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Preface

A control system is a dynamical system on which one can act by using suitable
controls. There are a lot of problems that appear when studying a control system.
But the most common ones are the controllability problem and the stabilization
problem.

The controllability problem is, roughly speaking, the following one. Let us give
two states. Is it possible to move the control system from the first one to the second
one? We study this problem in Part 1 and in Part 2. Part 1 studies the control-
lability of linear control systems, where the situation is rather well understood,
even if there are still quite challenging open problems in the case of linear partial
differential control systems. In Part 2 we are concerned with the controllability
of nonlinear control systems. We start with the case of finite-dimensional control
systems, a case where quite powerful geometrical tools are known. The case of
nonlinear partial differential equations is much more complicated to handle. We
present various methods to treat this case as well as many applications of these
methods. We emphasize control systems for which the nonlinearity plays a crucial
role, in particular, for which it is the nonlinearity that gives the controllability or
prevents achieving some specific interesting motions.

The stabilization problem is the following one. We have an equilibrium which
is unstable without the use of the control. Let us give a concrete example. One
has a stick that is placed vertically on one of his fingers. In principle, if the stick is
exactly vertical with a speed exactly equal to 0, it should remain vertical. But, due
to various small errors (the stick is not exactly vertical, for example), in practice,
the stick falls down. In order to avoid this, one moves the finger in a suitable
way, depending on the position and speed of the stick; we use a “feedback law”
(or “closed-loop control”) which stabilizes the equilibrium. The problem of the
stabilization is the existence and construction of such stabilizing feedback laws
for a given control system. We study it in Part 3, both for finite-dimensional
control systems and for systems modeled by partial differential equations. Again
we emphasize the case where the nonlinear terms play a crucial role.

Let us now be more precise on the contents of the different parts of this book.

Part 1: Controllability of linear control systems

This first part is devoted to the controllability of linear control systems. It has two
chapters: The first one deals with finite-dimensional control systems, the second
one deals with infinite-dimensional control systems modeled by partial differential
equations.

Let us detail the contents of these two chapters.

ix
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Chapter 1. This chapter focuses on the controllability of linear finite-dimensional
control systems. We first give an integral necessary and sufficient condition for
a linear time-varying finite-dimensional control system to be controllable. For a
special quadratic cost, it leads to the optimal control. We give some examples of
applications.

These examples show that the use of this necessary and sufficient condition can
lead to computations which are somewhat complicated even for very simple control
systems. In particular, it requires integrating linear differential equations. We
present the famous Kalman rank condition for the controllability of linear time-
invariant finite-dimensional control systems. This new condition, which is also
necessary and sufficient for controllability, is purely algebraic: it does not require
integrations of linear differential equations. We turn then to the case of linear time-
varying finite-dimensional control systems. For these systems we give a sufficient
condition for controllability, which turns out to be also necessary for analytic control
systems. This condition only requires computing derivatives; again no integrations
are needed.

We describe, in the framework of linear time-varying finite-dimensional control
systems, the Hilbert Uniqueness Method (HUM), due to Jacques-Louis Lions. This
method is quite useful in infinite dimension for finding numerically optimal controls
for linear control systems.

Chapter 2. The subject of this chapter is the controllability of some classical linear
partial differential equations. For the reader who is familiar with this subject, a
large part of this chapter can be omitted; most of the methods detailed here are
very well known. One can find much more advanced material in some references
given throughout this chapter. We study a transport equation, a Korteweg-de Vries
equation, a heat equation, a wave equation and a Schrödinger equation.

We prove the well-posedness of the Cauchy problem associated to these equa-
tions. The controllability of these equations is studied by means of various methods:
explicit methods, extension method, moments theory, flatness, Hilbert Uniqueness
Method, duality between controllability and observability. This duality shows that
the controllability can be reduced to an observability inequality. We show how
to prove this inequality by means of the multiplier method or Carleman inequal-
ities. We also present a classical abstract setting which allows us to treat the
well-posedness and the controllability of many partial differential equations in the
same framework.

Part 2: Controllability of nonlinear control systems
This second part deals with the controllability of nonlinear control systems.

We start with the case of nonlinear finite-dimensional control systems. We
recall the linear test and explain some geometrical methods relying on iterated Lie
brackets when this test fails.

Next we consider nonlinear partial differential equations. For these infinite-
dimensional control systems, we begin with the case where the linearized control
system is controllable. Then we get local controllability results and even global
controllability results if the nonlinearity is not too big. The case where the linearized
control system is not controllable is more difficult to handle. In particular, the
tool of iterated Lie brackets, which is quite useful for treating this case in finite
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dimension, turns out to be useless for many interesting infinite-dimensional control
systems. We present three methods to treat some of these systems, namely the
return method, quasi-static deformations and power series expansions. On various
examples, we show how these three methods can be used.

Let us give more details on the contents of the seven chapters of Part 2.

Chapter 3. In this chapter we study the local controllability of finite-dimensional
nonlinear control systems around a given equilibrium. One does not know any in-
teresting necessary and sufficient condition for small-time local controllability, even
for analytic control systems. However, one knows powerful necessary conditions
and powerful sufficient conditions.

We recall the classical “linear test”: If the linearized control system at the
equilibrium is controllable, then the nonlinear control system is locally controllable
at this equilibrium.

When the linearized control system is not controllable, the situation is much
more complicated. We recall the Lie algebra condition, a necessary condition for
local controllability of (analytic) control systems. It relies on iterated Lie brackets.
We explain why iterated Lie brackets are natural for the problem of controllability.

We study in detail the case of the driftless control systems. For these systems,
the above Lie algebra rank condition turns out to be sufficient, even for global
controllability.

Among the iterated Lie brackets, we describe some of them which are “good”
and give the small-time local controllability, and some of them which are “bad”
and lead to obstructions to small-time local controllability.

Chapter 4. In this chapter, we first consider the problem of the controllability
around an equilibrium of a nonlinear partial differential equation such that the
linearized control system around the equilibrium is controllable. In finite dimension,
we have already seen that, in such a situation, the nonlinear control system is
locally controllable around the equilibrium. Of course in infinite dimension one
expects that a similar result holds. We prove that this is indeed the case for
various equations: A nonlinear Korteweg-de Vries equation, a nonlinear hyperbolic
equation and a nonlinear Schrödinger equation. For the first equation, one uses
a natural fixed-point method. For the two other equations, the situation is more
involved due to a problem of loss of derivatives. For the hyperbolic equation, one
uses, to take care of this problem, an ad-hoc fixed-point method, which is specific
to hyperbolic systems. For the case of the Schrödinger equation, this problem is
overcome by the use of a Nash-Moser method.

Sometimes these methods, which lead to local controllability results, can be
adapted to give a global controllability result if the nonlinearity is not too big at
infinity. We present an example for a nonlinear one-dimensional wave equation.

Chapter 5. We present an application of the use of iterated Lie brackets for a
nonlinear partial differential equation (a nonlinear Schrödinger equation). We also
explain why iterated Lie brackets are less powerful in infinite dimension than in
finite dimension.
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Chapter 6. This chapter deals with the return method. The idea of the return
method goes as follows: If one can find a trajectory of the nonlinear control system
such that:

- it starts and ends at the equilibrium,
- the linearized control system around this trajectory is controllable,

then, in general, the implicit function theorem implies that one can go from every
state close to the equilibrium to every other state close to the equilibrium. In
Chapter 6, we sketch some results in flow control which have been obtained by this
method, namely:

- global controllability results for the Euler equations of incompressible fluids,
- global controllability results for the Navier-Stokes equations of incompress-

ible fluids,
- local controllability of a 1-D tank containing a fluid modeled by the shallow

water equations.

Chapter 7. This chapter develops the quasi-static deformation method, which
allows one to prove in some cases that one can move from a given equilibrium to
another given equilibrium if these two equilibria are connected in the set of equi-
libria. The idea is just to move very slowly the control (quasi-static deformation)
so that at each time the state is close to the curve of equilibria connecting the two
given equilibria. If some of these equilibria are unstable, one also uses suitable feed-
back laws in order to stabilize them; without these feedback laws the quasi-static
deformation method would not work. We present an application to a semilinear
heat equation.

Chapter 8. This chapter is devoted to the power series expansion method : One
makes some power series expansion in order to decide whether the nonlinearity
allows us to move in every (oriented) direction which is not controllable for the
linearized control system around the equilibrium. We present an application to a
nonlinear Korteweg-de Vries equation.

Chapter 9. The previous three methods (return, quasi-static deformations, power
series expansion) can be used together. We present in this chapter an example for
a nonlinear Schrödinger control equation.

Part 3: Stabilization
The two previous parts were devoted to the controllability problem, which asks if
one can move from a first given state to a second given state. The control that
one gets is an open-loop control: it depends on time and on the two given states,
but it does not depend on the state during the evolution of the control system.
In many practical situations one prefers closed-loop controls, i.e., controls which
do not depend on the initial state but depend, at time t, on the state x at this
time. One requires that these closed-loop controls (asymptotically) stabilize the
point one wants to reach. Usually such closed-loop controls (or feedback laws) have
the advantage of being be more robust to disturbances (recall the experiment of
the stick on the finger). The main issue discussed in this part is the problem of
deciding whether a controllable system can be (asymptotically) stabilized.
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This part is divided into four chapters: Chapter 10, Chapter 11, Chapter 12
and Chapter 13, which we now briefly describe.

Chapter 10. This chapter is mainly concerned with the stabilization of finite-
dimensional linear control systems. We first start by recalling the classical pole-
shifting theorem. A consequence of this theorem is that every controllable linear
system can be stabilized by means of linear feedback laws. This implies that, if
the linearized control system at an equilibrium of a nonlinear control system is
controllable, then this equilibrium can be stabilized by smooth feedback laws.

Chapter 11. This chapter discusses the stabilization of finite-dimensional non-
linear control systems, mainly in the case where the nonlinearity plays a key role.
In particular, it deals with the case where the linearized control system around
the equilibrium that one wants to stabilize is no longer controllable. Then there
are obstructions to stabilizability by smooth feedback laws even for controllable
systems. We recall some of these obstructions. There are two ways to enlarge the
class of feedback laws in order to recover stabilizability properties. The first one is
the use of discontinuous feedback laws. The second one is the use of time-varying
feedback laws. We give only comments and references on the first method, but we
give details on the second one. We also show the interest of time-varying feedback
laws for output stabilization: In this case the feedback laws depend only on the
output, which is only part of the state.

Chapter 12. In this chapter, we present important tools for constructing explicit
stabilizing feedback laws, namely:

1. control Lyapunov function,
2. damping,
3. homogeneity,
4. averaging,
5. backstepping,
6. forwarding,
7. transverse functions.

These methods are illustrated on various control systems, in particular, the stabi-
lization of the attitude of a rigid spacecraft.

Chapter 13. In this chapter, we give examples of how some tools introduced for
the stabilization of finite-dimensional control systems can be used to stabilize some
partial differential equations. We treat the following four examples:

1. rapid exponential stabilization by means of Gramians for linear time-rever-
sible partial differential equations,

2. stabilization of a rotating body-beam without damping,
3. stabilization of the Euler equations of incompressible fluids,
4. stabilization of hyperbolic systems.
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Appendices
This book has two appendices. In the first one (Appendix A), we recall some classi-
cal results on semigroups generated by linear operators and classical applications to
evolution equations. We omit the proofs but we give precise references where they
can be found. In the second appendix (Appendix B), we construct the degree of a
map and prove the properties of the degree we use in this book. As an application
of the degree, we also prove the Brouwer and Schauder fixed-point theorems which
are also used in this book.
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Part 1

Controllability of linear control
systems



This first part is devoted to the controllability of linear control systems. It has
two chapters: The first one deals with finite-dimensional control systems, the second
one deals with infinite-dimensional control systems modeled by partial differential
equations.

Let us detail the contents of these two chapters.

Chapter 1. This chapter focuses on the controllability of linear finite-dimensional
control systems. We first give an integral necessary and sufficient condition (The-
orem 1.11 on page 6) for a linear time-varying finite-dimensional control system
to be controllable. For a special quadratic cost, it leads to the optimal control
(Proposition 1.13 on page 8). We give examples of applications.

These examples show that the use of this necessary and sufficient condition
can lead to computations which are somewhat complicated even for very simple
control systems. In particular, it requires integrating linear differential equations.
In Section 1.3 we first give the famous Kalman rank condition (Theorem 1.16 on
page 9) for the controllability of linear time-invariant finite-dimensional control sys-
tems. This new condition, which is also necessary and sufficient for controllability,
is purely algebraic; it does not require integrations of linear differential equations.
We turn then to the case of linear time-varying finite-dimensional control systems.
For these systems we give a sufficient condition for controllability (Theorem 1.18
on page 11), which turns out to be also necessary for analytic control systems. This
condition only requires computing derivatives. Again no integrations are needed.

In Section 1.4, we describe, in the framework of linear time-varying finite-
dimensional control systems, the Hilbert Uniqueness Method, due to Jacques-Louis
Lions. This method is quite useful in infinite dimension to find numerically optimal
controls for linear control systems.

Chapter 2. The subject of this chapter is the controllability of some classical
partial differential equations. For the reader who is familiar with this subject, a
large part of this chapter can be omitted; most of the methods detailed here are
very well known. The linear partial differential equations which are treated are the
following:

1. a transport equation (Section 2.1),
2. a Korteweg-de Vries equation (Section 2.2),
3. a one-dimensional wave equation (Section 2.4),
4. a heat equation (Section 2.5),
5. a one-dimensional Schrödinger equation (Section 2.6),
6. a family of one-dimensional heat equations depending on a small parameter

(Section 2.7).
For these equations, after proving the well-posedness of the Cauchy problem, we
study their controllability by means of various methods (explicit method, extension
method, duality between controllability and observability, observability inequalities,
multiplier method, Carleman inequalities, moment theory, Laplace transform and
harmonic analysis ...). We also present in Section 2.3 a classical abstract setting
which allows us to treat the well-posedness and the controllability of many partial
differential equations in the same framework.



CHAPTER 1

Finite-dimensional linear control systems

This chapter focuses on the controllability of linear finite-dimensional control
systems. It is organized as follows.

- In Section 1.2 we give an integral necessary and sufficient condition (The-
orem 1.11 on page 6) for a linear time-varying finite-dimensional control
system to be controllable. For a special quadratic cost, it leads to the opti-
mal control (Proposition 1.13 on page 8). We give examples of applications.

- These examples show that the use of this necessary and sufficient condi-
tion can lead to computations which are somewhat complicated even for
very simple control systems. In particular, it requires integrating linear
differential equations. In Section 1.3 we first give the famous Kalman rank
condition (Theorem 1.16 on page 9) for the controllability of linear time-
invariant finite-dimensional control systems. This new condition, which is
also necessary and sufficient for controllability, is purely algebraic; it does
not require integrations of linear differential equations. We turn then to
the case of linear time-varying finite-dimensional control systems. For these
systems we give a sufficient condition for controllability (Theorem 1.18 on
page 11), which turns out to be also necessary for analytic control systems.
This condition only requires computing derivatives. Again no integrations
are needed. We give two proofs of Theorem 1.18. The first one is the
classical proof. The second one is new.

- In Section 1.4, we describe, in the framework of linear time-varying finite-
dimensional control systems, the Hilbert Uniqueness Method (HUM), due
to Jacques-Louis Lions. This method, which in finite dimension is strongly
related to the integral necessary and sufficient condition of controllability
given in Section 1.2, is quite useful in infinite dimension to find numerically
optimal controls for linear control systems.

1.1. Definition of controllability

Let us start with some notations. For k ∈ N \ {0}, Rk denotes the set of
k-dimensional real column vector. For k ∈ N \ {0} and l ∈ N \ {0}, we denote
by L(Rk; Rl) the set of linear maps from Rk into Rl. We often identify, in the
usual way, L(Rk; Rl) with the set, denoted Mk,l(R), of k × l matrices with real
coefficients. We denote by Mk,l(C) the set of k × l matrices with complex co-
efficients. Throughout this chapter, T0, T1 denote two real numbers such that
T0 < T1, A : (T0, T1) → L(Rn; Rn) denotes an element of L∞((T0, T1);L(Rn; Rn))
and B : (T0, T1) → L(Rm; Rn) denotes an element of L∞((T0, T1);L(Rm; Rn)). We
consider the time-varying linear control system

ẋ = A(t)x+B(t)u, t ∈ [T0, T1],(1.1)

3



4 1. FINITE-DIMENSIONAL LINEAR CONTROL SYSTEMS

where, at time t ∈ [T0, T1], the state is x(t) ∈ Rn and the control is u(t) ∈ Rm, and
ẋ := dx/dt.

We first define the solution of the Cauchy problem

ẋ = A(t)x+B(t)u(t), x(T0) = x0,(1.2)

for given u in L1((T0, T1); Rm) and given x0 in Rn.

Definition 1.1. Let b ∈ L1((T0, T1); Rn). A map x : [T0, T1] → Rn is a solution
of

ẋ = A(t)x+ b(t), t ∈ (T0, T1),(1.3)

if x ∈ C0([T0, T1]; Rn) and satisfies

x(t2) = x(t1) +
∫ t2

t1

(A(t)x(t) + b(t))dt, ∀(t1, t2) ∈ [T0, T1]2.

In particular, for x0 ∈ Rn, a solution to the Cauchy problem

ẋ = A(t)x+ b(t), t ∈ (T0, T1), x(T0) = x0,(1.4)

is a function x ∈ C0([T0, T1]; Rn) such that

x(τ) = x0 +
∫ τ

T0

(A(t)x(t) + b(t))dt, ∀τ ∈ [T0, T1].

It is well known that, for every b ∈ L1((T0, T1); Rn) and for every x0 ∈ Rn, the
Cauchy problem (1.4) has a unique solution.

Let us now define the controllability of system (1.1). (This concept goes back
to Rudolph Kalman [263, 264].)

Definition 1.2. The linear time-varying control system (1.1) is controllable
if, for every (x0, x1) ∈ Rn × Rn, there exists u ∈ L∞((T0, T1); Rm) such that the
solution x ∈ C0([T0, T1]; Rn) of the Cauchy problem (1.2) satisfies x(T1) = x1.

Remark 1.3. One could replace in this definition u ∈ L∞((T0, T1); Rm) by
u ∈ L2((T0, T1); Rm) or by u ∈ L1((T0, T1); Rm). It follows from the proof of Theo-
rem 1.11 on page 6 that these changes of spaces do not lead to different controllable
systems. We have chosen to consider u ∈ L∞((T0, T1); Rm) since this is the natu-
ral space for general nonlinear control system (see, in particular, Definition 3.2 on
page 125).

1.2. An integral criterion for controllability

We are now going to give a necessary and sufficient condition for the control-
lability of system (1.1) in terms of the resolvent of the time-varying linear system
ẋ = A(t)x. This condition is due to Rudolph Kalman, Yu-Chi Ho and Kumpati
Narendra [265, Theorem 5]. Let us first recall the definition of the resolvent of the
time-varying linear system ẋ = A(t)x.

Definition 1.4. The resolvent R of the time-varying linear system ẋ = A(t)x
is the map

R : [T0, T1]2 → L(Rn; Rn)
(t1, t2) 7→ R(t1, t2)
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such that, for every t2 ∈ [T0, T1], the map R(·, t2) : [T0, T1] → L(Rn; Rn), t1 7→
R(t1, t2), is the solution of the Cauchy problem

Ṁ = A(t)M, M(t2) = Idn,(1.5)

where Idn denotes the identity map of Rn.

One has the following classical properties of the resolvent.

Proposition 1.5. The resolvent R is such that

R ∈ C0([T0, T1]2;L(Rn; Rn)),(1.6)

R(t1, t1) = Idn, ∀t1 ∈ [T0, T1],(1.7)

R(t1, t2)R(t2, t3) = R(t1, t3), ∀(t1, t2, t3) ∈ [T0, T1]3.(1.8)

In particular,

R(t1, t2)R(t2, t1) = Idn, ∀(t1, t2) ∈ [T0, T1]2.(1.9)

Moreover, if A ∈ C0([T0, T1];L(Rn; Rn)), then R ∈ C1([T0, T1]2;L(Rn; Rn)) and
one has

∂R

∂t1
(t, τ) = A(t)R(t, τ), ∀(t, τ) ∈ [T0, T1]2,(1.10)

∂R

∂t2
(t, τ) = −R(t, τ)A(τ), ∀(t, τ) ∈ [T0, T1]2.(1.11)

Remark 1.6. Equality (1.10) follows directly from the definition of the re-
solvent. Equality (1.11) can be obtained from (1.10) by differentiating (1.9) with
respect to t2.

Exercise 1.7. Let us define A by

A(t) =
(
t −1
1 t

)
.

Compute the resolvent of ẋ = A(t)x.
Answer. Let x1 and x2 be the two components of x in the canonical basis of

R2. Let z = x1 + ix2 ∈ C. One gets

ż = (t+ i)z,

which leads to

z(t1) = z(t2) exp
(
t21
2
− t22

2
+ it1 − it2

)
.(1.12)

From (1.12), one gets

R(t1, t2) =

cos(t1 − t2) exp
(
t21
2
− t22

2

)
− sin(t1 − t2) exp

(
t21
2
− t22

2

)
sin(t1 − t2) exp

(
t21
2
− t22

2

)
cos(t1 − t2) exp

(
t21
2
− t22

2

)
 .

Exercise 1.8. Let A be in C1([T0, T1];L(Rn,Rn)).
1. For k ∈ N, compute the derivative of the map

[T0, T1] → L(Rn,Rn)
t 7→ A(t)k.



6 1. FINITE-DIMENSIONAL LINEAR CONTROL SYSTEMS

2. Let us assume that

A(t)A(τ) = A(τ)A(t), ∀(t, τ) ∈ [T0, T1]2.

Show that

R(t1, t2) = exp
(∫ t1

t2

A(t)dt
)
, ∀(t1, t2) ∈ [T0, T1]2.(1.13)

3. Give an example of A such that (1.13) does not hold.
Answer. Take n = 2 and

A(t) :=
(

0 t
0 1

)
.

One gets, for every (t1, t2) ∈ [T0, T1]2,

R(t1, t2) =
(

1 (t1 − 1)et1−t2 − t2 + 1
0 et1−t2

)
,

exp
(∫ t1

t2

A(t)dt
)

=

(
1

t1 + t2
2

(et1−t2 − 1)

0 et1−t2

)
.

Of course, the main property of the resolvent is the fact that it gives the solution
of the Cauchy problem (1.4). Indeed, one has the following classical proposition.

Proposition 1.9. The solution of the Cauchy problem (1.4) satisfies

x(t1) = R(t1, t0)x(t0) +
∫ t1

t0

R(t1, τ)b(τ)dτ, ∀(t0, t1) ∈ [T0, T1]2.(1.14)

In particular,

x(t) = R(t, T0)x0 +
∫ t

T0

R(t, τ)b(τ)dτ, ∀t ∈ [T0, T1].(1.15)

Equality (1.14) is known as Duhamel’s principle.
Let us now define the controllability Gramian of the control system ẋ = A(t)x+

B(t)u.

Definition 1.10. The controllability Gramian of the control system

ẋ = A(t)x+B(t)u

is the symmetric n× n-matrix

C :=
∫ T1

T0

R(T1, τ)B(τ)B(τ)trR(T1, τ)trdτ.(1.16)

In (1.16) and throughout the whole book, for a matrix M or a linear map M
from Rk into Rl, M tr denotes the transpose of M .

Our first condition for the controllability of ẋ = A(t)x + B(t)u is given in
the following theorem [265, Theorem 5] due to Rudolph Kalman, Yu-Chi Ho and
Kumpati Narendra.

Theorem 1.11. The linear time varying control system ẋ = A(t)x + B(t)u is
controllable if and only if its controllability Gramian is invertible.
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Remark 1.12. Note that, for every x ∈ Rn,

xtrCx =
∫ T1

T0

|B(τ)trR(T1, τ)trx|2dτ.

Hence the controllability Gramian C is a nonnegative symmetric matrix. In partic-
ular, C is invertible if and only if there exists c > 0 such that

xtrCx > c|x|2, ∀x ∈ Rn.(1.17)

Proof of Theorem 1.11. We first assume that C is invertible and prove that
ẋ = A(t)x+B(t)u is controllable. Let x0 and x1 be in Rn. Let ū ∈ L∞((T0, T1); Rm)
be defined by

ū(τ) := B(τ)trR(T1, τ)trC−1(x1 −R(T1, T0)x0), τ ∈ (T0, T1).(1.18)

(In (1.18) and in the following, the notation “τ ∈ (T0, T1)” stands for “for almost
every τ ∈ (T0, T1)” or in the distribution sense in D′(T0, T1), depending on the
context.) Let x̄ ∈ C0([T0, T1]; Rn) be the solution of the Cauchy problem

˙̄x = A(t)x̄+B(t)ū(t), x̄(T0) = x0.(1.19)

Then, by Proposition 1.9,

x̄(T1) = R(T1, T0)x0

+
∫ T1

T0
R(T1, τ)B(τ)B(τ)trR(T1, τ)trC−1(x1 −R(T1, T0)x0)dτ

= R(T1, T0)x0 + x1 −R(T1, T0)x0

= x1.

Hence ẋ = A(t)x+B(t)u is controllable.
Let us now assume that C is not invertible. Then there exists y ∈ Rn \{0} such

that Cy = 0. In particular, ytrCy = 0, that is,∫ T1

T0

ytrR(T1, τ)B(τ)B(τ)trR(T1, τ)trydτ = 0.(1.20)

But the left hand side of (1.20) is equal to∫ T1

T0

|B(τ)trR(T1, τ)try|2dτ.

Hence (1.20) implies that

ytrR(T1, τ)B(τ) = 0, τ ∈ (T0, T1).(1.21)

Now let u ∈ L1((T0, T1); Rm) and x ∈ C0([T0, T1]; Rn) be the solution of the Cauchy
problem

ẋ = A(t)x+B(t)u(t), x(T0) = 0.
Then, by Proposition 1.9 on the previous page,

x(T1) =
∫ T1

T0

R(T1, τ)B(τ)u(τ)dτ.

In particular, by (1.21),

(1.22) ytrx(T1) = 0.

Since y ∈ Rn \ {0}, there exists x1 ∈ Rn such that ytrx1 6= 0 (for example x1 := y).
It follows from (1.22) that, whatever u is, x(T1) 6= x1. This concludes the proof of
Theorem 1.11.
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Let us point out that the control ū defined by (1.18) has the quite interesting
property given in the following proposition, also due to Rudolph Kalman, Yu-Chi
Ho and Kumpati Narendra [265, Theorem 8].

Proposition 1.13. Let (x0, x1) ∈ Rn × Rn and let u ∈ L2((T0, T1); Rm) be
such that the solution of the Cauchy problem

ẋ = A(t)x+B(t)u, x(T0) = x0,(1.23)

satisfies
x(T1) = x1.

Then ∫ T1

T0

|ū(t)|2dt 6
∫ T1

T0

|u(t)|2dt

with equality (if and) only if

u(t) = ū(t) for almost every t ∈ (T0, T1).

Proof of Proposition 1.13. Let v := u−ū. Then, x̄ and x being the solutions
of the Cauchy problems (1.19) and (1.23), respectively, one has∫ T1

T0
R(T1, t)B(t)v(t)dt =

∫ T1

T0
R(T1, t)B(t)u(t)dt−

∫ T1

T0
R(T1, t)B(t)ū(t)dt

= (x(T1)−R(T1, T0)x(T0))
− (x̄(T1)−R(T1, T0)x̄(T0)).

Hence ∫ T1

T0

R(T1, t)B(t)v(t)dt = (x1 −R(T1, T0)x0)− (x1 −R(T1, T0)x0) = 0.(1.24)

One has ∫ T1

T0

|u(τ)|2dτ =
∫ T1

T0

|ū(τ)|2dτ +
∫ T1

T0

|v(τ)|2dτ + 2
∫ T1

T0

ūtr(τ)v(τ)dτ.(1.25)

From (1.18) (note also that Ctr = C),∫ T1

T0

ūtr(τ)v(τ)dτ = (x1 −R(T1, T0)x0)trC−1

∫ T1

T0

R(T1, τ)B(τ)v(τ)dτ,

which, together with (1.24), gives∫ T1

T0

ūtr(τ)v(τ)dτ = 0.(1.26)

Proposition 1.13 then follows from (1.25) and (1.26).

Exercise 1.14. Let us consider the control system

ẋ1 = u, ẋ2 = x1 + tu,(1.27)

where the control is u ∈ R and the state is x := (x1, x2)tr ∈ R2. Let T > 0. We
take T0 := 0 and T1 := T . Compute C. Check that the control system (1.27) is not
controllable.

Answer. One finds

C =
(
T T 2

T 2 T 3

)
,

which is a matrix of rank 1.
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Exercise 1.15. Let us consider the control system

ẋ1 = x2, ẋ2 = u,(1.28)

where the control is u ∈ R and the state is x := (x1, x2)tr ∈ R2. Let T > 0.
Compute the ū ∈ L2(0, T ) which minimizes

∫ T
0
|u(τ)|2dτ under the constraint that

the solution x of (1.28) such that x(0) = (−1, 0)tr satisfies x(T ) = (0, 0)tr.
Answer. Let T0 = 0, T1 = T , x0 = (−1, 0)tr and x1 = (0, 0)tr. One gets

R(T1, τ) =
(

1 T − τ
0 1

)
, ∀τ ∈ [T0, T1],

C =

(
T 3

3
T 2

2
T 2

2 T

)
, C−1 =

12
T 3

(
1 −T

2

−T
2

T 2

3

)
,

which lead to

ū(t) = − 12
T 3

(
t− T

2

)
, x2(t) = − 12

T 3

(
t2

2
− T

2
t

)
, x1(t) = −1− 12

T 3

(
t3

6
− T

4
t2
)
.

1.3. Kalman’s type conditions for controllability

The necessary and sufficient condition for controllability given in Theorem 1.11
on page 6 requires computing the matrix C, which might be quite difficult (and even
impossible) in many cases, even for simple linear control systems. In this section
we give a new criterion for controllability which is much simpler to check.

For simplicity, we start with the case of a time invariant system, that is, the case
where A(t) and B(t) do not depend on time. Note that a priori the controllability
of ẋ = Ax + Bu could depend on T0 and T1 (more precisely, it could depend on
T1 − T0). (This is indeed the case for some important linear partial differential
control systems; see for example Section 2.1.2 and Section 2.4.2 below.) So we
shall speak about the controllability of the time invariant linear control system
ẋ = Ax+Bu on [T0, T1].

The famous Kalman rank condition for controllability is given in the following
theorem.

Theorem 1.16. The time invariant linear control system ẋ = Ax + Bu is
controllable on [T0, T1] if and only if

Span {AiBu; u ∈ Rm, i ∈ {0, . . . , n− 1}} = Rn.(1.29)

In particular, whatever T0 < T1 and T̃0 < T̃1 are, the time invariant linear control
system ẋ = Ax + Bu is controllable on [T0, T1] if and only if it is controllable on
[T̃0, T̃1].

Remark 1.17. Theorem 1.16 is Theorem 10 of [265], a joint paper by Rudolph
Kalman, Yu-Chi Ho and Kumpati Narendra. The authors of [265] say on page 201
of their paper that Theorem 1.16 is the “simplest and best known” criterion for
controllability. As they mention in [265, Section 11], Theorem 1.16 has previously
appeared in the paper [296] by Joseph LaSalle. By [296, Theorem 6 and page 15]
one has that the rank condition (1.29) implies that the time invariant linear control
system ẋ = Ax+Bu is controllable on [T0, T1]; moreover, it follows from [296, page
15] that, if the rank condition (1.29) is not satisfied, then there exists η ∈ Rn such
that, for every u ∈ L∞((T0, T1); Rm),

(ẋ = Ax+Bu(t), x(T0) = 0) ⇒ (ηtrx(T1) = 0)
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and therefore the control system ẋ = Ax+ Bu is not controllable on [T0, T1]. The
paper [265] also refers, in its Section 11, to the paper [389] by Lev Pontryagin,
where a condition related to condition (1.29) appears, but without any connection
stated to the controllability of the control system ẋ = Ax+Bu.

Proof of Theorem 1.16. Since A does not depend on time, one has

R(t1, t2) = e(t1−t2)A, ∀(t1, t2) ∈ [T0, T1]2.

Hence

C =
∫ T1

T0

e(T1−τ)ABBtre(T1−τ)Atr
dτ.(1.30)

Let us first assume that the time invariant linear control system ẋ = Ax + Bu is
not controllable on [T0, T1]. Then, by Theorem 1.11 on page 6, the linear map C is
not invertible. Hence there exists y ∈ Rn \ {0} such that

Cy = 0,(1.31)

which implies that

ytrCy = 0.(1.32)

From (1.30) and (1.32), one gets∫ T1

T0

|Btre(T1−τ)Atr
y|2dτ = 0,

from which we get

k(τ) = 0, ∀τ ∈ [T0, T1],(1.33)

with

k(τ) := ytre(T1−τ)AB, ∀τ ∈ [T0, T1].(1.34)

Differentiating i-times (1.34) with respect to τ , one easily gets

k(i)(T1) = (−1)iytrAiB,(1.35)

which, together with (1.33) gives

ytrAiB = 0, ∀i ∈ N.(1.36)

In particular,

ytrAiB = 0, ∀i ∈ {0, . . . , n− 1}.(1.37)

But, since y 6= 0, (1.37) implies that (1.29) does not hold.
In order to prove the converse it suffices to check that, for every y ∈ Rn,

(1.37) ⇒ (1.36),(1.38)

(k(i)(T1) = 0, ∀i ∈ N) ⇒ (k = 0 on [T0, T1]),(1.39)

(1.32) ⇒ (1.31).(1.40)

Implication (1.38) follows from the Cayley-Hamilton theorem. Indeed, let PA be
the characteristic polynomial of the matrix A

PA(z) := det (zIdn −A) = zn − αnz
n−1 − αn−1z

n−2 . . .− α2z − α1.

Then the Cayley-Hamilton theorem states that PA(A) = 0, that is,

An = αnA
n−1 + αn−1A

n−2 . . .+ α2A+ α1Idn.(1.41)
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In particular,
(1.37) ⇒ ytrAnB = 0.

Then a straightforward induction argument using (1.41) gives (1.38). Implication
(1.39) follows from the fact that the map k : [T0, T1] → M1,m(R) is analytic.
Finally, in order to get (1.40), it suffices to use the Cauchy-Schwarz inequality for
the semi-definite positive bilinear form q(a, b) = atrCb, that is,

|ytrCz| 6 (ytrCy)1/2(ztrCz)1/2.

This concludes the proof of Theorem 1.16.

Let us now turn to the case of time-varying linear control systems. We assume
that A and B are of class C∞ on [T0, T1]. Let us define, by induction on i a sequence
of maps Bi ∈ C∞([T0, T1];L(Rm; Rn)) in the following way:

B0(t) := B(t), Bi(t) := Ḃi−1(t)−A(t)Bi−1(t), ∀t ∈ [T0, T1].(1.42)

Then one has the following theorem (see, in particular, the papers [86] by A. Chang
and [447] by Leonard Silverman and Henry Meadows).

Theorem 1.18. Assume that, for some t̄ ∈ [T0, T1],

Span {Bi(t̄)u; u ∈ Rm, i ∈ N} = Rn.(1.43)

Then the linear control system ẋ = A(t)x+B(t)u is controllable (on [T0, T1]).

Before giving two different proofs of Theorem 1.18, let us make two simple
remarks. Our first remark is that the Cayley-Hamilton theorem (see (1.41)) can no
longer be used: there are control systems ẋ = A(t)x + B(t)u and t̄ ∈ [T0, T1] such
that

Span {Bi(t̄)u; u ∈ Rm, i ∈ N} 6= Span {Bi(t̄)u; u ∈ Rm, i ∈ {0, . . . , n− 1}}.
(1.44)

For example, let us take T0 = 0, T1 = 1, n = m = 1, A(t) = 0, B(t) = t. Then

B0(t) = t, B1(t) = 1, Bi(t) = 0, ∀i ∈ N \ {0, 1}.
Therefore, if t̄ = 0, the left hand side of (1.44) is R and the right hand side of (1.44)
is {0}.

However, one has the following proposition, which, as far as we know, is new and
that we shall prove later on (see pages 15–19; see also [448] by Leonard Silverman
and Henry Meadows for prior related results).

Proposition 1.19. Let t̄ ∈ [T0, T1] be such that (1.43) holds. Then there exists
ε > 0 such that, for every t ∈ ([T0, T1] ∩ (t̄− ε, t̄+ ε)) \ {t̄},

Span {Bi(t)u; u ∈ Rm, i ∈ {0, . . . , n− 1}} = Rn.(1.45)

Our second remark is that the sufficient condition for controllability given in
Theorem 1.18 is not a necessary condition (unless n = 1, or A and B are assumed
to be analytic; see Exercise 1.23 on page 19). Indeed, let us take n = 2, m = 1,
A = 0. Let f ∈ C∞([T0, T1]) and g ∈ C∞([T0, T1]) be such that

f = 0 on [(T0 + T1)/2, T1], g = 0 on [T0, (T0 + T1)/2],(1.46)

f(T0) 6= 0, g(T1) 6= 0.(1.47)



12 1. FINITE-DIMENSIONAL LINEAR CONTROL SYSTEMS

Let B be defined by

B(t) :=
(
f(t)
g(t)

)
, ∀t ∈ [T0, T1].(1.48)

Then

C =

(∫ T1

T0
f(t)2dt 0
0

∫ T1

T0
g(t)2dt

)
.

Hence, by (1.47), C is invertible. Therefore, by Theorem 1.11 on page 6, the linear
control system ẋ = A(t)x+B(t)u is controllable (on [T0, T1]). Moreover, one has

Bi(t) =
(
f (i)(t)
g(i)(t)

)
, ∀t ∈ [T0, T1], ∀i ∈ N.

Hence, by (1.46),

Span {Bi(t)u; u ∈ R, i ∈ N} ⊂ {(a, 0)tr; a ∈ R}, ∀t ∈ [T0, (T0 + T1)/2],

Span {Bi(t)u; u ∈ R, i ∈ N} ⊂ {(0, a)tr; a ∈ R}, ∀t ∈ [(T0 + T1)/2, T1].

Therefore, for every t̄ ∈ [T0, T1], (1.43) does not hold.

Exercise 1.20. Prove that there exist f ∈ C∞([T0, T1]) and g ∈ C∞([T0, T1])
such that

Support f ∩ Support g = {T0}.(1.49)

Let us fix such f and g. Let B ∈ C∞([T0, T1]; R2) be defined by (1.48). We take
n = 2, m = 1, A = 0. Prove that:

1. For every T ∈ (T0, T1), the control system ẋ = B(t)u is controllable on
[T0, T ].

2. For every t̄ ∈ [T0, T1], (1.43) does not hold.

Let us now give a first proof of Theorem 1.18. We assume that the linear
control system ẋ = A(t)x + B(t)u is not controllable. Then, by Theorem 1.11 on
page 6, C is not invertible. Therefore, there exists y ∈ Rn \ {0} such that Cy = 0.
Hence

0 = ytrCy =
∫ T1

T0

|B(τ)trR(T1, τ)try|2dτ = 0,

which implies, using (1.8), that

K(τ) := ztrR(t̄, τ)B(τ) = 0, ∀τ ∈ [T0, T1],(1.50)

with
z := R(T1, t̄)try.

Note that, by (1.9), R(T1, t̄)tr is invertible (its inverse is R(t̄, T1)tr). Hence z, as y,
is not 0. Using (1.11), (1.42) and an induction argument on i, one gets

K(i)(τ) = ztrR(t̄, τ)Bi(τ),∀τ ∈ [T0, T1], ∀i ∈ N.(1.51)

By (1.7), (1.50) and (1.51),

ztrBi(t̄) = 0, ∀i ∈ N.

As z 6= 0, this shows that (1.43) does not hold. This concludes our first proof of
Theorem 1.18.
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Our second proof, which is new, is more delicate but may have applications for
some controllability issues for infinite-dimensional control systems. Let p ∈ N be
such that

Span {Bi(t̄)u; u ∈ Rm, i ∈ {0, . . . , p}} = Rn.
By continuity there exists ε > 0 such that, with [t0, t1] := [T0, T1] ∩ [t̄− ε, t̄+ ε],

Span {Bi(t)u; u ∈ Rm, i ∈ {0, . . . , p}} = Rn, ∀t ∈ [t0, t1].(1.52)

Let us first point out that
p∑
i=0

Bi(t)Bi(t)tr is invertible for every t ∈ [t0, t1].(1.53)

Indeed, if this is not the case, there exist t∗ ∈ [t0, t1] and

a ∈ Rn \ {0}(1.54)

such that
p∑
i=0

Bi(t∗)Bi(t∗)tra = 0.

In particular,
p∑
i=0

atrBi(t∗)Bi(t∗)tra = 0,

which implies that

Bi(t∗)tra = 0, ∀i ∈ {0, . . . , p}.(1.55)

From (1.55), we get that(
p∑
i=0

Bi(t∗)yi

)tr

a = 0, ∀(y0, . . . , yp) ∈ (Rm)p+1,

which is in contradiction with (1.52) and (1.54). Hence (1.53) holds, which allows
us to define, for j ∈ {0, . . . , p}, Qj ∈ C∞([t0, t1];L(Rn; Rm)) by

Qj(t) := Bj(t)tr(
p∑
i=0

Bi(t)Bi(t)tr)−1, ∀t ∈ [t0, t1].

We then have
p∑
i=0

Bi(t)Qi(t) = Idn, ∀t ∈ [t0, t1].(1.56)

Let (x0, x1) ∈ Rn × Rn. Let γ0 ∈ C∞([T0, T1]; Rn) be the solution of the Cauchy
problem

γ̇0 = A(t)γ0, γ0(T0) = x0.(1.57)

Similarly, let γ1 ∈ C∞([T0, T1]; Rn) be the solution of the Cauchy problem

γ̇1 = A(t)γ1, γ1(T1) = x1.(1.58)

Let d ∈ C∞([T0, T1]) be such that

d = 1 on a neighborhood of [T0, t0] in [T0, T1],(1.59)

d = 0 on a neighborhood of [t1, T1] in [T0, T1].(1.60)
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Let Γ ∈ C∞([T0, T1]; Rn) be defined by

Γ(t) := d(t)γ0(t) + (1− d(t))γ1(t), ∀t ∈ [T0, T1].(1.61)

From (1.57), (1.58), (1.59), (1.60) and (1.61), one has

Γ(T0) = x0, Γ(T1) = x1.(1.62)

Let q ∈ C∞([T0, T1]; Rn) be defined by

q(t) := −Γ̇(t) +A(t)Γ(t), ∀t ∈ [T0, T1].(1.63)

It readily follows from (1.57), (1.58), (1.59) and (1.60) that

q = 0 on a neighborhood of [T0, t0] ∪ [t1, T1] in [T0, T1].(1.64)

Let us now define a sequence (ui)i∈{0,...,p−1} of elements of C∞([t0, t1]; Rm) by
requiring (decreasing induction on i) that

up−1(t) := Qp(t)q(t), ∀t ∈ [t0, t1],(1.65)

ui−1(t) := −u̇i(t) +Qi(t)q(t), ∀i ∈ {1, . . . , p− 1}, ∀t ∈ [t0, t1].(1.66)

Finally, we define u : [T0, T1] → Rm, r : [T0, T1] → Rn and x : [T0, T1] → Rn by

u := 0 on [T0, t0] ∪ [t1, T1] and u(t) := u̇0(t)−Q0(t)q(t), ∀t ∈ (t0, t1),(1.67)

r := 0 on [T0, t0] ∪ [t1, T1] and r(t) :=
p−1∑
i=0

Bi(t)ui(t), ∀t ∈ (t0, t1),(1.68)

x(t) := Γ(t) + r(t), ∀t ∈ [T0, T1].(1.69)

It readily follows from (1.64), (1.65), (1.66), (1.67) and (1.68) that u, r and x are
of class C∞. From (1.62), (1.68) and (1.69), one has

x(T0) = x0, x(T1) = x1.(1.70)

Let θ ∈ C∞([T0, T1]; Rn) be defined by

θ(t) := ẋ(t)− (A(t)x(t) +B(t)u(t)), ∀t ∈ [T0, T1].(1.71)

From (1.63), (1.64), (1.67), (1.68), (1.69) and (1.71), one has

θ = 0 on [T0, t0] ∪ [t1, T1].(1.72)

Let us check that

θ = 0 on (t0, t1).(1.73)

From (1.63), (1.68), (1.69) and (1.71), one has on (t0, t1),

θ = Γ̇ + ṙ −A(Γ + r)−Bu

= −q +

(
p−1∑
i=0

Ḃiui

)
+

(
p−1∑
i=0

Biu̇i

)
−

(
p−1∑
i=0

ABiui

)
−Bu,



1.3. KALMAN’S TYPE CONDITIONS FOR CONTROLLABILITY 15

which, together with (1.42), (1.65), (1.66) and (1.67), leads to

θ = −q +

(
p−1∑
i=0

(Bi+1 +ABi)ui

)
+

(
p−1∑
i=1

Bi(−ui−1 +Qiq)

)

+Bu̇0 −

(
p−1∑
i=0

ABiui

)
−Bu

= −q +Bpup−1 +

(
p−1∑
i=1

BiQiq

)
+B(u+Q0q)−Bu

= −q +
p∑
i=0

BiQiq.

(1.74)

From (1.56) and (1.74), one has (1.73). Finally, our second proof of Theorem 1.18
on page 11 follows from (1.70), (1.71), (1.72) and (1.73).

Remark 1.21. The above proof is related to the following property: A generic
under-determined linear differential operator L has a right inverse M (i.e., an op-
erator M satisfying (L ◦M)q = q, for every q) which is also a linear differential
operator. This general result is due to Mikhael Gromov; see [206, (B), pages 150–
151] for ordinary differential equations and [206, Theorem, page 156] for general
differential equations. Here we consider the following differential operator:

L(x, u) := ẋ−A(t)x−B(t)u, ∀x ∈ C∞([t0, t1]; Rn), ∀u ∈ C∞([t0, t1]; Rm).

Even though the linear differential operator L is given and not generic, Property
(1.52) implies the existence of such a right inverse M , which is in fact defined above:
It suffices to take

M(q) := (x, u),

with

x(t) :=
p−1∑
i=0

Bi(t)ui(t), ∀t ∈ [t0, t1],

u(t) := u̇0(t)−Q0(t)q(t), ∀t ∈ [t0, t1],

where (ui)i∈{0,...,p−1} is the sequence of functions in C∞([t0, t1]; Rm) defined by
requiring (1.65) and (1.66).

Proof of Proposition 1.19 on page 11. Our proof is divided into three
steps. In Step 1, we explain why we may assume that A = 0. In Step 2, we take
care of the case of a scalar control (m = 1). Finally in Step 3, we reduce the
multi-input case (m > 1) to the case of a scalar control.
Step 1. Let R ∈ C∞([T0, T1] × [T0, T1];L(Rn; Rn)) be the resolvent of the time-
varying linear system ẋ = A(t)x (See Definition 1.4 on page 4). Let

B̃ ∈ C∞([T0, T1];L(Rm; Rn))

be defined by
B̃(t) = R(t̄, t)B(t), ∀t ∈ [T0, T1].

Let us define, by induction on i ∈ N, B̃i ∈ C∞([T0, T1];L(Rm; Rn)) by

B̃0 = B̃ and B̃i = ˙̃Bi−1, ∀i ∈ N \ {0}.
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In other words

B̃i = B̃(i).(1.75)

Using (1.11), one readily gets, by induction on i ∈ N,

B̃i(t) = R(t̄, t)Bi(t), ∀t ∈ [T0, T1], ∀i ∈ N.

In particular, since R(t̄, t̄) = Idn (see (1.7)) and R(t̄, t) is invertible for every t ∈
[T0, T1] (see (1.9)),

Span {Bi(t̄)u; u ∈ Rm, i ∈ N} = Span {B̃i(t̄)u; u ∈ Rm, i ∈ N},

dim Span {Bi(t)u; u ∈ Rm, i ∈ {0, . . . , n− 1}}

= dim Span {B̃i(t)u; u ∈ Rm, i ∈ {0, . . . , n− 1}}, ∀t ∈ [T0, T1].

Hence, replacing B by B̃ and using (1.75), it suffices to consider the case where

A = 0.(1.76)

In the following two steps we assume that (1.76) holds. In particular,

Bi = B(i), ∀i ∈ N.(1.77)

Step 2. In this step, we treat the case of a scalar control; we assume that m = 1.
Let us assume, for the moment, that the following lemma holds.

Lemma 1.22. Let B ∈ C∞([T0, T1]; Rn) and t̄ ∈ [T0, T1] be such that

Span {B(i)(t̄); i ∈ N} = Rn.(1.78)

Then there exist n integers pi ∈ N, i ∈ {1, . . . , n}, n functions ai ∈ C∞([T0, T1]),
i ∈ {1, . . . , n}, n vectors fi ∈ Rn, i ∈ {1, . . . , n}, such that

pi < pi+1, ∀i ∈ {1, . . . , n− 1},(1.79)

ai(t̄) 6= 0, ∀i ∈ {1, . . . , n},(1.80)

B(t) =
n∑
i=1

ai(t)(t− t̄)pifi,∀t ∈ [T0, T1],(1.81)

Span {fi; i ∈ {1, . . . , n}} = Rn.(1.82)

From (1.77) and (1.81), one gets that, as t→ t̄,

det (B0(t), B1(t), . . . , Bn−1(t)) =K(t− t̄)−(n(n−1)/2)+
Pn

i=1 pi(1.83)

+ O
(
(t− t̄)1−(n(n−1)/2)+

Pn
i=1 pi

)
,

for the constant K defined by

K := K(p1, . . . , pn, a1(t̄), . . . , an(t̄), f1, . . . , fm).(1.84)

Let us compute K. Let B̄ ∈ C∞(R; Rn) be defined by

B̄(t) =
n∑
i=1

ai(t̄)tpifi,∀t ∈ R.(1.85)

One has

det (B̄(0)(t), B̄(1)(t), . . . , B̄(n−1)(t)) = Kt−(n(n−1)/2)+
Pn

i=1 pi , ∀t ∈ R.(1.86)
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But, as one easily sees, for fixed t, fixed real numbers ai(t̄) and fixed integers pi
satisfying (1.79), the map

(f1, . . . , fn) ∈ Rn × . . .× Rn 7→ det (B̄(0)(t), B̄(1)(t), . . . , B̄(n−1)(t)) ∈ R

is multilinear and vanishes if the vectors f1, . . . , fn are dependent. Therefore K
can be written in the following way:

K := F (p1, . . . pn)

(
n∏
i=1

ai(t̄)

)
det (f1, . . . , fn).(1.87)

Taking for (f1, . . . , fn) the canonical basis of Rn and ai(t̄) = 1 for every i ∈
{1, . . . , n}, one gets

det (B̄(0)(t), B̄(1)(t), . . . , B̄(n−1)(t)) = t−(n(n−1)/2)+
Pn

i=1 pidet M,(1.88)

with

M :=


1 p1 p1(p1 − 1) . . . p1(p1 − 1)(p1 − 2) . . . (p1 − n+ 1)
1 p2 p2(p2 − 1) . . . p2(p2 − 1)(p2 − 2) . . . (p2 − n+ 1)
...

...
...

...
...

1 pn pn(pn − 1) . . . pn(pn − 1)(pn − 2) . . . (pn − n+ 1)

 .

The determinant of M can be computed thanks to the Vandermonde determinant.
One has

det M = det


1 p1 p2

1 . . . pn−1
1

1 p2 p2
2 . . . pn−1

2
...

...
...

...
...

1 pn p2
n . . . pn−1

n

 =
∏

16i<j6n

(pj − pi).(1.89)

Hence, from (1.87), (1.88) and (1.89), we have

K :=

 ∏
16i<j6n

(pj − pi)

( n∏
i=1

ai(t̄)

)
det(f1, . . . , fn).(1.90)

From (1.79), (1.80), (1.82), and (1.90), it follows that

K 6= 0.(1.91)

From (1.83) and (1.91), one gets the existence of ε > 0 such that, for every t ∈
([T0, T1] ∩ (t̄− ε, t̄+ ε)) \ {t̄}, (1.45) holds.

Let us now prove Lemma 1.22 by induction on n. This lemma clearly holds
if n = 1. Let us assume that it holds for every integer less than or equal to
(n− 1) ∈ N \ {0}. We want to prove that it holds for n. Let p1 ∈ N be such that

B(i)(t̄) = 0, ∀i ∈ N ∩ [0, p1 − 1],(1.92)

B(p1)(t̄) 6= 0.(1.93)

(Property (1.78) implies the existence of such a p1.) Let

f1 := B(p1)(t̄).(1.94)

By (1.93) and (1.94),
f1 6= 0.
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Let E be the orthogonal complement of f1 in Rn:

E := f⊥1 ' Rn−1.(1.95)

Let ΠE : Rn → E be the orthogonal projection on E. Let C ∈ C∞([T0, T1];E) be
defined by

C(t) := ΠEB(t), ∀t ∈ [T0, T1].(1.96)

From (1.78) and (1.96), one gets that

Span {C(i)(t̄)u; u ∈ Rm, i ∈ N} = E.(1.97)

Hence, by the induction assumption, there are (n−1) integers pi ∈ N, i ∈ {2, . . . , n},
(n − 1) functions ai ∈ C∞([T0, T1]), i ∈ {2, . . . , n}, (n − 1) vectors fi ∈ E, i ∈
{2, . . . , n}, such that

pi < pi+1, ∀i ∈ {2, . . . , n− 1},(1.98)

ai(t̄) 6= 0, ∀i ∈ {2, . . . , n},(1.99)

C(t) =
n∑
i=2

ai(t)(t− t̄)pifi, ∀t ∈ [T0, T1],(1.100)

Span {fi; i ∈ {2, . . . , n}} = E.(1.101)

Let g ∈ C∞([T0, T1]) be such that (see (1.95), (1.96) and (1.100))

B(t) = g(t)f1 +
n∑
i=2

ai(t)(t− t̄)pifi, ∀t ∈ [T0, T1].(1.102)

Using (1.92), (1.93), (1.94), (1.95), (1.99), (1.101) and (1.102), one gets

p1 < pi, ∀i ∈ {2, . . . , n},
∃a1 ∈ C∞([T0, T1]) such that a1(t̄) 6= 0 and g(t) = (t− t̄)p1a1(t), ∀t ∈ [T0, T1].

This concludes the proof of Lemma 1.22 and the proof of Proposition 1.19 on page 11
for m = 1.
Step 3. Here we still assume that (1.76) holds. We explain how to reduce the case
m > 1 to the case m = 1. Let, for i ∈ {1, . . . ,m}, bi ∈ C∞([T0, T1]; Rn) be such
that

B(t) = (b1(t), . . . , bm(t)), ∀t ∈ [T0, T1].(1.103)

We define, for i ∈ {1, . . . ,m}, a linear subspace Ei of Rn by

Ei := Span
{
b
(j)
k (t̄); k ∈ {1, . . . , i} , j ∈ N

}
.(1.104)

From (1.43), (1.77), (1.103) and (1.104), we have

Em = Rn.(1.105)

Let q ∈ N \ {0} be such that, for every i ∈ {1, . . . ,m},

Ei = Span
{
b
(j)
k (t̄); k ∈ {1, . . . , i} , j ∈ {0, . . . , q − 1}

}
.(1.106)

Let b ∈ C∞([T0, T1]; Rn) be defined by

b(t) :=
m∑
i=1

(t− t̄)(i−1)qbi(t),∀t ∈ [T0, T1].(1.107)
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From (1.106) and (1.107), one readily gets, by induction on i ∈ {1, . . . ,m},

Ei = Span
{
b(j)(t̄); j ∈ {0, . . . iq − 1}

}
.

In particular, taking i = m and using (1.105), we get

Span
{
b(j)(t̄); j ∈ N

}
= Rn.(1.108)

Hence, by Proposition 1.19 applied to the case m = 1 (i.e., Step 2), there exists
ε > 0 such that, for every t ∈ ([T0, T1] ∩ (t̄− ε, t̄+ ε)) \ {t̄},

Span
{
b(j)(t); i ∈ {0, . . . , n− 1}

}
= Rn.(1.109)

Since, by (1.107),

Span
{
b(j)(t); j ∈ {0, . . . , n− 1}

}
⊂ Span

{
b
(j)
i (t); i ∈ {1, . . . ,m}, j ∈ {0, . . . , n− 1}

}
,

this concludes the proof of Proposition 1.19 on page 11.

Let us end this section with an exercise.

Exercise 1.23. Let us assume that the two maps A and B are analytic and
that the linear control system ẋ = A(t)x+B(t)u is controllable (on [T0, T1]). Prove
that:

1. For every t ∈ [T0, T1],

Span {Bi(t)u; u ∈ Rm, i ∈ N} = Rn.

2. The set

{t ∈ [T0, T1];Span {Bi(t)u; u ∈ Rm, i ∈ {0, . . . , n− 1}} 6= Rn}
is finite.

1.4. The Hilbert Uniqueness Method

In this section, our goal is to describe, in the framework of finite-dimensional
linear control systems, a method, called the Hilbert Uniqueness Method (HUM),
introduced by Jacques-Louis Lions in [325, 326] to solve controllability problems
for linear partial differential equations. This method is closely related to duality be-
tween controllability and observability. This duality is classical in finite dimension.
For infinite-dimensional control systems, this duality has been proved by Szymon
Dolecki and David Russell in [146]. (See the paper [293] by John Lagnese and the
paper [48] by Alain Bensoussan for a detailed description of the HUM together with
its connection to prior works.) The HUM is also closely related to Theorem 1.11 on
page 6 and Proposition 1.13 on page 8. In fact it provides a method to compute the
control ū defined by (1.18) for quite general control systems in infinite dimension.

We consider again the time-varying linear control system

ẋ = A(t)x+B(t)u, t ∈ [T0, T1],(1.110)

where, at time t ∈ [T0, T1], the state is x(t) ∈ Rn and the control is u(t) ∈ Rm. Let
us also recall that A ∈ L∞((T0, T1);L(Rn; Rn)) and B ∈ L∞((T0, T1);L(Rm; Rn)).
We are interested in the set of states which can be reached from 0 during the time
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interval [T0, T1]. More precisely, let R be the set of x1 ∈ Rn such that there exists
u ∈ L2((T0, T1); Rm) such that the solution of the Cauchy problem

ẋ = A(t)x+B(t)u(t), x(T0) = 0,(1.111)

satisfies x(T1) = x1. For φ1 given in Rn, we consider the solution φ : [T0, T1] → Rn
of the following backward Cauchy linear problem:

φ̇ = −A(t)trφ, φ(T1) = φ1, t ∈ [T0, T1].(1.112)

This linear system is called the adjoint system of the control system (1.110). This
terminology is justified by the following proposition.

Proposition 1.24. Let u ∈ L2((T0, T1); Rm). Let x : [T0, T1] → Rn be the
solution of the Cauchy problem (1.111). Let φ1 ∈ Rn and let φ : [T0, T1] → Rn be
the solution of the Cauchy problem (1.112). Then

x(T1) · φ1 =
∫ T1

T0

u(t) ·B(t)trφ(t)dt.(1.113)

In (1.113) and throughout the whole book, for a and b in Rl, l ∈ N \ {0}, a · b
denotes the usual scalar product of a and b. In other words a · b := atrb.

Proof of Proposition 1.24. We have

x(T1) · φ1 =
∫ T1

T0

d
dt

(x(t) · φ(t))dt

=
∫ T1

T0

((A(t)x(t) +B(t)u(t)) · φ(t)− x(t) ·A(t)trφ(t))dt

=
∫ T1

T0

u(t) ·B(t)trφ(t)dt.

This concludes the proof of Proposition 1.24.

Let us now denote by Λ the following map

Rn → Rn
φ1 7→ x(T1)

where x : [T0, T1] → Rn is the solution of the Cauchy problem

(1.114) ẋ = A(t)x+B(t)ū(t), x(T0) = 0,

with

(1.115) ū(t) := B(t)trφ(t).

Here φ : [T0, T1] → Rn is the solution of the adjoint problem

φ̇ = −A(t)trφ, φ(T1) = φ1, t ∈ [T0, T1].(1.116)

Then the following theorem holds.

Theorem 1.25. One has

R = Λ(Rn).(1.117)
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Moreover, if x1 = Λ(φ1) and if u∗ ∈ L2((T0, T1); Rm) is a control which steers the
control system (1.110) from 0 to x1 during the time interval [T0, T1], then∫ T1

T0

|ū(t)|2dt 6
∫ T1

T0

|u∗(t)|2dt,(1.118)

(where ū is defined by (1.115)-(1.116)), with equality if and only if u∗ = ū.

Of course Theorem 1.25 on the previous page follows from the proofs of The-
orem 1.11 on page 6 and of Proposition 1.13 on page 8; but we provide a new
(slightly different) proof, which is more suitable to treat the case of linear control
systems in infinite dimension.

By the definition of Λ,

Λ(Rn) ⊂ R.(1.119)

Let x1 be in R. Let u∗ ∈ L2((T0, T1); Rm) be such that the solution x∗ of the
Cauchy problem

ẋ∗ = A(t)x∗ +B(t)u∗(t), x∗(T0) = 0,

satisfies

x∗(T1) = x1.(1.120)

Let U ⊂ L2((T0, T1); Rm) be the set of maps of the form t ∈ [T0, T1] 7→ B(t)trφ(t)
where φ : [T0, T1] → Rn satisfies (1.112) for some φ1 ∈ Rn. This set U is a
vector subspace of L2((T0, T1); Rm). By its definition, U is of finite dimension (its
dimension is less than or equal to n). Hence U is a closed vector subspace of
L2((T0, T1); Rm). Let ũ be the orthogonal projection of u∗ on U . One has∫ T1

T0

u∗(t) · u(t) =
∫ T1

T0

ũ(t) · u(t)dt, ∀u ∈ U .(1.121)

Let x̃ : [T0, T1] → Rn be the solution of the Cauchy problem
˙̃x = A(t)x̃+B(t)ũ(t), x̃(T0) = 0.(1.122)

From Proposition 1.24, (1.120), (1.121) and (1.122),

x1 · φ1 = x̃(T1) · φ1, ∀φ1 ∈ Rn,
which implies that

x1 = x̃(T1).(1.123)

Since ũ ∈ U , there exists φ̃1 such that the solution φ̃ of the Cauchy problem
˙̃
φ = −A(t)trφ̃, φ̃(T1) = φ̃1, t ∈ [T0, T1],

satisfies
ũ(t) = B(t)trφ̃(t), t ∈ [T0, T1].

By the definition of Λ and (1.122),

Λ(φ̃1) = x̃(T1),

which, together with (1.123), implies that x1 = Λ(φ̃1) and concludes the proof of
(1.117).

Finally, let x1 = Λ(φ1), let ū be defined by (1.115)-(1.116) and let

u∗ ∈ L2((T0, T1); Rm)
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be a control which steers the control system (1.110) from 0 to x1 during the time
interval [T0, T1]. Note that, by the definition of U , ū ∈ U . Moreover, using Propo-
sition 1.24 on page 20 once more, we get that∫ T1

T0

u∗(t) · u(t)dt =
∫ T1

T0

ū(t) · u(t)dt, ∀u ∈ U .

Hence ū is the orthogonal projection of u∗ on U and we have∫ T1

T0

|u∗(t)|2dt =
∫ T1

T0

|ū(t)|2dt+
∫ T1

T0

|u∗(t)− ū|2dt.

This concludes the proof of Theorem 1.25.



CHAPTER 2

Linear partial differential equations

The subject of this chapter is the controllability of some classical partial dif-
ferential equations. For the reader who is familiar with this subject, a large part of
this chapter can be omitted; most of the methods detailed here are very well known.
One can find much more advanced material in some references given throughout
this chapter. The organization of this chapter is as follows.

- Section 2.1 concerns a transport equation. We first prove the well-posedness
of the Cauchy problem (Theorem 2.4 on page 27). Then we study the
controllability by different methods, namely:

- An explicit method: for this simple transport equation, one can give
explicitly a control steering the control system from every given state
to every other given state (if the time is large enough, a necessary
condition for this equation).

- The extension method. This method turns out to be useful for many
hyperbolic (even nonlinear) equations.

- The duality between controllability and observability. The idea is the
following one. Controllability for a linear control system is equivalent
to the surjectivity of a certain linear map F from a Hilbert space
H1 to another Hilbert space H2. The surjectivity of F is equivalent
to the existence of c > 0 such that

‖F∗(x2)‖H1 > c‖x2‖H2 , ∀x2 ∈ H2,(2.1)

where F∗ : H2 → H1 is the adjoint of F . So, one first computes
F∗ and then proves (2.1). Inequality (2.1) is called the observability
inequality. This method is nowadays the most popular one to prove
the controllability of a linear control partial differential equation.
The difficult part of this approach is to prove the observability in-
equality (2.1). There are many methods to prove such an inequality.
Here we use the multiplier method. We also present, in this chapter,
other methods for other equations.

- Section 2.2 is devoted to a linear Korteweg-de Vries (KdV) control equation.
We first prove the well-posedness of the Cauchy problem (Theorem 2.23 on
page 39). The proof relies on the classical semigroup approach. Then we
prove a controllability result, namely Theorem 2.25 on page 42. The proof
is based on the duality between controllability and observability. The ob-
servability inequality (2.1) ((2.156) for our KdV equation) uses a smoothing
effect, a multiplier method and a compactness argument.

- In Section 2.3, we present a classical general framework which includes as
special cases the study of the previous equations and their controllability
as well as of many other equations.

23
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- Section 2.4 is devoted to a time-varying linear one-dimensional wave equa-
tion. We first prove the well-posedness of the Cauchy problem (Theo-
rem 2.53 on page 68). The proof also relies on the classical semigroup
approach. Then we prove a controllability result, namely Theorem 2.55 on
page 72. The proof is based again on the duality between controllability
and observability. We prove the observability inequality (Proposition 2.60
on page 74) by means of a multiplier method (in a special case only).

- Section 2.5 concerns a linear heat equation. Again, we first take care of the
well-posedness of the Cauchy problem (Theorem 2.63 on page 77) by means
of the abstract approach. Then we prove the controllability of this equation
(Theorem 2.66 on page 79). The proof is based on the duality between
controllability and observability, but some new phenomena appear due to
the irreversibility of the heat equation. In particular, the observability
inequality now takes a new form, namely (2.398). This new inequality
is proved by establishing a global Carleman inequality. We also give in
this section a method, based on the flatness approach, to solve a motion
planning problem for a one-dimensional heat equation. Finally we prove
that one cannot control a heat equation in dimension larger than one by
means of a finite number of controls. To prove this result, we use a Laplace
transform together with a classical restriction theorem on the zeroes of an
entire function of exponential type.

- Section 2.6 is devoted to the study of a one-dimensional linear Schrödinger
equation. For this equation, the controllability result (Theorem 2.87 on
page 96) is obtained by the moments theory method, a method which is
quite useful for linear control systems with a finite number of controls.

- In Section 2.7, we consider a singular optimal control. We have a family
of linear control one-dimensional heat equations depending on a parameter
ε > 0. As ε→ 0, the heat equations degenerate into a transport equation.
The heat equation is controllable for every time, but the transport equation
is controllable only for large time. Depending on the time of controllability,
we study the behavior of the optimal controls as ε→ 0. The lower bounds
(Theorem 2.95 on page 104) are obtained by means of a Laplace transform
together with a classical representation of entire functions of exponential
type in C+. The upper bounds (Theorem 2.96) are obtained by means
of an observability inequality proved with the help of global Carleman
inequalities.

- Finally in Section 2.8 we give some bibliographical complements on the
subject of the controllability of infinite-dimensional linear control systems.

2.1. Transport equation

Let T > 0 and L > 0. We consider the linear control system

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.2)

y(t, 0) = u(t),(2.3)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R. Our
goal is to study the controllability of the control system (2.2)-(2.3); but let us first
study the Cauchy problem associated to (2.2)-(2.3).
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2.1.1. Well-posedness of the Cauchy problem. Let us first recall the
usual definition of solutions of the Cauchy problem

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.4)

y(t, 0) = u(t), t ∈ (0, T ),(2.5)

y(0, x) = y0(x), x ∈ (0, L).(2.6)

where T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) are given. In order to motivate
this definition, let us first assume that there exists a function y of class C1 on
[0, T ] × [0, L] satisfying (2.4)-(2.5)-(2.6) in the usual sense. Let τ ∈ [0, T ]. Let
φ ∈ C1([0, τ ]× [0, L]). We multiply (2.4) by φ and integrate the obtained identity
on [0, τ ]× [0, L]. Using (2.5), (2.6) and integrations by parts, one gets

−
∫ τ

0

∫ L

0

(φt + φx)ydxdt+
∫ τ

0

y(t, L)φ(t, L)dt−
∫ τ

0

u(t)φ(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

This equality leads to the following definition.

Definition 2.1. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. A solu-
tion of the Cauchy problem (2.4)-(2.5)-(2.6) is a function y ∈ C0([0, T ];L2(0, L))
such that, for every τ ∈ [0, T ] and for every φ ∈ C1([0, τ ]× [0, L]) such that

φ(t, L) = 0, ∀t ∈ [0, τ ],(2.7)

one has

(2.8) −
∫ τ

0

∫ L

0

(φt + φx)ydxdt−
∫ τ

0

u(t)φ(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

This definition is also justified by the following proposition.

Proposition 2.2. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. Let
us assume that y is a solution of the Cauchy problem (2.4)-(2.5)-(2.6) which is of
class C1 in [0, T ]× [0, L]. Then

y0 ∈ C1([0, L]),(2.9)

u ∈ C1([0, T ]),(2.10)

y(0, x) = y0(x), ∀x ∈ [0, L],(2.11)

y(t, 0) = u(t), ∀t ∈ [0, T ],(2.12)

yt(t, x) + yx(t, x) = 0, ∀(t, x) ∈ [0, T ]× [0, L].(2.13)

Proof of Proposition 2.2. Let φ ∈ C1([0, T ] × [0, L]) vanish on ({0, T} ×
[0, L]) ∩ ([0, T ]× {0, L}). From Definition 2.1, we get, taking τ := T ,∫ T

0

∫ L

0

(φt + φx)ydxdt = 0,
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which, using integrations by parts, gives∫ T

0

∫ L

0

(yt + yx)φdxdt = 0.(2.14)

Since the set φ ∈ C1([0, T ]× [0, L]) vanishing on ({0, T} × [0, L])∩ ([0, T ]× {0, L})
is dense in L1((0, T )× (0, L)), (2.14) implies that∫ T

0

∫ L

0

(yt + yx)φdxdt = 0, ∀φ ∈ L1((0, T )× (0, L)).(2.15)

Taking φ ∈ L1((0, T )× (0, L)) defined by

φ(t, x) := 1 if yt(t, x) + yx(t, x) > 0,(2.16)

φ(t, x) := −1 if yt(t, x) + yx(t, x) < 0,(2.17)

one gets ∫ T

0

∫ L

0

|yt + yx|dxdt = 0,(2.18)

which gives (2.13). Now let φ ∈ C1([0, T ]× [0, L]) be such that

φ(t, L) = 0,∀t ∈ [0, T ].(2.19)

From (2.8) (with τ = T ), (2.13), (2.19) and integrations by parts, we get∫ T

0

(y(t, 0)− u(t))φ(t, 0)dt+
∫ T

0

(y(0, x)− y0(x))φ(0, x)dx = 0.(2.20)

Let B : C1([0, T ]× [0, L]) → L1(0, T )× L1(0, L) be defined by

B(φ) := (φ(·, 0), φ(0, ·))

One easily checks that

B({φ ∈ C1([0, T ]× [0, L]); (2.19) holds}) is dense in L1(0, T )× L1(0, L).(2.21)

Proceeding as for the proof of (2.18), we deduce from (2.20) and (2.21)∫ T

0

|y(t, 0)− u(t)|dt+
∫ T

0

|y(0, x)− y0(x)|dx = 0.

This concludes the proof of Proposition 2.2.

Exercise 2.3. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. Let
y ∈ C0([0, T ];L2(0, L)). Prove that y is a solution of the Cauchy problem (2.4)-
(2.5)-(2.6) if and only if, for every φ ∈ C1([0, T ]× [0, L]) such that

φ(t, L) = 0, ∀t ∈ [0, T ],

φ(T, x) = 0, ∀x ∈ [0, L],

one has∫ T

0

∫ L

0

(φt + φx)ydxdt+
∫ T

0

u(t)φ(t, 0)dt+
∫ L

0

y0(x)φ(0, x)dx = 0.

With Definition 2.1, one has the following theorem.
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Theorem 2.4. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. Then the
Cauchy problem (2.4)-(2.5)-(2.6) has a unique solution. This solution satisfies

‖y(τ, ·)‖L2(0,L) 6 ‖y0‖L2(0,L) + ‖u‖L2(0,T ), ∀τ ∈ [0, T ].(2.22)

Proof of Theorem 2.4. Let us first prove the uniqueness of the solution
to the Cauchy problem (2.4)-(2.5)-(2.6). Let us assume that y1 and y2 are two
solutions of this problem. Let y := y2 − y1. Then y ∈ C0([0, T ];L2(0, L)) and, if
τ ∈ [0, T ] and φ ∈ C1([0, τ ]× [0, L]) satisfy (2.7), one has

−
∫ τ

0

∫ L

0

(φt + φx)ydxdt+
∫ L

0

y(τ, x)φ(τ, x)dx = 0.(2.23)

Let τ ∈ [0, T ]. Let (fn)n∈N be a sequence of functions in C1(R) such that

fn = 0 on [L,+∞), ∀n ∈ N,(2.24)

fn|(0,L) → y(τ, ·) in L2(0, L) as n→ +∞.(2.25)

For n ∈ N, let φn ∈ C1([0, τ ]× [0, L]) be defined by

φn(t, x) = fn(τ + x− t), ∀(t, x) ∈ [0, τ ]× [0, L].(2.26)

By (2.24) and (2.26), (2.7) is satisfied for φ := φn. Moreover,

φnt + φnx = 0.

Hence, from (2.23) with φ := φn and from (2.26), we get∫ L

0

y(τ, x)fn(x)dx =
∫ L

0

y(τ, x)φn(τ, x)dx = 0.(2.27)

Letting n→∞ in (2.27), we get, using (2.25),∫ L

0

|y(τ, x)|2dx = 0.

Hence, for every τ ∈ [0, T ], y(τ, ·) = 0.
Let us now give two proofs of the existence of a solution. The first one relies on

the fact that one is able to give an explicit solution! Let us define y : [0, T ]×[0, L] →
R by

y(t, x) := y0(x− t), ∀(t, x) ∈ [0, T ]× (0, L) such that t 6 x,(2.28)

y(t, x) := u(t− x), ∀(t, x) ∈ [0, T ]× (0, L) such that t > x.(2.29)

Then one easily checks that this y is a solution of the Cauchy problem (2.4)-(2.5)-
(2.6). Moreover, this y satisfies (2.22).

Let us now give a second proof of the existence of a solution. This second proof
is longer than the first one, but can be used for much more general situations (see,
for example, Sections 2.2.1, 2.4.1, 2.5.1).

Let us first treat the case where

u ∈ C2([0, T ]) and u(0) = 0,(2.30)

y0 ∈ H1(0, L) and y0(0) = 0.(2.31)

Let A : D(A) ⊂ L2(0, L) → L2(0, L) be the linear operator defined by

D(A) := {f ∈ H1(0, L); f(0) = 0},(2.32)

Af := −fx, ∀f ∈ D(A).(2.33)
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Note that

D(A) is dense in L2(0, L),(2.34)

A is closed.(2.35)

Let us recall that (2.35) means that {(f,Af); f ∈ D(A)} is a closed subspace of
L2(0, L)× L2(0, L); see Definition A.1 on page 373. Moreover, A has the property
that, for every f ∈ D(A),

(Af, f)L2(0,L) = −
∫ L

0

ffxdx = −f(L)2

2
6 0.(2.36)

One easily checks that the adjoint A∗ of A is defined (see Definition A.3 on page 373)
by

D(A∗) := {f ∈ H1(0, L); f(L) = 0},
A∗f := fx, ∀f ∈ D(A∗).

In particular, for every f ∈ D(A∗),

(A∗f, f)L2(0,L) =
∫ L

0

ffxdx = −f(0)2

2
6 0.(2.37)

Then, by a classical result on inhomogeneous initial value problems (Theo-
rem A.7 on page 375), (2.30), (2.31), (2.34), (2.35), (2.36) and (2.37), there exists

z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L))

such that

z(t, 0) = 0, ∀t ∈ [0, T ],(2.38)
dz
dt

= Az − u̇,(2.39)

z(0, ·) = y0.(2.40)

Let y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) be defined by

y(t, x) = z(t, x) + u(t), ∀(t, x) ∈ [0, T ]× [0, L].(2.41)

Let τ ∈ [0, T ]. Let φ ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];H1(0, L)). Using (2.30),
(2.38), (2.39), (2.40) and (2.41), straightforward integrations by parts show that

(2.42) −
∫ τ

0

∫ L

0

(φt + φx)ydxdt+
∫ τ

0

y(t, L)φ(t, L)dt−
∫ τ

0

u(t)φ(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

In particular, if we take φ := y|[0,τ ]×[0,L], then∫ τ

0

|y(t, L)|2dt−
∫ τ

0

|u(t)|2dt+
∫ L

0

|y(τ, x)|2dx−
∫ L

0

|y0(x)|2dx = 0,(2.43)

which implies that

‖y(τ, ·)‖L2(0,L) 6 ‖u‖L2(0,T ) + ‖y0‖L2(0,L), ∀τ ∈ [0, T ],(2.44)

that is (2.22).
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Now let y0 ∈ L2(0, L) and let u ∈ L2(0, T ). Let (y0
n)n∈N be a sequence of

functions in D(A) such that

y0
n → y0 in L2(0, L) as n→ +∞.(2.45)

Let (un)n∈N be a sequence of functions in C2([0, T ]) such that un(0) = 0 and

un → u in L2(0, T ) as n→ +∞.(2.46)

For n ∈ N, let zn ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) be such that

zn(t, 0) = 0, ∀t ∈ [0, T ],(2.47)
dzn
dt

= Azn − u̇n,(2.48)

zn(0, ·) = y0
n,(2.49)

and let yn ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) be defined by

yn(t, x) = zn(t, x) + un(t), ∀(t, x) ∈ [0, T ]× [0, L].(2.50)

Let τ ∈ [0, T ]. Let φ ∈ C1([0, τ ] × [0, L]) be such that φ(·, L) = 0. From (2.42)
(applied with y0 := y0

n, u := un and y := yn), one gets

(2.51) −
∫ τ

0

∫ L

0

(φt + φx)yndxdt−
∫ τ

0

un(t)φ(t, 0)dt

+
∫ L

0

yn(τ, x)φ(τ, x)dx−
∫ L

0

y0
n(x)φ(0, x)dx = 0, ∀n ∈ N.

From (2.44) (applied with y0 := y0
n, u := un and y := yn),

‖yn‖C0([0,T ];L2(0,L)) 6 ‖un‖L2(0,T ) + ‖y0
n‖L2(0,L).(2.52)

Let (n,m) ∈ N2. From (2.44) (applied with y0 := y0
n − y0

m, u := un − um and
y := yn − ym),

‖yn − ym‖C0([0,T ];L2(0,L)) 6 ‖un − um‖L2(0,T ) + ‖y0
n − y0

m‖L2(0,L).(2.53)

From (2.45), (2.46) and (2.53), (yn)n∈N is a Cauchy sequence in C0([0, T ];L2(0, L)).
Hence there exists y ∈ C0([0, T ];L2(0, L)) such that

yn → y in C0([0, T ];L2(0, L)) as n→ +∞.(2.54)

From (2.51) and (2.54), one gets (2.8). From (2.52) and (2.54), one gets (2.22). This
concludes our second proof of the existence of a solution to the Cauchy problem
(2.4)-(2.5)-(2.6) satisfying (2.22).

2.1.2. Controllability. Let us now turn to the controllability of the control
system (2.2)-(2.3). We start with a natural definition of controllability.

Definition 2.5. Let T > 0. The control system (2.2)-(2.3) is controllable in
time T if, for every y0 ∈ L2(0, L) and every y1 ∈ L2(0, L), there exists u ∈ L2(0, T )
such that the solution y of the Cauchy problem (2.4)-(2.5)-(2.6) satisfies y(T, ·) =
y1.

With this definition we have the following theorem.

Theorem 2.6. The control system (2.2)-(2.3) is controllable in time T if and
only if T > L.
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Remark 2.7. Let us point out that Theorem 2.6 on the previous page shows
that there is a condition on the time T in order to have controllability. Such
a phenomenon never appears for linear control systems in finite dimension. See
Theorem 1.16 on page 9. However, note that such a phenomenon can appear
for nonlinear control systems in finite dimension (see for instance Example 6.4 on
page 190).

We shall provide three different proofs of Theorem 2.6:

1. A proof based on the explicit solution y of the Cauchy problem (2.4)-(2.5)-
(2.6).

2. A proof based on the extension method.
3. A proof based on the duality between the controllability of a linear control

system and the observability of its adjoint.

2.1.2.1. Explicit solutions. Let us start the proof based on the explicit solution
of the Cauchy problem (2.4)-(2.5)-(2.6). We first take T ∈ (0, L) and check that
the control system (2.2)-(2.3) is not controllable in time T . Let us define y0 and y1

by
y0(x) = 1 and y1(x) = 0, ∀x ∈ [0, L].

Let u ∈ L2(0, T ). Then, by (2.28), the solution y of the Cauchy problem (2.4)-
(2.5)-(2.6) satisfies

y(T, x) = 1, x ∈ (T,L).

In particular, y(T, ·) 6= y1. This shows that the control system (2.2)-(2.3) is not
controllable in time T .

We now assume that T > L and show that the control system (2.2)-(2.3)
is controllable in time T . Let y0 ∈ L2(0, L) and y1 ∈ L2(0, L). Let us define
u ∈ L2(0, T ) by

u(t) = y1(T − t), t ∈ (T − L, T ),

u(t) = 0, t ∈ (0, T − L).

Then, by (2.29), the solution y of the Cauchy problem (2.4)-(2.5)-(2.6) satisfies

y(T, x) = u(T − x) = y1(x), x ∈ (0, L).

This shows that the control system (2.2)-(2.3) is controllable in time T .

2.1.2.2. Extension method. This method has been introduced in [425] by David
Russell. See also [426, Proof of Theorem 5.3, pages 688–690] by David Russell and
[332] by Walter Littman. We explain it on our control system (2.2)-(2.3) to prove
its controllability in time T if T > L. Let us first introduce a new definition.

Definition 2.8. Let T > 0. The control system (2.2)-(2.3) is null controllable
in time T if, for every y0 ∈ L2(0, L), there exists u ∈ L2(0, T ) such that the solution
y of the Cauchy problem (2.4)-(2.5)-(2.6) satisfies y(T, ·) = 0.

One has the following lemma.

Lemma 2.9. The control system (2.2)-(2.3) is controllable in time T if and
only if it is null controllable in time T .
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Proof of Lemma 2.9. The “only if” part is obvious. For the “if” part, let
us assume that the control system (2.2)-(2.3) is null controllable in time T . Let
y0 ∈ L2(0, L) and let y1 ∈ L2(0, L). Let us assume, for the moment, that there
exist ȳ0 ∈ L2(0, L) and ū ∈ L2(0, T ) such that the solution ȳ ∈ C0([0, T ];L2(0, L))
of the Cauchy problem

ȳt + ȳx = 0, t ∈ (0, T ), x ∈ (0, L),(2.55)

ȳ(t, 0) = ū(t), t ∈ (0, T ),(2.56)

ȳ(0, x) = ȳ0(x), x ∈ (0, L),(2.57)

satisfies

ȳ(T, x) := y1(x), x ∈ (0, L).(2.58)

Since the control system (2.2)-(2.3) is null controllable in time T , there exists
ũ ∈ L2(0, T ) such that the solution ỹ ∈ C0([0, T ];L2(0, L)) of the Cauchy problem

ỹt + ỹx = 0, t ∈ (0, T ), x ∈ (0, L),(2.59)

ỹ(t, 0) = ũ(t), t ∈ (0, T ),(2.60)

ỹ(0, x) = y0(x)− ȳ0(x), x ∈ (0, L),(2.61)

satisfies

ỹ(T, x) := 0, x ∈ (0, L).(2.62)

Let us define u ∈ L2(0, T ) by

u := ū+ ũ.(2.63)

From (2.55) to (2.57) and (2.59) to (2.61), the solution y ∈ C0([0, T ];L2(0, L)) of
the Cauchy problem

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

is y = ȳ+ ỹ. By (2.58) and by (2.62), y(T, ·) = y1. Hence, as desired, the control u
steers the control system (2.2)-(2.3) from the state y0 to the state y1 during the time
interval [0, T ]. It remains to prove the existence of ȳ0 ∈ L2(0, L) and ū ∈ L2(0, T ).
Let z ∈ C0([0, T ];L2(0, L)) be the solution of the Cauchy problem

zt + zx = 0, t ∈ (0, T ), x ∈ (0, L),(2.64)

z(t, 0) = 0, t ∈ (0, T ),(2.65)

z(0, x) = y1(L− x), x ∈ (0, L).(2.66)

Note that from (2.64) we get z ∈ H1((0, L);H−1(0, T )). In particular, z(·, L) is
well defined and

z(·, L) ∈ H−1(0, T ).(2.67)

In fact z(·, L) has more regularity than the one given by (2.67): one has

z(·, L) ∈ L2(0, T ).(2.68)

Property (2.68) can be seen by the two following methods.
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- For the first one, one just uses the explicit expression of z; see (2.28) and
(2.29).

- For the second one, we start with the case where y1 ∈ H1(0, L) satisfies
y1(L) = 0. Then z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)). We multi-
ply (2.64) by z and integrate on [0, T ]× [0, L]. Using (2.65) and (2.66), we
get ∫ L

0

z(T, x)2dx−
∫ L

0

y1(x)2dx+
∫ T

0

z(t, L)2dt = 0.

In particular,

‖z(·, L)‖L2(0,T ) 6 ‖y1‖L2(0,L).(2.69)

By density, (2.69) also holds if y1 is only in L2(0, L), which completes the
second proof of (2.68).

We define ȳ0 ∈ L2(0, L) and ū ∈ L2(0, T ) by

ȳ0(x) = z(T,L− x), x ∈ (0, L),

ū(t) = z(T − t, L), t ∈ (0, T ).

Then one easily checks that the solution ȳ of the Cauchy problem (2.55)-(2.56)-
(2.57) is

ȳ(t, x) = z(T − t, L− x), t ∈ (0, T ), x ∈ (0, L).(2.70)

From (2.66) and (2.70), we get (2.58). This concludes the proof of Lemma 2.9.

Remark 2.10. The fact that z(·, L) ∈ L2(0, T ) is sometimes called a hidden
regularity property; it does not follow directly from the regularity required on z,
i.e., z ∈ C0([0, T ];L2(0, L)). Such a priori unexpected extra regularity properties
appear, as it is now well known, for hyperbolic equations (see in particular (2.307) on
page 68, [285] by Heinz-Otto Kreiss, [431, 432] by Reiko Sakamoto, [88, Théorème
4.4, page 378] by Jacques Chazarain and Alain Piriou, [297, 298] by Irena Lasiecka
and Roberto Triggiani, [324, Théorème 4.1, page 195] by Jacques-Louis Lions, [473]
by Daniel Tataru and [277, Chapter 2] by Vilmos Komornik. It also appears for our
Korteweg-de Vries control system studied below; see (2.140) due to Lionel Rosier
[407, Proposition 3.2, page 43].

Let us now introduce the definition of a solution to the Cauchy problem

yt + yx = 0, (t, x) ∈ (0,+∞)× R, y(0, x) = y0(x),(2.71)

where y0 is given in L2(R). With the same motivation as for Definition 2.1 on
page 25, one proposes the following definition.

Definition 2.11. Let y0 ∈ L2(R). A solution of the Cauchy problem (2.71)
is a function y ∈ C0([0,+∞);L2(R)) such that, for every τ ∈ [0,+∞), for every
R > 0 and for every φ ∈ C1([0, τ ]× R) such that

φ(t, x) = 0, ∀t ∈ [0, τ ], ∀x ∈ R such that |x| > R,

one has

−
∫ τ

0

∫ R

−R
(φt + φx)ydxdt+

∫ R

−R
y(τ, x)φ(τ, x)dx−

∫ R

−R
y0(x)φ(0, x)dx = 0.
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Then, adapting the proof of Theorem 2.4 on page 27, one has the following
proposition.

Proposition 2.12. For every y0 ∈ L2(R), the Cauchy problem (2.71) has a
unique solution. This solution y satisfies

‖y(τ, ·)‖L2(R) = ‖y0‖L2(R), ∀τ ∈ [0,+∞).

In fact, as in the case of the Cauchy problem (2.4)-(2.5)-(2.6), one can give y
explicitly:

y(t, x) = y0(x− t), t ∈ (0,+∞), x ∈ R.(2.72)

Then the extension method goes as follows. Let y0 ∈ L2(0, L). Let R > 0. Let
ȳ0 ∈ L2(R) be such that

ȳ0(x) = y0(x), x ∈ (0, L),(2.73)

ȳ0(x) = 0, x ∈ (−∞,−R).(2.74)

Let ȳ ∈ C0([0,+∞);L2(R)) be the solution of the Cauchy problem

ȳt + ȳx = 0, t ∈ (0,+∞), x ∈ R,
ȳ(0, x) = ȳ0(x), x ∈ R.

Using (2.74) and the explicit expression (2.72) of the solution of the Cauchy problem
(2.71), one sees that

ȳ(t, x) = 0 if x < t−R.(2.75)

Adapting the proofs of (2.68), one gets that

ȳ(·, 0) ∈ L2(0,+∞).

Let T > L. Then one easily checks that the solution y ∈ C0([0, T ];L2(0, L)) of the
Cauchy problem

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = ȳ(t, 0), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

is given by

y(t, x) = ȳ(t, x), t ∈ (0, T ), x ∈ (0, L).(2.76)

From (2.75), one gets y(T, ·) = 0 if R 6 T−L. Hence the control t ∈ (0, T ) 7→ ȳ(t, 0)
steers the control system (2.2)-(2.3) from the state y0 to 0 during the time interval
[0, T ].

Of course, for our simple control system (2.2)-(2.3), the extension method seems
to be neither very interesting nor very different from the explicit method detailed
in Section 2.1.2.1 (taking R = 0 leads to the same control as in Section 2.1.2.1).
However, the extension method has some quite interesting advantages compared to
the explicit method for more complicated hyperbolic equations where the explicit
method cannot be easily applied; see, in particular, the paper [332] by Walter
Littman.

Let us also point out that the extension method is equally useful for our simple
control system (2.2)-(2.3) if one is interested in more regular solutions. Indeed, let
m ∈ N, let us assume that y0 ∈ Hm(0, L) and that we want to steer the control
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system (2.2)-(2.3) from y0 to 0 in time T > L in such a way that the state always
remains in Hm(0, L). Then it suffices to take R := T −L and to impose on ȳ0 to be
in Hm(R). Note that if m > 1, one cannot take T = L, as shown in the following
exercise.

Exercise 2.13. Let m ∈ N \ {0}. Let T = L. Let y0 ∈ Hm(0, L). Prove
that there exists u ∈ L2(0, T ) such that the solution y ∈ C0([0, T ];L2(0, L)) of the
Cauchy problem (2.4)-(2.5)-(2.6) satisfies

y(T, x) = 0, x ∈ (0, L),

y(t, ·) ∈ Hm(0, L), ∀t ∈ [0, T ],

if and only if

(y0)(j)(0) = 0, ∀j ∈ {0, . . . ,m− 1}.

Remark 2.14. Let us emphasize that there are strong links between the regu-
larity of the states and the regularity of the control: For r > 0, if the states are in
Hr(0, L), one cannot have controllability with control u ∈ Hs(0, T ) for

s > r.(2.77)

Moreover, (2.77) is optimal: For every T > L, for every y0 ∈ Hr(0, L) and for
every y1 ∈ Hr(0, L), there exists u ∈ Hr(0, T ) such that the solution y of the
Cauchy problem (2.4)-(2.5)-(2.6) satisfies y(T, ·) = y1 and y ∈ C0([0, T ];Hr(0, L)).
Of course this problem of the links between the regularity of the states and the
regularity of the control often appears for partial differential equations; see, in par-
ticular, Theorem 9.4 on page 248. The optimal links often are still open problems;
see, for example, the Open Problem 9.6 on page 251.

2.1.2.3. Duality between controllability and observability. Let T > 0. Let us
define a linear map FT : L2(0, T ) → L2(0, L) in the following way. Let u ∈ L2(0, T ).
Let y ∈ C0([0, T ];L2(0, L)) be the solution of the Cauchy problem (2.4)-(2.5)-(2.6)
with y0 := 0. Then

FT (u) := y(T, ·).
One has the following lemma.

Lemma 2.15. The control system (2.2)-(2.3) is controllable in time T if and
only if FT is onto.

Proof of Lemma 2.15. The “only if” part is obvious. Let us assume that
FT is onto and prove that the control system (2.2)-(2.3) is controllable in time T .
Let y0 ∈ L2(0, L) and y1 ∈ L2(0, L). Let ỹ be the solution of the Cauchy problem
(2.4)-(2.5)-(2.6) with u := 0. Since FT is onto, there exists u ∈ L2(0, T ) such that
FT (u) = y1 − ỹ(T, ·). Then the solution y of the Cauchy problem (2.4)-(2.5)-(2.6)
satisfies y(T, ·) = ỹ(T, ·) + y1 − ỹ(T, ·) = y1, which concludes the proof of Lemma
2.15.

In order to decide whether FT is onto or not, we use the following classical result
of functional analysis (see e.g. [419, Theorem 4.15, page 97], or [71, Théorème II.19,
pages 29–30] for the more general case of unbounded operators).
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Proposition 2.16. Let H1 and H2 be two Hilbert spaces. Let F be a linear
continuous map from H1 into H2. Then F is onto if and only if there exists c > 0
such that

‖F∗(x2)‖H1 > c‖x2‖H2 , ∀x2 ∈ H2.(2.78)

Moreover, if (2.78) holds for some c > 0, there exists a linear continuous map G
from H2 into H1 such that

F ◦ G(x2) = x2, ∀x2 ∈ H2,

‖G(x2)‖H1 6
1
c
‖x2‖H2 , ∀x2 ∈ H2.

In control theory, inequality (2.78) is called an “observability inequality”. In
order to apply this proposition, we make explicit F∗T in the following lemma.

Lemma 2.17. Let zT ∈ H1(0, L) be such that

zT (L) = 0.(2.79)

Let z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) be the (unique) solution of

zt + zx = 0,(2.80)

z(t, L) = 0, ∀t ∈ [0, T ],(2.81)

z(T, ·) = zT .(2.82)

Then

F∗T (zT ) = z(·, 0).(2.83)

Proof of Lemma 2.17. Let us first point out that the proof of the existence
and uniqueness of z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) satisfying (2.80)
to (2.82) is the same as the proof of the existence and uniqueness of the solution
of (2.38) to (2.40). In fact, if z̃ ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) is the
solution of

z̃(t, 0) = 0, ∀t ∈ [0, T ],
dz̃
dt

= Az̃,

z̃(0, x) = zT (L− x), ∀x ∈ [0, L],

then
z(t, x) = z̃(T − t, L− x), ∀(t, x) ∈ [0, T ]× [0, L].

Let u ∈ C2([0, T ]) be such that u(0) = 0. Let

y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L))

be such that

yt + yx = 0,(2.84)

y(t, 0) = u(t), ∀t ∈ [0, T ],(2.85)

y(0, ·) = 0.(2.86)
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(Again the existence of such a y is proved above; see page 28.) Then, from (2.80),
(2.81), (2.82), (2.84), (2.85) and (2.86), we get, using integrations by parts,∫ L

0

zTFT (u)dx =
∫ L

0

zT y(T, x)dx

=
∫ T

0

∫ L

0

(zy)tdxdt

= −
∫ T

0

∫ L

0

(zxy + zyx)dxdt

=
∫ T

0

z(t, 0)u(t)dt,

which, since the set of u ∈ C2([0, T ]) such that u(0) = 0 is dense in L2(0, T ),
concludes the proof of Lemma 2.17.

From Lemma 2.17, it follows that inequality (2.78) is equivalent to∫ T

0

z(t, 0)2dt > c2
∫ L

0

zT (x)2dx,(2.87)

for every zT ∈ H1(0, L) such that (2.79) holds, z being the (unique) solution of
(2.80)-(2.81)-(2.82) in C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)).

Let us now present two methods to prove (2.87). The first one relies on the
explicit solution of (2.80)-(2.81)-(2.82), the second one on the so-called multiplier
method.

Proof of (2.87) by means of explicit solutions. We assume that T > L.
One notices that the solution of (2.80)-(2.81)-(2.82) is given (see also (2.28) and
(2.29)) by

z(t, x) = zT (x+ T − t) if 0 < x < L+ t− T,

z(t, x) = 0, ifL+ t− T < x < L.

In particular, since T > L,∫ T

0

z(t, 0)2dt =
∫ L

0

zT (x)2dx,

showing that (2.87) holds with c = 1.

Proof of (2.87) by means of the multiplier method. We now assume
that T > L and prove that the observability inequality (2.87) indeed holds with

(2.88) c :=

√
T − L

T
.

Let zT ∈ H1(0, L) be such that (2.79) holds. Let

z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L))
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be the (unique) solution of (2.80) to (2.82). Let us multiply (2.80) by z and integrate
the obtained equality on [0, L]. Using (2.81), one gets

d
dt

(∫ L

0

|z(t, x)|2dx

)
= |z(t, 0)|2.(2.89)

Let us now multiply (2.80) by xz and integrate the obtained equality on [0, L].
Using (2.81), one gets

d
dt

(∫ L

0

x|z(t, x)|2dx

)
=
∫ L

0

|z(t, x)|2dx.(2.90)

For t ∈ [0, T ], let e(t) :=
∫ L
0
|z(t, x)|2dx. From (2.90), we have∫ T

0

e(t)dt =
∫ L

0

x|z(T, x)|2dx−
∫ L

0

x|z(0, x)|2dx

6 L

∫ L

0

|z(T, x)|2dx = Le(T ).(2.91)

From (2.89), we get

e(t) = e(T )−
∫ T

t

|z(τ, 0)|2dτ > e(T )−
∫ T

0

|z(τ, 0)|2dτ.(2.92)

From (2.82), (2.91) and (2.92), we get

(T − L)‖zT ‖2L2(0,L) 6 T

∫ T

0

|z(τ, 0)|2dτ,(2.93)

which, together with Lemma 2.17 on page 35 and the density in L2(0, L) of the
functions zT ∈ H1(0, L) such that (2.79) holds, proves the observability inequality
(2.87) with c given by (2.88).

Remark 2.18. Since √
T − L

T
< 1, ∀T > L > 0,

the multiplier method gives a weaker observability inequality (2.87) than the method
based on explicit solutions, which gives the optimal inequality. (Note also that the
multiplier method, in contrast with the method based explicit solutions, does not
allow us to prove the controllability in the limiting case T = L.) However, the
multiplier method is quite flexible and gives interesting controllability results for
many partial differential linear control systems; see, for example, Section 2.4.2 and
the references in Remark 2.19.

Remark 2.19. The multiplier method goes back to the paper [362] by Cathleen
Morawetz. In the framework of control systems, it has been introduced in [234]
by Lop Fat Ho, and in [326, 325] by Jacques-Louis Lions. For more details and
results on this method, see the book [277] by Vilmos Komornik and the references
therein.

Remark 2.20. One can find much more general results on the controllability
of one-dimensional hyperbolic linear systems in [423, 424, 426] by David Russell.
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2.2. Korteweg-de Vries equation

This section is borrowed from the paper [407] by Lionel Rosier. Let L > 0 and
T > 0. We consider the linear control system

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),(2.94)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.95)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) 7→ R. Our goal
is to study the controllability of the control system (2.94)-(2.95). Again we start
by studying the well-posedness of the Cauchy problem associated to (2.94)-(2.95).

2.2.1. Well-posedness of the Cauchy problem. Let us first give a natural
definition of solutions of the Cauchy problem

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),(2.96)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.97)

y(0, x) = y0(x), x ∈ (0, L),(2.98)

where T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) are given. In order to motivate
this definition, let us first assume that there exists a function y of class C3 on
[0, T ] × [0, L] satisfying (2.96) to (2.98) in the usual sense. Let τ ∈ [0, T ] and let
φ ∈ C3([0, τ ]× [0, L]) be such that

φ(t, 0) = φ(t, L) = 0, ∀t ∈ [0, τ ].(2.99)

We multiply (2.96) by φ and integrate the obtained equality on [0, τ ]× [0, L]. Using
(2.97), (2.98), (2.99) and integrations by parts, one gets

−
∫ τ

0

∫ L

0

(φt + φx + φxxx)ydxdt−
∫ τ

0

u(t)φx(t, L)dt+
∫ τ

0

yx(t, 0)φx(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

This equality leads to the following definition.

Definition 2.21. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. A solu-
tion of the Cauchy problem (2.96)-(2.97)-(2.98) is a function y ∈ C0([0, T ];L2(0, L))
such that, for every τ ∈ [0, T ] and for every φ ∈ C3([0, τ ]× [0, L]) such that,

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, ∀t ∈ [0, τ ],(2.100)

one has

(2.101) −
∫ τ

0

∫ L

0

(φt + φx + φxxx)ydxdt−
∫ τ

0

u(t)φx(t, L)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

Proceeding as in the proof of Proposition 2.2 on page 25, one gets the following
proposition, which also justifies Definition 2.21.



2.2. KORTEWEG-DE VRIES EQUATION 39

Proposition 2.22. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. Let
us assume that y is a solution of the Cauchy problem (2.96)-(2.97)-(2.98) which is
of class C3 in [0, T ]× [0, L]. Then

y0 ∈ C3([0, L]),

u ∈ C2([0, T ]),

y(0, x) = y0(x), ∀x ∈ [0, L],

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), ∀t ∈ [0, T ],

yt(t, x) + yx(t, x) + yxxx(t, x) = 0, ∀(t, x) ∈ [0, T ]× [0, L].

With Definition 2.21, one has the following theorem.

Theorem 2.23. Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. Then the
Cauchy problem (2.96)-(2.97)-(2.98) has a unique solution. This solution satisfies

‖y(τ, ·)‖L2(0,L) 6 ‖y0‖L2(0,L) + ‖u‖L2(0,T ), ∀τ ∈ [0, T ].(2.102)

Proof of Theorem 2.23. We start with the existence statement. We proceed
as in the second proof of the existence statement in Theorem 2.4 on page 27. Let
T > 0. Let us first treat the case where

u ∈ C2([0, T ]),(2.103)

u(0) = 0,(2.104)

y0 ∈ H3(0, L), y0(0) = y0(L) = y0
x(L) = 0.(2.105)

Let A : D(A) ⊂ L2(0, L) → L2(0, L) be the linear operator defined by

D(A) := {f ∈ H3(0, L); f(0) = f(L) = fx(L) = 0},(2.106)

Af := −fx − fxxx, ∀f ∈ D(A).(2.107)

Note that

D(A) is dense in L2(0, L),(2.108)

A is closed.(2.109)

Moreover,

(Af, f)L2(0,L) = −
∫ L

0

(fx + fxxx)fdx = −fx(0)2

2
6 0.(2.110)

One easily checks that the adjoint A∗ of A is defined by

D(A∗) := {f ∈ H3(0, L); f(0) = fx(0) = f(L) = 0},
A∗f := fx + fxxx, ∀f ∈ D(A∗).

In particular,

(A∗f, f)L2(0,L) =
∫ L

0

(fx + fxxx)fdx = −fx(L)2

2
6 0.(2.111)

Then, by a classical result on inhomogeneous initial value problems (Theorem A.7
on page 375), (2.103), (2.105), (2.108), (2.109), (2.110) and (2.111), there exists

z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L))
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such that

z(t, 0) = z(t, L) = zx(t, L) = 0, ∀t ∈ [0, T ],(2.112)

dz
dt

= Az + u̇(t)
x(L− x)

L
+ u(t)

L− 2x
L

,(2.113)

z(0, ·) = y0.(2.114)

Let y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) be defined by

y(t, x) = z(t, x)− u(t)
x(L− x)

L
, ∀(t, x) ∈ [0, T ]× [0, L].(2.115)

Note that, from (2.112) and (2.115),

y(t, 0) = y(t, L), ∀t ∈ [0, T ].(2.116)

Let τ ∈ [0, T ]. Let φ ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];H3(0, L)) be such that

φ(t, 0) = φ(t, L) = 0, ∀t ∈ [0, T ].(2.117)

Using (2.104), (2.112), (2.113), (2.114) and (2.115), straightforward integrations by
parts show that

(2.118)

−
∫ τ

0

∫ L

0

(φt + φx + φxxx)ydxdt−
∫ τ

0

u(t)φx(t, L)dt+
∫ τ

0

yx(t, 0)φx(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0.

In particular, if we take φ := y|[0,τ ]×[0,L] (see also (2.116)), then∫ τ

0

|yx(t, 0)|2dt−
∫ τ

0

|u(t)|2dt+
∫ L

0

|y(τ, x)|2dx−
∫ L

0

|y0(x)|2dx = 0,(2.119)

which implies that

‖y‖C0([0,T ];L2(0,L)) 6 ‖u‖L2(0,T ) + ‖y0‖L2(0,L).(2.120)

Now let y0 ∈ L2(0, L) and let u ∈ L2(0, T ). Let (y0
n)n∈N be a sequence of

functions in D(A) such that

y0
n → y0 in L2(0, L) as n→ +∞.(2.121)

Let (un)n∈N be a sequence of functions in C2([0, T ]) such that un(0) = 0 and

un → u in L2(0, T ) as n→ +∞.(2.122)

For n ∈ N, let zn ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) be such that

zn(t, 0) = zn(t, L) = znx(t, L) = 0, ∀t ∈ [0, T ],(2.123)

dzn
dt

= Azn + u̇n(t)
x(L− x)

L
+ un(t)

L− 2x
L

,(2.124)

zn(0, ·) = y0
n,(2.125)

and let yn ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) be defined by

yn(t, x) = zn(t, x)− un(t)
x(L− x)

L
, ∀(t, x) ∈ [0, T ]× [0, L].(2.126)
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Let τ ∈ [0, T ]. Let φ ∈ C3([0, τ ]×[0, L]) be such that φ(·, 0) = φx(·, 0) = φ(·, L) = 0.
From (2.118) (applied to the case where y0 := y0

n, u := un and y := yn), one gets

(2.127) −
∫ τ

0

∫ L

0

(φt + φx + φxxx)yndxdt−
∫ τ

0

un(t)φx(t, L)dt

+
∫ L

0

yn(τ, x)φ(τ, x)dx−
∫ L

0

y0
n(x)φ(0, x)dx = 0.

From (2.120) (applied to the case where y0 := y0
n, u := un and y := yn),

‖yn‖C0([0,T ];L2(0,L)) 6 ‖un‖L2(0,T ) + ‖y0
n‖L2(0,L).(2.128)

Let (n,m) ∈ N2. From (2.120) (applied to the case where y0 := y0
n − y0

m, u :=
un − um and y := yn − ym),

‖yn − ym‖C0([0,T ];L2(0,L)) 6 ‖un − um‖L2(0,T ) + ‖y0
n − y0

m‖L2(0,L).(2.129)

From (2.121), (2.122) and (2.129), one gets that the sequence (yn)n∈N is a Cauchy
sequence in C0([0, T ];L2(0, L)). Hence there exists y ∈ C0([0, T ];L2(0, L)) such
that

yn → y in C0([0, T ];L2(0, L)) as n→ +∞.(2.130)

From (2.127) and (2.130), one gets (2.101). From (2.128) and (2.130), one gets
(2.102). This concludes our proof of the existence of a solution to the Cauchy
problem (2.96)-(2.97)-(2.98) satisfying (2.102).

Let us now turn to the proof of uniqueness. Let us assume that, for some
T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ), the Cauchy problem (2.96)-(2.97)-(2.98)
has two solutions y1 and y2. Let y := y2 − y1 ∈ C0([0, T ];L2(0, L)). Let τ ∈ [0, T ]
and φ ∈ C3([0, τ ]× [0, L]) be such that (2.100) holds. Then, by Definition 2.21 on
page 38,

(2.131) −
∫ τ

0

∫ L

0

(φt + φx + φxxx)ydxdt+
∫ L

0

y(τ, x)φ(τ, x)dx = 0.

By an easy density argument, (2.131) in fact holds for every

φ ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];H3(0, L))

such that (2.100) holds.
Let τ ∈ [0, L]. Let (fn)n∈N be a sequence of functions in H3(0, L) such that

fn(0) = fn(L) = fnx(0) = 0,(2.132)

fn → y(τ, ·) in L2(0, L) as n→ +∞.(2.133)

For n ∈ N, let

(2.134) ψn ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];D(A))

be the solution of
dψn
dt

= Aψn,(2.135)

ψn(0, x) = fn(L− x).(2.136)

Let φn ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];H3(0, L)) be defined by

(2.137) φn(t, x) := ψn(τ − t, L− x), ∀(t, x) ∈ [0, τ ]× [0, L].
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By (2.134) and (2.137), (2.100) is satisfied for φ := φn. Moreover,

φnt + φnx + φnxxx = 0.

Hence, from (2.131) with φ := φn and from (2.137), we get∫ L

0

y(τ, x)fn(x)dx =
∫ L

0

y(τ, x)φn(τ, x)dx = 0.(2.138)

Letting n→∞ in (2.138), we get, using (2.133),∫ L

0

|y(τ, x)|2dx = 0.

Hence, for every τ ∈ [0, T ], y(τ, ·) = 0. This concludes the proof of Theorem 2.23.

2.2.2. Controllability. Let us now turn to the controllability of the control
system (2.94)-(2.95). We start with a natural definition of controllability.

Definition 2.24. Let T > 0. The control system (2.94)-(2.95) is controllable
in time T if, for every y0 ∈ L2(0, L) and every y1 ∈ L2(0, L), there exists u ∈
L2(0, T ) such that the solution y of the Cauchy problem (2.96)-(2.97)-(2.98) satisfies
y(T, ·) = y1.

With this definition we have the following theorem, due to Lionel Rosier [407,
Theorem 1.2, page 35].

Theorem 2.25. Let

(2.139) N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
.

Let T > 0. The control system (2.94)-(2.95) is controllable in time T if and only
if L 6∈ N .

Proof of Theorem 2.25. We follow [407] by Lionel Rosier. For y0 ∈ L2(0, L),
let y ∈ C0([0,+∞);L2(0, L)) be the solution of the Cauchy problem

yt + yx + yxxx = 0,

y(·, 0) = y(·, L) = yx(·, L) = 0,

y(0, ·) = y0.

(This means that, for every T > 0, y restricted to [0, T ] × (0, L) is a solution of
this Cauchy problem on [0, T ] × (0, L) in the sense of Definition 2.21 on page 38.)
We denote by S(t)y0 the function y(t, ·). In other words, S(t), t ∈ [0,+∞), is the
semigroup of continuous linear operators associated to the linear operator A; see
page 374.

One of the main ingredients of the proof is the regularizing effect given in
(2.140) and (2.141) of the following proposition due to Lionel Rosier.

Proposition 2.26 ([407, Proposition 3.2, page 43]). For y0 ∈ L2(0, L), let
T > 0, and y(t, ·) := S(t)y0 for t ∈ [0, T ]. Then yx(·, 0) makes sense in L2(0, T ),
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y ∈ L2((0, T );H1(0, L)) and

‖yx(·, 0)‖L2(0,T ) 6 ‖y0‖L2(0,L),(2.140)

‖y‖L2((0,T );H1(0,L)) 6

(
4T + L

3

)1/2

‖y0‖L2(0,L),(2.141)

‖y0‖2L2(0,L) 6
1
T
‖y‖2L2((0,T )×(0,L)) + ‖yx(·, 0)‖2L2(0,T ).(2.142)

The meaning of (2.140) is the following. By (2.96) (which holds in the distri-
butions sense) and the fact that y ∈ C0([0, T ];L2(0, L)) we have that

y ∈ H3((0, L);H−1(0, T ))

and therefore yx(·, 0) makes sense and is in H−1(0, T ). Inequality (2.140) tells
us that yx(·, 0) is in fact in L2(0, T ) (and that the L2(0, T )-norm is less than or
equal to the right hand side of (2.140)). This is a hidden regularity property; see
Remark 2.10 on page 32. Let us remark that (2.141) is the Kato smoothing effect
[266, Theorem 6.2]).

Proof of Proposition 2.26. By density of D(A) in L2(0, L), we just need
to prove the inequalities (2.140), (2.141) and (2.142) if y0 ∈ D(A). So, let us take
y0 ∈ D(A). Then

y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];D(A)),(2.143)

yt + yx + yxxx = 0,(2.144)

y(·, 0) = y(·, L) = yx(·, L) = 0,(2.145)

y(0, ·) = y0.(2.146)

We multiply (2.144) by y and integrate on [0, T ] × [0, L]. Using (2.144), (2.145),
(2.146) and simple integrations by parts, one gets∫ T

0

|yx(t, 0)|2dt =
∫ L

0

|y0(x)|2dx−
∫ L

0

|y(T, x)|2dx 6
∫ L

0

|y0(x)|2dx,

which proves (2.140).
Let us now multiply (2.144) by xy and integrate on [0, T ]×[0, L]. Using (2.144),

(2.145), (2.146) and simple integrations by parts, one gets

(2.147) −
∫ T

0

∫ L

0

|y(t, x)|2dxdt+
∫ L

0

x|y(T, x)|2dx

−
∫ L

0

x|y0(x)|2dx+ 3
∫ T

0

∫ L

0

|yx(t, x)|2dxdt = 0.

Using (2.102), we get

‖y‖L2((0,T )×(0,L)) 6 T 1/2‖y‖C0([0,T ];L2(0,L)) 6 T 1/2‖y0‖L2(0,L),

which, together with (2.147), gives (2.141).
Finally, we multiply (2.144) by (T − t)y and integrate on [0, T ]× [0, L]. Using

(2.144), (2.145), (2.146) and simple integrations by parts, one gets∫ T

0

∫ L

0

|y(t, x)|2dxdt−
∫ L

0

T |y0(x)|2dx+
∫ T

0

(T − t)|yx(t, 0)|2dt = 0,

which proves (2.142). This concludes the proof of Proposition 2.26.
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In order to prove Theorem 2.25, we use the duality between controllability
and observability (as in Section 2.1.2.3 for the transport equation). Let T > 0.
Let us define a linear map FT : L2(0, T ) 7→ L2(0, L) in the following way. Let
u ∈ L2(0, T ). Let y ∈ C0([0, T ];L2(0, L)) be the solution of the Cauchy problem
(2.96)-(2.97)-(2.98) with y0 := 0. Then

FT (u) := y(T, ·).

One has the following lemma, the proof of which is similar to the proof of Lemma 2.15
on page 34.

Lemma 2.27. The control system (2.94)-(2.95) is controllable in time T if and
only if FT is onto.

Again, in order to decide whether FT is onto, we use Proposition 2.16 on
page 35. In order to apply this proposition, we make explicit F∗T in the following
lemma.

Lemma 2.28. Let zT ∈ H3(0, L) be such that

zT (0) = zTx (0) = zT (L) = 0.(2.148)

Let z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) be the (unique) solution of

zt + zx + zxxx = 0,(2.149)

z(t, 0) = zx(t, 0) = z(t, L) = 0, ∀t ∈ [0, T ],(2.150)

z(T, ·) = zT .(2.151)

Then

F∗T (zT ) = zx(·, L).(2.152)

Proof of Lemma 2.28. Let us first point out that the proof of the existence
and uniqueness of z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) satisfying (2.149)
to (2.151) is similar to the proof of the existence and uniqueness of the solution of
(2.112)-(2.113)-(2.114). In fact, if z̃ ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L)) is
the solution of

z̃(t, 0) = z̃(t, L) = z̃x(t, L) = 0, ∀t ∈ [0, T ],
dz̃
dt

= Az̃,

z̃(0, x) = zT (L− x), ∀x ∈ [0, L],

then
z(t, x) = z̃(T − t, L− x), ∀(t, x) ∈ [0, T ]× [0, L].

Now let u ∈ C2([0, T ]) be such that u(0) = 0. Let

y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H3(0, L))

be such that

yt + yx + yxxx = 0,(2.153)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), ∀t ∈ [0, T ],(2.154)

y(0, ·) = 0.(2.155)
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(Again the existence of such a y is proved above.) Then, from (2.149), (2.150),
(2.151), (2.153), (2.154) and (2.155), we get, using integrations by parts,∫ L

0

zTFT (u)dx =
∫ L

0

zT y(T, x)dx

=
∫ T

0

∫ L

0

(zy)tdxdt

= −
∫ T

0

∫ L

0

(zx + zxxx)y + z(yx + yxxx)dxdt

=
∫ T

0

zx(t, L)u(t)dt,

which, since the set of u ∈ C2([0, T ]) such that u(0) = 0 is dense in L2(0, T ),
concludes the proof of Lemma 2.28.

Let us now assume that L 6∈ N and prove that the observability inequality
(2.78) holds in this case. Replacing x by L − x and t by T − t and using Lemma
2.28, one sees that observability inequality (2.78) is equivalent to the inequality

c‖y0‖L2(0,L) 6 ‖yx(·, 0)‖L2(0,T ), ∀y0 ∈ D(A),(2.156)

with y(t, ·) := S(t)y0. We argue by contradiction and therefore assume that (2.156)
does not hold whatever c > 0 is. Then there exists a sequence (y0

n)n∈N of functions
in D(A) such that

‖y0
n‖L2(0,L) = 1, ∀n ∈ N,(2.157)

ynx(·, 0) → 0 in L2(0, T ) as n→ +∞,(2.158)

with yn(t, ·) := S(t)y0
n. By (2.141) and (2.157),

the sequence (yn)n∈N is bounded in L2((0, T );H1(0, L)).(2.159)

Moreover, since ynt = −ynx − ynxxx, (2.159) implies that

the sequence (ynt)n∈N is bounded in L2((0, T );H−2(0, L)).(2.160)

Let us recall the following compactness result [21] due to Jean-Pierre Aubin (see
also the paper [449] by Jacques Simon for more general results).

Theorem 2.29. Let X, B, Y be three Banach spaces such that

X ⊂ B ⊂ Y with compact embedding X ↪→ B.

Let T > 0. Let K be a bounded subset of L2((0, T );X). We assume that there exists
C > 0 such that ∥∥∥∥∂f∂t

∥∥∥∥
L2((0,T );Y )

6 C, ∀f ∈ K.

Then K is relatively compact in L2((0, T );B).

We apply this theorem with X := H1(0, L), B := L2(0, L), Y := H−2(0, L)
and K := {yn; n ∈ N}. By (2.159) and (2.160), the assumptions of Theorem 2.29
hold. From this theorem, one gets that the set {yn; n ∈ N} is relatively compact
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in L2((0, T );L2(0, L)). Hence, without loss of generality, we can assume that, for
some y ∈ L2((0, T );L2(0, L)),

yn → y in L2((0, T );L2(0, L)) as n→ +∞.(2.161)

From (2.142), (2.158) and (2.161) applied to yn − ym, we get that (y0
n)n∈N is a

Cauchy sequence in L2(0, L). Hence there exists y0 ∈ L2(0, L) such that

y0
n → y0 in L2(0, L) as n→∞.(2.162)

Clearly, from (2.161) and (2.162),

y(t, ·) = S(t)y0.(2.163)

By (2.157) and (2.162),

‖y0‖L2(0,L) = 1.(2.164)

By the continuity of the map

z0 ∈ L2(0, L) 7→ (t 7→ (S(t)z0)x(0)) ∈ L2(0, T )

(see (2.140)), (2.158), (2.162) and (2.163),

yx(·, 0) = 0 in L2(0, T ).(2.165)

Finally (2.163), (2.164) and (2.165) are in contradiction with the following lemma.

Lemma 2.30. Let T > 0 and let y0 ∈ L2(0, L) such that (2.165) holds for y
defined by (2.163). If L 6∈ N , then y0 = 0.

Proof of Lemma 2.30. One uses a method due to Claude Bardos, Gilles
Lebeau and Jeffrey Rauch [34, page 1063]. Let T > 0. For T ′ > 0, let NT ′ be the
set of y0 ∈ L2(0, L) such that, if y ∈ C0([0,+∞);L2(0, L)) is the solution of the
Cauchy problem (2.96)-(2.97)-(2.98) with u := 0, then

yx(·, 0) = 0 in L2(0, T ′).

Clearly

(0 < T ′ < T ′′) ⇒ (NT ′′ ⊂ NT ′).(2.166)

Of course, due to (2.140), for every T ′ > 0, NT ′ is a closed linear subspace of
L2(0, L). Let us prove that

for every T ′ > 0, the vector space NT ′ is of finite dimension.(2.167)

Let T ′ > 0 and let (y0
n)n∈N be a sequence of elements in NT ′ such that ‖y0

n‖L2(0,L) =
1. The same proof as for (2.162) gives us that one can extract from (y0

n)n∈N a
subsequence converging in L2(0, L). Hence the unit ball of NT ′ is compact. This
proves (2.167).

From (2.166) and (2.167) and an argument of cardinality, there exist T ′ > 0
and η > 0 such that T ′ + η < T and

NT ′+t = NT ′ , ∀t ∈ [0, η].(2.168)

Let

M := {f : t ∈ [0, η/2] 7→ S(t)y0; y0 ∈ NT ′} ⊂ C0([0, η/2];L2(0, L)).(2.169)

Note that, by (2.167), M is a vector space of finite dimension, which implies that

M is a closed subspace of L2((0, η/2);H−2(0, L)).(2.170)
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Let y0 ∈ NT ′ . Since S(τ)S(t)y0 = S(τ + t)y0, we get from (2.168),

S(t)y0 ∈ NT ′ , ∀t ∈ [0, η].(2.171)

Let y ∈ C0([0, η];L2(0, L)) be defined by

y(t, ·) = S(t)y0.

Since y ∈ H1((0, η);H−2(0, L)), there exists z ∈ L2((0, η/2);H−2(0, L)) such that

lim
ε→0+

y(ε+ ·, ·)− y(·, ·)
ε

= z in L2((0, η/2);H−2(0, L)).(2.172)

By (2.169) and (2.171),(
τ ∈ [0, η/2] 7→ y(ε+ τ, ·)− y(τ, ·)

ε

)
∈M, ∀ε ∈ [0, η/2].(2.173)

By (2.170), (2.172) and (2.173),

z ∈M,

which implies that z ∈ C0([0, η/2];L2(0, L)) and z(0) ∈ NT ′ . Hence

y ∈ C1([0, η/2];L2(0, L)).

Therefore, using (2.163), y ∈ C0([0, η/2],H3(0, L)) and y0 is such that

y0 ∈ H3(0, L),(2.174)

y0(0) = y0
x(0) = y0(L) = y0

x(L) = 0,(2.175)

Ay0 = z(0) ∈ NT ′ .(2.176)

Hence one can define a unique C-linear map A : CNT ′ → CNT ′ by requiring

A(ζϕ) = ζAϕ, ∀ζ ∈ C, ∀ϕ ∈ NT ′ .

Then (see also (2.167)), if NT ′ 6= {0}, this linear map has an eigenvector. Hence
Lemma 2.30 is a consequence of (2.166) and of the following lemma.

Lemma 2.31 ([407, Lemma 3.5, page 45]). There exist λ ∈ C and

ϕ ∈ H3((0, L); C) \ {0}

such that

−ϕx − ϕxxx = λϕ,(2.177)

ϕ(0) = ϕx(0) = ϕ(L) = ϕx(L) = 0,(2.178)

if and only if

L ∈ N .

One can prove Lemma 2.31 by looking at the Fourier transform of ϕ extended
to R by 0 outside [0, L]; see [407, pages 45–46] for a detailed proof. This concludes
the proof of Lemma 2.30 and the proof of the “if” part of Theorem 2.25 on page 42.



48 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Let us now assume that

L ∈ N(2.179)

and prove that the control system (2.94)-(2.95) is not controllable in time T > 0,
whatever T > 0 is. By (2.179) and by Lemma 2.31, there exist λ ∈ C and ϕ ∈
H3((0, L); C) such that (2.177) and (2.178) hold and

ϕ 6= 0.(2.180)

Let (y, u) ∈ C0([0, T ];L2(0, L)) × L2(0, T ) be a trajectory of the control system
(2.94)-(2.95). Let us first assume that y(0, ·) ∈ D(A) and u ∈ C2([0, L]) satisfies
u(0) = 0. Then y ∈ C1([0, T ];L2(0, L))∩C0([0, T ];D(A)). We multiply (2.94) by ϕ
and integrate on [0, L]. Using (2.95), (2.177) and (2.178) and integrations by parts,
one gets

d
dt

∫ L

0

yϕdx = −λ
∫ L

0

yϕdx.(2.181)

An easy density argument shows that (2.181) also holds if y(0, ·) is only in L2(0, L)
and u is any function in L2(0, T ). From (2.181), one gets∫ L

0

y(T, x)ϕ(x)dx = e−λT
∫ L

0

y(0, x)ϕ(x)dx,(2.182)

which, together with (2.180), shows that (2.94)-(2.95) is not controllable in time
T > 0. This concludes the proof of Theorem 2.25 on page 42.

Remark 2.32. Let us point out that, if λ ∈ C and ϕ ∈ H3((0, L); C) are such
that (2.177), (2.178) and (2.180) hold, then

λ ∈ iR.(2.183)

Indeed, straightforward integrations by parts together with (2.178) give∫ L

0

ϕϕxdx = −
∫ L

0

ϕϕxdx = i=
∫ L

0

ϕϕxdx,(2.184) ∫ L

0

ϕϕxxxdx = −
∫ L

0

ϕϕxxxdx = i=
∫ L

0

ϕϕxxxdx,(2.185)

where, for z ∈ C, =z denotes the imaginary part of z and z the complex conjugate
of z. We multiply (2.177) by ϕ and integrate on [0, L]. Using (2.184) and (2.185),
we get

λ

∫ L

0

ϕϕdx = −i=
∫ L

0

ϕ(ϕx + ϕxxx)dx.(2.186)

From (2.180) and (2.186), we get (2.183).

Remark 2.33. Let us fix L ∈ (0,+∞) \ N and T > 0. Let y0 ∈ L2(0, L)
and let y1 ∈ L2(0, L). Let U be the set of u ∈ L2(0, T ) such that the solution
y ∈ C0([0, T ];L2(0, L)) of the Cauchy problem

yt + yx + yxxx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),
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satisfies
y(T, x) = y1(x), x ∈ (0, L).

Clearly U is a closed affine subspace of L2(0, T ). By Theorem 2.25 on page 42, U
is not empty. Hence there exists a unique ū = ūy0,y1 ∈ U such that

ū ∈ U and ‖ū‖L2(0,T ) = inf{‖u‖L2(0,T ); u ∈ U}.
By the proof of Theorem 2.25 on page 42, there exists C > 0 (depending on T > 0
and L > 0 but not on y0 ∈ L2(0, L) and y1 ∈ L2(0, L)) such that

‖ūy0,y1‖L2(0,L) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L)).(2.187)

Straightforward arguments show that the map (y0, y1) ∈ L2(0, L)2 7→ ūy0,y1 ∈
L2(0, T ) is linear and therefore, by (2.187), continuous.

Exercise 2.34. Let L > 0 and T > 0. We consider the following linear control
system

yt + yx +
∫ x

0

y(t, s)ds = 0, t ∈ (0, T ), x ∈ (0, L),(2.188)

y(t, 0) = u(t), t ∈ (0, T ),(2.189)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is u(t) ∈ R.
1. Check that, if y ∈ C1([0, T ] × [0, L]) satisfies (2.188)-(2.189), then, for

every τ ∈ [0, T ] and for every φ ∈ C1([0, τ ]× [0, L]) such that

φ(t, L) = 0, ∀t ∈ [0, τ ],(2.190)

one has

(2.191) −
∫ τ

0

∫ L

0

(φt + φx −
∫ L

x

φ(t, s)ds)ydxdt−
∫ τ

0

u(t)φ(t, 0)dt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0,

with y0(x) := y(0, x), ∀x ∈ [0, L].
2. Let A : D(A) ⊂ L2(0, L) → L2(0, L) be the linear (unbounded) operator on

L2(0, L) defined by

D(A) := {y ∈ H1(0, L); y(0) = 0},(2.192)

Ay = −yx −
∫ x

0

y(s)ds.(2.193)

2.a. Prove that A is a closed operator (Definition A.1 on page 373) and
a dissipative operator (Definition A.2 on page 373).

2.b. Compute the adjoint A∗ of A. Check that A∗ is also a dissipative
operator.

3. Well-posedness of the Cauchy problem. Let u ∈ L2(0, T ) and y0 ∈
L2(0, L). Until the end of this exercise one says that y : (0, T )× (0, L) → R
is a solution of the Cauchy problem

yt + yx +
∫ x

0

y(t, s)ds = 0, t ∈ (0, T ), x ∈ (0, L),(2.194)

y(t, 0) = u(t), t ∈ (0, T ),(2.195)

y(0, x) = y0(x), x ∈ (0, L),(2.196)



50 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

if y ∈ C0([0, T ];L2(0, L)) and if (2.191) holds, for every τ ∈ [0, T ] and for
every φ ∈ C1([0, τ ]× [0, L]) satisfying (2.190).

3.a. Prove that the Cauchy problem (2.194), (2.195) and (2.196) has at
least one solution.

3.b. Prove that the Cauchy problem (2.194), (2.195) and (2.196) has at
most one solution.

4. Expression of the adjoint. Let us define a linear map FT : L2(0, T ) →
L2(0, L) in the following way. Let u ∈ L2(0, T ). Let y ∈ C0([0, T ];L2(0, L))
be the solution of the Cauchy problem (2.194), (2.195) and (2.196) with
y0 := 0. Then

FT (u) := y(T, ·).

Compute F∗T .
5. Observability inequality. In this question, we assume that u = 0.

5.a. Prove that, for every y0 ∈ L2(0, L), the solution y of the Cauchy
problem (2.194), (2.195) and (2.196) satisfies

y(·, L) ∈ L2(0, T ).

5.b. We now assume that T > L. Prove that there exists C1 > 0 such
that, for every y0 ∈ L2(0, L), the solution y of the Cauchy problem
(2.194), (2.195) and (2.196) satisfies

‖y0‖2L2(0,L) 6 C1

‖y(·, L)‖2L2(0,T ) +
∫ T

0

(∫ L

0

y(t, x)dx

)2

dt

 .(2.197)

(Hint. Proceed as in the proof of (2.93): multiply (2.194) succes-
sively by y and by (L− x)y and integrate on [0, L].)

5.c. Prove that, if λ ∈ C and z ∈ H1((0, L); C) are such that

zx +
∫ x

0

z(s)ds = λz in L2(0, L),

z(0) = 0,

then z = 0.
5.d. We again assume that T > L. Prove that there exists C2 > 0 such

that, for every y0 ∈ L2(0, L), the solution y of the Cauchy problem
(2.194), (2.195) and (2.196) satisfies

‖y0‖L2(0,L) 6 C2‖y(·, L)‖L2(0,T ).

6. Controllability. We again assume that T > L. Prove the controllability of
the control system (2.188)-(2.189). More precisely, prove that there exists
C3 > 0 such that, for every y0 ∈ L2(0, L) and for every y1 ∈ L2(0, L), there
exists u ∈ L2(0, T ) such that

‖u‖L2(0,T ) 6 C3(‖y0‖L2(0,L) + ‖y1‖L2(0,L))

and such that the solution y of the Cauchy problem (2.194), (2.195) and
(2.196) satisfies y(T, ·) = y1 in L2(0, L).
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2.3. Abstract linear control systems

Looking at Section 2.1 and Section 2.2, one sees that some proofs for the trans-
port equation and for the Korteweg-de Vries equation are quite similar. This is, for
example, the case for the well-posedness of the associated Cauchy problems (com-
pare Section 2.1.1 with Section 2.2.1). This is also the case for the fact that a suit-
able observability ((2.78) for the transport equation and (2.156) for the Korteweg-de
Vries equation) is equivalent to the controllability. The goal of this section is to
present a general framework which includes as special cases the study of these
equations and their controllability as well as many other equations. This general
framework is now very classical. For pioneer papers, let us mention, in particular,
[434] by Dietmar Salamon, [499, 500] by George Weiss, and [138] by Ruth Cur-
tain and George Weiss. For more recent references and more advanced results, let
us mention, for example,

- [49, Chapter 3] by Alain Bensoussan, Giuseppe Da Prato, Michel Delfour
and Sanjoy Mitter,

- [93] by Yacine Chitour and Emmanuel Trélat,
- [280, Section 2.2] by Vilmos Komornik and Paola Loreti,
- [302, Chapter 7] by Irena Lasiecka and Roberto Triggiani,
- [412] by Lionel Rosier,
- [462, Chapter 1 to Chapter 5] by Olof Staffans,
- [486, Section 2.4.1] by Marius Tucsnak.

Remark 2.35. Note, however, that, as it is often the case for partial differential
equations, this general framework is far from being the “end of the story”. For
example it gives the observability inequality that one needs to prove but does not
provide any method to prove it.

For two normed linear spaces H1 and H2, we denote by L(H1;H2) the set of con-
tinuous linear maps from H1 into H2 and denote by ‖ · ‖L(H1;H2) the usual norm in
this space.

Let H and U be two Hilbert spaces. Just to simplify the notations, these
Hilbert spaces are assumed to be real Hilbert spaces. The space H is the state
space and the space U is the control space. We denote by (·, ·)H the scalar product
in H, by (·, ·)U the scalar product in U , by ‖ · ‖H the norm in H and by ‖ · ‖U the
norm in U .

Let S(t), t ∈ [0,+∞), be a strongly continuous semigroup of continuous linear
operators on H (see Definition A.5 and Definition A.6 on page 374). Let A be
the infinitesimal generator of the semigroup S(t), t ∈ [0,+∞), (see Definition A.9
on page 375). As usual, we denote by S(t)∗ the adjoint of S(t). Then S(t)∗, t ∈
[0,+∞), is a strongly continuous semigroup of continuous linear operators and the
infinitesimal generator of this semigroup is the adjoint A∗ of A (see Theorem A.11
on page 375). The domain D(A∗) is equipped with the usual graph norm ‖ · ‖D(A∗)

of the unbounded operator A∗:

‖z‖D(A∗) := ‖z‖H + ‖A∗z‖H , ∀z ∈ D(A∗).

This norm is associated to the scalar product in D(A∗) defined by

(z1, z2)D(A∗) := (z1, z2)H + (A∗z1, A∗z2)H , ∀(z1, z2) ∈ D(A∗)2.
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With this scalar product, D(A∗) is a Hilbert space. Let D(A∗)′ be the dual of
D(A∗) with the pivot space H. In particular,

D(A∗) ⊂ H ⊂ D(A∗)′.

Let

B ∈ L(U,D(A∗)′).(2.198)

In other words, B is a linear map from U into the set of linear functions from D(A∗)
into R such that, for some C > 0,

|(Bu)z| 6 C‖u‖U‖z‖D(A∗), ∀u ∈ U, ∀z ∈ D(A∗).

We also assume the following regularity property (also called admissibility condi-
tion):

∀T > 0,∃CT > 0 such that
∫ T

0

‖B∗S(t)∗z‖2Udt 6 CT ‖z‖2H , ∀z ∈ D(A∗).(2.199)

In (2.199) and in the following, B∗ ∈ L(D(A∗);U) is the adjoint of B. It follows
from (2.199) that the operators(

z ∈ D(A∗)
)
7→
(
(t 7→ B∗S(t)∗z) ∈ C0([0, T ];U)

)
,(

z ∈ D(A∗)
)
7→
(
(t 7→ B∗S(T − t)∗z) ∈ C0([0, T ];U)

)
can be extended in a unique way as continuous linear maps fromH into L2((0, T );U).
We use the same symbols to denote these extensions.

Note that, using the fact that S(t)∗, t ∈ [0,+∞), is a strongly continuous
semigroup of continuous linear operators on H, it is not hard to check that (2.199)
is equivalent to

∃T > 0,∃CT > 0 such that
∫ T

0

‖B∗S(t)∗z‖2Udt 6 CT ‖z‖2H , ∀z ∈ D(A∗).

The control system we consider here is

ẏ = Ay +Bu, t ∈ (0, T ),(2.200)

where, at time t, the control is u(t) ∈ U and the state is y(t) ∈ H.
The remaining part of this section is organized as follows:

- In Section 2.3.1, we study the well-posedness of the Cauchy problem asso-
ciated to (2.200).

- In Section 2.3.2, we study the controllability of the control system (2.200).
We give the observability inequality which is equivalent to the controllabil-
ity of (2.200).

- Finally, in Section 2.3.3, we revisit the transport equation and the Korteweg-
de Vries equation, studied above, in the framework of this abstract setting.

2.3.1. Well-posedness of the Cauchy problem. Let T > 0, y0 ∈ H and
u ∈ L2((0, T );U). We are interested in the Cauchy problem

ẏ = Ay +Bu(t), t ∈ (0, T ),(2.201)

y(0) = y0.(2.202)

We first give the definition of a solution to (2.201)-(2.202). We mimic what we
have done in Section 2.1.1 for a linear transport equation and in Section 2.2.1 for
a linear Korteweg-de Vries equation.



2.3. ABSTRACT LINEAR CONTROL SYSTEMS 53

Let τ ∈ [0, T ] and ϕ : [0, τ ] → H. We take the scalar product in H of (2.201)
with ϕ and integrate on [0, τ ]. At least formally, we get, using an integration by
parts together with (2.202),

(y(τ), ϕ(τ))H − (y0, ϕ(0))H −
∫ τ

0

(y(t), ϕ̇(t) +A∗ϕ(t))Hdt =
∫ τ

0

(u(t), B∗ϕ(t))Udt.

Taking ϕ(t) = S(τ−t)∗zτ , for every given zτ ∈ H, we have formally ϕ̇(t)+A∗φ(t) =
0, which leads to the following definition.

Definition 2.36. Let T > 0, y0 ∈ H and u ∈ L2((0, T );U). A solution of the
Cauchy problem (2.201)-(2.202) is a function y ∈ C0([0, T ];H) such that

(y(τ), zτ )H − (y0, S(τ)∗zτ )H =
∫ τ

0

(u(t), B∗S(τ − t)∗zτ )Udt, ∀τ ∈ [0, T ], ∀zτ ∈ H.

(2.203)

Note that, by the regularity property (2.199), the right hand side of (2.203) is
well defined (see page 52).

With this definition one has the following theorem.

Theorem 2.37. Let T > 0. Then, for every y0 ∈ H and for every u ∈
L2((0, T );U), the Cauchy problem (2.201)-(2.202) has a unique solution y. More-
over, there exists C = C(T ) > 0, independent of y0 ∈ H and u ∈ L2((0, T );U),
such that

‖y(τ)‖H 6 C(‖y0‖H + ‖u‖L2((0,T );U)), ∀τ ∈ [0, T ].(2.204)

Proof of Theorem 2.37. Let T > 0. Also let y0 ∈ H and u ∈ L2((0, T );U).
Then (see in particular the regularity property (2.199)), for every τ > 0, the linear
form

H → R
zτ 7→ (y0, S(τ)∗zτ )H +

∫ τ
0

(u,B∗S(τ − t)∗zτ )Udt,

is continuous. Therefore, by Riesz’s theorem, there exists one and only one yτ ∈ H
such that

(yτ , zτ )H = (y0, S(τ)∗zτ )H +
∫ τ

0

(u,B∗S(τ − t)∗zτ )Udt, ∀zτ ∈ H.(2.205)

This shows the uniqueness of the solution to the Cauchy problem (2.201)-(2.202).
Concerning the existence of a solution satisfying (2.204), let y : [0, T ] → H be

defined by

y(τ) = yτ , ∀τ ∈ [0, T ].(2.206)

From (2.205) and (2.206), we get (2.203). By Theorem A.8 on page 375 and The-
orem A.11 on page 375, there exists C ′ > 0 such that

‖S(t)∗‖L(H;H) 6 C ′, ∀t ∈ [0, T ].(2.207)

From (2.199), (2.205), (2.206) and (2.207), we get that

‖y(τ)‖H 6 C ′‖y0‖H + C
1/2
T ‖u‖L2((0,T );U), ∀τ ∈ [0, T ],

which gives (2.204) with C := Max {C ′, C1/2
T }.
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It just remains to check that y ∈ C0([0, T ];H). Let τ ∈ [0, T ] and (τn)n∈N be
a sequence of real numbers in [0, T ] such that

τn → τ as n→ +∞.(2.208)

Let zτ ∈ H and let (zτn)n∈N be a sequence of elements in H such that

zτn ⇀ zτ weakly in H as n→ +∞.(2.209)

From (2.209), and since S(t), t ∈ [0,+∞), is a strongly continuous (see Defini-
tion A.6 on page 374) semigroup of continuous linear operators on H,

lim
n→+∞

(y0, S(τn)∗zτn)H = lim
n→+∞

(S(τn)y0, zτn)H = (S(τ)y0, zτ )H = (y0, S(τ)∗zτ )H .
(2.210)

We extend u to an element in L2((−T, T );H) by requiring

u(t) := 0, t ∈ (−T, 0).

Note that, letting s = τn − t,∫ τn

0

(u(t), B∗S(τn − t)∗zτn)Udt =
∫ T

0

(χn(s)u(τn − s), B∗S(s)∗zτn)Uds,(2.211) ∫ τ

0

(u(t), B∗S(τ − t)∗zτ )Udt =
∫ T

0

(χ(s)u(τ − s), B∗S(s)∗zτ )Uds,(2.212)

where χn : [0, T ] → R and χ : [0, T ] → R are defined by

χn = 1 on [0, τn] and χn = 0 outside [0, τn],(2.213)

χ = 1 on [0, τ ] and χ = 0 outside [0, τ ].(2.214)

From (2.208), (2.213) and (2.214), one gets

χn(·)u(τn − ·) → χ(·)u(τ − ·) in L2((0, T );U) as n→∞.(2.215)

From (2.199) and (2.209), one gets

B∗S(·)∗zτn ⇀ B∗S(·)∗zτ weakly in L2((0, T );U) as n→∞.(2.216)

(Let us recall that a continuous linear map between two Hilbert spaces is weakly
continuous; see, for example, [71, Théorème III.9, page 39].) From (2.211), (2.212),
(2.215) and (2.216), we have

lim
n→+∞

∫ τn

0

(u,B∗S(τn − t)∗zτn)Udt =
∫ τ

0

(u,B∗S(τ − t)∗zτ )Udt.(2.217)

From (2.205), (2.210) and (2.217), one gets that

(y(τn), zτn)H → (y(τ), zτ )H as n→ +∞,

which implies that

y(τn) → y(τ) in H as n→ +∞.

This concludes the proof of Theorem 2.37.
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2.3.2. Controllability and observability inequality. In this section we
are interested in the controllability of the control system (2.200). In contrast to the
case of linear finite-dimensional control systems, many types of controllability are
possible and interesting. We define here three types of controllability.

Definition 2.38. Let T > 0. The control system (2.200) is exactly controllable
in time T if, for every y0 ∈ H and for every y1 ∈ H, there exists u ∈ L2((0, T );U)
such that the solution y of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = y0,(2.218)

satisfies y(T ) = y1.

Definition 2.39. Let T > 0. The control system (2.200) is null controllable
in time T if, for every y0 ∈ H and for every ỹ0 ∈ H, there exists u ∈ L2((0, T );U)
such that the solution of the Cauchy problem (2.218) satisfies y(T ) = S(T )ỹ0.

Let us point out that, by linearity, we get an equivalent definition of “null
controllable in time T” if, in Definition 2.39, one assumes that ỹ0 = 0. This
explains the usual terminology “null controllability”.

Definition 2.40. Let T > 0. The control system (2.200) is approximately
controllable in time T if, for every y0 ∈ H, for every y1 ∈ H, and for every ε > 0,
there exists u ∈ L2((0, T );U) such that the solution y of the Cauchy problem (2.218)
satisfies ‖y(T )− y1‖H 6 ε.

Clearly

(exact controllability) ⇒ (null controllability and approximate controllability).

The converse is false in general (see, for example, the control system (2.374)-(2.375)
below). However, the converse holds if S is a strongly continuous group of linear
operators (see Definition A.12 on page 376 and Definition A.13 on page 376). More
precisely, one has the following theorem.

Theorem 2.41. Assume that S(t), t ∈ R, is a strongly continuous group of
linear operators. Let T > 0. Assume that the control system (2.200) is null con-
trollable in time T . Then the control system (2.200) is exactly controllable in time
T .

Proof of Theorem 2.41. Let y0 ∈ H and y1 ∈ H. From the null con-
trollability assumption applied to the initial data y0 − S(−T )y1, there exists u ∈
L2((0, T );U) such that the solution ỹ of the Cauchy problem

˙̃y = Aỹ +Bu(t), ỹ(0) = y0 − S(−T )y1,

satisfies

ỹ(T ) = 0.(2.219)

One easily sees that the solution y of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = y0,

is given by

y(t) = ỹ(t) + S(t− T )y1, ∀t ∈ [0, T ].(2.220)

In particular, from (2.219) and (2.220),

y(T ) = y1.
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This concludes the proof of Theorem 2.41.

Let us now introduce some “optimal control maps”. Let us first deal with the
case where the control system (2.200) is exactly controllable in time T . Then, for
every y1, the set UT (y1) of u ∈ L2((0, T );U) such that

(ẏ = Ay +Bu(t), y(0) = 0) ⇒ (y(T ) = y1)

is nonempty. Clearly the set UT (y1) is a closed affine subspace of L2((0, T );U).
Let us denote by UT (y1) the projection of 0 on this closed affine subspace, i.e., the
element of UT (y1) of the smallest L2((0, T );U)-norm. Then it is not hard to see
that the map

UT : H → L2((0, T );U)
y1 7→ UT (y1)

is a linear map. Moreover, using the closed graph theorem (see, for example, [419,
Theorem 2.15, page 50]) one readily checks that this linear map is continuous.

Let us now deal with the case where the control system (2.200) is null con-
trollable in time T . Then, for every y0, the set UT (y0) of u ∈ L2((0, T );U) such
that

(ẏ = Ay +Bu(t), y(0) = y0) ⇒ (y(T ) = 0)

is nonempty. Clearly the set UT (y0) is a closed affine subspace of L2((0, T );U).
Let us denote by UT (y0) the projection of 0 on this closed affine subspace, i.e., the
element of UT (y0) of the smallest L2((0, T );U)-norm. Then, again, it is not hard
to see that the map

UT : H → L2((0, T );U)
y0 7→ UT (y0)

is a continuous linear map.
The main results of this section are the following ones.

Theorem 2.42. Let T > 0. The control system (2.200) is exactly controllable
in time T if and only if there exists c > 0 such that∫ T

0

‖B∗S(t)∗z‖2Udt > c‖z‖2H , ∀z ∈ D(A∗).(2.221)

Moreover, if such a c > 0 exists and if cT is the maximum of the set of c > 0 such
that (2.221) holds, one has∥∥UT∥∥L(H;L2((0,T );U))

=
1√
cT
.(2.222)

Theorem 2.43. The control system (2.200) is approximately controllable in
time T if and only if, for every z ∈ H,

(B∗S(·)∗z = 0 in L2((0, T );U)) ⇒ (z = 0).

Theorem 2.44. Let T > 0. The control system (2.200) is null controllable in
time T if and only if there exists c > 0 such that∫ T

0

‖B∗S(t)∗z‖2Udt > c‖S(T )∗z‖2H , ∀z ∈ D(A∗).(2.223)
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Moreover, if such a c > 0 exists and if cT is the maximum of the set of c > 0 such
that (2.223) holds, then

‖UT ‖L(H;L2((0,T );U)) =
1√
cT
.(2.224)

Theorem 2.45. Assume that, for every T > 0, the control system (2.200) is
null controllable in time T . Then, for every T > 0, the control system (2.200) is
approximately controllable in time T .

Inequalities (2.221) and (2.223) are usually called observability inequalities for
the abstract linear control system ẏ = Ay +Bu.

Proof of Theorem 2.42 and Theorem 2.43. Let T > 0. Let us define a
linear map FT : L2((0, T );U) → H in the following way. Let u ∈ L2((0, T );U).
Let y ∈ C0([0, T ];H) be the solution of the Cauchy problem (2.218) with y0 := 0.
Then

FT (u) := y(T, ·).
One has the following lemma, the proof of which is similar to the proof of Lemma 2.15
on page 34.

Lemma 2.46. The control system (2.200) is exactly controllable in time T if
and only if FT is onto. The control system (2.200) is approximately controllable in
time T if and only if FT (L2((0, T );U)) is dense in H.

It is a classical result of functional analysis that FT (L2((0, T );U)) is dense
in H if and only if F∗T is one-to-one (see, e.g., [419, Corollaries (b), page 94]
or [71, Corollaire II.17 (b), page 28]). Let us recall on the other hand that, by
Proposition 2.16 on page 35, FT is onto if and only if there exists c > 0 such that

‖F∗T (zT )‖L2((0,T );U) > c‖zT ‖H , ∀zT ∈ H.
Hence, the first part of Theorem 2.42 as well as Theorem 2.43 are a consequence of
the following lemma.

Lemma 2.47. For every zT ∈ H,

(F∗T (zT ))(t) = B∗S(T − t)∗zT .

Proof of Lemma 2.47. Let zT ∈ D(A∗). Let us also recall thatD(A∗) is dense
in H; see Theorem A.11 on page 375. Let u ∈ L2((0, T );U). Let y ∈ C0([0, T ];H)
be the solution of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = 0.

By the definition of FT and Definition 2.36 on page 53,

(u,F∗T (zT ))L2((0,T );U) = (FTu, zT )H = (y(T ), zT )H =
∫ T

0

(u,B∗S(T − t)∗zT )Udt.

This concludes the proof of Lemma 2.47 and also the proof of the first part of
Theorem 2.42 and Theorem 2.43.

Let us now turn to the second part of Theorem 2.42, i.e., equality (2.222). By
the definition of cT and Lemma 2.47

‖F∗T (zT )‖2L2((0,T );U) > cT ‖zT ‖2H , ∀zT ∈ H.(2.225)
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By Proposition 2.16 on page 35, (2.225) implies the existence of a continuous linear
map U : H → L2((0, T );U) such that

FTUy1 = y1, ∀y1 ∈ H,(2.226)

‖U‖L(H;L2((0,T );U)) 6
1√
cT
.(2.227)

From (2.226), (2.227) and the definition of UT , one gets∥∥UT∥∥L(H;L2((0,T );U))
6

1√
cT
.(2.228)

Finally, from the definition of UT , one has

FTUT y1 = y1, ∀y1 ∈ H,
which implies that

(F∗T zT ,UT zT )L2((0,T );U) = ‖zT ‖2H , ∀zT ∈ H.(2.229)

From (2.229), one has

‖zT ‖2H 6 ‖F∗T zT ‖L2((0,T );U)‖UT zT ‖L2((0,T );U)

6 ‖F∗T zT ‖L2((0,T );U)

∥∥UT∥∥L(H;L2((0,T );U))
‖zT ‖H , ∀zT ∈ H,

which, together with the definition of cT and Lemma 2.47, gives that

cT >
1

‖UT ‖2L(H;L2((0,T );U))

.

This concludes the proof of (2.222).

Proof of Theorem 2.44. The key tool for the proof of Theorem 2.44 is
the following lemma due to Ronald Douglas [148] and Szymon Dolecki and David
Russell [146, pages 194–195] and which will be proved later on.

Lemma 2.48. Let H1, H2 and H3 be three Hilbert spaces. Let C2 be a continuous
linear map from H2 into H1 and let C3 be a densely defined closed linear operator
from D(C3) ⊂ H3 into H1. Then the two following properties are equivalent:

(i) There exists M > 0 such that

‖C∗2h1‖H2 6 M‖C∗3h1‖H3 , ∀h1 ∈ D(C∗3 ).(2.230)

(ii) One has the following inclusion:

C2(H2) ⊂ C3(D(C3)).(2.231)

Moreover, if M > 0 is such that (2.230) holds, there exists a continuous linear map
C1 from H2 into H3 such that

C1(H2) ⊂ D(C3), C2 = C3C1,(2.232)

‖C1‖L(H2;H3) 6 M.(2.233)

Remark 2.49. In fact, it is assumed in [148] that the linear operator C3 is
continuous from H3 int H2. However, the proof given in [148] can be easily adapted
to treat the case where C3 is only a a densely defined closed linear operator. (See
Definition A.1 on page 373 for the definition of a closed linear operator.)

Let us apply Lemma 2.48 with the following spaces and maps.
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- The spaces H1, H2 and H3 are given by

H1 := H, H2 := H, H3 := L2((0, T );U).

- The linear map C2 maps y0 ∈ H to y(T ) ∈ H, where y ∈ C0([0, T ];H) is
the solution of the Cauchy problem

ẏ = Ay, y(0) = y0.

In other words,

C2 = S(T ).(2.234)

- The linear map C3 maps u ∈ L2((0, T );U) to y(T ) ∈ H, where y ∈
C0([0, T ];H) is the solution of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = 0.

In other words,

C3 = FT .(2.235)

Note that C3, in this case, is a continuous linear operator from L2((0, T );U)
into H. (For an application with unbounded C3, see Remark 2.98 on
page 110.)

With these choices, the null controllability of the linear control system ẏ =
Ay + Bu is equivalent to the inclusion (2.231). Indeed, let us first assume that
(2.231) holds and prove the null controllability. Let y0 and ỹ0 be both in H. Let
u ∈ L2((0, T );U) be such that C3u = C2(ỹ0 − y0), i.e., FTu = S(T )(ỹ0 − y0). Let
y ∈ C0([0, T ];H) be the solution of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = y0.

Then y = y1 + y2, where y1 ∈ C0([0, T ];H) is the solution of the Cauchy problem

ẏ1 = Ay1, y1(0) = y0,

and where y2 ∈ C0([0, T ];H) is the solution of the Cauchy problem

ẏ2 = Ay2 +Bu, y2(0) = 0.

In particular,

y(T ) = y1(T ) + y2(T ) = C2y
0 + C3u = S(T )y0 + S(T )(ỹ0 − y0) = S(T )ỹ0,

which proves the null controllability. The proof of the converse is similar.
Let us now interpret (2.230). Using Lemma 2.47, (2.234) and (2.235), one gets

that (2.230) is equivalent to (2.223) with c = 1/M2.
Finally, concerning equality (2.224), let us define, with the notations of Lemma

2.48,
U := −C1 ∈ L(H,L2((0, T );U)).

One has

((ẏ = Ay +BUy0, y(0) = y0) ⇒ (y(T ) = 0)), ∀y0 ∈ H,(2.236)

‖U‖L(H;L2((0,T );U)) 6
1√
cT
.(2.237)

From (2.236), (2.237) and the definition of UT , one has

‖UT ‖L(H;L2((0,T );U)) 6
1√
cT
.(2.238)
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It just remains to prove that

‖UT ‖L(H;L2((0,T );U)) >
1√
cT
.(2.239)

From the definition of UT , one has

FTUT = −S(T ),(2.240)

From (2.240), one has, for every z ∈ H,

‖S(T )∗z‖2H = −(U∗TF∗T z, S(T )∗z)H
6 ‖UT ‖L(H;L2((0,T );U)) ‖F∗T z‖L2((0,T );U)‖S(T )∗z‖H ,

which implies that

‖F∗T z‖L2((0,T );U) >
1

‖UT ‖L(H;L2((0,T );U))

‖S(T )∗z‖H , ∀z ∈ H.(2.241)

Inequality (2.239) follows from (2.241), the definition of cT and Lemma 2.47. This
concludes the proof of Theorem 2.44 assuming Lemma 2.48.

Proof of Lemma 2.48. Let us first prove that (ii) implies (i). So we assume
that (2.231) holds. Let h2 ∈ H2. By (2.231), there exists one and only one h3 ∈
D(C3), orthogonal to the kernel of C3, such that C2h2 = C3h3. Let us denote by
C1 : H2 → H3 the map defined by C1(h2) := h3. It is not hard to check that C1

is linear. Moreover, by the construction of C1, (2.232) holds. Note that, for every
h1 ∈ D(C∗3 ) ⊂ H1 and for every x ∈ H2,

(C∗2h1, x)H2 = (h1, C2x)H1

= (h1, C3C1x)H1

= (C∗3h1, C1x)H3 .
(2.242)

Hence, if C1 is continuous, (2.232) implies (2.230) with M := ‖C1‖L(H2;H3). So,
let us check that C1 is continuous. By the closed graph theorem (see, for example,
[419, Theorem 2.15, page 50]), it suffices to check that the graph of C1 is closed.
Let (hn2 )n∈N, (hn3 )n∈N, h2 ∈ H2 and h3 ∈ H3 be such that

hn2 ∈ H2, h
n
3 ∈ H3, ∀n ∈ N,(2.243)

hn3 = C1h
n
2 , ∀n ∈ N,(2.244)

hn2 → h2 in H2 and hn3 → h3 in H3 as n→ +∞.(2.245)

From (2.244), one has

C2h
n
2 = C3h

n
3 , h

n
3 ∈ Ker(C3)⊥, ∀n ∈ N.(2.246)

Letting n → +∞ in (2.246) and using (2.245), one gets (let us recall that C3 is a
closed operator)

h3 ∈ D(C3), C2h2 = C3h3 and h3 ∈ Ker(C3)⊥,

which tells us that h3 = C1h2. This concludes the proof of the continuity of C1

and also the proof of (ii)⇒(i).
Let us now prove the converse. Hence we assume that (2.230) holds for some

M > 0. Let us define a map K : C∗3 (D(C∗3 )) ⊂ H3 → H2 by requiring that

K(C∗3h1) = C∗2h1, ∀h1 ∈ D(C∗3 ) ⊂ H1.

The map K is well defined since, by (2.230),

(C∗3h1 = C∗3 h̃1) ⇒ (C∗3 (h1 − h̃1) = 0) ⇒ (C∗2 (h1 − h̃1) = 0) ⇒ (C∗2h1 = C∗2 h̃1).
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for every (h1, h̃1) ∈ D(C∗3 ) × D(C∗3 ). Moreover, K is linear. The vector space
C∗3 (D(C∗3 )), which is a vector subspace of H3, is of course equipped with the norm
of H3. Then K is also continuous since, by (2.230),

‖K(C∗3h1)‖H2 = ‖C∗2h1‖H2 6 M‖C∗3h1‖H3 , ∀h1 ∈ D(C∗3 ) ⊂ H1,

which implies that K ∈ L(C∗3 (D(C∗3 ));H2) and that

‖K‖L(C∗3 (D(C∗3 ));H2) 6 M.(2.247)

By (2.247), K can be uniquely extended as a continuous linear map from C∗3 (D(C∗3 ))
into H2. Then we extend K to a linear map from H3 into H2 by requiring that K
vanishes on C∗3 (D(C∗3 ))

⊥
. Clearly K ∈ L(H3;H2) and

‖K‖L(H3;H2) 6 M,(2.248)

KC∗3 = C∗2 .(2.249)

From (2.249), one easily gets

K∗(H2) ⊂ D(C3) and C3K
∗ = C2,(2.250)

which readily implies (2.231). Note that, if we let C1 := K∗, (2.232) follows from
(2.250), and (2.233) follows from (2.248). This concludes the proof of Lemma 2.48.

Proof of Theorem 2.45 on page 57. Let y0 ∈ H, y1 ∈ H, T > 0 and
ε > 0. Since the semigroup S(t), t ∈ [0,+∞), is strongly continuous, there exists
η ∈ (0, T ) such that

‖S(η)y1 − y1‖H 6 ε,(2.251)

(see Definition A.6 on page 374). Since the control system (2.200) is null controllable
in time η, there exists ū ∈ L2((0, η);U) such that the solution ȳ ∈ C0([0, η];H) of
the Cauchy problem

˙̄y = Aȳ +Bū(t), t ∈ (0, η), ȳ(0) = S(T − η)y0,

satisfies

ȳ(η) = S(η)y1.(2.252)

Let u ∈ L2(0, T ) be defined by

u(t) = 0, t ∈ (0, T − η),

u(t) = ū(t− T + η), t ∈ (T − η, T ).

Let y ∈ C0([0, T ];H) be the solution of the Cauchy problem

ẏ = Ay +Bu(t), t ∈ (0, T ), y(0) = y0.

Then

y(t) = S(t)y0, ∀t ∈ [0, T − η],(2.253)

y(t) = ȳ(t− T + η), ∀t ∈ [T − η, T ].(2.254)

From (2.251), (2.252) and (2.254), one gets

‖y(T )− y1‖H 6 ε.

This concludes the proof of Theorem 2.45 on page 57.
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Remark 2.50. In contrast to Theorem 2.45, note that, for a given T > 0, the
null controllability in time T does not imply the approximate controllability in time
T . For example, let L > 0 and let us take H := L2(0, L) and U := {0}. We consider
the linear control system

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.255)

y(t, 0) = u(t) = 0, t ∈ (0, T ).(2.256)

In Section 2.3.3.1, we shall see how to put this control system in the abstract
framework ẏ = Ay+Bu; see also Section 2.1. It follows from (2.29), that, whatever
y0 ∈ L2(0, L) is, the solution to the Cauchy problem (see Definition 2.1 on page 25
and Section 2.3.3.1)

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = u(t) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

satisfies
y(T, ·) = 0, if T > L.

In particular, if T > L, the linear control system (2.255)-(2.256) is null controllable
but is not approximately controllable.

2.3.3. Examples. In this section we show how the abstract setting just pre-
sented can be applied to the two partial differential control systems we have encoun-
tered, namely a transport linear equation and a linear Korteweg-de Vries equation.

2.3.3.1. The transport equation revisited. We return to the transport control
system that we have already considered in Section 2.1. Let L > 0. The linear
control system we study is

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.257)

y(t, 0) = u(t), t ∈ (0, T ),(2.258)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
For the Hilbert space H, we take H := L2(0, L). For the operator A : D(A) →

H we take (as in Section 2.1; see (2.32) and (2.33))

D(A) := {f ∈ H1(0, L); f(0) = 0},
Af := −fx, ∀f ∈ D(A).

Then D(A) is dense in L2(0, L), A is closed, A is dissipative (see (2.36)). The
adjoint A∗ of A is defined by

D(A∗) := {f ∈ H1(0, L); f(L) = 0},
A∗f := fx, ∀f ∈ D(A∗).

By (2.37), the operator A∗ is also dissipative. Hence, by Theorem A.10 on page 375,
the operator A is the infinitesimal generator of a strongly continuous semigroup
S(t), t ∈ [0,+∞), of continuous linear operators on H.

For the Hilbert space U , we take U := R. The operator B : R → D(A∗)′ is
defined by

(Bu)z = uz(0), ∀u ∈ R,∀z ∈ D(A∗).(2.259)
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Note that B∗ : D(A∗) → R is defined by

B∗z = z(0), ∀z ∈ D(A∗).

Let us check the regularity property (2.199). Let z0 ∈ D(A∗). Let

z ∈ C0([0, T ];D(A∗)) ∩ C1([0, T ];L2(0, L))

be defined by z(t, ·) = S(t)∗z0. Inequality (2.199) is equivalent to∫ T

0

z(t, 0)2dt 6 CT

∫ L

0

z0(x)2dx.(2.260)

Let us prove this inequality for CT := 1. We have

zt = zx, t ∈ (0, T ), x ∈ (0, L),(2.261)

z(t, L) = 0, t ∈ (0, T ),(2.262)

z(0, x) = z0(x), x ∈ (0, L).(2.263)

We multiply (2.261) by z and integrate on [0, T ]× [0, L]. Using (2.262), (2.263) and
integrations by parts, we get∫ T

0

z(t, 0)2dt =
∫ L

0

z0(x)2dx−
∫ L

0

z(T, x)2dx 6
∫ L

0

z0(x)2dx,(2.264)

which shows that (2.260) holds for CT := 1.

Note that there is a point which needs to be clarified: we have now two defini-
tions of a solution to the Cauchy problem

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.265)

y(t, 0) = u(t),(2.266)

y(0, x) = y0(x), x ∈ (0, L),(2.267)

where T is given in (0,+∞), y0 is given in L2(0, L) and u is given in L2(0, T ). The
first definition is the one given in Definition 2.1 on page 25. The second one is
the one given in Definition 2.36 on page 53. (In fact, for the moment, there is no
evidence that there exists any connection between “y is a solution in the sense of
Definition 2.36” and y satisfies, in some “reasonable sense”, (2.265), (2.266) and
(2.267).) Let us prove that these two definitions actually lead to the same solution.

Let T be given in (0,+∞), y0 be given in L2(0, L) and u be given in L2(0, T ).
Let y ∈ C([0, T ];L2(0, L)) be a solution in the sense of Definition 2.1 on page 25.
In order to prove that y is a solution in the sense of Definition 2.36 on page 53, it
suffices to check that, for every τ ∈ [0, T ] and every zτ ∈ L2(0, L),∫ L

0

y(τ, x)zτ (x)dx−
∫ L

0

y0(x)z(τ, x)dx =
∫ τ

0

u(t)z(τ − t, 0)dt,(2.268)

where z(t, ·) := S(t)∗zτ . By density of D(A∗) in L2(0, L) and the continuity of the
left and the right hand sides of (2.268) with respect to zτ for the L2(0, L)-topology,
it suffices to check that (2.268) holds for every τ ∈ [0, T ] and every zτ ∈ D(A∗).
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Let τ ∈ [0, T ] and zτ ∈ D(A∗). Then we have

z ∈ C0([0, T ];H1(0, L)) ∩ C1([0, T ];L2(0, L)),(2.269)

zt − zx = 0, t ∈ (0, T ), x ∈ (0, L),(2.270)

z(t, L) = 0, t ∈ (0, T ),(2.271)

z(0, x) = zτ (x), x ∈ (0, L).(2.272)

Let us point out that, by density and continuity arguments, (2.8) holds for ev-
ery φ ∈ C0([0, τ ];H1(0, L)) ∩ C1([0, τ ];L2(0, L)) satisfying (2.7). We take φ ∈
C0([0, τ ];H1(0, L)) ∩ C1([0, τ ];L2(0, L)) defined by

φ(t, x) = z(τ − t, x), t ∈ (0, τ), x ∈ (0, L).(2.273)

Note that, by (2.271) and (2.273), (2.7) holds. Hence we have (2.8). Moreover,
from (2.270) and (2.273), one gets

φt + φx = 0, t ∈ (0, τ), x ∈ (0, L).(2.274)

From (2.8) and (2.274), we have

−
∫ τ

0

u(t)φ(t, 0)dt+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0,

which, together with (2.272) and (2.273), gives (2.268).
Let us deal with the converse, that is: Prove that every solution in the sense

of Definition 2.36 on page 53 is a solution in the sense of Definition 2.1 on page 25.
Note that in fact this follows from what we have just proved (a solution in the sense
of Definition 2.1 is a solution in the sense of Definition 2.36), the uniqueness of the
solution to the Cauchy problem in the sense of Definition 2.36 and the existence
of the solution to the Cauchy problem in the sense of Definition 2.1. Let us give a
direct proof. Let T > 0, u ∈ L2(0, T ), y0 ∈ L2(0, L). Let y ∈ C0([0, T ];L2(0, L)) be
a solution of the Cauchy problem (2.265)-(2.266)-(2.267) in the sense of Definition
2.36. Let τ ∈ [0, T ]. Let φ ∈ C1([0, τ ]× [0, L]) be such that (2.7) holds. We want to
prove that (2.8) holds. By density and continuity arguments we may assume that
φ ∈ C2([0, τ ]× [0, L]). Let f ∈ C1([0, τ ]× [0, L]) be defined by

f(t, x) = −φt(τ − t, x)− φx(τ − t, x), ∀t ∈ [0, τ ], ∀x ∈ [0, L].(2.275)

Let a ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];D(A∗)) be defined by

a(t, ·) :=
∫ t

0

S(t− s)∗f(s, ·)ds.(2.276)

Let b ∈ C1([0, τ ];L2(0, L)) ∩ C0([0, τ ];D(A∗)) be defined by

b(t, x) = φ(τ − t, x)− a(t, x), ∀t ∈ [0, τ ], ∀x ∈ [0, L].(2.277)

One easily checks that

b(t, ·) = S(t)∗φ(τ, ·), ∀t ∈ [0, τ ].(2.278)

From (2.203) and (2.278), we have∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)b(τ, x)dx =
∫ τ

0

u(t)b(τ − t, 0)dt.(2.279)
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Let f(t) := f(t, ·), t ∈ [0, τ ]. From (2.203) we have, for every t ∈ [0, τ ],

(2.280)
∫ L

0

y(t, x)f(τ − t, x)dx =
∫ L

0

y0S(t)∗f(τ − t)dx

+
∫ t

0

u(s)B∗S(t− s)∗f(τ − t)ds.

Integrating (2.280) on [0, τ ] and using Fubini’s theorem together with (2.276), we
get ∫ τ

0

∫ L

0

y(t, x)f(τ − t, x)dxdt =
∫ L

0

y0a(τ, x)dx+
∫ τ

0

u(t)a(τ − t, 0)dt.(2.281)

From (2.275), (2.277), (2.279) and (2.281), we get (2.8). This concludes the proof
of the equivalence of Definition 2.1 and Definition 2.36.

Let us now turn to the observability inequality (2.221) for exact controllability
(a controllability type which was simply called “controllability” in Section 2.1).
This inequality, with the above notation, reads∫ T

0

z(t, 0)2dt > c

∫ L

0

z0(x)2dx,(2.282)

where c > 0 is independent of z0 ∈ D(A∗) and where z(t, ·) = S(t)∗z0. The change
of function z̃(t, x) := z(T − t, x) shows that inequality (2.282) is equivalent to
inequality (2.87).

Remark 2.51. Note that the regularity property (2.260) was also already
proved in Section 2.1.1; see equality (2.43), which, with the change of function
z(t, x) := y(t, L − x), gives (2.264) and therefore (2.260). The key estimates (reg-
ularity property and observability inequality) remain the same with the two ap-
proaches.

2.3.3.2. The Korteweg-de Vries equation revisited. We return to the Korteweg-
de Vries control system that we have already considered in Section 2.2. Let L > 0.
The linear control system we study is

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),(2.283)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.284)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
For the Hilbert space H, we take H = L2(0, L). For the operator A : D(A) →

H, we take (as in Section 2.1; see (2.106) and (2.107))

D(A) := {f ∈ H3(0, L); f(0) = f(L) = fx(L) = 0},
Af := −fx − fxxx, ∀f ∈ D(A).

Then D(A) is dense in L2(0, L), A is closed, A is dissipative (see (2.110)). The
adjoint A∗ of A is defined by

D(A∗) := {f ∈ H3(0, L); f(0) = f(L) = fx(0) = 0},
A∗f := fx + fxxx, ∀f ∈ D(A∗).

By (2.111), the operator A∗ is also dissipative. Hence, by Theorem A.4 on page 374,
the operator A is the infinitesimal generator of a strongly continuous semigroup
S(t), t ∈ [0,+∞), of continuous linear operators on L2(0, L).
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For the Hilbert space U , we take U := R. The operator B : R → D(A∗)′ is
defined by

(Bu)z = uzx(L), ∀u ∈ R,∀z ∈ D(A∗).(2.285)

Note that B∗ : D(A∗) → R is defined by

B∗z = zx(L), ∀z ∈ D(A∗).

Let us check the regularity property (also called admissibility condition) (2.199).
Let z0 ∈ D(A∗). Let

z ∈ C0([0, T ];D(A∗)) ∩ C1([0, T ];L2(0, L))

be defined by

z(t, ·) = S(t)∗z0.(2.286)

The regularity property (2.199) is equivalent to∫ T

0

|zx(t, L)|2dt 6 CT

∫ L

0

|z0(x)|2dx.(2.287)

From (2.286), one has

zt − zx − zxxx = 0 in C0([0,+∞);L2(0, L)),(2.288)

z(t, 0) = zx(t, 0) = z(t, L) = 0, t ∈ [0,+∞),(2.289)

z(0, x) = z0(x), x ∈ [0, L].(2.290)

Let y ∈ C0([0, T ];H3(0, L)) ∩ C1([0, T ];L2(0, L)) be defined by

y(t, x) = z(t, L− x), (t, x) ∈ [0, T ]× [0, L].(2.291)

From (2.288), (2.289), (2.290) and (2.291), one has

yt + yx + yxxx = 0 in C0([0, T ];L2(0, L)),(2.292)

y(t, L) = yx(t, L) = y(t, 0) = 0, t ∈ [0, T ].(2.293)

Hence, for every τ ∈ [0, T ], we have (2.119) with u = 0. In particular, taking τ = T ,
one has ∫ T

0

|yx(t, 0)|2dt =
∫ L

0

|y0(x)|2dx−
∫ L

0

|y(T, x)|2dx 6
∫ L

0

|y0(x)|2dx.(2.294)

From (2.291) and (2.294), one gets (2.287) with CT := 1.
Let us now turn to the observability inequality (2.221) for the exact controllabil-

ity (a controllability type which was simply called “controllability” in Section 2.2).
In the case of our Korteweg-de Vries control system, this observability inequality
reads ∫ T

0

|zx(t, L)|2dx > c

∫ L

0

|z(0, x)|2dx,(2.295)

for every z ∈ C0([0, T ];H3(0, L))∩C1([0, T ];L2(0, L)) satisfying (2.288) and (2.289).
Defining y ∈ C0([0, T ];H3(0, L)) ∩ C1([0, T ];L2(0, L)) by (2.291), one easily sees
that (2.295) is indeed equivalent to (2.156).

Hence, again, the key estimates (regularity property and observability inequal-
ity) remain the same with the two approaches.
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It remains to check that the two notions of solutions to the Cauchy problem

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

i.e., the one given by Definition 2.36 on page 53 and the other given in Definition 2.21
on page 38, lead to the same solutions. This fact can be checked by proceeding as
for the transport equation (see page 63).

2.4. Wave equation

Let L > 0, T > 0 and a ∈ L∞((0, T ) × (0, L)). We consider the linear control
system

ytt − yxx + a(t, x)y = 0, t ∈ (0, T ), x ∈ (0, L),(2.296)

y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.297)

where, at time t ∈ (0, T ), the control is u(t) ∈ R and the state is

(y(t, ·), yt(t, ·)) : (0, L) → R2.

2.4.1. Well-posedness of the Cauchy problem. Let us first give a natural
definition of solutions of the Cauchy problem

ytt − yxx + a(t, x)y = 0, t ∈ (0, T ), x ∈ (0, L),(2.298)

y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.299)

y(0, x) = α0(x), yt(0, x) = β0(x), x ∈ (0, L),(2.300)

where α0 ∈ H1
(0)(0, L) := {α ∈ H1(0, L); α(0) = 0}, β0 ∈ L2(0, L) and u ∈ L2(0, T )

are given. The vector space H1
(0)(0, L) is equipped with the scalar product

(α1, α2)H1
(0)(0,L) :=

∫ L

0

α1xα2xdx.

With this scalar product, H1
(0)(0, L) is a Hilbert space. In order to motivate

Definition 2.52 below, let us first assume that there exists a function y of class
C2 on [0, T ] × [0, L] satisfying (2.298) to (2.300) in the usual sense. Let φ ∈
C1([0, T ]× [0, L]) be such that

φ(t, 0) = 0, ∀t ∈ [0, T ].(2.301)

We multiply (2.298) by φ and integrate the obtained equality on [0, τ ]× [0, L], with
τ ∈ [0, T ]. Using (2.299), (2.300), (2.301) and integrations by parts, one gets

(2.302)
∫ L

0

yt(τ, x)φ(τ, x)dx−
∫ L

0

β0(x)φ(0, x)dx

−
∫ τ

0

∫ L

0

(φtyt − φxyx − aφy)dxdt−
∫ τ

0

u(t)φ(t, L)dt = 0.

This equality leads to the following definition.
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Definition 2.52. Let T > 0, α0 ∈ H1
(0)(0, L), β0 ∈ L2(0, L) and u ∈ L2(0, T )

be given. A solution of the Cauchy problem (2.298)-(2.299)-(2.300) is a function
y ∈ L∞((0, T );H1

(0)(0, L)) such that yt ∈ L∞((0, T );L2(0, L)), satisfying

y(0, ·) = α0,(2.303)

y(t, 0) = 0, ∀t ∈ [0, T ],(2.304)

and such that, for every φ ∈ C1([0, T ] × [0, L]) satisfying (2.301), one has (2.302)
for almost every τ ∈ (0, T ).

With this definition, one has the following theorem.

Theorem 2.53. Let T > 0, L > 0 and R > 0. There exists C := C(T,L,R) > 0
such that, for every a ∈ L∞((0, T )× (0, L)) satisfying

‖a‖L∞((0,T )×(0,L)) 6 R,(2.305)

for every α0 ∈ H1
(0)(0, L), for every β0 ∈ L2(0, L) and for every u ∈ L2(0, T ),

the Cauchy problem (2.298)-(2.299)-(2.300) has a unique solution and this solution
satisfies

(2.306) ‖y‖L∞((0,T );H1
(0)(0,L)) + ‖yt‖L∞((0,T );L2(0,L))

6 C(‖α0‖H1
(0)(0,L) + ‖β0‖L2(0,L) + ‖u‖L2(0,T )).

Moreover, y(·, L) ∈ L∞(0, T ) is in fact in H1(0, T ) and

‖yt(·, L)‖L2(0,T ) 6 C(‖α0‖H1
(0)(0,L) + ‖β0‖L2(0,L) + ‖u‖L2(0,T )).(2.307)

Finally

y ∈ C0([0, T ];H1
(0)(0, L)) ∩ C1([0, T ];L2(0, L)).(2.308)

Inequality (2.307) is a hidden regularity property; see Remark 2.10 on page 32.

Proof of Theorem 2.53. We only prove the existence statement together with
(2.306) and (2.307). For the uniqueness statement, one can proceed, for example, as
in the proof of the uniqueness statement of Theorem 2.4 on page 27. One can also
use the method explained in [329, (the proof of) Théorème 8.1, Chapitre 3, page
287] or [291, Theorem 3.1, Chapter IV, page 157]. For (2.308), see, for example,
[329, (the proof of) Théorème 8.2, Chapitre III, page 296].

Let

H :=
{
Y :=

(
α
β

)
; α ∈ H1

(0)(0, L), β ∈ L2(0, L)
}
.

This vector space is equipped with the scalar product((
α1

β1

)
,

(
α2

β2

))
H

:= (α1, α2)H1
(0)(0,L) + (β1, β2)L2(0,L).

As usual we denote by ‖ · ‖H the norm in H associated to this scalar product. Let
A : D(A) ⊂ H → H be the linear operator defined by

D(A) :=
{(

α
β

)
∈ H;α ∈ H2(0, L), β ∈ H1

(0)(0, L), αx(L) = 0
}
,

A

(
α
β

)
:=
(
β
αxx

)
, ∀
(
α
β

)
∈ D(A).
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Note that

D(A) is dense in H,(2.309)

A is closed.(2.310)

Moreover,

(AY, Y )H =
∫ L

0

(βxαx + αxxβ)dx = 0, ∀Y :=
(
α
β

)
∈ D(A).(2.311)

Let A∗ be the adjoint of A. One easily checks that

A∗ = −A.(2.312)

From the Lumer-Phillips theorem (Theorem A.4 on page 374), (2.309), (2.310), and
(2.312), A is the infinitesimal generator of a strongly continuous group of isometries
S(t), t ∈ R, on H.

Let T > 0. Let us first treat the case where a ∈ C1([0, T ] × [0, L]) and u ∈
C3([0, T ]) is such that

u(0) = u̇(0) = 0,(2.313)

and

Y 0 :=
(
α0

β0

)
∈ D(A).

Then the map

f : [0, T ]×H → H(
t,

(
α
β

))
7→

(
x 7→

(
0

−a(t, x)α(x)− ü(t)x− a(t, x)u(t)x

))
is continuous in t ∈ [0, T ], uniformly globally Lipschitz in (α, β)tr ∈ H, and contin-
uously differentiable from [0, T ]×H into H. By a classical result on perturbations
of linear evolution equations (see, for example, [381, Theorem 1.5, Chapter 6, page
187]) there exists Z := (α, β)tr ∈ C1([0, T ];H) ∩ C0([0, T ];D(A)) such that

dZ
dt

= AZ +
(

0
−a(t, x)α− ü(t)x− a(t, x)u(t)x

)
,(2.314)

Z(0, ·) = Y 0.(2.315)

Let Y ∈ C1([0, T ];H) ∩ C0([0, T ];H2(0, L)×H1(0, L)) be defined by

Y (t, x) := Z(t, x) +
(
u(t)x

0

)
, ∀(t, x) ∈ [0, T ]× [0, L].(2.316)

Let φ ∈ C1([0, T ] × [0, L]) satisfy (2.301) and let τ ∈ [0, T ]. Let y be the first
component of Y . Then y is in C1([0, T ];H1(0, L))∩C0([0, T ];H2(0, L)) and satisfies
(2.298), (2.299) and (2.300) in the usual sense. In particular, it is a solution of the
Cauchy problem (2.298)-(2.299)-(2.300) in the sense of Definition 2.52. We multiply
(2.298) by φ and integrate the obtained equality on [0, τ ] × [0, L]. Using (2.299),
(2.300), (2.301) and integrations by parts, one gets (2.302). We multiply (2.298)
by yt and integrate on [0, L]. Then, using an integration by parts together with
(2.299), we get

Ė(τ) = −
∫ L

0

ayytdx+ u(τ)yt(τ, L), ∀τ ∈ [0, T ],(2.317)
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with

E(τ) :=
1
2

∫ L

0

(y2
t (τ, x) + y2

x(τ, x))dx.(2.318)

Let τ ∈ [0, T ]. Let us now take φ := xyx in (2.302) (which, by (2.308), holds
for every τ ∈ [0, T ]) and integrate on [0, τ ] × [0, L]. One gets, using (2.299) and
integrations by parts,

(2.319)
∫ τ

0

E(t)dt+
∫ L

0

xyt(τ, x)yx(τ, x)dx−
∫ L

0

xα0
xβ

0dx

= −
∫ τ

0

∫ L

0

axyxydxdt+
L

2

∫ τ

0

(u2(t) + y2
t (t, L))dt.

We have

2|u(t)yt(t, L)| 6 εyt(t, L)2 +
1
ε
u(t)2, ∀ε ∈ (0,+∞).(2.320)

From (2.305), (2.317), (2.318), (2.319), (2.320), Gronwall’s lemma and Sobolev
inequalities,

E(τ) 6 CE(0) + C

∫ τ

0

|u(t)||yt(t, L)|dt(2.321)

6
1
2
E(τ) + CE(0) + C

∫ τ

0

E(t)dt+ C

∫ τ

0

u2(t)dt.

In (2.321) and until the end of this section, C denotes various constants which may
vary from line to line and depend only on T > 0, L > 0 and R > 0. In particular,
these constants C in (2.321) do not depend on a ∈ L∞((0, T ) × (0, L)) satisfying
(2.305). From (2.321), we have

E(τ) 6 CE(0) + C

∫ τ

0

E(t)dt+ C

∫ τ

0

u2(t)dt.(2.322)

From Gronwall’s lemma, (2.318), and (2.322), one gets

(2.323)
∫ L

0

(y2
x(τ, x) + y2

t (τ, x))dx 6 C

∫ L

0

(|α0
x(x)|2 + |β0(x)|2)dx

+ C

∫ τ

0

u2(t)dt, ∀τ ∈ [0, T ].

Let us point out that from (2.319) and (2.323) one gets

‖yt(·, L)‖L2(0,T ) 6 C(‖α0‖H1
(0)(0,L) + ‖β0‖L2(0,L) + ‖u‖L2(0,T )).(2.324)

Now let a ∈ L∞((0, T )× (0, L)) satisfy (2.305), let u ∈ L2(0, T ) and let (α0, β0) ∈
H1

(0)(0, L) × L2(0, L). Let an ∈ C1([0, T ] × [0, L]), un ∈ C3([0, T ]) satisfy (2.313),
(α0
n, β

0
n)

tr ∈ D(A) be such that, as n→∞,

an → a in L2((0, T )× (0, L)),(2.325)

‖an‖L∞((0,T )×(0,L)) 6 R,(2.326)

un → u in L2(0, T ),(2.327)

α0
n → α0 in H1(0, L) and β0

n → β0 in L2(0, T ).(2.328)



2.4. WAVE EQUATION 71

Let yn ∈ C1([0, T ];H1(0, L))∩C0([0, T ];H2(0, L)) be such that, in the usual sense
(see above for the existence of yn),

yntt − ynxx + a(t, x)yn = 0, t ∈ (0, T ), x ∈ (0, L),(2.329)

yn(t, 0) = 0, ynx(t, L) = un(t), t ∈ (0, T ),(2.330)

yn(0, x) = α0
n(x), ynt(0, x) = β0

n(x), x ∈ (0, L).(2.331)

Let τ ∈ [0, T ] and let φ ∈ C1([0, T ] × [0, L]) be such that (2.301) holds. From
(2.329), (2.330), (2.331) and (2.301), we get (see the proof of (2.302))

(2.332)
∫ L

0

ynt(τ, x)φ(τ, x)dx−
∫ L

0

β0
n(x)φ(0, x)dx

−
∫ τ

0

∫ L

0

(φtynt − φxynx − anφyn)dxdt−
∫ τ

0

un(t)φ(t, L)dt = 0.

By (2.323),

(2.333)
∫ L

0

(y2
nx(τ, x) + y2

nt(τ, x))dx 6 C

∫ L

0

(|α0
nx(x)|2 + |β0

n(x)|2)dx

+ C

∫ τ

0

u2
n(t)dt, ∀τ ∈ [0, T ].

By (2.324),

‖ynt(·, L)‖L2(0,T ) 6 C(‖α0
n‖H1

(0)(0,L) + ‖β0
n‖L2(0,L) + ‖un‖L2(0,T )).(2.334)

By (2.327), (2.328), (2.333), and (2.334),

(yn)n∈N is bounded in L∞((0, T );H1
(0)(0, L)),(2.335)

(ynt)n∈N is bounded in L∞((0, T );L2(0, L)),(2.336)

(ynt(·, L))n∈N is bounded in L2(0, T ).(2.337)

Hence, extracting subsequences if necessary, we may assume that there exists
y ∈ L∞((0, T );H1

(0)(0, L)), with yt ∈ L∞((0, T );L2(0, L)) and yt(·, L) ∈ L2(0, T ),
satisfying (2.306) and (2.307) such that

ynx ⇀ yx weakly in L2((0, T )× (0, L)) as n→∞,(2.338)

ynt ⇀ yt weakly in L2((0, T )× (0, L)) as n→∞.(2.339)

Letting n → ∞ in (2.332) and using (2.325), (2.327), (2.328), (2.338) and (2.339),
we get (2.302). This concludes the proof of the existence part of Theorem 2.53,
together with the inequalities (2.306) and (2.307).

2.4.2. Controllability. Let us now turn to the controllability of the control
system (2.296)-(2.297). We start with a natural definition of controllability.

Definition 2.54. Let T > 0. The control system (2.296)-(2.297) is control-
lable in time T if, for every (α0, β0) ∈ H1

(0)(0, L) × L2(0, L) and every (α1, β1) ∈
H1

(0)(0, L) × L2(0, L), there exists u ∈ L2(0, T ) such that the solution y of the
Cauchy problem (2.298)-(2.299)-(2.300) satisfies (y(T, ·), yt(T, ·)) = (α1, β1).

With this definition we have the following theorem, which is due to Enrique
Zuazua [515, 516].



72 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Theorem 2.55. Let T > 2L. Then the control system (2.296)-(2.297) is con-
trollable in time T . More precisely, there exists C := C(T,L,R) such that, for
every a ∈ L∞((0, T )× (0, L)) satisfying

‖a‖L∞((0,T )×(0,L)) 6 R,(2.340)

for every α0 ∈ H1
(0)(0, L), for every β0 ∈ L2(0, L), for every α1 ∈ H1

(0)(0, L) and
for every β1 ∈ L2(0, L), there exists u ∈ L2(0, T ) satisfying

‖u‖L2(0,T ) 6 C(‖α0‖H1
(0)(0,L) + ‖β0‖L2(0,L) + ‖α1‖H1

(0)(0,L) + ‖β1‖L2(0,L))(2.341)

and such that the solution y of the Cauchy problem (2.298)-(2.299)-(2.300) satisfies
(y(T, ·), yt(T ·)) = (α1, β1).

In order to prove Theorem 2.55, we use the duality between controllability and
observability (as in Section 2.1.2.3 for the transport equation and as in Section 2.2.2
for the Korteweg-de Vries equation).

Let T > 0. Let us define a linear map FT : L2(0, T ) → H in the following way.
Let u ∈ L2(0, T ). Let y ∈ C1([0, T ];L2(0, L)) ∩C0([0, T ];H1(0, L)) be the solution
of the Cauchy problem

ytt − yxx + ay = 0, t ∈ (0, T ), x ∈ (0, L),(2.342)

y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ),(2.343)

y(0, x) = 0, yt(0, x) = 0, x ∈ (0, L).(2.344)

Then

FT (u) :=
(
y(T, ·)
yt(T, ·)

)
.

One has the following lemma, which is proved in the same way as Lemma 2.15 on
page 34.

Lemma 2.56. The control system (2.94)-(2.95) is controllable in time T if and
only if FT is onto.

Again, in order to prove that FT is onto, one uses Proposition 2.16 on page 35.
In order to compute the adjoint of FT , let us introduce some notations. Let ∆−1

be defined by

∆−1 : L2(0, L) → H2
(0) := {z ∈ H2(0, L); z(0) = zx(L) = 0}

f 7→ z,

where z is the solution of

zxx = f, z(0) = zx(L) = 0.

Let us consider the Cauchy problem

d

dt

(
P
Q

)
=
(
Q−∆−1(aQ)

Pxx

)
,(2.345)

Px(t, L) = 0, Q(t, 0) = 0, t ∈ (0, T ),(2.346)

P (T, x) = PT (x), Q(T, x) = QT (x), x ∈ (0, L),(2.347)

where (PT , QT )tr is given in H. Let us recall that S denotes the group associated
to A (see page 69). Then we adopt the following definition.
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Definition 2.57. A solution of the Cauchy problem (2.345)-(2.346)-(2.347) is
a function Z : [0, T ] → H, t 7→ (P (t), Q(t))tr such that

Z ∈ C0([0, T ];H),

Z(τ2) = S(τ2 − τ1)Z(τ1)−
∫ τ2

τ1

S(τ2 − t)(∆−1(aQ), 0)trdt, ∀(τ1, τ2) ∈ [0, T ]2,

Z(T ) = (PT , QT )tr.

Then arguing as in the proof of Theorem 2.53 on page 68 gives the following
theorem.

Theorem 2.58. For every (PT , QT )tr ∈ H, the Cauchy problem (2.345)-
(2.346)-(2.347) has a unique solution. For such a solution, Q(·, L) ∈ H−1(0, T )
is in fact in L2(0, T ). Moreover, there exists a constant C := C(T,L,R) such that,
for every a ∈ L∞((0, T )× (0, L)) such that

‖a‖L∞((0,T )×(0,L)) 6 R,(2.348)

for every (PT , QT )tr ∈ H, the solution Z := (P,Q)tr of the Cauchy problem (2.345)-
(2.346)-(2.347) satisfies

‖Z‖C0([0,T ];H) 6 C(‖(PT , QT )tr‖H ,
‖Q(·, L)‖L2(0,T ) 6 C(‖(PT , QT )tr‖H .

Now we make F∗T explicit by the following lemma.

Lemma 2.59. Let

ZT := (PT , QT )tr ∈ H.

Let Z := (P,Q)tr ∈ C0([0, T ];H) be the solution of the Cauchy problem (2.345)-
(2.346)-(2.347). Then

(F∗TZT )(t) = Pt(t, L) + (∆−1(aQ(t, ·)))(L), t ∈ (0, T ).(2.349)

Proof of Lemma 2.59. Using the same approximation technique as in our
proof of Theorem 2.53 on page 68, we may assume that

a ∈ C1([0, T ]× [0, L]),

ZT ∈ D(A),

u ∈ C3([0, T ]), u(0) = 0, u̇(0) = 0.

Let y ∈ C2([0, T ];L2(0, L))∩C1([0, T ];H1(0, L))∩C0([0, T ];H2(0, L)) be such that

ytt − yxx + ay = 0,(2.350)

y(t, 0) = 0, yx(t, L) = u(t), ∀t ∈ [0, T ],(2.351)

y(0, ·) = 0, yt(0, ·) = 0.(2.352)

(See page 69, for the existence of such a y.) By the definitions of FT and of y,

FT (u) =
(
y(T, ·)
yt(T, ·)

)
.(2.353)
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Then, from (2.345), (2.346), (2.347), (2.350), (2.351) and (2.352), we get, with
integrations by parts,

(ZT ,FT (u))H =
∫ L

0

Px(T, x)yx(T, x) +Q(T, x)yt(T, x)dx

=
∫ T

0

∫ L

0

(Pxyx +Qyt)tdxdt

=
∫ T

0

∫ L

0

(Ptxyx + Pxytx + Pxxyt +Qyxx − aQy)dxdt

=
∫ T

0

Pt(t, L)u(t)dt

+
∫ T

0

∫ L

0

(−Ptyxx − Pxxyt + Pxxyt +Qyxx − aQy)dxdt

=
∫ T

0

Pt(t, L)u(t)dt+
∫ T

0

∫ L

0

((∆−1(aQ))yxx − aQy)dxdt

=
∫ T

0

[
Pt(t, L) + (∆−1(aQ(t, ·)))(L)

]
u(t)dt,

which concludes the proof of Lemma 2.59.

The observability inequality is given in the following proposition due to Enrique
Zuazua [516, Section 3].

Proposition 2.60 (Observability inequality). Let us assume that T > 2L.
Then there exists C := C(T,L,R) > 0 such that, for every a ∈ L∞((0, T )× (0, L))
such that (2.348) holds, and for every (PT , QT )tr ∈ H,

‖(PT , QT )tr‖H 6 C‖F∗T (PT , QT )tr‖L2(0,T ).(2.354)

Theorem 2.55 on page 72 is a corollary of Proposition 2.16 on page 35 and
Proposition 2.60.

Let us prove only, instead of Proposition 2.60, the following weaker proposition
(for a proof of Proposition 2.60, see [516, Section 3]).

Proposition 2.61 (Weaker observability inequality). Let L > 0 and T > 2L.
Then there exist R := R(T,L) > 0 and C∗ = C∗(T,L) > 0 such that, for every
a ∈ L∞((0, T )× (0, L)) such that

‖a‖L∞((0,T )×(0,L)) 6 R,(2.355)

and for every (PT , QT )tr ∈ H,

‖(PT , QT )tr‖H 6 C∗‖F∗T (PT , QT )tr‖L2(0,T ).(2.356)

Proof of Proposition 2.61. By easy density arguments, we may assume
that a ∈ C1([0, T ] × [0, L]) and that (PT , QT )tr ∈ D(A). Then, if Z := (P,Q)tr ∈
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C0([0, T ];H) is the solution of the Cauchy problem (2.345)-(2.346)-(2.347),

P ∈ C0([0, T ];H2(0, L)) ∩ C1([0, T ];H1(0, L)),(2.357)

Q ∈ C0([0, T ];H1(0, L)) ∩ C1([0, T ];L2(0, L)),(2.358)

Pt = Q−∆−1(aQ) in C0([0, T ];H1(0, L)),(2.359)

Qt − Pxx = 0 in C0([0, T ];L2(0, L)),(2.360)

Px(t, L) = Q(t, 0) = 0, ∀t ∈ [0, T ].(2.361)

We now use the multiplier method (see page 36, and Remark 2.19 above for some
comments on this method). We multiply (2.359) by 2xPxt and integrate on (0, T )×
(0, L). Using integrations by parts together with (2.361) we get

(2.362) 0 = L

∫ T

0

P 2
t (t, L)dt−

∫ T

0

∫ L

0

(P 2
t + P 2

x )dxdt− 2
∫ L

0

[QxPx]t=Tt=0 dx

− 2
∫ T

0

∫ L

0

(x∆−1(aQ))xPtdxdt+ 2L
∫ T

0

(∆−1(aQ(t, ·)))(L)Pt(t, L)dt.

Let E : [0, T ] → R be defined by

E(t) :=
∫ L

0

(P 2
x (t, x) +Q2(t, x))dx, ∀t ∈ [0, T ].(2.363)

From (2.359), (2.360), (2.361) and (2.363), one has

Ė = 2
∫ L

0

aPQdx+ 2P (t, 0)(∆−1(aQ)(t, ·))x(0).(2.364)

From now on we assume that

‖a‖L∞((0,T )×(0,L)) 6 1.(2.365)

We denote by C various positive constants which may depend only on T and L.
In particular, these constants are independent of a ∈ L∞((0, T )× (0, L)) satisfying
(2.365), of (PT , QT ) and of t ∈ [0, T ]. For f ∈ L2(0, L), one has the following
expression of ∆−1f :

(∆−1f)(x) = −
∫ x

0

∫ L

s2

f(s1)ds1ds2.(2.366)

From (2.366), one gets the following standard estimate:

‖∆−1f‖H2(0,L) 6 C‖f‖L2(0,L), ∀f ∈ L2(0, L).(2.367)

From (2.364), (2.367), and the Poincaré inequality, one has

|Ė| 6 C‖a‖L∞((0,T )×(0,L))E.(2.368)

From (2.365), (2.368), and the Gronwall lemma, one has

|E(t)− E(T )| 6 C‖a‖L∞((0,T )×(0,L))E(T ), ∀t ∈ [0, T ].(2.369)

From (2.359) and (2.363), one gets

|
∫ L

0

(P 2
t (t, x) + P 2

x (t, x))dx− E(t)| 6 C‖a‖L∞((0,T )×(0,L))E(t), ∀t ∈ [0, T ].

(2.370)
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From (2.363), we get

|2
∫ L

0

[QxPx]t=Tt=0 dx| 6 L(E(0) + E(T )).(2.371)

From (2.363) and (2.367), one easily checks that

|
∫ L

0

(x∆−1(aQ))x(t, x)Pt(t, x)dx| 6 C‖a‖L∞((0,T )×(0,L))E(t), ∀t ∈ [0, T ],(2.372)

|(∆−1(aQ(t, ·)))(L)| 6 C‖a‖L∞((0,T )×(0,L))E(t)1/2, ∀t ∈ [0, T ].(2.373)

From (2.362), (2.363), (2.365), (2.369), (2.370), (2.371), (2.372) and (2.373), one
gets

(T − 2L− C‖a‖L∞((0,T )×(0,L)))E(T )

6 L

∫ T

0

[
Pt(t, L) + (∆−1(aQ(t, ·)))(L)

]2
dt,

which, using Lemma 2.59 on page 73, concludes the proof of Proposition 2.61.

2.4.3. Comments. There is a huge literature on the controllability of linear
wave equations for any space dimension. One of the best results on this subject has
been obtained by Claude Bardos, Gilles Lebeau and Jeffrey Rauch in [34]. See also
the paper [77] by Nicolas Burq and Patrick Gérard and the paper [76] by Nicolas
Burq for improvements or a simpler proof. See also the paper [211] by Robert
Gulliver and Walter Littman for hyperbolic equations on Riemannian manifolds.
Let us mention also the survey paper [426, Sections 3, 4 and 5] by David Russell
and the books [186, Chapter 4] by Andrei Fursikov and Oleg Imanuvilov, [325] by
Jacques-Louis Lions and [277] by Vilmos Komornik, where one can find plenty of
results and useful references.

2.5. Heat equation

In this section Ω is a nonempty bounded open set of Rl, and ω is a nonempty
open subset of Ω. We consider the following linear control system:

yt −∆y = u(t, x), t ∈ (0, T ), x ∈ Ω,(2.374)

y = 0 on (0, T )× ∂Ω,(2.375)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(Ω) and the control is u(t, ·) ∈
L2(Ω). We require that

u(·, x) = 0, x ∈ Ω \ ω.(2.376)

Hence we consider the case of internal control; see Section 2.5.3 and Section 2.7
below for cases with boundary controls.

2.5.1. Well-posedness of the Cauchy problem. Again we start by giving
a natural definition of a (weak) solution to the Cauchy problem associated to our
control system (2.374)-(2.375), i.e., the Cauchy problem

yt −∆y = u(t, x), (t, x) ∈ (0, T )× Ω,(2.377)

y = 0 on (0, T )× ∂Ω,(2.378)

y(0, x) = y0(x), x ∈ Ω,(2.379)
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where T > 0, y0 ∈ L2(Ω) and u ∈ L2((0, T ) × Ω) are given. In order to motivate
this definition, let us first assume that there exists a function y of class C2 on
[0, T ] × Ω satisfying (2.377) to (2.379) in the usual sense. Let τ ∈ [0, T ] and let
φ ∈ C2([0, τ ]× Ω) be such that

φ(t, x) = 0, ∀(t, x) ∈ [0, τ ]× ∂Ω.(2.380)

We multiply (2.377) by φ and integrate the obtained equality on [0, τ ]× Ω. Using
(2.378), (2.379), (2.380) and integrations by parts, one gets (at least if Ω is smooth
enough)

−
∫ τ

0

∫
Ω

(φt + ∆φ)ydxdt−
∫ τ

0

∫
Ω

uφdxdt

+
∫

Ω

y(τ, x)φ(τ, x)dx−
∫

Ω

y0(x)φ(0, x)dx = 0.

This equality leads to the following definition.

Definition 2.62. Let T > 0, let y0 ∈ L2(Ω), and let u ∈ L2((0, T ) × Ω) be
given. A solution of the Cauchy problem (2.377)-(2.378)-(2.379) is a function y ∈
C0([0, T ];L2(Ω)) such that, for every τ ∈ [0, T ] and for every φ ∈ C0([0, τ ];H1(Ω))
such that

φ(t, ·) ∈ H1
0 (Ω), ∀t ∈ [0, τ ],(2.381)

φt ∈ L2((0, T )× Ω), ∆φ ∈ L2((0, T )× Ω),(2.382)

one has

(2.383) −
∫ τ

0

∫
Ω

(φt + ∆φ)ydxdt−
∫ τ

0

∫
Ω

uφdxdt

+
∫

Ω

y(τ, x)φ(τ, x)dx−
∫

Ω

y0(x)φ(0, x)dx = 0.

In (2.381) and in the following, H1
0 (Ω) denotes the closure in H1(Ω) of the set

of functions ϕ ∈ C∞(Ω) with compact support. Let us recall that, if Ω is of class
C1, then

H1
0 (Ω) = {ϕ ∈ H1(Ω); ϕ = 0 on ∂Ω}

(see, e.g., [3, Theorem 5.37, page 165]). With Definition (2.62), one has the follow-
ing theorem.

Theorem 2.63. Let T > 0, y0 ∈ L2(Ω) and u ∈ L2((0, T )×Ω) be given. Then
the Cauchy problem (2.377)-(2.378)-(2.379) has a unique solution. This solution
satisfies

‖y(τ, ·)‖L2(Ω) 6 C(‖y0‖L2(Ω) + ‖u‖L2((0,T )×Ω)), ∀τ ∈ [0, T ],(2.384)

for some C > 0 which does not depend on (y0, u) ∈ L2(Ω)× L2((0, T )× Ω).

Proof of Theorem 2.63. Let

H := L2(Ω),

equipped with the usual scalar product. Let A : D(A) ⊂ H → H be the linear
operator defined by

D(A) :=
{
y ∈ H1

0 (Ω); ∆y ∈ L2(Ω)
}
,

Ay := ∆y ∈ H.
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Note that, if Ω is smooth enough (for example of class C2), then

D(A) = H1
0 (Ω) ∩H2(Ω).(2.385)

However, without any regularity assumption on Ω, (2.385) is wrong in general (see
in particular [204, Theorem 2.4.3, page 57] by Pierre Grisvard). One easily checks
that

D(A) is dense in L2(Ω),(2.386)

A is closed.(2.387)

Moreover,

(Ay, y)H = −
∫

Ω

|∇y|2dx, ∀y ∈ D(A).(2.388)

Let A∗ be the adjoint of A. One easily checks that

A∗ = A.(2.389)

From the Lumer-Phillips theorem (Theorem A.4 on page 374), (2.386), (2.387),
(2.388) and (2.389), A is the infinitesimal generator of a strongly continuous semi-
group of linear contractions S(t), t ∈ [0,+∞), on H.

There are now two strategies to prove Theorem 2.63.
(i) For the existence statement of Theorem 2.63, one can proceed as in the

second proof of the existence statement of Theorem 2.4 on page 27; see
also the proofs of the existence statement of Theorem 2.23 on page 39
or Theorem 2.53 on page 68. For the uniqueness statement of Theorem
2.63 one can proceed as for the uniqueness statement of Theorem 2.23 on
page 39.

(ii) One can use Theorem 2.37 on page 53 on the Cauchy problem for abstract
linear control systems. For the Hilbert space U we take L2(ω). The linear
map B ∈ L(U ;D(A∗)′) is the map which is defined by

(Bu)ϕ =
∫
ω

uϕdx.

Note that B ∈ L(U ;H). Hence the regularity property (2.199) is auto-
matically satisfied. Therefore Theorem 2.63 follows from Theorem 2.37 on
page 53 provided that one proves that the two notions of solutions to the
Cauchy problem (2.377)-(2.378)-(2.379), the one given by Definition 2.36
on page 53, and the one given in Definition 2.62 on the preceding page,
lead to the same solutions. This fact can be checked by proceeding as for
the transport equation (see page 63).

2.5.2. Controllability. Due to the smoothing effect of the heat equation,
whatever y0 ∈ L2(Ω) and u ∈ L2((0, T ) × Ω) satisfying (2.376) are, the solution
y : (0, T ) × Ω → R of the Cauchy problem (2.377)-(2.378)-(2.379) is such that y
is of class C∞ in (0, T ] × (Ω \ ω). Hence, if Ω 6⊂ ω, one cannot expect to have
the controllability that we have found for the transport equation, the Korteweg-de
Vries equation or the wave equation. More precisely, if Ω 6⊂ ω, there are y1 ∈ L2(Ω)
such that, for every y0 ∈ L2(Ω), for every T > 0 and for every u ∈ L2((0, T ) ×
Ω) satisfying (2.376), y(T, ·) 6= y1. As proposed by Andrei Fursikov and Oleg
Imanuvilov in [185, 187], for the heat equation, as for many equations where there
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is a regularizing effect, the good notion of controllability is not to go from a given
state to another given state in a fixed time but to go from a given state to a
given trajectory. (A related notion of controllability, in the framework of finite-
dimensional control systems, has been also proposed by Jan Willems [503] for a
different purpose.) This leads to the following definition.

Definition 2.64. The control system (2.374)-(2.375)-(2.376) is controllable if,
for every T , for every y0 ∈ L2(Ω), for every ŷ ∈ C0([0, T ];L2(Ω)), and for every
û ∈ L2((0, T )× Ω) such that

û(t, x) = 0, (t, x) ∈ (0, T )× Ω \ ω,(2.390)

and such that ŷ is the solution of the Cauchy problem

ŷt −∆ŷ = û(t, x), (t, x) ∈ (0, T )× Ω,(2.391)

ŷ = 0 on (0, T )× ∂Ω,(2.392)

ŷ(0, x) = ŷ(0, ·)(x), x ∈ Ω,(2.393)

there exists u ∈ L2((0, T ) × Ω) satisfying (2.376) such that the solution y of the
Cauchy problem (2.377)-(2.378)-(2.379) satisfies

y(T, ·) = ŷ(T, ·).(2.394)

Remark 2.65. Using the linearity of the control system (2.374)-(2.375)-(2.376),
it is not hard to check that the notion of controllability introduced in Definition 2.64
is equivalent to what is called null controllability in Section 2.3.2; see Definition 2.39
on page 55.

One has the following theorem, which is due to Hector Fattorini and David
Russell [162, Theorem 3.3] if l = 1, to Oleg Imanuvilov [242, 243] (see also the
book [186] by Andrei Fursikov and Oleg Imanuvilov) and to Gilles Lebeau and Luc
Robbiano [307] for l > 1.

Theorem 2.66. Let us assume that Ω is of class C2 and connected. Then the
control system (2.374)-(2.375)-(2.376) is controllable.

Proof of Theorem 2.66. From Theorem 2.44 on page 56, one has the follow-
ing proposition, due to Szymon Dolecki and David Russell [146].

Proposition 2.67. Assume that, for every T > 0, there exists M > 0 such
that, for every y0 ∈ L2(Ω), the solution y of the Cauchy problem

yt −∆y = 0, (t, x) ∈ (0, T )× Ω,(2.395)

y = 0 on (0, T )× ∂Ω,(2.396)

y(0, x) = y0(x), x ∈ Ω,(2.397)

satisfies

‖y(T, ·)‖2L2(Ω) 6 M2

∫ T

0

∫
ω

y2dxdt.(2.398)

Then the control system (2.374)-(2.375)-(2.376) is controllable.

Indeed, with the definitions of A, B, U and H given in Section 2.5.1, inequality
(2.223) reads as inequality (2.398) with M := c−1/2. (Inequality (2.398) is the
observability inequality for the control system (2.374)-(2.375)-(2.376).)
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Proof of the observability inequality (2.398). We follow [186, Chapter 1]
by Andrei Fursikov and Oleg Imanuvilov; we establish a Carleman inequality [83],
which implies the observability inequality (2.398). Without loss of generality, we
may assume that y0 ∈ H1

0 (Ω). Let y be the solution of the Cauchy problem (2.395)-
(2.396)-(2.397). Let ω0 be a nonempty open subset of ω such that the closure ω0

of ω0 in Rl is a subset of ω. The first step is the following lemma, due to Oleg
Imanuvilov [243, Lemma 1.2] (see also [186, Lemma 1.1 page 4]).

Lemma 2.68. There exists ψ ∈ C2(Ω) such that

ψ > 0 in Ω, ψ = 0 on ∂Ω,(2.399)

|∇ψ(x)| > 0, ∀x ∈ Ω \ ω0.(2.400)

Proof of Lemma 2.68. Lemma 2.68 is obviously true if l = 1. From now on
we assume that l > 2. Let g ∈ C2(Ω) be such that:

- The set of x ∈ Ω such that ∇g(x) = 0 is finite and does not meet ∂Ω.
- g > 0 on Ω and g = 0 on ∂Ω.

The existence of such a g follows from classical arguments of Morse theory; see [186,
pages 20–21]. Let us denote by ai, i ∈ {1, . . . , k} the x ∈ Ω such that ∇g(x) = 0.
Let γi ∈ C∞([0, 1]; Ω) be such that

γi is one to one for every i ∈ {1, . . . , k},(2.401)

γi([0, 1]) ∩ γj([0, 1]) = ∅, ∀(i, j) ∈ {1, . . . , k}2 such that i 6= j,(2.402)

γi(0) = ai, ∀i ∈ {1, . . . , k},(2.403)

γi(1) ∈ ω0, ∀i ∈ {1, . . . , k}.(2.404)

The existence of such γi’s follows from the connectedness of Ω. It relies on easy
transversality arguments if l > 3 (if l > 3, two embedded curves which intersect
can be perturbed a little bit so that they do not intersect anymore). If l = 2, one
proceeds by induction on k and by noticing that Ω \ Γ, where Γ is a finite number
of disjoint embedded paths in Ω, is connected. Now let X ∈ C∞(Rn; Rn) be such
that

{x ∈ Rn; X(x) 6= 0} ⊂ Ω,(2.405)

X(γi(t)) = γ′i(t), ∀i ∈ {1, . . . , k}.(2.406)

Let Φ be the flow associated to the vector field X, i.e., Φ : R× Rn → Rn, (t, x) 7→
Φ(t, x) satisfies

∂Φ
∂t

= X(Φ), Φ(0, x) = x, ∀x ∈ Rn.

From (2.406), one has

Φ(t, ai) = γi(t), ∀t ∈ [0, 1].(2.407)

From (2.404) and (2.407), one has Φ(1, ai) ∈ ω0. Note that, for every τ ∈ R, Φ(τ, ·)
is a diffeomorphism of Rn (its inverse map is Φ(−τ, ·)). By (2.405), for every τ ∈ R,
Φ(τ,Ω) = Ω and Φ(τ, ·) is equal to the identity map on a neighborhood of ∂Ω.
Then one easily checks that ψ : Ω → R defined by

ψ(x) := g(Φ(−1, x)), ∀x ∈ Ω,

satisfies all the required properties. This concludes the proof of Lemma 2.68.
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Let us fix ψ as in Lemma 2.68. Let α : (0, T )×Ω → (0,+∞) and φ : (0, T )×Ω →
(0,+∞) be defined by

α(t, x) =
e2λ‖ψ‖C0(Ω) − eλψ(x)

t(T − t)
, ∀(t, x) ∈ (0, T )× Ω,(2.408)

φ(t, x) =
eλψ(x)

t(T − t)
, ∀(t, x) ∈ (0, T )× Ω,(2.409)

where λ ∈ [1,+∞) will be chosen later on. Let z : [0, T ]× Ω → R be defined by

z(t, x) := e−sα(t,x)y(t, x), (t, x) ∈ (0, T )× Ω,(2.410)

z(0, x) = z(T, x) = 0, x ∈ Ω,(2.411)

where s ∈ [1,+∞) will be chosen later on. From (2.395), (2.408), (2.409) and
(2.410), we have

P1 + P2 = P3(2.412)

with

P1 := −∆z − s2λ2φ2|∇ψ|2z + sαtz,(2.413)

P2 := zt + 2sλφ∇ψ∇z + 2sλ2φ|∇ψ|2z,(2.414)

P3 := −sλφ(∆ψ)z + sλ2φ|∇ψ|2z.(2.415)

Let Q := (0, T )× Ω. From (2.412), we have

2
∫ ∫

Q

P1P2dxdt 6
∫ ∫

Q

P 2
3 dxdt.(2.416)

Let n denote the outward unit normal vector field on ∂Ω. Note that z vanishes
on [0, T ] × ∂Ω (see (2.396) and (2.410)) and on {0, T} × Ω (see (2.411)). Then
straightforward computations using integrations by parts lead to

2
∫ ∫

Q

P1P2dxdt = I1 + I2(2.417)

with

(2.418) I1 :=
∫ ∫

Q

(2s3λ4φ3|∇ψ|4|z|2 + 4sλ2φ|∇ψ|2|∇z|2)dxdt

−
∫ T

0

∫
∂Ω

2sλφ
∂ψ

∂n

(
∂z

∂n

)2

dσdt,

(2.419) I2 :=
∫ ∫

Q

(
4sλ(φψi)jzizj − 2sλ(φψi)i|∇z|2

+ 2s3λ3φ3(|∇ψ|2ψi)iz2 − 2sλ2(φ|∇ψ|2)iiz2

− sαttz
2 − 2s2λ(φψiαt)iz2 + 4s2λ2φαt|∇ψ|2z2 + 2s2λ2φφt|∇ψ|2z2

)
dxdt.

In (2.419) and until the end of the proof of Theorem 2.66 on page 79, we use the
usual repeated-index sum convention. By (2.400) and (2.409), there exists Λ such
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that, for every λ > Λ, we have, on (0, T )× (Ω \ ω0),

−4λ2φ|∇ψ|2|a|2 6 4λ(φψi)jaiaj − 2λ(φψi)i|a|2, ∀a = (a1, . . . , an)tr ∈ Rn,
(2.420)

−λ4φ3|∇ψ|4 6 2λ3φ3(|∇ψ|2ψi)i.(2.421)

We take λ := Λ. Note that, by (2.399),

∂ψ

∂n
6 0 on ∂Ω.(2.422)

Moreover, using (2.408) and (2.409), one gets, the existence of C > 0, such that,
for every (t, x) ∈ (0, T )× Ω,

(2.423) |αtt|+ |(φψiαt)i|+ |φαt|∇ψ|2|+ |φφt|∇ψ|2|

+ |φ3(|∇ψ|2ψi)i|+ |φ3|∇ψ|4| 6 C

t3(T − t)3
,

|φ(∆ψ)|+ |φ|∇ψ|2|+ |(φψi)i|+ |(φψi)i|+ |(φ|∇ψ|2)ii| 6
C

t(T − t)
,(2.424)

|(φψi)j | 6
C

t(T − t)
, ∀(i, j) ∈ {1, . . . , l}2.(2.425)

From (2.400) and (2.409), one gets the existence of C > 0 such that

1
t3(T − t)3

6 Cφ3|∇ψ|4(t, x), ∀(t, x) ∈ (0, T )× (Ω \ ω0).(2.426)

Using (2.416) to (2.426), we get the existence of C > 0 such that, for every s > 1
and for every y0,

(2.427) s3
∫

(0,T )

∫
Ω\ω0

|z|2

t3(T − t)3
dxdt 6 Cs2

∫ ∫
Q

|z|2

t3(T − t)3
dxdt

+ Cs3
∫

(0,T )

∫
ω0

|∇z|2 + |z|2

t3(T − t)3
dxdt.

Hence, for s > 1 large enough, there exists c0 > 0 independent of y0 such that∫ 2T/3

T/3

∫
Ω

|z|2dxdt 6 c0

∫ T

0

∫
ω0

|∇z|2 + |z|2

t3(T − t)3
dxdt.(2.428)

We choose such an s and such a c0. Coming back to y using (2.408) and (2.410),
we deduce from (2.428) the existence of c1 > 0 independent of y0 such that∫ 2T/3

T/3

∫
Ω

|y|2dxdt 6 c1

∫ T

0

∫
ω0

t(T − t)(|∇y|2 + |y|2)dxdt.(2.429)

Let ρ ∈ C∞(Ω) be such that

ρ = 1 in ω0,

ρ = 0 in Ω \ ω.
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We multiply (2.395) by t(T−t)ρy and integrate onQ. Using (2.396) and integrations
by parts, we get the existence of c2 > 0 independent of y0 such that∫ T

0

∫
ω0

t(T − t)(|∇y|2 + |y|2)dxdt 6 c2

∫ T

0

∫
ω

|y|2dxdt.(2.430)

From (2.429) and (2.430), we get∫ 2T/3

T/3

∫
Ω

|y|2dxdt 6 c1c2

∫ T

0

∫
ω

|y|2dxdt.(2.431)

Let us now multiply (2.395) by y and integrate on Ω. Using integrations by parts
together with (2.396), we get

d
dt

∫
Ω

|y(t, x)|2dx 6 0.(2.432)

From (2.431) and (2.432), one gets that (2.398) holds with

M :=

√
3c1c2
T

.

This concludes the proof of Theorem 2.66 on page 79.

Remark 2.69. Let us emphasize that c1 and c2 depend on ω, Ω, and T . Sharp
estimates depending on ω, Ω, and T on the minimum of the set of constants M >
0 satisfying (2.398) have been obtained by Enrique Fernández-Cara and Enrique
Zuazua in [168] and by Luc Miller in [357].

The interest in the minimum of the set of constants M > 0 satisfying (2.398)
is justified in the following exercise.

Exercise 2.70. Let T > 0 be given. Let K1 be the minimum of the constants
M > 0 such that inequality (2.398) holds for the solution y of the Cauchy problem
(2.395)-(2.396)-(2.397) for every y0 ∈ L2(Ω). For y0 ∈ L2(Ω), let U(y0) be the set
of u ∈ L2((0, T ) × Ω) such that u vanishes on (0, T ) × (Ω \ ω) and such that this
control u steers the control system (2.374)-(2.375) from y0 to 0 in time T , which
means that the solution y of the Cauchy problem (2.377)-(2.378)-(2.379) satisfies
y(T, ·) = 0. Let

K2 := sup
‖y0‖L2(Ω)61

{min{‖u‖L2(0,T );u ∈ U(y0)} }.

Prove that K1 = K2. (Hint. Just apply Theorem 2.44 on page 56).

2.5.3. Motion planning for the one-dimensional heat equation. This
section is borrowed from the paper [295] by Béatrice Laroche, Philippe Martin and
Pierre Rouchon. Let us consider the following control heat equation:

yt − yxx = 0, t ∈ (0, T ), x ∈ (0, 1),(2.433)

yx(t, 1) = u(t), t ∈ (0, T ),(2.434)

yx(t, 0) = 0, t ∈ (0, T ).(2.435)

It models a one-dimensional rod (0, 1). Heat is added from a steam chest at the
boundary x = 1, while the boundary x = 0 is assumed to be perfectly insulated. For
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the control system (2.433)-(2.434)-(2.435), the state at time t is y(t, ·) : [0, 1] → R
and the control is u(t) ∈ R.

Proceeding as for Definition 2.1 on page 25, Definition 2.21 on page 38 or
Definition 2.52 on page 68, one is led to adopt the following definition.

Definition 2.71. Let y0 ∈ L2(0, 1), T > 0 and u ∈ H1(0, T ). A solution of the
Cauchy problem (2.433), (2.434) and (2.435) is a function y ∈ C0([0, T ];L2(0, L))
such that, for every τ ∈ [0, T ] and for every

ϕ ∈ C1([0, τ ];L2(0, 1)) ∩ C0([0, τ ];H2(0, 1))

such that

ϕx(t, 0) = ϕx(t, 1) = 0, ∀t ∈ [0, τ ],

one has∫ 1

0

y(τ, x)ϕ(τ, x)dx−
∫ 1

0

y0(x)ϕ(0, x)dx−
∫ τ

0

∫ 1

0

y(ϕt + ϕxx)dxdt

−
∫ τ

0

u(t)ϕ(t, 1)dt = 0.

One has the following theorem.

Theorem 2.72. Let T > 0, y0 ∈ L2(0, 1) and u ∈ H1(0, T ). Then the Cauchy
problem (2.433), (2.434) and (2.435) has a unique solution y. This solution satisfies

‖y‖C0([0,T ];L2(0,L)) 6 C(T )(‖y0‖L2(0,1) + ‖u‖H1(0,T )),(2.436)

where C(T ) > 0 is independent on y0 and u.

Proof of Theorem 2.72. It is very similar to the proofs of Theorem 2.4 on
page 27, Theorem 2.23 on page 39 or Theorem 2.53 on page 68. We briefly sketch
it. Let H := L2(0, 1) and let A : D(A) → H be the linear operator defined by

D(A) := {f ∈ H2(0, 1); fx(0) = fx(1) = 0},
Af = fxx, ∀f ∈ H.

One easily checks that

D(A) is dense in H,
A is closed and dissipative,

A = A∗.

Hence, by Theorem A.10 on page 375, the operator A is the infinitesimal generator
of a strongly continuous semigroup S(t), t ∈ [0,+∞) of continuous linear operators
on H. Then one easily checks that y ∈ C0([0, T ];L2(0, 1)) is a solution of the
Cauchy problem (2.433), (2.434) and (2.435) if and only if

y(t, ·) = u(t)θ + S(t)(y0 − u(0)θ)−
∫ t

0

S(t− s)(u̇(s)θ − u(s)θxx)ds, ∀t ∈ [0, T ],

(2.437)

with

θ(x) :=
x2

2
, ∀x ∈ [0, 1].(2.438)

Inequality (2.436) follows from (2.437) and (2.438). This concludes the proof of
Theorem 2.72.
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It has been proved by Hector Fattorini and David Russell in [162, Theorem
3.3] that, for every T > 0 the linear control system (2.433)-(2.434)-(2.435) is null
controllable in time T : for every y0 ∈ L2(0, 1), every ỹ0 ∈ L2(0, 1) and every T > 0,
there exists u ∈ L2(0, T ) such that the solution y to the Cauchy problem (2.433),
(2.434) and (2.435) satisfies y(T, ·) = S(T )ỹ0. (See Definition 2.39 on page 55.)
Hence, by Theorem 2.45 on page 57, the linear control system (2.433)-(2.434)-
(2.435) is approximately controllable in time T , for every T > 0. That is, for every
ε > 0, for every T > 0, for every y0 ∈ L2(0, 1) and for every y1 ∈ L2(0, 1), there
exists u ∈ L2(0, T ) such that the solution of the Cauchy problem

yt − yxx = 0, t ∈ (0, T ), x ∈ (0, 1),(2.439)

yx(t, 1) = u(t), t ∈ (0, T ),(2.440)

yx(t, 0) = 0, t ∈ (0, T ),(2.441)

y(0, x) = y0(x), x ∈ (0, 1),(2.442)

satisfies
‖y(T, ·)− y1‖L2(0,1) 6 ε.

(See Definition 2.40 on page 55.) In fact the approximate controllability is eas-
ier to get than the null controllability and has been proved earlier than the null
controllability. It goes back to Hector Fattorini [159].

In this section we present a method to construct u explicitly. This method
is based on the notion of differential flatness due to Michel Fliess, Jean Lévine,
Pierre Rouchon and Philippe Martin [175]. Roughly speaking a control system is
differentially flat if every trajectory can be expressed in terms of a function z (called
a flat output) and its derivatives. The control system (2.433)-(2.434)-(2.435) is flat
and a flat output is

z(t) := y(t, 0).
To see this, let us consider the following system

yxx = yt, t ∈ (0, T ), x ∈ (0, 1),(2.443)

yx(t, 0) = 0, t ∈ (0, T ),(2.444)

y(t, 0) = z(t), t ∈ (0, T ).(2.445)

This system is in the Cauchy-Kovalevsky form (see e.g. [89, Theorem 1.1]). If one
seeks formal solutions

y(t, x) :=
∞∑
i=0

ai(t)
xi

i!

of (2.443)-(2.444)-(2.445), then one gets, for every i ∈ N,

a2i(t) = z(i)(t),

a2i+1(t) = 0.

Therefore, formally again,

y(t, x) =
∞∑
i=0

z(i)(t)
x2i

(2i)!
,(2.446)

u(t) =
∞∑
i=1

z(i)(t)
(2i− 1)!

.(2.447)
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If one wants to get, instead of formal solutions, a true solution, one needs to have
the convergence of the series in (2.446)-(2.447) in a suitable sense. A sufficient
condition for the convergence of these series can be given in terms of the Gevrey
order of z. Let us recall the following definition, due to Maurice Gevrey [191, page
132] (see also [89, Definition 1.1]).

Definition 2.73. Let z : t ∈ [0, T ] 7→ z(t) ∈ R be of class C∞. Then z is
Gevrey of order s ∈ [1,+∞) if there exist M > 0 and R > 0 such that

|z(m)(t)| 6 M
(m!)s

Rm
, ∀t ∈ [0, T ], ∀m ∈ N.

Clearly a Gevrey function of order s is also of order s′ for every s′ > s. Note
also that a Gevrey function of order 1 is analytic. In particular, every Gevrey
function f of order 1 such that

f (i)(T ) = 0 for every i ∈ N(2.448)

is identically equal to 0. This is no longer the case if one considers Gevrey functions
of order strictly larger than 1. For example, let γ ∈ (0,+∞), T > 0 and ϕγ :
[0, T ] → R be defined by

ϕγ(t) :=

{
0 if t ∈ {0, T},
exp

(
−1

((T−t)t)γ

)
if t ∈ (0, T ).

Then ϕγ satisfies (2.448) and is Gevrey of order 1 + (1/γ) (see, for example, [89,
page 16]). This implies that Φγ : [0, T ] → R defined by

Φγ(t) :=

∫ t
0
ϕγ(τ)dτ∫ T

0
ϕγ(τ)dτ

, ∀t ∈ [0, T ],(2.449)

is also Gevrey of order 1 + (1/γ). This function Φγ will be used later on.
Definition 2.73 of Gevrey functions of order s on [0, T ] can be generalized to

functions of two variables in the following way.

Definition 2.74. Let y : (t, x) ∈ [0, T ] × [0, 1] 7→ y(t, x) ∈ R be of class C∞.
Then y is Gevrey of order s1 ∈ [1,+∞) in t and of order s2 ∈ [1,+∞) in x if there
exist M > 0, R1 > 0 and R2 > 0 such that∣∣∣∣ ∂m+ny

∂tm∂xn
(t, x)

∣∣∣∣ 6 M
(m!)s1(n!)s2

Rm1 R
n
2

, ∀(t, x) ∈ [0, T ]× [0, 1], ∀(m,n) ∈ N2.

Now, concerning the convergence of the series in (2.446)-(2.447), one has the
following theorem.

Theorem 2.75 ([295, Theorem 1]). Assume that z ∈ C∞([0, T ]) is a Gevrey
function of order s ∈ [1, 2). Then, for every t ∈ [0, T ], the series in (2.446)-(2.447)
are convergent. The function y defined by (2.446) is of class C∞ and is a Gevrey
function of order s in t and of order 1 in x. In particular, the control u defined by
(2.447) is of class C∞ and is a Gevrey function of order s. Moreover, (y, u) is a
trajectory (i.e., a solution) of the control system (2.433)-(2.434)-(2.435).

We omit the proof of this theorem. This theorem allows us to construct many
trajectories of the control system (2.433)-(2.434)-(2.435) and in fact all the trajec-
tories such that y is of class C∞ and is a Gevrey function of order s in t and of
order 1 in x for any given s in [1, 2).
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Let us explain how to use this construction in order to move from a given state
y0 into a given neighborhood (for the L2(0, 1)-topology) of another given state y1.
Let y0 and y1 be given in L2(0, 1). By the Müntz-Szasz theorem (see, for example,
Theorem [420, Theorem 15.26, page 336]; one can alternatively use the Stone-
Weierstrass theorem, see for example [421, 7.32 Theorem, page 162]) the set of
polynomials of even degree is dense in C0([0, 1]) and therefore in L2(0, 1). Hence,
if ε > 0 is given, there exist two polynomials P 0 and P 1,

P 0(x) =
n∑
i=0

p0
i

x2i

(2i)!
, p0

i ∈ R, i ∈ {0, . . . , n},

P 1(x) =
n∑
i=0

p1
i

x2i

(2i)!
, p1

i ∈ R, i ∈ {0, . . . , n},

such that

‖y0 − P 0‖L2(0,1) 6 ε, ‖y1 − P 1‖L2(0,1) 6 ε.

Let γ ∈ (1,∞) and let T > 0. Let z ∈ C∞([0, T ]) be defined by

z(t) :=
n∑
i=0

p0
i

ti

i!
(1− Φγ(t)) + p1

i

(t− T )i

i!
Φγ(t).

Then z is a Gevrey function of order 1 + (1/γ) ∈ (1, 2). Note that

z(i)(0) = p0
i and z(i)(T ) = p1

i , ∀i ∈ {0, . . . , n},(2.450)

z(i)(0) = 0 and z(i)(T ) = 0, ∀i ∈ N \ {0, . . . , n}.(2.451)

Following (2.447), let

u(t) :=
∞∑
i=1

z(i)(t)
(2i− 1)!

, t ∈ [0, T ].

By Theorem 2.75 on the previous page, u(t) is well defined and the function u is of
class C∞ on [0, T ]. Let ū ∈ C1([0, T ]) be any approximation of u in the following
sense:

‖ū− u‖C1([0,T ]) 6 ε.

For example, one can take

ū(t) :=
N∑
i=1

z(i)(t)
(2i− 1)!

, t ∈ [0, T ],

for a large enough N . Then one has the following theorem, which is proved in
[295].

Theorem 2.76. The control t ∈ [0, T ] 7→ u(t) ∈ R steers the control system
(2.433)-(2.434)-(2.435) from the state P 0 to the state P 1 during the time interval
[0, T ]. Moreover, there exists a constant K, which is independent of ε ∈ (0,+∞),
T > 0, y0 ∈ L2(0, 1), y1 ∈ L2(0, 1), the choices of P 0, P 1 and ū, such that the
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solution of the Cauchy problem

yt − yxx = 0, t ∈ (0, T ), x ∈ (0, 1),

yx(t, 0) = 0, t ∈ (0, T ),

yx(t, 1) = ū(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 1),

satisfies
‖y(T, ·)− y1‖L2(0,1) 6 Kε.

We omit the proof of this theorem.

Remark 2.77. One can find further generalizations of the flatness approach to
more general one-dimensional heat equations in [295]. This approach has also been
used for many other partial differential equations. Let us mention, for example, the
works

- [150] by François Dubois, Nicolas Petit and Pierre Rouchon and [385] by
Nicolas Petit and Pierre Rouchon on water tanks problem (see also Section
6.3 below),

- [152] by William Dunbar, Nicolas Petit, Pierre Rouchon and Philippe Mar-
tin on the Stefan problem,

- [371] for the control of a vibrating string with an interior mass by Hugues
Mounier, Joachim Rudolph, Michel Fliess and Pierre Rouchon,

- [384] for the control of a heavy chain by Nicolas Petit and Pierre Rouchon,
- [416, 417] by Pierre Rouchon for the control of a quantum particle in a

potential well (see also Chapter 9 below).

Remark 2.78. When the series (2.447) diverges, one can try to use the “small-
est term summation”. Such a summation technique is explained by Jean-Pierre
Ramis in [397]. This summation has been applied in [295]. Numerically it leads
to quite good steering controls, which turn out to be much softer. The theoretical
justification remains to be done.

2.5.4. Heat control system with a finite number of controls. Let m
be a positive integer and let (f1, . . . fm) ∈ L2(Ω)m, where Ω is again a nonempty
bounded open subset of Rl. Let us consider the control system

(2.452)

 yt(t, x)−∆y(t, x) =
∑m
i=1 ui(t)fi(x), (t, x) ∈ (0, T )× Ω,

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
y(0, x) = y0(x), x ∈ Ω,

where, at time t, the state is y(t, ·) and the control is u(t) = (u1(t), . . . , um(t))tr ∈
Rm.

The null controllability problem consists of finding, for every y0 ∈ L2(Ω), m
control functions u1, . . . , um in L2(0, T ) steering the control system (2.452) from
y0 to 0 in time T , i.e., such that the solution y of the Cauchy problem (2.452)
satisfies y(T, ·) = 0. (For definition, existence and uniqueness of a solution to the
Cauchy problem (2.452), see Section 2.5.1.) The main result of this section is that
one never has null controllability if l > 2. More precisely, the following theorem,
due to Sergei Avdonin and Sergei Ivanov [22, Theorem IV.1.3, page 178] holds.

Theorem 2.79. Let us assume that l > 2. Let m be a positive integer and let
f1, . . . , fm ∈ L2(Ω). Then there exists y0 ∈ H1

0 (Ω) with ∆y0 ∈ L2(Ω) such that,
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for every T > 0 and for every u1, . . . , um ∈ L2(0, T ), the solution y of the Cauchy
problem (2.452) satisfies

y(T, ·) 6= 0.

We propose in this section a proof which is a joint work with Yacine Chitour
and slightly differs from the proof given in [22]. We first translate the question
of existence of controls u1, . . . , um in L2(0, T ) steering the control system (2.452)
from y0 to 0 in time T into the existence of m entire functions (i.e., holomorphic
functions on C) û1, . . . , ûm solutions of an interpolation problem (2.459) described
below.

Let y0 ∈ H1
0 (Ω) be such that ∆y0 ∈ L2(Ω). Assume that there existm functions

u1, . . . , um in L2(0, T ) such that the solution y to (2.452) satisfies y(T, ·) = 0. Let
θ : R → [0, 1] be a function of class C∞ such that{

θ(t) = 0, if t ≥ T,
θ(t) = 1, if t ≤ 0.(2.453)

Applying the change of the unknown

(2.454) y(t, x) = θ(t)y0(x) + ỹ(t, x),

we get that

ỹt(t, x)−∆ỹ(t, x) =
m∑
i=1

ui(t)fi(x)− θ̇(t)y0(x)(2.455)

+ θ(t)∆y0(x), (t, x) ∈ (0, T )× Ω,

ỹ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,(2.456)

ỹ(0, x) = ỹ(T, x) = 0, x ∈ Ω.(2.457)

For f ∈ L1(0, T ), the Laplace transform f̂ of f is defined by f̂(s) :=
∫ T
0
f(t)e−stdt,

s ∈ C. In this section, we adopt a slightly different definition and set f̂(s) :=∫ T
0
f(t)estdt for subsequent computational simplifications.
Consider the following Laplace transforms (with respect to the time t).

θ̂(s) :=
∫ T

0

θ(t)estdt, ζ(s, x) :=
∫ T

0

ỹ(t, x)estdt,

ûi(s) :=
∫ T

0

ui(t)estdt, 1 6 i 6 m.

Clearly θ̂ and ûi, i = 1, . . . ,m are holomorphic functions from C into C and s 7→
ζ(s, ·) is a holomorphic function from C into H1

0 (Ω).
From (2.455), (2.456) and (2.457), we readily get that, for every s ∈ C,

(2.458){
ζ(s, ·) ∈ H1

0 (Ω),
−sζ(s, ·)−∆ζ(s, ·) = (

∑m
i=1 ûi(s)fi) + y0 + θ̂(s)

(
∆y0 + sy0

)
in H−1(Ω).

As on page 77, let us denote by A the Laplace–Dirichlet operator:

D (A) := {v ∈ H1
0 (Ω);∆v ∈ L2(Ω)},

Av = ∆v, ∀v ∈ D (A) .
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It is well known that

A∗ = A,

A is onto and A−1 is compact from L2(Ω) into L2(Ω).

Then the eigenvalues of A are real and the Hilbert space L2(Ω) has a complete
orthonormal system of eigenfunctions for the operator A (see, for example, [71,
Théorème VI.11, page 97] or [141, Théorème 3, page 31–32] or [267, page 277]).

If s is an eigenvalue of −A, then, by the Fredholm alternative theorem, equation
(2.458), where ζ(s, ·) ∈ H1

0 (Ω) is the unknown, has a solution (if and) only if

(2.459)
m∑
i=1

ûi(s)
∫

Ω

fiwdx+
∫

Ω

y0wdx = 0,

for every eigenfunction w ∈ D(A) associated to the eigenvalue s.
We are now able to express the initial null controllability of system (2.452) in

terms of a complex analysis problem. We need the following notation.
Let A0,B be the class of entire functions g such that there exists Kg > 0 for

which

(2.460) |g(s)| 6 Kge
Bmax{0,Re(s)}, ∀s ∈ C.

By the (easy part of the) Paley-Wiener theorem, the Laplace transform of any
function in L2(0, T ) belongs to A0,T . Also, let A be the set of holomorphic functions
f : C → C such that, for some positive constants K and a depending on f ,

(2.461) |f(s)| ≤ Kea|Re s|, ∀s ∈ C.

Clearly A0,T ⊂ A.
Let us recall a classical result providing a sufficient condition for the nonexis-

tence of a nonzero holomorphic function f in A depending on the distribution of
the zeros of f .

Lemma 2.80. Let f : C → C be in A. Let us assume that there exists a sequence
(rk)k>1 of distinct positive real numbers such that

∞∑
k=1

1
rk

= ∞,(2.462)

f(rk) = 0.(2.463)

Then f is identically equal to 0.

Lemma 2.80 is a consequence of a much more general theorem due to Mary
Cartwright and Norman Levinson; see [315, Theorem 1, page 127]. It will be used
repeatedly in the sequel, together with the following definition.

Definition 2.81. A subset S of positive real numbers is said to be admissible
if it contains a sequence of distinct positive real numbers (rk)k>1 such that (2.462)
holds.

We argue by contradiction: until the end of the proof of Theorem 2.79 we
assume that

(2.464)
{
∀y0 ∈ D(A),∃T > 0,∃(u1, . . . , um) ∈ L2(0, T )m such that
the solution y of (2.452) satisfies y(T, ·) = 0.
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The proof of Theorem 2.79 is now decomposed in two steps: the case m = 1
and the case m > 2.

2.5.4.1. The case m = 1. By (2.464), for every y0 ∈ D(A), there exists u ∈
L2(0, T ) such that the solution y of the Cauchy problem (2.452) satisfies

y(T, ·) = 0.(2.465)

Using (2.459) and (2.465), we get that, for every eigenvalue s of the Laplace–
Dirichlet operator −A and for every eigenfunction w : Ω → R associated to s,

(2.466) û(s)
∫

Ω

f1wdx+
∫

Ω

y0wdx = 0.

We first claim that, for every nonzero eigenfunction w of −A,∫
Ω

f1wdx 6= 0.(2.467)

Indeed, if there exists a nonzero eigenfunction w of −A such that∫
Ω

f1wdx = 0,

then, from (2.466), it follows that∫
Ω

y0wdx = 0,(2.468)

but there exists y0 ∈ D(A) which does not satisfy (2.468) (e.g., y0 := w). Hence
one has (2.467). Let 0 < λ1 < λ2 < . . . < λj < λj+1 < . . . be the ordered
sequence of the eigenvalues of the Laplace-Dirichlet operator −A. Let y0 be a
nonzero eigenfunction for the eigenvalue λ1. Clearly, y0 ∈ D(A). Moreover, if s is
an eigenvalue of −A different from λ1, then∫

Ω

y0wdx = 0

for every eigenfunction w associated to the eigenvalue s. Therefore (2.466) and
(2.467) imply that û(λi) = 0 for every i ∈ N \ {0, 1}. Let us assume, for the
moment, that the following lemma holds. (This lemma is a classical Weyl estimate;
for a much more precise estimate when Ω is smooth; see the paper [248] by Victor
Ivrĭı.)

Lemma 2.82. Assume that (2.464) holds. Then there exists A > 0 (depending
on Ω) such that

λj 6 Aj2/l, ∀j ∈ N \ {0}.(2.469)

By applying Lemma 2.80 and Lemma 2.82, we conclude that û = 0 and hence
u = 0. Therefore, for such a y0, system (2.452) reduces to

(2.470)

 yt(t, x)−∆y(t, x) = 0, if (t, x) ∈ (0, T )× Ω,
y(t, x) = 0, if (t, x) ∈ (0, T )× ∂Ω,
y(0, x) = y0(x), if x ∈ Ω.

The solution to (2.470) is given by

y(t, x) := e−λ1ty0(x),

and so y(T, ·) 6= 0. This is a contradiction with the fact that y(T, ·) = 0.
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It remains to prove Lemma 2.82 on the previous page. This lemma holds for
every m ∈ N and since we will need it to treat the case m > 2, we give a proof of
Lemma 2.82 which works for every m ∈ N.

We start with a very classical lemma on the multiplicity of the eigenvalues.

Lemma 2.83. Assume that (2.464) holds. Then, for every eigenvalue λ of −A,
the multiplicity of λ is at most m.

Indeed, if the multiplicity of the eigenvalue λ of −A is strictly larger than m,
there exists w ∈ D(A) such that

−Aw = λw,(2.471) ∫
Ω

wfidx = 0,∀i ∈ {1, . . . ,m},(2.472)

w 6= 0.(2.473)

Let y0 be in D(A). Let T > 0 and let u1, . . . , um be in L2(0, T ). Let us denote by
y the solution of the Cauchy problem (2.452). From (2.452), (2.471) and (2.472),
one first gets

d

dt

∫
Ω

y(t, x)w(x)dx = −λ
∫

Ω

y(t, x)w(x)dx

and then ∫
Ω

y(T, x)w(x)dx = e−λT
∫

Ω

y0wdx.(2.474)

Let us take y0 = w. From (2.473) and (2.474), one gets that y(T, ·) 6= 0, in
contradiction with our controllability assumption (2.464). This concludes the proof
of Lemma 2.83.

Let us now go back to the proof of Lemma 2.82 on the preceding page. For a
bounded nonempty open subset U of Rl, let AU : D(AU ) ⊂ L2(U) → L2(U) be the
linear operator defined by

D(AU ) :=
{
y ∈ H1

0 (U); ∆y ∈ L2(U)
}
,

AUy := ∆y ∈ L2(U).

Let us denote by 0 < µ1(U) 6 µ2(U) 6 . . . 6 µj(U) 6 µj+1(U) 6 . . . the ordered
sequence of the eigenvalues of the operator −AU repeated according to their multi-
plicity. Let U and U ′ be bounded nonempty open subsets of Rl such that U ⊂ U ′.
Extending by 0 on U ′ \ U every function in H1

0 (U) we have H1
0 (U) ⊂ H1

0 (U ′).
Then, using the classical min-max characterization of the µj ’s (see, for instance,
[401, Theorem XIII.1, pages 76–77]) one gets

µj(U ′) 6 µj(U), ∀j ∈ N \ {0}.(2.475)

For ε > 0, let Qε := (0, ε)l. Let ε > 0 and c := (c1, . . . , cl) ∈ Rn be such that
c+Qε := {x+ y; y ∈ Qε} ⊂ Ω. By (2.475),

µj(Ω) 6 µj(c+Qε), ∀j ∈ N \ {0}.(2.476)
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But, for every (j1, . . . , jl) ∈ (N \ {0})l, the function

x := (x1, . . . , xl) ∈ c+Qε 7→
l∏

k=1

sin
(
πjk(xk − ck)

ε

)
is an eigenfunction of Ac+Qε

and the corresponding eigenvalue is
l∑

k=1

π2j2k
ε2

.

Hence there exists A′ > 0 (depending on ε > 0) such that

µj(c+Qε) 6 A′j2/l, ∀j ∈ N \ {0}.(2.477)

By Lemma 2.83 on the preceding page,

λj 6 µmj(Ω), ∀j ∈ N \ {0},

which, together with (2.476) and (2.477), gives (2.469) if A := A′m2/l. Thus Lemma
2.82 is proved. This concludes the proof of Theorem 2.79 if m = 1.

2.5.4.2. The case m > 2. For j > 0, let wj be an eigenfunction of the Laplace–
Dirichlet operator −∆Ω corresponding to the eigenvalue λj and satisfying∫

Ω

w2
jdx = 1.

For every a ∈ D(A), let (aj)j>0 be the sequence defined by aj :=
∫
Ω
awjdx.

For such a function a, we use ℵ(a) to denote the set given by

ℵ(a) := {j ∈ N \ {0} ; aj = 0}.
It is clear that, for every subset S of N \ {0} which is not equal to N \ {0}, there
exists a nonzero element a ∈ D(A) such that ℵ(a) = S.

For every a ∈ D(A), let ûa1 , . . . , û
a
m be the Laplace transforms of controls

ua1 , . . . , u
a
m in L2(0, T ) steering the control system (2.452) from a to 0 in time

T . Let U(a) be the column vector of complex functions of coordinates ûa1 , . . . , û
a
m:

U(a) := (ûa1 , . . . , û
a
m)tr.

For j > 0, we define the column vector Fj of coordinates
∫
Ω
fiwjdx, for 1 6

i 6 m. Then equation (2.459) becomes

(2.478) U(a)tr(λj)Fj = −aj ,
for every j > 0 and a ∈ D(A).

Adapting the argument of the proof of (2.467) to the case m > 2, it is clear
that, for every j > 0, Fj is a nonzero vector. Let us define m nonzero functions
a1, . . . , am in D(A) and ℵl := ℵ(al), 1 ≤ l ≤ m, such that

ℵl ⊂ ℵl−1,(2.479)

(2.480) ∀l ∈ {1, . . . ,m}, ∃δ > 0 such that

#{j; j 6 k, j ∈ ℵl} > δk, ∀k ∈ N with k > 1/δ,

(2.481) ∀l ∈ {1, . . . ,m}, ∃δ > 0 such that

#{j; j 6 k, j ∈ ℵl−1 \ ℵl} > δk, ∀k ∈ N with k > 1/δ.

Here, ℵ0 = N \ {0}. A possible choice is ℵl = (2lN) \ {0}, for 1 6 l 6 m.



94 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Let us define the m×m matrix of complex functions V with rows Vl := U(al)tr,
for 1 6 l 6 m. For j ∈ ℵm, the equations (2.478) obtained for each al, 1 6 l 6 m,
can be written at once by using V , namely

(2.482) V (λj)Fj = 0.

Since Fj is nonzero, this implies that det V (λj) = 0. From (2.480) for l = m and
Lemma 2.82 on page 91 we get that {λj ; j ∈ ℵm} is admissible (see Definition 2.81
on page 90). Moreover, det V , as the ûa1 , . . . , û

a
m, is inA, whereA is defined on page

90. Then the holomorphic function det V verifies the assumptions of Lemma 2.80
on page 90, and therefore is identically zero.

We obtain that, for every j ∈ ℵm−1 \ ℵm, the rows U(al)tr(λj), for 1 6 l 6 m,
are linearly dependent. This translates into the existence of α1

j , . . . , α
m
j , not all

equal to zero, such that Rm(λj) :=
∑m
l=1 α

l
jU(al)tr(λj) = 0. Using (2.478), j ∈

ℵm−1 and Rm(λj) ·Fj = 0, we get that 0 = αmj U(am)tr(λj)Fj = −αmj amj . This last
equality implies that αmj = 0 (since j /∈ ℵm). Therefore, for every j ∈ ℵm−1 \ ℵm,
the rows U(al)tr(λj), for 1 6 l 6 m − 1, are linearly dependent. This fact can be
expressed as follows. Let Vm be the (m− 1)×m matrix of complex functions with
rows given by U(al)tr, 1 6 l 6 m− 1. Then, for every j ∈ ℵm−1 \ ℵm, the rank of
Vm(λj) is less than m− 1. Equivalently, that means that, for every j ∈ ℵm−1 \ ℵm
and every minor M of Vm of order m − 1 (viewed as a holomorphic function),
M(λj) = 0. But, using (2.481) for l = m − 1 and Lemma 2.82 on page 91, it is
then easy to see that every such minor M verifies the assumptions of Lemma 2.80
on page 90. Therefore, every minor M of Vm of order m− 1 is equal to zero (as a
holomorphic function), i.e., for every s ∈ C, the rank of Vm(s) is less than m − 1.
This implies that, for every j ∈ ℵm−2 \ ℵm−1, the rows U(al)tr(λj), 1 6 l 6 m− 1,
are linearly dependent.

Repeating the previous construction, we arrive, in m− 1 steps, at the fact that
the rank of the row vector U(a1) is less than one, i.e., U(a1) is the zero function.
This implies, by (2.478), that a1

j = 0 for every j > 0, contradicting the fact that a1

is not equal to zero. The proof of Theorem 2.79 is complete.

Remark 2.84. The above method can also be used to get other obstructions to
controllability. For example, it allows us to prove in [91] that, for generic bounded
open subset Ω ∈ Rl with l > 2, the steady-state controllability for the heat equation
with boundary controls dependent only on time does not hold.

Remark 2.85. The noncontrollability result stated in Theorem 2.79 on page 88
is not directly due to the dimension l but to the growth of the eigenvalues of the
Laplace-Dirichlet operator. It turns out that the growth of the eigenvalues is linked
to the dimension l. But, even in dimension 1, there are partial differential equations
for which the growth of the eigenvalues is again too slow to have controllability with
a finite number of controls. This is, for example, the case for suitable fractional
powers of the Laplacian in dimension 1 on a finite interval or for the Laplacian on
the half line. For these cases, one gets again obstruction to null controllability
with a finite number of controls. These results are due to Sorin Micu and Enrique
Zuazua. In fact, they have gotten stronger negative results, showing that, for very
few states the control system can be steered from these states to zero in finite time.
See [354] for the case where the domain Ω is a half line, [355] for the case of a half
space, and [356] for a fractional order parabolic equation.
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2.6. A one-dimensional Schrödinger equation

Let I be the open interval (−1, 1). For γ ∈ R, let Aγ : D(Aγ) ⊂ L2(I; C) →
L2(I; C) be the operator defined on

D(Aγ) := H2(I; C) ∩H1
0 (I; C)(2.483)

by

Aγϕ := −ϕxx − γxϕ.(2.484)

In (2.483) and in the following,

H1
0 (I; C) := {ϕ ∈ H1((0, L); C); ϕ(0) = ϕ(L)},

as usual. We denote by 〈·, ·〉 the usual Hermitian scalar product in the Hilbert
space L2(I; C):

〈ϕ,ψ〉 :=
∫
I

ϕ(x)ψ(x)dx.(2.485)

Let us recall that, in (2.485) and throughout the whole book, z denotes the complex
conjugate of the complex number z. Note that

D(Aγ) is dense in L2(I; C),(2.486)

Aγ is closed,(2.487)

A∗γ = Aγ , (i.e., Aγ is self-adjoint),(2.488)

Aγ has compact resolvent.(2.489)

Let us recall that (2.489) means that there exists a real α in the resolvent set of
Aγ such that the operator (αId − Aγ)−1 is compact from L2(I; C) into L2(I; C),
where Id denotes the identity map on H (see, for example, [267, pages 36 and
187]). Then (see, for example, [267, page 277]), the Hilbert space L2(I; C) has a
complete orthonormal system (ϕk,γ)k∈N\{0} of eigenfunctions for the operator Aγ :

Aγϕk,γ = λk,γϕk,γ ,

where (λk,γ)k∈N\{0} is an increasing sequence of positive real numbers. Let S be
the unit sphere of L2(I; C):

S := {φ ∈ L2(I; C);
∫
I

|φ(x)|2dx = 1}(2.490)

and, for φ ∈ S, let TSφ be the tangent space to S at φ:

TSφ := {Φ ∈ L2(I; C); <〈Φ, φ〉 = 0},(2.491)

where, as usual, <z denotes the real part of the complex number z.
In this section we consider the following linear control system:

Ψt = iΨxx + iγxΨ + iuxψ1,γ , (t, x) ∈ (0, T )× I,(2.492)

Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),(2.493)

where

ψ1,γ(t, x) := e−iλ1,γtϕ1,γ(x), (t, x) ∈ (0, T )× I.(2.494)

This is a control system where, at time t ∈ [0, T ]:
- The state is Ψ(t, ·) ∈ L2(I; C) with Ψ(t, ·) ∈ TS(ψ1,γ(t, ·)).
- The control is u(t) ∈ R.
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The physical interest of this linear control system is motivated in Section 4.2.2
(see in particular the linear control system (4.87)-(4.88)) and in Chapter 9 (see in
particular the control system (Σlγ) defined on page 261).

Let us first deal with the Cauchy problem

Ψt = iΨxx + iγxΨ + iuxψ1,γ , (t, x) ∈ (0, T )× I,(2.495)

Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),(2.496)

Ψ(0, x) = Ψ0(x),(2.497)

where T > 0, u ∈ L1(0, T ) and Ψ0 ∈ L2(I; C) are given. By (2.488),

(−iAγ)∗ = −(−iAγ).

Therefore, by Theorem A.16 on page 377, −iAγ is the infinitesimal generator of
a strongly continuous group of linear isometries on L2(I; C). We denote by Sγ(t),
t ∈ R, this group.

Our notion of solution to the Cauchy problem (2.495)-(2.496)-(2.497) is given
in the following definition (see Theorem A.7 on page 375).

Definition 2.86. Let T > 0, u ∈ L1(0, T ) and Ψ0 ∈ L2(I; C). A solution
Ψ : [0, T ] × I → C to the Cauchy problem (2.495)-(2.496)-(2.497) is the function
Ψ ∈ C0([0, T ];L2(I; C)) defined by

Ψ(t) = Sγ(t)Ψ0 +
∫ t

0

Sγ(t− τ)iu(τ)xψ1,γ(τ, ·)dτ.(2.498)

Let us now turn to the controllability of our control system (2.492)-(2.493).
Let

H3
(0)(I; C) := {ψ ∈ H3(I; C); ψ(−1) = ψxx(−1) = ψ(1) = ψxx(1) = 0}.(2.499)

The goal of this section is to prove the following controllability result due to Karine
Beauchard [40, Theorem 5, page 862].

Theorem 2.87. There exists γ0 > 0 such that, for every T > 0, for every
γ ∈ (0, γ0], for every Ψ0 ∈ TSψ1,γ(0, ·)∩H3

(0)(I; C) and for every Ψ1 ∈ TSψ1,γ(T, ·)∩
H3

(0)(I; C), there exists u ∈ L2(0, T ) such that the solution of the Cauchy problem

Ψt = iΨxx + iγxΨ + iu(t)xψ1,γ , t ∈ (0, T ), x ∈ I,(2.500)

Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),(2.501)

Ψ(0, x) = Ψ0(x), x ∈ I,(2.502)

satisfies

Ψ(T, x) = Ψ1(x), x ∈ I.(2.503)

We are also going to see that the conclusion of Theorem 2.87 does not hold for
γ = 0 (as already noted by Pierre Rouchon in [417]).

Proof of Theorem 2.87. Let T > 0,

Ψ0 ∈ TS(ψ1,γ(0, ·)) and Ψ1 ∈ TS(ψ1,γ(T, ·)).

Let u ∈ L2(0, T ). Let Ψ be the solution of the Cauchy problem (2.500)-(2.501)-
(2.502). Let us decompose Ψ(t, ·) in the complete orthonormal system (ϕk,γ)k∈N\{0}
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of eigenfunctions for the operator Aγ :

Ψ(t, ·) =
∞∑
k=1

yk(t)ϕk,γ .

Taking the Hermitian product of (2.500) with ϕk,γ , one readily gets, using (2.501)
and integrations by parts,

ẏk = −iλk,γyk + ibk,γu(t)e−iλ1,γt,(2.504)

with

bk,γ := 〈ϕk,γ , xϕ1,γ〉 ∈ R.(2.505)

Note that (2.502) is equivalent to

yk(0) = 〈Ψ0, ϕk,γ〉, ∀k ∈ N \ {0}.(2.506)

From (2.505) and (2.506) one gets

yk(T ) = e−iλk,γT (〈Ψ0, ϕk,γ〉+ ibk,γ

∫ T

0

u(t)ei(λk,γ−λ1,γ)tdt).(2.507)

By (2.507), (2.503) is equivalent to the following so-called moment problem on u:

(2.508) bk,γ

∫ T

0

u(t)ei(λk,γ−λ1,γ)tdt

= i
(
〈Ψ0, ϕk,γ〉 − 〈Ψ1, ϕk,γ〉eiλk,γT

)
,∀k ∈ N \ {0}.

Let us now explain why for γ = 0 the conclusion of Theorem 2.87 does not
hold. Indeed, one has

ϕn,0(x) := sin(nπx/2), n ∈ N \ {0}, if n is even,(2.509)

ϕn,0(x) := cos(nπx/2), n ∈ N \ {0}, if n is odd.(2.510)

In particular, xϕ1,0ϕk,0 is an odd function if k is odd. Therefore

bk,0 = 0 if k is odd.

Hence, by (2.508), if there exists k odd such that

〈Ψ0, ϕk,0〉 − 〈Ψ1, ϕk,0〉eiλk,0T 6= 0,

there is no control u ∈ L2(0, T ) such that the solution of the Cauchy problem
(2.500)-(2.501)-(2.502) (with γ = 0) satisfies (2.503).

Let us now turn to the case where γ is small but not 0. Since Ψ0 is in
TS(ψ1,γ(0, ·)),

<〈Ψ0, ϕ1,γ〉 = 0.(2.511)

Similarly, the fact that Ψ1 is in TS(ψ1,γ(T, ·)) tells us that

<(〈Ψ1, ϕ1,γ〉eiλ1,γT ) = 0.(2.512)

The key ingredient to prove Theorem 2.87 is the following theorem.
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Theorem 2.88. Let (µi)i∈N\{0} be a sequence of real numbers such that

µ1 = 0,(2.513)

there exists ρ > 0 such that µi+1 − µi > ρ, ∀i ∈ N \ {0}.(2.514)

Let T > 0 be such that

lim
x→+∞

N(x)
x

<
T

2π
,(2.515)

where, for every x > 0, N(x) is the largest number of µj’s contained in an interval
of length x. Then there exists C > 0 such that, for every sequence (ck)k∈N\{0} of
complex numbers such that

c1 ∈ R,(2.516)
∞∑
k=1

|ck|2 <∞,(2.517)

there exists a (real-valued) function u ∈ L2(0, T ) such that∫ T

0

u(t)eiµktdt = ck, ∀k ∈ N \ {0},(2.518) ∫ T

0

u(t)2dt 6 C

∞∑
k=1

|ck|2.(2.519)

Remark 2.89. Theorem 2.88 is due do Jean-Pierre Kahane [262, Theorem
III.6.1, page 114]; see also [53, pages 341–365] by Arne Beurling. See also, in the
context of control theory, [422, Section 3] by David Russell who uses prior works
[246] by Albert Ingham, [400] by Ray Redheffer and [439] by Laurent Schwartz.
For a proof of Theorem 2.88, see, for example, [282, Section 1.2.2], [280, Chapter 9]
or [22, Chapter II, Section 4]. Improvements of Theorem 2.88 have been obtained by
Stéphane Jaffard, Marius Tucsnak and Enrique Zuazua in [252, 253], by Stéphane
Jaffard and Sorin Micu in [251], by Claudio Baiocchi, Vilmos Komornik and Paola
Loreti in [27] and by Vilmos Komornik and Paola Loreti in [279] and in [280,
Theorem 9.4, page 177].

Note that, by (2.511) and (2.512),

i(〈Ψ0, ϕ1,γ〉 − 〈Ψ1, ϕ1,γ〉eiλ1,γT ) ∈ R.(2.520)

Hence, in order to apply Theorem 2.87 to our moment problem, it remains to
estimate λk,γ and bk,γ . This is done in the following propositions, due to Karine
Beauchard.

Proposition 2.90 ([40, Proposition 41, pages 937–938]). There exist γ0 > 0
and C0 > 0 such that, for every γ ∈ [−γ0, γ0] and for every k ∈ N \ {0},∣∣∣∣λk,γ − π2k2

4

∣∣∣∣ 6 C0
γ2

k
.

Proposition 2.91 ([40, Proposition 1, page 860]). There exist γ1 > 0 and
C > 0 such that, for every γ ∈ (0, γ1] and for every even integer k > 2,∣∣∣∣∣bk,γ − (−1)

k
2 +18k

π2(k2 − 1)2

∣∣∣∣∣ < Cγ

k3
,
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and for every odd integer k > 3,∣∣∣∣∣bk,γ − γ
2(−1)

k−1
2 (k2 + 1)

π4k(k2 − 1)2

∣∣∣∣∣ < Cγ2

k3
.

It is a classical result that

ϕ :=
+∞∑
k=1

dkϕk,γ ∈ H3
(0)(I; C)

if and only if
+∞∑
k=1

k6|dk|2 < +∞.

Hence, Theorem 2.87 readily follows from Theorem 2.88 applied to the moment
problem (2.508) with the help of Proposition 2.90 and Proposition 2.91.

2.7. Singular optimal control: A linear 1-D parabolic-hyperbolic
example

In this section, which is borrowed from our joint work [124] with Sergio Guer-
rero, we consider the problem of the null controllability of a family of 1-D linear
parabolic control equations depending on two parameters, namely the viscosity and
the coefficient of the transport term. We study the dependence, with respect to
these parameters and the time of controllability, of the norm of the optimal con-
trols. In particular, we give estimates on the optimal control as the viscosity tends
to 0. Let (ε, T, L,M) ∈ (0,+∞)3 × R. We consider the following parabolic linear
control system

yt − ε yxx +M yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.521)

y(t, 0) = u(t), y(t, L) = 0, t ∈ (0, T ),(2.522)

where, at time t, the state is y(t, ·) : (0, L) → R and the control is u(t) ∈ R.
This section is organized as follows:

- In Section 2.7.1, we study the Cauchy problem associated to the control
system (2.521)-(2.522). To achieve this goal, we use the abstract framework
detailed in Section 2.3.

- In Section 2.7.2 we study the null controllability of system (2.521)-(2.522)
and the dependence of the cost of the null controllability of system (2.521)-
(2.522) with respect to the four parameters ε, T , L, M .

2.7.1. Well-posedness of the Cauchy problem. This section concerns the
following Cauchy problem:

yt − ε yxx +M yx = 0, t ∈ (0, T ), x ∈ (0, L),(2.523)

y(t, 0) = u(t), y(t, L) = 0, t ∈ (0, T ),(2.524)

y(0, x) = y0(x), x ∈ (0, L).(2.525)

Let us recall that

H−1(0, L) := {ξx; ξ ∈ L2(0, L)} ⊂ D′(0, L),
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where D′(0, L) denotes the set of distributions on (0, L). Let us denote by J the
following linear map

H−1(0, L) → H1
0 (0, L)

f 7→ α,
(2.526)

where H1
0 (0, L) := {β ∈ H1(0, L); β(0) = β(L) = 0} and α ∈ H1

0 (0, L) is such that

−αxx = f in D′(0, L).

The vector space H−1(0, L) is equipped with the following scalar product

(f, g)H−1(0,L) =
∫ L

0

(Jf)x(Jg)xdx, ∀(f, g) ∈ H−1(0, L)×H−1(0, L).(2.527)

Equipped with this scalar product H−1(0, L) is a Hilbert space and J is a surjective
isometry between H−1(0, L) and H1

0 (0, L) provided that H1
0 (0, L) is equipped with

the scalar product

(α, β)H1
0 (0,L) =

∫ L

0

αxβxdx, ∀(α, β) ∈ H1
0 (0, L)×H1

0 (0, L).

Note that, by an integration by parts, it follows from (2.527) that

(f, g)H−1(0,L) =
∫ L

0

(Jf)gdx, ∀(f, g) ∈ H−1(0, L)× L2(0, L).(2.528)

Let A be the unbounded linear operator on H−1(0, L) defined by

D(A) := H1
0 (0, L),(2.529)

Af := εfxx −Mfx,∀f ∈ D(A).(2.530)

Then the operator is densely defined and closed. Let f ∈ D(A) ∩ H2(0, L) and
α = Jf . One has, using (2.528) and integrations by parts,

(Af, f)H−1(0,L) =
∫ L

0

(εfxx −Mfx)αdx

= −ε
∫ L

0

f2dx−M

∫ L

0

αxxαxdx

= −ε
∫ L

0

f2dx− M

2
(αx(L)2 − αx(0)2).

(2.531)

Since α ∈ H1
0 (0, L) ∩H2(0, L) there exists ξ ∈ [0, L] such that αx(ξ) = 0. Hence,

for every s ∈ [0, L],

αx(s)2 6 2
∫ L

0

|αxαxx|dx 6
ε

|M |+ 1

∫ L

0

f2dx+
|M |+ 1

ε

∫ L

0

α2
xdx.(2.532)

From (2.531) and (2.532), one gets, for every f ∈ D(A) ∩H2(0, L),

(Af, f)H−1(0,L) 6 |M | |M |+ 1
ε

∫ L

0

α2
xdx = |M | |M |+ 1

ε
‖f‖2H−1(0,L).(2.533)

Let IdH−1(0,L) be the identity map from H−1(0, L) into itself. By the density of
D(A) ∩H2(0, L) in D(A) for the graph norm of A (see page 374) and (2.533), the
operator A−CIdH−1(0,L) is dissipative (see Definition A.2 on page 373) for C > 0
large enough.
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Concerning the adjoint A∗ of A, one easily checks that

D(A∗) = {f ∈ H1(0, L); −εf(0) +M(Jf)x(0) = −εf(L) +M(Jf)x(L) = 0},
(2.534)

A∗f = J−1(−εf +M(Jf)x),(2.535)

A∗ is closed and densely defined.(2.536)

Let f ∈ D(A∗) ∩H2(0, L) and α := Jf . One has, using (2.528) and (2.535),

(A∗f, f)H−1(0,L) =
∫ L

0

(−εf +M(Jf)x)fdx

= −ε
∫ L

0

f2dx−M

∫ L

0

αxxαxdx

= −ε
∫ L

0

f2dx− M

2
(αx(L)2 − αx(0)2).

(2.537)

From (2.532) and (2.537), one gets that (A−CIdH−1(0,L))∗, as A−CIdH−1(0,L), is
dissipative for C > 0 large enough. Let C > 0 be such that A − CIdH−1(0,L) and
(A−CIdH−1(0,L))∗ are dissipative. By Theorem A.10 on page 375, A−CIdH−1(0,L)

is the infinitesimal generator of a strongly continuous semigroup SC(t), t ∈ [0,+∞),
of continuous linear operators on H−1(0, L). For t ∈ [0,+∞), let

S(t) : H → H
f 7→ S(t)f := eCtSC(t)f.

One easily checks that S(t), t ∈ [0,+∞), is a strongly continuous semigroup of
continuous linear operators on H−1(0, L) and that the infinitesimal generator (see
Definition A.9 on page 375) of this semigroup is A.

Let us now turn to the operator B. We first take U := R. In order to motivate
our definition of B, let us point out that, straightforward integrations by parts show
that, if f(L) = 0, then

(2.538) (εfxx −Mfx, g)H−1(0,L) = εf(0)(Jg)x(0)

+ (f,A∗g)H−1(0,L), ∀f ∈ H1(0, L), ∀g ∈ D(A∗).

Looking at Definition 2.36 on page 53, one sees that if

y ∈ C1([0, T ];H−1(0, L)) ∩ C0([0, T ];H1(0, L))

is a classical solution of (2.523) and (2.524) for some u : [0, T ] → R, and if z ∈
C1([0, T ];H−1) ∩ C0([0, T ];D(A)) is a solution of

ż = A∗z,

we must have

(εfxx −Mfx, g)H−1(0,L) − (f,A∗g)H−1(0,L) = f(0)Bg,(2.539)

with
f := y(0), g := z(0).

Hence, from (2.538) and (2.539), one sees that the definition of B must be the
following:

R → D(A∗)′

u 7→ (g ∈ D(A∗) 7→ εu(Jg)x(0)).
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Clearly, the linear map B is well defined and continuous from R into D(A∗)′. Let
us check the regularity property (2.199). Let T > 0 and z0 ∈ D(A∗) and let
z ∈ C1([0, T ];H−1(0, L)) ∩ C0([0, T ];D(A∗)) be defined by

z(t) := S(t)∗z0, ∀t ∈ [0, T ].(2.540)

Let ϕ ∈ C1([0, T ];H1
0 (0, L)) ∩ C0([0, T ];H3(0, L)) be defined by

ϕ(t) = Jz(t), ∀t ∈ [0, T ].(2.541)

Then, with ϕ(t, x) := ϕ(t)(x),

ϕt = εϕxx +Mϕx, t ∈ (0, T ), x ∈ (0, L),(2.542)

ϕ(t, 0) = ϕ(t, L) = 0, ∀t ∈ [0, T ].(2.543)

Moreover, the inequality in the regularity property (2.199) is equivalent to∫ T

0

|ϕx(t, 0)|2dt 6
CT
ε2

∫ L

0

|ϕx(0, x)|2dx.(2.544)

Let us prove inequality (2.544). We multiply (2.542) by −ϕxx. Using (2.543)
and integrations by parts, we get

(2.545)
d
dt

∫ L

0

|ϕx(t, x)|2dx = −ε
∫ L

0

|ϕxx(t, x)|2dx

− M

2
(|ϕx(t, L)|2 − |ϕx(t, 0)|2), ∀t ∈ [0, T ].

Using (2.532) with α := ϕ(t, ·), one has

|ϕx(t, s)|2 6
ε

|M |+ 1

∫ L

0

|ϕxx(t, x)|2dx+
|M |+ 1

ε

∫ L

0

|ϕx(t, x)|2dx.(2.546)

Using (2.545) and (2.546), we have (discuss on the sign of M)

d
dt

∫ L

0

|ϕx(t, x)|2dx 6 −c1
∫ L

0

|ϕxx(t, x)|2dx+ c2

∫ L

0

|ϕx(t, x)|2dx, ∀t ∈ [0, T ],

(2.547)

with

c1 :=
ε

2
> 0, c2 :=

|M |(|M |+ 1)
2ε

> 0.(2.548)

From (2.547) and (2.548), one gets∫ L

0

|ϕx(t, x)|2dx 6 ec2T
∫ L

0

|ϕx(0, x)|2dx, ∀t ∈ [0, T ],(2.549) ∫ T

0

∫ L

0

|ϕxx(t, x)|2dxdt 6
ec2T

c1

∫ L

0

|ϕx(0, x)|2dx.(2.550)

From (2.546), (2.549) and (2.550), one gets (2.544) with

CT := ε2
(

ε

c1(|M |+ 1)
+ T

|M |+ 1
ε

)
ec2T .

Finally, using Definition 2.36 on page 53 together with Theorem 2.37 on page 53,
one gets the definition of a solution to the Cauchy problem (2.523), (2.524) and
(2.525), together with the existence and uniqueness of the solution to this problem.
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Moreover, proceeding as in Section 2.3.3.1 and Section 2.3.3.2, one can easily
check that, if y0 ∈ H2(0, L) and u ∈ H2(0, T ) are such that

y0(0) = u(0) and y(L) = 0,

then the solution y to the Cauchy problem (2.523), (2.524) and (2.525) is such that

y ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H2(0, L))

and satisfies (2.523), (2.524) and (2.525) in the usual senses.

2.7.2. Null controllability and its cost. The control system (2.521)-(2.522)
is null controllable for every time T > 0. Let us recall (see Definition 2.39 on
page 55) that this means that, for every y0 ∈ H−1(0, L) and for every (ε, T,M) ∈
(0,+∞)2 × R, there exists u ∈ L2(0, T ) such that the solution of (2.523)-(2.524)-
(2.525) satisfies y(T, ·) = 0. This controllability result is due to Hector Fattorini
and David Russell [162, Theorem 3.3]; see also Oleg Imanuvilov [242, 243], Andrei
Fursikov and Oleg Imanuvilov [186], and Gilles Lebeau and Luc Robbiano [307] for
parabolic control systems in dimension larger than 1. (The last reference does not
explicitly deal with transport terms; but the proof of [307] can perhaps be adapted
to treat these terms.) The proof in [186] is the one we have given for Theorem 2.66
on page 79. This null controllability result also follows from Section 2.7.2.2 below
if T > 0 is large enough.

For y0 ∈ H−1(0, L), we denote by U(ε, T, L,M, y0) the set of controls u ∈
L2(0, T ) such that the corresponding solution of (2.523)-(2.524)-(2.525) satisfies
y(T, ·) = 0. Next, we define the quantity which measures the cost of the null
controllability for system (2.521)-(2.522):

(2.551) K(ε, T, L,M) := sup
‖y0‖H−1(0,L)61

{ inf{‖u‖L2(0,T ) : u ∈ U(ε, T, L,M, y0)} }.

Remark 2.92. One easily checks that U(ε, T, L,M, y0) is a closed affine sub-
space of L2(0, T ). Hence the infimum in (2.551) is achieved.

Remark 2.93. In [124], we have in fact considered, instead of K defined by
(2.551), the quantity

K∗(ε, T, L,M) := sup
‖y0‖L2(0,L)61

{ inf{‖u‖L2(0,T ) : u ∈ U(ε, T, L,M, y0)} }.(2.552)

But the proofs given here are (essentially) the same as the ones given in [124]; see
also Remark 2.98.

In this section our goal is to give estimates on K(ε, T, L,M), in particular as
ε→ 0+. Let us point out that simple scaling arguments lead to the relations

(2.553) K(ε, T, L,M) = a1/4K

(
ε, a T, a1/2L,

M

a1/2

)
and

(2.554) K(ε, T, L,M) = a3/4K(aε, T, a1/2L, a1/2M),

for every (a, ε, T, L,M) ∈ (0,+∞)4 × R.
In order to understand the behavior of K(ε, T, L,M) as ε → 0+, it is natural

to look at the limits of trajectories of the control system (2.521)-(2.522) as ε→ 0+.
This is done in the following proposition, proved in [124, Appendix].
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Proposition 2.94. Let (T,L,M) be given in (0,+∞)2 × R∗ and let y0 ∈
L2(0, L). Let (εn)n∈N be a sequence of positive real numbers which tends to 0 as
n → +∞. Let (un)n∈N be a sequence of functions in L2(0, T ) such that, for some
u ∈ L2(0, T ),

un converges weakly to u in L2(0, T ) as n→ +∞.(2.555)

For n ∈ N, let us denote by yn ∈ C0([0, T ];H−1(0, L)) the solution of

ynt − εn ynxx +M ynx = 0, (t, x) ∈ (0, T )× (0, L),(2.556)

yn(t, 0) = un(t), yn(t, L) = 0, t ∈ (0, T ),(2.557)

yn(0, x) = y0(x), x ∈ (0, L).(2.558)

For M > 0, let y ∈ C0([0, T ];L2(0, L)) be the solution of

(2.559)


yt +M yx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

and, for M < 0, let y ∈ C0([0, T ];L2(0, L)) be the solution of

(2.560)


yt +M yx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

Then
yn ⇀ y weakly in L2((0, T )× (0, L)) as n→∞.

For the definition, existence and uniqueness of solutions to the Cauchy problems
(2.559) and (2.560), see Definition 2.1 on page 25 and Theorem 2.4 on page 27.
Definition 2.1 and Theorem 2.4, which deal with the case M = 1, can be easily
adapted to the case M > 0 and M < 0.

It follows directly from Proposition 2.94 and the first proof of Theorem 2.6 on
page 29 that, for every (T,L,M) with T < L/|M |, one has

lim
ε→0+

K(ε, T, L,M) = +∞.(2.561)

Our first main result gives an estimate for the rate of convergence in (2.561).

Theorem 2.95. There exists C0 > 0 such that, for every (ε, T, L) ∈ (0,+∞)3,
one has, for every M > 0,

K(ε, T, L,M) > C0
ε−1T−1/2L1/2

1 +
L5/2M5/2

ε5/2

exp
(
M

2ε
(L− TM)− π2εT

L2

)
,(2.562)

and, for every M < 0,

K(ε, T, L,M) > C0
ε−1T−1/2L1/2

1 +
L5/2|M |5/2

ε5/2

exp
(
|M |
2ε

(2L− T |M |)− π2εT

L2

)
.(2.563)

The proof of this theorem is given in Section 2.7.2.1. It relies on harmonic
analysis.

Concerning upper bounds of K(ε, T, L,M), let us point out that
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- If M > 0 and T > L/M , the control u := 0 steers the control system
(2.559) (where the state is y(t, ·) ∈ L2(0, L) and the control is u(t) ∈ R)
from any state to 0 in time T . (This means that, if M > 0, T > L/M
and u = 0, then, for the function y defined in Proposition 2.94, y(T, ·) = 0
whatever y0 ∈ L2(0, L) is.)

- If M < 0 and T > L/|M |, then, for the function y defined in Proposition
2.94, y(T, ·) = 0 whatever y0 ∈ L2(0, L) is.

This could lead us to hope that, for every (T,L,M) ∈ (0,+∞)2 × R∗ with T >
L/|M |,

K(ε, T, L,M) → 0 as ε→ 0+.(2.564)

As shown by Theorem 2.95, this turns out to be false for M < 0 and T ∈
(L/|M |, 2L/|M |). Our next theorem shows that (2.564) holds if T |M |/L is large
enough.

Theorem 2.96. Let a, A, b and B be the four positive constants

a := 4.3, A := 2.61, b := 57.2, B := 18.1.(2.565)

There exists C1 > 0 such that, for every (ε, T, L) ∈ (0,+∞)3 and for every M ∈ R∗
with

|M |L
ε

> C1 :(2.566)

- If M > 0 and

T > a
L

M
,(2.567)

then

(2.568) K(ε, T, L,M) 6 C1ε
−3/2L1/2M exp

(
− L2

2εT

(
3
4

(
2TM
3L

− 1
)2

−A

))
.

- If M < 0 and

T > b
L

|M |
,(2.569)

then

(2.570) K(ε, T, L,M) 6 C1ε
−1M1/2

exp

(
− L2

2εT

(
3
4

(
2T |M |

3L
− 1
)2

−B
T |M |
L

))
.

The proof of this theorem is given in Section 2.7.2.2. It relies on a decay
estimate for the solution of (2.521)-(2.522) when u = 0 and a Carleman estimate
for the solutions of the adjoint system of (2.521)-(2.522).

Remark 2.97. Theorem 2.95 and Theorem 2.96 have been generalized in part
by Sergio Guerrero and Gilles Lebeau in [209] to higher dimensions and to the case
where M may depend on t and x.
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2.7.2.1. Proof of Theorem 2.95. Let (ε, T, L,M) ∈ (0,+∞)3×R∗. For the sake
of simplicity, throughout this section, K stands for K(ε, T, L,M). Let us define
y0 ∈ L2(0, L) by

y0(x) := sin
(πx
L

)
exp

(
Mx

2ε

)
, x ∈ (0, L).

Let us estimate ‖y0‖H−1(0,L). Let z0 := Jy0. One easily gets

(2.571) z0(x) = − 1
2i

1(
M

2ε
+
iπ

L

)2 exp
((

M

2ε
+
iπ

L

)
x

)

+
1
2i

1(
M

2ε
− iπ

L

)2 exp
((

M

2ε
− iπ

L

)
x

)
+ a1x+ a0,

with

a0 :=
πM

εL

1(
M2

4ε2
+
π2

L2

)2 ,(2.572)

a1 := −B
L
− πM

εL

1(
M2

4ε2
+
π2

L2

)2 exp
(
ML

2ε

)
.(2.573)

From (2.571), (2.572), (2.573), one gets the existence of C2 > 0 such that, for every
(ε, T, L,M) ∈ (0,+∞)3 × R∗,

‖y0‖2H−1(0,L) 6 C2
ε3

M3

exp
(
LM

ε

)
1 +

ε3

L3M3

, if M > 0,(2.574)

‖y0‖2H−1(0,L) 6 C2
ε3

M3

1

1 +
ε3

L3|M |3

, if M < 0.(2.575)

Let u ∈ U(ε, T, L,M, y0) be such that (see Remark 2.92 on page 103)

‖u‖L2(0,T ) = min{‖ũ‖L2(0,T ) : ũ ∈ U(ε, T, L,M, y0)}.

In particular, the solution of (2.523)-(2.524)-(2.525) satisfies

y(T, ·) = 0,(2.576)

and we have

‖u‖L2(0,T ) 6 K‖y0‖H−1(0,L).(2.577)

Let ϕ ∈ C2([0, T ]× [0, L]) be such that

(2.578)

{
ϕt + εϕxx +Mϕx = 0, ∀(t, x) ∈ [0, T ]× [0, L],

ϕ(t, 0) = ϕ(t, L) = 0, ∀t ∈ [0, T ].



2.7. SINGULAR OPTIMAL CONTROL 107

Let z ∈ C2([0, T ];L2(0, L)) and zT ∈ L2(0, L) be defined by

z(t) := J−1(ϕ(t, ·)), ∀t ∈ [0, T ],(2.579)

zT := z(T ).(2.580)

Using (2.578), one gets

z(t) = S∗(T − t)zT , ∀t ∈ [0, T ].(2.581)

From Definition 2.36 on page 53 for τ := T , (2.523), (2.524), (2.525), (2.580) and
(2.581), one gets that

(y(T, ·), zT )H−1(0,L) − (y0, z(0))H−1(0,L) = ε

∫ T

0

u(t)(Jz(t))x(t, 0)dt,

which, together with (2.528), (2.576), (2.579) and (2.580), leads to

−
∫ L

0

y0(x)ϕ(0, x)dx = ε

∫ T

0

u(t)ϕx(t, 0)dt.(2.582)

Let k ∈ N \ {0}. Let us define ϕ : [0, T ] × [0, L] → R by requiring, for every
(t, x) ∈ [0, T ]× [0, L],

ϕ(t, x) := exp
(
−Mx

2ε

)
sin
(
kπx

L

)
exp

((
M2

4ε
+
k2π2ε

L2

)
t

)
.

One easily checks that (2.578) holds. Hence, by (2.582), one has

kπε

L

∫ T

0

u(t) exp
((

M2

4ε
+
k2π2ε

L2

)
t

)
dt = −

∫ L

0

sin
(πx
L

)
sin
(
kπx

L

)
dx.

(2.583)

Let us now define a function v : C → C by

v(s) :=
∫ T/2

−T/2
u

(
t+

T

2

)
e−istdt, s ∈ C.(2.584)

From (2.583) and (2.584), we get

(2.585) v

(
i

(
M2

4ε
+
k2π2ε

L2

))
= 0 if k ∈ N \ {0, 1}

and

(2.586) v

(
i

(
M2

4ε
+
π2ε

L2

))
= − L2

2πε
exp

(
−
(
M2T

8ε
+
π2εT

2L2

))
.

From (2.577) and (2.584), we get

|v(s)| 6 exp
(
T |Im(s)|

2

)∫ T

0

|u(t)|dt 6 K T 1/2 exp
(
T |Im(s)|

2

)
‖y0‖H−1(0,L),



108 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

which, together with (2.574) and (2.575), gives the existence of C3 > 0 such that,
for every (ε, T, L,M) ∈ (0,+∞)3 × R∗,

|v(s)| 6 C3Kε
3/2T 1/2M−3/2

exp
(
LM

2ε
+
T |Im(s)|

2

)
1 +

ε3/2

L3/2M3/2

, if M > 0,(2.587)

|v(s)| 6 C3Kε
3/2T 1/2|M |−3/2

exp
(
T |Im(s)|

2

)
1 +

ε3/2

L3/2|M |3/2

, if M < 0.(2.588)

Let us define a map f : C → C by

f(s) := v

(
s− iM2

4ε

)
, s ∈ C.

We readily have that f is an entire function satisfying

f(bk) = 0, k ∈ N \ {0, 1},(2.589)

with

bk := i

(
2M2 +

4k2π2ε2

L2

)
, k ∈ N \ {0}.(2.590)

Additionally, (2.587) and (2.588) translate into

|f(s)| 6 C3Kε
3/2T 1/2M−3/2

exp
(
LM

2ε

)
exp

(
T |Im(s)−M2|

8ε

)
1 +

ε3/2

L3/2M3/2

, if M > 0,

(2.591)

|f(s)| 6 C3Kε
3/2T 1/2M−3/2

exp
(
T |Im(s)−M2|

8ε

)
1 +

ε3/2

L3/2|M |3/2

, if M < 0.(2.592)

Let (a`)`∈N be the sequence of zeros of f in C+ := {s ∈ C : Im(s) > 0}, each
zero being repeated according to its multiplicity. By the classical representation of
entire functions of exponential type in C+ (see, for example, [281, Theorem page
56]), (2.591) and (2.592), one has for s = x1 + ix2 ∈ C+,

(2.593) ln |f(s)| =
∞∑
`=1

ln
∣∣∣∣s− a`
s− a`

∣∣∣∣+ σ x2 +
x2

π

∫ +∞

−∞

ln |f(τ)|
|τ − s|2

dτ,

where σ is a real number independent of s such that

(2.594) σ 6
T

8ε
.

Note that, by (2.586) and (2.590),

(2.595) f(b1) = v

(
i

(
M2

4ε
+
π2ε

L2

))
= − L2

2πε
exp

(
−T

(
M2

8ε
+
π2ε

2L2

))
.
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By (2.589), {bk; k ∈ N \ {0, 1}} ⊂ {a`; ` ∈ N}. Hence
∞∑
`=0

ln
∣∣∣∣b1 − a`
b1 − a`

∣∣∣∣ 6 ∞∑
k=2

ln
∣∣∣∣b1 − bk

b1 − bk

∣∣∣∣ =: I0(2.596)

(recall that Im(a`) > 0 for every ` ∈ N).
Let us estimate I0 from above. We have

I0 =
∞∑
k=2

ln
(

(k2 − 1)π2ε2/L2

M2 + (k2 + 1)π2ε2/L2

)
6 J0,

with

J0 :=
∫ ∞

2

ln
(

π2ε2x2

M2L2 + π2ε2x2

)
dx.

Using the change of variable

τ =
πε

L|M |
x

and an integration by parts, we get

J0 =
L|M |
2πε

∫ ∞

2πε
L|M|

ln
(

τ2

1 + τ2

)
dτ

= −2 ln

(
1

1 +
(
LM
2πε

)2
)
− 2L|M |

πε

∫ ∞

2πε
L|M|

1
1 + τ2

dτ

= −2 ln

(
1

1 +
(
LM
2πε

)2
)
− 2L|M |

πε

(
π

2
− arctan

(
2πε
L|M |

))
.

Hence, there exists C4 > 0 such that, for every (ε, L,M) ∈ (0,+∞)2 × R∗,

(2.597) I0 6 −L|M |
ε

+ 4 ln
(

1 +
L|M |
ε

)
+ C4.

Let us now get an upper bound for

J1 :=
Im(b1)
π

∫ +∞

−∞

ln |f(τ)|
|τ − b1|2

dτ.

Using (2.591) and (2.592), we get, after straightforward computations, the existence
of C5 > 0 such that, for every (ε, T, L,M) ∈ (0,+∞)3 × R∗,

J1 6
LM

2ε
+
TM2

8ε
+

1
2

ln

K2ε3TM−3

1 +
ε3

L3M3

+ C5, if M > 0,(2.598)

J1 6
TM2

8ε
+

1
2

ln

K2ε3T |M |−3

1 +
ε3

L3|M |3

+ C5, if M < 0.(2.599)

Theorem 2.95 then follows from (2.590), (2.593) applied with s = b1, (2.594),
(2.595), (2.596), (2.597), (2.598) and (2.599).
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2.7.2.2. Proof of Theorem 2.96 on page 105. We only treat the case where

M > 0.(2.600)

(The case M < 0 can be treated in a similar way; see [124].) Let (ε, T, L,M) ∈
(0 + ∞)4. Considering Theorem 2.44 on page 56, together with (2.540), (2.541),
(2.542) and (2.542), we consider the following partial differential equation:

ϕt − εϕxx −Mϕx = 0, (t, x) ∈ (0, T )× (0, L),(2.601)

ϕ(t, 0) = ϕ(t, L) = 0, t ∈ (0, T ),(2.602)

ϕ(0, x) = ϕ0(x), x ∈ (0, L).(2.603)

By Theorem 2.44, in order to prove (2.568), it suffices to prove the following ob-
servability inequality. Assume that (2.566) and (2.567) hold. Then, for every
ϕ0 ∈ H1

0 (0, L), the solution ϕ of (2.601)-(2.602)-(2.603) satisfies

(2.604)
∫ L

0

|ϕ(T, x)|2dx 6 C2
1ε
−1LM2

× exp

(
−L

2

εT

(
3
4

(
2TM
3L

− 1
)2

−A

))∫ T

0

|ϕx(t, 0)|2dt.

Remark 2.98. Concerning K∗ defined by (2.552), one can prove that it is the
infimum of the set of C > 0 such that∫ L

0

|ϕ(T, x)|2dx 6 Cε2
∫ T

0

|ϕx(t, 0)|2dt,∀ϕ0 ∈ H1
0 (0, L) ∩H2(0, L).(2.605)

This result does not follow directly from Theorem 2.44 on page 56 since the lin-
ear map FT : u 7→ y(T, ·) where y : (0, T ) × (0, L) → R is the solution of the
Cauchy problem (2.523), (2.524) and (2.525) with y0 := 0 is an unbounded linear
operator (from a subspace of) L2(0, T ) into L2(0, L). However, one can adapt the
proof of Theorem 2.44 on page 56 to treat this unbounded case by noticing that in
Lemma 2.48 on page 58 one does not require C3 to be a continuous linear operator:
It suffices that C3 is a closed and densely defined linear operator.

In order to prove the observability inequality (2.604), we first prove decay
estimates for the solution of (2.601)-(2.602)-(2.603).

Lemma 2.99. Let τ ∈ (L/M,+∞). Then, for every ϕ0 ∈ L2(0, L), the weak
solution of (2.601)-(2.602)-(2.603) satisfies

(2.606) ‖ϕ(τ, ·)‖2L2(0,L) 6
L2

4επτ
exp

(
− (Mτ − L)2

2ετ

)
‖ϕ0‖2L2(0,L).

Proof of Lemma 2.99. Let us first consider the solution

ϕ̃ ∈ C0([0, τ ];L2(R))

of the following system:
ϕ̃t − εϕ̃xx −Mϕ̃x = 0, (t, x) ∈ (0, τ)× (−∞,+∞),

ϕ̃(0, x) =
{
|ϕ(0, x)| if x ∈ (0, L),
0 otherwise .
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Then, by the maximum principle for parabolic equations (see for example [292,
Chapter 1, Section 2]), we know that

|ϕ(t, x)| 6 ϕ̃(t, x), ∀(t, x) ∈ (0, τ ]× (0, L).(2.607)

It is well known that the solution ϕ̃ is given in terms of the fundamental solution
of the heat equation by

ϕ̃(t, x) =
1

2(επt)1/2

∫ L

0

exp
(
− (x+Mt− y)2

4εt

)
|ϕ(0, y)|dy.

(Write ϕ(t, x) = ψ(εt, x+Mt) = ψ(τ, ξ), with ψτ − ψξξ = 0 and see, for example,
[475, (5.9)-(5.10), page 217].) Now, we readily estimate the exponential term by
its L∞−norm and we deduce, provided that τ > L/M , that

|ϕ̃(τ, x)| 6 1
2(επτ)1/2

exp
(
− (Mτ − L)2

4ετ

)
‖ϕ(0, ·)‖L1(0,L), ∀x ∈ (0, L),

which, together with (2.607), implies Lemma 2.99.

We now establish a similar decay estimate but for the H1
0 -norm. Our goal is to

deduce from Lemma 2.99 the following lemma.

Lemma 2.100. Let η > 0. Then there exists C > 0 such that, for every
(ε, τ, L,M) ∈ (0,+∞)4 such that

τM

L
> 1 + η,(2.608)

LM > ε,(2.609)

and for every ϕ0 ∈ L2(0, L), the weak solution of (2.601)-(2.602)-(2.603) verifies

(2.610) ‖ϕx(τ, ·)‖2L2(0,L) 6 C
LM3

ε3
exp

(
− (Mτ − L)2

2ετ

)
‖ϕ0‖2L2(0,L).

Proof of Lemma 2.100. For the moment being, let us assume that the
following lemma holds.

Lemma 2.101. For every (ε, τ, L,M) ∈ (0,+∞)4 and for every ϕ0 ∈ L2(0, L),
the weak solution of (2.601)-(2.602)-(2.603) verifies

‖ϕx(τ, ·)‖2L2(0,L) 6

(
1
ετ

+
τM4

ε3

)
‖ϕ0‖2L2(0,L).(2.611)

Let

τ1 := τ − ηε

2M2
.(2.612)

From (2.608), (2.609) and (2.612),

τ1 >
L

M
.

This inequality allows to apply Lemma 2.99 with τ := τ1. One gets

(2.613) ‖ϕ(τ1, ·)‖2L2(0,L) 6
L2

4επτ1
exp

(
− (Mτ1 − L)2

2ετ1

)
‖ϕ0‖2L2(0,L).
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Let us now apply Lemma 2.101 with ϕ0 := ϕ(τ1, ·) and τ := τ − τ1. One gets

‖ϕx(τ, ·)‖2L2(0,L) 6

(
1

ε(τ − τ1)
+

(τ − τ1)M4

ε3

)
‖ϕ(τ1, ·)‖2L2(0,L).(2.614)

From (2.613) and (2.614), we have

‖ϕx(τ, ·)‖2L2(0,L) 6 R‖ϕ(τ1, ·)‖2L2(0,L),(2.615)

with

R :=
(

1
ε(τ − τ1)

+
(τ − τ1)M4

ε3

)
L2

4επτ1
exp

(
− (Mτ1 − L)2

2ετ

)
.(2.616)

Note that
(Mτ − L)2

ετ
− (Mτ1 − L)2

ετ1
6
η

2
,(

1
ε(τ − τ1)

+
(τ − τ1)M4

ε3

)
L2

4επτ1
6

1
4π

(
2
η

+
η

2

)
LM3

ε3
,

which, together with (2.615) and (2.616), gives (2.610) for C > 0 large enough.
It remains to prove Lemma 2.101. Without loss of generality, we may assume

ϕ0 ∈ H1
0 (0, L) ∩H2(0, L). Then

ϕ ∈ C0([0, τ ];H2(0, L)) ∩ C1([0, τ ];L2(0, L)),

which is a sufficient regularity to perform the following computations. We first mul-
tiply (2.601) by 2ϕ and integrate on [0, L]. Using an integration by parts together
with (2.602), one gets that

d
dt

∫ L

0

ϕ2dx+ 2ε
∫ L

0

ϕ2
xdx = 0.(2.617)

We then multiply (2.601) by −2ϕxx and integrate on [0, L]. Using an integration
by parts together with (2.602), one gets that

d
dt

∫ L

0

ϕ2
xdx+ 2ε

∫ L

0

ϕ2
xxdx = Mϕx(t, L)2 −Mϕx(t, 0)2.(2.618)

Proceeding as in the proof of (2.532), we get

‖ϕx(t, ·)‖2L∞(0,L) 6
ε

M

∫ L

0

ϕ2
xxdx+

M

ε

∫ L

0

ϕ2
xdx.(2.619)

Using (2.602), we get∫ L

0

ϕ2
xdx = −

∫ L

0

ϕxxϕdx 6
ε2

M2

∫ L

0

ϕ2
xxdx+

M2

4ε2

∫ L

0

ϕ2dx.(2.620)

From (2.617), (2.618), (2.619) and (2.620), we have

d
dt

∫ L

0

ϕ2
xdx 6

M4

4ε3

∫ L

0

ϕ2dx 6
M4

4ε3
‖ϕ0‖2L2(0,L).(2.621)

Integrating this inequality on [t, τ ], we get∫ L

0

ϕx(τ, x)2dx 6
∫ L

0

ϕx(t, x)2dx+ (τ − t)
M4

4ε3
‖ϕ0‖2L2(0,L).(2.622)
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Integrating (2.617) on [0, τ ], we have

2ε
∫ τ

0

∫ L

0

ϕ2
xdxdt 6 ‖ϕ0‖2L2(0,L).(2.623)

Finally, integrating (2.622) on [0, τ ] and using (2.623), we get∫ L

0

ϕx(τ, x)2dx 6

(
1

2ετ
+
τM4

8ε3

)
‖ϕ0‖2L2(0,L).

This concludes the proof of Lemma 2.101 and therefore also the proof of Lemma
2.100.

We now establish, as in Section 2.5.2, a Carleman inequality. Let us first
perform a change of variables in order to restrict ourselves to the case where ε =
L = 1:

(2.624)

{
t̃ = εt/L2,

x̃ = x/L.

In the new variables, we have, with ϕ̃(t̃, x̃) := ϕ(t, x),

(2.625)

{
ϕ̃et − ϕ̃exex − ε−1M Lϕ̃ex = 0, (t̃, x̃) ∈ (0, εT/L2)× (0, 1),

ϕ̃(t̃, 0) = ϕ̃(t̃, 1) = 0, t̃ ∈ (0, εT/L2).

Let

M̃ :=
ML

ε
,(2.626)

T̃ :=
εT

L2
.(2.627)

Then (2.566) and (2.567) become, respectively,

M̃ > C1,(2.628)

M̃T̃ > a.(2.629)

Let us define a weight function (compare with (2.408) coming from [186]),

(2.630) α(t̃, x̃) :=
β(x̃)
t̃
, (t̃, x̃) ∈ (0, T̃ )× (0, 1),

where 0 6 β ∈ C2([0, 1]) will be chosen below. We also introduce the function

ψ := e−αϕ̃.

This function verifies that

(2.631) P1 + P2 = P3,

with

P1 := ψexex + α2exψ + M̃αexψ − αetψ,
P2 := −ψet + 2αexψex + M̃ψex,

P3 := −αexexψ;
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compare with (2.413), (2.414) and (2.415). As in Section 2.5.2, we take the L2-norm
in identity (2.631) and then expand the double product

(2.632) ‖P1‖2L2(Q) + ‖P2‖2L2(Q) + 2(P1, P2)L2(Q) = ‖P3‖2L2(Q),

where Q stands for the open set (0, T̃ )× (0, 1).
Let us compute 2(P1, P2)L2(Q). Let us first compute the terms concerning ψexex.

We have

−(ψexex, ψet)L2(Q) =
1
2

∫ 1

0

|ψex(T̃ , x̃)|2 dx̃.
Moreover,

2(ψexex, αexψex)L2(Q) =
∫ eT

0

(αex(t̃, 1)|ψex(t̃, 1)|2 − αex(t̃, 0)|ψex(t̃, 0)|2) dt̃

−
∫∫

Q

αexex|ψex|2 dx̃ dt̃.
Finally,

M̃(ψexex, ψex)L2(Q) = (M̃/2)
∫ eT

0

(|ψex(t̃, 1)|2 − |ψex(t̃, 0)|2) dt̃.

As long as the term α2exψ is concerned, we first have

−(α2exψ,ψet)L2(Q) =
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃− 1
2

∫ 1

0

α2ex(T, x̃)|ψ(0, x̃)|2 dx̃.

Next,

2(α2exψ, αexψex)L2(Q) = −3
∫∫

Q

αexexα2ex|ψ|2 dx̃ dt̃.
Finally,

M̃(α2exψ,ψex)L2(Q) = −M̃
∫∫

Q

αexexαex|ψ|2 dx̃ dt̃.
Let us next look at the terms concerning M̃αexψ in 2(P1, P2)L2(Q). First, we

have

−M̃(αexψ,ψet)L2(Q) = (M̃/2)
∫∫

Q

αexet|ψ|2 dx̃ dt̃− (M̃/2)
∫ 1

0

αex(T, x̃)|ψ(0, x̃)|2 dx̃.

Then we find

2M̃(αexψ, αexψex)L2(Q) = −2M̃
∫∫

Q

αexαexex|ψ|2 dx̃ dt̃.
The last term provides

M̃2(αexψ,ψex)L2(Q) = −(M̃2/2)
∫∫

Q

αexex|ψ|2 dx̃ dt̃.
Finally, we deal with the computations of the term αetψ. First, we obtain

(αetψ,ψet)L2(Q) = −(1/2)
∫∫

Q

αetet|ψ|2 dx̃ dt̃+ (1/2)
∫ 1

0

αet(T, x̃)|ψ(T, x̃)|2 dx̃.

Additionally, we find

−(αetψ, 2αexψex)L2(Q) =
∫∫

Q

(αetαexex + αetexαex)|ψ|2 dx̃ dt̃.
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Finally,

−(αetψ, M̃ψex)L2(Q) = (M̃/2)
∫∫

Q

αetex|ψ|2 dx̃ dt̃.
Putting all these computations together, we conclude that the double product

term is
(2.633)

2(P1, P2)L2(Q) =
∫ 1

0

|ψex(T, x̃)|2 dx̃
+
∫ eT

0

((2αex(t̃, 1) + M̃)|ψex(t̃, 1)|2 − (2αex(t̃, 0) + M̃)|ψex(t̃, 0)|2) dt̃

−2
∫∫

Q

αexex|ψex|2 dx̃ dt̃+ 4
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃−
∫ 1

0

α2ex(T, x̃)|ψ(T, x̃)|2 dx̃

−6
∫∫

Q

αexexα2ex|ψ|2 dx̃ dt̃+ 2M̃
∫∫

Q

αexet|ψ|2 dx̃ dt̃− M̃

∫ 1

0

αex(T, x̃)|ψ(T, x̃)|2 dx̃

−6M̃
∫∫

Q

αexαexex|ψ|2 dx̃ dt̃− M̃2

∫∫
Q

αexex|ψ|2 dx̃ dt̃
−
∫∫

Q

αetet|ψ|2 dx̃ dt̃+
∫ 1

0

αet(T, x̃)|ψ(T, x̃)|2 dx̃+ 2
∫∫

Q

αetαexex|ψ|2 dx̃ dt̃.

On the other hand, we have the following for the right hand side term:

(2.634) ‖P3‖2L2(Q) =
∫∫

Q

α2exex|ψ|2 dx̃ dt̃.

Combining (2.633) and (2.634) with (2.632), we obtain

∫ eT
0

(2αex(t̃, 1) + M̃)|ψex(t̃, 1)|2 dt̃− 2
∫∫

Q

αexex|ψex|2 dx̃ dt̃
−6
∫∫

Q

αexexα2ex|ψ|2 dx̃ dt̃+ 2
∫∫

Q

αetαexex|ψ|2 dx̃ dt̃− 6M̃
∫∫

Q

αexαexex|ψ|2 dx̃ dt̃
−M̃2

∫∫
Q

αexex|ψ|2 dx̃ dt̃

6
∫∫

Q

α2exex|ψ|2 dx̃ dt̃+
∫ eT

0

(2αex(t̃, 0) + M̃)|ψex(t̃, 0)|2 dt̃

+4
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃− 2M̃
∫∫

Q

αexet|ψ|2 dx̃ dt̃+
∫∫

Q

αetet|ψ|2 dx̃ dt̃
+
∫ 1

0

α2ex(T, x̃)|ψ(T, x̃)|2 dx̃+ M̃

∫ 1

0

αex(T, x̃)|ψ(T, x̃)|2 dx̃

−
∫ 1

0

αet(T, x̃)|ψ(T, x̃)|2 dx̃.
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From the definition of α (given in (2.630)), we find

(2.635)

∫ eT
0

(2
β′(1)
t̃

+ M̃)|ψex(t̃, 1)|2 dt̃− 2
∫∫

Q

β′′(x̃)
t̃

|ψex|2 dx̃ dt̃
−6
∫∫

Q

β′′(x̃)(β′(x̃))2

t̃3
|ψ|2 dx̃ dt̃− 2

∫∫
Q

β(x̃)β′′(x̃)

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

−6M̃
∫∫

Q

β′(x̃)β′′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃− M̃2

∫∫
Q

β′′(x̃)
t̃

|ψ|2 dx̃ dt̃

6
∫∫

Q

(β′′(x̃))2

(T̃ − t̃)2
|ψ|2 dx̃ dt̃+

∫ eT
0

(
2
β′(0)

T̃ − t̃
+ M̃

)
|ψex(t̃, 0)|2 dt̃

+4
∫∫

Q

(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃+ 2M̃

∫∫
Q

β′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+2
∫∫

Q

β(x̃)

(T̃ − t̃)3
|ψ|2 dx̃ dt̃+

1

T̃ 2

∫ 1

0

(β′(x̃))2|ψ(T, x̃)|2 dx̃

+
M̃

T̃

∫ 1

0

β′(x̃)|ψ(T, x̃)|2 dx̃+
1

T̃ 2

∫ 1

0

β(x̃)|ψ(T, x̃)|2 dx̃.

Let us now define the function β : [0, 1] → R. Let δ ∈ (0, 1). We take the function
β satisfying

(2.636) β′′(x̃) = − 1
1− δ

2(β′(x̃))2 + β(x̃)
3(β′(x̃))2 + β(x̃)

, x̃ ∈ [0, 1],

together with the initial conditions β(0) = δ and β′(0) = 0.807. One can check,
that, for δ > 0 small enough,

β > 0, β′ > 0 and β′′ < 0 on [0, 1],(2.637)

β(1) < 0.435.(2.638)

We choose δ > 0 such that (2.637) and (2.638) hold. From (2.635), (2.636) and
(2.637), we have

(2.639)

−2
∫∫

Q

β′′(x̃)
t̃

|ψex|2 dx̃ dt̃− 2δ
∫∫

Q

β′′(x̃)
β(x̃) + 3(β′(x̃))2

t̃3
|ψ|2 dx̃ dt̃

−6M̃
∫∫

Q

β′(x̃)β′′(x̃)
t̃2

|ψ|2 dx̃ dt̃− M̃2

∫∫
Q

β′′(x̃)
t̃

|ψ|2 dx̃ dt̃

6
∫∫

Q

(β′′(x̃))2

t̃2
|ψ|2 dx̃ dt̃+

∫ eT
0

(2
β′(0)
t̃

+ M̃)|ψex(t̃, 0)|2 dt̃

+2M̃
∫∫

Q

β′(x̃)
t̃2

|ψ|2 dx̃ dt̃+
1

T̃ 2

∫ 1

0

(β′(x̃))2|ψ(T, x̃)|2 dx̃

+
M̃

T̃

∫ 1

0

β′(x̃)|ψ(T, x̃)|2 dx̃+
1

T̃ 2

∫ 1

0

β(x̃)|ψ(T, x̃)|2 dx̃.

Additionally, using (2.637) and the fact that β′′(x̃) 6 −2/((1 − δ)3), we get the
existence of a universal constant m1 > 0 (in particular, independent of ε, T , L, M ,
ϕ0) such that, if

(2.640) M̃ > m1,
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then

(2.641) − 3M̃
∫∫

Q

β′(x̃)β′′(x̃)
t̃2

|ψ|2 dx̃ dt̃

>
∫∫

Q

(β′′(x̃))2

t̃2
|ψ|2 dx̃ dt̃+ 2M̃

∫∫
Q

β′(x̃)
t̃2

|ψ|2 dx̃ dt̃.

From (2.637), (2.639) and (2.641), we have

(2.642) − M̃2

∫∫
Q

β′′(x̃)
t̃

|ψ|2 dx̃ dt̃ 6
∫ eT

0

(2
β′(0)
t̃

+ M̃)|ψex(t̃, 0)|2 dt̃

+
1

T̃ 2

∫ 1

0

(β′(x̃))2|ψ(T, x̃)|2 dx̃+
M̃

T̃

∫ 1

0

β′(x̃)|ψ(T, x̃)|2 dx̃

+
1

T̃ 2

∫ 1

0

β(x̃)|ψ(T, x̃)|2 dx̃.

Let us recall that ψ := e−αϕ̃. Then, from (2.602), (2.629), (2.630), (2.637), (2.640)
and (2.642), we deduce that

(2.643) M̃

∫∫
Q

1
t̃
e−2α|ϕ̃|2 dx̃ dt̃ 6 C

(∫ eT
0

|ϕ̃ex(t̃, 0)|2 dt̃+
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃

)
.

In (2.643) and from here on, C will stand for generic positive constants independent
of ε, M , T , L and ϕ0.

Let 0 < γ < 1/3 be fixed (one can take for example γ := 1/6). By (2.630)
and (2.637), e−2α reaches its minimum in the region [(1 − 3γ)T̃ /3, T̃ /3] × [0, 1] at
(t̃, x̃) = (T̃ /3, 1). Hence

(2.644)
M̃

T̃
e−2α( eT/3,1) ∫ 1

0

∫ eT/3
(1−3γ) eT/3 |ϕ̃|

2 dt̃ dx̃

6 C

(∫ eT
0

|ϕ̃ex(t̃, 0)|2 dt̃+
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃

)
.

From (2.630), we deduce, using (2.565) and (2.638), that

exp{−2α(T̃ /3, 1)} = exp{−6β(1)/T̃} > exp{−A/T̃}.(2.645)

Coming back to our original variables (see (2.624), (2.626) and (2.627)), we get
from (2.644) and (2.645),

(2.646)
∫ L

0

∫ T/3

(1−3γ)T/3

|ϕ|2dtdx

6 CeAL
2/(εT )

(
ε2T

M

∫ T

0

|ϕx(t, 0)|2dt+
L

M

∫ L

0

|ϕ(T, x)|2dx

)
.

From now on, we assume that (2.609) holds. Let us apply the dissipativity result
stated in Lemma 2.100 on page 111 to ϕ0 := ϕ(t, ·), with t ∈ [(1 − 3γ)T/3, T/3]



118 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

and τ := T − t. This is possible, since, by (2.565) and (2.567), (2T/3) > 3(L/M).
We obtain

(2.647)
∫ L

0

∫ T/3

(1−3γ)T/3

|ϕ|2dtdx >
ε3T

CLM3
e3((2T/3)M−L)2/(4εT )

∫ L

0

|ϕx(T, x)|2dx.

Note that the Poincaré inequality, together with (2.602), tells us that∫ L

0

ϕ(T, x)2dx 6 CL2

∫ L

0

ϕx(T, x)2dx.(2.648)

Let us also point out that (2.565) and (2.567) imply that

3
4

(
2TM
3L

− 1
)2

−A >
1
C

M2T 2

L2
,

which combined with (2.567), (2.646), (2.647) and (2.648), yields the existence
of C1 > max{m1, 1} such that (LM/ε) > C1 and (2.567) imply (2.604). This
concludes the proof of Theorem 2.96 on page 105.

2.7.2.3. An open problem. Of course, as one can already see in [124], the con-
stants 4.3 and 57.2 in Theorem 2.96 are not optimal. Our open problem in this
section concern improvements of these constants. In particular, it is natural to ask

Open Problem 2.102. Assume that

M > 0, TM > L.

Is it true that
K(ε, T, L,M) → 0 as ε→ 0?

Assume that
M < 0, T |M | > 2L.

Is it true that
K(ε, T, L,M) → 0 as ε→ 0?

2.8. Bibliographical complements

In this chapter we have already given references to books and papers. But
there are of course many other references which must also be mentioned. If one
restricts to books or surveys we would like to add in particular (but this is a very
incomplete list):

- The book [47] by Alain Bensoussan on stochastic control.
- The books [49, 50] by Alain Bensoussan, Giuseppe Da Prato, Michel

Delfour and Sanjoy Mitter, which deal, in particular, with differential con-
trol systems with delays and partial differential control systems with spe-
cific emphasis on controllability, stabilizability and the Riccati equations.

- The book [139] by Ruth Curtain and Hans Zwart which deals with general
infinite-dimensional linear control systems theory. It includes the usual
classical topics in linear control theory such as controllability, observabil-
ity, stabilizability, and the linear-quadratic optimal problem. For a more
advanced level on this general approach, one can look at the book [462] by
Olof Staffans.
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- The book [140] by René Dáger and Enrique Zuazua on partial differential
equations on planar graphs modeling networked flexible mechanical struc-
tures (with extensions to the heat, beam and Schrödinger equations on
planar graphs).

- The book [154] by Abdelhaq El Jäı and Anthony Pritchard on the input-
output map and the importance of the location of the actuators/sensors
for a better controllability/observability.

- The books [160, 161] by Hector Fattorini on optimal control for infinite-
dimensional control problems (linear or nonlinear, including partial differ-
ential equations).

- The book [182] by Andrei Fursikov on study of optimal control problems
for infinite-dimensional control systems with many examples coming from
physical systems governed by partial differential equations (including the
Navier-Stokes equations).

- The book [280] by Vilmos Komornik and Paola Loreti on harmonic (and
nonharmonic) analysis methods with many applications to the controlla-
bility of various time-reversible systems.

- The book [294] by John Lagnese and Günter Leugering on optimal control
on networked domains for elliptic and hyperbolic equations, with a special
emphasis on domain decomposition methods.

- The books [301, 302] by Irena Lasiecka and Roberto Triggiani which deal
with finite horizon quadratic regulator problems and related differential
Riccati equations for general parabolic and hyperbolic equations with nu-
merous important specific examples.

- The book [487] by Marius Tucsnak and George Weiss on passive and con-
servative linear systems, with a detailed chapter on the controllability of
these systems.

- The survey [521] by Enrique Zuazua on recent results on the controllability
of linear partial differential equations. It includes the study of the control-
lability of wave equations, heat equations, in particular with low regularity
coefficients, which is important to treat semi-linear equations (see Section
4.3), fluid-structure interaction models.

- The survey [519] by Enrique Zuazua on numerical methods to get optimal
controls for linear partial differential equations.





Part 2

Controllability of nonlinear control
systems



A major method to study the local controllability around an equilibrium is to
look at the controllability of the linearized control system around this equilibrium.
Indeed, using the inverse function theorem, the controllability of this linearized
control system implies the local controllability of the nonlinear control system,
in any cases in finite dimension (see Section 3.1, and in particular Theorem 3.8 on
page 128) and in many cases in infinite dimension (see Section 4.1 for an application
to a nonlinear Korteweg-de Vries equation). In infinite dimension the situation can
be more complicated due to some problems of “loss of derivatives” as explained
in Section 4.2. However, suitable iterative schemes (in particular the Nash-Moser
process) can allow to handle these cases; see Section 4.2.1 and Section 4.2.2.

When the linearized control system around the equilibrium is not controllable,
the situation is more complicated. However, for finite-dimensional systems, one
knows powerful tools to handle this situation. These tools rely on iterated Lie
brackets. They lead to many sufficient or necessary conditions for local controlla-
bility of a nonlinear control system. We recall some of these conditions in Section
3.2, Section 3.3 and in Section 3.4.

In infinite dimension, iterated Lie brackets give some interesting results as we
will see in Chapter 5. However, we will also see in the same chapter that these iter-
ated Lie brackets do not work so well in many interesting cases. We present three
methods to get in some cases controllability results for some control systems mod-
eled by partial differential equations even if the linearized control system around
the equilibrium is not controllable. These methods are:

1. the return method (Chapter 6),
2. quasi-static deformations (Chapter 7),
3. power series expansion (Chapter 8).

Let us briefly describe them.
Return method. The idea of the return method goes as follows. Let us

assume that one can find a trajectory of the nonlinear control system such that:

- it starts and ends at the equilibrium,
- the linearized control system around this trajectory is controllable.

Then, in general, the implicit function theorem implies that one can go from every
state close to the equilibrium to every other state close to the equilibrium. In
Chapter 6, we sketch some results in flow control which have been obtained by this
method, namely

1. global controllability results for the Euler equations of incompressible fluids
(Section 6.2.1),

2. global controllability results for the Navier-Stokes equations of incompress-
ible fluids (Section 6.2.2.2),

3. local controllability of a 1-D tank containing a fluid modeled by the shallow
water equations (Section 6.3).

Quasi-static deformations. The quasi-static deformation method allows one
to prove in some cases that one can move from a given equilibrium to another given
equilibrium if these two equilibria are connected in the set of equilibria. The idea is
just to move very slowly the control (quasi-static deformation) so that at each time
the state is close to the curve of equilibria connecting the two given equilibria. If
some of these equilibria are unstable, one also uses suitable feedback laws in order
to stabilize them: without these feedback laws the quasi-static deformation method
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would not work in general. We present an application to a semilinear heat equation
(Section 7.2).

Power series expansion. In this method one makes some power series ex-
pansion in order to decide whether the nonlinearity allows to move in the (oriented)
directions which are not controllable for the linearized control system around the
equilibrium. We present an application to the Korteweg-de Vries equation (Section
8.2).

These three methods can be used together. We present an example for a Schrö-
dinger control system in Chapter 9.





CHAPTER 3

Controllability of nonlinear systems in finite
dimension

Throughout this chapter, we denote by (C) the nonlinear control system

ẋ = f(x, u),(C)

where x ∈ Rn is the state, u ∈ Rm is the control, with (x, u) ∈ O where O is a
nonempty open subset of Rn × Rm. Unless otherwise specified, we assume that
f ∈ C∞(O; Rn). Let us recall the definition of an equilibrium of the control system
ẋ = f(x, u).

Definition 3.1. An equilibrium of the control system ẋ = f(x, u) is a couple
(xe, ue) ∈ O such that

f(xe, ue) = 0.(3.1)

Let us now give the definition we use in this book for small-time local control-
lability (we should in fact say small-time local controllability with controls close to
ue).

Definition 3.2. Let (xe, ue) ∈ O be an equilibrium of the control system
ẋ = f(x, u). The control system ẋ = f(x, u) is small-time locally controllable at
the equilibrium (xe, ue) if, for every real number ε > 0, there exists a real number
η > 0 such that, for every x0 ∈ Bη(xe) := {x ∈ Rn; |x − xe| < η} and for every
x1 ∈ Bη(xe), there exists a measurable function u : [0, ε] → Rm such that

|u(t)− ue| 6 ε, ∀t ∈ [0, ε],

(ẋ = f(x, u(t)), x(0) = x0) ⇒ (x(ε) = x1).

One does not know any checkable necessary and sufficient condition for small-
time local controllability for general control systems, even for analytic control sys-
tems. However, one knows powerful necessary conditions and powerful sufficient
conditions. In this chapter we recall some of these conditions. In particular,

- If the linearized control system at (xe, ue) is controllable, then the nonlinear
control system ẋ = f(x, u) is small-time locally controllable at (xe, ue); see
Section 3.1.

- We recall the necessary Lie algebra rank condition. It relies on iterated Lie
brackets. We explain why iterated Lie brackets are natural for the problem
of controllability; see Section 3.2.

- We study in detail the case of the driftless control affine systems, i.e, the
case where f(x, u) =

∑m
i=1 uifi(x). For these systems the above Lie algebra

rank condition turns out to be sufficient, even for global controllability; see
Section 3.3.

125
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- Among the iterated Lie brackets, we describe some of them which are
“good” to give the small-time local controllability and some of them which
lead to obstructions to small-time local controllability; see Section 3.4.

3.1. The linear test

In this section we prove that if a linearized control system at an equilibrium
(resp. along a trajectory) is controllable, then the nonlinear control system is
locally controllable at this equilibrium (resp. along this trajectory). We present an
application of this useful result.

We assume that the map f is only of class C1 on O. We study in this section:
- the local controllability along a trajectory,
- the local controllability at an equilibrium point.

3.1.1. Local controllability along a trajectory. We start with the defini-
tion of a trajectory.

Definition 3.3. A trajectory of the control system ẋ = f(x, u) is a function
(x̄, ū) : [T0, T1] → O such that

T0 < T1,(3.2)

x̄ ∈ C0([T0, T1]; Rn), ū ∈ L∞((T0, T1); Rm),(3.3)

∃ a compact set K ⊂ O such that (x̄(t), ū(t)) ∈ K(3.4)

for almost every t ∈ (T0, T1),

x̄(t2) = x̄(t1) +
∫ t2

t1

f(x̄(t), ū(t))dt, ∀(t1, t2) ∈ [T0, T1].(3.5)

Let us make some comments on this definition:
- If ū is also continuous on [T0, T1], then (3.4) is equivalent to

(x̄(t), ū(t)) ∈ O, ∀t ∈ [T0, T1].

Moreover, in this case, x̄ is of class C1 and (3.5) is equivalent to

˙̄x(t) = f(x̄(t), ū(t)), ∀t ∈ [T0, T1].

- Taking into account (3.3) and (3.4), (3.5) is equivalent to

˙̄x = f(x̄, ū) in D′(T0, T1)n.(3.6)

In (3.6), D′(T0, T1) denotes the set of distributions on (T0, T1). Hence (3.6) just
means that, for every ϕ : (T0, T1) → Rn of class C∞ and with compact support,∫ T1

T0

(x̄(t) · ϕ̇(t) + f(x̄(t), ū(t)) · ϕ(t))dt = 0.

For simplicity, when no confusion is possible, we write simply “ ˙̄x = f(x̄, ū)” instead
of “ ˙̄x = f(x̄, ū) in D′(T0, T1)n”.

Let us now define the notion of “local controllability along a trajectory”.

Definition 3.4. Let (x̄, ū) : [T0, T1] → O be a trajectory of the control system
ẋ = f(x, u). The control system ẋ = f(x, u) is locally controllable along the trajec-
tory (x̄, ū) if, for every ε > 0, there exists η > 0 such that, for every (a, b) ∈ Rn×Rn
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with |a−x̄(T0)| < η and |b−x̄(T1)| < η, there exists a trajectory (x, u) : [T0, T1] → O
such that

x(T0) = a, x(T1) = b,

|u(t)− ū(t)| 6 ε, t ∈ [T0, T1].

Let us also introduce the definition of the linearized control system along a
trajectory.

Definition 3.5. The linearized control system along the trajectory (x̄, ū) :
[T0, T1] → O is the linear time-varying control system

ẋ =
∂f

∂x
(x̄(t), ū(t))x+

∂f

∂u
(x̄(t), ū(t))u, t ∈ [T0, T1],

where, at time t ∈ [T0, T1], the state is x(t) ∈ Rn and the control is u(t) ∈ Rm.

With these definitions, one can state the following classical and useful theorem.

Theorem 3.6. Let (x̄, ū) : [T0, T1] → O be a trajectory of the control system
ẋ = f(x, u). Let us assume that the linearized control system along the trajectory
(x̄, ū) is controllable (see Definition 1.2 on page 4). Then the nonlinear control
system ẋ = f(x, u) is locally controllable along the trajectory (x̄, ū).

Proof of Theorem 3.6. Let F be the map

Rn × L∞((T0, T1); Rm) → Rn × Rn
(a, u) 7→ F(a, u) := (a, x(T1)),

where x : [T0, T1] → Rn is the solution of the Cauchy problem

ẋ = f(x, u(t)), x(T0) = a.

It is a well known result (see, e.g., [458, Theorem 1, page 57]) that this map F is well
defined and of class C1 on a neighborhood of (x̄(T0), ū) in Rn × L∞((T0, T1); Rm).
Its differential F ′(x̄(T0), ū) is the following linear map:

Rn × L∞((T0, T1); Rm) → Rn × Rn
(a, u) 7→ (a, x(T1)),

where x : [T0, T1] → Rn is the solution of the Cauchy problem

ẋ =
∂f

∂x
(x̄(t), ū(t))x+

∂f

∂u
(x̄(t), ū(t))u, x(T0) = a.

It follows from the hypothesis of Theorem 3.6 (i.e., the controllability of the lin-
earized control system along the trajectory (x̄, ū)) that F ′(x̄(T0), ū) is onto. Since
Rn × Rn is of dimension 2n, this gives the existence of a linear subspace E of
dimension 2n such that

F ′(x̄(T0), ū)E = Rn × Rn.(3.7)

We apply the usual inverse function theorem to the restriction of F to E. We get
the existence of a ν > 0 and of a map G of class C1 from Bν(x̄(T0)) × Bν(x̄(T1))
into E, with Bν(z) := {x ∈ Rn; |x− z| < ν} such that

G(x̄(T0), x̄(T1)) = (x̄(T0), ū) ∈ E ⊂ Rn × L∞((T0, T1); Rm),(3.8)

F ◦ G(a, b) = (a, b), ∀(a, b) ∈ Bν(x̄(T0))×Bν(x̄(T1)).(3.9)

Let us write G(a, b) = (G1(a, b),G2(a, b)) ∈ Rn × L∞((T0, T1); Rm). Let us take

(a, b) ∈ Bν(x̄(T0))×Bν(x̄(T1)).
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From (3.9), we get that G1(a, b) = a and that, if x : [T0, T1] → Rn is the solution of
the Cauchy problem

ẋ = f(x,G2(a, b)(t)), x(T0) = a,

then x(T1) = b. Finally, since G is of class C1, it follows from (3.8) that there exists
C > 0 such that, ∀(a, b) ∈ Bν(x̄(T0))×Bν(x̄(T1)),

‖G2(a, b)− ū‖L∞((T0,T1);Rm) 6 C|(a, b)− (x̄(T0), x̄(T1))|
6 C(|a− x̄(T0)|+ |b− x̄(T1)|).

This concludes the proof of Theorem 3.6.

3.1.2. Local controllability at an equilibrium point. In this section the
trajectory (x̄, ū) is constant: there exists (xe, ue) ∈ O such that

(x̄(t), ū(t)) = (xe, ue), t ∈ [T0, T1].

In particular,

f(xe, ue) = 0,(3.10)

i.e., (xe, ue) is an equilibrium of the control system ẋ = f(x, u) (see Definition 3.1
on page 125). Following Definition 3.5, we introduce the following definition.

Definition 3.7. Let (xe, ue) be an equilibrium of the control system ẋ =
f(x, u). The linearized control system at (xe, ue) of the control system ẋ = f(x, u)
is the linear control system

ẋ =
∂f

∂x
(xe, ue)x+

∂f

∂u
(xe, ue)u(3.11)

where, at time t, the state is x(t) ∈ Rn and the control is u(t) ∈ Rm.

Then, from Theorem 3.6 on the previous page, we get the following classi-
cal theorem, which is a special case of a theorem due to Lawrence Markus [343,
Theorem 3] (see also [309, Theorem 1, page 366]).

Theorem 3.8. Let (xe, ue) be an equilibrium point of the control system ẋ =
f(x, u). Let us assume that the linearized control system of the control system ẋ =
f(x, u) at (xe, ue) is controllable. Then the nonlinear control system ẋ = f(x, u) is
small-time locally controllable at (xe, ue).

Theorem 3.8, which is easy and natural, is very useful. Let us recall that one
can easily check whether the controllability of the linearized control system of the
control system ẋ = f(x, u) at (xe, ue) holds by using the Kalman rank condition
(Theorem 1.16 on page 9).

Let us give an application in the following example.

Example 3.9. This example deals with the control of the attitude of a rigid
spacecraft with control torques provided by thruster jets. Let η = (φ, θ, ψ) be the
Euler angles of a frame attached to the spacecraft representing rotations with respect
to a fixed reference frame. Let ω = (ω1, ω2, ω3) be the angular velocity of the frame
attached to the spacecraft with respect to the reference frame, expressed in the frame
attached to the spacecraft, and let J be the inertia matrix of the satellite. The
evolution of the spacecraft is governed by the equations

Jω̇ = S(ω)Jω +
m∑
i=1

uibi, η̇ = A(η)ω,(3.12)



3.2. LIE ALGEBRA RANK CONDITION 129

where the ui ∈ R, 1 6 i 6 m, are the controls. The b1, . . . , bm are m fixed vectors
in R3 (uibi ∈ R3, 1 6 i 6 m are the torques applied to the spacecraft), S(ω) is the
matrix representation of the wedge-product, i.e.,

(3.13) S(ω) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 ,

and

(3.14) A(η) =

 cos θ 0 sin θ
sin θ tanφ 1 − cos θ tanφ
− sin θ/ cosφ 0 cos θ/ cosφ

 .

The state of our control system is (η1, η2, η3, ω1, ω2, ω3)tr ∈ R6 and the control is
(u1, . . . , um)tr ∈ Rm. Concerning the problem of controllability of (3.14), without
loss of generality, we assume that the vectors b1, . . . , bm are linearly independent
and that 1 6 m 6 3. We consider the equilibrium (0, 0) ∈ R6+m. The linearized
control system at this equilibrium is

η̇ = ω, ω̇ =
i=m∑
i=1

uiJ
−1bi(3.15)

where the state is (η1, η2, η3, ω1, ω2, ω3)tr ∈ R6 and the control is (u1, . . . , um)tr ∈
Rm. Using the Kalman rank condition (Theorem 1.16 on page 9), one easily checks
that the linear control system (3.15) is controllable if and only if m = 3. Hence,
from Theorem 3.8 on the previous page, we get that, if m = 3, the control system
(3.12) is small-time locally controllable at the equilibrium (0, 0) ∈ R6 × R3. Of
course for m 6 2, one cannot deduce anything about the nonlocal controllability of
(3.12) from the nonlocal controllability of the linearized control system (3.15). We
will study the small-time local controllability of (3.12) for m 6 2 in Example 3.35
on page 144.

3.2. Iterated Lie brackets and the Lie algebra rank condition

Let us first recall the definition of the Lie bracket of two vector fields.

Definition 3.10. Let Ω be a nonempty open subset of Rn. Let

X := (X1, . . . , Xn)tr ∈ C1(Ω; Rn),
Y := (Y 1, . . . , Y n)tr ∈ C1(Ω; Rn).

Then the Lie bracket [X,Y ] := ([X,Y ]1, . . . , [X,Y ]n)tr of X and Y is the element
in C0(Ω; Rn) defined by

[X,Y ](x) := Y ′(x)X(x)−X ′(x)Y (x), ∀x ∈ Ω.(3.16)

In other words, the components of [X,Y ](x) are

[X,Y ]j(x) =
n∑
k=1

Xk(x)
∂Y j

∂xk
(x)− Y k(x)

∂Xj

∂xk
(x), ∀j ∈ {1, . . . , n}, ∀x ∈ Ω.(3.17)

For X ∈ C∞(Ω; Rn), Y ∈ C∞(Ω; Rn) and Z ∈ C∞(Ω; Rn), one has the Jacobi
identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.(3.18)
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Note also that, if X ∈ C∞(Rn; Rn) and Y ∈ C∞(Rn; Rn) are defined by

X(x) := Ax, Y (x) := Bx, ∀x ∈ Rn,

where A ∈ Mn,n(R) and B ∈ Mn,n(R) are given, then straightforward computa-
tions show that

[X,Y ](x) = (BA−AB)x, ∀x ∈ Rn.(3.19)

The following definition will also be useful.

Definition 3.11. Let Ω be a nonempty open subset of Rn, X ∈ C∞(Ω; Rn)
and Y ∈ C∞(Ω; Rn). One defines, by induction on k ∈ N, adkXY ∈ C∞(Ω; Rn) by

ad0
XY = Y,

adk+1
X Y = [X, adkXY ], ∀k ∈ N.

Before giving the Lie algebra rank condition, let us first explain why it is quite
natural that Lie brackets appear for controllability conditions:

- for necessary conditions of controllability because of the Frobenius theorem
(Theorem 3.25 on page 141),

- for sufficient conditions because of the following observation. Let us assume
that m = 2 and that f(x, u) = u1f1(x) + u2f2(x) with f1 ∈ C∞(Ω),
f2 ∈ C∞(Ω), where Ω is a nonempty open subset of Rn. Let us start from
a given initial state a ∈ Ω. Then one knows how to move in the (oriented)
directions ±f1(a) even with small control: just take u1 = η 6= 0 and u2 = 0.
Similarly, one knows how to move in the (oriented) directions ±f2(a). Let
us explain how to move in the direction of the Lie bracket [f1, f2](a).

Let Ψi : R × Rn → R, (t, x) → Ψt
i(x) be the flow associated to fi (for

i ∈ {1, 2}), that is
∂Ψi

∂t
= fi(Ψi), Ψ0

i (x) = x.(3.20)

Let η1 ∈ R and η2 ∈ R be given. Then straightforward computations show
that

lim
ε→0

(Ψ−η2ε
2 (Ψ−η1ε

1 (Ψη2ε
2 (Ψη1ε

1 (a)))))− a

ε2
= η1η2[f1, f2](a).(3.21)

Hence, if one starts at a, that is, if x(0) = a, and if one takes
(u1(t), u2(t)) = (η1, 0), for t ∈ (0, ε),
(u1(t), u2(t)) = (0, η2), for t ∈ (ε, 2ε),
(u1(t), u2(t)) = (−η1, 0), for t ∈ (2ε, 3ε),
(u1(t), u2(t)) = (0,−η2), for t ∈ (3ε, 4ε),

then, as ε→ 0,

x(4ε) = a+ η1η2ε
2[f1, f2](a) + o(ε2).(3.22)

Hence we have indeed succeeded to move in the (oriented) directions ±[f1, f2](a).
Even in the case of a control system with a drift term, Lie brackets also appear

naturally. The drift term is the vector field x 7→ f(x, ue). One says that one has a
driftless control system if this vector field is identically equal to 0. Let us consider
for example the case where m = 1 and

f(x, u) = f0(x) + uf1(x),(3.23)
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with

f0(a) = 0.(3.24)

(Hence, if ue = 0, the drift is f0.) We start again at time 0 at the state a. One
can clearly move in the (oriented) directions ±f1(a). Let η ∈ R be fixed and let us
consider, for ε > 0, the control defined on [0, 2ε] by

u(t) = −η for t ∈ (0, ε),

u(t) = η for t ∈ (ε, 2ε).

Let x : [0, 2ε] → Rn be the solution of

ẋ = f0(x) + u(t)f1(x), x(0) = a.

Then, straightforward computations show that, as ε→ 0,

x(2ε) = a+ ε2η[f0, f1](a) + o(ε2).(3.25)

Hence we have succeeded to move in the (oriented) directions ±[f0, f1](a). Of
course the case of a system with a drift term is more complicated than the case
without drift. For example, in the previous driftless case, one can keep going and
for example move in the direction of [[f1, f2], f1](a). However, in the case with the
drift term, one cannot always move in the direction of [[f1, f0], f1](a). Indeed, let
us consider, for example, the following control system:

ẋ1 = x2
2, ẋ2 = u,(3.26)

where the state is x = (x1, x2)tr ∈ R2 and the control is u ∈ R. Hence

f0(x) = (x2
2, 0)tr, f1(x) = (0, 1)tr.

One easily checks that
[[f1, f0], f1](x) = −(2, 0)tr.

However, for a trajectory t → (x(t), u(t)) of (3.26), t → x1(t) is a nondecreasing
function. Hence one cannot move in the direction of [[f1, f0], f1](0) for the control
system (3.26).

But there are “iterated” Lie brackets which are indeed “good” for systems with
a drift term. Let us give the simplest one. We start with a definition.

Definition 3.12. The control system ẋ = f(x, u) is said to be control affine if
there are m+ 1 maps fi , i ∈ {0, . . . ,m}, such that

f(x, u) := f0(x) +
m∑
i=1

uifi(x), ∀(x, u) ∈ O.

Let us assume that the control system ẋ = f(x, u) is control affine and that
O = Ω× Rm, where Ω is a nonempty open subset of Rn. Hence

ẋ = f(x, u) := f0(x) +
m∑
i=1

uifi(x)

with fi ∈ C∞(Ω; Rn), i ∈ {0, . . . ,m}. Let a ∈ Ω be such that

f0(a) = 0.
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We explain how to move in the (oriented) directions ±adkf0fj(a), for every k ∈ N and
for every j ∈ {1, . . . ,m}. Let us fix j ∈ {1, . . . ,m} and k ∈ N. Let φ ∈ Ck([0, 1])
be such that

φ(l)(0) = φ(l)(1) = 0, ∀l ∈ {0, . . . , k − 1}.(3.27)

Let η ∈ (0, 1] and let ε ∈ [0, 1]. Let us define u : [0, η] → Rm, t 7→ (u1(t), . . . , um(t))tr

by

ui(t) = 0 if i 6= j, ∀t ∈ [0, η],(3.28)

uj(t) = εφ(k)(t/η), ∀t ∈ [0, η].(3.29)

Let x : [0, η] → Rn be the solution of the Cauchy problem

ẋ = f0(x) +
m∑
i=1

ui(t)fi(x), x(0) = a.

Let us check that

x(η) = a+ εηk+1

(∫ 1

0

φ(τ)dτ
)

adkf0fj(a) +O(ε2 + ηk+2) as |ε|+ |η| → 0.(3.30)

Let A ∈ L(Rn; Rn) and B ∈ L(Rm; Rn) be defined by

A :=
∂f0
∂x

(a), B :=
∂f

∂u
(a, 0) = (f1(a), . . . , fm(a)).

Let y : [0, η] → Rn be the solution of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = 0.

Using Gronwall’s lemma and the change of time τ := t/η, one easily checks that
there exist C > 0 and ε0 > 0 such that, for every ε ∈ [0, ε0] and for every η ∈ (0, 1],

|x(t)− (a+ y(t))| 6 Cε2, ∀t ∈ [0, η].(3.31)

Let us estimate y(η). One has, using (3.27), (3.28), (3.29), integrations by parts
and the change of variable τ := t/η,

y(η) = ε

∫ η

0

φ(k)(t/η)e(η−t)Afj(a)dt

= −ηε
∫ η

0

φ(k−1)(t/η)e(η−t)AAfj(a)dt

...

= (−1)kηkε
∫ η

0

φ(t/η)e(η−t)AAkfj(a)dt

= (−1)kηk+1ε

∫ 1

0

φ(τ)eη(1−τ)AAkfj(a)dτ.

Hence, for some C > 0 independent of ε ∈ [0,+∞) and of η ∈ (0, 1],∣∣∣∣y(η)− (−1)kηk+1ε

(∫ 1

0

φ(τ)dτ
)
Akfj(a)

∣∣∣∣ 6 Cεηk+2.(3.32)

But, as one easily checks,

adkf0fj(a) = (−1)kAkfj(a).(3.33)
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Equality (3.30) follows from (3.31), (3.32) and (3.33). Note that by taking η =
ε1/(2k+2) in (3.30), one gets

x(η) = a+ ε3/2
(∫ 1

0

φ(τ)dτ
)

adkf0fj(a) +O(ε(3/2)+(1/(2k+2))) as ε→ 0,(3.34)

which shows that one can move in the (oriented) directions ±adkf0fj(a). From this
fact one gets the small-time local controllability at the equilibrium (a, 0) of the
control system ẋ = f0(x) +

∑m
i=1 ui(t)fi(x) if

Span{adkf0fj(a); k ∈ N, j ∈ {1, . . . ,m}} = Rn.(3.35)

This can be done, for example, by using the Brouwer fixed-point theorem, as does
Halina Frankowska in [176, 177] (see also Section 3.5.2) or a constructive iterative
scheme as Matthias Kawski does in [270].

Note that (3.35) is equivalent to the fact that the linearized control system of
ẋ = f(x, u) = f0(x) +

∑m
i=1 uifi(x) around the equilibrium point (xe, ue) = (a, 0)

is controllable. This indeed follows from (3.33) and the Kalman rank condition
(Theorem 1.16 on page 9). (Note that the equality

Span{adkf0fj(a); k ∈ N, j ∈ {1, . . . ,m}}

= Span{adkf0fj(a); k ∈ {0, . . . , n− 1}, j ∈ {1, . . . ,m}}

follows from the Cayley-Hamilton theorem (see (1.41)) and (3.33)). Hence, with
these iterated Lie brackets adkf0fj(a), we just recover the linear test, i.e., Theo-
rem 3.8 on page 128.

Let us now give a necessary condition for local controllability. We start with
some new definitions.

Definition 3.13. Let Ω be a nonempty open subset of Rn and let F be a family
of vector fields of class C∞ in Ω. We denote by Lie(F) the Lie algebra generated by
the vector fields in F , i.e., the smallest linear subspace E of C∞(Ω; Rn) satisfying
the following two conditions:

F ⊂ E,(3.36)

(X ∈ E and Y ∈ E) ⇒ ([X,Y ] ∈ E).(3.37)

(Such a smallest subspace exists: just note that E := C∞(Ω; Rn) satisfies (3.36) and
(3.37) and take the intersection of all the linear subspaces of C∞(Ω; Rn) satisfying
(3.36) and (3.37).)

For the next definition, let Ω be the open subset of Rn defined by

Ω := {x ∈ Rn; (x, ue) ∈ O}.
For every α ∈ Nm,

∂|α|f

∂uα
(·, ue) ∈ C∞(Ω; Rn).

Definition 3.14 ([106]). The strong jet accessibility subspace of the control
system ẋ = f(x, u) at an equilibrium point (xe, ue) is the linear subspace of Rn,
denoted by A (xe, ue), defined by

A (xe, ue) :=
{
g(xe); g ∈ Lie

(
∂|α|f

∂uα
(·, ue), α ∈ Nm}

)}
.(3.38)
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Example 3.15. Let us assume that, for some open neighborhood ω of xe in Rn,
there exist r > 0, and f0, f1, . . ., fm in C∞(ω; Rn) such that, for every x ∈ ω and
for every u = (u1, . . . , um)tr ∈ Rm such that |u− ue| < r,

(x, u) ∈ O,

f(x, u) = f0(x) +
m∑
i=1

uifi(x).

Then

A (xe, ue) = {g(xe); g ∈ Lie ({f0, f1, . . . , fm})} .
Let us now define the Lie algebra rank condition.

Definition 3.16. The control system ẋ = f(x, u) satisfies the Lie algebra rank
condition at an equilibrium (xe, ue) if

A(xe, ue) = Rn.(3.39)

With these definitions, one has the following well-known necessary condition for
small-time local controllability of analytic control systems due to Robert Hermann
[221] and Tadashi Nagano [372] (see also [465] by Héctor Sussmann).

Theorem 3.17. Assume that the control system ẋ = f(x, u) is small-time
locally controllable at the equilibrium point (xe, ue) and that f is analytic. Then the
control system ẋ = f(x, u) satisfies the Lie algebra rank condition at (xe, ue).

Note that the assumption on analyticity cannot be removed. Indeed, consider
the following case

n = m = 1, O = R× R, (xe, ue) = (0, 0) ∈ R× R,

f(x, u) = ue−1/u2
if u 6= 0, f(x, 0) = 0.

Then A(0, 0) = 0. However, the control system ẋ = f(x, u) is small-time control-
lable at the equilibrium point (xe, ue).

The necessary condition for small-time controllability given in Theorem 3.17
is sufficient for important control systems such as, for example, the linear control
systems ẋ = Ax+Bu. This follows from the Kalman rank condition (Theorem 1.16
on page 9) and the fact that

A(xe, ue) = Span {AiBu; i ∈ {0, . . . , n− 1}, u ∈ Rm}
(see (3.33)). It is also a sufficient condition for driftless control affine systems,
that is, in the case ẋ =

∑m
i=1 uifi(x); this is the classical Rashevski-Chow theorem

[398, 94] that we recall and prove in the following section.

3.3. Controllability of driftless control affine systems

In fact, for driftless control affine systems one also has a global controllability
result as shown by the following theorem proved independently by Petr Rashevski
in [398] and by Wei-Liang Chow in [94].

Theorem 3.18. Let Ω be a connected nonempty open subset of Rn. Let us
assume that O = Ω× Rm and that for some f1, . . . , fm ∈ C∞(Ω; Rn),

f(x, u) =
m∑
i=1

uifi(x), ∀(x, u) ∈ Ω× Rm.
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Let us also assume that

A(x, 0) = Rn, ∀x ∈ Ω.(3.40)

Then, for every (x0, x1) ∈ Ω × Ω and for every T > 0, there exists u belonging to
L∞((0, T ); Rm) such that the solution of the Cauchy problem

ẋ = f(x, u(t)), x(0) = x0,

is defined on [0, T ] and satisfies x(T ) = x1.

Theorem 3.18 is a global controllability result. In general such a controllability
result does not imply small-time local controllability. However, the proof of Theo-
rem 3.18 given below also gives the small-time local controllability. More precisely,
one also has the following theorem.

Theorem 3.19. Let us assume that Ω is a nonempty open subset of Rn, that
Ω× {0} ⊂ O and that, for some f1, . . . , fm ∈ C∞(Ω; Rn),

f(x, u) =
m∑
i=1

uifi(x), ∀(x, u) ∈ O.

Let xe ∈ Ω be such that

A(xe, 0) = Rn.

Then the control system ẋ = f(x, u) is small-time locally controllable at (xe, 0) ∈ O.

Example 3.20. Let us consider the following control system (usually called the
nonholonomic integrator)

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1.(3.41)

Thus n = 3, m = 2, Ω = R3 and, for every x = (x1, x2, x3)tr ∈ R3,

f1(x) :=

 1
0
−x2

 , f2(x) :=

 0
1
x1

 .(3.42)

One easily checks that, for every x = (x1, x2, x3)tr ∈ R3,

[f1, f2](x) =

0
0
2

 .(3.43)

From (3.42) and (3.43),

Span {f1(x), f2(x), [f1, f2](x)} = R3,∀x ∈ R3.

Hence the control system (3.41) satisfies the Lie algebra rank condition (3.40) at
every point x ∈ R3. Therefore, by Theorem 3.18, this control system is globally
controllable and, by Theorem 3.19, it is small-time locally controllable at every
equilibrium (xe, ue) = (xe, 0) ∈ R3 × R2.

Proof of Theorem 3.18. Let us give a proof of this theorem which does not
require any knowledge of submanifolds or geometry. Just in order to simplify the
notations, we assume that the vector fields f1, . . . , fm are complete, which means
that the associated flow maps (t, x) 7→ Ψt

i(x) (see (3.20)) are defined on the whole
R × Ω. In fact, this can always be assumed by replacing if necessary fi(x) by
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f̃i(x) = ρ(x)(1 + |fi(x)|2)−1fi(x) where ρ ∈ C∞(Ω, (0, 1]) is such that, if Ω 6= Rn,
there exists C > 0 such that

ρ(x) 6 Cdist(x,Rn \ Ω), ∀x ∈ Ω.(3.44)

(The existence of such a ρ can be easily proved by means of a partition of unity
argument; see, for example, [464, Theorem 2, Chapter 6, page 171] for a much
more precise existence result.) Indeed:

- The vector fields f̃i are complete.
- The condition (3.40) implies the same condition for the function f(x, u) :=∑m

1 uif̃i(x).
- The conclusion of Theorem 3.18 for f(x, u) :=

∑m
1 uif̃i(x) implies the

conclusion of Theorem 3.18 for f(x, u) :=
∑m

1 uifi(x).
Let us first point out that, for every t < 0,

(ẏ = −fi(y), y(0) = x) ⇒ (Ψt
i(x) = y(|t|)).(3.45)

Let A(a) ⊂ Ω be the set consisting of the Ψtk
ik
◦Ψtk−1

ik−1
◦ . . . ◦Ψt1

i1
(a) where

k ∈ N \ {0},(3.46)

ij ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , k},(3.47)

tj ∈ R, ∀j ∈ {1, . . . , k}.(3.48)

Let us point out that it suffices to prove that

A(a) = Ω, ∀a ∈ Ω.(3.49)

Indeed, let k, (ij)j∈{1,...,k} and (tj)j∈{1,...,k} be such that (3.46), (3.47) and (3.48)
hold. Let a ∈ Ω and let

b := Ψtk
ik
◦Ψtk−1

ik−1
◦ . . . ◦Ψt1

i1
(a) ∈ Ω.(3.50)

Let τ0 = 0 and, for j ∈ {1, . . . , k}, let

τj :=
j∑
i=1

|ti|.

Let ū ∈ L∞((0, τk); Rm) be defined by

ū(t) = εjeij , ∀t ∈ (τj−1, τj), ∀j ∈ {1, . . . , k},

where (e1, . . . , em) is the canonical basis of Rm and εj := Sign(tj), j ∈ {1, . . . , k}.
Let x̄ ∈ C0([0, τk]; Ω) be the solution of the Cauchy problem

˙̄x = f(x̄, ū(t)), x̄(0) = a.

Clearly (see also (3.45)),

x̄(t) = Ψε1t
i1

(a), ∀t ∈ [0, τ1].

Similarly, by induction on j, one easily checks that

x̄(t) = Ψεj(t−τj−1)
ij

◦Ψtj−1
ij−1

◦ . . . ◦Ψt1
i1

(a), ∀t ∈ (τj−1, τj), ∀j ∈ {2, . . . , k}.(3.51)

From (3.50) and (3.51), one has

x̄(τk) = b.
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Let T > 0 and let (x̃, ũ) ∈ C0([0, T ]; Ω)× L∞((0, T ); Rm) be defined by

x̃(t) = x̄

(
τkt

T

)
, ∀t ∈ [0, T ], ũ(t) =

τk
T
ū

(
τkt

T

)
, ∀t ∈ (0, T ).

Then (x̃, ũ) is a trajectory of the control system ẋ = f(x, u) such that x̃(0) = a
and x̃(T ) = b. Hence property (3.49) implies Theorem 3.18.

Let us now prove that property (3.49) holds. From the definition of A(d) for
d ∈ Ω, one easily gets that

(3.52) (b ∈ A(a) and c ∈ A(b)) ⇒ (c ∈ A(a)), ∀(a, b, c) ∈ Ω× Ω× Ω.

Moreover, since

Ψt
i ◦Ψ−t

i (x) = x, ∀x ∈ Ω, ∀t ∈ R, ∀i ∈ {1, . . . ,m},

one has

b = Ψtk
ik
◦Ψtk−1

ik−1
◦ . . . ◦Ψt1

i1
(a) ⇒ a = Ψ−t1

i1
◦ . . . ◦Ψ−tk−1

ik−1
◦Ψ−tk

ik
(b)

and therefore

(3.53) (b ∈ A(a) ⇒ a ∈ A(b)), ∀(a, b) ∈ Ω× Ω.

Since a ∈ A(a), it follows from (3.52) and (3.53) that the relation

b is related to a if and only if b ∈ A(a)(3.54)

defines an equivalence relation on Ω. Since Ω is connected, we get that, for every
a ∈ Ω, A(a) = Ω if one has

A(a) is an open subset of Ω,∀a ∈ Ω.(3.55)

(Note that Ω is the disjoint union of the equivalence classes of the relation (3.54)
and that the equivalent class of a is A(a).) Let us assume, for the moment, that
the following lemma holds.

Lemma 3.21. Under assumption (3.40) of Theorem 3.18,

A(a) has a nonempty interior,∀a ∈ Ω.

We assume (3.40). Let us prove (3.55) within the following two steps
Step 1. Let us prove that

(3.56) A(a) is a neighborhood of a, ∀a ∈ Ω.

From Lemma 3.21, there exists b ∈ A(a) such that A(a) is a neighborhood of b.
Since b ∈ A(a), there exist k ∈ N \ {0}, k indices i1, . . . , ik in {1, . . . ,m} and k real
numbers t1, . . . , tk such that b = ψ(a) with ψ = Ψtk

ik
◦ Ψtk−1

ik−1
◦ . . . ◦ Ψt1

i1
. Since ψ is

continuous, ψ−1(A(a)) is a neighborhood of a. Moreover, ψ is a homeomorphism
of Ω: one has ψ−1 = Ψ−t1

i1
◦ . . . ◦Ψ−tk−1

ik−1
◦Ψ−tk

ik
. This expression of ψ−1 and (3.52)

show that ψ−1(A(a)) ⊂ A(a), which concludes the proof of (3.56).
Step 2. A(a) is an open subset of Ω. Indeed, let b ∈ A(a). Then A(b) is a

neighborhood of b. However, from (3.52), A(b) ⊂ A(a). Hence, by (3.56) applied to
b, A(a) is a neighborhood of b.

It only remains to prove Lemma 3.21. A key tool for its proof is the following
classical lemma.



138 3. CONTROLLABILITY OF NONLINEAR SYSTEMS IN FINITE DIMENSION

Lemma 3.22. Let k be in {1, . . . , n− 1}. Let ϕ : Rk → Ω, y 7→ ϕ(y) be a map
of class C∞ in a neighborhood of y ∈ Rk. Assume that ϕ′(y) is one-to-one. Then
there exist an open subset ω of Rk containing y, an open subset U of Ω containing
ϕ(ω) and a map V ∈ C∞(U ; Rn−k) such that

V (ϕ(y)) = 0, ∀y ∈ ω,

kerV ′(ϕ(y)) = ϕ′(y)(Rk), ∀y ∈ ω.

Proof of Lemma 3.22. Let ` be a linear map from Rn−k to Rn such that

(3.57) `(Rn−k) + ϕ′(y)(Rk) = Rn.

Let
ψ : Rk × Rn−k → Rn, (y, z) 7→ ψ(y, z) = ϕ(y) + `(z).

From (3.57), ψ′(y, 0) is onto and therefore invertible. By the inverse function theo-
rem, there exist an open subset U1 of Rk ×Rn−k containing (y, 0), an open subset
U of Rn containing ϕ(y) (= ψ(y, 0)) and T ∈ C∞(U ;U1) such that

(ψ(y, z) = x and (y, z) ∈ U1) ⇒ (x ∈ U and (y, z) = T (x)).

Let P2 : Rk × Rn−k → Rn−k , (y, z) 7→ z. One easily sees that it suffices to take
(i) for ω, an open subset of Rk containing y and such that ω × {0} ⊂ U1,
(ii) V = P2 ◦ T .

This concludes the proof of Lemma 3.22.

Let us now prove Lemma 3.21. Let a ∈ Ω. Let us first point out that the
vectors f1(a), . . . , fm(a) cannot all be equal to 0. Indeed, if all these vectors are
equal to 0, then A(a, 0) = 0 (note that, if g ∈ C∞(Ω; Rn) and h ∈ C∞(Ω; Rn) are
such that g(a) = 0 and h(a) = 0, then [g, h](a) = 0), in contradiction with (3.40).
Let i1 ∈ {1, . . . ,m} be such that

fi1(a) 6= 0.(3.58)

Let ϕ : R → Rn be defined by ϕ(t) := Ψt
i1

(a). We have ϕ′(0) = fi1(a). Hence, by
(3.58), ϕ′(0) 6= 0. If n = 1, {Ψt

i1
(a); t ∈ R} is a neighborhood of a. Hence we may

assume that n > 2. We apply Lemma 3.22 with k = 1, and y = 0. We get the
existence of ε1 > 0, of an open subset Ω1 of Ω containing {Ψt

i1
(a) ; t ∈ (−ε1, ε1)}

and of V ∈ C∞(Ω; Rn−1) such that

V (Ψt
i1(a)) = 0, ∀t ∈ (−ε1, ε1),(3.59)

kerV ′(Ψt
i1(a)) = R fi1(Ψ

t
i1(a)), ∀t ∈ (−ε1, ε1).(3.60)

Then there exist t11 ∈ (−ε1, ε1) and i2 ∈ {1, . . . ,m} such that

V ′(Ψt11
i1

(a))fi2(Ψ
t11
i1

(a)) 6= 0.

Indeed, if this is not the case, then

E := {g ∈ C∞(Ω; Rn) ; V ′(Ψt
i1(a))g(Ψ

t
i1(a)) = 0, ∀t ∈ (−ε1, ε1)}

is a vector subspace of C∞(Ω; Rn) which contains the set {f1, . . . , fm}. Let us
assume, for the moment, that

(g ∈ E and h ∈ E) ⇒ ([g, h] ∈ E).(3.61)
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Ψt11
i1

(a)

a
fi1(a)

fi1(Ψ
t11
i1

(a))

fi2(Ψ
t11
i1

(a))

t→ Ψt
i2

(Ψt11
i1

(a))

t→ Ψt
i1

(a)

Figure 1. fi1(Ψ
t11
i1

(a)), fi2(Ψ
t11
i1

(a)) are linearly independent

Then
Lie (f1, . . . , fm) ⊂ E

and therefore
A(a, 0) ⊂ Ker V ′(a),

in contradiction with (3.40) for x = a and (3.60) for t = 0.
Let us check (3.61). This is a consequence of the following lemma.

Lemma 3.23. Let θ ∈ C∞(Ω; Rn−1) be such that

(3.62) θ(Ψt
i1(a)) = 0, ∀t ∈ (−ε1, ε1)

and F ∈ C∞(Ω; Rn) be such that

(3.63) V ′(Ψt
i1(a))F (Ψt

i1(a)) = 0, ∀t ∈ (−ε1, ε1).
Then

(3.64) θ′(Ψt
i1(a))F (Ψt

i1(a)) = 0, ∀t ∈ (−ε1, ε1).

Indeed, it suffices to apply this lemma to (θ, F ) := (θ̄, F̄ ) := (∇V · g, h) and to
(θ, F ) := (θ̃, F̃ ) := (∇V · h, g) and to check that

∇θ̃ · F̃ −∇θ̄ · F̄ = ∇V · [g, h].(3.65)

Let us now prove Lemma 3.23. Differentiating (3.62) with respect to t we get

(3.66) θ′(Ψt
i1(a)) fi1(Ψ

t
i1(a)) = 0, ∀t ∈ (−ε1, ε1).

But (3.60) and (3.63) imply that F (Ψt
i1

(a)) = λ(t)fi1(Ψ
t
i1

(a)), with λ(t) ∈ R for
t ∈ (−ε1, ε1). This implies, together with (3.66), that (3.64) holds. Thus Lemma
3.23 is proved.
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Therefore, there exist t11 ∈ (−ε1, ε1) and i2 ∈ {1, . . . ,m} such that

(3.67) V ′(Ψt11
i1

(a)) fi2(Ψ
t1
i1

(a)) 6= 0,

which, together with (3.60), implies that

(3.68) fi1(Ψ
t11
i1

(a)) and fi2(Ψ
t11
i1

(a)) are linearly independent

(see figure 1).
Let ϕ : R2 → Rn, (t1, t2) 7→ Ψt2

i2
◦Ψt1

i1
(a). One has ϕ(R2) ⊂ A(a) and

∂ϕ

∂t2
(t11, 0) = fi2(Ψ

t11
i1

(a)),

∂ϕ

∂t1
(t11, 0) = fi1(Ψ

t11
i1

(a)).

In particular, with (3.68), ϕ′(t11, 0) is one-to-one. If n = 2, ϕ′(t11, 0) is then invertible
and the inverse function theorem gives us that ϕ(R2) (and therefore A(a)) is a
neighborhood of ϕ(t11, 0). Hence we may assume that n > 3 and one proceeds as
above. For convenience let us briefly sketch how it is done. We apply Lemma 3.22
on page 138 with k = 2, y = (t11, 0). One gets the existence of an open subset ω of R2

containing y, an open subset U of Ω containing ϕ(ω) and a map V ∈ C∞(U ; Rn−2)
such that

V (ϕ(t1, t2)) = 0, ∀(t1, t2) ∈ ω,
kerV ′(ϕ(t1, t2)) = ϕ′(t1, t2)(R2), ∀(t1, t2) ∈ ω.(3.69)

Once more, one points out that there exist (t21, t
2
2) ∈ ω and i3 ∈ {1, . . . ,m} such

that

(3.70) V ′(ϕ(t21, t
2
2))fi3(ϕ(t21, t

2
2)) 6= 0.

Indeed, if this is not the case, then

E := {f ∈ C∞(Ω; Rn); V ′(ϕ(y))f(ϕ(y)) = 0, ∀y ∈ ω}

is a vector subspace of C∞(Ω; Rn) which contains the set {f1, . . . , fm}. As above,
one checks that (3.61) holds and therefore

Lie (f1, . . . , fm) ⊂ E.

Hence
A(ϕ(y), 0) ⊂ Ker V ′(ϕ(y)),

which leads to a contradiction with (3.40). Let

ψ : R3 → Ω, (t1, t2, t3) 7→ Ψt3
i3
◦Ψt2

i2
◦Ψt1

i1
(a).

Then ψ(R3) ⊂ A(a). From (3.69) and (3.70), we get that

ψ′(t21, t
2
2, 0)(R3) = R fi3(ϕ(t21, t

2
2))⊕ kerV ′(ϕ(t21, t

2
2)).

Therefore ψ′(t21, t
2
2, 0) is one-to-one (note that kerV ′(x) is of dimension at least

2 for every x ∈ ϕ(ω)). If n = 3, ψ′(t21, t
2
2, 0) is then invertible and the inverse

function theorem gives us that ψ(R3), and therefore also A(a), is a neighborhood of
ψ(t21, t

2
2, 0). If n > 3, one keeps going (one can easily proceed by induction). This

concludes the proof of Theorem 3.18.



3.4. BAD AND GOOD ITERATED LIE BRACKETS 141

Remark 3.24. Héctor Sussmann and Wensheng Liu have given in [472] an
explicit method to produce trajectories joining two given points for driftless control
affine systems satisfying the Lie algebra rank condition at every (x, 0).

Let us end this section by recalling the Frobenius theorem.

Theorem 3.25. Let us assume again that f1, . . . , fm ∈ C∞(Ω; Rn). Let us also
assume that there exists an integer k ∈ {0, . . . , n} such that, at every point x ∈ Ω,

the dimension of A(x, 0) is k, ∀x ∈ Ω.

Then, for every a ∈ Ω, A(a) is a submanifold of Ω of dimension k.

For a proof of this version of the Frobenius theorem, see, e.g., [258, Theorem
4] (for a more classical local version, see, e.g., [496, Theorem 2.20, page 48]).

Since a trajectory of the control system

ẋ = f(x, u) := f0(x) +
m∑
i=1

uifi(x),

where the state is x ∈ Ω and the control is (u1, . . . , um)tr ∈ Rm, is a trajectory of
the control system

ẋ = u0f0(x) +
m∑
i=1

uifi(x),

where the state is x ∈ Ω and the control is (u0, u1, . . . , um)tr ∈ Rm+1, we get as a
corollary of the Frobenius Theorem 3.25:

Corollary 3.26. Let us assume again that f0, f1, . . . , fm ∈ C∞(Ω; Rn). Let
us also assume that there exists an integer k ∈ {1, . . . , n} such that, at every point
x ∈ Ω,

Span{h(x); h ∈ Lie{f0, f1, . . . , fm}} is of dimension k.

Then, for every x0 ∈ Ω, the set of x1 which can be reached from x0 (i.e., the set of
x1 ∈ Ω such that, for some T > 0 and some u ∈ L∞((0, T ); Rm), the solution of
the Cauchy problem ẋ = f(x, u(t)), x(0) = x0, satisfies x(T ) = x1) is contained in
a submanifold of Ω of dimension k.

3.4. Bad and good iterated Lie brackets

The necessary condition for controllability in the analytic case given in Theo-
rem 3.17 on page 134 is not sufficient in general, as the two following simple control
systems show

n = 1, m = 1, O = R× R, ẋ = u2,(3.71)

n = 2, m = 1, O = R2 × R, ẋ1 = x2
2, ẋ2 = u.(3.72)

(System (3.72) has already been studied on page 131.) The control system (3.71)
(resp. (3.72)) satisfies the Lie algebra rank condition at (0, 0) ∈ R × R (resp.
(0, 0) ∈ R2×R). However, this control system is not small-time locally controllable
at (0, 0) ∈ R × R (resp. (0, 0) ∈ R2 × R). Indeed, whatever the trajectory (x, u) :
[0, T ] → R × R (resp. (x, u) : [0, T ] → R2 × R) of the control system (3.71) (resp.
(3.72)) is, one has x(0) 6 x(T ) (resp. x1(0) 6 x1(T ) with (x1, x2) = xtr).
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Let us now give sufficient conditions for small-time local controllability. To
slightly simplify the notations, we assume that

xe = 0, ue = 0.(3.73)

(In any case, this assumption is not restrictive; just make a translation on the state
and on the control.) We simply say “small-time locally controllable” instead of
“small-time locally controllable at (0, 0)”. 0ur assumption (3.10) is now

f(0, 0) = 0.(3.74)

Let us start with the case of a control affine system, i.e.,

O = Ω× Rm, f(x, u) = f0(x) +
m∑
i=1

uifi(x),

where Ω is an open subset of Rn containing 0 and the fi’s are in C∞(Ω; Rn).
In this case (3.74) is equivalent to f0(0) = 0. Let L(f0, . . . , fm) be the free Lie
algebra generated by f0, . . . , fm and let us denote by Br(f) ⊂ L(f0, . . . , fm) the
set of formal iterated Lie brackets of {f0, f1, . . . , fm}; see [469] for more details and
precise definitions. For example,

h := [[[f0, [f1, f0]], f1], f0] ∈ Br(f),(3.75)

h := [[[[f0, [f1, f0]], f1], f0], [f1, [f2, f1]]] ∈ Br(f).(3.76)

For h ∈ L(f0, . . . , fm), let h(0) ∈ Rn be the “evaluation” of h at 0. For h in Br(f)
and i ∈ {0, . . . ,m}, let δi(h) be the number of times that fi appears in h. For
example,

1. with h given by (3.75), δ0(h) = 3, δ1(h) = 2 and δi(h) = 0, for every
i ∈ {2, . . . ,m},

2. with h given by (3.76), δ0(h) = 3, δ1(h) = 4, δ2(h) = 1 and δi(h) = 0, for
every i ∈ {3, . . . ,m}.

Exercise 3.27. Let

L := Span

{
h(0);h ∈ Br(f) with

m∑
i=1

δi(h) = 1

}
.(3.77)

Prove the following equalities:

L = Span{adkf0fi(0); i ∈ {1, . . . ,m}, k ∈ N},(3.78)

L = Span{adkf0fi(0); i ∈ {1, . . . ,m}, k ∈ {0, 1, . . . , n− 1}}.(3.79)

(Hint for (3.78). Use the Jacobi identity (3.18).)

Let Sm be the group of permutations of {1, . . . ,m}. For π in Sm, let π̃
be the automorphism of L(f0, . . . , fm) which sends f0 to f0 and fi to fπ(i) for
i ∈ {1, . . . ,m}. For h ∈ Br(f), we let

σ(h) :=
∑
π∈Sm

π̃(h) ∈ L(f0, . . . , fm).

For example, if h is given by (3.75) and m = 2, one has

σ(h) = [[[f0, [f1, f0]], f1], f0] + [[[f0, [f2, f0]], f2], f0].

Let us introduce a definition.



3.4. BAD AND GOOD ITERATED LIE BRACKETS 143

Definition 3.28 ([469, Section 7]). For θ ∈ [0,+∞], the control system ẋ =
f0(x) +

∑m
i=1 uifi(x) satisfies the Sussmann condition S(θ) if it satisfies the Lie

algebra rank condition (3.39) at (0, 0) and if, for every h ∈ Br(f) with δ0(h) odd
and δi(h) even for every i in {1, . . . ,m}, σ(h)(0) is in the span of the g(0)’s where
the g’s are in Br(f) and satisfy

θδ0(g) +
m∑
i=1

δi(g) < θδ0(h) +
m∑
i=1

δi(h).(3.80)

with the convention that, when θ = +∞, (3.80) is replaced by δ0(g) < δ0(h).

Héctor Sussmann has proved in [469] the following theorem.

Theorem 3.29. [469, Theorem 7.3] If, for some θ in [0, 1], the control system
ẋ = f0(x) +

∑m
i=1 uifi(x) satisfies the condition S(θ), then it is small-time locally

controllable.

The following result is easy to check.

Proposition 3.30. Let θ be in [0, 1]. Then the control system ẋ = f0(x) +∑m
i=1 uifi(x) satisfies the condition S(θ) if and only if the control system

ẋ = f0(x) +
m∑
i=1

yifi(x), ẏ = u,

where the state is (x, y) ∈ Rn×Rm and the control is u ∈ Rm, satisfies the condition
S (θ/(1− θ)) (with the convention 1/0 = +∞).

This proposition allows us to extend the condition S(θ) to ẋ = f(x, u) in the
following way.

Definition 3.31. Let θ ∈ [0, 1]. The control system ẋ = f(x, u) satisfies the
condition S(θ) if the control system ẋ = f(x, y), ẏ = u satisfies S (θ/(1− θ)).

What is called the Hermes condition is S(0), a condition which was conjectured
to be sufficient for small-time local controllability by Henry Hermes, who has proved
his conjecture in the plane in [225] and has got partial results for more general
systems in [228]. Héctor Sussmann has treated the case of scalar-input (i.e., m = 1)
control affine systems in [468].

It follows from [469] that we have:

Theorem 3.32. If, for some θ in [0, 1], the control system ẋ = f(x, u) satisfies
the condition S(θ), then it is small-time locally controllable.

Proof of Theorem 3.32. Apply [469] to ẋ = f(x, y), ẏ = u with the con-
straint

∫ t
0
|u(s)| ds 6 r (instead of |u| 6 1).

One can find other sufficient conditions for small-time local controllability in
[5] by Andrei Agrachev, in [6, 7] by Andrei Agrachev and Revaz Gamkrelidze, in
[55] by Rosa Maria Bianchini, in [56] by Rosa Maria Bianchini and Gianna Stefani,
in [270] by Matthias Kawski, in [482] by Alexander Tret’yak, and in references of
these papers.
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Example 3.33. If f(x, u) =
∑m
i=1 uifi(x) or if f(x, u) = Ax + Bu (i.e., for

driftless control affine systems and linear control systems), the control system ẋ =
f(x, u) satisfies the Hermes condition if and only if it satisfies the Lie algebra rank
condition at (0, 0). Hence, by Sussmann’s Theorem 3.29 on the preceding page, one
recovers the Rashevski-Chow theorem, i.e., that for driftless control affine systems,
small-time local controllability is implied by the Lie algebra rank condition at (0, 0)
(Theorem 3.19 on page 135) and that the Kalman rank condition

Span {AiBu; i ∈ [0, n− 1], u ∈ Rm} = Rn

implies the controllability of the linear control system ẋ = Ax+Bu (Theorem 1.16
on page 9).

Example 3.34. We take n = 2, m = 1 and

ẋ1 = x3
2, ẋ2 = u.

In other words, our system is

ẋ = f0(x) + uf1(x),

with

f0

(
x1

x2

)
=
(
x3

2

0

)
, f1

(
x1

x2

)
=
(

0
1

)
.

Then

f1

(
0
0

)
=
(

0
1

)
, [f1, [f1, [f1, f0]]]

(
0
0

)
=
(

6
0

)
span R2. Hence our system satisfies the Lie algebra rank condition at (0, 0) ∈
R2 × R. Moreover, if h ∈ Br(f) with δ0(h) odd and δ1(h) even, then h(0) = 0.
Hence our system satisfies the Hermes condition and therefore is small-time locally
controllable.

Example 3.35. Let us go back to the problem of the control of the attitude
of a rigid spacecraft. In this example our control system is (3.12) with b1, . . . , bm
independent and 1 6 m 6 3. Then the following results hold.

- For m = 3, as we have seen in Section 3.1 (page 129), the control system
(3.12) is small-time locally controllable. Bernard Bonnard in [61] (see also
the paper [137] by Peter Crouch) has also proved that the control system
(3.12) is globally controllable in large time (that is, given two states, there
exist a time T > 0 and an open-loop control u ∈ L∞(0, T ) steering the
control system (3.12) from the first state to the second one). His proof relies
on the Poincaré recurrence theorem, as previously introduced by Lawrence
Markus and George Sell in [344], and by Claude Lobry in [334]. For a
recent presentation of this result, we refer to [189, Th.II.23, Chapitre II,
pages 139–140].

- For m = 2, the control system (3.12) satisfies the Lie algebra rank condition
at (0, 0) ∈ R6 × R2 if and only if (see [61, 137])

Span {b1, b2, S(ω)J−1ω; ω ∈ Span {b1, b2}} = R3.(3.81)

Moreover, if (3.81) holds, then:
- The control system (3.12) satisfies Sussmann’s condition S(1), and

so is small-time locally controllable; see [272] by El-Yazid Keräı.
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- The control system (3.12) is globally controllable in large time; this
result is due to Bernard Bonnard [61], see also [137].

- If m = 1, the control system (3.12) satisfies the Lie algebra rank condition
at (0, 0) ∈ R6 × R if and only if (see [61, 137])

Span {b1, S(b1)J−1b1S(ω)J−1ω; ω ∈ Span {b1, S(b1)J−1b1}} = R3.(3.82)

Moreover,
- The control system (3.12) does not satisfy a necessary condition for

small-time local controllability due to Héctor Sussmann [468, Propo-
sition 6.3] (see the next theorem) and so it is not small-time locally
controllable. This result is due to El-Yazid Keräı [272].

- If (3.82) holds, the control system (3.12) is globally controllable in
large time. This result is due to Bernard Bonnard [61]; see also
[137] by Peter Crouch.

For analysis of the small-time local controllability of other underactuated mechanical
systems, let us mention, in particular, [402] by Mahmut Reyhanoglu, Arjan van der
Schaft and Harris McClamroch and Ilya Kolmanovsky.

With the notations we have introduced we can also state the following necessary
condition for small-time local controllability due to Gianna Stefani [463, Theorem
1], which improves a prior result due to Héctor Sussmann [468, Proposition 6.3].

Theorem 3.36. Let us assume that f0 and f1 are analytic in an open neigh-
borhood Ω of 0 ∈ Rn and that

f0(0) = 0.(3.83)

We consider the control system

ẋ = f0(x) + uf1(x),(3.84)

where the state is x ∈ Ω and the control is u ∈ R. Let us also assume that the
control system (3.84) is small-time locally controllable. Then

ad2k
f1 f0(0) ∈ Span {h(0); h ∈ Br(f); δ1(h) 6 2k − 1}, ∀k ∈ N \ {0}.(3.85)

(Let us recall that adpf1f0, p ∈ N, are defined in Definition 3.11 on page 130.)
The prior result [468, Proposition 6.3] corresponds to the case k = 1.

Sketch of the proof of Theorem 3.36. We follow Héctor Sussmann’s proof
of [468, Proposition 6.3]. Let us assume that (3.85) does not hold for k = 1. One
first proves the existence of an analytic function φ on a neighborhood V of 0 such
that

φ(0) = 0,(3.86)

φ′(0)(h(0)) = 0, ∀h ∈ Br(f) such that δ1(h) 6 1,(3.87)

φ′(0)([f1, [f1, f0]]) = 1,(3.88)

φ′(x)(f1(x)) = 0, ∀x ∈ V.(3.89)

To prove the existence of such a φ, let g1, . . . , gn be analytic vector fields defined
on a neighborhood of 0 such that

(g1(0), . . . , gn(0)) is a basis of Rn,
g1 = f1
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and, for some k ∈ {1, . . . , n− 1},

(g1(0), . . . , gk(0)) is a basis of Span {h(0); h ∈ Br(f); δ1(h) 6 1},
gk+1 = [f1, [f1, f0]].

Let us denote by Ψi the flow associated to gi (see (3.20)). Then there exists a
neighborhood V of 0 such that every x ∈ V has a unique expression of the following
form:

x = Ψt1
1 ◦Ψt2

2 ◦ . . . ◦Ψtn−1
n−1 ◦Ψtn

n (0).

Then it is not hard to check that, if we define φ by φ(x) := tk+1, one has (3.86),
(3.87), (3.88) and (3.89).

For the next step, let us introduce some notations. Let r ∈ N \ {0}. For a
multi-index I = (i1, . . . , ir) ∈ {0, 1}r, let fI be the partial differential operator
defined by

fI(θ) = Lfi1
Lfi2

. . . Lfir−1
Lfir

θ.(3.90)

In (3.90) and in the following, for X = (X1, . . . , Xn)tr : Rn → Rn and V : Rn → R,
LXV : Rn → R denotes the (Lie) derivative of V in the direction of X:

LXV :=
i=n∑
i=1

Xi
∂V

∂xi
= V ′(x)X(x).(3.91)

For u ∈ L∞(0, T ), r ∈ N \ {0} and multi-index I = (i1, . . . , ir) ∈ {0, 1}r, we define
uI ∈ L∞(0, T ) by

uI(tr) =
∫ tr

0

∫ tr−1

0

∫ tr−2

0

. . .

∫ t2

0

∫ t1

0

uir (tr−1)uir−1(tr−2)

. . . ui2(t1)ui1(t0)dt0dt1 . . . dtr−2dtr−1, ∀tr ∈ [0, T ],

with

u0(t) = 1 and u1(t) = u(t), t ∈ (0, T ).

(We have slightly modified the notations of [468]: what we call here uI(t) is
denoted

∫ t
0
uI in [468]; see [468, (3.3)].) Let E be the set of all multi-indices

I = (i1, . . . , ir) ∈ {0, 1}r with r ∈ N \ {0}. The next step is the following proposi-
tion.

Proposition 3.37 ([468, Proposition 4.3]). Let φ : Rn → R be an analytic
function on a neighborhood of 0 in Rn such that φ(0) = 0. Then there exists T > 0
such that, for every u ∈ L∞(0, T ) with ‖u‖L∞(0,T ) 6 1, one has∑

I∈E
|uI(t)| |(fI (φ)) (0)| < +∞, ∀t ∈ [0, T ],(3.92)

φ(x(t)) =
∑
I∈E

uI(t) (fI (φ)) (0) , ∀t ∈ [0, T ],(3.93)

where x : [0, T ] → Rn is the solution of the Cauchy problem

ẋ = f0(x) + u(t)f1(x), x(0) = 0.
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We omit the proof of this proposition, which is also explicitly or implicitly
contained in [173, 174] by Michel Fliess, [286] by Arthur Krener, [73] by Roger
Brockett (see also [75]) and [193] by Gilbert Elmer. It can now be found in classical
books in nonlinear control theory; see e.g. [247, Section 3.1]. Let us emphasize
that the right hand side of (3.93) is the Chen-Fliess series, introduced by Kuo-Tsai
Chen in [90] for geometrical purposes, and by Michel Fliess in [174] for control
theory.

Let us analyze the right hand side of (3.93). Using (3.83) (which is always
assumed and is in any case implied by the small-time local controllability of the
control system (3.84)), we get

(fI(φ))(0) = 0, ∀I = (i1, . . . , ir) ∈ E with i1 = 0.(3.94)

By (3.89),

fI(φ) = 0, ∀I = (i1, . . . , ir) ∈ E with ir = 1.(3.95)

Let us now assume that

I = (i1, . . . , ir) ∈ E with i1 = 1 and ik = 0, ∀k ∈ {2, . . . , r}.(3.96)

Let us check that we then have

(fI(φ))(0) = 0.(3.97)

For k ∈ N \ {0}, let 0k be the multi-index (j1, . . . , jk) with jl = 0 for every l ∈
{1, . . . , k}. Then

fI(φ) = Lf1f0r−1(φ) = L[f1,f0]f0r−2(φ) + Lf0Lf1f0r−2(φ).(3.98)

But (3.83) implies that

Lf0Lf1f0r−2(φ)(0) = 0.(3.99)

Similarly to (3.98), we have

L[f1,f0]f0r−2(φ) = L[[f1,f0],f0]f0r−3(φ) + Lf0L[f1,f0]f0r−3(φ).(3.100)

As for (3.99), (3.83) implies that

Lf0L[f1,f0]f0r−3(φ)(0) = 0.

Continuing on, we end up with

fI(φ)(0) = (−1)r−1(Ladr−1
f0

f1
φ)(0),

which, together with (3.87), implies that

fI(φ)(0) = 0.(3.101)

Let us now study the case I = (1, 1, 0). Let v ∈ C0([0, T ]) be defined by

v(t) :=
∫ t

0

u(τ)dτ, ∀t ∈ [0, T ].
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We have

u(1,1,0)(t3) =
∫ t3

0

∫ t2

0

∫ t1

0

u(t1)u(t0)dt0dt1dt2

=
∫ t3

0

∫ t2

0

v̇(t1)v(t1)dt1dt2

=
1
2

∫ t3

0

v(t2)2dt2.

(3.102)

From (3.88) and (3.102), we get

u(1,1,0)(t)(f(1,1,0)(φ))(0) =
1
2

∫ t

0

v(τ)2dτ.(3.103)

Finally, let us assume that I = (i1, . . . , ir) ∈ E is such that

there are at least two l ∈ {1, . . . , r} such that il = 1,(3.104)

i1 = 1 and ir = 0,(3.105)

r > 4.(3.106)

Let us write I = (1, 0k, 1, J) with J := (j1, . . . , jl) ∈ E , k ∈ N and the convention
(1, 00, 1, J) := (1, 1, J). We have l = r− 2− k > 1, l+ k > 2 and jl = 0. Then after
computations which are detailed in [468, pages 708–710], one gets the existence of
C > 0 independent of I such that, for every T > 0, for every t ∈ [0, T ], and for
every u ∈ L∞((0, T ); [−1, 1]),

|uI(t)| |(fI (φ)) (0)| 6 Cl+k+2tl+k−1 (l + k)!(l + k + 2)5

l!k!

∫ t

0

v(τ)2dτ.(3.107)

Finally, from (3.93), (3.94), (3.95), (3.97), (3.103) and (3.107), one gets the existence
of T > 0 such that, for every t ∈ [0, T ] and for every u ∈ L∞((0, T ); [−1, 1]),

φ(x(t)) >
1
3

∫ t

0

v(τ)2dτ(3.108)

(see [468, page 710] for the details). Hence the control system (3.84) is not small-
time locally controllable. This concludes the sketch proof of Theorem 3.36 for the
case k = 1.

Let us give an example of application of Theorem 3.36.

Example 3.38. In this example n = 4 and m = 2 and the control system we
consider is given by

ẋ1 = x2, ẋ2 = −x1 + u, ẋ3 = x4, ẋ4 = −x3 + 2x1x2,(3.109)

where the state is (x1, x2, x3, x4)tr ∈ R4 and the control is u ∈ R. Hence

f0(x) = (x2,−x1, x4,−x3 + 2x1x2)tr,(3.110)

f1(x) = (0, 1, 0, 0)tr.(3.111)
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Straightforward computations lead to

[f1, f0](x) = (1, 0, 0, 2x1)tr, ∀x ∈ R4,(3.112)

adkf1f0(x) = (0, 0, 0, 0)tr, ∀k ∈ N \ {0, 1}, ∀x ∈ R4,(3.113)

ad2k
f0 f1(0) = (−1)k(0, 1, 0, 0)tr, ∀k ∈ N,(3.114)

ad2k+1
f0

f1(0) = (−1)k+1(1, 0, 0, 0)tr, ∀k ∈ N,(3.115)

ad2
f0f1(x) = (0,−1, 2x1, 0)tr, ∀x = (x1, x2, x3, x4)tr ∈ R4,(3.116)

[[f1, f0], ad2
f0f1](0) = (0, 0, 2, 0)tr,(3.117)

[f0, [[f1, f0], ad2
f0f1]](0) = (0, 0, 0, 2)tr.(3.118)

Note that, by (3.111), (3.112), (3.117) and (3.118),

Span {f1(0), [f1, f0](0), [[f1, f0], ad2
f0f1](0), [f0, [[f1, f0], ad2

f0f1]](0)} = R4,

which implies that the control system (3.109) satisfies the Lie algebra rank condition
at (0, 0) ∈ R4 × R. Equation (3.113) shows that assumption (3.85) is satisfied.
Hence it seems that one cannot apply Theorem 3.36. However, letting

y1 := x1, y2 := x3, y3 := x4, v := x2,

one easily checks that the small-time local controllability of the control system
(3.109) at (0, 0) ∈ R4 × R implies the small-time local controllability at (0, 0) ∈
R3 × R of the control system

ẏ1 = v, ẏ2 = y3, ẏ3 = −y2 + 2vy1,(3.119)

where the state is y = (y1, y2, y3)tr ∈ R3 and the control is v ∈ R. Let g0 ∈
C∞(R3; R3), g1 ∈ C∞(R3; R3) and g ∈ C∞(R3 × R; R3) be defined by

g0(y) := (0, y3,−y2)tr, g1(y) := (1, 0, 2y1)tr,

g(y, v) := g0(y) + vg1(y), ∀(y, v) ∈ R3 × R.

Hence the control system (3.119) can be written

ẏ = g0(y) + vg1(y) = g(y, v).

Now, straightforward computations give

[g1, g0](y) = (0, 2y1, 0)tr,(3.120)

ad2
g1g0(0) = (0, 2, 0)tr,(3.121)

adkg0g1(0) = (0, 0, 0)tr, ∀k ∈ N \ {0}.(3.122)

Since g1(0) = (1, 0, 0)tr, (3.122) gives us (see also Exercise 3.27 on page 142)

Span {h(0); h ∈ Br(g); δ1(h) 6 1} = R(1, 0, 0)tr.(3.123)

Equation (3.121), together with (3.123), shows that (3.85) does not hold for k = 1
and for the control system (3.119). Hence, by Theorem 3.36 the control system
(3.119) is not small-time locally controllable at (0, 0) ∈ R3 × R. This implies
that the original control system (3.109) is not small-time locally controllable at
(0, 0) ∈ R4 × R.

In Example 6.4 on page 190 we will see that our control system (3.109) is in
fact controllable in large time.
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Remark 3.39. One can find other necessary conditions for local controllability
in [226] by Henry Hermes, in [231] by Henry Hermes and Matthias Kawski, in [270]
by Matthias Kawski, in [463] by Gianni Stefani, in [468] by Héctor Sussmann, and
the references therein.

3.5. Global results

To get global controllability results is usually much more complicated than to
get local controllability results. There are very few theorems leading to global con-
trollability and they all require very restrictive assumptions on the control system.
The most famous global controllability result is the Rashevski-Chow theorem (The-
orem 3.18 on page 134) which deals with driftless control affine systems. Let us
mention two other important methods.

1. A general enlarging technique, due to Velimir Jurdjevic and Ivan Kupka
[259, 260], which allows us to replace the initial control system by a control
system having more controls but the same “controllability”; see also [153]
by Rachida El Assoudi, Jean-Paul Gauthier and Ivan Kupka as well as
[258, Chapter 6, Section 3] by Velimir Jurdjevic, and [62, Section 5.5] by
Bernard Bonnard and Monique Chyba.

2. A method based on the Poincaré recurrence theorem. It was introduced
by Lawrence Markus and George Sell in [344], and by Claude Lobry in
[334]. For a recent presentation of this method, we refer to [189, Th.II.23,
Chapitre II, pages 139–140] and to [258, Theorem 5, Chapter 4, p. 114].

In this section, we present two more methods which allow us to get global control-
lability. These methods are less general than the methods previously mentioned,
but they turn out to be useful also for infinite-dimensional control systems.

- The first one deals with perturbations of linear control systems. It relies on
a method which has been introduced by Enrique Zuazua in [515, 516] to
get global controllability results for semilinear wave equations. We detail
it in Section 3.5.1.

- The second one relies on homogeneity arguments. For example, it shows
that if a “quadratic control system” is locally controllable, then any control
system, which is a perturbation of this quadratic control system by a linear
term, is globally controllable. This has been used in various papers to
get global controllability results for the Navier-Stokes equations from the
controllability of the Euler equations (see Remark 3.47 on page 156 as
well as Section 6.2.2.2—in particular, Remark 6.18 on page 201—and the
references therein). We detail this second method in Section 3.5.2.

3.5.1. Lipschitz perturbations of controllable linear control systems.
We consider the control system

ẋ = A(t, x)x+B(t, x)u+ f(t, x), t ∈ [T0, T1],(3.124)

where, at time t, the state is x(t) ∈ Rn and the control is u(t) ∈ Rm. We assume
that A : [T0, T1] × Rn → L(Rn; Rn), B : [T0, T1] × Rn → L(Rm; Rn) and f :
[T0, T1]×Rn → Rn are smooth enough (for example, assuming that these maps are
continuous with respect to (t, x) and locally Lipschitz with respect to x is sufficient).
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We also assume that

A ∈ L∞((T0, T1)× Rn;L(Rn; Rn)),(3.125)

B ∈ L∞((T0, T1)× Rn;L(Rm; Rn)),(3.126)

f ∈ L∞((T0, T1)× Rn; Rn).(3.127)

For z ∈ C0([T0, T1]; Rn), let us denote by Cz ∈Mn,n(R) the controllability Gramian
of the time-varying linear control system

ẋ = A(t, z(t))x+B(t, z(t))u, t ∈ (T0, T1),

(see Definition 1.10 on page 6).
The goal of this section is to prove the following theorem.

Theorem 3.40. Let us also assume that for every z ∈ C0([T0, T1]; Rn), Cz is
invertible and that there exists M > 0 such that

|C−1
z |Mn,n(R) 6 M, ∀z ∈ C0([T0, T1]; Rn).(3.128)

Then the control system (3.124) is globally controllable (on [T0, T1]): for every
x0 ∈ Rn and for every x1 ∈ Rn, there exists u ∈ L∞((T0, T1); Rm) such that the
solution of the Cauchy problem

ẋ = A(t, x)x+B(t, x)u(t) + f(t, x), x(T0) = x0

satisfies
x(T1) = x1.

Proof of Theorem 3.40. As we have said, we follow a method introduced by
Enrique Zuazua in [515, 516]. Let x0 ∈ Rn and x1 ∈ Rn. Let us define

F : z ∈ C0([T0, T1]; Rn) 7→ F(z) ∈ C0([T0, T1]; Rn)

in the following way. Let uz ∈ L2((T0, T1); Rm) be the control of minimal L2-norm
which steers the time-varying linear control system with a remainder term

ẋ = A(t, z(t))x+B(t, z(t))u+ f(t, z(t)), t ∈ [T0, T1],

from the state x0 to the state x1. Then F(z) := x is the solution of the Cauchy
problem

ẋ = A(t, z(t))x+B(t, z(t))uz(t) + f(t, z(t)), x(T0) = x0.(3.129)

Let us point out that such an uz exists and its expression is the following one:

(3.130) uz(t) = B(t)trR(T1, t)trC−1
z

(x1 −
∫ T1

T0

Rz(T1, τ)f(τ, z(τ))dτ −Rz(T1, T0)x0), t ∈ (T0, T1),

where Rz is the resolvent of the time-varying linear system

ẋ = A(t, z(t))x, t ∈ [T0, T1],

(see Definition 1.4 on page 4). Equality (3.130) can be checked by considering the
solution x̃ ∈ C1([T0, T1]; Rn) of the Cauchy problem

˙̃x = A(t, z(t))x̃+ f(t, z(t)), x(T0) = 0.
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One has (see Proposition 1.9 on page 6)

x̃(T1) =
∫ T1

T0

Rz(T1, τ)f(τ, z(τ))dτ.(3.131)

Clearly uz is the control of minimal L2 norm which steers the control system

ẋ = A(t, z(t))x+B(t, z(t))u

from the state x0 to the state x1−x̃(T1). Hence (3.130) follows from Proposition 1.13
on page 8 and (3.131).

Note that, by the definition of uz,

x(T1) = x1,

where x : [T0, T1] → Rn is the solution of the Cauchy problem (3.129). Clearly

F is a continuous map from C0([T0, T1]; Rn) into C0([T0, T1]; Rn).(3.132)

Moreover, if z is a fixed point of F , then uz steers the control system (3.124) from
x0 to x1 during the time interval [T0, T1]. By (3.125), (3.126), (3.127), (3.128) and
(3.130), there exists M1 > 0 such that

‖uz‖L∞(T0,T1) 6 M1, ∀z ∈ C0([T0, T1]; Rn).(3.133)

From the definition of F , (3.125), (3.126), (3.127), (3.129) and (3.133), there exists
M2 > 0 such that

‖F(z)‖C0([T0,T1];Rn) 6 M2, ∀z ∈ C0([T0, T1]; Rn),(3.134)

|F(z)(t2)−F(z)(t1)|(3.135)

6 M2|t2 − t1|, ∀z ∈ C0([T0, T1]; Rn), ∀(t1, t2) ∈ [T0, T1]2.

From (3.134), (3.135) and the Ascoli theorem (see, for example, [419, A 5 Ascoli’s
theorem, page 369])

F(C0([T0, T1]; Rn)) is a compact subset of C0([T0, T1]; Rn).(3.136)

From (3.132), (3.136) and the Schauder fixed-point theorem (Theorem B.17 on
page 391), F has a fixed point. This concludes the proof of Theorem 3.40.

Applying Theorem 3.40 to the case where A and B do not depend on time we
get the following corollary, which is a special case of a result due to Dahlard Lukes
([337, Theorem 2.1], [338]).

Corollary 3.41. Let A ∈ L(Rn; Rn) and B ∈ L(Rm; Rn) be such that the
linear control

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm,
is controllable. Let f ∈ C1(Rn; Rn). Let us assume that f is bounded on Rn. Then,
for every T > 0, the nonlinear control system

ẋ = Ax+Bu+ f(x), x ∈ Rn, u ∈ Rm,
is globally controllable in time T : for every x0 ∈ Rn and for every x1 ∈ Rn, there
exists u ∈ L∞((T0, T1); Rn) such that the solution of the Cauchy problem

ẋ = Ax+Bu+ f(x), x(T0) = x0

satisfies
x(T1) = x1.



3.5. GLOBAL RESULTS 153

Exercise 3.42. Prove that the assumption that f is bounded cannot be removed.
(Hint. Take n = 2, m = 1, and consider simply the following control system
ẋ1 = x2 − f(x), ẋ2 = u with f(x) = x2.)

Exercise 3.43. Prove that the conclusion of Corollary 3.41 holds if the as-
sumption “f is bounded on Rn” is replaced by the assumption

|f(x2)− f(x1)| 6 ε|x2 − x1|,∀(x2, x1) ∈ Rn × Rn,(3.137)

provided that ε > 0 is small enough (the smallness depending on A and B, but not
on x0 and x1); see also [337, Theorem 2.2].

Exercise 3.44 (See [223, Theorem 1.2] by Henry Hermes). Let T > 0. Let us
consider the following control system

ẋ = f(t, x(t)) +B(t)u, t ∈ (0, T ),(3.138)

where the state is x ∈ Rn and the control is u ∈ Rm. Let us assume that f ∈
C1([0, T ]×Rn; Rn) and B ∈ L∞((0, T );L(Rm; Rn)). Let us also assume that there
exists C > 0 such that

|f(t, x)| 6 C, ∀(t, x) ∈ [0, T ]× Rn,∫ T

0

xtrB(t)B(t)trxdt > C−1|x|2, ∀x ∈ Rn.

Prove that the control system (3.138) is globally controllable in time T > 0.

3.5.2. Global controllability and homogeneity. In this section we show
how some simple homogeneity arguments can be used to get global controllability.

We do not try to present the most general result; our goal is just to present the
method on a simple case.

Let A ∈ L(Rn; Rn), B ∈ L(Rm; Rn) and F ∈ C1(Rn; Rn). We assume that
there exists p ∈ N such that

p > 1,(3.139)

F (λx) = λpF (x), ∀λ ∈ (0,+∞), ∀x ∈ Rn.(3.140)

Our control system is

ẋ = Ax+ F (x) +Bu,(3.141)

where the state is x ∈ Rn and the control is u ∈ Rm.
Our idea is to get a global controllability result for the control system (3.141)

from a local controllability property of the control system

ẋ = F (x) +Bu.(3.142)

For the control system (3.142), the state is again x ∈ Rn and the control is u ∈ Rm.
This local controllability property, which will be assumed in this section, is the
following one: there exist T̄ > 0, ρ > 0 and a continuous function ū : B̄ρ →
L1((0, T̄ )); Rm) such that

((ẋ = F (x) +Bū(a)(t), x(0) = a) ⇒ (x(T̄ ) = 0)), ∀a ∈ B̄ρ.(3.143)

Here and everywhere in this section, for every µ > 0,

Bµ := {x ∈ Rn; |x| < µ}, B̄µ := {x ∈ Rn; |x| 6 µ}.
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Note that, as we will see later on (Proposition 11.24 on page 301), for every θ ∈
[0, 1], this controllability property is implied by the Sussmann condition S(θ) (see
Definition 3.31 on page 143)); see also Open Problem 11.25 on page 301.

Remark 3.45. From (3.139) and (3.140), one gets

F (0) = 0,(3.144)

F ′(0) = 0.(3.145)

Hence (0, 0) ∈ Rn × Rm is an equilibrium of the control system (3.142) and the
linearized control system around (0, 0) ∈ Rn × Rm of this control system is the
linear control system

ẋ = Bu.(3.146)

Therefore, if B(Rm) 6= Rn (in particular, if m < n), this linearized control system
is not controllable.

Our goal is to prove the following theorem.

Theorem 3.46. Under the above assumptions, the control system (3.141) is
globally controllable in small time. More precisely, for every x0 ∈ Rn, for every
x1 ∈ Rn, and for every T > 0, there exists u ∈ L1((0, T ); Rm) such that

(ẋ = Ax+ F (x) +Bu(t), x(0) = x0) ⇒ (x(T ) = x1).

Proof of Theorem 3.46. Let x0 ∈ Rn, x1 ∈ Rn and η > 0. Let Φ be the
map defined by

[0, η]× B̄ρ → Rn
(ε, a) 7→ x̄(0),

where x̄ : [0, T̄ ] :→ Rn is the solution of the Cauchy problem

˙̄x = εp−1Ax̄+ F (x̄) +Bū(a)(t), x̄(T̄ ) = εx1.

By (3.139) and (3.143), if η > 0 is small enough, Φ is well defined. We choose such
an η. Then Φ is continuous on [0, η]× B̄ρ and

Φ(0, a) = a, ∀a ∈ Bρ.(3.147)

In particular,

degree (Φ(0, ·), Bρ, 0) = 1.(3.148)

For the definition of the degree, see Appendix B. Thus there exists η1 ∈ (0, η] such
that

degree (Φ(ε, ·), Bρ, εx0) = 1, ε ∈ [0, η1].(3.149)

Let

τ̄ = ηp−1
1 T̄ ,(3.150)

τ ∈ (0, τ̄ ],(3.151)

ε =
( τ
T̄

)1/(p−1)

.(3.152)

By (3.150), (3.151) and (3.152),

ε ∈ (0, η1].(3.153)



3.5. GLOBAL RESULTS 155

From (3.149), (3.153) and the homotopy invariance of the degree (see Proposi-
tion B.8 on page 387), there exists a ∈ B̄ρ such that

Φ(ε, a) = εx0.(3.154)

Let x̄ : [0, T̄ ] → Rn be the solution of the Cauchy problem
˙̄x = εp−1Ax̄+ F (x̄) +Bū(a)(t),(3.155)

x̄(T̄ ) = εx1.(3.156)

By (3.154), one has

x̄(0) = εx0.(3.157)

Let x : [0, τ ] → Rn and u : [0, τ ] → Rm be defined by

x(t) =
1
ε
x̄

(
t

εp−1

)
, u(t) =

1
εp
ū(a)

(
t

εp−1

)
, ∀t ∈ [0, τ ].(3.158)

From (3.140), (3.155) and (3.158), we get

ẋ = Ax+ F (x) +Bu(t).

From (3.152), (3.156) and (3.158), one has

x(τ) = x1.

From (3.157) and (3.158), one gets

x(0) = x0.

This shows that one can steer the control system (3.141) from x0 to x1 in an
arbitrary small time. It remains to prove that one can make this motion in an
arbitrary time. For that, let T > 0. Applying the previous result with x1 = 0, one
gets the existence of T0 6 T/2 and of u0 ∈ L1((0, T0); Rm) such that the solution
of the Cauchy problem

ẋ = Ax+ F (x) +Bu0(t), x(0) = x0,

satisfies
x(T0) = 0.

Similarly, applying the previous result with x0 = 0, one gets the existence of T1 6
T/2 and of u1 ∈ L1((0, T1); Rm) such that the solution of the Cauchy problem

ẋ = Ax+ F (x) +Bu1(t), x(0) = 0,

satisfies
x(T1) = x1.

Finally, let u ∈ L1((0, T ); Rm) be defined by

u(t) = u0(t), t ∈ (0, T0),

u(t) = 0, t ∈ (T0, T − T1),

u(t) = u1(t− T + T1), t ∈ (T − T1, T ).

(Note that, since T0 6 T/2 and T1 6 T/2, one has T0 6 T − T1.) Then (let us
recall (3.144)) the solution of the Cauchy problem

ẋ = Ax+ F (x) +Bu(t), x(0) = x0,

satisfies
x(T ) = x1.
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This concludes the proof of Theorem 3.46.

Remark 3.47. The above argument is similar to the one introduced in [111]
in the framework of control of partial differential equations to get a global control-
lability result for the Navier-Stokes from a local controllability result for the Euler
equations; see also [123, 188, 9, 446] as well as Section 6.2.2.2.

3.6. Bibliographical complements

There are many books on the subject treated in this chapter. Let us, for exam-
ple, mention the following classical books, where one can also find more advanced
results: [8] by Andrei Agrachev and Yuri Sachkov, [247] by Alberto Isidori, [258] by
Velimir Jurdjevic, [361] by Richard Montgomery and [376] by Henk Nijmeijer and
Arjan van der Schaft. In these books, one can find many results of controllability
relying on the Lie brackets approach. For books dealing with more specific prob-
lems that one encounters in robotics, let us mention, in particular, [18] by Brigitte
d’Andréa-Novel, [82] edited by Carlos Canudas-de-Wit, [303] edited by Jean-Paul
Laumond, [436] by Claude Samson, Michel Le Borgne and Bernard Espiau.

There is a subject that we have not at all discussed, namely the problem of
optimal control. Now one wants to go from x0 to x1 in an optimal way, that is,
the way that achieves some minimizing criterion. This if of course an important
problem both from the mathematical and practical points of view. There is a
huge literature on this subject. For the Pontryagin [390] maximum principle side
(open-loop approach), let us mention, in particular, the following books or recent
papers:

- [62] by Bernard Bonnard and Monique Chyba, on singular trajectories and
their role in optimal control theory.

- [63] by Bernard Bonnard, Ludovic Faubourg and Emmanuel Trélat on the
control of space vehicle.

- [100] by Francis Clarke, Yuri Ledyaev, Ronald Stern and Peter Wolenski
as well as [96] by Francis Clarke, for the use of nonsmooth analysis to get
generalizations of the classical maximum principle.

- [290] by Huibert Kwakernaak and Raphael Sivan, a classical book on linear
optimal control systems.

- [309] by Ernest Lee and Lawrence Markus, one of the most classical books
on this subject.

- [440] by Atle Seierstad and Knut Sydsæter, with a special emphasis on
applications of optimal control to economics.

- [470] by Héctor Sussmann, where one can find numerous generalizations of
the classical maximum principle.

- [481] by Emmanuel Trélat, which also deals with classical materials of
control theory.

- [495] by Richard Vinter, which deals with optimal control viewed from the
nonsmooth analysis side.

- [509] by Jerzy Zabczyk, which deals to finite and infinite-dimensional con-
trol systems.

For the Hamilton-Jacobi side (closed-loop approach), let us mention, besides
some of the above references, the following books:
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- [35] by Guy Barles and [331] by Pierre-Louis Lions, both on viscosity
solutions of the Hamilton-Jacobi equation (a notion introduced by Michael
Crandall and Pierre-Louis Lions in [135]).

- [64] by Ugo Boscain and Benedetto Piccoli, with a detailed study of the
optimal synthesis problem in dimension 2.

- [81] by Piermarco Cannarsa and Carlo Sinestrari, which shows the impor-
tance of semiconcavity for the Hamilton-Jacobi equation.

- [510] by Jerzy Zabczyk, which deals with stochastic control in discrete
time.





CHAPTER 4

Linearized control systems and fixed-point
methods

In this chapter, we first consider (Section 4.1 and Section 4.2) the problem of the
controllability around an equilibrium of a nonlinear partial differential equation such
that the linearized control system around this equilibrium is controllable. In finite
dimension, we have already seen (Theorem 3.8 on page 128) that, in such a situation,
the nonlinear control system is locally controllable around the equilibrium. Of
course in infinite dimension one expects that a similar result holds. We prove that
this is indeed the case for the following equations.

- The nonlinear Korteweg-de Vries equation. In this case one can prove
the local controllability of the nonlinear control equation (Theorem 4.3 on
page 161) by means of a standard fixed-point method.

- A hyperbolic equation. In this case there is a problem of loss of derivatives
which prevents the use of a standard fixed-point method. One uses instead
an ad-hoc fixed-point method, which is specific to hyperbolic systems.

- A nonlinear one-dimensional Schrödinger equation. There is again a prob-
lem of loss of derivatives. This problem is overcome by the use of a Nash-
Moser method.

Of course these nonlinear equations have to be considered only as examples given
here to illustrate possible methods which can be used when the linearized con-
trol system around the equilibrium is controllable: these methods actually can be
applied to many other equations.

Sometimes these methods, which lead to local controllability results, can be
adapted to give global controllability results if the nonlinearity is not too strong
at infinity. We have already seen this for finite-dimensional control systems (see
Section 3.5). In Section 4.3 we show how to handle the case of some nonlinear
partial differential equations on the example of a nonlinear one-dimensional wave
equation.

4.1. The Linear test: The regular case

In this section, we consider nonlinear control systems modeled by means of
partial differential equations such that the linearized control system around some
equilibrium is controllable. We want to deduce from this property the local con-
trollability of the nonlinear control system around this equilibrium. On a nonlinear
Korteweg-de Vries equation, we explain how to get that local controllability by
means of a natural fixed-point strategy, which can be used for many other equa-
tions.

159
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We consider the following nonlinear control system

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),(4.1)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(4.2)

where, at time t ∈ [0, T ], the control is u(t) ∈ R and the state is y(t, ·) : (0, L) 7→ R.
Equation (4.1) is a Korteweg-de Vries equation, which serves to model various
physical phenomena, for example, the propagation of small amplitude long water
waves in a uniform channel (see, e.g., [144, Section 4.4, pages 155–157] or [502,
Section 13.11]). Let us recall that Jerry Bona and Ragnar Winther pointed out
in [60] that the term yx in (4.1) has to be added to model the water waves when
x denotes the spatial coordinate in a fixed frame. The nonlinear control system
(4.1)-(4.2) is called the nonlinear KdV equation.

The linearized control system around (y, u) = (0, 0) is the control system

yt + yx + yxxx = 0, x ∈ (0, L), t ∈ (0, T ),(4.3)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(4.4)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R. We
have previously seen (see Theorem 2.25 on page 42) that if

L 6∈ N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
,(4.5)

then, for every time T > 0, the control system (4.3)-(4.4) is controllable in time
T . Hence one may expect that the nonlinear control system (4.1)-(4.2) is at least
locally controllable if (4.5) holds. The goal of this section is to prove that this is
indeed true, a result due to Lionel Rosier [407, Theorem 1.3].

4.1.1. Well-posedness of the Cauchy problem. Let us first define the
notion of solutions for the Cauchy problem associated to (4.1)-(4.2). The same
procedure motivating the definition (Definition 2.21 on page 38) of solutions to the
Cauchy problem for the linearized control system (4.3)-(4.4), leads to the following
definition.

Definition 4.1. Let T > 0, f ∈ L1((0, T );L2(0, L)), y0 ∈ L2(0, L) and u ∈
L2(0, T ) be given. A solution of the Cauchy problem

yt + yx + yxxx + yyx = f, x ∈ [0, L], t ∈ [0, T ],(4.6)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],(4.7)

y(0, x) = y0(x), x ∈ [0, L],(4.8)

is a function y ∈ C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L)) such that, for every
τ ∈ [0, T ] and for every φ ∈ C3([0, τ ]× [0, L]) such that

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, ∀t ∈ [0, τ ],(4.9)

one has

(4.10) −
∫ τ

0

∫ L

0

(φt + φx + φxxx)ydxdt−
∫ τ

0

u(t)φx(t, L)dt+
∫ τ

0

∫ L

0

φyyxdxdt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx =
∫ τ

0

∫ L

0

fydxdt.

Then one has the following theorem which is proved in [122, Appendix A].
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Theorem 4.2. Let T > 0. Then there exists ε > 0 such that, for every f ∈
L1((0, T );L2(0, L)), y0 ∈ L2(0, L) and u ∈ L2(0, T ) satisfying

‖f‖L1((0,T );L2(0,L)) + ‖y0‖L2(0,L) + ‖u‖L2(0,T ) 6 ε,

the Cauchy problem (4.6)-(4.7)-(4.8) has a unique solution.

The proof is rather lengthy and technical. We omit it.

4.1.2. Local controllability of the nonlinear KdV equation. The goal
of this section is to prove the following local controllability result due to Lionel
Rosier.

Theorem 4.3 ([407, Theorem 1.3]). Let T > 0, and let us assume that

(4.11) L /∈ N ,

with

N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
.(4.12)

Then there exist C > 0 and r0 > 0 such that for every y0, y1 ∈ L2(0, L), with
‖y0‖L2(0,L) < r0 and ‖y1‖L2(0,L) < r0, there exist

y ∈ C0([0, T ], L2(0, L)) ∩ L2((0, T );H1(0, L))

and u ∈ L2(0, T ) satisfying (4.1)-(4.2) such that

y(0, ·) = y0,(4.13)

y(T, ·) = y1,(4.14)

‖u‖L2(0,T ) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L)).(4.15)

Proof of Theorem 4.3. Let us first recall (see Remark 2.33 on page 48) that,
by the controllability of the linearized controlled KdV system (4.3)-(4.4) in time T ,
there exists a continuous linear map

Γ : L2(0, L) → L2(0, T )
y1 7→ u

such that the solution y ∈ C0([0, T ];L2(0, L)) of the Cauchy problem

yt + yx + yxxx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = 0, x ∈ (0, L),

satisfies
y(T, x) = y1(x), x ∈ (0, L).

Let
B := C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L))

endowed with the norm

‖y‖B = Max
{
‖y(t, ·)‖L2(0,L); t ∈ [0, T ]

}
+

(∫ T

0

‖y(t, ·)‖2H1(0,L)dt

) 1
2

.
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Let us denote by Y the continuous linear map

L2(0, T ) → C0([0, T ];L2(0, L))
u 7→ y,

where y is the solution of

yt + yx + yxxx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = 0, x ∈ (0, L)

(see Theorem 2.23 on page 39.) Proceeding as in the proof of Proposition 2.26 on
page 42, one can check that y ∈ B and that the linear map Y is continuous from
L2(0, T ) into B; see [407, Proof of Proposition 3.7] for the complete details).

Let S be the continuous linear map

L2(0, L) → B
y0 7→ y,

where y is the solution of

yt + yx + yxxx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L);

see Proposition 2.26 on page 42.
Let Ψ be the continuous linear map

L1((0, T );L2(0, L)) → B
f 7→ y,

where y is the solution of

yt + yx + yxxx = f, (t, x) ∈ (0, T )× (0, L),(4.16)

y(t, 0) = y(t, L) = 0, yx(t, L) = 0, t ∈ (0, T ),(4.17)

y(0, x) = 0, x ∈ (0, L).(4.18)

Of course the definition of “y is a solution of (4.16)-(4.17)-(4.18)” is obtained by
forgetting the term yyx in Definition 4.1. Then the uniqueness of y follows from
Theorem 2.23 on page 39. For the existence part:

1. One first treats the case where f ∈ C1([0, T ];L2(0, L)) by applying Theo-
rem A.7 on page 375.

2. Then one gets the estimate ‖y‖B 6 C‖f‖L1((0,T );L2(0,L)) by proceeding as
in the proof of (2.141) and (2.142) (see Proposition 2.26 on page 42).

3. One finally treats the general case by using the density of C1([0, T ];L2(0, L))
in L1((0, T );L2(0, L)).

Let F be the nonlinear map

L2((0, T );H1(0, L)) → L2((0, T );H1(0, L))
y 7→ z

where
z := Sy0 + Y ◦ Γ(y1 − (Sy0)(T, ·) + Ψ(yyx)(T, ·))−Ψ(yyx).
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Then, after some lengthy but straightforward estimates, it is not too hard to check
that there exists K > 0 independent of y ∈ L2((0, T );H1(0, L)), of y0 ∈ L2(0, L)
and of y1 ∈ L2(0, L) such that

(4.19) ‖F(y)‖L2((0,T );H1(0,L))

6 K(‖y‖2L2((0,T );H1(0,L)) + ‖y0‖L2(0,L) + ‖y1‖L2(0,L)),

(4.20) ‖F(z)− F(y)‖L2((0,T );H1(0,L))

6 K‖z − y‖L2((0,T );H1(0,L))(‖z‖L2((0,T );H1(0,L)) + ‖y‖L2((0,T );H1(0,L))).

We take

R =
1

4K
, r =

3R2

2
.(4.21)

Let y0 ∈ L2(0, L) and y1 ∈ L2(0, L) be such that

‖y0‖L2(0,L) 6 r and ‖y1‖L2(0,L) 6 r.(4.22)

Let
BR :=

{
y ∈ L2((0, T );H1(0, L)); ‖y‖L2((0,T );H1(0,L)) 6 R

}
.

The set BR is a closed subset of the Hilbert space L2((0, T );H1(0, L)). From (4.19),
(4.20), (4.21) and (4.22), we get that

F(BR) ⊂ BR,

‖F(z)− F(y)‖L2((0,T );H1(0,L)) 6
1
2
‖z − y‖L2((0,T );H1(0,L)), ∀(y, z) ∈ B2

R.

Hence, by the Banach fixed-point theorem, F has a (unique) fixed point in BR.
But, since y is a fixed point of F, the solution of the Cauchy problem

yt + yx + yxxx + yyx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

with

u := Γ(y1 − (Sy0)(T, ·) + Ψ(yyx)(T, ·)) ∈ L2(0, T ),(4.23)

satisfies
y(T, ·) = y1.

Moreover, by (4.19), (4.21) and the fact that y ∈ BR,

‖y‖L2((0,T );H1(0,L)) 6
4
3
K(‖y0‖L2(0,L) + ‖y1‖L2(0,L)).(4.24)

From (4.23) and (4.24), one gets the existence of C > 0, independent of y0 and y1

satisfying (4.22), such that

‖u‖L2(0,T ) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L)).

This concludes the proof of Theorem 4.3.
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Exercise 4.4. This exercise is the continuation of Exercise 2.34 on page 49.
Let L > 0 and T > 0. We consider the following nonlinear control system:

yt + yx +
∫ x

0

y(t, s)ds+
(∫ x

0

y(t, s)ds
)2

= 0, t ∈ (0, T ), x ∈ (0, L),(4.25)

y(t, 0) = u(t), t ∈ (0, T ),(4.26)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is u(t) ∈ R.
For y0 ∈ L2(0, L) and u ∈ L2(0, T ), one says that y : (0, T ) × (0, L) → R is a
solution of the Cauchy problem

yt + yx +
∫ x

0

y(t, s)ds+
(∫ x

0

y(t, s)ds
)2

= 0, t ∈ (0, T ), x ∈ (0, L),(4.27)

y(t, 0) = u(t), t ∈ (0, T ),(4.28)

y(0, x) = y0(x), x ∈ (0, L),(4.29)

if y ∈ C0([0, T ];L2(0, L)) and if

−
∫ τ

0

∫ L

0

(φt + φx −
∫ L

x

φ(t, s)ds)ydxdt

−
∫ τ

0

u(t)φ(t, 0)dt+
∫ τ

0

∫ L

0

φ(t, x)
(∫ x

0

y(t, s)ds
)2

dxdt

+
∫ L

0

y(τ, x)φ(τ, x)dx−
∫ L

0

y0(x)φ(0, x)dx = 0,

for every τ ∈ [0, T ] and for every φ ∈ C1([0, T ]× [0, L]) such that

φ(t, L) = 0, ∀t ∈ [0, T ].

1. Prove that, for every u ∈ L2(0, T ) and for every y0 ∈ L2(0, L), the Cauchy
problem (4.27)-(4.28)-(4.29) has at most one solution.

2. Prove that, there exist ε1 > 0 and C4 > 0 (depending on T and L) such
that, for every u ∈ L2(0, T ) and for every y0 ∈ L2(0, L) such that

‖u‖L2(0,T ) + ‖y0‖L2(0,L) 6 ε1,

the Cauchy problem (4.27)-(4.28)-(4.29) has a solution y and this solution
satisfies

‖y‖C0([0,T ];L2(0,L)) 6 C4(‖u‖L2(0,T ) + ‖y0‖L2(0,L)).

3. In this question, we assume that T > L. Prove that the control system is
locally controllable around the equilibrium (ye, ue) := (0, 0). More precisely,
prove that there exist ε2 > 0 and C5 > 0 such that, for every y0 ∈ L2(0, L)
and for every y1 ∈ L2(0, L) such that

‖y0‖L2(0,L) + ‖y1‖L2(0,L) 6 ε2,

there exists u ∈ L2(0, T ) satisfying

‖u‖L2(0,T ) 6 C5

(
‖y0‖L2(0,L) + ‖y1‖L2(0,L)

)
such that the Cauchy problem (4.27)-(4.28)-(4.29) has a unique solution y
and this solution satisfies y(T, ·) = y1.
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Let us end this section by mentioning the following references where one can find
other results on the controllability of nonlinear Korteweg-de Vries control systems:

- [136] by Emmanuelle Crépeau,
- [407, 408, 410, 411] by Lionel Rosier,
- [428] by David Russell and Bing-Yu Zhang,
- [513] by Bing-Yu Zhang.

In each of these papers, the authors get local controllability results from the con-
trollability of the linearized control system around the considered equilibrium using
similar fixed-point methods.

4.2. The linear test: The case of loss of derivatives

Unfortunately the iterative method presented above needs to be modified for
many partial differential control systems. We study in this section two examples:

- The first one on hyperbolic systems (Section 4.2.1).
- The second one on Schrödinger equations (Section 4.2.2).

4.2.1. Loss of derivatives and hyperbolic systems. In order to present
the problem of loss of derivatives, we start with a very simple nonlinear transport
equation

yt + a(y)yx = 0, x ∈ [0, L], t ∈ [0, T ],(4.30)

y(t, 0) = u(t), t ∈ [0, T ],(4.31)

where a ∈ C2(R) satisfies

a(0) > 0.(4.32)

For this control system, at time t ∈ [0, T ], the state is y(t, ·) ∈ C1([0, L]) and the
control is u(t) ∈ R. We could also work with suitable Sobolev spaces (for example
y(t, ·) ∈ H2(0, L) is a suitable space). We are interested in the local controllability
of the control system (4.30)-(4.31) at the equilibrium (ȳ, ū) = (0, 0). Hence we first
look at the linearized control system at the equilibrium (ȳ, ū) = (0, 0). This linear
control system is the following one:

yt + a(0)yx = 0, t ∈ [0, T ], x ∈ [0, L],(4.33)

y(t, 0) = u(t), t ∈ [0, T ].(4.34)

For this linear control system, at time t ∈ [0, T ], the state is y(t, ·) ∈ C1([0, L]) and
the control is u(t) ∈ R. Concerning the well-posedness of the Cauchy problem of
this linear control system, following the explicit method detailed on page 27, and
the uniqueness statement of Theorem 2.4 on page 27, one easily gets the following
proposition.

Proposition 4.5. Let T > 0. Let y0 ∈ C1([0, L]) and u ∈ C1([0, T ]) be such
that the following compatibility conditions hold

u(0) = y0(0),(4.35)

u̇(0) + a(0)y0
x(0) = 0.(4.36)
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Then the Cauchy problem

yt + a(0)yx = 0, t ∈ [0, T ], x ∈ [0, L],(4.37)

y(t, 0) = u(t), t ∈ [0, T ],(4.38)

y(0, x) = y0(x), x ∈ [0, L],(4.39)

has a unique solution y ∈ C1([0, T ]× [0, L]).

Of course (4.35) is a consequence of (4.38) and (4.39): it is a necessary condition
for the existence of a solution y ∈ C0([0, T ]× [0, L]) to the Cauchy problem (4.37)-
(4.38)-(4.39). Similarly (4.36) is a direct consequence of (4.37), (4.38) and (4.39):
it is a necessary condition for the existence of a solution y ∈ C1([0, T ] × [0, L]) to
the Cauchy problem (4.37)-(4.38)-(4.39).

Adapting the explicit strategy detailed in Section 2.1.2.1, one easily gets the
following proposition.

Proposition 4.6. Let T > L/a(0). The linear control system (4.33)-(4.34)
is controllable in time T . In other words, for every y0 ∈ C1([0, L]) and for every
y1 ∈ C1([0, L]), there exists u ∈ C1([0, T ]) such that the solution y of the Cauchy
problem (4.37)-(4.38)-(4.39) satisfies

y(T, x) = y1(x), x ∈ [0, L].(4.40)

It is interesting to give an example of such a u. Let u ∈ C1([0, T ]) be such that

u(t) = y1(a(0)(T − t)), for every t ∈ [T − (L/a(0)), T ],(4.41)

u(0) = y0(0),(4.42)

u̇(0) = −a(0)y0
x(0).(4.43)

Such a u exists since T > L/a(0). Then the solution y of the Cauchy problem
(4.37)-(4.38)-(4.39) is given by

y(t, x) = y0(x− a(0)t), ∀(t, x) ∈ [0, T ]× [0, L] such that a(0)t 6 x,(4.44)

y(t, x) = u(t− (x/a(0))), ∀(t, x) ∈ [0, T ]× [0, L] such that a(0)t > x.(4.45)

(The fact that such a y is in C1([0, T ] × [0, L]) follows from the fact that y and u
are of class C1 and from the compatibility conditions (4.42)-(4.43).) From (4.44),
one has (4.39). From T > L/a(0), (4.41) and (4.44), one gets (4.40). With this
method, one can easily construct a continuous linear map

Γ : C1([0, L]) → {u ∈ C1([0, T ]), u(0) = u̇(0) = 0}
y1 7→ u

such that the solution y ∈ C1([0, T ]× [0, L]) of the Cauchy problem

yt + a(0)yx = 0, (t, x) ∈ [0, T ]× [0, L],

y(t, 0) = u(t), t ∈ [0, T ],

y(0, x) = 0, x ∈ [0, L],

satisfies
y(T, x) = y1(x), x ∈ [0, L].

In order to prove the local controllability of the control system (4.30)-(4.31) at the
equilibrium (ȳ, ū) = (0, 0), let us try to mimic what we have done for the nonlinear
KdV equation (4.1)-(4.2) to prove the local controllability around (ȳ, ū) = (0, 0)
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(see Theorem 4.3 on page 161). Let Y be the linear map which associates to
u : (0, T ) → R the function y : (0, T )× (0, L) → R which is the solution of

yt + a(0)yx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = u(t), t ∈ (0, T ),

y(0, x) = 0, x ∈ (0, L).

Let S be the linear map which to y0 : (0, L) → R associates the function y which
is the solution of

yt + a(0)yx = 0, (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

Let Ψ be the linear map which associates to f : (0, T ) × (0, L) → R the function
y : (0, T )× (0, L) → R which is the solution of

yt + a(0)yx = f, (t, x) ∈ (0, T )× (0, L),(4.46)

y(t, 0) = 0, t ∈ (0, T ),(4.47)

y(0, x) = 0, x ∈ (0, L).(4.48)

Finally, let F be the nonlinear map which to y : (0, T )× (0, L) → R associates the
function z : (0, T )× (0, L) → R defined by

(4.49) z := Sy0 + Y ◦ Γ(y1 − Sy0(T, ·) + (Ψ((a(y)− a(0))yx))(T, ·))
−Ψ((a(y)− a(0))yx).

Then, up to regularity problems, a fixed point of F is a solution to our controllability
problem. But the problem is now to find the good spaces in order to have a
well defined continuous map F. In order to avoid small technicalities coming from
compatibility conditions, let us restrict to the case where

y0(0) = y0
x(0) = 0.(4.50)

Concerning Y, the natural choice of spaces is

{u ∈ C1([0, T ]); u(0) = u̇(0) = 0} → C1([0, T ]× [0, L])
u 7→ y

with the usual topologies. Concerning S, the natural choice of spaces is

{y0 ∈ C1([0, L]); y0(0) = y0
x(0) = 0} → C1([0, T ]× [0, L])

y0 7→ y.

But a problem appears now with Ψ. Indeed, for y ∈ C1([0, T ]×[0, L]) with y(0, 0) =
yx(0, 0) = 0, (a(y) − a(0))yx is expected to be only continuous (and vanishing at
(t, x) = (0, 0)). So we would like to have

Ψ : {f ∈ C0([0, T ]× [0, L]); f(0, 0) = 0)} → C1([0, T ]× [0, L])
f 7→ y.

But this does not hold. Indeed, let y be the solution of the Cauchy problem (in
any reasonable sense) (4.46)-(4.47)-(4.48). From (4.46), one gets

d
dt
y(t, a(0)t+ x) = f(t, a(0)t+ x),
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which, together with (4.47) and (4.48), leads to

y(t, x) =
∫ t

t−(x/a(0))

f(τ, x− a(0)(t− τ))dτ, if a(0)t > x,(4.51)

y(t, x) =
∫ t

0

f(τ, x− a(0)(t− τ))dτ, if a(0)t < x.(4.52)

But, there are plenty of f ∈ C0([0, T ] × [0, L]), even vanishing at (0, 0), such that
y, defined by (4.51)-(4.52), is not in C1([0, T ]× [0, L]). Note that y is continuous:
we have “lost one derivative”. This problem of loss of derivatives appears in many
situations.

There is a general tool, namely the Nash-Moser method, that we will briefly de-
scribe in the next section (Section 4.2.2), which allows us to deal with this problem
of loss of derivatives. There are many forms of this method. Let us mention, in par-
ticular, the ones given by Mikhael Gromov in [206, Section 2.3.2], Lars Hörmander
in [236], Richard Hamilton in [216]; see also the book by Serge Alinhac and Patrick
Gérard [10]. This approach can also be used in our context, but:

1. It does not give the optimal functional spaces for the state and the control.
2. It is more complicated to apply than the method we want to present here.

The method we want to present here is the one which is used to construct solutions
to the Cauchy problem

yt + a(y)yx = 0, t ∈ [0, T ], x ∈ [0, L],(4.53)

y(t, 0) = u(t), t ∈ [0, T ],(4.54)

y(0, x) = y0(x), x ∈ [0, L],(4.55)

and to more general hyperbolic systems (see e.g. [68, pages 67–70], [134, pages
476–478], [238, pages 54–55], [321, pages 96–107], [340, pages 35–43] or [443,
pages 106–116]). Concerning the Cauchy problem (4.53)-(4.54)-(4.55), one has the
following theorem (see, for a much more general result, [321, Chapter 4]).

Theorem 4.7. Let T > 0. There exist ε > 0 and C > 0 such that, for every
y0 ∈ C1([0, L]) and for every u ∈ C1([0, T ]) satisfying the compatibility conditions
(4.35)-(4.36) and such that

‖y0‖C1([0,L]) + ‖u‖C1([0,T ]) 6 ε,

the Cauchy problem (4.53)-(4.54)-(4.55) has one and only one solution in C1([0, T ]×
[0, L]). Moreover, this solution y satisfies

‖y‖C1([0,T ]×[0,L]) 6 C(‖y0‖C1([0,L]) + ‖u‖C1([0,T ])).(4.56)

The uniqueness part can be proved by using Gronwall’s inequality. This is in
the existence part that one uses the iterative scheme that we are now going to detail
in order to prove the following controllability result.

Theorem 4.8. Let us assume that

T >
L

a(0)
.(4.57)

Then there exist ε > 0 and C > 0 such that, for every y0 ∈ C1([0, L]) and for every
y1 ∈ C1([0, L]) such that

‖y0‖C1([0,L]) 6 ε and ‖y1‖C1([0,L]) 6 ε,



4.2. THE LINEAR TEST: THE CASE OF LOSS OF DERIVATIVES 169

there exists u ∈ C1([0, T ]) such that

‖u‖C1([0,T ]) 6 C(‖y0‖C1([0,L]) + ‖y1‖C1([0,L]))(4.58)

and such that the solution of the Cauchy problem (4.53)-(4.54)-(4.55) exists, is of
class C1 on [0, T ]× [0, L] and satisfies

y(T, x) = y1(x), x ∈ [0, L].

One can find similar results for much more general hyperbolic systems in the
papers [95] by Marco Cirinà, [322] by Ta-tsien Li and Bing-Yu Zhang, and [319] by
Ta-tsien Li and Bo-Peng Rao. In fact, these papers use a method which is different
from the one we present now. We sketch below (see page 173) the method used in
these papers in the framework of our simple transport equation.

Our method to prove Theorem 4.8 is the following one. For y ∈ C1([0, T ] ×
[0, L]), we consider the following linear control system

zt + a(y)zx = 0, (t, x) ∈ [0, T ]× [0, L],(4.59)

z(t, 0) = u(t), t ∈ [0, T ],(4.60)

where, at time t, the state is z(t, ·) ∈ C1([0, L]) and the control is u(t) ∈ R. For
every function f : K → R, where K is a compact subset of Rn, and for every ρ > 0,
let

ωρ(f) := Max{|f(ξ2)− f(ξ1)|; (ξ1, ξ2) ∈ K2 and |ξ2 − ξ1| 6 ρ}.
For ε > 0, let Wε be the set of (y0, y1, b) ∈ C1([0, L])×C1([0, L])×C1([0, T ]×[0, L])
such that

‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) 6 ε and ‖b− a(0)‖C1([0,T ]×[0,L]) 6 ε.

The setWε is equipped with the usual topology of C1([0, L])×C1([0, L])×C1([0, T ]×
[0, L]). Let us admit, for the moment, that one has the following controllability
result.

Proposition 4.9. Let T > L/a(0). There exist ε0 > 0, C0 > 1 and a contin-
uous map Z,

Wε0 → C1([0, T ]× [0, L])
(y0, y1, b) 7→ z = Z(y0, y1, b),

such that, for every (y0, y1, b) ∈Wε0 , z satisfies

zt + bzx = 0, t ∈ [0, T ], x ∈ [0, L],(4.61)

z(0, x) = y0(x), z(T, x) = y1(x), x ∈ [0, L],(4.62)

‖z‖C1([0,T ]×[0,L]) 6 C0(‖y0‖C1([0,L]) + ‖y1‖C1([0,L])),(4.63)

(4.64) ωρ(zt) + ωρ(zx) 6 C0(ωρ(y0
x) + ωρ(y1

x)) + C0(ρ+ ωρ(bx) + ωρ(bt))

× (‖y0‖C1([0,L]) + ‖y1‖C1([0,L])), ∀ρ ∈ [0,+∞).

For ε > 0, let

Bε := {y ∈ C1([0, T ]× [0, L]); ‖y‖C1([0,T ]×[0,L]) 6 ε},
which is equipped with the topology defined by the norm ‖ · ‖C1([0,T ]×[0,L]) on
C1([0, T ] × [0, L]). Let us now consider the following map F defined on Bε, for
ε > 0 and ‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) small enough, by the formula

F(y) := Z(y0, y1, a(y)).
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By Proposition 4.9, there exists ε1 ∈ (0, ε0] such that, for ε := ε1, F is well defined
and continuous if ‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) 6 ε1. Then, by (4.63), if

‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) 6
ε1
C0

(6 ε1),(4.65)

we have

F(Bε1) ⊂ Bε1 .(4.66)

Since a is assumed to be of class C2 on R, there exists C1 > 0 such that

ωρ(a(y)x) + ωρ(a(y)t) 6 C1(ωρ(yx) + ωρ(yt)), ∀y ∈ Bε1 , ∀ρ ∈ [0,+∞).(4.67)

By (4.64) and (4.67), we have, with z = F(y) and y ∈ Bε0 ,

(4.68) ωρ(zt) + ωρ(zx) 6 C0(ωρ(y0
x) + ωρ(y1

x))

+ C0(ρ+ C1ωρ(yx) + C1ωρ(yt))(‖y0‖C1([0,L]) + ‖y1‖C1([0,L])).

Let Ω : [0,+∞) → [0,+∞) be defined by

Ω(ρ) := 2C0(ωρ(y0
x) + ωρ(y1

x)) + 2ρ.(4.69)

Let

K := {y ∈ Bε0 ; ωρ(yx) + ωρ(yt) 6 Ω(ρ), ∀ρ ∈ [0,+∞)}.(4.70)

By Ascoli’s theorem (see, for example, [419, A 5 Ascoli’s theorem, page 369]), K is
a compact subset of Bε0 . Clearly K is convex. Moreover, by (4.66), (4.68), (4.69)
and (4.70), if

‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) 6 Min
{
ε1,

2
C0(1 + 2C1)

,
1

2C0C1

}
,(4.71)

then

F(K) ⊂ K,

which, together with the Schauder fixed-point theorem (Theorem B.19 on page 392),
implies that F has a fixed point. But, if y is a fixed point, then

yt + a(y)yx = 0, t ∈ [0, T ], x ∈ [0, L],

y(0, x) = y0(x), x ∈ [0, L],

y(T, x) = y1(x), x ∈ [0, L].

Hence the control u(t) := y(t, 0) steers the control system (4.30)-(4.31) from the
state y0 to the state y1 during the time interval [0, T ]. Inequality (4.58) follows
from (4.63). This concludes the proof of Theorem 4.7, assuming Proposition 4.9.

Proof of Proposition 4.9. Let

Φ : (t1, t2, x) ∈ D(Φ) ⊂ [0, T ]× [0, T ]× [0, L] 7→ Φ(t1, t2, x) ∈ [0, L]

be the flow associated to the ordinary differential equation ξ̇ = b(t, ξ):

∂Φ
∂t1

= b(t1,Φ), t1 ∈ [0, T ],

Φ(t2, t2, x) = x, t2 ∈ [0, T ], x ∈ [0, L].
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From now on, we assume that (y0, y1, b) ∈ Wε. For every (t2, x) ∈ [0, T ] × [0, L],
Φ(·, t2, x) is defined on some closed interval [τ−(t2, x), τ+(t2, x)] ⊂ [0, T ] containing
t2 . At least for ε > 0 small enough (which will always be assumed), we have, using
(4.57),

b(t, x) > 0, ∀(t, x) ∈ [0, T ]× [0, L],

Φ(τ−(T,L), T, L) = 0, τ−(T,L) > 0,

Φ(τ+(0, 0), 0, 0) = L, τ+(0, 0) < T.

Let
Q := {(t, x) ∈ [0, T ]× [0, L]; Φ(t, T, L) < x < Φ(t, 0, 0)}.

(See Figure 1.)

T

t

τ+(0, 0)

τ−(T, L) Q

Q

x = Φ(t, 0, 0)

x = Φ(t, 0, 0)

x = Φ(t, T, L)

x = Φ(t, T, L)

L x0

Figure 1. Flow Φ, Q, τ−(T,L), τ+(0, 0)

We first define z on the set ([0, T ]× [0, L]) \Q by

z(t, x) := y1(Φ(T, t, x)), ∀(t, x) ∈ [0, T ]× [0, L] such that x 6 Φ(t, T, L),(4.72)

z(t, x) := y0(Φ(0, t, x)), ∀(t, x) ∈ [0, T ]× [0, L] such that x > Φ(t, 0, 0).(4.73)
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For i ∈ {1, 2, 3, 4}, let αi ∈ C2([0, 1]) be such that

α1(0) = 1, α′1(0) = 0, α1(1) = 0, α′1(1) = 0,

α2(0) = 0, α′2(0) = 1, α2(1) = 0, α′2(1) = 0,

α3(0) = 0, α′3(0) = 0, α3(1) = 1, α′3(1) = 0,

α4(0) = 0, α′4(0) = 0, α4(1) = 0, α′4(1) = 1.

Let u : [0, τ−(T,L)] → R be defined by

u(t) := y0(0)α1

(
t

τ−(T,L)

)
− b(0, 0)y0

x(0)τ−(T,L)α2

(
t

τ−(T,L)

)
+ z(τ−(T,L), 0)α3

(
t

τ−(T,L)

)
+ zt(τ−(T,L), 0)τ−(T,L)α4

(
t

τ−(T,L)

)
,

where zt(τ−(T,L), 0) is the left derivative with respect to time at time τ−(T,L) of
z(·, 0) ∈ C1([τ−(T,L), T ]); see (4.72). Finally we define

z(t, x) := u(τ−(t, x)), ∀(t, x) ∈ Q.(4.74)

Then, after some rather lengthy but straightforward computations one can check
that the function z defined by (4.72), (4.73) and (4.74) satisfies all the required
properties if ε > 0 is small enough. This concludes the proof of Proposition 4.9 and
also of Theorem 4.8.

Remark 4.10. As for the Nash-Moser method, the controllability of the lin-
earized control system (4.37)-(4.38)-(4.39) at the equilibrium (ye, ue) := (0, 0) (see
Proposition 4.6 on page 166) is not sufficient for our proof of Theorem 4.8: one
needs a controllability result (see Proposition 4.9 on page 169) for linear control
systems which are close to the linear control system (4.37)-(4.38)-(4.39). For some
other hyperbolic control systems (see for example page 214 and the proof of Propo-
sition 6.29 given in [116]) we have not been able to check that every linear control
system close to the linearized control system at the equilibrium considered are con-
trollable, but we can do it for a large enough family of these linearized control
systems. Then one can again get the controllability by a fixed-point method such
that the image of the map F lies in a suitable family. Note that the control offers
some flexibility: we can require, beside (4.61) to (4.63), some extra conditions.

Remark 4.11. Even if (y, y(·, 0)) is a trajectory of the control system (4.53)-
(4.54), the linear control system (4.59)-(4.60) is not the linearized control system
around this trajectory. Indeed this linearized control system is

zt + a(y)zx + a′(y)zyx = 0, (t, x) ∈ [0, T ]× [0, L],(4.75)

z(t, 0) = u(t), t ∈ [0, T ],(4.76)

where, at time t, the state is z(t, ·) ∈ C1([0, L]) and the state is u(t) ∈ R. Note
that one encounters the problem of loss of derivatives if one uses the linear control
system (4.75)-(4.76), together with the usual Newton iterative scheme; see also
Remark 6.1 on page 189 as well as Remark 6.30 on page 214.

Remark 4.12. Our proof of Theorem 4.8 on page 168 does not use the existence
part of Theorem 4.7 on page 168 on the solutions to the Cauchy problem (4.53)-
(4.54)-(4.55): our method directly proves the existence of a solution. (This is
also the case for many other control problems. This is for example the case for
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the Euler equations of incompressible fluids; see Section 6.2.1.) However, as we
mentioned on page 168, the fixed-point method used here is in fact strongly related
to the classical method used to prove the existence of a solution to the Cauchy
problem (4.53)-(4.54)-(4.55) (or more general hyperbolic systems). Our fixed-point
approach is, in particular, very close to the one introduced by Ta-tsien Li and Wen
Ci Yu in [321, pages 96–107]. As in [321, pages 96–107], we get the existence of a
fixed point of F by establishing estimates on the modulus of continuity (see (4.68)).
With some extra estimates, one can use the Banach fixed-point theorem instead
of the Schauder fixed-point theorem. Note that the Banach fixed-point theorem
is more convenient than the Schauder fixed-point theorem for numerical purposes;
see also [68, pages 67–70], [134, pages 476–478], [238, pages 54–55], [340, pages
35–43] or [443, pages 106–116] for the existence of solutions to the Cauchy problem
(4.53)-(4.54)-(4.55).

Finally, let us briefly sketch the alternative method to prove controllability re-
sults for hyperbolic systems used by Marco Cirinà in [95] and by Ta-tsien Li and Bo-
Peng Rao in [319]. For simplicity we present it again on our simple nonlinear trans-
port equation (4.30)-(4.31), that is, we show how their method to prove Theorem
4.8 works. For y ∈ C1([0, T ]× [0, L]), let us denote by Φy the flow associated to the
differential equation ξ̇ = a(y(t, ξ)) (see page 170). For every (t2, x) ∈ [0, T ]× [0, L],
Φ(·, t2, x) is defined on some closed interval [τy−(t2, x), τy+(t2, x)] ⊂ [0, T ] contain-
ing t2. Let also Qy be the set of (t, x) ∈ [0, T ]× [0, L] such that

x 6 Φy(t, T, L) or x > Φy(t, 0, 0).

The first step is the proof of the following proposition.

Proposition 4.13. Let us assume that (4.57) holds. Then there exist ε > 0
and C > 0 such that, for every y0 ∈ C1([0, L]) and for every y1 ∈ C1([0, L]) such
that

‖y0‖C1([0,L]) 6 ε and ‖y1‖C1([0,L]) 6 ε,

there exists z ∈ C1([0, T ]× [0, L]) such that

a(z(t, x)) > 0, ∀(t, x) ∈ [0, T ]× [0, L],(4.77)

τz−(T,L) > 0, Φz(0, T, L) = 0,(4.78)

Φz(τz+(0, 0), 0, 0) = L, τz+(0, 0) < T,(4.79)

zt + a(z)zx = 0 in Qz,(4.80)

z(0, x) = y0(x), ∀x ∈ [0, L],(4.81)

z(T, x) = y1(x), ∀x ∈ [0, L],(4.82)

‖z‖C1([0,T ]×[0,L]) 6 C(‖y0‖C1([0,L]) + ‖y1‖C1([0,L])).(4.83)

The proof of this proposition is now classical; see [321, Chapter 4] by Ta-tsien
Li and Wen Ci Yu for much more general results on hyperbolic systems. As we
mention in Remark 4.12 on the preceding page, it can be obtained by the fixed-
point strategy we have used above to prove Theorem 4.8 on page 168. We omit
it.
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Now let u ∈ C1([0, T ]) be such that

u(t) = z(t, 0), ∀t ∈ [τz−(T,L), T ],

u(0) = y0(0),

u̇(0) = −a(y0(0))y0
x(0).

We can also impose on u that, for some C1 > 0 independent of y0 and y1, provided
that ‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) is small enough,

‖u‖C1([0,T ]) 6 C1(‖z(·, 0)‖C1([0,T ]) + ‖y0‖C1([0,L])).(4.84)

By (4.83), (4.84) and Theorem 4.7 on page 168, if ‖y0‖C1([0,L]) + ‖y1‖C1([0,L]) is
small enough, there exists (a unique) y ∈ C1([0, T ]× [0, L]) solution to the Cauchy
problem

yt + a(y)yx = 0, t ∈ [0, T ], x ∈ [0, L],

y(t, 0) = u(t), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L].

Then one checks that Qy = Qz and that y = z on Qy. In particular,

y(T, x) = z(T, x) = y1(x), ∀x ∈ [0, L].

Inequality (4.58) follows from (4.56), (4.83) and (4.84). This concludes the sketch
of this alternative proof of Theorem 4.8.

Remark 4.14. This method is simpler than our first proof of Theorem 4.8 (see
pages 168-172). However, in some cases, the alternative method does not seem
to apply whereas the first one can be used; see, for example, Proposition 6.29 on
page 214.

4.2.2. Loss of derivatives and a Schrödinger equation. In this section
we consider a nonlinear control system where the problem of loss of derivatives
appears and where the trick used above in Section 4.2.1 to handle this problem
does not seem to be applicable. Let I = (−1, 1) and let T > 0. We consider the
Schrödinger control system

ψt(t, x) = iψxx(t, x) + iu(t)xψ(t, x), (t, x) ∈ (0, T )× I,(4.85)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ).(4.86)

This is a control system, where, at time t ∈ (0, T ):

- The state is ψ(t, ·) ∈ L2(I; C) with
∫
I
|ψ(t, x)|2dx = 1.

- The control is u(t) ∈ R.

This system has been introduced by Pierre Rouchon in [417]. It models a non-
relativistic charged particle in a 1-D moving infinite square potential well. At time
t, ψ(t, ·) is the wave function of the particle in a frame attached to the potential
well. The control u(t) is the acceleration of the potential well at time t. We use
the notations introduced in Section 2.6. Note that, with ψ1,γ defined in (2.494), we
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have

ψ1,γt = iψ1,γxx + iγxψ1,γ , t ∈ (0, T ), x ∈ I,
ψ1,γ(t,−1) = ψ1,γ(t, 1) = 0, t ∈ (0, T ),∫

I

|ψ1,γ(t, x)|2dx = 1, t ∈ (0, T ).

Hence (ψ1,γ , γ) is a trajectory of the control system (4.85)-(4.86). We are interested
in the local controllability around this trajectory. The linearized control system
around this trajectory is the control system

Ψt = iΨxx + iγxΨ + iuxψ1,γ , (t, x) ∈ (0, T )× I,(4.87)

Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ).(4.88)

It is a linear control system where, at time t ∈ [0, T ]:

- The state is Ψ(t, ·) ∈ L2(I; C) with Ψ(t, ·) ∈ TS(ψ1,γ(t, ·)).
- The control is u(t) ∈ R.

Let us recall that S is the unit sphere of L2(I; C) (see (2.490)) and that, for φ ∈ S,
TS(φ) is the tangent space to S at φ (see (2.491)). We have studied the controllability
of this linear control system in Section 2.6. Theorem 2.87 tells us that this linear
control system is controllable with state in H3

(0) ∩ TS(ψ1,γ(t, ·)) (H3
(0) is defined in

(2.499)) and control u in L2(0, T ) if γ > 0 is small enough (this controllability does
not hold for γ = 0; see page 97). This leads naturally to the following problem,
which is still open.

Open Problem 4.15. Let T > 0. Does there exist γ0 > 0 such that, for every
γ ∈ (0, γ0), there exists ε > 0 such that, for every ψ0 ∈ H3

(0)(I; C) ∩ TS(ψ1,γ(0, ·))
and for every ψ1 ∈ H3

(0)(I; C) ∩ TS(ψ1,γ(T, ·)) such that

‖ψ0 − ψ1,γ(0, ·)‖H3(I;C) + ‖ψ1 − ψ1,γ(T, ·)‖H3(I;C) 6 ε,

there exists u ∈ L2(0, T ) such that the solution

ψ ∈ C0([0, T ];H3(I; C) ∩H1
0 (I; C)) ∩ C1([0, T ];H1(I; C))

of the Cauchy problem

ψt(t, x) = iψxx(t, x) + iu(t)xψ(t, x), (t, x) ∈ (0, T )× I,(4.89)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(4.90)

ψ(0, x) = ψ0(x), x ∈ I,(4.91)

satisfies

ψ(T, x) = ψ1(x), x ∈ I?

(For the well-posedness of the Cauchy problem (4.89)-(4.90)-(4.91), we refer to
[40].) However, if one lets

H5
(0)(I; C) := {ϕ ∈ H5(I; C); ϕ(2k)(−1) = ϕ(2k)(1) = 0, ∀k ∈ {0, 1, 2}},(4.92)

one has the following theorem due to Karine Beauchard [40, Theorem 2].
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Theorem 4.16. Let T = 8/π and let η > 0. There exists ε > 0 such that, for
every ψ0 ∈ H5

(0)(I; C)∩H5+η(I; C)∩ TS(ψ1,γ(0, ·)) and for every ψ1 ∈ H5
(0)(I; C)∩

H5+η(I; C) ∩ TS(ψ1,γ(T, ·)) such that

‖ψ0 − ψ1,γ(0, ·)‖H5+η(I;C) + ‖ψ1 − ψ1,γ(T, ·)‖H5+η(I;C) 6 ε,

there exists u ∈ H1
0 (0, T ) such that the solution

ψ ∈ C0([0, T ];H3(I; C) ∩H1
0 (I; C)) ∩ C1([0, T ];H1(I; C))

of the Cauchy problem (4.89)-(4.90)-(4.91) satisfies

ψ(T, x) = ψ1(x), x ∈ I.

Remark 4.17. In [40, Theorem 2], ψ0 and ψ1 are assumed to be more regular
than in H5+η. However, Karine Beauchard has proposed in [41, 42] a modification
which allows us to handle the regularity stated in Theorem 4.16.

The proof of Theorem 4.16 is quite long. Here, our goal is not to give it but only
to explain the main difficulty (loss of derivatives) and the method used by Karine
Beauchard to solve it. For simplicity, let us study only the case where ψ0 = ψ1,γ .
Then the local controllability problem is to decide whether the map G which, to a
control u : [0, T ] → R, associates the state ψ(T, ·) ∈ S, where ψ : (0, T )× I → C is
the solution of the Cauchy problem (4.89)-(4.90)-(4.91), is locally onto at the point
ū := γ or not. The problem is that one does not know a couple of Hilbert spaces
(H, H̃) (of infinite dimension) such that

G is of class C1,(4.93)

G′(ū) : H → H̃ ∩ TS(ψ1,γ(T, ·)) is onto.(4.94)

Let us recall that, ignoring this problem, we would get a control u steering our
control system (4.85)-(4.86) from ψ0 = ψ1,γ to ψ1 by showing that the sequence

un+1 = un − G′(ū)−1P (G(un)− ψ1)(4.95)

is convergent. In (4.95), G′(ū)−1 denotes a right inverse of G′(ū) and P is the
projection on the tangent space to S at ψ1,γ . In Theorem 2.87 on page 96, we
have constructed a right inverse G′(ū)−1. But this right inverse sends elements of
Hk(I; C) to elements of Hk−3(0, T ) and, if u is in Hk(0, T ), one cannot expect
G(u) to be more regular than Hk+2(I; C). So, if un ∈ Hk(0, T ), we expect un+1 to
be only in Hk−1(0, T ). (In fact the situation is even worse due to some boundary
conditions which have to be handled.) So, at each step, we lose “one derivative”.
Therefore the sequence (un)n∈N will stop after a finite number of steps, at least if
u1 is not of class C∞ (and is not expected to be convergent if u1 is of class C∞).
In order to avoid this problem, one could try to modify (4.95) by putting

un+1 = un − SnG′(ū)−1P (G(un)− ψ1),(4.96)

where Sn is some “smoothing” operator such that, as n→∞, Sn → Id, Id denoting
the identity map. But it seems difficult to get the convergence of the un’s with such
an iterative scheme, because, in some sense, the convergence of (4.95), even without
the loss of derivatives problem is too slow. One uses instead of (4.95), the Newton
method, which ensures a much faster convergence,

un+1 = un − G′(un)−1P (G(un)− ψ1).(4.97)
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The Newton method modified to take care of the loss of derivatives problem, is

un+1 = un − SnG′(un)−1P (G(un)− ψ1).(4.98)

The replacement of (4.97) by (4.98) is the key point of the Nash-Moser method.
Now, with very careful (and lengthy) estimates and clever choices of Sn, the se-
quence (un)n∈N is converging to the desired control.

Remark 4.18. As in the case of the problem of loss of derivatives we have
seen for a simple hyperbolic equation (see Section 4.2.1), it is not sufficient to have
the controllability of the linearized control system along the trajectory (ψ1,γ , γ),
but also the controllability of the linearized control systems around the trajectories
which are close to the trajectory (ψ1,γ , γ).

Remark 4.19. Karine Beauchard has shown in [41] that this Nash-Moser
method can also be used to get various controllability results for a nonlinear one-
dimensional beam equation.

Remark 4.20. One can also adapt this Nash-Moser method to get the control-
lability of the hyperbolic control system (4.30)-(4.31). However, in terms of regu-
larity of the couple state-control, one gets a slightly weaker result than Theorem
4.8. Note that Serge Alinhac and Patrick Gérard have used in [10] the Nash-Moser
method to study the Cauchy problem (4.53)-(4.54)-(4.55).

Remark 4.21. The Nash-Moser method has been introduced by John Nash in
[374] to prove that every Riemannian manifold can be isometrically embedded in
some Rk (equipped with the usual metric). It has been developed subsequently by
Jürgen Moser in [368, 370, 369], by Mikhael Gromov in [205] and [206, Section
2.3], by Howard Jacobowitz in [249], by Richard Hamilton in [216] and by Lars
Hörmander in [236, 237]. Let us point out that Matthias Günther has found in
[212, 213] a way to prove the result on isometric embeddings by classical iterative
schemes. It would be interesting to know if this is also possible for Theorem 4.16
on the previous page.

4.3. Global controllability for perturbations of linear controllable
systems

When the nonlinearity is not too strong, one can get with suitable arguments
global controllability results.

In this section, we illustrate in a detailed way, on an example, a method due
to Enrique Zuazua [515, 516], which allows us to deal with such cases. For a
description of this method in the framework of finite-dimensional control systems,
see Section 3.5.1. We explain it on a simple 1-D semilinear wave equation with
a boundary control and a nonlinearity which is at most linear (even if one can
consider less restrictive growth at infinity as shown in [516]; see also Remark 4.23
on page 179).

The control system we consider is the following one:

ytt − yxx + f(y) = 0, (t, x) ∈ (0, T )× (0, L),(4.99)

y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ).(4.100)
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In this control system, the control at time t is u(t) ∈ R and the state at time t is
y(t, ·) : (0, L) → R. We assume that the function f : R → R is of class C1 and
satisfies, for some C > 0,

|f(s)| 6 C(|s|+ 1), ∀s ∈ R.(4.101)

As above (see Section 2.4), let

H1
(0)(0, L) := {α ∈ H1(0, L); α(0) = 0}.

Adapting the proof of Theorem 2.53 on page 68 and using classical arguments
(see e.g. [84]), it is not difficult to check that, for every T > 0, for every u ∈
L2(0, T ), and for every (α0, β0) ∈ H1

(0) × L2(0, L), there exists a unique solution
y ∈ C0([0, T ];H1

0 (0, L)) ∩ C1([0, T ];L2(0, L)) to the Cauchy problem

ytt − yxx + f(y) = 0, (t, x) ∈ (0, T )× (0, L),(4.102)

y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ),(4.103)

y(0, x) = α0(x) and yt(0, x) = β0(x), x ∈ (0, L).(4.104)

The goal of this section is to prove the following theorem, which is due to Enrique
Zuazua [516, Theorem 3 and Section 6].

Theorem 4.22. Let T > 2L > 0. For every α0 ∈ H1
(0)(0, L), for every β0 ∈

L2(0, L), for every α1 ∈ H1
(0)(0, L), and for every β1 ∈ L2(0, L), there exists u ∈

L2(0, T ) such that the solution y of the Cauchy problem (4.102)-(4.103)-(4.104)
satisfies

(y(T, ·), yt(T, ·)) = (α1, β1).

Proof of Theorem 4.22. Let T > 2L > 0. Let (α0, α1) ∈ H1
(0)(0, L)2 and

(β0, β1) ∈ L2(0, L)2. As in the proof of Theorem 3.40 on page 151, we are going to
get u as a fixed point of a map F . This map

F : L∞((0, T )× (0, L)) → L∞((0, T )× (0, L))
y 7→ z = F(y)(4.105)

is defined in the following way. Since f ∈ C1(R), there exists g ∈ C0(R) such that

f(y) = f(0) + yg(y), ∀y ∈ R.(4.106)

Note that, by (4.101),

g ∈ L∞(R).(4.107)

Let η ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1(0, L)) be the solution of

ηtt − ηxx + g(y)η + f(0) = 0, t ∈ [0, T ], x ∈ [0, L],(4.108)

η(t, 0) = ηx(t, L) = 0, t ∈ (0, T ),(4.109)

η(0, x) = ηt(0, x) = 0, x ∈ (0, L).(4.110)

Let U be the set of u∗ ∈ L2(0, T ) such that the solution z∗ of the Cauchy problem
(see Definition 2.52 on page 68 and Theorem 2.53 on page 68)

z∗tt − z∗xx + g(y)z∗ = 0, t ∈ [0, T ], x ∈ [0, L],

z∗(t, 0) = 0, z∗x(t, L) = u∗(t), t ∈ (0, T ),

z∗(0, x) = α0(x), z∗t (0, x) = β0(x), x ∈ (0, L),
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satisfies

z∗(T, x) = α1(x)− η(T, x), z∗t (T, x) = β1(x)− ηt(T, x), x ∈ (0, L).

The set U is a closed affine subspace of L2(0, T ). By Theorem 2.55 on page 72,
U is not empty. Let u be the projection of 0 on U . In other words, u is the least
L2(0, L)-norm element of U . Let z̃ ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1

(0)) be the
solution of the Cauchy problem

z̃tt − z̃xx + g(y)z̃ = 0, t ∈ [0, T ], x ∈ [0, L],

z̃(t, 0) = 0, z̃x(t, L) = u(t), t ∈ (0, T ),

z̃(0, x) = α0(x), z̃t(0, x) = β0(x), x ∈ (0, L).

Then we let
z := η + z̃.

Note that z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1
(0)(0, L)) is the solution of the

Cauchy problem

ztt − zxx + g(y)z + f(0) = 0, t ∈ [0, T ], x ∈ [0, L],(4.111)

z(t, 0) = 0, zx(t, L) = u(t), t ∈ (0, T ),(4.112)

z(0, x) = α0(x), zt(0, x) = β0(x), x ∈ (0, L),(4.113)

and satisfies

z(T, x) = α1(x), zt(T, x) = β1(x), x ∈ (0, L).

Hence it suffices to prove that F has a fixed point, which gives y = z in (4.111).
It is not hard to check that F is a continuous map from L∞((0, T ) × (0, L)) into
L∞((0, T )× (0, L)). Using Theorem 2.53 on page 68, Theorem 2.55 on page 72 and
(4.107), one gets the existence of M > 0 such that

F(L∞((0, T )× (0, L))) ⊂ K,(4.114)

where K is the set of z ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];H1
(0)(0, L)) such that

‖z‖C1([0,T ];L2(0,L)) 6 M, ‖z‖C0([0,T ];H1
(0)(0,L)) 6 M.

Note that K is a convex subset of L∞((0, T )× (0, L)). Moreover, by a theorem due
to Jacques Simon [449],

K is a compact subset of L∞((0, T )× (0, L)).(4.115)

Hence, by the Schauder fixed-point theorem (Theorem B.19 on page 392), F has a
fixed point. This concludes the proof of Theorem 4.22.

Remark 4.23. It is proved in [516] that the growth condition (4.101) can be
replaced by the weaker assumption

lim sup
|s|→+∞

|f(s)|
|s| ln2(|s|)

<∞.(4.116)

Note that (4.116) is nearly optimal: Enrique Zuazua has proved ([516, Theorem
2]) that, if

lim inf
s→+∞

−f(s)
|s| lnp(s)

> 0
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for some p > 2, then there are α0 ∈ H1
(0)(0, L), β0 ∈ L2(0, L), α1 ∈ H1

(0)(0, L) and
β1 ∈ L2(0, L) such that, for every T > 0 and every u ∈ L2(0, T ), the solution y of the
Cauchy problem (4.102)-(4.103)-(4.104) does not satisfy (y(T, ·), yt(T ·)) = (α1, β1).

Remark 4.24. Enrique Zuazua has proposed in [520] a numerical method
based on this fixed-point method and a two-grid approximation scheme to get a
control steering the control system (4.99)-(4.100) from a given state to another
given state, as in Theorem 4.22 on page 178. The idea to use a two-grid method in
the control framework in order to avoid spurious high frequencies interfering with
the mesh is due to Roland Glowinski [201].

Remark 4.25. The above method has been used for many other partial differ-
ential equations. In particular, for the controllability of semilinear heat equations,
let us mention [156] by Caroline Fabre, Jean-Pierre Puel and Enrique Zuazua, [165]
by Luis Fernández and Enrique Zuazua, [169] by Enrique Fernández-Cara and En-
rique Zuazua, [186, Chapter I, Section 3] by Andrei Fursikov and Oleg Imanuvilov,
and [517, 518] by Enrique Zuazua.

Remark 4.26. In order to conclude by using the Schauder fixed-point theorem,
one needs some compactness properties ((4.115) here). Irena Lasiecka and Roberto
Triggiani have presented in [300] a method to conclude by using a global inversion
theorem. This allows us to treat other semilinear control systems which cannot be
handled by the Schauder fixed-point theorem.



CHAPTER 5

Iterated Lie brackets

In this short chapter we start by explaining why iterated Lie brackets are less
powerful in infinite dimension. Then we show on an example of how iterated Lie
brackets can sometimes still be useful in infinite dimension.

Let us go back to the simplest control partial differential equation we have been
considering, namely the case of the transport equation (see Section 2.1 on page 24).
So our control system is

yt + yx = 0, x ∈ [0, L],(5.1)

y(t, 0) = u(t),(5.2)

where L > 0 is fixed and where, at time t, the control is u(t) ∈ R and the state
is y(t, ·) : [0, L] → R. Let us use the same control t 7→ u(t) that we have used on
page 131 to justify the interest of the Lie bracket [f0, f1] for the finite-dimensional
control system ẋ = f0(x) + uf1(x). (Let us recall that we have seen in Section
2.3.3.1 how to write the control system (5.1)-(5.2) in the form ẏ = Ay + Bu.) So,
let us consider, for ε > 0, the control defined on [0, 2ε] by

u(t) = −1 for t ∈ (0, ε),

u(t) = 1 for t ∈ (ε, 2ε).

Let y : (0, 2ε)× (0, L) → R be the solution of the Cauchy problem

yt + yx = 0, t ∈ (0, 2ε), x ∈ (0, L),

y(t, 0) = u(t), t ∈ (0, 2ε),

y(0, x) = 0, x ∈ (0, L).

Then one readily gets, if 2ε 6 L,

y(2ε, x) = 1, x ∈ (0, ε),

y(2ε, x) = −1, x ∈ (ε, 2ε),

y(2ε, x) = 0, x ∈ (2ε, L).

Hence (compare with (3.25))∥∥∥∥y(2ε, x)− y(0, x)
ε2

∥∥∥∥
L2(0,L)

→ +∞ as ε→ 0+.(5.3)

181
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Note that, for every φ ∈ H2(0, L),∫ L

0

φ(x)(y(2ε, x)− y(0, x))dx = −
(∫ 2ε

ε

φ(x)dx−
∫ ε

0

φ(x)dx
)

= −
∫ ε

0

(φ(x+ ε)− φ(x))dx

= −
∫ ε

0

∫ x+ε

x

φ′(s)dsdx

= −ε2φ′(0) +
∫ ε

0

∫ x+ε

x

(φ′(0)− φ′(s))dsdx.

But we have, for every s ∈ [0, 2ε],

|φ′(s)− φ′(0)| =
∣∣∣∣∫ s

0

φ′′(τ)dτ
∣∣∣∣ 6 √

2ε‖φ′′‖L2(0,L).(5.4)

Hence
y(2ε, ·)− y(0, ·)

ε2
⇀ δ′0 in (H2(0, L))′ as ε→∞,(5.5)

where δ0 denotes the Dirac mass at 0. So in some sense we could say that, for the
control system (5.1)-(5.2), [f0, f1] = δ′0. Unfortunately it is not clear how to use
this derivative of a Dirac mass at 0.

However, there are cases where the iterated Lie brackets are (essentially) in good
spaces and can indeed be used for studying the controllability of partial differential
equations. This is, in particular, the case when there is no boundary. Let us give
an example for the control of a quantum oscillator. This example is borrowed from
Pierre Rouchon [415] and from Mazyar Mirrahimi and Pierre Rouchon [359]. We
consider the following control system

ψt = iψxx − ix2ψ + iuxψ, t ∈ (0, T ), x ∈ R.(5.6)

For this control system, the state at time t is ψ(t, ·) ∈ L2(R; C) with
∫

R |ψ(t, x)|2dx =
1 and the control at time t is u(t) ∈ R. The function ψ(t, ·) is the complex ampli-
tude vector. The control u(t) ∈ R is a classical control electro-magnetic field. The
free Hamiltonian

H0(ψ) := −ψxx + x2ψ

corresponds to the usual harmonic oscillator. With our previous notations, we
define the vector fields

f0(ψ) := iψxx − ix2ψ,(5.7)

f1(ψ) := ixψ.(5.8)

There is a little problem with the domain of definition of f0 and f1: they are not
defined on the whole S := {ψ ∈ L2(R; C);

∫
R |ψ(t, x)|2dx = 1}. But let us forget

about this problem and remain, for the moment, at a formal level. Using (3.19),
(5.7) and (5.8), straightforward computations lead to

[f0, f1](ψ) = 2ψx,

[f0, [f0, f1]](ψ) = −4ixψ = −4f1(ψ),

[f1, [f0, f1]](ψ) = 2iψ.
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Hence the Lie algebra generated by f0 and f1 is of dimension 4: it is the R-linear
space generated by f0, f1, [f0, f1] and iId. Hence by Corollary 3.26 on page 141
one would expect that the dimension of the space which can be reached from a
given space should be of dimension at most 4. Since we are in infinite dimension
and, more importantly, due to the fact that f0, f1, are not smooth and not even
defined on all of S, one cannot apply directly Corollary 3.26. But let us check, by
direct computations which are written-up in [415] and [359] (see, also, [78, pages
51–52] and [39]) that the intuition given by the above arguments is indeed correct.

For simplicity, we do not specify the regularity of u : [0, T ] → R, the regularity
of ψ : [0, T ] × R → C as well as its decay to 0 as |x| → +∞: they are assumed
to be good enough to perform the computations below. Let q : [0, T ] → R and
p : [0, T ] → R be defined by

q(t) :=
∫

R
x|ψ(t, x)|2dx,

p(t) := −2
∫

R
=(ψ̄xψ)dx,

where =(z) denotes the imaginary part of z ∈ C. Note that q(t) is the average
position at time t and p(t) is the average momentum of the quantum system. The
dynamics of the couple (p, q) is given by the Ehrenfest theorem (see, for example,
[353, (I) page 182, vol. I])

q̇ = p, ṗ = −4q + 2u.(5.9)

The linear system (5.9) can be considered as a control system, where, at time t, the
state is (p(t), q(t))tr, with p(t) ∈ R and q(t) ∈ R, and the control is u(t) ∈ R. Note
that, by the Kalman rank condition (Theorem 1.16 on page 9), the linear control
system (5.9) is controllable. Following Anatoliy Butkovskiy and Yu. Samŏılenko in
[78, page 51], let us define φ ∈ C0([0, T ]; S) by

φ(t, x) := ψ(t, x+ q) exp(−ix(p/2) + ir),(5.10)

with

r(t) :=
∫ t

0

(q2(τ)− 3
4
p2(τ)− u(τ)q(τ))dτ.(5.11)

Then straightforward computations lead to

φt = iφxx − ix2φ, t ∈ (0, T ), x ∈ R.(5.12)

Note that the evolution of φ does not depend on the control. With this precise
description of ψ, it is not hard to check that, given ψ0 ∈ S, the set

{ψ(T, ·); T > 0, u : (0, T ) → R, ψ is a solution of (5.6) such that ψ(0, ·) = ψ0}

is contained in a submanifold of S of dimension 4; see also the following exercise.

Exercise 5.1. Let us consider the control system

q̇ = p, ṗ = −4q + 2u, ṙ = q2 − 3
4
p2 − uq,(5.13)

where the state is x := (q, p, r)tr ∈ R3 and the control is u ∈ R. Check that this
control system satisfies the Lie algebra rank condition at the equilibrium (xe, ue) :=
(0, 0) ∈ R3 × R (see Definition 3.16 on page 134). Prove that this control system
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is not locally controllable at (xe, ue). (Hint. Use Theorem 3.36 on page 145 with
k = 1.)

Let T > π. Prove that, for every ε > 0, there exists η > 0 such that for every
(q0, p0, r0) ∈ R3 and every (q1, p1, r1) ∈ R3 with

|q0|+ |p0|+ |r0|+ |q1|+ |p1|+ |r1| 6 η,

there exists u ∈ L∞((0, T ); R) with

|u(t)| 6 ε, t ∈ (0, T ),

such that the solution of the Cauchy problem (5.13) with the initial condition

q(0) = q0, p(0) = p0, r(0) = r0,(5.14)

satisfies

q(T ) = q1, p(T ) = p1, r(T ) = r1.(5.15)

(Hint. See Example 6.4 on page 190.)
Prove that the control system (5.13) is globally controllable in large time in

the following sense: for every (q0, p0, r0) ∈ R3 and every (q1, p1, r1) ∈ R3, there
exist T > 0 and u ∈ L∞((0, T ); R) such that the solution of the Cauchy problem
(5.13)-(5.14) satisfies (5.15).

Remark 5.2. Let us consider the following modal approximation of the control
system (5.6):

ż = −iH0z − iuH1z,(5.16)

with

H0 =



1
2 0 . . . 0
0 3

2 0 . . . 0

0 0 5
2 0

...
...

. . .
...

0 0 . . . 0 2n+1
2

 ,

H1 =



0 1 0 . . . 0

1 0
√

2
. . .

...

0
√

2 0
√

3
...

...
√

3
. . . . . .

...
. . . . . .

√
n+ 1

0 . . . 0
√
n+ 1 0


.

In (5.16), z ∈ S2n+1 := {z ∈ Cn+1; |z| = 1}. Hongchen Fu, Sonia Schirmer and
Allan Solomon have proved in [180] that, for every n ∈ N, this modal approximation
is globally controllable in large time: for every z0 ∈ S2n+1 and for every z1 ∈ S2n+1,
there exist T > 0 and u ∈ L∞(0, T ) such that the solution of the Cauchy problem

ż = −iH0z − iuH1z, z(0) = z0

satisfies
z(T ) = z1.
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This result shows that one has to be careful with finite-dimensional approximations
in order to get controllability for infinite-dimensional control systems.

Remark 5.3. Our application of iterated Lie brackets presented here (for the
control system (5.6)) was for a non-controllability result for partial differential equa-
tions. There are applications of iterated Lie brackets to get (global) controllability
results for a partial differential equation. Let us, for example, mention the control
by means of low modes forcing for the Navier-Stokes equations and the Euler equa-
tions of incompressible fluids obtained by Andrei Agrachev and Andrei Sarychev
in [9] and by Armen Shirikyan in [446].





CHAPTER 6

Return method

6.1. Description of the method

The return method has been introduced in [103] for a stabilization problem,
that we detail in Section 11.2.1. It has been used for the first time in [104, 112]
for the controllability of a partial differential equation (see Section 6.2.1).

In order to explain this method, let us first consider the problem of local con-
trollability of a control system in finite dimension. Thus we consider the control
system

ẋ = f(x, u),

where x ∈ Rn is the state and u ∈ Rm is the control; we assume that f is of class
C∞ and satisfies

f(0, 0) = 0.

Note that all the controllability conditions given in the previous chapter rely on a
Lie bracket formulation. Unfortunately, this geometric tool does not seem to give
good results for distributed control systems; in this case x belongs to an infinite-
dimensional space. The main reason is that, for many interesting distributed control
systems, (3.22) and (3.25) do not hold. More precisely, the left hand sides of (3.22)
and (3.25) divided by ε2 have no limit as ε → 0 in many interesting cases. See
Chapter 5 for a very simple example. On the other hand, as we have already seen
in Chapter 2, for linear distributed control systems, there are powerful methods to
prove controllability. The return method consists of reducing the local controllabil-
ity of a nonlinear control system to the existence of (suitable) periodic (or “almost
periodic”; see below the cases of the Navier-Stokes control system, the shallow wa-
ter equations and the Schrödinger equation) trajectories and to the controllability
of linear systems (see also Remark 6.1 on page 189). The idea is the following one:
Assume that, for every positive real number T and every positive real number ε,
there exists a measurable bounded function ū : [0, T ] → Rm with ‖ū‖L∞(0,T ) 6 ε

such that, if we denote by x̄ the (maximal) solution of ˙̄x = f(x̄, ū(t)), x̄(0) = 0,
then

x̄(T ) = 0,(6.1)

the linearized control system around (x̄, ū) is controllable on [0, T ].(6.2)

Then, from Theorem 3.6 on page 127, one gets the existence of η > 0 such that, for
every x0 ∈ Rn and for every x1 ∈ Rn such that

|x0| < η, |x1| < η,

there exists u ∈ L∞((0, T ); Rm) such that

|u(t)− ū(t)| 6 ε, t ∈ [0, T ]

187
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and such that, if x : [0, T ] → Rn is the solution of the Cauchy problem

ẋ = f(x, u(t)), x(0) = x0,

then
x(T ) = x1;

see Figure 1. Since T > 0 and ε > 0 are arbitrary, one gets that ẋ = f(x, u)
is small-time locally controllable at the equilibrium (0, 0) ∈ Rn × Rm. (For the
definition of small-time local controllability, see Definition 3.2 on page 125.)

T

η

� Cε

x̄(t)

x(t)

x0

x

t

x1

Figure 1. Return method

Let us recall (see Definition 3.5 on page 127) that the linearized control system
around (x̄, ū) is the time-varying control system

ẏ = A(t)y +B(t)v,(6.3)

where the state is y ∈ Rn, the control is v ∈ Rm and

A(t) :=
∂f

∂x
(x̄(t), ū(t)), B(t) :=

∂f

∂u
(x̄(t), ū(t)).

Let us recall (Definition 1.2 on page 4) that, for the linear control system (6.3),
controllability on [0, T ] means that, for every y0 and y1 in Rn, there exists a bounded
measurable function v : [0, T ] → Rm such that if ẏ = A(t)y +B(t)v and y(0) = y0,
then y(T ) = y1.

Let us also recall (Theorem 1.18 on page 11) that if A and B are of class C∞,
and if, for some t̄ ∈ [0, T ],

Span {Bi(t̄)u; u ∈ Rm, i ∈ N} = Rn,(6.4)
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with Bi ∈ C∞([T0, T1];L(Rm; Rn)) defined by induction on i by

B0(t) := B(t), Bi(t) := Ḃi−1(t)−A(t)Bi−1(t),

then the linearized control system (6.3) is controllable on [0, T ].
Note that if one takes ū = 0, then the above method just gives the well-known

fact that, if the time-invariant linear control system

ẏ =
∂f

∂x
(0, 0)y +

∂f

∂u
(0, 0)v,

is controllable, then the nonlinear control system ẋ = f(x, u) is small-time locally
controllable (Theorem 3.8 on page 128). However, it may happen that (6.2) does
not hold for ū = 0, but holds for other choices of ū.

Remark 6.1. In fact, for many nonlinear partial differential equations, one
does not use the linearized control system along the trajectory (x̄, ū) to get the
local controllability result along (x̄, ū). One uses other adapted methods. These
methods can rely on the controllability of some linear control systems which are
not the linearized control system along the trajectory (x̄, ū) (see Remark 4.11 on
page 172 as well as Remark 6.30 on page 214). It can also rely on some specific
methods which do not use the controllability of any linear control system. This last
case appears in the papers [239] by Thierry Horsin and [200] by Olivier Glass.

Let us show on simple examples in finite dimension how the return method can
be used.

Example 6.2. We take n = 2, m = 1 and again consider (see Example 3.34
on page 144 above) the control system

ẋ1 = x3
2, ẋ2 = u.(6.5)

For ū = 0 and x̄ = 0, the linearized control system around (x̄, ū) is

ẏ1 = 0, ẏ2 = v,

which is clearly not controllable (one cannot change y1). Let us now take T > 0
and ū ∈ C∞([0, T ]; R) such that ∫ T/2

0

ū(t)dt = 0,

ū(T − t) = ū(t), ∀ t ∈ [0, T ].

Then one easily checks that

x̄2(T/2) = 0,

x̄2(T − t) = −x̄2(t), ∀t ∈ [0, T ],

x̄1(T − t) = x̄1(t), ∀t ∈ [0, T ].

In particular, we have
x̄1(T ) = 0 , x̄2(T ) = 0.

The linearized control system around (x̄, ū) is

ẏ1 = 3x̄2
2(t)y2 , ẏ2 = v.

Hence

A(t) =
(

0 3x̄2(t)2

0 0

)
, B(t) =

(
0
1

)
,



190 6. RETURN METHOD

and one easily sees that (6.4) holds if and only if

∃ i ∈ N such that
dix̄2

dti
(t̄) 6= 0.(6.6)

Note that (6.6) holds for at least a t̄ in [0, T ] if (and only if) ū 6= 0. So (6.2) holds
if (and only if) ū 6= 0. We recover that the control system (6.5) is small-time locally
controllable at the equilibrium (0, 0) ∈ R2 × R.

Example 6.3. We return to the nonholonomic integrator (3.41) considered in
Example 3.20 on page 135; we take n = 3, m = 2 and the control system is

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1,(6.7)

where the state is x = (x1, x2, x3)tr ∈ R3 and the control is u = (u1, u2)tr ∈ R2.
Again one can check that the linearized control system around the trajectory (x̄, ū)
is controllable on [0, T ] if and only if ū 6= 0.

Note that, for the control system (6.7), it is easy to achieve the “return condi-
tion” (6.1). Indeed, let us impose that

ū(T − t) = −ū(t), ∀ t ∈ [0, T ].(6.8)

Then

x̄(T − t) = x̄(t), ∀ t ∈ [0, T ].(6.9)

Indeed, let y : [0, T ] → R3 be defined by

y(t) = x̄(T − t), ∀t ∈ [0, T ].

Then y, as x̄, satisfies the ordinary differential equation

ẋ1 = ū1, ẋ2 = ū2, ẋ3 = x1ū2 − x2ū1.

Hence, since y and x̄ are equal at the time T/2, y = x̄, which gives (6.9). From
(6.9), we have

x̄(T ) = x̄(0) = 0.

So the control system (6.7) is again small-time locally controllable at the equilibrium
(0, 0) ∈ R3 × R2 (a result which follows also directly from the Rashevski-Chow
Theorem 3.19 on page 135).

Example 6.4. We go back to the control system considered in Example 3.38
on page 148: the control system we consider is given by

ẋ1 = x2, ẋ2 = −x1 + u, ẋ3 = x4, ẋ4 = −x3 + 2x1x2,(6.10)

where the state is (x1, x2, x3, x4)tr ∈ R4 and the control is u ∈ R. One easily
checks that this system satisfies the Lie algebra rank condition at the equilibrium
(0, 0) ∈ R4×R (Definition 3.16 on page 134). In Example 3.38 on page 148, we saw
that the control system (6.10) is not small-time locally controllable at the equilibrium
(xe, ue) = (0, 0) ∈ R4 ×R. Here we want to see that the return method can be used
to get large-time local controllability at the equilibrium (xe, ue) = (0, 0) ∈ R4 × R.

Let us first give a new proof that this control system is not small-time locally
controllable at the equilibrium (xe, ue) = (0, 0) ∈ R4×R. Indeed, if (x, u) : [0, T ] →
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R4 × R is a trajectory of the control system (6.10) such that x(0) = 0, then

x3(T ) =
∫ T

0

x2
1(t) cos(T − t)dt,(6.11)

x4(T ) = x2
1(T )−

∫ T

0

x2
1(t) sin(T − t)dt.(6.12)

In particular, if x1(T ) = 0 and T 6 π, then x4(T ) 6 0 with equality if and only if
x = 0. So, if for T > 0 we denote by P(T ) the following controllability property
P(T ) There exists ε > 0 such that, for every x0 ∈ R4 and for every x1 ∈ R4

both of norm less than ε, there exists a bounded measurable function u :
[0, T ] → R such that, if x is the (maximal) solution of (6.10) which satisfies
x(0) = x0, then x(T ) = x1,

then, for every T ∈ (0, π], P(T ) is false.
Let us show how the return method can be used to prove that

P(T ) holds for every T ∈ (π,+∞).(6.13)

Let T > π. Let

η =
1
2
Min {T − π, π}.

Let x̄1 : [0, T ] → R be a function of class C∞ such that

x̄1(t) = 0, ∀t ∈ [η, π] ∪ [π + η, T ],(6.14)

x̄1(t+ π) = x̄1(t), ∀t ∈ [0, η].(6.15)

Let x̄2 : [0, T ] → R and ū : [0, T ] → R be such that

x̄2 := ˙̄x1, ū := ˙̄x2 + x̄1.

In particular,

x̄2(t) = 0, ∀t ∈ [η, π] ∪ [π + η, T ],(6.16)

x̄2(t+ π) = x2(t), ∀t ∈ [0, η].(6.17)

Let x̄3 : [0, T ] → R and x̄4 : [0, T ] → R be defined by

˙̄x3 = x̄4, ˙̄x4 = −x̄3 + 2x̄1x̄2,(6.18)

x̄3(0) = 0, x̄4(0) = 0.(6.19)

So (x̄, ū) is a trajectory of the control system (6.10). Then, using (6.11), (6.12),
(6.14), (6.16), (6.15), (6.17), one sees that

x̄(T ) = 0.

If x̄1 = 0, (x̄, ū) = 0 and then the linearized control system around (x̄, ū) is not
controllable. However, as one easily checks by using the Kalman-type sufficient
condition for the controllability of linear time-varying control system given in The-
orem 1.18 on page 11, if x̄1 6= 0, then the linearized control system around (x̄, ū) is
controllable. This establishes (6.13).

One may wonder if the local controllability of ẋ = f(x, u) implies the existence
of u in C∞([0, T ]; Rm) such that (6.1) and (6.2) hold. This is indeed the case, as
proved by Eduardo Sontag in [452]. Let us also remark that the above examples
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suggest that, for many choices of ū, (6.2) holds. This in fact holds in general. More
precisely, let us assume that{

h(0);h ∈ Lie
{
∂f

∂uα
(·, 0), α ∈ Nm

}}
= Rn,(6.20)

where Lie F denotes the Lie algebra generated by the vector fields in F (see Defi-
nition 3.13 on page 133). Then, for generic u in C∞([0, T ]; Rm), (6.2) holds. This
is proved in [106], and in [456] if f is analytic. Let us recall that by Theorem 3.17
on page 134, (6.20) is a necessary condition for small-time local controllability at
the equilibrium (0, 0) ∈ Rn × Rm if f is analytic.

Note that the controllability results obtained in Example 6.2 and Example 6.3
by means of the return method can also be obtained by already known results:

- The small-time local controllability in Example 6.2 on page 189 follows
from the Hermes condition (see page 143 and Theorem 3.29 on page 143)
[228, 469].

- The small-time local controllability in Example 6.3 follows from Rashevski-
Chow’s Theorem 3.19 on page 135.

It is not clear how to deduce the large-time local controllability of Example 6.4
(more precisely (6.13)) from already known results. More interestingly, the return
method gives some new results in the following cases:

- for the stabilization of driftless control affine systems (see Section 11.2.1),
- for the controllability of distributed control systems (see Section 6.2 and

Section 6.3).

6.2. Controllability of the Euler and Navier-Stokes equations

In this section, we show how the return method can be used to give control-
lability results for the Euler and Navier-Stokes equations. Let us introduce some
notation. Let l ∈ {2, 3} and let Ω be a bounded nonempty connected open subset
of Rl of class C∞. Let Γ0 be an open subset of Γ := ∂Ω and let Ω0 be an open
subset of Ω. We assume that

Γ0 ∪ Ω0 6= ∅.(6.21)

The set Γ0, resp. Ω0, is the part of the boundary Γ, resp. of the domain Ω, on
which the control acts. The fluid that we consider is incompressible, so that the
velocity field y satisfies

div y = 0.

On the part of the boundary Γ\Γ0 where there is no control, the fluid does not
cross the boundary: it satisfies

y · n = 0 on Γ\Γ0,(6.22)

where n denotes the outward unit normal vector field on Γ. When the fluid is
viscous, it satisfies on Γ\Γ0, besides (6.22), some extra conditions which will be
specified later on. For the moment, let us just denote by BC all the boundary
conditions (including (6.22)) satisfied by the fluid on Γ\Γ0.

Let us introduce the following definition.
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Definition 6.5. A trajectory of the Navier-Stokes control system (resp. Euler
control system) on the time interval [0, T ] is a map y : [0, T ] × Ω → Rl such that,
for some function p : [0, T ]× Ω → R,

∂y

∂t
− ν∆y + (y · ∇)y +∇p = 0 in [0, T ]× (Ω\Ω0),(6.23)

(resp.
∂y

∂t
+ (y · ∇)y +∇p = 0 in [0, T ]× (Ω\Ω0))(6.24)

div y = 0 in [0, T ]× Ω,(6.25)

y(t, ·) satisfies the boundary conditions BC on Γ\Γ0, ∀t ∈ [0, T ].(6.26)

The real number ν > 0 appearing in (6.23) is the viscosity. In Definition 6.5
and throughout the whole book, for A : Ω → Rl and B : Ω → Rl, (A ·∇)B : Ω → Rl
is defined by

((A · ∇)B)k :=
l∑

j=1

Aj
∂Bk

∂xj
, ∀k ∈ {1, . . . , l}.

Moreover, in Definition 6.5 and throughout this section, we do not specify in general
the regularities of the functions considered. For the precise regularities, see the
references mentioned in this section.

Jacques-Louis Lions’s problem of approximate controllability is the following
one.

Open Problem 6.6. Let T > 0, let y0 : Ω → Rl and y1 : Ω → Rl be two
functions such that

div y0 = 0 in Ω,(6.27)

div y1 = 0 in Ω,(6.28)

y0 satisfies the boundary conditions BC on Γ\Γ0,(6.29)

y1 satisfies the boundary conditions BC on Γ\Γ0.(6.30)

Does there exist a trajectory y of the Navier-Stokes or the Euler control system such
that

y(0, ·) = y0 in Ω,(6.31)

and, for an appropriate topology (see [327, 328]),

y(T, ·) is “close” to y1 in Ω?(6.32)

In other words, starting with the initial data y0 for the velocity field, we ask whether
there are trajectories of the considered control system (Navier-Stokes if ν > 0, Euler
if ν = 0) which, at a fixed time T , are arbitrarily close to the given velocity field y1.

If this problem always has a solution, one says that the considered control
system is approximately controllable.

Note that (6.23), (6.25), (6.26) and (6.31) have many solutions. In order to
have uniqueness one needs to add extra conditions. These extra conditions are the
controls.
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In the case of the Euler control system, one can even require instead of (6.32)
the stronger condition

y(T, ·) = y1 in Ω.(6.33)

If y still exists with this stronger condition, one says that the Euler control system
is globally controllable. Of course, due to the smoothing effects of the Navier-
Stokes equations, one cannot expect to have (6.33) instead of (6.32) for general y1.
We have already encountered this problem for the control of the heat equation in
Section 2.5. Proceeding as in Section 2.5, we replace, in Section 6.2.2, (6.33) by
another condition in order to recover a natural definition of controllability of the
Navier-Stokes equation.

This section is organized as follows:
1. In Section 6.2.1, we consider the case of the Euler control system.
2. In Section 6.2.2, we consider the case of the Navier-Stokes control system.

6.2.1. Controllability of the Euler equations. In this section the bound-
ary conditions BC in (6.26), (6.29), and (6.30) are, respectively,

y(t, x) · n(x) = 0, ∀(t, x) ∈ [0, T ]× (Γ\Γ0),(6.34)

y0(x) · n(x) = 0, ∀x ∈ Γ\Γ0,(6.35)

y1(x) · n(x) = 0, ∀x ∈ Γ\Γ0.(6.36)

For simplicity we assume that

Ω0 = ∅,

i.e., we study the case of boundary control (see [112] when Ω0 6= ∅ and l = 2). In
this case the control is

1. y · n on Γ0 with
∫
Γ0
y · n = 0,

2. curl y if l = 2 and the tangent vector (curl y)× n if l = 3 at the points of
[0, T ]× Γ0 where y · n < 0.

These boundary conditions, (6.34), and the initial condition (6.31) imply the unique-
ness of the solution to the Euler equations (6.24)—up to an arbitrary function of
t which may be added to p and for suitable regularities; see also the papers [257]
by Victor Judovič and [271] by Alexandre Kazhikov, for results on uniqueness and
existence of solutions.

Let us first point out that, in order to have controllability, one needs that

Γ0 intersects every connected component of Γ.(6.37)

Indeed, let C be a connected component of Γ which does not intersect Γ0 and assume
that, for some smooth oriented Jordan curve γ0 on C (if l = 2, one takes γ0 = C),

R 3
∫
γ0

y0 ·
−→
ds 6= 0,(6.38)

but that

y1(x) = 0, ∀x ∈ C.(6.39)

Then there is no solution to our problem, that is, there is no y : [0, T ] × Ω → R2

and p : [0, T ] × Ω → R such that (6.24), (6.25), (6.31), (6.33), and (6.34) hold.
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Indeed, if such a solution (y, p) exists, then, by the Kelvin circulation theorem (see,
for example, [38, Equality (5.3.1), page 273]),∫

γ(t)

y(t, ·) ·
−→
ds =

∫
γ0

y0 ·
−→
ds, ∀t ∈ [0, T ],(6.40)

where γ(t) is the Jordan curve obtained, at time t ∈ [0, T ], from the points of the
fluids which, at time 0, were on γ0; in other words, γ(t) is the image of γ0 by the
flow map associated to the time-varying vector field y. But, if γ0 does not intersect
Γ0, (6.34) shows that γ(t) ⊂ C, for every t ∈ [0, T ]. Thus (6.33), (6.38), (6.39) and
(6.40) are in contradiction.

Conversely, if (6.37) holds, then the Euler control system is globally control-
lable:

Theorem 6.7. Assume that Γ0 intersects every connected component of Γ.
Then the Euler control system is globally controllable.

Theorem 6.7 has been proved in

1. [104] when Ω is simply-connected and l = 2,
2. [112] when Ω is multi-connected and l = 2,
3. [194], by Olivier Glass, when Ω is contractible and l = 3,
4. [195], by Olivier Glass, when Ω is not contractible and l = 3.

The strategy of the proof of Theorem 6.7 relies on the “return method”. Applied to
the controllability of the Euler control system, the return method consists of looking
for (ȳ, p̄) such that (6.24), (6.25), (6.31), (6.33) hold, with y = ȳ, p = p̄, y0 = y1 = 0
and such that the linearized control system along the trajectory ȳ is controllable
under the assumptions of Theorem 6.7. With such a (ȳ, p̄) one may hope that there
exists (y, p)—close to (ȳ, p̄)—satisfying the required conditions, at least if y0 and
y1 are “small”. Finally, by using some scaling arguments, one can deduce from the
existence of (y, p) when y0 and y1 are “small”, the existence of (y, p) even though
y0 and y1 are not “small”.

Let us emphasize that one cannot take (ȳ, p̄) = (0, 0). Indeed, with such a
choice of (ȳ, p̄), (6.24), (6.25), (6.31), (6.33) hold, with y = ȳ, p = p̄, y0 = y1 = 0,
but the linearized control system around ȳ = 0 is not at all controllable. Indeed,
the linearized control system around ȳ = 0 is

div z = 0 in [0, T ]× Ω,(6.41)

∂z

∂t
+∇π = 0 in [0, T ]× Ω,(6.42)

z(t, x) · n(x) = 0, ∀(t, x) ∈ [0, T ]× (Γ\Γ0).

Taking the curl of (6.42), one gets

∂curl z
∂t

= 0,

which clearly shows that the linearized control system is not controllable (one can-
not modify the curl using the control).

Thus, one needs to consider other (ȳ, p̄)’s. Let us briefly explain how one
constructs “good” (ȳ, p̄)’s when l = 2 and Ω is simply connected. In such a case,
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one easily checks the existence of a harmonic function θ in C∞(Ω) such that

∇θ(x) 6= 0, ∀x ∈ Ω,
∂θ

∂n
= 0 on Γ\Γ0.

Let α ∈ C∞([0, T ]) vanishing at 0 and T . Let

(ȳ, p̄)(t, x) = (α(t)∇θ(x),−α′(t)θ(x)− 1
2
α2(t)|∇θ(x)|2).(6.43)

Then (6.24), (6.25), (6.31) and (6.33) hold, with y = ȳ, p = p̄, y0 = y1 = 0. More-
over, using arguments relying on an extension method similar to the one described
in Section 2.1.2.2 (see also [426, Proof of Theorem 5.3, pages 688–690] by David
Russell and [332] by Walter Littman), one can see that the linearized control system
around ȳ is controllable.

When Γ0 does not intersect all the connected components of Γ, one can get, if
l = 2, approximate controllability and even controllability outside every arbitrarily
small neighborhood of the union Γ? of the connected components of Γ which do
not intersect Γ0. More precisely, one has the following theorem, which is proved in
[112].

Theorem 6.8. Assume that l = 2. There exists a constant c0 depending only
on Ω such that, for every Γ0 as above, every T > 0, every ε > 0, and every y0, y1

in C∞(Ω; R2) satisfying (6.27), (6.28), (6.35) and (6.36), there exists a trajectory
y of the Euler control system on [0, T ] satisfying (6.31), such that

y(T, x) = y1(x), ∀x ∈ Ω such that dist(x,Γ?) > ε,(6.44)

‖y(T, ·)‖L∞ 6 c0(‖y0‖L2 + ‖y1‖L2 + ‖curl y0‖L∞ + ‖curl y1‖L∞).(6.45)

In (6.44), dist(x,Γ?) denotes the distance of x to Γ?, i.e.,

dist (x,Γ?) = Min {|x− x?|;x? ∈ Γ?}.(6.46)

We use the convention dist (x, ∅) = +∞ and so Theorem 6.8 implies Theorem 6.7.
In (6.45), ‖ · ‖Lr , for r ∈ [1,+∞], denotes the Lr−norm on Ω.

Let us point out that, y0, y1 and T as in Theorem 6.8 being given, it follows
from (6.44) and (6.45) that, for every r in [1,+∞),

lim
ε→0+

‖y(T, ·)− y1‖Lr = 0.(6.47)

Therefore, Theorem 6.8 implies approximate controllability in the space Lr, for
every r in [1,+∞).

Let us also notice that, if Γ? 6= ∅, then, again by Kelvin’s circulation theorem,
approximate controllability for the L∞-norm does not hold. More precisely, let us
consider the case l = 2 and let us denote by Γ?1, . . . ,Γ

?
k the connected components

of Γ which do not meet Γ0. Let y0, y1 in C∞(Ω; R2) satisfy (6.27), (6.28), (6.35)
and (6.36). Assume that, for some i ∈ {1, . . . , k},∫

Γ?
i

y0 ·
−→
ds 6=

∫
Γ?

i

y1 ·
−→
ds.

Then, for ε > 0 small enough, there is no trajectory y of the Euler control system
on [0, T ] satisfying (6.31) such that

‖y(T, ·)− y1‖L∞ 6 ε.(6.48)
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One may wonder what happens if, on the contrary, one assumes that∫
Γ?

i

y0 ·
−→
ds =

∫
Γ?

i

y1 ·
−→
ds, ∀i ∈ {1, . . . , k}.(6.49)

Then Olivier Glass proved that one has approximate controllability in L∞ and even
in the Sobolev spaces W 1,p for every p ∈ [1,+∞). Indeed he proved in [196] the
following theorem.

Theorem 6.9. Assume that l = 2. For every T > 0, and every y0, y1 in
C∞(Ω; R2) satisfying (6.27), (6.28), (6.35), (6.36) and (6.49), there exists a se-
quence (yk)k∈N of trajectories of the Euler control system on [0, T ] satisfying (6.31)
such that

yk(T, x) = y1(x), ∀x ∈ Ω such that dist(x,Γ?) > 1/k, ∀k ∈ N,(6.50)

yk(T, ·) → y1 in W 1,p(Ω) as k → +∞, ∀p ∈ [1,+∞).(6.51)

Again the convergence in (6.51) is optimal. Indeed, since the vorticity curl y is
conserved along the trajectories of the vector field y, one cannot have the conver-
gence in W 1,∞. In order to have convergence in W 1,∞, one needs to add a relation
between curl y0 and curl y1 on the Γi for i ∈ {1, . . . , l}. In this direction, Olivier
Glass proved in [196]:

Theorem 6.10. Assume that l = 2. Let T > 0, and let y0, y1 in C∞(Ω; R2)
be such that (6.27), (6.28), (6.35), (6.36) and (6.49) hold. Assume that, for every
i ∈ {1, . . . , l}, there exists a diffeomorphism Di of Γ?i preserving the orientation
such that

curl y1 = (curl y0) ◦Di.

Then there exists a sequence (yk)k∈N of trajectories of the Euler control system on
[0, T ] satisfying (6.31), (6.50) and

yk(T, ·) → y1 in W 2,p(Ω) as k → +∞, ∀p ∈ [1,+∞).(6.52)

Again, one cannot expect a convergence in W 2,∞ without an extra assumption
on y0 and y1; see [196].

Let us end this section by mentioning that, for the Vlasov-Poisson system
and for the 1-D isentropic Euler equation, Olivier Glass, using the return method,
obtained controllability results in [198, 200].

6.2.2. Controllability of the Navier-Stokes equations. In this section,
ν > 0. We now need to specify the boundary conditions BC. Three types of
conditions are considered:

- Stokes boundary condition,
- Navier boundary condition,
- Curl condition.

The Stokes boundary condition is the well-known no-slip boundary condition

y = 0 on Γ\Γ0,(6.53)

which of course implies (6.22).
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The Navier boundary condition, introduced in [375], imposes condition (6.22),
which is always assumed, and

σy · τ + (1− σ)
i=l,j=l∑
i=1,j=1

ni
(
∂yi

∂xj
+
∂yj

∂xi

)
τ j = 0 on Γ\Γ0, ∀τ ∈ TΓ,(6.54)

where σ is a constant in [0, 1). In (6.54), n = (n1, . . . , nl), τ = (τ1, . . . , τ l) and TΓ
is the set of tangent vector fields on the boundary Γ. Note that the Stokes boundary
condition (6.53) corresponds to the case σ = 1, which we will not include in the
Navier boundary condition considered here. The boundary condition (6.54) with
σ = 0 corresponds to the case where the fluid slips on the wall without friction. It is
the appropriate physical model for some flow problems; see, for example, the paper
[192] by Giuseppe Geymonat and Enrique Sánchez-Palencia. The case σ ∈ (0, 1)
corresponds to a case where the fluid slips on the wall with friction; it is also used in
models of turbulence with rough walls; see, e.g., [304]. Note that in [101] François
Coron derived rigorously the Navier boundary condition (6.54) from the boundary
condition at the kinetic level (Boltzmann equation) for compressible fluids. Let us
also recall that Claude Bardos, François Golse, and David Levermore have derived
in [32, 33] the incompressible Navier-Stokes equations from a Boltzmann equation.

Let us point out that, using (6.22), one sees that, if l = 2 and if τ is the unit
tangent vector field on Γ such that (n, τ) is a direct basis of R2, (6.54) is equivalent
to

σy · τ + curl y = 0 on Γ\Γ0,

with σ ∈ C∞(Γ; R) defined by

σ(x) :=
−2(1− σ)κ(x) + σ

1− σ
, ∀x ∈ Γ,(6.55)

where κ is the curvature of Γ defined through the relation

∂n

∂τ
= κτ.

In fact, we will not use this particular form of (6.55) in our considerations: Theorem
6.14 below holds for every σ ∈ C∞(Γ; R).

Finally, the curl condition is considered in dimension l = 2. This condition is
condition (6.22), which is always assumed, and

curl y = 0 on Γ\Γ0.(6.56)

It corresponds to the case σ = 0 in (6.55).
As mentioned at the beginning of Section 6.2, due to the smoothing property

of the Navier-Stokes equation, one cannot expect to get (6.33), at least for general
y1. For these equations, the good notion for controllability is not passing from a
given state y0 to another given state y1. As already mentioned (see Section 2.5.2),
the good definition for controllability, which is due to Andrei Fursikov and Oleg
Imanuvilov [185, 187], is passing from a given state y0 to a given trajectory ŷ1.
This leads to the following, still open, problem of controllability of the Navier-Stokes
equation with the Stokes or Navier condition.

Open Problem 6.11. Let T > 0. Let ŷ1 be a trajectory of the Navier-Stokes
control system on [0, T ]. Let y0 ∈ C∞(Ω; Rl) satisfy (6.27) and (6.29). Does there
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exist a trajectory y of the Navier-Stokes control system on [0, T ] such that

y(0, x) = y0(x), ∀x ∈ Ω,(6.57)

y(T, x) = ŷ1(T, x), ∀x ∈ Ω?(6.58)

Let us point out that the (global) approximate controllability of the Navier-
Stokes control system is also an open problem. Related to Open Problem 6.11, one
knows two types of results:

- local results,
- global results,

which we briefly describe in Section 6.2.2.1 and Section 6.2.2.2, respectively.
6.2.2.1. Local results. These results do not rely on the return method, but

on observability inequalities related to the one obtained for the heat equation in
Section 2.5 (see (2.398)). Compared to the case of the heat equation considered in
Section 2.5, the main new difficulty is to estimate the pressure. Let us introduce
the following definition.

Definition 6.12. The Navier-Stokes control system is locally (for the Sobolev
H1-norm) controllable along the trajectory ŷ1 on [0, T ] of the Navier-Stokes control
system if there exists ε > 0 such that, for every y0 ∈ C∞(Ω; Rl) satisfying (6.27),
(6.29) and

‖y0 − ŷ1(0, ·)‖H1(Ω) < ε,

there exists a trajectory y of the Navier-Stokes control system on [0, T ] satisfying
(6.57) and (6.58).

Then one has the following result.

Theorem 6.13. The Navier-Stokes control system is locally controllable (for the
Navier or Stokes condition) along every trajectory ŷ1 of the Navier-Stokes control
system.

Many mathematicians have contributed to this result. Let us mention the main
papers:

- Andrei Fursikov and Oleg Imanuvilov in [184, 187] treated the case l = 2
and the Navier boundary condition.

- Andrei Fursikov in [181] treated the case where Γ0 = Γ.
- Oleg Imanuvilov in [244, 245] treated in full generality the case of the

Stokes condition. In [244, 245], Enrique Ferńandez-Cara, Sergio Guerrero,
Oleg Imanuvilov and Jean-Pierre Puel in [167] weakened some regularity
assumptions.

- Sergio Guerrero in [207] treated in full generality the case of the Navier
boundary condition.

6.2.2.2. Global results. Let d ∈ C0(Ω; R) be defined by

d(x) = dist (x,Γ) = Min {|x− x′|;x′ ∈ Γ}.
In [111] the following theorem is proved.

Theorem 6.14. Let T > 0. Let y0 and y1 in H1(Ω,R2) be such that (6.27)
and (6.28) hold and

curl y0 ∈ L∞(Ω) and curl y1 ∈ L∞(Ω),

y0 · n = 0, y1 · n = 0 on Γ \ Γ0.



200 6. RETURN METHOD

Let us also assume that (6.54) holds for y := y0 and for y := y1. Then there exists a
sequence (yk, pk)k∈N of solutions of the Navier-Stokes control system on [0, T ] with
the Navier boundary condition (6.54) such that

yk(0, ·) = y0,(6.59)

yk and pk are of class C∞ in (0, T ]× Ω,(6.60)

yk ∈ L2((0, T ),H2(Ω)2),(6.61)

ykt ∈ L2((0, T ), L2(Ω)2),(6.62)

pk ∈ L2((0, T ),H1(Ω)),(6.63)

and such that, as k → +∞,∫
Ω

d(x)µ|yk(T, x)− y1(x)|dx→ 0, ∀µ > 0,(6.64)

‖yk(T, ·)− y1‖W−1,∞(Ω) → 0,(6.65)

and, for every compact K contained in Ω ∪ Γ0,

‖yk(T, ·)− y1‖L∞(K) + ‖curl yk(T, ·)− curl y1‖L∞(K) → 0.(6.66)

In this theorem, W−1,∞(Ω) denotes the usual Sobolev space of first derivatives
of functions in L∞(Ω) and ‖ · ‖W−1,∞(Ω) one of its usual norms, for example the
norm given in [3, Section 3.12, page 64].

Remark 6.15. In [111] we said that, if y0 is, moreover, of class C∞ in Ω and
satisfies (6.29), then the (yk, pk) could be chosen to be of class C∞ in [0, T ] × Ω
(compared with (6.60)). This is wrong. In order to have regularity near t = 0,
one needs to require (as in the case where there is no control) some extra nonlocal
compatibility conditions on y0. One can easily adapt the paper [479] by Roger
Temam (which deals with the case of the Stokes conditions) to find these compati-
bility conditions. When there is a control, the compatibility conditions are weaker
than in the case without control but they still do exist if Γ0 6= Γ.

For the proof of Theorem 6.14, as in the proof of the controllability of the
2-D Euler equations of incompressible inviscid fluids (see Section 6.2.1), one uses
the return method. Let us recall that it consists of looking for a trajectory of the
Navier-Stokes control system ȳ such that

ȳ(0, ·) = ȳ(T, ·) = 0 in Ω,(6.67)

and such that the linearized control system around the trajectory ȳ has a controlla-
bility in a “good” sense. With such a ȳ one may hope that there exists y—close to
ȳ—satisfying the required conditions, at least if y0 and y1 are “small”. Note that
the linearized control system around ȳ is

∂z

∂t
− ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇π = 0 in [0, T ]× (Ω\Ω0),(6.68)

div z = 0 in [0, T ]× Ω,(6.69)

z · n = 0 on [0, T ]× (Γ\Γ0),(6.70)

σz · τ + curl z = 0 on [0, T ]× (Γ\Γ0).(6.71)
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In [184, 187] Andrei Fursikov and Oleg Imanuvilov proved that this linear control
system is controllable (see also [323] for the approximate controllability). Of course
it is tempting to consider the case ȳ = 0. Unfortunately, it is not clear how to
deduce from the controllability of the linear system (6.68) with ȳ = 0, the existence
of a trajectory y of the Navier-Stokes control system (with the Navier boundary
condition) satisfying (6.31) and (6.32) if y0 and y1 are not small. (The nonlinearity
sounds too big to apply the method of Section 4.3.) For this reason, one does not
use ȳ = 0, but ȳ similar to the one defined by (6.43) to prove the controllability of
the 2-D Euler equations of incompressible inviscid fluids. These ȳ’s are chosen to
be “large” so that, in some sense, “∆” is small compared to “(ȳ · ∇) + ( ·∇)ȳ”.

Remark 6.16. In fact, with the ȳ we use, one does not have (6.67): one only
has the weaker property

ȳ(0, ·) = 0, ȳ(T, ·) is “close” to 0 in Ω.(6.72)

However, the controllability of the linearized control system around ȳ is strong
enough to take care of the fact that ȳ(·, T ) is not equal to 0 but only close to 0. A
similar observation can be found, in a different setting, in [471]. With the notation
introduced by Héctor Sussmann in [471], ȳ plays the role of ξ∗ in the proof of
[471, Theorem 12] and the Euler control system plays for the Navier-Stokes control
system the role played by G for F .

Note that (6.64), (6.65), and (6.66) are not strong enough to imply

‖yk(T, ·)− y1‖L2(Ω) → 0,(6.73)

i.e., to get the approximate controllability in L2 of the Navier-Stokes control system.
But, in the special case where Γ0 = Γ, (6.64), (6.65), and (6.66) are strong enough
to imply (6.73). Moreover, combining together a proof of Theorem 6.13 (see [184,
187]) and the proof of Theorem 6.14, one gets the following theorem.

Theorem 6.17 ([123]). The Open Problem 6.11 has a positive answer when
Γ0 = Γ and l = 2.

This result has been recently generalized to the case l = 3 by Andrei Fursikov
and Oleg Imanuvilov in [188]. Let us also mention that, in [155], Caroline Fabre
obtained, in every dimension, an approximate controllability result of two natural
“cut off” Navier-Stokes equations. Her proof relies on a general method introduced
by Enrique Zuazua in [516] to prove approximate controllability of semilinear wave
equations. This general method is based on the HUM (Hilbert Uniqueness Method,
due to Jacques-Louis Lions [326]; see Section 1.4) and on a fixed-point technique
introduced by Enrique Zuazua in [515, 516] and that we described in Section 3.5.1
and in Section 4.3.

Remark 6.18. Roughly speaking, we have deduced global controllability re-
sults for the Navier-Stokes equations from the controllability of the Euler equations.
This is possible because the Euler equations are quadratic and the Navier-Stokes
equations are the Euler equations plus a linear “perturbation”. See Section 3.5.2,
where we have studied such phenomena for control systems in finite dimension.

Remark 6.19. As already mentioned in Remark 5.3 on page 185, Andrei
Agrachev and Andrei Sarychev in [9], and Armen Shirikyan in [446] obtained global
approximate controllability results for the Navier-Stokes equations and the Euler
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equations of incompressible fluids when the controls are on some low modes and Ω
is a torus. They also obtained the controllability for the Navier-Stokes equations
from the controllability for the Euler equations by the same scaling arguments. But
their proof of the controllability for the Euler equations is completely different. It
relies on iterated Lie brackets and a regularity property of the Navier-Stokes and
Euler equations for controls in W−1,∞(0, T ).

Remark 6.20. It is usually accepted that the viscous Burgers equation pro-
vides a realistic simplification of the Navier-Stokes system in Fluid Mechanics.
But Ildefonso Diaz proved in [145] that the viscous Burgers equation is not ap-
proximately controllable for boundary controls; see also [185], by Andrei Fursikov
and Oleg Imanuvilov, and [208] by Sergio Guerrero and Oleg Imanuvilov. Enrique
Fernández-Cara and Sergio Guerrero proved in [166] that the viscous Burgers equa-
tion is not small-time null controllable for large data (and boundary control). But
we proved in [118] that there exists a time T such that, whatever the initial datum
is, there exists a control which can steer the Burgers control system from this initial
datum to rest in time T .

For the nonviscous Burgers equation, results have been obtained by Fabio An-
cona and Andrea Marson in [16] and, using the return method, by Thierry Horsin
in [239] (see also [69] by Alberto Bressan and Giuseppe Coclite, and [15] by Fabio
Ancona and Giuseppe Coclite for hyperbolic systems and BV-solutions). Note
that, with boundary control, the nonviscous Burgers equation is not controllable
(even if the control is on the whole boundary of Ω, which is now an open bounded
nonempty interval of R; see [239]). By Remark 6.18, this might be the reason why
the viscous Burgers equation is not approximately controllable for boundary control
(even if the control is on the whole boundary of Ω; see [208]) and could explain
the difference, for the controllability, between the Navier-Stokes equations and the
viscous Burgers equation. Recently, Marianne Chapouly, using the return method,
obtained in [87] a global controllability result in arbitrary time for the nonviscous
Burgers equation when, besides control on the whole boundary, there is a constant
control inside. It seems that this constant control plays the role of the pressure in
the Euler equations.

Remark 6.21. It would be quite interesting to understand the controllability of
incompressible fluids in Lagrangian coordinates. Recently Thierry Horsin obtained
results in this direction for the viscous Burgers equation in [241] and for the heat
equation in [240].

Remark 6.22. Recently, there has been a lot of research on the interaction
fluid with other materials. Let us mention, in particular,

- the paper [330] by Jacques Louis Lions and Enrique Zuazua, the papers
[377, 378] by Axel Osses and Jean-Pierre Puel, on the controllability of
an incompressible fluid interacting with an elastic structure,

- the papers [147, 147] by Anna Doubova and Enrique Fernández-Cara on
the controllability of one-dimensional nonlinear system which models the
interaction of a fluid and a particle,

- the paper [514] by Xu Zhang and Enrique Zuazua on the controllability of
a linearized and simplified 1-D model for fluidstructure interaction. This
model consists of a wave and a heat equation and two bounded intervals,
coupled by transmission conditions at the point of interface.
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6.3. Local controllability of a 1-D tank containing a fluid modeled by
the Saint-Venant equations

In this section, we consider a 1-D tank containing an inviscid incompressible
irrotational fluid. The tank is subject to one-dimensional horizontal moves. We
assume that the horizontal acceleration of the tank is small compared to the gravity
constant and that the height of the fluid is small compared to the length of the tank.
These physical considerations motivate the use of the Saint-Venant equations [430]
(also called shallow water equations) to describe the motion of the fluid; see e.g.
[144, Sec. 4.2]. Hence the considered dynamics equations are (see the paper [150]
by François Dubois, Nicolas Petit and Pierre Rouchon)

Ht (t, x) + (Hv)x (t, x) = 0, t ∈ [0, T ], x ∈ [0, L],(6.74)

vt (t, x) +
(
gH +

v2

2

)
x

(t, x) = −u (t) , t ∈ [0, T ], x ∈ [0, L],(6.75)

v(t, 0) = v(t, L) = 0, t ∈ [0, T ],(6.76)
ds
dt

(t) = u (t) , t ∈ [0, T ],(6.77)

dD
dt

(t) = s (t) , t ∈ [0, T ],(6.78)

where (see Figure 2),
• L is the length of the 1-D tank,
• H (t, x) is the height of the fluid at time t and at the position x ∈ [0, L],
• v (t, x) is the horizontal water velocity of the fluid in a referential attached to

the tank at time t and at the position x ∈ [0, L] (in the shallow water model,
all the points on the same vertical have the same horizontal velocity),

• u (t) is the horizontal acceleration of the tank in the absolute referential,
• g is the gravity constant,
• s is the horizontal velocity of the tank,
• D is the horizontal displacement of the tank.

Local controllability of a 1-D tank containing a�uid modeled by the shallow-water equationJean-Michel CoronUniversité Paris-SudDépartement de Mathématique91405 Orsay, FranceJean-Michel.Coron@math.u-psud.fr26 April 2001
H D x vL

1
Figure 2. Fluid in the 1-D tank
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This is a control system, denoted Σ, where, at time t ∈ [0, T ],

- the state is Y (t) = (H(t, ·), v(t, ·), s(t), D(t)),
- the control is u(t) ∈ R.

Our goal is to study the local controllability of the control system Σ around the
equilibrium point

(Ye, ue) := ((He, 0, 0, 0), 0).

This problem has been raised by François Dubois, Nicolas Petit and Pierre Rouchon
in [150].

Of course, the total mass of the fluid is conserved so that, for every solution of
(6.74) to (6.76),

d
dt

∫ L

0

H (t, x) dx = 0.(6.79)

(One gets (6.79) by integrating (6.74) on [0, L] and by using (6.76) together with an
integration by parts.) Moreover, if H and v are of class C1, it follows from (6.75)
and (6.76) that

Hx(t, 0) = Hx(t, L),(6.80)

which is also −u (t) /g. Therefore we introduce the vector space E of functions
Y = (H, v, s,D) ∈ C1([0, L])× C1([0, L])× R× R such that

Hx(0) = Hx(L),(6.81)

v(0) = v(L) = 0,(6.82)

and we consider the affine subspace Y ⊂ E consisting of elements Y = (H, v, s,D) ∈
E satisfying ∫ L

0

H(x)dx = LHe.(6.83)

The vector space E is equipped with the natural norm

|Y | := ‖H‖C1([0,L]) + ‖v‖C1([0,L]) + |s|+ |D|.

With these notations, we can define a trajectory of the control system Σ.

Definition 6.23. Let T1 and T2 be two real numbers satisfying T1 6 T2. A
function (Y, u) = ((H, v, s, d), u) : [T1, T2] → Y × R is a trajectory of the control
system Σ if

(i) the functions H and v are of class C1 on [T1, T2]× [0, L],
(ii) the functions s and D are of class C1 on [T1, T2] and the function u is

continuous on [T1, T2],
(iii) the equations (6.74) to (6.78) hold for every (t, x) ∈ [T1, T2]× [0, L].

Our main result states that the control system Σ is locally controllable around
the equilibrium point (Ye, ue). More precisely, one has the following theorem.
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Theorem 6.24 ([116]). There exist T > 0, C0 > 0 and η > 0 such that, for
every Y 0 =

(
H0, v0, s0, D0

)
∈ Y, and for every Y 1 =

(
H1, v1, s1, D1

)
∈ Y such

that∥∥H0 −He

∥∥
C1([0,L])

+
∥∥v0
∥∥
C1([0,L])

< η,
∥∥H1 −He

∥∥
C1([0,L])

+
∥∥v1
∥∥
C1([0,L])

< η,∣∣s1 − s0
∣∣+ ∣∣D1 − s0T −D0

∣∣ < η,

there exists a trajectory (Y, u) : t ∈ [0, T ] 7→ ((H (t) , v (t) , s (t) , D (t)) , u (t)) ∈
Y × R of the control system Σ, such that

Y (0) = Y 0 and Y (T ) = Y 1,(6.84)

and, for every t ∈ [0, T ],

(6.85) ‖H (t)−He‖C1([0,L]) + ‖v (t)‖C1([0,L]) + |u (t)| 6

C0

(√
‖H0 −He‖C1([0,L]) + ‖v0‖C1([0,L]) + ‖H1 −He‖C1([0,L]) + ‖v1‖C1([0,L])

)
+ C0

(∣∣s1 − s0
∣∣+ ∣∣D1 − s0T −D0

∣∣) .
As a corollary of this theorem, any steady state Y 1 = (He, 0, 0, D1) can be

reached from any other steady state Y 0 = (He, 0, 0, D0). More precisely, one has
the following corollary.

Corollary 6.25 ([116]). Let T , C0 and η be as in Theorem 6.24. Let D0 and
D1 be two real numbers and let η1 ∈ (0, η]. Then there exists a trajectory

(Y, u) : [0, T (|D1 −D0|+ η1)/η1] → Y × R
t 7→ ((H (t) , v (t) , s (t) , D (t)) , u (t))

of the control system Σ, such that

Y (0) = (He, 0, 0, D0) and Y (T (|D1 −D0|+ η1)/η1) = (He, 0, 0, D1),(6.86)

and, for every t ∈ [0, T (|D1 −D0|+ η1)/η1],

‖H (t)−He‖C1([0,L]) + ‖v (t)‖C1([0,L]) + |u (t)| 6 C0η1.(6.87)

We will first explain, on a toy model in finite dimension, the main ideas for
proving Theorem 6.24. The rest of the section will then be devoted to a more
detailed description of the proof of Theorem 6.24.

In order to motivate our toy model, recalling that H0 and H1 have to be close
to He, let us write

H0 = He + εh0
1 + ε2h0

2, v
0 = εv0

1 + ε2v0
2 , s

0 = εs01, D
0 = εd0

1,

H1 = He + εh1
1 + ε2h1

2, v
1 = εv1

1 + ε2v1
2 , s

1 = εs11, D
1 = εd1

1, u = εu1,

where ε > 0 is small, and let us study the problem of second order in ε. (In fact,
we should also write the terms in ε2 for u, s, D but they turn out to be useless.)
Let us expand the solution (H, v, s,D) of (6.74) to (6.78) together with

H(0, x) = H0(x), v(0, x) = v0(x), s(0) = s0, D(0) = D0,

as power series in ε:

H = He + εh1 + ε2h2 + . . . , v = εv1 + ε2v2 + . . . , s = εs1, D = εD1, u = εu1.
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Identifying the power series expansions up to order 2 in ε, one gets

(6.88)



h1t +Hev1x = 0, t ∈ [0, T ], x ∈ [0, L],

v1t + gh1x = −u1(t), t ∈ [0, T ], x ∈ [0, L],

v1(t, 0) = v1(t, L) = 0, t ∈ [0, T ],
ds1
dt

(t) = u1 (t) , t ∈ [0, T ],
dD1

dt
(t) = s1 (t) , t ∈ [0, T ],

(6.89)

 h2t +Hev2x = −(h1v1)x, t ∈ [0, T ], x ∈ [0, L],
v2t + gh2x = −v1v1x, t ∈ [0, T ], x ∈ [0, L],
v1(t, 0) = v1(t, L) = 0, t ∈ [0, T ],

together with the initial conditions

h1(0, x) = h0
1(x), v1(0, x) = v0

1(x), x ∈ [0, L],

s1(0) = s1, D1(0) = D1, h2(0, x) = h0
2(x), v2(0, x) = v0

2(x), x ∈ [0, L].

We consider (6.88) as a control system where, at time t ∈ [0, T ], the control is u1(t)
and the state is (h1(t, ·), v1(t, ·), s1(t), D1(t)) ∈ C1([0, L])× C1([0, L])×R×R and
satisfies

v1(t, 0) = v1(t, L) = 0, h1(t, L− x) = −h1(t, x), v1(t, L− x) = v1(t, x), x ∈ [0, L].

Note that, by [150], this linear control system is controllable in any time T >
L/
√
Heg. This can be proved by means of explicit solutions as for a transport

equation in Section 2.1.2.1. (For controllability in Sobolev spaces, one can also get
this controllability by proving an observability inequality by means of the multiplier
method as in Section 2.1.2.3 for a transport equation.) Similarly, we consider (6.89)
as a control system where, at time t ∈ [0, T ], the state is (h2(t, ·), v2(t, ·)) : [0, L] →
R2 and satisfies

h2(t, L− x) = h2(t, x), h2x(t, 0) = h2x(t, L) = 0,
∫ L

0

h2(t, x)dx = 0,(6.90)

v2(t, L− x) = −v2(t, x), x ∈ [0, L], v2(t, 0) = v2(t, L) = 0.(6.91)

The control in this system is (h1v1)x(t, ·) and v1v1x(t, ·). It depends only on the
state of the control system (6.88) and is quadratic with respect to this state. The
first two equations of (6.88) and (6.89) are the usual wave equations. A natural
analogue of the wave equation in finite dimension is the oscillator equation. Hence
a natural analogue of our control system (6.88) and (6.89) is

ẋ1 = x2, ẋ2 = −x1 + u,(6.92)

ẋ3 = x4, ẋ4 = −x3 + 2x1x2,(6.93)

ṡ = u, Ḋ = s,(6.94)

where the state is (x1, x2, x3, x4, s,D) ∈ R6 and the control u ∈ R. This control
system is our toy model. We call it T.

The linearized control system of T at the equilibrium (0, 0) ∈ R6 × R is

ẋ1 = x2, ẋ2 = −x1 + u, ẋ3 = x4, ẋ4 = −x3, ṡ = u, Ḋ = s.(6.95)
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The linear control system (6.95) is not controllable. However, as one easily checks,
(6.95) is steady-state controllable for arbitrary time T , that is, for every (D0, D1) ∈
R2 and for every T > 0, there exists a trajectory ((x1, x2, x3, x4, s,D), u) : [0, T ] →
R6 × R of the linear control system (6.95), such that

x1(0) = x2(0) = x3(0) = x4(0) = s(0) = 0, D(0) = D0,

x1(T ) = x2(T ) = x3(T ) = x4(T ) = s(T ) = 0, D(T ) = D1.

But the same does not hold for the nonlinear control system T. Indeed, it follows
from Example 6.4 on page 190 that if ((x1, x2, x3, x4, s,D), u) : [0, T ] → R6 × R is
a trajectory of the control system T, such that

x1(0) = x2(0) = x3(0) = x4(0) = s(0) = 0,

x1(T ) = x2(T ) = x3(T ) = x4(T ) = s(T ) = 0, D(T ) 6= D(0),

then T > π. This minimal time for steady state controllability is optimal. This
can be seen by using the return method as in Example 6.4 on page 190. Indeed, let
T > π and let (x̄1, x̄2, x̄3, x̄4, ū) be as in Example 6.4, except that one also requires∫ η

0

x̄1(t)dt = 0,
∫ η

0

∫ t

0

x̄1(s)dsdt = 0.(6.96)

Coming back to the controllability of T, let us define (s̄, D̄) : [0, T ] → R2 by

˙̄s = ū, s̄(0) = 0, ˙̄D = s̄, D̄(0) = 0.

Then, using in particular (6.96), one easily sees that

s̄(T ) = 0, D̄(T ) = 0.

Moreover, straightforward computations show that the linearized control system
along the trajectory ((x̄1, x̄2, x̄3, x̄4, s̄, D̄), ū) is controllable if x̄1 is not identically
equal to 0. Hence the return method gives the local controllability of T in time
T > π.

Unfortunately, this proof for checking the local controllability heavily relies on
explicit computations, which we have not been able to perform in the case of the
control system Σ defined on page 204. Let us now present a more flexible use of
the return method to prove the following large-time local controllability of T.

Proposition 6.26. There exist T > 0 and δ > 0 such that, for every a ∈ R6

and every b ∈ R6 with |a| < δ and |b| < δ, there exists u ∈ L∞(0, T ) such that, if
x = (x1, x2, x3, x4, s,D) : [0, T ] → R6 is the solution of the Cauchy problem

ẋ1 = x2, ẋ2 = −x1 + u,

ẋ3 = x4, ẋ4 = −x3 + 2x1x2,

ṡ = u, Ḋ = s,

x(0) = a,

then x(T ) = b.

Proof of Proposition 6.26. We prove this proposition by using the return
method. In order to use this method, one needs, at least, to know trajectories of the
control system T, such that the linearized control systems around these trajectories
are controllable. The simplest trajectories one can consider are the trajectories

((xγ1 , x
γ
2 , x

γ
3 , x

γ
4 , s

γ , Dγ), uγ) = ((γ, 0, 0, 0, γt, γt2/2), γ),(6.97)
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where γ is any real number different from 0 and t ∈ [0, τ1], with τ1 > 0 fixed. The
linearized control system around the trajectory

(xγ , uγ) := ((xγ1 , x
γ
2 , x

γ
3 , x

γ
4 , s

γ , Dγ), uγ)

is the linear control system
ẋ1 = x2, ẋ2 = −x1 + u,
ẋ3 = x4, ẋ4 = −x3 + 2γx2,

ṡ = u, Ḋ = s.
(6.98)

Using the Kalman rank condition (Theorem 1.16 on page 9), one easily checks
that this linear control system (6.98) is controllable if and only if γ 6= 0. Let us
now choose γ 6= 0. Then, since the linearized control system around (xγ , uγ) is
controllable, there exists δ1 > 0 such that, for every

a ∈ B(xγ(0), δ1) := {x ∈ R6; |x− xγ(0)| < δ1}

and for every

b ∈ B(xγ(τ1), δ1) := {x ∈ R6; |x− xγ(τ1)| < δ1},

there exists u ∈ L∞((0, τ1); R) such that({
ẋ1 = x2, ẋ2 = −x1 + u,

ẋ3 = x4, ẋ4 = −x3 + 2x1x2, ṡ = u, Ḋ = S, x(0) = a

)
⇒ (x(τ1) = b) .

Hence, in order to prove Proposition 6.26, it suffices to check that:

(i) There exist τ2 > 0 and a trajectory (x̃, ũ) : [0, τ2] → R6 × R of the control
system T, such that x̃(0) = 0 and |x̃(τ2)− xγ(0)| < δ1.

(ii) There exist τ3 > 0 and a trajectory (x̂, û) : [0, τ3] → R6 × R of the control
system T, such that x̂(τ3) = 0 and |x̂(0)− xγ(τ1)| < δ1.

Indeed, by the continuity of the solutions of the Cauchy problem with respect
to the initial condition, there exists δ > 0 such that

ẋ1 = x2, ẋ2 = −x1 + ũ,

ẋ3 = x4, ẋ4 = −x3 + 2x1x2, ṡ = ũ, Ḋ = S,
|x(0)| 6 δ

⇒ (|x(τ2)− xγ(0)| < δ1) ,

and 


ẋ1 = x2, ẋ2 = −x1 + ũ,
ẋ3 = x4, ẋ4 = −x3 + 2x1x2,

ṡ = û(t− τ2 − τ1), Ḋ = S,
|x(τ2 + τ1 + τ3)| 6 δ

⇒ (|x(τ2 + τ1)− xγ(τ1)| < δ1) .

Then it suffices to take T = τ2 + τ1 + τ3; see Figure 3.
Proof of (i). In order to prove (i), we consider quasi-static deformations (see

Chapter 7 for more details on this method). Let g ∈ C2([0, 1]; R) be such that

g(0) = 0, g(1) = 1.(6.99)

Let ũ : [0, 1/ε] → R be defined by

ũ(t) = γg(εt), t ∈ [0, 1/ε].(6.100)
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δ

0

xγ(t)

δ

δ1

δ1

x

t

τ1

τ2 τ2 + τ1 τ2 + τ1 + τ3

Figure 3. Return method and quasi-static deformations

Let x̃ := (x̃1, x̃2, x̃3, x̃4, s̃, D̃) : [0, 1/ε] → R6 be defined by

˙̃x1 = x̃2, ˙̃x2 = −x̃1 + ũ,

˙̃x3 = x̃4, ˙̃x4 = −x̃3 + 2x̃1x̃2,

˙̃s = ũ, ˙̃D = s̃, x̃(0) = 0.

One has

x̃1 + ix̃2 = iγ

∫ t

0

e−i(t−s)g(εs)ds,(6.101)

x̃3 + ix̃4 = 2i
∫ t

0

e−i(t−s)x̃1(s)x̃2(s)ds.(6.102)

From (6.101) and after two integrations by parts, one gets

x̃1 + ix̃2 =γg(εt)− γg(0)e−it + iεγg′(εt)(6.103)

− iεγg′(0)e−it − iε2γ

∫ t

0

ei(s−t)g′′(εs)ds,

which, together with (6.99), gives

(x̃1(1/ε), x̃2(1/ε)) → (γ, 0) as ε→ 0.(6.104)

Similarly, using (6.99), (6.102), (6.103) and integration by parts, one gets

(x̃3(1/ε), x̃4(1/ε)) → 0 as ε→ 0.(6.105)
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Finally,

s̃(1/ε) =
γ

ε

∫ 1

0

g(z)dz,(6.106)

D̃(1/ε) =
γ

ε2

∫ 1

0

(∫ z1

0

g(z2)dz2

)
dz1.(6.107)

Hence, if ∫ 1

0

g(z)dz = 0,
∫ 1

0

(∫ z1

0

g(z2)dz2

)
dz1 = 0,(6.108)

one gets, using (6.104), (6.105), (6.106) and (6.107), that

x̃(1/ε) → (γ, 0, 0, 0, 0, 0) as ε→ 0,

which concludes the proof of (i).

Proof of (ii). One needs to modify, a little bit, the above construction. Now
let g ∈ C2([0, 1]; R) be such that g(0) = 1 and g(1) = 0. Let g1 ∈ C1([0, 1]; R) be
such that ∫ 1

0

g1(z)dz = τ1,

∫ 1

0

(∫ 1

z1

g1(z2)dz2

)
dz1 = 0.(6.109)

Also let g2 ∈ C0([0, 1]; R) be such that∫ 1

0

(∫ 1

z1

g2(z2)dz2

)
dz1 = τ2

1 /2.(6.110)

Finally, let û : [0, 1/ε] → R be defined by

û(t) = γ(g(εt)− εg1(εt) + ε2g2(εt)), t ∈ [0, 1/ε].(6.111)

Then similar computations as for x̃ show that

|x̂(0)− (γ, 0, 0, 0, γτ1, γτ2
1 /2)| → 0 as ε→ 0,

where x̂ := (x̂1, x̂2, x̂3, x̂4, ŝ, D̂) : [0, 1/ε] → R6 is defined by

˙̂x1 = x̂2, ˙̂x2 = −x̂1 + û,

˙̂x3 = x̂4, ˙̂x4 = −x̂3 + 2x̂1x̂2,

˙̂s = û,
˙̂
D = ŝ,

x̂(1/ε) = 0.

This concludes the proof of (ii) and of Proposition 6.26.

We now come back to our description of the proof of Theorem 6.24 on page 205.
Note that the analogue of Theorem 6.24 for the control system T is the following
proposition.
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Proposition 6.27. There exists T > 0 such that, for every ε > 0, there
exists η > 0, such that, for every a = (a1, a2, a3, a4, s

0, D0) ∈ R6 and for every
b = (b1, b2, b3, b4, s1, D1) ∈ R6 satisfying

|a1|+ |a2|+ |a3|+ |a4| < η,

|b1|+ |b2|+ |b3|+ |b4| < η,∣∣s0∣∣+ ∣∣s1∣∣+ ∣∣D0
∣∣+ ∣∣D1

∣∣ < η,

there exists a trajectory

(x, u) : [0, T ] → R6 × R,
t 7→ (x1 (t) , x2 (t) , x3 (t) , x4 (t) , s (t) , D (t) , u (t))

of the control system T, such that

x(0) = a and x(T ) = b,

and, for every t ∈ [0, T ],

|x1(t)|+ |x2(t)|+ |x3(t)|+ |x4(t)|+ |S(t)|+ |D(t)|+ |u(t)| 6 ε.(6.112)

This proposition is stronger than Proposition 6.26, because we added condition
(6.112). The proof of Proposition 6.27 requires some new estimates. In particular,
one needs an estimate on δ1 compared to γ. See [116] for the estimates for the
control system Σ.

Let us now sketch how one adapts, for our control system Σ defined on page
204, what we have done for the toy control system T defined on page 206. Let us
first point out that by scaling arguments one can assume without loss of generality
that

L = g = He = 1.(6.113)

Indeed, if we let

H∗ (t, x) :=
1
He

H

(
Lt√
Heg

, Lx

)
, v∗ (t, x) :=

1√
Heg

v

(
Lt√
Heg

, Lx

)
,

u∗ (t) :=
L

Heg
u

(
Lt√
Heg

)
, s∗ (t) :=

1√
Heg

s

(
Lt√
Heg

)
, D∗ (t) :=

1
L
D

(
Lt√
Heg

)
,

with x ∈ [0, 1], then equations (6.74) to (6.78) are equivalent to

H∗
t (t, x) + (H∗v∗)x (t, x) = 0,

v∗t (t, x) +
(
H∗ +

v∗2

2

)
x

(t, x) = −u∗ (t) ,

v∗(t, 0) = v∗(t, 1) = 0,
ds∗

dt
(t) = u∗ (t) ,

dD∗

dt
(t) = s∗ (t) .

From now on, we always assume that we have (6.113). Since (Y, u) = ((H, v, s,D), u)
is a trajectory of the control system Σ if and only if ((H, v, s− a,D− at− b), u) is
a trajectory of the control system Σ, we may also assume without loss of generality
that s0 = D0 = 0.
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The proof of Theorem 6.24 relies again on the return method. So one looks for
a trajectory (Ȳ , ū) : [0, T ] → Y × R of the control system Σ satisfying

Ȳ (0) = Ȳ (T ) = Ye,(6.114)

the linearized control system around (Ȳ , ū) is controllable.(6.115)

Let us point out that, as already noticed by François Dubois, Nicolas Petit and
Pierre Rouchon in [150] (see also [385] by Nicolas Petit and Pierre Rouchon),
property (6.115) does not hold for the natural trajectory (Ȳ , ū) = (Ye, ue). Indeed
the linearized control system around (Ye, ue) is

(6.116) Σ0



ht + vx = 0,

vt + hx = −u (t) ,

v(t, 0) = v(t, 1) = 0,
ds
dt

(t) = u (t) ,
dD
dt

(t) = s (t) ,

where the state is (h, v, s,D) ∈ Y0, with

Y0 :=

{
(h, v, s,D) ∈ E;

∫ L

0

hdx = 0

}
,

and the control is u ∈ R. But (6.116) implies that, if

h(0, 1− x) = −h(0, x) and v(0, 1− x) = v(0, x), ∀x ∈ [0, 1],

then
h(t, 1− x) = −h(t, x) and v(t, 1− x) = v(t, x), ∀x ∈ [0, 1], ∀t.

Remark 6.28. Even if the control system (6.116) is not controllable, one can
move, as it is proved in [150], from every steady state (h0, v0, s0, D0) := (0, 0, 0, D0)
to every steady state (h1, v1, s1, D1) := (0, 0, 0, D1) for this control system (see also
[385] when the tank has a non-straight bottom). This does not a priori imply that
the related property (move from (1, 0, 0, D0) to (1, 0, 0, D1)) also holds for the non-
linear control system Σ, but it follows in fact from Corollary 6.25 that this property
indeed also holds for the nonlinear control system Σ. Moreover, the fact that, for
the control system (6.116), it is possible (see [150]) to move from every steady state
(h0, v0, s0, D0) := (0, 0, s0, D0) to every steady state (h1, v1, s1, D1) := (0, 0, s1, D1)
explains why in the right hand side of (6.85) one has

∣∣s1 − s0
∣∣ + ∣∣D1 − s0T −D0

∣∣
and not

(∣∣s1 − s0
∣∣+ ∣∣D1 − s0T −D0

∣∣)1/2.
As in [103, 104, 112, 123, 188, 194, 195, 457], one has to look for more

complicated trajectories (Ȳ , ū) in order to get (6.115). In fact, as in [111] and for
our toy model T, one can require, instead of (6.114), the weaker property

Ȳ (0) = Ye and Ȳ (T ) is close to Ye,(6.117)

and hope that, as it happens for the Navier-Stokes control system (see Remark 6.16
on page 201 and [111]), the controllability around (Ȳ , ū) will be strong enough to
tackle the problem that Ȳ (T ) is not Ye but only close to Ye. Moreover, since, as it is
proved in [150], one can move, for the linear control system Σ0, from Ye = (0, 0, 0, 0)
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to
(
0, 0, s1, D1

)
, it is natural to try not to “return” to Ye, but to require instead of

(6.117) the property

Ȳ (0) = Ye and Ȳ (T ) is close to
(
1, 0, s1, D1

)
.(6.118)

In order to use this method, one first needs to have trajectories of the control
system Σ, such that the linearized control systems around these trajectories are
controllable. Let us give an example of a family of such trajectories. Let us fix a
positive real number T ∗ in (2,+∞). For γ ∈ (0, 1] and (a, b) ∈ R2, let us define
(Y γ,a,b, uγ) : [0, T ∗] → Y × R by

Y γ,a,b (t) :=
(
x 7→ 1 + γ

(
1
2
− x

)
, 0, γt+ a, γ

t2

2
+ at+ b

)
, ∀t ∈ [0, T ∗],(6.119)

uγ (t) := γ, ∀t ∈ [0, T ∗].(6.120)

Then (Y γ,a,b, uγ) is a trajectory of the control system Σ. The linearized control
system around this trajectory is the control system

(6.121) Σγ



ht +
((

1 + γ

(
1
2
− x

))
v

)
x

= 0,

vt + hx = −u (t) ,

v(t, 0) = v(t, 1) = 0,
ds
dt

(t) = u (t) ,
dD
dt

(t) = s (t) ,

where, at time t, the state is (h(t, ·), v(t, ·), s(t), D(t)) ∈ Y0 and the control is
u(t) ∈ R. This linear control system Σγ is controllable if γ > 0 is small enough
(see [116] for a proof). Unfortunately, the controllability of Σγ does not seem to
imply directly the local controllability of the control system Σ along the trajectory
(Y γ,a,b, uγ). Indeed, the map from Y ×C0([0, T ]) into Y which, to any initial data
Y 0 = (H0, v0, s0, D0) ∈ Y and to any u ∈ C0([0, T ]) such that

H0
x(0) = H0

x(1) = −u(0),

associates the state Y (T ) ∈ Y, where Y = (H, v, s,D) : [0, T ] → Y satisfies (6.74)
to (6.78) and Y (0) = Y 0, is well-defined and continuous on a small open neighbor-
hood of (Ye, 0) (see e.g. [321]) but is not of class C1 on this neighborhood. See
also Section 4.2.1 for a transport equation and Section 4.2.2 for a one-dimensional
Schrödinger equation. So one cannot use the classical inverse function theorem to
get the desired local controllability. To handle this problem, one proceeds as for the
proof of Theorem 4.8 on page 168: one adapts the usual iterative scheme used to
prove the existence of solutions to hyperbolic systems (see, e.g., [68, pages 67–70],
[134, pages 476–478], [238, pages 54–55], [321, pages 96–107], [340, pages 35–43]
or [443, pages 106–116]; see also [104, 112, 123, 188, 194, 195] for the Euler
and the Navier control systems for incompressible fluids): one uses the inductive
procedure

(hn, vn, sn, Dn, un) 7→
(
hn+1, vn+1, sn+1, Dn+1, un+1

)
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such that

hn+1
t + vnhn+1

x +
(

1 + γ

(
1
2
− x

)
+ hn

)
vn+1
x − γvn+1 = 0,(6.122)

vn+1
t + hn+1

x + vnvn+1
x = −un+1 (t) ,(6.123)

vn+1(t, 0) = vn+1(t, 1) = 0,(6.124)

dsn+1

dt
(t) = un+1 (t) ,(6.125)

dDn+1

dt
(t) = sn+1 (t) ,(6.126)

and
(
hn+1, vn+1, sn+1, Dn+1, un+1

)
has the required value for t = 0 and for t = T ∗.

Unfortunately, we have only been able to prove that the control system (6.122)-
(6.126), where the state is

(
hn+1, vn+1, sn+1, Dn+1

)
and the control is un+1, is

controllable under a special assumption on (hn, vn); see [116]. Hence one has to
ensure that, at each iterative step, (hn, vn) satisfies this condition, which turns out
to be possible. So one gets the following proposition, which is proved in [116].

Proposition 6.29. There exist C1 > 0, µ > 0 and γ0 ∈ (0, 1] such that, for
every γ ∈ [0, γ0], for every (a, b) ∈ R2, and for every (Y 0, Y 1) ∈ Y2 satisfying

|Y 0 − Y γ,a,b(0)| 6 µγ2 and |Y 1 − Y γ,a,b(T ∗)| 6 µγ2,

there exists a trajectory (Y, u) : [0, T ∗] → Y ×R of the control system Σ, such that

Y (0) = Y 0 and Y (T ∗) = Y 1,∣∣Y (t)− Y γ,a,b (t)
∣∣+ |u (t)| 6 C1γ, ∀t ∈ [0, T ∗].(6.127)

Remark 6.30. Let

Hn :=
(

1 + γ

(
1
2
− x

)
+ hn

)
.

Let us assume that

t ∈ [0, T ∗] 7→ ((Hn(t, ·), vn(t, ·), sn(t), Dn(t)), un(t))

is a trajectory of the control system Σ. The linearized control system (for Σ) around
this trajectory is the linear control system

ht + vnhx + vnxh+ vHn
x + vxH

n = 0,(6.128)

vt + hx + vnvx + vvnx = −u (t) ,(6.129)

v(t, 0) = v(t, 1) = 0,(6.130)
ds
dt

(t) = u (t) ,(6.131)

dD
dt

(t) = s (t) .(6.132)

Comparing (6.122) with (6.128) and (6.123) with (6.129), one sees that a solution
t ∈ [0, T ∗] 7→ ((Hn+1(t, ·), vn+1(t, ·), sn+1(t), Dn+1(t)), un+1(t)) of (6.122)-(6.123)-
(6.124)-(6.125)-(6.126) is not, in general, a trajectory of the linearized control sys-
tem (6.128)-(6.129)-(6.130)-(6.131)-(6.132). Hence one does not get the local con-
trollability stated in Proposition 6.29 from the controllability of linearized control
systems, but from the controllability of other linear control systems. This is in fact
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also the case for many other applications of the return method in infinite dimen-
sion, for example, to the Euler equations of incompressible fluids. (For clarity of the
exposition, in Section 6.2.1, we have skipped this technical point that is detailed
in the papers mentioned in this section; see, in particular, [112, 195].) See also
Remark 4.11 on page 172 as well as Remark 6.1 on page 189.

One now needs to construct, for every given small enough γ > 0, trajectories
(Y, u) : [0, T 0] → Y × R of the control system Σ satisfying

Y (0) = (1, 0, 0, 0) and |Y (T 0)− Y γ,a,b(0)| 6 µγ2,(6.133)

and trajectories (Y, u) : [T 0 + T ∗, T 0 + T ∗ + T 1] → Y ×R of the control system Σ,
such that

Y
(
T 0 + T 1 + T ∗

)
=
(
1, 0, s1, D1

)
and

∣∣Y (T 0 + T ∗
)
− Y γ,a,b (T ∗)

∣∣ 6 µγ2,

(6.134)

for a suitable choice of (a, b) ∈ R2, T 0 > 0, T 1 > 0.
Let us first point out that it follows from [150] that one knows explicit trajec-

tories (Y l, ul) : [0, T 0] → Y × R of the linearized control system Σ0 around (0, 0),
satisfying Y l(0) = 0 and Y l(T 0) = Y γ,a,b(0). (In fact, François Dubois, Nicolas
Petit and Pierre Rouchon have proved in [150] that the linear control system Σ0

is flat—a notion introduced by Michel Fliess, Jean Lévine, Philippe Martin and
Pierre Rouchon in [175]; see also Section 2.5.3 for an heat equation. They have
given a complete explicit parametrization of the trajectories of Σ0 by means of an
arbitrary function and a 1-periodic function.) Then the idea is that, if, as in the
proof of (i) on page 208, one moves “slowly”, the same control ul gives a trajectory
(Y, u) : [0, T 0] → Y × R of the control system Σ such that (6.133) holds.

More precisely, let f0 ∈ C4([0, 4]) be such that

f0 = 0 in [0, 1/2] ∪ [3, 4],(6.135)

f0 (t) = t/2, ∀t ∈ [1, 3/2],(6.136) ∫ 4

0

f0(t1)dt1 = 0.(6.137)

Let f1 ∈ C4([0, 4]) and f2 ∈ C4([0, 4]) be such that

f1 = 0 in [0, 1/2] ∪ [1, 3/2] and f1 = 1/2 in [3, 4],(6.138) ∫ 3

0

f1(t1)dt1 = 0,(6.139)

f2 = 0 in [0, 1/2] ∪ [1, 3/2] ∪ [3, 4],(6.140) ∫ 4

0

f2(t1)dt1 = 1/2.(6.141)

Let
D :=

{(
s̄, D̄

)
∈ R2; |s̄| 6 1,

∣∣D̄∣∣ 6 1
}
.

For
(
s̄, D̄

)
∈ D, let fs̄,D̄ ∈ C4([0, 4]) be defined by

fs̄,D̄ := f0 + s̄f1 + D̄f2.(6.142)

For ε ∈ (0, 1/2] and for γ ∈ R, let uε,γ
s̄,D̄

: [0, 3/ε] → R be defined by

uε,γ
s̄,D̄

(t) := γf ′s̄,D̄(εt) + γf ′s̄,D̄(ε(t+ 1)).(6.143)
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Let
(
hε,γ
s̄,D̄

, vε,γ
s̄,D̄

, sε,γ
s̄,D̄

, Dε,γ

s̄,D̄

)
: [0, 3/ε] → C1([0, 1])×C1([0, 1])×R×R be such that

(6.116) holds for (h, v, s,D) =
(
hε,γ
s̄,D̄

, vε,γ
s̄,D̄

, sε,γ
s̄,D̄

, Dε,γ
s̄,D̄

)
, u = uε,γ

s̄,D̄
and(

hε,γ
s̄,D̄

(0, ·), vε,γ
s̄,D̄

(0, ·), sε,γ
s̄,D̄

(0), Dε,γ
s̄,D̄

(0)
)

= (0, 0, 0, 0).

From [150] one gets that

hε,γ
s̄,D̄

(t, x) = −γ
ε
fs̄,D̄(ε(t+ x)) +

γ

ε
fs̄,D̄(ε(t+ 1− x)),(6.144)

vε,γ
s̄,D̄

(t, x) =
γ

ε
fs̄,D̄(ε(t+ x)) +

γ

ε
fs̄,D̄(ε(t+ 1− x))(6.145)

− γ

ε
fs̄,D̄(εt)− γ

ε
fs̄,D̄(ε(t+ 1)),

sε,γ
s̄,D̄

(t) =
γ

ε
fs̄,D̄(εt) +

γ

ε
fs̄,D̄(ε(t+ 1)),(6.146)

Dε,γ
s̄,D̄

(t) =
γ

ε2
Fs̄,D̄(εt) +

γ

ε2
Fs̄,D̄(ε(t+ 1)),(6.147)

with

Fs̄,D̄ (t) :=
∫ t

0

fs̄,D̄(t1)dt1.

In particular, using also (6.135) to (6.141), one gets

hε,γ
s̄,D̄

(
1
ε

+ t, x

)
= γ

(
1
2
− x

)
, ∀t ∈

[
0,

1− 2ε
2ε

]
, ∀x ∈ [0, 1],(6.148)

vε,γ
s̄,D̄

(
1
ε

+ t, x

)
= 0, ∀t ∈

[
0,

1− 2ε
2ε

]
, ∀x ∈ [0, 1],(6.149)

sε,γ
s̄,D̄

(
1
ε

+ t

)
=
γ

ε
+
γ

2
+ γt, ∀t ∈

[
0,

1− 2ε
2ε

]
,(6.150)

Dε,γ
s̄,D̄

(
1
ε

+ t

)
= Dε,γ

s̄,D̄

(
1
ε

)
+
(γ
ε

+
γ

2

)
t+

γ

2
t2, ∀t ∈

[
0,

1− 2ε
2ε

]
,(6.151)

hε,γ
s̄,D̄

(
3
ε
, x

)
= 0 and vε,γ

s̄,D̄

(
3
ε
, x

)
= 0, ∀x ∈ [0, 1],(6.152)

sε,γ
s̄,D̄

(
3
ε

)
=
γ

ε
s̄ and Dε,γ

s̄,D̄

(
3
ε

)
=

γ

2ε
s̄+

γ

ε2
D̄.(6.153)

Let Hε,γ

s̄,D̄
= 1 + hε,γ

s̄,D̄
and Y ε,γ

s̄,D̄
=
(
Hε,γ

s̄,D̄
, vε,γ
s̄,D̄

, sε,γ
s̄,D̄

, Dε,γ

s̄,D̄

)
. Let us introduce

aε,γ :=
γ

ε
fs̄,D̄(1) +

γ

ε
fs̄,D̄(1 + ε) =

γ

ε
+
γ

2
,

bs̄,D̄ε,γ :=
γ

ε2
Fs̄,D̄(1) +

γ

ε2
Fs̄,D̄(1 + ε) = Dε,γ

s̄,D̄

(
1
ε

)
.

Using (6.119), (6.148), (6.149), (6.150) and (6.151), one gets

Y ε,γ
s̄,D̄

(
1
ε

)
= Y γ,aε,γ ,b

s̄,D̄
ε,γ (0),(6.154)

and, if ε ∈ (0, 1/(2(T ∗ + 1))],

Y ε,γ
s̄,D̄

(
1
ε

+ T ∗
)

= Y γ,aε,γ ,b
s̄,D̄
ε,γ (T ∗).(6.155)
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The next proposition, which is proved in [116], shows that one can achieve (6.133)
with u = uε,γ

s̄,D̄
for suitable choices of T 0, ε and γ.

Proposition 6.31. There exists a constant C2 > 2 such that, for every ε ∈
(0, 1/C2], for every (s̄, D̄) ∈ D and for every γ ∈ [0, ε/C2], there exists one and
only one map Ỹ ε,γ

s̄,D̄
: [0, 1/ε] → Y satisfying the two following conditions:

(Ỹ ε,γ
s̄,D̄

, uε,γ
s̄,D̄

) is a trajectory of the control system Σ on
[
0,

1
ε

]
,

Ỹ ε,γ
s̄,D̄

(0) = (1, 0, 0, 0) ,

and furthermore this unique map Ỹ ε,γ
s̄,D̄

verifies∣∣∣Ỹ ε,γs̄,D̄
(t)− Y ε,γ

s̄,D̄
(t)
∣∣∣ 6 C2εγ

2, ∀t ∈
[
0,

1
ε

]
.(6.156)

In particular, by (6.148) and (6.149),∥∥∥∥ṽε,γs̄,D̄ (1
ε

)∥∥∥∥
C1([0,L])

+
∥∥∥∥h̃ε,γs̄,D̄ (1

ε

)
− γ

(
1
2
− x

)∥∥∥∥
C1([0,L])

6 C2εγ
2.(6.157)

Similarly, one has the following proposition, which shows that (6.134) is achieved
with u = uε,γ

s̄,D̄
for suitable choices of T 1, ε and γ.

Proposition 6.32. There exists a constant C3 > 2(T ∗+1) such that, for every
ε ∈ (0, 1/C3], for every (s̄, D̄) ∈ D, and for every γ ∈ [0, ε/C3], there exists one and
only one map Ŷ ε,γ

s̄,D̄
: [(1/ε) + T ∗, 3/ε] → Y satisfying the two following conditions:(

Ŷ ε,γ
s̄,D̄

, uε,γ
s̄,D̄

)
is a trajectory of the control system Σ on

[
1
ε

+ T ∗,
3
ε

]
,

Ŷ ε,γ
s̄,D̄

(
3
ε

)
=
(
1, 0,

γ

ε
s̄,
γ

2ε
s̄+

γ

ε2
D̄
)

= Y ε,γ
s̄,D̄

(
3
ε

)
,

and furthermore this unique map Ŷ ε,γ
s̄,D̄

verifies∣∣∣Ŷ ε,γs̄,D̄
(t)− Y ε,γ

s̄,D̄
(t)
∣∣∣ 6 C3εγ

2, ∀t ∈
[
1
ε

+ T ∗,
3
ε

]
.(6.158)

In particular, by (6.148) and (6.149),∥∥∥∥v̂ε,γs̄,D̄ (1
ε

)∥∥∥∥
C1([0,1])

+
∥∥∥∥ĥε,γs̄,D̄ (1

ε

)
− γ

(
1
2
− x

)∥∥∥∥
C1([0,1])

6 C2εγ
2.(6.159)

Let us choose

ε := Min
(

1
C2
,

1
C3
,
µ

2C2
,
µ

2C3

)
6

1
2
.(6.160)

Let us point out that there exists C4 > 0 such that, for every (s̄, D̄) ∈ D and for
every γ ∈ [−ε, ε],∥∥∥Hε,γ

s̄,D̄

∥∥∥
C2([0,3/ε]×[0,1])

+
∥∥∥vε,γs̄,D̄∥∥∥C2([0,3/ε]×[0,1])

6 C4,(6.161)

which, together with straightforward estimates, leads to the next proposition, whose
proof is omitted.
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Proposition 6.33. There exists C5 > 0 such that, for every (s̄, D̄) ∈ D, for
every Y 0 = (H0, v0, s0, D0) ∈ Y with

|Y 0 − Ye| 6
1
C5
, s0 = 0, D0 = 0,

and for every γ ∈ [0, ε/C2], there exists one and only one Y : [0, 1/ε] → Y such
that

(Y, uε,γ
s̄,D̄

−H0
x(0)) is a trajectory of the control system Σ,

Y (0) = Y 0,

and this unique map Y satisfies∣∣∣Y (t)− Ỹ ε,γ
s̄,D̄

(t)
∣∣∣ 6 C5|Y 0 − Ye|, ∀t ∈

[
0,

1
ε

]
.

Similarly, (6.161) leads to the following proposition.

Proposition 6.34. There exists C6 > 0 such that, for every (s̄, D̄) ∈ D, for
every γ ∈ [0, ε/C3], and for every Y 1 = (H1, v1, s1, D1) ∈ Y such that∣∣∣Y 1 −

(
1, 0,

γ

ε
s̄,
γ

2ε
s̄+

γ

ε2
D̄
)∣∣∣ 6 1

C6
, s1 =

γ

ε
s̄, D1 =

γ

2ε
s̄+

γ

ε2
D̄,

there exists one and only one Y : [(1/ε) + T ∗, 3/ε] → Y such that

(Y, uε,γ
s̄,D̄

−H1
x(0)) is a trajectory of the control system Σ,

Y (3/ε) = Y 1,

and this unique map Y satisfies∣∣∣Y (t)− Ŷ ε,γ
s̄,D̄

(t)
∣∣∣ 6 C6

∣∣∣∣Y 1 − Y ε,γ
s̄,D̄

(
3
ε

)∣∣∣∣ , ∀t ∈ [1
ε

+ T ∗,
3
ε

]
.

Finally, let us define

T :=
3
ε
,(6.162)

η := Min
(

ε2µ

2C5(C2
3 + C2

2 )
,

ε2µ

2C6(C2
3 + C2

2 )
,
ε

C2
,
ε

C3
,

1
C5
,

1
C6
,
γ2
0µ

2C5
,
γ2
0µ

2C6
, γ0

)
.

(6.163)

We want to check that Theorem 6.24 holds with these constants for a large enough
C0. Let Y 0 =

(
H0, v0, 0, 0

)
∈ Y and Y 1 =

(
H1, v1, s1, D1

)
∈ Y be such that∥∥H0 − 1

∥∥
C1([0,1])

+
∥∥v0
∥∥
C1([0,1])

6 η,(6.164) ∥∥H1 − 1
∥∥
C1([0,1])

+
∥∥v1
∥∥
C1([0,1])

6 η,(6.165) ∣∣s1∣∣+ ∣∣D1
∣∣ 6 η.(6.166)
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Let

κ0 :=

√
2C5

µ

√
‖H0 − 1‖C1([0,L]) + ‖v0‖C1([0,L]),(6.167)

κ1 :=

√
2C6

µ

√
‖H1 − 1‖C1([0,L]) + ‖v1‖C1([0,L]),(6.168)

γ := Max
(
κ0, κ1,

∣∣s1∣∣+ ∣∣D1
∣∣) ,(6.169)

s̄ :=
ε

γ
s1, D̄ :=

ε2

γ

(
D1 − s1

2

)
,(6.170)

so that, thanks to (6.153),

sε,γ
s̄,D̄

(
3
ε

)
= s1, Dε,γ

s̄,D̄

(
3
ε

)
= D1.(6.171)

Note that, by (6.160), (6.166), (6.169) and (6.170),(
s̄, D̄

)
∈ D.(6.172)

By (6.163), (6.164), (6.165), (6.166), (6.167), (6.168) and (6.169), we obtain that

γ ∈
[
0,Min

(
ε

C2
,
ε

C3

)]
.(6.173)

Then, by Proposition 6.33, (6.163), (6.164) and (6.173), there exists a function
Y0 = (H0, v0, s0, D0) : [0, 1/ε] → Y such that

(Y0, u
ε,γ
s̄,D̄

−H0
x(0)) is a trajectory of the control system Σ on

[
0,

1
ε

]
,(6.174)

Y0(0) = Y 0,(6.175) ∣∣∣Y0 (t)− Ỹ ε,γ
s̄,D̄

(t)
∣∣∣ 6 C5|Y 0 − Ye|, ∀t ∈

[
0,

1
ε

]
.(6.176)

By (6.167), (6.169), and (6.176),∣∣∣∣Y0

(
1
ε

)
− Ỹ ε,γ

s̄,D̄

(
1
ε

)∣∣∣∣ 6 µγ2

2
.(6.177)

By Proposition 6.31, (6.160) and (6.173),∣∣∣∣Ỹ ε,γs̄,D̄

(
1
ε

)
− Y γ,aε,γ ,b

s̄,D̄
ε,γ (0)

∣∣∣∣ 6 C2εγ
2 6

µγ2

2
,

which, together with (6.177), gives∣∣∣∣Y0

(
1
ε

)
− Y γ,aε,γ ,b

s̄,D̄
ε,γ

∣∣∣∣ 6 µγ2.(6.178)

Similarly, by Propositions 6.32 and 6.34, (6.160), (6.162), (6.163), (6.165), (6.168),
(6.169), (6.171) and (6.173), there exists Y1 = (H1, v1, s1, D1) : [(1/ε)+T ∗, T ] → Y
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such that

(Y1, u
ε,γ
s̄,D̄

−H1
x(0)) is a trajectory of the control system Σ on [(1/ε) + T ∗, T ],

(6.179)

Y1(T ) = Y 1,(6.180) ∣∣∣Y1 (t)− Ỹ ε,γ
s̄,D̄

(t)
∣∣∣ 6 C6

∣∣Y1 −
(
1, 0, s1, D1

)∣∣ , ∀t ∈ [1
ε

+ T ∗, T

]
,(6.181) ∣∣∣∣Y1

(
1
ε

+ T ∗
)
− Y γ,aε,γ ,b

s̄,D̄
ε,γ (T ∗)

∣∣∣∣ 6 µγ2.(6.182)

By (6.163), (6.164), (6.165), (6.166), (6.167), (6.168) and (6.169),

γ 6 γ0.(6.183)

From Proposition 6.29, (6.178), (6.182) and (6.183), there exists a trajectory

(Y∗, u∗) : [0, T ∗] → Y

of the control system Σ satisfying

Y∗(0) = Y 0

(
1
ε

)
,(6.184) ∣∣∣Y∗ (t)− Y γ,aε,γ ,b

s̄,D̄
ε,γ (t)

∣∣∣ 6 C1µγ, ∀t ∈ [0, T ∗],(6.185)

Y∗(T ∗) = Y 1

(
1
ε

+ T ∗
)
.(6.186)

The map (Y, u) : [0, T ] → Y defined by

(Y (t) , u (t)) = (Y0 (t) , uε,γ
s̄,D̄

(t)−H0
x(0)), ∀t ∈

[
0,

1
ε

]
,

(Y (t) , u (t)) =
(
Y∗

(
t− 1

ε

)
, u∗

(
t− 1

ε

))
, ∀t ∈

[
1
ε
,
1
ε

+ T ∗
]
,

(Y (t) , u (t)) = (Y1 (t) , uε,γ
s̄,D̄

(t)−H1
x(0)), ∀t ∈

[
1
ε

+ T ∗, T

]
,

is a trajectory of the control system Σ which, by (6.175) and (6.180), satisfies
(6.84). Finally, the existence of C0 > 0 such that (6.85) holds follows from the
construction of (Y, u), (6.127), (6.144) to (6.147), (6.156), (6.158), (6.164), (6.165),
(6.166), (6.167), (6.168), (6.169), (6.176), (6.181) and (6.185). This concludes our
sketch of the proof of Theorem 6.24.

Let us notice that, since T ∗ > 2, our method requires, in Theorem 6.24, the
inequality T > 2L/

√
gHe. It is natural to raise the following open problem.

Open Problem 6.35. Does Theorem 6.24 holds for every T > 2L/
√
gHe? Let

T 6 2L/
√
gHe. Is it true that Theorem 6.24 does not hold? Is it true that the

steady-state motion problem (move from (0, 0, 0, D0) to (0, 0, 0, D1)) is not possible
for the time interval [0, T ] if ‖u‖C0([0,T ]) is small and D1 6= D0? More precisely,
does there exist ε > 0 such that, whatever (D0, D1) ∈ R2 with D0 6= D1 is, there is
no control u ∈ C0([0, T ]) such that ‖u‖C0([0,T ]) 6 ε steering the control system Σ
from (0, 0, 0, D0) to (0, 0, 0, D1)?
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Concerning this open problem, let us recall that, for the linearized control
system Σ0, T > L/

√
gHe is enough for the steady-state controllability (see [150]).

See also Theorem 9.8 on page 251 and Section 9.3 for a related phenomenon.





CHAPTER 7

Quasi-static deformations

The quasi-static deformation method has in fact already been used for the
controllability of the 1-D tank (see Section 6.3). Note that, in connection with our
toy model T of the 1-D tank, the linearized system of

ẋ1 = x2, ẋ2 = −x1 + γ, ẋ3 = x4, ẋ4 = −x3 + 2x1x2

at the equilibrium (γ, 0, 0, 0) is

ẏ = Aγy,

with

Aγ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 2γ −1 0

 .(7.1)

The eigenvalues of the matrix Aγ are i and −i, which have nonpositive real parts.
This is why the quasi-static deformation is so easy to perform (even though 0 is
in fact not stable for ẏ = Aγy if γ is not 0). If Aγ had eigenvalues of strictly
positive real part, it would still be possible to perform in some cases the quasi-
static deformation by stabilizing the equilibria by suitable feedbacks, as we are
going to see in this chapter.

7.1. Description of the method

For the sake of simplicity, we explain the method in finite dimension. Let us
consider our usual control system

(7.2) ẋ = f(x, u),

where the state is x ∈ Rn, the control is u ∈ Rm and f : Rn ×Rm → Rn is of class
C1. Let (x0, u0) ∈ Rn×Rm and (x1, u1) ∈ Rn×Rm be two equilibria of the control
system (7.2), that is (see Definition 3.1 on page 125)

f(x0, u0) = 0, f(x1, u1) = 0.

We assume that (x0, u0) and (x1, u1) belong to the same C1-path connected com-
ponent of the set of zeros of f in Rn × Rm. Our aim is to steer the control system
(7.2) from x0 to x1 in some (possibly large) time T > 0. The method is divided
into three steps:

223
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First step: construction of an almost trajectory. Choose a C1-map τ ∈
[0, 1] 7→ (x̄(τ), ū(τ)) ∈ Rn × Rm such that

(x̄(0), ū(0)) = (x0, u0), (x̄(1), ū(1)) = (x1, u1),

f(x̄(τ), ū(τ)) = 0, ∀τ ∈ [0, 1].

Of course this map is not in general a trajectory of the control system (7.2),
but, if ε > 0 is small enough, then the C1-map

(xε, uε) : [0, 1/ε] → Rn × Rm
t 7→ (xε(t), uε(t)) := (x̄(εt), ū(εt))

is “almost” a trajectory of the control system (7.2). Indeed, as ε→ 0,

‖ẋε − f(xε, uε)‖C0([0,1/ε];Rn) = O(ε).

Second step: stabilization procedure. This quasi-static almost trajectory is
not in general stable, and thus has to be stabilized. To this aim, introduce the
following change of variables:

z(t) = x(t)− xε(t),

v(t) = u(t)− uε(t),

where t ∈ [0, 1/ε]. In the new variables z, v, one gets the existence of C > 0 such
that, if (7.2) holds and |z(t)|+ |v(t)|+ ε is small enough, then

|ż(t)− (A(εt)z(t) +B(εt)v(t))| 6 C(|z(t)|2 + |v(t)|2 + ε),(7.3)

where t ∈ [0, 1/ε], and where

A(τ) :=
∂f

∂x
(x̄(τ), ū(τ)) and B(τ) :=

∂f

∂u
(x̄(τ), ū(τ)),

with τ = εt ∈ [0, 1]. Therefore we have to “stabilize” the origin for the slowly-
varying in time linear control system

ż(t) = A(εt)z(t) +B(εt)v(t).(7.4)

We refer to [273, Section 5.3] by Hassan Khalil for this classical problem. In
particular, it is sufficient to asymptotically stabilize, for every τ ∈ [0, 1], the origin
for the control system ˙̃z = A(τ)z̃ + B(τ)v by some feedback z̃ 7→ Kτ z̃, with Kτ ∈
Mm,n(R) depending smoothly on τ , and then define v = Kεtz to “stabilize” the
origin for the control system (7.4). (Here “stabilize” is not in the usual sense since
t ∈ [0, 1/ε] instead of t ∈ [0,∞).)
Third step: local controllability at the end. If the control system (7.2) is
locally controllable (in small time (see Definition 3.2 on page 125) or in a fixed time)
at the equilibrium (x1, u1), we conclude that it is possible, if ε > 0 is small enough,
to steer the control system (7.2) in finite time from the point x(1/ε) to the desired
target x1.

Remark 7.1. Of course the method of quasi-static deformations can be used in
more general situations than controllability between equilibria. It can be used for
the controllability between periodic trajectories (see, for example, [40, Theorem 11,
page 926] for a Schrödinger equation) or even more complicated trajectories (see,
for example, Proposition 6.31 on page 217 for Saint-Venant equations and page 260
or [43, Proposition 12] for a Schrödinger equation).
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7.2. Application to a semilinear heat equation

Let us now explain how to apply this method on a specific control system
modeled by a semilinear heat equation.

Let L > 0 be fixed and let f : R → R be a function of class C2. Let us consider
the nonlinear control system

(7.5)

{
yt = yxx + f(y), t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = 0, y(t, L) = u(t), t ∈ (0, T ),

where at time t ∈ [0, T ], the state is y(t, ·) : [0, L] → R and the control is u(t) ∈ R.
Let us first define the notion of steady-state.

Definition 7.2. A function y ∈ C2([0, L]) is a steady-state of the control
system (7.5) if

d2y

dx2
+ f(y) = 0, y(0) = 0.

We denote by S the set of steady-states, endowed with the C2 topology.

In other words, with Definition 3.1 on page 125, y ∈ C2([0, L]) is a steady-state
of the control system (7.5) if there exists a control ue ∈ R such that (y, ue) is an
equilibrium of our control system (7.5).

Our goal is to show that one can move from any given steady-state to any other
one belonging to the same connected component of the set of steady-states. To be
more precise, let us define the notion of steady-state.

Let us also introduce the Banach space

(7.6)
YT =

{
y : (0, T )× (0, L) → R; y ∈ L2((0, T );H2(0, L))

and yt ∈ L2((0, T )× (0, L))
}

endowed with the norm

‖y‖YT
= ‖y‖L2((0,T );H2(0,L)) + ‖yt‖L2((0,T )×(0,L)).

Notice that YT is continuously imbedded in L∞((0, T )× (0, L)).
The main result of this section is the following.

Theorem 7.3 ([132]). Let y0 and y1 be two steady-states belonging to the
same connected component of S. There exist a time T > 0 and a control function
u ∈ H1(0, T ) such that the solution y(t, x) in YT of

(7.7)

 yt − yxx = f(y), t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = 0, y(t, L) = u(t), t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

satisfies y(T, ·) = y1(·).

Remark 7.4. In [132] we prove that, if y0 and y1 belong to distinct connected
components of S, then it is actually impossible to move either from y0 to y1 or
from y1 to y0, whatever the time and the control are.

Remark 7.5. For every T > 0 and every u ∈ H1(0, T ), there is at most one
solution of (7.7) in the Banach space YT .
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Remark 7.6. Concerning the global controllability problem, one of the main
results in [156], by Caroline Fabre, Jean-Pierre Puel and Enrique Zuazua, asserts
that, if f is globally Lipschitzian, then this control system is approximately globally
controllable; see also [243] by Oleg Imanuvilov for (exact) controllability. When f
is superlinear the situation is still widely open, in particular, because of possible
blowing up. Indeed, it is well known that, if yf(y) > 0 as y 6= 0, then blow-up
phenomena may occur for the Cauchy problem

(7.8)


yt − yxx = f(y), t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = 0, y(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

For example, if f(y) = y3, then for numerous initial data there exists T > 0
such that the unique solution to the previous Cauchy problem is well defined on
[0, T )× [0, L] and satisfies

lim
t→T

‖y(t, ·)‖L∞(0,L) = +∞;

see for instance [45, 84, 352, 507] and references therein.
One may ask if, acting on the boundary of [0, L], one could avoid the blow-up

phenomenon. Actually, the answer to this question is negative in general, see the
paper [169] by Enrique Fernández-Cara and Enrique Zuazua where it is proved
that, for every p > 2, there exists some nonlinear function f satisfying

|f(y)| ∼ |y| logp(1 + |y|) as |y| → +∞

such that, for every time T > 0, there exist initial data which lead to blow-up
before time T , whatever the control function u is. Notice, however, that if

|f(y)| = o
(
|y| log3/2(1 + |y|)

)
as |y| → +∞,

then the blow-up (which could occur in the absence of control) can be avoided by
means of boundary controls; see again [169]. The situation with p ∈ [3/2, 2] is open
as well as the case where f(y) = −y3 (see Section 7.2.4 for this last case).

Remark 7.7. This is a (partial) global exact controllability result. The time
needed in our proof is large, but on the other hand, there are indeed cases where
the time T of controllability cannot be taken arbitrarily small. For instance, in the
case where f(y) = −y3, any solution of (7.7) starting from 0 satisfies the inequality∫ L

0

(L− x)4y(T, x)2dx 6 8LT,

and hence, if y0 = 0, a minimal time is needed to reach a given y1 6= 0. This result
is due to Alain Bamberger (see the thesis [220] by Jacques Henry); see also [185,
Lemma 2.1].

In order to prove Theorem 7.3, we follow the steps described previously in
Section 7.1.

7.2.1. Construction of an almost trajectory. The following lemma is ob-
vious.
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Lemma 7.8. Let φ0, φ1 ∈ S. Then φ0 and φ1 belong to the same connected
component of S if and only if, for any real number α between φ′0(0) and φ′1(0), the
maximal solution of

d2y

dx2
+ f(y) = 0, y(0) = 0, y′(0) = α,

denoted by yα(·), is defined on [0, L].

Now let y0 and y1 be in the same connected component of S. Let us construct
in S a C1 path (ȳ(τ, ·), ū(τ)), 0 6 τ 6 1, joining y0 to y1. For each i = 0, 1, set

αi = yi′(0).

Then with our previous notations: yi(·) = yαi
(·), i = 0, 1. Now set

ȳ(τ, x) = y(1−τ)α0+τα1(x) and ū(τ) = ȳ(τ, L),

where τ ∈ [0, 1] and x ∈ [0, L]. By construction we have

ȳ(0, ·) = y0(·), ȳ(1, ·) = y1(·) and ū(0) = ū(1) = 0,

and thus (ȳ(τ, ·), ū(τ)) is a C1 path in S connecting y0 to y1.

7.2.2. Stabilization procedure. This is the most technical part of the proof.
Let ε > 0. We set x ∈ [0, L],{

z(t, x) := y(t, x)− ȳ(εt, x), t ∈ [0, 1/ε], x ∈ [0, L],
v(t) := u(t)− ū(εt), t ∈ [0, 1/ε].(7.9)

Then, from the definition of (ȳ, ū), we infer that z satisfies the initial-boundary
problem

(7.10)


zt = zxx + f ′(ȳ)z + z2

∫ 1

0

(1− s)f ′′(ȳ + sz)ds− εȳτ ,

z(t, 0) = 0, z(t, L) = v(t),

z(0, x) = 0.

Now, in order to deal with a Dirichlet-type problem, we set

(7.11) w(t, x) := z(t, x)− x

L
v(t), t ∈ [0, 1/ε], x ∈ [0, L],

and we suppose that the control v is differentiable. This leads to the equations

(7.12)


wt = wxx + f ′(ȳ)w +

x

L
f ′(ȳ)v − x

L
v′ + r(ε, t, x),

w(t, 0) = w(t, L) = 0,

w(0, x) = − x
L
v(0),

where

(7.13) r(ε, t, x) = −εȳτ +
(
w +

x

L
v
)2
∫ 1

0

(1− s)f ′′
(
ȳ + s(w +

x

L
v)
)
ds,

and the next step is to prove that there exist ε small enough and a pair (v, w)
solution of (7.12) such that w(1/ε, ·) belongs to some arbitrary neighborhood of
0 in H1

0 -topology. To achieve this, one constructs an appropriate control function
and a Lyapunov functional which stabilizes system (7.12) to 0. In fact, as we shall
see, the control v will be chosen in H1(0, 1/ε) such that v(0) = 0.
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In order to motivate what follows, let us first notice that if the residual term r
and the control v were equal to zero, then (7.12) would reduce to

wt = wxx + f ′(ȳ)w,

w(t, 0) = w(t, L) = 0.

This suggests introducing the one-parameter family of linear operators

(7.14) A(τ) = ∆ + f ′(ȳ(τ, ·))Id, τ ∈ [0, 1],

defined on H2(0, L) ∩ H1
0 (0, L), Id denoting the identity map on L2(0, L). For

every τ ∈ [0, 1], A(τ) has compact resolvent (see page 95) and A(τ)∗ = A(τ).
Hence the eigenvalues of Aτ are real and the Hilbert space L2(0, L) has a complete
orthonormal system of eigenfunctions for the operator A(τ) (see, for example, [71,
Théorème VI.11, page 97] or [267, page 277]).

Let (ej(τ, ·))j>1 be a Hilbertian basis of L2(0, L) consisting of eigenfunctions of
A(τ) and let (λj(τ))j>1 denote the corresponding eigenvalues. Of course, for j > 1
and each τ ∈ [0, 1],

ej(τ, ·) ∈ H1
0 (0, L) ∩ C2([0, L]).

Note that, since the variable x is of dimension 1, the eigenvalues are simple (this is
no longer true in higher dimension). We order these eigenvalues: for each τ ∈ [0, 1],

−∞ < . . . < λn(τ) < . . . < λ1(τ) and λn(τ) →
n→+∞

−∞.

A standard application of the min-max principle (see for instance [401, Theorem
XIII.1, pages 76–77]) shows that these eigenfunctions and eigenvalues are C1 func-
tions of τ . We can define an integer n as the maximal number of eigenvalues taking
at least a nonnegative value as τ ∈ [0, 1], i.e., there exists η > 0 such that

(7.15) ∀t ∈ [0, 1/ε], ∀k > n, λk(εt) < −η < 0.

Remark 7.9. Note that the integer n can be arbitrarily large. For example, if
f(y) = y3, then (

dy1

dx
(0) → +∞

)
⇒ (n→ +∞) .

We also set, for any τ ∈ [0, 1] and x ∈ [0, L],

a(τ, x) =
x

L
f ′(ȳ(τ, x)) and b(x) = − x

L
.

In these notations, system (7.12) leads to

(7.16) wt(t, ·) = A(εt)w(t, ·) + a(εt, ·)v(t) + b(·)v′(t) + r(ε, t, ·).

Any solution w(t, ·) ∈ H2(0, L) ∩H1
0 (0, L) of (7.16) can be expanded as a series in

the eigenfunctions ej(εt, ·), convergent in H1
0 (0, L),

w(t, ·) =
∞∑
j=1

wj(t)ej(εt, ·).

In fact, the wj ’s depend on ε and should be called, for example, wεj . For simplicity
we omit the index ε, and we shall also omit the index ε for other functions.

In what follows we are going to move, by means of an appropriate feedback
control, the n first eigenvalues of the operator A(εt), without moving the others, in
order to make all eigenvalues negative. This pole-shifting process is the first part
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of the stabilization procedure. It is related to the prior works [483] by Roberto
Triggiani and [433] by Yoshiyuki Sakawa; see also [426, page 711] by David Russell.

For any τ ∈ [0, 1], let π1(τ) denote the orthogonal projection onto the subspace
of L2(0, L) spanned by e1(τ, ·), . . . , en(τ, ·), and let

(7.17) w1(t) = π1(εt)w(t, ·) =
n∑
j=1

wj(t)ej(εt, ·).

It is clear that, for every τ ∈ [0, 1], the operators π1(τ) and A(τ) commute, and
moreover, for every y ∈ L2(0, L), we have

π′1(τ)y =
n∑
j=1

(y, ej(τ, ·))L2(0,L)

∂ej
∂τ

(τ, ·) +
n∑
j=1

(
y,
∂ej
∂τ

(τ, ·)
)
L2(0,L)

ej(τ, ·).

Hence, derivating (7.17) with respect to t, we get
n∑
j=1

w′j(t)ej(εt, ·) = π1(εt)wt(t, ·) + ε
n∑
j=1

(
w(t, ·), ∂ej

∂τ
(εt, ·)

)
L2(0,L)

ej(εt, ·).

On the other hand,

A(εt)w1(t) =
n∑
j=1

λj(εt)wj(t)ej(εt, ·),

and thus (7.16) yields

(7.18)

n∑
j=1

w′j(t)ej(εt, ·) =
n∑
j=1

λj(εt)wj(t)ej(εt, ·) + π1(εt)a(εt, ·)v(t)

+ π1(εt)b(·)v′(t) + r1(ε, t, ·),

where

(7.19) r1(ε, t, ·) = π1(εt)r(ε, t, ·) + ε
n∑
j=1

(
w,

∂ej
∂τ

(εt, ·)
)
L2(0,L)

ej(εt, ·).

Let us give an upper bound for the residual term r1. First, it is not difficult to
check that there exists a constant C such that, if |v(t)| and ‖w(t, ·)‖L∞(0,L) are less
than 1, then the inequality

‖r(ε, t, ·)‖L∞(0,L) 6 C(ε+ v(t)2 + ‖w(t, ·)‖2L∞(0,L))

holds, where r is defined by (7.13). Therefore we easily get

‖r1(ε, t, ·)‖L∞(0,L) 6 C1(ε+ v(t)2 + ‖w(t, ·)‖2L∞(0,L)).

Moreover, since H1
0 (0, L) is continuously imbedded in C0([0, L]), we can assert that

there exists a constant C2 such that, if |v(t)| and ‖w(t, ·)‖L∞(0,L) are less than 1,
then

(7.20) ‖r1(ε, t, ·)‖L∞(0,L) 6 C2(ε+ v(t)2 + ‖w(t, ·)‖2H1
0 (0,L)).

Now projecting (7.18) on each ei, i = 1, . . . , n, one comes to

(7.21) w′i(t) = λi(εt)wi(t) + ai(εt)v(t) + bi(εt)v′(t) + r1i (ε, t), i = 1, . . . , n,
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where

(7.22)

r1i (ε, t) = (r1(ε, t, ·), ei(εt, ·))L2(0,L),

ai(εt) = (a(εt, ·), ei(εt, ·))L2(0,L) =
1
L

∫ L

0

xf ′(ȳ(εt, x))ei(εt, x)dx,

bi(εt) = (b(·), ei(εt, ·))L2(0,L) = − 1
L

∫ L

0

xei(εt, x)dx.

The n equations (7.21) form a differential system controlled by v, v′. Set

(7.23) α(t) = v′(t),

and consider now v(t) as a state and α(t) as a control. Then the former finite-
dimensional system may be rewritten as

(7.24)



v′ = α,

w′1 = λ1w1 + a1v + b1α+ r11,

...

w′n = λnwn + anv + bnα+ r1n.

If we introduce the matrix notations

X1(t) =


v(t)
w1(t)

...
wn(t)

 , R1(ε, t) =


0

r11(ε, t)
...

r1n(ε, t)

 ,

A1(τ) =


0 0 . . . 0

a1(τ) λ1(τ) . . . 0
...

...
. . .

...
an(τ) 0 . . . λn(τ)

 , B1(τ) =


1

b1(τ)
...

bn(τ)

 ,

then equations (7.24) yield the finite-dimensional linear control system

(7.25) X ′
1(t) = A1(εt)X1(t) +B1(εt)α(t) +R1(ε, t).

Let us now prove the following lemma.

Lemma 7.10. For each τ ∈ [0, 1], the pair (A1(τ), B1(τ)) satisfies the Kalman
rank condition (Theorem 1.16 on page 9), i.e.,

(7.26) rank
(
B1(τ), A1(τ)B1(τ), . . . , A1(τ)n−1B1(τ)

)
= n.

Proof of Lemma 7.10. Let τ ∈ [0, 1] be fixed. We compute directly

(7.27) det
(
B1, A1B1, . . . , A

n−1
1 B1

)
=

n∏
j=1

(aj + λjbj) VdM(λ1, . . . , λn),

where VdM(λ1, . . . , λn) is a Vandermonde determinant, and thus is never equal to
zero since the λi(τ), i = 1, . . . , n, are distinct, for any τ ∈ [0, 1]. On the other hand,
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using the fact that each ej(τ, ·) is an eigenfunction of A(τ) and belongs to H1
0 (0, L),

we compute

aj(τ) + λj(τ)bj(τ) =
1
L

∫ L

0

x (f ′(ȳ(τ, x))ej(τ, x)− λj(τ)ej(τ, x)) dx

= − 1
L

∫ L

0

x
∂2ej
∂x2

(τ, x)dx

= −∂ej
∂x

(τ, L).

But this quantity is never equal to zero since ej(τ, L) = 0 and ej(τ, ·) is a non-
trivial solution of a linear second-order scalar differential equation. Therefore the
determinant (7.27) is never equal to zero and we are done.

As we shall recall below (Theorem 10.1 on page 275), the Kalman rank con-
dition (7.26) implies a pole-shifting property. To be more precise, from (7.26),
Theorem 10.1 on page 275 and Remark 10.5 on page 279, we get the following
corollary.

Corollary 7.11. For each τ ∈ [0, 1], there exist scalars k0(τ), . . . , kn(τ) such
that, if we let

K1(τ) := (k0(τ), . . . , kn(τ)) ,

then the matrix A1(τ) +B1(τ)K1(τ) admits −1 as an eigenvalue with order n+ 1.
Moreover, the functions ki, i ∈ {0, . . . , n}, are of class C1 on [0, T ] and there-

fore there exists a C1 application τ 7→ P (τ) on [0, 1], where P (τ) is a (n+1)×(n+1)
symmetric positive definite matrix, such that the identity

(7.28) P (τ) (A1(τ) +B1(τ)K1(τ)) + (A1(τ) +B1(τ)K1(τ))
tr
P (τ) = −Idn+1

holds for any τ ∈ [0, 1].

In fact, one has (see for example [309, page 198]),

P (τ) =
∫ ∞

0

et(A1(τ)+B1(τ)K1(τ))
tr
et(A1(τ)+B1(τ)K1(τ))dt.

We are now able to construct a control Lyapunov functional in order to stabilize
system (7.16). Let c > 0 be chosen later on. For any t ∈ [0, 1/ε], v ∈ R and
w ∈ H2(0, L) ∩H1

0 (0, L), we set

(7.29) V (t, v, w) = cX1(t)P (εt)X1(t)−
1
2
(w,A(εt)w)L2(0,L),

where X1(t) denotes the following column vector in Rn+1:

X1(t) :=


v

w1(t)
...

wn(t)


and

wi(t) := (w, ei(εt, ·))L2(0,L).
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In particular, we have

(7.30) V (t, v, w) = cX1(t)P (εt)X1(t)−
1
2

∞∑
j=1

λj(εt)wj(t)2.

Let V1(t) := V (t, v(t), w(t)). After some straightforward estimates (see [132]),
one gets the existence of σ > 0 and of ρ ∈ (0, σ] such that, for every ε ∈ (0, 1] and
for every t ∈ [0, 1/ε] such that V1(t) 6 ρ,

V ′1(t) 6 σε2.

Hence, since V1(0) = 0, we get, if ε ∈ (0, ρ/σ], that

V1(t) 6 σε, ∀t ∈ [0, 1/ε],

and in particular,

V1

(
1
ε

)
6 σε.

Coming back to definitions (7.9) and (7.11), we have

(7.31)
∥∥∥∥y(1

ε
, .

)
− y1(·)

∥∥∥∥
H1(0,L)

6 γε,

where y1(·) = ȳ(1, ·) is the final target and γ is a positive constant which does not
depend on ε ∈ (0, ρ/σ]. This concludes the second step.

7.2.3. Local controllability at the end-point. The last step in the proof
of Theorem 7.3 consists of solving a local exact controllability result: from (7.31),
y(1/ε, ·) belongs to an arbitrarily small neighborhood of y1 in theH1-topology if ε is
small enough, and our aim is now to construct a trajectory t ∈ [0, T ] 7→ (q(t, ·), u(t))
of the control system (7.5) for some time T > 0 (for instance T = 1) such that

q(0, x) = y

(
1
ε
, x

)
, q(T, x) = y1(x), x ∈ (0, L).

Existence of such a (q, u), with u ∈ H1(0, t) satisfying u(0) = v(1/ε), is given
by [243, Theorem 3.3], with ỹ(t, x) = y1(x); see also [242]. Actually, in [243], the
function f is assumed to be globally Lipschitzian, but the local result one needs
here readily follows from the proofs and the estimates contained in [243]. The key
step for this controllability result is an observability inequality similar to (2.398).
This completes the proof of Theorem 7.3 on page 225.

Remark 7.12. One could also deduce Theorem 7.3 from [243, Theorem 3.3]
and a straightforward compactness argument. But the method presented here leads
to a control which can be easily implemented. See [132] for an example of numerical
simulation.

Remark 7.13. The previous method has also been applied in [133] for a semi-
linear wave equation and in [437] by Michael Schmidt and Emmanuel Trélat for
Couette flows.



7.2. APPLICATION TO A SEMILINEAR HEAT EQUATION 233

7.2.4. Open problems. In this section we give open problems related to the
previous results. We take

f(y) := y3.

As mentioned above, it is one of the cases where, for numerous initial Cauchy data
y0 ∈ H1

0 (0, L), there are T such that there is no solution y ∈ YT of

yt − yxx = y3, (t, x) ∈ (0, T )× (0, L),(7.32)

satisfying the initial condition

y(0, x) = y0(x), x ∈ (0, L)(7.33)

and the Dirichlet boundary condition

y(t, 0) = y(t, L) = 0, t ∈ (0,+∞).(7.34)

One may ask, if for this special nonlinearity, one can avoid the blow-up phenomenon
with a control at x = 1, that is:

Open Problem 7.14. Let y0 ∈ H1(0, L) be such that y0(0) = 0 and let T > 0.
Does there exist y ∈ YT satisfying the heat equation (7.32), the initial condition
(7.33) and the boundary condition

y(t, 0) = 0, t ∈ (0, T )?(7.35)

Note that this seems to be a case where one cannot use the proof of [169,
Theorem 1.1] to get a negative answer to Open Problem 7.14. One could be even
more “ambitious” and ask if the nonlinear heat equation (7.32) with a control at
x = L is exactly controllable in an arbitrary time, i.e., ask the following question.

Open Problem 7.15. Let T > 0. Let y0 ∈ H1
0 (0, L) satisfy y0(0) = 0 and let

ŷ ∈ YT be a solution of the nonlinear heat equation (7.32) satisfying

ŷ(t, 0) = 0, t ∈ (0, T ).

Does there exist a solution y ∈ YT of the nonlinear heat equation (7.32) on (0, T )×
(0, L) such that

y(0, x) = y0(x), x ∈ (0, L),

y(t, 0) = 0, t ∈ (0, T ),

y(T, x) = ŷ(T, x), x ∈ (0, L)?

Let us recall (see Remark 7.7) that, if in (7.32) one replaces y3 by −y3, the
answer to this question is negative.

One can also ask questions about the connectedness of S in higher dimension.
Indeed, the proof of Theorem 7.3 given in [132] can be easily adapted to higher
dimensions. Let us recall (see the proof of Proposition 3.1 in [132]) that, for every
nonempty bounded open interval Ω ⊂ R,

S(Ω) :=
{
y ∈ C2(Ω); −y′′ = y3

}
⊂ C2(Ω)

is a connected subset of C2(Ω). One may ask if the same holds in higher dimension.
In particular:

Open Problem 7.16. Let Ω be a smooth bounded open set of R2. Let

S(Ω) :=
{
y ∈ C2(Ω); −∆y = y3

}
⊂ C2(Ω).

Is S(Ω) a connected subset of C2(Ω)?





CHAPTER 8

Power series expansion

8.1. Description of the method

We again explain first the method on the control system of finite dimension

ẋ = f(x, u),(8.1)

where the state is x ∈ Rn and the control is u ∈ Rm. Here f is a function of class
C∞ on a neighborhood of (0, 0) ∈ Rn × Rm and we assume that (0, 0) ∈ Rn × Rm
is an equilibrium of the control system (8.1), i.e f(0, 0) = 0. Let

H := Span {AiBu; u ∈ Rm, i ∈ {0, . . . , n− 1}}

with

A :=
∂f

∂x
(0, 0), B :=

∂f

∂u
(0, 0).

If H = Rn, the linearized control system around (0, 0) is controllable (Theorem 1.16
on page 9) and therefore the nonlinear control system (8.1) is small-time locally
controllable at (0, 0) ∈ Rn×Rm (Theorem 3.8 on page 128). Let us look at the case
where the dimension of H is n− 1. Let us make a (formal) power series expansion
of the control system (8.1) in (x, u) around the constant trajectory t 7→ (0, 0) ∈
Rn × Rm. We write

x = y1 + y2 + . . . , u = v1 + v2 + . . . .

The order 1 is given by (y1, v1); the order 2 is given by (y2, v2) and so on. The
dynamics of these different orders are given by

ẏ1 =
∂f

∂x
(0, 0)y1 +

∂f

∂u
(0, 0)v1,(8.2)

(8.3) ẏ2 =
∂f

∂x
(0, 0)y2 +

∂f

∂u
(0, 0)v2 +

1
2
∂2f

∂x2
(0, 0)(y1, y1)

+
∂2f

∂x∂u
(0, 0)(y1, v1) +

1
2
∂2f

∂u2
(0, 0)(v1, v1),

and so on. Let e1 ∈ H⊥. Let T > 0. Let us assume that there are controls v1
± and

v2
±, both in L∞((0, T ); Rm), such that, if y1

± and y2
± are solutions of

ẏ1
± =

∂f

∂x
(0, 0)y1

± +
∂f

∂u
(0, 0)v1

±,

y1
±(0) = 0,

235
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ẏ2
± =

∂f

∂x
(0, 0)y2

± +
∂f

∂u
(0, 0)v2

± +
1
2
∂2f

∂x2
(0, 0)(y1

±, y
1
±)

+
∂2f

∂x∂u
(0, 0)(y1

±, u
1
±) +

1
2
∂2f

∂u2
(0, 0)(u1

±, u
1
±),

y2
±(0) = 0,

then

y1
±(T ) = 0,

y2
±(T ) = ±e1.

Let (ei)i∈{2,...n} be a basis of H. By the definition of H and a classical result
about the controllable part of a linear system (see e.g. [458, Section 3.3]), there
are (ui)i=2,...,n, all in L∞(0, T )m, such that, if (xi)i=2,...,n are the solutions of

ẋi =
∂f

∂x
(0, 0)xi +

∂f

∂u
(0, 0)ui,

xi(0) = 0,

then, for every i ∈ {2, . . . , n},

xi(T ) = ei.

Now let

b =
n∑
i=1

biei

be a point in Rn. Let v1 ∈ L∞((0, T ); Rm) be defined by the following
- If b1 > 0, then v1 := v1

+ and v2 := v2
+.

- If b1 < 0, then v1 := v1
− and v2 := v2

−.
Then let u : (0, T ) → Rm be defined by

u(t) := |b1|1/2v1(t) + |b1|v2(t) +
n∑
i=2

biui(t).

Let x : [0, T ] → Rn be the solution of

ẋ = f(x, u(t)), x(0) = 0.

Then one has, as b→ 0,

x(T ) = b+ o(b).(8.4)

Hence, using the Brouwer fixed-point theorem (see Theorem B.15 on page 390) and
standard estimates on ordinary differential equations, one gets the local controlla-
bility of ẋ = f(x, u) (around (0, 0) ∈ Rn × Rm) in time T , that is, for every ε > 0,
there exists η > 0 such that, for every (a, b) ∈ Rn × Rn with |a| < η and |b| < η,
there exists a trajectory (x, u) : [0, T ] → Rn × Rm of the control system (8.1) such
that

x(0) = a, x(T ) = b,

|u(t)| 6 ε, t ∈ (0, T ).

(One can also get this local controllability result from (8.4) by using degree theory
as in the proof of Theorem 11.26 on page 301.)
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This method is classical to study the local controllability of control systems
in finite dimension. In fact, more subtle tools have been introduced: for example
different scalings on the components of the control and of the state as well as scaling
on time. Furthermore, the case where the codimension of H is strictly larger than
1 has been considered; see e.g. [5, 55, 57, 56, 226, 228, 270, 468, 469, 482]
and the references therein.

In the next section we apply this method to a partial differential equation,
namely the Korteweg-de Vries equation. In fact, for this equation, an expansion to
order 2 is not sufficient: we obtain the local controllability by means of an expansion
to order 3.

8.2. Application to a Korteweg-de Vries equation

Let L > 0. Let us consider, as in Section 4.1, the following Korteweg-de Vries
(KdV) control system

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),(8.5)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),(8.6)

where, at time t ∈ [0, T ], the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
Let us recall that the well-posedness of the Cauchy problem

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, ·) = y0(x),

for u ∈ L2(0, T ), has been established in Section 4.1.1 (see, in particular, Defini-
tion 4.1 on page 160 and Theorem 4.2 on page 161).

We are interested in the local controllability of the control system (8.5)-(8.6)
around the equilibrium (ye, ue) := (0, 0). Let us recall (see Theorem 4.3 on page 161)
that this local controllability holds if

(8.7) L /∈ N :=

{
2π

√
j2 + l2 + jl

3
; j ∈ N \ {0}, l ∈ N \ {0}

}
.

The aim of this section is to study the local exact controllability around the equi-
librium (ye, ue) := (0, 0) ∈ L2(0, L) × R of the nonlinear KdV equation when
L = 2kπ ∈ N (take j = l = k in (4.12)). The main theorem is the following one.

Theorem 8.1 ([122, Theorem 2]). Let T > 0 and k ∈ N \ {0}. Let us assume
that (

j2 + l2 + jl = 3k2 and (j, l) ∈ (N \ {0})2
)
⇒ (j = l = k) .(8.8)

Let L = 2kπ. (Thus, in particular, L ∈ N .) Then there exist C > 0 and r1 > 0
such that for any y0, y1 ∈ L2(0, L), with ‖y0‖L2(0,L) < r1 and ‖y1‖L2(0,L) < r1,
there exist

y ∈ C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L))
and u ∈ L2(0, T ) satisfying (8.5)-(8.6), such that

y(0, ·) = y0,(8.9)

y(T, ·) = y1,(8.10)

‖u‖L2(0,T ) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L))1/3.(8.11)
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Remark 8.2. Assumption (8.8) holds for k 6 6 and for an infinite number
of positive integers (see Proposition 8.3 below). However, there are also infinitely
many positive integers k such that (8.8) does not hold: note that

x2 + xy + y2 = 3z2

if
x := a2 + 4ab+ b2, y := a2 − 2ab− 2b2, z := a2 + b2 + ab,

and that x > 0, y > 0 and z > 0 if a > 0 and

(−2 +
√

3)a < b <
−1 +

√
3

2
a.

Unfortunately, we have forgotten assumption (8.8) in [122, Theorem 2]. This is a
mistake: the proof of [122, Theorem 2] requires (8.8).

Proposition 8.3. There are infinitely many positive integers k satisfying (8.8).

Proof of Proposition 8.3. Let k > 2 be a prime integer. Let us assume that
there are positive integers x and y such that

(x, y) 6= (k, k),(8.12)

x2 + xy + y2 = 3k2.(8.13)

Let us prove that

−3 is a square in Z/kZ,(8.14)

that is, there exists p ∈ Z such that 3 + p2 is divisible by k. Indeed, from (8.13),
one gets

−3xy = (x− y)2 (mod k),(8.15)

xy = (x+ y)2 (mod k).(8.16)

Note that

x 6= 0 (mod k).(8.17)

Indeed, let us assume that

x = 0 (mod k).(8.18)

From (8.16) and (8.18), one gets that

x+ y = 0 (mod k),

which, together with (8.18), implies that

x = 0 (mod k), y = 0 (mod k).(8.19)

However, (8.12) and (8.19) implies that

x2 + xy + y2 > 3k2,

in contradiction with (8.13). Hence (8.17) holds. Similarly,

y 6= 0 (mod k).(8.20)

From (8.16), (8.17) and (8.20), one gets that

x+ y 6= 0 (mod k).(8.21)
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Finally, from (8.15), (8.16) and (8.21), we have

−3 =
(
(x+ y)−1(x− y)

)2
in Z/kZ,

which shows (8.14).
Let us prove, following [444, 445], that the set of prime integers k not satisfying

condition (8.14) is infinite, and more precisely, its density inside the set of prime
integers is equal to 1/2.

First of all, let us introduce the Legendre symbol
(
x
k

)
, where k is a prime and

x ∈ Z is an integer not divisible by k. We put
(x
k

)
:= 1, if x is a square modulo k,(x

k

)
:= −1, if x is not a square modulo k.

Note that (xy
k

)
=
(x
k

)(y
k

)
,(8.22)

for x, y ∈ Z coprime to k. Indeed, if one of x or y is a square modulo k, this is
obvious. Otherwise, note that the subgroup G ⊂ (Z/kZ)∗ consisting of squares has
the property that the quotient (Z/kZ)∗/G has order 2, because G is the image of
the group morphism x 7→ x2 from (Z/kZ)∗ into itself, and this group morphism has
for kernel the order 2 group {1,−1}. Thus if neither x nor y is a square modulo k,
the classes of x and y modulo G are equal, and their product modulo k belongs to
G.

If p > 2 and k > 2 are two distinct prime integers, the quadratic reciprocity
law due to Gauss (see, e.g., [444, Theorem 6, Chapter I, page 7] or [445, Théorème
6, Chapitre I, page 16]) says the following:(p

k

)
=
(
k

p

)
(−1)ε(p)ε(k),(8.23)

where {
ε(p) = 0, if p = 1 (mod 4),
ε(p) = 1, if p = −1 (mod 4).

Let us now prove the following lemma.

Lemma 8.4. Let k > 2 be a prime integer. One has

(−1)ε(k) =
(
−1
k

)
.(8.24)

Proof of Lemma 8.4. Let us consider the multiplicative group (Z/kZ)∗. The
nonzero squares in Z/kZ are exactly the elements of the subgroup G ⊂ (Z/kZ)∗

defined as the image of the group morphism x 7→ x2. This group G has cardinality
(k − 1)/2. Indeed, the kernel of the morphism above consists of the two elements
1, −1, which are the only solutions of the polynomial equation x2 = 1 in Z/kZ.

Note that −1 is a square modulo k if and only if −1 ∈ G, and that if this is
the case, multiplication by −1 induces a bijection of G. Now we introduce

α :=
∏
g∈G

g.
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Then, if −1 ∈ G, we have

(−1)
k−1
2 α =

∏
g∈G

(−g) = α

and thus (−1)
k−1
2 = 1, i.e., ε(k) = 0. Hence (8.24) holds in this case.

If, on the other hand, −1 is not a square in Z/kZ, we find that multiplication
by −1 induces a bijection between G and its complement, denoted cG. Thus we
get in this case

(−1)
k−1
2 α =

∏
g∈G

(−g) =
∏
g∈cG

g.

Observe to conclude that in (Z/kZ)∗ we have the relation∏
g∈(Z/kZ)∗

g = −1,(8.25)

which implies that ∏
g∈(Z/kZ)∗\G

g = −
∏
g∈G

g.

Thus, in the second case, we get (−1)(k−1)/2α = −α and hence (−1)(k−1)/2 = −1.
Therefore ε(k) = 1 and (8.24) holds in this case also.

Relation (8.25) is proved by noticing that in this product, we find the terms
1, −1, and that all the other terms g 6∈ {1,−1} appear in pairs {g, g−1}, with
g 6= g−1. This concludes the proof of Lemma 8.4.

We return to the proof of Proposition 8.3. From (8.24), (8.23) and (8.22), we
have (

−p
k

)
=
(
k

p

)
(−1)(ε(p)+1)ε(k).(8.26)

Let us apply this to p = 3 and k > 3 (we recall that k is a prime integer). We have
ε(3) = 1. By definition (

−3
k

)
= 1

if and only if −3 is a square modulo k. By (8.26), this is equivalent to(
k

3

)
= 1,

that is, k = 1 (mod 3).
In conclusion, if k > 3 is a prime integer such that k = −1 (mod 3), then

k satisfies (8.8). As there are two possible nonzero congruences modulo 3, the
Dirichlet density theorem (see, e.g., [444, Theorem 2, Chapter VI, page 73] or
[445, Théorème 2, Chapitre VI, page 122]) now says that the set of prime integers
k such that k = −1 (mod 3) has density equal to 1/2 in the set of prime integers.
In particular, there are infinitely many prime integers k such that k = −1 (mod 3).
This concludes the proof of Proposition 8.3.
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Proof of Theorem 8.1. We assume that L = 2kπ. The linearized con-
trol system of the nonlinear control system (8.5)-(8.6) around (ye, ue) := (0, 0) ∈
L2(0, 2kπ)× R is

(KdVL)
{
yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, 2kπ),
y(t, 0) = y(t, 2kπ) = 0, yx(t, 2kπ) = 0, t ∈ (0, T ).

As we have seen previously (see Theorem 2.25 on page 42), this linear control
system is not controllable. Indeed, for every solution

(y, u) ∈ C0([0, T ];L2(0, 2kπ))× L2(0, T )

of (KdVL), one has, using simple integrations by parts and density arguments (see
also (2.181)), that

d
dt

∫ 2kπ

0

(1− cos(x))ydx = 0.

To prove that the nonlinear term yyx gives the local controllability, a first
idea could be to use the exact controllability of the linearized equation around
nontrivial stationary solutions proved by Emmanuelle Crépeau in [136] and to
apply the method we have used to get the local controllability of the 1-D tank
(that is, use the return method together with quasi-static deformations; see Section
6.3). However, with this method, we could only obtain the local exact controllability
in large time. In order to prove Theorem 8.1, we use a different strategy that we
have briefly described in the above section (Section 8.1).

We first point out that, in this theorem, we may assume that y0 = 0: this
follows easily from the invariance of the control system (8.5)-(8.6) by the change of
variables τ = T − t, ξ = 2kπ − x (and a suitable change for the control). Then we
use the following result for the linear control system, due to Lionel Rosier.

Theorem 8.5 ([407]). Let T > 0 and

H :=

{
y ∈ L2(0, 2kπ),

∫ 2kπ

0

y(1− cos(x))dx = 0

}
.(8.27)

Let us assume that k ∈ N \ {0} is such that (8.8) holds. Then, for every (y0, y1) ∈
H ×H, there exist

y ∈ C0([0, T ];L2(0, 2kπ)) ∩ L2((0, T );H1(0, 2kπ)), u ∈ L2(0, T ),

satisfying (KdV L), such that y(0, ·) = y0 and y(T, ·) = y1.

Next, as we are going to see, the nonlinear term yyx allows us to “move” in the
two (oriented) directions ±(1 − cos(x)) which are missed by the linearized control
system (KdVL). Finally, we briefly sketch how to derive Theorem 8.1 from these
motions by means of a fixed-point theorem. Let us now explain how the nonlinear
term yyx allows us to “move” in the two (oriented) directions ±(1 − cos(x)). Let
L > 0. We first recall some properties about the following linear KdV Cauchy
problem

yt + yx + yxxx = f,(8.28)

y(t, 0) = y(t, L) = 0,(8.29)

yx(t, L) = h(t),(8.30)

y(T0, x) = y0(x).(8.31)
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It follows from what we have seen in Section 4.1.2 that, for every y0 ∈ L2(0, L), for
every u ∈ L2(T0, T1) and for every f ∈ L1((T0, T1);L2(0, L)), there exists a unique
solution y ∈ C0([T0, T1];L2(0, L)) of (8.28) to (8.31) (see page 162 for the definition
of a solution of (8.28) to (8.31)). Let us also recall, as we have seen in the same
section, that

y ∈ BT0,T1 := C0([T0, T1];L2(0, L)) ∩ L2((T0, T1);H1(0, L));

see the paper [407] by Lionel Rosier for complete details.
In [122] we proved the following proposition.

Proposition 8.6. Let T > 0 and let k ∈ N \ {0}, satisfying (8.8). Then
there exists (u±, v±, w±) in L2(0, T )3 such that, if α±, β±, γ± are respectively the
solutions of

α±t + α±x + α±xxx = 0,(8.32)

α±(t, 0) = α±(t, 2kπ) = 0,(8.33)

α±x(t, 2kπ) = u±(t),(8.34)

α±(0, x) = 0,(8.35)

β±t + β±x + β±xxx = −α±α±x,(8.36)

β±(t, 0) = β±(t, 2kπ) = 0,(8.37)

β±x(t, 2kπ) = v±(t),(8.38)

β±(0, x) = 0,(8.39)

γ±t + γ±x + γ±xxx = −(α±β±)x,(8.40)

γ±(t, 0) = γ±(t, 2kπ) = 0,(8.41)

γ±x(t, 2kπ) = w±(t),(8.42)

γ±(0, x) = 0,(8.43)

then

α±(T, x) = 0, β±(T, x) = 0 and γ±(T, x) = ±(1− cos(x)).(8.44)

Remark 8.7. It would have been quite natural to look for the existence of
(u±, v±) in L2(0, T )2 such that, if α±, β± are respectively the solutions of

α±t + α±x + α±xxx = 0,

α±(t, 0) = α±(t, 2kπ) = 0,

α±x(t, 2kπ) = u±(t),

α±(0, x) = 0,

β±t + β±x + β±xxx = −α±α±x,
β±(t, 0) = β±(t, 2kπ) = 0,

β±x(t, 2kπ) = v±(t),

β±(0, x) = 0,
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then

α±(T, x) = 0 and β±(T, x) = ±(1− cos(x)).

The existence of such (u±, v±) would also have implied Theorem 8.1. Unfortunately,
as it is proved in [122], such (u±, v±) does not exist. At this point we see that, as
mentioned earlier on page 237, an expansion to order 2 is not sufficient: this is the
expansion to order 3 which gives the local controllability.

Let us now explain how to deduce Theorem 8.1 from Proposition 8.6. As
pointed out above, by the invariance of the control system (8.5)-(8.6) by the change
of variables τ = T −t, ξ = 2kπ−x (together with a suitable change for the control),
we can content ourselves to prove that, for every T > 0, there exists r′1 > 0 such
that, for every y1 ∈ L2(0, 2kπ) with ‖y1‖L2(0,2kπ) 6 r′1, there exists u ∈ L2(0, T )
such that the solution y of

yt + yx + yxxx + yyx = 0,(8.45)

y(t, 0) = y(t, 2kπ) = 0,(8.46)

yx(t, 2kπ) = u(t),(8.47)

y(0, x) = 0,(8.48)

satisfies y(T, ·) = y1. Of course, by “y is a solution of (8.45), (8.46), (8.47) and
(8.48)”, we mean that y is in B0,T and is the solution of

yt + yx + yxxx = f,

y(t, 0) = y(t, 2kπ) = 0,

yx(t, 2kπ) = u(t),

y(0, x) = 0,

with f := −yyx (note that, if y is in B0,T , then yyx ∈ L1((0, T );L2(0, 2kπ))). It
is proved in [122] that, for a given u ∈ L2(0, T ), there exists at most one solution
of (8.45), (8.46), (8.47) and (8.48), and that such a solution exists if ‖u‖L2(0,T ) is
small enough (the smallness depending on T and k).

By (the proof of) Theorem 8.5 on page 241 and Remark 2.33 on page 48 (see
also [407, Remark 3.10]), there exists a continuous linear map Γ,

(8.49) Γ : h ∈ H ⊂ L2(0, 2kπ) 7→ Γ(h) ∈ L2(0, T ),

such that the solution of the linear system

yt + yx + yxxx = 0,

y(t, 0) = y(t, 2kπ) = 0,

yx(t, 2kπ) = Γ(h)(t),

y(0, x) = 0,

satisfies y(T, x) = h(x). (One can take for Γ the control obtained by means of
HUM; see [407, Remark 3.10].)

Let y1 ∈ L2(0, 2kπ) be such that ‖y1‖L2(0,2kπ) 6 r, r > 0 small enough so that
the maps below are well defined in a neighborhood of 0. Let Ty1 denote the map,

Ty1 : L2(0, 2kπ) → L2(0, 2kπ)
z 7→ z + y1 − F (G(z)),
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with
F : L2(0, T ) → L2(0, 2kπ)

u 7→ y(T, ·),
where y is the solution of (8.45), (8.46), (8.47) and (8.48), and where

G : L2(0, 2kπ) → L2(0, T )

is defined as follows. We write

z = PH(z) + ρ(z)(1− cos(x))

with ∫ 2kπ

0

PH(z)(1− cos(x))dx = 0.

(In other words, PH(z) is the orthogonal projection of z on H for the L2(0, 2kπ)-
scalar product.) Then:

1. If ρ(z) > 0, G(z) := Γ(PH(z)) + ρ1/3(z)u+ + ρ2/3(z)v+ + ρ(z)w+.
2. If ρ(z) 6 0, G(z) := Γ(PH(z)) + |ρ(z)|1/3u− + |ρ(z)|2/3v− + |ρ(z)|w−.

(The functions u±, v± and w± have already been defined in Proposition 8.6.)
Clearly, each fixed point z∗ of Ty1 satisfies F (G(z∗)) = y1, and the control

u = G(z∗) is a solution to our problem. In order to prove the existence of a fixed
point to Ty1 , at least if ‖y1‖L2(0,2kπ) is small enough, one first proves the following
estimate (see [122] for the proof): There exist K > 0 and R > 0 such that

‖T0z‖L2(0,2kπ) 6 K‖z‖4/3L2(0,2kπ) for every z ∈ L2(0, 2kπ) with ‖z‖L2(0,2kπ) 6 R.

Then, using the continuity of Ty1(z) with respect to y1 and z, we could conclude
to the existence of a fixed point to Ty1 at least if ‖y1‖L2(0,2kπ) were small enough
and if we were in finite dimension or had, more generally, a suitable compactness
property. Unfortunately, we do not have this compactness property. So we proceed
in a different manner. We use the Banach fixed-point theorem for the part in H
and the intermediate value theorem in H⊥. (If H⊥ had dimension in N \ {0, 1},
we would have used the Brouwer fixed-point theorem instead of the intermediate
value theorem: In dimension 1 the Brouwer fixed-point theorem reduces to the
intermediate value theorem.) See [122] for the detailed proofs.

8.2.1. Open problems. For the other critical lengths, the situation is more
complicated: there are now more noncontrollable (oriented) directions of the lin-
earized control system around (0, 0). It is natural to ask if Theorem 8.1 also holds
for all the other critical lengths, that is, to ask if the answer to the following open
problem is positive.

Open Problem 8.8. Let L ∈ N and T > 0. Do there exist C > 0 and r > 0
such that, for every y0, y1 ∈ L2(0, L) with ‖y0‖L2(0,L) < r and ‖y1‖L2(0,L) < r,
there exist y ∈ C0([0, T ];L2(0, L))∩L2((0, T );H1(0, L)) and u ∈ L2(0, T ) satisfying
(8.5)-(8.6) such that (8.9), (8.10) and (8.11) hold?

Remark 8.9. One could also ask the same question by requiring a weaker
smallness condition than (8.11) or even simply by omitting this condition. In fact,
our intuition is that for L 6∈ 2πN, a power series expansion to the order 2 could be
sufficient and therefore 1/3 could be replaced by 1/2 for these lengths. It is also
possible that the local controllability holds only for large enough time T (that is,
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one should replace “Let L > 0 and T > 0. Do there exist C > 0 and r > 0 ...” by
“Let L > 0. Do there exist T > 0, C > 0 and r > 0 ...” in Open Problem 8.8). Note
that this is indeed the case for the nonlinear Schrödinger equation (see Theorem 9.8
on page 251 and Section 9.3). Eduardo Cerpa obtained in [85] a positive answer
to Open problem 8.8 if there are exactly 4 uncontrollable (oriented) directions for
the linearized control system around the equilibrium (ye, ue) := (0, 0) (instead of 2
for L ∈ 2πN satisfying (8.8), namely 1 − cos(x) and cos(x) − 1) if T > 0 is large
enough. His proof also relies on the power series expansion method. In this case a
power series expansion to order 2 is indeed sufficient. Note that, using Remark 8.2
on page 238, one can prove that, for every n ∈ N, there are infinitely many L’s
such that there are at least n uncontrollable (oriented) directions for the linearized
control system around the equilibrium (ye, ue) := (0, 0) ∈ L2(0, L)× R.

All the previous results are local controllability results. Concerning global
controllability results, one has the following one due to Lionel Rosier [409].

Theorem 8.10. Let L > 0. For every y0 ∈ L2(0, L), for every y1 ∈ L2(0, L),
there exist T > 0 and y ∈ C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L)) satisfying

yt + yx + yxxx + yyx = 0 in D′((0, T )× (0, L))

such that y(0, ·) = y0 and y(T, ·) = y1.

Note that in this theorem
1. One does not require y(t, 0) = y(t, L) = 0,
2. A priori the time T depends on y0 and y1.

It is natural to wonder if one can remove these restrictions. For example, one may
ask:

Open Problem 8.11. Let L > 0, T > 0, y0 ∈ L2(0, L) and y1 ∈ L2(0, L). Do
there exist y ∈ C0([0, T ];L2(0, L))∩L2((0, T );H1(0, L)) and u ∈ L2(0, T ) satisfying
(8.5)-(8.6) such that y(0, ·) = y0 and y(T, ·) = y1?

If one does not care about T (i.e., we allow T to be as large as we want,
depending on y0 and y1), a classical way to attack this open problem is the following
one (this is the method which is already used by Lionel Rosier to prove Theorem
8.10).
Step 1. Use the reversibility with respect to time of the equation to show that one

may assume that y1 = 0. (In fact, this part holds even if one deals with
the case where one wants T > 0 to be small.)

Step 2. Use a suitable stabilizing feedback to go from y0 into a given neighborhood
of 0.

Step 3. Conclude by using a suitable local controllability around (ȳ, ū) := 0.
Step 1 indeed holds (perform the change of variables (t̃, x̃) := (T − t, L− x)). Let
us assume that L 6∈ N or L = 2πk with k ∈ N\{0} satisfying (8.8). Then, applying
Theorem 4.3 or Theorem 8.1, one can perform Step 3. Concerning Step 2, a natural
choice is to consider the simpler feedback, namely yx(t, L) := 0, which leads to the
following Cauchy problem:

yt + yx + yxxx + yyx = 0, t ∈ (0,+∞), x ∈ (0, L),(8.50)

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0,+∞),(8.51)

y(0, x) = y0(x), x ∈ (0, L).(8.52)
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where y0 is given in L2(0, L) and one requires

y ∈ C([0,+∞);L2(0, L)) ∩ L2
loc([0,+∞);H1(0, L)).(8.53)

Straightforward computations shows that, at least if y is smooth enough,

d
dt

∫ L

0

|y(t, x)|2dx = −|yx(t, 0)|2.

Hence one can expect that the Cauchy problem (8.50)-(8.51)-(8.52) has a solution.
This turns out to be true: It has been proved by Gustavo Perla Menzala, Carlos
Vasconcellos and Enrique Zuazua in [382] that the the Cauchy problem (8.50)-
(8.51)-(8.52) has one and only one solution. (See also [122, Appendix A].) However,
it is still not known (even for L 6∈ N ) if the following open problem has a positive
answer.

Open Problem 8.12. Does one have, for every y0 ∈ L2(0, L),

lim
t→+∞

∫ L

0

|y(t, x)|2dt = 0?(8.54)

There are available results showing that (8.54) holds if there is some interior
damping, more precisely with (8.50) replaced by

yt + yx + yxxx + yyx + a(x)y = 0, t ∈ (0,+∞), x ∈ (0, L),

where a ∈ L∞(0, L) is such that

a(x) > 0, x ∈ (0, L),
the support of a has a nonempty interior.

These results are in [382] by Gustavo Perla Menzala, Carlos Vasconcellos and
Enrique Zuazua, in [380] by Pazoto, and in [413] by Lionel Rosier and Bing-Yu
Zhang.



CHAPTER 9

Previous methods applied to a Schrödinger
equation

9.1. Controllability and uncontrollability results

In this chapter we consider a control system which is related to the one-
dimensional Schrödinger control system (4.85)-(4.86) considered in Section 4.2.2.
Let I = (−1, 1). We consider the Schrödinger control system

ψt = iψxx + iu(t)xψ, (t, x) ∈ (0, T )× I,(9.1)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(9.2)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ).(9.3)

This is a control system, where, at time t ∈ [0, T ],
- the state is (ψ(t, ·), S(t), D(t)) ∈ L2(I; C)×R×R with

∫
I
|ψ(t, x)|2dx = 1,

- the control is u(t) ∈ R.
Compared to the one-dimensional Schrödinger control system (4.85)-(4.86) consid-
ered in Section 4.2.2, we have only added the variables S and D. This system has
been introduced by Pierre Rouchon in [417]. It models a nonrelativistic charged
particle in a 1-D moving infinite square potential well. At time t, ψ(t, ·) is the wave
function of the particle in a frame attached to the potential well, S(t) is the speed
of the potential well and D(t) is the displacement of the potential well. The control
u(t) is the acceleration of the potential well at time t. (For other related control
models in quantum chemistry, let us mention the paper [306] by Claude Le Bris
and the references therein.) We want to control at the same time the wave function
ψ, the speed S and the position D of the potential well. Let us first recall some
important trajectories of the above control system when the control is 0. Let

ψn(t, x) := ϕn(x)e−iλnt, n ∈ N \ {0}.(9.4)

Here

λn := (nπ)2/4(9.5)

are the eigenvalues of the operator A defined on

D(A) := H2 ∩H1
0 (I; C)

by
Aϕ := −ϕ′′,

and the functions ϕn are the associated eigenvectors:

ϕn(x) := sin(nπx/2), n ∈ N \ {0}, if n is even,(9.6)

ϕn(x) := cos(nπx/2), n ∈ N \ {0}, if n is odd.(9.7)

247
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Let us recall that

S := {ϕ ∈ L2(I; C); ‖ϕ‖L2(I;C) = 1},
and let us also introduce the following notation:

H7
(0)(I; C) := {ϕ ∈ H7(I; C);ϕ(2k)(−1) = ϕ(2k)(1) = 0 for k = 0, 1, 2, 3}.

With these notations, one has the following result, proved in [43].

Theorem 9.1. For every n ∈ N \ {0}, there exists ηn > 0 such that, for every
n0, nf ∈ N \ {0} and for every (ψ0, S0, D0), (ψ1, S1, D1) ∈ (S∩H7

(0)(I; C))×R×R
with

‖ψ0 − ϕn0‖H7(I;C) + |S0|+ |D0| < ηn0 ,(9.8)

‖ψ1 − ϕnf
‖H7(I;C) + |S1|+ |D1| < ηnf

,(9.9)

there exist a time T > 0 and (ψ, S,D, u) such that

ψ ∈ C0([0, T ];H2 ∩H1
0 (I; C)) ∩ C1([0, T ];L2(I; C)),(9.10)

u ∈ H1
0 (0, T ),(9.11)

S ∈ C1([0, T ]), D ∈ C2([0, T ]),(9.12)

(9.1), (9.2) and (9.3) hold,(9.13)

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),(9.14)

(ψ(T ), S(T ), D(T )) = (ψ1, S1, D1).(9.15)

Remark 9.2. Using standard methods, one can check that ψ is in fact more
regular than stated by (9.10): One has

ψ ∈ C0([0, T ];H3(I; C) ∩H1
0 (I; C)) ∩ C1([0, T ];H1(I; C)).(9.16)

Let us emphasize that, if one does not care about S and D and if (n0, nf ) =
(1, 1), then Theorem 9.1 is due to Karine Beauchard [40].

From Theorem 9.1, we have the following corollary.

Corollary 9.3. For every n0, nf ∈ N \ {0}, there exist T > 0 and (ψ, S,D, u)
satisfying (9.10)-(9.11)-(9.12)-(9.13) such that

(ψ(0), S(0), D(0)) = (ϕn0 , 0, 0),

(ψ(T ), S(T ), D(T )) = (ϕnf
, 0, 0).

Note that, as pointed out by Gabriel Turinici in [488], it follows from a general
uncontrollability theorem [28, Theorem 3.6] due to John Ball, Jerrold Marsden
and Marshall Slemrod that Theorem 9.1 does not hold if one replaces H7

(0)(I; C) by
H2(I; C)∩H1

0 (I; C) and H1
0 (0, T ) by L2(0, T ); see also Remark 2.14 on page 34. In

the framework of Hilbert spaces, the general uncontrollability theorem [28, Theo-
rem 3.6] is the following one.

Theorem 9.4. Let H be a Hilbert space and let A be the infinitesimal generator
of a strongly continuous semigroup S(t), t ∈ [0,+∞), of continuous linear operators
on H. Let B : H → H be a linear bounded operator. Let x0 ∈ H and let R(x0)
be the set of x1 ∈ H such that there exist T , r > 0 and u ∈ Lr(0, T ) such that the
solution x ∈ C0([0, T ];H) of

ẋ = Ax+ u(t)Bx, x(0) = x0,(9.17)
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satisfies x(T ) = x1. Then R(x0) is contained in a countable union of compact
subsets of H. In particular, if H is of infinite dimension, R(x0) has an empty
interior.

The definition of “strongly continuous semigroup S(t), t ∈ [0,+∞), of continu-
ous linear operators” is given in Definition A.5 and Definition A.6 on page 374. For
the meaning of “A is the infinitesimal generator of a strongly continuous semigroup
S(t), t ∈ [0,+∞) of continuous linear operators”, see Definition A.9 on page 375.

By “x : [0, T ] → H is a solution of (9.17)”, one means that x ∈ C0([0, T ];H)
and satisfies

x(t) = S(t)x0 +
∫ t

0

u(s)S(t− s)Bx(s)ds, ∀t ∈ [0, T ].(9.18)

For the existence and uniqueness of solutions to the Cauchy problem (9.17), see,
for example, [28, Theorem 2.5].

Proof of Theorem 9.4. Let n ∈ N. Let Kn be the set of b ∈ H such that,
for some u ∈ L1+(1/n)(0, n) satisfying

‖u‖L1+(1/n)(0,n) 6 n,(9.19)

and for some τ ∈ [0, n], one has x(τ) = b, where x is the solution of

ẋ = Ax+ u(t)Bx(t), x(0) = x0.(9.20)

In order to prove Theorem 9.4, it suffices to check that

Kn is a compact subset of H.(9.21)

Let us prove (9.21). Let (bk)k∈N be a sequence of elements in Kn. For k ∈ N, let
uk ∈ L1+(1/n)(0, n) such that

‖uk‖L1+(1/n)(0,n) 6 n,(9.22)

and τk ∈ [0, n] such that xk(τk) = bk, where xk is the solution of

ẋk = Axk + uk(t)Bxk, xk(0) = x0.

In other words,

xk(t) = S(t)x0 +
∫ t

0

uk(s)S(t− s)Bxk(s)ds, ∀t ∈ [0, n].(9.23)

Without loss of generality, we may assume that, for some τ ∈ [0, n] and some
u ∈ L1+(1/n)(0, n) satisfying (9.19),

τk → τ as k → +∞,(9.24)

uk ⇀ u weakly in L1+(1/n)(0, n) as k → +∞.(9.25)

Let x ∈ C0([0, n];H) be the solution of (9.20) associated to this control u. In other
words, one has (9.18) for T := n. It suffices to check that

xk(τk) → x(τ) as k → +∞.(9.26)

Let yk ∈ C0([0, n];H) be defined by

yk(t) := xk(t)− x(t), ∀t ∈ [0, n].(9.27)

Since τk → τ as k → +∞ , in order to prove (9.26), it suffices to check that

‖yk‖C0([0,n];H) → 0 as k →∞.(9.28)
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From (9.18), (9.23) and (9.27), we get

yk(t) =
∫ t

0

(uk(s)− u(s))S(t− s)Bx(s)ds+
∫ t

0

uk(s)S(t− s)Byk(s)ds, ∀t ∈ [0, n].

(9.29)

Let

ρk := Max
{∥∥∥∥∫ t

0

(uk(s)− u(s))S(t− s)Bx(s)ds
∥∥∥∥
H

; t ∈ [0, n]
}
.(9.30)

Let us check that

lim
k→+∞

ρk = 0.(9.31)

Let tk ∈ [0, n] be such that

ρk =
∥∥∥∥∫ tk

0

(uk(s)− u(s))S(tk − s)Bx(s)ds
∥∥∥∥
H

.(9.32)

Without loss of generality, we may assume that there exists t ∈ [0, n] such that

tk → t as k → +∞.(9.33)

Let us extend S : [0,+∞) → L(H;H) to a map S : R → L(H;H) by requiring

S(s)a = a, ∀s ∈ (−∞, 0), ∀a ∈ H.
Since S(s), s ∈ [0,+∞), is a strongly continuous semigroup of continuous linear
operators, there exists C ∈ (0,+∞) such that

‖S(s)‖L(H,H) 6 C, ∀s ∈ [0, n];(9.34)

see Theorem A.8 on page 375. From (9.34) and Definition A.6 on page 374, one
sees that the map (s1, s2) ∈ R × [0, n] 7→ S(s1)Bx(s2) ∈ H is continuous. Hence,
also using (9.19) and (9.22) (for uk and for u), one gets∥∥∥∥∫ tk

0

(uk(s)− u(s))(S(tk − s)Bx(s)− f(s))ds
∥∥∥∥
H

→ 0 as k → +∞,(9.35)

with f(s) := S(t − s)Bx(s), s ∈ [0, n]. Let ε > 0. Since f ∈ C0([0, n];H), there
exist l ∈ N, 0 = s1 < s2 < . . . < sl = n, and l elements a1, a2, . . . , al in H such that

‖f − g‖L∞((0,n);H) 6 ε,(9.36)

where g ∈ L∞((0, n);H) is defined by

g(s) = ai, ∀s ∈ (si, si+1), ∀i ∈ {1, 2, . . . , l − 1}.(9.37)

Using (9.25), (9.33) and (9.37), one gets∥∥∥∥∫ tk

0

(uk(s)− u(s))g(s)ds
∥∥∥∥
H

→ 0 as k → +∞.(9.38)

From (9.19), (9.22), (9.35), (9.36) and (9.38), one gets

lim sup
k→+∞

ρk 6 2n(n+2)/(n+1)ε,

which, since ε > 0 is arbitrary, gives (9.31).
From (9.29), (9.30), (9.34) and the Gronwall inequality, one gets

‖yk(t)‖H 6 ρk exp
(
C‖B‖L(H,H)

∫ t

0

|uk(s)|ds
)
,
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which, together with (9.22) and (9.31), proves (9.28). This concludes the proof of
(9.21) and also of Theorem 9.4.

Coming back to Theorem 9.1 on page 248, there are at least three points that
one might want to improve in this result:

- Remove the assumptions (9.8) and (9.9) on the initial and final data.
- Weaken the regularity assumptions on the initial and final data.
- Get information about the time T of controllability.

Concerning the first two points, one can propose, for example, the following open
problems.

Open Problem 9.5. Let (ψ0, S0, D0), (ψ1, S1, D1) ∈ [S∩H7
(0)(I; C)]×R×R.

Do there exist T > 0 and (ψ, S,D, u) such that (9.10) to (9.15) hold?

Open Problem 9.6. Let

H3
(0)(I; C) := {ϕ ∈ H3(I; C);ϕ(2k)(−1) = ϕ(2k)(1) = 0 for k = 0, 1}.

Let (ψ0, S0, D0), (ψ1, S1, D1) ∈ (S∩H3
(0)(I; C))×R×R. Do there exist T > 0 and

(ψ, S,D, u) with u ∈ L2(0, T ) such that (9.10), (9.12), (9.13), (9.14) and (9.15)
hold?

Remark 9.7. The conjectured regularity in Open Problem 9.6 comes from
the regularities required for the controllability of linearized control systems (see
Theorem 2.87 on page 96, Proposition 9.11 on page 256 and Proposition 9.15 on
page 262).

Concerning the time of controllability, one may wonder if, for every ε > 0, there
exists η > 0 such that, for every (ψ0, S0, D0), (ψ1, S1, D1) ∈ (S∩H7

(0)(I; C))×R×R
satisfying

‖ψ0 − ψ1(0, ·)‖H7(I;C) + |S0|+ |D0| < η,(9.39)

‖ψ1 − ψ1(ε, ·)‖H7(I;C) + |S1|+ |D1| < η,(9.40)

there exists (ψ, S,D, u) such that (9.10), (9.11), (9.12), (9.13), (9.14) and (9.15)
hold with T = ε and ‖u‖H1(0,ε) 6 ε. (Let us recall that ψ1 is defined by (9.5),
(9.4) and (9.7).) This question has a negative answer. More precisely, one has the
following theorem (see [117, Theorem 1.2] for a prior weaker result).

Theorem 9.8. Let T > 0 be such that

T <
2
π2
.(9.41)

Then there exists ε > 0 such that for every D̄ 6= 0, there is no u ∈ L2((0, T ); (−ε, ε))
such that the solution (ψ, S,D) ∈ C0([0, T ];H1

0 (I; C))×C0([0, T ]; R)×C1([0, T ]; R)
of the Cauchy problem

ψt = iψxx + iu(t)xψ, (t, x) ∈ (0, T )× I,(9.42)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(9.43)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(9.44)

ψ(0, x) = ψ1(0, x), x ∈ I,(9.45)

S(0) = 0, D(0) = 0,(9.46)
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satisfies

ψ(T, x) = ψ1(T, x), x ∈ I,(9.47)

S(T ) = 0, D(T ) = D̄,(9.48)

The remainder of this chapter is organized in the following way:
- In Section 9.2 we sketch the main ingredients of the proof of Theorem 9.1,
- In Section 9.3 we first give, in Section 9.3.1, some comments and explain

the “raison d’être” of Theorem 9.8. Then, in Section 9.3.2, we give the
proof of Theorem 9.8.

9.2. Sketch of the proof of the controllability in large time

In this section we sketch the proof of Theorem 9.1. Using the reversibility
with respect to time of the control system (9.1)-(9.2)-(9.3), it is sufficient to prove
Theorem 9.1 for n1 = n0 + 1. We prove it with n0 = 1 and n1 = 2 to simplify the
notations (the proof of the general case is similar).

The key step is then the study of the large time local controllability of the
control system (9.1)-(9.2)-(9.3) around the trajectory (Y θ, u = 0) for every θ ∈
[0, 1], where

Y θ(t) := (fθ(t), 0, 0) ∈ L2(I; C)× R× R, ∀θ ∈ [0, 1], ∀t ∈ R,(9.49)

together with

fθ(t) :=
√

1− θψ1(t) +
√
θψ2(t), ∀θ ∈ [0, 1], ∀t ∈ R.(9.50)

Here and in the following, we write ψ1(t) for ψ1(t, ·), ψ2(t) for ψ2(t, ·), etc. In order
to state such a controllability result, for θ ∈ [0, 1] and ν > 0, let

D(θ, ν) := {(ϕ, S,D) ∈ (H7
(0)(I; C)∩S)×R×R; ‖ϕ−fθ(0)‖H7(I;C) + |S|+ |D| 6 ν}.

Let us also point out that

fθ(t+ τ0) = fθ(t), ∀t ∈ R, ∀θ ∈ [0, 1],

with

τ0 :=
8
π
.

The large time controllability of the control system (9.1)-(9.2)-(9.3) around the
trajectory (Y θ, u = 0) we use is the following.

Theorem 9.9. For every θ ∈ [0, 1], there exist nθ ∈ N \ {0} and νθ > 0 such
that, for every (ψ0, S0, D0) ∈ D(θ, νθ) and for every (ψ1, S1, D1) ∈ D(θ, νθ), there
exists (ψ, S,D, u) such that

ψ ∈ C0([0, nθτ0];H3
(0)(I; C)) ∩ C1([0, nθτ0];H1

0 (I; C)),(9.51)

u ∈ H1
0 (0, nθτ0),(9.52)

S ∈ C1([0, nθτ0]), D ∈ C2([0, nθτ0]),(9.53)

(9.1), (9.2) and (9.3) hold,(9.54)

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),(9.55)

(ψ(nθτ0), S(nθτ0), D(nθτ0)) = (ψ1, S1, D1).(9.56)
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Let us assume, for the moment, that this theorem holds and we conclude the
proof of Theorem 9.1. Let us first notice that

fθ(0) ∈ H7
(0)(I; C) ∩ S, ∀θ ∈ [0, 1],(9.57)

the map θ ∈ [0, 1] 7→ Y θ(0) ∈ H7(I; C)× R× R is continuous.(9.58)

For θ ∈ [0, 1], let Nθ be the minimum of the set of the nθ ∈ N \ {0} such that
there exists νθ > 0 such that the conclusion of Theorem 9.9 holds. From (9.57) and
(9.58), it is not hard to see that the map

θ ∈ [0, 1] 7→ Nθ ∈ N \ {0}

is upper semicontinuous. In particular, since [0, 1] is compact, this map is bounded.
Let us choose N ∈ N \ {0} such that

Nθ 6 N, ∀θ ∈ [0, 1].

Straightforward continuity arguments show that, for every θ ∈ [0, 1], there exists
νθ > 0 such that, for every (ψ0, S0, D0) ∈ D(θ, νθ) and for every (ψ1, S1, D1) ∈
D(θ, νθ), there exists (ψ, S,D, u) satisfying (9.51) to (9.56) with nθ := N . Let
εθ ∈ (0,+∞] be the supremum of the set of such νθ. Again it is not hard to check
that the map

θ ∈ [0, 1] 7→ εθ ∈ (0,+∞]

is lower semicontinuous. Hence, since [0, 1] is compact, there exists ε > 0 such that

ε < εθ, ∀θ ∈ [0, 1].

By construction, for every θ ∈ [0, 1], for every (ψ0, S0, D0) ∈ D(θ, ε), and for every
(ψ1, S1, D1) ∈ D(θ, ε), there exists (ψ, S,D, u) satisfying

ψ ∈ C0([0, Nτ0];H3
(0)(I; C)) ∩ C1([0, Nτ0];H1

0 (I; C)),

u ∈ H1
0 (0, Nτ0),

S ∈ C1([0, Nτ0]), D ∈ C2([0, Nτ0]),

(9.1), (9.2) and (9.3) hold,

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(Nτ0), S(Nτ0), D(Nτ0)) = (ψ1, S1, D1).

Let k ∈ N \ {0} be large enough so that

D(j/k, ε) ∩D((j + 1)/k, ε) 6= ∅, ∀j ∈ {0, . . . , k − 1}.(9.59)

Let (ψ0, S0, D0) ∈ D(0, ε), (ψ1, S1, D1) ∈ D(1, ε) and

T := (k + 1)Nτ0.(9.60)

Let us check that there exists (ψ, S,D, u) such that (9.10) to (9.15) hold. By (9.59),
there exists (ψ̃j , S̃j , D̃j) such that

(ψ̃j , S̃j , D̃j) ∈ D(j/k, ε) ∩D((j + 1)/k, ε), ∀j ∈ {0, . . . , k − 1}
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which implies, for every j ∈ {0, . . . , k−2}, the existence of (ψ̃j , S̃j , D̃j , ũj) satisfying

ψ̃j ∈ C0([0, Nτ0];H3
(0)(I; C)) ∩ C1([0, Nτ0];H1

0 (I; C)),

ũj ∈ H1
0 (0, Nτ0),

S̃j ∈ C1([0, Nτ0]), D̃j ∈ C2([0, Nτ0]),

(9.1), (9.2) and (9.3) hold for (ψ, S,D, u, T ) := (ψ̃j , S̃j , D̃j , ũj , Nτ0),

(ψ̃j(0), S̃j(0), D̃j(0)) = (ψj , Sj , Dj),

(ψ̃j(Nτ0), S̃j(Nτ0), D̃j(Nτ0)) = (ψ̃j+1, S̃j+1, D̃j+1).

Since

(ψ0, S0, D0) ∈ D(0, ε) and (ψ̃0, S̃0, D̃0) ∈ D(0, ε),

there exists (ψ̃−1, S̃−1, D̃−1, ũ−1) satisfying

ψ̃−1 ∈ C0([0, Nτ0];H3
(0)(I; C)) ∩ C1([0, Nτ0];H1

0 (I; C)),

ũ−1 ∈ H1
0 (0, Nτ0),

S̃−1 ∈ C1([0, Nτ0]), D̃−1 ∈ C2([0, Nτ0]),

(9.1), (9.2) and (9.3) hold for (ψ, S,D, u, T ) := (ψ̃−1, S̃−1, D̃−1, ũ−1, Nτ0),

(ψ̃−1(0), S̃−1(0), D̃−1(0)) = (ψ0, S0, D0),

(ψ̃−1(Nτ0), S̃−1(Nτ0), D̃−1(Nτ0)) = (ψ̃0, S̃0, D̃0).

Similarly, since

(ψ̃k−1, S̃k−1, D̃k−1) ∈ D(1, ε) and (ψ1, S1, D1) ∈ D(1, ε),

there exists (ψ̃k−1, S̃k−1, D̃k−1, ũk−1) satisfying

ψ̃k−1 ∈ C0([0, Nτ0];H3
(0)(I; C)) ∩ C1([0, Nτ0];H1

0 (I; C)),

ũk−1 ∈ H1
0 (0, Nτ0),

S̃k−1 ∈ C1([0, Nτ0]), D̃k−1 ∈ C2([0, Nτ0]),

(9.1), (9.2) and (9.3) hold for (ψ, S,D, u, T ) := (ψ̃k−1, S̃k−1, D̃k−1, ũk−1, Nτ0),

(ψ̃k−1(0), S̃k−1(0), D̃k−1(0)) = (ψ̃k−1, S̃k−1, D̃k−1),

(ψ̃k−1(Nτ0), S̃k−1(Nτ0), D̃k−1(Nτ0)) = (ψ1, S1, D1).

Then, it suffices to define (ψ, S,D, u) : [0, T ] → H3
(0)(I; C)×R×R×R by requiring,

besides (9.60), for every j ∈ {−1, 0, . . . , k − 1} and for every t ∈ [(j + 1)Nτ0, (j +
2)Nτ0],

ψ(t) := (ψ̃j(t− (j + 1)Nτ0),

S(t) := S̃j(t− (j + 1)Nτ0),

D(t) := D̃j(t− (j + 1)Nτ0),

u(t) := ũj(t− (j + 1)Nτ0)).

This concludes the proof of Theorem 9.1 assuming Theorem 9.9.
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It remains to prove Theorem 9.9 on page 252. The strategy for θ ∈ (0, 1) is
different from the one for θ ∈ {0, 1}. In the next sections, we detail both strategies.
We start (Section 9.2.1) with the simplest case, namely θ ∈ (0, 1). Then, in Section
9.2.2, we treat the more complicated case, namely θ ∈ {0, 1}.

9.2.1. Local controllability of the control system (9.1)-(9.2)-(9.3)
around (Y θ, u = 0) for θ ∈ (0, 1). As we have seen earlier, for example in Section
3.1 and in Section 4.1, a classical approach to prove the local controllability around
a trajectory consists of proving the controllability of the linearized system along the
studied trajectory and concluding with an inverse mapping theorem. This strategy
does not work here because the linearized system around (Y θ(t), u = 0) is not
controllable. Let us check this noncontrollability. For ψ ∈ S, the tangent space
TS(ψ) to the L2(I; C)-sphere at the point ψ is

TSψ :=
{
ϕ ∈ L2(I; C);<〈ϕ,ψ〉 = 0

}
,(9.61)

where

〈ϕ,ψ〉 :=
∫
I

ϕ(x)ψ(x)dx, ∀(ϕ,ψ) ∈ L2(I; C)2,

and, for z ∈ C,

<z is the real part of z.

Let us also recall that =z denotes the imaginary part of z ∈ C.
The linearized control system around the trajectory (Y θ, u = 0) is

(Σlθ)


Ψt = iΨxx + iwxfθ, (t, x) ∈ (0, T )× I,
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),
ṡ = w,

ḋ = s.

It is a control system where, at time t,
- The state is (Ψ(t, ·), s(t), d(t)) ∈ L2(I; C)×R×R with Ψ(t, ·) ∈ TS(fθ(t, ·)),
- The control is w(t) ∈ R.

Proposition 9.10. Let T > 0 and ((Ψ, s, d), w) be a trajectory of (Σlθ) on
[0, T ]. Then the function

t 7→ =(〈Ψ(t),
√

1− θψ1(t)−
√
θψ2(t)〉),

is constant on [0, T ]. In particular, the control system (Σlθ) is not controllable.

(In this proposition and, more generally, in this section as well as in Section
9.2.2, we do not specify the regularities of trajectories and solutions of Cauchy
problems: these regularities are the classical ones.)

Proof of Proposition 9.10. Let us consider the function

ξθ(t, ·) :=
√

1− θψ1(t, ·)−
√
θψ2(t, ·).(9.62)

We have

ξθt = iξθxx, (t, x) ∈ (0, T )× I,

d

dt
(=〈Ψ(t), ξθ(t)〉) = =(iw〈xfθ(t), ξθ(t)〉).
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The explicit expressions of fθ (see (9.50)) and ξθ (see (9.62)) show that, for every
t ∈ [0, T ],

〈xfθ(t), ξθ(t)〉 ∈ iR,
which gives the conclusion.

Let T > 0, and Ψ0 ∈ TS(fθ(0)), Ψ1 ∈ TS(fθ(T )). A necessary condition for the
existence of a trajectory of (Σlθ) satisfying Ψ(0) = Ψ0 and Ψ(T ) = Ψ1 is

=(〈Ψ1,
√

1− θψ1(T )−
√
θψ2(T )〉) = =(〈Ψ0,

√
1− θϕ1 −

√
θϕ2〉).

This equality does not hold for an arbitrary choice of Ψ0 and Ψ1. Thus (Σlθ) is not
controllable.

Let us now show that the linearized control system (Σlθ) misses exactly two
(oriented) directions on the tangent space to the sphere S, which are (Ψ, S,D) :=
(±iξθ, 0, 0). (So the situation is the same as for the nonlinear Korteweg-de Vries
control system (8.5)-(8.6) with the critical length L = 2πk with k ∈ N\{0} satisfying
(8.8); see Section 8.2.)

Proposition 9.11. Let T > 0, (Ψ0, s0, d0), (Ψ1, s1, d1) ∈ H3
(0)(I,R)×R×R be

such that

(9.63) <〈Ψ0, fθ(0)〉 = <〈Ψ1, fθ(T )〉 = 0,

(9.64) =〈Ψ1,
√

1− θϕ1e
−iλ1T −

√
θϕ2e

−iλ2T 〉 = =〈Ψ0,
√

1− θϕ1 −
√
θϕ2〉.

There exists w ∈ L2(0, T ) such that the solution

(Ψ, s, d) : [0, T ] → L2(I; C)× R× R
of (Σlθ) with control w and such that

(Ψ(0), s(0), d(0)) = (Ψ0, s0, d0)

satisfies
(Ψ(T ), s(T ), d(T )) = (Ψ1, s1, d1).

Before giving the proof of this proposition, let us point out that, by (9.61), the
condition (9.63) just means that

Ψ0 ∈ TS(fθ(0)) and Ψ1 ∈ TS(fθ(T )).

Proof of Proposition 9.11. The proof is similar to the proof of Theorem 2.87
on page 96. It also relies on moment theory. Let (Ψ0, s0, d0) ∈ L2(I,R) × R ×
R, with Ψ0 ∈ TS(fθ(0)) and T > 0. Let (Ψ, s, d) be a solution of (Σlθ) with
(Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) and a control w ∈ L2(0, T ). We have the following
equality in L2(I; C):

Ψ(t) =
∞∑
k=1

xk(t)ϕk where xk(t) := 〈Ψ(t), ϕk〉,∀k ∈ N \ {0}.

Using the equation satisfied by Ψ, we get

(9.65) x2k(t) =
(
〈Ψ0, ϕ2k〉+ i

√
1− θb2k

∫ t

0

w(τ)ei(λ2k−λ1)τdτ

)
e−iλ2kt,

(9.66) x2k−1(t) =
(
〈Ψ0, ϕ2k−1〉+ i

√
θc2k−1

∫ t

0

w(τ)ei(λ2k−1−λ2)τdτ

)
e−iλ2k−1t,
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where, for every k ∈ N\{0}, bk := 〈xϕk, ϕ1〉 and ck := 〈xϕk, ϕ2〉. Using the explicit
expression of the functions ϕk (see (9.6)-(9.7)), we get

bk =


0 if k is odd,
−16(−1)k/2k

π2(1 + k)2(1− k)2
if k is even,

(9.67)

ck =

 32(−1)(k−1)/2k

π2(k + 2)2(k − 2)2
if k is odd,

0 if k is even.
(9.68)

Let (Ψ1, s1, d1) ∈ L2(I,R) × R × R with Ψ1 ∈ TS(fθ(T )). The equality
(Ψ(T ), s(T ), d(T )) = (Ψ1, s1, d1) is equivalent to the following moment problem
on w,

(9.69)
∫ T

0

w(t)ei(λ2k−λ1)tdt

=
−i√

1− θb2k

(
〈Ψ1, ϕ2k〉eiλ2kT − 〈Ψ0, ϕ2k〉

)
,∀k ∈ N \ {0},

(9.70)
∫ T

0

w(t)ei(λ2k−1−λ2)tdt

=
−i√
θc2k−1

(
〈Ψ1, ϕ2k−1〉eiλ2k−1T − 〈Ψ0, ϕ2k−1〉

)
,∀k ∈ N \ {0},

∫ T

0

w(t)dt = s1 − s0,(9.71) ∫ T

0

(T − t)w(t)dt = d1 − d0 − s0T.(9.72)

In (9.69)-(9.70) with k = 1, the left hand sides are complex conjugate numbers
because w is real valued. Note also that, by (9.67) and (9.68), b2 = c1. Hence
a necessary condition on Ψ0 and Ψ1 for the existence of w ∈ L2(0, T ) solution of
(9.69)-(9.70) is

1√
1− θ

(
〈Ψ1, ϕ2〉e−iλ2T − 〈Ψ0, ϕ2〉

)
(9.73)

=
−1√
θ

(
〈Ψ1, ϕ1〉eiλ1T − 〈Ψ0, ϕ1〉

)
.

The equality of the real parts of the two sides in (9.73) is guaranteed by (9.63). The
equality of the imaginary parts of the two sides in (9.73) is equivalent to (9.64).
Under the assumption Ψ0,Ψ1 ∈ H3

(0)(I; C), the right hand sides of (9.69)-(9.70)
define a sequence in l2(C). Then the existence, for every T > 0, of w ∈ L2(0, T )
solution of (9.69) to (9.72) is a classical result on trigonometric moment problems;
see, for example, [422, Section 2], or [282, Section 1.2.2]. In fact, if one does not
care about condition (9.72), the existence of w ∈ L2(0, T ) follows from Theorem 2.88
on page 98.

Coming back to our controllability statement, let us try to follow the approach
(power series expansion) we used for the nonlinear control system (8.5)-(8.6) (see
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page 237) with the critical lengths L = 2πk with k ∈ N \ {0} satisfying (8.8) (see
Section 8.2 and [122]). We first try to move in the (oriented) directions which are
missed by the linearized control system (Σlθ). This can be done and this is simpler
than for the nonlinear KdV control system (8.5)-(8.6), since the order 2 is sufficient
to do this motion. Indeed, one has the following proposition.

Proposition 9.12 ([43, Theorem 6]). Let T := 8/π. There exist w± ∈ H4 ∩
H3

0 (0, T ), ν± ∈ H3
0 (0, T ) such that the solutions of

(9.74)


Ψ±t = iΨ±xx + iw±xfθ, (t, x) ∈ (0, T )× I,
Ψ±(0, x) = 0, x ∈ I,
Ψ±(t,−1) = Ψ±(t, 1) = 0, t ∈ (0, T ),
ṡ± = w±, s±(0) = 0,
ḋ± = s±, d±(0) = 0,

(9.75)


ξ±t = iξ±xx + iw±xΨ± + iν±xfθ,
ξ±(0, x) = 0, x ∈ I,
ξ±(t,−1) = ξ±(t, 1) = 0, t ∈ (0, T ),
σ̇± = ν±, σ±(0) = 0,
δ̇± = σ±, δ±(0) = 0,

satisfy Ψ±(T, ·) = 0, s±(T ) = 0, d±(T ) = 0, ξ±(T ) = ±iϕ1, σ± = 0, δ± = 0.

The time T = 8/π is not optimal, but our guess is that T cannot be arbitrarily
small (see also Theorem 9.8 on page 251 and Open Problem 9.18 on page 268).

Unfortunately, the fixed-point argument we used for the nonlinear KdV control
system (8.5)-(8.6) with the critical lengths L = 2πk, with k ∈ N \ {0} satisfying
(8.8) (see Section 8.2) no longer works. The reason is the following one. Let us
introduce the following closed subspace of L2(I; C),

Π := Span{ϕk; k > 2}

and the orthogonal projection P : L2(I; C) → Π. Let Φ be the map defined by

Φ : (ψ0, S0, D0, u) 7→ (ψ0, S0, D0,Pψ(T ), S(T ), D(T )),

where ψ solves 
ψ̇ = iψ′′ + iuxψ,

Ṡ = w,

Ḋ = S,

with (ψ(0), S(0), D(0)) = (ψ0, S0, D0). Let H2
(0)(I; C) be defined by

H2
(0)(I; C) := {ϕ ∈ H2(I; C);ϕ ∈ H1

0 (I; C)}.

The map Φ is of class C1 between the spaces

Φ : [S ∩H2
(0)(I; C)]× R× R× L2(0, T )

→ [S ∩H2
(0)(I; C)]× R× R× [Π ∩H2

(0)(I; C)]× R× R,

Φ : [S ∩H3
(0)(I; C)]× R× R×H1

0 (0, T )

→ [S ∩H3
(0)(I; C)]× R× R× [Π ∩H3

(0)(I; C)]× R× R.
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So we would like to have a right inverse to the map dΦ(fθ(0), 0, 0, 0) which is a map
between the spaces

[TS(fθ(0)) ∩H2
(0)(I; C)]× R× R× [Π ∩H2

(0)(I; C)]× R× R

→ [TS(fθ(0)) ∩H2
(0)(I; C)]× R× R× L2(0, T ),

or

[TS(fθ(0)) ∩H3
(0)(I; C)]× R× R× [Π ∩H3

(0)(I; C)]× R× R

→ [TS(fθ(0)) ∩H3
(0)(I; C)]× R× R×H1

0 (0, T ).

The controllability up to codimension one given in Proposition 9.11 for the lin-
earized system around (Y θ, u = 0) only provides a right inverse for dΦ(fθ(0), 0, 0, 0)
which is a map between the spaces

[TS(fθ(0)) ∩H3
(0)(I; C)]× R× R× [Π ∩H3

(0)(I; C)]× R× R

→ [TS(fθ(0)) ∩H3
(0)(I; C)]× R× R× L2(0, T ).

In order to deal with this loss of regularity in the controllability of the linearized sys-
tem around (Y θ, u = 0), we use a Nash-Moser fixed-point method directly adapted
from the one given by Lars Hörmander in [238]. See also Section 4.2.2 and the
paper [40] by Karine Beauchard, where the Nash-Moser method has been used
for the first time to solve a controllability problem. This requires some lengthy
computations which are detailed in [43].

9.2.2. Local controllability of the control system (9.1)-(9.2)-(9.3)
around (Y k, u = 0) for k ∈ {0, 1}. Again, the classical approach does not work
because the linearized system around (Y k, u = 0) is not controllable for k ∈ {0, 1}.
This result was proved by Pierre Rouchon in [417]. (He also proved that this
linearized system is steady-state controllable, but this result does not imply the
same property for the nonlinear system.) The situation is even worse than the
previous one because the linearized system misses an infinite number of (oriented)
directions (half of the projections). Indeed, the linearized system around (Y 0, u =
0) is

(Σl0)


Ψt = iΨxx + iwxψ1, (t, x) ∈ (0, T )× I,
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),
ṡ = w,

ḋ = s.

It is a control system where, at time t ∈ [0, T ],
- the state is (Ψ(t, ·), s(t), d(t)) ∈ L2(I; C)×R×R with Ψ(t) ∈ TS(ψ1(t)) for

every t,
- the control is w(t) ∈ R.

Let (Ψ0, s0, d0) ∈ TS(ψ1(0)) × R × R and (Ψ, s, d) be the solution of (Σl0) such
that (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0), with some control w ∈ L2(0, T ). We have the
following equality in L2(I; C):

Ψ(t) =
∞∑
k=1

xk(t)ϕk, where xk(t) := 〈Ψ(t), ϕk〉, ∀k ∈ N \ {0}.

Using the evenness of the functions ϕ2k+1 and the equation satisfied by Ψ, we get

ẋ2k+1 = −iλ2k+1x2k+1,∀k ∈ N.
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Half of the components have a dynamic independent of the control w. Thus the
control system (Σl0) is not controllable and the dimension of the uncontrollable part
is infinite.

The proof of the local controllability of the control system (9.1)-(9.2)-(9.3)
around Y k for k ∈ {0, 1} relies on:

1. the return method (see Chapter 6),
2. quasi-static deformations (see Chapter 7),
3. power series expansion (see Chapter 8).

Let us explain the main steps in the case of Y 0; everything works similarly with
Y 1 instead of Y 0. First, for γ 6= 0 and (α, β) ∈ R2 we construct a trajectory
(Y γ,α,β , u = γ) such that the control system (9.1)-(9.2)-(9.3) is locally controllable
around (Y γ,α,β , γ) on [0, T ∗] for some T ∗. Then one deduces the local controllability
(for suitable norms) around Y 0 by using quasi-static deformations, in the same way
as in Section 6.3 (see also [40, Theorem 11, page 916]). Let Y0 be given close to
Y 0(0) and Y1 be given close to Y 0(0). We use quasi-static deformations in order to
steer the control system:

- from Y0 to a point Ỹ0 which is close to Y γ,α,β(0), for some real constants
α, β, γ,

- from a point Ỹ1, which is close to Y γ,α,β(T ∗), to Y1.
By “quasi-static deformations”, we mean that we use controls t 7→ u(t) which
change slowly as in Section 6.3 (see in particular Proposition 6.31 on page 217 and
Proposition 6.32 on page 217) and as in Chapter 7. Using the local controllability
around Y γ,α,β , we can then steer the control system from Ỹ0 to Ỹ1 in time T ∗,
and this gives the conclusion: We can steer the control system from Y0 to Ỹ1, by
steering it successively to Ỹ0, to Ỹ1 and, finally, to Y1.

Let us give the construction of Y γ,α,β . Let γ ∈ R \ {0}. The ground state for
u = γ is the function

ψ1,γ(t, x) := ϕ1,γ(x)e−iλ1,γt,

where λ1,γ is the first eigenvalue and ϕ1,γ the associated normalized eigenvector of
the operator Aγ defined on

D(Aγ) := H2 ∩H1
0 (I; C)

by
Aγϕ := −ϕ′′ − γxϕ.

When α, β ∈ R, the function

Y γ,α,β(t) := (ψ1,γ(t, ·), α+ γt, β + αt+ γt2/2)

solves (9.1)-(9.2)-(9.3) with u = γ. We define T := 8/π, T ∗ := 2T and the space

H7
(γ)(I; C) := {ϕ ∈ H7(I; C);Anγϕ exists and is in H1

0 (I; C) for n = 0, 1, 2, 3}.

Then one has the following theorem.

Theorem 9.13 ([43, Theorem 8]). There exists γ0 > 0 such that, for every γ ∈
(0, γ0), there exists δ = δ(γ) > 0, such that, for every (ψ0, S0, D0), (ψ1, S1, D1) ∈
[S ∩H7

(γ)(I; C)]× R× R and for every (α, β) ∈ R2) with

‖ψ0 − ψ1,γ(0)‖H7(I;C) + |S0 − α|+ |D0 − β| < δ,

‖ψ1 − ψ1,γ(T ∗)‖H7(I;C) + |S1 − α− γT ∗|+ |D1 − β − αT ∗ − γT ∗2/2| < δ,
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for some real constants α, β, there exists v ∈ H1
0 ((0, T ∗),R) such that the unique

solution

(Ψ, S,D) ∈ (C0([0, T ∗];H3(I; C))∩C1([0, T ∗];H1
0 (I; C)))×C1([0, T ∗])×C0([0, T ∗])

of (9.1)-(9.2)-(9.3) on [0, T ∗], with control u := γ + v, such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

satisfies
(ψ(T ∗), S(T ∗), D(T ∗)) = (ψ1, S1, D1).

Let us explain the main ingredients (and main difficulties) of the proof of this
theorem. The linearized control system around (Y γ,α,β , u = γ) is

(Σlγ)


Ψt = iΨxx + iγxΨ + iwxψ1,γ , (t, x) ∈ (0, T )× I,
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ),
ṡ = w,

ḋ = s.

It is a control system where, at time t,
- The state is (Ψ(t, ·), s(t), d(t)) ∈ L2(I; C) with Ψ(t, ·) ∈ TS(ψ1,γ(t, ·)),
- The control is w(t) ∈ R.

Let us study the controllability of the linear control system (Σlγ). Let us
recall (see page 95) that the space L2(I; C) has a complete orthonormal system
(ϕk,γ)k∈N\{0} of eigenfunctions for the operator Aγ . One has

Aγϕk,γ = λk,γϕk,γ ,

where (λk,γ)k∈N\{0} is an increasing sequence of positive real numbers. Let

bk,γ := 〈ϕk,γ , xϕ1,γ〉.
By Proposition 2.90 on page 98 (see also [40, Proposition 1, Section 3.1] or [40,
Proposition 41, page 937-938]), for γ small enough and different from zero, bk,γ is
different from zero for every k ∈ N \ {0} and, roughly speaking, behaves like 1/k3

when k → +∞. Let us first give a negative result showing that the linear control
system (Σlγ) is not controllable (in contrast to the case where one does not care
about s and d; see Theorem 2.87 on page 96).

Proposition 9.14. Let T > 0 and (Ψ, s, d) be a trajectory of (Σlγ) on [0, T ].
Then, for every t ∈ [0, T ], we have

(9.76) s(t) = s(0) +
1

ib1,γ

(
〈Ψ(t), ϕ1,γ〉eiλ1,γt − 〈Ψ(0), ϕ1,γ〉

)
.

Thus, the control system (Σlγ) is not controllable.

Proof of Proposition 9.14. Let x1(t) := 〈Ψ(t), ϕ1,γ〉. We have

ẋ1(t) = 〈∂Ψ
∂t

(t), ϕ1,γ〉 = 〈−iAγΨ(t) + iw(t)xψ1,γ(t, ·), ϕ1,γ〉,

which leads to

x1(t) =
(
x1(0) + ib1,γ

∫ t

0

w(τ)dτ
)
e−iλ1,γt.

We get (9.76) by using

s(t) = s(0) +
∫ t

0

w(τ)dτ.
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Let T > 0, Ψ0 ∈ TS(ψ1,γ(0)), Ψ1 ∈ TS(ψ1,γ(T )), s0, s1 ∈ R. A necessary condition
for the existence of a trajectory of (Σlγ) such that Ψ(0) = Ψ0, s(0) = s0, Ψ(T ) = Ψ1,
s(T ) = s1 is

s1 − s0 =
1

ib1,γ

(
〈Ψ1, ϕ1,γ〉eiλ1,γT − 〈Ψ0, ϕ1,γ〉

)
.(9.77)

This equality does not hold for an arbitrary choice of Ψ0, Ψ1, s0, s1. Thus (Σlγ) is
not controllable. This concludes the proof of Proposition 9.14.

Our next proposition shows that (9.77) is in fact the only obstruction to con-
trollability for the linear control system (Σlγ).

Proposition 9.15. Let T > 0, (Ψ0, s0, d0), (Ψ1, s1, d1) ∈ H3
(0)(I; C)×R×R be

such that

(9.78) <〈Ψ0, ψ1,γ(0)〉 = <〈Ψ1, ψ1,γ(T )〉 = 0,

(9.79) s1 − s0 =
i

b1,γ

(
〈Ψ0, ϕ1,γ〉 − 〈Ψ1, ϕ1,γ〉eiλ1,γT

)
.

Then there exists w ∈ L2(0, T ) such that the solution of (Σlγ) with control w and
such that (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) satisfies (Ψ(T ), s(T ), d(T )) = (Ψ1, s1, d1).

Remark 9.16. We can control Ψ and d but we cannot control s. We miss only
two (oriented) directions which are (Ψ, s, d) = (0,±1, 0).

Proof of Proposition 9.15. Let (Ψ0, s0, d0) ∈ TS(ψ1,γ(0)) × R × R and
T > 0. Let (Ψ, s, d) be a solution of (Σlγ) with (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0)
and a control w ∈ L2(0, T ). Let (Ψ1, s1, d1) ∈ TS(ψ1,γ(T )) × R × R. The equality
(Ψ(T ), s(T ), d(T )) = (Ψ1, s1, d1) is equivalent to the following moment problem on
w:

(9.80)
∫ T

0

w(t)ei(λk,γ−λ1,γ)tdt

=
i

bk,γ

(
〈Ψ0, ϕk,γ〉 − 〈Ψ1, ϕk,γ〉eiλk,γT

)
,∀k ∈ N \ {0},

∫ T

0

w(t)dt = s1 − s0,(9.81) ∫ T

0

(T − t)w(t)dt = d1 − d0 − s0T.(9.82)

The left hand sides of (9.80) and (9.81) with k = 1 are equal, the equality of
the corresponding right hand sides is guaranteed by (9.79). Under the assumption
Ψ0,Ψ1 ∈ H3

(0)(I; C), the right hand side of (9.81) defines a sequence in l2(C). Thus,
under the assumptions (9.79) and Ψ0,Ψ1 ∈ H3

(0)(I; C), the existence of a solution
w ∈ L2(0, T ) of the moment problem (9.80)-(9.81)-(9.81) can be proved using the
same theorem on moment problems as in the proof of Proposition 9.11 on page 256
(see also [40, Theorem 5]). This concludes the proof of Proposition 9.15.
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Two difficulties remain:
1. First one has to take care of the fact that the linearized control system

misses two (oriented) directions. In order to take care of this problem, one
uses again power series expansion as in Section 9.2.1.

2. As in Section 4.2.2, for the Schrödinger control system (4.85)-(4.86) (i.e.,
our control system (9.1)-(9.2)-(9.3) but without taking care about S and
D) there is a problem of loss of derivatives. One handles this problem with
a Nash-Moser iterative scheme briefly sketched in Section 4.2.2 and due to
Karine Beauchard [40].

We refer to [43] for the full details. This concludes the sketch of the proof of
Theorem 9.1 on page 248.

9.3. Proof of the nonlocal controllability in small time

In this section we give the proof of Theorem 9.8 on page 251. First, we make
some comments about this theorem.

9.3.1. Comments on and “raison d’être” of Theorem 9.8 on page 251.
Since we are looking for a local statement, it seems natural to first look at the case
where one replaces the control system (9.1)-(9.2)-(9.3) with its linear approximation
along the trajectory ((ψ1, 0, 0), 0). This linear approximation is the control system

ψt = iψxx + iuxψ1, (t, x) ∈ (0, T )× I,(9.83)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(9.84)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ).(9.85)

For this control system, the control at time t is u(t) ∈ R and the state is ψ(t, ·) ∈
L2(I; C), with now ∫

I

(ψ(t, x)ψ̄1(t, x) + ψ̄(t, x)ψ1(t, x))dx = 2.(9.86)

However, it has been proved by Pierre Rouchon in [417] that Theorem 9.8 does
not hold for the linear control system (9.83)-(9.84)-(9.85). More precisely, Pierre
Rouchon proves in [417] the following theorem.

Theorem 9.17. Let T > 0. Then there exists C > 0 such that, for every
D̄ ∈ R, there exists u ∈ L∞(0, T ) such that the solution

(ψ, S,D) ∈ C0([0, T ];H1
0 (I; C))× C0([0, T ]; R)× C1([0, T ]; R)

of the Cauchy problem

ψt = iψxx + iuxψ1, (t, x) ∈ (0, T )× I,(9.87)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(9.88)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(9.89)

ψ(0, x) = ψ1(0, x), x ∈ I,(9.90)

S(0) = 0, D(0) = 0,(9.91)

satisfies

ψ(T, x) = ψ1(T, x), x ∈ I,(9.92)

S(T ) = 0, D(T ) = D̄.(9.93)
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Furthermore, u satisfies
‖u‖L∞(0,T ) 6 C|D̄|.

Let us point out that it is also proved in [417] that the linear control system
(9.83)-(9.84)-(9.85) is not controllable on [0, T ], whatever T > 0 is. But, by The-
orem 9.1 on page 248, the nonlinear control system (9.1)-(9.2)-(9.3) is large-time
locally controllable along the trajectory ((ψ1, 0, 0), 0). More precisely, by (the proof
of) Theorem 9.1, for every ε > 0, there exist η > 0 and T > 0 such that, for every
(ψ0, S0, D0), (ψ1, S1, D1) ∈ (S ∩H7

(0)(I; C))× R× R with

‖ψ0 − ψ1(0)‖H7(I;C) + |S0|+ |D0| < η,

‖ψ1 − ψ1(T )‖H7(I;C) + |S1|+ |D1| < η,

there exists (ψ, S,D, u) such that

ψ ∈ C0([0, T ];H3
(0)(I; C)) ∩ C1([0, T ];H1

0 (I; C)),

u ∈ H1
0 (0, T ),

S ∈ C1([0, T ]), D ∈ C2([0, T ]),

(9.1), (9.2) and (9.3) hold,

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(T ), S(T ), D(T )) = (ψ1, S1, D1),

‖ψ(t)− ψ1(t)‖H3(I;C) + |S(t)|+ |D(t)|+ |u(t)| 6 ε, ∀t ∈ [0, T ].

So, in some sense, the nonlinearity helps to recover local controllability but prevents
us from doing some specific natural motions if the time T is too small; motions which
are possible for the linear control system (9.83)-(9.84)-(9.85) even if T > 0 is small.

Let us now explain why Theorem 9.8 is in fact rather natural if one looks at the
obstruction to small-time local controllability given by Theorem 3.36 on page 145
for finite-dimensional control systems. In order to deal with an equilibrium (as in
Theorem 3.36 on page 145), let θ(t, x) = eiλ1tψ(t, x). Then the control system for
θ is the following one:

θt = iθxx + iλ1θ + ixuθ, (t, x) ∈ (0, T )× I,

θ(t,−1) = θ(t, 1) = 0, t ∈ (0, T ),

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ).

At a formal level, it is an affine system similar to the control system (3.84), with

f0((θ, S,D)tr) = (iθxx + iλ1θ, 0, S)tr, f1((θ, S,D)tr) = (ixθ, 1, 0)tr.

Note that

f0((ϕ1, 0, 0)tr) = (0, 0, 0)tr.

Hence (3.83) holds (at (ϕ1, 0, 0)tr instead of 0). Formally again (see in particular
(3.19)), we get

[f1, f0]((θ, S,D)tr) = (−2θx, 0, 1)tr,(9.94)

ad2
f1f0((θ, S,D)tr) = (−2iθ, 0, 0)tr.(9.95)

In particular,

ad2
f1f0((ϕ1, 0, 0)tr) = (−2iϕ1, 0, 0)tr.(9.96)
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(For the definition of adpf1f0, p ∈ N, see Definition 3.11 on page 130.) If one wants to
check the assumption of Theorem 3.36 on page 145, one needs to compute adkf0f1.
Unfortunately, these iterated Lie brackets are not well defined; even at a formal
level, Dirac masses appear on the boundary of I if k > 2 (see also (5.5)). However,
at least in finite dimension, Span{adkf0f1(x0); k ∈ N} is the linear space of states
which can be reached from the state 0 for the linearized control system around
the equilibrium x0. Let us point out that the linearized control system around the
equilibrium ((ϕ1, 0, 0)tr, 0) is the control system

Θt = iΘxx + iλ1Θ + ixuϕ1, (t, x) ∈ (0, T )× I,(9.97)

Θ(t,−1) = Θ(t, 1) = 0, t ∈ (0, T ),(9.98)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(9.99)

where, at time t ∈ [0, T ], the state is (Θ(t, ·), S,D) ∈ H1
0 (I; C) × R × R with∫

I
(Θ(t, x)+Θ̄(t, x))ϕ1(x)dx = 0 and the control is u(t) ∈ R. For this linear control

system, by symmetry, for every u ∈ L2(0, T ), the solution Θ ∈ C0([0, T ];H1
0 (I; C))

of (9.97)-(9.98)-(9.99) such that Θ(0, ·) = 0 satisfies

Θ(t,−x) = −Θ(t, x), (t, x) ∈ (0, T )× I.

(In fact, using moments method as in the proof of Proposition 9.11 on page 256
and as in the proof of Proposition 9.15 on page 262, it is not hard to check that, at
least if one does not take care about regularity problems, the set of (θ, S,D)tr such
that the linear control system (9.97)-(9.98)-(9.99) can be steered from (0, 0, 0)tr to
(θ, S,D)tr is the set of all the (θ, S,D)tr’s such that θ is odd.) Hence, still at a
formal level,

Span{adkf0f1((ϕ1, 0, 0)tr); k ∈ N} ⊂ {(ϕ, S,D)tr; ϕ is odd, S ∈ R, D ∈ R},

which, together with (9.95), implies that

ad2
f1f0((ϕ1, 0, 0)tr) 6∈ Span{adkf0f1((ϕ1, 0, 0)tr); k ∈ N},

which, by Theorem 3.36 on page 145 for k = 1, motivates the uncontrollability
result stated in Theorem 9.8.

However, the previous motivation is purely formal. Let us try to follow the
proof of Theorem 3.36 sketched above (see in particular page 145). One first needs
to choose a suitable φ : (H1

0 (I; C) ∩ S)× R× R → R. This φ must be such that

φ(ϕ1, 0, 0) = 0,(9.100)

φ′(ϕ1, 0, 0)(θ, 0, 0) = 0, ∀θ ∈ H1
0 (I; C) such that θ(−x) = −θ(x), ∀x ∈ I,(9.101)

φ′(ϕ1, 0, 0)(2iϕ1, 0, 0) = 1,(9.102)

φ′(θ, S,D)(ixθ, 1, 0) = 0,∀(θ, S,D) ∈ (H1
0 (I; C) ∩ S)× R× R(9.103)

close enough to (ϕ1, 0, 0).

There are many φ’s which satisfy (9.100), (9.101), (9.102) and (9.103). The simplest
one seems to be

φ(θ, S,D) := − 1
4i

(θ(0)− θ̄(0)).(9.104)

But if one takes such a φ, it seems that some problems appear in order to get
(3.108). These problems come from the fact that the norms Hk(I; C), k ∈ N are
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not equivalent. We will choose another φ (φ is one half of the real part of V , where
V is defined by (9.116)). This φ satisfies (9.100), (9.101) and (9.102), but does not
satisfy (9.103).

9.3.2. Proof of Theorem 9.8. Let T > 0 be such that (9.41) holds. Let
ε ∈ (0, 1]. Let u ∈ L2((0, T ); R) be such that

|u(t)| < ε, t ∈ (0, T ).(9.105)

Let (ψ, S,D) ∈ C0([0, T ];H1
0 (I; C))× C0([0, T ])× C1([0, T ]) be the solution of the

Cauchy problem

ψt = iψxx + iu(t)xψ, (t, x) ∈ (0, T )× I,(9.106)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(9.107)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(9.108)

ψ(0, x) = ψ1(0, x), x ∈ I,(9.109)

S(0) = 0, D(0) = 0.(9.110)

(Let us recall that ψ1 is defined in (9.4) and (9.7).) We assume that

S(T ) = 0.(9.111)

Let θ ∈ C0([0, T ];H1
0 (I; C)) be defined by

θ(t, x) := eiλ1tψ(t, x), (t, x) ∈ (0, T )× I.(9.112)

From (9.4), (9.7), (9.106), (9.107), (9.109) and (9.112), we have

θt = iθxx + iλ1θ + iuxθ, (t, x) ∈ (0, T )× I,(9.113)

θ(t,−1) = θ(t, 1) = 0, t ∈ (0, T ),(9.114)

θ(0, x) = ϕ1(x), x ∈ I.(9.115)

Let V ∈ C0([0, T ]; C) be defined by

V (t) := −i+ i

∫
I

θ(t, x)ϕ1(x)dx, t ∈ [0, T ].(9.116)

From (9.7), (9.115) and (9.116), we have

V (0) = 0.(9.117)

From (9.7), (9.113), (9.114) and (9.116), we get, using integrations by parts,

(9.118)
V̇ = −

∫
I

(θxx + λ1θ + uxθ)ϕ1dx

= −u
∫
I

θxϕ1dx.

Let V1 ∈ C0([0, T ]; C) be defined by

V1(t) := −
∫
I

θ(t, x)xϕ1(x)dx, t ∈ [0, T ].(9.119)
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From (9.7), (9.113), (9.114) and (9.116), we get, using integrations by parts,

(9.120)

V̇1 = −i
∫
I

(θxx + λ1θ + uxθ)xϕ1dx

= −i
∫
I

θ((xϕ1)xx + λ1xϕ1)dx− iu

∫
I

x2θϕ1dx

= −2i
∫
I

θϕ1xdx− iu

∫
I

θx2ϕ1dx.

From (9.108), (9.110), (9.111), (9.117), (9.118), (9.119), (9.120) and using integra-
tions by parts, one gets

V (T ) =
∫ T

0

S(t)V20(t)dt+
∫ T

0

S(t)2V21(t)dt,(9.121)

where V20 ∈ C0([0, T ]; C) and V21 ∈ L∞((0, T ); C) are defined by

V20(t) := 2i
∫
I

θ(t, x)ϕ1x(x)dx, t ∈ [0, T ],(9.122)

V21(t) := − i
2

∫
I

θt(t, x)x2ϕ1(x)dx, t ∈ [0, T ].(9.123)

Let us first estimate V20(t). Let f ∈ C0([0, T ];H1
0 (I; C)) be defined by

f(t, x) := ϕ1(x)eixS(t), (t, x) ∈ [0, T ]× I.(9.124)

Let g ∈ C0([0, T ];L2(I; C)) be the solution of the Cauchy problem

gt = igxx + iλ1g − 2S(t)ϕ1x, (t, x) ∈ (0, T )× I,(9.125)

g(t,−1) = g(t, 1) = 0, t ∈ (0, T ),(9.126)

g(0, x) = 0, x ∈ I.(9.127)

Finally, let r ∈ C0([0, T ];L2(I; C)) be defined by

(9.128) r(t, x) := θ(t, x)− f(t, x)− g(t, x), (t, x) ∈ [0, T ]× I.

From (9.7), (9.108), (9.110), (9.113), (9.114), (9.115), (9.124), (9.125) (9.126),
(9.127) and (9.128), we get that

rt =irxx + iλ1r + iuxr − iS2ϕ1e
ixS(9.129)

+ 2Sϕ1x(1− eixS) + iuxg, (t, x) ∈ (0, T )× I,

r(t,−1) = r(t, 1) = 0, t ∈ (0, T ),(9.130)

r(0, x) = 0, x ∈ I.(9.131)

From (9.7), (9.125), (9.126) and (9.127), we have

‖g(t, ·)‖L2(I;C) 6 2‖ϕ1x‖L2(I)

∫ t

0

|S(τ)|dτ = π

∫ t

0

|S(τ)|dτ.(9.132)

From (9.105), (9.108), (9.110), (9.129), (9.130), (9.131) and (9.132), we get

(9.133) ‖r(t, ·)‖L2(I;C) 6
∫ t

0

S2(τ) + 2S2(τ)‖ϕ1x‖L2(I) + |u(τ)|‖g(τ, ·)‖L2(I;C)dτ

6 Cε‖S‖L2(0,T ), t ∈ [0, T ].
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In (9.133) and in the following, C denotes various positive constants which may
vary from line to line but are independent of T > 0 satisfying (9.41), of t ∈ [0, T ]
and of u ∈ L2(0, T ) satisfying (9.105).

From (9.105), (9.108) and (9.124), we get∣∣∣∣∫
I

f(t, x)ϕ1x(x)dx+ (iS(t)/2)
∣∣∣∣ 6 Cε|S(t)|, t ∈ [0, T ].(9.134)

Therefore, using (9.122), (9.132), (9.133) and (9.134), we have

|V20(t)− S(t)| 62π‖ϕ1x‖L2(I)

∫ t

0

|S(τ)|dτ(9.135)

+ Cε(‖S‖L2(0,T ) + |S(t)|), t ∈ [0, T ].

Let us now estimate V21(t). From (9.7), (9.113), (9.123) and using integrations
by parts, we get

(9.136) 2V21 =
∫
I

(θ(2ϕ1 + 4xϕ1x) + uθx3ϕ1)dx.

From (9.105), (9.124), (9.128), (9.132) and (9.133), we get

‖θ(t, ·)− ϕ1‖L2(I;C) 6 Cε, t ∈ [0, T ].(9.137)

Using (9.7), one easily checks that∫
I

ϕ1(2ϕ1 + 4xϕ1x)dx = 0,(9.138)

which, together with (9.105), (9.136) and (9.137), leads to

|V21(t)| 6 Cε, t ∈ [0, T ].(9.139)

From (9.121), (9.135) and (9.139), one gets

|V (T )− ‖S‖2L2(0,T )| 6 π‖ϕ1x‖L2(I)

(∫ T

0

|S(t)|dt

)2

+ Cε‖S‖2L2(0,T )(9.140)

6

(
π2

2
T + Cε

)
‖S‖2L2(0,T ).

(Note that (9.140) is similar to (3.108).) Since

(V (T ) 6= 0) ⇒ (θ(T, ·) 6= ϕ1) ⇒ (ψ(T, ·) 6= ψ1(T, ·)),
this concludes the proof of Theorem 9.8.

Let us end this section with two open problems and a remark.
Looking at our result (Theorem 6.24 on page 205) on the the 1-D tank control

system (see Section 6.3), one may state the following open problem.

Open Problem 9.18. Is it possible to remove assumption (9.41) in Theorem
9.8?

Note that Theorem 6.24 on page 205 tells us that Open Problem 9.18 adapted
to the 1-D tank control system has a negative answer. Note, however, that, for
a natural adaptation to the Euler equations of incompressible fluids, the answer
to Open problem 9.18 is in general positive, at least for strong enough topologies.
More precisely, with the notations of Section 6.2.1, even with Γ0 = ∂Ω but with
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Ω 6⊂ Ω0, given T > 0 and k ∈ N \ {0}, there exists ε > 0 such that, for every
η > 0, there exists y0 ∈ Ck(Ω) vanishing in a neighborhood of ∂Ω satisfying the
divergence free condition (6.27) as well as ‖y0‖Ck(Ω) 6 η such that there is no
trajectory (y, p) ∈ C1([0, T ]× Ω) of the Euler control system (6.24) satisfying

y(0, ·) = y0, y(T, ·) = 0,(9.141)

‖y(t, ·)‖C1(Ω) 6 ε, ∀t ∈ [0, T ].(9.142)

This can be easily checked by looking at the evolution of curl y(t, ·) during the
interval of time [0, T ].

Looking at Theorem 9.1 on page 248 and Theorem 9.8 on page 251, one may
also ask if one has small-time local controllability with large controls, i.e.,

Open Problem 9.19. Let T > 0. Does there exist η > 0 such that, for every
(ψ0, S0, D0), (ψ1, S1, D1) ∈ [S ∩H7

(0)(I; C)]× R× R with

‖ψ0 − ψ1(0)‖H7 + |S0|+ |D0| < η,

‖ψ1 − ψ1(T )‖H7 + |S1|+ |D1| < η,

there exists (ψ, S,D, u) such that

ψ ∈ C0([0, T ];H2 ∩H1
0 (I; C)) ∩ C1([0, T ];L2(I; C)),

u ∈ H1
0 (0, T ),

S ∈ C1([0, T ]), D ∈ C2([0, T ]),

(9.1), (9.2) and (9.3) hold,

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(T ), S(T ), D(T )) = (ψ1, S1, D1)?

Remark 9.20. Let us consider the following subsystem of our control system
(9.1)-(9.2)-(9.3):

ψt(t, x) = iψxx(t, x) + iu(t)xψ(t, x), (t, x) ∈ (0, T )× I,(9.143)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ).(9.144)

For this new control system, at time t, the state is ψ(t, ·) with
∫
I
|ψ(t, x)|2dx = 1 and

the control is u(t) ∈ R. Then (ψ, u) := (ψ1, 0) is a trajectory of this control system.
Our proof of Theorem 9.8 can be adapted to prove that the control system (9.143)
is not small-time locally controllable along this trajectory. Indeed, if S(T ) 6= 0,
then (9.121) just has to be replaced by

(9.145) V (T ) =
S(T )

2

(
−2
∫
I

θ(T, x)xϕ1(x)dx+ iS(T )
∫
I

θ(T, x)x2ϕ1(x)dx
)

+
∫ T

0

S(t)V20(t)dt+
∫ T

0

S(t)2V21(t)dt.

Note that ∫
I

ϕ1(x)xϕ1(x)dx = 0,

<
(
i

∫
I

ϕ1(x)x2ϕ1(x)dx
)

= 0.
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Hence, in every neighborhood of ϕ1 for the H7-topology (for example) there exists
θ1 in this neighborhood such that∫

I

θ1(x)xϕ1(x)dx = 0,(9.146)

<
(
i

∫
I

θ1(x)x2ϕ1(x)dx
)

= 0,(9.147)

θ1 ∈ S ∩H7
(0),(9.148)

<
(
−i+ i

∫
I

θ1(x)ϕ1(x)dx
)
< 0.(9.149)

Moreover, it follows from our proof of Theorem 9.8 that, if (9.41) holds, then
there exists ε > 0 such that, for every θ1 ∈ L2(I; C) satisfying (9.146), (9.147)
and (9.149), there is no u ∈ L2(0, T ), satisfying (9.105), such that the solution
ψ ∈ C0([0, T ];L2(I; C)) of (9.106), (9.107) and (9.109) satisfies ψ(T, ·) = e−iλ1T θ1.



Part 3

Stabilization



The two previous parts dealt with the controllability problem, which asks if
one can move from a first given state to a second given state. The control that one
gets is an open-loop control: it depends on time and on the two given states, it
does not depend on the state during the evolution of the control system. In many
practical situations one prefers closed-loop controls, i.e., controls which do not
depend on the initial state but depend, at time t, on the state x at this time which
(asymptotically) stabilizes the point one wants to reach. Usually such closed-loop
controls (or feedback laws) have the advantage of being more robust to disturbances.
The main issue of this part is the question of whether or not a controllable system
can be (asymptotically) stabilized.

This part is divided into four chapters which we will briefly describe.

Chapter 10. This chapter is mainly devoted to the stabilization of linear control
systems in finite dimension. We first start by recalling the classical pole-shifting
theorem (Theorem 10.1 on page 275). A consequence of this theorem is that every
controllable linear system can be stabilized by means of linear feedback laws. This
implies that, if the linearized controllable system at an equilibrium of a nonlinear
control system is controllable, then this equilibrium can be stabilized by smooth
feedback laws. We give an application to the stabilization of the attitude of a rigid
spacecraft (Example 10.15 on page 282).

Chapter 11. The subject of this chapter is the stabilization of finite-dimensional
nonlinear control systems, mainly in the case where the nonlinearity plays a key
role. In particular, it deals with the case where the linearized control system around
the equilibrium that one wants to stabilize is no longer controllable. Then there
are obstructions to stabilizability by smooth feedback laws even for controllable
systems. We recall some of these obstructions (Theorem 11.1 on page 289 and
Theorem 11.6 on page 292). We give an application to the stabilization of the
attitude of an underactuated rigid spacecraft (Example 11.3 on page 289).

There are two ways to enlarge the class of feedback laws in order to recover
stabilizability properties. The first one is the use of discontinuous feedback laws.
The second one is the use of time-varying feedback laws. We give only comments
and references on the first method, but we give details on the second method. We
also show the interest of time-varying feedback laws for output stabilization. In
this case the feedback depends only on the output, which is only part of the state.

Chapter 12. In this chapter, we present important tools to construct explicit
stabilizing feedback laws, namely:

1. control Lyapunov function (Section 12.1),
2. damping (Section 12.2),
3. homogeneity (Section 12.3),
4. averaging (Section 12.4),
5. backstepping (Section 12.5),
6. forwarding (Section 12.6),
7. transverse functions (Section 12.7).

These methods are illustrated on various control systems, in particular the stabi-
lization of the attitude of an underactuated rigid spacecraft and to satellite orbit
transfer by means of electric propulsion.



Chapter 13. In this chapter, we give examples of how some tools introduced
for the case of finite-dimensional control systems can be used for stabilizing some
partial differential equations. We treat four examples:

1. rapid exponential stabilization by means of Gramians, for linear time-
reversible partial differential equations,

2. stabilization of a rotating body-beam without damping,
3. stabilization of the Euler equations of incompressible fluids,
4. stabilization of hyperbolic systems.





CHAPTER 10

Linear control systems in finite dimension and
applications to nonlinear control systems

This chapter is mainly concerned with the stabilization of finite-dimensional lin-
ear control systems. In Section 10.1, we recall and prove the classical pole-shifting
theorem (Theorem 10.1). A consequence of this theorem is that every controllable
linear system can be stabilized by means of linear feedback laws (Corollary 10.12
on page 281). As we will see in Section 10.2, this also implies that, if the linearized
control system at an equilibrium of a nonlinear control system is controllable, then
this equilibrium can be stabilized by smooth feedback laws (Theorem 10.14 on
page 281). We give an application to the stabilization of the attitude of a rigid
spacecraft (Example 10.15 on page 282). Finally, in Section 10.3, we present a
method to construct stabilizing feedback laws from the Gramian for linear control
systems. This method will turn out to be quite useful for the stabilization of linear
partial differential equations (see Section 13.1).

10.1. Pole-shifting theorem

In this section we consider the linear control system

ẋ = Ax+Bu,(10.1)

where the state is x ∈ Rn, the control is u ∈ Rm, and where A ∈ L(Rn; Rn) '
Mn,n(R) and B ∈ L(Rm; Rn) 'Mn,m(R) are given.

Let us denote by Pn the set of polynomials of degree n in z such that the
coefficients are real numbers and such that the coefficient of zn is 1. For a matrix
M ∈Mn,n(C), let us recall that PM denotes the characteristic polynomial of M :

PM (z) := det (zI −M).

Then one has the classical pole-shifting theorem (see, e.g., [290, Theorem 3.1, page
198] or [458, Theorem 13, page 186]).

Theorem 10.1. Let us assume that the linear control system (10.1) is control-
lable. Then

{PA+BK ; K ∈Mm,n(R)} = Pn.

Theorem 10.1 is due to Murray Wonham [504]. See [458, Section 5.10, page
256] for historical comments.

Proof of Theorem 10.1. Let us first treat the case where the control is
scalar, i.e., the case where m = 1. The starting point is the following lemma, which
has its own interest.

Lemma 10.2 (Phase variable canonical form or controller form). Let us assume
that m = 1 and that the linear control system (10.1) is controllable. Let us denote

275
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by α1, . . . , αn the n real numbers such that

PA(z) = zn −
n−1∑
i=0

αi+1z
i.(10.2)

Let

Ã :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
α1 α2 . . . αn−1 αn

 ∈Mn,n(R), B̃ :=



0
...
...
0
1

 ∈Mn,1(R).

(The matrix Ã is called a companion matrix.) Then there exists an invertible matrix
S ∈Mn,n(R) such that

S−1AS = Ã, S−1B = B̃.(10.3)

Proof of Lemma 10.2. Let (f1, . . . , fn) ∈ (Rn)n be defined by

(10.4)

fn := B,
fn−1 := Afn − αnB,
fn−2 := Afn−1 − αn−1B = A2B − αnAB − αn−1B,

...
f1 := Af2 − α2B = An−1B − αnA

n−2B
− αn−1A

n−3B − . . .− α3AB − α2B.

Then

(10.5)

Afn = fn−1 + αnfn,
Afn−1 = fn−2 + αn−1fn,
Afn−2 = fn−3 + αn−2fn,

...
Af1 = AnB − αnA

n−1B − . . .− α2AB = α1B.

The last equality of (10.5) comes from the Cayley-Hamilton theorem and (10.2).
By (10.4), an easy induction argument on k shows that

(10.6) AkB ∈ Span {fj ; j ∈ {n− k, . . . , n}} , ∀k ∈ {0, . . . , n− 1}.

In particular,

(10.7) Span
{
AkB; k ∈ {0, . . . , n− 1}

}
⊂ Span {fj ; j ∈ {1, . . . , n}} .

Since the control system ẋ = Ax + Bu is controllable, the left hand side of (10.7)
is, by Theorem 1.16 on page 9, equal to all of Rn. Hence, by (10.7), (f1, . . . , fn) is
a basis of Rn. We define S ∈Mn,n(R) by requiring that

Sei := fi, i ∈ {1, . . . , n},

where (e1, . . . , en) is the canonical basis of Rn. Then S is invertible and we have
(10.3). This concludes the proof of Lemma 10.2.
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Let us go back to the proof of Theorem 10.1 when m = 1. Let P ∈ Pn. Let us
denote by β1, . . . , βn the n real numbers such that

P (z) = zn −
n−1∑
i=0

βi+1z
i.(10.8)

Let us also denote by α1, . . . , αn the n real numbers such that

PA(z) = zn −
n−1∑
i=0

αi+1z
i.(10.9)

Let
K̃ := (β1 − α1, . . . , βn − αn) ∈M1,n(R).

We have

Ã+ B̃K̃ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
β1 β2 . . . βn−1 βn

 .

Then, with an easy induction argument on n, one gets

PÃ+B̃K̃(z) = zn −
n−1∑
i=0

βi+1z
i = P (z).

Therefore, if we let K := K̃S−1,

PA+BK = PS−1(A+BK)S = PÃ+B̃K̃ = P,

which concludes the proof of Theorem 10.1 if m = 1.

Let us now reduce the case m > 1 to the case m = 1. The key lemma for that
is the following one due to Michael Heymann [232].

Lemma 10.3. Let us assume that the control system ẋ = Ax+Bu is controllable.
Then there exist f ∈Mm,1(R) and C ∈Mm,n(R) such that the control system

ẋ = (A+BC)x+Bfu, x ∈ Rn, u ∈ R,

is controllable.

Postponing the proof of Lemma 10.3, let us conclude the proof of Theorem 10.1.
Let P ∈ Pn. Let f ∈Mm,1(R) and C ∈Mm,n(R) be as in Lemma 10.3. Applying
Theorem 10.1 to the single-input controllable control system ẋ = (A+BC)x+Bfu,
there exists K1 ∈M1,n(R) such that

PA+BC+BfK1 = P.

Hence, if K := C + fK1, then

PA+BK = P.

This concludes the proof of Theorem 10.1.
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Proof of Lemma 10.3. We follow Matheus Hautus [218]. Let f ∈Mm,1(R)
be such that

Bf 6= 0.(10.10)

Such an f exists. Indeed, if this is not the case, B = 0 and the control system
ẋ = Ax + Bu is not controllable, in contradiction to the assumptions made in
Lemma 10.3. (Note that (10.10) is the only property of f that will be used.) We
now construct by induction a sequence (xi)i∈{1,...,k} in the following way. Let

(10.11) x1 := Bf.

Let us assume that (xi)i∈{1,...,j} is constructed. If

Axj +BRm ⊂ Span {x1, . . . , xj} ,(10.12)

we take k := j. If (10.12) does not hold, we choose xj+1 in such a way that

xj+1 6∈ Span {x1, . . . , xj} ,(10.13)

xj+1 ∈ Axj +BRm.(10.14)

(Of course xj+1 is not unique, but, since (10.12) does not hold, there exists such
an xj+1.) Clearly (see (10.10), (10.11) and (10.13)),

the vectors x1, . . . , xk are independent and k 6 n.(10.15)

Let

E := Span {x1, . . . , xk} ⊂ Rn.(10.16)

Let us check that

E = Rn and thus k = n.(10.17)

Since “xk+1 does not exist”, we have, by (10.12),

Axk +Bu ∈ E, ∀u ∈ Rm.(10.18)

Taking u = 0 in (10.18), we get Axk ∈ E, which, using (10.18) once more, gives us

BRm ⊂ E.(10.19)

Note also that, by (10.14),

Axj ∈ xj+1 +BRm, ∀j ∈ {1, . . . , k − 1},

which, together with (10.16), (10.18) and (10.19), shows that

AE ⊂ E.(10.20)

From (10.19) and (10.20), we get

Span {AiBu; u ∈ Rm, i ∈ {0, . . . , n− 1}} ⊂ E.(10.21)

But, using the Kalman rank condition (Theorem 1.16 on page 9), the controllability
of ẋ = Ax+Bu implies that

Span {AiBu; u ∈ Rm, i ∈ {0, . . . , n− 1}} = Rn,

which, together with (10.15) and (10.21), implies (10.17).
By (10.14), for every j ∈ {1, . . . , n− 1}, there exists uj ∈ Rm such that

xj+1 = Axj +Buj .(10.22)
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Let C ∈Mm,n(R) be such that

Cxj = uj , ∀j ∈ {1, . . . , n− 1}.(10.23)

By (10.15) such a C exists (C is not unique since Cxn is arbitrary). We have

(A+BC)x1 = Ax1 +Bu1 = x2

and more generally, by induction on i,

(A+BC)ix1 = xi+1, ∀i ∈ {0, . . . , n− 1}.(10.24)

From the Kalman rank condition (Theorem 1.16 on page 9), (10.11), (10.16) and
(10.17), the control system ẋ = (A + BC)x + Bfu, u ∈ R is controllable. This
concludes the proof of Lemma 10.3.

Exercise 10.4. Let us assume that there exists K ∈ Mm,n(R) such that A +
BK has only eigenvalues with strictly negative real parts. Let us also assume that
there exists K̃ ∈ Mm,n(R) such that A + BK̃ has only eigenvalues with strictly
positive real parts. Prove that the linear control system (10.1) is controllable. (It
has been proved by David Russell in [425] that this property also holds for infinite-
dimensional control systems and has important applications in this framework.)

Remark 10.5. It follows from the proof of Theorem 10.1 that, if m = 1 (single-
input control) the controllability of ẋ = Ax + Bu implies that, for every P ∈
Pn, there exists one and only one K ∈ Mm,n(R) such that PA+BK = P . The
uniqueness is no longer true for m > 2.

10.2. Direct applications to the stabilization of finite-dimensional
control systems

Let us first recall the definition of asymptotic stability for a dynamical system.

Definition 10.6. Let Ω be an open subset of Rn and let xe ∈ Ω. Let X in
C0(Ω; Rn) be such that

X(xe) = 0.

One says that xe is locally asymptotically stable for ẋ = X(x) if there exists δ > 0
such that, for every ε > 0, there exists M > 0 such that

ẋ = X(x) and |x(0)− xe| < δ(10.25)

imply

|x(τ)− xe| < ε, ∀τ > M.(10.26)

If Ω = Rn and if, for every δ > 0 and for every ε > 0, there exists M > 0 such that
(10.25) implies (10.26), then one says that xe is globally asymptotically stable for
ẋ = X(x).

Throughout this chapter, and in particular in (10.25), every solution of ẋ =
X(x) is assumed to be a maximal solution of this differential equation.

Let us emphasize the fact that, since the vector field X is only continuous, the
Cauchy problem ẋ = X(x), x(t0) = x0, where t0 and x0 are given, may have many
maximal solutions.
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Remark 10.7. Jaroslav Kurzweil has shown in [289] that, even for vector fields
which are only continuous, asymptotic stability is equivalent to the existence of a
Lyapunov function of class C∞; see also [99] by Francis Clarke, Yuri Ledyaev, and
Ronald Stern.

Let us recall some classical theorems. The first one gives equivalent properties
for asymptotic stability. (In fact, one often uses these properties for the definition
of asymptotic stability instead of Definition 10.6 on the preceding page.)

Theorem 10.8. Let Ω be an open subset of Rn and let xe ∈ Ω. Let X in
C0(Ω; Rn) be such that

X(xe) = 0.

The point xe is locally asymptotically stable for ẋ = X(x) if and only if the two
following properties (i) and (ii) are satisfied:
(i) xe is a stable point for ẋ = X(x), i.e., for every ε > 0, there exists η > 0 such
that

(ẋ = X(x) and |x(0)− xe| < η) ⇒ (|x(t)− xe| < ε, ∀t > 0).

(ii) xe is an attractor for ẋ = X(x), i.e., there exists ρ > 0 such that

(ẋ = X(x) and |x(0)− xe| < ρ) ⇒ ( lim
t→+∞

x(t) = xe).

The point xe is globally asymptotically stable for ẋ = X(x) if and only if xe is a
stable point for ẋ = X(x) and

(ẋ = X(x)) ⇒ ( lim
t→+∞

x(t) = xe).

The next theorem deals with the case of linear systems.

Theorem 10.9. (See, for example, [273, Theorem 3.5, Chapter 3, page 124]
or [458, Proposition 5.5.5, Chapter 5, page 212].) Let A ∈ L(Rn; Rn). Then 0 is
locally asymptotically stable for the linear differential equation ẋ = Ax if and only
if every eigenvalue of A has a strictly negative real part.

The last theorem is a linear test which gives a sufficient condition and a neces-
sary condition for local asymptotic stability.

Theorem 10.10. (See, for example, [273, Theorem 3.7, Chapter 3, pages 130–
131].) Let Ω be an open subset of Rn and let xe ∈ Ω. Let X ∈ C1(Ω; Rn) be
such that X(xe) = 0. If every eigenvalue of X ′(xe) has a strictly negative real
part, then xe ∈ Rn is locally asymptotically stable for ẋ = X(x). If X ′(xe) has an
eigenvalue with a strictly positive real part, then xe is not stable for ẋ = X(x) (see
(i) of Theorem 10.8 for the definition of stable point) and therefore xe is not locally
asymptotically stable for ẋ = X(x).

Let us now go back to our general nonlinear control system

ẋ = f(x, u),(C)

where the state is x ∈ Rn, the control is u ∈ Rm and the function f is of class C1

in a neighborhood of (0, 0) ∈ Rn × Rm and such that f(0, 0) = 0. We now define
“asymptotic stabilizability by means of a continuous stationary feedback law”.
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Definition 10.11. The control system (C) is locally (resp. globally) asymp-
totically stabilizable by means of continuous stationary feedback laws if there exists
u ∈ C0(Rn; Rm), satisfying

u(0) = 0,

such that 0 ∈ Rn is a locally (resp. globally) asymptotically stable point, for the
dynamical system

ẋ = f(x, u(x)).(10.27)

(The dynamical system (10.27) is called a closed-loop system.)

Note that we should in fact say, “The control system (C) is locally (resp. glob-
ally) asymptotically stabilizable by means of continuous stationary feedback laws at
the equilibrium (xe, ue) := (0, 0) ∈ Rn × Rm”. But, without loss of generality,
performing a translation on the state and the control, we may assume that the
equilibrium of interest is (xe, ue) := (0, 0) ∈ Rn × Rm. Hence we omit “at the
equilibrium”. In contrast, we mention “stationary” since later on (in Section 11.2)
we will consider time-varying feedback laws.

As a direct consequence of the pole-shifting theorem (Theorem 10.1) and of
Theorem 10.9, we have the following corollary.

Corollary 10.12. Let us assume that the linear control system (10.1) is
controllable. Then there exists a linear feedback law x ∈ Rn 7→ Kx ∈ Rm,
K ∈Mm,n(R), such that 0 ∈ Rn is globally asymptotically stable for the closed-loop
system ẋ = Ax + BKx. In particular, every linear controllable system (10.1) is
globally asymptotically stabilizable by means of continuous stationary feedback laws.

Remark 10.13. In practical situations, the choice of K is crucial in order to
have good performances for the closed-loop system ẋ = Ax+BKx. In general, one
desires to have robust feedback laws for uncertain linear control systems. There are
many tools available to deal with this problem. Besides classical Riccati approaches,
let us mention, in particular,

1. H∞ control; see, for example, the books [36] by Tamer Başar and Pierre
Bernhard, [219] by William Helton and Orlando Merino, [383] by Ian
Petersen, Valery Ugrinovskii and Andrey Savkin;

2. µ analysis; see, for example, the book [339] by Uwe Mackenroth;
3. CRONE control, due to Alain Oustaloup [379].

Let us now prove the following fundamental theorem.

Theorem 10.14. Let us assume that the linearized control system

ẋ =
∂f

∂x
(0, 0)x+

∂f

∂u
(0, 0)u(10.28)

is controllable. Then there exists K ∈Mm,n(R) such that 0 ∈ Rn is locally asymp-
totically stable for the closed-loop system ẋ = f(x,Kx). In particular, the control
system (C) is locally asymptotically stabilizable by means of continuous stationary
feedback laws.

Proof of Theorem 10.14. By the pole-shifting Theorem 10.1 on page 275
applied to the linear controllable system (10.28), there exists K ∈ Mm,n(R) such
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that

the spectrum of
∂f

∂x
(0, 0) +

∂f

∂u
(0, 0)K is equal to {−1}.(10.29)

Let X : x ∈ Rn 7→ X(x) ∈ Rn, be defined by

X(x) := f(x,Kx).

Then X(0) = 0 and, by (10.29),

the spectrum of X ′(0) is equal to {−1}.(10.30)

Theorem 10.10 and (10.30) imply that 0 ∈ Rn is locally asymptotically stable for
ẋ = X(x) = f(x,Kx). This concludes the proof of Theorem 10.14.

Example 10.15. Let us go back to the control of the attitude of a rigid spacecraft
with control torques provided by thruster jets, a control system that we have already
considered in Example 3.9 on page 128 and Example 3.35 on page 144. Hence our
control system is (3.12) with b1, . . . , bm independent. Here we take m = 3. In this
case, as we have seen in Example 3.9 on page 128, the linearized control system of
(3.12) at the equilibrium (0, 0) ∈ R6×R3 is controllable. Hence, by Theorem 10.14,
there exists K ∈ M3,6(R) such that 0 ∈ R6 is locally asymptotically stable for the
associated closed-loop system ẋ = f(x,Kx).

One can find many other applications of Theorem 10.14 to physical control
systems in various books. Let us mention in particular the following ones:

- [19] by Brigitte d’Andréa-Novel and Michel Cohen de Lara,
- [179] by Bernard Friedland.

10.3. Gramian and stabilization

The pole-shifting theorem (Theorem 10.1 on page 275) is a quite useful method
to stabilize finite-dimensional linear control systems. But for infinite-dimensional
linear control systems, it cannot be used in many situations. In this section we
present another method, which has been introduced independently by Dahlard
Lukes [336] and David Kleinman [275] to stabilize finite-dimensional linear con-
trol systems, and which can be applied to handle many infinite-dimensional linear
control systems. For applications to infinite-dimensional linear control systems, see,
in particular, the papers [450] by Marshall Slemrod, [278] by Vilmos Komornik
and [490] by José Urquiza, as well as Section 13.1.

We consider again the linear control system

ẋ = Ax+Bu,(10.31)

where the state is x ∈ Rn and the control is u ∈ Rm. Let T > 0. Throughout this
section, we assume that this linear control system is controllable on [0, T ]. Let us
recall that, as pointed in Theorem 1.16 on page 9, this property in fact does not
depend on T > 0. By Definition 1.10 on page 6, the controllability Gramian of
the linear control system (10.31) on the time interval [0, T ] is the n× n symmetric
matrix C defined by

C :=
∫ T

0

e(T−t)ABBtre(T−t)A
tr
dt.(10.32)
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This symmetric matrix is nonnegative and, in fact, by Theorem 1.11 on page 6,

C is positive definite.(10.33)

Let

CT := e−TACe−TA
tr

=
∫ T

0

e−tABBtre−tA
tr
dt.(10.34)

Clearly, CT is a symmetric matrix. By (10.33) and (10.34),

CT is positive definite.(10.35)

Let K ∈ L(Rn; Rm) be defined by

K := −BtrC−1
T .(10.36)

Then one has the following theorem due to Dahlard Lukes [336, Theorem 3.1] and
David Kleinman [275].

Theorem 10.16. There exist µ > 0 and M > 0 such that, for every (maximal)
solution of ẋ = (A+BK)x,

|x(t)| 6 Me−µt|x(0)|, ∀t > 0.(10.37)

Proof of Theorem 10.16. Since the system ẋ = (A + BK)x is linear, it
suffices to check that every (maximal) solution x : R → Rn of ẋ = (A + BK)x
satisfies

lim
t→+∞

x(t) = 0.(10.38)

Thus, let x : R → Rn be a (maximal) solution of

ẋ = (A+BK)x.(10.39)

Let V : Rn → [0,+∞) be defined by

V (z) := ztrC−1
T z, ∀z ∈ Rn.(10.40)

By (10.35),

V (z) > V (0), ∀z ∈ Rn \ {0},(10.41)

V (z) → +∞ as |z| → +∞.(10.42)

Let v : R → R be defined by

v(t) := V (x(t)), ∀t ∈ R.(10.43)

From (10.36), (10.39), (10.40) and (10.43), we have

(10.44) v̇ = −|BtrC−1
T x|2 + xtrAtrC−1

T x + xtrC−1
T Ax − xtrC−1

T BBtrC−1
T x.

From (10.34) and an integration by parts, we get

ACT = −e−TABBtre−TA
tr

+BBtr − CTA
tr.(10.45)

Multiplying (10.45) on the right and on the left by C−1
T , one gets

C−1
T A = −C−1

T e−TABBtre−TA
tr
C−1
T + C−1

T BBtrC−1
T −AtrC−1

T .(10.46)

From (10.44) and (10.46), one gets

v̇ = −|BtrC−1
T x|2 − |Btre−TA

tr
C−1
T x|2.(10.47)
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By (10.41), (10.42) and the LaSalle invariance principle (see, for example, [458,
Lemma 5.7.8, page 226]), it suffices to check that, if

v̇(t) = 0, ∀t ∈ R,(10.48)

then

x(0) = 0.(10.49)

Let us assume that (10.48) holds. Then, using (10.47),

BtrC−1
T x(t) = 0, ∀t ∈ R,(10.50)

Btre−TA
tr
C−1
T x(t) = 0, ∀t ∈ R.(10.51)

From (10.36), (10.39) and (10.50), we get

ẋ(t) = Ax(t), ∀t ∈ R.(10.52)

Differentiating (10.50) with respect to time and using (10.52), one gets

BtrC−1
T Ax(t) = 0, ∀t ∈ R.(10.53)

Using (10.46), (10.50) and (10.51), we get

C−1
T Ax(t) = −AtrC−1

T x(t), ∀t ∈ R,(10.54)

which, together with (10.53), gives

BtrAtrC−1
T x(t) = 0, ∀t ∈ R.

Then, using (10.52) and (10.54), an easy induction argument shows that

Btr(Atr)iC−1
T x(t) = 0, ∀t ∈ R, ∀i ∈ N,

and therefore

x(t)trC−1
T AiB = 0, ∀t ∈ R, ∀i ∈ {0, . . . , n− 1}.(10.55)

From (10.55) and the Kalman rank condition (Theorem 1.16 on page 9), one gets
that x(t)trC−1

T = 0 and therefore x(t) = 0, for every t ∈ R. This concludes the
proof of Theorem 10.16.

Let us now try to construct a feedback which leads to fast decay. More precisely,
let λ > 0. We want to construct a linear feedback x ∈ Rn 7→ Kλx ∈ Rm, with
Kλ ∈ L(Rn; Rm) such that there exists M > 0 such that

|x(t)| 6 Me−λt|x(0)|, ∀t ∈ [0,+∞),(10.56)

for every (maximal) solution of ẋ = (A + BKλ)x. Note that the existence of
such a linear map Kλ is a corollary of the pole-shifting theorem (Theorem 10.1 on
page 275). However, we would like to construct such a feedback without using this
theorem. The idea is the following one. Let y := eλtx. Then ẋ = Ax + Bu is
equivalent to

ẏ = (A+ λIdn)y +Bv,(10.57)

with v := ueλt. Let us consider (10.57) as a control system where the state is y ∈ Rn
and the control is v ∈ Rm. The controllability of the control system ẋ = Ax+Bu is
equivalent to the controllability of the control system ẏ = (A+ λIdn)y +Bv. This
can be seen by using the equality y = eλtx or by using the Kalman rank condition
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(see Theorem 1.16 on page 9). We apply Theorem 10.16 to the controllable control
system ẏ = (A+ λIdn)y +Bv. Let us define Kλ,T ∈Mm,n(R) by

Kλ,T := −Btr
(∫ T

0
e−t(A+λIdn)BBtre−t(A

tr+λIdn)dt
)−1

= −Btr
(∫ T

0
e−2λte−tABBtre−tA

tr
dt
)−1

.
(10.58)

Then, by Theorem 10.16, there exists M > 0 such that

|y(t)| 6 M |y(0)|, ∀t ∈ [0,+∞),(10.59)

for every (maximal) solution of the closed-loop system ẏ = (A+ λIdn + BKλ,T )y.
Now let x : [0,+∞) → Rn be a solution of the closed-loop system ẋ = (A+BKλ,T )x.
Then y : [0,+∞) → Rn defined by y(t) := eλtx(t), t ∈ [0,+∞) is a solution of the
closed-loop system ẏ = (A + λIdn + BKλ,T )y. Hence we have (10.59), which,
coming back to the x variable, gives (10.56). This ends the construction of the
desired feedback.

Note that the convergence to 0 can be better than the one expected by (10.56)
and one can take T = ∞ in (10.34); this leads to a method called the Bass method
by David Russell in [427, pages 117–118]. According to [427], Roger Bass in-
troduced this method in “Lecture notes on control and optimization presented at
NASA Langley Research Center in August 1961”. Let us explain how this method
works (and how one can prove a better convergence to 0 than the one expected by
(10.56), at least if T > 0 is large enough). For L ∈ L(Rn; Rn), let us denote by
σ(L) the set of eigenvalues of L and let

µ(L) := Max {<ζ; ζ ∈ σ(L)}.

(Let us recall that, for z ∈ C, <z denotes the real part of z.) Let λ ∈ (µ(−A),+∞).
Let Cλ,∞ ∈ L(Rn; Rn) be defined by

Cλ,∞ :=
∫ ∞

0

e−2λte−tABBtre−tA
tr
dt.(10.60)

Note that Cλ,∞ is a nonnegative symmetric matrix. Moreover,

xtrCλ,∞x > e−2 Max {0,λ}xtr

(∫ 1

0

e−tABBtre−tA
tr
dt

)
x, ∀x ∈ Rn.(10.61)

Since the control system ẋ = Ax + Bu is assumed to be controllable, by Theo-
rem 1.11 on page 6 and Remark 1.12 on page 7, there exists c > 0 such that

xtr

(∫ 1

0

e−tABBtre−tA
tr
dt

)
x > c|x|2, ∀x ∈ Rn,

which, together with (10.61), implies that the symmetric matrix Cλ,∞ is invertible.
We define Kλ,∞ ∈ L(Rn; Rm) by

Kλ,∞ := −Btr
(∫∞

0
e−t(A+λIdn)BBtre−t(A

tr+λIdn)dt
)−1

= −Btr
(∫∞

0
e−2λte−tABBtre−tA

tr
dt
)−1

= −BtrC−1
λ,∞.

(10.62)

Then one has the following proposition, proved by José Urquiza in [490].
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Proposition 10.17. Let λ ∈ (µ(−A),+∞). Then

σ(A+BKλ,∞) = {−2λ− ζ; ζ ∈ σ(A)}.(10.63)

Proof of Proposition 10.17. From (10.60) and an integration by parts

(A+ λIdn)Cλ,∞ + Cλ,∞(A+ λIdn)tr = BBtr.(10.64)

(Compare with (10.45).) Let us multiply (10.64) from the right by C−1
λ,∞. One gets

(A+ λIdn) + Cλ,∞(A+ λIdn)trC−1
λ,∞ = BBtrC−1

λ,∞.(10.65)

From (10.62) and (10.65), one gets

A+BKλ,∞ = Cλ,∞(−Atr − 2λIdn)C−1
λ,∞,(10.66)

which gives (10.63). This concludes the proof of Proposition 10.17.

As a consequence of (10.66), one has the following corollary which has been
pointed out by José Urquiza in [490] (compare with (10.56)).

Corollary 10.18. Assume that

Atr = −A.(10.67)

Let λ > 0. Then there exists M ∈ (0,+∞) such that, for every (maximal) solution
of ẋ = (A+BKλ,∞)x,

|x(t)| 6 Me−2λt|x(0)|, ∀t > 0.

Proof of Corollary 10.18. Let x : [0,+∞) → Rn be a (maximal) solution of

ẋ = (A+BKλ,∞)x.(10.68)

Let y : [0,+∞) → Rn be defined by

y(t) := C−1
λ,∞x(t), t ∈ [0,+∞).(10.69)

From (10.66), (10.68) and (10.69), one gets that

ẏ = −(Atr + 2λIdn)y.(10.70)

From (10.67) and (10.70), we have
d
dt
|y|2 = −4λ|y|2,

which implies that

|y(t)| = e−2λt|y(0)|, ∀t ∈ [0,+∞).(10.71)

From (10.69) and (10.71), one gets that

|x(t)| 6 ‖Cλ,∞‖L(Rn;Rn)‖C−1
λ,∞‖L(Rn;Rn)e

−2λt|x(0)|, ∀t ∈ [0,+∞),

which concludes the proof of Corollary 10.18.



CHAPTER 11

Stabilization of nonlinear control systems in finite
dimension

Let us recall (Corollary 10.12 on page 281) that, in finite dimension, every lin-
ear control system which is controllable can be asymptotically stabilized by means
of continuous stationary feedback laws. As we have seen in Section 10.2, this result
implies that, if the linearized control system of a given nonlinear control system is
controllable, then the control system can be asymptotically stabilized by means of
continuous stationary feedback laws; see Theorem 10.14 on page 281. A natural
question is whether every controllable nonlinear system can be asymptotically sta-
bilized by means of continuous stationary feedback laws. In 1979, Héctor Sussmann
showed that the global version of this result does not hold for nonlinear control sys-
tems: In [467], he gave an example of a nonlinear analytic control system which
is globally controllable but cannot be globally asymptotically stabilized by means
of continuous stationary feedback laws. In 1983, Roger Brockett showed that the
local version also does not hold even for analytic control systems: In [74] he gave a
necessary condition (Theorem 11.1 on page 289) for local asymptotic stabilizability
by means of continuous stationary feedback laws, which is not implied by local
controllability even for analytic control systems. For example, as pointed out in
[74], the analytic control system (also called the nonholonomic integrator)

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1,(11.1)

where the state is x = (x1, x2, x3)tr ∈ R3 and the control is u = (u1, u2)tr ∈ R2, is
locally and globally controllable (see Theorem 3.19 on page 135 and Theorem 3.18
on page 134) but does not satisfy the Brockett necessary condition (and therefore
cannot be asymptotically stabilized by means of continuous stationary feedback
laws). To overcome the problem of impossibility to stabilize many controllable
systems by means of continuous stationary feedback laws, two main strategies have
been proposed:

(i) asymptotic stabilization by means of discontinuous feedback laws,
(ii) asymptotic stabilization by means of continuous time-varying feedback

laws.

In this chapter, we mainly consider continuous time-varying feedback laws. We
only give bibliographical information on the discontinuous feedback approach in
Section 11.4. Let us just mention here that the main issue for these feedbacks is
the problem of robustness to (small) measurements disturbances (they are robust
to (small) actuators disturbances).

For continuous time-varying feedback laws, let us first point out that, due to a
converse to Lyapunov’s second theorem proved by Jaroslav Kurzweil in [289] (see
also [99]), periodic time-varying feedback laws are robust to (small) actuators and

287
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measurement disturbances. The pioneering works concerning time-varying feedback
laws are due to Eduardo Sontag and Héctor Sussmann [460], and Claude Samson
[435]. In [460], it is proved that, if the dimension of the state is 1, controllability
implies asymptotic stabilizability by means of time-varying feedback laws. In [435],
it is proved that the control system (11.1) can be asymptotically stabilized by means
of time-varying feedback laws. In Sections 11.2.1 and 11.2.2, we present results
showing that, in many cases, (local) controllability implies stabilizability by means
of time-varying feedback laws.

In many practical situations, only part of the state—called the output—is mea-
sured and therefore state feedback laws cannot be implemented; only output feed-
back laws are allowed. It is well known (see, e.g., [458, Theorem 32, page 324])
that any linear control system which is controllable and observable can be asymp-
totically stabilized by means of dynamic feedback laws. Again it is natural to ask
whether this result can be extended to the nonlinear case. In the nonlinear case,
there are many possible definitions for observability. The weakest requirement for
observability is that, given two different states, there exists a control t 7→ u(t) which
leads to maps “t 7→ output at time t” which are not identical. With this definition
of observability, the nonlinear control system

ẋ = u, y = x2,(11.2)

where the state is x ∈ R, the control u ∈ R, and the output y ∈ R, is observable.
This system is also clearly controllable and asymptotically stabilizable by means of
(stationary) feedback laws (e.g. u(x) = −x). But, see [107], this system cannot be
asymptotically stabilized by means of continuous stationary dynamic output feed-
back laws. Again, as we shall see in Section 11.3, the introduction of time-varying
feedback laws improves the situation. In particular, the control system (11.2) can
be asymptotically stabilized by means of continuous time-varying dynamic output
feedback laws. (In fact, for the control system (11.2), continuous time-varying
output feedback laws are sufficient to stabilize asymptotically the control system.)

Let us also mention that the usefulness of time-varying controls for different
goals has been pointed out by many authors. For example, by

1. V. Polotskĭı [386] for observers to avoid peaking,
2. Jan Wang [498] for decentralized linear systems,
3. Dirk Aeyels and Jacques Willems [4] for the pole-shifting problem for linear

time-invariant systems,
4. Pramod Khargonekar, Antonio Pascoal and R. Ravi [274], Bertina Ho-

Mock-Qai and Wijesuriya Dayawansa [235] for simultaneous stabilization
of a family of control systems,

5. Nicolas Chung Siong Fah [157] for Input to State Stability (ISS), a notion
introduced by Eduardo Sontag in [454] in order to take care of robustness
issues.

See also the references therein.

11.1. Obstructions to stationary feedback stabilization

As above, we continue to denote by (C) the nonlinear control system

ẋ = f(x, u),(C)
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where x ∈ Rn is the state and u ∈ Rm is the control. We again assume that

f(0, 0) = 0(11.3)

and that, unless otherwise specified, f ∈ C∞(O; Rn), where O is an open subset of
Rn × Rm containing (0, 0).

Let us start by recalling the following necessary condition for stabilizability due
to Roger Brockett [74].

Theorem 11.1. If the control system ẋ = f(x, u) can be locally asymptotically
stabilized by means of continuous stationary feedback laws, then the image by f of
every neighborhood of (0, 0) ∈ Rn × Rm is a neighborhood of 0 ∈ Rn.

Example 11.2 (This example is due to Roger Brockett [74]). Let us return to
the nonholonomic integrator

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1.(11.4)

It is a driftless control affine system where the state is (x1, x2, x3)tr ∈ R3 and
the control is (u1, u2)tr ∈ R2. As we have seen in Example 3.20 on page 135, it
follows from Theorem 3.19 on page 135 that this control system is small-time locally
controllable at the equilibrium (xe, ue) = (0, 0) ∈ R3 ×R2 (see also Example 6.3 on
page 190 for a proof based on the return method). However, for every η ∈ R \ {0},
the equation

u1 = 0, u2 = 0, x1u2 − x2u1 = η,

where the unknown are (x1, x2, u1, u2)tr ∈ R4, has no solution. Hence, the non-
holonomic integrator does not satisfy Brockett’s condition and therefore, by The-
orem 11.1, it cannot be locally asymptotically stabilized by means of continuous
stationary feedback laws.

Example 11.3. Let us go back to the control system of the attitude of a rigid
spacecraft, already considered in Example 3.9 on page 128, Example 3.35 on page 144
and Example 10.15 on page 282. One has the following cases.

1. For m = 3, the control system (3.12) satisfies Brockett’s condition. In
fact, in this case, the control system (3.12) is indeed asymptotically stabi-
lizable by means of continuous stationary feedback laws, as we have seen in
Example 10.15 on page 282 (see also [137] and [80]).

2. For m ∈ {1, 2}, the control system (3.12) does not satisfy Brockett’s condi-
tion (and so is not locally asymptotically stabilizable by means of continuous
stationary feedback laws). Indeed, if b ∈ R3 \ (Span {b1, b2}), there exists
no ((ω, η), u) such that

S(ω)ω + u1b1 + u2b2 = b,(11.5)

A(η)ω = 0.(11.6)

Indeed, (11.6) gives ω = 0, which, together with (11.5), implies that b =
u1b1 + u2b2; see also [80].

In [508], Jerzy Zabczyk observed that, from a theorem due to Aleksandrovich
Krasnosel′skĭı [283, 284] (at least for feedback laws of class C1; see below for
feedback laws which are only continuous), one can deduce the following stronger
necessary condition, that we shall call the index condition.
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Theorem 11.4. If the control system ẋ = f(x, u) can be locally asymptotically
stabilized by means of continuous stationary feedback laws, then there exists u ∈
C0(Rn; Rm) vanishing at 0 ∈ Rn such that f(x, u(x)) 6= 0 for |x| small enough but
not 0 and the index of x 7→ f(x, u(x)) at 0 is equal to (−1)n.

Let us recall that the index of x 7→ X(x) := f(x, u(x)) at 0 is (see, for example,
[284, page 9])

degree (X, {x ∈ Rn; |x| < ε}, 0)

where ε > 0 is such that

(X(x) = 0 and |x| 6 ε) ⇒ (x = 0).(11.7)

For the definition of degree (X, {x ∈ Rn; |x| < ε}, 0), see Appendix B. (In fact, with
the notations in this appendix, we should write

degree (X|{x∈Rn; |x|6ε}, {x ∈ Rn; |x| < ε}, 0)

instead of degree (X, {x ∈ Rn; |x| < ε}, 0). For simplicity, we use this slight abuse
of notation throughout this whole section.) Note that, by the excision property
of the degree (Proposition B.11 on page 388), degree (X, {x ∈ Rn; |x| < ε}, 0) is
independent of ε > 0 provided that (11.7) holds. Let us point out that

degree (X, {x ∈ Rn; |x| < ε}, 0) 6= 0(11.8)

implies that

X({x ∈ Rn; |x| < ε}) is a neighborhood of 0 ∈ Rn.(11.9)

Indeed, by a classical continuity property of the degree (Proposition B.9 on page
387), there exists ν > 0 such that, for every a ∈ Rn such that |a| 6 ν,

degree (X, {x ∈ Rn; |x| < ε}, a) exists,(11.10)

degree (X, {x ∈ Rn; |x| < ε}, a) = degree (X, {x ∈ Rn; |x| < ε}, 0).(11.11)

From (11.8), (11.10), (11.11) and another classical property of the degree (Propo-
sition B.10 on page 387), we get

{a ∈ Rn; |a| 6 ν} ⊂ X({x ∈ Rn; |x| < ε}),

which gives (11.9). Hence the index condition implies that the image by f of every
neighborhood of (0, 0) ∈ Rn×Rm is a neighborhood of 0 ∈ Rn. Thus Theorem 11.4
implies Theorem 11.1.

Proof of Theorem 11.4. Since 0 ∈ Rn is asymptotically stable for ẋ =
X(x) := f(x, u(x)), there exists ε0 > 0 such that

X(x) 6= 0, ∀x ∈ Rn such that 0 < |x| 6 ε0.

Let us now give the proof of Theorem 11.4 when X is not only continuous but of
class C1 in a neighborhood of 0 ∈ Rn (which is the case treated in [283, 284]).
Then one can associate to X its flow Φ : R×Rn → Rn, (t, x) 7→ Φ(t, x), defined by

∂Φ
∂t

= X(Φ), Φ(0, x) = x.

This flow is well defined in a neighborhood of R × {0} in R × Rn. For ε ∈ (0, ε0],
let

B̄ε := {x ∈ Rn; |x| 6 ε},
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and let H : [0, 1]× B̄ε → Rn be defined by

H(t, x) :=
Φ
(

t
1−t , x

)
− x

t
, ∀(t, x) ∈ (0, 1)× B̄ε,

H(0, x) := X(x), ∀x ∈ B̄ε,
H(1, x) := −x, ∀x ∈ B̄ε.

Using the hypothesis that 0 is locally asymptotically stable for ẋ = X(x), one
gets that, for ε ∈ (0, ε0] small enough, H is continuous and does not vanish on
[0, 1] × ∂B̄ε. We choose such an ε. From the homotopy invariance of the degree
(Proposition B.8 on page 387)

degree (H(0, ·), Bε, 0) = degree (H(1, ·), Bε, 0).(11.12)

By a classical formula of the degree (see (B.4) on page 380),

degree (H(1, ·), Bε, 0) = degree (−Idn|Bε
, Bε, 0) = (−1)n,

which, together with (11.12), concludes the proof of Theorem 11.4 if X is of class
C1 in a neighborhood of 0 ∈ Rn.

If X is only continuous, we apply an argument introduced in [108]. One first
uses a theorem due to Jaroslav Kurzweil [289] which tells us that local asymptotic
stability implies the existence of a Lyapunov function of class C∞. Hence there
exist ε1 ∈ (0, ε0] and V ∈ C∞(B̄ε1) such that

V (x) > V (0), ∀x ∈ B̄ε1 \ {0},(11.13)

∇V (x) ·X(x) < 0, ∀x ∈ B̄ε1 \ {0}.(11.14)

Note that (11.14) implies that

∇V (x) 6= 0, ∀x ∈ B̄ε1 \ {0}.(11.15)

From (11.13) and (11.15), we get that V is a Lyapunov function for ẋ = −∇V (x).
Hence, 0 ∈ Rn is locally asymptotically stable for ẋ = −∇V (x). Therefore, by our
study of the C1 case,

degree (−∇V,Bε1 , 0) = (−1)n.(11.16)

Now let h : [0, 1]× B̄ε1 be defined by

h(t, x) = −t∇V (x) + (1− t)X(x), ∀(t, x) ∈ [0, 1]× B̄ε1 .

From (11.14), one gets

h(t, x) · ∇V (x) < 0, ∀(t, x) ∈ [0, 1]× (∂B̄ε1).

In particular,

h(t, x) 6= 0, ∀(t, x) ∈ [0, 1]× (∂B̄ε1).(11.17)

Using (11.17) and once more the homotopy invariance of the degree (Proposition B.8
on page 387), we get

degree (X,Bε1 , 0) = degree (h(0, ·), Bε1 , 0)
= degree (h(1, ·), Bε1 , 0)
= degree (−∇V,Bε1 , 0),

which, together with (11.16), concludes the proof of Theorem 11.4.



292 11. STABILIZATION OF NONLINEAR CONTROL SYSTEMS IN FINITE DIMENSION

It turns out that the index condition is too strong for another natural stabiliz-
ability notion that we introduce now.

Definition 11.5. The control system ẋ = f(x, u) is locally asymptotically
stabilizable by means of dynamic continuous stationary feedback laws if, for some
integer p ∈ N, the control system

ẋ = f(x, u), ẏ = v ∈ Rp,(11.18)

where the control is (u, v)tr ∈ Rm+p with (u, v) ∈ Rm × Rp, and the state is
(x, y)tr ∈ Rn+p with (x, y) ∈ Rn × Rp, is locally asymptotically stabilizable by
means of continuous stationary feedback laws.

In Definition 11.5 and in the following, for α ∈ Rk and β ∈ Rl, (α, β)tr is
defined by

(α, β)tr :=
(
α
β

)
∈ Rk+l.(11.19)

By convention, when p = 0, the control system (11.18) is just the control system
ẋ = f(x, u). The control system (11.18) is called a dynamic extension of the control
system ẋ = f(x, u).

Let us emphasize that for the control system (11.18), the feedback laws u and
v are functions of x and y. Clearly, if the control system ẋ = f(x, u) is locally
asymptotically stabilizable by means of continuous stationary feedback laws, it
is locally asymptotically stabilizable by means of dynamic continuous stationary
feedback laws. But it is proved in [128] that the converse does not hold. Moreover,
the example given in [128] shows that the index condition is not necessary for
local asymptotic stabilizability by means of dynamic continuous stationary feedback
laws. Clearly the Brockett necessary condition is still necessary for local asymptotic
stabilizability by means of dynamic continuous stationary feedback laws. But this
condition turns out to be not sufficient for local asymptotic stabilizability by means
of dynamic continuous stationary feedback laws even if one assumes that the control
system (C) is small-time locally controllable at the equilibrium (0, 0) ∈ Rn×Rm (see
Definition 3.2 on page 125) and that the system is analytic. In [102] we proposed
the following slightly stronger necessary condition.

Theorem 11.6. Assume that the control system ẋ = f(x, u) can be locally
asymptotically stabilized by means of dynamic continuous stationary feedback laws.
Then, for every positive and small enough ε,

f? (σn−1 ({(x, u); |x|+ |u| 6 ε, f(x, u) 6= 0})) = σn−1(Rn \ {0}) (= Z),(11.20)

where σn−1(A) denotes the stable homotopy group of order (n−1). (For a definition
of stable homotopy groups and of f∗, see, e.g., [501, Chapter XII].)

Exercise 11.7. Let n = 2, m = 1, O = R2 × R. We define f by

f(x, u) := (x3
2 − 3(x1 − u)2x2, (x1 − u)3 − 3(x1 − u)x2

2)
tr,

for every x = (x1, x2)tr ∈ R2 and every u ∈ R.
1. Prove that the control system ẋ = f(x, u) is small-time locally controllable

at (0, 0) ∈ R2 × R. (Hint. Use Theorem 3.32 on page 143.)
2. Check that the control system ẋ = f(x, u) satisfies the Brockett necessary

condition, i.e., that the image by f of every neighborhood of (0, 0) ∈ R2×R
is a neighborhood of 0 ∈ R2.

3. Prove that (11.20) does not hold.
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Let us point out that the index condition implies (11.20). Moreover, (11.20)
implies that a “dynamic extension” of ẋ = f(x, u) satisfies the index condition if
the system is analytic. More precisely, one has the following theorem.

Theorem 11.8 ([108, Section 2 and Appendice]). Assume that f is analytic
(or continuous and subanalytic) in a neighborhood of (0, 0) ∈ Rn × Rm. Assume
that (11.20) is satisfied. Then, if p > 2n + 1, the control system (11.18) satisfies
the index condition.

For a definition of a subanalytic function, see, e.g., [233] by Heisuke Hironaka.
Proof of Theorem 11.8. Clearly, it suffices to prove this theorem for p =

2n+ 1. For R > 0 and k ∈ N \ {0}, let

Bk(R) := {z ∈ Rk; |z| < R}, Bk(R) := {z ∈ Rk; |z| 6 R}.

Let us assume, for the moment, that the following lemma holds.

Lemma 11.9. Let E be a subanalytic subset of Rk such that 0 ∈ E and belongs
to the closure in Rk of E \ {0}. Then there exist ε > 0 and an homeomorphism ϕ

from Bk(ε) into itself such that

|ϕ(z)| = |z|, ∀z ∈ Bk(ε),(11.21)

ϕ(z) = z, ∀z ∈ ∂Bk(ε),(11.22)

ϕ(E ∩Bk(ε)) = {tx; t ∈ [0, 1], x ∈ E ∩Bk(ε)}.(11.23)

For the definition of subanalytic set, see, again, [233]. We apply this lemma
with k := n+m and, identifying Rn+m to Rn × Rm,

E := {(x, u) ∈ Rn × Rm; f(x, u) = 0, |x|2 + |u|2 6 ε2},

with ε > 0 small enough so that f is analytic on {(x, u) ∈ Rn × Rm; |x|2 + |u|2 6
2ε2}. Let f̃ : Bn+m(ε) → Rn be defined by

f̃ := f ◦ ϕ−1.(11.24)

Decreasing if necessary ε > 0 and using (11.20) we may also assume that

f̃? (σn−1 ({(x, u); |x|+ |u| 6 ε, f(x, u) 6= 0})) = σn−1(Rn \ {0}) (= Z),(11.25)

Let S2n = {y ∈ R2n+1; |y| = 1}. For (a1, a2, a3) ∈ Rn1 × Rn2 × Rn3 , we define
(a1, a2, a3)tr by

(a1, a2, a3)tr :=

a1

a2

a3

 ∈ Rn1+n2+n3 .

From (11.25) and the suspension theorem (see, e.g., [461, Theorem 11, Chap-
ter 8, page 458]), there exists a map θ̃ = (x̃, ũ, α̃)tr ∈ C0(S2n; Rn+m+n+1), with
(x̃, ũ, α̃) ∈ C0(S2n; Rn × Rm × Rn+1), such that

θ̃(S2n) ⊂
(
Bn+m(ε)× Rn+1

)tr

\ (f̃−1(0)× {0})tr,(11.26)

the degree of g : S2n → R2n+1 \ {0} is − 1,(11.27)

with g defined by

g(y) := (f̃(x̃(y), ũ(y)), α̃(y))tr,∀y ∈ S2n.
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By (11.27) and relying on the degree theory detailed in Appendix B, we mean the
following. We extend θ̃ = (x̃, ũ, α̃)tr to B2n+1(1) by letting

θ̃(z) = |z|θ(z/|z|) if |z| 6= 0,(11.28)

θ̃(0) = 0.(11.29)

Then, we extend g to B2n+1(1) by letting

g(y) := (f̃(x̃(y), ũ(y)), α̃(y))tr,∀y ∈ B2n+1(1).(11.30)

Property (11.27) means that

degree (g,B2n+1(1), 0) = −1.(11.31)

Clearly, θ ∈ C0(B2n+1(1); R2n+1) and vanishes at 0. Let r be a small positive real
number. Let u ∈ C0(Rn × R2n+1; Rm) and v ∈ C0(Rn × R2n+1; R2n+1) be such
that, for every (x, y) ∈ Rn × R2n+1 such that |y| 6 r,

u(x, y) = π2 ◦ ϕ−1(x̃(y), ũ(y)),(11.32)

v(x, y) = (α̃(y), x− π1 ◦ ϕ−1(x̃(y), ũ(y)))tr,(11.33)

where π1 and π2 are defined by

π1(z1, z2) := z1 ∈ Rn, π2(z1, z2) := z2 ∈ Rm, ∀(z1, z2) ∈ Rn × Rm.

Clearly, u and v vanish at (0, 0) ∈ Rn × R2n+1. Let F : B3n+1(r) → Rn × R2n+1

be defined by
F ((x, y)tr) := (f(x, u(x, y)), v(x, y))tr,

for every (x, y) ∈ Rn×R2n+1, such that |x|2 + |y|2 6 r2. Let us check that, at least
if r > 0 is small enough,

((x, y)tr ∈ B3n+1(r) \ {0}, x ∈ Rn, y ∈ R2n+1) ⇒ (F (x, y) 6= 0).(11.34)

Let x ∈ Rn, y ∈ R2n+1 be such that (x, y)tr ∈ B3n+1(r) and F ((x, y)tr) = 0. Then

x = π1 ◦ ϕ−1(x̃(y), ũ(y)),(11.35)

α̃(y) = 0,(11.36)

f(x, π2 ◦ ϕ−1(x̃(y), ũ(y))) = 0.(11.37)

From (11.35) and (11.37), one gets

f̃(x̃(y), ũ(y)) = 0.(11.38)

From (11.35), (11.21), (11.28), (11.36) and (11.38), one has

y = 0.(11.39)

From (11.29), (11.33), (11.35) and (11.39), one gets

x = 0,

which, together with (11.39), concludes the proof of (11.34).
Let us now prove that, at least if r > 0 is small enough (which is always

assumed), then

degree (F,B3n+1(r), 0) = (−1)3n+1.(11.40)
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Let U : B3n+1(r) → R3n+1 be defined by

U

(
x
y

)
:=

 x− π1 ◦ ϕ−1(x̃(y), ũ(y))
f(x, π2 ◦ ϕ−1(x̃(y), ũ(y)))

α̃(y)

 ,

for every (x, y) ∈ Rn × R2n+1 such that |x|2 + |y|2 6 r2.
Using Proposition B.12 on page 388, one gets

degree (F,B3n+1(r), 0) = (−1)ndegree (U,B3n+1(r), 0).(11.41)

Using (11.30), (11.41), Proposition B.11 on page 388 and Proposition B.14 on
page 389, one gets that

degree (F,B3n+1(r), 0) = (−1)ndegree (g,B2n+1(1), 0),

which, together with (11.31), gives (11.40).
It remains to prove Lemma 11.9. Let us point out that this lemma is proved

in [358, Theorem 2.10] by John Milnor if E is a subanalytic set having an isolated
singularity at (0, 0) (if (0, 0) is not a singularity of E, Lemma 11.9 obviously holds).
The general case has been treated by Robert Hardt in [217, pages 295–296]: with
the notations of [217], one takes E for X, Rm+n for Rm, [0,+∞) for Y , y 7→ |y|2
for f . (In fact, [217] deals with semialgebraic sets, instead of subanalytic sets.
However, the part of [217] we use holds for subanalytic sets.) This concludes the
proof of Theorem 11.8.

Let us end this section by an open problem:

Open Problem 11.10. Let us assume that f is analytic, satisfies (11.20) and
that the control system ẋ = f(x, u) is small-time locally controllable at the equilib-
rium (0, 0) ∈ Rn × Rm (or even that 0 ∈ Rn is locally continuously reachable in
small time for the control system ẋ = f(x, u); see Definition 11.20 below). Is the
control system ẋ = f(x, u) locally asymptotically stabilizable by means of dynamic
continuous stationary feedback laws?

A natural guess is that, unfortunately, a positive answer is unlikely to be true.
A possible candidate for a negative answer is the control system, with n = 3 and
m = 1,

ẋ1 = x2
3(x1 − x2), ẋ2 = x2

3(x2 − x3), ẋ3 = u.

This system satisfies the Hermes condition S(0) and so, by Sussmann’s Theo-
rem 3.29 on page 143, is small-time locally controllable at the equilibrium (0, 0) ∈
R3 × R. Moreover, it satisfies the index condition (take u = x3 − (x2

1 + x2
2)).

11.2. Time-varying feedback laws

In this section we will see that, in many cases, small-time local controllability
at the equilibrium (0, 0) ∈ Rn × Rm implies local asymptotic stabilizability by
means of continuous time-varying feedback laws. We first treat the case of driftless
control systems (Section 11.2.1). Then we consider general control systems (Section
11.2.2).

Let us start with some classical definitions. Let us first recall the definition of
asymptotic stability for a time-varying dynamical system—we should in fact say
uniform asymptotic stability.
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Definition 11.11. Let Ω be an open subset of Rn containing 0. Let X in
C0(Ω× R; Rn) be such that

X(0, t) = 0, ∀t ∈ R.
One says that 0 is locally asymptotically stable for ẋ = X(x, t) if

(i) for every ε > 0, there exists η > 0 such that, for every s ∈ R and for every
τ > s,

(ẋ = X(x, t), |x(s)| < η) ⇒ (|x(τ)| < ε),(11.42)

(ii) there exists δ > 0 such that, for every ε > 0, there exists M > 0 such that,
for every s in R,

ẋ = X(x, t) and |x(s)| < δ(11.43)

imply

|x(τ)| < ε, ∀τ > s+M.(11.44)

If Ω = Rn and if, for every δ > 0 and for every ε > 0, there exists M > 0 such that
(11.43) implies (11.44) for every s in R, one says that 0 is globally asymptotically
stable for ẋ = X(x, t).

Throughout the whole chapter, and in particular in (11.42) and (11.43), every
solution of ẋ = X(x, t) is assumed to be a maximal solution of this differential
equation. Let us emphasize again the fact that, since the vector field X is only
continuous, the Cauchy problem ẋ = X(x, t), x(t0) = x0, where t0 and x0 are
given, may have many maximal solutions.

Let us recall that Jaroslav Kurzweil in [289] has shown that, even for time-
varying vector fields which are only continuous, asymptotic stability is equivalent
to the existence of a Lyapunov function of class C∞; see also [99]. This Lyapunov
function provides some important robustness properties with respect to (small)
perturbations.

Remark 11.12. One can easily check that, if X does not depend on time or is
periodic with respect to time, then (ii) implies (i) in Definition 11.11. But this is
not the case for general time-varying X.

Let us now define “asymptotic stabilizability by means of continuous time-
varying feedback laws”.

Definition 11.13. The control system (C) is locally (resp. globally) asymptot-
ically stabilizable by means of continuous time-varying feedback laws if there exists
u ∈ C0(Rn × R; Rm) satisfying

u(0, t) = 0, ∀t ∈ R,
such that 0 ∈ Rn is locally (resp. globally) asymptotically stable for the closed-loop
system ẋ = f(x, u(x, t)).

11.2.1. Stabilization of driftless control affine systems. In this section,
we assume that

f(x, u) =
m∑
i=1

uifi(x).

We are going to see that the driftless control systems which satisfy the Lie algebra
rank condition (see Definition 3.16 on page 134) at every (x, 0) ∈ Rn × Rm with
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x ∈ Rn \ {0} can be globally asymptotically stabilized by means of continuous
time-varying feedback laws.

Let us recall that Lie{f1, . . . , fm} ⊂ C∞(Rn; Rn) denotes the Lie sub-algebra
of C∞(Rn; Rn) generated by the vector fields f1, . . . , fm (see Definition 3.13 on
page 133). One then has the following theorem.

Theorem 11.14 ([103]). Assume that

{g(x); g ∈ Lie{f1, . . . , fm}} = Rn, ∀x ∈ Rn \ {0}.(11.45)

Then, for every T > 0, there exists u in C∞(Rn × R; Rm) such that

u(0, t) = 0, ∀t ∈ R,(11.46)

u(x, t+ T ) = u(x, t), ∀x ∈ Rn, ∀t ∈ R,(11.47)

and 0 is globally asymptotically stable for

ẋ = f(x, u(x, t)) =
m∑
i=1

ui(x, t)fi(x).(11.48)

Remark 11.15. By the Rashevski-Chow theorem [398, 94] (Theorem 3.18 on
page 134), Property (11.45) implies the global controllability of the driftless control
affine system ẋ = f(x, u) =

∑m
i=1 uifi(x) in Rn \ {0}, i.e., for every x0 ∈ Rn \ {0},

every x1 ∈ Rn \ {0} and every T > 0, there exists u ∈ L∞((0, T ); Rm) such that, if
ẋ =

∑m
i=1 ui(t)fi(x) and x(0) = x0, then x(T ) = x1 (and x(t) ∈ Rn \ {0} for every

t ∈ [0, T ]). Let us recall that, by Theorem 3.17 on page 134, for every a ∈ Rn,
{g(a); g ∈ Lie{f1, . . . , fm}} = Rn,

is also a necessary condition for small-time local controllability at the equilibrium
(a, 0) ∈ Rn × Rm of the driftless control affine system ẋ = f(x, u) =

∑m
i=1 uifi(x)

if the fi, 1 6 i 6 m, are analytic.

Example 11.16. Let us return to the nonholonomic integrator

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1.(11.49)

It is a driftless control affine system where the state is (x1, x2, x3)tr ∈ R3 and the
control is (u1, u2)tr ∈ R2. We have m = 2 and

f1(x) :=

 1
0
−x2

 , f2(x) :=

 0
1
x1

 .

As we have seen in Example 3.20 on page 135, it follows from Theorem 3.19 on
page 135 that this control system is small-time locally controllable at the equilibrium
(xe, ue) = (0, 0) ∈ R3×R2 and also globally controllable. (See also Example 6.3 on
page 190 for a proof based on the return method. A simple scaling argument shows
that the small-time local controllability proved in this example, implies global control-
lability.) However, as we have seen in Example 11.2 on page 289, the nonholonomic
integrator does not satisfy Brockett’s condition and therefore, by Theorem 11.1, it
cannot be, even locally, asymptotically stabilized by means of continuous stationary
feedback laws. But, as we have seen in Example 3.20 on page 135, the nonholo-
nomic integrator satisfies the Lie algebra rank condition at every (x, 0) ∈ R3 × R2,
i.e.,

{g(x); g ∈ Lie{f1, f2}} = R3, ∀x ∈ R3.
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Hence, by Theorem 11.14, the nonholonomic integrator can be, even globally, asymp-
totically stabilized by means of periodic time-varying feedback laws of class C∞.

Sketch of the proof of Theorem 11.14. Let us just briefly describe the
idea of the proof: Assume that, for every positive real number T , there exists ū in
C∞(Rn ×R; Rm) satisfying (11.46) and (11.47), and such that, if ẋ = f(x, ū(x, t)),
then

x(T ) = x(0),(11.50)

(11.51) if x(0) 6= 0, then the linearized control system around the trajectory

t ∈ [0, T ] 7→ (x(t), ū(x(t), t)) is controllable on [0, T ].

Using (11.50) and (11.51), one easily sees that one can construct a “small” feedback
v in C∞(Rn × R; Rm) satisfying (11.46) and (11.47), and such that, if

ẋ = f(x, (ū+ v)(x, t))(11.52)

and x(0) 6= 0, then

|x(T )| < |x(0)|,(11.53)

which implies that 0 is globally asymptotically stable for (11.48) with u = ū+ v.
So it only remains to construct ū. In order to get (11.50), one just imposes on

ū the condition

ū(x, t) = −ū(x, T − t), ∀(x, t) ∈ Rn × R,(11.54)

which implies that x(t) = x(T − t), ∀t ∈ [0, T ] for every solution of ẋ = f(x, u(x, t))
(proceed as in the proof of (6.9) above), and therefore gives (11.50). Finally, one
proves that (11.51) holds for “many” ū’s.

Remark 11.17. The above method, that we called “return method” (see Chap-
ter 6), can also be used to get controllability results for control systems even in
infinite dimension, as we have seen in Section 6.2, Section 6.3 and in Chapter 9.

Remark 11.18. The fact that (11.51) holds for “many” ū’s is related to the
prior works [452] by Eduardo Sontag and [206] by Mikhael Gromov. In [452]
Eduardo Sontag showed that, if a system is completely controllable, then any two
points can be joined by means of a control law such that the linearized control
system around the associated trajectory is controllable. In [206, Theorem page
156] Mikhael Gromov has shown that generic under-determined linear (partial)
differential equations are algebraically solvable, which is related to controllability
for time-varying linear control systems (see the second proof of Theorem 1.18 on
page 11). In our situation the linear differential equations are not generic; only the
controls are generic, but this is sufficient to get the result. Moreover, as pointed
out by Eduardo Sontag in [456], for analytic systems, one can get (11.51) by using
a result due to Héctor Sussmann on observability [466]. Note that the proof we
give for (11.51) in [103] (see also [105]) can be used to get a C∞-version of [466];
see [106].

Remark 11.19. Using a method due to Jean-Baptiste Pomet [387], we gave
in [127] a method to deduce a suitable v from ū; see Section 12.2.2 below for a
description of this method.
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11.2.2. Stabilization of general systems. In this section we still denote by
(C) the nonlinear control system

ẋ = f(x, u),(C)

where x ∈ Rn is the state, u ∈ Rm is the control. We again assume that

f(0, 0) = 0(11.55)

and that, unless otherwise specified, f ∈ C∞(O; Rn), where O is a an open subset
of Rn × Rm containing (0, 0).

Let us first point out that in [460] Eduardo Sontag and Héctor Sussmann
proved that every one-dimensional state (i.e., n = 1) nonlinear control system which
is locally (resp. globally) controllable can be locally (resp. globally) asymptotically
stabilized by means of continuous time-varying feedback laws.

Let us also point out that it follows from [467] by Héctor Sussmann that a
result similar to Theorem 11.14 does not hold for systems with a drift term; more
precisely, there are analytic control systems (C) which are globally controllable,
for which there is no u in C0(Rn × R; Rm) such that 0 is globally asymptotically
stable for ẋ = f(x, u(x, t)). In fact, the proof of [467] requires uniqueness of the
trajectories of ẋ = f(x, u(x, t)). But this can always be assumed; indeed, it follows
easily from Kurzweil’s result [289] that, if there exists u in C0(Rn × R; Rm) such
that 0 is globally asymptotically stable for ẋ = f(x, u(x, t)), then there exists ū in
C0(Rn × R; Rm) ∩ C∞ ((Rn \ {0})× R; Rm) such that 0 is globally asymptotically
stable for ẋ = f(x, ū(x, t)); for such a ū one has uniqueness of the trajectories of
ẋ = f(x, ū(x, t)).

However, we are going to see in this section that a local version of Theorem
11.14 holds for many control systems which are small-time locally controllable.

For ε ∈ (0,+∞), let

Bε := {a ∈ Rn; |a| < ε}, B̄ε := {a ∈ Rn; |a| 6 ε}.(11.56)

Let us again introduce some definitions.

Definition 11.20. The origin (of Rn) is locally continuously reachable in small
time (for the control system (C)) if, for every positive real number T , there exist a
positive real number ε and an element u in C0

(
B̄ε;L1 ((0, T ); Rm)

)
such that

Sup{|u(a)(t)|; t ∈ (0, T )} → 0 as a→ 0,(11.57)

((ẋ = f(x, u(a)(t)), x(0) = a) ⇒ (x(T ) = 0)),∀a ∈ B̄ε.(11.58)

Let us prove that “many” sufficient conditions for small-time local controlla-
bility (see Definition 3.2 on page 125) at (0, 0) ∈ Rn × Rm imply that the origin is
locally continuously reachable in small time. This is in particular the case for the
Sussmann condition (Theorems 3.29 on page 143 and 3.32 on page 143); this is in
fact also the case for the Bianchini and Stefani condition [56, Corollary page 970],
which extends Theorem 3.29 on page 143.

In order to prove this result, we first introduce the following definition.
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Definition 11.21. For p ∈ N \ {0}, let Dp be the set of vectors ξ in Rn such
that there exists u in C0([0, 1];L1((0, 1); Rm)) such that

|u(s)(t)| 6 s, ∀(s, t) ∈ [0, 1]× [0, 1],(11.59)

u(s)(t) = 0, if t > s,(11.60)

ψ(u(s)) = spξ + o(sp), as s→ 0,(11.61)

where ψ
(
u(s)

)
denotes the value at time 0 of the solution of ẋ = f(x, u(s)(t)),

x(1) = 0. Let D ⊂ Rn be defined by

D :=
⋃
p>1

Dp.(11.62)

Then one has the following proposition.

Proposition 11.22 ([105, Lemma 3.1 and Section 5]). Assume that

0 is in the interior of D.(11.63)

Then 0 ∈ Rn is locally continuously reachable in small time (for the control system
(C)).

Proof of Proposition 11.22. We follow a method due to Matthias Kawski
[270] (see also [227] by Henry Hermes). In [270, Appendix], Matthias Kawski
proved (under the assumption of Proposition 11.22) the existence of u : Bε →
L1((0, T ); Rm) satisfying (11.57) and (11.58). His u is not continuous. However,
let us show how to slightly modify his proof in order to have a continuous u. Let
(ei)16i6n be the usual canonical basis of Rn and let ei = −ei−n for i in {n +
1, . . . , 2n}. By (11.63) and noticing that, for every l ∈ N \ {0}, Dl ⊂ Dl+1, we may
assume, possibly after a change of scale on x, that, for some p > 1, ei ∈ Dp for
every i in {1, 2, . . . , 2n}. For i in {1, 2, . . . , 2n}, let ui be as in Definition 11.21 with
ξ = ei. For a in Rn we write a =

∑2n
i=1 aiei with ai > 0 for every i in {1, 2, . . . , 2n}

and aiai+n = 0 for every i in {1, . . . , n}. Let µ(a) =
∑2n
i=1 a

1/p
i ei. For a in Rn with

|a| 6 1, let ua : [0, µ(a)) → Rm be defined by

ua(t) = uj(a
1/p
j )(t− tj) if tj :=

j−1∑
i=1

a
1/p
i 6 t <

j∑
i=1

a
1/p
i .(11.64)

From Gronwall’s lemma, (11.59), (11.60), (11.61) and (11.64), we get

µ(x1
a) = o(µ(a)) as a→ 0,(11.65)

where x1
a := ζa(µ(a)), ζa : [0, µ(a)] being the solution of the Cauchy problem

ζ̇a = f(ζa, ua(t)), ζa(0) = a.(11.66)

Hence, for |a| small enough,

µ(x1
a) 6

µ(a)
2

.(11.67)

We now define ua on
[
µ(a), µ(a) + µ(x1

a)
)

by

ua(t) := ux1
a
(t− µ(a)), ∀t ∈

[
µ(a), µ(a) + µ(x1

a)
)
.

We have, if |a| is small enough, that

µ(x2
a) 6

µ(x1
a)

2
,
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where x2
a := ζa(µ(a) + µ(x1

a)), ζa still being the solution of the Cauchy problem
(11.66), but now on

[
0, µ(a) + µ(x1

a)
]

(instead of [0, µ(a)]). We keep going and
define in this way ua on [0, µ(a) +

∑∞
i=1 µ(xia)) (with obvious notations). Note

that, if a is small enough, µ(a) +
∑∞
i=1 µ(xi) 6 2µ(a) 6 T . We extend ua on [0, T ]

by ua(t) = 0 if t ∈ [µ(a)+
∑∞
i=1 µ(xi), T ]. Then u(a) := ua satisfies all the required

properties required in Definition 11.20 on page 299. This concludes the proof of
Proposition 11.22.

Our next proposition is the following.

Proposition 11.23. Assume that the control system (C) satisfies the Suss-
mann condition S(θ) (see Definition 3.31 on page 143) for some θ ∈ [0, 1]. Then
(11.63) holds.

The proof of Proposition 11.23 follows directly from the proof of [469, Theorem
7.3] by Héctor Sussmann (see also the proof of Theorem 3.32 on page 143). We
omit it.

The following theorem is a consequence of Proposition 11.22 and Proposition
11.23.

Theorem 11.24. Assume that the control system (C) (see page 299) satisfies
the Sussmann condition S(θ) (see Definition 3.31 on page 143) for some θ ∈ [0, 1].
Then 0 ∈ Rn is locally continuously reachable in small time (for the control system
(C)).

In fact, the sufficient conditions for small-time local controllability we men-
tioned earlier on page 143 (namely [5] by Andrei Agrachev, [6, 7] by Andrei
Agrachev and Revaz Gamkrelidze, [55] by Rosa Maria Bianchini, and [56] by Rosa
Maria Bianchini and Gianna Stefani) all implied (11.63). In particular, the hypoth-
esis of [56, Corollary p. 970], which is weaker than the hypothesis of Proposition
11.23, also implies (11.63). It sounds natural to conjecture a positive answer to the
question raised in the following open problem.

Open Problem 11.25. Assume that the map f is analytic in an open neigh-
borhood of (0, 0) ∈ Rn × Rm and that the control system (C) is small-time locally
controllable at the equilibrium (0, 0) ∈ Rn × Rm. Is 0 ∈ Rn locally continuously
reachable in small time (for the control system (C))?

Concerning the converse, one has the following theorem.

Theorem 11.26. Let us assume that 0 is locally continuously reachable in
small-time for the control system (C). Then the control system (C) is small-time
locally controllable at (0, 0) ∈ Rn × Rm.

Proof of Theorem 11.26. We assume that 0 is locally continuously reachable
in small time (for the control system (C)). Let ε > 0. Then there exist a real
number ρ > 0 and a map u in C0

(
B̄ρ;L1 ((0, ε); Rm)

)
such that

|u(a)(t)| 6 ε, ∀a ∈ B̄ρ, ∀t ∈ [0, ε],(11.68)

(ẋ = f(x, u(a)(t)), |a| 6 ρ, x(0) = a) ⇒ (x(ε) = 0).(11.69)

Let µ > 0. Let Φ be the map

B̄ρ × B̄µ → Rn
(a, x1) 7→ x(0),
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where x : [0, ε] → Rn is the solution of the Cauchy problem

ẋ = f(x, u(a)(t)), x(ε) = x1.

By (11.69), there exists µ > 0 such that Φ is well defined. We fix such a µ. Then
Φ is continuous and, still by (11.69),

Φ(a, 0) = a, ∀a ∈ B̄ρ.(11.70)

Hence, degree(Φ, Bρ, 0) is well defined and

degree (Φ(·, 0), Bρ, 0) = 1.(11.71)

For the definition of the degree, see Appendix B. By the continuity of the degree
(Property (iii) of Theorem B.1 on page 379 and Proposition B.9 on page 387), there
exists η ∈ (0, µ) such that, for every x0 ∈ B̄η and for every x1 ∈ B̄η,

degree (Φ(·, x1), Bρ, x0) = 1.(11.72)

By a classical property of the degree theory (Proposition B.10 on page 387), (11.72)
implies the existence of a ∈ Bρ such that

Φ(a, x1) = x0.(11.73)

But (11.73) just means that

(ẋ = f(x, u(a)(t)), x(0) = x0) ⇒ (x(ε) = x1).

This concludes the proof of Theorem 11.26.

Our next definition follows.

Definition 11.27. The control system (C) is locally stabilizable in small time
by means of continuous periodic time-varying feedback laws if, for every positive
real number T , there exist ε in (0,+∞) and u in C0(Rn × R; Rm) such that

u(0, t) = 0, ∀t ∈ R,(11.74)

u(x, t+ T ) = u(x, t), ∀t ∈ R,(11.75)

((ẋ = f(x, u(x, t)) and x(s) = 0) ⇒ (x(τ) = 0, ∀τ > s)) , ∀s ∈ R,(11.76)

(ẋ = f(x, u(x, t)) and |x(s)| 6 ε) ⇒ (x(τ) = 0, ∀τ > s+ T )) , ∀s ∈ R.(11.77)

If u can be chosen to be of class C∞ on (Rn \ {0}) × R, one says that the control
system (C) is locally stabilizable in small time by means of almost smooth periodic
time-varying feedback laws

Note that (11.75), (11.76), and (11.77) imply that 0 ∈ Rn is locally asymp-
totically stable for ẋ = f(x, u(x, t)); see [109, Lemma 2.15] for a proof. Note
that, if (C) is locally stabilizable in small time by means of almost smooth periodic
time-varying feedback laws, then 0 ∈ Rn is locally continuously reachable for (C).
The main result of this section is that the converse holds if n /∈ {2, 3} and if (C)
satisfies the Lie algebra rank condition at (0, 0) ∈ Rn × Rm:

Theorem 11.28 ([109] for n > 4 and [110] for n = 1). Assume that 0 ∈ Rn
is locally continuously reachable in small time for the control system (C), that (C)
satisfies the Lie algebra rank condition at (0, 0) ∈ Rn ×Rm (see Definition 3.16 on
page 134) and that

n /∈ {2, 3}.(11.78)
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Then (C) is locally stabilizable in small time by means of almost smooth periodic
time-varying feedback laws.

We conjecture a positive answer to the following open problem.

Open Problem 11.29. Can Assumption (11.78) be removed in Theorem 11.28?

Sketch of the proof of Theorem 11.28 for n > 4. Let I be an interval
of R. By a smooth trajectory of the control system (C) on I, we mean a (γ, u) ∈
C∞ (I; Rn × Rm) satisfying γ̇(t) = f(γ(t), u(t)) for every t in I. The linearized
control system around (γ, u) is (see Definition 3.5 on page 127)

ξ̇ = A(t)ξ +B(t)w,

where the state is ξ ∈ Rn, the control is w ∈ Rm, and

A(t) =
∂f

∂x
(γ(t), u(t)) ∈ L (Rn; Rn) , B(t) =

∂f

∂u
(γ(t), u(t)) ∈ L (Rm; Rn) , ∀t ∈ I.

We first introduce the following definition.

Definition 11.30. The trajectory (γ, u) is supple on S ⊂ I if, for every s in
S,

Span

{(
d
dt
−A(t)

)i
B(t)|t=sw ; w ∈ Rm, i > 0

}
= Rn.(11.79)

In (11.79), we use the classical convention(
d
dt
−A(t)

)0

B(t) = B(t).

Let us recall that, by Theorem 1.18 on page 11, (11.79) implies that the linearized
control system around (γ, u) is controllable on every interval [T0, T1], with T0 < T1,
which meets S. Let T be a positive real number. For u in C0 (Rn × [0, T ]; Rm) and
a in Rn, let t 7→ x(a, t;u) be the maximal solution of

∂x

∂t
= f(x, u(a, t)), x(a, 0;u) = a.

Also, let C∗ be the set of u ∈ C0 (Rn × [0, T ]; Rm) of class C∞ on (Rn \ {0})× [0, T ]
and vanishing on {0} × [0, T ]. For simplicity, in this sketch of proof, we omit some
details which are important to take care of the uniqueness property (11.76) (note
that without (11.76) one does not have stability).

Step 1. Using the fact that 0 ∈ Rn is locally continuously reachable in small time
for the control system (C), that (C) satisfies the Lie algebra rank condition at
(0, 0) ∈ Rn ×Rm and [105] or [106], one proves that there exist ε1 in (0,+∞) and
u1 in C∗, vanishing on Rn × {T}, such that

|a| 6 ε1 ⇒ x(a, T ;u1) = 0,

0 < |a| 6 ε1 ⇒ (x(a, ·;u1), u1(a, ·)) is supple on [0, T ].

Step 2. Let Γ be a 1-dimensional closed submanifold of Rn \ {0} such that

Γ ⊂ {x ∈ Rn; 0 < |x| < ε1}.
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Perturbing in a suitable way u1, one obtains a map u2 ∈ C∗, vanishing on Rn×{T},
such that

|a| 6 ε1 ⇒ x(a, T ;u2) = 0,

0 < |a| 6 ε1 ⇒ (x(a, ·;u2), u2(a, ·)) is supple on [0, T ],

a ∈ Γ 7→ x(t, a;u2) is an embedding of Γ into Rn \ {0}, ∀t ∈ [0, T ).

Here one uses the assumption n > 4 and one proceeds as in the classical proof of
the Whitney embedding theorem (see e.g. [202, Chapter II, Section 5]). Let us
emphasize that it is only in this step that this assumption is used.

Step 3. From Step 2, one deduces the existence of u∗3 in C∗, vanishing on Rn×{T},
and of an open neighborhood N ∗ of Γ in Rn \ {0} such that

a ∈ N ∗ ⇒ x (a, T ;u∗3) = 0,(11.80)

a ∈ N ∗ 7→ x (a, t;u∗3) is an embedding of N ∗ into Rn \ {0}, ∀t ∈ [0, T ).

This embedding property allows us to transform the open-loop control u∗3 into
a feedback law u3 on {(x (a, t;u∗3) , t) ; a ∈ N ∗, t ∈ [0, T )}. So (see in particular
(11.80) and note that u∗3 vanishes on Rn × {T}) there exist u3 in C∗ and an open
neighborhood N of Γ in Rn \ {0} such that

(x(0) ∈ N and ẋ = f (x, u3(x, t))) ⇒ (x(T ) = 0).

One can also impose that, for every τ in [0, T ],

(ẋ = f (x, u3(x, t)) and x(τ) = 0) ⇒ (x(t) = 0, ∀t ∈ [τ, T ]).

Step 4. In this last step, one shows the existence of a closed submanifold Γ of
Rn \ {0} of dimension 1, contained in the set {x ∈ Rn; 0 < |x| < ε1}, such that, for
every neighborhood N of Γ in Rn \ {0}, there exists a time-varying feedback law
u4 in C∗ such that, for some ε4 in (0,+∞),

(ẋ = f (x, u4(x, t)) and |x(0)| < ε4) ⇒ (x(T ) ∈ N ∪ {0}) ,
((ẋ = f (x, u4(x, t)) and x(τ) = 0) ⇒ (x(t) = 0, ∀t ∈ [τ, T ])) , ∀τ ∈ [0, T ].

Finally, let u : Rn × R → Rm be equal to u4 on Rn × [0, T ], 2T -periodic with
respect to time, and such that u(x, t) = u3(x, t−T ) for every (x, t) in Rn× (T, 2T ).
Then u vanishes on {0} × R, is continuous on Rn × (R \ ZT ), of class C∞ on
(Rn \ {0})× (R \ ZT ), and satisfies

(ẋ = f (x, u(x, t)) and |x(0)| < ε4) ⇒ (x(2T ) = 0) ,

(ẋ = f (x, u(x, t)) and x(τ) = 0) ⇒ (x(t) = 0, ∀t > τ) ,∀τ ∈ R,

which implies (see [109]) that (11.77) holds, with 4T instead of T and ε > 0
small enough, and that 0 ∈ Rn is locally asymptotically stable for the system
ẋ = f (x, u(x, t)) . Since T is arbitrary, Theorem 11.28 is proved (modulo a problem
of regularity of u at (x, t) in Rn × ZT , which is fixed in [109]).

Example 11.31. Let us again go back to control system (3.12) of the attitude
of a rigid spacecraft, already considered in Example 3.9 on page 128, Example 3.35
on page 144, Example 10.15 on page 282 and Example 11.3 on page 289. We
assume that m = 2, and that (3.81) holds, which is generically satisfied. Let us



11.3. OUTPUT FEEDBACK STABILIZATION 305

recall (see Example 3.35 on page 144) that, under this assumption, El-Yazid Keräı
checked in [272] that the control system (3.12) satisfies Sussmann’s condition S(1)
which, by Theorem 11.24 on page 301, implies that 0 ∈ R6 is locally continuously
reachable for the control system (3.12). Hence, by Theorem 11.28 on page 302,
for every T > 0, there exists a T -periodic continuous time-varying feedback law
which locally asymptotically stabilizes the control system (3.12). For the special
case where the torque actions are exerted on the principal axis of the inertia matrix
of the spacecraft, the construction of such feedback laws was done independently
by Pascal Morin, Claude Samson, Jean-Baptiste Pomet and Zhong-Ping Jiang in
[367], and by Gregory Walsh, Richard Montgomery and Shankar Sastry in [497].
The general case has been treated in [126]; see Example 12.18 on page 330. Simpler
feedback laws have been proposed by Pascal Morin and Claude Samson in [364]. In
Sections 12.4 and 12.5, we explain how the feedback laws of [364] are constructed.

Many authors have constructed explicit time-varying stabilizing feedback laws
for other control systems. Let us mention, in particular:

- Lotfi Beji, Azgal Abichou and Yasmina Bestaoui for their paper [46] dealing
with the stabilization of an under-actuated autonomous airship.

- Zhong-Ping Jiang and Henk Nijmeijer for their paper [256] dealing with
the tracking of nonholonomic systems in chained form.

- Naomi Leonard and P.S. Krishnaprasad for their paper [312] explaining
how to construct explicit time-varying stabilizing feedback laws for driftless,
left-invariant systems on Lie groups, with an illustration for autonomous
underwater vehicles (see also [311]).

- Sonia Mart́ınez, Jorge Cortés and Francesco Bullo for their paper [345]
where they show how to use averaging techniques in order to construct sta-
bilizing time-varying feedback (see also Section 12.4), with an application
to a planar vertical takeoff and landing aircraft (PVTOL).

- Frédéric Mazenc, Kristin Pettersen and Henk Nijmeijer for their paper
[348] dealing with an underactuated surface vessel.

- Robert M’Closkey and Richard Murray for their paper [351] dealing with
the exponential stabilization of driftless systems using time-varying homo-
geneous feedback laws.

- Pascal Morin, Jean-Baptiste Pomet and Claude Samson for their paper
[363], in which they use oscillatory control inputs which approximate mo-
tion in the direction of iterated Lie brackets in order to stabilize driftless
systems.

- Abdelhamid Tayebi and Ahmed Rachid for their paper [474] dealing with
the parking problem of a wheeled mobile robot.

- Bernard Thuilot, Brigitte d’Andréa-Novel, and Alain Micaelli for their pa-
per [480] dealing with mobile robots equipped with several steering wheels.

11.3. Output feedback stabilization

In this section, only part of the state (called the output) is measured. Let us
denote by (C̃) the control system

(11.81) (C̃) : ẋ = f(x, u), y = h(x),

where x ∈ Rn is the state, u ∈ Rm is the control, and y ∈ Rp is the output. Again,
f ∈ C∞(Rn × Rm; Rn) and satisfies (11.3). We also assume that h ∈ C∞(Rn; Rp)
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and satisfies

(11.82) h(0) = 0.

In order to state the main result of this section, we first introduce some defini-
tions.

Definition 11.32. The control system (C̃) is said to be locally stabilizable in
small time by means of continuous periodic time-varying output feedback laws if,
for every positive real number T , there exist ε in (0,+∞) and u in C0(Rn×R; Rm)
such that (11.74), (11.75), (11.76), (11.77) hold and such that

(11.83) u(x, t) = ū(h(x), t)

for some ū in C0(Rp × R; Rn).

Our next definition concerns dynamic stabilizability.

Definition 11.33. The control system (C̃) is locally stabilizable in small time
by means of dynamic continuous periodic time-varying state (resp. output) feedback
laws if, for some integer k > 0, the control system

(11.84) ẋ = f(x, u), ż = v, h̃(x, z) = (h(x), z),

where the state is (x, z) ∈ Rn × Rk, the control (u, v) ∈ Rm × Rk, and the output
h̃(x, z) ∈ Rp × Rk, is locally stabilizable in small time by means of continuous
periodic time-varying state (resp. output) feedback laws.

In the above definition, the control system (11.84) with k = 0 is, by convention,
the control system (C̃). Note that “locally stabilizable in small time by means of
continuous periodic time-varying state feedback laws” is simply what we called
“locally stabilizable in small time by means of continuous periodic time-varying
feedback laws” in Definition 11.27 on page 302.

For our last definition, one needs to introduce some notations. For α in Nm
and ū in Rm, let fαū in C∞(Rn; Rn) be defined by

(11.85) fαū (x) :=
∂|α|f

∂uα
(x, ū), ∀x ∈ Rn.

Let O(C̃) be the vector subspace of C∞(Rn×Rm; Rp) spanned by the maps ω such
that, for some integer r > 0 (depending on ω) and for some sequence α1, ..., αr of r
multi-indices in Nm (also depending on ω), we have, for every x ∈ Rn and for every
u ∈ Rm,

(11.86) ω(x, u) = Lfα1
u
...Lfαr

u
h(x).

Let us recall that in (11.86) and in the following, for X = (X1, . . . , Xn)tr : Rn → Rn
and V : Rn → R, LXV : Rn → R denotes the (Lie) derivative of V in the direction
of X as defined by (3.91). By convention, if r = 0, the right hand side of (11.86) is
h(x). With this notation, our last definition is the following.

Definition 11.34. The control system (C̃) is locally Lie null-observable at the
equilibrium (0, 0) ∈ Rn × Rm if there exists a positive real number ε̄ such that the
following two properties hold.

(i) For every a in Rn \ {0} such that |a| < ε̄, there exists q ∈ N such that

(11.87) Lqf0h(a) 6= 0,
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with f0(x) = f(x, 0) and the usual convention L0
f0
h = h.

(ii) For every (a1, a2) ∈ (Rn \ {0})2 with a1 6= a2, |a1| < ε̄, and |a2| < ε̄, and for
every u in Rm with |u| < ε̄, there exists ω in O(C̃) such that

(11.88) ω(a1, u) 6= ω(a2, u).

In (11.87) and in the following, for k ∈ N, X = (X1, . . . , Xn)tr : Rn → Rn and
V : Rn → Rp, LkXV : Rn → Rp denotes the iterated (Lie) derivative of V in the
direction of X. It is defined by induction on k by

L0
XV := V, Lk+1

X V := LX(LkXV ).(11.89)

Remark 11.35. Note that (i) implies the following property:

(i)* for every a 6= 0 in Bε̄ := {x ∈ Rm, |x| < ε̄}, there exists a positive real number
τ such that

x(τ) exists and h(x(τ)) 6= 0,

where x is the (maximal) solution of ẋ = f(x, 0), x(0) = a. Moreover, if f and
g are analytic, (i)* implies (i). The reason for “null” in “null-observable” comes
from condition (i) or (i)*; roughly speaking we want to be able to distinguish from
0 every a in Bε̄ \ {0} by using the control law which vanishes identically—u ≡ 0.

Remark 11.36. When f is affine with respect to u, i.e., f(x, u) = f0(x) +∑m
i=1 uifi(x) with f1, ..., fm in C∞(Rn; Rn), then a slightly simpler version of (ii)

can be given. Let Õ(C̃) be the observation space (see e.g. [222] or [458, Remark
6.4.2]), i.e., the set of maps ω̃ in C∞(Rn; Rp) such that, for some integer r > 0
(depending on ω̃) and for some sequence i1, ..., ir of integers in [0,m],

(11.90) ω̃(x) = Lfi1
...Lfir

h(x), ∀x ∈ Rn,

with the convention that, if r = 0, the right hand side of (11.90) is h(x). Then (ii)
is equivalent to

(11.91) ((a1, a2) ∈ B2
ε̄ , ω̃(a1) = ω̃(a2), ∀ω̃ ∈ Õ(C̃)) ⇒ (a1 = a2).

Finally, let us remark that if f is a polynomial with respect to u or if f and g
are analytic, then (ii) is equivalent to

(ii)* for every (a1, a2) ∈ Rn \ {0} with a1 6= a2, |a1| < ε̄ and |a2| < ε̄, there exists u
in Rm and ω in O(C̃) such that (11.88) holds. Indeed, in these cases, the subspace
of Rp spanned by {ω(x, u); ω ∈ O(C̃)} does not depend on u; it is the observation
space of (C̃) evaluated at x, as defined for example in [222].

With these definitions we have the following theorem, proved in [107].

Theorem 11.37. Assume that the origin (of Rn) is locally continuously reach-
able (for (C)) in small time (see Definition 11.20). Assume that (C̃) is locally Lie
null-observable at the equilibrium (0, 0) ∈ Rn × Rm. Then (C̃) is locally stabiliz-
able in small time by means of dynamic continuous periodic time-varying output
feedback laws.

Sketch of the proof of Theorem 11.37. We assume that the assumptions
of Theorem 11.37 are satisfied. Let T be a positive real number. The proof of
Theorem 11.37 is divided into four steps.
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Step 1. Using the assumption that the system (C) is locally Lie null-observable
at the equilibrium (0, 0) ∈ Rn × Rm and [106], one proves that there exist u∗ in
C∞(Rp × [0, T ]; Rm) and a positive real number ε∗ such that

u∗(y, T ) = u∗(y, 0) = 0, ∀y ∈ Rp,
u∗(0, t) = 0, ∀t ∈ [0, T ],(11.92)

and, for every (a1, a2) in B2
ε∗ , for every s in (0, T ),

(11.93) (h(i)
a1

(s) = h(i)
a2

(s), ∀i ∈ N) ⇒ (a1 = a2),

where ha(s) = h(x∗(a, s)) with x∗ : Bε∗ × [0, T ] → Rn, (a, t) 7→ x∗(a, t), defined by
∂x∗

∂t
= f(x∗, u∗(h(x∗), t)), x∗(a, 0) = a.

Let us note that in [350] a similar u∗ was introduced by Frédéric Mazenc and
Laurent Praly, but it was taken depending only on time and so (11.92), which is
important to get stability, was not satisfied in general. In this step we do not use
the local continuous reachability in small time.

Step 2. Let q = 2n+ 1. In this step, using (11.93), one proves the existence of
(q + 1) real numbers 0 < t0 < t1... < tq < T such that the map K : Bε∗ → (Rp)q
defined by

(11.94) K(a) :=
(∫ t1

t0

(s− t0)(t1 − s)ha(s)ds, ...,
∫ tq

t0

(s− t0)(tq − s)ha(s)ds
)

is one-to-one. Thus, there exists a map θ : (Rp)q → Rn such that

(11.95) θ ◦K(a) = x∗(a, T ), ∀a ∈ Bε∗/2.

Step 3. In this step, one proves the existence of ū in C0(Rn × [0, T ]; Rm) and
ε̄ in (0,+∞) such that

(11.96) ū = 0 on (Rn × {0, T}) ∪ ({0} × [0, T ]),

(11.97) (ẋ = f(x, ū(x(0), t)) and |x(0)| < ε̄) ⇒ (x(T ) = 0).

Property (11.97) means that ū is a “dead-beat” open-loop control. In this last step,
we use the small-time local reachability assumption on (C), but do not use the Lie
null-observability assumption.

Step 4. Using the above three steps, let us conclude the proof of Theorem
11.37. The dynamic extension of system (C) that we consider is

(11.98) ẋ = f(x, u), ż = v = (v1, ..., vq, vq+1) ∈ Rp × ...× Rp × Rn ' Rpq+n,
with z1 = (z1, ..., zq, zq+1) ∈ Rp × ... × Rp × Rn ' Rpq+n. For this system the
output is h̃(x, z) = (h(x), z) ∈ Rp × Rpq+n. For s ∈ R, let s+ = max(s, 0) and
let Sign(s) = 1 if s > 0, 0 if s = 0, −1 if s < 0. Finally, for r in N \ {0} and
b = (b1, ..., br) in Rr, let

(11.99) b1/3 := (|b1|1/3Sign(b1), ..., |br|1/3Sign(br)).

We now define u : Rp × Rpq+n × R → Rm and v : Rp × Rpq+n × R → Rpq+n by
requiring, for (y, z) in Rp × Rpq+n and for every i in {1, . . . , q},

u(y, z, t) := u∗(y, t), ∀t ∈ [0, T ),(11.100)

vi(y, z, t) := −t(t0 − t)+z1/3
i + (t− t0)+(ti − t)+y, ∀t ∈ [0, T ),(11.101)
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vq+1(y, z, t) :=− t(tq − t)+z1/3
q+1(11.102)

+ 6
(T − t)+(t− tq)+

(T − tq)3
θ(z1, ..., zq), ∀t ∈ [0, T ),

u(y, z, t) := ū(zq+1, t− T ), ∀t ∈ [T, 2T ),(11.103)

v(y, z, t) := 0, ∀t ∈ [T, 2T ),(11.104)

u(y, z, t) = u(y, z, t+ 2T ), ∀t ∈ R,(11.105)

v(y, z, t) = v(y, z, t+ 2T ), ∀t ∈ R.(11.106)

One easily sees that u and v are continuous and vanish on {(0, 0)} × R. Let (x, z)
be any maximal solution of the closed-loop system

(11.107) ẋ = f(x, u(h̃(x, z), t)) , ż = v(h̃(x, z), t).

Then one easily checks that, if |x(0)|+ |z(0)| is small enough, then

(11.108) zi(t0) = 0, ∀i ∈ {1, . . . , q},

(11.109) (z1(t), ..., zq(t)) = K(x(0)), ∀t ∈ [tq, T ],

(11.110) zq+1(tq) = 0,

(11.111) zq+1(T ) = θ ◦K(x(0)) = x(T ),

(11.112) x(t) = 0, ∀t ∈ [2T, 3T ],

(11.113) z(2T + tq) = 0.

Equalities (11.108) (resp. (11.110)) are proved by computing explicitly, for i ∈
{1, . . . , q}, zi on [0, t0] (resp. zq+1 on [0, tq]) and by seeing that this explicit solution
reaches 0 before time t0 (resp. tq) and by pointing out that if, for some s in [0, t0]
(resp. [0, tq]), zi(s) = 0 (resp. zq+1(s) = 0), then zi = 0 on [s, t0] (resp. zq+1 = 0
on [s, tq]); note that ziżi 6 0 on [0, t0] (resp. zq+1żq+1 6 0 on [0, tq]).

Moreover, one also has, for every s in R and every t > s,

(11.114) ((x(s), z(s)) = (0, 0)) ⇒ ((x(t), z(t)) = (0, 0)).

Indeed, first note that, without loss of generality, we may assume that s ∈ [0, 2T ]
and t ∈ [0, 2T ]. If s ∈ [0, T ], then, since u∗ is of class C∞, we get, using (11.92), that
x(t) = 0, ∀t ∈ [s, T ] and then, using (11.82) and (11.101), we get that, for every
i ∈ {1, . . . , q}, ziżi 6 0 on [s, T ] and so zi also vanishes on [s, T ]; this, together
with (11.102) and θ(0) = 0 (see (11.94) and (11.95)), implies that zq+1 = 0 also on
[s, T ]. Hence we may assume that s ∈ [T, 2T ]. But, in this case, using (11.104), we
get that z = 0 on [s, 2T ] and, from (11.96) and (11.103), we get that x = 0 also on
[s, 2T ].

From (11.112), (11.113), and (11.114), we get (see Lemma 2.15 in [109]) the
existence of ε in (0,+∞) such that, for every s in R and every maximal solution
(x, z) of ẋ = f(x, u(h̃(x, z), t)), ż = v(h̃(x, z), t), we have

(|x(s)|+ |y(s)| 6 ε) ⇒ ((x(t), z(t)) = (0, 0), ∀t > s+ 5T ).

Since T is arbitrary, Theorem 11.37 is proved.
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Remark 11.38. Roughly speaking the strategy to prove Theorem 11.37 is the
following one.

(i) During the time interval [0, T ], one “excites” system (C) by means of
u∗(y, t) in order to be able to deduce from the observation during this
interval of time, the state at time T : At time T we have zq+1 = x.

(ii) During the time interval [T, 2T ], zq+1 does not move and one uses the dead-
beat open-loop ū but transforms it into an output feedback by using in its
argument zq+1 instead of the value of x at time T (this step has been used
previously in the proof of Theorem 1.7 of [105]).

This method has been previously used by Eduardo Sontag in [451], Rogelio Lozano
in [335], Frédéric Mazenc and Laurent Praly in [350]. A related idea is also used
in Section 3 of [105], where we first recover initial data from the state. Moreover,
as in [451] and [350], our proof relies on the existence of an output feedback which
distinguishes every pair of distinct states (see [466] for analytic systems and [106]
for C∞ systems).

Remark 11.39. It is established by Frédéric Mazenc and Laurent Praly in [350]
that “distinguishability” with a universal time-varying control, global stabilizability
by state feedback, and observability of blow-up are sufficient conditions for the
existence of a time-varying dynamic output feedback (of infinite dimension and
in a more general sense than the one considered in Definition 11.33) guaranteeing
boundedness and convergence of all the solutions defined at time t = 0. The
methods developed in [350] can be directly applied to our situation. In this case,
Theorem 11.37 still gives two improvements of the results of [350]: We get that 0 is
asymptotically stable for the closed-loop system, instead of only attractor for time
0, and our dynamic extension is of finite dimension, instead of infinite dimension.

Remark 11.40. If (C̃) is locally stabilizable in small time by means of dynamic
continuous periodic time-varying output feedback laws, then the origin (of Rn) is
locally continuously reachable (for (C̃)) in small time (use Lemma 3.5 in [107])
and, if moreover f and h are analytic, then (C̃) is locally Lie null-observable; see
[107, Proposition 4.3].

Remark 11.41. There are linear control systems which are controllable and
observable but which cannot be locally asymptotically stabilized by means of contin-
uous time-varying feedback laws. This is, for example, the case for the controllable
and observable linear system, with n = 2, m = 1, and p = 1,

ẋ1 = x2, ẋ2 = u, y = x1.

Indeed, assume that this system can be locally asymptotically stabilized by means
of a continuous time-varying output feedback law u : R×R → R. Then there exist
r > 0 and τ > 0 such that, if ẋ1 = x2, ẋ2 = u(x1, t),

(11.115) (x1(0)2 + x2(0)2 6 r2) ⇒ (x1(τ)2 + x2(τ)2 6 r2/5).

Let (un; n ∈ N) be a sequence of functions from R × R into R of class C∞ which
converges uniformly to u on each compact subset of R × R. Then, for n large
enough, ẋ1 = x2, ẋ2 = un(x1, t) imply

(11.116) (x1(0)2 + x2(0)2 6 r2) ⇒ (x1(τ)2 + x2(τ)2 6 r2/4).
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However, since the time-varying vector field X on R2 defined by

X1(x1, x2, t) = x2, X2(x1, x2, t) = un(x1, t), ∀(x1, r2, t) ∈ R3,

has a divergence equal to 0, the flow associated with X preserves area, which is a
contradiction to (11.116).

11.4. Discontinuous feedback laws

In this section, we just briefly describe some results on discontinuous feedback
laws.

The pioneering work on this type of feedback laws is [467] by Héctor Sussmann.
It is proved in [467] that any controllable analytic system can be asymptotically
stabilized by means of piecewise analytic feedback laws.

One of the key questions for discontinuous feedback laws is what is the relevant
definition of a solution of the closed-loop system. In [467], this question is solved
by specifying an “exit rule” on the singular set. However, it is not completely clear
how to implement this exit rule (but see Remark 11.42 on the following page for
this problem), which is important in order to analyze the robustness.

One possibility, as introduced and justified by Henry Hermes in [224] (see
also [131, 308]), is to consider that the solutions of the closed-loop systems are
the solutions in the sense of Alexey Filippov [170]. Then we prove in [131] that
a control system which can be stabilized by means of a discontinuous feedback
law can be stabilized by means of continuous periodic time-varying feedback laws.
Moreover, we also prove in [131] that, if the system is control affine, it can be
stabilized by means of continuous stationary feedback laws. See also the paper
[429] by Eugene Ryan. In particular, the control system (11.1) cannot be stabilized
by means of discontinuous feedback laws if one considers Filippov’s solutions of the
closed-loop system.

Another interesting possibility is to consider “Euler” solutions; see [98] for a
definition. This is a quite natural notion for control systems since it corresponds
to the idea that one uses the same control during small intervals of time. With
this type of solutions, Francis Clarke, Yuri Ledyaev, Eduardo Sontag and Andrei
Subbotin proved in [98] that controllability (or even asymptotic controllability)
implies the existence of stabilizing discontinuous feedback laws. Their feedback
laws are robust to (small) actuator disturbances.

The original proof of [98] has been simplified by Ludovic Rifford in [403].
In this paper he shows that asymptotic controllability implies the existence of a
semiconcave Lyapunov function. This type of regularity allows us to construct
directly stabilizing feedback laws. His feedback laws have some new interesting
regularity properties and the set of singularities can be made repulsive for the
closed-loop system. In [404] Ludovic Rifford has strongly improved his regularity
result in the case of driftless control affine systems.

The previous papers [98, 403] use the existence of a control Lyapunov function
as a major step to construct discontinuous stabilizing feedback laws. A completely
different approach for the proof of the existence of these discontinuous feedback
laws was proposed by Fabio Ancona and Alberto Bressan in [12]. They allow us to
consider not only the Euler solutions, but also the usual Carathéodory solutions.
These solutions are also allowed in the paper [403].
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However, there is a problem of robustness of all these discontinuous feedback
laws with respect to measurement disturbances: using a result in [99] due to Francis
Clarke, Yuri Ledyaev and Ronald Stern, Yuri Ledyaev and Eduardo Sontag proved
in [308] that these feedback laws are in general (e.g. for the control system (11.1))
not robust to arbitrarily small measurement disturbances. In [308] Yuri Ledyaev
and Eduardo Sontag introduced a new class of “dynamic and hybrid” discontinuous
feedback laws and showed that controllability (or even asymptotic controllability)
implies the existence of stabilizing discontinuous feedback laws in this class which
are robust to (small) actuators and measurement disturbances.

In order to get some robustness to measurement disturbances for the discon-
tinuous feedback laws of the type in [98], it has been independently proved by
Eduardo Sontag in [459] and by Francis Clarke, Yuri Ledyaev, Ludovic Rifford and
Ronald Stern in [97] that it is interesting to impose a lower bound on the intervals
of time on which the same control is applied. For the robustness of the feedback
laws constructed by Fabio Ancona and Alberto Bressan in [12], we refer to their
papers [13, 14].

To take care of this problem of robustness, Christophe Prieur proposed in [393]
a new type of feedback laws, namely hybrid feedback laws. He adds discrete vari-
ables to the continuous control system which produce hysteresis between controllers.
An explicit example of these feedback laws is given for the nonholonomic integrator
(11.1) by Christophe Prieur and Emmanuel Trélat in [394] and is generalized for
control affine driftless systems in [395].

Classical discontinuous feedback laws are provided by the so-called sliding mode
control in engineering literature. These feedback laws are smooth outside attract-
ing smooth hypersurfaces. We refer to [491] by Vadim Utkin for this approach.
For the case of the nonholonomic integrator (11.1), see, in particular, [58] by An-
thony Bloch and Sergey Drakunov. Again, it would be important to evaluate the
robustness of this type of feedback laws with respect to measurement disturbances.

Remark 11.42. It would be interesting to know if one can in some sense “im-
plement” (a good enough approximation of) Sussmann’s exit rule (see [467]) by
means of Sontag and Ledyaev’s “dynamic-hybrid” strategy. Another possibility to
implement this exit rule could be by means of hysteresis feedback laws introduced
by Christophe Prieur in [393].



CHAPTER 12

Feedback design tools

In this chapter we give some tools to design stabilizing feedback laws for our
control system (C) (i.e., the control system ẋ = f(x, u), see page 288) and present
some applications. The tools we want to describe are:

1. control Lyapunov function (Section 12.1),
2. damping (Section 12.2),
3. homogeneity (Section 12.3),
4. averaging (Section 12.4),
5. backstepping (Section 12.5),
6. forwarding (Section 12.6),
7. transverse functions (Section 12.7).

There are in fact plenty of other powerful methods; e.g., frequency-domain methods,
zero-dynamics, center manifolds, adaptive control, etc. See, for example, [17, 23,
130, 149, 178, 247, 288, 376] and the references therein.

12.1. Control Lyapunov function

A basic tool to study the asymptotic stability of an equilibrium point is the
Lyapunov function (see, in particular, the book [24] by Andrea Bacciotti and Lionel
Rosier). In the case of a control system, the control is at our disposal, so there are
more “chances” that a given function could be a Lyapunov function for a suitable
choice of feedback laws. Hence Lyapunov functions are even more useful for the
stabilization of control systems than for dynamical systems without control.

For simplicity, we restrict our attention to global asymptotic stabilization and
assume that O = Rn × Rm. The definitions and theorems of this section can be
easily adapted to treat local asymptotic stabilization and smaller sets O.

In the framework of control systems, the Lyapunov function approach leads to
the following definition, due to Zvi Artstein [20].

Definition 12.1. A function V ∈ C1(Rn; R) is a control Lyapunov function
for the control system (C) if

V (x) → +∞, as |x| → +∞,

V (x) > 0, ∀x ∈ Rn \ {0},
∀x ∈ Rn \ {0},∃u ∈ Rm s.t. f(x, u) · ∇V (x) < 0.

Moreover, V satisfies the small control property if, for every strictly positive real
number ε, there exists a strictly positive real number η such that, for every x ∈ Rn
with 0 < |x| < η, there exists u ∈ Rm satisfying |u| < ε and f(x, u) · ∇V (x) < 0.

With this definition, one has the following theorem due to Zvi Artstein [20].

313
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Theorem 12.2. If the control system (C) is globally asymptotically stabilizable
by means of continuous stationary feedback laws, then it admits a control Lyapunov
function satisfying the small control property. If the control system (C) admits
a control Lyapunov function satisfying the small control property, then it can be
globally asymptotically stabilized by means of

1. continuous stationary feedback laws if the control system (C) is control
affine (see Definition 3.12 on page 131),

2. relaxed controls (see [20] for a definition) for general f .

Instead of relaxed controls in the last statement, one can use continuous peri-
odic time-varying feedback laws. Indeed, one has the following theorem, proved in
[131].

Theorem 12.3. The control system (C) can be globally asymptotically stabilized
by means of continuous periodic time-varying feedback laws if it admits a control
Lyapunov function satisfying the small control property.

Let us point out that, even in the case of control affine systems, Artstein’s
proof of Theorem 12.2 relies on partitions of unity and so may lead to complicate
stabilizing feedback laws. Explicit and simple feedback laws are given by Eduardo
Sontag in [455]. He proves:

Theorem 12.4. Assume that V is a control Lyapunov function satisfying the
small control property for the control system (C). Assume that (C) is control affine,
i.e., (see Definition 3.12 on page 131)

f(x, u) = f0(x) +
m∑
i=1

uifi(x), ∀(x, u) ∈ Rn × Rm,

for some f0, . . . , fm in C∞(Rn; Rn). Then u = (u1, . . . , um)tr : Rn → Rm defined
by

ui(x) := −ϕ

f0(x) · ∇V (x),
m∑
j=1

(fj(x) · ∇V (x))2
 fi(x) · ∇V (x),(12.1)

with

(12.2) ϕ(a, b) =

{
a+
√
a2+b2

b if b 6= 0,
0 if b = 0,

is continuous, vanishes at 0 ∈ Rn and globally asymptotically stabilizes the control
system (C).

Open Problem 12.5. For systems which are not control affine, find some
explicit formulas for globally asymptotically stabilizing continuous periodic time-
varying feedback laws, given a control Lyapunov function satisfying the small control
property. (By Theorem 12.3, such feedback laws exist.)

12.2. Damping feedback laws

Control Lyapunov function is a very powerful tool used to design stabilizing
feedback laws. But one needs to guess candidates for such functions in order to
apply Sontag’s formula (12.1). For mechanical systems at least, a natural candidate
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for a control Lyapunov function is given by the total energy, i.e., the sum of potential
and kinetic energies; but, in general, it does not work.

Example 12.6. Consider the classical spring-mass system. The control system
is

ẋ1 = x2, ẋ2 = − k

m
x1 +

u

m
,(12.3)

where m is the mass of the point attached to the spring, x1 is the displacement of
the mass (on a line), x2 is the speed of the mass, k is the spring constant, and u is
the force applied to the mass. The state is (x1, x2)tr ∈ R2 and the control is u ∈ R.
The total energy E of the system is

E =
1
2
(kx2

1 +mx2
2).

The control system can be written in the form

ẋ = f0(x) + uf1(x), x = (x1, x2)tr ∈ R2, u ∈ R,(12.4)

with

f0(x) :=
(

x2

− k
mx1

)
, f1(x) :=

(
0
1
m

)
, ∀x = (x1, x2)tr ∈ R2.

One has

f0(x) · ∇E(x) = 0, ∀x = (x1, x2)tr ∈ R2,

f1(x) · ∇E(x) = x2, ∀x = (x1, x2)tr ∈ R2.

Hence, if x2 = 0, there exists no u such that (f0(x)+uf1(x))·∇E(x) < 0. Therefore,
the total energy is not a control Lyapunov function. But one has

(f0(x) + uf1(x)) · ∇E(x) = uf1(x) · ∇E(x) = ux2.

Hence, it is tempting to consider the feedback law

u(x) := −ν∇E(x) · f1(x) = −νx2,(12.5)

where ν > 0 is fixed. With this feedback law, the closed-loop system is

ẋ1 = x2,

ẋ2 = − k

m
x1 −

ν

m
x2,(12.6)

which is the dynamics of a spring-mass-dashpot system. In other words, the feedback
law adds some damping to the spring-mass system. With this feedback law,

∇E(x) · (f0(x) + u(x)f1(x)) 6 0,

so that (0, 0) ∈ R2 is stable for the closed-loop system. In fact, (0, 0) is globally
asymptotically stable for this system. Indeed, if a trajectory x(t), t ∈ R, of the
closed-loop system is such that E(x(t)) does not depend on time, then

x2(t) = 0, ∀t ∈ R.(12.7)

Derivating (12.7) with respect to time and using (12.6), one gets

x1(t) = 0, ∀t ∈ R,

which, together with (12.7) and LaSalle’s invariance principle (see, for example,
[458, Lemma 5.7.8, page 226]), proves that (0, 0)tr ∈ R2 is globally asymptotically
stable for the closed-loop system.
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The previous example can be generalized in the following way. We assume that
the control system (C) is control affine. Hence

f(x, u) = f0(x) +
m∑
i=1

uifi(x), ∀(x, u) ∈ Rn × Rm,

for some f0, . . . , fm in C∞(Rn; Rn). Let V ∈ C∞(Rn; R) be such that

V (x) → +∞, as |x| → +∞,(12.8)

V (x) > V (0), ∀x ∈ Rn \ {0},(12.9)

f0 · ∇V 6 0 in Rn.(12.10)

Then

f · ∇V 6
m∑
i=1

ui(fi · ∇V ).

Hence it is tempting to consider the feedback law u = (u1, . . . , um)tr defined by

ui = −fi · ∇V, ∀i ∈ {1, . . . ,m}.(12.11)

With this feedback law, one has

f(x, u(x)) · ∇V (x) = f0(x) · ∇V (x)−
m∑
i=1

(fi(x) · ∇V (x))2 6 0.

Therefore, 0 ∈ Rn is a stable point for the closed-loop system ẋ = f(x, u(x)), that
is, for every ε > 0, there exists η > 0 such that

(ẋ = f(x, u(x)), |x(0)| 6 η) ⇒ (|x(t)| 6 ε, ∀t > 0);

(see (i) of Theorem 10.8 on page 280). Moreover, by LaSalle’s invariance principle
(see, for example, [458, Lemma 5.7.8, page 226]) 0 ∈ Rn is globally asymptotically
stable if the following property (P) holds.

(P) For every x ∈ C∞(R; Rn) such that

ẋ(t) = f0(x(t)), ∀t ∈ R,(12.12)

fi(x(t)) · ∇V (x(t)) = 0, ∀t ∈ R, ∀i ∈ {0, . . . ,m},(12.13)

one has

x(t) = 0, ∀t ∈ R.(12.14)

This method has been introduced independently by David Jacobson in [250] and
by Velimir Jurdjevic and John Quinn [261]. There are many sufficient conditions
available for property (P). Let us give, for example, the following condition, due to
Velimir Jurdjevic and John Quinn [261]; see also [310] by Kyun Lee and Aristotle
Arapostathis for a more general condition.

Theorem 12.7. With the above notations and properties, assume that, for
every x ∈ Rn \ {0},

Span{f0(x), adkf0fi(x), i = 1, . . . ,m, k ∈ N} = Rn,(12.15)

∇V (x) 6= 0.(12.16)

Then property (P) is satisfied. In particular, the feedback law defined by (12.11)
globally asymptotically stabilizes the control system (C).
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(Let us recall that adkf0fi is defined in Definition 3.11 on page 130.)
Proof of Theorem 12.7. Let us start by recalling a classical property of

the Lie derivative (defined on page 146): for every X ∈ C∞(Rn; Rn), every Y ∈
C∞(Rn; Rn), and every W ∈ C∞(Rn),

LX(LYW )− LY (LXW ) = L[X,Y ]W.(12.17)

(We already used this property; see (3.65).) Let x ∈ C∞(R; Rn) be such that
(12.12) and (12.13) hold. For i ∈ {0, . . . ,m}, let Ai ∈ C∞(Rn) and αi ∈ C∞(R) be
defined by

Ai(y) := fi(y) · ∇V (y) = (LfiV )(y), ∀y ∈ Rn,(12.18)

αi(t) := Ai(x(t)), ∀t ∈ R.(12.19)

Using (12.12), (12.17), (12.18) and (12.19), one gets

(12.20) α̇i(t) = (Lf0Ai)(x(t)) = (Lf0(LfiV ))(x(t))

= (L[f0,fi]V )(x(t)) + (Lfi
(Lf0V ))(x(t)), ∀t ∈ R.

From (12.10), and (12.13) for i = 0, one sees that Lf0V is maximal at x(t). In
particular,

(Lfi
(Lf0V ))(x(t)) = 0, ∀t ∈ R.(12.21)

From (12.20) and (12.21), one gets

α̇i(t) = (L[f0,fi]V )(x(t)), ∀t ∈ R.(12.22)

Continuing in the same way, an easy induction argument on k shows that

α
(k)
i (t) = (Ladk

f0
fi
V )(x(t)) = adkf0fi(x(t)) · ∇V (x(t)), ∀t ∈ R, ∀k ∈ N.(12.23)

From (12.15) and (12.23), one gets

(∇V (x(t)) = 0 or x(t) = 0), ∀t ∈ R,(12.24)

which, together with (12.16), implies (12.14). This concludes the proof of Theorem
12.7.

Let us point out that the damping method is also very useful when there are
some constraints on the controls. Indeed if, for example, one wants that, for some
ε > 0,

|ui(x)| 6 ε,∀i ∈ {1, . . . ,m},

then it suffices to replace (12.11) by

ui(x) = −σ(fi(x) · ∇V (x)),

where σ ∈ C0(R; [−ε, ε]) is such that sσ(s) > 0 for every s ∈ R \ {0}. We give an
application of this variant in the next section (Section 12.2.1).

Remark 12.8. Note that, in general, V is not a control Lyapunov function (see
Definition 12.1 on page 313) for the control system (C). However, under suitable
homogeneity assumptions on the fi’s, Ludovic Faubourg and Jean-Baptiste Pomet
constructed in [163] an explicit perturbation of V which is a control Lyapunov
function for the control system (C).
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Remark 12.9. Let us show on a simple system the limitation of this damping
approach. Let us consider the following control system:

ẋ1 = x2, ẋ2 = −x1 + u.(12.25)

This control system is the classical spring mass control system (12.3) considered in
Example 12.6 on page 315, with normalized physical constants (namely k = m = 1).
With the Lyapunov strategy used above, let V ∈ C∞(R2; R) be defined by

V (x) = x2
1 + x2

2,∀x = (x1, x2)tr ∈ R2.

We have
V̇ = 2x2u.

So it is tempting to take, at least if we remain in the class of linear feedback laws,

u(x1, x2) = −νx2,

where ν is some fixed positive real number. An a priori guess would be that, if we
let ν be quite large, then we get a quite good convergence, as fast as we want. But
this is completely wrong. Indeed, from now on, let us assume that ν > 2. Then

xν1(t) := exp

(
−ν +

√
ν2 − 4

2
t

)
, xν2(t) := ẋν1(t)

is a trajectory of the closed-loop system. Let T > 0 be given. Then, as ν →∞,

xν1(0) = 1, xν2(0) → 0.

However, still as ν →∞,
xν1(T ) → 1 6= 0.

Note also that the eigenvalues of the closed-loop system are

λ1 =
−ν −

√
ν2 − 4

2
, λ2 =

−ν +
√
ν2 − 4

2
.

We have λ1 < 0 and λ2 < 0, which confirms the interest of the damping. Moreover,

lim
ν→+∞

λ1 = −∞.

However,
lim

ν→+∞
λ2 = 0,

explaining why that it is not a good idea to take ν → +∞.
Note that, using the Kalman rank condition (Theorem 1.16 on page 9), one

easily checks that the linear control system (12.25) is controllable. Hence, by the
pole-shifting theorem (Theorem 10.1 on page 275), for every λ > 0, there exist
(k1, k2)tr ∈ R2 and C > 0 such that, for every solution x := (x1, x2)tr of the
closed-loop system

ẋ1 = x2, ẋ2 = k1x1 + k2x2,

one has
|x(t)| 6 Ce−λt|x(0)|, ∀t ∈ [0,+∞).

This shows an important limitation of the damping method: It can lead to a rather
slow convergence compared to what can be done.
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12.2.1. Orbit transfer with low-thrust systems. Electric propulsion sys-
tems for satellites are seriously considered for performing large amplitude orbit
transfers. Let us recall that electric propulsion is characterized by a low-thrust
acceleration level but a high specific impulse. In this section, where we follow
[129], we are interested in a large amplitude orbit transfer of a satellite in a central
gravitational field by means of an electric propulsion system.

The state of the control system is the position of the satellite (here identified
to a point: we are not considering the attitude of the satellite) and the speed of the
satellite. Instead of using Cartesian coordinates, one prefers to use the “orbital”
coordinates. The advantage of this set of coordinates is that, in this set, the first five
coordinates remain unchanged if the thrust vanishes: these coordinates characterize
the Keplerian elliptic orbit. When thrust is applied, they characterize the Keplerian
elliptic osculating orbit of the satellite. The last component is an angle which gives
the position of the satellite on the Keplerian elliptic osculating orbit of the satellite.
A usual set of orbital coordinates is

p := a(1− e2),
ex := e cos ω̃, with ω̃ = ω + Ω,

ey := e sin ω̃,

hx := tan
i

2
cos Ω,

hy := tan
i

2
sinΩ,

L := ω̃ + v,

where a, e, ω, Ω, i characterize the Keplerian osculating orbit:

1. a is the semi-major axis,
2. e is the eccentricity,
3. i is the inclination with respect to the equator,
4. Ω is the right ascension of the ascending node,
5. ω is the angle between the ascending node and the perigee,

and where v is the true anomaly; see, e.g., [511, Partie A-a].
In this set of coordinates, the equations of motion are

(12.26)



dp

dt
= 2

√
p3

µ

1
Z
S,

dex
dt

=
√
p

µ

1
Z

[Z(sinL)Q+AS − ey(hx sinL− hy cosL)W ] ,

dey
dt

=
√
p

µ

1
Z

[−Z(cosL)Q+BS − ex(hx sinL− hy cosL)W ] ,

dhx
dt

=
1
2

√
p

µ

X

Z
(cosL)W,

dhy
dt

=
1
2

√
p

µ

X

Z
(sinL)W,

dL

dt
=
√
µ

p3
Z2 +

√
p

µ

1
Z

(hx sinL− hy cosL)W,
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where µ > 0 is a gravitational coefficient depending on the central gravitational
field, Q, S, W, are the radial, orthoradial, and normal components of the thrust
delivered by the electric propulsion systems, and where

Z := 1 + ex cosL+ ey sinL,(12.27)

A := ex + (1 + Z) cosL,(12.28)

B := ey + (1 + Z) sinL,(12.29)

X := 1 + h2
x + h2

y.(12.30)

We study the case, useful in applications, where

Q = 0,(12.31)

and, for some ε > 0,

|S| 6 ε and |W | 6 ε.

Note that ε is small, since the thrust acceleration level is low.
In this section we give feedback laws, based on the damping approach, which

(globally) asymptotically stabilize a given Keplerian elliptic orbit characterized by
the coordinates p̄, ēx, ēy, h̄x, h̄y.

Remark 12.10. We are not interested in the position (given by L(t)) at time
t of the satellite on the desired Keplerian elliptic orbit. For papers taking into
account this position, see [92, 129], which use forwarding techniques developed
by Frédéric Mazenc and Laurent Praly in [349], by Mrdjan Janković, Rodolphe
Sepulchre and Petar Kokotović in [254], and in [442, Section 6.2]; see also Section
12.6.

In order to simplify the notations (this is not essential for the method), we
restrict our attention to the case where the desired final orbit is geostationary, that
is,

ēx = ēy = h̄x = h̄y = 0.

Let

A = (0,+∞)× B1 × R2 × R,

where

(12.32) B1 = {e = (ex, ey) ∈ R2; e2x + e2y < 1}.

With these notations, one requires that the state (p, ex, ey, hx, hy, L) belongs to A.
We are looking for two maps

S : A
(p, ex, ey, hx, hy, L)

→
7→

[−ε, ε]
S(p, ex, ey, hx, hy, L),

and

W : A
(p, ex, ey, hx, hy, L)

→
7→

[−ε, ε]
W (p, ex, ey, hx, hy, L),
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such that (p̄, 0, 0, 0, 0) ∈ R5 is globally asymptotically stable for the closed-loop
system (see (12.26) and (12.31))

(12.33)



dp

dt
= 2

√
p3

µ

1
Z
S,

dex
dt

=
√
p

µ

1
Z

[AS − ey(hx sinL− hy cosL)W ] ,

dey
dt

=
√
p

µ

1
Z

[BS − ex(hx sinL− hy cosL)W ] ,

dhx
dt

=
1
2

√
p

µ

X

Z
(cosL)W,

dhy
dt

=
1
2

√
p

µ

X

Z
(sinL)W,

dL

dt
=
√
µ

p3
Z2 +

√
p

µ

1
Z

(hx sinL− hy cosL)W,

with (p, ex, ey, hx, hy, L) ∈ A.
Note that A 6= R6 and that we are interested only in the first five variables. So

one needs to specify what we mean by “(p̄, 0, 0, 0, 0) is globally uniformly asymptot-
ically stable for the closed-loop system”. Various natural definitions are possible.
We take the one which seems to be the strongest natural one, namely we require:

- Uniform stability, that is, for every ε0 > 0, there exists ε1 > 0 such that
every solution of (12.33) defined at time 0 and satisfying

|p(0)− p̄|+ |ex(0)|+ |ey(0)|+ |hx(0)|+ |hy(0)| < ε1,

is defined for every time t > 0 and satisfies, for every t > 0,

|p(t)− p̄|+ |ex(t)|+ |ey(t)|+ |hx(t)|+ |hy(t)| < ε0.

- Uniform global attractivity, that is, for every M > 0 and for every η > 0,
there exists T > 0 such that every solution of (12.33), defined at time 0
and satisfying

1
p(0)

+ p(0) +
1

1− (ex(0)2 + ey(0)2)
+ |hx(0)|+ |hy(0)| < M,

is defined for every time t > 0 and satisfies, for every time t > T ,

|p(t)− p̄|+ |ex(t)|+ |ey(t)|+ |hx(t)|+ |hy(t)| < η.

We start with a change of “time”, already used by Sophie Geffroy in [190]. One
describes the evolution of (p, ex, ey, hx, hy) as a function of L instead of t. Then
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system (12.33) reads

(12.34)



dp

dL
= 2KpS,

dex
dL

= K[AS − ey(hx sinL− hy cosL)W ],

dey
dL

= K[BS − ex(hx sinL− hy cosL)W ],

dhx
dL

=
K

2
X(cosL)W,

dhy
dL

=
K

2
X(sinL)W,

dt

dL
= K

√
µ

p
Z,

with

(12.35) K =
[
µ

p2
Z3 + (hx sinL− hy cosL)W

]−1

.

Let V be a function of class C1 from (0,∞)× B1 × R2 into [0,∞) such that

(12.36) V (p, ex, ey, hx, hy) = 0 ⇔ (p, ex, ey, hx, hy) = (p̄, 0, 0, 0, 0),

V (p, ex, ey, hx, hy) → +∞ as (p, ex, ey, hx, hy) → ∂((0,+∞)× B1 × R2).(12.37)

In (12.37), the boundary ∂((0,+∞)× B1 × R2) is taken in the set [0,+∞]× B̄1 ×
[−∞,+∞]2. Therefore condition (12.37) is equivalent to the following condition:
For every M > 0, there exists a compact set K included in (0,+∞)×B1×R2 such
that(

(p, ex, ey, hx, hy) ∈ ((0,+∞)× B1 × R2) \ K
)
⇒ (V (p, ex, ey, hx, hy) > M).

(One can take, for example,

(12.38) V (p, ex, ey, hx, hy) =
1
2

(
(p− p̄)2

p
+

e2

1− e2
+ h2

)
,

with e2 = e2x + e2y and h2 = h2
x + h2

y.)
The time derivative of V along a trajectory of (12.34) is given by

V̇ = K(αS + βW ),

with

α := 2p
∂V

∂p
+A

∂V

∂ex
+B

∂V

∂ey
,(12.39)

β := (hy cosL− hx sinL)
(
ey
∂V

∂ex
+ ex

∂V

∂ey

)
(12.40)

+
1
2
X

(
(cosL)

∂V

∂hx
+ (sinL)

∂V

∂hy

)
.

Following the damping method, one defines

S := −σ1(α),(12.41)
W := −σ2(β)σ3(p, ex, ey, hx, hy),(12.42)
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where σ1 : R → R, σ2 : R → R and σ3 : (0,+∞)× B1 × R2 → (0, 1] are continuous
functions such that

σ1(s)s > 0, ∀s ∈ R \ {0},(12.43)

σ2(s)s > 0, ∀s ∈ R \ {0},(12.44)

‖ σ1 ‖L∞(R)< ε,(12.45)

‖ σ2 ‖L∞(R)< ε,(12.46)

(12.47) σ3(p, ex, ey, hx, hy)

6
1

1 + ε

µ

p2

(1− |e|)3

|h|
, ∀(p, ex, ey, hx, hy) ∈ (0,+∞)× B1 × (R2 \ {0}).

The reason for using σ3 is to ensure the existence of K defined by (12.35). Indeed
from (12.27), (12.34), (12.42), (12.46) and (12.47), one gets, for every L ∈ R,

µZ3

p2
+ (hx sinL− hy cosL)W > 0

on (0,∞)× B1 × R2 and therefore K (see (12.35)) is well defined for every

(p, ex, ey, hx, hy, L) ∈ (0,+∞)× B1 × R2 × R.

One has

‖ S ‖L∞((0,+∞)×B1×R2×R)< ε,(12.48)

‖W ‖L∞((0,+∞)×B1×R2×R)< ε,(12.49)

V̇ 6 0 and (V̇ = 0 ⇔ α = β = 0).

Since the closed-loop system (12.34) is L-varying but periodic with respect to L,
one may apply LaSalle’s invariance principle (see, for example, [458, Lemma 5.7.8,
page 226]): in order to prove that (p̄, 0, 0, 0, 0) is globally asymptotically stable
on (0,+∞) × B1 × R2 for the closed-loop system (12.34), it suffices to check that
every trajectory of (12.34) such that α = β = 0 is identically equal to (p̄, 0, 0, 0, 0).
For such a trajectory, one has (see in particular (12.34), (12.39), (12.40), (12.41),
(12.42), (12.43), (12.44) and (12.47))

dp

dL
= 0,

dex
dL

= 0,
dey
dL

= 0,
dhx
dL

= 0,
dhy
dL

= 0,(12.50)

2p
∂V

∂p
+A

∂V

∂ex
+B

∂V

∂ey
= 0,(12.51)

(hy cosL− hx sinL)
(
ey
∂V

∂ex
+ ex

∂V

∂ey

)
(12.52)

+
1
2
X

(
(cosL)

∂V

∂hx
+ (sinL)

∂V

∂hy

)
= 0.

Hence p, ex, ey, hx and hy are constant. By (12.28) and (12.29), the left hand side
of (12.51) is a linear combination of the functions cosL, sinL, cos2 L, sinL cosL and
the constant functions. These functions are linearly independent, so that

2p
∂V

∂p
+ ex

∂V

∂ex
+ 2ey

∂V

∂ey
= 0 ,

∂V

∂ex
= 0 ,

∂V

∂ey
= 0,
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and therefore
∂V

∂p
=
∂V

∂ex
=
∂V

∂ey
= 0,

which, together with (12.30) and (12.52), gives

∂V

∂hx
=
∂V

∂hy
= 0.

Hence it suffices to impose on V that

(12.53) (∇V (p, ex, ey, hx, hy) = 0) ⇒ ((p, ex, ey, hx, hy) = (p̄, 0, 0, 0, 0)).

Note that, if V is given by (12.38), then V satisfies (12.53).

Remark 12.11. It is interesting to compare the feedback constructed here to
the open-loop optimal control for the minimal time problem (reach (p̄, 0, 0, 0, 0) in
a minimal time with the constraint |u(t)| 6 M). Numerical experiments show that
the use of the previous feedback laws (with suitable saturations σi, i ∈ {1, 2, 3})
gives trajectories which are nearly optimal if the state is not too close to (p̄, 0, 0, 0, 0).
Note that our feedback laws are quite easy to compute compared to the optimal
trajectory and provide already good robustness properties compared to the open-
loop optimal trajectory (the optimal trajectory in a closed-loop form being, at
least for the moment, out of reach numerically). However, when one is close to the
desired target, our feedback laws are very far from being optimal. When one is
close to the desired target, it is much better to linearize around the desired target
and apply a standard Linear-Quadratic strategy. This problem is strongly related
to Remark 12.9 on page 318.

Remark 12.12. A related approach has been used for a Schrödinger control
system by Mazyar Mirrahimi, Pierre Rouchon and Gabriel Turinici in [360]; see
also [44] for degenerate cases. Note that, in the framework of a Schrödinger control
system, the damping feedback approach is used to construct open-loop controls
(see also Remark 12.11): for a Schrödinger control system, there are few quantities
which can be measured and every measure modifies the state.

12.2.2. Damping feedback and driftless system. Throughout this sec-
tion, we again assume that (C) is a driftless control affine system, i.e.,

f(x, u) =
m∑
i=1

uifi(x).

We also assume O = Rn × Rm, that the fi’s are of class C∞ on Rn and that
the Lie algebra rank conditions (11.45) hold. Then Theorem 11.14 on page 297
asserts that, for every T > 0, the control system (C) is globally asymptotically
stabilizable by means of T -periodic time-varying feedback laws. Let us recall that
the main ingredient of the proof is the existence of ū in C∞(Rn×R; Rm) vanishing
on {0}×R, T -periodic with respect to time and such that, if ẋ = f(x, ū(x, t)), then

x(T ) = x(0),(12.54)

(12.55) If x(0) 6= 0, the linearized control system around the trajectory

t ∈ [0, T ] 7→ (x(t), ū(x(t), t)) is controllable on [0, T ].
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In this section, we want to explain how the damping method allows us to
construct from this ū a T -periodic time-varying feedback law u which globally
asymptotically stabilizes the control system (C). We follow, with slight modifica-
tions, [127], which is directly inspired from [387] by Jean-Baptiste Pomet. Let
W ∈ C∞(Rn; R) be any function such that

W (x) → +∞ as |x| → +∞,

W (x) > W (0), ∀x ∈ Rn \ {0},
∇W (x) 6= 0, ∀x ∈ Rn \ {0}.(12.56)

One can take, for example, W (x) = |x|2. Let X(x, t) =
∑m
i=1 ūi(x, t)fi(x) and let

Φ : Rn×R×R → Rn, (x, t, s) 7→ Φ(x, t, s) be the flow associated to the time-varying
vector field X, i.e.,

∂Φ
∂t

= X(Φ, t),(12.57)

Φ(x, s, s) = x, ∀x ∈ Rn, ∀s ∈ R.(12.58)

It readily follows from this definition that one has the following classical formula

Φ(x, t3, t1) = Φ(Φ(x, t2, t1), t3, t2), ∀x ∈ Rn, ∀(t1, t2, t3) ∈ R3;(12.59)

compare with (1.8). Note that by (12.54),

Φ(x, 0, T ) = Φ(x, 0, 0) = x, ∀x ∈ Rn.(12.60)

Let us now define V ∈ C∞(Rn × R; R) by

V (x, t) = W (Φ(x, 0, t)).(12.61)

By (12.60), V is T -periodic with respect to time and one easily checks that

V (x, t) > V (0, t) = W (0),∀(x, t) ∈ (Rn \ {0})× R,
lim

|x|→+∞
Min{V (x, t); t ∈ R} = +∞.

From (12.59) with t1 := t, t2 := τ + t and t3 := 0, and (12.61), we have

V (Φ(x, τ + t, t), τ + t) = W (Φ(x, 0, t)), ∀x ∈ Rn, ∀(t, τ) ∈ R2.(12.62)

Differentiating (12.62) with respect to τ and then letting τ = 0, we get, using
(12.57) and (12.58),

∂V

∂t
+X · ∇V = 0.(12.63)

From (12.63), along the trajectories of ẋ =
∑m
i=1(ūi + vi)fi(x), the time derivative

V̇ of V is

V̇ =
∂V

∂t
+ (

m∑
i=1

(ūi + vi)fi) · ∇V

=
m∑
i=1

vi(fi · ∇V ).(12.64)

Hence, as above, one takes vi(x, t) = −fi(x)·∇V (x, t), which, together with (12.64),
gives

V̇ = −
m∑
i=1

(fi(x) · ∇V (x, t))2.

One has the following proposition.
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Proposition 12.13. The feedback law u := ū + v globally asymptotically sta-
bilizes the control system (C).

Proof of Proposition 12.13. By the time-periodic version of the LaSalle
invariance principle (see, for example, [414, Theorem 1.3, Chapter II, pages 50–
51]), in order to prove that u = ū+ v globally asymptotically stabilizes the control
system (C), it suffices to check that every solution x̃ : R → Rn of ˙̃x = X(x̃, t) such
that

fi(x̃(t)) · ∇V (x̃(t), t) = 0, ∀t ∈ R, ∀i ∈ {1, . . . ,m},(12.65)

satisfies

x̃(0) = 0.(12.66)

Let ũ ∈ C∞([0, T ]; Rm) be defined by

ũ(t) := ū(x̃(t), t), ∀t ∈ R.

Let A ∈ C∞([0, T ];L(Rn; Rn)) and B ∈ C∞([0, T ];L(Rm; Rn)) be defined by

A(t) :=
∂f

∂x
(x̃(t), ũ(t)), ∀t ∈ [0, T ],(12.67)

B(t) :=
∂f

∂u
(x̃(t), ũ(t)), ∀t ∈ [0, T ].(12.68)

The map t ∈ [0, T ] 7→ (x̃(t), ũ(t)) ∈ Rn × Rm is a trajectory of the control system
(C) and the linearized control system around this trajectory is the time-varying
linear control system

ẋ = A(t)x+B(t)u, t ∈ [0, T ],(12.69)

where the state is x ∈ Rn and the control is u ∈ Rm. We assume that (12.66) does
not hold. Then, by (12.55),

the linear control system (12.69) is controllable.(12.70)

Let Ã ∈ C∞([0, T ];L(Rn; Rn)) be defined by

Ã(t) :=
∂X

∂x
(x̃(t), t), ∀t ∈ [0, T ].(12.71)

We have

Ã(t)ξ =
∂f

∂x
(x̃(t), ũ(t))ξ +

m∑
i=1

∂ūi
∂x

(x̃(t), t)ξfi(x̃(t)), ∀t ∈ [0, T ], ∀ξ ∈ Rn.

In particular, there exists K ∈ C∞([0, T ];L(Rn; Rm)) such that

Ã(t) = A(t) +B(t)K(t), ∀t ∈ [0, T ].(12.72)

Let us consider the time-varying linear control system

ẋ = Ã(t)x+B(t)u, t ∈ [0, T ],(12.73)

where the state is x ∈ Rn and the control is u ∈ Rm. Note that, if t ∈ [0, T ] 7→
(x(t), u(t)) ∈ Rn × Rm is a trajectory of the linear control system (12.69), then
t ∈ [0, T ] 7→ (x(t), u(t)−K(t)x(t)) ∈ Rn × Rm is a trajectory of the linear control
system (12.73). Hence, using also (12.70), we get that

the linear control system (12.73) is controllable.(12.74)
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Let R̃ : [0, T ] × [0, T ] → L(Rn; Rn), (t, s) 7→ R̃(t, s), be the resolvent of the time-
varying linear differential equation ẏ = Ã(t)y, t ∈ [0, T ], i.e.,

∂R̃

∂t
= Ã(t)R̃ on [0, T ]× [0, T ],

R̃(s, s)x = x, ∀(s, x) ∈ [0, T ]× Rn;

see Definition 1.4 on page 4. By (12.61) one has

(12.75) (∇V (x̃(t), t))tr = ∇W (x̃(0))tr
∂Φ
∂x

(x̃(t), 0, t), ∀t ∈ [0, T ].

Let us assume, for the moment, that

∂Φ
∂x

(x̃(t), 0, t) = R̃(0, t), ∀t ∈ [0, T ].(12.76)

From (12.65), (12.68), (12.75) and (12.76), we get

(∇W (x̄(0)))trR̃(0, t)B(t) = 0, ∀t ∈ R.

In particular,

(∇W (x̃(0)))tr
(∫ T

0

R̃(0, t)B(t)B(t)trR̃(0, t)trdt

)
(∇W (x̃(0))) = 0,

which, by (12.56), shows that the nonnegative symmetric matrix

C̃ :=
∫ T

0

R̃(0, t)B(t)B(t)trR̃(0, t)trdt

is not invertible. But, by Theorem 1.11 on page 6, the time-varying linear control
system (12.73) is controllable on [0, T ] (if and) only if R̃(T, 0)C̃R̃(T, 0)tr is invertible.
Hence, using (12.74), one gets a contradiction.

It remains to check that (12.76) holds. Using (12.59) with t1 := t, t2 = 0, and
t3 := t and (12.58) with s = t, we get

Φ(Φ(x, 0, t), t, 0) = Φ(x, t, t) = x, ∀x ∈ Rn, ∀t ∈ R.(12.77)

Differentiating (12.77) with respect to x and then letting x := x̃(t), one has

∂Φ
∂x

(x̃(0), t, 0) ◦ ∂Φ
∂x

(x̃(t), 0, t) = Idn, ∀t ∈ [0, T ],(12.78)

where, as above, Idn denotes the identity map of Rn. LetH ∈ C∞([0, T ];L(Rn; Rn))
be defined by

H(t) :=
∂Φ
∂x

(x̃(0), t, 0), ∀t ∈ [0, T ].(12.79)

Differentiating (12.57) with respect to x and using (12.71), one has, for every t ∈
[0, T ],

Ḣ(t) =
∂X

∂x
(Φ(x̃(0), t, 0), t)H(t)

=
∂X

∂x
(x̃(t), t)H(t)

= Ã(t)H(t).

(12.80)
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Differentiating (12.58) with respect to x and then choosing x := x̃(0) and s := 0,
one gets

H(0) = Idn.(12.81)

From (12.80) and (12.81), one gets

H(t) = R̃(t, 0), ∀t ∈ [0, T ].(12.82)

Equation (12.76) follows from property (1.9) of the resolvent, (12.78), (12.79) and
(12.82). This concludes the proof of Proposition 12.13.

12.3. Homogeneity

Let us start by recalling the argument already used in the proof of Theo-
rem 10.14 on page 281. Consider the linearized control system of (C) around (0, 0),
i.e., the linear control system

ẋ =
∂f

∂x
(0, 0)x+

∂f

∂u
(0, 0)u,

where x ∈ Rn is the state and u ∈ Rm is the control. Assume that this linear
control system is asymptotically stabilizable by means of a linear feedback law
u(x) = Kx with K ∈ L(Rn; Rm). By Theorem 10.9 on page 280 and Theorem 10.10
on page 280, this feedback law locally asymptotically stabilizes the control system
(C).

The idea of “homogeneity” is a generalization of the above procedure: one
wants to deduce the asymptotic stabilizability of the control system (C) from the
asymptotic stabilizability of a control system which is “simpler” than the control
system (C).

Let us now give the definition of a homogeneous vector field. Since we are going
to give an application to periodic time-varying feedback laws, the vector fields we
consider depend on time and are T -periodic with respect to time. The vector fields
are also assumed to be continuous. Let r = (r1, . . . , rn) ∈ (0,+∞)n. One has the
following definition (see Lionel Rosier’s Ph.D. thesis [406, Chapitre 3] for various
generalizations).

Definition 12.14. The vector field X = (X1, . . . , Xn)tr is r-homogeneous of
degree 0, if, for every ε > 0, every x ∈ Rn, every i ∈ {1, . . . , n}, and every t ∈ R,

Xi(εr1x1, . . . , ε
rnxn, t) = εriXi(x1, . . . , xn, t).

Since the degree of homogeneity will always be 0 in this section, we shall omit
“of degree 0”.

Example 12.15. 1. (Linear systems.) The vector field X(x, t) = A(t)x with
A(t) ∈ L(Rn; Rn) is (1, ..., 1)-homogeneous.

2. Take n = 2 and X(x1, x2) = (x1 − x3
2, x2). Then X is (3,1)-homogeneous.

For applications to feedback stabilization, the key theorem is:

Theorem 12.16. Let us assume that

X = Y +R,(12.83)
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where Y and R are continuous T -periodic time-varying vector fields such that Y
is r-homogeneous and, for some ρ > 0, η > 0 and M > 0, one has, for every
i ∈ {1, . . . , n}, every ε ∈ (0, 1], and every x = (x1, . . . , xn) ∈ Rn with |x| 6 ρ,

|Ri(εr1x1, . . . , ε
rnxn, t)| 6 Mεri+η.(12.84)

If 0 is locally (or equivalently globally) asymptotically stable for ẋ = Y (x, t), then
it is locally asymptotically stable for ẋ = X(x, t).

This theorem has been proved by Henry Hermes in [229] when one has unique-
ness of the trajectories of ẋ = Y (x), and in the general case by Lionel Rosier in
[405]. In fact, [405], as well as [229], deals with the case of stationary vector fields.
But the proof of [405] can be easily extended to the case of periodic time-varying
vector fields. Let us briefly sketch the arguments. One first shows that Theorem
12.16 is a corollary of the following theorem, which has its own interest and goes
back to José Massera [346] when the vector field is of class C1.

Theorem 12.17 ([405] by Lionel Rosier and [388] by Jean-Baptiste Pomet and
Claude Samson). Let Y be a continuous T -periodic time-varying vector field which
is r-homogeneous. We assume that 0 is locally (=globally) asymptotically stable for
ẋ = Y (x, t). Let p be a positive integer and let

k ∈ (pMax{ri, 1 6 i 6 n},+∞).

Then there exists a function V ∈ C∞((Rn \ {0})×R; R)∩Cp(Rn×R; R) such that

V (x, t) > V (0, t) = 0, ∀(x, t) ∈ (Rn \ {0})× R,
V (x, t+ T ) = V (x, t), ∀(x, t) ∈ Rn × R,(12.85)

lim
|x|→+∞

Min {V (x, t); t ∈ R} = +∞,

∂V

∂t
+ Y · ∇V < 0 in (Rn \ {0})× R,(12.86)

V (εr1x1, . . . , ε
rnxn, t) =εkV (x1, . . . , xn, t),(12.87)

∀(ε, x, t) ∈ (0,+∞)× Rn × R.

Proof of Theorem 12.16. Let us deduce, as in [405], Theorem 12.16 from
Theorem 12.17. For x = (x1, . . . , xn) ∈ Rn and ε > 0, let

δrε(x) = (εr1x1, . . . , ε
rnxn).(12.88)

Let V be as in Theorem 12.17 with p = 1. From (12.86), there exists ν > 0 such
that (

∂V

∂t
+ Y · ∇V

)
(x, t) 6 −ν,(12.89)

for every t ∈ [0, T ] and every x ∈ Rn such that |x1|1/r1 + . . .+ |xn|1/rn = 1. From
(12.87) and the assumption that Y is r-homogeneous, we get that

(12.90)
(
∂V

∂t
+ Y · ∇V

)
(δrε(x), t)

= εk
(
∂V

∂t
+ Y · ∇V

)
(x, t), ∀(ε, x, t) ∈ (0,+∞)× Rn × R.
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From (12.89) and (12.90), we get

(
∂V

∂t
+ Y · ∇V

)
(x, t) 6 −ν

(
|x1|1/r1 + . . .+ |xn|1/rn

)k
, ∀(x, t) ∈ Rn × [0, T ].

(12.91)

Using (12.84) and (12.87), similar computations show the existence of C̄ > 0 such
that

(R · ∇V )(x, t) 6 C̄
(
|x1|1/r1 + . . .+ |xn|1/rn

)η+k
,(12.92)

for every t ∈ [0, T ] and every x ∈ Rn with |x| 6 ρ. From (12.83), (12.91) and
(12.92), we get the existence of ρ′ > 0 such that(

∂V

∂t
+X · ∇V

)
(x, t) < 0, ∀t ∈ [0, T ], ∀x ∈ Rn with 0 < |x| 6 ρ′,

which concludes the proof of Theorem 12.16.

Sketch of the proof of Theorem 12.17. We follow the proof given in [405]
by Lionel Rosier for stationary vector fields and extended by Jean-Baptiste Pomet
and Claude Samson in [388] to the case of time-varying vector fields. By Kurzweil’s
theorem [289], there exists W ∈ C∞(Rn × R; R) such that

W (x, t) > W (0, t) = 0, ∀(x, t) ∈ (Rn \ {0})× R,
W (x, t+ T ) = W (x, t), ∀(x, t) ∈ Rn × R,

lim
|x|→+∞

Min {W (x, t); t ∈ R} = +∞,

∂W

∂t
+ Y · ∇W < 0 in (Rn \ {0})× R.

Let a ∈ C∞(R; R) be such that a′ > 0, a = 0 in (−∞, 1] and a = 1 in [2,+∞).
Then one can verify that V , defined by

V (x, t) :=
∫ +∞

0

1
sk+1

a(W (sr1x1, . . . , s
rnxn, t))ds, ∀(x, t) ∈ Rn × R,

satisfies all required conditions. This concludes the sketch of proof of Theorem
12.17.

Example 12.18. Following [126], let us give an application to the construction
of explicit time-varying feedback laws stabilizing asymptotically the attitude of a rigid
body spacecraft, a control system already considered in Example 3.9 on page 128,
Example 3.35 on page 144, Example 10.15 on page 282, Example 11.3 on page 289
and Example 11.31 on page 304. So the control system is given by (3.12) with
b1, . . . , bm independent and 1 6 m 6 3. Here we assume that m = 2. Without loss
of generality, we may assume that

{v1b1 + v2b2; (v1, v2) ∈ R2} = {0} × R2.

So, after a change of control variables, (3.12) can be replaced by

(12.93) ω̇1 = Q(ω) + ω1L1(ω), ω̇2 = V1, ω̇3 = V2, η̇ = A(η)ω,
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with L1ω = D1ω1 +E1ω2 +F1ω3, Q(ω) = Aω2
2 +Bω2ω3 +Cω2

3 . For system (12.93),
the controls are V1 and V2. It is proved in [272] that Q changes sign if and only if
the control system (3.12) satisfies the Lie algebra rank condition at (0, 0) ∈ R6×R2

which, by Theorem 3.17 on page 134, is a necessary condition for small-time local
controllability at (0, 0) ∈ R6 × R2. From now on we assume that Q changes sign
(this is a generic situation). Hence, after a suitable change of coordinates of the
form

(12.94) ω = Pω̃ =

 1 0 0
0 ap bp
0 cp dp

 ω̃,

system (12.93) can be written as

(12.95) ˙̃ω1 = ω̃2ω̃3 + ω̃1L2(ω̃), ˙̃ω2 = u1, ˙̃ω3 = u2, η̇ = A(η)Pω̃,

with L2ω̃ = D2ω̃1 +E2ω̃2 + F2ω̃3. Let c = det P . We can always choose P so that
c > 0. Let

x1 = ω̃1, x5 = ω̃2, x6 = ω̃3, x3 =
1
c
(dpθ − bpψ),

x4 =
1
c
(−cpθ + apψ), x2 = φ− bpdp

2
x2

4 −
apcp

2
x2

3 − bpcpx3x4.

In these coordinates, our system can be written as

(12.96)
{
ẋ1 = x5x6 +R1(x), ẋ2 = x1 + cx3x6 +R2(x),
ẋ3 = x5 +R3(x), ẋ4 = x6 +R4(x), ẋ5 = u1, ẋ6 = u2,

where R1, R2, R3, and R4 are analytic functions defined on a neighborhood of 0
such that, for a suitable positive constant C, one has, for every x in R6 with |x|
small enough,

|R1(x)|+ |R3(x)|+ |R4(x)| 6 C
(
|x1|+ |x2|+ |x3|2 + |x4|2 + |x5|2 + |x6|2

)3/2
,

|R2(x)| 6 C
(
|x1|+ |x2|+ |x3|2 + |x4|2 + |x5|2 + |x6|2

)2
,

Hence our control system can be written as

(12.97) ẋ = f(x, u) = X(x) +R(x) + uY,

where x = (x1, . . . , x6)tr ∈ R6 is the state, u = (u1, u2)tr ∈ R2 is the control,
(12.98)
uY = u1Y1 + u2Y2 = (0, 0, 0, 0, u1, u2), X(x) = (x5x6, x1 + cx3x6, x5, x6, 0, 0),

where c ∈ (0,+∞) is a constant, and R := (R1, . . . , R6) is a perturbation term
in the following sense. Note that X is (2, 2, 1, 1, 1, 1)-homogeneous and that, for a
suitable constant C > 0, the vector field R satisfies, for every ε in (0, 1) and for
every x = (x1, . . . , x6) in R6 with |x| 6 1,

|Ri(δε(x))| 6 C0ε
1+ri , ∀i ∈ {1, . . . , 6},

with
δε(x) := (ε2x1, ε

2x2, εx3, εx4, εx5, εx6).

Keeping in mind this (2, 2, 1, 1, 1, 1)-homogeneity and Theorem 12.16, it is natural
to consider time-varying feedback laws u which have the following property:

(12.99) u(δε(x), t) = εu(x, t), ∀x ∈ R6, ∀t ∈ R.
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Indeed, assume that u is a periodic time-varying feedback law satisfying (12.99)
which locally asymptotically stabilizes the control system

(12.100) ẋ = X(x) + uY.

(By homogeneity, this local asymptotic stability is equivalent to global asymptotic
stability.) Then, from Theorem 12.16, u locally asymptotically stabilizes the control
system (12.97). We shall give in sections 12.4 and 12.5 a method, due to Pascal
Morin and Claude Samson [364], to construct a periodic time-varying feedback law
u satisfying (12.99) which locally (=globally) asymptotically stabilizes control system
(12.100); see also [126] for another method to construct such feedback laws.

Remark 12.19. Let us point out that, as shown by Lionel Rosier in [406,
Part A, Chapter II] and by Rodolphe Sepulchre and Dirk Aeyels in [441], there
are homogeneous control systems which can be asymptotically stabilized by means
of continuous stationary feedback laws and cannot be asymptotically stabilized
by means of continuous homogeneous stationary feedback laws. An obstruction
to the asymptotic stabilization by means of continuous homogeneous stationary
feedback laws is given in [113, Proposition 3.6, page 374]. Let us also mention that
homogeneity can be used for stabilization in finite time; see [54] by Sanjay Bhat
and Dennis Bernstein.

Remark 12.20. For more information on the homogeneity techniques in con-
trol theory, see, in particular, [11] by Fabio Ancona, [24, Section 5.3] by Andrea
Bacciotti and Lionel Rosier, [143] by Wijesuriya Dayawansa, Clyde Martin and
Sandra Samelson, [229, 230] by Henry Hermes, [255] by Hamadi Jerbi, [268] by
Matthias Kawski, [493] by Marilena Vendittelli, Giuseppe Oriolo, Frédéric Jean,
and Jean-Paul Laumond, and the references therein.

12.4. Averaging

Let us start with the following classical result (see, e.g., [273, Theorem 7.4,
page 417]).

Theorem 12.21. Let X be a T -periodic time-varying vector field of class C2.
Assume that the origin is locally exponentially asymptotically stable for the “aver-
aged” system

ẋ =
1
T

∫ T

0

X(x, t)dt.(12.101)

Then there exists ε0 > 0 such that, for every ε ∈ (0, ε0], the origin is locally
asymptotically stable for ẋ = X(x, t/ε).

By “locally exponentially asymptotically stable”, one means the existence of
(r, C, λ) ∈ (0,+∞)3 such that |x(t)| 6 C|x(0)| exp(−λt) for every solution x of the
averaged system (12.101) satisfying |x(0)| 6 r. This is equivalent (see, e.g., [273,
Theorem 4.4, page 179]) to the following property: the origin is asymptotically
stable for the linear system

ẏ =
1
T

(∫ T

0

∂X

∂x
(0, t)dt

)
y.
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In the case of homogeneous vector fields, this theorem has been improved by
Robert M’Closkey and Richard Murray in [351]. They have proved the following
theorem.

Theorem 12.22. Let X be a continuous T -periodic time-varying feedback law
which is r-homogeneous (of degree 0). Assume that the origin is locally (=globally)
asymptotically stable for the averaged system (12.101). Then there exists ε0 > 0
such that, for every ε ∈ (0, ε0], the origin is locally asymptotically stable for ẋ =
X(x, t/ε).

Pascal Morin and Claude Samson gave in [364] a proof of this theorem which
provides us with a value of ε0 if X has the following form:

X(x, t) = f0(x) +
m∑
i=1

gi(t)fi(x).

Example 12.23. Following [364], let us give an application of this theorem to
the construction of explicit time-varying feedback laws stabilizing asymptotically the
attitude of a rigid spacecraft with two controls. In Example 12.18 on page 330, we
reduced this problem to the construction of a periodic time-varying feedback law u
satisfying (12.99) which locally (=globally) asymptotically stabilizes the control sys-
tem (12.100). Now the strategy is to construct a periodic time-varying feedback law
with the “proper homogeneity” which globally asymptotically stabilizes the control
system

(12.102) ẋ1 = x̄5x̄6, ẋ2 = x1 + cx3x̄6, ẋ3 = x̄5, ẋ4 = x̄6,

where the state is (x1, x2, x3, x4) ∈ R4 and the control is (x̄5, x̄6) ∈ R2. By “proper
homogeneity” we mean that, for every t in R, every (x1, x2, x3, x4) in R4, every ε
in (0,+∞), and i = 5 or 6,

(12.103) x̄i(ε2x1, ε
2x2, εx3, εx4, t) = εx̄i(x1, x2, x3, x4, t).

Using the backstepping method explained in the following section, we shall see, in
Example 12.26 on page 337, how to deduce, from such a feedback law (x̄5, x̄6), a
feedback law u : R6 × R → R2, (x1, x2, x3, x4, x5, x6, t) → ũ(x1, x2, x3, x4, x5, x6, t)
which is periodic in time, has a good homogeneity, and globally asymptotically sta-
bilizes the control system obtained from the control system (12.102) by adding an
integrator on x5 and on x6, i.e., the control system (12.100).

For x = (x1, x2, x3, x4) ∈ R4, let ρ = ρ(x) = (x2
1 + x2

2 + x4
3 + x4

4)
1/4. Let

x̄5 ∈ C0(R4 × R; R) and x̄6 ∈ C0(R4 × R; R) be defined by

x̄5 = −x3 − ρ sin
t

ε
, x̄6 = −x4 +

2
ρ
(x1 + x2) sin

t

ε
.(12.104)

Then the closed-loop system (12.102)-(12.104) is (2,2,1,1)-homogeneous and its
corresponding averaged system is

(12.105) ẋ1 = −x1 − x2, ẋ2 = x1 − cx3x4, ẋ3 = −x3, ẋ4 = −x4.

Using Theorem 10.10 on page 280, one gets that 0 ∈ R4 is locally asymptotically
stable for system (12.105). Then, by Theorem 12.22, the feedback law (12.104)
locally asymptotically stabilizes the control system (12.102) if ε is small enough.
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12.5. Backstepping

For the backstepping method, we are interested in a control system (C) having
the following structure:

ẋ1 = f1(x1, x2),(12.106)

ẋ2 = u,(12.107)

where the state is x = (x1, x2)tr ∈ Rn1+m = Rn with (x1, x2) ∈ Rn1 × Rm and the
control is u ∈ Rm (see (11.19) for the definition of (x1, x2)tr). The key theorem for
backstepping is the following one.

Theorem 12.24. Assume that f1 ∈ C1(Rn1 × Rm; Rn1) and that the control
system

ẋ1 = f1(x1, v),(12.108)

where the state is x1 ∈ Rn1 and the control v ∈ Rm, can be globally asymptotically
stabilized by means of a stationary feedback law of class C1. Then the control system
(12.106)-(12.107) can be globally asymptotically stabilized by means of a continuous
stationary feedback law.

A similar theorem holds for time-varying feedback laws and local asymptotic
stabilization. Theorem 12.24 has been proved independently by Christopher Byrnes
and Alberto Isidori in [79], Daniel Koditschek in [276] and John Tsinias in [485].
A local version of Theorem 12.24 has been known for a long time; see, e.g., [494]
by Mathukumalli Vidyasagar.

Proof of Theorem 12.24. We give the proof of [79, 276, 485]; for a different
method, see [453] by Eduardo Sontag. Let v ∈ C1(Rn1 ; Rm) be a feedback law
which globally asymptotically stabilizes 0 ∈ Rn1 for the control system (12.108).
Then, by the converse of the second Lyapunov theorem (due to José Massera [346]),
there exists a Lyapunov function of class C∞ for the closed-loop system ẋ1 =
f1(x1, v(x1)), that is, there exists a function V ∈ C∞(Rn1 ; R) such that

f1(x1, v(x1)) · ∇V (x1) < 0, ∀x1 ∈ Rn1 \ {0},(12.109)

V (x1) → +∞ as |x1| → +∞,

V (x1) > V (0), ∀x1 ∈ Rn1 \ {0}.

A natural candidate for a control Lyapunov function (see Section 12.1) for the
control system (12.106)-(12.107) is

W ((x1, x2)tr) := V (x1) +
1
2
|x2 − v(x1)|2, ∀(x1, x2) ∈ Rn1 × Rm.(12.110)

Indeed, one has, for such a W ,

W ((x1, x2)tr) → +∞ as |x1|+ |x2| → +∞,(12.111)

W ((x1, x2)tr) > W (0, 0), ∀(x1, x2) ∈ (Rn1 × Rm) \ {(0, 0)}.(12.112)

Moreover, if one computes the time-derivative Ẇ of W along the trajectories of
(12.106)-(12.107), one gets

Ẇ = f1(x1, x2) · ∇V (x1)− (x2 − v(x1)) · (v′(x1)f1(x1, x2)− u).(12.113)
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Since f1 is of class C1, there exists G ∈ C0(Rn1 ×Rm×Rm;L(Rm,Rn1)) such that

f1(x1, x2)− f1(x1, y) = G(x1, x2, y)(x2 − y), ∀(x1, x2, y) ∈ Rn1 × Rm × Rm.
(12.114)

By (12.113) and (12.114),

Ẇ = f1(x1, v(x1)) · ∇V (x1)

+
[
utr − (v′(x1)f1(x1, x2))tr + (∇V (x1))trG(x1, x2, v(x1))

]
(x2 − v(x1)).

Hence, if one takes as a feedback law for the control system (12.106)-(12.107)

u := v′(x1)f1(x1, x2)−G(x1, x2, v(x1))tr∇V (x1)− (x2 − v(x1)),(12.115)

one gets
Ẇ = f1(x1, v(x1)) · ∇V (x1)− |x2 − v(x1)|2

which, together with (12.109), gives

Ẇ ((x1, x2)tr) < 0, ∀(x1, x2) ∈ (Rn1 × Rm) \ {(0, 0)}.
Hence, the feedback law (12.115) globally asymptotically stabilizes the control sys-
tem (12.106)-(12.107). This concludes the proof of Theorem 12.24.

Let us point out that this proof uses the C1-regularity of f1 and v. In fact, one
knows that Theorem 12.24 does not hold in the following cases:

- The map f1 is only continuous; see [131, Remark 3.2]).
- One replaces “stationary” by “periodic time-varying” and the feedback law

which asymptotically stabilizes the control system (12.108) is only assumed
to be continuous; see [131, Proposition 3.1].

One does not know any counterexample to Theorem 12.24 when the feedback
laws which asymptotically stabilize the control system (12.108) are only continuous.
But it seems reasonable to conjecture that such counterexamples exist. It would
be more interesting to know if there exists a counterexample such that the control
system (12.108) satisfies the Hermes condition S(0) (see page 143). Let us recall
(see Proposition 3.30 on page 143) that, if the control system (12.108) satisfies
the Hermes condition, then the control system (12.106)-(12.107) also satisfies the
Hermes condition, and so, by Theorem 3.29, is small-time locally controllable at
(0, 0) ∈ Rn × Rm.

12.5.1. Desingularization. In some cases where v is not of class C1, one
can use a “desingularization” technique introduced in [392]. Instead of giving the
method in its full generality (see [392] for a precise general statement), let us
explain it on a simple example. We take n1 = m = 1 and f1(x1, x2) = x1 − 2x3

2, so
the control system (12.108) is

ẋ1 = x1 − 2v3,(12.116)

where the state is x1 ∈ R and the control is v ∈ R. Clearly the feedback law
v(x1) := x

1/3
1 := |x1|1/3Sign(x1) globally asymptotically stabilizes the control sys-

tem (12.116). Matthias Kawski gave in [269] an explicit continuous stationary
feedback law which asymptotically stabilizes the control system (12.106)-(12.107)
(and other control systems in the plane). In our situation, this control system is

ẋ1 = x1 − 2x3
2, ẋ2 = u,(12.117)
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where the state is x := (x1, x2)tr ∈ R2 and the control is u ∈ R. Note that the
control systems (12.116) and (12.117) cannot be stabilized by means of feedback
laws of class C1 (see also [142] by Wijesuriya Dayawansa and Clyde Martin, for
less regularity). Moreover, the construction of a stabilizing feedback law u given in
the proof of Theorem 12.24 leads to a feedback law which is not locally bounded.

Let us explain how the desingularization technique of [392] works on this ex-
ample (the Kawski construction given in [269] is different). Let V ∈ C∞(R; R) be
defined by

V (x1) =
1
2
x2

1, ∀x1 ∈ R.

Let us first point out that the reason for the term (1/2)|x2 − v(x1)|2 in the control
Lyapunov function (12.110) is to penalize x2 6= v(x1). But, in our case, x2 = v(x1)
is equivalent to x3

2 = x1. So a natural idea is to replace the definition of the control
Lyapunov function (12.110) by

W ((x1, x2)tr) := V (x1) +
∫ x2

x
1/3
1

(s3 − x1)ds

=
1
2
x2

1 +
1
4
x4

2 − x1x2 +
3
4
|x1|4/3.

With this W , one again has (12.111) and (12.112). Moreover, one now gets

Ẇ = −x2
1 + (x2 − x

1/3
1 )[(x2

2 + x
1/3
1 x2 + |x1|2/3)(u− 2(x1 − x2 + x

1/3
1 )) + x1].

Hence, if one takes for u the continuous function defined by

u((x1, x2)tr) := 2(x1 − x2 + x
1/3
1 )− x1

x2
2 + x

1/3
1 x2 + |x1|2/3

− (x2 − x
1/3
1 ),

if (x1, x2) 6= (0, 0) and

u((x1, x2)tr) := 0 if (x1, x2) = (0, 0),

one gets Ẇ = −x2
1 − (x2 − x

1/3
1 )2(x2

2 + x
1/3
1 x2 + |x1|2/3) < 0 for (x1, x2) 6= (0, 0).

Hence the feedback law u globally asymptotically stabilizes the control system
(12.116).

One can find in Section 13.2 an application of this desingularization technique
to the stabilization of a nonlinear partial differential equation.

12.5.2. Backstepping and homogeneity. Note that, in order to construct
u as in the proof of Theorem 12.24, one does not only need to know v; one also needs
to know a Lyapunov function V . In many situations this is a difficult task. Lionel
Rosier in [406, Chapitre VI] (see also [24, Proposition 2.19 page 80 and Section 2.6])
and Pascal Morin and Claude Samson in [364] have exhibited interesting situations
where one does not need to know V . Let us briefly describe Morin and Samson’s
situation. It concerns homogeneous control systems, with homogeneous feedback
laws, a case already considered in [128] but where the method introduced does not
lead to explicit feedback laws. Pascal Morin and Claude Samson have proved in
[364] the following theorem.

Theorem 12.25. Let T > 0. Assume that there exists a T -periodic time-
varying feedback law v of class C1 on (Rn1 × R) \ ({0} × R) which globally asymp-
totically stabilizes the control system (12.108). Assume also that there exist r =
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(r1, . . . , rm) ∈ (0,+∞)m and q > 0 such that the closed-loop vector field (x1, t) 7→
f1(x1, v(x1, t)) is r-homogeneous (of degree 0) and that, with the notation of (12.88),

v(δrε(x1), t) = εqv(x1, t), ∀(ε, x1, t) ∈ (0,+∞)× Rn1 × R.

Then, for K > 0 large enough, the feedback law u := −K(x2 − v(x1, t)) globally
asymptotically stabilizes the control system (12.106)-(12.107).

Example 12.26. (This example is due to Pascal Morin and Claude Samson
[364].) Let us go back again to the stabilization problem of the attitude of a rigid
spacecraft, already considered in Examples 3.9 on page 128, 11.3 on page 289, 11.31
on page 304, 12.18 on page 330 and 12.23 on page 333. It follows from these
examples and Theorem 12.25 that the feedback law

u1 := −K(x5 − x̄5(x1, x2, x3, x4, t)), u2 := −K(x6 − x̄6(x1, x2, x3, x4, t)),

where x̄5 and x̄6 are defined by (12.103) and K > 0 is large enough, locally asymp-
totically stabilizes the control system (12.97), i.e., the attitude of the rigid spacecraft.

12.6. Forwarding

The pioneering works for forwarding techniques are [477, 478] by Andrew Teel,
[349] by Frédéric Mazenc and Laurent Praly (see also [391] by Laurent Praly for a
more tutorial presentation) and [254] by Mrdjan Janković, Rodolphe Sepulchre and
Petar Kokotović. There are essentially two types of approaches for these techniques:

1. An approach based on the asymptotic behavior of interconnected systems.
This approach has been introduced by Andrew Teel in [477, 478].

2. An approach based on Lyapunov functions. This approach has been intro-
duced independently by Frédéric Mazenc and Laurent Praly in [349], and
by Mrdjan Janković, Rodolphe Sepulchre and Petar Kokotović in [254].
See also [442, Section 6.2] by Rodolphe Sepulchre, Mrdjan Janković and
Petar Kokotović for a synthesis.

Here we follow the Lyapunov approach and more precisely [349]. We do not try to
give the more general framework but only explain the main ideas of [349].

Let us consider the following control system

ẋ = f(x, u), ẏ = g(x, u).(12.118)

For this control system, the state is (x, y)tr ∈ Rn+p, with (x, y) ∈ Rn×Rp, and the
control is u ∈ Rm (see (11.19) for the definition of (x, y)tr). We assume that f and
g are of class C1 and satisfy

f(0, 0) = 0, g(0, 0) = 0.(12.119)

Let us assume that there exists a feedback ū : Rn → Rm of class C1 such that

0 ∈ Rn is globally asymptotically stable for ẋ = f(x, ū(x)).(12.120)

Let V : Rn → R be a smooth Lyapunov function for ẋ = f(x, ū(x)):

lim
|x|→+∞

V (x) = +∞,(12.121)

V (x) > V (0), ∀x ∈ Rn \ {0},(12.122)

∇V (x) · f(x, ū(x)) < 0, ∀x ∈ Rn \ {0}.(12.123)
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Let (x, y) ∈ Rn × Rp. Let us consider the following Cauchy problem:

Ẋ = f(X, ū(X)), X(0) = x,

Ẏ = g(X, ū(X)), Y (0) = y.

Note that, by (12.120),

X(t) → 0 as t→ +∞.(12.124)

If the convergence in (12.124) is fast enough (for example exponential), Y (t) con-
verges as t→ +∞. Let us assume that this is indeed the case and let

ϕ(x, y) := lim
t→+∞

Y (t).(12.125)

Let W : Rn+p → R be defined by

W ((x, y)tr) := V (x) +
1
2
|ϕ(x, y)|2, ∀(x, y) ∈ Rn × Rp.(12.126)

Note that

W ((x, y)tr) > W (0), ∀(x, y) ∈ Rn × Rp such that (x, y) 6= (0, 0).(12.127)

Moreover, by (12.123), t ∈ [0,+∞) 7→ V (X(t)) ∈ R is non-increasing and in fact
decreasing if X(0) 6= 0. Furthermore, it follows directly from the definition of ϕ
that

ϕ(X(t), Y (t)) does not depend on t ∈ [0,+∞).

Hence W can be expected to be a control Lyapunov function for our control system
(12.118) and taking u = ū + v with v, which could be small but well chosen, one
can expect to stabilize the control system (12.118).

Let us show on a very simple example how this method works. We consider
the control system

ẋ = u, ẏ = x,(12.128)

where the state is (x, y)tr ∈ R2, (x, y) ∈ R × R, and the control is u ∈ R. Let us
just define ū : R → R by

ū(x) = −x, ∀x ∈ R.
Then one has (12.120). Concerning V : R → R, let us, for example, take

V (x) =
1
2
x2, ∀x ∈ R.(12.129)

One has, with the above notations,

X(t) = e−tx, Y (t) = (1− e−t)x+ y, ∀t ∈ R.(12.130)

From (12.125) and (12.130), one gets

ϕ(x, y) = x+ y, ∀(x, y) ∈ R× R.(12.131)

From (12.126), (12.129) and (12.131), one has

W ((x, y)tr) =
1
2
x2 +

1
2
(x+ y)2.(12.132)

Note that, as seen above (see (12.127)),

W ((x, y)tr) > W (0), ∀(x, y) ∈ R× R such that (x, y) 6= (0, 0).(12.133)
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Moreover,

lim
|x|+|y|→+∞

W ((x, y)tr) = +∞.(12.134)

Let us now compute the time derivative Ẇ of W along the trajectory of

ẋ = ū(x) + v, ẏ = x.

One gets

Ẇ = −x2 + v(2x+ y).

Hence it is tempting to take

v((x, y)tr) := −(2x+ y), ∀(x, y) ∈ R× R.

With such a v,

Ẇ = −x2 − (2x+ y)2 < 0 ∀(x, y) ∈ (R× R) \ {(0, 0)}.(12.135)

From (12.133), (12.134) and (12.135), it follows that 0 ∈ R2 is globally asymptoti-
cally stable for the closed-loop system

ẋ = ū(x) + v((x, y)tr), ẏ = x.

One of the numerous interests of forwarding is to allow us to construct, under
suitable assumptions, stabilizing feedback, which can be quite small. This has been
used for example in [92, 129] to perform large amplitude orbit transfer of a satellite
in a central gravitational field by means of an electric propulsion. (Let us recall
that electric propulsion is characterized by a low-thrust acceleration level but a high
specific impulse.) See also Section 12.2.1 if one does not care about the position at
time t of the satellite on the desired final Keplerian elliptic orbit.

Let us explain how this can be done on our simple control system (12.128). Let
δ > 0. Let σ ∈ C0(R; R) be defined by

σ(x) = x, ∀x ∈ [−δ, δ],(12.136)

σ(x) = δ, ∀x ∈ [δ,+∞),(12.137)

σ(x) = −δ, ∀x ∈ (−∞,−δ].(12.138)

We take

ū := −σ.(12.139)

Then ū is globally Lipschitz and one has (12.120). Concerning V : R → R, we
keep the V defined in (12.129). Straightforward computations lead to the following
expressions for X(t):

X(t) = xe−t for t > 0 and x ∈ [−δ, δ],
X(t) = x− δt for t ∈ [0, (x− δ)/δ] and x ∈ [δ,+∞),

X(t) = δe−t+((x−δ)/δ) for t ∈ [(x− δ)/δ,+∞) and x ∈ [δ,+∞),

X(t) = x+ δt for t ∈ [0,−(x+ δ)/δ] and x ∈ (−∞,−δ],

X(t) = −δe−t−((x+δ)/δ) for t ∈ [−(x+ δ)/δ,+∞) and x ∈ (−∞,−δ].
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Using these expressions of X(t), one can compute Y (t) and one finally arrives at
the following expressions for ϕ(x, y):

ϕ(x, y) = x+ y, ∀x ∈ [−δ, δ], ∀y ∈ R,

ϕ(x, y) = δ +
x2 − δ2

2δ
+ y, ∀x ∈ [δ,+∞), ∀y ∈ R,

ϕ(x, y) = −δ − x2 − δ2

2δ
+ y, ∀x ∈ (−∞,−δ], ∀y ∈ R.

Note that ϕ is of class C1. One now gets, still with the above notations,

Ẇ = −x2 + v(2x+ y), ∀x ∈ [−δ, δ], ∀y ∈ R,

Ẇ = −xδ + v
x

δ

(
2δ + y +

x2 − δ2

2δ

)
, ∀x ∈ [δ,+∞), ∀y ∈ R,

Ẇ = xδ − v
x

δ

(
−2δ + y − x2 − δ2

2δ

)
, ∀x ∈ (−∞,−δ], ∀y ∈ R.

Let us point out that (12.133) and (12.134) still hold. We define v : R2 → R by

v((x, y)tr) = −σ(2x+ y), ∀x ∈ [−δ, δ], ∀y ∈ R,(12.140)

v((x, y)tr) = −σ
(
x

δ

(
2δ + y +

x2 − δ2

2δ

))
, ∀x ∈ [δ,+∞), ∀y ∈ R,(12.141)

v((x, y)tr) = σ

(
x

δ

(
−2δ + y − x2 − δ2

2δ

))
, ∀x ∈ (−∞,−δ], ∀y ∈ R.(12.142)

Then v is locally Lipschitz, vanishes at 0 ∈ R2 and

Ẇ ((x, y)tr) < 0, ∀(x, y) ∈ (R× R) \ {(0, 0)}.(12.143)

From (12.133), (12.134) and (12.143), it follows that (0, 0) ∈ R2 is globally asymp-
totically stable for the closed-loop system

ẋ = u((x, y)tr), ẏ = x,

where the feedback law u : R2 → R is defined by

u((x, y)tr) := ū(x) + v((x, y)tr), ∀(x, y) ∈ R× R.(12.144)

From (12.136) to (12.144),

|u((x, y)tr)| 6 2δ, ∀(x, y) ∈ R× R.

Hence, using the forwarding technique, we succeeded to globally asymptotically
stabilize 0 ∈ R2 for the control system (12.128) by means of feedback laws with
L∞-norm as small as we want (but not 0).

12.7. Transverse functions

This section is borrowed from the paper [365] by Pascal Morin and Claude
Samson. It gives a new simple and powerful tool to construct explicit feedback
laws which almost lead to asymptotic stabilization. This method concerns, at least
for the moment, control affine systems without drift,

ẋ =
m∑
i=1

uifi(x),(12.145)
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where the state is x = (x1, x2, . . . , xn)tr ∈ Ω, u = (u1, u2, . . . , um)tr ∈ Rm. The
set Ω is an open subset of Rn containing 0, the vector fields fi, i ∈ {1, 2, . . . ,m},
are assumed to be of class C∞ on Ω, and one assumes that m < n. One has the
following theorem, due to Pascal Morin and Claude Samson.

Theorem 12.27 ([365, Theorem 1]). Let T := R/2πZ be the one-dimensional
torus. Let us assume that the control system (12.145) satisfies the Lie algebra rank
condition at the equilibrium (xe, ue) := (0, 0) ∈ Rn×Rm (see Definition 3.16 on page
134). Then there exists an integer n̄ > n such that, for every open neighborhood
Ω̃ ⊂ Ω of 0 ∈ Rn, there exists a function F ∈ C∞(Tn̄−m; Ω̃) such that

Span {f1(F (θ)), f2(F (θ)), . . . , fm(F (θ))}+ Im F ′(θ) = Rn, ∀θ ∈ Tn̄−m.(12.146)

For the proof, we refer to [365, Theorem 1]. Let us just give an example. We
consider the control system

ẋ1 = u1, ẋ2 = u2, ẋ3 = u1x2,(12.147)

where the state is (x1, x2, x3)tr ∈ R3 and the control is u = (u1, u2)tr ∈ R2. So
n = 3, m = 2, Ω = R3 and, for every x = (x1, x2, x3)tr ∈ R3,

f1(x) :=

 1
0
x2

 , f2(x) :=

0
1
0

 .(12.148)

Note that, ∀η ∈ R \ {0},

u1f1(x) + u2f2(x) 6= (0, 0, η)tr, ∀x = (x1, x2, x3)tr ∈ R3, ∀(u1, u2)tr ∈ R2.

Hence, by the Brockett Theorem 11.1 on page 289, the control system (12.147) can-
not be asymptotically stabilized by means of continuous (even dynamic) stationary
feedback laws. We have, for every x = (x1, x2, x3)tr ∈ R3,

[f1, f2](x) =

 0
0
−1

 .(12.149)

From (12.148) and (12.149), one sees that the control system (12.147) satisfies the
Lie algebra rank condition at every equilibrium point (x, 0) ∈ R3×R2. Let us take
n̄ := 3. Hence n̄− 3 = 1. Let ε > 0. We define F ∈ C∞(T; R3) by

F (θ) :=

 ε sin(θ)
ε cos(θ)
ε2

4
sin(2θ)

 , ∀θ ∈ T.(12.150)

Let Ω̃ ⊂ R3 be an open neighborhood of 0 ∈ R3. If ε > 0 is small enough, the
image of F is included in Ω̃. Let H : T →M3,3(R) be defined by

H(θ) := (f1(F (θ)), f2(F (θ)),−F ′(θ)).

One has

H(θ) =

 1 0 −ε cos(θ)
0 1 ε sin(θ)

ε cos(θ) 0 −ε
2

2
cos(2θ)

 .
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Hence

det H(θ) =
ε2

2
6= 0,

showing that (12.146) holds.
Let us now explain how such functions F can be used to construct interesting

feedback laws. For simplicity we explain it on the control system (12.147) with the
map F defined by (12.150). (Note that F depends on ε > 0.) Let y : R3 × T → R3

be defined by

y :=

y1y2
y3

 :=

 x1 − F1(θ)
x2 − F2(θ)

x3 − F3(θ)− F1(θ)(x2 − F2(θ))

 .(12.151)

Straightforward computations lead to

ẏ = C(y, θ)H(θ)(u1, u2, θ̇)tr,(12.152)

with

C(y, θ) :=

 1 0 0
0 1 0
y2 −F1(θ) 1

 , ∀y = (y1, y2, y3)tr ∈ R3, ∀θ ∈ R.(12.153)

Note that

det C(y, θ) = 1, ∀y ∈ R3, ∀θ ∈ T.

Hence the 3 × 3 matrix C(y, θ) is invertible for every y ∈ R3 and for every θ ∈ T.
In fact, as one easily checks,

C(y, θ)−1 =

 1 0 0
0 1 0
−y2 F1(θ) 1

 , ∀y = (y1, y2, y3)tr ∈ R3, ∀θ ∈ R.(12.154)

Let us consider the following dynamical extension (see Definition 11.5 on page
292) of the control system (12.147)

ẋ1 = u1, ẋ2 = u2, ẋ3 = u1x2, θ̇ = v,(12.155)

where the state is (x1, x2, x3, θ)tr ∈ R4 and the control is (u1, u2, v)tr ∈ R3. Let
us choose λ > 0. We consider the following feedback law for the control system
(12.155):

(u1, u2, v)tr := −λH(θ)−1C(y, θ)−1y.(12.156)

From (12.152) and (12.156), we get

ẏ = −λy.(12.157)

Let us consider a solution t ∈ [0,+∞) 7→ (x1(t), x2(t), x3(t), θ(t))tr of the closed-
loop system (12.155)-(12.156) (with y defined by (12.151)). From (12.151), (12.154),
(12.155), (12.156) and (12.157), one gets that

there exists θ∞ ∈ R such that lim
t→∞

θ(t) = θ∞,(12.158)

lim
t→∞

x(t) = F (θ∞).(12.159)

Note that (12.150) and (12.159) imply the existence of T > 0 such that

(t > T ) ⇒ (|x(t)| 6 2ε).(12.160)
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Moreover, it is not hard to see that for every compact K ⊂ R4, there exists T > 0
such that (12.160) holds for every solution t ∈ [0,+∞) 7→ (x1(t), x2(t), x3(t), θ(t))tr

of the closed-loop system (12.155)-(12.156) such that (x1(0), x2(0), x3(0), θ(0))tr ∈
K. Since ε > 0 is arbitrary, one gets what is usually called global “practical”
asymptotic stabilizability.

Let us go back to the definition of y given in (12.151). Let us first point out
that, if one takes, instead of (12.151),

y := x− F (θ),(12.161)

(which could sound more natural), one gets, instead of (12.152),

ẏ = Y (x1, x2, x3, θ, u1, u2, v),(12.162)

with

Y (x1, x2, x3, θ, u1, u2, v) :=

 u1 − εv cos(θ)
u2 + εv sin(θ)

u1x2 −
ε2

2
v cos(2θ)

 .(12.163)

But now we can no longer get (12.157), no matter what we choose for the feedback
(u1, u2, v)tr. Indeed, if we denote by Y3 the last component of Y , then

Y3(x1, 0, x3, π/4, u1, u2, v) = 0, ∀(x1, x3, u1, u2, v) ∈ R5.

Hence, the choice of y is a key point in this method. The choice given by (12.151)
is dictated by the Lie group structure of the control system (12.147). Let us denote
by ∗ the following product in R3:a1

a2

a3

 ∗

b1b2
b3

 =

 a1 + b1
a2 + b2

a3 + b3 + a2b1

 ,(12.164)

for every a = (a1, a2, a3)tr ∈ R3 and for every b = (b1, b2, b3)tr ∈ R3. One easily
checks that the C∞-manifold R3 equipped with ∗ is a Lie group (for a definition
of a Lie group, see, for example, [2, 4.1.1 Definition, page 253]). This can also be
proved by pointing out that1 b1 b3

0 1 b2
0 0 1

1 a1 a3

0 1 a2

0 0 1

 =

1 a1 + b1 a3 + b3 + a2b1
0 1 a2 + b2
0 0 1

 ,

showing that (R3, ∗) is the group of upper triangular 3× 3 real matrices with 1 on
the diagonal. Note that the identity element of this Lie group is 0 ∈ R3 and that
the inverse a−1 of a = (a1, a2, a3)tr is (−a1,−a2,−a3 + a1a2)tr.

For a ∈ R3, let la : R3 → R3 be defined by

la(b) = a ∗ b, ∀b ∈ R3.

We recall that a vector field X ∈ C∞(R3; R3) is said to be left invariant if, for every
a ∈ R3,

((la)′(b))X(b) = X(a ∗ b), ∀b ∈ R3;

see, for example, [2, page 254]. In other words, X is preserved by left translations.
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Let us check that the vector field f1 is left invariant. For a = (a1, a2, a3)tr ∈ R3

and for b = (b1, b2, b3)tr ∈ R3, one has

((la)′(b))c =

 c1
c2

c3 + a2c1

 , ∀c = (c1, c2, c3)tr ∈ R3.(12.165)

Hence
((la)′(b))f1(b) = (1, 0, b2 + a2)tr = f1(a ∗ b),

which shows that f1 is left invariant. One similarly checks that the vector field f2
is also left invariant.

Note that the definition of y given by (12.151) can now be rewritten as

y := x ∗ F (θ)−1.(12.166)

Let us now show why the fact that the vector fields f1 and f2 are left invariant is
crucial to avoid the problem that we faced when we have defined y by (12.161). For
a ∈ R3, let ra : R3 → R3 (the right translation by a) be defined by

ra(b) = b ∗ a, ∀b ∈ R3.

From (12.166), one has

x = y ∗ F (θ).(12.167)

Differentiating (12.167) with respect to time, one gets, using (12.155),

u1f1(y ∗ F (θ)) + u2f2(y ∗ F (θ)) = r′F (θ)(y)ẏ + l′y(F (θ))F ′(θ)v.(12.168)

Since f1 and f2 are left invariant,

f1(y ∗ F (θ)) = l′y(F (θ))f1(y), f2(y ∗ F (θ)) = l′y(F (θ))f2(y).(12.169)

From (12.168) and (12.169), one gets

ẏ = (r′F (θ)(y))
−1(l′yF (θ))H(θ)(u1, u2, v)tr,(12.170)

or, equivalently,

(u1, u2, v)tr = H(θ)−1(l′yF (θ))−1r′F (θ)(y)ẏ.(12.171)

Equality (12.171) shows that ẏ can be chosen arbitrarily. Note that

l′y(F (θ)) =

 1 0 0
0 1 0
y2 0 1

 , r′F (θ)(y) =

1 0 0
0 1 0
0 F1(θ) 1

 ,

which, together with (12.154), lead to

(l′y(F (θ)))−1r′F (θ)(y) =

 1 0 0
0 1 0
−y2 0 1

1 0 0
0 1 0
0 F1(θ) 1

(12.172)

=

 1 0 0
0 1 0
−y2 F1(θ) 1

 = C(y, θ)−1.

Hence, if we take, as above, ẏ = −λy, one recovers (12.156) from (12.171) and
(12.172).

This method to construct dynamic feedback laws which lead to global practical
stability works for every driftless control affine system ẋ =

∑m
i=1 uifi(x) on a Lie

group provided that the vector fields fi’s are left invariant and that the control
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system satisfies the Lie algebra rank condition at (e, 0) ∈ R3 × R2, where e is the
identity element of the Lie group; see [366, Theorem 1, page 1499 and Proposition 1,
page 1500].

This method can also be used in order to (see [366])
1. follow curves t 7→ x̄(t) which could even not be such that t 7→ (x̄(t), ū(t))

is a trajectory of the control system for a suitable t 7→ ū(t),
2. get practical local stabilization even if the manifold is not a Lie group or the

vector fields are not left invariant but have some homogeneity properties.





CHAPTER 13

Applications to some partial differential equations

The goal of this chapter is to show that some methods presented in the previ-
ous chapters can also be useful for the stabilization of linear or nonlinear partial
differential control equations. We present four applications:

1. rapid exponential stabilization by means of Gramians for linear time-rever-
sible partial differential equations (Section 13.1),

2. stabilization of a rotating body-beam without damping (Section 13.2),
3. stabilization of the Euler equations of incompressible fluids (Section 13.3),
4. stabilization of hyperbolic systems (Section 13.4).

13.1. Gramian and rapid exponential stabilization

In this section we explain how to use for infinite-dimensional linear control
systems the Gramian approach for stabilization presented in Section 10.3 in the
framework of finite-dimensional linear control systems. The Gramian approach for
infinite-dimensional linear control systems is due to

- Marshall Slemrod [450] for the case of bounded control operators (i.e., the
case where the operatorB on page 52 is continuous from U intoH ⊂ D(A∗)′

with the notations of Section 2.3),
- Vilmos Komornik [278] for the case of unbounded control operators.

For the extension of the Bass method (see Proposition 10.17 on page 286 and Corol-
lary 10.18 on page 286) to the case of infinite-dimensional linear control systems,
we refer to José Urquiza [490].

We use the notations of Section 2.3 on abstract linear control systems. However,
we need to assume that the strongly continuous semigroup S(t), t ∈ [0,+∞), of
continuous linear operators is in fact a strongly continuous group S(t), t ∈ R, of
continuous linear operators.

Therefore, let H and U be two real (for simplification of notation) Hilbert
spaces and let S(t), t ∈ R, be a strongly continuous group of continuous linear
operators on H (see Definition A.12 on page 376 and Definition A.13 on page 376).
Let A be the infinitesimal generator of the strongly continuous group S(t), t ∈ R, of
continuous linear operators (see Definition A.14 on page 376). Then S(t)∗, t ∈ R,
is a strongly continuous group of continuous linear operators and the infinitesimal
generator of this group is the adjoint A∗ of A (see Theorem A.15 on page 376). The
domain D(A∗) is equipped with the usual graph norm ‖ · ‖D(A∗) of the unbounded
operator A∗:

‖z‖D(A∗) := ‖z‖H + ‖A∗z‖H , ∀z ∈ D(A∗).

347
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Let D(A∗)′ be the dual of D(A∗) with the pivot space H. Let B ∈ L(U,D(A∗)′).
We also assume the following regularity property (see (2.199)):

∀τ > 0,∃Cτ > 0 such that
∫ τ

0

‖B∗S(t)∗z‖2Udt 6 Cτ‖z‖2H , ∀z ∈ D(A∗).(13.1)

The control system we consider here is

ẏ = Ay +Bu, t ∈ [0, T ],(13.2)

where, at time t, the control is u(t) ∈ U and the state is y(t) ∈ H. For the definition
of the solution to the Cauchy problem

ẏ = Ay +Bu, y(0) = y0,

with given y0 ∈ H and given u ∈ L2(0, T ), we refer to Definition 2.36 on page 53.
For the existence and uniqueness of the solution to this Cauchy problem, we refer
to Theorem 2.37 on page 53.

Let T > 0. Let us recall (see Theorem 2.42 on page 56) that the linear control
system is exactly controllable on [0, T ] (see Definition 2.38 on page 55) if and only
if there exists c > 0 such that the following observability inequality holds:∫ T

0

‖B∗S(t)∗z‖2Udt > c‖z‖2H , ∀z ∈ D(A∗).(13.3)

Throughout this whole section we assume that the linear control system ẏ = Ay +
Bu is controllable on [0, T ]. Hence (13.3) holds for some c > 0.

Let λ > 0. Our goal is to construct a feedback law K : y 7→ Ky such that the
closed-loop system ẏ = (A + BK)y is well-posed (in a sense to be precise) and is
such that, for some M > 0, every (maximal) solution of ẏ = (A+BK)y defined at
time 0 satisfies

‖y(t)‖H 6 Me−λt‖y(0)‖H , ∀t ∈ [0,+∞).(13.4)

Let

Tλ := T +
1
2λ
.(13.5)

Let fλ : [0, Tλ] → [0,+∞) be defined by

fλ(t) :=
{
e−2λt if 0 6 t 6 T,
2λe−2λT (Tλ − t) if T 6 t 6 Tλ.

(13.6)

Let Qλ be the continuous symmetric bilinear form on D(A∗) defined by

Qλ(y, z) :=
∫ Tλ

0

fλ(t)(B∗S(−t)∗y,B∗S(−t)∗z)dt, ∀(y, z) ∈ D(A∗)2.(13.7)

Using (13.1) and the fact that

S(−t)∗ = S(Tλ − t)∗S(−Tλ)∗, ∀t ∈ [0, Tλ],

one gets the existence of Mλ > 0 such that

|Qλ(y, z)| 6 Mλ‖y‖H‖z‖H , ∀(y, z) ∈ D(A∗)2.(13.8)

Inequality (13.8) and the density of D(A∗) allow us to extend in a unique way Qλ
to a continuous symmetric quadratic form on H. We still denote this extension by
Qλ. By the Riesz representation theorem, there exists Cλ ∈ L(H;H) such that

Qλ(y, z) = (y, Cλz), ∀(y, z) ∈ H2.(13.9)
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Note that

S(−t)∗ = S(T − t)∗S(−T )∗, ∀t ∈ [0, Tλ],(13.10)

S(−T )∗S(T )∗y = y, ∀y ∈ H.(13.11)

From (13.3), (13.6), (13.7), (13.10) and (13.11), one gets

Qλ(y, y) > ce−2λT ‖S(−T )∗y‖2H > ce−2λT ‖S(T )∗‖−2
L(H;H)‖y‖

2
H , ∀y ∈ H.(13.12)

By the Lax-Milgram theorem, (13.9) and (13.12), Cλ ∈ L(H;H) is invertible in
L(H;H).

We are now in a position to define our stabilizing feedback. Let

Kλ : Cλ(D(A∗)) → U

be defined by

Kλy := −B∗C−1
λ y, ∀y ∈ Cλ(D(A∗)).(13.13)

One then has the following theorem, due to Vilmos Komornik [278].

Theorem 13.1. The operator A + BKλ is the restriction of an infinitesimal
generator of a strongly continuous semigroup of continuous linear operators S(t),
t ∈ [0,+∞), on H. Moreover, there exists M > 0 such that

‖S(t)y0‖H 6 Me−λt‖y0‖H , ∀t ∈ [0,+∞), ∀y0 ∈ H.

As stated, the meaning of this theorem is unclear since we have not defined
the operator A+BKλ (and in particular its domain of definition)! This definition
is rather involved and far beyond the scope of this book. It relies on a study
of algebraic Riccati equations made by Franco Flandoli in [171]. See also [172]
by Franco Flandoli, Irena Lasiecka and Roberto Triggiani, and [484] by Roberto
Triggiani.

We do not give the full details of the proof of Theorem 13.1. Let us simply give
a proof of this theorem in the case of finite dimensional control systems in order
to see the interest of the weight fλ (see (13.6)), a choice due to Frédéric Bourquin
(see [278, Note added in proof, page 1611] and [279, page 23]). Note that, if one
simply takes Tλ = T and

fλ(t) := e−2λt if 0 6 t 6 T,(13.14)

one recovers what we have done in Section 10.3; see in particular Theorem 10.16
on page 283 and (10.56). However, our proof of Theorem 10.16 on page 283 relies
on the LaSalle invariance principle; see page 284; see also [450]. With the weight
function fλ defined by (13.6), one does not need to use this principle. We readily
get an explicit strict Lyapunov function. This is especially interesting in infinite
dimension and/or if one wants to deal with nonlinear control systems which are
small perturbations of our linear control system.

So we assume that H and U are of finite dimension. Let y : R → H be a
(maximal) solution of

ẏ = (A+BKλ)y.(13.15)

Let V : H → [0,+∞) be defined by

V (z) := ztrC−1
λ z, ∀z ∈ H.(13.16)
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By (13.8), (13.12) and (13.16),
1
Mλ

‖z‖2H 6 V (z) 6 c−1e2λT ‖S(T )∗‖2L(H;H)‖z‖
2
H , ∀z ∈ H.(13.17)

Let v : R → R be defined by

v(t) := V (y(t)), ∀t ∈ R.(13.18)

From (13.13), (13.15), (13.16) and (13.18), we get

(13.19) v̇ = −|BtrC−1
λ y|2 + ytrAtrC−1

λ y + ytrC−1
λ Ay − ytrC−1

λ BBtrC−1
λ y.

For two symmetric matrices ∆1 and ∆2 in L(H;H), one says that ∆1 6 ∆2 if
ztr∆1z 6 ztr∆2z for every z ∈ H. From (13.6), we have

2λfλ(t) 6 −f ′λ(t), ∀t ∈ [0, Tλ] \ {T}.(13.20)

From (13.7), (13.9), (13.20) and an integration by parts, we get

Cλ =
∫ Tλ

0

fλ(t)e−tABBtre−tA
tr
dt

6 − 1
2λ

∫ Tλ

0

f ′λ(t)e
−tABBtre−tA

tr
dt

6
1
2λ
(
BBtr −ACλ − CλA

tr
)
.

Hence
ACλ + CλA

tr −BBtr 6 −2λCλ,
from which we readily get

C−1
λ A+AtrC−1

λ − C−1
λ BBtrC−1

λ 6 −2λC−1
λ .(13.21)

From (13.19) and (13.21), one gets

v̇ 6 −2λv,

which leads to

v(t) 6 e−2λtv(0), ∀t ∈ [0,+∞).(13.22)

From (13.17) and (13.22), we finally obtain

‖y(t)‖2H 6 c−1e2λT ‖S(T )∗‖2L(H;H)Mλe
−2λt‖y(0)‖2H , ∀t ∈ [0,+∞).

This concludes the proof of Theorem 13.1 in the case of finite-dimensional control
systems.

Let us end this section by mentioning that this method to construct feedback
laws leading to rapid stabilization has been implemented and tested by various
authors, for example by:

- Frédéric Bourquin in [66] for the wave equation with Dirichlet boundary
condition. This paper proposes an approximation scheme of spectral type,
such that the discrete controlled solutions have an energy which decays
exponentially fast with the same decay rate as in the continuous case.

- Frédéric Bourquin, Michel Joly, Manuel Collet and Louis Ratier in [67].
This paper deals with the stabilization of flexible structures. It compares
various methods for getting rapid exponential stabilization and it shows
practical experiments.
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- Jean-Séverin Briffaut in his Ph.D. thesis [72] under the supervision of
Frédéric Bourquin and Roland Glowinski. It is numerically observed and
heuristically justified in this thesis that the exponential decay rate is two
times larger than the one given in Theorem 13.1, at least if A is self-adjoint
and Qλ is defined by

Qλ(y, z) :=
∫ ∞

0

e−2λt(B∗S(−t)∗y,B∗S(−t)∗z)dt, ∀(y, z) ∈ D(A∗)2;

compare with (13.7). This is confirmed theoretically by José Urquiza in
[490]; see also Proposition 10.17 on page 286. Note that, with this new
Qλ, the definition of A + BKλ is now simpler. This is due to the fact
that more explicit expressions are now available; see, in particular, (3.11)
of [490].

- José Urquiza in his Ph.D. thesis [489] under the supervision of Frédéric
Bourquin.

13.2. Stabilization of a rotating body-beam without damping

In this section we study the stabilization of a system, already considered by
John Baillieul and Mark Levi in [25], consisting of a disk with a beam attached to
its center and perpendicular to the disk’s plane. The beam is confined to another
plane, which is perpendicular to the disk and rotates with the disk; see Figure 1
below.

The dynamics of motion is (see [25] and [26])

ρytt(t, x) + EIyxxxx(t, x) + ρByt(t, x)(13.23)

= ρω2(t)y(t, x), t ∈ (0,+∞), x ∈ (0, L),

y(t, 0) = yx(t, 0) = yxx(t, L) = yxxx(t, L) = 0, t ∈ (0,+∞),(13.24)

d
dt

(
ω(t)(Jd + ρ

∫ L

0

y2(t, x)dx)

)
= Γ(t), t ∈ (0,+∞),(13.25)

where L is the length of the beam, ρ is the mass per unit length of the beam,
EI is the flexural rigidity per unit length of the beam, ω(t) = θ̇(t) is the angular
velocity of the disk at time t, Jd is the disk’s moment of inertia, y(t, x) is the beam’s
displacement in the rotating plane at time t with respect to the spatial variable x,
Byt is the damping term and Γ(t) is the torque control variable applied to the
disk at time t (see Figure 1). It is a control system where, at time t, the state is
(y(t, ·), yt(t, ·), ω(t)) and the control is Γ(t).

If there is no damping, B = 0 and therefore (13.23) reads

(13.26) ρytt(t, x) + EIyxxxx(t, x) = ρω2(t)y(t, x).

The asymptotic behavior of the solutions of (13.23)-(13.24)-(13.25) when there
is no control (i.e., Γ = 0), but with a damping term (i.e., when B > 0), has
been studied by John Baillieul and Mark Levi in [25] and by Anthony Bloch and
Edriss Titi in [59]. Still when there is a damping term, Cheng-Zhong Xu and
John Baillieul have shown in [505] that the feedback torque control law Γ = −νω,
where ν is any positive constant, globally asymptotically stabilizes the equilibrium
point (y, yt, ω) = (0, 0, 0). It is easy to check that such feedback laws do not
asymptotically stabilize the equilibrium point when there is no damping.
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Figure 1. The body-beam structure

In this section, we present a result obtained in [119] on the stabilization prob-
lem when there is no damping. We shall see that the design tools presented in
Section 12.5 will allow us to construct in this case a feedback torque control law
which globally asymptotically stabilizes the origin.

Of course, by suitable scaling arguments, we may assume that L = EI = ρ = 1.
Let

H = {w = (u, v)tr; u ∈ H2(0, 1), v ∈ L2(0, 1), u(0) = ux(0) = 0}.
The space H with inner product

((u1, v1)tr, (u2, v2)tr)H =
∫ 1

0

(u1xxu2xx + v1v2)dx

is a Hilbert space. For w ∈ H, we denote by ‖w‖H the norm of w and let

E(w) = ‖w‖2H .
We consider the unbounded linear operator A : D(A) ⊂ H → H defined by

D(A) :=
{(

u
v

)
; u ∈ H4(0, 1), v ∈ H2(0, 1),

u(0) = ux(0) = uxx(1) = uxxx(1) = v(0) = vx(0) = 0
}
,

A

(
u
v

)
:=
(
−v
uxxxx

)
.

One easily checks that

D(A) is dense in H,
A is a closed operator,

A∗ = −A.

Hence, from the Lumer-Phillips theorem (see Theorem A.16 on page 377), A is the
infinitesimal generator of a strongly continuous group S(t), t ∈ R, of isometries on
H.
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With this notation, our control system (13.24)-(13.25)-(13.26) reads

(13.27)
dw

dt
+Aw = ω2

(
0
u

)
,

(13.28)
dω

dt
= γ,

with

(13.29) γ :=
Γ− 2ω

∫ 1

0
uvdx

Jd +
∫ 1

0
u2dx

.

By (13.29), we may consider γ as the control. In order to explain how we have con-
structed our stabilizing feedback law, let us first consider, as in the usual backstep-
ping method (see Section 12.5 above), equation (13.27) as a control system where
w is the state and ω is the control. Then natural candidates for a control Lyapunov
function and a stabilizing feedback law are, respectively, E and ω = σ?(

∫ 1

0
uvdx),

where σ? ∈ C0(R,R) satisfies σ? > 0 on (−∞, 0) and σ? = 0 on [0,+∞). (This is
the usual damping technique; see Section 12.2.) One can prove (see [119, Appen-
dix]) that such feedback laws always give weak asymptotic stabilization, i.e., one
gets

w(t) ⇀ 0 weakly inH as t→ +∞,(13.30)

instead of

w(t) → 0 in H as t→ +∞.(13.31)

But it is not clear that such feedbacks give strong asymptotic stabilization. It
is possible to prove that one gets such stabilization for the particular case where
the feedback is

(13.32) ω := (max{0,−
∫ 1

0

uvdx}) 1
2 .

Unfortunately, ω defined by (13.32) is not of class C1 and so one cannot use the
proof of Theorem 12.24 on page 334 to get asymptotic stabilization for the control
system (13.27)-(13.28) which is obtained by adding an integrator to control system
(13.27). The regularity of this ω is also not sufficient to apply the desingularization
techniques introduced in [392]; see Section 12.5.1 above. For these reasons, we use
a different control Lyapunov function and a different feedback law to asymptotically
stabilize control system (13.27).

For the control Lyapunov function, we take

J(w) =
1
2

(
E(w)− F (E(w))

∫ 1

0

u2dx

)
, ∀w = (u, v)tr ∈ H,

where F ∈ C3([0,+∞); [0,+∞)) satisfies

(13.33) sup
s>0

F (s) <
µ1

2
,

where µ1 is the first eigenvalue of the unbounded linear operator (d4/dx4) on
L2(0, 1) with domain

Dom(d4/dx4) = {f ; f ∈ H4(0, 1) , f(0) = fx(0) = fxx(1) = fxxx(1) = 0}.
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Note that this operator is self-adjoint (i.e., is equal to its adjoint) and has compact
resolvent. Hence, by the definition of µ1,

(13.34)
∫ 1

0

u2
xxdx > µ1

∫ 1

0

u2dx , ∀w ∈ H.

From (13.33) and (13.34),

(13.35)
1
4
E(w) 6 J(w) 6

1
2
E(w) , ∀w ∈ H.

Computing the time-derivative J̇ of J along the trajectories of (13.27), one gets

(13.36) J̇ =
(
Kω2 − F (E)

)(∫ 1

0

uvdx

)
,

where, for simplicity, we write E for E(w) and where

K(= K(w)) := 1− F ′(E)
∫ 1

0

u2dx.(13.37)

Let us impose that

(13.38) 0 6 F ′(s)s < µ1 − F (s) , ∀s ∈ [0,+∞),

(13.39) ∃C4 > 0 such that lim
s→0, s>0

F (s)
s

= C4.

It is then natural to consider the feedback law for (13.27) vanishing at 0 and
such that, on H \ {0},

(13.40) ω = K−1/2

(
F (E)− σ̄

(∫ 1

0

uvdx

)) 1
2

,

for some function σ̄ ∈ C2(R; R) satisfying

(13.41) sσ̄(s) > 0 , ∀s ∈ R \ {0},

(13.42) ∃C5 > 0 such that lim
s→0, s 6=0

σ̄(s)
s

= C5,

(13.43) σ̄(s) < F (2
√
µ1s) , ∀s > 0.

Note that, using (13.34), one gets that, for every w = (u, v) ∈ H,∫ 1

0

uvdx 6
1
2
(
√
µ1

∫ 1

0

u2dx+
1

√
µ1

∫ 1

0

v2dx)

6
1

2
√
µ1

(∫ 1

0

u2
xxdx+

∫ 1

0

v2dx

)
=

1
2
√
µ1
E(w),(13.44)

which, together with (13.38), (13.39) and (13.43), implies that

(13.45) F (E(w))− σ̄

(∫ 1

0

uvdx

)
> 0 , ∀w ∈ H \ {0}.

From (13.34), (13.37) and (13.38), one gets

K(w) > 1− F ′(E(w))
µ1

∫ 1

0

u2
xxdx > 1− F ′(E(w))

µ1
E(w) > 0 , ∀w ∈ H.(13.46)
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From (13.45) and (13.46), we get that ω is well defined by (13.40) and is of class C2

on H \ {0}. This regularity is sufficient to apply the desingularization technique of
[392] (see Section 12.5.1 above). We note that (13.40) is equivalent to

(13.47) ω3 = ψ(w) := K−3/2

(
F (E(w))− σ̄

(∫ 1

0

uvdx

)) 3
2

and therefore, following [392], one considers the following control Lyapunov func-
tion for control system (13.27)-(13.28):

V (w,ω) = J +
∫ ω

ψ
1
3

(s3 − ψ)ds = J +
1
4
ω4 − ψω +

3
4
ψ

4
3 ,

where, for simplicity, we write J for J(w) and ψ for ψ(w). Then, by (13.35),

V (w,ω) → +∞ as ‖w‖H + |ω| → +∞,(13.48)

V (w,ω) > 0 , ∀(w,ω) ∈ H × R \ {(0, 0)},(13.49)

V (0, 0) = 0.(13.50)

Moreover, if one computes the time-derivative V̇ of V along the trajectories of
(13.27)-(13.28), one gets, using in particular (13.36), that

V̇ = −
(∫ 1

0

uvdx

)
σ̄

(∫ 1

0

uvdx

)
+ (ω − ψ

1
3 )[γ(ω2 + ψ

1
3ω + ψ

2
3 ) +D],(13.51)

where

D := −ψ̇ +K(ω + ψ
1
3 )
∫ 1

0

uvdx,(13.52)

with
(13.53)

ψ̇ :=
3ψ

1
3

2K

[
2F ′(E)ω2

∫ 1

0

uvdx− σ′
(∫ 1

0

uvdx

)(∫ 1

0

(v2 − u2
xx + ω2u2)dx

)]
+

3ψ
K

(∫ 1

0

uvdx

)(
ω2F ′′(E)

∫ 1

0

u2dx+ F ′(E)
)
.

Hence it is natural to define the feedback law γ by

(13.54) γ(0, 0) := 0

and, for every (w,ω) ∈ (H × R) \ {(0, 0)},

(13.55) γ(w,ω) := −(ω − ψ
1
3 )− D

ω2 + ψ
1
3ω + ψ

2
3
.

Note that by (13.45), (13.46) and (13.47),

(13.56) ψ(w) > 0 , ∀w ∈ H \ {0}.
Moreover, by (13.37), (13.39), (13.42), (13.43) and (13.44), there exists δ > 0 such
that

(13.57) ψ(w) > δE(w)3/2 , ∀w ∈ H such that E(w) < δ.

Using (13.37), (13.46), (13.47), (13.52), (13.53), (13.55), (13.56) and (13.57), one
easily checks that γ is Lipschitz on bounded sets of H × R. Therefore the Cauchy
problem associated to (13.27)-(13.28) has, for this feedback law γ and an initial
condition given at time 0, one and only one (maximal) solution defined on an open
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interval containing 0. (The definition of a solution is the definition of a usual mild
solution as given, for example, in [381, Definition 1.1, Chapter 6, page 184]. It is
quite similar to the one given in Definition 2.86 on page 96. For the existence and
uniqueness of (maximal) solutions, we refer, for example, to [381, Theorem 1.4,
Chapter 6, pages 185–186].) By (13.43), (13.51), (13.52), (13.54) and (13.55), one
has

(13.58) V̇ = −
(∫ 1

0

uvdx

)
σ̄

(∫ 1

0

uvdx

)
− (ω − ψ

1
3 )2(ω2 + ψ

1
3ω + ψ

2
3 ) 6 0,

which, together with (13.48) and a classical property of maximal solutions (see, e.g.,
[381, Theorem 1.4, Chapter 6, pages 185–186]) shows that the (maximal) solutions
of (13.27)-(13.28) defined at time t0 are defined on at least [t0,+∞).

One has the following theorem.

Theorem 13.2. The feedback law γ defined by (13.54)-(13.55) globally strongly
asymptotically stabilizes the equilibrium point (0, 0) for the control system (13.27)-
(13.28), i.e.,

(i) for every solution of (13.27), (13.28), (13.54) and (13.55),

(13.59) lim
t→+∞

‖w(t)‖H + |ω(t)| = 0;

(ii) for every ε > 0, there exists η > 0 such that, for every solution of (13.27),
(13.28), (13.54) and (13.55),

(‖w(0)‖H + |ω(0)| < η) ⇒ (‖w(t)‖H + |ω(t)| < ε , ∀t > 0).

The proof of Theorem 8.5 is given in [119]. Let us just mention that it is
divided into two parts:

(i) First one proves that the trajectories of (13.27)-(13.28) are precompact in
H for t > 0.

(ii) Then one concludes by means of the LaSalle invariance principle.
The main difficult point is to prove (i). More precisely, one needs to prove that

the energy associated to the high frequency modes is uniformly small. In order to
prove this uniform smallness a key point is that all these modes satisfy the same
equation as w. Finally, an important ingredient is to get some estimates on

∫ 1

0
uvdx

for any solution of (13.27)-(13.28), which allow us to prove the uniform smallness.

13.3. Null asymptotic stabilizability of the 2-D Euler control system

In this section we address a problem of stabilization of the Euler equations.
In Section 6.2.1 we considered the problem of controllability of the Euler control
system of an incompressible inviscid fluid in a bounded domain. In particular, we
saw that, if the controls act on an arbitrarily small open subset of the boundary
which meets every connected component of this boundary, then the Euler equation
is exactly controllable.

For linear control systems, the exact controllability implies in many cases the
asymptotic stabilizability by means of feedback laws. As we saw in Theorem 10.1 on
page 275, this is always the case in finite dimension. This also holds for important
partial differential equations as shown by Marshall Slemrod in [450], Jacques-Louis
Lions in [326], Irena Lasiecka and Roberto Triggiani in [299] and Vilmos Komornik
in [278]; see also Section 13.1.
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However, as we saw in Section 11.1, this is no longer true for nonlinear control
systems, even of finite dimension. For example, the nonholonomic integrator

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1,(13.60)

where the state is (x1, x2, x3) ∈ R3 and the control is (u1, u2)tr ∈ R2, is small-time
locally controllable at the equilibrium (xe, ue) := (0, 0) ∈ R3×R2 (see Example 3.20
on page 135 or Example 6.3). However, as we have seen in Example 11.2 on page 289
(an example due to Roger Brockett [74]), the control system (13.60) cannot be
locally asymptotically stabilized by means of continuous stationary feedback laws.
Note however that, by Theorem 11.14 on page 297, the driftless control affine system
(13.60) can be globally asymptotically stabilized by means of smooth periodic time-
varying feedback laws (see Example 11.16 on page 297). Let us also notice that, as
for the control system (13.60), the linearized control system of the Euler equation
around the origin is not controllable, as we have seen on page 195.

Therefore it is natural to ask what is the situation for the asymptotic stabiliz-
ability of the origin for the 2-D Euler equation of an incompressible inviscid fluid in
a bounded domain, when the controls act on an arbitrarily small open subset of the
boundary which meets every connected component of this boundary. In this section
we are going to prove that the null global asymptotic stabilizability by means of
feedback laws holds if the domain is simply connected.

Let Ω be a nonempty bounded connected and simply connected subset of R2

of class C∞ and let Γ0 be a nonempty open subset of the boundary ∂Ω of Ω. This
set Γ0 is the location of the control. Let y be the velocity field of the inviscid fluid
contained in Ω. We assume that the fluid is incompressible, so that

div y = 0.(13.61)

Since Ω is simply connected, y is completely characterized by ω := curl y and
y ·n on ∂Ω, where n denotes the unit outward normal to ∂Ω. For the controllability
problem, one does not really need to specify the control and the state; one considers
the “Euler control system” as an under-determined system, by requiring y · n = 0
on ∂Ω \Γ0 instead of y · n = 0 on ∂Ω which one requires for the uncontrolled usual
Euler equation. For the stabilization problem, one needs to specify more precisely
the control and the state. In this section, the state at time t is equal to ω(t, ·). For
the control at time t, there are at least two natural possibilities:

(a) The control is y(t, x) ·n(x) on Γ0 and the time derivative ∂ω/∂t(t, x) of the
vorticity at the points x of Γ0 where y(t, x) · n(x) < 0, i.e., at the points
where the fluid enters into the domain Ω.

(b) The control is y(t, x) · n(x) on Γ0 and the vorticity ω at the points x of Γ0

where y(t, x) · n(x) < 0.

Let us point out that, by (13.61), in both cases y · n has to satisfy
∫
∂Ω
y · n = 0. In

this section, we study only case (a); for case (b), see [114].
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Let us give stabilizing feedback laws. Let g ∈ C∞(∂Ω) be such that

the support of g is included in Γ0,(13.62)

Γ+
0 := {g > 0} and Γ−0 := {g < 0} are connected,(13.63)

g 6= 0,(13.64)

Γ+
0 ∩ Γ−0 = ∅,(13.65) ∫
∂Ω

g = 0.(13.66)

For every f ∈ C0(Ω), we denote

|f |0 = Max {|f(x)| ;x ∈ Ω}.
Our stabilizing feedback laws are

y · n = M |ω|0 g on Γ0,

∂ω

∂t
= −M |ω|0 ω on Γ−0 if |ω|0 6= 0,

where M > 0 is large enough.
With these feedback laws, a function ω : I ×Ω → R, where I is a time interval,

is a solution of the closed-loop system Σ if
∂ω

∂t
+ div (ωy) = 0 in

◦
I × Ω,(13.67)

div y = 0 in
◦
I × Ω,(13.68)

curl y = ω in
◦
I × Ω,(13.69)

y(t) · n = M |ω(t)|0 g on ∂Ω, ∀t ∈ I,(13.70)
∂ω

∂t
= −M |ω(t)|0 ω on {t ∈

◦
I; ω(t) 6= 0} × Γ−0 .(13.71)

Here,
◦
I denotes the interior of I ⊂ R and for t ∈ I, ω(t) : Ω → R and y(t) : Ω → R2

are defined by requiring ω(t)(x) = ω(t, x) and y(t)(x) = y(t, x),∀x ∈ Ω . More
precisely, the definition of a solution of the system Σ follows.

Definition 13.3. Let I be an interval. A function ω : I → C0(Ω) is a solution
of the system Σ if

(i) ω ∈ C0(I;C0(Ω))(∼= C0(I × Ω)),
(ii) for y ∈ C0(I ×Ω; R2) defined by requiring (13.68) and (13.69) in the sense

of distributions and (13.70), one has (13.67) in the sense of distributions,

(iii) in the sense of distributions on the open manifold {t ∈
◦
I; ω(t) 6= 0} × Γ−0 ,

one has ∂ω/∂t = −M |ω(t)|0 ω.

Our first theorem says that, for M large enough, the Cauchy problem for the
system Σ has at least one solution defined on [0,+∞) for every initial data in
C0(Ω). More precisely one has:

Theorem 13.4 ([114]). There exists M0 > 0 such that, for every M > M0,
the following two properties hold:

(i) For every ω0 ∈ C0(Ω), there exists a solution of the system Σ defined on
[0,+∞) such that ω(0) = ω0.
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(ii) Every maximal solution of system Σ defined at time 0 is defined on [0,+∞)
(at least).

Remark 13.5. a. In this theorem, property (i) is in fact implied by property
(ii) and Zorn’s lemma. We state (i) in order to emphasize the existence of a solution
to the Cauchy problem for the system Σ.

b. We do not know if the solution to the Cauchy problem is unique for positive
time. (For negative time, one does not have uniqueness since there are solutions
ω of system Σ defined on [0,+∞) such that ω(0) 6= 0 and ω(T ) = 0 for some
T ∈ (0,+∞) large enough.)

However, let us emphasize that, already for control systems in finite dimension,
we have considered feedback laws which are merely continuous (see Chapter 11 and
Chapter 12). With these feedback laws, the Cauchy problem for the closed-loop
system may have many solutions. It turns out that this lack of uniqueness is not a
real problem. Indeed, in finite dimension at least, if a point is asymptotically stable
for a continuous vector field, then there exists, as in the case of regular vector fields,
a (smooth) strict Lyapunov function. This result is due to Jaroslav Kurzweil [289].

It is tempting to conjecture that a similar result holds in infinite dimension
under reasonable assumptions. The existence of this Lyapunov function ensures
some robustness to perturbations. It is precisely this robustness which makes the
interest of feedback laws compared to open-loop controls. We will see that, for our
feedback laws, there also exists a strict Lyapunov function (see Proposition 13.9 on
the next page) and therefore our feedback laws provide some kind of robustness.

Our next theorem shows that, at least for M large enough, our feedback laws
globally and strongly asymptotically stabilize the origin in C0(Ω) for the system Σ.

Theorem 13.6. There exists a positive constant M1 > M0 such that, for every
ε ∈ (0, 1], every M > M1/ε and every maximal solution ω of system Σ defined at
time 0,

|ω(t)|0 6 Min
{
|ω(0)|0,

ε

t

}
, ∀t > 0.(13.72)

Remark 13.7. Due to the term |ω(t)|0 appearing in (13.70) and in (13.71), our
feedback laws do not depend only on the value of ω on Γ0. Let us point out that
there is no asymptotically stabilizing feedback law depending only on the value of
ω on Γ0 such that the origin is asymptotically stable for the closed-loop system. In
fact, given a nonempty open subset Ω0 of Ω, there is no stabilizing feedback law
which does not depend on the values of ω on Ω0. This phenomenon is due to the
existence of “phantom vortices”: there are smooth stationary solutions ȳ : Ω → R2

of the 2-D Euler equations such that Support ȳ ⊂ Ω0 and ω̄ := curl ȳ 6= 0; see, e.g.,
[341]. Then ω(t) = ω̄ is a solution of the closed-loop system if the feedback law
does not depend on the values of ω on Ω0, and vanishes for ω = 0.

Remark 13.8. Let us emphasize that (13.72) implies that

|ω(t)|0 6 ε, ∀t > 1,(13.73)

for every maximal solution ω of system Σ defined at time 0 (whatever ω(0) is). It
would be interesting to know if one could have a similar result for the 2-D Navier-
Stokes equations of viscous incompressible flows, that is, if, given ε > 0, there
exists a feedback law such that (13.73) holds for every solution of the closed-loop
Navier-Stokes system.
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Note that y = 0 on Γ0 is a feedback which leads to asymptotic stabilization of
the null solution of the Navier-Stokes control system. However, this feedback does
not have the required property. One may ask a similar question for the Burgers
control system; for the null asymptotic stabilization of this control system, see the
paper [287] by Miroslav Krstić and the references therein. For local stabilization
of the Navier-Stokes equations, let us mention in particular [29] by Viorel Barbu,
[31] by Viorel Barbu and Roberto Triggiani, [30] by Viorel Barbu, Irena Lasiecka
and Roberto Triggiani, [183] by Andrei Fursikov, [399] by Jean-Pierre Raymond
and [492]. These papers use in a strong way the viscous term ν∆y (see equation
(6.23)); the Euler part (y ·∇)y is essentially treated as a perturbation term which is
more an annoying term than a useful term. Note that Theorem 13.4 and Theorem
13.6 seem to show that the Euler term might be useful in some situations, even for
the Navier-Stokes control system.

Sketch of the proof of Theorem 13.6. (The detailed proofs of Theorem 13.4
and of Theorem 13.6 are given in [114].) Let us just mention that the proof relies
on an explicit Lyapunov function V : C0(Ω) → [0,+∞). This function V is defined
by

V (ω) = |ω exp(−θ)|0,(13.74)

where θ ∈ C∞(Ω) satisfies

∆θ = 0 in Ω,(13.75)
∂θ

∂n
= g on ∂Ω.(13.76)

(Let us point out that the existence of θ follows from (13.66).) Theorem 13.6 is an
easy consequence of the following proposition.

Proposition 13.9. There exist M2 > M0 and µ > 0 such that, for every
M > M2 and every solution ω : [0,+∞) → C0(Ω) of system Σ, one has, for every
t ∈ [0,+∞),

[−∞, 0] 3 V̇ (t) :=
d

dt+
V (ω(t)) 6 −µMV 2(ω(t)),(13.77)

where d/dt+V (ω(t)) := limε→0+(V (ω(t+ ε))− V (ω(t)))/ε.

Let us end this section by some comments on the case where Ω is not simply
connected. In this case, in order to define the state, one adds to ω the real numbers
λ1, . . . , λg defined by

λi =
∫

Ω

y · ∇⊥τi,

where, if one denotes by C0, C1, . . . , Cg the connected components of Γ, the functions
τi ∈ C∞(Ω), i ∈ {1, . . . , g} are defined by

∆τi = 0 ,
τi = 0 on ∂Ω \ Ci,
τi = 1 on Ci,

and where ∇⊥τi denotes ∇τi rotated by π/2. One has the following open problem.
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Open Problem 13.10. Assume that g > 1 and that Γ0 meets every connected
component of Γ. Does there always exist a feedback law such that 0 ∈ C0(Ω) × Rg
is globally asymptotically stable for the closed-loop system?

Recently Olivier Glass has got in [199] a positive answer to this open problem
if one allows to add an integrator on the vorticity ω (in particular he has proved
the global asymptotic stabilizability by means of dynamic feedback laws (see Defi-
nition 11.5 on page 292).

Brockett’s necessary condition [74] for the existence of asymptotically stabi-
lizing feedback laws cannot be directly applied to our situation since our control
system is of infinite dimension. However, it naturally leads to the following ques-
tion.
Question. Assume that Γ0 meets every connected component of Γ. Let f ∈ C∞(Ω).
Do there exist y ∈ C∞(Ω; R2) and p ∈ C∞(Ω) such that

(13.78) (y.∇)y +∇p = f in Ω ,

(13.79) div y = 0 in Ω ,

(13.80) y · n = 0 on Γ \ Γ0?

Let us point out that, by scaling arguments, one does not have to assume that f
is “small” in this question. It turns out that the answer to this question is indeed
positive. This has been proved in [115] if Ω is simply connected and by Olivier
Glass in [197] for the general case. For many results on feedback in flow control,
see the book [1].

13.4. A strict Lyapunov function for boundary control of hyperbolic
systems of conservation laws

This section is borrowed from [121]. It concerns some systems of conservation
laws that are described by partial differential equations, with an independent time
variable t ∈ [0,+∞) and an independent space variable x on a finite interval [0, L].
For such systems, the boundary control problem that we consider is the problem
of designing control actions at the boundaries (i.e., at x = 0 and x = L) in order
to ensure that the smooth solution of the Cauchy problem converges to a desired
steady-state. One can use an entropy of the system as a Lyapunov function (see
[120] and [125]). Unfortunately, this Lyapunov function has only a semi-negative
definite time derivative (i.e., one has only V̇ 6 0). Since LaSalle’s invariance
principle seems to be difficult to apply (due to the problem of the precompactness of
the trajectories), one cannot conclude easily the stability of the closed-loop control
system.

In this section, assuming that the system can be diagonalized with the Rie-
mann invariants, we exhibit a strict Lyapunov function which is an extension of the
entropy but whose time derivative can be made strictly negative definite by an ap-
propriate choice of the boundary controls. We give a theorem which shows that the
boundary control allows us to have the local convergence of the system trajectories
towards a desired steady-state. Furthermore, the control can be implemented as a
feedback of the state only measured at the boundaries. The control design method
is illustrated with an hydraulic application: the regulation of the level and the flow
in an horizontal reach of an open channel.
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For the sake of simplicity, our presentation is restricted to 2 × 2 systems of
conservation laws. From our analysis, it is however very clear that the approach can
be directly extended to any system of conservation laws which can be diagonalized
with Riemann invariants. It is in particular the case for networks channels where
the flux on each arc is modeled by a system of two conservation laws (see, e.g.,
[210] by Martin Gugat, Günter Leugering and Georg Schmidt, [214] by Jonathan
de Halleux, Christophe Prieur and Georges Bastin, as well as [215]).

13.4.1. Boundary control of hyperbolic systems of conservation laws:
statement of the problem. Let Ω be a nonempty connected open set in R2 and
let L > 0. We consider a system of two conservation laws of the general form

(13.81) Yt + f(Y )x = 0, t ∈ [0,+∞), x ∈ (0, L)

where
1. Y = (y1, y2)tr : [0,+∞)× [0, L] → Ω,
2. f ∈ C3(Ω; R2) is the flux density.

We are concerned with the smooth solutions of the Cauchy problem associated to
the system (13.81) over [0,+∞)× [0, L] under an initial condition

Y (0, x) = Y 0(x), x ∈ [0, L],

and two boundary conditions of the form

B0(Y (t, 0), u0(t)) = 0, t ∈ [0,+∞),
BL(Y (t, L), uL(t)) = 0, t ∈ [0,+∞),

with B0, BL : Ω × R → R. This is a control system where, at time t, the state is
Y (t, ·) and the control is (u0(t), uL(t))tr ∈ R2.

For constant control actions u0(t) = ū0 and uL(t) = ūL, a steady-state solution
is a constant solution

Y (t, x) = Ȳ , ∀t ∈ [0,+∞), ∀x ∈ [0, L],

which satisfies (13.81) and the boundary conditions B0(Ȳ , ū0) = 0 and BL(Ȳ , ūL) =
0. In other words, (Ȳ , ū0, ūL) is an equilibrium of our control system (see Defini-
tion 3.1 on page 125).

The boundary stabilization problem we are concerned with is the problem of
finding localized feedback laws Y (t, 0) → u0(Y (t, 0)) and Y (t, L) → uL(Y (t, L))
such that, for any smooth enough initial condition Y 0(x), the Cauchy problem for
the system (13.81) has a unique smooth solution converging towards the desired
given steady-state Ȳ .

In this section, we consider the special case where the system (13.81) is strictly
hyperbolic, i.e., the Jacobian matrix f ′(Y ) has two real distinct eigenvalues for
every Y ∈ Ω. We also assume that the two eigenvalues of f ′(Y ) have opposite
signs: λ2(Y ) < 0 < λ1(Y ), ∀Y ∈ Ω.

The system (13.81) can be “diagonalized”, at least locally, using the Riemann
invariants (see, e.g., [305, pages 34–35] by Peter Lax). This means that, for every
Ȳ ∈ Ω, there exist an open neighborhood Ω̃ of Ȳ and a change of coordinates
ξ(Y ) = (a(Y ), b(Y ))tr whose Jacobian matrix is denoted D(Y ),

D(Y ) = ξ′(Y ),
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and which diagonalizes f ′(Y ) in Ω̃:

D(Y )f ′(Y ) = Λ(Y )D(Y ), Y ∈ Ω̃,(13.82)

with

Λ(Y ) = diag(λ1(Y ), λ2(Y )),

where λ1(Y ), λ2(Y ) are the eigenvalues of f ′(Y ). As it is shown by Peter Lax
in [305, pages 34–35], the first order partial differential equation (13.82) can be
reduced to the integration of ordinary differential equations. Moreover, in many
cases, these ordinary differential equations can be solved explicitly by using sep-
aration of variables, homogeneity or symmetry properties (see, e.g., [443, pages
146–147, page 152] for examples of computations of Riemann invariants). In the
coordinates ξ = (a, b)tr, the system (13.81) can then be rewritten in the following
(diagonal) characteristic form:

ξt + Λ(ξ)ξx = 0,

or

at + c(a, b)ax = 0, bt − d(a, b)bx = 0,(13.83)

where c(a, b) = λ1(ξ) > 0 and −d(a, b) = λ2(ξ) < 0 are the eigenvalues of f ′(Y )
expressed in the ξ = (a, b)tr coordinates. Throughout Section 13.4, we assume that
c and d are two functions of class C2 on a neighborhood of (0, 0) ∈ R2 such that

c(0, 0) > 0, d(0, 0) > 0.

We observe that the quantity at + c(a, b)ax (resp. bt − d(a, b)bx) can be in fact
viewed as the total time derivative da/dt (resp. db/dt) of the function a(t, x) (resp.
b(t, x)) at a point (t, x) of the plane, along the curves having slopes

dx
dt

= c(a, b) (resp.
dx
dt

= −d(a, b)).

These curves are called characteristic curves . Since da/dt = 0 and db/dt = 0
on the characteristic curves, it follows that a(t, x) and b(t, x) are constant along
the characteristic curves. This explains why the characteristic solutions are called
Riemann invariants.

The change of coordinates ξ(Y ) can be selected in such a way that ξ(Ȳ ) = 0. We
assume that such a selection is made. Then the control problem can be restated as
the problem of determining the control actions in such a way that the characteristic
solutions converge towards the origin.

Our goal in this section is to propose and analyze a control design method
based on a strict Lyapunov function that is presented in the next section.

13.4.2. A strict Lyapunov function for boundary control design. Let
us consider first the linear approximation of the characteristic form (13.83) around
the origin:

(13.84) at + c̄ax = 0, bt − d̄bx = 0,

with c̄ = c(0, 0) > 0 and d̄ = d(0, 0) > 0.
With a view to the boundary control design, let us propose the following can-

didate for a Lyapunov function:

U(t) := U1(t) + U2(t),
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with

U1(t) :=
A

c̄

∫ L

0

a2(t, x)e−(µ/c̄)xdx, U2(t) :=
B

d̄

∫ L

0

b2(t, x)e+(µ/d̄)xdx,

where A,B and µ are positive constant coefficients.
This type of Lyapunov function is related to the Lyapunov function used in

Section 13.3 to stabilize the Euler equation (see (13.74) and [114]). It has been
introduced by Cheng-Zhong Xu and Gauthier Sallet in [506] for quite general linear
hyperbolic systems.

The time derivative of this function along the trajectories of the linear approx-
imation (13.84) is

U̇(t) = −µU(t)−
[
Ae−(µ/c̄)La2(t, L)−Aa2(t, 0)

]
−
[
Bb2(t, 0)−Be(µ/d̄)Lb2(t, L)

]
.

It can be seen that the two last terms depend only on the Riemann invariants at the
two boundaries, i.e., at x = 0 and at x = L. The control laws u0(t) and uL(t) can
then be defined in order to make these terms negative along the system trajectories.

A simple solution is to select u0(t) such that

(13.85) a(t, 0) = k0b(t, 0),

and uL(t) such that

(13.86) b(t, L) = kLa(t, L),

with |k0kL| < 1. The time derivative of the Lyapunov function is then written as

U̇(t) = −µU(t) + (Bk2
Le

(µ/d̄)L −Ae−(µ/c̄)L)a2(t, L)(13.87)

+ (Ak2
0 −B)b2(t, 0).

Since |k0kL| < 1, we can select µ > 0 such that

k2
0k

2
L 6 |k0kL| < e−µL((1/c̄)+(1/d̄)).

Then we can select A > 0 and B > 0 such that

k2
L

e−µL((1/c̄)+(1/d̄))
<
A

B
<

1
k2
0

(with the convention 1/k2
0 = +∞ if k0 = 0), which readily implies that

Ak2
0 −B < 0 and Bk2

Le
(µ/d̄)L −Ae−(µ/c̄)L < 0.(13.88)

Then it can be seen that U̇(t) 6 −µU(t) along the trajectories of the linear ap-
proximation (13.84) and that U̇(t) = 0 if and only if a(t, x) = b(t, x) = 0 (i.e., at
the system steady-state).

In the next section, we show that such boundary controls for the linearized sys-
tem (13.84) can also be applied to the nonlinear system (13.83) with the guarantee
that the trajectories locally converge to the origin.
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13.4.3. Convergence analysis. In the previous section (Section 13.4.2), the
inequality U̇(t) 6 −µU ensures the convergence in the L2(0, L)-norm of the solu-
tions of the linear system (13.84). As we shall see hereafter, in order to extend
the analysis to the case of the nonlinear system (13.83), we will need to prove a
convergence in H2(0, L)-norm (see for instance [476, Chapter 16, Section 1]).

In the previous section, we considered linear boundary conditions (13.85)-
(13.86). Here we assume more general nonlinear boundary conditions. More pre-
cisely, we assume that the boundary control functions u0(t) and uL(t) are chosen
such that the boundary conditions have the form

(13.89) a(t, 0) = α(b(t, 0)) and b(t, L) = β(a(t, L)),

with C1 functions α, β : R → R, and we denote

k0 = α′(0) and kL = β′(0).

The goal of this section is to prove the following theorem.

Theorem 13.11. Let us assume that |k0kL| < 1. Then there exist positive
real constants K, δ, λ such that, for every initial conditions (a0, b0) in H2(0, L)2

satisfying the compatibility conditions

a0(0) = α(b0(0)), b0(L) = β(a0(L)),(13.90)

c(a0(0), b0(0))a0
x(0) = −α′(b0(0))d(a0(0), b0(0))b0x(0),(13.91)

d(a0(L), b0(L))b0x(L) = −β′(a0(L))c(a0(L), b0(L))a0
x(L),(13.92)

and the inequality

‖a0‖H2(0,L) + ‖b0‖H2(0,L) < δ,

the closed-loop system (13.83) with boundary conditions (13.89) has a unique solu-
tion in C0([0,+∞);H2(0, L)2) and this solution satisfies, for every t ∈ [0,+∞),

‖a(t, ·)‖H2(0,L) + ‖b(t, ·)‖H2(0,L) < K
(
‖a0‖H2(0,L) + ‖b0‖H2(0,L)

)
e−λt.

One can also get Theorem 13.11 (in the C1-norm instead of the H2-norm)
by using theorems due to James Greenberg and Ta-tsien Li [203] and to Ta-tsien
Li [316, Theorem 1.3, Chapter V, page 173]. The proofs of [203] and of [316,
Theorem 1.3, Chapter V, page 173] rely on direct estimates of the evolution of the
Riemann invariants and their derivatives along the characteristic curves. Note that
a strict Lyapunov function might be interesting for robustness issues which may
be difficult to handle with these direct estimates. For example, using our strict
Lyapunov function and proceeding as in the proof of Theorem 13.11, one can get
the following theorem on the systems

at + c(a, b)ax + g(x, a, b) = 0, bt − d(a, b)bx + h(x, a, b) = 0,(13.93)

Theorem 13.12. Let us assume that |k0kL| < 1. Then there exists a positive
real number ν, such that, for every g and g of class C2 on a neighborhood of
[0, L]× {0} × {0} in [0, L]× R× R satisfying

α(x, 0, 0) = 0, β(x, 0, 0) = 0, ∀x ∈ [0, L],∣∣∣∣∂g∂a (x, 0, 0)
∣∣∣∣+ ∣∣∣∣∂g∂b (x, 0, 0)

∣∣∣∣+ ∣∣∣∣∂h∂a (x, 0, 0)
∣∣∣∣+ ∣∣∣∣∂h∂a (x, 0, 0)

∣∣∣∣ 6 ν, ∀x ∈ [0, L],
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there exist K > 0, λ > 0 and δ > 0 such that, for every initial condition (a0, b0) in
H2(0, L)2 satisfying the compatibility conditions

a0(0) = α(b0(0)), b0(L) = β(a0(L)),

c(a0(0), b0(0))a0
x(0) + g(0, a0(0), b0(0))

= −α′(b0(0))
(
d(a0(0), b0(0))b0x(0)− h(0, a0(0), b0(0))

)
,

d(a0(L), b0(L))b0x(L)− h(L, a0(L), b0(L))

= −β′(a0(L))
(
c(a0(L), b0(L))a0

x(L) + g(L, a0(L), b0(L))
)
,

and the inequality

‖a0‖H2(0,L) + ‖b0‖H2(0,L) < δ,

the closed-loop system (13.93) with boundary conditions (13.89) has a unique solu-
tion in C0([0,+∞);H2(0, L)2) and this solution satisfies, for every t ∈ [0,+∞),

‖a(t, ·)‖H2(0,L) + ‖b(t, ·)‖H2(0,L) < K
(
‖a0‖H2(0,L) + ‖b0‖H2(0,L)

)
e−λt.

We could also consider the cases where c and d depend “slightly” on x ∈ [0, L]
(in the sense that cx(x, 0, 0) and dx(x, 0, 0) are small). For robustness studies using
direct estimates of the evolution of the Riemann invariants and their derivatives
along the characteristic curves, see [316, Theorem 1.3, Chapter 5, page 173] by
Ta-tsien Li, and [396] by Christophe Prieur, Joseph Winkin and Georges Bastin.

Proof of Theorem 13.11. By computing the time derivative of U(t) along
the solutions of the system (13.83), we get

U̇ = −
[
A
a2c

c̄
e−(µx/c̄)

]L
0

+
[
B
b2d

d̄
e+(µx/d̄)

]L
0

−
∫ L

0

[
A
a2cµ

c̄2
e−(µx/c̄) +B

b2dµ

d̄2
e+(µx/d̄)

]
dx

+
∫ L

0

[
A
a2φ

c̄
e−(µx/c̄) −B

b2ψ

d̄
e+(µx/d̄)

]
dx,

with

φ := cx = ax
∂c

∂a
+ bx

∂c

∂b
, ψ := dx = ax

∂d

∂a
+ bx

∂d

∂b
.

Let us introduce the following notations:

v(t, x) := ax(t, x) and w(t, x) := bx(t, x).

Then straightforward computations using integrations by parts lead to the following
lemma.

Lemma 13.13. If |k0kL| < 1 and if the positive real constants µ, A, B sat-
isfy inequalities (13.88), there exist positive real constants K1, δ1, λ1 such that, if
|a(t, x)|+ |b(t, x)| < δ1, ∀x ∈ [0, L], then

U̇ 6 −λ1U +K1

∫ L

0

[
a2(t, x) + b2(t, x)

]
[|v(t, x)|+ |w(t, x)|] dx

along the solutions of the system (13.83) with the boundary conditions (13.89).
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In contrast to the linear analysis of Section 13.4.2 on page 363, it appears
readily from Lemma 13.13 on the preceding page that we cannot just complete
the Lyapunov stability analysis with the function U but that we have to examine
the dynamics of the variables v(t, x) and w(t, x) and consequently to extend the
definition of the Lyapunov function.

By a time differentiation and using the model equations (13.83), it is readily
shown that v(t, x) and w(t, x) satisfy the dynamics

(13.94) vt + c(a, b)vx + vφ = 0, wt − d(a, b)wx − wψ = 0,

and the associated boundary conditions

(13.95)
{
c(t, 0)v(t, 0) = −α′(b(t, 0))d(t, 0)w(t, 0),
d(t, L)w(t, L) = −β′(a(t, L))c(t, L)v(t, L).

Here c(t, 0), d(t, 0), c(t, L) and d(t, L) are compact notations for the values of the
functions c and d evaluated at (a(t, 0), b(t, 0)) and (a(t, L), b(t, L)) respectively.

In fact, we also need to examine the dynamics of the spatial second order
derivatives of a(t, x) and b(t, x), which are denoted as

q(t, x) := vx(t, x) = axx(t, x), r(t, x) := wx(t, x) = bxx(t, x).

They satisfy the dynamics

(13.96)
{
qt + c(a, b)qx + 2qφ+ vφx = 0,
rt − d(a, b)rx − 2rψ − wψx = 0,

with the associated boundary conditions
(13.97)

c(t, 0)q(t, 0) + v(t, 0)φ(t, 0) = η′(t)w(t, 0)
+ η(t)[d(t, 0)r(t, 0) + w(t, 0)ψ(t, 0)]

d(t, L)r(t, L) + w(t, L)ψ(t, L) = −χ′(t)v(t, L)
+ χ(t)[c(t, L)q(t, L) + v(t, L)φ(t, L)].

Here φ(t, 0), ψ(t, 0), are compact notations for the values of the functions φ and
ψ evaluated at (a(t, 0), b(t, 0), v(t, 0), w(t, 0)), and φ(t, L) and ψ(t, L) are simi-
larly compact notations for the values of the functions φ and ψ evaluated at
(a(t, L), b(t, L), v(t, L), w(t, L)). Finally the functions η(t) and χ(t) are defined as

η(t) :=
α′(b(t, 0))d(t, 0)

c(t, 0)
, χ(t) :=

β′(a(t, L))c(t, L)
d(t, L)

.

A key point for the proof of Theorem 13.11 is the fact that the linear approximations
(around zero) of systems (13.94) and (13.96) have the following form:

vt + c̄vx = 0, wt − d̄wx = 0,

qt + c̄qx = 0, rt − d̄rx = 0.

Both systems have exactly the same form as the linear approximation (13.84) of
the original system (13.83). Then, in order to prove that the solutions of the global
system (13.83), (13.94), (13.96) converge to zero, it is quite natural to consider an
extended Lyapunov function of the form

S(t) = U(t) + V (t) +W (t),
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where V (t) and W (t) have the same form as U(t):

V (t) := V1(t) + V2(t),

V1(t) := c̄A

∫ L

0

v2(t, x)e−(µ/c̄)xdx, V2(t) := d̄B

∫ L

0

w2(t, x)e(µ/d̄)xdx,

and

W (t) := W1(t) +W2(t),

W1(t) := c̄3A

∫ L

0

q2(t, x)e−(µ/c̄)xdx, W2(t) := d̄3B

∫ L

0

r2(t, x)e(µ/d̄)xdx.

Let us now examine the time derivatives of the functions V (t) and W (t) along the
solutions of the closed-loop system (13.83), (13.89), (13.94)-(13.95)-(13.96)-(13.97).
Straightforward (but lengthy) computations using integrations by parts lead to the
following lemmas.

Lemma 13.14. If |k0kL| < 1 and if the positive real constants µ, A, B sat-
isfy inequalities (13.88), there exist positive real constants K2, δ2, λ2 such that, if
|a(t, x)|+ |b(t, x)| < δ2, ∀x ∈ [0, L], then

V̇ 6 −λ2V +K2

∫ L

0

[
v2(t, x) + w2(t, x)

]3/2
dx

along the solutions of the systems (13.83), (13.94) with the boundary conditions
(13.89) and (13.95).

Lemma 13.15. If |k0kL| < 1 and if the positive real constants µ, A, B sat-
isfy inequalities (13.88), there exist positive real constants K3, δ3, λ3 such that, if
|a(t, x)|+ |b(t, x)| < δ3, ∀x ∈ [0, L], then

Ẇ 6 −λ3W +K3

∫ L

0

(
q2(t, x) + r2(t, x)

)
(|v(t, x)|+ |w(t, x)|) dx

+K3

∫ L

0

(
v2(t, x) + w2(t, x)

)
(|q(t, x)|+ |r(t, x)|) dx

along the solutions of the systems (13.83), (13.94), (13.96) with the boundary con-
ditions (13.89), (13.95), (13.97).

We are now in a position to complete our Lyapunov convergence analysis. We
start with the analysis of the global Lyapunov function S = U + V + W . From
Lemma 13.13 on page 366, Lemma 13.14 and Lemma 13.15, we readily get the
following lemma.

Lemma 13.16. If |k0kL| < 1 and if the positive real constants µ, A, B satisfy
inequalities (13.88), there exist positive real constants λ0 and δ0 such that, if S(t) <
δ0, then

Ṡ 6 −λ0S

along the solutions of the closed-loop system (13.83), (13.89), (13.94), (13.95),
(13.96), (13.97).

From [476, Chapter 16, Proposition 1.18, p. 364], we know that two solutions
in

C0([0, T );H2(0, L))2 ∩ C1([0, T );H1(0, L))2 ∩ C2([0, T );L2(0, L))2
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of the Cauchy problem (13.83), (13.89) with the same initial condition are equal
on [0, T ). (Actually [476] deals with R instead of [0, L] but the proof can be easily
adapted).

Furthermore, concerning the existence of solutions to the Cauchy problem, we
have the following result from [476, Chapter 16, Proposition 1.5, p. 365]. There ex-
ists δ4 > 0 such that, for every initial condition (a0(x), b0(x)) ∈ H2(0, L)2 satisfying
the above compatibility conditions (13.90)-(13.91)-(13.92), if every solution

(a, b) ∈ C0([0, T ),H2(0, L))2 ∩ C1([0, T ),H1(0, L))2 ∩ C2([0, T ), L2(0, L))2

of the Cauchy problem (13.83), (13.89) with the initial condition (a(0, ·), b(0, ·)) =
(a0, b0) satisfies S(t) < δ4 for every t ∈ [0, T ), then this Cauchy problem has a
solution defined on [0,+∞) and in

C0([0,+∞),H2(0, L))2 ∩ C1([0,+∞),H1(0, L))2 ∩ C2([0,+∞), L2(0, L))2.

(Again the proof in [476] deals with R instead of [0, L] but it can be easily adapted).
Let M > 0 be such that

1
M
S(t) 6 ‖a(t, .)‖H2(0,L) + ‖b(t, .)‖H2(0,L) 6 MS(t).

Then it follows from Lemma 13.16 that Theorem 13.11 holds with

δ :=
1
M

min(δ0, δ4), K := M2, λ := λ0.

Remark 13.17. In the special case where µ = 0, the Lyapunov function U
is just an entropy function of the system in characteristic form linearized in the
space of the Riemann coordinates. In references [120] and [125], the interested
reader will find an alternative approach to the boundary control design where the
entropy is used as a Lyapunov function. It must, however, be emphasized that the
entropy is not a strict Lyapunov function because its time derivative is not negative
definite but only semi-negative definite (as we can see by setting µ = 0 in equality
(13.87)). In fact, the Lyapunov analysis made in references [120] and [125], was
only used as a guide to construct potentially stabilizing feedback laws. The proof of
the asymptotic stability was obtained by using theorems due to James Greenberg
and Ta-tsien Li [203] and to Ta-tsien Li [316, Theorem 1.3, Chapter V, page 173].

13.4.4. Application to level and flow control in a horizontal reach
of an open channel. We consider a reach of an open channel delimited by two
overflow spillways as represented in Figure 2 on the next page. We assume that

1. the channel is horizontal,
2. the channel is prismatic with a constant rectangular section and a unit

width,
3. the friction effects are neglected.

The flow dynamics are described by a system of two conservation laws (shallow
water equations, due to Saint-Venant [430]; see also Section 6.3), namely a mass
conservation law

Ht + (HV )x = 0,
and a momentum conservation law

Vt +
(
gH +

V 2

2

)
x

= 0.
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Here H(t, x) represents the water level and V (t, x) the water velocity in the reach,
while g denotes the gravitation constant.

x
L0

H(t,x)

V(t,x)

u
0

uL

Z
0

Figure 2. A reach of an open channel delimited by two adjustable
overflow spillways

One has

f

(
H
V

)
:=
(

HV

gH + V 2

2

)
,

f ′
(
H
V

)
=
(
V H
g V

)
.

The eigenvalues of the Jacobian matrix f ′(H,V )tr are

λ1(H,V ) = V +
√
gH, λ2(H,V ) = V −

√
gH.

They are real and distinct if H > 0. They are generally called characteristic
velocities. The flow is said to be fluvial (or subcritical) when the characteristic
velocities have opposite signs:

λ2(H,V ) < 0 < λ1(H,V ).

The Riemann invariants can be defined as follows:

a = V − V̄ + 2(
√
gH −

√
gH̄),

b = V − V̄ − 2(
√
gH −

√
gH̄).

The control actions are the positions u0 and uL of the two spillways located at the
extremities of the pool and related to the state variables H and V by the following
expressions:

H(t, 0)V (t, 0)− C0

(
Z0 − u0(t)

)3/2 = 0,(13.98)

H(t, L)V (t, L)− C0

(
H(t, L)− uL(t)

)3/2 = 0,(13.99)

where Z0 denotes the water level above the pool (see Figure 2) and C0 is a charac-
teristic constant of the spillways.
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For constant spillway positions ū0 and ūL, there is a unique steady-state solu-
tion which satisfies the following relations:

H̄ = Z0 − ū0 + ūL, V̄ =
C0(Z0 − ū0)3/2

Z0 − ū0 + ūL
.

The control objective is to regulate the level H and the velocity V (or the flow rate
Q = HV ) at the steady-state H̄ and V̄ (or Q̄ = H̄V̄ ), by acting on the spillway
positions u0 and uL.

By using the relations (13.85) and (13.86) for the control definition, combined
with the spillway characteristics (13.98)-(13.99), the following boundary control
laws are obtained:

u0 = Z0 −
3

√(
H0

C0

)2(
V̄ − 2

√
g
1 + k0

1− k0
(
√
H0 −

√
H̄)
)2

,

uL = HL −
3

√(
HL

C0

)2(
V̄ + 2

√
g
1 + kL
1− kL

(
√
HL −

√
H̄)
)2

where H0 = H(t, 0), HL = H(t, L).
Let us emphasize that u0 (resp. uL) depends only on the state at x = 0 (resp.

x = L). In addition, let us also point out that the implementation of the control
is particularly simple since only measurements of the levels H(t, 0) and H(t, L)
at the two spillways are required. This means that the feedback implementation
does not require level measurements inside the pool or any velocity or flow rate
measurements.

Remark 13.18. In order to solve the control problem, we selected the particular
simple boundary conditions (13.85) and (13.86). But obviously many other forms
are admissible provided they make U̇ negative. For instance, it can be interesting
to use controls at a boundary which depend on the state at the other boundary,
hence introducing some useful feedforward action in the control (see e.g. [37]).

Remark 13.19. There have been recently many results on the controllability
of channels and network of channels. Let us mention in particular [317, 318] by
Ta-tsien Li, [320] by Ta-tsien Li and Bopeng Rao, [210] by Martin Gugat, Günter
Leugering and Georg Schmidt.





APPENDIX A

Elementary results on semigroups of linear
operators

In this appendix we recall some classical results on semigroups generated by
linear operators with applications to evolution equations. We omit the proofs but
we give precise references where they can be found. Let H be a complex Hilbert
space. We denote by 〈x, y〉 the scalar product of two elements x and y in H. The
norm of x ∈ H is denoted ‖x‖. Let

A : D(A) ⊂ H → H
x 7→ Ax

be a linear map from the linear subspace D(A) of H into H. Throughout this
section we assume that A is densely defined, i.e.,

D(A) is dense in H.(A.1)

Let us first recall some definitions.

Definition A.1. The operator A is a closed operator if its graph (i.e., the set
{(x,Ax); x ∈ H}) is a closed subset of H ×H.

Definition A.2. The operator A is dissipative if

<〈Ax, x〉 6 0, ∀x ∈ D(A).

(Let us recall that, for z ∈ C, <z denotes the real part of z.)

Definition A.3. The adjoint A∗ of A is the linear operator

A∗ : D(A∗) ⊂ H → H
x 7→ A∗x,

where
• D(A∗) is the set of all y such that the linear map

D(A) ⊂ H → C
x 7→ 〈Ax, y〉

is continuous, i.e., there exists C > 0 depending on y such that

|〈Ax, y〉| 6 C‖x‖, ∀x ∈ D(A).(A.2)

• For every y ∈ D(A∗), A∗y is the unique element of H such that

〈Ax, y〉 = 〈x,A∗y〉, ∀x ∈ D(A).(A.3)

(The uniqueness of A∗y such that (A.3) holds follows from (A.1), the exis-
tence follows from (A.2).)

373
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We can now state the well-known Lumer-Phillips theorem (see for example
[381, Corollary 4.4, Chapter 1, page 15]). One could alternatively state the Hille-
Yosida theorem; see, for example, [71, Theorem VII.4, page 105] or [381, Theorem
3.1, Chapter 1, page 8 and Theorem 1.3 page 102].

Theorem A.4. Let us assume that A is densely defined and closed. If both A
and A∗ are dissipative, then, for every x0 ∈ D(A), there exists a unique

x ∈ C1([0,+∞);H) ∩ C0([0,+∞);D(A))(A.4)

such that
dx
dt

= Ax on [0,+∞),(A.5)

x(0) = x0.(A.6)

One has

‖x(t)‖ 6 ‖x0‖, ∀t ∈ [0,+∞),(A.7) ∥∥∥∥dx
dt

(t)
∥∥∥∥ = ‖Ax(t)‖ 6 ‖Ax0‖, ∀t ∈ [0,+∞).(A.8)

In (A.4) and throughout the whole book, the linear space D(A) is equipped
with the graph norm ‖y‖D(A) := ‖y‖+ ‖Ay‖.

One also uses the following definition (see, for example, [381, Definition 1.1,
page 1]).

Definition A.5. A one-parameter family S(t), 0 6 t 6 ∞, of continuous linear
operators from H into H is a semigroup of continuous linear operators on H if

S(0) = Id,

S(t1 + t2) = S(t1) ◦ S(t2), ∀(t1, t2) ∈ [0,+∞)2.

In Definition A.5 and in the following, Id denotes the identity map on H. By
(A.1) and (A.7), for every t > 0, the linear map x0 ∈ D(A) 7→ x(t) ∈ H can be
uniquely extended to an element of L(H;H), i.e., a linear continuous map from H
into H. This extension is denoted S(t). One has

S(0) = Id,

S(t1 + t2) = S(t1) ◦ S(t2), ∀(t1, t2) ∈ [0,+∞)2.

Because of these two properties, S : [0,+∞) → L(H,H) is called the semigroup
associated to the linear operator A. Note that (A.7) implies that ‖S(t)‖L(H;H) 6 1,
i.e.,

S(t) is a contraction for every t ∈ [0,+∞).(A.9)

Concerning the regularity of a semigroup, one has the following definition (see,
for example, [381, Definition 2.1, page 4]).

Definition A.6. Let H be a Hilbert space and let S(t), t ∈ [0,+∞), be a
semigroup of continuous linear operators from H into H. One says that S is a
strongly continuous semigroup of continuous linear operators on H if

lim
t→0+

S(t)x = x, ∀x ∈ H.
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With this definition, it follows from (A.4) that the semigroup S associated to
A is strongly continuous.

Concerning the inhomogeneous Cauchy problem, one has the following theorem
(see, e.g., [139, Theorem 3.1.3, page 103]).

Theorem A.7. Let us assume that A is densely defined and closed. If both A
and A∗ are dissipative, then, for every x0 ∈ D(A), for every T ∈ [0,+∞) and for
every f ∈ C1([0, T ];H), there exists a unique

x ∈ C1([0,+∞);H) ∩ C0([0,+∞);D(A))(A.10)

such that
dx
dt

= Ax+ f(t) on [0, T ],(A.11)

x(0) = x0.(A.12)

One has (compare with Proposition 1.9 on page 6)

x(t) = S(t)x0 +
∫ t

0

S(t− τ)f(τ)dτ, ∀t ∈ [0, T ].(A.13)

Concerning the behavior of the norm ‖S(t)‖L(H;H) of the continuous linear
operators S(t) : H → H, one has the following theorem (see, for example, [381,
Theorem 2.2, Chapter 1, page 4]).

Theorem A.8. Let S(t), t ∈ [0,+∞), be a strongly continuous semigroup of
continuous linear operators on H. Then, there exist C > 0 and λ ∈ R such that

‖S(t)‖L(H;H) 6 Ceλt, ∀t ∈ [0,+∞).

Conversely, to every strongly continuous semigroup of continuous linear op-
erators, one can associate a linear operator by the following definition (see, for
example, [381, page 1]).

Definition A.9. Let S(t), t ∈ [0,+∞), be a semigroup of continuous linear
operators on H. Then the infinitesimal generator of S is the linear operator A :
D(A) ⊂ H → H defined by

D(A) =
{
x ∈ H; lim

t→0+

S(t)x− x

t
exists

}
,

Ax = lim
t→0+

S(t)x− x

t
, ∀x ∈ D(A).

One has the following theorem (see, e.g., the proof of [381, Corollary 4.4,
Chapter 1, page 15]).

Theorem A.10. Let us assume that A is densely defined and closed and that
A and A∗ are both dissipative. Then A is the infinitesimal generator of the strongly
continuous semigroup associated to the operator A.

The main properties of the infinitesimal generator of a strongly continuous semi-
group of continuous linear operators on H are summarized in the following theorem
(see [381, Theorem 2.4, Chapter 1, pages 4–5], [381, Corollary 10.6, Chapter 1,
page 41], [381, Theorem 1.3, Chapter 4, page 102]).

Theorem A.11. Let S(t), t ∈ [0,+∞), be a strongly continuous semigroup of
continuous linear operators on H. Then
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(i) The domain D(A) is dense in H and A is a closed linear operator.
(ii) For every x0 in D(A), there exists one and only one

x ∈ C1([0,+∞);H) ∩ C0([0,+∞);D(A))

such that

x(t) ∈ D(A), ∀t ∈ [0,+∞),
dx

dt
(t) = Ax(t), ∀t ∈ [0,+∞),

x(0) = x0.

This solution satisfies

x(t) = S(t)x0, ∀t ∈ [0,+∞).

(iii) S(t)∗, t ∈ [0,+∞), is a strongly continuous semigroup of continuous linear
operators and the infinitesimal generator of this semigroup is the adjoint
A∗ of A.

Some of the previous results and definitions can be extended to the case of
groups of continuous linear operators. First, one has the following definitions (com-
pare with Definition A.5, Definition A.6 and Definition A.9).

Definition A.12. (See e.g. [381, Definition 6.1, page 22].) A one-parameter
family S(t), t ∈ R, of continuous linear operators from H into H is a group of
continuous linear operators on H if

S(0) = Id,

S(t1 + t2) = S(t1) ◦ S(t2), ∀(t1, t2) ∈ R.

Definition A.13. (See e.g. [381, Definition 6.1, Chapter 1, page 22].) Let
S(t), t ∈ R, be a group of continuous linear operators from H into H. One says
that S is a strongly continuous group of continuous linear operators on H if

lim
t→0

S(t)x = x, ∀x ∈ H.

Definition A.14. (See e.g. [381, Definition 6.2, Chapter 1, page 22].) Let
S(t), t ∈ R, be a group of continuous linear operators on H. Then the infinitesimal
generator of S is the linear operator A : D(A) ⊂ H → H defined by

D(A) =
{
x ∈ H; lim

t→0

S(t)x− x

t
exists

}
,

Ax = lim
t→0

S(t)x− x

t
, ∀x ∈ D(A).

The main properties of the infinitesimal generator of a strongly continuous
group of continuous linear operators on H are summarized in the following theorem
(see [381, Theorem 6.3, Chapter 1, page 23], and apply Theorem A.11 to t ∈
[0,+∞) 7→ S(t) and to t ∈ [0,+∞) 7→ S(−t)).

Theorem A.15. Let S(t), t ∈ R, be a strongly continuous group of continuous
linear operators on H. Then

(i) The domain D(A) is dense in H and A is a closed linear operator.
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(ii) For every x0 in D(A), there exists one and only one

x ∈ C1(R;H) ∩ C0(R;D(A))

such that

x(t) ∈ D(A), ∀t ∈ R,
dx

dt
(t) = Ax(t), ∀t ∈ R,

x(0) = x0.

This solution satisfies

x(t) = S(t)x0, ∀t ∈ R.
(iii) S(t)∗, t ∈ R, is a strongly continuous group of continuous linear operators

and the infinitesimal generator of this semigroup is the adjoint A∗ of A.

One also has the following theorem (apply Theorem A.10 to A and −A).

Theorem A.16. Let us assume that A is densely defined and that A = −A∗.
Then A is the infinitesimal generator of the strongly continuous group of isometries
on H associated to the operator A.

Of course, in Theorem A.16, the strongly continuous group of isometries as-
sociated to A is the group S(t), t ∈ R, of isometries of H such that, for every
x0 ∈ D(A), t 7→ x(t) := S(t)x0 is in C1(R;H)∩C0(R;D(A)) and is the solution of
the Cauchy problem

dx
dt

= Ax,

x(0) = x0

(see page 374).

Remark A.17. There are powerful generalizations to the nonlinear case of
most of the results of this section. In this case, the operators A are no longer linear
but maximal monotone. See, in particular, the book [70] by Häım Brezis.





APPENDIX B

Degree theory

In this appendix we construct the degree of a map and prove the properties
of the degree we use in this book. As an application of the degree, we also prove
the Brouwer and Schauder fixed-point theorems that we also use in this book. For
more properties and/or more applications of the degree, we refer to [333] by Noel
Lloyd, [373] by Mitio Nagumo, [438, Chapter III] by Jacob Schwartz.

Throughout this appendix n is a given positive integer. Let us start with a
theorem which defines the degree. Let D be the set of (φ,Ω, b) such that

1. Ω is a nonempty bounded open subset of Rn,
2. φ is a continuous map from Ω into Rn,
3. b ∈ Rn \ φ(∂Ω).

Theorem B.1. There exists a unique map

degree : D → Z
(φ,Ω, b) 7→ degree (φ,Ω, b)

satisfying the following four properties:

(i) For every nonempty bounded open subset Ω of Rn and for every b ∈ Ω,

degree (Idn|Ω,Ω, b) = 1.

(We recall that Idn denotes the identity map of Rn.)
(ii) Let (φ,Ω, b) ∈ D. Then, for every disjoint nonempty open subsets Ω1 and Ω2

of Ω such that
b 6∈ φ(Ω \ (Ω1 ∪ Ω2)),

one has

degree (φ,Ω, b) = degree (φ|Ω1
,Ω1, b) + degree (φ|Ω2

,Ω2, b).(B.1)

(iii) For every (φ,Ω, b) ∈ D, there exists ε > 0 such that, for every ψ ∈ C0(Ω; Rn)
satisfying

‖φ− ψ‖C0(Ω;Rn) 6 ε,

one has
degree (ψ,Ω, b) = degree (φ,Ω, b).

(iv) For every (φ,Ω, b) ∈ D,

degree (φ,Ω, b) = degree (φ− b,Ω, 0),

where φ− b is the map from Ω into Rn defined by

(φ− b)(x) = φ(x)− b, ∀x ∈ Ω.

379
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Moreover, this degree map is such that, for every (φ,Ω, b) ∈ D satisfying

φ is of class C1 in Ω,(B.2)

(φ(x) = b, x ∈ Ω) ⇒ (φ′(x) ∈ L(Rn; Rn) is invertible),(B.3)

one has

degree (φ,Ω, b) =
∑

x∈φ−1(b)

Sign (det φ′(x)),(B.4)

with the convention that, if φ−1(b) is empty, then the right hand side of (B.4) is 0.

Note that (φ,Ω, b) ∈ D, (B.2), (B.3) and the inverse function theorem imply that
φ−1(b) := {x ∈ Ω; φ(x) = b} is a discrete set and therefore a finite set since Ω is
compact. Hence the right hand side of (B.4) is well defined.

Proof of Theorem B.1. We only construct a map degree : D → Z satisfying
(i) to (iv), together with (B.4) if (B.2) and (B.3) hold. For the uniqueness statement,
which is not used in this book, we refer to [333, Theorem 5.3.2 page 88].) Our proof
is organized as follows:

- In Step 1, we define some integer d1(φ,Ω, b) when φ is of class C1 in Ω and
if b is a regular value, i.e., if (B.3) holds. This integer will turn out to be
equal to degree (φ,Ω, b) under these assumptions.

- In Step 2, we prove a vanishing result for certain integrals.
- In Step 3, using this vanishing result, we define some integer d2(φ,Ω, b) by

an integral formula when φ is of class C1 in Ω. This integer will again turn
out to be equal to degree (φ,Ω, b) under this smoothness assumption.

- Finally, in Step 4, we treat the case where φ is only continuous and define
degree (φ,Ω, b).

Step 1: The regular case. In this step, (φ,Ω, b) ∈ D is such that (B.2) and
(B.3) hold. Then one defines d1(φ,Ω, b) ∈ Z by

d1(φ,Ω, b) :=
∑

x∈φ−1(b)

Sign(det φ′(x)),(B.5)

with the convention that,

if φ−1(b) is empty, then the right hand side of (B.5) is 0.(B.6)

(Note that, since we want to have (B.4), this is a reasonable choice!)
Step 2: An integral formula. In this step, (φ,Ω, b) ∈ D is such that (B.2)

holds. We do not assume that (B.3) holds. For r > 0, let C(b, r) be the hypercube

C(b, r) := {y := (y1, . . . , yn)tr ∈ Rn; |yi − bi| < r, ∀i ∈ {1, . . . , n}},

where (b1, . . . , bn)tr := b. Let ρ(φ,Ω, b) be the supremum of the set of r > 0 such
that C(b, r) ⊂ Rn \ φ(∂Ω). We define the hypercube Q(φ,Ω, b) by

Q(φ,Ω, b) := C(b, ρ(φ,Ω, b)) ⊂ Rn \ φ(∂Ω).

Let us denote by Jφ the Jacobian determinant of φ, i.e., the determinant of φ′. One
has the following proposition.
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Proposition B.2. Let F ∈ C0(Rn) be such that

the support of F is included in Q(φ,Ω, b),(B.7) ∫
Rn

F (y)dy = 0.(B.8)

Then ∫
Ω

F (φ(x))Jφ(x)dx = 0.(B.9)

Proof of Proposition B.2. By density arguments, we may assume that

φ is of class C2 in Ω,(B.10)

F ∈ C1(Rn).(B.11)

Let us assume the following proposition, which has its own interest and will be
proved later on.

Proposition B.3. Let (ai)i∈{1,...,n} and (bi)i∈{1,...,n} be two sequences of n
real numbers such that

ai < bi, ∀i ∈ {1, . . . , n}.

Consider the hypercube Q := {y := (y1, . . . , yn)tr; yi ∈ (ai, bi), ∀i ∈ {1, . . . , n}}.
Let F ∈ C1(Rn) be such that (B.8) holds and

the support of F is included in Q.(B.12)

Then there exists Y = (Y1, . . . , Yn)tr ∈ C1(Rn; Rn), y := (y1, . . . , yn)tr 7→ Y (y)
such that

the support of Y is included in Q,(B.13)

div Y :=
n∑
i=1

∂Yi
∂yi

= F.(B.14)

We apply this proposition with Q := Q(φ,Ω, b). Let

X := (X1, . . . , Xn)tr ∈ C1(Ω; Rn)

be defined by

X1 := det (Y (φ), φx2 , φx3 , . . . , φxn),
X2 := det (φx1 , Y (φ), φx3 , . . . , φxn),

...
Xn := det (φx1 , φx2 , . . . , φxn−1 , Y (φ)).

(B.15)

Clearly,

the support of X is a compact subset of Ω.(B.16)

Let us check that

div X(x) = div Y (φ(x))Jφ(x), ∀x ∈ Ω.(B.17)
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Straightforward computations show that

div X = det (Y ′(φ)φx1 , φx2 , φx3 , . . . , φxn
)

+det (φx1 , Y
′(φ)φx2 , φx3 , . . . , φxn

)
...

+ det (φx1 , φx2 , . . . , φxn−1 , Y
′(φ)φxn

).

(B.18)

For M ∈Mn,n(R) and a := (a1, . . . , an) ∈ (Rn)n, let

∆(M,a) := det (Ma1, a2, a3, . . . , an)
+det (a1,Ma2, a3, . . . , an)
...

+ det (a1, a2, . . . , an−1,Man).

Clearly, ∆(M, ·) is multilinear in a1, a2, . . . , an and vanishes if two of the ai’s are
equal. Hence there exists K(M) ∈ R such that

∆(M,a) = K(M) det a, ∀a ∈ (Rn)n = Mn,n(R).

Taking for a the canonical basis of Rn, one gets that K(M) is the trace of M .
Therefore,

∆(M,a) = (trace M) (det a), ∀a ∈ (Rn)n = Mn,n(R), ∀M ∈Mn,n(R).(B.19)

Using (B.18) and applying (B.19) to M := Y ′(φ) and ai := φxi
, i ∈ {1, . . . , n}, one

gets (B.17).
Let us point out that if O is a nonempty open subset of R and θ ∈ C1(O) is

such that its support is a compact subset of O, then∫
O

θ′(x)dx = 0.(B.20)

Indeed, it suffices to extend θ to R by requiring θ(x) = 0 for every x ∈ R \O. This
new θ is of class C1 in R and has a compact support. In particular,∫

R
θ′(x)dx = 0,

which implies (B.20). Therefore, using (B.14), (B.16), (B.17) and the Fubini theo-
rem, we get∫

Ω

F (φ(x))Jφ(x)dx =
∫

Ω

div Y (φ(x))Jφ(x)dx =
∫

Ω

div X(x)dx = 0.

This concludes the proof of Proposition B.2 assuming Proposition B.3.

Proof of Proposition B.3. Our proof will not use any geometrical tool. For
a similar proof, but written in the language of differential forms, see, e.g. [51,
Lemme 7.1.1, Chapitre 7, page 263] by Marcel Berger and Bernard Gostiaux (for
an English translation, see [52]).

We proceed by induction on n. For n = 1, it suffices to take

Y (y) :=
∫ y

−∞
F (t)dt.

(By (B.8), the support of Y is included in Q = (a1, b1).) We assume that Proposi-
tion B.3 holds for n and prove it for n + 1. Let (ai)i∈{1,...,n} and (bi)i∈{1,...,n} be
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two sequences of n+ 1 real numbers such that

ai < bi, ∀i ∈ {1, . . . , n, n+ 1}.

Let Q := {y := (y1, . . . , yn, yn+1)tr; yi ∈ (ai, bi), ∀i ∈ {1, . . . , n, n + 1}}. Let
F ∈ C1(Rn+1) be such that (B.12) holds and∫

Rn+1
F (y)dy = 0.

We write, for y ∈ Rn+1,

y =
(

ỹ
yn+1

)
,

with ỹ ∈ Rn. Let F̃ ∈ C1(Rn) be defined by

F̃ (ỹ) :=
∫

R
F

(
ỹ

yn+1

)
dyn+1.

Then

the support of F̃ is included in Q̃ ⊂ Rn,∫
Rn

F̃ (ỹ)dỹ = 0,

where Q̃ := {y := (y1, . . . , yn)tr; yi ∈ (ai, bi), ∀i ∈ {1, . . . , n}}. Hence, applying
the induction assumption, there exists Ỹ := (Ỹ1, . . . , Ỹn)tr ∈ C1(Rn,Rn), ỹ :=
(ỹ1, . . . , ỹn)tr 7→ Ỹ (ỹ), such that

the support of Ỹ is included in Q̃ ⊂ Rn,

div Ỹ :=
n∑
i=1

∂Ỹi
∂ỹi

= F̃ .

Let ρ ∈ C1(R) be such that

the support of ρ is included in (an+1, bn+1),∫
R
ρ(t)dt = 1.

Then, if we define Y := (Y1, . . . , Yn, Yn+1)tr ∈ C1(Rn+1; Rn+1) by

Yi

(
ỹ

yn+1

)
:= ρ(yn+1)Yi(ỹ), ∀i ∈ {1, . . . , n}, ∀ỹ ∈ Rn, ∀yn+1 ∈ R,

Yn+1

(
ỹ

yn+1

)
:=
∫ yn+1

−∞

(
F

(
ỹ
t

)
− ρ(t)F̃ (ỹ)

)
dt, ∀ỹ ∈ Rn, ∀yn+1 ∈ R,

one easily checks that

the support of Y is included in Q,

div Y :=
n+1∑
i=1

∂Yi
∂yi

= F.

This concludes the proof of Proposition B.3.
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Step 3: The case of maps of class C1. Throughout this step, (φ,Ω, b) ∈ D
and φ is assumed to be of class C1 in Ω. Let f ∈ C0(Rn) be such that

the support of f is included in Q(φ,Ω, b),(B.21) ∫
Rn

f(y)dy = 1.(B.22)

One defines

d2(φ,Ω, b) :=
∫

Ω

f(φ(x))Jφ(x)dx.(B.23)

From Proposition B.2 we get that d2(φ,Ω, b) is independent of the choice of f ∈
C0(Rn) satisfying (B.21) and (B.22).

One has the following proposition.

Proposition B.4. If (B.3) holds, then

d1(φ,Ω, b) = d2(φ,Ω, b).(B.24)

Proof of Proposition B.4. As mentioned above on page 380, (B.3), which
is assumed, implies that φ−1(b) is a finite set. Let us first treat the case where
φ−1(b) = ∅. Then, by (B.5) and (B.6),

d1(φ,Ω, b) = 0.(B.25)

Moreover, there exists an open neighborhood V of b in Rn such that

V ⊂ Q(φ,Ω, b), φ(Ω) ∩ V = ∅.(B.26)

Let f ∈ C0(Rn) be such that

the support of f is included in V,(B.27) ∫
Rn

f(y)dy = 1.(B.28)

From (B.23), (B.26), (B.27) and (B.28),

d2(φ,Ω, b) =
∫

Ω

f(φ(x))Jφ(x)dx = 0,

which, together with (B.25), gives (B.24).
Let us now deal with the case where φ−1(b) is not empty. One writes

φ−1(b) = {x1, x2, . . . , xk},

with k ∈ N \ {0} and xi 6= xj if i 6= j. By the inverse function theorem, there
exist k open subsets ω1, . . . , ωk of Rn and ε > 0 such that, defining B(b, ε) := {y ∈
Rn; |y − b| < ε},

xi ∈ ωi, ∀i ∈ {1, . . . , k},
ωi ∩ ωj = ∅, ∀(i, j) ∈ {1, . . . , k}2 such that i 6= j,

B(b, ε) ⊂ Q(φ,Ω, b),

φ−1(B(b, ε)) =
k⋃
i=1

ωi,

φ|ωi
is a diffeomorphism between ωi and B(b, ε), ∀i ∈ {1, . . . , k}.
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Let f ∈ C0(Rn) be such that

support f ⊂ B(b, ε),∫
Rn

f(y)dy = 1.

One has, using (B.23) and the changes of variables y = φ|ωi(x), where x ∈ ωi,
i ∈ {1, . . . , k} and y ∈ B(b, ε),

d2(φ,Ω, b) =
∫
Ω
f(φ(x))Jφ(x)dx

=
∑k
i=1

∫
ωi
f(φ(x))Jφ(x)dx

=
∑k
i=1 Sign(Jφ(xi))

∫
B(b,ε)

f(y)dy

=
∑k
i=1 Sign(Jφ(xi)),

which, together with (B.5), concludes the proof of Proposition B.4.

Our next proposition follows.

Proposition B.5. The map b ∈ Rn \ φ(∂Ω) → R, b 7→ d2(φ,Ω, b), is continu-
ous. Moreover, the real number d2(φ,Ω, b) is an integer.

Proof of Proposition B.5. The continuity statement follows from the fact
that if f ∈ C0(Rn) has a support included in the bounded open set Q(φ,Ω, b),
then, for every b′ ∈ Rn close enough to b, f ∈ C0(Rn) has a support included
in Q(φ,Ω, b′). In order to prove that the real number d2(φ,Ω, b) is an integer, it
suffices to point out that, by the Sard theorem (see, e.g., [164, Theorem 3.4.3, page
316] or [202, Theorem 1.12 and Note (1) page 34]), there exists a sequence (bk)k∈N
of elements of Rn \ φ(∂Ω) such that

(φ(x) = bk) ⇒ (φ′(x) ∈ L(Rn; Rn) is invertible), ∀k ∈ N,(B.29)

bk → b as k → +∞.(B.30)

By Proposition B.4 and the definition of d1 (see (B.5) and (B.6)),

d2(φ,Ω, bk) = d1(φ,Ω, bk) ∈ Z,

which, together with (B.30) and the continuity of d2(φ,Ω, ·), shows that d2(φ,Ω, b) ∈
Z. This concludes the proof of Proposition B.5.

The next proposition establishes the properties of d2 analogous to Properties (i)
to (iv) of the degree map (φ,Ω, b) ∈ D 7→ degree (φ,Ω, b) required in Theorem B.1
on page 379.

Proposition B.6. The map d2 satisfies the following four properties.

(i) For every nonempty bounded open subset Ω of Rn and for every b ∈ Ω,

d2(Idn|Ω,Ω, b) = 1.



386 B. DEGREE THEORY

(ii) Let (φ,Ω, b) ∈ D be such that φ is of class C1 in Ω. Then, for every disjoint
nonempty open subsets Ω1 and Ω2 of Ω such that

b 6∈ φ(Ω \ (Ω1 ∪ Ω2)),

one has

d2(φ,Ω, b) = d2(φ|Ω1
,Ω1, b) + d2(φ|Ω2

,Ω2, b).(B.31)

(iii) Let Ω be a nonempty open subset of Rn and b ∈ Rn. Let

H ∈ C0([0, 1]× Ω; Rn)

be such that

H(t, x) 6= b, ∀(t, x) ∈ [0, 1]× ∂Ω,

H(t, ·) is of class C1 in Ω, for every t ∈ [0, 1],

the map (t, x) ∈ [0, 1]× Ω 7→ ∂H

∂x
∈ L(Rn; Rn) is continuous.

Then

d2(H(0, ·),Ω, b) = d2(H(1, ·),Ω, b).(B.32)

(iv) For every (φ,Ω, b) ∈ D such that φ is of class C1 in Ω,

d2(φ,Ω, b) = d2(φ− b,Ω, 0).

Proof of Proposition B.6. Property (i) follows directly from (B.5) and
Proposition B.4 on page 384. Property (ii) clearly holds if b is a regular value, i.e,
if (B.3) holds. One deduces the general case from this particular case by using the
continuity of d2 with respect to b (Proposition B.5) and the density of the regular
values in Rn. (This density, as mentioned above, follows from the Sard theorem.)
Concerning Property (iii), proceeding as in the proof of the continuity of d2 with
respect to b, one gets that

t ∈ [0, 1] 7→ d2(H(t, ·),Ω, b) is continuous.(B.33)

Equality (B.32) then follows from (B.33) and the fact that, for every t ∈ [0, 1],

d2(H(t, ·),Ω, b) ∈ Z

(see Proposition B.5). Finally, Property (iv) readily follows from the definition of
d2. This concludes the proof of Proposition B.6.

Step 4: The case of maps of class C0. Let (φ,Ω, b) ∈ D. Let

δ(φ,Ω, b) := dist (b, φ(∂Ω)) := min{|b− φ(x)|; x ∈ ∂Ω}.

Since (φ,Ω, b) ∈ D, δ(φ,Ω, b) > 0. Using standard smoothing processes, one gets
the existence of ψ ∈ C0(Ω; Rn) of class C1 in Ω such that

‖φ− ψ‖C0(Ω) < δ(φ,Ω, b).(B.34)

We define degree (φ,Ω, b) by

degree (φ,Ω, b) := d2(ψ,Ω, b) ∈ Z.(B.35)

Our next lemma shows that this integer is independent of the choice of ψ.
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Lemma B.7. Let ψi, i ∈ {1, 2}, be two elements of C0(Ω; Rn) which are of class
C1 in Ω. Assume that

‖φ− ψi‖C0(Ω) < δ(φ,Ω, b), ∀i ∈ {1, 2}.

Then
d2(ψ1,Ω, b) = d2(ψ2,Ω, b).

Proof of Lemma B.7. It suffices to apply Property (iii) of Proposition B.6
to the map H ∈ C0([0, 1]× Ω; Rn) defined by

H(t, x) := tψ1(x) + (1− t)ψ2(x), ∀(t, x) ∈ [0, 1]× Ω.

Note that, by taking ψ = φ if φ is of class C1 in Ω, one has

degree (φ,Ω, b) = d2(φ,Ω, b), if φ is of class C1 in Ω.(B.36)

In particular, using (B.5) and Proposition B.4, one sees that (B.2) and (B.3) imply
(B.4). It is easy to check that degree : D → Z satisfies all the other properties
mentioned in Theorem B.1 on page 379. This concludes the proof of this theorem.

Let us now give some immediate applications of Theorem B.1, applications that
we have previously used in this book. As a corollary of Property (iii) of Theorem
B.1, one has the following proposition.

Proposition B.8 (Homotopy invariance of the degree). Let Ω be a nonempty
open subset of Rn, H ∈ C0([0, 1]× Ω; Rn), and b ∈ Rn. We assume that

H(t, x) 6= b, ∀(t, x) ∈ [0, 1]× ∂Ω.

Then
degree (H(0, ·),Ω, b) = degree (H(1, ·),Ω, b).

Similarly, as a corollary of Properties (iii) and (iv) of Theorem B.1, one has
the following proposition.

Proposition B.9. Let (φ,Ω, b) ∈ D. There exists ε > 0 such that, for every
b′ ∈ Rn such that |b− b′| 6 ε,

(φ,Ω, b′) ∈ D and degree (φ,Ω, b′) = degree (φ,Ω, b).

As a consequence of Property (ii) of Theorem B.1 on page 379, one has the
following two propositions (Propositions B.10 and B.11).

Proposition B.10. Let (φ,Ω, b) ∈ D be such that b 6∈ φ(Ω). Then

degree (φ,Ω, b) = 0.(B.37)

Proof of Proposition B.10. We give a proof relying only on Property (ii)
of Theorem B.1 (we could also give a simpler proof using our construction of the
degree). Let ω1, ω2 and ω3 be three nonempty disjoint open subsets of Ω. Writing
(B.1) with Ω1 := ω1 and Ω2 := ω2, one has

degree (φ,Ω, b) = degree (φ|ω1 , ω1, b) + degree (φ|ω2 , ω2, b).(B.38)
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Writing equality (B.1) with Ω1 := ω1 ∪ ω2 and Ω2 := ω3, one has

degree (φ,Ω, b) = degree (φ|ω1∪ω2
, ω1 ∪ ω2, b) + degree (φ|ω3 , ω2, b).(B.39)

However, writing (B.1) for (φ,Ω, b) := (φ|ω1∪ω2
, ω1∪ω2, b) and (Ω1,Ω2) := (ω1, ω2),

we get

degree (φ|ω1∪ω2
, ω1 ∪ ω2, b) = degree (φ|ω1 , ω1, b) + degree (φ|ω2 , ω2, b),

which, together with (B.38) and (B.39), implies that

degree (φ|ω3 , ω3, b) = 0.

Similarly, one has

degree (φ|ω1 , ω1, b) = degree (φ|ω2 , ω2, b) = 0,(B.40)

which, together with (B.38), concludes the proof of Proposition B.10.

Proposition B.11 (Excision property). Let (φ,Ω, b) ∈ D. Let Ω0 be a non-
empty open subset of Ω such that b /∈ φ(Ω \ Ω0). Then

degree (φ,Ω, b) = degree (φ|Ω0
,Ω0, b).(B.41)

Proof of Proposition B.11. Since b 6∈ φ(∂Ω), there exist disjoint nonempty
open subsets Ω1 and Ω2 of Ω0 such that

b /∈ φ(Ω \ (Ω1 ∪ Ω2)).

Using Property (ii) of Theorem B.1 for (φ,Ω, b) and the open sets Ω1, Ω2, one gets

degree (φ,Ω, b) = degree (φ|Ω1
,Ω1, b) + degree (φ|Ω2

,Ω2, b).(B.42)

Using Property (ii) of Theorem B.1 for (φ|ω0 ,Ω0, b) and the open sets Ω1, Ω2, one
gets

degree (φ|Ω0
,Ω0, b) = degree (φ|Ω1

,Ω1, b) + degree (φ|Ω2
,Ω2, b).(B.43)

Equality (B.41) follows from (B.42) and (B.43).

Let us now give two propositions that we have used in this book to compute
the degree of a function. The first one is:

Proposition B.12. Let (φ,Ω, b) ∈ D. Let A ∈ L(Rn; Rn) be invertible. Then

degree (A ◦ φ,Ω, Ab) = Sign (det A) degree (φ,Ω, b).(B.44)

Remark B.13. From (B.4), one has, for every nonempty bounded open subset
Ω of Rn and for every b 6∈ ∂Ω,

degree (A|Ω,Ω, Ab) =
{

0 if b 6∈ Ω,
Sign (det A) if b ∈ Ω.

Hence (B.44) is a (very) special case of the multiplication theorem, due to Jean
Leray [313, 314] (see, e.g., [333, Theorem 2.3.1, page 29] or [438, Theorem 3.20,
page 95]), which gives the degree of the composition of two maps.
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Proof of Proposition B.12. Using (B.4), one first proves (B.44) if φ is of
class C1 in Ω and if b is a regular value (i.e., if (B.3) holds). Then, using the
continuity of degree (ψ,Ω, ·) (see Proposition B.9) and the Sard theorem as in the
proof of Proposition B.5 on page 385, one deduces that (B.44) also holds if φ is
of class C1 in Ω even if b is not a regular value. Finally, the case where φ is only
continuous on Ω follows from this preceding case by a density argument and the
continuity of the degree with respect to the function (Property (iii) of Theorem B.1
on page 379).

The second proposition is:

Proposition B.14. Let n1 and n2 be two positive integers. Let Ω1 (resp. Ω2)
be a nonempty bounded open subset of Rn1 (resp. Rn2). Let

Ω :=
{(

x1

x2

)
; x1 ∈ Ω1, x2 ∈ Ω2

}
⊂ Rn1+n2 .

Let φ ∈ C0(Ω2; Rn1) and ψ ∈ C0(Ω; Rn2). Let b1 ∈ Rn1 and b2 ∈ Rn2 be such that

φ(Ω2) + b1 ⊂ Ω1,

ψ

(
φ(x2) + b1

x2

)
6= b2,∀x2 ∈ ∂Ω2.

Let b ∈ Rn1+n2 be defined by

b :=
(
b1
b2

)
∈ Rn1+n2 .

Let U ∈ C0(Ω; Rn1+n2) be defined by

U

(
x1

x2

)
:=

x1 − φ(x2)

ψ

(
x1

x2

)  , ∀x1 ∈ Ω1, ∀x2 ∈ Ω2.

Finally, let V ∈ C0(Ω2; Rn2) be defined by

V (x2) := ψ

(
φ(x2) + b1

x2

)
, ∀x2 ∈ Ω2.

Then

degree (U,Ω, b) = degree (V,Ω2, b2).(B.45)

Proof of Proposition B.14. One proceeds as in the proof of Proposition B.12:
One first treats the case where φ and ψ are of class C1 in Ω1 and Ω respectively and
b is a regular value (for U). For this case, one points outs that if (x1, x2) ∈ Ω1×Ω2

and x := (x1, x2)tr, one has

U ′(x) =

 Idn1 −φ′(x2)
∂ψ

∂x1
(x)

∂ψ

∂x2
(x)

 .
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Hence

det U ′(x) = det

 Idn1 0

∂ψ

∂x1
(x)

∂ψ

∂x2
(x) +

∂ψ

∂x1
(x)φ′(x2)


= det

(
∂ψ

∂x2
(x) +

∂ψ

∂x1
(x)φ′(x2)

)
.

In particular, if x1 = b1 + φ(x2),

det U ′(x) = det V ′(x2).(B.46)

Using (B.46), one readily gets (B.45) if φ and ψ are of class C1 in Ω1 and Ω
respectively and b is a regular value (for U). Then one removes successively the
assumption that b is a regular value and the assumption that φ and ψ are of class
C1 in Ω1 and Ω respectively.

Let us now deduce from Theorem B.1 on page 379, the homotopy invariance of
the degree (Proposition B.8) and Proposition B.10, the Brouwer fixed-point theorem
for a closed ball, which have been used in this book.

Theorem B.15 (Brouwer fixed-point theorem for a closed ball). Let R ∈
(0,+∞), BR := {x ∈ Rn; |x| < R} and BR = {x ∈ Rn; |x| 6 R} be the clo-
sure of BR in Rn. Let F be a continuous map from BR into itself. Then F has a
fixed point.

Proof of Theorem B.15. If F has a fixed point on ∂BR, then F has a fixed
point in BR. Therefore, we may assume that F has no fixed point on ∂BR. Let
H : [0, 1]×BR → Rn be defined by

H(t, x) = x− tF(x), ∀(t, x) ∈ [0, 1]×BR.

Note that H(0, ·) = Idn|BR
and H(1, ·) = Idn|BR

−F . Let us check that

H(t, x) 6= 0, ∀(t, x) ∈ [0, 1]× ∂BR.(B.47)

Indeed, since, for every x ∈ BR, |F(x)| 6 R,

(H(t, x) = 0 and |x| = R) ⇒ (t = 1 and F(x) = x),

which, since F has no fixed point on ∂BR, proves (B.47). Using (B.47) and the
homotopy invariance of the degree (Proposition B.8), we have

degree (Idn|BR
, BR, 0) = degree (H(0, ·), BR, 0)

= degree (H(1, ·), BR, 0)
= degree (Idn|BR

−F , BR, 0),

which, together with Property (i) of Theorem B.1 on page 379, implies that

degree (Idn|BR
−F , BR, 0) = 1.(B.48)

However, from Proposition B.10 and (B.48), one gets

0 ∈ (Idn|BR
−F)(BR),

i.e., F has a fixed point in BR. This concludes the proof of Theorem B.15.
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More generally, one has the following theorem.

Theorem B.16 (Brouwer fixed-point theorem). Let K be a nonempty bounded
closed convex subset of Rn. Let F be a continuous map from K into itself. Then
F has a fixed point.

Proof of Theorem B.16. Since K is compact, there exists R > 0 such that

K ⊂ BR := {x ∈ Rn; x ∈ Rn}.
Let PK be the projection on the nonempty closed convex subset K of Rn. Let
F̃ : BR → Rn be defined by

F̃(x) = F(PK(x)), ∀x ∈ BR.
One has F̃(BR) ⊂ K ⊂ BR. Hence, using the Brouwer fixed point for a closed ball
(Theorem B.15), F̃ has a fixed point, i.e. there exists x ∈ BR such that

F̃(x) = x.(B.49)

However, (B.49) implies that x ∈ F̃(BR) ⊂ K. Hence, since F̃ = F on K, x ∈ K
and is a fixed point of F . This concludes the proof of Theorem B.16.

Let us now prove two Schauder fixed-point theorems used in this book (see, e.g.,
[347] by Jean Mawhin or [512] by Eberhard Zeidler for many other applications of
these theorems). The first one is the following.

Theorem B.17. Let E be a Banach space. Let B be either E or a nonempty
(bounded) closed ball of E. Let F be a continuous map from B into itself. Let us
assume that the image of F is included in a compact subset of E. Then F has a
fixed point.

Proof of Theorem B.17. Since a compact set is included in a (bounded)
closed ball, we may consider only the case where F is a continuous map from a
nonempty (bounded) closed ball B into itself. Let us denote by ‖ · ‖E the norm
of the Banach space E. Let us assume, for the moment, that the following lemma
holds.

Lemma B.18. For every positive integer n, there exist a finite dimensional
vector subspace En and a continuous map Fn from B into B ∩ En such that

‖F(x)−Fn(x)‖E 6
1
n
, ∀x ∈ B.(B.50)

Applying the Brouwer fixed-point theorem (Theorem B.16) to Fn|B∩En
, there

exists xn ∈ B ∩ En such that

Fn(xn) = xn.(B.51)

From (B.50) and (B.51), we get

‖xn −F(xn)‖E 6
1
n
.(B.52)

Since F(B) is included in a compact subset of E, we may assume, without loss
of generality, that (F(xn))n∈N\{0} is a convergent sequence. Then, by (B.52),
(xn)n∈N\{0} is also a convergent sequence, i.e., there exists x ∈ B such that

xn → x as n→ +∞.(B.53)
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Letting n → +∞ in (B.52) and using (B.53), we get that x is a fixed point of F .
This concludes the proof of Theorem B.17 assuming Lemma B.18.

It remains to prove Lemma B.18. Let n be given in N \ {0}. Since F(B) is
included in a compact set of B, there exist k ∈ N \ {0} and k elements b1, . . . , bk of
B such that

F(B) ⊂
k⋃
i=1

B(bi, 1/n),(B.54)

where, for b ∈ E and ρ > 0, B(b, ρ) := {x ∈ E; ‖x − b‖E < ρ}. Let En be
the finite dimensional vector subspace of E generated by the set {b1, . . . , bk}. For
i ∈ {1, . . . , k}, let λi ∈ C0(B) be defined by

λi(x) := max
{

0,
1
n
− ‖F(x)− bi‖E

}
, ∀x ∈ B.

By (B.54),
k∑
j=1

λj(x) > 0, ∀x ∈ B.

Then, the map Fn : B → En defined by

Fn(x) :=
k∑
i=1

λi(x)∑k
j=1 λj(x)

bi, ∀x ∈ B,

is well defined, continuous and takes its values in B. Moreover,

‖F(x)−Fn(x)‖E = ‖
k∑
i=1

λi(x)∑k
j=1 λj(x)

(F(x)− bi)‖E

6
k∑
i=1

λi(x)∑k
j=1 λj(x)

‖F(x)− bi‖E , ∀x ∈ B.
(B.55)

However, since λi(x) = 0 if ‖F(x)− bi‖E > 1/n,

λi(x)‖F(x)− bi‖E 6
1
n
λi(x), ∀i ∈ {1, . . . , k}, ∀x ∈ B,

which, together with (B.55), implies that

‖F(x)−Fn(x)‖E 6
1
n
, ∀x ∈ B.

This concludes the proof of Lemma B.18 and of Theorem B.17.

The second Schauder fixed-point theorem is the following one.

Theorem B.19. Let E be a Banach space, K a nonempty compact convex
subset of E, and F a continuous map from K into K. Then F has a fixed point.

Proof of Theorem B.19. Proceeding as in the proof of the Brouwer fixed-
point theorem (Theorem B.16), we get Theorem B.19 as a corollary of the previous
Schauder fixed-point theorem (Theorem B.17 on the preceding page) and of the
following extension theorem due to James Dugundji [151].
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Theorem B.20. Let E be a normed space and C a convex subset of E. Let X
be a metric space, Y a nonempty closed subset of X, and f a continuous map from
Y into E such that f(Y ) ⊂ C. Then there exists a continuous map f̃ from X into
E such that

f̃(y) = f(y), ∀y ∈ Y,(B.56)

f̃(X) ⊂ C.(B.57)

Remark B.21. Theorem B.20 generalizes the Tietze-Urysohn extension theo-
rem, which deals with the case E = R.

Indeed, let us apply Theorem B.20 to E := E, C := K, X := E, Y := K
and f := F . Since K is compact, there exists R > 0 such that K ⊂ BR := {x ∈
E; ‖x‖E 6 R}, where ‖ · ‖E denotes the norm on the Banach space E. Then, if
F̃ := f̃ |BR

, F̃ is a continuous map from BR into itself and F̃(BR) is included in the
compact set K. Hence, using the previous Schauder fixed-point theorem (Theorem
B.17), F̃ has a fixed point, i.e., there exists x ∈ BR such that

F̃(x) = x.(B.58)

However, (B.58) implies that x ∈ F̃(BR) ⊂ K. Hence, since F̃ = F on K, x ∈ K
and is a fixed point of F . This concludes the proof of Theorem B.16 assuming
Theorem B.20.

Proof of Theorem B.20. Let us denote by d the distance of the metric space
X and by ‖ · ‖E the norm of E. For a nonempty subset A of X, let us denote by
d(·, A) the distance to A:

d(x,A) := inf{d(x, a); a ∈ A}.
Let z ∈ X \ Y . Since Y is a closed subset of X, d(z, Y ) > 0. Let ωz be the open
ball of radius of d(z, Y )/2 centered at z:

ωz :=
{
x ∈ X; d(z, x) <

d(z, Y )
2

}
.(B.59)

Since z ∈ ωz ⊂ X \ Y ,
X \ Y =

⋃
z∈X\Y

ωz.

One can associate to this covering of X \ Y by open subsets a partition of unity,
i.e., there exist a set I of indices and a family (λi)i∈I of continuous functions from
X \ Y into [0, 1] such that the following three properties hold.

(i) For every z ∈ X \ Y , there exist an open neighborhood Vz of z and a finite
subset Iz of I such that

(z′ ∈ Vz and i ∈ I \ Iz) ⇒ λi(z′) = 0.

(ii) For every z ∈ X \ Y , ∑
i∈I

λi(z) = 1.(B.60)

(Note that, by (i), the sum in (B.60) has only a finite number of terms which
are not 0: For i ∈ I \ Iz, λi(z) = 0.

(iii) For every i ∈ I, there exists zi ∈ X \Y such that the support of λi is included
in ωzi

.
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(See, for example, [65, Corollaire 1, Section 4 and Théorème 4, Section 5], or [158]
together with [418].) For each z ∈ X \ Y , let us choose yz ∈ Y such that

d(yz, ωz) < 2 inf{d(y, ωz); y ∈ Y }.(B.61)

Then, one defines f̃ by

f̃(x) =
{
f(x) if x ∈ Y,∑
i∈I λi(x)f(yzi

) if x ∈ X \ Y.(B.62)

Clearly, f̃ satisfies (B.56), (B.57), and is continuous in X \ ∂Y . Let y ∈ ∂Y . The
only nonobvious property to check is that, if (xn)n∈N is a sequence of elements in
X \ Y converging to y as n → ∞, then f̃(xn) → f(y) as n → ∞. Let x ∈ X \ Y
and let i ∈ I be such that λi(x) 6= 0. Then, by (iii), x ∈ ωzi and zi ∈ X \ Y . We
have, using (B.59) and (B.61),

d(yzi , x) 6 d(yzi , ωzi) + 2× the radius of the ball ωzi

6 2 inf{d(y′, ωzi); y
′ ∈ Y }+ d(zi, Y )

6 2d(y, x) + d(zi, Y ).
(B.63)

Moreover, using again (B.59), we get

d(zi, Y ) 6 d(x, Y ) + d(x, zi) 6 d(x, Y ) +
d(zi, Y )

2
,

which implies that

d(zi, Y ) 6 2d(x, Y ) 6 2d(x, y).(B.64)

From (B.63) and (B.64), we get

d(yzi
, y) 6 d(yzi

, x) + d(x, y) 6 4d(x, y) + d(x, y) = 5d(x, y).(B.65)

Coming back to the definition of f̃ , we obtain, using (B.60) and (B.65),

‖f̃(x)− f(y)‖E 6
∑
i∈I

λi(x)‖f(yzi)− f(y)‖E 6 δ(x),

with

δ(x) := sup{‖f(y′)− f(y)‖E ; y′ ∈ Y, d(y′, y) 6 5d(x, y)}.

Since δ(x) → 0 as x→ y, this concludes the proof of Theorem B.20.

Remark B.22. If X is a Hilbert space (or more generally a uniformly convex
Banach space) and Y is a nonempty closed convex subset of X, one can simply
define f̃ by

f̃(x) := f(PY (x)), ∀x ∈ X,
where PY is the projection on Y .

Let us end this appendix with the two following exercises.

Exercise B.23. We take n = 1.

1. In this question Ω is a nonempty bounded open interval:

Ω := (α, β), with −∞ < α < β < +∞.
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Let φ ∈ C0(Ω) = C0(Ω; R) and let b ∈ R \ {φ(α), φ(β)}. Prove that

degree (φ,Ω, b) =

 1 if φ(α) < b < φ(β),
−1 if φ(β) < b < φ(α),

0 if b 6∈ (φ(α), φ(β)) ∪ (φ(β), φ(α)).
(B.66)

2. In this question Ω is a nonempty bounded open subset of R. It is the
countable disjoint union of its connected components. In other words, there
exist a set I which is either finite or equal to N, two families of real numbers
(αi)i∈I , (βi)i∈I such that

αi < βi, ∀i ∈ I,
(αi, βi) ∩ (αj , βj) = ∅, ∀(i, j) ∈ I2 such that i 6= j,

Ω =
⋃
i∈I

(αi, βi).

Prove that
∂Ω =

⋃
i∈I
{αi, βi}.

Let φ ∈ C0(Ω) and b ∈ R \ φ(∂Ω). Let

I(b) := {i ∈ I; b ∈ φ((αi, βi))}.
Prove that I(b) is a finite set and that

degree (φ,Ω, b) =
∑
i∈I(b)

degree (φ|[αi,βi], (αi, βi), b).

Exercise B.24 (Generalization of the integral formula (B.36)). Let (φ,Ω, b) ∈
D be such that φ is of class C1 in Ω. Let f ∈ C0(Rn) satisfying (B.28) be such that
the support of f is included in the connected component of Rn \ φ(∂Ω) containing
b. Prove that

degree (φ,Ω, b) =
∫

Ω

f(φ(x))Jφ(x)dx.

(Hint. Note that, by Proposition B.9 on page 387, degree (φ,Ω, ·) is constant on
the connected component of Rn \ φ(∂Ω) containing b. Use a suitable partition of
unity, (B.23) with f adapted to the partition of unity, and (B.36). For partitions
of unity on open subsets of Rn, see, e.g., [342, Théorème 1.4.1, page 61] or [419,
Theorem 6.20, page 147].)
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Boston, MA, 1991, pp. 128–135. MR 1125101

60. Jerry Bona and Ragnar Winther, The Korteweg-de Vries equation, posed in a quarter-plane,

SIAM J. Math. Anal. 14 (1983), no. 6, 1056–1106. MR 718811 (85c:35076)
61. Bernard Bonnard, Contrôle de l’attitude d’un satellite rigide, R.A.I.R.O. Automatique/ Sys-

tems Analysis and Control 16 (1982), 85–93.

62. Bernard Bonnard and Monique Chyba, Singular trajectories and their role in control theory,
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Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 43, Springer-

Verlag, Berlin, 2004. MR 2031058
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differential equations and their applications. Collège de France Seminar, Vol. XI (Paris,
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288. Miroslav Krstić and Hua Deng, Stabilization of nonlinear uncertain systems, Commu-

nications and Control Engineering Series, Springer-Verlag London Ltd., London, 1998.
MR 1639235 (99h:93001)

289. Jaroslav Kurzweil, On the inversion of Lyapunov’s second theorem on stability of motion,

Ann. Math. Soc. Trans. Ser.2, 24 (1956), 19–77.
290. Huibert Kwakernaak and Raphael Sivan, Linear optimal control systems, Wiley-Interscience

[John Wiley & Sons], New York, 1972. MR 0406607 (53 #10394)
291. Olga Alexandrovna Ladyzhenskaya, The boundary value problems of mathematical physics,

Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985, Translated from

the Russian by Jack Lohwater [Arthur J. Lohwater]. MR 793735 (87f:35001)
292. Olga Alexandrovna Ladyzhenskaya, Vsevolod Alekseevich Solonnikov, and Nina Nikolaevna

Ural′ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian

by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical
Society, Providence, R.I., 1967. MR 0241822 (39 #3159b)

293. John E. Lagnese, The Hilbert uniqueness method: a retrospective, Optimal control of partial

differential equations (Irsee, 1990), Lecture Notes in Control and Inform. Sci., vol. 149,
Springer, Berlin, 1991, pp. 158–181. MR 1178298 (93j:93020)

294. John E. Lagnese and Günter Leugering, Domain decomposition methods in optimal control

of partial differential equations, International Series of Numerical Mathematics, vol. 148,
Birkhäuser Verlag, Basel, 2004. MR 2093789 (2005g:49002)

295. Béatrice Laroche, Philippe Martin, and Pierre Rouchon, Motion planning for the heat equa-

tion, Internat. J. Robust Nonlinear Control 10 (2000), no. 8, 629–643, Nonlinear adaptive
and linear systems (Mexico City, 1998). MR 1776232 (2002g:93011)

296. Joseph Pierre LaSalle, The time optimal control problem, Contributions to the theory

of nonlinear oscillations, Vol. V, Princeton Univ. Press, Princeton, N.J., 1960, pp. 1–24.
MR 0145169 (26 #2704)

297. Irena Lasiecka and Roberto Triggiani, Regularity of hyperbolic equations under
L2(0, T ; L2(Γ))-Dirichlet boundary terms, Appl. Math. Optim. 10 (1983), no. 3, 275–286.

MR 722491 (85j:35111)
298. , Sharp regularity theory for second order hyperbolic equations of Neumann type. I.

L2 nonhomogeneous data, Ann. Mat. Pura Appl. (4) 157 (1990), 285–367. MR 1108480

(92e:35102)

299. , Differential and algebraic Riccati equations with application to boundary/point con-
trol problems: continuous theory and approximation theory, Lecture Notes in Control and

Information Sciences, vol. 164, Springer-Verlag, Berlin, 1991. MR 1132440 (92k:93009)

300. , Exact controllability of semilinear abstract systems with application to waves
and plates boundary control problems, Appl. Math. Optim. 23 (1991), no. 2, 109–154.

MR 1086465 (92a:93021)
301. , Control theory for partial differential equations: continuous and approximation

theories. I, Encyclopedia of Mathematics and its Applications, vol. 74, Cambridge University

Press, Cambridge, 2000, Abstract parabolic systems. MR 1745475 (2001m:93002)
302. , Control theory for partial differential equations: continuous and approximation

theories. II, Encyclopedia of Mathematics and its Applications, vol. 75, Cambridge Univer-

sity Press, Cambridge, 2000, Abstract hyperbolic-like systems over a finite time horizon.
MR 1745476 (2001m:93003)



BIBLIOGRAPHY 411

303. Jean-Paul Laumond (ed.), Robot motion planning and control, Lecture Notes in Control and

Information Sciences, vol. 229, Springer-Verlag London Ltd., London, 1998. MR 1603373

(98k:70012)
304. Brian E. Launder and Brian D. Spalding, Mathematical models of turbulence, Academic

Press, New York, 1972.
305. Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock

waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973, Conference

Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics,

No. 11. MR 0350216 (50 #2709)
306. Claude Le Bris, Control theory applied to quantum chemistry: some tracks, Contrôle
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Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8, Masson,
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Javier Soria, Varona Juan Luis, and Joan Verdera, eds.), vol. III, European Mathematical

Society, 2006, pp. 1389–1417.
521. , Controllability and observability of partial differential equations: Some results and

open problems, Handbook of differential equations: evolutionary differential equations (C. M.

Dafermos and E. Feireisl, eds.), vol. 3, Elsevier/North-Holland, Amsterdam, 2006, pp. 527–

621.



List of symbols

∗ adjoint of a linear operator, page 28
A (xe, ue) strong jet accessibility subspace, page 133
adX ad operator (Lie bracket with X), page 130
C set of complexes
C controllability Gramian, page 6
· usual scalar product in Rl, page 20
[·, ·] Lie bracket, page 129
z complex conjugate of the complex number z, page 48
D′(Ω) set of distributions on the open subset Ω of Rn
H−1(0, L) set of derivative of functions in L2(0, L), page 99
H1

0 (0, L) set of β in H1(0, L) such that β(0) = β(L) = 0, page 100
H1

(0)(0, L) set of functions f ∈ H1(0, L) such that f(0) = 0, page 67
H1

0 (I; C) set of ϕ in H1(I; C) such that ϕ(0) = ϕ(L) = 0, page 95
H1

0 (Ω) the closure in H1(Ω) of the set of functions ϕ ∈ C∞(Ω) with compact
support, page 77

H3
(0)(I; C) set of ψ in H3(I; C) such that ψ(−1) = ψ(2)(−1) = ψ(1) = ψ(2)(1) = 0,

page 96
H5

(0)(I; C) set of ψ in H5(I; C) such that ψ(−1) = ψ(2)(−1) = ψ(4)(−1) = ψ(1) =
ψ(2)(1) = ψ(4)(1) = 0, page 175

H7
(0)(I; C) set of ψ in H7(I; C) such that ψ(−1) = ψ(2)(−1) = ψ(4)(−1) = ψ(6)(−1)

= ψ(1) = ψ(2)(1) = ψ(4)(1) = ψ(6)(1) = 0, page 248
〈·, ·〉 Hermitian scalar product in a complex Hilbert space, page 95
HUM Hilbert Uniqueness Method, page 19
I open interval (-1,1), page 95
Idn identity map of Rn, page 5
=z imaginary part of the complex number z, page 48
Lie(F) Lie algebra generated by the vector fields in F , page 133
L(Rk; Rl) set of linear maps from Rk into Rl, page 3
LXV (Lie) derivative of V in the direction of X, page 146
LkXV iterated (Lie) derivatives of V in the direction of X, page 307
Mk,l(C) set of k × l matrices with complex coefficients, page 3
Mk,l(R) set of k × l matrices with real coefficients, page 3
N set of nonnegative integers
N \ {0} set of strictly positive integers
O nonempty open subset of Rn × Rm, page 125
PA characteristic polynomial of the matrix A, page 10
R set of reals
R(·, ·) resolvent, page 4

421



422 List of symbols

<z real part of the complex number z, page 95
Rk vector space of k-dimensional real column vector, page 3
S unit sphere of L2(I; C), page 95
σ(L) set of eigenvalues of L, page 285
tr transpose, page 6
⇀ weak convergence, page 54
(xe, ue) equilibrium of the control system considered, page 125(
x
k

)
Legendre symbol, page 239

YT set of y : (0, T ) × (0, L) → R such that y ∈ L2((0, T );H2(0, L)) and
yt ∈ L2((0, T )× (0, L)), page 225



Index

abstract linear control system, 51–67

Cauchy problem, 52–54

controllability, 55–62

Korteweg-de Vries equation, 65–67

transport equation, 62–65

adjoint operator, 373

adk
XY (definition), 130

admissibility condition, 52, see also

regularity property

approximate controllability, 55, 57, 61

Ascoli’s theorem, 152, 170

attractor, 280

averaging, 332–333

backstepping, 334–337, 353

desingularization, 335–336, 353

Banach fixed-point theorem, 163

Brockett condition (obstruction to

stabilizability), 289, 292, 297, 341, 357,

361

Brouwer fixed-point theorem, 133, 236, 244,

390, 391

Burgers equation, 202, 360

Carleman inequality, 80, 113

Cayley-Hamilton theorem, 10, 133

characteristic curves, 363

characteristic polynomial, 10, 275

characteristic velocities, 370

closed operator, 373

closed-loop system (definition), 281

compact resolvent, 95, 228, 354

companion matrix, 276

compatibility conditions, 165, 200, 365, 366

control affine (definition), 131

control Lyapunov function, 313–315, 334,
336, 353, 355

application to stabilization, 313–314

controllability

abstract linear control system, 55–62

Euler equations, 194–197

finite-dimensional linear control system,

3–22

finite-dimensional nonlinear control

system, 125–157

heat equation, 103–118, 225–233

hyperbolic system, 165–174

Korteweg-de Vries equation, 42–49

Navier-Stokes equations, 197–203

Saint-Venant equations, 204–221

Schrödinger equation, 96–99, 248–270

spacecraft, 128–129, 144–145

theorem

abstract linear control system, 56, 57

Euler equations, 195–197

heat equation, 79, 87, 104, 105, 225

hyperbolic system, 168

Kalman rank condition, 9

Korteweg-de Vries equation, 42, 161,

237

linear finite-dimensional control
system, 6, 9, 11

Navier-Stokes equations, 199, 201

necessary condition, 134, 145

Saint-Venant equations, 204

Schrödinger equation, 96, 248, 251

sufficient condition, 135, 143

transport equation, 29

transport equation, 29–37

controllability Gramian, 6, 151, 282

controller form, 275

Couette flows, 232

CRONE, 281

damping, 314–328

definition

adk
XY , 130

adjoint operator, 373

approximate controllability, 55

closed operator, 373

closed-loop system, 281

control affine, 131

control Lyapunov function, 313

controllability Gramian, 6

controllability of ẋ = A(t)x + B(t)u, 4
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Page 11, line 10, a comma is missing after “by induction on i”.
Page 17, in the definition of M , “−n+ 1” has to be replaced by “−n+ 2”. Hence the definition of M is

M :=


1 p1 p1(p1 − 1) . . . p1(p1 − 1)(p1 − 2) . . . (p1 − n+ 2)
1 p2 p2(p2 − 1) . . . p2(p2 − 1)(p2 − 2) . . . (p2 − n+ 2)
...

...
...

...
...

1 pn pn(pn − 1) . . . pn(pn − 1)(pn − 2) . . . (pn − n+ 2)

 .

Page 20, in (2.20), “
∫ T
0

(y(0, x)− y0(x))φ(0, x)dx” has to be replaced by “
∫ L
0

(y(0, x)− y0(x))φ(0, x)dx”.
Page 26, a dot is missing at the end of the formula line -14.
Page 47, line 13, “C0([0, η/2], H3(0, L))” has to be replaced by “C0([0, η/2];H3(0, L))”.
Page 52, in (2.198), “L(U,D(A∗)′)” has to be replaced by “L(U ;D(A∗)′)”.
Page 58, line -4, “H3 int H2” has to be replaced by “H3 into H2”.
Page 53, line 5, A∗φ has to be replaced by A∗ϕ.
Page 79, equation (2.393) has to be deleted.
Page 82, in equation (2.420), an has to be replaced by al, and Rn has to be replaced by Rl.
Page 95, line 8, H1

0 (I; C) := {ϕ ∈ H1((0, L); C); ϕ(0) = ϕ(L)} has to be replaced by H1
0 (I; C) := {ϕ ∈

H1(I; C); ϕ(−1) = ϕ(1) = 0}.
Page 109, line 11, L|M |

2πε has to be replaced by L|M |
πε .

Page 128, in Example 3.9, (φ, θ, ψ) has to be replaced by (φ, θ, ψ)tr. Similarly, (ω1, ω2, ω3) has to be replaced
by (ω1, ω2, ω3)tr.
Page 130, in (3.130), B(t)trR(T1, t)tr has to be replaced by B(t, z(t))trRz(T1, t)tr.
Page 132. In (3.30), εηk+1 has to be replaced by (−1)kεηk+1 and |η| can be replaced by η; line -13, ε ∈ [0, ε0]
has to be replaced by ε ∈ [−ε0, ε0]; line -8, −ηε has to be replaced by ηε; line -6 and line -5, (−1)k has to
be deleted; line -4, ε ∈ [0,+∞) has to be replaced by ε ∈ (−∞,+∞); in (3.32), (−1)k has to be deleted and
εηk+2 has to be replaced by |ε|ηk+2.
Page 133. Lines 1-2, η = ε1/(2k+2) has to be replaced by η = |ε|1/(2k+2); in (3.34), ε3/2 has to be replaced
by (−1)kε|ε|1/2 and O(ε(3/2)+(1/(2k+2))) has to be replaced by O(|ε|(3/2)+(1/(2k+2))).
Page 142, line 6 “0ur” has to be replaced by “Our”.
Page 145,

Span {b1, S(b1)J−1b1S(ω)J−1ω; ω ∈ Span {b1, S(b1)J−1b1}}

has to be replaced by

Span ({b1} ∪ {S(ω)J−1ω; ω ∈ Span {b1, S(b1)J−1b1}}).

Page 152, in Corollary 3.41, “T0” has to be replaced by “0” and “T1” has to be replaced by “T”. Moreover
a comma is missing after “x(T0) = x0”.
Page 196, line 10, “ if

∫ T
0
α(t)dt is large enough” has to be added after “around ȳ is controllable”

Page 199, line -12, “In [244,245],” has to be removed.
Page 208, line -4, “g ∈ C2([0, 1]; R)” has to be replaced by “g ∈ C2([0, 1]; R)”.
Page 210, line 10, “g ∈ C2([0, 1]; R)” has to be replaced by “g ∈ C2([0, 1]; R)”.
Page 210, line 10, “g1 ∈ C1([0, 1]; R)” has to be replaced by “g1 ∈ C1([0, 1]; R)”.

1



Page 210, line 13, “g2 ∈ C0([0, 1]; R)” has to be replaced by “g2 ∈ C0([0, 1]; R)”.
Page 236, line 16, “v1 ∈ L∞((0, T ); Rm)” has to be replaced by “v1 and v2, both in L∞((0, T ); Rm),”.
Page 275, line -16, “the set of polynomials” has to be replaced by “the set of real polynomials”.
Page 288, line 13, “dynamic feedback laws” has to be replaced by “dynamic output feedback laws”.
Page 297, line - 11, “and Theorem 3.18 on page 134-135” has to be added after page 135.
Page 302, in (11.75), “∀x ∈ Rn” is missing.
Page 311, line 2, “(x1, r2, t) ∈ R3 has to be replaced by (x1, x2, t)tr ∈ R3”.
Page 336, line -6, “but where the method introduced” has to be replaced by “where, however, the method”.
Page 348, line 1, “L(U,D(A∗)′)” has to be replaced by “L(U ;D(A∗)′)”.
Page 368, in Lemma 13.15, “|a(t, x)|+ |b(t, x)| < δ3” has to be replaced by “|a(t, x)|+ |b(t, x)|+ |ax(t, x)|+
|bx(t, x)| < δ3”.
Page 368, line -3, “Proposition 1.18” has to be replaced by “Proposition 1.3”.
Page 387, line -11, “b′ ∈ Rn” has to be replaced by “b′ ∈ Rn”.
Page 404, in reference [150], “Karlruhe” has to be replaced by “Karlsruhe”.
Page 405, in the title of the reference [200], “controllabilty” has to be replaced by “controllability”.
Page 416, the two references [416] and [417] are the same.
Page 421, line 14 “H1

0 (I; C) set of ϕ in H1(I; C) such that ϕ(0) = ϕ(L) = 0” has to be replaced by “H1
0 (I; C)

set of ϕ in H1(I; C) such that ϕ(−1) = ϕ(1) = 0”
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