SinceK is
compact, we can chooseAx1, . . .Axn which coverK and letW =

⋂
Wxj .

Now, x ∈ K, b ∈ W⇒ Uxb ∈ V. Hence the set{Ux} is equicontinuous.
We proceed to prove the converse; in fact, we show more generally that
R′1 with the following conditionR′′2 : There exists a dense subsetF of E
such that for everya ∈ F, the mapx → Uxa of G → E is continuous,
impliesR. It is required to show that the map (x, a) → Uxa is continuous

73
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at any point (x, a). Let V be any convert neighbourhood of 0 inE. We
seek a neighbourhoodW of 0 in E and a neighbourhoodA of x in G
such thatb ∈ a +W, y ∈ A ⇒ Uyb ∈ Ux a + V. Let K be a compact
neighbourhood ofx in G. Then there exists a neighbourhoodV1 of 0
such thaty ∈ K, b ∈ V1 ⇒ Uyb ∈ V/4 (by R′1). Let b ∈ (a + V1)

⋂
F.

Then we can find a neighbourhoodA of x in C contained inK such that74

Uyb−Uxb ∈ V/4 for everyy ∈ A (by R′′2 ). Now, if c ∈ a+V1, y ∈ A, we
have

Uyc− Uxa = Uy(c− a) + (Uy − Ux)b+ (Uy − Ux)(a− b) ∈ V.

This completes the proof of the equivalence.
Moreover, ifE is a barrelled space (or in particular a Banach space)

then axiomR′2 itself ⇒ R. For, the mapx → Ux is continuous from
G to Hom(E,E) with the topology of simple convergence and hence
the image of a compact subset is again compact and,E being barrelled,
equicontinuous.

4.2 Examples of representations

(i) Unitary representations. LetU be a representation ofG in a Hilbert
spaceH such thatUx is a unitary operator, i.e.Ux − 1 = U∗x for
everyx ∈ G. ThenV is calleda unitary representation.

(ii) Bounded representations. A representationU of G in a Banach
spaceB is said to beboundedif there existsM such that||Ux|| < M
for everyx ∈ G. It should be remarked here that in general rep-
resentations in Banach spaces are not bounded as for instance the
representationx→ ex. Id of R in itself. However, such represen-
tations are bounded on every compact subset.

(iii) Regular representations. Left and right translations inG, as we
have seen before, give rise to representations ofG in the space
CG, Lp etc. In fact they give rise to representations ofG in any
function space connected withG with a reasonably good defini-
tion and a convenient topology.
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The spaceCG with the usual topology can easily be seen to be
barrelled. Therefore, in order to verify thatτ is a continuous rep-
resentation, we have only to prove thaty → τy f is continuous. 75

It is again sufficient to establish continuity at the pointy = e.
The function f is uniformly continuous and hence wheny → e,
τy f → f uniformly having its support contained in a fixed com-
pact set.

In the case ofLp(1 ≤ p ≤ ∞) with respect to the right Haar
measure,||τy|| = 1 by the invariance of the measure and hence
the τy form an equicontinuous set fory ∈ G. Also the map
y → τy f is continuous for the topology onCG which is finer
than that ofLp and sinceCG is dense inLp is a representation of
G in Lp. On the other hand, if we considerσy, we have||σy f || =
(
∫
| f (y−1x)|pdx)1/p = (∆(y))1/p|| f ||p and the continuity ofy →

σy f follows as a consequence of the continuity of∆(y). Note that
the proof is not valid whenp is infinite asCG is not dense inL∞.
In fact the mapy→ τy f of G → L∞ is continuous if and only if
f is uniformly continuous onG.

(iv) Induced representations. Let H be a closed subgroup of a topo-
logical groupG, andL a continuous representation ofH in a lo-
cally convex spaceE. Let C L be the space of functions onG with
values inE which are continuous with compact support modulo
H (i.e. their supports are contained in the saturation of a compact
set), and which satisfy the following equality:

f (ξx) =

(
δ(ξ)
∆(ξ)

) 1
2

Lξ f (x) for every x ∈ G andξ ∈ H. The factor

(
δ(ξ)
∆(ξ)

) 1
2

, it will be noted, occurs purely for technical reasons and

can without much trouble be done away with. The above equality,
in essence, expresses only the condition of covariance off with
respect to left translations byξ. On this spaceC L we can, as
we have more than once done before, introduce the topology of
direct limit of those onC L

K , the latter being the space of functions76

in C L whose supports are contained inHK, with the topology of
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uniform convergence onK. This is again a locally convex space
and right translations by elements ofG give rise to a (regular)
representation ofG in C L. This is called therepresentationof G
inducedby L.

(v) Let us again assumeL to be a unitary representation ofH in a
Hilbert spaceE. Let C L be the space of continuous functions on
G with values inE having compact support moduloH such that

f (ξx) =

(
δ(ξ)
∆(ξ)

) 1
2

Lξ f (x). Naturally one tries to introduce a scalar

product inC L in the usual way, but the possibility off (x) not be-
ing square integrable (which it is not in general) foils the attempt.
However, thoughf (x) may not be square integrable, we are in a
position to assert that

∫
G/H
|| f (x)||2(ρ(x))−1dx < ∞ (ρ of course

is the function defined in Lemma 2, Ch. 3.4 anddx the quasiin-
variant measure onG/H). In fact, the function|| f (x)||2(ρ(x))−1 is
invariant moduloH and consequently can be considered as a con-
tinuous function onG/H with compact support. Hence we can de-
fine || f ||2L =

∫
G/H
|| f (x)||2 ((ρ(x)))−1 dx. LetH L be the completion

of C L under this norm. As usual,H L is the space of measurable
functions f which satisfy the condition of covariance and are such
that

∫
G/H
|| f (x)||2(ρ(x))−1dx< ∞. This is a Hilbert space in which

the scalar product is given by〈 f , g〉 =
∫

G/H

〈 f (x), g(x)〉(ρ(x))−1dx.

The right regular representation ofG in H L is unitary. For,

||τy f ||2 =
∫

G/H
|| f (xy)||2 ((ρ(x)))−1 dẋ

=

∫

G/H
|| f (x)||2

(
(ρ(xy−1))

)−1 ρ(xy−1)
ρ(x)

dx by quasi invariance

=

∫

G/H
|| f (xy)||2 ((ρ(x)))−1 dẋ

= || f ||2L for every f ∈H L

The same proof as in (iv) gives the continuity of the representation.77
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Thus one can define induced representations in many ways, in each
case the representation space being so chosen as to reflect the partic-
ular properties of the representation one wishes to study. We shall not
dwell on induced representations any longer, but only give the following
general definition which, it is needles to say, includes the last two cases.

Definition . A representation U of G in F is said to beinducedby rep-
resentation L of H in E if there exists a linear continuous mapη of C L

into F such that

(i) η is injective with its image in F everywhere dense, and

(ii) η commutes with the representation in the sense that Ux◦η = η◦τx

for every x∈ G.

4.3 Contragradient representation

Let U be a continuous representation ofG in a locally convex spaceE.
For everyx ∈ G considertUx ∈ Hom(E′,E′) which is continuous for any
‘good’ topology onE′ (weak, strong of convex-compact). We denote by
Ǔ the mapx→ tU−1

x . Regarding this map we have the following

Proposition 1. If U is a continuous representation of G in a quasi com-
plete locally convex space E, thenǓ is also a continuous representation
of G in E′C (convex compact topology). We need here the following for-
mulation ofAscoli’s theorem. Let X be a locally compact topological
space, F a uniform Hausdorff space andC (X, F) the space of contin-
uous functions from X→ F. Let Λ be an equicontinuous subset of
C (X, F) such that the set{λ(x) : λ ∈ Λ} is relatively compact in F
for every x∈ X. Then (i)Λ is relatively compact inC (X, F) with the
topology of compact convergence, and (ii) onΛ the topology of com- 78

pact convergence coincides with every Hausdorff weaker topology (in
particular, with the topology of simple convergence).

Proof of proposition 1. Let K be a compact ofG. The set{Ux : x ∈ K}
is equicontinuous and for everya ∈ E, {Uxa : x ∈ K} is compact as the
mapx→ Uxa is continuous. Hence by Ascoli’s theorem, the topology
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of simple convergence and the topology of compact convergence are
one and the same on this subset ofC (E,E) i.e. x → e ⇒ Uxa → a
uniformly for a in a compact subsetH of E.

Let a′ be an element ofE′C. We wish to prove thatx → Ǔxa′ is
continuous. It is enough to prove the continuity at the unit elemente.
Let x → e. ThenUx−1a → a uniformly on a compact setH and hence
〈Ux−1a, a′〉 = 〈a, Ǔxa′〉 → 〈a, a′〉 uniformly on H. This shows that
x → Ǔxa′ is continuous for the convex-compact topology onE′. We
have to show moreover that the set{Ǔx : x ∈ K} is equicontinuous. If
H be a convex compact subset ofE, we seek to prove the existence of
another convex compact setH′ such thata′ ∈ (H′)0 ⇒ Ǔxa′ ∈ H0

for every x ∈ K whereA0 denotes the polar ofA. But Ǔxa′ ∈ H0 for

everyx ∈ K if and only if
∣∣∣∣〈Ux−1a, a′〉

∣∣∣∣ ≤ 1 for everyx ∈ K anda ∈ H.
Let H′ be the closed convex envelope of the compact set descriptionby
Ux−1a. It is obvious thata1 ∈ (H′)0 ⇒

∣∣∣〈b, a′〉
∣∣∣ ≤ 1 for everyb ∈ H′ ⇒∣∣∣〈Ux−1a, a′〉

∣∣∣ ≤ 1 for everyx ∈ K anda ∈ H. It only remains to show
that H′ is compact. ButH′ is precompact, and being a closed bounded
set, also complete. This shows thatH′ is compact.

This representation inE′ is called thecontragradientof U.

Remark. It will be noted that we have used the quasi completeness of
the spaceE only to prove that the closed convex envelope of a compact79

set is also compact. Hence the proposition is valid for the more general
class of locally convex spaces which satisfy the above condition.

Example.We have seen that the right and left translations give represen-
tations ofG in the function spacesCG, E 0, C̄G, etc. By our proposition
above,we see thatσ is continuous inM , M C, M 1 (with the convex
compact topology).

Remark. The regular representation ofG in M 1 is not continuouswith
respect to thestrongtopology. For,τxǫe = ǫx and||ǫx − ǫe|| = 2 if x , e.
Hence asx→ e, ǫx does not tend toǫe.
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4.4 Extension of a representation toM C

Let U be a continuous representation ofG in a locally convex quasi
complete spaceE. Let µ be any measure onG with compact support.
Then we writeUµa =

∫
G

Uxadµ(x). (The functionx→ Uxa is a vector-

valued function and
∫

Uxadµ(x) has been defined in Ch. 1.5).

Theorem 1. (1) Uµ is a linear continuous function of E in itself.

(2) µ→ Uµ is an algebraic representation ofM C in E.

(3) If U is a bounded representation in a Banach space, then this
representation can be extended to a continuous representation of
the Banach algebraM 1 in to the Banach algebraHom(E,E).

(1) In fact, asa→ 0, Uxa→ 0 uniformly on the compact support of
µ and henceUµ is continuous. Its linearity is trivial.

(2) Again the linearity of the mapµ→ Uµ is obvious.

Uµ∗νa =
∫

Uxad(µ ∗ ν)(x)

=

"
Uxyadµ(x)dν(y) (see Remark 2, Ch. 2.2)

=

∫
dµ(x)Ux(Uνa)(Remark, Ch. 1.5)

= UµUνa.

80

(3) If µ ∈M C, we have

||Uµa|| = ||
∫

Uxadµ(x)||

≤
∫
||Uxa||d|µ|

≤ k||a|| ||µ||
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This proves that the map (a, µ) → Uµa of E ×M C → E is con-
tinuous. SinceM 1 is only the completion ofM C with the topology of
the norm, this map can be extended to a continuous mapE ×M 1→ E,
which proves all that was asserted.

4.5 Convolution of measures

We can get, in particular,representations of the spaceM of measures
on a groupG by considering regular representations ofG. We define
σµν =

∫
σx(ν)dµ(x). M is the dual of the barrelled spaceCG and is

hence quasi complete. We therefore have

〈 f , σµ(ν)〉 =
∫
〈 f , σx(ν)〉dµ(x)

=

∫
dµ(x)

∫
f (y)dν(x−1y)

=

"
f (xy)dµ(x)dν(y)

= 〈 f , µ ∗ ν〉

In other words,σµ(ν) = µ ∗ ν and τµ(ν) = ν ∗ µ̌ wheredµ̌(x) =
dµ(x−1). We have not imposed any conditions onν, andµ has been
assumed to have compact support. Thus convolution of two measures
could have been defined asσµ(ν) =

∫
σx(ν)dµ(x) straightaway.

4.6
81

Proposition 2. Let E be a subspace ofM with a finer topology such
that

(a) E is invariant byτ;

(b) τ restricted to E is continuous;

(c) E is quasi complete.

Then for everyµ ∈M C anda ∈ E, we havea∗µ ∈ E anda∗µ = τµ̌a.
If moreoverτ is bonded onE, then this true forµ ∈M 1.
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The proposition is immediate in view of our remarks in Ch. 4.5.
In particular, if a ∈ LP(p < ∞), µ ∈ M 1, thena ∗ µ ∈ Lp, and

||a∗µ||p ≤ ||a||p||µ||. Again, we may take an integrable functionf instead
of µ and geta∗ f ∈ Lp and||a∗ f ||p ≤ ||a||p|| f ||1. Otherwise stated,L1 is
represented as an algebra of operators in the Banach spaceLp(p < ∞).
Another case is that ofE = CG. If f is a function andµ a measure both
with compact supports, thenf ∗ µ ∈ CG.

4.7 Process of regularisation.

Let V be any neighbourhood ofe in G. Let AV be the set
{
f ∈ Cv : f ≥ 0

and
∫

f (x)dx = 1
}
. As V describes the neighbourhood filter ate, AV

also describes a filterΦ in the function spaceCG.

Proposition 3. If U is a continuous representation of G in a quasi com-
plete space E, then Uf a→ a followingΦ for every a∈ E.

In factU f a =
∫

Uxa f(x)dx. If W is a closed convex neighbourhood
of 0 in E, then by the continuity ofU f a one can find a neighbourhood
V of e such thatUxa ∈ a + W for every x ∈ V. Now U f a − a =∫

(Uxa− a) f (x)dx ∈W wheneverf ∈ AV by convexity ofW.

Remark. U f a has certain properties of continuity stronger than that of82

a. For instance if we take forU the regular representation ofG in M ,
τ fµ ∈ E 0. WhenΦ → e, τ fµ → µ. This is a process of approxi-
mation of a measure, as it were by continuous functions. IfG satisfies
the first axiom of countability, we can find a sequence{ fn} of continu-
ous functions generating the filterΦ. In particular, ifG is a Lie group,
we have thus an approximation of measures by sequences of continuous
functions. Finally we remark in passing that the same procedure can be
adopted in the case of Lie groups for distributions instead of measures.
Thus a distribution on a Lie group can be approximated by a sequence
of indefinitely differentiable functions.





Chapter 9

General theory of
representations

5.1 Equivalence of representations
83

Definition. A representation U of a topological group G in locally con-
vex space E is said to beequivalentto another representation U′ in E′

if there exists an isomorphism T of E onto E′ such that TUx = U′xT for
every x∈ G.

This is evidently a very strong requirement which fails to charac-
terise as equivalent certain representations which are equivalent in the
intuitive sense. However, we are interested in the case of unitary rep-
resentations in Hilbert spaces and the definition is good enough for our
purposes.

Definition . Two representations U in H, U′ in H′ are unitarily equiv-
alent if there exists a unitary isomorphism T: H → H′ such that
TUx = U′xT for every x∈ G.

Proposition 1. Two equivalent unitary representations are unitarily
equivalent. In fact, TT∗U′x = TUxT∗ = U′xTT∗ i.e. Ux commutes with
the positive Hermitian operator TT∗ and hence also with H=

√
TT∗.

It can be easily seen that H−1T is a unitary operator which transforms
U into U′.

83
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5.2 Irreducibility of representations

Definition 1 (algebraic irreducibility). A representations U of a group
G in a vector space E is said to bealgebraically irreducibleif there exists
no proper invariant subspace of E.

Definition 2 (topological irreducibility). A representation U of a topo-
logical group G in a locally convex space E is said to betopologically
irreducibleif there exists no properclosedinvariant subspace.

Definition 3 (complete irreducibility). A representation U of a topo-84

logical group G in a locally convex space E is said to becompletely
irreducible if any operator inHom(E,E) (with the topology of simple
convergence) can be approximated by finite linear combinations of the
Ux.

It is at once obvious that (i)⇒ (ii) and that (iii)⇒ (ii). It can be
proved that whenE is a Banach space, (i)⇒ (iii) (Proof can be found in
Annals of Mathematics, 1954, Godement). For unitary representations,
(ii) and (iii) are equivalent (due to von Neumann’s density theorem, Th.
2. Ch. 5.6). Finally, all the three definitions are equivalent for finite
dimensional representations ((ii)⇒ (iii) due to Burnside’s theorem, Th.
1, Ch. 5.5).

5.3 Direct sum of representations

Definition. A representation U of G in E is said to be thedirect sumof
representations Ui of G in Ei if Ei are invariant closed subspaces of E
such that the sum

∑
Ei is direct and is everywhere dense in E, and if Ui

is the restriction of U to Ei. Moreover, if U is a unitary representation
in Hilbert space, U is said to be theHilbertian direct sumof the Ui if Ei

is orthogonal to Ej whenever i, j.

Definition . A representation iscompletely reducibleif it can be ex-
pressed as a direct sum of irreducible representations.
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5.4 Schur’s lemma*

We give here two formulations (Prop. 2 and 3) of Schur’s lemma, the
first being trivial and the second more suited to our purposes.

Proposition 2. Let U and U′ be two algebraically irreducible repre-
sentations in E, E′ respectively. If T is a linear map: E→ E′ such
that TUx = U′xT for every x∈ G, then either T= 0 or an algebraic 85

isomorphism.

From this, we immediately deduce the following

Corollary . Let U be an algebraically irreducible finite - dimensional
representation of a group G in E. The only endomorphisms of E which
commute with all the Ux are scalar multiples of the identity.

In fact, if λ is an eigenvalue ofT, T − λI is not an isomorphism and
is, by Schur’s lemma,= 0.

Proposition 3. Let U, U′ be two unitary topologically irreducible rep-
resentations in H, H′ respectively. If T is a continuous linear map
H → H′ such that TUx = U′xT for every x∈ G, then either T= 0
or an isomorphism of Hilbert spaces.

In fact, T∗ is a continuous operator withUT∗ = T∗U′. H = T∗T is
a Hermitian operator commuting with everyUx. HenceUx commutes
with every Eλ in the spectral decompositionH =

∫
λdEλ and conse-

quently leaves every spectral subspace invariant. Therefore, the spec-
tral sub-spaces reduce to{0} or E. i.e. H is a scalar= λI . Similarly
H′ = TT∗ = λI . HenceT is either 0 or an isometry up to a constant.

The proof of Prop. 3 implicitly contains the following

Corollary. Let U be a unitary topologically irreducible representation
of a group G in a Hilbert space E. The only operators of E which
commute with all the Ux are scalar multiples of the identity. This is
immediate since any operator can be expressed as a sum of Hermitian
operators for which the corollary has been proved in prop. 3.
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5.5 Burnside’s theorem

Theorem 1(Burnside). Let U be an algebraically irreducible represen-
tation of G into E of finite dimension. Then every operator in Eis a86

linear combination of the Ux.

Consider the algebraA of finite linear combinations ofUx. Let B
be the subset of Hom(E,E) consisting of elementsB such that Tr(AB) =
0 for everyA ∈ A. Obviously it is enough to show thatB = {0}. Now
we define a representationV of G in B by definingVx(B) = Ux ◦ B
for every B ∈ B. This is not in general an irreducible representation.
However, ifB , {0}, we can find a non-zero irreducible subspaceC
of B. Now the mapλa : B → Ba of C into E is a linear map which
transforms the representationV into U. For,

λa ◦ Vx(B) = λa ◦ Ux ◦ B = Ux ◦ Ba= Ux ◦ λB for every B ∈ C .

Hence by Schur’s lemma (prop. 2, Ch. 5.4),λa = 0 or is an isomor-
phism. If λa = 0 for everya ∈ E, B = 0 for everyB ∈ C and hence
C = {0}. But this is contradictory to our assumption thatC is non-zero.
Therefore, there existsa1 ∈ E such thatλa1 , 0. So,λa1 is an isomor-
phism ofC ontoE. Let (a1, a2 . . .) be a basis ofE. Thenλ−1

a1
◦ λa2 is an

operator onC . This obviously commutes with everyVx. Hence by cor.
to prop. 2, Ch. 5.4λ−1

a1
◦ λa2 = µ2I whereµ2 is a scalar. We shall thus

write λaj = µ jλa1 with µ1 = 1. Now, one can introduce a scalar product
in E such that Tr(UxB) =

∑
j
〈UxBaj , a j〉 = 0 for everyx ∈ E. But

∑

j

〈UxBaj , a j〉 =
∑

j

µ j〈UxBa1, a j〉

= 〈UxBa1,
∑

j

µ ja j〉 = 0

Since theUxBa1 generateE,
∑
j
µ ja j = 0 or againµ j = 0 for every

j. But µ1 = 1. This gives us a contradiction and it follows thatB = {0}.87
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5.6 Density theorem of von Neumann

Let U be a unitary representation of a topological groupG in a Hilbert
spaceH. We denote byA.the subset of the set Hom(H,H) of operators
on H consisting of finite linear combinations of theUx. This is a self
adjoint subalgebra of Hom(H,H), but is not in general closed in it. Let
A′ be the set of operators which commute with every element ofA.
ObviouslyA′ is also self-adjoint.

Proposition 4. A′ is weaklyclosed inHom(H,H).

In fact, if A = lim Ai (in the weak topology) withAi ∈ A′, then

〈BAx, y〉 = lim〈BAi x, y〉 = lim〈AiBx, y〉
= 〈ABx, y〉 for every B ∈ A.

HenceA ∈ A′.
LetA′′ be the commutator of the algebraA′. ThenA′′ is a weakly

closed self-adjoint subalgebra containingA and hence it contains the
weak closure ofA. We can in fact assert

Theorem 2(von Neumann). A′′ = weak closure ofA.

We actually prove a stronger assertion, viz. Let (xn) be a sequence
of elements inE such that

∑ ||xn||2 < ∞ andT an operator inA′′. Then
for everyǫ > 0, there existsA ∈ A such that

∑ ||T xn − Axn||2 < ǫ. (This
in particular implies thatA′′ = strong closure ofA or even the strongest
closure ofA, in the sense of von Neumann).

We first show that for everyx ∈ E, T x is in the closure of{Ax : A ∈
A}. In fact, F = {Ax} is a closed invariant subspace ofE and letF⊥ be 88

its orthogonal complement.F⊥ is also invariant under the self adjoint
algebraA and hence the orthogonal projectionP of E ontoF commutes
with every element ofA. P therefore belongs toA′ and T leavesF
invariant. Sincex ∈ F, T x is also inF.

Now consider the spaceE1 = E⊕E⊕· · · · · · (Hilbertian sum). Every
elementx ∈ E1 is of the form (x1, . . . xn · · · ) with

∑ ||xn||2 < ∞. Let Ã
be the operator onE1 defined byAx = (Ax1, . . .Axn, . . .). The map
A→ Ã is an isomorphism of Hom(H,H) into Hom(H1,H1). Denote the
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image ofA by Ã. If B is any operator onE1, it can be expressed in the
form B(x1, . . . xn . . .) = (y1, . . . yn . . .) whereyn =

∑
p

bn,pxp andbn,p is

an operator onE. We now show thatB ∈ (Ã)′ if and only if bn,p ∈ A′
for everyn and p. For, BÃ(x1, . . . xn, . . .) = ÃB(x1, . . . xn, . . .) for every
x ∈ E1 implies thatbn,pA = Abn,p by taking all xn, n , p to be zero.
Conversely, if this is satisfied,̃AB(x1, ..xn..)

= Ã(. . . ,
∑

p

bn,pxp, . . .) = (. . . ,
∑

p

bn,pAxp, . . .)

= B(Ax1, . . .Axn, . . .) = BÃ(x1, . . . xn, . . .)

Again, B ∈ (Ã)′′ if and only if the diagonal elements of the infinite
matrix bn,p are equal and inA′′, and the rest of the elements are zero.
In fact, if C ∈ (Ã)′′, we have (BC)m,n = (CB)m,n for every B ∈ A′,
or

∑
p

bm,pcp,n =
∑
q

cm,qbq,n for everybi, j ∈ A′. Puttingbi, j = δn,iδn, j ,

we getci, j = 0 if i , j andcm,m = cn,n for everym andn. So we have89

(Ã)′′ = (Ã′′). Therefore there existsA ∈ A such that
∑ ||T xn−Axn||2 < ǫ.

Moreover, in theorem 2, ifT is Hermitian we can find aHermitian
operatorA such that

∑ ||T xn−Axn||2 < ǫ. As before it is enough to prove
this for one vectorx. In other words, we have to show the existence of
Hermitian operatorA such that||T x− Ax|| < ǫ. We know thatT is the
strong limit of A ∈ A. HenceT = T∗ is theweak(and not strong, in

general) limit ofA∗ or again the weak limit of
A+ A∗

2
. Now

A+ A∗

2
is

a Hermitian operator inA. HenceT is weakly adherent to this convex
set. In this case, weak adherence is the same as the weak adherence in
the sense of topological vector spaces, but weak and strong topologies
are the same in a convex space.

In particular, if we have a unitary topologically irreducible repre-
sentation, by Schur’s lemma (Prop. 3, Ch. 5.4)A′ = {λI } and hence
A′′ = Hom(E,E). Therefore every operator is strongly adherent toA.
This is the analogue of Burnside’s theorem (Th. 1, Ch. 5.5) for unitary
representations.



Part III

Continuous sum of Hilbert
Spaces

89





Chapter 10

Continuous sum of Hilbert
Spaces-I

1.1 Introduction
90

In the general theory of unitary representations of a locally compact
group, two main problems are (i) to determine all the irreducible unitary
representations of a group, and (ii) to decompose a given unitary repre-
sentation into irreducible ones. The first of these has been completely
solved in certain cases (e.g. abelian groups, compact, certain semisim-
ple Lie groups), but it is to the latter that we address ourselves in the
following pages. We start by giving some Examples.

Let U be the regular representation of the one dimensional torus
T1 in the spaceL2 of square summable functions. Iff belongs to
L2, it can be expressed in Fourier series

∑
aneinz. If x = eit , then

σx f =
∑
n
σxaneinz =

∑
n

(ane
∫
)einz and we have decomposed a unitary

representation into a direct sum of irreducible representations.
If we takeR instead ofT1 andF ∈ L2, then f̂ (y) =

∫
f (x)eixydxalso

belongs toL2. By the inversion formula, whenf is sufficiently regular

(we do not enter into these details) we havef (x) =
1
2π

∫
f̂ (y)e−ixydy.

Hence

σz f =
1
2π

∫
f̂ (y)e−i(x+z)ydy

91
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=
1
2π

∫
f̂ (y)eizye−ixydy

=
1
2π

∫
(σ̂ f )(y)e−ixydy.

Therefore ( ˆσz f )(y) = eizy f̂ (y). The regular representation has again
been decomposed into one-dimensional representations butthis is not a
discrete sum but a ‘continuous sum’ - a concept which we shalldefine
presently.

Before proceeding with the formal definitions, we give one more
example which is more akin to the theory we are to develop. LetE
be a locally compact space with a positive measureµ andH a Hilbert91

space. In the spaceC (E,H ) of continuous functionsf : E→H with
compact support, we introduce a semi-norm

|| f || =
(∫
|| f (z)||2dµ(z)

) 1
2

< ∞.

Let L 2(H ) be the completion of the Hausdorff space associated
with C (E,H ). We have also a scalar product in this space given by
〈 f , g〉 =

∫
〈 f (z), g(z)〉dµ(z).

If µ is discrete (i.e. is a linear combination of Dirac measures at
certain points),L 2(H ) becomes a discrete sum of Hilbert spaces asso-
ciated to each of those points, all the Hilbert spaces being isomorphic to
H .

These considerations motivate some kind of a continuous sumof
Hilbert spaces indexed by points of a locally compact space.We there-
fore assume the following data to start with:

(1) Z, a locally compact space (which will be assumed for simplicity
to be countable at∞) with a positive measureµ;

(2) For everyz ∈ Z, a Hilbert spaceH (z). In other words, we
assume given at each point a ‘tangent space’ which is a Hilbert
space. For instance, in a Riemannian manifold, the metric assigns
a scalar product to the tangent space at each point ofZ. Of course
in this case the spaces are of finite dimension. Having in mindthe
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example above, we seek to find an analogue of the concept of
functions onZ. This is served by the notion of avector field(in
exactly the same sense as in manifolds) which is an assignment
to each point, of an element of the associated Hilbert space.We
would like to have a notion analogous to that of continuous func-
tions in our example. To this end, we introduce afundamental
family of vector fields with reference to which the continuity of92

an arbitrary vector field will defined. Thus we suppose given

(3) A fundamental family∧ of vector fields which satisfies the follow-
ing conditions:

(a) ∧ forms a vector space under the ‘usual’ operations.

(b) For every vector fieldX ∈ ∧, the real valued function||X(z)||
is continuous. This in particular implies that the mapz→
〈X(z),Y(z)〉 is continuous for everyX,Y ∈ ∧.

(c) For everyz, the vectorsX(z) for X ∈ ∧ are everywhere dense
in H (z). This only ensures that the system∧ is sufficiently
large. Sometimes the fundamental family∧ will be sup-
posed to satisfy the following stronger condition:

(c′) There exists a countable subsetΛ0 = {Xn} of Λ such that
for every z ∈ Z, Xn(z) are dense inH (z). In particular,
this implies that all the Hilbert spacesH (z) are separable.
(We will always assume that the stronger condition (c′) is
valid though some of the results remain true without this
supposition).

1.2 Notion of continuity

We proceed to construct the continuous sum of the spacesH (z). In our
axioms relating to the fundamental family, we have not imposed any
restrictions on its behaviour at∞. Consequently it cannot be asserted
that the||X(z)|| are square summable. Moreover, the classΛ may be too
small (as they will be if we take them to be constants in our example)
to be dense inL 2(H ). This necessitates the extension of this family to
the class ofcontinuousvector fields by means of the
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Definition. A vector field X is continuous at a pointζ0 if given anǫ > 093

there exists Y∈ Λ and a neighbourhood V ofζ0 such that||X(ζ)−Y(ζ)|| <
ǫ for everyζ ∈ V.

Remark . When we takeΛ to be constants in the example, this corre-
sponds to the usual continuity of functions.

Proposition 1. A vector field X is continuous if an only if||X|| is contin-
uous and〈X,Xn〉 is continuous for every Xn ∈ Λ0.

If X is continuous, trivially||X|| is continuous. Also ifX andX′ are
continuous, then〈X,X′〉 is continuous: in fact, for everyǫ > 0 and every
ζ ∈ Z, there exist a neighbourhoodV of ζ andY, Y′ ∈ Λ such that
||X − Y|| < ǫ, ||X′ − Y′|| < ǫ in V.

Hence

|〈X,X′〉 − 〈Y,Y′〉| ≤ |〈X − Y,X′〉| + |〈Y,Y′ − X′〉|

≤ Mǫ in V, whereM is some constant. As〈Y,Y′〉 is continuous, it
follows that 〈X,X′〉 is also continuous. To prove the converse, it is
enough to show that||X(ζ)−Xn(ζ)|| is continuous. But||X(ζ)−Xn(ζ)||2 =
||X||2 − 2Rl〈X,Xn〉 + ||Xn||2, all continuous by our assumption.

A continuous vector field can be multiplied by a scalar continuous
function without affecting its continuity.

Proposition 2. The vector fields
∑
ϕi(ζ)Yi(ζ) with ϕi ∈ C (Z) and Yi ∈

Λ are dense in the space of continuous vector fields with the topology of
uniform convergence on compact sets.

At each pointx in a compact setK, there exists a neighbourhoodAx

in which ||X − Yx|| < ǫ for someYx ∈ Λ. We can extract a finite cover
{Axi } from {Ax} and take the partition of unity with respect to this cover.94

Hence there exist continuous functionsφi such that||X − ∑
φiYxi || < ǫ

on k.

1.3 The spaceL2
∧

Our next step is to construct the spaceL2
∧ of square summable vector

fields. We shall say thatX belongs toL2
∧ if given anǫ > 0 there exists a
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continuous vector fieldY with compact support such that
∗∫
||X(ζ) − Y(ζ)||2dµ(ζ) < ǫ.

(We do not know a priori whether||X(ζ) − Y(ζ)||2 is measurable or not
and hence we can only consider the upper integral). In this space, we
can define

||X||2 =
∫
||X(ζ)||2dµ(ζ) and

〈X,X′〉 =
∫
〈X(ζ),X′(ζ)〉dµ(ζ).

By passing to the quotient space modulo vector fields of norm 0, we
get a Hilbert space (which again we denote byL2

∧). As in the case of
the theory of integration, we have of course to prove the completeness
of L2

∧, but there is no trouble in imitating the proof of the Riesz-Fisher
theorem in this case.

L2
∧ is thecontinuous sumof theH (ζ) that we wished to construct.

1.4 Measurablility of vector fields

Definition. A vector field X is said to bemeasurableif for every compact
K and positiveǫ, there exists a set K1 ⊂ K such thatµ(k − k1) < ǫ and
X is continuous on K1.

Proposition 3. A vector field X is measurable if and only if〈X,Xn〉 is
measurable for every Xn ∈ Λ0.

If X is measurable,〈X,Xn〉 is continuous onK1 and hence〈X,Xn〉 95

is measurable. Conversely, let〈X,Xn〉 be measurable. Then||X|| =
sup
| 〈X,Xn〉 |
||Xn||

is also measurable. (Here we put
〈X,Xn〉
||Xn||

= 0 if ||Xn(ζ)|| =
0). But〈X,Xn〉 are continuous outside a set{K −Kn} of measure< ǫ/2n.
If K∞ = ∩Kn, it is obvious thatµ(K − K∞) < ǫ and all the functions
〈X,Xn〉 are continuous onK∞. Hence||X|| is continuous onK∞. By
prop. 1, Ch. 1.2, prop. 3 follows.

In particular, this shows that strong measurablility and weak mea-
surablility are the same in a separable Hilbert space.
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Proposition 4. A vector field X belongs to L2
∧ if and only if X is mea-

surable and
∫
||X(ζ)||2dµ(ζ) < ∞.

The proof is exactly similar to that for ordinary integration of scalar
functions.

1.5 Orthogonal basis

We now find an orthogonal basis for the space of vector fields bySchmi-
dt’s orthogonalisation process. We can of course define

e1 =
X1

||X1||
, e2 =

X2 − 〈X2, e1〉e1

||X2 − 〈X2, e1〉e1||
, . . .

where we pute1 = 0 whenever the numerator is zero [20]. However, the
process is defective as the basic elements are not continuous, and the
following orthogonalisation seems preferable:

Put
e1 = X1; e2 = X2 − 〈X2, e1〉e1,

en = xn - orthogonal projection ofXn on the space generated by

e1, . . .en−1

These are of course continuous vector fields. At each pointζ, the96

nonzeroe(ζ) from an orthogonal basic forH (ζ).

1.6 Operator fields

Let X be a square summable vector field andA(ζ) an operator onH (ζ).
Then we may define (AX)(ζ) = A(ζ)X(ζ) and get another vector field
AX. The assignment to eachζ of an operator ofH (ζ) is called an
operator field. However, in order thatA may act as operator onL2

∧, we
have to make sure thatAX is also square summable. Obviously some
restrictions anA(ζ) will be necessary to achieve this. In the particular
case when all the spacesH (ζ) are the isomorphic,A(ζ) is a map ofZ
into the set of operators of the Hilbert spaceH . Now, Hom (H ,H )
can be provided with uniform, strong or weak topologies and we may
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restrict A to be continuous for one of these topologies. However, the
first topology is too strong and consequently the space ‘goodoperator
fields’ will become too restricted to be of any utility. Therefore, in this
particular case, we may require the mapA to be continuous in the weak
or strong topology as the case may be. To transport this definition to
the general case, we have to reformulate this in a suitable way. Take
for instance the requirement of strong continuity. This is equivalent to
requiring that (a)A(ζ) is locally bounded (i.e. bounded on compact
sets) and (b) for every continuous functionf (ζ) ofZ with values inH ,
A(ζ) f (ζ) is continuous.

This motivates the following

Definition. An operator fieldζ → A(ζ) is said to bestrongly continuous 97

if (a) A(ζ) is locally bounded and (b) for every continuous vector field
X(ζ), A(ζ)X(ζ) is also continuous.

Similar considerations for weak continuity give us the following

Definition. An operator field A is said to beweakly continuousif (a) it is
locally bounded, and (b) for any two continuous vector fieldsX(ζ),Y(ζ),
the mapζ → 〈A(ζ)X(ζ),Y(ζ)〉 is continuous.

Proposition 5. An operator field A isstrongly continuousif and only if A
is locally bounded andζ → A(ζ)Xn(ζ) is continuous for every Xn ∈ ∧0.

This follows straight from the definition.
The strongly continuous operator fields form an algebra which is

not however self adjoint, while the weakly continuous operator fields
do not even form an algebra. In order to ensure that our definitions are
good enough, we should know if there exist sufficiently many non-scalar
continuous operator fields. This is answered by the following

Theorem 1. Let K be a compact subset ofZ and Y1, . . .Yn,Z1, . . .Zn,
2n continuous vector fields such that Yi(ζ) are linearly independent for
everyζ ∈ K. Then there exists a continuous operator field A such that
A(ζ)Yj(ζ) = Z j(ζ) for everyζ ∈ K and such that A(ζ)∗ is also continu-
ous.
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We first remark that we can as well assume thatK = Z. For,Yi(ζ)
are linearly independent if and only if∆ = det〈Yi(ζ),Yj(ζ)〉 , 0. This
being a continuous function ofK, there exists a compact neighborhood
V of K such that|∆| ≥ α > 0 on V. If the theorem were true for a
compact space, there exists an operatorA◦ onV satisfying the conditions
above. SetA = ϕA0 whereϕ is a continuous function 1 onK, 0 outside98

V; thenA verifies all the conditions.
Now let P(ζ) be the space spanned byYi(ζ). We can then define

A(ζ) = 0 on the orthogonal complement ofP(ζ) andA(ζ)Yi(ζ) = Zi(ζ)
and extendA by linearity. If π is the projection ofH (ζ) onto P(ζ), we
have〈X,Yj〉 = 〈πX,Yj〉 and if πX =

∑
ξkYk, then〈X,Yj〉 =

∑
ξk〈Yk,Yj〉

with |det〈Yj ,Yk〉| = |∆| ≥ α > 0. On solving the linear equations forξk,
we getξk = ∆k/∆. Since the functions occurring in the linear equations

are continuous,ξk are continuous functions and we have|ξk| = |
∆k

∆
| ≤

M||X|| whereM is a constant. HenceA(ζ)X(ζ) =
∑
ξk(ζ)Zk(ζ) is contin-

uous for every continuous vector fieldX. A is locally bounded by virtue
of the above remark and henceA is a continuous operator field.

It is obvious thatA∗ is also locally bounded. Now,A∗ maps the
whole ofH (ζ) onto P(ζ) and henceA∗(ζ)X(ζ) =

∑
ηk(ζ)Yk(ζ) where

theη(ζ) are given by
∑

ηk(ζ)〈Yk,Yj〉 = 〈
∑

ηk(ζ)Yk,Yj〉
= 〈A∗(ζ)X(ζ),Yj(ζ)〉
= 〈X(ζ),A(ζ)Yj(ζ)〉
= 〈X(ζ),Z j(ζ)〉

The Gram determinant in this case also is∆. Hence by the same
argument as before,A∗ is a continuous operator field.

1.7 Measurablility of operator fields
99

Definition. An operator field A is said to bemeasurableif (a) it is almost
everywhere locally bounded, and (b) for every compact K and positive
ǫ, there exists K1 ⊂ K such thatµ(K − K1) < ǫ and A(ζ) is continuous
on K1.
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If (ep) form an orthogonal basis (Ch. 1.5), then any operator can be
expressed by means of a matrix with respect to this base. The matrix
coefficients are only〈Aep, eq〉. We then have

Proposition 6. A locally bounded operator field A is measurable if and
only if the matrix coefficients of A(ζ) are measurable functions onZ.

That a measurable operator field satisfies the above condition is a
trivial consequence of the definition. Conversely, if〈Aep, eq〉 is measur-
able for everyq, by prop. 3, ch. 1.4,Aep is measurable for everyp. As
in Prop. 3, Ch. 1.4, we can find a compact setK1 such that theAep are
continuous onk1 andµ(K − K1) < ǫ.

1.8 Decomposed operators

Let A(ζ) be a measurable operator field bounded almost everywhere.
For everyX(ζ) ∈ L2

∧, A(ζ)X(ζ) is also a measurable vector field and
||A(ζ)X(ζ)|| ≤ ||A(ζ)||∞||X(ζ)||. Hence

∫
||A(ζ)X(ζ)||2dµ exists and we

have||AX||L2
∧
≤ ||A(ζ)||∞||X||L2

∧
. In other words,A is a continuous opera-

tor onL2
∧ and||A|| ≤ ||A(ζ)||∞.

If A is an operator inL2
∧ which arises from an operator field, we say

that it is adecomposed operatorand writeA ∼
∫
Z A(ζ). In particular if

we takeA(ζ) = f (ζ). Identity wheref ∈ L∞(µ) we obtain a decomposed
operatorM f ∼

∫
f (ζ) Id. This is called ascalar decomposed operator100

on L2
∧. We denote the space of all such operators byM . This is a self

adjoint subalgebra of Hom(L2
∧, L

2
∧). For,

〈M f X,Y〉 =
∫
〈 f (ζ)X(ζ),Y(ζ)〉dµ(ζ)

=

∫
〈X(ζ), f (ζ)Y(ζ)〉dµ(ζ)

= 〈X,M f̄ Y〉

HenceM∗f = M f̄ .
We now give a characterisation of decomposed operators in terms of

this algebraM by means of
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Theorem 2. The set of decomposed operators is precisely the commu-
tator ofM . If A ∼

∫
A(ζ), then||A|| = ||A(ζ)||∞.

In fact, if A is a decomposed operator, it commutes with all the ele-
ments ofM and hence belongs toM ′.

Conversely letA be an operator inL2
∧ which commutes withM f for

every f ∈ L∞(µ). Let K be a compact subset ofZ. ThenχK en(ζ) ∈
L2
∧, {en} being the orthogonal basis (Ch. 1.5). LetH be a compact

nighbourhood ofK. Then

A(χK en) = A(χKχH en)

= AMχK
(χH en)

= MχK
A(χH en) by assumption

= χK A(χH en) almost everywhere.

It is obvious that at the intersection of any two compact setsK,K1,
the vector fieldsA(χK en) and A(χ1

K
en) coincide almost everywhere.

Hence there exists a vector fieldA(en) such thatχK (en)A(en)(ζ) =
A(χK en)(ζ) almost everywhere. Thus we have a countable family of rela-
tions and hence there exists a setN of measure 0 such thatχK A(en)(ζ) =
A(χK en)(ζ) for everyζ < N. Since theXn in the fundamental sequence101

∧0 are finite linear combinations of theen we haveχK A(Xn)(ζ) = A(χK

Xn)(ζ) for every ζ < N. Also
∫

K
||A(Xn(ζ))||2dµ(ζ) = ||A(χK X)||2 ≤

||A||2
∫

K
||Xn||2µ(ζ) for every compact setK. Hence the set of elements

ζ such that||A(Xn)(ζ)|| is strictly greater than||A|| ||Xn(ζ)|| is of measure
zero.

We have thus proved that the algebra of all decomposed operators is
M ′ and we know thatM ⊂M ′′. We can moreover assert

Theorem 3. M is a weakly closed algebra.

In fact, let (en) be an orthogonal basis ofL2
∧. Then we define for any

two integersp, q, a decomposed operatorHp,q by setting

Hp,q(ζ)en(ζ) = 0i f n , p or q

Hp,q(ζ)ep(ζ) = ||ep(ζ)||2eq(ζ).
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and Hpq(ζ)eq(ζ) = ||eq(ζ)||2ep(ζ).

If B commutes with everyA ∈M ′, in particular, it commutes with
all the Hp,q thereforeB(ζ) commutes withHp,q(ζ) for every fixedp, q
and almost everyζ. Since theHp,q are countable,B(ζ) commutes with
Hp,q(ζ) for almost every (ζ) and for all p, q. Hence outside a set of
measure zero, we have

〈B(ζ)ep, ep〉 =
〈Bep,Hn,q, en〉
||en||2

for every p, q.

= 〈BHn,q ep,
en

||en||2
〉 (since theHn,q are Hermitian)

= 0 if p , q.

On the other hand, 102

〈B(ζ)ep, ep〉 = 〈BHn,pep,
en

||en||2
〉

=
||ep||2

||en||2
〈Ben, en〉

This shows thatB(ζ) is a scalar operator for almost every (ζ). Hence
B =

∫
B(ζ)d(ζ) is a scalar decomposed operator and henceǫM . This

shows thatM =M ′′ and by Th. 2, Ch. 5.6, Part II, is weakly closed.





Chapter 11

Continuous sum of Hilbert
spaces - II

2.1
103

In the last chapter, given a familyH (ζ) of Hilbert spaces indexed by
elementsζ of a locally compact spaceZ, we constructed the continuous
sum H = L2

∧. Now we shall decompose a Hilbert spaceH into a
continuous sum with reference to a given comutative, weaklyclosed *-
subalgebram of Hom (H ,H ).

M satisfies Gelfand’s conditions and is hence isomorphic and iso-
metric to the spaceC (Ω) of continuous complex valued functions on a
compact spaceΩ which is called thespectrumof M . By this isomor-
phism, every continuous linear form onM is transformed into a contin-
uous liner form onC (Ω) or, what is the same, a measure on the space
Ω. In particular, the continuous linear form〈Mx, y〉 wherex, y ∈ H
gives rise to a measure which we shall denote bydµx,y i.e. we have
〈Mx, y〉 =

∫
Ω

M̂(χ)dµx,y(χ). This measure is called thespectral measure
associated tox, y. This depends linearly onx and anti linearly ony.

Let M ′ be the commutator ofM . We now assume that there exists
an elementa ∈ H such that the set{Aa : A ∈ M ′} is dense inH .
This assumption however isnot a real restriction on our theory. For
otherwise, we can decomposeH into a discrete sum of Hilbert spaces

103
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each of which satisfies the above condition. Leta1 be any element of
H and H1 the closed subspace generated byAa1, A ∈ M ′. H1 is
invariant under bothM andM ′. If H ⊥

1 is the orthogonal complement104

of H1, we can carry out the same process forH ⊥
1 , and so on. Thus

H =H1 ⊕H2⊕.. where all theHi satisfy the above condition.
Now we show that the spectral measuredµa,a hasΩ as its support.

In fact, if f is a positive continuous function onΩ such that its integral
is 0, then f = 0. We can writef as |M̂|2 and we have

∫
|M̂|2dµ(a,a) =

〈M ∗ Ma, a〉 = ||Ma||2. Hence if
∫
|M̂|2dµ(a,a) = 0,Ma = 0 or AMa= 0

for everyA ∈ M ′, or againM(Aa) = 0. Since the As are dense inH ,
it follows that M = 0. Moreover, this shows that the measuredµa,a is
positive.

Proposition 1. Corresponding to any operator A∈M ′ there exits one
and only one continuous functionϕA onΩ such that dµ(Aa,a) = ϕAdµa,a

and we have||ϕA|| ≤ ||A||.

In fact, it is enough to prove the proposition whenA is a positive
Hermitian operator since any operator is a finite linear combination of
them. Under this assumption we have

∫
|M̂|2dµAa,a = 〈M∗MAa, a〉

= 〈AMa,Ma〉
=≤ ||A||〈Ma,Ma〉

= ||A||
∫
|M̂|2dµa, a

Now dµAa,a is positive anddµAa,a ≤ k dµa,a. Therefore, by Lebesgue
- Nikodym theorem, there exist a measurable functionψ ∈ L∞(µa,a) such
thatdµAa,a = ψAdµa,a. We also have||ψA||∞ ≤ ||A||.

The proof is complete if we prove the

Lemma . For every bounded measurable functionψ on Ω there exists105

one and only one continuous functionϕ such thatϕ = ψ a.e.

By the definition ofµx,y, we have ||µx,y|| ≤ ||x|| ||y||. Therefore∫
ψ(χ)dµx,y(χ) ≤ ||ψ||∞||x|| ||y||.
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Thus
∫
ψ(χ)dµx,y(χ) is a sesquilinear map which is continuous in

each of the variablesx, y. As a consequence of Riesz representation the-
orem, there exits a linear operatorT such that

∫
ψ(χ)dµx,y(χ) = 〈T x, y〉.

We now show thatT commutes with every element ofM ′. For, if
M ∈M ′, we have

〈MT x, y〉 = 〈T x,M∗y〉

=

∫
ψ(χ)dµX,M∗y(χ)

=

∫
ψ(χ)dµMx,y(χ)( sinceM ∈M ′)

= 〈T Mx, y〉

SinceM is weakly closed,T ∈M .
We have

∫
ψ(χ)M̂dµa,a =

∫
T̂ M̂dµa,a and hencêT = ψ(χ)a.e - This

proves the lemma.
The functionϕA ∈ C (Ω) thus constructed satisfies the following

properties:

(a) ϕλA+µB = λϕA + µϕB.

For,
∫

ϕλA+µBdµa,a = 〈(λA+ µB)a, a〉 = λ〈Aa, a〉 + µ〈Ba, a〉

=

∫
(λϕA + µϕB)dµa,a

(b) ϕA∗ = ϕ̄A.

For,
∫

ϕA∗dµa,a = 〈A∗a, a〉 = 〈Aa, a〉

=

∫
ϕ̄Adµa,a.

(c) ϕMA = M̂ϕA 106
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∫
ϕMAdµa,a = 〈MAa, a〉

=

∫
M̂dµAa,a =

∫
M̂ϕAdµa,a

(d) ϕA∗A ≥ 0

In fact, if f is a positive function, we can express it as|M̂|2.
∫

M̂2ϕA∗Adµa,a = ||AMa||2 ≥ 0.

(e) |ϕA| ≤ ||A||

This has been proved in the Prop. 1, Ch. 2.1.

2.2

In order to get a decomposition ofH into a continuous sum, we need
the following

Lemma . Let B be any *-subalgebra ofHom(H ,H ) which is uni-
formly closed. Letϕ be a positive continuous linear form onB such
that ϕ(A∗) = ϕ(A), ϕ(A∗A) ≥ 0 and |ϕ(A)| ≤ k||A||. Toϕ we can make
correspond a canonical unitary representation of the algebra B.

In fact, because of the conditions we have imposed onϕ, ϕ(B∗A) is a
positive Hermitian form onB. Hence we have by the Cauchy-Schwarz
inequality |ϕ(B∗A)||2 ≤ ϕ(B∗B)ϕ(A∗A). Therefore,ϕ(B∗B) = 0 if and
only if ϕ(B∗A) = 0 for everyA ∈ Hom(H ,H ). Henceϕ(B∗B) =
0⇒ ϕ((AB)∗AB) = 0. It follows that the setN of elementsB such that
ϕ(B∗B) = 0 is a left ideal. On the spaceB/N, ϕ is transformed into a
positive definite Hermitian from and consequentlyϕ gives rise to a scalar
product. The completion of this space under this norm shall be denoted
Hϕ. The canonical mapB →Hϕ is continuous sinceϕ(B∗B) ≤ k||B||2.107

On the other hand we have also a mapf : B → Hom(Hϕ,Hϕ) defined

by f (A) = UA whereUA(Ḃ) = ˙̂AB. We show that this as also continuous.
ConsiderB∗||A||2B−B∗A∗AB= B∗(||A||2−A∗A)B; (||A||2−A∗A) is positive
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Hermitian and hence so isH = B∗||A||2B− B∗A∗AB. H

1
2 is the uniform

limit of polynomials inH and sinceB is uniformly closed,H

1
2 ∈ B.

Therefore we haveϕH = ϕ
H

1
2 H

1
2
≥ 0 by assumption. We have now

proved thatϕ(B∗A∗AB) ≤ ||A||2ϕ(B∗B). This shows that the mapUA

is continuous. This can be extended to an operator ofH . We have
also shown that||UA|| ≤ ||A||. It remains to prove that this is a unitary
representation. LetA, B, C ∈ B. Then 〈UAḂ, Ċ〉 = ϕ((A∗C)∗B) =
〈Ḃ,UA ∗C〉. HenceU∗A = UA which shows that this is unitary.

In fact all the above considerations hold for a Banach algebra with
involution.

2.3

After this lemma in the general set-up, we revert to our decomposition
of H into a continuous sum. For every fixedχ ∈ Ω, ϕA(χ) is a pos-
itive continuous linear from onM ′ which satisfies all the conditions
of the lemma. Hence we have a unitary representation ofM ′ in the

Hilbert spaceHχ =
M ′

Nχ

whereNχ = {A : ϕA∗A(χ) = 0}. In other

words, to each pointχ ∈ Ω we have assigned a Hilbert spaceHχ. If
M ∈ M , sinceϕMA = M̂ϕA, we haveUM(χ) = M̂(χ) identity. For,
〈UM(χ)Ḃ, Ċ〉 = ϕC∗MB(χ) = M̂(χ)ϕC∗B(χ) = M̂(χ)〈Ḃ, Ċ〉. We have now
all the data necessary for the construction of a continuous sum except 108

the fundamental family of vector fields. We have so far operated with
M ′, but, in practice,M ′ is very large. For instance it is not in general
separable in the norm. So we assume given a subalgebraA of M ′ such
that

(a) A is uniformly closed.

(b) There exists a sequenceAn ∈ A such thatA is generated by the
An andA∩M .

(c) There existsa ∈ H such that{Aa : a ∈ H } is dense inH . It is
actually this algebraA which is in general given and the problem
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will then be to find anM ⊂ A′ such that the above conditions are
satisfied.

We have a mapA → Hom(Hχ,Hχ). However it is possible that
there are more functionsϕ than would be absolutely necessary. That
is, there may exist elementsχ, χ′ in Ω such thatϕA(χ) = ϕA(χ′) for
everyA ∈ A. In this case, we have two pointsχ, χ′ in the base space
Ω which are in some sense equivalent with respect toA. Therefore we
introduce an equivalence relationR in Ω by settingχ ∼ χ′ whenever
ϕA(χ) = ϕA(χ′) for everyA ∈ A. This is a closed equivalence relation
andΩ/R= Z is a compact Hausdorff space. The same procedure forZ
andA as forΩ andM ′ gives a Hilbert spaceHζ at each pointζ ∈ Z
and a continuous representation of the algebraA in Hom(Hζ ,Hζ). The
image of the measuredµa,a by the canonical mapΩ→ Z is denoted by
µ. At each pointζ we have a mapA→ Hζ and hence for a fixedA ∈ A
we obtain a vector field. This family of vector fields is thefundamental
family we sought to construct. In fact,

(a) They constitute a vector space, sinceA is an algebra.

(b) ||XA(ζ)|| = ϕA∗A(ζ)
1
2 and hence||XA(ζ)|| is continuous.109

(c) For eachζ, XA(ζ) in everywhere dense sinceHζ is only the com-
pletion of the space ofXA(ζ).

(c′) Consider
∑

MiBi whereM ∈ A ∩M and B is a finite product
Ai1Ai2 . . .Aip of theAn. ThenX∑

Mi Bi =
∑

UMi XBi with UM being
scalars.{XBi } is only a countable family and the vectorsX∑

Mi Bi (ζ)
are dense inH (ζ). Consequently the countable familyX∑

αi Bi (ζ)
where theαi are complex numbers with real and imaginary parts
rational is also dense inH (ζ).

Thus we have now all the data for the construction of a continuous
sumL 2

∧ . of course we have still to establish thatL2
∧ = H . In fact,

sinceZ is compact, every continuous vector field is square summable.
Therefore, we have

||XA||2 =
∫
||XA(ζ)||2dµ(ζ) =

∫
ϕA∗A(χ)dµa,a(χ) = ||Aa||2
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Also Aa = 0 impliesXA = 0. Therefore, the mapAa→ XA is an
isometry of a dense subspace ofH and hence can be extended to an
isometry J : H → L2

∧. It remains to prove that this map is surjec-
tive. We have seen (Prop. 2, Ch. 1.2) that vector fields of the form∑
ϕi(ζ)Yi(ζ) whereϕi(ζ) are continuous functions ofζ are dense inL2

∧.
Therefore it is enough to prove thatJ(H ) contains all such elements
(the image ofJ(H ) being closed inL2

∧). LetM0 be the self adjoint sub-
algebra ofM consisting of elementsM such thatM̂ is constant on cosets
modulo the equivalence relationR. Consequently,M̂ may be considered
as a continuous map onZ. But we have||∑ MiAa

i ||2 =
∫
Z ||

∑
M̂iXA‖2dµ

and therefore the mapJ1 :
∑

MiAa
i →

∑
M̂iXAi is an isometry which

coincides withJ on the elementsAa. This shows that
∑

M̂iXAi ∈ J(H ) 110

and henceL2
∧ = J(H ).

Hereafter we shall identifyL2
∧ with H . We now assert thatA is

contained in the space of decomposed operators onH . In fact, we
will show that A =

∫
UA(ζ). We have already proved (Ch. 2.2) that

||UA(ζ)||| ≤ ||A|| andUA(ζ) is hence bounded. AlsoUA(ζ)XB(ζ) = XAB(ζ)
is again a continuous vector field and by Prop. 5, Ch. 1.6,UA(ζ) is a con-
tinuous operator field. If now̄A =

∫
UA(ζ), thenĀBa= UA(ζ)XB(ζ) =

XAB(ζ) = ABaby our identification for everyB ∈ A. Since{Ba : B ∈
A} is dense inH , we haveĀ = A. In other words, every operator
A ∈ A. is decomposable into acontinuousoperator field.

Now, we have another algebraM of operators onH . It is natural to
expect thenM consists of scalar decomposed operators. It is of course
true, but the proof is not obvious. As before, letM0 be the subalgebra
of M composed of elementsM such thatM̂ ∈ C (Z). We first prove
thatM0 consists of scalar decomposed operators. LetB,C ∈ A. Then
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〈MBa,Ca〉 = 〈MC∗Ba, a〉 =
∫

Ω

M̄(χ)dµC∗Ba,a(χ)

=

∫
M̂(χ)ϕC∗B(χ)dµa,a(χ)

=

∫

Z
M̂(ζ)ϕC∗B(ζ)dµ(ζ) (since the continuous

functions are constant

on the equivalence classes)

=

∫ ′

Z
M̂(ζ)〈XB(ζ),XC(ζ)〉dµ(ζ) by definition of the norm.

That is to say thatM =
∫
Z M̂(ζ). Identity. We now extend this result111

to every elementM ∈M . Since we know that the space of scalar oper-
ators is weakly closed, it suffices to prove thatM ⊂M ′′

0 . Again by the
Hahn-Banach theorem, it is enough to show that any weakly continuous
linear form which is zero onM0 (and hence onM ′′

0 ) is also zero on
M . But any weakly continuous linear form on HomS(H ,HW) is of

the form U →
n∑

i=1
〈UXi ,Yi〉. if

∑〈MXi,Yi〉 = 0 for every M ∈ M0,

then
∑∫
Z M̂(ζ)〈Xi(ζ),Yi(ζ)〉dµ(ζ) = 0. Hence

∑〈Xi(ζ),Yi(ζ)〉 = 0
for almost everyζ in Z, or again

∑〈Xi(π(χ)),Yi(π(χ))〉 = 0a.e. on
Ω whereπ is the canonical mapΩ → Z. Therefore,

∑〈MXi ,Yi〉 =∫
Ω

M̂(X)
∑〈Xi(x),Yi(x)〉dµa,a = 0 for everyM ∈ µ. This completes the

proof of our assertion.

2.4 Irreducibility of the components - Mautner’s theorem

Finally it remains to show that the unitary representationsof the algebra
A in theHζ are irreducible. The algebraM is at our choice and we are
interested in taking it as large as possible. Thus we assume thatM is a
maximal commutative subalgebra ofA′ and obtain the

Theorem 1(Mautner). LetA be any uniformly closed *-subalgebra of
Hom (H ,H ) such that
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(a) there exists a sequence An which generatesA;

(b) there exists an element a∈ H such that the set{Aa : a ∈ A} is
dense inH .

Let M be any maximal commutative *-subalgebra ofA′. Then in
the decomposition ofH into the continuous sum of theHζ with re-
spect toM andA, almost every representation UA(ζ) ofA in H (ζ) is 112

irreducible.

Let {en} be the orthogonal basics given in Ch. 1.5 with respect to
the fundamental sequence∧0 and letM0 be the subset{M ∈M : M̂ ∈
C (Z)} of M . If B be the algebra generated byA andM0, thenM =

B′. In fact, we have seen thatM ⊂ M ′′
0 (Ch. 2.3) and therefore

M ′ =M ′
0. HenceB′ = A′ ∩M ′

0 = A′ ∩M ′ andA′ ∩M ′ =M , M
being a maximal subalgebra. We define for any two integersp, q as in
theorem 3, Ch. 1.8, Hermitian decomposed operatorsHp,q on H such
that

Hp,q(ζ)en(ζ) = 0 if n , p or q;

Hp,q(ζ)ep(ζ) = ||ep(ζ)||2eq(ζ), and

Hp,q(ζ)eq(ζ) = ||eq(ζ)||2ep(ζ).

We have already seen (Ch. 1.8) that any operator which commutes
with all theHp,q(ζ) is a scalar operator. Now,Hp,q is bounded since we
have||Hp,q(ζ)|| ≤ ||ep(ζ)|| ||eq(ζ)|| ≤ ||ep|| ||eq||. Hp,q is continuous since
it transforms every vector filed of typeej(ζ) into another continuous
vector field (Prop. 5, Ch. 1.6). NowHp,q =

∫
Z Hp,q(ζ)dµ(ζ) and this

commutes with every element ofM . Therefore

Hp,q =

∫

Z
Hp,q(ζ)dµ(ζ) ∈M ′ = B′′.

Let Yn = en/||en||1/n. Then we have
∑ ||Yn||2 < ∞ and by theorem

2, Ch. 5.6 Part II, there exist Hermitian operatorsBk ∈ B such that
∑

n ||Hp,qYn − BkYn||2 < 1/k2. Therefore||Hp,qen − Bken|| ≤
||en||n

k
→ 0

ask→ ∞., i.e.,
∫ ∑

n ||Hp,q(ζ)Yn(ζ)−Bk(ζ)Yn(ζ)||2dµ(ζ)→ 0 ask→ ∞. 113
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As in Riesz-Fisher theorem, we can find a subsequenceBki such that
Hp,qYn − Bki Yn→ 0 aski → ∞ outside a set of measure zero. Since the
Hp,q are only countable in number, we can pass to the diagonal sequence
and get a sequenceBkj such thatfor every p, q, Hp,qYn − Bkj Yn → 0 as
k j → ∞ outside a setN measure zero.

Let ζ < N andL be a subspace invariant underA(ζ) or again under
A(ζ)′′. Let S be any element ofA(ζ)′. ThenS commutes with every
UB(ζ) whereB ∈ B (whereUB(ζ) =

∑
i Mi(ζ)UA(ζ) wheneverB =∑

i MiAi).
So,

〈S Hp,q(ζ)en(ζ), em(ζ)〉 = lim〈S UBk(ζ), en(ζ), em(ζ)〉
= lim〈UBk(ζ),S en(ζ), em(ζ)〉
= lim〈Sen(ζ),UBk(ζ), em(ζ)〉
= 〈Sen(ζ),Hp,q(ζ), em(ζ)〉.

or Hp,q(ζ) commutes with everyS ∈ A(ζ)′ for almost everyζ. Hence
A(ζ)′ consists only of scalar operators for almost everyζ. Hence the
only invariant subspaces ofA(ζ)′′ are the trivial ones and the represen-
tationA→ UA(ζ) ofA in H (ζ) is irreducible.

The following corollary is more or less immediate:

Corollary. Let U be unitary representation of a separable, locally com-
pact group G in a Hilbert spaceH such that there exists a∈ H with
the minimal closed invariant subspace containing a= H . Then U is
a continuous sum of unitary representations which arealmost allirre-
ducible.

In fact, in Mautner’s theorem, we have only to take forA the uni-114

form closure of the algebra generated by elements of the formUx, x ∈ G.

2.5

We have already said that the spaceΩ could have been used in much
the same way as the spaceZ. We now give an illustration to explain our
remark thatΩ is too large for practical purposes and that in the decompo-
sition with respect toΩ the same representations may repeat ‘too often’
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(which is what we sought to avoid by our equivalence relation). Let H
be the spaceL 2(R) andU the regular representationσx of R in L2(R).
LetA be the algebra of operatorsσ f for f ∈ L1. It can easily be seen
thatA′′ contains all operatorsσµ on L2 with µ, a bounded measure.A
andA′′ are of course commutative. ThereforeA′ ⊃ A′′. We say take
m′ to beA′′ itself. If Ω is the spectrum ofM ′ it contains the spec-
trum of M 1. This is the much larger than the spectrum ofL1, whereas
a ‘good’ decomposition ofL2(R) into a Fourier transform is given by

f → f̂ (y) =
1
√

2π

∫
f (x)eixydx. The Fourier in version formula will be

f =
1
√

2π

∫
f̂ (y)eixydy. L2 is the direct integral of Hilbert spacers of

dimension 1. IfM 1 denotes the set of bounded measures, thenL1 is an
ideal inM 1 and is hence contained in a maximal ideal ofM 1. Thus two
different characters ofM 1 give rise to the same character ofL1. Thus
a decomposition withΩ consists of unnecessarily repeated representa-
tions while that withZ (spectrum ofL1 in our example) economises
them and reduces the decomposed representations to a minimum.

2.6 Equivalence of representations
115

The decomposition into continuous sum is obviously not unique, be-
cause the process depends on the choice ofa ∈ H such that{Aa : A ∈
A} is dense inH and on this choice ofM . The question therefore
arises whether all these decompositions are equivalent in some sense.

Definition . Two decompositions L2
∧1
, (Z1, µ1,∧1) and L2

∧2
(Z2, µ2,∧2)

of H are said to be equivalent if there exists a measurable one-one
map t : Z1 → Z2 and a map Uζ of H (ζ) ontoH (t(ζ)) such that, the
correspondence to every vector field X onZ1 of a vector field onZ2

defined by Y(t(ζ)) = UζX(ζ), is an isomorphism of L2∧1
onto L2

∧2
.

It is almost immediate that if the vector a is changed, we get equiv-
alent decompositions. However, it is not true that ifM is chosen in
different ways the corresponding decompositions are equivalent.





Chapter 12

The Plancherel formula

3.1 Unitary algebras
116

Consider the regular representation of a locally compact groupG in the
spaceL2 and decompose this into a continuous sum of irreducible rep-
resentations. Then we have an isometryf → Xf of L2 onto L2

∧. By
the definition of the norm inL2

∧, we have
∫
G
| f |2dλ =

∫
Z ||Xf ||2dµ(Z).

The map f → Xf is in a sense the Fourier transform forG, and the
above equality, the Plancherel formula. As a matter of fact,we do get
the classical Plancherel formula from this as a particular case whenG
is commutative. However, we have had many choices to make in the
decomposition and as such this definition of a Fourier transform is not
sufficiently unique and consequently uninteresting. We now proceed to
obtain a Plancherel formula which is unique.

Let G be a separable, locally compact, unimodular group. We have
seen (Ch. 8, Part II) that the regular representation ofG in L2 gives rise
to a representation ofL1 in L2. In fact we have the formula for every
f ∈ L1 andg ∈ L2.

g ∗ f (x) =
∫

g(xy−1) f (y)dy

= τy(a) whereǧ(x) = f (x−1)

If we take x = e, g ∗ f (e) =
∫

e(y) f̌ (y)dy (Since the group is uni-

115
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modular)
= 〈g, f ∗〉 where f ∗(x) = f (x−1)

By associativity of convolution product, we see that

〈g ∗ f , h〉 = g ∗ f ∗ h∗(e)

= g ∗ (h ∗ f ∗)∗(e)

= 〈g, h ∗ f ∗〉 for every f , g, h ∈ L1 ∩ L2

117

The∗ operation we have defined is an involution. MoreoverL1 acts
on L2 or, what is the same,L2 is a representations space forL1. The
mapping f → T f whereT − f (g) = g ∗ f is unitary. ThusL1 is a self
adjoint algebra of operator onL2 = H . A = L1 ∩ L2 is a subalgebra
H with an involution∗. This satisfies the following axioms:

(a) 〈x, y〉 = 〈y∗, x∗〉 for everyx, y ∈ A
For,

〈 f , g〉 =
∫

f (x)g(x)dx

=

∫
g(x−1) f (x−1)dx

=

∫
g∗(x) f ∗(x)dx

= 〈g∗, f ∗〉 for every f , g, ∈ L1 ∩ L2.

(b) 〈x, yz〉 = 〈y∗x, z〉, or equivalently

〈yx, z〉 = 〈y, zx∗〉 for everyx, y, z ∈ A.

(c) A is dense inH .

As a consequence the operatorsVx(y) = yxonA can be extended
to operators onH .

(d) The identity operator is the strong limit of thatVx.

This is an immediate consequence of prop. 3, Ch. 4.7, Part II,
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Definition . Let A be subspace of the Hilbert spaceH . If A is an
associative with involution satisfying conditions (a), (b), (c) and (d),A
is said to be aunitary algebra(Godement). (Ambrose with a slightly
different definition calls it an H∗- algebra).

3.2
118

Associated with a given unitary algebra, we have a representation
Ux(y) = xy and an antirepresentationVx(y) = yx. Axiom (b) asserts
that these two representations are unitary. The mapx −→ x∗ is an isom-
etry by a (a) and consequently can be extended to a mapS : H →H .
TheUx and theVx are related by means of the relationsVx = S Ux ∗ S
for everyx ∈ A. In fact, if y, z ∈ A, we have

〈Vxy, z〉 = 〈yx, z〉
= 〈z∗, x∗y∗〉
= 〈z∗,Ux∗y

∗〉
= 〈S Ux∗S y, z〉

HenceVx = S Ux ∗S onA and hence onH . We shall denote byU,
V the uniformly closed algebras generated by theUx, Vx respectively.
LetR be the uniformly closed algebra generated by both theUx and the
Vx.

Definition . An element a∈ H is said to beboundedif the the linear
map x→ Vxa ofA→H is continuous.

The mapping shall be denotedUa, and the set of bounded elements
B.

Remark. To start with, one should have defined right -boundedness and
left-boundedness of elements inH . But if a is bounded in the above
sense, a trivial computation shows thatU∗ax = VxS afor everyx ∈ A. So
S ais bounded andUS a = U∗a. Now we haveUxa = S Vx∗Sa = S U∗aSx

and the mapx → Uxa is continuous and hence defines a continuous
operatorVa and we haveVa = S U∗aS.
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Proposition 1. M = {Ua : a ∈ B} is a self adjoint ideal which is 119

weakly dense isV′.

In fact, for everyx, y ∈ A, UaVxy = Ua(yx) = Vyxa = VxVya =
VxUay; thereforeUa commutes withVx; henceUa ∈ V′. Moreover if
T ∈ V′, we haveTUax = TVxa = VxTa; henceTa is bounded and
UTa = TUa and consequentlyM is an ideal inV′. SinceU∗a = US a,
it is self-adjoint. SinceV′ is weakly closed, it only remains to show
thatV′ ⊂ M ′′, or again thatT ∈ V′, X ∈ M ′ implies thatTX = XT.
But we have seen that, forx ∈ A, TUx ∈ M . HenceTUxX = XTUx

and we may now allowUx to tend to 1 in the strong topology to obtain
TX = XT.

From this follows at once the

Theorem 1 (Godement-Segal). In the notations,U′ = V′′, or equiva-
lentlyV′ = U′′.

In fact, sinceV ⊂ U′, V ⊃ U′′. We have only to show that
V′ ⊂ U′′. In other words, we have to prove that every element of
V′ commutes with every element ofU′. Since theUa, a ∈ B and sim-
ilarly Va, a ∈ B are dense inV′,U′ respectively, it suffices to establish
the commutativity ofVa, Vb, a, b ∈ B. First we assert thatUcb = Vbc
for everyc ∈ B.

For,

〈Ucb, x〉 = 〈b,US cx〉 = 〈b,VxS c〉
= 〈V∗xb,S c〉 = 〈c,S V∗xb〉
= 〈c,UxS b〉 = 〈c,VS bx〉 = 〈Vbc, x〉

Now,UaVbx = UaUxb = UUaxb = Vb(Uax) by the above calculation
and the proof of theorem 1 is complete.

3.3 Factors
120

A weakly closed self-adjoint subalgebra of operators on a Hilbert space
H is said to be afactor if its centre reduces to the scalar operators.
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If in the above discussion we assumeR to be irreducible, thenR′ =
U ∩V′ = U′ ∩U′′ = Centre ofU′′. SinceR is irreducible, by cor. to
Schur’s lemma (Ch. 5.4, Part II),R′ = scalar operators. HenceU′′ is a
factor.

Example. (1) The set of all bounded operators onH is a factor.

(2) The set of bounded operators onH which is isomorphic to
Hom(H1,H1) whereH1 is another Hilbert space is also a fac-
tor. This is said to be aFactor of type I. If H1 is of dimensionn,
this is said oe be if typeIn.

3.4 Notion of a trace

If we consider only the operators onH which are of finite rank, then
we have the notion of a trace defined by

∑
n〈Ten, en〉 where theen form

an orthonormal basis. In the general case, we may define traceaxiomat-
ically in the following way:

Definition. If P is the set of positive operators onH , traceis a map of
P into [0,∞] satisfying

(a) Tr(UPU−1) = Tr P for every unitary operator U, and

(b) If P is a positive operator=
∑

Tα, where the Tα are also posi-
tive operators, and the series in strongly convergent, thenTr P =∑

Tr Tα.

In particular, (b) implies that for every positiveλ, Tr(λP) = λTr P. It 121

is obvious that this is true ifλ is rational and since the rational numbers
are dense inR, by (b), it is also true for allλ ∈ R+. If A is any operator
onH with a minimal decomposition into positive operators, thentrace
can be defined onA by extending by linearity.

Now, instead of Hom(H ,H ), we may consider any∗-subalgebra
F of Hom(H ,H ) and define the notion of a trace as above. However,
for arbitrary∗-subalgebras, neither the existence of a non-trivial trace
nor its uniqueness is assured. For instance, ifH = H1 + H2 is the
direct sum of the Hilbert spacesH1 andH2 and F is the subalgebra
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Hom(H1,H1) + Hom(H2,H2) of Hom(H ,H ), then the functionϕ
defined byϕ(T1 + T2) = λ1 Tr T1 + λ2 Tr T2 (whereλ1 andλ2 are ar-
bitrary positive constants) is a trace. However, whenF is a factor, the
nontrivial trace, if it exists, is unique. Those factors which do not pos-
sess a nontrivial trace are said to be of type III.

A nontrivial trace onF can be proved to have the following proper-
ties:

1. If H ∈ F ∩P, TrH = 0 of and only ifH = 0; and

2. For every positiveH ∈ F, there existsH1 ∈ F such that 0< H1 ≤
H and TrH1 < ∞.

Definition . An element A of a∗-algebra F operators onH , is said to
benormed(or of Hilbert-Schmidt type) with respect to a trace on F, if
Tr(A∗A) < ∞.

Let F0 be the set of operators of finite trace andF1 the set of normed122

operators inF. Than ifA, B ∈ F1, we haveB∗A ∈ F0 and Tr(B ∗ A) is a
scalar product onF1.

In the case of the algebraU′′, one can prove

Theorem 2. There exists onU′′ one and only one trace such that

(a) A ∈ U′′ is normed if and only if A= Ua for some a∈ B.

(b) If A = Ua and B= Ub are normed, thenTr(B ∗ A) = 〈a, b〉.

The proof may be found in [23] or [12], Ch. I,§ 6, n◦ 2.
In particular, ifR is irreducible, then the factorU′′ is notof type III.

3.5

We now assume that two more conditions are satisfied byA, viz.

(1) A is separable i.e. there exists a∗-subalgebra everywhere dense
inA, which has a countable basis (in the algebraic sense).

(2) There exists an elemente ∈ A such thate∗ = eandR is dense in
A.
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Condition (2), however, is, as in the case of general decomposition,
not a real restriction, and if it is not satisfied,A can be split up into a
discrete sum of algebras each of which satisfies this condition.

We shall now perform the decomposition ofH into a continuous
sum of Hilbert spaces with reference to the uniformly closedalgebraR
of operators onH . LetA1 be the set{Re: R ∈ R}.

The fundamental family of vector fields inL2
∧ is given bya = Re→ 123

ã(ζ) = XR(ζ) ∈ H (ζ). We have already seen (Ch. 2) that this map
is an isometry. Consider for everyζ the setA(ζ) = {ã(ζ) : a ∈ A1}.
Ua, a ∈ A is a decomposed operator=

∫
ZUa(ζ)dµ(ζ).

Our object now will be to put onA(ζ) the structure of an algebra and
an involution with respect to whichA(ζ) becomes a unitary algebra,
To this end, we define forξ = ã1(ζ) andη = ã2(ζ), a1, a2 ∈ A1, ξ ·
η = Ua1(ζ)ã2(ζ) and ξ∗ã∗1(ζ). Of course we have to prove that these
definitions are independent of the particulara1, a2 we choose. In other
words we have to verify that if ˜a1(ζ) = ã′1(ζ) and ã2(ζ) = ã′2(ζ), then

Ua1(ζ)ã2(ζ) = Ua1(ζ)ã
′
2 and that ˜a∗1(ζ) = ã′1

∗(ζ). In order to prove the
former, we show thatUa1(ζ)ã2(ζ) = Va2(ζ)ã1(ζ). If a1 = R1e anda2 =

R2e, we have

Ua1(ζ)ã2(ζ) = ˜(Ua1a2)(ζ) = XUa1
R2(ζ)

= b̃(ζ) where b = Ua1R2e

= (R1e)(R2e) = Va2(R1e)

Henceb̃(ζ) = XVa2R1(ζ) = Va2(ζ)ã1(ζ). Therefore, we have proved
that the vector fieldsUa1(ζ)ã2(ζ) andVa2(ζ)ã1(ζ) are equal and so we
haveUa1(ζ)ã2(ζ) = Va2(ζ)ã1(ζ) for almost everyζ. But sinceA1 has a
countable basis, we can find a setN of measure zero such that forevery
a1, a2 ∈ A1, we haveUa1(ζ)ã2(ζ) = Va2(ζ)ã1(ζ) for ζ < N. Now the left
hand side is unaltered if we replacea2 by a′2 while the right hand side
remains the same if we replacea1 by a′1. 124

It only remains to prove thatξ∗ is well-defined for almost allζ′. It is
enough to prove that for everya1, a2 ∈ A1, the set ofζ such thatã1(ζ)
= ã2(ζ) and ã1∗(ζ) , ã2∗(ζ) is of measure zero. LetE = {ζ : ã1(ζ) =
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ã2(ζ)}. The operator field A defined by

A(ζ) =


Identity if ζ ∈ E

0 if ζ < E

is a Hermitian scalar decomposed operator inH and we haveAa1 =

Aa2. Hence we haveAa∗1 = Aa∗2, i.e. A(ζ) ã∗1(ζ) = A(ζ )̃a∗2(ζ) almost

everywhere and̃a∗1(ζ) = ã∗2(ζ) for almost everyζ ∈ E.
We shall now prove that with the above operations,A(ζ) is a unitary

algebra.

(a) 〈ξ, η〉 = 〈η∗, ξ∗〉
We have, in our usual notation,〈ξ, η〉 = ϕR∗2R1(ζ). a∗1 = S R1S e=
S R1S e(sincee∗ = e) anda∗2 = S R2S e. We have now to prove
thatϕR∗2R1(ζ) = ϕ(S R1S)∗(S R2S)(ζ). We assert thatM∗ = S MS for
every M ∈ R. In fact, if x ∈ A, UxM = MUx = UMx and
UM∗S x = M∗US x = U(Mx)∗ = US Mx. Since the mapx → Ux is
one-one, we haveM∗S X= S Mxor M∗ = S MS. Therefore

〈M(S R1) ∗ (S R2S)e, e〉 = 〈MS R2S e,S R1e〉
= 〈R1e,R2S MS e〉
= 〈R1e,R2M∗e〉.

In other words,

〈M(S R1S) ∗ (S R2)e, e〉 = 〈MR∗2R1e, e〉

for everyM ∈ A. By the definition of the spectral measure,

dµ(S R1S) ∗ (S R2S)e, e= dµR∗2R1e,e

and henceϕ(S R1S) ∗ (S R2S) = ϕR∗2R1.125

(b) 〈ξ1ξ2, ξ3〉 = 〈ξ1, ξ3, ξ
∗
2〉.

We have to show thatϕR∗3R1R2 = ϕ(R3R∗2)∗R1 which is obvious.
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(c) A(ζ) is dense inH (ζ).

This is again evident.

(d) Regarding the existence of sufficiently many operators, we cannot
assert that is true for allζ. However, this is true for almost allζ
For this we need a

Lemma 1. In a self adjoint algebraA of operators onH , the set{Ax :
A ∈ A, x ∈ H } is dense inH if and only if the Identity is the strong
limit of A ∈ A.

In fact, if x is an element ofH , we denote{Ax} by F. Let F⊥

be its orthogonal complement. Ifx is not in F, let x = x1 + x2 with
x1 ∈ F, x2 ∈ F⊥. ThenAx = Ax1 + Ax2 with Ax1 ∈ F, Ax2 ∈ F⊥

(sinceA is a self-adjoint algebra). ButAx ∈ F. HenceAx2 ∈ f⊥

as well asF. Since the sum is direct,Ax2 = 0 for everyA ∈ A. If
x2 , 0, this contradicts the assumption that{Ax : A ∈ A, x ∈ H } is
dense inH . For, spaceE = {x : Ax = 0 for everyA ∈ A}is non-
zero. E is invariant underA and thereforeE⊥ is invariant underA.
Consequently{Aa : a ∈ H} is contained inE⊥. Now, {Uxy : x, y ∈ A}
is dense inH and hence{xy : x, y ∈ A∞} is dense inA1. On the other
hand, there exists a sequenceYn isA1 such that theỸn(ζ) are dense in
H(ζ) for everyζ. EachYn can be approximated by a sequenceXn,pYn,p 126

with Xn,p,Yn,p ∈ A1. Hence we haveỸn(ζ) = lim
p→∞

UXn,p(ζ) ˜Yn,p(ζ) for

almost everyζ and for eachn, since we have only a countable family
Yn. Therefore{ξη : ξ, η ∈ A(ζ)} is dense inA (ζ) for almost everyζ.

Thus we have shown that the algebraA(ζ) is unitary for almost ev-
ery ζ. By Mautner’s theorem, almost all these algebras are irreducible.
ThusU(ζ)′′ is a factor. We can apply Theorem 2 to this factor. Thus
the scalar product in the space of bounded elements is given by a trace.
More precisely, we have a trace function onU(ζ)′′ such that〈ã1(ζ),
ã2(ζ)〉 = Tr(Ua2 ∗ (ζ)Ua1)(ζ)). But we know that the correspondence
a→ ã is an isometry and hence one gets

〈a1, a2〉 =
∫

Z
Tr

[
u∗a2

(ζ)Ua1(ζ)
]
dµ(ζ)
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This is the Plancherel formula which is in a certain sense unique.
However this is obviously not absolutely unique as the tracefunction is
unique only upto a constant multiple.

In the case of a locally compact, separable, unimodular group G, we
takeA = L1 ∩ L2 andH = L2. In this case Plancherel formula can be
rewritten as

∫

G
f (x)g(x)dx =

∫

Z
Tr(U∗g(ζ)U f (ζ))dµ(ζ).

Or againg∗ ∗ f (e) =
∫
Z Tr(Ug∗∗ f (ζ))dµ(ζ).

If we write g∗ ∗ f = h, we get

h(e) =
∫

z
Tr(Uh(ζ)dµ(ζ)

This is the generalisation of theFourier inversion formula. At any
point x, the value ofh(x) is given by

h(x),=
∫

Z
Tr(Uh(ζ)Ux(ζ))dµ(ζ)

This is of course true not for all functions, but only for function of127

the typeg∗ ∗ f with g, f ∈ L1 ∩ L2 as in the classical case.

3.6 A particular case

We have obtained a Plancherel formula in terms of the factorial rep-
resentations of the groupG and it would be more desirable to have a
formula in terms of the irreducible representations of the group. This is
however possible only in the following particular case.

Definition. A locally compact group is said to betype I if every factorial
representation of the group is of type I.

This definition implies that every factorial representation is a dis-
crete multiple of an irreducible representation. In fact, if F is the factor
corresponding to a factorial representation ofG, thenF is isomorphic
(algebraically) to Hom (H2,H2) whereH2 is a Hilbert space. IfF is
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of type I, it can be proved (see, for instance [1],§ 8, Ch. I) thatF′ is
also of type I. by the isomorphism between Hom (H1,H1) andF′, we
therefore get that for every projectionP in F′, there exists a minimal
projection< P. in other words, every invariant subspace, 0 of H con-
tains aminimal invariant subspace. The restriction of the operators ofF
to any such minimal invariant subspace gives rise to an irreducible uni-
tary representation and since the minimal projections in a Hilbert space
are conjugate by unitary isomorphisms, these irreducible unitary rep-
resentations areequivalent. On the other hand, the family of invariant
subspaces ofH which are direct sums of minimal invariant subspace,
partially ordered by inclusion, is obviously inductive. ByZorn’s lemma,
there exists in it a maximal element sayH 1. If H 1

, H , H 1⊥ is 128

nonempty and consequently contains a minimal invariant subspaceH 1
1 .

ThenH 1 ⊕H 1
1 again belongs to the family, thereby contradicting the

maximality ofH 1.
Thus if x ∈ A, the operator of the factorial representation is decom-

posed into irreducibleU0
x which are all equivalent. The mapUx → U0

x
is an isomorphism. Hence in a group of type 1, we have the formula

∫

G
f (x)g(x)dx=

∫

Z
Tr(U∗g(ζ)U f (ζ))dµ(ζ)

where theU(ζ) are irreducible representations andnot merely factorial
representations, and the trace is theusualtrace.

The definition of a group of type I seems a little inoccuous butis of
importance since all semisimple lie groups are of type I. Theproblem
remains however to give an explicit Plancherel measure, etc.

It is known in the case of complex semisimple lie groups (see [26])
and in the case ofS L(2,R) ([2], [25]), but not in the general case.

3.7 Plancherel formula for commutative groups

Let Ω be the spectrum ofR′ in this case. We have however to pass to
a quotientZ by means of an equivalence relation. It can be proved that
Z is actually the one point compactification of the spectrum ofL1. We
now assert that every representation ofL1 in a spaceE arises from a
representation of the groupG. In fact if a = U f b, with b ∈ H , f ∈ L1,
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we putUxa = Uǫx∗ f b. It can be proved (see for instance [22], [6]) that
theUx are well defined.

This establishes a one-one correspondence between characters ofG129

and one dimensional representation ofL1. Hence the spectrum ofL1

is only the character group ofGU{0} to compactify it. In this case,
every factor consists only of scalar operators and hence anyfactorial
representation is a discrete multiple of irreducible representations of di-
mension 1. If the character group ofG is denoted byĜ, we have, since
Trχ( f ) = χ( f ) =

∫
f (x)χ(x)dx,

∫

G
|| f ||2dx=

∫

Ĝ
|χ( f )|2dµ(χ).

It only remains to prove that the Plancherel measure in this case
is the Haar measure on̂G. But this is obvious since each character is
of norm 1 and multiplication ofχ( f ) by another character leaves the
integral invariant. Thus in this case, we have the classicalplancherel
formula ∫

G
|| f ||2dx=

∫

Ĝ
| χ( f ) |2 dχ.

Again the Fourier inversion formula becomes in this case

f (x) =
∫

Ĝ
χ( f )χ(X)dχ.
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[10] J. Dieudonné - Lie groups and Lie hyperalgebras over a field of
characteristicp > 0− II . Am. Journ. Math., 77, 1955, p.218-244.

[11] J. Dixmier - Algebres quasi-unitaires. Comm. Math. Helv., 26,
1952, p. 275-322.

[12] J. Dixmier - Les algebres d’operateurs dans l’espace Hilbertien,
Paris 1957.

[13] I. Gelfand - Normierte Ringe Rec. Math[Math.Sbornik] N.S. 9
[51], 3-24.

[14] I. Gilfand - M. Naimark - Unitary Representations of thegroup of
the linear transformations of the straight line. Doklady Akad. Nauk
S.S.S.R 63, 1948, p. 609-612.

[15] I. Gilfand - M. Naimark - Unit are Darstellungen der Klassischen
gruppen, Berlin, 1957.

[16] I. Gilfand - M. Naimark - The analogue of Plancherel’s Formula
for Complex unimodular group. Doklady Akad. Nauk S.S.S.R 63,
1948, p. 609-612.

[17] I. Gelfand - D. Raikoy - Irreducible unitary representation of lo-
cally bicompact group.

[18] A.M. Gleason - Groups without small subgroups. Annals of Math.,132

56, 1952, p. 193-212.

[19] R. Godement - Les fonctions de type positif et le theoriedes
groupes. Trans. Am. Math. Soc., 63, 1948, p. 1-84.

[20] R. Godement - Sur la theorie des representations unitaires Annals
of Math., 53 (1952), p. 68-124.

[21] R. Godement - Memoire sur la theorie des caracteres. Journal de
Math.Pures et Appl. 30, 1951, p.1-110.



129

[22] R. Godement - A theory of spherical functions-I . Trans. Am. Math.
Soc., 73, 1952, p. 496-556.

[23] R. Godement - Theorie des caracters I Algebres Unitaires. Annals
of Math., 59, 1954, p. 54-62.

[24] R. Godement - Theorie des caracteres II. Definition et proprietes
generales des caracteres. Annals of Math., 59, 1954, p. 63-85.

[25] Harishchandra - Plancherel formula for the 2×2 real uni - modular
group. Proc.Nat.Acad. Sc. 38, p.337-342.

[26] Harishchandra - The Plancherel formula for complex semi - simple
lie groups. Trans.Am.Math.Soc., 76, 1954, p. 485-528.

[27] I. Kaplansky - A theorem on rings of operators. Pacific Journ. of
Math., 1, 1951, p. 227-232.

[28] G.W. Mackey - Induced representations of groups. Amer.Journ. of 133

Math., 73, p. 576-592.

[29] G.W. Mackey - Induced representations of locally compact groups
I. Annals of Math., 55, 1952, p. 101-140.

[30] G.W. Mackey - Induced representations of locally compact groups
II. Annals of Math., 58, 1953, p. 193-221

[31] G.W. Mackey - Functions on locally compact groups. Bull. Amer.
Math. Soc., 56, 1950, p. 385-412.

[32] F.I. Mautner - The completeness of the irreducible unitary repre-
sentations of a locally compact group. Proc. Nat. Acad. Sc.,34,
1948, p. 52-54.

[33] F.I. Mautner - Unitary representations of locally compact groups I.
Annals of Math., 51, 1950, p.1-25.

[34] F.I. Mautner - Unitary representations of locally compact groups
II. Annals of Math., 52, 1950, p. 528-556.



130

[35] F.I. Mautner - On the decomposition of unitary representa- tions of
Lie groups. Proc. Amer. Math. Soc., 2, 1951, p. 490-496.

[36] F.I. Mautner - Note on the Fourier inversion formula forgroups.
Trans. Am. Math. Soc., 78, 1955, p. 371-384.

[37] M.A. Naimark - Normed rings - Moscow 1956.134

[38] M.A Naimark - S.V.Fomin - Continuous direct sum of Hilbert
spaces and some of their applications. Uspehi Mat. Nauk., 10.
1955, p.111-142 and Transl. Amer. Math. Soc., 2, Vol. 5, 1957,
p.35-65.

[39] J. von Neumann - On certain topology for rings of operators. An-
nals of Math., 37, 1936, p. 111-115.

[40] J. von Neumann - On rings of operators- Reduction Theory. Annals
of Math., 50, 1949, p. 401-485.

[41] R. Pallu de la Barriere - Algebres unitaires et espaces D’Ambrose.
Annals Scientifiques, E.N.S., 70, 1953, p. 381-401.

[42] L. Pontrjagin - Topolgical groups, Princeton, 1946.

[43] L. Pontrjagin - Continuous group, Moscow, 1954.

[44] L. Schwartz - Theorie des Distributions, Paris 1950/ 1951.

[45] I.E. Segal - The group algebras of a locally compact group. Trans.
Amer. Math. Soc., 61, 1947, p. 69-105.

[46] I.E. Segal - An extension of Plancherel’s formula to separable uni-
modular groups. Annals of Math., 52, 1950, p. 272-292.

[47] I.E. Segal - Decomposition of operator algebras. Memoirs of
Amer. Math. Soc., 9, 1951.

[48] I.E. Segal- The two - sided regular representations of aunimodular135

locally compact group. Annals of Math., 51, 1950, p. 293-298.



131

[49] A. Weil - L′ Integration dans les groupes topologiques et ses ap-
plications. Paris, 1940 and 1953.


	Introduction
	I Lie Groups
	Topological groups
	Local study of Lie groups
	Relations between Lie groups and Lie algebras - I
	Relation between Lie groups and Lie algebras - II

	II General Theory of Representations
	Measures on locally compact spaces
	Convolution of measures
	Invariant measures
	Regular Representations
	General theory of representations

	III Continuous sum of Hilbert Spaces
	Continuous sum of Hilbert Spaces-I
	Continuous sum of Hilbert spaces - II
	The Plancherel formula
	Bibliography


