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Chapter 1

Digital Signal Processing Design Challenges 

Our insatiable hunger for electronic gadgets that provide high-quality audio, video, data or all three, 
is spiraling up the processing power that is needed to process these signals. Digital signal processing 
(DSP) systems, within both infrastructure and customer premise equipment must provide increasing 
levels of performance and flexibility to handle the new requirements yet provide greater scalability for 
achieving higher economies of scale.

The Performance Gap
Algorithmic complexity increases as application demands increase. Figure 1-1 illustrates performance 
demands over time. In order to process these new algorithms, higher-performance signal processing 
engines are required. Typical fixed architecture DSP processors cannot keep pace on their own. A DSP 
co-processor is often needed to handle the highest performance portions of these ever increasingly 
complex algorithms. The “performance gap” in Figure 1-1 illustrates this expanding co-processing 
requirement.

Figure 1-1: The Performance Gap
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Field Programmable Gate Arrays (FPGAs) are very well suited to fill the performance gap for a 
variety of reasons: 

• They offer extremely high-performance signal processing capability through parallelism.
• They provide very low risk due to the flexible architecture.
• They allow design migration to handle changing standards.
• Developers can use them to create a customized and differentiated solution.
• They are quickly coming down in price. In fact, it is possible to find FPGAs for less then $2 

per device.
• They provide very low power per function.

The Ideal Solution
With the revolutionary XtremeDSP™ Slices, Xilinx Virtex™-4 FPGAs deliver the ideal solution for 
high-performance digital signal processing. They satisfy high-performance signal processing tasks 
traditionally serviced by an ASIC or ASSP. They allow you to create high-performance DSP engines 
that can boost the signal processing performance of your system for a host of applications including 
digital communications and video/imaging. And they are the ideal choice to increase system level 
performance by complementing a programmable DSP system as either a pre- or co-processor. 

XtremeDSP Slice Delivers Maximum Performance, Minimum Power, 
and Best Economy
The XtremeDSP™ Slice⎯operating at a blazing 500 MHz⎯lies at the heart of Virtex-4 FPGA’s 
XtremeDSP performance. As the most powerful addition to the Xilinx XtremeDSP took kit, it is a 
unique piece of hard coded IP embedded in each Virtex-4 device. It provides industry-leading DSP 
processing performance, unrivalled economy, and the lowest power consumption of any device in this 
performance range. 

Simplicity and Efficiency of the Cascade Logic
The built-in cascade logic of the XtremeDSP Slice allows multiple slices to be connected together to 
implement complex filters and multi-precision functions while operating at full speed. And the 
cascade logic provides tremendous cost advantage. Other solutions require additional FPGA resources 
to build costly and inefficient adder trees to implement this common function. They require a much 
larger FPGA to implement the same level of functionality that can be attained in an XtremeDSP-
enabled Virtex-4 FPGA. The result is a tremendous performance and cost advantage of the Virtex-4 
device over other FPGA DSP solutions.

Extremely Low Power Consumption
Each XtremeDSP Slice consumes only 2.3 mW/100 MHz in a typical system implementation. This 
extremely low power is enabled by the optimized hard implementation of the XtremeDSP Slice. Also, 
the programmable logic fabric of the Virtex-4 family has a significant power advantage. For example, 
power-per-CLB has been cut in half, with static power reduced by 40% and dynamic power reduced by 
50%. In addition, certain hard-logic silicon functions in the Virtex-4 FPGA reduce consumption by 
approximately 90%. This results in a lower power budget and all its associated benefits⎯higher 
reliability, smaller power devices, smaller fans, and so on.
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Increased Flexibility for Cost Effectiveness
The Virtex-4 FPGA flexibility boosts cost effectiveness for all application designs. For example, 
Virtex-4 FPGAs enable you to buy a customer device that supports two applications⎯one for 
diagnostic testing and one for the application. Here, Virtex-4 FPGAs can be tested for two designs or 
two variations of the same design. Savings are realized right down the line, from inventory costs, to 
design costs, to system costs, to consumer costs.

Easy to Use
Xilinx and its partners provide the easiest-to-use design solutions for FPGA-based DSP solutions with 
features such as: 

• System Generator for DSP reduces design time. 
• A rich DSP IP library implements fast, highly optimized algorithms.
• Award-winning technical support and DSP services enable you to bring products to market 

much faster. 
Whether you are working with spread-spectrum, multi-carrier, or narrowband communication 

systems, Virtex-4 FPGAs are the ideal choice for ease of use.

Virtex-4 FPGAs ⎯A Platform for Every Application 
All Virtex-4 platforms offer XtremeDSP capabilities. Choose the device that provides the optimal 
DSP performance for your application:

• Virtex-4 SX devices offer the most cost-effective implementation of ultra-high performance 
DSP functionality for high-end DSP applications. They provide the highest ratio of 
XtremeDSP slices—up to 512⎯and deliver up to 256 GMACS (18x18-bit multiply, 48-bit 
addition/accumulation) performance.

• Virtex-4 LX devices offer ample XtremeDSP slices and include more logic, memory, and I/O 
resources for logic applications.

•  Virtex-4 FX devices include embedded PowerPC™ processors and RocketIO™ multi-
gigabit transceivers for embedded processing and high-speed serial applications.

XtremeDSP platform solutions accelerate your products’ time-to-market through superior 
design, design tools, intellectual property cores, and design services. They provide the fastest means of 
designing, verifying, and deploying your DSP algorithms and systems in FPGAs.

Reduce Time-to-Market with World-Class Xilinx Support
Xilinx supplies a host of support functions to designers including DSP training courses, award 
winning technical support, technical data, implementation data, and design consulting.

A Must-Read
This book is a must-read for DSP designers who want to tap the power of the Virtex-4 XtremeDSP 
Slice. It provides a detailed description of the multiple features of the slice as well as providing 
multiple examples that show you how to harness the power and flexibility of this powerful IP block. 
Tap into the XtremeDSP Slice and reap the rewards of highest performance, lowest power at the lowest 
cost.
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Chapter 2

XtremeDSP Design Considerations

This chapter provides technical details for the XtremeDSP™ Digital Signal Processing (DSP) 
element, the DSP48 slice. 

The DSP48 slice is a new element in the Xilinx development model referred to as “Application 
Specific Modular Blocks” (ASMBL). The purpose of this model is to deliver off-the-shelf 
programmable devices with the best mix of logic, memory, I/O, processors, clock management, and 
digital signal processing. ASMBL is an efficient FPGA development model for delivering off-the-
shelf, flexible solutions ideally suited to different application domains.

Each XtremeDSP tile contains two DSP48 slices to form the basis of a versatile coarse-grain DSP 
architecture. Many DSP designs follow a multiply with addition. In Virtex™-4 devices these elements 
are supported in dedicated circuits.

The DSP48 slices support many independent functions, including multiplier, multiplier-
accumulator (MAC), multiplier followed by an adder, three-input adder, barrel shifter, wide bus 
multiplexers, magnitude comparator, or wide counter. The architecture also supports connecting 
multiple DSP48 slices to form wide math functions, DSP filters, and complex arithmetic without the 
use of general FPGA fabric.

The DSP48 slices available in all Virtex-4 family members support new DSP algorithms and 
higher levels of DSP integration than previously available in FPGAs. Minimal use of general FPGA 
fabric leads to low power, very high performance, and efficient silicon utilization.

Introduction
The DSP48 slices facilitate higher levels of DSP integration than previously possible in FPGAs. Many 
DSP algorithms are supported with minimal use of the general-purpose FPGA fabric, resulting in low 
power, high performance, and efficient device utilization. 

At first look, the DSP48 slice is an 18 x 18 bit two’s complement multiplier followed by a 48-bit 
sign-extended adder/subtracter/accumulator, a function that is widely used in digital signal processing 
(DSP). 

A second look reveals many subtle features that enhance the usefulness, versatility, and speed of 
this arithmetic building block.

Programmable pipelining of input operands, intermediate products, and accumulator outputs 
enhances throughput. The 48-bit internal bus allows for practically unlimited aggregation of DSP 
slices. 

http://www.xilinx.com
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One of the most important features is the ability to cascade a result from one XtremeDSP Slice to 
the next without the use of general fabric routing. This path provides high-performance and low-
power post addition for many DSP filter functions of any tap length. 

For multi-precision arithmetic this path supports a right-wire-shift. Thus a partial product from 
one XtremeDSP Slice can be right-justified and added to the next partial product computed in an 
adjacent such slice. Using this technique, the XtremeDSP Slices can be configured to support any size 
operands. 

Another key feature for filter composition is the ability to cascade an input stream from slice to 
slice. 

The C input port, allows the formation of many 3-input mathematical functions, such as 3-input 
addition, 2-input multiplication with a single addition. One subset of this function is the very 
valuable support of rounding a multiplication “away from zero”. 

Architecture Highlights
The Virtex-4 DSP slices are organized as vertical DSP columns. Within the DSP column, two vertical 
DSP slices are combined with extra logic and routing to form a DSP tile. The DSP tile is four CLBs 
tall. 

Each DSP48 slice has a two-input multiplier followed by multiplexers and a three-input 
adder/subtracter. The multiplier accepts two 18-bit, two's complement operands producing a 36-bit, 
two's complement result. The result is sign extended to 48 bits and can optionally be fed to the 
adder/subtracter. The adder/subtracter accepts three 48-bit, two's complement operands, and produces 
a 48-bit two's complement result.

Higher level DSP functions are supported by cascading individual DSP48 slices in a DSP48 
column. One input (cascade B input bus) and the DSP48 slice output (cascade P output bus) provide 
the cascade capability. For example, a Finite Impulse Response (FIR) filter design can use the 
cascading input to arrange a series of input data samples and the cascading output to arrange a series 
of partial output results. For details on this technique, refer to the section titled “Adder Cascade vs. 
Adder Tree,” page 31.

Architecture highlights of the DSP48 slices are:
• 18-bit by 18-bit, two's-complement multiplier with a full-precision 36-bit result, sign 

extended to 48 bits
• Three-input, flexible 48-bit adder/subtracter with optional registered accumulation feedback
• Dynamic user-controlled operating modes to adapt DSP48 slice functions from clock cycle to 

clock cycle
• Cascading 18-bit B bus, supporting input sample propagation
• Cascading 48-bit P bus, supporting output propagation of partial results
• Multi-precision multiplier and arithmetic support with 17-bit operand right shift to align 

wide multiplier partial products (parallel or sequential multiplication)
• Symmetric intelligent rounding support for greater computational accuracy
• Performance enhancing pipeline options for control and data signals are selectable by 

configuration bits
• Input port “C” typically used for multiply-add operation, large three-operand addition, or 

flexible rounding mode
• Separate reset and clock enable for control and data registers
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• I/O registers, ensuring maximum clock performance and highest possible sample rates with 
no area cost

• OPMODE multiplexers
A number of software tools support the DSP48 slice. The Xilinx ISE software supports DSP48 

slice instantiations. The Architecture Wizard is a GUI for creating instantiation VHDL and/or Verilog 
code. It also helps generate code for designs using a single DSP48 slice (i.e., Multiplier, Adder, 
Multiply-Accumulate or MAC, and Dynamic Control modes). Using the Architecture Wizard, CORE 
Generator™ tool, or System Generator, a designer can quickly generate math or other functions using 
Virtex-4 DSP48 slices.

Number of DSP48 Slices Per Virtex-4 Device
Table 2-1 shows the number of DSP48 slices for each device in the Virtex-4 families. The Virtex-4 SX 
family offers the highest ratio of DSP48 slices to logic, making it ideal for math-intensive 
applications. 

Table 2-1: Number of DSP48 Slices per Family Member

Device DSP48 Device DSP48 Device DSP48
XC4VLX15 32 XC4VFX12 32
XC4VLX25 48 XC4VSX25 128 XC4VFX20 32

XC4VSX35 192
XC4VLX40 64 XC4VFX40 48
XC4VLX60 64 XC4VSX55 512 XC4VFX60 128
XC4VLX80 80

XC4VLX100 96 XC4VFX100 160
XC4VLX160 96
XC4VLX200 96 XC4VFX140 192
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DSP48 Slice Primitive
Figure 2-1 shows the DSP48 slice primitive.

Table 2-2 lists the available ports in the DSP48 slice primitive. 

Figure 2-1: DSP48 Slice Primitive

Table 2-2: DSP48 Slice Port List and Definitions

Signal Name Direction Size Function
A I 18 The multiplier's A input. This signal can also be used as the 

adder's Most Significant Word (MSW) input

B I 18 The multiplier's B input. This signal can also be used as the 
adder's Least Significant Word (LSW) input

C I 48 The adder's C input

A[17:0]

B[17:0]

C[47:0]

OPMODE[6:0]

SUBTRACT

CARRYIN

CARRYINSEL[1:0]

BCIN[17:0]

PCIN[47:0]

CLK

CEA

BCOUT[17:0]

P[47:0]

PCOUT[47:0]
18

18

48

7

2

18

48

18

48

48

CEB

CEC

CEP

CECTRL

CECINSUB

RSTA

RSTB

RSTC

RSTP

RSTCTRL

RSTCARRYIN

CEM

RSTM

CECARRYIN
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OPMODE I 7 Controls the input to the X, Y, and Z multiplexers in the DSP48 
slices (see OPMODE, Table 2-7)

SUBTRACT I 1 0 = add, 1 = subtract

CARRYIN I 1 The carry input to the carry select logic

CARRYINSEL I 2 Selects carry source (see CARRYINSEL, Table 2-8)

CEA I 1 Clock enable: 0 = hold, 1 = enable AREG

CEB I 1 Clock enable: 0 = hold, 1 = enable BREG

CEC I 1 Clock enable: 0 = hold, 1 = enable CREG

CEM I 1 Clock enable: 0 = hold, 1 = enable MREG

CEP I 1 Clock enable: 0 = hold, 1 = enable PREG

CECTRL I 1 Clock enable: 0 = hold, 1 = enable OPMODEREG, 
CARRYINSELREG

CECINSUB I 1 Clock enable: 0 = hold, 1 = enable SUBTRACTREG and 
general interconnect carry input

CECARRYIN I 1 Clock enable: 0 = hold, 1 = enable (carry input from internal 
paths)

RSTA I 1 Reset: 0 = no reset, 1 = reset AREG

RSTB I 1 Reset: 0 = no reset, 1 = reset BREG

RSTC I 1 Reset: 0 = no reset, 1 = reset CREG

RSTM I 1 Reset: 0 = no reset, 1 = reset MREG

RSTP I 1 Reset: 0 = no reset, 1 = reset PREG

RSTCTRL I 1 Reset: 0 = no reset, 1 = reset SUBTRACTREG, 
OPMODEREG, CARRYINSELREG

RSTCARRYIN I 1 Reset: 0 = no reset, 1 = reset (carry input from general 
interconnect and internal paths)

CLK I 1 The DSP48 clock

BCIN I 18 The multiplier's cascaded B input. This signal can also be used 
as the adder's LSW input 

PCIN I 48 Cascaded adder's Z input from the previous DSP slice

BCOUT O 18 The B cascade output

PCOUT O 48 The P cascade output

P O 48 The product output

Table 2-2: DSP48 Slice Port List and Definitions (Continued)

Signal Name Direction Size Function
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DSP48 Slice Attributes
The synthesis attributes for the DSP48 slice are described in detail throughout this section. With the 
exception of the B_INPUT and LEGACY_MODE attributes, all other attributes call out pipeline 
registers in the control and datapaths. The value of the attribute sets the number of pipeline registers. 

The attribute settings are as follows:
• The AREG and BREG attributes can take a value of 0, 1, or 2. The values define the number 

of pipeline registers in the A and B input paths. See the “A, B, C, and P Port Logic” section 
for more information.

• The CREG, MREG, and PREG attributes can take a value of 0 or 1. The value defines the 
number of pipeline registers at the output of the multiplier (MREG) (shown in Figure 2-11) 
and at the output of the adder (PREG) (shown in Figure 2-9). The CREG attribute is used to 
select the pipeline register at the 'C' input (shown in Figure 2-8).

• The CARRYINREG, CARRYINSELREG, OPMODEREG, and SUBTRACTREG attributes 
take a value of 0 if there is no pipelining register on these paths, and take a value of 1 if there 
is one pipeline register in their path. The CARRYINSELREG, OPMODEREG, and 
SUBTRACTREG paths are shown in Figure 2-10, and the CARRYINREG path is shown in 
Figure 2-12.

• The B_INPUT attribute defines whether the input to the B port is routed from the parallel 
input (attribute: DIRECT) or the cascaded input from the previous slice (attribute: 
CASCADE). 

• The LEGACY_MODE attribute serves two purposes. The first purpose is similar in nature to 
the MREG attribute. It defines whether or not the multiplier is "flow through" in nature (i.e., 
LEGACY_MODE value equal to MULT18x18) or contains a single pipeline register in the 
middle of the multiplier (i.e., LEGACY_MODE value equal to MULT18x18S is the same as 
MREG value equal to one). While this is redundant to the MREG attribute, it was deemed 
useful for customers used to the Virtex-II and Virtex-II Pro multipliers since the DSP48 setup 
and hold timing most closely matches those of the Virtex-II and Virtex-II Pro MULT18x18S 
when the MREG is used. Any disagreement between the MREG attribute and 
LEGACY_MODE attribute settings are flagged as a software Design Rule Check (DRC) error. 
The second purpose for the attribute is to convey to the timing tools whether the A and B port 
through the combinatorial multiplier path (slower timing) or faster X multiplexer bypass 
path for A:B should be used in the timing calculations. Since the OPMODE can change 
dynamically, the timing tools cannot determine this without an attribute.

To summarize the timing tools behavior:
♦ If (attribute: NONE), then timing analysis/simulation bypasses the multiplier for the 

highest performance. The lowest power dissipation is achieved by setting MREG to one 
while CEM input is grounded. 

♦ If (attribute: MULT18x18), then timing analysis/simulation uses the combinatorial path 
through the multiplier. In this case, MREG must be set to zero or a DRC error occurs. 

♦ If (attribute: MULT18x18S), then timing analysis/simulation uses a pipelined multiplier. 
In this case MREG must be set to one or a DRC error occurs. 
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Attributes in VHDL
DSP48 generic map (

AREG => 1,-- Number of pipeline registers on the A input, 0, 1 or 2
BREG => 1,-- Number of pipeline registers on the B input, 0, 1 or 2
B_INPUT => “DIRECT”, -- B input DIRECT from fabric or CASCADE from 

-- another DSP48
CARRYINREG => 1, -- Number of pipeline registers for the CARRYIN 

-- input, 0 or 1
CARRYINSELREG => 1, -- Number of pipeline registers for the 

-- CARRYINSEL, 0 or 1
CREG => 1, -- Number of pipeline registers on the C input, 0 or 1
LEGACY_MODE => “MULT18X18S”, -- Backward compatibility, NONE, 

-- MULT18X18 or MULT18X18S
MREG => 1, -- Number of multiplier pipeline registers, 0 or 1
OPMODEREG => 1,-- Number of pipeline registers on OPMODE input, 

-- 0 or 1
PREG => 1, -- Number of pipeline registers on the P output, 0 or 1
SIM_X_INPUT => “GENERATE_X_ONLY”, 

-- Simulation parameter for behavior for X on input.
-- Possible values: GENERATE_X, NONE or WARNING

     SUBTRACTREG => 1)-- Number of pipeline registers on the SUBTRACT 
-- input, 0 or 1

Attributes in Verilog
defparam DSP48_inst.AREG = 1;
// Number of pipeline registers on the A input, 0, 1 or 2
defparam DSP48_inst.BREG = 1;
// Number of pipeline registers on the B input, 0, 1 or 2
defparam DSP48_inst.B_INPUT = “DIRECT”;
// B input DIRECT from fabric or CASCADE from another DSP48
defparam DSP48_inst.CARRYINREG = 1;
// Number of pipeline registers for the CARRYIN input, 0 or 1
defparam DSP48_inst.CARRYINSELREG = 1; 
// Number of pipeline registers for the CARRYINSEL, 0 or 1
defparam DSP48_inst.CREG = 1;
// Number of pipeline registers on the C input, 0 or 1
defparam DSP48_inst.LEGACY_MODE = “MULT18X18S”;
// Backward compatibility, NONE, MULT18X18 or MULT18X18S
defparam DSP48_inst.MREG = 1;
// Number of multiplier pipeline registers, 0 or 1
defparam DSP48_inst.OPMODEREG = 1;
// Number of pipeline registers on OPMODE input, 0 or 1
defparam DSP48_inst.PREG = 1;
// Number of pipeline registers on the P output, 0 or 1
defparam DSP48_inst.SIM_X_INPUT = “GENERATE_X_ONLY”; 
// Simulation parameter for behavior for X on input.
// Possible values: GENERATE_X, NONE or WARNING
defparam DSP48_inst.SUBTRACTREG = 1;
// Number of pipeline registers on the SUBTRACT input, 0 or 1
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DSP48 Tile and Interconnect
Two DSP48 slices, a shared 48-bit C bus, and dedicated interconnect form a DSP48 tile. The DSP48 
tiles stack vertically in a DSP48 column. The height of a DSP48 tile is the same as four CLBs and also 
matches the height of one block RAM. This “regularity” enhances the routing of wide datapaths. 
Smaller Virtex-4 family members have one DSP48 column while the larger Virtex-4 family members 
have two, four, or eight DSP48 columns.

As shown in Figure 2-2, the multipliers and block RAM share interconnect resources in the 
Virtex-II and Virtex-II Pro architectures. Virtex-4 devices, however, have independent routing for the 
DSP48 tiles and block RAM, effectively doubling the available data bandwidth between the elements.

Figure 2-3 shows two DSP48 slices and their associated datapaths stacked vertically in a DSP48 
column. The inputs to the shaded multiplexers are selected by configuration control signals. These are 
set by attributes in the HDL source code or by the User Constraint File (UCF).

Figure 2-2: DSP48 Interconnect and Relative Dedicated Element Sizes
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Notes:
1. The 18-bit A bus and B bus are concatenated, with the A bus being the most significant. 
2. The X,Y, and Z multiplexers are 48-bit designs. Selecting any of the 36-bit inputs provides a 

48-bit sign-extended output.
3. The multiplier outputs two 36-bit partial products, sign extended to 48 bits. The partial 

products feed the X and Y multiplexers. When OPMODE selects the multiplier, both X and Y 
multiplexers are utilized and the adder/subtracter combines the partial products into a valid 
multiplier result.

4. The multiply-accumulate path for P is through the Z multiplexer. The P feedback through the X 
multiplexer enables accumulation of P cascade when the multiplier is not used.

5. The “Right Wire Shift by 17 bits” path truncates the lower 17 bits and sign extends the upper 17 
bits.

6. The grey-colored multiplexers are programmed at configuration time.
7. The shared C register supports multiply-add, wide addition, or rounding.
8. Enabling SUBTRACT implements Z – (X+Y+CIN) at the output of the adder/subtracter.

Figure 2-3: A DSP48 Tile Consisting of Two DSP48 Slices

Zero

Note 2

A

B

PCINBCIN

P
18

18

18

18

48 48

48

48

36

48

48

48

X

BCOUT PCOUT

Z

72

Note 1

18

18
36

36

48

48

Note 3

Note 4

Notes 4, 5

Wire Shift Right by 17 bits

±

×

Zero

Note 2

C

A

B

PCINBCIN

P
18

18

48

1848

18

48 48

48

48

36

48

48

48

Y

X

BCOUT PCOUT

Z

72

Note 1

18

18
36

36

48

48

Note 3

Note 4

Notes 4, 5

Note 5

Note 5

Wire Shift Right by 17 bits

ug073_c1_03_020405

±

×
Y

SUBTRACT
    Note 8

CIN

SUBTRACT
    Note 8

CIN

Note 7



DSP: DESIGNING FOR OPTIMAL RESULTS

14 • Xilinx

Simplified DSP48 Slice Operation
The math portion of the DSP48 slice consists of an 18-bit by 18-bit, two’s complement multiplier 
followed by three 48-bit datapath multiplexers (with outputs X, Y, and Z) followed by a three-input, 
48-bit adder/subtracter.

The data and control inputs to the DSP48 slice feed the arithmetic portions directly, or are 
optionally registered one or two times to assist the construction of different, highly pipelined, DSP 
application solutions. The data inputs A and B can be registered once or twice. The other data inputs 
and the control inputs can be registered once. Full speed operation is 500 MHz when using the 
pipeline registers. More detailed timing information is available in the Timing Section. 

In its most basic form the output of the adder/subtracter is a function of its inputs. The inputs are 
driven by the upstream multiplexers, carry select logic, and multiplier array. Equation 2-1 
summarizes the combination of X, Y, Z, and CIN by the adder/subtracter. The CIN, X multiplexer 
output, and Y multiplexer output are always added together. This combined result can be selectively 
added to or subtracted from the Z multiplexer output.

Adde r  Ou t = (Z ± (X + Y + C IN ) ) Equation 2-1

Equation 2-2 describes a typical use where A and B are multiplied and the result is added to or 
subtracted from the C register. More detailed operations based on control and data inputs are described 
in later sections. Selecting the multiplier function consumes both X and Y multiplexer outputs to feed 
the adder. The two 36-bit partial products from the multiplier are sign extended to 48 bits before 
being sent to the adder/subtracter.

Adde r  Ou t = C ± (A  ×  B + C I N) Equation 2-2

Figure 2-4 shows the DSP48 slice in a very simplified form. The seven OPMODE bits control the 
selection of the 48-bit datapaths by the three multiplexers feeding each of the three inputs to the 
adder/subtracter. In all cases, the 36-bit input data to the multiplexers is sign extended, forming 48-
bit input datapaths to the adder/subtracter. Based on 36-bit operands and a 48-bit accumulator 
output, the number of “guard bits” (i.e., bits available to guard against overflow) is 12. Therefore, the 
number of multiply accumulations possible before overflow occurs is 4096. Combinations of 
OPMODE, SUBTRACT, CARRYINSEL, and CIN control the function of the adder/subtracter.

Figure 2-4: Simplified DSP48 Slice Model
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Timing Model
Table 2-3 lists the XtremeDSP switching characteristics.

Table 2-3: XtremeDSP Switching Characteristics

Symbol Description Function
Control 
Signal

Setup and Hold of CE Pins

TDSPCCK_CE/TDSPCKC_CE Setup/Hold of all CE inputs of the 
DSP48 slice

Clock 
Enable

CE

TDSPCCK_RST/TDSPCKC_RST Setup/Hold of all RST inputs of the 
DSP48 slice

Reset RST

Setup and Hold Times of Data/Control Pins

TDSPDCK_{AA, BB, CC}/
TDSPCKD_{AA, BB, CC}

Setup/Hold of {A, B, C} input to {A, B, 
C} register

Data In A, B, C

TDSPDCK_{AM, BM}/
TDSPCKD_{AM, BM}

Setup/Hold of {A, B} input to M register Data In A, B

TDSPDCK_{AP, BP}_L/
TDSPCKD_{AP, BP}_L

Setup/Hold of {A, B} input to P register 
(LEGACY_MODE = MULT18X18)

Data In A, B

TDSPDCK_{AP_NL, BP_NL, CP}/
TDSPCKD_{AP_NL, BP_NL, CP}

Setup/Hold of {A, B, C} input to P 
register (LEGACY_MODE = NONE 
for A and B)

Data In A, B, C

TDSPDCK_{CRYINC, CRYINSC, 

OPO, SUBS}/
TDSPCKD_{CRYINC, CRYINSC, 

OPO, SUBS}

Setup/Hold of {CARRYIN, 
CARRYINSEL, OPMODE, 
SUBTRACT} input to {CARRYIN, 
CARRYINSEL, OPMODE, 
SUBTRACT} register

Control In Various

TDSPDCK_{CRYINP, CRYINSP, 

OPP, SUBPPCINP}/
TDSPCKD_{CRYINP, CRYINSP, 

OPP, SUBP, PCINP}

Setup/Hold of {CARRYIN, 
CARRYINSEL, OPMODE, 
SUBTRACT, PCIN} input to P register

Control In Various

Clock to Out

TDSPCKO_PP Clock to out from P register to P output Data Out P Output

TDSPCKO_{PA, PB}_L Clock to out from {A, B} register to P 
output 
(LEGACY_MODE = MULT18X18)

Data Out P Output

TDSPCKO_{PA_NL, PB_NL, PC} Clock to out from {A, B, C} register to P 
output (LEGACY_MODE = NONE for 
A and B)

Data Out P Output

TDSPCKO_{PM, PCRYIN, 

PCRYINS, POP, PSUB}

Clock to out from {M, CARRYIN, 
CARRYINSEL, OPMODE, 
SUBTRACT} register to P output

Data Out P Output
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TDSPCKO_PCOUTP Clock to out from P register to PCOUT 
output

Data Out P Output

TDSPCKO_{PCOUTA, PCOUTB}_L Clock to out from {A, B} register to 
PCOUT output 
(LEGACY_MODE = MULT18X18)

Data Out P Output

TDSPCKO_{PCOUTA_NL, 

PCOUTB_NL, PCOUTC}

Clock to out from {A, B, C} register to 
PCOUT output 
(LEGACY_MODE = NONE for A and 
B)

Data Out P Output

TDSPCKO_{PCOUTM, 

PCOUTCRYIN, PCOUTCRYINS, 

PCOUTOP, PCOUTSUB}

Clock to out from {M, CARRYIN, 
CARRYINSEL, OPMODE, 
SUBTRACT} register to PCOUT output

Data Out P Output

Combinatorial

TDSPDO_{AP, BP}_L {A, B} input to P output 
(LEGACY_MODE = MULT18X18)

Data In 
to Out

A, B to P

TDSPDO_{AP_NL, BP_NL, CP} {A, B, C} input to P output 
(LEGACY_MODE = NONE for A and 
B)

Data In 
to Out

A, B, C to 
P

TDSPDO_{CRYINP, CRYINSP, 

OPMODEP, SUBTRACTP, PCINP}

{CARRYIN, CARRYINSEL, 
OPMODE, SUBTRACT, PCIN} input 
to P output

Control to 
Data Out

Various

TDSPDO_{APCOUT, BPCOUT}_L {A, B} input to PCOUT output 
(LEGACY_MODE = MULT18X18)

Data In 
to PC Out

A, B to 
PC Out

TDSPDO_{APCOUT_NL, 

BPCOUT_NL, CPCOUT}

{A, B, C} input to PCOUT output 
(LEGACY_MODE = NONE for A and 
B)

Data In 
to PC Out

A, B, C to 
PC Out

TDSPDO_{CRYINPCOUT, 

CRYINSPCOUT, OPMODEPCOUT, 

SUBTRACTPCOUT, PCINPCOUT}

{CARRYIN, CARRYINSEL, 
OPMODE, SUBTRACT, PCIN} input 
to PCOUT output

Control to 
PC Out

Various

Sequential

TDSPCKCK_{AP, BP}_L From {A, B} register to P register 
(LEGACY_MODE = MULT18X18)

Register to 
register

–

TDSPCKCK_{AP_NL, BP_NL, CP, 

PP}

From {A, B, C, P} register to P register 
(LEGACY_MODE = NONE for A and 
B)

Register to 
register

–

Table 2-3: XtremeDSP Switching Characteristics (Continued)

Symbol Description Function
Control 
Signal
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The timing diagram in Figure 2-5 uses OPMODE equal to 0x05 with all pipeline registers 
turned on. For other applications, the clock latencies and the parameter names must be adjusted.

The following events occur in Figure 2-5:
1. At time TDSPCCK_CE before CLK event 1, CE becomes valid High to allow all DSP registers to 

sample incoming data.
2. At time TDSPDCK_{AA,BB,CC} before CLK event 1, data inputs A, B, C have remained stable for 

sampling into the DSP slice.
3. At time TDSPCKO_PP after CLK event 4, the P output switches into the results of the data 

captured at CLK event 1. This occurs three clock cycles after CLK event 1.

TDSPCKCK_{CRYINP, CRYINSP, 

OPMODEP, SUBTRACTP}

From {CARRYIN, CARRYINSEL, 
OPMODE, SUBTRACT} register to P 
register

Register to 
register

–

TDSPCKCK__{AM, BM} From {A, B} register to M register Register to 
register

–

Figure 2-5: XtremeDSP Timing Diagram

Table 2-3: XtremeDSP Switching Characteristics (Continued)

Symbol Description Function
Control 
Signal

CLK

CE

RST

A Don't Care

CLK Event 1 CLK Event 4 CLK Event 5

Data A1 Data A2 Data A3 Data A4

Don't Care Data B1 Data B2 Data B3 Data B4

Don't Care Data C1 Data C2 Data C3 Data C4

0

B

C

P

TDSPDCK_CC

TDSPCKO_CC TDSPCKO_CC

UG073_c1_27_071204

TDSPCCK_RST

TDSPCCK_CE

TDSPDCK_AA

TDSPDCK_BB

Result 1Don't Care
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4. At time TDSPCCK_RST before CLK event 5, the RST signal becomes valid High to allow a 
synchronous reset at CLK event 5.

5. At time TDSPCKO_PP after CLK event 5, the output P becomes a logic 0.

A, B, C, and P Port Logic
The DSP48 slice input and output data ports support many common DSP and math algorithms. The 
DSP48 slice has two direct 18-bit input data ports labeled A and B. Two DSP48 slices within a DSP48 
tile share a direct 48-bit input data port labeled C. Each DSP48 slice has one direct 48-bit output port 
labeled P, a cascaded input datapath (B cascade), and a cascaded output datapath (P cascade), providing 
a cascaded input and output stream between adjacent DSP48 slices. Applications benefiting from this 
feature include FIR filters, complex multiplication, multi-precision multiplication, complex MACs, 
adder cascade, and adder tree (the final summation of several multiplier outputs) support.

The 18-bit A and B port can supply input data to the 18-bit by 18-bit, two's complement 
multiplier. A and B concatenated can bypass the multiplier and feed the X multiplexer input. The 48-
bit C port is used as a general input to the Y and Z multiplexer to perform multiply, add, subtract, 
three-input add/subtract functions, or rounding.

Multiplexers controlled by configuration bits select flow through paths, optional registers, or 
cascaded inputs. The data port registers allow users to typically trade off increased clock frequency 
(i.e., higher performance) vs. data latency. There is also a configuration controlled pipeline register 
between the multiplier and adder/subtracter known as the M register. The registers have independent 
clock enables and resets as described in Table 2-2 and shown in Figure 2-1.

The configuration bit enables the C register to select between two potentially different clock 
domains as shown in Figure 2-8, page 19. The selection of the clock multiplexer is not set by user 
attributes. If the C register is used, the DSP48 slices packed in the same DSP48 tile must either be in 
the same clock domain or meet multicycle clock constraints. 

The shared “C” input within the DSP tile can be used by the two slices within a tile in any one of 
the following modes:
1. Neither DSP48 slice uses the C port. 

The C inputs in both the slices are connected to GND, “0” in the HDL code. The place and route 
software maps the two slices in one tile. 

2. Both DSP48 slices use the same C port inputs. 
The C inputs in both the slices are connected to “C” in the HDL code. The place and route 
software maps the two slices in one tile. 

3. Only one DSP48 slice uses the C port. 
In this case, the C input on slice 1 is connected to “C”, and the C input on slice 2 is connected to 
“0” in the HDL code. A C port connected to “0” is taken as an unused C port in the software. The 
software can map the two slices in one tile. The simulation shows the C input connected to “0” for 
slice 2 in the code. However, in the hardware, the C port on slice 2 is connected to the C port on 
slice 1, causing a potential simulation mismatch for the C port on slice 2. To avoid this potential 
mismatch, the C port must not be selected on the Y and Z multiplexers of slice 2. To get a “0” at 
the output of multiplexers Y and Z, choose the “0” input of these multiplexers using OPMODE. 
Do not use the “C” input to get a zero at the output of Y and Z multiplexers on slice 2. 
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The A, B, C, and P port logics are shown in Figure 2-6, Figure 2-7, Figure 2-8, and Figure 2-9, 
respectively.

Figure 2-6: A Input Logic

Figure 2-7: B Input Logic

Figure 2-8: C Input Logic
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OPMODE, SUBTRACT, and CARRYINSEL Port Logic
The OPMODE, SUBTRACT, and CARRYINSEL port logic supports flowthrough or registered input 
control signals. Similar to the datapaths, multiplexers controlled by configuration bits select 
flowthrough or optional registers. The control port registers allow users to trade off increased clock 
frequency (i.e., higher performance) vs. data latency.

The registers have independent clock enables and resets as described in Table 2-2 and shown in 
Figure 2-1. The OPMODE, SUBTRACT, and CARRYINSEL registers are reset by RSTCTRL. The 
SUBTRACT register has a separate enable labeled CECINSUB from OPMODE and CARRYINSEL. 
This enable signal is also used to enable the carry input from the general interconnect described in the 
“Carry Input Logic” subsection.

Figure 2-10 shows the OPMODE, SUBTRACT, and CARRYINSEL port logic.

Figure 2-9: P Output Logic

Figure 2-10: OPMODE, SUBTRACT, and CARRYINSEL Port Logic
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Two’s Complement Multiplier
The two's complement multiplier inside the DSP48 slice accepts two 18-bit x 18-bit two's 
complement inputs and produces a 36-bit two's complement result. Cascading of multipliers to 
achieve larger products is supported with a 17-bit right-shifted cascaded bus input to the 
adder/subtracter to “right justify” partial products by the correct number of bits. MAC functions can 
also “right justify” intermediate results for multi-precision. The multiplier can emulate unsigned 
math by setting the MSB of an 18-bit operand to zero.

The output of the multiplier consists of two 36-bit partial products. The 36-bit partial products 
are sign extended to 48 bits prior to being input to the adder/subtracter. Selecting the output of the 
multiplier consumes both X and Y multiplexers whereby the adder/subtracter combines the partial 
products to form the final result. 

Figure 2-11 shows an optional pipeline register (MREG) for the output of the multiplier. Using 
the register provides increased performance with a single clock cycle of increased latency. The grey 
multiplexer indicates “selected at configuration time by configuration bits”.

X, Y, and Z Multiplexer
The Operating Mode (OPMODE) inputs provide a way for the design to change its functionality from 
clock cycle to clock cycle (e.g., when altering the initial or final state of the DSP48 relative to the 
middle part of a given calculation). The OPMODE bits can be optionally registered under the control 
of the configuration memory cells (as denoted by the grey colored MUX symbol in Figure 2-10). 

Table 2-4, Table 2-5, and Table 2-6 list the possible values of OPMODE and the resulting 
function at the outputs of the three multiplexers (X, Y, and Z multiplexers). The multiplexer outputs 
supply three operands to the following adder/subtracter. Not all possible combinations for the 
multiplexer select bits are allowed. Some are marked in the tables as “illegal selection” and give 
undefined results. If the multiplier output is selected, then both the X and Y multiplexers are 
consumed supplying the multiplier output to the adder/subtracter.

Figure 2-11: Two’s Complement Multiplier Followed by Optional MREG

Table 2-4: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
X Multiplexer Output Fed to Add/Subtract

Z Y X
 XXX XX 00 ZERO (Default)

 XXX 01 01 Multiplier Output (Partial Product 1)

 XXX XX 10 P

 XXX XX 11 A concatenate B

72

36

36A

B

Partial Product 1

Partial Product 2
Optional
MREG ug073_c1_10_070904

×
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There are seven possible non-zero operands for the three-input adder as selected by the three 
multiplexers, and the 36-bit operands are sign extended to 48 bits at the multiplexer outputs:
1. Multiplier output, supplied as two 36-bit partial products
2. Multiplier bypass bus consisting of A concatenated with B
3. C bus, 48 bits, shared by two slices
4. Cascaded P bus, 48 bits, from a neighbor DSP48 slice
5. Registered P bus output, 48 bits, for accumulator functions
6. Cascaded P bus, 48 bits, right shifted by 17 bits from a neighbor DSP48 slice
7. Registered P bus output, 48 bits, right shifted by 17 bits, for accumulator functions

Three-Input Adder/Subtracter
The adder/subtracter output is a function of control and data inputs. OPMODE, as shown in the 
previous section, selects the inputs to the X, Y, Z multiplexer directed to the associated three 
adder/subtracter inputs. It also describes how selecting the multiplier output consumes both X and Y 
multiplexers.

As with the input multiplexers, the OPMODE bits specify a portion of this function. Table 2-7 
shows OPMODE combinations and the resulting functions. The symbol ± in the table means either 
add or subtract and is specified by the state of the SUBTRACT control signal (SUBTRACT = 1 is 
defined as “subtraction”). The symbol : in the table means concatenation. The outputs of the X and Y 

Table 2-5: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
Y Multiplexer Output Fed to Add/Subtract

Z Y X
 XXX 00 XX ZERO (Default)

 XXX 01 01 Multiplier Output (Partial Product 2)

 XXX 10 XX Illegal selection

 XXX 11 XX C

Table 2-6: OPMODE Control Bits Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
Z Multiplexer Output Fed to Add/Subtract

Z Y X
 000 XX XX ZERO (Default)
 001 XX XX PCIN
 010 XX XX P
 011 XX XX C
 100 XX XX Illegal selection
 101 XX XX Shift (PCIN)
 110 XX XX Shift (P)
 111 XX XX Illegal selection
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multiplexer and CIN are always added together. This result is then added to or subtracted from the 
output of the Z multiplexer.

Table 2-7: OPMODE Control Bits Adder/Subtracter Function

Hex
OPMODE

Binary OPMODE XYZ Multiplexer Outputs and Adder/Subtracter Output

[6:0] Z Y X Z Y X Adder/Subtracter Output
0x00 000 00 00 0 0 0 ±CIN

0x02 000 00 10 0 0 P ±(P + CIN)

0x03 000 00 11 0 0 A:B ±(A:B + CIN)

0x05 000 01 01 0 Note 1 ±(A × B + CIN)

0x0c 000 11 00 0 C 0 ±(C + CIN)

0x0e 000 11 10 0 C P ±(C + P + CIN)

0x0f 000 11 11 0 C A:B ±(A:B + C + CIN)

0x10 001 00 00 PCIN 0 0 PCIN ± CIN

0x12 001 00 10 PCIN 0 P PCIN ± (P + CIN)

0x13 001 00 11 PCIN 0 A:B PCIN ± (A:B + CIN)

0x15 001 01 01 PCIN Note 1 PCIN ± (A × B + CIN)

0x1c 001 11 00 PCIN C 0 PCIN ± (C + CIN)

0x1e 001 11 10 PCIN C P PCIN ± (C + P + CIN)

0x1f 001 11 11 PCIN C A:B PCIN ± (A:B + C + CIN)

0x20 010 00 00 P 0 0 P ± CIN

0x22 010 00 10 P 0 P P ± (P + CIN)

0x23 010 00 11 P 0 A:B P ± (A:B + CIN)

0x25 010 01 01 P Note 1 P ± (A × B + CIN)

0x2c 010 11 00 P C 0 P ± (C + CIN)

0x2e 010 11 10 P C P P ± (C + P + CIN)

0x2f 010 11 11 P C A:B P ± (A:B + C + CIN)

0x30 011 00 00 C 0 0 C ± CIN

0x32 011 00 10 C 0 P C ± (P + CIN)

0x33 011 00 11 C 0 A:B C ± (A:B + CIN)

0x35 011 01 01 C Note 1 C ± (A × B + CIN)

0x3c 011 11 00 C C 0 C ± (C + CIN)

0x3e 011 11 10 C C P C ± (C + P + CIN)

0x3f 011 11 11 C C A:B C ± (A:B +  C + CIN)

0x50 101 00 00 Shift (PCIN) 0 0 Shift(PCIN) ±  CIN

0x52 101 00 10 Shift (PCIN) 0 P Shift(PCIN) ± (P + CIN)
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Carry Input Logic
The carry input logic result is a function of the OPMODE control bits and CARRYINSEL. The inputs 
to the carry input logic appear in Figure 2-12. Carry inputs used to form results for adders and 
subtracters are always in the critical path. High performance is achieved by implementing this logic in 
the diffused silicon. The possible carry inputs to the carry logic are “gathered” prior to the outputs of 
the X, Y, and Z multiplexers. In a sense, the X, Y, and Z multiplexer function is duplicated for the 
carry inputs to the carry logic. Both OPMODE and CARRYINSEL must be in the correct state to 
ensure the correct carry input (CIN) is selected.

0x53 101 00 11 Shift (PCIN) 0 A:B Shift(PCIN) ± (A:B + CIN)

0x55 101 01 01 Shift (PCIN) Note 1 Shift(PCIN) ±  (A × B + CIN)

0x5c 101 11 00 Shift (PCIN) C 0 Shift(PCIN) ± (C + CIN)

0x5e 101 11 10 Shift (PCIN) C P Shift(PCIN) ± (C + P + CIN)

0x5f 101 11 11 Shift (PCIN) C A:B Shift(PCIN) ± (A:B + C + CIN)

0x60 110 00 00 Shift (P) 0 0 Shift(P) ± CIN

0x62 110 00 10 Shift (P) 0 P Shift(P) ± (P + CIN)

0x63 110 00 11 Shift (P) 0 A:B Shift(P) ± (A:B + CIN)

0x65 110 01 01 Shift (P) Note 1 Shift(P) ± (A × B + CIN)

0x6c 110 11 00 Shift (P) C 0 Shift(P) ± (C + CIN)

0x6e 110 11 10 Shift (P) C P Shift(P) ± (C + P + CIN)

0x6f 110 11 11 Shift (P) C A:B Shift(P) ± (A:B + C + CIN)

Notes: 
1. When the multiplier output is selected, both X and Y multiplexers are used to feed the multiplier partial 

products to the adder input.

Table 2-7: OPMODE Control Bits Adder/Subtracter Function (Continued)

Hex
OPMODE

Binary OPMODE XYZ Multiplexer Outputs and Adder/Subtracter Output

[6:0] Z Y X Z Y X Adder/Subtracter Output
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Figure 2-12 shows four inputs, selected by the 2-bit CARRYINSEL control with the OPMODE 
bits providing additional control. The first input CARRYIN (CARRYINSEL is equal to binary 00) is 
driven from general logic. This option allows implementation of a carry function based on user logic. 
It can be optionally registered to match the pipeline delay of the MREG when used. This register 
delay is controlled by configuration. The next input (CARRYINSEL is equal to binary 01) is the 
inverted MSB of either the output P or the cascaded output, PCIN (from an adjacent DSP48 slice). 
The final selection between P or PCIN is dictated by OPMODE[4] and OPMODE[6]. The third 
input (CARRYINSEL is equal to binary 10) is the inverted MSB of A, for rounding A concatenated 
with B values, or A[17] XNOR B[17] for rounding multiplier outputs. Again, the state of OPMODE 
determines the final selection. The fourth and final input is merely a registered version of the third 
input to adjust the carry input delay when using the multiplier output register or MREG.

Table 2-8 lists the possible values of the two carry input select bits (CARRYINSEL), the 
operation mode bus (OPMODE), and the resulting carry inputs or sources.

Figure 2-12: Carry Input Logic Feeding the Adder/Subtracter
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Symmetric Rounding Supported by Carry Logic
Arithmetic rounding is a process where a result is quantized in an “intelligent” manner. The bit 
position placement where rounding occurs is up to the designer and is determined solely by a constant 
loaded in the C register. While the binary point placement and bit position where rounding occurs are 
independent of each other, the following discussion assumes one wants to round off the fractional bits.

One form of rounding is simple truncation or just dropping undesired LSBs from a large result to 
obtain a reduced number of result bits. The problem with truncation happens after the bits are 
dropped and the new reduced result is biased in the wrong direction. For example, if a number has the 
decimal value 2.8 and the fractional part of the number is truncated, then the result is two. In this 
example, the original number is closer to 3 than to 2, and a rounded result of 3 is more desirable than 
the simple truncated result of 2.

Another method of quantization is known as “symmetric rounding”. Symmetric rounding 
accomplishes the more desirable effect of quantizing numbers to keep them from becoming biased in 
the wrong direction. For example, the number 2.8 rounds to 3.0 and the number 2.2 rounds to 2.0. 
Negative numbers, such as –2.8 and –2.2, round to –3.0 and –2.0 respectively. The midpoint number 
2.5 rounds to 3.0 and –2.5 rounds to –3. 

Another way to describe this type of quantization (for fractional rounding) is to round to the 
nearest integer and at the midpoint round away from zero. For positive numbers this effect is achieved 
by adding 0.1000… binary and truncating the fraction of the result. For negative numbers this effect 
is achieved by adding 0.0111… and truncating the fraction of the result. 

The implementation of the symmetric rounding in the DSP48 slice allows the user to load a 
single constant. If the design calls for eight bits (out of 48 total bits) to be rounded, then load 
0x00000000007F into the C register. The number of bits to be rounded off is one more than the 

Table 2-8: OPMODE and CARRYINSEL Control Carry Source

CARRYINSEL[1:0] OPMODE Carry Source Comments
00 XXX XX XX CARRYIN General fabric carry source 

(registered or not)

01 Z MUX output = P or 
Shift(P)

~P[47] Rounding P or Shift(P)

01 Z MUX output = PCIN or 
Shift(PCIN)

~PCIN[47] Rounding the cascaded 
PCIN or Shift(PCIN) from 
adjacent slice

10 X and Y MUX output = 
multiplier partial products

A[17] xnor B[17] Rounding multiplier 
(MREG pipeline register 
disabled)

11 X and Y MUX output = 
multiplier partial products

A[17] xnor B[17] Rounding multiplier 
(MREG pipeline register 
enabled)

10 X MUX output = A:B ~A[17] Rounding A:B (not 
pipelined)

11 X MUX output = A:B ~A[17] Rounding A:B (pipelined)
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number of ones present in the C register. Table 2-9 has examples for rounding off the fractional bits 
from a value (binary point placement and rounded bits placement coincide).

Forming Larger Multipliers
Figure 2-13 illustrates the formation of a 35 x 35-bit multiplication from smaller 18 x 18-bit 
multipliers. The notation “0,B[16:0]” denotes B has a leading zero followed by 17 bits, forming a 
positive two's complement number.

When separating two's complement numbers into two parts, only the most-significant part 
carries the original sign. The least-significant part must have a “forced zero” in the sign position 
meaning they are positive operands. While it seems logical to separate a positive number into the sum 
of two positive numbers, it can be counter intuitive to separate a negative number into a negative 
most-significant part and a positive least-significant part. However, after separation, the most-
significant part becomes “more negative” by the amount the least-significant part becomes “more 

Table 2-9: Symmetric Rounding Examples

Multiplier 
Output 

(Decimal)

Multiplier Output 
(Binary)

C Value
Internally 
Generated 

CIN

Multiplier Plus C 
Plus CIN

After 
Truncation 
(Binary)

After Truncation 
(Decimal)

 2.4375 0010.0111 0000.0111 1 0010.1111 0010      2
 2.5 0010.1000 0000.0111 1 0011.0000 0011      3

 2.5625 0010.1001 0000.0111 1 0011.0001 0011      3
 –2.4375 1101.1001 0000.0111 0 1110.0000 1110     -2

–2.5 1101.1000 0000.0111 0 1101.1111 1101     -3
–2.5625 1101.0111 0000.0111 0 1101.1110 1101     -3

Figure 2-13: 35x35-bit Multiplication from 18x18-bit Multipliers
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positive”. The “forced zero sign” bit in the least-significant part is why only 35-bit operands are found 
instead of 36-bit operands.

The DSP48 slices, with 18 x 18 multipliers and post adder, can now be used to implement the 
sum of the four partial products shown in Figure 2-13. The lessor significant partial products must be 
right-shifted by 17 bit positions before being summed with the next most-significant partial 
products. This is accomplished with a built in “wire shift” applied to PCIN supplied as one selectable 
Z multiplexer input. The entire process of multiplication, shifting, and addition using adder cascade 
to form the 70-bit result can remain in the dedicated silicon of the DSP48 slice, resulting in maximum 
performance with minimal power consumption. Figure 2-21, page 41 illustrates the implementation 
of a 35 x 35 multiplier using the DSP48 slices.

FIR Filters

Basic FIR Filters
FIR filters are used extensively in video broadcasting and wireless communications. DSP filter 
applications include, but are not limited to the following:

• Wireless Communications
• Image Processing
• Video Filtering
• Multimedia Applications
• Portable Electrocardiogram (ECG) Displays
• Global Positioning Systems (GPS)
Equation 2-3 shows the basic equation for a single-channel FIR filter.

Equation 2-3

The terms in the equation can be described as input samples, output samples, and coefficients. 
Imagine x as a continuous stream of input samples and y as a resulting stream (i.e., a filtered stream) 
of output samples. The n and k in the equation correspond to a particular instant in time, so to 
compute the output sample y(n) at time n, a group of input samples at N different points in time, or 
x(n), x(n-1), x(n-2), … x(n-N+1) is required. The group of N input samples are multiplied by N 
coefficients and summed together to form the final result y.

The main components used to implement a digital filter algorithm include adders, multipliers, 
storage, and delay elements. The DSP48 slice includes all of the above elements, which makes it ideal 
to implement digital filter functions. All of the input samples from the set of n samples are present at 
the input of each DSP48 slice. Each slice multiplies the samples with the corresponding coefficients 
within the DSP48 slice. The outputs of the multipliers are combined in the cascaded adders.

y n( ) h k( )x n k–( )

k 0=

k N 1–=

∑=
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In Figure 2-14, the sample delay logic is denoted by Z-1, whereas the –1 represents a single clock 
delay. The delayed input samples are supplied to one input of the multiplier. The coefficients (denoted 
by h0 to h(N-1)) are supplied to the other input of the multiplier through individual ROMs, RAMs, 
registers, or constants. Y(n) is merely the summation of a set of input samples, and in time, multiplied 
by their respective coefficients.

Multi-Channel FIR Filters
Multi-channel filters are used to filter multiple data streams of input signals using the same set of 
coefficients for all the channels, or using different coefficient sets for different channels.

A common example of a multi-channel filter is a radio receiver’s digital down converter. 
Equation 2-4 shows the equation, and Figure 2-15 shows the block diagram. A digitized baseband 
signal is applied to a matched low-pass filter M(z) to reduce the data rate from the input sample rate 
to the bit rate. The resulting in-phase and quadrature components are each processed by the same filter 
and, therefore, could be processed by a single, multi-channel filter running at twice the sample rate.

x (n )  =  x I ( n )  +  j x Q( n ) Equation 2-4

Figure 2-14: Conventional Tapped Delay Line FIR Filter
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Z-1 Z-1 Z-1
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Some video applications use multi-channel implementations for multiple components of a video 
stream. Typical video components are red, green, and blue (RGB) or luma, chroma red, and chroma 
blue (YCrCb). The different video components can have the same coefficient sets or different 
coefficient sets for each channel by simply changing the coefficient ROM structure.

Creating FIR Filters
Referring to Figure 2-4, Table 2-4, Table 2-5, and Table 2-6, an inner product MAC operation starts 
by loading the first operand into the P register. The output of the multiplier is passed through the X 
and Y multiplexer, added to zero, and loaded into the P register. Note the load operation OPMODE 
with value 0000101 selects zero to be output on the Z multiplexer supplying one of the adder inputs. 
A previous MAC inner product can exit via the P bus during this clock cycle.

In subsequent clock cycles, the MAC operation requires the X and Y multiplexers to supply the 
multiplier output and the Z multiplexer to supply the output of the P register to the adder. The 
OPMODE for this operation, which differs from the load cycle by a single bit, has a value of 0100101. 
The description above allows for continuous operation with the previous resulting output and initial 
load occurring in the same clock cycle. 

Refer to Chapter 4, “MAC FIR Filters,” for detailed information on using DSP48 slices to create 
MAC FIR filters.

To create a simple multiply-add processing element using the DSP48 slice shown in Figure 2-4, 
set the X and Y multiplexers to multiply and select the cascaded input from another DSP48 output 
(PCIN) as the Z MUX input to the arithmetic unit. For a normal multiply-add operation, the 
OPMODE value is set to 0010101. 

Refer to Chapter 5, “Parallel FIR Filters,” for detailed information on using DSP48 slices to 
create Parallel FIR filters.

Figure 2-15: Software-Defined Radio Digital Down Converter
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Adder Cascade vs. Adder Tree
In typical direct form FIR filters, an input stream of samples is presented to one data input of separate 
multipliers where coefficients supply the other input to the multipliers. An adder tree follows the 
multipliers where the outputs from many multipliers are combined as shown in Figure 2-16.

One difficulty of the adder tree concept is defining the size. Filters come in various lengths and 
consume a variable number of adders forming an adder tree. Placing a fixed number of adder tree 
components in silicon displaces other elements or requires a larger FPGA, thereby increasing the cost 
of the design. In addition, the adder tree structure with a fixed number of additions forces the designer 
to use logic resources when the fixed number of additions is exceeded. Using logic resources 
dramatically reduces performance and increases power consumption. The key to maximizing 

Figure 2-16: FIR Filter Adder Tree Using DSP48 Slices

48

48

y(n-6)

18

18
48

48

×

+

+18

18

18

18

18

18

h0(n)

X(n)

h1(n)

48

48

18

18
48

48

×

+×18

18

×

18

18

18

18

h2(n)

X(n)

h3(n)

h4(n)

X(n-2)

X(n-4)

h5(n)

h6(n)

h7(n)

+

+

Z-2

Z-2

Z-2

×

×

×

× +

The final stages of the post 
addition in logic are the 
performance bottleneck that
consume more power.

ug073_c1_13_070904

+



DSP: DESIGNING FOR OPTIMAL RESULTS

32 • Xilinx

performance and lowering power for DSP math is to remain inside the DSP48 column consisting 
entirely of dedicated silicon. 

The Virtex-4 solution accomplishes the post-addition process while guaranteeing no wasted 
silicon resources. It involves computing the additive result incrementally utilizing a cascaded 
approach as illustrated in Figure 2-17. Figure 2-17 is a systolic version of a direct form FIR with a 
latency of 10 clocks versus an adder tree latency of six clocks.



XTREMEDSP DESIGN CONSIDERATIONS

Xilinx • 33

Care should be taken to balance the input sample delay and the coefficients with the cascaded 
adder. The adaptive coefficients are staggered in time (wave coefficients).

Figure 2-17: Systolic FIR with Adder Cascade
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DSP48 Slice Functional Use Models
The use models in this section explain how the DSP48 slices are used in various DSP applications. 
Starting with simple multiplication and then growing in complexity, DSP48 slices can be connected 
in a variety of ways, trading performance and slice utilization. The tables and use models illustrate a 
sampling of different connections.

In some designs full performance is desired and several slices with pipelined registers are used. In 
designs with lower sample rates, a single slice is used with multiple clock cycles creating partial 
results to be combined at the very end of the computation. Performance choices (i.e., using multiple 
clock cycles) can produce efficient slice counts. In either case, the use of pipeline registers allows the 
DSP48 slice to run at a very fast, full performance clock rate.

Block diagrams showing the basic connections are also included. The “VHDL and Verilog 
Instantiation Templates” section shows how to instantiate and connect the DSP48 slice. In many cases, 
starting or ending states are different than the middle states of operation. 

Single Slice, Multi-Cycle, Functional Use Models
Table 2-10 lists and summarizes four single slice use models. These examples use the high speed of the 
DSP48 slice to accomplish a complicated multi-cycle function by changing the OPMODE bits from 
cycle to cycle. Entries in the table name the function with suggestions for DSP48 slice function during 
different clock cycles. Further details are in the following subsections. DSP48 designs support extra 
pipeline stages to increase overall performance, however, the function remains the same with increased 
clock-cycle latency.

Table 2-10: Single Slice DSP48 Implementation

Single Slice
Mode

Slice
Number

Cycle
Inputs

Function and OPMODE[6:0] Output
A B C

35 x 18
Multiply

1 1 0,A[16:0
]

B[17:0] X Multiply 0x05 P[16:0]

2 A[34:17
]

B[17:0] X 17-Bit Shift 
Feedback 

Multiply Add

0x65 P[52:17]

35 x 35
Multiply

1 1 0,A[16:0
]

0,B[16:0] X Multiply 0x05 P[16:0]

2 A[34:17
]

0,B[16:0] X 17-Bit Shift 
Feedback 

Multiply Add

0x65

3 0,A[16:0
]

B[34:17] X Multiply-
Accumulate

0x25 P[33:17]

4 A[34:17
]

B[34:17] X 17-Bit Shift 
Feedback 

Multiply Add

0x65 P[69:34]
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Single Slice, 35 x 18 Multiplier Use Model
The first entry in Table 2-10 indicates how the signed 35 x 18 multiply is designed using a single 
DSP48 slice. The 35-bit A and 18-bit B operands are assumed to be signed, two's complement 
numbers with results also expressed as a signed, two's complement, 53-bit output. Operand A can 
only be 35 bits because when separating an operand into two 18-bit parts, the least-significant part 
must have the MSB forced to zero, thereby reducing the available operand bits from 36 to 35. 

The multiply function uses one slice (labeled slice 0 in Table 2-10) and computes the final result 
in two clocks. The 36-bit, least-significant partial product output formed during the first clock cycle 
is computed by multiplying the least-significant 17 bits of Operand A, which are forced positive (sign 
bit = 0), with the 18 bits of Operand B (including the original sign).

0,A[16:0] x B[17:0]

The first product is loaded into the output register on this cycle. The lower 17 bits of the first 
partial product are the lower 17 bits of the final result. During the second clock cycle, the first partial 
product is shifted right by 17 bits, leaving the remaining bits to be fed back and added to the next 
partial product. This partial product is formed by multiplying the signed 18-bit Operand B with the 
signed upper 18 bits of Operand A. The lower 36 bits of the second partial product are the upper 36 
bits of the final result.

A[34:17] x B[17:0]

Figure 2-18 shows the function during both clock cycles for a single DSP48 slice used as a 35-
bit x 18-bit, signed, two's complement multiplier. Increased performance is obtained by using the 
pipeline registers before and after the multiplier, however, the clock latency is increased.

Complex
Multiply

1 1 ARe[17:
0]

BRe[17:0] X Multiply 0x05

2 AIm[17:
0]

BIm[17:0] X Multiply-
Accumulate

0x25 P (Real)

3 ARe[17:
0]

BIm[17:0] X Multiply 0x05

4 AIm[17:
0]

BRe[17:0] X Multiply-
Accumulate

0x25 P 
(Imaginary)

Table 2-10: Single Slice DSP48 Implementation (Continued)

Single Slice
Mode

Slice
Number

Cycle
Inputs

Function and OPMODE[6:0] Output
A B C
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Single Slice, 35 x 35 Multiplier Use Model
The next entry in Table 2-10 indicates how the signed 35 x 35 multiply is designed using a single 
DSP48 slice. The 35-bit A and B operands are assumed to be signed, two's complement numbers with 
results expressed as a signed, two's complement, 70-bit output. Operands can only be 35 bits because 
when separating an operand into two 18-bit parts. The least-significant 18-bit part must have the 
MSB forced to zero, thereby reducing the available operand bits from 36 to 35. The flow is similar to 
the 35 x 18 multiply, but instead of two partial products, there are four: a lower partial product, two 
middle partial products, and an upper partial product.

The multiply function uses one slice (labeled slice 1 in Table 2-10) and computes the final result 
in four clocks. The 36-bit lower partial product formed during the first clock cycle is computed by 
multiplying the least-significant 17 bits of Operand A, which are forced positive (sign bit = 0), with 
the least-significant 17 bits of Operand B, also forced positive.

0,A[16:0] x 0,B[16:0]

The first product is loaded into the output register on this cycle. All 36-bit products from the 
multiplier are sign extended to 48 bits. During the second and third clock cycles, the two middle 
products are computed. In clock cycle two, the first or lower partial product in the P register is shifted 
right by 17 bits and fed back to the adder/subtracter. The output of the multiplier is the first middle 
product, expressed as:

A[34:17] x 0,B[16:0]

The adder/subtracter is set to “add” and the two partial products are added.
In the third clock cycle, the previous result is fed back to the adder/subtracter, but not right 

shifted since its bits align with the next computed middle product expressed as:

B[34:17] x 0,A[16:0]

The adder/subtracter is again set to add, and the P register receives the sum of the three partial 
products. 

Finally, in the fourth clock cycle, the accumulated sum of partial products is again shifted right 
by 17 bits, and sign extended leaving the remaining bits to be fed back and added to the next partial 

Figure 2-18: Single Slice, 35 x 18-bit Multiplier
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product. The upper partial product is formed by multiplying the signed upper 18 bits of B with the 
signed upper 18 bits of A. 

A[34:17] x B[34:17]

The 70-bit result is output sequentially in 17-bit, 17-bit, and 36-bit segments as shown in 
Figure 2-19. 

Figure 2-19 shows the function during all four clock cycles for a single DSP48 slice used as a 35-
bit x 35-bit, signed, two's complement multiplier. Increased performance can be obtained by using 
the pipeline registers before and after the multiplier, however, the clock latency is increased.

Figure 2-19: Single Slice, 35 x 35-bit Multiplier
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Fully Pipelined Functional Use Models
Table 2-11 summarizes six fully pipelined functional use models. The table provides the function 
name and suggests what each DSP48 slice is doing. More details are provided in the following 
subsections. The designs are fully pipelined and run at the maximum DSP48 slice clock rate.

Table 2-11: Fully Pipelined DSP48 Implementations

Multiple Slice 
Mode

Slice
Inputs

Function and OPMODE[6:0] Output
A B C

35 x 18 
Multiply

Figure 2-20

1 0,A[16:0] B[17:0] X Multiply 0x05 P[16:0]
2 A[34:17] B[17:0] X 17-Bit Shifted 

Feedback Multiply 
Add

0x65 P[52:17]

35 x 35 
Multiply

Figure 2-21

1 0,A[16:0] 0,B[16:0] X Multiply 0x05 P[16:0]
2 A[34:17] 0,B[16:0] X 17-Bit Shifted 

Feedback Multiply 
Add

0x65

3 0,A[16:0] B[34:17] X Multiply Accumulate 0x25 P[33:17]
4 A[34:17] B[34:17] X 17-Bit Shifted 

Feedback Multiply 
Add

0x65 P[69:34]

18 x 18
Complex 
Multiply

Figure 2-22

1 ARe[17:0] BRe[17:0] X Multiply 0x05
2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)
3 ARe[17:0] BIm[17:0] X Multiply 0x05
4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P 

(Imaginary)
18 x 18
Complex 

MAC
Figure 2-23

1 ARe[17:0] BRe[17:0] X Multiply 0x05
2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)
3 ARe[17:0] BIm[17:0] X Multiply 0x05
4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P 

(Imaginary)
35 x 18
Complex 
Multiply
Real Part

Figure 2-26

1 ARe[17:0] BRe[17:0] X Multiply 0x05
2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)
3 ARe[17:0] BIm[17:0] X Multiply 0x05
4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P 

(Imaginary)
35 x 18
Complex 
Multiply

Imaginary 
Part

Figure 2-27

1 ARe[17:0] BRe[17:0] X Multiply 0x05
2 AIm[17:0] BIm[17:0] X Multiply Accumulate 0x25 P (Real)
3 ARe[17:0] BIm[17:0] X Multiply 0x05
4 AIm[17:0] BRe[17:0] X Multiply Accumulate 0x25 P 

(Imaginary)
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Table 2-12 summarizes utilization of more complex digital filters possible using the DSP48. The 
small “n” in the Silicon Utilization column indicates the number of DSP48 filter taps. The 
construction and operation of complex filters is discussed in Chapter 4, “MAC FIR Filters,” Chapter 5, 
“Parallel FIR Filters,” and Chapter 6, “Semi-Parallel FIR Filters.” 

Fully Pipelined, 35 x 18 Multiplier Use Model
The previous single slice use models show how performance and power consumption can be traded for 
a very small implementation (i.e., single slice). However, many DSP solutions require very high 
sample rates. When sample rates approach the maximum inherent clock rate for the math elements in 
the FPGA, it becomes necessary to design using parallel, fully pipelined math elements. 

With fully pipelined designs, inputs can be presented and an output computed every single clock 
cycle. In addition, the DSP48 slice circuits and interconnect are very carefully matched, ensuring no 
path becomes the timing bottleneck. Keeping math implementations mostly inside the DSP48 
maximizes performance and minimizes power consumption. Of course, pipelining does have increased 
clock latency, but this is usually not a problem in DPS algorithms.

In the single slice versions of this algorithm, partial products are computed sequentially and 
summed in the adder. For the fully pipelined version of the algorithm, the same partial products are 
computed in parallel and summed in the last slice producing a result and consuming new input 
operands every clock cycle. 

The single slice version of the 35 x 18 multiply uses two clock cycles. In each clock cycle the slice 
is presented with different operands, and switching the OPMODE bits modifies the behavior. The 
fully pipelined versions connect separate slices with fixed behavior.

In the 35 x 18-bit multiply block diagram (Figure 2-20), the most-significant input data part for 
the 35-bit A is delayed with an extra input register in the second slice. This allows the cascading B 
input to be available to the second slice multiply at the same time as the most-significant data part for 
A. The extra register delay for the cascading B input and most-significant part of A also guarantee the 
output of the multiply in the second slice arrive at the same time as the partial product result from the 
first slice multiply.

Table 2-12: Composite Digital Filters

Digital Filter Silicon Utilization OPMODE
Multi-Channel FIR n DSP slices, n RAM Static

Direct Form FIR n DSP slices Static

Transposed Form FIR n DSP slices Static

Systolic Form FIR n DSP slices Static

Polyphase Interpolator n DSP slices, n RAM Static

Polyphase Decimator n DSP slices, n RAM Dynamic

CIC Decimation/Interpolation Filters 1 DSP slice per stage Static
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Fully Pipelined, 35 x 35 Multiplier Use Model
Similar to the 35 x 18-bit example, this fully pipelined design can present inputs every clock cycle. An 
output is also computed every single clock cycle. Once again, no particular path becomes the timing 
bottleneck. The single slice version of the 35 x 35-bit multiply uses four clock cycles. In each clock 
cycle the slice is presented with different operands and switching the OPMODE bits modifies the 
behavior. The fully pipelined version connects separate slices with fixed behavior. 

In the single slice versions of this algorithm, partial products are computed sequentially and 
summed in the adder. For the fully pipelined version of the algorithm, the same partial products are 
computed in parallel and summed in the last slice, producing a result and consuming new input 
operands every clock cycle. 

As in the 35 x 18-bit example, there are additional register stages placed in the input paths to 
delay input data until the needed cascading results arrive. In Figure 2-21, the block diagram for the 
fully pipelined, 35 x 35 multiply shows where additional input register stages are placed. The 
35 x 35-bit multiplier has additional output registers outside of the slice to align the output data. The 
notation Z-3 is in the external register to signify the data must be delayed by three clock cycles. If the 
delay is only one cycle, then registers are typically used. When the delay is larger than one, an SRL16 
followed by the associated CLB flip-flop achieves maximum design performance.

Figure 2-20: Fully Pipelined, 35 x 18 Multiplier
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Fully Pipelined, Complex, 18 x 18 Multiplier Use Model
Complex multiplication used in many DSP applications combines operands having both real and 
imaginary parts into results with real and imaginary parts. Two operands A and B, each having real 
and imaginary parts, are combined as shown in the following equations:

(A_real × B_real) – (A_imaginary × B_imaginary) = P_real

(A_real × B_imaginary) + (A_imaginary × B_real) = P_imaginary

The real and imaginary results use the same slice configuration with the exception of the 
adder/subtracter. The adder/subtracter performs subtraction for the real result and addition for the 
imaginary result.

Figure 2-22 shows several DSP48 slices used as a complex, 18-bit x 18-bit multiplier.

Figure 2-21: Fully Pipelined, 35 x 35 Multiplier
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Note: The real and the imaginary computations are functionally similar using different input 
data. The real output subtracts the multiplied terms, and the imaginary output adds the 
multiplied terms.

Fully Pipelined, Complex, 18 x 18 MAC Use Model
The differences between complex multiply and complex MAC implementations using several DSP48 
slices is illustrated with the next set of equations. As shown, the addition and subtraction of the terms 
only occur after the desired number of MAC operations.

For N Cycles:

Slice 1 = (A_real × B_imaginary) accumulation
Slice 2 = (A_imaginary × B_real) accumulation
Slice 3 = (A_real × B_real) accumulation
Slice 4 = (A_imaginary × B_imaginary) accumulation

Figure 2-22: Pipelined, Complex, 18 x 18 Multiply
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Last Cycle:

Slice 1 + Slice 2 = P_imaginary
Slice 3 – Slice 4 = P_real

During the last cycle, the input data must stall while the final terms are added. To avoid having 
to stall the data, instead of using the complex multiply implementation shown in Figure 2-23 and 
Figure 2-24, use the complex multiply implementation shown in Figure 2-25. 

Figure 2-23: Fully Pipelined, Complex, 18 x 18 MAC (N Cycles)
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In Figure 2-24, the N+1 cycle adds the accumulated products, and the input data stalls one cycle.

Figure 2-24: Fully Pipelined, Complex, 18 x 18 MAC (Last or N+1 Cycle)
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An additional slice used for the accumulation is shown in Figure 2-25. The extra slice prevents 
the input data from stalling on the last cycle. The capability of accumulating the P cascade through 
the X mux feedback eliminates the pipeline stall.

Figure 2-25: Fully Pipelined, Complex, 18 x 18 MAC with Extra Slice
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Fully Pipelined, Complex, 35 x 18 Multiplier Usage Model
Many complex multiply algorithms require higher precision in one of the operands. The equations for 
combining the real and imaginary parts in complex multiplication are the same, but the larger 
operands must be separated into two parts and combined using partial product techniques. As shown 
in the other examples, the real and imaginary results use the same slice configuration with the 
exception of the adder/subtracter. The adder/subtracter performs subtraction for the real result and 
addition for the imaginary result. The following equations describe the math used to form the real and 
imaginary parts for the fully pipelined, complex, 35-bit x 18-bit multiplication.

(A_real × B_real) – (A_imaginary × B_imaginary) = P_real

(A_real × B_imaginary) + (A_imaginary × B_real) = P_imaginary

Figure 2-26 shows the real part of a fully pipelined, complex, 35-bit x 18-bit multiplier.

Figure 2-26: Real Part of a Pipelined, Complex, 35 x 18 Multiply
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Figure 2-27 shows the imaginary part of a fully pipelined, complex, 35-bit x 18-bit multiplier.

Miscellaneous Functional Use Models
Table 2-13 summarizes a few miscellaneous functional use models.

Figure 2-27: Imaginary Part of a Pipelined, Complex, 35 x 18 Multiply
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Dynamic, 18-bit Circular Barrel Shifter Use Model
The barrel shift function is very useful when trying to realign data very quickly. Using two DSP48 
slices, an 18-bit circular barrel shifter can be implemented. This implementation shifts 18 bits of data 
left by the number of bit positions represented by n. The bits shifted out of the most-significant part 
reappear in the lower significant part of the answer completing the circular shift. The equations in 
Figure 2-28 describe what value is carried out of the first slice, what this value looks like after shifting 
right 17 bits, and finally what is visible as a result.

Figure 2-29 shows the DSP48 used an 18-bit circular barrel shifter. The P register for slice 1 
contains leading zeros in the MSBs, followed by the most-significant 17 bits of A, followed by n 
trailing zeros. If n equals zero, then are no trailing zeros and the P register contains leading zeros 
followed by 17 bits of A.

24 2-input ANDs 1 DSP slice Static

24 2-input XORs 1 DSP slice Static

Up to 48-bit AND 1 DSP slice Static

Figure 2-28: Circular Barrel Shifter Equations

Table 2-13: Miscellaneous Functional Use Models (Continued)

Miscellaneous Silicon Utilization OPMODE

Slice 1, P Carry Out

Slice 2, P Carry In
after 17 bit right shift

Slice 2, P Result

PCOUT[000..., A[17:1], ...000]

A[000..., A[17:17 – N – 1]]

A[000..., A[17 – N:0], A[17:17 – N – 1]]

48 – 18 – N zeros

48 – 18 – N + 17 zeros

48 – 18 – N zeros N MSBs of A

17 bits of A

N MSBs of A

18 – N LSBs of A

N zeros

ug073_c1_25_061304
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In the case of n equal to zero (i.e., no shift), the P register of slice 1 is passed to slice 2 with 17 bits 
of right shift. This leaves all 48 bits of the P carry input effectively equal to zero since A[17:1] were 
shifted toward the least-significant direction. If there is a positive shift amount, then P carry out of 
slice 1 contains A[17:1] padded in front by 48 – 17– n zeros and in back by n zeros. After the right 
shift by 17, only the n most-significant bits of A remain in the lower 48 bits of the P carry input.

This n-bit guaranteed positive number is added to the A[17:0], left shifted by n bits. In the n 
least-significant bits there are zeros. The end result contained in A[17:0] of the second slice P register 
is A[17 – n:n, 17:17 – n + 1] or a barrel shifted A[17:0]. The design is fully pipelined and can 
generate a new result every clock cycle at the maximum DSP48 clock rate.

A single slice version of the dynamic 18-bit barrel shifter can be implemented. For this 
implementation, Table 2-14 describes the DSP48 slice function and OPMODE settings for each clock 
cycle. 

Figure 2-29: Dynamic 18-Bit Barrel Shifter
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VHDL and Verilog Instantiation Templates
This section describes the VHDL and Verilog instantiation templates. In VHDL, each template has a 
component declaration section and an architecture section. Insert each part of the template within the 
VHDL design file. The port map of the architecture section should include the design signal names. 

VHDL Instantiation Template
-- DSP48 : In order to incorporate this function into the 
design,
-- VHDL : the following instance declaration needs to be 
placed
-- instance : in the body of the design code. The instance name
-- declaration : (DSP48_inst) and/or the port declarations after the
-- code : “=>” declaration maybe changed to properly 
reference and
-- : connect this function to the design. All inputs
-- : and outputs must be connected.

-- Library : In addition to adding the instance declaration, a 
use
-- declaration : statement for the UNISIM.vcomponents library needs 
-- for : to be added before the entity declaration. This 
library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be 
used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <-----Cut code below this line and paste into the architecture body---->

 -- DSP48: DSP Function Block
 -- Virtex-4
 -- Xilinx HDL Language Template version 6.1i
 
DSP48_inst: DSP48 generic map (
     AREG => 1, -- Number of pipeline registers on the A input, 0, 1 or 2
     BREG => 1, -- Number of pipeline registers on the B input, 0, 1 or 2
     B_INPUT => “DIRECT”, -- B input DIRECT from fabric or CASCADE from another 
DSP48
     CARRYINREG => 1, -- Number of pipeline registers for the CARRYIN input, 
0 or 1
     CARRYINSELREG => 1, -- Number of pipeline registers for the CARRYINSEL, 
0 or 1
     CREG => 1, -- Number of pipeline registers on the C input, 0 or 1
     LEGACY_MODE => “MULT18X18S”, -- Backward compatibility, NONE, 

-- MULT18X18 or MULT18X18S
     MREG => 1, -- Number of multiplier pipeline registers, 0 or 1
     OPMODEREG => 1, -- Number of pipeline registers on OPMODE input, 0 or 1
     PREG => 1, -- Number of pipeline registers on the P output, 0 or 1
     SIM_X_INPUT => “GENERATE_X_ONLY”, -- Simulation parameter for 
behavior for X on input.

-- Possible values: GENERATE_X, 
NONE or WARNING
     SUBTRACTREG => 1) -- Number of pipeline registers on the SUBTRACT input, 
0 or 1

 port map (
     BCOUT => BCOUT, -- 18-bit B cascade output
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     P => P, -- 48-bit product output
     PCOUT => PCOUT, -- 38-bit cascade output
     A => A, -- 18-bit A data input
     B => B, -- 18-bit B data input
     BCIN => BCIN, -- 18-bit B cascade input
     C => C, -- 48-bit cascade input
     CARRYIN => CARRYIN, -- Carry input signal
     CARRYINSEL => CARRYINSEL, -- 2-bit carry input select
     CEA => CEA, -- A data clock enable input
     CEB => CEB, -- B data clock enable input
     CEC => CEC, -- C data clock enable input
     CECARRYIN => CECARRYIN, -- CARRYIN clock enable input
     CECINSUB => CECINSUB, -- CINSUB clock enable input
     CECTRL => CECTRL, -- Clock Enable input for CTRL registers
     CEM => CEM, -- Clock Enable input for multiplier

registers
     CEP => CEP, -- Clock Enable input for P registers
     CLK => CLK, -- Clock input
     OPMODE => OPMODE, -- 7-bit operation mode input
     PCIN => PCIN, -- 48-bit PCIN input     
     RSTA => RSTA, -- Reset input for A pipeline registers
     RSTB => RSTB, -- Reset input for B pipeline registers
     RSTC => RSTC, -- Reset input for C pipeline registers
     RSTCARRYIN => RSTCARRYIN, -- Reset input for CARRYIN registers
     RSTCTRL => RSTCTRL, -- Reset input for CTRL registers
     RSTM => RSTM, -- Reset input for multiplier registers
     RSTP => RSTP, -- Reset input for P pipeline registers
     SUBTRACT => SUBTRACT -- SUBTRACT input
);

    -- End of DSP48_inst instantiation

Verilog Instantiation Template
The following is a synthesis instantiation template for the DSP48 slice in Verilog. After the port list 
are synthesis attributes with syntax written for the Xilinx Synthesis Tool (XST). If using a different 
synthesis tool, consult the tools user guide and change the attributes appropriately. The section after 
the synthesis attributes consists of “defparam” statements that are ignored by the synthesis process, 
but are used to initialize the simulation model to match the synthesis attributes during simulation.

// DSP48 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (DSP48_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// : and outputs must be connected.

// <-----Cut code below this line---->

   // DSP48: DSP Function Block
   // Virtex-4
   // Xilinx HDL Language Template version 7.1i
 
   DSP48 DSP48_inst (

.BCOUT(BCOUT), // 18-bit B cascade output

.P(P), // 48-bit product output

.PCOUT(PCOUT), // 38-bit cascade output

.A(A), // 18-bit A data input

.B(B), // 18-bit B data input

.BCIN(BCIN), // 18-bit B cascade input

.C(C), // 48-bit cascade input

.CARRYIN(CARRYIN), // Carry input signal

.CARRYINSEL(CARRYINSEL), // 2-bit carry input select

.CEA(CEA), // A data clock enable input
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.CEB(CEB), // B data clock enable input

.CEC(CEC), // C data clock enable input

.CECARRYIN(CECARRYIN), // CARRYIN clock enable input

.CECINSUB(CECINSUB), // CINSUB clock enable input

.CECTRL(CECTRL), // Clock Enable input for CTRL registers

.CEM(CEM), // Clock Enable input for multiplier 
registers

.CEP(CEP), // Clock Enable input for P registers

.CLK(CLK), // Clock input

.OPMODE(OPMODE), // 7-bit operation mode input

.PCIN(PCIN), // 48-bit PCIN input

.RSTA(RSTA), // Reset input for A pipeline registers

.RSTB(RSTB), // Reset input for B pipeline registers

.RSTC(RSTC), // Reset input for C pipeline registers

.RSTCARRYIN(RSTCARRYIN), // Reset input for CARRYIN registers

.RSTCTRL(RSTCTRL), // Reset input for CTRL registers

.RSTM(RSTM), // Reset input for multiplier registers

.RSTP(RSTP), // Reset input for P pipeline registers

.SUBTRACT(SUBTRACT) // SUBTRACT input
);

 
// The following defparams specify the behavior of the DSP48 slice. 
// If the instance name to the DSP48 is changed, that change needs to
// be reflected in the defparam statements.

   defparam DSP48_inst.AREG = 1; // Number of pipeline registers on the A 
input, 0, 1 or 2
   defparam DSP48_inst.BREG = 1; // Number of pipeline registers on the B 
input, 0, 1 or 2
   defparam DSP48_inst.B_INPUT = “DIRECT”; // B input DIRECT from fabric 

// or CASCADE from another 
DSP48
   defparam DSP48_inst.CARRYINREG = 1; // Number of pipeline 
registers 

// for the CARRYIN input, 0 
or 1
   defparam DSP48_inst.CARRYINSELREG = 1; // Number of pipeline 
registers for the

// CARRYINSEL, 0 or 1
   defparam DSP48_inst.CREG = 1; // Number of pipeline registers on the C 
input, 0 or 1
   defparam DSP48_inst.LEGACY_MODE = “MULT18X18S”; // Backward compatibility,

// NONE, MULT18X18 or 
MULT18X18S
   defparam DSP48_inst.MREG = 1; // Number of multiplier 
pipeline registers, 0 or 1
   defparam DSP48_inst.OPMODEREG = 1; // Number of pipeline 
registers on 

// OPMODE input, 0 or 1
   defparam DSP48_inst.PREG = 1; // Number of pipeline registers on the P 
output, 0 or 1
   defparam DSP48_inst.SIM_X_INPUT = “GENERATE_X_ONLY”; // Simulation 
parameter for behavior

// for X on input. 
Possible values: 

// GENERATE_X, NONE 
or WARNING
   defparam DSP48_inst.SUBTRACTREG = 1; // Number of pipeline 
registers 

// on the SUBTRACT input, 0 
or 1
 
   // End of DSP48_inst instantiation
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Chapter 3

DSP48 Slice Math Functions

The DSP48 slice efficiently performs a wide range of basic math functions, including adders, 
subtracters, accumulators, MACs, multiply multiplexers, counters, dividers, square-root functions, 
and shifters. The optional pipeline stage within the DSP48 tile ensures high performance arithmetic 
functions. The DSP48 column structure and associated routing provides fast routing between DSP48 
tiles with less routing congestion to the FPGA fabric. This chapter describes how to use the DSP48 
slice to perform some basic arithmetic functions.

Overview
The DSP48 slice is shown in Figure 3-1. Refer to Figure 2-3, page 13 for a diagram showing two 
slices cascaded together.

Figure 3-1: DSP Slice Architecture
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Basic Math Functions

Add/Subtract
The DSP48 slice contains an adder/subtracter unit allowing different combinations of add/subtract 
logic to be implemented in a single DSP slice. The output of the DSP48 slice in adder/subtracter mode 
is:

Output = Z ± (X + Y +CIN)

The X, Y, and Z terms in this equation refer to the X, Y, and Z multiplexers shown in Figure 3-1. 
The inputs to the X, Y, and Z multiplexers are routed to the outputs using OPMODE settings as 
shown in Table 3-1. The CIN term is the Carry Input to the Adder/subtracter unit.

Determining whether an addition or a subtraction (±) takes place is controlled by the 
SUBTRACT input to the adder/subtracter unit. The SUBTRACT input must be set to 0 to add, and 
1 to subtract.

The Verilog code for this 48-bit adder is in the reference design file: ADDSUB48.v, and the 
VHDL code is in the reference design file: ADDSUB48.vdh. This code can be used to implement any 
data combination for this equation by using the different OPMODEs found in Table 3-1.

Accumulate
A DSP48 slice can implement add and accumulate functions with up to 36-bit inputs. The output 
equation of the accumulator is:

Output = Output + A:B + C

Concatenate (:) the A and B inputs to provide a 36-bit input from Multiplexer X using the 
setting OPMODE[1:0] = 0’b11. Select the C input to Multiplexer Y using the setting 
OPMODE[3:2] = 0’b11. To add (accumulate) the output of the slice, select the feedback path (P) 
through the Z multiplexer using the setting OPMODE[6:4] = 0’b010. 

Other accumulate functions can be implemented by changing the OPMODE selection for the Z 
input multiplexer. To get an output of:

Output = Shift(P) ± (A:B + C)

Table 3-1: OPMODE Settings for the Z, Y, and X Multiplexers

Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0]
0 000 0 00 0 00

PCin 001 AxB 01 AxB 01

P 010 Illegal 10 P 10

C 011 C 11 A:B 11

ShiftPCin 101

ShiftP 110

Notes: 
1. If one of X or Y is set to 01, the other one must also be set to 01.
2. For Carryin Select (CIN) see “Carry Input Logic” in Chapter 2.
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use the setting OPMODE[6:4] = 0’b110 to select the Shift(P) input to the Z multiplexer. To get 
an output of:

Output = 0 ± (A:B +C)

(no accumulation) use the setting OPMODE [6:4] = 0’b0000 to select the ZERO input to the 
Z multiplexer. 

The Verilog code for the accumulator is in the reference design file ACCUM48.v, and the VHDL 
code is in the reference design file ACCUM48.vhd. 

Multiply Accumulate (MAC)
The DSP48 slice allows two 18-bit numbers to be multiplied together, and the product to be added to 
or subtracted from a previous product, a “0”, or a shifted product. In addition, rounding of any of the 
add, subtract, previous product, 0, or shifted product options is also possible. 

The input added or subtracted from the product is from the output of the Z multiplexer. This 
output is set using the corresponding OPMODE setting as shown in Table 3-1. Cascade the MAC tree 
by selecting the PCIN signal from the previous slice as the output from the Z multiplexer. 

The Verilog code for the multiply-accumulate function is in the reference design file MAC.v, and 
the VHDL code is in the reference design file MAC.vhd. 

Multiplexer
There are three multiplexers in a DSP48 slice: the 3:1 Y multiplexer, the 4:1 X multiplexer, and the 
6:1 Z multiplexer. Only one multiplexer is active to use the slice as a pure multiplexer. Make the other 
two multiplexers inactive by choosing the OPMODE selecting the ZERO inputs. The two DSP48 
tiles in a slice can be combined to make wider input multiplexers.

Barrel Shifter
An 18-bit barrel shifter can be implemented using the two DSP48 tiles in the DSP slice. To barrel 
shift the 18-bit number A[17:0] two positions to the left, the output from the barrel shifter is 
A[15:0], A[17], and A[16]. This operation is implemented as follows.

The first DSP48 is used to multiply {0,A[17:1]} by 22. The output of this DSP48 tile is now 
{0,A[17:1],0,0}. The output from the first tile is fed into the second DSP48 tile over the 
PCIN/PCOUT signals, and is passed through the 17-bit right-shifted input. The input to the Z 
multiplexer becomes {0,A[17],A[16]}, or {0,A[17:0],0,0} shifted right by 17 bits.

The multiplier inputs to the second DSP48 tile are A = A[17:0] and B = 22. The output of this 
multiplier is {A[17:0], 0,0}. This output is added to the 17-bit right-shifted value of {0,A[17],A[16]} 
coming from the previous slice. The 18-bit output of the adder is {A[15:0],A[17],A[16]}. This is the 
initial A input shifted by two to the left.

The Verilog code is in the reference design file barrelshifter_18bit.v, and the VHDL code 
is in the reference design file barrelshifter_18bit.vhd).

Counter
The DSP48 slice can be used as a counter to count up by one on each clock cycle. Setting the 
SUBTRACT input to ‘0’, the carry-in input (CIN) to ‘1’, and OPMODE [6:0] = 0’b0100000 gives 
an output of P + CIN. After the first clock, the output P is 0 + 1 = 1. Subsequent outputs are P + 1. 
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This method is equivalent to counting up by one. The counter can be used as a down counter by 
setting the SUBTRACT input to a ‘1’ at the start.

The counter can also be preloaded using the C input to provide the preload value. Setting the 
Carry In input (CIN) to ‘1’ and OPMODE [6:4] = 0’b0110000 gives an output of P = C+1 in the 
first cycle. For subsequent clocks, set the OPMODE to select P = P+1 by changing OPMODE [6:4] 
from 0’b0110000 to 0’b0100000. 

The Verilog code for a loadable counter is in the reference design file CNTR_LOAD.v, and the 
VHDL code for a loadable counter is in the reference design file CNTR_LOAD.vhd.

Multiply
A single DSP48 slice can implement an 18x18 signed or unsigned multiplier. Larger multipliers can 
be implemented in a single DSP48 slice by sequentially shifting the appropriate number of bits in 
each clock cycle. The Verilog implementation of an 18x18 multiplier is in the reference design file 
MULT18X18_PARALLEL.v, and the VHDL implementation is in the reference design file 
MULT18X18_PARALLEL.vhd. 

The Verilog implementation of a 35x35 multiplier and a sequential 35x35 multiplier are in the 
reference design files MULT35X35_PIPE.v and MULT35X35_SEQUENTIAL_PIPE.v respectively. 
The VHDL implementation of a 35x35 multiplier and a sequential 35x35 multiplier are in the 
reference design files MULT35X35_PIPE.vhd and MULT35x35_SEQUENTIAL_PIPE.vhd, 
respectively.

Divide
Binary division can be implemented in the DSP48 slice by performing a shift and subtract or a 
multiply and subtract. The DSP48 slice includes a shifter, a multiplier, and adder/subtracter unit to 
implement binary division. The division by subtraction and division by multiplication algorithms are 
shown below. These algorithms assume:
1. N > D 
2. N and D are both positive

If either N or D is negative, use the same algorithms by taking the absolute positive values for N 
and D and making the appropriate sign change in the result.
The terms N and D in the algorithms refer to the number to be divided (N) and the divisor (D). 

The terms Q and R in the algorithms refer to the quotient and remainder, respectively. 

Dividing with Subtraction
The shift and subtract algorithm can be explained as follows:

If N is an 8-bit integer and D is not more than 8 bits wide, N/D = Q + R
1. Assign the 8-bit register R the value “00000000”.
2. Shift the R register one bit to the left and fill in the LSB with N[8-n].
3. Calculate R-D.
4. Set R and set Q:

a. If R-D is positive, set Q[8-n] to 1 and R = R-D

b. If R-D is negative, set Q[0] to 0 and R = R

5.  Repeat Steps 2 to 4, filling in R[n] each time with N[8-n], where n is the number of the 
iteration. Q[8-n] is filled each time in Step 4.
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After the eighth iteration, Q[7:0] contains the quotient, and R[7:0] contains the remainder. For 
example: 

Step
Iteration

(n)
Action

After Action
Q R

1 1 R = 0000,0000 xxxx,xxxx 0000,0000

2 1 R <-- N[7] = 0000,0000 xxxx,xxxx 0000,0000

3 1 R-D = Negative xxxx,xxxx 0000,0000

4 1 Q[7] = 0 0xxx,xxxx 0000,0000

2 2 R <-- N[6] = 0000,0000 0xxx,xxxx 0000,0000

3 2 R-D = Negative 0xxx,xxxx 0000,0000

4 2 Q[6] = 0 00xx,xxxx 0000,0000

2 3 R <-- N[5] = 0000,0000 00xx,xxxx 0000,0000

3 3 R-D = Negative 00xx,xxxx 0000,0000

4 3 Q[5] = 0 000x,xxxx 0000,0000

2 4 R <-- N[4] = 0000,0000 000x,xxxx 0000,0000

3 4 R-D = Negative 000x,xxxx 0000,0000

4 4 Q[4] = 0 0000,xxxx 0000,0000

2 5 R <-- N[3] = 0000,0001 0000,xxxx 0000,0001

3 5 R-D = Negative 0000,xxxx 0000,0001

4 5 Q[3] = 0 0000,0xxx 0000,0001

2 6 R <-- N[2] = 0000,0010 0000,0xxx 0000,0010

3 6 R-D = Negative 0000,0xxx 0000,0010

4 6 Q[2] = 0 0000,00xx 0000,0010

2 7 R <-- N[1] = 0000,0100 0000,00xx 0000,0100

3 7 R-D = Positive 0000,00xx 0000,0100

4 7 Q[1] = 1, R = 0000,0001 0000,001x 0000,0001

2 8 R <-- N[0] = 0000,0010 0000,001x 0000,0010

3 8 R-D = Negative 0000,001x 0000,0010

8 Q[2] = 0 0000,0010 0000,0010

N
D
----- 8

3
----- 0000 1000,

011
------------------------------------------------ Q(10) R(10)+= = =
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Dividing with Multiplication
The multiply and subtract method consists of rewriting N/D = Q + R as N= D * (Q + R).

The answer is calculated using the following steps for an 8-bit N/D:
1. Set the initial value of Q[8-n] =1 and the bits right of Q[8-n] to 0. 
2. Calculate D*Q. 
3. Calculate N- (D*Q).

a. If step 2 is positive, N > (D*Q), set Q[8-n] to a ‘1’.

b. If step 2 is negative, N < (D*Q), set Q[8-n] to a ‘0’.

4. Repeat steps 1 to 3.
After the eighth iteration, Q[7:0] contains the quotient and N - (D*Q) contains the remainder. 

Using the same example: 

Step
Iteration

(n)
Action

After Action
Q

1 1 Q[8-1] = 1, Set the bits right of Q[8-1] to 0 1000,0000

2 1 D*Q = 3 * 128 = 384 1000,0000

3 1 N - (D*Q) = 8 - 384 = Negative Q[8-1] = 0 0000,0000

1 2 Q[8-2] = 1, Set the bits right of Q[8-2] to 0 0100,0000

2 2 D*Q = 3 * 64 = 192 0100,0000

3 2 N - (D*Q) = 8 - 192 = Negative Q[8-2] = 0 0000,0000

1 3 Q[8-3] = 1, Set the bits right of Q[8-3] to 0 0010,0000

2 3 D*Q = 3 * 32 = 96 0010,0000

3 3 N - (D*Q) = 8 - 96 = Negative Q[8-3] = 0 0000,0000

1 4 Q[8-4] = 1, Set the bits right of Q[8-4] to 0 0001,0000

2 4 D*Q = 3 * 16 = 48 0001,0000

3 4 N - (D*Q) = 8 - 48 = Negative Q[8-4] = 0 0000,0000

1 5 Q[8-5] = 1, Set the bits right of Q[8-5] to 0 0000,1000

2 5 D*Q = 3 * 8 = 24 0000,1000

3 5 N - (D*Q) = 8 - 24 = Negative Q[8-5] = 0 0000,0000

1 6 Q[8-6] = 1, Set the bits right of Q[8-6] to 0 0000,0100

2 6 D*Q = 3 * 4 = 12 0000,0100

3 6 N - (D*Q) = 8 - 12 = Negative Q[8-6] = 0 0000,0000

1 7 Q[8-7] = 1, Set the bits right of Q[8-7] to 0 0000,0010

2 7 D*Q = 3 * 2 = 6 0000,0010

3 7 N - (D*Q) = 8 - 6 = Positive
Q[8-7] = 1

0000,0010

8
3
----- 0000 1000,

011
------------------------------------------------ Q(10) R(10)+= =
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Both of the division implementations are possible in one DSP48 slice. The slice usage for 8-bit 
division is one DSP48, and the latency is eight clock cycles.

The Verilog code for the Divide by Subtraction implementation is in the reference design file 
DIV_SUB.v, and the VHDL code is in the reference design file DIV_SUB.vhd. The Verilog code for 
the Divide by Multiplication implementation is in DIV_MULT.v and the VHDL code for the second 
implementation is in DIV_MULT.vhd.

Square Root
The square root of an integer number can be calculated by successive multiplication and subtraction. 
This is similar to the subtraction method used to divide two numbers. The square root of an N-bit 
number will have N/2 (rounded up) bits. If the square root is a fractional number, N/2 clocks are 
needed for the integer part of the answer, and every following clock gives one bit of the fraction part. 
The logic needed to compute this is shown in Figure 3-2.

The square root for an 8-bit number can be calculated as follows:

Y is the integer part of the root, and Z is the fraction part. Register A refers to the registers found 
on the A input to the DSP48 slice, and Register C refers to the registers found on the C input to the 
DSP48 slice
1. Read the number into Register C. Set Register A to 8’b10000000.
2. Calculate Register C – (Register A * Register A).
3. If step 2 is positive, set Register A[(8-clock)] = 1, 

Register A[(8-clock)-1] = 1

1 8 Q[8-8] = 1 0000, 0011

2 8 D*Q = 3 * 3 = 9 0000,0011

3 8 N - (D*Q) = 8 – 9 = Negative Q[8-8] = 0 0000,0010

Remainder = N-(D*Q) = 8-(3*2) = 2

Figure 3-2: Square Root Logic

Step
Iteration

(n)
Action

After Action
Q

Register
A

Register
A

Input = Reg C

Multiplier

Subtractor

1'b1

1'b0

Input

UG073_c2_02_061304

X Y.Z=
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If step 2 is negative, set Register A[(8-clock)] = 0, 
Register A[(8-clock)-1] = 1

4. Repeat steps 1 to 3.
Four clocks are required to calculate the integer part of the value (Y). The number of clocks 

required for the fraction part (Z) depends on the precision required. For an 8-bit input value, the value 
in Reg_A after eight clocks includes the integer part given by the four MSBs and the fractional part 
given by the four LSBs.

For example, find the square root of 11 decimal = 3.3166. Because 11 decimal is a 4-bit binary 
number, the integer part is two bits wide and is obtained in two clock cycles. The bit width of the 
fractional part depends on the precision required. In this example, four bits of precision are used 
requiring four clock cycles.

The binary of value of 11 decimal is 1011. Expressed as an 8-bit number, it becomes 
0000,1011. Store this value as 0000,1011,0000,0000. The last eight bits are necessary because 
the result is an 8-bit number, and 8 bits * 8 bits gives a 16-bit multiplication result.

Clock Step Action

1 1 Register A = 1000,0000

1 2 0000,1011,0000,0000 – (1000,0000 * 1000,0000)

1 3 Step 2 is negative. Set Register A to 0100,0000

2 1 Register A = 0100,0000

2 2 0000,1011,0000,0000 – (0100,0000 * 0100,0000)

2 3 Step 2 is negative. Set Register A to 0010,0000

3 1 Register A = 0010,0000

3 2 0000,1011,0000,0000 – (0010,0000 * 0010,0000)

3 3 Step 2 is positive. Set Register A to 0011,0000

4 1 Register A = 0011,0000

4 2 0000,1011,0000,0000 – (0011,0000* 0011,0000)

4 3 Step 2 is positive. Set Register A to 0011,1000

5 1 Register A = 0011,1000

5 2 0000,1011,0000,0000 – (0011,1000* 0011,1000)

5 3 Step 2 is negative. Set Register A to 0011,0100

6 1 Register A = 0011,0100

6 2 0000,1011,0000,0000 – (0011,0100* 0011,0100)

6 3  Step 2 is positive. Set Register A to 0011,0110

7 1 Register A = 0011,0110

7 2 0000,1011,0000,0000 – (0011,0110* 0011,0110)

7 3 Step 2 is negative. Set Register A to 0011,0101

8 1 Register A = 0011,0101
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The output is in Register A and is 0011,0101. The final answer is 11.0101.
The Verilog code for this implementation (8-bit input, 8 clocks) is in SQRT.v, and the VHDL 

code is in SQRT.vhd.

Square Root of the Sum of Squares
The sum of squares is a widely used DSP function. The sum of squares can be either of the forms listed 
in Equation 3-1 or Equation 3-2.

Equation 3-1

Equation 3-2

These functions are basic multiply-accumulate operations easily implemented on the DSP48 slice 
as described in “Multiply Accumulate (MAC),” page 55. A variation of this function is when the 
square root of either of the above equations is needed. In this case, the OPMODE does the MAC 
function for n cycles and then switches to do the square root function for the next n cycles. The 
Subtract input is dynamic and does an “add” for the MAC cycles and a “subtract” for the square root 
cycles.

With the SUBTRACT input equal to 0, the OPMODE for the function is 0110101. A square 
root function is implemented by changing the SUBTRACT input to a “1”.

8 2 0000,1011,0000,0000 – (0011,0101* 0011,0101)

8 3 Step 2 is positive. 

Clock Step Action

SoS A2 B2+= SoS Ai2

i 0=

I n 1–=

∑=or

SoS A2 B2+= SoS Ai2

i 0=

I n 1–=

∑=or
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Conclusion
The DSP48 slice has a variety of features for fast and easy implementation of many basic math 
functions. The dedicated routing region around the DSP48 slice and the feedback paths provided in 
each slice result routing improvements. The high-speed multiplier and adder/subtracter unit in the 
slice delivers high-speed math functions.
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Chapter 4

MAC FIR Filters

This chapter describes the implementation of a Multiply-Accumulate (MAC) Finite Impulse Response 
(FIR) filter using the DSP48 slice in a Virtex™-4 device. Because the Virtex-4 architecture is flexible, 
constructing FIR filters for specific application requirements is practical. Creating optimized filter 
structures of a sequential nature saves resources and potential clock cycles. 

This chapter demonstrates two sequential filter architectures: the single-multiplier and the dual-
multiplier MAC FIR filter. Reference design files are available for the System Generator in DSP, 
VHDL, and Verilog. These reference designs permit filter parameter changes including coefficients 
and the number of taps.

Overview
A large array of filtering techniques is available to signal processing engineers. A common filter 
implementation uses the single multiplier MAC FIR filter. In the past, this structure used the 
Virtex-II embedded multipliers and 18K block RAMs. The Virtex- 4 DSP48 slice contains higher 
performance multiplication and arithmetic capabilities specifically designed to enhance the use of 
MAC FIR filters in FPGA-based Digital Signal Processing (DSP).

Single-Multiplier MAC FIR Filter
The single-multiplier MAC FIR is one of the simplest DSP filter structures. The MAC structure uses 
a single multiplier with an accumulator to implement a FIR filter sequentially versus a full parallel 
FIR filter. This trade-off reduces hardware by a factor of N, but also reduces filter throughput by the 
same factor. The general FIR filter equation is a summation of products (also know as an inner 
product), defined as: 

Equation 4-1

In this equation, a set of N coefficients is multiplied by N respective data samples, and the inner 
products are summed together to form an individual result. The values of the coefficients determine 
the characteristics of the filter (e.g., low-pass filter, band-pass filter, high-pass filter). The equation can 
be mapped to many different implementations (e.g., sequential, semi-parallel, or parallel) in the 
different available architectures.

yn xn i– hi
i 0=

N 1–

∑=

http://www.xilinx.com
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For slow sample rate requirements and a large number of coefficients, the single MAC FIR filter 
is well suited and dual-port block RAM is the optimal choice for the memory buffer. This structure is 
illustrated in Figure 4-1. If the number of coefficients is small, distributed memory and the SRL16E 
can be used as the data and coefficient buffers. For more information on using distributed memory, 
refer to “Using Distributed RAM for Data and Coefficient Buffers,” page 70.

The input data buffer is implemented in dual-port block RAM. The read address port is clocked 
N times faster than the input samples are written into the data port, where N is the number of filter 
taps. The filter coefficients are also stored in the same dual-port block RAM, and are output at port B. 
Hence, the RAM is used in a mixed-mode configuration. The data is written and read from port A 
(RAM mode), and the coefficients are read only from port B (ROM mode). 

The control logic provides the necessary address logic for the dual-port block RAM and creates a 
cyclic RAM buffer for port A (data buffer) to create the FIR filter delay line. An optional output 
capture register maybe required for streaming operation, if the accumulation result can not be 
immediately used in downstream processing.

The multiplier followed by the accumulator sums the products over the same number of cycles as 
there are coefficients. With this relationship, the performance of the MAC FIR filter is calculated by 
the following equation:

Max imum I n p u t  S amp l e  R a t e  =  C l o c k  S peed  /  Numbe r  o f  Ta p s Equation 4-2

If the coefficients possess a symmetric shape, a slightly costlier structure is available (see 
“Symmetric MAC FIR Filter,” page 72), however, the maximum sampled rate is doubled. The sample 
rate of the costlier structure is defined as follows:

Samp l e  R a t e  =  C l o c k  S peed  /  (1/2  x  numbe r  o f  t a p s ) Equation 4-3

Figure 4-1: Single-Multiplier MAC FIR Filter

Data Samples
96 x 18

Coefficients
96 x 18Control

Data Addr

WE

Dual-Port Block RAM

Optional Output
Register Used

18

Coef Addr

18

A

B

load

P

Z-4

DSP48 Slice
OPMODE = 0100101

UG073_c3_02_081804



MAC FIR FILTERS

Xilinx • 65

Bit Growth
The nature of the FIR filter, with numerous multiplies and adds, outputs a larger number of bits from 
the filter than are present on the filter’s input. This effect is the "bit growth" or the "gain" of a filter. 
These larger results cannot be maintained throughout a system due to cost implications. Therefore, the 
full precision result is typically rounded and quantized (refer to “Rounding,” page 69) back to a 
desired level. However, it is important to calculate the full precision output in order to select the 
correct bits from the output of the MAC. 

A simple explanation for implementation purposes involves considering the maximum value 
expected at the output (saturation level). A greater understanding of the specific filter enhances the 
accuracy of the output bit width. The following two techniques help determine the full precision 
output bit width.

Generic Saturation Level
This technique assumes every value in the filter could be the worst possible for the size of the two’s 
complement numbers specified. Using the generic saturation level is a good starting point when the 
coefficients are unknown, but the number of bits required to represent them is known. For example, 
if the coefficients are reloadable, as in adaptive filters.

Ou t pu t  W i d t h  =  c e i l  ( l o g2  (2 (b -1 )  x  2 ( c - 1 )  x  N )  +  1 Equation 4-4

where:
ceil: Rounds up to the nearest integer
b: Number of bits in the data samples
c: Number of bits in the coefficients

Coefficient Specific Saturation Level
This technique uses the magnitude-only sum of actual coefficient values and applies the worst-case 
data samples to the filter. More accurate calculations could be required if a bit maximum is reached. 
With actual coefficients, the output for the worst possible inputs can be determined.

Ou t p u t  W i d t h  =  c e i l  ( l o g2  (2 (b -1 )  x  a b s  ( s um  ( c oe f ) )  x  N )  +  1 Equation 4-5

where:
ceil: Rounds up to the nearest integer
abs: Makes the absolute value of a number (not negative)
sum: Sums all the values in an array
B: Number of bits in the data samples
C: Number of bits in the coefficients

If the output width exceeds 48 bits, there are notable effects on the size (in terms of the number 
of DSP48 slices used to implement the filter), because the DSP48 slice is limited to a 48-bit result. 
The output width can be extended by using more DSP48 slices, however, reconsidering the 
specification is more practical.

Control Logic
The control logic is very straightforward when using an SRL16E for the data buffer. For dual-port 
block RAM implementations the cyclic RAM buffer is required. This can complicate the control 
logic, and there are two different ways this control can be implemented. Both techniques produce the 
same results, but one way uses all slice-based logic to produce the results, while the other way embeds 
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the control in the available space in the Block RAM. The basic architecture of the control logic for the 
slice based approach is outlined in Figure 4-2.

The control logic consists of two counters. One counter drives the address of the coefficient 
section of the dual-port block RAM, while the other controls the address for the data buffer. A 
comparator controls an enable to the data buffer counter to disable the count for one cycle every output 
sample, and writes a new sample into the data buffer every N cycles. A simplified diagram of the 
control logic and the memory is shown in Figure 4-3.

Figure 4-2: Dual-Port Block RAM MAC FIR Filter Control Logic Using Slices

Figure 4-3: Control Logic and Memory
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The cyclic data RAM buffer is required to emulate the delay line shift register of the FIR filter 
while using a static RAM. The RAM is addressed sequentially every clock cycle. The counter rolls over 
to have the last coefficient (N–1) read out. At this point, the data buffer is stalled by the controlling 
clock enable and the newest sample is read into the buffer AFTER the oldest data sample is read out. 
This newest data sample is now multiplied by the first coefficient (as the coefficient address counter is 
never disabled) and the cycle is repeated. The effect is of data shifting over time as the FIR filter 
equation requires. The ability to perform a simultaneous read and write requires the RAM buffer to 
have a read port and a write port (called read before write mode).

The inverted WE signal is also used to drive the load input (OPMODE[5]) on the DSP48 slice. 
This signal must be delayed with a simple SRL16E to make sure the latency on the signal matches the 
latency through the MAC engine. This delay is typically four clocks, but depends upon the number of 
pipelining registers used in the DSP48 slice and block RAM. The number of required pipelining 
stages is a function of the desired achievable clock frequency.

The number of resources used for the control logic is easily calculated. The counters are always 
two bits per slice plus the additional logic required to count limit the counter (unless the counter is a 
power of two limit). The count limiter circuit size is determined by the number of bits needed to 
represent the count limit value divided by four. Therefore, n/2 + n/4 slices are required for each 
counter, but the coefficient counter is larger due to the higher count value. The other control logic 
typically yields about N/4 slices due to the comparator required for the enable circuitry and the 
inverter to disable the data counter.

The total number of slices for the control logic for an 18 x 18 MAC FIR filter with 96 coefficients 
is listed in Table 4-1.

Embedding the Control Logic into the Block RAM
The total number of slices for the control logic can be reduced if required by embedding the coefficient 
address sequence, CE, WE, and capture signal into the leftover block RAM space. This clever trick is 
enabled by the separation of the DSP48 from the Virtex-4 block RAM. It is different from Virtex-II 
Pro FPGAs where the embedded multiplier and block RAM share routing and prevent this kind of 

Table 4-1: Control Logic Using Slices Resource Utilization

Elements Slices

Coefficient Counter 5

Data Counter 4

Relational Operator 1

Other Logic 1

Total 11



DSP: DESIGNING FOR OPTIMAL RESULTS

68 • Xilinx

trick. Figure 4-4 illustrates the control logic and memory layout for this embedded control logic 
implementation.

Figure 4-4 demonstrates how the predictable and repeatable control sequence for the coefficient 
side of the memory can be embedded into the remaining space of the memory. The coefficient address 
value, accumulator Load signal, CE, and WE for the data buffer are precalculated and concatenated on 
to the coefficient values. The memory must be used in 512 x 36 mode, instead of 1024 x 18 mode. The 
individual signals are split up correctly on the output of the memory. This costs nothing in logic 
utilization apart from routing.

Due to the feedback nature of the address line, it is important to set the initial state of the dual-
port block RAM’s output register to effectively “kick- start” the MAC process. The initial values need 
to be different from each other to start the correct addressing, however, the silicon forces them to be 
the same. This changes the 1-bit masking of the LSB of the coefficient address such that the first value 
is ‘0’ instead of the initialized value of ‘1’. The initial value of the output latch is on the address bus the 
next cycle and, by unmasking the LSB, the count is successfully kick-started. Because the coefficients 
are placed in the upper half of the memory, only a single LSB must be masked, not the complete 
address bus. The masking signal can take the form of a reset signal or a registered permanent value to 
get the required single cycle mask. Each address concatenated onto its respective coefficient is the next 
required address (ahead by two cycles due to the output latch and register) to keep cycling through the 
coefficients.

This technique enables a reduction in the control logic required for the MAC FIR filter, but it can 
only be exploited when the number of coefficients is smaller than 256 for greater than 9-bit data (256 

Figure 4-4: Control Logic Using Embedded Control Technique

en addr

Counter
N -> (2N–1)

DIN A

WE_A

data addr

coef addr

WE

DIN B
DOUT B

DOUT A

RAM must be:
- Read before Write
- Output Register On

Dual-Port RAM

WE_B

CE
coef addr

18

17  ...  026  ...  18272829

coef addr coef (0)

coef (N)

loadCEWE

18

Coefficients

18

..

.

.

.

. .
.

.

.

. .
. .

.

.

..

.

. . .. .

.

.

.
..

.

.
.

.

..

.

.

..

Load ACC
0

coef
addr(0)

DIN D1 X X X

Coeff Addr

Data Addr

X X XD2 X X X X D3 X X X

0 1 2 3 94 95 94 950 321 2 30 1

96 97 98 99 190 191 191 9796 98 189 190 190 96191 97

WE WE UG073_c3_05_090204



MAC FIR FILTERS

Xilinx • 69

data and 256 coefficient elements are required to be stored). Table 4-2 highlights the smaller resource 
utilization.

Rounding
As noted earlier, the number of bits on the output of the filter is much larger than the number of bits 
on the input, and must be reduced to a manageable width. The output can be truncated by simply 
selecting the MSBs required from the filter. However, truncation introduces an undesirable DC data 
shift due to the nature of two’s complement numbers. Negative numbers become more negative, and 
positive numbers also become more negative. The DC shift can be improved with the use of symmetric 
rounding, where positive numbers are rounded up and negative numbers are rounded down. 

The rounding capability built into the DSP48 slice maintains performance and minimizes the use 
of the FPGA fabric. This is implemented in the DSP48 slice using the C input port and the Carry-In 
port. The rounding is achieved in the following manner:

• For positive numbers: Binary Data Value + 0.10000… and then truncate
• For negative numbers: Binary Data Value + 0.01111... and then truncate
The actual implementation always adds 0.0111… to the data value using the C input port, as in 

the negative case, and then adds the extra carry in required to adjust for positive numbers. Table 4-3 
illustrates some examples of symmetric rounding.

In the instance of the MAC FIR filter, the C input is available for continued use because the Z 
multiplexer is used for the feedback from the P output. Therefore, for rounding to be performed, 
either an extra cycle or another DSP48 slice is required. Typically, an extra cycle is used to save on 
DSP48 slices. On the extra cycle, OPMODE is changed for the X and Y multiplexers, setting the X 
multiplexer to zero and the Y multiplexer to use the C input to add the user-specified requirements for 
a negative rounding scenario.

Table 4-2: Control Logic Using Embedded Block RAMs Resource Utilization

Element Slices

Control Counter 5

Total 5

Table 4-3: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3



DSP: DESIGNING FOR OPTIMAL RESULTS

70 • Xilinx

The Z multiplexer remains unchanged, as the feedback loop is still required, leading to the 
opcode being 0101100. The simplified diagram in Figure 4-5 shows how the DSP48 slice functions 
during this extra cycle.

Rounding without an Extra Cycle
A trade-off can be made to avoid using the extra cycle required for true symmetric rounding. In this 
instance, the rounding constant is added to first inner product when the load of the first inner product 
occurs, leading to an OPMODE value of 0110101 instead of 0100101. The carry-in value is applied 
on the final cycle to complete the rounding. 

The trade-off is using the penultimate accumulated inner product as the basis for rounding, 
which is fine unless the penultimate inner product value is very close to zero. In this case, if the value 
is positive and the final inner product makes the result negative, leading to a rounding down, an 
incorrect result occurs due to the rounding function assuming a positive number instead of a negative. 
The last coefficient in typical FIR filters is very small, hence, this case rarely occurs. This form of “not 
quite perfect” rounding does save a cycle if absolutely necessary and also gives a significant 
improvement over truncation.

Using Distributed RAM for Data and Coefficient Buffers
For smaller-sized MAC FIR filters (typically those under 32 taps), it can be considered wasteful to use 
block RAM as a means to store filter input samples and coefficients. Using block RAM for a 16-tap, 
18-bit filter, for example, only uses up to 3% of the memory block. Block RAMs are not as abundant 
as the smaller distributed RAMs found inside the slice, making them an excellent option for smaller 

Figure 4-5: MAC FIR Filter in Rounding Mode
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FIR filters. Figure 4-6 illustrates the MAC FIR filter implementation using distributed RAM for the 
coefficient bank and an SRL16E for the data buffer.

The resource utilization is still small for these small memories. For a 16-tap (or less), n-bit 
memory bank, the cost is n/2 slices. Therefore, for this example, the cost is nine slices per memory 
bank (18 slices in total).

The added benefit of using SRL16Es is the embedded shifting capabilities leading to a reduction 
in control logic. Only a single count value is required to address both the coefficient buffer and the 
data buffer. The terminal count signal is used to write the slower input samples into the data buffer 
and capture the results and to load the accumulator with the new set of inner products. The size of the 
control logic and memory buffer for a 16-tap, 18-bit data and coefficient FIR is detailed in Table 4-4.

All aspects of the DSP48 and capture register approach to the MAC FIR filter using distributed 
RAM are identical to the block RAM based MAC FIR.

Figure 4-6: Tap-Distributed RAM MAC FIR Filter

Table 4-4: Control Logic Resource Utilization

Element Slices

Data Buffer 9

Coefficient Memory 9

Control Counter 2

Relational Operator 1

Capture/Load Delay 1

Total 22
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Performance
Table 4-5 compares the performance of a Virtex-4 MAC FIR filter with a Virtex-II Pro solution. 
Overall, the Virtex-4 DSP48 slice greatly reduces the logic fabric resource requirement, improves the 
speed of the design, and reduces filter power consumption.

Symmetric MAC FIR Filter
The HDL code provided in the reference design is for a single multiplier MAC FIR filter. other 
techniques can also be explored. This section describes how the symmetric nature of FIR filter 
coefficients can double the capable sample rate performance of the filter (assuming the same clock 
speed). By rearranging the FIR filter equation, the coefficients are exploited as follows:

(X0  x  C0 )  +  (Xn  x  C n )  … → (X0  +  Xn )  x  C0      ( i f  C0  =  C n ) Equation 4-6

Figure 4-7 shows the architecture for a symmetric MAC FIR filter.

Table 4-5: 18 x 18 MAC FIR Filter (96 Tap) Comparison

Parameter
18 x 18 MAC FIR Filter (96 Tap)

Virtex-II Pro FPGA Virtex-4 FPGA

Size 99 slices, 1 Embedded Multiplier, 
1 block RAM

24 slices, 1 DSP48 Slice,
1 block RAM

Performance
(Clock Speed)

3.125 MSPS 
250 MHz

4.69 MSPS
450 MHz

Power 170 mW 57 mW

Figure 4-7: Symmetric MAC FIR Filter
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There are limitations to using the symmetric MAC FIR filter. Due to the 1-bit growth from the 
pre-adder shown in Figure 4-5, the data input to the filter must be less than 18 bits to fit into one 
DSP48 slice. If necessary, the pre-adder can be implemented in slices or in another DSP48 slice. 

The performance of this fabric-based adder represents the critical path through the filter and 
limits the maximum clock speed. There are extra resources required for the filter to support symmetry. 
Three memory ports are needed along with the pre-adder. The control portion increases in resource 
utilization since the data is read out of one port in a forward direction and in reverse on the second 
port. This technique should only be utilized when extra sample rate performance is required.

Dual-Multiplier MAC FIR Filter
Another technique used to improve the data throughput of an MAC FIR filter is to increase the 
number of multipliers used to process the data. This introduces parallelism into the DSP design, and 
can be extrapolated into completely parallel techniques supporting the highest of sample rates. 

Figure 4-8 and Figure 4-9 illustrate how a dual-multiplier MAC FIR filter can be implemented 
using two DSP slices. Figure 4-8 shows the accumulation of the coefficients of each of the two MAC 
engines. These partial results must be combined together and then rounded to achieve the final result. 
This process uses an extra cycle and the OPMODE switching of the DSP48 slice. This extra cycle is 
illustrated in Figure 4-9.

Figure 4-8: Dual-Multiplier MAC FIR Filter
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Conclusion
MAC FIR filters are commonly used in DSP applications. With the introduction of the Virtex-4 
DSP48 slice, this function can be achieved in a smaller area, while at the same time producing higher 
performance with less power resources. Designers have tremendous flexibility in determining the 
desired implementation as well as the ability to change the implementation parameters. 

Each specification and design scenario brings a different set of restrictions for the design. Several 
more techniques are discussed in the next chapters. The ability to "tune" a filter in an existing system 
or to have multiple filter settings is a distinct advantage. The HDL and System Generator for DSP 
reference designs are easily modified to achieve specific requirements, such as different coefficients, 
smaller data and coefficient bit widths, and coefficient values.

Figure 4-9: Dual-Multiplier MAC FIR Filter with Extra Cycle
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Chapter 5

Parallel FIR Filters

This chapter describes the implementation of high-performance, parallel, full-precision FIR filters 
using the DSP48 slice in a Virtex-4 device. Because the Virtex-4 architecture is flexible, it is practical 
to construct custom FIR filters to meet the requirements of a specific application. Creating optimized, 
parallel filters saves either resources and potential clock cycles. 

This chapter demonstrates two parallel filter architectures: the Transposed and Systolic Parallel 
FIR filters. The reference design files in VHDL and Verilog permit filter parameter changes including 
coefficients and the number of taps.

Overview
There are many filtering techniques available to signal processing engineers. A common filter 
implementation for high-performance applications is the fully parallel FIR filter. Implementing this 
structure in the Virtex-II architecture uses the embedded multipliers and slice based arithmetic logic. 
The Virtex- 4 DSP48 slice introduces higher performance multiplication and arithmetic capabilities 
specifically designed to enhance the use of parallel FIR filters in FPGA-based DSP.

Parallel FIR Filters
A wide variety of filter architectures are available to FPGA designers due to the “liquid hardware” 
nature of FPGAs. The type of architecture chosen is typically determined by the amount of processing 
required in the available number of clock cycles. The two most important factors are:

• Sample Rate (Fs)
• Number of Coefficients (N)
In Figure 5-1, as the sample rate increases and the number of coefficients increase, the 

architecture selected for a desired FIR filter becomes a more parallel structure involving more 
multiply and add elements. Chapter 4, “MAC FIR Filters” addresses the details of the sequential 
processing FIR filters including the single and dual MAC FIR filter. This chapter investigates the 
other extreme of the fully parallel FIR filter as required to filter the fastest data streams.

http://www.xilinx.com
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The basic parallel architecture, shown in Figure 5-2, is referred to as the Direct Form Type 1.

Figure 5-1: Selecting Filter Architectures

Figure 5-2: Direct Form Type 1 FIR Filter
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This structure implements the general FIR filter equation of a summation of products as defined 
in Equation 5-1.

Equation 5-1

In Equation 5-1, a set of N coefficients is multiplied by N respective data samples. The results are 
summed together to form an individual result. The values of the coefficients determine the 
characteristics of the filter (e.g., a low-pass filter).

The history of data is stored in the individual registers chained together across the top of the 
architecture. Each clock cycle yields a new complete result and all multiplication and arithmetic 
required occurs simultaneously. In sequential FIR filter architectures, the data buffer is created using 
Virtex-4 dedicated block RAMs or distributed RAMs. This demonstrates a trend; as algorithms 
become faster, the memory requirement is reduced. However, the memory bandwidth increases 
dramatically since all N coefficients must be processed at the same time.

The performance of the Parallel FIR filter is calculated in Equation 5-2.

Max imum  I n p u t  S amp l e  R a t e  =  C l o c k  S peed Equation 5-2

The bit growth through the filter is the same for all FIR filters and is explained in the section “Bit 
Growth” in Chapter 4.

Transposed FIR Filter
The DSP48 arithmetic units are designed to be easily and efficiently chained together using dedicated 
routing between slices. The Direct Form Type I uses an adder tree structure. This makes it difficult to 
chain the blocks together. The Transposed FIR filter structure (Figure 5-3) is more optimal for use 
with the DSP48 Slice. 

The input data is broadcast across all the multipliers simultaneously, and the coefficients are 
ordered from right to left with the first coefficient, h0, on the right. These results are fed into the 
pipelined adder chain acting as a data buffer to store previously calculated inner products in the adder 
chain. The rearranged structure yields identical results to the Direct Form structure, but gains from 
the use of an adder chain. This different structure is easily mapped to the DSP48 slice without 

Figure 5-3: Transposed FIR Filter
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additional external logic. If more coefficients are required, then more DSP48 slices are required to be 
added to the chain. 

The configuration of the DSP48 slice for each segment of the Transposed FIR filter is shown in 
Figure 5-4. Apart from the very first segment, all processing elements are to be configured as in 
Figure 5-4. OPMODE is set to multiply mode with the adder combining the results from the 
multiplier and from the previous DSP48 slice through the dedicated cascade input (PCIN). OPMODE 
is set to binary 0010101.

Advantages and Disadvantages
The advantages to using the Transposed FIR filter are:

• Low Latency: The maximum latency never exceeds the pipelining time through the slice 
containing the first coefficient. Typically, this is three clock cycles between the data input and 
the result appearing.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain structure of 
the Transposed FIR filter. This extendable structure supports both large and small FIR filters.

• No External Logic: No external FPGA fabric is required, enabling the highest possible 
performance to be achieved.

The disadvantage to using the Transposed FIR filter is:
• Limited Performance: Performance may be limited by a high fanout input signal if there are 

a large number of taps.

Resource Utilization
An N coefficient filter uses “N” DSP48 slices. A design cannot use symmetry to reduce the number of 
DSP48 slices when using the Transposed FIR filter structure.

Figure 5-4: Transpose Multiply-Add Processing Element

UG073_c5_05_081104

DSP48 Slice
OPMODE = 0010101

A

B

PCOUTPCIN



PARALLEL FIR FILTERS

Xilinx • 79

Systolic FIR Filter
The systolic FIR filter is considered an optimal solution for parallel filter architectures. The systolic 
FIR filter also uses adder chains to fully utilize the DSP48 slice architecture (Figure 5-5).

The input data is fed into a cascade of registers acting as a data buffer. Each register delivers a 
sample to a multiplier where it is multiplied by the respective coefficient. In contrast to the 
Transposed FIR filter, the coefficients are aligned from left to right with the first coefficients on the 
left side of the structure. The adder chain stores the gradually combined inner products to form the 
final result. As with the Transposed FIR filter, no external logic is required to support the filter and 
the structure is extendable to support any number of coefficients. 

The configuration of the DSP48 slice for each segment of the Systolic FIR filter is shown in 
Figure 5-6. Apart from the very first segment, all processing elements are to be configured as shown 
in Figure 5-6. OPMODE is set to multiply mode with the adder combining the results from the 
multiplier and from the previous DSP48 slice through the dedicated cascade input (PCIN). OPMODE 
is set to binary 0010101. The dedicated cascade input (BCIN) and dedicated cascade output 
(BCOUT) are used to create the necessary input data buffer cascade.

Figure 5-5: Systolic FIR Filter

Figure 5-6: Systolic Multiply-Add Processing Element
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Advantages and Disadvantages
The advantages to using the Systolic FIR filter are: 

• Highest Performance: Maximum performance can be achieved with this structure because 
there is no high fanout input signal. Larger filters can be routing-limited if the number of 
coefficients exceeds the number of DSP slices in a column on a device. 

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain structure of 
the Systolic FIR Filter. This extendable structure supports large and small FIR filters.

• No External Logic: No external FPGA fabric is required, enabling the highest possible 
performance.

The disadvantage to using the Systolic FIR filter is: 
• Higher Latency: The latency of the filter is a function of how many coefficients are in the 

filter. The larger the filter, the higher the latency.

Resource Utilization
An N coefficient filter uses “N” DSP48 slices. 

Symmetric Systolic FIR Filter
In Chapter 4, “MAC FIR Filters,” symmetry was examined and an implementation was illustrated to 
exploit this symmetric nature of the coefficients. Exploiting symmetry is extremely powerful in 
Parallel FIR filters because it halves the required number of multipliers, which is advantageous due to 
the finite number of DSP48 slices. Equation 5-3 demonstrates how the data is pre-added before being 
multiplied by the single coefficient.

(X0  x  C0 )  +  (Xn  x  C n )  … ⎝     ( X0  +  Xn )  x  C0      ( i f  C0  =  Cn ) Equation 5-3

Figure 5-7 shows the implementation of this type of Systolic FIR Filter structure.  

Figure 5-7: Symmetric Systolic FIR
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In this structure, DSP48 slices have been traded off for Fabric slices. From a performance 
viewpoint, to achieve the full speed of the DSP48 slice, the fabric 18-bit adder has to run at the same 
speed. To achieve this, register duplication can be performed on the output from the last tap that feeds 
all the other multipliers.

The two register delay in the input buffer time series is implemented as an SRL16E and a register 
output to save on logic area. A further benefit of the symmetric implementation is the reduction in 
latency, due to the adder chain being half the length.

Figure 5-8 shows the configuration of the DSP48 slice for each segment of the Symmetric Systolic 
FIR filter. Apart from the very first segment, all processing elements are to be configured as in 
Figure 5-8. OPMODE is set to multiply mode with the adder combining results from the multiplier 
and from the previous DSP48 slice via the dedicated cascade input (PCIN). OPMODE is set to binary 
0010101.

Resource Utilization
An N symmetric coefficient filter uses N DSP48 slices. The slice count for the pre-adder and input 
buffer time series is a factor of the input bit width (n) and N. The equation for the size in slices is:

( ( n+1)  *  (N/2) )  +  ( n/2) Equation 5-4

For the example illustrated in Figure 5-7, the size is (17+1) * 8/2 + 17/2 = 81 slices.

Rounding
The number of bits on the output of the filter is much larger than the input and must be reduced to a 
manageable width. The output can be truncated by simply selecting the MSBs required from the filter. 
However, truncation introduces an undesirable DC data shift. Due to the nature of two's complement 
numbers, negative numbers become more negative and positive numbers also become more negative. 
The DC shift can be improved with the use of symmetric rounding, where positive numbers are 
rounded up and negative numbers are rounded down. 

The rounding capability in the DSP48 slice maintains performance and minimizes the use of the 
FPGA fabric. This is implemented in the DSP48 slice using the C input port and the Carry In port. 
Rounding is achieved by:

For positive numbers: Binary Data Value + 0.10000… and then truncate

For negative numbers: Binary Data Value + 0.01111... and then truncate

Figure 5-8: Symmetric Systolic Multiply-Add (MADD) Processing Element
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The actual implementation always adds 0.0111… to the data value through the C port input as 
in the negative case, and then adds the extra carry in required to adjust for positive numbers. Table 5-1 
illustrates some examples of symmetric rounding.

For both the Transposed and Systolic Parallel FIR filters, the C input is used at the beginning of 
the adder chain to drive the carry value into the accumulated result. The final segment uses the MSB 
of the PCIN as the carry-in value to determine if the accumulated product is positive or negative. 
CARRYINSEL is used to select the appropriate carry-in value. If positive, the carry-in value is used, 
and if negative, the result is kept the same (see Figure 5-9).

The one problem with this solution occurs when the final accumulated inner product input to the 
final DSP48 slice is very close to zero. If the value is positive and the final inner product makes the 
result negative (leading to a rounding down), then an incorrect result occurs because the rounding 
function assumes a positive number instead of a negative. The last coefficient in typical FIR filters is 
very small, so this situation rarely occurs. However, if absolute certainty is required, an extra DSP48 

Table 5-1: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

–2.4375 1101.1001 1110.0000 1110 –2

–2.5 1101.1000 1101.1111 1101 –3

–2.5625 1101.0111 1101.1110 1101 –3

Figure 5-9: Systolic FIR Filter with Rounding
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slice can perform the rounding function (see Figure 5-10). A Transposed FIR filter can have exactly the 
same problem as the Systolic FIR filter.

Performance
When examining the performance of a Virtex-4 Parallel FIR filter, a Virtex-II Pro design is a valuable 
reference. Table 5-2 illustrates the ability of the Virtex-4 DSP48 slice to greatly reduce logic fabric 
resources requirements while improving the speed of the design and reducing the power utilization of 
the filter.

Figure 5-10: Systolic FIR Filter with Separate Rounding Function

Table 5-2: Performance Analysis

Filter Type Device Family Size Performance
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(Watts)
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18 x 18 Parallel 
Systolic FIR Filter
(51 Tap Symmetric)

Virtex-II Pro  
FPGA

2958 Slices
26 Embedded 

Multipliers

300 MHz Clock 
Speed

300 MSPS

TBD

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

400 MHz Clock 
Speed

400 MSPS

TBD
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Conclusion
Parallel FIR filters are commonly used in high-performance DSP applications. With the introduction 
of the Virtex-4 DSP48 slice, DSPs can be achieved in a smaller area, thereby producing higher 
performance with less power penalty. 

Designers have tremendous flexibility in determining the desired implementation, and also have 
the ability to change the implementation parameters. The ability to “tune” a filter in an existing 
system or to have multiple filter settings is a distinct advantage. By making the necessary coefficient 
changes in the synthesizable HDL code, the reconfigurable nature of the FPGA is fully exploited. The 
coefficients can be either hardwired to the A input of the DSP48 slices or stored in small memories and 
selected to change the filter characteristics. The HDL and System Generator for DSP reference designs 
are easily modified to achieve specific requirements.

17 x 18 Systolic FIR 
Filter
(51 Tap Non-
symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

450 MHz Clock 
Speed

450 MSPS

TBD

17 x 18 Systolic FIR 
Filter
(51 Tap Symmetric)

Virtex-4 FPGA 477 Slices
26 DSP48 Slices

400 MHz Clock 
Speed

400 MSPS

TBD

Table 5-2: Performance Analysis (Continued)

Filter Type Device Family Size Performance
Power

(Watts)
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Chapter 6

Semi-Parallel FIR Filters

This chapter describes the implementation of semi-parallel or hardware-folded, full-precision FIR 
filters using the Virtex™-4 DSP48 slice. Because the Virtex-4 architecture is flexible, constructing 
FIR filters for specific application requirements is practical. Creating optimum filter structures of a 
semi-parallel nature saves resources and potential clock cycles. Therefore, optimum filter structures of 
a semi-parallel nature can be created without draining resources or clock cycles.

This chapter demonstrates two semi-parallel filter architectures: the four- multiplier FIR filter 
using distributed RAM and the three-multiplier FIR filter using block RAM. These filters illustrate 
how resources are saved by using available clock cycles and hardware-folding techniques. Reference 
design files are available for system generator in DSP, VHDL, and Verilog. The reference designs 
permit filter parameter changes including coefficients and the number of taps.

Overview
A large array of filtering techniques are available to signal processing engineers. A common filter 
implementation to exploit available clock cycles, while still achieving moderate to high sample rates, 
is the semi-parallel (also known as folded-hardware) FIR filter. In the past, this structure used the 
Virtex-II embedded multipliers and slice-based arithmetic logic. However, the Virtex-4 DSP48 slice 
introduces higher performance multiplication and arithmetic capabilities to enhance the use of semi-
parallel FIR filters in FPGA-based DSP designs.

Semi-Parallel FIR Filter Structure
A wide variety of filter architectures are available to FPGA designers due to the liquid hardware nature 
of FPGAs. The type of architecture is typically determined by the amount of processing required in 
the number of available clock cycles. The two most important factors are:

• Sample Rate (Fs)
• Number of Coefficients (N)
As illustrated in Figure 6-1, as the sample rate increases and the number of coefficients increase, 

the architecture selected for a desired FIR filter becomes a more parallel structure involving more 
multiply-add elements. Chapter 4, “MAC FIR Filters” addresses the details of sequential processing 
FIR filters including the single and dual MAC FIR Filter. Chapter 5, “Parallel FIR Filters” 
investigates the polar extreme of the fully-parallel FIR filter required for the highest sample rate 
filters. This chapter examines the common scenario requiring multiple processing elements working 

http://www.xilinx.com
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over numerous clock cycles to achieve the result. These techniques are often referred to as semi-parallel 
and are used to maximize efficiency of the filter (see Figure 6-1). 

The semi-parallel FIR structure implements the general FIR filter equation of a summation of 
products defined as shown in Equation 6-1.

Equation 6-1

Here a set of N coefficients is multiplied by N respective time series data samples, and the results 
are summed together to form an individual result. The values of the coefficients determine the 
characteristics of the filter (for example, a low-pass filter).

Along with achievable clock speed and the number of coefficients (N), the number of multipliers 
(M) is also a factor in calculating semi-parallel FIR filter performance. The following equation 
demonstrates how the more multipliers used, the greater the achievable performance of the filter.

Figure 6-1: Selecting Filter Architectures 
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Maximum Input Sample rate = (Clock speed / Number of Coefficients) x Number of Multipliers
The above equation is rearranged to determine how many multipliers to use for a particular semi-

parallel architecture:

Number of Multipliers = (Maximum Input Sample rate x Number of Coefficients) / Clock speed
The number of clock cycles between each result of the FIR filter is determined by the following 

equation:

Number of Clock cycles per result = Number of Coefficients / Number of Multipliers
The bit growth on the output of the filter is the same as for all FIR filters and is explained in “Bit 

Growth” in Chapter 4. The large 48-bit internal precision of the DSP48 slice means that little concern 
needs to be paid to the internal bit growth of the filter.

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
Once the required number of multipliers is determined, there is an extendable architecture using the 
DSP48 slice for use as the basis of the filter. This section assumes the specifications in Table 6-1 
describe the filter implementation and its functions.

Figure 6-2 illustrates the main structure for the four-multiplier, semi-parallel FIR filter.

The DSP48 slice arithmetic units are designed to be chained together easily and efficiently due to 
dedicated routing between slices. Figure 6-2 shows how the four DSP48 slice multiply-add elements 
are cascaded together to form the main part of the filter structure. Figure 6-3 provides a detailed view 

Table 6-1: Four-Multiplier, Semi-Parallel FIR Filter Specifications

Sampling Rate 112.5 MSPS

Number of Coefficients 16

Assumed Clock Speed 450 MHz

Input Data Width 18 Bits

Output Data Width 18 Bits

Number of Multipliers 4

Number of Clock Cycles Between Each Result 4

Figure 6-2: Four-Multiplier, Semi-Parallel FIR Filter in Accumulation Mode
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of the main multiply-add elements. The two pipeline registers are used on the B input to compensate 
for the register on the output of the coefficient memory.

An extra DSP48 slice is required on the end to perform the accumulation of the partial results, 
thus creating the final result. A new result is created every four cycles. Every four cycles, the 
accumulation must be reset to the first partial value of the next result. As in the MAC FIR Filter, this 
reset (or load) is achieved by changing the OPMODE value of the DSP48 slice for a single cycle. 
OPMODE is changed from binary 0010010 to binary 0010000 (just a single bit change). At the 
same time, the capture register is also enabled, and the final result is stored on the output (see 
Figure 6-4).

Control logic is required to make this dynamic change occur. The specifics are detailed in 
“Control Logic and Address Sequencing,” page 90.

Data Memory Buffers
This example uses eight memories. Four SRL16Es are used as data buffers. Each SRL16E holds the 
four samples needed for the result. They are written to once every four cycles (the input data rate is 4x 
slower than the internal rate), and the shifting characteristic of the SRL16E is exploited to pass old 

Figure 6-3: Detailed Diagram of a Single Multiply-Add Element

Figure 6-4: Four-Multiplier, Semi-Parallel FIR Filter at the Start of a New Result Cycle
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samples along the time series buffer. The extra register on the output of each data buffer is required to 
match up the data buffer pipeline with the extra delay caused by the adder chain. The extra register 
should not cost extra resources, because it is already present in the slice containing the SRL16E (see 
Figure 6-5).

As long as the depth does not exceed 16, the resources required for each of these input memory 
buffers is determined by the bit width of the input data (n). Therefore, n/2 SliceM is required for each 
memory buffer, leading to nine slices per buffer in this filter example. For depths up to 32, resources 
are a little more than doubled because two SRL16Es are needed, as well as an extra output multiplexer. 
For more information on SliceM, refer to the CLB section in the Virtex-4 User Guide.

Coefficient Memory
The coefficients are divided up into four groups of four. This arrangement is determined by dividing 
the total number of coefficients by the number of multipliers used in the implementation. In this 
example, if the total number of coefficients is 16, and the number of multipliers is four, four 
coefficients per memory are needed. 

Note that filters with a total number of coefficients that are integer-divisible by the required 
number of multipliers are very desirable. System designers should take this into account when 
designing their filters to get the optimal filter specification for the implementation used. Otherwise, 
the coefficients will have to be padded with zeros to achieve a number of coefficients that are integer-
divisible by the number of multipliers. 

The coefficients are simply split into groups according to their order. The first four in the first 
memory, the second four in the second memory, and so on (see Figure 6-6).

Figure 6-5: Single Bit of One Input Memory Buffer
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The adder chain architecture of the DSP48 slice means that each Multiply-Add cascade 
multiplication must be delayed by a single cycle so that the results synchronize appropriately when 
added together. This delay is achieved by addressing of the memories and is explained in “Control 
Logic and Address Sequencing”. 

Distributed RAM (refer to Chapter 2, “XtremeDSP Design Considerations,” for detailed 
information on distributed RAMs) are used for the coefficient memories. The reason for their use is 
that it would be an extremely inefficient usage of the larger block RAMs, especially given their 
scarcity versus the smaller abundant distributed RAMs. The larger block RAM comes into play when 
the number of coefficients per memory starts to increase to the point where the cost in slice resources 
becomes significant (for example, greater than 64). 

The total cost of the current example is 36 slices. The coefficient width is 18 bits, and distributed 
RAMs cost n/2 slices (that is, nine slices per memory and four memories). For larger distributed RAMs 
(larger than 16 elements), the size begins to increase as Write Enable (WE) control logic and an output 
multiplexer is needed. The distributed memory v7.0 in the CORE Generator system can be easily used 
to create these little distributed RAMs and get accurate size estimates.

Control Logic and Address Sequencing
The Control Logic and Address Sequencing is the most important and complicated aspect of semi-
parallel FIR filters, and getting it right is crucial to the operation of the filter. The control logic is 
discussed in two separate sections:

• Memory Addressing
• Clock Enable Sequencing
Memory addressing must provide the necessary delay for each multiply-add element mentioned 

in “Coefficient Memory,” page 89, caused by the adder chain. This is not the case when using an adder 
tree; the DSP48 slice is most efficiently used in adder chains.

Figure 6-7 illustrates the control logic required to create the necessary memory addressing. The 
counter creates the fundamental zero through three count. This is then delayed by one cycle by the use 
of a register in the control path. Each successive delay is used to address both the coefficient memory 
and the data buffer of their respective multiply-add elements. A single delay for the second multiply-
add element, two delays for the third multiply-add element, etc. Note that this is extensible control 
logic for M number of multipliers.

Figure 6-6: Coefficient Memory Arrangement
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Figure 6-7 also shows clock enable sequencing. A relational operator is required to determine 
when the count limited counter resets its count. This signal is High for one clock cycle every four 
cycles, to represent the input and output data rates. The Clock Enable signal is delayed by a single 
register just like the coefficient address, and each delayed version of the signal is tied to the respective 
section of the filter. Refer to Figure 6-2 to see the signal connections to the element. Figure 6-8 
illustrates the control logic waveforms changing over time.  

Figure 6-7: Control Logic for the Four-Multiplier, Semi-Parallel FIR Filter

Figure 6-8: Control Waveforms for Semi-Parallel FIR Filters
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Resource Utilization
Table 6-2 shows the resources used by a 16-tap, four-multiplier, distributed-RAM-based, semi-
parallel FIR filter.

Three-Multiplier, Block RAM-Based, Semi-Parallel FIR Filter
This section investigates a different filter structure, the three-multiplier, block RAM-based, semi-
parallel FIR filter (see Figure 6-9).

The decision to use this implementation is based on the filter specification. The filter 
specifications are described in Table 6-3.

Table 6-2: Resource Utilization

Elements Slices DSP48 Slices

Multiply-Add 5

Input Data Buffers 36

Coefficient Memories 36

Capture Register 20

Main Control Counter 2

Relational Operator 1

Multiply-Add Element Control 9 (3 per extra element)

Total 104 5

Figure 6-9: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter

Table 6-3: Three-Multiplier, Block RAM-Based, Semi-Parallel FIR Filter Specifications

Parameter Value

Sampling Rate 4.5 MSPS

Number of Coefficients 300

Assumed Clock Speed 450 MHz

Input Data Width 18 Bits

Output Data Width 18 Bits
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The structure is similar to the four-multiplier filter studied earlier. In this instance, the lower 
sample rate of the filter specification and the larger number of taps indicates that only three multipliers 
are required, each servicing 100 coefficients, leading to a new result yielded every 100 clock cycles.

Each memory buffer is required to hold 100 coefficients and also 100 input data history values. 
The dedicated Virtex-4 block RAM can be used in dual-port mode with a cyclic data buffer established 
in the first half of the memory to serve the shifting input data series.

Chapter 4, “MAC FIR Filters,” describes using these memories to store the input data series, the 
coefficients, and also the control logic required to make the cyclic RAM buffer operate. The rest of the 
control logic and data flow is identical to the first filter investigated except that only three multipliers 
are serviced, therefore, the control logic can be scaled back by one element. Also note that the WE 
signals are the inversion of their respective CE pair.

Table 6-4 shows the resource utilization for the 300-tap, three-multiplier, semi-parallel FIR 
filter.

Other Semi-Parallel FIR Filter Structures
As with many DSP functions there are many different ways to implement a function. There is never 
one solution fitting all requirements for all specifications. For example, should distributed or block 
RAM be used for data storage? Should a systolic or a transposed implementation be used for a given 
filter? This chapter describes in detail the different techniques using single-rate FIR filters to get the 
maximum performance and low resource utilization using the Virtex-4 architecture.

This section introduces other possible semi-parallel FIR filter implementations and discusses the 
advantages and disadvantages of their structures.

Number of Mulipliers 3

Number of Clock Cycles Between Each Result 100

Table 6-4: Resource Utilization

Elements Slices DSP48 Slices Block RAMs

Multiply-Add 4

Input Data Buffers and Coefficient 
Memories

3

Capture Register 20

Main Control Counter 5

Relational Operator 1

Multiply-Add Element Control 12 (6 per extra 
element)

Total 38 4 3

Table 6-3: Three-Multiplier, Block RAM-Based, Semi-Parallel FIR Filter Specifications 

Parameter Value
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Semi-Parallel, Transposed, Four-Multiplier FIR Filter
This structure is very different in nature to the main architecture discussed in this chapter (see 
Figure 6-10).

Only one data storage buffer is required, typically a block RAM. The data buffer output is also 
broadcast to all DSP48 slices. Each DSP48 slice works in accumulator mode until the last cycle of the 
calculation, when OPMODE changes to form an adder chain, and then passes the results to the next 
DSP48 slice. Actually, four results are being calculated at one time, and the completed result is output 

Figure 6-10: Semi-Parallel, Transposed FIR Filter
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from the last DSP48 slice. The previous elements are working on their respective parts of the next 
results. 

Figure 6-11 shows the filter structure every time the DSP48 slice OPMODE is changed, which 
occurs once every result cycle.

Advantages and Disadvantages
The advantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower resource utilization due to one less DSP48 slice required and a single input memory 
buffer.

Figure 6-11: Semi-Parallel, Transposed FIR Filter (Combination of the Results)
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• Low latency due to the transpose nature of the filter implementation is lower than the Systolic 
approach. The latency is equal to the size of one coefficient bank.

The disadvantages to using the Semi-Parallel, Transposed FIR filter are:
• Lower performance due to the broadcast nature of the data buffer output can limit 

performance of the filter.
• Control logic is more difficult to understand, but is still of a compact nature.

Rounding
The number of bits on the output of the filter is much larger than the input and must be reduced to a 
manageable width. The output can be truncated by simply selecting the MSBs required from the filter. 
However, truncation introduces an undesirable DC shift on the data set.

Due to the nature of two’s complement numbers, negative numbers become more negative and 
positive numbers also become more negative. The DC shift can be improved with the use of symmetric 
rounding, where positive numbers are rounded up and negative numbers are rounded down. The 
rounding capability built into the DSP48 slice maintains performance and minimizes the use of FPGA 
fabric. This is ingrained in the DSP48 slice via the C input port and also the Carry-In port. Rounding 
is achieved in the following manner:

For positive numbers: Binary Data Value + 0.10000… and then truncate
For negative numbers: Binary Data Value + 0.01111... and then truncate
The actual implementation always adds 0.0111… to the data value using the C port input as in 

the negative case, and then adds the extra carry in required to adjust for positive numbers. Table 6-5 
illustrates some examples of symmetric rounding.

In the instance of the semi-parallel FIR filter, an extra DSP48 slice is required to perform the 
rounding functionality. It cannot be ingrained into the final accumulator because the rounding cannot 
be done on the final result. If the C input is used and the accumulator is put into three-input add 
mode, then rounding is performed on the partial result. The more multipliers in the filter, the worse 
the rounding performance because even fewer inner products are included in the result. An extra 
DSP48 slice is required to perform the rounding. 

Due to the finite nature of the DSP48 slices, it is recommended that the symmetric rounder be 
actually implemented in the fabric outside of the slices. The function is small and does not have to run 
at a high frequency because the results are running at the much slower input data rate.

Table 6-5: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3
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Performance
It does not make sense to compare the performance of the semi-parallel FIR filter in a Virtex-4 device 
with Virtex-II Pro results because completely different techniques are used to build the filters. As a 
general statement though, Virtex-4 devices improve the speed of the design, shrink the area, and 
reduce power drawn by the filter. All designs assume 18-bit data and 18-bit coefficient widths. 
Table 6-6 through Table 6-8 compare the specifications for three filters.

Table 6-6: 4-Multiplier, Memory-Based, Semi-Parallel FIR Filter Specifications 
(16-Tap Symmetric)

Parameter Specification

Size 94 slices, 5 DSP48 slices

Performance 458 MHz clock speed, 114.5 MSPS

Power TBD Watt

Table 6-7: 3-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter Specifications (300-Tap 
Symmetric)

Parameter Specification

Size 38 slices, 4 DSP48 slices, 4 block RAMs

Performance 450 MHz clock speed, 4.5 MSPS

Power TBD Watt

Table 6-8: 4-Multiplier, Block-RAM-Based, Semi-Parallel Transposed FIR Filter 
Specifications (400-Tap Symmetric)

Parameter Specification

Size 46 slices, 4 DSP48 slices, 2 block RAMs

Performance 450 MHz clock speed, 4.5 MSPS

Power TBD Watt
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Conclusion
Semi-parallel FIR filters probably are the most frequently used filter techniques in Virtex-4 high-
performance DSP applications. Figure 6-12 shows the necessary implementation decisions and 
provides guidelines for choosing the required structure based on the filter specifications.

The major lines indicate the guideline thresholds between given implementation techniques. For 
instance, the shift to using block RAM is desirable when the number of taps needed to be stored in a 
given memory exceeds 32. This correlates to two SRL16Es for the data buffers. If more than two 
SRL16Es are used in a data buffer, it will be difficult to reach the high clock rate indicated in Chapter 
4, “MAC FIR Filters,” Chapter 5, “Parallel FIR Filters,” and this chapter. However, this is only a 
guideline. A great deal depends upon how many slices or block RAMs are remaining in the device, the 
power requirements, and the available clock frequencies. A given filter implementation is subjective 
because a different set of restrictions is provided by every application and design.

In general, the guidelines provided in the past three chapters should enable designers to make 
sensible and efficient decisions when designing filters. These chapters also complete the foundations 
required for filter construction in Virtex-4 devices so that more complex, multi-channel and 
interpolation or decimation multi-rate filters can be constructed. The supplied referenced designs 
further aid in helping to understand and utilize these filters.

Figure 6-12: Selecting the Correct Filter Architecture for Semi-Parallel FIR Filters
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Chapter 7

Multi-Channel FIR Filters

This chapter illustrates the use of the advanced Virtex™-4 DSP features when implementing a 
widely used DSP function known as multi-channel FIR filtering. Multi-channel filters are used to 
filter multiple input sample streams in a variety of applications, including communications and 
multimedia.

The main advantage of using a multi-channel filter is leveraging very fast math elements across 
multiple input streams (i.e., channels) with much lower sample rates. This technique increases silicon 
efficiency by a factor almost equal to the number of channels.

The Virtex-4 DSP48 slice is one of the new and highly innovative diffused elements that form the 
basis of the Application Specific Modular BLock or ASMBL architecture. This modular architecture 
enables Xilinx to rapidly and cost-effectively build FPGA platforms by combining different elements, 
such as logic, memory, processors, I/O, and of course, DSP functionality targeting specific applications 
such as wireless or video DSP.

The Virtex-4 DSP48 slice contains the basic elements of classic FIR filters: a multiplier followed 
by an adder, delay or pipeline registers, plus the ability to cascade an input stream (B bus) and an 
output stream (P bus) without exiting to a general slice fabric.

The resulting DSP designs can have optional pipelining that permits aggregate multi-channel 
sample rates of up to 500 million samples per second, while minimizing power consumption and 
external slice logic. In the implementation described in this chapter, multi-channel filtering can be 
looked at as time-multiplexed, single-channel filters. 

In a typical multi-channel filtering scenario, multiple input channels are filtered using a separate 
digital filter for each channel. Due to the high performance of the DSP48 block within the Virtex-4 
device, a single digital filter can be used to filter all eight input channels by clocking the single filter 
with an 8x clock. This implementation uses 1/8th of the total FPGA resource as compared to 
implementing each channel separately.

Multi-Channel FIR Implementation Overview

Top Level
The implementation of a six-channel, eight-tap FIR filter using DSP48 elements is depicted in 
Figure 7-1. The design elements used in the implementation include the following:

http://www.xilinx.com
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• Six-to-one multiplexer that is implemented in slice logic as described in “Combining Separate 
Input Streams into an Interleaved Stream,” page 101

• Coefficient ROMs using SRL16Es connected in “head-to-tail” fashion
• Input sample “delay-by-seven” SRL16Es to hold the interleaved streams
• DSP48 slices for multiplication and additions

All datapaths and coefficient paths for this example are 8 bits wide. The coefficient ROMs and 
input sample delay elements are designed using SRL16Es. The SRL16E is a very compact and efficient 
memory element, running at the very high 6x clock rate. For adaptive filtering, where coefficients can 
be different depending upon their input signals, coefficient RAMs can be used to update the 
coefficient values.

The DSP48 slices and interconnects also run at the 6x clock rate, providing unparalleled 
performance for multiplication and additions in today’s FPGAs.

DSP48 Tile
The multi-channel filter block is a cascade implementation of the DSP48 tile. Each tile is 
implemented as shown in Figure 7-2. An SRL16E is used to shift the input from the six channels. The 

Figure 7-1: Block Diagram of a 6-Channel, 8-Tap FIR Filter
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product cascade path between two DSP48 slices within the tile can be used to bring the product 
output from one tap into the cascading input of the next tap for the final addition.

Combining Separate Input Streams into an Interleaved Stream
As shown in Figure 7-3, six separate video input sample streams must be combined into one 
interleaved sample stream for this multi-channel FIR filter example. Conceptually, a high-speed, six-
to-one multiplexer feeds a seven deep SRL16E shift register to accomplish this task. The SRL16E 
depth is the number of channels plus one.

For each clock tick, the counter selects a different input stream (in order), and then supplies this 
value to the SRL16E shift register. After six clock ticks, the six input samples for a given time period 
are loaded sequentially, or interleaved into a single stream.

A six-to-one multiplexer must be designed carefully, as it is constructed with slice logic that must 
run at the 6x clock rate. At 446 MHz, good design practices dictate connections “point-to-point,” a 
maximum of one Look-Up Table (LUT) between flip-flops and RLOC techniques.

Figure 7-2: DSP48 Tile Cascading Diagram

Figure 7-3: Converting Eight Input Streams to One Interleaved Input Stream
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To reduce the high fanouts on the selected lines of the multiplexer, the conceptual multiplexer in 
Figure 7-3 is implemented as shown in Figure 7-4. This circuit is repeated for all eight bits of the 
input sample width.

Coefficient RAM
The six coefficient sets are stored in the SRL16 memories. If the same coefficient set is used for all 
channels, then only a single set is stored in the SRL16. If the different channels use different 
coefficients, then six sets of SRL16s are used for each tap. (Six RAMs can be used instead, one for each 
channel.)

Each RAM is 8 bits wide and six deep, corresponding to the six taps. The optional Load input is 
used to change or load a new coefficient set. Six clock cycles are needed to load all six RAMs. Input C1 
is used to load the eight locations of RAM1 which are used for Channel1. C8 is used to load the eight 
locations of RAM8 which are used for Channel8. At the eighth clock, all eight locations of the eight 
RAMs are loaded; the filter then becomes an adaptive filter. The speed of the overall filter will be 
reduced when the coefficients are stored in the RAM.

Control Logic
The control logic is used to ensure proper functioning of the different blocks. If the coefficient RAM 
block is used, the control logic ensures that the load signal is High for six clocks. Different tap-
enabled signals are used to make sure that RAM values are read into the DSP48 correctly. For instance, 
clock1 reads in the first location from RAM1, but the first location of RAM2 is read only at the clock 
number equal to shift register length. The design assumes a clock is running at 6x that of the input 

Figure 7-4: High-Speed 8-to-1 Multiplexer Used in the Filter
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signals. The DCM can also be used to multiply the clock if the only available clock is running at the 
input channel frequency.

The control logic also takes care of the initial latency such that the final output is enabled only 
after the initial latency period is complete.

Implementation Results
The initial latency of the design is equal to the [(number of channels + 1) * number of taps] plus three 
pipe stages within the DSP48. After placement and routing, the design uses 216 slices and eight 
DSP48 blocks. The design has a speed of 454 MHz.

Conclusion
The available arithmetic functions within the DSP48 block, combined with fine granularity and high 
speed, makes the Virtex-4 FPGA an ideal device to implement high-speed, multi-channel filter 
functions. The design shows the efficient implementation of a six-channel, eight-tap filter. Due to the 
high-performance capability within the DSP48 block, a single channel, eight-tap filter can be used to 
implement the six-channel, eight-tap filter, reducing the area utilization by 1/6th.
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