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CHEMISTRY 243: Intr oductory Physical Chemistry II.

1. Generallnformation
Lectures: Monday& W ednesday 10:30 - 11:30 A.M.
Burnside Hall, 1B 23
Course Web Site: http://ronispc.chem.mcgill.ca/ronis/chem243
(Username: chem?243; Passwd: Gibbs)

Professor: Daid Ronis
Office: Otto Maass Room 426
E-mail: David.Ronis@McGill.CA

Texts

Thomas Engel and Philip Reifhermodynamics, Statistical Thermodynamics, and Kinetics, 2nd
edition(Pearson Education, Inc., 2006)

J.R. BarranteApplied Mathematics for Physical Chemistd edition (Pearson Education, Inc.,
2004)

Supplementary Texts

1. G.W. Castellan,Physical Chemistrrd edition (Benjamin Cummings PuBo., 1983)(Out
of print but excellent).

2. R.J. Silbg, RA. Alberty and M.G. Bavendi, Physical Chemistryth edition(John Wey &
Sons, Inc., 2005).

3. GordonM. Barrow, Physical Chemistry

4. R.Kubo, Thermodynamic@hysics orientation, advanced)

Grades

There will be approximately one problem se¢rg 3-4 lectures, one midterm and a
final exam. Themidterm will be gven at 18:00 on:

Thursday, February 18, 2010in Otto Maass 112 and 217 (a seating
plan will be posted).

Completion of the honveork is mandatory Most of the problems will not be graded, although
one or tvo problems may be chosen at random and graded. Solutions to the problem sets will be
posted on the course web pag®u ae strongly encouraged to do the havok. Theproblems

will cover mary details not done in class and will prepare you for tkeaves. The exams will

involve extensive problem-solving and, in part, may contain problems from the homewark!

The course grading scheme is:
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Grade Distribution

Problems 10%
Midterm 40%
Final 50%

Winter Term 2010
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CHEMISTRY 243: TENTATIVE OUTLINE

. Text Chapter

Date Topic Reid Castellan
Lecture 1. Heterogeneous Equilibrium: The phase rule 8 °
Lecture 2.  Phase diagrams of Simple systems: Clape 8 °

and Clausius-Clapeyron equations
Lecture 3. Ideal Solutions 9 13
Lecture 4. Colligatie properties 9 13
Lecture 5. Colligatie properties (continued) 9 13
Lecture 6. Solutions of volatile components 9 14
Lecture 7. Leer-principle and fractional distillation 9 14
Lecture 8. Henng Law and solubility 9 14
Lecture 9. Solubility calculations 9 14
Lecture 10. Electrolyte solutions 10 17
Lecture 11. Activities & Debye-Huckel Theory 10 17
Lecture 12. Electrochemistry: Electrochemiceglls 11 17
Lecture 13. Nernst equation and applications 11 17
Lecture 14. Sudce PhenomenaSurface Tension, \at-

ting, Properties of Small &ticles, & Nucle-

ation
Lecture 15. Surface Adsorption: Langmuir and BET
Lecture 16. Diffusion Controlled Reactions 18 33
Lecture 17.  Chemical Kinetics Il: Detailed Balance & TST 18 33
Lecture 18. Chemical Kinetics II: lonic fetcts 19 32,34
Lecture 19. CompleMechanisms 19 32,34
Lecture 20. " (continued) 19 32,34
Lecture 21. Marcus Theory: Electromahsfer 19 32,34

Note:

McGill Uni versity values academic integrity Therefore dl students must understand the meaning and conse-
guences of cheating, plagiarism and other academic offenses under the code of student conduct and disci-
plinary procedures (see www.mcgill.ca/integrity for moe information).

In accord with McGill Uni versity’ s Charter of Students’ Rights, students in this course hae the right to sub-
mit in English or in French any written work that is to be graded.

In the event of extraordinary circumstances beyond the Uniersity’ s control, the content and/or &aluation
scheme in this course is subject to change.
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2. PhaseEquilibrium

An important class of equilibriawolves the difierent equilibria established between
different states of mattee.g., solids, liquids, andages. Asve shall nav show, such equilibria
are gwoerned by very simple principles, essentially the same as thos@rkedwout for chemical
equilibria.

Figure 1

Consider a system containing an arbitrary number of non-reacting components
placed in a constant pressure and temperature container (the space enclosed by the heavy lines in
the figure). When equilibrium is attained, each part of the system wél &aertain number of
moles in each partFor example, if we divide the system up according to the dashed lines the
figure, there will beN; moles of one component in the first p&is,in the second, etc.

Since the entire system is at constBnP, and number of moles of each component,
the Gibbs free engy, G, must be at a minimum at equilibrium. If so, consider what would hap-
pen if we changed the number of moles in the first@@mpartments by lettingl; — N; + dN
andN, —» N, —dN. Clearly, we havenot changed the total number of moles. Hesve

dG = (UCompartment 1~ Mcompartment }dN (1)

which will be nonzero (and hence G cannot be a minimum) unless

UCompartment 1~ IJCompartment 2 (2)

or, since the division into compartments was completely arbittaress the chemical potential
of each component is the same in each part of the system. Note, that this is just axspacial e
ple of our criterion for chemical equilibrium for the trivial "chemical” reaction:

NCompartment J: NCompartment 2 (3)

Winter Term 2010
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Since, our preceding discussion only depended on the ability we matter
exchanged between ¢kirent parts of the system (but not on transfers to and from the surround-
ings), it will also hold for systems in which phase separation has occureaafaple if there
was a iquid-vapor interface in our system, or if there was a precipitate at the bottom of the con-
tainer Would it hold if there was a semipermiable membrane separating different parts of our
container?

In order to study some of the general consequences of these equilibrium conditions,
consider a system containi@components that ka phase separated in#® phases. Applying
Eq. (2) to each component we see that

W - @ = P)

2] 2] 0= W
g 0o o goobodgd o
000 000 O (4)
g 0o o goobodgd o
no_ @ _ - (P
W o= @ = o= 4@,

where |§1” is the chemical potential of componenin phasej. It is easy to see that there are
(P —1)C conditions. Eaclthemical potential depends ®drandP (the same throughout the sys-
tem, WHY?) and on the composition of the phase in question (e.g., aswlergdilute gses).
Since, we arem’currently interested inxéensive roperties, we can characterize the composition
of each phase by the mole fractiors,of which there ar€ — 1 independent ones in each phase,
or P(C —1) in total. Thus, including temperature and pressure, there are a td¢Cof 1) + 2
unknaovns to be determined by thP ¢ 1)C equations gien in (4), and in general the system of
equations will be eitherver- or underdetermined. Thextent to which this happens is obtained
by looking at the number of degrees of freeddm,the difference between the number of
unknowns and equations; i.e.,

f:P(C_1)+2_C(P_1):2+C_P' (5)

This simple result is known as the Gibbs Phase Rule.

As an example, suppose wevba me component system (C=1According to Eq.
(5), if there is only a single phast=2; i.e., we can pick andP arbitrarily. If there are tw
phases in equilibrium, theh = 1; i.e., we can pick at most eitfieor P, but not both. Finally, f
vanishes if there are three phases in equilibrium, which implies that wepgananything at the
so-called triple point.For pure water the triple point occurs at 0.01C and 614 FFinally note
that while our simple counting arguments rule owgraetermined solutions, tiiedon’t aways
guarantee the existence of solutions, e.g., as is founa di critical temperature in one-com-
ponent systems.

We rext turn to a more quantita® analysis of the equilibrium between phases.
Suppose we @ a me component system containingotphases (for concreteness, a liquid and
its vapor). Accordingo Eg. (5) we can pick one intemsicquantity, e.g., the temperaturd,, and
the pressure at coexistence will be determingédw does the coexistence pressure change if we
change the temperature? Since,

|J-quuid = uvapor (6)
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both before and after the change in temperature,
dWiquid = dHlvapor- (7)
However, ance for a one component systeny (6/N,
dy = -SdT +V;dP, (8)

whereS§ andV; are the molar entrgpand volume, respectély in phasei. By substituting Eq.
(8) into (7) and rearranging the result, it follows that

= & g _
EED :—Sl Sz:A_:AH (9)

where the last equality follows by noting tidi = TAS at equilibrium. Of course holds for gn
two-phase, one-component equilibrium, and is known as the Clapeyron equmatiahe liquid-
vapor equilibrium &ample,AH is just the heat ofaporization. Whais it for solid-liquid equi-
libria?

There are seeral approximations that foll from Eq. (9). For example, if we can
ignore the temperature dependenceAldfandAV, then we can ingrate both sides of (9) and
obtain

AHAT

P—P~AHIn(T/T)~
2 "17 AV SR VA

(10)

where the last approximation followsAfT /T, is small. This is a reasonable approximation for
cases where both phases are solids and/or liquids (and hence, theirohotasvdort change
much with temperature).

Another approximation is obtained if one of the phases is a déstand the other a
solid or liquid, then

o - - RT
AV = VVapor -V, = VVapor = R (10)
which allows us to rewrite Eq. (9) as
M In(P) O _AH 1)

O dT Q:oexistence RTZ’

which is known as the Clausius-Clapeyron equation. Compare this with the expression we
obtained for the temperature dependence of the equilibrium conkianthey are the same,
perhaps as expected since, we caw e process as a chemical reaction, e.g.,

liquid  vapor,

for which the equilibrium would be determined fré#(r) = K ,.
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Finally, With the further assumption that thsi is independent of temperature, we
can integrate the Clausius-Clgpen equation and shothat the equilibrium vapor pressure of a
liquid or solid obeys (approximately)

_ (AH Q1 1(Y
P(T) = P(To) exp EF o, ?E% (12)

again consistent with thehemical equilibriumpoint of viev. How would you use this result to
determine the normal boiling point of the material?

Winter Term 2010
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3. Minimum and Maximum Boiling Azeotropes: TheGibbs-Konovalov Theorem

As we discussed in class, a system where the temperature-composition phase dia-
gram has a minimum or maximum for some composition is called an azeotrope. Here we will
shaw that the composition of theapor and liquid phases of azeotropes must be the séme.
result is called the Gibbsefovalov theorem, and is an sophisticatedreise in Maxwell rela-
tions, equilibrium conditions, and partial molar quantities.

For what follov, we will call the two components 1 and 2. Quantities pertaining to
the two phases will be distinguished by having a prime in the case offtw Vinally, the mole
fraction of 1 in the liquid and vapor phases grandy,, respectiely.

The phase rule tells us that a two-phase, binary mixtureFra2+2-2=2
degrees of freedom. One will be &k to be the pressure, which is heledix Theother will be
some cowmenient concentrationariable. Ingeneral, the chemical potentials in either phase can
be viewed as functions ofH and a mole fraction (e.gx; or y;). Hencefor arbitrary changes
of state:

dy =R g WD o [ OOWD (1)
BTG, PO, Bxihhy
The first two partial dervatives may be revritten by using Maxwell relations obtained from the
Gibbs free energy (recalG = -SdT+VdP+ > i dN;). Thus,

-:—sdT+VdP+[m*D dx, @)
[Bx; Ob 7

where

_ [0S

S = N

L, Nm

and

o 0oV O

DN Gy,

are the partial molar entropies and volumes, reshcti

Equation (2) must hold for either component in either phase (in the vapor phase, just
add primes to all quantities and changeo y;). Moreover, for changes in state along the xoe
istence curve,

dy =dy i=1,2 (3)

If we use Eq. (2) in (3), tvequations relating changes inH x; andy; are obtained. In addi-
tion, for the case at hamtP = 0, and thus, we find that
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5 - S4)01T+D"—MD ?m dy, i=1,2. @)

Next, we divide through bylx;, multiply the equation for component 1 by, the equation for
component 2 by, and add the results. Thisvgs

00T [ N P O x Eﬁuzm

_[Xl(Sl Sl) + XZ(SZ SZ)][Bxl q) X1|:B_)(1Dr p [Bxl D{ =)

0 : 0
=§<D6ulg +XD525 PY10
! Y1 2 Y1 (Lo x @coex.
0 e % L e0 ’

(5)

The changes in the chemical potentials at constant T and P are not indeperndent, b
are related through the Gibbs-Duhem equations,

X1 dpy + Xodp =0 (62)
and
y1dy + ypdp, =0. (6b)

Dividing Egs. (6a) and (6b) byx; anddys,, respectrely, and using the results in Eq. (5) st®
that

00T O Dap-l - @Pyi0 ©  xy O

xS - S) + *%o(S2 - S = 0 &= Xi-——0 (7)
! ? [Bxqucoex %Q'wal QOGXD ! Y2 0

_ DY @yio -y ’ ®)

|:| J—
EY1 q'wal |%oex YZ
where the last equality is obtained by noting that the sum of the mole fractions in either phase is
unity.

The left hand side of the equation vanishes at a minimum or maximum ofdthe T
phase diagram; hence, one of the factors on the right hand side must b&he¥raodynamic
stability requirements (i.e., G is a minimum) can be used to Hint
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D' O
EBX]_ qu

It is also easy to sk using the definitions of the mole fractions and thet that the total num-
ber of moles of each type is constant, that

> 0.

P
|:Bxl QOex

Hence, at an azeotropic point, = y4; i.e., the compositions of the liquid and vapor phases are
the same. This is called the Gibbs#¢valov theorem. Notehat the dexiation did not require

ary specific properties of liquids or gases and our result will hold fgrhan-phase caodstence

in binary mixtures.

Zz0.

Finally, note that essentially the same manipulations can be usedadtskto

Daui J My: 0 :

% EBTQ (X1 = Y1)
oPog O T e
01 L coex Yol X1 (Vq = vl) + Xo(V2 = vz)]

Hence, the P-X phase diagram will alsodva minimum or maximum at the azeotropic compo-
sition.
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4. ldeal Eutectic Phase Diagrams

Sb—Pb Phase Diagram: Castellan 15.3
s e L i s

600F=TT

500¢

400

300¢

Tu(°C)

200E

100
Solution

—100E

4(0868,24918)ﬁ

\m\mé
O Ol 02 03 04 05 O6 07 08 O9 1

XPb

The ideal lead-antimgneutectic phase diagram is st in the figure, and was cal-
culated assuming that the solids are completely immiscible and that the solution wa3 eeal.
liquid-solid coexistence lines are computed from the equilibrium conditions:

WO (solid, T) = i (liquid, T) + RTIn(x;), i = A, B. @)

or using the fact thadG(i) = p®(liquid, T) - (solid, T) = 0 at he normal melting point,
T= T,(\',l)P, of materiali, we @an rewrite Eq. (1) as

(i) (i)
T AHys AHyu. 01 10

In(x;) = = — 2
() ITSJP RT2 R Bﬂ') Tg @

where the last approximation follows by assuming the the heat of fusion is independent of tem-
perature.

The point where the twvcurves cross is called the Eutectic poifithe question is
what happens belothe eutectic temperature? From the point ofwae the phase rule, or the
equilibrium conditions gien in Egs. (1) or (2), we could still ka L+A, L+B, or A+B (i.e., a
mixture of the solid phases). Indeed, it is the last possibility which happens; WHY?

In order to answer this question, we must go backnasteps and remember that
under constant PN conditions, the equilibrium state is the one with kbwest Gibbs free
enegy; specifically if there are multiple local minima in G, it is the one that is lowest that should
be observed at equilibrium. This is what happensvbéhe eutectic temperaturélo e this,
consider the total free energy for the system (again for ideal solutions and immiscible solids):

G = n®u(solid, T) + N O(so0lid, T)

+ nQuiquid, T) + RTIn(xx)] + n§ [ (liquid, T) + RTIn(xg)] (3a)
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= NauQ(solid, T) + Ngp(solid, T)

+nQIAGEY(A, T) + RTIn(xa)] + nY[AGTL(B, T) + RT In(xg)], (3b)

Whereni(s), ni('), and N; are the number of moles bin the solid, liquid, and total, respady.
Remembering that the total number of moles of each material remains constant, the equilibrium
states must be local minima &, and these are found by taking detives of Ej. (3b) with
respect tm(,L) or ng) and setting the result to zero. It is straightforward toastinat this results

in Eq. (2).

As was discussed ab® when deciding between thrent possibilities, it is neces-
sary to go back to Eqg. (3) and find the local minimum with the free eng@y. For our kam-
ple, consider the following twpossibilities L+A or A+B. The latter obeys the liquid-solid equi-
librium condition for A, cf. Eq. (1) and hence, from Eq. (3b) we see that the statekdwmener
gies:

Gaes = NaQ(solid, T) + Ngp(solid, T) (4a)
and
G = Nat(solid, T) + Ngpl@(solid, T) + Ng[AGEY(B, T) + RTIn(Xg)], (4b)

where we hee =t n}) = n{) = 0 for the A+B state andyy = Ng for the L+A state. Thus, L+A
state will be the equilibrium one as long as

=(0
AG{A(B,T)

rT TIn(xe) <0 ®)
or, gpproximately as bng as
Ay H 1 1D
In(xg) < —— Grey ~ 70 (6)
R e Tg

which, cf. Eq. (2), breaks down beidhe L+B coaistence line. Thus, since all points on the

L+A coexistence line are belothe L+B coaistence line bele the eutectic temperature, there

the L+A state has a higher free energy than A+B s@tearly, there is nothing special about the
notation for A, and hence, exactly the same conclusion can be drawn for B. Thus we see that the
solid mixture is the minimum free energy solution letbe eutectic temperatur&inally, while

we hae wsed ideal solutions in thixample, you can shwthat the same argument still holds for

a ronideal solution,

"To do this consider ho Egs. (1) and (3b) would ke © be nodified for the nonideal
case, and what are the signs of the various terms in different parts of the phase diagram.
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5. Electrolyte Solutions: Activity Coefficients and Debye-Huckel Theory

To understand the thermodynamics of electrolyte solutions, we Baunderstand
how nature tries to keep systems electrically neutral. (WHY?). In partjdhiarleads to some
additional definitions for the chemical potentials andvdies. Considethe electrolyte dissocia-
tion

ABl - v, A* +v_B*, 1)

wherevy; is the stochiometric coefficient of the ith ion which has ghez, i = + or —, wheree
is the magnitude of the charge on an electron.

There is some ambiguity in twao think about the solution, i.e., as comprised of dis-
sociated ions or of undissociated molecul@$.course, in reality an equilibrium for Eq. (1) will
be established, and thus,

Ha, B, = ViHaz +V_Hge. 2)

We've seen that chemical potentials can be written in terms ofiteedi as p= |’ + RTIn(g;),
which in our case gées

Ma, B, =Ha B, +RTIN(aa g, ), (3a)
a, =12, +RTln(ay ), (3b)

and
Us, =Hg, +RTIn(ag,). (3¢c)

It turns out that the aeities of the positie and n@aive ions alvays appear togetheeg., as in
the equation for the dissociation equilibrium:

Ve V-
aAw an _

an, B,

cf. Egs. (2) and (3). Because of this it is\e@nent to define mean ionic activities as:

Vi +v_
msus@ﬁumm% (4a)
with
VEv,t+v, (4b)
VHe S Vila, +V-Mg, (4c)
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and

al =ay ap . (4d)

=T v,

Hence, the dissociation equilibrium becomes:

ay
an, B,

=K.

Finally, if we define a mean mole fraction &% = x{*x"- it follows from Eq. (4d) that the mean
activity coefficient is gien by yy =y y"-.

We rext consider a model for the awdities of dilute electrolyte solutions. Since the
undissociated molecule is neutralz, +v_z_ = 0. If p; is the concentration of the ith ion, then
the fact that we start with a electrically neutral compound implies that

2 piez =0. (5)

Does electro-neutrality hold locally; i.e.eny near to one of the ions? Consider a statistical
model for the local charge densitBased on our work on the kinetic theory of gases, wavkno
that

Probabilityl] exp(—EnergykgT), (6)
and for electrical problems it is reasonable to assume that

Energy=ez¢(r) (7)

whereg(r) is the electrical potential around one of the ions in the solution, here assumed to be at
the origin of our coordinate system. Using these probabilities to moderate the local, density
see that local charge densityy) is

o(r) = .Z piez exp(-ez¢(r)/kgT) (8)

For a positive ion at the origin, we expect thafr) > 0 and hence, Eqg. (8) predicts a netess
negaive dhaige density in the local vicinity of our ion. This is the physical basis of the phenom-
ena of screening. If the electrostatic energies are small compared with thermal energies, i.e.,
ep(r) < kgT, we @an use the well known approximation for the exponential,

2

eX:-.1+x+X?+---, 9
in Eq. (8) to shav that
2le?
o(r) = —kB—eT or)+-, (10)

Winter Term 2010



Activities & Debye-Huckel Theory -18- Chemistry243

where

1

is called the ionic strength and has units of concentration (indeed, for 1-1 electrolytes it is simply
the concentration in molecules per urotume). Inobtaining Eq. (10) werall electro-neutrality
cf. Eqg. (5), was used to eliminate the leading order terms.

How much chage will be induced by having an ion (with chaQ) at the origin?
Gausss law grongly suggests that the induced dwsarcf. Eqgs. (8) or (10), exactly balance the
charge at the origin; i.e., local electro-neutrality will hold, and thus,

(00] 2 (00]
Q= —Idr o(r) = _4n.[0 drr2o(r) = %J’O dr r2e(r) (12)

where the second to last equality follows by switching to polar coordinates, and the final one by
using Eg. (10). In the absence of screening, the potential is simply Cosllamzxamely,

an=-2 (13)

Arer’

where ¢ is the electric permittivity of the sadmt. Hav will this change if the charge is
screened? d answer this requires some physics that is a bit beyond this ccamseinstead

‘Specifically as you will see in PHYS
242, you need to kmo Poissons equa-
tion for the electric potential due to a
chage distribution in a dielectric
medium; i.e.,

D20(r) = —o(r)/e.

When Eq. (8) is used for the cgarden-
sity, we ddtain what is known as the
nonlinear Poisson-Boltzmann equation,
which cannot be solved analytically for
all but 1-dimensional problemswhen
Eqg. (10) is used the linearized Poisson-
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we’ll simply guess the form of the screened potential, i.e.,

i _KDr

4rrer

or) = ) (14)

where the exponential accounts for the screeningcgnd known as the Debye screeningws
vector. The screening sets in on a length scal@pf 1/kp.

What is the screening lengthid answer this we’ll impose local electro-neutrality
cf. the last equality in Eq. (12); hence,

21e? _21e’Q 1

g *of =
Q EkBT I drr kaT K% '

(15)
Thus, by solving fokp, we e that
2€2| F2|
= =~/ —, 16
“o Q ekgT eRT (16)
where the second equality is obtained when the ionic strength and electrgs atearpressed

as mol/m® and the Braday,F, respectiely. For a 1:1 electrolyte in ater at 25C, this gés a
screening length of

1 3.04 0
AD:E— 7 (in A,

wherec is the molar salt concentration; hence, the cotintecloud around angiven ion in a

0.01M salt solution is about 5%)i|Aradius Ap = 30. 4?% but the cloud extends pend A, some-
what).

How much work was done on the system in placing the ion and the screening ions at
the origin? Clearly,

2
W = J'drqp(r)a(r) 477J‘ drrzqo(r)a(r)——slj;_[ dr r2g?(r) = - D}? . A7

where weve ggan switched to polar coordinates and used Egs. (10), (14), and{ha}, for a
mole of either of the ions, the work is just done is

_ NAKDe22i2
8me

Boltzmann or Debye-Huckel equation is
obtained; this can be solved in closed
form and gves the result presented in
the text.
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Of course, this is just another contribution to the non-PV work or chemical potential associated
with dissolving the ith ionic species. Hence,

NAKDezziz
RTlhhy =————— 18a
¢ 8¢ ( )
or
27 F272
Iny =-—04 __ " 4 (18b)

" 8mkgTe  87NARTe '

This is knavn as the Debye-Huckel limitingMaand is valid at lav concentrations (typicallyit
breaks down in the 0.005 to 0.01 M range). Note that the sign of the ionic charge vantrele
and that Iry; 012,

With Eq. (18) it is easy to work out the mean activity coefficient; specifically,

ko€ (v,Z2+v_Z2)

I = f 1
Ve 8rkgTe v (193)
_ KDe2
" 8rkgTe 27 (190)

where the second relation follows by noting that the undissociated molecule is neutral.
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6. Capillary Rise and Depression

Consider a tw phase system with a flat interface as shown in Fig. 1.

A

Phase |

Phase Il

FIG. 1
Since the tw phases are in equilibrium in the presence of a gravity field, the pressigs with
height,z; namely,

P1(2) = p1(0) - p102 (1)
in phase 1, and

P2(2) = p2(0) = po9z (2)

in phase 2, wherg; ) is the density in phase 1(2). Of course, at the iaterfhere assumed
flat) the pressures must be equal and

P1(0) = p2(0) = po. 3)

Now put a capillary tube into the system as shown in Fig. 2.
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Phase |

/
Phase || /\1 0

FIG. 2
The surface tensiony, between phase 1 and phase 2 wants the pressures between phades
to be unequal at the cwad interface (Wh?). Specificallyfor the comex surface shown in Fig.
2, we knaov that

2
po(=h) = pa(-h) = 2. @

The only way in which the pressure difference can be ashiis by moving the
curved interface to a meposition in the fluid. (Changing the pressure in ths gr liquid from
that of the surrounding material at the same heighildvcause material to flofrom the high to
low pressure regions until the pressures were equal at all points at the same Aéight)by
using our &pressions for the pressure dependence in the phaseg gvemheights [Egs. (1),
(2), and (3)] in Eqg. (4) we find that

2y
Po + p29h—(po + p10h) = R (5)

or

N A
Ra(p2—p1) Rdo,

h for p, > py, (6)

where the approximate expression is useful for liqaipev interbces. (Ifthe interface is con-
cave then the pressures in Eq. (4) must be switched and the sigthahges.)

Finally, if we write R, the radius of cumture of the interface, in terms df the
radius of the tube and the contact ar@lé follows that

_ 2y cosp)
dg(p2 = p1)

For a 45° contact angle in a capillary tube with ammh radius containing water
(v = 72. 75dynegcmthe capillaryrise will be 1. 05cm
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7. Problem Sets

Note that the due datesealast years. Thisyear’s will be announced in class and on the web
site.

7.1. Poblem Set 1

DUE: WednesdayJanuary 20, 2010

1. Engeland Reid, Problem P8.6
2. Engeland Reid, Problem P8.8
3. Engeland Reid, Problem P8.24

4. (Castellan, Problem 13.5) A stream of airublided slowly through liquid benzene in a flask
at 20.0C against an ambient pressure of 100.56 k&fterthe passage of 4.80L of ameasured

at 20.0C and 100.56 kFRefore it contains benzenepor it is found that 1.705 g of benzene
have een ®aporated. Assuminthat the air is saturated with benzene, calculate the equilibrium
vapor pressure of benzene at 20.0C.

5. (Castellan, Problem 13.9) Ethylene glyddhH,(OH), is commonly used as a permanent
antifreeze; assume that the mixture with water is ideal. Plot the freezing point of the mixture as a
function of the wlume percent of glycol in the mixture mixture. The densities ldp© 1.00

g/cn®, glycol, 1.11g/cm?, and AH ¢,(H,0) = 6009. 3/mol.
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7.2. Problem Set 2

DUE: WednesdayfFebruary 3, 2010

1. Engeland Reid, Problem P9.7
2. Engeland Reid, Problem P9.11
3. Engeland Reid, Problem P9.26

4. (Castellan, Problem 14.20) The disttibn coefficient of iodine betweedCl, and H,O is
Ccel,/Ch,o0 = K =85, whereg; is the molar concentration ¢f in the i'th phase.

a) If 90% of the iodine in 10@n? of aqueous solution is to be extracted in one step,
what volume ofCCl, is required?

b) Whatvolume of CCl, is required if tvo extractions, using equalolumes, are per
mitted?

C) If g is the fraction ofl , that is to remain in the water layer after n extractions using

equal wlumes ofCCl,, show that the limiting total volume o€CCl, needed as

Chemistry243

n - oo is K~1In(1/B) per unit volume of the aqueous layer.

5. (Castellan, Problem 15.4) From the melting points of the mixtures of Al and Cu, sketch the

melting point curve.

Mass % Cu

0

20

40

60

80

100

T(©)

660

600

540

610

930

1083

b) For copperT,, =1356K and AH$,(Cu) = 13. 05kJ/mol; for aluminumT,, = 933K and
AH?,((Al) = 10. 75kJ/mol. Sketch the ideal solubility curves and compare with theeeimen-

tal cune in @).
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7.3. Problem Set 3
DUE: Monday February 15, 2010

Engeland Reid, Problem P10.3
Engeland Reid, Problem P10.7
Engeland Reid, Problem P9.16
Engeland Reid, Problem P9.38

a » w0 N PE

CastellanProblem 16.5. A regular binary solution is defined by the equation
W =+ RTInx; +w(l-x)?

wherew is a constant.

a) Whatis the significance ofj2
b) Calculatehe activity coefficientsy (defined in terms of mole fractions).
C) At 25C, w=324J/mol for mixtures of benzene an€Cl,. Pot g, for

0< ch|4 <1
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7.4. Poblem Set 4
DUE: WednesdayMarch 10, 2010

1. (CastellanProblem 17.8) Consider the cell
Pt(s)|H,(g, 1 atm), H*(ag, 1M)|[Fe** (aq), Fe** (ag)|Pt(s),
given thatAg® = 0. 77V for

Fe* +e o Fée*.

a) If the measured potential of the cell is 0.712vkat is the ratio of concentrations of
Fe?* to Fe**? (Assume that the solutions are ideal.)

b) Whatis the ratio if the potential of the cell was 0.830V?

C) Plotthe fraction of total iron present &g** over the voltage range 0.65 V to 0.9 V.

2. (Castellanproblem 17.4) The Edison storage cell is symbolized as
Fe(s)|FeO(s)|KOH(ag, a)|Ni>Oz(s)|NiO(s)|Ni(s).

The half-cell reactions are

Ni,O3(s) + H,0O(l) +2e” - 2NiO(s) + 20H", Ag®=0.4v,
FeQ(s) + H,O(l) + 2e” — Fe(s) + 20H", Ae® =-0.8W.
a) Whatis the cell reaction?
b) How does the cell potential depend on the activit)KQfH?
C) How much electrical engy can be obtained per kilogram of the aetmaterials in
the cell?

3. (Castellanproblem 17.11)A 0.1 mol/L solution of NaCl is titrated with\gNQ;. The titra-

tion if followed potentiometricallyusing a silver wire as the indicating electrode and a suitable
reference electrode. Calculate the potential of the silver wire when the amdgiNGt added

is 50%, 90%, 99%, 99.9%, 100%, 100.1%, 101%, 110% and 150% of the stochiometric require-
ment (assume that the solution is ideal and ignore the change ioltimevof the solution).

Note that

DEQ agorng = 0-22%/,  AEQag = 0. 79/,

and thatK s, = 1. 7x 107'% for AgCl.

4. (Castellanproblem 18.15) Assuming that crystals form ay tabes having edge leng#
calculate the freezing point of ice consisting of small crystals veldithe freezing point of
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infinitely large crystals;To =273.1K. Assume that the intéacial tension is 2BN/m,
AH?, = 6. 0kJ/mol; V¢ =20cn/mol. Calculate for § = 10pm, 1um, O.1um 0.01pm, and

fus

0.001m.
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7.5. Poblem Set 5
DUE: Friday Monday March 29, 2010

1.

a k& 0N

Engeland Reid, Problem 18.24
Engeland Reid, Problem 18.26
Engeland Reid, Problem 18.36
Engeland Reid, Problem 18.40
Engeland Reid, Problem 18.37

Winter Term 2010
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8. Past Exams
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8.1. 2010Midterm Exam

8.1.1. INSTRUCTIONS

1. Nobooks or notes are permitted.
2. Calculatorsare permitted.
3. Answerall questions and shoall work clearly.
4, Thereare 4 questions and each is of equal value.
5. Besure to indicate the total number of exam books handed in on your exam book and on
the log sheet.
6. You may need the following data:
Useful Constants
Constant Ylue
Gas Constant, R 8.31442Kk 1 mole?
Boltzmanns Constantkg 1.381x 1023J/K
Speed of Light in ¥lcuum 2998x 10Pm/sec
Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107
Permittivity of vacuum 8854x 10 12C2Ntm™
Elementary charge, e, 1.602x 1071°C
1cal 4.184J
7. You may need the following results from calculus:
B dx Bdx 1 1
_ZInB/A, _:___l
.[ A X (BIA) .[ Ax2 A B
1 2
In(1+x) = x, and 1—x =1+x+x“+ " for x| <1
8. GoodLuck.
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1. (25%) Dene the Gibbs Phase rule. What is the maximum number of phases thist aoa two
component system?

2. (25%) Assume that Raowtlaw holds for both components of adwomponent solution.Show
how this leads to the forms of the chemical potentials of each component in the soMiiai.hap-
pens if the solute olge Henrys Law ove some limited range of concentratiorBe sure to explain
what the symbols mean!

3. (25%)

a) Derve the expression for the depression of the freezing point in an ideal solutiow.
is your expression modified if the solute is soluble in the solid phase?

b) 10gof an unknown compound is found toMer the freezing point of 100g ofater
(Tmert = 273. 1K, AH s = 6. 0kJ/mol, MW = 18. 01528/mol) by 5.0K. Whatis the
molecular weight of the compound®ould your answer be wrong if the compound
were ionic and fully ionized?

4. (25%)

a) Shav how the ideal P-X phase diagram arisés.particular show how the total pres-
sure can be expressed in terms of the solution composition or vapor composition.

b) Sketch the P-T phase diagram, label tla@ous regions, and use it to shbow frac-
tional distillation works.

C) Whatis an azeotrope and widoes it limit the utility of fractional distillation?
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8.2. 2010Final Exam

8.2.1. INSTRUCTIONS

1.

o g bk w D

Nobooks or notes are permitte@iranslation dictionaries and calculators are
permitted.

Answerall questions in the exam book and\statl work clearly.
Thereare 3 pages (including this one) and 5 questions, each of equal value.
Besure to indicate the total number of exam books handed in on book 1.

You may keep the exam.

Useful Constants

Constant Hlue
Gas Constant, R 8.31442K 1 mol™
Boltzmanns Constantkg 1.381x 1023J/K
Standard Atmosphere 1.01325x 10°Pa
Avogadro’s Number 60225x% 107
Faraday Constant 9. 648530% 10* coul/mol

You may need the following results from calculus:

a2 _ o B a2y, _ L0 amn _ astol]
J’_w e dx =V2rla, J’A X e dx = 2 De e 0

B aA2 +2 e—aA2/2 _ aBZ +2 e—aBZ/Z
J’A XBe—ax2/2dX — ( ) a2( ) ’

B dx Bdx 1 1
Ja = InB/A), Jve™a B

In(1+x) = x, and =1+x+x2+ " for x| < 1

GoodLuck.
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1. (20%) The Lindemann mechanism for unimolecular reactions of the form
A - Products

proposes:

« k
A" % Products

Determine the general form of the rate land shav under what circumstances it reduces
to first order kinetics.

2. (20%)

a) Briefly discuss the assumptions behind Eyring rate theasg known as
Activated Compl& or Transition State theorgnd shav how they lead to the
form of an elementary rate constant.

b) For an elementary bimolecular gas phase reactiony sbw to express the
Arrhenius actration enegy in terms of the parameters appearing in the acti-
vated compl& theory.

C) Shav what the actiated compl& theory predicts for the pressure depen-
dence of a rate constant.

d) UseDebye-Huclel theory to predict the dependence of the bimolecular rate
constant on charge and ionic strength.

e) Finally show how detailed balance arises in the Eyring approach.

3. (20%, FROM THE HOMEW ORK) (Castellan, problem 18.15) Assuming that crys-
tals form as tig cubes having edge lengéh calculate the freezing point of ice consisting
of small crystals relate o the freezing point of infinitely large crystalfy = 273. 1K.
Assume that the intdacial tension is 28N/m, AHS, = 6. 0kd/mol; V = 20cnt/mol.
Calculate the freezing point fér= 0. 001m.

4. (20%)
a) Derve the form for the diffusion limited rate constaINT: note that for
spherically symmetric functions, i.€.(x, y, z) = f(r) in polar coordinates,
0%f  9%f  9°f
+

2¢ =
- f_6x2 ay2+622
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%f 2 0f
= —+

a2 r or

b) (FROM THE HOMEW ORK: Reid and Engel, Problem P18.36) In enzyme
catalysis, the first stepvalves the binding of a reactant molecule (referred
to as a substrate) to a binding site on the enzymhehis binding is
extremely efficient (that is the equilibrium stronggvérs the enzyme-com-
plex over separate enzyme and substrate) and the formation of product is
rapid, then the rate of reaction could be diffusion limited. Estimate the
expected rate constant for afdgion controlled reaction using typicalues

for an enzyme @ = 107 cn?/s, and R = 404 and a small molecule sub-
(0]
strate D = 10°cn?/s andr = 5A).

5. (20%)
a) Whatare Langmuir and BET theories for absorption?
b) In particular for a suréce withgg binding sites per unit area, dexiexpres-

sions in the tw theories for the number of adsorbed molecules per unit area
as a function of the pressure of the gas next to the surface .



