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Foreword

This is the sixty-second volume in the M.L.T. Research Monograph
Series published by the M.L.T. Press. The objective of this series is to
contribute to the professional literature a number of significant pieces
of research, larger in scope than journal articles but normally less
ambitious than finished books. We believe that such studies deserve a
wider circulation than can be accomplished by informal channels,
and we hope that this form of publication will make them readily
accessible to research organizations, libraries, and independent
workers.

Howard W. Johnson



Preface

There are two ways, distinct in principle, of mathematically describing
physical systems. The first one is called the “input-output description”
since it relates external variables. The mathematical model then usually
takes the form of an integral equation (the Green’s function approach)
or more generally, of an operator equation expressing the relationship
between the inputs (the variables which can be manipulated) and the
outputs (the variables of interest—typically the readings of a set of
sensors). Such an input-output description can usually be obtained
from some representative experiments. This approach requires minimal
knowledge of the physical laws governing the system and of the inter-
connections within the “black box.”

For the “internal description” of a physical system, on the contrary,
one uses these physical laws and interconnections as the basis of the
mathematical model. This generally takes the form of an ordinary
differential equation or a partial differential equation. In the process
leading to this model one works with a set of intermediate variables,
related to the concept of state. There are thus two parts to mathematical
models of internally described systems: a dynamical part—which
describes the evolution of the state under the influence of the inputs,
and a memoryless part—which relates the output to the state (and
sometimes to the instantaneous value of the input as well).

Which of the two descriptions is more convenient depends on the
application and the purpose of the analysis or the synthesis that one has
in mind. Modern system theory relies heavily on the state formulation
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xii ~ PREFACE

for synthesis techniques as exemplified by the highlights of modern
control theory: Pontryagin’s maximum principle, the regulator problem
for linear systems, and the Kalman-Bucy filtering theory.

In the analysis of control systems one usually investigates questions
related to stability, continuity, and sensitivity of a closed-loop system.
These questions can be treated from both an input-output or a state-
space point of view, but it is only very recently that successful results
have been obtained and that a sufficiently general framework has been
developed to treat them in an input-output setting. The pioneering
work in this development has been performed by L. W. Sandberg at Bell
Laboratories and G. Zames at NASA-ERC. These authors formulated
the stability question (the most important design constraint in feedback
control) in an input-output setting. The idea of input-output stability
finds its roots in the concept of bounded-input, bounded-output
stability and in the work of Nyquist. Nyquist takes the finite integrability
of the impulse response as the basic requirement for stability, whereas
the concept of bounded-input, bounded-output stability requires that
bounded inputs produce bounded outputs. The idea of Nyquist gives
an excellent type of stability but unfortunately applies only to a very
restricted class of systems, the linear time-invariant systems. The
concept of bounded-input, bounded-output stability never has had
much success, and very few specific results have been based on it.
Moreover, it has been no simple matter to analyze feedback systems in
this context, in which they are described by implicit equations. The key
in the generalization of these methods to feedback systems has been the
introduction of extended spaces. This will be emphasized in the
subsequent chapters of this monograph. :

This monograph is an attempt to develop further and refine methods
based on input-output descriptions for analyzing feedback systems.
Contrary to previous work in this area, the treatment heavily emphasizes
and exploits the causality of the operators involved. This brings the
work into closer contact with the theory of dynamical systems and
automata. (In fact, it can be argued that the very definitions of stability
and extended spaces are ill-conceived unless the operators involved are
explicitly assumed to be causal.)

The monograph is built around Chapter 4, where the relevant
concepts of well-posedness, stability, continuity, and sensitivity are
introduced. The mathematical foundations for this study will be found
in Chapters 2 and 3. In Chapter 2 nonlinear operators are introduced
and general conditions for the invertibility or the noninvertibility of
nonlinear operators are derived. These conditions rely heavily on the

PREFACE xiii

theory of Banach algebras and exploit causality considerations in great
detail. Chapter 3 is for the most part devoted to the establishment of a
series of inequalities, an unpleasant task that mathematicians usually
leave to applied mathematicians and engineers. Inequalities are the
workhorses of analysis—and this monograph is no exception to the rule,
since these inequalities are essential ingredients for the specific stability
and instability criteria described in Chapters 5 and 6. The use of
linearization techniques in stability theory is then discussed in Chapter 7.

The monograph is intended primarily for researchers in system theory.
The author hopes that it will also be enjoyed by control engineers who
are eager to find a unified modern treatment of the analysis of feedback
systems, and by mathematicians who appreciate the application of
relatively advanced mathematical techniques to engineering questions.

Parts of this monograph appeared in the author’s doctoral disserta-
tion entitled “Nonlinear Harmonic Analysis” and submitted in June
1968 to the Department of Electrical Engineering of the Massachusetts
Institute of Technology, Cambridge, Massachusetts.

November 1969 Jan Willems
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1 Introduction

1.1 Orientation

A brief outline by chapters of the content of this monograph seems
appropriate in order to focus attention on the subject matter, the
original results, and the framework of the presentation. The first
chapter is introductory; it deals mainly with mathematical preliminaries
of a general nature,

The second-chapteris devoted to the study of operators and specifically
discusses questions related to the invertibility of nonlinear operators.
This study is made in an algebraic framework, and special emphasis is
placed on the properties of causal (nonanticipatory) operators. Causal
operators are indeed of particular interest to engineers and physicists.
The concept of causality is roughly equivalent to that of a “dynamical
system™ and is a basic restriction of physical realizable systems. In the
algebraic framework employed in this monograph, causal operators
are considered as a subalgebra in the algebra of (in general, nonlinear)
operators. Another heavily emphasized and exploited concept is that
of extended spaces. These consist of functions which are well-behaved
on bounded intervals, but which do not satisfy any regularity conditions
at infinity. Extended spaces have not been used extensively in analysis;
however, they are the natural setting for the study of causal operators,
and they form a very elegant conceptual framework for the study of
dynamical systems described, for instance, by an ordinary differential
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2 INTRODUCTION

equation with specified initial conditions or by Volterra integral
equations.

The analysis in the third chapter is devoted to the derivation of
some specific positive operators, which yield the inequalities leading
to some general frequency-power formulas and stability conditions.

The basic concepts related to feedback systems are introduced in the
fourth chapter. Only the analysis problem is considered, and the main
questions investigated are well-posedness, stability, and continuity.
This theory is developed in the framework of input-output descriptions
of systems, and thus—following the modern trend of mathematical
system theory—departs somewhat from the classical methods, which
consider undriven systems with initial disturbances.

The fifth chapter discusses the Nyquist criterion and the circle
criterion. These yield graphical conditions for stability and instability
of linear (possibly time-varying) systems in terms of frequency-response
data.

The sixth chapter is devoted to the study of some more complex
stability criteria, which apply to systems with a linear time-invariant
system in the forward loop and a periodically time-varying gain or a
" monotone memoryless nonlinearity in the feedback loop.

The final chapter discusses linearization techniques and shows that
properly defined linearizations can indeed be successfully used for the
analysis of the continuity of feedback systems. This linearization,
however, is of a dynamical type and leads to time-varying systems even
when the original system is time invariant. The final chapter also
contains a simple and rather general class of counterexamples to
Aizerman’s conjecture.

1.2 Mathematical Preliminaries

This section introduces some notation and definitions which will
be freely used throughout this monograph. More details may be found,
for instance, in Refs. 1, 2.

A set (or space) is a collection of objects with a common.property.
The set, S, of objects with property P is denoted by S A {x | x has
property P}. A subset Sy of a set S, denoted S, < S, is defined as
Sy = {x| x €S and x has property P;} and is sometimes denoted by
Si=1{xeS l x has property P,}. The sets R, R*, I, and I* denote
respectively the real numbers, the nonnegative real numbers, the
integers, and the nonnegative integers.
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The union of the sets S; and-S,, denoted by S; U S,, is defined as
S, US; & {x|xeS, or x€Ss}. The intersection of the sets S; and
S,, denoted by S; N S,, is defined as S; NSy & {x|x€eS; and
x €8y}, The Cartesian product of two sets, denoted by S; X S, is
defined as S; X S & {(x1,X5) | X1 € Sy, X2 € S}

A map F (or operator or function), from a set S into a set S, is a law
which associates with every element x € S; an element Fx € S,. S is
called the domain of the operator. If S] < S7 (S7 < S and if F’ and
F” are maps from S into S, and S7 into S, such that F'x = F"x for all
x €8] (xeSy), then F’ is called the restriction (an extension) of F” to
St (S7). A sequence is a map from I (I*) to a set S and will be denoted by
{x,}, nel (nel).

A metric space is a set X and amap, d, from X x X into R" such that -
for all x, y, z € X, the following relations hold: d(x,y) = d(y.x) > 0;
d(x,y) + d(y,2) > d(x,z) (the triangle inequality); and d(x,y) =0 if
and only if x = y.

A sequence {x,}, n € I, of elements of a metric space X is said to
converge to a point x € X if lim,,, , d(x,,x) = 0. This limit point x is
denoted by lim,,, ,, X,. _

A subset, S, of a metric space, X, is said to be open if for any x € X
there exists an ¢ > 0 such that the set N(x) A {ye X l d(x,y) < e}is a
subset of S. A subset, S, of a metric space, X, is said to be closed if any
converging sequence {x,}, n € I, of points in § converges to a point
in S. A sequence {x,}, n € I, of elements of a metric space S is said to
be a Cauchy (or fundamental) sequence if given any e > O there exists
an integer N such that d(x,,x,) < € for all n, m > N. A metric space
is said to be complete if every Cauchy sequence converges. Completeness
is one of the most important properties of metric spaces. A subset of a
metric space is said to be compact if every bounded sequence has a
convergent subsequence.

A vector space (sometimes called a linear space or a linear vector
space) is a set ¥ and two maps, one called addition, denoted by +,
from ¥ x V into ¥, and the other called multiplication from the
Cartesian product of the field of scalars K (which will throughout be
taken to be the real or complex number-system) and ¥ into ¥ such that
forall x, y,z€e Vand «, B€K:

Lx+n+z=x+@+2);

2. there exXists a zero element, denoted by 0, withx 40 =0+ x = x;

3. there exists a negative element, denoted by —x, with x + (—x) =0
(y + (—x) will be denoted by y — x); '
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x+y=y+z;

. (@ ¥ Bx = ax + Bx;
alx +y) = ax + ay;
. (@f)x = a(fx) & afx;

L lx =z

A vector space is called a real or complex vector space according to
whether the field K is the real or complex number system. R™ denotes
the real vector space formed by the n-tuples of real numbers with
addition and multiplication defined in the obvious way. A vector space
V is called a normed vector space if a map (the norm), denoted by
I I, from ¥V into R* is defined on it, such that:

1. x| = 0 if and only if x = 0;
2. x|l = laf xll5
3. lx + Il < Ixll + [y] (the triangle inequality).

The norm induces a natwral metric d(x,y) & |x — y|, and all statements
(e.g. concerning convergence) always refer to this metric, unless
otherwise mentioned. Sometimes the norm is subscripted for emphasis,
as || |, but the subscript will be deleted whenever there is no danger of
confusion.

A Banach space is a complete normed vector space. This completeness

is, of course, to be understood in the topology induced by the natural
metric. A very useful class of Banach spaces are the so-called L,-spaces.
These consist of Banach space B-valued functions defined on a
measurable set S < R, for which the pth power of the norm is
integrable! in the case 1 < p < oo, with the norm defined by

elatio & ([ o5 at)

The space LE(S) is defined as the collection of all measurable B-valued
functions defined on a measurable set S < R which are essentially
bounded (i.e., there exists a real number M < cosuch that |x(9)llz < M
for almost all z € S) with

Il 22 2 {inf M | |x(Dllz < M almost everywhere on S}.

! The integration and measurability considerations refer to Lebesgue measure and
integration when the Banach space B is finite-dimensional. Otherwise, these notions
are to be interpreted in the sense of Bochner (see, e.g., Ref. 1, p. 78).
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The sequence spaces /2 are defined in an analogous way, with the
integral replaced by a summation. When B is taken to be the real or
complex numbers and S is the interval (—co, + o) for L,-spaces or
S = I for [,-spaces, then LZ(S) and /Z(S) will be denoted by L, and /,
respectively, when no confusion can occur. The L, -spaces are very
often used in analysis. The triangle inequality for L,-spaces is known
as Minkowski’s inequality. Another useful inequality for L,-spaces is
Hélder’s inequality, which states that for fe L,(S) and g € L,(S) with
p +1jg=1and 1 < p.q < oo, fg € Ly(S), and

I fell 2y < Iflzas I8lzye-

An inner product space is a linear vector space, V, with a map,
denoted by ( ) and called the inner product, from V X ¥ into the scalars
K such that for all x, y, z € ¥ and scalars «, 8, the following relations
hold:

1. {x,y) = (y,x) (the overbar denotes complex conjugation);
2. {ax + By, z) = a(x,z) + B{y,z); and
3. {x,x) > 0 and (x,x) = 0 if and only if x = 0.

The inner product induces a natural norm |x| = \/ {x,x) and all
statements (e.g., concerning convergence) always refer to the metric
induced by this norm, unless otherwise mentioned. Sometimes the
inner product is denoted by {,)y, but the subscript will be deleted
whenever there is no danger of confusien.

The Cauchy-Schwartz inequality states that [(x,y)| < Ixlt It

A Hilbert space is a complete inner product space. This completeness
is, of course, to be understood in the topology induced by the natural
norm. The standard example of a Hilbert space is R* with (x,y)gs =

32 x,p; where x = (xy, X3, . .., X,) and y = (V1> Yas + - - » V) A very

useful class of Hilbert spaces are the Ly-spaces. These consist of
Hilbert space H-valued functions defined on a measurable set S < R,
for which the square of the norm is integrable, and with

(X V)& s) :Q—L(X(t),}’(t»ﬂ dt.

Similarly, /Z(S) with § < I is a Hilbert space, with

(XY & §S<xn’y'n>H'
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1.3 Transform Theory
Definitions: If x € Ly, then the function X defined by

X(jo) = fwx(t)e*fwt dt

is called the Fourier transform of x. Clearly X € L,, and |X| . <
x|l z; if x(¢) is real, then X(jw) = X(—jw). Since this transform need
not belong to L,, it is in general impossible to define the inverse Fourier
transform. However, if X itself turns out to belong to L, then

1 [+ ;
x(t) = — f X(jw)e’™ dw
271‘ ]

(As always, this equality is to be taken in the L, sense, that is, except
on a set of zero Lesbesgue measure.) Thus the need of a slightly more
general transform in which the inverse transform can always be defined
is apparent. This is done by the limit-in-the-mean transform. It is well
known that if x, ye L, N L, then X, Ye L, and (x,y) = (X, Y)[2m
(Parseval’s equality). Let x € L,. Since L; N L, is dense in' L,, i.e.,
since any L,-function can be approximated arbitrarily closely (in the L,
sense) by a function in L; N L,, there exists a sequence of functions
{x,} in L, N L, which is a Cauchy sequence and which converges to x

(in the L, sense). Let X,, be the Fourier transform of x,. It follows from’

the Parseval relation that ||x, — x| = 2w)"22|X, — X, || and that
X, € L,. Thus since L, is complete, these transforms, X, converge to an
element X of L,. This element X is called the limit-in-the-mean transform
of x. It follows that the limit-in-the-mean-transform maps L, into itself
and that (x,y) = (X,Y)/2n for all x, y € L, and their limit-in-the-mean
transforms X, Y.

One way of defining a limit-in-the-mean transform is by

T
X(jw) =1lim | x(fe*tdt
T—>wJ-—T

where the limit is to be taken in the L, sense. (It is easily verified that
this induces a particular choice for the Cauchy sequence {x,}.) The
notation that will be used for the limit-in-the-mean transform is

400
X(jow) = l.i.m.f x(f)e @t dt.
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With this definition of transforms, the inversion is always possible, and
the inverse transform formula states that

x(f) = Lim. 2%T£+:X(jw)e“’t do.
Let x € L,(0,T), T > 0. Then fhe sequence X = {x;}, k €1, given by
Xp = lfo(t)e“"’cz"t/ T dt,
TJe

is well defined since L,(0,T) < L,(0,T), and is called the Fourier series
of x(2). Clearly X €/, and x;, = %_, whenever x(¢) is real. The Parseval
relation states that if x;, x, € L,(0,T) and if X;, X, are their Fourier
series, then X;, X, €l and (xy,Xs) 1, 1) = 27 (X1, X1,

In trying to obtain the inverse Fourier series formula, the same
difficulties are encountered as with the inverse Fourier transform, and
the same type of solution is presented. This leads to

400
X(f) = lim. 3 xe™T,
k=—o0

One way of expressing this Li.m. summation is by
N
x() =lim Y x,e™*T,
N—=ow k=—N

where the limit is to be taken in the L,(0,7) sense.
If x € /;, then the function X defined by

4o
X)) = 3 xz7*
k=—a0
exists for all |z} = 1 and is called the z-transform of x. In trying to
extend this notion to sequences in /, the same difficulties and the same
solution as in the previous cases present themselves. This leads to the
limit-in-the mean z-transform

+oo
X(z) = Lim. 3 x,z7*
k=—

and the inverse z-transform

X = 1 X(z)z ' dz

2m V)z|=1
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where the integral is interpreted in the usual manner since
Ly(lz] = 1) < Ly(lz| = 1).

A continuous function, x, from R into K is said to be almost periodic
if for every € > 0 there exists a real number / such that every interval
of the real line of length / contains at least one number 7 such that

[x(t + 7) — x(¢)| < efor all ¢,
Some properties of almost periodic functions are:

1. Every almost periodic function is bounded and uniformly continuous.

2. Continuous periodic functions are almost periodic. '

3. The sums, products, and limits of uniformly convergent almost
periodic functions are almost periodic.

4. The limit, as T — oo, of the mean value

1 T
— x(t + 1) dt
2T J-1 (
exists, is independent of = for all almost periodic functions x, and
converges uniformly in .
5. If x; and x, are almost periodic functions then so is

. 1 {7
Xy * Xg A lim — f x1(t — T)xo(7) d.
P 2T J-1 .
Moreover, x; * Xa = Xz * X; and xy * (X, * x3) = (X1 * Xp) * x5 for
all almost periodic functions x;; x,, x3.
6. The function

1 (T ;
lim ——f x(He~ 7 dt
T 2T J-T
vanishes for all but a countable number of values of w.
7. The space of almost periodic functions forms an inner product
space with

T
) = lim = | 50500 de
for x;, x, almost periodic functions, (This inner product space is,
however, not complete and not separable.) Let x be an almost
periodic function and let {w,} be the set of values for which the limit
in (6) does not vanish and let x;, be the value of that limit for w = w,,.
The sequence {x,} is called the generalized Fourier series of x(1). If

REFERENCES 9

x(z) is real, then o belongs to the set {w,} if and only if —w does
and the values x; associated with w and —w are complex conjugates.
The inverse Fourier series is defined as

N
x(®) =Hm 3 x.e™
N-rw k=—N

This limit, which exists, is to be taken in the metric induced by the
inner product on the space of almost periodic functions.?

2 For more details on transform theory, see Refs. 3, 4.
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2 Nonlinear Operators

2.1 Introduction

Many of the function spaces (e.g., L,-spaces) encountered in applied
mathematics carry the time (or, more generally, a real variable) as an
essential parameter. This is particularly true in system theory where
the purpose is to study the response of physical systems subject to
inputs or initial conditions. Physical systems are furthermore non-
anticipatory with respect to the parameter “time’ in the sense that past
and present values of the outputs do not depend on future values of
the inputs. This property leads to the fact that physical systems may be
described by a particular class of operators. These operators are
referred to as causal operators:! they describe a nomanticipatory
dependence of outputs on inputs with the range and the domain of the
operator parametrized by a real variable, which plays the role of the
time. '
This causality of operators is very often implicitly used in analysis,
but a systematic exploitation of this structure is not often carried out
explicitly. This chapter contains a systematic study of extended spaces
which are believed to be the natural setting for function spaces param-
etrized by the time, and of causal operators which describe a non-
anticipatory input-output behavior.

Mathematics evolves around equations and their solution. The study

i Causality is the fundamental property of physically realizable systems. Causality

is essentially equivalent to the existence of a state (Ref. 1) and is thus the basic

property of dynamical systems. For a study of causality from an abstract point of
view, see Refs. 2, 3.
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of a nonlinear equation usually concentrates on the existence and
uniqueness of solutions and on algorithms for the computation of the
solution. This chapter contains a number of theorems concerning the
solvability of nonlinear operator equations and describes appropriate
algorithms for their solution. These involve conditions for the
invertibility of operators in terms of contractions, conicity, and
positivity considerations. Some of these conditions are standard.
Others, which exploit the causality of the operators in an essential way,
have, to the author’s knowledge, not appeared in the mathematical
literature before. All of the theorems which follow have direct applica-
tions in the study of feedback systems and are introduced with these
applications in mind.

2.2 Operators: Generalities

This section contains a number of general notions concerning
nonlinear operators. Most of these notions are standard and can be
found in the usual texts on functional analysis.

A mapping from a space X into a space Y is called an operator from
X into Y. Thus an operator associates with every element x€ X a
unique element y A Fx € Y. X is called the domain of F, denoted by
Do (F), and Ra(F)a{yeY|y=Fx,xeX} < Y is called the
range of F.

An operator F from a metric space X into a metrix space Y is said to
be continuous if every convergent sequence {x,}, n€lt, yields a
convergent sequence {Fx,}. It is said to be Lipschitz continuous if

d(Fx,Fy)
zvex  d(X,y)

z£Y
This supremum will be called the Lipschitz constant of F on X. An
operator F from a normed vector space X into a normed vector space

Y is said to be bounded? if FO = 0 and if
Sup .H_'F_x_"< 0. .
zeX "X”
z#£0

This supremum will be called the bound of F.

2 It appears to be no simple matter to define boundedness of a nonlinéar operator
in a satisfactory way. “Bounded sets into bounded sets” appears to be the most
logical—but mathematically least manageable—one. The norm relation [|Fx|| <
M, + M ,]x|| has been proposed and, although it has some advantages over the one
adopted here, it is equally a compromise derived from the definition of bounded linear
operators. The concept of boundedness adopted here is that of “finite gain.” Need-
Iess to say, all of the above definitions become equivalent for linear operators.
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The operator [ from X into itself defined by Ix A x is called the
identity operator. The operator O from a vector space X into a vector
space Y defined by Ox £ 0 is called the zero operator.

An operator F from X into Y is said to be invertible on X if it is
one-to-one on X and onto Y. There then exists an operator, denoted
by F1, from Y into X such that F'F = land FF*' =L

Let F), and F, be operators from X into itself. The operators F; and
F, are said to commute on X if F1F, = F3F; on X,

Let Fy, F, be operators from X into the vector space Y and let « be a
scalar, Then F, 4 F, and «F; denote the operators defined for x e X
by (Fy + Fo)x & Fix + Fpx and (aFy)x A aFyx), respectively.

Let F, and F, be operators from X into ¥ and Yinto Z, respectively;
then F,F; denotes the operator from X into Z defined by (FoFy)x &
Fy(Fyx) and is called the composition of F, and F,.

Let X and Y be vector spaces over the same field of scalars. An
operator L from X into Y is said to be Jinear if for all x;, x, € X and
scalars «, 8, the relation L{ax, + fx,) = aLx, + BLx, is satisfied.

Let L be a linear operator from the normed space X into the normed
space Y. Then boundedness, continuity, and Lipschitz continuity are
equivalent. Moreover, the bound of L equals

sup ||Lx}|.

®EX

llaii=1 :
Let L be an invertible bounded linear operator from a Banach space’ X’
onto a Banach space Y. Then L~ is also an invertible bounded linear
operator. In fact, linearity of L1 is immediate and boundedness of L™
follows from the closed graph theorem (Ref. 4, p. 47).

Let L be a linear operator from an inner product space X into an
inner product space Y. If there exists an operator, L*, from Y into X
such that for all x € X and y € ¥, the relation (y,Lx)y = (L*y,X)x
holds, then L* is called the adjoint of L. The adjoint L* is linear and
uniquely defined whenever it exists, and (L*)* = L (thus (L*)* exists
if L* does). By the Riesz representation theorem (Ref. 4, p. 43), L*
exists when L is bounded and X and Y are Hilbert spaces. Moreover,
the bound of L* equals that of L, and L is invertible if and only if
L* is and (L™Y)* = (L*)~1. An operator is called self adjoint if L* = L.

2.3 Extended Spaces

In this section the notion of extended spaces is introduced. These
spaces play an important role in system theory and are very appropriate
for the study of causal operators.

EXTENDED SPACES 13

Let S = [T}, ) or (~ 0, 0).3 The set S will be referred to as the
time-interval of definition. Let B be a Banach space, and let Y(B) denote
the linear space of B-valued functions defined on S, that is, Y(B) &
{x l x:S — B}.

Definitions: Let T e S. Then P, denotes the projection operator on
Y(B) defined for x € Y(B) by

x(t) fort L T,tes

(Ppx)(1) &
¥ 0 otherwise

Py will be called the truncation operator and P,x will be called the
truncation of x at time T. {Pp}, T € S, consists thus of a family of pro-
jection operators on Y(B).

Let W < Y(B) be a Banach space. The extended space W, is defined
as W, & {x € Y(B)| Prx € Wfor all Te S, T finite}.

The follolwing assumptions? are made about the space W:

W.1. The space W is closed under the family of projections {Pp},
TesS.

W.2. For any x € W, the norm ||Pyx]| is a monotone nondecreasing
function of T" which satisfies

lim |Ppx]| =0 and lim |Ppx| = [x].
T—infS T-sup S
The family of projection operators {Pr}, for T € S, is thus assumed
to be a resolution of the identity.
W.3. If x € W, then x € W if and only if sup,g [Ppx|| < 0.
W.4. For any real numbers t,, #, € S, #; < {,, the vector space

Wi &2 {xe Wl x(1) = 0 for 1 ¢ [1,,1,]}

is a closed subspace of W and thus itself a Banach space under the
norm of W.

¥ The particular choice of S adopted here does exclude discrete systems, but the
adjustments to treat this case are minor and are left to the reader. In fact, S could be
taken as an arbitrary subset of the real line. Causality can be defined in terms of
arbitrary locally compact Abelian groups. This viewpoint, which follows the
development of modern mechanics, is proposed in References 5 and 6.

¢ Not all of these assumptions are necessary for the theorems which follow.
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Important spaces which satisfy these assumptions are LZ(S) with
1<p< o ’
' The extended space W, is in general a proper extension of W. For
instance, LB (T,,) is the collection of B-valued measurable functions
on [T, 00) whose norm is integrable on compact subsets of [T}, 0). Note
that W, is a linear space but, very importantly, that it is #os normed.
Notice also that an element x € W, belongs to W if and only if the set
M A {xeR|o=|Pypx|, TeS}is bounded in R.

2.4 Causal Operators

In this section the notion of a causal operator is formally introduced.
It plays a central role in the following chapters and is a fundamental
property of physically realizable systems.

Peﬁm’tions: An operator F from W into itself is said to be causal on W
if P, F commutes® with Py on W for all T € S. It is said to be anticausal
on W if (I — Pp)F commutes with .(I — Py) on W for all TeS.
The operator F is said to be memoryless on W if F is causal and anti-
causal on W. 1t is easily seen that a memoryless operator F is necessarily
defined, for some map f from B X S into B, by the relation (Fx)(z) .&
S (x(2),1). Fis said to be strongly causal” on W if F is causal on W arzl
if for all T'€ S there exists, forany e >0 and I"e S, T" < T a‘}eal>
number AT > 0 such that for any x, y e W with Ppx = P_,;.y, the
relation | Py ap(Fx — Fy)|| < € | Ppeyap(x — p)] is satisfied.
Causality is a fundamental property of physically realizable systems.
It merely expresses that past and present output values do not depend on
future_ input values. Furthermore, many systems encountered in practice
contain an integration or a delay in which case they become strongly
causal. Strongly causal systems cannot react instantaneously to inputs.
The definition of causal and strongly causal operators on W, is
completely analogous to these notions on W. A causal operator F f;om
W, into itself is said to be memoryless if for all T € S, the operator
PpFPy is memoryless on W. If F maps W, into itself and W into itself

5 Indeed, {P,} is not a resolution of the identity if W = Lo. M
w}:ich follow, however, still hold. y - Most of the theorems
This definition is equivalent to requiring that Ppx, = Px, implies that PFx, =
qufXg. Other equgval_ent definitions are given in Rcae‘felrenctsTZ.,l P e
Strong causality is a low-pass filtering condition, which essentially expresses the
fact that there is an infinitesimal delay present in the operator.
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then F is causal (memoryless) on W if and only if it is causal (memory-
less) on W,. A causal operator F from W into itself has thus a natural
causal extension to an operator F, from W, into itself defined for
x €W, and any T €S by PpF,x & PpFPyx. The above notions of
causality are analogously defined for operators which map Wy(W;,)
into Wy(W,,) where W, and W, satisfy assumptions W.1 through W.4
of Section 2.3.

Although extended spaces are not normed it is nevertheless possible
to define the notions of continuity and boundedness for causal operators
on extended spaces,? as is shown by the following definitions.

Let F be a causal operator from W, into itself. Then F is said to be
locally (Lipschitz) continuous on W, if PpFPyp = PyF is (Lipschitz)
continuous on W for all T € S. It is said to be locally bounded on W, if
FO = 0 and if, for all T€ S, P;FPy is bounded on W.

1t is easily established that if F is a Lipschitz-continuous (bounded)
operator from W, into itself, then the Lipschitz constant (bound)
Ky of PpFPy on W is a monotone nondecreasing function of T.

Let F be a causal operator from ¥, into itself. Then F is said to be
Lipschitz continuous (bounded) on W, if it is locally Lipschitz continuous
(bounded) on W, and if the Lipschitz constant (bound) of PpFPpon W,
K, satisfies suppeg K = limp., o Kp < . This supremum will be
called the Lipschitz constant (bound) of F on W,.

The following theorem relates Lipschitz continuity and boundedness
on W, to the analogous notions on W.

THEOREM 2.1

Let F be a causal operator from W, into itself, with FO=0.If F
is Lipschitz continuous (bounded) on W, then F maps W into itself
and the Lipschitz constants (bounds) of F on W, and W are equal.
Conversely, if F maps W into itself and is Lipschitz continuous
(bounded) on- W, then F is Lipschitz continuous (bounded) on W, and
the Lipschitz constants (bounds) of F on W and W, are equal.

8 It was decided not to define boundedness or Lipschitz continuity on extended
spaces for operators which are not causal. One could indeed define a bounded
operator on W, as one for which there exists a K < oo such that [[PrFx] < K [|Prx{
for all T€ S, x € W,. The author believes, however, that the very existence of ex-
tended spaces is only justified when used in connection with causal operators.
Indeed, implicit in the definition of extended spaces is the fact that the past and the
future are regarded as essentially different; thus unless the operators on those
extended spaces show a similar property, such a distinction would appear to be ill
founded. The extended space defined in this section is sometimes referred to as the
causal extension of W.
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~ Proof of Boundedness: Let K and K, denote the bounds of Fon W and
W, respectively. Let K, < coand x € W, then Fx € W, and |PpFx| <
K||Prx|| € K, lIx|. Thus Fx € W and ||Fx| < K,||x||. Hence F maps
W into itself, is bounded on W, and K< K,. Let x& W,, then
|PpFx| = |PpFPpx| £ |FPpxll € K |[Ppx| which shows that K, <
K. Conversely, let K< © and x € W,, then |PpFx| < K |Ppxl,
which shows that F is bounded on W, and that K, < K. Let x € W,
then Fxe W and |PpFx|} < K, |Ppx] < K, |x}. Hence [Fx| <
K, x| and X < K. :

Proof of Lipschitz continuity: Since by assumption FO = 0, Lipschitz
continuity implies boundedness with the Lipschitz constant greater
than or equal to the bound. The proof of boundedness thus applies
and shows that Lipschitz continuity on W, implies that F maps W into
itself. The rest of the proof evolves paralle! to the proof of boundedness,
with the inequalities in the differences of x — y and Fx — Fy. The
details are left to the reader.

Theorem 2.1 thus shows the equivalence for causal operators of
Lipschitz continuity (boundedness) on W, and W respectively. This
important property of causal operators plays a central role in stability
theory. Theorem 2.1 is easily extended to causal operators which map
W, into W,,.

2.5 Algebras: Generalities

As is.well known, the natural setting for the study of linear operators
on a Banach space is as a linear Banach algebra. It is not as generally
appreciated, however, that most of these ideas carry over to nonlinear
operators as well. This is the subject of Sections 2.5 and 2.6. Section
2.5 contains the relevant notions from algebras, and Section 2.6 imbeds
nonlinear operators in this algebraic framework.

Let A4 be a vector space with a mapping (multiplication) from A X 4
into 4 defined. Then A is said to be an (in general nondistributive)
algebra if (xy)z = x(yz) & xyz for all x, y, z€ A. An algebra is said
to be left-distributive if (x + y)z = xz + yz and (ax)y = a(xy) L& axy,
for all x, y, z € A and scalars «. It is said to be linear (or distributive)
if it is left-distributive and if x(y + z) = xy + xz and x(xy) = axy,
for all x, y, z € A and scalars «. A linear algebra is said to be commuta-
tive if xy = yx forall x, y € 4.

N
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An algebra is said to have a unit if there exists an element e € 4 such
that xe = ex = x for all x € 4. An element x of an algebra 4 with a
unit e is said to be regular (or invertible) in A if there exists an element
x~1 € A such that x~'x = xx~* = e. It is easily seen that there exists
at most one unit and one inverse. The unit is always invertible, and
el = e. If x and y are invertible, so is xy, and (xp)~! = y~1x71,

An algebra is said to be a Banach algebra if the vector space which
defines A4 is a Banach space, and if |xy| < [lx|| [yl for all x, y € 4.

A subset A4, of an algebra A4 is said to be a subalgebra of the algebra
A if A, is closed under the operations in 4 (addition, scalar multiplica~
tion, and multiplication of elements). A subset 4, of a Banach algebra
A is said to be a subalgebra of the Banach algebra A if 4, is itself a
Banach algebra under the norm of 4 (thus, if A, is a subalgebra of the
Banach algebra 4, then A, is closed in the norm topology of A4). A
subalgebra A, of the algebra 4 is said to be regular in A if all elements
of A, which are invertible in A4 are invertible in 4,.

A subset M of an algebra A is said to be an ideal (left or right ideal)
in 4 if xy, yxe M (xye M, yx € M) for any x € M and y € A. Note
that if an ideal M in 4 contains the unit, then M = 4, and that if it
does contain the unit, then no element of M is regular.

Let x be an element of an algebra 4 with unit e. The spectrum of x in
A, denoted by o(x), is defined as

o(x) £ {o« complex | xe + x is not invertible in 4}.

The resolvent of x in A, denoted by p(x), is the complement in the
complex plane of o(x).

Definition: A Banach algebra 4 with a unit is said to have the con-
traction property if —1 ¢ o(x) whenever |lx| < 1. It follows that if a
Banach algebra A4 with a unit has the contraction property then the
spectrum of any element is a compact set in the complex plane. Any
linear Banach algebra has the contraction property since

(e + =ng+(—a)" for lall < 1.

The following theorem will play an essential role in the method of
showing instability of feedback systems that will be introduced in
Chapter 4.

THEOREM 2.2
Let 4 be a left-distributive Banach algebra with a unit e, and let 4™
be a subalgebra of A which contains the unit. Assume that 4+ has the
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contraction property. Let x, y € 4%, and let C be a connected set in the
complex plane. Assume that x + «y is invertible in A4 for all « € C and
that the set M A {(x + ay)™'| x € C} is a bounded set in 4. Then
(x + ay)ytedt for all xeC if and only if (x + «zy)~t€ 4t for
some oy € C.

Proof: Necessity is obvious. For sufficiency it is assumed that
(x + ogy)te At for some ay€ C. The conclusion clearly holds if
© y = 0. Assume thus that [y] # 0, and let K A sup,¢ [(x + «p)7Y.
Notice that X > 0. It will first be shown that if (x + a,y)™* € A* for
some complex number «, € C, then x + «y is regular in 4™ for
all «eN A {« complex ||a — o] < [pI7K2}). Write x + ap as
(x +ap) = (e + (¢ — a)y(x + %, y))(x + ;). The claim then
follows from the contraction property and the obvious estimate

(e — ay(x + e )7 < la — aq] Iyl NG + o)~
Let P denote the set in the complex plane defined by
P A {« complex | x + «y is regular in 4%}, 7

and let P° denote its complement in the complex plane. The theorem
claims that P° N C is empty. The proof goes by contradiction: assume
that P° N C is not empty. Then

dPNC,P°NC) Ao inf | —a"[> |y K™
Let
N, A {a complex | ja — o] < |pI™ K7Y3, 0, € P* N C},

N, & {a complex ||a — o] < |y K7/3,0, €P N C}.

The sets N, and N, are open, nonempty by assumption, and their union
contains C. Hence C is not connected. This contradiction establishes
the theorem.

Theorem 2.2 indicates a method for establishing that an inverse

belongs to a subalgebra at a value of a parameter by showing invertibility
in the subalgebra at another value of this parameter and invertibility
in the large algebra along a continuous line in the complex plane
joining these values of the parameter.

Notice also that the boundedness assumption can be replaced by
assuming that C is compact and connected, that 4 has the contraction

e,
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property, and that |(e + x)7| < (1 — {x|)~* for |x| < 1. The
assumption implies that ||(x + «y)~1| is a continuous function of «
and is satisfied, for instance, when 4 is a linear Banach algebra. The
boundedness condition then follows from the fact that a continuous
real-valued function on a compact set attains its maximum.®

2.6 Operator Algebras
The following convention will be assumed throughout:

C.1. All operators that map a vector space into a vector space, map
the zero element into the zero element.??

It is convenient for purposes of analysis to classify the operators
from W, into itself and those from W into itself. This section contains
a listing of some important operator algebras.

Definition: Let A (W,,W,) denote the class of operators from W, into
itself, that is, let A (W,,W,) A {x | x: W,— W,}. Let addition and
scalar multiplication in A" (W,,W,) be defined in the obvious way, and
let multiplication be defined as composition of maps. These definitions
lead immediately to Theorem 2.3.

THEOREM 2.3
The operators in A (W,,W,) form a left-distributive algebra with a
unit.

Some important subalgebras of A"(W,,W,) are:

The class A +(W,,W,) of causal operators from W, into itself.
The class Z(W,,W,) of linear operators from W, into itself.
The locally continuous operators from W, into itself.

The locally Lipschitz continuous operators from W, into itself.
The locally bounded operators from W, into itself.

The Lipschitz continuous operators from W, into itself.

. The bounded operators from W, into itself.

. The memoryless operators from W, into itself.

PNAL AW~

® For more details on algebras, see Reference 4.

10 Tt is possible to dispense with this assumption at the expense of a somewhat
laborious notational framework. Any operator, however, can be fixed up so as to
satisfy this condition by defining F'x & Fx — FO0, and replacing Fx by F’x + FO.
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Subaigebras 1-8 and any intersection of them form subalgebras
of &/ (W,,W,) which contain the unit.

9. The strongly causal operators from W, into itself form a subalgebra
of A (W,,W,) which does not contain the unit. This class of
operators is in fact a subalgebra of A (W, W,) and an ideal in the
class of locally Lipschitz continuous operators from W, into itself,
Thus no strongly causal operator is invertible in the class of locally
Lipschitz continuous causal operators.

10. Let the time-interval of definition S be (— co,+ o). Let' be a real
number. Then the translation operator, denoted by T,, is defined for
x e W, by (T,x)(¢) & x(t 4 7). An operator F from W, into itself
is said to be time invariant on W, if for any &R, T, and F
commute on W,. Let the time-interval of definition be [T,, o). Let
7 < 0 be a real number. Then the translation operator, denoted by
T,, is defined for x € W, by (T,x)(t) & x(¢ + 7) for t + 7 > Ty,
and O otherwise. A causal'! operator F from W, into itself is said
to be time invariant on W, if T, and F commute on W, for all
7< 0. The time-invariant operators form a subalgebra of
N (W,,W,) which contains the unit.

It is easy to verify that Z(W,,W,) is a regular subalgebra of

N (W, W,). If § = (— 00,4 co) then the time-invariant operators form
a regular subalgebra of A (W,,W). If S = [T;,c0), then the time-
invariant operators form a regular subalgebra of A ™*+(W,,W,) and
N (W,,W,). The memoryless operators also form a regular subalgebra
of (W, W,) and N (W,,WV).

In the same way as for the algebra of operators from W, into itself,
one can consider the algebra of operators from W into itself. Thus, let
N (W,W) denote the class of operators from W into itself, i.e.,
N (W,W) & {x | x: W— W}. Let addition, scalar multiplication, and
multiplication of elements be defined in the obvious way. Then there
follows:

THEOREM 2.4

The operators in A (W, W) form a left-distributive algebra with a
unit.

11 Notice that time invariance is onty defined for causal operators when § =
[To,0). An alternative approach would be to define time invariance when S =
[Ty,0) as the property of an operator with a time-invariant backwards extension
to S = (— 0,4+ ®) (see Section 2.9).
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The analogous subalgebras thus become:

1. The class AW, W) of causal operators from W into itself.
The class A4 ~(W, W) of anticausal operators from W into itself.
The class .4"°(W, W) of memoryless operators from W into itself.
. The class Z(W,W) of bounded linear operators from W into itself.
. The continuous operators from W into itself.
. The Lipschitz continuous operators from W into itself.
. The bounded operators from W into itself.
. The time-invariant operators from W into itself (time invariance is
defined completely analogously to that notion in W,).
Subalgebras 1-6 and any intersection of them contain the unit.
7. The strongly causal operators from W, into itself form a subalgebra
of A (W, W) which does not contain the unit. This class of operators
is in fact a subalgebra of A4"+(W,W) and an ideal in the class of
Lipschitz continuous operators from W into itself. Thus, no strongly
causal operator is invertible in the class of Lipschitz continuous
operators from W into itself.

AN b WL

LW, W), A°(W,W), and the time-invariant operators with
S = (—o00,+ o) are regular subalgebras of A" (W,W). The algebra
N °(W,W) and the time-invariant operators with S = [T,,00) are
regular subalgebras of AW, W) and A" (W, W).

For the purposes of analysis it is often mandatory to work with
Banach algebras rather than simply algebras. Operators which belong
to Banach algebras can be “‘measured”” and this leads to the possibility
of establishing invertibility conditions for operators. Two important
norms on the space of operators will be considered: the first one takes.
the Lipschitz constant of an operator as its measure and the second one
takes the bound of an operator as its measure.

Definition: Let .QZ’(W, W) denote the space of Lipschitz continuous
operators from W into itself which map zero into itself, and define the
norm of an element F e Z(W,W) by

IFlla & sup 2=
wrew  |x — vl
TFY

Let addition, scalar multiplication, and multiplication of elements be
defined in Z(W,W) in the usual way.

THEGREM 2.5
The algebra Z (W, W)is a left-distributive Banach algebra with a unit.
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Proof: The only element in the proof which is not immediate is the
statement that gj(W, W)is a Banach space. Let {F,,}, n € I, be a Cauchy
sequence in 3?( W,W). Then {F,x}, for any x € W, is a Cauchy sequence
in W. Let Fx A lim,,, , F,x. Clearly F maps W into itself and FO = 0.
Since

[Fx — Fy| =lim |F,x — Fpy| < sngLlanHA Ix — »il,
n—reo ne
IFx — Fyl < w,
zgew [|x — yl|

and Fe =@?(W,W). It remains to be shown that ||F, — Fll,—0.
However, since for x, ye W, x # y,

[Fox — Foy — (Fx — Fy)|
lx — yi

_ IFx = Frpy — iMoo (FpX — Fr))
x — yl
it follows that |F, — Fllao < SUPmzy |1Fy — Fplla, which yields the
convergence since {F,} is Cauchy in 337( W, W).

Definition: Let Z(W,W) denote the space of operators from W into
itself which map zero into itself and define the norm of an element
Fe B(W,W) by
Fx
17 2 sup L2,
zeir x|
T#£0

Let addition, scalar multiplication, and multiplication of elements be
defined in Z(W,W) in the usual way.

THEOREM 2.6
The algebra Z(W,W)is a left-distributive Banach algebra with a unit.

Proof: The proof requires only minor modifications from the proof
of the previous theorem and is left to the reader.

Important subalgebras of QZ’(W,W) include:
1. BEW,W) & NHW,W) O\ BW,W),
B-(W, W) o N~(W, W) "\ BV, W),
B(W, W) & N(W,W) " B(W,W);
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2. L(W,W); and
3. the time-invariant operators in Z(W,W).

The classes 1-3, or any intersection of them, form subalgebras of

33’(W,W) that contain the unit.
Important subalgebras of Z(W,W) include:

1. (W, W)L N H(WW) N B(W,W),
B WW) Lo N—~(WW) O B(W,W),
B(WW) L N (W WY BW,W);

2. L(W,W); and

3. the time-invariant operators in Z(W,W).

The classes 1-3, or any intersection of them, form subalgebras of
Z(W,W) which contain the unit.

The only difficulty in showing that the above claims are correct occurs
in the demonstration of closedness of the subspaces. This, however,
follows readily by contradiction. The linear and the time-invariant
operators again form regular subalgebras.

Theorems 2.5 and 2.6 thus succeed in putting a Banach algebra
structure on a large subclass of operators in A (W,W). This result
depends directly on the fact that W itself is a Banach space, and hence
cannot immediately be generalized to operators in A (W,,W,), since
W, is not normed. There are, however, more restricted subclasses of
N (W,,W,) where such a possibility exists.

Definitions: Let 9§+(We, W,) denote the space of Lipschitz continuous
causal operators from W, into itself which map zero into itself, and

define the norm of an element F e @'F(Wg,We) by

IFla 2 sup |PrFx — PpFy|
A =
=y, [Pgx — Ppyl
Ppx# Ppy

Let #+(W,W,) denote the space of Lipschitz continuous causal
operators from W, into itself which map zero into itself, and define the
norm of an element F e #+(W,,W,) by

P, F
1Fl & sup 1Prfl
2t s P x|
Prx#0

Let addition, scalar multiplication, and multiplication of elements in
B+(W,,W,) and #+(W,,W,) be defined in the usual way.
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THEOREM 2.7

The algebras Z+(W,,W,) and B+(W,W,) are left-distributive
Banach algebras with a unit.

Proof: Since by Theorem 2.1, =9§+(W,,, w,) and #H(W,W, are

isometrically isomorphic to respectively F+(W,W) and B+(W,W),
the theorem follows from Theorems 2.5 and 2.6.

Thus, as was shown in Theorem 2.1 and pointed out in the proof of
Theorem 2.7, .%7+(W9,Wg) is isometrically isomorphic to .@‘*(W, w),
and #H(W,,W,) is isometrically isomorphic to Z+(W,W). As a

~consequence, the identical notation for the norms on these spaces is,
albeit abusive, not a source of confusion.

2.7 Contractions, Conic Operators, Positive Operators

This section contains a number of concepts around which invertibility
theorems will be established. Recall the assumption that for all operators
FO = 0.

LetFe .@( W, W). Then Fis said to be a contraction on Wif |[Flj, < 1.

Let Fe =@ﬂL(Wa, W,). Then F is said to be a contraction on W, if | Fl|, <
1. Notice that by Theorem 2.1 the causal contractions on W stand in
one-to-one relation to the contractions on W,. Let F e Z(W,W). Then
F is said to be attenuating on W if |F|| < 1. Let F € #+(W,,W,). Then
F is said to be arrenuating on W, if | F|| < 1. Note that by Theorem 2.1
the causal attenuating operators on W stand in one-to-one relation
with the attenuating operators on W,.

Definitions: Let r be a nonnegative real number and let ¢ be a scalar.

Then Fe #(W, W) is said to be incrementally (strictly) interior conic
on W with center ¢ and radius r if |F— ell|,< r(<r). Let Fe
N (W,W). Then Fis said to be incrementally (strictly) exterior conic on
W with center ¢ and radius r if for all x, ye W, |(F —el)x —
(F—cDyl > rlx —yll (for some ¢>0, >(r+ ¢ |lx — yl). Let
Fe %B(W,Ww). Then F is sdid to be (strictly) interior conic on W with
center ¢ and radius r if |F — cl| € r(<r). Let Fe A/ (W,W). Then F
is said to be (strictly) exterior conic on W with center ¢ and radius r if for
allxe W, [(F — cDx| > r |x|| (for some e > 0, 2=(r+ ¢ |x|).
The analogous notions can also be defined on W,. Thus, let r be a
nonnegative real number and let ¢ be a scalar. Then F e A ™(W,,W,)
with FO = 0 is said to be incrementally interior (strictly interior,
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exterior, strictly exterior), conic on W with center ¢ and radius r if for all
x,yeW,and all Te S, [[Pp(F — cD)x — Pp(F — eyl < 1 |Pplx —
I (for some €>0, <(r— &) IPp(x— I, >rlPpx—pl,
>+ ) [Pp(x — ). It is said to be interior (strictly interior,
exterior, strictly exterior), conic on W, with center ¢ and radius r if for all
xeW, and TeS, |Pp(F—chx| <rl|Ppx| (for some ¢ >0,
<(r— lPpxll, ZrlPrxl, >( + ¢ |Ppxl).

Conicity on W, thus essentially refers to conicity on W of the operators
PpFPy for all T e S. In many cases of interest the space # which is
assumed to be a Banach space is actually a Hilbert space. The case in
which W is a Hilbert space is therefore studied more intensively. The
following concepts will be useful for this purpose.

Definitions: Let W be a Hilbert space, and let @ and b be scalars. Then
Fe N/ (W;W) is said to be incrementally inside (outside) the sector
[a,b] on W if for all x, y € W,

Re ((F — al)x — (F — al)y, (F — bD)x — (F — dD)y) < 0 (>0).

It is said to be incrementally strictly inside (outside) the sector [a,b] on
W if for some € > 0, and all x, ye W

Re ((F — al)x — (F — al)y, (F — bl)x — (F — bl)y)
< —¢llx —ylF (Zelx —pI®.

It is said to be inside (outside) the sector [a,b] on W if for all x € W,
Re ((F— al)x, (F — bDx) < 0 (>0).

1t is said to be strictly inside (outside) the sector [a,b] on W if for all
xeWw,
Re (F — al)x, (F — bD)x) < —« [x[}? (Ze]x|}?).

The analogous notions on W, are defined as follows: Let W be a
Hilbert space. Let a and b be scalars. Then F e A +(W,, W) is said to
be incrementally inside (strictly inside, outside, strictly outside) the sector
[a,b] on W, if forall x, ye W, and T € S,

< 0(forsome € >0, < — €||Pr(x — I3,
20, > elPr(x — I
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It is said to be inside (strictly inside, outside, strictly outside) the sector
[a,blon W,if forallxe W,and T€ S

Re (Pp(F — al)x, Pp(F — bD)x) < 0
(for some € > 0, < — € ||Ppx||2, 20, >e|Ppx|?.

It is clear that contractive operators are particular cases of conic
operators (with center 0 and radius 1). Furthermore, interior conicity
on W, and W are by Theorem 2.1 equivalent notions for causal
operators. This, however, is not the case for exterior conicity.*

For operators on a Hilbert space, it is in general easier to verify
sector conditions than conicity conditions. The following theorem
establishes a relationship between conic operators and sector operators.

THEOREM. 2.8

Let W be a Hilbert space and let F e A (W, W) (or F € N +H(W,,W,)).
Then F is (incrementally) (strictly) interior (exterior) conmic on W
(or W,) with center ¢ and radius |r| if and only if Fis (incrementally)
(strictly) inside (outside) the sector [a,h] on W (or W,) witha = ¢ —r
andb=c +r.

Proof: Since
Re ((F — aDx, (F — bl)x) = Re {(F — oI + rD)x,(F — cI — rD)x)

= |(F — cDx||® — |r{* [Ix[?,
the result follows. :

It follows from Theorems 2.1 and 2.8 that the operators that are
inside a sector on W, stand in one-to-one correspondence with the
causal operators which are inside that sector on W. This correspondence
again does not exist for causal operators which are outside a sector on W.

An important role will be played in the sequel by positive operators.
They are generalizations of nonnegative definite linear operators on
Hilbert spaces and have been referred to as dissipative, passive, or
monotone operators.'?

Definitions: If W is a Hilbert space and F & N (W,W), then F is said
to be incrementally positive on W if Re (x — y, Fx — Fy) > 0 for all

12 Jt suffices therefore to consider a time-delay on Ly(— c0,+ ). This operator is
exterior conic with center 0 and radius 1 on Ly(— 0,4 0), but not on Ly,(— 0, ).

13 An important reference for the implications of positivity to well-posedness
problems for partial differential equations is Reference 7.
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x, y € W. It is said to be positive on Wif Re (x,Fx) > O for all x e W.
It is said to be (incrementally) strictly positive on W if for some € > 0,
the difference F — el is (incrementally) positive on W. F is said to be
(incrementally) (strictly) negative on W if the operator —F is (incre-
mentally) (strictly) negative on W. Let F € A/ (W,,W,). Then Fis said
to be positive on W, if Re (Ppx,PpFx) 2> 0 for all xe W, and T € S.
The notions of negativity, incremental positivity (negativity), and strict
(incremental) positivity (negativity) on W, are defined in obvious
analogy with those notions on W.

The relationship between positive operators on W and W, is treated
in the following theorem.

THEOREM 2.9

Let Fe /™*(W,,W,) and A H(W,W). Then F is (incrementally)
(strictly) positive (negative) on W, if and only if F is (incrementally)
(strictly) positive (negative) on W.

Pro'of: Since P, is a projection onto a closed subspace of W for all
T e S, and Fis causal, it follows that for all x € W,

this shows that positivity on W indeed implies positivity on W,.
Conversely, assume that F is positive on W, but that for some x € W,
(x,Fx) < 0. Since limgp.., Prx = x, this implies that (Ppx,Fx) =
(Ppx,PpFx) < 0 for some T € S. This contradiction ends the proof of
the theorem.

Remark: 1t is sometimes easier to perform certain calculations with
S = (—0,+ o) and then to draw conclusions for S = [T,,0). The
following considerations may be helpful in this regard. Let S =
(—o0,+ ), let W be given (over S), and let F be an operator from W
into itself. Let S’ = [Ty, o0) and let W’ be the space having S’ as the
interval of definition and consisting of those B-valued functions on
S’ that when extended by zero on § — S’ yield elements on W. Let
x|l be equal to the norm of the element of W that when projected
on the subspace of functions with support on S’ yields x(¢) as the value
of x for 1 € §', Let x’ € W’ and x € W be defined by

x'(t) for te S’
x(t) = .
0 otherwise

Let F': W' — W’ be defined as (F'x")(¢) = (Fx)(¢) for t € §*. It is clear
that F’ is well defined.
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The space W’ and the operator F’ will be called a restriction of W
and F to S8’ = [T,,). The same procedure allows one to obtain a
restriction on W, of an operator on W,.

The restriction of an operator preserves some of the essential
properties of the original operator. These include, for instance,
linearity, causality, and time invariance. It is easily verified that the
restriction of an operator is (incrementally) positive if the original
operator is itself (incrementally) positive. The same holds for interior
(incremental) conic, contraction, and attenuating operators. Exterior
conicity, however, is in general not preserved under this restriction
unless the operator also happens to be causal.

2.8 Conditions for Invertibility of Nonlinear Operators

2.8.1 General Invertibility Conditions on W Involving Contractions,
Conicity, Sector Conditions, and Positivity

This section contains general conditions for the invertibility of
nonlinear operators on W. It should be remarked that at no point will
the special structure of W introduced in Section 2.3 be exploited. The
invertibility conditions involve contractions, conicity, sector conditions,
and positivity. All of these conditions are immediately related to the
celebrated contraction mapping principle! and the conditions involving
contractions and positivity have previously appeared in the mathe-
matical literature. The conditions involving conicity and sector con-
ditions are new,® and should, as sufficient conditions for invertibility
of nonlinear operators, be of considerable interest in applied mathe-
matics.

The conditions of some of the theorems are on occasion rather
involved, and it is therefore suggested that the reader concen-
trate first on Theorem 2.11, Theorem 2.12, Corollary 2.14.1, and
Theorem 2.15.

It is worthwhile to mention that all the invertibility theorems which
follow are in essence based on the contraction mapping principle. They
thus yield as an important side aspect a convergent recursive algorithm
for evaluating the inverse. In these invertibility theorems special

14 See Reference 8, p. 34. For some folklore about fixed-point theorems, see
Reference 9.

15 Related, but much more restrictive, conditions have appeared in the mathemati-
cal literature (Ref. 8, p. 296). The author draws his inspiration from the work of
Zames (Ref. 10), who proves stability theorems using similar conditions. After the
link between stability and invertibility is established (as will be done in Chapter 4)
these invertibility theorems become apparent. Their derivation is of independent
interest, however.
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emphasis is placed on whether or not a particular inverse belongs to
the subalgebras to which the original operator belongs. The interest in
this aspect stems mainly from the applications to instability conditions
as will become apparent in Chapter 4.

Consider the Banach algebra (W, W) introduced in Section 2.5.
Recall that .@:f( W,W) is isometrically isomorphic to BH(W,,W,) and .
that invertibility conditions on FBH( W,,W,) thus lead to identical
invertibility conditions on BH(W,,W).

THEOREM 2.10

The algebra .@T(W,W) and any of its subalgebras which contain the
unit have the contraction property.

Proof: Let Fe %#(W,W) with ||[Fl, <1. Then by the contraction
mapping principle, I + Fis invertible on W and its inverse is Lipschitz
continuous. In fact,

1

I+ F s < ——>

1 — ||F|l

and the solution to the equation x = —Fx + u with u € W given and
x € W unknown can be solved by successive approximations with
Xpt1 = —Fx, + u, neI*. The resulting sequence {x,}, with n eI,
is a Cauchy sequence in W and converges for any choice of x, € W to
the unique solution (I 4+ F)'u. This algorithm for computing the

solution shows that any subalgebra of J8(W, W) also has the contraction
property.

Theorem 2.10 immediately leads to the invertibility condition of
Theorem 2.11.

THeOREM 2.11

Let Fe A/ (W,W) be a contraction on W. Then —1¢ o(F) in
Z(W,W). Moreover, if F belongs to a subalgebra of Z(W,W) that
contains the unit, then so does (I + F)~. Finally,

‘ 1
I+ Py <——,
T~ |Fl,

THEOREM 2.12

Let F,, F,€ /" (W,W). Then —1 ¢ o(F\Fy) in A/ (W,W) if there
exists a scalar ¢ such that —1 ¢ o(cF,) in 4 (W,W) and (Fy — cl)
Fy(I + cF,)lis a contraction on W. Moreover, (I + FiF))™ € Z(W,W)
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if (I + ¢F) e Q(W W), and if F; and F, belong to a subalgebra of

.@(W W) that contains the unit, then (I + FyFp)™ belongs to that
subalgebra if and only if (I 4 cFy)™ does. Finally,

I+ cFa) s .
1 — [|[(Fy — cD)FI + cFp) ™A

I + FiF)7lla <

Proof: Since I+ FiFy = (I + (Fy — cDF(I + cF)™)(I + cFy), the
operator I + FyF, is the product of two elements of /(W,W) both of
which are invertible in A (W,W), and is thus itself invertible in
A (W,W). To prove the second part of the theorem, express I + FiFy
as (I + cF) + (Fy — cDF, Cleatly, (I + cF) + a(F, — c)F, is
invertible in Z(W, W) for all 0 < « < 1 and the inverse for « = 0 is
(I + cFy)™. Tt thus follows from Theorem 2.2 that the inverse for
a =1, (I + F.Fy)™, belongs to exactly those subalgebras to which
I+ ch)”1 belongs.

COROLLARY 2.12.1

Let F,, F, € /' (W,W). Then —1 ¢ o(F F) in # (W, W) if for some
scalar ¢ and r > 0, F, is incrementally strictly interior conic on W with
center ¢ and radius r, —1 ¢ o(cFy) in & (W, W), and F, satisfies for all
x, y € W the inequality ||(I+ cFyx — (I + cF)yl 2 r | Fpx — Fypyl.
Moreover, (I + F,Fy) € Q(W W) if (I + cF) e #(W,W), and if
F,; and F, belong to a subalgebra of % (W, W) that contains the unit
then (I + F,Fy)~! belongs to that subalgebra if and only if (I + cFp)™
does. Finally,

I+ cFa) M < 14 lel/r
L — |(Fy — eDlafr 1= |[Fy — cIlla/r

(I + F1Fo) lla <

Proof: The conditions of the Corollary imply that | F(I + cFp)™ s <
r—t which yields ||(Fy — cD)Fy(I + cFy) A < 1. The Corollary then
follows from Theorem 2.12.

Note that if 0 ¢ o(Fy) in A (W,W) then Corollary 2.12.1 requires
that F;! be incrementally exterior conic on W with center —c and
radius 1.

Very often the space W of interest turns out to be a Hilbert space.
In that case the formulation of Corollary 2.12.1 becomes considerably
more elegant, particularly if expressed in terms of sector conditions.
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THEOREM 2.13

Let Fy, Fy € &/ (W,W) with W a Hilbert space. Then —1 ¢ ¢(F F,)
in &/ (W,W) if for some scalar ¢ and r > 0, the operator F; is incre-
mentally strictly interior conic on W with center ¢ and radius r,
—1 ¢ o(cF,) in /' (W,W), and F; satisfies one of the following condi-
tions:

Case 1: || < r, and F, is incrementally interior conic on W with

é . r
center —_— and radius .
rz_lcl2 r2_|clz

Case 2: |c| > r, and F, is incrementally exterior conic on W with

. r
and radius 2

e[ — 7 el —r*

center

Case 3: [¢| = r, and I 4 2¢F, is incrementally positive on W.
Moreover, (I + FyFy)™ € B(W,W) if (I + cF)~' e B(W,W), and
if F; and F, belong to a subalgebra of .@7(W, W) that contains the

unit, then (I + FyF,)~! belongs to that subalgebra if and only
if (I + cF,)™* does. Finally,

I+ cF) s o L+ lelir
1— IFy—cIlafr 1 — |[Fy — cllla/r
Proof: 1If |c| # r then for all x, y € W the following identities hold:

Re F__.‘_T.:_';_I)x_(F__é_—_rI
<( " — el T A e )
ctr c+r
Fog— ——J)x — (F, — — 1
(2 " el )x ( = [ol? )y>

= |[Fyx — Fayll* — 2 Re (¢ = y, Fax — Fyy)

(T + FiFa) s <

-—H2

1 2
x_.
2—Mwl Yl

1
= o O~ e e — Pl

_2Re5(x—y,F2x—F2y)—- "X—yuz),

1 :
= (r* | Fox — Foy|?

r2 — |c|2

— I + eFp)x — (I + cFyl®.
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It thus follows from Theorem 2.8 that both cases 1 and 2 imply that
(I + cF)x — (I + cFyyll > r | Foax — Fyyll, which by Corollary 2.12.1
yields the conclusions of the theorem for these cases. If |¢| = r then
Re (x — y, (I + 2¢Fy)x — (I + 2cF)y) > 0 for all x, y € W. Hence
I + cFy)x — (I + cF)y|* — |ef | Fox — Fay|* < 0 and [[(I + cFyx
— (I + cFy)y|? > r? | Fpx — Fpyl|®2 which by Corollary 2.12.1 yields
the conclusions of the theorem for case 3.

When Theorem 2.13 is expressed in terms of sector conditions, it
becomes

THEOREM 2.14

Let Fy, Fy e //(W,W) with W a Hilbert space. Then —1 ¢ o(F,Fy)
in A (W,W) if for some scalars a, b, the operator F; is incrementally
strictly inside the sector [a,b] on W, —1 ¢ o(3(a + B)F) in N/ (W, W)
and F, satisfies one of the following conditions:

Case 1: |a + b} < |a — b|, and F, is incrementally inside the sector

~%a " Tem)
Reab’ Reab

on W. '
Case 2: |a + b| > |a — b|, and F; is incrementally outside the sector

b _a
[ Reab’ Re a’b]
on W.
Case 3: |a + bl = |a — b|, that is, Reab =0, and I + (¢ + b)F; is
incrementally positive on W.
Moreover, (I + FyFy) e BW,W) if (I+ a+ b)F)re
3§(W, W), and if F; and F, belong to a subalgebra of B(W,W)

that contains the unit, then (I 4 F F,)! belongs to that sub-
algebra if and only if (7 + cF;)* does.

Proof of case 1: The conditions on F, imply by Theorem 2.8 that F; is
incrementally inside the cone with
center — — + b_ and radius
2Re a

a—»ab
2Re db |
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and is thus inside the cone with

—(@ + b)J2
(@ + B)2* — |(a — b)[2|?

center

I(a — 52| :
I(a — B)2|* = |(a + B)2/*
this yields the required result by Theorem 2.13.

and radius

Proof of case 2: This case is proved in a manner similar to case 1 and
the details are left to the reader.

Proof of case 3: This is a direct consequence of Theorem 2.13.

The case when ¢ and b are real is of particular interest and leads to

COROLLARY 2.14.1

Let Fy, F, € /°(W,W) with W a Hilbert space. Then —1 ¢ o(F,Fy)
in & (W,W)if for some real numbers a < b, b > 0, F; is incrementally
strictly inside the sector [a,b], —1 ¢ a(3(a + b)F,) in A" (W, W), and
F, satisfies one of the following conditions:

Case 1: a < 0, and F, is incrementally inside the sector [—1/b, —1/a]
on W.

Case 2: a > 0, and F, is incrementally outside the sector [—1/a, —1/b]
on W. :

Case 3: ¢ =0, and F, + I/b is positive on W.

Moreover, (I + FF)™' € W, W) if (I + ia + BF)™ €
#(W,W); and if F; and F, belong to a subalgebra of Z(W,W) that

contains the unit, then (I + F;F,)~! belongs to that subalgebra if and
only if (I 4+ cFy)~ does.

The following invertibility theorem is stated in terms of positivity
conditions and will play an important role in stability theory. It is an
immediate consequence of the following important result that has
recently appeared in the mathematical literature.

Lemma 2.1
Let F e /(W,W)be continuous on W with W a Hilbert space. If Fis
incrementally strictly positive on W then F is invertible on A (W, W)

and Fle .@(W,W) and is positive on W. Moreover, if F e QZ(W,W)
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then F-1 is incrementally strictly positive on W, and belongs to all -

subalgebras of J8(W,W) which contain the unit to which F belongs.

Proof: This lemma is a consequence of the monotone mapping theorem
(see Reference 11). If Fe .9?( W, W) then the inverse can be obtained as
follows: Let € > 0 be such that F — eI is incrementally positive on W,
and let « = €/||F||4. Then the operator G A I — «F is a contraction
on W and F!= (I — G)*«l. This expression then yields the sub-
algebraic properties claimed for F~2. .

THEOREM 2.15

Let Fy, F, € A/ (W,W) be continuous on W, with W a Hilbert space.
Then —1 ¢ o(F,F,) in A (W, W) if F, is incrementally positive on W,
F, is incrementally strictly positive on W, and F, is Lipschitz continuous
or F, is also incrementally strictly positive. Moreover, (I + FiFy)™" €
3?( W, W) and belongs to all subalgebras of @( W,W) which contain the
unit to which F; and F, belong.

Proof: By Lemma 2.1, F, is invertible on W, and thus I + F;F, =
(F3* + F,)F,. Since F;' + F, is incrementally strictly positive on W,
it is invertible on W. Thus I + F,F, is the product of two invertible
operators with inverses in .@;(W,W). The statement about the sub-
algebras follows from the expression of the inverse given by Lemma 2.1.

Remark 1. Notice that the proof of Theorem 2.15 also yields as a side
result that F,(J + F,F,)* is itself incrementally strictly positive and
Lipschitz continuous.

Remark 2. If Fis a causal, invertible (incrementally) positive operator
on W, then a simple calculation shows that F~* is also (incrementally)
positive. Some simple additional assumptions (see Refs. 12, 13)
will then assure that F-1 is also a causal, invertible (incrementally)
positive operator on W. These conditions lead to somewhat more
general conditions of establishing the causality of inverses than the
methods implied by the subalgebra considerations of Theorem 2.15.

2.8.2 A General Invertibility Condition on W, Involving Strongly Causal
Operators

Section 2.8.3 is concerned with invertibility conditions for causal
operators on W when § = [T;,00). Since most of the theorems in that
section assume a priori invertibility on W,, it appears natural to
present first a general condition for invertibility on W,.
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THEOREM 2.16
Let S = [Ty, 0) and F be a strongly causal operator on W,. Then
o(F)on A (W,,W,) consists of the zero element only.

The proof of this theorem will be given in Chapter 4 when discussing
well-posedness of feedback systems.

Theorem 2.16 shows that invertibility on W, of the identity plus a
causal operator is a very weak assumption when the time-interval of
definition S is [T, 0). This is a well-known fact for Volterra integral
equations and differential equations.

2.8.3 Invertibility Conditions on W for Causal Operators

The question posed in this section is the following: Since, as pointed
out in Section 2.8.2, invertibility of I 4 F on the extended space
essentially comes “for free” when F is a causal operator, can this fact
somehow be exploited to obtain weaker conditions for invertibility on
the nonextended space? Many operators encountered in practice are
causal, and it turns out that the causality of operators can indeed be
quite successfully used in obtaining such invertibility conditions. The
theorems which follow have implications in stability theory, as will be
pointed out in Chapter 4. '

The invertibility conditions which follow are nonstandard in the
mathematical literature and should be of considerable interest. The
theorems are essentially restricted to causal operators, however. This
does not detract from their value, since, in many fields—particularly
mathematical system theory—the operators considered are more often
than not causal.

The invertibility theorems which follow are completely analogous to
those obtained in Section 2.8.1. However, they dispense with incre-
mental conicity or incremental positivity in favor of conicity and
positivity. The conditions thus become a great deal less restrictive.*®

It is extremely important, when proving the theorems that follow, to
keep in mind the isometrically isomorphic equivalence of Z#+(W,W)
and #+(W,,W,) as exposed by Theorem 2.1.

16 However, the resulting theorems do not allow one to conclude the continuity of
the inverse. It is also much less obvious how to construct a recursive algorithm for
the computation of the inverse. This can be done, however. For instance, in Theorem
2.17 one can use the invertibility on W, (which is algorithmic, as will be pointed out
in Chapter 4) with the invertibility on W to obtain an algorithm, a bound on the
error, and a rate of convergence for the solutions. The calculations in Reference 14
may be helpful in this respect. :
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THEOREM 2.17

Let Fe #H(W,,W,), and —1 ¢ o(F) in /W, W,). If F is atten-
uating on W (or W,), then —1¢ o(F) in ZH(W,W). Moreover,
T+ A <A —|FD™

Proof: Let ue W, and consider the equation x + Fx = u. This
equation has a unique solution x € W, by assumption. Thus, Ppx +
PpFx = Pqu for all T € S, which yields

|Ppxll — | F) 1Ppxll < IPpxll — | FPrx|
< 1Ppxl| — |PpFPyx|| < [|Ppull < [lu.

Hence, |[Ppx|| < llull/(1 — ||F|) for all TeS, and xe€ W -with
Ixl < full/(X — | F|l). Thus (I 4+ F)™! exists on W. It remains to be
shown that (I + F)~! is causal on W. This, however, follows since
(I + F)™ on W is the restriction of (/ + F)~! on W, to W. Since the
latter inverse is causal by assumption, the theorem follows.

THEOREM 2.18

Let Fy, Fobe /" (W, W,), and —1 ¢ o(F,F,) in /" (W, W,). Then
(I 4 F F)Ye B+(W,W) if there exists a scalar ¢ such that —1 ¢
o(cF,) in AYW,W,), U+ cF)yte Z*(W,W) and (F, — cl)
F,(I + cF,)™! is attenuating on W. In fact,

I + cF) Y
1 — [[(Fy — eDFo(I + cFo)™|

¥

I + FyFy) 7l <

Proof: Since I+ FiF, = [I + (Fy — cDF,(I + cFy) 11 + cF,), the
operator I + FiF, is the product of two elements of A™H(W,,W,).
Both I + cF, and I + F,F, are invertible in A#™+(W,,W,) by assumption
which thus yields that I+ (F; — c)F{I 4 cF,)™* is invertible in
N HW,,W,). By Theorem 2.17, [I + (Fy; — c)Fy(I + cFp)~1]* actually
belongs to #+(W,W). The estimates in the theorem are obvious.

CorOLLARY 2.18.1

Let Fy, F, e /" Y(W,,W,), and —1 ¢ o(F,F,) in &/ (W, W). Then
I + FF) 1t e #H(W,W) if for some scalar ¢ and r > 0, the operator
F, is strictly interior conic on W with center ¢ and radius r, —1 ¢
o(cFy) in /W, W,), and rF(I + cF,)™* is attenuating on W. In fact,

0T+ P 14y

I + FFo) Y <
(4 FF) ”\1—uFl—c1u/r\1—uFl—cIn/r

e A g it
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Proof: Since (I + cF)(I + cFp)™* = Ion W, theinverse (I 4+ cFyp)™ =
I — c¢F,(I 4+ cF)™* on W,, which shows that (I + cFp)™ € Zt(W, W)
and<that |( + cFp) | < 1 + |cl/r. Corollary 2.18.1 then follows from
Theorem 2.18.

COROLLARY 2.18.2 :

Let Fy, Fye /' (W, W,), and —1 ¢ o(FFp) in #H(W,,W,). Then
(I + FyiFy) ' e #+(W,W) if for some scalar ¢ and r > 0, the operator
F, is strictly interior conic on W with center ¢ and radius r, —1 ¢ o(cFy)
in A (W, W,), and F, satisfies for all x € W and T € S the inequality
r |PpFyx| < |Pp(I + cFp)x]. In fact,

1 4 el/r

I + FFo) ™|l < T IF. — el

Proof: Since the conditions of the corollary imply that rFy(I + cFp) ™y
is attenuating on W, this theorem becomes a simple consequence of
Corollary 2.18.1.

Note that if 0 ¢ o(Fy) in A H(W,,W,) then Corollaries 2.18.1 and
2.18.2 require F; " to be exterior conic on W, with center —c and radius
r-1. Note also that Corollary 2.18.2 does not require computation of
(I + cF)™ or even proving that (I + cF)™'e Z(W,,W,). If this has
been established independently, then the condition on F, becomes
somewhat simpler and requires that F, satisy, for all x € W, the in-
equality r | Foxlf < [[(Z + cFa)x|.

Very often the space W under consideration is actually a Hilbert
space; the formulation of the above corollaries becomes considerably
more elegant if this fact is exploited, and the invertibility conditions of
the previous theorems are expressed in terms of sector conditions.

THEOREM 2.19

Let F,, F, € A(W,,W,), with W a Hilbert space, and —1 ¢ o(F,F;)
in /W, W,). Then (I + F,F,) € #+(W,W) if for some scalar ¢
and r > 0, the operator F; is strictly interior conic on W with center
¢ and radius r, —1 & o(cF,) in A H(W,_,W,), and F, satisfies one of the
following conditions:

Case 1: |c] < r, and F, is interior conic on W with

4 .
center ———; and radius 3 5
r? —lc| r* — el



38  NONLINEAR OPERATORS N

Case 2: |¢| > r, and F, is exterior conic on W, with

4 .
center T and radius 2 2
r —|cl - el

el —r

Case 3: |c| = r, and I + 2¢F, is positive on W,.

_ 1+ fel/r
In fact, [(I + F Fo) |  ———————.
n fact, [(I + FFy) 7| < 1 — |F, — cllfr

Proof: Combining the ideas of the proof of Theorem 2.13 and the
result of Theorem 2.18 and its corollaries leads to this.result without
difficulty. The details are left to the reader. '

THEOREM 2.20

Let Fy, F, € /™ H(W,,W,), with W a Hilbert space, and —1 ¢ o(FF,)
in /YW, W,). Then (I + FyF;)~* e #+(W,W) if for some scalars
a, b, the operator F, is strictly inside the sector [a,b] on W, —1¢

o(3(a + b)Fy) in A T(W,,W,), and F, satisfies one of the following
conditions:

Case 1: ja + b| < |a — b|, and F, is inside the sector

- %a )
Redb’ Reab

on W.
Case 2: |a + b| > la — b, and F, is outside the sector

on [F e

Case 3:|la+ bl =|a—b], ie., Re ab =0, and I + (a + b)F; is
positive on W,.

The proof of Theorem 2.20 is entirely analogous to the proof of
Theorem 2.14 and is left to the reader.

The case when a and b are real is of particular interest and leads to

CoOROLLARY 2.20.1 :

Let Fy, Fy € &/ ™H(W,,W,), with W a Hilbert space, and —1 ¢ o(FiFp)
in /W, W,). Then (I + F Fy)™e BH(W,W) if for some real
numbers a < b, b > 0, F; is strictly inside the sector [a,b] on W,
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—1¢ a(%((a + b)F,) in & (W,,W,), and F, satisfies one of the following
conditions:

Case 1: @ < 0, and F, is inside the sector [—1/b, —1/a] on W.
Case 2: a > 0, and F, is outside the sector [—1/a, —1/b] on W,.
Case 3: a = 0, and F, + I/b is positive on W,.

The invertibility theorems which follow involve positive operators.

THEOREM 2.21

Let Fy, Fp, € /™(W,,W,), with W a Hilbert space, and —1 ¢ o(F F3)
in A H(W,,W,). Then (I + F,F,)"' € B+(W,W) if F, is positive on W,
and F, is strictly positive and bounded on W.

Proof: Let ue W, and consider the equation x + FyF,x = u. This
equation has a unique solution x € W, by assumption. Thus for all
TeS, Ppx + PpFiFyx = Ppu. Hence by strict positivity and the
Cauchy inequality, there exists an « > 0 such that for all T € S,

€ |Prx|* < KPpFpx, Ppx + PrFyFox)| = [((PpFpx,Pyu)]
< |1PpFox] |Ppull < | Fell |1Ppx]l | Ppull.

Consequently [|[Ppx| < €1||F| [lull for all T€ S which shows that
x € Wand | x|] € € || Fyl |u]. It remains to be shown that (I + F Fp)™t
is causal on W. This, however, follows since (I 4+ F,F,)™* on W is the
restriction of (I + FiF,) " on W, to W.

-

Remark: If in addition 0 ¢ ¢(F,) in A H(W,,W,) (which will happen
under very weak conditions since F, is causal and strictly positive),
then Fo(I 4+ F F,)™! turns out to be itself strictly positive and bounded
on W. This fact has a rather interesting interpretation in terms of
passive systems.'” Indeed, consider F, and F; as expressing, respectively,
the driving-point admittance and the driving-point impedance of a
passive network. Then F,(I + F,F,)! is the driving-point admittance
of the parallel combination shown in Figure 2.1, which is itself clearly
passive if F, and F, are passive. The reader will be interested in verifying
that Theorem 2.21 can be refined by requiring positivity and bounded-
ness of F, (rather than of F;) and merely positivity of Fy, or by
requiring strict positivity on F; and F, but no boundedness.

17 This interpretation is due to Zames (Ref. 10).



40 NONLINEAR OPERATORS

+ + ADMITTANCE

- F

L—-3— IMPEDANCE

A

ey
i}

A

-1
ADMITTANCE F-'2(12+F1 FZ)

Figure 2.1 A Realization of Fy(1 + F Fy)™

2.9 Conditions for Noninvertibility of Nonlinear Operators

Section 2.8 has been concerned with establishing conditions under
which nonlinear operators are invertible. The present section addresses
itself to the opposite question: namely, under what conditions can it be
guaranteed that a particular operator is no# invertible? The interest in
this question stems primarily from the fact that noninvertible operators
lead to unstable feedback systems, a fact which will be explored in
detail in Chapter 4.

A great deal of the mathematical literature concerning nonlinear
operators is devoted to the question of invertibility of operators. Some
such results were presented in the previous section. Quite surprisingly,
- virtually no research has been devoted to exploring sufficient conditions
for the noninvertibility of operators. The present section constitutes
such an effort and contains quite specific conditions for operators to be
nomninvertible.!8

First of all, note that the invertibility theorems obtained in Section
2.8 give conditions for certain operators not to be invertible in a given
subalgebra. In particular, Theorem 2.12 thus implies

18 The estimates which go into the proofs of the noninvertibility theorems are
entirely analogous to those used in the invertibility theorems of Section 2.8. The
inspiration for these noninvertibility theorems stems from the relationship between
noninvertibility and instability as explained in Chapter 4. The instability theorems
that led the author to suspect the specific conditions are those obtained using
Lyapunov theory in Reference 15. Notice also the crucial role played by Theorem
2.2 in the proof of the invertibility theorems which follow.
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THEOREM 2.21
Let F,, F, € ZH(W,W). Then —1 € o(F\F,) in /W, W) if there

exists a scalar ¢ such that —1 ¢ (cF;) in .@(W,W), I+ cF)té
A HW, W), and if (F; — c)Fy(I + cF3)™* is a contraction on W.

Note that Theorem 2.21 and its corollaries, which can be obtained
by making the contraction condition more specific (as in Corollary
2.12.1, Theorem 2.13, Theorem 2.14, and Corollary 2.14.1) do state
sufficient conditions for a particular causal operator I + F{F;, not to be
invertible in the algebra of causal operators. This is done by showing
that I + FF; is invertible but by ensuring, through Theorem 2.2, that
this the inverse is nor causal on W. Theorem 2.21 is predicated on the
possibility of showing that I 4 cF; is invertible on W for some scalar c,
but that this inverse is not causal.

Remark 1: The preceding statement trades the problem of showing
that a particular inverse (I 4+ F1F;)! is not causal for a similar one,
namely, showing that (I + cF,)~* is not causal. In general, however,
the operator F = F,F, is given and F, can be selected to convenience
(modulo the condition F = F}F,). Very often F, can thus be chosen to
be relatively simple as compared to F, e.g., linear and time invariant,
so that much more can be said a priori about the inverse (I + ¢F;)™?
than about the inverse (I + FyFp).

Remark 2: When S = [Ty,o0), very weak conditions (e.g., strong
causality of FyF,) will ensure that I + F,F; is invertible in /™ (W, W),
and whenever (I + F,F,)! exists in A" (W, W), it will thus necessarily
be causal (as the restriction of this inverse on W, to W). Theorem 2.21
will then, of course, never succeed in showing that I 4 F,F, is not
invertible in A +(W,W). A method, believed to be innovative, of
treating this case is outlined in the remainder of this section.

Definition: Let S = [Ty,c0), W (defined over S), and Fe /W, W)
be given. Let W’ consist of B-valued functions defined on S’ =
(—o0,+ ) and F' € #™+(W.,W.). Then S’, W',-and F’ are said tobe a
backwards extension’® of S, W, and F if they satisfy the following
hypotheses:

1. The space W' satisfies the assumptions W.1-W.4 enumerated in
Section 2.3.

1% Compare this with the definition of the restriction of an operator to a smaller
time-interval of definition, as explained in Section 2.7. In fact, F is a restriction of
F’if and only if F’is a backwards extension of F.
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2. If x € W, then the B-valued function

x(t) for teS

¥ = for te(S'—9)

belongs to W”.

3. If x’ € W', then the B-valued function x with x(¢) = x'(¢) for &€ §
belongs to W.

4. The operator F’ is an element of A H(W_,,W)). :

5. Given any x'e€ W’ with x'(1)=0 for t < T, and x€ W with
x(t) = x'(¢) for t € §, then F'x'(t) = Fx(t) fort € S.

The following lemma plays a crucial role in the results that follow
and is believed to be of some interest in its own right. It essentially
states that if a Lipschitz-continuous operator is invertible on one
half-line, then it is invertible on any half-line.

LEMMaA 2.2

Let ¢, £, € S be given, Fe 9§+(W,,,W;), and let F be invertible in
N +(W,,W,). Then F has an inverse on W, A {xe W |P,x =0} if
and only if F has an inverse on W, A {x € W| P, x = O}.

Proof: Note that F has a causal inverse on W, , and W, since it has
a causal inverse on W, by assumption. Let #; < 1,. If F has an inverse
on W, , then the restriction of this inverse to the subspace W, of W,
clearly qualifies as the inverse on W,, since by causality this inverse
maps W, into itself. Conversely, assume that F is invertible on W,
and let ue W, be given. Let e = Flue W, , be decomposed as
e =P,e+ (I — P,)e Thus P,ee W. Since F is Lipschitz contin-
uous, it follows that ||Pp(Fe — F(I — P)e)ll < |FlsllPyell for all
TeS, T > t,, which shows that v & Fe — F(I — P,)e € W. Hence
F(I — P,)e = Fe —v = u — veW.Since u — v € W, and Fis invertible
on W,,, this thus yields (/ — P,)e = F(u —v) e W,. Thuse = P, e +
(I — P,)e € W, which ends the proof of the lemma.

THEOREM 2.22

Let S = [T,,x), Fe 33’+(VIQ,W,), and F be invertible in /W, W).
Let W’ and F'e gg’"‘(W;,We') be a backwards extension of W and F
from S = [Ty, o) to §' = (— 0,4+ ), and assume that for all Te S’
the operator F’ has a causal inverse on Wy, 2 {x € W!|Pyx = 0}.
Then F~* ¢ A°(W,W) if F’ has a noncausal inverse on W, .
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Proof: Since F' has a noncausal inverse on W, there exists at least one
T € 8’ such that F”is not invertible on Wy, A {x € W’ | Pzx = 0}. This
then implies by Lemma 2.2 that ‘F’ is not invertible on Wy A
{xew’ l Ppx = 0}. Since W’ and F’ are backward extensions of W
and F, the spaces Wy, and W are isomorphic and F’ is equivalent to F
in the sense that F’ and F map equivalent elements x’ € W, and x € W
into equivalent elements F'x’ € Wy, and Fx € W. Thus F is not one-to-
one and onto W if F’is not one-to-one and onto W’. Hence F is not
invertible on W as claimed.

Theorems 2.21 and 2.22 can then be combined to give a rather
concrete noninvertibility theorem. More specifically, they yield

THEOREM 2.23

Let S = [T,,c0), Fe #+(W,,W,), and let F be invertible in
N (W, W,). Let W’ and F’'e Q;JF(W;,W;) be a backwards extension
of W and F from § = [T},0) to S' = (— 0,+ ), and assume that
for all TeS’, F' has a causal inverse on Wy, A {x € W,| Ppx = 0}.
Let F{, Fy€ B+(W’',W") and F’ = I + F{Fj. Then F-1¢ A (W, W) if
there exists a scalar ¢ such that —1 ¢ o(cFy) in %( W' W, (I + cFj)™¢
N (W', W), and if (F] — cI)F3(I + cFj) is a contraction on W’.

It is again possible to make the contraction condition of Theorem
2.23 more specific and obtain the analogues of Corollary 2.12.1,
Theorem 2.13, Theorem 2.14, and Corollary 2.14.1. These details are
left to the reader. Notice, however, that only the case of exterior
conicity or outside the sector conditions on F, will then lead-to non-
invertibility conditions.

It should be emphasized at this point that it is in general not difficult
to obtain suitable backwards extensions of particular operators. For
time-invariant operators the obvious choice to consider is the (unique)
backward extension which itself is time invariant. Examples illustrating
the use of Theorem 2.23 will be given in connection with instability
theorems in Chapter 5.
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3 Positive Operators

3.1 Introduction

This chapter is devoted to the study of positive operators. An operator
will be called “positive” if the real part of the inner product of any
element and its image under the operation is nonnegative. For example,
a linear transformation from a finite-dimensional real vector space into
itself defines a positive operator if and only if the matrix associated
with this linear transformation plus the transpose of the matrix is
nonnegative definite. The Sylvester test yields a simple necessary and
sufficient condition for a finite-dimensional linear transformation to
define a positive operator. For nonlinear transformations or operators
defined on infinite-dimensional spaces, the situation is quite different
and this is where the techniques and results developed in this chapter
are useful.

Why are positive operators important ? There are several areas both in
engineering and in applied mathematics where positive operators play
a central role. Here are some examples:

1. Many techniques—e g., in the theory of optimal control, in
prediction theory, and in stability theory—require at some point in the
analysis that a certain function or functional be positive definite; instances
of this are the second variations in optimization theory and Lyapunov
functions and their derivatives in stability theory. This procedure often
reduces to one of verifying that a certain appropriately chosen
operator is positive. In this context, it suffices to recall how often
the positive definiteness of certain matrices is invoked.

45
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2. Another area of research where positive operators pla}y an
essential role is network synthesis. Recall that a ratio of polynom1a1§ in
the complex variable s is the driving-point impedance of a t.w.o-ter-mmal
petwork that can be realized using a finite number of posm.ve, .lmea_r,
and constant resistors, inductors, and capacitors, .if and only if .thls r'fmo
of polynomials is a positive real function of s. This r'csult thus 1dent.1f.ies
the input-output relation of these passive nf:t.works witha cla§s of positive
operators.! It leaves no doubt that positive operators V&Tln also play
an essential role in the synthesis of nonlinear and time-varying networks
using certain passive devices. B o o

3, An important application of positive operators is in establishing

the stability of feedback systems. Roughly speaking, stability is the '

property of systems whereby small inputs or igitial cox'lc.litions. prpduce
small responses. The technique for generating stability criteria for
feedback systems from knowledge of positive operators will be
examined in detail in Chapter 4, but the basic idea is simple and st.ates
that the interconnection of passive systems (positive operators) yields
ble system.

: S“fa Theyso-called Jfrequency-power formulas have been aPplied to tt}e
design of parametric amplifiers. They are fortpulas wh¥ch constrain
weighted sums of real and reactive powers entering a dev1c':e at various
frequencies to be either zero, positive, or negative. The fievwe cc?uld be,
for instance, a nonlinear resistor, inductor, or capacitor. This ‘_work
was initiated by Manley and Rowe, who analyzed.the power flow at
various frequencies in a nonlinear capacitor and discovered the novsf-
famous Manley-Rowe frequency-power formulas. Manley.and Rowe’s
work has been extended in several directions and the resulting formulas
have found application in the design of frequfency converters. Frequency-
power formulas establish fundamental limits on the efficiency of sv..lch
devices. These formulas have been applied in energy conversion
using parametric' devices, in studies of hydrodynamic ax}d magneto-
hydrodynamic stability, and in many other areas. In trying to bring
certain methods and results in these areas into harmo_ny, it be.came
apparent that these frequency-power formulas are essentially particular
classes of positive operators and can, mathematically at least, be most
easily understood as such. - .

5. Another important application of positive operators 1S the
determination of bounds on the optimal performqnce c?f nonlinear
time-varying systems. One of the crucial problems in optimal control

1 This relationship between positivity of operators a_nd pasgivity 9f systems has
motivated many authors to call positive operators passive or dissipative.
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theory is, paradoxically, the design of suboptimal systems. In fact,
because of computational feasibility and more convenient implementa-
tion, it is in many cases necessary to resort to suboptimal systems. Little
or no attention has been paid to the problem of a priori predicting how
far a suboptimal system is from being optimal. It can be shown? that
the requirement that a given system has a better performance than
another with respect to some performance criterion can in many
important cases be reduced to requiring that a certain suitably chosen
operator be positive. This then allows one to estimate a priori bounds
on the performance of certain systems and to design feasible sub-
optimal controls. In this respect it is also worthwhile to mention that
optimal control provides, conceptually at least, a way of verifying the
positivity of an operator F. Indeed if inf, Re (x,Fx) > 0, then the
operator is clearly positive.

6. From the purely mathematical point of view, positive operators
are important because of their implications about the invertibility of
nonlinear operators. These aspects have been explored in Chapter 2.

The first class of operators which are examined in this chapter for
positivity are the convolution operators and the memoryless operators
in which the output is an instantaneous function of the input. These
positive operators lead to the well-known Manley-Rowe equations and
play an important role in stability theory since they are closely connected
with the Popov criterion and the circle criterion for the stability of
nonlinear and time-varying feedback systems.

Next, attention is focused on the question what class of linear
convolution operators can be composed with a positive periodically
time-varying linear multiplicative gain and still yield a positive operator.
The answer to this question turns out to require that this convolution
operator itself be positive and that the kernel of the convolution should
consist of a string of impulses occurring at multiples of the period of
the time-varying gain. It is also shown that this result is the best of its
type. :

In Section 3.2, an answer to the following question is sought: What
is the most general linear operator that when composed with a monotone
nondecreasing (or an odd-monotone nondecreasing) nonlinearity
yields a positive operator? This problem has received a great deal of
attention in the past, in connection with both the frequency-power

* The topic of a priori bounds of suboptimal controllers is treated in Reference 1.

This work brings out the relevance of positivity conditions to this important area of
research.
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formulas and the stability of feedback loops with a monotone non-
linearity in the feedback loop. The resulting class of positive operators
is closely related to certain classes of matrices, i.e., the dominant
matrices, which are important in network synthesis. The mathematical
reason for this connection, however, remains vague and deserves
further investigation. As an intermediate step in deriving this class of
positive operators a considerable generalization of a classical inequality
due to Hardy, Littlewood and Polya on the rearrangement of sequences
is obtained. It is felt that the extension of this rearrangement inequality
is of intrinsic importance in itself and has applications in other areas of
system theory.

Section 3.8 is devoted to the problem of adjoining to a positive
operator a causal positive operator. It is shown that it is possible to
adjoin a causal positive operator with an arbitrary positive operator
provided the operator admits a suitable factorization. Whether a
particular operator satisfies this condition appears to have no general
answer, and the problem is one of considerable interest and importance.
Similar factorizations have received a great deal of attention in the past,
particularly in the classical prediction-theory literature. In this section
a general factorization theorem is presented which is felt to be quite
general and of intrinsic importance. The result, which is based on
contraction arguments, unfortunately does not offer a necessary
condition and is rather conservative in some particular cases.

Recall the definition of a positive operator: Let X be an inner product
space and let F be a mapping from Do (F) = X into X. Then F is said
to be (incrementally) positive on Do (F) if for all x € Do (F) (x,y €
Do (F)), Re {x,Fx) > 0(Re(x —y, Fx — Fy) > 0). It is said to
be (incrementally) strictly positive on Do (F) if for some € > 0, F — e/
is (incrementally) positive on Do (F).

Some elementary properties of positive operators are:

1. The (incrementally) positive operators form a cone; i.e., if F; and F,
are positive on Do (Fy) and Do (F,), respectively, then F; + F; is
positive on Do (F;) N Do (Fy), and if « is a nonnegative real
number, then «F; is positive on Do (Fy).

2. The (incrementally) positive operators are closed under inversion;
i.e., if F is positive on Do (F), then F~! is positive on Do (F7?).

3. The (incrementally) positive linear operators are closed under the
adjoint operation; i.e., if L is a linear operator from Do (L) into X
and if L* denotes the adjoint, then L is positive on Do (L) if and
only if L* is positive on Do (L*).
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4. If F is positive on its domain and L is linear then L*FL is positive
on its domain.

3.2 Positive Convolution Operators and Positive
Memoryless Operators

The space under consideration in this section is L (S) (denoted
simply by L, when no confusion can occur) with H a given Hilbert
space and S = (— c0,+ ). The case H = R is of particular interest
and will be the subject of a number of corollaries. As mentioned in
Chapter 1, the space L, is a Hilbert space with {x,y)z, & T2 (x(1),
y(2))y dt. Recall that the limit-in-the-mean transform of x, defined by
R(jw) A lim. f*3 x(t)ei2t dt, is then, for any x € L,, a well-defined,
H-valued function of w, w € R, which itself belongs to L (— c0,+ c0).
Moreover, the transform of X = x/27 and Parseval’s equality states
that (x,y)r, = 2m(X,¥),, for all x, y € L,.

Definitions: Let & denote the class of operators from L, into itself
defined as follows: associated with each element G € ¥ is a class of
operators G(jw) € £ (H,H), parametrized by o, » € R, with G(jw) €Ly,
and which maps the element x € L, into the element of L, with limit-
in-the-mean transform G(jw)X(jw). _

It is simple to verify that the operator G is indeed well defined; i.e.,
that it maps L, into itself. An important subclass of operators of this
type are the convolution operators, which are defined as follows: let
g(1), 1t € R, and g, k € I, be elements of Z(H,H) with (llg(\){,{lgl}) €
Ly X [, and let {t,} be a mapping from I into R. Let y(¢) = (Gx)(¢)
be formally defined by

+ + o0
MOES 2 gx(t—t)+ ] gt —n)x(7)dr
Lemma 3.1

The convolution operator G formally defined above maps L, into
itself. Moreover G € ¢ and the function G(jw) associated with G is
given by

“+w

+00
GGo) & 3 g+ [ gea.
k=—o0 —c0
This is a standard result from Fourier transform theory (see Ref. 2,
p. 90).2 Note that G is causal on L, if and only if g(¢) = 0 for almost
all t<0andf, >0forallkel

* Lemma 3.1 remains valid if g(t) € L, and {g:} & 1, both have limit-in-the-mean
transforms in L.
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THEOREM 3.1
Every element G €% defines a time-invariant bounded linear
operator on L,, |Gl = |G(jw)|1_,, and G is a positive operator on L,

if and only if for almost all w € R, G(jw) is (pointwise) positive on H.
Moreover, G* € ¢, and has the function G*( jw) associated with it.

Proof: The theorem is obvious with the possible exception of the
positivity condition and the time invariance. Positivity follows from
Parseval’s equality since

Re (x(0,6x(0) = = L +:Re £(w), G(ja) X(jeo)) g deo.

Time invariance is proved as follows: let 7 € R, x € L,, and (TX(@) &

P . N\
x(t + 7). Then GT,x = G(jw)X(jw)e’” which clearly equals 7,Gx.

COROLLARY 3.1.1
Let H = R and G(jw) = G(—jw). Then G is positive on L, if and
only if Re G(jw) > 0 for almost all w > 0.

Definition: Let % denote the class of operators* from L, into itself
defined as follows. Associated with each element K e .4 is a class of
operators K(t) € & (H,H), parametrized by ¢, t € R, with K(1) € L,
and which maps the element x € L, into the element of L, defined by
(Kx)(t) A K(£)x(t). From this definition there follows

THEOREM 3.2
Every element K € 2~ defines a bounded memoryless linear operator
on Ly, | K|l = IK@®)llL,,»and K is a positive operator on Ly if and only

if K(z) is (pointwise) positive on H for almost all z € R. Moreover,
K* e and has the function K*(¢) associated with it.

COROLLARY 3.2.1
If H = R, then every element K € £ is self-adjoint and X is positive
on L, if and only if K(¢) > 0 for almost all € R.

4 The classes & and ¢ are dual in the sense that both constitute pointwise multi-
plications; the former in the frequency domain and the latter in the time domain.
This duality permeates the recent work on stability from an input-output point of
view.
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Definition: Let & denote the class of operators from L, into itself
defined as follows. Associated with each element Fe & is a class of
operators F(-,t), parametrized by ¢, f € R, each mapping H into itself,
such that there exists a constant M < oo such that | F(x,2)]| < M | x|
for all x € H and t € R, and which maps the element x € L, into the
element of L, defined by (Fx)(t) & F(x(t),t). There follows

THEOREM 3.3

. Every element Fe.% defines a bounded memoryless operator on
L,, |F|| = M', with M" = inf M over all M such that for all x € H and
almost all € S, |F(x,0)| < M ||x||;ie., |F| = (1FC,0)Dz,, and F is
(incrementally) positive on L, if and only if F(-,t) is (incrementally)
positive on H for almost all ¢ & R. The operator F is Lipschitz con-
tinuous on L, if F(-,#) is Lipschitz continuous for almost all € S,
uniformly in ¢, and |Fll, = (|FC,0)lA)zL,-

3.3 Memoryless Time-Invariant Nonlinear Operators

An important particular class of operators in & are those for which
F(-,t) is constant for almost all ¢ € R. The operator F € % associated
with F(-,#) then becomes time invariant. Attention is now focused on
this case, with # = R. It turns out that a number of interesting
relations can be obtained. These results play in fact an important role
in the design of frequency converters where they are known under the
name of the Manley-Rowe equations and in the stability of nonlinear
feedback systems where they lead to the Popov criterion.

The operators under investigation are thus the time-invariant
operators in % with H = R and § = (— 0,4 00). Let this class be
denoted by & . Each element of & has thus associated with it a map
f () from the real line into itself, satisfying, for some constant M < oo

and all o € R, the inequality |f(o)| € M |o|, and F €% maps L, into
itself according to (Fx)(t) = f(x(¢)).

Definition: A function x from R into itself is said to be absolutely

continuous if for any integer N and any sequence {t;},k =1,2,..., N,
N1 N-1
> 1x(t) — x(t,)| —0  whenever >ty — byl — 0.
=1 k=1

A classic result in analysis states that a function is absolutely con-
tinuous if and only if x(¢) = x(a) + §r(¢)dr for some function
r(t) € Ly(a,b). The function x(¢) is then differentiable almost everywhere,
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and r(¢) = x(¢) for almost all . Let Si(a,b) be the subspace of L,(a,b)
formed by the functions on [g,b] that are absolutely continuous and
that belong, together with their derivatives, to L,(a,b). Let S; denote
Si(— 0,4+ ). The space S; is an inner product space with the inner
product as in L,. It is, however, not closed in the L,-topology.

Lemma 3.2
If x € §; then lim,, ., x(2) = 0.

Proof: Write T3 x(1)i(t) dt = §[x*(Ty) — x*(—Ty)]; it follows that
the limits exist, since the limit of the integral for T, or T, — 0 exists by
the Schwartz inequality. Since lim,. ., x(t) thus exist and since
x(t) € L,, the limits must indeed be zero. '

THEOREM 3.4

Assume that F € & and that the function f that defines F is Lipschitz
continuous on R. Then (x, d(Fx)/dt), = 0 for all x € Sk,

Proof: Let y(t) = Fx(t) and let K be a Lipschitz constant for f. Since f
is Lipschitz continuous, y(¢) is absolutely continuous whenever x(t) is.
It is simple to show that | y(z)| < K |X(¢)| whenever both exist (and thus
almost everywhere). The inner product in the theorem statement is thus
well defined since y € S}. Integration by parts yields

[Fs02 yo i = - s L xt ar

2(T")
= — lim f(o)do
T—oo o xl—~T)

=0
The last equality follows from Lemma 3.2.

Remark: If x € S%, then the limit-in-the-mean transform of X exists and
equals joX(jw). Thus Theorem 3.4 merely states that for all x € L, and
y=Fx
+ o0 - A
[ joxe=jar?io) do =0,
which is precisely the Manley-Rowe power-frequency formula® for
elements of L,.

s The Manley-Rowe equation thus merely states that the vectors X and Fx are
orthogonal in L,.
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Combining Theorems 3.3 and 3.4 yields

THEOREM 3.5 -

Let Fe %, and assume that the function f which determines F is
Lipschitz continuous on R. Let « € Rand G € ¢ be defined by G(jw) =
1/(1 + ajw). Then FG is a nonnegative operator on L, if and only if
for all € R, of (o) 2 0.

Proof: The theorem is a particular case of Theorem 3.3 if « = 0.
Let therefore o 3 0. Since the operator G corresponds to a convolu-
tion, Gx is absolutely continuous for all x € L,. Moreover, since
Jjol( + ajw) € L, for « % 0, Gx € S for all x € L,. Thus

(x,FGx) = <(1 + ot:;l—t) Gx,FGx>

= (Gx,FGx) + o dit Gx,FGx> > oc<§; Gx,FGx>.

This last inner product equals zero by Theorem 3.4. The converse part
of the theorem is an immediate consequence of Theorems 3.3 and 3.4.

3.4 Periodic Gain

The result in this section concerns a positive operator formed by the
interconnection of a periodically time-varying gain and a linear time-
invariant convolution operator. The proof is very simple, and this
positive operator leads to a rather elegant frequency-domain stability
criterion that will be discussed in Chapter 6.

Definitions: Let T be a positive real number, and let £, denote the
subclass of #~ determined by functions k() which satisfy k(t + T) =
k(t) for almost all 2. Let ¥, denote the subclass of elements of ¥
determined by functions G(jw) which satisfy G(j(w + 27T)) = G(jw)
for almost all w.

It is again assumed that H = R. Each element of 2/, thus has
associated with it a real-valued function k(¢) defined on (— <o, o0),
with k(¢ + T) = k() for almést all ¢ € R, k(t) € L,,, and which maps
L, into itself according to (Kx)(¢) = k(¢)x(¢). An operator K€ A
thus corresponds to a periodic gain with period T. Each element of %,
has associated with it a complex-valued function G(jw) = G(—jw)
defined for w € R, with G(j(w + 27T")) = G(jow) for almost all w,
G(jw) € L,,, and which maps the element x € L, into the element with
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limit-in-the-mean transform G(jw)X’ (jw). An important subclass of
operators in %, are those defined by the convolution with kernel
> ner §n 0(t — nT), where {g,}€l;, and ¢ denotes the Dirac delta
function.

LemMMA 3.3 . : .
Let Ke X'y and Ge€ Fp. Then K and G commute on L,, ie.,
KGx = GKx for all x € L,.

Proof:® Since both K and G are bounded linear operators from L, int_o
itself, KG and GK are. By continuity of bounded linear operators, 1t
thus suffices to prove the lemma for a dense set in L,. Define the
sequence {g,}, n €I, by

2n/T
g AT f G(jew) T do.
27 Jo

It follows from the theory of Fourier series that {g,} € I, and that

+00 . . +N T
G(jw) =lim. Y g7 =lim 3 g,e"7T.
A=—00 N-ow n=—N

Let v be any element of L, N L;. Then

N
wy() = > gt —nT)eL, N L,.
n=—N .
Let ¥V and Wy denote the limit-in-the-mean transforms of v and wy

respectively. Then

N
W) = 3 gt P(jo)

N=—

Thus
N
Wi — Gliw) Pl z, = “(G(jw) _ zNg,,efan) Pjeo)

n=—

Le

Since V(jw) € L,, and [[V(jo)lr < llvlz,, it follows from Holder’s
ihequality that
N
| Wy(jow) — G(jw)V (jo)lz, < lvlz, 1G(jw) — _E_Ngne’"wTHL,-

¢ The conclusion of Lemma 3.3 is immediate if one is satisfied with the following
formal argument: since Gx(t) = Zj,’_;'_"_m gax(t — nT)and k(t) = k(t — nT), then

+0 +0
KGx(t) = k(2) D, gnx(t —nT)= > guk(t — nT)x(t — nT) = GKx(t).

= Nn=—w0
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Since 3y gre’*T approaches G(jw) in the L, sense, this shows
that w, approaches in the L, sense the function whose limit-in-the-mean
transform equals G(jo) P(jw). Hence

+oo |

w(t) = Lim. > g,o(t — nT)
exists, belongs to L,, and has G(jw) 174 jw) as its limit-in-the-mean
transform. This holds for all v € L, N L,. The lemma will now be
proved for all xe L, N L,. Since then Kxe L, N L, the above
analysis applies to both x and Kx. However, k(t)g,x(t — nT) =
8xk(t — nT)x(t — nT) for all n € I, and thus

N N
k(1) 2 gux(t —nT) = 3 gk(t — nT)x(t — nT),
n=—N n=-N

which, after taking the limit-in-the-mean of both sides and observing
that k € L, yields KGx = GKx for all x e L, N L,. Since L, N L, is
dense in L,, the lemma follows.

Definitions: An operator F from L, into itself is said to possess a
square root, denoted by.F'/2, if there exists an operator, F'/2, from L,
into itself such that F = F1/2F1/2

LeMMmA 3.4

Let K€ X" be determined by k(f), and assume that for almost all
t € R, k(t) > 0. Then K*/2 exists. Moreover, K12e A" and K22 € A 4
if KeA .

Proof: The clement of J#  determined by k(z)Y/2 possesses all the
required properties.

THEOREM 3.6

Let K€ 'y and let G € 5. Then KG and GK are (strictly) positive
operators on L, if for almost all t€e R and o >0, k(¢) > 0 and
Re G(jw) > 0 (for some € > 0, k(¢) > e and Re G( jw) 2 €). Moreover,
the elements of &, which satisfy the above inequality are the only
elements of ¥ which yield (strictly) positive operators KG and GK
for all (strictly) positive elements K € £ .

Proof: The first part of the theorem follows from Lemma 3.3 if it is
proved for KG. But by Lemmas 3.3 and 3.4

(x,KGx) = (x,KV2GKY2x).
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Since K2 € A, it is self-adjoint, and thus
(x,KGx) = (K¥2x,GKY2x),

which is positive by Theorem 3.1. To prove the strict positivity condi-
tion, write KG as KG = (K — €I)G + <G and apply the previous part
of this theorem and Theorem 3.1. For the converse part of the theorem,
assume first that Re G(jw) < 0 for all w in a set of positive measure.
The result then follows by contradiction if one chooses K = 1. Assume
next that Re G(jw) > 0 for almost all w, but that

G(j(® + 2rT) — G(joo) % 0

for all w in a set of positive measure, say Q. This part ‘of the theorem
is then proved by choosing particular functions for k(z) and x(¢)
which lead to (x,KGx) < 0. For simplicity assume that

Re (G(jo) — G(j(w + 27T71) <0

on the set Q. (A similar argument holds for the other cases). Then there
exists an € > 0 such that Re (G(jw) — G(j(w + 2#T71))) < —e¢ for all
o e Q' with Q' = Q a set of positive measure. Let Q] be a subset of
[27T-1, (n + 1)22T1] N Q' which is of positive measure (such a
subset exists for some n, since Q' is of positive measure). Let Q; +
k27T-! denote the set of points x € R such that x — k2#T e Q.
Choose X(jw) =1 for w Q) + k2#T-%, kel, and |k] < N, and
X( jw) = 0 otherwise, and choose k(t) =1 — cos 27T 'z. Clearly,
k(1) > 0 and the K corresponding to k(z) belongs to K. Let y = KGx.
Then

P(jo) = G(jw)X(jw) — 3G(j(@ + 2aTNX(j(w + 20 T)
— 36(j(0 — 2r TR ((w — 2nT).
A simple calculation shows that the inner product (x,KGx) becomes
M + (N|7) Re (G(jw) — G(j(w + 27T )Hu(Q,),

with M a number independent of N, and x(£2)) the Lebesgue measure
of Q! Thus (x,KGx) can be made negative by choosing N sufficiently
large.”

7 Similar positive operators involving a time-varying gain have appeared in the
literature. In particular the positive operator obtained by Gruber and Willems
(Ref. 3), and in its full generality by Freedman and Zames (Ref. 4), appears to be
especially interesting. By restricting the derivative of k(¢), they obtain a class of
operators which can then be composed with X without destroying positivity.

POSITIVE OPERATORS WITH MONOTONE NONLINEARITIES 57

3.5 Positive Operators with Monotone or
Odd-Monotone Nonlinearities

In this section an answer is given to the following question: What
is the most general linear operator that when composed with a monotone
nondecreasing (or an odd-monotone nondecreasing) nonlinearity
yields a positive operator? The answer to this question is the solution
to a problem which has been studied by many previous researchers.’

The preliminary result obtained in this section constitutes a con-
siderable extension of a classical rearrangement inequality. This
inequality then forms the basis from which the positive operators are
derived. It is felt that these rearrangement inequalities are of intrinsic
importance and that they will be useful in other areas of system theory.
For various technical reasons, the discussion is mainly concerned with
sequences. With some modifications, similar results can be obtained
for the continuous case. Hence, these will merely be stated without
proof.

3.5.1 Generalizations of a Classical Rearrangement Inequality

Chapter 10 of Hardy, Littlewood, and Polya’s classic book on
inequalities (Ref. 15, p. 277) is devoted to questions relating the inner
products of real-valued similarly-ordered sequences to the inner
products of rearranged sequences. The simplest result given there
states that if x, >xy>--->x, and y, >y, > -+ >y, and if
Ya(1)> Ya(@)s - - + » Va(m) 18 any rearrangement of the y-sequence then

n n
Z XYy 2 Z XV (n)
x=1 E=1

The informal explanation of this fact given there is that, given a lever
arm with hooks at distances x;, X,, . . . , x, from a pivot and weights
Y15 Yas - - - » Y to hang on the hooks, the largest moment is obtained by
hanging the largest weight on the farthest hook, the next largest weight
on the next most distant hook, etc.

This result has an interpretation in terms of positive operators.
Suppose that fis a function from R into itself, and denote by x and Fx

8 In particular it is the problem studied by Page (Ref. 5), Pantell (Ref. 6), and
Black (Ref. 7) in connection with frequency-power formulas and it plays a central
role in the determination of stability criteria for feedback systems with a monotone
or an odd-monotone nonlinearity in the feedback loop. In the latter context it has
been treated by Brockett and Willems (Ref. 8), Narendra and Neumann (Ref. 9),
Zames (Ref. 10), O’Shea (Refs. 11, 12), O’Shea and Younis (Ref. 13), Zames and
Falb (Ref. 14), and others.
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the n-vectors whose components are respectively x;, x,, ..., X, and
f(x), f(xa), - .., f(x,). Then in the language of positive operators the
Hardy, Littlewood, and Polya rearrangement theorem states that the
operator N on R" defined by Nx & (I — P)Fx is positive if I is
the identity matrix, P is any permutation matrix, and f is monotone
nondecreasing,.

It will be shown that this result together with a result of Birkhoff on
the decomposition of doubly stochastic matrices permits the derivation
of a number of interesting positivity conditions for a class of operators.®
The results thus represent a test for checking the positivity of a class of
nonquadratic forms parallel to the Sylvester test for checking the
positive definiteness of a symmetric matrix. '

Definitions: Two sequences of real numbers {x;, x5, ...Xx,} and
{¥1, Va5 - - . Y} are said to be similarly ordered if the inequality x, < x;
implies that y, < y,. Thus two sequences are similarly ordered if and
only if they can be rearranged in such a way that the resulting sequences
are both monotone nondecreasing; i.e., there exists a permutation (k)
of the first n integers (w(k) takes on each of the values 1, 2, ..., n just
once as k varies through the values 1, 2, ..., n) such that both the
sequences {X,q), Xz - - - » X2} 304 {Y2(1), Yri2ys + - - » Ya(m)} aTEMONO-
tone nondecreasing. Two sequences are said to be unbiased if x,y, > 0
for 1 < k < n. Clearly two sequences are similarly ordered and un-
biased if and only if the augmented sequences {x,, Xa, . . . , X, Xj12}
and {y1, ¥as - - - » Vs Ynoa)t With X,y = y,.4 = 0 are similarly ordered.
Two sequences are said to be similarly ordered and symmetric if they are
unbiased and if the sequences {|x], [xa|, . . ., |x,]} and {{y|, [yel5 . . .,
|¥,|} are similarly ordered.

As an example, let /(o) be a mapping from the real line into itself,
and consider the sequences {xi, Xy, ...X,} and {f(xy),f(xa),...,
f(x,)}. These two sequences will be similarly ordered for all sequences
{x1, X2, . .., x,} if and only if f (0) is a monotone nondecreasing function
of o, i.e., if for all o} and a,, (67 — 32)(f(0;) — f(05)) > 0. They will be
unbiased if and only if f(o) is a first and third quadrant function; i.e.,
if for all o, of (6) > 0. They will be similarly ordered and symmetric
if and only if f(o) is an odd monotone nondecreasing function of o,
i.e., if (o) is monotone nondecreasing and f (o) = —f(—o0) for all o.

® The Hardy, Littlewood, and Polya rearrangement inequality leads rather easily
to a proof of the fact that the cross correlation of the input and the output to a
monotone nondecreasing nonlinearity attains its maximum value at the origin.
This approach has in fact been used by Prosser (Ref. 16) and Black (Ref. 7).
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Definitions: A real (n X n) matrix M = (my,) is said to be doubly
hyperdominant®® with zero excess if my, < Ofork # I, andif D2 my, =
2 ,my, =0 for all k, I It is said to be doubly hyperdominant if
m, < 0fork sl andif 32 my, > 0and 37, my, > 0forallk, I
An(n x n)matrix M is said to be doubly dominant if m,; > zk_l e Ml
and my, > D0, =% |Myy|. Tt is clear that all of the classes of matrices
introduced above are subclasses of the class of all matrices whose
symmetric part is nonnegative definite and that every doubly hyper-
dominant matrix is doubly dominant.

Two other classes of matrices that will be used in the sequel and have
received ample attention in the past are now defined.

A (n x n) matrix M is said to be doubly stochastic if it is nonnegative
(i.e., my; > 0 for all k, /) and if each row and column sums to one. A
(n X n) matrix is said to be a permutation matrix if every row and
column contains n — 1 zero elements and an element which equals 1.
The relation between the class of doubly stochastic matrices and
permutation matrices is given in the following lemma due to Birkhoff.

LemMa 3.5 :

The set of all doubly stochastic matrices forms a convex polyhedron
with the permutation matrices as vertices; i.e., if M is a doubly
stochastic matrix then M = 2,_1 o, P; with «, > 0, 3N, a;=1, and
P, a permutation matrix. This decomposition need not be unique.

A proof of Lemma 3.5 can be found in most books on matrix theory
(see, e.g., Ref. 20, p. 97).

Theorem 3.7 states the main result of this section. As mentioned
before, it constitutes a considerable generalization of a classical
rearrangement inequality due to Hardy, Littlewood, and Polya. This
inequality is stated in Lemma 3.6.

LeEMMA 3.6

Let {xy, x3, ..., x,} and {y;, ¥, ..., y,} be two similarly ordered
sequences, and let w(k) be a permutation of the first # integers. Then

2R XYk 2 251 XeYati)-

10 The term “dominant” is standard. “Hyperdominance” is prevalent, at least in
the electrical network synthesis literature. The term “doubly” is used by analogy
with “doubly stochastic” where a property of a matrix also holds for its transpose.
Beyond this the nomenclature originates with the author. Symmetric hyperdominant
matrices are sometimes called Stieltjes Matrices. For an interesting application of
these matrices to the resistive N-part problem, see Reference 17. For some general
theorems on matrices of the type under consideration, see References 18, 19.
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A simple proof of Lemma 3.6 can be found in Hardy, Littlewood,
and Polya’s book (Ref. 15, p. 277). A convincing plausibility argument
is given in the introduction to this section.

THEOREM 3.7

A necessary and sufficient condition for the bilinear form
Z,’;,H myXxxy, to be nonnegative for all similarly ordered sequences
{x1, X9, . .. x,} and {y, ¥, ... y,} is that the matrix M = (my,) be
doubly hyperdominant with zero excess.

Proof of sufficiency: Let M be a doubly hyperdominant matrix with
zero excess and let r be any positive number such that ¥ > m,, for all
k, I Clearly M = r{I — (1/r)(r] — M)]. Since however (1/r)(rl — M)
is a doubly stochastic matrix, it can, by Lemma 3.5, be decomposed as
S, P with o; > 0, 3¥,«, = 1, and the P;’s permutation matrices.
Thus M can be written as M = E;L B:(I — P)) with 8, > 0. This
decomposition of doubly hyperdominant matrices with zero excess
shows that it is enough to prove the sufficiency part of Theorem 3.7 for
the matrices 7 — P,. This, however, is precisely what is stated in
Lemma 3.6.

Proof of necessity: The matrix M may fail to be doubly hyperdominant
with zero excess because my; > 0 for some k 5 [ in which case the
sequences with n — 1 zero elements except +1 and —1 in respectively
the kth and /th places lead to Z,’;FI My Xy, = —my, < 0. Assume next
that the matrix M fails to be doubly hyperdominant with zero excess
because D7, my, # 0for some/ (a similar argument holdsif Y7, m,, %
0 for some k), and consider the similarly ordered sequences {1, ..., 1,
1+e61, ,1} and {0,...,0,€1,0,...,0} with € 0, and the
_ elements 1 + € and €71 in the lth place ThlS leads to Ek o1 M Xy, =

€1 >n  my, + my,. By taking e sufficiently small and of an appropriate

sign, D%, myx,y, can then indeed be made negative.

The following two theorems are generalizations of Theorem 3.7 to
similarly ordered unbiased and to similarly ordered symmetric sequences.

THEOREM 3.8
A necessary and sufficient condition for the bilinear form
217:',1=1 my Xy, to be nonnegative for all similarly ordered unbiased

sequences {xj, Xa, ..., X,} and {yy, ya,...,¥,} is that the matrix

M = (my,) be doubly hyperdominant.
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Proof of sufficiency: Let M be a doubly hyperdominant matrix and
define my iy = — 20 My, My = —22 my, for k, I <n, and
Myl mis = D=1 My, Then takmg Xpi1 = Ynsa = 0 it follows from
Theorem 3.7 that D% ;3 myxy; = D8 1m1 Myxy, > 0 since the aug-
mented (n + 1 X # 4+ 1) matrix M, = (my,), k,1=1,2,...,n+ lis
doubly hyperdominant with zero excess and since the sequences
{210, Xa5 0 00 5 X, x-n+1} and {)’1, Yas oo s Vo y'n+1} with Xpp1 = Yna =0
are similarly ordered.

Proof of necessity: The same sequences as in Theorem 3.7 can be used
if the matrix M fails to be doubly hyperdominant because m,,;, > 0 for
some k 7 /. Assume next that the matrix M fails to be doubly hyper-
dominant because > my,; < 0 for some / (a similar argument holds
if 37 my <0 for some k), and consider the sequences used in
Theorem 3.7 with the additional restriction that e > 0. Notice that
these sequences are then similarly ordered and unbiased. It follows that
by taking e sufficiently small 32, myux,y, = €1 E,’c;l my, + my; can
thus be made negative.

THEOREM 3.9

A wnecessary and sufficient condition for the bilinear form
27 -1 MX), to be nonnegative for all similarly ordered symmetric
sequences {x, Xy, ..., X,} and {y;, ¥a, ..., y,} is that the matrix
M = (my,) be doubly dominant.

Proof of sufficiency: Let M be a doubly dominant matrix. Clearly,

Z My Xy Y1 2 Z my 14 1y, — Z |y x| 1yl
=1 k,1=1 Foyl=1
k=i )

The right-hand side of the this inequality is nonnegative by Theorem
3.8, since the matrix M* = (my;) with m}, = m,;, when k =/ and
my, = —|m,,;| when k 5[ is doubly hyperdominant and since the
sequences {|x,], [xa}, ..., x|} and {{yl,[yal, ..., |y,l} are similarly
ordered and unbiased. This implies that 372 ,_; m,,x,y, > 0.

Proof of necessity: Assume that the matrix M fails to be doubly
dominant because m;; — qu w1 1Ml < O for some / (an analogous
argument holds if #7, — 21_1 g 1Myl < O for some k), and consider
the sequences {—sgn my, ..., —sgnmy 434, L+, —sgnmyy g, ...,
—sgn m,,;} and {0,...,0, e—l, 0,...,0} with sgn a = of[«| if & £ 0,
sgn 0 = 0, € > 0, and the elements 1 + ¢ and ¢ in the /th places.
These sequences are similarly ordered and symmetric and lead to
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Z;c‘.l=1 My Xy, = € Hmy — EZ=1,;¢¢; |my|) + my;, which, by taking e
sufficiently small, yields 27, myx,y; < 0.

Let f be a mapping from R into R and denote by F the mapping from
R, into itself which takes the element col (x;, x5, ...,x,) into
col (f(xy), f(x2), ..., f(xz)). Then in terms of posmve operators,
Theorems 3,7-3.9 become

THEOREM 3.10 :
Let M be an (n X n) matrix and let f be one of the following:

1. A monotone nondecreasing function.
2. A monotone nondecreasing first and third quadrant function,
3. An odd-monotone nondecreasing function.

Then MF is a positive operator on R” for all mappings f satisfying one
of the conditions 1-3 if and only if M is, respectively,

1. A doubly hyperdominant matrix with zero excess.
2. A doubly hyperdominant matrix.
3. A doubly dominant matrix.

3.5.2 Extension to l-summable Sequences

In this section /, is taken over the field of real numbers unless
otherwise mentioned. ) .

Definitions: Let £ (l,,l;) denote all bounded linear transformations
from I, into itself. Let R € £ (,,1;). Then R determines an array of real
numbers {r;}, k, / € I, such that y = Rx is defined by y, = 212, riiX;
for x = {x,} and y = {y,}, k € I (Reference 21, p. 50). This infinite
sum exists for all x €/, and the resulting sequence belongs to /. A
standard result in the theory of bounded linear operators in Hilbert
space (Ref. 21, p. 52) states that the array {ry;}, k, / € I corresponding to
the adjoint R*, is given by ry, = ry for all /, k € I. It is not known what
arrays determine elements of £ (J,,5;). The following lemma, however,
covers a wide class.

Lemma 3.7

Let the array {r;}, k, / € I, be such that the sequences {r;;} belong to
1, for fixed k and /, uniformly in k and /; i.e., there exists an M < <o such
that D12 |ral < M and D72 o 11l < M. Then {r;;} determines an
element R of Z(l,,/;) and |R| < M.
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Proof: The Schwartz inequality and Fubini’s Theorem for sequences
(Ref. 27, p. 245) yield the following inequalities:

(£, 2 )1/2\ [;i(gwlrmnmﬂ "
[k_:,< gwlrml) ( _gwlrkll x| )]
M ‘(lgwlxm) ,

which proves the lemma.

In what follows an important role will be played by some particular
elements of £ (/;,1;) and some particular sequences which will now be
introduced.

Definitions: The definitions of similarly ordered, similarly ordered
unbiased, and similarly ordered symmetric infinite sequences are
completely analogous to those for finite sequences and will not be
repeated here. It is easy to show that two sequences in J, are similarly
ordered if and only if they are similarly ordered and unbiased. Let M
be an element of £(l,/,), and let {m;,}, k, I € I be the associated array.
M is said to be doubly hyperdominant if my;, <0 for k 5/ and if
S o myand 242 my; exist and are nonnegative for all /and k. M
is said to be doubly dominant if

my, = Z (M and My 2 E [y, | .
k=—o l=—w
k#1 1%

It is clear from Lemma 3.7 that if an array or real numbers {m,,}, k,
/e, satisfies the doubly dominance condition and if the sequence -
{my} €l,, then {my;} determines an element M of (/) with
IM| < 2 supge; my,. Thus it is a relatively simple matter to check
whether or not an element of #(L,,/,) is doubly hyperdominant or
doubly dominant.

The following extensions of Theorems 3.8 and 3.9 hold:

THEOREM 3.11

Let M be an element of & (lz,lz) Then a necessary and sufficient
condition for the inner product (x,My), to be nonnegative for all
similarly ordered unbiased /;-sequences x and y (similarly ordered
symmetric /,-sequences x and y) is that M be doubly hyperdominant
(doubly dominant).
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Proof: 1t is clear that all finite subsequences of x and y are similarly
ordered and unbiased or similarly ordered and symmetric. Hence, by
Theorems 3.8 and 3.9 all finite truncations of the infinite sum in the
inner product (x,My) yield a nonnegative number. Thus the limit,
sihce it exists, is also nonnegative.

Of particular interest are the arrays {ry}, k, /€1, for which the
entries depend on the difference of the indices £ and / only. These
arrays are said to be of the Toeplitz type and have been intensively
studied in classical analysis (Ref. 23). It follows from Lemma 3.7 that
if the array {r,, =r,_}, k, I €1, is of the Toeplitz type then it de-
termines an element of £ (l,,5,) if {r,}, k¥ € I, belongs to /;. (In fact, the
elements of #(/,,l;) for which the associated array is of the Toeplitz
type stand in one-to-one correspondence to all /;-summable sequences
whose limit-in-the-mean z-transform belongs to L, for |z| = 1.) An
element of £ (I,,1,) is said to be of the Toeplitz type if the associated
array is of the Toeplitz type. An element R of £ (/,,/,) which is of the
Toeplitz type thus determines a sequence {r.}, k € I, with {r,} €/, and
whose limit-in-the-mean z-transform belongs to L, for |z| = 1. The
importance of these linear transformations stems from the fact that they
define convolution operators with a time-invariant kernel and are
therefore associated with time-invariant systems.1!

Definitions: A sequence of real numbers {4}, k€1, is said to be
hyperdominant if {a;} €1, if @, < Oforallk 5 0, and if D% , &, > 0.
It is said to be dominant if {&,} €1}, and if 20y > D{2 , |ayl.

THEOREM 3.12

Let M be an element of #(/,,/,) which is of the Toeplitz type. Then a
necessary and sufficient condition for the inner product (x,My) to be
nonnegative for all similarly ordered unbiased /-sequences x and y
(similarly ordered symmetric /,-sequences x and y) is that the sequence
{my}, k € I, which is determined by M be hyperdominant (dominant).

Theorem 3.12 is a special case of Theorem 3.11. Theorems 3.11 and
3.12 have an obvious interpretation in terms of positive operators.
Moreover, Theorem 3.12 yields some simple properties of the input

11 A definition of time invariance for operators defined on the continuous real line
has been given in Chapter 2. The extension of the definition to operators defined with
the integers as the time-interval of definition is obvious. It is then a simple matter to
verify that an element R € £ (l,,/,) is of the Toeplitz type if and only if R is time
invariant.
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and the output spectra to (odd) monotone nondecreasing nonlinearities.
This is stated explicitly in Theorem 3.13.

Definitions: Let &/ denote the class of operators from /, into itself,
each element of which has associated with it a function A(z), with
A(@) € L, for |z| = 1, A(Z) = A(z), and which maps the element x of
I, as follows: let X denote the limit-in-the-mean z-transform of x. The
image of x is the sequence y whose limit-in-the-mean z-transform
equals A(2)X(2).

Let % denote the class of operators from /, into itself, each element of
which has associated with it a function f (o) from R into itself, which
satisfies the inequality | f(¢)| € M |o] for some M < o and all € R
and which maps the sequence x = {x,}, k €, of /, into the sequence
¥ = {y:} with yz 2 f(xy).

It is a simple matter to verify that these operators are indeed well
defined, i.e., that they map /, into itself. The class 7 stands in one-to-
one correspondence with all /-sequences whose limit-in-the-mean
z-transform belongs to L, for |z] = 1. Moreover if {@} €/, and
A(z) e L, for |z} = 1 are such a sequence and its limit-in-the-mean
z-transform, then the element of ./ which has the function A(z)
associated with it maps /, into itself according to the convolution

— Y+
Y = 2;=—oo 1 Xy

THEOREM 3.13
Let Aes/ and Fe % . Then AF is a positive operator on /; if the
following statements are true:

1. The f corresponding to F is a (odd) monotone nondecreasing first
and third quadrant function.
2. The inverse z-transform of 4(z) is (dominant) hyperdominant.

Moreover, the elements of &/ satisfying statement 2 are the most
general elements of &/ which yield a nonnegative operator AF on /,,
for any Fe & satisfying statement 1. Finally AF is a strictly positive
operator on /, if 4 — el and F — el satisfy statements 1 and 2 for
some € > 0.

The proof of Theorem 3.13 follows from Theorem 3.12. Theorem
3.13 states that if X(z) and Y(z) are the limit-in-the-mean z-transforms
of the input and the output of a (odd) monotone nondecreasing
nonlinearity then

SBI A X(2)¥Z) dz >0
z]=1
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for any A(z) which is the z-transform of a (dominant) hyperdominant

sequence.

3.6 Frequency-Power Relations for Nonlinear Resistors
In this section a class of positive operators formed by the composition

of a linear time-invariant convolution operator and a (odd) monotone"

nondecreasing nonlinearity will be derived. The analysis is done for
operators on L,, but the results are also stated for almost periodic
functions — thus placing the positive operators obtained in this section
in the context of the classical frequency-power relations for nonlinear
resistors.

Definitions: Let .4 denote the class of operators from L, into itself

each element of which belongs to the class & and for which the asso-
ciated function f is monotone nondecreasing; i.e., (¢, — a9)(f(gy) —
f(02)) > 0 for all ¢y, 0, € R. Let & denote the class of operators from
L, into itself each element of which belongs to 4 and for which the
associated function fis in addition an odd function;i.e.,f(c) = —f(—0)
for all o € R.

Let x,, x; € Ly. Then x,(¢ + 7) € Ly for all 7 € R, and ||x,(t + 7)| =
lxe(t)]l. The crosscorrelation function of x; and x, is defined as the
function R, ; (7) = (x1(¢), x3(f + 7)). Note that the Schwartz inequality
yields |R, .. (7| < [lx1]l [[x2ll. Moreover, since the limit-in-the-mean
transforms of x(¢) and x(¢ + 7) are given by X(jw) and X(jw)e
respectively, it follows from Parseval’s relation that

1 +o . . or
Re®) = 2= f_ 2, (—jw) £ijw)e™ do.

The above crosscorrelation-function inequality states in particular
that

Raye, (] < Ray, (0) = [lxa]®.
The theorem which follows is a generalization of this well-known
property of autocorrelation functions. It states that the crosscorrelation

function of x and y attains its maximum at the origin provided x and y
are related through a monotone nondecreasing nonlinearity.12

1% This property follows rather easily from the Hardy, Littlewood, and Polya
rearrangement inequality. This was pointed out by Prosser (Ref. 16) and Black
(Ref. 7). The inequality Ru(0) > #(R.y(f) + Rey(—1))is easy to obtain and holds for
any x and y which are related through an incrementally positive time-invariant
operator. This inequality in turn implies incremental positivity and time invariance.
It is not clear, except in the scalar case, precisely what conditions on F are necessary
and sufficient to insure that Rzy(0) 2 Ray(£)(Rxy(0) 2> | Ray(2)]) for any x and y = Fx,
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THEOREM 3.14 :
Let Fe#, xe L, and let y = Fx. Then R,(0) > R, (¢) for all
t€ R. If F belongs to &, then R,,(0) > [R,,(¢2)| for all e R.

Proof: Let F(o) = [%f(x)dx. Then F(o) is a convex function of &
(since the derivative of F(0) exists and is monotone nondecreasing).
The convex function inequality (Ref. 24) yields that (¢, — o) f(0y) >
F(oy) — F(oy) for all oy, 0,€R. (This inequality can simply be
obtained by integrating f(¢) — f(o;) from ¢, to o,) Taking o; =
x(t + 7) and o, = x(?) it follows that

(x(2) — x(z + Dy(t) > Fx(?)) — Fx(t + 7)),

which after integration yields

+ oo +co
Roy(0) — Ronf(r) > f_ F(x(D) dt — f~ F(x(t + ) dt = 0.

The integrals on the right-hand side exist since by assumption F € .#
and thus |f(0)| < K |o| for some X and all o € R, which implies that
|F(0)| < $K |o|* for all o € R. Hence R,,(0) > R, (¢)forall Fe .# and
t € R. If fis in addition odd, then the convex function inequality can
be rewritten as [0y — (—o0y)]f(0y) > F(o;) — F(—o0,), which, since
Jis odd, yields that (o; + 05)f (o) > F(0,) — F(oy). Exactly the same
argument as above then leads to R,,(0) + R, () > 0 for all teR.
Thus, R, (0) > [R,,(t)| forall Fe & and t e R.

Remark: It can be shown (Ref. 25) that Theorem 3.14 is also sufficient

in the sense that if y = Fx for some F&.% and if R, (0) > R, ()
(Ry(0) > R, (1)), for all x € L, and ¢ € R, then F € # ().

THEOREM 3.15
Let Fe . #(&) and let G € ¢ be determined by the function G(jw)
given by the Fourier-Stieltjes integral

G(jw) =1 — f_ oo ay(n)

where V() is any monotone nondecreasing function (any function of
bounded variation) of total variation less than or equal to unity. Then
GF is a nonnegative operator on L,.

Proof: Assume first that F € .#. The theorem follows from the previous
theorem if it is noted that R, (0) > 0 and that the operator G is
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defined by the convolution

Y0 = 600 = 50 — [ 50 = 1 aveo.
Indeed, let y = Fx. Thus -

(*,Gp) = CPRy(0) + J72 [Ryy(0) — Ry ()] dV(),
where c? = 1 — the total variation of V. Note that the above integrals
exist, since R,, is bounded and since ¥ is of bounded total variation.

Thus (x,Gy) = (x,GFx) > 0 by Theorem 3.14. The odd-monotone
case is proved in a similar way.

Remark: GF will be a positive operator on L, if F — el € #(%) for
some € > 0 and if the total variation of ¥ is strictly less than unity.

THEOREM 3.16

Let F and G satisfy the conditions of Theorem 3.15 and assume that
the function f which determines F satisfies a Lipschitz condition on R.
Then (G + a d[dt)F is a nonnegative operator on S} for all « € R.

The proof of Theorem 3.16 follows from Theorem 3.4 and 3.15.
Theorem 3.16 states that if X and ¥ are the limit-in-the-mean trans-
forms of x and y = Fx with x and F as in Theorem 3.16, then

+ o0 R N
| Mo (=g 2w do > 0
for all functions M,(jw) given by the Fourier-Stieltjes integral
+-o0
Mi(jo) =1+ ajo — e v,

where « € R and V() satisfies the conditions of Theorem 3.15.

There is one possible refinement of this result that has, however, no .

immediate interpretation in terms of positive operators unless additional
smoothness assumptions are made on x. Consider the functions of the
form?!3

‘oo { __ plor __
Mg(jél)) =f 1 e = Jjorg(T) dV(T),

* Functions of this type have been studied in probability analysis in connection
with characteristic functions of spatially homogeneous diffusion processes and in-
finitely divisible distributions (see e.g. Ref. 36, p. 654 and Ref. 26, p. 541). The reason
these functions also appear in this context is roughly the following: the doubly
hyperdominant matrices with zero excess are the logarithms of doubly stochastic
matrices. Thus by considering Markov processes defined on (— 0, c0) rather than
finite Markov chains one naturaily obtains the continuous versions of the doubly
hyperdominant matrices. The transfer functions of the convolution operators
obtained here are thus the characteristic functions of the probability density functions
of these diffusion processes.
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with V,(7) a monotone nondecreasing function of = (any function of
7 which is a bounded variation over compact sets) such that

on V() and f_w (%2(—1)

x 7“2 -~ T

exist for x > 0, and g() is any bounded reai-valued function of r
which is continuous at the origin and with g(0) = 1 (it can be shown
that under these conditions M,(jw) is well defined). It is then possible
to show — using an argument which is completely analogous to the one
used above — that the integral

+o0

. M(jo) X(—jw) (jeo) de
exists and is nonnegative for any M(jw) = M,(jw) + M,(jw) with
M,(jw) and My(jw) of the form given above.

The following simple functions of w belong to this class (for the

monotone case) and are of particular interest (Ref. 26, p. 541):

1. The function
M(jw) =1 — y exp (—|o|),

where y and 7 are real numbers satisfying 0 < y < land0 < 7 < 2.
2. The function

M(jo) =1 — e(w),

where e(w) is any real-valued, nonnegative even function of  which
is convex for @ > 0 and with ¢(0) < 1.
3. The functions

M(jw) = [wl’[l + jé tan %:| for w} 0,

M(—jw) = M(jw) for  <0.
4, The function
M(jw) = |w|[1 + jéIn ]_CQ_I:I for )

We

\Y
L

M(—jow) = M(jw)  for w < 0.

where .7, 0, and w, are real numbers satisfying 0 < 7 < 2, 7 < 1,
[0] € 1, and wy > 0.
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N

In the remainder of this section these results are tied in with the
frequency-power formulas. Frequency-power formulas are relations
between the power inputs and the power outputs of a nonlinear device
at various frequencies of the almost periodic input. The discussion will
be mainly concerned with nonlinear resistors. Frequency-power
relations of the type given here have found application in the design of
frequency converters and express fundamental limitations of such
devices.* The proofs of the relations which follow will not be given
since they are completely analogous to the parallel relations obtained
above for L,-functions.

Let x be an almost periodic function of ¢, and let f be a continuous
map from R into itself. It follows then from the smoothness conditions
on fthat y(t) = f(x(t)) is also almost periodic.

Definitions: Let w, be a basic frequency common to both x(¢) and y(z)
and let x, and y, be the corresponding Fourier coefficients. Let w, > 0.
Then the complex power R,, the active power P,, and the reactive
power Q, absorbed by the nonlinearity f at frequency w, are defined as

R, L 3%y, P.AReR, OpAImR,

Frequency-power formulas are relations between the active and reactive
powers absorbed by the nonlinear resistor at the different frequencies.

The first relation which can then be obtained is the analogue of
Theorem 3.4 and states that if x and X are almost periodic functions of ¢,
then

2 w0y =0,
® =0
ie., the weighted sum of the reactive power absorbed at various
frequencies is zero. This formula is known as the Manley-Rowe
frequency-power formula.
If fis a first and third quadrant function then, in analogy with
Theorem 3.3, '

> P, >0
@0
If f is in addition monotone nondecreasing (f is then usually referred
to as a nonlinear resistor), then the following general frequency-power

14 For a complete treatment of frequency-power formulas see the book by Penfield
(Ref. 27). The study of these formulas was initiated by Manley and Rowe (Ref. 28),
and the work of Carroll (Ref. 29) and Black (Ref. 7) is particularly appropriate in
relation to the results presented here.
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relation can be obtained in a straightforward fashion:

Re ¥ RM(jwy) > 0.
wp=0
The particular choices of M given in the preceding list lead to the
following simple frequency-power formulas:

1. The formula

S [t —yexp(— |w)IP, > 0,

Wp=0

where / and 7 are real numbers satisfying0 < y < land0 < 7 < 2.
2. The formula

=0
where e(w) is any real-valued, nonnegative, even function of w
which is convex for w > 0 and with ¢(0) < 1.
3. The formulas

=0

E |wle(Pk + Q. dtan %T) =0
and
3 o (Pe 0.91n %) >0,
=0 Wy

where 7, § and w, are real numbers satisfying 0 < 7 < 2, 7 # 1,
6] < 1, and-wy > 0.

Remark 1: For nonlinear capacitors with voltage versus charge
characteristic v == f(g) where f'satisfies the same assumptions as above,
analogous frequency-power formulas can be obtained with R, replaced
by jR./w,. The same is true for nonlinear inductors with current versus
flux characteristic / = f(®) with R, replaced by R,/jw,.

Remark 2: An important refinement of the frequency-power relations
can be obtained if the input x(¢) to the nonlinearity f is assumed to
be quasi-periodic, i.e., if it is assumed that the basic frequencies w;,
consist of linear combinations of N fundamental frequencies. Thus, let

®;, Wy, . . . , Wy be N given real nonnegative numbers, let ny, n,, . . . , By
be integers, and assume that the basic frequencies in x are of the form
Wnyng..n, = 2y M, It can then be shown that the basic frequencies

of y are of the same type and that the Fourier coefficient in the output
y at frequency o, ,, . depends on the nonlinearity f, the set of
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intégers {nfori=1,2,..., N, and the set of Fourier coefficients in
x, {x,,l,,z._.nﬂ}, Ny, Ay, « . . , Ny € 1, butis independent of w,, w,, . . ., w15
Moreover, since

z wnlnz...ﬂNin’ng..JnN = 0’
ny=0

it immediately follows that each factor of the different w,’s in the above
equality must be zero. Hence,

z leﬂl'ﬂz...’nN =0

ni=0

z nNQ'nlna...’nN = 0.

n; =20

In a similar manner one can then argue that with M as before,

Re z Rnlﬂz...nlvM(j(nlél + n2§2 + . + anx\I)) > 0
U]

ni=

for any real numbers &, &, ..., &y.

3.7 Factorization of Operators

In many problems in system theory, e.g., in stability theory, in
optimal control theory, and in prediction theory, there is particular
interest in causal operators. For instance, in network synthesis it is
clear that a synthesis procedure for passive nonlinear networks will
require the operator defining the input-output relation to be both
positive and causal. The importance to stability theory of generating
positive operators that are also causal will become more apparent later.
In this section some techniques for generating a causal positive operator
from an arbitrary positive operator are developed. The basic idea is
simple and is expressed in the next theorem. The definition of a causal
operator has been given in Section 2.4.

THEOREM 3.17.

Let F be an (incrementally) positive operator on W with i a Hilbert
space of functions defined on the time-interval of definition .S and satis-
fying the usual properties with respect to truncations. Assume that F

13 These facts are obvious when the function f'is a power law or a linear combina-
tion of power Jaws. The extension to arbitrary functions f then follows readily by
approximation.
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admits a factorization F = F,F, on W with F, causal on W and F, an
invertible bounded linear operator on W with (F*)~1 causal on W.
Then Fp(F;)~!is (incrementally) positive and causal on W.

Proof: Let x € W. Then
(6, Fa(F¥)7x) = (FY(F) %, Fy(F)'x)
= ((Ff)“’x,Fle(Ff‘)_lx> > 0.

Hence Fp(Fy)~* is positive on W. Incremental positivity is proved in
a similar way, and causality of F,(F;)™! follows since F, and (F})*
are causal by assumption.

This theorem and the resulting possibility of generating a causal
positive operator from a noncausal positive operator show the impor-
tance of obtaining sufficient conditions for a factorization as required in
the theorem to be possible. Similar problems have received a great deal
of attention in classical prediction theory, in the theory of linear integral
equations, and in probability theory.!® The existing results deal almost
exclusively with linear time-invariant convolution-type operators in
Hilbert spaces, and most of the analysis uses the fact that these operators
are commutative in an essential way. The operators considered here,
however, need not have this property. The factorization theorem
obtained in this section is felt to be of great interest in its own right. It
applies in particular to linear operators whose kernel might be time-
varying and which need therefore not be commutative.

All the nonlinear positive operators obtained in this chapter are
compositions of a linear operator and a memoryless (nonlinear)
operator. The problem of generating a causal positive operator is thus
by virtue of Theorem 3.17 reduced to the factorization of a linear
operator. The discussion will therefore be restricted to linear operators.

The factorization problem is one of considerable interest and
importance, and the natural setting for its study appears to be a Banach

-algebra. Thus, assume that the operators under consideration form a

Banach algebra. As is easily verified, the causal operators will then
form a subalgebra since causal operators are closed under addition,
under composition, and under muitiplication by scalars. This is the
reason for introducing the projection operators and stating the theorem
in terms of arbitrary projections and elements of a Banach Algebra.
The general factorization theorem thus obtained is then specialized
to certain classes of linear operators in Hilbert space. It is also shown

¢ These problems permeate the work of Wiener (Ref. 30) and Krein (Ref. 31).
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that in the case of certain convolution operators with a time-invariant
kernel the results are rather conservative, and less restrictive factoriza-
tion theorems due to Krein (Ref. 31) exist. The setting of the factoriza-
tion problem is the same as used by Zames and Falb (Ref. 14), but
the results are more general. The method of proof is inspired by a paper
by Baxter (Ref. 32) in probability theory.

Definitions: The relevant notions of Banach algebras have been
introduced in Section 2.5. Let o be a Banach algebra with a unit 1. A
bounded linear transformation, =, from o into itself is said to be a
projection on ¢ if 7? = 7 and if the range of = forms a subalgebra of o.
Note that the range of a projection is thus assumed to bé closed under
addition and multiplication. The norm of =, denoted by ||=|, is defined
in the usual way as the greatest lower bound of all numbers M which
satisfy for all 4 o the inequality [7Al < M |A4|l.27 The identity
transformation on ¢ is denoted by 0.

The following factorization theorem states the main result of this
. section.1®

THEOREM 3.18
Let o be a linear Banach algebra with a unit element I and let #+ and

7w~ = § — 7t be projections on o. Let ot and o~ be the ranges of =+
and =, and assume that {7t < 1 and that |=— || < 1. Let Z be An
element of o and let p be a scalar. If | Z]} < |p|, then there exist elements

Z* € ¢ and Z— € o such that:

\. M=pl—Z=Z72Z%;

2. Z* and Z— are invertible in ¢; and

3. Z* and (Z*)~! belong to o+ @ I,** and Z~ and (Z~)"! belong to
oo &1L

In order to prove Theorem 3.18, Lemmas 3.8-3.10 will be established
first.

7 Contrary to Hilbert spaces, projections in Banach spaces need not have norm
less than or equal to one. Since the spaces under consideration here are spaces of
bounded linear operators, there is in general no inner product structure on them, and
the condition [|#+{] < 1 thus becomes a constraint.

'* A similar theorem, due to Masani, with the estimate |Z|| < p/4 has appeared
in the literature (Ref. 33). Another interesting factorization theorem in a somewhat
different setting has been obtained by Gohberg and Krein (Ref. 35). .

® The notation ¢+ @ I means all elements of o which are of the form R 4 af with
R € o* and « a scalar; o~ @ [ is similarly defined.
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LeEmma 3.8

Let {4,}, {P:}, and {N;}, k =1, 2, ... be sequences of elements of
g, o%, and o~ respectively and assume that for some r, > 0 and all
|} <ro: 1, The series A =T+ 32 A*, P=1T+ 32 Pyu*, and
N=1+ > Ng* converge; and 2, the elements are related by
A = PN. Then A4 uniquely determines the sequences {P,} and {N,}.

Proof: Equating coefficients of equal powers in r in the equality
A = PNleadsto P, + N; = A and P, + N, = A, — D7"1 PN, _, for
n=2,3,....Thus P, = n™(4, — D1 PN, ;) and N, = n(4, —

w2 P.N, ) which shows that 4 uniquely determines P, and N,
provided it uniquely determines Py, ..., P, ;and Ny, ..., N,_,. Since
A uniquely determines P, and N, by P, = #n+4; and N, = 7~ 4,, the
result follows by induction.

LemMMA 3.9

The equations P =1+ ra™(ZP) and N =1+ rnr(NZ) have a
unique solution P e o and N € o for all |r| < |p|~2. Moreover, these
solutions are given by the convergent series P = > 2 Pr* and N =
Do Nur® with Py = Ny = I, P, = 7#*(ZP,), and Ny, = 7 (N, Z).
Also,Peoct®Iand Neo @ L

Proof: The result follows from the inequalities
lrmt(Z(4 — B))| < |pl™* |Z] |4 — B,
lrm=((4 — B)Z)|| < lpI* |Z]| |4 — B,

and the contraction mapping principle. Moreover, it is easily verified
that the successive approximations induced by this contraction mapping
with Py = N, = [ yield the power series expressions of P and N as
claimed in the lemma.

Lemma 3.10

The solutions P and N to the equations of Lemma 3.9 are invertible
for all |r] < [p|™*, the inverses being given by P! = [ — ra+(NZ) and
N7t = I — rr=(ZP). Moreover, N7'P~' = [ — rZ for all |r| < |p|~
Also, Pleoct®Tand Nleo @ I~

Proof: From the equations defining P and N it follows for |r| < |p|2

that

MIZE g ey < T

NI <€ .
Irm VOl < Tz 1—|rl1Z]
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Since all elements of ¢ which are of the form I — B with |B|| < 1 are
invertible, it thus follows that J — rat(NZ), I — ro—(ZP) and T — rZ
are invertible for |r| < | pl~Y/2. Furthermore, the inverses are given by
the convergent series

(I — ra* (NZ)™ =1 + 3 (" (NZ)r,
k=1

(U — ro@P) = I + 3 (x(ZP)
=1

I—rZy'=1+3Z"
k=1

From the equations of P and N, it follows that (] —rZ)P =1 —
re~(ZP) and N(I — rZ) =1 — ra*(NZ) for |r| < |p|~* and thus that
(I —rZ)y?' =PI — ro(ZP))* = (I — ret(NZ))"INfor |r| < |p|Y/2.
Since all factors in the equalities are given by the convergent series
given in this lemma and in Lemma 3.9 and since o+ and o~ are closed
under multiplication, Lemma 3.8 is applicable. This yields P =
(I—ra*(NZ), N=(I —rr(ZP))* and PN = (I —rZ)? for
Ir| < |pl™/2. Thus for |r| < |p|~}/2 the following equalities hold:

P — ra+(NZ)) = (I — re - (NZ)P = 1,
NU — r—~(ZP)) = (I — re~(ZP))N = 1I,
(I — re~(ZP)(I — ra+(NZ)) = I — rZ.

Since, for |r| < |p|7?, all terms in the above equalities are given by
geometrically convergent power series in r, they are analytic functions
of r for |r] < |p|™. Since equality holds for |r| < |p|/2 it is thus
concluded from analyticity that equality holds for all |r| < [p|™

ProorF oF THEOREM 3.18

Let r = p~1 in the Lemma 3.10. The theorem follows with Z— =
pI — pin=(ZP)), (Z) = p=IN,Z* = I — p~im+t(NZ)and (ZH) =
P.

Under a suitable choice of the Banach algebra and the projection
operators a number of interesting corollaries to Theorem 3.18 hold,
two of which will now be stated.

Let R be an element of Z(/y,l;) and let-{r,;}, k, €I be the corre-
sponding array. R is said to belong to £+(l;,p) if rp, = 0 forall k <
It is said to belong to #—(J,,};) if R* belongs to £+(J,,1;). Elements of
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&+ correspond to causal elements of % whereas elements of #—
correspond to anticausal elements of .Z.

COROLLARY 3.18.1
Let Z be an element of £ (J,,4,) such that Z — el is doubly dominant

for some € > 0. Then there exist elements M and N of £(/l,,/;) such
that:

1. Z = MN;
2. M and N have bounded inverses M~ and N-1; and
3. Nand N1 belong to £+(ly,l,), and M and M~ belong to L—(1,,1,).2°

COROLLARY 3.18.2
Let A(z) — e be the z-transform of a sequence which is dominant for

some € > 0. Then there exist functions A*(z) and 4—(z) such that

1. A(z) = A (2)A™(2); and

2. A*(z) and (A*(z))™! are the z-transforms of /;-sequences {4} and
{b} with af = bf = 0 for k < 0, and 4—(z) and (A~(2))* are the
z-transforms of /-sequences {a;} and {b;} with a; = b, = 0 for
k>0

Proof: Both of these corollaries follow from Theorem 3.18 under a
suitable choice of the Banach algebra ¢ and the projections #+ and 7.

Corollary 3.18.1 follows from Theorem 3.18 with the Banach
algebra o all members of £ (/,,[,) such that if 4 € o and if {a,,}, k, /e I
is the corresponding array, then the sequences {a,,} belong to /, for
fixed & and /, uniformly in k and /; i.e., there exists an M such that
2wl < M and Y2, |a,| < M. Muitiplication is defined in
the usual way as composition of elements of #(l,,};). The norm is

It comes somewhat as a surprise that Theorem 3.18 when applied to linear
operators on %, yields factorization of doubly infinite matrices, just sufficient to
ensure factorizability of the positive operators discovered earlier in this chapter.
This result also hinges on the somewhat unexpected type of norm chosen in applying
Theorem 3.18. Notice that this norm is not the one induced by the /;-topology. The
reason for not using the induced norm is that it was not possible to show that
fl*]l < 1 in this topology. Whether or not this is true remains unclear. For time
invariant operators this question reduces to proving or disproving that for any
ge Lls .

+ o0 ]
f g()e joldt J g(t)ejot de

—o 0

max
wER

> max
wE€R
If this inequality holds then Theorem 3.18 can be used to show that any strictly

positive operator on a Hilbert space admits a factorization into a causal and an
anticausal part.
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defined as the greatest lower bound of all numbers M satisfying the
above inequalities. The nonobvious elements in verifying tha'g o forms
a Banach algebra are that ¢ is closed under muitiplication, that
l4B| < |4}l | B| for all 4, B € o, and that o is complete. Closedness
under multiplication follows from Fubini’s Theorem for sequences
(Ref. 22, p. 245) and the inequalities

+o0 +o

Z Z by

k=—cw0 | i==—aw

—+0

+o0
< Z z |l 10y

k=-—00 t=—a0

+o0 +o
= z |b;) 2_: [l

f=—o00 =
< 4l 1B
and
+oo +
S| S awba| < 14] 1B
l==—o0 | {=—00

These inequalities also show that [[4B] < |41l 1Bl. Completeness
follows from the fact that /; is complete. The projection operator 7+
is defined by m+4 = B; if {a@y,} and {by,;}, k, / € I are the corresponding
arrays, then g, = by, forallk > /,and b, = 0 otherwise. The operator
7 is defined by 7~ = 0 — =t It is clear that |#*] =1 and ;;thgt
7| = 1. The only fact that is left to be shown is that ifZ — el is
doubly dominant for some e > 0, then Z can be written_ as Z =
pl — A with ||4]| < p. It is easily verified that any p with |p| >
SUPyer Zi Yields such a decomposition. ‘

The proof of Corollary 3.18.2 is completely along the l}nes of the
proof of Corollary 3.18.1 with the Banach algebra o consisting of all /
sequences, and with multiplication of 4 = {a,} and B = {b,} defined
by AB = C = {¢;}, where ¢, = ;"2 @b, and || 4] = T2 e lal.
The projection operator =+ is defined by =4 = B with 4 = {&},
B = {b}, b, = a, for k >0, and b, = 0 for k < 0. The operator 7
is defined by 7~ = 6 — =™

The factorization in Corolldry 3.18.2 is valid under much weaker
conditions than stated. Indeed, although dominance of the involved
sequence is certainly sufficient for the factorization to be possible, it is
by no means necessary — as is shown by the following theorem, due to
Krein (Ref. 31).

FACTORIZATION OF OPERATORS 79

THEOREM 3.19

Let A(z) be the z-transform of an /;-sequence. Then there exist
functions 4%(z) and A~(z) such that:

1. A(z) = A~ (2)41(z), and

2. A*(z) and (41(2))! are the z-transforms of -sequences {q;} and
{b;} with ¢} = b} = 0 for k < 0, and A~(z) and (4 (z))! are the
z-transforms of /;-sequences {a;} and {b;} with az = by = 0 for
k > 0:

if and only if A(z) 5 O for |z| = 1 and the increase in the argument
of the function A(z) as z moves around the circle |z| = 1 is zero.
Moreover, all factorizations which satisfy conditions 1 and 2 differ
only by a nonzero multiplicative constant.

The factorization analogous to those obtained in Corollaries 3.18.1
and 3.18.2 for operators on L, with time-varying kernels is straight-
forward and will not be explicitly given. The analogue to Theorem 3.19
for operators with a time-invariant kernel is Theorem 3.20; Theorem
3.20, which is also due to Krein, is less restrictive than the analogous
factorization obtained in Theorem 3.18.

Let %, be a class of operators from L, into itself each element of
which is determined by an element (g(z),{g,}) of L, X /; and by a
mapping {t.} from / into R. The operator G € %, maps x € L, into y,
with y(8) = 272, gux(t — 1) + (3 g(t — T)x(7) dr. 1t is simple to
verify that G is well defined, i.e., that it maps L, into itself. Let %7
denote the subclass of &, for which the determining element of L, X /;
and the mapping {#,} satisfy g(#) = 0fort < Oand ¢, > Ofor all k e I.
Let &7 denote the subclass of ¥, for which the determining element of
L, x I, and the mapping {t,} satisfy instead g(#) = O for ¢+ > 0 and
t < Oforall k € I Clearly G € 7 if and only if G* € 97

THEOREM 3.20
Let G € ¥, and assume that all the delays are equally spaced, i.e.,

that #, = kT for some k. Then there exist elements G+ € 4, and G- € %,
such that:

1. G = GG,
2. Gt and G~ are invertible, and
3. Gtand (GH1e¥f, and G- and (G) 1 e ¥y,
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if and only if, |G(jw)| > €, for some ¢ > 0 and all w € R, and the
increase in the argument of the function G(jw) as w varies from — oo
to + oo is zero.*

A slightly weaker version of Theorem 3.20 is given by Krein (Ref. 31).
However, the extension of his proof to cover the form given in Theorem
3.20 presents no apparent difficulties.

The main interest in the above factorization of operators stems from
the fact that it leads to the solution of the so-called Wiener-Hopf
equation. The Wiener-Hopf equation plays a central role in applied
mathematics (Ref, 34), and its importance in the analytical design of
engineering systems cannot be overestimated. It is the logical conclusion
of the optimization of quadratic functionals subject to linear constraints.
In fact, the celebrated Riccati equation — which plays a central role in
control and detection theory — can be viewed as a method of solving a
Wiener-Hopf equation. Among its applications are the optimal control
of linear systems under quadratic performance criteria, minimum
variance filtering of Gaussian processes, network synthesis, solution of
boundary-value problems, etc. '

In the abstract notation of this section, application of the Wiener-

Hopf equation amounts to asking for the solution X of the system of
equations

7t (XR) = «tM  and ntX = X.

Theorem 3.21 below shows how this solution can be readily obtained,
provided that R admits a suitable factorization. First, however, a simple
lemma will be proven:

LemMa 3.11

Let o be a linear algebra with a unit element I and let #+ and 7~ =
6 — #+ be projections on ¢ with ranges o and o~ respectively. Let
Aeoand Beo @ I Then #t((artA)B) = nt(AB).

2! Let G(jw), w €R, be a complex-valued function of w with G( jw) = A(]w) +
L(jo) and A(]w) perlodlc and limg,—+ o L(jw) = 0. The increase in the argument
of the function G(jw) is said to be zero if

2aN|T . 1 @
lim darg G(jw) = lim - f darg A(jo) = 0.
N=® JouN|T w20 ),

This definition is a natural generalization of the usual definition of the increase in the
argument of a complex-valued function.
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Proof: Since
7t(4B) = nt((wt4d + 7 A)B)
= 7t ((a*A)B) + 7t ((7~A4)B) = mwH((=*4)B),
the lemma follows.

THEOREM 3.21

Let o be a linear algebra with a unit element I and let #+ and #—
6 — =+ be projections on ¢ with ranges ot and o™, respectively. Let
R and M be given elements of ¢, and assume that there exist elements
R+ € ¢ and R~ € o such that:

1. R = RtR—;
2. Rt and R~ are invertible in ¢; and
3. Rtand (RY) belongto ot ® 7, and R~ and (R-)! belong too @ L.

Then the unique solution of the Wiener-Hopf equation, ie., the
solution of the system of equations #+(XR) = =+ M, vt X = X, is given
in terms of this factorization of R by X = (z+(M(R)™))(RD)1L

Proof: 1t will first show that X = (#"(M(R)1))(RH)1is a solution of
the Wiener-Hopf equation. Clearly ntX = X. Moreover,

7H(XR) = 7+ ((mH(M(RT)™))(RY)'R)
= 7H((mH(MR)R) = mH(MR)™R) = ntM.

These equalities follow from Lemma 3.11 since (RY)1eo+ @I and
R~ € 0~ @® I To show that (#"(M(R")"1))(R*)! is the unique solution
of the Wiener-Hopf equation, assume that #+(XR) = »*M and
7tX = X. Then (7 (wH(XR*R)))(R™)™* = 7+ (M(R") Y since (R) ' e
o~ @1 Hence, since Rteot @1, the equalities 7*(M(R™)™) =
7T(XR*) = XR* hold, which shows that (rH(M(R-)"H)(RH)™ is
indeed the unique solution of the Wiener-Hopf equation.

3.8 Positive Operators on Extended Spaces

As defined in Section 2.5, a causal operator F from L,, into itself
is said to be (incrementally) positive on L,, if for all T € S, PpFP, is
(incrementally) positive on L,. As was pointed out there, the following
relation between positivity on L, and L,, exists: a causal operator on
L,, which in addition maps L, into itself is (incrementally) positive on
L,, if and only if it is (incrementally) positive on L,. Hence nothing
new is required to examine the positivity of operators on L,, provided
they map L, into itself.
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For causal operators on L,, which do not map L, into itself it is,
however, a simple matter to generalize the theorems of the previous
situation to operators on L,.** For example, Theorem 3.2 can be
extended to cover the case where K(z) e L, (it suffices for K(¢) to
belong to L., in order for the operator (Kx)(¢) = K(#)x(t) to be
well defined as a map from L,, into itself). The analogue of Theorem
3.11 is also obvious and requires the analogue of the dominance
conditions without the requirement that sup,.; my, < oo; instead, it is
assumed that m,, = O for & < /. This analogue, however, does not
fully exploit the power of the rearrangement inequalities derived in
this chapter, and it is in fact possible to prove a somewhat stronger
positive-operator theorem, which does not require boundedness of the
operators involved. ‘

Definitions: Let M = {m,,;}, with k, ] € I'*, be a square array of real
numbers. Then M is said to be doubly hyperdominant if my;, < 0 for
k 5 I and if 3% my, and 372 my, exist and are nonnegative for all /
and k. M is said to be doubly dominant if my > 37, .+, |my| and
Mg > Do i#5 [Pl Every doubly dominant array M, with k, /€It
and my, = 0 for k < /, defines a causal linear operator from /,(0,c0)
into itself with (Mx), = Z’,;o myx,;. This operator need not, however,
be bounded on /. Given two square arrays of real numbers M; =
{m} and M, = {m?}, k, /€ I*, it is possible to define the product
M, M, as the square array with (M;My),, & D2 mBm? whenever this
infinite sum exists for all k and /, and thus in particular whenever M,
is causal (i.e., whenever M, defines a causal operator on /,,; in other
words, whenever m{i) = 0 for k < /), since the summation defining
this product then becomes finite. Let M = {my,}, k, [ € I'*, be given;
then M* = {n,;}, k, [ € I'* is defined as the square array with #,; == my,
for all k and /.

THEOREM 3.22

Let L, and L, be causal linear operators from /,,(0,c0) into itself and
let F denote the operator on /,(0,c0) defined by (Fx), = f(x;) with f
amap from R into itself. Assume that L, has a causal inverse on ,,(0, ).

22 Tt should be pointed out that Theorem 3.1 is an exception to this, i.e., that, in a
sense, the bounded positive time-invariant causal convolution operators on L,
define in fact the most general positive time-invariant causal operators on L,, as
well. More specifically, consider the convolution operator (as in Theorem 3.1) with
vanishing kernel for + < 0 (for causality) and whose kernel is locally integrable (i.e.,
integrable on compact sets) so that it defines a causal linear time-invariant operator
on L,,. If for some AT > 0, the integral of the norm of the kernel on the interval
[T, T 4+ AT]becomes unbounded as T — oo, then this operator will not be positive
on Ly,.
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Then L,FL, is a positive operator on /,(0,0) for any monotone
nondecreasing (odd-monotone nondecreasing) first and third quadrant
function f if and only if the square array determined by Ly(LH)* is
doubly hyperdominant (dominant).

Proof: Let N be a nonnegative integer, let x € /,,(0,00), and let Pyx
flenote the truncation of x. The operator PyL,FL,Py, is positive on RY
if and only if Py L 'PyL,FL,P\(L7Y)* Py is. Since, however,

PNLPyLyFLoPy(L*)* Py = PyFLy(LT*)* Py,

the theorem follows from Theorem 3.10.
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4 Feedback Systems

4.1 Introduction

Feedback remains the basic concept of control: some output variables
of the system to be controlled are measured, and this information is
processed to generate an input to.the system to be controlled such
that the overall system behaves in some desired fashion. Feedback
control thus involves cybernetics: observation, information processing,
decision, and execution. It is believed that Norbert Wiener first had the
insight to conclude that such cybernetic situations are intimately
related to uncertainty: in the absence of uncertainty, there would be
no need for feedback, and all decisions could be made “open loop.”

INPUTS INPUTS INPUTS

l

»| ACTUATORS | PLANT: SYSTEM TOL ) censoRs
r Tlse conTROLLED [

FEEDBACK CONTROLLER la&

f

INPUTS

Figure 41 Control Loop
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However, no system (plant, sensor, or actuator) is free of uncertainty,
and control engineers always resort, in the end, to feedback controllers.

In this chapter the basic properties of feedback systems are studied:
these include their well-posedness, stability or instability, and con-
tinuity or discontinuity. Also, sensitivity is briefly mentioned. The
feedback system to be studied is shown in Figure 4.1.

4.2 Mathematical Framework

A model applicable to most feedback systems is shown in Figure
4.2.* The functional equations describing this feedback system are

€1 = Uy — Ya,
e = U + Y1,

FE
y]_ = Glel, and ( )

Y2 = Gye,

where wu;, u, are called the inputs; e, e, are called the errors, and
Y1, Vs are called the outputs.

Let T, be a (finite) real number and let S, the time-interval of definition,
be [Ty,0).2 Let B, and B, be given Banach spaces, and let Y(B),

G

> 2

Figure 4.2 The Feedback System under Consideration

* The assumptions implied by this configuration are: 1, additivity of the inputs
and 2, only two input summing junctions are present in the loop. The methods
presented here lend themselves easily to the study of more general configurations.
The philosophy of using this configuration is that one assumes additive driving
noise and additive noise in the measurements, the usual situation studied, for
example, in combined estimation and control problems.

2 The extension to discrete systems is a trivial one. The case § = (—o0,+0) is
not treated since the author is not convinced that this case is of physical significance.
Some remarks regarding this case will be made in Section 4.6.
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i =1, 2, denote the linear space of B;-valued functions defined on S,
ie., Y(B) & {x | x:S— B}.

Definition: Let T€S. Then Py denotes the projection’ operator on
Y(B), i =1, 2, defined for x € Y(B,) by

Pas)(t) x(t) fort<T,tes
X)) & >
T 0 otherwise

P will be called the truncation operator and Ppx will be called the
truncation of x at time T. The collection {P}, T € S, thus consists of a
family of projection operators on Y(B,).

Definition: Let W,< Y(B)),i = 1, 2, be a Banach space. The extended
space, W,,, is defined as

W, A {xe Y(B)|PpxeW,forall TeS, T finite}.

Recall the definitions of a causal, strongly causal, and locaily
Lipschitz-continuous operator: Let F be a mapping from W,,,i =1, 2,
into itself, Then F is said to be causal on W,, if PpFPy = PpF on W,
1t is said to be strongly causal on W,, if F is causal on W, and if for all
TeS,e>0,and "€ S, T' < 7, there exists a real number AT > 0
such that |Ppap(Fx — F) € € |[Ppyar(x — p)| for any x, y e W,
with Ppx = Pgy. It is said to be locally Lipschitz continuous on W,
if for all T €S, PpFPy is Lipschitz continuous on W,. These notions
are generalized in an obvious way to operators from W, to Waes
Wi, X W,,to Wy, etc., and will thus be used freely in the latter context
as well.

For various technical reasons a number of additional concepts
involving causal operators are needed.

Definitions: Let F be a strongly causal operator from W,,, i =1, 2,
into itself. Then F is said to be strongly causal, uniformly with respect
to past inputs, if for all Te S, ¢ > 0, and T" € S, T' < T, there exist
real numbers AT > 0 and K < o such that |(Ppeyag — Pp)(Fx —
F)l < K[1Pplx — Pl + € |Presar — Pr)x — p)| forallx, y & Wi,
Locally Lipschitz continuous strongly causal linear operators are in
fact strongly causal, uniformly with respect to past inputs.

Assumptions on the spaces. The following assumptions are made on
the spaces W,, i =1, 2:
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W.1. The spaces W, are closed under the family of projections {P},
Teld.

W.2. For any x € W,, the norm | P;x]|| is a monotone nondecreasing
function of T which satisfies limg, 5, | Ppx}| = Oand limg g [|[Ppxlf =
| x|l. The family of projection operators {P,}, T € S, is thus assumed
to be a resolution of the identity.

W.3. If x € W,,, then x € W, if and only if suppeg |Ppx| = limpy
1Prxl} < co.

W.4. For any real numbers f,, #, such that T, < ¢; < #,, the vector
space Wy, o, & {x € W;| x(t) = Ofor ¢ ¢ [t,,1,]} is a closed subspace
of W, and is thus itself a Banach space under the norm of W,.

Assumptions on the Operators. The following assumptions are made on
the operators G;, i = 1, 2:

G.1. The operator G, maps W, into W,,, and G, maps W,, into W,,.
G.2. The operators G; are causal on W, i.e., PpG;Pp = PpG,; on W,
forall Te S.

G.3. The operators G, are locally Lipschitz continuous on W, i.e

Pp(Gx — G,
sup WPrCx =Gl o o Tes.
® yEW; I1Pp(x —
Ppx#Pyy

G.4. The operators G, satisfy G,0 = 0.3

[}

Assumption on the Inputs. The following assumption is made on the
inputs u;, i =1, 2:

1.1. The input u, belongs to W,

The important notions regarding the feedback system under con-
sideration are those of solutions, well-posedness, stability, and con-
tinuity. Definitions of these terms are now introduced.

Definition of a solution. Let u;€ Wy,, i =1, 2, be given. Then the

quadruple {e1,€5,71,y2} is said to be a solution of the feedback equations
if:

SO.1. The inputs and outputs e,, y, belong to W,,, and e,, y; belong
to W,.

SO.2. The feedback equations (FE) are satisfied by {e;,ea,y1,72}-

* Assumption G.4 can always be taken to be satisfied by proper redefinition of the
operators.
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The above definition of a solution is a natural one. The definition
of well-posedness is somewhat more delicate.

Definition of well-posedness. The feedback system described by the
equations (FE) is said to be well posed if:

WP.1. There exists a unique solution for any pair of inputs u; € W,
i=1, 2. Let G denote the operator from W;, X W,, into itself
defined for x = (x,X3) € W1, X Wy, by Gx & (Gyxy, —Gix;). Con-
dition WP.1 thus requires that the operator / 4+ G be one-to-one and
onto, i.e., invertible on W, X W,,.

WP.2. The errors and the outputs depend on the inputs in a non-
anticipatory way; i.., Ppey, Ppey, Pryy, and Py, depend, for any
T € S, on Ppu, and Ppu, only. Conditions WP.1 and WP.2 combined
thus require the operator I + G to be invertible on W;, X W,, and
(I + ™ to be causal on Wi, X W,

WP.3. The errors and the outputs depend, on finite intervals, Lipschitz
continuously on the inputs. Conditions WP.1, WP.2, and WP.3
combined thus require the operator I+ G to be invertible on
Wi, X Wy, and (I + G)™ to be causal and locally Lipschitz con-
tinuous on Wy, X W,,.

WP.4. The errors and the outputs are insensitive to modeling errors in
the following well-defined sense: Consider the functional equations

ey = S1,(11,Gy,0),
ey = TSy, (15,G1,€1),
which describes the “physical” feedback system shown in Figure 4.3.

(I;FE)

u1 -
e i & s Yy o
[ > Six 1A -
Te
Y
. % S - u,
y‘ Cox ™ 2A
2

Figure 4.3 The Physical Feedback System

It is assumed that the family of operators, G,,, i=1, 2, are
parametrized by a parameter A which is assume- to belong to some
index set A. The set A will be assumed to be a subset of a normed
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linear space and contain a neighborhood of the origin. Let T, ¢ < 0,
denote a time delay. The functional equations (PFE) are assumed to
approximate the feedback system described by the functional
equations (FE) in the sense that for all ||A] sufficiently small:

1. The operators Sy,, S.;, Gy,, and G,, map W, X W,, into W,
Wae X W, into Wy, W, into W,,, and W,, into W;,, respectively,
and T, € < 0, maps W,, into itself by
(T 2 x(t + €) for t > T, — e

0 for T,<t<T,—e¢
ie., T, denotes a time delay with delay —e > 0.

2. The operators S,;, and G,;, i =1, 2, are locally Lipschitz con-
tinuous on their respective domains.

3. The operators S;; and G,,, i = 1, 2, are strongly causal on their
respective domains.

4. The “physical” feedback system described by the equations
(PFE) approximates the feedback system described by the equation
(FE) in the following well-defined sense: For any I' € S and any
v1, W1 € Wy, and vy, wy € W, the operators S,, and G,, satisfy
lim,_,, Si(0w) = v, — wy, lim,_,, So (U2, we) = vy + Wy,
lim; o Gy,;v, = Gyv,, and lim,_,, Gy, 05 = Gyv,.

It then follows that for any T e S and |4 and —e > 0 suﬁiciéntly
small:

1. For any input pair u; € W,,, i = 1, 2, there exists a unique solution
paire; € W, i = 1, 2, to the equations (PFE). Let ¢; = F5(uy,u,),
i=1, 2, denote these solutions.

2. The operators Fy,, i = 1, 2, are causal on their domain.

3. The operators Ff,, i = 1, 2, are locally Lipschitz continuous on
their domain.

4. The operators G, Fy, and T,G,,Fs, are strongly causal on their
domain.

It is then required for well-posedness that for any input pair
u; € W, i = 1, 2, the solutions F;, satisfy

lirtf(} lxint) (Fia(upuz), Faz(ug,us)) = (I + G) ;1)

€ -

Well-posedness is essentially a modeling problem. It expresses that a
mathematical model is, at least in principle, adequate as a description
of a physical system. The definition which follows is that of stability,
which is a desired property of a feedback control system.
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Definition of stability and instability. The feedback system described
by the equations (FE) is said to be stable if it satisfies conditions ST.1
and ST.2:

ST.1. It is well posed.
ST.2. Any inputs u, € W,, i =1, 2, lead to errors and outputs e,
V. € Wy and e, y, € Wa.

The system is said to be stable with finite gain if it is stable and if in

addition:

ST.3. There exist constants p;, p, < o such that for any inputs
u,e Wi, i=1,2, [legll, leall, 1yl 1yell < p1 ol + po fuall.

The feedback system is said to be unstable if:

INST.1. It is well posed.
INST.2. It is not stable.

A somewhat stronger desired property of a feedback controller is
that of continuity.

Definition of continuity and discontinuity. The feedback system de-
scribed by the equations (FE) is said to be continuous if’: :

C.1. 1t is stable.

C.2. Lety, e W,, i =1, 2, be given (but arbitrary), and let ¢, and y,
be the corresponding errors and outputs. Then there exists, for any
given € > 0, a § > 0 such that the inputs u; + Aw; with Au, € W,
and [|Aw |, l|Aus| < € yield corresponding errors, e; + Ae;, and
outputs, y;, + Ay;, with Ae;, Ay, € Wy, Aey, Ay, € W, and [Aef,
lAesll, [Ap]l, 1Ay.] <.

The system is said to be Lipschitz continuous if it is continuous and if in
addition:

C.3. There exists a K < co (independent of u,;, i =1, 2), such that
0 = Ke will satisfy condition C.2.

The system is said to be discontinuous if:

DC.1. It is well posed.
DC.2. 1t is not continuous.
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4.3 Well-Posedness of Feedback Systems

The question of well-posedness of mathematical models for physical
systems is of fundamental importance in engineering.

4.3.1 Justification of the Definition of Well-Posedness

A mathematical model is generally said to be well posed if solutions
exist and if these solutions are unique, continuous with respect to the
input variables, and continuous with respect to modeling errors (i.e.,
errors in the parameters of the system). Well-posedness thus imposes a
regularity condition on feasible mathematical models for physical
systems. Well-posedness expresses the fact that a mathematical model
can be, at least in principle, an accurate description of a physical
system. In other words, since exact mathematical models would always
be well posed, one thus requires this property to be preserved in the
modeling. '

The definition of well-posedness as given in Section 4.2 requires
justification. The assumptions on G imply that it itself be well posed,
ie., that it is a well-defined map, causal, locally Lipschitz-continuous,
and a suitable approximation of a physical system. A “physical system”
is defined as a locally Lipschitz-continuous strongly causal system.
This concept of “physical system’ is not standard and calls for an
explanation. To require that a physical system be a continuous, well-
defined and causal map is natural. The strong causality condition is
inspired by the fact that any system exhibits some delay between the
input and the output. No system can instantaneously transmit a signal,
hence all physical systems have at least an infinitesimal delay. The
second point to make about the definition of well-posedness is the
precise mathematical interpretation of the idea of a “‘suitable approxi-
mation.” For F to approximate F, it is required that the operator
F — F, should be small in some appropriate sense. One possible
choice — the first one which comes to mind, and mathematically
the most convenient one —is to require F — F, to be small in the
uniform operator topology, i.e., to require |Py(F — F,)||, to be small
for all T € S. This would then typically take into consideration errors
in time constants, in gains, and in initial conditions. It is, however,
not the choice adopted here since it is merely required that F should

* A basic paper on the well-posedness of feedback systems is that by Zames
(Ref. 1). The setting considered in the present monograph is quite different, however.

Reference 1 points out somewhat more carefully why the concept of ““physical
system’” that is adopted here is a natural one. This is done in terms of ideal elements.
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approximate F, in the strong operator topology, i.e., that (F — F;)x
should be small for any fixed x. The reason for adopting this choice,
which makes the problem of well-posedness mathematically much more
difficult, arises from engineering considerations. Indeed, examples of
typical effects that are invariably ignored in the mathematical model are:
small time delays, band limitation over broad bandwidths, distributed
effects, small time constants, and similar phenomena that are believed
to happen much faster than any changes due to the dominant dynamics
of the system or in the expected variations in the inputs. It can easily
be verified that none of these effects is (in general) continuous in the
uniform operator topology. The induced norm on LZ, 1 < p < o, of
the identity minus a delay of length 2 > 0, is always two. The same
holds for the identity minus the system with transfer function Z/(4s + 1),
2 > 0, no matter how small 2, and thus no matter now closely the
impulse response (1/A)e~t/* “resembles” a unit impulse. These effects
are close to the identity, however, in the strong topology on LZ,
1 < p € o, in the sense that lim,_,, F;x = xforanyx e LE, 1 < p <
0.

A careful examination of the definition of well-posedness also reveals
that a pure delay T., is assumed to be present in the loop describing
the physical feedback system. This assumption is inspired by the
consideration that no information can travel faster than the speed of

light, which is a finite, albeit very large, constant. It thus seems.

very reasonable to make such an assumption. It should be noted that
this assumption has not been introduced capriciously, but that it is
essential to the mathematical development.

The conditions assumed on the physical model in the treatment of
well-posedness appear to be minimal. Taking into consideration that
the final conditions will be in terms of the mathematical models, no
additional assumptions on the physical systems will be made. This is
in the spirit that the exact description of the physical system is unknown
but that smoothness assumptions can be made, these being warranted
by general physical principles.

The assumption made is thus that the summing junctions and the
systems in the forward and the feedback loop of the system are approxi-
mations (in the strong topology) of the exact physical (strongly causal
and locally continuous) system. The requirement for well-posedness
of the closed loop system is then that it itself approximate the physical
system obtained by considering exact physical models for the summing
junctions and the systems in the forward and feedback loop. Thus well-
posedness of the open-loop operators (i.e., the open-loop operators are
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approximations of physical systems) should translate into well-
posedness of the closed-loop system.

A final word of caution in the interpretation of the well-posedness
condition is necessary. The requirement is not that

. h}iﬁo(F 1uus), Faop(u,u,) = (I + G)_l(ul,uz),
but precisely that
lsif};l }11—1»1;} (Fia(uys), Foy(uy,ue)) = (I + G)Y ™ (uy,ug).

It will be remarked later on that this unfortunate situation appears to
be the best that can be obtained. This phenomenon is not unlike similar
difficulties encountered in stochastic systems (Ito calculus) and differ-
ential games. '

4.3.2 Examples of Ill-Posed Feedback Systems

A surprising fact concerning well-posedness of feedback systems is
that the operators appearing in the loop need not be pathological to

resultin an ill-posed feedback system. A number of interesting examples

of ill-posed feedback systems can be found in the literature (see Ref. -
1, and further references therein). Three other examples are the
following:

1. Let G, = —I and G, = I. Then the feedback system has no
solutions if u; # u, and has multiple solutions if u; = u,.

2. Assume that the forward loop consists of a delay of length 7> 0
minus a unit gain, that G, = I, and that u, = 0 (see Figure 4.4). The

1+ & %
e-sT_y -

Figure 4.4 The Feedback System of Example 2

error is then (uniquely) given in terms of the input by e,(¢) = u;(t + T)
for 1 > T, and thus depends on the input in an anticipatory way.

3. Assume that all signals in the loop are real-valued functions on
[T,,00), that the forward loop consists of a constant gain K, that
G, = I, and that u, = O (see Figure 4.5). If K ¢ —1, then this feedback
system has a unique solution e,(#) = (1 + K) 'y, (z) for any u,. If a
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small delay of length 4 > 0 is introduced in the forward loop, then the
error corresponding to a nonzero constant input u;(#) = u, = con-
stant 7 O is given by '

Uy for0gr< 4
Uy, — Kuy, _ for A <t <24
e() = ’ T
Uy — Kg + K2y — -+ + (—K)"uy fornd <t < (n+ 1A

Hence if A~ 0, e(¢) approaches (1 + K)u, (the solution for A = 0)
if and only if |K| < 1 (when the expansion (1 + K)™* = >~ (—K)*
is valid). The result obtained in this example is characteristic of the
conditions for well-posedness which will be obtained next.

u ]

r o+ 1 Y

K o

Figure 4.5 The Feedback System of Example 3

4.3.3 A Condition for Well-Posedness

Well-posedness imposes a weak condition on the operators in the
feedback system. One such condition is given in the theorem that
follows. First, however, a few more definitions.

Definitions: Let F be a locally Lipschitz-continuous causal operator
from W, into itself. Let Te€ S and AT > 0 be given. Then the real
number

pn(AT) 2 VP riag(Fx — Fy)l

P2 e Priar(x = p

PriApla—y)} #0
is called the gain of F on the interval [T, T 4+ AT]. It is clear that

pr(AT) is monotone nondecreasing in AT for T fixed. The real number
pr A infpp. o pr(AT) = limy g, pr(AT) is sometimes referred toasthe
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instantaneous gain of F at T. Note that p; = 0 for a strongly causal
operator.

Let F be a locally causal Lipschitz continuous operator from W,
into itself. Let T'e S and AT > 0 be given. Then there exist real
numbers K, < o and M, < oo such that

|(Priar — Pr)(Fx — Fy)| < Ky [(Pp(x — P

+ Myp | (Priar — Pr)(x — )|

for all x, y € W,. The greatest lower bound of all real numbers M,
satisfying this condition for all x, y € W, and some K, < co will be
called® the uniform gain of F on the interval [T, T 4+ AT]. If Fis linear
then its gain and its uniform gain on the interval [T, T' 4+ AT] are
equal. The definition of uniform instantaneous gain is now obvious.
The following theorem states sufficient conditions for well-posedness.

THEOREM 4.1
The feedback system described by equations (FE) is well posed if
either of the following conditions is satisfied for all T € S:

1. The product of the uniform instantaneous gains of the operators
G, and G, is less than « < 1.

2. The system is linear and the instantaneous gain of the Nth power
of the open-loop operator, (G,G,)¥, is less than unity for some
integer N > 0.

Proof: The proof is an adaptation of the usual proofs involving
existence and uniqueness of solutions of ordinary differential equations
or Volterra integral equations.® Since the interested reader will be

3 Whether or not this terminology is natural is unclear. The idea of instantaneous
gain and the gain on the interval [T, T + AT] is obvious and clearly related to
the feedthrough in a system. The uniform instantaneous gain and the uniform gain
on the interval [T, T+ AT] are also related to the feedthrough in a system but in
addition take into consideration that the state of the system could be different.

¢ The type of proof given here can be completely imbedded in a contraction-
mapping argument, thus avoiding the argumentation on consecutive intervals. It
involves redefining the norm of Piy,.arx to the equivalent norm

7
“Ptu+nATx” L z P,z- ” (PtoﬂAT - Pto+(,-—1)A2')x“7
=1

with p; appropriately chosen nonzero constants. Both arguments are tedious and
painful. The one given here appears to be the more transparent one. The contraction-
mapping argument is somewhat more sophisticated and yields an important side
result: it shows that the successive approximations e,,; = —Ge, + u converge on
any interval [t,, #, + T to the solution and it gives a (more or less) explicit bound
on the rate of convergence and on the error. Similar ideas can be found in References
2,3.
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quite familiar with these arguments, let a somewhat sketchy proof
therefore suffice.

Consider first case 1. The feedback equations (FE) can be written
ase = —Ge + uwithu = (uy,uy), e = (e5,¢,;), and Ge A (Gyey, —Ghey).
Consider the product space W, X W, and its extension W, X W,
Let oy & |PpyarGeProraria and ay & [PrarGiPryaria.  Let
AT > 0be such that x;¢, < 1. Such a AT > 0 exists by the assumptions
of the theorem. Consider now the equivalent norm on Wy X W,
defined by

lxlh = 1 Gerxll 2 By Ixllyp, + B2 Ixallwr,

with o > B,871 > o, Such a f; and B, exist since oy, < 1 A simple
calculation now shows that Pp  apGPp ap is a contraction on
Wyr, Toraze X Wair,, TotAT): It thus follows that the operator
Ppard + G)Ppap is invertible on the spaces restricted to the
interval [Ty, T, + AT). The argument is then repeated on consecutive
intervals, and it follows from continuity that these intervals will cover
the whole half-line [Ty,c0). This argument thus yields existence and
uniqueness of solutions and condition W.1 for well-posedness. Causality
of the inverse follows from the fact that the invertibility is based on the
convergence of the successive approximations e, = Ge, + u, n€lt,
with e, arbitrary. This approximation technique then yields causality
of the inverse when used together with the above construction of the
solution. Condition WP.2 for well-posedness hence follows. Notice
the conditions WP.1 and WP.2 did not use the uniformity of the gain.
The argument given here thus also proves Theorem 2.16. Condition
WP.3 follows readily from this uniformity and the successive approxi-
mations on consecutive intervals, To show condition WP.4, observe
that the first part of this theorem yields, for ¢ < 0 sufficiently small,
the existence, causality, and Lipschitz continuity of the operators Fj,
and Fj, introduced in condition WP.4.

To show that (I + G)(uy,uy) = lim 4, lim, .o (Fy,(uy,4s), Fy,(uy,u5)
one proceeds as follows: Let —e > 0 be fixed and consider the operator
G.defined by G.(ey,e;) = (—T.Ge,, Grey). Lete, € Wy, X W,, and con-
sider now the successive approximations obtained by defining ¢, =
—G.e, + uand e’ = F(e,), where Fis the operator on the right-hand
side of the equation (PFE). By the strong convergence (assumption 4
of condition WP.4) it follows that for all nel*, lim,,q€j, =

. Moreover, lim,_,, ¢, = €; and lim,_, ,, e, = €, and these limits
are uniform since —e > 0 (in fact, all series mvolved are really
finite series). Thus lim,_, e; = ¢*. Comparing now the solutions of
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e = —G.e° + uand e = —Ge + u, one observes that they also can be
obtained by successive approximations and that the convergence is, by
the fact that the product of the instantaneous gains is less than unity,
uniform in e. Thus lim., ¢° = e, as claimed. This procedure is then
continued on the successive intervals. It remains to be shown that the
operators G, F;, and T,G,F;, are strongly causal. This, however, is
immediate since for all —e > 0 there is a delay in the loop. This ends
the proof for the nonlinear case.

The refinement for linear systems follows essentially the same lines
as the nonlinear case but with the contraction mapping principle
replaced by Cacciopoli’s corollary (Ref. 4). The same recursive
algorithm works, and the argument only changes in detail. These
details are left to the reader.

4.3.4 Discussion of the Well-Posedness Condition

Theorem 4.1 imposes a restriction on the amount of feedthrough in
G. Some important particular cases are given in Corollaries 4.1.1-4.1.3.

Definition: Let F be a causal operator from W,, into itself. Then F is
said to delay all inputs if for some € > 0 the operator F, defined as
Fx(t) & Fx(t 4+ €) is also causal (i.e., F can be cascaded with a
predictor and the composition remains causal).

COROLLARY 4.1.1
The feedback system described by the equations (FE) is well posed
if the open loop operator G,G, delays all inputs.

Proof: This corollary follows from Theorem 4.1.

COROLLARY 4.1.2

The feedback system described by the equations (FE) is well posed
if the operator G, is strongly causal, uniformly with respect to past
inputs.

Proof: This corollary follows from Theorem 4.1 and the fact that G,
is locally Lipschitz continuous. :

An important example of a strongly causal operator is when the
output y is related to the input # through the ordinary differential
equation

X(2) = f (x(1),u(),1)

y(1) = g(x(1),1)
with ¢ > ¢, and x(¢t = ¢)) given, where x€ B,, ucB,, and y€ B,
with B, B,, and B, given Banach spaces, and f and g are continuous
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in ¢ for ¢ > t, and Lipschitz continuous on respectively B, X B, and B,.
It is easy to show that G defined by y & Gu is then a well-defined
strongly causal operator, uniformly with respect to past inputs, mapping
from LB« into L2y, 1 < p < .

Definition: Let g be an operator from B X [T,c0) into itself. Then the
operator G defined by y(t) & g(u(t),t) will be called the memoryless
operator with characteristic g.

COROLLARY 4.1.3

Let Wy = LB(Ty,©), 1 < p < o, and GoG, = G’ 4 G’ be linear,
with G’ a memoryless operator and G” strongly causal, uniformly with
respect to past inputs. Assume that the characteristic of G, g, is
continuous in ¢ on [T,,o0) and continuous on B. Then the feedback
system described by the equations (FE) is well posed if g satisfies for
some « < 1 and all ¢ in any finite interval the inequality

1/N
lim sup (M) La<l.

N—ow u1€B1 Hulll
u1¥0

Cénversely, if for some integer N > 1, some element , € B,, some
t > f,, and some 4, |4] > 1, the characteristic satisfies g¥(uy,t) = Auy,
then the feedback system described by the equations (FE) is ill posed.

Proof: The well-posedness part is a simple consequence of Theorem
4.1. The ill-posedness part evolves along the lines of Example 3 of Sec-
tion 4.3.2. Details of the proof can be found elsewhere (see Ref. 5).

Well-posedness thus results if the spectral radius of g is less than
unity, and ill-posedness results if g, has an eigenvalue outside on the
unit circle for some ¢ 3> f,. In particular, if B, is a finite-dimensional
space, then the condition that all the eigenvalues of g be inside the unit
circle for all ¢ > 1, becomes a necessary and sufficient condition for
well-posedness. It can be shown, moreover, that the decomposition of
G,G, as given in Corollary 4.1.3 is canonical for linear systems.

Remark 1: The question of well-posedness on the extended space when
the time-interval of definition is (— o0, o) is much more intricate and
is intimately related to the continuity of the feedback system. This
aspect will be further discussed in Section 4.6.7

7 See also Reference 6. The author is nor convinced, however, that the study of

feedback systems with the time-interval of definition (—,+-c0) rests on physical
grounds.
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The result obtained in Theorem 4.1 has important implications for
the engineer who is modeling a feedback system. Since it is not always
desirable to model with extreme accuracy, it often happens that one
likes to model the open loop with a feedthrough. Theorem 4.1 then
gives very specific constraints on this feedthrough for well-posedness.
These conditions are, moreover, all but necessary and sufficient for
linear systems. If the conditions are not satisfied and the feedthrough
is too large, then the feedback system will most likely be ill-posed and
the mathematical model should be modified. This will probably most
easily be done by taking into consideration some higher-order effects
until the desired limitation on the feedthrough is obtained. This will of
course generally augment the complexity of the system, in particular
the dimension of the state space.

Remark 2: One of the conclusions of well-posedness states that
lig)l ljn})(F;;_(ul,uz),Fg;_(ul,uz)) = + G M(uyus),

and the limits on the left-hand side are, somewhat unfortunately, to be
taken in that specific order. An example which shows the necessity of
this unfortunate situation is a feedback system with the gain k(¢) = 1
for Ty, <t < Ty + 4, 4 > 0, and zero otherwise, a delay of length «
in the forward loop, and a unit feedback. It is then clear that if 1 — 0
and ¢ — 0, the feedback system — albeit well posed — yields a non-
existent limit for limy, (F;,(uy,up), F5,(uy,up)) for A > 0. Notice also
that this difficulty remains when the inputs are assumed to be smooth.

4.4 Stability and Instability

From a mathematical point of view, stability is analysis: given a
mathematical equation, one bounds certain quantities. Optimal
control, on the other hand, is synthetic in nature: an unknown is to be
determined in some optimal fashion. Notwithstanding these analytical
aspects, stability theory has been very successfully used as the basis for
the synthesis of feedback controllers.® In fact, essentially all the
classical design techniques are directly inspired by stability considerations.

Modern control theory tends to put heavy emphasis on optimal
control and with it on general optimization theory — the derivation of

8 Similar synthesis techniques should be developed using modern stability theory
concepts. This has not been done as yet although it could lead to successful design
techniques for nonlinear and/or time-varying systems.
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necessary conditions for optimality, and solution techniques based on
these, usually in the form of algorithms. Does this mean that stability
theory is passé or, at best, a side issue in modern control theory? It
appears not. Mathematical optimization theory allows only in the rarest
circumstances for an exact mathematical design of a feedback con-
troller, and, even if this were possible, such a controller is then almost
never implemented, be it because too many sensors are required or
because of some other technical difficulty. Thus, designs based on
optimization theory usually resort to a simplified mathematical model
and deal with sometimes crude approximations at all stages of the
development. It should also be recognized that stability is often the main
concern in control, rather than optimality with respect to a (sometimes
somewhat arbitrary) mathematical performance criterion. In other
words, the main issue in many control problems is to guarantee that a
plant will operate in the neighborhood of a desired operating point in
the face of disturbances. Precisely how the plant returns to this operating
point after a disturbance is quite often of secondary importance. Such
control problems pose two challenges to the designer: 1, an optimization
problem (often a nondynamical optimization to determine the most
efficient steady-state operation, or an open-loop dynamic optimal
control problem to determine the optimal transfer); and 2, a stability
problem (to guarantee that the closed loop control will keep the system
variables around their optimal values). ‘

Two distinct approaches to the problem of stability of systems cdn
be taken. The first — and more traditional one — regards stability as
an internal property of a system: the system is considered as excited by
an initial condition, and boundedness or convergence of the state for
future time is taken as the basic requirement for stability. The second
approach — and, from a modern system theory point of view, a more
logical one — regards stability as an input-output property: the system
is regarded as a mapping between normed spaces, and boundedness of
this map is taken as the basic requirement for stability.

Input-output stability is, from an engineering point of view, a very
significant and important type of stability. The informal definition of
stability given for instance by Nyquist in his classic paper on “Re-
generation Theory” (Ref. 7) is essentially that of input-output stability.
Tt is intimately related to the idea of “stability under constant dis-
turbances” and thus has some classical — although not system-
oriented — foundations. The concept of input-output stability stands in
direct competition with the idea of stability in the sense of Lyapunov.
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Input-output stability considers as the disturbance entering the system
a constantly acting input, whereas stability in the sense of Lyapunov
considers the initial conditions as the disturbance in the system. Which
of these two types of stability is to be preferred clearly depends on the
particular application. In a sense, input-output stability protects
against noise disturbances whereas Lyapunov stability protects
against a single impulselike disturbance.

As is apparent from the definition formally introduced in Section
4.2, the particular state space is not relevant in the concept of input-
output stability and usually does not enter into the development of
stability conditions in an essential way. The simplicity of the results
usually depends — besides on the system itself — on the input and
output spaces. These could of course be very simple, e.g., consisting
of scalar functions of time, even though the state space and the state
.transition process could be very complex. Many systems encountered
in engineering applications do indeed have this property: there are few
output sensors and few control manipulators, but the state space and
the state transition process are very complex and governed, for example,
by a partial differential equation. This particular aspect of input-output
stability makes this concept particularly appealing when studying the
stability of distributed-parameter systems and, more specifically, those
described by partial - differential equations where difficulties of a
theoretical nature generally limit the applicability of Lyapunov-based
methods. :

Lyapunov stability? considers stability as an internal property of a
system, and inputs and outputs do not play a role. This formulation
accounts for the early development and great historical importance of
this type of stability. The study of systems without inputs and outputs
is indeed basic to classical dynamics. The traditional question of the
stability of the solar system, for example, remains a long-standing
challenge and does not involve inputs in any way. It is thus more than
natural that stability of control systems has been studied in this context;
namely, as a condition on undriven classical “dynamical systems.”

® Most of the results presented here have their analogue obtained using Lyapunov
methods. The survey paper by Brockett (Ref. 8) contains one such method based on
spectral factorization and ample references to other works in this area. The same
author presents in Reference 9 another method using algebraic matrix equations
to obtain similar results. This method was originally developed by Popov (Ref. 10)
and Kalman (Ref. 11). A survey paper by the author (Ref. 12) contains further
references to the literature in this area, particularly those applying to distributed
parameter systems as well. '
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This is in spite of the fact that its founders, Lyapunov and Poincaré,
were not primarily interested in control. It should be noted that this
dynamical-system point of view is supported by the work of Maxwell
and much of the subsequent work on regulators. Although Lyapunov
stability remains important and very useful in many control applica-
tions, its basic philosophy can often be challenged and is somewhat out
of line with the modern approach to systems, where inputs and outputs
are the fundamental variables and the state is merely an auxiliary
variable that essentially represents the contents of a memory bank. The
development and success of input-output stability should thus come as
no surprise. This does not exclude that for many applications (for
example, in aerospace problems) Lyapunov stability does represent a
very satisfactory type of stability, and thus its study will remain both
important and fruitful.

4.4.1 Discussion of the Definition of Stability

Although the concept of input-output stability (the type of stability
studied here) is relatively old, its actual development is of a rather
recent date. The basic idea of this type of stability is simple: the system
is considered as a mapping between normed spaces — the input space
and the output space — and boundedness of this map is taken as the
basic requirement for stability. This boundedness of the input-output
mapping then yields a bound on the norm of the output in terms of the
norm of the input.

This informal definition of input-output stability uncovers on close
examination a basic difficulty: it is not a priori clear what to take for
the output space. More specifically, suppose that the output, y, is
given in terms of the input, u, through the mapping y = Fu. If u
belongs to a normed space U, then input-output stability roughly
requires that y belong to a normed space Y. The difficulty is that it is nbt
a priori clear whether the output y = Fu will even be defined for all
u € U. This could of course be added as an additional requirement for
stability; i.e., it could be understood that the definition of stability
requires that u € U imply that y = Fu € Y. Very often, however, the
output y = Fu is actually well defined for all w € U (as an element of
some larger function space), even when the system is not input-output
stable. This possibility of extending the basic input and output spaces is
the underlying idea behind the introduction of extended spaces and is
appropriate when F is causal. The introduction of extended spaces
is the key fact which has led to the very successful application of
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functional methods in stability theory. Extended spaces were in fact
first introduced in this context.1®

The preceding remarks hold — amplified — when. the input and the
output are related through an implicit equation. Such implicit equations
describing the input-output behavior occur specifically when the
system is of a feedback type and are hence of more interest in stability
analysis, since control naturally leads to a feedback configuration and
stability problems. Recall that all the operators in the feedback system
described by the equations (FE) are assumed to be causal.

Causality is a fundamental property of physically realizable systems,
since it merely expresses that past and present output values do not
depend on future input values. There is, however, another fundamental
reason for treating input-output stability in the context of causal
systems only. This reason is that stability requires some type of con-
vergence as ¢ — oo and thus, unless the past and future play essentially
different roles in the original system, such a definition, which reflects
the future behavior only, would appear to be ill founded.

Considering now the actual definition of stability as given in Section
4.2, observe that it requires well-posedness and some type of bounded-
ness of the outputs in terms of the inputs. The first condition is not
really necessary and one could very well define and study stability
without reference to well-posedness. Although such an approach does

not violate any mathematical principles, two points should be kept in
mind:

1. Well-posedness is a much more fundamental requirement than
stability and should always be verified anyway.

2. When a feedback system is not well posed, it does not adequately
describe the physical system it attempts to model. To correct this
situation one will thus have to modify the mathematical model
somewhat and such a modification could very well alter some funda-
mental properties of the feedback system as, for instance, its stability

0 The idea of introducing the concept of extended spaces is due to Sandberg
(Ref. 13) and Zames (Ref. 14). The subsequent development of input-output
stability is largely due to the same authors. Survey articles summarizing their results
are References 15, 16. The last reference is particularly valuable since it bases its
rigorous analysis on a great deal of intuitive and physical reasoning. The approach
followed here is presented in Ref. 6. The idea of extended spaces has appeared
implicitly in the mathematical literature in the context of ordinary and partial
differential equations, Volterra integral equation, and delay-differential equations.
Hopefuily, this concept will eventually be formally introduced in the mathematical
literature for its elegance in treating causal operators and continuations as the one
involved in the proof of Theorem 4.1.
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properties* It is thus natural to make well-posedness an a priori
requirement for stability.

The second ingredient in the definition of stability is the requirement
that inputs in nonextended spaces should lead to outputs and errors
which are also in nonextended spaces. Thus “small” inputs should
generate “small” outputs and errors. Notice also that this boundedness
singles out the zero solution as the desired solution and ensures that a
“small’ noise driving the system will generate a correspondingly “small”
output. It is thus the natural condition to impose on systems which are
regulating the output around a fixed reference (taken without loss of
generality to be zero).

4.4.2 Conditions for Stability

In this section some general and some specific conditions for stability
are derived. The first theorem states a general result which is merely a
rephrasing of definitions.

THEOREM 4.2 (STABILITY)

Consider the feedback system described by the equations. (FE) and
let G map W,, X W,, into itself according to G(e,ez) = (Gses, —Glel)
Then the feedback system is stable if and only if:

1. It is well posed.
2. The inverse ( + G)~? (which exists on W;, X W,, by condition 1)
maps W; x W, into itself.

The system is finite gain stable if and only if in addition
3. The inverse (I + G)* is bounded on W; X W,

Proof: The definition of stability and Theorem 2.1 1ead immediately
to this result.

Theorem 4.2 leads to the following interesting alternate definitions
of stability. '

Alternate definition of stability (I). The feedback system described by

equations (FE) is finite gain stable if and only if:

ST.1. It is well posed.

ST.2. Foranyinputsu; € W,,,i = 1, 2, there exist constants p;, p, < ©©
(independent of the inputs and T') such that for all T'€ S, ||Prel,
1Pyeall, 1Pzyill, IPryall < p1liPrtiall + po | Pptsl.

11 This follows, for instance, from the Nyquist Criterion and the Circle Criterion.
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Alternate'® definition of stability (1I). The feedback system described by
equations (FE) is finite gain stable if and only if:

ST.1. It is well posed.
ST.2. For any inputs 4, € W,, with

sup !|PTui[| <ao,i=1,2,

T>=To T — o

there exist constants p;, p, < co (independent of their inputs and T')
such that

1 1
sup Prell, su Pre,|,
Sup, —T.," e T)goT_To | Ppesll
sup P , Su P
T>T.,T—T0" il b 7, 1P
1
< pysSup 1Pyl + po su p .
R T, Tl F paSup o [Pl

It can be argued successfully that the alternate definition (1) reflects a
more fundamental boundedness of the response and should hence
(although being equivalent to the original definition) be taken as the
basic definition of stability. Definition (I) indeed expresses a bound
on the response in terms of the inputs but allows for a larger and a
somewhat more realistic class of testing inputs. This appears to be an
important point since most noise inputs fall in the latter class and
stability thus indeed expresses some boundedness of the response to
such inputs.

Theorem 4.2 leads to the following theorem for stablhty in terms of
the open loop operator.

THEOREM 4.3

Consider the feedback system described by the equations (FE) and '
assume that:

1. Tt is well posed.

2. The operator G, is Lipschitz continuous on W,

3. The operator G, is bounded on W, or there exists an € > 0 such that
forall x € Wy, and T € S, |PyGox| > € |Ppx].

*# This formulation has interesting applications to problems in which the inputs
are described in terms of random processes.
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Then I + G,G, is invertible on W, and the feedback system is finite
gain stable if and only if (7 + G,Gy)7|| < o on W,.

Proof: The operator I + G,G, has a causal inverse on W;, by well-
posedness. Let u, € W, and u, € W, be given, and let e, € W, be the
corresponding error. Then e; + G,Gye; = u; + GaGre; — Go(Grey + ).
From the Lipschitz condition on G, it thus follows that for all T € S,
IPr(I + G.Geill < |1Ppta]l + |Galla [Pruall- Since (I + G,Gy)™ is
causal and bounded on W,

1Pres] < NI+ GG I1Pr(I + GuGoe -

Thus [|Pre;| < M + GGl + I + GG)7H |Gl llasall-
This shows that e;-€ W, and that the finite gain condifion is indeed
satisfied. Since e, = u; — y,, this yields immediately that y, also
satisfies these conditions. It remains to be shown that e, and y, € W,
and that their gain conditions are satisfied. If ||G,| < oo, this
follows immediately. If the second condition in assumption 3 is
satisfied, then it follows that e |Pqpey)| < | Pyyall, which shows that
e, € W, and that ||le,f] < € ||y,]l. From e, € W, and e, = u, + 4, it
then follows that y; also satisfies such conditions. The necessity part of
the theorem is obvious by letting u, = 0 and applying Theorem 4.2.

Notice that under the assumptions of Theorem 4.3 finite gain
stability results if and only if there exists a real number ¢ > 0 such that
for all Te S and x € W, |Pr(I 4+ G,G)x| 2> € |Prx]l. ‘

It is now a simple matter to use the invertibility theorems of Chapter
2 to obtain more specific conditions for stability.!® These conditions are
stated in the following corollaries.

CoRrOLLARY 4.3.1

The feedback system described by the equations (FE) is finite gain
stable it is well posed, if G, is Lipschitz continuous on W,, if G, is
bounded on W;, and if the open loop is attenuating on W, (i.e., if
GGyl < 1).

COROLLARY 4.3.2
Let W, = W,. Then the feedback system described by the equations
(FE) is finite gain stable if it is well posed, if G, is Lipschitz continuous

13 These results are essentially due to Zames (Refs. 14, 16) and Sandberg (Refs.
13, 15). The only novel part in the Corollaries as presented here is that the operators
G, and G, are never separated (compare the ||G.G,|| < 1 conditions with the
[[Gall 1Gall < 1 condition of Ref. 16). A theorem of the positive-operator type has
appeared in Ref. 17 in a Lyapunov setting.
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on W,, and if there exists a scalar ¢ such that 7 4+ ¢G; has a causal
inverse on W;, such that (7 + ¢G,) is bounded on W, and
(Gy — cD)GL (I + ¢G,)™? is attenuating on W;.

COROLLARY 4.3.3

Let W, = W, be a Hilbert space. Then the feedback system described
by equations (FE) is finite gain stable if it is well posed, if G, is Lipschitz
continuous on W,, and if for some real numbers ¢ < b, b > 0, the
operator G, is strictly inside the sector [a,b], I + 3(a + b)G, has a
causal inverse on W,,, and G, satisfies one of the following conditions:

1. a < 0, and G, is inside thé sector [—1/b, —1/a] on Wy;
2. a > 0, and G, is outside the sector [—1/a, —1/b] on W,,; or
3. a=0, and Gy + (1/b)] is positive on W,,.

COROLLARY 4.3.4

Let W, = W, be a Hilbert space. Then the feedback system described
by equations (FE) is finite gain stable if it is well posed, if G, is positive
on W,,, and if G, is strictly positive and Lipschitz continuous on W;.

Proof: These corollaries follow from Theorem 4.3 and Theorem 2.17,
Theorem 2.18, Corollary 2.20.1, and Theorem 2.21 (occasionally with
the roles of G, and G, reversed). The details are left to the reader.

Remark 1: 1t goes without saying that the roles of G, and G, can be
reversed in the preceeding theorems. These theorems also remain valid
if the conicity or positivity conditions are stated in terms of a causal
factorization of G,G, (i.e., in terms of causal operators G; and G such
that G,G 1= G,G; on W,).

Remark 2: Notice that Corollaries 4.3.1 and 4.3.4 are very intuitive in
nature. Corollary 4.3.1 states the stability results if the open loop
attenuates all signals, and Corollary 4.3.4 states that stability results if
the feedback system can be modeled as the parallel interconnection of
passive systems (see Section 2.8.3).

4.4.3 Conditions for Instability

In this section a specific condition for instability is given. Itisin a
sense the converse of Corollary 4.3.2.

THEOREM 4.4 (INSTABILITY)
Consider the feedback system described by equations (FE) and
assume that it is well posed and that G,G, is Lipschitz continuous on
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W,. Let W; and G’ be a backwards extension of W, and G,G, from
S = [Ty,0) to S’ = (—0,+ ), and assume that G' is Lipschitz
continuous on W} and that for all T € S’, the operator I 4+ G’ has a
causal inverse on Wiz, A {x € Wi, | Ppx = 0}. Let Gy, G; be Lipschitz
continuous causal operators on Wi and I 4+ G’ = I 4+ G;Gy. Then the
feedback system is unstable if there exists a scalar ¢ such that I + ¢Gy
has a noncausal Lipschitz-continuous inverse on Wj and if
(G3 — cDG{(I + ¢Gy)is a contraction on W7i.

Proof: Theorem 2.23 shows that (I 4+ G,G;)™ (the inverse on W)

does not map W, into itself. Thus there is at least one input #, € W} and

u, = 0 such that e, € Wy, — W, which thus yields instability.

CoOROLLARY 4.4.1

Let W, be a Hilbert space, and let the preliminary conditions of
Theorem 4.4 be satisfied. Then the feedback system is unstable if for
some real numbers 0 < a < b, the operator G, is incrementally strictly
inside the sector [a,b] on W), I+ %(a + b)G, has a noncausal
Lipschitz continuous inverse on Wj, and G| is outside the sector
[—1/b, —1/a] on W,.

Proof: This corollary follows the ideas explained in Section 2.8 in
making the contraction condition of Theorem 4.4 more explicit.

The above results can be improved somewhat through linearization.
This will be discussed in detail in Chapter 7.1

4.5 Continuity and Discontinuity

This section is concerned with the continuity and discontinuity of the
feedback system. The definitions of continuity, Lipschitz continuity,
and discontinuity have been given in Section 4.2. Much of the pre-
liminary discussions of stability in Section 4.4 carries over to continuity.

The study of continuity of feedback systems is not standard in the
engineering literature.’® It is, however, an important concept for

14 Related instability criteria (in a much more restricted context) have first been
demonstrated in a Lyapunov setting by Brockett and Lee (Ref. 18). In their present
setting and generality they originate with the author (Ref. 6).

15 Continuity of feedback systems has first been explored by Zames (Ref. 16).
The concept as such does not appear to have had a great deal of success, although
it makes good sense (more so than stability) as a general nonexplosiveness condition
for tracking systems.
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systems for which the desired output is not a priori fixed (in other
words, for tracking systems). The feedback system should then be
viewed as follows: An (a priori undetermined) signal drives a stable
feedback system and generates a desired output. Additive in this input
is an undesired “small” noise component. Continuity then requires the
corresponding output to differ from the desired output also by a
“small’> amount.

4.5.1 Counditions for Continuity
The first theorem on continuity is merely a rephrasing of definitions.

THEOREM 4.5 (CONTINUITY)

Consider the feedback system described by the equations (FE) and
let G map W, X W,, into itself according to G(e,,e;) £ (Gyey, —Ghey).
Then the feedback system is continuous if and only if:

1. It is well posed.
2. The inverse (I + G)™' (which exists on W;, X W, by 1) maps
W, X W, into itself and is continuous on W; X W,.

The system is Lipschitz continuous if and only if in addition:
3. The inverse (I + G)! is Lipschitz continuous on W, x W,.

Proof: The definition of continuity and Theorem 2.1 lead immediately
to this resuit.

Theorem 4.5 leads to the following interesting alternate definitions
of continuity.

Alternate Definition of Continuity (I). The feedback system described
by equations (FE) is (Lipschitz) continuous if and only if:

C.1. It is well posed.

C2. Let u; € W, i = 1, 2, be given (but arbitrary), and let e; and Vi
be the corresponding errors and outputs. Then there exists, given
any € > 0, a § > 0 such that the inputs u;, + Au; with Au, € W, and
lAuyll, |Auy| < e yield corresponding errors, e; + Ae,, and outputs,
Y: + Ay;, with Aey, Ay, € Wy, Aey, Ay, € Wy, and [[Aey |, [[Aey,
Ay, 1Ayl € 6 (for some fixed K < oo, the inequalities hold
with 8 = Ke).
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Alternate Definition of Continuity (II). The feedback system described
by equations (FE) is Lipschitz continuous if and only if:

C.1. It is well posed.

C.2. There exist constants p,, p, < o such that any !V, u® e W,
i =1, 2, yield corresponding errors, etV e{*, and outputs, yV), y{2)
satisfying | Pp(e(™ — e, [Pr(el — e, [Pr(y® — y&,
1Pr(y — Y@ < py 1P — ) + pa 1Pr(uf) — ufP)]| for
all TeS.

Alternate Definition of Continuity (III). The feedback system described
by equations (FE) is Lipschitz continuous if and only if: -

C.1. It is well posed.
C.2.* There exist constants p;, p, < oo such that for any u{V, u{* € W,
with

sup “PT(uél) - u?))“ < 0, i= 1’ 2s

=70 T — 0

the corresponding errors and outputs e{*’, e{® and y, y{* satisfy

2

su Pr(ei” — ei®)l, sup 1P x(es” — e,
T>Iq)'o T_T, | Pp(ey 1 rome T — T, Uy 2v 2
sup 1P — ¥, Sup IP2(ys — yi)l

T2=To T — To =Ty T — To

< p; sup IPp(ut? — ui®)|
T>To = 1
.+ pasup 1P (g — ui).
T2Te - 1Ly
THEOREM 4.6

Consider the feedback system described by the equations (FE) and
assume that:

1. It is well posed

2. The operator G, is Lipschitz continuous on W,

3. The operator G, is Lipschitz continuous on W; or there exists an
e > Osuch that for all x,, x, € Wy, and T € S, |[Pp(Goxy — Goxo)l| 2>
€ [|[Pr(x, — x3)ll.
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Then I + G,G, is invertible on W, and the feedback system is Lipschitz
continuous if and only if (I + G,G;) |, < c© on W,.

The proof of Theorem 4.6 evolves completely analogously to the
proof of Theorem 4.3 and is left to the reader.

Notice that under the assumptions of Theorem 4.6 Lipschitz con-
tinuity results if and only if there exists a real number € > 0 such that
for all T e S and x,, x, € W,

1Pr({ + GoG)xy — Pp(I + GyGx|i 2 € |Ppxy — Prx,l.

It is now a simple matter to use the invertibility theorems of Chapter
2 to obtain specific conditions'® for continuity. These conditions are
stated in the following corollaries.

COROLLARY 4.6.1

The feedback system described by the equations (FE) is Lipschitz
continuous if G; and G, are Lipschitz continuous on their domain and
if the open loop is contracting on W; (i.e., |G,G,|lx < 1).

COROLLARY 4.6.2

Let W, = W,. Then the feedback system described by the equations
(FE) is Lipschitz continuous if it is well posed, if G, is Lipschitz
continuous on W,, and if there exists a scalar ¢ such that I + ¢G, has
a causal inverse on W,,, the inverse (I + ¢G;)™* is Lipschitz continuous
on W, and (G, — cI)G(I + ¢G,)™! is contracting on W,.

COROLLARY 4.6.3

Let W, = W, be a Hilbert space. Then the feedback system described
by equations (FE) is Lipschitz continuous if it is well posed, if G, is
Lipschitz continuous on W,, and if for some real numbers a < b,
b> 0, the operator G, is incrementally strictly inside the sector
[a,b], I + (¢ + b)G, has a causal inverse on W,,, and G, satisfies one
of the following conditions:

1. a< 0, and G, is incrementally inside the sector [—1/b, —1/d]
on Wy, ,

2. a > 0, and G, is incrementally outside the sector [—1/a, —1/b] on
Wi,; or

3. a = 0, and G, + (1/b)I is incrementally positive on W,,.

** These conditions are again essentially due to Zames (Refs. 14, 16). Compare,

however, the |G.G,||s < 1 condition with the ||G,{s ||Gi]la <1 condition of
Ref. 16. -
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COROLLARY 4.6.4

Let W, = W, be a Hilbert space. Then the feedback system described
by equations (FE) is Lipschitz continuous if it is well posed, if Gy is
incrementally positive on W,,, and if G, is incrementally strictly
positive and Lipschitz continuous on W;.

Proofs of these corollaries follow from Theorem 4.6 and Theorem
2.12, Theorem 2.13, Corollary 2.15.1, and Theorem 2.16. The details
are left to the reader.

Corollaries 4.3.1 and 4.3.4 are again very intuitive in nature. In all
of the theorems just cited, the roles of G; and G, can of course be
interchanged or replaced by a causal factorization of G,G;.

4.5.2 Conditions for Discontinuity

It would be possible to give here some specific conditions for dis-
continuity. These would, however, be identical to the instability
conditions of Theorem 4.4 and Corollary 4.4.1. Since instability implies

discontinuity (stability is actually continuity at the origin), these

conditions are thus quite conservative. Sharper conditions will be given
in Chapter 7 when discussing linearization.

4.6 Concluding Remarks

4.6.1 Sensitivity
A concept related to stability is that of sensitivity. Two types of

sensitivity are usually considered in the literature: the first is sensitivity

with respect to measurement noise, and the second is sensitivity with
respect to modeling errors.
Consider the feedback system shown in Figure 4.6 and the open-loop

n
+ y
+
u 6 G n >

C, |

Figure 4.6 Feedback System
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Figure 4.7 Equivalent Open-Loop System

system shown in Figure 4.7. The system G is called the plant, C, is the
Jorward-loop compensator, C, is the feedback-loop compensator, and C
is the open-loop compensator. 1t is assumed that all these operators are
well-defined causal mappings between appropriate extended spaces and
that they satisfy the usual regularity conditions. Let W, be the input
space and W,, be the output space.

It is assumed that under the nominal operating conditions, # = 0,
the feedback and the open-loop systems are equivalent. This imposes
certain conditions on the compensators C;, C,, and C. In fact, this
restriction is equivalent to the condition that GC,(I + C,GCy)™* = GC
on Wi,.

One of the primary purposes of feedback is sensitivity reduction.
For output noise this means that for the same noise n, y differs less
from its nominal value when the feedback system is used than when the
open-loop system is used.

Definition: Let u € W;, be given and let y € W,, be the corresponding
solution with n = 0. This output will of course be the same for the
open-loop system as for the feedback system. Let u € W;, and n € Wy,
be given and let y, € W,, be the output of the feedback system and
Y2 € Wy, be the output of the open-loop system. Then in general
Ys # y1. Let 0y, = y; — y and dy, = y, — y = n. Then the feedback
system is said to reduce the sensitivity with respect to output noise if it
is well posed and if for all u, € Wy, Uy € Wy,, and T €S, [Py 0y, <
|Pp 0psll = |Ppnf|. One can also define in the same way sensitivity
reduction along a particular input (usually taken u = 0). The particular
type of sensitivity reduction one wants again depends on the application.

The relationship between sensitivity reduction and finite gain
stability is clear: for sensitivity reduction (around u = 0) one wants
I + Go(—GyYll <1, whereas for finite gain stability one wants
I + Go(—GYY < oo. Stability can thus be regarded as a property of
a system with a finite sensitivity coefficient whereas sensitivity reduction
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4.6.3 Doubly Infinite Time-Intervals of Definition

Besides having dubious physical significance, it turns out that the
case in which the time-interval of definition, S, is (— c0,+ o0}, leads to
. some mathematically very severe questions of well-posedness.

On examination of the definitions of stability and continuity as
presented here, one observes that well-posedness of the feedback
systems is taken as one of the conditions. This is #ot standard although
it is, in the author’s opinion, the most logical way to proceed. It is
entirely possible, however, to separate the questions of well-posedness
on one hand and stability and continuity on the other. The “advantage”
of such an approach is that this allows one to study these two questions
separately. This, however, is somewhat fallacious since both questions
will eventually have to be faced and since the most logical approach is
to examine the well-posedness question first. Well-posedness indeed
expresses a very fundamental property which needs to be satisfied in
order for any analysis to be well founded. Moreover, well-posedness and
stability are not really unrelated in the sense that if a particular feedback
system is not well posed, then the model has to be modified, and such
a modification will in general alter some fundamental properties of the
feedback system including, possibly, its stability properties. It suffices
to examine the Nyquist criterion or the circle criterion with the intro-
duction of a small delay in the loop as a convincing illustration of this
fact. '

If one, however, treats separately the questions of well-posedness
and stability or continuity, then it turns out that the specific conditions
obtained in Corollaries 4.3.1, 4.3.2, 4.3.3, and 4.3.4 and Corollaries
4.5.1, 4.5.2, 4.5.3, and 4:5.4 are in fact still valid as conditions for
stability or continuity.

As far as Theorem 4.4 on instability is concerned, there is then of
course no need for backwards extensions of the involved operators
when §' = (— 00,4 0) and instability results with the conditions of the
theorem or its corollary on the operators G; and G, directly. The basic
idea behind the resulting instability theorem is essentially the following:
Let S = (— 0,4 o0). Then the feedback system described by equations
(FE) is discontinuous (which is then defined without involving well-
posedness) if the operator (I + G,G,) has a noncausal inverse on W,.
This in fact then leads to the following phenomenon: Assume that a
feedback system is discontinuous with § = (—o0,4+00) and that
I + G,G, is invertible on W, but that this inverse is not causal (not all
discontinuous systems need have this property but some do, as
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illustrated by Theorem 4.4). Then I 4+ G,G, is not invertible on Wirp &
{(xeW|Ppx =0, Te(—w,+0) given} for ar least one Te€
(—c0,+0). Weak additional assumptions on G,G; (see Lemma 2.2)
thus imply that in fact (/ + G,G,) will not be invertible on Wiy A&
{xeW|Ppx =0, T'e (—c0,+0) given} for any T' € (— o0, o).
Again, weak assumptions on G,G; (see Section 4.3) ensure that
(I + G4Gy) will on the other hand have a causal inverse on W, 4., for
any 7”& (—o0,+ ). Hence for such discontinuous systems there
exists for any T'e (—co0,+ ), an input u; € W; and u, =0 with
Ppuy = 0 such that at least two solutions exist to the equations
describing the feedback system (and thus for linear systems an infinite
number of solutions exist). One solution yields e, € W through e, =
(Z + G.G)'uy with (I 4+ G,G,)™* the noncausal inverse on W;, and
the other yields e, € Wy, e; ¢ W1, through e, = (I + G,G,) 4y, with
(I 4+ G,G)™! the causal inverse on W, p,. It is clear that the latter one
is the “‘physical” solution in the dynamical-system sense and that the
first one (which extends to — o) is a mathematical artifact.

A study of the above issues leads to at least one partial result con-
cerning well-posedness of feedback systems with § = (— 0,4+ 0).

~ Since it is of some mathematical interest, it is given below. First,

however, one more definition is given.

Definition: Let S = (— 0,4+ ), let W be a Banach space, and W, be
its extension. Assume that the family of projection operators {P},
TesS, is a resolution of the identity on W; i.e., for all xe W,
limgp., ., Ppx = 0and limy_,,, Ppx = x and let G be a causal operator
from W, into itself. Then the feedback system described by the equation
(I + Ge = u is said to be continuous if for any given u e W every
solution e € W, to the above equation actually yiclds e € W and if given
any u € Wand e > 0 there exists a 6 > 0 such thatif || du]| < e then any
solutions e and e + de corresponding to, respectively, ¥ and u -+ du
satisfy [|dell < 8.

THEOREM 4.8

Assume that G is a causal operator on W, and that (I + G) has, for
any 7€ § = (— 0,4 ), a causal.inverse on Wy, A {x € W, |PTx =
0, T € S given}. Then the feedback system described by the equation
(I + G)e = u is continuous if and only if I 4+ G has a continuous
causal inverse on W {and hence on ).

Proof: Since the feedback system is continuous and since 7 + G has,
for any T € S, a causal inverse on Wy, (I + G)* maps for any T € S,
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Wy L {x € W|Ppx = 0} into itself and is continuous on W. Since
{Pr}, Te S, is a resolution of the identity, the family of subspaces
{Wy}, TES, is dense in W. Since (I + G)' is thus continuous on a
dense set, a continuous inverse exists on the whole space, and this
inverse may be obtained by a continuous extension of (I + G)™. A
simple argument by contradiction then shows that this inverse is
causal as well.

The value of the Theorem 4.8 appears to be that it gives a condition
for well-posedness (causal invertibility of (/ + G) on W, — other
considerations are ignored here) when the time interval of definition
S'is (— c0,+ o). This condition is very strong indeed, since it requires
continuity of the feedback system.
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5 The Nyquist Criterion and the
Circle Criterion

The results obtained in the previous chapter will now be applied to a

particular class of linear feedback systems. They consist of a linear time-

invariant system in the forward loop and a linear memoryless gain in
the feedback loop. The case in which this gain is constant will be given
special attention, and for this case necessary and sufficient conditions
for stability will be obtained. For the time-varying case sufficient
conditions for stability and instability will be derived. The results
presented in this chapter are extensions of the Nyquist criterion and
the circle criterion. '

5.1 Mathematical Description of the Feedback System

Consider the feedback loop shown in Figure 5.1. In terms of the
notation used in the previous chapter let the time-interval of definition
S = [Ty,0), V1 = Vo= R, i.e., uy, €5, y1, Uy, €3, ¥y axe real-valued
functions of time on [T}, 0), and let G, and G, be formally defined by

G0 &3 gxtt = 1) + [ = xt) as

(Gox)(1) & k(1)x(2)
where {z,}, n € I'", is a sequence of real numbers with z, = 0, ¢, > 0 for
n > 1, g(t) is a real-valued function on R with g(¢) = 0 for 1 < 0 and
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g € L,(0,0), {g,}, n € I', is a real-valued sequence satisfying

> gl <

{n|t,<T}
for all T'€ [0,00), and k(?) is a real-valued function on [T,,c0) with
k(t) € LwB(TO’w)'
The functional equations describing the feedback system are
ey(t) = wuy (1) — ys(1)
ex(t) = uy(¢) + y1(2)
»1(#) = (Gren)(1)
Ja(t) = (Gae2)(2)

" (LFE)

LINEAR

TIME- INVARIANT| %1

CONVOLUTION
OPERATOR

!

TIME-VARYING
GAIN .

Figure 5.1 The Linear Feédback System under Consideration

The solution space will be taken as L_,(T,0), 1 < p < oo, with
L, (Ty, ) defined in the usual way. The inputs u,, u, are assumed to
be given elements of L ,(T;,0).

A solution to the above feedback equations thus consists of a
quadruple of real-valued functions on [T;,%0), {ej,es,y1,y5} With
€1, €3, Y1, Vo € L,,(Ty,o0) and which satisfy the feedback equations
(LFE) for almost all ¢t > T,,.

The operators G, and G, have been studied in detail in Chapter 2.
It follows readily from Minkowski’s inequality and some direct
estimates that G, and G, map L, (7}, ) into itself. They are in fact
both locally Lipschitz-continuous linear operators on L,,(T,,0), but
for boundedness additional conditions are necessary. G, is moreover a
time-invariant operator and G, is time invariant if and only if k(¢) is
almost everywhere equal to a constant.
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The feedback system described by the equations (LFE) thus satisfies
the assumptions W.1-W.4, G.1-G.3, and L.1, and the theory developed
in Chapter 4 is applicable.

The values of the gain k() is of course what is important for the
characterization of the operator G,. The operator G, has been charac-
terized by the function g and the sequence {g,,?,}, but it is, both from a
mathematical and an engineering point of view, much more conveniently
characterized by its Laplace transform. More precisely, assume that for
some real number o, g(t)e°t € L,(0,0) and {g,e %"} € /;. Then the
Laplace transform of Gy,

G(s) & D ge i +f g(e st dt
nelt 0

exists for Re s > s andis :':malytic in Re s > o. Let x(¢) be such that for
some real number o', x()¢ " € L,(Ty,0) then

X(s) éfwx(t)e st dt

To

exists for Re s > ¢’ and the function

¥(s) _A_J: (G o)D) dt

exists for Re s > o, o' and in fact equals G(s)X(s).

5.2 Well-Posedness

The first question is that of well-posedness. A simple additional
condition is therefore required. More precisely:

THEOREM 5.1

Consider the feedback system described by the functional equations
(LFE) with L,,(T,,0), 1 < p < 0, as the solution space. Then this
feedback system is well posed if and only if [|gk (Dl L (7.0 < 1.

Proof: The sufficiency part of the theorem is a direct application of
Corollary 4.1.3. Indeed, the open-loop operator is the sum of a strongly
causal operator and a feedthrough which is precisely the time-varying
gain gok(t). Since the gain on L,(T,,T), 1 <p < o, is given by
gk .oy (g9 < 18K 2oy, 0)» SUficiency follows.

Next, assume that the gain k() is replaced by the gain k'(t) =
k(t) + r. Then for some |r| < €, no matter how small «, [gok'(£)| > 1
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on a set on nonzero measure. Assume now that a delay of length ¢’ 5 0
is inserted in the loop and consider as the input a unit step starting at
T' > T,, where T” is such that any interval [T',T’ + o], ¢ >0,
contains a set of nonzero measure, where |gok’(#)| > 1. It can then be
shown that the response to this input will lead to an ill-posed situation
on L, (Ty,),1 < p < o, in the sense that lim,_,,lim__, e, will not
equal the response obtained by taking ¢’ = ¢ = 0. The mechanics of
this explicit calculation are similar to those used in Corollary 4.1.3.
The details are left to the reader.

Theorem 5.1 shows, among other things, that the case where the
forward loop represents a strongly causal system (g, = 0) is the only
one which should be used in connection with an unbounded gain k(¢)
in the feedback loop.

5.3 Stability and Instability in the Time-Invariant Case

The stability results obtained in this section essentially constitute the
classical Nyquist criterion.! The case under consideration is where
the feedback gain k(¢) equals a constant almost everywhere and where
the system is open-loop stable (the kernel of the forward-loop convolu-
tion operator is integrable). First, however, several definitions are in-
troduced.

Definitions: Let LA denote the algebra consisting of elements de-
termined by a real-valued L,(— 0, co)-function g, a real-valued
l-sequence {g,}, n €I, and a sequence of real numbers {z,}, n € I*.
Addition of x; = (g1,{gn.tx}1) and x; = (ga,{gn,ts}s) is defined as
X1+ Xz & (g1 + £2,{gn-ta}s), where the sequence {g,,?,}; consists of
exactly all pairs {g,,,,}; and {g,.2,.},. Multiplication by scalars is defined
as ax = a(g,{gn.2n}) £ (ag,{ag,.t,}), and multiplication of elements is

* The Nyquist criterion is well known, although many of the engineering texts
which treat this stability problem a priori equate stability with the absence of right-
half-plane singularities of the closed-loop frequency response. Although this is
clearly valid for instance in the case of rational functions, this equivalence is far from
obvious for more general transfer functions. The results stated in these texts should
thus be carefully interpreted when applied to nonrational transfer functions since it
is known that one indeed can get into difficulties for sufficiently complex transfer
functions (see Ref. 1). Recently Desoer (Refs. 1-4), recognizing this difficulty, has
obtained rigorous derivations to essentially the level of generality treated in this
chapter (but with multiple inputs). These papers, however, treat only stability,
whereas the results obtained in this section treat instability as well.
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defined by
XX & (J-jmgl(t — 7)g(7) dT + Z (gag2(t — (t)1)

+ E (gn)2g1(t - (t'n)z)’ {gm t'n}S),

where {t,}s = {t.}1 ® {f.}s (i.e., all elements of the form ¢, = 1, + Iy,
where ¢, and 7, range over {t,}, and {t,}; respectively), and the
element g, corresponding to #, in {g..%.}a is given by g, 8, With
ty, = tn, + I, Let the norm on LA be defined by ligllz, + 1{ga}l:,. It
can be shown that LA as defined above is a real commutative Banach
algebra with the unit e A (0,{gn>ta}) Where g = 1,12, =0 and g, =0
otherwise. :

Consider now the subset of LA, LA, which consist of all elements
of LA which satisfy g(#) = 0 for ¢ <.0 and ¢, > 0 for all n. It is easily
verified that LA+ is a subalgebra and that it contains the unit. The
details of the proofs of the above claims can be found elsewhere (Ref.
5, pp. 141-157).

The Laplace transform of an element of L4 is defined as the function
of the complex variable s defined by '

G(s) & Zog,.e‘*‘" + f_ g(f)e™*" dt.

It is well defined and uniformly continuous along Re s = 0 for clements
- of LA. Tt is well defined and analytic in Re s > 0 for elements of (LA)™.

The importance of the algebras L4 and LA™ stems from the fact that
they define subspaces of L (L, (— ©,+ ), L,(—0,+ ), 1 < p <K o
namely those subspaces formed by convolution operators with kernels
consisting of an integrable function and a summable string of impulses.
Infact, LA represents “almost” all time-invariant operators in#(L,,L,)
and by and large all those of interest in mathematical systems theory.
Multiplication and addition in L4 correspond to those operations in
Z(L,,L,). Moreover, LA forms a regular subalgebra of & (Ly,Ly),
F(Ly,Ly), and £ (Ly,L,,) in the sense that every element of LA which
is invertible in Z(Ly,L,), for example, is invertible in LA itself. LA
is of particular importance; the corresponding elements of Z(L,,L,),
1< p< o0, are causal.

The next lemma plays an essential role in the results which follow.
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Lemma 5.1
_ Let (g,{g.,,,f,,}) € LA*. Then (g,{g..t,}) is invertible (regular) in LA*
1; a(t)ld only if infg, .., |G(s)| >0, and in L4 if and only if infg, ,_, |G(s)|
A proof of this classical result can be found in most books.treating
convolution operators (Ref. 5, pp. 150, 155). °
Application of the above lemma leads to the following necessary and

sufficient condition for stability of linear time-invariant feedback
systems.

THEOREM 5.2

. Assume tha’F the feedback system described by the functional equa-~
tions (LFE) is well-posed and that k(z) = K almost everywhere.
Assume. furthermore that {g,} €/, and g € L,(0,0) (i.e., the feedback
system is open-loop stable). Let G(s) denote the Laplace transform of

(g:{gn:t,}). Let Ly(Ty, ) be the space with res i ility i
nsln ) pect to which stability is
defined. Then the feedback system is stable if and only if !

inf {1 4+ KG(s)| > 0.
Res=0
Proof: Tt 'suﬂices by Theorem 4.3 to demonstrate that the operator
I+ G,G, is mve-rtlble on L,(T,,0) if and only if the conditions of the
Theorem are satisfied. There are three mutually exclusive possibilities:

1. infresso |1 + KGi(s)] > 0;
2. infre,_p |1 + KGy(s)| = 0; or
3. infgesno |l + KGy(s) =0  and  infry,_o |l + KGy(s)] > O.

It needs to be shown that case 1 yields invertibility and that in cases 2
and 3, the operator I 4+ G,G, is not invertible on L,(T,,0). In the first
case, it follows from Lemma 5.1 that / 4 G,G, has a bounded causal
inverse on L,(T,,0) which yields stability. Assume next that case 2 is
satisfied; then I + G,G, multiplies the limit-in-the-mean transform of
the element on which it operates by 1 + KG(jw) and thus the only
candidate for the inverse is the operator which divides the limit-in-the-
mean transform of the element on which it operates by 1 + KG(jw)
Thus for this inverse to be bounded, (1 + KG,(jw))™ ought to exist.
for almost alll w € R and belong to. L. Since Gy(jw) is continuous and,
?y assumption, inf, g |1 + KG(jw)| = 0, the operator I + G,G, has
in that case no bounded inverse on L,(T,,c0), which thus yields
instability. Assume finally that case 3 is satisfied. Lemma 5.1 then
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implies that the operator I + G,G,, defined on L,(— 0,4 0) by the
same formal expressions as G, and G, (but with the lower limit in the
convolution integral defining: G, replaced by — c0), has a noncausal
inverse on L,(— 0,4+ ), which thus yields the noninvertibility of
I 4+ G,G,; by an argument similar to the one used to prove Theorem
2.22. N

Remark 1: The above theorem is well known, although the usual
proofs assume the equivalence of stability and the absence of singulari-
ties of (1 + KG(s))'in Res > 0, and lack therefore a certain amount
of justification (see Ref. 1). Notice that since the system is linear,
instability implies that there exists an input u, € L,(T,,0) with 14, = 0
such that e, and e, € L,,(Ty,0) — Ly(Ty,0). )

Remark 2: 1If stability is defined with respect to L,(T;,0),1 < p € o,
then it is clear that the condition of the theofrem is still sufficient for
stability. If the condition fails because case 3 prevails, then instability
results. These claims follow the proof of Theorem 5.2. If the condition
fails because case 2 prevails, the situation is more complex. It can
still be shown that then instability results at least when p = 1 or oo,
since I + G,G, is invertible on L (Ty, ), p = 1, o, if and only if it
is invertible in LA*.

Remark 3: 1t is possible to verify, at least in some cases, the condition
infge,=o 11 + KGy(s)] > 0 by: 1, establishing that inf__5 |1 + KG(jw)|
> 0; and 2, checking whether KG(jw) encircles the —1 + 0j point.?
It has not been possible as yet to completely generalize this condition
to the case under consideration, mainly because it appears to be no easy
matter to give a suitable generalization of the no-encirclement con-
dition. One important particular case is stated below, namely, when
the delays are equally spaced, i.e., when ¢, = nT for some T > 0.

Definition: The argument of 1 4 KG(jw), denoted by 6(w), with
1 + KG(jw) # 0, w € R, is defined as the continuous function with
6(0) = 0 such that for all w € R, 1 4+ KG(jw) = |1 4+ KG,(jw)|e®*

THEOREM 5.3

The conditioninfy, ;>0 11 + KG(s)| > 0isequivalent to the following
conditions:

1. infge,o 11 + KG(s)] > 0, and
2. limy.,, O(N27T1) exists and is zero.

* For a proof of this case when g, = 0 for all #n 3 0 see Reference 6.
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Proof: Let A(s) £ 37 ge~"T and L(s) A [ g(¢)e** dt. The function
G(jw) = A(jw) + L(jw)is the sum of a periodic function 4(jw), and a
bounded function L(jw) that, by the Riemann-Lebesque lemma
(Ref. 7, p. 103), approaches zero as |w| — co. Since infga,.q |l +
KG(s)| > 0 by condition 1, it follows that inf . [1 + KA(jw)| > 0.
Since limy_, ., #(N27T?) exists by condition 2, it follows that the argu-
ment @(w)of 1 + KA(jw) satisfies @®(27T-) = ®(0). Thus by the
principle of the argument (Ref. 7, p. 216), there are no zeros of the
function R(z) = > ?_, g,z" inside the unit circle since R(z) is analytic
inside the unit circle and since the increase in its argument as z moves
around the unit circle equals zero. Thus the function 1 + KA4(s) has
no zeros in Re s > 0. Consider now the contour in the complex plane
shown in Figure 5.2. The increase of the argument of 1 + KG(s) as s

o+jnerT ! -

Cyd 1C3

o-jNewrT ! -

Figure 5.2 A contour in the Complex Plane

moves around this contour is zero for N and o sufficiently large. Indeed,
along C, it is zero by the assumption limy_, O(N27T-') = 0, and
along C,, C;, C, it is zero since G(s) is arbitrarily close to A(s) along
that part of the contour. Hence, 1 + KG(s) has by the principle of
the argument no zeros in any finite part of the half-plane Re s > 0.
It is bounded away from zero in Re s > 0 since it arbitrarily closely
approximates |1 + KG(s)| for large values of [s| in Res > 0. Thus,
|1 + KG(s)| is indeed bounded away from zero in Res > 0, as
claimed. This argument of this proof is easily reversed to yield the
converse of the theorem.

Theorem 5.3 yields a systematic procedure for obtaining the ranges
of the feedback gain K which yield stability and instability. This is
illustrated in Figure 5.3 and requires verifying: 1, that the —1/K point
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ImG(jw)

w=0 Re G{jw)

Figure 5.3 Illustrating the Nyquist Criterion

does not belong to the Nyquist locus G(jw); and 2, that the Nyquist
locus does not encircle the —1/K point.

5.4 Stability and Instability in the Time-Varying Case

All elements are now available to state the circle criterion?® as applied
to linear time-varying feedback systems. Let k., < k be real

max

numbers with k., > 0, and let the critical disk &, be defined as

Im m Im

k 3 o} K. <0<k

mox = ¥min > min max Kmin= O<Kmax

Figure 5.4 The Critical Disk

2 There are several more or less independent and simultaneous sources for the
stability part of the circle criterion. The work of Sandberg (Refs. 8, 9) and Zames
(Refs. 6, 10) has influenced attempts to obtain these results in an input-output
stability setting, Other treatments of the circle criterion will be found in References
11, 12. The instability part of the circle criterion originates — in a more restricted
setting — in Brockett and Lee (Ref. 13), where it is obtained using Lyapunov
methods. It was obtained by the author (Ref. 14) in the framework of input-output
stability. The circle criterion as it is presented here is in essence a direct generalization
of the Nyquist criterion and should thus be of considerable interest in engineering
design. Note that the open loop unstable case is not treated here, in contradistinc-
tion to Reference 13.
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follows (see Figure 5.4):

1. If kppy 2 kyyn > 0, then & denotes the closed disk centered on the
negative real axis of the complex plane which passes through
the points —1/ky;, and —1/ky,,.

2. X kg, < 0and kp,, > 0, then & denotes the outside of the open
disk centered on the negative real axis of the complex plane which
passes through the points —1/k.;, and —1/k,,.

3. If kyy, = 0 and k,, > 0, then 9@ denotes the closed half-plane
Res < —1/kpax-

Let G(s) be the Laplace transform of (g,{g,.?,}) and let ¥+ denote
the set in the complex plane determined by ¥+ A {G(s) | Re s > 0} and
let %° denote the set in the complex plane determined by

%0 A {G(s) | Re s = 0}.
Let

d(2,9") = inf |x — y|,
and let d(2,%° be similarly defined. The set 4° is sometimes called
the Nyquist locus of G,.

THEOREM 5.4

Assume that {g,} €/, and ge L,(0,00) in the feedback system
described by the functional equations (LFE), i.e., that the feedback
system is open-loop stable. Let G(s) denote the Laplace transform of
(g,{g.>tn)). Let Ly(T,,0) be the space with respect to which stability
is defined and assume that the feedback system is well posed. Then the
feedback system is stable if there exist real numbers k., 5 Ky, With?
Kpax > 0 such that &k, < k(2) < k. for almost all ¢ 2> Ty and if
(2,91 > 0.
Proof: It suffices to verify that the assumptions of the theorem imply
that the conicity conditions of Corollary 4.3.3 are verified. Assume
first that k;, and &, are nonzero. Let k., <k, and k0 > Koy
be real numbers such that the disk &, determined by k- and k.,
still satisfies the condition d(£,,%4+) > 0. Such numbers k., and
k., €Xist since 9, is arbitrarily close to & for kg, — kya, and
kpim — kmine sufficiently small but positive. It is now easily verified that
G, is strictly inside the sector [Kp,,Kpmax] 0N Ly(Ty,0) since ki <
Emin S k(1) € kpax < Epay. Furthermore since |go(hmiy + Kmax)/2]
< 1, I+ Gi(kpip + kmax)/2 has by Lemma 5.1 a causal inverse on

min

4 Clearly assuming kmax > 0 does not constitute any loss of generality since this
can always be achieved by replacing G, by —G, and G, by —G,.

\
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L,,(Ty,0). The only thing that remains to be shown is that G, satisfies
the appropriate conicity conditions. Assume first that k., < 0. It is
then clear that G, is inside the sector [—1/kp..r, —1/kpin] 00 Ly(Ty,00)
since G, corresponds to multiplication of the limit-in-the-mean trans-
form by G(jw) and d(2,,9°) > 0. Assume next that ky,;, > 0. It then
suffices to prove that G; is outside the sector [—1/k,;,., —1/ky,y] on
L2, (Ty,0). Since I + Gy(Apin + Kmax)/2 has a bounded causal inverse
on Ly(T,,0) by Lemma 5.1, it thus suffices to show (agam by con-
sidering limit-in-the-mean transforms) that

"(1 + %(k‘min’ + kmax’)G(]w)) 1G(](IJ)“L°° < Z(kma.x' - kmin’)_ly

which is indeed implied by the frequency domain condition of the
theorem. The only case remaining is when k,,;, = 0. This case, however,
follows from positivity considerations.

Remark: If k(r) has no specified upper bound but if k() > kp,, then
stability results if one of the following conditions is satisfied:

1. kpin > 0 and d(2,9%) > 0, where & denotes the closed disk

centered on the negative real axis which passes through the origin .

and —1/k 03

2. kpin < 0and d(2,9%) > 0, where & denotes the outside of the open
disk centered on the negative real axis which passes through the
origin and the —1/k,;, points; or

3. kypin =0and Re G(s) > ¢ > 0forall Res > 0.

In theory it is not necessary for the third condition that k(z) be
bounded, provided it belongs to L, (7T},).

THEOREM 5.5

Assume that {g,} €/, and g€ L;(0,00) in the feedback system
described by the functional equations (LFE), i.e., that the feedback
system is open-loop stable. Let G(s) denote the Laplace transform of
{g,{gn-1,}). Let Ly(Ty,0) be the space with respect to which stability
is defined and assume that the feedback system is well-posed. Then
the feedback system is unstable if there exist real numbers k., # k.,
such that 0 < ki < k(1) < kg, for almost all ¢ > ¢, and if
AD,%% > 0 and d(2,9%) = 0.

Proof: Let G and G, denote the operators defined on L,(— o0, ) by

(6090 = 3 8250 — 1) +[ gt = mate) ar
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and

(Gex)(®) = K'()x(1)
with
l(kmin + kmax) for t < T
k() =1 °
k(1) otherwise.
It is a simple matter to verify that L,(— 00,4 0), G}, and G, qualify as
backward extensions of Ly(Ty,0), G,, and G, and that all the con-
ditions of Corollary 4.4.1 are satisfied. The estimates involved in this
verification are in fact identical to the ones used in Theorem 5.4, and the

‘noncausality follows from Lemma 5.1.

Remark 1: It is again possible at least in the case where all the delays
are equally spaced, i.e., t, = nT, T > 0, to rephrase the conditions of
Theorems 5.4 and 5.5 exclusively in terms of the frequency response
of the forward loop. In fact d(2,%+) > 0if and only if: 1, d(2,9°) >
0; and 2, limy, , ®(NV27T?) exists and is zero, where @ is the argument
of 1 + «G(jw) and « is an arbitrary element of 2. This leads to the
situation shown in Figure 5.5.

ImG{jw) ImG(jw)

/kmox _
Re 6(jw) \\“"‘” Re G(jw)

O <Kemin <Kmox

Stability
Instability

ImG{jw)

w=0

mox iy i W=
// k_/ ReG{jw)
/ Kmin =0<k
k““"< 0 <¥mox // Stobitity " "
Stabllny

Figure 5.5 Illustratmg the Circle Criterion
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Remark 2: Let 9° A {G(s) | Re s = o}. It can be shown that it suffices
for instability that d(2,%°) > 0 for some o > 0 and that d(Z,9*) = 0.
This in fact leads to an improved instability criterion® in situations such
as the one illustrated in Figure 5.6.

ImG(jw)

/ ReG(jw)

Gljw+o),0>0

Gljw)

Figure 5.6 Illustration of Remark 2
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6 Stability Criteria Obtained
Using Multipliers

6.1 Introduction

There are two basic transformations of feedback systems which lie
at the foundation of most of the frequency-domain stability criteria as
they have recently appeared in the control theory literature.

The first one is the loop transformation shown in Figure 6.1. ThlS
transformation results in a shift of the conicity of the operators in
the forward and the feedback loop and can, for instance, be used to
transform a feedback system in which the forward and the feedback
loop satisfy certain conicity conditions into a feedback system which is
open-loop attenuating. Corollary 4.3.3 in fact rests on this principle.
This procedure can also result in a feedback system with positive
operators in both the forward and the feedback loop.

The second basic transformation is the introduction of so-called
multipliers in the loop.! This is illustrated in Figure 6.2 and results in
the possibility of exploiting certain constraints of the operators in
the loop. Assume, for instance, that the operator in the feedback loop
is conic and satisfies some additional conditions — for example, that it
is time invariant and memoryless (but nonlinear) or that it is a linear
periodic gain. In general, it is then possible to find a multiplier which

1 The idea of using multipliers can be traced back to the work of Popov (Ref. 1).
Other authors who developed this technique are Brockett and Willems (Ref. 2) and
Zames (Ref. 3).
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Figure 6.1 Transformations of the Feedback Loop

when cascaded with this operator will not change the conicity of the
feedback loop, whereas the compensation of this multiplier in the
forward loop will change the conicity of the forward loop, thus making
it possible to show stability whereas this was not possible before
the conicities were changed by means of the multipliers.

The above two transformations are usually used in series in the sense
that the conicity transformation is used first and results in making
the operator in the feedback loop (which is assumed to satisfy certain
constraints) a positive operator.? The forward loop is in this process
appropriately modified so as to preserve the original input-output
relatlonshlp One then introduces a multxpher in cascade with the
operator in the feedback loop. This multiplier is appropriately chosen

Figure 6.2 Illustration of the Introduc‘tion of Multipliers

2 There is no a priori reason to make these transformations in precisely this
sequence, although some theoretical considerations supporting this sequence can
be made (Ref. 4).
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out of a certain class without affecting the positivity of the feedback

loop. If the compensation of this multiplier results in a positive operator -

in the forward loop, then stability results.

_These ideas are further explored in the remainder of this chapter.
They will be investigated first from a theoretical point of view and then
applied to two representative cases. The first case treats feedback
systems with a periodic gain in the feedback loop, and the second case
treats feedback systems with a monotone nonlinearity in the feedback
loop.

6.2 Transformations of the Feedback Loop

The feedback loop referred to in this section is described by the
functional equations (FE) as introduced in Section 4.2. These are
restated here for convenience:

€y = Uy — Ya

€, = Uy + Y1, (FE)
N = G,
Y2 = Gy,

It is still assumed that the assumptions W.1 through W.4, G.1 through
G.4, and 1.1 are satisfied. These assumptions are enumerated in
Section 4.2.

THEOREM 6.1

Consider the feedback system described by equations (FE) and
assume that W, = W,. Let k 52 0 be a scalar such that —k1¢ ¢(G))
in /" (W,,,W,,) (i.e., I + kG, has a causal inverse on W,,). Let G| =
G,(I + kG,) ! and G, = G, — kl. Let u; € W;, and u, € W,, be given
and assume that {e,,e;,y;.ya} is a corresponding solution. Then the
quadruple

{31 = e + ky;, €5 = ey, y1 = Y1, Yo = Vs — k‘—’z}
satisfies the equations
e =u; — ya
el - ul + yl’
o (FE")
h= Glel,
yé = G2e27
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where u; = u; — ku, and u; = u,. Moreover, if the feedback systems
described by the equations (FE) and (FE’) are both well posed, then
(finite gain) stability (continuity, Lipschitz continuity) of one implies
and is implied by (finite gain) stability (continuity, Lipschitz continuity)
of the other. ~

Proof: The first part of the theorem is readily proved by direct verifica-
tion, whereas the stability claim is a direct consequence of the relation
between the solutions, since this relation is easily reversed from (FE")
to (FE).

THEOREM 6.2
Let Ne Z(Wy,, Wi,) (33+(W1,,,W12)) be regular in #H(W,,,W,,)

('@ (Wle’ Wle)) and Me '@+(W2w W2e) ('@-'—( WZes W2e)) be regular in.

BT(Wys Wa,) (%’“L(W%,er)),le M, M~1, N, N7 are causal bounded
(Lipschitz-continuous) operators. Cons1der now the feedback system
described by the equations

e;., = ulll - y’2,s

” ”

€y = uIZ, + Y1s
= MG,N~%l,

y2 =NG2M82.

(FE")

Assume that both feedback systems (FE) and (FE”) are well posed. Then
the feedback system described by the equations (FE) is (finite gain)
stable (continuous, Lipschitz continuous) if and only if the feedback
system described by the equations (FE”") is (finite gain) stable (con-
tinuous, Lipschitz continuous).

Proof: Itis a simple matter to verify that the solutions to the feedback
systems are related through u) = Nu,, €] = Ney, y; = M7y, uy =
M™u,, €, = M~e;, y, = Ny,, which then in view of the assumptions
on M and N readily yields the theorem.

Theorem 6.2 immediately leads to the following useful corollary.

COROLLARY 6.2.1 \
Let = W, be Hilbert spaces. Let M, N e B+(Wy,,W,,)

(g-l-(Wle’ Wle)) be regular ll'l e@-!-(H,le’Wla) ('@+(Wle, Wla)) Then the
feedback system described by equations (FE) is finite gain stable
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(Lipschitz continuous) if it is well posed, if G, = NG,M is (incre-
mentally) positive on W,, and if G; = MG, N~ is strictly (incre-
mentally) positive and Lipschitz continuous on Wi,

Proof: This corollary is an immediate consequence of Theorem 6.2
and Corollary 4.3.4.

As shown in Chapter 3, one often obtains positive operators using
noncausal multipliers. Since such multipliers would violate the causality
condition of Corollary 6.2.1, it becomes necessary to introduce
factorizations. This is the subject of the following corollary.

COROLLARY 6.2.2

Let W, = W, be Hilbert spaces. Assume that Z Q’;(WZ,WZ) admits
a factorization into Z = MN with

1. M e (W,, W, is invertible, and M*, (M—2)* e L+(W,,W,) (e.,
M and M~ are anticausal bounded linear operators);

2. N € B+(W,,W,) is invertible, and N € Z+(Wy,W,); and

3. ZG, is (incrementally) positive on W, and G,Z! is strictly
(incrementally) positive and Lipschitz continuous on W;.

Then the feedback system described by equations (FE) is finite gain
stable (Lipschitz continuous) if it is, in addition, well posed. ‘

Proof: Since MNG, is positive on W,, NG,(M~)* is positive on W, and
since G;N~*M1 is strictly positive and Lipschitz continuous on W,
M*G N~ is strictly positive and Lipschitz continuous on W,. The
theorem then follows from Corollary 6.2.1.3

6.3 A Stability Criterion for Linear Feedback Systems with a
Periodic Gain in the Feedback Loop

The ideas presented in Section 6.2 and the results obtained in
Chapters 4 and 5 will now be applied to a particular class of feedback
systems. This class consists of feedback systems with a linear time

* The theorems and corollaries of this section can be sharpened if one assumes
that the preliminary conditions of Theorem 4.3 to be satisfied. Some such results are
stated in Reference 5. The most significant relaxation is that it is then possible to
state theorems involving a factorization of G.G, rather than requiring this factoriza-
tion be of the type G.MM~'G,.
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invariant operator in the forward loop and a periodic gain in the
feedback loop.* The resulting system is shown in Figure 6.3.

! "'/Z\ei 1 %

\( 1 6
=03
ZKZZZ

\&/ 4
~
Figure 6.3 The Feedback System under Consideration in Section 6.3

In terms of the notation used in the previous chapters, let the time-
interval of definition S = [Ty,0), Vy = V, = R, i.e., uy, €1, V1, U, €3,
s are real-valued functions of time on [T,0), and let the operators G
and K be formally defined by

(600 23 gt — 1) + f: §(t — x(r) dr,

(Kx)(®) & k()x(0),

where {t,}, n €I, is a sequence of real numbers with ty=0,1,>0
for n > 1, g(t) is a real-valued function on R with g(¥) =0 for 1 < 0
and g € L,(0,0), {g,} €/, is a real-valued sequence, and k(¢) is a real-
valued function on {T,,®) with k(¢ + T) = k(¢), for some T" > 0 and
all ¢ > T, with k() € L,(T,,). The functional equations describing
the feedback system are:

e (t) = (1) — pa(0),
ex(t) = uy(2) + 31 (0),
»(1) = (Gre))(1), and
Ya(t) = (Gae)(0).

The solution space will be taken as L,,(7,,0). The inputs u;, u, €
L,,(Ty,0). The above operators have been studied in detail in Chapter
3. 1t follows readily from Minkowski’s inequality and some direct
estimates that G and X map L,,(7,,0) into itself. They are in fact both
Lipschitz-continuous linear operators on L,,(T,,0). The operator G

(LPFE)

* There exists a large mathematical literature on the stab‘ility of linear differential
equations with periodic coefficients. The spec1ﬁc results obtained here evolved out
of the so-called “pole-following technique’ ingeniously introduced by Bongiorno
(Refs. 6, 7) and exploited, among others, by Sandberg (Ref. 8) and the author
(Ref. 9.)
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is time invariant. The feedback system described by the equation
(LPFE) thus satisfies the assumptions W.1 through W.4, G.1 through
G4, and L1, and the theory developed in Chapter 4 is applicable.
Notice that the conditions on g, {g,}, and k() imply open-loop stability
of the feedback system.
As an example of this, consider the linear time-varying ordinary
differential equation :
di

p(D)x(1) + kK'()q(D)x(t) =0,  D'= prl
The following assumptions are made:
A.1. The functions p(s) and g(s) are real polynomials in s, i.e.,

P() = 5"+ ppas™t + - + po,

q(S) = qnsn + qﬂ_lsu—l + “en + qo’

with p; and ¢, real numbers.
A.2. The function k’(2) is a real-valued piecewise continuous function
~ of ¢ and belongs to L.
A.3. Either of the following conditions is satisfied:

1. g, =0; or

2. g, 5 0and —1/g, ¢ [«p],
where « and § are such that « < k'(¢) < f for all t e R,

A real-valued continuous function x(t) is said to be a solution of
this time-varying differential equation if it possesses (n — 1) continuous
derivatives and if it satisfies the differential equation for all ¢ for which
k’(t)is continuous. Clearly x(z) = 01is a solution. This solution is called
the null solution and is said to be asymptotically stable if all solutions
approach the null solution for # — co.

Asymptotic stability of the null solution of the time-varying differen-
tial equation can be deduced from L,-stability of a feedback system of
the type which is being considered in this section. Assume therefore
that there exists a real number « such that the zeros of the polynomial
p(s) + ag(s) have a negative real part.

It can be shown without much difficulty (see Ref. 9) that the
differential equation can be rewritten as

Pi(D)x(1) + ki()g:(D)x(1) = 0,

with p,(s) a monic Hurwitz polynomial of degree » (i.e., all its zeros
have a negative real part, and the coefficient of s” is one) with the degree
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of p;(s) larger than the degree of ¢,(s). This nth order scalar differential
equation is equivalent to the first-order vector differential equation

dz(t) = Az(t) + bu(?),
dt
with
(@) = c'z(1)
and
u(t) = ky()y(0),
where
dx() d”"lx(t))
t) = col ), ——=,...,—/=},
z(1) = co (x( ) " py
0 1 0 0
0 0 1 0
A= ,
0 0 0 s 1
L —P1o0 —Pia1 —Piz " —Pia-1_]

b =col (0,0,...,0,1),

¢ = col (91,0, 91,15 - -+ > G1,0-1)>
¢'(Is — A)7b = ¢,(s)/p,(5).

The null solution of the differential equation under consideration
will then be asymptotically stable if and only if given any z(0),
lim, ., ||z(#)]| exists and is zero. It is well known that the smoothness
conditions on k’() are sufficient to ensure the existence of a unique
solution which assumes the value z(0) for ¢ = 0. Furthermore, the
solutions satisfy the integral equation

29 = e*20) ~ [ Ay dr for ¢330,
0

- AN
which implies that

+
(1) = c'e4z(0) --f ¢'e bk, (Dy(r) dr for t>0.
)
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It is clear that this last equation represents the feedback system of
Figure 6.3 with T, = 0,

u() =0, us(f) = r(t) & c'e?'z(0)
for t>0,
n@® = y(@, Yo(t) = ky(D(y(2) + r(1)),
et) = —yu(¥), ex(t) = y(0) + r(1),
’edtp for t>0,
g =\ ) k(t) = ky(1), and
0 otherwise,

g =0 for all kel

It follows from the assumption on the zeros of p,(s) that all eigenvalues
of A have a negative real part and thus that c’e4th € L,(0,0) for all
p21 :

Thus, proof of Ly-stability for the feedback system implies that all
solutions z(¢) to the vector differential equation which are such that
Y € Ly,(0,0) also belong to L,(0,00). Since all solutions z(¢) are
continuous, all solutions y(z) do belong to L,,(0,00) and hence all
solutions yield y € L,(0,c0). Since

t
z(f) = e*%(0) +f e bk, (Dy(7) dr
0

and e4'h € LE"(0,), k; € L,(0,), e4iz(0) € Ly(0,0) and the con-
volution of an L,-function with an L,-function yields an L,-function,
it follows thus that z € L,(0,c0). Furthermore
dz(1) = Az(t) — ky(t)bc’z(2),

dt
hence dz/dt € L,(0,0). Since z and dz/dt belong to L,(0, o), lim,_, , z(¢)
exists and is zero. Hence, L,-stability. of the above feedback system
implies asymptotic stability of the null solution of the differential
equation.

These simple manipulations show that although it might at first
glance seem that the type of stability which is obtained in the theorem
in the previous section is not as strong as Lyapunov stability, in most
circumstances it actually implies it.

Notice that the periodicity of k(#) was not used in the preceding
argument. Using the periodicity of k(¢) it can in fact be shown by
invoking Floquet theory (Ref. 10) that if the system described by
equation (LPFE) is L,-stable, then it is L -stable forany 1 < p < co.
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Feedback systems of the type described by the functional equations
(LPFE) or by the ordinary differential equation occur frequently in the
design of systems containing parametric devices. The stability proper- .
ties of such systems are of course of primary importance, and criteria.
using frequency-domain conditions similar to the Nyquist criterion
bave proven to be a particularly useful tool. Mereover, the local
stability of a periodic solution of a nonlinear differential equation is
equivalent to the stability of the null solution of a linear time-varying
differential equation of the form illustrated here.

The stability properties of the feedback system under consideration
have received a great deal of attention in the past, and the result that is
best known is the circle criterion, which was discussed in Chapter 5.
Althouglr'the circle criterion is applicable under much weaker con-
ditions (the feedback gain need not be linear or periodic) than the ones
stated on p. 141, it was originally proved making essentially the same
assumptions.

In this section a new frequency-domain stability criterion is de-
veloped which assumes explicitly that the feedback gain is linear and
periodic with a certain given period. This assumption makes it then
possible to obtain an improved stability criterion. The result gives — for
a particular transfer function of the forward loop — combinations of
the lower bound «, the upper bound B, and the period T of k(t) that
yield stability. This dependence on the period is of course as expected
and has been investigated exhaustively for certain classical types of
second-order differential equations. The criterion to be stated in
Theorem 6.3 requires, as do most recent frequency-domain stability
criteria, the existence of a multiplier having certain properties. With
the exception of the Popov criterion, however, there is generally no
procedure offered to determine whether or not such a multiplier exists
for a given transfer function of the forward loop (see Ref. 3). This is
not the case for the criterion presented here, since Theorem 6.3 can be
completely rephrased in terms of this transfer function. In fact, a simple
graphical procedure is given to determine whether or not the multiplier
exists.

THEOREM 6.3
Assume that the feedback system described by the functional equa-
tions (LPFE) is well posed, and that: AN

l.a+e<k(t)=k(t+ T)< B — ¢ for some ¢ > 0 and almost all
t 2> Ty;
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2. infge 3411 + KG(s)] > O for some K & [«,3], where G(s) denotes
the Laplace transform of (g,{g,,t,}); and
3. there exists a complex-valued function F(jw) of the real variable, w,

with F(jw) = F(—jw) such that for almost all w > 0
F.1. Re {F(jw)} > ¢ forsome >0,
F2. F(jw) = F(j(o + 27T ) € L, and

. BG(jw) + 1
F3. Re {F( joy EE L 1} > 0.

Then the feedback system is L,-stable,

Proof: 1t can be shown that the condition of the theorem implies that
infre 50 [1 + KG(s)| > 0 for any K € [«,f]. The remainder of the proof
is divided into three steps.

A. Consider the transformation of the feedback loop shown in
Figure 6.1 and treated in Theorem 6.1 with k¥ = « and the roles of
the forward and the feedback loop reversed (i.e., the feedforward is
taken around the feedback path). It thus suffices to prove stability for
the system with G° = G(I + «G)™* in the forward loop and the gain
k(t) — ain the feedback loop. This transformation is now repeated with
the roles of the operators reversed (i.e., the feedforward is now around
the forward path) and k = —1/(f — «). It thus suffices to prove
stability for the system with G = G(I 4+ «G)™! 4 [1/(8 — «)]I in the
forward loop and the gain (k(¢) — «)(1 — [1/(8 — )](k(z) — a))! in
the feedback. A simple manipulation now shows that

G = L I+8G
f—al+ aG
and that the gain in the feedback loop equals

k(1) — «
B~ k()

B. The assumptions on F(jw) do not suffice to ensure that it has a
Fourier series in /;. However, since G(jw) is uniformly continuous for
—0 < w< o and limy, ., G(jo) = 0, it follows that F(jw) may
always be taken to have a Fourier series in /;, say {f,}, n € I, (in fact,
it may be assumed that F(jw) has a finite Fourier series).

C. Since Re F(jw)> ¢ >0, F(jo)eL,. It is now a simple
matter to verify that the operator defined on Ly(—co,+o0) by
(Zx)(t) = D erfux(t — nT) is invertible and that by Theorem 3.6 the

K1) = (8 — «)
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operators G"Z~* and ZK" are respectively positive and strictly positive
bounded linear operators on Ly(— 00,+ ). The manipulations as in
Corollary 3.2.2 and the factorization of Theorem 3.20 now show that
the conditions of Corollary 6.2.2 are satisfied, which thus yields
stability as claimed. The fact that the operators can be considered as
operators on Ly(Tg,) follows from the causality of the operators
after the proper factorizations have been carried out.

Theorem 6.3 is not very useful as it stands since it leaves un-
answered the question whether or not the multiplier F(jw) exists. This
question can be resolved, however, and this leads to an equivalent
formulation of the theorem.

Let '

Pmax(@) = sup $(w + n27T™),

nef
Pmin(w) = inf ¢(w + n27T™)
nel
where

BG(jow) + 1
aG(jw) + 1

The alternate formulation of Theorem 6.3 is then:

$(w) = arg

THEOREM 6.3A
Assume that the feedback system described by the functional
equations (LPFE) is well-posed, and that:

lLa+e<k(®)=k(zt+ T) < B — € for some ¢ > 0 and almost all
t 2 To;

2. infg, ;5011 + KG(s)| > 0 for some K € [«,8], where G(s) denotes
the Laplace transform of (g,{g,.?,}); and

3. Prax(@) — pin(w) < 7 for all [w] < 7T

Then the feedback system is L,-stable.

Proof: Since G(jw) is a uniformly continuous and bounded function of
w, the sequence of functions G(jw + n2#=T-Y), n € I, is equicontinuous
and thus ¢, (w) and ¢, (w) are continuous functions of w. Hence,
[Prmax(®) — Pmin(@)| is a continuous function of w. Since by symmetry
Pmax and ¢, are periodic,

¢max(w) - ¢min(w) = qsma.x(w + 277T—1) - ¢min(w + 27TT_1)-
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Since |¢ppe(®) — Ppin(w)| < 7, there exists an e > 0 such that
l¢max(w) - ¢min(w)| 7 —ec¢ Let

F(]w) = exp {_%j[(ﬁmax(w) + ¢min(w)]}-

It is easily verified that this choice for F(jw) yields the conclusion by
Theorem 6.3. For the converse part of the equivalence, assume that
Prax (@) — bpip(w’) = 7 for some o’ € R. Then, since Re {G(jw)F( jow)}
has to be nonnegative for all w, this implies that |arg F(jo')| > /2,
which contradicts the condition that Re F( jw) 2 e > 0.

The following two corollaries show that the criterion is a trade-off
between the circle criterion (T arbitrary) and the “frozen time** Nyquist
criterion (T small).

COROLLARY 6.3.1
The feedback described by the equations (LPFE) is L,-stable if it is
well posed, if k(z) is periodic, and if:

1. a + e < k() < B — € for some € > 0 and almost all £ > Tj;
2. infg, ;=011 + KG(s)] > O for some K € [o,8] where G(5) denotes the
Laplace transform of (g,{g,.¢,}); and

BG(jw) + 1

— > 0.

«G(jw) + 17

Proof: Take F(jw) = 1 and apply Theorem 6.3.

Corollary 6.3.1 is a particular case (since it assumes the feedback
gain to be linear and periodic) of the circle criterion.

Consider now the stability properties of the linear time-invariant
system obtained by replacing k() in the feedback loop by k, = k(¢)
for some 7. Even though the time-invariant system thus obtained is
L,-stable for all constants k,, it does not follow in general that the
original feedback system is L,-stable (see Ref. 11). This fact is closely
related to the Aizerman conjecture for time-invariant systems to be
discussed in the next chapter. However, the following corollary shows
that this procedure is legitimate if the period T is sufficiently small. The
corollary states that if the frequency of the feedback gain is sufficiently
high compared to the natural frequencies of the forward loop then no
instability due to “pumping’ can occur.®

® This result is not the sharpest one possible. Indeed, it can be shown (Ref. 10)

that for the penod sufficiently small, it suffices that the constant feedback system be
stable when &(¢) is replaced by its average value.
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COROLL/ARY 6.3.2°

Assume, in the definition of G, that g, = 0 for all n > 1 and that
the feedback system is L,-stable for any k(z) = k = constant in the
feedback loop with « < k& < 8. Then there exists a T, such that for all
T < T, the feedback system with any gain o« < k(1) = k(z + T) < B
in-the feedback loop is also L,-stable.

Proof: Since limy, ..., G(jo) = g, exists (by the Riemann-Lebesgue
lemma) and is real, lim,, . ,, #(w) exists and is zero. Since the feedback
system is L,-stable for constant gains k in the feedback loop with
« < k < B, there exists a function of Z(jw) such that for all w,

BG(jw) + 1 >0
aG(jw) + 1

(This follows from the Nyquist diagram and a simple graphical con-
struction.) It thus follows that for w, sufficiently large the function
F(jw) = Z(jo) for o] < wy/2 and F(jw) = F(j(w + w,)) otherwise,
will yield the conclusion by Theorems 6.3.

ReZ(jw) 2 e >0 and Re Z(jw)

9.3.1 Application of the Criterion

Theorem 6.3A suggests an obvious graphical procedure for de-
termining whether or not Theorem 6.3 predicts L,-stability. This is
illustrated in Figure 6.4, and requires plotting the curves ¢, (Q) =
H(Q + Nwy), wy = 27T, versus Q for |Qf < wy/2 and N €. The

e

¢
>/ 0 ¢
~w /2 0 w._ /2

9
¢-N /
/ qsmin
J /2 \

Figure 6.4 Graphical Procedure for Determining F(jw)
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upper and lower envelope of these curves give ¢, (Q) and ¢, ().
Theorem 6.3 then requires for Ly-stability that ¢, (Q) — ¢, (Q) < =
for all |Q| < w,/2. It is apparent that this procedure, although straight-
forward, is rather tedious.

In order to facilitate the application of the criterion, some simple
necessary conditions for the multiplier F(s) to exist are now given for
the case 0 < « < fB:

1. The Nyquist locus of G(s) should not encircle or intersect the straight
line segment [—1/«, —1/8] of the negative real axis of the Nyquist
plane.

2. The points G(jnw,/2),n = 0,1, 2, ..., should satisfy the conditions
of the circle criterion; i.e., they should not lie inside the closed disk
centered on the negative real axis at —4(1/a 4 1/8) with radius

(/e — 1/B). '

Analogous conditions hold for other ranges of « and S.
The second necessary condition follows from the fact that, since
F(jw) = F(—jw), and since F(j(® + wg)) = F(jw), then

F(jnwy[2) = Re F(jnwy/2)

forn =0, &1, £2,.... Thus conditions F.1 and F.3 of Theorem 6.3
imply that '

, BGUnwy2) + 1

for nel,
aG(jnw,ef2) + 1

which leads to the second necessary condition.

By choosing particular functions for F(jw) it is of course possible to
obtain other sufficient conditions for Ly-stability. The next corollary is
based on this idea and gives a quite simple sufficient condition for the
multiplier F(jo) to exist. It is expressed entirely in terms of the Nyquist
locus of G(s), and is stated here for the case 0 < a < 8.

CoroLLARY 6.3.3

Assume, in the definitions of G, that ¢, = nT for some T, > 0. Then
the feedback system described by equations (LPFE) is L,-stable if it is
well posed, and if’:

1. the Nyquist locus of G(s) does not encircle the point —1/« on the
negative real axis of the Nyquist plane; and
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2. there exists a circle, C, which passes through the points —1/« and
—1/8, such that the Nyquist locus of G(s) for w > 0 does not
intersect it.

Let C’ be the mirror image of C with respect to the real axis, and
consider the following two parts of the Nyquist locus of G(s):

S,: {G(jw) [ nwy, € 0 < (7 + 1/Dw,}, and
Sa: {G(jo)| (n + 1/2)w, € @ < (1 + Dy},
where n € I+, Then
3. €’ does not intersect both S, and S..

This corollary is illustrated in Figure 6.5.

Im G(jw)

-1/a };

Figure 6.5 Illustration of Corollary 3.3

Proof: Condition 1 assures that the third condition of Theorem 6.3 is
satisfied. Let |6] < =/2 be the angle between the positive real axis and
the straight line through the origin of the complex plane defined by the
points

{ﬂ'r+l
ar + 1

Assume that 6 > 0 and that C’ does not'intersect S, (a similar argument
establishes the corollary for the other cases). Let F(jw) be a function

TEC}.
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of w such that forne [
w2 — 0 for nwy < w < (n + 1/2)w,
arg F(jow) = { — (w2 — ) for (n — 1/2Q)wy < w < new,.
0 for o = nw,, (n + 1/2)w,

Clearly, F(jw) satisfies conditions F.1 and F.2 of Theorem 6.3.
From condition 1 of the corollary it follows that

-+ 0 < $(w) < 0
forw 2 0and nwy < w < (n + 1/2)w,; and from the fact that C’ does
not intersect S; it follows that o
< pw)y<m— 8
for w 2 0and (n — 1/2)w, € w < nw, Thus it follows that
—m[2 < arg F(jo) + ¢(w) < =2

for w > 0, which establishes condition F.3 of Theorems 6.3 since
arg F(—jo) + ¢(—0w) = — arg Fjo) — $(w).

The following two examples illustrate the usefulness of Théorem 6.3
and its corollaries.
1. Let

G(s) = S

(s + 10)(s® + 0.4s + 1)
k(1) =k(t+ T) and 0 < k(t) < 2. Determine for which range of

ImG(jw)
0.1
i 0.3 .
a/2 fw=0 ReG(jw)
A 0.5
15
c
12 0.8
B
1

Figure 6.6 Nyquist Locus of s/(s + 10)(s* + 0.4s + 1)
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wy = 2m[T this feedback system is stable. The Nyquist locus of G(s) is
shown in Figure 6.6.

1t is apparent from the Nyquist locus that the circle criterion cannot
be used to predict L,-stability. Using the procedure suggested at the
beginning of this section, Theorem 6.3 shows that this feedback system
is Lp-stable for all k() in the determined range provided w, > 1.55.
Using Corollary 6.3.3, on the other hand, this feedback system is found
to be L,-stable for all k(¢) in the given range provided w, > w, = 3.3.
(This number w, was obtained as follows: Let AB be the tangent to
the Nyquist locus through the point (—1/2 + 0j); let AC be the line
symmetric to 4B with respect to the real axis. The intersection of the
Nyquist locus and AC then gives w,/2.)

This example shows that, although Corollary 6.3.3 did not give an
excellent estimate, it is quite simple to apply.

2. Let G(s) = 1/s(s + 2). Determine K(w,) such that the feedback
system is L,-stable for all k(t) = k(t + T), we = 27T, and 0 < € <
k(t) < K(w,). The Nyquist locus of G(s) is shown in Figure 6.7. Using
the circle criterion, one obtains K(w,) = 4. Brockett (Ref. 11) has
shown by examining the worst possible variation in k(z) that K(w,) =
11.6. Applying Theorem 6.3 and the graphical procedure outlined in °
this section results in K(w,) as shown in Figure 6.8. The same figure
also shows the result obtained using Corollary 6.3.3 and a graphical
construction analogous to the one used in example 1. Thus, by re-
stricting the feedback gain to the periodic, it was possible by means of
Theorem 6.3 to obtain higher values of K as the frequency was increased.

ImG(jw)

—o.1
-0.25 o Re G(jw)

w=1 '—-ot4

Figure 6.7 Nyquist Locus of 1/s(s + 2)
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K Theorem 3
15
Corollary 3
Ref. 11
1o+
5]- Circle Criterion
| | | w
0 2 4 6 0

Figure 6.8 Regions of Stability for Example 2

Remark : 1t follows from example 2 that the converse of Theorems 6.3
is false; i.e., if F(jw) does not exist, then there will in general not
necessarily be a k(¢) in the required range such that the feedback
system is not L,-stable.

Theorem 6.3 has, as is to be expected, an instability converse. It is
stated in Theorem 6.4 and can be proved using the methods developed
in Chapter 4 and the inequalities introduced in this section.

THEOREM 6.4
Assume that the feedback system by the functional equations
(LPFE) is well posed, and that:

l.La+ e<k(t)=k(+ T)<f — € for some € > 0 and almost all
t > T

2. infge 4 50 |1 + KG(s)l = 0 and infge, o |1 + KG(s)] > O for some
K € [«,f] where G(s5) denotes the Laplace transform of (g,{g,.t.});
and

3. there exists a complex-valued function F(jw) = F(—jw), of the
real variable @, such that for almost all w > 0:

F.1. Re {F(jw)} > ¢ for some €e> 0,
F2. F(jw) = F(j(w + 27T ")) eL,, and

. BG(jw) + 1
F.3. Re {F( oy EL e 1} >0

Then the feedback system is L,-unstable.
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6.4 A Stability Criterion for Feedback Systems with a Monotone
or an Odd-Monotone Nonlinearity in the Feedback Loop

As a second class of stability criteria for feedback systems derived
by means of multipliers, consider the system with a time-invariant
operator G, in the forward loop and a monotone or an odd-monotone
nonlinearity in the feedback loop. For convenience and in order to
empbhasize the generality of the approaches outlined in Chapters 2 and 4,
the results will be derived for systems described by difference equations.
With some modifications similar results can be obtained for the
continuous case. The adjustments in the theorems involve choosing
the integers as the set § and making some minor technical changes. The
feedback system which will be considered is shown in Figure 6.9.

Figure 6.9 The Feedback Loop under Consideration in Section 6.4

Definitions: The operators G and F are formally defined by

G({x Py = 2+gmxz, keI,
lel” - ,
and
F({xk})k = f(xg), keI,
where it is assumed that:

1. G e ZL¥(l,h), i.e., that G maps I, into itself and that g = 0 when-
ever k < /; and

2. fis a mapping from R into itself fér which there exists a k such that
|f(0)] < Klo] for all ¢ € R.

It is simple to verify that under these conditions G and F map J, into
itself and that they are bounded and causal. The system is thus again
assumed to be open-loop stable.
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The equation describing the forward loop of the feedback system
is thus

Vi = 2 Gt + T kel
ler*
The array {g;;} is often referred to as the weighting pattern of the
system. This system is slightly more general than the input-output
relation governed by the n-dimensional difference equation
Xpp1 = ApXy + byltys
Ve = CXp + dithy kel
Xq = given,

where b, and c, are n-vectors, d is a scalar, 4, is an (# X ») matrix and
X, is an n-vector called the state of the system. This input-output
relation is a particular case of the input-output relation defined by the
above summation with

CrAp—1 . . Apaby for kz1+2

by for k=141
B = d, for k=1
0 otherwise,
Pe = Cpdpy . -« AoXo for k>1,
and
Ty = CpXp-

The case in which the system is time-invariant is of particular
interest. The system is then defined by the equation

Ve = E 8y + T kel*,

el

where g; is assumed to be zero for £ < 0. This system is slightly more
general than the input-output relation governed by the n-dimensional
difference equation

Xpy1 = Ax, + by,
Ve = ' + 4, kel

where b and ¢ are constant n-vectors, d is a scalar constant, 4 is a
constant (n X n) matrix and x, is an n-vector called the state of the

R
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system. This input-output relation is a particular case of the input-
output relation defined by the above summation with

g = c'A¥% for k>0,
go=d
=0 for k<O,
ry = ¢’ A¥x, for k>0
The equation describing the feedback loop is

Uy, =f(yk) + v, kelt,

and the closed-loop equation of motion becomes

Ve + 2 8af ) = 2 gt + 7 kel
ezt el *
1t will be assumed that this equation is well posed. A sufficient condition
for well-posedness is that g;; = 0 for all k € I,
The feedback system under consideration is said to be Jy-stable if for
all Jy-sequences r = {r,} and » = {r;}, all solutions {y,} belong to /,
and satisfy the inequality

(5 <n(za) +a(zA)"

rert kel kel™

for some constants p, and p,.

Remark: Notice that /,-stability implies that
lim y;, = lim f(y,) =0,
k>

k>
and that for the n-dimensional difference equation described above it
implies that if v, = 0 for all k then lim,,o_,., SUPger+ | ¥l = 0, which in
turn implies asymptotic stability in the sense of Lyapunov provided the
system is uniformly observable.

Notation and Definitions: The operator F,is said to be monotone (or
odd-monotone) if f(o) is a monotone (or dn odd-monotone) function
of ¢. F is said to be strictly monotone (or strictly odd-monotone) if
f(¢) — eo is a monotone (or an odd-monotone) function of & for some
€ > 0.

Application of the principles described in the beginning of this
chapter and the positive operators introduced in Section 2.5 lead to the
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following stability theorem.® The reader is referred to that section for
the nomenclature.

THEOREM 6.5 _ _
A sufficient condition for the feedback system under consideration
to be /y-stable is that:

1. G belongs to #(l,,ly) and F is strictly monotone (strictly odd-
‘monotone), and bounded; and ,

2. there exists an element Z of £ (l,,[;), such that Z — eI is doubly
hyperdominant (doubly dominant) for some ¢ > 0 and such that
Z(@ is positive on /. .

Proof: This theorem is a straightforward application of Coro%la-ry
6.2.2 if it can be shown that Z can be factored as required there. This is,
however, precisely what is stated in Corollary 3.18.1.

The case in which the system is time invariant and the mul_tip_li.er_ is
of the Toeplitz type is, of course, of particular interest. The positivity
condition and the doubly hyperdominance (doubly dominance) con-
dition can then be stated in terms of z-transforms. This is done in the
Corollary 6.5.1.7 '

LemmMa 6.1 R

Let R = {r,_;}, k, I € I'*+ define an element of £ (J,,/;) which is of the
Toeplitz type. Then a necessary and sufficient condition for the innt?r
product (x,Rx) to be nonnegative for all /;-summable sequences x is
that the z-transform of {r,}, R(z), satisfy Re {R(z)} > O for almost all z
with |z| = 1.
Proof: 1t is well known that

(%R, = 3—{; RG) X2z dz

27 Je=

- i fjﬂR(ei‘”) | X(e")|? deo
- %T J:Re R(&) | X(e™)[? doo,

and the conclusion follows.

¢ This result is a generalization of similar resuits obtained by O’Shea et al. (Refs.
12-14) and Zames and Falb (Ref. 15).
7 Corollary 6.5.1 is the result of Reference 14.
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COROLLARY 6.5.1

A sufficient condition for the feedback system under consideration
to be /,-stable is that: o

1. G is a Toeplitz-type element of Z(l,,1,), and Fis strictly monotone
(strictly odd-monotone) and bounded; and

2. there exists a Z(z) such that Z(z) — e is the z-transform of a hyper-
dominant (dominant) sequence for some € >0 and such that
Re {G(2)Z(2)} > 0 for almost all z with |z| = 1.

Proof: This corollary follows from Theorem 6.5 and Lemma 6.1,

Remark: For the n-dimensional time-invariant difference equation
introduced on page 156, the operator G will belong to Z(l,,h,) if all
eigenvalues of 4 have magnitude less than unity.
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7 Linearization and Stability

Linear systems are much simpler to design and analyze than nonlinear
systems. This is the reason why engineers resort to linear models if this
is at all possible and that otherwise a nonlinear system is very often
linearized for design purposes. This chapter examines the relationships
between stability and continuity of nonlinear systems and their
linearizations. It will be shown that a nonlinear system is Lipschitz
continuous if and only if its linearization at any point is continuous and
that a system whose linearization at the origin is not continuous is not
finite-gain stable.

The second part of this chapter contains an account of some of the
linearization procedures that are frequently used in engineering design.
These include the describing function linearization (often called the
equivalent gain or the method of the first harmonic), the total gain
linearization, and the incremental gain linearization. An attempt will
be made to characterize the philosophy of these methods and to draw
attention to their deficiencies. To illustrate this point, the chapter thus
ends with a class of counterexamples to Qizerman’s conjecture.

7.1 Linearization

The reader is referred to Chapter 2 for the nomenclature and the
notation used in this section. Particularly the definitions introduced in
Sections 2.4 and 2.6 are freely used.
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Deﬁr_u’tion: Let W, and W, be Banach spaces and let F be a (in generai)
nonlinear operator from W, into W,. Let x, € W, and assume that
there exists a bounded linear operator L, €2 (W1,W),) such that

”F(xo + x) - FxO - Lmox”Wz —

Nl ~0 x5,

0.

Then L, will be called the linearization of F at x,.

It is in general not clear whether or not a particular operator admits
a linearization at a given point. This, as differentiation, indeed requires
some smoothness on F. The linearization L, is well defined whenever
it exists (i.e., it is unique) and preserves some of the properties of F
(e.g., its causality).

Some elementary properties of linearizations are:

1. If F admits a linearization at x,, then F is Lipschitz continuous at xg.

2. Let F, and F, be operators from ¥, into W, which admit lineariza-
tions, L, and Ly, , at x, € W, and let « be a scalar. Then F; + F;
and «F; admit linearizations at x,. These are, respectively, L,, +
La,, and aLy, . \ ’

3. Let F; and F, be operators from, respectively, W, into W, and W,
into W, which admit linearization L,, and L,, . at, respectively, x,
and Fyx, Then LzFI%Ll% is the linearization of onFl at x,.

4. If F e Z(W;,W,) then L, exists for'all x, € W; and L, =F.

Less elementary but very essential is the following property of
linearizations. W, and W, are from now on assumed to satisfy the
axioms which warrant for causality properties and extensions.

THEOREM 7.1

Let F be an operator from W, into W; and let x, € W;. Assume that
F admits the linearization I‘% at x,. Then L, is causal (strongly casual,
anticausal, memoryless) on W, if F is causal (strongly causal, anti-
causal, memoryless) on W;.

Proof: Let F be causal and assume, to the contrary, that L, is not.
There then exists an x € W, and T € S (the time-interval of deoﬁnition)
such that PpL, x # 0 and Ppx = 0. Then ‘

i NP zlF X + %) = Fxo — aLpX]l g,

ey ol 10 5,

=0,

LINEARIZATION 163

since
1P [F(x + ax) — Fxo — aLy ¥l
‘ < 1F(xo + ax) — Fxo — al, X,
However,
Pp[F(xq + ox) — Fxg] = Pp[FPp(x, + ax) — FPTx?]
= Pp(FPpxo — FPyx,)
=0
implies that

lim “PTL:Box"WQ — "PTonx” Wsa

- X x
a0 Xl Il

which yields the desired contradiction. The other cases are proved ina
similar fashion.

One of the main points of this monograph is the importance of
causality of operators and the resulting possibility of analyzing systems
on extended spaces. The question thus arises whether or not the
definition of linearization can be extended to cover causal operators on
extended spaces. This is indeed possible.

Definition: Let W, and W, be Banach spaces defined on the time-
interval of definition S and let Wy, and W,, denote their extensions (it
is thus assumed that W, and W,, satisfy the axioms of extended spaces).
Let F be a causal operator from W, into W,,. Then the operator L,
from W,,into W,, is said to be a linearization of F at x,if it is linear and
if for all Te S, PpL,, is a linearization of PpF at Prx,. It is easily
verified that L, exists for any causal operator which has a linearization
at Ppx, for all 7 € S. This follows from Theprem 7.1 and by defining
P;L,, to be the linearization of PpF at Prx,. The resulting linearized
operator L, is then defined on the extended space by (PpL,x)(1) =
(Lgy,7)(t) for t < T, 1€S, with L, 7 the linearization of PyF at
PpX, Clearly this provides an alternative characterization of L,
Linearizations on extended spaces are again well defined whenever they
exist and satisfy the elementary properties 1-4. The following theorem
is now obvious.

THEOREM 7.2
Let F be a causal operator from W;, into W,, and let x, € Wy,
Assume that F admits a linearization L, at xo. Then L, is causal
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(strongly causal, memoryless) on W, if F is causal (strongly causal,
memoryless) on W,.

The following examples serve to convince the reader that the
functional linearization considered here specializes to the more familiar
concepts of linearization as encountered in the theory of functions on
Euclidean spaces and in the theory of ordinary differential equations.

1. Let f: R* X §— R™ be differentiable for all ¢ € R* and for
almost all €S and assume that for some K < oo, | f(0y,0) —
Sflo,D)l € K |loy — a,]| for all oy, o, € R* and almost all r€ S, Let
(Fx)(2) & f(x(),r). It is clear that F is a well-defined. memoryless
operator from LE'(S) into LE"(S) for 1 < p < © and that F admits a
linearization for all x, € LR" In fact, (F, x)(t) = (xo(t) £)x(t), where

(o' t)is the m x m) J. acobxan matrix (the (i,j)th entry of df/do equals
312(6 1)/9a).

2. Consider the nth order ordinary differential equation

X =f(x,u,t),
y= g(x:u3t)s

with §' = [T,©), u€ R™, x € R", y € R¥, and x(#,) € R" given. Assume
" appropriate smoothness conditions on f and g (e.g., f, g uniformly
Lipschitz and differentiable). Let F be defined by y A Fu, where u
generates y through the differential equatxon Then F maps LE"(S)
into LR (S), 1 < p < o, is causal on LE"(S), and F admits a lineariza-
tion for any u, € LR (S) with L, deﬁned through the /inear ordinary
differential equatlon

Ax = o (xooltgst) Ax + ) (xo,u0, D),
ax au

d 0
y= 28 (Xost0) Ax + 8 (x40, D)1,
ox du
with Ax(z,) = 0, u, given, and x, the corresponding solution.

The above examples demonstrate that time invariance of operators is
not preserved under linearization. If, however, the element x, € W, is
itself constant forall ¢ € S, if S = (— 0,4+ ), and if Fis time invariant,
then it follows readily that L, will also be time invariant whenever it
exists.
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THEOREM 7.3
Let Fe .@(W, W) be regular in #(W,W) and assume that F has a
linearization L,  at xo € W. Then L} exists and is the linearization of
F1 at Fx,.
Proof that L,, is one-to-one: Assume to the contrary that L, x = 0 for
some x € W, % 5 0. Then
lim | F(xe + ox) — Fx,|

o—>()

a#0 flocx]]
which shows that

: IF(xo + ax) — Fxoll _ _
=0 [ F(F(xo + ax)) — FFx,|

=0,

’

and that F-! is not Lipschitz continuous at x,.

Proof that L, is onto: Let Fy be defined as Fyx = F(x + xg) — Fx, and
let F; ! be its inverse. This inverse exists since F is by assumption
mvemble Consider now the equation x = Hx & x — L, F‘ x + . It
follows from the definition of a linearization that

6y — x5 — Lgo(Foxy — Fy'xp)ll 50
1Fg*x, — Foxs|
In particular since F;*is Lipschitz continuous,
ey = xp — Ly (Fotxy — Filx)ll < Klx; — x,

with KX < 1 for ||x; — x,|| sufficiently small. This shows that H is a
contraction on some sphere around the origin. A similar calculation
yields that for y sufficient smalil H maps this sphere into itself! and thus
has a fixed point. Hence the equation L O\F“lx = y has a solution for y
sufficiently small which by linearity of L, shows that L, is indeed onto
as claimed.

as %y — xaf] — 0.

Proof that L.} is bounded and that it linearizes F~* at Fx,: The inverse
L}is bounded by the closed graph theorem. To see that L1 linearizes
F~1 at Fx, note that since

I F'(Fxq + L, x) — F'Fxq — x|

SNFIF%e + Lygx — Fxo + 2,

! The method of proof suggested here follows the usual proofs of the implicit
function theorem (see, e.g., Ref. 1, p. 47).
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it follows that
|FY(Fxo + L, x) — FFxy — x|

lim = 0’

heli~0 x|
which shows that

im IFY(Fxo + z) — F 'Fxy — L )z|| —0

Il Zg2ell >0 I L,z '
Since HL;olzII > HL%]I—I llzll, it follows that

. ||F_1(Fx0 +2z) — F'Fxy — L;12”

lim L =0

izl =0 izl

Theorem 7.3 and the definition of linearization on extended spaces
combine to give

THEOREM 7.4

Let F be a causal locally Lipschitz continuous operator from W, into
itself with a causal locally Lipschitz continuous inverse on W,. Assume
that F admits the linearization L, at x,. Then L, %, is invertible, L, and
L7} are causal and locally LlpSChltZ continuous on W,, and F~!admits
the linearization L 1 at Fx,.

7.2. Linearization, Stability, and Centinuity

In this section the fundamental relationships between stability and
continuity of a nonlinear feedback system and of its inverse are con-
sidered in detail. First, however, a fundamental lemma is proven.

LemmaA 7.1

Let F be an operator from W, into W, and assume that F admits a
linearization at every x, € W;. Let L, denote this linearization. Then
L, u is uniformly bounded in & (Wl,Wz) if and only if F is Lipschitz
continuous on W,. In fact, F|j, = sup, e L, [I

Proof: 1t will be-shown that | Flj, = sup, S L, || where the equality
means that if one side exists, so does the other, and they are equal.
The inequality | Lzoll < ||F|l5 follows immediately from the definition
of linearization and yields SUPy HL%H < || Flla. To prove the converse
inequality, let x, y € W, be given and consider the equality

1 dF . 1
Px—Fy={ 2t — = ) da = Lsy atx — ) d.
0 (1]
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This yields [Fx — Fyll < sup . 11 1 Lol X — yl, and thus

|Fx — Fy
IFlly & sup 2172 < qup [l Lgyl-
sy X — g, W

Hence SUP, e, HL%H = | F|l, as claimed.

Consider now the feedback system studied in Chapter 4 that is
described by the functional equations

€y = U — Yo

e2 = Uy + ,}’1, (FE)
1= Gqey,
Y2 = Gae,

and satisfies the conditions W.1-W .4, G.1-G.4, and 1.1 enumerated in
Chapter 4. The time-interval of definition is § = [T,,0), and well-
posedness imposes weak conditions on the operators G; and G,. One
such condition has been given in Theorem 4.1.

Assume that for some elements x;, € W;, and x, € W,, the operators
G, and G, admit linearizations L,, and L,,, at, respectively, x; and x,.
Consider now the functional equations associated with this linearization
given by

ei = ui -y éa
e; = uy + y;.s

(LFE)
y ]'. = leleia
y é = L 2mgeé'
It follows immediately from Theoreth 7.2 that these equations satisfy
the assumptions W.1-W.4, G.1-G .4, and L.1 if u; € W,,, i = 1, 2. This
system obviously describes a feedback system that will be called the
linearized feedback system. Note that this linearized feedback system is
linear but that the operators in the forward and the feedback loop
depend on the point of linearization, (xy,x;) € Wi, X W,
Theorem 7.5 exposes the relationship between continuity of a feedback
system and its linearization.?
2 Theorem 7.5 is an infinite-dimensional version of a theorem of Palais (Refs. 2, 3)
which essentially states that a nonlinear transformation on a finite-dimensional
space is invertible if all its linearizations are invertible. Theorem 7.5 is by no means a

generalization of this theorem to infinite-dimensional spaces, since it exploits
causality and invertibility on extended spaces in a very essential manner.



168 LINEARIZATION AND STABILITY
THEOREM 7.5

Consider the feedback system described by the functional equations
(FE) and assume that it is well posed. Assume that the operator G,,
i =1, 2, admits a linearization at every x, € W,,. Then the (in general
nonlinear) feedback system described by the functional equations (FE)
is Lipschitz continuous if and only if the linearized feedback system
described by the functional equations (LFE) is Lipschitz continuous for
all (x,,x,) € Wy, X W,,, uniformly in (x,x,).

Proof: It can be shown that well-posedness of (FE) implies well-
posedness of (LFE). However, since the thrust of Theorem 7.5 lies in
the continuity implications and since the demonstration of the above
claim is rather involved, its proof will be deleted. Turning now to the
continuity proof, let G denote the operator defined on W, X W,, by
G(ey,e)) = (—Gyey,Grer). Clearly, L(eye;) = (—L,e5,L,e,) is the
linearization of G at (x,,x;). By Theorem 7.4, (I + G)™! (which exists
and is causal by well-posedness) admits the linearization (7 4 L) at
{x1,x;). Thus by Lemma 7.1,

1Pp(I+ G) Pyl = sup |Pp(I + LYy*P,| forall TeS.

(1, 22)EW 1, X Wo, :

Now passing to the limit with 77— co shows that these limits exist
simultaneously — since both sides are monotone in T — and that they
are equal if they exist. This is precisely the claim of the theorem. ‘

Theorem 7.5 thus shows that for Lipschitz continuity it suffices to
consider the linearized system. The following theorem relates stability
of the nonlinear system with the stability of its linearization at the
origin. The resulting theorem is consequently a great deal weaker.

THEOREM 7.6

Consider the feedback system described by the functional equations
(FE) and assume that it is well posed. Assume that the operator G;,
i =1, 2, admits a linearization at 0 € W,,. Then the (in general non-
linear) feedback system described by the functional equations (FE) is
not finite-gain stable (and thus not Lipschitz continuous) if the feedback
system linearized at the origin (i.e., described by the functional equations
(LFE) with (x;,x,) = 0) is not continuous.

Proof: Let G denote the operator as defined in the proof of Theorem
7.5 and let L, be its linearization at the origin. Let u = (uy,u,) € Wy X
W, be the input to both the linearized and the nonlinear feedback
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system. Assume now that the nonlinear feedback system is finite-gain
stable; i.e., |[(/ + G)Y ]| < 0. Since (J + Ly)* is the linearization of
(I + G)™* at the origin, it follows that for all T € S,

m 1Pzl + G)au — (I + Loy au]|

0=10
a0 foel Jlul
> lim (”PT(I + Ly 'ull  IPr(I + G)lau ll) \
a0 fleel] loc] {fee]

S 1Pz + Ly u]
[l

Hence ||Pp(I + Loy *ull < [[( + G)7| flul, which yields stability of
the linearized system and the proof of the theorem.

— I + 677}

The ideas of Theorems 7.5 and 7.6 can be combined to show that a
well-posed feedback system is continuous if and only if it is stable and
its linearization at any point is continuous. This thus relaxes the
uniformity requirement of Theorem 7.5, but introduces the explicit
requirement that the feedback system be stable. Since this latter
condition cannot be stated in terms of linearizations, the combined
theorems cannot provide a test for verifying continuity by solely
considering linearizations, and so the combination has not been stated
explicitly in this section.

7.3 The Describing Function, the Total Gain Linearization,
and the Incremental Gain Linearization

In the previous chapters, a number of stability criteria for nonlinear
feedback systems have been derived. The question of whether or not
these criteria are conservative cannot be given a general answer, but
both from the estimates and from examples one suspects that these
criteria are by no means necessary and sufficient (Ref. 4). Thus the
question arises whether these criteria are inadequate or too conservative,
and if instability and stability conditions can be derived using some
approximate methods.

There have indeed been a number of such attempts in the engineering
literature. The best known of these -approximate methods are the
describing function (and its generalizations), the total gain linearization
based on Aizerman’s conjecture, and the incremental gain linearization.
All these methods rest in essence on a common technical (but not
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mathematical) principle. In particular, the describing function has been
very extensively — and, it appears, successfully — applied to engineer-
ing problems. .

There is one class of feedback systems for which necessary and
sufficient conditions for stability are known, namely, the Nyquist
criterion, which applies to feedback systems with a linear, time
invariant system in the forward loop and a constant feedback gain.

Thus, by associating with a nonlinear feedback system a well-chosen

class of linear time invariant feedback systems, one tries to conclude
stability or instability.

The following section takes a critical look at some of these lineariza-
tion procedures and exposes, by means of an example, unexpected
periodic solutions in a class of nonlinear feedback systems. Although
the system chosen to obtain this conclusion might seem quite special,
the method of analysis remains applicable to other systems and will
expose an essentially similar behavior. The example could also suggest
to what extent and for which systems the existing frequency-domain
stability criteria can be improved. They also demonstrate the need for
caution in applying these linearization techniques in stability analysis.

Consider the feedback system shown in Figure 7.1. The relation

Initial conditions -

+ X5y
il

0 & )
G(s)= o(s)

Figure 7.1 Feedback System

between the input and the output of the element in the forward loop is
determined by the ordinary time-invariant differential equation

%(t) = Ax(t) + bu(t),
y() = c'x(1),

where A is a constant (n X n) matrix, and b and ¢ are constant -
vectors. The transfer function of this system is thus given by G(s) =
¢'(Is — A)™*b and is the ratio of two polynomials in s with the degree
of the numerator less than the degree of the denominator. The element
() in the feedback loop generates an output f(¢) when its input is o,
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andfis a Lipschitz-continuous mapping from the real line into itself.
The differential equation describing the closed-loop system is thus

(1) = Ax(t) — bf (¢/x(1)).

It is assumed that f(0) = 0. The solution x(¢) = 0 is called the nul/
solution of this system and is said to be asymprotically stable in the large
if it is stable (in the sense of Lyapunov) and if all solutions converge to
the null solution for t — co. For convenience the feedback system under
consideration is said to be asymptotically stable in the large if the null
solution is.

Rather than investigating input-output stability as in the remainder
of this monograph, attention is focused in this section on asymptotic
stability, in order that the reader may more easily compare the literature
on these linearization methods. It can actually be shown, using the
methods employed in Section 5.3, that L -stability, with 1 < p < o0,
of the feedback system under consideration implies asymptotic stability
in the large. .

For the case for which f(¢) = Ko, this stability problem can be
completely resolved using root-locus techniques, the Nyquist stability
criterion or a Routh-Hurwitz test (Ref. 5) and thus presents in principle
no difficulties. If f (o) is nonlinear, however, this is not so, and often in
engineering practice the question whether a particular feedback
system of this type is asymptotically stable in the large is answered by
considering a linearized model.

Three common types of linearization are the dc type of linearization,
the ac type of linearization, and the describing-function type of
linearization. These are now formally defined.

Definitions: Let f be a mapping from the real line into itself with
TX0) = 0. The dc gain or the total gain of the nonlinearity f(o) at
o (o # 0) is defined by K,(0) = f(a)/o. If fis differentiable, then the
ac gair or the incremental gain of the nonlinearity /(o) at o is defined by
K;(0) = 9f (0)[00. If f satisfies for some M,, M, the inequality | f(0)| <
M, + M, |o| for all o, then the describing-function gain (or the
equivalent gain) of the nonlinearity f(o) at amplitude 4(4 £ 0) is the
complex number K,(4) defined by

21
K (4) = ;1;1 L £(A cos f)et dt.

Clearly, K,(4) = (1/mA) [¥ f(A cost)cos t dt, where f is a single-
valued function. The describing function can also be used when fis a
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hysteresis loop or a similar multiple-valued memory-type nonlinearity.
In that case the equivalent gain would in general be a complex number.
One also often requires the nonlinearity to be odd; this is an attempt to
eliminate the dc term in the output with a sinusoidal input. It should
also be noted that the describing-function method has been extended so
that it allows for more than simple sinusoidal inputs and that it is
capable of treating uncertainty as well.?

The procedure by which linearization attempts to conclude stability
for the dc, the ac, and the equivalent-gain types of linearization goes
as follows: If the linear system with f(¢) = Ko is asymptotically stable
for all K in the range of the dc gain, the ac gain, or the equivalent gain
(i.e., for all K = K,(0), K = K,(0), or K = K,(4) and all o or A) then
the nonlinear system is asymptotically stable in the large.

Both the dc type and the ac type of linearization and the resulting
conclusions about stability have been the subject of rather well-known
conjectures, due, respectively, to Aizerman (Ref. 7) and Kalman
(Ref. 8). Particularly the Aizerman conjecture has received a lot of
attention.* i :

The intuitive reasoning behind these conjectures in rather clear: in
the total gain linearization (Aizerman’s conjecture), one realizes that
asymptotic stability is a property pertaining to the origin, and thus one
replaces the nonlinearity by a linear gain that, viewed from the origin,
gives instantaneously the same gain. It is clear that if stability results
for all time-varying gains in the range of the dc gain, then the feedback
system is indeed asymptotically stable in the large. However, there does
not seem to be any reason to expect that the above procedure yields
correct results. Indeed, it sometimes fails, For incremental gain
linearization, one views the local properties of the nonlinearity and
replaces the nonlinearity by a linear gain which is locally the same. One

* An excellent source for the describing function and its generalizations is Reference
6.

* Originally published in 1949, it took until 1958 before Pliss (Ref. 9) gave a
satisfactory counterexample. It is possible to show using the Popov criterion that
for second-order systems the conjecture is true with the exception of some cases
where the dc gain approaches for large values of its argument a gain for which the
resulting linear system is not asymptotically stable. The counterexample given by
Krasovskii (Ref. 10) is in fact of this kind. The counterexamples obtained by Pliss,
however, are more satisfactory. The very stringent conditions on the nonlinearity
and the involved mathematics kept the work of Pliss from being well known. More
recently, Dewey and Jury (Ref. 11) and Fitts (Ref. 12) gave numerical counter-
examples derived from a computer simulation. The conjecture due to Kalman in
which the ac gain is used predicts stability in the large only for a subclass of the
nonlinearities for which Aizerman’s conjecture does. Fitts (Ref. 12) gives counter-
examples to this conjecture derived from a computer analysis.
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ignores in this process the fact that this linear gain does not extend to
the origin. The incremental gain does correspond to a type of lineariza-
tion: namely those linearizations obtained by considering constant
inputs. The linearization thus suggests a continuity consideration, but
the conclusion pertains to stability. Note that the range of the dc gain
is always smaller than the range of the ac gain and thus that the ac gain
type of linearization leads to more cautious conclusions than the dc
gain type of linearization.

The question of continuity of a particular feedback system can be
answered by linearization, as indicated in Section 7.2. However, one
needs thereby to replace the nonlinearity f by a gain k(#), which varies
between o < k(1) < f with « = inf, 5 K;(6) and B = sup,.p K (o),
and the resulting linear system needs to be stable for any gain satisfying
the constraint « < k(z) < B.

The describing-function technique is clearly inspired by linear
time-invariant systems where the eigenfunctions (in L) are sinusoids,
and thus the responses to sinusoids are completely representative of the
system behavior. This, however, does not carry over to nonlinear
systems and makes the mathematical philosophy of the describing
function unclear. However, it appears to yield good results, which is
understandable in view of the fact that if a system sustains oscillations,
then it is very likely that the first harmonics are in balance somewhere
in the neighborhood of the oscillation.

In what follows, a simple, rigorous proof of the existence of periodic
solutions in a fourth-order system will be given. It will be shown,
however, that all of the above-mentioned linearization techniques
predict asymptotic stability in the large. These oscillations thus con-
stitute a class of counterexamples to both Aizerman’s conjecture and
Kalman’s suggestion. The results are obtained using perturbation
theory (Refs. 13, 14). Since the ideas behind this technique are simple,
the theorem from which the results follow will be proved.

7.4 Averaging Theory
Consider the ordinary differential equation

%(t) = Ax(t) + f (x(2),2,¢),

where x(¢) is an element of R, 4 is a constant (n X ») matrix, zis a
parameter (an element of R,,), €is a scalar parameter, and f'is a mapping
from R, X R, X Rinto R, such that for all R, ,, and M there exists
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a constant K(R,e,,M) (the Lipschitz constant) such that | f(x,,z,€) —
F(x2,2,9)l < K ||x; — xafl forall [lx1l], Ix:]l < R, |e] < oand |z < M.

Since the function f does not satisfy a global Lipschitz condition, it
is not clear at this point whether a solution x(z) to the differential
equation exists for all . This problem is resolved in the next lemma.

Definition: Let x(t) be a continuous map from [0,7] into a Banach
space. Then sup,eo lx(2)|| exists and is called the norm induced by the
uniform topology. This space is complete Recall that the contraction
mapping principle states that if F is a map from a complete metric
" space X into itself with d(F(x),F(y)) < « d(x,y) for all x, y€ X and
some o < 1, then the equation x = Fx has a unique solution (called a
Jixed point of the mapping F). Moreover, picking any x, and defining
Xpp1 & Fxy, k € I, yields a sequence {x;} which converges in the metric
of X to the fixed point of F.

Lemma 7.2

Given any = > 0, p, and M, then the above differential equation
has a unique solution x(¢) for any x(0), z, ,and ¢ that satisfy [|x(0)| < p,
0 €t < 7, and |z < M provided e is sufficiently small (i.e., for all €
with |e] < ¢; and some ¢; > 0). Moreover, this solution can be obtained
using the successive approximations

Xo(t) = e?x(0)
and

i) = e4x0) + ¢ [errtatorne do
for k e I't.

Proof: Let S be the sphere in the Banach space of all continuous
mappings from [0,7] into R, with the uniform topology and with lx(O)I
< 2pN where N = sup,<,<, le4!||. The mapping F defined on S by

Fx(f) = e*(0) + ef e4f (x(0),2,¢) do,

maps S into itself for all |¢] < €, with
< min {&,(KN,)7, pr*(4pNK + [ £(0,0,0)[)},

where K is the Lipschitz constant associated with R = 2pN, ¢ > 0,
and M. Moreover, F is a contraction on S. The verification of these
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facts is simple and will not be given explicitly. Thus, the equation
x(f) = Fx(t) has a unique fixed point, which can be obtained using the

~ successive approximations as stated. This yields the lemma.

The next lemma exposes the dependence of x(z) on € more explicitly:

Lemma 7.3 :

Given any 7 > 0, p, and M, then the solution x(¢) to the above differ-
ential equation for any x(0), z, and ¢ that satisty [x(O)] < p,0 < 1< 7,
and ||z|l < M can be expressed as

x(t) = e*x(0) + ¢ f e24=f(e47%(0),2,¢) do + °L(t,x(0),z,€)

for all e sufficiently small (i.e., for all € with |¢] < €, and some €, > 0).
Moreover, L(t,x(0),z,¢) is bounded for 0 <1< 7, [x(O)] < p,
] < M, and [¢| < €.

Proof: Tt will be shown that the (k + 1)th element in the series of
successive approximations introduced above is of this form provided
the kth one is, and that the bound on L, can be taken to be independent
of k. Since x,(¢) is clearly of that form, the result follows by induction,
because the limit for £ — oo exists and must also be of this form. Let K
be the Lipschitz constant associated with 2pN, €;, and M, and let
€, < min {¢,(2N7)"1}. A simple calculation then shows that || L4/t <
72N%(| £(0,0,0)]l + KNp) if Ll < 7*N2(]£(0,0,0)] + KNp), which
then, in view of the above remarks, yields the lemma.

Lemma 7.3 yields the following theorem on the existence of periodic
solutions to the differential equation under consideration.

"THEOREM 7.7
If for e sufficiently small (i.e., for all € with |e] < ¢, and some ¢, > 0)
there exist bounded functions x(0)(¢), T(¢), and z(¢) such that

x(0)(e) = e4TOx(0)e) + eLT(s)eA[T("_“]f(eAT ©%(0)(e),z(€),€) do

+ €L(T(€),%(0)(e),z(e)s6),

then the differential equation under consideration has a periodic
solution for e sufficiently small (i.e., for e with |e| < ¢; and some
& > 0).
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Proof: Lemma 7.2 shows that for e sufficiently small x(T(¢)) = x(0)(e),
which, since the differential equation under consideration is time-
invariant, yields a periodic solution of period T{e).

Theorem 7.7 is not very useful as it stands, since it requires computa-
tion of the function L and solving for the functions x(0)(e), T(e) and
z(e). However, by using the implicit function theorem it is possible to
obtain sufficient conditions for the conditions of Theorem 7.7 to be
satisfied. -

In the theorem which follows, use will be made of the implicit
Sfunction theorem (Ref. 1, p. 47), which states that if f maps R, X R,
into R, and if:

1. f(x9,y0) = O for some x, € R,, y, € R,,,

2. %(x, ) exists and is continuous in a neighborhood of the point
Xg, Yo, and

3. %(xo,yo) is of rank n,

then there exists a map, ¢, from R, into R,,, which is continuous in a
neighborhood of x, and such that y = ¢(x) yields f(¢(x),x) = 0 for
all x in some neighborhood of x,. Moreover, y, = ¢(x,), and ¢ is
unique in a neighborhood of x,.

THEOREM 7.8 ,

Assume that e4%e = [ (i.e., that all solutions of %(t) = Ax(r) are
periodic with period Tp), and that f(x,z,¢) is a continuous function of
X, z, and e that has continuous first partial derivatives with respect to x
and z for e sufficiently small (i.e., for all ¢ with |¢| € ¢, and some
€ > 0.) Let

Tq
F(x,z,€) éf e4f(e%x,2,¢) do
0

and assume: 1, that F(x,,%,0) = 0; and 2, that the matrix
5;% (x4,2,0) is of full rank. Then there exists a continuous function
z(e) such that for ¢ sufficiently small (i.e., for all € with |¢] € ¢ and
some €; > 0) the differential equation under consideration has a
periodic solution x*(¢,) with lime.q z(€) = z, and lim.,, x*(t,€) =
edix,.

Proof: The smoothness conditions on f together with the resulting
smoothness of the solutions of ordinary differential equations (Ref.
15, p. 29) ensure that the implicit function theorem is applicable. This
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in turn shows that the conditions 1 and 2 of the theorem are sufficient
to ensure that Theorem 7.7 is applicable, which leads to the conclusion
of the theorem.

This method of concluding the existence of periodic solutions for
differential equations is known as Averaging Theory since the function
F as defined in Theorem 7.8 requires the average value of the velocity
vector along the solution e4fx, to be zero.

7.5 Counterexamples to Aizerman’s Conjecture
Consider the differential equation
x®(8) + 10x2(2) + 9x(2) + e[ax®(2) + fx2(r)
+ yx®(1) + 0x()] + o (x* () = 0,

where f maps R into R and is continuously differentiable with respect

0 + 52 y(tL
(s2+1)(s2+9)+€(as3+Bs2+y5 +8) o

JI ef (')'l-‘
Figure 7.2 The Fourth-Order System to which Averaging Theory is Applied
and which Yields Counterexamples to Aizerman’s Conjecture

to its argument. This equation describes the feedback system shown in
Figure 7.2 and is equivalent to the following system of first-order
differential equations:

£(1) 0 1 z(1)
25(2) -1 0 zy(t)
50| | o o o 24(1)
24(1) 0 0 -3 0

<f |1 Yy (1) 1 .
8 0 6—98 z3(t) 0 [z + z0) | + O(e3),

0
0
3
0
o1 8—8 [z 0
+{
1 13(y =90 | [ 24() -3
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where O(e?) denotes a four-dimensional vector which is such that
lim, ., [O(e?)/e] = 0. The application of Theorem 7.8 shows that there
exist continuous functions a(e), f(e), y(e), and 6(e¢) such that the
differential equation under consideration has a periodic solution,
z*(t,¢), with lim,_,o a(e), B(¢), y(€), d(e) = ag, By, ¥4, Oy and

210 0 1 0 0
-1 0 (
Lim z*(t,€) = e F2.0 , A= 0 ,
€0 Zg.p 0 0 0 3
Z4,0 0 0 -3 0

27
O (o — 29)z1,0 + (Bo — O)z2,0 % ;‘11 . f(zy,cos o

+ 23,080 6 + 23 4C0s 30 + 2, ¢sin 30) sin e do = 0,
27

(Bo = 0710 — (o — w70+ — | S(ig 0050

+ 24 98I0 0 + 23 4 cos 30 + z, ¢ sin 306) cos o do = 0,
(Vol3 — 30)zs 0 + (Bo — 6o/Dza0 + 1; :”f(zl_o cos o

+ 25 95i0 0 + 23,408 30 + z, osin 30) sin 3¢ do = 0,
(Bo — 00/Nz3.0 — (Vo3 — 30g)z4,0 + i 027;’(7:1,(l cos o

+ 25,08i0 0 + z; ¢ €08 30 + 24 4 5in 30) cos 30 do = 0,
and

@) (212,0 + Zg.o)(z:g.o + Zi,o) # 0.

Equation (2) guarantees that the matrix in Theorem 7.8 is of full rank,
and equation (1) is derived from the requirement that the average be
zero.

From these conditions the following theorem, which will be central
in establishing the counterexamples to Aizerman’s conjecture is now
derived.

THEOREM 7.9

If (o) is not identically equal to ko for any constant k, then there
exists a nonzero periodic solution to the differential equation under

—
¥
'
¥
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consideration for e sufficiently small (i.e., for all € with |¢| < ¢, and
€y > 0), and proper choice of the functions a(e), B(¢), (), and 3(e).
Moreover, the functions a(e) and y(e) which yield this periodic solution
satisfy the inequality

(r(9) — x(e)(y(e) — a(e)) <O.

Proof: The proof proceeds as follows: First, ag, £y, ¥4, and d, will be
chosen in such a way that the determining equations are satisfied. If
Z1.0, 22,0 Za,0, a0d 2z, o are chosen such that (zio + 23 )z, + zf’o) # 0,
then the determining equations can be solved uniquely for «y, By, v,
and d,, since the determinant of these linear equations in o, S5, ¥4, and
dg is then nonzero and yields in particular the following expression for
Yo — %ot
1 1 2r

Yo — =35 — | f(21,0€080 + z;psin ¢
Zl’o + 22'0 mJo
+ zg,4€08 30 + 2z, o5in 30)(z, o 8N 0 — 23 ¢ COS 0) do.

If £ is linear, then y, — o5 = 0. If £ is not linear, then there exists a
choice of zy,9, 22,0, 73,0, and 24,0 With (25 , + zg,o)(zg'0 + 2 o) # 0 such
that p, — o 5 0. Moreover, from these determining equations it also
follows that

(o — oc0)(212.0 + Zg,o) + (yo — 9“0)(Z§,o + Zg,o) = 0.

Thus (¥, — ag)(ve — 9¢¢) < 0 for this choice of z; ¢, 25, 239, and zy 4
with (2%, + zgvo)(zg'0 + z; o) # 0, which yields the conclusion of the
theorem.

Consider now the zeros of the polynomial
st + 1052 + 9 + e(os® + fs + ps + 0) + eKs2
For e sufficiently small and for X bounded, these zeros lie:
ife>0,a>0,y>0,and (y — a)(y — 92) < 0,
orife<0,0<0,y<0,and (y — )y — %) < 0;
ife<0,a>0,>0,and (y — &)y — 92) <O,
orife>0,a<0,y<0,and (¥ — a)(y — %) < 0.

Thus all the linearization techniques would predict that the feedback
system under consideration is asymptotically stable in the large provided

l.inRes <0

2.inRes >0
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that e >0, « >0, y> 0 and (y — 0)(y — 92) < 0 or that e < 0,
« <0,y <0and (y — «)(y — 9«) < 0 and the linearized gain satisfies
0 <K < 1. These regions are graphically shown in Figure 7.3.

Figure 7.3 Conditions on ¢, «, ¥ to Obtain Counterexamples to Aizerman’s
Conjecture

Choosing now a nonlinearity such that K (o), K,(¢), and K, (4)
satisfy 0 K K< 1 (eg., f(o)=tanh 0),it is clear that for «
sufficiently small and for values of « and y such that (y — a)(y — 92) <
0, the sign of € can be chosen in such a way that the linearization
techniques would predict the feedback system under consideration to
asymptotically stable in the large. This, however, is in direct contra-
diction with Theorem 7.9, which shows that the feedback system
sustains a periodic solution.

Remark 1: The choice of the function f(¢) = tanh o, is irrelevant.
In fact, the same conclusion holds for any nonlinearity, provided
it is sufficiently smooth for Theorem 7.9 to be applicable and pro-
vided | f(o)] € K |o| for some K and all ¢ which then yields, for e
sufficiently small, the pole locations of the linearized system as given.

Remark 2: The remarkable feature of the periodic solutions discovered
in Theorem 7.9 is that (for e sufficiently small) they occur only when
the linearized system has all its poles either always in the left half-plane
or always in the right half-plane, contrary to what is to be expected
from linearization.

Remark 3: The Nyquist locus and the root locus of the fourth-order
system under consideration are shown in Figure 7.4 for the case

T
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+43

K< QO
K<O

41
K>0

¥,

&
K>0

=-1
K< O
K<O

4-3
K>0

Figure 7.4 Nyquist Locus of G(jo) and Root Locus of the Linearized
Feedback System

" Re G(jw)

Re

€e>0, a>0, >0, and (y —a)(y —92) >0 or e<0, x <0,
y <0, and (y — a)}(y — 92) < 0.

Remark 4: The local stability properties of these periodic solutions is
of course of interest. Variational techniques show that for proper
choices of «, §, ¥, g, €, and f(-) these periodic solutions can be locally
stable.

The existence of the periodic solutions discovered in this section will
now be given an intuitive explanation.’ This will of course be a plausi-
bility argument. Averaging theory allows us to conclude that the
argument is correct provided e is sufficiently small.

Assume an input to the nonlinearity ef (*) which has a first harmonic,
a third harmonic, and “small” other harmonics. The output to the
nonlinearity will thus contain all harmonics, all of comparable magni-
tudes, and all “small” since they have been multiplied by a small
parameter €. Let x;, x3, 5, and y; be the Fourier coeflicients of the first
and the third harmonics of the input and the output to the nonlinearity.
It can be shown that for particular choices of x; and y, the nonlinearity
will shift the phases of the first and third harmonics toward one another,

® The dual-input describing function would predict these oscillations. However,
the method of proof will yield counterexamples to the dual-input describing function
when applied to higher-order systems.
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3

Figure 7.5 The Frequency Spectrum of the Input and the Output of the
Element in the Feedback Loop

thus obtaining the situation depicted in Figure 7.5. The negative
feedback leads to an input u to the forward loop — as is shown in
Figure 7.6 — that with a Nyquist locus as in Figure 7.6 multiplies the
first and third harmonic by a factor of order e ! and shifts their phases
in the right direction but by an amount less than 180°, thus restoring
the original relationship of x; and x,. The higher harmonics remain of
order . The loop can thus be closed and the feedback system sustains
the oscillation.

Figure 7.6 The Frequency Spectrum of the Input and the Output of the
Element in the Forward Loop
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Algebras, 16

Almost periodic function, §

Anticausal operator, 14

~ Argument of a complex-valued

function, 128
Attenuating operator,
conditions for invertibility, 36
definition, 24
relation to stability, 108
Autocorrelation function, 66
Averaging theory, 173

B B+, B, B°, notation, 21
3+, F - &, notation, 21
Backwards extension, 41
Banach algebra, 17

Banach space, 4

Bound of an operator, 11, 15
Bounded operator, 11, 15

Cauchy-Schwartz inequality, 5
Cauchy sequence, 3
Causal operator,
conditions for invertibility, 35
definition, 14

Causal Operator (continued)
properties, 14
Characteristic of a memoryless
operator, 100
Circle criterion, 122
illustration, 133
instability part, 132
statement, 131
Commutation of operators, 12
Complex power, 70
Composition of operators, 12
Conic operator,
conditions for invertibility, 31, 37
definition, 24
properties, 24
relation to continuity, 113
relation to instability, 110
relation to stability, 108
Continuity of feedback systems,
conditions, 110
definition, 92
relation to linearization, 166
Continuous operator, 11
Contraction mapping principle, 28
Contraction operator,
conditions for invertibility, 29
definition, 24
properties, 24
relation to continuity of feedback
systems, 113

Contraction property, 17
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Convolution operator,
conditions for positivity, 50
definition, 49
properties, 49

Critical disk, 130

Crosscorrelation function, 66

2, notation, 130
dc gain, 171
Describing function, 171
Discontinuity of feedback systems,
conditions, 110
definition, 92
Dissipative operator, 16. see also
Positive operator
Domain of an operator, 3, 26
Dominant matrix, 59
Dominant sequence, 64
Doubly dominant matrix, 59, 63, 82
Doubly hyperdominant matrix, 59,
63, 82 :
Doubly stochastic matrix, 59

Encirclements, 128, 133
Equivalent gain, 171
Extended space,
conditions for positivity, 81
definition, 13
properties, 12
Extension of an operator, 3, 15, 41
Exterior conicity, 24

F 7, notation, 51, 65
Factorization of operators, 72
FE, notation, 87
Feedback systems,

assumptions, 89

concepts, 86

mathematical model, 87
Finite gain stability, 92
First and third quadratic function,

58

Fourier transform, 6
Frequency-power relations, 66
Frozen time Nyquist criterion, 148

%, notation, 49

4°, 4%, 47  notation, 131, 134
4r, notation, 53

Gain on an interval, 96
Generalized Fourier series, 8

Hardy, Littlewood, and Polya
inequality. See Rearrangement
inequality

Hilbert space, 5

Holder’s inequality, 5§

Hyperdominant matrix, 59, 63, 82

Hyperdominant sequence, 64

1, I*, notation, 2
Ideal, 17
Implicit function theorem, 176
Incremental gain, 171
Infinite matrix array, 62
Inner product, 5
Inside-the-sector operator, 25
Instability,

conditions, 109

definition, 92
Instantaneous gain, 97
Interior conicity, 24
Invertibility,

conditions, 28

definition, 12, 17

K, notation, 3
2, notation, 50
2z, notation, 53

% &%, ¢, notation, 19, 21, 23
L4, LA*, notation, 125, 128
Laplace transforms, 124, 126
1y, Ly, Is, Lo, notation, 4, 5
la-stability, 157
LFE, notation, 123, 167
Limit-in-the-mean transform, 6
Linear system, 116
Linearization,

definition, 162

properties, 162

relation to continuity of feedback

systems, 166

relation to invertibility, 165

relation to stability, 161
Linearized feedback systems, 167
Lipschitz constant, 11, 15
Lipschitz-continuous operator, 11, 15
Lipschitz continuity of feedback

systems, 92

Loop transformation, 138
LPFE, notation, 141

4, notation, 66

Manley-Rowe formulas, 52, 72

Measurement noise, 116

Memoryless operator,
conditions for positivity, 49
definition, 14

Memoryless time-invariant operators,

51
Metric space, 3
Minkowski’s inequality, 5
Modeling errors, 90
Monotone nonlinearity,
conditions for positivity, 57
conditions for stability, 155
Monotone operator, 26, 157, see also
Positive operator
Multipliers and stability, 136

M N*, N, AN°, potation, 19, 21
Negative operator, 27
Noninvertibility of operators, 40
Nonlinear capacitor, 71
Nonlinear inductor, 71
Nonlinear operators, 10
Nonlinear resistor, 70
Norm, 4
Nyquist criterion, 122
illustration, 130
statement, 128
Nyquist locus, 130, 131

Odd-monotone nonlinearity,
conditions for positivity, 57
conditions for stability, 155

Odd-monotone operator, 157

Operator, 3, 11

Operator algebras, 19

Outside the sector operator, 25

Pr, notation, 13.
Parseval’s inequality, 6
Passive operator, 26, 40. see also
Positive operator
Periodic gain,
conditions for positivity, 53
conditions for stability, 140
Permutation matrix, 59
PFE, notation, 90
Physical feedback system, 90
Plant variations, 116
Popov criterion, 52
Positive operator,
conditions for invertibility, 33, 39
definition, 26
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Positive Operator (continued)
examples, 45
properties, 24
relation to continuity of feedback
systems, 114
relation to stability, 109

Quasi-periodic function, 71

R, R7, notation, 2

Range of an operator, 11

Reactive power, 70

Rearrangement inequality,
classical statement, 57, 59
generalization, 60

Regular subalgebra, 17

Restriction of an operator, 3, 28

S, notation, 13
% notation, 66
S3, notation, 52
o, notation, 17
Sector operator,
conditions for invertibility, 32, 38
definition, 25
properties, 25
relation to continuity of feedback
systems, 113
relation to stability, 109
Sensitivity, 114
Similarly ordered sequence, 58, 63
Similarly ordered and symmetric
sequence, 58, 63
Solution of feedback equations, 89
Spectrum, 17
Square root of an operator, 55
Stability,
alternative definitions, 106
conditions, 106
definition, 92
discussion, 101
relation to linearization, 161
Stieltjes matrix, 59
Subalgebra, 17

T, , notation, 20
Time-interval of definition, 13
Time-invariant operator, 20
Toeplitz operator, 64

Total gain, 171

Transform theory, 6
Translation operator, 20
Truncation operator, 13
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Unbiased sequences, 58, 63
Vector space, 3

W, W., notation, 13
Well-posedness of feedback systems,
conditions, 96
definition, 90
discussion, 93
examples, 95
Wiener-Hopf equation, 80

z-transform, 7




