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Preface

This work is aimed at mathematics students in the area of stochastic dy-
namical systems and at engineering graduate students in signal processing
and control systems. First-year graduate-level students with some back-
ground in systems theory and probability theory can tackle much of this
material, at least once the techniques of Chapter 2 are mastered (with refer-
ence to the Appendices and some tutorial help). Even so, most of this work
is new and would benefit more advanced graduate students. Familiarity
with the language of the general theory of random processes and measure-
theoretic probability will be a help to the reader. Well-known results such
as the Kalman filter and Wonham filter, and also H?, H> control, emerge
as special cases. The motivation is from advanced signal processing appli-
cations in engineering and science, particularly in situations where signal
models are only partially known and are in noisy environments. The focus
is on optimal processing, but with a counterpoint theme in suboptimal,
adaptive processing to achieve a compromise between performance and
computational effort.

The central theme of the book is the exploitation, in novel ways, of the
so-called reference probability methods for optimal estimation and control.
These methods supersede, for us at least, the more familiar innovation and
martingale representation methods of earlier decades. They render the the-
ory behind the very general and powerful estimation and control results
accessible to the first-year graduate student. We claim that these refer-
ence probability methods are powerful and, perhaps, comprehensive in the
context of discrete-time stochastic systems; furthermore, they turn out to
be relevant for systems control. It is in the nature of mathematics that
these methods were first developed for the technically more demanding
area of continuous time stochastic systems, starting with the theorems of
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Cameron and Martin (1944), and Girsanov (1960). The reference proba-
bility approach to optimal filtering was introduced in continuous-time in
Duncan (1967), Mortensen (1966) and Zakai (1969). This material tends
to be viewed as inaccessible to graduate students in engineering. How-
ever, apart from contributions in Boel (1976), Brémaud and van Schuppen
(1976), di Masi and Runggaldier (1982), Segall (1976b), Kumar and Varaiya
(1986b) and Campillo and le Gland (1989), there has been little work on
discrete-time filtering and control using the measure change approach.

An important feature of this book is the systematic introduction of new,
equivalent probability measures. Under the new measure the variables of
the observation process, and at times the state process, are independent,
and the computations are greatly simplified, being no more difficult than
processing for linear models. An inverse change of measure returns the
variables to the “real world” where the state influences the observations.
Our methods also apply in continuous time, giving simpler proofs of known
theorems together with new results. However, we have chosen to concen-
trate on models whose state is a noisily observed Markov chain. We thus
avoid much of the delicate mathematics associated with continuous-time
diffusion processes.

The signal models discussed in this text are, for the main part, in dis-
crete time and, in the first instance, with states and measurements in a
discrete set. We proceed from discrete time to continuous time, from lin-
ear models to nonlinear ones, from completely known models to partially
known models, from one-dimensional signal processing to two-dimensional
processing, from white noise environments to colored noise environments,
and from general formulations to specific applications.

Our emphasis is on recent results, but at times we cannot resist the
temptation to provide “slicker” derivations of known theorems.

This work arose from a conversation two of the authors had at a confer-
ence twenty years ago. We talked about achieving adaptive filter stability
and performance enhancement using martingale theory. We would have
been incredulous then at what we have recently achieved and organized as
this book. Optimal filtering and closed-loop control objectives have been
attained for quite general nonlinear signal models in noisy environments.
The optimal algorithms are simply stated. They are derived in a systematic
manner with a minimal number of steps in the proofs.

Of course, twenty years ago we would have been absolutely amazed at
the power of supercomputers and, indeed, desktop computers today, and
so would not have dreamt that optimal processing could actually be im-
plemented in applications except for the simplest examples. It is still true
that our simply formulated optimal algorithms can be formidable to im-
plement, but there are enough applications areas where it is possible to
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proceed effectively from the foundations laid here, in spite of the dreaded
curse of dimensionality.

Our work starts with discrete-time signal models and with states and
measurements belonging to a discrete set. We first apply the change-of-
measure technique so that the observations under a probability measure are
independent and uniformly distributed. We then achieve our optimization
objectives, and, in a final step, translate these results back to the real
world. Perhaps at first glance, the work looks too mathematical for the
engineers of today, but all the results have engineering motivation, and our
pedagogical style should allow an engineer to build the mathematical tools
without first taking numerous mathematics courses in probability theory
and stochastic systems. The advanced mathematics student may find later
chapters immediately accessible and see earlier chapters as special cases.
However, we believe many of the key insights are right there in the first
technical chapter. For us, these first results were the key to most of what
follows, but it must be admitted that only by tackling the harder, more
general problems did we develop proofs which we now use to derive the
first results.

Actually, it was just two years ago that we got together to work on hid-
den Markov model (HMM) signal processing. One of us (JBM) had just
developed exciting application studies for such models in biological signal
processing. It turns out that ionic channel currents in neuron cell mem-
branes can now be observed using Nobel prize winning apparatus measur-
ing femto (107'°) amps. The noise is white and Gaussian but dominates
the signals. By assuming that the signals are finite-state Markov chains,
and adaptively estimating transition probability and finite state values,
much information can be obtained about neural synapses and the synaptic
response to various new drug formulations. We believed that the on-line bi-
ological signal processing techniques which we developed could be applied
to communication systems involving fading channels, such as mobile radio
communications.

The key question for us, two years ago, was how could we do all this
signal processing, with uncertain models in noisy environments, optimally?
Then, if this task was too formidable for implementation, how could we
achieve a reasonable compromise between computational effort and per-
formance? We believed that the martingale approach would be rewarding,
and it was, but it was serendipitous to find just how powerful were the ref-
erence probability methods for discrete-time stochastic systems. This book
has emerged somewhat as a surprise.

In our earlier HMM studies, work with Ph.D. student Vikram Krishna-
murthy and postdoctoral student Dr. Lige Xia set the pace for adaptive
HMM signal processing. Next, work with Ph.D. student Hailiang Yang
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helped translate some continuous-time domain filtering insights to discrete
time. The work of some of our next generation of Ph.D. students, including
Iain Collings, features quite significantly in our final manuscript. Also, dis-
cussions with Matt James, Alain Bensoussan, and John Baras have been
very beneficial in the development of the book. We wish to acknowledge to
seminal thinking of Martin Clarke in the area of nonlinear filtering and his
influence on our work. Special thanks go to René Boel for his review of the
first version of the book and to N. Krylov for supplying corrections to the
first printing.

The support of the Cooperative Research Centre for Robust and Adap-
tive Systems, the Boeing Commercial Airplane Company, and the NSERC
Grant A7964 are gratefully acknowledged. We acknowledge the typing sup-
port of Shelley Hey, and Marita Rendina, and IXTX programming support
of James Ashton.
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INTRODUCTION






CHAPTER 1

Hidden Markov Model
Processing

1.1 Models, Objectives, and Methods

The term hidden Markov model (HMM) is now quite familiar in the speech
signal processing community and is gaining acceptance for communication
systems. It is perhaps a little less daunting, and yet more mysterious, than
the term partially observed stochastic dynamical system model, which is a
translation familiar to people in systems theory, or its applications areas
of estimation and control theory. The term HMM is frequently restricted
to models with states and measurements in a discrete set and in discrete
time, but here we allow relaxation of these restrictions. We first work with
the more restricted HMM class, termed here a discrete HMM, and then
show how to cope with the more general stochastic dynamical systems.

The term estimation is used to cover signal filtering, model parameter
identification, state estimation, signal smoothing, and signal prediction.
Control refers to selecting actions which effect the signal-generating system
in such a way as to achieve certain control objectives. The control actions
can be based on on-line signal processing to achieve feedback control or by
off-line calculations to achieve feedforward or open-loop control.

The term reference probability methods refers to a procedure where a
probability measure change is introduced to reformulate the original esti-
mation and control task in a fictitious world, but so that well-known results
for identically and independently distributed (i.i.d.) random variables can
be applied. Then the results are reinterpreted back to the real world with
the original probability measure.
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1.2 Book Outline

In the next part of this book, we first work with discrete-time, discrete-state
HMMs to achieve optimal estimation algorithms via reference probability
methods, and then repeat the discussion with HMMs of increasing com-
plexity. Continuous-range states and continuous-time HMM models are
studied, and indeed two-dimensional (image) estimation is developed. In
the second part of the book, the focus is on optimal control algorithms.
At times, certain application tasks are studied to give a realistic measure
of the significance of the results. We have sought to inspire both the in-
terest of engineering students in the mathematics, and the curiosity of the
mathematics students in the engineering or science applications.

iU L

Markov chain

w
{

Noise

Noisy observations

Il Il Il Il
50 100 150 200 250 300
Time

o

Figure 2.1. Binary Markov chain in noise.

Consider for example the situation depicted in Figure 2.1. Here, a binary
message sequence Xi,k = 1,2,... consists of ones and zeros. Perhaps the
binary signal X (a Markov chain) is transmitted on a noisy communications
channel such as a radio channel, and so when it is detected at the receiver,
the resultant signal is Y} (quantized to 15 levels in this case). The middle
trace of Figure 2.1 depicts the additive noise in the channel, and the lower
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trace gives the received signal quantized to 15 levels.

In the first instance, we develop optimal estimation algorithms for dis-
crete HMMs which are discrete in time, in the state, and in the measure-
ment space. They have state space models in terms of processes X and Yy
defined for all k € N, the set of positive integers, with dynamics:

Xir1 = AXg + Vi (2.1)
Yit1 =CXp + Wi

Here the states X and measurements Yj, are indicator functions as
XkESX:{€15827"';eN}a YkESY:{f15f27"'7fM}

where e; (resp. f;) is the unit vector with unity in the ith position and
zeros elsewhere. The matrices A, C' consist of transition probabilities and
so have elements a,;,¢;; in Rt and are such that 31 a;; = S0 ¢ij = 1,
or equivalently, so that with 1 = (1,1,..., 1)/7 then

1'A=1, Xy =1, 1V, =0,
10=1, 1Y), =1, 1'Wy, = 0.

Here the prime denotes transposition. The random noise terms of the model
are Vi and Wp; these are martingale increment processes. We term Vj, the
driving noise and W}, the measurement noise. If Y, = X, then the state is
no longer hidden.

Actually, the HMM model above is more general than might first appear.
Consider a process Xj with its state space being an arbitrary finite set
Sx = {s1,...,8n}, which are polytope vertices, as depicted in Figure 2.2
for the case N = 3. By considering the “characteristic” or “indicator”
functions ¢y (s;), defined so that ¢ (s;) = 0 if i # k and ¢y (sx) = 1,
and writing X := (&1 (Xk),...,¢n (Xk)) we see that at any time k just
one component of Xy is one and the others are zero. Therefore, we can
consider the process Xy, derivative from X}, whose state space is the set
Sx = {e1,...,ex} of unit (column) vectors e; = (0,...,1,0,...,0)" of RV,
which are simplex vertices, as depicted in Figure 2.2 for the case N = 3.
So without loss of generality, the state space of X can be taken to be
the set of unit vectors e; which has all elements zero, save unity in the
1th position. Similarly, the state space of the finite-state process Y can be
taken to be a set of standard unit vectors Sy = {f1,..., far}. For those
indicator functions, it turns out that expectations are probabilities in that
P (X =¢;) = E[(X,e;)] where (X, e;) is the ith element X* of X. Also,
nonlinear operations on indicator functions X are linear (affine) in X.
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e
N S2 2
#(.)
S3 ey
€3
Polytope vertices S, Simplex vertices Sx

Figure 2.2. Depiction of state sets.

The estimation task of prime interest for discrete HMMs is to estimate
the sequence {X}} from the measurement sequence {Yj} in some optimal
way. Filtered estimates, also termed forward estimates, are denoted X
and are estimates at time k of X based on processing past and present
measurements {Y7,Ys,...,Yi}. The elements of X}, are conditional prob-
abilities so that l’Xk = 1. Thus, X x lies within the simplex Ay depicted
in Figure 2.2. The estimates X}, are frequently calculated (often in unnor-
malized form), as a forward recursion. Smoothed estimates are estimates at
time k of X} based on processing past, present, and future measurements
{Y1,.... Y, ..., Y} with m > k. Backward estimates are those based only
on the future measurements. These are usually calculated as a backward
recursion from the end of the batch of measurement data. Of course, for-
ward and backward estimates can be combined to yield smooth estimates,
where estimation is based on past, present, and future measurements. The
simplest situation is when the parameters a;;, ¢;; are assumed known.

Related estimation problems concern the expected number of jumps
(transitions) J and state occupation times Oy. These, in turn, allow a re-
estimation of signal model parameters a;;, ¢;;, should these not be known
precisely in advance but only be given prior estimates.

Actually, the schemes that generate the filtered and smoothed estimates
work in the first instance with conditional state estimates, i.e., estimates
of the probability that a particular Markov chain state occurs at each time
instant given the measurements. Forward (filtered) estimates are illustrated
for our example above in Figure 2.3, backward estimates in Figure 2.4, and
smoothed estimates in Figure 2.5. The mazimum a posteriori probability
(MAP) state estimates are the states at which the a posteriori estimates
are maximized, i.e., they follow the peaks in the figures.

Such parameter estimation can be achieved in a multipass estimation
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Figure 2.3. Evolution of forward (filtered) estimate.
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Figure 2.4. Evolution of backward estimates.
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Figure 2.5. Evolution of smoothed estimates.
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procedure in which the batch of data is processed based on the previous
estimates to give improved estimates. The familiar expectation mazimiza-
tion (EM) algorithm arises in this context. Also studied is recursive, or
on-line estimation, where improved estimates are calculated as each new
measurement arrives.

The advantage of working with discrete HMMSs is that the optimal esti-
mation algorithms are finite-dimensional with the dimension independent
of the length of the measurement sequence.

A basic technique used throughout the book is a change-of-probability
measure. This is a discrete-time version of Girsanov’s Theorem (Elliott
and Yang, 1992); see also Appendix A. A new probability P is defined such
that under P the observations are independent (and often identically dis-
tributed) random variables. Calculations take place in the mathematically
ideal world of P using Fubini’s Theorem which allows interchange of ex-
pectations and summations; see Loeve (1978) and also Appendix A. They
are then related to the real world by an inverse change of measure. The
situation is depicted in Figure 2.6, and contrasts the direct optimal filter
derivation approach of Figure 2.7.

As this book seeks to demonstrate, in discrete time this Girsanov ap-
proach brings with it many rewards. In continuous time, where stochastic
integrals are involved, similar techniques can be used, though they require
careful and detailed analysis.

To illustrate this reference measure approach in a very simple situation,
consider a coin for which the probability of heads is p and the probability
of tails is ¢. It is well known that the simple probability space which can
be used to describe the one throw of such a coin is Q = {H,T}, with a
probability measure P such that P(H) =p, P(T) = q=1— p. (Here we
suppose p is neither 0 nor 1.) Suppose now we wish to adjust our statistics
in coin tossing experiments to that of a fair coin. We can achieve this
mathematically by introducing a new probability measure P such that
P(H) = 1/2 = P(T). This implies the event {H} had been weighted by
a factor P (H) /P (H) = 1/2p, and the event {1} has been weighted by a
factor P (T) /P (T) = 1/2q. The function P (.) /P (.) is the Radon-Nikodym
derivative of the fair (uniform) (1/2, 1/2) P-measure against the (p, q), P-
measure; in fact, the function P (.) /P (.) can be used to define P because
clearly

P()
()=5=P0).

P()
One can work in the fictitious world with the probability P to achieve
various mathematical objectives, and then reinterpret these results back in
the real world with a measure change back to P via the inverse Radon-

el



1.2. Book Outline 9

Fictitious HMM (Easy) Fubini- Information
World (measure P) type methods state filter
Measure Reverse measure
Measure change
Changes change
Real HMM Optimal
World (measure P) filter

Figure 2.6. Reference probability optimal filter derivation.

HMM (Hard) Optimal
(measure P) semi?ea&téggale filter

Figure 2.7. Direct optimal filter derivation.

Nikodym derivative.

The reference probability approach to estimation is first discussed for the
simplest of discrete HMM models studied in Chapter 2. In Chapter 3, we
consider the case where the observations are not restricted to a finite set,
but have a continuous range.

In Chapters 4 and 5 HMMSs are studied with states and measurements
in a continuous range so we deal with the general discrete-time models

Tr1 = a(xk) + Vg1,
Ye = c (k) + wr,

where z, € R,a(.),c(.) are nonlinear functions, and vy, wy are noise dis-
turbances in a continuous range. Even more general HMMs are also consid-
ered. The well-known Kalman filter emerges as a special case of the results.
As a convention throughout the book, we denote discrete range variables
by uppercase variables.

In Chapter 6, more attention is focused on asymptotically optimum
model parameter estimation and suboptimal filters to achieve practical
adaptive schemes such as might be used in communication systems. A key
idea is to work with the so-called information-state signal models derived
using HMM estimation theory, and then apply conditional Kalman filters.

In Chapters 7 and 8, continuous-time HMMs are considered to illustrate
how the discrete-time theory can be generalized to the continuous-time
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Fictitious Information- Dynamic
World state model programming
Separation via
reference measure
Real Optimal information
World HMM control task state feedback control
Figure 2.8. Separation principle.
Information-state
model
Optimal information
state feedback control
Figure 2.9. Information-state feedback control.
Control u Observations y

HMM

Information
state estimator

Optimal information

Information state

state feedback control

estimate

Figure 2.10. Information-state estimate feedback control.
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u Dynamical Y u Dynamical Y
Systems Systems
Limiting
operations
Optimal controller Optimal controller
(Information state (Information state
construction and feedback) construction and feedback)
Stochastic risk-sensitive control Deterministic risk-sensitive control

Figure 2.11. Nonlinear risk-sensitive (HZ7 H‘x’) control.

framework. Again, reference probability methods are seen to simplify the
technical approach.

In Chapter 9, the estimation techniques are developed for two-dimen-
sional image processing. The reference measure method is applied here in a
hidden Markov random field situation. This is a two-dimensional version of
the Markov chain framework. Our estimators and filters are no longer recur-
sive in the usual sense for scanned image data, but we develop techniques
to obtain and update them in an optimal manner. The results, which are
a natural extension of those in earlier chapters, are presented in an open-
ended manner, since at this stage it is not clear if they will provide any
significant contributions to the area of image processing.

In the last part of the book concerning optimal control our key objec-
tive is to show that optimal feedback control laws can be formulated for
quite general HMMs. These are well-known ideas discussed, for example,
in Kumar and Varaiya (1986b) and Bertsekas (1987). Both risk neutral
and risk-sensitive situation are considered. In the risk-sensitive case, the
feedback is in terms of an information-state estimate which takes account
of the cost, rather than in terms of estimates of the states themselves. The
information-state estimates give the total information about the model
states available in the measurements.

The feedback optimal control results arise quite naturally from the op-
timal estimation results and associated methodologies of the first part of
the book together with appropriate applications of the principle of opti-
mality and dynamic programming, so familiar in optimal control theory.
Indeed, the control results are a triumph of the probability reference meth-
ods, which allows a representation as depicted in Figures 2.8, 2.9, and 2.10,
and in turn validates this approach for optimal estimation theory. More-
over, once stochastic control problems have been discussed, we find that
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Stochastic Stochastic (Measure change) Optimal (stochastic)
Setting control problem Stochastic dynamic controller
programming

Take certain limits

Real - P Robust (optimal) controller
... | |Robust (optimal) (Hindsight) : :
deterministic — (information state
World control problem dynalﬁze;?ggizgming contruction and feedback

Figure 2.12. Application of stochastic theory to deterministic problems.

optimality, and indeed robustness, results for deterministic models can be
achieved by certain limiting operations; see Figure 2.11.

Indeed, a hindsight approach allows a new optimal /robust feedback non-
linear deterministic control theory to develop; see Figure 2.12. This material
is mentioned in Chapter 11, but is not fleshed out in detail. Furthermore,
the task of achieving practical finite-dimensional feedback controllers for
nonlinear stochastic (and thereby deterministic) systems, could be tackled
via an optimal theory for nonlinear models linearized with respect to the
states.
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DISCRETE-TIME HMM
ESTIMATION






CHAPTER 2

Discrete States and
Discrete Observations

2.1 Introduction

In this chapter, we deal with signals denoted by {X}, k € N in discrete
time. These signals are further restricted to a discrete set and are thus
termed discrete-state signals. They transit between elements in this set with
transition probabilities dependent only on the previous state, and so are
Markov chains. The transition probabilities are independent of time, and
so the Markov chains are said to be homogeneous. The Markov chain is not
observed directly; rather there is a discrete-time, finite-state observation
process {Y;},k € N, which is a noisy function of the chain. Consequently,
the Markov chain is said to be hidden in the observations.

Our objective is to estimate the state of the chain, given the observations.
Our preference is to achieve such estimation on-line in an optimal recursive
manner, using what we term optimal estimators. The term estimator covers
the special cases of on-line filters, where the estimates are calculated as the
measurements are received, on-line predictors where there is a prediction at
a fixed number of discrete time instants in the future, and on-line smoothers
where there is improved estimation achieved by using a fixed number of
future measurements as well as the previous ones. We also seek recursive
filters and smoothers for the number of jumps from one state to another, for
the occupation time of a state, and for a process related to the observations.

In the first instance, we assume that the equations describing the HMM
are known. However, if this is not the case, it is possible to estimate the
parameters also on-line and so achieve adaptive (or self-tuning) estimators.
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Unfortunately, it is usually not practical to achieve optimal adaptive esti-
mators. In seeking practical suboptimal schemes, a multipass scheme is to
update the parameters estimates only after processing a large data set, per-
haps the entire data set. At the end of each pass through this data set, the
parameter estimates are updated, to yield improved parameter estimates;
see, for example, the so-called expectation maximization (EM) scheme; see
Dempster, Laird and Rubin (1977). Our approach requires only a forward
pass through the data to achieve parameter updates, in contrast to earlier
so-called forward-backward algorithms of the Baum-Welch type (Baum and
Petrie, 1966).

Hidden Markov models have been found useful in many areas of prob-
abilistic modeling, including speech processing; see Rabiner (1989). We
believe our model is of wide applicability and generality. Many state and
observation processes of the form (2.14) arise in the literature. In addition,
certain time-series models can be approximated by HMMs.

As mentioned in the introduction, one of the fundamental techniques
employed throughout this book is the discrete-time change of measure. This
is a version of Girsanov’s Theorem (see Theorem A.1.2). It is developed
for the discrete-state HMM in Section 3 of this chapter.

A second basic observation is the idempotent property of the indicator
functions for the state space of the Markov chain. With X one of the unit
(column) vectors e;, 1 < i < N, prime denoting transpose, and using the
inner product notation (a,b) = a'b, this idempotent property allows us
to write the square X X' as Zﬁl (X, e;)e;e; and so obtain closed (finite-
dimensional), recursive filters in Sections 4-9. More generally, any real
function f(X) can be expressed as a linear functional f(X) = (f, X)
where (f,e;) = f(e;) = fi and f = (f1,..., fn). Thus with X? = (X, e;),

N ) N )
FXO)=> Ffle)X =) fiX" (1.1)
=1 i=1

For the vector of indicator functions X, note that from the definition of
expectations of a simple random variable, as in Appendix A,

N
E[(X,e)] =) (eje) P(X =¢;) = P(X =¢;). (1.2)

Jj=1

Section 10 of this chapter discusses similar estimation problems for a
discrete-time, discrete-state hidden Markov model in the case where the
noise terms in the Markov chain X and observation process Y are not
independent. A test for independence is given. This section may be omitted
on a first reading.
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2.2 Model

All processes are defined initially on a probability space (2, F, P). Below,
a new probability measure P is defined. See Appendix A for related back-
ground in probability theory.

A system is considered whose state is described by a finite-state, homo-
geneous, discrete-time Markov chain Xy, £k € N. We suppose X is given,
or its distribution known. If the state space of X has N elements it can
be identified without loss of generality, with the set

S’X:{el,...,eN}, (21)

where e; are unit vectors in RV with unity as the ith element and zeros
elsewhere.

Write 7 = o {Xo, ..., X}, for the o-field generated by Xo, ..., X, and
{Fi} for the complete filtration generated by the .7-',8 ; this augments .7-',8 by
including all subsets of events of probability zero. Again, see Appendix A
for related background in probability theory. The Markov property implies
here that

P(Xpr1=¢;j | Fi) =P (Xpr1=¢; | Xi).

Write
_ _ _ _ NXxN
aji—P(XkH—ej |Xk—€i), A—(aji)ER (22)

so that using the property (1.2), then

E[Xpi1 | Frl=FE [ Xkt | Xi] = AXy (2.3)
Define
Vk+1 = _Xk+1 - AX]C (24)
So that
Xir1 = AXg + Viga. (2.5)

This can be referred to as a state equation.
Now observe that taking the conditional expectation and noting that
E [AXk | Xk] = AXk, we have

E[Vis1 | Fr] = B[ Xep — AXp | Xi] = AX) — AX), =0,

so {Vi.}, k € N, is a sequence of martingale increments.
The state process X is not observed directly. We suppose there is a
function ¢ (.,.) with finite range and we observe the values

Yk—i—l = c(Xk,wkH), k e N. (2.6)
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The wy, in (2.6) are a sequence of independent, identically distributed (i.i.d.)
random variables, with Vi, wy being mutually independent.

{GP} will be the o-field on  generated by Xo, X1,..., Xy and Y7,..., Y,
and Gy its completion. Also {yg} will be the o-field on 2 generated by
Y1,...,Y; and Y its completion. Note Gy, C Giy1 C --- and Vi C Vi1 C
-+, The increasing family of o-fields is called a filtration. A function is
gg—measurable if and only if, and Gi-measurable if it is a function of
X0, X1,..., X, Y1,..., Y. Similarly, for Y, V. See also Appendix A.

The wy in (2.6) are a sequence of independent, identically distributed
(i.i.d.) random variables, with Vj,wy being mutually independent. The
pair of processes (X, Yr),k € N, provides our first, basic example of a
hidden Markov model, or HMM. This term is appropriate because the
Markov chain is not observed directly but, instead, is hidden in the noisy
observations Y. In this HMM the time parameter is discrete and the state
spaces of both X and Y are finite (and discrete). Note that there is a unit
delay between the state X at time k£ and its measurement Y at time k + 1.
A zero delay observation model is discussed later in this chapter.

Suppose the range of ¢(.,.) consists of M points. Then we can identify
the range of ¢ (.,.) with the set of unit vectors

Syz{fl,...,fM}, fj:(O,...,l,...,O)'eRM, (27)

where the unit element is the jth element.

We have assumed that c(.,.) is independent of the time parameter k,
but the results below are easily extended to the case of a nonhomogeneous
chain X and a time-dependent c(.,.).

Now (2.6) implies

P(Yig1=fj | Xo, X1, o, X, V1,00 Y ) =P (Vg1 = f5 | X)) -
Write
C=(cji) RN, ¢jy =P (Yip1 = fj| X =¢) (2.8)

so that Z;Vilcji =1landcy >0,1 <5< M, 1 <4< N. We have,
therefore,
E Y1 | Xi] = CXp. (2.9)

If Wiy1 := Y1 — CXg, then taking the conditional expectation and
noting E [CX}, | X ] = CX}, we have

E[Wii1 | Gk] = E[Yip1 — OXp | Xi]
=CX,—-CX, =0,
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so Wy is a (P, Gi) martingale increment and
Yit1 = CXp + Wi (2.10)

Note that because the wy are i.i.d. and mutually independent of Vj, the
Wi, are conditionally independent of Vj, given Gy.

Equation (2.10) can be thought of as an observation equation. The case
where, given G, the noise terms W} in the observations Yj are possibly
correlated with the noise terms V}, in the Markov chain will be considered
in Section 10.

Notation 2.1 Write Y = (Y, f;) so Vi = (Y!,...,¥M)', k € N. For
each k € N, exactly one component is equal to 1, the remainder being 0.

Note Y"1, Vi = 1. Write ¢, = E[Y{,, | Gx] = Y0, cij(ej, Xx) and
1 = (Chyys--->cpt ). Then
Ch1 = E[ Vi1 | Gr] = CXp. (2.11)

We shall suppose initially that ¢, > 0, 1 <i < M, k € N. (See, however,

Remark 3.5). Note Zﬁl ¢t =1, k € N. We shall need the following result
in the sequel.

Lemma 2.2 With diag (z) denoting the diagonal matriz with vector z on
its diagonal, we have

Vis1Viyy = diag (AXy) + diag (Viq1) — A diag X A’
— AXy Vi1 — Visr (AXy) (2.12)

and

(Vir1) := E [Vir1Vigr | Fi ]
= E[Vis1Vipy | Xi]
diag (AXy) — A diag X A'. (2.13)

Proof From (2.4)

X1 Xjp = AXy (AXy) + AX Vi + Vi (AXE) + Vi Vi
However, X;1X;, ., = diag (Xg41) = diag (AXy) + diag (Vix+1). Equation
(2.12) follows. The terms on the right side of (2.12) involving Vi are

martingale increments; conditioning on Xj, we see

(Vigr) = E [ViaVig | Xy | = diag (AXy) — A diag X;, A", u
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Similarly, we can show that
<Wk+1> =F [Wk+1W;;+1 | Qk] = diag (CXk) -C diag Xk C/.

In summary then, we have the following state space signal model for a
Markov chain hidden in noise with discrete measurements.
Discrete HMM The discrete HMM under P has the state space equa-

tions

X1 = AXp + Vieyr,

(2.14)
Yip1 = CXp + Wi, keN,

where Xy, € Sx, Yr € Sy, A and C are matrices of transition probabilities
given in (2.2) and (2.8). The entries satisfy

N
Zaji =1, aj; > 0, (2.15)
j=1
M
dei=1,  ¢i=0. (2.16)
j=1

Vi and Wy, are martingale increments satisfying

EVit1 | Frl=0,  E[Wiy1|[Ge] =0,
<Vk+1> =F [VkJerk/_i_l | Xk] = diag (AXk) —A diag Xk A/,
(Wit1) := E [Wen1 Wiy | Xy ] = diag (CXy) — C diag X3 C".

2.3 Change of Measure

The idea of introducing new probability measures, as outlined in the previ-
ous chapter, is now discussed for the observation process Y. This measure
change concept is the key to many of the results in this and the following
chapters.

We assume, for this measure change, ¢, > 0, 1 < i < M, ¢ € N. This
assumption, in effect, is that given any Gi, the observation noise is such
that there is a nonzero probability that Y}’ 1 > 0 for all 4. This assumption
is later relaxed to achieve the main results of this section. (See Remark 3.5.)

Define _
M Y}
M—l 2

Ae = H ( Cz ) ) (31)

i=1

and

k
Ak =[] > (3.2)
/=1
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Note that Y,/ = 1 for only one i at each ¢, and Y,/ = 0 otherwise, so that A,
is merely the product of unity terms and one nonunity term. Consequently,
since A\ is a nonlinear function of Yy, then property (1.1) tells us that

M= A (Vi) = S0, Vi /M,
Lemma 3.1 With the above definitions
E[Xg+1 ]G] =1. (3.3)

Proof Applying the properties (1.1) and (1.2),

M 1 Yki+1
E[)\k+1|gk] =F 7 gk
il;[l Mcj i,
M 1
ey L vi e
; Mcj,, "
M
1 1 )
=7 i P(chl+1—1|gk)
M =1 Ck+1
M
1 1 -
=2 k=1
i=1 ck+1

Here as in many places, we interchange expectations and summations, for
a simple random variable. This is permitted, of course, by a special case of
Fubini’s Theorem; see Loéve (1978) and Appendix A. [ |

We now define a new probability measure P on (€2, V=, Ge) by putting
the restriction of the Radon-Nikodym derivative dP/dP to the o-field Gy
equal to Ag. Thus

dP
— | =Ag. 3.4
aP|; " (34)

[The existence of P follows from Kolmogorov’s Extension Theorem (Kol-
mogorov, 1933)]; see also Appendix A. This means that, for any set B € G,

P(B) = /BAk dP.

Equivalently, for any Gi-measurable random variable ¢

Fm:/sbdﬁz/¢j—§dp:/¢Ade:E[Ak¢], (3.5)



22 Chapter 2. Discrete States and Discrete Observations

where E and E denote expectations under P and P, respectively. In the
discrete-state case under consideration, dP/dP reduces to the ratio P/P
and the integrations reduce to sums. This equation exhibits the basic idea
of the change of measure; for most of the results in this book a big challenge
is to determine the appropriate forms for A and A. It is not straightforward
to give insight into this process other than to illustrate by examples and
present hindsight proofs. Perhaps the measure changes of Chapter 3 are
the most transparent, and more discussion is given for these.

We now give a conditional form of Bayes’ Theorem which is fundamental
for the results that follow. The result relates conditional expectations under
two different measures. Recall that ¢ is integrable if E|¢| < oco. First we
shall consider a simple case.

Consider the experiment of throwing a die. The set of outcomes is ) =
{1,2,...,6}. Suppose the die is not necessarily balanced, so that the prob-
ability of i showing is P (i) = p;, p1+---+ps = 1.

The o-field F associated with this experiment is the collection of all
subsets of ), including the empty set ¢. The sets in F are the events. (See
also Appendix A.) The probability of the event “odd number,” for instance,
is P{1,3,5} = p1 + p3s + p5. Consider the sub-o-field G of F defined by
G=1{02,¢,{1,3,5},{2,4,6}}.

Now suppose ¢ is a real random variable on (£, F), that is, ¢ (i) € R
for i = 1,2,...,6. The mean, or expected, value of ¢ is then E[¢] =
2?21 ) (7’) Di-

The conditional expected value of ¢, given G, E' [¢ | G ], is then a function
which is constant on the smallest, nonempty sets of G. That is,

¢(1)p1+¢(3)ps+¢(5)ps

El¢|G](i) = oL+ ps + ps ifie{1,3,5},
\_ ?(2)p2a+ P (4)ps+ ¢ (6)ps .
El¢|G]() = o2+ D+ 7o : if i € {2,4,6}

We note that ¢ = E[¢ | G] can be considered a function on (92, F) and
that then F[E[¢ | G]] = E|[d)].

Suppose we now rebalance the die by introducing weights A (i) on the
different faces. Note that A is itself, therefore, a random variable on (2, F).

Write B, = A (i)p; = P (i), i = 1,...,6, for the new balance proportion
assigned to the ith face. Then, because P is to be a probability measure,
EA =P+ 4P =A1)p1+---+A(6)ps = 1.

We have the following expressions:

E[A¢[G](2)
P(MAMD)p1+(B)AB)ps+¢(5)A(5)ps

= . ifie{1,3,5},
p1+p3+Dps
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E[A¢[G] (i)
_ ¢(2)A(2)P2+z2(4224(i)§:+¢(6)/&(6)p6, fic(2.4.6),
Similarly,
~ AD)pr+AB)ps+A(B)ps o
E[A]G](i) = D1 ps + s , if i € {1,3,5},
N A@2)p2+A4)ps+A(6)ps o
E[AG](G) = PRE—— : fie{2,4,6}.

However, with E denoting expectation under the new probability P

¢(1)P1+0(3)Ps +¢(5) D5

El¢|G]i) = B 71 B . ifie{1,3,5},
= N 9(2)Py+¢(4)Py+ ¢ (6)Ds o
Elo|G](i) = By + s + Do , ifi € {2,4,6}.

Consequently, E[¢ |G]=E[A¢ |G]/E[A]|G].
We now prove this result in full generality. For background on conditional
expectation see Elliott (1982b).

Theorem 3.2 (Conditional Bayes Theorem) Suppose (2, F, P) is a prob-
ability space and G C F is a sub-o-field. Suppose P is another probability
measure absolutely continuous with respect to P and with Radon-Nikodym
derivative dP/dP = A. Then if ¢ is any P integrable random variable

Elo|Gl=v uwhere w—%

and 1 =0 otherwise.

if E[A]G] >0

Proof Suppose B is any set in G. We must show

= 5_ [ ElAo]G] »
/BE[¢|g]dP_/B 5Alg]

Define ¢ = E[A(b | GI/E[A|G]if E[A]|G] > 0 and ¢ = 0 otherwise.
Then E[¢|G] =

Suppose A is any set in G. We must show [, E[¢ |G]dP = [, ¢ dP.
Write G = {w: E[A]|G]=0},s0 G € G. Then [, E A|g]dP—O—
JoAdP and A > 0 a.s. So either P(G) = 0, or the restriction of A to G is
0 a.s. In either case, A = 0 a.s. on G.
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Now G¢ = {w: E[A| G] > 0}. Suppose A € G; then A = BU C where
B=ANG*°and C = ANG. Further,

/Aﬁwg]dﬁ: /Aqﬁd?:/AgbAdP

- /B¢>Adp+/C¢AdP. (3.6)

Of course, A =0 a.s. on C C G, so

/C¢AdP=0=/C¢dF, (3.7)

by definition.
Now

[ E[A6]G]
/B1/)dP—/—[A|g]dP
E[A¢|g1]

E[A]G]
E[Aaﬁlg]]
E[A|G]

. E[A6|G]
E_E[IBAE[MQ] 'g”

E[Amgq
B[A 1G]

=F|Ip

=FE [IgA

-IBE[A |G]

E
E[IzE[Ad|G]]
E[I5Ad)].

That is

/ ApdP = / Y dP. (3.8)
From (3.6), adding (3.7) and (3.8) we see that

/A¢dP+/A¢dP /A¢dP
- [ Blo1g1aP = [ vaP.

and the result follows. |

A sequence {¢} is said to be G-adapted if ¢ is Gi-measurable for ev-
ery k.
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Applying Theorem 3.2 result to the P and P of (3.4) we have the follow-
ing:
Lemma 3.3 If {¢i} is a G-adapted integrable sequence of random wvari-
ables, then
E[Argr | Vi)

ETAg | Vi]
Lemma 3.4 Under P, {Y;}, k € N, is a sequence of i.i.d. random vari-

ables each having the uniform distribution that assigns probability ﬁ to
each point f;, 1 < i < M, in its range space.

El¢r| Vel =

Proof With E denoting expectation under P, using Lemma 3.1, Theo-
rem 3.2 and properties (1.1) and (1.2), then

P (Vi =11G:) =F (Y, £5) | O]
B[ Ak (Y, £5) | Gk
E[Agt1 | Gr]
M E [ N1 Vi, f5) | Gk
a ApE [Nt | G
= E[Aetr1 Yig1, f5) | Gk ]

M 1 Yki+1
=F - Y; i
H<MCZ+1> < k+1=f]>

i=1

G

M
1 ) .

=F — | VY] G
1 .

-

i, L 19
1 - 1 —/
a quantity independent of G, which finishes the proof. ]

Now note that E[Xk-i-l | gk] = E[AkﬂXk+1 | gk]/E[AHl | gk] =
E[Me+1Xkt1 | Gk ] = AX) so that under P, X remains a Markov chain
with transition matrix A.

A Reverse Measure Change

What we wish to do now is start with a probability measure P on
(2, V,~, Gn) such that
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1. the process X is a finite-state Markov chain with transition matrix A
and
2. {Yx}, k € N, is a sequence of i.i.d. random variables and

—— o 1
P(ij-i—l =1 |gk) :P(ij-i-l :1) = M
Suppose C = (¢ji), 1 < j < M, 1< i< N is a matrix such that ¢;; > 0
M

and 757, ¢ = 1.

We shall now construct a new measure P on (,\/,~; G,) such that
under P, (2.14) still holds and F [Yj11 | Gk | = CX). We again write

cry1 = OXy

and ¢} | = (crq1, fi) = (CXp, fi), so that

M

Z c}lﬁl =1. (3.9)

=1

Remark 3.5 We do not divide by the ci in the construction of P from P.
Therefore, we no longer require the cj, to be strictly positive. O

The construction of P from P is inverse to that of P from P. Write

M ,
Xe=[] ()™, ten, (3.10)
i=1
and
k [—
A, = H Ae. (3.11)
=1
Lemma 3.6 With the above definitions
E[Ae+1 | Gr] =1. (3.12)

Proof Following the proof of Lemma 3.6

M . vi
T (Mciyn) ™ | gk]

=1

M
—MZCZ+1?<YI§+1 =1 ‘ gk)

=1

E[ M |G] =F

)

M c M
k41 )
=M g = = E c =1
. M ‘ k+1 ) -
i=1 i=1
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This time set

—| =A 3.13
iPlg, " (8.13)
[The existence of P follows from Kolmogorov’s Extension Theorem (Kol-

mogorov, 1933); see also Appendix A.]
Lemma 3.7 Under P,

E[Yit41 | Gk ] = CXy.

Proof Using Theorem 3.2 and the now familiar properties (1.1) and (1.2),
then
P(Y2 =11G:) = E[(Yirr £5) | G
E [ A1 (Yeg1, fi) | Gr ]
E[Apy1 | Gi]
E [ M1 (Yir1, f5) | Gr ]
E [Nt | G ]

M v
H (MC7§+1)YH1 (Yig1, f5) ’ gk]

1

(case A # 0)

E

%

ME{C{c (Yet1, fj) | gk} = Ci+1~

In case Kk-i—l = 0 we take % =1, and the result follows. [ |

2.4 Unnormalized Estimates and Bayes’ Formula

Recall our discrete HMM of Section 2; recall also that ) is the complete
o-field generated by knowledge of Y7,...,Y; and Gy is the complete o-
field generated by knowledge of Xo, X1,..., Xy and Y1, ..., Y). We suppose
there is a probability P on (2, Vol Gn) such that, under P , X1 = AXp+
Vit1, where Vi is a (P gk) martingale 1ncrement That is, £ [Vit1 | Gr] =

0 and the {Y}} are i.i.d. with P(ij = 1) = 47, and the Y}, are conditionally
independent of V, given Gy, under both P and P. We also have via the
double expectation property listed in Appendix A,

E[Vig1 | Yes1] = E[E[Vig1 | Gry Yes1] | Yit1)
E[E[Vit1 |Gkl | Vet ] = 0. (4.1)
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The measure P is then defined using (3.13). Recall from Lemma 3.3 that
for a G-adapted sequence {¢x},

E [Awén | Vi)

El[¢p | V] = E A | 0]

(4.2)

Remark 4.1 This identity indicates why the unnormalized conditional ex-
pectation E [Akd)k | yk] is investigated. O

Write gx (e,), 1 < r < N, k € N, for the unnormalized, conditional
probability distribution such that

E[Ae (Xp,er) | Vo] = ar (er).
Note that an alternative standard notation for this unnormalized condi-
tional distribution is «; this is used in later chapters for a related distribu-

tion.
Now Efil (Xk,ei) =1, s0

N
qu (e))=F

Therefore, from (4.2) the normalized conditional probability distribution

N —_ —
Z Xp,ei) | Ve | =E [Ar | Vi ] -

pr (er) = E[( Xy, er) [ Vi ]

is given by

Di (er) — qu (67“)

Zj:l ar (€5)

To conclude this section with a basic example we obtain a recursive expres-
sion for gi. Recursive estimates for more general processes will be obtained
in Section 5.

MYk

Notation 4.2 To simplify the notation we write ¢; (Vi) = M]_L 1€ s

and for any N-dimensional vector v we write v(y = (v1,...,vN

Theorem 4.3 For k € Nand 1 < r < N, the recursive filter for the
unnormalized estimates of the states is given by

qrr1 = A diag (qr) () (Yry1) - (4.3)
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Proof Using the independence assumptions under P, the independence
of Vi41 and Y41 under P and the fact that Zjvzl (Xk,e5) =1, as well as
properties (1.1) and (1.2), we have

E[(Xg+1,er) Mpg1 | Vit |

M .
J— . Y’L
(AXp + Vg1, er) A H (Mcjyq) ™ ‘ yk+1]
i=1

M
<AXkaer>KkH(<CXkufi>) e
i=1
[because Vj41 is a martingale increment with (4.1) holding]

N M
= MZF [ <X;€, €j> aijk | yk+1 l_ICZkJrl
=1

=MFE

J%+11

j=1
N Mo,
_MZE Xk,GJ CLTJAk |yk l_IClj’chl
j=1 i=1
(because yy, is i.i.d. under P)
M
YZ
=M Z qk (ej) Qg H Cijk+1
j=1 i=1
Using Notation 4.2 the result follows. ]

Remark 4.4 This unnormalized recursion is a discrete-time form of Za-
kai’s Theorem (Zakai, 1969). This recursion is linear. i

2.5 A General Unnormalized Recursive Filter

We continue to work under measure P so that
Xpy1 = AXy + Vi1 (5.1)

and the Y} are independent random variables, uniformly distributed over

fla"'af]\{['

Notation 5.1 If {Hy}, k € N, is any integrable sequence of random vari-
ables we shall write

Ve (Hy) = E [AeHy | Vi ] - (5.2)

Note this makes sense for vector processes H.
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Using Lemma 3.3 we see that

E[AcHi | Vi ] ok (Hy)

A Y] @)
Consequently 7 (Hy) is an unnormalized conditional expectation of Hj,
given Y. We shall take vo (Xo) = E [Xo); this provides the initial value for
later recursions.

Now suppose {Hy}, k € N, is an integrable (scalar) sequence. With
AHpyy = Hyyy — Hy, Hyyy = H + AHjp 1, then

Vi1 (Heg1) = E [Mey1He | Vo1 ] + B [Ap1AHpg1 | Vg | -

Consider the first term on the right. Then, using the now familiar properties
(1.1) and (1.2),

E[Aes1Hi | Vi) =F [KkaXk—i-l | Vit ]

E[H, | Y] = (5.3)

=F AkaMH CXk,f> R
i=1

yk+1‘|

E [ AeHy (X, e5) | Vi | MH Vi

1 =1

I
.MZ

J

I
] =

¢j (Yir1) (ve (HrXy) s €5) -
1

<.
Il

In this way the estimate for vi11 (Hy41) introduces v (HpXg). A tech-
nical trick is to investigate the recursion for Vg1 (Hgt+1Xg+1). A similar
discussion to that above then introduces the term g (HpXiX},); this
can be written Zl 1 (v (HiXk) , €;) eie;. Therefore, the estimates for
Yi+1 (Hi4+1Xk+1) can be recursively expressed in terms of vy (HpXy) (to-
gether with other terms). Writing 1 for the vector (1,1,...,1)" € RN we
see (Xp,1) = Ef;l (Xk,ei) =1, s0

(Ve (He Xk), 1) = vi (Hg (Xi, 1)) = v (Hy) - (5.4)

Consequently, the unnormalized estimate v; (Hy) is obtained by summing
the components of vy, (H;X}). Furthermore, taking Hy = 1 in (5.4) we see

(1) = (o (Xx) 1) = E [A | Vi ] qu ()

using the notation of Section 4. Therefore, the normalizing factor v (1) in
(5.3) is obtained by summing the components of v (X).
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We now make the above observations precise by considering a more spe-
cific, though general, process H.
Suppose, for k > 1, Hy, is a scalar process of the form

k+1

Hipi =) (e + (Be, Vi) + (00, Y2))
(=1

= Hy + ag1 + Brt1, Vir1) + (Ok+1, Yig1) - (5.5)

Here V; = Xy — AX,_1 and ay, B¢, 0¢ are G-predictable processes of appro-
priate dimensions, that is, ay, B¢, ¢ are G,_1 measurable, ay is scalar, Gy
is N-dimensional, and d, is M-dimensional.

Notation 5.2 For any process ¢, k € N, write
Yk (Bm) = E [ ApdpmXi | Vi ] - (5.6)

Theorem 5.3 For 1< j < M write c; = Cej = (c1j,...,cunj) for the jth
column of C = (c;j) and aj = Ae; = (a1j,...,an;) for the jth column of
A = (a;;). Then

Ve+1,k+1 (Hk+1) =
N
> s (Viern) {0k (He) + etk (@1 + (Gkg1, Y1) s €5) a
j=1

+ [diag (a;) — ajaﬂ E [<Kka, €j) Bt | V1] }(5.7)

Proof

Vet 1,41 (Heg1)
[ Xes1Hrr1 M prr | Vit ]
[(AXg + Vier1) (He + a1 + (Bes1s V1) + (Ort1s Yer))
X Ay | Vg ]
E[((Hk + okg1 + (Oks1, Vi) AXp + (Vier1) Brr1)
X Ay | Vir1 ]

Il
= =

{because, as in Lemma 2.2,

E [KkaHVkJerkIH | Vi |
=E[E[MXier1 Vi1 Vig: | Xo, X1, X, Ve | | Vi
= E [ (AAks1Vigr) | Ve ] )
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N
Z Yk+1 (Hk + Q41 + <6/€+17 Yk+1>) a;

+ (Vier1) Brer1) Ak (Xis €5) | Vi1 |

Finally, because the Y are i.i.d. this final conditioning is the same as con-
ditioning on ). Using Lemma 2.2 and Notation 5.2 the result follows. ®

2.6 States, Transitions, and Occupation Times

Estimators for the State

Take Hyy1 = Hy=a9=1,a,=0,£>1,68,=0,{>0and , =0, £ > 0.
Applying Theorem 5.3 we have again the unnormalized filter Equation (4.3)

for gr = (qx (e1),-..,qx (en)) in vector form:
N
Vit 1,h+1 (1) = @1 = Z ¢; (Ye1) (qk, €5) aj. (6.1)
j=1

with normalized form

Pr = ar (gr, 1) (6.2)

This form is similar to that given by Astréom (1965) and Stratonovich
(1960). We can also obtain a recursive form for the unnormalized con-
ditional expectation of (X,,, ep) given Viy1, m < k+ 1. This is the unnor-
malized smoother. For this we take Hyy1 = Hp, = (X, ep), m < k + 1,
1<p<N,a,=0, 8,=0and 6, = 0. Applying Theorem 5.3 we have

N
Ym,k+1 ((Xom, €p>) = Z Cj (Yet1) <’7m,k (X, ep>) ,ej> aj. (6.3)
j=1

We see that Equation (6.3) is indeed a recursion in k; this is why we consider
H X},. Taking the inner product with 1 and using Notation 5.1 gives the
smoothed, unnormalized estimate

Vi (X, €p)) = E [Kk (X, ep) | yk} .
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Estimators for the Number of Jumps

The number of jumps from state e, to state e, in time k is given by

k
j];ﬂs = Z <X27176’I"> <lees> .
{=1

Using Xy = AXy_1 + Vp this is

I
W

k
(Xe—1,er) (AXp_1,€5) +Z (Xe—1,er) (Vo,€5)
¢ =1

= |l
-

k

<X2717 e17ﬂ> Qs + Z <X2717 er> <‘/E; es> .

4 (=1

Il
-

Applying Theorem 5.3 with Hy11 = J;5,, Ho =0, oy = (X¢—1,€;) asr,
Be = (Xe—1,¢r) €5, 6p = 0 we have

Vrr1ht1 (Ti5)
N M vi
=M Z (H cijk+l> {<7/€71€ (jkrs) + Vi, k (<Xk7 er> asr) 5 ej) aj
j=1 Mi=1

+ [diag (a;) — a;0}]
x B [(BiXp ) (X er) e | Voo ]}

—MZQ_[I kl“) (Ve (Ti*) s e5) a;

+ M (g, e, (H ¢ ’”1) asrar + es diag (ar) — e (arar)]

that is, using Notation 4.2,

N
Yorrkrt (Ti51) = D ¢; (Yia) (e (TE%) 1 €5) @ 6.4
=1 '

+ ¢ (Yk—i-l) <Qk, €r> Agsr€s.

Together with the recursive Equation (6.1) for ¢; we have in (6.4) a re-
cursive estimator for 7y 1 (J;*). Taking its inner product with 1, that is,
summing its components, we obtain v (J;%) = E [ Ap T | Vi |.
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Taking Hy41 = Hypy = J,5, g =0, £ > m, Bp =0, £ >0, 6 = 0,
¢ >0, and applying Theorem 5.3 we obtain for k& > m, the unnormalized
smoothed estimate E [ Api170 X1 | Vit |

N
Y kt1 ( Z (Yer1) (Ymk (T) s €J> aj. (6.5)

Again, by considering the product J°X} a recursive form has been ob-
tained. Ta_kirg the inner product with 1 gives the smoothed unnormalized
estimate E [ Ap T | Vi .

Estimators for the Occupation Time

The number of occasions up to time k for which the Markov chain X has
been in state e, 1 <r < N, is

k+1

O£+1 = Z <X€—17 €T> :

{=1

Taking Hyy1 = Oy, Ho =0, ap = (X¢_1,¢€,), B = 0,6, = 0 and applying
Theorem 5.3 we have

N M .
Yerrirt (Opgr) = M ST er ok (OF) ,¢5)

That is

V1,41 (Ohyr) = ch (Y1) (ve,k (OF) s €5) aj + ¢ (Yir1) (qr, €r) ar

Jj=1

(6.6
Together with (6.1) for g this equation gives a recursive expression for
Y.k (OF). Taking the inner product with 1 gives Y (OF) = E[OF | Yk ]-
For the related smoother take k > m, Hx41 = =0, a,=0, 8, =0,
d¢ = 0 and apply Theorem 5.3 to obtain

m>

N
Y41 (O5) =D ¢ YVier1) (i (O)  €5) a;. (6.7)
j=1
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Estimators for State to Observation Transitions

In estimating the parameters of our model in the next section we shall
require estimates and smoothers of the process

k
77:8 - Z <X571; er> <}/lv .fs>
=1

which counts the number of times up to time k that the observation process
is in state f; given the Markov chain at the preceding time is in state e,
1<r<N,1<s< M. Taking Hyy1 = 7)[71, Ho = 0, ap = 0, B = 0,
0¢ = (X¢—1,er) fs and applying Theorem 5.3

Yotk (Ti51) MZH 5 (e (7))

j=1l1=1

+ (Ve (Xk, €r) Yr1, fs)) . €5)) aj.

That is, using Notation 4.2,

N
Yerrart (TE51) = Y ¢ Virr) (v (T0°)  ¢5) a

j=1
+ M <q]€a 8T> <Yk+1; fs> CsrQy.

(6.8)

Together with Equation (6.1) for ¢x we have a recursive expression for
i,k (Z,7%). To obtain the related smoother take k +1 > m, Hyy1 = H,, =
T2, ap =0, By =0, 6 = 0 and apply Theorem 5.3 to obtain

Ym, k41 ( Cj (Y1) (Y i (Tn’;s)veﬁaj- (6.9)

Mz

J=1

This is recursive in k.

Remark 6.1 Note the similar form of the recursions (6.1), (6.4), (6.6),
and (6.8). O

2.7 Parameter Reestimation

In this section we show how, using the expectation maximization (EM)
algorithm, the parameters of the model can be estimated. In fact, it is a
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conditional pseudo log-likelihood that is maximized, and the new parame-
ters are expressed in terms of the recursive estimates obtained in Section 6.
We begin by describing the EM algorithm.

The basic idea behind the EM algorithm is as follows (Baum and Petrie,
1966). Let {Py, 0 € ©} be a family of probability measures on a measurable
space (Q,F) all absolutely continuous with respect to a fixed probability
measure Py and let J C F. The likelihood function for computing an
estimate of the parameter 6 based on the information available in ) is

L) =B | 1],

and the maximum likelihood estimate (MLE) is defined by

0 € argmax L (6) .
0co

The reasoning is that the most likely value of the parameter 6 is the one
that maximizes this conditional expectation of the density.

In general, the MLE is difficult to compute directly, and the EM algo-
rithm provides an iterative approximation method:

Step 1. Set p = 0 and choose fo.
Step 2. (E-step) Set 6* = 6, and compute Q (-, 6*), where

v

dPy
dPy+

Q(0,60%) = Ey- [log

Step 3. (M-step) Find
0,11 € argmax Q (0,0%).
3]

Step 4. Replace p by p + 1 and repeat beginning with Step 2 until a
stopping criterion is satisfied.

The sequence generated {ép,p > O} gives nondecreasing values of the
likelihood function to a local maximum of the likelihood function: it follows
from Jensen’s Inequality, see Appendix A, that

1ogL(ép+1) 1ogL() Q(p+17 )7

with equality if ép_H = 9,,. We call Q (6,6*) a conditional pseudo-log-
likelihood.
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Our model (2.14) is determined by the set of parameters
9::(aji, 1§Z,j§N, Ciji, 1§]§M7 1§Z§N)

which are also subject to the constraints (2.15) and (2.16). Suppose our
model is determined by such a set 6 and we wish to determine a new set

0= (aj(k), 1<i,j <N, é;(k), 1<j<M,1<i<N)

which maximizes the conditional pseudo-log-likelihoods defined below. Re-
call Fy is the complete o-field generated by Xg, X1, ..., Xi. Consider first
the parameters a,;;. To replace the parameters a;; by a;; (k) in the Markov
chain X we define

k N [A (k)]<Xe,es)(X1178r>.

a/ST‘

In case a;; = 0, take a,;(k) =0 and a;,(k)/a;; = 1. Set

dP;

Ul
dP, k

Fr

To justify this we establish the following result.

Lemma 7.1 Under the probability measure P; and assuming Xy = e,
then
Eé [<Xk+1765> | fk] = Qgp (k)

Proof

E[(Xkt1,es) Mgy | Fi ]
E Akt | Fi]

E [<Xk+1,es> 2l | fk}

E[Hivzl |:G‘L(k):| (Xkt1,€s) ’ ]__k}

Qsr
dor (k)

Asr

Eé[<Xk+1,€s> | Fr] =

aS’I‘

N an(h)
Z’I":l aTsr Qsr

= agr (k). [ ]

Notation 7.2 For any process ¢, k € N, write ¢ = E[¢r | V] for
its Y-optional projection. In discrete time this conditioning defines the Y-
optional projection.
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Theorem 7.3 The new estimates of the parameter s, (k) given the ob-
servations up to time k are given, when defined, by

Gor (k) = Lo — M (7.1)
o;  w(Op)
Proof
N K
log Ak = Y > (Xpes) (X1, er) [logas (k) — log as]
r,s=14=1
N
- Z T log s, (k) + R (a)
r,s=1
where R (a) is independent of . Therefore,
N A~ A
Ellog A | k] = Y Ji*logas (k) + R (a). (7.2)
r,s=1
Now the ag, (k) must also satisfy the analog of (2.15)
N
Z Qsr (k) =1 (7'3)
s=1
Observe that
N
> Tt =0y (7.4)
r,s=1
and in conditional form
N
> Tt =0 (75)

We wish, therefore, to choose the as, (k) to maximize (7.2) subject to the
constraint (7.5). Write A for the Lagrange multiplier and put

L(a Z J,gslogasr( )+

r,s=1

—I—)x(ZaST —1>.
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Differentiating in A and as, (k), and equating the derivatives to 0, we have
the optimum choice of @, (k) is given by the equations

—&ST ®) TP +A=0 (7.6)

N

> ae (k) = 1. (7.7)

From (7.5)-(7.7) we see that A = —O} so the optimum choice of d, (k),
1<s,7r<N,is
Ji* e (Fi)

asr (k) = =— = ——2—=.
) or  w(0f)

(7.8)
| ]

Note that the unnormalized conditional expectations in (7.8) are given
by the inner product with 1 of (6.4) and (6.6).

Consider now the parameters cj; in the matrix C'. To replace the param-
eters ¢, by &g (k) we must now consider the Radon-Nikodym derivative

-

[Csr ] (Xe—1,er)(Ye,fs)
¢(=1r=1s=1

By analogy with Lemma 3.1 we introduce a new probability by setting

dP; -
il
dPylg "
Then Ej [(Yig1, fs) | X = er] = o ().
Then
E [log A | yk] =3 Tt logé, (k) + R (c) (7.9)

r=1s=1

where R (c) is independent of é. Now the &, (k) must also satisfy

M
> e (k) =1. (7.10)

s=1

Observe that

M
2T
s=1
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and conditional form
M

> T =0 (7.11)
s=1
We wish, therefore, to choose the ¢, (k) to maximize (7.9) subject to the
constraint (7.11). Following the same procedure as above we obtain:

Theorem 7.4 The mazimum log likelihood estimates of the parameters
ésr (k) given the observation up to time k are given, when defined, by

Cor (B) = % (7.12)

Together with the estimates for ~; (7,7°) given by the inner product with 1
of Equation (6.8) and the estimates for v (O},) given by taking the inner
product with 1 of Equation (6.6) we can determine the optimal choice for
s (k),1<s<M—1,1<r < N. However, Y ¢, (k) = 1 for each r,
so the remaining ¢z, (k) can also be found.

Remarks 7.5 The revised parameters ag, (k), ¢ (k) determined by (7.8)
and (7.12) give new probability measures for the model. The quantities
Vi (T2, v (T77°), i (Of) can then be reestimated using the new param-
eters and perhaps new data, together with smoothing equations. The se-
quences of densities Ay and Ay are improved by construction, and the model
parameters are updated or tuned to the observations. The backward pass
as used in the Baum-Welch algorithm is not required. |

2.8 Recursive Parameter Estimation

In Section 7 we obtained estimates for the a;; and the cj;. However, these
are not recursive, that is, the estimate at time k is not expressed as the
estimate at time (k — 1) plus a correction based on new information. In this
section we derive recursive estimates for the parameters. Unfortunately,
these recursions are not in general finite-dimensional. Recall our discrete
HMM signal model (2.14) is parametrized in terms of aj;, ¢;;. Let us collect
these parameters into a parameter vector 6, so that we can write A = A (6),
C = C (#). Suppose that 6 is not known a priori. Let us estimate 6 in a
recursive manner, given the observations ). We assume that 6 will take
values in some set © € RP.

Let us now write Gy, for the complete o-field generated by knowledge of
X0, X1,..., X, Y1,..., Yy, together with 6. Again ) will be the complete
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o-field generated by knowledge of Y7,...,Y;. With this enlarged Gj the
results of Sections 2 and 3 still hold. We suppose there is a probability P on
(2, V2, Ge) such that, under P, the {Y;} are iid. with P(Y]/ = 1) = L,
and Xy = AXy + Vk+1, where V}, is a (P gk) martingale increment.
Write ¢, (), 1 <r < N, k € N, for an unnormalized, conditional density
such that

Here, I (A) is the indicator function of the set A, that is, the function that
is 1 on A and 0 otherwise. The existence of ¢}, (/) will be discussed below.
The normalized conditional density pj, (9), such that

P (0)d0 = E[(Xg,er) 1(0 € d) | Ve,
is then given by
g, (0)
_] 1 fO qk du

We suppose an initial distribution pg (.) = (pg (.),-..,pd" (.)) is given. This
is further discussed in Remark 8.2. A recursive expression for ¢}, (6) is now
obtained:

pi (0) =

Theorem 8.1 Fork € N, and 1 <r < N, then the recursive estimates of
an unnormalized joint conditional distribution of Xy and 0 are given by

Qi1 (0) = ay. ) diag (qx (9)) c() (Yet1) - (8.1)

Proof Suppose g is any real-valued Borel function on ©. Then
E[(Xk+1,6r) g (0) Mg | Vi1 ]
= [ dia @) (2)

M .
(AX) + Vig1,er) g (0) Ay HM (C;.c+l)Yk+1 ’ yk+1]
=1

M )
(AXk.er) g (0) K [T (CXi, )5
1=1

ykﬂ]

N M Y
=M E[(Xy e arsg (0 )Ak|3’k]H -
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As g is arbitrary, from (8.2) and (8.3) we see

N M )
' S Y’L
dk+1 (u) = MZ <aTSQk (u) H Cisk+l> :
s=1

=1

Using Notation 4.2 the result follows. ]

Compared with Theorem 4.3 the new feature of Theorem 8.1 is that it
updates recursively the estimate of the parameter.

Remark 8.2 Suppose 7 = (71,...,7n), where m; = P (Xo = ¢;) is the
initial distribution for Xy and h () is the prior density for 6. Then

40 (0) = 7 (6),

and the updated estimates are given by (8.1). m|

If the prior information about Xy is that, say, Xo = e;, then the dynamics
of X, (2.4) will move the state around and the estimate is given by (8.1). If
the prior information about @ is that 6 takes a particular value, then h (9)
(or a factor of h) is a delta function at this value. No noise or dynamics
enters into 6, so the equations (8.1) just continue to give the delta function
at this value. This is exactly to be expected. The prior distribution h taken
for @ must represent the a priori information about 6; it is not an initial
guess for the value of 6.

Time-varying dynamics for 6 could be incorporated in our model. Possi-
bly 011 = Apbi+vk+1, where vy 1 is the noise term. However, the problem
then arises of estimating the terms of the matrix Ayg.

Finally, we note the equations (8.1) are really just a family of equations
parametrized by 6. In particular, if § can take one of finitely many values
01,02, ...,0, we obtain p equations (8.1) for each possible §;. The prior for
0 is then just a distribution over 6,,...,6,.

2.9 Quantized Observations

Suppose now the signal process {z,} is of the form
Tipt1 = Azp + Vi1

where z), € RY, A = (aj;) is a d x d matrix and {v,}, £ € N, is a sequence
of i.i.d. random variables with density function 1. (Time-varying densities
or nonlinear equations for the signal can be considered.) We suppose o,
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or its distribution, is known. The observation process is again denoted
by Yy, ¢ € N. However, the observations are quantized, so that the range
space of Yy is finite. Here, also, we shall identify the range of Y; with the
unit vectors f1,..., far, fj = (0,...,1,...,0) € RM  for some M. Again
suppose some parameters § € © in the model are not known. Write Gj, for
the complete o-field generated by xg, x1, ..., Zk, Y1,..., Yx and 0; Vi is the
complete o-field generated by Y1,..., Y. If Y/ = (Y, fi), 1 <i < M, then
Vo= (Y/,...,YM) and S| Y/ = 1. Write

b =E[(Ye,fi) | Ge—1] =P (Ye=fi | Go—1).
We shall suppose
P(Yy=fi|Gi1)=P(Ye=fi|we1), 1<i< M, leN.

In this case we write ¢} (z¢—1). Suppose ¢} (z¢—1) > 0,1 <i < M, ¢ € N.

Write v
YEZ
A = .
B HH [Mc (xe—1) ]
¢=11i=1
Defining P by setting
dP
—| =A
dP|g

gives a measure such that

1

E[{(Ye, i) | Gea] = R

Suppose we start with a measure P on (£2,\/,=, G¢) such that

1

E[Ye. fi) | G ) = 55

and xpy1 = Axg + veg1. Write
k M
=][™ H ¢ (we1)
=1 i=1

[Note this no longer requires ¢}, ; (zx) > 0.]
Introduce P by putting
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Suppose f is any Borel function on R? and ¢ is any Borel function on O,
and write g (z,0) for an unnormalized conditional density such that

E[Ap] (z €d2)I(0 €df) | V| = qi(z,0)dzdb.

Then

B (k1) (0) Rpr | Yisr | = / / £ (6) 9 (u) qusr (€ u) dE dA (). (9.1)

The right-hand side is also equal to

M .
M .
= M///f (Az +v) g (u) H CZ+1 (z)Yﬁﬂl Y (V) gk (z,u) dvdz dA (u) .

Write £ = Az + v, so v =& — Az. The above is

M .
B M///f (&) g () <1:[1 Chat (Z)Y’g*1> P (€ — Az) qi (2,u) dz d€ d\ (u) .

(9.2)
Comparing (9.1) and (9.2) and denoting

M
. i
crp1 (Y1, 2) = M [ [ el (2)7502
=1

we have the following result:

Theorem 9.1 The recursive estimate of an unnormalized joint conditional
density of the signal x and the parameter 6 satisfies:

Qr+1 (§u) = /Rd 1 (Yer1,2) ¥ (§ — Az) qi (z,u) dz.

Example

In Kulhavy (1990) the following simple situation is considered. Suppose
6 € R is unknown. {v¢}, £ € N, is a sequence of i.i.d. N (0,02) random
variables. The real line is partitioned into M disjoint intervals,

I = (—o0,0n), Iy = [a1,02), ..., In—1 = [anr—2, a0r—1) , I = [aar, 00) .
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The signal process is zy = 6 4+ vy, £ € N. The observation process Y is an
M-dimensional unit vector such that Y,/ = 1 if 2y € I;. Then

=P (Y, =1]Gi)
=P(Y/=110)=P(ai-1 <Y/ <0 |0)
011'—0
= (27r02)71/2/ exp (—2?/20%)dx
a¢,1—0

=ch(0), 1<i< M.

Measure P is now introduced. Write gy, (6) for the unnormalized conditional
density such that

E [ka (6‘ € dé‘) | yk} = qk (9) do.

Then, for an arbitrary Borel function g,
Eg(0) Ari1 | Vs ] = / (A) @1 (A) dA
R

=ME

M
Ay, H Ck+1 Ykl+1 | V41
i=1

ol

We, therefore, have the following recursion formula for the unnormalized
conditional density of 6:

g (N) dA.

M .
Grp1 (N) = <H G (A)Y*f“) g (A) - 9.3)

=1

The conditional density of 6 given Y is then

qr (N)

2.10 The Dependent Case

The situation considered in this section, (which may be omitted on a first
reading), is that of a hidden Markov Model for which the “noise” terms in
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the state and observation processes are possibly dependent. An elementary
prototype of this situation, for which the observation process is a single
point process, is discussed in Segall (1976b). The filtrations {F%}, {Gr}
and {V;} are as defined in Section 1.2. The semimartingale form of the
Markov chain is, as in Section 2,

X1 = AXg + Vg, k eN,

where V, is an {F}} martingale increment, a;; = P (Xg41 =¢; | X =¢;)
and A = (a;;). Again the Markov chain is not observed directly; rather we
suppose there is a finite-state observation process Y. The relation between
X and Y can be given as P (Y41 = frr | Gk ) = P (Yiq11 = fr | Xk ) so that

Y1 = CXp + Wiqa, k eN,

where Wy, is an {Gy} martingale increment, ¢j; = P (Ypt1 = f; | X =€)
and C' = (cj;). We initially assume c¢;j; positive for 1 < ¢ < N and 1 <
j< M.

However, the noise, or martingale increment, terms Vi and Wy are not
independent. In fact, the joint distribution of Y; and X, is supposed, given
by

Yk-ﬁ-lX]Ichl =SXg + Ty, keN,

where S = (s,j;) denotes a M N x N matrix, or tensor, mapping RY into
RM x RN and

Srpji=P(Ye=fr, Xp =¢€; | Xp_1 =€) 1<r<M,1<4,7<N.

Again T'yy1 is a martingale increment, so E [T'x41 | Gr | = 0.
If the terms are independent

SXp = CXy, (AXy) .

In this dependent case, recursive estimates are derived for the state of the
chain, the number of jumps from one state to another, the occupation time
of the chain in any state, the number of transitions of the observation
process into a particular state, and the number of joint transitions of the
chain and the observation process. Using the expectation maximization
algorithm optimal estimates are obtained for the elements a;;, cj; and s,5;
of the matrices A, C, and S, respectively. Our model is again, therefore,
adaptive or “self-tuning.” In the independent case our results specialize to
those of Section 5.
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Dependent Dynamics

We shall suppose

P(Yip1=fr, Xov1=¢j | Gr) = P(Yey1 = fr, Xor1 =¢; | Xg) (10.1)
and write

Srji = P (Yip1 = fr. Xpp1 =€ | X =¢€; ), 1<r<M,1<i,j<N.

Then S = (s,;) denotes a MN x N matrix, or tensor, mapping RY into
RM x R¥. From this hypothesis we have immediately:

Yk}"rlX]/q-‘,-l =S5Xg + Ty, k eN, (10.2)

where T'y41 is a (P, Gr),RM x RY martingale increment.

Remark 10.1 Our model, therefore, involves the three sets of parameters
(aji); (cri), and (spji)- O

Write 1 = (1,1,...,1)" for the vector, in RM or RV according to context,
all components of which are 1.

Lemma 10.2 For1 € RM | then
(1,58X;) = AX. (10.3)

For 1 € RN, then
(SXy, 1) = C X, (10.4)

Proof In each case (1,T'x) and (I'x,1) are martingale increments. Tak-
ing the inner product of (10.2) with 1 the left side is, respectively, either
<l, Yk+1X,’€H> = X} or <Yk+1X];+17l> = Yi41. Therefore, the result fol-
lows from the unique decompositions of the special semimartingales Xy,
and Y. | |

In contrast to the independent situation, we have here P[Xk+1 =e; |
fk,y,m} = P[Xpt1 =-¢; | Xk, Vi+1]. This is not, in general, equal to
P [ X411 = e; | Xi] so that knowledge of Vi, or in particular Yy, now gives
extra information about Xj.

Write

ajir = 2L
Cri

(recall the ¢,; are positive). We then have the following;:
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Lemma 10.3 With A the N x (N x M) matriz (aji), 1 < i,5 < N,
1<r< M, ~ }

Xps1 = A (XY 1) + Vi
where

E {f/kJrl |-7:k7yk+1} =0. (10.5)
Proof
P Xi1=¢€; | X =€, Yir1 = fr]

_ PYii1 = fr, Xpp1 = ¢ | Xi = ;]
P Yy = fr | Xx = €]

Srji
= = ajir'
Criq

With A = (ejir), 1 <4,j <N, 1<r <M, we define Vi by putting
Xir1 = A (Xp Y1) + Vit (10.6)
Then
E [Vkﬂ | fk,ykJrl} = E[Xps1 | Fes Vi1 — A (XrYiy1)
= A(XyY 1) — A(XkY{,) =0. m

In summary then, we have the following.
Dependent Discrete HMM The dependent discrete HMM is

Xpp1=A (XpYi) + Vi1

(10.7)
Yii1 = CXp + Wiy, ke N,

where X, € Sx, Yi € Sy, A and C are matrices of transition probabilities
given in Lemmas 10.3 and (2.8). The entries of A satisfy

N
Zajir =1, ajir > 0. (10.8)
j=1

Vi is a martingale increment satisfying

E [ Vi1 | Fi Ve | =0,

Next, we derive filters and smoothers for various processes.



2.10. The Dependent Case 49

The State Process

We shall be working under a probability measure P as discussed in Sec-
tions 3 and 4, so that the observation process is a sequence of i.i.d. ran-
dom variables, uniformly distributed over the set of standard unit vectors

{fl, ey fM} of R]w.
Here Ay is as defined in Section 3. Using Bayes’ Theorem we see that

P Xkr1=¢j | Fr, Ver1] = E[{(Xir1,€5) | Fr, iy ]
B [(Xkrre5) Apyr | Fry V1]
E[Ags1 | Gy Vit
_ N E[(Xir1, €5) | Fry Vi |
a A1
=P[Xpp1=¢€j | Fi,Vit1]
= P[Xpp1 = ¢ | Xi, Vi ].

Therefore under P, the process X satisfies (10.7). Write i, k € N, for the
unnormalized conditional probability distribution such that

B[R Xi | V] = .
Also write
121 (ejf;) = Q.jr = (aljra Q2 y v vy O[er) and Sp.j = (Srlj; ey S’I"Nj) .

Lemma 10.4 A recursive formula for §r4+1 is given by

M N
Qr+1 = MZ Z (Gky€5) (Yes, fr) srj = MS@Yy . (10.9)

r=1j=1

Gry1 = B [ A1 Xeq1 | Vigr |

M
A [T (MCXe, £ B[ Xpgr | Fies Vg | yk+1]

M
A J] (M (CX, SN AXRY | yk+11

M N

= MZ Z (Qrsej) (Y1, fr) crjojp

r=1j=1
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M N
- MZ Z (Qrses) (Y1, fr) srj

r=1j=1

= MSCjkYIQI+1- |

Remark 10.5 If the noise terms in the state X and observation Y are
independent, then

SXy=FE Y1 X/ | G|
= CX}, (AXy)
N
= (Xk, €) cial,
i=1

where ¢; = Ce; and a; = Ae;. O

A General Recursive Filter

Suppose Hy is a scalar G-adapted process such that Hy is Fy measurable.
With AHk+1 = Hyy1 — Hy, Hipq :_H_k + AHkJrl. For any G-adapted
process ¢, k € N, write 3,k (¢m) = F [Ak¢ka | Vi ] Then

Fkt1,k+1 (Hrg1)
=FE [Aps1HeXir1 | Vo1 ] + B [ A1 AHpp1 Xig1 | Vi1 |

=F {KkaA (XkYi) Mgt | yk+1} + E [ A1 AHp 1 Xpog1 | Vit |

M N

= MZ Z (ke (Hi) s €5) (Ygr, fr) srj + E [ Apy1 AHpp1 Xpqr | Yir |
r=1j=1

= MS'?I@,I@ (Hk) Yk/Jrl —i—F [Kk-i-lAHk-i-le-i-l | Vi+1 ] . (10.10)

For the smoother at time m < k + 1, we have

M N
ﬁm,k-i—l (Hm) =M Z Z <ﬁ/m,k (Hm) ) €j> <Y/€+17 fr> Sy

r=1j=1

= MSFmp (Hp) Vi (10.11)

Remark 10.6 The use of the product Hpi1Xp41 and Hpp Xpy1 is ex-
plained in Section 5. Specializing (10.10) and (10.11), estimates and
smoothers for various processes of interest are now obtained. U
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The State Process

Here Hp11 = Ho = 1 and AHpy1 = 0. Denoting i, (1) by ¢x we have
from (10.10) and (10.11)

k1 = MSqrY; (10.12)

which we have already obtained in Lemma 10.4. For m < k 4+ 1 we have
the smoothed estimate

Vm,k+1 ((Xm, €p>) = MSYm k ((Xm, €p>) Ykl+1- (10.13)

The Number of Jumps

Here Hypp = JPY = S0 (Xuc1,eq) (X, ep) and AHpyy = (Xp,ep) X
(Xk+1, €q)- Substitution of these quantities in (10.10) and (10.11) gives the
estimates and smoothers for the number of jumps:

Vh+1,k+1 (jlfil) =M (Sﬁk,k (jlfq) Ykl-i-l + (G €p> (Yet1, S-qp> eq)

(10.14)
and for m < k + 1 we have the smoothed estimate
Vg1 (THY) = MSAm k (TH) Yyt (10.15)

The Occupation Time
Here Hy 1 = O£+1 = Zkﬂ (X, ep) and AHpq = (Xg, ep). Using again

n=1

(10.10) and (10.11) we have the estimates

Yt k1 (O 1) = M (STkk (OF) Yiey + Gk, €p) (Yet1,5.9)) 5| (10.16)

where (Yii1,5.p) = Ei\il (Yit1, fr) Sr.p, and the smoothers for m < k+1

S (O5) = MSFm 1o (OF) Yy, (10.17)

The Process Related to the Observations

Here Hy11 = 1,70, = 2:11 (Xo—1,ep) (Yo, fs) and AHpyq = (Xp,ep) X
(Yit1, fs). Again, substitution in (10.10) and (10.11) gives

Fesrks1 (T1) = M (SFkk (T7°) Yigy + (Gro ep) (Yara, fo) Sap)
(10.18)
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and for m < k + 1 we have the smoothed estimate

Tt (T2%) = Mg (T2) Vi (10.19)

The Joint Transition

In the dependent situation a %ew feature is the joint transition probabili-
. 1

ties. Here Hyyiq1 = E}Z{fl = e; (Ye, fi) (Xe,eq) (Xe—1,ep) and AHpq =
(Yit1, fr) (Xk+t1, eq) (Xk, ep). Estimates and smoothers for the joint tran-
sitions are obtained using again (10.10) and (10.11). These are:

V1,41 (ﬁ}?fl) = M (Sk.k (ﬁqu) Vi1 + (G ep) Yy, fi) segpeq)
(10.20)

and

Vo1 (LEPY = M S e (LEP) Y. (10.21)

Parameter Estimation

Our hidden Markov model is described by the equations:

X1 = AXp 4+ Vi
Yit1 = CXp + Wi
Yk-i—lX]Ichl =SXi + Ty, k e N.

The parameters in the model are, therefore, given in a set
9:{04]“1§Z,_]§N,

cji, 1 <j< M, 1<i<N;
Spjis 1 <1 < M, 1§i,j§N},

These satisfy

N M M N
Saji=1, D=1 D> Y syi=1 (10.22)
j=1 j=1

r=1j=1

Suppose such a set @ is given and we wish to determine a new set 6 =
{(aj: (k)), (& (k)), (5r4; (k))} which maximizes the log-likelihood function
defined below. Consider the parameters (s,j;,1 <r < M,1 <4,j < N). To
replace the joint transitions s,j; by $rj; (k) consider the Radon-Nikodym
derivatives
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] (Yo, fr)(Xe,ei)(Xe—1,€:)

it i
(=1r=145=1 T” k
Therefore
dp SINELE .
E |log — |y,€] =3 > L logsyi (k) + R(s). (10.23)
G r=14,j=1
where R (s) is independent of 8. Now observe that
M N ‘
> =0 (10.24)
r=1j=1
Conditioning (10.24) on V), we have
M N ‘
SNS LP =0 (10.25)
r=1j=1
Now the §,j; (k) must also satisfy
(10.26)

Z g Srji (k

We wish, therefore, to choose the §,;; (k) to maximize the conditional log-
likelihood (10.23) subject to the constraint (10.26). Write A for the Lagrange

multiplier and put
M N X M N
SN =) L7 og b (k) + R(s)+ A | DD s (k) — 1
r=1i,j=1 r=1j=1
Equating the derivatives of F in §,;; (k) and A to zero we have that the
optimum choice of §,;; (k) is given, when defined, by
- - Erji)
Lyt ( F) (10.27)
x (O))

srji (k) = 37 =
k

Similarly, as in Section 7 the optimal choice for a;; (k) and é;; (k) given the

(10.28)

observations are, respectively, when defined
 (6) Vi (J,jj )
Qji = = (M)
’ ¥ (0})
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and

éi (k) = ) (Tk]) : (10.29)
| i (O)

Remark 10.7 We have found recursive expressions for 45 (0y,), ’yk(ﬁzj ",
e (J) and Ak(7,7). The revised parameters 0 = ((a;i(k)), (¢;i(k)),
(8r4i(k))), are then determined by (10.27), (10.28), and (10.29). This
procedure can be iterated and an increasing sequence of likelihood ratios

obtained. d

A Test for Independence

Taking inner products with 1 € RY, (10.16) and (10.20) provide estimates
for 4:(0}) and i (L}”"), respectively; an optimal estimate for §,;; (k) is
then obtained from (10.27). However, if the noise terms in the state X and
observation Y are independent we have

SX, = C diag X, A'.
Taking X = e; and considering
(Sei, fre}) = (Ces, fr) (Aei, e5)
we see that if the noise terms are independent:
Srji = Criljq

for 1 <r < M,1<4,7<N.If the noise terms are independent ~y (Jkij),
Vi, k ((9};), and v,k (7;3] ) are given in Section 6. Taking inner products with
1 € RY gives estimates for (Jkij), Yk (Oz), and g (’Z;jj), and substituting
in (10.28) and (10.29) gives estimates for a;; (k) and é;; (k). Consequently,
a test for independence is to check whether

8rji (k) = ¢ri (k) - aji (k) .

Modification of our model and this test will give other tests for indepen-
dence. For example, by enlarging the state space, so the state at time k
is in fact (Xg41,Xk) a test can be devised to check whether either the
process Xy, is Markov, or (X411, X) is Markov, in a hidden Markov model
situation. Alternatively, models can be considered where X1 and Yj41
depend also on Y.
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2.11 Problems and Notes

Problems

1.

Show that A defined in Section 3 is a (ﬁ, gk)—martingale, and Ay de-
fined in Section 7 is a (P, Gx)-martingale.

. Fill in the details in the proof of Theorem 5.3.

. Write pp i (er) = E [( my€r) M | yk} , Km,kznf:m Ye and B, 1 (e7) =

E [Am+2 k| Xm = e, yk} Show that (3, ; satisfies the following back-
ward recursive equation

i
d;" " Bk (e6) re

::]:

N
ﬁmk er :MZ

(=11

Il
-

and Bk () = Bn—1.k (-) = 1. Then verify that:

M
Pk (€r) = Gm (er) Bk (er) H dyr

where g, (+) is given recursively by (4.3).

. Prove Theorem 7.4.

. It is pointed out in Section 10 that alternatively, the transitions at time

k of the processes X and Y could also depend on Yj_;. Describe the
dynamics of this model and define a new probability measure under
which the observed process Y is a sequence of i.i.d. random variables
uniformly distributed.

. Using a “double change of measure” changing both processes X and Y

into i.i.d. uniform random variables, rederive the recursions of Sections 4
to 6.

Notes

Hidden Markov models, HMMs, have found applications in many areas. The
survey by Rabiner (1989) describes their role in speech processing. Strat-
onovich (1960) describes some similar models in Stratonovich (1960). The
results of Astrom (1965) are obtained using Bayes’ rule, and the recursion
he obtained is related to Theorem 4.3.
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The expectation maximization, EM, algorithm was first introduced by
Baum and Petrie (1966) and further developed by Dempster et al. (1977).

Our formulation, in terms of filters which estimate the number of jumps
from one state to another 7, the occupation time O, and the 7 process,
avoids use of the forward-backward algorithm and does not require so much
memory. However, it requires a larger number of calculations that can be
done in parallel.

Related contributions can be found in Boel (1976) and Segall (1976b).
The latter discusses only a single counting observation process. Boel has
considered multidimensional point processes, but has not introduced Zakai
equations or the change of measure.

The continuous-time versions of these results are presented in Chapters 7
and 8.



CHAPTER 9

Continuous-Range
Observations

3.1 Introduction

This chapter first considers a discrete-time, finite-state Markov chain which
is observed through a real- or vector-valued function whose values are cor-
rupted by noise. For simplicity, we assume Gaussian noise. The main tool
is again a version in discrete time of Girsanov’s theorem. An explicit con-
struction is given of a new measure P under which all components of the
observation process are N (0, 1) i.i.d. random variables. Working under P
we obtain unnormalized, recursive estimators and smoothers for the state
of the Markov chain, given the observations. Furthermore, recursive estima-
tors and smoothers are derived for the number of jumps of the chain from
one state to another, for the occupation time in any state, and for processes
related to the observation process. These estimators allow the parameters
of our model, including the variance of the observation noise, to be rees-
timated using the EM algorithm (Baum, Petrie, Soules and Weiss, 1970).
Optimal recursive estimators for the state and parameters are obtained
using techniques similar to those of Chapter 2.

In the later part of the chapter observations with colored noise are con-
sidered, that is, there is correlation between the noise terms in the signal
at consecutive times. More generally, the case is discussed where a Markov
chain influences a linear system which, in turn, is observed in noise. That
is, mixed continuous-range and discrete-range state models are studied. All
calculations take place under the reference probability measure P for which
the observations are i.i.d.
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3.2 State and Observation Processes

All processes will be defined on a complete probability space (2, F, P). The
discrete-time parameter k will take values in N. Suppose { X,k € N} is a
finite-state chain representing the signal process. As in Chapter 2 the state
space of X is the set of unit vectors

sz{el,eg,...,eN}, eiZ(0,...,0,1,0,...,0)/€RN.

We assume X is given, or its distribution or mean F [Xj] is known. Also,
we assume as in Chapter 2 that X is a homogeneous Markov chain, so

P(Xkr1=¢ | Fu) =P (Xpp1=¢; | Xi).

Suppose X is not observed directly, but rather there is an observation
process {yx, k € N}. For simplicity suppose y is scalar. The case of vector y
is discussed in Section 8.

The signal model with real-valued y process has the form

Xiy1 = AXp + Vi,

Ykt1 = ¢ (Xg) + 0 (X)) w1 @1)

Here {wy} is a sequence of zero mean, unit variance normally distributed
N (0,1) i.i.d. random variables. Because X € Sx the functions ¢ and o
are determined by vectors ¢ = (c1,¢o,...,cy) and o = (01,09,...,0n8)
in RY; then ¢ (Xy) = (¢, Xi) and o (X}) = (o, Xi) where (, ) denotes the
inner product in RY.

We shall assume o; # 0 and thus without loss of generality that o; > 0,
1<i<N.

Notation 2.1 {F}, k € N, will denote the complete filtration generated
by X; {Vk}, k € N, will denote the complete filtration generated by y; {Gr},
k € N, will denote the complete filtration generated by X and y.

Remark 2.2 The observation model y, = ¢ (Xy) + 0 (Xg) wg, k € N, will
be discussed in Section 3.9. O

3.3 Conditional Expectations

We first quickly derive the conditional distribution of X} given Vi using
elementary considerations. Recall the wy, k € N, are N (0,1) i.i.d. random
variables, so wy, is independent of G and, in particular, of Vi, C Gy.
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For t € R consider the conditional distribution

N

Py St Vi)=Y Ploiwpy <t —c;) P(Xp=¢e; | V).
=1

Write X = E[ Xk | Vi] and ¢; (z) = (27mi2)_1/2 exp (—x%/20?) for the
N (0,0;) density. Then

N R t—c;
P (yk+1 §t|yk):Z<Xk,€i>/ @i (z) dx.
i=1 —o0

The conditional density of yi+1 given Y is, thus,

N

D (Xie)o; (t—cj).

j=1

Now the joint distribution
P(Xrp=c¢i, ypr1 <t| V) =P(Xp=¢€; | V) P(wrp1 <t —c)
t—c;
= <Xk,ei>/ @i (x) dx.
Therefore, using Bayes’ rule

E[(Xi i) | Ves1] =P (Xp =€ | Y1, Vi)
_ (Xi,ei)i (yrs1 — ci) .
S (K ei)és (yisn — <)

Consequently,

N

E[ Xk | Vit1] Z (Xk,ei) | Vit e

E <Xk7 ez>¢1 (yk+1 - C’L) ez

(3.1)
ZJ 1<Xk’eJ>¢J (Yr+1 — )
The recursive filter for X . follows:
Theorem 3.1
N /o
5 im1(Xk> €i)Pi (Y1 — i) Ae;
Xit1=E [ Xpg1 | Vi1 ] = Lz )%i (i ) ) (3.2)

Y1 Xk )05 (Yrsr — ¢;)
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Proof Vji1 is an Fi-martingale increment so E [Vi41 | Fi | = 0. However,
the wy are i.i.d. so

E Vi1 | Gy w1 ] = E [V | F] = 0.
Consequently, ' [Vii1 | Viy1] = E[E [ Vigr | Gk Wit1 ] Vi) = 0 and

Xis1 = B[ Xis1 | Ver1] = E[AXy + Vig1 | Viey1]
=AE [ Xk | Yit1]-

Substituting (3.1) the result follows. [ |

Remark 3.2 A difficulty with the recursion (3.2) is that it is not linear in
X. O

3.4 Change of Measure

Suppose w (.) is a real random variable with density ¢ (w) and ¢ and o are
known constants. Write y (.) = ¢+ ow (.).

We wish to introduce a new probability measure P, using a density \, so
that dP/dP = ), and under P the random variable y has density ¢. That

is,

P(y<t) =/_ ¢ (y)dy (4.1)
- /Iygtdp
Q
_ /Iy<t/\dP
Q
+oo
_/_ Iwgt;c)\(w)(b(w)dw
- [ 2wew? 42)

The last equality holds since y (.) = ¢ + ow (.). Consequently, from (4.1)
and (4.2) we must have

¢ (y)
¢ (w)

A(w) =
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So far, on (Q,F, P), our observation process {yx}, k € N, has the form
Ye+1 = (¢, Xk) + (0, Xj) wiy1, where the wy are N (0,1) i.i.d. Write ¢ ()
for the N (0, 1) density,

(0, Xo—1) ¢ (ye)

A= ¢ (we)

€N,
Ay =1,

and
k
Ae=]]» k=1
=1

Define a new probability measure P by setting the restriction of the Radon-
Nikodym derivative to Gy, equal to Ag: (dP/dP)|g, = Ak. The existence of
P follows from Kolmogorov’s Extension Theorem.

Lemma 4.1 Under P the yi, are N (0,1) i.i.d. random variables.

Proof P (yri1 <t|Gr)=E[I(yrs1 <t)|Gx]. From a version of Bayes’
Theorem this is

_ E[Agi1] (yr1 <t) | Gi]

E[Ags1 | Gr]
_ M E[Xet1] (Y1 < t) | Gi]
Ay E[Akt1 | Gr] '
Now
o X
Bl |6 = [ PZ O ) e =1,
SO

P(yrt1 <t Gr) = E[ M1 (yrtr < t) | G

oo O_X
= /_w% T (ypr1 < t) ¢ (wra1) dwgs

t
= / & (Yk+1) dyp+1 = P (yr41 < t).
The result follows. u

Conversely, we suppose we start with a probability measure Pon (Q,F)
such that under P
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L. {Xk}, k € N, is a Markov chain with transition matrix A, so that
Xpy1 = AXy + Viet1, where F [VkJrl | fk] =0, and

2. {yr}, k € N, is a sequence of N (0,1) i.i.d. random variables, (which
are, in particular, independent of the X}).

We then wish to construct a probability measure P such that under P

 Ykg1 — (6, Xp)

= keN
Wk+1 <0’, Xk> 9 S )

is a sequence of N (0, 1) i.i.d. random variables. That is, under P, yx11 =
(¢, Xk) + (0, Xi) wey1-

To construct P from P we introduce the inverses of A\, and Aj. Write
- ¢ (we)

(0, Xe—1) ¢ (ye)’

and

and define P by putting (dP/dP)|g, = A. Clearly the construction of
P using the factors )\ requires (o, X3) # 0. The assumption that the
observation process has nonsingular noise is standard in filtering theory.
If the components of ¢ are all different and (o, Xi) = 0 then observing
Yk+1 = ¢ implies Xi = e,.

Lemma 4.2 Under P the {wy}, k € N, is a sequence of N (0,1) i.i.d.
random variables.

Proof The proof is left as an exercise. ]

Remark 4.3 We shall work under P. However, it is under P that yx 1 =
(e, Xk) + (0, Xi) wr41 with the wy, N (0,1) and i.i.d. O

3.5 Recursive Estimation

Notation 5.1 If {H}, k € N, is any sequence adapted, say, to {G}, we
shall write o
Vi (Hy) = E [AcHy | Vi ] - (5.1)
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Now 7 (Hg) is an unnormalized conditional expectation of Hy given V.
In fact, again using a version of Bayes’ theorem, (see Lemma 2.3.3),

_— B [AHy [ V] o (Hy)

We shall take 79 (Xo) = E [Xj]; this provides the initial value for later
recursions.
Suppose {Hy}, k € N, is a scalar sequence. With

AHjpyy = Hyy — Hy, Hyy1 = Hi, + AHp
and
Vi1 (Heg1) = E [Mey1He | Vo1 ] + B [Ap1AHpg1 | Vi | -
Concentrating on the first term on the right
E[Api1Hy | Vi1 ] = E [ AeHphepr | Yesa |
o (m)

ESarirenibis

Notation 5.2 Write

P yk(;c(,)
O () = 705)¢((;k)) €0

Now sz\il (Xkg,e;) =1 and the y,, 1 <n <k + 1, are known so

M=

E[Aes1Hi | Vi1 ] = E[AeHe (X5, T (yrg1)) | Ves1 |

=1

(v (HpXk) ;T (Yrt1)) -

|
.MZ

i=1

In this way the estimate for vg4+1 (Hit1) involves g (Hg X ), that is, a
factor X} is introduced. As in Chapter 2, again the technical trick is to
investigate the recursion for yg41 (Hg+1Xk+1). A similar discussion to that
above leads to

N
HkaXk Z "Yk Hka > 61.
i=1
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Therefore, the estimate for vy, (HpXx) is expressed in terms of v (Hx Xk),
(together with other terms). Writing 1 for the vector (1,1,...,1) € RN we

see
N

(X, 1) = > (Xp,es) = 1,
=1
SO

(Yo (HeX®),1) =y ((HpXg, 1))
=Y (Hi (Xk, 1)) = i (Hi) - (5.3)
That is, once the unnormalized estimate v (HxX) is known the estimate

v (Hy) is obtained by summing the components of ~y (HyX}). Further-
more, taking Hi =1 in (5.3)
Y (1) = v (X, 1)) = (v (Xk), 1)

:E[Ak|yk], (5.4)
from (5.1). Consequently, once vj, (X) is determined, the normalizing fac-
tor v (1) in (5.2) is obtained by summing the components of the unnor-
malized estimate i (X}).

We now make these observations more precise by considering, as in Chap-
ter 2, a more specific, though general, process H. Recall a process {¢y} is

predictable with respect to the filtration Gy if ¢ is Gr_1-measurable for
each k. Recall Notation 5.2

Theorem 5.3 Suppose Hy is a scalar G-adapted process of the form: Hy
is Fo measurable Hyy1 = Hi + ag+1 + (Bk+1, Vir1) + 0k+1f (Yk41), n > 1.
Here, Vi1 = Xgy1— AXyg, [ is scalar valued, and o, 3, 6 are G-predictable
processes (3 will be an N -dimensional vector process). Then

Vir1 (He1Xk41) = Yet1.e+1 (Het1)
N
= Z{(% (HeXw) T (yer1)) ai
i=1

+ 7 (arr1 (X, T (yk41))) @i (5.5)
+ 3k (Orr1 (Xi, T (1)) f (wks1) aa
+ (diag (a;) — asa) v (Brsr (X, T’ (yk+1)>)}7

where a; = Ae;.

Proof The proof is similar to that of Theorem 2.5.3 and is omitted. ®
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Remark 5.4 We now consider special examples of the process H. In
all cases, as noted after Equation (5.4), once an estimate is obtained for
i (HiX}) the estimate for v (Hy) is obtained by summing the components
of v (HrX). Also, i (1) is the sum of the components of vy, (X}); this then
determines the (normalized) conditional expectation, Hy, = E[Hy | V] =

Vi (Hi) /e (1). i

3.6 States, Transitions, and Occupation Times

Estimators for the State
In Theorem 5.3 take Hy = Hy =1, ap, =0, B, =0, 6 = 0. Then

N

Vi1 (Xkt1) :Z Vi (Xk), yk+1)> (6.1)
=1

Compared with (3.2) this expression is linear in ~; (X%). We can also
obtain a recursive form for the unnormalized conditional expectation
E [Kk (X, ej) Xk | yk} ,m < k+ 1. (That is, the smoothed estimate of
the state.) For this we take Hy = H,, = (X, e5), m > m, ar =0, B =0,
6 = 0. From Theorem 5.3

N
F)/m,k+1 mvej Z F)/mk ’maej>)7rl (yk+l)>ai- (62)
=1

Estimators for the Number of Jumps

Recall X411 = AXy + Vg1, If the Markov chain jumps from state e, at
time k to state es at time k+1,1 < r, s < N, then (X, e.) (Xpt1,e5) = 1.
(Note we can have e, = e;.) The number of jumps from e, to e in time k+1
is, therefore,

k+1

ijrl Z <Xn—176r> <Xn,€5>

n=1

i+ (Xkser) (Xiy,es)
1A (X er) ((AXg, es) + (Vg €5))
krs + <Xk, €r> Agr + <Xk, €r> <Vk+17€s> .
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Apply Theorem 5.3 with Hy1y = J/%,, Ho = 0, agy1 = (Xi,er) asr,
Br+1 = (Xk, er) €, 0p+1 = 0. Then
N

Vit k+1 (Tify) = Z Ve (T X0) T (Y1) ) i

e (X T () v
T (X T (o)) €, (ding (ar) — aval).

Now ¢/, (diag (a,) — aral) = asres — asrGy SO

M=

YVerrhtt (Ti51) = Ve (TE°) T (yg1) ) i 63)

3

Il
/\>—'

Vi (Xk) rr (yk:+1)> AgrCs.

Consequently, together with the recursive equation for 74 (Xx) we have a
recursive estimator for i (J7°*Xk).

The smoother for J,.° given V41, E [KkHJanXkH | Vi1 ], k+1>m,
is obtained by taking Hy41 = Hym = J,0°, ak+1 = 0, Br+1 = 0, 0g+1 = 0.
Applying Theorem 5.3 we have

N
Yrm k1 ( Z Yk (T?) s T (Y1) @ (6.4)
1=1

Note the initialization of the right-hand side of this equation, when k = m
involve just the filtered estimate v, (T2 X ).

Estimators for the Occupation Time
Write Oj, for the number of times, up to time k, that X occupies the state
e,. Then

k+1

k1 = Z (Xn,er)

n=1
= OZ + <X;€,er> .
We apply Theorem 5.3 with Hx11 = Op .y, Ho = 0, agr1 = (Xg,er),
Br+1 =0, 01 = 0, so that
N .
Yet1k41 (Ohgr) = Z {(m (0 X1) , T (yks1)) @

=1
+ Y ((Xk, T7 (yg1)) ( Xk €q)) ai}
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that is

N
Vet 1h+1 (Ofy1) Z ek (OF) (yk+1)>az
P (6.5)

+ (v (X&), T7 (yg41)) ar

Together with the recursive estimate for -y (X}) this provides a recursive
estimate for y; (JxX}). For the unnormalized smoother E | A, O, X, | Vi |,
take Hy = Hp, = O}, k > m, o, = 0, B = 0, 6 = 0. Applying Theo-
rem 5.3 we have

N
TYm, ket ( Z Tm, k ( (yk+1)> (6.6)

=1

Estimators for the Observation Process

To reestimate the variance vector ¢ = (o71,...,oy)" and drift vector ¢ =
(c1,...,cn) in the observation process ypy1 = (¢, Xi) + (0, Xi) wpy1 we
shall require estimates for processes of the form

k+1

T (f) = Z<X€—17€r>f(y€)al <r <N,

{=1
=T (f) + Xk, er) £ (ybt1) (6.7)

where f denotes either f(y) = y or f(y) = y?, respectively. Applying
Theorem 5.3 with Hy1 = 7,/ | (f), Ho = 0, agy1 = 0, Bxy1 = 0 and
Ok+1 = (Xk, er), we have

N
Yerresr (T (f Z Ve (T ()T (ys1)) @i (6.8)
i=1 '

+ (e (X&), T7 (yrr1)) | (Yrr1) ar

The smoother is obtained by taking, for k > m, Hy41 = H,, = 7,7 (f),
g1 =0, Br+1 =0, dg+1 = 0. We obtain the following recursion

N
Ym, k:+1 = Z Ym, k ) FZ (yk+1)> a;. (69)
i=1
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3.7 EM-Parameter Reestimation

As for the parameter estimation of Chapter 2 we use again the EM (ex-
pectation maximization) multipass parameter estimation algorithm to re-
estimate the parameters of the signal model for the state X and observation
processes y.

Our filtering problem is described by the equations

X1 = AXp 4+ Vi
Yk+1 = <C, Xk> + <U, Xk>wk+1, k e N.

Here the Vj are martingale increments and the wy, are N (0,1) i.i.d. ran-
dom variables. The parameters in our model are given in the set § =
{(ajs), 1<4,j <N, ¢;, 1 <i<N, 0y, 1 <i< N} Furthermore,

N
> aji=1. (7.1)
j=1

Suppose such a set € is given and we wish to determine a new set 6 (k) =
{aji(k), 1 <4, <N, é&(k), 1<i<N, 6;(k), 1 <i< N} which maxi-
mizes the (conditional) log-likelihoods defined below. We update one set of
parameters at a time, beginning with the (a;;) which define the transition
probabilities of the Markov chain. As in Chapter 2

_IE_w(T) (7.2)

asr (k) = =
®) = o = e 0p

Consider now the parameters ¢;, 1 < ¢ < N. To change the parameters ¢;
to ¢; we must consider factors

AZ+1 (Xka yk+1)

— exp (ﬁ {<c, X2 — (&, X2 = 2ypsn (6 Xi) + 2y (6, X;J}) .

Write A} = Hif:l A; (Xe—1,y¢) and define a new measure P* so that the
restriction of its Radon-Nikodym derivative dP*/dP to Gy is given by
(dP*/dP)|g, = A:.
It can be checked that, under P*, {y, — (¢, X¢—1)}, £ € N, is a sequence
of N (0,0) i.i.d. random variables. Now
log g — 3 e Xeen)” = (6 Xea)” — 2y e Xeow) + 20 (2. X )
2 <0’, Xg_1>

(=1



3.7. EM-Parameter Reestimation

Il
M=

-~

20,

(=1 \r=1

i (Xe—1,en) (2 — & (k) — 2yecr + 2yeér (k) )

Ty (y) & (k) — O3 (k)
20,

+R(c),

I
sz

r=1

where R (c) is independent of é. Therefore,
N

E[log Af | V] =)

r=1

277 (y) & (k) — O3 (k)

20,

+R(c).

69

(7.3)

(Interchanging the order of conditioning and summation in £ would provide
a more cumbersome formula involving smoothed estimates of the state.)
Differentiating (7.3) in é, (k) and equating the derivative to 0 we see the

optimum choice of ¢, (k), given the observations up to time k, is

o by = T _ (T ),

oy, Tk (OF)

(7.4)

Consider now the parameters g;, 1 < ¢ < N. To change the parameters

o; to &; (k) (keeping the ¢; fixed), we must consider factors

(o, X)) P (_2(g—lxk> (Yrt1 — (c, Xk>)2)

e (XksYry1) = - '
(6, Xk) exp (—2<U—1Xk> (Yr+1 — (c, Xk>)2)

Write Ay = H];:l A (Xo_1,¢) and define P so that (alp/dP)|g,c = Ag.

Now
VAN
log Ay, = —Zlog (6, Xp-1) — ——— (g — (¢, Xo—1))* |+ R
0og Ak ; ( 2 og <UJ 4 1> 2 <6',ng1> (yé <Cu 4 1>) >+ (Ca 0)7
where R (¢, o) is independent of . Therefore,
E [IOgAk | yk]
EN
= ZZ—E <Xg,1,€i>10ga'i (k)
(=1 i=1
(Xo—1,€4) 5
T2 (k) (vi —2ciye+ ;) | Ve | + R(c,0)

=~ 52 {los0 004+ 5 (7 07) - 20T ) + 204 |
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Differentiating in &; (k) and equating the derivative to 0 we see that the
optimum choice of &; (k), given the observations, is

6i (k) = (0}) [T — 2e:i(y) + 2O}

RN | _ (7.5)
= (W (00) " T (TEWP)) = 2eme (TE () + e (OF)].

Based on the observations up to time k new parameters ag,. (k), 1 <
r,s <N, é-(k),1 <r <N, (k), 1 <r < N are given by (7.2), (7.4),
and (7.5). The quantities v (), v (OF), v (T (), and v (7,7 (v?)),
as well as the state estimate vy (X} ), can then be reevaluated using the new
parameters and at a later time perhaps new data, using the filtering and
smoothing equations. The sequences of densities A and A}, are increasing
by construction. Consequently, not only do our results provide exact re-
cursive estimates for the state of the Markov chain, but they also provide
an algorithm to make the model adaptive or “self-tuning” in a multipass
setting.

3.8 Vector Observations

Again, suppose the Markov chain has state space Sx = {e1,...,en} and
Xpy1 = AXy + Vit1, k€ N.
Suppose now the observation process is d-dimensional with components:

yli+1 = <Clan> + <Ulan>wli+1
yiﬂ = <C2,Xk> + <U2,Xk>wi+1

yg+1 = <Cdan>+<0d,Xk>w,‘Z+1, k e N.

Here, for 1 < j < d, = (c), ... ERN, oI = (0],0},...,0%) €
RY and the wz, 1 <j<d, ¢ €N, are N(0,1) i.i.d. random vari-
ables. We assume ¢/ > 0 for 1 < i < N, 1 < j < d. Write ¢/ (z) =
(2mo]) =2 exp (- 2/201-) for the N(0,07) density.

The analogs of the above results are easﬂy derived. For example:

E[(Xk, ) | Vi) =&, (y,iJrl,yiH,,”,ng)
<Xk7€i> (bll (y;iﬂ - Czl) - (bg (yg+1 — Cg)

Eévzl <Xkaej> i (yi+1 - le) o (ygﬂ - C?) .




3.8. Vector Observations

For 1 <4 < N write, with ¢ the N (0,1) density,

d (b <yk+lj CZ>
-1

J=1 J(b (yk+1)

€;.

j j d
r (y,m) =TI (yli+1a e 7yk+1
Then we obtain

et (Xas1) = ) (w(Xe), T(y, ) as,

-

s
Il
-

Fym,k+1(<vaeT>) = <’Ym,k(<XmaeT>)aFi(£k+1)>aiv m <k,

-

s
Il
-

N
Yotk (i) = D (kT Ty, ,))as

<.
—

+ <7k (Xk)v FT(gk+1)>asresv

N
Y k1 (T ) = Z<'Ym,k(j7:f); Iy, ,,))ai, m < k,
1=1
N .
Vit1,k+1(Ofy1) = Z<7k,k(02)7rl(£k+1)>ai
1=1
+ (e (Xk), T (g, ) ars
N
Yk t1(05) = D (m k(O Ty, , e, m<k.
i=1

Finally, with 7,7 f(y’) = Eif:l (Xo—1,e.)f(y)) we have

N

Ve (T f@)) = D (T F ), Ty, )i

=1
+ (X T (g, ) Wi Va1 0
N

ki (T f ) = ST ) e)T (D, m <k

=1

71
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The analog of (7.4) in the vector case is

g GL) _ (T (W)

Oy T (OF)

)

and the analog of (7.5) is
— (05) (G (7)) = 26, Gi () + 2O)
= (W(O)) " (e (T7 (1)) = 26 (T (7)) + Ek(OF)).

3.9 Zero Delay Observation Model

We have considered the observation process to be of the form
Yk+1 = <C, Xk> + <0, Xk> Wh41, k eN, (9.1)

so that the (k + 1)-th observation depends on the state of the signal at
the previous time k. From a dynamical point of view this is reasonable as
the reaction to X} is not instantaneous. However, another common model
which has no such delay is to take the observation process to be of the form

yr = (¢, Xg) + (o, X)) wy, k € N. (9.2)

Note that this is equivalent to relabeling our observation process. If, with
model (9.2), {V;} is the complete filtration generated by the observations
then, with Y, as defined in Section 2, Y = Ve11. Therefore, E [Xpy1| V)] =
E[ X1 | Yes ]

Alternatively, discussing the Zakai equations for model (9.2), the Radon-
Nikodym derivative at time k + 1 will also involve, in the notation of
Section 4, the factor Xn+1 (Xk+1,Yk+1)- Consequently, the unnormalized
estimate for model (9.2) will be

Vi1 (Xi41) = E [ Xpg1Mg1 | Vey |
yk+1*<cﬁxk+1>)

= -+ ( (0, Xk+1)
=F | AX,A
o, Xir1) & (1)

| Vi1

Using Zjvzl (Xk+1,€j) =1 this is

N M)
[AXAy (Xpi1,€5) | Vi1 | ——4
z:: eBk (X, ) | Vi ¢ (Yr+1)
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|
,MZ

E[AX) g (AXy + Vi1, €5) | Vi | T7 (ys)

<
Il
—

I
M=

F [AXkKk <AXk,8j> | yk} Fj (ykJrl) .
1

<.
Il

Now because Zil (Xk,e;) =1 this is
N .
Yepr (X)) = Y (v (X) s €0) 45T (yasn) as.
ij=1
Similar, more complicated, estimates can be obtained for J.¢, O}, 7,7
when model (9.2) is used.

3.10 Recursive Parameter Estimation

In this following three sections we discuss recursive methods for estimating
the parameters in a manner similar to that described in Chapter 2. We shall
suppose the signal model depends on a parameter § which takes values in
a measure space (0,3, A). The value of 6 is unknown and, in this section,
we suppose it is constant. That is, for 1 <i,j < N,

Qi (9) ZP(X;H_l :ei|Xk:€j79)
=P(X1=ei|X0=ej,9).

Write A (6) for the N x N matrix (a;; (0)), 1 <1i,5 < N. Also, {F¢},£ €N
will denote the complete filtration generated by X and 6, that is, for any
k € N, F}, is the complete o-field generated by Xy, ¢ < k, and 6.

We suppose the chain X is not observed directly; rather there is an
observation process {y¢}, £ € N, which, for simplicity, we suppose is real
valued. The extension to vector observations is straightforward. The real
observations process y has the form

Yk :c(@,Xk)—i-a(H,Xk)wk. (101)

Here the wy, ¢ € N, are real, i.i.d. random variables with a nonzero (pos-
itive) density ¢. The extension to the situation where the wy, £ € N, are
independent but have possibly different nonzero density functions ¢y, is
immediate. Because X}, is always one of the unit vectors e;, 1 <i < N, for
any 6 € © and functions ¢ (6, -) and o (0, -) are determined by vectors

c(0) = (c1(0),ca(),...,en (0)) €RY,
o (0) = (61(0),02(0),...,0n(0) € RN,
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so that

c (9, Xk) = <C (9) 7Xk> )

where (,) denotes the inner product in RY.

Notation 10.1 With G} = o{Xo,X1,...,Xe,Y1,---,Ye—1,0}, then
{Ge}, ¢ € N, will denote the complete filtration generated by GY and
{Ve},0 € N, will denote the complete filtration generated by Y7 where

ngZU{y07ylu"'7yf}'

The Recursive Densities

We shall work under probability measure P, so that {y}, £ € N, is a
sequence of i.i.d. random variables with density ¢, ¢ (y) > 0, and {X,},
¢ € N, is an independent Markov chain.

Notation 10.2 Write . (), k € N, for the unnormalized conditional den-
sity such that

E [Kk <Xk,81> (9 S d@) | yk] = ]Z (9) de.
The existence of g}, (§) will be discussed below.
Our main result follows. This provides a recursive, closed-form update
for ¢i (6). The normalized conditional density

pi (0)d0 = E[(Xy,e) (0 €db) | V]

is given in terms of ¢ by:

i qj (9)
0) = .
pk() ] 1foqi(u d)\(u)
Theorem 10.3
|1 (1) = B (grsr,u) Ay (u) | (10.2)

where

B (Yk+1,u) = diag (Ufl (u) 6™ (Y1) & <yk+1_—cl(u>)) vi=1,...,N.

ag; (’U,)
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Proof Suppose f: © — R is any measurable function. Then

E[f(0) (Xkt1,€) Mpyr | Yy ]

_ éf[f(t?) (Xt oy ()T (A2 3

X (ye1) oyt (0)

N J (u
:¢(yk+1)7lz/®f(u) ai; (u)¢<yk+l — ¢ (u)) qk( )d)\ (u).

ag; (u)

Therefore,

ag; (’U,)

N
; Ykt —ci(u)\ _ ;
b (0 =0 (220 00 1) 071 ) Y (00 ). (103)
=1
Using matrix notation the result follows. ]

Remark 10.4 Suppose © = (71,...,7n), 7 = P (Xo = ¢;), is the initial
distribution for Xy and h (u), is the prior density for 6. Then

g (u) = mih (u),

and the updated estimates are obtained by substituting in (10.2) for k > 1.
O

If the prior estimates are delta functions (i.e., unit masses at particular
values e; and 6), then ¢; (u) and higher unnormalized conditional distri-
butions can be calculated by formula (10.2). However, because no noise or
dynamics enter into 6, if delta functions are taken as the prior distributions
for # no updating takes place (this is not the case with the distribution for
X). This is to be expected because in the filtering procedure the prior does
not represent an initial guess for 6 given no information, but the best es-
timate for the distribution of # given the initial information. Care must,
therefore, be taken with the choice of the prior for § and, unless there is rea-
son to choose otherwise, priors should be taken so that they have support
on the whole range of 6.

Vector Observations

Again, suppose the Markov chain has state space {es,...,ex} and

Xk+1=A(6‘)Xk+Vk+1, keN,
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for some (unknown) 6 € ©.
Consider now the case where the observation process is d-dimensional
with components:

Yosr = (¢ (0), Xpg1) + (0" () , Xpt1) wipq
Yes1 = (2 (0), Xig1) + (0% (0) , Xpt1) wi iy

ngrl = <Cd (0) an+1> + <Ud (0) 7Xk+1> wnglv k€ N.
Here, for
1<i<dd (6)=(d0),...ch )0 O)=(ol(6),....0% ®) e RY

Further, the w;,l < j < d,f € N, are a family of independent random
variables with nonzero densities ¢; (w) .
The same techniques then establish the following result:

Theorem 10.5 With

& (Yk+1,u Z¢J (yk+l_ al ) H¢J yk—i—l

-1

G (W) = ¢ (g1, 0) Zaw (10.4)

3.11 HMMs with Colored Noise

In this section we extend the above results to observations with colored
noise. We suppose the signal model parameters depend on some parameter
6 which takes values in a measure space (0, 3, \). The value of 6 is unknown,
and we suppose it is constant. Then for 1 < i,j < N, write F? for the o-
field generated by Xo, X1,..., X, and 8 and {Fi},k € N, for the complete
filtration generated by Fp.

aij (9) :P(Xk+1:€i|Xk:€j,9)
:P(Xlzei|X0:ej,9).

Write A (0) for the N x N matrix (a;; (0)), 1 <i,5 < N. Then
Xip1=A0) X + Vi (11.1)
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where E [Vi41 | Fi] = 0.
The observation process {y,}, ¢ € N, which for simplicity is supposed to
be real-valued, has the form

Yk+1 = C(H,X;g.;_l) + dy (6‘) wg + -+ -+ d; (9) Wh41—r + W1 (11.2)

Here {wy}, k € N, is a sequence of i.i.d. random variables with nonzero den-
sity function ¢. (The extension to time varying densities ¢y, is immediate.)
Suppose d,- (8) # 0.

Here ¢ (6, X)) is a function, depending on a parameter 6, and the state
X}. Because Xy, is always one of the unit vectors e; the function ¢ (6,.) is
determined by a vector

and
C (9, Xk) = <C (9) ,Xk> N

where (, ) denotes the inner product in Euclidean space.
Write Tpy1 = (Whs1, Wk, -+, Wn_ry1) € R”, D=(1,0,...,0) € R",

—di(0) —d2(0) ... —dr—1(0) —d.(0)
1 0 o 0 0
T (0) = 0 1.0 0
0 0 1 0
Then
Tpp1 =T (0)Ti + D (yr41 — (¢ (0) , Xit1))
and

Yk+1 = <C (9) 7X7€+1> + <d (9) 7Tk> + Wt1-

The unobserved components are, therefore, Xy11, Tk, 6.
Again, because d, (6) # 0

0 d (0) 0 o

0 0 d, (6) 0
L)~ =d " (6) : :

0 0 0 d, (0)
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Suppose f and h are arbitrary real-valued test functions. Then
E [f(fk+1)h(9) <Xk+1a€i>Kk+1 | Vi1 ]
— [ 1@ndi € wdcar), (113
where ¢, (&, u) is the unnormalized conditional density such that

E[(Xit1,e) (0 € dO) I (Tpy1 € dz) A1 | Vi1 | = dfopq (2,0) dzdb
Then (11.3) equals

E[ (T (O)Th + D (g — i (8))) 1 (0)

< (A (0) X+ Vieys, o) &, L Wirr =i (0) = (d(0) 7)) | Vit
¢ (Yr+1)

= ¢ (yrsr) " (11.4)

//Z{f u) 2+ D (yes1 — ¢ (w)) h ()

x aij(u) ¢ (Yr1 — ci (w) = (d (u) , 2)) gk (2,u) bz dA (u).

Write
§=T(u)z+ D (yrt1 — ci (u))
SO
2 =T (u) " {& = D (yrs1 — ci (u)}
and

dzdX(u) =T (u)" " dedA (u) .

The functions f and h are arbitrary so from the equality of (11.3) and
(11.5) we have the following result:

Theorem 11.1 Write
O (yrp1,1,€) = ¢ (Ynsr) ¢(yk+1 = ci(u)

~{d (@), T (@) (€= D (e — & W)));
then for 1 <i < N

qlic+1(§au) = ‘I)(yk+1, ,€)

XZ% 0L (T()'(€ = Do — ei(w) ).

(11.5)
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3.12 Mixed-State HMM Estimation

In this section we consider the situation where a Markov chain influences a
linear system which, in turn, is observed linearly in noise. The parameters
of the model are supposedly unknown. Again a recursive expression is ob-
tained for the unnormalized density of the state and parameters given the
observations.

Again the state space of the Markov chain X is taken to be the set of
unit vectors {ey,...,en} so that:

Xit1 = A(0) X + Vit ke N.

The state of the linear system is given by a process x, k € N, taking values
in R?, and its dynamics are described by the equation

Tpt1 =F (0) zp + G(0) Xy + vg1.

Here v, k € N, is a sequence of independent random variables with densi-
ties ¥g.
The observation process has the form

Yet1 = C (8) zp + wiy1.
The wy, are independent random variables having strictly positive densi-

ties @p.
In summary, we have what we term a mixed-state HMM

Xk-‘rl =A (9) Xk + Vk+l7
,rkJrl :F(9)$k+G(0)Xk+vk+la (121)
yk+120(9)$k+wk+la ke N.

The parameter  takes values in some measurable space (0, 3, \). Again
write ¢, (z,0) for the unnormalized joint conditional density of x; and 6,
given that X = e; such that

g, (2,0)dzdf = E [ (Xy, e;) I (x, €dz) 1 (0 € df) Ag | Vi ].
For suitable test functions f and h consider

E[(Xps1,€) f(@r41) b (0) Apgr | Vit |

- [[1@nwa € aaw
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= E[<A (0) Xk + iy, ei) [ (F(0) 2z + G (0) Xi + wiy1)
x h(0) Kk¢k+1 Wrs1 — C(0) Tk) St Wrs1) " | Vi ]

= ¢k+1 yk—i—l

XZ/// a5 () £ (F () 2+ G (u) 5+ w) B 1)

X Gr1 (k1 — C(u) 2) Yira (w) gl (2, u) | dz dX (u) dw.

= Orr1 (Y1)

X Z/// aU h (u) prt1 (Yr1 — C (u) 2)

X i (€= F (u) 2+ G (u) ) af (2,w) | dz d) (u) de.

where the last equality follows by substituting & = F (u) z + G (u) e; + w,
Z=2z,u=u.

This identity holds for all test functions f and h, so we have the following
result:

Theorem 12.1 Write Yp41(&, u, 2, €5) = Yp41(E — F(u)z + G(u) e;); then

N
Ghoyr (Eu) = ¢k+1(yk+1)_1/;[aij(“) 1 (Yryr — C (u) 2) (12.2)

X i1 (€ u, 2, €5) g (2, u)|de.

3.13 Problems and Notes

Problems

1. Prove Lemma 4.2
2. Derive the recursion (5.6)
3. Show that the sequences Ay, and A} defined in Section 7 are martingales.

4. For the model described in Section 8 obtain estimates for J.°, Oj
and 7.

5. Derive the recursion for the unnormalized conditional density given in
Theorem 10.5
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Notes

The basic method of the chapter is again the change of measure. The
discrete-time version of Girsanov’s theorem provides a new probability mea-
sure under which all the observations are i.i.d. random variables. Also, to
obtain closed-form filters, estimates are obtained for processes Hy Xy. The
result in the first part of the chapter were first reported in Elliott (1994).
Continuous-time versions of these results were obtained in Elliott (1993b)
and can be found in Chapter 8.

Using filtering methods the forward-backward algorithm is not required
in the implementation of the EM algorithm. For a description of the EM
algorithm see Baum et al. (1970), and for recent applications see Krishna-
murthy and Moore (1993) and Dembo and Zeitouni (1986). Earlier appli-
cations of the measure change methods can be found in Brémaud and van
Schuppen (1976).






CHAPTER 4

Continuous-Range States
and Observations

4.1 Introduction

The standard model for linear, discrete-time signals and observations is con-
sidered, in which the coefficient matrices depend on unknown, time-varying
parameters. An explicit recursive expression is obtained for the unnormal-
ized, conditional expectation, given the observations, of the state and the
parameters. Results are developed for this special class of models, familiar
in many signal-processing contexts, as a prelude to more general nonlin-
ear models studied later in the chapter. Our construction of the equivalent
measure is explicit and the recursions have simple forms.

As an interesting special case, we consider the parameter estimation
problem for a general autoregressive, moving average exogenous input (AR-
MAX) model.

Also in this chapter, we explore the power of a double measure change
technique for achieving both the measurements and states i.i.d.

4.2 Linear Dynamics and Parameters

All processes are defined initially on a probability space (2, F, P). The
discrete-time model we wish to discuss has the form
Thp1 = A (Ops1) T + B (Op41) Vs, (2.1)
yp = C (Gk) zr + D (Hk) Wk -
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Here k € N and zq, or its distribution, are known. The signal process zy,
takes values in some Euclidean space R? while the observation process yx
takes values in R?. {v,}, £ € N, is a sequence of i.i.d., random variables, with
density functions 1, and vy has values in R?. Similarly, {w¢}, £ € N, is a
sequence of i.i.d. random variables with strictly positive density function ¢,
and wy also takes values in RY, that is, wy has the same dimensions as yy.
The matrices A (6.), B (6.), C (0.), and D (6.) have appropriate dimensions
and depend on the parameters 6.
For simplicity we suppose the parameters 6, € RP satisfy the dynamic
equations
Ok+1 = bk + Vig1. (2.3)

Here either g, or its distribution, is known, « is a real constant and {v;}
is a sequence of i.i.d. random variables with density p. Finally, we suppose
the matrices B (r) and D (r) are nonsingular for all r € R.

Notation 2.1 Write G, ;= 0{0p,1 <l <k+1,21,...,Tp41, Y1, Yk},

VO =o{y1,...,ur}- {Gx} and {Vx}, k € N, are the complete filtrations
generated by the completions of G and Yy, respectively.

Remarks 2.2 The above conditions can be modified. For example, the
parameters 6 can be vector valued. O

Measure Change and Estimation

Write
k

A = H |detD (Hk)|
=1

¢ (ye)
(we)

A new probability measure P can be defined on (£2, V2, Ge) by setting the
restriction to Gi41 of the Radon-Nikodym derivative dP/dP equal to Ay.

-

Lemma 2.3 Under P the random variables {y.}, ¢ € N, are i.i.d. with
density function ¢.

Proof Fort € R? the event {y, <t} = {yl <t', i=1,...,q}. Then
Py, <t|Gr) =E[I(yx <1) | Gy]

E A (yr <) | Gy ]
E[Ak|gk]

B |ldet D (6)] 5251 (e < 1) | G |
E {|detD(9k | Sl \Qk}
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Now
(det D (6)] 2%) }gk} = [ |det D (8))] 6 (1) dwy = 1
¢(wk) R4
SO
Py <t|Gy) = / T (g < #) |det D (6)| 6 (i) duwn
! td
/ ¢ (Yk) dyp.
The result follows. |

Suppose we now start with a probability measure P on (£, V=, Ge) such
that under P:

1. {yr}, k € N, is a sequence of i.i.d. R%-valued random variables with
positive density function ¢;

2. {0k}, k € N, are real variables satisfying (2.3);

3. {zx}, k € N, is a sequence of R%valued random variables satisfying
(2.1).

Note in particular that under P the y; and z, are independent. We now
construct, by an inverse procedure, a probability measure P such that
under P, {wg} leN, 1s a sequence of i.i.d. random variables with density ¢,
where wy, := D (6;) " (yx — C (01) v1).

To construct P from P, write

1 ¢(W)
¢ (ye)

k
Kk :H detD 6‘@ |_

P is defined by putting the restriction to Gy of the Radon-Nikodym deriva-
tive dP/ dP equal to Ay. The existence of P is a consequence of Kol-
mogorov’s theorem.

Unnormalized Estimates

Write g (2,6), k € N, for the unnormalized conditional density such that
E[Ap] (z) € d2)I (0 €df) | Vi | = qi (2,0) dz db.

The existence of g will be discussed below.
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We now derive a recursive update for gx. The normalized conditional
density
pr (2,0)dzdf = E I (x € dz) I (0 € dO) | Vi ]
is given by
qk (2,0)

pr(2,0) = Jrea fRP a0 (€, ) dedn.

Theorem 2.4 For k € N,

Qrr1 (2,A) = & (Yrt1) / At (Yr41,2, 0,6, 0)

< (B(0) ! (2= 4(0) ) au (&, 0) | de do
(2.4)

where

Al (yk+17 2, )‘a 57 U)
= 1det D)™ ¢ (D)™ (g = C (V) 2)) det B (o)™ p (A= a0

Proof Suppose f:R? x R — R is any Borel test function. Then

E[f (@rr1,0001) M | Vit |

/ /f 2, )\ QkJrl z )\)dzd)\

F(A(Oy) 2+ B (0r) vis1, g + V1) Mg |det D (Bq1)] "

X ¢( (Oks1) " (Yrs1 — C(9k+1)wk+1)) | Vit }¢(yk+l)_1

Substituting for the remaining xy; and g1 this is

_E{// A(0) 21, + B (0) w, afy, + v) Ay, |det D (aby, + v)| "

x ¢ (D (aby + 1/))_1
X (ygt1 — C (b + v) (A (0k) 2k + B () w))

< () p )] dwds | Vi fo )

_ ////[f(A()\)z—f—B()\)ma)\—&-l/) |det D (A + )|~

X ¢ (D (@A +1)) " (ges1 — Clad +v) (A(N) 2 + B(\) w))
X (w) p(v) g (2, V)] dz dw dXdv & (1) ™
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where the last equality follows since the y, are independent.
Write £ = A(X) 2+ B(A) w and 0 = aX + v. Then
dz dw (dX dv) = |det B (\)| ™" dz d¢ (d\do)

and the above integral equals

[[][11€oren@r s (D)™ - 0)9)
< (BT (€= AM)2)) ldet B[
% p (o —aX) g (z, )\)] dz de d) do.

This identity holds for all Borel test functions f, so the result follows. ®

Remarks 2.5 Suppose 7 (z) is the density of xg, and pg (A) is the density
of 6. Then qo (z,\) = 7 (2) po (\) and updated estimates are obtained by
substituting in (2.4). m|

Even if the prior estimates for xy or 6y are delta functions, the proof
of Theorem 4.1 gives a function for ¢; (z, A). In fact, if 7 (z) = § (x¢) and
po (A) =0 (0p) then we see

a1 (22 = [det D)o (D) (1 = C (V) 2))
X 1) (B (0)"" (2 — A (6) xo)) \det B (60)] " p (A — aflo) ,

and further updates follow from (2.4).

If there are no dynamics in one of the parameters, so that & = 1 and
p is the delta mass at 0 giving 0 = 0r_1, kK € N, then care must be
taken with the choice of prior distribution for 6. In fact, if po (0) is the
prior distribution, the above procedure gives an unnormalized conditional
density ¢ (z, \) for each possible value of 6, and g (2, \) = 3 (2, A) po (A).

4.3 The ARMAX Model

We now indicate how the general ARMAX model can be treated. Suppose
{ve}, £ € N, is a sequence of (real) i.i.d. random variables with density ).
Write

91 = (ala s )a’l"l) € erv

0> = (by,...,b.,) €R"™, (3.1)

03 = (c1,...,¢ry) ER™, Cry # 0,
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for the unknown coefficient vectors, or parameters. An ARMAX system
{ye} with exogenous inputs {us}, £ € N, is then given by equations of the
form

Ye+1 1Yk + -+ Qr Ykt 114
=biup+ -+ b Ukp1—ry + C1UE + - F CrgUkgi—rg + Ukg1. (3.2)

Write x for the column vector

/ r1+ro+rs
(yku'"7y/€+1—7‘17u/€7"'7u7€+1—7‘27vk7"'7vk+1—7‘3) e RS,

Suppose A(f) is the (r1+ r2 + 73) X (r1 4 r2 + r3) matrix having (—6%, 62 6%)
for its first row and 1 on the subdiagonal, with zeros elsewhere on other
rows, except the (r1 + 1) and (r; + 72 + 1) rows which are 0 € R™+72%7s,
B will denote the unit column vector in R"**"2%"3 having one in the (r1)
position and zeros elsewhere. C will denote the column vector in R7*T72+7s
having 1 in the first and (r1 + 72 + 1) position and zeros elsewhere. The
values of the u, are known exogenously; for example, if the variables u, are
control variables uy will depend on the values of yi,...,y;. System (3.2)
can then be written:

Tpp1 = A(0) 2 + Bugyr + Copr, (3.3)
Ykt1 = (0, Tx) + Vry1- (3.4)

Here 6 = (—6',0%,6%) and (, ) denotes the scalar product in R™+r2¥7s,
Representation (3.3), (3.4) is not a minimal representation; see, for exam-
ple, Anderson and Moore (1979) . However, it suffices for our discussion.
Notice the same noise term v11 appears in (3.3) and (3.4). This is circum-
vented by substituting in (3.3) to obtain

Tyl = (A (9) — 09/) xr + Bugt1 + Cyk41 (3.5)
together with

Yrt1 = (0, 2x) + Vg1 (3.6)
Write VP = o {y1,...,yx} and {V,}, £ € N, for the corresponding complete
filtration. Write Ty, for the column vector (vg, ..., vk+1_m)/ € R™ so that
T = (Yks -y Yktlory> Uks - - s Ukt 1—ry, T ), and, given Vg, the Ty, are/the
unknown components of xy. Let axi1 = yrr1 + (0%, (Y, e yk+1,hl> -
(02, (ug, ..., Upg1-ry)) and write o, for the vector aiC where C' =

(1,0,... ,O)/ € R™. Then with T’ (93) equal to the r3 x rs matrix
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—C1 —C2 ... —Cpz3—1 —Cpy
1 0 0 0
T (93) = 0 1 0 0
0 0 1 0

we have Tyq41 =T (93) Tk, + ay.4,. The model is chosen so that c,, # 0;
then

0 1 0 0
0 0 1 0
T 6‘3 -1 _ : : : . : :
( ) 0 0 0 1 0
0 0 1

_L _c1 __Cco _CT3—2 _07‘3—1

Crg Crg Crg 77 Crg Crg

Given ), we wish to determine the unnormalized conditional density of
Ty, and 0. Again, we suppose the processes are defined on (Q, F, F) under
which {y,}, ¢ € N, is a sequence of i.i.d. random variables with strictly
positive densities ¢. P is defined by putting the restriction of dP/dP to Gy,

equal to Ay. Here A}, = H];:l & (Yor1 — (0, 2¢)) /& (yer1). Write g (€, A) for
the unnormalized conditional density such that

E[I(T, €df)I(0€d\) Ay | Vi) = aqr (& N)dEdN.

Therefore we now consider any Borel test functions f : R™ — R and g :
R 72478 5 ROWrite G = (Yks - - Uk 1—ry ) and T = (Ups -+, U1 —ry) -
The same arguments to those used in Section 4 lead us to consider

E[f(@k+1)9(0) My | Viyr ]
- / / F(€) g (\) g (6,) dé dx

= B[ 1 (T (6°) 7 + 1) 9 (0) K
X & (yrgr + (0%, gy — (02,15 ) — (6%, 7))
|yk+1}¢(yk+1)_l

- //[f (C(V) 2+ ayr) 9N
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X0 (e + (A g) = (V5 T0) — (N, 2))

X qx (2, /\)} dzd\ o (yei1) ™" (3.7)
Write
¢=T (/\3) z+ (yk+1 + </\1737k> - </\2vﬂk>) C.
Then
z=1 ()\3)_1 (5 — (yk+1 + </\1737k> - </\27Ek>) 6)
and

dzd\ = dzd\' dX\? dX* =T (\*) d¢ d.
Substituting in (3.7) we have

/ / F(€) g (V) Gogr (€, 2) dé dA

~ [[[r©sm

x (s + () = (V. 7)

= (0T ()7 (€ = (e + (ML) — (0270)) ©) )
%6 () ae (T (%) 7 (€= (s + (VL) — (02,)) T). )
X T (X%) ] dgan

N—

We, therefore, have the following remarkable result for updating the un-
normalized, conditional density of T and @, given ):

Theorem 3.1
Qre+1 (§A) = A2 (Ykt1, Uk, Uk, &, )
xai (T ()7 (€= (ern + (ML) — (2,w)) ©) )
(3.8)
where Ay (Y1, Uk, Uk, §, N) = J;T%F ()\3)71 and & = ypp1 + (A i) —
(A2, 1) — (A, D) 7HE = (yrsr + ALy — (A w)) C))

Remark 3.2 This does not involve any integration. O

If 7y (€) is the prior density of z:g and po (A) the prior density for A, then
qo (&, A) = 7o (&) po (A). The prior density must reflect information known
about z¢ and 6, and not be just a guess. Because no dynamics or noise
enter the parameters 6 the estimation problem can be treated as though 6
is fixed, followed by an averaging over 6 using the density pg (A).
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4.4 Nonlinear Dynamics

In this section, nonlinear, vector-valued signal and observation dynamics
are considered in discrete time, with additive (not necessarily Gaussian)
noise. Here possibly singular measures describe the distribution of the state.
The forward recursion for the alpha unnormalized, conditional density, and
the backward recursion for the beta variable are derived. The unnormalized
smoothed density is, as in the Baum-Welch (1966) situation, the product
of alpha and beta.

The Baum-Welch algorithm usually discusses a Markov chain observed
in Gaussian noise (Baum and Petrie, 1966). The forward and backward
Baum-Welch estimators are related to considering the observations under
an equivalent probability measure; they provide unnormalized filtered and
smoothed estimates of the state of the Markov chain, given the observa-
tions.

Suppose {2}, k € N, is a discrete-time stochastic state process taking
values in some Euclidean space R™. We suppose that z¢ has a known dis-
tribution 7o (x). The observation process {yi}, k € N, takes value in some
Euclidean space RZ. The sets {v} and {wy} k € N, will be sequences of in-
dependent, R™, R%-valued, random variables with probability distributions
d¥ and densities ¢y, respectively. We assume the ¢, are strictly positive.

For k € N, Ay : R™ — R™, C}, : R? — R? are measurable functions, and
we suppose for k > 0 that

Tht1 = Apt1 (Tx) + Vg1,

Y = Cy, (xk) —+ wg. (4'1)

Measure Change for Observation Process

Define b0 (ve)
¢ \Ye
Ao = , {eN
©7 o (we)
Write
ggza{‘r()vxlv"'axkv ylv"'vyk}v

y;g:a{yl,...,yk},

and {Gr}, {Vk}, k € N, for the corresponding complete filtrations. With

k
Ap = H Ae
=1
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a new probability measure P can be defined by setting the restriction of
the Radon-Nikodym derivative (dP/dP)|g, equal to Ag. The existence of
P follows from Kolmogorov’s theorem; under P the random variables vy,
¢ € N, are independent and the density function of y, is ¢¢. Note that the
process x is the same under both measures.

Note that under P the y; are, in particular, independent of the z.
To represent the situation where the state influences the observations we
construct a probability measure P such that, under P, wi+1 = yr+1 —
Cr+1 (z1) 1s a sequence of independent random variables with positive den-
sity functions ¢y 1 (-). To construct P starting from P set

and

Under P the {v;} are independent random variables having densities ¢y.

Recursive Estimates

We shall work under measure P, so that the {y}, k € N, is a sequence of
independent R%valued random variables with densities ¢, and the {z},
k € N, satisfy the dynamics zp+1 = Agt1 (Tx) + Vkt1-

Notation 4.1 Write doy, (z), k € N, for the unnormalized conditional
probability measure such that

E [ka (Ik S dCC) | yk} = doy (:E)

Theorem 4.2 For k € N, a recursion for day, (.) is given by

dagy1 (2) = Prt1 sz:: (;k(ﬁ;l () /m dWki1 (2 — Ags1 (§)) day, (€) -

(4.2)

Proof Suppose f:R™ — R is any integrable Borel test function. Then

E [ R f (@r41) | Vi1 | = - (2) dagt (2).
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However, denoting

- C A TL) + v
Brsr (20, Vr11) = Prt1 (Yt 1 (Arg1 () k+1))7

Grot1 (Y1)
E [Kk-i-lf(wk-i-l) | yk+1]
= E [ A®rir (r, V1) f (Argr (@) + vig1) | Vi1 |

BT [ e (00,00 (A (00) + 0) @001 (0)

yk+1:|

-/ / g (60)  (Awsr (§) +0) dWip (v) da (§).

Write
2= Apy1(§) +o.

Consequently

(2) dagy1 (2)
R™

_ / Prt1 (Yr1 — Crya1 (2))
m Jrm Brt1 (Yr+1)

This identity holds for all Borel test functions f, so (4.2) follows. [ |

f(2) d¥iia (2 = Agy (§)) day (§) -

Notation 4.3 In this section m,k € N, and m < k. Write A =
H?:m Ao and dym i (z) for the unnormalized conditional probability mea-
sure such that

E[ApI (zm € dz) | Vi | = dymi () .
Theorem 4.4 For m,k e N, m <k

|d7m7k () = Bk (2) da, () ‘ (4.3)

where dayy, () is given recursively by Theorem 4.2 and
B () = E [Amsrk | @m =2, Vi |
Proof For an arbitrary integrable function f: R™ — R
E[Kf @n) %] = [ 1 @) dims (@),
Rm
However,

E[ka (:Em) | yk} :E[Kl,mf (xm)F [Km—i-l,k | Zo, - "7$m7yk] |yk] .
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Now o
E [Am-l-l,k | Tm = X, yk] = ﬁm,k: (:E) .
Consequently,

E [ka (xm) | yk] =F [Kl,mf (xm) Bk (xm) | yk]

and so, from Notation 4.1,

f@)dymp (@) = [ f(2) Bk (x) dam (z) .

Rm™ Rm™

The function f (z) is an arbitrary Borel test function; therefore, we see

Ay g () = Bk (x) day, () ]

Theorem 4.5 [, (z) satisfies the backward recursive equation

e (€)= s
X /m [m+1 Ums1 — Crmg1 (Apg (2) +w)) (44)
X Btk (Amg1 () +w)]d¥ g1 (w)
with Brp = 1.
Proof
Bk (2) = E [Apy1p | 2 = 2, Vi |

B
F [)\m+1Am+2k | Tm =T yk}
E[Am1E [ Aok | 2m =2, 2my1, Vi | | om =2, Vi ]

Om+1 Ymt1 — Cmg1 (A1 (@m) + Umg1))
¢m+1 (merl)

X /Berl,k (Am+1 (zm) + vm+1)

Tm = T, yk‘|

1
" Gt (Ymr1) /m {(bmﬂ Um+1 = Cmir (Amga (2) + w))

X Btk (A1 (2) + )| Wi (w) . m
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Change of Measure for the State Process

In this section we shall suppose that the noise in the state equation is not
singular, that is, each vy has a positive density function ;. The observation
process y is as described at the beginning of this section. Suppose P has
been constructed. Define

()

= ¥y (vg)

and
k
Ty =]
=1
then introduce a measure P by setting

ap
r— - Fk.
dP

g

k

Under P the random variables {z¢}, ¢ € N, are independent with density
function y.

We now start with a probability measure P on (£, V"1 Gn) under which
the process {z,} and {y,} are two sequences of independent random vari-
ables with respective densities ¢y and ¢,. Note the x and y are independent
of each other as well. To return to the real-world model described in Sec-
tion 2 we must define a probability measure P by setting

dapr
dP

_dP

ap| dP
Gk ap

| = ATy
Gk dpP e

Gk

Here T}, is the inverse of I, so that [}, = H;f:l%, where ¥, = ¥¢(ve) /1e(ze).
Again the existence of P is guaranteed by Kolmogorov’s Extension Theo-
rem.

Recursive Estimates

We shall work under P, so that {yr}, k € N, and {z}, k € N, are two
sequences of independent random variables with respective densities ¢y, and
k. Recall that a version of Bayes’ theorem states that for a G-adapted
sequence {gx},

E [Avgr | Vi |

Elge | V] = PIERN
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Similarly,

E [Tihegr | Vi
E[Ty| W]

Remark 4.6 The zj sequence is mdependent of the yi, sequence under
Therefore cond1t10n1ng on the z’s it is easily seen that E [Fk |yk]

E[Th] = E[T)] = 1.

E[Ag | V] =

P.

Notation 4.7 Suppose ay, (), k € N, is the unnormalized conditional den-
sity such that

E[Apl (z, € da) | Vi | = o () da.
We now rederive the recursive expression for ay.

Theorem 4.8 For k € N, a recursion for ay (x) is given by

Okt1 (Yht1 — Crg1 (2))
Prt1 (Y1) Rm

VY1 (2 — A1 (§)) o (§) d€.
@s)

g1 (z) =

Proof Suppose f:R™ — R is any integrable Borel test function. Then
E[f(zh41) Mpsr | Vo1 | = f (%) agy1 (z) dz. (4.6)
R’VVL

However,

E[f (i) MeraThpr | Vi ]

E[f(@r1) Agr [ V] = B [Tros | Yewr ]
k1 | Vi1

From Remark 4.6 the denominator equals 1. Using the independence of the
xr’s and the yi’s under P we see

E [ f(zhs1) Dy | Vit ]
=B [ f (zrs1) M1 Trp | Vigr | (4.7)

— / djk-{-l (.’I] _ Ak-‘,—l (5)) ¢k+1 (yk-i-l - Ck-‘rl (:E))ak (5) dé—f (JI) dr
m Jgm Or+1 (Yk+1)

Since f is an arbitrary Borel test function, equations (4.6) and (4.7) yield
at once (4.5). ]
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Notation 4.9 For m,k € N, m < k, write Ay, = H;f:m o and Tk =
H?:m Yo Write ym i (x) for the unnormalized conditional density such that

E [Kkl (xpm € dz) | yk} = Y.k () dz.

It can be shown as in Theorems 4.2, 4.4, and 4.5 that

[ (2) = am () Bk () (48)

where oy, (x) is given recursively by Theorem 4.8 and 3, i (¢) satisfies the
backward recursive equation

ﬁm,k (,T)

" Gmit (Umr1)
x / [Yms1 (2 = Ams (@) (4.9)
.

X Pmt1 Ym+1 — Cmt1 (2)) Brmsik (2)] dz.

Notation 4.10 Form € N, m < k, write &m mi1,k (2, 22) for the unnor-
malized conditional density such that

E [K;J (wm € dwl) I (:Em+1 € dx2) | yk} =&mom+1.k (xl,x2) dztdz?.
Also write prt1.x (x) for the unnormalized conditional density such that
E [Kk-i-ll(xk-i-l S d:v) | yk} = Pk+1,k (CL‘) dx.

Theorem 4.11 For m,k € N, m < k,

Emmt1,k+1 (l’l, 1’2)
= am (2') Bms 141 (22) Yt (2% — A (21))
" Pm+1 (Yms1 — Cmgr (22))

Gm+1 (Ym+1)

(4.10)

Proof Suppose f,g : R™ — R are arbitrary integrable Borel functions.
Then

E[f(zm) g @mi1) ReraThir | Viyr ]
= / / £ (@) g (22) Emmsr o (21, 22) do'da? (4.11)
R™ JR™

= E[E [ f (Im) g (33m+1) KO,erleJrZk+1f0,m+1fm+2,k+l
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| an-"axm-i-luyk:-i-l} ‘ yk-i—l]

Il
S

{f (m) g (@m+1) Rom1To,m+1
X E[Amyo ki1 Dmiz kit | Tmit, Virr | | yk+1:|

= E[f(xm) g @m+1) Noms1T0m+1Bms1h+1 (Tms1) | Vis1 |

= E{ f (Im)KO,mFO,m

<[ o6 v (22 = A )

Gmt1 (Yma1 — Cmyr (22))
¢m+1 (ym-i-l)

= / /m [f (z') g (%) Yms1 (2% — Ay (21)) (4.12)

¢m+1 (ym+1 - Oerl (-IQ))
¢m+1 (ym-i-l)

Since f(z) and g(z) are two arbitrary Borel test functions, comparing
(4.11) with (4.12) gives equation (4.10). [ |

Bm+1,k+1 (362)}612172 } Vi+1 }

Btk (27) am (ﬂcl)] dz'da.

It is left an exercise to show that the one-step predictor satisfies the
equation:

pn @ = [ ] s 5= Cuon (@) 1 (0 = A () (2) dy
(4.13)

Remark 4.12 The expression for unnormalized conditional density given
by (4.13) can be easily generalized to the rth step predictor; the corre-
sponding expression is

Pk+r,k (I)

= / H(yl, ooyt at et x) ap(2)dyt ... dy"det ... da""tdz
mr JRAr

where
H(y',...,y", 2", ... 2" " a)
= 0re1 (4 ~Cirr (1)) drs2 (1~ Oz (21)) - G (0 —Cgr ()
i1 (21 = App1 (2)) g (82— Appo (21) - - g (€= Apgr (2771)).0
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4.5 Kalman Filter

Assume here that state and observation processes are given by the linear
dynamics

Th+1 = Ak+1(Ek + Vk+41 S Rm, (51)
yr = Crxp + wi € R,

Ag, Cy are matrices of appropriate dimensions, vy, wi and zy are normally
distributed with means 0 and respective covariance matrices @, Ry and
¥0j0, assumed nonsingular. The conditional density of x) given the observa-
tions up to time k is given by py, () = a (z) / [gm ar (z) dz, where ay, (z) is
the unnormalized density given by (4.5). The linearity of (5.1) and (5.2) im-
plies that py, () is also normally distributed with mean @, = E [z | V|
and associated error covariance matrix X, = E[(azk — ik‘k) (xk — i:k|k)/|
yk}, actually independent of yi. Our purpose in this section is to give
recursive estimates of Z;, and ¥, using the recursion for ay, (2):

ann (@) =K @) [ ew{=3 |0 - A8 Gk 0 - Ang) 53
+ (€ - :Ek\k)/E,g}c (€- JEM)} }d§
in view of (4.5) and the densities ¢p41 and Yg1;

K (2) = i1 (Y1 — Cry1) (27T)7m/2 |Qk+1|71/2 |Ek|k‘—1/2. (5.4)
Prt1 (Y1)

Leaving only terms containing the variable £ under the integration symbol
n (5.3), then

s 2) = Ka (@) |

m

exp [—% (¢Zihe - @Hs)] s (55)
where
1 r—1 A1 —1 4
Ki(z) = K () exp {_5 (55 Qv + xkkzkkxkk)] (5.6)

_71 _ _
Sir1 = A1 Qi A1 + S (5.7)

Bor =2 (¥ QfrAren + 25,5 ) (5.8)
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Completing the “square” in (5.5) ag41 () is equal to

K (z) exp l—% <_ Bt (Zkt1) 5k+1>]

4

1/6-3% - )
o /Rm exp [_5 (5 k;lﬂkﬂ) Ek—il-l (5 B k+125k+1)] i (5.9)

1 BroiSrs1Be —1 2,
= K, (z)exp l_g <_k+lf+l+l Ek+1’ (2m) "™/

In view of (5.3), (5.6), (5.8), and (5.9) we have
g1 (z) = Kz exp [—% (= Epsappnr) Zﬁukﬂ (z - j?k-i-l\k-i-l)} (5.10)

where K> is a constant independent of z, and using (5.10) and (5.8)

-1 _ N1 -1 3 / 1
Yitit1 = Qg1 — Qrepr Arr1 Xer1 Ap 1 Qs
/o1
+ Chp1 By Gl
—1 % — -1 3 —1 4 ’ —1
(Ek+1|k+1xk+1\k+l) = Qrp1Ar+1 k11 (Ek‘kxk\k) + Cros1 Rt 1Ykt

SELEY -1 -1
Y1 = A1 Q1 A + X

(5.11)
In summary we have the following:

Theorem 5.1 For the linear model described by equations (5.1) and (5.2),
the conditional mean and covariance matriz of the state process xj are
giwen by the so-called information filter version of the Kalman filter equa-
tions (5.11).

The Kalman filter is frequently implemented in its one-step-ahead predic-
tion form to achieve #j4q1, = E[zr41 | Vi] with associated estimation
error covariance Y 1|x. Immediately, taking conditional expectations on
the model (5.1), (5.2) we have the so-called time update equations

Trpe = Ak Trks

(5.12)
Setik = Arp1ZppAryr + Qrrr-

Further manipulations yield the so-called measurement update equations

S = Brpp—1 + Ki (Yo — Crdigpr—1)
1
Stk = Skk—1 — Skk—1Ck (CeZkje—1C + Ri) ~ Celpp—1, (5.13)
—1
Ki = Sp—1Cy (CrZpp—1Cr + Rie)
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Application of the Matriz Inversion Lemma to the second equation in
(5.13) gives directly a recursion in terms of inverses:

—1 —1 —1
Sk = S + CLRy Ch.

One can also obtain
_ - - 1817 &
Eki”k = [I — App1 (Aes1 + Qi) } Ag1,
1 -1\ y—1 -1
A1 = (Ak—i-l) Ek|k (Ak-i-l) .

These make clearer the connections between the information filter, which
updates Z,:l}c and (Z;ﬁciﬂkw) , and the covariance filter which updates ¥y 1
and Zy),_1. The reader is left to verify the complete algebraic equivalence
of the two filters.

Similarly, the density (% is an unnormalized Gaussian density of the form

Bre (z) = Zi 2m) "2 18k exp (= (z — ) Sk (= — )

where the Sy and ~y; are given by the backward recursions:

_ _ _ _ N
Sk t= ;Hleil (I - (Qk-il-l + Ol/c+1Rki10k+1 + Sk-‘il) )
x Ql;-il-lAkﬂLl?
1. _ _ _ -1
(Sy ') = A2+1Qkil (Qkil + Cllc+1Rki1Ck+1)
X (Cr1 By Y1 + (Sfiver)) -

(5.14)
It is unnecessary to determine the explicit form of Zj because it is clear
that the normalized probability density associated with Sy is (27r)7"/ 2%

|Sk]"? exp (=4 (x — )" Sk (= — ).

4.6 Problems and Notes

Problems

1. Show that the unnormalized conditional density of the one-step pre-
dictor ppt1k () = F [Ak+1l(xk+1 € dx) | yk] is given recursively by
(4.13).

2. Of interest in applications is the linear model with a singular matrix
coefficient in the noise term of the state dynamics:

Thtl = Az + szJrl S Rm,
yr = Cxp + wi € R
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Obtain recursive estimators (Hint: Set vy, = Buvj. Even if B is singular,
vy, always has probability distribution. The support of this distribution
is the set of values of Bvj. See also Section 4.)

3. Derive the backward algebraic recursions (5.14).

4. Consider the model whose dynamics are given by (2.1), (2.2), and (2.3).

Suppose now that the dynamics of the parameters §° are described by
finite-state Markov chains

O = A0 + Vi

where the V? are martingale increments (see Chapter 2). Find recursive
estimates of the conditional distribution of the state of the model.

Notes

The results of this chapter are familiar in many signal processing con-
texts. The ARMAX model is widely studied in the adaptive estimation
and control literature as well as in time-series analysis and economics. In
this ARMAX model case it is remarkable that the recursive formulae for
the unnormalized densities do not involve any integration.



CHAPTER D

A General Recursive
Filter

5.1 Introduction

In this chapter more general models are considered. We use again the same
reference measure methods. Both nonlinear with nonadditive noise and
linear dynamics are considered. In Section 7 the results are extended to a
parameter estimation problem. In this case the same noise enters the signal
and observations. In Section 8, an abstract formulation is given in terms
of tramsition densities. Finally, in Section 9 we discuss a correlated noise
case, where the noise in the observations appears in the state dynamics as
well.

5.2 Signal and Observations

All processes are defined initially on a probability space (2, F, P).
Suppose {x¢}, £ € N, is a discrete-time stochastic process taking values

in some Euclidean space R%. Then {v,}, ¢ € N, will denote a sequence of

independent R™-valued random variables. The density function of vy is .

a:RYxR" - RY
is a measurable function, and we suppose for k£ > 0 that

Tpt1 = a (T, Vg41) - (2.1)
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We suppose that xg, or its density m (z), is known. Finally, we assume
there is an inverse map d : R¢ x R — R™ such that if zx11 = a (25, ver1)
then

Vig+1 = d ($k+1,$k) . (2.2)

Note this condition is fulfilled if the noise is additive, so xx+1 = a (xg) +
Uk+1. We require d to be differentiable in the first variable.

The observation process {yi}, k € N, for simplicity, we suppose is real
valued; the extension to vector observations is immediate.

The observation noise {wy } will be a sequence of independent real-valued
random variables. We suppose each wy has a strictly positive density func-
tion ¢y. Also ¢ : R? x R — R is a measurable function and we suppose for
k > 0 that

yr = ¢ (xp, w) . (2.3)

Again we assume there is an inverse map ¢ : R x R — R such that if
Yk = ¢ (T, wi) then

wi, = g (Yr, Tk) - (2.4)

Again, this condition is satisfied for additive noise, when yi, = ¢ (xy) + w.
Finally we require the derivatives

de (zg, w)
ow ’

W=Wg

09 (y, k)

G(ykv‘rk) = ay

C (x;g, wk) =

to be nonsingular.

Remarks 2.1 The above conditions can be weakened or modified. For
example, appropriate changes would allow zj to be of the form zp1 =
a Tk, Tp—1, Vgy1)- 0

In summary, the dynamics of our model are given by:

Tk+1 = Q (Ikvvk+1) B

v = ¢ (2, we) (2.6)

v and wy, are sequences of independent R”- and R-valued random variables
with density functions ¢y, and ¢y, respectively, and the functions a(.,.),
c¢(.,.) satisfy the above conditions.
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5.3 Change of Measure

Define

Write

0
gk-‘rl :U{‘TO7‘T17'"7xk+17y17"'7yk}7
0
yk =U{y1,...,yk},

and {Gr}, {Vr}, k € N, for the corresponding complete filtrations. A new
probability measure P can be defined by setting the restriction of the
Radon-Nikodym derivative (dP/dP)lg,,, equal to Aj. Then simple ma-
nipulations as in earlier studies, and paralleling those below, show that
under P the random variables {y,}, ¢ € N, are independent with density
functions ¢, and the dynamics of = are as under P.

Starting with the probability measure P we can recover the probability
measure P such that under P

wy = g (Yr, Tx)

is a sequence of independent random variables with positive densities ¢y, ().
To construct P starting from P write

~  TT~ _ 17 % (we) o)L
A’“_el;[lM_é:Hlsbe(ye)cu’ )

P is defined by putting the restriction of the Radon-Nikodym derivative
(dP/dP)|g, equal to Ag. The existence of P follows from Kolmogorov’s
extension theorem.

Lemma 3.1 Under P the {we},? € N, are independent random variables
having densities ¢g.

Proof First

E[X|Gr] = - (Z; ((Z:))C(:vmwk)lm (k) dyi = /_Oo b1 (wi) dwy,
(given Gy, so that dxy, = 0)

=1
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Next
P(wp <t|Gy) =E[I(wp <t)|Gk]
B F[Kkl(wk < t) | gk}
E[Ax | Gr]
E [Xkl(wk < t) | gk]

/_OO I(wy, <) % O (e, wi) " e (yi) dyi

_ /_ Si (wr) dwy = P (wy < 1)

That is under P, the wy, are independent with densities ¢y. [ |

5.4 Recursive Estimates

We shall work under measure P, so that {yr}, k € N, is a sequence of
independent real random variables with densities ¢y ; furthermore, xx41 =
a (xg,vk+1) where the vy are independent random variables with densi-
ties 1. With £ = a(z,v), consider the inverse mapping v = d (£, z) and
derivative

_ . 4.1
96 e, (0

D (&, 21) =

Notation 4.1 Write qi () ,k € N, for the unnormalized conditional den-
sity such that

E[Ap] (z € d2) | Vi ] = qi (2) d=.

The existence of g will be discussed below. We denote |D| = |det D).

Theorem 4.2 For k € N we have the recursive estimates:

qer1 (§) = A1 (Yr+1,6) /Rd Y1 (d(§,2)) | D (€, 2) | gk (2) dz, (4.2)

where Ay (Yri1,€) = (D41 (9 Wrr1,6)) /Or+1 (Wrr1)] C (€, 9 (i1, 6))~",
and d(£,z) =v.
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Proof Suppose f: R? — R is any Borel test function. Then
E[f(zh41) Mg |yk+1}
/ f(2) qra (
= {f( (@rs V1)) Mkbrrr (9 (Yr1s Thr))
x C (@11, 9 Wk, Ter1)) " | yk+1}¢k+1 (Yrt1) ™
~5{ [ 7o) Teornr @ nensaton)
x C(a (@), 9 Yk, a (@x,0)) 7
X Pt (v)}dv | Vi1 }¢k+1 (1)~

:/ / {f(a(z,v))d)kﬂ(g(yk+1,@(zvv)))
Rd n

x C (a (Zv ’U) g (yk+1, a (Zv ’U)))71
X Vg1 (v) qr (2)} dvdz drsr (Y1)

Now
v
dvdz = |det g g_ dédz = |D (€, 2)| d€ dz,
o€ Oz
Consequently,
[ 1 ©an
Rd

/Rd /Rd &) Pry ( (yk+1,§))C(g,g(yk+1,§))_1
X g (d(€,2) qi (2) | D (&, 2)| | dE dz ra (ypgr) ™"

This identity holds for all Borel test functions f, so the result follows. ®

Remarks 4.3 Suppose 7 (z) is the density of xg, so for any Borel set
AcCR?

Plagc A) =P (z0 € A) = /Aw(z)dz.
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Then g () = 7(z) and updated estimates are obtained by substituting
in (4.2). Even if the prior estimates of zy are delta functions the proof of
Theorem 4.2 gives a function for ¢; (z). For example, suppose 7 (2) = § (x0),
the unit mass at xg. Then the argument of Theorem 4.2 gives

@1 (&) =1 (1) d1 (9 (W1,€) C (&9 (y1,€) ™ 1 (d (€ 20))|D (€ 0)] -

Subsequent recursions follow from (4.2). ad

A Second Information Pattern

Suppose as in Section 2 that 2,1 € R? and

Tpt1 = a (Tk, Vgt1) (4.3)

where the vy are independent random variables with density functions .
We now suppose the scalar observation process y; depends on the value of
x at the previous time, that is,

Yrt1 = ¢ (Th, Wrt1) - (4.4)

Again, the wy, are independent random variables with positive density func-
tions ¢. If (4.3) holds we assume vii11 = d (Tgy1,zx); if (4.4) holds we
assume Wit+1 = g (Yet1, k). Write G2 = o {zo, 1, ..., Tk, Y1, .., Y} and
Y? = o{y1,...,yx} and {Gi} and {Vx} for the corresponding complete
filtrations. Again, gx (z) will be the unnormalized density defined by

E[Ael (ze € d2) | Vi | = qi (2) dz.

The same method then gives the following result:

Theorem 4.4 With the dynamics and information pattern given by (4.3)
and (4-4)

01 © = [ Aalrn&2) v @EDa )b (49

where

A (s 6,2) = ¢k;1kii %’fof)) C (2,9 (i, 2)) "L D (6, 2)]
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This again gives the recursive update of the unnormalized density. Sup-
pose the dynamics are linear, so that

Tipt1 = AT + Vg1,

Ykt1 = (¢, Tg) + Wit

Here c is an R%-valued row vector. In this case (4.5) specializes to give the
following:

Corollary 4.5

1 €)= b )™ [ B (e = (e 2)) g (¢ = A2) ()

5.5 Extended Kalman Filter

The Kalman filter can be recovered for linear models as in Chapter 4,
Section 7. Indeed, the Kalman filter can reasonably be applied to lineariza-
tions of certain nonlinear models. These well-known results are included
for completeness; see also Anderson and Moore (1979).

Consider the restricted class of nonlinear models, in obvious notation

Tp1 = a(@k) + veg1, vk ~ N[0, Q. (5.1)
Y = c(:ck) + wy, Wy ~ N[O, Rk] (52)

Let us here continue to use the notation Zy; to denote some estimate of

Zk given measurements up until time k, even though this may not be a

conditional mean estimate. Let us also denote

da (x) dc (z)

o ; Cy =
ox ox

I:ik‘k I:ik‘k

Ap1 =

assuming the derivatives exist. If a (z),c(z) are sufficiently smooth, and
Zpk is close to xy, the following linearized model could be a reasonable
approximation to (5.1) and (5.2)

Tr1 = ApTr + Vet + Uk,
yr = Crxr + wi + Ui,

where u, = a(fck‘k) — ATy, Y = c(fck‘k,l) — CyZp|k—1 are known if
Zp|k, Trk—1 are known. The Kalman filter for this approximate model is a



110 Chapter 5. A General Recursive Filter

slight variation of that of Chapter 4, Section 5, and, suitably initialized, is

Trje = Bppp—1 + Kk (Y — ¢ (Trjp-1)) »
T = a (Exp)
Ki = Skje-1C (CrEpji—1C + Rk)_l ; (5.3)
Stk = Sfk—1 — Skfk—1Cr (CrZkje-1C% + Rk)il CrXpk—1,
Ytk = A1 g Ay + Qrra.

We stress that this is not an optimal filter unless the linearization is
exact. Indeed, the extended Kalman filter (EKF) can be far from optimal,
particularly in high noise environments, for poor initial conditions or, in-
deed, when the nonlinearities are not suitably smooth. Even so, it is widely
used in applications (see also Chapter 6).

5.6 Parameter Identification and Tracking

Again suppose the state of a system is described by a discrete-time stochas-
tic process {x}, k € N, taking values in R%. The noise sequence {vy},
k € N, is a family of independent R™-valued random variables. The density
function of vy is ¥, and we suppose ¥y, (v) > 0, Vv € R™. Further, we now
suppose there is an unknown parameter § which takes a value in a measure
space (€2, 3, A). For k > 0 we suppose

Tpt1 = a (zg, 0, 0541) - (6.1)

It is assumed that xg or its distribution, is known. The observation process
is again of the form

Y1 = ¢ (Tg, Vk41) - (6.2)

Note the same noise v appears in both signal and observation. We suppose
the observation process y is the same dimension n as the noise process
v, and there is an inverse map g : R® x R? — R™ such that if ypy3 =
¢ (xg, vp41) then

V1 = 9 (Yrr1,Tk) - (6.3)

Again, this is the case if the noise is additive.
Substituting (6.3) in (6.1) we see

Trp1 = a(xk, 0,9 (Yrs1, k) -
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We suppose there is an inverse map d such that £ = a (2,6, ¢ (y,2)) with

D (& Ok, yr) := %9;’%) (6.4)
§=Ek
then
Writing

k
Ve (ye) -
Ak:é:IIUJE (ZE)G(W,M—Q !

a new probability measure P can be defined by putting (dP/dP)|g, = A.
Calculations as before show that, for any Borel set A C R",

F(ykeAlgw:/Awk(y)d%

so that the y; are independent under P with densities Y- Therefore, we
start with a probability space (Q, F, P), such that under P

Try1 = a (g, 0,vr41)

and the {yx}, k € N, are a sequence of independent random variables with
strictly positive density functions t),.
Writing

k
T - T wesen) o
Ak_lzl_[l Ve (ye) C @1 v0)

a new probability measure P can be defined by putting (dP/dP)|g, = Ay.
As before, under P the random variables {v;}, k € N, are independent
with strictly positive densities 1.

Write g (£,0) for the unnormalized conditional density such that

3

qr (2,0)dzdf = F [I(:Ck €dz)I(0€dh)Ay | Jik] .
Let f:R? = R and h : © — R be suitable test functions. Then
E[f(@ks1) h(0) A1 | Vg1 |
~ [[1@n@an @ darw
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£ (@ (a0, (s, 22))) B () Ty Lt 19 Wi 7))

=F
Yrg1 (Yrr1)

X C (¢, g (Yrs1, 2x)) " ‘ yk+1‘|

— i )™ [[ 7@ (s D) B @) b (9 ()

% C (2,9 (er1:2) " e (2, w) | d€ A ().
Writing £ = a (2, u, g (Yk+1, %)), © = u, the above is
= Y1 (Yer1) // [f (&) h (w) Yrr1 (g (Y1, d (€ 1, Y1)

X C(d (&1, k1) 9 Wht1, d (€ 1, Y1)
X e (d€, 1, Y1) ) [D (€, )| | dE A ().

This identity is true for all test functions f and h, so we deduce the following
result:

Theorem 6.1 The following algebraic recursion updates the estimates
dk+1

Qrr1 (& u) = Az (& u, Yrr1) Va1 (9 (Yrr1, d (€0, yry1)))

X (Y1 (Y1) aw (d (€, yp41) ) 00

where,

A3 (57 Uu, yk+1) =C (d (55 u, ykJrl) g (ykJrla d (55 u, ykJrl)))il |D (57 u, yk+1)|

Remark 6.2 It is of interest that (6.6) does not involve any integration.
O

If 241 = A(0) 2 + vpr1 and yr1 = cxp + vgyq for suitable matrices
A(0),c then vir1 = g (Ykt1, Tk) = Ykt1 — Ck SO Zg41 = (A(0) — )z +
Yk+1-

In this case xx41,yr+1 and vgy1 have the same dimension. Therefore,
the inverse function d of (6.5) exists if (A (#) — ¢) is nonsingular, and then

rp = (A(0) — C)_l (Tht1 = Ykt1) = d(Tr1, 0, Yry1) -

In the case of parameter tracking the parameter 6 varies with time. Suppose
0r+1 takes values in RP and

Ok1+1 = Apbk + V41 (6.7)
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for some p x p matrix Ag. Here {1/} is a sequence of independent random
variables; vy has density ¢,. The dynamics, together with (6.7), are as
before

Thy1 = a (g, Ok, Vg1) (6.8)

Yet1 = C(Th, Vkt1) - 6.9)
If (6.9) holds then, as before, we suppose
Vkt1 = g (Yr+1, Th) - (6.10)
Consequently,
Tit1 = a (2, Ok, g (Ykt1,Tk)) - (6.11)
Arguing as above we are led to consider

E [f($k+1)h(9k+1)xk+1 | Vi1 ]

~ [[ @b a6 wdeirw

AL Y19 (Yrr1, 7r))
Vry1(Yrt1)

=F[f<a (s O g (s, 200)) B (Ao + st

x C(xk, g (yk+17$k))71 } yk-i—l]

= ¢k+1 yk-i—l

/ / (26,9 (5, 2))) h (Agf + 1) (1) i (9 (yisa. 2))
x C(z,9 (Yr+1, 2’))71 ax (2, 9)]dz do dv.

This time substitute

§=a(z,0,9(y,2),
u = Agb + v,
0=20.

The above conditional expectation then is equal to:
Vi1 (Y1)

// u— Aee) ¢k+1 (g (yk-i—lvd(gauuyk-i-l)))

X qk ( (gauu yk-i-l) 79) C (d (gaua yk-i-l) » g (yk+17d(§7 uayk-l-l)))_l
X |D (& us Yrt1)] | dO dE dA (u) .
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Again, the above identity is true for all test functions f and h and gives
the following results.

Theorem 6.3 The following recursion updates the unconditional density
qr (&,u) of the state xy, and parameter Oy :

Q1 (§u) = Ay (§,u7yk+1)/¢(u — A90) qi. (d (&, u, yrt1) ,0) dO,
(6.12)

where,

Ay (& U, Yrgt)
= V1 (Y1) Vi1 (9 Wir1o d (€ u, Yir1)))
x C (d (57 u, yk-i-l) y g (yk-l-lu d (67 u, yk-l—l)))_l |D (57 u, yk+l)|

5.7 Formulation in Terms of Transition Densities

In this section we give a formulation of the above results when the dynamics
of the state and observation processes are described by transition densities.
Again, all processes are supposed defined initially on a complete proba-
bility space (2, F, P).
Consider a signal process {z;}, k¥ € N, which takes values in R?. We
suppose z is a Markov process with transition densities py (x, z). That is,
P(zpy1 €de |z = 2) = prga (x, 2) do

and
BUf on) [ox =21 = [ f@)pos (2,2)do.

We suppose xq, or its distribution, is known. The process x is observed
through a R™-valued process y whose transitions are a function of z. That
is, we suppose there is a strictly positive density px (y, ) such that

P(yrr1 €dy | zx =2) = prt1 (v, ) dy. (7.1)

Again

Elf(yrs1) | on =2] = - I ) prt1 (v, ) dy.
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Suppose pg (y) is the unconditional probability density of yx, and that
px (y) > 0 for all y € R™. That is,

Elf(ye)l = [ f ) pex(y)dy.

R

Againu gg = O'{xf)uxlu ey Tk Yty e e 7y7€} and y]g - 0{y17 cee 7y7€}7 {gk}
and {)x} are, respectively, the complete filtrations generated by GY and
Yy
Write
)
V. AT

o Pe (e, Te-1)

and define a new probability measure by putting (dﬁ/ dP) |g, = Ak. Then
under P the y, are independent random variables with density py (y) > 0.
Suppose, therefore, we start with a probability space (Q, F, ?) such that,
under P, {x}} is a Markov process with transition densities py (x, z) and
the y are independent random variables with positive densities py (y). Now
write

k

H ye,Ie 1 .

=1 P (ye)

Define a probability measure P by putting (dP/dP)|g, = Aj. Consider
any Borel function f : R? — R with compact support and write g (&) for
the unnormalized conditional density such that

E[I(zr €d) Ay | V] = ar (&) dE;
then

E[f(#rt1) Aeys |yk+1]

/f Qo1 () de

~F [/R F(©) P (€, ay) dgR Lor 2] | ykﬂ] .

Pk+1 (yk—i-l

The yx11 are independent (of x) under P, so this is equal to

p )™ [ [ 1@ pn (€2) pn (1,2 (2) de e

This identity holds for all such functions f; therefore, we have:
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Theorem 7.1 The following recursive expression updates qy,:

01 ) = piss ()™ [ prn (€2 2 ()| (72)

5.8 Dependent Case

Dynamics

Suppose {zy}, k € N, is a discrete-time stochastic process taking values in
some Euclidean space R"”. We suppose that x¢ has a known distribution
7o (). {vk}, k € N, will be a sequence of independent, R™-valued, ran-
dom variables with probability distributions diy and {wy} a sequence of
independent R™-valued, random variables with positive densities ¢. For
k €N, ags1 : R™ x R® — R™ are measurable functions, and we suppose
for k > 0 that

Tpt1 = kt1 (T, Vig1) + W1 (8.1)
The observation process {yi}, k € N, takes values in some Euclidean space
R™. For k € N, ¢ : R™ — R™ are measurable functions and we suppose
for k > 1 that

Yk = ¢k (Tk) + Wk (8.2)

We assume that there is an inverse map di : R™ x R™ — R™ such that if
(8.1) holds then

Vkt1 = dpt1 (Tht1 — Wit 1, Tk) -
We also assume that there is an inverse map Vi : R™ — R™ such that if
ck (xg) + g = Wy, (zx) then Vi, (Wi (zx)) = xr. We now suppose we start
with a probability measure P on (£2,\/.2, G,) such that under P:

1. {yx}, k € N, is a sequence of independent random variables having
density functions ¢y, > 0.

2. Tpy1 = agrr (Th, Vkg1) FWep1 = A1 (T, Ver1) + Yrr1 — Crrt (Trrn)
or, using our assumptions,

Tit1 = Vi1 (@kt1 (Th, Vet1) + Y1) -

Working under the probability measure P, and denoting day, (z), k € N,
for the unnormalized conditional probability measure such that

E[Ap] (z, € dz) | Vi | :=day (),

it is left as an exercise to define Ay and show that: with D (., &) = %‘5’5)
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Theorem 8.1 For k € N, a recursion for day, (+) is given by

_ Okt (W1 — ekt (2))
dor (2) = k1 (Yr+1)

X / |D (Ck-i-l (Z)+Z_yk+17§)|
Rm
X day, (5) dg11 (dk+1 (Ck+1 (Z) +z— yk+1,§)) :

Notation 8.2 Here m,k € N and m < k. Write Ay, = H];:m M and
dym. i (x) for the unnormalized conditional probability measure such that

E [K;J (T € dz) | yk} = dYm.k ().
dym, k (z) describes the smoothed estimate of z,, given Vi, m < n.
Lemma 8.3 For m,k € N, m < k the smoothed estimate of x,, given YV
is given by:

dym, k (17) = Bm.k (33) da, (17)

where dayy, () is given recursively by Theorem 8.1 and

B (@) = E [ Amyrp | @m =2,V | -
Proof Let f:R™ — R be an arbitrary integrable function

E[Acf (@) | V] = A (@) dym,k (2) -

However,
E[Acf (@m) | Vo] =E [Aimf (@m) E [Ams1p | 2o, 2m, Vi ] | Vi ] -

Now o
E [Aerl,k | Tm = -I,yk] = 6m,k (17) .

Consequently,

and so, from our notation,

(‘T) d7m,k (n) = (I) ﬁm,k (I) dag, (:E) )
R™ R™

which yields at once the result. ]
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Lemma 8.4 (3,1 (z) satisfies the backward recursive equation

B (2) = (b1 (Yms1)) ™"
X - Om+1 Um+1 — Cm+1 Vg1 (@me1 (2, 0) + Ymy1)))
X /Berl,k (Verl (a'erl (I; w) + merl)) dmerl (w) .

Proof

5771,1@ (JJ)

E [Km-l-l,k | Tm = .’L',yk}
E

[quLleJan | Tm = -I,yk}

-E Om+1 (ym-i-l — Cm+1 (Vm-i-l (am-i-l (xmv Um-i-l) + ym-i-l)))
Gmt1 (Ym+1)
X E[Amjon | Tm =2, i1, Vi | | 2m = :Evyk‘|
-F D1 (merl — Cm+1 (Vm+1 (aerl (Imv Uerl) + merl)))

(bm-i-l (ym-‘rl)

X Btk Vit (@ma1 (Tm, Vmy1) + Yma1))

Tm —xvyk]

_ 1
 Omt1 Ymt1)

X /m |:¢m+l (Ym+1 — Emt1 (Ving1 (@m1 (@, w) + Ym1)))
X Brmt1.k Vg1 (@1 (2, w0) + ym-l-l))} dYmi1 (w). =

We can also obtain the one-step predictor.

Notation 8.5 Write dpyy1,x (x) for the unnormalized conditional proba-
bility measure such that

E [ Mgl (zy1 € dx) | Vi ] = dppya g (2) .

Lemma 8.6 The one-step predictor is given by the following equation:

od +x—v,
dpry1r (¥) = / ; Brr (Y — g (@) [ (Ckﬂéz) T—y2)

X dpi1 (dgr (e (2) +2 =y, 2)) dpg (2) dy.
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Proof Suppose f is an arbitrary integrable Borel function. Then
E[f(gckﬂ)xlwl |yk]

= (z) dprt1,k (7)
Rm
|:K F|: ¢k+1 (yk-i—l — Ck+1 (Vk+1 (ak-i-l (xku Uk-l—l) + yk+1)))
k
Gk+1 (Yrt1)

=

X f (Viey1 (aps1 (T, et1) + Yrr1)) ‘ Zo, - - -;Ikayk} ‘ yk]
= F{Kk / Or1 (Y — ckr1 Vit (a1 (Tr, w) +v)))
m R’VVL

< Vi (ane (o) + ) dy s () 91 |

= /m /m /m {f (Vit1 (k41 (2,w) +9))

X Grr1 (y = e (Viers (ans (2,0) + )|
X dppy1 (w) dpy (2) dy,

Let © = Vi1 (ag+1 (2,w) + y). Then w = dj41 (cpy1 () + 2 — y, 2). Hence

(r) dpry1,k ()

]Rm
od c )+r—y,z
= [ [ @ ot e o) |2l e D
™m m JRm T
X iy (drtr (Crt1 (%) + @ =y, 2)) dpi (2) dy,
and the result follows. u

A Second Model

Suppose {zy}, k € N, is a discrete time stochastic process taking values in
some Euclidean space R?. We suppose that zp has a known distribution
7o (). The set {vx}, ¥ € N, is a sequence of independent, R"-valued,
random variables with probability distributions diy and {wy} a sequence
of R™-valued, random variables with positive densities ¢p. For k € N,
ap : RY x R” x R™ — R? are measurable functions, and we suppose for
k > 0 that

Tk+1 = Qk+1 (:I:ku Uk-i—luwk-i-l) ) (83)
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and xy, is not observed directly. There is an observation process {yi}, k € N
taking values in some Euclidean space RP and for k € N, ¢ : RP — R? are
measurable functions such that

Yk+1 = Ck+1 ($k7 wk+1) . (8-4)

We assume that for each k € N there is an inverse map dj : R* x R x R™ —
R™ such that

Vi1 = dit1 (Tht1, Tk, Wht1) - (8.5)

We require dji to be differentiable in the first variable for each k. We also
assume that for each k, there is an inverse map gy : R? x R? — R™ such
that if (4.4) holds

Wk+1 = Gk+1 (yk+1, ivk) .

Finally, we require

Ocp41 (T, wy
Chir (T, Wis1) = M

ox .

Ogry1 (Y, T
Gk+1 (yk+1a$k) = % )
Yy Y=Yk+1

to be nonsingular for each k € N. Here the o-field generated by the signal
and observation processes is gg = 0 (20, @1, Tk, Y1,---,Yi) With com-
plete version {Gy} for & € N. The new probability measure P, under which
the {y¢} are independent with densities ¢y, is obtained if we define

dP| 1 ¢ (ye) 1
P - =Ap = g Y (W)Gé (e, xo—1) .

We immediately have, for & € N, a recursion for the unnormalized condi-
tional probability measure E [ AiI (zx € dz) | Vi | := day (2)

dagyy (7) = /d (2, 2, Yrt1) dpr1 (dryr (2, 2, g1 (Yrr1, 2))) doue (2) -
R

Here

Ort+1 (gr+1 Wrt1, 2 -1
D (2,2, Ykt1) = +¢(k+j(y(k+—1i_) ))Ck+1 (2, gk+1 (Yr+1, 2))

" }3dk+1 (7,2, grv1 (Yrt1,2))

ox
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5.9 Recursive Prediction Error Estimation

The case of optimal estimation for linear models with unknown parameters
0, as studied in Chapter 4, Section 2 is a specialization of the work of the
previous sections. In this case, the unknown constant parameters 6 can be
viewed also as states, denoted 0 with 0,41 = 0, = 0, and the state space
model with states xy, viz.

Tp1 = A(0) 2k + B (0) vier1,
yr = C (9) Tp + Wk, (9.1)

can be rewritten as a nonlinear system with states x, 0 as follows
0

9k+1 . 1 0 9k v
Tk+4+1 N 0 A (Gk) Tl B (Hk) P

yr = C (0k) x, + wy. (9.2)

+

Readers with a background in system identification will be aware that such
models are not usually the best ones for the purposes of identification;
see, for example, Ljung and Soderstrom (1983). The parametrization is
not unique in general. However, if one is uncertain of the signal model,
why not work with the unique signal model with a known stable universe,
termed the innovations model, or the canonical model. This model gen-
erates the same statistics for the measurements y;, and is simply derived
from the optimal conditional state estimator yielding conditional state es-
timates 2y | yr—1,0], denoted Zjj,_16. Indeed, the innovations model
is the right inverse of this system, and is given as, with 6y =6
Ok

0 I 0 0
~ k+1 = ~ Vkv (93)
Thy1ik,o0 0 A(bk) Tgp—1,0 K (0)

Yk = C (Ok) Tjk—1,0 + Vi (9.4)

_|_

where K (0;) = K (0) is the so-called conditional Kalman gain, and vy, is the
innovations white noise process. It usually makes sense in the parametriza-
tion process to have K () as a subset of 6. This avoids the need to calculate
the nonlinearities K (.) via the Riccati equation of the Kalman filter.

To achieve practical (but inevitably suboptimal) recursive filters for this
model, a first suggestion might be to apply the extended Kalman filter
(EKF) of Section 5.5, which is the Kalman filter applied to a linearized
version of (9.4). This leads to parameter estimates denoted 0}, and to esti-
mates of the optimal conditional estimate  Zg|k—1,0 which, in turn, one can
conveniently denote zk|k—1,®k,17 where O, denotes the set {00, . Hk}
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There is a global convergence theory providing reasonable conditions for
0y to approach 6 as k approaches co. Indeed, results are stronger in that the
EKF estimates approach the performance of the optimal filter asymptoti-
cally, and so this method is termed asymptotically optimal. Furthermore,
the algorithms can be simplified by neglecting certain terms that asymp-
totically approach zero in the EKF, without compromising the convergence
theory. The resulting algorithm is identical to a recursive prediction error
(RPE) estimator, as formulated in Moore and Weiss (1979); see Ljung and
Soderstrom (1983) for a more recent and complete treatment.

The RPE scheme seeks to select estimates ék on-line so as to minimize a
prediction error (yk — O(ékﬁjk\kq,é)k,l) in a squared average sense. Such
schemes, along with the EKF, apply to more general parametrized models
than linearly parametrized models, (9.2) and (9.4). Indeed, the next chapter
presents one such application.

Suffice it is to say here, the EKF and RPE schemes consist of three sub-
algorithms coupled together. The first is the conditional state estimator
driven from both y; and parameter estimates 0y, in lieu of 6, which yields
state estimates xk‘k 1.6, n lieu of &, _ 14 s desired. There is a sensi-
tivity filter, yielding estimates of the sensitivity of the state estimates and
prediction errors to parameter estimates as

0 (yk+1 -C(0) jjk+1|kyék—179)

8zk+1|k,é)k,1,9 _
ey : Y1 = 20

00

0=0%x 0=0

These are the states and output, respectively, of a filter also driven by yx
and 0. Details for this filter are not given here. Finally, there is an update
for the parameter estimates driven from y; and ¥y, as

ék = ék—l + Py, (yk —C (k) ‘%k|k—1,@k71) ’
Pl =P +

suitably initialized. The rationale for this is not developed here.

These subfilters and estimators are coupled to form the RPE scheme. The
full suite of the RPE components appears formidable for any application,
but it is finite-dimensional and asymptotically optimal under reasonable
conditions. Further development of this topic is omitted, save that in the
next chapter an application within the context of information state filtering
is developed.
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5.10 Problems and Notes

Problems
1. Establish the recursion given in Theorem 8.1

2. Suppose that x € R™ and
Tit1 = Ap41Tk + Vit1 + Wit

Here Ay are, for each k € N, m x m matrices, {v¢} is a sequence of
independent R™-valued random variables with probability distribution
dipy and {w,} is a sequence of independent R™-valued random variables
with positive densities ¢y (b). Further, suppose the R™-valued observa-
tion process has the form

yr = Crap + wi.

Here Cj are, for each k& € N, m X m matrices. Find recursions
for the conditional probability measures E[I (zy € dr)| V] and
E[I(xy €dx)| V], m# k.

3. Assume here that the signal and observation processes are given by the
dynamics

Thtl = Qk41Tk + Vkg1 + W1 € R,
Yr = cpxr + wi € R,

Here, ay, ci are real numbers, v and wy are normally distributed with
means 0 and respective variances o and 7z. Derive recursive estimates
of the conditional mean and variance of the process xj, given the obser-
vations up to time k.

4. Repeat Problem 3 for vector-valued z and y.

Notes

Section 8 is closer in spirit to earlier work of Ho and Lee (1968) and Ander-
son (1968). However, the role of the dynamics is not so apparent. Related
ideas can be found in Jazwinski (1970) and McGarthy (1974), but the mea-
sure transformation technique is not used in these references. A related
formula can be found in Campillo and le Gland (1989), which discusses
discretizations of the Zakai equation and applications of the expectation
maximization algorithm.






CHAPTER O

Practical Recursive
Filters

6.1 Introduction

Hidden Markov models with states in a finite discrete set and uncertain
parameters have been widely applied in areas such as communication sys-
tems, speech processing, and biological signal processing (Rabiner, 1989;
Chung, Krishnamurthy and Moore, 1991). A limitation of the techniques
presented in the previous chapters for such applications is the curse of
dimensionality which arises because the computational effort, speed, and
memory requirements are at least in proportion to the square of the num-
ber of states of the Markov chain, even with known fixed parameters. With
unknown parameters in a continuous range, the optimal estimators are
infinite-dimensional. In more practical reestimation algorithms which in-
volve multipasses through the data memory requirements are also pro-
portional to the length of data being processed. There is an incentive to
explore finite-dimensional on-line (sequential) practical algorithms, to seek
improvements in terms of memory and computational speed, and also to
cope with slowly varying unknown HMM parameters. This leads inevitably
into suboptimal schemes, which are quite difficult to analyze, but the re-
ward is practicality for engineering applications.

The key contribution of this chapter is to formulate HMMSs, with states
in a finite-discrete set and with unknown parameters, in such a way that
HMM filters and the extended Kalman filter (EKF) or related recursive
prediction error (RPE) techniques of previous chapters can be applied in
tandem. The EKF and RPE methods are, in essence, Kalman filters (KF)
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designed for linearized signal models with states in a continuous range. The
RPE methods are specializations of EKF algorithms for the case when the
unknown constant parameters of the model are viewed, and estimated, as
states. Certain EKF terms which go to zero asymptotically, in this EKF
case, can be set to zero without loss of convergence properties. This sim-
plification is, in fact, the RPE scheme. For HMM models, the parameters
to be estimated are the HMM transition probabilities, the N state values
of the Markov chain, and the measurement noise variance. The computa-
tional complexity for computing these estimates is of order at least N2
per time instant. The particular model parametrization we consider here
uses the square root of the transition probabilities constrained to the sur-
face of a sphere S¥~! in RY. The advantage of working on the sphere
is that estimates of transition probabilities are nonnegative and remain
normalized, as required. Of course, in practice, the model parameters are
often not constant but time varying, and then the RPE approach breaks
down.

In order to illustrate how optimal filter theory gives insight for real ap-
plications, we next address the task of demodulating signals for commu-
nication systems with fading noisy transmission channels. Such channels
can be the limiting factor in communications systems, particularly with
multipath situations arising from mobile receivers or transmitters.

Signal models in this situation have slowly varying parameters so that
RPE methods can not be used directly. We consider quadrature ampli-
tude modulation (QAM), frequency modulation (FM) and phase modulation
(PM). Related schemes are frequency shift keying (FSK) and phase shift
keying (PSK). Of course, traditional matched filters (MF), phase locked
loops (PLL), and automatic gain controllers (AGC) can be effective, but
they are known to be far from optimal, particularly in high noise. Opti-
mal schemes, on the other hand, are inherently infinite-dimensional and
are thus impractical. Also they may not be robust to modeling errors. The
challenge is to devise suboptimal robust demodulation schemes which can
be implemented by means of a digital signal processing chip. Our approach
here is to use KF techniques coupled with optimal (HMM) filtering, for
demodulation of modulated signals in complex Rayleigh fading channels.

State-Space Signal Model

As in earlier chapters, let X be a discrete-time homogeneous, first-order
Markov process belonging to a finite discrete set. The state space of X,
without loss of generality, can be identified with the set of unit vectors
Sx = {er,ea,...,en}, ei = (0,...,0,1,0,...,0)" € RN with 1 in the ith
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position. The transition probability matrix is
A= (aji)l §i,j§]\7whereaﬁ :P(XkJrl =€j |Xk :61')

so that E[Xg41 | Xi | = AX, Of course aj; > O,Zévzl aj; = 1, for each j.
We also denote {F;}, I € N the complete filtration generated by X, that
is, for any k € N, Fj, is the complete o-field generated by X;,l < k.

Recall that the dynamics of X} are given by the state equation

Xpy1 = AXy + Vi1 (1.1)

where V41 is a Fj, martingale increment, in that E [Vi41 | Fi] = 0.
We assume that X}, is hidden, that is, indirectly observed by measure-
ments yi. The observation process y; has the form

yr = (¢, Xi) + wy, wy, are i.id. ~ N [0,00] (1.2)

with (,) denoting the inner product in RY, and where ¢ € R is the
vector of state values of the Markov chain. Let ) be the o-field generated
by yx, k < 1 and let G be the complete filtration generated by Xy, ;..
We shall denote parametrized probability densities as by, (i) := b (yx, ci) =
Plyy € dy | X = e;,0], where

b (g, i) = ﬂ%exp [—%] (1.3)

Because wy, are i.i.d., the independence property
E(yk | Xe—1=e€i, Fr—2,Ve-1) = E(y | Xp—1 =€;)

holds and is essential for formulating the problem as an HMM. Also we as-
sume that the initial state probability vector for the Markov chain w = (m;)
is defined from m = P (Xo = ¢;). The HMM is denoted A = (4, ¢,m,02).

Model Parametrization

Suppose that A is parametrized by an unknown vector 6 so that A\ (0) =
(A(9),c(0),m 02 (0)). We propose a parametrization, the dimension of
which is N9 = N + N2 + 1, representing N state values, N? transition
probabilities, and the noise variance. We consider this parametrization

2 !/
0= (Cla-"aCNaslla'-'751N75217'-'73NNan)

where a;; = s?z The benefit of this parametrization is that the parameters
sji belong to the sphere SN=1 := {sj; : Ejvzl 5%, = 1} which is a smooth
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manifold. This is perhaps preferable to parametrizations of a;j; on a simplex
An = {aj | ZJ 165 = 1,a;; > 0} , where the boundary constraint
a;; > 0 can be a problem in estimation. Actually, working with angle
parametrizations on the sphere could be a further simplification to avoid
the normalization constraint.

Conditional Information-State Model

Let X, () denote the conditional filtered-state estimate of Xj at time
k, being given by X (0) := E[Xy | Y&, 0]. It proves convenient to work
with the unnormalized conditional estimates g, (6), termed here “forward”
information states. Thus

Xk (0) = E( X | Vi, 0) = (q (0),1) " qx (0) (1.4)

where 1 is the column vector containing all ones. Here g, () is conveniently
computed using the following “forward” recursion; see Chapter 3 or Rabiner
(1989):

Gr+1(0) = B (yk+1,0) A(0) ar () (1.5)

where B (y;,0) = diag (b (yg,c1),...,b(yk,cn)). Letting g1 (6) denote
the prediction F [yr+1 | Vi, 0], then

J+1(0) = (e, A(0) qu (0) < i (0),1>71)

and the prediction error ngi1 (0) := yg+1 — Jr+1 (0) is a martingale incre-
ment. Thus, the signal model (1.1) and (1.2) can now be written as (1.5)
together with

Y1 = (¢, A(0) i (0) gk (), 1)) + ngr () (1.6)

This can be referred to as a conditional innovations model or an infor-
mation state-model.

6.2 Recursive Prediction Error HMM Algorithm

For the information-state model in (1.5) and (1.6), we present in this sec-
tion an on-line prediction error algorithm for estimating the parameters
0, assumed to be constant. Here gi (f) is recursively estimated at each
iteration, using obvious notation, as follows

dk+1(01) = B(Yrs1, 1) A0k ) dr (Ok—1) (2.1)




6.2. Recursive Prediction Error HMM Algorithm 129

Wherg ék is Ehe recgrsive estimatg of the parameter vector based on Yy,
and Oy := {01,...,0;}. Let §x11(0k) denote the predicted output at time
k + 1 based on measurements up to time k. Then

1 (0k) = (c(0r), (dr (ékq),lylx‘l(ék)ék (Or-1)) (2.2)

The RPE parameter update equations are (Ljung and Soderstréom, 1983)

Ok = Doroj {0k + Yot1 Ryt V171 (On) } (2.3)
where
Ak11(Ok) = Ykt1 — Jrr1(O%) (2.4)
R <R1 - e et R ) - (25)
— Vk+1 (1= Ye+1) + Yer1¥) By Yreta

Here 7 is a gain sequence (often referred to as step size) satisfying,
o0 o0
=0, =00, 7} < 0. (2.6)
k=1 k=1

A selection vy, = k™! is often used. Also v, is the gradient

Uh = (—din(O-2),0/d0)|
0=0x_1

and Ry is the Hessian , or covariance matrix, approximation. For general
RPE schemes, the notation I'po;{.} represents a projection into the stabil-
ity domain. In our case, stability is guaranteed in the constraint domain, so
that T'proi{.} can be simply a projection into the constraint domain. This
is discussed below.

We now present gradient and projection calculations for the RPE based
algorithm (2.3)—(2.5), to estimate the HMM parameters ¢. The details are
not important for the reader unless an implementation is required.

The derivative vector, ¢y, defined above is given, for m,n € {1,..., N},
by
 O0Uk41(Ok-1,0)
Y1 = — 0
6="0,
~ N ~ /
_ [ 99k41(Ok-1,0) OGkt1(Ok-1,0) Ofr41(Ok—1,0) 2.7)
Ocm, ’ OSmn ’ o2 o '
=Ugk
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To evaluate vy, first note that (2.2) can be rewritten as
N N _
Ukt1(Ok—1,0) = a1 Z <Cj Zaiqu;i;) where ap = (Gs,1)7".  (2.8)
= =1

Here we omit the obvious dependence of ¢ on (:)k,l, and ¢;, a;; on 6. The
derivatives with respect to the discrete-state values, ¢;, are obtained by

differentiating (2.8) to yield
al]’ﬁc(’”))

Mz

Or1(Ox_1,0) al i al

i=1 j=1 i=1
N N ‘
<Z e (m ) Z <Cz Z aijéi) (2.9)
j=1 i=1
where 7, (m) := 8¢}, /dcm, from which we have

N .

> i (m) aigb (Yesr, ;) if j #m

i=1

Myt (M) = ¢ " nj (m) @i (yesr, ¢5)
i=1
L S— (ykJrl <Z Qkaw) (Yr+1,¢5) ifj=m

(2.10)
Recalling that s;; € SN~1 then derivatives with respect to the transition
probabilities are those on the tangent space of SV~1. Thus

A N
OUk+1(Ok, 0) .
Tmn = 2aqun CnSmn — ; Césmnsfnz

N
+ ag Z <cj Z sfjﬂg (m, n))

=1

N ) N N )
- (Z@@ (mm)) > (cj Z%@@) (211)

j=1 i=1
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where §i+1 (m,n) = 8@£+1/8smn, and
Zék m,n) s5;b (yry1, ¢5)
— 250 5mndib (Yr+1, ¢5) ifj#n

ng m, n (ykJrvaJ)

&y (myn) = (2.12)

+ 25 (1 — smj) ar'b (Y41, ¢j) ifj=n

In achieving an update estimate of s;; at time k + 1 via (2.7), there is a
required projection I'poj{.} into the constraint domain (the surface of a
unit sphere in RY). Thus, in updating 345, first an unconstrained update,
denoted 3¥, is derived then projected onto the sphere by renormalization
as follows, ,

2 (83)

Sij = w (2.13)

=1 as required.

Z]’

to achieve EJ 1 85

The derivative with respect to the measurement noise variance, o2, is
given by

Oijk+1(Ok, )
S e Yoy

where piﬂ = 8%“/803}, and
N

Pk+1 Z pkau yk-i-la CJ)
=1

(5w (G oo e

Remarks 2.1

1. Proofs of convergence of 0 to 6 as k — oo under reasonable identi-
fiability and excitation conditions for this scheme are a little uncon-
ventional since V} is a martingale increment rather than white noise,
and is beyond the scope of this chapter.
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lykJrl
. Sensitivity
© equations B(.)A
Ja( ¥ )= 2t = f2( )
1) ddy gy, 2( V1
,,,,,,,,,,,,,,,,,,,, a4
3
Covariance
Y1 equations
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Rfc1+1
i i B ?l\ |
k+1 k k+1 _
o 8 O—m
HMM
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estimate @ : ~
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Where f1 (.) is given implicitly in (2.10), (2.12), and (2.15),
and fy (.) is given implicitly in (2.9), (2.11), and (2.14).

Figure 2.1. RPE/HMM scheme for HMM identification

2. The RPE technique is in fact a Newton-type off-line reestimation ap-
proach and so, when convergent, is quadratically convergent.

3. Figure 2.1 shows the recursive prediction error HMM scheme, where
g denotes gx (Or_1). ]

Scaling From (1.5), (2.10), (2.12), and (2.15) it is noted that as k increases,
qi. and derivatives of ¢}, decrease exponentially and can quickly exceed the
numerical range of the computer. In order to develop a consistent scaling
strategy the scaling factor must cancel out in the final update equations,
(2.3) and (2.5), to ensure it has no effect on the estimates. We suggest
the following strategy for scaling based on techniques in Rabiner (1989).
Let gx be the actual unscaled forward variable defined in (1.5), gx be the
unscaled updated version based on previous scaled version, and g be the
scaled updated version based on previous scaled version, that is,
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: : 1
Gk = fr@i  where fp = —x— (2.16)
21:1 q

It follows from (216) that g (’L) = frqx (Z) with fpr = (fkfkfl e fo) For
the derivative terms (7,&, p) similar expressions can be derived using the
same scaling factor, fr. That is, 7 (i) = frnt, E,@ = fr& and pi, = frpt.
It can be shown, by direct substitution into (2.10), (2.12), and (2.15), that
derivatives of ¥41 evaluated with g, 7, Ek, and py are equivalent to the
case where no scaling is to take place.

Increased Step Size and Averaging Equations (2.3) and (2.5) show
how the gain sequence ~y; scales the update of both Rj and 0. Apart
from satisfying the restrictions in (2.6) it can be any function. Generally,
it has the form v, = 7/k™, n € R. In the derivation of (2.5), v = 1
is assumed. In practice, for this case, v tends to become too small too
quickly, and does not allow fast convergence for initial estimates chosen
far from the minimum error point. To overcome this problem, Polyak and
Juditsky (1992) suggest a method for applying a larger step size, (i.e.,
0 < n < 1), and then averaging the estimate. Averaging is used to get a
smoother estimate, as the larger step will mean higher sensitivity to noise,
and also to ensure that the third requirement in (2.6) remains satisfied. In
our simulations we chose n = 0.5.

Simulation Studies Presented in Tables 2.1 to 2.4 are results of simu-
lations carried out using two-state Markov chains in white Gaussian noise.
Each table is generated from 50 simulations, and the error function used is
given by

50

ERR (&) = % Z (2 — 2)°.

The parameters of the Markov chain are ¢ = [0 1] and a;; = 0.9. The
signal-to-noise ratio SNR is therefore given by 10log (1 /Uﬁ,). Initial pa-
rameter estimates used in generating Tables 2.1 and 2.2 are ¢ = [0.4 0.6]'
and a;; = 0.5. The tables demonstrate that the HMM /RPE algorithms are
“asymptotically optimal,” even for high noise, and also for a wide range
of initial conditions. In some inadequately excited cases the state value
estimates collapse to a single state.

The algorithms have been shown to work for Markov chains with up to
six states, and no limit to the number of states is envisaged. For further
examples of such simulation studies, the reader is directed to Collings,
Krishnamurthy and Moore (1993).
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Table 2.3. Effect of variations in initial transition probability estimates.
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Iterations || ERR(é;) | ERR(¢2) | ERR(a11) | ERR(as2)
25000 0.085 0.088 0.042 0.047
50000 0.058 0.041 0.017 0.013
75000 0.045 0.041 0.015 0.010

100000 0.036 0.033 0.011 0.012

Table 2.1. Parameter estimation error for SNR = 0dB.

Iterations || ERR(¢1) | ERR(é2) | ERR(d11) | ERR(a22)
25000 0.271 0.238 0.131 0.146
50000 0.245 0.232 0.159 0.137
75000 0.226 0.190 0.127 0.110

100000 0.210 0.210 0.099 0.085

Table 2.2. Parameter estimation error for SNR = —12.0dB.

aii(0) || ERR(¢1) | ERR(é2) | ERR(@11) | ERR(a22)
0.7 0.107 0.115 0.038 0.023
0.5 0.160 0.095 0.063 0.031
0.3 0.182 0.113 0.067 0.045
0.1 0.143 0.077 0.057 0.033

Results after 25000 Iterations: ¢(0) = [0,1], SNR = 0dB.

¢1(0)  &(0) || ERR(é1) | ERR(é2) | ERR(a11) | ERR(a22)
0.1 0.9 0.081 0.094 0.078 0.099
0.3 0.7 0.078 0.070 0.022 0.025
0.5 0.5 0.120 0.135 0.073 0.083

Results after 25000 Iterations: a;; (0) = 0.9, SNR = 0dB.

Table 2.4. Effect of variations in initial level estimates.
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6.3 Example: Quadrature Amplitude Modulation

Digital information grouped into fixed-length bit strings, is frequently rep-
resented by suitably spaced points in the complex plane. Quadrature am-
plitude modulation (QAM) transmission schemes are based on such a rep-
resentation. In this section, we first present the usual (QAM) signal model
and then propose a reformulation so as to apply hidden Markov model
(HMM) and Kalman filtering (KF) methods.

The technical approach presented here is to work with the signals in a
discrete set and associate with these a discrete state vector X which is an
indicator function for the signal. Here, X}, belongs to a discrete set of unit
vectors. The states X are assumed to be first-order Markov with known
transition probability matrix A and state values Z. Associated with the
channel are time-varying parameters (gain, phase shift, and noise color),
which are modeled as states xj, in a continuous range zj € R™. The chan-
nel parameters arise from a known linear time-invariant stochastic system.
State-space models are formulated involving a mixture of the states Xj
and xy, and are termed mized-state models. These are reformulated using
HMM filtering theory to achieve a nonlinear representation with a state vec-
tor consisting of g and xx, where g is an unnormalized information state,
representing a discrete-state conditional probability density. These refor-
mulated models are termed conditional information-state models. Next, the
EKF algorithm, or some derivative scheme, can be applied to this model
for state estimation, thereby achieving both signal and channel estimation,
also a coupled HMM/KF algorithm.

In this section we present the QAM signal model in the HMM framework.
In Section 5 we present a coupled HMM /KF algorithm, which we apply to
the model, in the simulation studies which follow.

Signal Model

Let my be a complex discrete-time signal (k € N) where for each k,
mkEZZ{z(l),...,z(zN)}, D eC, NeN (3.1)
We also define the vector
z=204jl = (z(l), cee Z(QN))/ ec?” (3.2)

For digital transmission, each element of Z is used to represent a string of N
bits. In the case of QAM, each of these complex elements, z(*), is chosen so
as to generate a rectangular grid of equally spaced points in the complex
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Figure 3.1. 16-state QAM signal constellation.

space C. A 16-state (N =4) QAM signal constellation is illustrated in
Figure 3.1.

Now we note that at any time k, the message my € Z is complex valued
and can be represented in either polar or rectangular form, in obvious
notation,

my, = prexp [jTx] = mi + jmj, (3.3)
The real and imaginary components of my can then be used to generate
piecewise constant-time signals, m (t) = my for ¢ € [tg,tr4+1), where ty
arises from regular sampling. The messages are then modulated and trans-
mitted in quadrature as a QAM bandpass signal

s(t) = Ac [m" (t) cos (2mft + 0) + m” () sin (27 ft + 0)] (3.4)

where the carrier amplitude A., frequency f, and phase 6 are constant.
This transmission scheme is termed QAM because the signal is quadrature
in nature, where the real and imaginary components of the message are
transmitted as two amplitudes which modulate quadrature and in-phase
carriers.

Channel Model

The QAM signal is passed through a channel which can cause amplitude
and phase shifts, as, for example, in fading channels due to multiple trans-
mission paths. The channel can be modeled by a multiplicative disturbance
resulting in a discrete time base-band disturbance,

cr = Kk exp [jor] = c,}f —l—jci eC (3.5)
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which introduces time-varying gain and phase changes to the signal. The
time variations in cj are realistically assumed to be slow in comparison to
the discrete-time message rate.

The baseband output of the channel, corrupted by additive noise wy, is
therefore given in discrete time, by

Yk = cksk +wi € C (3.6)

where ¢y, is given in (3.5). Assume that wy, € C has i.i.d. real and imaginary
parts, wfj and wé, respectively, with zero mean and Gaussian, so that
w,}f,wé ~ N [O,oi]

Let us we work with the vector z; € R? associated with the real and
imaginary parts of cg, as

[ kk COS Py, B ckR
o ( K Sin ¢y, ) B < cf ) 3.7

This is referred to as a Cartesian coordinate representation of the state.
Assumption on Channel Fading Characteristics Consider that the
dynamics of zy, from (3.7), are given by

Tipr1 = Fap + viga, v are i.id. ~ N [0, Qk] (38)

for some known F, (usually with A (F) < 1, where X indicates eigenvalues,
to avoid unbounded =z, and typically with F' = fI for some scalar 0 <
f<1).

Another useful channel model can be considered using polar coordinates
consisting of channel gain x; and phase ¢ as follows

Kk1 = fubk + Vi where vy is Rayleigh distributed [m,{, 0,2{}
Ort+1 = fodr + U/f+1 where v,‘f is uniform [0, 27) (3.9)

and typically, 0 < f, <1and 0 < fg < 1.

It is usual to assume that the variations associated with the magnitude
of the channel gain x and the phase shift ¢ are independent, with variances
given by o2 and ai, respectively. It follows, as in Anderson and Moore
(1979), that an appropriate covariance matrix of the corresponding Carte-
sian channel model noise vector vy, is given by

Q1 = E[vyvy]

o2 cos? ¢y + miafb sin? ¢y, (Uz — miai) sin ¢ cos ¢,

~

(3.10)
(ai — fiiai) sin ¢y, cos o 02 sin? d, + /@iai cos? ¢y,
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Figure 3.2. 16-state QAM signal constellation output from channel.

Here we prefer to work with the Cartesian channel model, as it allows us to
write the system in the familiar state-space form driven by Gaussian noise,
thus facilitating the application of the EKF scheme presented later.

Remark 3.1 In Figure 3.2 the output constellation is presented, with
signal-to-noise ratio SNR = 6dB, from a channel with fading character-
istics given in Example 1 of Section 5. The plots show 1000 data points at
each of the constellation points for times k = 200 and k = 450, and give
an indication of how the channel affects the QAM signal. |

State-Space Signal Model

Consider the following assumption on the message sequence.
my is a first-order homogeneous Markov process. (3.11)

Remark 3.2 This assumption enables us to consider the signal in a Mar-
kov model framework, and thus allows Markov filtering techniques to be
applied. It is a reasonable assumption on the signal, given that error cor-
recting coding has been employed in transmission. Coding techniques, such
as convolutional coding, produce signals which are not i.i.d. and yet to a
first approximation display first-order Markov properties. Of course, i.i.d.
signals can be considered in this framework too, since a Markov chain with
a transition probability matrix which has all elements the same gives rise
to an i.i.d. process. O
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Let us define the vector X to be an indicator function associated with
my. Thus the state space of X, without loss of generality, can be identified
with the set of unit vectors S = {e1,ea,...,eyn}, where as earlier e; =
(0,...,0,1,0,...,0) € R?" with 1 in the ith position. Then

mr = Z/Xk (312)

where z is defined in (3.2). Under the assumption (3.11) the transition
probability matrix associated with my, in terms of Xy, is

A:(aji),lgi,jSQN Whereaisz(X;Hl:ei|Xk:ej)

so that
E[Xp1 | Xi] = AX;,

Of course a;; > 0, Zf:l a;j = 1 for each j. We also denote {F;,l € N} the
complete filtration generated by X. The dynamics of X}, are given by the
state equation

Xpy1 = AXy + Vi1 (3.13)

where V41 is a Fy, martingale increment, in that E [Vi41 | Fi] = 0.
The observation process from (3.6), for the Cartesian channel model, can
be expressed in terms of the state Xy as

() -(Ere ) () () en

or equivalently, with the appropriate definition of h (.), yx, Wk,
Vi = h (Xk) z + Wi, wy, are i.i.d. ~ N [0, Ry] (3.15)

Note that, E [wf,; |Gr] = 0 and E [w],, | Gr| = 0, where ) is the
o-field generated by yi, k <[, and G is the complete filtration generated
by Xk, V. It is usual to assume that w® and w! are independent so that
an appropriate covariance matrix associated with the measurement noise
vector wy, has the form

2
0 R 0
Ry = w 3.16
: 0 Ufw] (3.16)

2

For simplicity we take 012“ R=0,r = o2 . It is now readily seen that

E[Vit1 | Ge] =0 (3.17)
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In order to demonstrate the attractiveness of the Cartesian channel model,
we now use the properties of the indicator function X to express the
observations (3.15) in a linear form with respect to X}, and w,

Ve = h(Xg) zr + Wi
= [h(e1) zrh(e2) zp - - h(ean) wx] Xi + Wy
= H [Ion ® ) X + Wy, (3.18)

where H = [h(e1)---h(ean)] and @ denotes a Kronecker product. Recall
that

a11B a12B
A B=| az1B axB

The observations (3.18) are now in a form which is bilinear in X} and x.

We shall define the vector of parametrized probability densities (which
we will loosely call symbol probabilities), as By = (by (7)), for by (i) :=
P [yk | Xi = ei,xk], where

o [ e - () ecd]}

. 1
b (1) = 2mo2 P 202
! ! 2
[~ [ cuck + (22 et}
— 3.19

Now because wi® and wi are iid., E(yx | Xp—1 = €i, Fr—2,Vp-1) =
E (yr | Xx—1 = ¢;) which is essential for formulating the signal model as
an HMM, parametrized by the fading channel model parameters xy.

To summarize, we now have the following lemma,

Lemma 3.3 Under assumptions (3.11) and (3.8), the QAM signal model
(8.1)-(3.6) has the following state-space representation in terms of the
2N _dimension discrete-state message indicator function X, and i, the
continuous-range state associated with the fading channel characteristics.

Xiy1 = AXp + Vi
Tht1 = Fog + vi41 (3.20)
Vi = H[I2N ®CL‘;€] X+ wy
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The signal model state equations are linear and the measurements are
bilinear in X and zy.

Remarks 3.4

1. If z is known, then the model specializes to an HMM denoted A =
(A,Z,E7 af,,xk), where m = (m;), defined from m; = P (X; = ¢;), is

the initial state probability vector for the Markov chain.

2. If X} is known, then the model specializes to a linear state-space
model.

3. By way of comparison, for a polar coordinate channel representation,
the observation process can only be expressed in terms of a linear
operator on the channel gain, with a nonlinear operator on the phase.
Thus, if X; and ¢g, or ki and ¢, are known, then the model spe-
cializes to a linear state-space model, but not if X} and xj are known
and ¢y, is unknown. O

Conditional Information-State Signal Model

Let X}, (X) denote the conditional filtered state estimate of X} at time k,
given the channel parameters Xy = {zo,...,z}, ie.,

Xp (X) = E( Xk | Yk, X, ) (3.21)

Let us again denote 1 to be the column vector containing all ones, and
introduce “forward” variable (Rabiner, 1989) g (X) is such that the ith
element ¢! (X) := P (yo,..., Yk, X = €; | Xk ). Observe that ka can be
expressed in terms of g (X) by

X5 (&) = (g (X), 1) gr (X) (3.22)

Here g (X) is conveniently computed using the following “forward” recur-
sion:

Qi1 (X) = B (Yrg1, Try1) Age (X) (3.23)

where B (ykJrl, Ik+1) = diag (bk+1 (1) goany bk+1 (QN))
We now seek to express the observations yj in terms of the unnormalized
conditional estimates g (X).

Lemma 3.5 The conditional measurements yi (X) can be expressed as

vi (X) = H [Iox @ k) (qr—1 (X), 1) Agr_q (X) + ng (X) (3.24)
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where qi (X) given from (3.23) and ny (X) is a (X, Vi—1) martingale in-
crement with covariance matriz of the conditional noise term ny (X) is
given by

Ry = 021+ H [Ipx @ 2] {XP (X) = K0 (X) K ()} [Low @ 4] H'.

(3.25)
Here XP (X) is the matriz that has diagonal elements which are the ele-

ments of X (X).

Proof Following standard arguments, since g (X) is measurable with
respect to {Xg,Vi}, then E [wf;_l |yk} =0, FE [wi+1 |yk] = 0 and
E[Vit1 | Yi] =0, so that

Eng (X) | Xi, V1]
= E|:H[12N ® k] Xi + Wi
— H [y ® o) gi-1 (1),1) 7 Agey (X) | X Vi |

= HLx ® 2] (A%t (X) = (o1 (X)) Ageos (X))
=0

Also
Ry =E [ng, (X)n (X) | X, Vi1 ]

Agqr—1 ?
(wk +H[I2N ®5Ek] <Xk — —)> ‘ Xy Vi1

=F
(qr—1,1)

=E [w} | Xk, Vi-1]

+E[H[12N ® %] (Xk - %) (X’“ - %)'

x [Ty @ xy) H' Xkaykl]

=021+ H[Ion ® 2]
~ ~ !
% E {(Xk - X,M) (Xk - X (X)) | Xk,ykl] [y 2] H'

= o2+ HLy @ o] {XP (%) = X (%) X (X) } oy @ 0] H'

We summarize the conditional information-state model in the following
lemma.
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Lemma 3.6 The state-space representation (3.20) can be reformulated to
gwe the following conditional information-state signal model with states

qx (X),

Qev1jx = B (Yk+1, Trt1) Age (X)
Tpy1 = Fap + vy (3.26)
Vi (X) = H [Iy @ 2] (g1 (X),1) 7" Agp1 (X) + nx (X)

Remark 3.7 When F' = [ and v = 0, then zj, is constant. Under these
conditions, the problem of channel-state estimation reduces to one of pa-
rameter identification, and recursive prediction error techniques can be
used, as in Collings et al. (1993). However, an EKF or some derivative
scheme is required for parameter tracking when zj is not constant, as in
Section 5. |

6.4 Example: Frequency Modulation

Frequency modulation (FM) is a common method for information trans-
mission. Frequency-modulated signals carry the information message in
the frequency component of the signal. In this section, we first present the
usual FM signal model including a fading channel, and then propose a
reformulation involving discrete-time sampling and quantization so as to
apply hidden Markov model (HMM) and extended Kalman filtering (EKF)
methods. The resulting mixed-continuous-discrete-state FM model is sim-
ilar in form to the QAM model of Section 3. However, there is an added
layer of complexity in that an integration (summation) of message states is
included in the model. The observations are a function of the phase of the
signal while the message is contained in the frequency (phase is an inte-
gration of frequency in this case), whereas for QAM, the observations are
a function of the complex-valued amplitude of the signal, which directly
represents the message.

In addition to this added layer of complexity, in order to implement a
demodulation scheme taking advantage of an adaptive HMM approach, it
is necessary to quantize the frequency space. The quantization and digital
sampling rate are design parameters which introduce suboptimality to the
FM receiver. However, if the quantization is fine enough, and the sampling
rate fast enough, then the loss in performance due to digitization will be
outweighed by the performance gain (over more standard schemes) from
the demodulation scheme presented here. If the signal is a digital frequency



144 Chapter 6. Practical Recursive Filters

shift-keyed (FSK) signal, then these quantization errors would not arise.
Our schemes are equally applicable to analog FM and digital FSK. Also, it
should be noted that the techniques presented in this paper are applicable
to other frequency /phase-based modulation schemes. In particular, contin-
uous phase modulated (CPM) signals can be seen as a derivative of these
FM models. CPM transmission schemes have a reduced-order model due
to the message being carried in the phase, as opposed to the frequency. In
fact, the CPM model has the same form as that for quadrature amplitude
modulation (QAM).

We now reformulate FM signal models with fading channels in a state-
space form involving discrete states X and continuous range states xy.

Signal Model

Let fi be a real-valued discrete-time signal, where for each k,
feezy={z,. " A= (/L)meRr,  LreN (1)
We also denote the vector
zf = (z}l),...,z;Lf))l € Ry (4.2)

Therefore, each of the M € N elements of Z is an equally spaced frequency
in the range [0,7). Now we note that at any k, the message, fr € Zy,
is real valued and can be used to generate piecewise constant signals by
f () = fi for t € [tk,tr41). For transmission, the instantaneous frequency,
fi (t) is varied linearly with the baseband signal f (¢), fi (t) = fo + f(t).
This gives the following transmitted signal.

Stens () = Aucos[2nfut + 270 ()], 0(t) = /0 () dr (43)

where the carrier amplitude A, and frequency f. are constant, and 8 (t) is
the phase of the signal. For the formulation which follows it is convenient
to represent the FM signal, assumed sampled in a quadrature and in-phase
manner, in a complex baseband notation, as

s(t) = Acexpljb (t)], s = Acexp [jOx] (4.4)
where the amplitude A is a known constant and
Or = (Ok—1 + fk)2ﬂ_ . (4.5)

Here (.),, denotes modulo 27 addition.
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Channel Model

The FM signal is passed through a fading noise channel as in the case of
the QAM signals. Thus, the channel can be modeled by a multiplicative
disturbance, ¢ (t), resulting in a discrete-time baseband disturbance ¢y as
n (3.5). The baseband output of the channel, corrupted by additive noise
wg, is therefore given by (3.6). The channel states are given by (3.7).

State-Space Signal Model

For the FM signal, a discrete-time state space signal model is now gener-
ated. Consider the following assumption on the message signal.

fx is a first-order homogeneous Markov process (4.6)

Remarks 4.1

1. This assumption enables us to consider the signal in a Markov model
framework, and thus allows Markov filtering techniques to be applied.
It is a reasonable assumption on the signal if the transition probability
matrix used is a diagonally dominated, Toeplitz, circulant matrix. In
the case of digital frequency shift-keyed (FSK) signals, the assumption
is still valid, given that error-correcting coding has been employed in
transmission. Coding techniques, such as convolutional coding pro-
duce signals which are not i.i.d., yet display Markov properties. Of
course, i.i.d. signals can be considered in this framework too, since
a Markov chain with a transition probability matrix which has all
elements the same gives rise to an i.i.d. process.

2. Higher-order message signal models are discussed below. It is known
that HMM signal processing is robust to modeling errors. Therefore,
in the absence of knowledge about the true message signal model,
reasonable estimates will still be generated. O

Let us define a vector X ,f to be an indicator function associated with
fr. Thus, the state-space of X/, without loss of generality, can be iden-

tified with the set of unit vectors Sxs = {61,82,...,€Lf}, where e; =
(0,...,0,1,0,...,0) € R with 1 in the ith position, so that
fo=24x] (4.7)

Under the assumption (4.6) the transition probability matrix associated
with fg, in terms of X,{, is

Af:(af-) 1§i,j§waherea;.ci:P(X,{H:ej|X,{:6i)

Jt
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so that ' '
B X[, X[ =a/x]

Of course, a] >0, Zl 1 a = 1, for each j. We also denote {F;,l € N}
the complete filtration generated by X7, that is, for any k € N, Fy is the
complete o-field generated by x/ il < k.

As before, the dynamics of X ,f are given by the state equation
Xl = AT X+ Vi (4.8)

where Vi1 is a Fj, martingale increment.

As noted previously, the states represented by X7 are each characterized
by a real value 2D corresponding to the unit vector e; € Sxs. These are
termed the state values of the Markov chain.

When considering the finite-discrete set of possible message signals Zy,
it becomes necessary to quantize the time-sum of these message signals, 6y,
given from (4.5). We introduce the set

Zy = {zél), e zéLe)} where z(;) = (ZZITZ) eR (4.9)
0

and corresponding vector
!/
2o = (z(gl), .. ,z(gLe)) € Rle (4.10)

Lemma 4.2 Given the discrete-state message fr, € Zy from (4.1), the
phase 0y, from (4.5) and the set Zg of (4.9), then 0 € Zg for any k, iff
L9 =2nLy, for some n € N.

Proof Forany ae€{l,...,Lo}andbe{1,...,Ls}

0k+1 = (0k + fk>27r

2m 2mn
= +b—— € Zy
( L9 L9 )277 u
Let us now define a vector X{ € Sxs = {e1,...,er,} to be an indicator

function associated with 0, so that when 6, = z(gi), Xg = e;. Now given

(4.5), X7, is a “rotation” on X/ by an amount determined from X,{H.
In particular,

X0, = A(’( ,m) L X? (4.11)

where A% (.) is a transition probability matrix given by

A° (X,{H) = S e = (1,2, .., Ly X{ (4.12)
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and S is the rotation operator

00 0 1
1 0 0

S=1 01 0 0 (4.13)
00 ... 10

The observation process (3.5) can now be expressed in terms of the
state X!

yfj _ A, cos [zéXg} —A.sin [zéX,ﬂ ckR n wff
yl A, sin [zéX,ﬂ A, cos [zéX,‘f} ch wi

(4.14)
or, equivalently, with the appropriate definition of hg (.),
yi = ho (Xg) T + Wi, wg are i.id. ~ N [0, Rk]
= [hg (61) zrhe (62) T - he (eLe) Ik] XZ —+ Wy
= Hy I, ® zx] X + wy, (4.15)

where the augmented matrix Hyp = [hg (e1)...hg (er,)]. Here we see that
the Cartesian coordinates for the channel model allow the observations
to be written in a form which is linear in both X,f and zj. Note that
E[wf, |G| =0and E[w],, |Gr] =0, where ) is the o-field gener-
ated by Vi, k < [. It is usual to assume that w? and w! are independent so
that the covariance matrix associated with the measurement noise vector
wy, has the form

2
o’ r 0
Ry = w 4.16
k 0 02, ] (4.16)
Here we take 02 = 02, = 02,
It is now readily seen that
E[Vig1 | Ge] =0 (4.17)

We now define the vector of parametrized probability densities as b{ =
(bz (z)), for bz (i):=P [yk | X,f = ei,xk],

2
) 1 yl — A, (cos [zpe;] et — sin [z)e;] ¢l
b (i) = 5— eXp(—[ u (cos [z 202’“ oeilci)] (4.18)

w

[yl — Ac (sin [zpei] cff + cos [z)e;] cf) ] ?
202
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In summary, we have the following lemma:

Lemma 4.3 Under assumptions (4.6) and (3.8), the FM signal models
(4.1)—(4.5) have the following state-space representation in terms of the
L and Lg indicator functions X,f and X,'f, respectively,

f
Xir1

Xl§+1 = A° (Xngrl) 'Xlg

= Alef + Vk];1

(4.19)
Tey1 = Fop + vpqr

Y& :Hg [ILQ ®{Ek]XZ+Wk

Remarks 4.4

1. Observe that the model is in terms of the channel parameters (states)
xy in a continuous range, and in terms of indicator functions (states)
which belong to a finite-discrete set, being the vertices of a simplex.

2. This model (4.19) has linear dynamics for the states x;, and X,f, but
X! 41 is bilinear in X and X ,{ 41- The measurements are bilinear in
zp and X ,f .

3. In Figure 4.1 we present the channel output for 5000 data points,

with channel noise variance o2 = 0.00001, and channel dynamics

k(t) = 14 0.5sin (27¢/5000), ¢ (t) = 0.04m cos (2mt/5000). In our
simulations we use much more rapidly changing channel dynamics,
given in Example 1, over only 1000 points. Figure 4.1 is used here
merely to illustrate the nature of the channel’s effect on the signal
constellation. a

Conditional Information-State Signal Models

Let X,{ (X, X") and X,f (X,Xf) denote the conditional filtered state es-
timates of X,{ and Xg, respectively, where X}, = {xo,...,xk}, X,f =
{x8,...,X¢}, and &/ = {X{,..., X]}. In particular,

X{ (x,x°%) = E(X;f | mek,X;S’_l,A) (4.20)
X0 (2. 27) = B (XD | Vi X, K]0 ) (421)

Let us again denote the column vector containing all ones as 1, and intro-
duce “forward” variables, qg (X,X‘g) and q,‘z (X, Xf), such that their ith
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Imaginary
(=}

_0.4 L L L L L L
-0.4 -0.2 0 0.2 0.4

K (t) = 1+ 0.5sin (27t/5000), ¢ (t) = 0.047 cos (27t/5000), SNR = 2.4dB

Figure 4.1. FM signal constellation output from channel.

elements are given, respectlvely7 by P(yo, ey Yk Xk =e; | Xk, Xk 1 ) and
P(yo,....ye, X{ = e | X, X ).

Observe that X,g (X, X‘g) and X,f (X, Xf) can be expressed in terms of
qg (X, X‘g) and q,‘z (X, Xf), respectively, by

Here qg (X , X 9) is conveniently computed using the following “forward”
recursion:

a1 (X, X%) = B (yug1, wp, XJ) A g (2, X9) (4.24)

where Bf(yk+1,xk+1,X;2) = dlag(ka (1),. b£+1 (Lg)), and where
b£+1 ()) Pyit1 | X,{_H = e, xp41, X} |, for ka (1) given explicitly
n (4.27).
Also, q}z (X Xt ) is conveniently computed using (4.11) to give the fol-
lowing “forward” recursion:

q/‘i+1 (Xv Xf) =B’ (Ykt1, Tht1) ZAQ (ei)XifH (i) -q/‘i (Xva)

= B (yt1, Tis1) A [X;fﬂ ®IL,] q (X, Xf) (4.25)



150 Chapter 6. Practical Recursive Filters

where BY (yp41, xr41) = diag(bf,, (1),... ,b'}:il (Lo)), and where bf (i) is
given in (4.18). Also, A” = [A% (e1),..., A% (er,)].
We can now write

by (i)
1
= (4.26)
< [y,lj — A, (cos(z(',Ae(ei)X,ffl)c}f — sin(zéAe(ei)X,ffl)ci)]2
x exp | — 552

[k — Ac(sin (A% () X}y )i’ + COS(ZéAe(ei)Xﬁl)Ci)}2>
202

We seek to express the observations, yi, in terms of the unnormalized
conditional estimates, q{;_l (X, X").

Lemma 4.5 The conditional measurements y (X, Xe) are defined by
yi (X,X%) = Hy I, ® z;]
A (ol () 3) T A () st | X
+ny, (X, &7) (4.27)
where ny (X,X‘g) is a (Xk, X,f_l,yk_l) martingale increment.

Proof Following standard arguments since q,f (X , X 9) is measurable with
respect to {X, X0V}, E[wi | Vk] =0, E[w), | Y| =0, and
B[Vl | Y] =0, then
B [ (X, X%) | X, Xy, Vi1 ]
- E[Hg (I1, ® 2] X0 + wi,
— Hollr, © i A[{q_, (X, X%), 1) A gl (X, 2%) © I, ] X[,
‘ kaX;f_lvykq}
= Hy. [ILQ ®Ik]
x (A (%] (v 2% @ 1,) X]
- Ae[@}f—l (Xv)(e) vl>71qu£—1 (&, Xe) ® IL@}XI(:—I)
=0 ]
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In practice, however, as noted above, we do not have access to X,ffl,
but at best its conditional expectation, ‘119@71 (X , X f). Therefore, the con-
ditional measurement for a more useful model generating yj (X) (which
can be used in practice) does not have a martingale increment noise term,
ng (X). In addition, the covariance matrix, R,,, of nj (X), is of higher mag-
nitude than that of wy. The exact form of R, is, however, too complicated
for presentation here, and ”application-based” estimates of R,, can be used
when implementing these algorithms.

In summary, we have the following lemma:

Lemma 4.6 The state-space representation (4.19) can be reformulated to
gwe the following conditional information-state signal model, with states
q,{ (X,X‘g) and qz (X,Xf),

gl (X, X%) = qf (X, X°) B (ypsr, o0, XJ) AT
apir (X, X7) =qf (X, X7) B (g1, i)
x A%[(gf (X, x%), )7 AT q] (X, x%) @ I, ]

Tpt1 = Fap +op
. (4.28)
quljc‘—l (X’ Xe)

<q£71 (X, x9) =l>

yi (X) = Hp [I1,, ® 2] A° ® I,

Gy (X, X7)
<qu1 (X, x7) =l>

—+ ng (X)

This fading channel FM signal model is now in standard state-space form
to allow the application of Kalman filtering.

Higher-Order Message Models

Lemma 4.6 provides insight into methods for coping with higher-order mes-
sage models, and thus allows us to relax the assumption (4.6). To do this
we continue to quantize the range of frequencies, but we allow the model
of the frequencies to be in a continuous range and in vector form. There-
fore, the state-space representation of the frequency message is no longer a
first-order system. Also, the quantization errors are now involved with the
phase estimate. This approach allows the message-frequency model to be
in a continuous range while still employing the attractive optimal filtering
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of the HMM filter for the phase. The following state-space model applies,

I VY f
Tyr = Fpop + vy
X0, =A%(x](nal)) . xP
Tpy1 = Fop + vpq1

yi = Hy [I1, ® xi] XP + wy,

(4.29)

where F; ,g is the function associated with the dynamics of the frequency
message given by the state xi, the scalar message frequency is given by

n x'};, and X ,f is the quantized frequency in state-space form.

Following the steps presented above for the signal under the assumption
(4.6), an information-state signal model can be generated for this higher-
order state space signal model. As with the previous information-state sig-
nal model, this higher-order model also results in the EKF/HMM scheme
which follows.

6.5 Coupled-Conditional Filters

The algorithm presented here is referred to as the KF/HMM scheme. It
consists of a KF for channel estimation, coupled with HMM filters for
signal state estimation. These algorithms apply equally to both the QAM
and FM signal models presented in the previous two sections.

In the QAM case of (3.26), the HMM estimator for the signal state, gy,
conditioned on the channel estimate sequence {Zy}, is given by

Qr1 (Tk) = B (Yr+1, k) Adr (Tr-1) (5.1)
Xy (#r-1) = (qr @r1), 1) gn (@r1) - (5.2)

In the FM case of (4.28), the conditional HMM estimators for the signal
states, ¢/, G¢, are given by

a1 (#%,0)) = B (yurrs@n,df) ATa] (2n-1,d0_1) (5.3)
Xl (1,6l 1) = (gl Gror, @) 1) el G dly), (54)
Q01 (B ) = B (yksr, a0, 6D (AN (81,6 1), (5.5)
X0(@r-1,0]_1) = (@1, @l ), 1) gl (Enr, ). (5.6)

The Kalman filter equations for the channel parameter, xx, conditioned
on the indicator state estimates, Xj_1 in the QAM case, and X,g_l and
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)A(,i1 in the FM case, or equivalently on the corresponding information

states denoted loosely here as qk_l,qf;l, q,‘z_l, are

Tk = -1 + K [ye — HyZrpe—1] (5.7)
Tpy1e = Fogk, (5.8)
-1
Kk = Ek|k71Hk [H]Igzk|klek + Rk] B (59)
-1
Skik = Skjk—1 — Skje—1 [HeSkp—1Hr + Ri] HpSpp—1, (5.10)
Sptrpe = FEeF' + Q, (5.11)
where
O(H . [Ty @ Fa] (gr—1,1)"" Agi_1) |
Oz T=Tk
for QAM model (3.26)
Hy =

(5.12)
0 quf—l a4
6(H9 [ILe ®F.¢L‘]A [<q£iyl> ®IL9:| <qzklvl>) |
Ox .

for FM model (4.28)

and R is the covariance matrix of the noise on the observations w given in
(4.16), Q is the covariance matrix of v, and ¥ is the covariance matrix of
the channel parameter estimate 2 [« is defined in (3.7)].

Figure 5.1 gives a block diagram for this adaptive HMM scheme, for the
QAM model, when Switch 1 is open and Switch 2 is in the top position.
This figure is generated from the observation representation (4.15). Further
assumptions can be made for simplification if the maximum a priori esti-
mate of g were used, indicated by having Switch 2 in the lower position.
Figure 5.2 gives a block diagram for the adaptive HMM scheme, for the
FM model, when Switch 1 and 2 are open.

Figure 5.3 shows the scheme in simplified block form for the case of
(3.26). A further suboptimal KF/HMM scheme can be generated by using
the state-space signal models (3.26) and (4.28), and estimating the KF con-
ditioned on a maximum a prior: probability estimates (cj,f YMAP = (G0)MAP
and (G,)MAP. Figure 5.4 shows this scheme in block form, for the case of
(3.26). In fact, hybrid versions can be derived by setting the small-valued
elements of q,{, (jz, and ¢y associated with low probabilities, to zero and
renormalizing.
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Riccati
equations

Y41

MAP

Figure 5.1. KF/HMM scheme for adaptive HMM filter.

Riccati
equations

Yi+1

Figure 5.2. KF/HMM scheme for adaptive HMM filter for second model.
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HMM state estimate 5

/ conditioned on &), Xk

Yk
\ KF channel estimate 2
conditioned on X, k

Figure 5.3. KF/HMM adaptive HMM scheme.

HMM state estimate )“(
conditioned on &, ‘ k

MAP operator

KF channel estimate
conditioned on X IIQ/IAP

/
AN

Figure 5.4. KF/HMM adaptive HMM scheme with MAP approximation.

Robustness Issues

Due to the inherently suboptimal nature of these adaptive HMM algo-
rithms, it is necessary to consider robustness issues. The KF/HMM schemes
presented above are practical derivatives of EKF/HMM schemes and effec-
tively set the Kalman gain terms associated with the respective ¢’s to zero.
This produces decoupled conditional estimates which are then used to con-
dition the other estimates. There is no theory for convergence in these
decoupled situations when dealing with time varying parameters.

In an effort to address the inevitable robustness question, we look to the
standard procedures from Kalman filtering. A widely practiced method for
adding robustness is to model the estimate errors due to incorrect condi-
tioning, as noise in the observations. This procedure can also be used with
our adaptive HMM techniques. By adding extra noise to the observation
model, the vector of parametrized probability densities (symbol probabil-
ities) will be more uniform. That is, the diagonal “observation” update
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matrix, B (.), in the “forward” procedure for the discrete-state estimate
qr. will place less emphasis on the observations. An additional method for
adding robustness to the adaptive HMM scheme is to assume the probabil-
ity of remaining in the same state is higher than it actually is, that is, by
using a more diagonally dominant A. This will also have the effect of plac-
ing less importance on the observations through the “forward” procedure
for the discrete-state estimate gg.

These robustness techniques are of course an attempt to counter estima-
tion errors in high noise. They therefore restrict the ability of the estimates
to track quickly varying parameters, as the rapid changes will effectively
be modeled as noise. There is here, as in all cases, a trade-off to be made
between robustness and tracking ability.

Simulation Studies

Example 1 A 16-state QAM signal is generated under assumption (3.11)
with parameter values a;; = 0.95, a;; = (1 —a;;)/ (N —1) for i # j,
(z)E = 40.01976 4 0.03952, (2())! = £0.01976 + 0.03952. The channel
characteristics used in this example is given by

3mt
t) =1 bsin | ——
K (t) +O5sm<1000)

107t
t) =0. —
o (t) = 0.757 cos (1000)

and the signal-to-noise ratio associated with the observations in the ab-
sence of fading is SNR = (Eb/aﬁj) = 6dB, where Ej, is the energy per bit
associated with the transmitted signal. Of course, much lower SNRs can
be accommodated in the presence of more slowly varying channels, and it
should be noted that the SNR effectively varies as the channel fades. The
lowest effective SNR in this example occurs at & = 500 where SNR = 0dB.

The case of a;; = 0.95 represents a high probability of remaining in the
same state. It is known that, in the case of independent data sequences
(i.e., a;; = % for all 7), the matched filter is optimal. In fact, under these
conditions, the HMM filter becomes the matched filter. We present the case
of a non-i.i.d. data sequence to demonstrate the area where the HMM /KF
schemes provide best improvement over conventional approaches.

In this example we demonstrate the KF/HMM scheme of Figure 5.3.
The results are presented in Figure 5.5 and Figure 5.6, and show that even
though the channel changes quite quickly, good estimates are generated.
Figure 5.5 shows the true channel values and the estimated values in real
and imaginary format, that is, exactly as estimated from (5.7)—(5.11). Fig-
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Figure 5.5. Example 1: QAM ¢F and &% for SNR = 6dB.
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Figure 5.6. Example 1: QAM &,, and qgn for SNR = 6dB.

ure 5.6(a) shows the actual channel amplitude x5 and the estimate of this,
generated from the estimates in Figure 5.5. Likewise, Figure 5.6(b) shows
the actual channel phase shift ¢; and the estimate of this, generated from
the estimates in Figure 5.5. Small glitches can be seen in the amplitude and
phase estimates at points where tracking is slow and the received channel
amplitude is low, but the recovery after this burst of errors seems to be
quite good. It is natural that the estimates during these periods be worse,
since the noise on the observations is effectively greater when xj; < 1, as
seen from the signal model (3.20).

Example 2 In this example, we demonstrate the ability of the HMM/KF
adaptive algorithm to demodulate a 16-QAM signal, in the presence of
a complex-valued stochastic channel. The channel gain and phase shift
variations are given by LPF white Gaussian processes. The variance of
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Figure 5.7. BER vs. SNR for complex-valued channels (16 QAM).

the Gaussian process for the channel amplitude is 1, while the variance
for the phase shift is 5. In both cases the bandwidth of the LPF is W..
The results for this example are displayed in Figure 5.7. This example
provides a comparison between the HMM /KF scheme and the conventional
MF/AGC/PLL scheme.

Example 3 A frequency modulation scheme, under assumption (4.6) with
al; = 0.95,af, = (1—al;)/ (N —1) for i # j, is generated with L; = 16.
(This is equivalent to a 16-state frequency shift-keyed digital scheme.) The
value of # was quantized into Ly = 32 values, under Lemma 4.2. The
signal is of amplitude A, = 0.2. The deterministic channel gives a more
rigorous test which is easily repeatable, and allows results to be displayed
in a manner that more clearly shows tracking ability of these schemes. The
channel characteristics are the same as those used in Example 1. The signal-
to-noise ratio associated with the observations in the absence of fading is
SNR = (Eb/ogj) = 2.4dB, where E} is the energy per bit associated with
the transmitted signal, if the signal were a 16-FSK digital signal. Of course
much lower SNRs can be accommodated in the presence of more slowly
varying channels, and it should be noted that the SNR effectively varies
as the channel fades. The lowest effective SNR in this example occurs at
k = 500 where SNR = 1.8dB.

The estimation scheme used here is the decoupled KF/HMM scheme
implemented on the FM signal model given in (4.28). The results for the
decoupled scheme are presented in Figure 5.8 and Figure 5.9 and show that
even though the channel changes quite quickly, good estimates are gener-
ated. Figure 5.8 shows the true channel values and the estimated values in
real and imaginary format, that is, exactly as estimated from (5.7)—(5.11).



6.5. Coupled-Conditional Filters 159

P and !

1000

Figure 5.8. Example 2: FM ¢&

Channel amplitude
Channel phase shift

-3
0 200 400 600 800 1000 0 200 400 600 800 1000

Time k Time k

(2) (b)

Figure 5.9. Example 2: FM &,, and (;Aﬁn for SNR = 2.4dB.

Figure 5.9(a) shows the actual channel amplitude ki and the estimate of
this, generated from the estimates in Figure 5.8. Likewise, Figure 5.9(b)
shows the actual channel phase shift ¢; and the estimate of this generated
from the estimates in Figure 5.8. These results show sudden phase shifts,
seen as glitches in the phase estimate in Figure 5.9. These can be any mul-
tiple of w/L due to the symmetry of the phase quantization. In this case,
there is tracking degradation over the period where channel amplitude is
less than one. It is natural that the estimates during these periods be worse,
since the noise on the observations is effectively greater when s; < 1.

For further simulation studies the reader is directed to Collings and
Moore (1993) where comparisons appear between these KF/HMM schemes
and the traditional MF/AGC/PLL approach.
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6.6 Notes

The material for this chapter has been drafted in three papers (Collings et
al., 1993; Collings and Moore, 1993; Collings and Moore, 1994). In turn,
these build on earlier work by the authors, on on-line adaptive EM-based
schemes in Krishnamurthy and Moore (1993). The EM schemes themselves
are studied in Baum et al. (1970) and Dempster et al. (1977). Original work
on RPE schemes appears in Moore and Weiss (1979), Ljung (1977), and
Ljung and Soderstrom (1983).

For general background on FM demodulation in extended Kalman filters,
see Anderson and Moore (1979). For the case of CPM demodulation in
fading channels, see Lodge and Moher (1990).
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CHAPTER

Discrete-Range States
and Observations

7.1 Introduction

In this chapter a finite-state space, continuous-time Markov chain hidden
in another Markov chain is considered. The state space is taken to be the
set of unit vectors Sx = {e;}, e; = (0,0,...,1,...,0) of RV,

Basic martingales associated with Markov chains are identified in Ap-
pendix B.

In Section 2 we derive finite-dimensional filters and smoothers for various
processes related to the Markov chain.

In Section 3 optimal estimates of the parameters of the model are ob-
tained via the EM algorithm.

7.2 Dynamics

Consider the Markov process {X:}, t > 0, defined on a probability space
(92, F, P), whose state space is the set, Sx = {e1,...,ex} C RY. Write
pi = P(X;=¢e;), 0 < i < N. We shall suppose that for some family
of matrices A¢, p; = (p%, . ,piv)/ satisfies the forward Kolmogorov equa-
tion

dpy
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A = (as5 (1)), t > 0, is, therefore, the family of so-called Q-matrices of the
process. Because A; is a Q-matrix,

aii (t) = =Y _aji(t). (2.2)
J#i

The fundamental transition matriz associated with A; will be denoted by
D (t,s), so with T the N x N identity matrix

%:Atfb(lﬁ,s), D (s,8)=1,
%: —®(t,s)As,  D(Lt)=1.
S

[If A; is constant ® (t,s) =exp ((t — s) A).]

The observed process Y; has a finite discrete range which is also identi-
fied, for convenience, with the set of standard unit vectors of RM, Sy =
{fi,..., far}, where f; = (0,...,0,1,0,...,0), 1 < i < M. The processes
X and Y are not independent; rather, given the evolution of X, then Y is
a Markov chain with @ matrix

N
=Y Cn(Xpem), Cum=(c}),1<i,j <M, 1<m<N.
m=1
Notation 2.1 Write ¢;; = ¢;5 (r) = Zyanl (X, em) il

Also write G? = o0 (X,,Y;,0<s<t), and Gy for the right continuous,
complete filtration generated by GY.

Lemma 2.2 In view of the Markov property assumption and (2.3) Wy :=
Y, - Y, — fot C,Y, dr is an Gi-martingale.

Proof The proof is left as an exercise. ]

Lemma 2.3 The predictable quadratic variation of the process Y is given
by

t t
(Y, Y), = diag/ C,Y, dr — / (diagY,) C.dr
0 0

- /t C, (diagV,) dr. (2.4)
0
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Proof

t t
Yth’:YoYO’+/ Yr,dYT’+/ dY,Y!_+[Y,Y],
0 0

t t
=YYy +/ Y, (CY,) dr +/ Y, _dW,
0 0
t t
+/ (C,Y,) Y, dr +/ AW, Y
0 0
+ YY), - VYY), +(Y,Y), (2.5)
where [Y,Y], — (Y,Y), is an G;-martingale. However,

Y,Y/ = diag¥s,

Y, (CY,) = (diagY;)C, (2.6)
We also have
t
V.Y, = diag Yy + diag/ C,Y, + diag W;. (2.8)
0

Y;Y/ is a special semimartingale, so using the uniqueness of its decomposi-
tion from (2.5), (2.6), (2.7), and (2.8), we have (2.4). |

The dynamics of our model follow
t
Xi=Xo+ / A X, dr 4+ Vg, (2.9)
0
t
Y; =Yo+/ C,Y, dr + Wy, (2.10)
0

where (2.9) and (2.10) are the semimartingale representations of the pro-
cesses Xy and Y;, respectively.

Notation 2.4 With Y = o (Ys,0 < s <t), {d}, t >0, is the correspond-
ing right continuous complete filtration. Note Yy C G, Vt > 0. For ¢; an
integrable and measurable process write qASt for its Y-optional projection un-
der P, so ¢y = E ¢y | Vi) a.s. and ¢y is the filtered estimate of ¢¢. [For a
discussion of optional projections see Elliott (1982b).] Optional projections
take care of measurability in both t and w; conditional expectations only
concern measurability in w. Denote by KCF* the number of jumps of Y from
state fi to state fo in the interval of time [0,t] with k # .
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Then

3

(fr; Yeo) (fo,dY;) =

so that for k # ¢
IckE: ‘ Yr— ,dY;‘
¢ [y )
t
= [ Y ¥y dr+ / oY) for dW,)

using (2.10). This is the semimartingale representation of the process KF*
k # (. Clearly, KF are V;-measurable V¢ > 0 and have no common jumps
for (k,¢) # (K',¢'). Now

M
CoYr =Y (Yo, fi) ficii,
i,j=1
and
<.f27 C’I"}/’r> - Z <}/T7 fZ> Cei,y
i=1
also

(1 Yo) D (Yo fi) eoi = (Yr, fi) con-

=1

Since ¢y, = 22:1 (X, em) cjj we have

t
/cff:/ ebdr + OF* (2.11)
0
where
N
At = Z (Ye, fre) (Xr, em) cor (2.12)
m=1

and OF’ are martingales.

Definition 2.5 Suppose K; is a purely discontinuous, increasing, adapted
process on the filtered probability space (Q,F, P,F;), t > 0, all of whose
jumps equal +1. Denote the sequence of jump times S1,S2,...; then K, is
a standard Poisson process if the random wvariables S1,S2 — S1,...,S, —
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Sn—1,-.. are exponentially distributed with parameter 1, and are, respec-
tively, independent of Fo, Fsyy .-y FS, _1s----

Notation 2.6 1 = (1,1,...,1)" € RM will denote the vector all of whose
entries are 1. Ipy will denote the M x M identity matriz.

If A= (aij), B = (bij) are M x M matrices and b;; # 0 for all i, j, then
% will denote the matrix (Z;J) If A = (a;j) and a = (a11,a22,...,aMmM)

then Ag = A — diaga.

Remarks 2.7 Suppose on (£, F) there is a probability measure P and a
vector of counting processes

Ne = (Ni(1), ..., Ne(M))

such that under P each component Ny(¢) is a standard Poisson process,
and {X;} is an independent Markov chain with @Q-matrix A, as in (2.1).
Write {G;} for the filtration generated by N and X. Then N; — t1 = Q; is
a (Qt,ﬁ) martingale.

Define

t
Y=Y +/ (I]u — sz_ll) dN for Yy € Sy. (213)
0

Then

t

t
Yt=YO+/ ny;ds+/ (Ing — Y1) dQ,
0 0

where II is the M x M matrix (m;;) with m; = 1 for ¢ # j and m; =
—(N-1).
Write

t
Nt:/ (Ips — diagY,_)dYs.
0

Then N is a vector of counting processes. Note that N # N. With

Cy (X,
Dt = 7165_[ t)

consider the process

Ao=1+ /t Ko ((Ds-)oYs- — 1) (N, —TgY,_ ds) . (2.14)
0
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Then

Ay =exp [—/Ot(CS(XS)O —1Ip) Xélds] H (1 + ((Ds_)o X5 — l)IANS) .

0<s<t
(2.15)
The probability measure P can be defined by setting
P _
d—_ - At.
dP|g,
Then it can be shown that, under P,
t
Y Y- / Co (X)), dr = W, (2.16)
0

is a (G, P) martingale. Furthermore, under P, X remains a Markov chain
with Q-matrix A. ]

Notation 2.8 If ¢; is an Gi-adapted, integrable process then

¢ =El¢| V] = EE[EX%(?' g)z)j} = Ztt(gt))a (2.17)

where E denotes expectation w.r.t. P and oy (¢¢) is the Y-optional projec-
tion of Aypy under P. Consequently, oy (1) = E [Kt | Yt] is the YV-optional
projection of Ay under P. Further, if s < t we shall write o, (¢s) for the
Y-optional projection of Ay¢ps under P, so that

ot (¢s) = E [Kt¢s | Jﬂ a.s.
and, loosely we write oy (¢1) = o (¢r).

To summarize, we have under the probability measure P

t
X = X, +/ Ay X, dr + V3,
0 (2.18)

t
}/t = }/O +/ OT(XT)}/’I" dr + Wt-
0
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At is a Q-matrix satisfying (2.1) and (2.2). Under the probability measure
P

t
Xt = XO +/ ATXTdT + ‘/t;
0

) (2.19)
Y: - Yy — / IIY, dr is a martingale.
0
7.3 A General Finite-Dimensional Filter
Let H; be a scalar process for simplicity of notation of the form
t t t
Ht:H0+/ ardr+/ g;dm+/ 5 Y, (3.1)
0 0 0

where «, (3, § are Gi-predictable, square-integrable process of appropriate
. . . . /
dimensions. That is, « is scalar, 8, = (8},...,8)) € RN, and §, € RM.

[al)

Recall from Chapters 2 and 3 that by considering Hy X we obtain finite-
dimensional estimators for various parameters of our models. The same
trick works here with H;X;.

The signal process X is modeled by the semimartingale

t
X, = X0+ / A X, dr +V; (3.2)
0

so that

t

t
HtXt = H()XQ +/ OéTXT dr +/ Xr_ﬁ;‘ der (33)
0 0
t t
+/ X,_6.dY, +/ H.A. X, dr
0 0

t
+ /0 H._dV,+ Y (BAX,)AX,. (3.4)

o<r<t

Note AX,AY, =0 a.s. Now

N t
> BAX)AX, = 30 [ (8= 8) (X e.dX,) (e =)

0<r<t ij=1
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and using (3.2)

N t
Y @ax)ax, = Y /0 (8 = B1) (X, e0) {es, dV,) (5 — €5)

0<r<t ij=1
+ Z / < ng — ﬁf_Xr,ei> aji d/l“ (ej — ei) .
i,j=1"70
Substituting in (3.4) we have
H,X, = HyXo
t N
+ / a, Xp + H A X, + Z <67J«XT - Q;Xra 81'> (ej - ei) Qji dr
0 =
7,7=1

t t t
«ﬁ/xpmma+/fuﬂm+/;nJMm
0 0 0

N t ‘ -
£ 30 [0 -8 X eV (e - o).

5,5=1
We now give a recursive equation for the unnormalized estimate o (H; X%).

Theorem 3.1 Write ¢j; = (c]li,cfi, - ,c%). A recursive linear stochas-
tic differential equation describing the evolution of the process o (H:X:)

follows:

t t
o (H,X)) = o (HoXo) + / o (0 X)) dr + / o (Ho A X,) dr
0 0

+/O Z <U (ﬁﬂXT — ﬁﬁXr) ,ei> aji (r)dr(e; —e;) (3.5)

5,5=1

t
+ / o (X,-0_ (I = Y,_1)diagdY; (Dy—) Yo — 1)) .
0

Proof The proof is based on a Fubini-like result given in Lemma 3.2 of
Chapter 7 in Wong and Hajek (1985). The product X;H;A; is calculated
using the product rule for semimartingales

t t
X H Ay = HyXo + / H,._X,_dA, + / H,._A,_dX,
0 0

t
+ / X,_dH,_X,_ + [XHT],. (3.6)
0
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Here,

(XHA],= Y X, A6 (I-Y, 1)diag AN, ((D,-)oY,— —1).

o<r<t
Substituting in (3.6) and after some simplification

X, H,A\,

t
= HoXo + / X, A8 _(I-Y,_1)diagdY, (Dr)oY,_ — 1)
0

t_
0

t
+/ Hererrf ((Drf)OY - = l)/ (dN’I" - H()K«d’l’)
0

N
o X, +AH. X, + Z <5£XT - B X,, ei> a;i(r) (e —e;)|dr

ij=1

+ a dv — martingale. (3.7)

Taking the )-optional projection under P of both sides of (3.7), and using
a result of Wong and Hajek (1985) gives at once (3.5). [ |

The next corollary will be used for the derivation of smoothers.

Corollary 3.2 The above equation is recursive in t, so for s <t we have
the following form.

ag (HtXt)

t ¢
:U(XSHS)+/ a(aTXT)dr—i—/ o(AH. X,)dr

+ N

+ / Z <0 (ﬁﬂXr — ﬁiXT) ,ei> aj; (r)dr(ej —e;) (3.8)

J=1

+ / o (X [ (T = Yo 1) (D)oY —1)]) Y,

N t
+ Z‘/O <U (HT_XT_) ,€i> (DT_(GZ')()Y _ - l/) (dNT — H()Y;d’l“) €;
=1

where Tr is the trace. Here, the initial condition is E [A;H, X, | V5], which
again s a Ys-measurable random variable.

Specializing Theorem 3.1 and Corollary 3.2, the following finite-dimen-
sional filters and smoothers for processes related to the model are com-
puted.

Notation 3.3 Write ®(e;) = (D,y—(e;)oYr— —1'),1 <i < N.
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Zakar Equation for X

Take H; = Hy =1, a,, = 0, B, = 0 € RN, §, = 0. Applying Theorem 3.1
and using Notation 3.3 the unnormalized filter for the conditional distri-
bution of the state process follows:

o (Xy) _U(XO)+/() Ao (X,)dr

N t .
+ Z/ (0(Xr—), &) ®(e;) (AN, — IoY,dr) e;
i=1"0

(3.9)

This is a single finite-dimensional equation for the unnormalized conditional
distribution o (X;). Note it is linear in o (X3).

The Number of Jumps

For e;, e; € S, i # j, consider the stochastic integral

V= [ e e v
0

Note the integrand is predictable, so Vtij is a martingale. Now
<Xr—u ei> <ej7 er> = <Xr—7 ei> <€j, X, — Xr—> = <X7‘—7 ei> <Xr7 €j>
=1[X,_ =e; and X, =¢;].

Write 77 for the number of jumps from e; to e; in the time interval [0, ¢].
Then using (2.9) we obtain

.o t t ..
Ty’ = / (Xr—,€:) (ej,dXr) = / (Xo—,ei) (e, Ap X,) dr + VY
0 0

¢
= X, _,e)a;dr+ VY. 3.10
j t
0

This is the semimartingale decomposition of Jt To obtain the Zakai filter
for th, take Hy = 7,7, Hy = 0, ap = (X;, €i) aji, Br = (Xy,€i) €5 6, = 0.
Then it is seen that:

a(j;'th) - /t (ATU (T9X,) + (0 (X,), &) aji (r) ;) dr

/ v/ er) ,€i> ®(e;) (AN, — oY, dr) e;

(3.11)
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Taking the inner product with 1 = (1,...,1) gives the finite-dimensional
filter o(J”) for the number of transitions in the interval of time 0 to ¢. This
quantity will be used later for the estimation of the probability transitions
Aji-

Occupation Time

The time spent by the process X in state e; is given by
t
Oi :/ (X,,e;)dr,1 <i<N.
0

A recursive finite-dimensional filter for this process is needed with (3.11)
in order to estimate a;;. Take
Ht = OivHO = Ova’r = <X’I“;e’i>76’l“ =0 ERN;5T =0.

Substituting in Theorem 3.1, and using Notation 3.3 we have

o (OiXt) = /0 (<a (X,),ei)e; + Ao (OiXT)) dr

+/0 > (7 (07X, i) B(es) (AN, — ToYrdr) e;.

(3.12)
Together with the filter for o (X;) we have a finite-dimensional unnormal-
ized filter for o (OiXt), 1 < i < N. Taking the inner product with 1 gives
o (0)).

Drift Coefficients

In the next section we will see that the estimation of the cj}’s, in the
entries of the -matrix C,. of the observation process, involves the filtered
estimates of the processes

+ t
Z%,t = / <Xr7; 6m> dlcjfe and ka - / <}/T7 fk> <X7"’ 6m> d’l’.
0 0

The process Aj} , increases only when the Y process jumps from fi to fo

and the X,_ process is in state e,,. The T,*™ process measures the total
time up to time ¢ for which X is in state e,, and simultaneously Y is in
state fx. Apply Theorem 3.1 to

t t
Z},t:/ (Xo—,em) (dICF — AL dr)+/ (X, em) A dr
0 0
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T ) T

<X7‘7 em> )\I:é = <X7‘7 em) <§/7‘7 fk> Z <X7‘7 eot> Célq - <YYT7 fk> <X7‘7 €m> CZ}N
and 6* X, = (X, em) X, = (Xr,em) em. Write ¥(e;) = (I — Y, 1) ®(e;).
Then the Zakai equation for Aztit is

taking H; = Aﬁﬁt, Hy=0, a, = (X, ) A, 6% = (X, e,), and 3, = 0,

g (‘AZZ,tXt)
:/ (<U(X) ) (Voo fi) cibem + Ao (AL X)) dr

/ em) W(es)dYoe, (3.13)

of

Similarly, with H; = ’];km, Hy =0, a, = Yy, fi) (Xr,em), Br =0 € RN,
04 =0 fori,j=1,...,M, we have

Z mer Xo) e ®(e;)| (AN, — MoY,dr) e;

o (’Z;kat) = /0 ({0 (Xr),em) (Y, f) em + Ayo (Trkar)) dr

N

+ /Ot Z <U (/Trk—er—) 7€i> (I)(ei) (dNr - Hoyrd’l“) €;

=1

(3.14)

Smoother for the State

For the smoothed estimates of X given ), s < t, take H; = H, = (X, e;),
s<t,a,=0,p=0cRN, 6, = {5?} = 0 and apply Corollary 3.2.

o ((Xs, i) Xt)

— oy ((Xs, ) Xo) + / Ao ((Xae5) X,) dr -

/ ((Xs,ei) Xp—) ,e5) D(ej) (dNT — HOYT) dre;.

This is a single equation, finite-dimensional filter, for oy ((Xs,e;) Xi) =
E[A; (Xs,e:) X¢ | Vi ], driven by the K¥’s. Taking the inner product with
1 gives oy ({( X5, €;)).
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Smoother for the Number of Jumps
Take Hy = Hy = J¥, s <t, a,. = 0, 3. = 0, and §,, = 0 in Corollary 3.2:

t
a(j;jxt)—g(jijx) / co (THX,) dr

/ (72X, ) ex) ®ex) (AN, — oY dr) e

(3.16)

Smoother for the Occupation Time

Finite-dimensional smoothers are obtained for O! by taking H; = Hy, = O,
for s <tand o =0, 8, =0, . = 0. Applying Corollary 3.2 gives:

o (0X,) =0 (0!X,) +/ (4,0 (05X,) + (0 (X)) ;) dr

+ /t > {0 (0i_X,-) ex) B(ex) (AN, —oYdr) e

(3.17)

Smoother for A . and T}™

It is left as an exercise to show that the processes A} . and T}m have the
following finite-dimensional unnormalized smoothers:

G( ZZth)

=0 Akes /AU -Akés )

n / (0 (X,) s em) (Vi fi) chiem dr .

+ / Z (0(Xr-), em) V(E;)dYr e;

(o (A _X,—) ,ei) @e;)| (AN, — ToYydr) e,
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g (IZ;kat)
t N
=0 (TP X,) + / S (0 (TEX, ) e0) B(ex) (AN, — ToYrdr) e;
S i=1

“‘/ (0 (Xs) em) Yy, fr) em + Avo (TF™X,)) dr

(3.19)

7.4 Parameter Estimation

Suppose, as above, that X;, ¢ > 0, is a Markov chain with state space
Sx = {e1,...,en} and Q-matriz generator A = {a;;}. Then

t
X =Xo+/ AX,dr + V;. (4.1)
0
Again, suppose X; is observed through the process Y with representation
t
Yt:Yo+/ C.Y,. dr + Wy, (4.2)
0
where C,. is as given in Equation (2.3). The above model, therefore, is
determined by the set of parameters
0 :={aij,cpp, 1 <i,5,{m<N,1<k<M}.
Suppose the model is first determined by a set of parameters
0 :={aij, cip, 1 <4,5,{,m <N, 1<k <M}

and we wish to determine a new set § = (&ij, ¢, 1 < 4,5,6,m < N,
1<k M ) which maximizes the log-likelihood defined below. Write P
and Py for their respective probability measures. From (3.10) and (2.11)
we have, under Py, that

t
0
+ N
Kk — / Voo fi) S (Xr, en) e dr + OF.
0

m=1

To change, or modify, the intensities of the counting processes Jtij and
ICff, that is, to change aj; to a;; and ¢, to ¢y, m = 1,..., N respectively,
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we must introduce the Radon-Nikodym derivatives L"** (Brémaud, 1981),
given by

¢
L?’M = exp l/ log (ik ) ICM / ()\M /A\fz)dr
0 K 0

( )J” Ot(aﬁ—ajmxheimr]

t
/aﬂ ;) (Xr,e)dr
0

aﬂ

Cl,ﬂ

t t
+ [ log < ) Kk — / (ARF = j\fé)dr]
0 0

N
)\M <Yr7fk> Z <Xraem> ok
m=1
Clearly the martingales Vi, Vi7" Ok and OF ¥ are orthogonal for (i, j) #
(', 4") and (k,£) # (K',¢"). Consequently, to change all the aj; to a;; and
to change all ¢}, to &)}, m =1,..., N, we should define for ¢ # j and k # ¢

where

o ﬁ ﬁ Lt
dpy |, " L
Gi i,j=1 k(=1
The log likelihood is, therefore
1 ] = logL
0g ——~ dP9 = l0g Lt
N P t
= Z {\_7;] IOg -77‘ +/ (a/_]l — d]l) <Xr,e7:> dr}
ij—l aji 0
XT7 m
+ Z {/ log <Z Xy em) & ) dKckt (4.3)
kf=1 Z 1 (X em) e

t N
/ }/’I“afk Z X’I“ve’m Cék_é%)dr}'
m=1

Now, note that

N ~m
log (Ex‘l (Xr, om) cgk>

m=1 <Xr7 em> C?}i

I
NE

(Xr, em) log
1 fk

3
Il
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so that, taking the conditional expectation of (4.3), we obtain

N

dF; Y
E [1Og ﬁ yt:| = Z (jtjlogaji —ajiOt)
i,j=1
A
M (N 7
+ ) {Z (10g62’;1)/ (X, em) dKCE* (4.4)
k=1 \m=1 0
A

N

_;cﬂ/o (Yo, fi) (X, em>dr} +R(0)

where R () = E[R(6) | Y:] does not involve any of the parameters of 6.
Therefore, the unique maximum of (4.4) over # occurs at the value of @
obtained by equating to zero the partial derivatives of (4.4) in a;; and &},
yielding

. .
and
oy Krem) k) o(Af,) (4.6)
" o(fy (Ve fi) (Xpem)dr) o (™)

[from Bayes’ formula (2.17)]. The family of log-likelihoods is improving and
so converges (Dembo and Zeitouni, 1986).

7.5 Problems and Notes

Problems

1. Show that the Markov chain X; has the martingale representation

X, = ®(t,0) (Xo + /Ot & (r,0)"" dm)

where @ (., .) is the fundamental transition matrix (see Appendix B).
2. Prove Lemma 2.2.

3. Show that finite-dimensional smoothers for the processes A . and Trm
described in Section 7.3 are given by (3.18) and (3.19), respectively.
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Notes

In previous chapters we obtained finite-dimensional filters and smoothers
for a discrete-time Markov chain observed in Gaussian noise. In addition
to the filters for the state, finite-dimensional filters and smoothers were ob-
tained for the number of jumps from one state to another of the occupation
time in any state, and aslo of a process related to the observations.

In this chapter, the situation considered is that of an unobserved, contin-
uous-time Markov chain which influences the behavior of a second process;
in fact, the terms in the intensity, or Q-matrix of the second observed
process, are functions of the first, Again, new finite-dimensional filters and
smoothers are obtained for quantities analogous to those mentioned above.
Particularly interesting are estimates for the joint occupation times of the
X and Y processes. Using the expectation maximization (EM) algorithm
these estimates are then used to update and improve the parameters of the
model. Using the smoothers, filters and possibly new data, the model can
be repeatedly revised towards optimality. We, therefore, have an adaptive,
self-tuning model.

The results are similar in spirit to work in Davis, Kailath and Segall
(1975), van Schuppen (1977), and Boel, Varaiya and Wong (1975). However,
these works do not exploit the change of measure. Other novel features of
the present chapter are the use again of the idempotent property of the
signal process to find a closed-form filter for HX, and the finite-dimensional
filters for the number of jumps and occupation times, and the use of the
EM algorithm to reestimate the parameters of our model.






CHAPTER 8

Markov Chains 1n
Brownian Motion

8.1 Introduction

In this chapter, a continuous-time, finite-state Markov chain is observed
through a Brownian motion with drift. The filtered estimate of the state is
the Wonham filter (1965). The smoothed estimate of the state is given in
Clements and Anderson (1975). A finite-dimensional filter for the number
of jumps J,” was obtained by Dembo and Zeitouni (1986) and Zeitouni
and Dembo (1988), and used to estimate the parameters of the Markov
chain and the observation process. However, this estimation also involves
O} and 7, for which finite-dimensional filters are not given in Zeitouni and
Dembo (1988). Our filters allow, therefore, the application of the EM al-
gorithm, an extension of the discrete-time Baum-Welch algorithm (Dembo
and Zeitouni, 1986; Zeitouni and Dembo, 1988). Unlike the Baum-Welch
method our equations are recursive and can be implemented by the usual
methods of discretization; no backward estimates are required.

Section 2 introduces the model. Sections 3-4 cover the filtering and
smoothing of the various processes related to the Markov chain. In Sec-
tion 6 finite-dimensional predictors for the various processes are derived.
Finally, in Section 7 we obtain a finite-dimensional filter for a non-Markov
multivariate jump process with, almost surely (i.e., for “almost” all its
sample paths), finitely many jumps in any finite-time interval. Some ele-
mentary introduction to the concept of random measures would be helpful
to the understanding of this section, which can be omitted on a first read-
ing.
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8.2 The Model

Suppose, that Xy, ¢ > 0, is a Markov chain defined on a probability space
(Q, F, P) with state space S = {e1,ea,...,en}. As in Chapter 7, X; has a
semimartingale representation

t
Xt:Xo—i-/ A X, dr + V. (2.1)
0

The process X; is not observed directly; rather we suppose there is a (scalar)
observation process given by

yt:/O c(Xy)dr + wy. (2.2)

(The extension to vector processes y is straightforward.) Here, w; is a stan-
dard Brownian motion on (2, F, P) which is independent of X;. Because

X takes values in S the function ¢ is given by a vector ¢ = (c1,¢a,...,cn)’,
so that ¢ (X) = (X, ¢) where (-,-) denotes the scalar product in RY. Write
g?:U{Xs,ySISSt}, y?:U{ySSSSt},

and {G:}, {V:}, t > 0, for the corresponding right-continuous, complete
filtrations. Note ) C G; for all ¢.

We are going to derive finite-dimensional filters and smoothers similar
to the ones in Chapter 7. For this we introduce the probability measure P

by putting
t 1 t
=A; =exp (—/ (X, c) dw, — —/ (Xr,c>2 dr) .
G 0 2 Jo

Now A; is a martingale under P and

¢
Atzl—/ A (X, ) dw,.
0

By Girsanov’s theorem (Elliott, 1982b), y is a standard Brownian motion
under P. Define the process A; by

t
A =1 +/ A (X, ) dy, (2.3)
0

so that A; = exp(fot (Xr, ) dy, — %fot (X, c)? dr) and A A, = 1. Note A,
is an G-martingale under P. However, it is under P that (2.2) holds and so
has the form of the observation process influenced by the Markov chain.
In the sequel, we work with a Markov chain X; and a standard Brown-
ian motion y; defined on {Q, F, ?}. The measure P is defined by putting

(dP/dP)|7, = K.
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8.3 A General Finite-Dimensional Filter

Consider again a scalar process H; of the form

¢ ¢ ¢
H, = H, —|—/ o, dr —|—/ Bl dV, —|—/ 8, dw, (3.1)
0 0 0

where a, 3, § are F-predictable, square-integrable processes of appropriate
dimensions. That is, - and 4, are real and (3, is an N-dimensional vector.

Write C' = diagc for the matrix with diagonal entries c¢1,co,...,cN.
Using the product rule for semimartingales

t

t
H, X, = HoXo + / o, X, dr + / 8 X, v,
0 0

t t t
—I—/ O0r Xy dwr—l—/ H.AX, dr—l—/ H,_dV,
0 0 0
+ Y (B.AX,) AX,. (3.2)
o<r<t

Here

N t
> (BAX)AX, = Y /O (8] = B) (X, i) (ej,dVr) (ej — ei)

0<r<t 1,j=1
N t
+ Z / <6£XT - 6;X7«, 8i> Qj4 dr (ej — 61') .
i,j=170

In the last integral we have replaced X,_ by X,.. Substituting in (3.2) we
have

¢ ¢
H Xy = HoXo + / a, Xy dr + / B, X, dV,
0 0

t t t
—I—/ O0r Xy dwr—l—/ H.AX, dr—l—/ H,_dV,
0 0 0

#3680 e Vi) (e — )

i,j=1
N t .
+ Z /0 <6£Xr - ﬁ:«Xraez‘> aj; dr (ej - ei).
i,j=1

Remark 3.1 As in previous chapters, o (H: X;) = F[KthXt | yt]. m|
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Theorem 3.2 The recursive equation for the unnormalized estimate
o (HiXy) is given by the following linear equation:

o (H, X)) = o (HoXo) + /0 o (an X, dr + /0 Ao (H, X,) dr
/ Z BJX ﬁz ) €i> aji d/l“ (ej — ei)
1,j=1
+ [ 0 6:%) + Co (1.X,)) dy. (33)
0
Proof

t t
AH, X, = HyXo + / ap N X dr + | BrA_ X, dV,
0 0

t t t
+/ Sphr_ X, dwT—i-/ KTHTAXTdr—i—/ A._H,_dV,

+ Z/ ﬁj ﬁz <Ar—Xr 7ez> <6]7dv>( ei)

3,5=1

+Z/ 6AX 6ZAX7~,81>Q13d7’( -_ez)

z]l

N t
iy [ xeyet et Y [ (Exee)daree
i=170 i=1 70

Under_? y is a standard Brownian motion. Conditioning each side on )
under P, and using the Fubini Theorem of Wong and Hajek (1985), the
result follows. ]

The Zakai equation is recursive, so for s < ¢t we have the following form:

Corollary 3.3
t t
o(HeXt) =0 (HsXs) + / o(a, X, )dr+ / Ao (H.X,)dr

+ Z/ 1) X») s ei) agidr (e — e;)

+ / (0 (6,X,) + Co (H, X,)] dy,. (3.4)

Here, the initial condition is F[KSHSXS | JJS}, again a )s-measurable
random variable.
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8.4 States, Transitions, and Occupation Times

We now obtain particular finite-dimensional filters and smoothers, in their
unnormalized (Zakai) form by specializing the result of Section 3.

The State

Take H; = Hy =1, a,, = 0, B, = 0 € RN, §, = 0. Applying Theorem 3.2
we obtain a single, finite-dimensional equation for the unnormalized con-
ditional distribution o (X3):

ag (Xt) = E I:KtXt | yt]

which is

o (X)) = Xo + /Ot Ao (X,)dr + /Ot Co (X,) dyy. (4.1)

For the smoothed estimates of X, given )y, s < t, take
Ht:Hs:<XSaei>v s <t, o =0, 67“:05 o0, =0

and apply Corollaries 3.3. [Rather than taking H; = (X, ;) and estimating
P(Xs=¢e;| V) =m ((Xs, e;)) we could consider all states of X, simulta-
neously by taking H, = X, s < t; however, the product H;X; would then
have to be interpreted as a tensor, or Kronecker, product H;X;.] Substi-
tuting Hy = (X, €;), s <t, in (3.4) gives

ot ((Xs, e:) X3) :O’S(<XS,61'>XS)+/ Ao, ((Xs,e;) X,)dr
s (4.2)

t
+/ Cor (X, e5) X») dyr.

This is a single-equation finite-dimensional filter for oy ((Xs,e;) X;) =
E[At (Xs,e) Xy | yt} driven by y. Taking the inner product with 1 gives
o ((Xs, €3)).

The Number of Jumps

In Appendix B it is shown that the number of jumps from e; to e; in the
time interval [0, ¢] is given by:

t
7 = / (X, e5) azidr+ Vi, (4.3)
0
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To obtain the unnormalized filter equation, take H; = Jtij, Hy = 0,
Qp = <erei> Ajiy 67‘ = <Xraei> €4, o, = 0.

The Zakai equation for o(7,” X;) is obtained by substituting in Theo-
rem 3.2:

U(jtint) = t (0 (Xr),ei)ajie;dr
/0 (4.4)

t t
- / Ao (JP X)) dr + / Co (T7 X,) dys.
0 0

The smoothed estimate of jsij given ), s < t, is obtained from Corol-
lary 3.3 by taking Hy = Hy = J¥, s <t, a, =0, 8, = 0 and 6, = 0. Then,
from (3.4) we have the finite-dimensional Zakai form of the smoother

t t
o (T9X,) :a(j;'sz)Jr/ A (TP X,) d?‘+/ Co (T2 X) dy,-

(4.5)
The Occupation Time
The time spent by the process in state e; is given by
t
O :/ (X, e;)dr, 1<i<N.
0
Take
Ht = O%u HO = 07 Qp = <X’I‘7€i>7
6TZOGRN, 57«:0.
Substituting again in Theorem 3.2 gives the Zakai equation
ag (O;Xt)
t t ‘ t ‘
= / (o (X,),e:)eidr+ / Ao (0L X,) dr + / (Co (0LX)) dys.
0 0 0
(4.6)

The finite-dimensional unnormalized smoother is obtained for O by taking
Hy=H, = O for s <tand a,. =0, 3, =0, 6, = 0. Applying Corollary 3.3
gives

o (0iX)) = o (OLX,) + / o (01X,)dr + / (€0 (01X,)) dy.
(4.7)
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The Drift Coefficient

In the next section we shall see that the estimation of the drift coefficient
c¢=(c1,¢a,...,cn)" of the observation process involves the filtered estimate
of the processes

t t t
’Z;i = / (Xr,e:)dy, = / ci (Xr,e;)dr + / (X, e;) dw,.
0 0 0

Taking H; = 7', Hy = 0, a,, = ¢; (X, €;), 3 = 0 and 6, = (X, ¢;) we shall
apply Theorem 3.2, noting again that X,a, = ¢; (X, ;) X, = ¢; (X, €;) €;
and X0, = X, (X, e;) = (X, ¢;) ;. The Zakai equation here is

o (T/X:) = ¢ t (o (X,),e)e;dr+ t Ao (T'X,) dr
Femosa[emmis]
+ /0 (Co (’];iXT) + (0 (Xr), €) €;) dyy.

Taking H; = 7} for s < t, a,. = 0, B, = 0 and §, = 0, we obtain from
Corollary 3.3 the following finite-dimensional unnormalized smoother:

t t
o (TiX)) = o (TiX,) + / Ao (T2X,) dr + / Co (T2X,)dy,.| (4.9)

Remark 4.1 In all the above smoothing equations when we take an inner
product with 1 the integral involving A will vanish because Zjvzl aj; =0.0

8.5 Parameter Estimation

This problem is nicely discussed in Dembo and Zeitouni (1986) and Zeitouni
and Dembo (1988). We first review their formulation in our setting.
Suppose, as above, that Xy, t > 0, is a Markov chain with representation
(2.1). Again, suppose X; is observed through the process (2.2).
The above model, therefore, is determined by the set of parameters

0:=(ay, 1<i,j <N, ¢;; 1<i<N).
Suppose the model is first determined by a set of parameters

9:(aij, Ci, 1§Z,]§N)
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and we wish to determine a new set

0 = (Gij, ¢, 1 <i,j <N)

which maximizes the log-likelihood defined below. Write Py and P, for their
respective probability measures.

To change all the aj; to G;; (see Chapter 7) and to change the ¢; to &,
we should define

dP;
Py |,

HLjexp{/ (X,,¢—c)dy,

T i#j

_%/0 (<Xhé>2—<Xr,c>2)dr} (5.1)

Now recall that (X,,¢) = SN (X, ei) ¢i, (X0, &7 = SN (X, e5) 2, ete.
Therefore, taking the log and the conditional expectation on ); of both
sides of (5.1), we obtain using the notation of Section 4:

N

[log Py ‘yt} = > (97 logasi - 4;i0))

N
+Y (a7 - 56700) + R(9), (5.2)
i=1

Here again R (6) is independent of .
The unique maximum of (5.2) over 6, obtained by equating to zero the
partial derivatives of (5.2) in a;; and ¢, is therefore, given by

i = o (J”) 5.3
7t U(O%)’ ( ° )
& = 0_(7?) 5.4
=50 o4

This parameter set gives P, the next probability measure in the sequence
of steps in the EM procedure.

The sequence of log-likelihoods constructed this way is increasing and so
converges. The convergence of the sequence of 6 is discussed in Dembo and
Zeitouni (1986) and Zeitouni and Dembo (1988).
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8.6 Finite-Dimensional Predictors

The State

The prediction problem discusses the derivation of an equation for
s (Xt) := B[ X | Vs], 0 < s <t For fixed t, ms (X¢) is a Ys-martingale.
Consider for fixed ¢, the Gs-martingale

ns:=E[X:|Gs] = P(¢, ) Xs. (6.1)
Bayes’ theorem implies

E[tht | ys} Og (Xt)
s (Xy) =F X s | = == = , say, 6.2
7T( t) [ t|y] E[ASDG} Us(l) y ( )
where K_t is given by (2.3). We are interested in deriving a recursive equation
for & [AtXt | ys} := 05 (X}). Using the product rule, with C' = diag (¢) as
before,

t t t
XK, = Xo + / K.CX, dy, + / KA, X, dr + / K.dv.  (6.3)
0 0 0

Lemma 6.1 The solution of (6.3) is given by

t t
Xth_q)(t,O){Xo—i-/ @(T,O)*lxrcxrdyﬁ/ @(T,O)lxrd%}
0 0

(6.4)
Proof Here, (6.4) is obtained by variation of constants, or alternatively
differentiating (6.4) yields (6.3). |

Now, using a result of Wong and Hajek (1985) to exchange conditioning
and integration in F [ASXS | Vs }, the desired Zakai recursion follows:

os (Xy) = fI)(t,O)U(XO)—i-/OSfI)(t,T) Co (X,) dyy. (6.5)

Together with (4.1), Equation (6.5) which is driven by y, provides a finite-
dimensional predictor for the unnormalized estimate of X.

Number of Jumps and Occupation Time

The number of jumps from e; to e; in the time interval [0,t] is (see Ap-
pendix B)

h7t” :‘/0 <XT_,6i> A jg (T‘) dT-f—‘/O <Xr_,6i> <€j,d‘/;>. (66)
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Denote 7/ = E[J | G, |; then we have the following;:
Theorem 6.2

0l = </th> (r,0) Xoay; (r) dr, ei> + </O (X, ) dVT,ej>
4 </0 /utq)(r,u)aji (r) drqu,ei>. (6.7)

Proof From (6.6) we write

nd =E[77 ]G]
=F [/Ot (Xy—,ei)ag; (r)dr ‘ QS] + /OS (Xy—,ei)(ej,dV,). (6.8)

Now, using the martingale form, X; = ® (¢,0) (XO + fg & (r,0)"" dVr)

E [/Ot (X, ) ayi (r) dr gs]

= </Ot<1>(r,O)Xo,ei>Gji(T)d7’
+E[</Ot<1)(r,0)/or<1>1(u,0)qu,ei>aji(T)dT gs}

- </th>(7~, 0) Xo,ei>aji (r) dr (6.9)

+ </0 /utq>(r, w) aji (r) drqu,ei>. (6.10)

Substituting (6.9) into (6.8) gives (6.7). [ |

~We shall first obtain the following finite-dimensional, recursive filter for
X, =FE[J’X,|Gs]:

Theorem 6.3

— o — S —

0¥ Xo = Xo + / (Xrseiyagi () dr (ej —e:) + / Ay X, dr
0

0
+</OS/Tt<I>(u,r)aji(u)du

X Z XT, ek a[k d?" (6[ — ek) > (6[ — ek)

k;él

—

+ / (CXom? — (%) X ) (dyy — (Ko)dr),  (6.11)
0
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with a Zakai form

o (X)) = o Xo) + / (o (X0) e ags (r) dr (5 — 1)

—|—/ ATO'(’I] X
0

) (6.12)
+<ZF@L (s,t>,ei><ee—ek)
k£
+ / Co (17 X,) dy,.
0

Here T, (s,t) = [y f D (u,r) aj; (u)du (o (X,),er) an (r) dr (e, — ex)
Proof Using the Itd product rule for (4.1) and (6.7) we have

N Xy =i Xo + / n? A Xpdr + [0, X] | + Gs-martingale.
0

Here,
.x], = 3 Agiax,

0<r<s

and
AnIAX, = (X,_,e;) (ej, AX,) AX,
+ </t D (u, ) aj; (u) duldX,, ei> AX,
= (Xr— i) (Xr,€5) (€ — €i)
+ </t<1>(u,r)aji (u) du
X Z r—ek) (X ee) (e —ex) e > (ee — ex)

k;é@

= (Xy—,ei) (ej,dX) (ej — €;)

+</thl>(u,7’)aji(u)du

X Z r— ,ek 6[, dXT> (eg — ek) > (6[ — ek)

k#



192 Chapter 8. Markov Chains in Brownian Motion

Hence

N9 X, =nd Xo+ / nd A X, dr + / (X7, e5)aj; (r)dr(e; —e;)
0 0

+</()5U:q>(u,r)aﬁ(u)du
X Y (X, ex) an (r)} dr (e; — er) ei> (er — ex)
k.l

+ Gs-martingale. (6.13)

Taking the Ys-optional projection on both sides of (6.13) gives

—_—

néjXS = néon +/ <XT, ei>aji (r)dr(e; —€;) +/ Arnf«jXT dr
0 0

+</OS/Tt<I>(u,r)aji(u)du

X Z<X“ ek>a2k (r)dr (e; — ek) ,ei> (e¢ — ex)

[y

+ / Yr dvry, (6.14)
0

where v, 1=y, — for<f(r, c>dr is the innovation process and 7, is a square-
integrable Vs-predictable process which we will identify using special semi-
martingale representations. Multiplying together (2.2) and (6.14) and tak-
ing the )Ys-optional projection gives us:

o — o —

— S /\ S —
ns Xsys = / n;«JXr<Xra C>d/f“ + / yr Arny? X dr
0 0

+ /OS yr( X, ei)aji (r) dr (e — e;)

+/Osyr</:‘1>(uv7")aﬁ (u) du

X Z<X“ ek>agk (r)dr (e; —ek), ei> (er — ex)
If;’fl
+ Ys-martingale. (6.15)
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However, multiplying together the innovation form y, = fot <XT, c>dr + 1
of (2.2) and (6.14) we also have

nd sys—/< r,c>nf~JX dr

Yr XT, e; ajZ (r)dr(e; —ei) + / yr A X, dr
0

y< / (u,7) ay; (w) du

X <XT, ek>agk (r)dr (e; — ek) ,ei> (e¢ — ex)

k£
ke

+

ho\..

+/ ~r dr. (6.16)
0

Equating the bounded variation terms in (6.15) and (6.16) gives

—_—

Y = O Xy — (X, eyl X (6.17)

This together with (6.14) gives (6.11). Equation (6.12) is easily obtained
using the change of measure and Bayes’ rule. ]

Taking the inner product of (6.11) and (6.12) with the vector 1 =
(1,1,...,1) we obtain the normalized and unnormalized predictors for the
number of jumps, that is,

—

(FXol) =07 and (o (1FX.).1) =0 (n).

With similar arguments we have predictors for the occupation time O :=
fot (Xr,€;)dr. If we denote I, := E [0} |G, |, then similarly to Theo-
rem 6.2,

I = </OS<I>(T,O)X0dT,ei>—|—</OS/:<I>(T,u)duMu,ei>.



194 Chapter 8. Markov Chains in Brownian Motion
In this case

F/g\)(szrgxo+/ A,TiX, dr
0

+ </OS/ @ (u,r)aj (u) du
X Z<X” ek>agk (r)dr(ep —ex), ei> (e¢ —ex)
+/0 (CTiX, = (X, )TiX, ) (dy, = (Xric)dr),  (618)

with a Zakai form

o (TX,) = o (ThXo) + /0 Ao (TX,) dr
+ <Z T (,1), €i> (ec — ex) (6.19)
k.l

+ / Co (X,T%) dy,.
0

Here I} (s,t) = [, f: D (u,r) aj; (u)du o (X,),er) arp (r)dr (e, —eg) .
Taking the inner product of (6.18) and (6.19) with the vector 1 =
(1,...,1) gives the desired predictors for the occupation time at any state
e; up to time t.

8.7 A Non-Markov Finite-Dimensional Filter

Consider a process S, t > 0, with right-constant sample paths defined on
a probability space (2, F, P). Its state space is an arbitrary finite set S =
{s1,...,sn}. By considering the functions ¢y, (s;), defined so that ¢, (s;) =
0if i # k and ¢, (si) = 1, and writing X¢ := (¢1 (St), ..., dn (St)) we see
that equivalently we can consider a process X;, ¢t > 0, whose state space is
the set S = {ei1,...,en} of unit (column) vectors e; = (0,...,1,0,...,0)
of R¥. {F;} will be the right-continuous complete filtration generated by X.

Suppose that in any finite-time interval X; has, almost surely, only
finitely many jumps (this is implied by the boundedness of a;; defined
below), and write T) (w), k € N, for the kth jump time. 07, (. (dr) will
denote the unit mass at time T}, (w) and, if X7, ) = €;, (), Write 0;, () (2)
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for the function which is 1 if ¢ = iy, (w) and 0 otherwise. X; is a multivariate
Jump process and we can write

X, = X0+ Z AX,,  where AX, =X, — X,_

o<r<t

=Xy +/0 Z (ei — Xr—) (; 073, (w) (dr) 04 () (U) - (70)

The random measure ), 07, () (dr) 6;, () (4) picks out the jump size and
the jump times and, following Jacod (1979), has a predictable compensator
VP (dr,e;). In turn, v? factors into its Lévy system :

VP (drye;) = A(ei, Xp—yryw) dA (1, X, w) .

Roughly speaking, dA (r, X,,_,w) is the conditional probability that the
next jump occurs at time r given the previous history of the process. (In
the Markov case the conditioning is only on the event that the process is
in state X,_ just before r). A(e;, X,—,r,w), defined for e; # X,_, is the
conditional probability that the process jumps from X,_ to X, = e;, given
that there is a jump at time r and given the previous history of the process.
The measure dA is a nonnegative random measure on RT. For simplicity
we shall suppose it is absolutely continuous with respect to Lebesgue mea-
sure, so that there is a predictable Radon-Nikodym derivative a (r, X, —, w)
such that
dA (r, X,—,w) = a(r, X,—,w)dr.
Writing a (e;, X,—,r,w) = A(es, Xp—,r,w) a (r, X,—,w) for e; # X, we see
Z a(e, Xo—,rw)=a(r,X,—,w).
ei;éX,,‘,
If we define a matrix A (r,w) = (a;; (r,w)) by putting
Qi (T‘,(AJ) za(ej,ei,r,w), 275.77
ai; (r,w) = —a(re;,w), 1<% <N,

then (with obvious notation),

Z (e; — Xr)aix,_ = A(r,w) X,

and the representation (7.1) can be written

t
Xt = XO —|—/ Z (ei — XT_) (Z 6Tk(u.)) (d?‘) 5ik(w) (2) - aixr> dr
0 k

+ /0 A(r,w) X, dr. (7.2)
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Note X is a Markov process if and only if the elements of A are determin-
istic.

The decomposition (7.2) expresses X as the sum of a martingale V' and
a predictable process of integrable variation. The martingale V is

t
Vi= / Z (i — X;-) (Z 01, (w) (dr) 04y () (i) — aix, dr)
05 .
t
=X = Xo— / A(r,w) X dr (7.3)
0
t
=X; —Xo— / A(r,w) X, dr, (7.4)
0

because for almost all w X, (w) = X,_ (w) except for countably many r.
(This observation will be used to equate similar integrals below.)
For unit vectors e;,e; € S, ¢ # j, consider the stochastic integral

v = [ e X tepavi). (7.5)

Note the integrand is predictable, so V¥ is a martingale. Now

<€i, XT,> <6j, dXT> = <6i, XT,> <6j, AXT>
= I(XT, = €4, XT = ej) . (76)

Substituting (7.3) in (7.5)

A :/0 (ei, Xr—) (e, dX;) —/O (es, Xr—) (ej, A(r,w) X;_) dr.

Write Jtij for the number of jumps of process X from e; to e; up to time ¢.
Then using (7.6)

- B t
VY =TJY —/ (Xr—,ei) aj; (ryw)dr
0
¢
=77 - / (Xr,ei)aj; (ryw)dr
0

(again because X, = X,._ a.s. except for countably many r). Therefore, we
can write

.. t ..
T = / (Xy,ei)aj; (ryw)dr + V2. (7.7)
0
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Observation Process

Suppose {1,2,...,N} =A(1)UA(2)U---UA(d) where A(k)NA{)=10
if k # (. For a set A(k) write I (A(k)) for the vector } ;. €;. For
k,0e{l,...,d}, k # ¢, define

Y = Z T,

(i,§)€A(k)x A(£)

so from (7.6)

Y = / (T(A(K)). X,_) (T(A(0)).dX,)

Substituting from (7.3) we obtain, similarly to (7.7),

t
¥ = / WM (1) dr + Q)
0

where
h* (1) = Z (X, ei)ag; (r,w)
(i,7)EA(k)x A(L)
and QF = Z V.

(i,§)€A(k)x A(£)

The observation process will be a set of processes of the form Y;*. That
is, we suppose there is a collection of pairs (ki,¢1), (k2,0l2), ..., (kp,%p)
with k;, ¢; € {1,...,d}, k; 75 £;, and (ki,fi) 75 (kj,fj) for i 75 j. For
simplicity we shall write Y7 for Y*i% | etc., so the observation process is

Y= (VY2 )
. t ) .
where Y/ = / h? (r)dr + Q. (7.8)
0

Note that if i # j then Y jumps at different times to Y7, so the martingales
Q* and @7 are orthogonal.

Write {);} for the right-continuous, complete filtration generated by Y.
Our objective is to obtain a recursive equation for X, =FE [X: | Vel

Definition 7.1 The innovation process is
~ ~ ~pN\/
Q= (Qrr--,QF)
where

. . t/\»
Ql :Yg—/ hi (r) dr.
0
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Simple arguments, using again Fubini’s theorem, show that Q7 is a Y-
martingale. We can, therefore, write

t
Y! = /0 b () dr + Q. (7.9)

Similar calculations, again using Fubini’s theorem and (7.4), show that

the process

- N N t A
V, =X, —XO—/ A(r,w) X, dr
0

is an RN -valued martingale with respect to the Y-filtration. Because ) is
the trivial o-field, {9, ¢}, X, is a constant vector, the initial distribution
of X.

From the representation result for martingales with respect to a multi-
variate jump process 14 (Brémaud, 1981) can be represented as

t
Vi = / Tr er
0
Pt
=) [ 2ad;
j=1"0
Here v is a YV-predictable N x p matrix valued process with columns

FYTJ‘-:(FYT]:j7'--7’yTJ‘Vj)/’ j:17""p'

We, therefore, have

R R b — t N
Xy :Xo—i-/ A(r,w) X, dr—l—/ Yr dQy-. (7.10)
0 0
Theorem 7.2

. A . A A . A
v =h (T)_l Iﬁj(r);éo (e, X7) apo (r,w)e, — h (r) X,
(0,p)€A(k;)x A(£5)

Proof The filtering problem will be solved if we determine the elements
of . This we do by calculating XY, two ways; in fact we calculate the jth
column (X¢, YY) in two ways. Now

_ t _ t _ .
X/ — / X, dYj + / ax, v, + 3 AX,AY)
0 0

o<r<t



8.7. A Non-Markov Finite-Dimensional Filter 199

and from (7.4) this is

t t
_ / XT_dYTj—i—/ A(r,w) X, Y,_ dr
0 0

t

+/ AV, Y+ Y (Xp— X, )AY). (7.11)

0 0<r<t
Note
> X AY) f/ X,_dY/.
o<r<t
Also ‘
AY! = (I (A(ky)), Xp—) (L (A(4)), Xy)

and

X, (ep, Xr) =€, (€p, X)), 1 < p <N,
SO ‘

X AY) = 3 (T(A(k)), Xpo) ey (ep, Xo) .
PEA(L;)

Therefore,

AX,AY? = (X, — X, )AY/
zz: T z{: T

o<r<t o<r<t

= 3 (AR, XY ep lep, X /erdyj

PEA(L;)

— Z /t (€qy Xr) po (T,w) dre,

(0,p)€A(k;)x At;) 0

+ Z Q7 e, — / X,_dvy.

(0:p)€A(k;) %

Substituting in (7.11) we see
. t ) t
XY= | A(rw) XY dr+ / av, Y,_
0 0

t
+ Z / <€0’7X’F> Qpo (T, W) drep
(0.0)€A(k;)x A(e;) 70

+ > e, (7.12)

(o:p)€A(k;) X A(£;)
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Taking the Y-optional projection of each side of (7.12) and using the fact

that
———

n —_— .
A(r,w) X, Y = A(r,w) X, Y,

we have
A~ . ¢ .
XYy = / A(r,w) X, Y7 dr
0

+

T —— _
/ (€oy Xr) Gpo (T,w)dre, + Hy (7.13)

(0,0)€A(k;)x A(t;) "0

where H is a square-integrable )-martingale. However, from (7.9) and
(7.10) we also have

t
XY = / X,_dy? + /dX Y.+ Y AX.AY/
0

o<r<t

/X _Rh(r dr+/XT,dQ3

/A rw) X, Y7 dr—i—/ WY dQ,+ Y AIAYY

o<r<t

because the martingales Q" and Q7 jump at different times if i # j. That
is,

_ t ¢ _ t
X,v/ :/ X (r) dr—i—/ A(r,w) X, Y dr—i—/ i (r)dr + HE,
0 0 0

(7.14)
where H? is a square-integrable J-martingale. Now Xthj is a special semi-
martingale so the decompositions (7.13) and (7.14), into the sum of a mar-
tingale and a predictable bounded variation process, must be the same.
Therefore, equating the bounded variation processes we see

‘ N B A o R
vl =h (T) ! Ifl]‘ (r)#£0 Z <€<77Xr> Upo (7'7 w)ep — b (T) X
(0,00 A(k;) X A(L;) u

Corollary 7.3 If the entries a;; (t,w) of the matriz A (t,w) are adapted to
the Y-filtration, then

e — ~
(€oy Xr) Gpo (1,w) = <eg, XT>apg (r,w)
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S0

ilj (’I”) = Z <ecr; Xr>apd (Ta w)

(0:p)€A(k;) X A(L;)

and X, is given by a finite-dimensional filter. That is,

A Zakai Equation

To derive the Zakai form of this filter suppose the a,, (t,w) are adapted to
the Y-filtration and suppose there is a k > 0 such that a,, (t,w) > k for
(o,p) € A(kj) x A(¢;) and all j.

Define a new measure P, on (2, F, P) by putting E [dP/dP | G| = A,
where A is the martingale

p t
Ay = 1+Z/ A (W (r=)"" = 1)dQJ.
j=1"0

Then under P the components Y7 of Y are independent Poisson processes.
Consequently define Q] = Y/ — ¢ and write Q, = (@1, e ,@p)/. Consider
the (ﬁ, f) martingale

p t .
K =14 Z/ Koo (W (r—) — 1) dC0'.
j=1"0

Then it is easily checked that
Ath =1 a.s.

We take P as the reference probability and compute expectations un-
der P. However, it is under P that

t
= [WedeQh =L
0
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Write 11 (Kt) for the Y-optional projection of A under P. Then for each
t>0
11 (At) =F [At | yt} a.s.

Furthermore, it can be shown that
p t )
m(x,) = 1+Z/ N g
j=1"0
where M =TI (X,_) (b7 (r—) — 1).
Write
g (Xt) = E [KtXt | Jit} a.s.

= (q¢, say.

Also, 0 (1) =10 (Kt). ¢+ is an unnormalized conditional expectation of X;
given ) because

X, =E[X,| V] = =L

Therefore,

t
g = Xo + / Arqy dr

+Z Z / (Costr—) apo (r,w) €p — gr—] dQ-

J=1 (o,p)EA(k;)x A(L;)

(7.15)
Note again this equation is linear in q.

8.8 Problems and Notes

Problems

1. Fill in the proof of Theorem 3.2

2. Derive Equation (6.12).

3. Fill in the details in the derivation of Zakai Equation (7.15).

4. Prove that the solution of (6.3) is given by

t t
XtXt_flJ(t,O){Xo—i-/ @(T,O)_lereryT—l-/ (r,0) ' A, dw}
0 0
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Notes

The literature on semimartingales and stochastic integrals is found in many
textbooks and monographs (Elliott, 1982b; Wong and Hajek, 1985; Chung
and Williams, 1990).

In Dembo and Zeitouni (1986) 7; is written as fot E[{(X;,9) | Vi ]dyr, a
nonadapted stochastic integral which is not defined, at least in Dembo and
Zeitouni (1986). Also, it is not clear the reference to Yao (1985) in Zeitouni
and Dembo (1988) provides a finite-dimensional filter for O? in the general
case.

However, the results of Section 4 above give explicit finite-dimensional
filters (and smoothers) for 7,7, Oi, and 7;i, 1 <i,j < N.
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TWO-DIMENSIONAL
HMM ESTIMATION






CHAPTER 9

Hidden Markov
Random Fields

9.1 Discrete Signal and Observations

In the previous chapters we used ideas and techniques to solve filtering and
estimation problems for dynamical systems evolving in one-dimensional
(discrete or continuous) time. Here, working again with the reference prob-
ability technique, we discuss similar problems for “discrete-time” random
fields, that is, sets of random variables taking their indices from unordered
countable sets, such as, for example, lattices in Euclidean spaces. Our goal
is to derive algorithms that could be useful to restore, or filter, noisy or [as
expressed by Besag (1986)] “dirty images.”

We shall be working under the assumption that the random fields are
Markov random fields. For that, consider a lattice L of points and con-
sider a system of neighborhoods N' = {Ny, ¢ € L} over L, such that each
Ny consists of a certain number |Ny| of points of L, not including ¢. De-
note X (Ny) = {Xk,k € Ng}. Then {X,, ¢ € L} is a Markov random field
if PIXy=2a| X, k#L ke L] =P[X;,=ux]| X(Ny)]J; that is, the depen-
dence between the random variable is, for each X,, determined only by
random variables in its neighborhood N,.

A random field X on a lattice L is considered. At each point ¢ of the
lattice X, takes some value. The random field X is not directly observed;
rather there is a noisy observation process y which is a function of X and,
in the “blurred” case, of some of the neighbors of X. We, therefore, have a
hidden Markov random field, HMRF.

Conditions are given which ensure X is a Markov random field. The prob-
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lems discussed here are the following: given a set of observations {y,, ¢ € L},
determine the most likely signal {X,,¢ € L} and, also, determine the pa-
rameters of the model, that is, the transition probabilities of the Markov
random field X and the observations y. The technique used is that of a
measure transformation which changes all the signal, X, and observation,
ye, random variables into independent, identically, uniformly distributed
random variables. The use of this measure change is equivalent to employ-
ing a form of Bayes’ Theorem; however, to exhibit analogies with the rest
of the book we choose to introduce a new probability measure. The lattice
L could be the set of pixel locations in some image. We first discuss the case
where the observation variables y take values in a discrete set. In Section 2
we considered the situation where y is scalar and the signal X is observed
in Gaussian noise. In Section 3, both the signal X and observations y take
continuous values.

The Markov Random Field

Consider a finite lattice L. (In particular, L could consist of a grid or array
of points in R%.) Associated with L we suppose there is a discrete Markov
field Xy, £ € L, with a finite-state space S defined on a probability space
(Q, F, P). Without loss of generality we can suppose that S consists of the
set Sx = {e1,...,en} of standard unit vectors in RM™ for some positive
integer M. Then X, € S for each ¢ € L. We shall suppose that each point
¢ € L has a neighborhood Ny consisting of points of L different from ¢. The
number of points in N, may vary for £ on or near the boundary of L. Write
Ny = Ny U/ and | Ng| for the number of points in Np.

Given the state Xy = z¢ and given X (Ny) we suppose the site £ € L has
an energy proportional to

b (.’L‘g,X (Ng)) .

Here b (-, -) is a positive function defined on S x SIV¢l. We suppose a proba-
bility measure P is defined on the finite-state space Q = S* of this discrete
random field by setting
b X (N,
P(CL‘)Z HZGL (‘Tl’ ( l)) (1'1)
Z
for v = {wg,0 € L} € St . Here Z =3 . cqr [1yep, b (a), 2% (Ng)) is a nor-
malizing constant.
We shall assume in the sequel that, for each ¢ € L,

b(xe, X (No) = [] a® (zn)a(xe). (1.2)

neNy
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Here each a (+) is a positive function on S$% and a () is a positive function
onsS.

Remark 1.1 Note our model generalizes the Ising (Kinderman and Snell,
1980) situation where, for each £ € L and x € S*, a function Uy is consid-
ered where, for constants J, m, H,

U (z) = —% Z oo (x)on (x) —mHoy (z) .
neN,

In this Ising case S = {e1,e2} and oy (x) = +1 if 2y = e; and oy (x) = —1
if x4y = eg. Then, for x = {z,, ¢ € L}

e V@ = T @ (@a)a(ar)

neN,
where a* (z,,) = exp (— 20y () 0 (2)) and a (z;) = exp (—mHoy (2¢)). O
Lemma 1.2 With P defined on Q = SL by (1.1), if assumption (1.2) is
satisfied, the random field X satisfies the Markov property

P[Xz:€m|Xk,k7£€,k€L] :P[X[:6m|X(N[)]
_ HnGN@ a® (em) a™ (zn) a(em)

Sl Tnen, 0% (ep) a? (z) a(ep)

Proof

P[X¢=em | X,k €L,k #(]
_ P[Xy=em, X = a1,k # (]
S0 P (X = ax, Xy = ey, ki # 1]

[1 kk:WLz HaGNk a™ (za) a(zy) HnGN@ a™ (zn) a(em)
x [Tscan a®™ (z5) a™ (em) a(wn)
Vi I ket Tlaew, @™ (wa) a (z)

% laen, @ (@n)a(ep) [oex, 0™ (23) ™ (ey) a (z)

_ I_IneN,Z a™ (zn) a®™ (em) a(em) .
S0l Tnen, a2 (zn) a® (e,) a (ep) .
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Remark 1.3 We shall assume in the sequel that assumption (1.2) is sat-
isfied and that P is defined by (1.1). Note this implies the Markov field
is homogeneous in space; that is, the transition probabilities depend only
on the neighbors and not on the location (though for sites ¢ on or near
a boundary, |Ny| may vary). Nonhomogeneous random fields can be dis-
cussed using the measure change method; however, parameter estimation
is more difficult. Write Fr, for the complete o-field on Q = S* generated
by X. Write A, for the M x M!Vel matrix of probability transitions

a™ (xl,...,x‘N”)
— P[Xi=em | X (N)] (1.3)
[nen, @™ (em) a™ (zn) a(em) x, €5 ={e em}
) % - Y 0O

Y aen, @™ (ep) a? (zn) a(ep)

Now Fp,_y¢ is the o-field generated by all the X}, with the exception of
X¢. With ® denoting the tensor product we have:

Lemma 1.4 The signal process X has the representation
XZ = Af (®n€NzXn) + ‘/é (14)
where Vy satisfies
EVi| Fr_gn] =0.
Proof

E[Vel| Froqny] = E[ X0 — A (®nen,Xn) | Frqoy ]
=E[Xe| Frqy ] = Ae (®nen, Xn)
= Ay (®n€NeXn) — A (®”€N‘Xn)
—0. "

The Observation Process

The process X is not observed directly. Rather, we observe the values Y,
¢ € L, of another process Y which, without loss of generality, we identify
with the standard unit vectors f1, ..., fx of R for some suitable positive
integer K. Write

Ckm:P[}/g:fk|X[:6m] (15)

and C for the K x M matrix {cgm}, k=1,...,K, m=1,..., M, so that
E[Y, | X¢] =CX,. Write Y, = 0 {Y;,£ € L} and assume that

E[Yy | Fr,YV—qy) = E[Ye | X¢]. (1.6)
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Lemma 1.5 For ¢ c L
Y =CX,+ W,

where Wy satisfies E [Wy | Yr_y ] = 0.
Proof
E[We| Y] =E[Ye—CXe | V(0]
E[E[Yi—CXe | FL, Y-y | | Vi—qey] -

Using (1.6) this is

E[E[Y:|Xe]—CX; | Vi (0]
E[CX,—CX, | Vr_(s]
0

In summary, we have the discrete hidden Markov random field (HMRF)
model

= Aé (®n€Nthn) + W7

(1.7)
Y, =CX,+ Wy,

where Ay is the M x MINe¢l matrix of probability transitions given by (1.3)
and C is the K x M transition matrix with entries given by (1.5). The values
Vi, and W, are such that F [Vg | fo{z}} =0and F [Wg | yL,{g}] =0.

Change of Measure for the Y Process

Assume that ¢* (X;) = E[(Ye, fx) | X¢] > 0 for 1 < k < K and all the
values ey, ..., ey taken on by X, for £ € L. Write

LE O
K 1 (Ck (Xe))

and

terL
Lemma 1.6 E [\ | Fr, V(o] =1
Proof

1
E[X|Fr, V(] = ?E

1 (Ye,fr)

[(Ye, fe) | FL,Vi—1e1 ] -
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Using assumption (1.6) this is

1 K ok (ze) |
= E [Z = (Ie)] =1. .

Using Lemma 1.6 and repeated conditioning we see that E'[AL] = 1.
Now construct a new probability measure P on (S L FLv yL) by setting
dP/dP = (dP/dP)|vayL =Ar.

Theorem 1.7 Under P the random variables Yy, £ € L, are i.i.d. and
uniformly distributed over {f1,..., fK}.

Proof Denote by E the expectation under P. Using a version of Bayes’
Theorem we see

E[(Ye, fu) | Fr, Vo) ]
_E LYo, fo) An | Fr, Yooy ]
E[AL | FL,YVi—10y]
A E [(YZ,J@K*C’“ (X,) ™! IfL,yL_{e}}
N Aoy E [N | FL,Yi—qey ] .

From Lemma 1.6 this is

=FE [<Ye,fk> %m |-7:L,yL—{Z}}
:%mEHYAﬁc} | Xe]

1

= = n

Remark 1.8 Under P, X = A(®nen,Xn) + Vi. Note that under
P the Y, are, in particular, independent of the X,. Write A\, = /\Z1

and A; = [er M. It can be shown, as in Lemma 1.6, that
E [Xg | ]:L,yL_{g}] = 1 and F[KL] = 1. Set dP/d? = KL. Then un-
der P, P [Yy = fi | Fr,Vr—qey ] = ¥ (X0). U

Change of Measure for the Signal Process

In this section we start with the measure P on (S’L, FrV JJL), so the ran-
dom variables Y, are i.i.d. and uniformly distributed, and the distribution
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of X € Q = ST is defined by (1.1). Assume that a™ (X;) > 0, a (X;) > 0
forall/e Land m=1,..., M.

Suppose that ¢ (-) is the uniform probability distribution on S, so that
¢(el)_ , 1 <4 < M. Write

xg,fEL H¢ .’L‘g L.

LeL

Define I';, = ® (z) /P (x) where P (z) is given by (1.1). Note E 1] = 1,
and a new measure P can be defined on (S ,FL V yL) by putting
dp
—_— = ].—‘ .
ap -

Lemma 1.9 Under P the random variables Xy, £ € L, are i.i.d., with
uniform distribution over S.

Proof Denote by E the expectation under P. Using again a version of
Bayes’ Theorem we have

F[<Xg,6m> F[ | fog]'

E[(Xe,em) | Fooe] =

E [Tr | Fr—e]
Cancelling, and leaving in the expectation only terms involving X, this is
E (Xe,em)d(Xe) o
[L.cx, @ (em)am(Xn)atem) | Fr—e
E b(Xe) o
HHENE aXn (X[)axe (Xn)a(Xe) | L—t¢
: E[(Xe,em) | Fro
o HnENl amn(em)am(zn)a(em) [< 4 > | L é]
ZM_ : FHXE’%H]:L%].

P! Len, @ (ep)a? @n)aler)

Writing 7 (p) = [[,.en, @ (ep) a? (zn) a (ep) this is

L &(m)
T e
M 1« M
Z;D:l 7(p) ZkM:1 (k) |

Now it is possible to start with a probability measure Pon (S L, Fr Vv yL)
such that the Xy, are also i.i.d. random variables uniformly distributed
over S = {ey,...,en}. Then, given functions {a™ (x,),a (en)} for m =
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1,...,M and n € Ny, ¢ € L, we can construct a probability measure P

such that
PIXy = em | Xk £ 0] = — ) (1.8)

7 .
> k=17 (F)

We shall adopt here the convention 0° = 1. In fact, the probability measure

P is defined by setting dP/dP = T'y, where

= P

'y = le = < (xl).

® (xe)

Lemma 1.10 Under the probability measure P, Equation (1.8) holds.

Proof The proof is left as an exercise. ]

We see, therefore, that we can start with a probability measure P on
(SL,]:L \Y, yL) such that both processes Xy, £ € L and Yy, £ € L are i.i.d.
and uniformly distributed over {eq,...,ex} and {f1,..., fx}, respectively.
To retrieve the situation of Lemmas 1.2 and 1.5 we define a probability
measure P by setting

P dPdP — -

d—A = —=—5 = ALFL.

dP dPdP
Recursion
We shall work under the probability measure P, so that Xy, £ € L, and
Yy, ¢ € L, are are ii.d. and uniformly distributed over {ey,...,ep} and
{f1,--., fx}, respectively. Using a version of Bayes’ Theorem we write

E [(Xe,em)ALTL | V0]

E[(Xpem) | Vo] = ———
E[ALTL | VL]

Notation 1.11 Write g (em), m = 1,..., M for the unnormalized condi-
tional distribution F [<X[, em) AT | Vi ]

Theorem 1.12 For { € L and m = 1,..., M a recursivelike equation for
the unnormalized conditional distribution of one single random variable X,
given all the observation Yy, is as follows:

@ (em) = 126" (em) B0 (em) (1.9)

where

Br—e(em)=E[AL_Tp (Xe=em) | Xe=em. V1] (1.10)
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Proof

E [(Xe,em) AT | VL]
= B [(X¢,em) K" (em) Kp—(Tp | V1]
= Kc¥ (em)E[<Xg,em> E [KL_gfL | X = em,yL] | yL]

K L
= MCY@ (em) E[AL—TL | X¢=e€m, V0|

= %CYE (em) Br—e,z (€m) - n

Theorem 1.13 Write

6L—{€1,€2,...,€p} (emlvemgv sty emp)
:E[ALf{Zl,Eg )))) EP}FL |)(g1 Zeml,...,Xgp :emp,yL}.

Then Br—e.r (em), m = 1,..., M, satisfies the following “backward recur-
siwe” equation for any 0* # £; £, 0* € L

K M
Br—e,L (€m) :MZ  (ex) Br—{e,e},1 (€m, €x)
k

and _
ﬁL—L,L (ek17-"7ekL) = PL (eklu' "7€kL)'

Proof
Br—{ey,z (em)

=E[AL-Tp | Xo=em V1]
E[KCY; (Xe-) E[Ap—q00yT1| Xe = €m, Xe=, V1] | Xo = €m, V1|

Z “ (ex) Br—(ery. (ems ex) B (X, er)]
k=

K M
*Mz  (ex) Br—1e,e+y,L (€m» €k)

where

Br—ioey.n (emver) = B[R0 Tr | Xo = em, Xoo = e, V1] -
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Finally in the recursion we would have

ﬁ{r},L (ekmi 7& T,i S L)
:E[KCYT (X,)T (e, i #ri € L) | Xi=ex,i#1,V0]

—KZ )T (exsi #1,6p) E[(X,,ep)]
M
K = .
=1 ZCYT (ep) T (e;,0 #1,€p)
p=1
M
K
= M ZCYT (ep) ﬁL—L,L (ekla cee 7€/€L)7
p=1
and
6L—L,L (ekl,...,ekL)zl"L (ekl,...,ekL). | ]

The next result gives the normalized conditional distribution of the whole
signal given the observation.

Theorem 1.14 Let X = (Xy,f € L) and x € ST, then the conditional
distribution of the hidden signal given the observations is given by the fol-
lowing expression:

[Tecr HneN[ a” (zn) a () ¢ ()

5ot Haer Moow, o ot @ () | 1

P X=x|Y]=

Proof P[X =z |Y.] =E [l (Xe,2e) | Vi ]. Using Bayes” Theorem
and the independence assumption under P this is

E[yep (Xe,ze) ALTr | V1]

E[ATL | VL]

E [HéeL (Xe, we) MEK* HéeL HnENg a® (xy) a(zr) g (332)}

- Xy,e

E {MLKL HZEL HIICVI:I (HnENg ak (Xn)a (ek))< G cYe (Xe)}

— HKEL HnENg aze (‘rn)a’(‘rl) Ye ( )E[<Xf;xf>]
Swes Heer Tnen, a* (2) a(xy) ¥ (7) B (X, o))

and the result follows because E [(X, 2,)] = . |
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Remark 1.15 Quantity (1.11) is a function of the hidden signal z. For
any possible signal © = (24, ¢ € L) write

L(z) = log H H a® (x) a () ¥ (¢) (1.12)

leLneENy
= Z Z log a®™ (x,,) + Zlogcy’Z (xe) + Zloga (z0) .
teLneN, el teL

For any component xy, of x there is at least one possible value e;, € S of
x¢, for which

L(x]|ep )= max L(x).

(2] en) = max £(2)

Here the maximization takes place with all components of x fixed, with the
exception of zy,, and (z | es, ) denotes the signal 2 modified so that ey,
occurs in the ¢; location. Suppose xy, is a component of (z | es, ). Then
there is at least one possible value ey, € S of xy, for which

£(CL‘ | efﬂefz):xr?agéﬁ(‘r | eél)'
2

Again, (z | eg,, eq, ) denotes the signal (z | eg, ) modified so that ey, occurs
in the ¢5 location. This procedure can be repeated. Note that we obtain a
monotonic increasing sequence of log-likelihoods

E(I)SE(I|6E1)SE(CE|6g1,8g2)S"'SE(I|€[1,€[2,...,BEP)

and so the sequence (z | e, ), (¢ | €s, €, ), ..., (2| €q,, ..., €q, ) provides
better and better estimates of the signal, given the observations. O

In the next paragraph an alternative method of maximizing £ (z) is
proposed.

Mazimum A Posterior (MAP) Distribution of the Image
Remark 1.16 Again consider quantity (1.12).

L(x)= Z Z log a®™ (x,) + Zlogcy’Z (xe) + Zloga (xe). (1.13)

teL neNy leL leL

Given the observations Y, we suppose that each pixel ¢ € L has an inde-
pendent probability distribution p (¢) = (p1 (€),p2(€),...,pn (£)) over S.
Write p = (p (¢) ,£ € L) and E, for the expectation under p. We now wish
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to determine the distribution p which maximizes E,L (z | y). That is, we
wish to maximize E,L (x) subject to the constraints

p;j () >0 Ve Land j=1,....M
and

 opj)=1 Vel

To effect this, consider real variables p; (€) such that p? (¢) = p; (€). Then
we require Xp; (£)° =1, Vl € L. O

Write

L(p\) =EpL(x)+ > A Zpg -

leL

Write k (¢) for the set of k such that ¢ € Ny. Differentiating L (p, A) w.r.t.
p; (£) and A, gives a sparse system of (M + 1) L equations with (M + 1)L
unknowns

OL(p,N) _ (
= loga® (e;) p
o)) (1) n;;l; ! J( )
+ Z Zloga (e;) p5 (k)
kek(1) j=1

+1logc¥ (e1) +loga(e) + )\1> =0

9L (p, A) (
—_— = loga® (e;) p
dp2 (1) n;;l; ! J( )
+ Z Zloga (e;) p5 (k)
kek(1) j=1

+1log ¥ (e2) +loga (ea) + )\1> =0
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oL
om0 (5 v

neN j=1

+ Z Zloga (e5) p] (k)

kek(1) j=1

+1logc™ (enr) +loga (ens) + /\1> =0

oL
o)~ 2 (2 (Z Zloga (e;) P} (n)

n€N2 j=1

+ Z Zloga (e5) pj (k)

kek(2) j=1

+1logc¥? (e1) +loga(e) + )\2> =0

oL M s )
g =2 () (3 Y towa® ()2 )

nEN2 j=1

+ Z Zloga (e;) p] (k)

kek(2) j=1

+logc™? (enr) +loga(en) + )\2> =0

oL

neNL j=1

+ Z Zloga (e;) pJ (k)

kek(2

+log ¥ (e1) + loga (e1) + )\L) =0
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oL
m:2p1\/ (Z Zloga (ej pj( n)

neNp j=1

+ Z Zloga (e5) pJ (k)

kek(L) j=1

+logc*™ (enr) +loga (enr) + /\L> =0

o, Y

o = () =1=0
L
oL X
j=1

Once a candidate for the critical value p = (p; (¢), j=1,...,.M, L € L)
has been found, an estimate for & = (Zy,¢ € L) is obtained by choosing,
for each ¢ € L, the state e; in S corresponding to the maximum value of
p)=P10),....pum (£)).

An advantage of this procedure is that it simultaneously estimates max-
imal values of x for all pixels £ € L, thus avoiding the iterative procedures
of the ICM or simulated annealing (Ripley, 1988).

Estimation

We now estimate the parameters in our model, namely, the entries of the
matrices A and C in the hidden Markov field X and the observation process
Y, respectively. To simplify discussion we shall consider only the transition
matrix A corresponding to nonboundary points ¢ of L, so that |Ny| is
constant. The transition matrix for points on or near the boundary can be
estimated in a similar way. Write

Pl Xe=epn|Xy=c¢p,,ne€ N =a" (ehy,...,€ky)

n?

__mm

Z;w:l ™ (p)

and N = |Ny| for the fixed number of neighbors of points in Ny. Also write
PlYe=fi|Xe=em]|=cim, k=1,...,K; m=1,..., M for the entries
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of matrix C'. These parameters are subject to the constraints:

M
Zam (eklv'-'vekN):L (114)
m=1
K
> ekm =1. (1.15)
k=1

Assume a prior set of parameters

{a" (ekyy - seky)iChm; 1 <kim <M 1<k<K}.
We shall determine a new set of parameters

{a™ (ekys s €hn) i Chm, L <kim <M 1<k<K}

which maximizes the pseudo-log-likelihood defined below. Consider first the
parameters cg,. Define

K M e (X em)(Ye,fr)
L)

and

Ap =] M

leL

It can be shown that E[Ar] = 1. Define a new probability measure P on
(Q,Fr VY1) by putting dP/dP = Ay,

Lemma 1.17 Under the probability measure P
P [}/[ = fk | fL,yL_{g}} = ékm on the set [Xg = em].

Proof Assume X, = e,,; then by a version of Bayes’ Theorem we can
write

PlYi=fu| Fo.YViqy) =E [ (Yo, fu) | FL.Vi—(0} ]
B[V, )AL | Fr, Vg ]
B E[AL | FL,YVi—qe]
B[ Y, i) M | Fr, Vg ]
B[N FL V]
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222
Now
K Cm (Yo, fx)
E[MN|Fr, V-] = E kli[l <%> | Fr, Y10y
=,
= ZC— [(Ye, fi) | Fr, Vi—qoy |
1 km
in view of assumption (1.6) this is
K &
=Y “E[(Yo, fi) | Xe=em]
Ckm,
k=1
P K
= Zﬂckm —Zékm =1
km 1
Therefore
PYe=fi| Fr.Vo—0] = E[(Ye, fi) M | Fir, Vg0 ]
Cm
—aE[<Yzf@>éf—|fi,yLu}}

Cm
= B Yy, fi) | Xe = em ] = m

Ckm

Theorem 1.18 The mazimum likelihood estimate of cxm given the obser-

vations Yy, £ € L, is given by
(1.16)

@ (em).

EEGL <}/f7 fk>
m)

Clon, =
" ZZGL qe (e

Where qq (e,) is the unnormalized conditional distribution given by Theo-

rem 1.12.
Proof
E [IOgAL | yL]
K M
SO (Xusem) (Yo, i) (108 Ekm — 10g chm) | Vi
k=1m=1/(eL
Xz,€m> | yL]logékm + R (117)

DD UL
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where R is independent of ¢ég,,. Now the é,, satisfy constraint (1.15)
K
> G
k=1

with dynamic form }_, . fo:l Zszl (X¢,em) éem = L or conditional

form
M K
D> D El{Xeem) | Yoléwm = L. (1.18)

m=1k=14eL

We wish, therefore, to choose é,, to maximize the quantity (1.17) subject
to the constraint (1.18). Using the Lagrange multiplier technique this is

o 2eer Yo fr) E[(Xeyem) | Vi ]

Ckm =
ZfeL E [ <le €m> | yL]
or
Yy,
S >ver (Yo fr) g (em) (1.19)
ZéeL qe ( )
where gg (€,,) is the unnormalized conditional distribution given by Theo-
rem 1.12. ]
Consider now the parameters a™ (e, ..., ek, ) in the matrix A. To re-
place these parameters by a™ (eg,, . .., ek, ) we consider, the pseudo-likeli-
hood
(leem> H <X’ﬂ78kn>
ekl,...,e;w) n€Ny
e =TT IT (e .
CeL m=1nEN, kn=1 PN
Then
E [10g FL | JJL]
M M
SIS0 3P I[N NI
teL m=1neNy k,=1 neNy
x loga™ (ex,,---,exy) + R (1.20)
where R is independent of @™ (ey,, ..., exy ). We have the constraint
M
a™ (ekl,...,e;w) =1

m=1
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with dynamic form

ZZ Z Z ekl""aekN) H <Xn,ekn>:L

fteLm=1neN; k nENy

and conditional form

ZZZ Z (kyy---seky) E

teLm=1neNy k

I Xn.ex) | yL] = L. (1.21)

neN,

We wish therefore to choose a™ (eg,, ..., ek, ) to maximize the conditional
pseudo-log-likelihood (1.20) subject to the constraint (1.21). Using again
the Lagrange multiplier technique we obtain

ZéEL E [ <X£7 €m> HnENe <Xn; ekn> | YL ]
ZZELE [HneNg (Xns ek, ) | yL] '

From Bayes’ Theorem this is
ZZEL [<X£7€m> [Len, (Xn,er,) AT | VL]
Sver B [Tlnen, (Xn er, ) ALTr | Vi ]

Using Notation 1.11 we can write

&m (ekl,...,ekN) =

47, (em, €k, ,N € N,
Q™ (€kyy -y Chy) = 2orer 1, ( k ¢) (1.22)
>ter AN, (e, € Ny)
where N, = N, U/ and as in Theorems 1.12 and 1.13
qﬁe (emqekn,n S Ng)
K
= (M) H C ek c Ye (em)ﬁL N, L(em,ekn,ne Né),

neN,
qn, (ex,,n € Ne)

_<%) [T e (er.) Br-not (ex,m € No)

neNy

are unnormalized conditional distributions.

A Blurred Observation Process

In this section the Markov random field X is still given by
X = A (Onen,Xn) + Vi (1.23)
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but the observation process Y will express some “blurring” of the signal X:

Y, =Cy (® Xn) + Wy (1.24)

nENz
where Cy is the K x M Nl matrix of probability transitions
. B B B _
c(xl,...,xwe')—P[Yg—fk|Xn—xn,n€Ng}, r; €85,

and Yy € {f1,..., [},

E[Y | X (Ny) | =Co(®, 7, Xn)

neNy,
Remark 1.19 All the above discussions go through with minor changes
in the proofs. We shall mention only the most relevant results. Note that
an assumption like (1.2) is not needed for the ¢™ (X (N¢)). Furthermore,
the neighborhood system Ny used in (1.24) can differ from the one used in
the dynamics of (1.23). Theorem 1.14 reads as:

— HZEL H’IIEN[ aze (In) a (.I[) C)/e (:Ema me N[) (125)
Darese [eer HneN@ a*e (z7,) a (z7) (ﬂ%am € N@)

O

The MAP method of the previous section and the discussion in Re-
mark 1.15 apply here. The maximum (pseudo) log-likelihood estimates of

G ejﬁ) and a™ (ek,,-..,eky) are given by
Ya €jny M € N
(s ep) = Sver (Yo, fr) ax, (e i o) (1.26)
N ZEGL qﬁg (ejn7n € N[)
and
Z qN (em7eknan€N€)
am/ (ek17 R 6kN) = ek MNZ . (127)
> over 2iz1 4%, (€is €k, n € Np)
Here
(0.1 € N0) = —¥ (.0 € Ne) By (0 € )
QN[ ns 4 - Mﬁlc In;n 4 L—{f} 'I’n.vn )

Br—tey (Tn,n € Ny) = E[Rp_ (0T | Xp=20,mn€ Ny, V1|,
Br—r (xn,n € L) =T (vy,n € L)
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and the Radon-Nikodym derivative Az, is defined as

. (H . )mm,

leL

9.2 HMRF Observed in Gaussian Noise
The process X is again described by
XE - AZ (®n€NeXn) + VE (21)

We shall suppose the y process is scalar. (The case of a vector observation
process can be treated similarly.) Further, we suppose the real-valued y
process has the form

ye = 9(Onew, Xn) + (8,5, Xn)we. (2.2)

Here the wy, £ € L, are i.i.d. N (0,1) random variables. Because X, € S
for £ € L the functions g and o are determined by vectors (gl, e 79M\Ne\)
and (01, ce O'M‘ﬁe‘), with o; >0, fori=1,.. M‘Nﬂ| respectively. Then
g(®n€NeXn) = <g’®n€N[Xn> and 0(®n€N@_X") = <07 ®n€NeXn> Where
(', ) denotes the usual inner product in RM'™

Note that a different neighborhood system Ny could be introduced in the
observations. In image processing observations of the form (2.2) are said to
be blurred.

Changes of Measure
Starting with the y process, define

M= Mo (®, 0, X 02)

= <o’7 ®n€NzXn>
X exp{_% (<g’ ®n€ﬁ[Xn> + <U’ ®HGW@X wl) + wé }

A =]

LeL

and

Using repeated conditioning we see that E [AL] = L. A new probability
measure P on (S’L, FLV JJL) is obtained by setting dP/dP = Ap.
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Theorem 2.1 Under the probability measure P the random variables 1y,
te L, areiid. N(0,1).

Proof With E for the expectation under P. Then for any integrable
f R — R and using a version of Bayes’ Theorem

E[fe)AL | Fr, Y]
E[AL | Fr, Y0y ]
E[f(e)Xe| Fr,Yi—o ]

E[MN|FL,Vi—(y]

E[fwe)| Fo.Yi—] =

Now
E [N | Fr, Y00y ]

—/+OO ! exp{—1 ({9, ®z,) + (0, ®x >w)2}<0® ~ Tn)dw
- e \/2— p 97 n ) n ) FneEN, TN .

The values of g, o, and the x,, are known, so after a change of variable this
integral equals 1. Hence,

E[f(ye) | Fr,Yr—(e) ]

+oo
- %Q_ﬁ / {f (ve) exp[ =2 ({9 ®2) + {0 B )]

X <O’, ®n€ﬁexn> }dwz

+oo
= Von / (ye) exp (—3v7) dye

and the result follows. [ |

Now, starting from the probability measure P, we define another prob-
ability measure P such that under P the Xy, ¢ € L, are i.i.d. random vari-
ables with uniform distribution over {e1,...,en} and the y, are i.i.d. with
normal density (1/v27) exp {—3y*}. We start with P on (Q, F vV Yr). To
return to the real-world situation, set

dP dP dﬁ - =
=ATL. 2.3
ap — dPap " 23)
Here A}, is the inverse of Ay, so that

AL =[] !

leL

= [[(0.® e, Xn) " exp[~dw? + L ({9, ®X0) + (0, ©X,) wp)*].
e
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Lemma 2.2 Under the probability measure P defined by (2.3) the random

variables
e = (9, ®,e7,Xn)

<0'7 ®n€ﬁ£ X">
are i.i.d. and normally distributed with density (1/\/ 27T) exp (—%wQ).

wy = , telL,

Proof Let f:R — R be any integrable function. Then
E [ f(we) ALTL | Fr, Yoy ]
E[ALTL | Fr,Yi—qe ]
_ TR (B[ f(wo)Xe | Fr, Voo ]
TLAr_ B [N | Fr, V(o) ]
Now as in the proof of Theorem 2.1 E [Xz | }'L,yL_{g}} =1 so that
E [ f(we) | Fr,Yr—10]
=E[fw)X | Fr,Yi—(e]

_ /+°° f (o) exp{ 3w + 3 (9(®wn) + 0 (D20) we)"} exp (—5y7)
oo o (®z,) Vor

Since y¢ = ¢(®X,) + 0 (®X,)w, and w, is the only unknown random

variable, this is
+oo
1 2 d’wg
= wy)exp | —=w; | —.
[ rtwess (—5ut) S

The result follows. u

E[f(we) | Fr, Yooy ] =

dyg.

Signal Estimation

Theorem 2.3 Let X = (X,,0 € L) and x € St be any signal. Then the
conditional probability distribution of the signal is:

Y (z,y)
Zgg*eSL v (I*a y)

P X=z|Y]= (2.4)

where

2
_ - 1 (v —{9,®, = Tn
v (2, y) I |<a, ®n6Ne‘In> 1exp _Z <‘W {9 nen, v >>

el 2 <U’ ®neﬁgx”>

X H a® () a ()

neNy
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Proof Here, P[X =z | V] = E[[ler, (Xe,2e) | V0] Using a version
of Bayes’ Theorem and the independence assumption under P this is then

_ E [HzeL (X, Xe) ATy | yL]
N E[ALTp | VL]
U (2, y) MEE[(Xy, )]
Dwrest V(@5 y) MLE [(Xe,27)] '

The result follows because E [(Xy, z,)] = . [ |

Remark 2.4 Quantity (2.4) is a function of the hidden signal . For any
possible signal z = (z4,£ € L), given y = (y¢, £ € L), write

L(z) = log ¥ (z,y)

1 <ye — <g,®nemwn>>2

-1
= log H<U, ®ngﬁﬂj”> Py 73 (0,8, 7, Tn)
! OnEN N

el
X H a® (xn) a ()

neNy

1 (9.7) )
- Yo — (9, OTn
= log(o, ®, 7, Tn) i <7>

@EZL e 2 geZL <U’ ®n€ﬁgxn>
+ Z Z log a®™ (zy,) + Zloga (x¢) .

LEL neEN, ¢eL

The maximization techniques used to estimate the signal x which were
discussed for £ (z) in Section 1 can be applied to the present model. O

Notation 2.5 Write I, (wn,n € Ng) for the unnormalized conditional
distribution E [Hneﬁg (Xp,2n) AT | Vo }

Lemma 2.6 We have the following relation:
ax, (a:n, n e N@)

—1 2
_ <U’ ®n€ﬁex"> exp _l Ye — <g’ ®neﬁex"> ly2
MIN:| 2\ (0,®,c7,7n) ‘

T3

X Br—iey (Tn,n € Ny)
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where
Br_tey (@nn € Ng) =E [Ap_(nTr | X =20,m € N, Vi |
Proof

E H <Xn7xn>KLfL

nENz

R%7

—F H (Xn,20) ME [Ap_(Tr | Xy = 2n,n € No, Vr | }yL].

TLGNe

Writing
E [Ar—yTL | Xn=2n,n € Np, Vi | == Br_qe} (¥n,n € Ny)
and substituting for

X=X (Xpn,n € No,ye)

- L (ye—(9,9X)\* | 1,
= X))t o (L2 -
the result follows using the independence assumption under the probability
measure P. u

Write
6L_{gl)g27m)¢p} (xnl,nl S Ngl;iEn2,n2 € Nb; e Ty, My € ng)
= E{KL—{el,...,ep}fL
‘ Xp, =apn,,n1 ENZI;...;X% =Tp,,Nyp ENZP,))L].

Then using double conditioning as in the proof of Lemma 2.6 we see that
Br—{oy (a:n, neN g) satisfies the following “backward recursive” equation
for any ¢* # £; £,0* € L:

Br—(ey (zn,n € N¢) = Z (o, ®n*€m*l‘n*>7l

SIN x|

2
1 (Yo =9, ® e, Tn) 1,
X exp ) < <g, ® e W, 33n> + de*

X Br—e,0} (Tn=,n* € NgUNg)
and
Br-r (xn,n€ L) =T (zn,n€L).
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Parameter Estimation

We only need to estimate the parameters in the observation process de-
scribed by the equation

Ye = <gu ®HENEX77’> + <07 ®nENgX">w€

where g = (gl, e 79]\4\@‘) e RM™ and o = (01, .. .,O'M‘ﬁe‘) € Rﬂ\f‘w‘.
We remark again, the neighborhoods Ny used in the definition of y, could
differ from those used in X;. To simplify the discussion we shall consider
only nonboundary points of L, so that |N| is constant.

To replace the parameters by g1,..., 9,5 and 61,...,0,,5 we must con-
sider the Radon-Nikodym derivative

1 (038, 5 %)\
<0'7 ®nENzX">eXp {_5 ( (&,®n€;:v)e(n> ) }

Ar=]]

1 (ve—(9,®, .~ Xn) 21
teL /4 _ neN,
€ <U’®n€N@X”’> exp{—5 ( = £, : ) }

neNy ™

Now

log AL

. 1
S [ 1085w, X0) 5

(yé B <g7 ®n€N@'Xn>
leL

2
+ R(o,9)
<0'7 ®n€ﬁ£ X"> >

M

A 2
—2 2 L e Pogaklywkﬁ-+-ggf:lgﬁz;iﬁil_]

+ 2[7,% &
LEL ky,....k5z=1neN, 1yeees

+ R (0, 9)

where 6161,,,,,;€F = <&, er Q- ® ekﬁ>, gkh,,,,kﬁ = <g, ep Q@ ® ekﬁ> and
R (o, g) is independent of & and §. Then

M
E[logALD}L]:—Z Z E H<Xm€kn>|yL



232 Chapter 9. Hidden Markov Random Fields

0
ss——EllogAr [ V) = =3 B | [[ (Xu.er) | V2
Oki,.osks el neN,
N 2
1 - sk
i (v Aggkl ) 0
Ok, kg Ukl,,,,,kﬁ

and the optimal estimate of ¢ is

 Yeer B[ Maew, Knver) [ V2] (v = i)’
Yer E {Hnem (Xn,er,) | yL}

OA'kl;nwkﬁ

From Bayes’ Theorem this

B ZeeLE [Hnem <Xmekn>KLfL | yL} (ye — gkl,,,,,kﬁ)Z
Yier B {Hnem (Xp,ex,) AT | yL}

&kl sk

Using Notation 2.5 we can write

. B > e 47, (er,,m € Ny) (ye — le,...,kﬁ)Q

ey oo hee — (2.5)
PN deer aN, (ekn,n € Nf)
The optimal estimate of gkl,,,,7kﬁ is a solution of %w = 0 and

using the same argument we obtain

Gker .o b = rer 0N, (G € Ne) U (2.6)
N Yen aw, (enaom € No)

where ¢, is the unnormalized conditional distribution given in Lemma 2.6.

9.3 Continuous-State HMRF

Signal and Observations

A random field X. on a lattice L is considered which at each point ¢ of the
lattice can take any real value. The actual value X, is related to the values
of X, for n in some neighborhood N; of ¢, plus some (additive) noise. Here
the set of observations y,, £ € L, are also real-valued and involve additive
noise. Our development focuses on the situation where the transitions in
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the Markov random field X. are related to Gaussian densities, and the noise
in the observations g, is also Gaussian. In this case the MAP estimate of
the signal, given the observations, is the solution of a sparse set of linear
equations. The observed process y is assumed to satisfy the dynamics

Yo = Z CnTn + Wy, (3.1)
neﬁz

where N, = N, U/, the coefficients ¢;, ¢ € L, are real numbers and the wy,
¢ € L, are independent random variables with positive densities ¢y. The
hidden signal is described by a set of real random variables X, ¢ € L, with
joint probability density

—lze—aoy ze,|?
eer Iz, en, exp { 207

(I)(J?g,KEL): 7

(3.2)

where Z is a normalizing constant.

Lemma 3.1 The conditional density of X, given all the other X, ’s is given
by

*|mz*anzn\2*\1n*aeml\2
HnENtz €xp { 202

—|ze—an®n|*—|zn—arze|? '
Je HTLGN[ exp { 257 dxg

Oy (g | 2,k #£L) =

Proof
O (zp,k € L)
fR D (zg, 2k, k #£ 0) dxy
[ler HnENk €xp (#) {=lzx — anxn|2}

p— 2 .
f]R [Tecr H’IZENk exp (ﬁ) {—lzr — anznl Hdae

After cancellation we have only terms involving x; this, therefore, is

Sy (e |,k #L) =

HnGNe €Xp (#) {_ |‘T€ - anxn|2 - |$Un - agl‘dz}

- f]R HnGNe exp (#) {_ |‘T€ - a"‘rn|2 - |£L'n - ag$g|2}dftg ' u

Changes of Measure
Consider first the y process. Define

Ap=]]

leL

Ve (ye)
¥y (we)
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A new probability measure P on F1,V)y, is obtained if we set dP/dP = Ar.
Under P the random variables y,, ¢ € L are independent with densities 1.
Now consider the signal X. Let (;3(:0) be any positive probability density
defined over R, and write ® (z4,( € L) = [er ¢ (2¢). Define

& (x4, 0 € L)

Ip=——"——2-
YT 9 (gl el)

where @ (x4, € L) is given by (3.2). Define a measure P on Fr, V YV, by
putting
dp
dP
Lemma 3.2 Under ]5, the random variables Xy, ¢ € L, are i.i.d. with
density ¢E

=Ir.

Proof Suppose f:R — R is any integrable function. Then

E[TLf(Xe) | Fro_gey]
E[Tp| Frqo]

E[f(X0) | Fr_gn] =

Leaving under the expectation only terms involving X, this is

E H(Xe)f (Xe) Fr
HnENe exp #{_‘Xl_anwn‘2_‘3371_042)(2‘2} | L {Z}

E B(Xe) Fr
HneNg exp #{_‘Xl_anwn‘2_‘3371_042)(2‘2} | L {Z}

Using Lemma 3.1 and writing

H exty d = |20 — anan|® = |0 — agze]?
P 202

neN,

this is

m(ze) 2)dxs

f]R (o) f(xe) d‘réf ()

fR 7T<l5(901 () dxy

Tr(;w)
= /Ré(wg) fxe)dzy = E [f (Xf)] )

and the result follows. [ |
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Estimation

We shall work under P , so that X and y are two sets of independent random
variables with respective probability density functions ¢ and ;. In this
section we choose 1y to be the normal density (27Tp2)71/2 exp (—x2/2p2).

Notation 3.3 Let x = (x¢,¢ € L) be any value of the hidden signal X and
write

E

HI(Xg € dxy) IJJL] = qr, (v)

LeL
for the conditional probability density function of X given the observation y.

Theorem 3.4 If the probability density function of X is as given by (3.2)
then

I'(z,y)

" Jel (w,y) da 33

qr (z)

2
Here I' (z,y) = HfEL HnENe exp{ —lze—anznl® _ (W*Emem szm) }
202

2p2

Proof For any arbitrary integrable function f : Rl — R

E[f(X)ATy | VL]

E[f(X) V] =

E[ATL | VL]
2
E f(X)HIZEL HnENe eXp{ _‘XE;:;XnP _ (W*ngff C’"Xm) } ‘ Vr
— P(X)
2
E HIZEL HnGN[ exP{ *|Xl;;12an\2 _ (W—ngff CMXm) } YV
2(X)

Under 157 X has the probability density function P. Therefore, this is

2
fRLf () HeeL HnGN@ eXp { —|zg—anznl® (yeizmeﬁg C’"mm) } dx
202 2p2

. (3.4)

2
fRL HZEL H’ILENg exp { _leguénwnlz _ (ye_zmeﬁe mem) } d.T
g

2p2

On the other hand we have

BLFCO IV = [ @) o @)de, (35)
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Equations (3.4) and (3.5) yield at once (3.3). [ |

Theorem 3.5 Suppose A is the L x L matriz such that the ¢th row has
the only nonzero entries

2¢2 v+ a?
_€+u

Agp = g =
2¢cpc 2a

App="2L =1 ifneN,.
P) o

and

Apm = Cmct ifmé€ N,, n€ Ny, |l #m.

Here vy is the cardinality of Ny. Also B is a matrix with nonzero entries
cn/p? forn € Ny. If A is nonsingular the mazimum conditional likelihood
of the signal © = (x¢,0 € L), given the observation y = (y¢, € € L), is given
by xar = A" By.

Proof For any x € RY write

logH H exp{—|xe aan }

(€L nEN,
2
(Ye = X, CmTm)
X exp
Mo | 257
2
1 ) 1
SP PRI SN R S
(€L nEN, ver P meN,
Now
0 1 Cy Cy
_a—wﬁ (x) = Z o (¢ — anxn) + p_2 Z_ CnTm — ?yg
neN, meN,
ap Cy
) (@n—ame) = > = = D cmtm
neNy neN, P meﬁn
A 203 2cper 2an
(@ D ().
neN,

I S T

neNy meN,, ,m#L p neNy p
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Setting (8/0x¢)L (x) = 0 for £ = 1,...,L yields a system of L linear
equations in matrix notation

Az = By.

Hence
zy = A 'By

WhereB:diag(;—;,;—%,...,‘;—é). [ |
Remark 3.6 The form of the matrix A depends on how the lattice and
neighborhood system are defined. Simple cases indicate A is in general
nonsingular. The measure change method will work with other forms of
density for the signal X and observations y, though perhaps with not quite
such explicit results. It is of interest that Theorem 3.5 describes the MAP
estimate for the signal without techniques such as simulated annealing. O

9.4 Example: A Mixed HMRF

The signal we consider here could be from a region of distant space. The
atmosphere causes distortion and blurring of the picture. Another possible
source of noise is inherent to the recording device itself. The scene is parti-
tioned into a lattice L of pixels or frames and all the quantities of interest
will be indexed by L. We shall assume that at each frame or pixel ¢/ € L
the signal consists of essentially two components: the luminescence, which
is represented by a continuous real random variable Xy; and the number
of stars, Z;, which is represented by a discrete random variable. The ob-
served information at each pixel £ is given by a continuous real random
variable y; ¢ and a Poisson random variable y ;. All random variables are
defined initially on a probability space (2, F, P). Write Fr, = o (Z;,¢ € L),
Gr =0 (Xe,te L) and Y. = 0 (y1,0,Y2.¢,¢ € L) for the complete o-fields
generated by the two components of the signal process and the two com-
ponents of the observation process respectively.

Write Ng = Ny U {f} and X(Ng) = {Xk,k EN@} and Z(Ng) =
{Zk,k S Ng}. Given Z (Ng) and X (Ng) we suppose there is an “en-

9

ergy” at £ € L proportional to

0 (2 (M), X (V) = ] exp{—p(Zun X0, X0)}

X — an (Zn, Z0) Xn| ) 2
xexp{ [ Xe 2((72 ) |} . (4.1)

,U/(Z’n,;XnaXf) e
Zy!
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We suppose a probability measure P is defined on the state space ) =
N x RE by setting

PZ=zX=al=C"]][® (2 o (Np)) == ®p (2,2)  (4.2)
leL

for (z,2) € NV x RY. Here C = Y,z [pe® (2,@) do is a normalizing
constant. In view of (4.1) and (4.2) we have
PlZi=2,Xe=z¢ | Fr_poy, G0 |
=V (zp, 20 | Fr—0y, G-y )
= P[Zg = Zg,Xg = Ty | Z(Ng) ,X(Ng)]
- MGex) (4.3)
Zk:O f]R H (kv :E) dx

Here
H(Zg,wg)
1T eXp{—u(zn,wmwe) — 10 (20,30, 20) — |0 — an (20, 20) T
neN,
2 [ (2n, Tn 1) \ ! z.
— |zn — ae (20, 2n) 0] 0 (e (2o, we,w0))"" . (4.4)

That is, (X¢, Z¢) is a Markov random field.
We suppose that our mized HMRF is described by

X, ZEL, Zy, EEL,
Y10 = h(Ze, Xy) + wy, (4.5)
Y20 = v (Zy, Xo) + mo.

Here v (-) is the intensity of the Poisson process ys ¢; we are independent
real-valued random variables with density functions v, and;

Elme| Fr,Gr, YL —{y2.4}] =0

and X and Z have the joint probability distribution given by (4.2).

We shall define a new probability measure P on (Q,Fr vV Gr VYL) such
that the four processes Xy, Z¢, y1,¢ and y2 ¢ become four sets of independent
random variables which are, in particular, independent of each other. Let
é () be any positive probability density defined over R (e.g., a standard
normal), and write

(I) :Ez, {e L H ¢ Ig

leL
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Assuming that all quantities of interest are positive, define

A — HW yll GXP( (Ze, Xy))
L 62L (I)L X Z wg wg Zz Xg))yzeZg

for X = (Xp,0 € L), Z = (Zp,L € L).
Lemma 4.1 F[AL]=1.

Proof

E[ALl = E[E[AL | VL —{y1.e}, FL,GL]]

=B

@ (X, Z) )t (v (Ze, X)) 24!
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(i)L (X) H exp( (ZLXK /1/12 Yie dyl e] .

The integral is equal to 1 and proceeding in the same manner with y ¢ this

becomes
dr (X) 1
O (X, Z)el HéeL Z

1 Oy (r) Op(x,k)
Z /]RL ‘I)L(:Z?,k) Hk}g' dl‘

=F

(ke,l€L)ENL

A new probability measure Pon (Q,Fr VG VY5 is obtained if we set

dP/dP = Ap.

Theorem 4.2 Under the probability measure P the process {Zy, € € L},
{Xe, £ e L}, {y1,0,0 € L}, and {y2¢} are four sets of independent random
variables which are, in particular, independent of each other. Moreover, Z;
and ya,¢ are Poisson random variables with intensities equal to 1, X, has

probability density function b, and y1,¢ has probability density function 1,.

Proof Let f,g from R — R be any integrable functions and &, n any
summable functions from N — R. Then using a version of Bayes’ Theorem

we write

E[f(Xe)gWre)€(Ze)n W) | Fr—iey,Gr—1ep- V-3 ]

CE[f(X0) g0 &(Zo)n (y20) AL | Fri1e, G-t Yoy ]

E[AL | Fr—0, G-, YVi—{2} )
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- (Ze) 1 (y2,0) , 00)
(1, 0¢) ’
Here R
5, = ¢ (Xe) Ve (y1,e) exp (v (Z, X))

Zet e (we) (v (Ze, X0))"> T (Ze, Xo)

and I (Z;, Xy) is given by (4.3). Using repeated conditioning as in the proof
of Lemma 4.1, we see that

3 I (z, k) dx] ,
> ).

(f (Xe) g (yr,0) € (Ze)m (y2,0) 5 0e)
= E[f (X)) E g (y1.0)l E[£(Z0)] E [ (y2,0)] (1, 60) ,

and Xy, Zy, y1,¢, and ys ¢ have the stated probability distributions. [ |

<176f> =

Conditional Distribution of the Scene
We shall work under the probability measure P.

Notation 4.3 Let k = (ky,0 € L) € NI and x = (24,0 € L) € RY be any
value of the signal components and write

E|T]1(Xe€due, Zo=ke) | Vo | = qu (k)
LeL

for the conditional probability density distribution function of the signal
given the observation y.

Theorem 4.4
T (k,z,y)
k = .
a (k. ) Swene Jpr X (K, 2/ y) da’ (4.6)
Here
T (k,z,y)

=@y, (k,2) [ ] e (e = b (ke we)) (v (ke, w0)) " exp{—v (ke, 20)}
leL
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Proof For any integrable function f : N¥ x R — R and by a version of
Bayes’ Theorem we write:

E[f(Z X)AL | V1]

E[f(Z2,X) Y] = GRS

using the independence and distribution assumptions under P; after sim-
plification this is equal to

ket Jpr [f (kyx) @p (k,2) [T, € Libe (yr,0 — h (key 20)) (v (e, ) ¥
x exp (v (ke, z¢))]dz

Sienve Jor [@r (K%, 2%) [T, € Lbe (y1,0 — b (k7 27)) (v (K7, 7))
x exp (v (k}, z}))]da*

(4.7)
On the other hand we have
E[f(2,X)| ] = Z/fIkQka)d (4.8)
keNL
Comparing (4.7)—(4.8) yields at once (4.6). [ |

Mazimum A Posteriori Distribution of the Scene

To obtain the maximum posterior estimate of the scene, given the observa-
tions y, the values of (k,z) = (k¢, ¢, ¢ € L) which maximize ¢z, (k, z) given
by (4.6) could be obtained. However, the k; take integer values, and it is
difficult to find the maximizing values of (k,x). Procedures discussed in
the literature (Ripley, 1988) include the ICM (iterated conditional modes),
or simulated annealing. As in Section 1 we propose an alternative method
which leads to a sparse system of equations.
Write

L(k,x|y) =log®p (k,x)+ Y logte (yr,e — h (ke, z0))
terL

+ Z Y20 — Vv (ke, 20) - (4.9)
teL

It is sufficient to seek values of (l%,jr) which maximize £ (k,z |y). For
any positive integer N and any pixel ¢ € L suppose there is a probabil-
ity distribution p (¢) = (p1 (¢) ,p2 (€),...,pn (£) ,pn+1 (£)) which assigns a
probability p; (£) to the integer i, 1 < i < N, and py+1 (¢) to the integers
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greater than N. Write p = (p (¢) , ¢ € L) for the corresponding distribution
and E, for the expectation. Consider

L(pz|y)=Ep[L(kx]y)l. (4.10)

Both variables p and x are now continuous and we propose to investigate
the critical points (p, &) of L (p,z | y) subject to the constraints

p;(0)>0, VeL 1<j<N+1, (4.11)

and
N+1

dopi()=1, Vel
j=1

Once a candidate for (]5, :%) has been found an estimate for (l%, 50) is obtained
by choosing, for each ¢ € L, the integer i corresponding to the maximum
value of p(¢). In case this procedure gives i = N + 1 for a large number
of pixels ¢ perhaps initially a larger value of N should be chosen. To effect
this, consider real variables p; (€) such that p? (¢) = p; (¢). Then we require

N+1
=1, Vel (4.12)
j=1
Write
N+1
L(p,N) =B L(kx|y)+Y M| D -1
= j=1

Differentiating L (p, A) w.r.t. to p; (¢), z¢ and A¢ gives a sparse system of
(N + 3) L equations for the critical values (p, Z).

Again an advantage of this procedure is that it attempts to find simulta-
neously maximal values of k (¢) and z (¢) for all pixels £ € L, thus avoiding
the iterative procedures of the ICM or simulated annealing.

9.5 Problems and Notes

Problems

1. Show that under the probability measure P defined in Theorem 1.7 the
random variables Xy, ¢ € L satisfy the Markov random field property
given in Lemma 1.2.

2. Establish the result of Lemma 1.10
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3. Explain whether the algorithm described in Remark 1.15 converges nec-
essarily to a global maximum or not.

4. In the blurred model described in Section 1 derive (1.25), (1.26), and
(1.27).

5. Discuss the MAP estimation of the signal X for the HMRF observed in
Gaussian noise in Section 9.2.

Notes

The literature on image processing is extensive. Important contributions
include Besag (1986), Geman and Geman (1984), Qian and Titterington
(1990), and Ripley (1988).
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Discrete-Time HMM
Control

10.1 Control of Finite-State Processes

Discrete-time control problems are treated, for example, in Kumar and
Varaiya (1986a) and Caines (1988). Here we discuss the discrete-time, par-
tially observed control problem using the reference probability. The refer-
ence probability is constructed explicitly, and the role of the dynamics in
the separated problem clarified. The unnormalized conditional probabili-
ties, which describe the state of the process given the observations, play
the role of information states, and the control problem can be recast as
a fully observed optimal control problem. Dynamic programming results
and minimum principles are obtained, in terms of separated controls, and
adjoint processes are described for each model.

Dynamics

We use the notation of Chapter 2.
The state and observation processes are as described in Chapter 2 by the
equations

Xis1 = AXp + Vi,
Yiv1 = CXp + Wi

Now, we suppose that the transition matrix A (.) in the chain X depends
on a control parameter u taking values in some measurable space U. At
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time k the control uy is to be Yg-measurable. Write U (k) for the set of
such controls and U (h,h+¢) = U(h) UU(h+1)U---UU(h+¢). For
u = (ug,...,urx—1) € U(0,K — 1), with u; € U (), where K is the finite
horizon, X* will denote the corresponding process. We suppose there is a
probability P on (£2, Gx) such that under P the Yy arei.i.d. random variables
uniformly distributed over the set of unit standard vectors { f1,..., far} of
RM . A new probability measure P" is defined by putting

dpP* b i\ Y
ﬁ :Ak:HH(MC,Z)[
Gk ¢=1i=1
Recall from the notation of Chapter 2 that
cry1 = E[Yiq1 | Gr] = OXg

and ¢f = (crp1, fi) = B[ Y, | Gk | = (CXk, fi). Then under P*, let us
write the model as

X1 = Aur) X+ Viya,

Yk.;,_l = CX;: + WkJ’_l.
From Equation (2.6.1) the recursion equation for the unnormalized distri-
bution again has the form

N M )
U TIAY u u u Yy
Qk+1 = E[Ak+1Xk+1 | yk+1} = MZ (aie5) a; Hcijk+l' (1.1)

j=1 i=1

The initial value ¢g is the distribution of Xj.
Equation (1.1) describes the observable dynamics of a separated prob-

lem. g, , is an information state. That is, if we know ¢y, Yo, ..., Yx41 and
u, Equation (1.1) enables us to determine g;/, ;. The information state g}’
is a positive (not necessarily normalized) measure on S = {ej,...,en}. As

in Chapter 2 we work under P, so the Y’s remain ii.d. and uniformly
distributed. A more general model would allow the entries of C to be
u-dependent.

Cost
Suppose there is a cost associated with the process of the form
K
J (Xo,u) = (X, (), for u = (uo,...,ux) €U (0,K). (1.2)

k=0
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Note the cost is, without loss of generality, linear in X.
Here, for each k € {0,1,...,K} and u € U, £, (u) € RY. Then the
expected cost if control w is used is

Vo (u) = E[ (Xo,u)]
K
ZF <Z Xk,fk uk >‘|
L k=0
J— [ K —_— —
=F > (BIRXE | 0], (uk)ﬂ
Lk=
p— i KO
Lk=0

We see that the cost is expressed in terms of the information states given
recursively by (1.1).

If ¢ is such an information state at time k then the expected remaining
cost corresponding to the control u € U (k, K) is given by

K
E|> (¢4 lgr=1q|. (1.4)
=k

For 0 < k < K the cost process is defined as the essential infimum under
P

uelU(k,K—1)

For k = K set V (K, q) = E[{q,{x (u))]. The following dynamic program-
ming result is then established:

Lemma 1.1

Vika)= N\ Ellab@)+V (k+1a) a=aql. (1.5)
uel(k)

Proof

14 (ka q) = /\ Vi (Qa u) = /\ /\ Vi (qvu) .

uwel(k,K—1) welU (k) veU(k+1,K—1)
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Using (1.4) and double conditioning this is:

A A E|E

welU (k) veU(k+1,K—1)

(¢, lk (u))

i apRAt 3’1 o= q]

E

+

A FE

vel (k+1,K—1)

ZK: (a4} 45 (u)) ‘ yk+1‘| ‘Qk —q]}.

j=k—+1

Using the lattice property for the controls [see Lemma 16.14 of Elliott
(1982b)], the inner minimization and first expectation can be interchanged,
so this is

= /\ {F[(q,ﬁk(U)HQk—Q]

el (k)
. K
+F A E> s 4 ( )>’yk+l‘| Qk:(J]}
vel(k+1,K-1) Lj=1
= /\ g, 0 (W) +V (k+1,q00) e =q] -
eU(k | ]

Definition 1.2 A control u € U (0, K — 1) is said to be separated if uy
depends on (Yo, - .., yx) only through the information states qj'. Write
U, (0, K — 1) for the set of separated controls.

Lemma 1.3

uelU (k,K—1)
Proof The proof will use backward induction in k. Clearly
welU(K) uelU(K)

= A Fllgtx ()

uelU (K)

V(K,q)
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and the result holds for k = K. Then from Lemma 1.1

V(k7q): /\ E[<Q7€k(u)>+v(k+1vqg+l)|QkZQ}'
uel(k)

It is clear that a minimizing u (or a sequence of minimizing uy’s) depends
only on the information state gx = q. Therefore,

Vi(k,q) = /\ E| (g, 0k (u)) + /\ Vit1 (@it4150) ‘ qk = Q]
uelU (k) velU (k+1,K—1)

= /\ Vi (g, ) .

uel, (kK1) ]
A minimum principle has the following form:

Theorem 1.4 Suppose u* is a separated control such that, for each positive
measure q on {eq,...,enx}, uy (q) achieves the minimum in (1.5). Then
Vi (q,u*) =V (k,q) and u* is an optimal control.

Proof We again use backward induction in k. Clearly
Vi (¢,u") = E (g, tx (u"))] = V (K, q) .
Suppose the result holds for k+1,k+2,..., K. Then
Vi (q,up) =

Now for any other u € U (0, K),
Vi (g, u*) =V (k,q) < Vi (q,u),

and, in particular, V5 (¢, u*) < Vj (q,u), so u* is optimal. ]

Adjoint Process
For simplicity suppose the cost is purely terminal at the final time K, so
J(XOau) = <X}L(a£K (uK)> )

where ug € U (K). Consequently, i (ux) is Yk measurable and so a
function of Y7, ..., Yk. Then, as in (1.3),

Vo (u) = E[(Xk, Ik (ux))]
= E [(gk {x (ux))]-
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Theorem 1.5 Define ny = lk (ur) and, if ny ., = miq (Y1, Yiq1)
has been defined, set

N M
ne= k(YY) =)0 (0 (fi) s af) eije, (1.7)

j=1i=1

where ity (fi) = mgp (Y1, Y, fi). Then nj! is the adjoint process such
that .

E[ 0k (u),q5) | Vil = (0> aii) -
Proof Again we use backward induction

E[{tx (w),qx) | Vi ] = (Cx (u)  qkc) = (nc, akc) -

So the result holds for £ = K. Suppose n;',; = 1y (Y1,..., Y%, Yiy1) has
been defined. Then

E [ <77}$+1, q}i+1> | yk}

o N M
=K <77]7:+17MZ<C]]7:763 H k+l>

j=1 i=1

N
:MZ@}é,eﬁF Mey1: 0l ) (Yegr,¢;) | Ve

j=1
N M

ngzz 77k+1 fz ; J>CZJ6J> :<an7717:>
J=1i=1

and the result follows. [ |

Remark 1.6 Notice that the adjoint process is given by finite-dimensional
linear equations. O

The Dependent Case

When the noises in the signal and observations processes are not indepen-
dent as in Section 2.10, the observable dynamics of the separated control
problem are given in Lemma 2.10.4 as

M N
g1 = Z Z (@i ej) g (Ynrrs fr) -

r=1j=1
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Here spij = P(Yiqy1 = fr, Xp41 =€, | Xy =¢;) and s,.; is the vector
(Sr1j, - -+, Srnj). The initial value Gp is the (normalized) distribution of Xj.
The above analysis goes through and the dynamic programming results are
exactly as before. The adjoint process 7} is given by

k N
=3 (it () s25) €50 (1.8)

r=1j=1

Markov Chain in Gaussian Noise
The model

Xiy1 = AXp + Vi,
Ykt1 = ¢ (Xg) + 0 (Xg) w1,

where y is real-valued and the wy are i.i.d. N (0,1) random variables, is
discussed in Chapter 3 where we derive various estimators of quantities
related to the state and observations processes. The recursive equation
giving updates of the unnormalized conditional distribution of the state is
reported here for convenience:

N
Vi1 (Xry1) :Z e (Xk), T (Y1) @iy
i1

where

F = —i&ﬁ))

€;.

The initial value qq is the distribution of Xy. The above discussion goes
through. The adjoint process is given by

2

N e +oo Y
:;U_:/Oo <’7}5+1=A(U)€i>¢k+1( = Z)dy. (1.9)

We recall that ¢y is the positive densities of wy, and the wy form a sequence
of independent random variables. The ¢; and o; are the components of the
functions ¢ and o, respectively.
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10.2 More General Processes

Dynamics

Consider a finite-time horizon control problem and, for simplicity, suppose
the noise is additive in the state and observation processes. All processes
are defined initially on a probability space (2, F, P).
The state process {z}, & = 0,1,..., K, takes values in R? and has
dynamics
Tpt1 = A (Tg, k) + Vgt1- (2.1)

We suppose the initial density 7o (2) of xg is known.
The observation process {yi}, k = 0,1,..., K, takes values in R™ and
has dynamics
Yr+1 = Ck (Ik) + W1 (2.2)

We suppose 5o = 0 € R™. For 0 < k < K write y* = {yo,y1,..., Y}
{Gr} is the complete filtration generated by = and y. {V;} is the complete
filtration generated by y.

The noise in the state process is a sequence {vz}, 1 < k < K, of in-
dependent R?-valued random variables having densities ;. The noise in
the observation process is a sequence {wi}, 1 < k < K, of independent
R™-valued random variables having positive densities ¢k, ¢x (b) > 0, for
all b € R™. The parameter wuy in (2.1) represents the control variable, and
takes values in a set U C RP. At time k, uy is Vi measurable, that is, ug
is a function of y*. For 0 < k < K write U (k) for the set of such control
functions and

Uk,k+0)=U(k)UU(k+1)U---UU(k+1).

For v € U (0,K —1), z* will denote the trajectory (zo,z¥,zY,...,z%)
determined by (2.1), and a sequence v1,. .., vk of noise terms.

Unnormalized Densities

Suppose we have an equivalent probability measure P on (2,Gr) such
that under P {y;} is a sequence of independent random variables having
positive densities ¢ and for any u € U (0, K — 1), x} satisfies the dynamics
n (2.1).

Suppose u € U (0, K — 1). Define

d yl’ Co (2f-4))
1;[ be (ye) '
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Then a probability P can be defined by setting the restriction of dP"/dP
to Gk equal to K?(. It is under P* that the state and observation processes
have the form (2.1) and (2.2).

Write g} () for the unnormalized conditional density such that

E[KZI (x} € dz) ‘ Vi | =qi (2)dz.

The normalized conditional density pj} () is then given by:

N AGE S

and for any Borel test function f

“ () gi; (=)

LS @) Yen] = [ 7@ ()
Similarly to Theorem 4.4.8 we have the following recurrence relation for
qy.:
Theorem 2.1

Qey1 (2) = Pt (yer1) ™"

< (5= A6 00) G (s = Ci (€ i ()
(2.3)

Remark 2.2 This equation describes the observable dynamics of a sepa-
rated problem. i/, (-) is an “information state” in the sense of Kumar and
Varaiya (1986a). That is, if we know ¢¥ (), y**1 and wuy, Equation (2.3)
enables us to determine g;,; (-). o

The initial information state qo is just mo, the (normalized) density of
xo. Note that, even if mp is a unit mass at a particular xo, ¢} (2) =
o1 (1) 1 (2 — Ag (0, u0)) é1 (y1 — Co (20)), and the consequent terms
4y, qy, ... follow from Equation (2.3).

Cost

Suppose, given xg and u € U (0, K — 1), the cost function associated with
the problem is of the form

K-1

T (zo,u) = Y b (2}, ur) + Ui (). (2.4)
k=0



256 Chapter 10. Discrete-Time HMM Control

Then the expected cost, if control u is used and the density of x¢ is m (),
is
Vo (mo,u) = E[J (20, u)]. (2.5)

This can be expressed

=F K% (Z_ O (x},ug) + Uk (x%))]

k=0

‘/0 (WO,U)

= Y E[A b (a3, un)] + E[Agli ()]

where, for example, we write

(Cr (2, ur) (z,ur) qy (2)dz

E[Kkgk (zitun) | Vi |-

Remark 2.3 We have seen the information state at time k& belongs to the
set S of positive measures ¢ (-) on R?. Note the probability measures are a
subset of S. |

Here S is an infinite-dimensional space. A metric can be defined on §
using the L' norm, so that for ¢! (-),¢?(:) € S

d(q".¢*) =" =& = /Rd ld" (2) — ¢ (2)] d=.

Any ¢ € S can be normalized to give a probability measure 7 (q) =

q()/ llal-

Consider the process starting from some intermediate time k, 0 < k < K|
from some state ¢ (-) € S. Then, for u € U (k, K — 1)

Giiy1 (2) = drra (Yra1) " (2.6)

[ ki = A (€ 0) s (s = Cu€) ()
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The remaining information states ¢ (-), k+1 < n < K, are obtained from
(2.3).

The expected cost accumulated, starting from state ¢ (-) € S and using
control u € U (k, K — 1) is, therefore,

K-1

Vi ( B> (4G, qf (2) + Uk (2) 4 (2) Lo =g | - (2.7)

=k

The problem is now in a separated form. The filtering recursively deter-
mines the unnormalized, conditional probabilities which are the informa-
tion states, g} (). These evolve according to the linear dynamics (2.3), and
the cost is expressed linearly in terms of these information states.

For 0 < k < K the cost process is again the essential infimum

uweU(k,K—1)

The dynamic programming identity and the minimum principle have the
same forms as in Lemma 1.1 and Theorem 3.3 and their proofs are left as
an exercise.

The Adjoint Process

Consider any control u € U (0, K — 1). We shall suppose for simplicity of
notation that the cost is purely terminal at the final time K, so

J(xo,U) =IlK (.’L‘?() :
Then
V (mo,u) = E[fK (2% )]
= E[{lk (2),qk (2))].

Theorem 2.4 There is a process 1y (z, yk), adapted to Vi, such that for
0<k<K

E[{tx (2),qk () | Ye] = (nit (2,9%) it (2)) -

Further, ;! evolves in reverse time so that

k) = /Rd /Rm {ngﬂ (29", y) drs1 (y — Ci (€))

(2.8)
X Wi (2 = Ax (6 w))|dzdy
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Proof Again we use backward induction. Define 7% (z,y%) = £k () so
Bl{r (=) ak (2) | V] = (0 ()5 ()
= (ni (2,9™) ak () -
Suppose 7, (2,5*1) has been defined. Then
(it () it () = [ it (20" at ()

and
E (it (2:6"7) it (2)) | %]

= /Rd /Rd /m [77}5“ (2% yir1) drr1 (W)™ Grrt (st — Ci (6))

X st (2 = A (6 un)) 4k (€) bt (ert) | dz dE dypn
= (nk (&%) a (6))

where

= /Rd /Rm |:77g+1 (29", ) drr1 (¥ — Cr (€))

X e (2 = Ak (€ ux))|dz dy. .
Remark 2.5 Note in particular
Vi(mo,u) = E[{lx (2), qix (2))]
= E[(n5 (& vo) s m0 ()]
=E [(n (&9") . a (9))]- o

Remark 2.6 Note again that the adjoint process derives from a linear
equation. This is now infinite-dimensional for other than the discrete-state
case. u

Parameter Estimation and Dual Control

Suppose we have a situation where the model contains an unknown param-
eter 6, which we also wish to estimate. That is, suppose the state dynamics
and observation processes are of the form:

Thy1 = g (Th, U, 0) + V1, (2.9)
Yk+1 = Ck (T, 0) + Wit 0<k<K. (2.10)
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Here 6 takes values in some measure space (0, 3, \), with A a probability
measure. © could be a (subset of a) Euclidean space.

For example, a simple case would be (one-dimensional) linear dynamics
and observations of the form

1 2
Tht1 = O g + 07U + Vi1,

3
Y1 = 0T + W1

The analysis of the previous sections goes through, taking the 6 to be addi-
tional state variables. The unnormalized conditional density ¢} (2,61, 62, 63)
is defined by

E[RLT (af € dz) 1 (6" € dby) I (6% € db) 1 (6% € dbs) | Vi |
= q;: (27 917 927 93) dz del d92 d93,

and the recursive Equations (2.3) and dynamic programming results are
exactly as before.

10.3 A Dependent Case

Controlled Dynamics

All processes are defined initially on a probability space (£2, F, P). Suppose
{z¢}, £ € N, is a discrete-time stochastic process taking values in some Eu-
clidean space R?. We suppose that xg has a known distribution 7o (x). Here
{ve}, £ € N, will be a sequence of independent, R¥-valued, random variables
with probability measures diy and {w,} a sequence of R™-valued, random
variables with positive probability density functions ¢,. The parameter uy
represents the control variable, and takes values in a set U C R". For k € N,
ap : RY x RF x R™ x U — R? are measurable functions, and we suppose
for k > 0 that

Tyl = Apt1 (Thy V1, Whe1, Uk) - (3.1)

The signal process " is not observed directly; rather we suppose there is an
observation process {y¢}, £ € N, related to the signal and taking values in
some Euclidean space R? and for k € N, ¢;, : RE x R™ — RP are measurable
functions such that

Y1 = Cht1 (T, Wt1) - (32)
At time k, uy is Jx measurable, that is, uy is a function of y* = {yo,y1,

.., Yk} We shall consider a finite-time horizon control problem so that
0<k< K -1 from now on.
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We assume here that for each 0 < k < K — 1, there is an inverse map
di : RY x R? x R™ x U — R* such that if (3.1) holds

kg1 = dig1 (Thg1, Th, Whg 1, Uk) - (3.3)
Note this is the case if 2511 = dgr1 (Th, Wrt1, Uk) + Vir1-
We require dj, to be differentiable in the first-variable for 0 < k < K — 1.

We also assume that for each 0 < k < K — 1, there is an inverse map
g : R? x RY — R™ such that if (3.2) holds

Wit 1 = Ght1 (Ykt1, Tk) -
Again, this is the case if Y11 = éry1 (k) + wi41. Finally, we require

dck1 (Tg, w)
ow

3

Crt1 (g, Wet1) =
W=Wg 41
Ogr+1 (Y, Tk)

Grs1 (Yer1,Tx) = By

y=hgt1

to be nonsingular for 0 < k < K — 1.

Separation of the Problem
Suppose u € U (0, K — 1). Define

w_ be (ye) Gl (ye, 1) -
0 (90 (yer 7y ) Jy

and

k
u u
p=11x
(=1

Then a probability measure P" can be defined by setting the restriction of
dP"/dP" to Fr equal to A%. It can be shown that under P

1. {yx} is a sequence of independent random variables having positive
densities ¢y,

2. z} satisfies the dynamics

Ty = a1 (5, Vi1, Gk (Ukt1, Th) 5 Uk) 0<k<K-1
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. .U
We now suppose that our starting, or reference, measure is P~ on (2, Fg)
and, proceeding in an inverse manner, we define

—u e (g0 (ye, x4_y)) Ce (x}tpw@)il

A= T ) w

and A, = Hz 1 X;. Then the probability measure P*, under which (3.1)
and (3.2) hold, is obtained by setting (d P*/dP" Vox = Ay

Write doj! (x) for the unnormalized conditional probability measure such
that

FH[KZI (z, € dx) ’ Vi | = daj (z).
Theorem 3.1 For1 <k < K, a recursion for da} (z) is given by

daf (z) = /]Rd Oy (2, yk, 2) dipg, (di (x, 2, gk (Y, 2) s ugp—1)) daj_q (2). (3.4)

Here
1 _
Oy (2, Y5, 2) = ——b% (9% (Y 2)) O (2, 9k (yx, 2))
br (yr)
‘&lk (z,2, g (Yr, 2) , uk—1)
X
ox
Proof The proof is similar to that of Theorem 4.4.2. ]
Cost

Suppose, given zg and u € U (0, K — 1), the cost function associated with
the problem is of the form

K—-1
:Z?O, Zﬁk xk,uk —|—€K (CEK)
k=0

with expected cost

VQ (Fo,u) = Eu [J (aco,u)]
1
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If we write

(U (z,ug) ,daj (2)) = Ly (z,ug) dai (2),
]Rd
this is

K—
Z (l (2, ur) , daj; (2)) + (Ux (2) , de (2))
k=0

The information states daj are positive measures on R?. Consider the pro-
cess starting from some intermediate time k, 0 < k < K, from some state
da. Then the expected remaining cost, corresponding to v € U (k, K — 1)
is given by

i

U

Vi (do,u) = F (45 (z,u) ,daf (z))

<.
Il
Ea

+ Uk (2),dak (2)) ‘ daj = da].

For 0 < k < K the cost process is defined as the essential minimum

V(kdo)=  /\  Vi(dau). (3.5)

uelU(k,K—1)

For k = K set V (K,da) = E" [({x (z),da(2))]. The following dynamic
programming result is then established.

Lemma 3.2 For 0 <k < K —1 and da a positive measure on R4

V(kda)= N E"[{t(zw).da(2)+V (k+1,doj,) | day = da].
v (3.6)

A dynamic programming result can be obtained as in earlier sections,
and a minimum principle has the following form.

Theorem 3.3 Suppose u* is a separated control such that, for each pos-
itive measure da on R?, u} (da) achieves the minimum in (1.5). Then
Vi (da, u*) =V (k,da), and u* is an optimal control.

Proof The proof will use backward induction on k. Clearly

Vi (da,u*) = B [(Uk (2),da (2))] = V (K, do) .
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Suppose the result holds for £k + 1,k + 2,..., K. Then

Vi (da, uy) = E" [(fk (z,u"),da(z)) + Vk+1(da}jll, u®) ’ day, = da}

Now for any other v € U (0, K — 1),
Vi (daa U*) =V (kv dOé) < Vi (davu) ’

and, in particular, V (da, u*) < Vo (da, u), so u* is optimal. [ ]

The Adjoint Process

Consider any control uw € U (0, K — 1). We shall suppose for simplicity of
notation that the cost is purely terminal at the final time K, so

J (zo,u) =l (x%).
Then
V (mo,u) = E" [(x (z%)]

U

=E" [(lx (x),da¥ (2))].

Theorem 3.4 There is a process (B} (aj,yk), adapted to Yy, such that for
0<k<K

E" [(tx (2)  da (2)) | V] = (B} (2,9") , daj (2)).
Further, B} evolves in reverse time so that
Bi (2,9")
= /Rp [/Rd Biter (20" Yrg1) Gt (Grtr Wis1, 2)) dPrsn

X (dis1 (2,2, gkt Uk, 2) s uk)) Ot (2, Gb+1 Whg1,2))

" ‘3dk+1 (szgkgalc (Ykt1,2) > uk) ]dka.

Proof The proof is left as an exercise. ]
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10.4 Problems and Notes

Problems

1. Derive the dynamic programming result (1.8).

2. Derive the adjoint process given by (1.9) for the control of a Markov
chain in Gaussian noise.

3. Obtain the unnormalized recursive density and the dynamic program-
ming results for the model given by (2.9) and (2.10) in the dual control
section.

4. Derive the adjoint process given in Theorem 3.4.

Notes

In this chapter discrete-time, partially observed control problems are dis-
cussed by explicitly constructing a reference probability under which the
observations are independent. Using the unnormalized conditional proba-
bilities as information states, the problems are treated in separated form.
Dynamic programming and minimum principle results are obtained. The
idea of measure change from earlier chapters has again been exploited.



cHAPTER 11

Risk-Sensitive Control
of HMM

11.1 Introduction

We saw in Chapter 10 that a stochastic control problem was solved using
an information state, that is, an unnormalized conditional density. This
problem was of the risk-neutral type. In this chapter we will solve a risk-
sensitive stochastic control problem. It turns out, surprisingly, that the
appropriate information state is mot an unnormalized conditional density;
rather, the information state also depends on the cost function.

Risk-sensitive problems involve an exponential cost function, which re-
flects the controllers’ aversion to risk. A risk-sensitive controller is more
conservative than the risk-neutral controller discussed in Chapter 10, since
the cost function penalizes large values—a manifestation of the exponential
function. The risk-sensitive stochastic control problem is formulated and
solved in Section 2.

Interestingly, the risk-sensitive problem is closely related to H*°, or ro-
bust, control. Actually, it incorporates features of both H*> and Hj (i.e.,
risk-neutral) control. The relationship is due to the fact that H> problems
can be formulated in terms of dynamic games. In the case of linear systems
with quadratic cost functions, the solution of the risk-sensitive problem
coincides with that of a dynamic game; in the general nonlinear case, one
must employ an asymptotic (small noise) limit to make the connection.

Accordingly, to point out this connection (and to emphasize the role of
risk-sensitivity), we include a small noise parameter € and a risk-sensitive
parameter g > 0 in our formulation. Note, however, that the solution to
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the risk-sensitive problem in no way depends on asymptotic limits.

In Section 3, we briefly explain the connection with H>° dynamic games,
and in Section 4 the relationship between risk-sensitive and risk-neutral
(or Hs) problems is explained. Finally, we give an example in Section 5 for
which the information state is finite-dimensional.

11.2 The Risk-Sensitive Control Problem

Dynamics

On a probability space (2, F, P*) we consider a risk-sensitive stochastic
control problem for the discrete-time system

Tiyr = a(xg,ur) +viy, €R™, (2.1)
Yes1 = c(@}) + wiyr €R,
on the finite-time interval £k = 0,1,2,..., K. The process ¢ € R repre-
sents the state of the system, and is not directly measured. The process
y® € R is measured and is called the observation process. This observa-
tion process can be used to select the control actions uy. The values Gy
and Y, denote the complete filtrations generated by (z5,45,0 < ¢ < k) and
{y5,0 < £ <k}, respectively.
We assume:

—n/2

1. x§ has density p (z) = (2) exp(—1 |x|2)

2. {v§} is an R™-valued i.i.d. noise sequence with density
YF (v) = (2me) " exp(— |of*).

3. y5=0.

4. The set of random variables {w{} is a real-valued i.i.d. noise sequence
with density

¢ (w) = (27r5)71/2 exp(—o |w|2)7
independent of zf§ and {vf }.

5. The function a (.) € C* (R™ x R™,R") is bounded and Lipschitz con-
tinuous, uniformly in (z,u) € R" x U.

6. The controls uy take values in U C R™, assumed compact, and are
YVi-measurable. We write U (k, £) for the set of such control processes
defined on the interval k, ..., /.
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7. The function ¢(.) € C' (R™) is bounded and uniformly continuous.

The probability measure P* can be defined in terms of an equivalent
reference measure P. Under P, {y5} is 1.i.d. with density ¢°, independent
of {z5}, and z° satisfies (2.1). For u € U (0, K — 1),

dP"

where

X ) = LD e (L[ He@l - ey ).

Cost Function

The cost function is defined for admissible v € U (0, K — 1) and u > 0 by

K-1
TP (zg,u) = |exp <§ {Z L(z5,up) + @ (x;)}ﬂ ,
k=0
VH#eE (mo,u) = E[J** (xg,u)], (2.3)

where the density on xg is 7.
The partially observed risk-sensitive stochastic control problem is to find
u* € U (0, K — 1) such that

Vi (m,ut) =\ VP (mo,u).
ueU(0,K—1)
Here, we assume:

8. L € C(R™ x R™) is nonnegative, bounded and uniformly continuous.
uniformly in (z,u) € R" x U.

9. ® € C' (R") is nonnegative, bounded, and uniformly continuous.

Remark 2.1 The assumptions 1-9 are stronger than necessary. For exam-
ple, the boundedness assumption for a can be replaced by a linear growth
condition. In addition, a “diffusion” coefficient can be inserted into the
system. Other choices for the initial density p are possible. |

The parameters p > 0 and € > 0 are measures of risk sensitivity and noise
variance. In view of our assumptions, the cost function is finite for all p > 0,
e > 0. For risk-sensitive problems the cost is of an exponential form.
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In terms of the reference measure, the cost can be expressed as

K-1
Ay exp < {Z L (x5, uk) +¢($K)}>] . (249

k=0

Ve (m,u) = E

Information State

We consider the space L™ (R") and its dual L** (R™), which includes
L' (R™). We will denote the natural bilinear pairing between L (R™) and
L>**(R™) by (r,B) for 7 € L>**(R"), f € L*>® (R"). In particular, for
a € L' (R™) and 8 € L™ (R™) we have

<a,ﬁ>=/na(x)ﬁ(x) dz.

We now define an information state process ¢k’ € L>* (R™) by

[ @ @) do= @) (25)
k

) exp (gz (x7,up )Ak Vi ]
=0

for all test functions n in L> (R™), for k = 1,..., K and ¢} = p € L' (R").
We note that this information state is similar to that of Chapter 10, but
it now includes part of the exponential cost function. We introduce the
bounded linear operator ¥+ : L (R™) — L (R™) defined by

2 () 39 1= exp (AL (6.0) X () [ 07 (e = a6 B (o) d.

(2.6)
The bounded linear operator L#<* : L>* (R") — L**(R"™) adjoint to
>H€ is defined by

=F

<EH7€ T, 77> = <Tv EH7€77>

for all 7 € L>* (R™), n € L™ (R™).

The following theorem establishes that ¢} is in L' (R™) and its evolution
is governed by the operator ¥#<* and for a € L' (R"), n € L> (R"), we
have

SHE (u,y) a(z) = RnU)E(Z—a(faU))eXp( L&, )) A (& y) e (§) de.

(2.7)
Note that ¢} is an unnormalized “density” for the state which also depends
on the cost.
Similarly to Theorem 10.2.1, we have the following result.
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Theorem 2.2 The information state ¢i'° satisfies the recursion

e JE€ % e\ MHE
qvt =M (up—1,y5) 45

(2.8)
@ = p.

Further, ¢ € L' (R™) since p € L' (R™) and $*°* maps L' (R™) into
L' (R™).

Proof The proof is left as an exercise. ]

Remark 2.3 When L = 0, the recursion (2.8) reduces to the Duncan-
Mortensen-Zakai equation for the unnormalized conditional density given
in Theorems 10.2.1 and 10.3.1. See also Kumar and Varaiya (1986b). O

Next, we define an adjoint operator X#*<* : Cp, (R") — Cj (R™). [Actually
it maps L (R™) to L> (R™), but we need only C} (R™) for our purpose
here where Cp, (R™) := {qg € C(R"™) : |¢ (z)] < C, for some C' > 0} .] This is
the analog of the recursion of Theorem 10.3.4. The operator 3¢ actually
maps Cy, (R™) into C, (R™). Then we can define a process §5.° € Cj, (R™)
by

ll:fl = XHe (uk—lu yli) ﬁk7€7

2.9
K= exp (L0). 29

It is straightforward to establish the adjoint relationships
(5, 5) = (a,545),
(g, 5% = (g, BL5,), (210)

for all « € L' (R"), 8 € Cy, (R™), and all k.

Alternate Representation of the Cost

Following (Bensoussan and van Schuppen, 1985), we define for u €

K" (mo,u) = FE qu{’s, exp (Eq))ﬂ , (2.11)
€
a cost function associated with the new “state” process ¢,

Theorem 2.4 We have for allu e U (0, K — 1)

JHE (u) = KM (u) . (2.12)
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Proof By (2.5),

KH* (7T0,u) :E E

mlt

exp (gfb(x%)) exp ( KX:IL (zF, uk) ) AK} yK‘|‘|

=0

K—1
exp (g { Z L(x5,ur) + @ (I%)}) Ay

k=0

E

= V™ (1o, u)

using (2.4). [ |

We now define an alternate but equivalent stochastic control problem
with complete state information. Under the measure P*, consider the state
process ¢,'° governed by (2.8) and the cost K€ (mp,u) given by (2.11).
The new problem is to find u* € U (0, K — 1) minimizing K**=.

Let U, (k,¢) denote the set of control processes defined on the interval
., £ which are adapted to o (qf’a, E<j< K). Such policies are called
separated (Kumar and Varaiya, 1986b).

Dynamic Programming

The alternate stochastic control problem can be solved using dynamic pro-
gramming. Consider now the state ¢/ on the interval k, . .., K with initial
condition ¢*° = ¢ € L* (R™):

T =N (e, yp) ¢, k+H1SULSK,
q (we—1,97) 475 (2.13)

0" =aq

The corresponding value function for this control problem is defined for
q € L' (R") by

veslkg) = N EHa 8 14 =d
uwelU(k,K—1)
- /\ E quj’g,exp (g@)ﬂ (2.14)
uweU(k,K—1)

Note that this function is expressed in terms of the adjoint process 3},
given by (2.9). See Theorem 10.2.4.
The following result is the analog of Lemma 10.1.1.
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Theorem 2.5 (Dynamic programming equation) The value function V#:*©
satisfies the recursion

Ve (k) = N\ E[VA(k+ 1,5 (ur,yig) 0))
ur €U (k,k) (2.15)
VI (g, K) = <q,exp (§®)>
Proof
Ve (k, q)
- /\ /\ F |:<qu87 EH“E (Ukﬁyi«kl) ﬁ]l:f1> | qk7€ = q]
weU (k,k) veU (k+1,K—1)
= A A BB (i) 65 BL5) | Ve ]

weU (k,k) veU(k+1,K—1)

| gy = q}

= A B A B k) i ) Vi)

ueU (k,k) velU(k+1,K—-1)
‘ q " = q]

- /\ E{ /\ E[(gi B g =277 (urs Yy ) ]
ueU (k,k) veU (k+1,K—1)

= AN E[V" (k+1LY (i) )] -
u€U (k,k)

The interchange of minimization and conditional expectation is justified
because of the lattice property of the set of controls (Elliott, 1982b, Chap-
ter 16). [ |

Theorem 2.6 (Verification) Suppose that u* € U, (0, K — 1) is a policy
such that, for each k =0,...,K — 1, u} =7y, (¢}"°), where U, (q) achieves
the minimum in (2.15). Thenu* € U (0, K — 1) and is an optimal policy for
the partially observed risk-sensitive stochastic control problem (Section 2).

Proof The proof is similar to Theorem 10.1.4. ]
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Remark 2.7 As in Chapter 10, the significance of Theorem 2.6 is that it
establishes the optimal policy of the risk-sensitive stochastic control prob-
lem as a separated policy through the process ¢, which serves as an “in-

formation state” (Kumar and Varaiya, 1986b). a

11.3 Connection with H* Control

In this section we explain the connection of the risk-sensitive problem with
H*®° control through dynamic games. Complete details can be found in
James (1992).

Information State
For v € G:={y €R?*: 791 > 0,72 > 0} define

DY — {p eECR :p(x) <—m |:c|2 —1—72},
D= {p ECRY :p(x)<—m |x|2 + 72, for some v € G}.

We equip these spaces with the topology of uniform convergence on com-
pact subsets. In the sequel, B (z,«) C RP denotes the open ball centered
at = € RP of radius a > 0.

The inner product (.,.) is replaced by the “sup pairing”

(p.g) := sup {p (@) +q ()} (3.1)

This is defined for p € D, g € Cy, (R™), and arises naturally in view of the
Varadhan-Laplace lemma (James, 1992). In fact,

lim £ log <exp (gp) , exp (gq)> = (p,q) (3.2)

e—0 [

[uniformly on compact subsets of DY x Cy (R™), for each vy € G].
Define operators I'** : D — D, and T* : C}, (R™) — Cy (R™) by

P ) o) = sup L6 - gl - ac

_ % E c(g)ﬁ—c(&)y} +p<§>},

P ) a(©) = swp {5 - ael +a )

1

P -1 [3le@F ey 33
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With respect to the “sup pairing” (-, -), these operators satisfy:

I"*p,q) = (p,T"q). (3.4)

Also, T'** (u,y) : DY — D is continuous for each v € G; in fact, the map
(u,y,p) — T** (u,y)p, U x R x DY — D is continuous.

The next theorem is a logarithmic limit result for the information state
and its dual, stated in terms of operators (i.e., semigroups).

Theorem 3.1 We have

hm logE“E*(u y)exp(u ) =T (u,y)p,
e—0 /1,

hm = 1og ¥ (u,y) exp (Hq) =T"(u,y)q (3.5)
e—0 /,L

in D uniformly on compact subsets of U x R x DV for each v € G, and
respectively, in Cy, (R™) uniformly on compact subsets of U x R x Cy (R™).

Proof From (2.7), we have

£ log %% * (u, y) exp (Ep) z
m €

€ I 1 2 MNE
=—log/ exp—(——z—a & u)|” — —log (27e
o8 | exp o 2#' (& w)l o (2me)

~ 2 [3e©F —c©u] + Ligw +p(e))ae
Thelrefore7
i 1 1) (£

- sup{ (€)= o le - a6l - 2|3l - c©u] +p(©)]

£ER™
=T (u,y)p(2)

uniformly in a = (2,u,y,p) € A, where A= B(0,R) xU x B(0,R) x K,
and K C D7 is compact. This proves the first part of (3.5). The second
part is proven similarly. [ |

Risk-Sensitive Value Function

We now give a result which provides a dynamic programming result for the
small noise limit of the risk-sensitive value function V#¢. The proof can be
found in James, Baras and Elliott (1993).
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Theorem 3.2 The function W* (p, k) defined for p € D by
WH (k,p) := lim < log V¥ e (exp (Ep) ,k) (3.6)
e—=0 1 3

exists [i.e., the sequence converges uniformly on compact subsets of D7
(v € @)}, is continuous on DY (v € G), and satisfies the recursion

Lo
WH (k,p) = inf sup W* (k+ 1,T** (u, ,)— — },
(ko) = inf sup {0 (1)) = -l

WH(K,p) = (p,®).

(3.7)

Remark 3.3 In James et al. (1993) W* (p, k) is interpreted as the optimal
cost function (upper value) for a deterministic dynamic game problem.
Also, the limit lim. .o £ log ¢i’° = pl; is the information state for the game.
This is the most important contribution of James et al. (1993). a

11.4 Connection with Hy or Risk-Neutral Control

In this section we explain how a risk-neutral stochastic control problem
is obtained if in the risk-sensitive stochastic control problem the risk-
sensitivity parameter p tends to zero. In this limiting case, the index ex-
pressed as a power series expansion is seen to approximate its first two
terms and thus be effectively the exponent itself, so the limiting connec-
tion to risk-neutral, i.e., Hs, control is not surprising.

Information State

Similarly to Chapter 10 we now define the bounded linear operator 3¢ :
L' (R") — L' (R") and %¢: L™ (R") — L*>° (R") by: by

5 (u,y) q(2) = - U7 (2 —a (& u) X (& y) ¢ (§) dS.

2 (u,y) B(E) = - ¥ (2 —a(&u)B(E) dzA° (& y)- (4.1)
These operators are adjoint with respect to the inner product (-, -).
Theorem 4.1 We have
Lim % (u, y) ¢ = 2 (u,9) g,
Lim 35 (u, y) = % (u,9) 6 (4.2)
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uniformly on bounded subsets of U x R x L' (R™) [respectively, U x R x
Lo (R™)).
Proof This result follows simply from the definitions in (2.7) and (4.1). |

Next, we define a process ¢ € L' (R™) and its dual (w.r.t. (-,-)) 5% by
the recursion

qE = X% (wk-1,¥5) Gy (4.3)
9 = P
G5, = X°(ur—1,Y%) G5, (4.4)

A Risk-Neutral Control Problem

We are, therefore, in the situation of Chapter 10. We again consider the
discrete-time stochastic system in (2.1) and (2.2), and formulate a partially
observed risk-neutral stochastic control problem with cost
K-1
> L(af,w) + @ (2%) (4.5)
k=0
defined for w € U (0, K — 1), where U (0, K — 1), etc., are as defined above.
This cost function is finite for all € > 0.

We quote the following result from Lemma 10.1.3, which establishes that

the optimal policy is separated through the information state gj, satisfying
(4.4).

Ve (mo,u) = B

Theorem 4.2 The unnormalized conditional density gj, is an information
state for the risk-neutral problem, and the value function defined for q €

L' (R") by

K—-1
Wek,)= N E|D_ (L w)+ (kP g =q| (46)
wel, (k,K—1) L=k

satisfies the dynamic programming equation

We (k,q) = gngE (g, L (yu)) + We (k+1,%° (u,y541) 9)]
We(K,q) = (¢, ®).

(4.7)

Ifu* € U, (0, K — 1) is a policy such that, for each k=0,..., K —1, uj =
uy, (q5), where @, (q) achieves the minimum in (4.7), thenu* € U (0, K — 1)
and is an optimal policy for the partially observed risk-neutral problem.
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Remark 4.3 The function W¢ (¢, k) depends continuously on ¢ € L' (R™).

Risk-Sensitive Value Function

O

The next theorem evaluates the small risk limit of the risk-sensitive stochas-
tic control problem. Note that normalization of the information state is
required. The limit operation picks out the supremum on the right side.

Theorem 4.4 We have

1€ €
lim & log (kq) _ W= (k,q)
p=0 p (¢, 1) (¢, 1)

uniformly on bounded subsets of L' (R™).

Proof 1. We claim that

VI (kyq) = (0.1) + SWE (k,q) + 0 (1)

as 1 — 0 uniformly on bounded subsets of L! (R™).
For k = K,
e - H
14 (Ka q) - <qanp (gq))>
(0. 1)+ £ (¢, @) +0(n)

= (0. 1)+ EW* (K.q) + o)

as p1 — 0, uniformly on bounded subsets of L (R™).
Assume now that (4.9) is true for £+ 1,..., K. Then

Ve (k, q;u)
= F [V (k+ 1,5 (u,9741) 9)]

= /Rdf (y) V= (k41,57 (u,y) q) dy

L []eo-c@en (trien)

S (u,y) q
(Zre (u,y) g, 1)

x VHoe (k+1, )q(é‘)}dﬁdy

(4.8)
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_ /n/R{d)s(y_c(g)) {1+5L(§,u)+0(u)}

x [1 + gwa (k+ 1%) —I—o(u)} q(g)}dgdy

— o0+ @ L )
+
R

X (u,9) g )

[‘ba =) (k L S e

n

<a(©)]agan} + ot

@)+ 2l n e+ [ o W15 a) o+ ot

as p — 0 uniformly on bounded subsets of U x L' (R™). Thus, using the
continuity of (g, u) — V#= (k, q;u),

VR (kq) =\ V™ (¢, ki)
uelU

@+ Awrew

uelU
[ E@WE L ) dy}+0(u)
= (0, 1)+ ZW* (k,q) + 0 (n).

uniformly on bounded subsets of L' (R"), proving (4.9).
2. To complete the proof, note that (4.9) implies

Ve (k,q) pWe (k,q)
—— =14+ -—r"+o0(p
(q,1) e (1) ()
and hence Ve (hg)  WE (k.q)
€ TR, g q
— log = +o(1
P ey W
as pt — 0, uniformly on bounded subsets of L (R™). [ |

Remark 4.5 We conclude from Theorems 4.2 and 4.4 that the small risk
limit of the partially observed stochastic risk-sensitive problem is a partially
observed stochastic risk-neutral problem. O
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11.5 A Finite-Dimensional Example

In this section we present a discrete-time analogue of Bensoussan and El-
liott (1995). Suppose {Q, F, P} is a probability space with a complete fil-
tration {Gr}, k € N, on which are given two sequences of independent
random variables z; and yg, having normal densities 1, = N (0, Q) and
or = N (0, Rg) where Qr and Ry are n X n and m x m positive definite
matrices for all £ € N.

Note that, unlike earlier sections we start with a measure P under which
the z; and yi processes are independent random variables, that is, P is
already playing the role of P. The A we define below, therefore, plays the
role of A. A measure P is then defined, so that under P* the z; and Yk
processes satisfy the dynamics in (5.1) and (5.2).

Let U be a nonempty subset of RP. ) is the trivial o-field and for
k>1Y, = c{ye, £ <k} is the complete filtration generated by y. The
admissible controls u are the set of U-valued {Y) }-adapted processes, that
is an admissible control u is a sequence (ug,...,uk,...) where ug is Vg
measurable.

Write U (k, ¢) for the set of such control processes defined on the interval
ky..., L.

Consider the following functions

Ap(u) : UxN-— LR",R") (the space of n x n matrices)
Bi(u): UxN-—-R"
Cr(u) : UxN—=L[R™R™).

In the sequel, for any admissible control u, we shall write Ay, (u) for Ay (uy),

and so on.
Define

u —
Afi1 =N

_ f[ Ve (@1 — Ar () 26 = By (w) b1 (ge1 — Co () 21 (u))
P Yot (Ter1) degr (Yer)
Then Aj is an G martingale and E'[Ag] = 1. A new probability measure

can be defined by putting (dP“/dP) lg, = Ag.
Define the processes vy, = v} and wy = wy by

U1 = Tht1 — Ak (ur) x — Bi (ug)
wr = yr — Ck (ur) Tk

Then under P¥, v, and wy, are two sequences of independent, normally dis-
tributed random variables with densities ¢ and vy, respectively. Therefore,
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under P

Trp1 = Ak (ur) 21 + Bi (ur) + vk (5.1)
Y = Ch (uk);vk =+ wg.

Cost

Consider the following mappings

U— L(R"R") (the space of n x n matrices)
U—R"
U—-R

m (.
N (.
&():R" >R

NN NN

As in Section 2, for any admissible control u and real number § we consider
the expected exponential risk sensitive cost

Vi (u) =0E“D} exp (P (x7))
= 0E[Ar D! exp (P (z7))] (5.3)
where
k
Dg , = Dy = exp <92 [(M (ug—1) zg, 20y + (m (ug—1) ,x¢) + N (’U,g_l)]>
=1
(5.4)

To simplify notation, in the sequel we suppress the time index on wu.
Note here that 6 is playing the role of the £ of Section 4.

Finite-Dimensional Information States
Notation 5.1 For any admissible control u consider the measure

qp (x)dx := E[ALDEI (x) € dz) | Vi ] (5.5)
Then ¢} satisfies the following forward recursion

v (z) = Prt1 (Yrs1 — Cryr (u) )
diesa Brt1 (Yr+1)
xexp {0 (M (u) z,z) + (m (u),z) + N (u))}

<. Vi1 (@ — A1 (u) 2 — By (v) qr (2) dz. - (5.6)
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The linearity of the dynamics and the fact that v, and wy, are independent
and normally distributed implies that ¢} (x) is an unnormalized normal
density which we write as

gi; (x) = Zi () exp {—3 (x — &5 (0)) B (u) (z — &k (w)) } (5.7)

3.1 (u), @k (u) and Zj (u) are given by the following algebraic recursions:

(Tt (W) &1 (w))
= Chp1 (w) Ry + Qi y A (w) Sk (u) (35 () & (u))
+ (I = Qi1 Ak (u) B (w) A, (w) Qiyy Bi (w) + 6m (u)
Ekil (u) = —20M (u) + Cp iy (u) Rl;ilck"rl (u)
+ Q;;il {I— Ap (u) Sk (u) A, (u) Q;;il}
i (w) = 2, () |Qusa] ™ &[Sk ()]

e (= {00 (0) = B (0 5Ly ) s () )

(5.8)
Here
Sk (u) = [Af (u) Q,;ilAk (u) + ;" (w)] - , 1s a symmetric matrix
by, (u) = —20N (u) + By, (u) Qi fy {1 — Ax ( )ikA’ () Qi1 } B ()
+ @ (u) S5 (u) {1 = S (w)} 3 (u)
— 2B}, (u) Qi1 Ak (u) Sk (u) S ' (u )xk (u), is a scalar
so exhibiting the recursive nature of (5.8). The symbol |.| denotes the de-
terminant of a matrix.
The recursions for &, ¥ and Z are algebraic and involve no integration.
For this partially observed stochastic control problem the information
state ¢¥ (x) (which is, in general, a measure-valued process) is determined
by the three finite-dimensional parameters Iy (u), X (u), and Zj (u).
These parameters can be considered as the state £ of the process:
& = (& (u), 2k (v) , Zk (u)), and we can write
gii (2) = ar (&, 2) = Zi (w) exp {—3 (z — &5 (u)) B () (& — 2 (u) }

For integrable f (x) write

@ (). 5= [ aletn) £ (@) d,

which in fact equals E[A};Dg)kf (z1) | Vi |-
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A Separation Principle

For any admissible control u, we saw that the expected total cost is

Vi (u)

=B

T
A% exp (9{2 [<M (w) e, 2x) + (m (w), 2%) + N (u)} Lo @:ﬂ})]

k=1

[ABDE y exp (60 (a1))]
[E[A4DY 1 exp (02 (x7)) | Yr]]
exp (09 (2)) gr (2) dx]

g (6.), exp (09 (2)))].

T

Adjoint Process
Now for any k, 0 < k < T write Apr = H;‘::k Ak

Vi (w)

=FE [AzAerl,TDg,szJrl,T exp (0@ (iUTm

=E [A}iDg,kE [A}iﬂ,TDzH,T exp (0@ (vr)) | wo, . - - ,xk,yﬂ | yT] .
Write G} (zx) = E[AZJFLTDZJFLT exp (09 (z7)) | xr,Yr| where, using

the Markov property of z, the conditioning involves only zj. Note that
Br (z7) = exp ® (z7). Therefore

Vi (u) = E [ALDg B¢ (k)]
= E[E[ALDg 60 (x1) | Y]]
= E[(qx (&), Bx)] -

Note this decomposition is independent of k, so

Vi (u) = E[(mo, 5y)]
= E[(gr (&7, 2) , exp (00 (2)))]

Lemma 5.2 We have the following backward recursion for the process 3

u _ 1 (a1 — Crpr (u) ) r— W) T — w
B (wx) = /n[ Sr1 Wret) Yrg1 (x — Ag (u) 2 — By (u))

X By (@) exp (0 {2’ M (u) z + (m (u), ) + N (u)}) | do

(5.9)
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Proof
Bi (wr)
= E[ A1 rDigr rexp0® (27) | 2p, Yr |
_ E[E[ Okt1 (Wka1 — Crg1 (W) Tpg1) Vg1 (Thg1 — Ak (u) 2 — By (u))
D1 (Y1) Vi1 (Thy1)
x exp (0 {a) 1 M (u) Tppr + (m (u),241) + N (w)})

X Mjiyo7Djyorexp (09 (27)) ‘ xkaxk+layT:| ‘ xkayT:|

_ E[ Okt1 (Wra1 — Crg1 (W) Trg1) Vg1 (Thg1 — Ak (u) 2 — By (u))
a1 (Yrr1) Yot (Tra1)
X Bis1 (Th41)

x exp (0 {z) 1 M (u) Tpy1 + (m (u) , Tpp1) + N (u)}) ‘ xk,yT]

Integrating with respect to the density of z;41 and using the independence
assumption under P gives the result. ]

Consider the unnormalized Gaussian densities 3 (x, z) given by
Bit (2,2) = Zitexp (=5 (z — e (2)) S (& = (2))

We put 3% (z,2) = § (x — 2), S = 0, and y7 = 2. Then v, S; * and Zj,
are given by the following backward recursions.

Sit = A Qi — Qi Sk Q] A
(Si') = 4@y S [Chi Ry + Qi B

+0m+ (S vh1) — E;LB;C} (5.10)

. 12 (1/2
Zy = Ziy1 |Quia |7 | Skt /

x exp [—5 {di41 — 71;+1S1c_4i1’7k+1}} .

Here

Sk41 = [OIQ+1RI;J}101€+1 + leJil + Sk_jl} B
i1 = 2051 Ry Cry1 Sk
X [Crr Rt ynrt + Qi Br + Sty v + 0m]
+ 29501 Sk Qi Br + Spty v + 0m]
+ B}, [Qity + Qi1 Sk41Qity] B + 0*°m/Spam — 20N
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again exhibiting the recursive nature of (5.10). Furthermore,
By (z) = By (z, 2) exp (09 (2)) dz.
Rn

Remarks 5.3 3} is the adjoint process and again it is determined by the
finite-dimensional parameters v, S and Z which satisfy the reverse-time,
algebraic, recursions (5.10). O

Dynamic Programming

We have noted that the information state g (x) is determined by the finite
dimensional parameters

i = (Tn (u), Bk (v), Z (u)).

Given &} a control uy and the new observation yi11, the Equations (5.8)
determine the next value

Ehrr = Srr1 (i ke, Y1)

Suppose at some intermediate time k, 0 < k < T, the information state &

is¢€=(2,%,7).
The value function for this control problem is
Vi(k,§= inf  E[{q0) | ar=ar(&)].

uweU (k,T—1)
We can now establish the analog of Theorems 2.5 and 2.6

Theorem 5.4 The value function satisfies the recursion:

Vv (kvg) = uGIIJI%fI;,k) E [k +LV (ngrl (gvuaykJrl))] (511)

and V (T,€) = 0 (qr (€) , xp 60).
Proof Now

Vi(k,& = _inf  El{g(£),0) | & =¢]

welU(k,T—1)

From (5.10) S is given by a backward recursion from i1, that is, we can
write B, = By (81, ). Therefore,

V (k&)
B ue}f??’@) UEU%E—f—l,T)E[<qg (&), 8% (Bia)) | & = €]
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= inf inf  E[E[{qrs1 (&41) 2 B01) | Ver1, & = €] | & = €]

w€eU (k,k) veU (k+1,T)

= inf F inf E[<Qk+1 (5/?—1—1) 5617;}+1> | yk+17§k = 5] } é.k = §:|

ueU(k,k) | veU(k+1,T)

= ue(ljrgak) EV (k+1,8&+1 (& u, yrt1))]-

The interchange of conditional expectation and minimization is justified by
application of the lattice property of the controls (Elliott, 1982b). ]

Write Us (k, k) for the set of control processes on the time interval k, . .., k
which are adapted to the filtration o {¢; : k < j < k}. We call such controls
separated.

Theorem 5.5 (Verification) Suppose u* € Us(0,T —1) is a control
which for each k = 0,...,T — 1, u} (&) achieves the minimum in (5.11).
Then u* € U (0, T — 1) and is an optimal control.

Proof Write -
Vi (k,&u) = E[{q (§),8%) | & =&
‘We shall show that

V (k&) =V (k,&u), for each k =0,...,T. (5.12)

For k = T (5.12) is clearly satisfied. Suppose (5.12) is true for k+1,...,T.
Then

Vik,&u*) = [{ars1(E01) Brvn) | & = & Vir1] | & = €]
(&80, k+1Lu e Uk +1,T - 1))]

k+1,65109)]

I
SEhy
=

This gives (5.12).
Putting £ = 0 we see

V(0,&u") =V (0,6) <V (0,&u)
for any w € U (0,7 — 1). That is, u* is an optimal control. ]
Remark 5.6 This result shows the optimal policy u* for the risk-sensitive

control problem is a separated policy, in that it is a function of the infor-
mation state . ]
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11.6 Risk-Sensitive LQG Control

In this section we present the case of discrete-time risk-sensitive linear-
quadratic-Gaussian (LQG) control. This is a specialization of the previous
section, to the case where the signal model is linear in both the control
and state variables; further, the quadratic exponential cost is risk sensitive
with weights independent of the control. This is further specialization pre-
sented to achieve a controller that is finite-dimensional in both the dynamic
programming solution as well as the information state. For notational sim-
plicity the signal model and index matrices are assumed time invariant.

As the risk-sensitive parameter 6 approaches 0 the problem reduces to
the classical LQG situation.

Measure Change

The situation is a specialization of that of Section 5. We again initially
consider a measure P under which there are two sequences of indepen-
dent random variables, x; and yi. These take values in R™ and R™, and
have densities ¢ = N (0,Q) and v = N (0, R), respectively. The control
parameter u takes values in the real interval U C R.

Let A be in R™ x R™, B be in R™, and C be in R™ x R™. Now, for any
control u, define

Apiq = ﬁ ¥ (The1 — Az — Bug) ¢ (Yrt1 — Corq1)
’ o Y (Trt1) @ (Yr41)

Then Ay is an By martingale and E [A;] = 1. A new probability measure
can be defined by putting (dP"/dP)|s, = A.
Define the processes vy, = v} and wy = w} by
Vg1 = Tpy1 — Az — Buy,
wy = Y — Czp,.
Then under P*, vy and wy are two sequences of independent, normally
distributed random variables with densities ¢ = N (0, Q) and ¢ = N (0, R),

respectively. Therefore, under P*, we have the linear system as signal
model.

Signal Model

Tyl = Axy, + Bug + V41, (61)
yr = Cxp + wy.
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Cost

Consider the following specific case of the cost function defined in Sec-

tion 11.5.
T
Vi(u) = FE |Arexp {9 Z [I;CMCC]C +m'x, + uﬁc_lNukfl] + o (CET)}‘|
k=1
(6.3)

Finite-Dimensional Information States

The information state is
gk (x) dx = Zy, (u) exp {—3 (z — & (u)) Sy (@ — & ()} (6.4)

Theorem 6.1 3y, (u), X" and Zx (u) are given by the following algebraic
TECUTSIONS:

(E;;_,l_lijrl (v)) = C'R™ ypy1 + Om + QAT (X}, a, (u))
+ (I — QilAikA/) QilBuk,

St = —20M+C'RTIC+ (I -Q AT A) Q™Y | (6.5)
— = |1/2
Ziia () = 2 () QI [l

X exp (_% [bk (u) = Tjopq (u) Eﬁljkﬂ (U)]) )

where

Sp= (AQA+3 )7,
b (u) = —20u}, (N + B'Q ' B) uy, + &}, (u) S} "dx, (u)
— (B QA - &, () I V) T (u, BQA - & (w) 2

Note X is independent of u.

Dynamic Programming

Theorem 6.2 The control law minimizing (6.3), for the system (6.1)-
(6.2), is given by the information-state estimate feedback law

up = K5, ey, — K (6.6)
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where
Kj =0} [P Siq [T+ fruSiei] — B'] du,
Kt =o' by, (1+ Sy fr) (0Skm + SPha) s o
Sl(cl = Ek + d;{;SZJ,-l [I+ kaZ+1] dk - Kg/O'ng,
Sit= (0m' Sy + Si) [+ fuSig] di — KY ok Ky,
and
dr = Q1 ASy,

fr=C'(R-CSp,C) 7 G,
hi,= (I -Q 'AS,A)Q'B
or =20N — B' (I — Q7 'AS,A") Q7' B + hy, (Styy [I + feSisi]) hee

Proof Complete the square. ]

Tracking

In this section we present results for the case of tracking a desired trajectory
9 in the risk-sensitive LQG framework. We consider the linear dynamics
given in Section 6, and define a new cost function for the tracking problem:

Vi(u) =E

T
A eXp{9 > [ILMC% + (e = i) M (yr — Gx)
k=1

+ u;_lNuk_l} 4D (z7) H (6.8)

The relevant variation of Theorem 6.1 is now:

Theorem 6.3 The parametrizations of the information state (6.8), viz.
iy (u), Ry' and Zx (u) are given by the following algebraic recursions:

(Zrt1@ke1 (w) = C'R M ypqn + Q7 TAS, (3 '8k (u)
+ (I - Q_lAikAl) Q_lBuk,
St = —20M+C'R'C+ (I -Q AT, A) QY
1/2

Zyyr () = Zy (w) Q72 |k
1 .
e (= e (0 = i (0)ch ke )] ).

(6.9)
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where

Se= (AQ A+,
b, (u) = —20u), (N + B'Q™'B) up + &}, (u) X}, "d, (u)
— (B QA -, (u) SN Tk (up B'Q A — &, (u) 5 )
=20 (Yrr1 — Grr1) M (Yrs1 — Grrr) -

!/

Dynamic Programming

Theorem 6.4 The control law minimizing (6.8) for the system (6.2) is
gien by

up = —KgS tay, — K (6.10)

where

Ki =o' [0Sty [T+ fuSis] — B di,
K=o [0y, (I + S fr) Syoq — 20m},S5 ,C"R™16,  M];
Sip = S+ diuSier [1+ fuSi] die — Ki'ow K,

Sit= Sy [T+ fuSgyy] di — 20M 5, ' R CSgy di — Kf ok K.
(6.11)

and

dp = Q' ASy,

fr=C"(R5;'R)” C,

hi, = (I —Q "ASA) Q™ 'B,

op =20N —B' (I -Q 'A%, A)Q'B
+ hi (St [1+ fwSiia]) P

ok = (R —R'CSi,,C'R™" — 20M).

11.7 Problems and Notes

Problems
1. Write the proof of Theorem 2.2.

2. Write the proof of the verification Theorem 2.6.

3. Derive the algebraic forward and backward recursions (5.8) and (5.10).
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4. Work out the results of Section 5 on the finite-dimensional case replacing
the dynamics of = (5.1) by

Tpy1 = A () i + By (u) + Wi
where w is the noise in the observation process y.

5. Complete the proofs of Theorems 6.2 and 6.4.

Notes

The risk-sensitive problem was first formulated and solved in Jacobson
(1973), in the linear/quadratic context with complete state information.
Also, the connection with dynamic games was made explicit in this pa-
per. The partially observed problem, in the linear/quadratic discrete-time
context, was first solved by Whittle (1981), making use of a certainty
equivalence principle. The continuous-time linear/quadratic partially ob-
served risk-sensitive problem was observed by Bensoussan and van Schup-
pen (1985), using an equivalent problem with complete “state” information
expressed in terms of a Kalman filter, modified to include the cost function.

The nonlinear partially observed risk-sensitive problem was solved by
James (1992). These results form the basis of Sections 1-3. In addition,
a partially observed dynamic game was solved, and related to the risk-
sensitive problem via the asymptotic analysis described in Section 2.

In these papers, a version of “filtering” is developed for partially ob-
served deterministic systems in which the “expectation” operation is re-
placed by a supremum operation. This worst-case, min-max approach can
be interpreted as a dynamic game against “nature.” It provides a natural
framework for robust or H* control.

The nonlinear partially observed risk-sensitive problem were also consid-
ered by Whittle (1990a) (and an approximate certainty equivalence prin-
ciple when the noise is small). A good general reference for risk-sensitive
stochastic control is Whittle (1991).

Bensoussan and Elliott (1995) discussed a finite-dimensional risk-sensi-
tive problem with quasi-linear dynamics and cost; the results of Section 5
are a discrete-time version of their results. A specialization of these results
gives the partially observed problem in the linear exponential quadratic
discrete-time context. These results are derived in Collings, Moore and
James (1994) and presented in Section 6 for comparison with the work of
Whittle (1981). Risk-sensitive filtering problems have been studied in Dey
and Moore (1995a), Dey and Moore (1995b), and Moore, Elliott and Dey
(1995).






CHAPTER 12

Continuous-Time
HMM Control

12.1 Introduction

In this chapter the control of HMM in continuous time is discussed. The
first situation considered is that of a continuous-time finite-state Markov
chain which is not observed directly; rather, there is a conditional Poisson
process whose rate, or intensity, is a function of the Markov chain. An
equation for the unnormalized distribution g of the Markov chain, given
the observations, is derived. The control problem is then formulated in
separated form with ¢ as the new state variable. A minimum principle is
obtained.

Secondly, the case when the counting observation process is related to
the jumps of the Markov chain is discussed. In this situation there is non-
zero correlation between jumps in the observation process and jumps of the
Markov chain, so new features arise. However, again a minimum principle
is obtained together with explicit formulae for the adjoint process.

The optimal control of a Markov chain observed in Gaussian noise is
treated in Section 12.3. Equations for the adjoint process are again derived.

The chapter closes with a discussion of the optimal control of a linear
stochastic system whose coefficients are functions of a discrete-state Markov
chain.
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12.2  Counting Observation Process Control

Suppose initially our processes are defined on a probability space (2, F, P).
Consider again a finite-state process {X;}, 0 < ¢ < T, whose state space S
is the set of unit vectors {e1,...,ex} of RY. Write pi = P (X; = ¢;) and
suppose there is a time-dependent family of generators A (¢,u), which also
depend on the control parameter u € U, such that the probability column

vector p; = (p%, N )/ satisfies the Kolmogorov forward equation
dp:
— = A(t,u) p;.
dt (t,u)pe

Here U, the set of control values, is a compact metric space and A is
required to satisfy suitable measurability conditions.

The observation process N is a conditional Poisson point process with
intensity ¢ (X), with semimartingale representation

¢
/\ftz/c(XS)ds—i—Qt.
0

That is, N; is a nonnegative integer valued counting process which increases
by one at a sequence of random times 77,75, ..., further, it is such that
Q, is a martingale; see Brémaud (1981).

Let ); be the right-continuous, complete filtration generated by A;. The
set U of admissible control functions {u} is the set of Y-predictable pro-
cesses with values in U. This means that, if T7,T5, ... are the jump times
of N, then for T,, < t < T,41, u € U is function only of Ty,T5,...,T,
and ¢.

Write {F:} (resp. {G:}) for the right-continuous complete filtration gen-
erated by X; (resp. X5, Ns) for s < t. For each control function u € U the
process V¥ is a (P, G) martingale, where, in obvious notation

t
V=X - X5 — / A(s,u) X ds. (2.1)
0

See Lemma B.1.1.

We assume that, almost surely, X* (and so V*) has no jumps in common
with NV, so [V%, N] = 0. (See Appendix A.) If £ is a real-valued function on
the state space S then £ can be identified with the vector (¢',¢%,... (N},
so that for x € RN, ¢ (z) = (¢, x), where (,) denotes the inner product in
RY. The control problem we wish to consider is that of choosing u € U so
that the expected cost

J(u) = E[{(, X7)]

is minimized (Davis, 1979).



12.2. Counting Observation Process Control 293
Remarks 2.1 Suppose on a probability space (Q, y,?) Ny, 0 <t <T,is
a standard Poisson process, X is a Markov chain given the observations.

Then Q;, = N, — t is a Y-martingale under P. ]

Consider the family

So=| I cxan, exp(/ot(l—c(Xr))dr)

o<r<t
Then (Elliott, 1982b) A is a (G, P) martingale and
p— t — J—
X, =1 +/ X (c(X,)—1)d0, (2.2)
0
Suppose a new probability measure P is defined by
— | dP _
[ 7| t} !

Lemma 2.2 The unnormalized conditional distribution of X; given Yy is
then given by

t ¢
qt:F[KtXﬂyt} :qo—l—/ A(s,u)qs,ds—l—/ (B—1)q,_dQs, (2.3)
0 0

where B is a diagonal matriz with diagonal entries the c(e;), i=1,...,N
and I is the N x N identity matriz.

Proof Multiplying (2.1) and (2.2) we have
t
A Xy = Xo + / A(s,u)Ay_X,_ds
0

t t
+/ A, dVS+/ A Xo (c(Xs)—1)dQs.  (2.4)
0 0

Taking the optional projections of both sides of (2.4) and using Wong and
Hajek (1985, Lemma 3.2 of Chapter 7) the result follows. [ |

The Separated Form of the Control Problem

The g defined by (2.3) will depend on the control u € U; when necessary
this will be denoted by writing g'. Also, the exponential density A will
depend on u € U, so we could write A"
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Writing E for expectation under P the expected cost if u € U is used is

= B[(6.X})]
:E[K; ‘ XT]

= E[(t, A7 X7)]
=E[{tE [A X3 Gr])]
= E[(,q7)]

The control problem can, therefore, be expressed in the following separated
form:

Minimize J (u) = E [({, ¢4)] where ¢}, 0 < t < T, is given by the dynam-
ics (2.3). Note that go = po.

A Minimum Principle

The problem has now been formulated in the form: choose u € U to mini-
mize J (u) = E[(¢,¢%)] where 0 <t < T

t t
gt = po+ / Als,u) gt ds + / (B I)q" dQ.. (2.5)
0 0

Under P, N is a standard Poisson process and (2.5) is in the “stochastic
open loop” form discussed by Bismut (1978) and Dupuis and Kushner
(1989). That is, the controls v € U are adapted to the filtration generated
by N (or Q), and are not explicitly functions of the state g. Consequently,
there are no problems concerning the existence of solutions to (2.5) for
u € U. Indeed, the equation is linear in g. For u € U write ®“ (¢, s) for the
fundamental matrix solution of

do" (t,s) = A(t,u) @ (t,s)dt + (B —I) " (t,s) (dN; —dt), (2.6)

with initial condition ®* (s,s) = I, the N x N identity matrix. Then the
solution of (2.5) can be expressed as

g = ®" (t,0) qo

If 0 < s < ¢ clearly, by uniqueness, ¢;* = ®* (¢, s) ¢*. The expected cost can
be written .

Suppose u* € U is an optimal control so that J (u*) < J (u), for all other
u € U. For a fixedu € U,s and ¢, such that 0 < s < s+e¢ <T,and A € G,
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define a strong variation u € U of the optimal control v* € U by putting

u(t,w) =u* (t,w) if (t,w) ¢ [s,s+¢] x A,
u(t,w) =u if (t,w) € [s,s+¢]x A.

Now J (u*) = E [<€, o (T,0) q0>} and this can be written, with a prime
(") denoting transpose,

J(u*) =E[{¢, Y (T, s +) D" (s4¢,5) D" (s,0) )]
= F[<<I>“* (T,s+¢) 0, (s+e,s) qsu*ﬂ )
Similarly,
J(u) = EK(I)“* (T,s+¢) £," (s +¢,5) qg* ﬂ
Now from (2.5)
s+e s+e __
@"(s—i—s,s)z[—i—/ A(r,u)@“(r,s)dr—i—/ (B=1)®"(r,s)dQ,,
with a similar equation for ®*" (s + ¢, s). Because u* € U is optimal
J(u) = J (u*) >0,
so we have
. s+e . .

0<FE [<<I>“(T, s+ s)lf,/ (A(r, u) ¥ (r, s) — A(r,u™) ®* (r, s))dr qs >]

s+e

+ EK@“"(T, s+¢)t, / (B —1I)@"(r,s) — " (r,s))dO, q;“>] (2.7)

for all s,e and A € G5. Write K for the first expectation above, K5 for the
second; also write

A®,  for (B—1I) (cpu (r,s) — " (r, s)) .

The temptation is to argue that
. s+e o
E [ [ v,

but this cannot be done immediately. Instead, write I' = f;ﬁ AD, dQ, q*
SO

gs} = 0; (2.8)

Ko =E[(®" (T,s+¢)'0,T)]
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:FK(I)u*(S—F&,S)/ Lpv (T, s)’ﬁ,I‘>]
—E[(®" (s+e,s) "E[®" (T,s)'t|G,].T)]
+B[(@ (s +e,5) E[@"(T,5)'C | G.].T)]
~E[(E[®" (s+¢,5) " (T,s)(|G,].T)]
+E[E[0 (s 4,5/ 10" (T,5)C] G, ], T)].  (2.9)

If M, is the martingale E [fl)“* (T, s)/ﬁ | gT} for s <r < T then, Mgy,
has a representation as a stochastic integral Mg + f:ﬂ
predictable vector integrand ~y. Also

A (7, 5)71 = — o (7, s)fl A(r,u)dr — i (r, 8)71 (B—1)dQ,

Yr dO, for some

and
" (r,s) = (I+ (B—1)AN,)®" (r—,s),

SO

s+e
O (s+e,8) ! =1— / A(r,u) @ (r—,s) "dr
’ s+e . o
+ (B! —I)/ " (r—,s) " dQ,
’ s+e .
~(B-1)(B™'~1) / v (r—,s) " dr.

Because E [I' | Gs] = 0 the final term in (2.9) is zero. The remaining terms
in (2.9) give rise to inner products of the form

B[(f )
B[( [ o))

for some integrands o and (. Now write I'y = f;A@T dQ, q;ﬁ sol' =T544..
Although we are dealing with vector integrals, the inner product of I' and
these stochastic integrals gives rise to integrals with respect to dQ, which
are martingales, and integrals of the form

s+e
/ o, I'r_dr

s+e .
/ GrAD,.dr-q¥ .

and

and
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Taking the E expectation the martingale term gives zero; dividing by
€ > 0 and letting € — 0 the dr integrals give terms of the form

ElasTs_] and F[BSAQS(J?*]

However, I's— = A®, = 0. The limit obtained by dividing (2.7) by e and
letting € — 0 is, therefore,

EK(I)“* (T, )", (A(s,u(s,w)) — A(s, u*(s,w))qg*»] and this is > 0.
(2.10)
However, u(s,w) = u*(s,w) f w ¢ A € Gs.
Write o
pY =E[®" (T,s) (] G,]. (2.11)

S

Then (2.11) can be written
E[(pt" (A(s,u) = A(s,u")) g )] 2 0

forall u € U, s € [0,T), e > 0 and A € G,. That is, the optimal control
u* € U satisfies the following minimum principle:

(A(s,u")'pt ,q"") = min(A (s,u) 2, q""). (2.12)

Here p*" plays the role of the costate variable; from its definition (2.11) it
is given by the variation in the cost criterion in the sense that V (¢, z) = (.

An Approzimate Minimum Principle

The minimum principle above required the existence of an optimal control
u* € U. Using a variational principle of Ekeland (1979) an approximate
minimum principle will now be obtained. Write

JzuungJ(u).

Then for any 6 > 0 there is always a control u such that
J<J ) <J+6.
For any two admissible controls ui,us € U write,
C = {(5,w) € [0,T] x Q: s (5,w) # uz (s,0)}

and d (u1,uz) for the Lebesgue x P measure of C. Then, as in Elliott and
Kohlmann (1980), U is a complete metric space under d. Furthermore if,
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for example, the generator A is bounded, J (u) is a continuous function on
(U, d). (See Lemma 2.3 below.) The variational principle of Ekeland (1979)
states that for any § > 0 there is a v® € U such that

J<JT ()< JT+6
and for any other control u € U
J(u) > J (v°) —dd (v°,u).
Write &9 for ®*° and q° for q”(s = @9 (¢,0) qo. Again, consider a fixed value
ueU,se€0,T),e>0,and A € Gs, and define a strong variation u € U

of v by putting

u(t,w) =v° (t,w) if(t,w) & [s,s+¢] x A,
=u if(t,w)€s,s+¢e] x A

~

u (t,w
Then d (v°,u) < eP(A) <e, so
J(u) = J (v°) > —de. (2.13)
As before,

J(0°) =E[(®° (T,s+¢) £, (s +¢,5)q)]
and
J(u) =E[{®°(T,s+¢) 0, ®" (s +¢e,5)q)].

Write pd = E [ ®° (T, s)' ¢ | G, |. Substituting in (2.13), dividing by ¢, and
letting € — 0 we obtain as before that the d-optimal control v satisfies

(A(s,u) pl.q2) — (A (s,0°) 15, 40) = =6

for all w € U. That is,

(A (s,0%) plql) < min (A (s,w) P2, q0) +9, (2.14)

so v? minimizes to within ¢ the Hamiltonian at each time s € [0, 7.

Lemma 2.3 Suppose the set of matrices {A (s,u)} is bounded. Consider
the set U of admissible controls with metric d. Then J : U — R is a
continuous function on (U,d).
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Proof Suppose {u,} is a sequence in (U, d) which converges to u* € U.
Write ¢* for ¢* . Then from (2.5)

T T
dr=am+ [ AGat)a ds+ [ (B-Dg dQ.,
0 0
and
T T B
" =qo +/ A(s,uy)qem ds —|—/ (B—-1)qi™ dQs.
0 0
Write ¢* — ¢“n = Agy (s) and ||z|* = 22 + - - + 2% for z € RY. Then
Agn, (T)
T T o
— [ () - A an) ds+ [ (518 (5-) @,
0 0

T T
= / (A(s,u”) — A(s,upn))q: ds+ / A (s,upn) Agy, (s—) ds
0 0
T —_—
+ [ (5= 80, ()@@

so for some constant C;

T 2

1Ag. (T)]” < €y ( (A(s,u") = A(s,un)) g5 ds

r 2
+ /A(s,un)Aqn(s—)ds

(B — I/Aqn dQs

Therefore, taking expectations under P
— T_
E[[|Ag(T)]?] < Co (/O E([A(s,u*) = Als, un) 21 Agn(s—)I|%) ds
T_
+ [ B(AG 0P80, () ) s
T_
-1 | E(lmqn(s—)n?)ds).
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Write -
Bo= [ B(IAGs0) = Alsyu)]? [Ban (5-)]*)ds

then B,, < Csd (uy,u*), because A is bounded. By Gronwall’s Inequality
(see Appendix A),

E(||Agy (T)|*) < C4B,, - exp CsT.
Therefore, lim,, _, o ||Aqn(_T)||2 =0. Nc2)w J (u*)—J (un) = E({, Aq, (T)))
so |J (u*) = J (up)| < CgE(HAqn pll ) and lim, 00 J (uy) = J (u*). W

12.3 The Dependent Case

Again our processes are assumed to be defined on a probability space
(Q, F, P). In this section we discuss a conditional Markov process, X, as de-
fined in Section 1. However, our observations are now given by the process
J which counts the total number of jumps of X. From Appendix B,

t
%:/qum+g (3.1)
0

where ¢ (X,,u) = — Zi\il (X, e:)ay (r,u).

Here the noises in the signal and observation processes are correlated,
[X", ], # 0. The control problem we wish to consider is that of choosing
u € U so that the expected cost

J(u) = E[(6, X7)]

is minimized. We have, therefore, a signal given by (2.1) and an observation
process given by (3.1). Because the signal and observation processes are cor-
related we shall derive the Zakai equation using semimartingale methods.
Write {)};} for the right-continuous complete filtration generated by J. If
{gbt} ¢ > 0, is any process write ¢ for the Y-optional projection of ¢. Then
by = El¢i | Vi] as. Sumlarly, write ¢ for the V-predictable projection of
é. Then ¢, = E[¢; | Vi ] a.s. From Elliott (1982b, Theorem 6.48), for

almost all w, ¢ = ¢ except for countably many values of ¢. Therefore,

t t t
/E(XT,u)drz/ é(XT,u)dT:/ é( Xy, u)dr.
0 0 0
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Write pr = X; = E[X; | V1] so po = E[Xo] = po say. Now ¢ (X,,u) =
(a(r,u),X,), where a (r,u) = — (a (r,u)yy,...,a(r, u)NN)/, S0

¢(Xr,u) = (a(ru), XT> = {(a(r,u),pr) .
A
For the vector ¢ (X,,u)X, = diag(a(r,u))X, we have ¢(X,)X, =
diag (a (r,u)) pr. The innovation process associated with the observations
is

t t
Qt:jt—/E(Xr,u)dr:jt—/é(Xr,u)dr.
0 0

See Brémaud (1981). Application of Fubini’s theorem shows that Q is a
{V;} martingale. Therefore,

t
T = / ¢(Xy,u)dr+ Q. (3.2)
0
Similarly, Fubini’s theorem shows that the process
~ t
Vi =~ [ Alsw,-ds
0

is a square-integrable {),} martingale. Consequently, V can be represented
as a stochastic integral

t
‘/t - / 'Yrer-
0

Therefore, . ,
Pt = Po +/O A(r,u) pr—dr +/O Y dQ;. (3-3)
The problem now is to find an explicit form for ~.
Theorem 3.1
Y =T ({pr—ra (r,u)) # 0) (pr—,a (r,u) "
x [diag (a (r,u)) pr— = (pr—, a(r,u)) + A(r,u) -] (34)

Proof The product p.J; is calculated two ways. First consider, using the
Ito product rule in Appendix A,

t
X T = / X, (dQ, + ¢(X,—)dr)
0

+/tjr_ (A(ru) Xo— +dV,) + [X, T, -
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Now X and J jump at the same times, at which A7 =1, so

X, T, = Y, AX,AZ, = ) AX,

o<r<t o<r<t

t
:Xt—on/ A(ryu) Xp—dr + V.
0
So

t
X T = / (Xp—e(Xp)+ T A(ryu) X + A(r,u) Xp—) dr
0
+ martingale (3.5)

Taking the Y-optional projection of each side of (3.5)

t
pee = / (diag (a (r,u)) pr— + Tr— A (r,u) pr— + A (r,u) pr—) dr
0
+ martingale (3.6)

However, from (3.2) and (3.3)
¢ t R ¢
ﬁtu7t = / ﬁr—c (Xr—) dr + / ]57‘— er + A (Ta u) ﬁr—jr— dr
0 0 0

t
+ / Yo Tp— dQy + [p, T, -
0

Now
[ﬁv j]t = Z AﬁTAjr = Z Yr djr
o<r<t o<r<t
t t N t
= / Yr djr = / Yr er +/ YrC (Xr—)dr~
0 0 0
Therefore,

¢
pe T = / (Pr—c (X)) + A(r,u) pr—Jr—) dr + martingale. (3.7)
0

The bounded variation processes in (3.6) and (3.7) must be equal, so (3.4)

follows. u
Note for any set B € Vs, E[I(B) ['dJ,] = E[ X,_)dr], s
~- can be taken to be 0 on any set where ¢(X,_) =
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Suppose there is a constant a > 0 such that —a;; (r,u) > « for all ¢ and
r > 0. Then ¢(X,)”" = (a(ru),X,) " < a ! for all » > 0. Define the
martingale A by

A =1+ /t A (e(X,0)" — 1)dQ, (3.8)
0

and introduce a new probability measure P on {Q,G} by E [dP/dP | G; | =
As.
Then it can be shown that under P the process J is a standard Poisson

process, and in particular Q = J, — t is a martingale. Conversely we can
define the (P,]:) martingale

A=1+ /tKT(c (X,—)"' —1)dQ,. (3.9)
0

Then AA; = 1. To obtain the Zakai equation we take P as the
reference probability measure and compute expectations under P. Write
H(Kt) for the Y-optional projection of A under P. Then for each
t >0, H(Kt) = F[Kt | Jit] a.s. It can be shown that H(Kt) =1+
fot IT (A,—) (¢(X,-) —1)dQ,. By Bayes’ rule, for any );-measurable ran-
dom variable ¢

. E[Awpe | Ve ] q
—Elp: | V] = =1 .
Y43 [pt| t] E[At|yt] H(At)

Calculating the product IT (Kt) pr we obtain the Zakai equation for g;:

@) =m+ [ A @a-duit [ Br@ae- @ (310
where

By (u) = (diag (a(t, ) — I + 4; (w))

-1 apr (t,u) ... aon (t,u)
aio (t, ’U,) -1 ... Q1N (t, ’U,)
ano (t,w) any (b,u) ... -1

The expected cost if u € U is used is
J(u) = B[(t, X})] = E[Ar (6, X})] = E
= B[(¢. E[Ar X3 | yr])] = EL(¢.
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The control problem has, therefore, been formulated in separated form: find
u € U which minimizes

J (u) = E[((,q7)]
where for 0 < ¢ < T, ¢q; (u) satisfies the dynamics (3.10).

Differentiation

Notation 3.2 For u € U write ®“ (t,s) for the fundamental matriz solu-
tion of

d®" (t,s) = At (u) ®* (t—, s) dt + By (u) ®* (t—, 8) (dJ; — dt)  (3.11)
with initial condition ®* (s,s) = I, the N x N identity matriz.

Note that A; (u) — By (u) = diag (1 + ay; (t,u)) and write
¢
D" (s,t) = diag <exp/ (14 ai; (ryu)) dr) .

Then if T, <t < Ty,

O (t,0) = D" (t,T,) (I + Br, (uz,)) D" (T, To_1) (3.12)
< [(I+ Br, , (ur, ,)) x - x (I + By, (ur,))] D" (T1,0).

The matrices D (s, t) have inverses
¢
diag (exp —/ (1+ay (r,u)) dr) ;
we make the following assumption:
For w € U and t € [0,T] the matrix (I + By (u;)) is nonsingular.

The matrix ® is the analog of the Jacobian in the continuous case. We
now derive the equation satisfied by the inverse ¥ of ®.

Lemma 3.3 For u € U consider the matriz " defined by the equation
t t .
U (t,s)=1— / U (r—,s) Ay (u)dr — / U (r—,s) By (u) dQ,
t
+/ W (r—, ) B2 (u) (I + By (u))~ dJ,. (3.13)

Then U (t,s) d" (t,8) =1 fort > s.
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Proof Recall
t t .
D (t,8) =T+ / Ay (u) % (r—, s)dr + / B, (u) ®“ (r—,s)dQ,. (3.14)
Then by the product rule

t t
\IJ<I>:I+/\IIA<I>dr+/\IfB<I>d@T

S

t t t
—/@A@dr—/¢B¢d§T+/\IJBQ(I+B)*1q>djT

S S S

t t
—/ \I/BQ@dJT—i—/ UB?(I+B)"' B®dJ,
=1

3

as the integral terms cancel. ]

We shall suppose there is an optimal control u* € U. Write ¢* for ¢*, ®*
for ®*", and so on. Consider any other control v € U. Then for 6 € [0, 1],

ug (b)) =u* (@) +0(w(t)—u(t)el.

Because U C RF is compact, the set U of admissible controls can be
considered as a subset of the Hilbert space H = L? [ x [0,T] : R¥]. Now

J (ug) > J (u*) . (3.15)

Therefore, if the Gateaux derivative J' (u*) of J, as a functional on the
Hilbert space H, is well-defined, differentiating (3.15) in 6, and evaluating
at 6 = 0, implies

(J' (u) v (t) —u™ (1)) = 0

forallv e U.

Lemma 3.4 Suppose v € U is such that uj;, = u* 4+ 0v € U for 6 € [0, q].
Write q: (8) for the solution q; (u}) of (8.10). Then zy = 0q:(0) /00)o=0
exists and is the unique solution of the equation

¢ ¢
Z = / (g—A (r, u*)) vpqr_ dr + / Ar (u) zp— dr
0 u 0

L /0B _ t _
+/ <—(T,U*)> Ur gy er+/Br (u*) z,— dQ,. (3.16)
o \Ou 0
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Proof ¢ (0) = po—l—fo (u* 4+ 0v) g.— ( dr—|—f0 (u* + 60v) q,— (0) dQ,.
The stochastic integrals are defined pathwise, so dlfferentlatmg under the
integrals gives the result. ]

Comparing (3.14) and (3.16) we have the following result by variation of
constants.

Lemma 3.5 Write

! * aA * *
No,t = A v (T—,O) <% (’I”,’U, )) Urq,_ dr
t
+ [0 (G 0a) ) oo, (3.17)
0 ou

- t‘I’*(7“—70)(1+Br(u*))_13r(u) op (r,u”) ) vrgr_ dJr.
J (5

Then z = ®* (t,0) no.¢-

Proof Using the differentiation rule

t t
B (1,0) 0. = / & - dn+ / 8% + [, 1),
0 0

Because ®* U* = I, therefore

. B 0A N
v 0= [ (5 6)) i

t /OB —
+/0 (8u (r,u )) Urgr_ dQ,

(I+ B, (u)) 1Br<u*><aB

5 (r,u )> vrgr_ dJ,

t

Ay (u) @* (r—,0) no,— dr

+

\oc\o\oo\o

t
BT (U’) o~ (’f‘—, 0) 70,r— er

! 0B
B, (u) <% (r, u*)) vrgr_ dJy

+

+
0

- @) B (52 ) ) v

Now the dJ integrals sum to 0, showing that ®*n satisfies the same Equa-
tion (3.17) as z. Consequently, by uniqueness, the result follows. ]
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Corollary 3.6

S| =Ele @om).

Proof J (u}) = E[(¢,qr (9))]. The result follows from Lemmas 3.4 and 3.5.
|

Write ®* (T,0)" for the transpose of ®* (T,0) and consider the square
integrable, vector martingale

M :=FE[®*(T,0)¢|V].

Then M, has a representation as a stochastic integral
—_— t —_—
M, =E [ (T,0) (] +/ Vr dQy
0

where v is a predictable R¥-valued process such that

T_
/ E [”yﬂ dr < oo.
0

Under a Markov hypothesis v will be explicitly determined below.

Definition 3.7 The adjoint process is
pe = U* (£,0) M,.
Theorem 3.8 The derivative at uj of the cost is given by:

dJ (uy)

7 PR
_ /OTE[<]9T_,{((;—21 (T,u*)) (3.18)
— (I + By (u*)™" B, (u*) <‘Z—Jj (r, u*)> }vrqi>
s (o =0 (4 B ) (S () ) v )]
Proof First note that

(M, m0,7) (3.19)
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_ /O T<MT, T* (r—,0) (% (r, u*))vrq:> dr
. /O T<MT, T (r—,0) (g—f (r, u*))vrq:> do,
[ 0 5w B (2 ) Y
# [ om0 [ -0 (5 ) o) i

- T<%,qf* =000+ B, Bw) (52 () )

Taking expectations under P, we have

dJ (uy)
df

=E[{t, " (T,0)no,r)]

B[ (1,0) o)
F[<MT7770 T>]

Combining the last two terms in (3.19) and using the fact that J, —t is a
P martingale, this is

= (B[ (oo (52 o)) v )
- <pr_, (I+ By (u) " By (u* )(?95 (r,u )) vrq:>

n <%, T (r—,0) (I + B, (u"))™" (Z—f (r u*)) vrq:f>]dr- .

Now consider perturbations of u* of the form

ug (t) = u” () + 0 (v (t) —u(t))
for 6 € [0,1] and any v € U. Then as noted above

dJ (U,g)
dé

= (J' (u*),v(t) —u* (t)) > 0.

0=0

Expression (3.18) is, therefore, true when v is replaced by v — u* for any
v € U, and we can deduce the following minimum principle:
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Theorem 3.9 Suppose u* € U is an optimal control. Then a.s. in w and
a.e. it

(e B () a1+ (B () ) 20, (320)
Here
a) = {(20a0) ~ a4 8ew) 7 8w (2 )}
< (o),
Ba () =0 (= 0) (1 + B, (1) (52 ) ) or = )

The Equation for the Adjoint Process

The process p is the adjoint process. However, (3.20) also contains the
integrand ~y. In this section we shall obtain a more explicit expression for
v in the case when u* is Markov, and also derive forward and backward
equations satisfied by p.
We assume that the optimal control v* is a Markov feedback control.
That is,
uw* [0, T] xRN - U (3.21)

so that u* (s, q;‘_) € U. Note that if u,, is a Markov control, with a corre-
sponding solution ¢ (u,,) of (3.10), then u,, can be considered as a stochas-
tic open loop control ., (w) by setting

U (W) = U, (57 05— (um) (W)) .

This means the control u,, “follows” the “left limit” of its original trajectory
s (um,) rather than any new trajectory.

Lemma 3.10 Write § for the predictable “integrand” such that
Apt =Pt — Pt— = 6tA‘7t, i.e., Pt = Pt— + 5tA$

Furthermore, write

qi— = (¢,
B (u” (t—,q)) = B" (¢—) = B" (q),
and
By (u” (t,q)) = B" (1) -
Then

5:(q)=(I+B" (I+B"(9)9) "' pe— (I+B* () q) — pe— (q) . (3.22)
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Proof Let us examine what happens if there is a jump at time ¢; that is,
suppose AJ; = 1. Then from (3.10)

=T +B"(q)q
By the Markov property and from (3.12) and Definition 3.7,

pe=E[D*(t,Ty) (I + Bf, (u*))--D* (T, Tn) ¢ | Vi ]
= Pt (Qt)
pe((I+B"(q))q)

= (I+B"(@))  pe— (I + B* (@) q),

where Ty is the last jump time before T'. The result follows. ]

Heuristically, the integrand § assumes there is a jump at ¢; the question
of whether there is a jump is determined by the factor AJ;.

Theorem 3.11 Under assumption 3.21 and with &; given by (3.22)
Yo = ® (r=,0) (I + B, (")) 6, + BL () p,0).  (3.23)
Proof &*(t,0)'p, = M, = E[®*(T,0)'¢| Y] = E[®*(T,0)'¢] +
fg% dQ,.. However, if u* is Markov the process ¢* is Markov, and, writing
q=gqi, ®=2"(,0),
E[®*(T,0)¢| Y] =E[®2*(T,t)' (| q,9]
=0'E[®*(T,t) (]| q].

Consequently, p; = E [<I>* (T,t) 0| q} is a function only of ¢, so by the
differentiation rule:

taprf — tapT,
= Agq,_d Bgq,_dQ, —d
Pt po+/0 9 (Ag,— dr + Bq Q)+/O o dr

op,—
+ j{: (pr"pr‘_ g Bg, Z&j;)

o<r<t

t o . t - ta .
=po + / Obr— (Agr— — Bgr—) + 0, | dr + / 6-d9Q, + / Pr— .
0 dq 0 o Or
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Evaluating the product:
My =" (1,0)' py

t
= Do +/ ®* (r—,0) {3})_,« (Ag,— — Bg,-) + 5T] dr
0 dq

t t
+/ * (r—,0) Opr— dr—l—/ * (r—,0)' 6, dO,
0 (9 0

"

t t o

+/ ®* (r—,0) A'p,_ dr—l—/ ®* (r—,0)' B'p,_ dQ,
0 0

t ¢
+/ ®* (r—,0) B'5, dQ, +/ ®* (r—,0) B'S, dr.  (3.24)
0 0
However, M, is a martingale, so the sum of the dr integrals in (3.24) must
be 0, and
Y =@" (r=,0)" (&r + By (u;) 6r + By (u7) pr—) - u

Theorem 3.12 Suppose the optimal control u* is Markov. Then a.s. in w
and a.e. in t, u* satisfies the minimum principle

0A 0B
el * o * 7= * o * > 0.
(s G () 0 =) i)+ (00 52 () (0= ) g2 ) 20
(3.25)

Proof Substituting v from (3.23) into (3.20), and noting B (I + B) ™' —
(I+ B)"' B = 0, the result follows. (Substituting for B and § gives an
alternative form.) [ |

We now derive a forward equation satisfied by the adjoint process p:

Theorem 3.13 With 6 given by (3.22)

t t
p = E [ (T,0) / Al (uk) pr— dr— / (I + B (u}))é, dr—i—/ 8 dJ.
0 0
(3.26)
Proof p; = ¥* (t,0)' M; and from (3.13) this is

E [®*(T,0) ¢ /A’ *’Mdr—/B\If*’MdQT
t 1 -
+/ (I+B')” B’Q\IJ*’Mdjr—i-/ U*'y,.dQ,
0 0

t t
_/ B/\I]*/'yr djr +/ (I+B/)_1 B/2\I/*/’7T djr
0 0
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t t
=FE [®*(T,0) (] - / Al'p,_dr — / B'p,_dQ,
0 0
t

(I+B) " B?p,_dJ,

t
((I+ B')6, + B'p,—)dQ,

t

(I+B) "B (I+B)6s +B'p,_)dJ,

+

+

o— S —

t t t
=F [q)* (T, 0)/ @ - / A'p._dr + / (I+B)6,.dO, — / B'S,.dJ,
0 0

0
and the result follows. ]
However, an alternative backward equation for the adjoint process p is

obtained from the observation that the sum of the bounded variation terms
in (3.24) must be identically zero. Therefore, we have the following result:

Theorem 3.14 With & given by (8.22) the Markov adjoint process p: (q)
1s given by the backward equation

Op Ot (4 (q) = B* @) a+ A" (@) pu+ (T + B* (@) 6 = 0

ot dq
(3.27)

with the terminal condition
pTr = é.

12.4 HMM Control in Gaussian Noise

Introduction

Again our processes are assumed to be defined initially on a probability
space (2, F, P). A conditional Markov process X as in Section 1 is consid-
ered. Without loss of generality the state space of X can be taken to be the
set of unit basis vectors in RY. We suppose such a process X;, 0 <t < T,
is observed through the noisy process ¥y, where

yt:/OC(Xs)dS-l-wt- (4.1)

Here w is a Brownian motion independent of X.
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For simplicity a terminal cost of the form (¢, Xr) is considered and,
following Davis (1977b), the control problem is formulated in separated
form by considering an unnormalized conditional distribution of X;. An
adjoint process is introduced and shown to satisty forward and backward
equations.

The System

Suppose y; is a Brownian motion process on (€2, F, P) independent of X}
and write ); for the right-continuous, complete filtration generated by y.
The set U of admissible controls will be the set of Y-predictable functions
with values in a compact, convex set U C R¥. Suppose c is a real-valued
function on S [so ¢ is just given by a vector ¢ = (c(e1),...,c(en))]. For
ue U write A, , = exp{fstc (X¥) dy, — %f; lc(X*)[?dr} and define a new
probability measure P* by

dpP"

dP

=Ny (4.2)

gr

Then according to Girsanov’s Theorem, P'isa probability measure, and
under P" the process W, is a Brownian motion, where W; is defined by

t
ytz/c(X;‘)ds—i—Wt. (4.3)
0

Also {X;} and {W;} are independent, and {X;} has the same distribution
as under measure P. Note that under P the process y represents a noisy
observation of fotc (X¥)ds as in (4.1).

Writing g; = o (X) for the unnormalized conditional density of X; given
Y: Equation (8.4.1) shows that

The cost function will be

—U

J(u) = Eu[wv X’%” = E[ 0,T<£7 X%>]
= E[(t.ArX})] = E[(¢, E[Ar X} | i ])]
= E[(¢, q7)].

The control problem has, therefore, been formulated in separated form:
find v € U which minimizes

J(u) = E (¢, q7)] (4.5)

where ¢ is given by (4.4).
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Differentiation

For uw € U write ®“ (¢, s) for the fundamental matrix solution of
d®" (t,s) = A¢ (u) ®“ (¢, s) dt + CO“ (¢, s) dy: (4.6)
with initial condition ®“ (s,s) = I, the N x N identity matrix.

Lemma 4.1 Foru € U, consider the matrix ¥* defined by the equation

T (¢, ) =I—/ U (r,s) Ay (u) dr

t ¢
- / UuC dy, +/ v C? dr. (4.7)

Then U“®“ =1 fort > s.

Proof Using the Itd6 Rule we see d (U®) =0, ¥ (s,8) P (s,8) = 1. |

We shall suppose there is an optimal control u* € U. Write ¢* for ¢* ,
®* for ®* etc. Consider any other control v € U. Then for 6 € [0,1],
ug (t) =u* (t) + 60 (v(t) —u*(t) e U.

Now

J (ug) > J(u*). (4.8)

Therefore, if the Gateaux derivative J' (u*) of J, as a functional on the
Hilbert space C'= L? [Q x [0, T],R¥], is well defined, differentiating (4.8)
in 6 and letting 6 = 0, we have

(J' (u*),v(t) —u*(t)) >0 (4.9)

forallv e U.

Lemma 4.2 Suppose v € U is such that u; = u* 4+ v € U for 6 € [0,q].
Write q, (8) for the solution g, (uy) of (4.4). Then z, = dqi(0) /00|o=o exists

and s the unique solution of the equation

Y ' '
o= [ (Ga)vaars [awmars [Caan| @)
0 U 0 0

Proof Differentiating under the integrals gives the result. This is justified
by the result of Blagovescenskii and Freidlin (1961). [ |
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Lemma 4.3 Write
¢
0A
Hos = / ¥ (r,0) <— (u*)) o dr. (4.11)
0 ou
Then z, = ®* (¢,0) no,q-

Proof By Itd’s Rule we see ®* (¢,0) 1o ; satisfies the equation (4.10). ®

Corollary 4.4 Because J(u}) = E[<€, q;; >] we see

5 () =Bl (X0 o). (1.12)

Write M; = E [ ®* (T, 0)¢| W, |. Then M, is a square integrable mar-
tingale on the Y-filtration; hence (Elliott, 1982b), M, has representation

t
M, =E [®* (T, ())/é} +/ ~r dyy. (4.13)
0
where v is a {);} predictable process, such that

T
/ E}”yf}dr<oo.
0

Definition 4.5 The adjoint process is
pe = 0" (£,0) M,

where the prime (') denotes the transpose of the matrix.

—o /OTE Kpra g—f (U*)vrq:ﬂ dr. (4.14)

Proof Using (4.11) and (4.13)

Theorem 4.6

9J (uy)
o0

T

T L0A L
(Mo, mo.r) = / <Mr,w (0) 5 (u )Urqr>dr+ / (e o) g
0 U 0

From (4.12)
0.7 (u3)
00

=E [<MT, 770,T>] >
6=0
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so the result follows. [ |

Under integrability conditions J’ is in C, and so has a Gateaux derivative.

Now consider perturbations of u* of the form wg(t) = u* () +
6 (v (t) —u* (¢)) for 6 € [0,1], and any v € U. Then
0J (ug)

=(J" (u*),v—u*) > 0.
6=0

ol
for all v € U. So we have the following

Theorem 4.7 Suppose u* € U is an optimal control. Then a.s. in w and
a.e. int

(G () = i) 2 0. (1.15)

Equations for the Adjoint Process

Suppose the optimal control u* is a Markov, feedback control in the state
variable q.
We have the following expression for the integrand in (4.13).

Lemma 4.8

/ apr

Vr = o~ (T‘, O) 8

=Cq, + ®* (r,0) Cp,. (4.16)

Proof ®* (t,0)' p; = M, = [<I>* (T,0) }—i—fow dy.. If u* is Markov, ¢* is
also Markov. Write ¢ = ¢;, ® = ®* (¢,0), then by the Markov property

E[®*(T,0) 0| Y] =E[®'®* (T,t) (] q @]
=Q'E[®*(T,t) (] q].

Sops=F [<I>* (T,t) ¢ ] q] is a function of ¢ only. Therefore,

t
0
pt=po+/ a—p(Aqr dr + Cq, dy,)
pr *py
+/ Z/aqlaqﬂ )c(e;) qhql dr

’ 8pr 1 al 02 Dr i g Opy
= — . T d
! 0+/0 "3 Z  Dgog © )l ) dr
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Then
Mg = *(t,0)' p;
k 8[)7« al 82pr 8
=po + 7,0 Agr + - -c(e;) c(ej) ¢,.q) dr
Do /0 “( )[a 132:13612«31#( ) c(e;) gr.q] B

t t
+ / D" (r, O)/ Opr dy, + / D" (r, O)' A(u)'pr dr
0 dq 0

t
Opy
+ / o*(r,0) Cp, dy, + / ¢ ; Cq, dr. (4.17)
0

Since M, is a Martingale the sum of the dr integrals in (4.17) must be 0,
and, therefore,

s Opy

Vr = o* (’r’ O) a O + o* (T O) C'pr. ]

Theorem 4.9
t t
pi=F [@* (T, O)/E} +/ Opr Cq, dy, —/ (A'pr + C%CqT) dr. (4.18)
o 9q 0 dq
Proof
pe =" (t,0) M, = E [®*(T,0)' (]

¢
—|—/ ! <<I>*’%qu + @*’Cpr> dy,
0 dq

t t
—/A’\If*’MTdr—/ CU*' M, dy,
0 0

t t
+/ C?*U*' M, dr—/ cu™ <c1>*’%prc +<I>*’C'pr)d
0 0

0

t t
—/A’prdr—/ Cprdyr—i-/ C?p, dr
0 0 0

= E [®*(T,0) (] +/ (8” Cq, + C'pT) dy,
0
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From (4.17), equating the dr integrals to zero we also obtain the following
result.

Theorem 4.10 p; satisfies the backward parabolic system

3pt 3pt 3pt

N o, (4.19)
o/
Z laq] ei)c(ej) giq] + A(u") pe = 0.

with terminal condition
pr =4.

12.5 Hybrid Conditionally Linear Process

Introduction

The filtering problem, where the state and observation processes are linear
equations with Gaussian noise, has as its solution the celebrated result
of Kalman and Bucy. For the related partially observed, linear quadratic
control problem the separation principle applies, and the optimal control
can be described explicitly as a function of the filtered state estimate.

Suppose, however, the coefficients in the linear dynamics of the state
process are functions of a noisily observed Markov chain. Both the filtering
problem and the related quadratic control problem are now nonlinear, and
explicit solutions are either difficult to find or of little practical use. The
approximation proposed below is to consider the coefficients in the linear
dynamics to be functions of the filtered estimate of the Markov chain. In
this way a conditional Kalman filter can be written down. These dynamics
lead us to consider a conditionally linear, Gaussian control problem. By
adapting techniques of Bensoussan (1982), a minimum principle and a new
equation for the adjoint process are obtained.

Dynamics

Consider again a system whose state is described by two quantities, a vector
x € R? and a component ¢ which can take a finite number of values from a
set S = {s1,$2,...,5n}. (The value = can be thought of as describing the
location, velocity, etc., of an object; o might then describe its orientation
or some other operating characteristic.)
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If o evolves as a Markov process on S we can, without loss of generality,
consider the corresponding process described by X evolving on the set
{e1,...,en}. Write X; for the state of this process at time ¢t and p; =
E [X}]. Suppose the generator of the Markov chain is the @ matrix Q (¢) =
(gi; (t)), 1 <4,j < N, so that p, satisfies the forward equation

dpt
5 = QO (5.1)

It follows from (5.1) that on the family of o-fields generated by X; the
process V; is a martingale, where

t
Vi=X,— Xo— / Q (s) X, ds. (5.2)
0

Suppose X is observed only through the noisy process z, where

t
zt:/F(s,Xs)ds—i-Vt. (5.3)
0

Here v is a Brownian motion independent of V. Write {Z,;} for the right-
continuous complete family of o-fields generated by z and X; for the Z-
optional projection of X, so that

Xt:E[Xt|Zt] a.s.

Write A (s) for the vector (I'(s,e1),...,I'(s,en)) and diag A (s) for the
diagonal matrix with diagonal A (s).

With an innovation process 7; given by diy = dzy — <A (t) ,Xt>dt it is
shown in, for example Elliott (1982b), that the equation for the filtered
estimate X is

Xt:XO+/<) Q(s)X, ds—i—/o (diag A(s) — (A(s), X)) X dis.  (5.4)

Here (,) denotes the inner product in RY and I is the N x N identity
matrix. Equation (5.4) provides a recursive expression for the best least

squares estimate X of X given the observations z.
Suppose now the x component of the state is described by the equation

dIt = A(Xt) Tt dt+ptht +B(Xt) dwt. (55)

Here z € R?, w;, = (w}, . .,w?) is an m-dimensional Brownian motion
independent of V and v, and A (X;), B (X;) and p; are, respectively, d X d,
d xn, and d x N matrices.
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Suppose the x process is observed through the observations of y, where

Here y € RP, 3, = (ﬁtl, . ,Btm) is an m-dimensional Brownian motion
independent of V, v and w and H, (resp. G), is a p x d (resp. nonsingular
p X m) matrix.

Now the y observations also provide information about X, so that alto-
gether we have the states z and X given by (5.5) and

t
Xt:Xo—l—/ Q (s) Xsds+V, (5.7)
0

with observations given by (5.3) and (5.6). Write {J;} for the right con-
tinuous, complete filtration generated by y and z, and denote by a bar the
Y-optional projection of a process so that, for example,

Yt:E[Xﬂyt} a.s.
Define the innovation processes v*, 3* by

dl/;F = dZt — <A (t) 77t> dt

dBf = G™1 (dy; — HT, dt) .

For vectors = = (21,...,2q4) € R* and y = (y1,...,yn) € R", write zy’
for the d x n matrix (a;;), a;; = x;y;. Then the filtered estimate of (f{t) is
given by

g ) = A g [ Xy,
X Q: Xy 0

+ (e XY (Har, (A (), X))

_ (Et,yt)/ (Hft,<A(t),Yt>)’) ( G110 > ( dsy ) '

0 I v}

This is a nonlinear equation. However, the approximation we shall make
is to suppose that most of our information about X comes from the obser-
vations of z and that we can replace X by X in (5.5), where X is given by
(5.4). Note that X is independent of w and 3. We can, therefore, state the
following result:

Lemma 5.1 Suppose the state xy is approzimated by Ty where
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Here X is given by (5.4). Suppose T is observed through the process § where
dyy = HEp dt + G dp;. (5.9)

Write {):} for the right-continuous, complete filtration generated by § and
& for the YV-optional projection of x, so that & = E[x | V¢ a.s. Then

dp,

A&, = A(X)& dt + prdX, + PH (GG') ™"

5.10
Li‘o = ECL‘Q ( )

where .

and Py is the matriz solution of the Riccati equation

P, =B(X,)B (X)) — PH' (GG') "HP, + A(X,)P, + P,A(X,)

Py = cov xg.

(5.12)

Proof The proof is left as an exercise. Kalman filter formula applies. H

Equations (5.4), (5.10), (5.11), and (5.12) therefore give a finite-dimen-
sional filter for &, which is a conditionally Gaussian random variable given

X and V.
Note that
~ N A~
A(Xy) =D Ales) (es, Xi)
i=1
A~ N A~
B(Xy) = Z B (ei) {ei, Xt)
i=1
Remark 5.2

AT — &) = (A(X)wy — A (X)) dt + prQu(Xy — Xy)dt
+ (o(Ha)y —T(HT) )G~ dB;
+ (2{A@t), Xp)' — T(A(t), X)) dv; + P,H(GG') ™ dj,.
Therefore, with ¢r denoting the trace of a matrix
d(Ty — #)?
= 2(Tp — &¢)d(& — 34)
+tr(z(Hz) — 2(HT)')(G'G) ' (Haa' — Hzz')dt

+r((AQ), X)a" — (A1), X)7') (z(A(t), X)' = T(A(t), X)")dt
+trP,H(GG') " *H'P, - dt
+trP,H(GG)™" - G/ (z(Hz) — T(HT)")dt.
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Taking expectations the martingale terms disappear and, under integrabil-
ity or boundedness conditions on the coefficient matrices, an estimate of
order o (t) for E (Z, — #;)° can be obtained. However, this does not appear
too useful. ad

Hybrid Control

Suppose the state equation for  now contains a control term, so that

The observation process is again y, where

Assume the control parameter u takes values in some space R* and the
admissible control functions are those which are predictable with respect
to the right-continuous, complete filtration generated by y and X.Cisa
d X k matrix.

Suppose the control {u;} is to be chosen to minimize the cost

T
Vi(u)=F / (wy Dyxy + uyRyuy) dt + ap Fag | . (5.15)
0

Here Q¢, R;, and F' are matrices of appropriate dimensions and R; is non-
singular. Then (5.3), (5.7), (5.13), (5.14), and (5.15) describe a nonlinear
partially observed stochastic control problem whose solution is in general
difficult. To obtain a related completely observed problem the approxima-
tion we propose is that X, is replaced by its filtered estimate X, in (5.13)
giving a process T, where

The observation process is now gy, where

dys = HT, dt + G - dfy (5.17)
and the admissible controls are the predictable functions with respect to
the right-continuous, complete filtrations generated by ¢ and z.

The cost is taken to be

T
J(u) = E /O (#Dye + u,Rews) dt + #pFir| . (5.18)

Equations (5.16), (5.17), and (5.18) describe a partially observed, lin-
ear, quadratic Gaussian control problem which is parametrized by X, a
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process which is independent of w and (3. However, we cannot apply the
separation principle, as in Davis (1977a), because the coefficients in (5.16)
are functions of X. The usual form of the separation principle involves the
solution of a Riccati equation solved backward from the final time 7', and
we do not know the future values of X. We therefore proceed as follows to
derive a minimum principle satisfied by an optimal control. We are in ef-
fect considering a completely observed optimal control problem with state
variables X and #, where X is given by

¢
X, = Xo—l-/Q )ds—l—/ (s) X (s) dis (5.19)
0

and

t t t t .
Ty =mo + /A(Xs)j:s ds + /ps dX, + /C’SuS ds + /PSH(GG’)f1 dfs.

0 0 0 0

(5.20)

Here I1(s) = diag A (s) — (A (s) ,XS>I and mg = Exzg. Note from (5.12)
that the covariance P; depends on X. In terms of & and P the cost corre-
sponding to control {u;} is (Davis, 1977a),

J (u)

T T
=F / (2, Dydy + uf Ryuy) dt + 35 Fap + / tr (P;Dy) dt + tr (PrF)
0 0

The last two terms do not depend on the control, so we shall consider a
problem with dynamics given by (5.19) and (5.20), and a cost corresponding
to a control u given by

Juw)=F

T
/ (2 D12y + Uy Ryuy) dt + & Fip (5.21)
0

Write {5&} for the right-continuous filtration generated by y and z. Write
L3.[0,7) = {u(t,w) € L*([0,T] x Q; dt x dP,R¥) such that for a.e. t,
u(t,”) € L? (Q, Y, P, Rk)} Assume U is a compact, convex subset of R”.
Then the set of admissible controls is the set

U={ueL}[0,T]:u(t,w) €U ae. as.}.

Suppose there is an optimal control u*. We shall consider perturbations
of u* of the form ug (t) = u* () + 0 (v (t) — u* (t)) where v is any other
admissible control and 6 € [0, 1]. Then

J (ug) > J(u*).
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Following and simplifying techniques of Bensoussan (1982), our mini-
mum principle is obtained by investigating the Gateaux derivative of J
as a functional on the Hilbert space L% [0,T]. Write 2* for the trajectory
corresponding to the optimal u*. Then

dit = A(X})at dt + pedXy + Coul dt + PLH (GG ™" dj,.

Given any sample path X , X, will be considered as a time-varying param-
eter. Write ® (X, s) for the matrix solution of the equation

%@ (X,t,s) = A(X,)® (X,t,s)dt

with initial condition ® (X, s,s) = 1.

Lemma 5.3 Suppose v € U is such that uy = u* 4+ 60v € U for § €
[0,a]. Write 2% for the solution of (5.20) associated with w}y. Then v =
01§ ,/08lo—o exists a.s. and

t

V=@ (X,t,())/ ®(X,s,0) " Cuuvs ds. (5.22)

0
Proof The estimated state is given by
o t A
‘%g,t = Zo +/ A(Xs)‘%z ds +/ ps dX
0 0
t t Lo
+/ Cs (u; + 0vs) ds +/ P,H (GG")™ " dfs. (5.23)
0 0

From the result of Blagovescenskii and Freidlin (1961), on the differen-
tiability of solutions of stochastic differential equations with respect to a
parameter, (5.23) can be differentiated to give

t t
wtz/A(XS)zsds—i—/ C,vs ds. (5.24)
0 0

The solution of (5.24) is then given by (5.22). [ |

Notation 5.4 Consider the martingale

My =FE

T
2/ Y D,® (X, 5,0)ds + 225 F® (X, T,0) | ?t]
0
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and write
& = My — 2/t§3:/DS<I> (X,s,0)ds
0
pr =260 (X,s50)7" (5.25)
No,t = /tfb (X,S,O)flcsvs ds.
0

Then there are square-integrable processes v and A such that the martingale
M has a representation as a stochastic integral

Mi=F

t t
+/vsdﬁ;+/Asdﬁs.
0 0

Lemma 5.5 The derivative of the cost is given by

T
2/ ¥ D® (X, 5,0)ds + 285 F® (X, T,0)
0

dJ (up)

=F
do

T
/ (pscsvs + 2uz/Rsvs) ds| .
6=0 0

Proof From (5.21) the cost is

T
T =B | [ 6D+ iR ds + 34 Fif
0

Therefore, differentiating we see

dJ (up)

=F
do

0=0

T
2/ (2 Dgzs + ul' Rsvs) ds + 225 Fzr (5.26)
0

Using the above notation

wt = (I) (Xa tu 0)770,15
& = 285 P (X, T,0)

0
Erno,r = 287 Fpr

T T
:/ {SCI)(X,S,O)_lcsvsds—2/ ' Dy® (X, 5,0)10,5 ds
0 0

T R T
+ / YsMo,s dﬁs + / )\5770,5 dﬁs
0 0
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Substituting in (5.26)
47 (up)

do

6=0

T T
=F |érnor + 2/ ' D® (X, s, 0)no,s ds + 2/ u¥ Ryvg ds}
0 0

r o T
=F / £ (X,5,0) " Covsds + 2/ u¥ Rsvg ds]
0 0

T
=F / (psCsvs + 2ul Ryvs) ds
0

Now take v to be of the form v — u* so that upg = u* + 6 (v —u*) € U.
Applying Proposition 5.5 to J (ug) we have the following result.

Corollary 5.6 The optimal control satisfies the minimum principle

psCOsul + 2ul Rgu’ = mi[r} (psCsv + 2ul' Rev) a.e. a.s. (5.27)
veE

Proof u* is optimal so dJ(ug) /df|g=o > 0, that is for any other admissible
control v

T
E / (psCs (ul —vs) + 2u¥ Ry (ul — vg))ds| > 0.
0

v can equal u* except on an arbitrary set of the form A x [s, s + h], A € Fj.
Therefore, a.e. dt and a.s. dP,

psCs (ul —vs) + 2ul’ Ry (ul —vg) > 0,

where the adjoint variable p is given by (5.26). ]

Remark 5.7 From Haussmann (1981) we know the optimal control u*
is feedback, in the sense that at time ¢ it is a function of the states I
and X;. However, to avoid derivatives of u* we suppose u* always follows
the trajectories of £* and X, even if these trajectories are perturbed. By
the Markov property we, therefore, have that p, is a function of x = &y and
¢ = X,. Writing ® = @(X,t,O) and y = 2fgi§'DS<I>(X,s,O)ds we have
that U (¢,z,y, ®) = p; (x, $) - @ + y = M, a martingale. o

If we write down the Ito expansion of ¥ the sum of the terms integrated
with respect to time must be zero. After division by ® we have the following
equation satisfied by the adjoint process p = p (¢, z, ).
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Lemma 5.8 Denote the Hessian of p with respect to x [resp. X] by 0*p/dz?
[resp. 8%p/0¢?] and write

Ty =pH(GG) " +pIl(t) X,

Ay =TI(t) X,
and tr (T} (0%p/822)Ty) [resp. tr (A} (9%p/0¢?) Ay)] for the vector with com-
ponents tr (I'}(82p;/0x*)Ty) [resp. tr (A} (9%p;/0¢?)A¢)].
Then

Op Op S . .
o +PA (Xe) + <%, (A (Xt)$t>thXt + Ctut> +

2p 2p
(5e-an)+ o (riggar) + o (siggine) o

with terminal condition p (T, z, ¢) = 2z F.

(5.28)

12.6 Problems and Notes

Problems

1. Fill in the details in the derivation of the stochastic differential Equation
(2.3).

2. Show that under the probability measure P defined in Section 12.2 the
process J which counts the number of jumps of the Markov chain is a
standard Poisson process (see Appendix A).

3. Derive the unnormalized conditional density given by (4.4).
4. Using the innovations approach derive the filtered estimate (5.4).

5. Derive the Kalman filter and the Riccati equation given by (5.10) and
(5.12).

Notes

Equation (4.19) is a backward parabolic equation. Bismut (1978) considers
a forward equation, with a terminal condition, for the adjoint process.

Other work discussing similar situations to that of Section 5 includes
Fragoso (1988), Yang and Mariton (1991), and Mariton (1990).






APPENDIX A

Basic Probability
Concepts

Definitions

Let © be a set of points. A nonempty class B of subsets of €2 is called a
o-field if B is closed under complementation and countable unions. The
sets B € B are said to be measurable.

A function P: B — [0,1] is called a probability measure

1. IfP(Q)=1;

2. if By is a countable sequence of disjoint sets in B, then P (| By) =
> P (Bg).

The triple (2, B, P) is called a probability space. A set B € B is sometimes
referred to as an event.

If X : Q@ — Ris a function we let 0(X) = o({w| X (w) <z},
T € R). This is the smallest o-field containing all subsets of the form
{w: X (w) <z}. If X is B-measurable, that is, if o (X)) is in B, then we call
X a random variable.

For C € B we define I (C), the indicator function of C, as follows

I1(C)(w) =1 ifweC
=0 otherwise.
A random variable is called simple if there are finitely many real numbers
x1,...,xk such that > P (X =z;) = 1. Then B; = {w: X (w) =x;} € B
and X =8 0,1 (By).
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The integral of a simple random variable is defined as

/XdP:Z:ciP(X:xi) => 2P (By).

If X is a nonnegative random variable, its integral is defined as
/XdP:klim Xy dP

where {X},} is a sequence of simple random variables which increases point-
wise to X. The existence of such an increasing sequence of functions is es-
tablished in, for example, Shiryayev (1986). Furthermore, the limit of the
sequence of integrals is independent of the increasing sequence of functions.
If the above limit is finite, X is said to be integrable. If both its positive and
negative parts, X+t = X1 (X >0) and X~ = —XI (X < 0) are integrable,
X is said to be integrable and we define

/XdP:/X*dP—/X*dP.

The expected value of X is written F (X), and is by definition

E(X):/QXdP:/RxdF(:c).

Here F' (z) = P (X <) is the usual cumulative distribution function of
X. For a simple random variable X, then

E(X)= inP(X =)

For C € B, we write

/CXdP:/I(C)XdP.

A sequence of random variables { X} is said to converge almost surely (a.s)
if

P[klim Xk (w) exists and is ﬁnite} =1.
The value {X} converges to X in Ly if E[|X; — X|] — 0 as k — oo. The
value {X}} converges to X in probability if for each € > 0 the sequence

Pl X, —X|>€¢—0 as k — oo.
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Theorem 1.1 (Radon-Nikodym) If P and P are two probability measures
on (Q,B) such that for each B € B, P(B) = 0 implies P (B) = 0, then
there exists a nonnegative random variable A, such that P (C) = fC AdP
for all C € B. We write dP/dP|g = A.

For a proof see Wong and Hajek (1985). The value A is the density OfEWith
respect to P. When  is a finite, or discrete, sample space A (w) = P/P.
If A, B are two events, then we define the probability of A given B as

P<A|B>——P(‘;‘J?§‘;B),

provided P (B) > 0. Otherwise P ( A | B) is left undefined. More generally
we have the concept of conditional expectation which we now define.

Let X € L; and A be a sub-o-field of B. If X is nonnegative and
integrable we can use the Radon-Nikodym theorem to deduce the exis-
tence of an A-measurable random variable, denoted by E (X | A), which
is uniquely determined except on an event of probability zero, such that

/AXdP:/AE[X|A]dP (1.1)

for all A € A. For a general integrable random variable X we define
E[X|A]as E[XT|A] - E[X | A]. E(X|.A) is called the condi-
tional expectation of X given A. If A is an event, then we write P (A | A)
as shorthand for E (I (A4) | A).

The following is a list of classical results. If A; and As are two sub-o-
fields of B such that A; C As, then

E(E(X[A)[A)=FE(E(X|A) | A)=E(X|A). (12)
It X,Y, XY € Ly, and Y is A-measurable, then
E(XY|A)=YE(X|A). (1.3)
If X and Y are independent, then
E(X|o(Y))=E(X). (1.4)

A stochastic process is a mathematical model for any phenomenon evolv-
ing or varying in time (or space, etc.) subject to random influences (e.g., the
stock market price of a commodity observed in time, the distribution of col-
ors or shades in a noisy picture observed in an unordered two-dimensional
lattice, etc.) To capture this randomness we list all outcomes into a mea-
surable space (€2, B) usually called the sample space on which probability
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measures can be placed. Thus a stochastic process is a mapping X (index) (W)
from Q x {index space} into a second measurable space, called the state
space or the range space.

For a fixed simple outcome w, X (w) is a deterministic function de-
scribing one possible trajectory or path followed by the process starting
from some possible initial position.

If the time index is frozen at ¢, say, then we have a usual random variable
X ().

Theorem 1.2 (Kolmogorov’s Extension Theorem) For all 7,...,7k, k €
N and 7 in the time indez, let Pr, . . be probability measures on R™ such
that

P,

To(1)r - To(k)

(Fl X oo X Fk) = P7'17~~~;7'k (Fa.—l(l) X X Fa.—l(k))
for all permutations o on {1,2,...,k} and

PTl,...,Tk (le"'XFk)
=P, Fi x - X Fp xR" x--- xR")

s ThsTh+1yTh+m (

for all m € N, and the set on the right-hand side has a total of k + m
factors. Then there exists a probability space (2, F,P) and a stochastic
process {X;} on Q into R™ such that

Provi(Fix-xF)=P[X, €F,...,X., € F,

for all T; in the time set k € N and all Borel sets F;.

Suppose, from now on that the index space is either R™ or N. To keep track,
to record, and to benefit from the flow of information accumulating in time
and to give a mathematical meaning to the notions of past, present, and
future the concept of filtration is introduced. For this we equip our sample
space (Q, B) with a nondecreasing family {B,,7 > 0} of sub-o-fields of B
such that B, C B, whenever 7 < 7/. We define By, = 0(UT>0 BT).

When the time index 7 is in R we are led naturally to introduce the
concepts of right-continuity and left-continuity of a filtration. A filtration
{B;,7 > 0} is right-continuous if B, contains events immediately after T,
that is Br = (.o Br e

The stochastic process X is adapted to the filtration {B,,7 > 0} if for
each 7 > 0 X, is a Br-measurable random variable.

Roughly speaking, a stochastic process X is predictable if knowledge
about the behavior of the process is left-continuous, or, more precisely, if
it is measurable with respect to the o-field generated by the family of all
left-continuous adapted stochastic processes. The concept of predictability
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is more easily understood in the discrete-time situation where Xy, is By-
predictable if X is By_i-measurable. A stochastic process X is optional
if it is measurable with respect to the o-field on Q x {time set} generated
by the family of all right continuous adapted stochastic processes which
have left limits. Note the concepts of optional and predictable o-fields on
Q x {time set} involve measurability concepts in both w and 7.

The stochastic process X is a martingale with respect to the filtration
{B:} if it is By-adapted, F [|X.|] < oo for all 7 and E [ X, | B, | = X, for
all 7/ < 7.

The wvariation of a real-valued f over an interval [a, b] is

b n—1
/ A1 2 5up S 1 (tasn) — £ ()
a T k=0

where 7 is the set of all partitions of the interval [a, b].
A stochastic process X is of integrable variation if

EUOOO|dXS|]<oo

Given an adapted stochastic process X, if there exists a right-continuous
predictable process with finite variation and left limits A such that X; — A;
is a martingale, then A is called the compensator of X.

A special semimartingale is, roughly speaking, the sum of a martingale
and a predictable process of bounded variation.

Theorem 1.3 (Girsanov) Suppose Wy, t € [0,T], is an m-dimensional
Brownian motion on a filtered space {Q, B, B, P}. Let f : Qx [0,T] — R™
be a predictable process such that

T
/ |fe? dt < oo a.s.
0

& (f) —expl /fldWl——/ 1) ds]

E& (f)] =1.
]fP is the probability measure on {Q, B} defined by dP/dP = &l (f), then

Wt 18 an m-dimensional Brownian motion on {Q B, B, P} where

Write

and suppose

t
Wf:Wf—/ fids.
0
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For a proof see Elliott (1982b).

Consider a process X, 7 > 0, which takes its values in some measurable
space {F, €} and which remains at its initial value zp € E until a random
time T', when it jumps to a random position z. The underlying probability
space can be taken to be

2 =[0,00] x E.

Write
PA=P[T>tandz€ A], P, =P[T>t];

then clearly, if P, (C) = 0, then PA(C) = 0 for any C C [0,c] so that
there is a Radon-Nikodym derivative A (4, s) such that

PA—PA :/ A(A,s)dP,.
10,4

dP,
A(t):—/ —
]O,t[ PS—

The pair (A, A) is the Lévy system for the jump process. Roughly, dA (t) =
—dP,/P;_ is the probability that the jump occurs at time ¢, given it has not
happened so far, and A (dz, s) is the conditional distribution of the jump
position z given the jump happens at time s.

For two semimartingales X; and Y;, the Ito product rule gives the product
as

Write

t t
Xth:/ XS,dYSJr/ Vi dX,+[X,Y],
0 0

where

[X,Y], = lim (in prob.){XQYO + Z |:(Xt(k+1)27n — Xipo-n)

n—oo 0<k<2m
X (Yihenyz—n — Y;kQ*")} }

is the quadratic variation of X and Y.

If the process [X,Y], has a compensator, this is denoted by (X,Y),
and called the predictable quadratic variation of X and Y. If the martin-
gale part of the semimartingale is discontinuous, then [X,Y], = XYy +
EO<s§t AXAY.
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Theorem 1.4 (The Ito Rule) Let f be a twice continuously differentiable
function on R and let X be a real semimartingale. Then f(X:) is also a
semimartingale and

F(X0) = f(Xo)+ /0 F (X dX,
+ Z (f (Xs) - f (Xs—) - f/ (Xs—)AXs)

0<s<t

1 t
by [ £ aX X

0

Theorem 1.5 (The Gronwall Inequality) Suppose that the continuous
function g (t) satisfies

t
Ogg(t)éa(t)+6/0 g(s)ds, 0<t<T,

with 8> 0 and a : [0,T] — R integrable. Then

g(t)goz(t)—l—ﬁ/oa(s)exp(ﬂ(t—s)), 0<t<T.

A proof can be found in Elliott (1982b).

Theorem 1.6 (Jensen’s Inequality) Let ¢ : R — R be convezx and let X be
an integrable random variable such that ¢ (X) is integrable. Then for the
probability space (2, B, P) if A is a subfield of B,

P(E[X[A]) <E[¢(X)|A].

A proof can be found in Elliott (1982b).

Theorem 1.7 (Fubini) Let (Q1,B1,P1), (Qo,B2,P;) be two complete
probability spaces, and let f € L' (21 x Qa, A1 x As, Py X P). Then for
Al S AI;AQ € A27

/Alezfd(Pl ><Pz)—/A1 (/Azfsz) dPl_/A2 </Alfdpl>dp2'

(For simple random variables this theorem specializes to the familiar re-
sult that expectations and summations can be interchanged.)

A proof can be found in Loeve (1978)






APPENDIX B

Continuous-Time
Martingale
Representation

For 0 <i < N write ¢; = (0,...,1,...,0) for the ith unit (column) vector
in RY. Consider the Markov process {X;}, t > 0, defined on a probability
space (Q, F, P), whose state space is the set

S:{el,...,eN}.
Write pi = P (X; = ¢;), 0 <i < N. We shall suppose that for some family

of matrices Az, pr = (p}, oo pN )I satisfies the forward Kolmogorov equa-
tion
dp

A = (ai; (1)), t > 0, is, therefore, the family of so-called @-matrices of the
process. Because A; is a QQ-matrix

aii (t) = =Y _aji(t). (1.2)
J#i
The fundamental transition matrix associated with A will be denoted by
D (t,s), so with I the N x N identity matrix

do (t, s)

pra A @ (t,s), D (s,8)=1, (1.3)
do (t, s)
ds

= —®(t,s)A,, D(t,t)=1 (1.4)
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[If A; is constant @ (t,s) =exp (t — s) A.]

Consider the process in state € S at time s and write X, (z) for
its state at the later time ¢ > s. Then F [ X, (2)] = Esz [X¢] = @ (¢, 8) x.
Write F; for the right-continuous, complete filtration generated by
o{X,:s<r <t} and F; = F?. A basic result is the following:

Lemma 1.1 V; .= X; — Xy — fot A, X,— dr is an {Fi} martingale.

Proof Suppose 0 < s <t. Then

r t
E[V,-V,|F,] =E Xt—XS—/ A, X, - dr

7|

r t
—E Xt—XS—/ ATXTdr‘XS}

r t
- E Xt—XS—/ ATXTdr‘XS},

because X, = X,— =lim.~¢ -0 X,—c for each w € Q, except for countably
many r this is

t
:E[Xt|Xs]—XS—/ AE[X, | X.]dr
tS
:@(t,s)XS—XS—/ Ar® (r,s) Xsdr =0
by (1.3). Therefore,

t
Xt=X0+/ A X, dr +V, (1.5)
0

t
:X0+/ A X, dr+ V. .
0

We now give a martingale representation result.

Lemma 1.2
t
X, = ®(t,0) (Xo +/ ®(r,0)"" dVT> : (1.6)
0

Proof The proof follows from (1.5) by variation of constants. Alternatively,
differentiate (1.6). |

If 2,y are (column) vectors in RY we shall write (x,y) = 2’y for their
scalar (inner) product. Consider 0 < 4,5 < N with ¢ # j. Then

(X e efdX, = (X, e5) €fAX,
= (Xy,e)e; (X=X ) =1 (Xy- = e, Xs =¢j).
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Define the martingale
V= / (X €i) e dVs.
0

(Note the integrand is predictable.) Then
Vt”=/<X sei) € dX g — / —ei) € AX - ds

and, writing Jtij for the number of jumps of the process X from e; to e;
up to time ¢, this is

t
= JY —/ (Xs-, e aji(s)ds
0
3 t
= ‘7;] —/ <X57€i> Cle' (S) dS,
0
because X; = X, - for each w, except for countably many s. That is, for
i # 7, \
jtij = / (Xs,€i)aji(s)ds + Vt”
0

For a fixed j, 0 < j < N, write jtj for the number of jumps into state e;
up to time t. Then

. N .. N t .
T=3 0 =% [ (Kee)au(s)ds+ 17
i=1 i=1

where th is the martingale Zi\il Vtij . Finally, write J; for the total number
of jumps (of all kinds) of the process X up to time ¢. Then

T = ij Z/ Xs;ez a]l )d5+Qt

7,7=1

where Q¢ is the martingale Z . However, from (1.2)

au § agz

SO

N
_;/0 (X, i) aii (s) ds + Qs (1.7)
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Lemma 1.3
t t t
(V, V), = diag/ A X, dr — / (diag X, ) Al dr — / A, (diag X,._) dr.
0 0 0
Proof Recall X; € S is one of the unit vectors e;. Therefore,

Now by the product rule

X, X! = XOXo—i—/XT,AX Y dr

/ X, dv' + / (A, X,_) X! dr
+/ AV, XI_ + (V, V), + (IV, V], = (V,V),)
0

where [V, V], —(V, V), is an {F;} martingale. However, a simple calculation
shows

X, (A X,) = (diag X, ) A]
and

(A X,-) X;_ = A, (diag X,)".
Therefore,

t
XX, = XoX{ + / (diag X,—) Al dr
0
t
+ / A, (diag X,_) dr + (V, V), + martingale. (1.9)
0
Also, from (1.8)
t
X X, = diag X; = diag X + diag/ Ay X,_ dr +diagV;.  (1.10)
0

The semimartingale decompositions (1.9) and (1.10) must be the same, so
equating the predictable terms

t t t
(V,\V), = diag/ A X, _dr — / (diag X,—) Al dr — / A, (diag X,._) dr.
0 0 0
|

We next note the following representation result:
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Remark 1.4 A function of X; € S can be represented by a vector

FO) =@, ... fn(t) eRY

so that f(t, Xy) = f(t) X: = (f (t), X:) where (,) denotes the inner prod-
uct in RY. a

We therefore have the following differentiation rule and representation
result:

Lemma 1.5 Suppose the components of f (t) are differentiable in t. Then
t t
FX0) = FO0.X0)+ [ (70 Xt [ (70, AKX
0 0
t
+/ (f(r).dV;). (1.11)
0
Here, fot (f (r),dV,) is an Fi-martingale. Also,

F (X)) = (f (1), ® (t,0) Xo) + / (). @ ¢V, (112)

This gives the martingale representation of f (¢, X;).
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