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Introduction

These notes are based on a series of lectures given at thinStitiate
in January-February, 1973. The lectures are centered #imutork of
M. Scahlessinger and R. Elkik on infinitesimal deformatiohs gen-
eral, letX be a flat scheme over a local Artin rifigwith residue field
k. Then one may regard as an infinitesimal deformation of the closed
fiber xp = XspgcR)Speck). Schlessinger’s main result proven in part

(for more information see his Harvard Ph.D. thesis) is thestroiction,
under certian hypotheses, of a “versal deforamtion spameX§. He
shows thafl acompletelocal k-algebraA = lim A/mf} and a sequence
of deformationsx;, over Specfi/m,) such that the formah-prescheme
2 =lim X, is versal in this sense: For all Artin local rings every de-
formaﬁnS/S pe¢R) of Xp may be obtained from some homomorphism
A — Rby settingX = 2" x SpecR).

Specf)

Note that by “versal deformation” we do not mean that thenm is
fact a deformation oKy over A. The versal deforamtion is given only
as a formal scheme. However, Elkik has proven (cf. “Algediitm
du module formel d’'une singularite isolée” Séminaird\S., 1971-72)
that such a deformation oy over A does exist wheiXg is a dfine and
has isolated singularities. We give a proof of this resuthise lectures.

Finally, some of the work of M. Schaps, A. larrobino, and H-Pi
kham is considered here. We prove schaps’s result that €eingn-
Macaulay &ine scheme of pure codimension 2 is determinantal. More-
over, we outline the proof of her result that every unmixech€o
Macaulay scheme of codimension 2 in afire space of dimension
< 6 has nonsingular deformations. For more details see herakthr



iV Introduction

Ph. D. thesis, “Deforamtions of Cohen-Macaulay schemesgdihten-
sion 2 and non-singular deformation of space curves”. e rapro-
duce larrobino’s counterexample (cf. “Reducibility of fiaenilies of O-
dimensional schemes on a variety”, University of Texas,0) 3iat not
every 0-dimensional projective schemelifor n > 2) has a smooth de-
formation. Finally, we give some of Pinkham'’s results onodefations
of cones over rational curves (cf. his Harvard Ph.D. theBisforma-
tions of algebraic varieties with, action).

There is of course much more literature in this subject. Tae p
pers relevant to these notes are Mumford’s “PathologiésAvner. J.
Math., Vol. XCVII, p. 847-849) in which expanding on larrolois
methods he proves that not every 1-dimensional scheme hasnno
gular deformations, and M. Artin’s “Versal deformationslaaigebraic
stacks” (Inventions mathematicae, vol. 27, 1974), in wh&khown
that formal versality is an open condition.

Thanks are due to the Institute for Advanced study for piiogd
excellent facilities in getting this manuscript typed.
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Deformations of Singularities

Part 1

Formal Theory and
Computations

1 Definition of deformations

We work over an algebraically closed fiekd

Let X be an #fine schemeX < A". Let A be finite (i.e., finite-
dimensionak) local algebra ovek, so thatA ~ Kkti,...,t]/a with
vVa=(t,...,t). LetT = SpecA.

Definition 1.1. An infinitesimal deformation ¥{or X,) of X is a scheme
flayT together with &-isomorphismXy x1 Spedk — X.

More generally, suppose we are given a commutative diagram

Xe——=X

e

Spedk —— SpedR

whereR is a ring of finite type ovek End? is a scheme with closed
fiber isomorphic toX. We then say thaX is afamily of deformationsr
adeformationof X overR.

Remark 1.1.Xr is necessarily fine. In factd a closed immersion
X1 < Al(= SpecA[Xy, ..., Xn]) such that its base change with respect

1



2 1. Formal Theory and Computations

to the morphism Spdc— T (representing the closed point of Spgeis
the immersionX — A"(= A}).

Let &' = coordinate ring oX and & = k[ Xy, ..., Xn]/I, with X the
canonical images oX; in &. To prove the remark, it $fices to prove
that if Xa — A} is an dfine scheme (oveh) imbedded inA}, A" is a
finite local algebr& such that

0-J—- A ->A—->0 isexact

with J2 = 0 (J is an ideal of square 0) arXly is a schem@’ such that
Xp Xspecyy SPECA = Xp, then the immersioiXa — Al can be lifted
to an immersionXa — Af,. (This reduction is immediate since the
maximal ideal is nilpotent. Say that,, = 0, and takeJ = nf/;,_l,...).
We have an exact sequence

0—1 - 0Ox, — Ox, — 0,

whered,, , denotes the structure sheabof. Now 12 = 0 sinceJ? = 0.
This implies thatl, which isa priori a (sheaf of)0x,, module(s), is
in fact a module over, /1, i.e., it acquires a canonical structure of
coherentx, -module. SinceX, is dfine, it follows thatH(Xa,1) = 0
(for it is = H(Xa, 1)). Hence

0 — H°(Xa, I) = H°(Xar, Xar) = HO(X, Xp) — O

is exact, i.e., in particulaH®(Xa, Ox,, ) — H°(X, Ox,) — 0 is exact.
Let x; be the coordinate functions ofy which defineXy — A}. The
x; can be lifted tag; € H°(Xa, Ox,,). Then the& define a morphism
& Xa — AN, It follows at first thaté is alocal immersion; for this
it suffices to prove thag; generate the local ringx,, , at every closed
point x of Xa. Let Iy be the stalk of the ideal shebfat a closed point
x of X. We have 0— Iy —» Onx = Oax — 0(On x Opx represent the
local rings atx of Xa andXa respectively). We havig = J- Op x. Now
j-61 = j-62for j € Jandby, 62 in Op x such that their canonical images
in Oax are the same. Le&3 be the subalgebra afx x generated by;
overA’. Then we see thdt = JS. SinceJ c A’ it follows thatly c S.
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SinceS maps ontod y givend € Opn x3ds € S such thatl — s € Iy.
This implies thatl € S. This provesS = 0 x. We conclude then that
£ Xn = A} is a local immersion. Buf is a properinjective map
(sinceXa =1 is a closed immersion). From this it follows thais a
closed immersion. This proves the Remark.

Note that in the above proof we hamet used the facthat X is
flat/A’.

Given the closed subschemxe — A} let us define the following
two functors on the category of finite local algebras duer

(Def. X) : (Finite local alg)— (Sets)

|l
{Deformations ofX/A}—{isom. classes (ovek) of schemes( flatyA

and suct thakKa ® k = X}

(Emb. def.X):(Finite local alg}-(Sets)

{Embedded deformatiofs — closed subscheme&, of A} flat/A,
such thatXa < A by base change is the givé — A7}

These should be called respectivaifinitesimal deformationsf X 4
andinfinitesimal embedded deformatioosX. Then we have a canoni-
cal morphism of functors

(EmhdefX) - (DefX).

The above Remark says thhis formally smooththat is, if A’ —
A — 0is exact in (Finite local alg), we have

(Emhde fX)(A") — (De f.X)(A)

(Emhde f X)(A") —— (Def.X)(A)
(by definition of a morphism of functors), and the canoniapma
(Emhdef.X)(A") — (Def.X)(A") Xdetx)a) (EmhdefX)(A)

is surjective
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2 larrobino’s example of a O-dimensional scheme
which is not a specialization ofd distinct points

Given X as above, we can ask whether it can be “deformed” into a non-
singular scheme. Here bydaformationwe do not mean an infinitesimal
one, but a general family of deformations. Let us considersimplest
case of Krull dimension 0. TheX = Spec/’ whered is a k-algebra of
finite dimensiond. If d =1, 0 ~ k. If d = 2, 0 ~ kxkor & ~ K[t]/(t?).

If d =3, we have

[k or kxKt]/t?
“or K[t/ or KX Y]/(X Y)?

In our particular case the question is whetbkecan be deformed
into d distinct points ofA". Now A" — P" and we see easily that
this deformation implies a “deformation” of closed subsuokes ofP",
i.e., if X can be deformed intd “distinct points” we see (without much
difficulty) that this can be done as an “embedded deformatioA™iand
in fact as an embedded deformatioriPfh Let Hilby denote the Hilbert
scheme of 0-dimensional subscherdes» P" such that ifZ = SpecB
thenB is of dimd overk. Then it is known that Hilp is projectivek.
Let Uy denote thepensub-scheme of Hilpcorresponding td distinct
points, i.e., those closed sub-scheme®'bEorresponding to points of
Hilbg which are smooth. We see thdy is irreducible; in fact it is
d-fold symmetric product oP" minus the “diagonals”. Now if every
0-dimensional subscheme can be deformed into a nonsingugarthen
Uq is dense in Hil and it follow thatHilbq is irreducible

We shall now give the counterexample (due to larrobino) wher
Hilbq is notirreducible. It follows therefore that a 0-dimensional exgte
cannot in general be deformed to a smooth one.

Theorem 2.1. Let Hilby, denote the Hilbert scheme of closgdimen-
sional subschemes &f' of length d. Then Hill, is irreducible for
n < 2. For n> 2, Hilbg, is notin generalirreducible

Proof. We give only the counter example for the case 2. Let0’ =
K[X1,..., %Xn]/(X1, ..., X)L, Let| be the ideal inX)"/(X)*! (where
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(X) = (X1,...,Xq)). Thenl is a vector space ovérand

Rank of |/k = Polynomial of degree n(—1) in r
Rank of ¢”’/k = Polynomial of degree n in r.

O 6

Now | is an ideal in¢” and in particular ar” module. More-
over, if 1 € max ideal of&” thena -1 = 0. Henced” operated on
through its residue field. In particular, it follows thamy linear sub-
space (ovek) of | is an ideal in&” and hence defines a closed sub-
scheme of Spe¢”. Take nowd = $ Rankl or 1 Rankl -  accord-
ing as RanK is even or odd and = Rank@’/V), whereV is a sub-
space ofl of rankd. Henced = Polynomial of degree(— 1) inr and
d = polynomial of degre@in r. Let us now count the dimension of the
setly of all linear subspaces ofof rank= 6. Thenitis a Grassmannian
anddimLy = (3 Rankl)2 or (3 Rankl — ) (3 Rankl + 1) according as
Rankl is even or odé(Polynomial ofdeg n— 1)? in r = Polynomial of
degree(2n—2) in r. Now if Uq is the subscheme of Hijtof “d distinct
points” as above, then

dimUq = d.n = n(Polynomial of degree n in r).
Now if r > 0, we see that
dimLy > dimUy.

Sincely can be identified as a subscheme of Hlilib follows now
that U4 is not dense in Hill. To see that, is a subscheme dflilby,
note that Spe¢’/I as a point set consists only of one point. The family
of subschemes @™ parametrized by, as a point given byxg x Lg). It
sufices to check that orxk Lg), we have a natural structure of a scheme
I' such that

lp

]P)TL

Ly
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I' is a closed subscheme Bf x Ly and p~X(x) is the subscheme of
Spect'/1 defined by the linear subspaceloforresponding tx. Then 7
we see thap : T’ — Ly is flat, for p is a finite morphism oveky such
thator is a sheaf ot/ , -algebras; in particularr becomes a coherent
sheaf overd,. At everyx € Ly, for Or ® 0\, x/maxideal& Or ® K),
the rank is the samd.y is reduced, this implies thatr is locally free
overdy,. In particular,I" is fla/Ly.

3 Meaning of flatness in terms of relations

A module M over a ringA is said to bdflat if the functorN —» M®p is
exact

o Torg(M,N) =0 YN/A.
& Tor (M,N) =0 Viinitely generatedl/A.

Let us now consider the case whiis a finitelocal k-algebra Then
if N is anA-module of finite type, there is a composition series

N=Ng>N;>...oN,=0, suchthat Nij/N;+1=k

From this it follows immediately that

Mflat/A  Tori(M,k) =0 (if Afinite localalg/k).

Let Xa = Specla, A finite local algebraand &4 an A-algebra of
linite typeso that we have

O—-lp—>Pya—> Opn—0

exact WithPpA[X](X = (X4, ..., Xn)). Tensor this wittk. Then we have

O—>TOI’1(@A,k)—> Ia®k—> Px— 0k— 0
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Let X = Specti, X = Xa®Kk, | ideal of X in A". Then

Xais flat/A & Tor (Oa, k) =0,
S ladk=1.

Take a presentation for the iddalin Pa, i.e., an exact sequence

pt’

A On 0

NS
7N

Then we have (because of the above faety)is A-flat © the above
presentation for A tensored bk, gives a presentation for, li.e., ten-
sored by k gives again an exact sequence

N
N

Suppose we are given:

O = K[X]/(f1,..., fm) and liftings (f) of (f;) to elements iNA[X].
Letl = (f,...,fm), la = (f/,...,f) and Oa = AX](f/,..., f}).
These data are equivalent to giving a liftiR] — Pa — Oa — 0 of
the exact sequend®" — P — & — 0, i.e., to giving arexact sequence
PY — Pa — Oa — 0 such that itsak is the given exact sequence
P"™ - P —» ¢ — 0. Note that this need not imply that ® k = | if
Ia = Ker(Pa — Op) and | = Ker(P — 0).

Suppose we are now given a “complete set of relations” (orea pr
sentation foll) betweenf’s, i.e., anexact sequence

pt’

{ o 0

)

*) PP P" P ¢ —0.
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Thengiving a lifting of these relationgo that of fi"s (orlp) isto

give

(%) PL — PR — Py — 0a— 0

which extends the exact sequerRg — Pp — Oa — 0, which is a
complexat Py, i.e., ImP‘,”A C Ker(P} — Pa) and such that<) lifts (x).
In this situation we have the following

Proposition 3.1. Suppose

* PPSsP"5 P00
is exactand
**) Ph— PR — Pp— 0a—0

is acomplexsuch that the part
Pr— Pa— Oa—0
is exact and (**)®ak = (x). Thend, is A-flat.
Proof. Suppose first that
* Py — PY — Pa— Op— 0

is exact not merely a “complex &**. Then we claim that the flatness
of Oa over A follows easily. For then (**) can be split up as:

PL—La—0, 0—-La—>PY—Ia—0 exact
X .
O-la—>Pa—>0Op—0

ThereforeP, @ k > La® k - 0 andLa® k —» PR'®@ k — 0 are
exact. This implies thdiy® k = cokerk® Pf; — k®PY)mi.e., cokernel
is pre-served bk®a. On the other hand, = CokerP! — P™). Hence
Ia®k = 1. From this it follow that@ is flayA as remarked beforéNow
the hypotheses of our proposition amount to the fact altimia inl can
be lifted tola. Given a relation if 4, i.e., anm-tuple (/l’l, ..., 4m) such
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that}; A/ f/ = 0, this descends to a relation in 1 by taking the canonical
images of/l; in P. Take a complete set of relations fiy, i.e., an exact
sequence

(i) PL — PR — Py — Op— 0 (¢ need not be ¢),

then from our above argument this descends to a completd seite
tions forl, i.e., tensoring (i) bk we get an exact sequence

Pf,—>Pm—>P—>ﬁ—>O.

Consequently, we have already shown in this situation tkeatwst
haveda to be A-flat. O

The criterion for flatness can given be formulated as foltows

Corollary . Let ¢ = K[X]/(fy,..., fn) and Oa = AX]/(fy,....f) 11
where f are liftings of f. Thenda is A-flat & every relation among
(f1,.... fm) lifts to a relation amond(f,, ..., f,).

Remark 3.1.1t is seen immediately that

Oaflat/A = | aflat/A.

For, the exact sequence-9 In — Pa — & — 0 by tensoring by
gives

0 0 0
I I I
Tory(Oa, k) = Tory(la, K) = Tori(Pa, K) = Tori(Oa,k) =1 =Pc= 0 =0

This implies that Tor(Ia, K) = O, hence that, is flayA, by a previous
Remark. Repeating the procedure £, we see by succesive reasoning
that anyresolutionfor &' lifts to one for .

4 Deformations of complete intersections

Let X — A" be a complete intersection. Ldt= dimX (Krull dim)
andl = (fy,..., f,_q) the ideal ofX. Let & = P/I, whereP = Py =
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K[X1,...,Xy] Then it is well known that the “Koszul complex” gives a
resolution foro, i.e.,

AP A PYd=P"% 5P 0 -0
the homomorphisms being interior multiplication by theteec
(f17 LR fn—d) € Pn_da

(e.9.,P"9 — Pis the map {1,...,An-qd) — X if}). The image of

/Z\P”‘d in pn-d gives the realtions i, which shows that the relations
among thef; are (generated by) the obvious ones, ifg;, - fjz = 0.

Let A = K[t]/(t?) (which we write A= k + kt with = 0). Then
deformations of X over A are called first order deformationsrt | 5 be
the ideal inA[ Xy, ..., Xq].

IA = ((f]_ + glt), ey (fn—d + gn—dt))

whereg;, € Px. We claim that for arbitrary choice of g € Py, Oa =
Pa/la is flat over A (of course we have seen that any deformation
of X can be defined bij for sutiable choice of;). This is an immedi-
ate consequence of the fact that abexplicit relationsbetweenf; can
obviously be lifted to relations betweef ¢ git). This proves the claim.

Thus to classify embedded first order deformations ffises to
write down conditions ong), (gi') in P so that inPA the ideals (i +g;t))
and ((f; + g;t)) are the saméle claim

(fi+agt)=(fi+gt) ©g-gel.
To prove this we proceed as follows:

(fi+gt) c(fi+gt) & (Set r=n-d)
n—d

fi+git= > (aij +Bit)(f; +git)

=1

r r r
= [Za/ij fj]+t[z @ijQj + Z’Bij fj] =
=1 =1 =1

3 (r x r) matrices ;j) and {3jj) with codficients inP such that



4. Deformations of complete intersections 11

f]_ fl f1
@ @) : —l;‘,i.e.,(aij—Id)(ff)—(O),and
fr '

[ fr ]

(01] f1] [g
0) @p|:|+@Gp|:|=

0 fl Lo

Since the coordinates of the relation vectors arkeitrfollows from
(a) above that the element af{ — Id) are inl, i.e., @ = («ij) = (Id)
mod ). Then ) implies that

01 9/1
=| : [(modl).
Or ok
Hence (6 + 9)) < ((fi + git) = (g — @) € |. Hence (6 + git)) =

((fi+gt) = (g - ¢) € |. Conversely, suppose tha ¢ g) € I. Then
there is a matrix4;) such that

fi] [9y] [on
@il =[]
fil lo] Lo
0 fi] [g;
Hence, (d)| : [+ (Bij)| : | =
Or fr g,r-

Taking ij) = Id we see that the conditions)((b) are satisfied,
which implies that (§ + git)) = ((fi + g;t)). This proves the claim and
thus we have classifieall embeddedin A") first order deformations of 14
X.

Now to classify first order deformations #fwe have only to write
down the condition when two embedded deformatidiasX;, are iso-

morphic overA. Let be an isomorphisnXa — X'A. By assumption,
X®k= XA@ k = X. i.e., their fibres over the closed point of Speare
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X c A". We denote (of course) by, the canonical coordinate functions
of Xa < ARl = SpecA[Xy, ..., Xn]. Let X, = 6*(X,). Then we have

X, =X, + @,(X)t

for some polynomialg, (X). Hence to identify two embedded deforma-
tions of X we have to consider the identification by the above change of
coordinates. Then

fi + gt fi (Xv + SDV(t)) + 0 ((Xv + SDV(t))t-

By Taylor expansion up to the first order, we get

= fi(X) +t {Z a—)fiwy(x)} + 19 (X)

n fi
= fi(X) +t {gi (X) + Z_XSDV(X)}

v=1

Hence i +git) and (f; + g;t) define the same deformation of the first
order up to change of coordinates above, which is equivabethte fact
that there existsdj, . . ., ¢n) such that

of1 of1

O1 gl I 1

) A== T ]
, of; of

Or (o8 gy .. 20

OX1 0%, 1 L¥n

Recall thato’ = P/l andX = Spec/. Then embedded first order
deformatios are classified i§" 9 = ¢ @...® ¢ (n - d times), which
is ano-module.

To classified all deformations, consider the homomorphigni o
modules

Jac ofi\ oOfi fi
0% 64 whose matrix ig{ - ; 21 the | AN
> whose matrix IS(GX,-)’ e e images Oan in P/

Let us call the euotient’™¢/Im¢&™ by this mapT. This is ano-

module and we see that its support is located at the singolatspof
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X. In particular, ifX has isolated singularitie§, is a finite dimensional
vector spaci.

For example, consider the case tiais of codimension one, i.e.,
defined by one equatioh Then
of of )

T:k[X]/(f,a—Xl,...,aXn :

The cone in 3-space has equatibe Z? — XY, and if chark 2,
T =KX Y,Z]/(f,-Y,-X,2Z) = k.
Thus auniversalfirst order deformation is given by

Z2-XY+t=0.

5 The case of Cohen-Macaulay varieties of codim 2
in A" (Hilbert, schaps)

16

The theorem that we shall prove now was essentially found itiyeH.
This has been studied recently by Mary schaps.

Let P be as usual the polynomial rirfg = k[ Xy, ..., Xp]. Let (gij)
be an ( x r — 1) matrix overP
o1 -1 ] Lets; = (~1) det(r — 1) x (r — 1) minor withi™ row
gr,l to gr,r—l
deleted).

Then 61,....5,) [91,1"'91,r—1] [91,1‘”91;—1,91,1] -0 etc This
gr,l te gr,r—l gr,l te gr,r—l, gr,l
implies that the sequence

Pl P ——P
(gij) (61..--61)

is acomplex Note thatP'~* — P' is injective if over the quotient field
of P. (gij) has rnak I — 1), or equivalentlyd somex, € A" such that
(6ij (%)) is of rank ¢ — 1).
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Theorem 5.1(Hilbert, Schaps) (1) Let(gjj) be an x(r—1) matrix over

17

)

®3)

P andg; its minors as defined above. Let J be the idéal. . ., 6;).
Assume that Y0) = V(61,...,6) is of codim> 2 in A". Then
X = V(J) is Cohen-Macaulay, precisely of codrin A". Further,
the sequence

0-pP1 ﬂ) P’ —>(61""’6r) P—->P/J—>0
is exact, i.e., it gives resolution for/B.

Conversely, suppose given a Cohen-Macaulay closed subsche

X — A" of codim2. Let X = V/(J), then BJ has a resolution

i 1,0 fr
of length 3 which will be of the fora — pr-t 32, pr ()

P — P/J — 0, because heP/J = 2. (Depth BJ + hd,P/J = n,
depth RJ = n-2,= hgP/J = 2). Note that f need not be; as
defined above. Then we claim that we have as isomorphism

0 pr-1 (@)

0 pr‘—l (@)

i.e.,Jaunit ue P such that if= ug;.

The map of functors (Deformations (@f;))— (Def X) is smooth
i.e., -(i) deforming(g;;) gives a deformation of X, (ii) any deforma-
tion of X can be obtained by deforming,gnd (iii) given a deform-
tion Xa of X defined byg;;) over AX], A" — A — Oexact and
a deformation X of X inducing X, H(g;j) over A[X] which defines
Xa and the canonical image @g;j) in Alis(gij)-

Proof. (1) Let @ij), i, etc., be as in (I). We shall first prove that

OePr‘lﬁPrﬂPeP/JeO
is exact assuming codinX > 2. This will complete the proof of (I).
For, it follows hdpP/J < 2. On the other hand, since codinh> 2,
depthP/J < (n - 2).
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But depthP/J + hdpP/J = n. This implies that dimP/J = depth
P/J = (n-2) andhdpP/J = 2, which shows thaX is Cohen-
Macaulay of codim 2 il\".

SinceV(J) # A", thed’s are notall identically 0, hence 0—
P-1 — P'is exact Further we note that ang ¢ V(J), (ij (%))

is of rank ¢ — 1) and in fact one ofd, . .., 6r) is nonzero ak, and
hence aunit locally atx,. This implies that’™™! — P" — P split
exactlocally atx, (i.e., if Bis the local ring ofA" at x,, then tensor-
ing by B gives a split exact sequence). Because of our hypothesis
that codimV(J) > 2, if x is a point of A" represented by a prime
ideal of height one an® its local ring. then tensoring b makes
P! — P" — P exact (i.e., the sequence is exact in codim 1). Let
K = Ker(P" — P). We haveK c P" such that 0— P! — K,
and 0—» K —» P" — P exact. Tensoring b as above, it follows
thatP"~' ® B — K ® B is an isomorphism (tensoring ®is a lo-
calization); i.e., the inclusio® ~* c K is in fact an isomorphism in
codim 1. Since®' ! is free sections oP'~* defined in codimension

1 exrtend to global sections. MoreovKrjs torsion-free. Therefore,
the fact that’! c K is an isomorphism in codimension 1 implies
that it is anisomorphism everywher&@hereforeP'™1 — P" — Pis
exact, and this completes the proof of (1).

(2) Letl =(f4,..., f;) be a Cohen-Macaulay codim 2 idealfn Since
hdpP/1 = 2, there is a resolution

(i)

*) 0P 1 S pP 5 PSPl

(Here we should take the warning about using free resolsition
stead of using projective resolutions.) Let the compleX @& de-
fined by

(**) 0Pt ﬂ P’ 1B, P->P/J—-0

6; being as before. 19

The sequence (*) is split exact at every poirt V(I). This implies
that somej; is a unit atx, and hence by direct calculation that (**)
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is also split exact, anB/J = 0, atx. This means
V(J) € V(I),

hence codinV(J) > 2. Hence byl it follows that (**) is exact.

We shall now show thal a unitu such thatf; = ug;. Take the dual
of (*) and (**) dual: Homp(M, P) = M"), i.e.,

*)* Py —— (P) «— P «0

) ( ) (Gij) () ()t

) Pr—l* Pr*(—P*(—O
() ( ) (@) (P) (6i)t

We claim that these sequences axact The required assertion
about the existence afis an immediate consequence of this. For

f) 5i)* s .
then P* L (P*)" and P* L (P9 are injective maps into the
same submodule of()" of rank 1 which implies thatf() and ¢)
. . (gij) fy,.... fr
differ by a unit. We note tha'—t = pr (20 5 angpr-1
P’ M P are split exact in codimension 1. Consequently. it
follows from this and the fact that Hos(P/1, P) = Homp(P/J, P) =
0 that we have sequences
fi t * ij t *
0 p- W, pr @, s
\E i t .
0— P* (%) Prt @) Pl‘—l
and we must prove exactness at ¢ module. But we have
that Imf* c Ker(gj)' and Im(5;)* < Ker(g)"! with equality at
the localization of each prime ideal of height 1. Consedygent
Imf* = Ker(g;j)', Im(si)' = Ker(g;j)! (same argument as was used
above). This completes the proof of (2).

Let A be an Artin local ring ovek, andPa = A[Xy,..., X,]. Let
(g;j) be anr x (r — 1) matrix overP, and @;;) the matrix overP
such thag; — g;; by the canonical homomorphisA[X] — k[X].
Defines; analogous ta5. Suppose that codir/(s;) in AR is of
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codim > 2 & codimV(¢;) in Al is of codim> 2 & condinmV(6;) =
2 because of (1). Consider

@) @)

(**) 0— Pyt — Py —> Pa— Pa/la— 0
*) OePr‘lﬂPrﬂPeP/lea

Now (**) is lifting of (*). Of course (*) is exact andP), — P —
Pa/Ja — 0 is exact. Besides, (**) is a complex. This implies by
proposition(31L thaPy? — P, — Py — Pa/Ja — 0 is exact
andPa/la is A-flat and by Remark3311 (**) is exatfThe exactness
of (**) can also be proved by a direct argument generalizibg)(
This shows that any (infinitesimal) deformatiog]'j][ of (gij) as in
(1) gives a (flat) deformatioXa of X = SpedP/l and thatXpa is
“presented” in the same way Xs

Conversely, leXa be an infinitesimal deformation & = V(61,..., 21
or). Lift the generators fot to 14 say (fi,..., f;). Then as we re-
marked before the exact sequence (*) can be lifted texatt se-
guence

()’ 0Pt e O b Lo
A A A — Pa/la —

[Note that f; need not bed priori) the determinants of minors of
(g;j).] Let 5, be the minors ofg,), Ja the ideal 6,....6;). Thenas
we saw above

*k r—1 (gi,j) r (5;)
() 0—)PA —)PA—>PA—>PA/JA—>O

is exactandPa/Ja is A-flat. Taking the duals of (**) and«)” as
before, it follows that there is a unitin P such thatf; = u&{. This
shows that o = Ja. Thus any deformation is obtained by a diagram
of type (**). The assertion of smoothness also follows frdmst
argument. This completes the proof of the theorem.

m]
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Remark 5.1. Any Cohen-Macaula) — A" of codim 2 is defined by
the minors of am x (r — 1) matrix @;;) (this is local, note the warning
about using free modules instead of projective ones). gljfedefine a

morphism

AN 3) Ar(r—l)‘

LetQ=K[Xjl,1<i<r,1<j<r-1,sothats'D = Sped[X;].
Then®*(Xj) = gij. Consider Xjj) as anr x (r — 1) matrix overQ, and
let aj = (=1)' det(minor ofX;; with i row deleted). Then the variety
V =V(ayq,...,4:) » A0 Dis called thegeneric determinantal variety
defined byr x (r — 1) matrices. It is Cohen-Macaulay and of codim 2 in
A'0-D Thend-1(x) = X. This means that any Cohen-Macaulay codim
2 subscheme is obtained as the inverse imagéa'by> A'1 of the
generic determinantal variel of typer x (r — 1).

Remark 5.2.0ther simple examples of codim 2, Cohen-Macaukay
are

(a) any O-dimensional subschemetif,
(b) any 1-dimensional reducedin A3, and

(c) any normal 2-dimension in A%.

More about the generic determinantal variety.

Now let X c A'"-1 denote the determinantal varie¥(;) = V
defined above. Then any infinitesimal deformatikof X is obtained
by the minors of a matrixXj; + mj) wherem;; € ma[X;j], wheremy is
the maximal ideal ofA. SetXi'j = Xjj + mj. We see thak;; — Xi'j is
just change of coordinates Ad}, i.e., A[X;;] = A[Xi'j]. This implies that
Xis rigid, i.e., every deformation of is trivial.

The singularity of X: X can be identified with the subset af(~1
Homjinear(A", A"1) of linear maps of rank r — 2. NowG = GL(r) x
GL(r—1) operates oa'"-1 in a natural manner. X, denote the subset

of A'-D of linear maps of rank equal to £ k). We note that Xis an
orbit under Gand hence is a smooth, irreducible locally closed subset
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of A"(-1_ To compute its dimension we proceed as followsi I&
Hom(A", A™™1) andy € X, thenimg is a k-dimensional space. Hences
¢ is determined by an arbitrary k-dimensional subspac&'¢f kery)
an  — k)-dimensional subspace &f"~1(= Img) and an arbitrary linear
map of an ( — k)-dimensional linear space onto anH k)-dimensional
linear space.

Hence

dimXy = (r = Kk + (r = K[(r = 1) = (r = K] + (r — K)?
= (r—Kk+( —KKk=1)+ @ - K>

Supposek = 2, i.e., consider linear maps of rank{ 2). ThenX; is
obviously open inX and

dmXo = (r=2)2+(r—=2)+(r - 9
=r-22+1+(r—-9
=r-2)(r+1)

It follows that codimX; = 2.

Itis clear thatX; is dense irX (easily seen that every € X is a spe-
cialization of somex € X;). The implies thai is irreducible Further
more, X, is smooth and in particular reduced. By the unmixedness the-
orem, sinceX is Cohen-Macaulay, it follows thaX is reduced. Hence
X is a subvariety of\""—1),

Let Xé = X3U X4... be the set of all linear maps of rark(r — 3).
CIearIyXi,) is a closed subset &f. To compute dinXs, as we see easily
thatxz is a dense open set Ki3. Now

dimXs = (r —=3)3+ (r —=3)2+(r—3)*> = (r - 3)(r + 2).

Hence codimXs (in A'C~D)= 6, forr > 3. (If r = 2 it is a complete
intersection; X is the intersection of two linear spaces and heXds
smooth.)

Hence codim Xin X is4. We claim also that every point o<f3 is 24
singular onX. To prove this, suppose for example X3. SinceG acts
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transitively onXz, we can assume it is the point

1 0 O
010 0
0= 0 01
0 0
OA; .
Then —| = 0Vk,l. Thusf € X is smoothe 9 € X.
0Xui lg

Thus the generic determinantal variety has an isolatedukirity if
and only ifr = 3, in which case dinX = 4, X ¢ A%(= A""-1). We thus
get an example of ggid isolated singularity(a 4-dimensional isolated
Cohen-Macaulay singularity).

Proposition 5.1. (Schaps). Let X — AY(d < 5) be of codim2 and
Cohen-Macaulay. Theng€an be deformed into a smooth variety.

Proof. We give only an outline. Sincky is determinantal, it is obtained
as the inverse image of in A"~ by some map

¢=(gj) A% — AT

Now codim X in A"V is 6. “Perturbing” ¢j) to (g;j) = ¢, the map
AY — A=D1 defined by g;j) can be made “transversal” %. This
implies thaty (A%) N SingX = O[SingX is of condim 6] and in fact that
¢ (X) is smooth. O

Remark 5.3.It has been proved by Svanes thaXifs the generic deter-
minantal variety defined by determinants pk(r) minors of an fnx n)
matrix, thenX is rigid, except for the casm=n=rr.
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6 First order deformations of arbitrary X and Sche-
lessinger'sT?!

Let X = V(1) andA = K[t]/(t?). Let| = (f,..., fm). Fix a presentation

for 1, i.e., an exact sequence

o (i) (i)

* PPF— P" 5P P/l 0.

Letla=(f/,..., 1) Wherefi' = (fi + tgi), g € P. ThenXa = V(la) is
A-flat if if (*) lifts to an exact sequence

o 0 )
(**) Py — Py — Pa — Pa/la— 0.

In fact we have seen (cf. Propositibnl3.1) that in order thate exact
it suffices that (**) be &omplexat P}, i.e., Xa = V(I ) is A-flat iff there
is a matrix (i’j) over P, extending ), such that

/7
T
’/

(f’,...,f@(ﬁn" )zo
rml...rrnl

Setri'j = Ijj + tsj, wheres; € P. ThenX, is A-flat iff existgsj overP
such that the matrix product

(f+ag)(r+sh=fr+tigr+fsg=0

wheref = (f),...,r = (rj;). Now fr = 0 since (*) is exact. Thus26
the flatness oKpa over A is equivalent with the existence of a matrix is
s=(sj) overP such that

) (gr) +(fs)=0.
Consider the homomorphism
9:P">P

defined by ¢;;). Then condition (*) implies thatg) mapsimP’ under
the homomorphisny; : P’ — PMinto the ideall. Hence ¢) induces a
homomorphism

@ : P"/Im(r) =1 — P/I,
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i.e., g is an element of Hog(l, P/l) =~ Homp/|(I/I2, P/1) = Homg,
(1/12, ©x) = the dual of the coherenty modulel /1% on X. The sheaf
Hﬁnﬁ%(l /12, 0%) = Ny is called thenormal sheato X in A". Thus
g is a global section oNx. Conversely, given a homomorphisgn:
Homp(l, P/1) and a lifting ofgto g = P™ — P, then @) satisfies (*).
This shows that we have a surjective map of the set of firstratelfor-
mations ontdH°(X, Nx). Suppose we are given two liftingé € tg;) and
(f + got) such thatg;, g, define the same homomorphismsl ¢f? into
P/1,i.e.,01 = 02. We claimthat if | o = ((fi+tg1, i) andJa = ((fi+t02,)),
thenlpa = Ja, i.e., the two liftings define the same sub-scheme&pf
This will prove that the canonical map

j . (First order def. ak) — H°(X, Nx)

is injective, which implies, sincg is surjective, thaf is neededijec-
tive. The proof thal o = Ja is immediate; from the computation §4
we see that

((fi + t924)) < ((fi + tg1)) & (Ja C 1a)

& 3(mx m) matrices §;j) and (5;;) overP such that

fy
(@) (@j—-id)[ :|=0
fm
Ou1 f1 d2.1
(0) @p| = [+G)|: |=
Oim fm J2.m

As was done ir§ 4, if (07) = (02), i.e.,
01 — 92 = O(mod ) Vi,

Then there exists5(;) such that &) and ) are satisfied withd;;) = Id.
This implies thatla c Ia. In a similar manneka c Ja, which proves
thatJa = Ia. Thus we have proved
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Theorem 6.1. The set off he set first order embedded deformatiohX
in A" is canonically in one-one correspondence with (8r H°(Nx))—
the normal bundle to X of X A",

Remark 6.1. Suppose now we are given
0—-eA>A >A->0 exact

whereA’, A are finite Artin local rings such thaky(eA") = 1 (in partic- 28
ular it follows easily that is an element of square 0). We see easily that
eA’ has a natural structure of @&module and in fackA” =~ A/ma as
A-module. (Giverany surjective homomorphisA’ — A of Artin local
rings by successive steps this can be reduced to this situaBuppose
now thatXa is a lifting of X defined bW (la), 1a = (f/,..., fy) with f’s

as liftings of fi, X = V(1), | = (f1, ..., fn). We observe that even Kis

not of the formk[t]/t2, in order thatXa be flafA and be a lifting ofX it

is neccessary and icient that there exists a matrir{jo such that

(f{,.... f)(ri}) = 0 (f/are liftings off;).

Suppose now are given two Iiﬁin@s};, and X2, of X,, flat overA
defined by(13,) andV(12):

I3 = Q.- 9m). 15, = (0% - .. G-
Now Xy is defined by an exact sequence

(tf)
*) PL — PT — Pa — Pa/IA = 0

such thateaK gives the presentation fof. An easy extension of the
argument given before (cf. Propositibnl3.1) for charazsgion of flat-
ness by lifting of generators fdr shows thatX},, and X/i, are flatA.
They are presented respectively by

(sj) i
(@) P% =, PR A Pa/l%,— 0 exact

(s) @)
®) P, — PT —5 Pa — Pu /1%, — 0
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such that ¢®a, A) and Bea, A) coincide with (*) and in fact it sfiices 29
that @)(s) and @')(s) are zero and, s’ are liftings ofr. We can write

gi/=gi+6hi, with hjeP, and
qj:3j+€tij, with tij € P.

Then @')(s') = 0iff (gi)(t;;) + (hi)(s;) = 0, and by the remark aboes’
as anA-module (orA’-module) it follows that the right hand side above
is 0 if and only if

() (fi)(tij) + (hi)(rij) = O,

i.e., 3(tij) and () over p such that this holds. Conversely, we see that
given X}, flayA’ and (), we can construck?,, flayA’ by definingg =

g +eh; and lifting of relations b)g'j = 5j+e€tjj. Now (f) gives rise tdNx
as before. Thufixing an X/i, flayA’ which is a lifting of Xa, flayA the
set of liftings Xa of Xa over A are in one-one correspondence Witk
(or H°(Nx)) or in other words the set of flat liftingsapXover Xa is either
empty or is a principal homogeneous space undgi (& H°(Nx)). In
the case A= k, A’ = K[t]/(t?) (or more generally A= Ale]) we use
X} = X® A (resp X}, = Xa®a A') as the canonical base point, and
using this base point the set of first order deformations gkdatified
with Nyor HO(Nx).

Remark 6.2.Compare the previous proof (cg 4) for the calculation
of first order (embedded) deformationsXf —a complete intersection
in A", In that proof we required the knowledge of the relationsvieein
f’ whereX = V(I),1 = (f1,..., f) whereas this ichot requiredin the
present proof (we assuméarbitrary). This is because in the proof for
the complete intersection we obtained a little more, nangElyst order
embedded deformations &)< {gi}, gi € Ox. The previous proof gives
also the fact thalNy is free overdx of rank=codim X Hence a better
proof for the case of the complete intersection would be togfirst the
general case and then show thAf is free of overk of rank= codimX
(in A") (this implies thalNx = Homg, (1/12, O) is free of rank-codim
X).
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Remark 6.3.The above proof also generalizes to the computation for
first order deformations of the Hilbert scheme or more gdlyethe
Quotient scheme (in the sense of Grothendieck) as well asothsder-
ation of Remark®l1 above.

Schlessinger’s ¥:

We have computed above tfiest order embedded deformation$
X. Now to compute the first order deformation Xf(as we did in§ 4)
we have to identify two first order embedded deformatiatasXa (c
ADA = K[t] /(t?) when there is an isomorphisth: Xa = X, which
induces the identity auto-morphisdd — X. As we saw before, the
isomorphisng is induced by a change of coordinateslly, i.e., if X,
are the canonical coordinates &f we started with and*(X,) = X/
then we have

X =X, +¢,X)t,y=1,...,n(X c A").
If a first order embedded deformation Xf= V(I),1 = (f) is given by 31
(fi + git), then

fi + gt— fi ((Xv + t‘)av) + g((xv + Savt))t

= fi(X) ”{Z g—)zsov(X)} +19i(X)

5 o
= fi(X) +t{gi () + a—>;¢y(X)} :
y=1
Let 2 be the canonical image off in Nx nadA” the canonical image

n H . .
ofg + 3, %gpv(X) in Nx. Now ¢, ..., ¢n are arbitrary elements of the
y=1"""

n

coordinate ring ofA", and the canonicla image ¢f %%(X) in Nx is
y=1"""

precisely the image under the canonical homomorphism

Oan|,, — Nx

x

where®4n reprsents the tangent bundle 4t and|X denotes its restric-
tion to X. We have a natural exact sequence

/172 - ok,

X—>Q:>L(—>O
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where QL denotes the Kahler fierentials of order one on a scheme
X/k. The dual of this exact sequence gives an exact sequence

0—>®x—>®i‘xn — Ny,

x

where®},|, — Nx is the homomorphism defined above. We defige
to be the cokernel of this homomorphism. So that we have

0_>®X_’®,%w —>Nx—>T)l(—>O.

x
Thus we have proved

Theorem 6.2. The first order deformation of X are in one-one corre-
spondence with T.

Remark 6.4.Suppose that\ = Ale] (i.e., A = A® € k). Then the
argument which is a combination of that of the theorem and &ki6.1
above shows that

Def(A’) = Def(A) x Def(Ke]),

i.e., the set of deformations &f over A’ which extend a given deforma-
tion overA are in one-one correspondence with the first order deforma-
tion of X. For the proof of this, we remark that a similar observaties h
been proved above for embedded deformations. Now idemgjf{ivo
embedded deformation$y and X/, which reduce to the same embed-
ded deformatiorXa overA, the argument is the same as in the discussion
preceding Theoreln 8.2, and the above remark then follows.

Remark 6.5.Deformations ove”’ which extend a given deformation
overAform a prinipal homogeneous space under Kjeff, or else form
the empty set.

Remark 6.6.Note that if X is smooth, then)l(T: 0. This implies that
any two embedded deformationg, X}, (A = k[e]) of X are isomorphic
over A(in fact obtainable by a change of coordinatesAiy).

Remark 6.7.1f X has isolated singularitiei}( as a vector space ovkr
has finite dimension. For, it is a finit€x -module with a finite set as
support.
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Proposition 6.1. Suppose that % Xeq. Then
T = Exty, (Q%. Ox)(X c A").
Proof. Let X = V(). Then the exact sequence

|/|2—>an|)<—>§2§(—>0

can be split into exact sequence as follows:
() 0»e= /I F =0

(i) O_>F_>Q}-x —>Q}(—>0.

ol

SinceX = Xeq, the set of smooth points &f is dense open iiX, so
thate, being concentrated at the nonsmooth points, is a torsieaf sim
particular, Homg, (¢, Ox) = 0. Writing the exact sequence Hom{x)
for (i), we get that

0—— Homy, (F, ©x) — Hom(l /12, 6x) — 0 is exact

Nx
Writing the exact sequence Hony) for (i), we get that

00— Ox = Opn|, - F" - EXI';X(Ql, Ox) — Qis exact

x

(since Ex}, (Qwn|y. Ox) = 0,Qun|, being free ).
Now T§ = coker(@)An .= Nx), and COkeI(@An
(Q, Ox). AboveF* =~ Ny, and so

%\ _ 1
X—>F)_ExtﬁX

T = Exty, (Q%. Ox).
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7 Versal deformations and Schlessinger’s theorem

Let Rbe a complete locd-algebra withk as residue fieldktalg. closed
as before). We writ®,, = R/mrF‘;rl wheremg = m is the maximal ideal
of R. We are given a closed subscheX®f A" (note that definitions
similar to the following could be given for more genekl

Definition 7.1. A formal deformation X of X is: (i) a sequencéX,},
Xnh = Xg, Is a deformation oK overR;, and (ii) iso-morphisms, ®g,
Rn-1 = Xn-1 for eachn.

Suppose thaA is a finite-dimensional locak-algebra. Then &-
algebra homomorphism : R — Ais equivalent to giving @ompatible
sequence of homomorphisma: R, — A for n suficiently large. This
is so because a (local) homomorphigmR — S of two complete local
rings R, S is equivalent to a sequence of compatible homomorphisms
¢n : R/m} — S/md, and in our caset} = 0 forn> 0. Given a formal
deformationXgr of X and a homomorphism : R — A; X, ®g, A (via
¢n . R — Aas above) is up to isomorphism the samexol0. Itis a
deformation ofX over A. We define this to bep® A (base change of
Xr by SpecA — SpeR).

Definition 7.2. A formal deformationXg of X is said to beversalif the
following conditions hold: Given a deformatioXa of X over a finite
dimensional locak-algebraA, there exists a homomorphism: R —
A and an isomorphisnXg ® A ~ Xa; in fact, we demand a stronger

condition as follows: Given a surjective homomorphiAmi Aof local
k-algebras, a deformatiok, over A’ a homomorphismpy : R —» A
and an isomorphisnXa ®r A =~ Xa ® A, there is a homomorphism
¢ :R— A such thaty lifts ¢ andXgr®r A’ is isomorphic taX,. (Note
that it sufices to assume the lifting property in the casetgkisrof rank
1 overk.)

Let F : (Fin.loc.k — alg) — (Sets) be the functor defining defor-
mations ofX, i.e., F(A) = (isomorphism class¢a of deformations of
X/A). Given a formal deformatioXg of X, let

G : (Finlock — alg.) — (Sets)
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be defined byG(A) = Hom_aig.(R, A). Then we have a morphism:
G — F of functors defined by

That a formal deformation is versal is equivalent to sayimaf the func-
tor j is formally smooth 36

Theorem 7.1. (Schlessinger). Let KFinite, local, k-alg.}» (Sets) be a
(convaraint) functor. Then there is a formally smooth fan¢as above)
ie.,

Homk _aig.(R. ) — F(),

where R is acomplete local k-algebra with residue filed k, if
(1) F(k) = a single point.

(2) Given(e) - A —» A — 0 with A, A finite local k-algebras and
(¢) = Ker(A” — A) of rank 1 over k and a homomorphisg: B —
Alet B = A’xaB{(a, B) € A’xB such that their canonical images in
A are equall. (SpecB’ is the “gluing” of SpecB andSpecA’ along
SpecA by the morphismSpecA — SpecA'. If ¢ is surjective, i.e.,
SpecA — SpedB is also a closed immersion, this is a true gluing.)
Then we demand that the canonical homomorphism

F(B") = F(A) ®r ) F(B)

is surjective. (Note that Bis also a finite-dimensional local k-
algebra.)

(3) In (2) above, take the particular case-Ak and A = k[¢] (ring of
dual numbers), then the canonical map defined as in (*) above

F(B") —— F(K[€]) xrw F(B)

(F(Ble]) —— F(ke]) x F(B))

is bijective, not merely surjective.
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(4) F(K€)) is a finite-dimensional vector space over k. 37

Remark 7.1.0ne first notes thaF(k[e]) has a natural structure of a
vector space ovdewithout assuming the axiom (4) above: Given k,
we have an isomorphisikie] — k[e] defined bye — c- € (of course
1 — 1) which defines a bijective map

C. : F(K[e]) — F(k[e]).

By this we define “multiplication by € k” on F(k[¢]). By the third
axiom we have a bijection

F(kler, &2]) = F(K[er]) xpt F(Ke])

(K1, €] being the 4-dimmensiondt-algebra withe? = e = 0 and
basis 1¢, e, e162). We have canonical homomorphides, e2] — Kle]
defined bye; — €, e, — e which gives a maf-(k[e1, e2]) — F(K[€]), SO
that we get a canonical map

F(K[e]) xpt F(K[e]) — F(K[e]).
Here we use the fact that
F(K[e] @k Ke]) = F(Ke]) xpt F(K[e])
This follows by axiom (3), and
Kle] @k K[e] = Kle, €].

We define addition ir-(K[€]) by this map, and then we check that this
map is bilinear. This gives a natural structure df-gector space on
F(k[e]) if axioms (1), (3) hold.

Remark 7.2.The versalR can be constructed withuR/m% ~ F(Ke]).
Then with this conditiorR is uniquely determined up to iso morphism.
(Note: We do not claim that giveXa the homomorphisnR — A'is
unique.) The functor represented Byon (finite localk-alg.) is called
the hull of F which is therefore uniquely determined up to automor-
phism.
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Proof of Schlessinger’'s Theorem 1Let %, denotes the full subcate-
gory of (fin.lock-alg.) consisting of the ring#é such thatmj‘;l = 0.
This category is closed under fibered products. We will sHoevexis-
tence ofR by finding a versaR,, for F | %, for all ninductively.

Take the casa = 1. % is just the category of rings of the fork=
ke V whereV is a finite-dimensional vector space. %4,is equivalent
to the category of finite-dimensional vector spaces. \Ldte the dual
space td-(K[e]), and putR; = keV. Then a mafR; — K[e] is given by
amapV — ek. i.e., an element df (k[e]). So, HomRy, K[€]) = F(K[¢]).
Since, by axiom (3)F is compatiable with products of vector spaces,
R1 represents$- | 41.

Suppose now thaR,_; is given, versal fol-/C,_1, and letu,_; €
F(R,_1) be the versal element. L& be a power series ring mapping
ontoRy-1

0-J-1—mP->R-1—-0.

Choose an ideal,,

Jn-1 2 Jn D mdn-1,

which is minimal with respect to the property thaf 1 lifts to u, € 39
F(P/Jn), and putR, = P/J. We test R,, uy) for versality. LetA’ — A
be a surjection with length 1, ker#},, and let a test situation be given:

A a eF(A)

!

!

l v

Rn%A, Un"\f\/\/\f\/%a

FormR = R, xpa A :

R——A u ~—~a
7 ! 2
, { !
, ! !
P .
\ ; §
v v
Rn%A Un ~—=a
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SinceP is smooth, a dotted arrow exists. By axiom (2), there g a
F(R’) mapping tou, anda’. SinceJ, was minimal,R cannot be a
quotient ofP. Henceim(P — R) ~ im(P —» R,) = Ry, and soR’ — R,
splits:

R~ Ri[e] = Ry xk K[e].

Let V' be the element oF (R’) induced fromu, by the splitting. The
versality will be checked it/ = v/, for then the mafR, > R — A’ is
the required one.

We can still change the splitting, and the permissible charage by
elements of HonRR,,, k[e]) = HomRy, K[e]) = F(k[e]). By axiom (3),
F(R) = F(Ry) x F(k[e]). Both v andVv' have the same imags, in
F(R,). So, we can make the required adjustment. This completes th
proof of Schlessinger’s theorem.

8 Existence formally versal deformations

Theorem 8.1. Let X c A" be an gine scheme over k witisolated
singularities. Then for the functor E DefX = Def the conditions of
Schles-singer’s theorem are satisfied. In particular X ddraiversal
deformation.

Proof. SinceX has isolated singularities, we have rgiikef. X)[k[¢]] =
ranlq<(T>1() < 0. Hence it remains only to check the axioms (2) and (3).
Axiom(2): Given ) —» A’ — A, ¢’ : B — Aa deformationXs of X

and two deformationXa, Xg over Xa

Xar Xg
7
Xa

Let B’ = A’ xa B. We need to find a deformatiofs' over B’ induc-
ing the given deformationX, and Xg over A" and B respectively. As
usual we writedx,, = O, ..., etc. We now setg = Opn Xg, Op. We
have canonical homomorphisr®$ — B andB’ — A’. Itis easily seen
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that 0y ®g B ~ 0 and 0y ®g A’ ~ Opn. The only serious point to
check is thaty is flayB’. SinceB’ = A’ xp B, we have a diagram

0—-()—»B —>B—-0
0—-(e)>A >A->0

with exact rows. §) is of rank 1 overk, so €) ~ k as B’ modules.
Similarly,

0——¢€ Ok Op Os 0
0——€ Ok On On 0.

It follows easily that the exact sequence~e 0k —» Og — O —» 0 41
is obtained by tensorting 8 (¢) - B" —» B — 0 wiht g/, and that
€ - Ox ~ Ok. Now the faltness o0& is a consequence of O

Lemma 8.1. Suppose thad — (¢) - B’ —» B — 0is exact with B B
finite local k-algebras and e) = 1 (so that(e) ~ k as B module).
Suppose that X = Specdy, is a scheme over’Buch thatvg ®g B =
Oy is flatover B,with )@§ = Spec/’s a deformation of X= Specsy, and
thatker(0g — Op) is isomorphic tody (as g module). Thewy is
B’ flat; in particular, Xg: = Specsy is a deformation of X over’B

Conversely, if0s is B flat giving a deformation of X Specdy,
Og has an exact sequence representation as in the lemma.

Proof. We have an exact sequence

0— eOk— O — O — 0,
with ey ~ 0. We claim that this is obtained by tensoring
@) 0->()—>B —>B->0

by 0y and in fact that it remains exact because of our hypotheais th
Ker(0g — 0))is~ Oy asB’-module. For, tensoring (*) bys we have

EQR U — O — Og — 0 exact
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Bute® Og ~€ -0y ~ 0. It follows then that the canonical - homomor42
phisme 0y — O, is injective, i.e., (*) remains exact when tensorted
by &g. Consider

(R1) —/0— (¢) —= mp —=np —=(

H B 0 Rp Oy .

(R2) ~0—(¢) — B
k k
Lo
(Cl) (C2)

Tensoring C1) by 05 (over B’) and using the Tor sequence we
find that Tof'(ﬁgl, K) = 0 iff 0w flat iff the canonical homomorphism
Oy ®y mg — O ®y B = Oy is injective. (We use the fact TPr
(0g,B’) = 0.) Now (C2) is an exact sequence Bfmodules, and ten-

soring it by &g (overB’) amounts to tensoring it bgg (overB). Hence
(C2) ®g Op stays exact sincéy is B-flat. Finally

(Rl)®p Op Og Qg (€) L Og @y My —> Op @y mp —> 0 exact
| | |
(R2)®p Op 00— Op ®p (€) —> Og ®y mgB —= O ® B——= 0 exact

(R2) ®g Up is exact as we observed above. To prove tigtis B’
flat, it is equivalent to proving that’ is injective, i.e., Ket’ = 0. Note
that 0p ®5 B =~ 0 and0g ®g mg = Og ®g mg. Sincedk is B-flat,

a is injective, and form the diagram it follows that is also injective.
43 Further discussion of Axiom (2) and Axiom (Juppose we are given

0—- () > A - A — 0 with rkg(e) = 1 and ak-algebra homomor-

phisme : B — A. SetB’ = B xa A’. Let us consider the canonical map

(*) in Axiom (2) of Schlessinger’s theorem for the functor fi{X) in
more detail, (i.e., the map D€B’) — Def.(A’) Xpet(a) Def.(B)). Sup-
pose we are givedeformationgnot merely isomorphism classeXy
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overB’, X over A’ andXg over B and isomorphisms
V1 , V2
XB/ ®B/ B e d XB, ®BIA —> XA

Now vj induce isomorphisms

v1®la

(Xp ® B)®@g A —— Xg ®p A,

Xp @ A)@a A L2ow i, Xa @a A
But now there is a canonical isomorphism

Xp ®s B)®s A = (Xg ®p' A') @a A.

Hence the/; determine an isomorphism

(2
*) (Xg ® A) = (Xa @a A)
By the universal property of the “join”, we get a morphism
f: Xg — Zp

whereZg = Specs x4, On)(Xa = Specda is chosen to be one of the
objects in (*) and the homomorphisndg — Oa, On — Oa are then 44
defined uniquely but the fibre produgk x4, O is independent of the
choice forXa: Itis fibre product ofog and & by

ﬁB ﬁA’

\/

O ®B AgﬁA' a A

and thus well defined)We claim that f is is an isomorphisrrom this
claim it follows as a consequence that given deformatigsand X

of X such thatXg ®g A is isomorphic toXy ®a Ai.e., given poink €

(def.X)(B) Xpef(x)(a) (Def.X)(A’), a deformationXg,, which lifts Xg and
Xa depends (up to isomorphism) only on the chioce of the isohisnp
Xg®s A ~ Xp ®u A, S0 in particular, we have surjective map

*) Isom(Xg ® A — Xaga) = 47H(€)
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whereA : (Def.X)(B") — (Def.X)(B) X (pefx)a) (Def.X)(A") is the canon-
ical map of Axiom (2). ((DefX)(B) by definition=isomorphism classes
of deformations o¥, i.e., all deformations oKg' of X over B’ modulo
isomorphisms which induce the identity map)ér) Take the particular
caseA =k A’ = k[E] p:B-o A thenXB®BA—> X, X ®A/A—> X

and then the left hand side of (*) consists of a unrque elenrralhely,
the one induced by the identity map— X. This implies thatl=1(¢)
consists of a unique element, and completes the verificafigkxiom
(3).Thus, finally it stfices to prove that the morphisin: Xg — Zg
is an isomorphism as claimed above. Note tHak®(Kk) is the identity
map X — X and thatXg,Zg are flat overB. Hence our claim is a
consequence of m|

Lemma 8.2. Let X3 = Specs/x and X4 = Specsa be two deformations
of X = Specoi and f X2 > X (f:op > 6’2 a homomorphism
of k-algebras) a morphism such that® k is the identity(f ® Kk is the
identity). Then is an isomorphism. (In the proof, it wouldfise to
assumes; flayA).

Proof. The ﬁiA can be realized as embedded deformationsXof
Specty, so that we have a diagram

0 11 Pa o 0
lf
0 12 Pa oz 0

Let X| = f(X,) whereX, are the variables iR,. We haveX| = X, + ¢,
whereg, € ma(Xy,..., Xp)(ma = max .ideal oR). It follows easily
sinceA is finite overk (as we have seen before) that — X/ is just

a change of coordinates i, so thatf is induced by an isomorphism
Pn — Pa. We can assume without loss of generality that this is the
identity. Then it follows thatf is induced by an inclusioh; c 13. This
implies thatf is surjective. Let] = Kerf so that

O—>J—>ﬁi—>ﬁi—>0 is exact
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Sinced2 is A-flat, it follows that

1 feok 2 .
0—-Jeak— Oy0k— Or9k— 0 isexact

Sincef ® kiis the identity, it follows thatd ® k) = O Sincemp isin 46
the radical ofﬁ,ﬁ, by Nakayama’s lemma, it follows thdt= 0; hencef
is an isomorphism. This completes the proof of the theorem. O

9 The case thatX is normal

Let X — A" be normal of dimensior 2. LetU = X — SingX (Sing
X=Singular points oX). We use the well-known

Proposition 9.1. Let Z be any smooth (not necessarilfiree) scheme
over k. Then the set of first order deformations of Z is in anerte
correspondence with HZ, ®7), i.e.,

(DefZ)(K[e]) ~ H'(Z,®7) (O tangent bundle ofg

Proof. If Z is affine, we have seen that any first order deformation of
Zis trivial, i.e., it is isomorphic to base change kf¥] (this was a con
sequence of the fact that wh&n— A" andZ is smooth,Té = (0)).
Hence any first order deformation @fis locally base change b¥fe].
Hence if{U;} is an dfine covering ofZ, a first order deformation & is

given by{yij}

@ij (Ui N Uj)® k[e] - (Ui N Uj) ® k[E],
{¢ij} being automorphisms ol N Uj) ® K[¢] satisfying the cocycle
condition. It is easy to see that first order deformationgespond to

cohomology classes. Now it is easy to see that for fineascheme 47
W/k, (W = SpecB)

Autiq (W @ k[e]) = Derivations ofB/k(= H(W, Bw)).

The proposition now follows. O
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Lemma9.1. Let X}, X4 be two deformations of X (not necessarily of the
first order, A=local, finite over k). Let U= X},|U and letp : Uz — U2

be an isomorphism over A. Therextends to an isomorphism (unique)
Xi - Xi.

Proof. If Xa is a deformation oK as above, we shall prove
* HO(Xa, On) = H(Ua, 6u,)(Ua = Xal,)).

The proposition is an immediate consequence of (*),ddnduces a
homomorphism

¢ HOUZ0R) —— HO(Uken)

HO(X3, Oxz) — HO(X3, Oxq).

This implies thaty is induced by a morphisny : X; — X3. Itis
easily seen that(®K) is the identity, and this implies easily thais an
isomorphism.

To prove (*), we note first that iA = k, it is well known. In the
general case, we have a representation

0—-(e) >A—> A >0 exact rkg(e) =1

By induction it sdfices to prove (*) assuming its truth faf, = Xa ®a
Ao. Then we have

0 — €Ox, — Ox, — Ox,, — 0 exact

with € - Ox, ~ Ok. This is becaus&j is flat overA. As a sheaf its
restriction toU is also exact. Then we get a diagram

00— HO(X, ﬁk) HO(XA, ﬁA) - > HO(XAO, ﬁAo) — =0
14 13
0 —— HO(U, 6k) — HO(Up, Op) — H°(Un,, On,)-

The first and the last vertical arrows are isomorphisms, afalows
then that the middle one is also an isomorphism. This prdwegtopo-
sition. O



9. The case that is normal 39

Remark 9.1.The proposition is equivalent to saying that the morphism
of functors
(Def. X) — (Def. U)

obtained by restriction td is amonomorphism

Lemma 9.2. Suppose that X has depth3 at all the points (not merely
closed points) of Sing X (e.gdimX > 3 and X is Cohen-Macaulay)
(X necessarily normal Then every deformation AJof U extends to a
deformation X of X.

Proof. Define Xa by Xa = SpecOx, with Oa = Ox, = H°(Ua, Op).
Suppose we have a presentationrs0(e) —» A — Ay — 0 rky(e) = 1.
We prove this lemma again by an induction as in the previoapgsi- 49
tion. This induces an exact sequence of sheaves by flatness

0 oy Ou, OUp, 0

|

(e- Ou)

Since depth oPx x atx € SingX > 3, by local conomology the maps

HY(X, 6) — HY(U, m)} . .

are isomorphisms
H°(X, Ok) — H°(U, 0k)
The isomorphismdi(X, 6i) — H!(U, ¢y) follow from Theorem??,
p. 44, in Hartshorne's Local cohomology. Indeed, we havefdhe
lowing exact sequence & 0Ox — 0y.% — 0. We must prove that
HO(#) = HY(%) = 0. Theorem?? (loc. cit) states that foX a lo-
cally Noetherian preschem¥, a closed pre-scheme ard a coherent
sheaf onX, the following conditions are equivalent: (IH{,(.@) =0,
i < n. (i) depthhy? > n. Taking? = Ox andY = SingX, the
fact thatH°(#) = H(%) = 0 follows immediately. In particular,
H(U, 6y) = 0. Hence we get

0 - H°(U, 4y) - H°(U, 6y,,) — H°(U, Oy,,) - 0 is exact
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Now H°(U, 0y) = H°(X, k) = Ok and
H°(U, Ou,,) = Oacflat/A, by induction hypothesis

Hence
0— Ok — Op— Op,— 0 isexact

and O, flat/A,. By proposition[31L it follows thati, is flayA and so
Xa represents a deformation Xf m|

Proposition 9.2. Let X — A" be such that X is of depth 3 at Vx €
Sing X. Then the morphism of functors

Def(X) — Def(U), U = X - SingX
obtained by restriction is an isomorphism, i.e.,
(Def XYA) — (Def UXA) is anisomorphisn¥, local finite over.k.
Proof. Immediate consegence of the above two lemmas. m|

Remark 9.2.SupposeX — A" is normal (with isolated singularities).
Then if @x is of depth> 3 atV¥x € Sing X is rigid. For, it sdfices to
prove that first order deformations ¥fare trivial and by the preceding
to prove this folJ. We have an isomorphism

HY(U,8y) « HY(X,0x)

because of our hypothesis. Bdt(X, ®x) = 0 SinceX is afine. This
implies the assertion.

10 Deformation of a quotient by a finite group ac-
tion

Theorem 10.1.(Schlessinger-Inventiones’70). Let Y be a smogihea
variety over k with charlk 0. Suppose we are given an action of a finite
group G on Y such that the isotropy group is trivial except dinge
number of points of Y, so that the normgfiree varirty X = Y/G has
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only isolated singularities (at most the images of the moimhere the
isotropy is not trivial). Then if dimY = dim X > 3, X is rigid. (It
syfices to assume that the set of points where isotropy is naaltis

of codine 3ion Y. Of course, the singular points of X need not be
isolated, but even then X is rigid.)

Proof. LetU = X — SingX, andV = Y-(points at which isotropy is not
trivial). Then the canonical morphismi — U is an etale Galois cover-
ing with Galois groupG. From the foregoing discussion, itféiges to
prove thatH(U, ®y) = 0 We have the Cartan-Leray spectral sequence

HP(G, HY(V, 6v)) = HP*(U, £E(6v))

where f®(6y) denotes the G-invariant subsheaf of the direct image of
the sheaf of tangent vectors dh We havedy = f&(6y). Hence the
above spetral sequence gives the spectral sequence

HP(G, HY(V. 6v)) = HP*I(U, ay).

Now HP(G, HI(V, 6)) = 0 for p > 1 sinceG is finite and the character-
istic is zero. Hence the spectal sequence degenerates dmalere

isom

HO(G, HY(V, 6v)) — HY(U, 6u).

In particular,HX(U, ®y) ~ H°(G, H(V, ®y)). Now @y is a vector bun- 52
dle, and since dinY > 3 and ¥ — V) is a finite number of point®y is
of depth> 3 at every point of Y — V) (or because codinY(- V) > 3).
HenceH!(V, By) = H(Y,®y) = 0 It follows then thatH(U, ®y) = 0,
which proves the theorem. O

Remark 10.1.LetY be the &, y)-plane,G = Z/2 operating by X,y) —
(=x,-y). ThenX = Y/G can be identified with the image of thg, )
plane in 3 space by the mapping y) — (X%, xy,y?), so thatX can
be identified with the cong® = uw in the 3 spacely(v,w). It has an
isolated singularity at the origin, but it it rigid (cf., the computation
of T>1( which has been done for the case of a complete intersedidn,
ands§ 6).



53

42 1. Formal Theory and Computations

11 Deformations of cones

Let X be a scheme anB a locally free &x-modlue of constant rank
r. The vector bundl&/(F) associated té is by definition Spe&(F),
i.e., “generalized spec” d(F)-the sheaf of symmetric algebras of the
Ox— moduleF. We get a canonicalfane morphismp : V(F) — X.
The sections o (F) over X (morphismss = X — V(F) such that

p o s= ldy can be identified with

Homg, — alg(S(F), Ox) ~ Homg, — mod, (F, Ox) ~ H°(X, F*),

whereF* is the dual ofF. With this convention, sections of the vetor
bundle (F) considered as a scheme overa¥e ~ sections ofF* over
X.

LetPN*1 — (0,...,0,1) = PN be the “projection ofN*! onto PN
from the point (Q...0,1)", i.e., x is the morphism obtained by dropping
the last coordinate. Lét = PN*1 — (0Q,...,0,1). Then we see thathas
a natural structure of a line bundle o&Y, and in fact

L ~ Spex{é Opn (—n)].
n=0

Proof that L~ Spe((@ff’:o ﬁPN(—n)): We first remark that in gen-
eral givenF a locally freed’x-module of constant rank the vector bun-
dleV(F) = SpecS(F) associated t& (in the definition of Grothendieck)
is such that the geometric points W{F) correspond to the dual of
the vector bundlé€F associated td¢- in the “usual” way, that isF be-
comes the sheaf of sectionsI&f Consequently, in order to prove that
L = Sped @,y , Oen(-1)) we must show that the invertible sheaf cor-
responding td. — PN is &n(1). We do this by calculating the transi-
tion functions. If we denote the standard covering®fby u, . . ., un;,
then we see foPN*! — (0,0,...,0,1) 5 PN we haver1((Xo, . . ., Xn))
is of form (Xp,..., XN, 4) and hence the patching data is of the form

1 Xi/X; 1
aruNu) 2= CxUunNu) — Cx U nNu) = 72 Nuj)

(where X; are the standard coordinate functions®¥. This is pre-
cisely the patching data fa?pn(1). Consequently@pn (1) is the invert-

ible sheaf associated ®¥*! — (0,...,0,1) = PN. The set of points
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PN ~ S = (x,...,%0) c PN*! give a section oL overPN; we can
identify this as the 0-section of the line bundle We have a canonical
isomorphismAN*1 — (PN+1 — S) sending (0...,0) « (0,...,0,1),
and hence_-(0-sectiony AN*1 — (0,...,0). Futher more, it is easily
seen that -(0-sectiony: Sped P, Gen(-n)) and it is theGr, bundle 54
associated th.

Suppose now thal is a closed subschemeB¥. LetLy = 77X(Y).
ThenLy is a line bundle oveY and from the preceding we have

Ly = Spec{@ ﬁy(—n)).
n=0

LetC be the cone oveY, i.e., if P is the canonical morphisi : (AN+1—
(0,...,0)) — PN induced by the isomorphismN*! « (PN*+! — S)
defined above, we defir® = P~(Y) and therC’ = C—(0,...,0). The
point (Q...,0) is the vertex of the con€. So,C = Closure o€’ in
AN+L. As before we have

Ly — (0 - section = Spec{ é ﬁy(n)].

N=—o0

Let C be the closure of in PN*1 (C being identified iirPN+! as above).
Then we see that

C=Lyu(0,...,0,1),C = Ly — (0 — section)

We call (Q0,...,1) the vertex of the projective cor@ for (0,...0,1)
goes to the vertex df under the canonical isomorphisi! — S) —
AN+11f Y is smoothC is smooth at every point except (possibly) at the
vertex.

Considerr : L — PN. Let T denote the line bundle dnconsisting
of tangent vectors tangent to the fiberd.ofs PN. Then we have

0-T—->0.->710Nn—>0 quad

Let us now suppose that Y is a smooth closed subscheffé dfet
my . Ly — Y be the canonical morphism. Then we have a simikg
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exact sequence. L&t, denote the bundle of tangents along the fibres of
Ly — Y, so that we have a commutative diagram

0 0 0
0 Ty 0, y(@y) ——0
(A) 0 Tley OLly —=7"((®pn)ly) —=0
0 Ny ———7*(Ny)
0 0

where N, = normal bundle for the immersioby — PN+*L Ny =
normal bundle for the immersiovi — PN. We haveTy ~ T, from
which it follows that

Coker@L, — Oy, ) — Coker[{y(®y)) = 7*(OU)Ly],

ie., NL, — 7*(Ny).

Let U = C-(vertex). Then ifNy is the normal bundle folJ —
ANt is immediate thalNy = j*(NL,) wherej : U — Ly is the
canonical inclusion. If we denote by the samide canonical morphism
m: U — Y, we deduce thaly = 7*(Ny). Then restricting the bundles
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in (A) to U we get

0 0
J |
(B1) 0—Tvlu Oy n*(@y) —=0

H } !

B) (B2 0—Tylu —Ouna_(glu — 7*(Opnly) — 0

l !

Nu = m"(Ny)
| |
0 0

56
The exact sequence (B2) is obtained by restrictiod tf the exact
sequence

(%) 0T

AN () — Ouni_g) = 1 (Opn) — 0

whereT| AN (0) is the bundle of tangent vectors tangent to the fibres of
n: AN*1 _(0) — PN. We shall now show that we have

0 Tlu Opn+i_g)lu — 7" (Bpnly) — 0
© 2 2 2
0 — 7*(Opn) — 1* (Opn (1)NL — 7*(Opn) —= 0,

where the second row is the pull-backof the well-known sequence
0— Oon — (Oan())V! - Opn - 0

onPN (the middle term of this exact sequence is the direct sufof1)
taken (N + 1) times). Let us examine the canonical homomaorphism
h:Tlu > Ouniglu. Let (@,...,zn) be the coordinate aAN+1,
Then HO(AN*1, @ ,n.1) is a free moduleM over P = K[z, ...,zy.1] 57

0
with basis—, ...,
0z9 0Zn+1
to AN+ — (0) of

. We see easily thdtis defined by restriction

p.:P->M
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0 : .
whereg(1) = Zz{-; (1 is generator oP overP). Hencey is a graded

homomorphism, and is therefore defined by a homomorphisimeziges
onPN. We see indeeg = 7*(¢g), where

00 Opn — (Oan ()N

(Opn (1) is defined by homogeneous elements of degrelein P con-
sidered as a module ov®). From this the assertion (C) follows easily,
and we leave these details to the reader.

Let § be a coherentn module. Then we have

HP(L, 7*F) =~ HPPN, 7.7*F).

Now n* & is defined by the sheaf @f,n modules
P 5-n),
0

considered as a sheaf of modules ogEr&pn(—n)), so that we find
0
n*F = @ F(—n) and hence
0

HP(L, 7°5) = €D HPEY, §(-n)).

0

58 Similarly, if & is a coherent’y-module, we get

HP(Ly,x*%) = 5 HP(Y. §(-n)),
0
HP(U, 7" F) = é HP(Y, &) (U=C-(0)) and

HPAN* — (0),7*F) = é HPEN, F(n)).



11. Deformations of cones 47

Let us now suppose that Y is a smooth closed subvariet) ¢r
dimensiorn> 1) and that it is projectively normal, i.e., C is normal.
We have then

Tcl: = Coker@AN+1|c — Ne).
But sinceC is normal ¢f dimensiore 2)
HO(@4n-1c) = HOU, © 4ni1_(gylc).

For,®,n:1|c is a trivial vector bundle and hence this follows from the
fact HO(U, 0y) = HO(C, 0c). Now Nc is areflexivedc-module since
Nc = Homg,(1/1%, Oc), wherel is the defining ideal o in AN*1,
Because of this it follows that

HO(U, Ny) = H%(C, N).
Hence we have
T& = CokerH%(U, ® 4n1_(g)lu) = HO(U, Nu)).

Now from (B) we get 59
0 p 0 *
HY(U, © gni1_g)lu) —— HP(U, 7%(Opnly))

| lﬁ

HO(U, Ny) 7 HO(U, 7"Ny).

HenceT! = Cokere = Coker(Imp LN HOU, 7*Ny)). Now 8
is a graded homomorphism of graded modules @&HO(Y, oy (n)),
n=0
namely, the gradings are

HO(U, 7*(Opnly)) é HO(Y, (@pnlv)(n))

|

HOU Ny - D HOY Ny()).
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From (C), identifying® sn1_g)lu = 7*(Fen (1)1, we get

HOU, ©,na_(glu) = D HOEN, Gen(n + 1))

N=—0oc0

and then by (C)pis also a graded homomorphism. Henbtm (p) is a
graded submodule ¢1°(U, 7*(®pnly)). From this it follows thatré has
a canonical structure of a graded module des, . . ., zy.1] and in fact
that it is a quotient of the graded module

Ne = H%(C,Nc) = é HOCY, Ny ().

Thus we get

Proposition 11.1. Let Y be a smooth projective subvarietyFof (of
dimension> 1) such that the cone C over Y is normal (we have only
to suppose that C is normal at its vertex). Theén fas a canonical
structure of a graded module oveliz, . . ., zy4 1], in fact it is a quotient

of the graded moduléP HO(Y, Ny(n)).

12 Theorems of Pinkham and Schlessinger on de-
formations of cones

Theorem 12.1.Let Y be as above, i.e., Y is smooth closedPN and
dimY > 1. Then

(1) (Pinkham). Suppose thagTs negatively graded, i.e.,Zm) = 0,
m > 0. Then the functor

Hilb(C) — Def(C)
is formally smooth.

(2) (Schlessinger). Suppose thatiE concentrated in degre@ Then
we have a canonical functor

Hilb(Y) — Def(C),
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and it is formally smooth. In particular, every deformatiofC is
acone.

Recall thatHilb(C) is the functor such that for local finite k-algebras
AHilb(C)(A) = {Z c P"1 x A Z closed subscheme, Z is flat over A and
Z represents an embedded deformatio€ afver A.

Proof. (1) Given 0— () —» A — A — 0 exact withrkg(e) = 1 andA’,
Afinite local overk, we have to prove that the canonical map

* Hilb(C)(A’) — Def(C)(A") xpesc)(a) Hilb(C)(A)

is surjective. Take the cag€ = K[¢], A = k. In particular ¢) implies 61
that

(@) Hilb(C)(k[e]) — Def(C)(K[e]) is surjective, and

(b) given & € Hilb(C)(A), let & be the canonical image of
in Def(C)(A).

Then, if¢ can be extended to a deformation@bver A, thendn €
Hilb(C)(A’) such that; — ¢ (the diference between this ané) @bove
is that we do not insist thag — &).

We claim now that (a) and (b (). (In particular, to prove (1)
it suffices to check (a) and (b).) Givenas above, the set of ajl €
Hilb(C)(A") such that; — & (provided there exists afy such thatyg —
&) has a structure of a principal homogeneous space undgfhiikpe])
(see Remark®@l1). [This can be proved in a way similar to mighat
Hilb(C)(K[¢]) ~ HO(E,Hom(I,ﬁC)), wherel is the ideal sheaf defining
CinPN*1, cf. RemarlK&R.] Similarly, all deformatiomgwhich extendt
form a principal homogeneous space under DEK] ¢]), provided there
exists one. Hence, if (b) is satisfied afiés a deformation extending
because of (a) there exists in fagty — & andn — 7. This completes
the proof of the above claim.

Now Hilb(C)(k[e]) = HO(C, Ng). We haveC = Lyu (vertex) andC
is normal at its vertex. Hence

HO(C,Ng) = Ho%(Ly, NL,) = é HO(Y, Ny(-n)).
n=0
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If Té is negatively graded, it follows that the canonical map

(o)

@D HOY,Ny(-n)) < é HO(Y, Ny(n))

-

Te
is surjective. Hence we have checked that
Hilb(C)(k[e]) — (DefC)(k[e])

is surjective. It remains to check (b). Givene Hilb(C)(A), suppose
that¢ is locally extendable, i.e., givesi : Ca — PN*1, (i) £ can be
extended locally to deformation ové¥ at every point ofCa, and (ii)
this extension can be embedded?iij!, so as to extend locally. We
observe that it is superfluous to assume (ii), for we have gesrin the
affinecase K c A"

(Embedded Def)X) — Def(X)

is formally smooth. Then we see that to exterto ann € Hilb(C)(A"),

we get an obstruction iH(C, Ng) (this is an immediate consequence of
the fact already observed, that extensions form a printipadogeneous
space, cf. Remafk®.5). We observe thatfine property (i) is satisfied.
Since there is afj € Def(C)(A) with 77 - & (¢ € Def(C)(A), & — &),

the condition (i) is satisfied for ak € C. But nowC is smooth at every
point of C — C. In this case we have already remarked before that (i) is
satisfied (cf., Proof of Propositidn®.1). SinCés normal,C is of depth

> 2 at its vertex, so that by local cohomology we get

HY(C, Ng) — H(Ly, N,).

We have

HY(Ly,Ny,) = é HY(Y, Ny(-n)) ¢ é HY(Y, Ny(n)) = HY(U, Ny),
n=0

Nn=—oo
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Now by hypothesig € Def(C)(A) can be extended @ € Def(C)
(A’); in particular, 7y gives an extension of|ly. Hence the canon-
ical image of this obstruction (U, Ny) is zero. (We see that as
above, extending an embedded deformatiotdajives an obstruction
in HY(U, Ny).) This implies that there is amp € Hilb(C)(A") such that
n — £. This checks (b), and the proof of (1) is now complete.

(2) Given a deformation of, we get canonically a deformation of
U = C—(0). To get a canonical functor Hills] — Def(C), it suffices to
prove that a deformation &d can be extended to a deformation (which
is unigue by an earlier consideration). If depth®at its vertex is> 3
this follows by an earlier result, but we shall prove thisheiit using
itt Let0 —» (¢) > A - A — 0 be as usual, and l&tyy ~ Ya be
deformations ofY in PN. Then we have an exact sequence of sheaves.

O_>ﬁY_>ﬁYA/_>ﬁYA_>Oa ﬁYzé'ﬁYAm

Oy, beingA’ flat, etc. Similarly forY = PN. Then we get a commuta-
tive diagram

HO®N, Opn(n)) — HO(Y, Gy(n) — 0
HO(PY,, Op, () —— H(Ya, Oy, (n)) —0

HO@Y, Opy(N) —— HO(Ya, Gy, (M) —=0

0 0
(C1) (C2)

wheren > 0. It is immediate that (C1) and (C2) are exact. From thig
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commutative diagram, by induction okgA'’, it follows that
HOE) Gen (M) — HO(Yar, O, () — O

is exact because (C1) and (C2) are exact and the first andrthmsiare
exact. Then as an easy exercise it follows that the secondsremact.
Then it follows thatH%(Ya, &v,,, (n)) — HO(Ya, &v,(n)) — 0 is exact.

Define oc,, = @ H(Ya, Oy, () (resp.Oc,). Then we get an exact
sequence "

0— 0c— Oc, — Oc,—0, Oc=€-0Oc,.

Again by induction orrk A’ it follows that oc,, is A'-flat (for, Oc,
is A-flat by induction hypothesis and by, an earlier lemma (LerBda
this claim follows). Hence Spe€c,, provides a deformation &, i.e.,
it extends the deformation & = C — (0) which is given by the defor-
mationYu of Y in PN. This proves the required assertion. Since depth
of C at its vertex is> 3 by an eatrlier result this is the case. Hence we
get a canonical functor

Hilb(Y) — Def(C).

From this stage the proof is similar to (1) above. As befoseftices
to check assertions similar to (a) and (b) above. We see thiatYhi
(K[e]) = HO(Y, Ny). We have

[ee)

HO(Y.Nv) € €D HO(Y, Ny(n))

N=—co

1
Ta.

The hypothesis tha[é consists only of degree 0 elements, implies
thatHO(Y, Ny) — T2 is surjective, i.e.,

Hilb(Y)(K[e]) — (Def C)(K[e])
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is surjective. This checks (a). To check (b), takeQ(e) —» A —

A — 0 as usual¢ € Hilb(Y)(A), &£ - n € (DefC)(A). Suppose we are
givenn’ € (Def C)(A) extendingy, then we have to find' € Hilb(Y)(A")
extendingé. SinceY is smooth, the condition for local extension over
A is satisfied as above, and hence we get an obstruction element
HL(Y, Ny). We have

H(Y, Ny) — é HL(Y, Ny(n)).

In a similar way, the elemenj|y defines an obstruction element
u € HY(U,Ny) = €D H(Y, Ny(n)). But by hypothesis this obstruction

is zero. By functorially and the fact that!(Y, Ny) — P H(Y, Ny(n))

it follows thatA = 0. This proves the existence ,g)'fan_d the theorem is
proved. O

Examples where the hypothesis of the above theorem are sdiéd.

Lemma 12.1. Let Y — PN be a smooth projective variety such that

HYY, 0y(n) =0, Yn#0, neZ
H(Y,®y(n) =0, Vn#0, neZ,

and Y is projectively normal. Thert Eonsists only of degre®elements 66
(dimY > 2, follows from the hypothesis).

The hypothesi$i(Y, Oy(n)) = 0, n # 0 implies that
Té = Coker@n+_gylu — Ny) = Cokerfr*(@pnly) — 7*(Ny))

[as graded modules modulo elements of degree 0]. To prosewei
have only to write the cohomology exact sequence for (BQ @ as
well as use (C) o§ 1. To compute Cokex{(®pnly) — 7*(Ny)), use
the exact sequence

0 - 7*(®y) — 7" (Opnly) — 7 (Ny) — 0.
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Now Hi(z*(®y)) = P H(Y,0y(n)). Since by hypothesisii(Y,

Oy(n) = 0forn = 0, it ?(c;’llows by writing the cohomology exact se-
guence for the above, that Coker(@pn|y) — 7*(Ny)) = Té has only
degree 0 elements. This proves the lemma.

Lemma 12.2. Let Y c PN be a smooth projective variety such that

H(Y, oy(n)) =0, V¥n>0
H(Y,®y(n) =0, V¥n>DO0.

Then '% has only elements in degree0.

Proof. The proof is the same as for (2) above. m|

Remark 12.1.Given a smooth projectivé and an ample line bundle
onY the conditions in (1) (resp. (2)) above are satisfied for togegtive
embeddings oY defined bynL, n> 0 if dimY > 1 (resp. din > 2).

Exercise 12.1Let Yo = 3 collinear points in P2 andY; = 3 non-
collinear points irP?. Take a deformation of to Yz, which obviously
exists. Show that this deformation cannot be extended tdcardation

of the dfine coneCy over Y to the dfine coneC; overY;. [For, if such

a deformation exists, we see in fact thha deformation ofCy to Cy,
closures respectively @ andCy in P3. We have a (finite) morphism

¢ : C1 — Cg which is an isomorphism outside the vertex and not an
isomorphism at the vertex. We have

0- 0g,— go*(ﬁal) - k—0.

__ This implies that the arithmetic genus ©f = (arithmetic genus of
Co + 1), but if there existed a deformation, they would be equal.]

13 Pinkham’s computation for deformations of the

cone over a rational curve inP"

Lemma 13.1. Let Y c P" be a connected curve of degree n, not con-
tained in any hyperplane. The ¥ Y; U ... U Y; where Y are smooth
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rational curves of degree;rsuch that n= Xn;, each Y spans a linear
subspace dP" of dimension nand the intersections of; ére transver-
sal.

Proof. Let Y be an irreducible curve of degree nin P". Then we
claim that there is a hyperpland such thaty ¢ H. Choosen distinct
points onY. There exists a hyperplatepassing through thesepoints. 68
We claim thatH containsY for if H does not contairY it follows that
degH - Y) > n, contradicting the fact deg < n. It then follows that ifY
is an irreducible curve of degreer < n, then there is a linear subspace
H ~ PSin P" such thaty c H ~ PS.

Now letY be a curve irP" of degreen not contained in any hyper-
plane. LetYj(1 < i < r) be the irreducible components ¥f Then if
n; = degY;, we haven = Xn;. By the foregoing, ifH; is the linear sub-
space ofP" generated by;, then dimH; < n;. SinceY;’s generateP",
a fortiori the H's generateP". SinceY is connectedyUH; is also con-
nected, i.e., we can write asequetg. . ., Hy suchthaH;nHj.1 # ¢.
We find easily that iL; is the linear subspace generatedtby. .., Hj,

r

then dimLj < ny +---+nj. Sincen = ¥ n; and dimL; = n it follows

that dimLj = ny + --- + nj. It follows in plarticular that dinH; = n; and
thatL; N H;j = one point. It remains to prove th¥tis smooth and ratio-
nal (the assertions about transversality are immediatedoforegoing),
and this is a consequence of the following O

Lemma 13.2. Let Y be an irreducible curve iR" of degree n not con-
tained in any hyperplane. Then Y is a smooth rational cumeact
parametrized by & (1,t,t%, ..., t").

Proof. Let x; be a singular point of. Choosen distinct pointsxa, ...,
Xn on'Y. Then there is a hyperplaré such thatx, € H. Now x; cannot
be smooth inH Nn'Y, for if it were so it would follow thatx; is also
smooth onY. From this it follows easily 69

DegH -Y)>n

which is a contradiction. Hence every pointYofs smooth. O
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To prove the assertion about parametric representatiomagiodal-
ity of Y, projectY from a pointp in Y into P! (see§ ). We get
an irreducible curvey ¢ P"! of degree i — 1). Then it is smooth
and by induction hypothesi¥’ can be parametrized as, {1 ..,t"?).
The projection can be identified as the mapping obtained bgping
the last coordinate. Hence the parametric fornivatan be taken as
(Lt,...,t"1 f(t)) wheref(t) is a polynomial. Take the hyperplaté
asx, = 0; then by the hypothesis thdts of degrean, it follows that f (t)
polynomial of degrear. Then by change of coordinates we see easily
that the parametric form of ist — (1,1, t2, .. .

Lemma 13.3. Let Y be an irreducible curve i&" of degree n, not con-
tained in any hyperplane, or equivalently, a (smooth) cyraemetri-
zed by(1,t,...,t"). Then Y is projectively normal.

Proof. LetL = &pn(1)ly. It is well known that projective normality of
Y € P"is equivalent to the fact that the canonical mapping

@y 2 HO(P", Gpn(v)) — HO(Y, L) s surjective.

This follows from the following

Sublemma 13.1.Let X be a normal projective variety. Then X is pro-
jectively normal, i.e.X (the cone over X) is normal if and only iPEp",
Opn(v)) = HO(X, L"), L = Opn(L)|x, v > O, is surjective.

Proof. In general we havé = {functions onX — (0)} = P HO(X, L)
veZ
(see discussion ifD). Now sincel is ample we havéi®(X, L") = 0,

v < 0, and therefored = P HO(X,L"). Now supposeX is normal.
v>0

Then{functions onX — (0)} = {functions onX}. Also, X c P" = A™L
and using the same reasoning as befre= {functions onA™!} =
P HO(P", O%n(v)). But any function onX can be extended ta™?!
v>0

which implies the natural map ENYNS surjective. Thereforéi®(P",
Op(v)) = HO(X, L") is surjectiveYy > 0.
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In general we havdH®(P", Gpn(v)) — HO(X, L") is surjective for

v large. Also@H%(X, L") is normal sinceX is. Thus@@ HO(X, L") is
v=0

the integral closure of Im. Hence if we assumé{®(P", Opn(v)) —
HO(X, L) is surjective¥y > 0, we have thapH%(X, L") is normal. This
meansX is normal.

Now returning to the proof of the lemm¥,~ P! andL ~ &p1(n) so
thatL” ~ Opi(nv). It is clear thaty; is injective if and only ifY is not
contained in any hyperplane. On the other hand, we have

dimHO®", Gn(1)) = dim HO(P?, Gpa(n))
=n+1

Hencey; is an isomorphism, i.eY < P" is the immersion defined71
by the complete linear system associated’to(n). It is seen easily that
SY(HOP?L, i (n)) — HO(PL, Opa(nv)) is surjective. This implies that,
is surjective for allvy, and the lemma is proved. ]

Lemma 13.4. Let Y be as in the previous lemma. Then
HY(Y.L)=0, v>0
HY(Y,®v(») =0, v=0
(the conditions in LemnfaT2.1 are satisfied).

Proof. Itis well known that®y ~ Gp1(2) andH(PY, Gp1(v)) = 0,v > 0.
This proves the lemma. O

Proposition 13.1. Let Y be the nonsingular rational curve i of de-
gree n parametrized by (L t,...,t"). Let C be the cone A" over
Y andC its closure inP™1. Then the function

Hilb(C) — Def(C)

is formally smooth. (Note biilb(C) we mean the restriction of the
usualHilb to (local alg. fink) and defining deformations 6f.)

Proof. This is an immediate consequence of Lenimall2.1. O
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Let R be the complete local ring associated to the versal defor-
mation of C (with tangent space= Def(C)(k[¢]) and R the comple-
tion of the local ring at the point of the scheme H@)(corresponding
to C. Letp : R - R be thek-algebra homomorphism defined by
Hilb(C) — Def(C) to define this homomorphism we need not use the
representability of HilbT), it suffices to note that Hill) also satisfies
Schlessinger’s axioms). From the above proposition ibfedl that the
homomorphisnp is formally smooth. Hence we can conclude tRas
reduced (resp. integral, etcff R is reduced (integral, etc.).

To study HilbC) we note thaC is of degreen in P*! and that it is
smooth outside its vertex.

Proposition 13.2. Let X — P™! be asmoothprojective surface of
degree n inP™1, not contained in any hyperplan@henX specializes
to C, i.e., there is a 1-parameter flat family connectigndC.

Proof. Let H., be the hyperplane ab, with equationx,,; = 0 (coor-
dinates Ko, . .., Xn+1)). Let X be any closed subscheme®ft. Then
it is easy to see thaX “specializes set theoretically” to the cone over
X - Hp (with vertex (Q...,0,1) and baseX - Hy); in fact we define the
1-parameter family;, X; = X, Xg = cone overX - H,, (as point set) as
follows.

(X0, - - -5 Xn+1) € Xt &= (X0, - - - tXns1) € X,

This family is obtained as follows: Consider the morphism
An+2 XAl N An+2

defined by (Ko, . . ., Xnt1), 1) > (X0, . . . , Xn, tXns1). We see that it defines
rational morphism
: Pn+1 % Al — Pn+1

and thatp is indeed a morphism outside the poigt= ((0,...,0,1),0).
Let us denote by; the morphism (resp. rational foe= 0)

@t : Pn+1 — Pn+1; o = ¢|Pn+l X {t}

Then for allt # 0, ¢ is an isomorphism. Let’ = ¢~1(X) (scheme
theoretic inverse image). We see ti4is a closed subschemeBt ! x
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(A1—xo). There exists a closed subschemmaf P™1x A which extends
Z’ and such thaZ is the closure oZ’ as point set. It is easy to see that
Z=7'U(0,...,0,1) (as sets). Lep : Z — A’ denote the canonical
morphism. Ther/t € Al, t # 0, p~(t) ~ X; and fort = 0, p~1(0) ~
cone overX - Hy, (as sets).

The map Ko, ..., %ni1) — (Xo, ..., Xn, tXni1) (t # 0) defines an au-
tomorphism ofP™?, the image ofX under this is denoted b);. The
schemeX; specializes to a schem& — P™?! (this follows for exam-
ple by using the fact that Hilb is proper). From the above wiswon it
follows thatXy = cone oveH - X, (as point sets). It follows from this
argument that we can choogeso thatp : Z — Al is flat (and therZ is
uniquely determined).

Suppose now thaX is smooth X - H,, is smooth and that the cone
over H,, - X (scheme theoretic intersection) is normal. Then we will
show thatp~1(0) = Xo = (cone overX - H,,) scheme theoretically. For
this, letl be the homogeneous idealkfxo, . . ., Xn.1] of all polynomials
vanishing onX. Letl = (fy,..., fy) wheref; = fi(xo, ..., X,+1) are ho-
mogeneous polynomials. Thé& = V(I;) wherel(fi(Xo, . . ., Xn, tXn+1))
fort # 0. LetXj = V(I() wherelg is the ideall| = (fi(xo, ..., %, 0)). 74
Letlo be the ideal oo Then clearlyl C lo. Also itis easy to se¥(| is
the scheme theoretic cone over H,. This meansX;) red = (Xo) red.
For, sincel c Io we haveX > Xo. But by assumptiorX, is normal
hence in particular reduced. Therefotg= X, as required.

Let us now return to our particular case, whiris a smooth projec-
tive surface inP™?! of degreen not contained in any hyperplane. Then
we can choose a suitable hyperplane and c&llitsuch thatH., - X is
smooth (Bertini) of degrerin P", and not contained in any hyperplane.

(The ideal defined bX N H, is Ox(-1). We have

0— Ox — O0x(1) - Oxnn,(1) —» 0
is exact. This gives
00— HO(X, ﬁx) I Ho(ﬁx(l)) — HO(X N He, ﬁX'Hw (1)) exact

surjectionT T injective T

0— HO(PnJrl, ﬁpml) —> Ho(ﬁpml(l)) I Ho(ﬁpn, ﬁpn(l)) — 0 exact.
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The second row is exact, and the first vertical arrow is a stioje.
The second vertical line is injective. This implies (viagliam chasing)
that the third arrow is an injection which implié\H,, is not contained
in any hyperplane. (We make this fuss becaaigeiori degree does not
imply having the same Hilbert polynomial.))

Then by the preceding lemmas it follows thdg, - X is a ratio-
nal curve inP" parametrized by (1, ...,t") and then by the above dis-
cussion it follows that there is a 1-parameter flat family losed sub-
schemes deformini to C (C is the closure iP™! of the cone associ-
ated toX - H,,). This comples the proof of the proposition. m|

Remark 13.1.Let P be the Hilbert polynomial o€ < P™!. LetH
denote the Hilbert scheme of all closed subschem@&8&*dfwith Hilbert
polynomial P. ThenH is known to be projective. The ring associated
with Hilb(C) above, is the completion of the local ringldfat the point
corresponding t€. LetHs be the open subschemetéfof pointsh € H
such that (a) the associated subsche@mef P! is smooth and (bX

is not contained in any hyperplaneBfi*. It is easy to see that (a) and
(b) define an open condition; that (a) defines an open condiiovell
known, and that (b) also defines an open condition is easgyglad.
The foregoing shows that as a point $&f corresponds to the set of
smooth surfaces iB™* of degreen not contained in any hyperplane and
further Hg contains points associated to projective cones over smooth
irreducible rational curves of degreen P".

The varieties iP™* corresponding to points dfis have been clas-
sified by the following

Theorem 13.1(Nagata) Let X — P"™! pe a closed smooth (irre-
ducible) surface of degree n, not contained in any hypesplafhen
either (a) X is arational scroll i.e., it is a ruled surface where the rul-
ings are lines inP™! and it is P! bundle overP!; in fact X ~ Fp_o;
where F we denote &* bundle overP! with a section B having self-
intersection(B)? = —r, and then it is embedded by the linear system
IB+ (n—1)L|, where L denotes the line bundle corresponding to the rul-
ing, or (b) n= 4 and X = P? given by the Veronese embedding®®in
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P>, i.e. the embedding defined By ):

(X0, X1, %2) > (36,36, X, X1 Xz, XX0, XoX1),  OF
(c)n=1, X=P?
Remark 13.2.Let X = P?, and take the Veronese embedding, with
Uo=x3, Ur =X, Up=%
Vo = x1X2, V1 = XoXo, V2 = XoX1.

ThenX is adeterminantal varietydefined by (2< 2) minors of the

matrix

U Vo Vs
Vo Ui Vg
Vi Vo Uz

The coneC over the rational quartic curve has a determinantial rep-
resentation defined, for instance, by lettldgspecialize td/,, i.e., sub-
stituting V» for U, in the above matrix.

Remark 13.3.The general scroll can be checked to be the determinantal
variety defined by (% 2) minors of the (2x n) matrix

X0 ... (Xn1+ Xne1)
X1 ... Xn ’
and the con€ is obtained by settingn.1 = 0 in this matrix. 77

Let us now take the case=s 4. Any two scrolls (resp. Veronese
surfaces) inP°® are equivalent under the projective group. Hehte
split up into two orbits under the projective group: skly, = K1 U Ko.

We note also that there exists no flat family of closed subselseof
P™! connecting a scroll and a Veronese. For if there existed three,
Veronese would be topologically isomorphic to a scroll (sag are
over C). This is not the case: One can see this, for example, by the
fact thatH? (scroll, Z) = 72, H?(P?,Z) = Z. SincekK; are orbits under
PGL(5), they are locally closed ikg, and the nonexistence of a flat
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family connecting a member &f; to K, shows thakK;(i = 1,2) are in
fact open irHs, so thatHs is the union of disjoint open selg andKy; in
particular,Hs is reducible. Let be the point oH determined byC [we
fix a particularC, namely, the cone i&t"! with vertex (Q...,0,1) and
base the rational curve il parametrized by (1,t%,...,t")]. We saw
above that the closure &fs containsg. This implies thaH is reducible
até.

We shall now show that any “generalization” Gfis again a pro-
jective cone over a smooth rational curveBf not contained in any
hyperplane. In other words, consider a 1-parameter flatyaohclosed
subschemes whose special membeZ end whose generic member is
W. ThenW has only isolated (normal) singularities, is of degnesnd
not contained in any hyperplane. We shall now prove more rgéye
that a surfac&V in P! (which is not smooth) having these properties
is a cone of the typ€. To prove this le® be a singular point ofV.
Then we can find a hyperplahethroughtéd such that L - W) is smooth
outsided (Bertini’s theorem). NowL ~ P", L - W is connected(L - W)
is not contained in any hyperplane (same argument ax foH,, in the
proof of Propositiod_13]2), and it is of degree Since it has only one
singular point, it follows by Lemmds_I3.1 ahd13.2 thiat W) con-
sists ofn lines meeting af. This happens for almost all hyperplaries
passing througld. We take coordinates A" so thatd = (0,...,0,1)
and take projection on the hyperplake= {x,.1 = 0}. We can suppose
that the choice ot is so made that - W is smooth and not contained
in any hyperplane, so that- W is the rational curve parametrized by
(1,t,...,t") with respect to suitable coordinateslin: P". Let B be the
projected variety irM. It follows that almost all the lines joining to
points of B are inW from which it follows immediately that in fact all
these lines are iW. In particular, we hav® = W- M andW is the cone
overB. This proves the required assertion.

Thus any “generalization” dof is either a cone of the same type as
C, a scroll, or a Veronese. It follows then that in the neighlood of
&, H consists of only (parts) of three orbits und®&L(5), namely,K1,
K, and A, whereA is the orbit undePGL(5) determined byC. In a
neighborhood of, K; andK are patched along.
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K

It follows that Sped® whereR is the complete local ring defined by
Def(C) is again reducible and has only two irreducible components

Remark 13.4.1t has been shown by Pinkham thatis reduced, that 79
the irreducible component corresponding to scrolls is afatision 2
and the one corresponding to Veronese is of dimension 1thbgtare
smooth, and that they intersect at the unique point corretipg toC
having normal crossings at this point.

Remark 13.5.The above argument can be extended to show thatBpec
for n > 4 isirreducible Pinkham shows Spéthas an embedded com-
ponent at the point corresponding@and outside this it corresponds to
scrolls.

Remark 13.6.The reason that fan = 4 we have got two components
is that in this case the cone over the rational quartic is ardehantal
variety in two ways, namely, it can be defined byx2) minors of

Xo X2 X4
io XS] orof |% X X3
1o X X X3 X

Remark 13.7.Case n< 4. Exercise: Discuss.






Part 2

Elkik’s Theorems on
Algebraization

1 Solutions of systems of equations
80
Let A be a commutative noetherian ring with 1 aBca commutative

finitely generatedA-algebra, i.e.B = A[Xy, ..., Xn]/(fs, ..., fg), F =
(fy,..., fg). Then finding asolutionin A to F(x) = O, i.e., finding a
vectorx = (ay, ..., an) € AN such that

(=0 (L<i<q),

is equivalent to finding a sectin for SpBover Sped@.
Let J be the Jacobian matrix of thigs defined by

ofy ofy

J=| : (g x N) matrix.
afq afq
OXN OXN

We recall that at a poirg € SpecB — AN represented by a prime
ideal 2 in A[Xy,..., Xn], SpecB is smoothover Sped atzif and only
if: There is a subsel) = (as,...,ap) of (1,2,...,q) such that

65
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0f,
(i) there exists agx p) minor M of the (px N) matrix a—; such that
i
M # 0(mod #?), and

(i) (f1,..., fg) and (fay. ..., fa,) generate the same idealzat

If the conditions (i) and (ii) are satisfied atthen Sped® is of rela-
tive codimensiorpin AN (i.e., relative to Spead).

LetF () be the ideal {a, . .., fa,). The condition (ii) above is equiv-
alent to the following: There is g € A[Xq,..., Xq] such thatz ¢ V(q)
and

(F(a))g = (F)g-

(The subscripy means localization with respect to the multiplicative set
generated by. This implies thag' (F) c (F()) for somer. Conversely
suppose given g€ A[ Xy, ..., Xn], such that

9(F) c Fa

(i.e.,g € conductor ofF in Fa, (F(g : F)).

Then at all pointz € SpecB such thag(2) # 0, (F) andF gener-
ate the same ideal (sin€égy c F). Hence the condition (ii) above can
be expressed as:

(ii) There is an elemerg € Ky = conductor ofF in F (i.e., the
set of elementg such thagF c F()) such that(z) # 0.

Let A = ideal generated by the determinants of the (p) minors

0fs
of the (px N) matrix(aTa*). LetH be the ideal ilA[ X, ..., Xy] defined
j
by

H= Z K@Aw)
@

i.e., the ideal generated by the ideg$,Aq)} where @) ranges over all
subsets of (1..,0). Then we see that at a pointe SpedB — AN,
SpecB is smooth over Spe& < H generates the unit ideal ats z ¢
V(H). Hence we conclude:

Z € SpedB is smoothover Sped if and only if z ¢ V(H) N SpecB.
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2 Existence of solutions whenA is t-adically com-

plete

82
With the notations as in the abo§€0d, we have

Theorem 2.1. Suppose further that A is complete with respect to the
(t)-adic topology,(t) = principal ideal generated by € A (i.e., A=
I(imA/(t)”). Let | be an ideal in A. Then there is a positive integgr q
such that whenever

F(@ =0(modt1), n>ng, n>r
(i.e., f(@ = O0(mod t'),Y1<i<q,n=ng n>r)and
t" € H(a)

(H(a) is the ideal in A generated by H evaluated at a, or equivajentl
the closed subscheme $pecA obtained as the inverse image ofH)
by the sectiorBpecA > AN defined by(as,...,an)), then we can find
(a.....a)) € AV such that

F@)=0andd = a(mod t'1).

Remark 2.1.The conditiont” € H(a) implies thatV((t)) > V(H(a)).
So the sectiors : SpecA — AN defined by &, ..., ay) does not pass
throughV(H) except for the points = 0. Roughly speaking, the above
theorem says that a sectieof A,T over Spe@ which is an approximate
section of Spe8 over Spe@ and not passing through(H) except over

t = 0 can be approximated by a true section of Spewer Sped.

Proof of Theorem[Z1.(1) We claim that it sflices to prove the follow-
ing: 3h € AN (represented as a column vector) such that

*) F(a) = J@h(modt®1), and
h=0("™1).

83
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To prove this claim we use the Taylor expansion
F(a-h) = F(a) — J(@h + O(h?) (error terms quadratic ih).
Now h? e t21|. We note further that
2T =t 22 @20
We haveF (a) — J(a)h € t?*'| and hence
F(a) — J(@h e t2" 2],

i.e., () implies

F(a-h) et?™M], and
h e tO-N].
Seta; = a-— h, ap = a. Then this gives
F(as) € 2001,
a; —ag et
Hence by iteration we can firgl € A such that
(i) F(a)et?®™D1,i >0, and
(i) (& -a-1) et? DL i>1,

Now by (i), @ = lim g exists, and®’ = a(modt™"1). Further (i)
implies thatF(a’) = 0. This completes the proof of the claim.
(2) We claim that it sfiices to prove that there is azAN such that

t'F(a) = J@)zmodt?"l), and
z=0(t").
84

For, we see easily that there is hne AN such thatt"h = z and
h e t"'l. Then, ifJ = Jr denotes the Jacobian fBr, we have

t"(F(a) — Je(a)h) = O(modt?"),
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h = O(modt""I).
Sett'F = G; then these relations can be expressed as
{G(a) — Js(@)h = O(modt2"), and
h = 0(modt""I).
In particular we certainly have

%) {G(a) ~ Js(@h = 0(modt®'1), and

h = 0O(modt""1).

These are just the same as the relatiefs$ in Step (1) above, with
F replaced byG. Hence we conclude (as fé1) that there is a@’ such
that

{G(a’) =0, and
a’ = a(modt"™'l).
Thus we conclude that there is ahsuch that
{t’F(a’) =0, and
a’ = a(modt"'l).
Note thatF(a’) € t" "l since
F(@) = F(a) + Je(a)(@ — a)(modt?™"1)
andF(a) € t"I. Thus we have
t'F@)=0, and F(a)et"'I.

85
We would like to conclude thaE(a’) = 0; this may not be true;
however, we have

Lemma 2.1. Let Ty = {a € Alt% = 0} and let @ be an integer such that
Tgo = Tgo+1 = Tgee2 = ..., €tC., (note that { ¢ Ty for g > g and A
being noetherian, the sequenced T»... terminates). Then

TsNn({t™A=(0) for m=xqo.
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Proof. Leta e Tg, NtMA. Thena = tMa’ = t%(t™%a’). Sincet%a = 0,
we havet™%a’ = 0. But by the choice ofjy, we have in fact®a’ = 0.
Hencea = t9%t™%g’ = t™%t%g’ = 0. This proves the lemma i

By the lemma if 6 —r) > qo, thent'F(&’) = 0, andF (&) € t""I
implies thatF(a’) = 0. Thus the claim (2) is proved.
(3) Let (8) = (B1, . ... Bp) denote a subset pfelements of (L .., N).

of, )
X,

of the Jacobian matrid. Then we claim that it stices to prove the fol-
lowing:

Givenk € K(,) andé.s € A, (645 defined as above) then there exists
az = 0(modt"l) such that

Given @) = (a1,...,ap) € (L,...,0), letd,g,

k(@)d.5(a)F (@) = G(a)z(mod t"I).
For, we havd" = 2 Aok (8)045(8). Then by hypothesis, givel,
andd,gz, we havez,g such thatz,s = 0(modt"l) and
ko()0as(Q)F (2) = I(@)Zep(modt?"l);

then we see that if we set= }’ 1,5Z,3, we have
B

t" - F(a) = J(@zmodt®"), and
z = 0(modt"l),

which is the claim (2).
(4) We can assume without loss of generality thgt £ (1, ceos p)
and ) = (1,..., p) so thats, g = detM whereM = (af ) l<i<p

oXj) 1<j<p
Then we have
v
J= .
*k £

Let N be the matrix formed by the determinants of the {)x(p—-1)
minors of M so that we have

MN =¢6-1d, 6 = 0.5, @, as above.
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We denote by § | the (N x p) matrix by adding zeros th.
Letk € K(y), (a) as above and be as aboveThen we claim that if
z is defined by

Z:k[N] : |, Zisan (N x 1) matrix;

then ifz= Z(a), we have

k(@)5(a)F (@) = J(@)z(modt?"l), and
z= 0(modt"l).

By the foregoing, if we prove this claim, then the proof of theo-
rem would be completed.

To prove this claim, we observe that the relatios O(modt"l) is 87
immediate. Sinc& € K, (o) as above, we have

P
0 kfj:Z/lijfi, 1<j<aq

i=1

of; ofi .
This givesk— = Z U ' (mod F),1<j<aq
Xy =1 T0Xy

Substituting (a), we get
P
k(a)—( 3) = Za., e " (@)modF(@)
P
- Z a)—(a)(modt”l)
i=1

Letu e AN be an element such that= 0(mod<V), where’V is some
ideal of A. Letv = J(@) - ue AN, Then

k(a)v; = k(a) Z —ug
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[ y A--(a)a—fi(a)]u (modt"lV)
i—1 oX ‘

N A
i (@) - [; S—Z(a)ug] (modt"V)

M= 1= DM

1l
iy

Aij(@)vi(mod t"IV).

In other words,

p
(N k@Vj = " &jj@wi(modtlV), for 1<j<q,
i-1
88  whereu e AN, v = J(a)u, andu = O(mod<V).
Now take foru € AN andv the elements

fy
o=[o
10
fo

Thenu = 0(modt"l) and we have

fi(a)

N(a)
0 .
fp(a)

@. v= J(a)[

P
k(a)vj = Z Aij (@)vi(modt?).
i=1

Moreover,
f ) f
fo(@) fo(@)
5(a) f1(a)]
NN 6(a)fp(a)
- @] -
@l | Wp
WN
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Hencev, = 6(a)fi(a), 1 <i < p. By (),
p
k@V; = Z Aij(@)vi(modt?), so that
i=1

p
k@yv, = Z Aij (@) fi (a)5(a)(modt?).
i=1

By (1), ,
Z Aij (@) fi(@)s(a) = k(@)d(a) fj(a).
i=1

Hence it follows that

fi

f ] - k(a)o(a) | &
p

fq(a)

which is precisely the claim in Step (4) above. This comsiéte proof 89
of the theorem as remarked before.

k(@J(a) l(\)l

] (modt®"I)

Remark 2.2. A better proof of the theorem is along the following lines:
Introduce a set of relations fétr so that we have an exact sequence

PR PSP pFoo

fy

(Here F denotes as well as the ideal generated liyand P =

i
A[Xy,...,Xn], and R is the matrix of relations of; it has entries in
P.) In matrix notation, we havé - R = 0. Differentiating with respect

to Xy, we obtain

JR= 0(modF),

. . [Ofi ) ,. . . .
wherelJ is the Jacobian matr 67I (itis anN x g matrix and is there-

i
fore the transpose of the matidintroduced in the theorem above). Let
P = P/F and definel, R similarly. Then we obtain aomplex

R L BN

L=

) P
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(or: Pt i P 2 PN is acomplexmod F). It is not difficult to see that
at a pointx € SpecP/F), the complex £) is homotopic to the identity
(in particular, is exact), i.e., denoting by a subscxihe localization at
X, there is a diagram
r i
LN T

P, —>Py—>P,, withRr+jJ=1Id
if and only if SpecP/F) is smooth atx. For example, suppose that

SpecP/F) is smooth aix. Then we can assume without loss of gener-
ality that de(a—x'i), é'é‘; is a unit inPy. From this it follows easily
that there is alirect summand; — P,, Q: ~ Py such that Im{) =
Im(J|Q1) and J|IQ; : Q1 — Im(J) is an isomorphismJO; denotes the

restriction toQq). Indeed, we can tak@; to be the submodule gener-

. . - N gf; .
ated by the firsp-coordinates. (Note we havig) = 3, (;97'51, with
=1 1

(e) a basis oP", and &) a basis oﬂ3Nl We see also that IR is of
rank (@ — p) and is a direct summand . In fact the relations

p
fj:Z/lijfi, j=p+1

i=1

give elements of the form

p
g = Zﬂija, jzp+1,
i—1

— p
in ImR. Suppose novy, i fi is a relation; then as we have seen before

(on relations for a complete intersectiop).€ (fi,..., fi) so thaf; = 0.
Hence we conclude that (IR) is precisely the submodule generated by

P _ —
(& — X 4Aj&), ] = p+ 1, which shows that IrR is of rank @ — p)
j=1

and is a direct summand B'. Now we see easily that the complex
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is homotopic to the identity at ik and only if, (i) (x) is exact and (ii)
Im Ris a direct summand which admits a complen@nsuch thatl|Q,

is an isomorphism and Idh =~ Im(J|Q;1). Now we have checked these
conditions when SpeBj is smooth atx. Conversely if (i) and (i) are 91
satisfied (a), it can be checked that Sp&)(s smooth ai.

Suppose more generally that we are given a complex

PFSRLP
(we keep the same notation). Then we can define an idéan P
which measures the nonsplitting of the complex as follow#&: is the
ideal generated by elemertsuch that there are maps;j:

r
LN T

pt - —J>|3N, such thaRr + jJ = Id.h.

[S—

It can be shown tha# is the following ideal: Take ax p) minor
M in J and a ‘tomplementary(q — p) x (q — p) minor K in R (involv-
ing “complementary indices”); the?’ is the ideal generated by the
elements (de)(detK).

In our case, SpeR— V() is the open subscheme of smooth points.
It follows then that7# and the ideaH (H is the ideal defined before and
H denotes the image ¢ in B = P/F) have the same radical. In our
case we have then

Rr+ jJ = h(modF), forsome heP withimage hin 7.
Multiplying by F (whereF is a vector now), we have
FRr+ FjJ = Fh(modF?).
SinceFR = 0, this gives
FjJ = Fh(mod F?).

We have used the transposes of the origihadettingz = j'F' and
taking “evaluation af”, we get 92
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h(@)F (a) = J(@)z(modt?"1).

Now a power ofh is contained irH sinceH and.” have the same
radical. This is the crucial step in the proof of the theordrove. Hence
from this the proof of the theorem follows easily.

Before going to the next theorem, let us recall the followfagts
abouta-adic rings (cf. SerreAlgebre Locale Chap. II, A). Let @, q)
be a Zariski ring, i.e.Ais a noetherian ring, is an ideal contained in the
Jacobson radical Ralof A, andA is endowed with the-adic topology,
i.e., a fundamental system of neighborhoods of 0 is formed'b$ince
Na" = (0), it follows that this topology is Hausd®r Let A denote
n

the a-adic completion. Ther is noetherian. 1M is an A-module of
finite type we can consider theadic topology onM and similarly it
is Hausdoff and if M denotes the-adic completion ofM, we have
M = M ®a A. In fact the functoM - M is exact. Suppose now that
M = M. Then we note that any submodiNeof M is closedwith respect
to the a-adic topology (for, the quotient topology M/N is the a-adic
topology and sincéM/N is of finite type andh ¢ RadA, this topology is
Hausdoft and henceN is closed). IfA = Aie. Ais complete, then any
module of finite type is complete for the adic topology so thatdon't
have to assume further thist = M.

Let A= A, M be as usual antle a. ThenM/tM is complete for the
a/ta-adic topology, for this is simply the-adic topology orM/tM.

Let A = A andV be an ideal inA. Given anr, suppose that the
relationa” ¢ V + a™ m > 0, holds. Them" c <V, for our relation
implies thata"(A/V) c N a™(A/V). SinceA/V is Hausdoff for the

a-adic topology, it foIIowng that" A/V = (0), which impliesa" c V.
3 The case of a henselian paifA, a)

Theorem 3.1. With the same notations for A, B as in the pages pre-
ceding Theorerfi 2.1, suppose further thata) is a henselian patr (in

1Definition. By a henselian pairwe mean a ringA and an ideah ¢ RadA (=
Jacobson radical of) such that giverF = (fy,..., fn), N elements ofA[Xq, ..., Xn]
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particular a ¢ RadA), and thatA is thea-adic completion of A. Sup-

pose we are givena € A" such that Ka) = 0 (i.e., a formal solution)
anda’ - A (or briefly a”) ¢ H(3) for some r. (This means that the sec-
tion of SpecB overSpecA whereB = AX|/(f;) represented b# passes
through smooth points of the morphisSpecB — SpecA except over
V(a).) Then for all n> 1 (or equivalently for all n sgiiciently large)
there is an ae AN such that Ka) = 0, and a= a(moda").

Proof. (1) Reduction to the caseprincipal.

Leta = (tg,...,t%). Let us try to prove the theorem by induction on
k. If k = 0, then the theorem is trivial. So assume the theorem proved
for (k — 1). We observe that the coupl&/t’, (t1, ..., t%_1)) is again a
henselian paik¢ > 1 (herety,...,tk1 denote the canonical images of
t in A/t}). Sett = ty andA; = A/(t‘). We note also that the-adic 94
topology onA; is the same as they(. . ., t_1) = as-adic topology. IfA,
A; denote the corresponding completions, we get a canonigactve
homomorphisnA — A; whose kernel is/-A. Letb be the canonical im-
age ofain A;. Then we havé=(b) = 0. Besides, we see tha} c H(b)
for somes (this follows from the fact tha¥/(H) N SpecB = locus of
nonsmooth points for Spé& — SpecA and the set of smooth points
behaves well by base change and for us the base chage-isA;.
We canonot say that = r, for the idealH (or ratherH(modB)) which
we have defined using the base riAgdloes not behave well with re-
spect to base change. The ide# does behave well with respect to
base change, and if we had used this ideal we could have geathe
integers). Hence by induction hypothesis, forral> t, there exists a
b e AN such thafF (b) = 0, andb = b(mod a}").

Lift b to an elemeng; € AN and choos¢ so that? > m. Then we
see that

a; =a(moda™), and
F(a1) = 0(mod ¢°)).

andx’ € A", X% = (X,...., x%) such thatF(x°) = Omod @) and such that d%t%) lo is
j

invertible mody, thendx € AN, x = xX’mod (@) with F(x) = 0.
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(The fact thab = B(modaT) implies (@ —a) + x € a™ with x € Ker(A —
A7) = (t). Nowt € a, and if£ > m, (t) € a™.) We claim that ifm > 0
(and consequently > 0), we havex” c H(a;). By hypothesis we have
a" c H(a), and from the relatiom; = a(moda™), we get

a" ¢ H(ap) + a™

(as ideals irA; to deduce this we use the Taylor expansion). Then, as we
95  remarked before the theorem for > 0, this implies that" c H(a).
Sincet € a it follows thatt" € H(ay).
Let A; denote the-adic completion. Then the following relations in
A,
forall £ > 0, F(a1) = 0(mod ¢'))
there existsy € AN such that” € H(a;)

hold a fortiori in A;, and hence by TheoremP.1 we can faide At'\'
such that

F@)=0 and
a = a;(mod ™).

Note that the pairA, (t)) is also henselian. Hence if the theorem
were true fok = 1, we would have

vn,3 a € AN such thaf(a) = 0, and
a = a’(modt"A).

But we have

a’ = a;(mod ¢°)A;), for ssuficiently large, and
a; = a(a™- A), msuficiently large.

These implya = a(moda™) (sincet € a andA; c A), which implies
the theorem. Hence we have only to prove the theorem in teekcad,
i.e.,a principal. m|
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(2) A general lemma:

Lemma 3.2. Let A, B be as in the pages preceding the theorem, i.e., B
AlXy, .., XN]/(fe, ..., fg), F = (f1,..., fo). Let C be the symmetric
algebra on FF? over B, so thatSpecC is the conormal bundle overse
SpedB (F/F? as a B-module is the conormal sheaf o%ged). Let f,

g, h denote the canonical morphisms

SpedC ry SpecB - SpecA, g=ho f.
Let V be the open subschemespeB whereSpecB — SpecA is
smooth and V= f~1(V). Then we have the following:

(@) g: SpedC — SpecA is smooth and of relative dimension N (over
A)onV and

(b) 3 an imbeddingSpedC — Af\'\”q (A-morphism) such that the
restriction of the normal sheaf (for this imbedding) to evafine
open subset U— V' is trivial.

Proof of Lemmal3.2.We set

C = B[Ys,...,Yql/I
ADXYT/(R 1), K= (F1).

OnV we have the exact sequence
0} 0 — F/F% - Qapxj/a ®apxg B — Qpja — 0.

(This is an abuse of notation; strictly speaking we have titewr
(F/Fd)y ..., etc.) OnV we have the exact sequence

(II) 0— f*(QB/A) — QC/A - QC/B - 0, and

Taking f* of the first sequence, we get sequences 97

0— f*(F/F?) - (Free)— f*(Qg/n) — 0
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O g f*(QB/A) g QC/A g f*(F/FZ) — 0

which are exact on anyffine open set) in V’. These exact sequences
are split onUJ, so that we conclude

Qc,a isfreeon U.
OnV’ we have the exact sequence
0 — K/K? = Qaxv1/a ®axv] C = Qcja — 0.
Thus it follows that orJ
K/K?@® (Free) = (Free)
N——"
of rankN

(From the exact sequence (ii) it follows ti€a¢ a is of rankN overC and
this implies the assertion (a).) If we introdubemore indeterminates
Z1,...,2N, then

* C=AXYZ,....Z]/ (K, Z4,...,Zp).
LetK’ = (K,Zy,...,Zn). Then we see easily that
K’/K'? = K/K? @ (Free ofrk N).

It follows that K’/K’? is free onU. Thus for the embedding
SpedC — Af\mq, the restriction of the normal bundlé’/K’2 toU
is trivial. This completes the proof of the lemma.

98 (3) We saw in (1) above, that for the theorem iffges to prove it
in the caser = (t). The conditiona”A c H(@) becomes’ € H(a). (Note
that H(@) is the ideal inA generated by evaluating atelements oH
andH is an ideal in AX1, ..., Xn] notin A[Xa, ..., Xn].)

We claim now that there is anéaH such that

h(@) = (unit) - t".

_Apriori itis clear there is ah € H - A[X] such thaih(d) = t". Since
Ais thet-adic completion ofA, we can find ath € H such that

h = h(mod ¢"*1))
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(i.e., the coéicients ofh andh differ respectively by an element of
(t*1)). This implies that

h@@) - h@@) = «t"*!, hence
h(@) = t'(1 + #t).

Now (1 + t) is a unit inA. This proves the required claim.

(4) The final step.

Since Spe€ is a vector bundle over Sp&; we have the 0-section
SpecC N Sped. We are givera € A" such that~(a) = 0. Nowa
determines a section of Sp&xaA) overA, or equivalently a morphism
s: SpecA — SpedB forming a commutative diagram

SpecA : SpedB

e

SpecA

Using the 0-sections can be lifted to a morphisrs; : SpecA — 99
SpecC:

S1

SpedC

-

SpecA

Now by (3), 1 carries (Speé — V(t)) to SpedC[1/h], whereh is
as in (3) (hereh denotes the canonical image@of theh in (3)). We
observe that

SpecA

SpedC[1/h] c V',

(V' = fX(V), V = locus of smooth points of Sp&— SpecA) andV’

is contained in the locus of smooth points of the map $pee SpecA.
We haveC = AIX, Y, Z]/K’ whereK’ = (F,1,2Z3,...,2ZN). The section
s, defines a solutiork’(a’) = 0, where@ ¢ AN (@ extends the
sectiond). We havet® € H(@) for a suitablek. Hence the conditions,
similar to those of SpeB — SpecA, are now satisfied for the map
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SpedC — SpecA. Itis immediately seen that it fices to solve for the
case Spe€ — SpecA, in fact if we get a solutiom’ € A?N*9, we have
to take for a the firsN coordinates of'.

LetU = SpedC[1/h]. Then the restriction of the normal bundle of
the imbedding Spe€ — Ai'\”q is trivial on U and,U being smooth
over A, it follows easily thatU is open in a global complete intersec-
tion. By this we mean there exigf,...,On.+q € A[X, Y,Z] such that
V(91, ..., On+q) has dimensioMN and we have an open immersion

(SpecC[1/t]) = SpedC[1/h] — SpecAlX,Y,Z]/(g1,- - - »On+q)-
LetG = (91, ..., On+q). Then we have
K{ =Gt.

(We denote the localization with respectttby a subscript. Note that
localization with respect tbis the same as localization with respect to
b.) The given solutiord’ in AN%s such thatk’ (') gives rise to a
solutionG(a") = 0 by changing they;, multiplying them by suitable
powers oft. Conversely, suppose we have solved the problenGfor
i.e., we have found’ € A?N+9 sych thatG(a) = 0 anda’ = a(modt").
Then we see easily that there i8 auch that

t!. F@)=0.
Since F(@) = 0 by Taylor expansion, it follows thaE(@) = 0

(modt"). Now if n > 0, by Lemmd2Z11, it follows thaF(a’) = 0.
Thus it sfices to solve the problem f@, i.e., for the morphism

SpedC’ - SpecA, C’' =AX Y,Z]/G.

We have seen tha defines a section of this having the required
properties. Further, Sp€&€ is a global complete intersection and
smooth overA in AN*A, j.e., we have reduced the theorem to the fol-
lowing lemma.
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4 Tougeron’s lemma

Lemma 4.1. Let (A, o) be a henselian pair and € A[Y,...,Yn], 1 <

i <m. LetJ= (ngl) be the Jacobian matrixi <i <m,1< j<N.
i
Suppose we are givefl ¥ (y2,...,y%) € AN such that

f(y°) = 0O(moda?V)

where (V) = V(a) (or & V is also a defining ideal fo(A, a)) and

A is the annihilator of the A-module C presented by the refatimatrix 101
(i.e., C is the cokernel of the homomorphisth A A™ whose matrix is
J(Yo)). Then there is a ¥ AN such that

f(y) =0 and y=y°(modAV).

Proof. The henselian property ofA(a) is used in the following man-
ner: LetF = (Fy,...,Fn) be N elements ofA[Yy,...,Yn] andy® =
08, ....¥}) € AV such that

(i) F(y°) = 0(moda)
(P) (ii) det(g_s;)y:w is aunit (moda).

Then there is € AN such thaf (y) = 0 andy = y°(moda).
Letdy,..., 5, generate the annihilator af. This implies that there
existN x m matrices such that

IN =61, J=J300), | =Idmm.
Write
0% = ) didjej,
]
&j = (€j1s--»&jy»-- - €jm), &) €V
N

m components.
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We try to solve the equations

f[y0+§6iui):0

for elementsU; = (Uj,...,Uin) € AN (we consider vectors ild" to
102  be column matrices). Expansion by Taylor’s formula in vectotation

gives
0= 1) +3- QO aU)+ ) 66,Qi,
i

where

Jis an fnx N) matrix,

f(y°) is an (nx 1) matrix,

U; is an (N x 1) matrix (not (1x N) matrix as it is written)
and

Qij,6j are (nx1) matrices.
Expanding, we get

0=J- (Z&iUi) +Z5i5j(Qij+6ij)
i=1

b (mx1) matrix

S
(mxN)(Nx1) matrix

M-

6i(JU) +Z5i -JIN; - (Qij + &) (djld = IN;j)
i

(6J) - Ui + ZéiJ(Z N;(@jj + &j)) (i are scalars)
i J

= |l
iy

i=1
Thus it sufices to solve the equations
*) 0=Ui+ ) Nj@;+ej), 1<is<r.
i

This is an equation for amM(x1) matrix. Thus £) givesNr equations
in the Nrunknowns |, 1<i<r,1<v<N.
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We note that;; are vectors of polynomials idj, all of whose terms
are of degree> 2. LetF = Fi,...,Fnr € AlU;,] represent the right
hand side of£). Write Z1, ..., Zn, for the indeterminateb;,. Then

(@) =ld+M, M =(mu), (NrxNr)matrix

9Z;

where M is an Nrx Nr matrix of polynomials in Zand every g has 103
no constant term.
Let xX° e AN" represent the vector (Q ., 0); then we have

F(Z) = 0(modV) since &), € V.

Without loss of generality we can suppade= a since’V is also a
defining ideal for A, )

F(Z% = 0(moda).

oF . L .
Further, we havé—k) is a unit inA/a. Hence by the henselian
1/7=20

property of @, a), we have a solutiorz of (x) in A such thatz = 2
(moda), i.e.,z = 0(moda) sinceZ’ = (0). Set

y=y'+z
Then we have
y=y’(modAa) and f(y) =0,
which proves the lemma. O

Remark 4.1.1t is possible to takeV such thatV c o, for if (A, a) is
a henselian pair, the henselian property is true¥orV c a. Then the
above proof also goes through for this case.

Corollary. Let(A, a) be a henselian pair and

fr..... fm€ Aly.... YN
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andy the canonical morphism

Y : SpeOA\[YL---,yN/(fl,---, fm) - SpeCA

B
104 Suppose thap is smooth and a relative complete intersectidhen
giveny € A (a-adic completion of A) such that

f(y) =0,
there is a ye A such that fy) = 0 and
y = y(moda®)
for any given ¢ 1.

Proof. We can takec = 1 for a° is also a defining ideal forA, a). We
cana fortiori find y° € AN such that

f(y°) = O(moda)(«< f(y) = 0).

y° then define® a section of Spe®) over Spe@/a. The morphism is a
complete intersection and smooth at points of this secfitnis implies
that the Ideal generated by canonical imageA&/imof the determinants
of the (mx m) minars ofJ(yp) is the unit ideal inA/q, i.e., the canonical
image ofA in A/a is the unit ideal. Since is in the Jacobson radical,
it follows thatA is itself the unit ideal. Indeed being the unit ideal in
A/aimplies there exists a € A such thau = 1(moda), henceu—1 € q,
henceu=1+r,r € a. Sincea c RadA, uis a unitinA. m]

5 Existence of algebraic deformations of isolated
singularities

Definition 5.1. A family of isolated singularities is a scheme > S
overS = SpecA, A ak-algebra such that (i is flat, of finite presenta-
tion andX is afine, X = Specs’ and (ii) if I' is the closed subset &f
wherer is not smooth, thel — S is afinite morphisni(for this let us
say thaf" is endowed with the canonical structure of a reduced scheme)
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Definition 5.2. We say that two familieX — S andX’ — S of isolated 105
singularities areequivalentor isomorphicif there is a family of isolated
singularitiesX” — S (note thatS is the same) and étale morphisms
X7’ — X', X — X such that

() the following diagram is commutative

XH

éy Xtale

X X’

ANV

S
and

(il) these maps induce isomorphisms

r”
r I

An equivalence class of isolated singularities represeiyeX — S
is therefore thénenselization of X along.

Consider in particular a one poinfamily’ Xo — Sped with an
isolated singularity(We could also take a finite number of isolated sin-
gularities.) We see easily that the formal deformation s (in the
sense of Schlessinger defined before) depends only on tivakemee
class ofXy. Let A be theformal versal deformation spaassociated
to Xg (we can speak of the versal deformation spac&pby taking
Zariski tangent space & = dim T>1<O), i.e.,Alis a complete local ring,
and we are given a sequene,} of deformations oveA,

Xo = Spectn, An=A/M, Oa®An 1= 0n

satisfying the versal property mentioned before. Note liyah versal
deformation it is not meant that there is a deformatioXgbverA. The 106
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following theorem, proved by Elkik, asserts that in fact fodmation of
Xo over A does exist (i.e., in the case of isolated singularitiesjs the
crucial step for the existence of “algebraic” versal defations forX,.

Theorem 5.1. Let Xy = SpecOy, Op = K[X1,..., Xml/(f), (f) = (f1,
..., f). Let X, = Spect, be as above, but we suppose moreover that X
is equidimensional of dimension d. Then there is a defoomati over

A such that X® A, ~ 0, and if X = Spec/” thend” is an A-algebra

of finite type. (We do not claim th@’ has the same presentation as
0p.)

Proof. Let @ = lim Gy, G = AdlXa,..., Xl /(f™), where ARANS
An[X] is a lifting of f; € k[X]. Let A[X]" denote then-adic (m = mj)
completion ofA[X]. We see tha#\[ X] is the set of formal power series
> aX® such thaty — 0in them-adic topology ofA. Thenf; = lim £

is in A[X] and we see easily that

0 = AXI" /().
(For, we see that we have a canonical homomorphism
a: AIXIN () > @

obtained from the canonical homomorphi&iX]” /(f) — AJ[X]/(f™).
It is easy to see that is an isomorphism.)
The proof of the theorem is divided into the following steps:

(1) Itis enough to find a (flat) deformation’Xover A of X% such that
0" ®p AL ~ 01, Wwhere X' = Speco”’ (recall that A = A/nP).

For, given a (flat) deformatiorX” over A we get deformations
{X{/} = X" ® A, overA,. For eachn, we get then by the versal property
of A, a homomorphism

an A— An

Note thata, is defined by

(Ofn)m Am - An, m > 0,
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so thatXm ®a,, An = X[/ Theselay} are consistent and henga,} patch
up to define a homomorphism of rings

a:A—- A
The hypothesis that”” ®a Ay ~ ¢ implies that
a = ld(modmg).

This condition onx implies thate is an isomorphism; for it follows
that a induces an isomorphism on the Zariski tangent spaces, $o tha
Im a contains a set of generators mof,, hencex is surjective further,
this condition implies that the induced homomorphisms. A/mj} —
A/mj, are surjective, and these vector spaces being finite-dioveads
it follows thatap, is an isomorphism for afh (in particular injective). It
follows easily that Kew ¢ Nm} = (0), i.e.,a is injective. Hencer is

n

an isomorphism.

Now define the deformatioR’ overA as the pull back oK” overA
by the isomorphisna — 1. It is easily checked that’ @ A, ~ Xn, and
this proves (1). 3

_ — f

Let us setX = Specs. Consider the Jacobian matrix= (37')

j
1<i<r,1<j<m((f)=(fn.....T)). LetT denote the locus 108
of points inX = Spec/’ whererk J < (m—d). ThenI is aclosed

_ _ f
subschemén X. (We note thatf; € A[X]" and% € A[X]" so that

the Jacobian matrid is a matrix of elements i&[X]".) Hence ifx €
SpecA[X]" (in particular ifx € Spect = X — A[X]), we can talk of
the rank ofJ at x, i.e., the matrixJ(xX) whose elements are the canonical
images ink(x) (residue field ak) of the elements od. It follows then
easily that the locus of pointsof X whereJ(x) is of rank< (m— d) is
closed inX; in fact we see thaf = V(1) wherel is the ideal generated
by the determinants of all then(— d) x (m — d) minors of J’ where

J is J with elements replaced by their canonical image@in It is
clear thatl' N X, is precisely the set of singular points ¥§, which

is by our hypothesis a finite subset X4. It can then be seen without
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much dificulty thatT is finite over AT is endowed with the canonical
structure of a reduced scheme or a scheme structure fronddlaél i
introduced above). The proof of this is similar to the factrasjfinite
implies finite in the “formal case”, i.e., in the situatidn— B whereA,

B are complete local rings arglis the completion of a local ring of an
A-algebra of finite type.

Letl’ = Specd/A and letAq be the ideal i defined byA (i.e., the
canonical image ol ® kin &p). By the Noether Normalization lemma
we can findy, ...,y in Ag such thaty is a finitek]y?, . . ., y°d] module
such that the set of common zerosy{ﬂﬁs precisely the set of singular
points ofXg. Lift y? to elementys, ..., Yq in A so thatyy, ..., yq vanish
onT. Then we have

(2) C'is afinite Ay]" module(andT is precisely the locus of = 0).

This is again obtained by an argument generalizing “qudtsifim-
plies finite in the “formal” cases.”

(3) The open subscher¥e—T of X is regular (over A) (i.,e X —Tis
flat over A and the fibres are regular)

This is a generalization of the Jacobian criterion of regtyldo the
adic and formal case.

(4) Outside the sety = 0} in SpecA[y]”" (this is a section oSpec
Aly]" over SpecA andT lies over this set),& is locally free
over Ay]" say of rank r, i.e., (0% p) is a locally free sheaf
of Ospecajy)*—(yi=0; Modules (g X — SpecAly]” canonical mor-
phism).

For, p.(0%) is finite over Spe@\y]". Now Sped[y]" is regular
over Spe@. We have seen that — T is regular over Spe#, so that it
is in particular Cohen-Macaulay over SpecNow a Cohen-Macaulay
moduleM (of finite type) over a regular local rinB is free (cf. Serre’s
“Algebre locale”) and from this (4) follows. (We can usediuiroperty
only for the corresponding fibres, but then the required @riypis an
easy consequence of this.)
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(5) SetP = A[y]*. Then for& considered as & module we have a
representation of the form

pm @i, P" > 6 > 0 (exactad modules)

with rk(a;j) < (n-r) (i.e., determinants of all minors o&(n—r+1)
of (aj) are zero).

More generally, let us try to describe &algebra Bhaving a rep- 110
resentation of the form

*)

RM ﬂ R"—- B — 0 exact sequence
rk(aj) < (n—r). of R-modules

The we have m]

Lemma5.1. 3 an gfine scheme V (of finite type) ov@pecZ such that
every R-algebra of the forifa) is induced by an R-valued point of V.

Proof of Lemma. To eachR we consider the functdk(R)

5(R) = set of all commutativi&k-algebrasB
~ | with a representation of the form)( [

One would like to represent the funct@rby an dfine scheme, etc.
We don'’t succeed in doing this, but we will represent a fun@asuch
that we have aurjectivemorphismG — .

An algebra structure oB is given by arR-homomorphism

B®r B — B.
Then in the diagram

R"@ RR" —— B®rB

1

R"——B
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the homomorphisnR" ®g R" — R" factors via a homomorphisiR™ ®
R" — R" (of course not uniquely determined). Now the following se-
quence

R er R e (R eR™ % ReR —» BgB— 0
is exact whergy = (ajj) ® Id ® Id ® (&j). [We have

can hom

(Ker(R" - B)oR") o (R"®(KerR" — B)) —— Ker(R'®R" — B®B) — 0.

This implies exactness of the given diagram.] Again theistex lift-
ing of the above commutative diagram

RoR) e (R oR") . ~R @R — > BerB——0

(Io) alc alb
Rr— @7 g B 0

On the other hand, giving a commutative diagram

R"eRYo (R"® R"‘Y—> R'®R"

() l bl
an (@)@ Ak

wherey = () ® Id @ Id ® (&;) determines the commutative diagram

(lo).
The algebra structure ddinduced by [g) is associative if the dia-
gram

Rn®Rn®Rn%)Rn Rn®Rn®RnMRn

W A e A

R'eR" R'eR"

and the mafiR" @ R" @ R (1deb)->-(b2ld) _, B factorizes througiR™ —
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R ie.,

- b-(Id®b)—b-(beld) RN

D) R /a:):a

Rm
or,b- (Id®b) - b- (b®Id) is zero inB.
Letb : R"x R" > R be the homomorphism obtained by changing2
b: R"x R" — R" by the involution defined bx®y - y® xin R® R.
Then the algebra structure is commutative if there is a hoamphism
¢ : R"or R" — R™such that

R'@r R — =

b R
1"l
(1) - 4)

R™

commutes.

Finally the identity element & B can be lifted to an elemepte R"
(determines a homomorphiski— R") and there is a map: R" —» R™
such

R*®b-Id R"
™) N
RM

commutes, i.ee®b-1d = 0inB.
Let us then define the funct@ : (Rings)— (Sets) as follows:

G(R) =(i) Set of homomorphisms:&R™ — R" such thatk a < (n—r)
(i.e., determinants of all minors & of rk(n — r + 1) vanish),
together with(0)

(i) Set of homomorphisms b
ReR" - (R"9R)o(R"®RM

) .

R" RM
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113 such that the following diagram is commutative:

(R"®R") @ (R" @ R™) —224@ld®a_ pn o o

0) l lb

RM R"

together with

(iii) an R-homomorphisnr : R'@R"®@R" — R™ such that the following
is commutative

R® R R bo(ld ®b)—bo(beld) -

o TTRA

and
(iv) an R-homomorphisi: R"® R" — R™ such that

b

RgR — 22 @
) \ /
5 a
Rm

commutes, and
(v) anR-homomorphisne: R — R"ande : R" - R™ such that

R esbd o
) N A
Rm

commutes.

It is now easily seen th&@(R) can be identified with a subs8t—
RP such that there exist polynomials(Xy, ..., Xp) over Z such that
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S=(S,...,Sp) € Siff Fi(ss,...,Sp) = 0, and the setF;} and p are
114 independent oR. From this it is clear thaG(R) is represented by a
schemeV of finite type overZ and sinceG(R) — F(R) is surjective,
LemmdX&.l follows immediately.
It follows in particular that¢ is represented bg homomorphism
¢ Spec® —» V(P =Aly1,...,Yml]").

(6) The image oSpecP — {y = 0} in V lies in the smooth locus of V
overSpecz.

We have a representation
*) Plz,...,2 » 0 -0

(homomorphisms of rings and homomorphismsPasodules). Now
Pz, ...,z is regular over A andX — T is regular over Sped — {y =
0. Hence the immersioX <— Sped[z, ...,z =~ A;, being anA-
morphisms, is a local complete intersection at every pdiX e I (we
use the fact that a regular local ring which is the quotienamdther
regular local ring is a complete intersection in the lati@e use this
fact for the corresponding local rings of the fibres and thiimd the
m-sequence, etc.). Now coddin A; is s. Now take a closed point

Xo € SpecP — {y = 0}. Then tensorings) by k(xp) we get
k(x0)[z1, . ..,2s] = O ®p k(%) — 0 exact.

Now Speoﬁ ®p k(o) is precisely the fibre oK over xo for the mor-
phismX < Sped®. Weclaimthat Spe@ ®p K(Xo) is also a local com-
plete intersection ik(xo)[z, . .., Zs] whereverxy € Sped® — {y = 0}

(it is a O-dimensional subscheme of Ské®)[z,...,25 — AE(XO)) 115

and in fact that Spe€ ®s Ry — SpedRy[z, ...,z is a morphism

of local complete intersectionver Ry for any base change SpRec—
SpedP-{y = 0} (i.e., flat and the fibres of the morphism over Spés a
local complete intersection). To prove this we note ﬁ@ﬁsRo is locally
free (of rankr) (SpedRy — SpecP — {y = 0}) and Spe®[z, . . ., z] —
SpedRy is a regular morphism. In particular a Cohen-Macaulay mor-
phism. Now the claim is an immediate consequence of
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Lemma 5.2. Let B, C, R be local rings such that B, C are R-algebras
flat over R and B is Cohen-Macaulay over R. LetB — C be a sur-
jective (local) homomorphism of R-algebras such that C ipmpulete
intersection in B. Then for all R» Ry — 0, the surjective homomor-
phism

BeRy > C®Ry— 0

(the morphisnSpecC®Ry) — SpecB®Ry)) is a morphism of complete
intersection oveSpedy.

Proof. Since the flatness hypothesis is satisfied, fiicgis to prove that
C ® kis a complete intersection B® k(k = R/mg). Now we have

0-1—->B—->C—-0 exact,

| =kerB — C, andl = (fy,..., fg), fi is anm-sequence iB. Now the
codimension o2, SpecC ® k) in SpecB ® k), is equal to the codimen-
sion of Spe€ in SpedB, which iss. (This follows by flatness oB, C

116 overRand the fact that flat implies equidimensional.) [fetienote the
canonical images of in Bok. We have thenBek)/(f,..., fJ) = Cek.
Now (B® k) is Cohen-Macaulay and the codimension of S@egk) in
SpecB®K) is s. It follows by Macaulay’s theorem thdt,, . . ., fis an
m-sequence iB ® k. This implies thatC ® k is a complete intersection
in Bo k, and proves Lemnia3.2.

The complete intersection trick. We go back to the proof of (5). Let
1 : Sped?y — Sped® be a morphism such th& is Artin local and
A(SpedRy) ¢ Spec® — {y = 0}. Consider the morphismp(o 1) :
Sped?y — V. Then {p o 1) defines arR, algebraB which is a free
Ro-module of rankr (in particular flat overRp), andB is a morphism
of local complete intersection ov& (B is of relative dimension 0 over
Rp). LetR — Ry — 0 be such that Spdris an infinitesimal neigh-
borhood of Spe&y. Then the assertion (5) follows if we show that
(p o) : Spedy — V factors through SpeR — V.

Now B is defined by

a0

RB"—)RS—) B— 0,
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wherea® = (aﬁ). Now Sped — Sped?, is a morphism of local
complete intersection for a suitable imbedding and 3pett is clear
that Spe® — Spedy, is in fact a morphism of global complete in-
tersection for the corresponding imbedding, for it is gaséen that a
O-dimensional closed subschemeAgfwhich is a local complete inter-
section, is in fact a global intersection. We have see§dnPar{l, That

the functor of global deformations of a complete intersectisrumnob-
structed i.e., formally smoothdence there is flat R-algebraB’ such 117

that B’ ®r Ro ~ B. Hence the sequendsl’ N Ry — 0 can be lifted

to an exact sequend®" LRLPB - 0; the proof of this is in spirit
analogous to imbedding a deformation (infinitesimalXof> A" in the
same #ine space. A homomorphistR] — B) over Ry is given byn
elements irB. Hence this homomorphism can be liftedRb — B’ and
it becomes surjective. Now it is seen easily tR§t— Rj can be lifted
to R" — R It follows that determinants of all minors @f of rank
(n—r + 1) vanish. Thus the relations (0) above can be lifteR.to

Consider the relations (). We are ginyg ¢ such that the following
diagram is commutative:

(Rg] ® RB) o (RB ® Rg‘) ap®ld @ Id ®ap=yo RS ® RS
°| . >
Ry Ry

With the above lifting of §) to a we get




*)

R"oR") @ (R @R 2491488 pnopn @ | prgnB 00— >0

Jj|c (B) b

I
|
: 3 A) can

|
\J

R B 0.
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The two rows are exact. We claithnat there is a b which lifts¢) and
such that the squargd) is commutativeln fact this is quite easy, for it
is clear that we can finlf : R"®@ R" — R" such that (A) is commutative.
Let by be the reduction moRy of b’. Then we see that the composition
of the canonical magj — B with bp — by, is zero. Hence 118

bo(2) = by(2  (mod Imag, or KerRj — B).

Now b (2) - by,(2) can be lifted to elements in l& so that taking for
{za} a canonical basis iR" — R" we defineb: R"@ R" - R"

b(za) = b'(za) + 6a,

wheref, € Imalifts bg(a) — by (2). Itis now clear thab lifts by and the
square (A) is commutative. This proves the claim.

By a similar argument as above there issuch that reduces tay
and the square (B) is commutative. (If necessary we can mydio the
left the exact sequence of the second row in the diagram THys it
follows that the relations ih can be lifted taR.

A similar argument shows thait, 6o, € and ey which are given
representing the point SpBg — V can be lifted toR so that the di-
agrams (1), (1) and (IV) are still commutative. This meathat the
Sped?y — V can be lifted to arR-valued point ofV. As we remarked
before, the assertion (5) now follows.

We go back to the usual notations in the theorem. Then:LéT)
a = Ma(ys,...,Yq) ideal in Aly]. ThenP = Aly]" is also thea-adic
completion of Ay] (of courseP is also the m - (A[y])-adic completion

of Aly]).

The proof of this assertion is immediate for a convergenesgi fi,

fi € Aly] in the a-adic topology is precisely one such that théfﬁee
cients of f; tend to zero in thena-adic topology and the degree of the
monomials— oo. This implies that a convergent series is preciselyL#o
formal power series ify;} such that the caicients (inA) tend to 0 in

the ma-adic topology. This is the description & we had and (7) is
proved. (8) Now for the morphisma : Sped® — V we have that the
image of Spe® — {y = 0} is in the smooth locus of overZ. We note
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that V(a) = (Sped[y]) U {y = 0} (k residue field of ji.e., V(a) con-

tains {y = 0} so that the image of Spé&— V(a) (by ¢) is also in the
smooth locus o¥ overZ. Now thea-adic completion ofA[y] is P. Let

P denote the henselization d®@), P = Aly]. Now apply Theorem 2
proved above. Hence we can find an étale map 8pecSpecdP which

is trivial overV(a) and morphismy’ : SpedR — V (note thatP is also

the a-adic completion oP) such that

¢ = p(mod"), for any givenN.

(Note that thex-adic (i.e.,aR-adic, a is not an ideal irR) completion of
Ris alsoAly|"). Let O’ be theR-algebra defined by’. Then we have
¢ = 0(modaV) (i.e., 0’ JaN = &/aN). Now ¢’ becomes ar-algebra
and then we have

0" = 6(modm))

for (maR)N o oN. Take in particulamN = 2. Thus we can find aR-
algebrad” of finite type and consequently éhite type over Asuch
that

0’ = 6(modng).
Thus to conclude the proof of the theore, iffizes to prove that”
is flat over A.

(9) Choice of&” such thaLtﬁ’ is flayA.
We had a presentation &f as follows:

P"S P ¢ — 0.

We claim that we have a presentation such that
*)
~, 0 A A ~ —
Pl P"S P"— 0 -0,
where a-0=0 and P™"3 P" - @ — 0is exact, and

A 6Kka 4 avka - — .
Pl @aky — PM@ ky —> P"®@ ky — O ® ka — 0 is exact,

whereka = A/ma.
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This follows if we prove thatZ is flat overA (cf., § B, Part[l).
However, (*) can be established directly as follows: We cad fan
exact sequence of the form

Bl @kn 2 PP @kp 2 P1@kp — & @ ka — 0.

(Note that Sped@ ® ka = Xo = Spect, is the scheme whose defor-
mation we are considering and thét = 0® A/mQ\+1 = Specr, are
infinitesimal deformations 0Ky.) The above exact sequence can be
lifted to anexact sequence

Pl o A/mEL & P A/mirt 2, P A/mitl 6, — 0

since &, is flat overA/m&*l. Passing to the limit, we have an exact
seguence

Pl o A/mytt LR PM e A/mit &, P'e A/Mit — 0, - 0

since &, is flat overA/mQ\”. Passing to the limit, we have an exact
sequence

prhpnidpn 55 0

such tha@-d = 0, andP™ 3 P" — & — 0 is exact. This proves the121
existence of (*).

Now define a functoG’ which is a modification ofs as follows:
G'(R) = Set of{0,a,b, c,«, 6, e, e wherea, b, c, a, 6, € € are as in defini-
tion of G(R): and@ is defined by 5> R™ % R with a- 6 = 0).

Then as in the case @&(R), we see thats’ is represented by a
schemeV’ of finite type overZ. The given representation faf as in
(+) above gives rise to a morphisgn: Sped® — V’. We claim that as
in the case oV, the image of Spee — {y = 0} lies in the smooth locus
of V’. With the same notations f&, Ry as in the proof of the statement
for the case/, it suffices to prove the following: Given

Ré&Rg‘iRgeBeO



122

102 2. Elkik's Theorems on Algebraization

such thatag - 65 = 0 anng“ 2, Rg — B — 0 is exact, and a flat lifting
B’ over R (hence free oveR), we have to lift this sequence ® (the
proof of the lifting of the quantities involved is the samefasG(R)).
As we have seen before, f&(R) we have a lifting

R'SR 5B -0

Now Imég are a set of relations. Sind¥ is flat overR these rela-
tions can also be lifted, i.e., we have a lifting

RLRMAR LB 50

such thata- 6 = 0 andR™ 5 R" - B’ — is exact. This proves
the required claim and hence it followgSped® — {y = 0}) lies in the
smooth locus (oveE) of V’.

Applying Theorem 2, we can find an étale Spee> SpedP, P =
Aly] and a morphisng’ : SpedR — V’ such that

¥ = y(mod a?).

Let 0" be theR-algebra defined by’. Then as we have seen before,
we have .
0’ = O(modmg).

We claim thato” is flat overA. For this we observe that we hase
fortiori .
0’ = 0(modma).

This implies that?” /ma - ¢’ = €/ma0 ~ 0. Let

|§,€9_’>|5mi’>|5n_>ﬁ/_)o
Aol =0 P"SP"5P" 0 >0 exact

(1)

be a representation @F. Recall we have the representation &@r

(1 prhpmA P % 50, and acf=0.

exact
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Now tensoring (1) with A/mf} yields

. G A ARA/M, . )
P'@A/mMy —— P"@ A/mj —— P"®@ A/m) —» ¢’ @ Anf, - 0,

exact

and
(@ ® A/m}) - (¢ ® A/m}) = 0.

We have [")® A/ma = (1) ® A/ma, as a consequence of the fact thap3
¢’ = 0(modma). By (1) |®@ A/mais exact This implies that’)®A/ma
is exact. So we have that'Y ® A/ma is exact and (") ® A/mf has the
property, & ® A/mj) - (¢" ® A/mf}) = 0 and

M n a’®A/m’A SN n / n
PP@ A/my —— P '@ A/my —» 0" @ A/my — 0,

for all n. This implies, as we saw in the first few lectures, tha® A/m}
is flat overA/m\ for everyn.

Now & is anA-algebra of finite type and s6” ® A/m], flat over
A/mf\ for all nimplies thato” is flat overA (cf. SGA exposes on flat-
ness).

The proof of the theorem is now complete. O

Remark 5.1.The fact thato” is flat over A can also be shown in a
different manner. This can be done using only the fur@tére., V), but
a better approximation (i.e., better thiin= 2) for ¢’ may be needed.
This uses the following result of Hironaka: LBtbe a complete local
ring, b ¢ man ideal inB and M a finite B-module locally free (of rank
r) outsideV(b). Then there is ai such that whenevdyl’ is a finite B-
module locally free of rank outsideV(b) andM’ = M(modbN), then
M’ ~ M. Take in our present cage= A[[Y]] so that we have

AC Alyl" —— AllY]

e

R

e

Aly]
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R étale overAly] such thatAly]/a ~ R/a and that all the extensions are
faithfully flat. Take a coherent sheaf on Spedo verify that it is flat
over A it suffices to verify that its lifting to Spe&[[y]] is flat over A.
Takeb to bea - A[[y]]. Then by taking a suitable approximation fét

it follows that the liftings toA[[y]] of ¢” and & are isomorphic. This
implies thatd’ ® A/m" ~ ¢’ ® A/m", hence that” is flat overA, since
Spec@ ® A/m") = X, is flat overA.



	Introduction
	Formal Theory and Computations
	Definition of deformations
	Iarrobino's example of a 0-dimensional scheme...
	Meaning of flatness in terms of relations
	Deformations of complete intersections
	The case of Cohen-Macaulay varieties of codim 2...
	First order deformations of arbitrary X...
	Versal deformations and Schlessinger's theorem
	Existence formally versal deformations
	The case that X is normal
	Deformation of a quotient by a finite group action
	Deformations of cones
	Theorems of Pinkham and Schlessinger on...
	Pinkham's computation for deformations of the cone...

	Elkik's Theorems on Algebraization
	Solutions of systems of equations
	Existence of solutions when A is t-adically complete
	The case of a henselian pair (A,a)
	Tougeron's lemma
	Existence of algebraic deformations of isolated...


