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To my parents



PREFACE

My aim in this book is to give an elementary treatment of linear control

theory with an Hoo optimality criterion. The systems are all linear, time-

invariant, and finite-dimensional and they operate in continuous time. The book

has been used in a one-semester graduate course, with only a few prerequisites:

classical control theory, linear systems (state-space and input-output viewpoints),

and a bit of real and complex analysis.

Only one problem is solved in this book: how to design a controller which

minimizes the Hoo-norm of a pre-designated closed-loop transfer matrix. The

Hoo-norm of a transfer matrix is the maximum over all frequencies of its largest

singular value. In this problem the plant is fixed and known, although a certain

robust stabilization problem can be recast in this form. The general robust per-

formance problem - how to design a controller which is Hoo-optimal for the worst

plant in a pre-specified set - is as yet unsolved.

The book focuses on the mathematics of Hoo control. Generally speaking,

the theory is developed in the input-output (operator) framework, while computa-

tional procedures are presented in the state-space framework. However, I have

compromised in some proofs: if a result is required for computations and if both

operator and state-space proofs are available, I have usually adopted the latter.

The book contains several numerical examples, which were performed using PC-

MATLAB and the Control Systems Toolbox. The primary purpose of the exam-

ples is to illustrate the theory, although two are examples of (not entirely realis-

tic) Hoo designs. A good project for the future would be a collection of case stu-

dies of Hoo designs.

Chapter 1 motivates the approach by looking at two example control prob-

lems: robust stabilization and wideband disturbance attenuation. Chapter 2 col-

lects some elementary concepts and facts concerning spaces of functions, both

time-domain and frequency domain. Then the main problem, called the standard

problem, is posed in Chapter 3. One example of the standard problem is the

model-matching problem of designing a cascade controller to minimize the error
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between the input-output response of a plant and that of a model. In Chapter 4

the very useful parametrization due to Youla, Jabr, and Bongiorno (1976) is used

to reduce the standard problem to the model-matching problem. The results in

Chapter 4 are fairly routine generalizations of those in the expert book by

Vidyasagar (1985a).

Chapter 5 introduces some basic concepts about operators on Hilbert space

and presents some useful facts about Hankel operators, including Nehari's

theorem. This material permits a solution to the scalar-valued model-matching

problem in Chapter 6. The matrix-valued problem is much harder and requires a

preliminary chapter, Chapter 7, on factorization theory. The basic factorization

theorem is due to Bart, Gohberg, and Kaashoek (1979); its application yields

spectral factorization, inner-outer factorization, and J -spectral factorization.

This arsenal together with the geometric theory of Ball and Helton (1983) is used

against the matrix-valued problem in Chapter 8; actually, only nearly optimal

solutions are derived.

Thus Chapters 4 to 8 constitute a theory of how to compute solutions to the

standard problem. But the Hoo approach offers more than this: it yields qualita-

tive and quantitative results on achievable performance, showing the trade-offs

involved in frequency-domain design. Three examples of such results are

presented in the final chapter.

I chose to omit three elements of the theory: a proof of Nehari's theorem,

because it would take us too far afield; a proof of the main existence theorem, for

the same reason; and the theory of truly (rather than nearly) optimal solutions,

because it's too hard for an elementary course.

It is a pleasure to express my gratitude to three colleagues: George Zames,

Bill Helton, and John Doyle. Because of George's creativity and enthusiasm I

became interested in the subject in the first place. From Bill I learned some

beautiful operator theory. And from John I learned "the big picture" and how to

compute using state-space methods. I am also grateful to John for his invitation

to participate in the ONR/Honeywell workshop (1984). The notes from that

workshop led to a joint expository paper, which led in turn to this book.
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I am also very grateful to Linda Espeut for typing the first draft into the

computer and to John Hepburn for helping me with unix, troff, pic, and grap.

Toronto

May, 1986

Bruce A. Francis
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IX

The transfer matrix corresponding to the state-space realization

(A , B, C, D) is denoted [A , B , C, D ], i.e.

[A, B, C, D] := D + C (8 -A tlB

Following is a collection of useful operations on transfer matrices using this data

structure:

[A, B, C, D] = [T-1AT, T-1B, CT, D]

[A, B, C, D]~ = [-A T , -C T, B T, D T]

[A l' B v C l' D 1]X [A 2' B 2' C 2' D 2]

[[~I B~~,], [B~:,], (GI DIG,I, DID,]

[ [B~ ~, : 1], [B: ~ , ], (D1G , G 1], DID, ]

[A l' B v C l' D 1] + [A 2' B 2' C 2' D 2]

= [[~I :,J, [~:].(GI G,I, DI+D, ]
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CHAPTER 1

INTRODUCTION

This course is about the design of control systems to meet frequency-domain

performance specifications. This introduction presents two example problems by

way of motivating the approach to be developed in the course. We shall restrict

attention to single-input, single-output systems for simplicity.

To begin, we need the Hardy space Hoo' This consists of all complex-valued

functions F (s ) of a complex variable s which are analytic and bounded in the

open right half-plane, Re s >0; bounded means that there is a real number b

such that

I F (s ) I ::; b, Re s >0 .

The least such bound b is the Hoo-norm of F, denoted IIF 1100' Equivalently

IIF 1100 := sup { I F (s) I : Re s >o} . (1)

Let's focus on real-rational functions, Le. rational functions with real

coefficients. The subset of Hoo consisting of real-rational functions will be

denoted by RHoo' If F (s) is real-rational, then F ERHoo if and only if F is

proper ( I F (00) I is finite) and stable (F has no poles in the closed right half-

plane, Re s 20). By the maximum modulus theorem we can replace the open

right half-plane in (1) by the imaginary axis:

IIF 1100 = sup { IF (jw) I : wER} . (2)

To appreciate the concept of Hoo-norm in familiar terms, picture the Nyquist plot

of F (s). Then (2) says that IIF 1100equals the distance from the origin to the

farthest point on the Nyquist plot.

We now look at two examples of control objectives which are characterizable

as Hoo-norm constraints.
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Figure 1.1. Single-loop feedback system
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Example 1.

The first example uses a baby version of the small gain theorem. Consider

the feedback system in Figure 1. Here P (s) and K (s) are transfer functions

and are assumed to be real-rational, proper, and stable. For well-posedness we

shall assume that P or K (or both) is strictly proper (equal to zero at s =(0).
The feedback system is said to be internally stable if the four transfer functions

from v 1 and v 2 to uland u 2 are all stable (they are all proper because of the

assumptions on P and K). For example, the transfer function from v 1 to u 1

equals (l-PK t1
• The Nyquist criterion says that the feedback system is inter-

nally stable if and only if the Nyquist plot of PK doesn't pass through or encir-

cle the point s =1. So a sufficient condition for internal stability is the small

gain condition IIPK 1100<1.
Let's extend this idea to the problem of robust stabilization. The block

diagram in Figure 2a shows a plant and controller with transfer functions

P (s )+~P (s ) and K (s ) respectively; P represents the nominal plant and ~P

an unknown perturbation, usually due to unmodeled dynamics or parameter vari-

ations. Suppose, for simplicity, that P, ~P, and K are real-rational, P and

~P are strictly proper and stable, and K is proper. Suppose also that the feed-

back system is internally stable for ~P =0. How large can I ~P I be so that

internal stability is maintained?

One method which is used to obtain a transfer function model is a frequency

response experiment. This yields gain and phase estimates at several frequencies,

which in turn provide an upper bound for I ~P (jw) I at several values of w.
Suppose R is a radius function belonging to RHoo and bounding the perturba-

tion ~P in the sense that

I ~P(jw) I < I R (jw) I for all O:::;w:::;oo,

or equivalently

(3)

How large can I R I be so that internal stability is maintained?
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Figure 1.2c. After loop transformation
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Simple loop transformations lead from Figure 2a to Figure 2b to Figure 2c.

Since the nominal feedback system is internally stable, K (l-PK t1ERHoo. Our

baby version of the small gain theorem gives that the system in Figure 2c will be

internally stable if

(4)

In view of (3) a sufficient condition for (4) is

(5)

We just used the sub-multiplicative property of the Hoo-norm:

We conclude that an Hoo-norm bound on a weighted closed-loop transfer func-

tion, i.e. condition (5), is sufficient for robust stability.

Example 2.

For the second example we need another Hardy space, H2• It consists of all

complex-valued functions F (8 ) which are analytic in the open right half-plane

and satisfy the condition

[ ]

1/2

sup (21ft1 j I F(e+jw) 12dw < 00.
e>o -00

The left-hand side of this inequality is defined to be the H2-norm of F, IIF 112'

Again, let's focus on real-rational functions. A real-rational function belongs to

RH2 if and only if it's stable and strictly proper. For such a function F (8 ) it

can be proved that its H2-norm can be obtained by integrating over the ima-

ginary axis:

(6)

Consider a one-sided signal x (t) (zero for t <0) and suppose its Laplace

transform x (8 ) belongs to RH2. Then Plancherel's theorem says



6

00

J x(t)2dt = 11£1122.
o

Thus 11£ 1122 can be interpreted physically as the energy of the signal x (t).

Ch. 1

Next, consider a system with transfer function F (s ) in RHoo' Let the input

and output signals be denoted by x (t) and y (t) respectively. It is easy to see

that if £ ERH2 and 11£ Ib=I, then f} ERH2 and 11f} 112:::; IIF 1100' Thus the Hoo-

norm of the transfer function provides a bound on the system gain

The previous discussion was limited to the familiar class of real-rational

functions, but the results are general. In fact the Hoo-norm of the transfer func-

tion equals the system gain. The precise statement is as follows: If F EHoo and

x EH2, then Fx EH2; moreover

(7)

With these preliminaries let's look at a disturbance attenuation problem. In

Figure 1 suppose v 1=0 and v 2 represents a disturbance signal referred to the

output of the plant P. The objective is to attenuate the effect of v 2 on the out-

put u 2 in a suitably defined sense. As before, we shall assume P and K are

real-rational and proper, with at least one of them strictly proper. The transfer

function from v 2 to u 2 is the sensitivity function

S := (I-PK r1
•

We shall suppose the disturbance v 2 is not a fixed signal, but can be any

function in the class

(8)

where W, W-1EHoo; that is, the disturbance signal class consists of all v 2 in H2

such that

(9)

Assuming for now that the boundary values v 2(jw) and W (j w) are well-defined,

we can interpret inequality (9) as a constraint on the weighted energy of v 2: the
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energy-density spectrum I v 2(j w) I 2 is weighted by the factor I W (j w) I -2.

For example, if I W (jw) I were relatively large on a certain frequency band and

relatively small off it, then (9) would generate a class of signals having their

energy concentrated on that band.

The disturbance attenuation objective can now be stated precisely: minimize

the energy of u 2 for the worst v 2 in class (8); equivalently (by virtue of (7)),

minimize II WS 1100'the Roo-norm of the weighted sensitivity function. In a syn-

thesis problem P and W would be given and K would be chosen to minimize

II WS 1100'with the added constraint of internal stability. (In an actual design it

may make more sense to employ W as a design parameter, to be adjusted by the

designer to shape the magnitude Bode plot of S .)

To recap, we have seen how certain control objectives, robust stability and

disturbance attenuation, will be achieved if certain Roo-norm bounds are

achieved. In Chapter 3 is posed a general Roo optimization problem which

includes the above two examples as special cases.

Notes and References

The theory presented in this book was initiated by Zames (1976, 1979, 1981).

He formulated the problem of sensitivity reduction by feedback as an optimiza-

tion problem with an operator norm, in particular, an Roo-norm. Relevant con-

temporaneous works are those of Helton (1976) and Tannenbaum (1977). The

important papers of Sarason (1967), and Adamjan, Arov, and Krein (1971) esta-

blished connections between operator theory and complex function theory, in par-

ticular, Roo-functions; Helton showed that these two mathematical subjects have

useful applications in electrical engineering, namely, in broadband matching.

Tannenbaum used (Nevanlinna-Pick) interpolation theory to attack the problem

of stabilizing a plant with an unknown gain.

For a survey of the papers in the field the reader may consult Francis and

Doyle (1986).



CHAPTER 2

BACKGROUND MATHEMATICS: FUNCTION SPACES

The purpose of this chapter is to collect some elementary concepts and facts

from functional analysis.

2.1 Banach and Hilbert Space

Let X be a linear space over the field C of complex numbers. A norm on X

is a function x -+ Ilx II from X to the field R of reals having the four properties

(i) IIx II ~ 0,

(ii) Ilx II = ° iff x =0,

(iii) Ilcx II = I c I Ilx II, c EC

(iv) IIx +y II ::; IIx II + Ily II.
With such a norm we can talk about convergence in X: a sequence {Xk } in X

converges to x in X, and x is the limit of the sequence, if the sequence of real

numbers {llxk -x II} converges to zero; if such x exists, then the sequence is con-

vergent. A sequence {xk } is a Cauchy sequence if

Intuitively, the elements in a Cauchy sequence eventually cluster around each

other, so they are "trying to converge". If every Cauchy sequence in X is conver-

gent (that is, if every sequence which is trying to converge actually does con-

verge), then X is complete. A (complex) Banach space is a linear space over C

which has a norm and which is complete.

A subset S of a Banach space X is a subspace if

x ,y ES =i:> X +y ES

and
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xES, c Ee ==0> cx ES ,

9

and it is closed if every sequence in S which converges in X has its limit in S. (If
the dimension of X is finite, then every subspace is closed, but in general a sub-

space need not be closed.)

For the definition of Hilbert space start with X a linear space over e. An

inner product on X is a function (x,y) -+ <x,y > from XXX to e having the

four properties

(i) <x,x > is real and ~O,

(ii) < x ,x > = 0 iff x =0,

(iii) the function y -+ < X , y > from X to e is linear,

(iv) <x,y>=<y,x>.

Such an inner product on X induces a norm, namely, IIx II := <x,x >1/2. With

respect to this norm X mayor may not be complete. A (complex) Hilbert space

is a linear space over e which has an inner product and which is complete.

Two vectors x, y in a Hilbert space X are orthogonal if <x ,y >=0. If S is

a subset of X, then Sl denotes the set of all vectors in X which are orthogonal to

every vector in Sj Sl is a closed subspace for any set S. If S is a closed subspace,

then Sl is called its orthogonal complement, and we have

X = Slffi S.

This means that every vector in X can be written uniquely as the sum of a vector

in Sl and a vector in S.

We shall see in the next two sections several examples of infinite-dimensional

Banach and Hilbert spaces, but first let's recall the familiar finite-dimensional

examples of each.

The space en is a Hilbert space under the inner product

*<x,y> = x y .

Here x and yare column vectors and * denotes complex-conjugate transpose.

The corresponding norm is IIx II = (x * X )1/2.

The space en x m consists of all n X m complex matrices. There are several

possible norms for en x m; for compatibility with our norm on en we shall take



10 Ch. 2

the following. The singular values of A in en x m are the square roots of the

eigenvalues of the Hermitian matrix A * A. We define IIA II to be the largest

singular value.

Exercise 1. Prove that

IIA II = max{IIAx II : IIx II = I} .

2.2 Time-Domain Spaces

Consider a signal x (t ) defined for all time, -00 < t <00, and taking values in

en. Thus x is a function

(-00,00) --t en .
Restrict x to be square-(Lebesgue) integrable:

00

f Ilx (t )Wdt < 00 .
-00

(1)

The norm in (1) is our previously defined norm on en. The set of all such sig-

nals is the Lebesgue space Lz(-00,00). (To simplify notation we suppress the

dependence of this space on the integer n.) This space is a Hilbert space under

the inner product

00

<x,y>:= f x(t)*y(t)dt.
-00

Then the norm of x, denoted IIx liz, equals the square root of the left-hand side

of (1).

The set of all signals in Lz(-oo,oo) which equal zero for almost all t <0 is a

closed subspace, denoted Lz[O,oo). Its orthogonal complement (zero for almost all

t >0) is denoted Lz(-oo,O].
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2.3 Frequency-Domain Spaces

11

Consider a function x (i w) which is defined for all frequencies, -oo<w<oo,

takes values in en , and is square-(Lebesgue) integrable with respect to w. The

space of all such functions is denoted L2 and is a Hilbert space under the inner

product

00

<x,y>:= (21ftl J x(iw)' y(iw)dw.
-00

The norm on L2 will be denoted IIx 112' The space RL2' the real-rational func-

tions in L2, consists of n -vectors each component of which is real-rational,

strictly proper, and without poles on the imaginary axis.

Next, H2 is the space of all functions x (8 ) which are analytic in Re 8 >0,

take values in en, and satisfy the uniform square-integrability condition

(We have used the same norm symbol for L2(-oo,oo), L2, and H2. Context deter-

mines which is intended.) This makes H2 a Banach space. Functions in H2 are

not defined a priori on the imaginary axis, but we can get there in the limit.

Theorem 1. If x EH2, then for almost all w the limit

x (i w) := !im x (e+ j w)
E->O

exists and x belongs to L2. Moreover, the mapping x -+ X from H2 to L2 is

linear, injective, and norm-preserving.

It is customary to identify x in H2 and its boundary function x in L2• So

henceforth we drop the tilde and regard H2 as a closed subspace of the Hilbert

space L2• The space RH2 consists of real-rational n -vectors which are stable and

strictly proper.

The orthogonal complement Hi of H2 in L2 is the space of functions x (8 )

with the following properties: x (8 ) is analytic in Re 8 <0; X (8 ) takes values in
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en; the supremum

00

sup J Ilx(~+jw)IIZdw
e<o -00

Ch.2

is finite. Again, we identify functions in Hi and their boundary functions in Lz.

Now we turn to two Banach spaces. First, an n X m complex-valued matrix

F (i w) belongs to the Lebesgue space Loo iff IIF (i w)11 is essentially bounded

(bounded except possibly on a set of measure zero). The norm just used for

F (i w) is the norm on en X m introduced in Section 2.1 (largest singular value).

Then the Loo-norm of F is defined to be

IIF 1100:= ess sup IIF (i w)1I .
w

This makes Loo a Banach space. It is easily checked that F ERLoo iff F is real-

rational, proper, and without poles on the imaginary axis.

The final space is Hoo. It consists of functions F (8 ) which are analytic in

Re 8 >0, take values in en X m , and are bounded in Re 8 >0 in the sense that

sup{IIF (8 )11 : Re 8 >o} < 00 •

The left-hand side defines the Hoo-norm of F. There is an analog of Theorem 1

in which Hz and Lz are replaced by Hoo and Loo respectively: each function in

Hoo has a unique boundary function in Loo, and the mapping from Hoo-function

to boundary Loo-function is linear, injective, and norm-preserving. So henceforth

we regard Hoo as a closed subspace of the Banach space Loo. Finally, RHoo con-

sists of those real-rational matrices which are stable and proper.

Let's recap in the real-rational case:

RLz: vector-valued, strictly proper, no poles on imaginary axis

RHz: vector-valued, strictly proper, stable

RHi: vector-valued, strictly proper, no poles in Re 8 <0

RLoo: matrix-valued, proper, no poles on imaginary axis

RHoo: matrix-valued, proper, stable.
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Exercise 1. In the scalar-valued case prove that RL2 equals the set of all real-

rational functions which are strictly proper and have no poles on the imaginary

axis.

2.4 Connections

This section contains statements of two basic theorems relating the spaces

just introduced. The first, a combined Plancherel and Paley-Wiener theorem,

connects the time-domain Hilbert spaces and the frequency-domain Hilbert

spaces. A mapping from one Hilbert space to another is a Hilbert space Isomor-

phism if it is a linear surjection which preserves inner products. (Such a mapping

is continuous, preserves norms, is injective, and has a continuous inverse.)

Theorem 1. The Fourier transform is a Hilbert space isomorphism from

L2(-oo,oo) onto L2. It maps L2[0,oo) onto H2 and L2(-oo,0] onto Hl

This important theorem says in particular that H2 is just the set of Laplace

transforms of signals in L2[0,oo), i.e. of signals on t ;::::0of finite energy.

The second theorem connects the Hilbert space H2 with the Banach spaces

Loo and Hoo' For F in Loo and X denoting either L2 or H2' let F X denote the

space {Fx : x EX}.

Theorem 2. (i) If F ELoo, then F L2CL2 and

IIF 1100= sup{IIFx 112:x EL2' Ilx 112=1}

= sup{IIFx 112:x EH2' Ilx 112=1} .

(ii) If F EHoo, then F H2CH2 and

IIF 1100= sup{IIFx 112:x EH2' Ilx 112=1} .

Exercise 1. Let F (s) =~. Prove that F Hoo is closed in Hoo'
s +1
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Exercise 2. Let F (8 ) = _8_. Prove that F H2 is not closed in H2.
8 +1

Notes and References

Ch. 2

For Banach and Hilbert spaces the reader is referred to any good book on

functional analysis, for instance Conway (1985). Standard references for Hardy

spaces are Duren (1970), Garnett (1981), Hoffman (1962), and Rudin (1966).

These references deal mainly with scalar-valued functions. For vector- and

operator-valued functions, see Sz.-Nagy and Foias (1970) and Rosenblum and

Rovnyak (1985). Theorem 3.1 can be derived from the results in Chapter 11 in

Duren (1970). Theorem 4.1 is in Paley and Wiener (1934). For an alternative

proof see Dym and McKean (1972). A complete proof of Theorem 4.2 is not

readily available in the literature; a starting point could be Problem 64 in Halmos

(1982), Theorem 11.6.7 in Desoer and Vidyasagar (1975), or Theorem 11.1.5 in

Conway (1985).



CHAPTER 3

THE STANDARD PROBLEM

The standard set-up is shown in Figure 1. In this figure w, u, z, and yare

vector-valued signals: w is the exogenous input, typically consisting of command

signals, disturbances, and sensor noises; u is the control signal; z is the output to

be controlled, its components typically being tracking errors, filtered actuator sig-

nals, etc.; and y is the measured output. The transfer matrices G and K are,

by assumption, real-rational and proper: G represents a generalized plant, the

fixed part of the system, and K represents a controller. Partition G as

[
G 11

G = G 21
G 12]
G 22 .

Then Figure 1 stands for the algebraic equations

z = G 11 W + G 12U

y = G 21 W + G 22u

u = Ky.

To define what it means for K to stabilize G, introduce two additional

inputs, v 1 and v 2' as in Figure 2. The equation relating the three inputs w , v l'

V 2 and the three signals z, u, y is

[
1 -G 12 0 1 [z] [G 11 0 01 [w 1o 1 -K u = 0 1 0 vI'

o - G 22 1 Y G 21 0 1 v
2



16

II

'II' '.
G'

It

y

ell. ;3

Figure 3.1. The standard block diagram

'/{'

G

II

1'"

Figure 3.2. Diagram for stability definition
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It simplifies the theory to guarantee that the proper real-rational matrix

[

1 -G 12 0]
o 1 -K
o -G 22 1

17

has a proper real-rational inverse for every proper real-rational K. A simple

sufficient condition for this is that G 22 be strictly proper. Accordingly, this will

be assumed hereafter. Then the nine transfer matrices from w, v l' V 2 to z, u,

yare proper. If they are stable, i.e. they belong to RHoo, then we say that K

stabilizes G. This is the usual notion of internal stability. An equivalent

definition in terms of state-space models is as follows. Take minimal state-space

realizations of G and K and in Figure 1 set the input w to zero. Then K stabil-

izes G if and only if the state vectors of G and K tend to zero from every ini-

tial condition.

The standard problem is this: find a real-rational proper K to minimize

the Hoo-norm of the transfer matrix from w to z under the constraint that K

stabilize G. The transfer matrix from w to z is a linear-fractional transforma-

tion of K:

Following are three examples of the standard problem.

A Model-Matching Problem

In Figure 3 the transfer matrix T 1 represents a "model" which is to be

matched by the cascade T 2 Q T 3 of three transfer matrices T 2' T 3' and Q.

Here, Tj (i =1-3) are given and the "controller" Q is to be designed. It is

assumed that Tj E RHoo (i =1-3) and it is required that Q E RHoo' Thus the

four blocks in Figure 3 represent stable linear systems.

For our purposes the model-matching criterion is

sup {liz 112: w E H2, Ilw 112 :::; I} = minimum.
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Figure 3.3. Model-matching
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Figure 3.4. Tracking
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Thus the energy of the error z is to be minimized for the worst input w of unit

energy. In view of Theorem 2.4.2 an equivalent criterion is

This model-matching problem can be recast as a standard problem by defining

K :=-Q,

so that Figure 3 becomes equivalent to Figure 1. The constraint that K stabilize

G is then equivalent to the constraint that Q E RHoo'

This version of the model-matching problem is not very important per se ;

its significance in the context of this course arises from the fact that the standard

problem can be transformed to the model-matching problem (Chapter 4), which

is considerably simpler.

A Tracking Problem

Figure 4 shows a plant P whose output, v, is to track a reference signal r .

The plant input, u, is generated by passing r and v through controllers eland

C z respectively. It is postulated that r is not a known fixed signal, but, as in

Chapter 1, may be modeled as belonging to the class

{ r : r = Ww for some w EHz, Ilw Ilz :::; 1 }.

Here P and Ware given and eland C z are to be designed. These four transfer

matrices are assumed to be real-rational and proper.

The tracking error signal is r -v. Let's take the cost function to be

(1)

where p is a positive scalar weighting factor. The reason for including pu in (1) is

to ensure the existence of an optimal proper controller; for p = 0 "optimal" con-

trollers tend to be improper. Note that (1) equals the Hz-norm of

[r -v]z := .
pu

Thus the tracking criterion is taken to be
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The equivalent standard problem is obtained by defining

y .- [: J, K:= [C1 C2].-

G [G 11 G" ].-
G 21 G 22

Gll := [~], G12 := [~~]
G21 := [~], G22 := [~].

A Robust Stabilization Problem

This example has already been discussed in Chapter 1. The system under

consideration is shown in Figure 1.2a. Assume P is a strictly proper nominal

plant and let R be a scalar-valued (radius) function in RHoo. Now define a fam-

ily P of neighbouring plants to consist of all strictly proper real-rational matrices

P +f1P having the same number (in terms of McMillan degree) of poles in

Re s ~O as has P, where the perturbation f1P satisfies the bound

IIf1P Uw)11 < I R Uw) I for all O:::;;w:::;;oo .

For a real-rational proper K the robust stability criterion is that K stabilize all

plants in P. Stability means internal stability, that the four transfer matrices in

Figure 1.2a from v l' v 2 to u, y all belong to RHoo.

We saw in Chapter 1 that robust stability is guaranteed by a small gain con-

dition.

Lemma 1. A real-rational proper K stabilizes all plants in P iff K stabilizes the

nominal plant P and

We can convert to the set-up of the standard problem by defining G so that

in Figure 1 the transfer matrix from w to z equals RK (I -PK t1
• This is
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accomplished by

G := [~ ~].

21

Then Lemma 1 implies that the following two conditions are equivalent: K

achieves robust st.ability for the original system (Figure 1.2a); in Figure 1 K sta-

bilizes G and makes the transfer matrix from w to z have Hoo-norm :S; 1.

Notes and References

The standard problem as posed in this chapter is based on Doyle (1984).

For treatments of the tracking example see Vidyasagar (1985b) and Wang and

Pearson (1984), and for robust stabilization see, for example, Kimura (1984).

Lemma 1 is due to Doyle and Stein (1981) and Chen and Desoer (1982).

There are several other examples of the standard problem, for example, the

weighted sensitivity problem (Zames (1981)) and the mixed sensitivity problem

(Verma and Jonckheere (1984), Kwakernaak (1985)).



CHAPTER 4

STABILITY THEORY

In this chapter it is shown how the standard problem can be reduced to the

model-matching problem. The procedure is to parametrize, via a parameter

matrix Q in RHoo, all K 's which stabilize G .

4.1 Coprime Factorization Over RH()()

Recall that two polynomials f (8) and 9 (8 ), with, say, real coefficients, are

said to be coprime if their greatest common divisor is 1 (equivalently, they have

no common zeros). It follows from Euclid's algorithm that f and 9 are coprime

iff there exist polynomials x (8 ) and y (8 ) such that

f x + gy = 1 . (1)

Such an equation is called a Bezout identity.

We are going to take the practical route and defill\' two functions f and 9

in RH()() to be coprime (over RH()()) if there exist x, y in RH()() such that (1)

holds. (The more primitive, but equivalent, definition is that f and 9 are

coprime if every commondivispr of f and 9 is invertible in RHoo, i.e.

More generally, two matrices F and G in RHO(, are right-coprime (over

RH()()) if they have equal number of columns and there exist matrices X and Y

in RH()() such that

[X Y] [ ~ ] = XF + YG = I .

This is equivalent to saying that the matrix [~] is left-invertible in RH(X)'
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Similarly, two matrices F and G in RHoo are left-coprime (over RHoo) if

they have equal number of rows and there exist X and Y in RHoo such that

IF GI[~]~PX+GY~T;
equivalently, [F G] is right-invertible in RHoo'

Now let G be a proper real-rational matrix. A right-coprime factorization of

G is a factorization G =NA1-I where Nand M are right-coprime RHoo-

matrices. Similarly, a left-coprime factorization has the form G ='if-I N where
- -
Nand M :I.re left-coprime. Of course implicit in these definitions is the require-

ment that A1 and if be square and nonsingular. We shall require special

coprime factorizations, as described in the next lemma.

Lemma 1. For each proper real-rational matrix G there exist eight RHoo-

matrices satisfying the equations

[ ~ -_Y] [M Y] =
-N M N X I

(2)

(3)

Equations (2) and (3) together constitute a doubly-coprime factorization of
- -

G. It should be apparent that Nand M are right-coprime and Nand Mare

left-coprime; for example, (3) implies

proving righ t-coprimeness.

It's useful to prove Lemma 1 constructively by deriving explicit formulas for

the eight matrices. The formulas use state-space realizations, and hence are

readily amenable to computer implementation.

We start with a state-space realization of G ,

G (8) = D + C (8 -A tIB

A , B , C , D real matrices,

(4)
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with (A ,B) stabilizable and (C ,A) detectable. It's convenient to introduce a

new data structure: let

[A,B, C,D]

stand for the transfer matrix

Now introduce state, input, and output vectors x, 11" and y respectively so that

y=Gu and

x = Ax + Bu

y = Cx + D11,

(5a)

(5b)

Next, choose a real matrix F such that AF := A +BF is stable (all eigenvalues

in Re s <0) and define the vector v := 11,~Fx and the matrix CF := C +DF .

Then from (5) we get

x = AF x + Bv

11, = Fx + v

y = CF x + Dv

Evidently from these equations the transfer matrix from v to 11, is

M(s):= [AF' B, F, I]

and that from v to y is

Therefore

11,= Mv, y = Nv

(6a)

(6b)

so that y =NM-111, , i.e. G =NM-1.

Similarly, by choosing a real matrix H so that AH :=A +HC is stable and

defining

BH := B + HD

M(s):= \AH' H, C, I] (6c)
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(6d)

we get G =M-1 N. (This can be derived as above by starting with G (s )T

instead of G (s ).) Thus we've obtained four matrices in RHoo satisfying (2).

Formulas for the other four matrices to satisfy (3) are as follows:

x (s):= [AF' -H, CF, I]

Y (s ) := [AF' -H, F , 0]

X(s):= [AH' -BH, F, I]

Y(s):= [AH' -H,F,O].

(7a)

(7b)

(7c)

(7d)

The explanation of where these latter four formulas come from is deferred to Sec-
tion 4.

Exercise 1. Verify that the matrices in (6) and (7) satisfy (3).

Example 1.

As an illustration of the use of these formulas, consider the scalar-valued
example

G(s)= s-1
s(s-2)

A minimal realization is

G (s) = [A, B, C, D]

A ~ [~ ~], H ~ [~]

C = [-1 1], D = 0.

Choosing F to place the eigenvalues of AF (arbitrarily) at {-I, -I}, we get

F = [-1 -~4]

AF ~ [Ol~]
Then
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N (8) = [AF' B, C, 0]

8 -1

(8 +1)2

and

M(8) = [AF' B, F, 1]

8 (8 -2)
(8 +1)2

Similarly, the assignment

yields

[5 -4]
AH = 9-7

x (8) = [AF, -H,C ,1]

82+68 -23
(8 +1)2

Y(8) = [AF' -H, F, 0]

-418 +1
(8 +1)2

Finally, in this example we have

- - -N=N,M=M,X=X,Y Y.

4.2 Stability

Ch.4

This section provides a test for when a proper real-rational K stabilizes G .

Introduce left- and right-coprime factorizations

K = UV-1 = lr1U .

(la)

(lb)
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Theorem 1. The following are equivalent statements about K:

(i) K stabilizes G ,

M [~Ju]]
(ii) [OI]N E RHoo,

Jv[~]
-1

M

(iii) U[O I] 17 E RHoo .

27

The idea underlying the equivalence of (i) and (ii) is simply that the deter-

minant of the matrix in (ii) is the least common denominator (in RHoo) of all the

transfer functions from w, vI' V 2 to z, u, y; hence the determinant must be

invertible for all these transfer functions to belong to RHoo, and conversely.

The proof of Theorem 1 requires a preliminary result. Insert the factoriza-

tions (1) into Figure 1, split apart the factors, and introduce two new signals ~

and 1] to get Figure 2.

Lemma 1. The nine transfer matrices in Figure 1 from w, v l' V 2 to z, u, y

belong to RHoo iff the six transfer matrices in Figure 2 from w, v l' V 2 to ~, 'Yf

belong to RHoo'

Proof. (If) This direction follows immediately from the equations

which in turn follow from Figure 2.

(Only if) By right-coprimeness there exist RHoo.matrices X and Y such that

XM + YN = I.

Hence

~= XM E + YN ~. (2)
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But from Figure 2
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Nf.= [ z ]y -v 2 .

Substitution into (2) gives

Hence the three transfer matrices from w , v l' V 2 to f. belong to RHoo.

A similar argument works for the remaining three transfer matrices to 'rJ. []

Proof of Theorem 1. We shall prove the equivalence of (i) and (ii). First, let's

see that the matrix displayed in (ii) is indeed nonsingular, i.e. its inverse exists as

a rational matrix. We have

(3)

Now

is nonsingular because both M and V are. Also, since G 22 is strictly proper, we

have that

[
1 0 0]

o 1 K

G 21 G 22 1

is nonsingular when evaluated at S =00: its determinant equals 1 at S =00.

Thus both matrices on the right-hand side of (3) are nonsingular.

The equations corresponding to Figure 2 are
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Thus by Lemma 1 K stabilizes G iff

Ch.4

-1

M - [~]u
-[OI]N v

But this is equivalent to (ii). 0

Exercise 1. Prove equivalence of (i) and (Hi) in Theorem 1.

4.3 Stabilizability

Let's say that G is stabilizable if there exists a (proper real-ratio/l:d) K

which stabilizes it. Not every G is stabilizablej an obvious non-stabilizable G is

G 12=0, G 21=0, G 22=0, G 11unstable. In this example, the unstable part of G

is disconnected from u and y. In terms of a state-space model G is stabilizable

iff its unstable modes are controllable from u (stabilizability) and observable

from y (detectability). The next result is a stabilizability test in terms of left-

and right-coprime factorizations

G = NM-1 = 'M-1 Iv .

Theorem 1. The following conditions are equivalent:

(i) G is stabilizable,

(ii) M, [0 I] N are right-coprime and

M, [~] are left-coprime,

__ [0](iii) M, N 1 are left-coprime and

'M, [0 I] are right-coprime.
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The proof requires some preliminaries. The reader will recall the following

fact. For each real matrix F there exist real matrices G and H such that

The matrices G and H may be obtained by elementary row and column opera-

tions, and the size of the identity matrix equals the rank of F. The following

analogous result for RHoo-matrices is stated without proof.

Lemma 1. For each matrix F in RHoo there exist matrices G , H, and F 1 III

RHoo satisfying the equation

[F10]
F = GOO H

and having the properties that G and H are invertible in RHoo and F 1 is non-

singular.

This result is now used to prove the following useful fact that if M and N

.. e cighl-oop,ime, lhen the mal,ix [~] can he filled out to yield a 'qua,e matcix

which is invertible in RHoo.

Lemma 2. Let M and N be RHoo-matrices with equal number of columns.

Then M and N are right-coprime iff there exist matrices U and V in RHoo such

that

Proof. (If) Define

where a question mark denotes an irrelevant block. Then
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so M and N are right-coprime.

(Only if) Define

Ch. 4

and bring in matrices G , H, and F 1 as per Lemma 1. Since F is left-invertible

in RHoo (by right.-coprimeness), it follows that

is left-invertible in RHoo too. But then it must have the form

with F 1-1 E RHoo' Defining

K ._ G [F ~[{ ~ ] ,
we get

Thus the definition

gives the desired result, that

[
M U 1
N VJ=K

is invertible in RHoo' [J
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The obvious dual of Lemma 2 is that M and N are left-coprime iff there

exist U and V such that

Proof of Theorem 1. We shall prove equivalence of (i) and (ii).

(i) =? (ii): If G is stabilizable, then by Theorem 2.1 there exist U and V in

RHoo such that

[

M [~ ]u]_l
[0 I]N V E RHoo .

This implies by Lemma 2 and its dual that

M, [0 I]N are right-coprime

and

M, [~] U are left-coprime.

But the latter condition implies left-coprimeness of

M, [~].

(ii) =? (i): Choose, by right-coprimeness and Lemma 2, matrices X and Y 1Il

RHoo such that

Also, choose, by left-coprimeness, matrices Rand T in RHoo such that

Now define

U:= TX

(1)

(2a)
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V := Y - [0 I]NRX .

Then we have from (1) and (2) that

[ M x] [I -RX]
[0 I]N Y 0 I

eh. 4

(2b)

v (3)

The two matrices on the left in (3) have inverses in RH()(), hence so does the

matrix on the right in (3).

The next step is to show that V is nonsingular. We have

[ M [~]u1 [I [~]u [MO]
[0 I]N V = [0 I] G V 0 I

[ ~ ~ ~][~~ ] .
G 21 G 22 V

(4)

Evaluate all the matrices in (4) at S =00; then take determinants of both sides

noting that G 22 is strictly proper and the matrix on the left-hand side of (4) is

invertible in RH()(). This gives

O~det V (00) detM (00) .

Thus det V (00 )~O, i.e. V-1 exists. Hence we can define K :=UV-1.

Next, note that U and V are right-coprime (this follows from invertibility

in RH()() of the matrix on the right-hand side of (3)). We conclude from Theorem

2.1 that K stabilizes G. []

Exercise 1. Prove equivalence of (i) and (iii) in Theorem 1.

Hereafter, G will be assumed to be stabilizable. Intuitively, this implies

that G and G 22 share the same unstable poles (counting multiplicities), so to

stabilize G it is enough to stabilize G 22' Let's define the latter concept
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explicitly: K stabilizes G 22 if in Figure 2.1 the four transfer matrices from v 1

and v 2 to u and y belong to RHoo'

Theorem 2. K stabilizes G iff K stabilizes G 22'

The necessity part of the theorem follows from the definitions. To prove

sufficiency we need a result analogous to Lemma 2.1.

Lemma 3. The four transfer matrices in Figure 2.1 from v l' v 2 to u, y belong

to RHoo iff the four transfer matrices in Figure 2.2 from v l' v 2 to ~, 'f/ belong to

RHoo'

The proof is omitted, it being entirely analogous to that of Lemma 2.1.

Proof of Theorem 2. Suppose K stabilizes G 22' To prove that K stabilizes

G it suffices to show, by Lemma 2.1, that the six transfer matrices in Figure 2.2

from w, v l' V 2 to ~, 'f/ belong to RHoo' But by Lemma 3 we know that those

from v l' v 2 to ~, 'f/ do. So it remains to show that the two from w to ~, 'f/

belong to RHoo'

Set v 1=0 and v 2=0 in Figure 2.2 and write the corresponding equations:

V'f/=[O I]N(.

By left-coprimeness there exist matrices Rand T in RHoo such that

Po,t-multiply (7) by [~]w to get

(5)

(6)

(7)

(8)
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Now subtract (8) from (5), rearrange, and define

to get

Also, rearrange (6) and define

to get

Vr/ = [0 I]N ~1 + v 2 .

Ch. 4

(9)

(10)

(11)

(12)

(13)

The block diagram corresponding to (11) and (13) is Figure 1. By Lemma 3 and

the fact that K stabilizes G 22 we know that the transfer matrices in Figure 1

from v l' v 2 to ~1' r] belong to RHoo. But by (10) and (12) those from w to v l'

v 2 belong to RHoo. Hence those from w to ~1' r] belong to RHoo. Finally, we

conclude from (9) that the transfer matrix from w to ~ belongs to RHoo. [J

Exercise 2. Suppose G 11= G 12= G 21= G 22. Prove that G is stabilizable.

4.4 Parametrization

This section contains a parametrization of all K's which stabilize G 22. To

simplify notation slightly, in this section the subscripts 22 on G 22 are dropped.

The relevant block diagram is Figure 1.

Bring in a doubly-coprime factorization of G ,

G = NM-1 = M-1jy

(1)
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and coprime factorizations (not necessarily doubly-coprime) of K ,

E<: = uv-1= V-I U .

The first result is analogous to Theorem 2.1; the proof is omitted.

Lemma 1. The following are equivalent statements about K :

(i) K stabilizes G ,

(il) [~~ r E RH", ,

[
lr _U]-1

(iii) RH-N M E 00'

The main result of this chapter is the following.

eh. 4

Theorem 1. The set of all (proper real-rational) K 's stabilizing G is

parametrized by the formulas

K = (Y -MQ )(X -NQ t1

= (XQNt1(y -QM)

Proof. Let's first prove equality (3). Let Q ERHoo' From (1) we have

[I Q] [~ __1T] [M Y] [1 - Q] =
o I -N M N X 0 1 1

so that

[
X -C}N -(Y -..QM)] [M Y -MQ] __

-N M N X -NQ -- 1

Equating the (1,2)-blocks on each side in (4) gives

(X -QN)( Y -MQ ) = Or -QM )(X -NQ ) ,

which is equivalent to (3).

(2)

(3)

(4)
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Next, we show that if K is given by (2), it stabilizes G. Define

U := Y-MQ, V:= X --NQ
~ - .... ,,-

U := Y -QM, V:= X -QN

to get from (4) that

39

(5)

It follows from (5) that U, V are right-coprime and U, V are left-coprime

(Lemma 3.2). Also from (5)[~~r E RHoo

So from Lemma 1 K stabilizes G .

Finally, suppose [( stabilizes G. vVe must show K satisfies (2) for some Q

in RHoo' Let K = UV-l be a right-coprime factorization. From (1) and defining

D := MV -NU we have

[~ -?] [M u] = [I ~¥U J'V]
-N M N V 0 D . (6)

The two matrices on the left in (6) have inverses in RHoc,' the second by Lemma

1. Hence D -lERHo". Define

Q := -(XU-YV)D-l,

so that (6) becomes

[~~][~ ~]~ [:'~D]
Pre-multiply (7) by

[M Y]
NX

and use (1) to get

[M u] [M Y] [I -QD]
NV=NXOD'

(7)



40

Therefore

[u] ~ [(Y -MQ)D]
V ~ (X -NQ)D .

Substitute this into K = UV-l to get (2).0

Ch. 4

As a special case suppose G is already stable, i.e. G ERHoo' Then in (1) we

may take

X=M=I, X=M=I

y=o, Y=O,

in which case the formulas in the theorem become simply

K =-Q (1-GQ t1

= -(I -QG t1Q .

There is an interpretation of Q in this case: -Q equals the transfer matrix from

v 2 to u in Figure 1 (check this).

We can now explain the idea behind the choice (1.7) of X, Y, X, Y in Sec-

tion 1. Recall that the state-space equations for G were

x = Ax + Bu

y = Cx + Du ,

that

AF := A + BF, A Ii := A + HC

were stable, and that we defined

BJi := B + HD, CF:= C + DF .

Let's find a stabilizing K by observer theory. The familiar state-space equa-

tions for K are

x = Ax + Bu + H (cx + Du - y)

u = Fx
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or equivalently

x = Ax + By
u = ex

where

A := A + BF + HC + HDF = AF + HCF

B :=-H

e :=F.

Thus in terms of our data structure

K (s ) = [A, B, e, 0] .

By observer theory K stabilizes G .
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Now find coprime factorizations of K in the same way as we found coprime

factorizations of G in Section 1. To get a right-coprime factorization

K = YX-1 we first choose P so that AF := A +BP is stable. It is convenient

to take P := CF, so that AF = AF• By analogy with (1.6) we get K = YX-l,
where

x (s ) := [AF' B, P , I]

= [AF' -H, CF , I]

Y (s ) := [AF' B , e , 0]

= [AF' -H, F, 0] .

- 1-A similar derivation leads to a left-coprime factorization K = X- Y, where

X(s):= [AH' -BH, F, I]

Y(s):= [AH' -H, F, 0] .

These formulas coincide with (1.7).

By Lemma 1 we know that

[
M y]-l
N X E RHoo
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and

[ ~ ']-1X -y
-tv At E RHoo'

Hence the product

[ ~ _~lr][M Y]
-N M N X

Ch. 4

must be invertible in RHoo' The only surprise is that the product equals the

identity matrix, as is verified by algebraic manipulation.

1
Exercise 1. In Figure 4 suppose G (s ) = s (s -1)' Consider a controller of the

form

-QJ( = ---
1-GQ

where Q is real-rational. Find necessary and sufficient conditions on Q in order

that K stabilize G .

4.5 Closed-Loop Transfer Matrices

Now we return to the standard set-up of Figure 1, Chapter 3. Theorem 4.1

gives every stabilizing K as a transformation of a free parameter Q in RHoo'

The objective in this section is to find the transfer matrix from w to z in terms

of Q.

In the previous section we dropped the subscripts on G 22: now we must

restore them. Bring in a doubly-coprime factorization of G 22:

-1 ~ -1'
G 22 = N 2M 2 = M 2 N 2

(1)

Then the formula for K is

(2a)
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Now define

T 1 := G 11 + G 12M 2 Y 2 G 21

T2;= G12M2

T3:= M2G21.
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(2b)

(3a)

(3b)

(3c)

Theorem 1. The matrices Tj (i =1-3) belong to RHCXJ' With K given by (2)

the transfer matrix from w to z equals T cT 2 Q T 3'

Proof. The first statement follows from the realizations to be given below. For

the second statement we have

z = [Gu + GdI-KG 22t1KG 2dw

Substitute G 22 = N 2M 2-1 and (2b) into (1-KG 22t1 and use (1) to get

Thus from (2b) again

Substitute this into (4) and use the definitions of Tj to get

(4)

For computations it is useful to have explicit realizations of the transfer

matrices T, (i = 1-3). Start with a minimal realization of G :

G (s) = [A, B, C, D] .

Since the input and output of G are partitioned as

[:], [:],
the matrices B, C, and D have corresponding partitions:
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Then

C

D

[~:]
[
D 11 D 12 ]

D 21 D 22 .

Ch. 4

Glj (S ) = [A , BJ ' Ci, D'J ], i ,J =1,2 .

Note that D 22=0 because G 22 is strictly proper. It can be proved that stabiliza-

bility of G (an assumption from Section 3) implies that (A ,B 2) is stabilizable

and (C 2,A ) is detectable.

Next, find a doubly-coprime factorization of G 22 as developed in Section 1.

For this choose F and H so that

AF := A + U 2F , j\ Il := A + HC 2

are stable. Then the fOl'lJllJins are as follows:

M 2( S ) = [AF , B 2, F , I]

N 2( S ) = [AF , B 2' C 2' 0]

AI2( S ) = [A Il , H, C 2' I]

N2(s) = [All' B2, C2, 0]

X 2(S) = [AF, ~H, C 2' I]

Y 2(S ) = [AF' ~H, F, 0]

X2(s) = [All' ~B2' F, I]

Y 2(s ) = [All' ~H, F, 0] .

Finally, substitution into (3) yields the following realizations:

[A~ -:;F]
[Bl:;D21 ]
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Q = [C1+D12F --D12F]

T 2(8) = [AF,B 2'C l+D 12F ,D u]

T 3(8) = [AH,B l+HD 21'C 2,D 21] .
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It can be observed that T, ERHoo (i =1-3), as claimed in Theorem 1. For exam-

ple, this is how the realization of T 2 is obtained:

= [A , B 2' C l' D u] X [AF , B 2' F, 1 ]

= [AF, B2, C1+D12F, Du].

Example 1.

Consider the tracking example of Chapter 3 with

8 -1
P(8)= ( )8 8-2

W(8)= 8+1
108 +1

and p=1. We have

G ~ [~:: ~::]

[
8+1 ] [ 8-1 ]~----
108+1 8(8-2)

G 1l(8 ) = 0 ' G d8 ) = 1

G 21(8) = G 11(8), G 22(8) = [ 8~1 ].

8(8-2)

(5)



46

A minimal realization of G is

G (8) = [A, B, C, D]

[-10 0] [~nA o 2 0 , B
o 1 0

[~'-1 1 .1 0
0 0 0 1

C = .09 0 0 ,D .1 0
0 1 -1 0 0

For F and H we may take

F = [0 -3 -1]

Then

Ch. 4

[
-,1 0 0]
o -1 -1 ,

o 1 0

-.1 0 0 0 0 0 1
0 -1 -1 0 3 1 0
0 1 0 0 0 0 0
0 0 0 -.1 0 0 , f1 1
0 0 0 0 -7 9 0
0 0 0 0 -4 5 0

[.~9 -1 1 o 0 0]
-3 -1 o 3 1 .

Finally,

[

8 +1 ]
108

0
+ 1

8 -1

82+8 +1
8(8-2)

82+8 +1
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Exercise 1. It's desired to find a K which stabilizes G and makes the dc gain

from w to z equal to zero (asymptotic rejection of steps). Give an example of a

stabilizable G for which no such K exists. Find necessary and sufficient condi-

tions (in terms of 1', , i=]-3) for such K to exist.

The results of this chapter can be summarized as follows. The matrix G is

assumed to be proper, with G 22 strictly proper. Also, G is assumed to be stabiI-

izable. The formula (2) parametrizes all K '8 which stabilize G. In terms of the

parameter Q the transfer matrix from w to z equals T1-T2QT3• Such a func-

tion of Q is called affine.

In view of these results the standard problem can be solved as follows: First,

find a Q in RHou to minimize liT cT 2QT311oo' i.e. solve the model-matching

problem of Chapter 3. Then obtain a controller K by substituting Q into (2).

Notes and References

The material of this chapter is based on Doyle (1984). Earlier relevant refer-

ences are Chang and Pearson (1978) and Pernebo (1981); a more general treat-

ment is given in Nett (1985).

As a general reference for the material of this chapter see Vidyasagar

(1985a). The idea of doing coprime factorization over RHov is due to Vidyasagar

(1972), but the idea was first fully exploited by Desoer et at. (1980). State-space

formulas for coprime factorizations were first developed by Khargonekar and Son-

tag (1982). The state-space formulas in Section 1 are from Nett et at. (1984).

The important parametrization of Theorem 4.1 is due to Youla et at. (1976) as

modified by Desoer et at. (1980). Finally, see Minto (198.5) for a comprehensive

treatment of stability theory by state-space methods.



CHAPTER 5

BACKGROUND MATHEMATICS: OPERATORS

The purposes of this chapter are to introduce some basic definitions about

operators on Hilbert space and to study in some detail a certain type of operator,

namely, a Hankel operator.

5.1 Hankel Operators

Let X and Y be Hilbert spaces and let <1> be a linear function from X to Y.

The function <1> is bounded if there exists a real number a such that

II <1> x II ~ a II x II , x EX .

The least such a is called the norm of <1>, denoted II <1> II. The following equations

are not hard to derive:

11<1>11 = sup {11<1>x II : Ilx II ~ I}

= sup {1I<1>x II : IIx II = I} .

Such a bounded linear function is called an operator.

Example 1.

The Fourier transform, denoted Y, is an operator from Lz( -00,00) to Lz.

Theorem 2.4.1 says that its norm equals 1.

Example 2.

Recall from Section 2.3 the direct sum

Each function f in Lz(-oo,oo) has a unique decomposition f = f 1+- f z with

f lELz(-oo,O] and f zELz[O,oo):
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f l(t) = f (t), f z(t) = 0, t <0

fl(t)=O, fz(t)=f(t), t>O.

The function f --+ f 1 from Lz(-oo,oo) to Lz(-oo,O] is an operator, the orthogo-

nal projection of Lz(-oo,oo) onto L2(-oo,0]. It's easy to prove that its norm

equals 1.

In the same way we have

The orthogonal projection from Lz onto Hi will be denoted ITI and from Lz onto

Hz by ITz.

Example 3.

Let F ELoo and define the function AF from Lz to Lz via

AF g := Fg .

Thus the action of AF is multiplication by F. Obviously AF is linear. Theorem

2.4.2 says that \\AF II = I\F 1100'so AF is bounded. This operator is called a

Laurent operator and F is called its symbol; so AF is the Laurent operator with

symbol F .

A related operator is AF I Hz, the restriction of AF to Hz, which maps Hz

to Lz. Theorem 2.4.2 says that its norm also equals IIF 1100'

Observe that if F EHoo then, also by Theorem 2.4.2,

The converse is true too: if AF Hz C Hz, then F EHoo' (The rational version of

this result will be proved in Lemma 8.3.1.)

Example 4.

This is the time-domain analog of the previous example. Recall that convo-

lution in the time-domain corresponds to multiplication in the frequency-domain.

Suppose F (s) is a matrix-valued function which is analytic in a vertical strip

containing the imaginary axis and which belongs to Loo' Taking the region of
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Figure 5.1.1. Example 4
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convergence to be this strip, let f (t) denote the inverse bilateral Laplace

transform of F (s). Now define the convolution operator 6 f from Lz(-00,(0) to

Lz(-00,(0) via

00

y(t)= J f (t-r)u(T)dT.
-00

This system is linear, but not necessarily causal because f (t) may not equal zero

for negative time. Note that the system is causal iff 6 f maps Lz[O,oo) into

Lz[O,oo), i.e. "6 f leaves the future invariant". The operators 6 f and AF are

intimately related via the Fourier transform. The relationship is exhibited in the

commutative diagram of Figure 1.

Example 5.

Again let F ELoo. The Toeplitz operator with symbol F, denoted eF , maps

Hz to Hz and is defined as follows: for each g in Hz, eF g equals the orthogonal

projection of Fg onto Hz. Thus

The relevant commutative diagram is Figure 2. As a concrete example consider

the scalar-valued function F (s) = l/(s -1) in RLoo' For g in Hz we have

Fg = g 1 + gz

g 1EHzl, g zEHz

g l(s ) = g (1)/(8 -1)

gz(s) = [g (s )-g (l)]j(s -1) .

Thus eF maps g to g z.
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Figure 5.1.3. Example 6
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Example 6.
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For F in Lao the Hankel operator with symbol F, denoted f p, maps H2 to

Hi and is defined as

The corresponding commutative diagram is Figure 3. For the example

F (s ) = l/(s -1), fp maps g (s ) in H2 to g (l)/(s -1) in Hl Note that fp =0 if

F EHao'

The relationship between the three operators Ap, ep, and f p can be

described as follows. We have

and correspondingly we can regard Ap as a 2X 2 matrix with operator entries:

For example

It follows from the definitions that A12=f p and A22=e p . Thus

Example 7.

In this example we study the Hankel operator with the special symbol

F (s) = [A, B, C, 0) ,

where A is antistable (all eigenvalues in Re s >0). Suppose A is n X n. Such

F belongs to RLoo' The inverse bilateral Laplace transform of F (s ) is

f (t) = -Ce At B, t <0

f (t) = 0, t ~O .

The time-domain analog of the Hankel operator, denoted f f ' maps a function u

in L2[O,oo) to the function y in L2(-oo,O] defined by
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y(t)= J f (t-r)u(r)dr, t<o
o

00

=_CeAt J e-ArBu(r)dr, t <0.
o

Define two auxiliary operators: the controllability operator

00

\]Ie U :=-J e-A rBu (r)dr
o

and the Qbservability operator

\]I 0 :Cn -+ L2(-00,0]

(\]I 0 X )(t ) := Ce At x , t <0 .

From (1) we have that

Ch.5

(1)

Exercise 1. Show that \]leis surjective if (A ,B) is controllable and that \]10 is

injective if (C ,A ) is observable.

There is a systemic interpretation of r f in terms of the usual state-space

equations

x = Ax + Bu

y = Cx

(2)

(3)

To see the action of r f ' solve these equations in the following way. First, apply

an input u in L2[0,00) to equation (2) with initial condition x (O)=x 0 and such

that x (t ) is bounded on [0,00). Then

t
x(t)=eAtxo+eAt Je-ArBu(r)dr, t>O

o

so that

00

Xo=-J e-ArBu(r)dr
o
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Now solve (2) and (3) backwards in time starting at t =0 and noting that

u (t )=0 for t <0. The solution is

y (t) = Ce At Xo

In this way r f maps future input to initial state to past output.

We shall need the concept of the adJ'oint of an operator <1> from X to Y, two

Hilbert spaces: it's the unique operator <1>" from Y to X satisfying

< <1> x , y > = < x , <1> * y > , x EX, y EY .

The operator <1>' <1> from X to X is self-adjoint, i.e. it equals its adjoint. The

norms of <1> and <1>; <1> are related as follows:

II<1>W = 11<1>' <1>11 • (4)

The adjoint of a Laurent operator Ap can be obtained explicitly as follows.

Introduce the notation

F~Uw):= FUw)' , (5)

where * here denotes complex-conjugate transpose. If F ERLoo, then we shall

interpret F ~ as

which is consistent with (5). If g and h belong to L2, then

i<Ap g ,h > = <g ,AF h >

and

00

<AF g ,h > = (21ft! J g (jw)' F (jw)' h U w)d w
-00

We conclude that A; equals the Laurent operator with symbol iF ~.
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Similarly, the adjoint of a Hankel operator rF can be characterized as fol-

lows. Let g EH2 and h EHl Then

<g ,r;h > = <rF g ,h >

= <IlIFg ,h >

= <Fg ,h > because 112Fg lh

We conclude that

rj = 112A; I H21.

For example if F(s)=(s-lt1, then rj maps h(s) in H2
1to -h(-l)j(s+l) in

H2• (Verify.)

Exercise 2. Show that the adjoints of IIIc and III0 are as follows:

Ill/, : en -+L2[0,oo)

(llI/x)(t)=_BTe-ATix,

o
III0' y = J eAT t C T Y (t )dt

-00

t >0'- ,

The rank of an operator «> : X-+ Y is the dimension of the closure of its

image space «>X.

Our interest IS in Hankel operators with real-rational symbols, Example 7

being a special case.

Theorem 1. If F ERLoo, then r F has finite rank.

Proof. There is a unique factorization (by partial-fraction expansion, for exam-

ple) F = F 1 + F 2' where F 1 is strictly proper and analytic in Re s .s;O and F 2

is proper and analytic in Re s ;:::0, Le. F 2ERHoo' Since rF =r F l' we might as
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well assume at the start that F is strictly proper and analytic in Re s ::;:0. Intro-

duce a minimal realization:

F (s ) = [A , B, C, 0] .

The operator rF and its time-domain analog have equal ranks. As in Example 7

the latter operator equals \)10 \)Ie. By controllability and observability \)leis sur-

jective and \)I 0 is injective. Hence \)I 0 \)I c has rank n , so r F does too. 0

We need another definition. Let <I> be an operator from X to X, a Hilbert

space. A complex number).. is an eigenvalue of <I> if there is a nonzero x in X

satisfying

<I>x =)..x .

Then x is an eigenvector corresponding to)... In general an operator may not

have any eigenvalues!

For the remainder of this section let F ERLoo' The self-adjoint operator

r;r F maps Hz to itself and its rank is finite by Theorem 1. This property

guarantees that it does in fact have eigenvalues. We state without proof the fol-

lowing fact.

Theorem 2. The eigenvalues of r;r F are real and nonnegative and the largest

of them equals Ilr;rF II.

This theorem together with (4) says that IIr F II equals the square root of the

largest eigenvalue of r; r F' SO we could compute IlrF II if we could compute the

eigenvalues of rF rF' How to do this latter computation is the last topic of this

section.

We continue with the notation introduced in Example 7 and the proof of

Theorem 1. The self-adjoint operators \jJ c \)I c' and \)I 0'\)1 0 map en to itself.

Thus they have matrix representations with respect to the standard basis on en .
Define the controllability and observability grarnians

00

Lc := J e -At BB T e -A T t dt
o

(6)
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00

Lo := J e -A T t C T Ce -At dt
o

Ch. 5

(7)

It is routine to show that Le and Lo are the unique solutions of the Lyapunov

equations

ALe + Le A T = BB T

ATL +LA=CTCo 0

(8)

(9)

• , t
Exercise 3. Prove that the matrix representations of \[Ie \[I e and \[10 \[10 are Le

and Lo respectively.

Theorem 3. The operator r;rF and the matrix Le Lo share the same nonzero

eigenvalues.

Proof. Let>.. be a nonzero eigenvalue of r;r F' It's easy to show that>.. is also

an eigenvalue of the time-domain analog of r;r F, which equals \[1/\[10'\[10 \[I e •

Hence there exists a nonzero u in L2[0,oo) satisfying

(10)

Pre-multiply (10) by \[I e and define x := \[leu to get

(11)

If x, i.e. \[leu, were to equal zero, then so would>" u from (10). This is not pos-

sible (both>" and u are nonzero), so x is an eigenvector of Le Lo and>" is an

eigenvalue.

Conversely, let>.. be a nonzero eigenvalue of Le Lo and x a corresponding

eigenvector. Pre-multiply (11) by \[I/Lo and define u := \[Ie 'Lo x to get (10).

The function u is nonzero because x is nonzero and \[lei and Lo are injective.

Therefore>.. is an eigenvalue of \[1/\[10'\[10 \[I e , hence of r;r F • 0

In summary, the norm of r F for F in RLoo can be computed as follows.

First, find a minimal realization (A ,B ,C) of the antistable part of F (s ), i.e.
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F (s ) = [A , B , C , 0] + (a matrix in RHoo) .

Next, solve the Lyapunov equations (8) and (9) for Lc and Lo' Then IIfF II
equals the square root of the largest eigenvalue of Lc Lo .

6.2 Nehari's Theorem

In this section we look at the problem of finding the distance from an Loo-

matrix R to Hoo:

dist(R ,Hoo) := inf {IIR -X 1100:X EHoo} .

In systemic terms we want to approximate, in Loo-norm, a given unstable transfer

matrix by a stable one. Nehari's theorem is an elegant solution to this problem.

A lower bound for the distance is easily obtained. Fix X in Hoo' Then

IIR-Xlloo = liAR-Axil

~ IIrr1(AR -Ax) I H211

= IIfR-fxll
= IIfRil.

The last equality is due to the fact that rx =0. Thus Ilf R II is a lower bound for

the distance from R to ROO' In fact it equals the distance.

Theorem 1. There exists a closest Roo-matrix X to a given Loo-matrix R , and

IIR -XII = IIrR II.

In general there are many X's nearest R. Interpreted in the time-domain

Theorem 1 states that the distance from a given noncausal system to the nearest

causal one (the systems being linear and time-invariant) equals the norm of the

Hankel operator; in other words the norm of the Hankel operator is a measure of

noncausality. How to find nearest Roo-matrices is the subject of Section 8.3.
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Example 1.

As an illustration, let's find the distance from

1
4

s 2_1
R (s) = 1 s +1--

s 2_s +1 s -1

Ch. 5

to Hoo' First, find the strictly proper antistable part of R. In this simple case

partial fraction expansion suffices; a state-space procedure is described in the

proof of Theorem 7.3.1. We get

R (s) = R l(s )+R 2(s )

.5
0

s -1
R l(S) = 1 2

--
S 2_s +1 s -1

R 2ERHoo .

Now get a minimal realization:

R1(S)=[A,B,C,0]

2 -2 1 0 1 0
1 0 0 0 0 0

A 0 1 0 0 , B 0 0
0 0 0 1 0 2

[: -.5 .5 n.c= 1 -1

The solutions of the Lyapunov equations are

.3333 0 -.1667 0
0 .1667 0 0

-.1667 0 .3333 0
0 0 0 2

.6250 -1.125 .6250 -.3333
-1.125 2.625 -1.625 1
.6250 -1.625 1.125 -.6667

-.3333 1 -.6667 .5
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Finally, the distance from R to Hoo equals the square root of the largest eigen-

value of Lc Lo , 1.2695.

Notes and References

An elementary book on operators is Gohberg and Goldberg (1981). Many

relevant and interesting results can also be found in Halmos (1982) and Rosen-

blum and Rovnyak (1985). Theorem 1.1, known as Kronecker's lemma, is a basic

fact used in linear system theory. Theorem 1.2 is a special case of a result on

compact operators; see for example Theorem 4.4 in Gohberg and Goldberg (1981).

Example 1.7 and Theorem 1.3 are from Glover (1984). Theorem 2.1 is a generali-

zation of Nehari's original result (Nehari (1957)); for a (relatively) simple proof

see Power (1982).



CHAPTER 6

MODEL-MATCHING THEORY: PART I

The model-matching problem is this: given three matrices Tl in RHoo, find

a matrix Q in RHoo to minimize IITI-TzQT3I1oo' This chapter discusses when

the problem is solvable and gives a complete solution in the scalar-valued case.

6.1 Existence of a Solution

To each Q in RHoo there corresponds a model-matching error,

II TI-T2QT3I1oo' Let a denote the infimal model-matching error:

A matrix Q in RHoo satisfying

will be called optimal.

This section is concerned with the question of when an optimal Q exists.

Let's look at a few examples to get a feel for the problem.

Example 1.

The trivial case is when the linear equation

(2)

has a solution in RHoo' Such a solution is obviously optimal. It is not a difficult

problem, but is not germane to this course, to get necessary and sufficient condi-

tions for solvability of (2). Solvability hardly ever occurs in practice, because it

means in the standard problem that the exogenous signal w can be completely

decoupled from the output signal z.
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The remaining examples are of the special case where Tj and Q are scalar-

valued. Then there's no need for both T 2 and T 3 since T 2Q T 3= T 2 T 3 Q , so

we may as well suppose T 3=1. In addition, we'll need the following definition:

a function F in RLoo is all-pass if I F (jw) I = constant.

Example 2.

Take T 2 to have one zero in Re s >0:

s -1
T2(S) = --.

s +1
Then for every Q in RHoo

IIT cT 2Q 1100 ~ I T 1(1)-T 2(1)Q (1) I
I Tl(1) I

so Q~ I T 1(1) I. Defining

we have Q ERHoo and

so Q is optimal. Moreover, T 1- T 2Q is all-pass; in fact it's a constant. Thus in

this example an optimal Q exists and, furthermore, T cT 2Q is all-pass. We'll

see later that the optimal Q is unique in this example.

Example 3.

Take

1T2(S) = -- .
s +1

So T 2 has a zero at S =00 but no (finite) zeros in Re s ~O. For Q in RHoo

so Q ~ I T 1(00) I. As in the previous example, defining

we have that Cd is optimal ;Iud T I-T 2Q is again all-pass. If, however,
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then Q =0 is also optimal, but 1'1-1' 2Q is not all-pass unless 1'1 happens t.o be.

Example 4.

For an example where an optimal Q doesn't exist take

It is claimed that a=O. To see this define

s +1Q ,(s):= ~-, E>O.
ES +1

Then

(1' -1' Q )(s) _ ES
1 2, - (S +l)(Es +1) ,

so from the Bode plot of this function

Thus II 1'1-1'2Q 1100can be made arbitrarily small by suitable choice of Q III

RHoo, i.e. a=O. But the only solution of

is Q (s )=s +1, which doesn't belong to RHoo' So an optimal Q doesn't exist.

The following theorem provides a sufficient condition for an optimal Q to

exist.

Theorem 1. An optimal Q exists if the ranks of the two matrices l' 2(j w) and

T3(jW) are constant for all O~w~oo.

The proof of this t.heorem involves some advanced tools from functional

analysis and so is omitted. The rank conditions will be assumed to hold for the

remainder of this chapter. Note that they don't hold in Examples 3 and 4; since

an optimal Q does exist in Example 3, the conditions are not necessary for
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existence.

Let's see what the rank conditions mean for a specific control problem.

Example 5.

Consider the tracking problem outlined in Chapter 3. We have

[Gn G12]G
G 21 G 22

Gll = [:] , G12 = [~~]
G21 = [:], G22 = [~]

65

To conform with the assumptions of Chapter 4 (G proper, G 22 strictly proper,

G stabilizable), assume W ERHoo and P is strictly proper.

Bring in a doubly-coprime factorization of P :

-1 - -1-P = Np Mp = Mp Np

[
Xp ~yp] [M

p
Y

p
] = I

-Np Mp Np Xp

Then a doubly-coprime factorization of G 22 as in (4.5.1) is

N2= [:p ], M2 = Mp

[;p ], [~ 0 ]N2= M2= Mp

[~ 0 ] ,X2= Xp Y2 = [0 Yp]

X 2 = Xp , Y 2 = [0 jTp].

From (4.5.3)

[
-Np ]

T 2 = G 12M 2 = pMp
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If p>O, then rank T2(jW) is constant for all O:;w:;oo; this follows from

right-coprimeness of Np, Mp• If p were equal to zero, then T2(OO) would equal

o because P is strictly proper. Thus T 2 satisfies the rank condition iff the con-

trol energy is weighted in the performance function (see equation (3.1)).

The matrix T 3 satisfies the rank condition iff rank W (jw) is constant for all

O~w~oo. This is a type of nonsingularity condition on the reference signal r in

Figure 4 of Chapter 3.

Exercise 1. Find

for

T (8) = 108+ 1 T (8) = _8 _ .
1 8 +1 ' 2 8 +1

6.2 Solution in the Scalar- Valued Case

This section contains a complete solution to the model-matching problem

when the Tj's are scalar-valued. As mentioned in the previous section, we may

assume T 3=1. To conform with Theorem 1.1 it is also assumed that T 2(i w)~O

for all O~w:;oo. Finally, it is assumed that T2-1 ~RHoo to avoid the trivial

instance of the problem.

We begin with the notions of inner and outer functions. A scalar-valued

function T in RHoo is inne r if T ~ T =1, i.e.

T (-8 ) T (8 ) = 1 ,

and outer if it has no zeros in Re 8 >0. Examples of inner functions are

1-8 1-8 +82
1,~-,----

1+8 1+8+82

f.

Inner functions have pole-zero symmetry with respect to the imaginary axis:
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s =s 0 is a zero iff its mirror image S =-80 is a pole. Observe that the zeros of

an inner function all lie inside the right half-plane (hence the adjective "inner").

Examples of outer functions are

1 s +2 _s_
, S +1 ' s +1

The zeros of an outer function all lie outside the right half-plane Re s >0 (hence

"outer"). In electrical engineering terminology, an inner function is stable and

all-pass with unit magnitude and an outer function is stable and minimum phase.

Lemma 1. Every scalar-valued function T in RHoo has a factorization

T=Tj To with Tj inner and To outer. If T(jw)-:l-0 for all O~w~oo, then

To-lERHoo.

Proof. Let T, be the product of all factors of the form

a-s
a +s

where a ranges over all zeros of T ih Re s >0, counting multiplicities, and

define To:= T / Tj. Then T, and To are inner and outer respectively, and

T =Tj To' If T is not strictly proper and hils no zeros on the imaginary axis,

then To has these two properties too, so To-lERHoo' 0

A factorization of the above form is called an inner-outer factorization. (A

state-space procedure for doing matrix inner-outer factorization will be developed

in Section 7.4.)

Exercise 1. Prove that inner and outer factors are unique up to sign, i.e. if

Uj, Vj inner

Uo, Vo outer and nonzero,

then either
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Returning to the model-matching problem, bring in an inner-outer factoriza-

tion of T 2: T 2= T 2; T 20' For Q in RHoo we have

where

IITI-T2Q 1100 = IITI-T2z T20 Q 1100

= IIT2z(T2-/TI-T20 Q)lloo

= IIT2-iTI-T20 Q 1100

= IIR -x 1100 ,

R .- T -IT.- 2i I

X := T20 Q .

(1)

(2)

(3)

Equality in (1) follows from the property I T 2; U w) 1 =1. Note that R ERLoo'

Also, since T 20 and T 2-0IERHoo' (3) sets up a one-to-one correspondence between

functions Q in RHoo and functions X in RHoo' We conclude that

= dist(R ,RHoo) .

A function X in RHoo satisfying

a= IIR-Xlloo

(4a)

(4b)

will be called optimal. An optimal X yields an optimal Q via (3).

The optimization problem in (4) is much like that in Section 5.2, finding the

distance from R to Hoo' Since RHooCHoo we have

(5)

It will turn out that the distances are in fact equal because R is real-rational, so

that, from (4) and Nehari's theorem, 0: equals IlfR II.

For the main results we shall use the machinery of Chapter 5. Factor R as
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with R 1 strictly proper and analytic in Re 8 ::;;0 and R z in RHoo' Then R I has

a minimal state-space realization

R 1(8 ) = [A, B, C, 0] (6)

with A antistable. The controllability and observability grammians are the

unique solutions of

AL + L AT = BBT
e e

AT L + L A = CT Co 0

(7)

(8)

Let AZ equal the largest eigenvalue of Le La and let w be a corresponding eigen-

vector:

(9)

Defini.ng v := 'A-1Lo w, we have the pair of equations

Finally, define the real-rational functions

f (8 ) := [A , w, C, 0]

g (8 ) := [-A T, v, B T ,0] .

Observe that f ERHzl and 9 ERHz.

Lemma 2. The functions f and g satisfy the equations

(10)

(11)

(12)

(13)

(14)

(15)

Proof. To prove (14) start with (7). Add and subtract 8Le on the left-hand

side to get

Now pre-multiply by C (8 -A t1 and post-multiply by (8 +A T t1v to get

-CLe (8 +A Tt1v + C(s~A tILe V
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(16)

The first function on the left-hand side belongs to Hz; from (10) and (12) the

second function equals AI (8 ); and from (6) and (13) the function on the right-

hand side equals R 1(8)g (8). Project both sides of (16) onto Hz1to get

But fR,=fR; hence (14) holds.

Equation (15) is proved similarly starting with (8). [J

Vectors I and g satisfying (14) and (15) are said to be a Schmidt pair for

the operator f R .

Exercise 2. Prove that I ~I = g ~ g •

Notice from (14) and (15) that

(17)

i.e. g is an eigenvector of f;f R corresponding to AZ, the largest eigenvalue (by

Theorem 5.1.3).

Theorem 1. The infimal model-matching error a equals Ilf R II, the unique

optimal X equals R -al jg, and, for the optimal Q, TcTzQ is all-pass.

Proof. From Nehari's theorem there exists a function X in Hoo such that

IIR-Xlloo = IIfR II.

It is claimed that

(R -X)g = fR g

To prove this, define h := (R -X)g and look at the Lz-norm of h -f R g:

(18)

(19)
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= < h ,h > + <f R 9 ,f R 9 >

Being in Hi, f R 9 is orthogonal to the H2-component of h. Thus

But

Hence

Using (21) in (20) we get

Ilh-fR 9 1122 = <h,h > - <fR 9 ,fR 9 >
f= <h ,h > - < 9 ,f R f R 9 >

= <h,h > - )...2<g,g > from (17)

= II(R -X)g 1122
- ,,211g 1122

:s; (IIR -X"~-"~)llu 1122
.

But IIR -X 1100=)... from (18), so h =f R g. This proves the claim.

71

(20)

(21)

From the claim we get the first two assertions in the theorem statement as

follows. Every X in Hoo satisfying (18) also satisfies (19). But (19) has a unique

solution, namely,

X=R-)...//g

(Here (14) is used.) Since the latter function belongs to RHoo, equality holds in

(5). Thus from (4) and Nehari's theorem

Therefore X =R -0: f / 9 .
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To prove the third assertion in the theorem statement start with (2) and (3)

to get

To prove that T1-T2Q is all-pass, it suffices to show that R -x is all-pass. But

R -X = AI / g and

I I (j w) I = I g (j w) I
from the preceding exercise. 0

Let's summarize this section in the form of an algorithm to compute a and

the optimal Q .

Step 1. Do an inner-outer factorization

T 2 = T 2i T 20 .

Step 2. Define

R := T 2~lT 1

and find a minimal realization

R (8) = [A, B, C, 0] + (a function in RHoo)'

Step 3. Solve the equations

AL + L AT = BBT
c c

AT L + L A = CT Co 0

Step 4. Find the maximum eigenvalue A2 of Lc Lo and a corresponding eigen-

vector w.

Step 6. Define

I (8) = [A, w, C, 0]
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g (s) = [-A T, A-1Lo w, B T ,0]

X=R-Af/g.

Step 6. Set a=A and Q = T 2--;,1 X .

Example 1.

The algorithm applied to

T l(s ) = s +1 T2(s) = (s -1)(s -5)
10s +1 ' (s +2)2

goes like this:

Step 1.

T . (s ) _ (s -1)(s -5) () (s +1)(s +5)
2\ - (s +1)(s +5)' T20 s = (s +2)2

Step 2.

R (s) = (s +1)2(s +5)
(lOs +1)(s -1)(s -5)

[
1 0] [-6/11 ]

A = 0 5 ' B = 90/51

C = [1 1]

Step 3.

73

Step 4.

[
.1488 -.1604]
-.1604 .3114 ' Lo [

.5 .1667 ]

.1667 .1

A = .2021, w [-.7~6.]
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Step 5.
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Step 6.

f (s) = .2231s -4.223 , g (s) =
(s -l)(s -5)

X(s) = 3.021 (s +l)(s +5)
(lOs +l)(s +18.93)

-.2231s -4.2231
(s +l)(s +5)

__ (s +2)2
€X - .2021, Q (s ) - 3.021 ( )( )

10s +1 s +18.93

6.3 A Single-Input, Single-Output Design Example

This section illustrates an application of the previous one to a very simple

design problem. It is emphasized that the design problem is not meant to be

entirely realistic; in particular, it lacks bandwidth constraints on the controller

and ignores stability margin.

Consider the single-loop feedback system in Figure 1 and assume P is

strictly proper and K is proper. The transfer function from reference input, w,

to tracking error, z, is the sensitivity function

S := l/(l+PK) . (1)

Suppose w has its energy concentrated on a frequency band, say [O,wl]. Then an

appropriate performance specification would be

I S U w) I < E for all W in [O,wl] ,

where E is pre-specified and less than 1. For example, E=.Ol would provide less

than 1% tracking error of all sinusoids in the frequency range [O,wI]' To simplify

notation slightly, define the Loa-function

xU w) := 1if I w I ~ WI

:= 0 if I wi> WI •

Then the performance specification is

IIxS lloa < E. (2)
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db 0

-'20k

Figure 6.3.1. Single-loop feedback system

Figure 6.3.2. Bode plot of II /,

J OOu..'l

7S
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We consider the following design problem: given P, Wv and E, design K to

achieve specification (2) subject to the constraint of feedback stability.

Figure 1 looks like Figure 4.4.1 with G := -P. Thus Theorem 4.4.1 yields

a formula for all stabilizing controllers. Bring in a coprime factorization of ~P :

-P = N /M

MX - NY = 1.

(3)

(4)

As usual, N, M, X, Y all ERHoo' Then all proper stabilizing K 's are given by

the formula

K = (Y -MQ )/(X -NQ)

Q E RHoo.

Substitute (3) and (5) into (1) and simplify using (4) to get

S =MX ~MNQ .

(5)

(6)

So the design problem is reduced to determining a function Q in RHoo such that

IIx(MX -MNQ )1100 < E •

The left-hand side of (7) has the form

(7)

but the Tj's belong to Loo instead of RHoo as required in the previous section.

So let's approximate X by an RHoo-function Wk where

The piecewise-linear magnitude Bode plot of Wk is shown in Figure 2. Its

characteristics are that it is nearly unity on the operating band [O,w1](in fact to a

decade above) and then it drops off to -20k db at high frequency. The integer k

remains unspecified at this stage; it's regarded as a design parameter and its

function is explained below.

We now observe that if II Wk s lloo<E, then IlxS 1100is less than E, or at least

not much larger than E. This is because I W U w) I k and xU w) are nearly

equal on the operating band. Using (6) again we conclude that the design
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problem reduces to this: find k 21 and Q in RHoo such that

II Wk (MX -MNQ)IIoo < E,

i.e.

where T 1:= Wk MX, T 2:= Wk MN. Clearly T 1 and T 2ERHoo'

As in (1.1) define

77

(8)

Here a depends on the integer k, so let's write ak' The following result justifies

the introduction of k .

Lemma 1. If P has no zeros on the imaginary axis in the frequency range

[0,100wl], then

!im ak = 0 .
k-+oo

Proof. Let Xl(j w) equal 1 up to w=100wl and 0 beyond. We have

For an arbitrary 8>0 choose a function Q in RHoo such that

(9)

It's possible to do this because N has no zeros on the imaginary axis in the fre-

quency range [0,100wl]; so Q can be chosen to approximate X / N over this seg-

ment of the imaginary axis. (A rigorous justification of Q's existence uses

Runge's theorem.) Now we get

ak ::::; II Wk M(X -NQ )1100

::::;11M1100max(IIXl Wk (X -NQ )1100' 11(I-Xl) Wk (X -NQ )1100)' (10)

Since II Wk 1100::::;1we have from (9)

(11)

Also
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Using (11) and (12) in (10) gives

ak ::; 11M 1100 max(b, IIX -NQ 1l001l(I~Xl) Wk 1100) .
It follows from Figure 2 that

Ch. 6

(12)

Thus for sufficiently large k, ak ::; 11M 110015. Since 15 was arbitrary, we conclude

that ak -+0. 0

In view of Lemma 1 the design problem reduces to choosing k such that

ak <E and then finding a Q in RHoo to satisfy (8). There remains one hitch

though: it's not true that T 2(;" w)~O for all O::;w::;OOj in particular, T 2 is

strictly proper because P is. So in fact the infimum

(13)

is not achieved.

Let's see how to approach the optimization problem (13) when P has neither

poles nor zeros on the imaginary axis. Then T 2(;" w)~O for all O::;w< 00, but

T 2U 00)=0. Introduce a polynomial

v (s ) = (s +1)1

where the integer I equals the relative degree of T 2' number of poles minus

number of zeros. Then T 2 V is proper but not strictly proper. Instead of (13),

consider

The theory of the previous section applies to this problem, and there exists a

unique optimal Q l' Now define Q:= VQ l' Then Q is stable but not proper.

We can approximate Q on the operating band [O,WIJ by rolling off at high fre-

quency, say a decade above WI:
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Let's recap by listing the steps in the design procedure. The input data are

P , wI' and E, and P has neither poles nor zeros on the imaginary axis.

Step 1. Do a coprime factorization of -P:

-P = N /M

MX - NY = 1.

Step 2. Define the weighting function

and initialize k to 1.

Step 3. Set

T1 = Wk MX

Tz = Wk MN

V(s)=(s+ll

l = relative degree of P

Step 4. By the method of Section 2 compute

If ak ~ E, increment k by 1 and go back to Step 3. Otherwise, continue.

Step 5. By the method of Section 2 compute the function Q 1 in RHoo such that

Step 6. Define

Qa (s) = V(s)Q l(s )/(.lwI-
iS +1)1

K = (Y -MQa )/(X -NQa) .
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How the performance specification (2) is (approximately) achieved is sum-

marized as follows. We have in succession

IlxS 1100 = Ilx/(1+PK )1100

= Ilx(MX -MNQa )1100

R::! Ilx(MX -MNQ 1)1100

< E.

Example 1.

This example illustrates the above procedure for the nonminimum phase

plant

P (8) = (8 -1)(8 -2)
(8 +1)(82+8 +1)

and the performance specs w1=0.01, E=O.1 (-20 db). Thus we are to achieve less

than 10% tracking error up to 0.01 rad/s.

Step 1.

N = -P, M = 1, X = 1, Y = 0

Step 2.

W(8) = 8 +1
108+1

Step 3.

k

T (8) _ ( 8 +1 )
1 - 108+1

T2(8) = _(_8_+1_)k
108+1

V(8)=8+1

(8-1)(8 -2)
(8 +1)(82+8 +1)
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Step 4.

0:1 = .2299

0:2 = .05114

81

Step 6.

Q 1(8) = -6.114 (8 +.3613)(8
2
+8 +1)

(8 +4.656)(8 +1)2

Step 6.

Q (8) = -6.114 (8 +.3613)(8
2
+8 +1)

a (8 +4.656)(8 +1)(108 +1)

K (8) = .6114 (8 +.3613)(8 +1)(82+8 +1)
(8 +.004698)(8 +.5280)(82+5.6128 +9.599)

The Bode magnitude plot for this design is shown in Figure 3. The design

didn't quite meet the spec ( I S (.Olj) I =-18.4 db); this is because of the approx-

imations made during thE' procedure.

Notes and References

The question of when the model-matching problem has a solution is dealt

with in, for example, Francis (1983).

An example of the scalar-valued model-matching problem is the weighted

sensitivity problem. This was solved in Zames and Francis (1983) and Francis

and Zames (1984). Lemma 2.2 is from Glover (1984) and the proof of Theorem

2.1 is adapted from the elegant paper of Sarason (1967). The nice state-space

formulas for f and g (equations (2.12) and (2.13)) are due to Silverman and Bet-

tayeb (1980).

The design problem of Section 3 can be made more realistic by incorporating

global bounds on I S I, as for example in O'Young and Francis (1985), or
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bounds on the complementary sensitivity function 1-5, as in Foo and

Postlethwaite (1984), Kwakernaak (1985), and Verma and Jonckheere (1984).
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CHAPTER 7

FACTORIZATION THEORY

The purpose of this chapter is to develop some basic tools required for the

solution of the model-matching problem in the matrix-valued case.

7.1 The Canonical Factorization Theorem

Consider a scalar-valued real-rational function G (s ) which is proper and has

no poles on the imaginary axis; thus G ERLoo' Suppose in addition that G has

no zeros on the imaginary axis nor at infinity. Then G-1ERLoo too. Now con-

sider the problem of factoring G as G = G + G _ where G + has all its poles and

zeros in Re s >0 and G _ has all its poles and zeros in Re s <0. Furthermore,

we require that G + and G _ be proper and have proper inverses. When does such

a factorization exist? A moment's thought will lead to the conclusion that G has

such a factorization iff it has the property

{no. poles in Re s <o} = {no. zeros in Re s <O},

or equivalently

{no. poles} = {no. zeros in Re s <o} + {no. poles in Re s >O}.

The purpose of this section is to derive the analogous condition in the matrix

case and give a procedure for doing such a factorization.

Let G (s) be a square matrix such that G, G -lERLoo' Thus G and its

inverse are proper and have no poles on the imaginary axis. Our goal is to factor

G as G = G + G _, where the factors G + and G _ are square and have the proper-

ties

G _, G _-1 ERHoo
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The latter condition means that G + and its inverse are proper and analytic in

Re s <0. For ease of reference let's call a factorization as just described a canon-

ical factorization of G .

We begin with a minimal realization,

G (s) = [A, B, C, D] .

Since G (00 )=D and G -lERLoo, we see that D is invertible. Define

and write the state-space equations for G :

x = Ax + Bu

y = Cx + Du

Re-arrange to get y as input and u as output:

x =AAX +BD-ly

U = -D-1Cx + D-1y

Thus

(1)

Next we recall the notions of modal subspaces. Suppose A is of dimension

n X n. Let 0:(s) denote the characteristic polynomial of A and factor it as

o:(s) = o:_(s )o:+(s ), where 0:_has all its zeros in Re s <0 and 0:+ has all its zeros

in Re s >0. (There are no zeros on the imaginary axis.) Then the modal sub-

spaces of R n relative to A are

X)A ) := Ker o:)A )

X+(A ) := Ker o:+(A ) ,

where Ker denotes kernel (null space). It can be shown that X)A) is spanned

by the generalized (real) eigenvectors of A corresponding to eigenvalues in

Re s <0; similarly for X+(A). These two modal subspaces are complementary,

i.e. they're independent and their sum is all of R n. Thus we write
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(The two subs paces are not orthogonal in general.)
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Bases for modal subspaces can be computed using standard numerical linear

algebra. For example, suppose it's desired to compute a basis for X)A).
Transform A to real Schur form, ordering the eigenvalues with increasing real

part. Then partition the Schur form as

(2)

where A 1 has an its eigenvalues in Re s <0 and A 4 has all its eigenvalues in Re

s .~ O. Let T ibe the orthogonal transformation matrix, i.e. T TAT equals

matrix (2), and partition T conformably:

Then X_(A ) = 1m T l' the column span of T l'

Now consider the two modal subspaces X_(A X) and X+(A). The former is

associated :w.ith left half-plane zeros of G and the latter with right half-plane

poles of G.

Theorem 1. G has a canonical factorization if X)A X) and X+(A ) are comple-

mentary.

Since the proof is constructive and is used several times in the sequel, it's

useful to present it as an algorithm.

Step 1. Obtain real matrices T 1 and T 2' each with full column rank, such that

X)A X) = 1m T1

X+(A ) = 1m T 2 .

(3)

(4)

Define T:= [T 1 T 2] and note that T is square and nonsingular by the

hypothesis of the theorem.

Step 2. Introduce the partitions

(5)
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(6)

(7)

corresponding to the above partition of T, e.g. A 1 is square and its dimension

equals that of X_(A X).

Step 3. Define

G +(s ) := [A 4' B 2' C 2' D]

Gjs):= [Av BI, D-ICI, I].

(8)

(9)

The proof that these steps do indeed result in a canonical factorization uses

the following two exercises.

Exercise 1. In (5) show that A 2 = 0, A 1 is stable, and A 4 IS antistable (all

eigenvalues in Re s >0). (Hint: use (4).)

Exercise 2. Show that A3-B2D-ICI = 0, A I-BID-ICI is stable, and

AcB2D-IC2 is antistable. (Hint: use (3).)

It follows from the first exercise that G;- , G _ERHoo' Also, since

G+(s tl = [AcB2D-IC2, B2D-1, -D-IC2, D-I]

G js tl = [A cB ID-IC l' B V -D-IC l' I] ,

we conclude from the second exercise that G _-1 , (G ;1 )~ERH:oo .. Finally, the

verification that G = G +G _ is as follows:
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[ [B ,: IIC I :4]' [~:], [C Ie,] , D ]

[[~::J[~:]'[CI C,J,D]

= [A, B, c, D]

= G (s ) .

The converse of Theorem 1 is true too, but we shan't need it.

7.2 The U amiltonian Matrix

Ch. 7

In this section we examine the modal subspaces relative to a certain type of

matrix, namely, a Hamiltonian matrix of the form

[
A -R ]

H:= _Q -A T . (1)

Here A , Q, and R are real n X n matrices, Q and R are symmetric, and R is

either positive semi-definite or negative semi-definite. The modal subspaces of H

live in R2n •

We consider first the simpler case where R =0 and A IS stable. The

Lyapunov equation

(2)

has a unique solution X.
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Theorem 1. (R =0, A stable) The modal subspaces relative to Hare

X+(H) = 1m [~]

X_(H) ~ 1m [~]

Proof. Define the nonsingular matrix

T .- [~ ~]

Then

89

so

Hence

= 1m T [~ ]

=lm[~].
Similarly for Xj H). 0

Now we turn to the general case. It is claimed that the spectrum of H is

symmetric with respect to the imaginary axis. To see this, introduce the

2n X 2n matrix

[0 -I]
J:= I °

having the property J2=-1. Then
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Thus Hand -H T are similar. Hence A is an eigenvalue of H iff -A is.

Now assume H has no eigenvalues on the imaginary axis. Then it must

have n eigenvalues in Re s <0 and n in Re s >0, i.e. the modal subspaces both

have dimension n.

Theorem 2. Assume H has no eigenvalues on the imaginary axis and (A ,R ) is

,tabili"ble. Tben X.( H) and 1m [~ ] ace complemen tacy.

Proof. Introduce a 2n X n real matrix T such that

(3)

and partition it as

(n X n b1ncks). Tben x.( H) and 1m [~ ] are complementa,y m T, ;, lnve,tible.

First it is claimed that

There is a stable n X n matrix H such that

HT = TH_.

Again, bring in the 2n X 2n matrix

[0 -I]
J:= I 0

and pre-multiply (5) by T T J:

TT JHT = TT JTH

Now, JH is symmetric, hence so is the right-hand side of (6):

(4)

(5)

(6)
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= -H! (T T JT) .
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(7)

Since Hand (-H!) have disjoint spectra, the unique solution of (7) (a

Lyapunov equation) is T T JT =0. But this is equivalent to (4).

The next claim is that Ker T 1 is invariant under H _' Let x EKer T l' Pre-

multiply (5) by [I 0] to get

Pre-multiply this by x T T [ and post-multiply by x to get

_xT T[RT2x = xT T[T1H_x

But from (4) the right-hand side equals

xT T[T2H_x = o.
Thus the left-hand side of (9) equals zero, i.e.

RT2x = o.

(8)

(9)

(10)

We just used the sign semi-definiteness of R. Post-multiply (8) by x and use

(10) to get T IH _x =0, i.e. H _x EKer T l'

Finally, to prove that T 1 is invertible suppose, on the contrary, that

Ker T 1~O. Then H _ restricted to Ker T 1 has an eigenvalue).. and a correspond-

ing eigenvector x :

Re )..< 0, 0 ~ x EKer T 1 .

Now pre-multiply (5) by [0 I]:

-QT 1 - AT T 2 = T 2H _ .

Post-multiply this by x and use (11) to get

(11)

(12)

(13)

Then (10), (13), and stabilizability of (A ,R) imply that T 2X =0. (Recall that

stabilizability implies

rank[A -f.1 R] = n

for all Re f.1~0.) But if T IX =0 and T 2X =0, then Tx =0, which implies x =0,
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a contradiction. [J

The Riccati equation associated with H is

A T X + XA - XRX + Q = 0 .

Ch.7

(14)

Observe that (14) reduces to (2) when R =0. Theorem 2 is related to (14) in the

following way.

Corollary 1. Under the same assumptions as in Theorem 2, there exists a

unique matrix X such that

(15)

Moreover, X is symmetric, it satisfies (14), and A -RX is stable.

Proof. Continuing with the notation in the previous proof, define

X := T 2 T 1-1. Then (15) is immediate from (3):

X_(H)=Im[~~]

~Im[~]T,
= 1m [~] .

Uniqueness is easy too, because

iff X I=X 2'

To prove that X is symmetric, start with

XT1 = T2•

Pre-multiply by T [ to get

T[XT1 = T[T2•

(16)

(17)
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Now take transpose of (16) and post-multiply by T 1 to get

T[XT Tl = TIT1.
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(18)

Equations (4), (17), and (18) together with nonsingularity of T 1 imply XT =X.

Next, rewrite equation (5) as

i.e.

(19)

Pre-multiply by [X -I] to get

IX -TIH[~]~O
This is precisely the Riccati equation.

Finally, pre-multiplication of (19) by [I 0] gives

A - RX = T IH _T 1-1 ,

proving that A -RX is stable since His. 0

In general the Riccati equation (14) has several solutions, only one of which

satisfies (15).

7.3 Spectral Factorization

Consider a square matrix G (s ) having the properties

G ,G-1 ERLoo

G~= G

G(oo»O.

(la)

(lb)

(lc)

Such a matrix has pole and zero symmetry about the imaginary axis. Our goal is

to factor G as
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G = G:--G

G _,G _-1 E RHoo .

This is called a spectral factorization of G and G _ is a spectral factor.

Theorem 1. Every G satisfying (1) has a spectral factorization.

Proof. The proof is constructive. We begin by factoring G as

Ch.7

(2)

where D := G (00), G 1 belongs to RHoo and is strictly proper, and G';-

belongs to RHoo and is also strictly proper. It's worth mentioning in passing that

such a factorization can be done using state-space methods, starting with a reali-

zation of G and doing similarity transformation:

G (s ) = [A , B, C, D]

~[[~':.j.[::],IC, C,J,D]
(A 1 stable, A 4 antistable)

= D + [A l' B l' C l' 0] + [A 4' B 2' C 2' 0] .

The condition G ~ =G implies that

G 1~ + G 2~ = G 1 + G 2 ,

i.e.

G 1~ - G 2 = G 1 - G 2~ .

The two sides of this equation are analytic in different half-planes and are strictly

proper. By Liouville's theorem both sides equal zero. Thus G 2=G 1~ , so from

(2)

(3)
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Bring in a minimal realization

Then

and

G (8) = [A, B, C, D] ,

where
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(4)

(5)

(6)

We are now set up to do a canonical factorization of G. From (4) we see

that

As in Section 1 bring in

AX=A -BD-lC

_ [Al-BlD-lCl
- C[D-lCl

(7)

(8)

Comparison of (8) and (2.1) shows that A x is a Hamiltonian matrix. Note that

A x has no eigenvalues on the imaginary axis (this follows from the assumption

G -lERHoo), BID -1B [ is positive semi-definite, and

is controllable (because (A 1> B 1) is). It follows from Theorem 2.2 and (7) that

XJA X) and X+(A ) are complementary. So by Theorem 1.1 G has a canonical
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factorization.

By virtue of Corollary 2.1 there exists a matrix X such that

Defining

T .- [~ ~] ,

we get

[
AI 0 ]

T-1AT = T
? -A 1

(question mark means irrelevant)

T'B ~ [-rC/;XB,) ]
CT = [C1+B[X BfJ.

By analogy with (1.8) and (1.9) we have G = G +G _, where

G +(s ) := [-A f, -(C [ +XB 1)' B f, D ]

G_(s):= [A l' B1, D-1(C1+B[X), I] .

Ch. 7

Notice that G + = G _~D , so that G = G _~DG _' Finally, since D is positive

definite (by (lc)) it has a square root D 1/2. Redefining G _ as

we get the desired spectral factorization G = G _~G []

Exercise 1. Prove that if (A , B ) is controllable and D is positive definite, then

is controllable.
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A matrix G satisfying (1) also has a co-spectral factorization:

G _,G _-1 E RHoo .

To get such a factorization, do a spectral factorization of H:= G T:

H = H_~II

II _,II ~1 E RHoo .

Then set G _=II! .
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In applications one may want to do spectral factorization of a matrix given

in special form. The method of proof in Theorem 1 can be used to solve the next

exercises.

Exercise 2. Suppose G ERHoo and G U w) has full column rank for all

O:S;w:S; 00. Derive the following procedure for a spectral factorization of G ~ G :

obtain a minimal realization,

G(s)= [A,B, C,D];

define

12 := D T D

II'- [A-B12-1DTC -B12-1BT]
.- _CT C -+-CT D12-1D T C -(A -B12-1D T C)T

and find the unique matrix X such that

then

[A , B , 12 -1/2(D T C -+- B T X), 12 1/2]

is a spectral factor of G ~ G .

Exercise 3. Suppose G (s )= [A , B , C, I] is a minimal realization. Assume A

is antistable and A -BC is stable. Derive a formula for a spectral factor of
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Exercise 4. Suppose G ERHoo and ')'>IIG 1100' Derive a formula for a spectral

factor of ')'2_G ~ G starting from a minimal realization of G .

7.4 Inner-Outer Factorization

A matrix G in RHoo is inner if G ~ G =1. This generalizes the definition

of an inner function. Observe that for G to be inner it must be tall (number of

rows 2:: number of columns). A useful property of an inner matrix is that its

Laurent operator preserves inner products:

<Gf ,Gh> = <f ,h>, f ,hEL2•

It follows from this that pre-multiplication of an Loo-matrix by G preserves

norms:

F ELoo =? IIGF 1100 = IIF 1100 .

An example of an inner matrix is

8 +1
8 +V2

1
8 +V2

A matrix G in RHoo is outer if, for every Re 8 >0, G (8 ) has full row rank;

equivalently, G has a right-inverse which is analytic in R(, s >0. This general-

izes the definition of an outer function. An outer matrix is wide (number of rows

~ number of columns). Of course, if G is square and

G ,G-1 E RHoo ,

then G is outer. Another example is that [F G] is outer if F and G are left-

coprime RHoo-matrices.

An inner-outer factorization of a matrix G in RHoo is a factorization
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Gj inner, Go outer.
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It's a fact that every matrix in RHoo has an inner-outer factorization. We shall

only need the following, slightly weaker result.

Theorem 1. If G is a matrix in RHoo and rank G (jw) is constant for all

O~w~oo, then G has an inner-outer factorization with the outer factor being

right-invertible in RHoo.

Proof. By Lemma 4.3.1 there exist square matrices G l' H, K in RHoo satisfy-

ing the equation

and having the properties

G 1 nonsingular.

The rank assumption on G implies that G 1(jw) is nonsingular for all O~w~oo,

i.e. G 1-1 ERLoo' Define

so that

G = [F O]K.

Now F ~ F has the properties

F~F ,(F~Ftl E RLoo

(F~F)~ = F~F

(F ~ F )(00) > 0 ,

so it has a spectral factorization by Theorem 3.1:



100

Define
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Then Gj is inner, Go is right-invertible in RHoo, and G =Gl Go' 0

Inner-outer factorization is relatively easy when G U w) has full column rank

for all O~w~oo: let Go be a spectral factor of G ~G and then set Gj :=GGo -1.

Example 1.

To do an inner-outer factorization of

G (8) =

1
8 +1
108

8 +2
8 -1
8 +1

H.-

we follow Exercise 3.2 to get a spectral factor of G ~ G. We have

G (8) = [A, B, C, D]

Then

II := D T D = 101

[
A-BD-1DTC -Bll-1BT]

_CT c+cT Dll-1D T C -(A -Bll-1D T C)T

-1 .0198 -.0099 0
1 0 0 0

-1 -2 1 -1
-2 -7.9604 -.0198 0
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and

where

Thus

Finally

= [27.25 30.43]
X 30.43 36.09 .

Go (8) = [A, B, J2-1/2(D T C +B T X), 121/2]

= 10.05 (8 +.9837)(8 +.2861)
(8 +1)(8 +2)
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1
10.05(8 +.9837)(8 +.2861) [

8 +2 ]
108 (8 +1) .

(8 -1)(8 +2)

A matrix G is said to be co-znner or co-outer if G T is inner or outer

respectively. A co-inner-outer factorization has the form

Gco co-outer, GCI co-inner.

An inner-outer factorization of G T yields a co-inner-outer factorization of G .

7.5 J-Spectral Factorization

In this section we look at a rather special factorization required in Section

8.3. We start with a real-rational matrix G 1(8) having the properties

G 1 is strictly proper,

G 1 is analytic in Re s ~O ,

(la)

(lb)

(Ie)
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Define the matrices

[
1 G 1 ]

G:= 0 1

Ch. 7

(2)

(3)

(not the same J as in Section 2). Our goal is to achieve the following J -spectral

factorization of G :

G _,G ~1 E RHoo .

Bring in a minimal realization

Note that A 1 is antistable. Defining

[-Af CfCl]
A .- o Al

[Cf 0 ]B .- o B1

[0 C 1 ]C .- -B[ 0

we have

(G ~ JG )(s) = [A, B, C, J] .

Also

A X := A - BJ-1 C

(4)
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Bring in the controllability and observability gramians:

AlLe + Le Ai = BlB[

ArLo +LoAl=C[Cl.

As in Theorem 2.1 we have
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Exercise 1. Show that assumption (lc) implies that X_(A X) and X+(A) are

complementary.

From this exercise we can proceed with a canonical factorization of G ~ JG .

Defining

T ,~ [L: L; ]
N := (I ~Lo Le tl

,

we get (after some algebra)

T-'AT= [NA[N-' :,]

T-lB = [ NCr T -N~oBl]
-Le NCl N Bl

CT ~ [~~LiB~~" ] .
Then we obtain from (1.8) and (1.9) that G ~ JP = G +G _, where

G+(')~IA"IL,NCr NTB,], [-B~,~.lJI

[
clLe ]

G)s)=[-NA[N-l,[NC[ -NLoBl]' B[ ,f]. (5)
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It can be checked that G + = G -""J, so that G ~ JG

reference we record that
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G _~JG . For future

which follows from (5) and some algebra.

Notes and References

(6)

This chapter is based primarily on Bart, Gohberg, and Kaashoek (1979),

Doyle (1984), and Ball and Ran (1986): Theorem 1.1 is from Theorem 1.5 of Bart

et at. (1979); Theorem 2.2 and Corollary 2.1 are based on Section 2.3.3 of Doyle

(1984); Section 3 is based on Section 2.3.4 of Doyle (1984); and Section 5 is from

Ball and Ran (1986).

Golub and Van Loan (1983) is an excellent source for numerical linear alge-

bra, in particular the Schur decomposition. For the standard results on

Lyapunov and Riccati equations see, for example, Wonham (1985). A standard

reference for spectral factorization is Youla (1961). For a general treatment of

inner-outer factorizations see Sz.-Nagy and Foias (1970).



CHAPTER 8

MODEL-MATCHING THEORY: PART II

This chapter treats the model-matching problem in the matrix-valued case.

8.1 Reduction to the Nehari Problem

The model-matching problem is a lot harder when the Ti 's are matrix-

valued functions than it is when they are scalar-valued. This section develops a

high level algorithm for reducing the model-matching problem to the Nehari

problem of approximating an RLoo-matrix by an RHoo-matrix; the Nehari prob-

lem will then be treated in Section 3.

Throughout this chapter the rank conditions of Theorem 6.1.1 are assumed

to hold.

The problem is sufficiently hard that we shall content ourselves with accom-

plishing the following: to compute an upper bound 1 for 0; such that 1-0; is less

than a pre-specified tolerance; and then to compute a Q in RHoo satisfying

(1)

Such a Q may not be optimal, but it will be as near optimality as we wish.

To see the development more clearly, let's first do the case T 3=1. Bring in

an inner-outer factorization of T 2'

Ui inner, Uo outer,

and define the RLoo-matrix

Y := (I-Ul Ul ~)Tl'

If 1is a real number greater than II Y 1100' then the matrix 12- Y~ Y has a spec-

tral factor Yo' Define the RLoo-matrix
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Thus R depends on "I.

(i) a = inf{"(: IIYlloo<"I, dist(R, RHoo)<l}

(ii) Suppose

"I > a, Q , X ERHoo

IIR -X 1100~ 1

Ch. 8

(2)

(3)

Part (i) of the theorem affords a method for computing an upper bound "I for

a; then part (ii) yields a procedure for computing a nearly optimal Q. A partic-

ularly easy case of the theorem is when T 2 is square and nonsingular. Then U,

is square, Y =0, Yo ="11, R ="1-1 Ui ~ T 1> and part (i) reduces to

a = dist( U, ~ T l' RHoo) ,

i.e. a equals the norm of the Hankel operator with symbol U. ~ T 1. This is just

like the scalar-valued case of Section 6.2.

The proof of Theorem 1 requires two preliminary technical facts.

Lemma 1. Let U be an inner matrix and define the RLoo-matrix

E ,~ [1-'~~~].
Then IIEG 1l00=IIG 1100for all matrices G in RLoo-

Proof. It suffices to show that E ~ E =1. But this follows easily from the fact

that U~U=I:
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= UU~ + (I -UU~)(1 -UU~)

=1. 0
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Lemma 2. Suppose F and G are RLoo-matrices with equal number of columns.

If

then

(4)

IIG 1100 < ry

and

where Go is a spectral factor of ry2_G ~G. Conversely, if (5) holds and

then

(5)

(6)

Proof. We'll prove the first statement. Assume (4). Then (5) follows immedi-

ately because

It follows in turn from Theorem 7.3.1 that ry2_G ~G has a spectral factorization:

,..,,2 _ G~G = G ~G
I 0 0

To prove (6), define

(7)
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(8)

let f be an L2-vector of unit norm, and define g := Go-1 f. Starting from (8)

we have in succession

II [~ ]g II, S h'llig II,

( [ ~ ]g, [~ ]g ) S h-')' < g ,g >

<g ,(F~F +G~G)g > ~ 12<g,g > - f(21-f)llg III
<g ,F~Fg > ~ <g ,b2-G~G)g > - f(21-f)llGo 11,;;2.

The last step used the inequality

Now using (7) we get

Hence

Since f was arbitrary we find that

Since f(21~f»0, we arrive at (6). [J

Exercise 1. Prove the converse in Lemma 2.

Proof of Theorem 1.

(i) Let

lm!:= inf b : IIY 1100< 1, dist(R , RHoo) < I} .

Choose f>O and then choose 1 such that a+f>l>a. Then there exists Q in

RHoo such that



Ch.8

Equivalently, from Lemma 1

Now

so (9) is equivalent to

This implies from Lemma 2 that

IIY 1100 < 'Y

The latter inequality implies
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(9)

(10)

(11)

(12)

But Uo is right-invertible in RHoo (Theorem 7.4.1) and Yo is invertible in RHoo'

Therefore

so (12) gives

dist(R , RHoo) < 1 . (13)

From (10), (13), and the definition of 'Ymj we conclude that 'Ymj::;''Y. Thus

'Yinj< a+E. Since E was arbitrary, 'Ymj::;' a.

For the reverse inequality, again choose E>O and then choose 'Y such that

'YinftE>'Y>'Ymj' Then (10) and (13) hold, so (11) holds for some Q in RHoo'

Lemma 2 now implies that
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Finally, this leads (as above) to

Thus a.~"I<"Ilnrh-, so a.~"Ilnf'

(ii) This part follows from the previous paragraph. 0

We saw in Section 6.2 that

for a scalar-valued R in RLoo' This is true in the matrix-valued case too.

Lemma 3. For R in RLoo

Proof. We have
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the latter equality being Nehari's theorem. Choose E>O and set ,B:=llr R II.
Then

dist[(IJ+Et1R, Hoo] = (IJ+Et11IrR II
= ,Bj(,B+E)

< 1.

As we shall see in Section 3, this inequality implies there exists X in RHoo such

that

Thus

Since Ewas arbitrary
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It can also be proved that the distance from R to RHoo is achieved, i.e.

there exists X in RHoo such that

I/R -X 1/00 = dist(R , RHoo) .

Based on Theorem 1 and Lemma 3 we have the following high level algo-

rithm for finding nearly optimal Q 's in the case T 3=1.

Step 1. Compute Y and IIY 1100.

Step 2. Find an upper bound al for a.

Step 3. Select a trial value for "/ in the interval (II Y1100, all.

Step 4. Compute Rand IlfR II. Then IlfR II < 1 iff a < ,,/,so increase or

decrease the value of "/ accordingly and return to Step 3. When a sufficiently

accurate upper bound for a is obtained, continue to Step 5.

Step 5. Find a matrix X in RHoo such that IIR -X 1100s: 1.

Step 6. Solve X

Step 1 involves implementation of the procedures in the previous chapter for

spectral factorization and inner-outer factorization. I"')l" Step 2 the simplest

bound would be al=1I T 11100' Then binary search could be used to iterate on "/.

Step 6 is not too difficult if Uo is square; this happens when T 2 is tall, which fre-

quently can be arranged by suitable problem formulation. When Uo isn't square,

Step 6 would be more difficult. How to do Step 5 is the subject of the next two

sections.

Example 1.

Let's continue with the tracking example of Chapter 3, again taking

s -1
P(s)= ( )s s-2
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W(s)= s+l
10s +1

and p=1. In Section 4.5 we obtained

s -1

s 2+s +1
s(s-2)

s 2+s +1

The matrix Q is of dimension 1X 2:

Notice that QT 3= WQ l' Thus by the substitution

T 2<- WT 2

we arrive at a model-matching problem with T 3=I 1 namely

minimize IIT1-T2Q111oo1 Q1ERHoo'

The previous algorithm produces the following results.

Step 1.

u, (, )c, 2+:7' I 1 [,-~,+~)]
U

o
(8) = (82+V78 +1)(8 +1)

(s 2+s +1)(108 +1)

8+1 [8
2
(82_4)]

Y(8)= ----- ( )( )
(10s +1)(84-582+1) -s s +1 s-2

/lYiloo = 0.1683

Step 2.

Ch.8
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Steps 3 and 4. From the first two steps we know that ex lies in the interval

[.1683, 1]. We now use binary search on 1 in this interval, testing if IlfR II < 1.

To locate exwithin, say, 3% of the length of this interval, we need five iterations:

0.5846

0.3774

0.2729

0.2206

0.2468

0.3710

0.5996

0.8952

1.2327

1.0317

We conclude that ex lies in the interval [.2468, .2729]. Let's proceed with

1=.2729. Then a spectral factor of 12_y~y (calculated via Theorem 7.3.1) is

Yo (s ) = .2539 8
3
+2.6788

2
+ 1.0818 +.1075

(8 +.1)(s2+v7s +1)

There follows

R (8) = .3938(8 +1)2(82+v78 +1)
(82-v78 +1)(83+2.67882+1.0818 +.1075)

(The values of Ilf R II in the above table are calculated as in Example 5.2.1.)

Step 6. Since R is scalar-valued, Theorem 6.2.1 can be applied to find the

closest function X in RHoo'

R (8 ) = [A, B, C, D] + (a function in RHoo)

A •.• [2~8• .4~6.]
B = [:~023981]

C = [1 1]

[
.2463 -.3646]

-.3646 .9448

[
.2284 .3780]
.3780 1.095
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>-. := maximum eigenvalue of Lc La = .8952

[
-.3

1
466 ]

w := corresponding eigenvector =

-1 [.3338]v := A La W = 1.076

X(8)=R(8)->-'[A, w, C,O]X[-AT, v,BT,Or1

= .8952 (82+V78 +1)(82+2.6568 +1.033)
(8 +3.108)(83+2.67882+ 1.0818 +.1075)

Step 6.

Q = [Ql Q2]

Ql(8) = X(8 )Ya (8 )Ua (8 t1

= 2.273 (82+8 +1)(82+2.6568 +1.033)
(8 +1)(8 +3.108)(8 2+V78 +1)

The function Q 2 is unconstrained, and hence may be set to zero.

Finally, the controller K is computed using formula (4.5.2).

K = [C1 C2]

C1(8) = -2.273 (8 +1)(82+8 +1)(82+2.6568 +1.033)
(8 +3.108)(8 2+V78 +1)(82+58 -18)

Ch. 8

328 -1
82+58 -18

Notice that C 1 is unstable, so the controller can't be implemented as shown in

Figure 4 of Chapter 3. (This is a case where every stabilizing controller is itself

unstable.) The theory guarantees, however, that C 2 contains the unstable factor

of C l' This unstable factor would be moved past the summing junction into the

loop.

The properties of this design are illustrated in the Bode magnitude plot of

Figure 1. The transfer function, say H l' from reference r to tracking error r-v

has magnitude less than -10 db over the frequency range [0, .1], approximately

the bandwidth of the weighting function W (smaller tracking error could be
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obtained by reducing the weighting p on control energy), it peaks to about 4 db,

and it rolls off to 0 db at high frequency, as it must for a proper controller. The

actual quantity being minimized is the Hoo-norm of the transfer matrix

where H 2 is the transfer function from r to u. This norm equals the supremum

of

over all w. For our design this function is very nearly flat at -11.3 db.

The generalization when T 3-:/=1 uses the following definitions:

Yo = spectral factor of "'?- Y~ Y

Zeo = co-spectral factor of 1-ZZ ~

Notice that R , Y ,Z ERLoo and X ERHoo; Y is a function of T 1 and T 2; Rand

Z are functions of 1, T l' T 2' and T 3' The matrix Ze~l Uo is right-invertible

over RHoo and Veo is left-invertible over RHoo'

Theorem 2.

(i) Cl = infb : IIY 1100 < 1, I!Z 1100 < 1, dist(R , RHoo) < 1} .

(ii) Suppose

1> Cl , Q , X ERHoo

/IR -X /100 ::; 1
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The proof is analogous to that of Theorem 1 and is therefore omitted. The

general high level algorithm is as follows:

Step 1. Compute Y and IIY 1100'

Step 2. Find an upper bound al for a.

Step 3. Select a trial value for, in the interval (II Y1loo, all.

Step 4. Compute Z and IIZ 1100'

Step 6. If IIZ 1100< 1, continue; if not, increase, and return to Step 4.

Step 6. Compute Rand IIfR II. Then IIfR II < 1 iff a<" so increase or

decrease the value of , accordingly and return to Step 3. When a sufficiently

accurate upper bound for a is obtained, continue.

Step 7. Find a matrix X in RHoo such that IIR -X 1100::;: 1.

8.2 Krein Space

This section introduces a geometric structure which will be used to solve the

Nehari problem.

Let X and Y be two Hilbert spaces. There is a natural way to add them

together to get a third Hilbert space, their external direct sum X EB Y. We shall

represent vectors in X EB Y like this: (: ). As a set, X EB Y consists of all
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such vectors as x ranges over X and y over Y. Vector addition and scalar mul-

tiplication:'are. :d:efiPl~rl, componentwise, and the'inner product is defined as follows:

Now introduce in addition an indefinite inner-product on X EB Y:

ffJais iis indefinite because !z, ,z:] can be negative, zero, or positive, depending on

the particular z in X EB Y. Amore compact way of defining[, ]:is to introduce

the operator J on X EB Y:

{x) ( x)J, :=.
y :-:Y,

Then [zl'ZZ] := <zl'JzZ>' The external direct sum X EB Y together with the

above indefinite inner-product is called a Krein space.

A vector z in X EB Y is ne gative if [z , z ]~ 0, and a subspace of X EB Y is

negative if all its vectors are negative.

Consider an'op€rator.,q> from Y to X. Its graph is a subspace of X EB Y,

namely,

It is an elementary fact (and is easy to prove) that the graph is a closed subset of

XEB Y.

Example 1.

Let F be a matrix in RHoo and consider the compression to Hz of the

Laurent operator with symbol F (Le. the Toeplitz operator). Its graph is

or equivalently
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where we use the notation

MHz:= {Mg : g EHz} .

This graph is a subspace of Hz EB Hz. It's convenient to denote it by GF •

Example 2.

If F ERLoo, then the corresponding graph

lives in Lz EB Hz.

8.3 The Nehari Problem
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This section solves the Nehari problem posed as follows: given R in RLoo

with dist(R, RHoo)<I, find all X's in RHoo such that IIR -X 1100:::;1. Only some

of these X's are closest to R , Le. satisfy

IIR -X 1100= dist(R , RHoo) .

We saw in Lemma 1.3 that the distance equals Ilf R II, so the standing assumption

in this section is that Ilf R II< 1.

We may as well assume in addition that R is strictly proper and analytic in

Re s :::;0, Le. R ~ERHOO' Otherwise, factor R uniquely as

R 1~ ,R z E RHoo, R 1 strictly proper .

We've already observed in Chapter 5 that f R =f R l' So to solve the Nehari

problem for R, solve it for R l' Le. find all XI's in RHoo such that

IIR I-X 11100:::;1,and then set X = X I+R z.

We need a preliminary fact.
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Lemma 1. Let F ERLoo' Then F H2CH2 iff F ERHoo' If F is square and

F H2=H2' then F -IERHoo.

Proof. The implication

is easy (and has already been noted in Theorem 2.4.2).

Suppose F H2 CH2. Since each column of the matrix (8 +1)-1J belongs to

H2' the same is true of (8 +1)-1F (8). Therefore, this latter matrix is strictly

proper and analytic in Re 8 ~ O. Hence F is proper and analytic in Re 8 ~ 0, i.e.

F ERHoo'

Finally, suppose F is square and F H2=H2• Then there exists a matrix G ,

each of whose columns belongs to H2' such that

F (8)G (8) = (8 +lt1J .

This implies that F has an inverse in RHoo, namely, (8 +l)G (8). []

In terms of S := R -X, a problem equivalent to the Nehari problem is this:

find all S's in RLoo such that liS 1100:=:;1and R -S ERHoo' The next lemma

gives geometric characterizations of these two conditions. Define the RLoo-

matrix

(1)

Lemma 2. Let S ERLoo' Then liS 1100:=:;1iff Gs is negative, and R -S ERHoo

iff

Proof. Suppose liS 1100:=:;1.A vector in Gs has the form (Sf) for some f in

H2• This vector is negative:
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[[ Sf J.[ sf 1] ~ IIS1 Iii -III IIi

::; (11811;'-1)111 III
< o.

The converse is equally easy.

Now suppose R -8 ERHoo' Then by Lemma 1

so

Gs [~]H2
[~ ~ ] [S~R ]H2

Conversely, if

then

[~]H' C [~ ~ JrH2 ffi H,) .
Pre-multiply by [-1 R] to get

(R -8 )H2 C H2 ,

which implies by Lemma 1 that R -8 ERHoo' [J
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In view of Lemma 2 we would like to be able to characterize negative graphs

contained in G (H2 EEl H2). The J -spectral factorization of Section 7.5 was

introduced for this very purpose. Following Section 7.5 we have
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G _,G _-1 E RHoo

Define

L := GG_-1

Then from (2)

and from (3)

L (Hz EfJ Hz) = G (HzEfJ Hz).

Ch. 8

(2)

(3)

(4)

(5)

A square matrix M in RLoo having the property M~ JM =J is said to be

J -unitary. Such a matrix is invertible in RLoo; in fact the inverse of M is

JM~ J. The usefulness of J -unitary matrices derives from the fact that (under

mild conditions) they map negative graphs into negative graphs. The precise

statement is as follows.

Lemma 3. Let X be an RLoo-matrix with IIXlloo~1. Suppose M is a J-

unitary matrix having the properties

MGx C Lz EfJ Hz

{o} EfJ Hz C M (Lz EfJ Hz) .

Then there exists Y in RLoo such that IIY 1100~ 1 and G y =M GX •

Proof. Define

Then from (6)

[;: ]Hz = MGx C Lz EfJ Hz,

(6)

(7)

(8)
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so pre-multiplying by [0 I] we get Y 2H2CH2' Then by Lemma 1, Y zERHoo'

We shall show that Y 2-1ERHoo' This takes three steps.

Claim #1: M Gx is a negative subspace of L2 EEl H2•

A vector in M G X has the form,

for'some f in H2• Then

The last quantity is :::;0 because Gx is negative.

Claim #2: Y 2H2 is a closed subspace of H2.

Suppose {f k} is a sequence in Y 2H2 which converges to some f in H2.

Then

for certain vectors hk in L2• Since {f k } is Cauchy and M G X is negative, it fol-

lows that {hk} is Cauchy too, so it converges to some h in L2• Since G X is

closed and M ,M-1ERLoo' it follows that M Gx is closed. Thus

so fEY 2H2'

Claim #3: Y 2H2=H2.
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Suppose otherwise. Since Y 2H2 is closed, we have

Let 9 be a nonzero vector in (Y 2H2)1 and define

Then (7) implies that I 2EH2' so 9 and Y 2I 2 are orthogonal. Now we get

0=-<g,Yd2>

Ch. 8

(9)

Thus

or

(0) (Yd2)
= ( 9 ,J Y d 2 )

(11) (XI 21
= (M I 2 ,JM I 2 J)

(11) (XI 2)
= ( I 2 ,M~ JM I 2 )

(11) (XI 2)=( 12 ,J 12 )

III 211l = < 1 1,XI 2>

:::; III 111211XI 2112

:::; 11/111211/2112'

from (8) and (9)

(10)

But (~) is strictly negative and M-1 is J -unitary. This implies that (~ :) is

strictly negative too, i.e.

(11)
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Inequalities (10) and (11) are contradictory.

It follows from the third claim and Lemma 1 that Y Z-1 ERHoc,' Defining

Y := Y 1Y Z-l , we have Y ERLoo and

(12)

From the first claim Gy is negative, so from Lemma 2 IIYlloo:S:1. Finally, (8)

and (12) imply that Gy = MGx. 0

Now we have the solution to the Nehari problem as posed in terms of S .

Theorem 1. The set of all matrices S in RLoo such that 115 1100:S: 1 and

R -5 ERHoo is given by the formulas

Proof. First suppose

By Lemma 2 and (5), Gs is negative and

Gs C L (Hz EB Hz) .

Define M :=L -1. From (13)

M Gs C Hz E/J Hz,

so (6) holds with 5 substituted for X. Also

L ({O} EB Hz) C L (Hz EB Hz)

= G (Hz EB Hz) from (5)

~ [~ ~] (B, $ B,)

(13)

(14)
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so (7) holds. Noting that M is J -unitary, invoke Lemma 3 to get the existence
of Y in RLoo such that

IIYlloo $; 1, Gy = MGs

Since Gy C Hz EB Hz from (14), we have by Lemma 1 that actually Y ERHoo'
Define

[~J~L[n,
so that

[~: JB' ~ L Gy

c= Gs

~ [;JB'. (15)

Pre-multiply (15) by [0 I] to get X zlIz=Hz. Thus X z-1 ERHoo by Lemma 1.

Now pre-multiply (15) by [I -8] to get 8 =X IX z-1 •

Conversely, suppose Y ERHoo and II Y II 00 $; 1. Then

L G y C L (Hz EB Hz)

= G (Hz EB Hz)

and

{O} EB Hz = G ({O} EB Hz)

C G (Hz EB Hz)

= L (Hz EB Hz)

C L (Lz EB Hz) .

Invoke Lemma 3 again: there exists 8 in RLoo such that 1181100$;] and
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Gs =L Gy. Define

Then

so S=X IX 2-1 as before. 0
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The formulas in Theorem 1 yield S as a linear fractional transformation of

Y. To see this, partition L as

Then

One possible candidate for Y is Y =0, in which case S is simply L 2L 4-1 •

Let's summarize the results of this section in the form of an algorithm. The

input is a matrix R in RLoo having the properties

R is strictly proper

R~ E RHoo

and the output is a matrix X in RHoo such that IIR -X 1100::;1.

Step 1. Find a minimal realization of R :

R (s ) = lA, B, C, OJ .

Step 2. Solve the Lyapunov equations

AL + L AT = BBTc c
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Step 3. Set

L1(S)= [A,-LeNCT, C,l]

L 2(S ) = [A, NT B , C, 0]

L 3(S ) = [-A T, NC T , -B T ,0]

L 4(S ) = [-A T, NLo B, B T , I] .

Step 4. Select Y in RHoo with IIYlloo.s;l (for example Y=O) and set

Exercise 1. Derive the formulas for Lt in Step 3 using the equations

L = GG ~~1 ,

G (s ) = [A, [0 B], [~], I] ,

and (7.5.6).

Example 1.

Let

.5
0

s -1
R (s ) = 1 2

s 2_s +1 s -1

Ch. 8

We computed in Section 5.2 that dist(R, RHoo)=1.2695. Scale R by, say,

1/1.28, i.e. redefine R to be

1R(s)= -
1.28

.5
s -1
1

s 2_s +1

o
2

s -1
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The algorithm applied to this matrix has the following results:

Step 1.

R (8) = [A, B, C, D]

2 -2 1 0 .7813 0
1 0 0 0 0 0

A
0 1 0 0 ,B 0 0
0 0 0 1 0 1.563

[: -.5 .5
~],D=OC= 1 -1

Step 2 .

.2035 0 -.1017 0
0 .1017 0 0

Lc -.1017 0 .2035 0
0 0 0 1.221

.6250 -1.125 .6250 -.3333
-1.125 2.625 -1.625 1

Lo .6250 -1.625 1.125 -.6667
-.3333 1 -.6667 .5

1.507 -5.447 5.093 -29.27
-1.253 15.69 -13.83 79.37

N= .7918 -9.640 10.11 -52.14
-.5339 6.614 -6.251 36.90

Step 4. Take Y =0. Then
x (8 ) = R (8 ) - L 2(8 )L 4( 8 t1

= [A ,B, C, 0] - [A ,NT B, C, 0]X [-A T ,NLo B, B T ,I t1

[
A

0

o A

o 0
, [C -C 0],0 .
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The resulting X (8 ) is

-4.315(s +2.473)(s 2+1.206s +.3951)
(s +84.53)(s +1.101)(s 2+1.381s +1.110)

31.10(s +1.086)(s 2+1.118s +.7120)
(s +84.53)(s +1.101)(s 2+1.381s +1.110)

Exercise 2. Take
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10.47(s +1.054)(s +1)2
(s +84.53)(s +1.101)(s 2+1.381s +1.110)

-76.19(s 2+1.279s +.9036)
(s +84.53)( s 2+ 1.381s +1.110)

1 s-l
T 1(8) = --, T 2(S) = --, T 3(8) = 1 .

8 +4 8 +1

First, compute a using the method of Section 6.2. Second, choose 1> a (keep 1

variable) and define R as in Theorem 8.1.1. Third, using the previous algorithm

find an X in RHoo such that IIR -X 1100 ~ 1. Fourth, get Q from Theorem

8.1.1. This Q depends on 1. Finally, in the coefficients of Q let 1 tend to a.

You should get the optimal Q for the original model-matching problem.

8.4 Summary: Solution of the Standard Problem

We have completed our solution of the standard problem posed in Chapter

3. The first step is to reduce the standard problem to a model-matching prob-

lem; state-space tools for this reduction are given in Section 4.5. In the single-

input, single-output case the model-matching problem is relatively easy to solve

(Section 6.2). In the multi-input, multi-output case the model-matching problem

is reduced to the Nehari problem (Section 8.1). Finally, the Nehari problem is

solved in Section 8.3.

Notes and References

The first multivariable Hoo problem to be solved was the disturbance

attenuation problem (equivalently, the weighted sensitivity problem): Chang and

Pearson (1984) used matrix interpolation theory, Francis, Helton, and Zames

(1984) used the geometric Ball-Helton theory, and Safonov and Verma (1985)

used operator theory.
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The approach of Section 1, called ')'-iteration, is due to Doyle (1984); Francis

(1983) independently developed a similar approach for the case T 3 = I. A

detailed treatment of ')'-iteration is contained in Chu, Doyle, and Lee (1986).

For a comprehensive treatment of Krein spaces see Bognar (1974). The

approach in Section 3 to the Nehari problem is due to Ball and Helton (1983) and

Ball and Ran (1986); the proofs are modifications of those in Francis et at. (1984).

An alternative state-space approach to the Nehari problem (which inspired the

work of Ball and Ran) is that of Glover (1984).

An alternative approach to the model-matching problem is that of Kwaker-

naak (1985, 1986).

In the scalar-valued model-matching problem the value of a can be com-

puted directly: it's the norm of a certain Hankel operator. The method presented

in this chapter for computing a in the matrix-valued case is iterative: a isn't

equal to the norm of a Hankel operator except in the very special case where T 2

and T 3 are both square and nons ingular. Feintuch and Francis (1986) showed

that a equals the norm of a certain (non-Hankel) operator. An alternative for-

mula has been derived by Young (1986b). This latter formula is simple enough

to state here. Define two subspaces X and Y of L2'

Y := orthogonal complement of T 2H2 in L2 .

Now define the operator 6 from X to Y as follows:

6 f := orthogonal projection of T 1 f onto Y, f EX .

Then Young's formula is a = 11611. Along these lines, an alternative approach to

computing a is that of Jonckheere and Juang (1986).
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PERFORMANCE BOUNDS

For some simple examples of the standard problem it's possible to obtain

useful bounds on achievable performance, sometimes even to characterize achiev-

able performance exactly. This brief chapter presents three illustrative examples.

Figure 1 shows a feedback system with a disturbance signal w referred to

the output of the plant P. As usual, P is strictly proper and K is proper. The

transfer matrix from w to y is the sensitivity matrix 8 := (I -PK r1.

Suppose first that the spectrum of w is confined to a pre-specified interval of

frequencies [O,w1], wl>O. Then the problem of attenuating the effect of w on the

output y of the plant is equivalent to that of making 118 (j w)JJ uniformly small

on the interval [O,wll. As in Section 6.3 introduce the characteristic function

x(jw):= 1 if I w I SW1

:= 0 if I w I >wl .
Then the maximum value of 118 (j w)11 over the interval [O,w1J equals the Loo-

norm of X 8. It may happen that as we try to make IIX 8 1100 smaller and smaller,

the global bound 1181100 becomes larger and larger. This is unpleasant because a

large value of 118 1100 means the system has poor stability margin. Think of the

scalar-valued case: if 1181100 is large, then 11-(PK)(j w) I is small at some fre-

quency, i.e. the Nyquist plot of PK passes near the critical point s =1.

The first result says that if P is minimum phase (in a certain sense), then

IIx81100 can be made as small as desired while liS 1100 is simultaneously main-

tained less than any bound /5. Of course, /5 must be greater than 1 since

118110021 for every stabilizing K.
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Theorem 1. If P has a right-inverse which is analytic in Re s :::::0, then for

every E> 0 and 6> 1 there exists a stabilizing K such that

lIxS jloo < E, liS 1100 < 8.

Proof. The idea is to approximately invert P over the frequency range [0, WI]
while rolling off fast enough at higher frequencies. The first step is to

parametrize all stabilizing K's as in Section 4.4. Bring in a doubly-coprime fac-

torization of P :

P = NM-1 = lvI-IN

[X -Y] [M Y]
-N lvI N X = I .

Then the formula for K is (Theorem 4.4.1)

K = (Y -MQ )(X -NQ t1

- - -1 - -
= (X -QN) (Y -QM)

With these two representations of P and K and using (2) we get

S = (X -NQ)lvI .

Now fix E>O and 8>1. Choose c >0 so small that

c IIxlvI 1100< min(E, 8)

(l+c? < 8.

It follows from (2) that

- -XM - NY = I .

Since P is strictly proper, so is N. Hence

X (00)lvI (00) = I ,

so that

IIX (oo)lvI (00)11 = 1 .

(1)

(2)

(3)

(4)

(5)

(6)
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Figure 9.2. For proof of Theorem 1

1%
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Since IIX (j w)M (jw)11 is a continuous function of w, it's possible to choose

w2~wl such that

IlX(jw)M(jw)11 ::; 1+ c , W~w2'

Bring in another characteristic function,

:= 0, I wi> w2 ,

so that (7) is equivalent to

(7)

(8)

The assumption on P implies that N has a right-inverse, say Nri , which is

stable (but not proper). Choose a scalar-valued function V in RHoo with the fol-

lowing three properties:

VNn is proper

,IlX2(1-V)lloo::; c

1l1-Vlloo::; 1+ c

(9)

(10)

The idea behind the choice of V can be explained by the picture of the complex

plane in Figure 2. The Nyquist plot of V should lie in the smaller disk up to fre-

quency w2 (inequality (9)), and in the larger disk thereafter (inequality (10)). In

addition, V should roll off fast enough so that VNri is proper. For example, V

could take the form

V(s) = 1
(TS +1)k

for large enough T and k .

Finally, take Q to be

Q := VNriX .

Substitution into (4) gives

S = (X-VNNriX)M

= (1-V)XM .
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Thus

IlxS 1100 ~ IIx2S 1100since w22wl

= Ilx2(1-V)XMII00

~ IIX2(1- V )llooIlXM 1100
~ c IIXM 1100 from (9)

< min(E, b) from (5)

and

11(I-X2)S 1100= 1I(I-X2)(1- V)XM 1100

~ 111- V 110011(I-x2)XM 1100
~ (l+c )2 from (8) and (10)

< 15 from (6).

The two inequalities

IIx2S 1100 < 15

11(1-X2)S 1100 < 15

imply /IS 1100<15.0
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On the other hand, if P has a zero in the right half-plane, then liS 1100 must

necessarily increase without limit if IlxS 1100 tends to zero. This might be

described as the "waterbed effect" .

Theorem 2. Assume there is a point 8 0 in Re 8 >0 such that the rank of P (80)

is less than the number of its rows. Then there exists a positive real number a

such that for every stabilizing K

IlxS 1l001lS II~ 2 1 .

Proof. We continue with the notation of the previous proof. Fix some stabiliz-

ing K. Then S must have the form
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S = (X-NQ)if
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(4bis)

By assumption, there is a point 80 in Re 8 >0 and a nonzero complex vector x

such that

x' P (80) = 0 .

Scale x so that x * x =1.

It is claimed that

i ,

X S (80) = x

To see this, first get from (2) that

- -MX -NY =1.

Pre-multiply by if-I, post-multiply by M, and use (1) to get

- -XM -PYM =1

Therefore from (11)

Similarly, (11) also implies that

x * N(8 0) = 0 .

Then (13) and (14) imply (12).

Map the right half-plane onto the unit disk via the mapping

80-8
8-+Z=-_--

80+8

(11)

(12)

(13)

(14)

Z-+8=

-
80-80Z

l+z

The point 8 =80 is mapped to the origin, Z =0, and the interval [O,j WI] is

mapped onto an arc

Let 4> be the angle sub tended by this arc, Le. 4>= I (}2-(}I I , and define

R (z):= S [(80-S0Z )/(I+z)] .

Then R is rational and analytic in the closed unit disk. Moreover

(15)

(16)
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and

Now let n be any integer greater than 2iT /0/ and define

T (z) := R (z)R (ze j21r/n ) ... R (ze j21r(n-I)/n) .
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(17)

(18)

(19)

Then T is rational and analytic in the closed unit disk. Since the angle 27f(n is

less than 0/, at least one of the n points

ze j 21rk / n k =0 n -1, ,...,

lies in the arc (15) for each z on the unit circle. Thus from (19)

c := max{IIT(e J6)11:0:S;0:S;2iT}

:S; [max{IIR (e J 6)11:0:S;0:S;2iT}]n-1

X [max{IIR (e j6)11:01:S;0:S;02}]'

or from (17) and (18)

c ~ liS 1I~lIxS 1100 , (20)

where a :=n -1. Notice that n depends only on 0/, wh'ieh in turn depends only"

on So and WI' Thus a is independent of K. It remains to show that c 21.
Now (12) and (16) imply

x' R (0) = x '

This and (19) yield

x' T (0) = x'

Thus

x'T(O)x t= X X = 1. (21)

But Xi T (z)x is analytic in the closed unit disk. So (21); a1lld the maximum

modulus theorem imply that

I x ' T (e J 6o)x I 2 1

for some 00, Now

(22)
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C 2 = max max y' T (e i 0) T (e i 0)' y
o y' Y =1

Define the vector

'0xo:= T(eJ O)'x

Then

1 ~ I x;x 1 from (22)

~ (x;x o)1/2( X t X )112

= (x;xo)1/2

~ c from (23). [J
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(23)

For the third result consider, again with respect to Figure 1, the problem of

attenuating the effect of w (no longer restricted to be bandlimited) on the control

signal u; that is, the problem is to achieve feedback stability by a controller

which limits as much as possible the control effort. The transfer matrix from w

to u equals KS, so the objective is to minimize ilKS 1100' The case where P is

stable is trivial: an optimal K is K =0. So we suppose K is not stable. For

technical reasons it is assumed that P has no poles on the imaginary axis; thus

P belongs to RLoo but not RHoo'

Bring in r p , the Hankel operator with symbol P. Let Omin(r P ) denote its

smallest singular value, i.e. the square root of the smallest nonzero eigenvalue of

r p'r p. This number can be easily computed via Theorem 5.1.3.

Theorem 3. If P belongs to RLoo but not RHoo, then the minimum value of

IlKS 1100over all stabilizing K 's equals the reciprocal of Omin(r P ).

Proof. The proof is an interesting application of operator theory; some of the

details are left as exercises.

Again, we continue with the notation introduced in the proof of Theorem 1.

From (1) and (2) we have
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so that

XM - YN = I

x - YP = M-1.
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Thus M-1ERLoo. It follows from Theorem 7.4.1 that M has an inner-outer fac-

torization:

M, inner,

Thus P = (NMo -1)M, -1. Hence we may as well assume from the start that M is

inner; similarly that M is co-inner.

From (3) and (4) we have

KS = (Y -MQ)M .

Hence the minimum value of IlKS 1100over all stabilizing K's equals

min{II(Y -MQ )Mlloo:Q ERHoo}

= min{IIY -MQ 1100:QERHoo}

= dist(M-1 Y,RHoo)

= dist(M-1 Y,Hoo) by Lemma 8.1.3

= IlfR II by Nehari's theorem,

where

R := M-1y .

So proving the theorem is equivalent to showing that

(24)

(25)

It would simplify matters if the two Hankel operators in (25) were surjective,

but they're not: they're finite rank (Theorem 5.1.1). To make them surjective,

we'll restrict their co-domains.
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The image of f p is IIIP Hz. This subspace of H; is finite-dimensional,

hence closed. Let's redefine f p to be

Now P =NM-I and M-I is the symbol of the Hankel operator

Introduce a new operator,

Exercise 1. Verify that

It follows from (2) that MY = YM. Thus R = YM-I
.

Exercise 2. Use the fact that M is inner to prove

Similarly

f - -If -' -1= 1M M

It follows from (2) that

- -XM -NY =1

- -XM - YN = 1

Exercise 3. Use these two equations to prove

(26)

(27)

(28)
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These two equations imply that

From (26) and (27) we have

Similarly

Thus

IIrRrR'11 = IIOtO;1I from (31)

= II(O~ON rIll from (29)

= II(ON 0; rIll

= II(rp r /tIII from (30).
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(29)

(30)

(31)

This proves (25) since the largest eigenvalue of (rp r /tl equals the reciprocal of

the smallest eigenvalue of rp r/. 0

Example 1.

The simplest possible example to illustrate Theorem 3 is

1P(8)= -.
8 -1

Then

Let's stabilize with a constant controller, K (8 )=-k. Then

(KS)(8)=-k 8-1
s+k-1

Clearly K stabilizes P iff k > 1. We compute that

ilKS 1100 = k if k 2::2

= _k_ if 1<k <2 .
k -1
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Thus IlKS 1100is minimized by the gain k =2.

Notes and References

Ch.9

The idea of Theorem 1 is due to Bensoussan and Zames: Bensoussan (1984)

proved the theorem in the scalar-valued case with P stable, and Zames and Ben-

soussan (1983) proved a result like Theorem 1 but where P was assumed to be

diagonally dominant at high frequency and K was required to be diagonal. The

proof given here is from Francis (1983). Theorem 2 is the multivariable generali-

zation of a result of Francis and Zames (1984). Theorem 3 is due independently

to Glover (1986), whose proof uses state-space methods, in contrast to the

operator-theoretic one here, and to Verma (1985). Actually, their result pertains

to the mathematically equivalent problem of robust stabilization: the largest

radius of plant uncertainty for robust stabilizability equals the reciprocal of the

smallest Hankel singular value of the nominal plant.

For other results on achievable performance see, for example, Boyd and

Desoer (1984), Freudenberg and Looze (1985), and O'Young and Francis (1985,

1986).
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