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Preface

These are lecture notes for AME 50531 Intermediate Thermodynamics (AME 54531 for
students in our London Programme), the second of two undergraduate courses in thermody-
namics taught in the Department of Aerospace and Mechanical Engineering at the Univer-
sity of Notre Dame. Most of the students in this course are juniors or seniors majoring in
aerospace or mechanical engineering. The objective of the course is to survey both practical
and theoretical problems in classical thermodynamics.

The notes draw heavily on the text specified for the course, Borgnakke and Sonntag’s
(BS) Fundamentals of Thermodynamics, Eighth Edition, John Wiley, New York, 2013, es-
pecially Chapters 8-14. In general the nomenclature of BS is used, and much of the notes
follow a similar structure as that text. In addition, Abbott and van Ness’s Thermodynamics,
McGraw-Hill, New York, 1972, has been used to guide some of the mathematical develop-
ments. Many example problems have been directly taken from BS and other texts; specific
citations are given where they arise. Many of the unique aspects of these notes, which focus
on thermodynamics of reactive gases with detailed finite rate kinetics, have arisen due to
the author’s involvement in research supported by the National Science Foundation under
Grant No. CBET-0650843. The author is grateful for the support. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation.

These notes emphasize both problem-solving as well as some rigorous undergraduate-level
development of the underlying classical theory. It should also be remembered that practice is
essential to the learning process; the student would do well to apply the techniques presented
here by working as many problems as possible.

The notes, along with information on the course, can be found on the world wide web at
https://www3.nd.edu/~powers/ame.50531. At this stage, anyone is free to make copies
for their own use. I would be happy to hear from you about suggestions for improvement.

Joseph M. Powers
powers@nd. edu
https://www3.nd.edu/~powers

Notre Dame, Indiana; USA
© ® & 28 January 2019

The content of this book is licensed under (Creative Commons Attribution-Noncommercial-No Derivative
Works 3.0.
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Chapter 1

Review

Review BS, Chapters 1-7.

Here is a brief review of some standard concepts from a first course in thermodynamics.
e PROPERTY: characterizes the thermodynamics state of the system

— EXTENSIVE: proportional to system’s extent, upper case variables

x V' total volume, SI-based units are m?,

x U: total internal energy, SI-based units are k.J,
x H: total enthalpy, SI-based units are k.J,
xSt total entropy, SI-based units are kJ/K.

— INTENSIVE: independent of system’s extent, lower case variables (exceptions are
temperature 7" and pressure P, which are intensive). Intensive properties can be
on a mass basis or a molar basis:

specific volume, SI-based units are m?/kg,

: specific internal energy, Sl-based units are kJ/kg,

. specific enthalpy, SI-based units are kJ/kg,

specific entropy, SI-based units are kJ/kg/K.

S R

molar specific volume, SI-based units are m?3/kmole,
: molar specific internal energy, SI-based units are kJ/kmole,
: molar specific enthalpy, SI-based units are kJ/kmole,

OB S R R S S SR

wl > <

molar specific entropy, Sl-based units are k.J/kmole/ K.
e DENSITY: p = 1/v, mass per unit volume, SI-based units are kg/m?3.
e EQUATIONS OF STATE: relate properties

— CALORICALLY PERFECT IDEAL GAs (CPIG) has Pv = RT and u — u, =
(T —Ty),
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— CALORICALLY IMPERFECT IDEAL GAs (CIIG) has Pv = RT and u — u, =
Ji e,(T) dT.
— NON-IDEAL STATE EQUATIONS have P = P(T,v), u = u(T,v).

e Any intensive thermodynamic property can be expressed as a function of at most two
other intensive thermodynamic properties (for simple compressible systems).

— P = RT/v: thermal equation of state for ideal gas, SI-based units are kPa.

— ¢ = VkPuv: sound speed for CPIG, Sl-based units are m/s; k = cp/c,, the ratio
of specific heats.

e ENERGY: E = U + (1/2)m(v - v) + mgz, total energy = internal+kinetict+potential.

e FIRST LAW: dFE = 6Q) — oW, if kinetic and potential are ignored, dU = 6Q) — dW; with
0Q) =TdS and OW = PdV, we get the Gibbs equation dU = T'dS — PdV .

e SECOND LAW: dS > 0Q/T.

e PROCESS: moving from one state to another, in general with accompanying heat trans-
fer and work.

e CYCLE: process which returns to initial state.
2
e SPECIFIC REVERSIBLE WORK: Wy = fl Pdv; dw = Pdv.
2
e SPECIFIC REVERSIBLE HEAT TRANSFER: ¢y = f1 Tds; 6q = Tds.

Figure [L.1l gives an example of an isothermal thermodynamic process going from state 1
to state 2 in various thermodynamic planes. Figure gives a sketch of a thermodynamic
cycle.

|
Example 1.1
Consider an ideal gas in the T' — s plane. Compare the slope of an isochore to that of an isobar at
a given point.

Recall the Gibbs equation for a simple compressible substance:

‘Tds = du + Pdv. (1.1)

We have for the ideal gas

if ideal gas. (1.2)

This holds for all ideal gases, be they calorically perfect or imperfect. Thus, the Gibbs equation can be
rewritten as

Tds = ¢,dT +Pdv. (1.3)
——
=du
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Figure 1.1: Sketch of isothermal thermodynamic process.

On an isochore, v is constant, so dv = 0. So on an isochore, we have
Tds = ¢,dT, on an isochore.

or, using the partial derivative notation,

or T

Os|, ¢y

Next recall the definition of enthalpy, h:
h =u+ Pv.
We can differentiate Eq. (L) to get
dh = du + Pdv + vdP.

Substitute Eq. (L.7)) into the Gibbs equation, (L)), to eliminate du in favor of dh to get

Tds = dh— Pdv—vdP +Pdv,
~—_——
=du
= dh —vdP.

(1.8)

(1.9)
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Figure 1.2: Sketch of thermodynamic cycle.

For an ideal gas, dh = cpdT’, where cp is at most a function of T, so

Tds = cpdT —vdP. (1.10)
——
=dh
Now for the isobar, dP = 0. Thus on an isobar, we have

Tds = cpdT, on an isobar. (1.11)

And so the slope on an isobar in the T' — s plane is

or| _ T (1.12)
Os|p cp

Since c¢p > ¢, (recall for an ideal gas that cp(T) — ¢, (T) = R > 0), we can say that the slope of the
isochore is steeper than the isobar in the T — s plane.

|
Ezample 1.2
Consider the following isobaric process for air, modeled as a CPIG, from state 1 to state 2. P, =
100 kPa, Ty = 300 K, T = 400 K. Show the second law is satisfied.

Since the process is isobaric, P = 100 kPa describes a straight line in the P — v and P — T planes
and P, = P; = 100 kPa. Since we have an ideal gas, we have for the v — T plane:

R
v = <F> T, straight lines! (1.13)
rn (0287 i) B00K) e ™ -
LT T T 100 kPa T g '
kJ
 rn (0287 i) (400 K) g™ s
2T Th T 100 kPa T g '
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Since the gas is ideal:

du = cudT.

Since our ideal gas is also calorically perfect, ¢, is a constant, and we get

u2
/ du Cy
ul

T>
/ dr,
T

us—ur = ¢(Ta —T1),

= 71

Also we have

Tds
Tds

from ideal gas : v
Tds

ds

s2
/ ds
s1

S92 — 81

Now since P is a constant,

kJ
0.7175 —— | (400 K — 300 K
.750 ﬂ
kg
= du+ Pdv,
cpdT + Pdv,
RT R RT
= ¢, dT + RdT — %dP,
ar dP
= (co+R) = -R=,
(co + R) T P
dr dP
= (CU—FCP—CU)?—R?,
dr dP
= _— —R—
cp T P’

/Tz dT R /Pz dpP
= cp _— = —_—,
Tl T Pl P

Ts P
= In{—=)—-—Rln|—=|.
cp D<T1> Rn<Pl)

1 12
So9 — 8 = C n J—

kJ 400 K
1.0045 1
( kg K) n(?,oo K)

kJ

= 0.2890 ——

Then one finds

kg K-

v2 v2
1wy = / PdU:P/ dv,
vl V1

= P(’Ug—’l)l),
100 £Pa) [ 1.148 ™ m’
- 148 8 _p.8e1 T&
(100 a)< 8kg 0.86 kg),
— 98700 ©7,
kg

(1.16)

(1.17)
(1.18)

(1.19)

(1.20)

(1.31)
(1.32)

(1.33)

(1.34)
(1.35)

(1.36)

(1.37)
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Now

du = 0q— dw, (1.38)
dq = du+dw, (1.39)

2 2 2
/ d0q = / du +/ dw, (1.40)

1 1 1
192 = (u2 —w1) + w2, (1.41)
kJ kJ

= 71.750 — +28.700 — 1.42
142 kg + kg’ (1.42)

kJ
= 100.450 —. 1.43
192 kg ( )

Now in this process the gas is heated from 300 K to 400 K. One would expect at a minimum that the
surroundings were at 400 K. Check for second law satisfaction.

S2— 81 > Tlii? (1.44)
kJ 100.450 k.J/kg
02890 —— > —— /0y 1.45
kg K 400 K (1.45)
kJ kJ
0.2800 —— > 0.2511 —~ . 1.46
K wE| (1.46)
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Figure 1.3: Sketch for isobaric example problem.
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Chapter 2

Cycle analysis

Read BS, Chapters 5, 8, 9, 10.

2.1 Carnot

The Carnot cycle is the most well-known thermodynamic cycle. It is a useful idealization,
but is difficult to realize in practice. Its real value lies in serving as a standard to which
other cycles can be compared. These are usually fully covered in introductory courses. The
cycle can be considered as follows

e 1 — 2: isentropic compression,
e 2 — 3: isothermal expansion,
e 3 — 4: isentropic expansion, and

e 4 — 1: isothermal compression.

This forms a rectangle in the T" — s plane The P — v plane is more complicated. Both are
shown in Figure 211

2.1.1 Analysis for a calorically perfect ideal gas

For this discussion, consider a calorically perfect ideal gas. The isotherms are then straight-
forward and are hyperbolas described by

1
P = RT-. (2.1)
v
The slope of the isotherms in the P — v plane is found by differentiation:
oP 1
—| = —RT— 2.2
o |, 02’ (2:2)
P
= ——. 2.3
i (23)
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isotherm

N
>

N
w

i
<

isentrope
-
>
isentrope

>
. )
isotherm 4

—_

Y

Weycle =$Pdv = Qcycle = $Tds

Figure 2.1: Sketch of P — v and T — s planes for a CPIG in a Carnot cycle.

The slope of the isentrope is found in the following way. Consider first the Gibbs equation,
Eq. (LI):
Tds = du + Pdv. (2.4)

Because the gas is calorically perfect, one has
du = ¢,dT, (2.5)

so the Gibbs equation, Eq. (2.4]), becomes

Tds = ¢,dT + Pdv. (2.6)
Now for the ideal gas, one has
Pv = RT, (2.7)
Pdv+vdP = RdT, (2.8)
PCZLRWZP — dT. (2.9)
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So then
Pd dP
Tds = ¢, (%) +Pdv, (2.10)
—dr
Tds = (C—]; + 1) Pdv + %vdP, Take ds =0, (2.11)
c ¢y OP
0 = (—” 1)P Cop &2 2.12
R TR 40| (2.12)
or\ _ _E+1P (2.13)
v |, E v’ ’
Cy +1 P
_ et P 2.14
CPC_UCU ’U’ ( )
v ) P
_ _Steee B (2.15)
Co v
Cp P
= —— — 2.16
-2 (216)
P
= —k—. (2.17)

Since k > 1, the magnitude of the slope of the isentrope is greater than the magnitude of
the slope of the isotherm:
oP

= . (2.18)

£

‘ oP
>

|
Ezxample 2.1
(Adapted from BS, 7.94, p. 274) Counsider an ideal gas Carnot cycle with air in a piston cylinder
with a high temperature of 1200 K and a heat rejection at 400 K. During the heat addition, the volume
triples. The gas is at 1.00 m3/kg before the isentropic compression. Analyze.

Take state 1 to be the state before the compression. Then
m3
T, =400 K, wv; =1.00 —. (2.19)
kg
By the ideal gas law
k
RTY (0.287 ,W—JK) (400 K)

P = = . = 1.148 x 10* kPa. (2.20)
vy 1.00 7

Now isentropically compress to state 2. By the standard relations for a CPIG, one finds

T v\ P L
R = | == . 2.21
Ty <U2) <P1> (2.21)
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So

1

1
T\ 51 m3 400 K \ 141 m3>
v = V1 (E) = (1.00 k_g) (1200 K) = 0.06415 k_g (2.22)

Note that vy < vy as is typical in a compression. The isentropic relation between pressure and volume
can be rearranged to give the standard

Pyl = Prot. (2.23)
Thus, one finds that
i 1.00 m* \"
P,=P (ﬂ) = (1.148 x 102 kPa) | ———F2_ |  =5.36866 x 10° kPa. (2.24)
vy 0.06415 7

Note the pressure has increased in the isentropic compression. Check to see if the ideal gas law is
satisfied at state 2:

kJ
7 (0.287 —) (1200 K)
p, = B2 _ ko K)* — 5.36866 x 10° kPa. (2.25)
vz 0.06415 2

This matches. Now the expansion from state 2 to 3 is isothermal. This is the heat addition step in
which the volume triples. So one gets

3 3

vs = 3vp =3 (0.06415 m—) =0.19245 2=, (2.26)
kg kg

Ts = Ty = 1200 K. (2.27)

The ideal gas law then gives

kJ
Ry, (0287 22 ) (1200 K)

Py = = . = 1.78955 x 10® kPa. (2.28)
U3 0.19245 2~
Process 3 to 4 is an isentropic expansion back to 400 K. Using the isentropic relations for the CPIG,
one gets
T3\ = m?\ (1200 K\ T m3
= — = (0.19245 — =3.000 —. 2.29
()= (o) (r) z a2
3y 14
v3\ ¥ 0.19245 7 X
Pi=PF; <—) = (1.78955 x 10® kPa) | ———2% = 3.82667 x 10" kPa. (2.30)
U4 3.000 ’,’j—g
Check:
kJ
rry  (0:287 %) (400 K)
Py =t ko X — 3.82667 x 10 kPa. (2.31)

vy 3.000 ’g—q“

A summary of the states is given in Table 211
Now calculate the work, heat transfer and efficiency. Take the adiabatic exponent for air to be

k = 1.4. Now since

k=L ¢p—c,=R, (2.32)

Cy
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2.1. CARNOT 21
T (K) P (kPa) | v (%)
1 400 1.148 x 102 1.000
2 1200 | 5.36886 x 103 | 0.06415
3 1200 | 1.78955 x 103 | 0.19245
4 400 | 3.82667 x 102 3.000
Table 2.1: State properties for Carnot cycle.
one gets
ko= @, (2.33)
ke, = R+cy, (2.34)
c(k—1) = R, (2.35)
R 0287 e B kJ
Recall the first law:
Uz — UL = 142 — 1Ws. (2.37)
Recall also the caloric equation of state for a CPIG:
U2 — U = CU(TQ — Tl) (238)
Now process 1 — 2 is isentropic, so it is also adiabatic, hence ;g2 = 0, so one has
Uz —uUr = 142 —1W2, (2.39)
g
(=T = —ws, (2.40)
kJ
(0.7175 kg—K) (1200 K — 400 K) = —jwa, (2.41)
1wy = —5.7400 x 107 kI (2.42)

kg

The work is negative as work is being done on the system in the compression process.
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Process 2 — 3 is isothermal, so there is no internal energy change. The first law gives

U3z — U2 = 2¢3— 2W3, (2.43)
co(T3 —T2) = 2q3 —2ws, (2.44)
—_———

=0

0 = 2g3—ows, (2.45)
v3
203 = 2wz = P dv, (2.46)
va
v3 T
_ / BT g, (2.47)
v2 v
V3 d
= RTQ/ iy (2.48)
V2 v
U3
= RI3In—, (2.49)
V2
3
kJ 0.19245
= (0.287 —) (1200 K)ln ——— %9 (2.50)
kg K 0.06415 %
kJ
= 3.78362 x 10 -=. (2.51)
kg
The work is positive, which is characteristic of the expansion process.
Process 3 — 4 is adiabatic so 3gq4 = 0. The first law analysis gives then
Uy —uz = 3q4 —3Wa, (2.52)
-~
=0
co(Ty—T5) = —swa, (2.53)
kJ
0.7175 —— | (400 K — 1200 K) = - 2.54
(0175 27 ) ) = s (2.51)
kJ
swy = 5.74000 x 10% —=. (2.55)
kg
Process 4 — 1 is isothermal. Similar to the other isothermal process, one finds
U — U4 = 441 — 4W1, (2.56)
co(Th —Ts) = aq1 — awr, (2.57)
———
=0
0 = 441 — 4W1, (258)
v1
491 = 4qW1 = / P d’U, (259)
V4
"t RT
= / — dv, (2.60)
V4 v
U1
= RT;In—, (2.61)
V4
3
kJ 1.0000 7=
= (0287 —— ) (400 K)In —=Z 2.62
< kg K)( ) 3.0000 7 (2.62)
kJ
= —1.26121 x 10* —. 2.63
<100 7 (2.63)
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CARNOT
Process Au (’Z—‘g]> q (’Z—‘g]> w (’Z—‘g]>
1—2]| 5.74000 x 102 0 | —5.74000 x 10?
23 0] 3.78362 x 10% | 3.78362 x 102
3 — 4| —5.74000 x 102 0] 5.74000 x 102
41 0| —1.26121 x 10 | —1.26121 x 102
Total 0] 252241 x 10% | 2.52241 x 10?

Table 2.2: First law parameters for Carnot cycle.

Table summarizes the first law considerations. The cycle work is found by adding the work of each

individual process:

Weycle =

The cycle heat transfer is

Gcycle

Note that

1W2 + 2w3 + 3wy + 4W1,

192 + 2G3 + 394 + 441,

(0+3.78362+ 0 — 1.26121)

Weycle = (eycle-

kJ
(—5.74 + 3.78362 4 5.74 — 1.26121) x 10% = 2.52241 x 102 o

kJ
x 102 = 2.52241 x 10 ==.

kg

Check now for the cycle efficiency. Recall that the thermal efficiency is

Here this reduces to

what you want

_ _ Weycle
what you pay for Gin

Recall that the efficiency for any Carnot cycle should be

So general Carnot theory holds that the efficiency should be

Recall further that for a Carnot cycle, one has

2 kJ
_weae 252401078
243 3.78362 x 102 %
ﬂo’u)
=1—
K Thigh
400 K 2
Giow _ Tiow
Qnigh  Thigh
CC BY-NC-ND.

(2.64)
(2.65)

(2.66)
(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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For this problem then one has

—44q1 T‘low
— , 2.74
293 Thigh (2.74)
1.26121 x 10? 42 _ 400K 2.75)
3.78362 x 102 ’;—; 1200 K’ :
1 1

Indeed, the appropriate relation holds.

2.1.2 Exergy

Here we will introduce the concept of exergy, which relies on a Carnot cycle for its motivation.
This concept is widely used in some industrial design applications; its use in the fundamental
physics literature is not extensive, likely because it is not a thermodynamic property of a
material, but also includes mechanical properties. This system quantity is one measure of
how much useful work can be extracted from a system which is brought into equilibrium
with a so-called reference rest state.

First let us imagine that the surroundings are at a reference temperature of T, and a
reference pressure of P,. This yields a reference enthalpy of h, and a reference entropy of s,.
We also take the surroundings to be at rest with a velocity of v = 0, and a reference height
of z,.

Consider the sketch of Fig. 2.2l Let us consider a steady flow into and out of a control
volume. The conservation of mass equation yields

dmy,
dt

For steady flow conditions, we have d/dt = 0, so we recover

= My — Tout. (2.77)

min = mout =m. (278)

The first law of thermodynamics for the control volume yields

dEcv . T . 1
dt = ch - ch + Mip <hzn + §Vin *Vin + gzzn)
) 1
—Mout (hout + §Vout * Vout + gzout) . (279)

We will soon relate ch /™ 10 @i carnot @s sketched in Fig. 2.2} this will introduce a sign
convention problem. For now, we will maintain the formal sign convention associated with
(), connoting heat transfer into the control volume. For steady flow conditions, we get

. . 1
0= ch - ch + m (hzn - hout + 5(\/2” *Vin — Vout * Vout) + g(Zzn — zout)) . (280)
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control

h+(1/2)v-v+gz volume

Carnot >
w

engine Carnot

a L,Carnot

[\

Figure 2.2: Sketch of control volume balance for exergy discussion.

Now take the “in” state to be simply a generic state with no subscript, and the “out”
state to be the reference state, so

O:QCU_ch+m<h_ho+%(V‘V)+g(z_Zo)). (2.81)
Let us next scale by 1 so as to get
OZC]cv—ww+h—ho—|—%v-v+g(z—z0). (2.82)
Here we have taken ¢u, = Q. /m and we, = V., /m.
Now, let us insist that w., = 0, and solve for ¢, to get
Qev = — (h — h, + %v v+g(z — zo)) ) (2.83)

Now, we imagine the working fluid to be at an elevated enthalpy, velocity, and height
relative to its rest state. Thus in the process of bringing it to its rest state, we will induce
dev < 0. By our standard sign convention, this means that thermal energy is leaving the
system. This energy which leaves the system can be harnessed, in the best of all possible
worlds, by a Carnot engine in contact with a thermal reservoir at temperature T, to generate
useful work. It is this work which represents the available energy, also known as the exergy.

For the Carnot engine, we have

Wearnot = 4H,Carnot — 4L,Carnot- (284)

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

26 CHAPTER 2. CYCLE ANALYSIS

Note the standard sign convention for work and heat transfer is abandoned for the Carnot
analysis! It iS Woerner Which gives the availability or exergy, which we define as v:

¢ = {H,Carnot — 4qL,Carnot- (285)

Now let us require that the heat input to the Carnot engine be the heat associated with the
heat transfer from the control volume. Because of the inconsistency in sign conventions, this
requires that

Gecv = —4H,Carnot- (286)

Now for Carnot cycles, we know that

4dH,Carnot = T(S - So>7 (287)
qr,Carnot = TO(S - so)~ (288)

So, by substituting Eqs. (2.806) and (2.88) into Eq. (2.8), the availability 1 is
= —Gev = To(5 = 50). (2.89)

Now use Eq. (2.83) to eliminate g, from Eq. (2.89) to get

b = (h — Ry + %v gz — zo)) CT(s — sy), (2.90)

1
) = (h —Tys + Vv + gz) — (ho — ToS6 + g2o) - (2.91)

So the exergy, that is, the ability to useful work, is enhanced by

high enthalpy h, which for ideal gases implies high temperature 7',

high velocity v,

high height 2z, and

low entropy (or high order or structure) s.

I
Ezxample 2.2
Find the exergy for a CPIG.

For a CPIG, we have
h—h, = cp(T-1T,), (2.92)

$s—8, = cpln <T£) — Rln <§> . (2.93)
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So we get

v=cp(T-T,) —T, (cPIn (%) — Rln (%)) + %V-V-f—g(z—zo).

(2.94)

For T ~ T, P ~ P,, we can use Taylor series to simplify this somewhat. First, we recall the general

Taylor series for a log function near unity. Consider
y(z) =Inz,

for z ~ 1. For a Taylor series near x = 1, we have

R IR T~ | IR
Now for y = Inz, we have
oy _1 dy_ 1
dr  x’ de?  z?’
and thus
y(1) = In(1) =0, j—z =t ;ig =1
So

y(:z:):hm:w()—l—(x—l)—%(:c—lf—l—...

We then expand 1 via the following steps:

T P 1
) cp(T —T,) —cpT,ln <?) + RT,In (—) +-v-v+g(z — 2,),

o P, 2
T T k—1 P 1
= o((g-1) - (g) 5 m(z)) v vrat

o = o) i(2 12+ JELE
e cpl, TO TO 2 TO k PO
1/T 2 E—1/P 1
= CPTO<<§<?O—1> +>+T<E—1+>>+§Vv+g(z—zo)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.102)

(2.103)

Note that in the neighborhood of the ambient state, relative pressure differences are more effective than

relative temperature differences at inducing high exergy.
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2.2 Rankine

2.2.1 Classical

The Rankine cycle forms the foundation for the bulk of power generating devices which
utilize steam as a working fluid. The ideal cycle is described by

e 1 — 2: isentropic pumping process in the pump,

e 2 — 3: isobaric heat transfer in the boiler,

e 3 — 4: isentropic expansion in the turbine, and

e 4 — 1: isobaric heat transfer in the condenser.

Note that to increase cycle efficiency one can

e lower the condenser pressure (increases liquid water in turbine),
e superheat the steam, or

e increase the pressure during heat addition.

A schematic for the Rankine cycle and the associated path in the T'— s plane is shown
in Figure 2.3

boiler

pump

- A

condenser )

Figure 2.3: Schematic for Rankine cycle and the associated T' — s plane.

[
Ezxample 2.3

(adopted from Moran and Shapiro, p. 312) Consider steam in an ideal Rankine cycle. Saturated
vapor enters the turbine at 8.0 M Pa. Saturated liquid exits the condenser at P = 0.008 M Pa. The
net power output of the cycle is 100 MW. Find

e thermal efficiency
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e back work ratio

e mass flow rate of steam

e rate of heat transfer Qm to the fluid in the boiler

e rate of heat transfer Qout in the condenser

e mass flow rate of condenser cooling water if the cooling water enters at 15 °C and exits at 35 °C.

Use the steam tables to fix the state. At the turbine inlet, one has P3 = 8.0 M Pa, and x3 = 1 (saturated
steam). This gives two properties to fix the state, so that
kJ kJ
hg = 2758 — =5.7432 ——. 2.104
3 iy’ 53 g K ( )
State 4 has Py = 0.008 M Pa and sy = s3 = 5.7432 kJ/kg/ K, so the state is fixed. From the saturation
tables, it is found then that
kJ kJ
5.7432 750 ) — (0.5926 72

S4 — Sf ( kg K

5g— Sf 7.6361 ,C;C—JK

) = 0.6745. (2.105)

Note the quality is 0 < z4 < 1, as it must be. The enthalpy is then
kJ kJ kJ
hy=nh hig=(173.88 — 0.6745) | 2403.1 — | =1794.8 —. 2.106
BN < kg>+( )< kg) kg (2.106)

State 1 is saturated liquid at 0.008 M Pa, so 1 = 0, P = 0.008 M Pa. One then gets hy = hy =
173.88 kJ/kg, v = vy = 0.0010084 m?/kg.

Now state 2 is fixed by the boiler pressure and s; = s;. But this requires use of the sparse
compressed liquid tables. Alternatively, the pump work is easily approximated by assuming an incom-
pressible fluid so that

W
hy = h1+E =h1+U1(P2—P1), (2.107)
kJ 3 kJ
hy = (173.88 -2 ) + (0.0010084 = ) (8000 kPa — 8 kPa) = 181.94 ~=. (2.108)
kg kg kg
The net power is . . .
chcle = Wt + Wp- (2109)
Now the first law for the turbine and pump give
& = h3 — hy, % = hy — ha. (2.110)
m m
The energy input that is paid for is .
Qin _ hs — ho. (2.111)
m

The thermal efficiency is then found by
Wi+ Wy _ (hy —ha) + (b1 — ha)
Qin h3 — ho ’

() () (me i) (me)

((2758 Q—;) _ (181.94 Q—;))
— (2.114)
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By definition the back work ratio bwr is the ratio of pump work to turbine work:

bwr

W,
(A
hl — h2
hs — ha

((173.88 Q—;) - (181.94 Q_;))
((2758 &2) - (17948 &2)) |/

)

)

The desired mass flow can be determined since we know the desired net power. Thus

chcle

(hg — ha) + (hy — h2)’

100 x 10% kW

kJ kJ kJ I TARNE
((2758 k—q) _ (1794.8 k—q) n (173.88 k—q) . (181.94 k—q))

kg

= 104.697 -2,
S

- kg SN\ 5
- <104.697 ?) (3600 E) = |8.769 x 10° 2

kg

The necessary heat transfer rate in the boiler is then

Qin

Qout

m(hs — ha),

k k k
104.697 “9) (2758 F2) = (181.04 *2) ) .
S kg kg

269706 kW,

- [zwra7]

In the condenser, one finds

m(hy — hy),

k k k
104.697 &9 173.88 —J —[1794.8 —J ,
s kg kg

—169705 kW,

= |—169.7T MW.

Note also for the cycle that one should find

Weyete = Qin + Qout = (269.7 MW) — (169.7 MW) = 100 MW.
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For the condenser mass flow rate now perform a mass balance:

dE, . . . )
7 = Qc’u - ch +mc(hzn - hout) + m(h4 - h1)7 (2132)
= =0 =0
0 = 1ite(hin — hout) + 1i2(ha — h1), (2.133)
. n(ha —hy)
e = -t (2.134)
(104607 £2) ((1794.8 £2) - (17388 1))
- — — , (2.135)
((62.99 k—g) - (146.68 k—g))
— 202779 M. (2.136)
S
- (2027.79 @> (3600 S) , (2.137)
s hr
kg
= |7.3x10% ==, 2.138
X o ( )

The enthalpy for the cooling water was found by assuming values at the saturated state at the respective
temperatures of 15 °C and 35 °C.

|
Example 2.
Compute the exergy at various points in the flow of a Rankine cycle as considered in the previous
example problem. For that example, we had at state 1, the pump inlet that

kJ kJ
hy =173.88 — =0.5926 ——. 2.1
1 73.88 kg’ s1 = 0.5926 o K (2.139)
After the pump, at state 2, we have
kJ kJ
ho = 181.94 — =0.5926 ——. 2.140
2 kg, 52 kg K ( )
After the boiler, at state 3, we have
kJ kJ
hs = 2758 — =5.7432 ——. 2.141
3 W K (2.141)
After the turbine, at state 4, we have
kJ kJ
hy = 1794.8 — =5.7432 ——. 2.142
4 kg’ kg K (2.142)

Now for this example, kinetic and potential energy contributions to the exergy are negligible, so we
can say in general that

1/} = (h - TOS) - (ho - Toso)- (2143)
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Now for this problem, we have T, = 298.15 K, h, = 104.89 kJ/kg, s, = 0.3674 kJ/kg/K. We have
estimated h, and s, as the enthalpy and entropy of a saturated liquid at 25 °C = 298.15 K.
So the exergies are as follows. At the pump entrance, we get

Y1 = (b1 —Tos1) — (ho — ToS0) (2.144)
= ((173.88 ]Z:_Lg]) —(298.15 K) (0.5926 klgf—JK)>
- ((104.89 %) — (298.15 K) (0.3674 k]g“—JK» : (2.145)
=|1.84662 %. (2.146)

After the pump, just before the boiler, we have

Yo = (ha —Tos2) = (ho — Tos0), (2.147)
= <<181.94 %) —(298.15 K) <O.5926 ];;—JK)>
- ((104.89 %) — (298.15 K) (0.3674 k]g“—JK» : (2.148)
=19.90662 IZ—Z. (2.149)

So the exergy has gone up. Note here that ¥y — 17 = ho — hy because the process is isentropic. Here
After the boiler, just before the turbine, we have

Y3 = (hs —T,83) — (ho — T150) (2.150)
- ((2758 i—‘g]) ~ (298.15 K) (5.7432 1£—JK>)
- ((104.89 %) ~ (298.15 K) (0.3674 k]g“—JK» , (2.151)
—1050.32 IZ—Z. (2.152)

Relative to the pump, the boiler has added much more exergy to the fluid. After the turbine, just
before the condenser, we have

Yo = (ha—Tos4) = (ho — To80) (2.153)
= ((1794.8 IZ—;’) — (298.15 K) (5.7432 I;;—JK»
- <<104.89 Z—Z) —(298.15 K) <0.3674 ];;—JK» : (2.154)
—=|87.1152 Z—‘;. (2.155)

Note that 4 — 13 = hy — h3 because the process is isentropic. The actual exergy (or available work)
at the exit of the turbine is relative low, even though the enthapy state at the turbine exit remains at
an elevated value.
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2.2.2 Reheat

In a Rankine cycle with reheat, the steam is extracted from an intermediate stage of the
turbine and reheated in the boiler. It is then expanded through the turbine again to the
condenser pressure. One also avoids liquid in the turbine with this strategy. This generally
results in a gain in cycle efficiency. Geometrically, the behavior on a 7' — s diagram looks
more like a Carnot cycle. This is often covered in an introductory thermodynamics class, so
no formal example will be given here. A schematic for the Rankine cycle with reheat and
the associated T'— s diagram is shown in Figure 2.41

T

Wy

Boiler

A

)

Y

Pump

Condenser )

- A

Figure 2.4: Schematic for Rankine cycle with reheat along with the relevant T'— s diagram.

2.2.3 Regeneration

In a Rankine cycle with regeneration, some steam is extracted from the turbine and used
to pre-heat the liquid which is exiting the pump. This can lead to an increased thermal
efficiency, all else being equal. The analysis is complicated by the need to take care of more
complex mass and energy balances in some components. A schematic for the Rankine cycle
with regeneration and open feedwater heating is shown in Figure

|
Ezxample 2.5
(BS, Ex. 11.4, pp. 438-440) Steam leaves boiler and enters turbine at 4 M Pa, 400 °C. After
expansion to 400 kPa, some stream is extracted for heating feedwater in an open feedwater heater.
Pressure in feedwater heater is 400 kPa, and water leaves it at a saturated state at 400 kPa. The rest
of the steam expands through the turbine to 10 £Pa. Find the cycle efficiency.

e 1 — 2: compression through Pump P1,
e 2 & 6 — 3: mixing in open feedwater heater to saturated liquid state,
e 3 — 4: compression through Pump P2,

e 4 — 5: heating in boiler,
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5
—>
Boiler
7
6
A
4
Feedwater
Heater Condenser
Pump 2
P2 <
3
Pump <
P1 !

Figure 2.5: Schematic for Rankine cycle with regeneration and open feedwater heating.

e 5 — 6: partial expansion in turbine,
e 5 — 7: completion of turbine expansion, and
e 7 — 1: cooling in condenser.

From the tables, one can find

kJ kJ kJ kJ kJ
hs = 3213.6 ——, hg = 2685.6 —, h;=2144.1 —=, hy =191.8 =, hy = 604.73 ——,
kg kg kg kg kg

3 3

m m
=0.00101 — =0.001084 —. 2.1
vy = 0.0010 kg vy = 0.00108 Tg (2.156)
First consider the low pressure pump.
he = hi4+un(P-— Pl), (2.157)
kJ m3
= 191.8 g + { 0.00101 7 ((400 kPa) — (10 kPa)), (2.158)
kJ
= 192.194 — 2.159
- (2.159)

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

2.2. RANKINE 35
The pump work is
wpr = vi(P— P), (2.160)
3
= <0.00101 %) ((10 kPa) — (400 kPa)), (2.161)
kJ
= 0399 1. (2.162)

Note, a sign convention consistent with work done by the fluid is used here. At this point the text
abandons this sign convention instead.

Now consider the turbine

dmey

dt
———
=0

s
1

dEcy
dt

~———"
=0
WCU

On a per mass basis, we get,

= 1y — Mg — 1y,

= 1hg + My,
mg = 1y
ms ms’

= Quo —Wey +105hs — mhghe — mzhy,
~
-0

= 1hshs — mghg — rhy.

h5_h6+h6_@h6_<1_@>h7a
Ths

ms

hs — he + hg (1—@)—(1—@)%
ms ms

hs — hg + (1—@) (hﬁ_h7).

ms

Now consider the feedwater heater. The first law for this device gives

dE¢,
dt

——"
=0

h3

<604.73 k—J>
kg

e
ms

Qev — Wey +1i2hy 4 mighs — mishs,
<~ =~
-0 =0

16 (192194 FL) £ 76 (96856 K7
ms kg ms kg

0.165451.

(2.163)

(2.164)
(2.165)

(2.166)

(2.167)

(2.168)
(2.169)
(2.170)
(2.171)

(2.172)

(2.173)

(2.174)
(2.175)
(2.176)
(2.177)

(2.178)
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Now get the turbine work

Wt

e

hs — he + (1— )(hs—fw),
ms

(3213.6 ﬂ) — (2685.6 ﬂ)
kg kg

keJ keJ
+(1—0.165451) <<2685.6 k—g) - (2144.1 k—)) ,

Now get the work for the high-pressure pump

Now

ha

9
— 979.908 *.
kg
wpy = wv3(P3— Py),
3
- (0.001084 Z—) ((400 kPa) — (4000 kPa)),
g
kJ
= —3.9024 2.
kg

hg + Ug(P4 — Pg),
kJ m3
604.73 )" 0.001084 T ((4000 kPa) — (400 kPa)),

kJ
608.6 —.
kg

Now get the net work

Wnet =

Wnet =

mswg + Mmiwp1 + Mswp2,
my
wy + —wp1 + Wpa,
ms
my
wy + —wp1 + Wp2,
ms
Mg
wy+ |1 —— | wp1 +wp2,
ms

(979.908 ]Z—J> + (1 —0.165451) (—0.3939 ]Z—J> — (3.9024 ]Z—J) ,

Now for the heat transfer in the boiler, one has

g g g
975.677 ﬂ.
kg
gn = hs— hy,
= (3213.6 ﬂ) — (608.6 ﬂ) ,
kg kg
= 2605.0 ﬂ.
kg

Thus, the thermal efficiency is

975.677 &7
9

kJ
qn 2605.0 %5
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This does represent an increase of efficiency over a comparable Rankine cycle without regeneration,
which happens to be 0.369.

2.2.4 Losses
e Turbine: These are typically the largest losses in the system. The turbine efficiency is
defined by
hs —h
p= -t BT (2.198)

Wt h3 h4s

Here hys and wys are the enthalpy and work the working fluid would have achieved had
the process been isentropic. Note this is for a control volume.

e Pump: Pump losses are usually much smaller in magnitude than those for turbines.
The pump efficiency for a control volume is defined by

’LUps . h — hl

Wyp hg hl

n= (2.199)

e Piping: pressure drops via viscous and turbulent flow effects induce entropy gains
in fluid flowing through pipes. There can also be heat transfer from pipes to the
surroundings and vice versa.

e Condenser: Losses are relatively small here.

Losses will always degrade the overall thermal efficiency of the cycle.

2.2.5 Cogeneration

Often steam is extracted after the boiler for alternative uses. A good example is the Notre
Dame power plant, where steam at high pressure and temperature is siphoned from the
turbines to heat the campus in winter. The analysis for such a system is similar to that for
a system with regeneration.

A schematic for cogeneration cycle is shown in Figure 2.6l

2.3 Air standard cycles

It is useful to model several real engineering devices by what is known as an air standard
cycle. This is based on the following assumptions:

o CPIG,
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Figure 2.6: Schematic for Rankine cycle with cogeneration.

e no inlet or exhaust stages,

e combustion process replaced by heat transfer process,

e cycle completed by heat transfer to surroundings (not exhaust), and
e all process internally reversible.

In some cycles, it is common to model the working fluid as a fixed mass. In others, it is
common to model the system as a control volume.

2.4 Brayton

2.4.1 Classical

The Brayton cycle is the air standard model for gas turbine engines. It is most commonly
modeled on a control volume basis. It has the following components:

e 1 — 2: isentropic compression,
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e 2 — 3: isobaric heat transfer to combustion chamber,
e 3 — 4: isentropic expansion through turbine, and
e 4 — 1: isobaric heat exchange with surroundings.

A schematic for the Brayton cycle is shown in Figure 2.7l Diagrams for P —v and T — s for

Fuel

Combustion

Chamber L

Turbine 1 w

Compressor

—>
environmental exhaust return
Figure 2.7: Schematic for Brayton cycle.
the Brayton cycle are shown in Figure 2.8
P T
A A
2 3 3
isentrope
isobar
isentrope 2 4
1 4 1 isobar

Y
Y

Figure 2.8: P — v and T — s diagrams for the Brayton cycle.

The efficiency of the air standard Brayton cycle is found as

- Wt

n= . (2.200)
qH
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For the cycle, the first law holds that

Wnet = Gnet = 4H — 4L-

One notes for an isobaric control volume combustor that

dE,, . . . .
dt = ch - ch _'_mhm - mhout-
N g

=0

So

ch - m(hout_hin)a

cv
. = hout - hina

m
= hout - hina
= CP(Tout - E )
So the thermal efficiency is
w — cp(Ty —T7) T (T
n= net _ 4H QLzl_q_Lzl_P 4 U _q_ 1
qu qu qu cp(Tz — T3) T, (% 1
2

Now because of the definition of the process, one also has

B _ R
P, P

And because 1 — 2 and 3 — 4 are isentropic, one has

P2 B T2 k/(k_l)_Pg_ T3 k/(k—1)
P \T P \Ty '

So one then has

T
T
Cross-multiplying, one finds
5 T,
T, T
Subtracting unity from both sides gives
T
8= L 1.
T Ty
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So the thermal efficiency takes the form

I L, (2.213)
n= —_— = —_ = — — . .
1

Note that if a Carnot cycle were operating between the same temperature bounds that
Nearnot = 1 — T1 /T3 would be greater than that for the Brayton cycle.

Relative to the Rankine cycle, the Brayton cycle has a large fraction of compressor work.
So the backwork ratio bwr is larger.

One must also account for deviations from ideality. These effects are summarized in
component efficiencies. The relevant efficiencies here, assuming a control volume approach,
are

e = % (2.214)

o= Zj’_% (2.215)
For a CPIG, one gets then

Ne = % (2.216)

N = %- (2.217)

|
Ezxample 2.6
(adopted from Moran and Shapiro, Example 9.6) Air enters the compressor of an air-standard
Brayton cycle at 100 kPa, 300 K with a volumetric flow rate is 5 m3/s. The pressure ratio in the
compressor is 10. The turbine inlet temperature is 1400 K. Find the thermal efficiency, the back work
ratio and the net power. Both the compressor and turbine have efficiencies of 0.8.
First calculate the state after the compressor if the compressor were isentropic.

k/(k—1)

P Tos
?2 = (T—2> =10, (2.218)

1 1
Tos = Ti(10)F=D/k (2.219)
= (300 K)(10)(1-4-1/14 (2.220)
579.209 K. (2.221)

Now
Ty — T

e = 7132_T117 (2.222)

Ty, — T
T, = T4+ =21 (2.223)

579.209 K) — (300 K

= (300 K)+( 0)8 ( ), (2.224)
= 649.012 K. (2.225)
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Now state three has T3 = 1400 K. Recall that 2 — 3 involves heat addition in a combustion chamber.
Now calculate Tys for the ideal turbine. Recall that the expansion is to the same pressure as the

compressor inlet so that P3/P, = 10. The isentropic relations give

& k/(k—1) B ﬂ
13 Py

P\ /K
Ty = T2 ,

3

(1.4-1)/1.4
= 1400 K) | —
(1400 K) (m)

= 725.126 K.

Now account for the actual behavior in the turbine:

T3 — T,
m = 7713 T
Ty = T5—n(T5 — Tus),
= (1400 K) — (0.8)((1400 K) — (725.126 K)),
860.101 K.

Now calculate the thermal efficiency of the actual cycle.

- Wnet _ qH — 4L :1_q_L:1_CP(T4—T1) _ -1
qH qH qH cp(T3 —T3) T =T
B _ 860.101 K — 300 K
N 1400 K — 649.012 K’
= |0.254181.
If the cycle were ideal, one would have
o Wnet o qH — 4L o qrL o CP(T45 - Tl) o T4s - Tl
TNideal = —_—=———=1-—=—=1- =1 ,
qH qH qH cp(T3 — Ths) T3 — T,
B _ (725.126 K) — (300 K)
(1400 K) — (579.209 K)’
= 0.482053.
Note also that for the ideal cycle one also has
T 300 K
ideal = 1 — — =1 — ———— = 0.482053.
lideal Tos 579.200 K
The back work ratio is
bwr = —wcomp,
Wturb
_ CP(TQ — Tl)
CP(T3 — T4) ’
. Th-T
Ty =Ty

(649.012 K) — (300 K)
(1400 K) — (860.101 K)’

~ (0616139
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If the process were ideal, the back work ratio would have been

bwrigeas = —22 (2.246)

Wturb
cp(Tos — Th)

_ 7 2.247
cp(Ts — Tys) ( )
Tos — T

= — 2.248
T3 - T4s , ( )

209 K) — K

(679209 K) — (300 K) (2.249)
(1400 K) — (725.126 K

— 0413721 (2.250)

Now get the net work. First get the mass flow rate from the volume flow rate. This requires the specific
volume.

k
g (0287 ) G0 K) e ™ o)
T T 100 kPa U g '
Now . .
.V 5 M- k
m=pV=—=—5 _=58072 2. (2.252)
vl 0.861 2 s

Recall cp = ke, = 1.4(717.5 J/kg/K) = 1004.5 J/kg/K = 1.0045 kJ/kg/K. Now

Weyere = tep((Ts = Ta) — (To — Th), (2.253)
k k

= (5.8072 ?g> <1.0045 kg—JK) (1400 K) — (860.101 K) — (649.012 K) + (300 K))(2.254)

= |1113.51 kW. (2.255)

If the cycle were ideal, one would have

Widear = mep((Tz — Tys) — (Tas — T1), (2.256)
= (5.8072 %) (1.0045 ]£—JK> ((1400 K) — (725.126 K) — (579.209 K) + (300 K))(2.257)
= 2308.04 kW. (2.258)

Note that the inefficiencies had a significant effect on both the back work ratio and the net work of the
engine.

2.4.2 Regeneration

One can improve cycle efficiency by regeneration. The hot gas in the turbine is used to
preheat the gas exiting the compressor before it enters the combustion chamber. In this
cycle, one takes

e 1 — 2: compression,

e 2 — x: compression exit gas goes through regenerator (heat exchanger),
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e r — 3: combustion chamber,
e 3 — 4: expansion in turbine, and
e 4 — y: turbine exit gas goes through regenerator (heat exchanger).

A schematic for the Brayton cycle is shown in Figure 2.9

y Regenerator

<
<

A

IS

y %

Combustion
chamber 3

Compressor Turbine 1w

\

Figure 2.9: Schematic for Brayton cycle with regeneration.

For this to work, the gas at the turbine exit must have a higher temperature than the gas
at the compressor exit. If the compression ratio is high, the compressor exit temperature is
high, and there is little benefit to regeneration.

Now consider the regenerator, which is really a heat exchanger. The first law holds that

E . .
dgv: Qey — Wey +1ithy — mithy + mhy — 1ihy, (2.259)
0 = hy—hg+hy—hy, (2.260)
= CP(Tg — Tx) + CP(T4 — Ty), (2261)
= T —T,+T,—T,. (2.262)

Now consider the inlet temperatures to be known. Then the first law constrains the outlet
temperatures such that

Ty+Ty =T, +1T,. (2.263)

If the heat exchanger were an ideal co-flow heat exchanger, one might expect the outlet
temperatures to be the same, that is, T,, = T}, and one would have T, = T, = (1/2)(T>+1}).
But in fact one can do better. If a counter-flow heat exchanger is used, one could ideally
expect to find

T,=T, T,=T. (2.264)
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The thermal efficiency is

Wt

n = : (2.265)
qH
= e (2.266)
qH
_ CP(T3 — T4) — CP(T2 — Tl) (2 267)
Cp(Tg — Tx) ’ ’
(T3 —Ty) — (T2 — Th)
_ 2.268
(T3 = Ty) — (T, = Th)
_ 2.269
T T, , ( )
T, — T
_ 2.270
T T, ( )
=
— 1- TliT (2.271)
n-#)
(k—1)/k
()
— - — (2.272)
71— (P3>
(k—1)/k
()
= 1- E=InN (2.273)
T (1 - (i> )
2
Py (k—1)/k
_ ALk R <E) 2.274
- n\Rn - ()" 22
2
T/ P\ /%
— 1122 . 2.275
. ( Pl) (2.275)

Note this is the Carnot efficiency moderated by the pressure ratio. As the pressure ratio
rises, the thermal efficiency declines.

The regenerator itself will not be perfect. To achieve the performance postulated here
would require infinite time or an infinite area heat exchanger. As both increase, viscous
losses increase, and so there is a trade-off. One can summarize the behavior of an actual
regenerator by an efficiency defined as

h, — hy actual
reg — = . 2.276
Tres = B hy T ideal (2.276)
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If we have a CPIG, then
T, — Ty

TNreg = m (2277)

[
Example 2.7

(extension for Moran and Shapiro, Example 9.6) How would the addition of a regenerator affect
the thermal efficiency of the isentropic version of the previous example problem?

One may take the rash step of trusting the analysis to give a prediction from Eq. (2278) of

=
|

T3
300 K (1.4-1)/1.4
1= (oo ) Q0470714 = [0.586270. (2.279)

Without regeneration, the thermal efficiency of the ideal Brayton cycle had a value of 0.482053. Had
the engine used a Carnot cycle between the same temperature limits, the efficiency would have been
0.785714.

T, [ P (k=1)/k
1——= 1| = 2.278
(Pl) ? ( )

2.4.3 Ericsson Cycle

If one used isothermal compression and expansion, which is slow and impractical, in place
of isentropic processes in the Brayton cycle, one would obtain the Ericsson cycle. Diagrams
for P — v and T — s for the Ericsson cycle are shown in Figure 210

P T
A A

isotherm

isobar .
isobar

Y
Y

Figure 2.10: P — v and T' — s diagram for the Ericsson cycle.
One can outline the Ericsson cycle as follows:
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e | — 2: isothermal compression,

e 2 — 3: isobaric heating in the combustion chamber,
e 3 — 4: isothermal expansion in turbine, and

e 4 — 1: isobaric heat transfer in surroundings.

One also takes the control volume approach.

First consider the work in the isothermal compressor. For the control volume, one recalls
that the work is given by the enthalpy difference, and that dh = T'ds + vdP = dq. — dw,,
with dq. = T'ds and dw,. = —vdP, so

2 2dP P
Wwe = —/ vdP=—-RT, | — =—RTyIn—. (2.280)
1 1 P P1

Note that P,/P, > 1, so w. < 0; work is done on the fluid in the compressor.

For the turbine, again for the control volume, the key is the enthalpy difference and
dh = Tds +vdP = 6q; — dwy, with d¢; = T'ds and dw; = —vdP. The turbine work would be

4 4
dP P

wy = —/ vdP=—RT; | — = —RT3In—. (2.281)
3 3 P Ps

But because P, = P3 and P, = P,, the turbine work is also
wy = —RI3In— = R131n —. (2.282)

Note that because P»/P; > 1, the turbine work is positive.
In the combustion chamber, one has from the first law

hg—hg = ({c (2283)
cr(T3—Ty) = qc. (2.284)

For the isothermal turbine, one has dh = cpdl = 0 = ¢, — wy, so ¢ = w;. The heat
transfer necessary to keep the turbine isothermal is

P
¢ =w; = RT3In =2 (2.285)
Py
So the total heat that one pays for is
Py
qm = qc +q = cp(13 —T1) + RT3 1In o (2.286)
1
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So the thermal efficiency is
g = 2 + We (2.287)
a0
R(T3 —Ty)In &2
n = (T~ Tl j; - (2.288)
CP(Tg — Tl) + RTg In F?

_ 5 P
( TS)lnP1

= L( - £> —l—ln&7 (2.289)
k—1 T3 P
() ()"
T3 P,
- . NG (2.290)
(1 _ T_1> +ln (ﬁ)
T 1
— (1 — Tl) - : (2.291)
3 14— T
1n<%)(7€*1)/k
1
T L- %
~ (1_7) 1—w+... ) (2.292)

Vv
correction

This is expressed as a Carnot efficiency modified by a correction which degrades the efficiency.
Note the efficiency is less than that of a Carnot cycle. For high temperature ratios and high
pressure ratios, the efficiency approaches that of a Carnot engine.

Now if one used multiple staged intercooling on the compressors and multiple staged
expansions with reheat on the turbines, one can come closer to the isothermal limit, and
better approximate the Carnot cycle.

2.4.4 Jet propulsion

If one modifies the Brayton cycle so that the turbine work is just sufficient to drive the
compressor and the remaining enthalpy at the turbine exit is utilized in expansion in a
nozzle to generate thrust, one has the framework for jet propulsion. Here the control volume
approach is used. A schematic for a jet engine is shown in Figure .11l Diagrams for P — v
and T — s for the jet propulsion Brayton cycle are shown in Figure .12l An important
component of jet propulsion analysis is the kinetic energy of the flow. In the entrance region
of the engine, the flow is decelerated, inducing a ram compression effect. For high velocity
applications, this effect provides sufficient compression for the cycle and no compressor or
turbine are needed! However, such a device, known as a ramjet, is not self-starting, and so
is not practical for many applications.
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Burner

Compressor Turbine

environmental exhaust return

Figure 2.11: Schematic for jet propulsion.
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> >

A S

Figure 2.12: P — v and T — s diagrams for jet propulsion Brayton cycle.

One can outline the ideal jet propulsion cycle as follows:

e 1 — a: deceleration and ram compression in diffuser,

e o — 2: isentropic compression in the compressor,

e 2 — 3: isobaric heating in the combustion chamber,

e 3 — 4: isentropic expansion in turbine,

e 4 — 5: isentropic conversion of thermal energy to kinetic energy in nozzle, and

e 5 — 1: isobaric heat transfer in surroundings.

The goal of the jet propulsion cycle is to produce a thrust force which is necessary to
balance a fluid-induced aerodynamic drag force. When such a balance exists, the system is
in steady state. One can analyze such a system in the reference frame in which the engine
is stationary. In such a frame, Newton’s second law gives

d

E (mcvvcv) = F + PlAli — P5A5i +mV1 - mV5. (2293)
—~— — —

N——— thrust force small

=0
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Solving for the thrust force, neglecting the small differences in pressure, one gets,
F=1(vs—vyp). (2.294)

The work done by the thrust force is the product of this force and the air speed, v;. This
gives

Wyl = |F - va| = [ria(vs — va) - va . (2.295)

Now the efficiency of the cycle is a bit different. The net work of the turbine and compressor
is zero. Instead, the propulsive efficiency is defined as

Propulsive P '
— ropulsive Power \Wp‘ ’ (2.296)
Energy Input Rate  |Qp|
vy - (v — Vi)
_ ' . 2.297
m‘(hg - h2)| ( )

Note the following unusual behavior for flight in an ideal inviscid atmosphere in which
the flow always remains attached. In such a flow D’Alembert’s paradox holds: there is
no aerodynamic drag. Consequently there is no need for thrust generation in steady state
operation. Thrust would only be needed to accelerate to a particular velocity. For such
an engine then the exit velocity would equal the entrance velocity: vs = vi and F = 0.
Moreover, the propulsive efficiency is 7, = 0.

|
Example 2.8
(adopted from Cengal and Boles, p. 485). A turbojet flies with a velocity of 850 g at an altitude
where the air is at 5 psia and —40 F. The compressor has a pressure ratio of 10, and the temperature
at the turbine inlet is 2000 F'. Air enters the compressor at a rate of m = 100 lem' Assuming an air
standard with CPIG air, find the

e temperature and pressure at the turbine exit,
e velocity of gas at nozzle exit, and
e propulsive efficiency.

For the English units of this problem, one recalls that

lbm ft Btu ft?
1 Btu=T77.5 ft Ib =322 -—" 1= =25037 *—. 2.298
“ Jrivf, g Ibf 52 1bm 52 (2.298)
For air, one has
Btu ftivf ft? Btu
=0.240 ——— R=53.34 =1717.5 = 0.0686 ——— k=14 2.299
r Ibm °R’ Ibm °R s2°R Ibm °R’ (2:299)

First one must analyze the ram compression process. An energy balance gives

V] -V
hy + 121:ha+

Vaq * Va

(2.300)
——

small
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It is usually sufficient to neglect the kinetic energy of the fluid inside the engine. While it still has
a non-zero velocity, it has been slowed enough so that enthalpy dominates kinetic energy inside the

engine. So one takes

The ambient temperature is

V1 - V1
2 b)
Vi -V
hy = o+ =

hi +

Vi1 -V
ep(Ty — T,) + %

Vi -V
T + ! 1.
2613

T) = —40+ 460 = 420 °R.

So after ram compression, the temperature at the inlet to the compressor is

T, = (420 °R) +

O\ 2
(350 &) | Buu

2(

bm o
=480 °R.
o eg) 25037 L

0.240 Bty

Now get the pressure at the compressor inlet via the isentropic relations:

k/(k—1) o oy L4/(1.4-1)
T, , 480 °R ;
P, =P (—) = (5 psia) ( ) = 8.0 psia.

T

Now consider the isentropic compressor.

420 °R

P, =10P, = 10(8.0 psia) = 80 psia.

Now get the temperature after passage through the compressor.

P

Tg_Ta<Pa

(k—1)/k
) (480 °R) (10) 4/ Z g7 opp

(2.301)
(2.302)
(2.303)

(2.304)

(2.305)

(2.306)

(2.307)

(2.308)

(2.309)

The temperature at the entrance of the turbine is known to be 2000 F' = 2460 °R. Now the turbine
work is equal to the compressor work, so

We

ho — hg
cp(Te = T,)
T -1,

Ty

Use the isentropic relations to get Py:

Ty k/(k—1) 9013 ° R\ -4/(1:4-1)
per(T) = sopsia) (BT -

Wy,

hg — hy,
cp(Ts —Ty),
T3 — Ty,

T3 — Ty + T,

2460 °R — 927 °R + 480 °R,

(2.317)
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Expansion through the nozzle completes the cycle. Assume an isentropic nozzle, therefore

o 1)/
Ts = Ty <—5> ;

. (n (k=1 /k
- 4 P4 )

= = (2013 °R) <

= 1114 °R.

Now consider the energy balance in the nozzle:

V5 - V V4 -+ V

hs + =2 = hy4 =2

2 2

——
small

2

0 = h5—h4+\%5,

Vs -V
= cp(Ts —Ty) + 52 5,

Vs = \/2CP(T4 —T5),

5 psia
39.7 psia

>(1.4—1)/1.4

3

Btu
= 210240 ——
J ( lbm

= |3288 ﬁ
5

Now find the thrust force magnitude

F| = r(vs —vi1) = (100 “’Tm> <

243800 L-5m
Ibm ft
32.2 P

= 7571.4 Ibf.

)

°R

ft

> (2013 °R — 1114 °R) <

ft
3288 L= — 850 L
S S

The power is the product of the thrust force and the air speed, so

Wp| = |F-vy|=(7571.

8277 @,
S

- o)

= 11711 hp.
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41bf) <85O A

1.415 hp

Btu
s

)

ft

S

)

Btu

7775 ft Ibf

> = 243800

Btu
1 lbm

).

25037 L&

)

£t lbm
82

)

(2.318)

(2.319)

(2.320)

(2.321)

(2.322)

(2.323)
(2.324)
(2.325)

(2.326)

(2.327)

(2.328)

(2.329)

(2.330)

(2.331)
(2.332)

(2.333)

(2.334)
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Now for the heat transfer in the combustion chamber

Qu = ri(hs — ha), (2.335)
= ’I”i’LCp(Tg—TQ), (2336)
lbm Btu
= (100 — 240 ——— ) (2460 °R — 927 ° 2.
<00 S)(O Olbm0R>( 60 °R — 927 °R), (2.337)
Bt
= 36792 2. (2.338)
S

So the propulsion efficiency is

i 8277 Blu
_We _ 82T 0.225. (2.339)

= On 36792 B

The remainder of the energy is excess kinetic energy and excess thermal energy, both of which ultimately
dissipate so as to heat the atmosphere.

Other variants of the turbojet engine include the very important turbofan engine in which
a large cowling is added to the engine and a an additional fan in front of the compressor
forces a large fraction of the air to bypass the engine. The turbofan engine is used in most
large passenger jets. Analysis reveals a significant increase in propulsive efficiency as well as
a reduction in jet noise. Other important variants include the turboprop, propfan, ramjet,
scramjet, jet with afterburners, and rocket.

2.5 Reciprocating engine power cycles

Here are some common notions for engines that depend on pistons driving in cylinders. The
piston has a bore diameter B. The piston is connected to the crankshaft, and the stroke S
of the piston is twice the radius of the crank, R qnk:

S = 2Rerant. (2.340)

See Figure 2.13] for an illustration of this geometry for a piston-cylinder arrangement in two
configurations. The total displacement for all the cylinders is

vdispl = Ncyl(vmam - me) = NcylAcylS- (2341)
Note that
B2
Aoy = WZ. (2.342)

The compression ratio is not the ratio of pressures; it is the ratio of volumes:

vmam
Vmin

ry=CR= (2.343)
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2R

crank

Figure 2.13: Piston-cylinder configurations illustrating geometric definitions.

For these engines the volumes are closed in expansion and compression, so the net work is
Whet = %P dv = Ppic(Vmaz — Umin)- (2.344)

Here one has defined a mean effective pressure: Pp.rs. The net work per cylinder per cycle
is

Wnet = MWpet = Pmeffm(vmam - Umin) = Pmeff(vmam - szn) (2345)

Now consider the total power developed for all the cylinders. Assume the piston operates at
a frequency of v cycles/s:

Wnet = Ncyleeff(vmam - me)V (2346)
It is more common to express v in revolutions per minute: RPM = v(60 —-), so
. RPM
Wnet = Pmeff Ncyl(vmam - me) 60757 (2347)
:V‘d,ispl min
RPM
= Pmeffvdispl 607 (2348)

man

This applies for a two-stroke engine. If the engine is a four stroke engine, the net power is
reduced by a factor of 1/2.
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2.6 Otto

The air-standard Otto cycle approximates the gasoline engine. It employs a fized mass
approach.
Diagrams for P — v and T — s for the Otto cycle are shown in Figure 2.14]

isochore

isentrope
isochore

Y

Figure 2.14: P — v and T — s diagrams for the Otto cycle.

One can outline the Otto cycle as follows:

e 1 — 2: isentropic compression in the compression stroke,

e 2 — 3: isochoric heating in the combustion stroke during spark ignition,
e 3 — 4: isentropic expansion in power stroke, and

e 4 — 1: isochoric rejection of heat to the surroundings.

Note for isochoric heating, such as 2 — 3, in a fixed mass environment, the first law gives

Uz — Uz = 2G3 — 2W3, (2.349)
v3

Uz — Uy = 2943 — / P dU, but Uy = V3, (2350)
v2v2

Uz — Uy = 243 — / P dU, (2351)

= —
=0
203 = U3 — Uy, (2.352)
243 — Cv(Tg - Tg), if CPIG. (2353)
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The thermal efficiency is found as follows:

Wnet
n = )
qH
_ qH — 4L
qH ’
_
qH
_ 1_CU(T4—T1)
CU({T3—,172)7
_ . h-1
B Ty — Ty

(5

Now one also has the isentropic relations:
n (Vi
T \Va ’

But V, =V; and V;, = V3, so

T (VN T
T, \V, T

Cross multiplying the temperatures, one finds

s Ty
T, Ty
Thus the thermal efficiency reduces to
I
=1-—.
n T
In terms of the compression ratio r, = {*, one has

%X

(e

_ 1-k _
n—l—rv —1—F

(2.354)

(2.355)

(2.356)
(2.357)

(2.358)

(2.359)

(2.360)

(2.361)

(2.362)

(2.363)

(2.364)

(2.365)

Note if the compression ratio increases, the thermal efficiency increases. High compression
ratios introduce detonation in the fuel air mixture. This induces strong pressure waves in

the cylinder and subsequent engine knock. It can cause degradation of piston walls.

Some deviations of actual performance from that of the air-standard Otto cycle are as

follows:
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specific heats actually vary with temperature,

combustion may be incomplete (induces pollution and lowers fuel efficiency),

work of inlet and exhaust ignored, and

losses of heat transfer to engine walls ignored.

|
Example 2.9
(adopted from Moran and Shapiro, p. 363). The temperature at the beginning of the compression
process of an air-standard Otto cycle with a compression ratio of 8 is 540 °R, the pressure is 1 atm,
and the cylinder volume is 0.02 ft3. The maximum temperature is 3600 °R. Find

e temperature and pressure at each stage of the process,
e thermal efficiency, and
® Prerr in atm.

For the isentropic compression,

k—
T, = T (%) 1, (2.366)
= (540 °R)(8)*171, (2.367)

= |1240.69 °R. (2.368)

One can use the ideal gas law to get the pressure at state 2:

A% PV
= 2.369
Ts T’ ( )
Vi Ts
P, = P—— 2.370
2 1‘/2 Tlu ( )
1240.69 °R
= (1lat _— 2.371
(L atm)(s) (20T, (2.371)

= [18.3792 atm. (2.372)

Now V3 = V5 since the combustion is isochoric. And the maximum temperature is 73 = 3600 °R. This
allows use of the ideal gas law to get Ps:

P3Vs PV
_ 2.373
o o, (2373)
Vo T3
P; = P, — — 2.374
3 2 ‘/3 T27 ( )
~—
=1
3600 °R
= (183792 atm)(l) (m) 5 (2375)

= [53.3333 atm. (2.376)
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One uses the isentropic relations for state 4:

Ts
T,
o _
T,
T, = T;
T, = T;

= |1566.99 °R.

For the pressure at state 4, use the ideal gas law:

PV, BV
T, T3’
V3 Ty
Py = P3—=—
4 3 V4 T37
Vo Ty
= P _
3 Vl T37
1
= (53.3333 atm) (§>
= [2.90184 atm.
The thermal efficiency is
T] - ’]"571 )
1
= 1= ]ra—1’
= 10.564725.

CC BY-NC-ND. 28 January 2019, J. M. Powers.

(3600 °R)(8)* 14,

1566.99 °R

3600 °R

)

(2.377)
(2.378)
(2.379)

(2.380)

(2.381)
(2.382)

(2.383)
(2.384)
(2.385)

(2.386)

(2.387)

(2.388)

(2.389)
(2.390)
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Now get the mean effective pressure P,y ¢.

Wnet = Pmeff(vmaac - szn)a (2391)
Wne
Py = #, (2.392)
m(ug — ug) + m(ug — uz)
= 2.393
V- Vs | (2:393)
cy Ts =Ty +T1 —Th
= mvl - % , (2.394)
1
Pl‘/l Cy Tg—T4+T1 —T2
= - 2.395
RT, V; -z ’ ( )
P, Ts —Ty+T1 —Ts
- 1 2.396
T, R 1- % : (2.396)
1
P 1 T3-Ty+T)—1Ts
= = 2.
T1 k-1 1— % ’ ( 397)
1 atm 1 3600 °R — 1566.99 °R + 540 °R — 1240.59 °R
= S — i , (2.398)
540 °R14 -1 1-%

7.04981 atm. (2.399)

2.7 Diesel

The air standard Diesel cycle approximates the behavior of a Diesel engine. It is modeled
as a fized mass system. Here the compression is done before injection, so there is no danger
of premature ignition due to detonation. No spark plugs are used. Diagrams for P — v and
T — s for the Diesel cycle are shown in Figure 2.15. One can outline the Diesel cycle as
follows:

e 1 — 2: isentropic compression in the compression stroke,
e 2 — 3: isobaric heating in the combustion stroke,
e 3 — 4: isentropic expansion in power stroke, and

e 4 — 1: isochoric rejection of heat to the surroundings.
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isentrope

isentrope -
P 4 isochore

Figure 2.15: P — v and T' — s diagrams for the Diesel cycle.

The thermal efficiency is found as follows:

Whet
n o= )
qH
_ qH — 4L
qH 7
o
qH
-1 U4—U1’
hs — hg
_ _CU(T4—T1)
Cp(,_rg—,_rg)7
T
— 1_l£ﬁ_
KT T -

Y

(2.400)

(2.401)

(2.402)

(2.403)

(2.404)

(2.405)

All else being equal, the Otto cycle will have higher efficiency than the Diesel cycle.
However, the Diesel can operate at higher compression ratios because detonation is not as

serious a problem in the compression ignition engine as it is in the spark ignition.

|
Example 2.10

(adopted from BS, Ex. 12.8 pp. 501-502). An air standard Diesel cycle has a compression ratio of
20, and the heat transferred to the working fluid has 1800 kJ/kg. Take air to be an ideal gas with
variable specific heat. At the beginning of the compression process, P, = 0.1 M Pa, and Ty = 15 °C.

Find
e Pressure and temperature at each point in the process,
e Thermal efficiency,

® Pcrr, the mean effective pressure.
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The enthalpies and entropies at the reference pressure for variable specific heat air are tabulated
as functions of temperature in Table A7.1. Recall that

T
MT) = hres+ / cp(T) dT. (2.406)
Tres
Recall further that
Tds = dh—vdP, (2.407)
dh v
ds = — — —dP. 2.408

Now for an ideal gas it can be shown that dh = ¢p(T)dT; one also has v/T = R/P. Making these
substitutions into Eq. ([Z408]) gives

cp(T)dT  _dP

ds = ——— - R—-. 2.409
Integrating gives
T .
T) - P
S(T,P) = spes +/ celD) yp gL (2.410)
Trey T Prey
=59,
P
s(T,P) = s%(T)—Rln . (2.411)
ref

Here the reference pressure is Pr.y = 0.1 M Pa. Note that this happens to be the inlet state, which
is a coincidence; so at the inlet there is no correction to the entropy for pressure deviation from its
reference value. At the inlet, one has 77 = 15+ 273.15 =|288.15 K. | One then gets from interpolating
Table A7.1 that

kJ kJ kJ
hy = 288.422 — 7 =81 = 6.82816 —— = 205.756 —. 2.412
1 kgv STl S1 kg K’ Ui kg ( )
For the isentropic compression, one has
kJ 1
Now from the ideal gas law, one has
PV, Pvy
= 2.414
7 T (2.414)
P oV
= = === 2.415
Py Ty Vo’ ( )
Py Ty
= 20 . 2.416
Py 288 K ( )
Now
P
s2(To. Py) = s, — Rl Qf, (2.417)
kJ kJ Ty
6.82816 —— = 57, — (0287 —— | In | 20— 2.418
( @K) T < kwan<2%K» (2.418)

kJ Ts kJ
0 = 83, — (0287 —— |In (20 — [ 6.82816 —— | = F(15). (2.419
T < kwan<2%K>< @K) (T2). (2419)

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

62 CHAPTER 2. CYCLE ANALYSIS

L () | s, (%) | FI) (%)
900 8.01581 8.57198 x 10~*
1000 8.13493 8.97387 x 1072
800 7.88514 | —9.60091 x 1072
850 7.95207 | —4.64783 x 1072
899.347 8.01237 | —2.37449 x 1073

Table 2.3: Iteration for T5.

This then becomes a trial and error search in Table A7.1 for the 75 which satisfies the previous equa-
tion. If one guesses To ~ 900 K, one gets s7, = 8.01581 kJ/kg/K, and the right side evaluates to
0.000857198 kJ/kg/K. Performing a trial and error procedure, one finds the results summarized in

Table Take T5 =|900 K | as close enough!

Then
'V
P, = P—— 2.420
2 1T1 ‘/2’ ( )
900 K
= 1 MPa)——(2 2.421
(0.1 MPa)_ L 2(20), (2.421)
= |6.25 M Pa. (2.422)
Now at state 2, To = 900 K, one finds that
kJ kJ
hy =933.15 —, ug = 674.82 —. (2.423)
kg kg
The heat is added at constant pressure, so
qH = hg — h,Q, (2424)
hs = h2+qu, (2.425)
kJ kJ
= 1933.15 — 1800 — 2.426
< k9> " < kg) ’ (3426)
kJ
= 2733.15 —. 2.427
- (2.427)
One can then interpolate Table A7.1 to find T3 and s%,
(2733.15 £2) — (2002.31 &)
T3 = (2350 K)+ ' —((2400 K) — (2350 K)), (2.428)

(2755 &2 ) — (2692.31 &)
g g

— [238217 K, (2.429)
. keJ
(2733.15 ﬂ) _ (2692.31 ﬂ) L Ly
+ i ko ((9.19586 —) _ (9.16913 —)) . (2.430)
(2755 ’;—;) - (2692.31 ’;—;) kg K kg K

kJ
= 9.18633 ——. 2.431
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oK) | st (%) | F@) (%)
400 7.15926 | —9.34561 x 107!
800 7.88514 | —4.07614 x 107!
1400 8.52891 7.55464 x 1072
1200 8.34596 | —6.31624 x 1072
1300 8.44046 8.36535 x 1073
1250 8.39402 | —2.68183 x 1072
1288 8.42931 | —1.23117 x 10~*

Table 2.4: Iteration for Tj.

One also has P; = P, =|6.25 M Pa.| Now get the actual entropy at state 3:

P

83(T3,P3) = S% — Rln 5 (2432)
3 Pref
kJ kJ 6.25 M Pa
= (9.18633 WK K) - (0.287 ” K) In ( 11 Pa ) (2.433)
kJ
= 7.99954——. 2.434

Now 3 — 4 is an isentropic expansion to state 4, which has the same volume as state 1; V; = V4. So
the ideal gas law gives

PV, PV
= 2.435
T4 Tl ’ ( )
Py Ty
—- = ——= 2.436
2 TV, (2.436)
Py Ty
= ——. 2.437
Pref Tl V4 ( )
Now consider the entropy at state 4, which must be the same as that at state 3:
Py
sa(Ty,Py) = s7, —Rln , (2.438)
4 Pref
Ty W
s3 = s%, —Rln T4 71 , (2.439)
1 Va
=1
kJ kJ Ty
7.99954 —— = s7. —(0.287 | 2.440
( kgK) o ( kgK)n(%SK)’ ( )

kJ T, kJ
0 = s% —(0.287 1 — (799954 —— ) = F(Ty). (2.441
o ( kgK)n(288K) ( kgK) T). 4D

Using Table A7.1, this equation can be iterated until Ty is found. So T, =| 1288 K. | At this temperature,

one has

k k
hy = 1381.68 —‘], ug = 1011.98 —‘]. (2.442)
kg kg
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Now one can calculate the cycle efficiency:
Ug — Uy
h3 — hy’
kJ kJ
(1011.98 £2) — (205.756 42 )

n o= 1 (2.443)

= 1—

k
(2733.15 &) — (93315 &7) (2.444)

.85

Now one has

kJ kJ kJ
qr, = u1 —ug = | 205.756 — | — ( 1011.98 — | = —806.224 —. (2.446)
kg kg kg
So,
kJ kJ kJ
Wpet = q +qr = | 1800 — | — | 806.224 — | = 993.776 —. (2.447)
kg kg kg
So
Wnet
Poopr = ——net 2.448
ul Vmam - szn ( )
Wnet
= — 2.44
Umax — Umin , ( 9)
Wnet
_ 2.450
et (2.450)
Wnet
= omm (2451)
Py Py
993.776 &L
= kg (2.452)

kg K 100 kPa ~ 6250 kPa

= [1265.58 kPa. (2.453)

(0.287 kJ ) ( 288 K 900 K )’

2.8 Stirling

Another often-studied air-standard engine is given by the Stirling cycle. This is similar to
the Otto cycle except the adiabatic processes are replaced by isothermal ones. The efficiency
can be shown to be equal to that of a Carnot engine. Stirling engines are difficult to build.
Diagrams for P — v and T — s for the Stirling cycle are shown in Figure 2.160l

One can outline the Stirling cycle as follows:

e 1 — 2: isothermal compression in the compression stroke,
e 2 — 3: isochoric heat transfer in the combustion stroke,
e 3 — 4: expansion in power stroke, and

e 4 — 1: isochoric rejection of heat to the surroundings.
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Figure 2.16: P —v and T — s diagrams for the Stirling cycle.

2.9 Refrigeration

A simple way to think of a refrigerator is a cyclic heat engine operating in reverse. Rather
than extracting work from heat transfer from a high temperature source and rejecting heat
to a low temperature source, the refrigerator takes a work input to move heat from a low
temperature source to a high temperature source.

2.9.1 Vapor-compression

A common refrigerator is based on a vapor-compression cycle. This is a Rankine cycle in
reverse. While one could employ a turbine to extract some work, it is often impractical.
Instead the high pressure gas is simply irreversibly throttled down to low low pressure.

One can outline the vapor-compression refrigeration cycle as follows:

1 — 2: isentropic compression

e 2 — 3: isobaric heat transfer to high temperature reservoir in condenser,

3 — 4: adiabatic expansion in throttling valve, and

e 4 — 1: isobaric (and often isothermal) heat transfer to low temperature reservoir in
evaporator.

A schematic for the vapor-compression refrigeration cycle is shown in Figure 217 A T — s
diagram for the vapor-compression refrigeration cycle is shown in Figure 2.18|

The efficiency does not make sense for a refrigerator as 0 < n < 1. Instead a coefficient
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|
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Figure 2.17: Schematic diagram for the vapor-compression refrigeration cycle.

of performance, f3, is defined as

what one wants

= 2.454

p what one pays for’ ( )
qr

= |—. 2.455

2 (2.455)

Note that a heat pump is effectively the same as a refrigerator, except one desires qg
rather than ¢r. So for a heat pump, the coefficient of performance, ', is defined as

g =4 (2.456)

We

It is possible for both § and 8’ to be greater than unity.

[
Ezxample 2.11

(from Moran and Shapiro, p. 442) R — 12 is the working fluid in an ideal vapor-compression
refrigeration cycle that communicates thermally with a cold region at 20 °C and a warm region at
40 °C. Saturated vapor enters the compressor at 20 °C and saturated liquid leaves the condenser at
40 °C. The mass flow rate of the refrigerant is 0.008 kg/s. Find

e compressor power in kW,
e refrigeration capacity in ton,
e coefficient of performance, and

e coefficient of performance of an equivalent Carnot cycle.
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Figure 2.18: T'— s diagram for the vapor-compression refrigeration cycle.
(2.457)

At compressor inlet for the ideal cycle, one has a saturated vapor.
T1=20 OC, 1'1:1.

(2.458)

i P, =5.6729 bar.

The tables then give
= 0.6884
S1 kg K7

hi1 =195.78 ﬂ,
kg
Now at the end of the condenser (state 3), one has T5 = 40 °C. The condenser is on an isobar, so the
(2.459)

pressure is the saturation pressure at the temperature, which is
P; = P, = 9.6065 bar.

So, two properties at the end of the compression are known: pressure and entropy. The allows deter-
(2.460)

mination of the enthalpy at the end of compression via the tables:
kJ

ho = 205.1 —.
2 g
State 3 is at the end of the condenser, so x3 = 0, and one finds the enthalpy from the tables to be
kJ
hy = 74.59 —. 2.461
; y (2.461)
(2.462)

Now the throttling device has constant enthalpy, so
kJ

hy = hy = 74.59 —=.
kg
(2.463)

However, the fluid has been throttled to a lower pressure: that of the evaporator, which is the same as

Py = P, =5.6729 bar.

state 1, the compressor inlet, so
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The compressor work is

W, =

heat transfer at the low temperature part of the T'— s diagram, which here gives

Qr =

1000 kg and is 2204 lbm.

m(ha — h),

0.008 @ 205.1 k—J — [ 195.78 k—J
S kg kg
0.075 EW.

Now one desires the heat which leaves the cold region to be high for a good refrigerator. This is the

m(hy — hy),

(0.00S @> <<195.78 ﬂ) - (74.59
S kg

0.9695 kW,

<0.9695 ﬂ) (60.S> < L ton ) :
S min 211 prin

The units ton is used for power and is common in the refrigeration industry. It is the power required
to freeze one “short ton” of water at 0 °C in 24 hours. It is 12000 Btu/hr, 3.516853 kW, or 4.7162 hp.
A short ton is a U.S ton, which is 2000 (bm. A long ton is British and is 2240 [bm. A metric ton is

The coefficient of performance is

QL

= =

We
0.9695 kW
0.075 kW’

~ 1293

The equivalent Carnot refrigerator would have

Bmam

Q

M 3

Ty —T1’
20 + 273.15
40 + 273.15 — (20 + 273.15)°
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(2.464)

(2.465)

(2.466)

(2.467)
(2.468)

(2.469)

(2.470)

(2.471)

(2.472)

(2.473)
(2.474)

(2.475)
(2.476)
(2.477)
(2.478)

(2.479)

(2.480)

(2.481)



http://creativecommons.org/licenses/by-nc-nd/3.0/

2.9. REFRIGERATION 69

2.9.2 Air standard

This is effectively the inverse Brayton cycle. It is used in the liquefaction of air and other
gases. It is also used in aircraft cabin cooling. It has the following components:

e 1 — 2: isentropic compression,

e 2 — 3: isobaric heat transfer to a high temperature environment

e 3 — 4: isentropic expansion through turbine, and

e 4 — 1: isobaric heat exchange with low temperature surroundings.

A schematic for the air standard refrigeration cycle is shown in Figure2.191 A T'— s diagram

T

-w
Expander Compressor [ 1 ¢«

T

Figure 2.19: Schematic for air standard refrigeration cycle.

for the air standard refrigeration cycle is shown in Figure 2.20]
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Figure 2.20: T'— s diagram for air standard refrigeration Brayton cycle.
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Chapter 3

Gas mixtures

Read BS, Chapter 11.

See for background Sandler, Chapter 7.

See for background Smith, van Ness, and Abbott, Chapter 10.
See for background Tester and Modell.

One is often faced with mixtures of simple compressible substances, and it the thermody-
namics of such mixtures upon which attention is now fixed. Here a discussion of some of
the fundamentals of mixture theory will be given. In general, thermodynamics of mixtures
can be a challenging topic about which much remains to be learned. In particular, these
notes will focus on ideal mixtures of ideal gases, for which results are often consistent with
intuition. The chemical engineering literature contains a full discussion of the many nuances
associated with non-ideal mixtures of non-ideal materials.

3.1 Some general issues

Here the notation of BS will be used. There is no effective consensus on notation for mixtures.
That of BS is more unusual than most; however, the ideas are correct, which is critical.
Consider a mixture of N components, each a pure substance, so that the total mass and
total number of moles are

N
m=mi;+mg+msg+---+mpy :Zmi, mass, units= kg, (3.1)
i=1
N
n=n,+ny+ng+---+ny= Z n;, moles, units= kmole. (3.2)
i=1

Recall 1 mole = 6.02214179 x 10*® molecule. The mass fraction of component i is defined
as C;.

¢ =—, mass fraction, dimensionless. (3.3)
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The mole fraction of component ¢ is defined as v;:

Y = —, mole fraction, dimensionless. (3.4)
n

Now the molecular mass of species ¢ is the mass of a mole of species 7. It units are typically
g/mole. This is an identical unit to kg/kmole. Molecular mass is sometimes called “molec-
ular weight,” but this is formally incorrect, as it is a mass measure, not a force measure.
Mathematically the definition of M; corresponds to

M =" ( kg _ 9 ) (3.5)

n; kmole — mole

Then one gets mass fraction in terms of mole fraction as

m;
T = T 36
o= (30)
= 3.7
=) (37)
n; M;
2]:1 m;
n; M;
= = (3.9)
> im1 M
niM;
= —x (3.10)
Ly M,
i M;
S - (3.12)
Zj:l y;M;
Similarly, one finds mole fraction in terms of mass fraction by the following:
n;
;= — 3.13
y ~ (3.13)
M,
= N mp (3.14)
Zj:l M;
25=1 Tym
= —. 3.16)
N Cy (
Zj:l M;
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The mixture itself has a mean molecular mass:

m
M= 2 (3.17)
n
Zﬁil m;
= &= (3.18)
N
n; M;
=y — (3.19)
- n
=1
N
= Y M, (3.20)
=1
|
Ezxample 3.1
Air is often modeled as a mixture in the following molar ratios:
O3 + 3.76Ns. (3.21)
Find the mole fractions, the mass fractions, and the mean molecular mass of the mixture.
Take Os to be species 1 and Ny to be species 2. Consider the number of moles of O3 to be
ny = 1 kmole, (3.22)
and Ny to be
ng = 3.76 kmole. (3.23)

The molecular mass of Oy is M7 = 32 kg/kmole. The molecular mass of Ny is My = 28 kg/kmole.
The total number of moles is

n =1 kmole + 3.76 kmole = 4.76 kmole. (3.24)

So the mole fractions are

1 kmole

3.76 kmole
Y2 = 176 kmole 0.7899 (3:26)
Note that
N
> yi=1 (3.27)
i=1
That is to say y1 + y2 = 0.2101 4+ 0.7899 = 1. Now for the masses, one has
my = M = (1 kmole) (32 —9_) Z 321 (3.28)
1 = 1l = Tmole | — 9, .
k
ma = naMy = (3.76 kmole) | 28 J_) =105.28 kg. (3.29)
kmole
So one has
m=my +me =32 kg + 105.28 kg = 137.28 kg. (3.30)
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The mass fractions then are

mq 32 kg
= M 92N 159331 3.31
“ m 13728 kg (3:31)
mo  105.28 kg
= 220N 107669, 3.32
2 m  137.28 kg [0.7669.] (8:32)

Note that
N
de=1. (3.33)
i=1
That is ¢; + ¢co = 0.2331 + 0.7669 = 1. Now for the mixture molecular mass, one has
- m 13728 kg kg
M= n  4.76 kmole 28.84 kmole’ (3.34)
Check against another formula.
al kg kg kg
M = M =y M My = (0.2101) ( 32 0.7899) ( 28 = 28.84 . (3.35
;y My Mo = ) < kmole) +( ) < kmole) kmole ( )

Now postulates for mixtures are not as well established as those for pure substances.
The literature has much controversial discussion of the subject. A strong advocate of the
axiomatic approach, C. A. Truesdell, proposed the following “metaphysical principles” for
mixtures, which are worth considering.

1. All properties of the mixture must be mathematical consequences of properties of the
constituents.

2. S0 as to describe the motion of a constituent, we may in imagination isolate it from the
rest of the mizture, provided we allow properly for the actions of the other constituents
upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

Most important for the present discussion is the first principle. When coupled with fluid
mechanics, the second two take on additional importance. The approach of mixture theory
is to divide and conquer. One typically treats each of the constituents as a single material
and then devises appropriate average or mixture properties from those of the constituents.

The best example of this is air, which is not a single material, but is often treated as
such.
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3.2 Ideal and non-ideal mixtures

A general extensive property, such as U, for an N-species mixture will be such that

U =U(T,P,ni,ns,...,ny). (3.36)

A partial molar property is a generalization of an intensive property, and is defined such that
it is the partial derivative of an extensive property with respect to number of moles, with T
and P held constant. For internal energy, then the partial molar internal energy is

= 371,

(3.37)

Tvpvnj 7Z;é]

Pressure and temperature are held constant because those are convenient variables to control
in an experiment. One also has the partial molar volume

oV

(3.38)

Vi

T7P7nj 7175.]

It shall be soon seen that there are other natural ways to think of the volume per mole.
Now in general one would expect to find
u; = ﬂ,-(T,P,nl,ng,...,nN), (339)
Vi = Vi(T,P,nl,n2,...,nN). (340)
This is the case for what is known as a non-ideal mizture. An ideal mizture is defined as a
mixture for which the partial molar properties @; and v; are not functions of the composition,
that is
u; = u (T, P), if ideal mixture, (3.41)
v, =vi(T, P), if ideal mixture. (3.42)
An ideal mixture also has the property that h; = hi(T, P), while for a non-ideal mixture
hi = hi(T, P,ny,...,ny). Though not obvious, it will turn out that some properties of an

ideal mixture will depend on composition. For example, the entropy of a constituent of an
ideal mixture will be such that

S; ZEi(T,P,nl,ng,...,nN). (343)

3.3 Ideal mixtures of ideal gases

The most straightforward mixture to consider is an ideal mixture of ideal gases. Even here,
there are assumptions necessary that remain difficult to verify absolutely.
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3.3.1 Dalton model

The most common model for a mixture of ideal gases is the Dalton model. Key assumptions
define this model

e Each constituent shares a common temperature.
e FEach constituent occupies the entire volume.

e Each constituent possesses a partial pressure which sums to form the total pressure of
the mixture.

The above characterize a Dalton model for any gas, ideal or non-ideal. One also takes for
convenience

e Fach constituent behaves as an ideal gas.
e The mixture behaves as a single ideal gas.

It is more convenient to deal on a molar basis for such a theory. For the Dalton model,
additional useful quantities, the species mass concentration p;, the mixture mass concentra-
tion p, the species molar concentration p,, and the mixture molar concentration p, can be
defined. As will be seen, these definitions for concentrations are useful; however, they are not
in common usage. Following BS, the bar notation, =, will be reserved for properties which
are mole-based rather than mass-based. As mentioned earlier, the notion of a partial molal
property is discussed extensively in the chemical engineering literature and has implications
beyond those considered here. For the Dalton model, in which each component occupies the

same volume, one has
o

The mixture mass concentration, also called the density is simply

m kg
_ ) 3.45
=7 () (3.49
The mixture molar concentration is
n kmole
= — . 3.46
-] () (3.40)
For species i, the equivalents are
g = —, — |, 3.47
w= () (3.4
7 kmole
0, = = . 3.48
n- g (M) (3.45)
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One can find a convenient relation between species molar concentration and species mole
fraction by the following operations
n; n

5, = il 3.49

pz Vn’ ( )
n; n

= —— 3.50

nV’ (3.50)

= Yip- (3.51)

A similar relation exists between species molar concentration and species mass fraction via

n; m M;

0 = —__ 3.52
pl V m MZ Y ( )
i
mn;ivi;
= — 3.53
Vil (3.53)
e
= — 3.54
P AL (3.54)
&
= p—. 3.55
Pir (3.55)
The specific volumes, mass and molar, are similar. One takes
V V
vo= —, U=—, (3.56)
m n
V V
m; n;

Note that this definition of molar specific volume is not the partial molar volume defined in
the chemical engineering literature, which takes the form v; = OV/0n;|r pn, i;-
For the partial pressure of species i, one can say for the Dalton model

P=>"P. (3.58)

For species i, one has

PV = nRT, (3.59)
n;RT
Pi — : 5 .
v (3.60)
N N =
E P, = E ’ 3.61
i=1 i=1 4 ( )
~——
=p
= N
RT
P = — n; . (3.62)
4 i=1
——
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So, for the mixture, one has

PV =nRT. (3.63)
One could also say
n — —
P= v RT =pRT. (3.64)
~
=p

Here n is the total number of moles in the system. Additionally R is the universal gas
constant with value

_ kJ J
= 8.314472 ———— = 8.314472 )
[t = 831447 kmole K 8.31447 mole K

(3.65)

Sometimes this is expressed in terms of kg, the Boltzmann constant, and N, Avogadro’s
number:

R = kgN, (3.66)
N = 6.02214179x1023% (3.67)
oLe
J
kp = 1.380650 x 10~ (3.68)

K molecule

[
Example 3.2

Compare the molar specific volume defined here with the partial molar volume from the chemical
engineering literature.

The partial molar volume v;, is given by

oV

il Py iz

Vi

(3.69)
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For the ideal gas, one has

N
PV = RTY my, (3.70)
k=1
FTZN_ ngk
V = — &kl 7 3.71
P ? ( )
) N  9n
oV _ RT Y 5y 5 (3.72)
oni T,Pn; ij P 7
FTZkN—15ki
= — == 3.73
P ? ( )
=0 =0 =1 =0

—_ [~ o~ ~~ PN
RT | 615 + 025 +---+ 655 +---+ 0

- = , (3.74)

v, = F—PT, (3.75)

- (3.76)
D=1 T

_ % (3.77)

Here the so-called Kronecker delta function has been employed, which is much the same as the identity
matrix:

Swi = 0, ki, (3.78)
owi = 1, k=i (3.79)

Contrast this with the earlier adopted definition of molar specific volume

U = e (3.80)
So, why is there a difference? The molar specific volume is a simple definition. One takes the
instantaneous volume V', which is shared by all species in the Dalton model, and scales it by the
instantaneous number of moles of species 4, and acquires a natural definition of molar specific volume
consistent with the notion of a mass specific volume. On the other hand, the partial molar volume
specifies how the volume changes if the number of moles of species i changes, while holding T and P
and all other species mole numbers constant. One can imagine adding a mole of species i, which would
necessitate a change in V in order to guarantee the P remain fixed.

3.3.1.1 Binary mixtures

Consider now a binary mizture of two components A and B. This is easily extended to a
general mixture of N components. First the total number of moles is the sum of the parts:

n=ns+ng. (3.81)
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Now, write the ideal gas law for each component:

PAVA = HARTA, (382)
PpVy = npRTp. (3.83)

But by the assumptions of the Dalton model, Vo =Vg =V, and T4 =T =T, so

PAV = HAFT, (384)
One also has
PV =nRT. (3.86)
Solving for n, n4 and ng, one finds
n o= 2V (3.87)
RT
P,V
= £ 3.88
A RT (3.88)
PgV
= —. 3.89
e RT (3.89)

Now n = n4 + ng, so one has

PV PV PV
= = 22 (3.90)
R RT ' RT

T
P = P,+ Pg. (391)

That is the total pressure is the sum of the partial pressures. This is a mixture rule for
pressure
One can also scale each constituent ideal gas law by the mixture ideal gas law to get

PAV TI,AET

= 4= 3.92
PV nRT ( )
PA . na
+ = = (3.93)
Likewise

Now, one also desires rational mixture rules for energy, enthalpy, and entropy. Invoke Trues-
dell’s principles on a mass basis for internal energy. Then the total internal energy U (with
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units J) for the binary mixture must be

U=mu = maus+ mpug, (3.97)
= m (EUA + @uB> : (3.98)

m m
= m(caun + cpug), (3.99)
U = CcaUua+ CpuB. (3.100)

For the enthalpy, one has

H=mh = mahs+ mphg, (3.101)
- m (@m + @hB) , (3.102)

m m
= m(caha + cghp), (3.103)
h = CAhA+CBhB. (3104)

It is easy to extend this to a mole fraction basis rather than a mass fraction basis. One can
also obtain a gas constant for the mixture on a mass basis. For the mixture, one has

PV = nRT = mRT, (3.105)
PV —
PV —mr = o (3.106)
= (na+ngp)R, (3.107)
ma mpg
= (A DB 1
(MA + MB) R, (3.108)
R R
= — — 1
(mAMA +mBMB) s (3 09)
= (maRa+mpRp), (3.110)
R = (ERAjL@RB), (3.111)
m m
R = (CARA + CBRB) . (3.112)
For the entropy, one has
S=ms= = mass+mpsg, (3.113)
_ ma ms
- m< syt sB> , (3.114)
= m(casa+cpsp), (3.115)
S = sS4+ CBSB. (3.116)

Note that s4 is evaluated at T and P,4, while sg is evaluated at T" and Pg. For a CPIG, one
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has
. T Py
Sa4 = Sygga T Cpaln (i) —Rln (Fo) : (3.117)
ESE,A
o T yAP
Likewise
° T yBP
ES‘%B

Here the “o” denotes some reference state. As a superscript, it typically means that the
property is evaluated at a reference pressure. For example, s , denotes the portion of the
entropy of component A that is evaluated at the reference pressure P, and is allowed to vary
with temperature T'. Note also that s4 = s4(T, P,ya) and sp = sg(T, P,yg), so the entropy
of a single constituent depends on the composition of the mixture and not just on 7" and P.
This contrasts with energy and enthalpy for which uy = ua(7T), up = up(T), ha = ha(T),
hg = hg(T) if the mixture is composed of ideal gases. Occasionally, one finds h9 and hY
used as a notation. This denotes that the enthalpy is evaluated at the reference pressure.
However, if the gas is ideal, the enthalpy is not a function of pressure and h4 = h%, hg = h%.

If one is employing a calorically imperfect ideal gas model, then one finds for species @

that b
si= s, — Riln (y]g ) ., i=AB. (3.120)

3.3.1.2 Entropy of mixing

|
Ezxample 3.3
Initially calorically perfect ideal gases A and B are segregated within the same large volume by

a thin frictionless, thermally conducting diaphragm. Thus, both are at the same initial pressure and
temperature, P; and T7. The total volume is thermally insulated and fixed, so there are no global heat
or work exchanges with the environment. The diaphragm is removed, and A and B are allowed to mix.
Assume A has mass m 4 and B has mass mp. The gases are allowed to have distinct molecular masses,
M, and Mp. Find the final temperature Ts, pressure P», and the change in entropy.

The ideal gas law holds that at the initial state

mARATl mBRBTl
Vpr= —7— Vg = ————. 3.121
Al P B1 Py ( )
At the final state one has
T
Vo =Vas = Vg = Va1 + Vg1 = (maRa + mBRB)Fi. (3.122)
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Mass conservation gives
me =mi =my +mp. (3.123)
One also has the first law
Uz = Uy 1Q2 — 1Wa, (3.124)
U,-Up = 0, (3.125)
U = U, (3.126)
Moz = MAUAL + MBUBI, (3.127)
(ma+mplus = Mmaua +mpupi, (3.128)
0 = ma(uar —u2) + mp(upr — u2), (3.129)
0 mAcUA(Tl —Tg)—l—chvB(Tl —Tg), (3130)
T, = macyaTy + mpe,pTh (3.131)
MACyA + MBCyB
T, = (3.132)
The final pressure by Dalton’s law then is
P, = Py + Ppo, (3.133)
mARATg mBRBT2
= 3.134
mARATl mBRBT1
= 3.135
AR (3.135)
T
_ (mARA—i-mBRB) 1, (3.136)
Vs
substitute for V5 from Eq. (3122) (3.137)
R Rp)T;
_ (malatmsRe) Ty (3.138)
(mARA + mBRB)ﬁ
= (3.139)
So the initial and final temperatures and pressures are identical.
Now the entropy change of gas A is
T P
S42 —SAa1 = cpaln (ﬁ) —Ryln (ﬁ) , (3.140)
T Py
T YyasPo
= In{ =] —-—Rgln|=—/7—— 3.141
At (Tl) A (yAlPl) ’ ( )
Ty yas P
= In{ =] —-Raln | =—— 3.142
cram (Tl) A (yA1P1> 7 ( )
———
=0
yaz Py
= —Ryl 3.143
am (). (3.143)
— Rilny (3.144)
Likewise
sp2 —sp1 = —Rplnyps. (3.145)
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So the change in entropy of the mixture is

AS = ma(saz — sa1) +mp(sp2 — $B1),

= —maRalnyss —mpRplnyps,

R R
= —(naMy) <—> Inyas — (npMp) (—) Inypgo,
— 2\ My ~——— \ Mp
—_———

=ma
=R

=mp
=Rp

= —R(nalnyaz +npnyps),

= |=R nA1n<

naA np
—— | 4+npln | — ,
nA—i-nB) (nA—i—nB)

<0

<0

> 0.

We can also scale Eq. (3.149) by Rn to get

YA2

— (Iny%s
—In (y45° v ) -

na np
= —| — Inyas+ — Inypa |,
n n

N~~~ ~—~
=AS =YA2

~—~
=YB2

= —(ya2lnyas+yp2lnyps),

+Inygs),

(3.146)
(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)
(3.155)

For an N-component mixture, mixed in the same fashion such that P and T" are constant,

this extends to

N
AS = —EZ ny In Yk,
k=1
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N
= —Rm> Inyl (3.161)
k=1
—Rm (Iny{" +Iny +--- +Iny}Y), (3.162)
= —Rmln(y{'y3* ... y%), (3.163)

N
= —Rmln (H y,@;k> : (3.164)
k=1

Dividing by m to recover an intensive property and R to recover a dimensionless property,
we get

As _
o

=l &

=—In <H ygk> : (3.165)

Note that there is a fundamental dependency of the mixing entropy on the mole fractions.
Since 0 <y < 1, the product is guaranteed to be between 0 and 1. The natural logarithm
of such a number is negative, and thus the entropy change for the mixture is guaranteed
positive semi-definite. Note also that for the entropy of mixing, Truesdell’s third principle
is not enforced.

Now if one mole of pure N, is mixed with one mole of pure O,, one certainly expects
the resulting homogeneous mixture to have a higher entropy than the two pure components.
But what if one mole of pure N, is mixed with another mole of pure N;. Then we would
expect no increase in entropy. However, if we had the unusual ability to distinguish Ny
molecules whose origin was from each respective original chamber, then indeed there would
be an entropy of mixing. Increases in entropy thus do correspond to increases in disorder.

3.3.1.3 Mixtures of constant mass fraction

If the mass fractions, and thus the mole fractions, remain constant during a process, the
equations simplify. This is often the case for common non-reacting mixtures. Air at moderate
values of temperature and pressure behaves this way. In this case, all of Truesdell’s principles
can be enforced. For a CPIG, one would have

U2 — U = CACUA(TQ — Tl) —+ CBCUB(TQ — T1>, (3166)
CU(TQ - Tl) (3167)
where
Cy = CACyA + CBCyB- (3168)
Similarly for enthalpy
hg - hl = CACPA(T2 — Tl) + CBCPB(T2 — Tl), (3169)
= Cp(TQ - Tl) (3170)
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where
Cp = CACpa + CBCPRB. (3171)
For the entropy
s9— 51 = ca(5a2 —5a1) +cB(SB2 — 5B1), (3.172)

T, yals T ypPs
_ m(22) — R4l m(22) = Ryl
o <CPA H<T1) fia n<yAP1>)+CB <CPB n<T1) s n(prl)),
T P T P
= ca <CPA In (ﬁ) — Ryln <Fj)) +cp (cPB In (ﬁ) — Rgln (ﬁ)) (3.173)

T P2
= In{—=)—-Rln|—=). 174
cp n(Tl) Rn(Pl) (3.174)

The mixture behaves as a pure substance when the appropriate mixture properties are de-
fined. One can also take

k=L, (3.175)

Cy

3.3.2 Summary of properties for the Dalton mixture model

Listed here is a summary of mixture properties for an N-component mixture of ideal gases
on a mass basis:

N
=1
N
po= > r (3.177)
i=1
1 1
v = le—, (3178)
Zz’:lv_z P
N
=Y cu (3.179)
i=1
N
ho= > chi, (3.180)
=1
=R
- N N o - N
R = %:ZciRi:Z%ViR :%Zyi, (3.181)
=1 =1 =1
y;M; hnad
— =
=
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N
G = Y Cicu, (3.182)
i=1
Cy cp — R, if ideal gas, (3.183)
N
cp > cicps, (3.184)
i=1
ko= 2 (3.185)
Cy
N
s > s, (3.186)
i=1
yi M,

s , 3.187
o = % (3187)
P; yi P, (3.188)
pi Cip,s (3.189)

v 1

i —=—, 3.190
! C; Pi ( )
Vo=V (3.191)
T = T, (3.192)
hi he, if ideal gas, (3.193)

P,
Di N——
if ideal gas
T A A
’ 298 ,
if id;;l gas
5 = +/T vlT) i g <ﬁ> (3.196)
% 298,17 208 T . ) PO 3 .
=57
if id;ral gas
P %
S s7; — Riln <%) =s7,;, — Riln (Fo), (3.197)
if ide‘gl gas if ide‘gl gas
R, T
P piRT = pRTc; = ) (3.198)

if ideal gas
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N
P = pRT =pRT
i=1

(.

C; RT
— = 3.199
Mi v ’ ( )
if id;ral gas
N T
ho= ) by, + / ep(T) dT, (3.200)
=1 ’ 298
if ide‘gl gas
P
h = u+—=u+Pv=u+RT, (3.201)
p R,—/
if ideal gas
N T ~ N
CP(T) ~ (P) .
s = CiSo9s8.i + —-dl'—Rln| — ) —Rln s
; 298, /298 T P, gy
if id;;l gas
(3.202)

These relations are not obvious. A few are derived in examples here.

I
Ezxample 3.4
Derive the expression h = u + P/p.

Start from the equation for the constituent h;, multiply by mass fractions, sum over all species,

and use properties of mixtures:

P
hi = wi+—, (3.203)
P,
cih; = cu;+ Ci—, (3204)
N N N p
cih; = Ciu; + Ci—z, 3.205
N N N
R T
YNehi o= Y cut Y el (3.206)
i— i— i= pi
1 1 1
=h =u
N
h = u+TY cRi, (3.207)
=1
=R
= u+ RT, (3.208)
P
= |ut+=. (3.209)
p
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|
Ezxample 3.5
Find the expression for mixture entropy of the ideal gas.
T
o CPl( ) (P >
S; = Sg9g; dT — R;In , 3.210
o [ 8 - (3:210)
T
Cpl(T) (P)
Ci8i = iS85 i+ci/ = ar - ¢;R; 1n , 3.211
298, os T P, ( )
N N N T ( P
s = Zcisi = Zcisg% i ch T dT — chR In (E) (3.212)
i=1 i=1 =1 298 i=1
N T N ~
o .0 C’LCPZ( ) 3
- Zczszg&i +/298_Z = dT — ZCZR In <P0> , (3.213)
=1 1=1 =1
p(T) -
= 35 —|—/ —= dT — ¢ R; ln( ) 3.214
298 os T Z ( )

All except the last term are natural extensions of the property for a
last term involving pressure ratios.

single material. Consider now the

N N
L P; P P
_;CiRiln (E) - <;Q‘Ri1n (E) —i-Rln?0 — Rln E) , (3.215)
N
R; P P P
= A iphlp |ty —ng |, 3.216
(i_lcRn<P0>+nPo nPO> ( )
N —
M; P, P P
- _R<ZQ‘ NR/— n<_)+1n—_1n_>v (3.217)
o XmiGR/M; \To P, P,
=1 \22j=1 /M Po P, P,
—
=Yi
N
P; P P
—_ —R <; Yi hl <Fo> —+ ln Fo — hl E) y (3219)
N )
P\ P P
= Rllhlp) "hpthp 3.220
(;n(&) "7, nPo>’ (3.220)
N )
P\ P,
- (m <1:[1 (E) )HD?“ E)’ (3.221)
N )
Po Pi Yi P
= A7 L7 In = 222
R<D<PZ_1<PO> >_|—D‘Po>7 (3 )
N
P, 1 _ P
= A 2 P)" | +1n o 3.223
<D<PZ£\]1%POZ£V1UTH( ) >+HPO>1 ( )
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N Yi

- R (m <H (%) ) +1In %) , (3.224)
i=1
N Yi

- R <1n <H (y;P> ) +1n%> , (3.225)
i=1
N

= —R <1n <H yf) +In F) (3.226)

So the mixture entropy becomes

T 7 N
) . , P
s = sSe5+ /298 CP—;) dal' — R <ln <| | y”) +1n F) : (3.227)

=1

o8 T o

classical entropy of a single body

T - N
. P |
_ sgg8+/2 cp( )dT—RlnF—Rln <Hyy> (3.228)
=1

non—Truesdellian

The extra entropy is not found in the theory for a single material, and in fact is not in the form suggested
by Truesdell’s postulates. While it is in fact possible to redefine the constituent entropy definition in
such a fashion that the mixture entropy in fact takes on the classical form of a single material via the
definition s; = s5gg; + f2T98 CPT(T) dT — R;In (%) + R;Iny;, this has the disadvantage of predicting
no entropy change after mixing two pure substances. Such a theory would suggest that this obviously

irreversible process is in fact reversible.

On a molar basis, one has the equivalents

N
- _ n p
p— —_ — = — .22
P ;p, == (3.229)
1 Vo1
v o= le—_::UM, (3230)
Zi:lv_i n P
N
o= Yyl =ub, (3.231)
i=1
N
ho= Y yihi=hM, (3.232)
i=1
N
Co = ) Uitw =M, (3.233)
i=1
& = ¢p—R, (3.234)
N
ep = Y witpi =cpM, (3.235)
i=1
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[ (3.236)
N
5 o= ) ysi=sM, (3.237)
i=1
e &
Pi = YiP= (3.238)
V. v 1
g Yi o Py
ov V
v, = =—=71=vM, (3.240)
oM |pr.p N
if ideal gas
P = yP, (3.241)
—. RT
N
if ideal gas
—. RT
P, = p,RT =", (3.243)
_
if ideal gas
— . P _ = —
h = u+—=1u+Pv="1u+ Rl =hM, (3.244)
p H,—/
if ideal gas
h; = hy, if ideal gas, (3.245)
_ P, _
pi ——
if ideal gas
p— —0 T A A
o 298 P
if id;l gas
5 = 3° +/T eri(T) dT —R1n (yip) (3.248)
1 298,2 208 T . PO 9 .
:g%ﬁi
if id;l gas
_ P
5 — ,—Rln <yP ) = s, M, (3.249)
if ide‘gl gas
N T — ~ N
_ _ cp(T) .~ = (P) — .
5 = 5908, T —dI'— Rln| — | — RIn Yl = sM.
> s | = . [Iv
if idg;l gas
(3.250)
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3.3.3 Amagat model

The Amagat model is an entirely different paradigm than the Dalton model. It is not used
as often. In the Amagat model,

e all components share a common temperature 7,
e all components share a common pressure P, and
e cach component has a different volume.

Consider, for example, a binary mixture of calorically perfect ideal gases, A and B. For
the mixture, one has

PV =nRT, (3.251)
with
n=mns+ng. (3.252)
For the components one has
PV4 = nyuRT, (3.253)
PVz = npRT. (3.254)

Then n = n4 + np reduces to

PV PV, P
oV _DVa PV (3.255)
R  RI  RT

Thus
V = Vai+ Vg, (3.256)
Vi Vg
1 = =+ = 3.257
\% + \% ( )

3.4 Gas-vapor mixtures

Next consider a mixture of ideal gases in which one of the components may undergo a phase
transition to its liquid state. The most important practical example is an air-water mixture.
Assume the following:

e The solid or liquid contains no dissolved gases.
e The gaseous phases are all well modeled as ideal gases.

e When the gas mixture and the condensed phase are at a given total pressure and tem-
perature, the equilibrium between the condensed phase and its vapor is not influenced
by the other component. So for a binary mixture of A and B where A could have both
gas and liquid components Py, = P,,;. That is the partial pressure of A is equal to its
saturation pressure at the appropriate temperature.
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Considering an air water vapor mixture, one models the water vapor as an ideal gas and
expresses the total pressure as

P=P,+P, (3.258)

Here v denotes vapor and a denotes air. A good model for the enthalpy of the water vapor
is to take

ho(T, lowP) = hy(T). (3.259)

If T is given in degrees Celsius, a good model from the steam tables is

kJ kJ
T)=25013 -~ + (1.82 —— | T 2
hy(T) = 250 3kg+<8 kgoC’) (3.260)

Some definitions:

e absolute humidity: w, the mass of water present in a unit mass of dry air, also called
humidity ratio,

My

= 3.261
w = |2 (3.261)
M,n,
= 3.262
M,n,’ ( )
= PV (3.263)
M, RT
M,P,
= v 3.264
M,P,’ ( )
18.015 —*2 ) p,
— ( k;r;ole) ’ (3265)
(2897 kmole) Pa
= 0.622 b, (3 266)
= 0. P .
P
= 10.622 v 3.267
P_P, (3.267)

e dew point: temperature at which the vapor condenses when it is cooled isobarically.

e saturated air: The vapor in the air-vapor mixture is at the saturation temperature and
pressure.
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o relative humidity: The ratio of the mole fraction of the vapor in the mixture to the mole
fraction of vapor in a saturated mixture at the same temperature and total pressure:

6 = % (3.268)
Ty
_ 3.269
. ( )
A
= 2, (3.270)
RT
P
_ | v 271
P, (3.271)

Note, here the subscript ¢ denotes saturated gas values. Combining, one can relate the
relative humidity to the absolute humidity:

wP,

¢ = 0622P,

(3.272)

|
Example 3.6
(from Cengal and Boles, p. 670) A 5 m X 5 m x 3 m room contains air at 25 °C and 100 kPa at a
relative humidity of 75%. Find the

e partial pressure of dry air,
e absolute humidity (i.e. humidity ratio),
e masses of dry air and water vapor in the room, and the
e dew point.
The relation between partial and total pressure is

P=PF,+ P, (3.273)

Now from the definition of relative humidity,
P, = ¢P,. (3.274)

Here P, is the saturation pressure at the same temperature, which is 25 °C. At 25 °C, the tables give

Pylys o = 3.169 kPa. (3.275)

So
P, = 0.75(3.169 kPa) = 2.3675 kPa. (3.276)

So from the definition of partial pressure

P, = P-P, (3.277)
= 100 kPa — 2.3675 kPa, (3.278)

- (3.279)

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

3.4. GAS-VAPOR MIXTURES 95

Now for the absolute humidity (or specific humidity), one has

P,
w Pa7 ( )
2.3675 kPa
0.6 97.62 kPa’ (3251
kg HQO
= ]0.0152 ————. 3282
kg dry air ( )
Now for the masses of air and water, one can use the partial pressures:
PV
N A3 (3.283)
RT
PV
_ 3.284
R, T’ ( )
_ (97.62 kPa) (75 m?) (3.285)
T 78314 B __ ’ '
(o) eos 10
= |85.61 kg. (3.286)
PV
BV (3.287)
RT
PV
_ 3.288
R,T’ ( )
(2.3675 kPa) (75 m?3) (3.289)

T ’
mole 2 K
( 18.015 ol (298 K)

= (3.290)

Also one could get m,, from

My = wWhg, (3.291)
—  (0.0152)(85.61 k), (3.292)
— 13 kg (3.293)

Now the dew point is the saturation temperature at the partial pressure of the water vapor. With
P, = 2.3675 kPa, the saturation tables give

Tdew point — (3294)

3.4.1 First law

The first law can be applied to air-water mixtures.
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[
Example 3.7

(BS, Ex. 13.5, pp. 536-537.) An air-water vapor mixture enters the cooling coils of an air conditioner
unit. The inlet is at P, = 105 kPa, T1 = 30 °C, ¢1 = 0.80. The exit state is P» = 100 kPa, 175 = 15 °C,
¢2 = 0.95. Liquid water at 15 °C also exits the system. Find the heat transfer per kilogram of dry air.

Mass conservation for air and water give

Mal Ma2 = Mg,

Myl = My + 1.

Note at state 2, the mass flow of water is in both liquid and vapor form.
The first law for the control volume give

dEc, o
dt
——
=0
ch + mahal + mvl h'ul =
m
@"‘hal'i_ .Ulhvl =
Mg, Mg,
QCU + ha1 +wihyr =
mq

cv

Mq

ch - Wc’u +maha1 + mvlhvl - mahaQ - vahUQ - ml2hl2;
=0
mahaQ + vah'UQ + (mvl - va)hIQ;
My — M
h'u2 + _Ul 3 V2

a ma

Ty
ha2 + — 2

hl27
ha2 + wahy2 + (W1 — w2)hi2,

ha2 — ha1 — wihy1 + wahy2 + (W1 — wa2)hia,

cpa(To —T1) — wihy1 + wahys + (w1 — w2)hya.

Now at the inlet, one has from the definition of relative humidity

Pvl

o= pr

(3.295)
(3.296)

(3.297)
(3.298)
(3.299)
(3.300)

(3.301)
(3.302)

(3.303)

Here P, is the saturated vapor pressure at the inlet temperature, 77 = 30 °C. This is P,; = 4.246 kPa.

So one gets

Pvl ¢1Pglv
= (0.80)(4.246 kPa),

3.397 kPa.

Now the absolute humidity (humidity ratio) is

w1

Pvl
= 0.622——2—
P - P,y
3.397 kPa
a 0'622105 kPa — 3.397 kPa’
= 0.0208.

At the exit temperature, the saturation pressure is Pyo = 1.705 kPa. So

Po = ¢2P927
= (0.95)(1.705 kPa),
1.620 kPa.
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Now the absolute humidity (humidity ratio) is
Pv2
1.620 kPa
= OO G Pa — 1.620 kP’ (3:314)
= 0.0102. (3.315)
Then, substituting, one gets
dev kJ kJ
= 1.004 —— ) (15 °C — 30 °C) — 0.02 2556.3 —
o ( 00 kgK>(5 C—-30°0) 0008<5563k9)
kJ kJ
+0.0102 (2528.9 k_g> + (0.0208 — 0.0102) (62.99 k_g> , (3.316)
kJ
= | —-41.77 ———. 3.317
kg dry air ( )

3.4.2 Adiabatic saturation

In an adiabatic saturation process, an air-vapor mixture contacts a body of water in a well
insulated duct. If the initial humidity of the mixture is less than 100%, some water will

evaporate and join the mixture.

If the mixture leaving the duct is saturated, and the process is adiabatic, the exit temper-
ature is the adiabatic saturation temperature. Assume the liquid water entering the system

enters at the exit temperature of the mixture.

Mass conservation for air and water and the first law for the control volume give

dmsy |
7 = Mgl — Mg2, arr
~——
dmwater
C;; = My + My — Myo, water
N——
dEcv : 4 . . . . .
dt = ch - ch +ma1ha1 + mvlhvl + mlhl - ma2ha2 - mv2hv2-
e =0 =0

=0

For steady state results, these reduce to

0 = mal - mag, air
0 = 1y + 1My — My, water
0 = malhal + mvlhvl + mlhl - maZha2 - vahUZ-

(3.318)

(3.319)

(3.320)

(3.321)
(3.322)
(3.323)
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Now mass conservation for air gives

mal = ma2 = ma-

Mass conservation for water gives

ml = mv2 -

Then energy conservation becomes

0 = mah'al + mvlhvl + (mv2 -

My
0 = hal_l' lhvl_l'(
m m

a

= ha1+w1hv1+(wz—wl) 1 —
= hal_ha2+wl( vl T l

0
0
~wi(hor — ) = ha — hag +wa(hy —
)
)

[
Example 3.8

) h'l h'aZ - .
m

ha2 - w2hv27

= haa — hat + wa(hy2 — hy),
= Cpa(Tg — Tl) + w2hfg2.

(BS, 13.7E, p. 540). The pressure of the mixture entering and leaving the adiabatic saturater is
14.7 psia, the entering temperature is 84 F', and the temperature leaving is 70 F', which is the adiabatic
saturation temperature. Calculate the humidity ratio and the relative humidity of the air-water vapor

mixture entering.

The exit state 2 is saturated, so

PUQZP_(]2-

(3.333)

The tables give Py = Py2 = 0.363 psia. Thus one can calculate the absolute humidity by its definition:

0.622 Puz

w2

= 0.622

Py — Py
0.363 psia

(14.7 psia) —
lbm Hy0

lbm dry air’

= 0.0157485

The earlier derived result from the energy balance allows calculation then of wi:

wi(hor —hi) = cpa(To —T1) +wahyggo,
cpa(To = Th) + wahyg2

(0.363 psia)’

w1 =

hvl - hl

0.240 Bt ((70 F) —

lbm F

(84 F)) +0.0157485 (

(1098.1 BLu) — (38.

_ | 0.019805 fom 120

Ibm dry air’
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Here h,1 was estimated as the saturated vapor value at T' = 84 F' by interpolating the tables. In the
absence of more information regarding the initial vapor state, this estimate is good as any. The value

of h; is estimated as the saturated liquid value at T'= 70 F. Now

Pvl
= 0.622—————— 3.341
“ P — Py’ ( )
lel
Py = —, .342
! 0.622 + w; (8:342)
(14.7 psia)(0.0124895)
= 3.343
0.622 4 0.0124895 ’ ( )
= 0.28936 psia. (3.344)
For the relative humidity
Pvl
= , 3.345
1 P (3.345)
0.28936 psia
_ .34
0.584 psia ’ (3.346)

= (3.347)

3.4.3 Wet-bulb and dry-bulb temperatures

Humidity is often measured with a psychrometer, which has a wet bulb and dry bulb ther-
mometer.

The dry bulb measures the air temperature.
The wet bulb measures the temperature of a water soaked thermometer.

If the two temperatures are equal, the air is saturated. If they are different, some of
the water on the web bulb evaporates, cooling the wet bulb thermometer.

The evaporative cooling process is commonly modeled (with some error) as an adiabatic
saturation process.

These temperatures are also influenced by non-thermodynamic issues such as heat and
mass transfer rates, which induce errors in the device.

Capacitance-based electronic devices are often used as an alternative to the traditional
psychrometer.

3.4.4 Psychrometric chart

This well-known chart summarizes much of what is important for binary mixtures of air and
water, in which the properties depend on three variables, e.g. temperature, pressure, and
composition of the mixture.
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Chapter 4

Mathematical foundations of
thermodynamics

Read BS, 12.2-12.4, 12.9, 14.1-14.4.
Read Abbott and van Ness, Chapter 3.
See Vincenti and Kruger, Chapter 3, for more background.

4.1 Exact differentials and state functions

In thermodynamics, one is faced with many systems of the form of the well-known Gibbs
equation, Eq. (LI)):

|du = Tds — Pdv.| (4.1)

This is known to be an exact differential with the consequence that internal energy u is a
function of the state of the system and not the details of any process which led to the state.

As a counter-example, the work,
42

can be shown to be an inexact differential so that the work is indeed a function of the process
involved. Here we use the notation J to emphasize that this is an inexact differential.

I
Ezample 4.1
Show the work is not a state function. If work were a state function, one might expect it to have
the form

w = w(P,v), provisional assumption, to be tested. (4.3)
In such a case, one would have the corresponding differential form

ow
5’LU— %

dv—i—a—w

P (4.4)
» opP

v

101
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Now since dw = Pdv from Newtonian mechanics, one deduces that

ow

— = P 4.5
=P (4.5)
ow
— = 0 4.6
Integrating Eq. (&), one finds
w = Pv+ f(P), (4.7
where f(P) is some function of P to be determined. Differentiating Eq. [@.7) with respect to P, one
gets
ow df (P)
| = 27 4.
opP|, ~ """ dp (4.8)
Now use Eq. (@8] to eliminate Ow/0P|, in Eq. (&) so as to obtain
df (P)
0 = — 4.9
vt Tap (4.9)
df (P)
— = —u. 4.1
Equation (£I0) cannot be: a function of P only cannot be a function of v. So, w cannot be a state
property:
w # w(P,v). (4.11)
Consider now the more general form
N
=1
Here ¢; and x;, ¢« = 1,..., N, may be thermodynamic variables. This form is known in

mathematics as a Pfaff differential form. As formulated, one takes at this stage
e 1r;: independent thermodynamic variables, and
e ;: thermodynamic variables which are functions of z;.

Now, if the differential in Eq. (4I2]), when set to a differential dy, can be integrated to form
the function

y:y(xlaan"'>zN)a (413)

the differential is said to be exact. In such a case, one has
N
dy = 1y + hodry + -+ Yyday = Y Pida. (4.14)
i=1
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Now, if the algebraic definition of Eq. ({I3]) holds, what amounts to the definition of the
partial derivative gives the parallel result that

0 0 0
dy = Y dry + —2- dry+ -+ —2 dzy. (4.15)
axl {Ej,j;ﬁl 81’2 -'Ejyj7£2 axN -’Ej,j;ﬁN
Now, combining Eqgs. (£I4) and (£I5) to eliminate dy, one gets
0 0 0
wldl’l—i—’gbgdl’g—i—"'—i—w]vdl']v: —y dl’l—l——y dl’2++—y d!L’N.
81’1 w;,j#1 81’2 @, j#2 aSL’N ;. j#N
(4.16)
Rearranging, one gets
0 0 0
0= L] ¢ )dor+ | =L = |dmat+ | = — Yy | doy.
01|y, 1 02 |4, 2 0N o, 32N
(4.17)

Since the variables x;, = 1,..., N, are independent, dx;, i = 1,..., N, are all indepen-
dent in Eq. (£IT), and in general non-zero. For equality, one must require that each of the
coefficients be zero, so

d

- Ay
N 8:171

- 01'2

Iy

= 5 (4.18)

(G P2 oy UN

) P
wju];él m]7]7é2 "E]J#N

So when dy is exact, one says that each of the ¢; and z; are conjugate to each other.

From here on out, for notational ease, the j # 1,7 # 2,...,7 # N will be ignored in
the notation for the partial derivatives. It becomes especially confusing for higher order
derivatives, and is fairly obvious for all derivatives.

If y and all its derivatives are continuous and differentiable, then one has for all i =
1,...,N,and k=1,..., N that

0y 0%y
Orpdr;  Ox;0xy, (4.19)
Now from Eq. (£18), one has
_ 9y _ Oy
Yy = Dur = o, (4.20)

Taking the partial of the first of Eq. (£20) with respect to x; and the second with respect
to xr, one gets

%y oYy

- 8%18(1%7 8—$k

_ Py
© Ox0x;

Oy
aSL’ 1

(4.21)

Ty Zj
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Since by Eq. ([£I9]) the order of the mixed second partials does not matter, one deduces from

Eq. (A21) that

o
&zl

_ O

= o (4.22)

Ty Ty

This is a necessary and sufficient condition for the exact-ness of Eq. (I12)). It is a gen-
eralization of what can be found in most introductory calculus texts for functions of two
variables.

For the Gibbs equation, (A1), du = —Pdv + T'ds, one has

y—u, T =0, Tog—S, Y —>—P Py—T. (4.23)
and one expects the natural, or canonical form of
u = u(v,s). (4.24)

Here, —P is conjugate to v, and T is conjugate to s. Application of the general form of
Eq. (.22) to the Gibbs equation (41]) gives then

0_T
v

_or
0s

(4.25)

S v

Equation (4.28) is known as a Mazwell relation. Moreover, specialization of Eq. (£.20) to
the Gibbs equation (1) gives

o
O

_0u

_p -
O0s

T

, . (4.26)

If the general differential dy = Zfil Y;dx; is exact, one also can show

e The path integral ygp —ys = ff 21111 Y;dx; is independent of the path of the integral.

e The integral around a closed contour is zero:

%dy = %iwid:ci = 0. (4.27)

e The function y can only be determined to within an additive constant. That is, there
is no absolute value of y; physical significance is only ascribed to differences in y. In
fact now, other means, extraneous to this analysis, can be used to provide absolute
values of key thermodynamic variables. This will be important especially for flows
with reaction.
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[
Ezample 4.2

Show the heat transfer ¢ is not a state function. Assume all processes are fully reversible. The first
law gives

du = 6q—dw, (4.28)

0g = du+dw, (4.29)

= du+ Pdv. (4.30)

Take now the non-canonical, although acceptable, form u = w(7T,v). Then one gets

ou ou
du= 5| dv+ 5r| dT. (4.31)
So
ou ou
= —| d —| dT + Pd 4.32
dq ao|, & ap| AP (4.32)
Ju ou
= (%T-l-P)dv—i—a—TUdT. (4.33)
=M =N
= Mdv+N dT. (4.34)
Now by Eq. (22, for §q to be exact, one must have
oM ON
o T vl (4.35)
(4.36)
This reduces to 52 op o2
Y “ (4.37)

oTov ~ OT |, 90T

This can only be true if g—i = 0. But this is not the case; consider an ideal gas for which g—i = R/v.
v v
So dq is not exact.

|
Example 4.3

Show conditions for ds to be exact in the Gibbs equation.
du = Tds— Pdv, (4.38)
du P
ds = vl Tdv, (4.39)
1 [ 0ou ou P
= —| | d — | dT —d 4.4
T(%T“aTU )+T“’ (4.40)
1 Ou P 1 Ou
= (T%T—i_T) dU-i—Ta—TUdT. (4.41)
——
=M =N
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Again, invoking Eq. ([@22]), one gets then

0 (1 Ou P 0 (1 ou
w(zml,*7), = = (zarl), (442)
10 1w 1op| P 1% (1.43)
TOoTov T2 Ovl|, T oT|, T?* T owdT’ '
1 Ou 1 0P P

This is the condition for an exact ds. Experiment can show if it is true. For example, for an ideal gas,

one finds from experiment that v = u(7T") and Pv = RT, so one gets
1R 1 RT

0+ — = 0, (4.45)
0 = 0. (4.46)

So ds is exact for an ideal gas. In fact, the relation is verified for so many gases, ideal and non-ideal,

Tv T2 v

that one simply asserts that ds is exact, rendering s to be path-independent and a state variable.

4.2 Two independent variables

Consider a general implicit function linking three variables, x, y, z

flx,y,2)=0. (4.47)

In x — y — 2z space, this will represent a surface. If the function can be inverted, it will be

possible to write the explicit forms

v=x(y,2), y=uylrz2), z=2zzy). (4.48)
Differentiating the first two of the Eqgs. (4.48) gives
dr = Ou dy + %) dz, (4.49)
dy |,
Oy dy
dy = % dx + 82 dz. (4.50)
Now use Eq. ([A50) to eliminate dy in Eq. (@9}):
O oy oy ox
:dy
ox 0y B or| Oy ox
<1_0_y o )d:c - (8y282 5 )dz (4.52)
or| 0Oy ox 8y ox
d dz = | =—| =| —1)dzx —| |dz. (4.
Odz + 0dz <0yzaxz ) +<8y 7z 8zy>z (4.53)
0 ;0 ~
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Since x and z are independent, so are dz and dz, and the coefficients on each in Eq. (£53)
must be zero. Therefore from the coefficient on dx in Eq. (4.53)

&r@

— -1 = 4.54
dy|, Ox|, 0 (4.54)
oxr| Oy
— = = 1. 4.
Oy |, Ox|, (4.55)
So
ox 1
il B 4.

and also from the coefficient on dz in Eq. (@353

or| Oy ox

By|. 32| @y:o, (4.57)
ox| or| Oy
9z y dy|, 0z|, (4.58)
So
oxr| Oy| 0z
gy%,z@_yw__l' (4.59)

If one now divides Eq. (A.49) by a fourth differential, dw, one gets

dx or| dy Ox| dz
- = == X4 = 4.
dw dy |, dw + 0z , dw (4.60)
Demanding that z be held constant in Eq. (4.60) gives
ox or| 0Oy
el = | = 4.61
ow |, dy|, ow|,’ (4.61)
oz
o ox
ow |z
w2 (4.62)
8_5) z ay Z
Ox| Ow Ox
el B = 2 . 4.
ow|, Oy |, oy |, (4.63)
If x = z(y,w), one then gets
ox Ox
= — — . 4.64
dx o dy+awydw (4.64)
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Divide now by dy while holding 2z constant so

dx
dy

_ Oz
. Oy

_or
» Ow

dw
yayz

(4.65)

These general operations can be applied to a wide variety of thermodynamic operations.

[
Example 4.4

Apply Eq. [@83) to a standard P — v — T system and let
or| OT
dy|, vl

SoT=x,v=y, and s = z. Let now u = w. So Eq. (£68) becomes

oT . or oT| Ou
v |, ov|, Oul, ov|,
Now by definition
o
v T 8T v?
S0
or| _1
ou |, e
Now by Eq. [@28]), one has %’S = —P, so one gets
or| oT| P
v |, Y W Co

For an ideal gas, u = u(T). Inverting, one gets T' = T'(u), and so

ory P
v | e
For an isentropic process in an ideal gas, one gets
ar P RT
dv Co  CpU’
ar R dv
T Cy U
dv
= —(k—-1)—
(k-1
T Vo
In— = (k—1)In—
T Vo) F—1
z = ()

CC BY-NC-ND. 28 January 2019, J. M. Powers.
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ov

, = 0, thus

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)
(4.73)

(4.74)

(4.75)

(4.76)
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4.3 Legendre transformations

The Gibbs equation (A1), du = —Pdv + Tds, is the fundamental equation of classical
thermodynamics. It is a canonical form which suggests the most natural set of variables in
which to express internal energy u are s and v:

u=u(v,s). (4.77)

However, v and s may not be convenient for a particular problem. There may be other
combinations of variables whose canonical form gives a more convenient set of independent
variables for a particular problem. An example is the enthalpy:

h =u+ Puv. (4.78)
Differentiating the enthalpy gives

dh = du + Pdv + vdP. (4.79)

Use now Eq. (£79) to eliminate du in the Gibbs equation to give

dh — Pdv —vdP. = —Pdv+ Tds. (4.80)
—u
So
|dh = Tds + vdP.| (4.81)

So the canonical variables for i are s and P. One then expects
h = h(s, P). (4.82)

This exercise can be systematized with the Legendre transformation which defines a set
of second order polynomial combinations of variables. Consider again the exact differential

Eq. (@14):
dy = ¢1dl’1 + wgdl’g + -+ ¢Nde- (483)

!Two differentiable functions f and g are said to be Legendre transformations of each other if their first
derivatives are inverse functions of each other: Df = (Dg)~!. With some effort, not shown here, one can
prove that the Legendre transformations of this section satisfy this general condition.
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For N independent variables z; and N conjugate variables 1);, by definition there are 2V — 1
Legendre transformed variables:

T = 71(101,I2,$37---7$N) =y — Y1y, (4-84)
T = To(T1,%2, T3, ..., TN) = Y — P2, (4.85)
™ = Tn(%1,22,23,...,0N) =Yy — YnaN, (4.86)
T2 — 7’1,2(%7 o, T3, ... 7$N) =y — U121 — Yoo, (4-87)
T3 = Ti3(V1, 22,03, .., 2N) =y — Y121 — P33, (4.88)
N
T,..N = Tl,...,N(%, o, s, ... ,@bN) =Y - Z ;. (4-89)
i1

Each 7 is a new dependent variable. Fach T has the property that when it is known as a
function of its N canonical variables, the remaining N variables from the original expression
(the x; and the conjugate ;) can be recovered by differentiation of T. In general this is not
true for arbitrary transformations.

[
Example 4.5

Let y = y(21, 22, z3). This has the associated differential form
dy = rdzy + Padry + Ysdrs. (4.90)

Choose now a Legendre transformed variable 7 = z (11, x2, x3):

Then 5 5 5
de= 22| dyy+ 22 vy + —— das. (4.92)
I T2,%3 Oz P1,T3 I3 P1,T2
Now differentiating Eq. ([4.91]), one also gets
dz = dy — 1/)1d$1 - Ildl/Jl. (493)
Elimination of dy in Eq. (£93)) by using Eq. (£.90) gives
dz = 91 dzy + 2 dxe + 93 drs —ip1 dry — 1 dijn, (4.94)
=dy
= —x1 dyYy + ¥y dzo + Y3 dxs. (4.95)
Thus from Eq. {@32)), one gets
0z 0z 0z
T =— —o , e = —— hy = —— , (4.96)
I T2,%3 Oy P1,73 Oy P1,T2

So the original expression had three independent variables x1, x2, x3, and three conjugate variables
1, 2, 3. Definition of the Legendre function z with canonical variables v, x3, and x3 allowed
determination of the remaining variables z1, 12, and 3 in terms of the canonical variables.
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For the Gibbs equation, ([@1l), du = —Pdv+ T'ds, one has y = u, two canonical variables,
r1 = v and x9 = s, and two conjugates, 1y = —P and ¢ = T. Thus N = 2, and one can
expect 22 — 1 = 3 Legendre transformations. They are

T =Y —Yim Zh:h(P,S)
T =y — oty =a = a(v,T)
Tio =Yy — 12y —hews =g=g(P,T) = u+ Pv—Ts, Gibbs free energy.

u+ Pv, enthalpy, (4.97)
u—Ts, Helmholtz free energy, (4.98)

(4.99)

It has already been shown for the enthalpy that dh = T'ds + vdP, so that the canonical
variables are s and P. One then also has

oh oh
dh = —| d —| dP 4.100
as|,“ " ap| (4.100)
from which one deduces that
oh oh
T == = | . 4.101
Js|p’ YT op . (4.101)

From Eq. (AI01), a second Maxwell relation can be deduced by differentiation of the first
with respect to P and the second with respect to s:

or| o
OPS_&@

(4.102)

P

The relations for Helmholtz and Gibbs free energies each supply additional useful relations
including two new Maxwell relations. First consider the Helmholtz free energy

a = u—"Ts, (4.103)
da = du—Tds— sdT, (4.104)
= (=Pdv+Tds) —Tds — sdT, (4.105)

= —Pdv—sdT. (4.106)

So the canonical variables for a are v and T'. The conjugate variables are —P and —s. Thus

oa oa
da = —| d —| dT. 4.1
a ol v+ o7 | (4.107)
So one gets
oa oa
_p- = | . 4.108
|y’ T ar ) ( )
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and the consequent Maxwell relation

oP| _os
or|, Ov|p
For the Gibbs free energy
g = u+Pv-Ts,
=h
= h—"1Ts,
dg = dh—Tds— sdT,

—dh
vdP — sdT.

So for Gibbs free energy, the canonical variables are P
are v and —s. One then has g = g(P,T'), which gives

(T'ds + vdP) —Tds — sdT,
~———

(4.109)

(4.110)

(4.111)
(4.112)
(4.113)

(4.114)

and T while the conjugate variables

dg dg
dg= —=| dP+ —=| dT. 4.115
9= op), T ar|, (4.115)
So one finds
9y 9y
_ Y9 _g= 22| . 4.11
YT op|, T T, (4.116)
The resulting Maxwell function is then
ov s
— === . 4.117
T | p oP |, ( )
|
Example 4.6
Canonical Form
If
R/cp
h(s, P) = cpT, <§> exp (é) + (ho — cpTy), (4.118)

and cp, T,, R, P,, and h, are all constants, derive both thermal and caloric state equations P(v,T)

and u(v,T).

Now for this material

oh P filer s

a2 o(5) e () (119)
oh RT, [ P\T/er—t s

op|, = B <F) p<—) (4.120)
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Now since
oh
- = T, (4.121)
0s|p
oh
it — 4.122
Bl = " (4122)
one has
R/cp
P S
T = T, — — 1, 4.12
<P0> P (CP> ( )
RT, [ P\T/er™! s
v = Po (E) exp (;) . (4124)
Dividing Eq. (123) by Eq. (£124) gives
T P
- = 4.125
— = 5 (4125)
Pv = RT, (4.126)

which is the thermal equation of state. Substituting from Eq. (£I23) into the canonical equation for
h, Eq. [EII8), one also finds for the caloric equation of state

h = cpT+ (ho—cpT), (4.127)
h = cp(T —T,)+ ho, (4.128)

which is useful in itself. Substituting in for 7" and T,

P Pyv,
h=cp <% - }; ) + ho. (4.129)

Using, Eq. @T8), h = u + Pv, we get

u+ Pv=cp <% - P;;"’) + 1o + Pov,. (4.130)
So

u = (R )P —(EP—l>POUO+uO, (4.131)

u = (%— ) — Pyvo) + to, (4.132)

u = (%— ) (RT — RT,) + uo, (4.133)

= (cp = R) (T —T0) + uo, (4.134)

(cp — (CP_CU)) (T —T,) + uo, (4.135)

= ¢ (T =To) + t. (4.136)

So one canonical equation gives us all the information one needs. Often, it is difficult to do a single
experiment to get the canonical form.
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4.4 Heat capacity

Recall that

ou
aT
oh
T

Cy =

Y
v

Cp =

P
Then perform operations on the Gibbs equation

du = Tds— Pdv,

0
or|, =~ or|,’
s

= T = .

@ ar|,

Likewise,

dh = Tds+ vdP,

oh O0s
o - 72

oT | » or|p’
0s

= T —| .

& ar| ,

One finds further useful relations by operating on the Gibbs equation:

du = Tds— Pdv,

oul _ pos|
o | o |
0P
= T —| —P.
8 v
So one can then say
u = u(T,v),
Ju ou
= | dr+ =
du 5T Ud + 5 Tdv,
oP
= ¢, dT T —
c + ( T
For an ideal gas, one has
ou oP R
— = T—| —P=T|—
ov | or |, (v

= 0.
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— P) dv.

_ BT

(%

)

(4.137)

(4.138)

(4.139)
(4.140)

(4.141)

(4.142)
(4.143)

(4.144)

(4.145)
(4.146)

(4.147)

(4.148)
(4.149)

(4.150)

(4.151)

(4.152)
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Consequently, u is not a function of v for an ideal gas, so u = u(7T) alone. Since Eq. (£T8)),
h = u + Puv, for an ideal gas reduces to h = u + RT

h=u(T) + RT = h(T). (4.153)

Now return to general equations of state. With s = s(T',v) or s = s(T', P), one gets

ds 0s
- 2l ar+ = 4.154
ds 8Tvd +8v Tdv, (4.154)
ds ds
ds = —| dT'+ —| dP. 4.1
s 7|, + P, (4.155)
Now using Eqs. (102, A1T7, AT4T], 4.144) one gets
Cy oP
_ Crayp_ O
ds = T dTr 5T PdP. (4.157)
Subtracting Eq. (£I57) from Eq. (4.I56)), one finds
_ cy—cp oP ov
0 = T dT + 5T Udv+ 5T PdP, (4.158)
OP ov
(CP — Cv)dT = T 8—T ) d'U + T 8_T R dP (4159)

Now divide both sides by d1" and hold either P or v constant. In either case, one gets

oP| Ov
CP—CU—Ta—Tva—TP. (4160)
Also, since OP/IT |, = —(0P/dv|r)(0v/0T|p), Eq. (4160) can be rewritten as
ov| \* op
CP—CU——T<8—T P) % T. (4161)

Now since T' > 0, (Ov/dT|p)? > 0, and for all known materials dP/dv|r < 0, we must have

cp > Gy (4.162)

[
Example 4.7

For an ideal gas find cp — ¢,.
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For the ideal gas, Pv = RT, one has

OP R Ov R
| == — | = 4.1
or|, v’ T\, P (4.163)
So, from Eq. ({I60), we have
RR
Cp —Cy = T?ﬁ’ (4164)
R2
= T— 4.165
. (4.165)
- R (4.166)

This holds even if the ideal gas is calorically imperfect. That is

| cp(T) = c(T) = R.| (4.167)

For the ratio of specific heats for a general material, one can use Eqs. (£I41) and (£.144))
to get

Js

~

k==L = %_T L then apply Eq. (E50) to get (4.168)
Cy T 57|,
T
= g—; . g—s o then apply Eq. (4.58)) to get (4.169)
Js| OP aT| ov
_ (_9s| oP \ ([ _oT| ov 41
( 8PT8TS)< avsasT)7 4170)

Jv| 0Os oP| oT
N I | =\ ). 4.171
<8$ T aP T) (aT s 01} s) ( ! )
So for general materials
Jv| OP
= —| — . 4.172
g OP |, Ov |, (4.172)

The first term can be obtained from P — v — T data. The second term is related to the
isentropic sound speed of the material, which is also a measurable quantity.

|
Example 4.8
For a calorically perfect ideal gas with gas constant R and specific heat at constant volume c,,
find expressions for the thermodynamic variable s and thermodynamic potentials w, h, a, and g, as
functions of 7" and P.
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First get the entropy:
du = Tds— Pdv, (4.173)
Tds = du+ Pdv, (4.174)
Tds = c¢,dT + Pdv, (4.175)
ar P
d = v — P d s 41
s Co + T (4.176)
dr dv
= ¢y,— + R—, 4.177
Corp + R (4.177)
dr d
/ds - /CU? +/R7U, (4.178)
T v
s—sy = cvlnFO—i—Rlnv—O, (4.179)
5—So T R, RT/P
= In—+4—1 4.180
cy T o “RI/P (4.180)
T T Py /e
T 1+R/cy PO R/c,
= In(= In{— 4.182
u ( TO) tin ( L ) , (4.182)
7\ 1Her—ev)/co P, (ep—cv)/co
= In(= In{— 4.1
H(TO) +n(P) , (4.183)
k k—1
T Py
= In(= In|— 4.184
H(TO) +n<P) (4.184)
So
k k—1
T P
s=50+cy,ln (ﬁ) + ¢, In (%) ) (4.185)
Now, for the calorically perfect ideal gas, one has
‘u:uo—i—cv(T—To).‘ (4.186)
For the enthalpy, one gets
h = wu+ Po, (4.187)
= u+ RT, (4.188)
= wu,+c(T-1T,)+ RT, (4.189)
= u,+c,(T-1T,)+ RT + RT, — RT,, (4.190)
= u,+ RT,+c¢,(T = T,)+ R(T —T,), (4.191)
————
=h,
- ho + (Cu + R)(T - To). (4192)
_
So
‘h: ho—i—cp(T—To).‘ (4.193)
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For the Helmholtz free energy, one gets

a = u—Ts. (4.194)

Thus,

a—uo—i—cv(T—To)—T(so—i—cvln(—
0

;)k +c,ln <%>“> . (4.195)

For the Gibbs free energy, one gets

g = h-Ts. (4.196)

Thus

g_ho—l-cp(T—To)—T<SQ+CU1D<—
0

;)k +c,ln (%)lH) . (4.197)

4.5 Van der Waals gas

A van der Waals gas is a common model for a non-ideal gas. It can capture some of the

behavior of a gas as it approaches the vapor dome.

Its form is

RT B
v—>

P(T,v) =

a (4.198)

v?’

where b accounts for the finite volume of the molecules, and a accounts for intermolecular

forces.
[
Example 4.9
Find a general expression for u(T,v) if
RT a
P(T = - —. 4.1
(To)="0 (1199)
Proceed as before: First we have
ou ou
du= —| dI'+ —| d 4.2
u= o5 . + v, v, (4.200)
recalling that
ou ou opP
F—e, & | —p 4.201
ar|, ~ © |, " oT|, (4.200)
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Now for the van der Waals gas, we have

g—i - v}_zb, (4.202)
T ‘;—i -P = UR_Tb _P, (4.203)
- UR_Tb - (% - %) = v% (4.204)
So we have
% - 1% (4.205)
wW(T,v) = —2+ f(T) (4.206)

Here f(T) is some as-of-yet arbitrary function of T. To evaluate f(T'), take the derivative with respect
to T holding v constant:

ou

Qui _df _
oT

= (4.207)

Since f is a function of T at most, here ¢, can be a function of T at most, so we allow ¢, = ¢,(T).
Integrating, we find f(7T') as

T

f(T)=C+ / co(T)dT, (4.208)
To
where C is an integration constant. Thus w is
T .. a
u(T,v) = C+/ e (TYdT — " (4.209)
To
Taking C = u, + a/v,, we get
T 11
w(T,v) = u, —|—/ co(T)dT + a (— - —) . (4.210)
Vo U
We also find
T 11
h:u—i—PU:uo—i—/ cU(T)dT—i—a(———) + Po, (4.211)
T, Vo v
(T, v) = uo + /T (F)dT +a(~ 1) B0 _a (4.212)
V) = U Co a|l——-— - —. .
, T, Vo v v—2> v
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I
Ezample 4.10
A van der Waals gas with

J
R = 200 —— 4.213
e (4.213)
Pa mS
a = 150 <5, (4.214)
3
m
b = 0.001 — 4.215
T (4.215)
0 = (350 - + 02—, _ (T — (300 K)) (4.216)
v kg K " kg K2 ’ '

begins at Ty = 300 K, P, = 1x 10° Pa. It is isothermally compressed to state 2 where P, = 1 x 10® Pa.
It is then isochorically heated to state 3 where T3 = 1000 K. Find w3, 1¢3, and s3 — s;. Assume the
surroundings are at 1000 K.

Recall
RT a
P:v—b_v_2’ (4.217)
so at state 1
(200 L) (300 K) 150 Pam®
(10° Pa) = LY/ T (4.218)
vy — (0.001 ’;;—q) vt
Expanding, one gets
k kg? kg?
~0.15 + (150 —93> v — (60100 %) V2 + (100000 %) W3 =0. (4.219)
m m m
This is a cubic equation which has three solutions:
m3
vy = 0.598 o physical, (4.220)
g
m3
v1 = 0.00125 — 0.0097¢ To not physical, (4.221)
g
m3
vy = 0.00125 + 0.0097¢ To not physical. (4.222)
g
Now at state 2, P, and T, are known, so v2 can be determined:
(200 4) (300 K) 150 Pom®
(105 Pa) = ko K R 7 (4.223)

vy — (0.001 ’,g—g) v3

The physical solution is vo = 0.0585 m3/kg. Now at state 3 it is known that v3 = vy and T3 = 1000 K.
Determine Pj:

(200 2% ) (1000 K) 150 Lom’
P = o - —. (4.224)
(0.0585 k—g) . (0.001 k—g) (0,0585 ’,’j—g)
— (3478261 Pa) — (43831 Pa), (4.225)
3434430 Pa. (4.226)
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Now jws = jws + sws3 = J»12 Pdv + f; Pdv = J»12 Pdv since 2 — 3 is at constant volume. So

v2 (RT a
1wz = / <’U ~ - ’U_z) d’U7 (4227)
vy
2 du Y2 dv
= RT — — 4.228
1 ‘/’Ul v—b GJ‘/’U1 ’027 ( )
—b 1 1
— RNIn (U2 ) ta (— - —) , (4.229)
v — b V2 V1

N (200 ﬁ> (300 £)ln (0.598 m—g) _ (0.001 ’;g—g)

+ (150 PZgTG) (0.05;5 m 0.59; ’;;—q) ! (4.230)
- <—140408 k—{q) + (2313 k—{q) : (4.231)
= —138095 k—Jg, (4.232)
= | —138.095 IZ—Z. (4.233)

The gas is compressed, so the work is negative. Since w is a state property:

s 11
Uz — U = / ceo(T)dT + a (— - —) . (4.234)
T U1 U3
Now
o = (350 L)+ (0.2 —L_) (7 = 300 K)) (4.235)
v kg K " kg K2 ’ '
J J
= 290 —— 2 —— | T. 4.2
< 90 Tg K) + <O Tg K2> (4.236)
SO
us —uy = /T3 290— + 02L T)dT +a 11 (4.237)
3 v T kg K " kg K2 v vz /)’ '
= (290 1)+ (00 —L ) (@21 pa L -t (4.238)
kg K? 3 ! vy w3)’ '

(
(2

—K
" K) ((1000 K) — (300 K)) + ( : ngKQ) ((1000 K)* — (300 K)?)

i (150 PZgT ) <0.59:3 me 0.05815 m—3> ’ (4.239)
kg kg
= (203000 k—”’g) + (91000 k—‘]g) - (2313 k—‘]g) , (4.240)
= 291687 k—']g, (4.241)
kJ
= 202 . (4.242)
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Now from the first law

uz — Uy

193 =

143

1493 =

143 — 1Ws,

U3z — Uy + 1ws3,

kJ kJ
292 -~ 138 -~
( ! kg) ( 5% kg)

kJ
154 -~
kg

The heat transfer is positive as heat was added to the system.

Now find the entropy change. Manipulate the Gibbs equation:

Tds =
ds =

ds =

ds =

ds =

83 =81 =

du + Pduv,
1 P
Tdu + Td’l},
1 a P
T (CU(T)dT + Fdl}) + Td'U7
1 a 1 RT a
T (CU(T)dT—i- ﬁdv) + T (v — ﬁ) dv,
)y ¢ idv,
v—2>
T3
/ “) o 4 RIn b
T U1 —
/1000 (290 T3 K) T Rln _b
300 T k K2 1 - b
J 1000 K J
290 —— | In (| —— 0.2 (1000 K) —
(20 %) (300K>+( ) (000 5

((
. (200 )m (0.0585 22 ) — (0.001 22)
ko K/ (0.598 22) - (0.001 22

J J J
49 —— 140 —— | — [ 4 —_
<39k K>+<°kgf<) <68kg )

21 L,
kg K

0.021 L

kg K-

Is the second law satisfied for each portion of the process?

First look at 1 — 2

U2 —ur = 142 —1W2,

192 = U2 — U1+ 1wWe,

192 = <

T> —
/ cv(T)dT+a<i—i>> + (RTlln (”2 b) —|—a<
T (%1} V2 v — b
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Recalling that Ty = T, and canceling the terms in a, one gets
Vg — b
= T 1 4.261
142 R1n<v1—b)’ (4.261)
J (0.0585 22) — (0.001 2)
g (0.598 22) — (0.001 22)
J
= —140408 —. 4.263
- (4.263)
Since the process is isothermal,
Vg — b
sa —s1 =Rln <U1 — b> (4.264)
3 3
0.0585 2>~ ) — (0.001 2
_ (200 ﬁ) In ( kf) ( kf) , (4.265)
g (0.598 22) — (0.001 22)
J

Entropy drops because heat was transferred out of the system.

Check the second law. Note that in this portion of the process in which the heat is transferred out
of the system, that the surroundings must have T, < 300 K. For this portion of the process let us

take Tsyrr = 300 K.

Next look at 2 — 3

since isochoric

82 = 51

—468.0

Y

142,
-
J
—140408

—468.0

203 = U3 —

2q3 = <
T3
243 = /
Ts

1000 K
J J
= 290 —— | + (0.2 —
/300K (( kQK) kg K*

Y

Y

T3
/{Tg

300 K
J

—468.0 ——

k.
kg K ©

Uz + 2Ws,

co(T)dT,

= 294000 I
kg

cmerva (- L)) (f ra)

) T) dT,

(4.267)

(4.268)

(4.269)

(4.270)

(4.271)

(4.272)

(4.273)

(4.274)
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Now look at the entropy change for the isochoric process:

53— 89 = / C”; ) ar, (4.275)
T>
r (200 525 7
= A 74 (02 —) dr, 4.276
~/T2 T ( kg K? (4:276)
J 1000 K J
= (290 kg—}() In ( 500 T ) + (0.2 W) ((1000 K) — (300 K)), (4.277)
J
— 489 . 42
9 (4.278)

Entropy rises because heat transferred into system.

In order to transfer heat into the system we must have a different thermal reservoir. This one must
have Ty > 1000 K. Assume here that the heat transfer was from a reservoir held at 1000 K to assess

the influence of the second law.

S§3 — S2 Z %7 (4279)
A J 294000 A
Wik = 00K (4.280)
189 > 990 T k (4.281)
kg K = kg KT OF '
4.6 Redlich-Kwong gas
The Redlich-Kwong equation of state is
RT a
P= — : 4.282
v—>b w(v+b)T? ( )

It is modestly more accurate than the van der Waals equation in predicting material behavior.

|
Ezample 4.11
For the case in which b = 0, find an expression for u(7,v) consistent with the Redlich-Kwong state
equation.
Here the equation of state is now

RT a

b=~

(4.283)
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Proceeding as before, we have

ou oP
— = T —| —-P 4.284
o |1 oT |, ’ ( )

R a RT a

= T (? + 72U2T3/2) — <_v - —02T1/2> , (4.285)

3a

Integrating, we find

T,p) = -8 T 4.287
u( av)——m'i‘f( )- (4.287)

Here f(T) is a yet-to-be-specified function of temperature only. Now the specific heat is found by the
temperature derivative of u:

Ou 3a df

W(T0) = —=| = —= + —. 4.2
«@) = 55| = mrr tar (4.288)
Obviously, for this material, ¢, is a function of both 7" and v.
Let us define ¢,,(T) via
df _

Integrating, then one gets

T A~ A

f(T)=C+ / coo(T) dT. (4.290)
To

Let us take C = u0—|—3a/2/v0/T01/2. Thus we arrive at the following expressions for ¢, (T, v) and u(T, v):

3a
C»U(T,’U) = CUO(T) + 4_1}11—3/27 (4291)
T
A o 3a 1 1
U(T,’U) = Uy + /O C»UO(T) dT+ 7 <U0117 - W) . (4292)

4.7 Compressibility and generalized charts

A simple way to quantify the deviation from ideal gas behavior is to determine the so-called

compressibility Z, where
Pv

4= —.
RT

(4.293)
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For an ideal gas, Z = 1. For substances with a simple molecular structure, Z can be
tabulated as functions of the so-called reduced pressure P, and reduced temperature 7,. T,
and P, are dimensionless variables found by scaling their dimensional counterparts by the
specific material’s temperature and pressure at the critical point, T, and P.:

T, = — P.=—. (4.294)

Often charts are available which give predictions of all reduced thermodynamic properties.
These are most useful to capture the non-ideal gas behavior of materials for which tables are
not available.

4.8 Mixtures with variable composition

Consider now mixtures of N species. The focus here will be on extensive properties and
molar properties. Assume that each species has n; moles, and the the total number of moles
isn = Zf\il n;. Now one might expect the extensive energy to be a function of the entropy,
the volume and the number of moles of each species:

U=U(V,S,n). (4.295)

The extensive version of the Gibbs law in which all of the n; are held constant is

dU = —PdV + TdS. (4.296)
Thus o ou
it - _ - =T. 4.2
ov Sim; ’ oS Vi (4.297)

In general, since U = U(S, V,n;), one should expect, for systems in which the n; are allowed

to change that
N

as +

Vin; =1 an’

ou
dU—W

ou
. av + 5

dn;. (4.298)
S,Vin;

Defining the new thermodynamics property, the chemical potential [, as

ou
I = , (4.299)
ani S,Vin;
one has the important Gibbs equation for multicomponent systems:
N
dU = —PdV +TdS + Y Tdn,. (4.300)
i=1
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Obviously, by its definition, 7; is on a per mole basis, so it is given the appropriate overline
notation. In Eq. (£300), the independent variables and their conjugates are

r =V, i = —P, (4.301)
2 = S, =T, (4.302)
r3 = nq, V3 =iy, (4.303)
Ty = nNg, Wy = Ty, (4.304)
IN+2 = 7NN, YNy2 = Hy- (4.305)

Equation (E300) has 2V —1 Legendre functions. Three are in wide usage: the extensive
analog to those earlier found. They are

H = U+ PV, (4.306)
A = U-TS, (4.307)
G = U+PV-TS. (4.308)

A set of non-traditional, but perfectly acceptable additional Legendre functions would be
formed from U — 7iyn;. Another set would be formed from U + PV — Tiyng. There are
many more, but one in particular is sometimes noted in the literature: the so-called grand
potential, (). The grand potential is defined as

N
QO=U-TS-> fn. (4.309)

i=1

Differentiating each defined Legendre function, Eqs. (4306H4.300), and combining with
Eq. (£300), one finds

N
dH = TdS+VdP+ fidn;, (4.310)
i=1
N
dA = —8dT — PdV + Y Tidn;, (4.311)
=1
N
dG = —SdT +VdP + Y Tdn;, (4.312)
=1
N
dQ = —PdV —SdT = ndp, (4.313)

i=1

Thus, canonical variables for H are H = H(S, P,n;). One finds a similar set of relations as
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before from each of the differential forms:

e

)
T7ﬁi

Y
Vvﬁi

T,Pn;

(4.314)
(4.315)
(4.316)
(4.317)

(4.318)

(4.319)

(4.320)
(4.321)
(4.322)
(4.323)
(4.324)
(4.325)
(4.326)
(4.327)

(4.328)

- U _9oH
o8|y, 08 Pm’
p - _oup __o4 00
OV g, OV |1, ov
po_ ool _ac
opP|g, ~ OP T,m-7
g - oA _ oG 09
or|y,, o' | p,,. oT
B of)
/)
_ U _ OH 04
Hi = on; SV, - On; S,Pn,  On, TV, - On,;
Each of these induces a corresponding Maxwell relation, obtained by cross differentiation.
These are
or oP
Wls, — 05|y,
oT ov
OPls,, — 95|,
oP oS
Ty, — Vi,
ovy —~_ _95
o' |p,, ) Tvm-’
of; a8
T |p, — Onily,,’
o _ oV
OP T, on,; Vin ’
O _ O
Iy, T,Pn; Iy T,PJLJ’
oS oP
WVl 0T,
on; Oy,
8ﬂk V\T.1i;,j#k - aﬂi V.T,i;,57%
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4.9 Partial molar properties

4.9.1 Homogeneous functions

In mathematics, a homogeneous function f(xi,...,xzx) of order m is one such that
fAxy, ..., en) = N"f(xq, ..., zN). (4.329)

If m =1, one has
f()\l’l,...,)\l']v) = )\f(l’l,...,l’N). (4330)

Thermodynamic variables are examples of homogeneous functions.

4.9.2 Gibbs free energy

Consider an extensive property, such as the Gibbs free energy . One has the canonical
form

G:G(T, P,?’Ll,’ng,...,n]v). (4331)

One would like to show that if each of the mole numbers n; is increased by a common factor,
say A, with 7" and P constant, that GG increases by the same factor A:

)\G(T, P, ni,ng, ... ,nN) = G(T, P, )\nl, )\712, ceey )\HN) (4332)

Differentiate both sides of Eq. (A.332)) with respect to A, while holding P, T', and n; constant,
to get

G(T,P,nl,ng,...,nN) =

oG d(Any) oG d(Anz) oG d(Any)
T A T AN 4.
OO | oy AN OO, AN 0w |, g dA (4.333)
oG oG oG
= ny+ ——— neg + -+ ny, (4.334
d(An1) n;,P,T 1 d(Ana) n;,P,T ’ O(Any) nj,P,T W )
This must hold for all A, including A = 1, so one requires
oG oG oG
G(T,P,ny,ng,...,n = — ny+ — ng+---+ —— ny,
( v ) Ony n;,P,T L o, n;,P,T ’ Iny n; P,T "
(4.335)
N
-y % (4.336)
on; n;,P,T

1=1

Recall now the definition partial molar property, the derivative of an extensive variable with
respect to species n; holding n;, i # j, T', and P constant. Because the result has units per
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mole, an overline superscript is utilized. The partial molar Gibbs free energy of species i, g,
is then

oG
9i= 57— ) (4.337)
on; n;,P,T
so that
N
G=> g (4.338)
i=1
Using the definition of chemical potential, Eq. (£319), one also notes then that
N
G(T,P,ni,ns,...,ny) = Zﬂln, (4.339)
i=1

The temperature and pressure dependence of G' must lie entirely within 7z,(7, P, n;), which
one notes is also allowed to be a function of n; as well. Consequently, one also sees that the
Gibbs free energy per unit mole of species i is the chemical potential of that species:

9i = Hi- (4.340)
Using Eq. (4338) to eliminate G in Eq. ({308), one recovers an equation for the energy:
N
U=-PV+TS+> fhni. (4.341)
i=1

4.9.3 Other properties

A similar result also holds for any other extensive property such as V', U, H, A, or S. One
can also show that

Vo ;n g:; o (4.342)
U = in ggi - (4.343)
H o= én gnHi " (4.344)
A = gnl 2—2 nj7T,v’ (4.345)
S = énl SZ nij’T. (4.346)
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Note that these expressions do not formally involve partial molar properties since P and T
are not constant.

Take now the appropriate partial molar derivatives of G for an ideal mixture of ideal
gases to get some useful relations:

G = H-TS, (4.347)
G _ 0H B 85 (4.348)
Mi |7, - O T,Pn, 8”@ T,Pn; . .

Now from the definition of an ideal mixture h; = h;(T, P), so one has

H = ) ngu(T, P), (4.349)
OH 0 (L -
o |y, Om <;nkhk(T,P)), (4.350)
N 0nk—
= Y (T, P), (4.351)
an,-
k=1~
=0k
N
= Y 6uhi(T.P), (4.352)
k=1
= h(T,P). (4.353)

Here_, the_Kronecker delta function d;; has been again used. Now for an ideal gas one further
has h; = h;(T). The analysis is more complicated for the entropy, in which

e ma ()
e (s (7)) e
_ gnk (;gw Tl (;) Rl (ﬁ)) , (4.356)
(s

g)) _ﬁf:nk In (Ef{’“ n) , (4.357)
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o (- (7))
= ng (57, — Rln [ —
T,Pn; ani k=1 Tk Po
negln | —— 1] |, (4.358)
T,Pn; (kz:; (Zé\il g

N
8nk o — P
—~

oS
0ni

k=1

=dik
B al n
-R ny, In b , (4.359)
on; T,Pn; (; (fo:l nq> >

— P — 0 l T
= (3}, — Rln <—)) - R ( ny In (7>> .(4.360)
( o PO an’ T,Pn; kz:; Z(]]V:l nq

Evaluation of the final term on the right side requires closer examination, and in fact, after
tedious but straightforward analysis, yields a simple result which can easily be verified by

direct calculation:
N n n
k i
E ny In 5 >> = In ( ¥ ) : (4.361)

So the partial molar entropy is in fact

0
8ni

_/P\ - ,
05 — 5,—Bh <—) ~ R ( o > , (4.362)
ani T,Pn; PO Zqzl nq
_ /P\ —
= 5, — Rln (F) — Rlny;, (4.363)
__ /P
= E%J — RIn (F) s (4364)
- 5 (4.365)

Thus, one can in fact claim for the ideal mixture of ideal gases that

g, = hi —T5,. (4.366)

4.9.4 Relation between mixture and partial molar properties

A simple analysis shows how the partial molar property for an individual species is related
to the partial molar property for the mixture. Consider, for example, the Gibbs free energy.
The mixture-averaged Gibbs free energy per unit mole is

e
7= (4.367)
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Now take a partial molar derivative and analyze to get

99 _ Lo _G o (4.368)
on; T,Pn; n on; T.Pn; on; T.Pn ’ .
N
1
_ Log G0 S ), (4.369)
n on; T.Pm; on; T.Pn; \ =1
_ loa GO (4.370)
n on; T,Pn; n? 1 on; T7P,nJ’
1 0G G =
_ ! SN (4.371)
n on;|p P n? ;
1
_ 1% % (4.372)
n on; TP, M
1 _
_ —Ei—g- (4.373)
n n
Multiplying by n and rearranging, one gets
dg
gi=g+n : (4.374)
on; T,Pn;

A similar result holds for other properties.

4.10 Irreversible entropy production in a closed system

Consider a multicomponent thermodynamic system closed to mass exchanges with its sur-
roundings coming into equilibrium. Allow the system to be exchanging work and heat with
its surroundings. Assume the temperature difference between the system and its surround-
ings is so small that both can be considered to be at temperature T. If 4(Q) is introduced
into the system, then the surroundings suffer a loss of entropy:

oQ

T
The system’s entropy S can change via this heat transfer, as well as via other internal
irreversible processes, such as internal chemical reaction. The second law of thermodynamics
requires that the entropy change of the universe be positive semi-definite:

S,y = (4.375)

dS + dSgur > 0. (4.376)
Eliminating dS,,,., one requires for the system that
)
ds > ?Q (4.377)
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Consider temporarily the assumption that the work and heat transfer are both reversible.
Thus, the irreversible entropy production must be associated with internal chemical reaction.
Now the first law for the entire system gives

AU = 6Q — W, (4.378)
— §Q — PdV, (4.379)
5Q = dU + Pdv. (4.380)

Note because the system is closed, there can be no species entering or exiting, and so there
is no change dU attributable to dn;. While within the system the dn; may not be 0, the net
contribution to the change in total internal energy is zero. A non-zero dn; within the system
simply re-partitions a fixed amount of total energy from one species to another. Substituting

Eq. (£380) into Eq. (4377) to eliminate 6@, one gets

iS > = (dU+ Pdv), (4.381)
T e—_—— —
—50Q
TdS — dU — PdV > 0, (4.382)
dU — TdS + PAV < 0. (4.383)

Eq. (£383) involves properties only and need not require assumptions of reversibility for
processes in its derivation. In special cases, it reduces to simpler forms.
For processes which are isentropic and isochoric, the second law expression, Eq. (4.383),
reduces to
dU|57V <0. (4.384)

For processes which are isoenergetic and isochoric, the second law expression, Eq. (£383)),
reduces to
dS|; > 0. (4.385)

Now using Eq. (4.300) to eliminate dS in Eq. (4.385]), one can express the second law as

1 P 1L
FU + =dV = — > Tidn; > 0, (4.386)
=1
:ES uv
1 N
7 > figdn; > 0. (4.387)
=1

irreversible entropy production

The irreversible entropy production associated with the internal chemical reaction must be
the left side of Eq. (£387). Often the irreversible entropy production is defined as o, with
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the second law requiring do > 0. Equation (£387) in terms of do is
LN
do = —= ;ﬁidni > 0. (4.388)

Now, while most standard texts focusing on equilibrium thermodynamics go to great lengths
to avoid the introduction of time, it really belongs in a discussion describing the approach
to equilibrium. One can divide Eq. ([4.387) by a positive time increment dt to get

—=N " —L>0. (4.389)

Since T' > 0, one can multiply Eq. (£389) by —T to get

N

dni
> h— <. (4.390)
" dt

This will hold if a model for dd’? is employed which guarantees that the left side of Eq. (4.390)

is negative semi-definite. One will expect then for dn;/dt to be related to the chemical
potentials 7i;.
Elimination of dU in Eq. (£.383)) in favor of dH from dH = dU + PdV + VdP gives

dH — PdV — VAP ~TdS + PdV < 0, (4.391)
—du
dH —VdP —TdS < 0. (4.392)

Thus, one finds for isobaric, isentropic equilibration that
dH|pg < 0. (4.393)
For the Helmholtz and Gibbs free energies, one analogously finds

dAly <

< (4.394)
dGlyp <

0,
0. (4.395)

The expression of the second law in terms of dG is especially useful as it may be easy in an
experiment to control so that P and T' are constant. This is especially true in an isobaric
phase change, in which the temperature is guaranteed to be constant as well.

Now one has

N
G =) ng, (4.396)
=1

N
- S . (4.397)
i=1
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One also has from Eq. (E312): dG = —SdT +VdP + 3.~ fi;dn;, holding T and P constant
that

N
dGlyp = Fidn;. (4.398)
=1

Here the dn; are associated entirely with internal chemical reactions. Substituting Eq. (£.398))
into Eq. ([A395]), one gets the important version of the second law which holds that

N
dGlyp =Y Fdn; <0. (4.399)
1=1

In terms of time rates of change, one can divide Eq. ([@399) by a positive time increment
dt > 0 to get

N dn,
— Zg_ <0. (4.400)
TP i=1 dt

oG
ot

4.11 Equilibrium in a two-component system

A major task of non-equilibrium thermodynamics is to find a functional form for dn;/dt
which guarantees satisfaction of the second law, Eq. ([£400) and gives predictions which
agree with experiment. This will be discussed in more detail in the following chapter on
thermochemistry. At this point, some simple examples will be given in which a naive but
useful functional form for dn;/dt is posed which leads at least to predictions of the correct
equilibrium values. A much better model which gives the correct dynamics in the time
domain of the system as it approaches equilibrium will be presented in the chapter on
thermochemistry.

4.11.1 Phase equilibrium

Here, consider two examples describing systems in phase equilibrium.

|
Ezxample 4.12
Consider an equilibrium two-phase mixture of liquid and vapor H2O at T = 100 °C, z = 0.5. Use
the steam tables to check if equilibrium properties are satisfied.

In a two-phase gas liquid mixture one can expect the following reaction:
HQO([) = HQO(g). (4.401)

That is one mole of liquid, in the forward phase change, evaporates to form one mole of gas. In the
reverse phase change, one mole of gas condenses to form one mole of liquid.
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Because T is fixed at 100 °C and the material is a two phase mixture, the pressure is also fixed at a
constant. Here there are two phases at saturation; g for gas and [ for liquid. Equation (£399) reduces
to

Hydng + fgdng < 0. (4.402)

Now for the pure H2O if a loss of moles from one phase must be compensated by the addition to
another. So one must have

dn; +dng = 0. (4.403)
Hence
dng = —dny. (4.404)
So Eq. (@402), using Eq. (£.404) becomes
mdn, —fdn; <0, (4.405)
dni (@, —m,) < 0. (4.406)

At this stage of the analysis, most texts, grounded in equilibrium thermodynamics, assert that @, = fi,,
ignoring the fact that they could be different but dn; could be zero. That approach will not be taken
here. Instead divide Eq. (£400) by a positive time increment, dt > 0 to write the second law as

dnl _ _
E(Mz -ny) < 0. (4.407)
One convenient, albeit naive, way to guarantee second law satisfaction is to let
dm _ _ . ..
— = —k(fl; — Tiy), k>0, convenient, but naive model (4.408)

Here k is some positive semi-definite scalar rate constant which dictates the time scale of approach to
equilibrium. Note that Eq. (£408) is just a hypothesized model. It has no experimental verification; in
fact, other more complex models exist which both agree with experiment and satisfy the second law.
For the purposes of the present argument, however, Eq. ([£.408)) will suffice. With this assumption, the
second law reduces to

— k(m —7,)* <0, k>0, (4.409)

which is always true.
Eq. (£408) has two important consequences:

e Differences in chemical potential drive changes in the number of moles.

e The number of moles of liquid, n;, increases when the chemical potential of the liquid is less than that
of the gas, 77, < i, That is to say, when the liquid has a lower chemical potential than the gas, the
gas is driven towards the phase with the lower potential. Because such a phase change is isobaric and
isothermal, the Gibbs free energy is the appropriate variable to consider, and one takes m =g. When
this is so, the Gibbs free energy of the mixture, G = n/i; + nyp,, is being driven to a lower value. So
when dG = 0, the system has a minimum G.

e The system is in equilibrium when the chemical potentials of liquid and gas are equal: 7, = 7,,.

The chemical potentials, and hence the molar specific Gibbs free energies must be the same for
each constituent of the binary mixture at the phase equilibrium. That is

91=0, (4.410)

Now since both the liquid and gas have the same molecular mass, one also has the mass specific Gibbs
free energies equal at phase equilibrium:

91 = gg- (4.411)
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This can be verified from the steam tables, using the definition g = h — T's. From the tables

keJ kJ keJ

g = h—Ts =419.02 EE——-«1004—27315)}()(13068 EE?Z) = —08.6 7=, (4.412)
keJ keJ keJ

= hy—Tsy = 2676.05 — — ((100 + 273.15) K) ( 7.3548 —— ) = —68.4 —.  (4.41

9 s = Ty = 2676.05 22 ((100 + 273.15) )(735 8 kg}{> 63.4 7 (4.413)

The two values are essentially the same; the difference is likely due to table inaccuracies.

|
Example 4.13
This example is from BS, 16.20, p. 700. A container has liquid water at 20 °C, 100 kPa, in
equilibrium with a mixture of water vapor and dry air, also at 20 °C', 100 kPa. Find the water vapor
pressure and the saturated water vapor pressure.

Now at this temperature, the tables easily show that the pressure of a saturated vapor is Pyt =

2.339 kPa | From the previous example, it is known that for the water liquid and vapor in equilibrium,
one has

Glig = Yvap- (4.414)

Now if both the liquid and the vapor were at the saturated state, they would be in phase equilibrium
and that would be the end of the problem. But they have slight deviations from the saturated state.
One can estimate these deviations with the standard formula

dg = —sdT + vdP. (4.415)

The tables will be used to get values at 20 °C, for which one can take dI" = 0. This allows the
approximation of dg ~ v dP. So for the liquid,

Giig —9f = /v dP ~ vp(P — Psat), (4.416)
Giiq = 9 +vi(P — Paar). (4.417)

For the vapor, approximated here as an ideal gas, one has

Guap — 99 = /U dP, (4418)
dP
= RT/ 2R (4.419)
Py
= RTIn=—22 (4.420)
sat
Pvap
Guap = Yy + RT'In P— (4421)
sat

Here, once again, one allows for deviations of the pressure of the vapor from the saturation pressure.
Now at equilibrium, one enforces gjiq = gyap, SO one has

Pvap

gf +v§(P — Psat) =gg+ RTIn -
sat

(4.422)

=9liq
=gvap
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Figure 4.1: Pressure of water vapor as a function of total pressure for example problem.

Now g¢ = g4, so one gets

P’U(l
vy (P — Psgt) = RTIn =2, (4.423)
sat
Solving for P,qp, one gets
Poap = Pugpexp (20— tsat) (P = Puat) (4.424)
P RT ’

(0.001002 ’g—;) (100 kPa — 2.339 kPa)

(2.339 kPa) exp

, (4.425)
(0.4615 kg—JK) (293.15 K)

2.3407 kPa. (4.426)

The pressure is very near the saturation pressure. This justifies assumptions that for such mixtures, one
can take the pressure of the water vapor to be that at saturation if the mixture is in equilibrium. If the
pressure is higher, the pressure of the vapor becomes higher as well. Figure 4.1l shows how the pressure
of the equilibrium vapor pressure varies with total pressure. Clearly, a very high total pressure, on
the order of 1 GPa is needed to induce the vapor pressure to deviate significantly from the saturation
value.

4.11.2 Chemical equilibrium: introduction

Here consider two examples which identify the equilibrium state of a chemically reactive
system.
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4.11.2.1 Isothermal, isochoric system

The simplest system to consider is isothermal and isochoric. The isochoric assumption
implies there is no work in coming to equilibrium.

|
Ezxample 4.1}
At high temperatures, collisions between diatomic nitrogen molecules induce the production of
monatomic nitrogen molecules. The chemical reaction can be described by the model

Ny + Ny = 2N + Ns. (4.427)

Here one of the Ny molecules behaves as an inert third body. An N, molecule has to collide with
something, to induce the reaction. Some authors leave out the third body and write instead Ny = 2N,
but this does not reflect the true physics as well. The inert third body is especially important when
the time scales of reaction are considered. It plays no role in equilibrium chemistry.

Consider 1 kmole of No and 0 kmole of N at a pressure of 100 kPa and a temperature of 6000 K.
Using the ideal gas tables, find the equilibrium concentrations of N and N5 if the equilibration process
is isothermal and isochoric.

The ideal gas law can give the volume.

NNy FT

P oFT (4.428)
nN2FT

o 4.429
P | !

1 kmole) (8.314 —EL ) (6000 K
_ ( mo e) ( kmole K) ( )7 (4430)

100 kPa

= 498.84 m>. (4.431)

Initially, the mixture is all Ny, so its partial pressure is the total pressure, and the initial partial pressure
of N is 0.

Now every time an N2 molecule reacts and thus undergo a negative change, 2 N molecules are
created and thus undergo a positive change, so

—dnpy, = %dn]\;. (4.432)
This can be parameterized by a reaction progress variable (, also called the degree of reaction, defined
such that
d¢ = —dnn,, (4.433)
¢ = %dnzv- (4.434)
As an aside, one can integrate this, taking { = 0 at the initial state to get
¢ = nNyli—g = NNas (4.435)
¢ = %nzv- (4.436)
Thus
nN, = nN,li—g— G, (4.437)
ny = 2. (4.438)
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One can also eliminate ¢ to get ny in terms of ny,:
ny :2(7’LN2|t:0—’rLN2). (4439)

Now for the reaction, one must have, for second law satisfaction, that

By, (—dC) + iy (2dC) < O, (4.441)
(~Fn, +2y)d¢ < 0 (4.442)

d
(—ﬁN2+2ﬁN)d—§ <0 (4.443)

In order to satisfy the second law, one can usefully, but naively, hypothesize that the non-equilibrium
reaction kinetics are given by

d¢

il —k(=fin, + 20N), k>0, convenient, but naive model (4.444)

Note there are other ways to guarantee second law satisfaction. In fact, a more complicated model is
well known to fit data well, and will be studied later. For the present purposes, this naive model will
suffice. With this assumption, the second law reduces to

— k(—Fin, + 205)* <0, k>0, (4.445)

which is always true. Obviously, the reaction ceases when d({/dt = 0, which holds only when

20N = [iy,- (4.446)

Away from equilibrium, for the reaction to go forward, one must expect d¢/dt > 0, and then one
must have

—fin, + 20N <0, (4.447)

Ay < Ty, (4.448)

The chemical potentials are the molar specific Gibbs free energies; thus, for the reaction to go forward,
one must have

2n < Tn,- (4.449)

Substituting using the definitions of Gibbs free energy, one gets

2 (EN —TEN) < ENQ —T§N2, (4450)
_ _ P — P
2 (hN -T (5%7N ~Rln <y%)>) < hn,-T <§°T7N2 ~Rln <yNT>> , (4.451)
2y —T5y) — (s —Tn) < —2BTIn (Y0 4 By (4222 (4.452)
T,N 2 T,Ny P, P, s
T —0 T —0 o) yNP D yNQP
—2(hy =T 3% n) + (hn, =T 57y,) > 2RTIn 5 ) —RTn{=—%— ), (4.453)
2 2
T —o T —o 5] yNP PO
—2(hy =T 55 x5) + (An, =T 53.y,) > RTIn ( BT By ) , (4.454)
_ _ — y% P
—2(hy =T 5% 5) + (hv, =T 57y,) > RTIn <—N—) (4.455)
’ ’ YN, Po
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At the initial state, one has yny = 0, so the right hand side approaches —oo, and the inequality holds.
At equilibrium, one has equality.

2
—2(hy =T33 n)+ (hn, =T 53 y,) = RTIn <yy—N£>. (4.456)
N2

Taking numerical values from Table A.9:

kJ kJ
—2(5.9727 x 10° ——— — (6000 K) | 216.926
< % kmole ( ) < kmole K>)

+
kJ
2.05848 x 10° — (6000 K) [ 292.984
( x kmole ( ) ( kmole K))

kJ 04
(8.314 — K) (6000 K) In (yM =

7)

yx P
—2.87635 = 1n< N—>, (4.457)
— YN, Po
EIHKP
2. p
0.0563309 = N - (4.458)
Tk yns Fo
=Kp

2
ny
( nN+NN, )

T
= ( Ny ) (nN —i—nNQ)R)—V, (4459)
NN+NN,
y =
ny RT
= 4.460
. BV (4.460)
(2 (nN2|t—0 - nNz))2 RT
= = 4.461
NNy POV’ ( )
2 (1 kmole — % (8.314)(6000
NN, (100)(498.84)
This is a quadratic equation for ny,. It has two roots
N, = 0.888154 kmole physical; ny, = 1.12593 kmole, non-physical (4.463)

The second root generates more Ny than at the start, and also yields non-physically negative ny =
—0.25186 kmole. So at equilibrium, the physical root is

ny =2(1—ny,) = 2(1 — 0.888154) = 0.223693 kmole. (4.464)

The diatomic species is preferred.

Note in the preceding analysis, the term Kp was introduced. This is the so-called equilibrium
“constant” which is really a function of temperature. It will be described in more detail later, but one
notes that it is commonly tabulated for some reactions. Its tabular value can be derived from the more
fundamental quantities shown in this example. BS’s Table A.11 gives for this reaction at 6000 K the
value of In Kp = —2.876. Note that K p is fundamentally defined in terms of thermodynamic properties
for a system which may or may not be at chemical equilibrium. Only at chemical equilibrium, can it
can further be related to mole fraction and pressure ratios.
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The pressure at equilibrium is

(TLN2 + nN)RT

P o= (4.465)
~ (0.888154 kmole + 0.223693 kmole) (8.314 =24 (6000 K) GG
B 498.84 ’ (4.466)
= 111.185 kPa. (4.467)

The pressure has increased because there are more molecules with the volume and temperature being
equal.
The molar concentrations p; at equilibrium, are

0.223693 kmol kmol I

v Wﬂ:’;"e — 4.484 x 10~ 7:;2 € 14484 %1077 Z:;f (4.468)
0.888154 kmol kmol I

vy, = —emEr i ﬂ’;o € — 178044 x 1073 ”T:; € —11.78044 x 107° ”;f,;f (4.469)

Now consider the heat transfer. One knows for the isochoric process that Q2 = Us — U;. The
initial energy is given by

Uu, = NNy, UN,, (4470)
= 7NN, (ENz - ET)a (4471)
kJ kJ
— 5 _ -
= (1 kmole) (2.05848 X107 (8.314 T K) (6000 K)) : (4.472)
= 1.555964 x 10° k.J. (4.473)

The energy at the final state is

Uy = nn,Tn, +nNTN, (4.474)
= nn,(hn, — RT) + ny(hy — RT), (4.475)
= (0.888154 kmole) (2.05848 «10° K _ (8.314 L) (6000 K)) (4.476)
kmole kmole K
+(0.223693 kmole) (5.9727 <108 T~ (8.314 L) (6000 K)) . (4.477)
kmole kmole K
= 2.60966 x 10° k.J. (4.478)
So
1Q2 = Ux—Un, (4.479)
= 2.60966 x 10° k.J — 1.555964 x 10° k.J, (4.480)
= 1.05002 x 10° k.J. (4.481)

Heat needed to be added to keep the system at the constant temperature. This is because the nitrogen
dissociation process is endothermic.

One can check for second law satisfaction in two ways. Fundamentally, one can demand that
Eq. (@3T1), dS > 6Q/T, be satisfied for the process, giving

2
Sy — Sy > / Q. (4.482)
. T
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For this isothermal process, this reduces to

So— 51

IV
—
-~
>~
0]
w
~

(NN, 3N, +1NEN)],

— (TLN2§N2 + TLNEN)|1 > IQTQ, (4484)
yn, P o ynP
<nN2 <STN2 Rln< P20 >> +ny <STN —Rln( P >)> ,
= YN, P o - ynP 1Q2
_ (nN2 (sTN2 —Rln( P20 )) +nn (STN —Rln( P, ))) 1 > T (4.485)
o — Py — Py
(nN2 <$T7N2 —RlIn < P;)) +ny <STN — Rln (E))) ,
—. [Pn o Py 1Q2
— (TLN2 <8T7N2 — Rln < PO2>> +ny <ST,N —RIn (ﬁ))) ) Z T, (4486)
TN. RT —0 RNFT
(s (st = (%5257 ) oo (o -7 (%57 ) )
—o0 5} nn. FT —0 5} nNFT 1Q2
(o (s =T () 5y (s T (22 ))) R
= 1
Now at the initial state ny = 0 kmole, and RT/P,/V has a constant value of
RT  (8.314 5 +) (6000 K) 1 (4.488)
P,V (100 kPa)(498.84 m3)  ~ kmole’ '
so Eq. (£481) reduces to
—=0 _ D N, —=0 _ D
(nN2 (ST’N2 [t (1 kmole)) oy (ST’N [t (1 kmole))) ’2
_ = 1Q2
_ % v — P
(nN2 (ST’N2 R (1 kmole)))L - T
(4.489)
((0.888143) (202.984 — 8.3141n (0.88143)) + (0.223714) (216.926 — 8.3141n (0.223714)))|,
105002
— ((1) (292.984 — 8.3141In (1 —_
(1) (202,984 - 8314 )], 2 oo
kJ kJ
19.4181 — > 17.5004 —-. 4.490

Indeed, the second law is satisfied. Moreover the irreversible entropy production of the chemical reaction
is 19.4181 — 17.5004 = +1.91772 kJ/ K.

For the isochoric, isothermal process, it is also appropriate to use Eq. (£394]), dA|T7V < 0, to check
for second law satisfaction. This turns out to give an identical result. Since by Eq. (£307), A =U-TS,
As — Ay = (Us — ToS3) — (Uy —T1.S1). Since the process is isothermal, Ap — Ay = Us — Uy —T(S2 — Sl).
For A; — A; < 0, one must demand Uy — Uy — T(S2 — S1) < 0, or Uy — Uy < T(S2 — 54), o
So—S1 > (Uy—Uy)/T. Since 1Q2 = Uy —U; for this isochoric process, one then recovers So—S7 > 1Q2/T
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4.11.2.2 Isothermal, isobaric system

Allowing for isobaric rather than isochoric equilibration introduces small variation in the
analysis.

[
Ezample 4.15

Consider the same reaction
Na + Ny = 2N + Ns. (4.491)

for an isobaric and isothermal process. That is, consider 1 kmole of Ny and 0 kmole of N at a pressure
of 100 kPa and a temperature of 6000 K. Using the ideal gas tables, find the equilibrium concentrations
of N and Ns if the equilibration process is isothermal and isobaric.

The initial volume is the same as from the previous example:
Vi = 498.84 m?>. (4.492)

Note the volume will change in this isobaric process. Initially, the mixture is all N3, so its partial
pressure is the total pressure, and the initial partial pressure of N is 0.

A few other key results are identical to the previous example:
nn =2(nn,limg — v, ) (4.493)

and

29N < 9n,- (4.494)

Substituting using the definitions of Gibbs free energy, one gets

2 (EN —TEN) < ENQ —T§N2, (4495)
_ _ P _ — P
2<hN—T<§£}7N—R1n<y; ))) < th—T<§°T,N2 ~Rln <y];3 >> (4.496)
_ _ _ P\ — P
2(hy ~T35 ) — (hny, =T 35y,) < —2RTI (yg ) +RTIn (yNT> , (4.497)
_ _ _ P\ - P
2 (An =T 55.5) + (An, =T 5%.,) > 2RTIn y}ﬁ ) ~RTI (yJ]VD ) , (4.498)
2
7 —o 7 —o 5] yNP PO
~2(hy =T33 ) + (hn, =T 35y,) > RTIn ( 2 PyN) (4.499)
In this case P, = P, so one gets
-2 (hy =T 5% 5) + (hn, =T 57x,) = RTIn (y—N) : (4.500)
N>

At the initial state, one has yny = 0, so the right hand side approaches —oo, and the inequality holds.
At equilibrium, one has equality.

2
—2(hy =T 3% x5)+ (hn, —T 57 y,) = RTIn <§—N) : (4.501)
N2
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Taking numerical values from Table A.9:

kJ
g

kJ
—2(5.9727 x 10° —2— — (6000 K) ( 216.926 ——
( % kmole ( )( k K))

+

kJ kJ

2.05848 x 10° ——— — K)(292.984 —_
< 05848 x 10 — (6000 )(9 98 ho K))

kJ y?\,
= 314 —— K)ln | 22
(8 3 y—— K> (6000 K)In (yN2 ,

2
—2.87635 = 1n(y—N>, (4.502)
S—— YN,
Eanp
y2
0.0563399 — N (4.503)
SN—— YN,
EKP
2
(w2
= NTRMaS (4.504)
N No
(nN+nN2)
n2
= — N (4.505)

nN, (nN 4+ nn,)’

(2 (nNz |t:0 - nNz))2

T w2 (M l—g — ) + 1) (4.506)
2
- nN, (;2(51;:72?26— ni\zé)j_ nng ) (4.507)
This is a quadratic equation for ny,. It has two roots
ny, = 0.882147 kmole ~ physical;  ny, = 1.11785 kmole, ~ non-physical (4.508)

The second root generates more Ny than at the start, and also yields non-physically negative ny =
—0.235706 kmole. So at equilibrium, the physical root is

ny =2(1—ny,) = 2(1 — 0.882147) = 0.235706 kmole. (4.509)

Again, the diatomic species is preferred. As the temperature is raised, one could show that the
monatomic species would come to dominate.
The volume at equilibrium is

(TLN2 + nN)ET

Vo= e, (4.510)
~ (0.882147 kmole + 0.235706 kmole) (8.314 2/ (6000 K) 4511)
B 100 kPa ’ (4
= 557.630 m3. (4.512)

The volume has increased because there are more molecules with the pressure and temperature being
equal.
The molar concentrations p; at equilibrium, are

0.235706 kmol kmol l
Py = e = 4.227x 1074 TREE 4297 x 1077 D22, (4.513)
0.882147 kmol kmol l
On, = WGZB?Q — 1.58196 x 1073 % ={1.58196 x 10~ ”;238 (4.514)
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The molar concentrations are a little smaller than for the isochoric case, mainly because the volume is

larger at equilibrium.

Now consider the heat transfer. One knows for the isobaric process that ) = Hy — Hy. The initial

enthalpy is given by

_ k
Hy = nn,hn, = (1 kmole) (2.05848 x 10° —‘]) = 2.05848 x 10° k.J. (4.515)
kmole
The enthalpy at the final state is
Hy = 7’LNZEN2 + TLNEN, (4516)
s kJ s kJ
= (0.882147 kmole) ( 2.05848 x 10° ——— ) + (0.235706 kmole) ( 5.9727 x 10° ——— |(4.517)
kmole kmole
= 3.22368 x 10° k.J. (4.518)

So

1Q2 = Hy — Hy = 3.22389 x 10° kJ — 2.05848 x 10° kJ = 1.16520 x 10° k.J. (4.519)

Heat needed to be added to keep the system at the constant temperature. This is because the nitrogen
dissociation process is endothermic. Relative to the isochoric process, more heat had to be added to

maintain the temperature. This to counter the cooling effect of the expansion.
Lastly, it is a straightforward exercise to show that the second law is satisfied for this process.

4.11.3 Equilibrium condition

The results of both of the previous examples, in which a functional form of a progress
variable’s time variation, d(/dt, was postulated in order to satisfy the second law gave a

condition for equilibrium. This can be generalized so as to require at equilibrium that

=—a

N
> fivi=0. (4.520)
=1

Here v; represents the net number of moles of species 7 generated in the forward reaction.
This negation of the term on the left side of Eq (£520) is sometimes defined as the chemical

affinity, a:

N
a=-> hu (4.521)
=1

So in the phase equilibrium example, Eq. ([E520) becomes

(—1) + 71, (1) = 0. (4.522)

In the nitrogen chemistry example, Eq. (£520) becomes

iy (1) + Ty (2) = 0. (4.523)

This will be discussed in detail in the following chapter.
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Chapter 5

Thermochemistry of a single reaction

Read BS, Chapters 13, 14

See Powers, Chapter 4

See Abbott and Van Ness, Chapter 7

See Kondepudi and Prigogine, Chapters 4, 5, 7, 9
See Turns, Chapter 2

See Kuo, Chapters 1, 2

This chapter will further develop notions associated with the thermodynamics of chemical
reactions. The focus will be on single chemical reactions.

5.1 Molecular mass

The molecular mass of a molecule is a straightforward notion from chemistry. One simply
sums the product of the number of atoms and each atom’s atomic mass to form the molecular
mass. If one defines L as the number of elements present in species 7, ¢;; as the number of
moles of atomic element [ in species 7, and M, as the atomic mass of element [, the molecular
mass M; of species i

L
My =Y Mgy, i=1,...,N. (5.1)

=1

In vector form, one would say
M =M, or M=¢" M. (5.2)

Here M is the vector of length N containing the molecular masses, M is the vector of length
L containing the elemental masses, and ¢ is the matrix of dimension L x N containing the
number of moles of each element in each species. Generally, ¢ is full rank. If N > L, ¢ has
rank L. If N < L, ¢ has rank N. In any problem involving an actual chemical reaction, one
will find N > L, and in most cases N > L. In isolated problems not involving a reaction,
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one may have N < L. In any case, M lies in the column space of ¢, which is the row space

of ¢.

|
Ezxample 5.1
Find the molecular mass of HoO. Here, one has two elements H and O, so L = 2, and one species,
so N = 1; thus, in this isolated problem, N < L. Take i = 1 for species HyO. Take [ = 1 for
element H. Take [ = 2 for element O. From the periodic table, one gets My = 1 kg/kmole for H,
My =16 kg/kmole for O. For element 1, there are 2 atoms, so ¢11 = 2. For element 2, there is 1 atom
S0 ¢21 = 1. So the molecular mass of species 1, H2O is

o= v Mo (5. (53)
= Mg + Maga, (5.4)
kg kg
(1 kmole) (2) + (16 kmole) (m), (5.5)
_ kg
= |18 kmole’ (5.6)

|
Ezxample 5.2
Find the molecular masses of the two species Cs H1s and C'O,. Here, for practice, the vector matrix
notation is exercised. In a certain sense this is overkill, but it is useful to be able to understand a
general notation.
One has N = 2 species, and takes ¢ = 1 for CsH1g and i = 2 for COs. One also has L = 3 elements
and takes l =1 for C, [ = 2 for H, and [ = 3 for O. Now for each element, one has My = 12 kg/kmole,
My =1 kg/kmole, M3 = 16 kg/kmole. The molecular masses are then given by

11 P12
(My My) = (My My Ms)- | b1 a2 |, (5.7)
$31 P32
8§ 1
= (12 1 16)-[18 0], (5.8)
0 2
= [(114 44). (5.9)

That is for CsHys, one has molecular mass My = 114 kg/kmole. For CO3, one has molecular mass
My = 44 kg/kmole.
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5.2 Stoichiometry

5.2.1 General development

Stoichiometry represents a mass balance on each element in a chemical reaction. For example,
in the simple global reaction
2H2 + 02 = QHQO, (510)

one has 4 H atoms in both the reactant and product sides and 2 O atoms in both the reactant
and product sides. In this section stoichiometry will be systematized.
Consider now a general reaction with N species. This reaction can be represented by

N N
v =Y v (5.11)
i=1 i=1

Here ; is the " chemical species, v is the forward stoichiometric coefficient of the it
reaction, and v/ is the reverse stoichiometric coefficient of the i*" reaction. Both v/ and v/
are to be interpreted as pure dimensionless numbers.

In Equation (B.I0), one has N = 3 species. One might take x; = Haj, x2 = O, and
x3 = H>0. The reaction is written in more general form as

@x1+ Oxa+0)xs = (0)x1+ (0)x2 + (2)xs, (5.12)
(2)Hy + (1)O5 + (0)H,O = (0)Hy + (0)O2 + (2) H20. (5.13)
Here, one has
v, = 2, v =0, (5.14)
vy = 1, vy =0, (5.15)
vy = 0, vy =2. (5.16)

It is common and useful to define another pure dimensionless number, the net stoichio-
metric coefficients for species i, v;. Here v; represents the net production of number if the
reaction goes forward. It is given by

v =V — U (5.17)

For the reaction 2Hs + Oy = 2H50, one has

v o= v —1h=0-2=-2 (5.18)
v = vy —vh=0—1=—-1, (5.19)
v = vy —vh=2-0=2. (5.20)

With these definitions, it is possible to summarize a chemical reaction as
N
> vixi =0. (5.21)
i=1
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In vector notation, one would say

vl ox =0. (5.22)

For the reaction of this section, one might write the non-traditional form
—2Hy — O3+ 2H,0 = 0. (5.23)
It remains to enforce a stoichiometric balance. This is achieved if, for each element, [ =
1,..., L, one has the following equality:

N

S oui=0, 1=1,..L (5.24)

i=1

That is to say, for each element, the sum of the product of the net species production and
the number of elements in the species must be zero. In vector notation, this becomes

(5.25)

One may recall from linear algebra that this demands that v lie in the right null space of ¢.

[
Ezxample 5.3
Show stoichiometric balance is achieved for —2Hy — Oy + 2H>0 = 0.

Here again, the number of elements L. = 2, and one can take [ = 1 for H and [ = 2 for O. Also
the number of species N = 3, and one takes i = 1 for Hg, ¢ = 2 for Os, and ¢ = 3 for H2O. Then for
element 1, H, in species 1, Hs, one has

¢11 =2,H in Hs. (5.26)
Similarly, one gets
¢12 = 0, H in Oy, (5.27)
P13 = 2, H in H>0, (5.28)
¢ = 0,  OinHy, (5.29)
P22 = 2, O in Oo, (5.30)
b2z = 1, O in H>0. (5.31)

In matrix form then, Zﬁl ouiv; = 0 gives

151
2 0 2 0
o) () - (9). 52)
V3
This is two equations in three unknowns. Thus, it is formally under-constrained. Certainly the trivial

solution v1 = vy = v3 = 0 will satisfy, but one seeks non-trivial solutions. Assume v3 has a known value
v3 = &. Then, the system reduces to

<(2> (2)) (Z;) N <_—2§>' (5.33)
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The inversion here is easy, and one finds 1y = =&, vy = —%f . Or in vector form,
2 -
v = | -3¢, (5.34)
Z 3
—1
= ¢[-3], £ eRL (5.35)
1

Again, this amounts to saying the solution vector (1, v2,v3)7 lies in the right null space of the coefficient
matrix ¢y;.
Here ¢ is any real scalar. If one takes £ = 2, one gets

V1 —2
v |=|(-1], (5.36)
V3 2
This simply corresponds to
—2Hs — 09+ 2H50 = 0. (5.37)
If one takes £ = —4, one still achieves stoichiometric balance, with
%1 4
vrl=1{21], (5.38)
V3 —4
which corresponds to the equally valid
4Hs + 209 — 4H,0 = 0. (5.39)

In summary, the stoichiometric coefficients are non-unique but partially constrained by mass conserva-
tion. Which set is chosen is to some extent arbitrary, and often based on traditional conventions from
chemistry. But others are equally valid.

There is a small issue with units here, which will be seen to be difficult to reconcile.
In practice, it will have little to no importance. In the previous example, one might be
tempted to ascribe units of kmoles to v;. Later, it will be seen that in classical reaction
kinetics, v; is best interpreted as a pure dimensionless number, consistent with the definition
of this section. So in the context of the previous example, one would then take £ to be
dimensionless as well, which is perfectly acceptable for the example. In later problems, it
will be more useful to give ¢ the units of kmoles. Note that multiplication of £ by any scalar,
e.g. kmole/(6.02 x 10%%), still yields an acceptable result.

I
Example 5.4

Balance an equation for hypothesized ethane combustion

ViOQHG + VéOQ = VéICOQ + VZHQO. (540)
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One could also say in terms of the net stoichiometric coeflicients
11CoHg 4+ 19505 + v3C0O9 + v4H20O = 0. (541)

Here one takes x1 = CoHg, x2 = O2, x3 = COs2, and x4 = H20. So there are N = 4 species. There
are also L =3 elements: [ =1:C,1=2:H,l=3:0. One then has

b = 2, C in CoHg, (5.42)
012 = O, C in Oy, (5.43)
o135 = 1, C in CO,, (5.44)
14 = 0, C in H,O0, (5.45)
$p21 = 6, H in CyHg, (5.46)
¢o2 = O, H in Os, (5.47)
¢z = O, H in COo, (5.48)
p2a = 2, H in Hy0, (5.49)
¢31 = 0, O in CyHg, (5.50)
$32 = 2, O in Oy, (5.51)
¢33 = 2, O in COy, (5.52)
P34 = 1, O in H-O. (5.53)
So the stoichiometry equation, vazl oniv; = 0, is given by

2 0 1 0\ (" 0

6 0 0 2 Z:o. (5.54)
02 2 1 ” 0

Here, there are three equations in four unknowns, so the system is under-constrained. There are many
ways to address this problem. Here, choose the robust way of casting the system into row echelon form.
This is easily achieved by Gaussian elimination. Row echelon form seeks to have lots of zeros in the
lower left part of the matrix. The lower left corner has a zero already, so that is useful. Now, multiply
the top equation by 3 and subtract the result from the second to get

41

20 1 0 ” 0
00 -3 2 V2 =10 (5.55)
02 2 1 s 0
Vg
Next switch the last two equations to get
2.0 1 0\ (" 0
02 2 1 VQ =10 (5.56)
00 -3 2 s 0
Vy
Now divide the first by 2, the second by 2 and the third by —3 to get unity in the diagonal:
1o oo\ (" 0
o1 1 1 1=10 (5.57)
% V3
00 1 —3 0
vy
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So-called bound variables have non-zero coefficients on the diagonal, so one can take the bound variables
to be v1, 9, and v3. The remaining variables are free variables. Here one takes the free variable to be
vy4. So, set vg = £, and rewrite the system as

10 3\ [n 0
01 1] |wm]=|-3¢]. (5.58)
00 1/ \us z
Solving, one finds

A\ ([

2= _265 =e| S|, cer. (5.59)

V3 5¢ 3

V4 5 1

121 -2
Z ; = _47 , (5.60)
V4 6
which corresponds to the stoichiometrically balanced reaction
2C5Hg + 704 = 4CO4 4+ 6 H5O. (5.61)

In this example, ¢ is dimensionless.

[
Ezxample 5.5

Consider stoichiometric balance for a propane oxidation reaction which may produce carbon monox-
ide and hydroxyl in addition to carbon dioxide and water.

The hypothesized reaction takes the form
V1 CsHsg + 1504 = v5CO4 + v/ CO + v H,O + v OH. (5.62)
In terms of net stoichiometric coefficients, this becomes
1v1C3Hg 4+ 1909 + v3C 09 + v4CO + v5 HyO + vgOH = 0. (5.63)
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There are N = 6 species and L = 3 elements. One then has

P11 =
P12 =
P13 =
P4 =
P15 =
P16 =
b21
P22
$23
o =
P25
P26
P31
P32 =
®33
¢34
}35
P36 =

Il
e el SR NI = AR e e i e N =2 = e e == e

The equation ¢ - v = 0, then becomes

|

S 00 W
N OO
N O =
—_ O =

N OO
[\ | —
wloo
— | [
wloo

—
O O W

Trading the second and third rows gives

o N O
[N
— =

P
O O W
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N = O

== O

C in C3Hg,
C in Os,

C in COo,
Cin CO,
C in H5O,
Cin OH,
H in C3Hsg,
H in Oo,
H in COs,
H in CO,
H in H>O,
H in OH,
O in C3Hsg,
O in Os,

O in COs,
O in CO,
O in H50,
O in OH.

o O O

) |

o O O

) |

V1

Ve
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(5.83)

(5.84)
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Dividing the first row by 3, the second by 2 and the third by —8/3 gives

= O
= O
N
w

(5.85)

o O =

S = O

= =Wl

— D[ =00 =
Il

o O O

Take bound variables to be v, v5, and v3 and free variables to be vy, vs, and vg. So set vy = &,
Vs = 52, and Vg = 53, and get

1o} " —&
01 1) -[m]|=( -4-%2- ;73 . (5.86)
0 0 1 V3 —f1+%fz+§3
Solving, one finds
2 $(—26 — &)
| = i%(451 — 1065 — 7€3) | . (5.87)
v3 5 (=881 + 68 + 3&3)
For all the coefficients, one then has
2 $(—2& — &) 0 —2 -1
V2 346 — 106 —763) . 4 5 ~10 . —7
vs | _ [ §(=86+66+38)| _ & [ -8 & 6 &3
va | &1 “s|s| sl o |[Ts|o| (5-88)
Vs & 0 8 0
Vg & 0 0 8

Here, one finds three independent vectors in the right null space. To simplify the notation, take
§1=¢&1/8, & = &/8, and & = £3/8. Then,

121 0 -2 -1

Vo 4 —10 -7

vs| |8 . | 6 - | 3

Vs - 51 8 + 52 O + 53 O (589)
Us 0 8 0

Vg 0 0 8

The most general reaction that can achieve a stoichiometric balance is given by

(—2& — &) C3 Hs + (461 — 10& — T€3)O2 + (—8E1 + 6&2 +383)CO2 + 881 CO +8& Ha0+8& OH = 0. (5.90)
Rearranging, one gets

(262 + &3)C3 Hs + (—4&1 + 1062 + 7€3) 02 = (—8&1 + 66 + 363)CO + 881 CO + 88 Hy0 + 8¢5 OH. (5.91)

This will be balanced for all 51, 52, and ég. The values that are actually achieved in practice depend
on the thermodynamics of the problem. Stoichiometry only provides some limitations.
A slightly more familiar form is found by taking £, = 1/2 and rearranging, giving

(14 &) CsHg + (5 — 4&; + T€3) Oy = (3 — 86 + 3€3) CO2 + 4 Hy0 + 85, CO + 8¢5 OH. (5.92)
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One notes that often the production of CO and OH will be small. If there is no production of CO or
OH, & = & = 0 and one recovers the familiar balance of

C3Hg +5 09 = 3 COy +4 H50. (5.93)

One also notes that stoichiometry alone admits unusual solutions. For instance, if 51 = 100, 52 =1/2,
and {3 = 1, one has

2 C3Hg + 794 COy = 388 Oz +4 H,0 + 800 CO +8 OH. (5.94)

This reaction is certainly admitted by stoichiometry but is not observed in nature. To determine
precisely which of the infinitely many possible final states are realized requires a consideration of the
equilibrium condition vazl vig; = 0.

Looked at in another way, we can think of three independent classes of reactions admitted by the
stoichiometry, one for each of the linearly independent null space vectors. Taking first él =1/4, ég =0,
ég = 0, one gets, after rearrangement

as one class of reaction admitted by stoichiometry. Taking next él =0, 52 =1/2, 53 = 0, one gets
C3Hg + 505 = 3C0O5 + 4H50, (5.96)

as the second class admitted by stoichiometry. The third class is given by taking él =0, 52 =0, 53 =1,
and is
C3Hg + 705 = 3C0O5 + 80OH. (5.97)

In this example, both & and é are dimensionless.

In general, one can expect to find the stoichiometric coefficients for N species composed
of L elements to be of the following form:

N—L
vi=Y Dy, i=1,...,N. (5.98)
k=1

Here Dy is a dimensionless component of a full rank matrix of dimension N x (N — L)
and rank N — L, and & is a dimensionless component of a vector of parameters of length
N — L. The matrix whose components are D;; are constructed by populating its columns
with vectors which lie in the right null space of ¢;;. Note that multiplication of &, by any
constant gives another set of v;, and mass conservation for each element is still satisfied.

For later use, we associate v; with the number of moles n;, and consider a differential
change in the number of moles dn; from Eq. (5.98)) and arrive at

N—-L
dn; =Y Dyd&,  i=1,...,N. (5.99)
k=1
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5.2.2 Fuel-air mixtures

In combustion with air, one often models air as a simple mixture of diatomic oxygen and
inert diatomic nitrogen:

(Os + 3.761N). (5.100)

The air-fuel ratio, A and its reciprocal, the fuel-air ratio, F, can be defined on a mass
and mole basis.

Mey; Ngi
Amass = tll?“ > Apote = — (5101)
M fyel N fuel
Via the molecular masses, one has
M Nair Mai M
Arnass = 2= = Amoleﬂ- (5102)
M fuel nfueleuel Mfuel

If there is not enough air to burn all the fuel, the mixture is said to be rich. If there is
excess air, the mixture is said to be [ean. If there is just enough, the mixture is said to be
stoichtometric. The equivalence ratio, @, is defined as the actual fuel-air ratio scaled by the
stoichiometric fuel-air ratio:

fac ua, stoichiometric
iy tual__ Astoichiometric (5.103)

-F stoichiometric Aactual

The ratio @ is the same whether F’s are taken on a mass or mole basis, because the ratio of
molecular masses cancel.

[
Example 5.6

Calculate the stoichiometry of the combustion of methane with air with an equivalence ratio of
® = (0.5. If the pressure is 0.1 M Pa, find the dew point of the products.

First calculate the coefficients for stoichiometric combustion:

ViCH4 + I/é(Og + 376N2) = Vé/COQ + I/ZHQO + I/gNg, (5104)
or
CHy + 1509 + 1v3C0Os + v4Hy0O + (V5 + 3.76V2)N2 =0. (5105)

Here one has N = 5 species and L = 4 elements. Adopting a slightly more intuitive procedure for
variety, one writes a conservation equation for each element to get

v +rvy = O, C, (5106)
4oy + 204 = O, H, (5.107)
29 +2v3+1v4 = 0, 0, (5108)
3.76vs +v5 = O, N. (5.109)
In matrix form this becomes

1 0 100 Zl 0

4 0 0 20 2 0
0 2 210 [”] (o (5.110)

0 376 0 0 1 v 0

vs
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Now, one might expect to have one free variable, since one has five unknowns in four equations.
While casting the equation in row echelon form is guaranteed to yield a proper solution, one can often
use intuition to get a solution more rapidly. One certainly expects that C'H4 will need to be present
for the reaction to take place. One might also expect to find an answer if there is one mole of CHy. So

take 1 = —1. Realize that one could also get a physically valid answer by assuming v, to be equal to
any scalar. With 14, = —1, one gets
0 1 0O Vo 1
0 0 2 0 vs| |4
2 2 10 va| |0 (5.111)
376 0 0 1 U5 0
One easily finds the unique inverse does exist, and that the solution is
170 -2
vsf _f 1 (5.112)
|20 o 2 ) )
Vs 7.52

If there had been more than one free variable, the four by four matrix would have been singular, and
no unique inverse would have existed.
In any case, the reaction under stoichiometric conditions is

—CHy4 — 202 + CO2 +2H20 + (7.52 + (3.76)(—2))N2 = 0, (5.113)
CHy+2(02 4+ 3.76N3) = CO2+2H>0 +7.52No.  (5.114)

For the stoichiometric reaction, the fuel-air ratio on a mole basis is

1
Fs oichiometric — 5 a/o sy 0.1050. 5.115
toichiomet 2+ 2(3.76) (5.115)
Now & = 0.5, so
]:actual = (I)]:stoichiometricu (5116)
= (0.5)(0.1050), (5.117)
0.0525. (5.118)
By inspection, one can write the actual reaction equation as
| CHy + 4(03 +3.76N;) = CO3 + 2Hy0 + 205 + 15.04N,. (5.119)
Check:
1
Factual = ————=—= = 0.0525. 5.120
tual = 1 4(3.76) (5.120)
For the dew point of the products, one needs the partial pressure of HoO. The mole fraction of
HQO is 9
YH,0 = =0.0499 (5.121)

14+24+2+15.04
So the partial pressure of H2O is

Py,0 = ya,0P = 0.0499(100 kPa) = 4.99 kPa. (5.122)

From the steam tables, the saturation temperature at this pressure is Tt = Tyew point =|32.88 °C|. If
the products cool to this temperature in an exhaust device, the water could condense in the apparatus.
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5.3 First law analysis of reacting systems

One can easily use the first law to learn much about chemically reacting systems.

5.3.1 Enthalpy of formation

The enthalpy of formation is the enthalpy that is required to form a molecule from combining
its constituents at P = 0.1 M Pa and T = 298 K. Consider the reaction (taken here to be
irreversible)

C + 0y — COs. (5.123)

In order to maintain the process at constant temperature, it is found that heat transfer to
the volume is necessary. For the steady constant pressure process, one has

Uy —=U = 1Q2 —1Wha, (5.124)

2
= 12— / Pav, (5.125)

1
= 12 — P(Va — V1), (5.126)
1Q2 = Uy — U+ P(Va— V1), (5.127)
= Hy,— Hy, (5.128)
1Q2 - Hproducts _Hreactants~ (5129)

So
1Q2 = Z nih; — Z n;h;. (5.130)
products reactants

In this reaction, one measures that Q)2 = —393522 kJ for the reaction of 1 kmole of C

and Oy. That is the reaction liberates such energy to the environment. So measuring the
heat transfer can give a measure of the enthalpy difference between reactants and products.

Assign a value of enthalpy zero to elements in their standard state at the reference state.
Thus, C and O, both have enthalpies of 0 kJ/kmole at T'= 298 K, P = 0.1 M Pa. This
enthalpy is designated, for species i,

E(])”,i - Eggs,w (5.131)

and is called the enthalpy of formation. So the energy balance for the products and reactants,
here both at the standard state, becomes

1@2 - 710025;’002 - ncﬁic - nO2E;’O2, (5132)

—393522 kJ = (1 kmole)h} o, — (1 kmole) (0 kk‘] ) — (1 kmole) (o kk‘] )

mole mole

(5.133)
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Thus, the enthalpy of formation of C'O, is E;COQ = —393522 kJ/kmole, since the reaction
involved creation of 1 kmole of CO,.

Often values of enthalpy are tabulated in the forms of enthalpy differences Ah;. These
are defined such that

hi = hy;+ (h; — hY,), (5.134)
N—_———
=Ah;
= Ry, + Ah,. (5.135)

Lastly, one notes for an ideal gas that the enthalpy is a function of temperature only,
and so does not depend on the reference pressure; hence

hi=h,,  Ah;=Ah;,  ifideal gas. (5.136)

Example 5.7
(BS, Ex. 15.6 pp. 629-630). Consider the heat of reaction of the following irreversible reaction in a
steady state, steady flow process confined to the standard state of P =0.1 M Pa, T = 298 K:

CH4+ 205 — COsy + QHQO(E). (5.137)
The first law holds that
products reactants

All components are at their reference states. Table A.10 gives properties, and one finds

QC'U = nCO2ECO2 + nH2OEH2O - nCH4ECH4 - TL02EO2, (5139)
kJ kJ
= (1 kmole) (—393522 W) + (2 kmole) (—285830 W)
kJ kJ
—(1 kmole) (—74873 W) — (2 kmole) (O kmole) , (5.140)

—890309 k.J. (5.141)

A more detailed analysis is required in the likely case in which the system is not at the
reference state.

|
Ezxample 5.8
(adopted from Moran and Shapiro, p. 619) A mixture of 1 kmole of gaseous methane and 2 kmole
of oxygen initially at 298 K and 101.325 kPa burns completely in a closed, rigid, container. Heat
transfer occurs until the final temperature is 900 K. Find the heat transfer and the final pressure.
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The combustion is stoichiometric. Assume that no small concentration species are generated. The
global reaction is given by

CHy + 209 — CO4 + 2H50. (5142)

The first law analysis for the closed system is slightly different:

Uz — Uy =1Q2 — 1Wa. (5.143)

Since the process is isochoric, ;W5 = 0. So

1Q2 =

U, — Uy, (5.144)
NCO,UCO, + NH,0UH,0 — NCHL,UCH, — MO, U0, (5.145)
nco,(hco, — RT2) + nm,0(hu,o — RT2) — new, (hew, — RTL) — no, (ho, — RT1), (5.146)
hco, + 2hw,0 — hom, — 2ho, — 3R(Ty — T1), (5.147)
(Féoz,f + Aﬁcoz) + 2(5(;120,f + AEHzO) - (EOCH4,,f + AECHAL) - 2(5002,]“ + AEOz)

—3R(T, - TY), (5.148)
(—393522 + 28030) 4 2(—241826 + 21937) — (—74873 + 0) — 2(0 + 0)

—3(8.314)(900 — 298), (5.149)

—745412 kJ. (5.150)

For the pressures, one has

PVi = (ncn, +no,)RT, (5.151)
RT
v, = (nomtno))RT (5.152)
P
(L kmole +2 kmole) (8.314 ,C’;—JK) (298 K) .
- 101.325 kPa ’ (5.153)
= 73.36 m>. (5.154)

Now Vo = V4, so

BRI
p - (mco +;H2O)RQ, (5.155)
2

(1 kmole + 2 kmole) (8.314 k’;—fK) (900 K)

- 73.36 m3 : (5.156)

= (5.157)

The pressure increased in the reaction. This is entirely attributable to the temperature rise, as the
number of moles remained constant here.

5.3.2 Enthalpy and internal energy of combustion

The enthalpy of combustion is the difference between the enthalpy of products and reactants
when complete combustion occurs at a given pressure and temperature. It is also known
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as the heating value or the heat of reaction. The internal energy of combustion is related
and is the difference between the internal energy of products and reactants when complete
combustion occurs at a given volume and temperature.

The term higher heating value refers to the energy of combustion when liquid water is in
the products. Lower heating value refers to the energy of combustion when water vapor is
in the product.

5.3.3 Adiabatic flame temperature in isochoric stoichiometric sys-
tems

The adiabatic flame temperature refers to the temperature which is achieved when a fuel and
oxidizer are combined with no loss of work or heat energy. Thus, it must occur in a closed,
insulated, fixed volume. It is generally the highest temperature that one can expect to
achieve in a combustion process. It generally requires an iterative solution. Of all mixtures,
stoichiometric mixtures will yield the highest adiabatic flame temperatures because there is
no need to heat the excess fuel or oxidizer.

Here four examples will be presented to illustrate the following points.

e The adiabatic flame temperature can be well over 5000 K for seemingly ordinary
mixtures.

e Dilution of the mixture with an inert diluent lowers the adiabatic flame temperature.
The same effect would happen in rich and lean mixtures.

e Preheating the mixture, such as one might find in the compression stroke of an engine,
increases the adiabatic flame temperature.

e Consideration of the presence of minor species lowers the adiabatic flame temperature.

5.3.3.1 Undiluted, cold mixture

[
Example 5.9
A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of Hy and 1 kmole
of Oy at 100 kPa and 298 K. Find the adiabatic flame temperature and final pressure assuming the
irreversible reaction
2H5 + O3 — 2H50. (5.158)

The volume is given by

(nH2 + no, )FTl

v - (nE +no,)RTY 5.159

o Ty (5.150)

_ (2 kmole + 1 kmole) (8.314 %) (298 K)’ (5.160)
100 kPa

= 74.33 m> (5.161)
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The first law gives

U2 - U1 = 1Q2 - 1W2, (5162)
U —-Up = 0, (5.163)
NH,0UH,0 — NH,UH, — MO, U0, = 0, (5164)
anO(EHgO — RTQ) — NH, (EHg — RTl) — NO, (EOQ — ETl) = 0, (5.165)
2hi,0 — 2 hu, — ho, +R(—2T» +3T1) = 0, (5.166)

~— =~

=0 =0

2hm,0 + (8.314) ((—2) T» + (3) (298)) = 0, (5.167)
hu,0 — 8.314T5 + 37164 = 0, (5.168)
R} o + Ao — 8.314T3 + 37164 = 0, (5.169)
241826 + Ahp,0 — 8.314T, + 3716.4 = 0, (5.170)
—238110 + Ahg,0 — 8.314T, = 0 (5.171)

At this point, one begins an iteration process, guessing a value of T, and an associated Ahg,o. When
Ts is guessed at 5600 K, the left side becomes —6507.04. When T3 is guessed at 6000 K, the left side
becomes 14301.4. Interpolate then to arrive at

T, = 5725 K. (5.172)

This is an extremely high temperature. At such temperatures, in fact, one can expect other species to
co-exist in the equilibrium state in large quantities. These may include H, OH, O, HO3, and H>0>,
among others.

The final pressure is given by

n Hy oETg

py = ol (5.173)
kJ

_ (2 kmole) (8.314 557 ) (5725 K) (5.174)
74.33 m®

= [1280.71 kPa. (5.175)

The final concentration of H5O is

2 kmole 960 x 10-2 kmole'

PH:0 = Zraa 3 3 (5.176)

5.3.3.2 Dilute, cold mixture

[
Ezxample 5.10

Consider a variant on the previous example in which the mixture is diluted with an inert, taken
here to be Ny. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of Ho,
1 kmole of Og, and 8 kmole of Ny at 100 kPa and 298 K. Find the adiabatic flame temperature and
the final pressure, assuming the irreversible reaction

2H5 + Oy + 8Ny — 2H50 + 8Ns. (5177)
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The volume is given by

(nH2 + no, +nn, )RTl

V =
Py ’
_ (2 kmole +1 kmole + 8 kmole) (8.314 55— ) (298 K)
100 kPa ’
= 272533 m®.

The first law gives

Uy — Uy
Uy — Uy
NH,0UH,0 — NH,UH, — N0, U0, + NN, (UNy 5 — TN,y )
anO(EHgO — ETQ) — NH, (EHQ — ETl) — no, (EOg — RTl) + 7’LN2((EN22 — RTQ) — (EN21 — ETl))
2hi,0 — 2 ha, — ho, +R(—10T% + 11T1) + 8( hn,, —hn,,)
~— =~ ~— =

=0 =0 =Ahy, =0
2hm,0 + (8.314) (—10T» + (11)(298)) + 8Ahn,,
2hp,0 — 83.14T + 27253.3 + 8Ahy,,
2h% 11,0 + 20,0 — 83.14T% + 27253.3 + 8Ahy,,
2(—241826) + 2Ahp,0 — 83.14T5 + 27253.3 + 8Ahn,,
—456399 + 2Ahg,0 — 83.14T> + 8Ahn,,

At this point, one begins an iteration process, guessing a value of T5 and an associated Ahg,o.

(5.178)

(5.179)
(5.180)

1Q2 — 1Wa,
0,

0,
0,
0

3

oo o o o

When

Ts is guessed at 2000 K, the left side becomes —28006.7. When T3 is guessed at 2200 K, the left side

becomes 33895.3. Interpolate then to arrive at

Ty = 2090.5 K.

(5.181)

The inert diluent significantly lowers the adiabatic flame temperature. This is because the N5 serves as
a heat sink for the energy of reaction. If the mixture were at non-stoichiometric conditions, the excess
species would also serve as a heat sink, and the adiabatic flame temperature would be lower than that

of the stoichiometric mixture.
The final pressure is given by

P . (TLH2O + nn, )RTQ
2 = v )

(2 kmole + 8 kmole) (8.314 %) (2090.5 K)

kmole K
637.74 kPa.

272.533 m?3 ’
The final concentrations of HoO and Ny are

2 kmole kmole
D = —— " —734x10"3
P20 272.533 m? % m
8 kmole kmole
D = — " —9294x107% ——.
PN 272.533 m? % m?

(5.182)

(5.183)

(5.184)

(5.185)

(5.186)
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5.3.3.3 Dilute, preheated mixture

|
Ezxample 5.11
Consider a variant on the previous example in which the diluted mixture is preheated to 1000 K.

One can achieve this via an isentropic compression of the cold mixture, such as might occur in an engine.
To simplify the analysis here, the temperature of the mixture will be increased, while the pressure will
be maintained. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of Hs,
1 kmole of Os, and 8 kmole of Ny at 100 kPa and 1000 K. Find the adiabatic flame temperature and
the final pressure, assuming the irreversible reaction

2H2+02+8N2 — 2H20+8N2. (5187)
The volume is given by

(nH2 +no, + N, )RTl

Vo= 2 ) (5.188)
(2 kmole + 1 kmole + 8 kmole) (8.314 —EL—) (1000 K) (5.189)
100 kPa ’ :
= 914.54 m>. (5.190)
The first law gives
Uy—-Up = 1Q2—1Whs,
U2 - U1 = 0,
NH,0UH,0 — NH,UH, — N0, U0y + N, (UNy g — UN,;) = 0,
TLH20(EH2O —FTQ) —nH2(EH2 —FTl) —TLO2(EO2 —RTl) —I—TLN2((EN22 —RTQ) — (EN21 —RTl)) = 0,
2hp,0 — 2h, — ho, + R(—10Ts + 11T1) + 8(hn,, — hn,,) = 0,
2(—241826 + Ahp,0) — 2(20663) — 22703 + (8.314) (—107% + (11)(1000)) + 8Ahny,, — 8(21463) = 0,
2Ahp,0 — 83.14T, — 627931 + 8Ahy,, = 0.

At this point, one begins an iteration process, guessing a value of T, and an associated Ahg,o. When
Ts is guessed at 2600 K, the left side becomes —11351. When T3 is guessed at 2800 K, the left side
becomes 52787. Interpolate then to arrive at

T; = 26354 K. | (5.191)

The preheating raised the adiabatic flame temperature. Note that the preheating was by (1000 K) —
(298 K) = 702 K. The new adiabatic flame temperature is only (2635.4 K) — (2090.5 K) = 544.9 K
greater.
The final pressure is given by
RT:
p, — (o +‘;‘N2) 2, (5.192)

2 kmole + 8 kmole) (8.314 —£L ) (2635.4 K
kmole K
- 914.54 m3 ’ (5.193)

= [239.58 kPa. (5.194)

The final concentrations of HoO and Ny are

2 kmole kmole
5 = 2T _9219x1073 1
Pr:0 914.54 m? 9x 107" =5 (5.195)
8 kmole kmole
D = — T —875%x107° . 5.196
PN 914.54 m? x m? (5.196)
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5.3.3.4 Dilute, preheated mixture with minor species

|
Example 5.12

Consider a variant on the previous example. Here allow for minor species to be present at equilib-
rium. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of Hy, 1 kmole
of Os, and 8 kmole of Ny at 100 kPa and 1000 K. Find the adiabatic flame temperature and the final
pressure, assuming reversible reactions. Here, the details of the analysis are postponed, but the result
is given which is the consequence of a calculation involving detailed reactions rates. One can also solve
an optimization problem to minimize the Gibbs free energy of a wide variety of products to get the
same answer. In this case, the equilibrium temperature and pressure are found to be

T =2484.8 K, P =227.89 kPa. (5.197)

Equilibrium species concentrations are found to be

minor product Pu, = L13x107* T (5.198)
m
kmol
minor product Py = 19x107° mz e, (5.199)
m
kmol
minor product 7o = 57x107° mz e, (5.200)
m
kmol
minor product P, = 3.6x 1077 T, (5.201)
m
kmol
minor product  poy = 59x107° mz e, (5.202)
m
kmol
major product Pmo = 2.0x 1073 mz e, (5.203)
m
kmol
trace product Py, = L1x107% ZoC (5.204)
m
kmol
trace product Py, = 1.2x107° mz e, (5.205)
m
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kmol
trace product py = L7x107° mz e, (5.206)
m
kmol
trace product vy = 3.7x107% mz e, (5.207)
m
kmol
trace product Pnvu, = 15x1071° mz e, (5.208)
m
kmol
trace product Pnvu, = 3.1x107'° mz e, (5.209)
: m
kmol
trace product Pyng = 1.0x1071° mz e, (5.210)
m
kmol
minor product Pvo = 3.1x107° mz e, (5.211)
m
kmol
trace product Pno, = 53x1077 mz e, (5.212)
m
kmol
trace product Pn,o = 26x1077 mz e, (5.213)
m
kmol
trace product Puno = 17x107° mz e, (5.214)
m
kmol
major product Pn, = 8.7x107° mz ° (5.215)
m

Note that the concentrations of the major products went down when the minor species were considered.
The adiabatic flame temperature also went down by a significant amount: 2635 — 2484.8 = 150.2 K.
Some thermal energy was necessary to break the bonds which induce the presence of minor species.

5.4 Chemical equilibrium

Often reactions are not simply unidirectional, as alluded to in the previous example. The
reverse reaction, especially at high temperature, can be important.
Consider the four species reaction

VIX1 + VaXa = VX3 + Vi X (5.216)

In terms of the net stoichiometric coefficients, this becomes
viX1 + vaxe + Vaxs + vaxa = 0. (5.217)
One can define a variable (, the reaction progress. Take the dimension of ( to be kmoles.
When t = 0, one takes ( = 0. Now as the reaction goes forward, one takes d( > 0. And a
forward reaction will decrease the number of moles of y; and y, while increasing the number
of moles of y3 and x4. This will occur in ratios dictated by the stoichiometric coefficients of

the problem:
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dny = —uv,dC, (5.218)
dny = —v4d(, (5.219)
dny = +0dc, (5.220)
dny = +vdC. (5.221)

Note that if n; is taken to have units of kmoles, v}, and v/ are taken as dimensionless, then
¢ must have units of kmoles. In terms of the net stoichiometric coefficients, one has

dny = wndc, (5.222)
dney = 1d(, (5.223)
dns = wsdC, (5.224)
dny = w4dC. (5.225)

Again, for argument’s sake, assume that at ¢t = 0, one has

Nilimg = Nio, (5.226)
Mol = Moo, (5.227)
n3leg = Naos (5.228)
Ny = Nuo (5.229)
Then after integrating, one finds
ny = I/1C—|—n10, (5230)
Ng = VQC"‘”QO, (5231)
ng = I/3<+7’Lgo, (5232)
ng = ¢+ Nyo. (5.233)

One can also eliminate the parameter ( in a variety of fashions and parameterize the
reaction one of the species mole numbers. Choosing, for example, n; as a parameter, one
gets

(="M (5.234)

V1

Eliminating ¢ then one finds all other mole numbers in terms of ny:

ne = it Moy, (5.235)

V1
ny = vyt Mo (5.236)

V1
ng = V4w + Ny4o- (5237)

41
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Written another way, one has
=Moo _ M27MN20 T3~ N30 _ T4~ Mo _ C. (5.238)
V1 vV V3 Vy
For an N-species reaction, ZlNzl v;x; = 0, one can generalize to say
dn; = = wvd(, (5.239)
n; = ViC + Nio, (5240)
n; Nio
= (. 5.241
e ¢ (5.241)
Note that
dni
= ;. 5.242
= (5212)
Now, from the previous chapter, one manifestation of the second law is Eq. (£399):
N
dGlyp =Y Tdn; <0. (5.243)
i=1
Now, one can eliminate dn; in Eq. (5.243) by use of Eq. (5.239) to get
N
dGlpp = Y Hud( <0, (5.244)
i=1
oG Y
il = > 7y <0, (5.245)
8( T,P i=1
= —a<0. (5.246)
Then for the reaction to go forward, one must require that the affinity be positive:
a > 0. (5.247)

One also knows from the previous chapter that the irreversible entropy production takes the

form of Eq. (A387):

1 N
i=1
1 N
—fdci;m > 0,
N
1d¢
R T >
TdtZ“ZV’ =0

i=1

(5.248)

(5.249)

(5.250)
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In terms of the chemical affinity, @ = — .~ | T,vi, Eq. (5:250) can be written as

1d¢
~Saso 251
T @20 (5.251)

Now one straightforward, albeit naive, way to guarantee positive semi-definiteness of the
irreversible entropy production and thus satisfaction of the second law is to construct the
chemical kinetic rate equation so that

d¢ al
pri —k z;ﬁil/i = ka, k>0, provisional, naive assumption (5.252)
i—
This provisional assumption of convenience will be supplanted later by a form which agrees
well with experiment. Here k is a positive semi-definite scalar. In general, it is a function of
temperature, k = k(T'), so that reactions proceed rapidly at high temperature and slowly at
low temperature. Then certainly the reaction progress variable ¢ will cease to change when
the equilibrium condition

N
> fvi =0, (5.253)
=1

is met. This is equivalent to requiring
a=0. (5.254)
Now, while Eq. (£.253) is the most compact form of the equilibrium condition, it is not
the most commonly used form. One can perform the following analysis to obtain the form
in most common usage. Start by equating the chemical potential with the Gibbs free energy
per unit mole for each species i: i, = g;. Then employ the definition of Gibbs free energy
for an ideal gas, and carry out a set of operations:

N
> g = 0,  at equilibrium, (5.255)
i=1

N

Z(Ei -Ts)y; = 0, at equilibrium. (5.256)

For the ideal gas, one can substitute for h;(T) and 3;(T, P) and write the equilibrium con-
dition as

7.° g T T Tz i T A = ZP
Z Pags i +/ cpi(T) dT =T | S35, +/ Cril )dT —RlIn (y ) vi = 0.
; ’ 2 ’ 208 P,

=1 N 98 J/ T 7 o
Vo
—o0 )
:AhT,i =574
. J/ -

~~ g

—o _ [y

=hp;=hr,; e

(5.257)
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Now writing the equilibrium condition in terms of the enthalpies and entropies referred to
the standard pressure, one gets

N P
Z (ﬁ;l -T (E%Z — Rln (yJZD ))) v = 0, (5.258)

i=1

N _ N P
Z (h;l — TE%Z-) v, = — ZETVZ' In (y} ) , (5.259)
i=1 i=1 °
=97, =HT;
N N yiP\"
- %, = RTD In(Z , 5.260
;gT,z ; ( Po ) ( )
N—_——
=AG°
AG° N yiP\"
—— = 1 261
N Vi
v\
= 1 .262
H(E(P)> (5.262)
AG? 5 yiP\"
i = ; 5.263
exp ( T ) 11 < 2) ) ( )
\ , 1=
EKP
N »
yiP\"
Kp = ]1 < Po) , (5.264)
N
P 21:1 v, n
Kp = |+ . 2
P Po> lly (5.265)
So
N p\v
Kp = }:[1 <Fo> .| at equilibrium. (5.266)

Here Kp is what is known as the pressure-based equilibrium constant. It is dimensionless.
Despite its name, it is not a constant. It is defined in terms of thermodynamic properties,
and for the ideal gas is a function of T" only:

A o
Kp =exp (— FC; ) : generally valid. (5.267)

Only at equilibrium does the property Kp also equal the product of the partial pressures
as in Eq. (5.266]). The subscript P for pressure comes about because it is also related to
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the product of the ratio of the partial pressure to the reference pressure raised to the net
stoichiometric coefficients. Also, the net change in Gibbs free energy of the reaction at the
reference pressure, AG°, which is a function of T" only, has been defined as

N
AG° =Y gh v (5.268)
=1

The term AG® has units of kJ/kmole; it traditionally does not get an overbar. If AG° > 0,
one has 0 < Kp < 1, and reactants are favored over products. If AG° < 0, one gets Kp > 1,
and products are favored over reactants. One can also deduce that higher pressures P push
the equilibrium in such a fashion that fewer moles are present, all else being equal. One can
also define AG? in terms of the chemical affinity, referred to the reference pressure, as

AG® = —a. (5.269)

One can also define another convenient thermodynamic property, which for an ideal gas
is a function of T" alone, the equilibrium constant K.

N
Po D im Vi AG®°
K.= ( ) exp (— _G ) , generally valid. (5.270)

RT RT

This property is dimensional, and the units depend on the stoichiometry of the reaction.
The units of K, will be (kmole/m3)Zi1%,

The equilibrium condition, Eq. (5.266]), is often written in terms of molar concentrations
and K.. This can be achieved by the operations, valid only at an equilibrium state:

N -, Vi
b, RT
Kp = H(mp ) , (5.271)

1=1

o Z]'\;1 vi N
—AG° RT\™
= — 2,V 5.272
exp( =T ) (Po) gpz ( )

Zi: Vi o N
() (3) - i
=K.
So
N
K.= Hﬁi’”, at equilibrium. (5.274)
i=1

One must be careful to distinguish between the general definition of K, as given in Eq. (5270,
and the fact that at equilibrium it is driven to also have the value of product of molar species
concentrations, raised to the appropriate stoichiometric power, as given in Eq. (5.274]).
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5.5 Chemical kinetics of a single isothermal reaction

In the same fashion in ordinary mechanics that an understanding of statics enables an under-
standing of dynamics, an understanding of chemical equilibrium is necessary to understand
to more challenging topic of chemical kinetics. Chemical kinetics describes the time-evolution
of systems which may have an initial state far from equilibrium; it typically describes the
path of such systems to an equilibrium state. Here gas phase kinetics of ideal gas mixtures
that obey Dalton’s law will be studied. Important topics such as catalysis and solid or liquid
reactions will not be considered.

Further, this section will be restricted to strictly isothermal systems. This simplifies the
analysis greatly. It is straightforward to extend the analysis of this system to non-isothermal
systems. One must then make further appeal to the energy equation to get an equation for
temperature evolution.

The general form for evolution of species is taken to be

d (pi\ _ wi
— (B} = = 2
dt (P) P (5.275)

Multiplying both sides of Eq. (5.275]) by molecular mass M; and using the definition of mass
fraction ¢; then gives the alternate form

aci _ 2
- ; (5.276)

5.5.1 Isochoric systems

Consider the evolution of species concentration in a system which is isothermal, isochoric
and spatially homogeneous. The system is undergoing a single chemical reaction involving
N species of the familiar form

N
1=1

Because the density is constant for the isochoric system, Eq. (5.275) reduces to

ap _ .
= (5.278)
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Then, experiment, as well as a more fundamental molecular collision theory, shows that the

evolution of species concentration i is given by

~

N , 1 N
(Hﬁ,f’“) 1- KHE,J”“ :
k=1 k=1

reverse reaction
/

forward reaction

g
=T

isochoric system. (5.279)

This relation actually holds for isochoric, non-isothermal systems as well, which will not be
considered in any detail here. Here some new variables are defined as follows:

e a: a kinetic rate constant called the collision frequency factor. Its units will depend
on the actual reaction and could involve various combinations of length, time, and
temperature. It is constructed so that dp;/dt has units of kmole/m?/s; this requires it

to have units of (kmole/m?)(1=i=1v) /s /K5,

e [3: a dimensionless parameter whose value is set by experiments, sometimes combined
with guiding theory, to account for weak temperature dependency of reaction rates.

e [ the activation energy. It has units of k.J/kmole, though others are often used, and is
fit by both experiment and fundamental theory to account for the strong temperature

dependency of reaction.

Note that in Eq. (5279) that molar concentrations are raised to the v, and v, powers. As
it does not make sense to raise a physical quantity to a power with units, one traditionally
interprets the values of v, vy, as well as v} to be dimensionless pure numbers. They are
also interpreted in a standard fashion: the smallest integer values that actually correspond
to the underlying molecular collision which has been modeled. While stoichiometric balance
can be achieved by a variety of v, values, the kinetic rates are linked to one particular set

which is defined by the community.

Equation (5.279) is written in such a way that the species concentration production rate

increases when

e The net number of moles generated in the reaction, measured by v; increases,

e The temperature increases; here, the sensitivity may be very high, as one observes in

nature,

e The species concentrations of species involved in the forward reaction increase; this
embodies the principle that the collision-based reaction rates are enhanced when there

are more molecules to collide,
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e The species concentrations of species involved in the reverse reaction decrease.

Here, three intermediate variables which are in common usage have been defined. First one
takes the reaction rate to be

_E N 1
r=al’exp | =— 7,k 1— — 112" 1, 5.280
‘ pv< T )1 <]£[1 Pk ) K, g P ( )
=k(T) forward reaction reverse reaction
or
_E N / 1 N 7
r = aT” exp <_—) Hﬁkyk - — Hﬁky’“ : (5.281)
N . RT ) Pl K, 1
=Kk(T), Arrhenius rate forward reaction reverse reaction

Vv
law of mass action

The reaction rate r has units of kmole/m?/s.
The temperature-dependency of the reaction rate is embodied in k(7') is defined by what
is known as an Arrhenius rate law:

k(T) = aT” exp (%) : (5.282)

This equation was advocated by van’t Hoff in 1884; in 1889 Arrhenius gave a physical justifi-

cation. The units of k(T") actually depend on the reaction. This is a weakness of the theory,

and precludes a clean non-dimensionalization. The units must be (kmole/m3)1=Zi=1%) /5.
In terms of reaction progress, one can also take

_1d¢

"Tvar

The factor of 1/V is necessary because r has units of molar concentration per time and ¢

has units of kmoles. The over-riding importance of the temperature sensitivity is illustrated

as part of the next example. The remainder of the expression involving the products of the

species concentrations is the defining characteristic of systems which obey the law of mass

action. Though the history is complex, most attribute the law of mass action to Waage and
Guldberg in 1864/

Last, the overall molar production rate of species i, is often written as w;, defined as

(5.283)

'P. Waage and C. M. Guldberg, 1864, “Studies Concerning Affinity, Forhandlinger: Videnskabs-Selskabet
i Christiania, 35. English translation: Journal of Chemical Education, 63(12): 1044-1047.
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As v; is considered to be dimensionless, the units of w; must be kmole/m3/s.

|
Example 5.13

Study the nitrogen dissociation problem considered in an earlier example, see p. 140 in which at
t =0 s, 1 kmole of Ny exists at P = 100 kPa and T = 6000 K. Take as before the reaction to be

isothermal and isochoric. Consider again the elementary nitrogen dissociation reaction
N2+N2 ’:,2N+N2,
which has kinetic rate parameters of

021 cm3 Kl.ﬁ

(5.285)

(5.286)
(5.287)

(5.288)

(5.289)

(5.290)

(5.291)

(5.292)

(5.293)

a = 7.0x1 ,
mole s
8 = -—1.6,
_ l
E = 2249284 C“l
In ST units, this becomes
3 K16 1m \* /1000 mole m3 K16
= (rox10 £ —7.0x108 =
“ < % mole s 100 cm kmole x kmole s’
— cal J kJ 1000 mole kJ
E = 2249284 —— ) | 4.186 — = 941550 ——.
< mole> ( cal) <1000 J> < kmole > kmole
At the initial state, the material is all Na, so Py, = P = 100 kPa. The ideal gas law then gives at
t=20
P|t:0 = PNzlt:O = ﬁN2‘t:0 ET?
_ Pli—o
PN, |t:0 = ]'_{T ’
B 100 kPa
(8.314 L) (6000 K)’
kmole

= 2.00465 x 1073

3
m
Thus, the volume, constant for all time in the isochoric process, is

NNyl 1 kmole

2 = - = 4.9884 x 102 m®.
Proli—o  2:00465 x 103 kmele

V =

Now the stoichiometry of the reaction is such that

—an2 = %an,
—(nn, — =) = %(nzv — 1 li—g);

——— ——

=1 kmole =0
ny = 2(1 kmole —ny,),
nNo_ 2(1 kmole_nN2>
% 1% V)’
_ 1 kmole _
v = 2 (4.9884 % 102 m® _pN2> ’

_o kmole
= 2(2.00465><10 3 3 —pNz).
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(5.298)

(5.299)
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Figure 5.1: k(T') for Nitrogen dissociation example.

Now the general equation for kinetics of a single reaction, Eq. (5279]), reduces for No molar con-
centration to

dﬁN _F — v — U 1 — v — v
P — vt e (22 ) oS ()" (1 1w ()™ ). (5.302)
Realizing that vy, =2, vy =0, vy, = —1, and vy = 2, one gets
dpn, —E 1 73
—2 = —qT” = )75, [1— 22 ). 5.303
at @i\ Jr ) P K. Py, (5:303)
—_——
=k(T)
Examine the primary temperature dependency of the reaction
-E
ET) = aTPexp|=— |, 5.304
(1) »(5r) (5.30)
316 —941550 -~
= <7.0 x 1018 ) T~ Cexp | phmele | (5.305)
kmole s 8.314 7T

_ 7.0x10'8 (—1.1325><105>

7T - (5.306)

Figure B.1] gives a plot of k(T) which shows its very strong dependency on temperature. For this
problem, T'= 6000 K, so

7.0 x 108 —1.1325 x 10°
k(6000) = 600016 ( 6000 > , (5.307)
3
m
= 40071.6 ————. 5.308
kmole s ( )
Now, the equilibrium constant K, is needed. Recall
N
P, \ ==t ~AG°
RT RT
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f (sz) (kmole/m?3/s)

unstable

. equilibrium

0.0005 0.001  0.0015# “0-002~ 0.0025

ﬁN (kmole/m3)

-1t 2

unstable stable,

equilibrium physical
2l equilibrium

Figure 5.2: Forcing function, f(py,), which drives changes of py, as a function of py, in
isothermal, isochoric problem.

For this system, since Zﬁl v; = 1, this reduces to

Po _ 2—0 __ 70
K. = <_ )exp (M) , (5.310)
RT RT
P, —(2(R% — T2 — (RS, — Ts?
ENEAWNELLE LR S L)) a1
RT RT
100 o (Z(2(597270 — (6000)216.926) — (205848 — (6000)202.984)) (5312)
= _— X .
(8.314)(6000) P (8.314)(6000) ’
—  0.000112112 kmzle. (5.313)
m
The differential equation for Ny evolution is then given by
dp 3 2 (2.00465 x 1073 kmele _ 5 ))?
PN, - _ (40071.6 m—) p?\/ 1— 1 R— ( ( X — m3 pNz)) :
dt kmole ) "'N2 0.000112112 kmole PN,
Ef(ﬁN2)
(5.314)
— ) (5.315)

The system is at equilibrium when f(py,) = 0. This is an algebraic function of py, only, and can be
plotted. Figure 5.2 gives a plot of f(py,) and shows that it has three potential equilibrium points. It
is seen there are three roots. Solving for the equilibria requires solving

’ 1 2 (2.00465 x 10~3 kmole) _ 5 )?
0 = —<40071.6 m—>p§v 1- — (2( 070 M) —Pw:)” |
kmole ) = 0.000112112 kmgle DN,

(5.316)
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The three roots are

kmole kmole kmole
Py =0 = 000178121 0 0.00225611 —— (5.317)
m m m
————
unstable stable unstable

By inspection of the topology of Fig.[5.2] the only stable root is 0.00178121 % This root agrees with
the equilibrium value found in an earlier example for the same problem conditions. Small perturbations
from this equilibrium induce the forcing function to supply dynamics which restore the system to its orig-
inal equilibrium state. Small perturbations from the unstable equilibria induce non-restoring dynamics.
For this root, one can then determine that the stable equilibrium value of 5y = 0.000446882 %
One can examine this stability more formally. Define an equilibrium concentration ﬁ;‘é such that

£(758) = . (5318)
Now perform a Taylor series of f(py,) about py, = Py,
_ e df _ e Ld*f —eq \2
f@n,) ~ fPN,) + M (Pn, — Pa,) + 5%(:01\/2 — PN, (5.319)

_ __eq
-0 pN2 _pN2

Now the first term of the Taylor series is zero by construction. Next neglect all higher order terms as
small so that the approximation becomes

df

JPn) ~ (P — ). (5.320)
PN> PNy =PN,
Thus, near equilibrium, one can write
dp d
P -, (5.321)
PNz 15y, =0,

Since the derivative of a constant is zero, one can also write the equation as

d._ df — e
21 Py, =P, ~ = (P, — Psy)- (5.322)
t PN, PNy :ﬁ?\%
This has a solution, valid near the equilibrium point, of
S df
(Pn, —PN,) = Cexp oo t], (5.323)
PN> PNy =P,
. 17}
Pn, = P, +Cexp _—f t]. (5.324)
de2 PNy =P Ny

Here C is some constant whose value is not important for this discussion. If the slope of f is positive,
that is,
df

> 0, unstable, 5.325

_ __eq
PNy =PNy

the equilibrium will be unstable. That is a perturbation will grow without bound as ¢ — oco. If the
slope is zero,

— =0, neutrally stable, (5.326)
dpy,

_ __eq
PNy =PnNy
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Figure 5.3: Py, (t) and py(t) in isothermal, isochoric nitrogen dissociation problem.

the solution is stable in that there is no unbounded growth, and moreover is known as neutrally stable.
If the slope is negative,

-

dpn, |- =
PNz 15, =7,

<0, asymptotically stable, (5.327)

the solution is stable in that there is no unbounded growth, and moreover is known as asymptotically
stable.

A numerical solution via an explicit technique such as a Runge-Kutta integration is found for
Eq. (5314). The solution for py,, along with 7 is plotted in Fig. 5.3l
Linearization of Eq. (B314]) about the equilibrium state gives rise to the locally linearly valid

d
= (Px, — 0.00178121) = ~1209.39(py, — 0.00178121) + ... (5.328)

This has local asymptotically stable solution
P, = 0.00178121 + C exp (—1209.39¢). (5.329)

Here C' is some integration constant whose value is irrelevant for this analysis. The time scale of
relaxation 7 is the time when the argument of the exponential is —1, which is

1

=~ —8927Tx107%s. 5.330
7= 120939 51 x iy (5.330)

One usually finds this time scale to have high sensitivity to temperature, with high temperatures giving
fast time constants and thus fast reactions.

The equilibrium values agree exactly with those found in the earlier example; see Eq. ([£469). Here
the kinetics provide the details of how much time it takes to achieve equilibrium. This is one of the key
questions of non-equilibrium thermodynamics.
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5.5.2 Isobaric systems

The form of the previous section is the most important as it is easily extended to a Cartesian
grid with fixed volume elements in fluid flow problems. However, there is another important
spatially homogeneous problem in which the formulation needs slight modification: isobaric
reaction, with P equal to a constant. Again, in this section only isothermal conditions will
be considered.

In an isobaric problem, there can be volume change. Consider first the problem of isobaric
expansion of an inert mixture. In such a mixture, the total number of moles of each species
must be constant, so one gets

dn,-
dt

=0, inert, isobaric mixture. (5.331)

Now carry out the sequence of operations, realizing the the total mass m is also constant:

1d
——(n;) = 332
~ L) =0 (5332)
d n;
—|—) =0 5.333
dt (m) ’ ( )
—|(—=—) =0 5.334
dt (Vm) ’ ( )
d(my (5.335)
dt \ p - '
Ldp;  pidp
DAt prdt 0, (5.336)
dp; p;dp
L= 2L 5.337
dt p dt ( )

So a global density decrease of the inert material due to volume increase of a fixed mass
system induces a concentration decrease of each species. Extended to a material with a
single reaction rate r, one could say either

dp; pi dp
o= v o or (5.338)
% (%) = %I/ﬂ’, generally valid, (5.339)
w;
= —. 5.340
p (5.340)

Equation (5.339) is consistent with Eq. (5.275]) and is actually valid for general systems with
variable density, temperature, and pressure.
However, in this section, it is required that pressure and temperature be constant. Now
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differentiate the isobaric, isothermal, ideal gas law to get the density derivative.

P Y
pRTr Z]kvzl Yk
D .

(5.341)

(5.342)

(5.343)

(5.344)

(5.345)

(5.346)

(5.347)

(5.348)

(5.349)

(5.350)

Note that if there is no net number change in the reaction, Zivzl v, = 0, the isobaric,
isothermal reaction also guarantees there would be no density or volume change. It is

convenient to define the net number change in the elementary reaction as An:

Here An is taken to be a dimensionless pure number.

(5.351)

It is associated with the number

change in the elementary reaction and not the actual mole change in a physical system; it
is, however, proportional to the actual mole change.
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Now use Eq. (5:350) to eliminate the density derivative in Eq. (5.338) to get

dﬁ ﬁ pRTT’ Zg_l vy,
S o= w7 — 5.352
dt vir P ( )
- N
_ 5.RT
=T L TTp > (5.353)
reaction effect k=1
expansion effect
or
4z,
= i T es 5.354
a <z gan (5.354)
reaction effect  expansion effect

There are two terms dictating the rate change of species molar concentration. The first, a
reaction effect, is precisely the same term that drove the isochoric reaction. The second is
due to the fact that the volume can change if the number of moles change, and this induces
an intrinsic change in concentration. Note that the term p,RT/P = y;, the mole fraction.

[
Ezxample 5.1}

Study a variant of the nitrogen dissociation problem considered in an earlier example, see p. [I45]
in which at t = 0 s, 1 kmole of Ny exists at P = 100 kPa and T = 6000 K. In this case, take the
reaction to be isothermal and isobaric. Consider again the elementary nitrogen dissociation reaction

which has kinetic rate parameters of

3 716
02! cm® K

a = T0x1 , (5.356)
mole s

B = —1.6, (5.357)

— l
E = 2249284 2 (5.358)

mole

In SI units, this becomes
3 K16 1m \* /1000 mole m3 K16

— (70x102 " —70x108 2 5.359
“ ( x mole s 100 em kmole x kmole s’ ( )

E

cal J kJ 1000 mole kJ
(224928.4 mole) (4.186 E) (1000 J) ( p— ) = 941550 po—" (5.360)

At the initial state, the material is all N2, so Py, = P = 100 kPa. The ideal gas law then gives at
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t=0
P = Py, =pp,RT, (5.361)
_ r
pN2 =0 = ﬁ’ (5362)
100 kP
— — : (5.363)
(8.314 2L —) (6000 K)
kmol
— 2.00465 x 107% o<, (5.364)
m
Thus, the initial volume is
1 kmol
V],_y = Mizh=o _ O — 49884 x 10% m?. (5.365)
Prsl,—g  2-00465 x 10-3 kmele
In this isobaric process, one always has P = 100 kPa. Now, in general
P =RT(py, + Pn); (5.366)
therefore, one can write py in terms of py,:
P
D == —_— — P 5 5367
PN BT PN, ( )
100 kPa
= — DN 5.368
(8314 —EL_) (6000 K) '™ (5.368)
_. kmole _
= (2.00465 x 1073 — ) —Pn,- (5.369)

Then the equations for kinetics of a single isobaric isothermal reaction, Eq. (5353) in conjunction
with Eq. (B280), reduce for No molar concentration to

de _F _ v _ o 1 _ v _ v ﬁN RT
e — (e (T2 ) G ) (1 o) o)™ ) ) (m S o))
(5.370)
Realizing that vy, =2, vy =0, vy, = —1, and vy = 2, one gets
dpy, -E 1 p} P, BT
= aT” — | (1 - =) [ -1 - — ). 5.371
I al” exp BT PN, K, B, 2 ( )
~—_——
=k(T)
The temperature dependency of the reaction is unchanged from the previous reaction:
KT) = aT’exp (:—F> (5.372)
RT)’
SK16 —941550 2L
— (7.0x10"® =) 7 MSexp [ 2 Fmole ) (5.373)
kmole s 8.314 mT
7.0 x 1018 —1.1325 x 10°
= 776 ( T > . (5.374)
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For this problem, T'= 6000 K, so

7.0 x 1018 —1.1325 x 10°
k(6000) = 600016 &P ( 6000 ) , (5.375)
3
m
= 40130.2 ———. 5.376
kmole s ( )
The equilibrium constant K, is also unchanged from the previous example. Recall
N
Po i Vi —AG°
K. = (_ ) exp( — ) (5.377)
RT RT
For this system, since Zfil v; = An = 1, this reduces to
P, —(29% — 7%
K. = <_ ) exp (M) , (5.378)
RT RT
PO _ 2—0 __ 70
- <_ )exp (M), (5.379)
RT RT
P, —(2(hy — T ) — (hy, — TS
— () oo = Tr) B = T, 550
RT RT
100 —(2(597270 — (6000)216.926) — (205848 — (6000)292.984
_ o (22 (6000)216.926) — ( (0000)292.980) (-,
(8.314)(6000) (8.314)(6000)
kmol
— 0.000112112 “°0F. (5.382)
m
The differential equation for Ny evolution is then given by
dp 3 1 2.00465 x 1073 kmele) _ 5 2
PNy _ (40130.2 Sl )p?VZ, 1- — ( ST ) = Pws)
dt kmole 0.000112112 =2 PN,
1_ P, (8314 ) (6000 K)
“\ T 100 kPa ’
(5.383)
= f(n)- (5.384)

The system is at equilibrium when f(py,) = 0. This is an algebraic function of py, only, and can be
plotted. Figure[5.4] gives a plot of f(py,) and shows that it has four potential equilibrium points. It is
seen there are four roots. Solving for the equilibria requires solving

3 1 2.00465 x 103 kmole) _ 5 )2
kmole 2 0.000112112 —7171% = PN,
- kJ
N (8.314 5L —) (6000 K)
100 kPa '
(5.385)
The four roots are
kmol kmol kmol kmol
P, = —0.002005 ~C e 0.001583 0 0.00254 o (5.386)
m m m m
——
stable,non—physical unstable stable,physical unstable
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f (5N2) (kmole/m3/s)

4,
unstable
unstable 3f o
N equilibrium
equilibrium
2,
04902 -0.001 0.001 4°0-002~ 0.003 b’\'z (kmole/m?)
-1+t
stable, stable,
. physical
non-physical L
) equilibrium
equilibrium

Figure 5.4: Forcing function, f(py,), which drives changes of py, as a function of py, in
isothermal, isobaric problem.

By inspection of the topology of Fig. 5.2l the only stable, physical root is 0.001583 % Small
perturbations from this equilibrium induce the forcing function to supply dynamics which restore the
system to its original equilibrium state. Small perturbations from the unstable equilibria induce non-
restoring dynamics. For this root, one can then determine that the stable equilibrium value of 5 =
0.000421 kmele

A numerical solution via an explicit technique such as a Runge-Kutta integration is found for
Eq. (5385). The solution for 7y, , along with 7 is plotted in Fig.

Linearization of Eq. (B.383]) about the equilibrium state gives rise to the locally linearly valid

d
7 (P, —0.001583) = ~967.073(py, — 0.001583) + ... (5.387)

This has local solution
P, = 0.001583 + C exp (—967.073t). (5.388)

Again, C is an irrelevant integration constant. The time scale of relaxation 7 is the time when the
argument of the exponential is —1, which is

1

= —1.03x1073s. :
T= e T = L03x 1070 s (5.389)

Note that the time constant for the isobaric combustion is about a factor 1.25 greater than for isochoric
combustion under the otherwise identical conditions.

The equilibrium values agree exactly with those found in the earlier example; see Eq. (£EI14).
Again, the kinetics provide the details of how much time it takes to achieve equilibrium.
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Figure 5.5: Py, (t) and py(t) in isobaric, isothermal nitrogen dissociation problem.

5.6 Some conservation and evolution equations

Here a few useful global conservation and evolution equations are presented for some key
properties. Only some cases are considered, and one could develop more relations for other

scenarios.

5.6.1 Total mass conservation: isochoric reaction

One can easily show that the isochoric reaction rate model, Eq. (5.279)), satisfies the principle
of mixture mass conservation. Begin with Eq. (5.279]) in a compact form, using the definition
of the reaction rate r, Eq. (5.281]) and perform the following operations:

dp;
dt

dfpe _
dt \M; )
d

dt

d
E (ﬂCi)

(pci) =

d
dt (PCz‘)

v, (5.390)
v, (5.391)
I/Z‘MZ‘T', (5392)
L
Z Z My, (5.393)
=1
=M;
L
> Miguvir, (5.394)
=1
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Z%(pci) = ZZM@M (5.395)

-
Il
—
.
Il
—
—
—

d N L N
7 p ; G = lz_l: ; Moy, (5.396)
__1 -1 i—
dp L N
- = rl;/vtl;qsm. (5.397)
=0
Therefore, we get
dp
pri 0. (5.398)

Note the term S~  ¢uv; = 0 because of stoichiometry, Eq. (5.24).

5.6.2 Element mass conservation: isochoric reaction

Through a similar series of operations, one can show that the mass of each element, | =
1,..., L, in conserved in this reaction, which is chemical, not nuclear. Once again, begin
with Eq. (5281 and perform a set of operations,

ap,

o U (5.399)
dp
¢11 pl = Cblﬂ/i’r', [ = 1a sy La (5400)
d
i (Cbliﬁi) = rouv;, l=1,...,L, (5.401)
N d N
Z at (Pup;) = Z TQuvi, l=1,...,L, (5.402)
: i=1
d N
7 (Z ¢zzpz> = r> ouw, l=1,...,L, (5.403)
=1

N

d

o (Z ¢ziﬁi> = 0, l=1,...,L. (5.404)
i=1
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The term ZZN:1 ¢uip; represents the number of moles of element | per unit volume, by the
following analysis

N N .
_ moles element [ moles species 1 moles element [

Z Guip; = Z =

i=1

— 12 (5.405)
moles species i volume volume

Here the elemental mole density, p,°, for element [ has been defined. So the element concen-
tration for each element remains constant in a constant volume reaction process:

=0 l=1,...,L. 5.406
dt ) ) ) ( )

One can also multiply by the elemental mass, M, to get the elemental mass density, pj:
o = Mip,©, l=1,..., L. (5.407)
Since M, is a constant, one can incorporate this definition into Eq. (5.400) to get

dpf
dt

-0, Il=1,... L (5.408)

The element mass density remains constant in the constant volume reaction. One could also
simply say since the elements’ density is constant, and the mixture is simply a sum of the
elements, that the mixture density is conserved as well.

5.6.3 Energy conservation: adiabatic, isochoric reaction

Consider a simple application of the first law of thermodynamics to reaction kinetics: that
of a closed, adiabatic, isochoric combustion process in a mixture of ideal gases. One may
be interested in the rate of temperature change. First, because the system is closed, there
can be no mass change, and because the system is isochoric, the total volume is a non-zero
constant; hence,

%? — 0, (5.409)
%@V): 0, (5.410)
V% ~ 0, (5.411)
% = 0. (5.412)

For such a process, the first law of thermodynamics is

v .
=0 (5.413)
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But there is no heat transfer or work in the adiabatic isochoric process, so one gets

dU
w =0
d
E(mu) - Oa
m® 4y
a Y T
~—
=0
du
- =0

Thus for the mixture of ideal gases, u(T,py, ...

affect temperature changes by expanding the

PCy——

ar

PCy E

ar
dt
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derivative in Eq. (5.417)

= 0,

(5.414)
(5.415)

(5.416)

(5.417)

,PN) = Up. One can see how reaction rates

(5.418)

(5.419)

(5.420)

(5.421)

(5.422)

(5.423)

(5.424)

(5.425)

(5.426)

(5.427)
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If one defines the net energy change of the reaction as

N
AU = v, (5.428)
i=1
one then gets
dr rAU
— = — . 42
dt PCy (5.429)

The rate of temperature change is dependent on the absolute energies, not the energy dif-
ferences. If the reaction is going forward, so r > 0, and that is a direction in which the net
molar energy change is negative, then the temperature will rise.

5.6.4 Energy conservation: adiabatic, isobaric reaction

Solving for the reaction dynamics in an adiabatic isobaric system requires some non-obvious
manipulations. First, the first law of thermodynamics says dU = d() —dW . Since the process
is adiabatic, one has d@ = 0, so dU + PdV = 0. Since it is isobaric, one gets d(U + PV') = 0,
or dH = 0. So the total enthalpy is constant. Then

d
—H = 4
— 0, (5.430)
d
—(mh) = 431
7 (mh) 0, (5.431)
dh
v _ 432
b 0, (5.432)
d N
@(Zcihz) — 0, (5.433)
=1
Y d
> = (ah) = 0, (5.434)
£ dt
N
dh, dCi
P - —_— pr— .4
;cz & +hi 0, (5.435)
N
Zcid—TE—l-hiE = 0, (5.436)
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N
ar de;
chcm h dct = 0, (5.437)
de;
Zc,cPﬁZh = 0, (5.438)
w_/
=cp
T~ d (PM
Cp%—i-z @i\, = 0, (5.439)
i=1
¢ £+§:h-Mﬁ Pi) — g (5.440)
Pat T =" dt\p) T '

Now use Eq (5339) to eliminate the term in Eq. (5.440) involving molar concentration
derivatives to get

dT N v
CPEJF;M? = 0, (5.441)
AT _rEe (5.442)
dt pCp '

So the temperature derivative is known as an algebraic function. If one defines the net
enthalpy change as

N
AH = " hv;, (5.443)
i=1
one gets
ar_ _raf (5.444)
dt pCp

Now differentiate the isobaric ideal gas law to get the density derivative.

N

P = ) pRT (5.445)
=1
N N

_dT . dp,

0 = Y pR— RT—: 5.446
> ARG + SR, (5.440)
a7 & al p; dp

- YN T (vr + 52° 44

0= FArY (v 222). (5.447)

N N N
1dT 1dp
- YN 2PN 44
0 Tdtzperwpdt;pz (5.448)
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Solving, we get

dp _ _%Ccll_j; 1= 1 Pi TZZ IVZ (5 449)
dat N 5 '
Zz 1 ?
One takes dT'/dt from Eq. (5.442)) to get
lT’Z?;l ELVZ Z
dp T pep i= 1Pz 7"2@ 1’/2
ZZ 1 p

Now recall that p = p/M and ¢p = cpM, so p ¢p = pcp. Then Equation (5.450) can be
reduced slightly:

N
Zz sz pl N
d T ; =iV
p =1
— = 7p — , (5.451)
dt Ei\il Pi

N Thu: N
o Dali i V’i
_ rpz” CZP:TN _Z L (5.452)
i=1 Pi

N 7,
D ie1 Vi (EPT - 1)

. \ | (5.453)
RT
JE— N J—
RT h,
N 2 (apT ) | (5.454)

— rMZy, <_

where M is the mean molecular mass. Note for exothermic reaction ZZN:1 vih; < 0, so
exothermic reaction induces a density decrease as the increased temperature at constant
pressure causes the volume to increase.

Then using Eq. (5.455) to eliminate the density derivative in Eq. (5.338]), and changing
the dummy index from 7 to k, one gets an explicit expression for concentration evolution:

) (5.455)

dp 12 al n
R 19V kg 5.456
o yr+pr kz:;yk<EPT ), ( )
B ~~ [
— r Vi _'_ _ZM V% _—k — 1) y 5457
~—— k=
=Yi
N h
k
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Defining the change of enthalpy of the reaction as AH = fo:l vihy, and the change of
: _ N
number of the reaction as An =) ;_, 1, one can also say

5, _ AH
T (Vz +y; (EPT An)) : (5.459)

Exothermic reaction, AH < 0, and net number increases, An > 0, both tend to decrease the
molar concentrations of the species in the isobaric reaction.

Lastly, the evolution of the adiabatic, isobaric system, can be described by the simul-
taneous, coupled ordinary differential equations: Egs. (5442 [5.450] 5.458). These require
numerical solution in general. Note also that one could also employ a more fundamental
treatment as a differential algebraic system involving H = Hy, P = P, = RT Zi\ilﬁi and

Eq. (5339).

5.6.5 Entropy evolution: Clausius-Duhem relation

Now consider whether the kinetics law that has been posed actually satisfies the second law
of thermodynamics. Consider again Eq. (£387). There is an algebraic relation on the right
side. If it can be shown that this algebraic relation is positive semi-definite, then the second
law is satisfied, and the algebraic relation is known as a Clausius-Duhem relation.
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Now take Eq. ([A38T) and perform some straightforward operations on it:

N
1
S|y = —TZﬂidni > 0, (5.460)
i=1
irreversible entropy production
ds Y. dn
— = —— : 5.461
Wy = TS (5.461)
N
1% dp,
= —= ,—— >0 5.462
T ' ILLZ dt — ) ( )

Vv N E N 1 N

_ — Ié] — — v —

= —= > myial’exp (_—) (Hpk ) 1— —]7" | =0(5463)
r i=1 RT _ \k=1 K. k=1

EI;(T) forward reaction reverse reaction
N N , 1 N
= LS k) (T2 ) (1= =[5 ) =0 5.464
;M ( ><z£[1pk )( chzlpk ) ( )

N , 1 N N
k(T 2.5 (1= —=—1]7n" v | >0, 5.465
( )<k:1pk ) ( chzlpk )(;ﬁ% ) ( )
N —

- ;k(T) (H pﬁ") (1 - Ki Hpﬁ) a>o, (5.466)

i=1

= ¥r@, (5.467)
adc

= ——. 5.468
T dt ( )

Consider now the affinity @ term in Eq. (5.466]) and expand it so that it has a more useful
form:

N N
a=-Y my = Z G,V (5.469)
=1 i=1
N
= (P
= =) (g(’m +RTIn (F)) v, (5.470)
i=1

o
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198
N N P Vi
= - v —-RTY In(=) |, 5.471
=AG°
| —AGe P\"
— RT| —— - "In(Z 472
R = ZH<PO) : (5.472)
N—— =1
=InKp
_ N o p\Yi
— RT anp—lnE<Fo) > (5.473)
N U
1 P\
= —RT (th—P_l—an];[(_o) ), (5474)
N U
1 P\
— _RTln|— ikl 4
RTIn w11 (Po) ), (5.475)
(P )Zz‘j\ilyi N E 12
wr) pRT\ ™
4
H( B ) , (5.476)

(5.477)

_ 1
= —RTIn fﬂpﬁ).

Equation (5.477) is the common definition of affinity. Another form can be found by em-

ploying the definition of K, from Eq. (5270) to get
N
. P =i Vi AG° N
a — —RThn| (X2 - 50 5.478
a n((RT) exp(RT)il:[lpZ ) ( )
N
[ AGe P\ =
— _RT| = +1 —° D,V , 5.479
e () ) o
P —ZZN:1V’L' N
— _AG°—FRTh <_° ) 5% (5.480)
RT i=1

To see clearly that the entropy production rate is positive semi-definite, substitute

Bq. (GATT) into Ba. GAGE) to get
V N , 1 N 1 N
Y T - Vi 5 i = Vi >
(T) (sz ) (1 chpz ) ( RTln<chpz >>_0,
(5.481)

- g
T

N , 1 N 1 N
— _RVK(T 5.V 1—— 12| In|— 112" ]|>0. 482
RV k( )(Hm)( chm)n([(c}lm)_O (5.482)

ds
dt

i=1

uyv
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Define forward and reverse reaction coefficients, R’, and R”, respectively, as

N
R =k [[5"" (5.483)
=1
(— k(T) a — l/i”
R = 7 17" (5.484)

Both R’ and R” have units of kmole/m3/s. It is easy to see that
r=R —R" (5.485)

Note that since k(7)) > 0, K. > 0, and p; > 0, that both R" > 0 and R” > 0. Since
v; = v — v}, one finds that

N N
1 1 K(T) vy R
I Vi N\ . ° = 5486
S G o
Then Eq. (5.482) reduces to
dS o R// R//
— = —RVR'(1-——= |In|—= | >0. 5.487
. ( R’) n(R’) = (5.487)
Finally, we get
dS D / " R/
- = — In{— | >0. 4
dt |y RV(R =R R") — 0 (5.488)

Obviously, if the forward rate is greater than the reverse rate R’ — R” > 0, In(R'/R") > 0,
and the entropy production is positive. If the forward rate is less than the reverse rate,
R —R" <0, In(R'/R") < 0, and the entropy production is still positive. The production
rate is zero when R’ = R”.

Note that the affinity @ can be written as

@=RT (%) . (5.489)

And so when the forward reaction rate exceeds the reverse, the affinity is positive. It is zero
at equilibrium, when the forward reaction rate equals the reverse.

5.7 Simple one-step kinetics

A common model in theoretical combustion is that of so-called simple one-step kinetics. Such
a model, in which the molecular mass does not change, is quantitatively appropriate only
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for isomerization reactions. However, as a pedagogical tool as well as a qualitative model for
real chemistry, it can be valuable.
Consider the reversible reaction
A = B. (5.490)

where chemical species A and B have identical molecular masses Mx = Mg = M. Consider
further the case in which at the initial state, n, moles of A only are present. Also take the
reaction to be isochoric and isothermal. These assumptions can easily be relaxed for more
general cases. Specializing then Eq. (5.240) for this case, one has

na = va (+ Nao, (5.491)
=1 _
ng = 145} C-'- neo - (5492)
NG
=1 =0
Thus
na = —C+ny, (5.493)
ng = C. (5.494)

Now n, is constant throughout the reaction. Scale by this and define the dimensionless
reaction progress as ¢ = (/n, to get

DA g, (5.495)
Ny
=YA
% —- ¢ (5.496)
—~
=YB
In terms of the mole fractions then, one has
s = C. (5.498)
The reaction kinetics for each species reduce to
dpa _ No _ _
dt T, pA(O) V Pos (5 99)
a
% = 7, 7g(0)=0. (5.500)
Addition of Egs. (5.499) and (5.500) gives
d ,_ . _
7 (Pa+78) = 0, (5.501)
PAtPs = Do (5.502)
ba 08— . (5.503)
Po Po
— =~
=YA =YB
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In terms of the mole fractions y;, one then has

ya+ys =1 (5.504)
The reaction rate r is then
r = kD ( _ K%%B\) , (5.505)
_ L 5./5
w2 (- 20). o
= kBua <1 - Kiz—i) , (5.507)
. 1 ¢
= kp,(1-2¢) (1 — E%ﬁ) : (5.508)

Now r = (1/V)d¢/dt = (1/V)d(n,C)/dt = (n,/V)d(C)/dt = p,d(/dt. So the reaction
dynamics can be described by a single ordinary differential equation in a single unknown:

_dS 1 ¢
& 1-O) (1 ——— .
P = kp,(1=0) ( . <> , (5.509)
d¢ : 1 <
S - k-1 >, 51
T = -0 ( = <> (5.510)
Equation (5.510) is in equilibrium when
. 1 1
= ~1——=—+4... 5.5011

As K. — 00, the equilibrium value of é — 1. In this limit, the reaction is irreversible. That
is, the species B is preferred over A. Equation (5.510) has exact solution

_ _ 1
1 —exp (1 i SCJF Kc) t>. (5.512)

¢ =

For k > 0, K. > 0, the equilibrium is stable. The time constant of relaxation 7 is

1
E(1+4)

For the isothermal, isochoric system, one should consider the second law in terms of the
Helmholtz free energy. Combine then Eq. (£394), dA|;, < 0, with Eq. (311), dA =

(5.513)

T =
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—=SdT — PdV + ZZN: 1 Ii;dn; and taking time derivatives, one finds

N

dA| gy = (‘SdT — PdV + Zﬂidnz) < 0, (5.514)

=1 TV

dA N _ dn;
—| =) A <0, (5.515)

TV i=1

1dA N iz,

Y ﬂ-dpl > 0. (5.516)

T dt T &g =

This is exactly the same form as Eq. (5.:482)), which can be directly substituted into Eq. (5.510)
to give

1 dA / 1 1 &
—=—| = —RVKT) (Hﬁ) (1 - — Hﬁﬁ) In <— Hﬁi”) > 0,
T dt N i=1 ¢ i=1 Ke i=1
(5.517)
dA _ A 1 & 1 &
T = RVTK(T) ( P Z) <1 7 pz’”) In <_ Hﬁz’yi> <0
dt v i=1 Ke i=1 ¢i=1
(5.518)

For the assumptions of this section, Eq. (B.51I8) reduces to
e : 1 ¢ 1 ¢
— RThpVA-O) (1o ——|m|[=——11] <o, 5.519
7V ( o( Kcl_g) <K61_<) (5.519)

L : 1 ¢ 1 ¢
= kn,RT(1—¢) (1 —~ ffc) In (Kl = é) < 0. (5.520)

Since the present analysis is nothing more than a special case of the previous section,
Eq. (5520) certainly holds. One questions however the behavior in the irreversible limit,
1/K. — 0. Evaluating this limit, one finds

dA
dt

.V

im A T (1-C)In L +(1=-Omé—1-Om(1=+... | <o.
1/Kc—~0 dt |5y, —— K.
’ S0 N—
——00

(5.521)
Now, performing the distinguished limit as ¢ — 1; that is the reaction goes to completion,
one notes that all terms are driven to zero for small 1 /K.. Recall that 1 — ( goes to zero
faster than In(1—() goes to —oo. Note that the entropy inequality is ill-defined for a formally

irreversible reaction with 1/K, = 0.
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Chapter 6

Thermochemistry of multiple
reactions

See Powers, Chapter 5

See Turns, Chapter 4, 5, 6

See Kuo, Chapters 1, 2

See Kondepudi and Prigogine, Chapter 16, 19

This chapter will extend notions associated with the thermodynamics of a single chemical
reactions to systems in which many reactions occur simultaneously.

6.1 Summary of multiple reaction extensions

Consider now the reaction of N species, composed of L elements, in .J reactions. This section
will focus on the most common case in which J > (N — L), which is usually the case in large
chemical kinetic systems in use in engineering models. While much of the analysis will only
require J > 0, certain results will depend on J > (N — L). It is not difficult to study the
complementary case where 0 < J < (N — L).

The molecular mass of species i is still given by Eq. (5.1):

L
My =Y Mgy,  i=1,...,N. (6.1)
=1

However, each reaction has a stoichiometric coefficient. The j** reaction can be summarized
in the following ways:

N N
i=1 i=1

N
ZXiVij = 0, J=1...,J (6-3)
i=1
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Stoichiometry for the ;% reaction and I** element is given by the extension of Eq. (5.24):

N
> uvi; =0, l=1,...,L, j=1,...,J. (6.4)
i=1

The net change in Gibbs free energy and equilibrium constants of the j** reaction are defined

by the extensions of Eqs. (5.268], £.267, 5.270):

N
AGS =D grwy |  G=1.... (6.5)

=1

—~AG? ,
Kpj =exp = ) j=1,...,J, (6.6)
N
P > im1 Vij —AG°

K., =|=2 — 7 i=1,...,J. 6.7
= () e ()| ©7)

The equilibrium of the j reaction is given by the extension of Eq. (5.253):

N
By =0, =11 (6.8)
i=1

or the extension of Eq. (5.255):

N
G = 0, =1, (6.9)
i=1

The multi-reaction extension of Eq. (£521]) for affinity is

N
SO < R SR (6.10)
i=1

In terms of the chemical affinity of each reaction, the equilibrium condition is simply the

extension of Eq. (5.254):
a=0, j=1,...J (6.11)

At equilibrium, then the equilibrium constraints can be shown to reduce to the extension

of Eq. (G:256):

N P\ ‘
Kp;j=1]] 5 j=1,...,J (6.12)
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or the extension of Eq. (5.274):
N
=11z, Jj=1....7 (6.13)
i1

For isochoric reaction, the evolution of species concentration ¢ due to the combined effect

of J reactions is given by the extension of Eq. (5.279):

Ed}i
A

—E;
RT

dpz

g Vij a; T B exp (

=k, (T)

) (1

forward reaction

_ V,’Cj 1
Pk K P
&I p=1
——

reverse reaction

N
— ij
k I

(1/V)d¢; /dt

E?”jz

(6.14)

The extension to isobaric reactions is straightforward, and follows the same analysis as for
a single reaction. Again, three intermediate variables which are in common usage have been
defined. First one takes the reaction rate of the j'* reaction to be the extension of Eq. (5.280)

=1 N N
_E . U 1 ]
— B J — Tkj — Vkj .
r; = a; 1" exp =T Py 7 P o9 =1,...
— _ \k=1 &I k=1
=k;(T) forward reaction reverse reaction
or the extension of Eq. (5.28T])
- N
_E . V”»
_ B J — Tkj s
rj = a; 7" exp =T Dy Dy , g=1...
- _ K, k=1
=k;(T), Arrhenius rate forward reaction reverse reaction
law of mass action
L 1dg
TV dt
Here (; is the reaction progress variable for the j reaction.

J, (6.15)
J, (6.16)
(6.17)

Each reaction has a temperature-dependent rate function k;(7’), which is an extension of

Eq. (5.282):

12

ki(T) = a,T%
]( ) = a; eXp(RT

)
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The evolution rate of each species is given by w;, defined now as an extension of Eq. (5.284)):

J
WZEZI/UTJ, Zzl,,N (619)

The multi-reaction extension of Eq. (5.239)) for mole change in terms of progress variables
is

J
dn; = " vyd(;, i=1,..., N. (6.20)
j=1
One also has Eq. (5.243):
N
dGlyp = Y Hdn, (6.21)
N
= Zﬂikade, (6.22)
oG 4

_ 8@
= Z 7, Z VikOkj, (6.24)
i=1  j=1

N

= > s, (6.25)
=1

= —@;,  j=1,....J (6.26)

For a set of adiabatic, isochoric reactions, one can show the extension of Eq. (5.429) is

dr XA

2
7 o (6.27)

where the energy change for a reaction AUj is defined as the extension of Eq. (5.428):

N
= Wviy,| =1, (6.28)

Similarly for a set of adiabatic, isobaric reactions, one can show the extension of Eq. (0.444):

J
T - rAH;
d _ _Z]-l T] J’ (629)
dt pcp
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where the enthalpy change for a reaction AH; is defined as the extension of Eq. (5.443):

N
AH; =) hivyg,|  j=1,...,J. (6.30)

i=1

Moreover, the density and species concentration derivatives for an adiabatic, isobaric set can
be shown to be extensions of Eqs. (5.455] 5.459):

dp hy
o= Y (- 1), (631

=1 =1

J
dp, ! AH,
a2 <V”' o <EPT _Anj»’ 02

where

N
Anj =" w. (6.33)
k=1

In a similar fashion to that shown for a single reaction, one can further sum over all
reactions and prove that mixture mass is conserved, element mass and number are conserved.

[
Ezxample 6.1

Show that element mass and number are conserved for the multi-reaction formulation.
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Start with Eq. (614]) and expand as follows:

dp;
dt

dpz

¢lz

(¢uip;)

d — e
i (Mip©)
dp,®

dt

J
E Vij"’jy
j=1
J
¢li§ VijTjg,
Jj=1

PLiVijTy,

M%

<.
Il
-

J
E d)lezg Tj,

Jj=1

g

¢liVijTj7

Mk‘
.MZ

1

<.
Il
—

(2

J N
E TJE ¢l7,1/7,]7

j=1 = 170
0, =1
0, =1,
. l=1,.

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)
(6.41)

(6.42)

It is also straightforward to show that the mixture density is conserved for the multi-reaction, multi-

component mixture:

dp
dt

=0.

(6.43)

The proof of the Clausius-Duhem relationship for the second law is an extension of the
single reaction result. Start with Eq. (5.460) and operate much as for a single reaction model.

N
1

S|y, = —Tzﬁidni >0, (6.44)

=1

irreversible entropy production

s Y dng 1
i = —_ 6.45
dt |, Z“’dtv— (6.45)

dp;
- _ i 6.46
Zuz =0, (6.46)
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V N J
= —?Zﬁ > vyr; >0, (6.47)
i=1 =1
V N J]
= —?ZZﬂywr]ZO (648)
=1 j=1
V J ’ N
= _TZTJZEVUZO’ (649)
=1 =1
V]J N Ul 1 N »
— _?Z@H@” (1— = _Hﬁf’”) > i >0, (6.50)
-1 i=1 &I =1 i=1
VJJ N y 1 N 1 N
_ ST (- 7| (R A
ryully ( 1) (7o (& 10
(6.51)
= —RV 3 1 L N—””' 1 L N—””' >0 6.52
— g U C’]ZHlpi n K@jgpi > 0. (6.52)

Note that Eq. (6.49) can also be written in terms of the affinities (see Eq. (6.10)) and reaction
progress variables (see Eq. (G.I7) as

ds 1 d(;
— = =) a,—>0. 6.53
dt |y, T;a’dt = (6.53)
Similar to the argument for a single reaction, if one defines extensions of Egs. (5483
[.484) as
N /
R, = kj Hﬁiu”, (6.54)
i=1
k. N 1"
R = [, (6.55)
Kejim)
then it is easy to show that
rj =R, —Rj, (6.56)
and we get the equivalent of Eq. (5.488):
ds S R,
— = RV R; —Rj)1 > 0. 6.57
Ty ~ TV 2 i (7r) 2 (6.57)

Since k;(T") > 0, R >0,and V > 0, and each term in the summation combines to be positive
semi-definite, one sees that the Clausius-Duhem inequality is guaranteed to be satisfied for
multi-component reactions.
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6.2 Equilibrium conditions

For multicomponent mixtures undergoing multiple reactions, determining the equilibrium
condition is more difficult. There are two primary approaches, both of which are essentially
equivalent. The most straightforward method requires formal minimization of the Gibbs free
energy of the mixture. It can be shown that this actually finds the equilibrium associated
with all possible reactions.

6.2.1 Minimization of G via Lagrange multipliers

Recall Eq. @393), dG|rp < 0. Recall also Eq. @E397), G = SN, Gni. Since [i; = g; =
gi , one also has G = ZZN:1 m;n;. From Eq. (£398), dG|rp = ZZN:1 T;dn;. Now

PTmn;
one must also demand for a system coming to equilibrium that the element numbers are

conserved. This can be achieved by requiring

N
> ulng—mni) =0, 1=1,... L (6.58)
i=1

Here recall n;, is the initial number of moles of species 7 in the mixture, and ¢;; is the number
of moles of element [ in species 7. If one interprets n,, — n; as —v;;, the negative of the net

mole change, Eq. (6.58) becomes — ZlNzl ouvi; = 0, equivalent to Eq. (6.4)).

One can now use the method of constrained optimization given by the method of Lagrange
multipliers to extremize G subject to the constraints of element conservation. The extremum
will be a minimum; this will not be proved, but it will be demonstrated. Define a set of L
Lagrange multipliers \;. Next define an augmented Gibbs free energy function G*, which is
simply G plus the product of the Lagrange multipliers and the constraints:

L N
G"'=G+ Z Al Z gblk(nko — nk) (659)
k=1

=1

Now when the constraints are satisfied, one has G* = G, so assuming the constraints can be
satisfied, extremizing G is equivalent to extremizing G*. To extremize G*, take its differential
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with respect to n;, with P, T" and n; constant and set it to zero for each species:
oG* oG 0
= )\l ¢lk Nko — Ni :0, 1 ..,N,
on; T,Pn; on; T,Pn; on; T,Pn; <; Z )
=H;
(6.60)
al on
= Z)\lnglk b :0, ’l:l,. ,N, (661)
=1 i |7 P,
w_/
Oki
= ZAlZ@kam_o i=1,...,N, (6.62)
=1 k=1
= m—zxmzo, i=1...,N. (6.63)
1=1
Next, for an ideal gas, one can expand the chemical potential so as to get
ﬁ%ﬁ—RTln( ) ZAZ%_ ., i=1,...,N, (6.64)
ne
n; P 1 L
A7+ RTIn <27> — | = Ny =0, 1=1,...,N. (6.65)
fovd ) Fo ;
=P
Recalling that Zszl ng = n, in summary then, one has N + L equations
uTZ+RTln< ) th =0, i=1,...,N, (6.66)
Z(bli(nio—ni) =0, I=1,...,L (6.67)
i=1
in N 4+ L unknowns: n;,i=1,...,N, \,,l=1,..., L.
[
Ezxample 6.2
Consider a previous example problem, see p.[I45] in which
Ny + Ny = 2N + No. (6.68)
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Take the reaction to be isothermal and isobaric with T'= 6000 K and P = 100 kPa. Initially one has
1 kmole of Ny and 0 kmole of N. Use the extremization of Gibbs free energy to find the equilibrium
composition.

First find the chemical potentials at the reference pressure of each of the possible constituents.

T, =i = R — T3¢ = Egg&i + AR; - T5. (6.69)

For each species, one then finds

. B kJ

A, = 0+ 205848 — (6000)(202.984) = ~1552056 ", (6.70)
kJ

PR = 472680 + 124590 — (6000)(216.926) = ~704286 . (6.71)
molte

To each of these one must add

RT1
: (nPO) ,

to get the full chemical potential. Now P = P, = 100 kPa for this problem, so one only must consider
RT = 8.314(6000) = 49884 k.J/kmole. So, the chemical potentials are

_ nN.
= —1552056 + 49884 1In [ ———2— |, 6.72
KN, n (nN Fn, ) ( )
m 704286 + 49884 1 < N ) (6.73)
= — n _— . .
UN nN + nn,

Then one adds on the Lagrange multiplier and then considers element conservation to get the
following coupled set of nonlinear algebraic equations:

—1552056 + 49884 In (L) 2y = 0, (6.74)
ny + nn,
ny
—704286 + 49884 In (7) “Ay = 0, (6.75)
ny + nn,
ny +2ny, = 2. (676)

These non-linear equations are solved numerically to get

ny, = 0.88214 kmole, (6.77)

ny = 0.2357 kmole, (6.78)
kJ

Ay = 781934 ——. (6.79)

These agree with results found in the earlier example problem, see p. 143

|
Ezxample 6.3
Consider a mixture of 2 kmole of Hy and 1 kmole of Oy at T = 3000 K and P = 100 kPa.
Assuming an isobaric and isothermal equilibration process with the products consisting of Hs, Oa,
H>O, OH, H, and O, find the equilibrium concentrations. Consider the same mixture at T = 298 K
and T = 1000 K.
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The first task is to find the chemical potentials of each species at the reference pressure and
T = 3000 K. Here one can use the standard tables along with the general equation

o, =9; = E? -T5 = EgQS,i + AE? = T57. (6.80)

For each species, one then finds

kJ
iy = 0+ 88724 — 3000(202.989) = —520242 ——— 6.81
HH, * ( ) kmole’ ( )
kJ
s, = 0498013 — 3000(284.466) = —755385 ——— 6.82
Ko, * ( ) kmole’ ( )
kJ
e = —241826 + 126548 — 3000(286.504) = —974790 ———— 6.83
HHz0 * ( ) kmole’ ( )
kJ
Iy, = 38987 + 89585 — 3000(256.825) = —641903 ——— 6.84
/J’OH + ( ) kmole’ ( )
kJ
% = 217999 + 56161 — 3000(162.707) = —213961 ——— 6.85
Hu + ( ) kmole’ ( )
kJ
Iy = 249170 + 56574 — 3000(209.705) = —323371 . (6.86)
kmole

To each of these one must add

RT1
n (nPO) ’

to get the full chemical potential. Now P = F, =100 kPa for this problem, so one must only consider
RT = 8.314(3000) = 24942 kJ/kmole. So, the chemical potentials are

7’LH2

Ty, = —520243+4 249421n ( ) : (6.87)
ng, +no, + NH,0 + Nor +ng +no

Tio, = —T55385+249421n ( 110, ) : (6.88)
NH, + 1o, + NH,0 +NoH +nH +no

Tmo = —974790+ 249421n ( [LH:0 ) : (6.89)
NH, + N0, +NH,0 +NoH +nH +No

Topy = —641903+ 249421n ( fon ) : (6.90)
ng, +no, + NH,0 + Nor +ng +no

Ty = —213961+ 249421n ( il ) : (6.91)
ng, +no, + NH,0 + Nor +ng +no

o = —323371+249421n ( fo ) . (6.92)
NH, + N0, + NH,0 +NoH +nH +No

Then one adds on the Lagrange multipliers and then considers element conservation to get the following
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coupled set of nonlinear equations:

—520243 + 24942 In < [V > —2y = 0, (6.93)
ng, +Nno, +NH,0 + Nor + g +no
—755385 + 249421n ( 10 ) —2\ = 0, (6.94)
NH, + N0, ¥ NH,0 + NoH +NH +No
—974790 + 24942 In ( [LH20 ) “x—Xo = O, (6.95)
NH, +No, +NH,0 + Nog +ng +no
—641903 + 24942 In ( fon ) —Ax—Xo = O, (6.96)
ng, +no, + NH,0 + Nor +ng +no
—213961 + 24942 1n< Rl > Xy = 0, (6.97)
ng, +Nno, + NH,0 + Now +ng +no
—323371 + 24942 In < lo > ~Xo = 0, (6.98)
ng, +Nno, +NH,0 + Nor + g +no
2ng, + 2np,0 +nog +ng = 4, (6.99)
2no, + ng,0 +nog +no = 2. (6.100)

These non-linear algebraic equations can be solved numerically via a Newton-Raphson technique.
The equations are sensitive to the initial guess, and one can use ones intuition to help guide the
selection. For example, one might expect to have ng,o somewhere near 2 kmole. Application of the
Newton-Raphson iteration yields

ng, = 3.19x 107! kmole, (6.101)
no, = 1.10x 107" kmole, (6.102)
ng,o = 1.50x 10° kmole, (6.103)
nog = 2.20x 107! kmole, (6.104)
ng = 1.36x 107" kmole, (6.105)
no = 5.74x 1072 kmole, (6.106)
kJ
Ag = —2.85x10° 6.107
H x kmole’ ( )
kJ
Ao = —4.16x10° : 6.108
© x kmole ( )

At this relatively high value of temperature, all species considered have a relatively major presence.
That is, there are no truly minor species.

Unless a very good guess is provided, it may be difficult to find a solution for this set of non-
linear equations. Straightforward algebra allows the equations to be recast in a form which sometimes
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converges more rapidly:

nH2
nH, + No, +ng,0 +noy +ng +no

no,

nyg, +no, + NH,0 + now +ng +no ( 24942> P 2
2
NH,0 974790 Ao Ar
_ _AH_ 6.111
i, + 0y + a0 + Nom + nE + 1o P ( 21912 ) P\ 21013 ) \ P\ 2p92 ) ) » G-11D)
ot — oxp (SA93) o (220 ) exp (2 (6.112)
i, + o, + Mo + nom + na + 1o P\ 22042 ) P\ 24942 ) “P \ 24042 ) '
N 213961 An
- 6.113
N + 0, + N0 + NoH + 1E + 110 eXp(24942>eXp(24942>’ (6.113)
no 323371 Ao
- 6.114
N + 0, + N0 + NoH + 1E + 10 eXp(24942>eXp(24942>’ (6.114)
2ng, + 2ng,0 +nog +neg = 4, (6.115)

2no, + ng,0 +noag +no = 2. (6116)

Then solve these considering n;, exp (A0/24942), and exp (Am/24942) as unknowns. The same result
is recovered, but a broader range of initial guesses converge to the correct solution.

One can verify that this choice extremizes G by direct computation; moreover, this will show
that the extremum is actually a minimum. In so doing, one must exercise care to see that element
conservation is retained. As an example, perturb the equilibrium solution above for ng, and ng such
that

ng, = 3.19x1071+¢, (6.117)
ng = 1.36x1071 —2¢ (6.118)

Leave all other species mole numbers the same. In this way, when & = 0, one has the original equilibrium
solution. For £ # 0, the solution moves off the equilibrium value in such a way that elements are
conserved. Then one has G = Efvzl mn; = G(§).

The difference G(§) — G(0) is plotted in Fig. 611 When & = 0, there is no deviation from the value
predicted by the Newton-Raphson iteration. Clearly when £ = 0, G(§) — G(0), takes on a minimum
value, and so then does G(&). So the procedure works.

At the lower temperature, T" = 298 K, application of the same procedure yields very different

results:
ng, = 4.88x 10727 kmole, (6.119)
no, = 2.44x1072" kmole, (6.120)
nmo = 2.00x 10° kmole, (6.121)
nog = 2.22x107% kmole, (6.122)
ng = 2.29 x 107 kmole, (6.123)
no = 1.67x 1075 kmole, (6.124)
kJ
Mg = —9.54x 10 6.125
H . kmole’ ( )
kJ
Ao = —1.07x10° : 6.126
© x kmole ( )

At the intermediate temperature, T'= 1000 K, application of the same procedure shows the minor
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G(¢) - G(0) (kJ)
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30
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Figure 6.1: Gibbs free energy variation as mixture composition is varied maintaining element
conservation for mixture of Hy, Oy, HoO, OH, H, and O at T' = 3000 K, P = 100 kPa.

species become slightly more prominent:

ng, = 4.99x 1077 kmole, (6.127)
no, = 2.44x1077 kmole, (6.128)
ng,o = 2.00x 10° kmole, (6.129)
nog = 2.09x 1078 kmole, (6.130)
ng = 2.26 x 1072 kmole, (6.131)
no = 1.10x 107" kmole, (6.132)
kJ
Ag = —1.36x10° 6.133
H : kmole’ ( )
kJ
Ao = —1L77x10° : 6.134
© x kmole ( )

6.2.2 Equilibration of all reactions

In another equivalent method, if one commences with a multi-reaction model, one can require
each reaction to be in equilibrium. This leads to a set of algebraic equations for r; = 0, which
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from Eq. (6.16) leads to

N
P\ Tt vii —AG® N _
K.j= (== —L ) =115, j=1,...,J. 6.135
J < RT) exp ( = ) 117 j (6.135)

With some effort it can be shown that not all of the J equations are linearly independent.
Moreover, they do not possess a unique solution. However, for closed systems, only one of
the solutions is physical, as will be shown in the following section. The others typically
involve non-physical, negative concentrations.

Nevertheless, Egs. (6.135) are entirely consistent with the predictions of the N + L equa-
tions which arise from extremization of Gibbs free energy while enforcing element number
constraints. This can be shown by beginning with Eq. (6.65), rewritten in terms of molar
concentrations, and performing the following sequence of operations:

L
ﬂ%,i“’RTln (7_> - Noy = 0, 1=1,..., N, (6.136)
Zivzlnk/v Py 1221:

_ L
ﬁ%ﬂrﬁTln(ZNpi" )—Zmﬁu =0, di=1,...,N,(6.137)

L
_ 5. P
fir; + RT'In (%—) =Y Ny = 0, i=1,...,N,(6138)

RT -
fif,; + RT In (ﬁi )—ZA@“ = 0, i=1,...,N,(6.139)

RT -
Vijlp; + vi; RT In (@?) — Vij Z N = 0, 1=1,...,N,

j=1,...,J (6.140)
N N RT N
> v+ vyRTIn (pi?> =Y vy Nw = 0, j=1,...,J (6.141)
i=1 ° i

i=1
. RT =
AG;)—I—RTZV” In (pz?o> —Z)\lnglil/ij = O> ] - 1)--.,J> (6142)

al RT
AG;—FETZV@' In <ﬁz—) = 0, j=1,...,J. (6.143)

Here, the stoichiometry for each reaction has been employed to remove the Lagrange multi-
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pliers. Continue to find
N

_T Vij AGO
Zln@};) = ——  j=1,...,7 (6.144)
i=1 °

N - Vij
T\ “ AGY
- (; " Gii—o) ) - <_ FTJ)
N - Vij
RT\" AGY ,
H (ﬁl?) = €Xp <_ ETJ) ) J = 1a SR J> (6146)

, jg=1...,J (6.145)

i=1

(RT)ZZ'N—”” e < AGS
Vi = exp | —=
P LI P\ Rr

N Zl\; Vij o

PO =17 AG
| |ﬁil’ij — (_ ) exp <—_ j), j=1,...,J,(6.148)
i=1 ”

. =1, (6.147)

In summary,

N
[z =Kep.|  d=1,....J (6.149)
=1

which is identical to Eq. (6.135]), obtained by equilibrating each of the J reactions. Thus,
extremization of Gibbs free energy is consistent with equilibrating each of the J reactions.

6.3 Concise reaction rate law formulations

One can additional analysis to obtain a more efficient representation of the reaction rate law
for multiple reactions. There are two important cases: 1) J > (N — L); this is most common
for large chemical kinetic systems, and 2) J < (N — L); this is common for simple chemistry
models.

The species production rate is given by Eq. (6.14]), which reduces to

J

dp, 1 d¢; .
i 2Ny, B —1,...,N. 6.150
at v ;VJ a’ (6.150)
Now recalling Eq. (5.99), one has
N—-L
dn; =Y Dyd&,  i=1,...,N. (6.151)
k=1
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Comparing then Eq. (GI51) to Eq. (G20), one sees that

J N—-L
> vydG =Y Dyd&,  i=1,...,N, (6.152)
J=1 k=1
1 J 1 N-L
- > vydé; = - > Dydg,  i=1,...,N. (6.153)
Jj=1 k=1

6.3.1 Reaction dominant: J > (N — L)

Consider first the most common case in which J > (N — L). One can say the species
production rate is given

dp, 1<~ d ! .
dZ :VZD““% = Vij/rja 'l:l,...,N. (6154)
k=1 Jj=1

One would like to invert and solve directly for d¢;/dt. However, Dy is non-square and has
no inverse. But since ZZN:1 &1 Dy = 0, and ZZN:1 ¢uvi; = 0, L of the equations N equations
in Eq. (€I54) are redundant.

At this point, it is more convenient to go to a Gibbs vector notation, where there is an
obvious correspondence between the bold vectors and the indicial counterparts:

dp_ 1 i

h _VD.dt = v-r, (6.155)
d

DT~D~—é = VD' .v.r, (6.156)
dt

% = v(D"-D)*-DY v (6.157)

Because of the L linear dependencies, there is no loss of information in this matrix projection.
This system of N — L equations is the smallest number of differential equations that can be
solved for a general system in which J > (N — L).

Lastly, one recovers the original system when forming

D-% = VvD-(D"-D)'.-D"v-r. (6.158)
—p

Here, the N x N projection matrix P is symmetric, has norm of unity, has rank of N — L,
has N — L eigenvalues of value unity, and L eigenvalues of value zero. And, while application
of a general projection matrix to v - r filters some of the information in v - r, because the
N x (N — L) matrix D spans the same column space as the N x J matrix v, no information
is lost in Eq. (6.I58) relative to the original Eq. (6.155). Mathematically, one can say

P.-v=v. (6.159)
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6.3.2 Species dominant: J < (N — L)

Next consider the case in which J < (N —L). This often arises in models of simple chemistry,
for example one- or two-step kinetics.

The fundamental reaction dynamics are most concisely governed by the J equations
which form

1d¢

However, r is a function of the concentrations; one must therefore recover p as a function
of reaction progress €. In vector form, Eq. (6I50) is written as
dp 1

1, 4%

g (6.161)

Take as an initial condition that the reaction progress is zero at ¢ = 0 and that there are an
appropriate set of initial conditions on the species concentrations p:

¢ =0 t=0, (6.162)
p = p, t=0. (6.163)

Then, since v is a constant, Eq. (6161 is easily integrated. After applying the initial
conditions, Eq. (6I63), one gets

1
pP=p,+ v ¢ (6.164)

Last, if J = (N — L), either approach yields the same number of equations, and is equally
concise.

6.4 Adiabatic, isochoric kinetics

Here an example which uses multiple reactions for an adiabatic isochoric system is given.

|
Example 6.4
Consider the full time-dependency of a problem considered in a previous example in which the
equilibrium state was found; see Sec. B.3.34l. A closed, fixed, adiabatic volume contains at t = 0 s a
stoichiometric mixture of 2 kmole of Hy, 1 kmole of Oz, and 8 kmole of Ny at 100 kPa and 1000 K.
Find the reaction dynamics as the system proceeds from its initial state to its final state.
This problem requires a detailed numerical solution. Such a solution was performed by solving
Eq. (GI4) along with the associated calorically imperfect species state equations for a mixture of
eighteen interacting species: Ho, H, O, O2, OH, H,O, HO2, H2O2, N, NHo, NH3, NoH, NO, NO>,
N;O, HNO, and Ns. The equilibrium values were reported in a previous example.
The dynamics of the reaction process are reflected in Fig. At early time, t < 4 x 107% s, the
pressure, temperature, and major reactant species concentrations (Hz, O2, N2) are nearly constant.
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Figure 6.2: Plot of a) oy, (), P (t), Po(t), Po, (), Pou(t), Pryo(t): Pro,(t): Pr,o0,(t), b) Pn (1),
Prno(t), Pnoa(t), Prn,o(t), Pw,(t), ¢) T(t), and d) P(t) for adiabatic, isochoric combustion of

a mixture of 2H, + Oy + 8N, initially at 7' = 1000 K, P = 100 kPa.

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

222 CHAPTER 6. THERMOCHEMISTRY OF MULTIPLE REACTIONS

However, the minor species, e.g. OH, NO, HO5 and the major product, H>O, are undergoing very
rapid growth, albeit concentrations whose value remains small. In this period, the material is in what
is known as the induction period.

After a certain critical mass of minor species has accumulated, exothermic recombination of these
minor species to form the major product H2O induces the temperature to rise, which accelerates further
the reaction rates. This is manifested in a thermal explosion. A common definition of the end of the
induction period is the induction time, t = t;,q, the time when dT'/dt goes through a maximum. Here

one finds
ting = 4.53 x 1074 s. (6.165)

At the end of the induction zone, there is a final relaxation to equilibrium.
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Chapter 7

Kinetics in some more detail

See Powers, Chapter 1

Here we give further details of kinetics. These notes are also used to introduce a separate
combustion course and have some overlap with previous chapters.

Let us consider the reaction of N molecular chemical species composed of L elements via
J chemical reactions. Let us assume the gas is an ideal mixture of ideal gases that satisfies
Dalton’s law of partial pressures. The reaction will be considered to be driven by molecular
collisions. We will not model individual collisions, but instead attempt to capture their
collective effect.

An example of a model of such a reaction is listed in Table [[.Il. There we find a N =9
species, J = 37 step irreversible reaction mechanism for an L = 3 hydrogen-oxygen-argon
mixture from Maas and Warnatz with corrected fg, from Maas and Popeld The model has
also been utilized by Fedkiw, et alll We need not worry yet about fp,, which is known as
a collision efficiency factor. The one-sided arrows indicate that each individual reaction is
considered to be irreversible. Note that for nearly each reaction, a separate reverse reaction is
listed; thus, pairs of irreversible reactions can in some sense be considered to model reversible
reactions.

In this model a set of elementary reactions are hypothesized. For the j*" reaction we have
the collision frequency factor a;, the temperature-dependency exponent [3; and the activation
energy E;. These will be explained in short order. Other common forms exist. Often
reactions systems are described as being composed of reversible reactions. Such reactions are
usually notated by two sided arrows. One such system is reported by Powers and Paolucci]
reported here in Table [[.2] Both overall models are complicated.

Maas, U., and Warnatz, J., 1988, “Ignition Processes in Hydrogen-Oxygen Mixtures,” Combustion and
Flame, 74(1): 53-69.

2Maas, U., and Pope, S. B., 1992, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds
in Composition Space,” Combustion and Flame, 88(3-4): 239-264.

3Fedkiw, R. P., Merriman, B., and Osher, S., 1997, “High Accuracy Numerical Methods for Thermally
Perfect Gas Flows with Chemistry,” Journal of Computational Physics, 132(2): 175-190.

4Powers, J. M., and Paolucci, S., 2005, “Accurate Spatial Resolution Estimates for Reactive Supersonic
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. : (mol/cm?’)(lﬂ/}”’j =i ng) n kJ
j | Reaction aj ( s K% ) Bi | Ei Ger)
1 0:+H—=0OH+O0 2.00 x 10 0.00 70.30
2/0H+0 =0, +H 1.46 x 10%3 0.00 2.08
3| H+0 —OH+H 5.06 x 10* 2.67 26.30
4/ OH+H — Hy,+ 0O 2.24 x 101 2.67 18.40
5| Hy,+0OH — H, O+ H 1.00 x 108 1.60 13.80
6| H,O+H — Hy +OH 4.45 x 108 1.60 77.13
7| 0OH+OH — H,O+ O 1.50 x 10° 1.14 0.42
8| H,O+0 = OH+OH 1.51 x 10'° 1.14 71.64
9V H+H+M— Hy+M 1.80 x 108 —1.00 0.00
10| Ho+ M - H+H+M 6.99 x 10'® —1.00 | 436.08
11| H+OH+M — H,O+ M 2.20 x 1022 —2.00 0.00
12 | HbO+M - H+OH+ M 3.80 x 10%3 —2.00 | 499.41
B31O0+0+M — O+ M 2.90 x 10'7 —1.00 0.00
1410+ M —-04+0+M 6.81 x 10'® —1.00 496.41
15| H+0:+M — HOy+ M 2.30 x 10'® —0.80 0.00
16 | HOo+M — H+ Oy + M 3.26 x 10'8 —0.80 | 195.88
17 HO;+ H - OH + OH 1.50 x 10 0.00 4.20
18 | OH+OH — HO, + H 1.33 x 103 0.00 168.30
19 | HOy + H — Hy + Oy 2.50 x 103 0.00 2.90
20 | Hy+ Oy — HOy+ H 6.84 x 1013 0.00 | 243.10
21| HO;+ H — H,O+ O 3.00 x 103 0.00 7.20
22| H,O+0 — HO,+ H 2.67 x 103 0.00 242.52
23 | HO; +0 — OH + Oy 1.80 x 10'3 0.00 —1.70
24| OH+ Oy — HOy+ O 2.18 x 10® 0.00 230.61
25 | HOy + OH — Hy0 + O, 6.00 x 103 0.00 0.00
26 | HO + 0y — HO; + OH 7.31 x 10M 0.00 303.53
27| HO3 + HO3 — H5045 4 Oy 2.50 x 10! 0.00 —5.20
28 | OH +0OH + M — HyOy+ M 3.25 x 1022 —2.00 0.00
29 | Ho Oy + M - OH+OH+ M 2.10 x 10 —2.00 206.80
30 | HoOs+ H — Hy + HO, 1.70 x 10" 0.00 15.70
31 | Ho+ HOy — HyO9+ H 1.15 x 10" 0.00 80.88
32 | HyO, + H — H,O +0OH 1.00 x 10'3 0.00 15.00
33 | H,O +OH — H,O, + H 2.67 x 10" 0.00 307.51
34 | HyO,+0 — OH + HO, 2.80 x 103 0.00 26.80
35 | OH + HOy — Hy05 4+ O 8.40 x 10'2 0.00 84.09
36 | HoOy + OH — HyO + HOq 5.40 x 10'2 0.00 4.20
37 | H,O + HOy — Hy05+ OH 1.63 x 103 0.00 132.71

Table 7.1:  Third body collision efficiencies with M are fy, = 1.00, fo, = 0.35, and
fmo = 6.5.

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

225

. . (mol/cm?’)(lﬂ/}”’j 72"{\;1 ng) Fnl cal
J | Reaction a; ( B | Ej (mole)
1| H+0y,=0H+O0OH 1.70 x 103 0.00 47780
2|OH+Hy= H,O+H 1.17 x 10° 1.30 3626
3|H+0O,=0H+ O 5.13 x 10'6 —0.82 16507
41 O+Hy,=0OH+H 1.80 x 10 1.00 8826
5/ H+0Os+M=HOy+ M 2.10 x 10'8 —1.00 0
6 H+02+02 \:H02+02 6.70 x 1019 —1.42 0
7 H+02+N2 — H02+N2 6.70 x 1019 —1.42 0
8| OH + HOy = H0 + Oy 5.00 x 10*3 0.00 1000
9| H+ HOy, = OH+ OH 2.50 x 104 0.00 1900
10 O+ HO; = 0y,+ OH 4.80 x 103 0.00 1000
11| OH+OH = O + Hy,O 6.00 x 108 1.30 0
12| Hyb+ M =H+H+M 2.23 x 102 0.50 92600
13|02+ M=0+0+M 1.85 x 10" 0.50 95560
M4 H+OH+M = H,O+M 7.50 x 10% —2.60 0
15| H+ HOy = Hy + Oy 2.50 x 1013 0.00 700
16 H02 -+ H02 — H202 + 02 2.00 x 1012 0.00 0
17 | HyOy + M = OH + OH + M | 1.30 x 107 0.00 45500
18 | HoOy+ H = HOy + Hy 1.60 x 10'2 0.00 3800
19 | H, O+ OH = H>0 + HO, 1.00 x 103 0.00 1800

Table 7.2: Nine species, nineteen step reversible reaction mechanism for an Hy/Os /Ny mix-
ture. Third body collision efficiencies with M are f5(H20) = 21, f5(Hy) = 3.3, f12(H20) = 6,
fi2(H) = 2, fia(Ha) = 3, f14(H0) = 20.
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7.1 Isothermal, isochoric kinetics

For simplicity, we will first focus attention on cases in which the temperature 7" and vol-
ume V are both constant. Such assumptions are known as “isothermal” and “isochoric,”
respectively. A nice fundamental treatment of elementary reactions of this type is given by
Vincenti and Kruger in their detailed monographﬁ

7.1.1 O — O, dissociation

One of the simplest physical examples is provided by the dissociation of O, into its atomic
component O.

7.1.1.1 Pair of irreversible reactions

To get started, let us focus for now only on reactions 13 and 14 from Table[7.Tin the limiting

case in which temperature T" and volume V' are constant.

7.1.1.1.1 Mathematical model The reactions describe oxygen dissociation and recom-
bination in a pair of irreversible reactions:

13:0+0+M — Oy+ M, (7.1)
14:0,+M — O+0+M, (7.2)
with

le\ > K _ kJ
a3 = 2.90 x 10"7 <m03€) 2 Bu=-1.00, Eip=0 (7.3)

cm S mole

le\ 'K — k

an = 681 x 10 (M€Y K g 100 Fy = 49641 (7.4)

cm3 s mole

The irreversibility is indicated by the one-sided arrow. Though they participate in the overall
hydrogen oxidation problem, these two reactions are in fact self-contained as well. So let us
just consider that we have only oxygen in our box with N = 2 species, Oy and O, J = 2
reactions (those being 13 and 14), and L = 1 element, that being O.

Recall that in the cgs system, common in thermochemistry, that 1 erg = 1 dyne cm =
107 J = 10719 kJ. Recall also that the cgs unit of force is the dyne and that 1 dyne =
1gcm/s?*=107° N. So for cgs we have

— — kJ 1010
Fis=0—%  Fy=49641 9 — 496 x 102 LY (7.5)
mole kJ mole

Flow with Detailed Chemistry,” ATAA Journal, 43(5): 1088-1099.
W. G. Vincenti and C. H. Kruger, 1965, Introduction to Physical Gas Dynamics, Wiley, New York.
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The standard model for chemical reaction induces the following two ordinary differential
equations for the evolution of O and O, molar concentrations:

(7.7)

dpo —Ew3\_ _ _ —FEy
O —  _9apT B exp [ —— +2 a1, TP ex —
It 13 p ( T PoPoPm 14 p BT
ks (T) PN —ka(T) P
- —r14
dpo, < —FE13 ) ( —Ey )
a3 TP ex — DoDobr — AT ex — Do P -
i 13 p T JPOPOPM ¥14 p BT JpOsz
. :kl‘;(T) ) :k;:(T) )

=ri3

=Tri4

Here we use the notation p, as the molar concentration of species i. Also a common usage for
molar concentration is given by square brackets, e.g. pp, = [O2]. The symbol M represents
an arbitrary third body and is an inert participant in the reaction. We also use the common
notation of a temperature-dependent portion of the reaction rate for reaction j, k;(71"), where

E.
kAT) =a;T%exp | =< ). 7.8
1) =0 e (52 (78)
The reaction rates for reactions 13 and 14 are defined as
13 k13P0PoP s (7.9)
ra = kupo,Pyr- (7.10)

We will give details of how to generalize this form later. The system Eq. (T.GH7.7) can be
written simply as

.
o _ s+ 2, (7.11)
dt
o
2?2 = 713 —T14. (712)
Even more simply, in vector form, Eqs. (Z.IIHZ.I2) can be written as
ds
d—;’ —v-r (7.13)
Here we have taken
- Po
= | , 7.14
<p02) ( )
-2 2
v = ( 1 _1> , (7.15)
13
= . 7.16
' (7”14) ( )
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In general, we will have p be a column vector of dimension N x 1, v will be a rectangular
matrix of dimension N x J of rank R, and r will be a column vector of length J x 1. So

gs. (CIINTI2) take the form

w(o) = (20 r)

Note here that the rank R of v is R = L = 1. Let us also define a stoichiometric matrix ¢ of
dimension L x N. The component of ¢, ¢;; represents the number of element [ in species .
Generally ¢ will be full rank, which will vary since we can have L < N, L = N, or L. > N.
Here we have L < N and ¢ is of dimension 1 x 2:

»=(1 2). (7.18)
Element conservation is guaranteed by insisting that v be constructed such that
¢ -v=0. (7.19)

So we can say that each of the column vectors of v lies in the right null space of ¢.
For our example, we see that Eq. (Z.19) holds:

-2 2
$-v=_1 2)~(1 _1):(0 0). (7.20)
The symbol R is the universal gas constant, where

J 107 erg
mole K J

eryg

R = 8.31441 .
mole K

(7.21)

) = 8.31441 x 107

Let us take as initial conditions
Po(t =0) =7po, Po,(t =0) = Do, (7.22)
Now M represents an arbitrary third body, so here
Pm = Po, t Po- (7.23)

Thus, the ordinary differential equations of the reaction dynamics reduce to

% = —2a;377 exp (%) PoPo (Po, +Po)
+2a14TP1 exp (_F ) Do, (Po, +P0) (7.24)
_RT
de asT™ exp (%) PoPo (Po, + 7o)
—ay T7* exp (%) Po, (Po, +Po) - (7.25)
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Equations (T.24H7.25)) with Eqgs. (T.22)) represent two non-linear ordinary differential equa-
tions with initial conditions in two unknowns p, and py,. We seek the behavior of these two
species concentrations as a function of time.

Systems of non-linear equations are generally difficult to integrate analytically and gen-
erally require numerical solution. Before embarking on a numerical solution, we simplify as
much as we can. Note that

dpo | ,4Po
—4+2—= =0 7.26
dt + dt ’ ( )
d _
7 (Po +200,) = 0. (7.27)

We can integrate and apply the initial conditions (7.22]) to get
Po +2p0, = %0 + 2502 = constant. (7.28)

The fact that this algebraic constraint exists for all time is a consequence of the conservation
of mass of each O element. It can also be thought of as the conservation of number of
O atoms. Such notions always hold for chemical reactions. They do not hold for nuclear
reactions.

Standard linear algebra provides a robust way to find the constraint of Eq. (T.28). We
can use elementary row operations to cast Eq. (.I6]) into a row-echelon form. Here our goal
is to get a linear combination which on the right side has an upper triangular form. To
achieve this add twice the second equation with the first to form a new equation to replace
the second equation. This gives

d ﬁo o -2 2 T13
dt (ﬁo +2ﬁ02) - ( 0 O) (7“14 ’ (7:29)

Obviously the second equation is one we obtained earlier, d/dt(po, + 2pp,) = 0, and this
induces our algebraic constraint. We also note the system can be recast as

1 0\ d ﬁo . -2 2 713
(o) a(e)= (3 0) () (30
This is of the matrix form

L—l-P-d—p:U~r. (7.31)
dt

Here L and L' are N x N lower triangular matrices of full rank N, and thus invertible.
The matrix U is upper triangular of dimension N x J and with the same rank as v, R > L.
The matrix P is a permutation matrix of dimension N x N. It is never singular and thus
always invertable. It is used to effect possible row exchanges to achieve the desired form;
often row exchanges are not necessary, in which case P = I, the N x N identity matrix.
Equation (Z31]) can be manipulated to form the original equation via

p_
S =P L Ur (7.32)
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What we have done is the standard linear algebra decomposition of v = P~! . L - U.
We can also decompose the algebraic constraint, Eq. (7.2§)), in a non-obvious way that
is more readily useful for larger systems. We can write

_ = ]- _ =
Po, = Po, = 5 (ﬂo - ﬂo) : (7.33)
Defining now £, = pp — ﬁo, we can say
— = 1 _
(f’o) = (ﬁo) + ( 1) (o) - (7.34)
Po, Po, T2/ N~~~
SN—— N——

- SN—— _E
=p 5 =D =

This gives the dependent variables in terms of a smaller number of transformed dependent
variables in a way which satisfies the linear constraints. In vector form, the equation becomes

p=p+D-E (7.35)

Here D is a full rank matrix which spans the same column space as does v. Note that v
may or may not be full rank. Since D spans the same column space as does v, we must also
have in general

#-D=0. (7.36)

We see here this is true:
(1 2)- (_ll) = (0). (7.37)
2

We also note that the term exp(—F;/RT) is a modulating factor to the dynamics. Let
us see how this behaves for high and low temperatures. First for low temperature, we have

| _E,
%13%) exp ( =7 ) =0. (7.38)
At high temperature, we have
- E
71Er>roloexp <ﬁ> =1. (7.39)

And lastly, at intermediate temperature, we have

exp (%?) ~0O(1) when T=0 <%) : (7.40)

A sketch of this modulating factor is given in Figure [[.Jl Note
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exp(- &;/(RT))

1

E,/R T

Figure 7.1: Plot of exp(—F,;/R/T) versus T} transition occurs at T ~ E,/R.

e for small T, the modulation is extreme, and the reaction rate is very small,
o for T ~ E,;/R, the reaction rate is extremely sensitive to temperature, and

e for T' — oo, the modulation is unity, and the reaction rate is limited only by molecular
collision frequency.

Now pp and P, represent molar concentrations which have standard units of mole/cm?.
So the reaction rates

dpo dpo
~Fo d 2
a " dt
have units of mole/cm3/s.
Note that after conversion of E; from k.J/mole to erg/mole we find the units of the
argument of the exponential to be unitless. That is

E. le K1
{ J} _ frg mote & 1 dimensionless. (7.41)

e == - :>
RT mole erg K

Here the brackets denote the units of a quantity, and not molar concentration. Let us get
units for the collision frequency factor of reaction 13, a;3. We know the units of the rate
(mole/cm?/s). Reaction 13 involves three molar species. Since ;3 = —1, it also has an
extra temperature dependency. The exponential of a unitless number is unitless, so we need
not worry about that. For units to match, we must have

mole mole mole mole
= K=t 42
(cm3 s) la13] ( cm? ) ( cm? ) ( cm? ) (7.42)
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So the units of a3 are

[ars] = <m0le)_2 r (7.43)

cm3 S

For a4 we find a different set of units! Following the same procedure, we get
mole mole mole
= K1 7.44
(cm3 s) [@14] ( cm? ) ( cm? ) (7.44)

So the units of a4 are
mole\ ' K
= —. 7.45
ol = (225) 2 (7.45

This discrepancy in the units of a; the molecular collision frequency factor is a burden of tra-
ditional chemical kinetics, and causes many difficulties when classical non-dimensionalization
is performed. With much effort, a cleaner theory could be formulated; however, this would
require significant work to re-cast the now-standard a; values for literally thousands of re-
actions which are well established in the literature.

7.1.1.1.2 Example calculation Let us consider an example problem. Let us take T =
5000 K, and initial conditions p, = 0.001 mole/ecm?® and py, = 0.001 mole/cm®. The
initial temperature is very hot, and is near the temperature of the surface of the sun. This
is also realizable in laboratory conditions, but uncommon in most combustion engineering
environments.

We can solve these in a variety of ways. I chose here to solve both Eqs. (.24H7.28]) without
the reduction provided by Eq. ({28). However, we can check after numerical solution to see
if Eq. (Z.28) is actually satisfied. Substituting numerical values for all the constants to get

T e (ZE8Y) = o (2.0 % 107 (M9 CK (5000 K) ™" exp(0)
RT cm? 5 ’
-2
= —1.16 x 10" (ﬂlf) L (7.46)
cm S
= -1
241, T exp (ﬁ) = 2 <6.81 x 101 (M) 5) (5000 K) "
RT cm3 s
( —4.96 x 1012 <12 )
X exXp er 5
831441 x 107 —2_(5000 K
~1
1
= 1.77548 x 10 <mlf> = (7.47)
cm S
, —FE3 mole\ 2 1
T — = 580 x 108 (— ) = 7.48
a3 exp ( BT ) X < . ) P ( )
—F mole\ ' 1
Jé] 14 o 9
—ay, TP exp( e ) — 88774 x 10 (cm3) - (7.49)

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

7.1. ISOTHERMAL, ISOCHORIC KINETICS 233

PorPo, (mole/cm3)

0.00150
0,
0.00100
0.00070 -
0.00050 -
o]
| | | | | t (S)
107" 10710 107° 1078 1077 10°°

Figure 7.2: Molar concentrations versus time for oxygen dissociation problem.

Then the differential equation system becomes

.
O = —(116 x 105} (B0 + Po,) + (L7548 x 1050, (B + Po,). (7:50)
0
2?2 = (5.80 x 10")72, (o + Po,) — (8.8774 x 10%)70, (Fo + Po,). (7.51)

_ mole

mole

0,(0) = 0.001 (7.53)

cm3
These non-linear ordinary differential equations are in a standard form for a wide variety
of numerical software tools. Solution of such equations are not the topic of these notes.

7.1.1.1.2.1 Species concentration versus time A solution was obtained numeri-
cally, and a plot of 5 (t) and pp, (t) is given in Figure[Z.2l Note that significant reaction does
not commence until ¢ ~ 1071% 5. This can be shown to be very close to the time between
molecular collisions. For 107 s < t < 1078 s, there is a vigorous reaction. For ¢t > 1077 s,
the reaction appears to be equilibrated. The calculation gives the equilibrium values pg, and

—e
pOz’ as

. e mole
. e mole
tlggo pOz = p02 = 000127 %, (755)

Note that at this high temperature, Oy is preferred over O, but there are definitely O
molecules present at equilibrium.
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r

1.5x107'°

1.0x 107" | m
7.0x107"7 F
50x 1077 -

10710 107° 1078 1077 107°

Figure 7.3: Dimensionless residual numerical error r in satisfying the element conservation
constraint in the oxygen dissociation example.

We can check how well the numerical solution satisfied the algebraic constraint of element
conservation by plotting the dimensionless residual error r

- Po +2p0, — Po — 2Po,

== , (7.56)
pO + 2p02

as a function of time. If the constraint is exactly satisfied, we will have » = 0. Any non-zero
r will be related to the numerical method we have chosen. It may contain roundoff error
and have a sporadic nature. A plot of r(¢) is given in Figure [[3l Clearly the error is small,
and has the character of a roundoff error. In fact it is possible to drive r to be smaller by
controlling the error tolerance in the numerical method.

7.1.1.1.2.2 Pressure versus time We can use the ideal gas law to calculate the
pressure. Recall that the ideal gas law for molecular species i is

PV = n,RT. (7.57)

Here P; is the partial pressure of molecular species i, and n; is the number of moles of
molecular species i. Note that we also have

Ni—
P, = —RT. 7.58
- (7.59)

Note that by our definition of molecular species concentration that
n;
D, = —. 7.59
i = (7.59)
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So we also have the ideal gas law as
P, =p,RT. (7.60)

Now in the Dalton mixture model, all species share the same T and V. So the mixture
temperature and volume are the same for each species V; = V., T; = T. But the mixture
pressure is taken to be the sum of the partial pressures:

N
P=>"P. (7.61)
=1

Substituting from Eq. (Z60) into Eq. (ZGIl), we get

N N
P=> pRT=RT> 7. (7.62)
i=1 i=1
For our example, we only have two species, so
P =RT(po + Po,)- (7.63)
The pressure at the initial state ¢ = 0 is
P(t=0) = RT(po+ Po,), (7.64)
erg mole mole
= (8.31441 1077> 5000 K) { 0.001 0.001 7.65
( * Y ole K ( )( e cm3)’( )
d
— 831441 x 108 L, (7.66)
cm
= 8.31441 x 10* bar. (7.67)

This pressure is over 800 atmospheres. It is actually a little too high for good experimental
correlation with the underlying data, but we will neglect that for this exercise.

At the equilibrium state we have more Oy and less O. And we have a different number
of molecules, so we expect the pressure to be different. At equilibrium, the pressure is

P(t —o00) = lim RT(po + po,), (7.68)
- (8.31441 x 107ﬂ) (5000 &) (00004424 ™% |0 o127 ™) |
mole K cm3 cm3
(7.69)
d
— 715 x 108 222 (7.70)
cm
= 7.15 x 10* bar. (7.71)

The pressure has dropped because much of the O has recombined to form Oy. Thus there
are fewer molecules at equilibrium. The temperature and volume have remained the same.
A plot of P(t) is given in Figure [[4l
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P (dyne/cm?)
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8.2x10% ¢
8.x10%
7.8x 108
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Figure 7.4: Pressure versus time for oxygen dissociation example.

7.1.1.1.2.3 Dynamical system form Now Egs. (L30HZ.E]]) are of the standard form
for an autonomous dynamical system:

dy
- =f). (7.72)

Here y is the vector of state variables (pp, ﬁ02)T. And f is an algebraic function of the state
variables. For the isothermal system, the algebraic function is in fact a polynomial.

Equilibrium

The dynamical system is in equilibrium when
f(y)=0. (7.73)

This non-linear set of algebraic equations can be difficult to solve for large systems. For
common chemical kinetics systems, such as the one we are dealing with, there is a guarantee
of a unique equilibrium for which all state variables are physical. There are certainly other
equilibria for which at least one of the state variables is non-physical. Such equilibria can
be quite mathematically complicated.

Solving Eq. (Z.73)) for our oxygen dissociation problem gives us symbolically from Eq. (7.6+
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[Z.7)

_F13 —e —c —e¢ _Fl‘l —e —e
—2a13 exp (ﬁ) PoPoP T + 2a14 exp (ﬁ) pngMTBM = 0, (7.74)
—E3\ o . —E14) e —
a jﬁﬁl(3 ex —— 0505, — a T514 ex —— ¢ ¢ - 0 775
13 p < BT ) PoPoPm 14 p < BT Po,PM ( )

We notice that p%, cancels. This so-called third body will in fact never affect the equilib-
rium state. It will however influence the dynamics. Removing p5, and slightly rearranging

Eqs. (C74HLTH) gives

_EB —e —e _F14 —€

a1 T exp ( =T ) Poro = auT™exp ( =T ) PO, (7.76)
—Ei3\ _, _. ) —FE14\ _,

a3 exp ( =T ) PPy = anT™ exp ( =T ) 00, (7.77)

These are the same equations! So we really have two unknowns for the equilibrium state pf
and 7, but seemingly only one equation. Note that rearranging either Eq. (Z70) or (Z.77)
gives the result

L : B
popy Gl exp (&)

Po, a1317P13 exp (%)

= K(T). (7.78)

That is, for the net reaction (excluding the inert third body), Oy — O+0O, at equilibrium the
product of the concentrations of the products divided by the product of the concentrations
of the reactants is a function of temperature 7. And for constant 7', this is the so-called
equilibrium constant. This is a famous result from basic chemistry. It is actually not complete
yet, as we have not taken advantage of a connection with thermodynamics. But for now, it
will suffice.

We still have a problem: Eq. (T18) is still one equation for two unknowns. We solve
this be recalling we have not yet taken advantage of our algebraic constraint of element
conservation, Eq. (Z.28). Let us use the equation to eliminate 7, in favor of pg:

~

o L~ N =
Po: = 5 <Po - Po) + Po,- (7.79)

So Eq. (Z76) reduces to

, —Ei3\ ., -E L/~ .\ =
algTﬁm exp ( 13) o8 = a14T514 exp <—14) (5 (po — pO) + p02> . (7.80)

RT RT

g

—75e
_po2

Equation ([Z.80) is one algebraic equation in one unknown. Its solution gives the equilibrium
value pg. It is a quadratic equation for pg,. Of its two roots, one will be physical. We note
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Figure 7.5: Equilibria for oxygen dissociation example.

that the equilibrium state will be a function of the initial conditions. Mathematically this
is because our system is really best posed as a system of differential-algebraic equations.
Systems which are purely differential equations will have equilibria which are independent
of their initial conditions. Most of the literature of mathematical physics focuses on such
systems of those. One of the foundational complications of chemical dynamics is the the
equilibria is a function of the initial conditions, and this renders many common mathematical
notions from traditional dynamic system theory to be invalid Fortunately, after one accounts
for the linear constraints of element conservation, one can return to classical notions from
traditional dynamic systems theory.

Consider the dynamics of Eq. (T24)) for the evolution of 5. Equilibrating the right hand
side of this equation, gives Eq. (Z74)). Eliminating p,, and then py, in Eq. (Z74) then
substituting in numerical parameters gives the cubic algebraic equation

33948.3 — (1.78439 x 10")(5,)* — (5.8 x 10")(pp)? = f(Po) = 0. (7.81)

This equation is cubic because we did not remove the effect of p,,. This will not affect
the equilibrium, but will affect the dynamics. We can get an idea of where the roots are
by plotting f(p,) as seen in Figure [[.Hl Zero crossings of f(p,) in Figure represent
equilibria of the system, 75, f(p5) = 0. The cubic equation has three roots

l
o = —0.003 %, non-physical, (7.82)
l
P, = —0.000518044 Z°Z  non-physical, (7.83)
cm
l
o = 0.000442414 22 physical. (7.84)
cm

Note the physical root found by our algebraic analysis is identical to that which was identified
by our numerical integration of the ordinary differential equations of reaction kinetics.

Stability of equilibria
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We can get a simple estimate of the stability of the equilibria by considering the slope of
f near f = 0. Our dynamic system is of the form

dpo .-
ar f(Po)- (7.85)
e Near the first non-physical root at p, = —0.003, a positive perturbation from equi-

librium induces f < 0, which induces dp,/dt < 0, so Py returns to its equilibrium.
Similarly, a negative perturbation from equilibrium induces dp,/dt > 0, so the system
returns to equilibrium. This non-physical equilibrium point is stable. Note stability
does not imply physicality!

e Perform the same exercise for the non-physical root at pp = —0.000518944. We find
this root is unstable.

e Perform the same exercise for the physical root at p5 = 0.000442414. We find this
root is stable.

In general if f crosses zero with a positive slope, the equilibrium is unstable. Otherwise, it
is stable.

Consider a formal Taylor series expansion of Eq. (7.85]) in the neighborhood of an equi-
librium point 73:

d — —e —e df ey ey
7 (Po —Po) = f(P5) + . (Po—7P0) + - (7.86)
t = YPoleo=p;

We find df /dp,, by differentiating Eq. (Z81]) to get

d
% = —(3.56877 x 10"")p, — (1.74 x 10')p5,. (7.87)
O

We evaluate df /dp, near the physical equilibrium point at p, = 0.0004442414 to get

df

T = —(3.56877 x 10')(0.0004442414) — (1.74 x 10")(0.0004442414)?,
Po

1
= —1.91945 x 10® —. (7.88)
S

Thus the Taylor series expansion of Eq. (T.24)) in the neighborhood of the physical equi-
librium gives the local kinetics to be driven by

d
7 (Po — 0.000442414) = —(1.91945 x 10%) (o — 0.0004442414) +- ... (7.89)

So in the neighborhood of the physical equilibrium we have

Po = 0.0004442414 + A exp (—1.91945 x 10%¢) . (7.90)
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Here A is an arbitrary constant of integration. The local time constant which governs the
times scales of local evolution is 7 where

1 —9

This nano-second time scale is very fast. It can be shown to be correlated with the mean
time between collisions of molecules.
7.1.1.1.3 Effect of temperature Let us perform four case studies to see the effect of

T on the system’s equilibria and it dynamics near equilibrium.

e T'=3000 K. Here we have significantly reduced the temperature, but it is still higher
than typically found in ordinary combustion engineering environments. Here we find

l
75 = 8.9371x107° ”;:136, (7.92)
7 = 1.92059 x 1077 s. (7.93)

The equilibrium concentration of O dropped by two orders of magnitude relative to
T = 5000 K, and the time scale of the dynamics near equilibrium slowed by two orders
of magnitude.

e T'=1000 K. Here we reduce the temperature more. This temperature is common in
combustion engineering environments. We find

I
55 = 2.0356 x 10714 mﬂ‘fbf, (7.94)

T = 282331 x 10" s. (7.95)

The O concentration at equilibrium is greatly diminished to the point of being difficult
to detect by standard measurement techniques. And the time scale of combustion has
significantly slowed.

e T'= 300 K. This is obviously near room temperature. We find

4 mole

7 1.14199 x 10~* ,
Po cm3

T = 1.50977 x 103 s. (7.97)

The O concentration is effectively zero at room temperature, and the relaxation time
is effectively infinite. As the oldest star in our galaxy has an age of 4.4 x 10'7 s, we see
that at this temperature, our mathematical model cannot be experimentally validated,
so it loses its meaning. At such a low temperature, the theory becomes qualitatively
correct, but not quantitatively predictive.
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e 7'= 10000 K. Such high temperature could be achieved in an atmospheric re-entry

environment.
!
75 = 2.74807 x 1073 72;; , (7.98)
7 = 169119 x 10719 s. (7.99)

At this high temperature, O become preferred over Oy, and the time scales of reaction
become extremely small, under a nanosecond.

7.1.1.2 Single reversible reaction

The two irreversible reactions studied in the previous section are of a class that is common
in combustion modeling. However, the model suffers a defect in that its link to classical
equilibrium thermodynamics is missing. A better way to model essentially the same physics
and guarantee consistency with classical equilibrium thermodynamics is to model the process
as a single reversible reaction, with a suitably modified reaction rate term.

7.1.1.2.1 Mathematical model
7.1.1.2.1.1 Kinetics For the reversible O — O, reaction, let us only consider reaction
13 from Table for which
13:00+M=0+0+ M. (7.100)

For this system, we have N = 2 molecular species in L = 1 elements reacting in J = 1
reaction. Here

mole cal

-1
a3 = 1.85 x 10" < ) (K)™%°  Bi3=05 E3=95560 (7.101)

cm? mole

Units of cal are common in chemistry, but we need to convert to erg, which is achieved via

— [ 4.186 J 107
B = (95560 -~ I = 400014 x 102 L (7.102)
mole cal J mole
For this reversible reaction, we slightly modify the kinetics equations to

dpo t ~-Ei\ [ _ I __ _
<O = Qa3 = — 7.103
7 a3 exp ( T ; Po,Pm Kors PoPoPur |> ( )

—r13

dpo, —Eis\ [~ _ I _ _ _
= —apT™ = . : 7.104
o a3 exXp T PO, Par Koxs PoPoPm ( )

- -
v~

=k13(T)

- -
g

=713
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Here we have used equivalent definitions for ky3(7) and ry3, so that Eqgs. (ZI03HZ.I04) can
be written compactly as

i5
% — O, (7.105)
dp
d?% = —rg. (7.106)
In matrix form, we can simplify to
d (7po 2
el — . 1
it (7e) = () (0
=V

Here the N x J or 2 x 1 matrix v is

y— (_21) . (7.108)

Performing row operations, the matrix form reduces to

£ ) -

G g) % (ﬁp;)) B ((2)) (r13)- (7.110)

So here the N x N or 2 x 2 matrix L~! is

or

(10
L = (1 Nk (7.111)
The N x N or 2 x 2 permutation matrix P is the identity matrix. And the N x J or 2 x 1
upper triangular matrix U is
U-— (2) . (7.112)
0
Note that v = L - U or equivalently L=t - v = U:
10 2 2
(1 2) . (_1) . (O) | (7.113)
—_—— —— =~
=L-1 =V -U

Once again the stoichiometric matrix ¢ is
»=(1 2). (7.114)
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And we see that ¢ - v = 0 is satisfied:

(1 2)- (_21) — (0). (7.115)

As for the irreversible reactions, the reversible reaction rates are constructed to conserve
O atoms. We have

d _
Thus, we once again find
Po + 2po, = Do + 2%02 = constant. (7.117)
As before, we can say
— = 1 _
(_pO) — (2/)0) 4 (_;) (&) - (7.118)
Po, Po, 3/ S~
\,__/ \C\_/ N’ _E
=p 5 =D =

This gives the dependent variables in terms of a smaller number of transformed dependent
variables in a way which satisfies the linear constraints. In vector form, the equation becomes

p=p+D-E (7.119)

Once again ¢ - D = 0.

7.1.1.2.1.2 Thermodynamics Equations (Z.T03H7.104) are supplemented by an ex-
pression for the thermodynamics-based equilibrium constant K. ;3 which is:

K13 = Fo exp (ﬂ) . (7.120)

RT RT
Here P, = 1.01326 x 10° dyne/cm? = 1 atm is the reference pressure. The net change of
Gibbs free energy at the reference pressure for reaction 13, AGY; is defined as

AGTs =295 — 3o, (7.121)

We further recall that the Gibbs free energy for species ¢ at the reference pressure is defined
in terms of the enthalpy and entropy as

9 =h; = Ts;. (7.122)
It is common to find A, and 3¢ in thermodynamic tables tabulated as functions of T.
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We further note that both Egs. (Z103)) and (Z.104)) are in equilibrium when

—e —e 1 —e —e —¢€
PoPa = o —PoPoPu- (7.123)

We rearrange Eq. (T.123)) to find the familiar

o _ Ilproducts
13 = — = :
258 [[[reactants]

(7.124)

If K.13 > 1, the products are preferred. If K13 < 1, the reactants are preferred.

Now, K.13 is a function of T only, so it is known. But Eq. (T.124) once again is one
equation in two unknowns. We can use the element conservation constraint, Eq. (T.I17) to
reduce to one equation and one unknown, valid at equilibrium:

PoPo
= 1/= —e
Po, + 3(Po — P0)
Using the element constraint, Eq. (C.I17), we can recast the dynamics of our system by
modifying Eq. (.I03) into one equation in one unknown:

dp, -FE
Po — 2a13T513exp< 13)

(7.125)

Kc,13 =

dt RT
=~ 1 = _ = 1 = _ _ 1 _ = 1 =~ _ _
x| (Po, + 5(/)0 — o)) (Po, + 5(/)0 —Po) +Po) ~ T, PoPo (Po, + §(po —Po) +70) |
o, e P

7.1.1.2.2 Example calculation Let us consider the same example as the previous sec-
tion with 7" = 5000 K. We need numbers for all of the parameters of Eq. ({120]). For O,
we find at T'= 5000 K that

70 = 3.48382 x 1012 Y 7127
o % mole’ ( )
_ erg
° = 2204 10° . 12
3 0458 x 107 — (7.128)
So
7 — (3.48382 1l2ﬂ>— K<2.24 19ﬂ)
7 (3 8382 x 10" —1) — (5000 K) (2.20458 x 10° — 2},
= —7.53008 x 102 I (7.129)
mole
For O,, we find at T'= 5000 K that
7S = 1.80749 x 1012 29 7.130
02 x mole’ ( )
o o €rg
S, = 305406 x 107 — L. (7.131)
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So
70 = (1.80749 x 10'2 ﬂ) — (5000 K (3.05406 10° ﬂ)
90, ( % mole ( ) 8 mole K
= 134628 x 1088 7T (7.132)

mole’

Thus, by Eq. (I21), we have

erg
mole

AGS, = 2(—7.53908 x 10'?) — (—1.34628 x 10™) = —1.61536 x 10'? (7.133)

Thus, by Eq. (Z120) we get for our system

1.01326 x 10° 42
(8.31441 x 107 —4) (5000 K)

mole K

—1.61536 x 1012 <L T
xexp [ — , :
P (831441 x 107 —Z2_) (5000 K)

mole

Kc,l?)

= 1.187 x 107* (7.135)

cm3

Substitution of all numerical parameters into Eq. (ZI126) and expansion yields the fol-
lowing

.
% = 3899.47 — (2.23342 x 10'%)p5, — (7.3003 x 10"*)p%, = f(Po), Po(0) = 0.001,(7.136)

A plot of the time-dependent behavior of 5, and py, from solution of Eq. (Z.136) is given
in Figure [[.L6l The behavior is similar to the predictions given by the pair of irreversible
reactions in Fig.[[.Il Here direct calculation of the equilibrium from time integration reveals

mole
Po = 0.000393328 7.137
Po cm3 ( )
Using Eq. (T.II7) we find this corresponds to
. mole
Po, = 0.00130334 - (7.138)

We note the system begins significant reaction for t ~ 1079 s and is equilibrated for ¢ ~
1077 s
The equilibrium is verified by solving the algebraic equation

f(Po) = 3899.47 — (2.23342 x 10'%)5 7.3003 x 10'%)72, = 0. 7.139
O O
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Figure 7.6: Plot of py(t) and pp, (t) for oxygen dissociation with reversible reaction.

This yields three roots:

mole

o = —0.003 ——, non-physical, 7.140
o 3
cm
l
75 = —0.000452678 % non-physical, (7.141)
!
o = 0000393328 =~ physical, (7.142)
cm
(7.143)

is given in Figure [7.6
Linearizing Eq. (Z.I36]) in the neighborhood of the physical equilibrium yields the equa-
tion
d

7 (Po — 0.000393328) = —(2.09575 x 107) (po — 0.000393328) + ... (7.144)

This has solution
Po = 0.000393328 + A exp (—2.09575 x 107t) . (7.145)

Again, A is an arbitrary constant. Obviously the equilibrium is stable. Moreover the time
constant of relaxation to equilibrium is
1

= =477 1078 s. 14
T = S o0EE 107 77156 x 1078 s (7.146)
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Figure 7.7: Plot of f(po) versus p for oxygen dissociation with reversible reaction.

This is consistent with the time scale to equilibrium which comes from integrating the full
equation.

7.1.2 Zel’dovich mechanism of NO production
Let us consider next a more complicated reaction system: that of NO production known

as the Zel’dovichd mechanism. This is an important model for the production of a major
pollutant from combustion processes. It is most important for high temperature applications.

7.1.2.1 Mathematical model

The model has several versions. One is

1: N+NO = N,+O0, (7.147)
2: N+0O, = NO+O. (7.148)

similar to our results for Oy dissociation, Ny and Oy are preferred at low temperature. As
the temperature rises N and O begin to appear, and it is possible when they are mixed for
NO to appear as a product.

6Yakov Borisovich Zel’dovich, 1915-1987, prolific Soviet physicist and father of thermonuclear weapons.
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7.1.2.1.1 Standard model form Here we have the reaction of N = 5 molecular species
with

PNo
PN
n, |- (7.149)
Po
Po,

A~
I

We have L = 2 with NV and O as the 2 elements. The stoichiometric matrix ¢ of dimension

LxN=2x5is
112 00
o-(1 1200 a0

The first row of ¢ is for the NV atom; the second row is for the O atom.
And we have J = 2 reactions. The reaction vector of length J = 2 is

1

a TP exp (=221 (BuBre — D
r 1 T PNPNO — K, PN:PO
Ir —= r = B Tag - 1 — _ 3 (7151)
2 ayT™ exp | ==~ ) (PnPo, = ®.3PNOPO
k1 (PnPro — 7y PraPO (7152)
ka2 (PnPo, — ﬁﬁ]\/oﬁo
Here, we have
T,
ki = aT™ exp (— Tl) , (7.153)
T,
ky = axT™exp (— T2) . (7.154)
In matrix form, the model can be written as
PNo -1 1
D -1 -1
d | P r
il IO I B (rl) : (7.155)
Po L1 ’
Po, U
=V

Here the matrix v has dimension N x J which is 5 x 2. The model is of our general form

dp
G YT (7.156)
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Note that our stoichiometric constraint on element conservation for each reaction ¢-v = 0

holds here:
-1 1
-1 -1
1 1 2 00 0 0
RS RN s ) -
1 1
0 -1

We get 4 zeros because there are 2 reactions each with 2 element constraints.

7.1.2.1.2 Reduced form Here we describe non-traditional, but useful reductions, using
standard techniques from linear algebra to bring the model equations into a reduced form in
which all of the linear constraints have been explicitly removed.

Let us perform a series of row operations to find all of the linear dependencies. Our aim
is to convert the v matrix into an upper triangular form. The lower left corner of v already
has a zero, so there is no need to worry about it. Let us add the first and fourth equations
to eliminate the 1 in the 4,1 slot. This gives

PNO -1 1
D -1 -1
d| v r
- P, =11 0 (ri) : (7.158)
Pno t+ Po 0 2
Po, 0 -1
Next, add the first and third equations to get
PNO -1 1
D -1 -1
d|_ Pv_ r
7 Pno+Pn, | = O 1 (r;) ) (7.159)
Pno + Po 0 2
Po, 0 -1
Now multiply the first equation by —1 and add it to the second to get
PNO -1 1
d | 7Pnot PN 0 -2 r
E ﬁNO —+ ﬁNg - 0 1 <T2) . (7160)
Pno T Po 0 2
Po, 0 —1
Next multiply the fifth equation by —2 and add it to the second to get
PNO -1 1
d —Pno + PN 0 -2 r
E ﬁNo + pNQ == O 1 <T2) . (7161)
Pno T Po 0 2
—Pno T Pn — 2po, 0 0
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Next add the second and fourth equations to get

PNO -1 1
d —Pno t PN 0 -2 r
7 PO +_pN2 =10 1 (7“2) . (7.162)
Pn + Po 0 0
—Pno + PN — 2P0, 0 0

Next multiply the third equation by 2 and add it to the second to get

PNO -1 1
d —PNo T PN 0 =2 r
;| Pvo TPN T 20N, | =0 0 (7“2) (7.163)
PNt Po 0 0
—Pno T Pn — 2Po, 0 0

Rewritten, this becomes

1 000 O Pno -1 1
1100 0,7y 0 -2|
L 120 0 f—|py|=[0 0 (7}). (7.164)
0 101 0 Do 0 0 2
-1100 -2 Po, 0 0
~ - ~—_———
=L-! =U

A way to think of this type of row echelon form is that it defines two free variables, those
associated with the non-zero pivots of U: py, and py. The remain three variables py,, po
and pp, are bound variables which can be expressed in terms of the free variables.

The last three of the ordinary differential equations are homogeneous and can be inte-
grated to form

Pno + Py + 20N, = Ch, (7.165)
Py +Po = (o (7.166)
—Pno +Pn — 200, = Cs. (7.167)

The constants C, Cy and C3 are determined from the initial conditions on all five state
variables. In matrix form, we can say

PNO
1 120 0 Dy C,
0 101 0 v, | =C2 |- (7.168)
-1 100 -2 Po Cs

Po,
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Considering the free variables, pyo and py, to be known, we move them to the right side
to get

20 0 PN, Ci —Pno — PN
01 0[5 ]|=| Co-7v | (7.169)
00 =2/ \Ppo, Cs+Pno — Py

Solving, for the bound variables, we find

PN, %Cl - %ﬁNo - %ﬁN
7o | = Co— Py . (7.170)
Po, —3Cs = 3Pn0 + 5PN
We can rewrite this as
ﬁNz %Cl _% _% 1
ol=1 C |+ 0 -1 (pNO) : (7.171)
Po, —3Cs -3 3 N

We can get a more elegant form by defining {no = pyo and {n = py. Thus we can say our
state variables have the form

Pno 0 10

P 0 0 1| e

P, | = 3G |+ - -1 (gvo) (7.172)
Po Cy 0 -1

Po, =30/ \~3 3

By translating via Eyo = Exo + Pyo and Exy = Ex + py and choosing the constants C;, Cs
and C5 appropriately, we can arrive at

PNO e 1 0
PN PN O1 11 ENO
Py | = | Pve | T | 72 —2 (E ) ' (7.173)
ol || |0 -2
- X 11 -
Po, POy ) 2 25
-D . =D
=p
This takes the form of
p=p+D-E (7.174)

Here the matrix D is of dimension N x R, which here is 5 x 2. It spans the same column
space as does the N x J matrix v which is of rank R. Here in fact R = J = 2, so D has the
same dimension as v. In general it will not. If c¢; and cy are the column vectors of D, we
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see that —c; — ¢ forms the first column vector of v and ¢; — ¢y forms the second column
vector of v. Note that ¢ - D = 0:

1 0
0 1
11200 00
¢.D:<1 00 1 2). -1 1 :(O O)' (7.175)
0 -1
1 1
2 2

Equations (Z.I65H7.T67) can also be linearly combined in a way which has strong phys-
ical relevance. We rewrite the system as three equations in which the first is identical to
Eq. (TI65); the second is the difference of Eqs. (7.166) and (7.I67); and the third is half of

Eq. (CI68) minus half of Eq. (7I67) plus Eq. (Z.I66):

Pno TPy + 20y, = Ch, (7.176)
Po +Pno + 200, = Co—0Cs, (7.177)
_ _ _ _ _ 1
Pno + PN+ PNy, tP0 tPo, = §(C1 —C3) + Cs. (7.178)

Equation (ZI70) insists that the number of nitrogen elements be constant; Eq. (T.I77)
demands the number of oxygen elements be constant; and Eq. (CI78) requires the number
of moles of molecular species be constant. For general reactions, including the earlier studied
oxygen dissociation problem, the number of moles of molecular species will not be constant.
Here because each reaction considered has two molecules reacting to form two molecules,
we are guaranteed the number of moles will be constant. Hence, we get an additional
linear constraint beyond the two for element conservation. Note that since our reaction is
isothermal, isochoric and mole-preserving, it will also be isobaric.

7.1.2.1.3 Example calculation Let us consider an isothermal reaction at
T = 6000 K. (7.179)

The high temperature is useful in generating results which are easily visualized. It insures
that there will be significant concentrations of all molecular species. Let us also take as an
initial condition

mole

N, = Po = Do, = 1 x 1076 (7.180)

=l

PNO = PN = .
cm?

For this temperature and concentrations, the pressure, which will remain constant through
the reaction, is P = 2.4942 x 10° dyne/cm?. This is a little greater than atmospheric.
Kinetic data for this reaction is adopted from Baulch, et alll The data for reaction 1 is

le\ "1
ap = 2.107 x 103 (mif) . Bi=0, Tu=0K. (7.181)
cm S

"Baulch, et al., 2005, “Evaluated Kinetic Data for Combustion Modeling: Supplement IL” Journal of
Physical and Chemical Reference Data, 34(3): 757-1397.
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For reaction 2, we have

mole\ ' 1
as = 5.8394 x 10° ( g ) oy =101 Tp=3120K  (T182)

Here the so-called activation temperature 7y ; for reaction j is really the activation energy
scaled by the universal gas constant:

E.
T, = fj (7.183)
Substituting numbers we obtain for the reaction rates
k (2.107 x 10'%)(6000)° =0 _ g 1075 10 (M) 1 (7.184)
= (2. xp | —— | = 2. - :
: P\ 6000 emt ) s

Fy = (5.8394 x 109)(6000)"" exp | o120} _ 997931 x 101 (7O B
2 =W P\ 6000 ) —~ cmd ) s

(7.185)

We will also need thermodynamic data. The data here will be taken from the Chemkin
database Thermodynamic data for common materials is also found in most thermodynamic
texts. For our system at 6000 K, we find

%o = —1.58757 x 1013 L 7.186
gno X mole’ ( )
7% = —7.04286 x 10'2 Y 7.187
gN X mole? ( )
7% = —1.55206 x 10** 27 7.188
gN2 X mole? ( )
70 = —9.77148 x 1012 27 7.189
7. = —1.65653 x 1088 2L 7.190
905 mole ( )
Thus for each reaction, we find AGY:

AGY = gy, 96— 9N — INo> (7.191)
= —1.55206 x 10" — 9.77148 x 10" + 7.04286 x 10" + 1.58757 x 10'3(7.192)
= 237351 x 102 LI (7.193)

mole
AGS = Gyo+390— 9N — 90, (7.194)
= —1.58757 x 10" — 9.77148 x 10" + 7.04286 x 10" + 1.65653 x 10'3(7.195)
= 203897 x 1012 L (7.196)

mole’

8R. J. Kee, et al., 2000, “The Chemkin Thermodynamic Data Base,” part of the Chemkin Collection
Release 3.6, Reaction Design, San Diego, CA.
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At 6000 K, we find the equilibrium constants for the J = 2 reactions are

—AGS
K.1 = ——1), 7.197
= e () (7107
2.37351 x 1012
_ 7.108
P ((8.314 X 107)(6000)) ’ (7.198)
= 116.52, (7.199)
~AGS
K., = ——2 ) 7.200
2 = o (22) (7200
2.03897 x 1012
- 7.201
P <(8.314 > 107)(6000)) ’ (7.:201)
—  50.5861. (7.202)

Again, omitting details, we find the two differential equations governing the evolution of
the free variables are

.
pdfzo = 0.72342.22 x 1075y + 1.15 x 1053 — 9.44 x 10°50 — 3.20 X 10855 5n0>
(7.203)
is
% = 0.723—2.33 x 1075y — 1.13 x 1053 + 5.82 x 10550 — 1.00 x 1035, Byo-
(7.204)

Solving numerically, we obtain a solution shown in Fig.[Z.8 The numerics show a relaxation
to final concentrations of

lim pyo = 7336 x 1077 Zl;lf , (7.205)
limpy = 3.708 x 10°° T;lf . (7.206)
Equations (T.20347.204)) are of the form
dpno -
dt fno(Pnos P ), (7.207)
dg;;v = fn(Pno:Pn)- (7.208)
At equilibrium, we must have
fno(Pno:Pn) = 0, (7.209)
fn(Pno.Pn) = 0. (7.210)
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bNr f_)NO (mole/cm3)
1x1072 ¢
5%x1076

1x107©
5x1077 F NO

1x1077 F
5%x10°8 F

| | | | t (S)
1010 1079 108 1077 1076 105

Figure 7.8: NO and N concentrations versus time for 7" = 6000 K, P = 2.4942 x
10% dyne/cm? Zel’dovich mechanism.

We find three finite roots to this problem:

l
1 ¢ (o Pn) = (—1.605 x 1075, —3.060 x 10~%) Z:Lf, non-physical, (7.211)
_ _g _g, mole .
2 (Pno,Pn) = (—5.173 x 107°, —2.048 x 107°) o non-physical, (7.212)
_ 7 _g, mole )
3 (Pno,Pn) = (7.336 x 1077,3.708 x 107°) g physical. (7.213)

Obviously, because of negative concentrations, roots 1 and 2 are non-physical. Root 3
however is physical; moreover, it agrees with the equilibrium we found by direct numerical
integration of the full non-linear equations.

We can use local linear analysis in the neighborhood of each equilibria to rigorously
ascertain the stability of each root. Taylor series expansion of Eqs. (Z207H7.208)) in the
neighborhood of an equilibrium point yields

d _ . ofvo| — . . Ofo|
at (Pno PNO) = flij|e + Tno . (Pno PNO) + Tpn . (Pn —Pn) + - -,
(7.214)
d, _ _ ofn | _ _ ofn| _  _
— —2%) = + — — %) + =— —2%) +.... (7.215
dt (PN pN) fivo‘e Tro . (PNO pNO) Tpn . (ﬂN PN) ( )
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Evaluation of Eqs. (2I4H7.2T5]) near the physical root, root 3, yields the system
d (pNO — 7.336 x 10—7) _ (—2.129 x 10% —4.155 x 105) (pNO — 7.336 x 10—7)

dt \ Py — 3.708 x 107% 2.111 x 10°  —3.144 x 107} \ 7y — 3.708 x 10~
:J:v%
(7.216)
This is of the form
d . _, of . .
E(p—p):% (p=p)=J-(p—p). (7.217)

It is the eigenvalues of the Jacobianfl matrix J that give the time scales of evolution of the
concentrations as well as determine the stability of the local equilibrium point. Recall that
we can usually decompose square matrices via the diagonalization

J=S-A-S°%L (7.218)

Here, S is the matrix whose columns are composed of the right eigenvectors of J, and A is
the diagonal matrix whose diagonal is populated by the eigenvalues of J. For some matrices
(typically not those encountered after our removal of linear dependencies), diagonalization
is not possible, and one must resort to the so-called near-diagonal Jordan form. This will
not be relevant to our discussion, but could be easily handled if necessary. We also recall the
eigenvector matrix and eigenvalue matrix are defined by the standard eigenvalue problem

J-S=S-A. (7.219)

We also recall that the components A\ of A are found by solving the characteristic polynomial
which arises from the equation

det (J — AI) = 0, (7.220)
where I is the identity matrix. Defining z such that
S.z=p- 7, (7.221)
and using the decomposition Eq. (T.2I8), Eq. (Z2I7) can be rewritten to form
d L
E(S z) = S- AJ- S™-(S-z), (7.222)
p-p°
s. % _ g A, (7.223)
dt ’ '
S—l-s-% = S'.S-A-z (7.224)
dz
— = Az 7.225
o z (7.225)

after (Carl Gustav Jacob Jacobi, 1804-1851, German mathematician.
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Eq. (T.225) reduces to the diagonal form

dz
— =A-z .22
7 z (7.226)

This has solution for each component of z of

21 = Cl exp()\lt), (7227)
29 = 02 eXp()\gt), (7228)
(7.229)

Here, our matrix J, see Eq. (Z.216), has two real, negative eigenvalues in the neighborhood
of the physical root 3:

A = —3.143 x 107 -, (7.230)

Dl ®»]|

Ay = —2.132 x 10° (7.231)

Thus we can conclude that the physical equilibrium is linearly stable. The local time con-
stants near equilibrium are given by the reciprocal of the magnitude of the eigenvalues.
These are

o= 1/|\] =3181x107% s, (7.232)
Ty = 1/|Xo| =4.691 x 1077 s. (7.233)

Evolution on these two time scales is predicted in Fig.[[.8 This in fact a multiscale problem.
One of the major difficulties in the numerical simulation of combustion problems comes in
the effort to capture the effects at all relevant scales. The problem is made more difficult as
the breadth of the scales expands. In this problem, the breadth of scales is not particularly
challenging. Near equilibrium the ratio of the slowest to the fastest time scale, the stiffness
ratio k, is

T 4691 %1077 s

Bk SR S (7.234)

Many combustion problems can have stiffness ratios over 10°. This is more prevalent at
lower temperatures.

We can do a similar linearization near the initial state, find the local eigenvalues, and
the the local time scales. At the initial state here, we find those local time scales are

7 = 2403 x107% s, (7.235)
T o= 2123 x107%s. (7.236)

So initially the stiffness, k£ = (2.403 x 1078 s)/(2.123 x 107® s) = 1.13 is much less, but the
time scale itself is small. It is seen from Fig. [.8 that this initial time scale of 107% s well
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predicts where significant evolution of species concentrations commences. Fort < 1078 s, the
model predicts essentially no activity. This can be correlated with the mean time between
molecular collisions-the theory on which estimates of the collision frequency factors a; are
obtained.

We briefly consider the non-physical roots, 1 and 2. A similar eigenvalue analysis of root
1 reveals that the eigenvalues of its local Jacobian matrix are

1

A o= —1.193 x 107 " (7.237)
1

Ay = 5.434 x 10° —. (7.238)
S

Thus root 1 is a saddle and is unstable.
For root 2, we find

A= 4.397 x 107 +7.997 x 10° =, (7.239)

Aoy = 4.397 x 107 —47.997 x 10° ~. (7.240)

Wk ® |

The eigenvalues are complex with a positive real part. This indicates the root is an unstable
spiral source.

A detailed phase portrait is shown in Fig. Here we see all three roots. Their local
character of sink, saddle, or spiral source is clearly displayed. We see that trajectories are
attracted to a curve labeled SIM for “Slow Invariant Manifold.” A part of the SIM is
constructed by the trajectory which originates at root 1 and travels to root 3. The other
part is constructed by connecting an equilibrium point at infinity into root 3. Details are
omitted here.

7.1.2.2 Stiffness, time scales, and numerics

One of the key challenges in computational chemistry is accurately predicting species concen-
tration evolution with time. The problem is made difficult because of the common presence
of physical phenomena which evolve on a widely disparate set of time scales. Systems which
evolve on a wide range of scales are known as stiff, recognizing a motivating example in
mass-spring-damper systems with stiff springs. Here we will examine the effect of tempera-
ture and pressure on time scales and stiffness. We shall also look simplistically how different
numerical approximation methods respond to stiffness.

7.1.2.2.1 Effect of temperature Let us see how the same Zel’dovich mechanism be-
haves at lower temperature, T = 1500 K; all other parameters, including the initial species
concentrations are the same as the previous high temperature example. The pressure how-
ever, lowers, and here is P = 6.23550 x 105 dyne/cm?, which is close to atmospheric pressure.
For this case, a plot of species concentrations versus time is given in Figure [7.10.

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

7.1. ISOTHERMAL, ISOCHORIC KINETICS 259

1

saddle

Py (Mole/cm 3)

Pno (Mole/cm3)

Figure 7.9:  NO and N phase portraits for T = 6000 K, P = 2.4942 x 10% dyne/cm?
Zel’dovich mechanism.
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F_)Nr [_)No (mole/cm3)

1076 NO
1078 ¢
10—10 L
10—12 L
N
_11 \_9 \_7 | | | | t(S)
10 10 10 10~ 0.001 0.1 10

Figure 7.10: pyo and py versus time for Zel’dovich mechanism at 7" = 1500 K, P =
6.23550 x 10° dyne/cm?.

At T = 1500 K, we notice some dramatic differences relative to the earlier studied
T = 6000 K. First, we see the reaction commences in around the same time, t ~ 1078 s. For
t ~ 1075 s, there is a temporary cessation of significant reaction. We notice a long plateau
in which species concentrations do not change over several decades of time. This is actually
a pseudo-equilibrium. Significant reaction recommences for ¢ ~ 0.1 s. Only around t ~ 1 s
does the system approach final equilibrium. We can perform an eigenvalue analysis both
at the initial state and at the equilibrium state to estimate the time scales of reaction. For
this dynamical system which is two ordinary differential equations in two unknowns, we will
always find two eigenvalues, and thus two time scales. Let us call them 7 and 7. Both
these scales will evolve with ¢.

At the initial state, we find

o= 23Tx107%s, (7.241)
™ = 425x 1077 s. (7.242)

The onset of significant reaction is consistent with the prediction given by 7, at the initial
state. Moreover, initially, the reaction is not very stiff; the stiffness ratio is k = 17.9.
At equilibrium, we find

- _ _g mole
tlgglo Pno = 4.6 x10 o (7.243)

o _14 mole
tllglo oy = 4.2x10 o (7.244)
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and

n o= 7.86x1077 s, (7.245)
™ o= 3.02x 107" s. (7.246)

The slowest time scale near equilibrium is an excellent indicator of how long the system
takes to relax to its final state. Note also that near equilibrium, the stiffness ratio is large,
Kk = To/T1 ~ 3.8 x 10°. This is known as the stiffness ratio. When it is large, the scales in
the problem are widely disparate and accurate numerical solution becomes challenging.

In summary, we find the effect of lowering temperature while leaving initial concentrations
constant

e lowers the pressure somewhat, slightly slowing down the collision time, and slightly
slowing the fastest time scales, and

e slows the slowest time scales many orders of magnitude, stiffening the system signifi-
cantly, since collisions may not induce reaction with their lower collision speed.

7.1.2.2.2 Effect of initial pressure Let us maintain the initial temperature at 17" =
1500 K, but drop the initial concentration of each species to

= = = = = _g mole
PNo = PN = PN, = Po, = Po = 10 omd (7.247)
With this decrease in number of moles, the pressure now is
d
P =6.23550 x 10° 2 (7.248)
cm

This pressure is two orders of magnitude lower than atmospheric. We solve for the species
concentration profiles and show the results of numerical prediction in Figure [[. 11l Relative to
the high pressure P = 6.2355 x 10° dyne/cm?, T = 1500 K case, we notice some similarities
and dramatic differences. The overall shape of the time-profiles of concentration variation
is similar. But, we see the reaction commences at a much later time, ¢ ~ 107% s. For
t ~ 107 s, there is a temporary cessation of significant reaction. We notice a long plateau
in which species concentrations do not change over several decades of time. This is again
actually a pseudo-equilibrium. Significant reaction recommences for ¢t ~ 10 s. Only around
t ~ 100 s does the system approach final equilibrium. We can perform an eigenvalue analysis
both at the initial state and at the equilibrium state to estimate the time scales of reaction.
At the initial state, we find

o= 237Tx107°%s, (7.249)
T o= 425x107° s. (7.250)

The onset of significant reaction is consistent with the prediction given by 7, at the initial
state. Moreover, initially, the reaction is not very stiff; the stiffness ratio is x = 17.9.
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Pn: PNO (mole/cm3)

108
NO
10—10 L
10_12 |-
10—14 L
N
10_16 L
| | | | | t(s)
1078 1076 1074 0.01 1 100

Figure 7.11:  pyo and py versus time for Zel’dovich mechanism at 7' = 1500 K, P =
6.2355 x 10% dyne/cm?.

Interestingly, by decreasing the initial pressure by a factor of 10?2, we increased the initial
time scales by a complementary factor of 10%; moreover, we did not alter the stiffness.
At equilibrium, we find

. B _4; mole
lim pyo = 4.6x 1071 g, (7.251)

o _16 mole
Jmpy = 42x10710 —, (7.252)
(7.253)

and

o= 7.86x107° s, (7.254)
™ = 3.02x 10" s. (7.255)

By decreasing the initial pressure by a factor of 102, we decreased the equilibrium concentra-
tions by a factor of 10? and increased the time scales by a factor of 102, leaving the stiffness
ratio unchanged.

In summary, we find the effect of lowering the initial concentrations significantly while
leaving temperature constant

e lowers the pressure significantly, proportionally slowing down the collision time, as well
as the fastest and slowest time scales, and

e does not affect the stiffness of the system.
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7.1.2.2.3 Stiffness and numerics The issue of how to simulate stiff systems of ordinary
differential equations, such as presented by our Zel’dovich mechanism, is challenging. Here a
brief summary of some of the issues will be presented. The interested reader should consult
the numerical literature for a full discussion. See for example the excellent text of Tserles[

We have seen throughout this section that there are two time scales at work, and they are
often disparate. The species evolution is generally characterized by an initial fast transient,
followed by a long plateau, then a final relaxation to equilibrium. We noted from the phase
plane of Fig. that the final relaxation to equilibrium (shown along the green line labeled
“SIM”) is an attracting manifold for a wide variety of initial conditions. The relaxation onto
the SIM is fast, and the motion on the SIM to equilibrium is relatively slow.

Use of common numerical techniques can often mask or obscure the actual dynamics.
Numerical methods to solve systems of ordinary differential equations can be broadly cat-
egorized as explicit or implicit. We give a brief synopsis of each class of method. We cast
each as a method to solve a system of the form

dp
— =1f(p). 7.256
P 1) (7.250)
e Explicit: The simplest of these, the forward Euler method, discretizes Eq. (7.256]) as
follows:
ﬁn—l—l B ﬁn —
no_f 2
P k() (7.257)
so that

Explicit methods are summarized as
— easy to program, since Eq. (Z.258) can be solved explicitly to predict the new
value p,_; in terms of the old values at step n.
— need to have At < Tyqges¢ in order to remain numerically stable,

— able to capture all physics and all time scales at great computational expense for
stiff problems,

— requiring much computational effort for little payoff in the SIM region of the phase
plane, and thus

— inefficient for some portions of stiff calculations.

o Implicit: The simplest of these methods, the backward Euler method, discretizes

Eq. (Z.250) as follows:

ﬁn - ﬁn —
= = E(Ba), (7.259)

0A. Tserles, 2008, A First Course in the Numerical Analysis of Differential Equations, Cambridge Uni-
versity Press, Cambridge, UK.
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so that

Implicit methods are summarized as

— more difficult to program since a non-linear set of algebraic equations, Eq. (7.260),
must be solved at every time step with no guarantee of solution,

— requiring potentially significant computational time to advance each time step,
— capable of using very large time steps and remaining numerically stable,
— suspect to missing physics that occur on small time scales 7 < At,

— in general better performers than explicit methods.

A wide variety of software tools exist to solve systems of ordinary differential equations.
Most of them use more sophisticated techniques than simple forward and backward Euler
methods. One of the most powerful techniques is the use of error control. Here the user
specifies how far in time to advance and the error that is able to be tolerated. The algorithm,
which is complicated, selects then internal time steps, for either explicit or implicit methods,
to achieve a solution within the error tolerance at the specified output time. A well known
public domain algorithm with error control is provided by 1sode.f, which can be found in
the netlib repository

Let us exercise the Zel’dovich mechanism under the conditions simulated in Fig. [.11]
T = 1500 K, P = 6.2355 x 10% dyne/cm?. Recall in this case the fastest time scale near
equilibrium is 71 = 7.86 x 107° s ~ 10™* s at the initial state, and the slowest time scale is
7 = 3.02 x 10' s at the final state. Let us solve for these conditions using d1sode.f, which
uses internal time stepping for error control, in both an explicit and implicit mode. We
specify a variety of values of At and report typical values of number of internal time steps
selected by dlsode.f, and the corresponding effective time step At.s¢ used for the problem,
for both explicit and implicit methods, as reported in Table [Z.3]

Obviously if output is requested using At > 10™* s, the early time dynamics near ¢ ~
10~* s will be missed. For physically stable systems, codes such as d1sode.f will still provide
a correct solution at the later times. For physically unstable systems, such as might occur in
turbulent flames, it is not clear that one can use large time steps and expect to have fidelity
to the underlying equations. The reason is the physical instabilities may evolve on the same
time scale as the fine scales which are overlooked by large At.

7.2 Adiabatic, isochoric kinetics

It is more practical to allow for temperature variation within a combustor. The best model
for this is adiabatic kinetics. Here we will restrict our attention to isochoric problems.

WHindmarsh, A. C., 1983,“ODEPACK, a Systematized Collection of ODE Solvers,” Scientific Com-
puting, edited by R. S. Stepleman, et al., North-Holland, Amsterdam, pp. 55-64. Source code at
http://www.netlib.org/alliant/ode/prog/lsode.f
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Explicit | Explicit | Implicit | Implicit

At (S> Ninternal Ateff (S> Ninternal Ateff (3)
102 10° 1074 10° 102
10 10° 1074 10° 10
100 10? 10~4 10° 10°
1071 10° 10~4 10° 107!
1072 102 1074 10° 1072
1073 10! 1074 10° 1073
1074 10° 1074 10° 1074
107° 10° 107° 10° 107°
1076 10° 106 10° 106

Table 7.3: Results from computing Zel’dovich NO production using implicit and explicit
methods with error control in dlsode.f.

7.2.1 Thermal explosion theory

There is a simple description known as thermal explosion theory which provides a good
explanation for how initially slow exothermic reaction induces a sudden temperature rise
accompanied by a final relaxation to equilibrium.

Let us consider a simple isomerization reaction in a closed volume

A= B. (7.261)

Let us take A and B to both be calorically perfect ideal gases with identical molecular masses
My = Mp = M and identical specific heats, ¢,4 = ¢,z = ¢,; ¢pa = ¢pp = ¢p. We can
consider A and B to be isomers of an identical molecular species. So we have N = 2 species
reacting in J = 1 reactions. The number of elements L here is irrelevant.

7.2.1.1 One-step reversible kinetics

Let us insist our reaction process be isochoric and adiabatic, and commence with only A
present. The reaction kinetics with § = 0 are

dp -E\ (_ 1_
d—z? = —aexp <ﬁ) (PA - EpB)v (7.262)
=k
dpg  _ —E\ (- 1 _
. a €xp (ﬁT) (PA chB)v (7.263)
=k

p4(0) = Pa, (7.264)
pp(0) = 0 (7.265)
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For our alternate compact linear algebra based form, we note that

~-E 1
r = aexp <ﬁ) (ﬁA — ?ﬁB> : (7.266)

()= () o

Performing the decomposition yields

620 ()

G (1)) % @2) = <_01) (r). (7.269)

Combining Eqs. (T.262H7.263)) and integrating yields

and that

Expanded, this is

d _  _
CPatpn) = 0, (7.270)
Pa+Pp = Das (7.271)
Ps = Pa—Pa- (7.272)
Thus, Eq. (Z.262) reduces to
dp -EN (. 1/, _
d—;‘ = —aexp (ﬁ) (PA K. (ﬂA - PA)) . (7.273)
Scaling, Eq. ({.273) can be rewritten as
7 (32) == (rmm) (- (-22)
BA) = —exp (—=— La_— (1-£2)). (7.274)
d(at) \p, RT,T/T,) \p, Ko Pa

7.2.1.2 First law of thermodynamics

Recall the first law of thermodynamics and neglecting potential and kinetic energy changes:

aw .
W_o_w 2
S =Q W (7.275)

Here U is the total internal energy. Because we insist the problem is adiabatic Q = 0.
Because we insist the problem is isochoric, there is no work done, so W = 0. Thus we have

dU
@Y o, 2
=0 (7.276)
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Thus, we find
U="U,. (7.277)

Recall the total internal energy for a mixture of two calorically perfect ideal gases is

U = nAﬂA —+ nBﬂB, (7278
_ (Mg, "By
_ V(VuA+ VuB), (7.279
= V (PsUa + Pgls), (7.280
_ P _ P
=V (pA (hA - _—A) + Dp (hB - _—B)) : (7.281
Pa PB
= V (pa (ha—RT) +pp (hg — RT)), (7.282
-V (pA (EP(T — T+ T 4 - ET) + 7 (ap(T —T)+ T — ET)) [(7.283
=V ((pa+75)(Cp(T = T0) = RT) + pahs, 0 + Polit, s ) (7.
= V((7a+75)((Ep = )T = 2pT,) + Pahs, 0 + Pslit, 5 ) (7:285
= V((Pa+7s)(Er — BT = (@ ~ R+ R)T,) + pally, 4 + Pshy, ), (7286
= V((7a+75)@T = (& + RT.) + Balig, 4+ Pohr, ) (7:287
=V ((ﬁA +pg)e(T —T,) + ﬁA(E;O,A — RT,) + ﬁB(E;O,B - ETo)) , (7.288
= V((Pa+7p)0(T = T,) + PaT%, 4 + P57, ) - (7.289
Now at the initial state, we have T'=T,, so
Up =V (ﬁAﬂ%o,A +%BE%O,B) : (7.290)

So, we can say our caloric equation of state is
uv-uU, =V ((ﬁA +Pg)e(T —=T,) + (Pa — /p\A)ﬂ%o,A + (Pp — 53)5%0,3) , (7.291)
= V(Ga+ 7800 = L) + (s — VT, + (P — D)5 ) - (7:292)
As an aside, on a molar basis, we scale Eq. (T.292) to get

U — Ty =C(T = T15) + (ya — Yao)u7, a + (Y5 — YBo)UT, - (7.293)

And because we have assumed the molecular masses are the same, M4 = Mp, the mole
fractions are the mass fractions, and we can write on a mass basis

U — Uy = (T —T,) + (ca — cao)up, 4 + (cB — CBo)UT, p- (7.294)
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Returning to Eq. ({292)), our energy conservation relation, Eq. (.277)), becomes

0 = V((a+58)0(T = L) + (54— 5V T 0 + (P — Pe)T5, ) - (7:205)
Now we solve for T'
0 = (py —|—§B)EU(T —To)+ (g — ,%A)ﬂ%o,A + (P — %B)H%O,Bv (7.296)
0 = o(T—T,)+ 4" Pagg 08" Poge (7.297)
pA + pB Pa T PB
7= 74P Pa— EA Uz, A n BB ﬁB _%O,B. (7.298)

patpp G Pa+Dp

o~

Now we impose our assumption that ﬁB =0, giving also pg =p4 — P4,

g Py g
T - T +,0A Pa éo,A_g_B To,B (7.299)
Pa G Pa
= = ﬂo _ﬂo
_ To+pA: PallTod ~ UT, 5. (7.300)
Pa ©

P 70 70 — — . .
In summary, realizing that hy, 4 — hy p =0} 4 — s g we can write T as a function of
Pa

0

T = T,+ M(E"TO,A — T, ). (7.301)
PACy

We see then that if EOTm q > EOTm g, that as p, decreases from its initial value of 7 4 that T
will increase. We can scale Eq. (Z.301) to form

he 4 — e
(T)_1+( pA) oA TToB ) (7.302)
To PA CvTo

We also note that our caloric state equation, Eq. (C293) can, for y4, = 1, yg, = 0 as

u—"1, = ¢(T—1T,)+ (ya— 1)Uz, 4 +yBUT, 5 (7.303)
= (T —T,) + ((1 —yg) — V)uz, o + yBUT, b, (7.304)
= G,(T — To) — B(“TO,A U7z, p)- (7.305)

Similarly, on a mass basis, we can say,

u—u, = (T —T,)—cpup, 4 —ug, ) (7.306)
For this problem, we also have
—AG°
K.=e — : 7.307
9 (Fr) (7307
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with
AG’ = g —J%, (7.308)
= Ry —T3% — (hy—T39), (7.309)
= (hp = hy) = T(s5 —52), (7.310)
= (hTo,B - hTo,A) - T(g%o,B - g%o,A)' (7-311)
So

RT

7.0 7.0 -0 -0
hTO,A - hTO,B - T(STO,A - STO,B)
K. = exp ,

RT [

¢, 1y T,

I

- 7,° 7,° =0 =0
eoTy ((hpoa—hr, 5 —T(5%, 4 — 3%, 5)
= exp

11 <E%O,A T T (55435 5)

(7.313)

(7.314)

Here we have used the definition of the ratio of specific heats, k = ¢p/¢, along with R =
Cp — Cy. So we can solve Eq. ([273) by first using Eq. ({.314)) to eliminate K. and then

Eq. (7.301) to eliminate T'.

7.2.1.3 Dimensionless form

Let us try writing dimensionless variables so that our system can be written in a compact

dimensionless form. First lets take dimensionless time 7 to be

T = at.

Let us take dimensionless species concentration to be z with

ey
Pa
Let us take dimensionless temperature to be 6 with
T
0=—.
T,

Let us take dimensionless heat release to be ¢ with

-0 -0
L Sl

E7JCZjO
Let us take dimensionless activation energy to be © with
E

SR .
T,

=

(7.315)

(7.316)

(7.317)

(7.318)

(7.319)
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And let us take the dimensionless entropy change to be o with

(37,4 — 37, 8)

o= L (7.320)
So our equations become
dz ) 1
I = T exp (—g) (z - E(l - z)) , (7.321)
0 = 1+ (1—2)gq, (7.322)
1 1

It is more common to consider the products. Let us define for general problems

A=_1FB ___PB_ (7.324)
Pat+ P Ps+Pg

Thus A is the mass fraction of product. For our problem, ﬁB =0so

—~

A=LB _ LA P4 (7.325)
PA Pa
Thus,
A=1- 2. (7.326)

We can think of A as a reaction progress variable as well. When A = 0, we have 7 = 0, and
the reaction has not begun. Thus, we get

g% _ wp(—%)<ufnw—jéx), (7.327)
6 — 1+4q\ (7.328)
K. = oxp (ﬁ% (g — 90)) | (7.329)

7.2.1.4 Example calculation

Let us choose some values for the dimensionless parameters:

7
©=20, 0=0, ¢=10, k== (7.330)

With these choices, our kinetics equations reduce to

% = exp (1 ;21?») ((1 — ) — Aexp (1 ;21?»)) . A0)=0. (7.331)
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Figure 7.12: Dimensionless plot of reaction product concentration A\ versus time 7 for adia-
batic isochoric combustion with simple reversible kinetics.

The right side of Eq. (.331)) is at equilibrium for values of A which drive it to zero.
Numerical root finding methods show this to occur at A ~ 0.920539. Near this root, Taylor
series expansion shows the dynamics are approximated by

d
(A = 0.920539) = ~0.17993(\ — 0.920539) + ... (7.332)
.

Thus the local behavior near equilibrium is given by
A =0.920539 + C'exp (—0.17993 7). (7.333)

Here C' is some arbitrary constant. Clearly the equilibrium is stable, with a time constant
of 1/0.17993 = 5.55773.

Numerical solution shows the full behavior of the dimensionless species concentration
A(7); see Figure [[ T2 Clearly the product concentration A is small for some long period of
time. At a critical time near 7 = 2.7 x 10°, there is a so-called thermal explosion with a
rapid increase in \. Note that the estimate of the time constant near equilibrium is orders
of magnitude less than the explosion time, 5.55773 << 2.7 x 10°. Thus, linear analysis
here is a poor tool to estimate an important physical quantity, the ignition time. Once the
ignition period is over, there is a rapid equilibration to the final state. The dimensionless
temperature plot is shown in Figure [[.13l The temperature plot is similar in behavior to
the species concentration plot. At early time, the temperature is cool. At a critical time,
the thermal explosion time, the temperature rapidly rises. This rapid rise, coupled with the
exponential sensitivity of reaction rate to temperature, accelerates the formation of product.
This process continues until the reverse reaction is activated to the extent it prevents further
creation of product.

CC BY-NC-ND. 28 January 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

272 CHAPTER 7. KINETICS IN SOME MORE DETAIL
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Figure 7.13: Dimensionless plot of temperature 6 versus time 7 for adiabatic, isochoric
combustion with simple reversible kinetics.

7.2.1.5 High activation energy asymptotics

Let us see if we can get an analytic prediction of the thermal explosion time, 7 ~ 2.7 x 10°.
Such a prediction would be valuable to see how long a slowing reacting material might take
to ignite. Our analysis is similar to that given by Buckmaster and Ludford in their Chapter
14

For convenience let us restrict ourselves to o = 0. In this limit, Eqs. (7.327H7.329) reduce
to

7 = oo (o) (e (i) o

with A(0) = 0. The key trouble in getting an analytic solution to Eq. (Z.334)) is the presence
of A in the denominator of an exponential term. We need to find a way to move it to the
numerator. Asymptotic methods provide one such way.

Now we recall for early time A << 1. Let us assume A takes the form

A=e\+EN+EX3+ .. (7.335)

Here we will assume 0 < € << 1 and that A\;(7) ~ O(1), Aa(7) ~ O(1), ..., and will define
€ in terms of physical parameters shortly. Now with this assumption, we have

1 1
L+g\  14eqh +e2ghy +e3qhg+ ...

(7.336)

12J.D. Buckmaster and G. S. S. Ludford, 1983, Lectures on Mathematical Combustion, SIAM, Philadelphia.
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Long division of the term on the right side yields the approximation
1

T = = 1—eqg\ + 62(q2)\% —qXo) + ..., (7.337)
= 1—eq)\ +O(E). (7.338)
So
exp <— © ) ~exp (—O(1 — egA; + O(€%))) , (7.339)
1+ g
~ e ©exp (eg®N + O(e%)), (7.340)

We have moved A from the denominator to the numerator of the most important exponential
term.
Now, let us take the limit of high activation energy by defining € to be

e=—. (7.341)

Let us let the assume the remaining parameters, g and k are both O(1) constants. When ©
is large, € will be small. With this definition, Eq. (7.340) becomes

© “1/e
exp <— T q)\) ~ e Yexp (gh + O(€?)) . (7.342)

With these assumptions and approximations, Eq. (7.334]) can be written as

d
—(eM+...) = e Veexp (gM + O(€%))

dr
><<(1—6A1—...)—(6A1+...)exp<(k_1)(1+_gdl+m))).

(7.343)
Now let us rescale time via
1
T = Ee_l/ef. (7.344)
With this transformation, the chain rule shows how derivatives transform:
d dr, d 1 d
B .34
dr  drdr. eel/cdr, (7.345)
With this transformation, Eq. (L343) becomes
1 d 1 9
Ed—n(e)\ljt...) = g7 exp (q)\1+(9(6 ))
—q
I—ei—...)— (e + ... .
X(< A=) = (At )eXp<(k—1)(1+qe>\1+...)))
(7.346)
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This simplifies to

d
dr,

(M+...) = exp(gh +O())

><<(1—6A1—...)—(6A1+...)exp<(k_1)(1+_gdl+m))).

(7.347)
Retaining only O(1) terms in Eq. (7.347), we get
d\
de = exp (q)\1). (7.348)

This is supplemented by the initial condition A\;(0) = 0. Separating variables and solving,
we get

exp(—qA1)d\y = dr, (7.349)
1
3 exp(—gh1) = T+ C. (7.350)

Applying the initial condition gives
1

—gexp(—Q(O)) = C, (7.351)

1
—— = (. 7.352
. (7.352)

So
L exp(—gA) ! (7.353)
R X —_ prng T*——’ .

q P{—qA1 p
exp(—qA1) = —qm+1, (7.354)
exp(—g\1) = —q (T*—é), (7.355)

M = In (—q (n - é)) , (7.356)
- —é In (—q <7* - é)) | (7.357)

For ¢ = 10, a plot of A;(7.) is shown in Fig. [T We note at a finite 7, that A\; begins to
exhibit unbounded growth. In fact, it is obvious from Eq. (7.348)) that as

1
T = —,
q
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Figure 7.14: Ay versus 7, for ignition problem.

that
)\1 — OQ.

That is there exists a finite time for which \; violates the assumptions of our asymptotic
theory which assumes \; = O(1). We associate this time with the ignition time, 7,;:

1
Tei = —- 7.358
. (7.358)
Let us return this to more primitive variables:
1 -1 1
L. <_) — (7.359)
€ € q
1
e =
s el (7.360)
q
exp ©
. = . 7.361
n = % (7.361)
For our system with ©® = 20 and ¢ = 10, we estimate the dimensionless ignition time as
exp 20 6
;= ———— = 2.42583 x 10°. 7.362
7= 20)(10) . (7.362)

This is a surprisingly good estimate, given the complexity of the problem. Recall the nu-
merical solution showed ignition for 7 ~ 2.7 x 106.
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In terms of dimensional time, ignition time prediction becomes

exp ©
t; = ; 7.363
26 (7.363)

1 (RT, T, E
= — ( _O) = “ O_O exXp <_—) . (7364)
a E hTo,A - hTo,B RTO

Note the ignition is suppressed if the ignition time is lengthened, which happens when

e he activation energy F is increased, since the exponential sensitivity is stronger than
the algebraic sensitivity,

e the energy of combustion (E;O, A~ E;m p) is decreased because it takes longer to react
to drive the temperature to a critical value to induce ignition, and

e the collision frequency factor a is decreased, which suppresses reaction.

7.2.2 Detailed Hy — Oy — N5 kinetics

Here is an example which uses multiple reactions for an adiabatic isothermal system is given.
Consider the full time-dependency of a problem similar to the thermal explosion problem
just considered.

A closed, fixed, adiabatic volume, V = 0.3061251 c¢m3, contains at t = 0 s a stoichiometric
hydrogen-air mixture of 2 x 107 mole of Hy, 1 x 107° mole of O, and 3.76 x 10~° mole of
Ny at P, = 2.83230 x 10° Pa and T, = 1542.7 K Thus the initial molar concentrations
are

P, = 6.533 x 107° mole/em?,

Do, = 3.267 x 107° mole/cm?,
P, = 1.228 x 107" mole/em®.

The initial mass fractions are calculated via ¢; = M;p,/p. They are

cr, = 0.0285,
co, = 0.226,
CNy, = 0.745.

To avoid issues associated with numerical roundoff errors at very early time for species
with very small compositions, the minor species were initialized at a small non-zero value
near machine precision; each was assigned a value of 107! mole. The minor species all have
p; = 1.803 x 10716 mole/cm®. They have correspondingly small initial mass fractions.

13This temperature and pressure correspond to that of the same ambient mixture of Hy, O2 and N, which
was shocked from 1.01325 x 10° Pa, 298 K, to a value associated with a freely propagating detonation.
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Figure 7.15: Plot of ¢y, (t), cx(t), co(t), co,(t), cou(t), cu,o(t), cao,(t), cuo0,(t), cn,(t), for
adiabatic, isochoric combustion of a mixture of 2Hs+ O+ 3.76 N, initially at T, = 1542.7 K,
P, =2.8323 x 10° Pa.

We seek the reaction dynamics as the system proceeds from its initial state to its final
state. We use the reversible detailed kinetics mechanism of Table This problem requires
a detailed numerical solution. Such a solution was performed by solving the appropriate
equations for a mixture of nine interacting species: Hy, H, O, Oy, OH, HyO, HO,, H50,,
and Ny. The dynamics of the reaction process are reflected in Figs.

At early time, t < 1077 s, the pressure, temperature, and major reactant species con-
centrations (Hy, O, N3) are nearly constant. However, the minor species, e.g. OH, HO,,
and the major product, H>O, are undergoing very rapid growth, albeit with math fractions
whose value remains small. In this period, the material is in what is known as the induction
period.

After a certain critical mass of minor species has accumulated, exothermic recombination
of these minor species to form the major product H,O induces the temperature to rise, which
accelerates further the reaction rates. This is manifested in a thermal explosion. A common
definition of the end of the induction period is the induction time, t = t;,4, the time when
dT/dt goes through a maximum. Here one finds

ting = 6.6 x 1077 s. (7.365)

A close-up view of the species concentration profiles is given in Fig. [[. I8

At the end of the induction zone, there is a final relaxation to equilibrium. The equilib-
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Figure 7.16: Plot of T'(t), for adiabatic, isochoric combustion of a mixture of 2 Hy+Os+3.76 Ny
initially at T, = 1542.7 K, P, = 2.8323 X 10% Pa.
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Figure 7.17: Plot of P(t), for adiabatic, isochoric combustion of a mixture of 2Hs + Oq +
3.76N, initially at T, = 1542.7 K, P, = 2.8323 x 10° Pa.
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Figure 7.18: Plot near thermal explosion time of ¢y, (t), cu(t), co(t), co,(t), con(t), cmo(t),
cro,(t), cryo0,(t), cn, (t), for adiabatic, isochoric combustion of a mixture of 2Hs+05+3.76 Ny
initially at at T, = 1542.7 K, P, = 2.8323 x 10° Pa.

rium mass fractions of each species are

co, = 1.85x107% ( )
cy = 541 x 1074, ( )
cop = 2.45x1072 ( )
co = 3.88x107%, ( )
cy, = 3.75x 1073, (7.370)
cmo = 2.04x1071 ( )
cro, = 6.84x 1077, ( )
Cm0, = 1.04x1077, ( )
ey, = T.45x 1071 ( )

We note that because our model takes Ny to be inert that its value remains unchanged.
Other than N,, the final products are dominated by HsO. The equilibrium temperature is
3382.3 K and 5.53 x 10° Pa.
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