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All truths are easy to understand once they are discovered; the point is to discover them.

Philosophy is written in this grand book-I mean the universe-which stands continually open to our gaze, but

it cannot be understood unless one first learns to comprehend the language and interpret the characters in

which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and

other geometrical figures, without which it is humanly impossible to understand a single word of it.

Opere Il Saggiatore

Galileo Galilei (1564 - 1642)

A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of

things it relates, and the more extended is its area of applicability. Therefore the deep impression which

classical thermodynamics made upon me. It is the only physical theory of universal content concerning

which I am convinced that within the framework of the applicability of its basic concepts, it will never be

overthrown.

Albert Einstein (1879 - 1955)
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1. General Information

CHEMISTRY 223: Introductory Physical Chemistry I.

Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity,
enthalpy, thermochemistry, bond energies. Second law of thermodynamics; the entropy and free energy functions. Third law of thermodynamics,
absolute entropies, free energies, Maxwell relations and chemical and thermodynamic equilibrium states.

Prerequisites: CHEM 110, CHEM 120 or equivalent, PHYS 142, or permission of instructor.
Corequisite: MATH 222 or equivalent.
Restrictions: Not open to students who have taken or are taking CHEM 203 or CHEM 204.

1.1. Contact Information

Professor: David Ronis
Office: Otto Maass 426
E-mail: David.Ronis@McGill.CA

(Help my e-mail client direct your email;

Please put CHEM 223 somewhere in the

subject.)

Tutor/Grader: Samuel Palato
E-mail: Samuel.Palato@Mail.McGill.CA
Office: Otto Maass 25

Lectures: Tuesday and Thursday 11:35 - 12:25
Makeups, Tutorials,
or Review Sessions:

Friday 11:35 - 12:25

Location: Otto Maass 217
Course Web Site: https://ronispc.chem.mcgill.ca/ro-

nis/chem223
Note: username and password are
needed for full access.

2015, Fall Term



Chemistry 223 -5- General Information

I will be away on the following dates and will make up the missed class in the Friday slot of
the same week:

Canceled Classes Makeup
(Fall, 2015) (OM 217, 11:35-12:25)

Tuesday, September 15 Friday, September 18
Tuesday, September 29 Friday, October 2

Tuesday, October 6 Friday, October 9

1.2. Texts

Thomas Engel and Philip Reid, Thermodynamics, Statistical Thermodynamics, and Kinetics, 3rd

edition (Pearson Education, Inc., 2013).

J.R. Barrante, Applied Mathematics for Physical Chemistry, 3rd edition (Pearson Education, Inc.,
2004).

1.3. Supplementary Texts

1. G. W. Castellan, Physical Chemistry 3rd edition (Benjamin Cummings Pub. Co., 1983) (Out
of print but excellent. This would be the text for the course if I could get copies). Note that
Castellan doesn’t use SI units and uses a older sign convention for an key-- thermodynamic
quantity, namely work.
2. R.J. Silbey, R.A. Alberty and M.G. Bawendi, Physical Chemistry, 4th edition (John Wiley &
Sons, Inc., 2005). This was used as the text in the past. It’s OK but Engel and Reid or Castellan
are better.
3. R. Kubo, Thermodynamics (Physics orientation, excellent, but somewhat advanced with fewer
chemical examples).

1.4. Grades

There will be approximately one problem set every 2-3 lectures, one midterm and a final
exam. The midterm will be given between 6 and 9 P.M. on

Tuesday, October 27, 2015

in Otto Maass 112 and 217 (a seating plan will be posted).

Completion and submission of the homework is mandatory. We hav e a tutor/grader for the
course, Samuel Palato, and the problems will be graded. Solutions to the problem sets will be
posted on the course web page. In addition, there will be a tutorial roughly every second Friday
where the tutor will go over problems or review other topics.

You are strongly encouraged to do the homework by yourself. The problems will cover
many details not done in class and will prepare you for the exams. The exams will involve ex-

tensive problem solving and may contain problems from the homework! The course grading
scheme is:

2015, Fall Term
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Grade Distribution

Problems 10%
Midterm 40%
Final 50%

1.5. Random, McGill Specific, Notes

McGill University values academic integrity. Therefore, all students must understand the

meaning and consequences of cheating, plagiarism and other academic offenses under the

Code of Student Conduct and Disciplinary Procedures (see www.mcgill.ca/stu-

dents/srr/honest/ for more information).(approved by Senate on 29 January 2003)

In accord with McGill University’s Charter of Students’ Rights, students in this course have the
right to submit in English or in French any written work that is to be graded. (approved by Senate
on 21 January 2009)

In the event of extraordinary circumstances beyond the University’s control, the content and/or
evaluation scheme in this course is subject to change.
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1.6. Tentative Course Outline

Text Chapter

Silbey Reid Castellan
Lecture Topic

Lecture 1. Introduction: Kinetics & Thermodynamics, an overview 1 1 2

Lecture 2. Empirical properties of gases 1 1,7 2

Lecture 3. Empirical properties of liquids and solids 1 1  5

Lecture 4. Molecular basis: Kinetic theory of gases 17 12, 16 4

Lecture 5. Surface reactions & Effusion 17 16 30

Lecture 6. Gas phase collision rates 17 16 30

Lecture 7. Kinetics I: Collision theory of elementary gas phase re-

actions: Collision rates and activation energies

Lecture 8. Mean free path & Diffusion

19 17 33

Lecture 9. Kinetics I: Review of n’th order reaction kinetics.

Lecture 10.
18 18 32

Intro. to mechanims & steady state approximation.

Lecture 11. Temperature: the zeroth law of thermodynamics 1 1  6

Lecture 12. Mechanics, Work, and Heat 2 2  7

Lecture 13. Reversible and irrev ersible changes 2 2  7

Lecture 14. The First Law of Thermodynamics: Energy 2 2, 3 7

Lecture 15. Enthalpy, Hess’s Law 2 3, 4 7

Lecture 16. Heat Capacities, Kirchoff ’s Law 2 4 7

Lecture 17. Estimating Enthalpy Changes: Bond Enthalpies 2 4  7

Lecture 18. The Carnot Engine/Refrigerator 3 5  8

Lecture 19. The Second Law of Thermodynamics: Entropy 3 5 8

Lecture 20. Entropy Calculations 3 5  8

Lecture 21. The Third Law of Thermodynamics: Absolute Entropies 3 5 9

Lecture 22. Conditions for Stable Equilibrium: Free Energies 4 6 10

Lecture 23. Equilibrium Conditions (continued) 4 6  10

Lecture 24. Maxwell Relations and applications 4 6  9.4

Lecture 25. Chemical equilibrium 5 6 11

Lecture 26. Chemical equilibrium calculations 5 6  11
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2. Divertissements

From: Ryogo Kubo, Thermodynamics (North Holland, 1976)

2.1. Divertissement 1: Founders of the first law of thermodynamics

If a tomb of the Unknown Scientists had been built in the 1850’s, the most appropriate in-
scription would have been "In memory of the grief and sacrifice of those who fought to realize a
perpetuum mobile". But the law of conservation of energy, or the first law of thermodynamics, is
associated primarily with three great names, Mayer, Helmholtz and Joule.

Julius Robert Mayer (1814-1878) was really a genius who was born in this world only with
the errand to make this great declaration. Hermann Ludwig Ferdinand von Helmholtz
(1821-1894) gav e this law the name "Erhaltung der Kraft" or "the conservation of energy". Like
Mayer, he started his career as a medical doctor but lived a glorious life as the greatest physiolo-
gist and physicist of the day. James Prescott Joule (1818-1889) worked over forty years to estab-
lish the experimental verification of the equivalence of work and heat.

Among the three, Mayer was the first who arrived at this law and the last whose work was
recognized. His life was most dramatic. A lightening stroke of genius overtook him, a German
doctor of the age of twenty six, one day on the sea near Java when he noticed that venous blood
of a patient under surgical operation appeared an unusually fresh red. He considered that this
might be connected with Lavoisier’s theory of oxidation in animals, which process becomes
slower in tropical zones because the rate of heat loss by animals will be slower there. A great
generalization of this observation lead him to the idea of the equivalence of heat and mechanical
work. For three years after his voyage, while he was working as a medical doctor at home, he de-
voted himself to complete the first work on the conservation of energy "Bemerkungen uber die
Krafte der unbelebten Natur" which was sent to the Poggendorf Annalen and was never pub-
lished by it. In 1842 Liebig published this paper in his journal (Annalen der Chemie und Pharma-
cie) but it was ignored for many years.

Mayer wrote four papers before 1851. During these years of unusual activity he cared for
nothing other than his theory. In 1852 he became mentally deranged and was hospitalized. He re-
covered after two years but never returned to science.

2.2. Divertissement 2: Why do we hav e winter heating?

Why do we hav e winter heating? The layman will answer: "To make the room warmer."
The student of thermodynamics will perhaps so express it: "To import the lacking (inner, ther-
mal) energy." If so, then the layman’s answer is right, the scientist’s is wrong.

We suppose, to correspond to the actual state of affairs, that the pressure of the air in the
room always equals that of the external air. In the usual notation, the (inner, thermal) energy is,
per unit mass,*

u = cvT .

(An additive constant may be neglected.) Then the energy content is, per unit of volume,

*The author has assumed that the specific heat of the gas is independent of temperature; a reasonable ap-
proximation for the oxygen and nitrogen around room temperature.

2015, Fall Term



Chemistry 223 -9- Divertissements

u = cv ρT ,

or, taking into account the equation of state, we have

P

ρ
= RT ,

we have

u = cv P/R.

For air at atmospheric pressure,

u = 0. 0604cal/cm3.

The energy content of the room is thus independent of the temperature, solely determined by the
state of the barometer. The whole of the energy imported by the heating escapes through the
pores of the walls of the room to the outside air.

I fetch a bottle of claret from the cold cellar and put it to be tempered in the warm room. It
becomes warmer, but the increased energy content is not borrowed from the air of the room but is
brought in from outside. Then why do we hav e heating? For the same reason that life on the
earth needs the radiation of the sun. But this does not exist on the incident energy, for the latter
apart from a negligible amount is re-radiated, just as a man, in spite of continual absorption of
nourishment, maintains a constant body-weight. Our conditions of existence require a determi-
nate degree of temperature, and for the maintenance of this there is needed not addition of energy
but addition of entropy.

As a student, I read with advantage a small book by F. Wald entitled "The Mistress of the
World and her Shadow". These meant energy and entropy. In the course of advancing knowledge
the two seem to me to have exchanged places. In the huge manufactory of natural processes, the
principle of entropy occupies the position of manager, for it dictates the manner and method of
the whole business, whilst the principle of energy merely does the bookkeeping, balancing cred-
its and debits.

R. EMDEN

Kempterstrasse 5,
Zurich.

The above is a note published in Nature 141 (l938) 908. A. Sommerfeld found it so inter-
esting that he cited it in his book Thermodynamic und Statistik (Vorlesungen uber theoretische
Physik, Bd. 5, Dietrich’sche Verlag, Wiesbaden; English translation by F. Kestin, Academic
Press Tic., New York, 1956). R. Emden is known by his work in astrophysics and meteorology as
represented by an article in der Enzyklopadie der mathematischen Wissenschafte Thermody-

namik der Himmelskorper (Teubuer, Leipzig-Berlin, 1926).
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2.3. Divertissement 3: Nicolas Leonard Sadi Carnot

In the first half of the last century, the steam engine, completed by introduction of the con-
denser (the low-temperature heat reservoir), due to James Watt (1765) had come to produce more
and more revolutionary effects on developments in industry and transportation. Many eminent
physicists like Laplace and Poisson set about to study the Motive Power of Fire. Sadi Carnot
(1796-1832) was a son of Lazare Carnot, Organizer of Victory in the French Revolution, and was
born and died in Paris. He probably learned the caloric theory of heat, in which heat was as-
sumed to be a substance capable either of flowing from body to body (heat conduction) or of
making chemical compound with atoms (latent heat). He wrote a short but very important book,
Reflexions sur la puissance motrice du feu et sur les machines propres a developper cette puis-

sance (Paris, 1824), which was reprinted by his brother (1878) together with some of Carnot’s
posthumous manuscripts.

Carnot directed his attention to the point that, in the heat engine, work was done not at the
expense of heat but in connection with the transfer of heat from a hot body to a cold body, and
thus heat could not be used without a cold body, in analogy of water falling from a high reservoir
to a low reservoir. In his book he assumed the law of conversation of heat, namely that the quan-
tity of heat was a state function, although he later abandoned this law and arrived at the law of
equivalence of heat and work: he actually proposed many methods to estimate the mechanical
equivalent of heat. He introduced what came to be known as Carnot’s cycle, and established
Carnot’s principle.

Carnot’s book had been overlooked until B. P. E. Clapeyron (1834) gav e Carnot’s theory
an analytical and graphical expression by making use of the indicator diagram devised by Watt.
The law of conservation of heat assumed by Carnot was corrected by R. Clausius (1850), based
on the work of J. R. von Mayer (1841) and J. P. Joule (1843-49), into the form that not only a
change in the distribution of heat but also a consumption of heat proportional to the work done is
necessary to do work, and vice versa. Clausius named this modification the First Law of Thermo-
dynamics. H. L. F. van Helmholtz (1847) and Clausius generalized this law to the principle of the
conservation of energy. W. Thomson (Lord Kelvin), who introduced Kelvin’s scale of tempera-
ture (1848) based on Carnot’s work, also recognized the law of equivalence of heat and work.
The Second Law of Thermodynamics was formulated by Thomson (1851) and Clausius (1867).

A sketch of the history of early thermodynamics is given by E. Mendoza, Physics Today
14 (1961) No. 2, p. 32. See also E. Mach: Principien der Warmelehre (vierte Aufl. 1923, Verlag
von Johann Ambrosius Barth, Leipzig).

2.4. Divertissement 4: Absolute Temperature

The absolute temperature scale means that temperature scale which is determined by a
thermodynamic method so that it does not depend on the choice of thermometric substance, the
zero of the scale being defined as the lowest temperature which is possible thermodynamically.
Absolute temperature, which is now used in thermal physics, was introduced by Lord Kelvin
(William Thomson) in 1848 and is also called the Kelvin temperature.

For the complete definition of the scale, we have two choices; one is to use two fixed
points above zero and assign their temperature difference and the other is to use one fixed point
and assign its numerical value. Until recently the calibration of the Kelvin temperature scale was
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performed using two fixed points: the ice point T0
oK and the boiling point T0 + 100oK of pure

water under 1 standard atm (= 101325 Pa). We can measure T0 by a gas thermometric method.
At low pressures, the equation of state of a real gas can be written in the form

pV = α + κ p.

We measure the values of pV, α and κ at the above two fixed points.Considering that α is equal
to nRT , we hav e

T0 =
100α0

α100 − α0

If we put T0 = 0, we get the thermodynamic Celsius temperature scale. Hence, −T0
oC means ab-

solute zero as measured by this scale.

The precise gas thermometric investigations of the Frenchman P. Chappuis from 1887 to
1917 gav e the value of T0 between 273.048 and 273.123. Inspired by this work, more than one
hundred determinations of T0 were performed until 1942. Among them, the results of W. Heuse
and J. Otto of Germany, W. H. Keesom et al. of the Netherlands, J. A. Beattie et al. of the U.S.A.
and M. Kinoshita and J. Oishi of Japan are noted for their high precision. Their values are found
to lie between 273.149 and 273.174.

Considering these results and the fact that the triple point of pure water is very near to
0.0100oC, the 10th General Conference on Weights and Measures in 1954 decided to use the
triple point of the water as the fixed point and to assign the value 273.16 as its temperature. It
also redefined the thermodynamic Celsius temperature toC as t = T-273.15, where T is the value
of the absolute temperature determined from the above decision. The zero of the new thermody-
namic Celsius temperature differs by about 0.0001o from the ice point.

For ordinary purposes, the differences in these new and old scales are quite negligible.
However, for cases where a precision of 1O−4 degree in the absolute value is required, we must
take the differences into consideration.

2.5. Divertissement 8: On the names of thermodynamic functions

The word "energy εν ε ργ εια " can be seen in the works of Aristotle but "internal energy"
is due to W. Thomson (1852) and R. J. E. Clausius (1876). The portion "en" means inhalt=capac-
ity and "orgy", like the unit "erg", derives from ε ργ oν =work. "Entropy" is also attributed to
Clausius (1865) who took it from εν τ ρε π ειν =verwandeln and means verwandlungsin-

halt=change quantity. "Enthalpy" was introduced by H. Kamerlingh Onnes (1909) from
εν θα λπ ειν =sich erwarmen which means warmeinhalt. J.W. Gibbs called it the heat function
(for constant pressure). "Free energy" is due to H. van Helmholtz (1882), and means that part of
the internal energy that can be converted into work, as seen in the equation dF=d’A for an iso-
thermal quasi-static process. It was customary to call the remaining part, TS, of the internal en-
ergy, U = F + TS, the gebundene energie (bound energy), but this is not so common now. The
Gibbs free energy (for constant pressure) was introduced by Gibbs, but German scientists used to
call it die freie enthalpie. Thus the thermodynamic functions often have different names in Ger-
man and in English.
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Further, on the equation of state: Kamerlingh Onnes gav e the names, thermische zustands-

gleichung to p = p(T , V ) and the name kalorische zustandsgleichung to E = E(S, V ). M. Planck
(1908) called the latter kanonische zustandsgleichung.
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3. Some Properties of Ideal and Non-Ideal Materials

3.1. Ideal Gases

Very dilute gases obey the so-called ideal gas law or equation of state, initially deduced
from Boyle’s Law* and Charles’s Law†, which when combined show that

PV = NRT , (3.1)

where

SI Units for some common quantities arising in the study of gases.

SI
Abbreviation Unit

Symbol Name

P Pressure (Pascale) Pa kg/(m sec2)
V Volume m3

N Number of moles. mol moles
T Absolute Temperature K Kelvin
R Gas Constant 8.314442 J /(K mol)

N A Av ogadro’s Number 6. 0225 × 1023 molecules/mol

Note that 1 standard atmosphere is 1. 01325 × 105Pa = 101. 325kPa. Under
Standard Temperature and Pressure (STP) conditions T ≡ 273. 15K (0C) and
P ≡ 101. 325kPa (1ˆatm); hence, by rearranging Eq. (3.1) we see that
V ≡ V /N = RT /P = 0. 0224 m3/mol, or more commonly as 22. 4 liters/mol.

3.2. Dalton’s Law

In mixtures of dilute gases, Dalton‡ showed that the ideal gas equation, cf., Eq. (3.1),
needed to be modified by replacing N by the total number of moles in the gas, i.e.,
N → Ntotal ≡ Σi Ni , i.e.,

P =
RT

V i
Σ Ni =

i
Σ Pi , (3.2)

where

Pi ≡ Ni RT /V = xi P, (3.3)

is known as the partial pressure and is the pressure a pure gas of component i would have for a
given molar volume and temperature. We hav e also introduced the mole fraction, xi ≡ Ni /Ntotal ,
in writing the last equality. Since Σi xi = 1, it can be summed to give Eq. (3.2).

*Robert Boyle, 1627-1691, showed that P∝1/V .
†Jacques Alexandre César Charles, 1746-1823, showed that V ∝T .
‡John Dalton, FRS, 1766-1844.

2015, Fall Term



Ideal & Non-Ideal Materials -14- Chemistry 223

You might think that the partial pressure concept is some sort of mathematical game and
that the partial pressures are not physically relevant. After all, only Ntotal matters in the equation
of state. As Dalton showed, this is not correct. To see why, consider the following experiment.

N1, N 2, N 3, ...

T, V constantP
to

t P1

Fig. 3.1. Dalton’s Experiment: a rigid cylinder containing a gas mix-
ture at temperature T and Ni moles of gas "i". Two pressure measuring
devices (e.g., manometers) are attached to the cylinder. The one on the
left is directly connected to the gas mixture via a hole (or valve) in the
top of the cylinder. The meter on the right is connected to the mixture
through a porous plug that only allows component 1 to pass.*

As expected, the left meter reads Ptotal in accord with Dalton’s Law. The meter on the
right reads P1, the partial pressure of the permeable component. Thus, in establishing its equilib-
rium with the meter, the permeable component acts as if the other components weren’t there! As
we shall see later, this plays a central role in chemical equilibrium..

3.3. Beyond Ideal Gases

Fig. 3.2. Phase diagram of water.1 Shown are the co-
existence lines for gas-solid (sublimation), gas-liquid
(vaporization or condensation), and liquid-solid
(freezing or melting) lines. The point where all three
meet is known as the triple point. The liquid-vapor
line terminates at the so-called critical point. Finally,
for water, note that there are several solid-solid coex-
istence lines (not shown) at even lower temperatures
and/or higher pressures.

Fig. 3.3. Liquid-vapor pressure-volume phase dia-
gram near the critical point.2 The solid curves are
known as isotherms (constant temperature) and the
dashed lines correspond to liquid-vapor phase equi-
librium where low (gas, VG) and high (liquid, VL)
phases coexist. Two features of interest are the criti-
cal point, labeled c, and a path (1 → 2 → 3 → 4)
whereby a liquid is vaporized without boiling.

*For example, thin Pd sheets are porous to H2 and not much else. Alternately, small-pore zeolites can also
be used to filter/selectively pass gases.
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Figures 3.2 and 3.3 show examples of pressure-temperature and pressure-volume phase di-
agrams, respectively. Many of the details contained in these phase diagrams will be considered
next term. For now, simply note that Fig. 3.3 shows that ideal gas behavior is observed only at
high enough temperature and molar volume. Also note that only the liquid-gas equilibrium’s
show critical points. That’s because liquids and gases differ only in details (e.g., density, index
of refraction, etc.) and not in symmetries, i.e., both are isotropic and homogeneous, something
that solids are not by virtue of their crystal lattices.

There are many objections that can be raised against the ideal gas and Dalton’s laws. Here
are a few: a) why don’t they depend on the chemical identity of the gas? b) they predict finite
pressure for all but V → 0; and c) they predict vanishing volume as T → 0K . Some of these ob-
jections can be dismissed if we consider how far apart the gas molecules are under typical condi-
tions, i.e., around ambient temperature and pressure.

According Eq. (3.3), under STP conditions, the volume per molecule is
V /N A = 0. 0224 m3/6. 0225 × 1023 = (33. 39 × 10−10m)3. Thus, we see that the typical distance

between molecules in this gas is 33. 39A
o
, which is large compared to the size of gaseous elements

and many small molecules. Nonetheless, the distance shrinks as the pressure increases or in con-
densed liquid or solid phases. For example, given that the molar volume of water (molecular
weight 18 g/mol, density at STP 1 g/cm3) is 18cm3/mol or 2. 98 × 10−23cm3/molecule we see

that the typical distance between water molecules is around 3. 1A
o
, which is approximately the

size of a water molecule; hence, in liquid water the molecules are more or less in direct contact,
and we would expect that molecular details (geometry, bonding, dipole moment, etc.) to play an
important role, as they do.

This discussion can be made more quantitative if we consider the so-called compressibility
factor or ratio, Z,

Z =
PV

RT
=

V

Videal

, (3.4)

where Videal = RT /P is the molar volume an ideal gas would at the same temperature and pres-
sure. Some examples for the van der Waals model are shown in Fig. 3.4.

One general way to deal with deviations from ideal behavior in the gas phase, at least for
low densities, is to write down the so-called virial expansion* In more modern terms, the virial
expansion is a Taylor polynomial approximation, i.e.,

Z = 1 + Bn + Cn2+. . . =
i=1
Σ Bi n

i−1, (3.5)

where n ≡ 1/V is the molar density, and where B and C are known as the second and third viral
coefficients, respectively. The second equality is an alternate notational convention with B1 = 1,

1G. W. Castellan, Physical Chemistry, 3rd ed., (Benjamin Pub. Co., 1983), p. 266.
2R.J. Silbey and R.A. Alberty, Physical Chemistry, 3rd ed., (John Wiley & Sons, Inc. 2001) p. 16.
*Virial n. [L. vis, viris, force.] A certain function relating to a system of forces and their points of applica-
tion, -- first used by Clausius in the investigation of problems in molecular physics/physical chemistry.
[1913 Webster]
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B2 = B, B3 = C, etc.. In general, the virial coefficients are intensive functions of temperature
and has units of volumei−1.

The theoretical tools required to calculate the virial coefficients were developed in the mid
20th century and we’ve been able to calculate the first 10 for model potentials of molecular inter-
action. Less well understood is the radius of convergence of the virial expansion, an important
question, if we would like to somehow extrapolate to the liquid phase. According to the Lee-
Yang theorem,† the radius of convergence is the condensation density, which means that the se-
ries cannot be used to study the liquid phase directly.

Fig. 3.4. The compressibility factor for the van der Waals model (see below for an expla-
nation of reduced variables). Note that both positive and negative deviations from Z = 1
are possible. The change-over temperature, the so-called reduced Boyle temperature, τ B,
is that where attractive and repulsive interactions balance and the second virial coefficient
vanishes. For the van der Waals model TB = a/Rb which leads to τ B = 27 / 8 = 3. 375.

†C.N. Yang and T.D. Lee, Statistical Theory of Equations of State and Phase Transitions. I. Theory of Con-

densation, Phys. Rev. 87, 404-409, (1952); T.D. Lee and C.N. Yang Statistical Theory of Equations of

State and Phase Transitions. II. Lattice Gas and Ising Model Phys. Rev. 87, 410-419, (1952). Note that
these papers are well beyond your current mathematics and physics skills.
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One of the first attempts at writing an equation of state that had liquid and vapor phases
was due to the Dutch physical chemist van der Waals‡ The van der Waals model considers the re-
pulsive and attractive interactions separately. First, it corrects for the intrinsic or steric volume
per molecule by replacing the system’s volume V by V − Nb, where b, known as the van der
Waals b coefficient, and can be thought of as the minimum volume occupied by a mole of mole-
cules, assuming that they don’t deform at high pressure. Note that this won’t be the geometric
volume of the molecule, since some space is wasted due to packing considerations.

The second idea was to suggest that there are weak attractive forces between molecules
(due to the so-called London dispersion forces). The attractions lead to the formation of weakly
bound van der Waals dimers, thereby reduce the total number of molecules in the system. Since
PV = NRT anything that reduces N lowers the pressure.

To quantify this last idea, consider the dimerization reaction

2A

K
→← A2, (3.6)

where K is the equilibrium constant for the reaction, and is very small for van der Waals dimers.
At equilibrium,

[A2]

[A]2
= K , (3.7)

where [A], etc., denote molar concentrations. Since A is conserved in the reaction,

[A]total ≡ [A] + 2[A2] (3.8)

is constant, and can be used to eliminate [A2] from Eq. (3.7), which becomes

2K [A]2 − [A]total + [A] = 0. (3.9)

This quadratic equation has one physical (positive) root, namely,

[A] =
−1 + (1 + 8K [A]total)

1/2

4K
. (3.10)

By using this in Eq. (3.8) we can easily find [A2], and finally,

N ≡ [A] + [A2] =
[A]total + [A]

2
=

4K [A]total − 1 + (1 + 8K [A]total)
1/2

8K
(3.11a)

∼[A]total − K [A]2
total + . . .  , for K [A]total << 1. (3.11b)

‡Johannes Diderik van der Waals, 1837-1923, was the first to suggested how repulsive and attractive forces
(now known as van der Waals or London dispersion interactions) lead to the existence of different phases
and a critical point.
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Where the last result was obtained by noting that (1 + x)1/2∼1 + x/2 − x2/8+. . .  for |x| << 1. In

short, the dimerization reaction leads to a reduction in the molar density proportional to V
−2

.

By combining the results of our discussion of the roles of repulsions and attractions, we
can write down the van der Waals equation of state

P =
RT

V − b
−

a

V
2

, (3.12)

where a, the van der Waals "a" constant, is the proportionality constant characterizing the reduc-
tion of N due to attractions. Some results are shown in Fig. 3.5.

Fig. 3.5. Semi-log plots of the reduced pressure versus reduced volume for isotherms ob-
tained using the van der Waals equation of state. The reduced pressures diverge as
φ → 1/3 and become ideal as φ → ∞, cf. Eq. (3.12).

Notice the inflection point at the critical point. For temperatures below the critical temperature
three states are possible, one at small φ one at large φ , and one in the middle. It is reasonable to
identify the two outermost as a liquid and gas, respectively. The state in the middle is unphysical
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because its slope is positive; i.e., its molar volume increases with increasing pressure and leads to
a neg ative compressibility.

Other thermodynamic quantities are easily found for the van der Waals model. For exam-
ple the compressibility factor becomes:

Z =
1

1 − b/V
−

a/RT

V
. (3.13)

and finally, the thermal expansion coefficient is found by differentiating the van der Waals equa-
tion, with respect to T keeping Pconstant. Some examples are shown in Fig. 3.4. Note that the
compressibility diverges at the critical point, cf. Eq. (3.15) below.

We can make contact with the virial expansion, cf. Eq. (3.5), by recalling the geometric se-
ries

1

1 − x
∼1 + x + x2 + x3+. . . ,

which when used in Eq. (3.13) shows that

Z = 1 + 

b −

a

RT




1

V
+ 


b

V




2

+ 


b

V




3

+. . .  . (3.14)

Thus, B2 = b − a/RT and Bi = bi−1, for i ≥ 3. The higher order virial coefficients are simply re-
lated to the excluded volume effects characterized by powers of the van der Waals b coefficient.
This is probably not correct.

Only the second virial coefficient, b − a/RT , is nontrivial. First note that it can be positive
(e.g. as in H2) or neg ative (e.g., as in N2) depending on whether repulsions or attractions are
more important, particular, in particular, it will be positive for large temperatures and negative for
low temperature.* The model predicts a zero initial slope when T = TB ≡ a/(Rb), known as the
Boyle temperature. Physically, it is the temperature at which attractions and repulsions balance
each other and the gas behaves more ideally than expected.

Perhaps the most interesting feature of the van der Waals model is the existence of the so-
called critical point; i.e., the one where the differences between the liquid and vapor phases van-
ish (see, e.e., point c in Fig. 3.3). This implies that one can choose a path (such as
1 → 2 → 3 → 4) which starts with a high-density (liquid) phase and ends up as a low density
(gas) phase without ever hav e 2 phase coexistence (no bubbles form and the system doesn’t boil).
This was controversial in the 19th century, but is now well established.

The critical state is the inflection point on the critical isotherm, cf. Figs. 3.3 or 3.5; i.e.,
where the first and second derivatives of the pressure-volume critical curve vanish. For the van
der Waals model this implies that

0 = 


∂P

∂V




T

= −
RT

(V − b)2
+

2a

V
3

and 0 = 


∂2P

∂V
2




T

=
2RT

(V − b)3
−

6a

V
4

, (3.15)

*This assumes that a and b don’t depend on temperature.
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cf. Eq. (3.12). These can be solved for a and b, giving

b =
VC

3
and a = 3PcV

2
C , (3.16)

or

VC = 3b, TC =
8a

27Rb
, and Pc =

a

27b2
, (3.17)

where we have used Eq. (3.12) to get the critical pressure PC .

Something interesting happens if we introduce reduced variables, i.e.,

π ≡
P

PC

, τ ≡
T

TC

, and φ ≡
V

VC

, (3.18)

all of which are dimensionless. By using the reduced variables and Eq. (3.17) we can rewrite the
van der Waals equation, Eq. (3.12), as

π =
8τ

3φ − 1
−

3

φ 3
. (3.19)

All material dependent parameters (e.g., a and b) have canceled out. Hence, if the van der

Waals model were exact, equations of state plotted in terms of reduced variables would give the
same curves, cf. Figs. 3.4 and 3.5. The materials are said to be in corresponding states. This
phenomena is known as the law of corresponding states or universality. Note that this can be
done for any 2 parameter model. In reality, the "law" is only an approximation.

In summary, the van der Waals equation is qualitatively correct, predicting 2-phase coexis-
tence, a critical point, and universal* behavior. On the other hand, it is quantitatively incorrect,
and in practice, other models are used. Problem 3 of problem set 1 explores this claim more care-
fully.

3.4. Liquids and Solids

Depending on the question asked, solids and liquids can be easier or harder to treat than
gases. For example, since both are difficult to compress, linear approximations are often satis-
factory, e.g.,

∆V

V
≈ −κ ∆P, (3.20)

where the isothermal compressibility, κ , is defined as

*The story is a bit more complicated. It turns out that many disparate materials exhibit universality close
enough to the critical point. An interesting observation because all of the classical models, while exhibit-
ing universal behavior, fail to describe many of the basic details of the behavior close to the critical point.
This was sorted out in the 1970’s by B. Widom (chemistry), M. E. Fisher (chemistry), L. Kadanoff
(physics), and K.G. Wilson (physics), and led to Wilson winning the 1982 Nobel prize in physics.
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κ ≡ −
1

V




∂V

∂P




N ,T

. (3.21)

Notice the explicit - sign in the definition of κ . All stable materials have positive κ (things get
smaller when you squeeze them). The factor of 1/V makes κ intensive, and therefore easier to
tabulate.

The isothermal compressibility, becomes 1/P for the ideal gas, or more generally for the
van der Waals liquid or gas

κ = −



V




∂P

∂V




T ,N





−1

= 


RTV

(V − b)2
−

2a

V
2




−1

, (3.22)

cf. Eq. (3.15).

Similarly, for small temperature changes,

∆V

V
≈ α ∆T , (3.23)

where the (isobaric or constant pressure) thermal expansion coefficient, α , is defined as

α ≡
1

V




∂V

∂T




N ,P

. (3.24)

Like κ , the factor of 1/V makes α intensive. Howev er, unlike κ , the thermal expansion coeffi-
cient can be positive or neg ative (e.g., it vanishes for liquid water at 4C and 1 atm). For the ideal
gas, α = 1/T , while for the van der Walls gas or liquid

α =




(V − b)

R




RTV

(V − b)2
−

2a

V
2







−1

, (3.25)

which is obtained by differentiating the van der Walls equation of state with respect to tempera-
ture keeping pressure constant, using the chain rule, noting that (∂V /∂T )P = Vα , and the solving
the resulting equation for α .

For so-called ideal solids, these being crystalline materials with roughly harmonic inter-
atomic interactions, one can go considerably farther in calculating mechanical quantities like κ
and α , as well as elastic constants, heat capacities, energies, electronic properties, etc.; this is
well beyond the scope of this course.* Liquids are less tractable than solids having the same com-
plications arising from the molecules being close together without the simplifications associated
with having an underlying periodicity or crystal lattice. At present, complex liquids are studied
theoretically by using brute force methods like Monte Carlo or molecular dynamics computer
simulations.

*However, see, e.g., M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Clarendon Press,
1962).
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4. Probability and Statistics

As we have stressed in class, when dealing with a macroscopic sample of a material it is
practically impossible to measure or calculate all the microscopic properties of the ∼ 1023 atoms
or molecules in the system. Fortunately, many kinds of phenomena do not depend on the precise
behavior of any single particle, and only average properties of the constituent particles are impor-
tant. In order to quantify these averages, we must consider some simple ideas in probability and
statistics.

We all encounter probabilistic concepts in daily life. Results of opinion polls, life ex-
pectancy tables, and grade distributions are but a few examples. Shown below, are two grade dis-
tributions for two classes taking an hourly exam in some course.

Fig. 4.1. Tw o hypothetical grade distributions with the same mean

How would you use this information?

Perhaps the simplest quantity to compute is the average grade; i.e.,

AVERAGE GRADE =
100

i=0
Σ N (i)

Ntotal

i, (4.1)

where N (i) is the number of students with grade i and Ntotal is the total number of students in
each class. Notice that even though the two distributions are very different, they hav e the same
av erage grade.

How much information is contained in the average grade and how relevant is the average
to any individual in the class? In the hypothetical distribution the average tells the whole story.
The distribution is extremely narrow, and thus practically everyone got the average grade. The
same is not true in the real distribution; there is a significant spread in the scores. This spread
can be quantified by defining the probability, P(i), of finding any student with grade i. For this
example,
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P(i) ≡
N (i)

Ntotal

, (4.2)

which is simply the faction of students with grade i. Notice that probabilities are "normalized" in
the sense that

i
Σ P(i) = 1. (4.3)

This is just a complicated way of stating the fact that every student taking the exam receives
some grade.

A measure of the width of the distribution can be obtained by computing the standard devi-
ation. If we denote the average grade by <i>, then the standard deviation, σ , is defined as:

σ 2 ≡
i
Σ P(i) [ i − < i > ]2. (4.4)

(Note, σ is the Greek letter sigma).

When we consider atomic and molecular systems the situation becomes somewhat more
complicated, although the basic ideas are the same as those introduced in the grade example dis-
cussed above. You have already used probability when you learned about atomic and molecular
orbitals. In the kinetic theory of gasses, a different sort of question is being asked; namely, how
do the molecules move?

To be more specific, suppose we want the distribution of velocities in the x direction for a
sample of gas containing 1023 molecules. Even if we ignore the experimental impossibility of
measuring the velocities of all of the molecules, what would we do with this huge amount of in-
formation? It would be useful to make the kind of histogram used in discussing grade distribu-
tions; however there is an additional complication. For the exam discussed above, no fractional
grades were assigned, and thus there is a natural bin width of 1 grade point. On the other hand,
nature does not assign discrete values to the x components of the molecular velocities. Hence, if
we were to make our bins too small in constructing our histogram, most of them would contain
only 0 or 1 particles, even for a sample containing 1023 particles.

In order to get around this difficulty, we must include some information about the size of
the "bin" in our introduction of probability. This is done by defining probability density, f (vx):

f (vx) ∆vx ≡




The probability that a molecule has

velocity between vx and vx + ∆vx.

Notice that the bin size is explicitly contained in our definition and is responsible for the proba-
bility of an infinitely precise result, i.e., ∆vx = 0, vanishes. Also note that in general probability
densities have units (in this example the units are inverse velocity).

Once we know the probability density, averages can be computed just as in the grade ex-
ample considered above. For example,
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< vn
x > =

vx

Σ vn
x f (vx) ∆vx . (4.5)

Throughout this part of the course, we will denote average quantities by surrounding them with
"< >". What should this average be for n=0 or 1? What is the physical significance of the aver-
age for n=2?

Of course, typical samples of the gas contain a large number of particles, and thus, the bins
can be taken to be very small. What does the sum in Eq. (4.5) become in this limit? We know
that this is an integral, and we therefore rewrite Eq. (4.5) as

< vn
x > = ∫

∞
−∞

vn
x f (vx) dvx . (4.6)

Finally, one more aspect of probability must be considered. In the molecular velocity ex-
ample, we discussed only the x component. However, velocity is a vector and there are also the y
and z components. How would we describe the probability that any molecule is traveling in
some specific direction? Clearly, for molecules in a gas, the probability that the x component of
the velocity lies in some interval should be independent of what the other two components are
doing. For such situations, the probability that a molecule has velocity with components in the
intervals vx to vx + ∆vx , vy to vy + ∆vy, and vz to vz + ∆vz is

F(vx , vy, vz)∆vx∆vy∆vz = f (vx) f (vy) f (vz)∆vx∆vy∆vz . (4.7)

If you are having trouble believing this, consider the probability that three coins come up heads
or tails in any set of three of tosses. This is a model the velocity probability distribution in a uni-
verse were all the magnitudes of the velocity components in the three directions are equal.

Further aspects of probability densities in gas kinetics will be discussed in class, but this
material should get you started.
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5. Maxwell-Boltzmann Distribution

The molecular description of the bulk properties of a gas depends upon our knowing the
mathematical form of the velocity distribution; That is, the probability, F(vx , vy, vz)∆vx∆vy∆vz ,
of finding a molecule with velocity components in the range vx to vx + ∆vx , vy to vy + ∆vy, and
vz to vz + ∆vz (see the last chapter). This can be found by making two very simple assumptions:

a) All directions are equivalent (space is isotropic). This implies that the probability of finding
a molecule moving with a certain velocity cannot depend on the direction; it is equally proba-
ble to find a molecule with any speed v moving in any direction. Mathematically, this im-
plies that the probability density can only depend on the magnitude of the velocity, or the mo-
lecular speed. Hence,

F(vx , vy, vx) = F


(v2

x + v2
y + v2

z)1/2

. (5.1)

b) The three components of the velocity are independent of each other. This implies that the ve-
locity probability density can be written as:

F(vx , vy, vx) = f (vx) f (vy) f (vz). (5.2)

By comparing Eqs. (5.1) and (5.2), we have

f (vx) f (vy) f (vz) = F


(v2

x + v2
y + v2

z)1/2

. (5.3)

Very few functions can satisfy Eq. (5.3); in fact, the only one is:

f (vi) = Ae−bv2
i , i = x, y, z, (5.4)

where A and b are, as yet, arbitrary constants. Verify that f given by Eq. (5.4) satisfies Eq. (5.3).
To show that Eq. (5.4) is the only possible function requires some mathematics which might be
beyond the level of the course; nonetheless, the proof is contained in the appendix for those of
you who are interested.

How do we determine the values of the constants A and b? The function f, is a probability
density and every molecule must have some velocity. From the previous section, we know that
this means

1 =
∞

vx=−∞
Σ f (vx)∆vx → ∫

∞
−∞

f (vx)dvx , (5.5)

where the integral is obtained when we make ∆vx very small. By going to a table of integrals we
find that

∫
∞
−∞

dv Ae−bv2

= A



π
b




1/2

, (5.6)
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which when used in Eq. (5.5) gives

A = 


b

π



1/2

. (5.7)

The parameter b is found as follows: We will compute the pressure that a dilute gas exerts
on the walls of its container and then compare the result with experiment (i.e., the ideal gas equa-
tion of state). What is the pressure and how do we get it from the velocity distribution? The
pressure is the force exerted by the gas on the wall per unit area. Moreover, the force is the rate
of change of momentum per unit time due to collisions with the wall.

Imagine the molecules which comprise our gas as billiard balls and assume that the walls
are perfectly smooth. What happens when a molecule collides with the wall? Actually relatively
little; the normal component of the velocity changes sign (see Fig. 5.1).

|v dt|x

x

Fig. 5.1. Elastic collisions with a smooth wall of unit area.

If the wall is taken to be the y-z plane, the momentum change, ∆P, is

∆ p = −2mvx = −F x,molecule on wall∆t, (5.8)

where m is the mass of the molecule and where F x,molecule on wall is the x-component of the force
exerted by the molecule on the wall when it collides. A typical velocity is 105 cm/sec; what is a
typical momentum change for argon? How many molecules with velocity vx will collide with
the wall per unit area in time ∆t? From Fig. 5.1, it should be clear that any molecule within a
distance vx∆t will hit the wall in time ∆t, assuming of course, that vx < 0  for the way the figure
was drawn (i.e., with the wall on the left). The number per unit area is therefore:
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n(vx)|vx |∆t, (5.9)

where n(v) is the number of molecules per unit volume with x component of velocity in the
range vx to vx + ∆vx . This is related to the molecular velocity distribution by

n(vx) = n0 f (vx)∆vx , (5.10)

where n0 is the number of molecules per unit volume. By multiplying Eqs. (5.8) and (5.9), then
substituting according to Eq. (5.10), and dividing by ∆t, we finally arrive at the pressure exerted
by those molecules with x velocity component in the range vx to vx + ∆vx , Pvx , vx+∆vx

:

2mn0v2
x f (vx)∆vx =

Fvx ,vx+∆vx

Area
= Pvx ,vx+∆vx

, (5.11)

where Fvx ,vx+∆vx
is the contribution to the force on the wall from molecules with x velocity com-

ponent in the range vx to vx + ∆vx . All that remains is to include the contributions from all ve-
locities corresponding to molecules moving towards the wall. The total pressure, P, thus equals:

P =
0

vx=−∞
Σ dvx 2mn0v2

x f (vx) = ∫
0

−∞
dvx 2mn0v2

x f (vx) = ∫
∞
0

dvx 2mn0v2
x



b

π



1/2

e−bv2
x , (5.12)

where the last equality comes from using the explicit form of the probability density, [see Eqs.
(5.4) and (5.7)]. The value of the integral is:

∫
∞
0

dvx v2
xe−bv2

x =
1

4b




π
b




1/2

.

If we use this result in Eq. (5.12), we find that

P =
mn0

2b
. (5.13)

Next we write the ideal gas equation of state in terms of the number density:

P = n0kBT ,

where kB is Boltzmann’s constant:

kB ≡
R

N A

=
R

6. 0225 × 1023
= 1. 38 × 10−23J /K .

By comparing this with Eq. (5.13) we see that

b =
m

2kBT
.

The velocity probability density for the x component can now be written as
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f (vx) = 


m

2π kBT




1/2

e
−

mv2
x

2kBT , (5.14)

or for the full velocity as

F(vx , vy, vx) = 


m

2π kBT




3/2

e
−

E

kBT , (5.15)

where E = m(v2
x + v2

y + v2
z)/2 is the kinetic energy of a molecule. This is referred to as the Max-

well-Boltzmann velocity distribution function and is illustrated in the following figure:

Fig. 5.2. The Maxwell-Boltzmann 1-D velocity distribution. Note that the probability of
finding faster molecules is increased if we raise the temperature or lower the mass.

Notice that increasing the temperature or reducing the mass makes it more probable to find
molecules with higher velocities and that the probability of observing any giv en velocity will de-
crease as the energy associated with that velocity increases. This last comment is not limited to
our simple billiard ball model of the molecules.

What is the average kinetic energy of the molecules; i.e., what is

m

2
〈v2

x + v2
y + v2

z〉 =
3m

2
〈v2

x〉 =
3m

2




m

2π kBT




1/2

∫
∞
−∞

dvx e−mv2
x /2kBT v2

x =
3

2
kBT ,

where the first equality follows from our assumption that all directions are equivalent and where
the last uses the integral given above. Notice that the average kinetic energy is independent of
the mass of the molecules and predicts a constant heat capacity; specifically,

CV ≡ 


∂E

∂T




N ,V

=
3

2
R.
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This is well born out for noble gases and is an example of the so-called law of Dulong and Petit.
For example, our result predicts a constant volume heat capacity of 12.471 J K−1 mol−1 the value
in the CRC Handbook gives 12.472 J K−1 mol−1* It turns out that our result is more general, in
that it also applies to all molecules as long as rotation, vibration and electronic effects can be ig-
nored. In addition, in molecular dynamics computer simulations the temperature is often defined
in terms of the average kinetic energy.

For many applications, the full Maxwell-Boltzmann velocity distribution gives too much
detail. In particular, remember that it is a probability density for the vector velocity. Suppose we
are interested in some property which depends only on the speed of the molecules and not their
direction. What is the probability density which describes the distribution of molecular speeds?

The speed distribution function, F(c) dc, is the probability of observing a molecule with a
speed in the interval c to c + dc irrespective of its direction. It can be obtained from the full ve-
locity distribution, cf. Eq. (5.15), by integrating (summing) over the possible velocity directions,
i.e.,

F(c)dc =
c≤|

→
v |≤c+dc
Σ F(vx , vy, vz)∆vx∆vy∆vz = F(vx , vy, vz)


|v| = c c≤|

→
v |≤c+dc
Σ ∆vx∆vy∆vz . (5.16)

The sums in these last equations are over all velocities such that the speed is between c and
c + dc. The second equality comes from noting that F only depends on the magnitude of the ve-
locity (see Eq. (5.15)). What is this last sum? ∆vx∆vy∆vz is a volume element in a coordinate
system whose axes are the components of velocity. The sum represents the volume between two
concentric spheres of radius c and c+dc, respectively. Thus

c≤|
→
v |≤c+dc
Σ ∆vx∆vy∆vz =

4π
3



(c + dc)3 − c3


≈ 4π c2dc, (5.17)

where the last expression was obtained by expanding the products and dropping nonlinear terms
in dc (remember that we will consider infinitesimally small dc). If we use Eq. (5.17) in (5.16),
we find that

F(c) = 4π c2F(vx , vy, vz)

|v|=c

= 4π c2


m

2π kBT




3/2

e
−

mc2

2kBT . (5.18)

This is the speed distribution and is shown in Fig. 5.3 below. Notice that it vanishes when c = 0
ev en though the velocity distribution is a maximum at zero velocity. Why?

There are various ways to characterize the molecular speed in the gas. For example, con-
sider the most probable speed, c*, is found by setting the c derivative of Eq. (5.18) to zero; i.e.,

0 = 4π 


m

2π kBT




3/2

e
−

mc2

2kBT
m

kBT
c



2kBT

m
− c2


,

which gives physical roots at c = 0 (a minimum) and at c* = (2kBT /m)1/2, which is the

*Note, that the CRC Handbook reports CP , where CP = CV + R for an ideal gas.

2015, Fall Term



Maxwell-Boltzmann Distribution -30- Chemistry 223

maximum. This can be compared with 〈c〉 = (8kBT /π m)1/2 and cRMS ≡ √ 〈c2〉 = (3kBT /m)1/2, cf.
Eq. (5.19). Note that c* < 〈c〉 < cRMS . All three results have the form (kBT /m)1/2 times some di-
mensionless number; the first factor has the units of speed (length / time) and must be there un-
less there is another quantity that has the units of speed, which is not the case here. The dimen-
sionless number depends on the details of the question being asked.

Fig. 5.3. The speed distribution for various temperatures and/or masses. As was the case
with the velocity distribution, cf. Fig. 5.2, the probability of finding faster molecules in-
creases if we raise the temperature of lower the mass.

The speed distribution is used to average quantities that don’t depend on the direction the
molecules are moving. Among these, the most useful are the mean-speed and root-mean squared

speed (or velocity), √ 〈c2〉, where

〈cn〉 ≡ 


m

2π kBT




3/2

4π ∫
∞
0

dc cn+2e
−

mc2

2kBT =














8kBT

π m




1/2

, n = 1

3kBT

m
, n = 2




2kBT

m




n/2
2

√ π
Γ(((n + 3) / 2)), in general,

(5.19)

where Γ(x) is the gamma function and where a table of integrals can be used to look up these re-

sults. Notice that all the averages contain factors of √ kBT /m which has units of velocity.

5.1. Appendix: Proof of Equation (5.4)

You are not responsible for this proof. Differentiate both sides of Eq. (5.3) with respect
to vx , using the chain rule for the right hand side, and divide by vx . You get:
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df (vx)

dvx

f (vy) f (vz)

vx

=

dF(v)

dv



v=(v2

x+v2
y+v2

z)1/2

(v2
x + v2

y + v2
z)1/2

. (5.20)

By repeating this for vy, equating the results and carrying out a little algebra, we find that:

df (vx)

dvx

vx f (vx)
=

df (vy)

dvy

vy f (vy)
(5.21)

The right hand side of the equation depends only on vy and the left hand side depends only on
vx . Since these two components of velocity can be chosen independently, the only way that this
last equation can be satisfied is if both sides are equal to the same constant. Hence,

df (vx)

dvx

= −2bvx f (vx), (5.22)

where b is, as yet, some arbitrary constant. This is a first order differential equation. It has a
general solution which will depend on a single multiplicative constant. This solution is given by
Eq. (5.4).
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6. Collisions, Reactions, and Transport

6.1. Effusion, Surface Collisions and Reactions

In the previous section, we found the parameter b by computing the average force exerted
on the walls of the container. Suppose, instead, that the rate of collisions (i.e., the number of col-
lisions per unit area per unit time) was desired. This is important for a number of practical con-
siderations; e.g., if a chemical reaction takes place every time a molecule hits the surface, then
the rate of the reaction will just be the collision rate.

We obtain the collision rate by repeating the analysis which determined the force on the
wall in the previous section. Thus, the number of molecules per unit area with velocity vx which
collide in time interval ∆t is

n(vx)|vx |∆t, (6.1)

where we are using the same notation as in the preceding sections. The total number of colli-
sions becomes:

Zwall∆t = ∫
0

−∞
dvx n0




m

2π kBT




1/2

e−mv2
x /(2kBT )|vx |∆t = 


kBT

2π m




1/2

n0∆t (6.2)

Hence, the wall collision rate, Zwall , is giv en by

Zwall = 


kBT

2π m




1/2

n0 =
1

4

〈c〉n0, (6.3)

where 〈c〉 is the average speed, introduced in the preceding section. Aside from the previously
mentioned example of chemical reaction on a surface, another application of this expression is in
effusion though a pinhole. If there is a hole of area A in the surface, the rate that molecules es-
cape the system is just Zwall A. Notice that heavier molecules or isotopes will escape more
slowly (with a 1/√ mass dependence); hence, effusion through a pinhole is a simple way in which
to separate different mass species.

The assumption that every collision leads to reaction is not quite right for many reasons
(e.g., orientation of the molecule, its internal motion, etc.). The most important of these is easy
to understand, namely, the molecule must have enough energy to overcome some sort of activa-
tion barrier. For our model this means that the molecule must be moving fast enough when it
collides and this is easily incorporated into Eq. (6.2):

Z reactive
wall = ∫

−vmin

−∞
dvx n0




m

2π kBT




1/2

e−mv2
x /(2kBT )|vx | =

1

4

〈c〉n0e−Ea/kBT , (6.4)

where Ea ≡
1

2

mv2
min is called the activation energy. This is just the well known Ahrennius behav-

ior seen in most reaction rates. Note that plotting log(Z reactive
wall ) vs 1/T would give an approxi-

mately straight line, and experimentally this is known as an Arrhenius plot.
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6.2. Gas Phase Collisions and Chemical Reactions

RA + RB

|v| t∆

Fig. 6.1. Any blue molecule contained in the cylinder will collide with our red A
molecule in time ∆t

Next consider the number of collisions which a molecule of type A makes with those of
type B in a gas. We will model the two molecules as hard spheres of radii RA and RB, respec-
tively. Moreover, in order to simplify the calculation, we will assume that the B molecules are
stationary (this is a good approximation if mB >> mA). An A molecule moving with velocity

→
v

for time ∆t will collide with any B  molecule in a cylinder of radius RA + RB (cf. Fig. 1) and
length |

→
v |∆t. Hence, volume swept out will just be

|v|∆tπ (RA + RB)2, (6.5)

and the actual number of collisions will nB × volume swept out The average A-B collision rate, is
obtained by multiplying by the probability density for A molecules with velocity

→
v and averag-

ing. Moreover, since only the speed of the molecule is relevant, we may use the molecular speed
distribution function obtained in the preceding section to average over the speed of A. Thus, we
get

Z A with B′s∆t ≡ ∫
∞
0

dc



4π c2


mA

2π kBT




3/2

e−mAc2/(2kBT )



π (RA + RB)2c∆tnB, (6.6)

where note that the quantity in the square brackets is just the seed probability density, F(c).
When the integral is evaluated, we find that

Z A with B′s = π (RA + RB)2〈cA〉nB, (6.7)

where 〈cA〉 is the average molecular speed of A; i.e.,
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〈cA〉 ≡ 


8kBT

π mA




1/2

. (6.8)

This is the number of collisions one A suffers in time ∆t. The number of collisions with B’s that
all the A molecules in a unit volume suffer per unit time, Z A,B, is

Z A,B = nA Z A with B = π (RA + RB)2〈cA〉nAnB. (6.9)

As was mentioned at the outset, our expression is correct if the B’s are not moving. It
turns out that the correction for the motion of B is rather simple (and involves going to what is
called the center-of-mass frame, which is not, but which is described in the Appendix); specifi-
cally, all we do is replace the mA in the definition of the mean speed by µA,B, the reduced mass

for the A,B pair. The reduced mass is defined as:

µA,B ≡
mAmB

mA + mB

, or equivalently,
1

µA,B

≡
1

mA

+
1

mB

. (6.10)

If mB >> mA, µA,B ≈ mA, i.e., the mass of the lighter species, while if A = B, µA,A = mA/2.

With this correction, our expression becomes

Z A,B = π (RA + RB)2〈cA,B〉nAnB, (6.11)

where

〈cA,B〉 ≡ 


8kBT

π µA,B




1/2

, (6.12)

is the mean speed of A relative to B. A special case of this expression it the rate of collision of A
molecules with themselves. In this case, Eq. (6.11) becomes

Z A,A =
1

2
π σ 2

A〈cA〉21/2n2
A, (6.13)

where σ A = 2RA is the molecular diameter of A and where we have divided by 2 in order to not
count each A-A collision twice. Note that we have expressed our result in terms of 〈cA〉 and not
〈cA,A〉, which is the origin of the additional factor of 21/2 in Eq. (6.13).

Equations (6.11) or (6.13) give the rate of chemical reaction per unit volume, assuming

zero activation energy (this is still an upper bound to the rate of reaction). As in the collision
with a wall discussion, this is easily generalized by including in the collision rate only those mol-
ecules with enough (relative) kinetic energy; i.e.,

RATE = nAnBπ (RA + RB)2 ∫
∞
cmin

dc F(c)c = π (RA + RB)2〈cA,B〉e−E A/kBT 

1 +

E A

kBT



nAnB, (6.14)

where F(c) is the (relative) speed distribution and E A ≡ µA,Bc2
min/2. When A=B we have to add

the additional factor of 1/2, cf. Eq. (6.13).
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This expression has the correct Arrhenius form except for the extra non-exponential factors
containing temperature. However, compared with the exponential factor, these usually do not
change very rapidly with temperature and can approximately be treated as constant; recall that
we normally show Arrhenius behavior by plotting ln(Rate Constant ) versus 1/T to obtain a
straight line. The non-exponential terms end up in a logarithm which usually doesn’t change
much over the range of temperatures studied. Thus, we have derived an approximate expression
for the bi-molecular rate constant which has at least some of the qualitative features of those
found in gas reactions. Note that in either case we have a second order reaction overall, either
first order in A and first order in B or second order in A, cf. Eq. (6.14) or, ignoring any activation
energy, (6.13), respectively.

It is important to understand what we mean by ’RATE’ in Eq. (6.14). It is the average
number of reactive collisions per unit volume, per unit time. This need not be the rate of disap-
pearance of reactants or appearance of products per unit time per unit volume. To get these we
need the stochiometries in the reaction under consideration. Consider the following reaction

A + A → A2. (6.15)

In each reactive collision two A’s are consumed, while only one A2 is produced; thus the rate of
disappearance of A is twice the rate of appearance of A2, which in turn happens once per event.
Hence,

d[A2]

dt
= RATE, while

d[A]

dt
= −2 × RATE. (6.16)

Note that Eq. (6.16) implies that [A] + 2[A2] is constant. Why should this not be a surprise?

6.3. Mean Free Path and Transport Phenomena

Next, we will consider how far a molecule can move before it suffers a collision. For sim-
plicity, we will only consider a one component gas. According to Eq. (6.7), the mean time be-
tween collisions is

τ collision ≈
1

Z A with A′s
=

1

21/2π σ 2
A〈cA〉nA

, (6.17)

where σ A = 2RA is the diameter of and A. Hence, the typical distance traveled by a molecule be-
tween collisions, λ is approximately τ collision〈cA〉 or

λ =
1

21/2π σ 2
AnA

. (6.18)

This distance is called the mean free path. Note that it only depends on the number density of
the gas and the size of the molecules, but not its mass or the temperature.

We can use these results to obtain an approximate expression for the way in which concen-
tration differences equilibrate in a dilute gas. Consider a gas containing two kinds of molecules
in which there is a concentration gradient; i.e., the density of molecules per unit volume, ni(z)
depends on position. One way in which the concentration becomes uniform is via diffusion.
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To quantify diffusion, we want to find the net number of molecules of a given type that
cross a plane in the gas per unit area per unit time; this is known as the diffusion flux. To see
how the diffusion flux depends on molecular parameters, consider the following figure.

z − λ

z + λ

z

Fig. 6.2. Any molecule that starts around a mean free path from the mid-plane will not
collide with anything and will cross the mid-plane, therefore contributing to the upward
or downward flux. The net rate per unit area is just what we considered in our discussion
of effusion.

We want the net flux through the plane at z. From our preceding discussion of mean free paths,
clearly any molecule that starts roughly from a mean free path above or below z, moving towards
z, will not suffer any collisions and will cross. The number that cross the planes at z ± λ per unit
area, per unit time is the same as the wall collision rates we calculated above, that is




kBT

2π m




1/2

n(z ± λ) =
1

4
〈cA〉n(z ± λ), (6.19)

where we have rewritten Eq. (6.3) in terms of the average molecular speed, cf. Eq. (6.8). Since
all the molecules that won’t collide and will thus cross the plane at z, the net flux (upward) is just

J =
1

4
〈cA〉n(z − λ) −

1

4
〈cA〉n(z + λ) = −

1

4
〈cA〉[n(z + λ) − n(z − λ)]. (6.20)

Since, for most experiments, the density barely changes on over a distance comparable to the
mean free path, we use the Taylor expansion to write

n(z ± λ) ≈ n(z) ±
dn(z)

dz
λ +

1

2

d2n(z)

dz2
λ2 + . . . , (6.21)

which, when used in Eq. (6.20) gives Fick’s First Law of diffusion,
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J = −D



∂n(z, t)

∂z




t

, (6.22)

where we have modified the notation to include the time dependence of the density and where

D ≡
1

2
λ〈cA〉. (6.23)

D is known as the diffusion constant, is positive, and has units of length2/time.

Clearly there is nothing special about our choice of the z direction in the preceding discus-
sion; it could easily have been in the x or y directions, or all three at once. Under these condi-
tions, the flux, J , becomes a vector, and Fick’s First Law of diffusion is

J(r, t) = −D∇n(r, t),

where ∇ is the gradient operator defined as

∇ ≡ 


∂
∂x

,
∂

∂y
,

∂
∂z




T

,

with T denoting the transpose.

The factor of 1/2 in our expression for D is not quite right, but the other factors are; e.g.,
for hard spheres the correct diffusion constant is 3π /8 = 1. 178. . . times larger than the one given
above.* Note that only the leading order term was kept in obtaining Eqs. (6.22) and (6.23) from
Eqs. (6.20) and (6.21); the next order one contains λ3(∂3n(z, t)/∂z3)t , and in general, only odd
powers of λ and numbers of derivatives will appear.

Next consider the total number of molecules inside of some region bounded by planes at z

and z + L. The length L is small compared to the scales that characterize the concentration
nonuniformity, but large compared with the mean free path. Clearly the only way for the total
number of molecules in our region, n(z, t)L, to change is by fluxes at the surfaces at z and z + L.
Thus,

∂n(z, t)L

∂t
= −J(z + L, t) + J(z, t) ≈ −L

∂J(z, t)

∂z
, (6.24)

where we have again used a Taylor expansion, now for the flux itself. Finally, by using our result
for the diffusion flux and canceling the factors of L, we see that




∂n(z, t)

∂t




z

= D



∂2n(z, t)

∂z2




t

, (6.25)

which is a kinetic equation for the relaxation of the concentration and is known as the diffusion

*See, e.g., Joseph O. Hirschfelder, Charles F. Curtiss, R. Byron Bird, Molecular Theory of Gases

and Liquids (Wiley-Interscience, 1964), Chapters 7-8. Be warned, the math and physics required
is very non-trivial!
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equation. Although value of the diffusion constant is quite different, the diffusion equation actu-
ally is more general than our derivation might suggest and holds in liquids and solids as well. Fi-
nally, note that we have only considered systems where the concentration is only nonuniform in
one spatial direction. Should this not be the case, then some simple modifications of our expres-
sions must be introduced; e.g., the diffusive motion in the x and y directions must be included.
This is easily done, and Eq. (6.25) becomes




∂n(r, t)

∂t




r

= D∇2n(r, t), (6.26)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is called the Laplacian operator.

There are standard ways in which to solve diffusion equations, either analytically, for spe-
cial geometries, or numerically.† However, there is one general feature of systems relaxing diffu-
sively. Imagine introducing a small droplet of an impurity into a system. Clearly the droplet will
spread in time, and you might naively think that the average droplet size would grow like 〈cA〉t.
Of course, this ignores collisions and is incorrect. From the diffusion equation dimensional
analysis correctly suggests that

1

t
≈

D

R2
(6.27)

or R ≈ √ Dt, which is much slower than the linear time behavior that would arise in the absence
of collisions.‡ This is what is observed.

An important application of the diffusion equation is to reactions in solution, where the
rate determining step is the diffusion of reactants to and product from the reaction place. For ex-
ample, consider a model where reactions occur on the surface of a spherical colloidal particle of
radius R. We assume that once the reactant diffuses to the surface the reaction will occur instan-
taneously, 100% of the time, implying that n(R) = 0. Finally, far from the surface the reactant
concentration is n0. In steady state, Eq. (6.26) becomes

0 = ∇2n(r). (6.28)

Given the overall spherical symmetry of the problem, you should expect, correctly, that switch-
ing to polar coordinates might be useful. In particular,

∇2n(r) =
1

r

∂2[rn(r)]

∂r2
+

1

r2 sinθ
∂

∂θ


sinθ

∂n(r)

∂θ



+
1

r2 sin2 θ
∂2n(r)

∂φ 2
, (6.29)

where r, θ and φ are the usual polar coordinates and where the last two terms vanish for our ge-
ometry. What remains of Eq. (6.29) is ∂2[rn(r)] /∂r2 = 0 or n(r) = A + B/r, where A and B are
constants that are determined by applying the boundary conditions, namely, n(r = ∞) = n0 and
n(r = R) = 0. Thus we see that

†See, e.g., W.H. Press, S.A Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The Art

of Scientific Computing, 2nd ed., (Cambridge University Press, 1992), Ch. 19.

‡ For a spherical droplet the exact answer is R = √ 6Dt.
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n(r) = n0


1 −

R

r




. (6.30)

Finally, the inward diffusion flux according to Fick’s Law is

Jr ≡ D
∂n(r)

∂r



r=R

= n0

D

R
, (6.31)

which is just the number of reactions per unit area of colloid per unit time. Hence, the total reac-
tion rate per colloid, each having area 4π R2, is

Rate = 4π DRn0. (6.32)

If the system is a dilute suspension of colloid, with concentration nC , the total rate per unit time
per unit volume becomes

Rate = 4π DRnC n0, (6.33)

which is first order in colloid and in reactant. Note that like in our initial analysis of reactions in
the gas phase we have neglected the motion of the colloidal particles a reasonable approximation
given the huge size and mass difference between the two species. Should this not be the case, the
fix is, alas, not to simply replace the masses by the reduced mass.

Before leaving this topic, note that A. Einstein, in his study of Brownian motion estab-
lished what is now known as the Stokes-Einstein relation; i.e.,

D =
kBT

6πηa
, (6.34)

where η is the solvent dynamic viscosity and a is the size of a reactant molecule. When this is
used in Eq. (6.33) we see that

RATE =
2kBT

3η
R

a
nC n0. (6.35)

The preceding analysis can be applied to other transport phenomena; in particular to en-
ergy or momentum transport. One interesting example is to so-called transport of shear momen-
tum. Consider a flowing system with velocity in the x direction and gradient in the z direction,
or

v(r) = êxv(z). (6.36)

For linear profiles we have a Couette flow, for parabolic ones a Poiseuille flow, etc. The momen-
tum per unit volume (or momentum density) is just êx mnv(z) Repeating our analysis of Fig. 2,
but now for the flux for the x component of the momentum being transported in the z direction,
denoted as τ x,y, giv es
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τ x,y = −
1

4

〈cA〉mn[v(z + λ) − v(z − λ)] ≈ −
λ
2

〈cA〉mn



∂v

∂z




≡ −η


∂v

∂z



, (6.37)

where η ≡ λ〈cA〉mn/2 is known as the dynamic viscosity. (Again, like the diffusion coefficient,
the factor of 2 isn’t quite right, but the rest is.)

If we repeat the steps leading to the diffusion equation, we find that




∂vx(z, t)

∂t




z

= ν 


∂2vx(z, t)

∂z2




t

, (6.38)

where ν ≡ η/mn is known as the kinematic viscosity and has units of length2/time. Note that
ν = D in our treatment, but this is an accidental consequence of our model (the factors of 2 aren’t
quite right). This last equation is a special case of the Navier-Stokes equations (in particular, we
have ignored the role of pressure in directly exerting a force on the molecules, thereby changing
the momentum).

6.4. Appendix: The Center of Mass Frame

Here are the details of the center of mass calculation mentioned in the text. (You are not

responsible for these details). Consider two particles with masses mi , at positions ri , moving
with velocities vi , i = 1, 2. The center of mass for this system is given by

Rcm ≡
m1r1 + m2r2

m1 + m2

. (A.1)

Also define the relative coordinate for the pair as

r12 ≡ r1 − r2. (A.2)

Similar definitions hold for the center of mass and relative velocities. A little algebra allows us
to express the original coordinates in terms of the center of mass and relative ones; namely,

r1 = Rcm +
m2

m1 + m2

r12 (A.3a)

and

r2 = Rcm −
m1

m1 + m2

r12, (A.3b)

where, again, similar expressions are obtained relating the velocities.

Now consider the probability densities for finding particle 1 at velocity v1 and 2 at velocity
v2:

f (v1, v2) = 


m1m2

(2π kBT )2




3/2

exp


−

m1v2
1 + m2v2

2

2kBT




(A.4a)
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= 


(m1 + m2)µ

(2π kBT )2




3/2

exp


−

(m1 + m2)V 2
cm + µv2

12

2kBT




= 


(m1 + m2)

2π kBT




3/2

exp


−

(m1 + m2)V 2
cm

2kBT







µ

2π kBT




3/2

exp


−

µv2
12

2kBT




≡ fcm(Vcm) × f12(v12), (A.4b)

where the second equality is obtained by expressing the individual velocities in terms of the cen-
ter of mass and relative velocities, cf. Eqs. (A.3a) and (A.3b), with µ given by Eq. (6.10). The
third equality is obtained by splitting up the exponentials and the factors in front, and finally, the
last equality is obtained by defining the center of mass or relative velocity distributions as usual,
but with the masses replaced by the total mass or reduced mass, respectively.

Thus, we’ve shown that the probability densities for the two particles’ center of mass and
relative velocities factorize; i.e., they are statistically independent. (Strictly speaking we have to
check one more thing, namely, that dv1dv2 = dVcm dv12. This is easily done by showing that the
Jacobian for the transformation, cf. Eqs. (A.3a) and (A.3b), is unity, which it is. Jacobians are a
Cal III concept). In any event, Eq. (A.4b) shows that any question that only asks about the rela-
tive motion of the particles (e.g., as in a collision) can ignore the center of mass part completely,
and as was mentioned in the main text, in practice means that we replace the mass by the reduced
mass in the distribution.
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7. Work, Heat, and Energy

7.1. Zeroth Law of Thermodynamics

If two bodies at equilibrium are brought into thermal contact (i.e., no
mechanical, electrical, magnetic, gravitational, etc., work is performed)
and nothing happens, then they are at the same temperature.

Given this, we can always measure the temperature of any system by bringing it into ther-
mal contact with some standard thermometer. As we shall see, a very convenient choice is the
ideal-gas thermometer. Here a manometer is used to measure the pressure of a fixed amount of
gas in a fixed volume and the relation

P =
NRT

V

is used to calculate the temperature. Needless to say, other temperature standards can (and are)
used.

7.2. Some Definitions

Intensive Doesn’t depend on the size of the system; e.g., P, T, partial molar quantities.

Extensive The opposite of intensive; e.g., mass, volume, energy (but not energy per unit
volume or mass), heat capacities (but not specific heats).

System The part of the universe under investigation. Systems can be:

a) Isolated: no interaction of any kind with surroundings. Note that real
systems cannot be truly isolated, but can be approximately so on the
time-scale of relevance.

b) Closed: energy can be exchanged with surroundings, but matter cannot.

c) Open: matter and energy can be exchanged.

Surroundings The part of the universe not under investigation.

Boundary What divides the system from the surroundings (and controls whether the sys-
tem is open, closed, or isolated).

State A systems state is specified when all measurable properties have definite val-
ues to the accuracy of the experiment.

State Variables A set of measurable quantities, which when known, completely specify the
state of the system. In classical or quantum mechanics there are on the order
of 1023 state variables; however, in thermodynamics, experience tells us that
the macroscopic state of the system is specified after a small set of measure-
ments are made (e.g., T, P, V, x1, . . . , xr ).

Process Something whereby the state of a system is changed. A process has two parts:
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a) Initial and final states (i.e., where the system starts and ends).

b) A Path. The path describes how the change was effected. In order to
specify the path, intermediate changes in the system, surroundings and
boundary must be specified. This is clearly something which we would
like to avoid in many cases.

Reversible A process is said to be reversible if it is possible to return both the system and
the surroundings to their original state. If not, it is irreversible (even if the
system can be returned to the original state).

State Function A property of the system which only depends on the current state of the sys-
tem. Hence, changes in state functions do not depend on the path taken. State
functions play a key role in thermodynamics and allow macroscopic properties
of matter to be studied in a rigorous, systematic manner. Examples of state
functions are: energy, entropy (to be introduced later), P, V, T, etc. A one-
component ideal gas has a pressure, P(T,N,V), given by PV=NRT no matter
what--how the T, V, or N attained their current values is irrelevant.
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7.3. Euler’s Theorem, Partial Molar Quantities, and the Gibbs-Duhem Relations

Next consider any extensive quantity in a mixture containing r components; i.e.,
A(T , P, N1, . . . , Nr ). Real examples could be the energy, volume, mass, heat capacity, etc.. Con-
sider the small change in A associated with changes in its arguments, namely*

dA = 


∂A

∂T




P,N1,...,Nr

dT + 


∂A

∂P




T ,N1,...,Nr

dP + 


∂A

∂N1




T ,P,N2,...,Nr

dN1+. . . +


∂A

∂Nr




T ,P,N1,...,Nr−1

dNr .

(7.1)

Now, by assumption, A is extensive; hence,

λ A(T , P, N1, . . . , Nr ) = A(T , P, λ N1, . . . , λ Nr ). (7.2)

If we differentiate both sides of this equation with respect to λ and evaluate the result at λ = 1 it
follows that

A(T , P, N1, . . . , Nr ) = 


∂A

∂N1




T ,P,N2,...,Nr

N1+. . . +


∂A

∂Nr




T ,P,N1,...,Nr−1

Nr (7.3)

≡
r

i=1
Σ Ai Ni , (7.4)

where

Ai ≡ 


∂A

∂Ni




T ,P,N j≠i

(7.5)

is called a partial molar quantity. Note that the partial molar quantities are intensive. In obtain-
ing Eq. (7.3) you may use Eq. (7.1) for dT = dP = dNi = 0 and d(λ Ni) = Ni dλ for i = 1, . . . , r).
Also note that Eq. (7.3) is a special case of Euler’s theorem for homogeneous functions in calcu-
lus.

Equations (7.3) or (7.4) allow us to explicitly express the nontrivial features of an exten-
sive quantity in terms of intensive ones, thereby reducing the number of dependencies we must
worry about. It also turns out that the partial molar quantities (or more specifically, changes in

*Note that we may use Eq. (7.1) to work out what is known as a total derivative. Consider the case where
r = 1, i.e., N1 = N (T , P). We’ll keep P constant and consider the remaining N be a function of T and P.
By dividing Eq. (7.1) by dT it follows that




dA

dT




P

= 


∂A

∂T




P,N

+ 


∂A

∂N




T ,P




∂N

∂T




P

.

Note that the first term on the right hand side is just the usual derivative while the second is an example of
the chain rule.
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them) are not all independent. To see this, we calculate dA from Eq. (7.4):

dA =
r

i=1
Σ Ai dNi + Ni d Ai , (7.6)

where we have used the calculus result d(xy) = xdy + ydx. Of course, dA could have been com-
puted from Eq. (7.1); i.e.,

dA = 


∂A

∂T




P,N1,...,Nr

dT + 


∂A

∂P




T ,N1,...,Nr

dP +
r

i=1
Σ Ai dNi , (7.7)

where we have rewritten the derivatives with respect to the numbers of moles in terms of the par-
tial molar quantities, cf. Eq. (7.5). By equating the right hand sides of Eqs. (7.6) and (7.7) it fol-
lows that




∂A

∂T




P,N1,...,Nr

dT + 


∂A

∂P




T ,N1,...,Nr

dP −
r

i=1
Σ Ni d Ai = 0, (7.8)

and hence, the changes in the partial molar quantities and other derivatives are not all indepen-
dent. Equation (8) is known as a Gibbs-Duhem relation and can be used to relate seemingly dis-
parate thermodynamic derivatives.

As an exercise, what are the partial molar volumes for an ideal gas mixture obeying Dal-
ton’s law of partial pressures? Do they obey the Gibbs-Duhem relation?

7.4. Work and Heat in Thermodynamics

Tw o central concepts in thermodynamics are work and heat. You probably have seen ex-
amples of the former in your freshman physics class, and the latter is something you experience
in daily life. In thermodynamics, both have very precise definitions.

Work: Anything which crosses the boundary of the system and is completely convertible into
the lifting of a weight in the surroundings.

Note that work only appears at the boundary of a system, during a change of state, is ex-
tensive, and is manifested by an effect in the surroundings. From mechanics, we know that

dW = Fdx = −mgdx, (7.9)

where dW is the incremental work done, F is the force being exerted on the system, and dx is the
distance traversed. The second equality is for moving a mass m a distance dx in a gravitational
field (g is the gravitational acceleration constant). Note that there are two sign conventions for
work in thermodynamics. In the older, the force is that exerted by the system on the surround-
ings, and the corresponding work is the work done by the system on the surroundings. In the
newer convention, things are reversed; the force is the force the surroundings exert on the system
and the work is that done by the surroundings on the system. Since Newton’s law states that
these two forces must be equal and opposite, the two conventions differ by a sign. The text, and
we, will use the latter convention here although note that Castellan uses the older convention.
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Consider the following apparatus:
d

x

M (mass)

A (area)

The inside of the piston is filled with some gas at pressure P
and is maintained at constant temperature T. Instead of
characterizing the work done in terms of the mass, it is
more convenient to introduce the pressure exerted on the
top of the piston (i.e., force per unit area, A)

Pop ≡
F

A
=

mg

A
, (7.10)

and acts downward. Note that Pop need not equal P.

Thus

d− W = −Pop Adx = −PopdV , (7.11)

where dV is the incremental change in the volume of the system. The work involved in these
sorts of processes is known as pressure-volume work.

Note that the work done is not a state function--it depends on the pressure exerted on the
piston (the path) and is not simply a function of the state of the gas in the piston. To stress this
fact, the notation d− will be used for infinitesimal changes in quantities which depend on the path.

For an process whereby the gas is expanded against some pressure, dV > 0, and hence,
d− W < 0. Conversely, in a compression process, d− W > 0, i.e., negative work is done by the sys-
tem. The surroundings do positive work on the system.

This diagram shows a process for the isothermal ex-
pansion of a gas (in this case an ideal gas). The solid curve
gives the pressure of the gas (i.e., its equation of state).
The dotted curve giv es the opposing pressure actually used
in the expansion. Note that the latter lies completely below
the former. If at any point this were not the case, then the
expansion would not proceed spontaneously (i.e., the op-
posing pressure would be too large and the gas would con-
tract).

The total work done by the surroundings on the sys-
tem (- the total work done by the system on surroundings)
is just the negative of the area under the dotted curve:

W = − ∫
V final

Vinitial

Pop(V )dV ≥ − ∫
V final

Vinitial

P(V )dV ≡ Wrev. (7.12)

If the gas inside the piston is ideal, then the ideal-gas equation of state is valid and

Wrev = − ∫
V final

Vinitial

NRT

V
dV = −NRT ln(V final /Vinitial). (7.13)
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Note that the maximum work you can get out of a spontaneous expansion is obtained when
the opposing pressure is infinitesimally less than the pressure being exerted by the gas in the pis-
ton. In this case, W = WR. Unfortunately, the rate of such an expansion would be zero, as would
be the power delivered by the system. On the other hand, it is easy to show that the path given
by Pop = P is the only reversible one for the isothermal expansion of an ideal gas.

Consider the following apparatus (from L. K. Nash, Elements of Chemical Thermodynam-

ics, Addison-Wesley, 1970):

The spring is assumed to obey Hooke’s law (i.e, the force is proportional to the elongation). A
series of experiments are performed whereby weights are moved to pan from platforms at various
heights in the surroundings. In doing so, the system (the spring and pan) move from state I to II.
How much work is performed in each of the cases (a)−(c) (assume that there is a total 1cm elon-
gation of the spring and ignore the mass of the pan and spring)?

In order to reverse the process (i.e., the expansion of the spring) the weights are moved
back to the adjacent platforms. However, it is easy to see that while the spring will be fully com-
pressed at the end of the experiment, the surroundings will not be restored to their initial state;
specifically, in the best case, the topmost weight will be transferred to the lowest platform, no
matter how many platforms are used. Clearly the biggest change in the surroundings will happen
in case (a) and the smallest in (c). Moreover, the smaller the individual weights we use, the more
reversible the process becomes (i.e., the change to the surroundings decreases). The process is
reversible in the limit where the applied force (the weight) is only infinitesimally more than the
force exerted by the spring.

This argument can easily be extended to our discussion of pressure-volume work or to
other kinds of work. Hence, the maximum work in a P-V expansion is obtained for a reversible
path.

Another key quantity in thermodynamics is heat.

Heat: Anything which flows across the boundary of a system by virtue of a temperature differ-
ence between the system and the surroundings.

2015, Fall Term



Work, Heat, and Energy -48- Chemistry 223

Heat is quantified by measuring the temperature rise (or fall) in a standard material (e.g., a
calorie corresponds to the amount of heat required to raise the temperature of 1 g of water 1

o
C).

Like work, heat appears only at the boundary of a system, during a change of state, is extensive,
and is manifested by an effect in the surroundings. It is also not a state function since it depends
on the nature of the thermal contact allowed at the boundary of the system.

In a classic set of experiments in the 19’th century, J. P. Joule showed that the same
changes in the state of a system could be achieved by either adding work or heat to the system.
One of his devices is shown below.

As the weight falls, the paddles turn and
heat up the liquid in the container by friction
(viscous heating). The same temperature
rise can be achieved by directly heating the
container using a known amount of heat.

The amounts of heat and work were
definite and Joule concluded that work and
heat were simply two different ways in
which energy could be added to a system.
Specifically, Joule showed that

1 calorie = 4. 184 kg m2/sec2.

We are now ready to state the first law of thermodynamics.

7.5. The First Law of Thermodynamics:

In any cyclic process (i.e., one where the system returns to its initial

state) the net heat absorbed by the system is equal to the work pro-

duced by the system.

Suppose this were not the case. Then you could presumably find a process which pro-
duced more work than it absorbed heat. This extra work could be used to run a generator, which
in turn could be used to produce more heat, which could run more of the process, producing even
more excess work, and so on. The energy crisis, electric bills, etc. would be things of the past.
Unfortunately, no such device has ever been built and the first law still stands.

In mathematical terms, the first law implies that there is a state function, called the internal
energy of the system, defined up to an arbitrary additive constant through its differential

dE ≡ d− Q + d− W , (7.14)

where d− W is the work done by the surroundings on the system (the negative of the work done
by the system on the surroundings). For a finite change of state, the change in the internal en-
ergy, ∆E, is giv en by
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∆E = ∫
final state

initial state
d− Q + d− W . (7.15)

The first law states that

∫odE = ∫od− Q + ∫od− W = 0. (7.16)

The first law implies that the energy change computed along different paths must give the
same answer. If not, two such paths could be used to to build the energy-creating device dis-
cussed above (i.e., by reversing one of the paths). The appendix contains a detailed discussion of
the conservation of energy in (classical) mechanics; as expected there the discussion revolves
around forces, which while similar to the discussion of d− W in special cases, leaves the connec-
tion to heat and d− Q somewhat obscure.

7.6. Some Properties of the Energy

In order to calculate or measure energies, we note that d− W = 0 for constant volume sys-
tems, assuming that only pressure-volume work can be done. Hence, dE = dQV , where we have
dropped the d− in favor of d and have put a "V" subscript on the Q to emphasize that we are
working at constant volume. (Why is this valid?). In the absence of phase changes (e.g., vapor-
ization), the increments of heat absorbed by the system are proportional to the incremental tem-
perature change of the system; i.e.,

dE = dQV = CV dT , (7.17)

were CV ≡ 


∂E

∂T




V ,N

is known as the constant volume heat capacity and in general is an extensive

property of the system that depends on T, P, composition and phase, and is positive in general.

Since E =
3

2

NRT for an ideal gas of point particles, it follows that CV =
3

2

NR. By integrating

both sides of the equation we find that

∆ETi→T f
= QV = ∫

T f

Ti

CV (T , V , N )dT . (7.18)

Note that ∆E is positive for an endothermic constant volume process and is negative for an
exothermic one. If there is a phase change during the experiment, we have to add the latent en-
ergy change of the phase transition (i.e., the heat we would have to add at the transition tempera-
ture to convert all the material from one phase to another) to the right hand side of our expres-
sion.

Thus, we have found a simple situation in which the energy change is related to heat. Un-
fortunately, the requirement of constant volume, while realizable to high accuracy in the lab, is
inconvenient. Is there another quantity that becomes the heat absorbed by the system under other
conditions, and in particular for constant pressure? In fact there is and a simply trick allows us to
find it.

Consider the quantity H ≡ E + PV , known as the Enthalpy. Since E and PV are state
functions, so too is H . Next, by taking the differential of each side of the definition and using the
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First Law, we find that

dH = dE + PdV + VdP = d− Q + (P − Pop)dV + VdP, (7.19)

where only pressure-volume work has been allowed; i.e., d− W = −PopdV . As we discussed
above, for reversible changes, Pop = P and

dH = dQ + VdP (7.20)

For processes where the pressure is constant, Pop = P and dP = 0, which gives

dH = dQP = CP dT (7.21)

where, CP ≡ 


∂H

∂T




P,N

is the constant pressure heat capacity. For the ideal gas,

H = E + PV =
5

2
NRT , and thus, CP =

5

2
NR. Note that CP > CV , something that is true more

generally. Finally, by repeating the discussion we had for the energy, it follows that

∆H = QP = ∫
T f

Ti

CP(T , P, N )dT , (7.22)

again with extra terms to account for the latent enthalpy (heat) of transition(s) should phase
changes occur. This procedure is known as a Legendre transformation, and we will see other ap-
plications of it later.

7.7. Appendix: Energy in Classical Mechanics

You probably have heard the statement "energy is conserved." What does this mean ex-
actly? Consider a system comprised of N point particles of mass m, at positions r1, . . . , rN , and
moving with velocities v1, . . . , vN . The system is subjected to external forces described by a
time dependent potential φ ext(r, t), e.g., as might arise from the interaction of the molecules in
the system with a moving piston, or with the atoms in the bottom of a container being heated
from below. In addition, assume that Newton’s laws of motion are valid and that the particles in-
teract via pairwise additive forces which are derivable from a potential; i.e., the force particle j

exerts on i, Fi, j is given by

Fi, j ≡ −
∂ui, j

∂ri

, (7.23)

where ui, j is the potential energy of interaction between molecules i and j and depends on the
molecular positions through ri − r j (i.e., only through the separation between the molecules).

Consider the mechanical energy, E, defined as

E ≡
N

i=1
Σ m

2
v2

i +
1

2
i≠ j

N

i=1
Σ

N

j=1
Σui, j +

N

i=1
Σ φ ext(ri , t). (7.24)
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Note that the last term describes the interaction between the system and its surroundings, and the
internal energy would drop this term in its definition. How does E change as the particles move
around under the action of Newton’s Laws?

dE

dt
=

N

i=1
Σ vi ⋅ Fi −

1

2
i≠ j

N

i=1
Σ

N

j=1
ΣFi, j ⋅ (vi − v j) +

N

i=1
Σ








∂φ ext(ri , t)

∂t




ri

− vi ⋅ Fext(ri , t)




(7.25)

where Fext(r,t) ≡ −(∂φ ext(r, t)/∂r)t , is the external force, and Fi ≡
j≠i
Σ Fi, j + Fext(ri , t), is the total

force acting on the i’th particle. By using this expression for Fi in the rate of change of E we
find that

dE

dt
=

1

2
i≠ j

N

i=1
Σ

N

j=1
ΣFi, j ⋅ (vi + v j) +

N

i=1
Σ 


∂φ ext(ri , t)

∂t




ri

=
1

2
i≠ j

N

i=1
Σ

N

j=1
Σ (Fi, j + F j,i) ⋅ vi +

N

i=1
Σ 


∂φ ext(ri , t)

∂t




ri

,(7.26)

where the dummy summation indices, i and j, were exchanged for the terms in v j in obtaining
the last equality. Newton’s third law states that Fi, j = −F j,i; i.e., the force i exerts on j is equal in
magnitude and opposite in direction to that j exerts on i. Using this in our last expression imme-
diately shows that

dE

dt
=

N

i=1
Σ 


∂φ ext(ri , t)

∂t




ri

. (7.27)

In other words, in the absence of explicitly time-dependent external forces, the energy of our
classical system of particles doesn’t change in time i.e., it is conserved. The same is true under
the laws of quantum mechanics.

Finally, note that our result is dependent on our definition of the energy. For example, if
we consider the so-called internal energy, i.e.,

Eint ≡
N

i=1
Σ m

2
v2

i +
1

2
i≠ j

N

i=1
Σ

N

j=1
Σui, j , (7.28)

cf. Eq. (7.24), and repeat the steps leading to Eq. (7.27), it follows that

dEint

dt
=

N

i=1
Σ vi ⋅ Fext(ri , t), (7.29)

which is essentially the result we obtain by starting with d− W = F ⋅ dr.

The first law of thermodynamics also has something to say about changes in energy, although not
in precisely the same way as in classical or quantum mechanics. Specifically, where are work
and heat, and is our expression for the energy (or internal energy) a state function? Indeed, all
that appears the rate of change of the internal energy, cf. Eq. (7.29), are forces acting on the full
many-body system; no distinction is made between heat, mechanical work, etc., and which while
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certainly correct, leaves one wondering where to find the practical simplifications the thermody-
namic approach gives.
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8. Thermochemistry

8.1. Enthalpy Calculations: Chemical Reactions and Hess’ Law

The enthalpy change for a process, ∆H , is equal to the heat absorbed by the system if that
process is done under constant pressure conditions (and assuming that only P-V work is possi-
ble). Since the enthalpy of a system, H = E + PV, is a state function, we can systematize en-
thalpy calculations by considering a path whereby the compounds first turn into their constituent
elements in their standard states (by convention at 25

o
C and 1 atm pressure) and then recombine

to form the products. The enthalpy change in the latter step is just the enthalpy of formation of
the products and the former is the enthalpy of destruction (i.e., the negative of the enthalpy of
formation) of the reactants. Hence,

∆H = Σ 

∆H0

f ( products) − ∆H0
f (reactants)


. (8.1)

Since we are interested in calculating a difference, the absolute enthalpy of the elements in
their standard states is unimportant [it cancels out of Eq. (8.1)], and we adopt the convention that
the enthalpy of formation of an element in its standard state is zero.

Consider the following example (reduction of iron oxide):

Fe2O3(s) + 3H2(g)
25 oC, 1 atm

→ 2Fe(s) + 3H2O(l). (8.2)

A table of thermochemical data gives:

Enthalpies of Formation at 1 atm and 25 C

Compound ∆H0
f (kJ/mol)

Fe2O3(s) -824.2
H2(g) 0.0
Fe(s) 0.0
H2O(l) -285.830

By using these in Eq. (8.1), we find that

∆H = [3(−285. 830) − (−824. 2)]kJ/mol = −33. 29kJ/mol. {8.3)

Note that the calculated enthalpy change depends on how the reaction was written. For example,
if we wrote

1

2
Fe2O3(s) +

3

2
H2(g)

25 oC, 1 atm
→ Fe(s) +

3

2
H2O(l), (8.4)

then ∆H = −16. 65 kJ/mol.
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8.2. Measuring ∆H0
f

There are a number of ways in which to measure the enthalpy of formation of a compound;
here are two. The most obvious is to simply carry out the formation reaction from the con-
stituent elements in their standard states in a constant pressure calorimeter (recall that ∆H = Q p).

For example, consider the combustion of graphite to form carbon dioxide

C(graphite) + O2(g)
25 oC, 1 atm

→ CO2(g). (8.5)

The heat released in this reaction is −∆H0
f (CO2), since the standard enthalpy of formation of the

reactants is zero. Note that the enthalpy change in this sort of reaction is also referred to as the
heat of combustion.

For this method to work, two conditions must be met: 1) the reaction goes to completion
and 2) only one product is formed. Thus, the reaction

C(graphite) + 2H2(g)
25 oC, 1 atm

→ CH4(g) (8.6)

is not suitable for this method since it doesn’t readily go to completion and we get a complicated
mixture of hydrocarbons.

In order to get around this, note that it is often possible to burn something to completion
(and measure ∆Hcombustion, the heat released). Thus consider

CH4(g) + 2O2

25 oC, 1 atm
→ CO2(g) + 2H2O(l). (8.7)

Equation (8.1) gives

∆Hcombustion = ∆H0
f (CO2(g)) + 2∆H0

f (H2O(l)) − ∆H0
f (CH4(g)). (8.8)

The standard enthalpies of formation of carbon dioxide and water can be measured using the first
method; hence, once we measure the heat of combustion, the only unknown is the standard en-
thalpy of formation of methane (CH

4
) and a little algebra gives:

∆H0
f (CH4(g)) = ∆H0

f (CO2(g)) + 2∆H0
f (H2O(l)) − ∆Hcombustion.

= [−398. 51 + 2(−285. 83) − (−890. 36)]kJ/mol = −74. 81kJ/mol (8.9)

In general, in order to measure the enthalpy of formation, all you need to to is find any re-
action where all but one of the standard enthalpies of formation are known and where the reac-
tion goes to completion. These sorts of manipulations are valid because the enthalpy is a state
function, and are referred to as Hess’s law. Also note that the same arguments could be made for
the energy changes (under constant volume conditions).
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8.3. Reactions at Different Temperatures: Kirchoff ’s Law

What happens if the temperature at which you perform the reaction (either at constant P or
V) is different than that of your table of enthalpies of formation. Since the enthalpy is a state
function, an alternate path can be found whereby the enthalpy change, calculated using the tem-
perature of your table, can be used. Consider the constant pressure case depicted below

Reactants Products

Reactants Products

I II

(T
1

(T )
0

)

The enthalpy change for the reaction at T1 is equal to the enthalpy change at T0 plus the enthalpy
change for paths 1 and 2. However, on 1 or 2, only the constant pressure heating or cooling of
the reactants or products is performed (i.e., no chemical reaction takes place). Since the constant
pressure heat capacity, CP was defined as

CP ≡ 


∂H

∂T




P,N

, (8.10)

the incremental heat absorbed by the system on 1 or 2 is CP dT . Integrating gives:

∆H1 = ∫
T0

T1

CP(reactants)dT = − ∫
T1

T0

CP(reactants)dT (8.11)

and

∆H2 = ∫
T1

T0

CP( products)dT . (8.12)

Adding the contributions together gives

∆H(T1) = ∆H(T0) + ∫
T1

T0



CP( products) − CP(reactants)


dT . (8.13)

This is known as Kirchoff’s law. What changes must be made for the energy?

Consider our example of the reduction of Fe2O3. What is the enthalpy change at 358K?
We will assume that the heat capacities are constant over the temperature range 298 - 358 K.
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Constant Pressure Heat Capacities at 1 atm and 25 C

Compound CP (J/mol/K)

Fe2O3(s) 103.8
H2(g) 28.8
Fe(s) 25.1
H2O(l) 75.3

Note that elements in their standard states do not have zero heat capacities. Using the data in the
table, and the result of our earlier calculation gives

∆Hrxn(358K ) = −33. 29 +
[2(25. 1) + 3(75. 3) − 103. 8 − 3(28. 8)][358 − 298]

1000

= −28. 1kJ/mol.

Note that no change in phase occurred when we cooled (heated) the reactants (products).
What changes would have to be made if the reaction was carried out at 400 K?

8.4. Bond Energies

Consider the combustion reaction of ethanol:

C2 H5OH(l) + 3O2

25 oC, 1 atm
→ 3H2O(l) + 2CO2(g). (8.14)

The standard enthalpies of formation for these compounds are:

Standard Enthalpies of Formation at 25C

∆H0
f

(kJ /mol)
Compound

C2 H5OH(l) -277.7
H2O(l) -285.830
CO2(g) -393.51

which gives ∆Hcombustion = 3 × (−285. 830) + 2 × (−393. 51) − (−277. 7) = −1389kJ /mol for the
reaction as written. This is quite exothermic. Where does the energy come from? If you’ve
been told that it’s related to breaking bonds, you’ve been misinformed; as our example clearly
shows, it comes from forming bonds, specifically the strong bonds in CO2 and H2O.

We can make this idea more quantitative as by considering the typical energies in bonds.
This is a useful, albeit very approximate, way to calculate enthalpy changes in chemical reac-
tions. Consider the following reaction
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CH4 → CH3 + H ; (8.15)

i.e., one C-H bond is broken. Experimentally, ∆H for this reaction is 102 kcal/mol. Similarly,
∆H = 96 kcal/mol for

C2 H6 → C2 H5 + H . (8.16)

A survey of such reactions will show that the heat required to break a single C-H bond is in the
range 96-102 kcal/mol. We can thus assign 98 kcal/mol as an average bond energy for the C-H
bond. Similar tends are observed in the bond strength of other types of bonds, and the results are
summarized in the following table

Av erage Bond Energies

Energy Energy
(kcal/mol) (kcal/mol)

Bond Bond

H-H 103 C-H 98
C-C 80 N-H 92
C=C 145 O-H 109

C ≡ C 198 Cl-H 102
N-N 37 Br-H 87

N ≡ N 225 I-H 71
O-O 34 C-Cl 78
O=O 117 C-N 66
Cl-Cl 57 C ≡ N 210
Br-Br 45 C-O 79

I-I 35 C=O 173

How can this be used? Consider the hydrogenation of ethlyene:

H2C = CH2 + H − H → H3C − CH3. (8.17)

At the molecular level, we break one H-H and one C=C bond, and form one C-C and two C-H
bonds. The energy change is just the net energy left in the molecule in such a process. From the
table, the bond breaking steps take 145+103=248 kcal/mol. The bond formation will give off
80+2(98)=276 kcal/mol. Hence the net energy change in the system is 248-276 = -28 kcal/mol.
To get the enthalpy change, note that at constant pressure,

∆H = ∆E + P∆V . (8.18)

For this reaction, all reactants and products are gases. If we assume that the gases are ideal, we
can compute ∆V ; i.e.,

∆V =
RT

P
∆N . (8.19)

Here ∆N = −1 and thus
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∆H = −28 − 1. 9872 × 10−3kcal/mol /K × 298K = −28. 6 kcal/mol.

(Note that here the difference between ∆H and ∆E is relatively small). The correct answer is
-32.7 kcal/mol. Thus, while the bond energy method is not exact, it gives a reasonable estimate.
The reason for the discrepancy is the assumption that the bond energy doesn’t depend on what
other bonds are present in the molecule--in general this is not true.

8.5. Some Manipulations Involving Thermodynamic Functions

8.5.1. The relationship between CP and CV

We know that

CV = 


∂E

∂T




N ,V

and that CP = 


∂H

∂T




N ,P

. (8.20)

How these two quantities are related is a good exercise in manipulating thermodynamic func-
tions. Since H ≡ E + PV ,

CP = 


∂E

∂T




N ,P

+ P



∂V

∂T




N ,P

, (8.21)

where the last derivative should be recognized as Vα , where α is the thermal expansion coeffi-
cient,

α ≡
1

V




∂V

∂T




N ,P

. (8.22)

If we view the energy as a function of N,V,T,




∂E

∂T




N ,P

= 


∂E

∂T




N ,V

+ 


∂E

∂V




N ,T




∂V

∂T




N ,P

= CV + α V



∂E

∂V




N ,T

. (8.23)

Hence,

CP − CV =



P + 


∂E

∂V




N ,T




α V =

VTα 2

κ
, (8.24)

where

κ ≡ −
1

V




∂V

∂P




T ,N

(8.25)

is the isothermal compressibility, and where the last equality will be proven later. The compress-
ibility must be positive (i.e., things get smaller when squeezed) and this implies that CP ≥ CV .
For an ideal gas, Joule showed that the internal energy per mol did not depend on the volume. In
this case,
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CP − CV = α PV = R. (8.26)

8.5.2. The Joule-Thompson Experiment

Consider the following adiabatic (i.e, Q=0) process, whereby a gas is squeezed through a
porous, rigid plug. Initially all the gas is in the left chamber, and is pushed by the piston through
the porous plug, exerting a constant pressure, P1. As this happens, the piston in the right cham-
ber is withdrawn under constant pressure, P2. Note that P1 and P2 are the opposing pressures
discussed earlier, although the initial and final system pressures will be P1 and P2, respectively.

P
1

P
2

T
1

T
2 211 2

 P  P  V V

Porous Plug

Fig. 8.1. The Joule-Thompson Experiment. Initially, the piston on the right is against the porous plug and
the one on the left is withdrawn. As the experiment progresses, the piston on the left is moved in, keeping
the pressure in the left chamber at P1, and the one on the right is withdrawn, keeping the pressure in the
right chamber at P2.

Since, by assumption, Q=0,

∆E = E(P2, V2) − E(P1, V1) = W = P1V1 − P2V2. (8.27)

By rearranging this expression we can show that

E(P1, V1) + P1V1 = E(P2, V2) + P2V2; (8.28)

i.e., the enthalpy, H , is constant in the Joule-Thompson expansion.

In practice, large temperature changes can be obtained in this type of expansion (which can
be used in designing a refrigerator or in liquefying gases). The key parameter is the so-called
Joule-Thompson coefficient:

µJT ≡ 


∂T

∂P




H ,N

. (8.29)

In order to express µJT in terms of more readily measurable quantities, note that
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∂y

∂x




f

= −




∂ f

∂x




y




∂ f

∂y




x

, (8.30)

which is sometimes known as the "cyclic rule" or "implicit function differentiation." It is proved
by noting that

df = 


∂ f

∂x




y

dx + 


∂ f

∂y




x

dy, (8.31)

setting df=0, and by solving for the ratio dy/dx.

By using the cyclic rule in Eq. (8.29), we find that

µJT = −




∂H

∂P




T ,N




∂H

∂T




P,N

= −
1

CP




∂H

∂P




N ,T

= −
V

CP




1 − κ




P + 


∂E

∂V




N ,T









= −
V

CP



1 −

κ
α V

(CP − CV )


= −
V

C p

[1 − α T ], (8.32)

where the second to last equality follows when the definition of the enthalpy in terms of the en-
ergy is used and the manipulations used in calculating CP − CV are repeated. κ is the isothermal
compressibility. Note that the Joule-Thompson coefficient vanishes for an ideal-gas. This is not

surprising given the kinetic theory of gases point of view; namely, we know that E =
3

2

RT and

H = E + PV /N =
5

2

RT ; hence, keeping H (and N) constant implies that T is constant.

It is interesting to consider physically why the non-ideal gas can change its temperature.
According to problem 7.30 in Castellan, µJT = (2a/RT − b)/C p for the van der Waals gas. Thus,
at low enough temperatures, it is the attractions and the van der Waals dimers that dominate µJT

through the "a" coefficient. When we expand the gas, these dimers will dissociate and this re-
quires energy; since the process is adiabatic, the only place where this energy can be obtained is
from the kinetic energy of the gas, and hence, the temperature drops with a drop in pressure (i.e.,
µJT > 0). At higher temperatures the steric interactions dominate; these are high-energy configu-
rations, and reducing the pressure leads to these breaking up, releasing their energy to the sys-
tem, thereby raising the temperature (µJT < 0).

Note that the expression we just used for µJT is only valid for very dilute gases (with the
usual caveats about the accuracy of the van der Waals equation). In general, there are higher or-
der density corrections, and a more complete expression can be found by applying the cyclic rule
to α , i.e.,
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α ≡
1

V




∂V

∂T




P,N

= −
1

V




∂P

∂T




V ,N

÷ 


∂P

∂V




T ,N

. (8.33)

By applying this to the van der Waals equation of state,

P =
NRT

V − Nb
− a




N

V




2

, (8.34)

using the result in our last expression for µJT , and carrying out some simple algebra, we find that

µJT =
Ti(1 − bρ)2 − T

CP[T − Tibρ(1 − bρ)2]
, (8.35)

where ρ ≡ N /V is the molar density and Ti ≡ 2a/(Rb) is the inversion temperature (the tempera-
ture where the zero density Joule Thompson coefficient changes sign). Thus, we see that finite
density systems have lower effective inv ersion temperatures; indeed by letting

T
eff
i ≡ 2a(1 − ρb)2/Rb < Ti , it follows that

µJT =
1 − T /T

eff
i

CP[T /T
eff
i − bρ]

. (8.36)
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9. Ideal Gas Carnot Engines and Efficiency

Fig. 9.1. The Carnot Cycle

The Carnot engine is a useful construction for relating the mathematical (∆S ≥ 0 for a
spontaneous process in an isolated system) and the physical statements of the Second Law of
Thermodynamics (heat spontaneously flows from hot to cold, etc.). This section goes through
the analysis of the amounts of work and heat produced in the isothermal and adiabatic parts of
the Carnot cycle for an ideal gas.

9.1. Energy in an Ideal Gas: Joule’s Experiment

In his study of the thermal properties of gases, Joule considered the isothermal expansion
of dilute gases using the apparatus depicted below:
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P=0

Thermometer

P=0/

Fig. 9.2. Joule’s Experiment

The bulb on the right was evacuated initially and heat was allowed to exchange with the heat
bath, whose temperature was measured. For sufficiently dilute gases, Joule found that the tem-
perature of the bath didn’t change. This has some important consequences.

For this process, the system’s (here the two bulbs) volume doesn’t change, and hence,
W = 0. Moreover, since the temperature of the bath remained constant, no heat was absorbed by
the system, and thus ∆E = 0. What does this say about the functional form of the energy of an
ideal gas?

We know that we can write the energy of a one-component system as

E(N , V , T ) = N E(T , V /N ),

where molar volume (the inverse of the molar density) was chosen instead of pressure as an inde-
pendent variable (as can always be done if the equation of state is known). In Joule’s experiment
T and N were held fixed but the volume accessible by the gas, V, and hence N/V, changed.
Nonetheless, E didn’t change. Therefore, for an ideal gas,

E(N , V , T ) = N E(T );

i.e., the energy per mole of an ideal gas depends only on the temperature of the gas. Similarly,
the heat capacity will only be a function of temperature (as it turns out, the heat capacity of an
ideal gas is usually only weakly dependent on temperature). This shouldn’t come as a total sur-
prise, since our simple kinetic theory of gas model for the energy (translational energy) gav e

E =
3

2

NRT . Note that including other degrees of freedom for the molecular motion, e.g., vibra-

tion or rotation, will change the temperature dependence of E(T ), but the lack of a volume de-
pendence will remain.
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9.2. Reversible, Adiabatic Expansion or Compression of an Ideal Gas

When an ideal gas is reversibly expanded (compressed) adiabatically, its temperature falls
(rises). In order to relate the temperature and volume changes, we note that the energy of a ideal
gas depends only on the temperature; hence,

dE = CV dT = d− Q + d− W = d− Q − NRT
dV

V
, (9.1)

where CV is the heat capacity at constant volume and where the last equality is obtained by using
the ideal gas equation of state. For an adiabatic process, d− Q = 0. After a little algebra, Eq. (9.1)
can be rearranged to give:

CV

NR

dT

T
= −

dV

V
.

If we assume that CV is independent of temperature (this a good approximation for gases of sim-
ple molecules such as Ar, CO

2
etc.), this equality can be summed (or integrated) over the entire

adiabatic expansion; that is,

CV

NR ∫
T final

Tinitial

dT

T
=

CV

NR
ln





T final

Tinitial





= − ∫
V final

Vinitial

dV

V
= − ln





V final

Vinitial




, (9.2)

where the integrals have been evaluated and "ln" is the natural logarithm function. Finally, both
sides of Eq. (9.2) are exponentiated, and we find that

Vinitial

V final

= 


T final

Tinitial




CV /NR

or
P final

Pinitial

= 


T final

Tinitial




CP /NR

, (9.3)

where the second expression is obtained by noting that for ideal gases, PV = NRT (even for an
adiabatic change) and that CP = CV + NR. This shows how volume and temperature changes are
related along an adiabatic path. (Again, no violation of Charles’ or Boyle’s laws is implied) No-
tice, if Vinitial < V final , then the gas is cooler after the expansion. This is to be expected since the
expansion removes energy from the system, energy which is not replaced by the addition of heat
from a heat reservoir.

Finally, for an adiabatic change in an ideal gas,

∆E = W = +∆Umechanical = ∫
T final

Tinitial

CV (T )dT ≈ CV ∆T ,

whether or not the path is reversible!

9.3. Reversible, Isothermal Expansion or Compression of an Ideal Gas

Since the energy of an ideal gas depends only on the temperature T, it remains constant
during any isothermal process (i.e., dE = 0). From the first law, this implies that
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d− Q = −d− W = PdV = NRT
dV

V
. (9.4)

If the dQ’s giv en by Eq. (9.4) are summed over the entire expansion (i.e., between the initial vol-
ume, Vinitial and the final volume, V final) we find that

−W = Qisothermal = NRT ∫
V final

Vinitial

dV

V
= NRT ln





V final

Vinitial




, (9.5)

9.4. Entropy Changes in the Ideal Gas Carnot Cycle

Next we use Eq. (9.5) for the isothermal portions of the Carnot cycle (see Fig. 1, part 1 and
3); it is easy to show that

QH

TH

+
QC

TC

= NR ln




V ′
2V ′

1

V1V2




. (9.6)

However, if we use Eq. (9.3) on part 2 of the cycle, it follows that

V ′
2

V2

=




TC

TH





CV /NR

.

Similarly, for the adiabatic compression,

V ′
1

V1

=




TH

TC





CV /NR

.

Thus, if we use these two expressions in Eq. (9.6) the argument of the logarithm becomes equal
to 1, and

QH

TH

+
QC

TC

= 0. (9.7)

This is an explicit demonstration of the Second Law of Thermodynamics (i.e., that the entropy is
a state function).

Note that the efficiency, (denoted by the Greek letter eta, η), of the Carnot cycle (i.e., how
much work is produced per unit heat absorbed) is easily obtained using Eq. (9.7):

η ≡
−W

QH

=
QH + QC

QH

= 1 −
TC

TH

, (9.8)

where the second equality follows form the first law and where the last equality follows from Eq.
(9.7). As is shown on the following pages, this efficiency formula must hold no matter what the
working fluid in the Carnot engine, and hence, Eq. (9.7) must hold for materials other than ideal
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gases.

Note that running the Carnot engine backwards creates a refrigerator or heat pump; work is
is added to the system and pumps heat from hot to cold (simply reverse the signs on the Q’s and
W ’s in our preceding calculation to see this). For our purposes we won’t distinguish between the
efficiency of a Carnot engine or refrigerator, both will be defined as if the refrigerator was run
backwards as an engine, thereby giving Eq. (9.8). On the other hand it is interesting to consider
the efficiency of a  refrigerator, defined in terms that would be meaningful to a consumer (say
browsing refrigerators in Sears). A reasonable definition is:

EfficiencyRefrigerator =
QC

W
; (9.9)

i.e., the amount of heat pumped out of the cold reservoir, i.e., the ice box, into the carnot cycle
refrigerator per unit work done on the system. By repeating the steps that led to Eq. (9.8) it is
easy to see that

EfficiencyRefrigerator = −
QC

QC + QH

=
TC

TH − TC

=
1

ηEngine

− 1. (9.10)

Note that the refrigerator efficiency becomes infinite as TH → TC and is ≤ 1 for TH ≥ 2TC . For
example, taking TC = 274. 75K (1.6 C) and TH = 293. 15K (20 C), gives ηRefrigerator = 14. 9.

Finally, for a heat pump,

EfficiencyHeat Pump = −
QH

W
=

1

ηEngine

=
QH

QH + QC

=
TH

TH − TC

> 1, (9.11)

which also diverges as TH → TC ; this is the reason why heat pumps are very efficient ways to
heat homes in the winter. For example, if it’s 20C inside and 0C outside, the Carnot heat pump
efficiency is 15! That is, you get 15J of heat for every joule of energy used to run the pump. (In
reality, you can get close to this theoretical limit only for certain temperature ranges--when the
temperature is very low, the operation of the heat pump becomes inefficient, i.e., irreversible).
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10. Ideal Gas Carnot Engines and Efficiency

The second law of thermodynamics gives information concerning the direction of sponta-
neous change. If the second law says that a certain process is impossible, you will not be able to
get the process to go. On the other hand, note that if the second law says that a process is possi-
ble, you still have to worry about kinetics--you have to find a way in which to carry out the
process in a reasonable amount of time.

There are a number of equivalent physical statements of the second law of thermodynam-
ics. According to Kubo (Thermodynamics, North Holland Publishing Co., 1976) they are:

1. Clausius principle: A process which involves no change other than the transfer of heat
from a hotter body to a cooler body is irreversible; or, it is impossible for heat to transfer
spontaneously from a colder to a hotter body without causing other changes.

2. Thompson’s (or Kelvin’s) principle: A process in which work is transformed into heat
without any other changes is irreversible; or, it is impossible to convert all the heat taken
from a body of uniform temperature into work without causing other changes.

3. Impossibility of perpetual motion of the second kind: (due to Max Planck) It is impossi-
ble to devise an engine operating in a cycle which does work by taking heat from a single
heat reservoir without producing any other change.

4. Caratheodory’s principle: For a given thermal equilibrium state of a thermally uniform
system, there exists another state which is arbitrarily close to it, but which can never be
reached from it by an adiabatic change.

Any of these physical statements can be used to prove the others, and to finally prove the
mathematical statement of the second law of thermodynamics:

5. Any spontaneous process satisfies the Clausius inequality:

∫o
d− Q

T
≤ 0

which implies that there exists a state function, the entropy (denoted by the letter S)

∆S ≥ ∫
d− Q

T

where, in either expression, the equality holds when the process is reversible.

Before showing how 1.-4. imply 5., let’s first consider how the different physical state-
ments imply one another. For example, how does one show that Clausius’ principle implies
Thompson’s? Suppose it didn’t; i.e., Clausius’s principle is correct, but Thompson’s is not. This
means that you can build an engine which produces work, and which is connected to a single
heat reservoir. If so, consider the following device:
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Q

Q
L

T
H

T
L

W

=Q
H L

Q
E

=W

+W

RE

where, E is the Thompson violator, and R is a Carnot refrigerator.

If we adjust the sizes of E and R such that all the work is used to run the Carnot refrigera-
tor, and view the combined E-R apparatus as the system, we have succeeded in creating a device,
which spontaneously pumps heat from cold to hot without any work input from the surroundings.
This violates Clausius’ principle and thus we have proved Thompson’s principle by contradic-
tion.

Similarly, we can use Thompson’s principle to prove Clausius’. Again, the proof is by
contradiction. If Clausius’s principle is untrue, then you can find a device which spontaneously
(i.e., without any work input) transfers heat from a colder body to a hotter one. Consider the fol-
lowing apparatus:

T

T

Clausius
Violator

+ QQ

Q1

Q1

1 2

W= Q2

C

H

C

where C is a Carnot engine and where the sizes of the Carnot engine and our Clausius violator
are adjusted such that the heats transferred are as indicated.
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What is the net result after one cycle? Work has been produced in the surroundings, but
there is no net change in the heat content in the cooler reservoir. Hence, it is as if the system
were operating in contact with a single reservoir and producing work in the surroundings, in con-
tradiction to Thompson’s principle.

These kind of arguments can be used to prove the equivalence of the other physical formu-
lations of the second law.
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10.1. Efficiency of Real Carnot Engines

Why is the Efficiency of a Carnot Engine

Independent of the Kind of Working Material?

Here are two proofs that the efficiency of any rev ersible Carnot engine is the same and de-
pends only on the temperatures of the heat baths.

10.1.1. Method I using Thompson’s Principle

W

Q

H
Q

H
Q ’

Q ’
L

L

T
H

T
L

R E
W’

where

W ′ = the work produced by the engine,

Q′
H = the heat absorbed by the engine from the hot reservoir,

Q′
L = the heat given off by the engine to the cooler reservoir,

W = the work used to run the Carnot refrigerator,
QH = the heat given off by the refrigerator to the hot reservoir,
QL = the heat absorbed by the refrigerator from the cooler reservoir.

The sizes of the engine and refrigerator are adjusted such that no net heat is taken from the
cool reservoir in one cycle (i.e., QL = QL ′). According to Thompson’s principle, no net positive
work can be realized in the surroundings from any device which takes heat from a single heat
source. Thus,

W ′ − W ≤ 0. (10.1.1.1)

However, from the First Law, the net work produced must equal the net heat absorbed by the sys-
tem; i.e.,

W ′ − W = QH ′ − QH . (10.1.1.2)
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If we denote the "engine efficiencies" of the refrigerator and engine as η and η′, respectively, Eq.
(10.1.1.2) can be rewritten as:

(1 − η′) = (1 − η)
QH

QH ′
≥ (1 − η). (10.1.1.3)

The last inequality follows from Eqs. (10.1.1.1) and (10.1.1.2), i.e., QH ≥ QH ′ and hence,
QH /QH ′ ≥ 1. By rearranging Eq. (10.1.1.3) we see that

η ≥ η′. (10.1.1.4)

That is, the engine efficiency of the refrigerator is greater than that of the engine, no matter what.

Note that Eq. (10.1.1.4) is valid even if one or both of the engines is not rev ersible. If
both engines are reversible, then the roles of engine and refrigerator can be interchanged and we
conclude that

η′ ≥ η. (10.1.1.5)

In light of Eq. (10.1.1.4) this is possible only if η = η′. Note that for this case, the net work pro-
duced by the device is zero!.

Thus we have shown that the engine efficiency of all reversible Carnot cycle engines are
the same; since this includes the ideal gas Carnot engine we analyzed earlier it follows that

η REV = 1 −
TL

TH

. (10.1.1.6)

Finally, if the engine is irreversible, an upper bound to its efficiency can be obtained by using a
reversible refrigerator. In this case, Eq. (10.1.1.4) implies that

η IR ≤ η REV = 1 −
TL

TH

. (10.1.1.7)
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10.1.2. Method II using Clausius’ Principle

Q

H
Q

H
Q ’

Q ’
L

L

T
H

T
L

W
E R

where

W = the work produced by the engine
QH = the heat absorbed by the engine from the hot heat bath
QL = the heat released by the engine to the cool heat bath
Q′H = the heat released by the refrigerator to the hot heat bath
Q′L = the heat absorbed by the refrigerator from the cool heat bath

We will assume that the Carnot engine is more efficient than the Carnot refrigerator and
that the size of the engine is adjusted so that the work output of the former equals that needed to
run the latter; i.e.,

η E =
W

QH

> η R =
W

Q′H
. (10.1.2.1)

By assumption therefore,

QH < Q′H . (10.1.2.2)

Since the engine and the refrigerator run in a cycle, the first law tells us that (∆E = 0):

W = QH − QL = Q′H − Q′L , (10.1.2.3)

which when combined with (10.1.2.2) shows that

QL − QL ′ = QH − Q′H < 0. (10.1.2.4)

2015, Fall Term



Chemistry 223 -73- Efficiency of Real Carnot Engines

What does this mean? The quantity QH − Q′H is the net heat taken OUT of the hotter heat
source. However, cf. Eq. (10.1.2.4), we have just shown that it is negative; i.e., a net amount of
heat (>0) has been transferred INTO the hotter heat source from the cooler one. No net work has
been done by the surroundings (i.e., by us), and thus our initial assumption violates Clausius’
statement of the second law of thermodynamics. Hence, we must conclude that η E ≤ η R. This
reverses the inequality in Eq. (10.1.2.4); i.e., now the net heat taken OUT of the hotter body and
going INTO the colder one is positive, and does not violate Clausius’ statement of the second
law.

If both the engine and refrigerator are reversible, then they can both be run in reverse;
hence the engine now acts as a refrigerator and the refrigerator as an engine. All the signs on
work and heat flip and we conclude that η R ≤ η E (where the R and E refer to the original de-
vices). The only way out of this contradiction is for the efficiencies of all reversible Carnot cy-
cles to be equal no matter what the nature of the material in the engine or refrigerator.
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10.2. The Clausius Inequality and the Second Law

Here is a proof of the Clausius inequality relating the word and mathematical statements of
the Second Law. Consider the device shown in the following figure:

T
o

System, T

Carnot Engine

}S

S

C

Total−d Q

d W

d W

d W

Fig. 10.2.1. A rev ersible Carnot engine takes heat −d− Qs from a part of the
system at temperature T, produces work, d− Wc, in the surroundings, and gives
the remaining heat to a reservoir at temperature T0. While this happens, the
system absorbs heat d− Qs and produces work d− Ws.

From our definition of efficiency and the fact that the efficiencies of all reversible Carnot engine
are the same (cf. previous section), we have:

d− Wc = −ηc d− Qs = 


To

T
− 1




d− Qs. (10.2.1)

From Kelvin/Thompson’s principle and Eq. (10.2.1), it follows that

WTotal = ∫o d− Ws + d− Wc = ∫o d− Ws + 


To

T
− 1




d− Qs ≤ 0. (10.2.2)

This inequality must hold if the process is to proceed as written. Now we integrate Eq. (10.2.2)
around one cycle of the system (reversible or not) and use the fact that the system’s energy is
conserved; i.e.,
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∫od− Ws = ∫od− Qs.

After a little algebra, this gives:

∫o
d− Qs

T
≤ 0, (10.2.3)

where the constant, positive multiplicative factor, T0, has been dropped. This is the Clausius in-
equality.

Equation (10.2.3) holds for any spontaneous process which can occur in the system; al-
though, all irreversible processes will require a net work input in order to run in the configuration
depicted above. The inequality in Thompson’s principle, cf. the last chapter, becomes an equal-
ity only for reversible processes (no matter what the path) and thus Eq. (10.2.3) becomes:

0 = ∫o
d− Qrev

T
≡ ∫odS, (10.2.4)

where the entropy is defined along any rev ersible path (Eq. (10.2.4) is a proof that it is a state
function) through

dS ≡
d− Qrev

T
. (10.2.5)

Proof that dS ≥
d− Q

T

(reversible)
Path II

A

B
Path I

Fig. 10.2.2.

Consider some process, cf. Fig. 10.2.2, whereby a system changes from state A to B along
path I; the process may be reversible or irreversible. After the A → B, path I, process is finished,
the system is restored to its initial state (A) along a reversible path II. If we apply the Clausius
inequality to this cycle, we have
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∫
B

A, path I

d− QI

T
+ ∫

A

B, path II

d− Qrev

T
≤ 0. (10.2.1)

Since path II is reversible, the process can be carried out in reverse (This is not necessarily true

for path I) and thus:

∫
A

B, path II

d− Qrev

T
= − ∫

B

A, path II

d− Qrev

T
= −∆S A→B. (10.2.2)

By using Eq. (10.2.2) in Eq. (10.2.1) we conclude that

∆S A→B ≥ ∫
B

A

d− QI

T
,

or for infinitesimal changes

dS ≥
d− Q

T
.

Note that the equality holds only for reversible processes.

10.3. Entropy Calculations

We hav e shown that the entropy, defined through its differential as

dS =
d− QReversible

T
, (10.3.1)

is an extensive (because Q is) state function with units of energy/K; hence,

∫o
d− QReversible

T
= 0. (10.3.2)

Since entropy is a state function (according to Eq. (10.3.2)), we can use any reversible path to
calculate it, and are guaranteed to get the same answer (something you demonstrated in home-
work).

How do you calculate entropy changes? Clearly from Eq. (10.3.1)

∆S A→B = ∫
B

A

d− QReversible

T
, (10.3.3)

but how do you use this? The first criterion is to find a reversible path connecting your initial and
final states. In some cases, this is almost all you have to do. For example, suppose the system is
at constant volume. We know that dQV = CV dT , which when used in Eq. (10.3.3) shows that

∆STi→T f
= S(T f , V , N ) − S(Ti,V , N ) = ∫

T f

Ti

CV (T , V , N )

T
dT ≈ CV ln




T f

Ti



, (10.3.4a)

where the last approximation follows by assuming that CV is independent of temperature (at least
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approximately).

Similarly, if instead the pressure is held constant, we have dQP = CP dT and Eq. (10.3.3)
becomes

∆STi→T f
= S(T f , P, N ) − S(Ti,P, N ) = ∫

T f

Ti

CP(T , P, N )

T
dT ≈ CP ln




T f

Ti



, (10.3.4b)

where we have again treated CP as approximately constant to get the last relation. In general,
note that ∆STi→T f

are not the same in constant volume and pressure processes.

What happens if there is a phase change somewhere between Ti and T f , e.g., at T0? At the
phase transition, heat (e.g., the latent heat of fusion, sublimation, or vaporization) is added to the
system, with no resulting change in temperature, until all the material is converted from one
phase to another. At constant pressure, the contribution to the entropy is just ∆Htransition/T0 (what
is it for constant volume?) and we can write

∆STi→T f
= ∫

T0

Ti

CP,i(T , P, N )

T
dT +

∆Htransition

T0

+ ∫
T f

T0

CP, f (T , P, N )

T
dT , (10.3.5)

where CP,i/ f is the heat capacity in the initial/final phase. For example, if we were to warm one
mole of ice from -10C (263K) to 10C (283K) at 1 atm, Eq. (10.3.5) gives (treating the heat ca-
pacities as constants):

∆S = CP(ice) ln



273

263




+
∆H fus

273
+ CP(water) ln




283

273



, (10.3.6)

where ∆H fus is the molar heat of fusion of water. Similarly, warming 1 mole of water from 90C
(363K) to 110C (383K) gives

∆S = CP(water) ln



373

363




+
∆Hvap

373
+ CP(steam) ln




383

373



, (10.3.7)

where ∆Hvap is the latent heat of vaporization for water. Note that there is an empirical relation,
known as Trouton’s rule, which asserts that for many liquids, ∆Svap = ∆Hvap/Tb ≈ 90J /K /mol.
There are, however, many examples where the rule fails (e.g., water, alcohols, amines). (As a re-
view exercise, calculate the enthalpy changes for the two examples given in Eqs. (10.3.6) and
(10.3.7)).

Matters become somewhat more complicated if neither pressure or volume is held con-
stant, but we will soon have the tools needed to handle the general case.
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11. The Third Law of Thermodynamics

The preceding section has shown how to compute entropy changes in much the same way
as we did for enthalpy and energy changes. What happens in a chemical reaction? Since S is a
state function, we can imagine the reaction proceeding by way of the constituent elements in
their standard states of aggregation, and exactly as was done for the enthalpy,

∆S = ∆S f ( products) − ∆S f (reactants). (11.1)

How should we define the standard state? You might think that it should be defined exactly as it
was for the enthalpy; i.e., pure elements at 1 atm in their standard states of aggregation are arbi-
trarily assigned zero entropy of formation. While there is nothing wrong with this, it turns out
that experiments performed in the early 20’th century suggest another choice.

In 1902, T.W. Richards found, for a wide class of reactions, that the entropy of reaction ap-
proached zero as the temperature approached absolute zero. In 1906, using Richards’ data,
Nernst argued that this meant that all materials have the same entropy at absolute zero (which
can arbitrarily assigned to be zero). This was summarized by Planck in 1912 in what is now
known as the Third Law of Thermodynamics:

The entropy of all perfect crystalline solids at absolute zero is zero.

There is a good microscopic reason for this, albeit one that is beyond the level of this
course. As many of you may have seen in your general chemistry course, there is a relationship
between entropy and randomness; specifically, cf. the section on entropy of mixing in ideal sys-
tems, S = kB ln Ω, where Ω is the number of ways of realizing the system. If there is only one
way to realize the system, the entropy is zero and this turns out to be the case for perfect crystals
at absolute zero.

The third law leads to the introduction of an absolute entropy scale, where all entropies (of
perfect crystalline states) are zero at absolute zero; hence, at any finite temperature

S(T , P, N ) = ∫
T

0

dQP

T
= ∫

T

0

CP

T
dT , (11.2)

where a similar expression holds in terms of CV for constant volume processes. The last expres-
sion must be modified slightly if phase transitions occur between 0K and T (as above). In prac-
tice, this means that entropies of formation of the pure elements at 298.15 and 1 atm are NOT

zero!

You might think that the preceding discussion is just an argument about some convention.
In part you would be correct; either convention would give identical answers in ∆S calculations.
However, the Third Law does have at least one important physical consequence; namely, that
heat capacities must vanish as absolute zero is approached. If this weren’t the case then the last
integral in Eq. (11.9) would diverge logarithmically, and the entropy would be infinite, not zero!
This is indeed the case experimentally, although sometimes extraordinarily low temperatures
must be attained to see the heat capacities vanish. One troubling result is our prediction from the

kinetic theory of gases, which gav e CV =
3

2

R and CP =
5

2

R, independent of temperature and
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clearly nonzero. Again, the detailed answer lies beyond this course, but in short, the third law is
intimately bound to quantum mechanics and energy quantization, something our simple kinetic
theory model had completely ignored.
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12. The Chemical Potential

Up to now, we hav e not seriously considered the consequences of changing the composi-
tion of a thermodynamic system. In practice, this can happen in two ways: 1) by externally
adding or removing material or 2) by changing the composition through chemical reaction.
Nonetheless, as far as state functions are concerned, the same results must be considered.

There is an energy change associated with changing the composition of the system. For
example, you may add compounds with different types of bonds and this will change the energy
available to carry out other processes (e.g., via combustion).

In order to account for the energy change associated with adding material to the system we
introduce a new kind of work done on the system:

d− Wi ≡ µi,opdNi , (12.1)

where dNi is the change in the amount of the i’th component (i.e., mass, number of moles, etc.)
and where µi,op is called the opposing chemical potential (and is analogous to the opposing pres-
sure). For reversible processes, the opposing chemical potential equals the chemical potential,
µi , of component i in the system. In general, the chemical potential for component i in a system
is intensive and is a function of T,P, composition and phase. Moreover, like the equation of state,
it must be measured or calculated from a microscopic theory, and we will consider some specific
examples later.

The energy change of the system can now be written as:

dE = d− Q − PopdV +
i
Σ µi,opdNi (12.2)

or for reversible paths as

dE = TdS − PdV +
i
Σ µi dNi . (12.3)

Henceforth, we will restrict ourselves to processes where the addition of matter is reversible and
thus drop the subscript "op" on µ.

Equation (12.2) has an interesting consequence. If we view the energy of a system as a
function of S, V, and the Ni (all of which are extensive), then the steps that lead to our applica-
tion of Euler’s theorem to extensive quantities imply that

E(S, V , Ni) = 


∂E

∂S




V ,Ni

S + 


∂E

∂V




S,Ni

V +
i
Σ 


∂E

∂Ni




S,V ,N j≠i

Ni .

(Simply replace some of the Ni’s by S and V , both of which are also extensive). The partial de-
rivatives immediately follow from Eq. (12.4), and we find that

E = TS − PV +
i
Σ µi Ni . (12.4)

We also obtain the Gibbs-Duhem equation

2015, Fall Term



Chemistry 223 -81- The Chemical Potential

0 = SdT − VdP +
i
Σ Ni dµi . (12.5)

By using Eq. (12.4) and H ≡ E + PV , it follows that

H = TS +
i
Σ µi Ni . (12.6)

As we will see, the chemical potentials play a key role in any quantitative analysis of
chemical equilibria.
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13. State Functions, Exact Differentials, and Maxwell Relations

Consider the differential form:

df ≡ M(x, y)dx + N (x, y)dy. (13.1)

If can we define a single-valued, differentiable function f(x,y) which satisfies Eq. (13.1), then
M(x, y)dx + N (x, y)dy is said to be an exact differential. Of course, we can always define f(x,y)
by integrating the right hand side of Eq. (13.1) along some path; however, we require that the
function be single-valued (i.e., that it be a state function); hence, different paths must give the
same answer.

THEOREM:

If M and N have continuous first partial derivatives at all points of some open rectangle,
the differential form, (13.1), is exact at each point of the rectangle if and only if the condition




∂M

∂y




x

= 


∂N

∂x




y

(13.2)

is satisfied throughout the rectangle. When this holds, the function f(x,y) is given by the line in-
tegral

f (x, y) =
C

∫ M(s, t)ds + N (s, t)dt (13.3)

along a path from (a,b) to (x,y), e.g., as shown in Fig. 13.1.

s

t

(x,y)

(a,b)
C

C’

Fig. 13.1. Tw o paths, C and C′, connecting
state (a, b) and (x, y). For a state function,
you have to get the same answer, no matter
which path is used.

The proof is given in the Appendix (you are not responsible for the proof, but you must know

how to use the result).
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13.1. Applications to Thermodynamics: Maxwell Relations

We hav e been able to combine the first and second laws of thermodynamics to write

dE = TdS − PdV , (13.4)

where N is held constant for this discussion. Since E is a state function, Eq. (13.2) must hold,
and thus Eq. (13.4) gives




∂T

∂V




S

= −


∂P

∂S




V

. (13.5)

This is called a Maxwell relation and is a powerful tool for relating different quantities thermo-
dynamics.

Another Maxwell relation can be obtained from the enthalpy for which

dH = TdS + VdP. (13.6)

Hence, Eq. (13.2) gives




∂T

∂P




S

= 


∂V

∂S




P

(13.7)

Clearly every state function will generate one or more Maxwell relations. The trick is to know
which ones to use in any giv en application.

13.2. Maxwell Relations: A Complicated Example

Suppose we want to express the change in the entropy as a function of T and P (i.e., choose
a thermodynamic point of view). To begin, note that

dS = 


∂S

∂T




P,N

dT + 


∂S

∂P




T ,N

dP + SdN ,

where S is the partial molar entropy (remember that entropy is extensive and Euler’s theorem
must hold). The term in dT is easy to reexpress. When the pressure is constant, the change in
the entropy is

dS =
d− QP

T
=

CP

T
dT

and thus

dS =
CP

T
dT + 


∂S

∂P




T ,N

dP + SdN .
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A new entropy derivative still remains to be reexpressed in terms of something more con-
ventional. To do so we will use a Maxwell relation. We know that

∂2 H

∂T ∂P
=

∂2 H

∂P∂T
; (13.8)

however, from Eq. (13.6)

LHS =
∂

∂T




T




∂S

∂P




T ,N

+ V




= 


∂S

∂P




T ,N

+ T
∂2S

∂T ∂P
+ Vα ,

where recall that Vα = (∂V /∂T )P,N . Similarly,

RHS =
∂

∂P




T




∂S

∂T




N ,P





= T
∂2S

∂P∂T
.

Since the entropy is a state function, its mixed second derivatives must be equal; hence, equating
the LHS and RHS of Eq. (13.8) and carrying out some algebra gives:




∂S

∂P




T ,N

= −


∂V

∂T




P,N

= −Vα . (13.9)

Thus, we have succeeded in expressing the change in the entropy in terms of readily measurable
quantities; namely

dS =
CP

T
dT − Vα dP + SdN . (13.10)

(Actually, there is a much simpler route to Eq. (13.9) using the Maxwell relation for the Gibb’s
Free energy, see below). For finite changes in state, Eq. (13.10) gives

S(T , P) = S(T0, P0) + ∫
(T ,P)

(T0,P0)

CP

T
dT − Vα dP,

where the choice of path is unimportant. Note that no change in phase must occur along the
path. If not, corrections for the enthalpy change associated with the transition (i.e., the heat)
must be included.

With Eq. (13.10), we can finish our discussion of the difference between the heat capaci-
ties. In Sec. 8.5.1 of the Thermochemistry chapter we showed that

CP − CV = α V



P + 


∂E

∂V




N ,T




, (13.11)

cf. Eq. (8.24). But, by choosing a reversible path and keeping N constant, dE = TdS − PdV ;
hence,
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∂E

∂V




N ,T

= T



∂S

∂V




N ,T

− P = T



∂S

∂P




N ,T




∂P

∂V




N ,T

− P,

where the second equality follows from the chain rule. Equation (13.10) gives the entropy deriv-
ative, and the pressure derivative is equal to −1/(Vκ ), where κ is the isothermal compressibility.
Thus,




∂E

∂V




N ,T

=
Tα
κ

− P (13.12)

and

CP − CV =
VTα 2

κ
.

Note that CP ≥ CV for all materials! Also note that, as expected from Joule’s experiments, our
last result for (∂E/∂V )T ,N vanishes for an ideal gas, where α = 1/T and κ = 1/P.

Express the Joule-Thompson coefficient in terms of α , κ , and CP /V and verify that it vanishes
for an ideal gas.

13.3. Appendix: Proof of Green’s Theorem in the Plane

THEOREM:

Consider the differential form:

df ≡ M(x, y)dx + N (x, y)dy. (A.1)

If M and N have continuous first partial derivatives at all points of some open rectangle,
the differential form, Eq. (A.1), is exact at each point of the rectangle if and only if the condition




∂M

∂y




x

= 


∂N

∂x




y

(A.2)

is satisfied throughout the rectangle. When this holds, the function f(x,y) is given by the line in-
tegral

f (x, y) =
C

∫ M(s, t)ds + N (s, t)dt (A.3)

along the path from (a,b) to (x,y) shown in Fig. 13.1.

Proof:

The necessity of the condition is shown by noting that if f is exact, then




∂ f

∂x




y

= M(x, y)

2015, Fall Term



Maxwell Relations -86- Chemistry 223

and




∂ f

∂y




x

= N (x, y).

However, if the second partial derivatives of a function are continuous then the order of differen-
tiation is immaterial and

∂2 f (x, y)

∂x∂y
=

∂2 f (x, y)

∂y∂x
,

which when expressed in terms of derivatives of M and N gives Eq. (A.2).

To show that the condition is sufficient is slightly more complicated. First, consider a
point infinitesimally close to (a,b); i.e., (a+dx,b+dy). In this case, we can make linear approxi-
mations for the behaviors of M and N and the function defined on C, fC becomes

∆ fC = ∫
dx

0
M(a + s, b)ds + ∫

dy

0
N (a + dx, b + t)dt

≈ ∫
dx

0




M(a, b) + 


∂M

∂x




x=a,y=b

s



ds + ∫

dy

0




N (a, b) + 


∂N

∂x




x=a,y=b

dx + 


∂N

∂y




x=a,y=b

t



dt

= M(a, b)dx + 


∂M

∂x




x=a,y=b

dx2

2
+




N (a, b) + 


∂N

∂x




x=a,y=b

dx



dy + 


∂N

∂y




x=a,y=b

dy2

2
(A.4)

which is valid up to terms of third order in dx and/or dy. Next we repeat the preceding argument
on the path C’ shown in Fig. 13.1. This gives

∆ fC′ ≈ N (a, b)dy + 


∂N

∂y




x=a,y=b

dy2

2
+




M(a, b) + 


∂M

∂y




x=a,y=b

dy



dx + 


∂M

∂x




x=a,y=b

dx2

2
. (A.5)

If f is single-valued, fC = fC′. By equating the right hand sides of Eqs. (A.4) and (A.5) we see
that

fC − fC′ ≈ dxdy







∂N

∂x




x=a,y=b

− 


∂M

∂y




x=a,y=b





(A.6)

which vanishes if Eq. (A.2) holds. Incidentally, note that the left hand side of Eq. (A.6) is just a
line integral around a closed path and the quantity on the right hand side is an approximate sur-
face integral.

Of course, Eq. (A.6) is valid only for (x,y) infinitesimally close to (a,b). For arbitrary
paths, and (x,y) we break up the interior of the path into small rectangles as shown in the follow-
ing figure:
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Fig. 13.2.

If the rectangles are small enough, then Eq. (A.6) can be used on each one and the results added
together. This leads to cancellations of all the line integrals on the edges of adjacent rectangles
inside the path (because of the directions of the integrations) but not those on the edges of the
path, and thus finally gives

∫o M(x, y)dx + N (x, y)dy = ∫ ∫ dxdy




∂N

∂x
−

∂M

∂y




.

In calculus, this result is called Green’s theorem in the plane. Finally, since we’ve assumed that
(A.2) holds,

∫o M(x, y)dx + N (x, y)dy = 0 (A.7)

which is just what we need to show that f defined by Eq. (13.3) is single-valued (i.e., it is a state
function).
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14. Thermodynamic Stability: Free Energy and Chemical Equilibrium

14.1. Spontaneity and Stability Under Various Conditions

All the criteria for thermodynamic stability stem from the Clausius inequality, cf. Eq.
(8.7.3). In particular, we showed that for any possible infinitesimal spontaneous change in na-
ture,

dS ≥
d− Q

T
. (14.1)

Conversely, if

dS <
d− Q

T
(14.2)

for every allowed change in state, then the system cannot spontaneously leave the current state
NO MATTER WHAT; hence the system is in what is called stable equilibrium.

The stability criterion becomes particularly simple if the system is adiabatically insulated
from the surroundings. In this case, if all allowed variations lead to a decrease in entropy, then
nothing will happen. The system will remain where it is. Said another way, the entropy of an
adiabatically insulated stable equilibrium system is a maximum. Notice that the term allowed

plays an important role. For example, if the system is in a constant volume container, changes in
state or variations which lead to a change in the volume need not be considered even if they lead
to an increase in the entropy.

What if the system is not adiabatically insulated from the surroundings? Is there a more
convenient test than Eq. (14.2)? The answer is yes. To see how it comes about, note we can re-
write the criterion for stable equilibrium by using the first law as

d− Q = dE + PopdV − µopdN > TdS, (14.3)

which implies that

dE + PopdV − µopdN − TdS > 0  (14.4)

for all allowed variations if the system is in equilibrium. Equation (14.4) is the key stability re-
sult. As discussed above, if E, V, and N are held fixed d− Q = 0 and the stability condition be-
comes dS < 0 as before.

What if S,V,N is held constant? From Eq. (14.4), the system will be stable if dE > 0; i.e.,
the energy is a minimum. This has a nice mechanical analogy. Consider a ball rolling on a fric-
tionless parabolic surface in a gravitational field. Clearly, if we place the ball at rest at the lowest
point then it will stay there forever. This is the point which minimizes the energy.

Of course, it is not always easy to see how to hold the entropy constant in real experi-
ments. (When is the entropy constant?) A more common situation is when the temperature of
the system is held fixed. What is the stability criterion? The problem and its solution are similar
to those which led to the introduction of the enthalpy. If (N,T,V) are held fixed, Eq. (14.4)
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becomes

(dE)N ,T ,V − T (dS)N ,T ,V > 0, (14.5a)

or since T is constant,

d(E − TS)N ,T ,V > 0. (14.5b)

Thus, we see that a new state function, A ≡ E − TS, is a minimum for a stable equilibrium where
(N,T,V) are not allowed to vary. This new state function, is defined via a Legendre transforma-
tion on the energy and is called the Helmholtz free energy.

From the definition of A, for a general change in state (i.e., not necessarily with dT = 0,
etc.)

dA = dE − SdT − TdS = (d− Q − TdS) + d− W − SdT + µopdN . (14.6)

The Clausius inequality implies that the quantity in the parenthesis is negative (or zero for a re-
versible process) for any spontaneous change in the state of the system. Moreover, if we con-
sider systems where T and N are held fixed

dA ≤ d− W or −W ≤ −∆A. (14.7)

This means the −∆A is the maximum work you can get out of a process run under constant T and
N conditions (hence the name "free energy"). In addition, since A is a state function, you can get
the bound without knowing anything about the path (or device)--just by knowing the initial and
final states and how to carry out a calculation similar to those we did in thermochemistry.

Since A is a state function, we can always compute changes along reversible paths. In this
case,

dA = −SdT − PdV + µdN . (14.8)

In addition, we pick up some new Maxwell relations, e.g.,




∂S

∂V




T ,N

= 


∂P

∂T




V ,N

=
α
κ

, (14.9)

where α = V −1(∂V /∂T )P,N is the thermal expansion coefficient and κ = −V −1(∂V /∂P)T ,N is the
isothermal compressibility; the last equality follows by using the cyclic rule,

Clearly, there are many different choices of which state variables can be held constant. We
will only consider two more. First suppose (S,P,N) is held fixed. This is analogous to what we
encountered with the enthalpy. In this case, Eq. (14.4) becomes

d(E + PV )S,P,N = (dH)S,P,N > 0  (14.10)

for stable equilibrium; i.e., the enthalpy is a minimum.
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Finally, and perhaps most importantly, suppose T, P, and N are held fixed. This is the most
commonly encountered case. Now Eq. (14.4) becomes

d(E + PV − TS)T ,P,N > 0. (14.11)

Thus a new state function, G ≡ E + PV − TS = H − TS, is a minimum for a stable equilibrium
with fixed temperature, pressure, and mass. This state function is called the Gibbs free energy.

As was the case with the Helmholtz free energy, ∆G has a direct physical interpretation.
From its definition, for a constant (T,P,N) processes,

dG = dE − TdS + PdV = (d− Q − TdS) + (d− W + PdV ) ≤ (d− W + PdV ), (14.12)

where the last inequality follows from the Clausius inequality. For finite changes in state, we
thus find that

−W − ∫ PdV ≤ −∆G. (14.13)

What does this mean? Up to now, we hav e mainly considered PV work. Of course, there are
other kinds (magnetic, electrical but to name two). Hence, −∆G provides an upper bound to the

non-PV work done by the system on the surroundings (i.e., −W − ∫ PdV ) that can be obtained

from a constant T,P,N process. If you are manufacturing electric batteries you probably don’t
care about the amount of PV work which is wasted if the battery expands or contracts--all you
want is the electrical work.

As in the case of the Helmholtz free energy, we can consider arbitrary changes in the
Gibbs free energy along reversible paths. From its definition

dG = −SdT + VdP +
i
Σ µi dNi . (14.14)

As before, this gives additional Maxwell relations, for example




∂S

∂P




T ,N

= −


∂V

∂T




P,N

= −Vα , (14.15)

which we obtained in a very complicated way in an earlier section.

As an illustration of the usefulness of Maxwell relations, reconsider our discussion of the
Joule-Thompson coefficient:

µJT = −
1

CP




∂H

∂P




T ,N

= −
1

CP




T




∂S

∂P




T ,N

+ V




= −
V

CP

(1 − Tα ),

where the last equality follows by using Eq. (14.15) and the one before that by noting that
dH = TdS + VdP + µdN . Note that the notation often gives a clue where to look for a Maxwell
relation. In our example, the entropy derivative is with respect to P, keeping T and N constant.
The state function whose natural or canonical variables are T, P, and N is G, and this is where we
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got the Maxwell relation just used.

One final point, note that the partial molar Gibbs free energy is

Gi = 


∂G

∂Ni




T ,P,N j≠i

= µi , (14.16)

where Eq. (14.14) was used. Hence, in a one component system, the Gibbs free energy per mole
is just the chemical potential. More generally, Gi , the partial molar quantity for the i’th compo-
nent is µi , and hence, from Euler’s theorem

G =
i
Σ Niµi . (14.17)

As we discussed earlier, in order that Eqs. (14.17) and (14.14) be consistent, a Gibbs-Duhem re-
lation must hold; i.e.,

0 = SdT − VdP +
i
Σ Ni dµi , (14.18)

which shows that the changes in temperature, pressure and chemical potentials are not all inde-
pendent.

The various stability results are summarized in the following table.

Criteria for Stable Equilibrium

State Stable Equilibrium Simplest

Function Criterion Physical Content
Held Fixed Definition Differential

Adiabatic*

(e.g., E,V,N)
S ∆S = ∫ dQrev

T
dS =

dQrev

T

maximum -

S,V,N E ∆E = Q + W dE = TdS − PdV +
i
Σ µi dNi minimum ∆EV ,N = QV ,N

S,P,N H H ≡ E + PV dH = TdS + VdP +
i
Σ µi dNi minimum ∆HP,N = QP,N

T,V,N A A ≡ E − TS dA = −SdT − PdV +
i
Σ µi dNi minimum −WT ,N ≤ −∆AT ,N

T,P,N G G ≡ H − TS dG = −SdT + VdP +
i
Σ µi dNi minimum −Wnon−PV ≤ −∆GP,N

*E,N,V implies adiabatic in systems where only PV or chemical work is allowed, the reverse is not true if other kinds or

work (e.g., electrical) are possible.

14.2. Examples of free energy calculations

Free energy calculations are carried out in much the same as enthalpy calculations. There
are tables of standard free energies of formation of compounds. Elements in their standard
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states are assigned zero as their Gibbs free energy of formation.

Consider the following chemical reaction:

H2(g) + Cl2(g) → 2HCl(g).

Will the reaction proceed as written under constant T and P conditions? The free energy change
is simply

Σ ∆G
(0)
f ( products) − ∆G

(0)
f (reactants) (14.19)

which for the case at hand is just 2∆G
(0)
f (HCl, g) or -184.62 kJ/mol (from Barrow). Hence, a

mixture of hydrogen and and chlorine can lower its free energy (by a substantial amount) by re-
acting to form HCl.

This is an interesting example for another reason; if you mix stoichiometric amounts of H2

and Cl2, you will not see any perceptible reaction--the rate of reaction (no matter what the ther-
modynamics says) is in this case extremely slow. On the other hand, a small amount of light at
the right frequency will catalyze the reaction which then proceeds explosively!

Next consider the reaction between graphite and diamond,

C(graphite, s) → C(diamond , s).

Now ∆G = 2.90 kJ/mol. The reaction does not proceed as written (too bad). What is perhaps
more troubling is that the reverse reaction should proceed spontaneously at STP. (So why inv est
in diamonds?)

What happens at other temperatures or pressures. To answer this note that from Eq.
(14.14), for any compound,

∆G f (T , P) = ∆G
(0)
f +

(T ,P)

(298K, 1 atm)

∫ −S(T , P)dT + V (T , P)dP,

where any convenient path can be chosen.

Thus if we raise the pressure,

∆Grxn(T , P) = ∆G(0)
rxn +

(298K ,P)

(298K, 1 atm)

∫ ∆VrxndP. (14.20)

At STP, ∆Vrxn = -1.9 cm3/mol. Hence, increasing the pressure decreases the Gibbs free energy
change. If we assume that the molar densities of carbon are roughly independent of pressure, we
can calculate the pressure at which the reaction will proceed as written; thus,

∆Grxn(T , P) ≈ 2. 90 − 1. 9 × 10−9∆P (kJ /mol)

Hence, the reaction begins to be possible when P ≈ 1. 530 × 109Pa or about 15,000 atm.
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Similarly, ∆S(0)
rxn = −3. 36 J /K mol, hence, keeping the pressure constant and raising the

temperature gives:

∆Grxn(T , P) ≈ 2. 90 × 103 + 3. 36 (T − 298. 15) (J /mol).

Hence, raising the temperature only makes graphite more stable (but is good for increasing the
rates of reaction). Setting ∆Grxn = 0 giv es T = −565K , which is clearly impossible. Hence, tem-
perature alone can’t be used to change the stable phase of carbon. One caveat, we’ve approxi-
mated ∆S(0)

rxn as independent of temperature. This can’t be true at temperatures around absolute
zero by the 3rd Law!

14.2.1. Coupled Reactions

In some cases, the direct formation of a certain compound by direct reaction is thermody-
namically forbidden. An example is the formation of titanium tetrachloride1

from common TiO2 ore; i.e.,

TiO2(s) + 2Cl2(g) → TiCl4(l) + O2(g).

It turns out that ∆G = +152. 3kJ /mol. Nonetheless, we can make the reaction go by coupling it
to one which pulls it along. For example, suppose we use the produced oxygen to burn carbon;
i.e.,

C(s, graphite) + O2(g) → CO2(g),

where here ∆G = −394. 36kJ /mol. The free energy change for the coupled processes is -394.36
+ 152.3 = -242.1 kJ/mol, and thus the coupled reaction can proceed. The burning carbon sup-
plies the needed free energy to make the desired reaction work. Note that the overall reaction is

TiO2(s) + 2Cl2(g) + C(s, graphite) → TiCl4(l) + CO2(g),

which also gives ∆G = −242. 1kJ /mol using the standard calculation.

14.2.2. General Tr ends

For this discussion, we will consider systems were the reactions take place at a fixed tem-
perature and pressure; as such, the direction of change is determined by

∆G = ∆H − T ∆S,

where ∆H and ∆S are the enthalpy and entropy change for the process, at the actual temperature

and pressure. As we have said, for constant pressure and temperature processes, ∆G < 0  for the
reaction to proceed as written. There can be several ways to arrive at a neg ative ∆G. For

1TiCl4 is a precursor used in making pure Ti via the reaction

TiCl4 + 2Mg → 2MgCl2 + Ti or TiCl4 + 4Na → 4NaCl + Ti

it is also used as a catalyst or precusor for various catalysts (e.g., the Ziegler-Natta catalysts).
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example, ∆G will always be negative if ∆H < 0  and ∆S > 0. On the other hand, if ∆H < 0  and
∆S < 0 then we can expect ∆G < 0 only if T is low enough (this neglects any changes in ∆H and
∆S with temperature). These trends are summarized in the following table:

Constant T & P Process Proceeds as Written

∆H

> 0  < 0
∆S

< 0  Nev er Low enough T*

> 0  High enough T Always
*Of course, keep in mind that T > 0; hence, it is not always possible to
find a physical temperature low enough to drive an enthalpy driven reac-
tion. This was the case in our discussion of the graphite/diamond equi-
librium
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14.3. Chemical Equilibrium

14.3.1. Thermodynamics of Chemically Reacting Systems

A very important example of thermodynamic equilibrium is that of chemical equilibrium
at constant pressure and temperature. Consider the following general chemical reaction:

2A + B →← 3C + D.

The chemical equation imposes a strong constraint on the changes in the numbers of moles of
each component; for the forward reaction, each time a mole of B reacts, 2 of A are used up and 3
of C and one of D are produced. Mathematically,

dN A

−2
=

dNB

−1
=

dNC

3
=

dND

1
≡ dξ , (14.21)

where the extent of the reaction is characterized by the quantity ξ (the Greek letter, pronounced
kse) called the progress variable. For an arbitrary chemical reaction involving r chemical com-
ponents, the last expression generalizes to

dN1

ν1

= . . . =
dNr

ν r

≡ dξ , (14.22)

where ν i is the stoichiometric coefficient for the i’th component in the reaction (by convention, it
is negative for reactants). This is just a mathematical formulation of the law of definite propor-
tions due to Joseph Proust, 1806, who wrote:

"I shall conclude by deducing from these experiments the principle I have estab-
lished at the commencement of this memoir, viz. that iron like many other metals is
subject to the law of nature which presides at every true combination, that is to say,
that it unites with two constant proportions of oxygen. In this respect it does not dif-
fer from tin, mercury, and lead, and, in a word, almost every known combustible."

One can easily relate the actual amounts of compounds present at any stage of the reaction

imply by integrating Eq. (14.22); i.e., Ni = N
(0)
i + ν iξ , where N

(0)
i is the amount of compound i

present when ξ = 0, i.e., at the start of the reaction.

For constant temperature and pressure and total mass (for each element) conditions, the re-
action can proceed until the Gibbs free energy is a minimum with respect to all allowed varia-
tions in the state of the system. By knowing the amounts of the various compounds in terms of ξ
it is easy to express the Gibbs free energy in terms of ξ using Euler’s theorem (cf. Eq. (14.17)):

G(ξ ) =
i
Σ Ni




∂G

∂Ni




T ,P,N j≠i

=
i
Σ(N

(0)
i + ν iξ )µi ,

where µi is usually a function of ξ as well.

For fixed total mass, temperature, and pressure, the only variations which can be consid-
ered are those which change ξ . Hence, we could use the last equation to plot G(ξ ) versus ξ ; i.e.,
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the reaction moves either to the right or left until G(ξ ) is a minimum. Instead of determining the
equilibrium point graphically, we can use calculus. We know that G can be a minimum with re-
spect to changes in the progress variable only if




∂G

∂ξ



T ,P,Ntotal

= 0 (14.23)

and




∂2G

∂ξ 2




T ,P,Ntotal

> 0. (14.24)

By using the differential form for the change in the free energy together with Eq. (14.22) we find
that

dG = −SdT + VdP +
r

i=1
Σ ν iµi dξ , (14.25)

which when used in Eq. (14.23) gives

∆G ≡ 


∂G

∂ξ



T ,P,Ntotal

=
r

i=1
Σ ν iµi = 0 (14.26)

at equilibrium. ∆G is called the reaction Gibbs free energy. Since the µi are the partial molar
Gibbs free energies, Eq. (14.26) is equivalent to ∆G = 0. At equilibrium the free energy

change in the reaction per mole vanishes. (Indeed, this is the principle we applied in the "reac-
tion" between graphite and diamond). From the definition of the Gibbs free energy (G = H -TS),
it follows that

∆S =
∆H

T

at equilibrium.

What happens if we change temperature or pressure by a small amount? Which way will
the equilibrium shift? To answer this, first note the following Maxwell relations:




∂µi

∂T




P,N j

= −


∂S

∂Ni




P,T ,N j≠i

= −Si (14.27a)

and




∂µi

∂P




T ,N j

= 


∂V

∂Ni




P,T ,N j≠i

= Vi (14.27b)

which follow from the Gibbs free energy. Thus the changes in the chemical potential associated
with temperature or pressure are related to the partial molar entropies or volumes, respectively.
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Next consider

d(
i
Σν iµi) =

i
Σν i




∂µi

∂T




P,N j

dT +
i
Σν i




∂µi

∂P




T ,N j

dP + 


∂(Σν iµi)

∂ξ



T ,P,Ntotal

dξ

= −∆SdT + ∆V dP + 


∂∆G

∂ξ



T ,P,Ntotal

dξ , (14.28)

where, cf. Eqs. (14.27), ∆S ≡ Σν i Si and ∆V ≡ Σν iVi are the entropy and volume changes per
mole of reaction. Equation (14.28) shows how the free energy change per mole of reaction
changes when we change T, P, or ξ .

What happens if we change, T or P in a system where chemical reaction is possible? The
progress variable will change until Eq. (14.26) is again valid. Since both the initial and final
states satisfy Eq. (14.26), the change in ∆G must vanish; i.e., d∆G = d(

i
Σν iµi) = 0. From Eq.

(14.28) this implies that

dξ =
∆SdT − ∆V dP




∂∆G

∂ξ



T ,P,Ntotal

. (14.29)

Moreover, the denominator of the right hand side of the equation is positive, cf. Eqs. (14.24) and
(14.26). Equation (14.29) can be rewritten by noting [cf. Eq. (14.26)] that ∆S = ∆H /T ; i.e.,

dξ =

∆H

T
dT − ∆V dP




∂∆G

∂ξ



T ,P,Ntotal

. (14.30)

Equation (14.30) is a mathematical statement of LeChatellier’s principle. For reactions
which lead to an increase in the volume (∆V > 0), increasing (decreasing) the pressure will shift
the equilibrium to the reactant (dξ < 0) [product (dξ > 0)] side of the equation. The reverse is
true if the volume change is negative. Similarly, increasing the temperature shifts the equilib-
rium to the reactant side for reactions which are exothermic (∆H < 0) and to the product side for
reactions which are endothermic.

14.4. Chemical equilibria in dilute gases

14.4.1. Chemical Potentials in Pure Materials

For a one-component material, the pressure dependence of the chemical potential (free en-
ergy per mole) is easily obtained by integrating Eq. (14.12a); i.e.,

µ = µ(0)(T ) + ∫
P

Po

V (T , P′)d P′.

2015, Fall Term



Free Energy & Equilibrium -98- Chemistry 223

Where µ(0)(T ) is the standard Gibbs free energy of formation at one atm and temperature T, and
V (T , P) is the molar volume. For solids and liquids, and moderate pressure changes, the molar
volume doesn’t change much with pressure; hence we will consider it as approximately constant.
Thus, for pure solids and liquids, we find that

µ ≈ µ(0)(T ) + V (T )(P − Po). (14.31a)

In gases, on the other hand, the volume changes significantly with pressure. For low enough
pressures we can consider the gas to be ideal, and thus, noting V=RT/P, we find that

µ(T , P) = µ(0)(T ) + RT ln



P

Po




= µ(0)(T ) + RT ln(P), (14.31b)

where the second equality follows when Po = 1atm and P is the pressure in atmospheres.

14.4.2. Chemical Potentials in Ideal Gas Mixtures

Our last result can be generalized to gas mixtures if we recall our discussion of Dalton’s
law of partial pressures. There we considered a gas mixture where one of the components could
diffuse in and out of the system through a selective, porous film into a container containing a
pure sample of that component. At equilibrium, the pressure in the pure sample was Pi , the par-
tial pressure of the i’th component in the mixture.

If we view the process as the following "chemical reaction"

Component i in mixture→←Component i in pure sample.

The equilibrium condition becomes:

µi,mixture(T , P, x1,
. . . , xr−1) = µi,pure(T , Pi) = µ(0)

i (T ) + RT ln(Pi). (14.32)

Hence, the form of the chemical potential in a gas mixture is very similar to that in a pure sam-
ple, with the exception that the pressure is not the total pressure of the gas, but is the partial pres-
sure of the component in question.‡

‡ What happens if a selective filter cannot be found for one of the compounds in the gas mixture? Con-
sider a two component gas mixture where only component "1" is known to obey Eq. (14.32). The Gibbs-
Duhem relation for a binary mixture, with T and P constant, is N1dµ1 + N2dµ2 = 0, and can be used to
show that

−x2



∂µ2

∂x1




T ,P

= x1



∂µ1

∂x1




T ,P

= RT ,

where we have divided by (N1 + N2)dx1 and used Eq. (14.32) with P1 = Px1 for µ1. Since x2 = 1 − x1, the
chain rule can be used to rewrite the last result as




∂µ2

∂x2




T ,P

=
RT

x2

.

This can be integrated, giving
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Knowing this, we are ready to discuss chemical equilibria in gases. From Eq. (14.26), the
equilibrium condition becomes:

0 =
i
Σν iµ

(0)
i (T ) + RT ln(P

ν1

1 P
ν2

2
. . . Pν r

r ) (14.33)

or

P
ν1

1 P
ν2

2
. . . Pν r

r = KP(T ) ≡ exp 

− Σν iµ

(0)
i (T )/RT 


= e−∆G

(0)
/RT , (14.34)

where KP(T ) is called the pressure equilibrium constant. Notice that it is only a function of tem-
perature, the stoichiometric coefficients, and properties of the pure (i.e., unmixed) gases.

We can use Dalton’s law of partial pressures to reexpress Eq. (14.33b) in terms of concen-
trations or mole fractions. For example, since [i] = Ni /V = Pi /RT , substitution into Eq. (14.33b)
gives

[1]ν1[2]ν2 . . . [r]ν r =
e−∆G

(0)
/RT

(RT )Σν i

≡ Kc(T ). (14.35)

Similarly, since Pi = Pxi , where xi is the mole fraction of i and P is the total pressure, we have

x
ν1

1 x
ν2

2
. . . xν r

r =
e−∆G

(0)
/RT

PΣν i

≡ K x(T ). (14.36)

One final point. In the preceding examples, we’ve assumed that all the compounds are gases, and
hence, have used Eq. (14.31b) for the chemical potentials. Should one or more of the compo-
nents be in a condensed (strictly speaking, pure) phase, e.g., solid or liquid, then we would have
to use Eq. (14.31a) instead. Moreover, since the molar volumes of liquids and gases are small,
we can ignore the pressure term in Eq. (14.31a) as long as the P − Po isn’t too large. For our dis-
cussion of equilibrium constants, this has one consequence; namely, the condensed phase compo-
nents drop out of stoichiometric quotient. Note that this is not true for solutions.

14.5. Examples of Chemical Equilibrium Calculations

14.5.1. Determination of Free Energies of Formation

There are a number of ways in which to measure the standard free energies of formation of
a compound. Consider the formation of ammonia,

1

2
N2(g) +

3

2
H2(g) →← NH3(g),

µ2 = µ*
2 + RT ln(x2).

µ*
2 is known as the "apparent free energy" and becomes the standard one, µ(0)

2 , if we can let x1 → 0, i.e., al-
most pure "2", and still have "1" obey Eq. (14.32). This is easy to ensure for gas mixtures, but can be
problematic in solutions.
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at STP. The free energy change for the reaction is ∆G
(0)
f (NH3, g). If we measure the equilibrium

constant,

PNH3

P1/2
N2

P3/2
H2

= e−∆G
(0)
f (NH3,g)/RT , (14.37)

then we can easily compute the free energy of formation of ammonia.

14.5.2. Determination of the Extent of a Reaction

Reconsider the reaction

N2O4(g) →← 2NO2(g).

The extent of the reaction is easily measured by measuring the apparent deviation from the ideal
gas law. As before, let α be the fraction of N2O4 dissociated. If there were N0 moles of N2O4

initially, then there are (1 − α )N0 and 2α N0 moles of N2O4 and NO2 at equilibrium, respec-
tively. The corresponding partial pressures can be computed from Dalton’s law.

When the result is used in the equilibrium constant condition we find that

KP =
P2

NO2

PN2O4

=
4α 2

1 − α
N0 RT

V
=

4α 2P

1 − α 2
, (14.38)

where P is the total pressure on the system. This can be solved for the fraction dissociated, with
the result that

α = 


KP

KP + 4P




1/2

Thus, if we calculate the equilibrium constant from a table of free energies, the degree of dissoci-
ation is easily found. Note that the result depends on both T and P. From tables of standard en-

thalpies of formation (Castellan), ∆H
(o) = 2 × 33. 18 − 83. 7 = −17. 3 kJ /mol < 0  and

∆V = 2VNO2
− VN2O4

= RT /P > 0, assuming ideal gases. Hence, according to LeChatellier’s
principle we expect that the reaction should shift to the left (i.e., less dissociation) as pressure is
increased. Our final equation for α shows this. For this reaction, as we shall see in the next sec-
tion, KP(T ) decreases as temperature increases, which when used with our expression for α is
again consistent with LeChatellier’s principle.

14.5.3. Temperature Dependence of KP

The equilibrium constant, KP , is only a function of the temperature. From its definition,
cf. Eq. (14.34),

d ln(KP)

dT
= −

d(∆G
(0)

/RT )

dT
= −

1

RT 2




T

d(∆G
(0)

)

dT
− ∆G

(0)




=
T ∆S

(0) + ∆G
(0)

RT 2
=

∆H
(0)

RT 2
,
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(14.39)

where the second to last equality follows when Eqs. (14.27a) and (14.34) are used. This is
known as the Gibbs-Helmholtz equation. Thus, by integrating we find that

ln




KP(T2)

KP(T1)





= ∫
T2

T1

∆H
(0)

RT 2
dT ≈

∆H
(0)

R




1

T1

−
1

T2



. (14.40)

The last equality in Eq. (14.40) follows if we assume that ∆H
(0)

is approximately constant with

respect to temperature, or equivalently, that ∆CP ≈ 0 (which also implies that ∆S
(0)

is constant.
Why?). Indeed, with this approximation, Eq. (14.40) simply states that

KP(T2)

KP(T1)
= exp




−

∆G
(0)

(T2)

RT2

+
∆G

(0)
(T1)

RT1




, (14.41)

where ∆G
(0)

(T ) = ∆H
(0) − T ∆S

o
, as usual. Finally, note, that as in our discussion of LeChatel-

lier’s principle, the equilibrium will shift to the product side, i.e., KP increases, when the temper-

ature is raised if ∆H
(0)

> 0.

There is a simple graphical way in which to apply the Gibbs-Helmholtz equation. By ex-
pressing Eq. (14.39) as a differential, it follows that

d ln(KP) =
∆H

(0)

RT 2
dT = −

∆H
(0)

R
d




1

T



;

hence, plotting ln(KP) versus 1/T will give a curve whose slope at any point is −∆H
(0)

/R, and to

the extent that ∆H
(0)

is independent of temperature, will give a straight line. This is a powerful
way to determine enthalpy (and entropy) changes without having to do calorimetry.

14.5.4. Free Energy and Entropy of Mixing

Perhaps the simplest process is one where two samples of different pure gases are isother-
mally mixed as depicted in the figure below

A+B (P,T,2V)B(P,T,V)A(P,T,V) +

As you might expect, this process always occurs spontaneously. The total pressure‡ and temper-
ature remain constant during the process (at least for an ideal gas). What is the Gibbs free energy

‡
For this to happen, it is necessary that the pressures in the unmixed state be identical; hence,

P

RT
≡

N A

V A

≡
NB

VB

=
N A + NB

V A + VB

,
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change?

From Eq. (14.32), it follows that the free energy of the final state is

G final = N1


µ(0)

1 (T ) + RT ln(P1)


+ N2


µ(0)

2 (T ) + RT ln(P2)

. (14.42)

Similarly, the Gibbs free energy of either of the pure samples is

Gi = Ni


µ(0)

i (T ) + RT ln(P)


(14.43)

and hence, the free energy of mixing per mole of mixture, ∆Gmix , is

∆Gmix = RTx1 ln(x1) + RTx2 ln(x2), (14.44)

where xi is the mole fraction of i and where Dalton’s law of partial pressures, Pi = Pxi , was
used. It is easy to generalize this result to arbitrary mixtures of ideal gases

∆Gmix = RT
i
Σ xi ln(xi). (14.45)

Since 0 < xi < 1, the free energy change is negative and the mixing occurs spontaneously.

Equation (14.45) can be used to calculate the entropy and enthalpy of mixing. By using
Eq. (14.14) it follows that

∆Smix = −


∂∆Gmixing

∂T




P,xi

, (14.46)

which when used in Eq. (14.45) gives

∆Smix = −R
i
Σ xi ln(xi) > 0. (14.47)

Moreover, since

∆Hmix = ∆Gmix + T ∆Smix, (14.48)

it follows that the heat of mixing associated with the mixing of ideal gases is zero. No heat is ab-

sorbed or released for the mixing of ideal gases. The process is driven entirely by entropy. As
we shall see next term, a similar result holds for the mixing of dilute solutions. Similarly, note
that there is no volume change for mixing ideal gases (see Eq. (14.14) and take a pressure deriva-
tive). In a binary mixture, what composition has the most negative free energy of mixing?

where the first two equalities are conditions on the initial state, while the last one follows from the preced-
ing two.
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15. Thermodynamic Stability

dS dS21

dN dN21

dV dV21

1 2

Fig. 15.1. An isolated system considered as two subsystems, each exchang-
ing heat (entropy, if rev ersible), volume, and mass with each other.

The fact that the overall state functions must be minima (E,H,A,G) or maxima (S) at equi-
librium under specified conditions has some interesting consequences. For example, consider re-
versible changes system with constant S, V and Ni . As we showed earlier the energy of the en-
tire system is a minimum at equilibrium under these conditions. It is important to realize that we
are talking about the total S, V and Ni for the system (viewed as a black box). Nothing is im-
plied for the local values of (S, V , Ni), and in particular, if we imagine that the system is split
into two subsystems, internal processes of the type shown in Fig. 15.1 are completely allowed,
provided that

dS1 + dS2 = 0, (15.1a)

dV1 + dV2 = 0, (15.1b)

and

dN1 + dN2 = 0 for each component. (15.1c)

Given that

dEtotal = dE1 + dE2, (15.2)

where, as usual,

dEi = Ti dSi − Pi dVi + µi dNi , (15.3)
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we have, using Eqs. (15.1a)-(15.1c),

dEtotal = (T1 − T2)dS1 − (P1 − P2)dV1 + (µ1 − µ2)dN1. (15.4)

Since the total energy system of our must be a minimum at equilibrium, and the dS1, dV1 and
dN1 are arbitrary (and in particular can have any sign), we see that Etotal can be a minimum only
if dEtotal = 0, which in turn requires that

T1 = T2, P1 = P2 and µ1 = µ2; (15.5)

i.e., the temperature, pressure and chemical potentials must be uniform. Note that this requires
that the exchanges depicted in Fig. 15.1 are possible. Should the system be composed of two
sub-parts that are, for example, thermally insulated then dS1 = dS2 = 0 and these parts can equili-
brate with different temperatures, etc..

Our result in Eq. (15.5) only guarantees that the total energy is an extremum. Consider the
entropy dependence of the energies. By using a Taylor expansion in entropy, we hav e

dEi = TdSi +
1

2




∂2E

∂S2




V ,N

dS2
i +. . .  (15.6)

which when used in Eqs. 2-5, shows that the second order energy change is

dE
(2)
total =

1

2




∂2E

∂S2




V ,N

(dS2
1 + dS2

2), (15.7)

which must be positive if the total energy is a minimum (this is just the usual second derivative
test you learned in calculus). In turn, this implies that




∂2E

∂S2




V ,N

= 


∂T

∂S




V ,N

=
T

CV

> 0; (15.8)

i.e., CV > 0. This same reasoning can be applied to the dV and dN contributions.

More generally, we must consider the possibility that multiple internal processes are taking
place simultaneously. By generalizing the Taylor expansion to functions of more than one vari-
able it follows that

dE
(2)
i ≡

1

2




∂2E

∂S2




V ,N

dS2
i + 


∂2E

∂S∂V




N

dSi dVi +
1

2




∂2E

∂V 2




S,Ni

dV 2
i +. . .  (15.9)

was positive, where terms involving changes of Ni have been dropped. Moreover, by using the
expressions for the derivatives of the internal energy, Eq. (15.9) can be rewritten as:

dE
(2)
i ≡

T

2CV

dS2
i + 


∂T

∂V




S,Ni

dSi dVi −
1

2




∂P

∂V




S,Ni

dV 2
i +. . . ,  (15.10)
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or in matrix notation:

dE
(2)
i =

1

2





dSi

dVi





†

⋅








T

CV




∂T

∂V




S,Ni




∂T

∂V




S,Ni

−


∂P

∂V




S,Ni








⋅




dSi

dVi





(15.11)

which must be positive for arbitrary dSi and dVi .

The matrix in Eq. (15.11) is symmetric and the expression on the right hand side of Eq.
(15.11) is known as a symmetric bi-linear form. From linear algebra, we know that symmetric
matrices can be diagonalized; i.e., a basis in the [dSi , dVi] space can be found where the matrix
elements are zero except for the diagonal ones which are equal to the eigenvalues (denoted as
λ±). In this basis, Eq. (15.11) becomes

dE
(2)
i =

1

2
(λ+dc2

+ + λ−dc2
−), (15.12)

where dc± are the expansion coefficients of [dSi , dVi] in the special basis.

In order that the right hand side of Eqs. (15.3) or (15.12) positive for all possible varia-
tions of the system, it is necessary and sufficient that the eigenvalues of the matrix, λ±, be posi-
tive. They satisfy the characteristic equation, i.e.,

0 = λ2
± − λ±





T

CV

− 


∂P

∂V




S,Ni





−
T

CV




∂P

∂V




S,Ni

− 


∂T

∂V




2

S,Ni

. (15.13)

This quadratic equation is easily solved and follows that in order that the eigenvalues be positive,

CV > 0, (15.14a)

−


∂P

∂V




S,Ni

> 0, (15.14b)

and




∂T

∂V




2

S,Ni

< −
T

CV




∂P

∂V




S,Ni

. (15.14c)

The inequality in Eq. (15.14a) is just what we obtained earlier. That in Eq. (15.14b) implies that
the adiabatic compressibility (cf. Problem Set 5),

κ S ≡ −
1

V




∂V

∂P




S,N

,
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is positive.

The analysis for variations involving the number of moles of a given species follows in ex-
actly the same manner.
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16. Entropy & Randomness

As was mentioned in class, it is possible to give a simple quantitative microscopic deriva-
tion of the expression for the entropy of mixing for an ideal solution or ideal gas mixture. To be-
gin, consider the following simple lattice model for the system:

1 1 1 1 18 8 8

1 12 28 88 8

1 2 358 87 7

71 2 24 4 86

8 113 8 8 8 8

41 12 34 8 8

Fig. 16.1. Each cell is labeled according to the kind of molecule it contains.

The volume occupied by the mixture has been divided into M equivalent cells, and each is ran-
domly occupied by a single molecule of a given type in the system. Let Ni be the number of
molecules of the i’th species (the "solvent" counts as a species).

How many states are available for the system in this model? Specifically, how many ways
can the molecules occupy the cells? Consider species 1: The first molecule can choose M cells,
the second M-1, etc.. Finally, the last species 1 molecule can choose M-N

1
-1 different cells to

occupy. Thus the number of ways of assigning the species 1 molecules to the cells is

M(M − 1) . . . (M − N1 − 1) ≡
M!

(M − N1)!
, (16.1)

where N ! = N (N − 1)(N − 2) . . . 1 is called the factorial function.

The other species must still be added to the lattice. Consider species 2. Now there are
only M − N1 cells to choose from; by repeating the preceding argument, it is easy to show that
the number of ways of adding species 2 is

(M − N1)!

(M − N1 − N2)!
. (16.2)
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The total number of ways of adding both species 1 and species 2 to the lattice is the product of
the ways of adding each; i.e.,

M!

(M − N1 − N2)!
. (16.3)

Finally, we can repeat the argument until the entire lattice is filled. The total number of ways of
adding the molecules to the system is

M!. (16.4)

Does each of these ways correspond to a state of the system? The answer is no, not be-
cause we have made an error in our calculation, but because we have ignored a basic property of
nature; namely, the Heisenberg Uncertainty Principle. Equation (16.4) would be correct if we
could distinguish the different molecules of each species. The uncertainty principle makes this
impossible, and thus each state of the system cannot depend on which of the equivalent mole-
cules are in the specific cells -- it is impossible to tell.

Thus Eq. (16.4) over-counts the number of different states available to the system. By
how much? Again consider species 1. After the N1 cells are chosen one still has the freedom to
permute species 1 molecules between the different chosen cells; there are N1! ways of permuting
the species 1 molecules, and these permutations are included in Eq. (16.1). However, as we hav e
just argued, quantum mechanics makes these permutations irrelevant to the calculation of the
number of inequivalent states available to the system, and hence, Eq. (16.1) should be divided by
the number of ways of rearranging the equivalent molecules on the same set of lattice cells. By
repeating this argument for all species, it follows that the number of inequivalent states of the
system are:

M!

N1!N2! . . . . (16.5)

The calculation of the entropy of mixing now follows by using the statistical (Boltzmann)
expression for the entropy:

S = kB ln (number of states), (16.6)

where kB is Boltzmann’s constant (kB = R/N A = 1. 38 × 10−23J K−1). By using Eq. (16.5) in Eq.
(16.6), we obtain

∆Smixing = kB




ln(M!) −

i
Σ ln(Ni!)




. (16.7)

This still doesn’t look like the expression we obtained in class. Note, however, that the factorials
which appear in Eq. (16.7) are factorials of huge numbers (≈ 1023). There is an accurate approx-
imation for the natural logarithm of a large factorial known as Stirling’s formula, specifcally,
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ln(N !) ≈ N [ln(N ) − 1] (16.8)

(try it for N=50). If Eq. (16.8) is used in Eq. (16.7) and we remember that M =
i
Σ Ni , a little al-

gebra shows that

Smixing = − kB
i
Σ Ni ln




Ni

M



. (16.8)

Since, xi , the mole fraction of species i is

Ni

M
,

Eq. (16.8) is equivalent to the expression we obtained by examining ideal gas mixtures that obey
Dalton’s law or, as you will see, solutions that obey Raoult’s Law or. (Recall that the gas con-
stant R = kB N A, where N A is Avogadro’s number).
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17. Electrochemical Cells

Zn
+2

Zn

V

Cathode (reduction)Anode (oxidation)

Cu

Cu
+2

e−
e−

Salt Bridge

Fig. 17.1. The Galvanic or Daniels cell. Oxidation occurs at the anode, while reduc-
tion occurs at the cathode. For the compounds shown, the abbreviated cell reaction

is Zn|Zn+2||Cu+2|Cu.

17.1. General Considerations

Figure 17.1 shows a simple device used that functions as a battery, the so-called Galvanic
or Daniels cell. Basically, when the switch is closed, the zinc electrode will oxidize, loosing 2
electrons per atom, and producing a zinc ion. These travel through the external circuit (doing
work), and reenter the cell at the cathode, where one copper ion is reduced to copper metal.
Thus, we can describe the redox chemistry in terms of the half-reactions:

Zn → Zn+2 + 2e− (at the anode)

Cu+2 + 2e− → Cu (at the cathode)

and

Zn + Cu+2 → Zn+2 + Cu (overall).

Note that the reaction leads to a net charge imbalance in the cell and this is restored by having
the counter-ions of the salts diffuse as needed through the salt-bridge.

The first question to answer is key; namely, how much work can be obtained per mole of
reaction in this cell? At least under constant T and P conditions this can be answered by recall-
ing that

−Wnon−PV ≤ −∆Grxn
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or

−d− Wnon−PV ≤ −d∆Grxn = −
i
Σν iµi dξ = −∆Grxndξ , (17.1)

where −Wnon−PV is just the non-mechanical (here electrical) work being done by the system on
the surroundings, and where the inequality becomes an equality when the process is reversible.
Indeed, one can come close to having the cell operate reversibly by having very little current run
through the external circuit. Equation (17.1) is just what we saw when we used the law of defi-
nite proportion in chemical reactions.

In electrical terms, suppose there is a voltage difference, ∆ε , between the two electrodes1.
Thus, by definition, each electron will change its energy by −e∆ε as it moves through the exter-
nal circuit (remember, by convention, electrons have neg ative charge). Equivalently, they do
e∆ε electrical work on the surroundings. Hence, by using Eq. (17.1) we see that

∆ε ≤ −
∆Grxn

nF
, (17.2)

where n is the number of moles of electrons transferred in the reaction (2 for our example
above), −F ≡ −N Ae is the charge associated with one mole of electrons, and is known as the
Faraday; It has the value

F = 96,487 coul/mol or 2. 891 × 1014 esu/mol.

Henceforth, we will restrict our discussion to reversible cells, in which case Eq.(17.2) be-
comes an equality. Notice that the cell EMF is independent of the precise way you balance the
overall reaction. Actually, the main thing that is important in balancing the redox reactions given
above is that we produce the same number of electrons in the oxidation at the anode as are con-
sumed in the reduction at the cathode. Lets write the free energy change for each half-reaction as

∆Ghalf −reaction = −+ nF∆ε half −reaction,

where we’ll use the - sign for reductions and the + sign for oxidations, i.e., we define the half-re-
action potentials for reductions; hence, for our example,

−∆Grxn = 2F∆ε rxn = 2F


∆ε Cu+2|Cu − ∆ε Zn+2|Zn



.

For the reaction to proceed as written when the circuit is closed, we need ∆Grxn ≤ 0, or equiva-
lently, ∆ε ≥ 0. If we assume standard state conditions, we can simply look up the reduction po-
tentials in a table, which for our reaction has

1For historical reasons, this is also known as the electromotive force or EMF.
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Standard Reduction Potentials

∆ε
(Volts, V)

Half Reaction

Zn2 + 2e− → Zn -0.763
Cu2 + 2e− → Cu 0.337

Hence, the overall cell EMF is 0. 337 − (0. 763) = 1. 100V and the cell operates as written. Note
that the standard state for electrochemical reactions is defined not with respect to elements in
their standard states, but rather, against a standard electrode, the so-called standard hydrogen
electrode (SHE).

What happens if the conditions aren’t standard? We can still get an expression for the re-
versible cell EMF from Eqs. (17.1) and (17.2) if we know what the chemical potentials are. Re-
call that we have

µi = µ(0)
i + RT ln(ai), (17.3)

where ai is the activity of compound i; it is the partial pressure in atm for ideal gases, or the mo-
lar concentration in ideal solutions, but otherwise is more complicated. When the steps leading
to Eq. (17.2) are repeated it follows that

∆ε ≤ ∆ε (0) −
RT

nF
ln(a

ν1

1
. . . aν r

r ) = ∆ε (0) −
0. 05916

n
log10(a

ν1

1
. . . aν r

r ), (17.4)

where ∆ε (0) is the standard cell EMF, as calculated above, the term with the logarithm accounts
for any non-standard conditions and the last equality is what you get at 20C, converting to
base-10 logarithms. This is known as the Nernst equation.

17.2. Concentration Cells

One useful application of the Nernst equation and galvanic cells is the so-called concentra-
tion cell. Here, both cells contain the same metal/ion pairs, just the concentrations are different,
e.g.,

Ag|Ag+(aanode)||Ag+(acathode)|Ag,

where aanode/cathode are the activities (molar concentration for ideal solutions) in each cell. For
this system, ∆ε (0) = 0, and thus

∆ε = −
RT

nF
ln




aν
cathode

aν
anode



,

where n = ν = 1 for the Ag|Ag+ example. If one of the cells is a standard solution, a simple elec-
trical measurement and application of the last equation gives the activity (molar concentration) of
the other. This is the basic idea behind things like pH meters etc. Note that for really accurate
work, the role of the salt bridge must be considered more carefully, something not considered
here.
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17.3. Connection to Equilibrium Constants

If we run the cell until the system is at equilibrium the EMF will be zero, hence, by using
the Nernst equation, it follows that

a
ν1

1
. . . aν r

r = K = enF∆ε (0)/RT , (17.5)

where gives another connection between equilibrium constants and thermodynamic quantities.

Again, voltage is easy to measure very accurately, and this is a good way to measure con-
centration effects etc. on equilibrium.

17.4. Temperature effects

By using the basic relation between the cell EMF and the Gibbs free energy change, it fol-
lows that




∂∆ε
∂T




P

= −
1

nF




∂∆Grxn

∂T




P

=
∆Srxn

nF
. (17.6)

If we assume that ∆Srxn is independent of temperature (i.e., ∆CP is small), we can integrate Eq.
(17.6), to give

∆ε (T ) ≈ ∆ε (T0) +
∆Srxn

nF
(T − T0). (17.7)

Note that for many redox reactions ∆Srxn is small (less than 50J/K). This leads to only
10−5 − 10−4 V/K change in ∆ε ; hence, the cell EMF is relatively insensitive to temperature. Fi-
nally, by noting that at constant temperature, ∆H = ∆G + T ∆S, and using Eq. (17.6), we see that

∆H = −nF



∆ε − T




∂∆ε
∂T




P




, (17.8)

or equivalently,




∂∆ε /RT

∂T




P

=
∆H

nFRT 2
, (17.9)

which is basically the Gibbs-Helmholtz equation introduced earlier.
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18. Problem Sets

Note that the due dates are last year’s. This year’s will be announced in class and on the web

site.

18.1. Problem Set 1

DUE: Friday, September 25, 2015

1. a) In a one-component system, if α ≡
1

V




∂V

∂T




P,N

, show that α = −
1

ρ



∂ρ
∂T




P,N

, where

ρ ≡ N /V is the molar density. Note, show this for an arbitrary material, do not assume that the
system is an ideal gas!

b) More generally, show that

d ρ
ρ

= −α dT + κ dP,

where κ ≡ −
1

V




∂V

∂P




T ,N

is the isothermal compressibility.

c) At 25oC a sealed, rigid container is completely filled with liquid water. If the temperature
is raised by 10C, what pressure will develop in the container? For water,
α = 2. 07 × 10−4/K and κ = 4. 50 × 10−5/atm. Note: Do not use the ideal gas equation in
a)-c).

2. Use the van der Waals equation and complete the derivation of the relationship between the a
and b parameters and the critical pressure, temperature and molar volume, i.e., pc, Tc and Vc, re-
spectively.

3. (Castellan, problem 3.3) The critical constants for water are 374oC, 22.1 MPa, and 0.0566
L/mol (be careful with units here). Calculate values of a, b, and R using the van der Waals equa-
tion’s expressions for the critical constants and compare the value of R with the correct value.
Compute the constants a and b from pc and Tc (and the correct value of R. Finally, using these
values, compute the critical volume and compare with the experimental value. What is all this
telling you?

4. (Castellan, problem 4.2)

a) Compare the average speed of an oxygen molecule with that of a molecule of carbon tetra-
chloride at 20oC;

b) Compare their average kinetic energies.

5. (Castellan, problem 4.5) An oxygen molecule having the average velocity at 300oK is re-
leased from the earth’s surface to travel upward. If it could move without colliding with other
molecules, how high would it go before coming to rest? How high could it go if it had the aver-
age kinetic energy?

2015, Fall Term



Chemistry 223 -115- Problem Set 2

18.2. Problem Set 2

DUE: Monday, October 19, 2015

1.

a) Derive the expression for the most probable speed in a gas.

b) Another way to characterize the width of a probability distribution is to compute the stan-
dard deviation, σ . Calculate σ for the speed distribution; i.e.,

σ ≡ √ < (c− < c >)2 >.

(HINT: you may find the calculation easier if you first show that
< (c− < c >)2 >=< c2 > − < c >2).

c) In order to decide whether the speed distribution narrow or wide, consider σ / < c >. What
is it?

2. Compute the number of collisions an argon atom has per second at 1 atm pressure and 25C.

Assume that the argon atom has a 3A
o

diameter. What is the mean free path under these condi-
tions?

3. At room temperature, two gases, ammonia and hydrochloric acid react to form a white solid,
ammonium chloride; i.e.,

NH3(g) + HCl(g) → NH4Cl(s).

Tw o balls, one soaked in concentrated HCl and the other in NH4OH , are placed at the left and
right ends of a 1m long evacuated glass tube, respectively. HCl and ammonia vaporize and travel
down the tube, reacting to form a white ring where they meet. Where does the ring form?

4. (Silbey, Alberty & Bawendi, Problem 17.45) The vapor pressure of water at 25oC is 3160
Pa. (a) If every water molecule that strikes the surface of liquid water sticks, what is the rate of
evaporation of molecules from a square centimeter of surface? (b) Using this result, find the rate
of evaporation in g/cm2 of water into perfectly dry air.

5. The reaction

A + B → AB

proceeds using a surface catalyst via the following mechanism:

A + S
ks
→ A* + S

A* + B
k AB
→ AB,
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where A* is a gas-phase intermediate and where the rate constants can be estimated using the
collision theory developed in class.

a) Write down the kinetic equations for the overall rates of change of A, A*, B, and AB (you
should leave your answers in terms of ks ρ (usually the rate will be very small if the con-
centration of the intermediate is). This allows you to explicitly solve for [A*] and substi-
tute your answer into the remaining kinetic equations. What do you get? How would you
tell an experimentalist to plot their data in order to confirm your result? (HINT: remember
how the integrated rate laws are tested).

6. An interference pattern is created using lasers in a gas of molecules that are photo-reactive.
The lasers are adjusted to give an initial periodic concentration profile of the photo-reactive prod-
ucts of the form:

n(x, t = 0) ≡ n0(1 + A sin(kx)), (1)

where k is the wav evector of the interference pattern and A is its amplitude. At t=0 the laser is
switched off and the pattern starts to dissipate. Assume that Eq. (1) is valid for t > 0 (with a time
dependent amplitude A(t)) and use the diffusion equation we derived in class to obtain an equa-
tion for dA(t)/dt. What is the solution to this equation and what does it predict for the 1/e-life of
the pattern (i.e., where the amplitude falls to 1/e of its initial value)? Finally, evaluate your 1/e-
lives for methane at 1 atm pressure and 298.15K, assuming that k = 1. 0, 100. 0, and 106 cm−1.
Use 0.4 nm for the diameter of methane.
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18.3. Problem Set 3

DUE: Thursday, November 5, 2015

1. How much work will be produced in the isothermal, reversible expansion from V1 to V2 of a
gas with the equation of state:

pV = RT +
(bRT − a)

V

2. (Barrow, Problem 5-1) The acceleration due to gravity on the earth’s surface is about 9.8
m sec−2.

a) What is the force of gravity on a 1-kg mass?

b) How much mechanical energy could be obtained by fully harnessing the downward move-
ment of a 1-kg mass through a distance of 58 m (the height of Niagara Falls)?

c) How much thermal energy would be produced if the mass were allowed to fall freely
through this distance?

d) If the mass consisted of water and all the thermal energy were absorbed by the water, How
much would the temperature of the water rise?

3. a) Consider a process where the heat absorbed by the system per mole is given by:*

d− Q ≡ −
3a

4T 3/2V
dT − 


RT

V − b
+

a

2T 1/2V
2



dV .

Evaluate the heat absorbed by the system along the following paths:

i) T1, V1 → T2, V1 → T2, V2

ii) T1, V1 → T1, V2 → T2, V2

b) Show that 1/T is an integrating factor for d− Q (i.e., d− Q/T becomes the differential of a
state function) by evaluating the integral of d− Q/T along paths i) and ii).

4. An average man (mass = 70 kg, specific heat - same as water) produces about 104 kJ of heat
each day through metabolic activity.

i) If he were an isolated system, what would his temperature rise be in one day?

ii) He is, of course, really an open system--losing heat through evaporation of water.
How much water must he evaporate per day to maintain his constant temperature
of 37oC? You must first calculate ∆Hvap at 37o.

Note that the notation is suggesive of the van der Walls equation. This cannot be the case. If you look at

your result for the first part of path i), i.e., T1, V1 → T2, V1, you’ll see that d− Q < 0 if a > 0 and
T2 > T1; i.e., heat is released on raising the temperature at constant volume, thereby making CV < 0.
This is unphysical unless a < 0. Letting a → −a fixes this problem.
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iii) The heat of combustion of cane sugar is 3.95 kcal/g. How many grams of sugar will
furnish energy for one day’s metabolism, assuming the transfer of heat from cane
sugar bonds to metabolic heat to be perfectly efficient?

5. In the thermite reaction:

2Al(s) + Fe203(s) → 2Fe(l) + Al203(s),

what is the maximum temperature attainable by the products? This is known as the adiabatic
flame temperature. Assume that the reactants are at 1 atm pressure and 25C, and that all heat ca-
pacities are constant over the required temperature ranges. You will need to go to tables of ther-
modynamic constants; a good place to look is in Lange’s Hanbook of Chemistry or in the CRC
handbook (both are available on-line at McGill). Is the assumption that Al203 is solid in writing
the reaction reasonable? Briefly describe how would you change your calculation if Al2O3

wasn’t solid?

6. Consider the following two isomers of C3 H6:

CH2

CH2

CH
2

Cyclopropane

CHH C2
CH

3

Propene

a) Calculate ∆H for the interconversion of cyclopropane and propene using a table of stan-
dard heats of formation.

b) Calculate ∆H for this reaction using a table of bond energies.

c) Which answer is more reliable? Why? What are the sources of error?

d) Which compound would yield more heat upon complete combustion in oxygen?
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18.4. Problem Set 4

DUE: Thursday, November 19, 2015

1. (Castellan, Problem 7.30) The Joule-Thompson coefficient for a van der Waals gas is given by
µJT = (2a/RT − b)/CP . At 300K, calculate the value of ∆H for the isothermal, compression of 1
mole of nitrogen from 1 to 500 atm: a = 0. 136 m6 Pa/mol2 and b = 0. 0391dm3/mol.

2. (Castellan, Problem 7.31) The boiling point of nitrogen is -196C and CP = 7/2 R. The van
der Waals constants and µJT are given in the preceding problem. What must the initial pressure
be if nitrogen, in a single stage Joule-Thompson expansion, is to drop in temperature from 25 C
to the boiling point? (The final pressure is 1atm).

3. A chemistry 223 student was overheard arguing with a friend in management about why we
have winter heating. The latter stated that it was to make the air in the room warmer, while the
chemistry 223 student claimed that it was to increase the energy content of the air in the room.
Who is right? Why?

4. (Castellan, Problem 8.4)

a) Liquid helium boils at about 4K and liquid hydrogen boils at about 20K. What is the effi-
ciency of a rev ersible Carnot engine operating between heat reservoirs at these tempera-
tures?

b) If we wanted the same efficiency as in part (a) for an engine with a cold reservoir at 300K,
what must the temperature of the hot reservoir be?

5. (Castellan, Problem 8.17) Consider the following cycle using 1 mol of an ideal gas, initially
at 20C and 1 atm pressure:

Step 1. Isothermal expansion against zero pressure to double the volume (Joule expansion).
Step 2. Isothermal, reversible compression from 1/2 atm to 1 atm.

a) Calculate the value of ∫o d− Q/T .

b) Calculate ∆S for step 2.

c) Realizing that for the cycle, ∆Scycle = 0, find ∆S for step 1.

d) Show that ∆S for step 1 is not equal to the Q for step 1 divided by T. Why isn’t it?

6. Consider a system comprised of two 1000g blocks of copper (c p = 0. 1 cal/g/oK). If one
block is at 300K and the other is at 400K, what is the maximum amount of work that can be ex-
tracted from the system if no additional heat is allowed to flow into or out of the system. What
will the final temperature be after the work is extracted? Describe a process whereby you could
extract the maximum work. In working out this problem, ignore any PV work associated with
the expansion of the blocks.
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18.5. Problem Set 5

DUE: Tuesday, December 1, 2015

1. (Castellan, Problem 9.1) The temperature of 1 mole of an ideal gas is increased from 100K to

300K; CV =
3

2

R.

a) Calculate ∆S if the volume is constant.

b) Calculate ∆S if the pressure is constant.

c) What would ∆S be if 3 moles were used instead of 1 mole?

2. (Castellan, Problem 9.10) The standard entropy of lead at 25C is S
o
298 = 64. 80 J /K mol. The

heat capacity of solid lead is: CP(s)[J /K mol] = 22. 13 + 0. 01172T + 0. 96 × 105T −2. The melt-
ing point is 327.4 C and the heat of fusion is 4770J / mol. The heat capacity of liquid lead is
CP(l)[J /K mol] = 32. 51 − 0. 00301T .

a) Calculate the standard entropy of liquid lead at 500 C.

b) Calculate the ∆H for changing solid lead at 25C to liquid lead at 500C.

3. (Castellan, Problem 9.18) Consider one mole of an ideal gas, CV =
3

2

R, in the initial state:

300K, 1 atm. For each transformation, (a) through (g), calculate Q, W, ∆E, ∆H , and ∆S; com-
pare ∆S to Q/T .

a) At constant volume, the gas is heated to 400K.

b) at constant pressure, 1 atm, the gas is heated to 400K.

c) The gas is expanded isothermally and reversibly until the pressure drops to 1/2 atm.

d) The gas is expanded isothermally against a constant external pressure equal to 1/2 atm un-
til the gas pressure reaches 1/2 atm.

e) The gas is expanded isothermally against zero opposing pressure (Joule expansion) until
the pressure of the gas is 1/2 atm.

f) The gas is expanded adiabatically against a constant pressure of 1/2 atm until the final
pressure is 1/2 atm.

g) The gas is expanded adiabatically and reversibly until the final pressure is 1/2 atm.

4. (Castellan, Problem 9.26) Show that




∂α
∂P




T

= −


∂κ
∂T




P

,

where α and κ are the thermal expansion coefficient and isothermal compressibility, respectively.
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5. (Castellan, Problem 10.23) From the purely mathematical properties of the exact differential

dE = CV dT + 


∂E

∂V




T

dV ,

show that if


∂E/∂V




T

is a function only of volume, then CV is a function only of temperature.

6. (Castellan, Problem 10.28) Knowing that dS =
CP

T
dT − Vα dP, show that

a) (∂S/∂P)V = κ CV /Tα .

b) (∂S/∂V )P = CP /TVα .

c) κ S ≡ −V −1(∂V /∂P)S = κ /γ , where γ ≡ CP /CV , where κ S is known as the adiabatic com-
pressibility and governs the speed of sound in materials.
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18.6. Problem Set 6

DUE: Tuesday, December 15, 2015

1. (Castellan, Problem 11.4)

a) Calculate the entropy of mixing of 3 moles of hydrogen with 1 mole of nitrogen.

b) Calculate the Gibbs free energy of mixing at 25C.

c) At 25C, calculate the Gibbs energy of mixing (1 − ξ ) moles of nitrogen, 3(1 − ξ ) moles of
hydrogen, and 2ξ moles of ammonia as a function of ξ . Plot your result for 0 ≤ ξ ≤ 1.

d) If ∆Go
f (NH3) = −16. 5kJ /mol at 25C, calculate the Gibbs energy of the mixture for

0 ≤ ξ ≤ 1. Plot G versus ξ if the initial state is the mixture of 1 mole of N2 and 3 moles of
H2.

e) Calculate G for ξ equilibrium at P = 1atm.

NOTE: Use a spreadsheet or other program to do the numerical work in this problem. Use 10 or
so points for your plots.

2. (Castellan, Problem 11.8) At 500K we have the data

∆H o
500 So

500

(kJ /mol) (J /K mol)
Substance

HI (g) 32.41 221.63
H2(g) 5.88 145.64
I2(g) 69.75 279.94

One mole of H2 and one mole of I2 are placed in a vessel at 500K. At this temperature only
gases are present and the equilibrium

H2(g) + I2(g) →← 2HI (g)

is established. Calculate KP at 500K and the mole fraction of HI present at 500K and 1atm.
What happens at 10 atm?

3. (Castellan, Problem 11.10) For ozone at 25 C, ∆Go
f (O3) = 163. 2 kJ /mol.

a) At 25C, compute the equilibrium constant, KP for the reaction

3O2(g) →← 2O3(g)

b) By assuming that the advancement at equilibrium, ξ eq is very much less than unity (why is

this reasonable?), show that ξ eq ≈
3

2
√ PKP . (Let the original number of moles of O2 and

O3 be 3 and zero, respectively).
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c) Calculate K x and Kc at 5 atm.

4. (Castellan, Problem 11.22) Consider the equilibrium

CO(g) + H2O(g) →← CO2(g) + H2(g).

a) At 1000K the composition of a sample of the equilibrium mixture is:

Substance CO2 H2 CO H2O

mol % 27.1 27.1 22.9 22.9

Calculate KP and ∆Go at 1000K.

b) Given the answer to part (a) and the data:

Substance CO2 H2 CO H2O

∆H o
f

(kJ/mol)
-393.51 0 -110.52 -241.81

Calculate ∆Go for this reaction at 298.15K. Compare your answer to that computed di-
rectly at 25C. What are the sources of any discrepancy?

5. (Castellan, Problem 11.32) For the reaction

Hg(l) + 1

2
O2(g) →← HgO(s),

∆Go = −91044 + 1. 54 T ln T + 103. 81T − 10. 33 × 10−3T 2 −
0. 42 × 105

T
(J /mol).

a) What is the vapor pressure of oxygen over liquid mercury and solid HgO at 600K?

b) Express ln KP , ∆H o, and ∆So as functions of temperature.

6. (Castellan, Problem 11.35) At 25C the data for the various isomers of C5 H10 in the gas phase
are

∆H o
f ∆Go

f

(kJ/mol)
Substance log10 K f

A = 1-pentene -20.920 78.605 -13.7704
B = cis-2-pentene -28.075 71.852 -12.5874
C = trans-2-pentene -31.757 69.350 -12.1495
D = 2-methyl-1-butene -36.317 64.890 -11.3680
E = 3-methyl-1-butene -28.953 74.785 -13.1017
F = 2-methyl-2-butene -42.551 59.693 -10.4572
G = cyclopentane -77.24 38.62 -6.7643
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Consider the equilibria

A →← B →← C →← D →← E →← F →← G

which might be established with a suitable catalyst.

a) Calculate the mole ratios of A/G, B/G, ..., F/G present at equilibrium at 25C.

b) Do these ratios depend on the total pressure?

c) Calculate the mole percents of the various species in the equilibrium mixture.

d) Calculate the composition of the equilibrium mixture at 500K.

7. (Castellan, Problem 11.40) One mole of N2O4 is placed in a vessel. When the equilibrium

N2O4(g) →← 2NO2(g)

is established, the enthalpy of the equilibrium mixture is

H = (1 − ξ )H
o
(N2O4, g) + 2ξ H

o
(NO2, g).

What assumption are we making by using molar enthalpies of pure substances here? If the mix-
ture remains in equilibrium as the temperature is raised,

a) show that the heat capacity is given by

CP

R
= (1 − ξ )

CP(N2O4, g)

R
+ 2ξ

CP(NO2, g)

R
+ 1

2
ξ (1 − ξ 2)




∆H o

RT




2

;

b) Show that the last term has a maximum value when ξ = 1/√3;

c) Plot CP /R versus T from 200K to 500K at 1 atm using CP(N2O4, g)/R = 9. 29,
CP(NO2, g)/R = 4. 47, ∆H o

298 = 57. 20kJ /mol; and ∆Go
298 = 4. 77kJ /mol.

8. (Castellan, Problem 11.43) An athlete in the weight room lifts a 50kg mass through a vertical
distance of 2.0m (g = 9. 8m/s2). The mass is allowed to fall through the 2.0m distance while
coupled to an electrical generator. The electrical generator produces an equal amount of electri-
cal work which is used to produce aluminium by the Hall electrolytic process

Al2O3(soln) + 3C(graphite) → 2Al(l) + 3CO(g).

∆Go = 593 kJ /mol. How many times must the athlete lift the 50kg mass to proved sufficient
Gibbs energy to produce one soft drink can (≈ 27g). Note: This is the energy for the electrolysis
and ignores the efficiency of the generator and other losses. The actual number is roughly three
times larger than your number.
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19. Past Midterm Exams

19.1. 2012 Midterm Exam

INSTRUCTIONS

1. No books or notes are permitted.

2. Calculators are not needed and are not permitted.

3. Answer all questions and show all work clearly.

4. There are 5 questions and each is of equal value.

5. Be sure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mole−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Speed of Light in Vacuum 2. 998 × 108m/sec

Faraday, F 96,484.6 Coul/mole
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.
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8. Good Luck.

1. (20%)

a) What is the van der Waals equation of state? What do the various modifications to the
ideal gas equation account for, and why do they hav e the forms they do?

b) Sketch the pressure-volume phase diagram for high, low and critical temperatures for the
van der Waals equation. Identify the critical point and label the various regimes.

c) Use your result in part a) to derive equation(s) for the critical point in the pressure-volume
phase diagram. What is the physical significance of the critical point?

d) What is the law of corresponding states? Describe how you would use the equations you
got in part c) to transform the van der Waals equation into a form that shows this (Don’t
bother solving the equations).

2. (20%) Starting from the Maxwell-Boltzmann velocity distribution, derive the rate law and ex-
pression for the rate constant for a catalytic surface reaction. Assume that the activation energy
is E A. What assumption(s) are you making?

3. (20%) Give definitions, or a general equation defining the quantity, for the following terms in
thermodynamics:

a) Work. b) Path.
c) Enthalpy d) Rev ersible.

e) State Function.

4. (20%)

a) What are extensive and intensive quantities in thermodynamics? Give an example of each.

b) For an extensive function, A(T , P, N1, N2, . . . . , Nr ), derive Euler’s theorem and show how
partial molar quantities can be used to represent A. For concreteness, assume that T , P,
and the Ni have their usual meanings; i.e., temperature, pressure, and number of moles of
compound i, respectively.

c) Derive the Gibbs-Duhem relation related to your result in b).

d) The energy is an extensive quantity and can be considered to be a function of three exten-
sive quantities (for a one component system); namely,

E = E(S, V , N ),

where V is the system’s volume, N is the number of moles, and S is the entropy of the sys-
tem (to be covered in detail later in the course). For small reversible changes in state

dE = TdS − PdV + µdN ,

where T , P and µ are the system’s temperature, pressure and chemical potential, respec-
tively (the chemical potential is intensive). Generalize your answer in part b) and show
that
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E = TS − PV + µN .

What is the Gibbs-Duhem relation in this case?

5. (20%) The reaction for nuclear fission is

n + 235U

k1

→ X + Y + α n, (1)

where n is a neutron, X and Y are the fission products, and α is the number of neutrons released,
usually between 2 and 3. This is an example of what is known as a branching chain reaction and
can lead to runaway or explosive kinetics. Very crudely, this is prevented by introducing a so-
called moderator, e.g., graphite or D2O, that slows the neutrons down and a neutron absorber, A,
e.g., 238U or the so-called control rods, into the reactor, or by having the neutron escape. These
last two processes are approximately described by the following elementary reactions:

n + A

k2

→ stable products, and n

k3

→ escapes the system, (2)

respectively.

a) Derive the rate equation governing the neutron concentration, [n](t).

b) Under the assumption that everything but the neutrons is in large excess (this is valid at
least initially):

i) What order kinetics does your answer in part a) become?

ii) What is the integrated rate law for the neutrons?

iii) How should you plot experimental data to prove the mechanism?

c) What are the conditions for a stable or run-away/explosive reactions?
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19.2. 2013 Midterm Exam.

INSTRUCTIONS

1. No books or notes are permitted.

2. Calculators are not needed and are not permitted.

3. Answer all questions and show all work clearly.

4. There are 5 questions and the exam has 3 pages including this one.

5. Be sure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mole−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Speed of Light in Vacuum 2. 998 × 108m/sec

Faraday, F 96,484.6 Coul/mole
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.
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8. Good Luck.

1. (20%) Give a definition or an equation defining the following properties:

a) Mean free path b) The enthalpy
c) Detailed balance d) Steady state approximation
e) The First Law of Thermodynamics f) A rev ersible process
g) Work in thermodynamics h) State function
i) The effusion rate j) The speed probability density.

2. (20%) Consider the homogeneous gas phase elementary reaction

2A(g)
k1
→ Products.

Use the kinetic theory of gases to derive a realistic form for the rate law, and the corresponding
expression for the rate coefficient, k1. Be careful to define the symbols you use and clearly state
any assumptions you make.

3. (20%)

a) You suspect that a chemical reaction obeys second order kinetics; how you would plot
your experimental data to prove or disprove the assumed mechanism? Show why and show
your work!

b) Consider the following mechanism,1 for the decomposition of ozone:

O3(g) + M

k1
→
←
k−1

O2(g) + O(g) + M (3.1)

and

O(g) + O3(g)
k2
→ 2O2(g), (3.2)

where M is an inhomogeneous catalyst (e.g., walls or particulate matter in the system).

i) Write down the kinetic equations governing the reaction rates of O3, O2 and O.

ii) Use the steady-state approximation to simplify your result; in particular, what is the
resulting kinetic equation for the rate of O3 consumption?

1
S.W. Benson and A.E. Axworthy, J. Chem. Phys, 26, 1718 (1957).
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iii) How does your answer in part ii) simplify if the O3 concentration is either high or
low? (Be more specific about what you mean by "high" or "low").

iv) To what order reaction, if any, do your answers in part iii) correspond?

4. (15%, FROM THE HOMEWORK) An interference pattern is created using lasers in a gas
of molecules that are photo-reactive (irreversibly). The lasers are adjusted to give an initial peri-
odic concentration profile of the photo-reactive products of the form:

n(x, t = 0) ≡ n0(1 + A sin(kx)), (4.1)

where n(x, t) is the density of the photo-reactive species, k is the wav e-vector of the interference
pattern and A is its amplitude. At t=0 the laser is switched off and the pattern starts to dissipate.
Assume that Eq. (4.1) is valid for t > 0, with a time dependent amplitude A(t), and use the diffu-
sion equation we derived in class to obtain an equation for dA(t)/dt. What is the solution to this
equation and what does it predict for the 1/e-life of the pattern (i.e., where the amplitude falls to
1/e of its initial value)?

5. (25%)

a) Explain how the heat capacities, CP and CV , are related to the energy and enthalpy.

b) Show that

CP − CV = α V



P + 


∂E

∂V




T ,N




, (5.1)

where α ≡ V −1(∂V /∂T )P,N is the thermal expansion coefficient.

c) Describe the Joule-Thompson experiment. What thermodynamic quantity is constant in
the experiment?

d) Define the Joule-Thompson coefficient, µJT , and show, in part, using Eq. (5.1), that

µJT = −
V

CP



1 −

κ
α V

(CP − CV )

, (5.2)

where κ ≡ −V −1(∂V /∂P)T ,N is the isothermal compressibility.
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19.3. 2014 Midterm Exam

INSTRUCTIONS

1. No books or notes are permitted.

2. Calculators are not needed and are not permitted.

3. Answer all questions and show all work clearly.

4. There are 5 questions and the exam has 3 pages including this one.

5. Be sure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mole−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Speed of Light in Vacuum 2. 998 × 108m/sec

Faraday, F 96,484.6 Coul/mole
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.
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8. Good Luck.

1. (20%) Define or give an equation defining the following terms:

a) Extensive.

b) Partial molar quantity.

c) State function.

d) A reversible change.

e) The mean free path in a one-component gas.

2. (20%) (From Silbey, Alberty and Bawendi, Physical Chemistry) In the mid-1970’s it was dis-
covered that chlorine atoms from the photolysis of chlorofluorohydrocarbons (e.g.
CFCl3 + hν → CFCl2 + Cl, etc.) at the level of the ozone layer can catalyze the decomposition
of ozone through the following mechanism*.

Cl + O3

k1
→ ClO + O2 (1a)

and

ClO + O
k2
→ Cl + O2. (1b)

a) What is the overall reaction for this mechanism?

b) Write out the kinetic equations for each of the species involved in this mechanism. In par-
ticular, what does your mechanism say for the rate of change of [Cl] + [ClO]?

c) What is/are the intermediate(s) for this reaction?

d) Invoke the steady-state approximation and write out the overall rate law. [Hint: you may
have to use your result in the last part of b)].

e) Briefly discuss your result, and in particular, comment on any limiting cases where simple
nth order kinetics is obtained.

*
The destruction of ozone by chlorine atoms in the stratosphere has become a serious issue because of the

"ozone hole" in the Antarctic region, which can be surveyed by satellite. This has led to international con-
trols on the manufacture of CFCl3 and CF2Cl2. Sev eral cycles of the type given in Eq. (1) are involved
and there has been intense interest in quantitative calculations of the lifetimes of various chlorofluorohy-
drocharbons in the stratosphere. The 1995 Nobel Prize in chemistry was awarded to Paul Crutzen, Mario
J. Molina, and F. Sherwood Rownald for their research on this topic.
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3. (20%, From the homework) At room temperature, two gases, ammonia and hydrochloric
acid react to form a white solid, ammonium chloride; i.e.,

NH3(g) + HCl(g) → NH4Cl(s).

Tw o balls, one soaked in concentrated HCl and the other in NH4OH , are placed at the left and
right ends of a 1m long evacuated glass tube, respectively. HCl and ammonia vaporize and travel
down the tube, reacting to form a white ring where they meet. Where does the ring form?

4. (20%) Derive expressions for the following (be sure to define all symbols and explain any as-
sumptions you make):

a) Z A with B the number of collisions per unit time an A molecule collides with a B in an dilute
gas.

b) The effusion rate.

c) The reaction rate constant for the gas phase reaction:

A + A → Products

d) The van der Waals equation of state. In particular, explain the physical motivations behind
any of modifications you introduce and justify the mathematical forms they hav e.

5. (20%) State the first law of thermodynamics, carefully defining the symbols you use. Briefly
discuss its significance. Under what conditions does it simplify, in particular, leading to some-
thing that can readily measured.
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19.4. 2015 Midterm Exam

INSTRUCTIONS

1. No books or notes are permitted.

2. Calculators are permitted.

3. Answer all questions and show all work clearly.

4. There are 5 questions and the exam has 2 pages including this one.

5. Be sure to indicate the total number of exam books you hand in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mole−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Speed of Light in Vacuum 2. 998 × 108m/sec

Faraday, F 96,484.6 Coul/mole
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.
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8. Good Luck.

1. (20%) For each of the following quantities, give a defining equation and briefly discuss their
physical meaning:

a) The isothermal compressibility. b) The critical point.
c) The law of corresponding states. d) The diffusion flux.

e) Detailed balance.

2. (20%) Starting from the Maxwell-Boltzmann velocity distribution, derive an expression for
the average number of reactive collisions on a surface per unit area per unit time. Assume that
the normal component of velocity must exceed some threshold velocity for reaction to occur.

3. (20%, Castellan, Problem 32.37) A mechanism proposed for the gas phase decomposition
of N2O5 is

N2O5

k1
→←
k−1

NO2 + NO3

k2
→ NO + O2 + NO2 (3.1)

and

NO + NO3

k3
→ 2NO2. (3.2)

a) Write out kinetic equations for each of the species involved in this mechanism.

b) Invoke the steady-state approximation for NO3 and NO and derive the rate of disappear-
ance of N2O5.

c) Briefly discuss your result; in particular, comment on any limiting cases where simple nth

order kinetics is obtained.

4. (20%, From the homework, Silbey, Alberty & Bawendi, Problem 17.45) The vapor pres-
sure of water at 25oC is 3160 Pa. (a) If every water molecule that strikes the surface of liquid wa-
ter sticks, what is the rate of evaporation of molecules from a square centimeter of surface? (b)
Using this result, find the rate of evaporation in g cm−2 s−1 of water into perfectly dry air.

5. (20%)

a) Write down the van der Waals equation of state and briefly explain the physical origin of
the various modifications to the ideal gas law.

b) Show how the van der Walls equation leads to the appearance of a critical point. Derive
the equations giving the critical point (you don’t need to solve them).
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c) Show how to turn the van der Waals equation into virial expansion; in particular, what is
the second virial coefficient?
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20. Past Final Exams

20.1. 2012 Final Exam

INSTRUCTIONS

1. No books or notes are permitted. Translation dictionaries and calculators are permitted.

2. Answer all questions in the exam book and show all work clearly.

3. There are 3 pages (including this one) and 5 questions, each of equal value.

4. Be sure to indicate the total number of exam books handed in on book 1.

5. Keep the exam.

6.

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mol−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.

8. Good Luck.
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1. ( 20%, Castellan, Problem 32.36) Consider the following mechanism for the decomposition
of ozone into oxygen:

O3

k1
→←
k−1

O2 + O (1)

and

O3 + O
k2
→ 2O2. (2)

a) Derive the rate expressions for each species involved in the reaction.

b) What species is the most likely to be an intermediate? What happens to your expression
for dO3/dt in this case?

c) Under what condition will the reaction be first order in ozone? Show how the equation for
dO3/dt reduces in this situation.

2. (20%) For each of the following give a definition (an equation is sufficient as long as you de-
fine your terms):

a) A Maxwell relation. b) The Clausius Inequality.
c) d)The third Law of Thermodynamics. Maximum work obtainable from a

constant T,N process.
e) The chemical potential of one of the components in an ideal gas mixture.

3. (20%)

a) What is the Joule-Thompson expansion?

b) Show what remains constant during the Joule-Thompson expansion.

c) Define the Joule-Thompson coefficient, µJT .

d) Show that

µJT = −
V

CP

(1 − α T ),

where α ≡ V −1(∂V /∂T )P,N is the thermal expansion coefficient. (Note: you don’t hav e to
use the derivation we initially discussed in class).
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4. (20%)

a) Derive the general expression governing where a chemical reaction comes to equilibrium;
use the convention that the stochiometric coefficients are ν i , with ν i < 0  for reactants and
> 0 for products. Do not assume ideality (see the next part).

b) Show how your general expression in part a) simplifies for chemical reactions in ideal gas
mixtures.

c) What is KP and how is it used to determine the composition at equilibium in an ideal gas
mixture?

d) Use your expression in part c) to derive the Gibbs-Helmholtz equation.

5. (From the homework, 20%, Castellan, Problem 11.8) At 500K and 1 atm we have the data:

∆H o
500 So

500

(kJ /mol) (J /K mol)
Substance

HI (g) 32.41 221.63
H2(g) 5.88 145.64
I2(g) 69.75 279.94

One mole of H2 and one mole of I2 are placed in a vessel at 500K. At this temperature only
gases are present and the equilibrium

H2(g) + I2(g) →← 2HI (g)

is established. Calculate KP at 500K and the mole fraction of HI present at 500K and 1 atm;
show your work. What happens at 10 atm?

Monday, December 17, 2012
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20.2. 2013 Final Exam

INSTRUCTIONS

1. No books or notes are permitted. Translation dictionaries and calculators are permitted.

2. Answer all questions in the exam book and show all work clearly.

3. There are 3 pages (including this one) and 5 questions, each of equal value.

4. Be sure to indicate the total number of exam books handed in on book 1.

5. Keep the exam.

6.

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mol−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + . . . for |x| << 1.

8. Good Luck.

1. (20%) One of the problems with solar energy systems is the need to store the solar energy for
use at night or on cloudy days. One suggestion is to use the solar energy to dehydrate a hydrate
and then rehydrate the material as needed. For example, consider
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CuSO4 ⋅ 5H2O(s) → CuSO4(s) + 5H2O(g) (1.1)

and

CuSO4(s) + 5H2O(l)
25C
→ CuSO4 ⋅ 5H2O(s). (1.2)

Given the data in the table,

Table 1: Some Thermochemical Data at 25C1

∆H0
f ∆G0

f S0

(kcal/mol) (kcal/mol) (cal/K mol)
Compound

CuSO4(s) -184.00 -158.2 27.1
CuSO4 ⋅ 5H2O(s) -544.45 -449.3 73.0
H2O(l) -68.32 -56.69 16.72
H2O(g) -57.80 -54.64 45.11
1From Lange’s Handbook of Chemistry, 10th edition.

a) Compute ∆Hrxn, ∆Grxn, and ∆Srxn at 25C for each reaction.

b) How much solar energy is required to dehydrate the copper sulphate?

c) How much heat is released upon rehydration?

d) At what (if any) temperature does the dehydration step become spontaneous? How much
heat is required? What assumptions are you making?

2. (20%) Consider the Langmuir model for surface adsorption kinetics:

A + S

k1

→
←
k−1

AS, (2.1)

where A is a gas-phase adsorbate and S is the surface. Langmuir assumed that the surface has N

binding sites per unit area, and that adsorption was complete when all the binding sites are
bound. In addition he assumed that the gas is in large excess (i.e., the bulk gas concentration is
negligibly changed by the adsorption process, even with 100% coverage). Introduce the frac-
tional surface covered, θ (t), as

[AS] ≡ Nθ (t) and [S] ≡ N [1 − θ (t)] (2.2)

and:

a) Write down the kinetic equation for the fractional coverage. Express your answer in terms
of the adsorbate’s partial pressure in the gas phase.

b) What does your answer in a) predict for the pressure dependence of the fractional coverage
at equilibrium? Sketch your result. (This is known as the Langmuir adsorption isotherm).
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c) Assuming that θ (0) = 0, solve the kinetic equations to give the time dependence of the ad-
sorption.

d) How would you plot your data to demonstrate the validity of the mechanism?

3. (20%) Give the Clausius and Kelvin (Thompson) statements of the Second Law of Thermo-
dynamics. Show that if the Clausius statement is correct then the Kelvin statement must also be.

4. (20%)

a) Give mathematical definitions for the following thermodynamic quantities, give their dif-
ferential forms and natural variables, and state whether the quantity is a minimum or maxi-
mum at equilibrium under certain conditions (specify them):

i) Energy ii) Enthalpy
iii) Entropy iv) Helmholtz Free Energy

v) Gibbs Free Energy

b) Use Maxwell relations to express CP − CV in terms of α , κ , T, and V.

c) Derive LeChatellier’s principle.

5. (20% From the Homework: Castellan, Problem 11.32) For the reaction

Hg(l) + 1

2
O2(g) →← HgO(s),

∆Go
rxn = −91044 + 1. 54 T ln T + 103. 81T − 10. 33 × 10−3T 2 −

0. 42 × 105

T
(J /mol),

where T is the absolute temperature.

a) What is the vapor pressure of oxygen over liquid mercury and solid HgO at 600K?

b) Express ln KP , ∆H o
rxn, and ∆So

rxn as functions of temperature.
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20.3. 2014 Final Exam

INSTRUCTIONS

1. No books or notes are permitted. Translation dictionaries and calculators are permitted.

2. Answer all questions in the exam book and show all work clearly.

3. There are 3 pages (including this one) and 5 questions, each is of equal value. NOTE

THAT THE EXAM IS PRINTED ON BOTH SIDES OF THE PAPER.

4. Be sure to indicate the total number of exam books handed in on book 1.

5. Keep the exam.

6.

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mol−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
.

8. Good Luck.
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1. (20%) Consider the following mechanism for a gas-phase reaction:

AY

k1

→←
k−1

A + Y and A + X

k2

→←
k−2

AX . (1.1)

a) What is the overall reaction and what is the intermediate?

b) Write out kinetic equations for the concentrations of each species.

c) Show that the mechanism conserves total A, X and Y (HINT: think of each of these as an
individual atom).

d) Invoke the steady-state approximation and use it to eliminate the intermediate’s concentra-
tion from the remaining kinetic equations.

e) Comment on the order of the resulting rate expressions in various limits.

2. (20%)

a) Sketch the pressure-volume diagram for a reversible Carnot cycle in an ideal gas. Be sure
to label the conditions for the sub-paths of the process.

b) Calculate the amounts of heat and work absorbed by the system in each part of the cycle.

c) Use your results in part b) to find the engine efficiency for the cycle.

d) Use the Kelvin formulation of the Second Law of Thermodynamics and your result in part
c) to obtain the Clausius inequality.

e) How does your result in part d) lead to the definition of the entropy?

3. (20%)

a) In general, show that

dS =
CV

T
dT +

α
κ

dV +
i
Σ 


Si −

α Vi

κ


dNi , (3.1)

where α ≡ V −1(∂V /∂T )P,N and κ ≡ −V −1(∂V /∂P)T ,N , are the thermal expansion coefficient
and isothermal compressibility, respectively, while Si and Vi are the partial molar entropy
and volume, respectively.

b) Show that

CP − CV =
VTα 2

κ
, (3.2)
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HINT: Where possible, use the much simpler, and shorter, derivations based on the techniques
we developed later on in the course.

4. (20%)

a) How does the chemical potential in a one component ideal gas depend on pressure? Why?

b) Use your result in part a) to deduce the forms of the chemical potentials in an ideal gas
mixture.

c) What governs the point at which a chemical reaction comes to equilibrium in a system
with constant T, P, and N? Why?

d) By using your results in parts a)--c), show how the standard equilibrium constant formula-
tion of chemical equilibrium in gases can be obtained. What is KP , the constant pressure
equilibrium constant.

e) Derive the Gibbs-Helmholtz equation governing the temperature dependence of the equi-
librium constant.

5. (20%) Silbey, Alberty and Bawendi, Problem 5.64) Consider the reaction

2NOCl(g)→←2NO(g) + Cl2(g)

at 1 atm total pressure and 227 C. The partial pressure of the nitrosyl chloride (NOCl) is 0.64
atm and only NOCl was present initially.

a) Calculate ∆G
(0)
rxn for this reaction.

b) At what total pressure will the partial pressure of Cl2 be 0.1 atm?

Monday, December 15, 2014



2015 Final Exam -146- Chemistry 223

20.4. 2015 Final Exam

INSTRUCTIONS

1. No books or notes are permitted. Translation dictionaries and calculators are permitted.

2. Answer all questions in the exam book and show all work clearly.

3. There are 3 pages (including this one) and 5 questions, each is of equal value.

4. Be sure to indicate the total number of exam books handed in on book 1.

5. If you want me to grade material on the left hand page, indicate so explicitly.

6. Do not write in red.

7. Keep the exam.

8.

Useful Constants

Constant Value

Gas Constant, R 8.31442 J K−1 mol−1

Boltzmann’s Constant, kB 1. 381 × 10−23J /K
Standard Atmosphere 1. 01325 × 105Pa

Av ogadro’s Number 6. 0225 × 1023

1 cal 4.184 J

9. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √ 2π /a, ∫
B

A
x e−ax2/2dx =

1

a



e−aA2/2 − e−aB2/2


,

∫
∞
−∞

x2e−ax2/2dx =
√ 2π /a

a
, ∫

B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
.

10. Good Luck.
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1. (20%) For the reaction

A → Products, (20.4.1.1)

Lindemann showed how first order kinetics can arise homogeneously, without having to involve
surfaces and/or externally applied radiation.

a) What is the Lindemann mechanism?

b) Apply the steady state approximation and use the result to derive the rates of product for-
mation and A disappearance.

c) In general, what, if any, is the order of the reaction?

d) In what limits are first or second order kinetics obtained?

e) How else might homogeneous first order kinetics be obtained?

2. (20%)

a) Describe the Joule-Thompson expansion and show what state function remains constant
during the experiment.

b) Define the Joule-Thompson coefficient, µJT .

c) Show that

µJT = −
V

CP

(1 − α T ), (20.4.2.1)

where α is the thermal expansion coefficient.

d) What is µJT for an ideal gas?

3. (20%)

a) For an ideal gas how much work and heat are absorbed by the system, as well as ∆E, if

i) The gas is expanded reversibly and isothermally from (TH , V1) to (TH , V2′).

ii) The gas is expanded reversibly and adiabatically from (TH , V2′) to (TC,V2). Dearive
an expression showing how V2′ and V2 related to TH and TC?

b) Sketch the reversible Carnot cycle and use your results in part a) to show that

QH

TH

+
Qc

TC

= 0. (20.4.3.1)
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c) What is the engine efficiency, η, of the reversible Carnot Engine?

d) i) What is the Clausius statement of the Second Law of Thermodynamics?

ii) Use the Clausius statement to show that the efficiencies of all reversible Carnot en-
gines are the same.

4. (20%, FROM THE HOMEWORK) Consider a system comprised of two 1000g blocks of
copper (c p = 0. 1 cal/g/oK). If one block is at 300K and the other is at 500K, what is the maxi-
mum amount of work that can be extracted from the system if no additional heat is allowed to
flow into or out of the system. What will the final temperature be after the work is extracted?
Describe a process whereby you could extract the maximum work. In working out this problem,
ignore any PV work associated with the expansion of the blocks.

5. (20%)

a) For the Helmholtz (A) and Gibbs (G) Free energies

i) Give their definitions and show what their differentials are.

ii) Under what conditions does each determine stable equilibrium? How?

iii) In what sense are ∆A or ∆G related to the possible work obtainable in some process?

b) Suppose we have a chemical reaction

i
Σν i Ai = 0, (20.4.5.1)

under constant mass, temperature and volume conditions.

i) Work out what the general equilibrium condition.

ii) What does it become if all reactants and products are ideal gases?

iii) Consider the reaction

N2O4(g)→←2NO2(g). (20.4.5.2)

Assuming that there were N0 moles of N2O4 initially and no NO2, what fraction of
N2O4 has dissociated at equilibrium under constant volume conditions?
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