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CHEMISTR Y 243: Intr oductory Physical Chemistry II.

1. GeneralInformation
Lectures: Monday& W ednesday 10:30 - 11:30 A.M.

Burnside Hall, 1B 23
Course Web Site: http://ronispc.chem.mcgill.ca/ronis/chem243

(Username: chem243; Password: Gibbs)

Professor: David Ronis
Office: Otto Maass Room 426
E-mail: David.Ronis@McGill.CA

Texts

Thomas Engel and Philip Reid,Thermodynamics, Statistical Thermodynamics, and Kinetics, 2nd
edition(Pearson Education, Inc., 2006)

J.R. Barrante,Applied Mathematics for Physical Chemistry, 3rd edition (Pearson Education, Inc.,
2004)

Supplementary Texts

1. G. W. Castellan,Physical Chemistry3rd edition (Benjamin Cummings Pub. Co., 1983)(Out
of print but excellent).
2. R.J. Silbey, R.A. Alberty and M.G. Bawendi,Physical Chemistry, 4th edition(John Wiley &
Sons, Inc., 2005).
3. GordonM. Barrow, Physical Chemistry.
4. R.Kubo,Thermodynamics(Physics orientation, advanced)

Grades

There will be approximately one problem set every 3-4 lectures, one midterm and a
final exam. Themidterm will be given at 18:00 on:

Thursday, February 18, 2010in Otto Maass 112 and 217 (a seating
plan will be posted).

Completion of the homework is mandatory. Most of the problems will not be graded, although
one or two problems may be chosen at random and graded. Solutions to the problem sets will be
posted on the course web page.You are strongly encouraged to do the homework. Theproblems
will cover many details not done in class and will prepare you for the exams. The exams will
involve extensive problem-solving and, in part, may contain problems from the homework!
The course grading scheme is:

Winter Term 2010



General Information -5- Chemistry243

Grade Distribution

Problems 10%

Midterm 40%

Final 50%
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CHEMISTR Y 243: TENTATIVE OUTLINE

Te xt Chapter
Reid Castellan

Date Topic

Lecture 1. Heterogeneous Equilibrium: The phase rule 8 12
Lecture 2. 8 12Phase diagrams of Simple systems: Clapeyron

and Clausius-Clapeyron equations

Lecture 3. Ideal Solutions 9 13
Lecture 4. Colligative properties 9 13

Lecture 5. Colligative properties (continued) 9 13
Lecture 6. Solutions of volatile components 9 14

Lecture 7. Lever-principle and fractional distillation 9 14
Lecture 8. Henry’s Law and solubility. 9 14

Lecture 9. Solubility calculations 9 14
Lecture 10. Electrolyte solutions 10 17

Lecture 11. Activities & Debye-Huckel Theory 10 17
Lecture 12. Electrochemistry: Electrochemicalcells 11 17

Lecture 13. Nernst equation and applications 11 17
Lecture 14. Surface Phenomena:Surface Tension, Wet-

ting, Properties of Small Particles, & Nucle-
ation

Lecture 15. Surface Adsorption: Langmuir and BET
Lecture 16. Diffusion Controlled Reactions 18 33

Lecture 17. Chemical Kinetics II: Detailed Balance & TST 18 33
Lecture 18. Chemical Kinetics II: Ionic Effects 19 32, 34

Lecture 19. Complex Mechanisms 19 32, 34
Lecture 20. ’’ ( continued) 19 32, 34

Lecture 21. Marcus Theory: Electron Transfer 19 32, 34

Note:

McGill Uni versity values academic integrity. Therefore all students must understand the meaning and conse-
quences of cheating, plagiarism and other academic offenses under the code of student conduct and disci-
plinary procedures (see www.mcgill.ca/integrity for more information).

In accord with McGill Uni versity’ s Charter of Students’ Rights, students in this course have the right to sub-
mit in English or in French any written work that is to be graded.

In the event of extraordinary circumstances beyond the University’ s control, the content and/or evaluation
scheme in this course is subject to change.
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2. PhaseEquilibrium

An important class of equilibria involves the different equilibria established between
different states of matter, e.g., solids, liquids, and gases. Aswe shall now show, such equilibria
are governed by very simple principles, essentially the same as those we worked out for chemical
equilibria.

1 2N N

Figure 1

Consider a system containing an arbitrary number of non-reacting components
placed in a constant pressure and temperature container (the space enclosed by the heavy lines in
the figure). When equilibrium is attained, each part of the system will have a certain number of
moles in each part.For example, if we divide the system up according to the dashed lines the
figure, there will beN1 moles of one component in the first part,N2 in the second, etc.

Since the entire system is at constantT, P, and number of moles of each component,
the Gibbs free energy, G, must be at a minimum at equilibrium. If so, consider what would hap-
pen if we changed the number of moles in the first two compartments by lettingN1 → N1 + dN
andN2 → N2 − dN. Clearly, we hav enot changed the total number of moles. However,

dG = (µCompartment 1− µCompartment 2)dN (1)

which will be nonzero (and hence G cannot be a minimum) unless

µCompartment 1= µCompartment 2, (2)

or, since the division into compartments was completely arbitrary, unless the chemical potential
of each component is the same in each part of the system. Note, that this is just a special exam-
ple of our criterion for chemical equilibrium for the trivial "chemical" reaction:

NCompartment 1
→
←NCompartment 2. (3)

Winter Term 2010
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Since, our preceding discussion only depended on the ability to have matter
exchanged between different parts of the system (but not on transfers to and from the surround-
ings), it will also hold for systems in which phase separation has occured, for example if there
was a liquid-vapor interface in our system, or if there was a precipitate at the bottom of the con-
tainer. Would it hold if there was a semipermiable membrane separating different parts of our
container?

In order to study some of the general consequences of these equilibrium conditions,
consider a system containingC components that have phase separated intoP phases. Applying
Eq. (2) to each component we see that

µ(1)
1

⋅
⋅
⋅

µ(1)
C

=
⋅
⋅
⋅
=

µ(2)
1

⋅
⋅
⋅

µ(2)
C

=
⋅
⋅
⋅
=

⋅
⋅
⋅
⋅
⋅

=
⋅
⋅
⋅
=

µ(P)
1

⋅
⋅
⋅

µ(P)
C ,

(4)

where µ( j )
i is the chemical potential of componenti in phasej . It is easy to see that there are

(P − 1)C conditions. Eachchemical potential depends onT andP (the same throughout the sys-
tem, WHY?) and on the composition of the phase in question (e.g., as we saw for dilute gases).
Since, we aren’t currently interested in extensive properties, we can characterize the composition
of each phase by the mole fractions,xi , of which there areC − 1 independent ones in each phase,
or P(C − 1) in total. Thus, including temperature and pressure, there are a total ofP(C − 1) + 2
unknowns to be determined by the (P − 1)C equations given in (4), and in general the system of
equations will be either over- or under-determined. Theextent to which this happens is obtained
by looking at the number of degrees of freedom,f , the difference between the number of
unknowns and equations; i.e.,

f = P(C − 1) + 2 − C(P − 1) = 2 + C − P. (5)

This simple result is known as the Gibbs Phase Rule.

As an example, suppose we have a one component system (C=1).According to Eq.
(5), if there is only a single phase,f = 2; i.e., we can pickT andP arbitrarily. If there are two
phases in equilibrium, thenf = 1; i.e., we can pick at most eitherT or P, but not both.Finally, f
vanishes if there are three phases in equilibrium, which implies that we can’t pick anything at the
so-called triple point.For pure water, the triple point occurs at 0.01C and 611 Pa. Finally, note
that while our simple counting arguments rule out over-determined solutions, they don’t always
guarantee the existence of solutions, e.g., as is found above the critical temperature in one-com-
ponent systems.

We next turn to a more quantitative analysis of the equilibrium between phases.
Suppose we have a one component system containing two phases (for concreteness, a liquid and
its vapor). Accordingto Eq. (5) we can pick one intensive quantity, e.g., the temperature,T, and
the pressure at coexistence will be determined.How does the coexistence pressure change if we
change the temperature? Since,

µliquid = µvapor (6)
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both before and after the change in temperature,

dµliquid = dµvapor. (7)

However, since for a one component system, µ= G/N,

dµi = −Si dT + Vi dP, (8)

whereSi andVi are the molar entropy and volume, respectively in phasei . By substituting Eq.
(8) into (7) and rearranging the result, it follows that




dP

dT

 Coexistence

=
S1 − S2

V1 − V2
=

∆S

∆V
=

∆H

T∆V
, (9)

where the last equality follows by noting that∆H = T∆S at equilibrium. Of course holds for any
two-phase, one-component equilibrium, and is known as the Clapeyron equation.For the liquid-
vapor equilibrium example,∆H is just the heat of vaporization. Whatis it for solid-liquid equi-
libria?

There are several approximations that follow from Eq. (9). For example, if we can
ignore the temperature dependences of∆H and∆V, then we can integrate both sides of (9) and
obtain

P2 − P1 ≈
∆H

∆V
ln(T2/T1) ≈

∆H∆T

T1∆V
, (10)

where the last approximation follows if∆T/T1 is small. This is a reasonable approximation for
cases where both phases are solids and/or liquids (and hence, their molar volumes don’t change
much with temperature).

Another approximation is obtained if one of the phases is a dilute gas and the other a
solid or liquid, then

∆V = VVapor − V2 ≈ VVapor ≈
RT

P
, (10)

which allows us to rewrite Eq. (9) as



d ln(P)

dT

 Coexistence

=
∆H

RT2
, (11)

which is known as the Clausius-Clapeyron equation. Compare this with the expression we
obtained for the temperature dependence of the equilibrium constant,KP. They are the same,
perhaps as expected since, we can view the process as a chemical reaction, e.g.,

liquid→
←vapor ,

for which the equilibrium would be determined fromP(T) = K p.
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Finally, With the further assumption that that∆H is independent of temperature, we
can integrate the Clausius-Clapeyron equation and show that the equilibrium vapor pressure of a
liquid or solid obeys (approximately)

P(T) = P(T0) exp




∆H

R



1

T0
−

1

T





, (12)

again consistent with thechemical equilibriumpoint of view. How would you use this result to
determine the normal boiling point of the material?

Winter Term 2010
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3. Minimum and Maximum Boiling Azeotropes: TheGibbs-Konovalov Theorem

As we discussed in class, a system where the temperature-composition phase dia-
gram has a minimum or maximum for some composition is called an azeotrope. Here we will
show that the composition of the vapor and liquid phases of azeotropes must be the same.This
result is called the Gibbs-Konovalov theorem, and is an sophisticated exercise in Maxwell rela-
tions, equilibrium conditions, and partial molar quantities.

For what follow, we will call the two components 1 and 2. Quantities pertaining to
the two phases will be distinguished by having a prime in the case of the vapor. Finally, the mole
fraction of 1 in the liquid and vapor phases arex1 andy1, respectively.

The phase rule tells us that a two-phase, binary mixture hasF = 2 + 2 − 2 = 2
degrees of freedom. One will be taken to be the pressure, which is held fixed. Theother will be
some convenient concentration variable. Ingeneral, the chemical potentials in either phase can
be viewed as functions of T,P, and a mole fraction (e.g.,x1 or y1). Hence,for arbitrary changes
of state:

dµi = 

∂µi

∂T

 P,x1

dT + 

∂µi

∂P

 T,x1

dP + 


∂µi

∂x1


 P,T

dx1. (1)

The first two partial derivatives may be rewritten by using Maxwell relations obtained from the
Gibbs free energy (recall,dG = −SdT+ VdP+ Σµi dNi ). Thus,

dµi = −Si dT + Vi dP + 


∂µi

∂x1


 P,T

dx1, (2)

where

Si ≡ 


∂S

∂Ni


 T,P,N j≠i

,

and

Vi ≡ 


∂V

∂Ni


 T,P,N j≠i

are the partial molar entropies and volumes, respectively.

Equation (2) must hold for either component in either phase (in the vapor phase, just
add primes to all quantities and changex1 to y1). Moreover, for changes in state along the coex-
istence curve,

dµi = dµ′
i i = 1, 2. (3)

If we use Eq. (2) in (3), two equations relating changes in T, P, x1 and y1 are obtained. In addi-
tion, for the case at handdP = 0, and thus, we find that

Winter Term 2010



Azeotropes -12- Chemistry 243

−(Si − S′
i )dT + 


∂µi

∂x1


 T,P

dx1 =




∂µ′
i

∂y1



 T,P

dy1, i = 1, 2. (4)

Next, we divide through bydx1, multiply the equation for component 1 byx1, the equation for
component 2 byx2 and add the results. This gives

−[x1(S1 − S′
1) + x2(S2 − S′

2)]


∂T

∂x1


 P,coex

+ x1


∂µ1

∂x1


 T,P

+ x2


∂µ2

∂x1


 T,P

=





x1





∂µ′
1

∂y1



 T,P

+ x2





∂µ′
2

∂y1



 T,P








∂y1

∂x1


 P,coex

.

(5)

The changes in the chemical potentials at constant T and P are not independent, but
are related through the Gibbs-Duhem equations,

x1dµ1 + x2dµ2 = 0 (6a)

and

y1dµ′
1 + y2dµ′

2 = 0. (6b)

Dividing Eqs. (6a) and (6b) bydx1 anddy2, respectively, and using the results in Eq. (5) shows
that

−[x1(S1 − S′
1) + x2(S2 − S′

2)]


∂T

∂x1


 P,coex

=




∂µ′
1

∂y1



 T,P



∂y1

∂x1


 coex




x1 −

x2y1

y2





(7)

=




∂µ′
1

∂y1



 T,P



∂y1

∂x1


 coex

(x1 − y1)

y2
, (8)

where the last equality is obtained by noting that the sum of the mole fractions in either phase is
unity.

The left hand side of the equation vanishes at a minimum or maximum of the T-X
phase diagram; hence, one of the factors on the right hand side must be zero.Thermodynamic
stability requirements (i.e., G is a minimum) can be used to show that
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

∂µ1′
∂x1


 T,P

> 0.

It is also easy to show, using the definitions of the mole fractions and the fact that the total num-
ber of moles of each type is constant, that



∂y1

∂x1


 coex

≠ 0.

Hence, at an azeotropic point,x1 = y1; i.e., the compositions of the liquid and vapor phases are
the same. This is called the Gibbs-Konovalov theorem. Notethat the derivation did not require
any specific properties of liquids or gases and our result will hold for any two-phase coexistence
in binary mixtures.

Finally, note that essentially the same manipulations can be used to show that




∂P

∂x1


 T,coex

=





∂µ′
1

∂y1



 T,P



∂y1

∂x1


 coex

(x1 − y1)

y2[x1(V1 − V ′
1) + x2(V2 − V ′

2)]
.

Hence, the P-X phase diagram will also have a minimum or maximum at the azeotropic compo-
sition.
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4. IdealEutectic Phase Diagrams

The ideal lead-antimony eutectic phase diagram is shown in the figure, and was cal-
culated assuming that the solids are completely immiscible and that the solution was ideal.The
liquid-solid coexistence lines are computed from the equilibrium conditions:

µ(0)
i (solid,T) = µ(0)

i (liquid, T) + RT ln(xi ), i = A, B. (1)

or using the fact that∆G(0)
fus(i) ≡ µ(0)

i (liquid, T) − µ(0)
i (solid,T) = 0 at the normal melting point,

T = T (i)
MP, of materiali , we can rewrite Eq. (1) as

ln(xi ) = ∫
T

T (i)
MP

∆H (i)
fus

RT2
≈

∆H (i)
fus

R





1

T (i)
MP

−
1

T




, (2)

where the last approximation follows by assuming the the heat of fusion is independent of tem-
perature.

The point where the two curves cross is called the Eutectic point.The question is
what happens below the eutectic temperature? From the point of view of the phase rule, or the
equilibrium conditions given in Eqs. (1) or (2), we could still have L+A, L+B, or A+B (i.e., a
mixture of the solid phases). Indeed, it is the last possibility which happens; WHY?

In order to answer this question, we must go back a few steps and remember that
under constant T,P,N conditions, the equilibrium state is the one with thelowest Gibbs free
energy; specifically if there are multiple local minima in G, it is the one that is lowest that should
be observed at equilibrium. This is what happens below the eutectic temperature.To see this,
consider the total free energy for the system (again for ideal solutions and immiscible solids):

G = n(s)
A µ(0)

A (solid,T) + n(s)
B µ(0)

B (solid,T)

+ n(l )
A [µ(0)

A (liquid,T) + RT ln(xA)] + n(l )
B [µ(0)

B (liquid,T) + RT ln(xB)] (3a)
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= NAµ(0)
A (solid,T) + NBµ(0)

B (solid,T)

+ n(l )
A [∆G(0)

fus(A,T) + RT ln(xA)] + n(l )
B [∆G(0)

fus(B,T) + RT ln(xB)], (3b)

wheren(s)
i , n(l )

i , and Ni are the number of moles ofi in the solid, liquid, and total, respectively.
Remembering that the total number of moles of each material remains constant, the equilibrium
states must be local minima ofG, and these are found by taking derivatives of Eq. (3b) with
respect ton(l )

A or n(l )
b and setting the result to zero. It is straightforward to show that this results

in Eq. (1).

As was discussed above, when deciding between different possibilities, it is neces-
sary to go back to Eq. (3) and find the local minimum with the lowest free energy. For our exam-
ple, consider the following two possibilities L+A or A+B. The latter obeys the liquid-solid equi-
librium condition for A, cf. Eq. (1) and hence, from Eq. (3b) we see that the states have free ener-
gies:

GA+B = NAµ(0)
A (solid,T) + NBµ(0)

B (solid,T) (4a)

and

GL+A = NAµ(0)
A (solid,T) + NBµ(0)

B (solid,T) + NB[∆G(0)
fus(B,T) + RT ln(xB)], (4b)

where we have set n(l )
A = n(l )

B = 0 for the A+B state andn(l )
B = NB for the L+A state. Thus, L+A

state will be the equilibrium one as long as

∆G(0)
fus(B,T)

RT
+ ln(xB) < 0  (5)

or, approximately, as long as

ln(xB) <
∆H fus

R





1

T (B)
MP

−
1

T




, (6)

which, cf. Eq. (2), breaks down below the L+B coexistence line. Thus, since all points on the
L+A coexistence line are below the L+B coexistence line below the eutectic temperature, there
the L+A state has a higher free energy than A+B state.Clearly, there is nothing special about the
notation for A, and hence, exactly the same conclusion can be drawn for B. Thus we see that the
solid mixture is the minimum free energy solution below the eutectic temperature.Finally, while
we have used ideal solutions in this example, you can show that the same argument still holds for
a nonideal solution* .

* To do this consider how Eqs. (1) and (3b) would have to be modified for the nonideal
case, and what are the signs of the various terms in different parts of the phase diagram.
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5. Electrolyte Solutions: Activity Coefficients and Debye-Huckel Theory

To understand the thermodynamics of electrolyte solutions, we have to understand
how nature tries to keep systems electrically neutral. (WHY?). In particular, this leads to some
additional definitions for the chemical potentials and activities. Considerthe electrolyte dissocia-
tion

Az+
ν +

Bz−
ν −

→ ν + Az+ +ν −Bz−, (1)

whereν i is the stochiometric coefficient of the ith ion which has charge ezi , i = + or −, wheree
is the magnitude of the charge on an electron.

There is some ambiguity in how to think about the solution, i.e., as comprised of dis-
sociated ions or of undissociated molecules.Of course, in reality an equilibrium for Eq. (1) will
be established, and thus,

µAν +
Bν −

= ν +µAz+ +ν −µBz− . (2)

We’v e seen that chemical potentials can be written in terms of activities as µi = µo
i + RT ln(ai ),

which in our case gives

µAν +
Bν −

= µo
Aν +

Bν −
+ RT ln(aAν +

Bν −
), (3a)

µAν +
= µo

Aν +
+ RT ln(aAν +

), (3b)

and

µBν −
= µo

Bν −
+ RT ln(aBν −

). (3c)

It turns out that the activities of the positive and negative ions always appear together, e.g., as in
the equation for the dissociation equilibrium:

aν +
Aν −

aν −
Bν −

aAν +
Bν −

= K ,

cf. Eqs. (2) and (3). Because of this it is convenient to define mean ionic activities as:

µ± ≡
ν +µAν +

+ν −µBν −

ν
≡ µo

± + RT ln a±, (4a)

with

ν ≡ ν + +ν −, (4b)

ν µo
± ≡ ν +µo

Aν +
+ν −µo

Bν −
, (4c)
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and

aν
± ≡ aν +

Aν +
aν −

Bν −
. (4d)

Hence, the dissociation equilibrium becomes:

aν
±

aAν +
Bν −

= K .

Finally, if we define a mean mole fraction asxν
± ≡ xν +

+ xν −
− it follows from Eq. (4d) that the mean

activity coefficient is given by γ ν
± ≡ γ ν +

+ γ ν −
− .

We next consider a model for the activities of dilute electrolyte solutions. Since the
undissociated molecule is neutral,ν +z+ +ν −z− = 0. If ρ i is the concentration of the ith ion, then
the fact that we start with a electrically neutral compound implies that

i
Σ ρ i ezi = 0. (5)

Does electro-neutrality hold locally; i.e., very near to one of the ions? Consider a statistical
model for the local charge density. Based on our work on the kinetic theory of gases, we know
that

Probability∝ exp(−Energy/kBT), (6)

and for electrical problems it is reasonable to assume that

Energy= eziφ(r ) (7)

whereφ(r ) is the electrical potential around one of the ions in the solution, here assumed to be at
the origin of our coordinate system. Using these probabilities to moderate the local density, we
see that local charge density,σ (r ) is

σ (r ) =
i
Σ ρ i ezi exp(−eziφ(r )/kBT) (8)

For a positive ion at the origin, we expect thatφ(r ) > 0  and hence, Eq. (8) predicts a net excess
negative charge density in the local vicinity of our ion. This is the physical basis of the phenom-
ena of screening. If the electrostatic energies are small compared with thermal energies, i.e.,
eφ(r ) << kBT, we can use the well known approximation for the exponential,

ex ≈ 1 + x +
x2

2
+ ..., (9)

in Eq. (8) to show that

σ (r ) ≈ −
2Ie2

kBT
φ(r ) + ..., (10)
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where

I ≡
1

2 i
Σ ρ i z

2
i (11)

is called the ionic strength and has units of concentration (indeed, for 1-1 electrolytes it is simply
the concentration in molecules per unit volume). Inobtaining Eq. (10) overall electro-neutrality,
cf. Eq. (5), was used to eliminate the leading order terms.

How much charge will be induced by having an ion (with charge Q) at the origin?
Gauss’s law strongly suggests that the induced charge, cf. Eqs. (8) or (10), exactly balance the
charge at the origin; i.e., local electro-neutrality will hold, and thus,

Q = − ∫ dr σ (r ) = −4π ∫
∞
0

dr r2σ (r ) ≈
2Ie2

kBT ∫
∞
0

dr r2φ(r ) (12)

where the second to last equality follows by switching to polar coordinates, and the final one by
using Eq. (10). In the absence of screening, the potential is simply Coulomb’s law; namely,

φ(r ) =
Q

4π εr
, (13)

where ε is the electric permittivity of the solvent. How will this change if the charge is
screened? To answer this requires some physics that is a bit beyond this course* and instead

*Specifically, as you will see in PHYS
242, you need to know Poisson’s equa-
tion for the electric potential due to a
charge distribution in a dielectric
medium; i.e.,

∇ 2φ(r ) = −σ (r )/ε .

When Eq. (8) is used for the charge den-
sity, we obtain what is known as the
nonlinear Poisson-Boltzmann equation,
which cannot be solved analytically for
all but 1-dimensional problems.When
Eq. (10) is used the linearized Poisson-
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we’ll simply guess the form of the screened potential, i.e.,

φ(r ) =
Q

4π εr
e−κ Dr , (14)

where the exponential accounts for the screening andκ D is known as the Debye screening wav e-
vector. The screening sets in on a length scale ofλ D = 1/κ D.

What is the screening length?To answer this we’ll impose local electro-neutrality,
cf. the last equality in Eq. (12); hence,

Q =
2Ie2Q

ε kBT ∫
∞
0

dr re−κ Dr =
2Ie2Q

ε kBT

1

κ 2
D

. (15)

Thus, by solving forκ D, we see that

κ D =√  2e2I

ε kBT
=√ 2F2I

ε RT
, (16)

where the second equality is obtained when the ionic strength and electron charge are expressed
as mol/m3 and the Faraday,F , respectively. For a 1:1 electrolyte in water at 25C, this gives a
screening length of

λ D =
1

κ D
=

3. 04

c1/2
(in A

o
),

wherec is the molar salt concentration; hence, the counter-ion cloud around any giv en ion in a

0.01M salt solution is about 50 A
o

in radius (λ D = 30. 4A
o
, but the cloud extends beyond λ D some-

what).

How much work was done on the system in placing the ion and the screening ions at
the origin? Clearly,

W = ∫ dr φ(r )σ (r ) = 4π ∫
∞
0

dr r2φ(r )σ (r ) = −
8π Ie2

kBT ∫
∞
0

dr r2φ2(r ) = −
κ DQ2

8π ε
, (17)

where we’ve again switched to polar coordinates and used Eqs. (10), (14), and (16).Thus, for a
mole of either of the ions, the work is just done is

−
NAκ De2z2

i

8π ε
.

Boltzmann or Debye-Huckel equation is
obtained; this can be solved in closed
form and gives the result presented in
the text.
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Of course, this is just another contribution to the non-PV work or chemical potential associated
with dissolving the ith ionic species. Hence,

RT lnγi = −
NAκ De2z2

i

8π ε
(18a)

or

lnγi = −
κ De2z2

i

8πkBTε
= −

κ DF2z2
i

8πNARTε
. (18b)

This is known as the Debye-Huckel limiting law and is valid at low concentrations (typically, it
breaks down in the 0.005 to 0.01 M range). Note that the sign of the ionic charge is irrelevant
and that lnγi ∝ I 1/2.

With Eq. (18) it is easy to work out the mean activity coefficient; specifically,

lnγ± = −
κ De2

8πkBTε
(ν +z2

+ +ν −z2
−)

ν
, (19a)

=
κ De2

8πkBTε
z+z−, (19b)

where the second relation follows by noting that the undissociated molecule is neutral.
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6. Capillary Rise and Depression

Consider a two phase system with a flat interface as shown in Fig. 1.

Phase I

Phase II

z

FIG. 1
Since the two phases are in equilibrium in the presence of a gravity field, the pressure varies with
height,z; namely,

p1(z) = p1(0) − ρ1gz (1)

in phase 1, and

p2(z) = p2(0) − ρ2gz (2)

in phase 2, whereρ1(2) is the density in phase 1(2). Of course, at the interface (here assumed
flat) the pressures must be equal and

p1(0) = p2(0) ≡ p0. (3)

Now put a capillary tube into the system as shown in Fig. 2.
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h

Phase I

Phase II θ

FIG. 2
The surface tension,γ , between phase 1 and phase 2 wants the pressures between the two phases
to be unequal at the curved interface (why?). Specifically, for the convex surface shown in Fig.
2, we know that

p2(−h) − p1(−h) =
2γ
R

. (4)

The only way in which the pressure difference can be achieved is by moving the
curved interface to a new position in the fluid. (Changing the pressure in the gas or liquid from
that of the surrounding material at the same height would cause material to flow from the high to
low pressure regions until the pressures were equal at all points at the same height).Thus, by
using our expressions for the pressure dependence in the phases at any giv en heights [Eqs. (1),
(2), and (3)] in Eq. (4) we find that

p0 + ρ2gh− (p0 + ρ1gh) =
2γ
R

(5)

or

h =
2γ

Rg(ρ2 − ρ1)
≈

2γ
Rgρ2

for ρ2 >> ρ1, (6)

where the approximate expression is useful for liquid-vapor interfaces. (Ifthe interface is con-
cave then the pressures in Eq. (4) must be switched and the sign ofh changes.)

Finally, if we write R, the radius of curvature of the interface, in terms ofd, the
radius of the tube and the contact angleθ , it follows that

h = −
2γ cos(θ )

dg(ρ2 − ρ1)

For a 45o contact angle in a capillary tube with a 1mm radius containing water
(γ = 72. 75dynes/cm the capillaryrisewill be 1. 05cm
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7. Problem Sets

Note that the due dates are last year’s. Thisyear’s will be announced in class and on the web
site.

7.1. Problem Set 1

DUE: Wednesday, January 20, 2010

1. Engeland Reid, Problem P8.6

2. Engeland Reid, Problem P8.8

3. Engeland Reid, Problem P8.24

4. (Castellan, Problem 13.5) A stream of air is bubbled slowly through liquid benzene in a flask
at 20.0C against an ambient pressure of 100.56 kPa. Afterthe passage of 4.80L of air, measured
at 20.0C and 100.56 kPa before it contains benzene vapor, it is found that 1.705 g of benzene
have been evaporated. Assumingthat the air is saturated with benzene, calculate the equilibrium
vapor pressure of benzene at 20.0C.

5. (Castellan, Problem 13.9) Ethylene glycol,C2H4(OH)2 is commonly used as a permanent
antifreeze; assume that the mixture with water is ideal. Plot the freezing point of the mixture as a
function of the volume percent of glycol in the mixture mixture. The densities are:H2O 1.00
g/cm3, glycol, 1.11g/cm3, and∆H fus(H2O) = 6009. 5J/mol.
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7.2. Problem Set 2

DUE: Wednesday, February 3, 2010

1. Engeland Reid, Problem P9.7

2. Engeland Reid, Problem P9.11

3. Engeland Reid, Problem P9.26

4. (Castellan, Problem 14.20) The distribution coefficient of iodine betweenCCl4 and H2O is
cCCl4/cH2O ≡ K = 85, whereci is the molar concentration ofI2 in the i’th phase.

a) If 90% of the iodine in 100cm3 of aqueous solution is to be extracted in one step,
what volume ofCCl4 is required?

b) Whatvolume ofCCl4 is required if two extractions, using equal volumes, are per-
mitted?

c) If β is the fraction ofI2 that is to remain in the water layer after n extractions using
equal volumes ofCCl4, show that the limiting total volume ofCCl4 needed as
n → ∞ is K−1 ln(1 /β ) per unit volume of the aqueous layer.

5. (Castellan, Problem 15.4) From the melting points of the mixtures of Al and Cu, sketch the
melting point curve.

Mass % Cu 0 20 40 60 80 100
T (C) 660 600 540 610 930 1083

b) For copper, Tm = 1356K and ∆Ho
fus(Cu) = 13. 05kJ/mol; for aluminumTm = 933K and

∆Ho
fus(Al) = 10. 75kJ/mol. Sketch the ideal solubility curves and compare with the experimen-

tal curve in (a).
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7.3. Problem Set 3

DUE: Monday, February 15, 2010

1. Engeland Reid, Problem P10.3

2. Engeland Reid, Problem P10.7

3. Engeland Reid, Problem P9.16

4. Engeland Reid, Problem P9.38

5. Castellan,Problem 16.5. A regular binary solution is defined by the equation

µi = µo
i + RT ln xi + w(1 − xi )

2

wherew is a constant.

a) Whatis the significance of µoi ?

b) Calculatethe activity coefficients,γi (defined in terms of mole fractions).

c) At 25C, w = 324J/mol for mixtures of benzene andCCl4. Plot γCCl4 for
0 ≤ xCCl4 ≤ 1.
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7.4. Problem Set 4

DUE: Wednesday, March 10, 2010

1. (Castellan,Problem 17.8) Consider the cell

Pt(s)|H2(g, 1 atm), H+(aq, 1M)||Fe3+(aq), Fe2+(aq)|Pt(s),

given that∆ε o = 0. 771V for

Fe3+ + e− → Fe2+.

a) If the measured potential of the cell is 0.712 V, what is the ratio of concentrations of
Fe2+ to Fe3+? (Assume that the solutions are ideal.)

b) Whatis the ratio if the potential of the cell was 0.830V?

c) Plotthe fraction of total iron present asFe3+ over the voltage range 0.65 V to 0.9 V.

2. (Castellan,problem 17.4) The Edison storage cell is symbolized as

Fe(s)|FeO(s)|KOH(aq, a)|Ni2O3(s)|NiO(s)|Ni(s).

The half-cell reactions are

Ni2O3(s) + H2O(l ) + 2e− → 2NiO(s) + 2OH−, ∆ε o = 0. 4V,

FeO(s) + H2O(l ) + 2e− → Fe(s) + 2OH−, ∆ε o = −0. 87V.

a) Whatis the cell reaction?

b) How does the cell potential depend on the activity ofKOH?

c) How much electrical energy can be obtained per kilogram of the active materials in
the cell?

3. (Castellan,problem 17.11)A 0.1 mol/L solution of NaCl is titrated withAgNO3. The titra-
tion if followed potentiometrically, using a silver wire as the indicating electrode and a suitable
reference electrode. Calculate the potential of the silver wire when the amount ofAgNO3 added
is 50%, 90%, 99%, 99.9%, 100%, 100.1%, 101%, 110% and 150% of the stochiometric require-
ment (assume that the solution is ideal and ignore the change in the volume of the solution).
Note that

∆ε o
Cl−|AgCl|Ag = 0. 222V, ∆ε o

Ag+|Ag = 0. 799V,

and thatKsp = 1. 7× 10−10 for AgCl.

4. (Castellan,problem 18.15) Assuming that crystals form as tiny cubes having edge lengthδ ,
calculate the freezing point of ice consisting of small crystals relative to the freezing point of
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infinitely large crystals;T0 = 273. 15K . Assume that the inter-facial tension is 25mN/m,
∆Ho

fus = 6. 0kJ/mol; Vs = 20cm3/mol. Calculate for δ = 10µm, 1µm, 0. 1µm 0. 01µm, and
0. 001µm.
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7.5. Problem Set 5

DUE: Friday, Monday, March 29, 2010

1. Engeland Reid, Problem 18.24

2. Engeland Reid, Problem 18.26

3. Engeland Reid, Problem 18.36

4. Engeland Reid, Problem 18.40

5. Engeland Reid, Problem 18.37
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8. Past Exams
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8.1. 2010Midterm Exam

8.1.1. INSTRUCTIONS

1. Nobooks or notes are permitted.

2. Calculatorsare permitted.

3. Answerall questions and show all work clearly.

4. Thereare 4 questions and each is of equal value.

5. Besure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants

Constant Value

Gas Constant, R 8.31442J K−1 mole−1

Boltzmann’s Constant,kB 1. 381× 10−23J/K
Speed of Light in Vacuum 2.998× 108m/sec
Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1. 01325× 105Pa
Av ogadro’s Number 6.0225× 1023

Permittivity of vacuum 8.854× 10−12C2N−1m−2

Elementary charge, e, 1. 602× 10−19C
1 cal 4.184J

7. You may need the following results from calculus:

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + ... for |x| << 1.

8. GoodLuck.
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1. (25%) Derive the Gibbs Phase rule. What is the maximum number of phases that coexist in a two
component system?

2. (25%) Assume that Raoult’s law holds for both components of a two component solution.Show
how this leads to the forms of the chemical potentials of each component in the solution.What hap-
pens if the solute obeys Henry’s Law over some limited range of concentration?Be sure to explain
what the symbols mean!

3. (25%)

a) Derive the expression for the depression of the freezing point in an ideal solution.How
is your expression modified if the solute is soluble in the solid phase?

b) 10gof an unknown compound is found to lower the freezing point of 100g of water
(Tmelt = 273. 15K , ∆H fus = 6. 01kJ/mol, MW = 18. 01528g/mol) by 5.0K. Whatis the
molecular weight of the compound?Would your answer be wrong if the compound
were ionic and fully ionized?

4. (25%)

a) Show how the ideal P-X phase diagram arises.In particular, show how the total pres-
sure can be expressed in terms of the solution composition or vapor composition.

b) Sketch the P-T phase diagram, label the various regions, and use it to show how frac-
tional distillation works.

c) Whatis an azeotrope and why does it limit the utility of fractional distillation?
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8.2. 2010Final Exam

8.2.1. INSTRUCTIONS

1. Nobooks or notes are permitted.Translation dictionaries and calculators are
permitted.

2. Answerall questions in the exam book and show all work clearly.

3. Thereare 3 pages (including this one) and 5 questions, each of equal value.

4. Besure to indicate the total number of exam books handed in on book 1.

5. You may keep the exam.

6.

Useful Constants

Constant Value

Gas Constant, R 8.31442J K−1 mol−1

Boltzmann’s Constant,kB 1. 381× 10−23J/K
Standard Atmosphere 1. 01325× 105Pa
Av ogadro’s Number 6.0225× 1023

Faraday Constant,F 9. 6485309× 104 coul/mol

7. You may need the following results from calculus:

∫
∞
−∞

e−ax2/2dx = √  2π/a, ∫
B

A
x e−ax2/2dx =

1

a


e−aA2/2 − e−aB2/2


,

∫
B

A
x3e−ax2/2dx =

(aA2 + 2)e−aA2/2 − (aB2 + 2)e−aB2/2

a2
,

∫
B

A

dx

x
= ln(B/A), ∫

B

A

dx

x2
=

1

A
−

1

B
,

ln(1 + x) ≈ x, and
1

1 − x
≈ 1 + x + x2 + ... for |x| << 1.

8. GoodLuck.
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1. (20%) The Lindemann mechanism for unimolecular reactions of the form

A → Products

proposes:

A + M

k1
→
←
k−1

A* + M

A* k2
→ Products

Determine the general form of the rate law and show under what circumstances it reduces
to first order kinetics.

2. (20%)

a) Briefly discuss the assumptions behind Eyring rate theory, also known as
Activated Complex or Transition State theory, and show how they lead to the
form of an elementary rate constant.

b) For an elementary bimolecular gas phase reaction, show how to express the
Arrhenius activation energy in terms of the parameters appearing in the acti-
vated complex theory.

c) Show what the activated complex theory predicts for the pressure depen-
dence of a rate constant.

d) UseDebye-Huckel theory to predict the dependence of the bimolecular rate
constant on charge and ionic strength.

e) Finally, show how detailed balance arises in the Eyring approach.

3. (20%, FROM THE HOMEW ORK) (Castellan, problem 18.15) Assuming that crys-
tals form as tiny cubes having edge lengthδ , calculate the freezing point of ice consisting
of small crystals relative to the freezing point of infinitely large crystals;T0 = 273. 15K .
Assume that the inter-facial tension is 25mN/m, ∆Ho

fus = 6. 0kJ/mol; Vs = 20cm3/mol.
Calculate the freezing point forδ = 0. 001µm.

4. (20%)

a) Derive the form for the diffusion limited rate constant.HINT: note that for
spherically symmetric functions, i.e.,f (x, y, z) = f (r ) in polar coordinates,

∇ 2 f ≡
∂2 f

∂x2
+

∂2 f

∂y2
+

∂2 f

∂z2
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=
∂2 f

∂r 2
+

2

r

∂ f

∂r

b) (FROM THE HOMEW ORK: Reid and Engel, Problem P18.36) In enzyme
catalysis, the first step involves the binding of a reactant molecule (referred
to as a substrate) to a binding site on the enzyme.If this binding is
extremely efficient (that is the equilibrium strongly favors the enzyme-com-
plex over separate enzyme and substrate) and the formation of product is
rapid, then the rate of reaction could be diffusion limited. Estimate the
expected rate constant for a diffusion controlled reaction using typical values

for an enzyme (D = 10−7 cm2/s, and R = 40A
o
) and a small molecule sub-

strate (D = 10−5cm2/s andr = 5A
o
).

5. (20%)

a) Whatare Langmuir and BET theories for absorption?

b) In particular, for a surface withqs binding sites per unit area, derive expres-
sions in the two theories for the number of adsorbed molecules per unit area
as a function of the pressure of the gas next to the surface .


