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Preface

Easy development of new programs and applications, and their efficient operation on a computer are the
primary concerns of computer users. However, both the concems cannot be satisfied simultaneously.
This situation has led to different kinds of schemes for program development which provide ease of
program development to varying degrees and to many schemes for program execution which offer
varying levels of execution efficiency. A user has to choose a scheme of each kind to obtain a suitable
combination of ease of program development and efficiency of operation.

Programs that implement the schemes for program development and program execution are called
system programs and the collection of system programs of a computer is called system software. A
course on systems programming deals with the fundamental concepts and techniques used in the design
and implementation of system programs, and their properties concerning speed of program development
and efficiency of operation. Accordingly, a book on systems programming has to focus on numerous
topics—support for quick and efficient development of programs, design of adaptive and extensible
programs that can be easily modified to provide new functionalities, models for execution of programs
written in programming languages, and interactions among user programs, the operating system, and the
computer to achieve efficient and secure operation of the computer.

My previous book Systems Programming and Operating Systems covered the complete area
of system software. It was used for three kinds of courses-—systems programming, compilers, and
operating systems. However, it was a large book that needed to get even larger to keep pace with
developments in this field, so I decided to offer two separate books in this area. This book focuses
primarily on systems programming. It can be used for a course on systems programming that contains
a small module on operating systems and also for a course on compilers. It 1s expected that instructors
and students of courses on operating systems would use my other book Operating Systems—A Concept-
Based Approach.

General approach

Diversity of computer systems and system programs has been a major challenge in the writing of this
text. I have used principles of abstraction and simple models of computer systems and system programs
to present the key issues in design of system programs. This way, the text is free of dependence on

specific computers, programming languages, or operating systems.

Pedagogical features

Chapter introduction The chapter introduction motivates the reader by describing the objectives of the
chapter and the topics covered in it.
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Figures and boxes Figures depict practical arrangements used to handle user computations and resources,
stepwise operation of specific techniques, or compansons of alternative techniques that project their
strengths and weaknesses. Boxes are used to enclose key features of concepts or techniques being
discussed. They also serve as overviews or summaries of specific topics.

Examples Examples demonstrate the key issues concerning concepts and techniques being discussed.
Examples are typeset in a different style to set them apart from the main body of the text, so a reader
can skip an example if she does not want the flow of ideas to be interrupted, especially while reading a
chapter for the first time.

Algorithms Specific details of processing performed by system programs are presented in the form of
algorithms. Algorithms are presented in an easy to understand pseudo-code form.

Case studies Case studies emphasize practical issues, arrangements and trade-offs in the design and
implementation of specific schemes. Case studies are organized as separate sections in individual
chapters.

Tests of concepts A set of objective and multiple choice questions are provided at the end of each
chapter, so that the reader can test the grasp of concepts presented in the chapter.

Exercises Exercises are included at the end of each chapter. These include numerical problems based
on material covered in the text, as well as challenging conceptual questions which test understanding

and also provide deeper insights.

Chapter summary The summary included at the end of each chapter highlights the key topics covered
in the chapter and their interrelationships.

Instructor resources A detailed solutions manual 1s provided.

Organization of the book

The first chapter describes goals of system software and discusses the characteristics that distinguish
system programs from other kinds of programs. It also introduces the notion of effective utilization of
a computer; it 1s a combination of user convenience, programmer productivity, and efficient and secure
operation of a computer that suits a user’s purposes. The rest of the chapter describes the broad spectrum
of considerations that influence the design of system programs. These considerations range from user
expectations such as high productivity during program development, ease of porting a program from
one computer to another, ability to compose new programs by using existing programs as components,
ability of software to adapt to its usage environment, and secure and efficient operation of programs.

The first chapter also develops two views of system software from the perspectives of ease of
programming and efhicient operation, respectively. The user-centric view is comprised of system
programs that assist a user in fulfilling her computational needs. It includes system programs that
transform a user program written in a programming language into a form that can be executed on
a computer. The systemcentric view 1s comprised of programs that achieve effective utilization of a
computer system by sharing its resources among user programs and ensuring non-interference during
their execution. We call these two kinds of system programs language processors and operating system
programs, respectively, The rest of the book 1s organized into two parts dealing with these two kinds of
system programs, respectively.
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Language Software
Processors Tools
_ | Scanning
Assemblers Linkers and Parsing

l N

Macro :
A Ml Interpreters Compilers

Chapters of Part |

« Part I: Language processors A language processor is a system program that bridges the gap
between how a user describes a computation in the form of a program, and how a computer

executes a program. This gap is called the specification gap. The figure shows the interrelationship
between chapters in this part.

Chapter 2 describes how the specification gap influences ease of programming and execution
efficiency of programs. It describes two classes of language processors called program
generators and translators. It then describes fundamentals of the language processing activity
and the organization of language processors. Remaining chapters of this part discuss details of
specific kinds of language processors. Chapter 3 discusses the design of an assembler, which 1s
the translator of a low-level machine-specific language called the assembly language. Chapter
4 discusses the macro facility provided in assembly languages, which enables a programmer to
define new operations and data structures of her own choice to simplify design and coding of
programs, Chapter 5 discusses /inkers and /oaders, which are system programs that merge the
code of many programs so that they can be executed together and make the merged code ready for
execution by the computer. Chapter 6 describes the techniques of scanning and parsing that are
used by a language processor to analyse a program written in a programming language. Chapters 7
and 8 discuss compilers and interpreters, which are two models of execution of programs written
in programming languages. Finally, Chapter 9 discusses software tools, which are programs that
suitably interface a program with other programs to simplify development of new applications.
Many of these tools use elements of language processing to achieve their goals.

« Partll: Operating systems The operating system controls operation of the computer and organizes
execution of programs. Part II comprises five chapters. Chapter 10 describes the fundamentals of
an operating system—how it controls operation of the computer, and how it organizes execution of
programs. It contains an overview of those features of a computer’s architecture that are relevant
to the operating system and describes how an operating system functions. It then provides an
overview of the concepts and techniques of operating systems used in the classical computing
environments, Chapters 11-14 discuss concepts and techniques used in the four key functionalities
of operating systems, namely, management of programs, management of memory, file systems,
and security and protection in operating systems.
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Using this book

Apart from an introduction to computing, this book does not assume the reader to possess any
specific background. Hence it can be used by both students of systems programming and by working
professionals.

Dhananjay Dhamdhere
April 2011



CHAPTER 1

Introduction

A modern computer has powerful capabilities such as a fast CPU, large memory,
sophisticated input-output devices, and networking support; however, it has to be
instructed through the machine language, which has strings of Os and 1s as its
instructions. A typical computer user does not wish to interact with the computer
at this level. The system software is a collection of programs that brnidge the gap
between the level at which users wish to interact with the computer and the level at
which the computer is capable of operating. It forms a software layer which acts as
an intermediary between the user and the computer. It performs two functions: It
translates the needs of the user into a form that the computer can understand so that
the user’s program can actually get executed on the computer. However, the com-
puter has more resources than needed by a program, so many of its resources would
remain idle while it is servicing one program. To avoid this problem, the software
layer gives the idle resources to some other programs and interleaves execution of
all these programs on the computer. This way, the computer can provide service to
many users simultaneously.

Each program in the system software is called a system program. System pro-
grams perform various tasks such as editing a program, compiling it, and arranging
for its execution. They also perform various tasks that a user 1s often unaware of,
such as readying a program for execution by linking it with other programs and with
functions from libraries, and protecting a program against interference from other
programs and users. The term systems programming 1s used to describe the collec-
tton of techniques used in the design of system programs.

In this chapter we define the design goals of system programs and discuss the
.. diverse functions performed by them. We then discuss the functions performed by
- different kinds of system programs. Details of their functioning and design are dis-
cussed in subsequent chapters.
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Introduction §

each computing environment, users desire a specific combination of convenience and
efficient use. This is the notion of effective utilization of the computer system. For
example, users in an interactive environment would favour convenience, e.g., fast re-
sponse, to efficient use, whereas in a commercial data processing environment users
would prefer efficiency to convenience because it would reduce the cost of comput-
ing. Hence an operating system simply chooses techniques that provide a matching
combination of convenience and efficient use. We find a rich diversity in operating
systems, and in system software in general, because effective utilization has a differ-
ent flavour in each computing environment. We consider examples of this diversity
in later sections of this chapter.

Interference with a user’s activities may take the form of illegal use or modifi-
cation of a user’s programs or data, or denial of resources and services to a user. It
could be caused by users of a computer system or by non-users. The system software
must incorporate measures to prevent interference of all kinds and from all sources.

We discuss important aspects of the three fundamental goals of system software
in the following section.

1.2.1 User Convenience

Table 1.1 lists many facets of user convenience. In the early days of computing, user
convenience was synonymous with bare necessity—the mere ability to execute a
program written 1n a higher level language was considered adequate. However, soon
users were demanding better service, which in those days meant only fast response
to a user command.

Table 1.1 Facets of user convenience

Facet Examples
Fulfillment of necessity Ability to execute programs, use the file system
Good Service Speedy response to computational requests

User friendly interfaces Easy-to-use commands, Graphical user interface (GUI)
New programming model  Concurrent programming

Web-oriented features Means to set up web enabled servers

Evolution Add new features, use new computer technologies

Other facets of user convenience evolved with the use of computers in new fields.
Early operating systems had command-line interfaces, which required a user to type
in a command and its parameters. Users needed substantial traiming to leamn use of
commands, which was acceptable because most users were scientists or computer
professionals. However, simpler interfaces were needed to facilitate use of comput-
ers by new classes of users. Hence graphical user interfaces (GUIs) were designed.
These interfaces used icons on a screen to represent programs and files and inter-
preted mouse clicks on the icons and associated menus as commands concerning
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Introduction 9

compare two system programs to decide which of them is “better’. However, reality
is more complex than this conception for several reasons.

An axis may not be homogeneous, so its calibration would be subjective and
contentious. For example, how do we place the six facets of user convenience shown
in Table 1.1 along the convenience axis in a non-controversial manner? Should we
consider the ability to evolve more important than having web-oriented features?
Similarly, given that a computer has several kinds of resources such as the CPU,
memory and input-output devices, how do you assess efficient use of resources? Is
one kind of resource more or less important than another kKind? We could resolve this
difficulty by developing a resource utilization function in which each kind of resource
1s a parameter. But if we did that we would have to decide how much weightage to
assign to each of the resource kinds, and so on. The second reason is that the nature
of the computing environment in which a system program is used decides how it
rates along each of the axes. For example, the computational needs of a user decide
what facet of user convenience and efficiency are relevant. Consequently, a system
program cannot be rated uniquely along the three axes.

Due to these reasons, the question “Should system program A be preferred over
system program B?” does not have a unique answer. In some situations A would be
preferred while in some others B would be preferred. The purpose of studying system
software is to know which of the two should be preferred in a specific situation. In
the following sections we consider aspects which influence answers to this question.
After a reader has gained a perspective for answering this question, she should try to
answer the higher-level question “Under what situations should system program A
be preferred over system program B7”

1.4.1 The Program Development and Production Environments

In a program development environment, users are engaged in developing programs to
meel their computational needs. A user makes a trial run of her program to discover
the presence of bugs, modifies the program to fix the bugs and makes further tnal
runs and so on until no new bugs can be discovered. In a production environment,
the users merely execute already developed programs on one or more sets of data
each to produce useful results; none of the programs face any modification.

A compiler and an interpreter are two system programs that can be used to
execute programs in these environments. The compiler translates a program P written
in a higher level programming language L into the machine language of a computer.
Thus, 1t generates a machine language program that can be executed later. The inter-
preter does not generate a machine language program; instead it analyzes program P
and directly carries out the computation described in it.

To understand comparative efficiency of a compiler and an interpreter, let us
consider how they function: The compiler analyzes each statement in program P
and generates a sequence of instructions in the machine language that would realize
-meaning of the statement when executed, by computing values, making decisions
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Introduction 13

this purpose as follows: When a client contacts theé server, the client and the server
coordinate their activities to download a program in the bytecode form in the client’s
computer, and the client initiates its interpretation by a Java virtual machine. This
program obtains data from the server periodically. This scheme shifts most of the
action to the client’s side, thereby reducing the pressure on the server’s resources.
It 15 implemented simply by including a Java virtual machine in the client’s web
browser.

1.4.4 Treating Programs as Components

A new computational task to be accomplished may have known subtasks for which
programs have been already developed. A program for performing the new task
can be developed quickly and cheaply if the existing programs can be treated as its
components. This requirement points to a facility that permits programs 10 be glued
together to form larger software systems. A user interface is a prime example of
such a facility because it permits ready programs—either system programs provided
in the system software of a computer or those developed by users—to be invoked to
accomplish larger tasks. A language designed for gluing together existing program
components is called a scripting language. Note that the scripting language merely
binds together those programs that actually perform the computational task. Hence
efficiency of the scripting language is not important.

The scripting languages provided in early mainframe computer systems were
called job control languages (JCL). In such computer systems, a job consisted of a
sequence of programs. The JCL allowed a programmer to indicate which programs
constituted a job and implemented their execution in the specified sequence. The
shell of Unix and graphical user interfaces (GUISs) of the Apple, Windows and Linux
operating systems are current-day descendants of the JCL. Example 1.1 contains an
illustration of the Unix shell. A scripting language used in this manner is also called
the command language of an operating system.

Example 1.1 (Gluing of programs using the Unix shell} The following command in the
Unix shell

cat alpha | sort | uniq [ wc -1

glues together four programs (o accomplish counting of unique names in file alpha.
These programs are—cat, sort, uniq and wc. ‘|’ is the symbol for a Unix pipe,
which sends the output of one program as input to another program. Thus, the output
of cat is given to sort as its input, the output of sort is given to uniq and the output
of uniq is given to we. Program cat reads the names from file alpha and wntes each
name into its standard output file. The output of cat i1s the mnput to sort, so sort
reads these names, sorts them in alphabetical order, and writes them into its output file.
uniqg removes duplicate names appearing in its input and outputs the unique names.
we counts and reports the number of names in its input. (Note that -1 is a parameter
passed to the we program asking it to count the number of lines in its input because
uniq puts each name in a line by itself.)
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100 real elements. The compiler makes use of this type information and generates ap-
propriate machine language instructions for accessing these vanables. Some elements
of array alpha may not be used during an execution of the program; however, the
compiler would have allocated memory to them. Consequently, some of the allocated
memaory may never be used.

i, m : integer;
J ¢ real;
m := 50; m := 50;
alpha [1 .. 100]: real; alpha [1 .. m];
if m < 50 then j := m - 10.5; if m < 50 then j :=m - 10.5;
else j := m - 56; else j := m - 56;
i = j + 6; i := (integer) i + 6;
alphalil] := ...; alphali] := ...;
end ; end;
A program in language L A program in language L;

Figure 1.4 Static and dynamic specification in programs

In language L;, types and dimensions of variables are either specified dynamically
or mnferred from the context of their use. Variable j would be of type real if m s
< 50 because value of the expressionm - 10. 5 is assigned to it, but it would be of type
mteger if m «£ 50. However, irrespective of j’s type 1 would be of type integer because
of the specification “(integer) " appearing in the right-hand side of the assignment o
i. The size of array alpha is determined by the value of m; presumably, this manner of
specifying the size avoids wastage of memory due to unused array elements. Because
the type of a vaniable depends on the value assigned to it, a variable may have different
types in different parts of a program. Such a program cannot be compiled. It would
have to be interpreted, which would slow down its execution (see Section 1.4.1).

Flexibility is the capability to broaden the choice in a specification or decision
according to the needs of a user. In the world of programming languages, flexibility
is provided through wser defined data types. A user can define her own data type for
use in a program, say type 7;, by specifying the following:

e The values that a variable of type 7; may assume,
e The operations that can be performed on variables and values of type 7.

Now the set of types available in the program is comprised of the built-in types of the
language, such as types real and integer in Figure 1.4, and the user defined data
types such as type 7.

Adaptive software is one that adjusts its own features and behavior according to
its environment. As we shall see shortly, it uses both dynamic features and flexibil-
ity. The plug-and-play capability of an operating system is an example of adaptive
behavior. It allows new devices to be connected and used during the operation of
a computer. The operating system implements this capability as follows: The com-
puter has a feature through which it alerts the operating system when a device 1s
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Some of the functions performed by system programs included in the system-centric
view are described in the following.

Resource sharing 1s implemented through the following two techniques: resource
partitioning divides the resources among programs such that each program has some
resources allocated for its exclusive use, whereas resource scheduling selects one of
the many programs that wish to use a scarce resource and allocates the resource to it
for some duration of time. Memory, storage devices such as disks, and input-output

devices such as keyboards and screens are handled by means of resource partitioning,
whereas the CPU is subject to scheduling.

Scheduling of the CPU results in interleaved execution of programs. An operat-
ing system uses a scheduling policy that provides an appropriate combination of user
convenience and efficient use of resources in a computing environment. A multi-
user application software needs (o service many users’ requests simultaneously. An
operating system provides multithreading support for this purpose.

1.6 OVERVIEW OF THE BOOK

As discussed in earlier sections, the system software of a computer is a collection of
system programs and svstems programming is the collection of techniques used in
the design of system programs.

A dominant theme in system programming 1s the trade-off between static and dy-
namic actions. A static action is one that is performed before execution of a program
18 started. A dynamic action is performed during execution of a program. The action
incurs an overhead during the program’s execution; however, it provides flexibility
because it can use information that is determined during a program’s execution. We
have seen instances of both overhead and flexibility of dynamic decisions when we
discussed different kinds of system programs in Section 1.4, So system programming
involves a careful analysis of the benefits of static and dynamic decision making and
actions. It results in design of appropriate data structures for use in a program and
schemes for use in language processors and operating systems.

In Secuion 1.5, we discussed how system programs can be grouped into two views
that we called the user-centric and system-centric views of system software. The
user-centric view consists of language processors that are used for developing new
programs, and system programs that assist in the use of existing programs. It also
contains operating system programs that help in execution of user programs; how-
ever, these programs and their functions are not as visible to the users. The system-
centric view consists of programs that focus on efficient use of a computer system
and non-interference with execution of programs and use of resources. It contains
programs of the operating system that work harmoniously to achieve a common goal.
Hence the special techniques used in their design are called operating svstem tech-
nIGUes.

Accordingly, chapters of this book are organized into two parts. The first part
discusses the system programming techniques used in language processors and in



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



_ Introduction 23

this decision. Such software adjusts its own features and behavior according to its
environment. For example, it can switch between the use of a compiler and an inter-
preter depending on whether it finds that a program is being executed for production
purposes or debugging purposes.

Some system programs are used to provide benefits that are not restricted to
specific computing environments. A virtual machine 1s implemented by a system
program (o provide easy portability of programs. Virtual machines are employed
to provide a capability to download programs from the Internet and execute them
on any computer. Scripting languages permit new programs to be composed from
existing programs and also provide a method of quickly implementing certain Kinds
of computational tasks.

System software can be viewed from two perspectives. The user-centric view fo-
cuses on language processors and scripting languages, while the system-centric view
focuses on programs that provide effective utilization of a computer, i.e., programs
in the operating system. We study language processors and scripting languages in
Part 1 of the book and operating systems in Part 2 of the book.

TEST YOUR CONCEPTS

1. Classify each of the following statements as true or false:

{a) An abstract view hides unimportant details,

(b) User convenience and efficient use of a computer system are completely inde-
pendent of one another.

(c) Efficient use of a computer system is of primary importance in a program
development environment,

(d) Use of a virtual machine enhances portabitity of software,

(e} A scripting language can glue together existing programs.

(f} User convenience ts of primary importance in the embedded systems environ-
ment.

(g) User defined data types provide flexibility.

(h) A just-in-time compiler uses adaptive techniques.

(1} The system-centric view of system software contains language processors.
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CHAPTER 2

Overview of
Language Processors

A user would like an arrangement in which she could describe a computation in
some convenient manner and the system software of the computer system would
implement the computation using the computer.

A language processor is a system program that bridges the gap between how
a user describes a computation—we call it a specification of the computation—
and how a computer executes a program. The ease of specification depends on the
language in which the specification is written. A problem oriented programming lan-
guage lets a user specify a computation using data and operations that are meaningful
in the application area of the computation. A procedure oriented programming lan-
guage provides some standard methods of creating data and performing operations
and lets the user describe the intended computation by using them. Of the two, use
of a problem oriented language provides more user convenience.

Two kinds of language processors are used to implement a user’s computation. A
program generator converts the specification written by the user into a program in a
procedure oriented language, whereas a compiler or interpreter helps in implement-
Ing a program written in a programming language. A compiler translates a program
into the target language, which 1s either the machine language of a computer or a
language that is close to it. An interpreter analyzes a program and itself performs
the computation described in it with the help of the computer. The compiler and
interpreter suit the needs of different kinds of programming environments.

We discuss the fundamentals of a language processor in this chapter—how it
analyzes a program input to it and how it synthesizes a program in the target lan-
guage. It uses a data structure called a symbol table to store attributes of symbols
used 1n a program. The design of the symbol table 1s a crucial decision because a
language processor accesses it a large number of times. We describe the principle of
time-space trade-off used n its design and discuss many symbol table organizations.
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of converting specifications across any pair of domains 1s simpler, so it can be
performed more rehiably.

e A system program can be used to perform conversion of specifications across
domains. Now the conversion 1s faster, cheaper and more reliable because 1t
1s not performed manually. Of course, correctness of the system program that
performs the conversion would have (o be ensured, but that is a one-time effort.

Use of a programming language combines both these methods as follows: The
programming language domain is introduced as an intermediate domain, so the
semantic gap between the application and execution domains 1s split into two smaller
semantic gaps—the specification gap and the execution gap (see Figure 2.2). Only
the specification gap has to be bridged by the software designer, whereas the execu-
tion gap is bndged by the language processor such as a compiler or an interpreter.
The language processor also provides a capability to detect and indicate errors in its
input, which helps in improving reliability of software.

We assume that each domain has a specification language. A specification written
in a specificauon language 1s a program n the specihication language. The specifi-
cation language of the programming language domain is the programming language
itself. The specification language of the execution domain is the machine language
of the computer system. We use the terms specification gap and execution gap as
follows:

e Specification gap i1s the semantic gap between two specifications of the same
task.

e Fxecution gap is the semantic gap between the semantics of programs that
perform the same task but are wntten in different programming languages.

We restrict use of the term ‘“execution gap’ to situations where one of the two
specification languages is closer to the machine language of a computer system. In
other situations, the term “specification gap’ is more appropriate.

2.1.1 Kinds of Language Processors

Definition 2.1 (Language processor) A language processor 1s a software which
bridges a specification or execution gap.

We use the term language processing to describe the activity performed by a
language processor. As mentioned earlier, a semantic gap 1s bridged by converting
a specification in one domain into a specification in another domain. During this
conversion, the language processor points out errors in the input specification and
aborts the conversion if errors are present. This capability of a language processor,
which we call the diagnostic capabiliry, contnbutes to rehability of a program written
in a programming language by ensuring that it would reach execution only 1f 1t is
free of specification errors. (We shall discuss the diagnostic capability of language
processors in Chapters 6 and 7.)
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e Program generation activity: This activity generates a program from its spec-
ification. The language in which the specification of the program is written 18
close to the spectfication language of an application domain and the target lan-
guage is typically a procedure oriented programming language. Thus, program
generation bridges the specification gap.

e Program execution activity: This activity aims at bridging the execution gap
by organizing execution of a program written in a programming language on
a computer system. The programming language could be a procedure oriented
language or a problem oriented language.

2.2.1 Program Generation

Figure 2.6(a) depicts the program generation activity. The program generator 1s a
system program which accepts the specification of a program in some specification
language and generates a program in the target language that tulfills the specifica-
tion. Use of the program generator introduces a new domain called the program
generator domain between the application and programming language domains (see
Figure 2.6(b)). The specification gap faced by the designer of an application program
is now the gap between the application domain and the program generator domain.
This gap is smaller than the gap between the application domain and the target pro-
gramming language domain; the gap 1s insignificant if the specification language 1s a
problem oriented language. The execution gap between the target language domain
and the execution domain is bridged by a compiler or interpreter for the programming
language.

Eniurs
Program | Program | Prui%]r‘dm
(@) specihication generator target PL
Specification
gap
: O O O O
Application Program Target PL Execution
domain  generator domain domain
domain

Figure 2.6 Program generation: (a) Schematic, (b) the program generator domain

If the program generator domain is close to the application domain, the speci-
fication gap is small. Consequently, the task of writing the specification is simple,
which increases the reliability of the generated program. The harder task of bridging
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o If a source program is modified, the modified program must be translated be-
fore it can be executed. We call it rerranslation following a modification.

Source 8

program Data
C4++ . - : M/c language
L PrEprocessor T (" compiler —;' Assembler —;- Linker — Loader F— program
: : : .
C Assembly M/c language Resuits

program program program
Figure 2.10 A practical arrangement of language processors

Practical arrangements for program execution differ from that depicted in Fig-
ure 2.9 for providing higher effectiveness and flexibility. Figure 2.10 shows a prac-
tical arrangement for executing C++ programs which uses a number of language
processors. The output of each of the language processors can be saved on disk and
used repeatedly. Important features of this arrangement are described below.

o Preprocessors: One or more preprocessors may be used along with a trans-
lator for a programming language to provide a superset of the programming
language’s features. Recall from Example 2.1 that use of the C++ preproces-
sor along with a C compiler enables use of the C++ language without having
to develop a C++ compiler. In Chapter 5 we shall discuss use of a macro
preprocessor tor providing a superset of the features of an assembly language.

e Using a sequence of transtators: Translation from a programming language
to a machine language may be achieved by using two or more translators,
The translator used in the first step produces a target program that is not in the
machine language. This target program 1s input to another translator, and so on,
until we obtain a target program that i1s in the machine language. Each of the
translators 1s less complex than a translator for the programming language that
would have directly produced a machine language program. This arrangement
also has another benefit that 18 described later.

e Linking and loading: A target program obtained by translating a program writ-
ten in a programming language requires the help of some other programs dur-
ing 1its execution, e.g., programs that perform mput-output or standard mathe-
matical functions. The linker 1s a system program that puts all these programs
together so that they can execute meaningfully. The /oader 1s a program that
loads a ready-to-run program from a file into the computer’s memory for exe-
cution.

If one of the intermediate target programs is in a standard programming lan-
guage, say, language PL,;, the arrangement using a sequence of translators can be
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declaration statements. Some language processors such as assemblers can per-
form this task equally well in the analysis phase.

o [f the source statement is an imperative statement, that 1s, a statement indicat-
ing that some actions should be performed, decide how the actions should be
performed in the target language and generate corresponding statements.

We refer to these tasks as memory allocation and code generation, respectively.
Example 2.4 illustrates synthesis of the target program.

Example 2.4 (Synthesis of target program) A language processor generates the following
target program for the source statement of Example 2.3,

MOVER AREG, PROFIT
MULT AREG, HUNDRED
DIV AREG, COST_PRICE
MOVEM AREG, PERCENT.PROFIT
PERCENT_PROFIT DW 1
PROFIT DW 1
COST_PRICE DW 1
HUNDRED DC “100’

This program is in the assembly language of a computer, which we call the target
machine of the language processor. The DW statements in the program reserve words
in memory for holding the data, the DC statement reserves a word in memory and
stores the constant 100 in it, and the statements MOVER and MOVEM move a value from
a memory location to a CPU register and vice versa, respectively. Needless to say,
both memory allocation and code generation are influenced by the target machine’s
architecture,

2.3.1 Multi-Pass Organization of Language Processors

The schematic of Figure 2.12 and Examples 2.3 and 2.4 may give the impression
that language processing can be performed on a statement-by-statement basis—that
is, analysis of a statement in the source program can be immediately followed by syn-
thesis of target statements that are equivalent to it. However, statement-by-statement
processing of the source program may not be feasible due to the following two rea-
SOns:

1. A source program may contain forward references.

2. A language processor that performs statement-by-statement processing of a
source program may require more memory than is available for its operation.

We discuss these issues below.
Definition 2.3 (Forward reference) A forward reference of a program entity is a refer-

ence to the entity in some statement of the program that occurs before the statement
containing the definition or declaration of the entity.
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Source

-------------

. Lexical
Lexical analysis

CITOTS (Scanning)
Tokens J
: Syntax
Syntax : analysis |
: Trees 1

Semantic ¢ Semantic
errors - analysis

Symbol table
Constants table
Other tables

Sequence
i

of steps

Intermediate representation -

Figure 2.15 Front end of the toy compiler

Figure 2.15 shows how tables and intermediate codes are generated and used in
the front end. Each analysis in the front end represents the ‘content’ of a source
statement in a suitable form. Subsequent analysis uses this information for its own
purposes and either adds information to this representation of content or constructs
its own representation. Note that scanning and parsing are technical terms for lexical
analysis and syntax analysis, respectively.

Lexical analysis (Scanning)

Lexical analysis considers the source program as a string of characters. It identifies
smaller strings that are lexical units, classifies them into different lexical classes,
e.g., operators, identifiers, or constants; and enters them into the relevant tables. The
classification is based on the specification of the source language. For example, an
integer constant is a string of digits with an optional sign, an identifier is a string of
letters, digits and special symbols whose first character is a letter, whereas a reserved
word 1s a string that has a fixed meaning in the language.

Lexical analysis builds a separate table for each lexical class in which it stores
information concerning the lexical units of that class, e.g., a table of identifiers. It
builds an intermediate code that is a sequence of intermediate code units (IC units)
called rokens, where a token is a descriptor for a lexical unit. A token contains two
fields—Iexical class and number in class. The number in class is a unique number
within the lexical class that 1s assigned to the lexical unit—we simply use the entry
number of a lexical unit in the relevant table as the number in class. For example, the
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2.3.2.2 The Back End

The back end performs memory allocation and code generation, Figure 2.20 shows

its schematc.

[ntermediate representation
“

Intermediat
. Emdel 1EI'.J L Tables

----------------------

Memory

_ 5 t
allocation [~ "o ol table

e 3 ; Constants table

Code / Other tables

generation | |

program

Vigure 2.20 Back end of the toy compiler

Memory allocation

The back end computes the memory requirement of a variable from its type, length
and dimensionality information found 1n the symbol table, and allocates memory to
it. The address of the allocated memory area 1s entered in the symbol table. Note that
certain decisions have to precede memory allocation. The temporary results i* and
temp of Example 2.9 are both computed and used in the assignment statement a =
b+i. Hence they could be held in registers of the CPU if some registers are available;
otherwise, they would have to be stored in memory so memory should be allocated
io them.

Example 2.10 (Memory allocation) After memory allocation, the relevant information in
the symbol table looks as shown in Figure 2.21. It is assumed that each variable
requires only one memory location, and that temp and i#* are not stored in memory.

Code generation

Complex decisions are involved in generating good quality target code. Two key
decisions are as follows:

. What instructions should be used for each of the actions in the intermediate
code”?
2. What CPU registers should be used tor evaluating expressions?

Example 2.11 illustrates the target code resulting from these decisions.
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Example 2.13 (Fixed-length and variable-length entries in the symboeol table) Figure 2.23
shows two entry formats for the symbol table according to the attributes listed in
Table 2.1. Part (a) shows the fixed-length entry format. Since total 8 atiributes are
specified, the entry has 8 attnibute helds. When class = label, all attribute fields except
the field for storing the statement number are redundant. Part (b) shows the variable-
length entry format for a symbol that is used as a label. It has only one attribute field
because symbols of the label class have only one attnbute.

Name | Class | Ay | Az | A3 l Aq l As | Ag | A7 | Ag Name] Class | Ag
(a) (b}
Legend
Ay Type As: No. of parameters
As: Length Ag: Type of returned value

Ajz: Dimension information A.-;; Length of returned value
Ay Parameter list address  Ag: Statment number

Figure 2.23 (a) Fixed-length entry, (b) Vanable-length entry for a label

When the fixed-length entry format is used, all entries in the symbol table have
an identical format. It enables the use of homogeneous linear data structures like
arrays for a symbol table. As we shall see later in the section, use of a linear data
structure enables the use of an efficient search procedure. However, this organization
makes inefficient use of memory since many entries may contain redundant fields—
the entry for a label contains 7 redundant fields in Example 2.13.

Use of the variable-length entry format leads to a compact organization in which
memory wastage does not occur. However, the search method would have to know
the length of an entry, so each entry would have to include a length field. We will
depict the format of such an entry as

length entry

The hybrid entry format is used as a compromise between the fixed and variable-
length entry formats to combine the search efficiency of the fixed-length entry format
with the memory efficiency of the variable-length entry format. In this format each
entry is split into two halves, the fixed part and the variable part. A pointer field
is added to the fixed part. It points to the vanable part of the entry. The fixed and
variable parts are accommodated in two different data structures. The fixed parts of
all entries are organized into a structure that facilitates efficient search, e.g., a linear
data structure. Since the fixed part of an entry contains a pointer to its variable part,
the vaniable part does not need to be located through a search. Hence it can be put
into a linear or nonlinear data structure. We will depict the format of the hybrid entry
as
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organization faced due to physical deletion of entries. Hence the binary search orga-
nization is not a good choice for a symbol table. However, it is a suitable organization
for a table that contains a fixed set of symbols, e.g., the table of reserved words in a
programming language.

Hash table organization

In the hash table organization the guess in Algorithm 2.1 about the entry occupied
by a symbol s depends on the symbol itself, that is, ¢ is a function of 5. Three
possibilities arise when the ¢” entry is probed—the entry may be occupied by s, the
entry may be occupied by some other symbol, or the entry may be unoccupied. The
situation where the probed entry is occupied by some other symbol, that is, 5 # s,,
1s called a collision. Following a collision, the search continues with a new guess.
If the probed entry is unoccupied, symbol s does not exist in any entry of the table,
so we exit with the flag set to failure. 1If the symbol is to be added to the table, this
probed entry should be used for it.

Algorithm 2.3 (Hash table management)

. e:=his);

2. If 5 = s5,, exit with the flag set 10 success and the entry number e. If entry ¢ is
unoccupied, exit with the flag set to failure.

3. Repeat Steps 1 and 2 with different functions /', A", etc., until we either locate
the entry for s or find an unoccupied entry.

The function £ used 1in Algonthm 2.3 is called a hashing function. In the follow-
ing, we discuss what properties a hashing function should have so that the number of
probes required to locate a symbol’s entry is small. We use the following notation in
our discussion:

Number of entries in the table

Number of occupied entries in the table

Occupation density in the table, which is f/n

Number of distinct symbols in the source language

Number of symbols used in some source program

Set of symbols used in some source program

Address space of the table, that is, the space formed by

the entries 1 ... n

Kev space of a programming language, that is, the

space formed by enumerating all valid symbols possi-

ble according to the specification of the source language.

We will denote 1t as 1 ... &k, where & is the number of

vahid symbols.

K, : Keyspace of asource program, that is, the space formed
by enumerating all symbols used in a program. We will
denote itas 1 ... k,. k7 is the largest value k, may have.

ZaZ TN

P
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this performance has been obtained at the cost of over-commitment of memory for
the symbol table. Taking p = 0.7 as a practical figure, the table must have £k7/0.7
entries, where &7} is the largest value of k;, in a practical mix of source programs,
i.¢., the largest number of symbols a program is expected to contain. If a program
contains fewer symbols, p would be smaller and the search performance would be
better. However, a larger part of the table would remain unused. Note that unlike the
sequential and binary search organizations, the performance is independent of the
size of the table: it is determined only by the value of p.

Table 2.2 Performance of sequential rehash

P {u Ps
0.2 1.2 1.125
(04 1.67 1.33
(1.6 2.5 1.75
(0.8 5.0 3.0
(0.9 10.0 3.5
().95 20,0 10.5

Hash table performance can be improved by reducing the clustering effect. Var-
1ous rehashing schemes like sequential step rehash, quadratic and quadratic quotient
rehash have been devised for this purpose. They focus on dispersing the colliding
entries to reduce the average cluster size. For example, the sequential step rehash
scheme uses the recurrence relation A,y (s) = [hi(s) +i— 1] mod n+ 1, which would
put symbols a, b, c, and d in entries 5, 6, 8, and 7 in Example 2.14, whereby d
would suffer only one collision instead of 2.

Overflow chaining

The overflow chaining organization uses two tables called the primary table and the
overflow table, which have identical entry formats, and a single hashing function
h. To add a symbol, a probe is made in the primary table using 4. If no collision
occurs, the symbol is added to the probed entry: otherwise, it 18 accommodated in
the overflow table. A search is conducted in an analogous manner: If a symbol is not
found in the primary table, its search has to be continued in the overflow table. To
avoid probing all entnes in the overflow table during a search, entries of symbols that
encountered a collision in the same entry of the primary table are chained together
using pointers. This way, the overfiow table would contain many chains of entries and
only entries in a specific chain have to be searched to locate a symbol. To facilitate
this arrangement, a pointer field is added in each entry in the primary and overflow
tables. Accordingly, each entry has the following form:

Symbol | Otherinfo | Pointer
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Figure 2.27 Tree structured table organization

only symbol in the subtree that would be accessed using the right pointer in the entry
of p. All other symbols are stored in the subtree that would be accessed using the
left pointer in the entry of p. Consequently a locate operation on t would require
fewer probes than a locate operation on, say, k. Part (¢) shows a balanced binary tree
with the same symbols which would provide beiter search performance if all entries
in the table are accessed with the same probability. However, reorganizing the tree
of Part {d) to the form shown in Part (¢) would itself incur a processing cost. More
sophisticated data structures such as the B+ tree may be used to limit this overhead.

Search along a secondary dimension

In some situations it is useful to support a search along a secondary dimension within
a symbol table. Since the search structure cannot be linear in the secondary dimen-
sion, a linked list representation 1s used for the secondary search. Such search struc-
tures are useful for handling fields of records in Pascal, PL/1, and Cobol and struc-
tures of C, members of objects in Java and parameters of functions in any source
language. Example 2.18 illustrates a generalization of the search structure which
allows searches along several dimensions; 1t 1s known as a multi-list structure.

Example 2.18 (Multi-list-structured symbol table) The following fragment of a C pro-
gram declares vanable personal_info as a structure with name, sex and id as its
members.

struct
character name[10];
character sex;
integer id;
} personal_info;
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can be tested by a Branch on Condition (BC) instruction. The assembly statement
corresponding to it has the format

BC <conditiog code specification>>, <memory address>

It transfers control to the memory word with the address <memory address> if
the current value of condition code matches <condition code specification>. For
simplicity, we assume <condition code specification>> to be a character string with
obvious meaning, e.g., the strings GT and EQ indicate whether the result is > 0 and
= (), respectively. A BC statement with the condition code specification ANY implies
unconditional transfer of control,

o O - —

sign opcode register  memory
operand  operand

Figure 3.2 Instruction format

Figure 3.2 shows the format of machine instructions. The opcode, register oper-
and and memory operand occupy 2, 1 and 3 digits, respectively. The sign is not a part
of the instruction. The condition code specified in a BC statement is encoded into the
first operand position using the codes 1-6 for the specifications LT, LE, EQ, GT, GE
and ANY, respectively.

3.1.1 Assembly Language Statements

The assembly language has three Kinds of statements—imperative statements, decla-
ration statements, and assembler directives.

Example 3.1 (A sample assembly language program) Figure 3.3 shows an assembly lan-
guage program for computing N! and the corresponding machine language program
generated by an assembler. For simplicity, we show all addresses and constants in a
machine language program in decimal rather than in the binary, octal or hexadecimal
notation typically used in a computer. The DS and DC statements are declaration state-
ments. The START and END statements are directives to the assembler. The START
directive provides the address that is to be given to the first memory word in the ma-
chine language program.

Imperative statements

An imperative statement indicates an action to be performed during the execution of
the program, e.g., an arithmetic operation. Each imperative statement translates into
one machine instruction.

Declaration statements
The syntax of declaration statements is as follows:



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



86 Systems Programming

MREeMmonic MREMonic
opcode  class info symbol address length
MOVER IS (04,1) Loop | 202 | |
NS DL R#7 l NEXT | 214 | 1
START AD R#11 LAST1 216 | 1
| A | 217 | 1
BACK | 202 | |
OFIAB B 218 1
SYMTAB
value address first  # literals
| | =2 1 I 2
2 | =1’ 2| 3 | l
=1’ 31 4 0
LITTAB POOLTAB

Figure 3.9 Data structures of assembler Pass |

belongs to the class of imperative, declaration or assembler directive statements. In
the case of an imperative statement, the length of the machine instruction is simply
added to the location counter. The length is also entered in the SYMTAB entry of
the symbol (if any) defined in the statement.

For a declaration or assembler directive statement, the routine mentioned in the
mnemonic info field is called to perform appropriate processing of the statement. For
example, in the case of a DS statement, routine R#7 would be called. This routine
processes the operand field of the statement to determine the amount of memory
required by this statement, which we call its em size. It returns the size and a code
that is to be put into the intermediate code to describe the declaration or assembler
directive statement. The routine for an EQU statement enters the address represented
by <address specification>> in the SYMTAB entry of the symbol appearing in the
label field of the statement and enters 1 in its length field. The routines for other
assembler directives perform appropriate processing, possibly affecting the address
contained in the location counter.

The assembler uses the LITTAB and POOLTAB as follows: At any stage, the
current literal pool is the last pool in LITTAB. On encountering an LTORG statement
(or the END statement), literals in the current pool are allocated addresses starting with
the current address in the location counter and the address in the location counter is
appropriately incremented. Example 3.7 illustrates handling of literals in the first
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pass.

Example 3.7 (Handling of literal pools) The assembler allocates memory to the literals
used in the program of Figure 3.8(a) in two steps. At start, it enters | in the first en-
try of POOLTAB to indicate that the first literal of the first literal pool occupies the
first entry of LITTAB. The Literals =‘5" and =*17 used in Statements 2 and 6, re-

spectively, are entered in the first two entries of the LITTAB. At the LTORG statement,
these two literals will be allocated the addresses 211 and 212 and the entry number
of the first free entry in LITTAB, which is 3, will be entered in the second entry of
POOLTAB. The literal =* 1 used in Statement 15 will be entered in the third entry of

LITTAB. On encountering the END statement, this hiteral will be allocated the address
219,

The assembler implements Pass I by using Algorithm 3.1. It uses the following
data structures:

OPTAB, SYMTAB, LITTAB and POOLTAB

LC :  Location counter

littab_ptr :  Points to an entry in LITTAB
pooltab_ptr : Points to an entry in POOLTAB

Details of the intermediate code generated by Pass | are discussed in the next
section.

Algorithm 3.1 (Pass I of a two-pass assembler)

1. LC :=0; (This 1s the default value)

littab_ptr = 1,

pooltab_ptr = 1;

POOLTAB [1]. first := |; POOLTAB[1]. # literals = O,
2. While the next statement is not an END statement

(a) If a symbol is present in the label field then
this_label := symbol in the label field:;
Make an entry (this_label, <1.C>,-) in SYMTAB.

(b) If an LTORG statement then

(1) If POOLTAB [pocltab_ptr]. # literals > O then

Process the entries LITTAB [POOLTARB |pooltab_ptr). first] ...
LITTAB [littab_ptr—1] to allocate memory to the literal, put
address of the allocated memory area in the address field ot
the LITTAB entry, and update the address contained in location
counter accordingly.

(i) pooltab_ptr .= pooltab_pitr + 1;

(iit) POOLTAB [pooltab_ptr]. first .= litiab_ptr,
POOLTAB |pooltab_ptr]. # literals = O;
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(¢) If a START or ORIGIN statement then
L.C := value specified in operand field;

(d) If an EQU statement then

(1) this_addr = value of <address specification>;
(i1) Correct the SYMTARB entry for this_label to (this_label, this_addr,
1).
(e) If a declaration statement then

(1) Invoke the routine whose id is mentioned in the mnemonic info field.
This routine returmns code and size.

(1) If a symbol is present in the label field, correct the symtab entry for
this_label o (this_label, <1.C>, size).
(1) LC := LC + size:
(iv) Generate intermediate code for the declaration statement.
(f) If an imperative statement then

(i) code := machine opcode from the mnemonic info field of OPTAB;

(i1) LC :=LC + instruction length from the mnemonic info field of
OPTABRB:

(ii1) If operand is a literal then

this_literal ;= literal in operand field;
if POOLTAB [pooltab_ptr). # literals = O or this_literal does not
match any literal in the range LITTAB [POOLTAB [pooltab_ptr] |
Jirst .. LITTAB |littab_ptr— 1] then

LITTAB [littab_pir). value := this_literal,

POOLTAB [pooltab_pir]. # literals =

POOLTAB [pooltab_ptr]. # literals +1;
littab_ptr = littab_ptr + 1;
else (1.e., operand 1s a symbol)

this_entry := SYMTARB entry number of operand,;
Generate intermediate code for the imperative statement.

3. (Processing of the END statement)

(a) Perform actions (1)—(ii1) of Step 2(b).
(b) Generate intermediate code for the END statement.

343 Intermediate Code Forms

In Section 2.3 processing efficiency and memory economy were mentioned as two
criteria for the choice of intermediate code. In this section we consider some variants
of intermediate codes for use in a two-pass assembler and compare them on the basis
of these criteria.

The intermediate code consists of a sequence of intermediate code units (IC
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units). Each IC unit consists of the following three fields (see Figure 3.10):

. Address
2. Representation of the mnemonic opcode
3. Representation of operands.

Address Mnemonic opcode L Operands

Figure 3,10 Format of an IC unit

Variant forms of intermediate codes, specifically the operand and address fields,
are used in practice due to the trade-off between processing efficiency and memory
economy. We discuss these variants in separate sections dealing with the representa-
tion of imperative statements, and declaration statements and directives, respectively.
The information in the mnemonic opcode field is assumed to have the same repre-
sentation 1n all the vanants.

Mnemonic opcode field
Declaration statements Assembler directives
BC 0l START 01
Ds 02 END 02
ORIGIN (3
EQU 04
LTORG 05

Figure 3.11 Codes for declaration statements and directives

The mnemonic opcode field contains a pair of the form
(statement class, code)

where statement class can be one of IS, DL and AD standing for imperative state-
ment, declaration statement and assembler directive, respectively. For an imperative
statement, code is the instruction opcode in the machine language. For declarations
and assembler directives, code is an ordinal number within the class. Thus, (AD, 01)
stands for assembler directive number | which is the directive START. Figure 3.11
shows the codes for various declaration statements and assembler directives.

3.4.4 Intermediate Code for Imperative Statements

We consider two vanants of intermediate code which differ in the information con-

tained in their operand fields. For simplicity, the address and mnemonic opcode fields
are assumed to contain identical information in both variants.
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Variant 1

Figure 3.12 shows an assembly program and its intermediate code using Variant I.
The first operand in an assembiy statement is represented by a single digit number
which is either a code in the range 1...4 that represents a CPU register, where |
represents AREG, 2 represents BREG, etc., or the condition code itself, which is in the
range 1...6 and has the meanings described in Section 3.1. The second operand,
which is a memory operand, is represented by a pair of the form

(operand class, code)

where operand class is one of C, S and L standing for constant, symbol and literal,
respectively. For a constant, the code field contains the representation of the constant
itself. For example, in Figure 3.12 the operand descriptor for the statement START
200 1s (C, 200). For a symbol or literal, the code field contains the entry number
of the operand in SYMTARB or LITTAB. Thus entries for a symbol XYZ and a literal
="25" would be of the form (S, 17) and (L, 35), respectively.

START 200 (AD,O1) (C, 200)
READ A (I5,09) (5.01)

LOOP MOVER AREG, A (IS,04) (1) (S,01)

SUB  AREG, =1’  (IS.02)  (1)(L.01)

BC GT, LOOP (I5,07)  {4)(5,02)
STOP (IS, 00)
A DS 1 (DL.02) (C,1)

LTORG (DL, 05)

Figure 3.12 Intermediate code - Variani |

This method of representing symbolic operands requires a change in our strategy
for SYMTAB management. We have so far assumed that a SYMTARB entry is made
for a symbol only when its definition is encountered in the program, i.e., when the
symbol occurs in the label field of an assembly statement. However, while processing
a forward reference

MOVER AREG, A

it would be necessary to enter A in SYMTARB, say in entry number #, so that it can be
represented by (S, n) in the intermediate code. At this point, the address and length
fields of A's entry cannot be filled in. Therefore, two kinds of entries may exist in
SYMTARB at any time—for defined symbols and for forward references. This fact is
important for use during error detection (see Section 3.4.7).
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Variant 11

Figure 3.13 shows an assembly program and its intermediate code using Variant [1.
This variant differs from Variant I in that the operand field of the intermediate code
may be either in the processed form as in Vanant I, or in the source form itself.
For a declarative statement or an assembler directive, the operand field has to be
processed in the first pass to support LC processing. Hence the operand field of its
intermediate code would contain the processed form of the operand. For imperative
statements, the operand field 1s processed to identify literal references and enter them
in the LITTAB. Hence operands that are literals are represented as (L, m) in the
intermediate code. There is no reason why symbolic references in operand fields of
imperative statements should be processed during Pass [, so they are put in the source
form itself in the intermediate code.

START 200 (AD,01) (C,200)
READ A (IS, 09) A

LOOP MOVER AREG, A (IS,04) AREG, A
SUB AREG, =1’ (IS, 02) AREG, (L., 01)
BC GT, LOOP (1S,07) GT, LCOP
STOP (IS, 00)

A DS 1 (DL, 02) (C. 1)

LTORG (DL, 05)

Figure 3.13 Intermediate code - Variant 11

Comparison of the variants

Variant 1 of the intermediate code appears to require extra work in Pass | because
operand fields have to be completely processed in Pass [. However, this processing
simplifies the tasks of Pass II considerably. A look at the intermediate code of Fig-
ure 3.12 confirms that functions of Pass II would be quite trivial. To process the
operand field of a declaration statement, it would only need to refer to the appro-
priate entry in a table and use the address found there. Declaration statements such
as the DC, DS and START statements would not require any processing at all, while
statements lhike the LTORG statement would require marginal processing. The inter-
mediate code i1s quite compact—it can be as compact as the target code itself if each
operand reference like (S, n) can be represented by using the same number of bits as
used for an operand address in a machine instruction,

Variant II reduces the work of Pass | by transferring the task of operand pro-
cessing for some kinds of source statements to Pass Il. The intermediate code 1s less
compact because the memory operand of a typical imperative statement is repre-
sented in the source form itself. On the other hand, by transferring some tasks to
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Pass II, the functions and memory requirements of the two-passes would be better
balanced. Figure 3.14 illustrates its benefits. Part (a) of Figure 3.14 shows memory
utilization by an assembler that uses Vanant 1. Data structures such as the symbol
table constructed by Pass I are passed in memory while the intermediate code is pre-
sumably written in a file. Since Pass I performs much more processing than Pass II,
its code occupies more memory than the code of Pass I1. Part (b) of Figure 3.14 shows
memory utilization when Variant Il is used. The code sizes of the two passes are now
comparable, hence the overall memory requirement of the assembler is lower.

Pass 11 i 1 Pass 1
Pass 1 I
TSN Data Data
Data L Dhuta structures structures
structures | structures Work Work
Work Work |
area 000000

(a) (b)

Figure 3.14 Memory requirements using (a) Variant I, (b) Variant I1

Variant II is particularly well-suited if expressions can be used in operand fields
of an assembly statement. For example, the statement

MOVER AREG, A+5

would appear as

(IS, 05) (1) (S,01)+5

in Variant I of intermediate code. Use of this variant does not particularly simplify
the task of Pass II or save much memory space. In such situations, it would have
been preferable not to have processed the operand field at all.

3.4.5 Processing of Declarations and Assembler Directives

We discuss alternative ways of processing declaration statements and assembler
directives, and their comparative benefits. Two key questions in this context are:

I. Is it necessary to represent the address of each source statement in the inter-
mediate code?

2. Is it necessary to have a representation of DS statements and assembler direc-
tives in the intermediate code?

Consider a fragment of an assembly language program and its intermediate code.
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START 200 -—) (AD,01) (C,200)
AREA1 DS 20 = 200)  (DL,02) (C,20)
SIZE DC 5 220y (DL,O1} (C,5)

Here, it is redundant to have the representations of the START and DS statements
in the intermediate code, since the effect of these statements is implied in the fact that
the DC statement has the address 220. If the intermediate code does not contain the
address of each source statement, a representation for the DS statements and assem-
bler directives would have been necessary. Now, Pass [l would have to determine
the address for the symbol SIZE by analyzing the intermediate code units for the
START and DS statements. The first alternative avoids this processing but requires the
existence of the address field.

DC statement

A DC statement must be represented in the intermediate code. The mnemonic field
contains the pair (DL, 01). The operand field may contain the value of the constant
in the source form or in the representation in which it should appear in the target pro-
gram. No processing advantage exists in either case since conversion of the constant
into the machine representation is required anyway. If a DC statement defines many
constants, e.g.,

DC ‘%, 3, =1
a series of (DL, 01) units can be put in the intermediate code.

START and ORIGIN

These directives set new values into the location counter. It 15 not necessary 10
retain START and ORIGIN statements in the intermediate code if the intermediate
code contains an address field.

LTORG

Pass I of the assembler checks for the presence of a literal reference in the operand
field of a statement. If one exists, it enters the literal in the current literal pool in
LITTAB, unless a matching literal has been already entered in the current pool. When
an LTORG statement appears in the source program, it allocates memory to each literal
in the current pool by using the address contained in the location counter and enters
the memory address in the address field of its LITTAB entry. It also updates the
address contained in the location counter appropriately.

Once this fundamental action 1s performed, two alternatives exist concerning sub-
sequent processing of literals. Pass I could simply construct an IC unit for the LTORG
statement and leave all subsequent processing of literals to Pass Il. Pass Il would
have to insert values of literals of a pool in the target program when it encounters
the IC unit for an LTORG statement. This action would involve use of POOLTAB
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and LITTAB in a manner analogous to Pass |, so these tables should form a part of
intermediate representation of a program. Example 3.8 illustrates these actions in the
processing of the program of Figure 3.8.

Example 3.8 (Processing of literals by using an IC unit for LTORG statement) Fig-
ure 3.9 showed the LITTAB and POOLTAB for the program of Figure 3.8 at the end
of Pass . Pass I1 would copy literals of the first pool into the target program when the
[C unit for the LTORG statement i1s encountered. It would copy literals of the second
pool into the target program when the IC unit for END 1s processed.

Pass I could have itself copied out the literals of the pool into the intermediate
code. This action would avoid duplication of Pass 1 processing in Pass II and also
eliminate the need to have an 1C unit for an LTORG statement. The intermediate code
for a literal can be made 1dentical to the intermediate code for a DC statement so that
a literal would not require any special handling in Pass II. Example 3.9 illustrates
this arrangement.

Example 3.9 {Processing of literals without using an IC unit for LTORG statement)
Figure 3.15 shows the [IC for the first half of the program of Figure 3.8. The literals
of the first pool (see Figure 3.9) are copied into the intermediate code when the first
LTORG statement 1s encountered. Note that the opcode field of the 1C units 1s (DL, 01),
which is the opcode for the DC statement.

START 200 (AD,01) (C,200)
MOVER AREG, ='5" (IS,04)  (1)(L,01)
MOVEM AREG, A (1S, 05) (1)(S,01)
LOOP MOVER AREG, A (15,04)  (1)(§,01)
BC ANY, NEXT (15,07)  (6)(5,04)
LTORG (DL,O1) (C.5)

(DL,0O1) (C, 1)

Figure 3.15 Copying of literal values into intermediate code by Pass |

However, this alternative increases the tasks to be performed by Pass I, conse-
quently ncreasing 1ts s1ze. It might lead to an unbalanced pass structure for the
assembler with the consequences illustrated in Figure 3.14. Secondly, the literals
have to exist in two forms simultaneously, in the LITTAB along with the address
information, and also in the intermediate code.

3.4.6 Passll of the Assembler

Algorithm 3.2 1s the algorithm for assembler Pass [I. Important data structures used
by 1l are:
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SYMTAR, LITTAB and POOLTAB

LC :  Location counter

littab_ptr :  Points to an entry in LITTAB

pooltab_ptr :  Points to an entry in POOLTAB
machine_code_buffer . Area for constructing code for one statement
code_area :  Area for assembling the target program

code _area_address :  Contains address of code_area

Algorithm 3.2 (Second pass of a two-pass assembler)

1. ca:de.arm_addmss = address of code_area;
pooltab_ptr ;= 1;
LC =0;

2. While the next statement is not an END statement

(a) Clear machine _code_buffer,
(b) If an LTORG statement

(i) If POOLTAB |pooltab_ptr|. # literals > () then

Process literals in the entries LITTAB [POOLTARB [ pooltab_pir]
Jirst] ... LITTAB [POOLTAB [pocltab_ptr+1]—1] similar to
processing of constants in a DC statement. It results in assem-
bling the literals in machine_code _buffer.

{(it) size := size of memory area required for literals;
(1) pooliab_ptr = pooltab_ptr + 1.
(¢) If a START or ORIGIN statement
(1) LC := value specified in operand field;
(11) size :=0;
(d) If a declaration statement

(1) If a DC statement then
Assemble the constant in machine_code _buffer.
(11) size :=size of the memory area required by the declaration state-
ment;
(e) If an imperative statement

(i) Get address of the operand from its entry in SYMTAB or LITTAB,
as the case may be.
(11) Assemble the instruction in machine code_buffer.
(111) size = size of the instruction;
() If size # 0 then

(1) Move contents of machine_code _buffer 1o the memory word with the
address code_area_address + <1.C>;
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(1) LC := LC + size;
3. (Processing of the END statement)

(a) Perform actions (i)=(i11) of Step 2(b).
(b) Perform actions (i)—(i1) of Step 2(f).
(¢) Write code_area into the output file,

Output interface of the assembler

Algorithm 3.2 produces a target program which is in the machine language of the
target computer. However, most assemblers produce the target program in the form
of an ebject module, which 1s processed by a linkage editor or loader to produce a
machine language program (see Figure 2.10). The information contained in object
modules i1s discussed in Chapter 3.

3.4.7 Program Listing and Error Reporting

It is conventional for an assembler to produce a program listing that shows a source
statement and the target code, if any, generated for it. The listing also reports any
errors that the assembler might have found in the program. Error reporting is most
effective when the listing shows an error against an erroneous statement itself.

Design of an error indication scheme involves some decisions that influence the
effectiveness of error reporting and the speed and memory requirements of the as-
sembler. The basic decision is whether to produce program listing and error reports
in Pass I or delay these actions until Pass II. Producing the listing in the first pass
has the advantage that the source program need not be preserved until Pass II. It
conserves memory and avoids some amount of duplicate processing. However, a
listing produced in Pass I can report only certain errors against the source statement.
Examples of such errors are syntax errors like missing commas or parentheses and
semantic errors like duplicate definitions of symbols. Other errors like references to
symbols that are not defined in the program become known only after the complete
source program has been processed, hence they cannot be indicated against the state-
ments that contained them. The target code can be printed later in Pass 1I; however,
it is important to show which parts of the target code correspond to which source
statements. Example 3.10 illustrates an arrangement to show this correspondence in
the listing.

Example 3.10 (Error reporting in Pass I of the assembler) Figure 3.16 shows a program
listing that is produced in Pass 1. Detection of errors in Statements 9 and 21 is straight-
forward. In Statement 9, the opcode is known to be invalid because it does not match
with any mnemonic in the OPTAB. In Statement 21, A 1s known to be a duplicate def-
inition because an entry for A already exists in the symbol table. However, use of the
undefined symbol B in Statement 10 is harder to detect because at the end of Pass I we
would have no record that a forward reference to B existed in Statement 10. This prob-
lem can be resolved by making an entry for B in the symbol table while processing
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Sr No., Statement Address

001 START 200

002 MOVER AREG, A 200

003 E

009 MVER BREG, A 207
** error ** Invalid opcode

010 ADD EREG, B 208

014 A DS 1 209

015 .

021 A DC ‘B? 227

** error ** Duplicate definition of symbol A

022 :
035 END
=* grror *» Use of undefined symbol B in statement 10

Figure 3.16 Error reporting in Pass |

Statement 10. This entry would indicate that a forward reference to B exists in State-
ment 10. All such entries would be processed at the end of Pass | to check whether a
definition of the symbol has been encountered. If not, the symbol table entry would
contain sufficient information for error reporting. Note that the target code could not
be included in the listing because 1t has not yet been generated. To provide a cross
reference between a source statement and the target code that corresponds to it, the
memory address of the code is printed against the statement,

For effective error reporting, it is necessary to report each error against the
erroneous statement itself. It can be achieved by delaying program listing and er-
ror reporting actions until Pass [I, Now the errors in a statement and the target code,
if any, that corresponds to it can be printed against the source statement itself, Ex-
ample 3.11 illustrates such a listing.

Example 3.11 (Error reporting in Pass 11 of the assembler) Pass Il of the assembler per-
forms error reporting actions in addition to the actions related to location counter
processing and building of the symbol table shown in Algorithm 3.2. Figure 3.17 con-
tains a program hsting produced in Pass [1. Indication of errors in Statements 9 and 21
was as easy as in Example 3.10. Indication of the error in Statement 10 was equally
easy—the symbol table was searched for an entry of the symbol B that appeared in the
operand field and an error was reported because no matching entry was found. Note
that the target code for each source statement appears against it in the listing.

3.4.8 Some Organizational Issues

The schematic of Figure 3.18 shows the data structures and files used in a two-
pass assembler. We discuss how each of them should be stored and accessed in
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Sr. No., Statement Address Instruction

001 START 200

002 MOVER AREG, A 200 + 04 1 209

003 :

009 MVER BREG, A 207 + == 2 209
** error *»* Invalid opcode

010 ADD BREG, B 208 . O Ry
** arror ** Use of undefined symbol B in operand field

014 A DS 1 209

015 :

021 A DC *Ht 227 + 00 O 005

** error ** Duplicate definition of symbol A

022 :
035 END

Figure ).17 Error reporting in Pass [

the assembler passes.

For efficiency reasons the SYMTAB must remain in main memory throughout
Passes I and Il of the assembler. The LITTAB 1s not accessed as frequently as the
SYMTARB, however it may be accessed sufficiently frequently to justify its presence
in memory. If memory is at a premium, it would be possible to hold only a part
of the LITTAB in memory because only the literals of the current pool need to be
accessible at any time. However, no such partitioning is feasible for the SYMTAB.
The OPTAB should be in memory during Pass 1.

The source program would be read by Pass [ on a statement-by-statement basis.
After processing, a source statement can be written into a file for subsequent use in
Pass I1. The intermediate code generated for it would also be written into another file.
The target code and the program listing can be written out as separate files by Pass
II. Since all these files are sequential in nature, it is beneficial to use the techniques
of blocking and buffering of records discussed later in Chapter 13.

3.5 A SINGLE-PASS ASSEMBLER FOR INTEL x86 FAMILY PROCESSORS

Processors of the Intel x86 family are downward compatible with the Intel 8088 pro-
cessor that was used in the IBM PC. A key difference between the architecture of the
Intel x86 processors and the CPU of the hypothetical computer of previous sections
1s the use of segment-based addressing of memory. We focus on the addressing 1s-
sues that arise 1n segment-based memory addressing and describe how a single-pass
assembler handles the forward reference problem in this environment.
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OPTAB SYMTAB LITTAB

Target
Program
] / \
Source
Program | roassl <{ ------- :;; et
Source Program
Program
Listing
Intermediate e Data access
Code

- -+ Control transfer

Figure 3.18 Use of data structures and files in a two-pass assembler

3.5.1 The Architecture of Intel 8088

The Intel 8088 microprocessor supports 8 and 16 bit anithmetic, and also provides
special instructions for string manipulation. The CPU contains the following features
(see Figure 3.19):

e Data registers AX, BX, CX and DX
e Index registers SI and DI

¢ Stack pointer registers BP and SP
e Segment registers Code, Stack, Data and Extra.

Each data register 1s 16 bits in size, split into upper and lower halves. Either half
can be used for 8 bit arithmetic, while the two halves together constitute the data reg-
ister for 16 bit arithmetic. The index registers S and DI are used to index the source
and destination addresses in string manipulation instructions. They are provided with
the auto-increment and auto-decrement facility. The architecture supports stacks for
storing subroutine and interrupt return addresses, parameters, and other data. Two
stack pointer registers called SP and BP are provided for addressing stacks; push and
pop instructions operate on them. Register SP points into the stack implicitly used
by the architecture to store subroutine and interrupt return addresses. Register BP
can be used by the programmer in any desired manner.

Memory is not accessed through absolute addresses as assumed in previous sec-
tions but through addresses contained in segment registers. A program may consist
of many components called segments, where each segment may contain a part of
the program’s code, data, or stack. Addresses of any four of these segments may
be contained in the four segment registers provided in the CPU. The Code segment
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8 bits 8 bits
Data registers Ch = o~
B ist BP
' isters
ase reg _ o
Ind ist 5]
ex registers
R DI
Code segment (CS)
Segment registers Stack segment (SS)
Data segment (DS)
Extra segment (ES)

Figure 3.19 Registers of the Intel 8088 processor

(CS), Data segment (DS), and Stack segment (SS) registers are typically used to con-
tain the start addresses of a program’s code, data, and stack, respectively. The Extra
segment (ES) register can be used to contain the address of any other memory area.
Each segment register 1s 16 bits in size. An instruction uses a segment register and
a 16 bit offset to address a memory operand. The absolute address of the operand is
computed as follows: The address contained in the segment register is extended by
adding four lower order zeroes to obtain a 20-bit segment base address, also simply
called the segment base, which is the address of the memory location occupied by
the first byte of the segment. The offset is now added to it to obtain a 20 bit memory
address. This way, the size of each segment is limited to 2'® bytes, i.e., 64 Kbytes;
however, memory can have a size of 2°Y bytes, i.e., | MB. Segment-based address-
ing makes it possible to relocate a program, that is, change the memory area used
for its execution, easily. When such a change is to be made, it is enough to simply
change the addresses loaded in the segment registers. The memeory addresses used
during execution of the program would now automatically lie in the new memory
area occupied by the program.

The 8088 architecture provides 24 addressing modes. These are summarized in
Figure 3.20. In the immediate addressing mode, the istruction itself contains the
data that is to participate in the instruction. This data can be 8 or 16 bits in length.
In the direct addressing mode, the instruction contains a 16 bit displacement which
is taken to be an offset from the segment base contained in a segment register. The
segment register may be explicitly indicated in a prefix of the instruction; otherwise,
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Addressing

mode | Example B Remarks
Immediate | MOV SUM, 1234H Data = 1234H
Register MOV SUM, AX AX contains the data
Direct MOV SUM, [1234H] Data disp. = 1234H
Register MOV SUM, [BX] Data disp. = (BX)
indirect
Register MOV SUM, CS: [BX] | Segmentoverride
indirect Segment base = (CS)

| Data disp. = (BX)

Based MOV SUM, 12H [BX] Data disp. = 12H+(BX)
Indexed MOV SUM, 34H [SI] Data disp. = 34H+(SI)
Based-and- | MOV SUM, Data disp.
indexed 56H [(S1] [BX] | = 56H + (SI) + (BX)

Figure 3.20 Addressing modes of 8088 (*(..)" implies “contents of ')

a default segment register is used. In the indexed mode, contents of the index register
(SI or DI) indicated in the instruction are added to the 8 or 16 bit displacement
contained in the instruction. The result is taken to be the offset from the segment
base of the data segment. In the based mode, contents of the base register (BP or
BX) are added to the displacement. The result is taken to be an offset from the
segment base of the data segment unless BP is specified, in which case the result
is taken as an offset from the segment base of the stack segment. The based-and-
indexed mode and based-and-indexed-with-displacement mode combine the effect of
the based and indexed modes.

3.5.2 Intel 8088 Instructions
Arithmetic instructions

The operands of arithmetic instructions can be in one of the four 16 bit registers, or
in a memory location designated by one of the 24 addressing modes. The anthmetic
instructions can be in one of the three instruction formats shown in Figure 3.21. The
mod and r/m fields specify the first operand, whose value can be in a register or in
memory, while the reg field describes the second operand, whose value is always in
a register. The instruction opcode indicates which instruction format is applicable.
The direction field (d) in the instruction indicates which operand is the destination
operand in the instruction. If 4 = (), the register/memory operand is the destination;
otherwise, the register operand indicated by reg is the destination. The width field
(w) indicates whether 8 or 16 bit arithmetic is to be used. The table in the middle
part of Figure 3.2] indicates the conventions used for determining the first operand.
If mod = 00, 01 or 10 the first operand is in memory; otherwise, it is in a register.
The table in the lower part of the figure indicates the conventions for determining the
second operand, which 1s always in memory.
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(a) Register/Memory 1o Register

(b) Immediate to Register/Memory

‘ opcode d w

mod reg

r’m

g -

opcode d w ‘madﬂpr/m ‘damldaml
(¢) Immediate to Accumulator

opcode w data [ data ]

r/m | mod =00 mod = (1 -rrmd=10 mod =11
. Note | 1 w=0 | w=I

000 | (BX)+(S1) | (BX)+(SI)+d8 | Note?2 AL | AX
001 | (BX)+(DI) | (BX)+(DI)+d8 | Note 2 CL | CX
010 | (BP)+(SI) | (BP)+(SI)+d8 Note 2 DL | DX
M1 | (BP)+(Dl) | (BP)+(DIl)+d8 | Note 2 BL | BX
100 (SI) (SI) +d8 Note 2 AH | SP
101 (D) (DI)+d8 Note 2 CH | BP
110 Note 3 (BP)+d8 Note 2 DH | SI
i1l (BX) (BX)+d8 Note 2 BH DI

Note 1 : d8 denotes an 8-bit displacement

Note 2 : Same as in the previous column, except d 16 instead of d8

Note 3 ; (BP) + DISP for indirect addressing, d16 for direct

-
e

Register
8-bit | 16-bit

reg | (w=0) | (w=1) |
000 | AL AX
001 CL CX
010} DL DX
011 BL BX
100 { AH SP
101 | CH BP
110 | DH Si
111 BH DI

Figure 3.21 Instruction formats of Intel 8088
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Assembly data/
statement Opcode dw | mod reg r/im | displacement
ADD AL, BL 00000000 | 11011000
ADD AL, 12H(SI] | 000000 10 | 01 000 100 00010010
ADD AX, 3456H 10000001 | 11000000 01010110
00110100
ADD AX, 3456H | 00000101 | 01010110 00110100

Figure 3.22 Sample assembiy statements and corresponding instructions of 8088

Figure 3.22 contains some assembly statements and the corresponding instruc-
tions. Note that in the first assembly statement, AL could be encoded into the first
or the second operand of the instruction, and the d field could be set accordingly. In
the second statement, however, AL has to be encoded into second operand because
12H [SI], which denotes a displacement of 12,4 from address contained in the SI
register, has to be in the first operand. Here, mod = 01 since only one byte of dis-
placement 1s adequate. The third statement contains 16 bits of immediate data. Note
that the low byte of immediate data comes first, followed by its high byte. The fourth
assembly statement 1s identical to the third, however it has been encoded using the
‘immediate to accumulator’ instruction format. Here, w = | implies that the accu-
mulator is the AX register. This instruction is only 3 bytes in length as against the
previous instruction which is 4 bytes. In situations such as these, the assembler has
to analyze the available options and determine the best instruction.

Segment overrides

For operands in arithmetic and MOV instructions, the architecture uses the data seg-
ment by default. To use any other segment, an instruction has to be preceded by
a 1-byte segment override prefix, which has the format LOOI seg llﬂTwhere seg,
represented in 2 bits, has the meanings shown in Figure 3.23.

seg | segment reg ister
00 ES
01 CS
10 5SS
11 DS

Figure 3,23 Scgment codes for use in the segment overnide prefix

Example 3.12 (Using the segment override prefix) In Figure 3.22, if the code segment is
to be used instead of the data segment in the second statement, the statement would
have to be rewritten as follows:
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ADD AL, CS:12H[SI]
The assembler would encode this statement as
segment override prefix instruction
00101 110 000000 1 0 01 000 100 00010010

Control transfer instructions

Figure 3.24 shows formats of control transfer instructions. Control may be trans-
ferred to an address within the same segment, or to an address in another segment,
Where possible, an intra-segment transfer 1s assembled using a self-relative displace-
ment 1n the range of —128 to +127 because 1t leads to a shorter instruction. In other
situations, an intra-segment transfer 1s assembled using a 16 bit offset within the seg-
ment. An inter-segment (ransfer requires a new segment base address and an offset to
be provided. Its execution involves loading of the segment base into the CS segment
register, which makes it slower than an intra-segment transfer. Control transfers can
be both direct and indirect.

(a) Intrasegment

Opcode Disp. low | Disp. high |
(b} Intersegment
Opcode Offset Offset Segment base
(c) Indirect
R N

Figure 3.24 Formats of control transfer instructions

A subroutine call instruction pushes the offset of the next instruction within the
code segment on the stack. This offset is used to return control to the calling program.
In the case of an inter-segment subroutine call, the address in the CS segment register
1s first pushed on the stack, followed by the offset of the next instruction.

3.5.3 The Assembly Language of Intel BOBS
Statement format

The format of the assembly language statement is as follows:

[Label:] opcode operand(s) ; comment string

where the label is optional. In the operand field, operands are separated by commas.
Figure 3.22 contained some examples of assembly statements. The parentheses |..]
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in the operand field represent the words ‘contents of . Base and index register speci-
fications, as also direct addresses specified as numeric offsets from the segment base,
are enclosed in such parentheses. A segment override is specified in the operand
to which 1t apphies, e.g., CS:12H [SI] indicates that the operand exists in the code
segment.

Assembler directives

The ORG, EQU and END directives are analogous to the ORIGIN, EQU and END directives
described in Sections 3.4 and 3.1. The start directive is not supported because the ORG
directive subsumes its functionality. The concept of hiterals, and the LTORG directive,
are redundant because the 8088 architecture supports immediate operands.

Declarations

The Intel assembly language provides directives that both reserve memory and ini-
tialize 1t to desired values. Thus, these directives combine the functions of the DC

and DS directives of section 3.1.1. The DB, DW and DD directives have the following
meanings:

A DB 25 , Reserve a byte & 1initialize 1t

B DW L4 : Reserve a word, but do not initialize
ADD.A DW A . Reserve & initialize word to A’s offset
C DD 6DUP(0) ;6 Double words, all initialized to Os

The directives D§ and DT reserve and initialize a quad-word, which 1s an area of
8 bytes whose start address is aligned on a multiple of 8, and ten bytes, respectively.

EQU and PURGE

As described 1in Section 3.4, the EQU directive defines a symbolic name to represent
either a value or another symbolic name. The name so defined can be “undefined’
through a PURGE directive. A purged name can be reused for other purposes later in
the program. Example 3.13 illustrates use of this directive.

Example 3.13 (The PURGE directive) Following program illustrates use of the EQU and
PURGE directives.

XYZ DB 7

ABC EQU XYZ ; ABC represents the name XYZ
PURGE ABC ; ABC no longer represents LYZ

ABC EQU 25 ; ABC now represents the value 25

SEGMENT, ENDS and ASSUME

An assembly language program is a collection of segments. The address of a memory
operand in an Intel 8088 instruction is specified as a pair (segment register, offset),
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where the segment register contains the address of one of the segments of the pro-
gram. Thus, for assembling the reference to the symbol ALPHA in the following
statement:

ADD AL, ALPHA

the assembler has to determine the offset of ALPHA from the address contained in a
segment register. Hence the assembler must know which segment contains the state-
ment that defined ALPHA, and which segment register would contain the address of
that segment when the ADD statement is executed. The SEGMENT and ENDS directives
indicate the beginning and end of a segment, respectively. They enable the assembler
to determine which segment contains the definition of ALPHA. The ASSUME directive
has the following syntax:

ASSUME < segment register> : < segment name >

It informs the assembler that the address of the indicated segment would be present
In <segment register > when the part of the program that begins with this statement
is executed. Note that it is the program’s responsibility to actually load the segment’s
address into the specific segment register during its execution. The directive ASSUME
<register> : NOTHING nullifies the effect of the previous ASSUME statement for
< register>,

Note that a memory operand in an instruction is addressable only if the address
of the segment that contains the operand is present in one of the segment regis-
ters. The assembler must indicate an error if a memory operand is not addressable.
Example 3.14 illustrates how the assembler uses the information in the SEGMENT,
ENDS and ASSUME directives for determining the segment register and offset for
accessing a memory operand.

Example 3.14 (Assembling of memory operands) Consider the following program:

SAMPLE DATA SEGMENT

ARRAY DW 100 DUP 7
SUM DW O

SAMPLE DATA ENDS

SAMPLE_ CODE SEGMENT

ASSUME DS:SAMPLE DATA
HERE: MOV AX, SAMPLE_DATA

MOV D5, AX

MOV AX, SUM

SAMPLE CODE ENDS
END HERE

The program consists of two segments, The segment SAMPLE_DATA contains the stor-
age reserved through the two DW directives, while the segment SAMPLE_CODE contains



Assemblers 107

the code corresponding to the rest of the statements. The ASSUME directive informs
the assembler that the start address of SAMPLE DATA would be contained in the DS
register. While assembling the statement MOV AX, SUM the assembler first compultes
the offset of SUNM from the start of the segment that contains it, which in this case is the
SAMPLE_DATA segment, This offset is 200 bytes because the SAMPLE DATA segment
contains 100 words before the area named SUM. The assembler now checks whether
the segment in which SUM exists is addressable at the current place in the program,
that is, whether the address of the segment would be contained in one of the segment
registers when the MOV statement 1s executed. Following from the ASSUME statement,
it knows that the DS register would contain the address of segment SAMPLE DATA, so
it encodes SUM to be an offset of 200 bytes from the DS register. Note that the program
must load the correct address into the DS register before executing this reference to
SUM. If the ASSUME directive were ASSUME ES:SAMPLE DATA, the assembier would
have generated a segment override prefix while assembling the operand SUM in the
statement MOV AX, SUM. Now the program must load the correct address into the ES
register.

PROC, ENDP, NEAR and FAR

The PROC and ENDP directives delimit the bedy of a procedure. The keywords NEAR
and FAR appearing in the operand field of PROC indicate whether the call to the pro-
cedure is to be assembled as a near or a far call. Parameters for the called proce-
dure can be passed either through registers or on the stack. Example 3.15 illustrates
assembling of a call on a far procedure.

Example 3.15 (Far procedures) Consider the following assembly program:

SAMPLE_CODE SEGMENT
CALCULATE PROC FAR ; a FAR procedure

RET
CALCULATE ENDP
SAMPLE_CODE ENDS

PGHM SEGMENT

CALL CALCULATE ; a FAR call
PGM ENDS

END

CALCULATE is declared as a far procedure, so it need not be addressable at the CALL
statement. The assembler encodes the CALL statement by using a far instruction that
has the segment base of the segment that contains the procedure CALCULATE and the
offset of CALCULATE within that segment in the operand field,

PUBLIC and EXTRN

A symbol that is declared in one assembly program can be accessed only from within
that program. If the symbol is to be accessed in other programs, it should be specified
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in a PUBLIC directive. Any other program wishing to use this symbol must specify it
in an EXTRN directive, which has the syntax

EXTRN < symbolic name > : <type>>

As we shall see in Chapter 5, the linker uses the information specified in the PUBLIC
and EXTRN directives for linking a program with other programs. The type informa-
tion provided in the EXTRN directive 1s used by the assembler in conjunction with the
analytic operators. For labels of DC and DS statements, the type can be a word, a byte,
etc. For labels of instructions, the type can be FAR or NEAR.

Analytic operators

An analytic operator either provides components of a memory address, or provides
information regarding the type and memory requirements ol operands. The SEG and
OFFSET operators provide the segment and offset components of the memory address
of an operand. The TYPE operator provides a numeric code that indicates the manner
in which an operand is defined; the codes are 1 (byte), 2 (word), 4 {(double word), 8
(quad-word), 10 (ten bytes), — 1 (near instruction) and —2 (far instruction). The SIZE
operator indicates the number of units 1in an operand, while The LENGTH operator
indicates the number of bytes allocated to the operand.

Example 3.16 (Analytic operators) Consider the fragment of an assembly program:

MOV AX, OFFSET ABC
BUFFER D 100 DUP (0)

The MOV statement loads the offset of the symbol ABC within its segment into the AX
register. BUFFER has the TYPE of 2, SIZE of 100, and LENGTH of 200 bytes. These

operators can be used in MOV statements such as

MOV CX, LENGTH XYZ

which loads the length of XYZ into the CX register.

Svnthetic operators

A programmer may wish to access the same memory area as operands of different
types. For example, she may wish to access the first word in an operand of type
quad-word as an operand of type ‘word’, or access its first byte as an operand of type
‘byte’. To facilitate such usage, the PTR operator provides a method to define a new
memory operand that has the same segment and offset components of address as an
existing memory operand, but has a different type. No memory allocation is implied
by its use. The THIS operator 1s analogous—it defines the new memory operand to
have the same address as the next byte in the program. Hence its effect 1s sensitive to
its placement in the program,
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Example 3.17 (The PTR and THIS operators) Consider the program

XYZ DW 312
NEW_NAME EQU BYTE PTR XYZ
LOOP: CMP AX, 234
JMP LOOP
FARLCOP EQU FAR PTR LOOP
JMP FAR_LOCOP

Here, NEW_NAME 1s a byte operand that has the same address as XYZ, while FAR_LOOP
1s @ FAR symbolic name that has the same address as LOOP. Thus, while JMP LOOP
would be assembled as a near jump, JMP FAR_LOOP would be assembled as a far
jump. Exactly the same effect could have been achieved by using the THIS operator

as fotlows:
[
NEW _NAME EQU THIS EYTE
XYZ DW 312
FAR_LOOP EQU THIS FAR
LOOP CMP AX, 234
JMP LOOP
JMP FAR_LOOP

Here FAR_LOOP has the same address as LOOP because it immediately preccdf:s the
statement that defines LOOP,

3.5.4 Problems of Single-Pass Assembly

The forward reference problem faced in single-pass assembly is aggravated by the
nature of the 8088 architecture. We discuss two aspects of this issue using the pro-
gram of Figure 3.25.

Forward references

A symbolic name may be forward referenced in many different ways. Assembly
is straightforward when the forward referenced symbol 1s used as a data operand
in a statement. As discussed in Section 3.3, an entry can be made in the table of
incomplete instructions (TII) when the forward reference is encountered. It would
identify the bytes in code where the address of the referenced symbol should be put.
When the symbol’s definiion 1s encountered, this entry would be analyzed to com-
plete the instruction. However, the use of a symbolic name as the destination in a
branch instruction gives rise to a peculiar problem. Some generic branch opcodes
like JMP in the 8088 assembly language can be assembled into instructions of dif-
ferent formats and lengths depending on whether the jump is near or far—that is,
whether the destination symbol is less than 128 bytes away from the JMP instruc-
tion. However, whether the jump is near or far would not be known until sometime
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Sr. No. Statement Offset
001  CODE  SEGMENT
002 ASSUME CS:CODE, DS:DATA
003 MOV AX, DATA Q000
004 MOV DS, AX 0003
005 MOV CX, LENGTH STRNG 0005
0086 MOV COUNT, 0000 0008
007 MOV SI, OFFSET STRNG 0011
008 ASSUME  ES:DATA, DS:NOTHING
009 MOV AX, DATA 0014
010 MOV ES, AX 0017
011 COMP: CMP [SI],’A’ 0019
012 JHNE NEXT 0022
013 MOV COUNT, 1 0024
014 NEXT: INC SI 0027
015 DEC CX 0029
016 JNE COMP 0030

017  CODE  ENDS

018 DATA SEGMENT

019 ORG 1

020 COUNT DB 7 0001
021 STRNG DW 50 DUP (7?) 0002
022 DATA ENDS

023 END

Figure 3.25 An assembly program of Inte! 8088 for illustrating problems in single-pass assembly

later 1n the assembly process! This problem is solved by assembling such instruc-
tions with a 16 bit offset unless the programmer uses the keyword SHORT to indicate
that a short displacement would suffice, e.g., as in JMP SHORT LOOP. The program
of Figure 3.25 contains a forward reference in the statement JNE NEXT. However,
the above problem does not arise here because the mnemonic JNE indicates that the
instruction should be in the self-relative format.

A more serious problem arises when the type of a forward referenced symbol is
used in an instruction. It may influence the size and length of a memory area, in turn
affecting memory allocation and addresses assigned to symbols. Such usage will
have to be disallowed to facilitate single-pass assembly. Example 3.18 illustrates this

aspect.

Example 3.18 (Difficulties in single-pass assembly concerning synthetic operators) Con-
sider the statements

XYZ DB LENGTH ABC DUP(0)

ABC DD 4



Assemblers 111

Here, the size of XYZ cannot be determined in a single-pass due to the forward refer-
ence to ABC.

Use of segment registers

When the assembler encounters a forward reference to a symbol symb in a state-
ment, it needs to determine what offset and what segment register it should use in the
operand field of the corresponding instruction. It can determine the information as
follows: When the assembler encounters an ASSUME statement

ASSUME < segment register> : < segment name >

it can store the pair (segment register, segment name) in a segment registers table
(SRTAB). For handling the reference to a symbol symb in an assembly statement, the
assembler would access the symbol table entry of symb and find seg,yms, which is
the name of the segment that contains the definition of symb. Using this information
it would form the pair (segoump, offsetsmy). It would then access the information
stored in SRTAB to find which register would contain the address of seg . Let it
be register r. It would synthesize the pair (r, offsetsms) and put it in the address field
of the target instruction.

However, this strategy would not work while assembling forward references.
Consider Statements 6 and 13 in Figure 3.25 which make forward reterences to
COUNT. When the definition of COUNT is encountered in Statement 20, information
concerning these forward references can be found in the table of incomplete instruc-
tions (T1I). What segment register should be used to assemble these references? The
first reference was made in Statement 6 when the SRTAB indicated that the DS reg-
ister would contain the segment base of DATA. However, the SRTAB does not contain
that information presently: it contains the pair (ES, DATA) because of the statement
ASSUME ES:DATA which appeared as the 8 statement in the program. A similar
problem may arise while assembling forward references contained in branch instruc-
tions. To handle this problem the old information in SRTAB should be preserved
while processing an ASSUME statement. Accordingly, the following provisions are
made:

I. A new SRTAB is created when an ASSUME statement is encountered. This

SRTAB differs from the old SRTAB only in the entrnies for the segment reg-
ister(s) named in the ASSUME statement. Since many SRTABs may exist at

any time, an array named SRTAB_ARRAY is used to store the SRTABs. An
individual SRTAB 1s referred to by 1its entry number in SRTAB_ARRAY.

2. Instead of using the TII, a forward reference table (FRT) 1s used. Each entry
of the FRT contains the following information;

(a) The address of the instruction whose operand field contains the forward
reference

(b) The symbol to which the forward reference 1s made
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(¢) The kind of refereﬁcc (7., T : analytic operator TYPE, D : data address,
S : self relative address, L : length, F : offset, etc.)

(d) Identity of the SRTAB that should be used for assembling the reference.

Example 3.19 illustrates how these provisions are adequate for handling the prob-
lem concerning forward references mentioned earlier.

Example 3.19 (Difficulties in single-pass assembly concerning segment registers) Two
SRTABs would be built for the pmg‘him of Figure 3.25. SRTAB #1 is built while pro-
cessing the 2% qatement. It contains the pairs (CS, CCDE) and (DS, DATA). Statement
6 contains a forward reference to COUNT, hence the entry (008, COUNT, D, SRTAB #1)
is made in the FRT, SRTAB #2, which is built while processing the 8 statement, con-
tains the pairs (CS, CODE) and (ES, DATA). The FRT entry for Statement 13 1s {024,
COUNT, D, SRTAB #2). These entries are processed on encountering the definition
of COUNT, giving the address pairs (DS, 001) and (ES, 001). (Note that FRT entries
would also exist for Statements 5, 7 and 12, However, none of them require the use of
a segment register.)

3.5.5 Design of the Assembler

The algorithm for the Intel 8088 assembler is given at the end of this section as
Algorithm 3.3. LC processing in this algorithm differs from LC processing in the
first pass of a two-pass assembler (see Algorithm 3.1) in one significant respect. In
Intel 8O8S, the unit for memory allocation 1s a byte; however, certain entities require
their first byte to be aligned on specific boundaries in the address space. For exam-
ple, a word requires alignment on an even boundary, i.e., it must have an even start
address. Such alignment requirements may force some bytes to be left unused during
memory allocation. Hence while processing declarations and imperative statements,
the assembler first aligns the address contained in the LC on the appropriate bound-
ary. We call this action LC alignment. Allocation of memory for a statement is
performed after LC alignment.

The data structures of the assembler are illustrated in Figure 3.26, where a num-
ber in parentheses indicates the number of bytes required for a field, Details of the
data structures are as follows:

e The mnemonics table (MOT) is hash organized and contains the following
tields: mnemonic opcode, machine opcode, alignment/format info and routine
id. The routine id field of an entry specifies the routine which handles that
opcode. Alignment/format info 1s specific to a given routine. For example, in
Figure 3.26 the code ‘00H" in the Alignment/format info field in the entry for
the opcode JNE implies that routine R2 should use the instruction format with
self-relative displacement. If the code ‘FFH™ were to be used, it would imply
that all instruction formats are to be supported, so the routing must decide
which machine opcode 1o use.
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© {a) Mnemonics table (MOT)

(b) Symbol table (Symtab)

GE)l(I)I(2)‘{2)|(2}‘(2)](2)‘(23 (

— Size

— Owner segment (SYMTAB entry #)
-+ Offset in segment

— Type/Defined?/Segment name /EQU?
-+ Symbol

(c) Segment Register Table Array (SRTAB_ARRAY)

(d) Forward Reference table (FRT)

Mnemonic | Machine | Alignment/ | Routine
opcode opcode | format info id
(6) (2) M | @
INE 75H OOH R2
2) | (2)
L L Pointer to last CRT entry
Pointer to first CRT entry
—=Pointer to FRT
—= Source stmt #
— Length

(e) Cross Reference table (CRT)

Segment Register | SYMTARB entry #
(1) (2)

(K(ES) 23 SRTAB #1
| SRTAB #2

SRTAB | Instruction | Usage | Source

Pointer # address code | stmt #

(2) (1) (2) (h (2)
Pointer | Source Stmt #
(2) (2)

Figure 3.26 Data structures of the assembler
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e The symbol table (SYMTARB) 1s also hash-organized and contains information
about symbols defined and used in the source program. The contents of some
important fields are as follows: The owner segment field indicates the id of
the segment in which the symbol 1s defined. It contains the SYMTARB entry
# of the segment name. For a non-EQU symbol the rype field indicates the
alignment information. For an EQU symbol, the rype field indicates whether
the symbol is to be given a numeric value or a textual value, and the value
itself is accommodated 1n the owner segment and offset fields of the entry.

o The segment register table (SRTAB) contains four entries, one for each seg-
ment register. Each entry shows the SYMTARB entry # of the segment whose
address is contained in the segment register. SRTAB_ARRAY is an array of
SRTABs.

e The forward reference table (FRT) and cross reference table (CRT) are orga-
nized as linked lists.

Being linked hists, the sizes of FRT and CRT change as a program 1s processed.
To avoid making a fixed commitment of storage to these tables, both of them are
organized in a single memory area that grows from the high end of memory to its low
end. The assembler places the generated target code from the low end of memory
to its high end. This way, no size restrictions need to be placed on individual tables.
Assembly of a source program would fail only if the target code overlaps with its
tables.

Forward references

Information concerning forward references to a symbol 1s organized as a linked list.
Thus, the forward reference table (FRT) contains a set of linked hsts, one for each
forward referenced symbol. The FRT pointer field of a SYMTAB entry points to the
head of a symbol’s list. Since the ordering of FRT entries in a list is not important,
for ethiciency reasons new entries are added at the beginning of the list. Each FRT
entry contains SRTAB # of the SRTAB that 1s to be used tor assembling the forward
reference. It also contains an instruction address and a usage code that indicates
where and how the forward reference is to be assembled. When the definition of
a symbol is encountered, the FRT entries in its list of forward references (if any)
are processed, and the forward references’ list 1s discarded. To minimize the size
of FRT, entries in the discarded list are reused for storing information about other
torward references.

Cross references

A cross reference directory is a report produced by the assembler which lists all
references to a symbol sorted in the ascending order by statement numbers. The
assembler uses the cross reference table (CRT) to collect the relevant information.
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Each entry in the CRT describes one reference to one symbol. Entries pertaining to
the same symbol are linked together. New entries are added at the end of the list so
that entries would be in ascending order by statement number. The SYMTAB entry
of each symbol points to the head and tail of 1ts linked list in the CRT. Example 3.20
illustrates operation of the assembler.

Example 3.20 (Single-pass assembly of Intel 8088 programs) Figure 3.27 illustrates some
of the contents of important data structures after processing Statement 19 of the source
program shown in Figure 3.25. The symbol table contains entries for symbols COMP
and NEXT whose definitons have already been processed. The defined flag of these
entries is = “Yes' and the address and type fields contain appropriate values, NEXT was
forward referenced in Statement 12 of the program. An FRT entry was created for this
reference with the usage code ='S’ to indicate that a self-relative displacement should
be put in the instruction. When the definition of NEXT was processed in Statement 14,
the corresponding instruction was completed using this FRT entry and the FRT entry
was discarded.

FRT entries currently exist for symbaols COUNT and STENG. Both references to COUNT
in the source program are forward references in Statements 6 and 13. Hence, two
entries exist for COUNT in FRT and CRT. The first FRT entry has #1 in the SKTAB
field, while the second entry has #2 in 1. Similarly two FRT and CRT entnes exist for
STRHNG.

Subsequent processing of the program proceeds as follows: At the end of processing
Statement 20 (but before incrementing the location counter), its label, viz,, COUNRT,
would be looked up in SYMTAB. An entry exists for it with defined = "no’. It imphies
that COUNT has been forward referenced. lts segment and offser nelds would be set
now. The forward reference chain would then be traversed and each forward reference
would be processed to detect any errors in the forward reference, and to complete the
machine instruction containing the forward reference. The second forward reference
to COUNT would pass the error detection step and lead to completion of the machine
instruction with offset 0024, However, the first forward reference expects a word
alignment for COUNT (since immediate data is 2 bytes in length) which 1s not the case.
An error would be indicated at this point. The FRT pointer field of COUNT's SYMTAB
entry would be reset and the FRT entries for COUNT would be destroved.

Listing and error indication

The program listing and error reporting function faces the problems discussed in
Section 3.4.7. Hence the program listing contains the statement in source form, its
serial number in the program and the memory address assigned to it. The target
code is printed at the end of assembly. An error pertaining to a forward reference
cannot be reported against the statement that contains the forward reference because
that statement would have been already listed out. If the error is simply reported at
the end of the source program, it would be rather cumbersome for the programmer
to find the erroneous statement. To overcome this problem, the senal number of the
source statement containing a forward reference is stored in the FRT entry along with
other relevant information (see Figure 3.27). If an error 1s detected while processing
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D|S Owner | Length | FRT | CRT pointer
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Figure 3.27 Data structures after processing Statement 19 of the program in Figure 3.25
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a forward reference to a symbol, the statement number found in the FRT entry would
be included in the error report.

Example 3.21, which follows the algonthm of the single-pass assembler 1llus-
trates application of this strategy.

3.5.6 Algorithm of the Single-Pass Assembler

Algorithm 3.3 1s the algorithm of the assembler. Important data structures used by 1t
are as follows:

SYMTAB, SRTAB_ARRAY, CRT, FRT and ERRTAB

LC Location counter

code_area . Area for assembling the target program
code_area_address . Contains address of code_area

srtab_no : Number of the current SRTAB

stmt_no . Number of the current statement

SYMTAB segment_entry . SYMTAB entry # of current segment
machine_code _buffer : Area for constructing code for one statement

Algorithm 3.3 (Single-pass assembler for Intel 8088)

. code_area_address = address of code_area.
srtab_no = 1;
LC =0
stmt_no = 1;
SYMTAB segment_entry =,
Clear ERRTAB, SRTAB_ARRAY.

2. While the next statement is not an END statement

(a) Clear machine_code_buffer.
(b) If a symbol is present in the label field then
this_label := symbol in the label field;

(¢) If an EQU statement

(1) this_address = value of <address specification>
{(11) Make an entry for this_label in SYMTAB with
offset := this_addr;
Defined = “ves’;
owner_segment ;= owner_segment in SYMTAB entry of the
symbol in the operand field.
source _stmi_# = stimt_no,
(1i1) Enter stmi_no in the CRT list of the label in the operand field.
(1iv) Process forward references to this_label,

(v) size ;=0
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(d) If an ASSUME statement
(1) Copy the SRTAB in SRTAB_ARRAY [srtab_no] into SRTAB-

ARRAY [srtab_no+1];

(1) srtab_no = srtab_no+1;

(111) For each specification 1n the ASSUME statement
A. this_register = register mentioned in the specification.
B. this_segment ;= entry number of SYMTAB entry of the segment

appearing in the specification.

C. Make the entry (this_register, this_segment) in SRTAB_ARRAY

|srtab_no). (It overwrites an existing entry for this_register.)
D. size := 0,

(¢) If a SEGMENT statement

(1) Make an entry for this_label in SYMTAB and note the entry number.
(1) Set segment name ? = true;
(1) SYMTAB segment_entry = entry no. in SYMTAB;
(iv) LC :=0;
{(v) size =1
(f) If an ENDS statement then
SYMTARB segment_entry = ();
(g) If a declaration statement

(1) Align LC according to the specification in the operand field.
(i1} Assemble the constant(s), if any, in the machine_code _buffer.

(111) size := size of memory area required;
(h} If an imperative statement

(1) If the operand is a symbol symb then
enter stmf_no in CRT list of symb.
(1) If the operand symbol is already defined then
Check its alignment and addressibility.
Generate the address specification (segment register,

offset) for the symbol using its SYMTAB entry and
SRTAB_ARRAY [srtab_nol.

else

Make an entry for symb in SYMTAB with defined .= ‘no’;
Make the entry (srtab_no, LC, usage code, stmt_no) in FRT of
symb.

(1i1) Assemble instruction in machine _code _buffer.

(1v) size := size of the instruction;
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(1) If size # O then

(1) If label is present then
Make an entry for this_label in SYMTAB with
owner._segment ;= SYMTAB segment_entry;,
Defined = “ves’;
offset = LC;
source_stmi _# ;= stmt_no;

(11) Move contents of machine_code_buffer to the address code_area-
-address 4+ <1L.C>;

(i) LC :=LC + size:
(iv) Process forward references to the symbol. Check for alignment and
addressability errors. Enter errors in the ERRTAB.

(v) List the statement along with errors pertaining to it found in the
ERRTAB.

(vi) Clear ERRTAB.
3. (Processing of END statement)

(a) Report undefined symbols from the SYMTAB.
(b) Produce cross reference listing.
(¢) Write code_area into the output file.

Example 3.21 (Error reporting in single-pass assembler for Intel 8088) Error in the
forward reference to COUNT in Statement 6 of Figure 3.25 would be reported as

follows: |
Stmt no. Source statement Offset  Instrn
006 MOV COUNT, 0000 0005
020 COUNT DB 7 0001

*#* error ** [llegal forward reference (alignment) from Stmt 6.

3.6 SUMMARY

The assembly language is a machine-level programming language. Each statement
in an assembly program either corresponds to a machine instruction, declares a con-
stant, or 1s a directive to the assembler. The assembly language provides many
facilities that free the programmer from having to deal with strings of Os and 1s as in-
structions and data of a program. Three key facilities are use of mnemonic operation
codes and symbolic operands in instructions, and facilities for declaring data and
reserving memory.

An assembler 1s a language processor that converts an assembly language pro-
gram into a target program that is either a machine language program or an object
module, which i1s a program form used by linkage editors. In the analysis phase, it
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analyzes the source program to note the symbolic names used in the program and the
instructions or data to which they correspond. It has to perform memory allocation
for determining the memory address of each instruction or data, so i1t maintains a data
structure called the location counter (1.C) to keep track of the address that the next
instruction or data in the target program would have. As it processes assembly state-
ments, it updates the location counter by the size of each instruction or data. Some
assembler directives require a new address to be put in the location counter. These
actions are collectively called LC processing. In the synthesis phase, the assembler
synthesizes the target program by using the information obtained during the analy-
sis phase. The assembler uses two key tables—it uses the mnemonics table 1o find
which mnemonic operation codes correspond to which instructions, and uses the
symbol table to store information about symbolic names used in the program.

As defined in Chapter 2, a pass of a language processor performs language pro-
cessing functions on every statement in a source program, or in its equivalent rep-
resentation. A single-pass assembler analyzes a source statement and immediately
synthesizes equivalent statements 1n the target program. In a multi-pass organiza-
tion of assemblers, the first pass of the assembler processes the source program to
construct an intermediate representation that consists of the symbol table and an
intermediate code. The second pass uses the information in the intermediate repre-
sentation to synthesize the target code. Two vaniants of the intermediate code are
discussed. :

A forward reference in a program is the use of a symbol that precedes the state-
ment that defines the symbol. A single-pass assembler uses the technmique of back-
patching to handle forward references. When it encounters a forward reference in a
source statement, it generates a machine instruction that has a blank operand address
field and enters the address of the instruction 1n a table of incomplete instructions.
When it encounters the statement that defines the forward referenced symbol, it com-
pletes all instructions that contained forward references to the symbol. A multi-pass
assembler can handle forward references more simply. The first pass puts informa-
tion about all defined symbols in the the symbol table, and the second pass uses this
information while generating instructions in the target program.

A case study of a single-pass assembler for processors of the Intel x86 is
included. The Intel BO88 uses segment-based addressing, which raises interesting
issues in the specification of operand addresses in machine instructions and in the
handling of forward references.

TEST YOUR CONCEPTS

1. Classify each ol the following statements as true or false:
(a) An immediate operand exists in an instruction itself.
(b) An instruction cannot change the value of a literal,

(c) A literal 1s not entered in the current literal pool if a matching literal already
exists in the pool.
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(d) The ORIGIN statement indicates what address the next instruction in the pro-
gram should have.

(e) Processing of the EQU statement results in a change in the address contained in
the location counter.

(f) A program containing forward references cannot be assembled in a single pass.
(2) In the Intel 8RR architecture, an operand must exist in the data segment.

(h) The ASSUME directive of Intel assembly language loads a value in a segment
register.

EXERCISE 3

1. An assembly program contains the staterment

X EQU Y+25
Indicate how the EQU statement can be processed if

(a) Y 1s a back reference,
(b} Y is a forward reference.

2. Can the operand expression in an ORIGIN statement contain forward references? If
s0, outline how the statement can be processed in a two-pass assembly scheme.

3. Given the following source program:

START 100

A DS 3

L1 MOVER AREG, B
ADD AREG, C
MOVEM AREG, D

D EQU A+l

L2 PRINT D
ORIGIN A-1

C DC ‘5
ORIGIN L2+1
STOP

® DC ‘19’
END L1

(a) Show the contents of the symbol table at the end of Pass L.

(b) Explain the significance of EQU and ORIGIN statements in the program and
explain how they are processed by the assembler.

(¢) Show the intermediate code generated for the program.

4. A two-pass assembler performs program listing and error reporting in Pass II using
the following strategy: Errors detected in Pass [ are stored in an error table. These are
reported along with Pass Il errors while producing the program listing.

(a) Design the error table for use by Pass . What 1s its entry format? What is the
table organization?

(b) Let the error messages (e.g., DUPLICATE LABEL...) be stored in an error
message table. Comment on the organization of this table.
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J.

Develop complete program specifications for the passes ol & two-pass assembler indi-
cating the following items:

(a) Tables for internal use of the passes

(b) Tables to be shared between passes

(c) Inputs (files and tables) for every pass
(d) Outputs (files and tables) of every pass.

You must clearly specify why certain mtormation is 1 the form of tables in main
memory while other information is in the form of files.

Recommend appropriate organizations for the tables and files used in the two-pass
assembler of Problem 5.
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CHAPTER 4

Macros and
Macro Preprocessors

In Section 2.8, we discussed why a general purpose program generator should
provide features for defining new operations and data. A macro 1s such a feature
provided in a programming language. A macro definition in a program defines either
a new operation or a new method of declaring data. A macro call in the program is
an invocation of the new operation or the new method of declaring data defined in
the macro. It leads to a program generation activity during which the macro call is
replaced by a sequence of statements in the programming language. This process is
called macro expansion.

A macro definition may be written using formal parameters. A macro call on
such a macro specifies actual parameters. Macro expansion is performed by using
two kinds of actions. A lexical substitution is performed in a statement appearing in
a macro defimtion to replace an occurrence of a formal parameter of the macro by the
corresponding actual parameter in a macro call. It results in generation of a statement
as a result of the macro call. Semantic expansion generates a sequence of statements
that 1s tailored to specific requirements of each call on a macro. It is achieved through
conditional expansion of statements appearing in a macro definition, whereby only
some of the statements in a macro definition are used in expansion of a macro call,
and through the use of expansion time loops, whereby some of the statements in a
macro definition are used several times during expansion of a macro call.

We discuss macros provided in assembly languages. Such macros are handled in
two ways. A macro assembler performs expansion of each macro call into a sequence
of assembly statements and also assembles the resulting assembly program. A macro
preprocessor merely performs expansion of macro calls and produces an assembly
program. In this chapter we discuss the writing of macro definitions, expansion of
macro calls and the design of a macro preprocessor.
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4.1 INTRODUCTION

A macro 1s a facility for extending a programming language. A macro defines either
a new operation or a new method of declaring data in a programming language.
The language processor of the language replaces a call on a macro by a sequence
of statements that implements the defined operation or the method of declaring data.
The specification gap in the writing of a program is reduced if it uses macros to define
operations and data that are specific to its application domain. Thus use of macros
helps in improving reliability of a program.

Many languages provide facilities for writing macros. Well known examples of
these are the programming languages PL/I, C, Ada and C++. Assembly languages
of most computer systems also provide such facilities. Where a language does not
support macro facilities, a programmer may achieve an equivalent effect by using
generalized preprocessors or software tools like Awk of Unix. The discussion in this
chapter is confined to macro facilities provided in assembly languages.

A macro definition in a program consists of the name of the macro, a set of
formal parameters, and a body of code that defines a new operation or a new method
of declaring data. Statements in the body of code may use the formal parameters,
Use of the macro’s name in the mnemonic field of an assembly statement constitutes
a macro call. The operand field of the macro call statement indicates the actual
parameters of the call. The language processor replaces a macro call statement by
a sequence of assembly language statements that are generated by using the body of
code in the macro definition. This process 1s called macro expansion. Two Kinds of
macro expansion are as follows:

o lexical substitution implies replacement of a character string by another
character string during program generation. Lexical substitution is typically
employed to replace occurrences of formal parameters by corresponding actual
parameters.

e Semantic expansion implies generation of statements that are tailored to the
requirements of a specific macro call. It makes a macro adaptive, which has the
benefits described earlier in Section 1.4.7. For example, if a macro that uses
semantic expansion 1s called using different actual parameters, expansion of
the calls may lead to codes which differ in the number, sequence and opcodes
of statements. Example 4.1 illustrates how it may be beneficial.

Example 4.1 (Benefits of semantic expansion) The following sequence of statements 1s
used to increment the value stored in a memory word by a given constant:

1. Move the value from the memory word into a CPU register.
2. Increment the value in the CPU register.
3. Move the new value into the memory word.

It a program needs to increment many values stored in memory, it would be useful to
define a new operation named INCR through an appropriate macro definition and place
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where <macro name> appears in the mnemonic field of an assembly statement and
the formal parameter specification appears in the operand field of the statement. A
<formal parameter specification> 1s of the form

& < parameter name > | < parameter kind >| (4.1)

A parameter can be either a positional parameter or a keyword parameter. A
parameter is assumed to be a positional parameter by default, i.e., if the specification
< parameter kind> is omitted. Different kinds of parameters are handled differently
during macro expansion; we discuss this issue in Section 4.3,

A macro call has the syntax

< macro name> | < actual parameter specification > |,..]] (4.2)

where <macro name>> appears in the mnemonic opcode field of an assembly state-
ment. Actual parameters appear in the operand field of the statement. <actual
parameter specification’>> resembles <operand_specification> 1n an assembly lan-
guage statement (see Chapter 3).

Example 4.2 (Macro definition and call) Figure 4.1 shows the definition of the macro INCR
that was discussed earlier in Example 4.1, MACRO and MEND are the macro header and
macro end statements, respectively. The prototype statement indicates that INCR has
three parameters called MEM_VAL, INCR_VAL and REG. Since parameter kind 1s not
specified for any of the parameters, each parameter is assumed to be a positional
parameter. Statements with the operation codes MOVER, ADD and MOVEM are model
statements. No preprocessor statements are used in this macro, A statement INCR A,
B, AREG appearing in the program would be considered to be a call on macro INCR,

MACRO

INCR &MEM_VAL, EINCR.VAL, &REG
MOVER &REG, &MEM_VAL

ADD &REG, ZINCR.VAL

MOVEM &REG, &ZMEM_VAL

MEND

Figure 4.1 A macro defimtion

4.3 MACRO EXPANSION

Macro expansion can be performed by using two kinds of language processors. A
macro assembler performs expansion of each macro call in a program into a sequence
of assembly statements and also assembles the resulting assembly program. A macro
preprocessor merely performs expansion of macro calls in a program. It produces
an assembly program in which a macro call has been replaced by statements that
resulted from its expansion but statements that were not macro calls have been
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Specifving default values of parameters

[f a parameter has the same value in most calls on a macro, this value can be specified
as its default value in the macro definition itself. If a macro call does not explicitly
specify the value of the parameter, the preprocessor uses its default value; otherwise,
it uses the value specified in the macro call. This way, a programmer would have to
specify a value of the parameter only when it differs from its default value specified
in the macro definition.

Default values of keyword parameters can be specified by extending the syntax
of formal parameter specification (syntax (4.1)) as follows:

& < parameter name > [< parameter kind > [< de fault value >|| (4.3)

Example 4.5 (Specifying default values of keyword parameters) If a program uses reg-
ister AREG for performing most of its arithmetic, most calls on macro INCR_M of Fig-
ure 4.2 would contain the specification ZREG=AREG. Figure 4.3 shows macro INCR.D,
which is analogous to macro INCR_M except that it specifies a default value for param-
eter REG. Among the following calls

INCR.D MEM_VAL=A, INCR_VAL=B
INCR.D INCR_VAL=B, MEM_VAL=A
INCR.D INCR_VAL=B, MEM_VAL=A, REG=BREG

the first two calls are equivalent to the calls in Example 4.4 because the default value
REG would be used during their expansion. The value BREG that is explicitly specified
for REG in the third call overrides it default value, so BREG will be used to perform the
arithmetic in its expanded code.

MACRO

INCR.D &MEM_VAL=, &INCR_VAL=, &REG=AREG
MOVER &REG, &ZMEM_VAL

ADD &REG, &INCR.VAL

MOVEM &REG, ZMEM_VAL

MEND

Figure 4.3 A macro definition specifying a default value for a keyword parameter

Macros with mixed parameter lists

A macro definition may use both positional and keyword parameters. In such a case,
all positional parameters must precede all keyword parameters in a macro call. For

example, in the macro call

SUMUP A,B,G=20,H=X
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Example 4.8 (Attributes of formal parameters)

MACRO

DCL.CONST  &A

AIF (L’&A EQ 1) .NEXT
NEXT - =

MEND

Here expansion time control 1s transferred to the statement having NEXT in its label
field only if the actual parameter corresponding to the formal parameter A has the

length of “1°.

Expansion time variables

An expansion time variable (EV) 1s a variable that 1s meant for use only during
expansion of macro calls. Accordingly, its value can be used only within a macro
definition—in a preprocessor statement that assigns a value (o an expression variable,
in a model statement, and in the expression of an AlF statement. A macro definition
must contain the declaration of every expansion time variable that it uses.

Two kinds of expansion time variables exist. A local expansion time variable
can be used only within one macro definition and it does not retain its value across
calls on that macro. A global expansion time variable can be used in every macro
definition that has a declaration for it and it retains its value across macro calls. Local
and global expression variables are created through declaration statements with the
following syntax:

LCL < EV specification>|,<EV specification>> .. |
GBL <EV specification>|,<EV specification> .. |

where <EV specification> has the syntax & <EV name>>, where <EV name> is an
ordinary string,.

Values of expansion time vanables can be manipulated through the preprocessor
statement SET. It has the following syntax:

<EV specification>> SET <SET-expression>

where <EV specification>> appears in the label field and SET in the opcode field. A
SET statement assigns the value of <SET-expression’> to the expansion time vari-
able specified in <EV specification>>. Example 4.9 illustrates use of expansion time
variables.

Example 4.9 (Expansion time variables)

MACRO
CONSTANTS
LCL &A



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



138 Systems Programming

The IRP statement

IRP <formal parameter>, <argument list>

The formal parameter mentioned in the IRP statement takes successive values
from <argument list>. For each value, the statements between the IRP statement
and the first ENDM statement following it are expanded once.

Example 4.14 (Macro definition using the IRP statement)

MACRC

CONSTS &M, &N, &2
IRP &Z, &M, T, &N
DC ‘&Z’

ENDM

MEND

A macro call CONSTS 4, 10 leads to declaration of 3 constants with the values
4, 7 and 10 as follows: Formal parameters &M and &N have the values 4 and 10,
respectively, The <argument list>> in the IRP statement contains three arguments—
&M, 7, and &N. Hence the DC statement is visited three times with &7 having the
values 4, 7, and 10, respectively.

4.5.3 Semantic Expansion

Semantic expansion is the generation of statements tailored to the requirements of
a specific nsage. Its use makes a macro adaptive (see Section 1.4.7). Semantic
expansion can be achieved by a combination of advanced macro facilities like the
AlF, AGO statements and expansion time variables. The CLEAR macro of Exam-
ple 4.12 is an instance of semantic expansion. Here, the number of MOVEM AREG,
. . statements generated by a call on CLEAR 1s determuned by the value of the second
parameter of CLEAR. Macro EVAL of Example 4.10 1s another instance of condi-
tional expansion wherein one of two alternative code sequences is generated depend-
ing on peculiarities of actual parameters of a macro call. Example 4.15 illustrates
semantic expansion by using the type attribute.

Example 4.15 (Semantic expansion by using the type attribute) Macro CREATE_CONST
creates a constant whose value 1s 25, whose name 1s given by the second parameter in
a call and whose type matches the type of the first parameter.

MACRO

CREATE_CONST &X, &Y

AIF (T’&X EQ B) .BYTE
&Y DW 25

AGO .OVER
.BYTE ANOP
&Y DB 25

.OVER MEND
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Thus, storing the intermediate code of statements in the MDT would ehminate
searches in the tables. An interesting offshoot of this decision 1s that the first compo-
nent of the pairs stored in the APT, which was the name of a parameter, is no longer
used during macro expansion. Hence instead of using the APT, which contained
pairs of the form (<formal parameter name>, <value>>), we can use another table
called APTAB which contains only values of parameters. As discussed earlier in the
context of parameter named ABC, information in the APTAB would be accessed by
using the parameter number found in the intermediate code of a statement.

For converting the statement MOVER AREG, &ABC into the intermediate code
MOVER AREG, (P, 5), ordinal numbers have to be assigned to all parameters of a
macro. A table named parameter name table (PNTAB) could be used for this pur-
pose. Parameter names would be entered in PNTAB in the same order in which they
appear in the prototype statement of the macro. The entry # of a parameter’s entry in
PNTAB would now be its ordinal number. It would be used in the intermediate code
of a statement.

In effect, the information (< formal parameter name >, <value>) in the APT has
been split into two tables:

e PNTAB contains formal parameter names.

e APTAB contains values of formal parameters, most of which are actual
parameters and others are defaults.

Note that the PNTAB is used while processing a macro definition while the APTAB
is used during macro expansion.

Similar analysis leads to splitting of the execution time variables™ table (EVT)
into EVNTAB and EVTAB and splituing of the sequencing symbol table (SST) into
SSNTAB and SSTAB. The name of an expansion time varnable 1s entered in the
EVNTAB while processing its declaration. The name of a sequencing symbol is
entered in the SSNTAB while processing the definition of the sequencing symbol or
a reference to it, whichever occurs earlier. This aspect resembles construction of the
symbol table in a single-pass assembler (see Chapter 3).

The parameter default table (PDT) can be split analogously; however, some more
simplifications are possible. The positional parameters (if any) of a macro appear
before keyword parameters in the prototype statement. Hence if a macro BETA has
p positional parameters and k keyword parameters, the keyword parameters have the
ordinal numbers p+1 ... p+k. Due to this numbering, the following twe Kinds of
redundancies appear in the PDT: The first component of each entry is redundant as
in the APTAB and the EVTAB. Further, entries | ... p are redundant since positional
parameters cannot have default specifications. Hence entries only need to exist for
parameters numbered p+1 ... p+k. To accommodate these changes, we replace the
parameter default table (PDT) by a keyword parameter default table (KPDTAB).
KPDTAB of macro BETA would have only k entries in it. To note that the first entry
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It invokes Algorithm 4.2 for every macro definition in the program. Step 1 ini-
tializes pointers to the sequencing symbol name table (SSNTAB) and parameter
name table (PNTAB). Step 2 processes the prototype statement to collect names of
parameters and their defaults in the parameter name table (PNTAB) and the keyword
parameter default table (KPDTAB), respectively, and sets the fields name, #PP and
#KP of the macro name table (MNT) entry. Step 3 generates the intermediate code
for model statements and the preprocessor statements SET, AIF, and AGO appearing
in the body of code in macro definition. This step also enters names of local expan-
sion time variables in the EVNTAB. Note that an LCL statement is not entered in
the MDT. The algorithm does not handle GBL statements; their handling is left as an
exercise to the reader.

Algorithm 4.2 (Processing of a macro definition)

1. PNTAB ptr .= |1;
SSNTAB ptr = 1,
2. Process the macro prototype statement and form the MNT entry for the macro
{a) name = macro name; #PP := (; #KP := (;
(b) For each positional parameter
(1) Enter parameter name in PNTAB [PNTAB ptr].
(1) PNTAB ptr := PNTAB ptr + 1,
(iii)) #PP .= #PP + |;
(¢) KPDTP := KPDTAB ptr;
(d) For each keyword parameter

(1) Enter parameter name and default value (if any), in the entry
KPDTAB |KPDTAB pir].
(11) Enter parameter name in PNTAB [PNTAB pir].
(1) KPDTAB ptr := KPDTAB ptr + 1;
(iv) PNTAB ptr .= PNTAB pir + 1;
(v) #KP = #KP + 1;
(e) MDTP := MDT ptr,
() #EV =0
(g) SSTP := SSTAB _ptr;
3. While not a MEND statement

(a) If an LCL statement then
For each expansion time vanable declared in the statement:
Enter name of the expansion time variable in EVNTAB.
#EV =#EV + 1

ib) It 2 model statement then
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In this code macro calls appearing in the source program have been expanded but
the expanded statements may themselves contain macro calls. The macro expan-
sion scheme can be applied to the first level expanded code to expand these macro
calls and so on, until we obtain a program form which does not contain any macro
calls. This scheme would be slow because it requires a number of passes of macro
expansion,

A more efficient approach would be to examine each statement generated during
macro expansion to check whether it is itself a macro call. If so, a provision can be
made to expand this call before continuing with the expansion of its parent macro
call. This approach avoids multiple passes of macro expansion, thus ensuring pro-
cessing efficiency. The macro expansion scheme of Section 4.6.4 would have to be
modified to suit this approach.

Consider the situation during generation of the ADD statement marked [3]in Fig-
ure 4.5. Expansion of two macro calls would be in progress at this moment—
the outer macro COMPUTE and the inner macro INCR_D. The model statements
of INCR_D would be expanded using the expansion time data structures MEC,
APTAB, EVTAB, APTAB ptr and EVTAB_ptr. A MEND statement encountered dur-
ing the expansion would signal completion of the inner macro’s expansion. It should
lead to resumption of the outer macro’s expansion, so the MEC, APTAB, EVTAB,
APTAB _ptr and EVTAB _ptr would have to be restored to the values they had while the
macro COMPUTE was being expanded. When the MEND statement is encountered
during the processing of COMPUTE, it would signal that expansion of the nested
macro call 1s complete.

Thus, the following two provisions are needed to implement the expansion of
nested macro calls:

I. Each macro under expansion should have its own set of the data structures
MEC, APTAB, EVTAB, APTAB ptr and EVTAB ptr.

2. An expansion nesting counter (Nest_cntr) should be maintained to count the
number of nested macro calls. Nest_cntr would be incremented when a macro
call is recognized and decremented when a MEND statement is encountered.
Thus Nest_cntr = 1 would indicate that a first level macro call is being
expanded, while Nesi_cntr > 1 would indicate that a nested macro call is being
expanded.

The first provision implies creation of many copies of the expansion time data
structures. These can be stored in the form of an array. For example, we can have an
array called APTAB_ARRAY, each element of which is an APTAB. APTAB for the
innermost macro call would be given by APTAB_ARRAY [Nest_cntr]. This arrange-
ment would provide access efficiency. However, 1t is expensive in terms of memory
requirements. It also involves a difficult design decision—how many copies of the
data structures should be created? If too many copies are created, some copies may
never be used. If too few are created, processing of an assembly program would have
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MEC, EVTAB ptr, APTAB and EVTAB are allocated on the stack in that order. As
explained below, the APTAB ptr is not needed. During macro expansion, the various
data structures are accessed with reference to the value contained in RB as follows:

Data structure Address
Reserved pointer O(RB)
MEC I1{RB)
EVIAB ptr 2(RB)
APTAB 3RB) to #eaprag+2(RB)
EVTAB Heaprap+3(RB) to #eaprap+ #EEV]'AB'I-Z(RB}

where [{RB) stands tor “contents of RB+1" and #esprap. #epvrtap are the number of
entries in the APTAB and EVTAB, respectively. Note that the first entry of APTAB
always has the address 3(RB). It eliminates the need for APTAB pir.

At a MEND statement, a record would be popped off the stack by setting TOS
to the end of the previous record. It would now be necessary to set RB to point to
the start of the previous record in stack. It is achieved by using the entry marked
‘reserved pointer’ in the expansion record. This entry always points to the start of
the previous expansion record in stack. While popping off a record, the value con-
tained in this entry can be loaded into RB. It has the effect of restoring access to the
expansion time data structures used by the outer macro.

Actions at the start of macro expansion are summarized in Table 4.1. The first
statement increments TOS to point at the first word of the new expansion record. This
1s the reserved pointer. The ™" mark in the second statement TOS"® := RB indicates
indirection. This statement deposits the address of the previous record base into the
first word of the new expansion record. New RB 1s now established in Statement 3.
Statements 4 and 5 set MEC and EVTAB pir respectively, Statement 6 sets TOS to
point to the last entry of the expansion record.

Table 4.1 Acuons at start of macro expansion

No. Statement

. TOS = TOS+I;

2. TO8* = RB;

3. RB = TOS;

4. 1RB) = MDTPentry of MNT;

5. 2(RB) := RB+3+#eapran:

6, TOS = TOS + Heaprag + #EEV?HH+2;

Actions al the end of expansion are summarized in Table 4.2, The first statement
pops an expansion record off the stack by resetting TOS to the value 1t had while the
outer macro was being expanded. RB is then made to point at the base of the previous
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The use of the macro’s name in the program constitutes a macro call. The
macro call statement contains actual parameters of the call. The language proces-
sor replaces the macro call statement by a sequence of statements that implements
the defined operation or the method of declanng data. This action is called macre
expansion. Macro expansion is performed by considering statements appearing in
the macro’s definition and actual parameters used in a macro call. In fexical substi-
tution the language processor merely substitutes actual parameters in place of formal
parameters used in a statement. In semantic expansion, it generates a sequence of
statements that 1s tailored to the requirements of each call. We discuss expansion of
macros in an assembly language program by using a macro preprocessor, which per-
forms macro expansion and produces an assembly language program. This program
can be assembled by using a conventional assembler.

A macro’s definition consists of a macro prototype statement, which mentions the
name and parameters of the macro, model statements that are used in macro expan-
sion, and macro preprocessor statements that facilitate semantic expansion. During
macro expansion, the preprocessor uses a macro expansion counter (MEC) to keep
track of which statement 1n the macro’s body should be considered next for expan-
sion. During expansion of that statement, it replaces a formal parameter by its value.
The formal parameters of a macro can be of two kinds. A positional parameter s
one whose value is the actual parameter that occupies the same ordinal position in the
actual parameter list. In the case of a keyword parameter, its value is explicitly indi-
cated 1n the actual parameter list by using its name. A macro prototype statement can
also indicate default values for keyword parameters. Semantic expansion 18 achieved
by altering the expansion time control flow through the use of macro preprocessor
statements to achieve either conditional expansion or expansion time loops. The AlIF
and AGO statements perform conditional and unconditional transfer of expansion
time control flow. A macro can use expansion time variables to facilitate semantic
gxpansion.

Algorithms for use in a macro preprocessor are discussed. An intermediate code
1s generated from a macro’s definition to facilitate its expansion. The macro prepro-
cessor maintains tables to store information about values of positional and keyword
parameters, and the macro expansion counter to know which model statement should
be expanded next. Macro calls may be nested. When a nested call 1s encountered,
the preprocessor suspends the macro expansion in which it was engaged and expands
the inner macro call before resuming the suspended expansion. A stack i1s used to
hold the macro expansion data structures during processing of nested macro calls.

TEST YOUR CONCEFPTS

I. Classify each of the following statements as true or false:

(a) Semantic expansion makes a macro adaptive.

(b) A macro preprocessor expands macro calls in an assembly program and also
assembles the expanded program.
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(a) Code space requirements

(b) Execution speed
{¢) Processing required by the assembier

(d) Flexibility and generality.
10. An assembly language program performs a certain action at 10 places. Under what
conditions would you code this action as
{a) A macro?
(b) A subroutine?
Justify your answer with the help of appropriate examples.
11. Solve the first few problems of this exercise by using REPT and IRP statements.

12. Extend the macro preprocessor described in this chapter to support the following
features:

(a) REPT and IRP statements discussed in Section 4.5.2
(b) Global expansion time variables
(¢) Nested macro calls.
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CHAPTER 5

Linkers and Loaders

A programming language provides a library of routines for tasks such as creation,
reading and writing of files; and evaluation of mathematical and other functions
provided in the language. While compiling a program involving any of these tasks,
the language translator generates a call on the appropnate library routine. Thus, the
code of a target program cannot execute all by itself even if it is in the machine
language; it has to be combined with codes of the library routines before it can be
executed. A program may also wish to invoke other programs written in the pro-
gramming language. In such cases, its code has to be similarly combined with codes
of these programs.

The linker 1s a system program that combines the code of a target program with
codes of other programs and library routines. To facilitate linking, the language
translator builds an object module for a program which contains both target code of
the program and information about other programs and library routines that it needs
to invoke during its execution. The linker extracts this information from the object
module, locates the needed programs and routines and combines them with the target
code of the program to produce a program in the machine language that can execute
without requiring the assistance of any other program. Such a program is called a
binary program. The loader i1s a system program that loads a binary program in
memory for execution.

In this chapter we discuss the format of object modules, the functions of linking,

relocation and loading; different ways of performing these functions and their com-
parative benefits.
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5.1 INTRODUCTION

Execution of a program written in a programming language is achieved in the
following four steps:

e Translation: A program is translated into a target program.

e Linking: The code of a target program is combined with codes of those
programs and library routines that it calls.

e Relocation: A program may have been coded or translated with the idea of
executing it in a specific area of memory. However, the operating system may
have used that memory area for another purpose, so it may allocate a different
memory area for the program’s execution. Relocation is the action of changing
the memory addresses used in the code of the program so that 1t can execute
correctly in the allocated memory area.

e Loading: The program is loaded in a specific memory area for execution.

Figure 5.1 contains a schematic showing these steps in the execution of a
program. It uses many system programs. The franslator generates a program form
called the object module for the program. The linker program performs linking and
relocation of a set of object modules to produce a ready-to-execute program form
called the binary program. The loader program loads a binary program in memory
for execution. It may perform relocation during loading. As shown in the schematic,
the object module(s) and binary programs can be stored in files so that they can be
used repeatedly.

Data
'
Source o Ty . ' . Binary - -
program Translator Linker Loader program Results
Object Binary — Data flow
modules programs - —» Control flow

Figure 5.1 Schematic of a program’s execution

Translated, linked and load time addresses

While compiling a program, the language translator needs to know what memory
address the first memory word of the target program should have. We call it the origin
of the program. The origin should be either specified to the language translator, or
it would have to be assumed. (In an assembly program, the origin 1s specified in a
START or ORIGIN statement.) The ongin may be changed before the program reaches
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Let IRRp be the set of instructions in program P that require relocation. Fol-
lowing (5.2), relocation of program P can be performed by computing the relocation
factor for P and adding 1t to the translation time address(es) used in every instruction
i included in IRRp.

Example 5.3 (Relocation of a program) For the program of Example 5.2

Relocation factor = 900 — 500
= 4(K).

Relocation i1s performed as follows: [RRp contains the instructions with translated
addresses 500 and 538. The instruction with translated address 500 contains the
address 540 in the operand field. This address is changed to (540+400) = 940. The
instruction with translated address 538 contains the address 501 in the operand field.

Adding 400 to this address makes 1t 901. It implements the relocation explained in
Example 5.2.

5.2.2 Linking

A program unit 1s any program or routine that is to be linked with another program
or routine. For simplicity, we assume that each program unit has been assembled
separately to produce an object module (see Figure 5.1).

Let an application consist of a set of program units SP = {P;}. Now consider a
program unit P; that requires the use of another program unit P; during its execution—
either it uses the address of some instruction in P; in one of its instructions, possibly
in a subroutine call instruction, or it uses the address of some data defined in P; in
one of its instructions. To form a binary program by combining P; and P;, linked
addresses of relevant instructions or data located in P; have to be supplied to P;’s
instructions. It is achieved by using the following linking related concepts:

e Public definition: A symbol defined in a program unit that may be referenced
in other program units.

o External reference: A reference to a symbol that is not defined in the program

unit containing the reference.

Thus if other program units wish to use an instruction or data of program unit P;,
a symbol should be associated with that instruction or data and the symbol shouid be
declared as a public defimtion in P;. A use of the symbol in program unit P; would
constitute an external reference.

EXTRN and ENTRY statements

An ENTRY statement in a program unit lists the public definitions of the program unit.
An EXTRN statement lists the symbols to which external references are made in the
program unit. Example 5.4 illustrates use of these statements.
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5.3.1 Scheme for Relocation

The linker uses an area of memory called the work area for constructing the binary
program. It loads the machine language program found in the program component of
an object module into the work area and relocates the address sensitive instructions

in it by processing entries of the RELOCTAB. For each RELOCTARB entry, the linker
determines the address of the word in the work area that contains the address sensi-
tive instruction and relocates it. The details of the address computation would depend
on whether the linker loads and relocates one object module at a time, or loads all
object modules that are to be linked together into the work area before performing
relocation. The former approach is assumed in this section because it requires a small
work area——the work area needs to be only as large as the largest of the programs
being linked.

Algorithm 5.1 (Program relocation)

l. program_linked_origin ;= <link origin> from the linker command;
2. For each object module mentioned in the linker command

(a) r.origin := translated origin of the object module;
OM _size = size of the object module;

(b) relocation_factor := program_linked _origin — t_origin;
(c) Read the machine language program contained in the program compo-
nent of the object module into the work_area.

(d) Read RELOCTAB of the object module.
(e) For each entry in RELOCTAB

(1) transiated_address ‘= address found in the RELOCTAB entry;

(11) address_in_work_area = address of work_area
+ translated_address — t_origin;
(1) Add relocation_factor to the operand address found in the word that
has the address address_in_work_areaq.

(f) program_linked_origin = program_linked_origin + OM _size;

The computations performed in the algorithm are along the lines described in
Section 5.2.1. program_linked_origin contains the linked address that should be
assigned to an object module. It is initialized to <link origin> from the linker
command and after processing an object module it is incremented by the size of the
object module in Step 2(f) so that the next object module would be granted the next
available linked address. For each entry in the RELOCTAB, Step 2(e)(ii) computes
the address of the word in the work area that contains the address sensitive instruc-
tion. It 1s computed by calculating the offset of this instruction within the program
of the object module and adding it to the start address of the work area.
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the relocation factor and perform relocation. It is achieved as follows: The computer
provides a *branch to subroutine’ instruction. When this instruction is executed, the
CPU would transfer control to the first instruction of a subroutine and load a return
address in a CPU register. The return address is simply the address of the instruction
that follows the *branch to subroutine’ instruction. The code of the subroutine would
use the return address to transfer control back to the program that had invoked it. The
relocating logic in a self-relocating program would execute a *branch to subroutine’
instruction that would merely transfer control to its own next instruction. This way
the relocating logic would retain control of the execution, but the CPU would load
the address of its next instruction into a CPU register as the return address. The relo-
cating logic can obtain its own load address by subtracting the length of the ‘branch
to subroutine’ instruction from this return address, and use 1t to perform relocation
of the program. After relocation it would transfer control to the instructions that
implement the program’s logic.

5.5 LINKING IN MS DOS

We discuss the design of a linker for the Intel 8088/80x86 processors which resem-
bles LINK of MS DOS in many respects. The design uses the schemes of linking and
relocation developed in the previous section. The Intel 8088 uses segment-based ad-
dressing which was discussed in Section 3.5. We begin by discussing the relocation
and linking requirements in segment-based addressing.

5.5.1 Relocation and Linking Requirements in Segment-Based Addressing

In segment-based addressing, a memory address has two components—the start
address of a segment and an offset within a segment. To address a memory operand,
an instruction mentions 1ts offset and a segment register that 1s expected to contain
the segment’s address. This method of addressing avoids use of absolute addresses
of memory operands in instructions, so instructions are not address sensitive. Exam-
ple 5.9 explains how use of segment-based addressing reduces the relocation require-
ments of a program.

Example 5.9 (Relocation and linking in segment-based addressing) The program of Fig-
ure 5.4 1s written in the assembly language of the Intel BO8E, which was discussed
in Section 3.5.3. The ASSUME statement indicates that the segment registers CS and
DS would contain addresses of the segments SAMPLE and DATA_HERE during the pro-
gram'’s execution. Hence all memory addressing 1s performed by using suitable dis-
placements from contents of the CS and DS registers. The program itself loads an
address in the DS register, whereas the CS register 1s presumably loaded either by a
calling program or by the OS. The translation time address of symbel A 15 0196. In
statement 16, a reference to A 1s assembled as a displacement of 196 from the contents
of the CS register. If segment SAMPLE is to be loaded in memory starting at the address
2000, the CS register would be loaded with the address 2000 by a calling program or
by the OS. The effective operand address would be calculated as <CS>> + 0196, which
would be the correct address 2196, A similar situation exists with the reference to B
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Table 5.1 Object records of Intel 8088

Record tvpe  Id (Hex) Description

THEADR 8i) Translator header record
[LLNAMES 06 List of names record

SEGDEF 99 Segment definition record
EXTDEF 8C External names definition record
PUBDEF 91 Public names definition record
LEDATA Al Enumerated data (binary image)
LIDATA Al Repeated data (binary image)
FIXUPP 9D Fixup (i.e., relocation) record

MODEND "B Module end record

THEADK, LINAMES and SEGDEF records

The module name in the THEADR record is typically derived by the translator from
the source file name. This name is used by the linker to report errors. An assembly
programmer can specify the module name in the NAME directive. The LNAMES
record stmply contains a list of names. A SEGDEF record indicates the name of a
segment by using an index into the list of names contained in LNAMES records. The
attributes field of a SEGDEF record indicates whether the segment 1s relocatable or
absolute, whether (and in what manner) 1t can be combined with other segments, and
the alignment requirement of its base address (whether byvte, word or paragraph, 1.e.,
16 byte, alignment). The artributes held also contains the ongin specification for
an absolute segment. Stack segments having the same name are concatenated with
each other. Common segments are used to implement the COMMON statement of
Fortran. Hence COMMON segments having the same name are overlapped with one
another.

EXTDEF and PUBDEF records

The EXTDEF record contains a list of symbolic names to which external references
are made in the segments of this module. A FIXUPP record refers to an external
symbolic- name by using an index into this list. A PUBDEF record contains a list
of public names that are declared in a segment of the object module. The segment
18 1dentified by the base specification field. Each (name, offser) pair in the record
defines one public name by specitying the symbolic name and its offset within the
segment designated by the base specification.

LEDATA records

An LEDATA record contains the binary image of the code and data generated by the
language translator. segment index identifies the segment 1o which the code belongs,
and offset specifies the location of the code within the segment.
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Object Module FIRST

Ivpe  Length Other fields Check sum

g0H (05 FIRST THEADR
86H 07 COMPUTE LNAMES
98H 20H 124 01 SEGDEF
90H 01 05 ALPHA 0015 PUBDEF
90H 01 04 BETA 0084 PUBDEF
8CH 03 PHI 03 PSI EXTDEF
AOH 01 0028 A1 00 00 LEDATA
9CH 8801 06 01 01 FIXUPP
AOH 01 0056 A1 00 0O LEDATA
aCH 8401 06 01 02 FIXUPP
8AH COH €1 00 MODEND

Object Module SECOND

Tvpe Length Other fields Check sum

80H 06 SECOND THEADR
96H 05 PART2 LNAMES
9gH 60H 398 01 SEGDEF
S0OH 01 03 PHI 0033 PUBDEF
90H 01 03 PSI 00859 PUBDEF
8CH 05 ALPHA 04 BETA 05 GAMMA EXTDEF
AOH 01 0018 EA OC 00 00 0OC LEDATA
9CH 8C01 06 01 02 FIXUPP
AOH 01 0245 8D 1E Q0 QO LEDATA
SCH 8C02 02 01 01 00 20H FIXUPP
ACH 01 0279 A1 00 QO LEDATA
9CH 8801 06 01 03 FIXUPP
8AH 80H MODEND

Figure 5.7 MS DOS object modules

LEA

BX, ALPHA+20H

This statement 1s assumed to have been assembled with zeroes in the operand field.
It 1s hixed by using the code 8C in locat, which implies loc code = *3°, code ‘2" in fix
data, and putting the displacement 20H in the rarget displacement field of the FIXUPP
record. (Note that code *6° could have been used in the fix data field as discussed in
Example 5.10).

5.5.3 Design of the Linker

We shall design a program named LINKER which performs both linking and reloca-
tion of absolute segments and of relocatable segments that cannot be combined with
other relocatable segments. Its output is a binary program which resembles a pro-
gram with .COM extension in MS DOS. This program is not relocated by the loader
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The LINKER performs autolinking when 1t finds that some external name alpha
referenced in one of the object modules is not present in the NTAB. An object module
that contains a public definition for alpha i1s located in one of the library files in </ist
of library files>> and 1t 1s included in the set of object modules to be linked. To enable
resolution of the external reference to alpha, the public definitions located in the
new object module should be added to the NTAB. It 1s implemented by performing
the first pass of the LINKER program on the new object module. Processing of the
FIXUPP record which triggered off autolinking for alpha is then resumed.

Algorithm 5.4 (Second pass of the LINKER program)

1. list_of_object_modules := Object modules named in the LINKER command;
2. Repeat Step 3 until list_of _object_modules is empty.
3. Select an object module and process its object records.

(a) If an LNAMES record
Enter the names in NAMELIST.

(b) If a SEGDEF record
(1) i := name index:;
(1) segment_name = NAMELIST|{];
(iii) Enter (segment_name, linked address from NTAB) in the i entry of
the SEGTAB.

(¢} If an EXTDEF record

(1) external_name := name [rom EXTDEF record;

(11) If external_name 1s not found in NTAB, then
A. Locate an object module in the library which contains exter-

nal_name as a segment name or a public definition,
. Add name of the object module to list_of_object_modules.

B

C. Add the symbols defined as public definitions in the new
module to the NTAB by performing the first pass, i.e., Algo-
rithm 3.3, for the new object module,

(1n1) Enter (external_name, linked address from NTAB) in EXTTAB.

(d) If an LEDATA record
(1) i:= segment index; d = data offset.
(11) program_linked origin ;= SEGTAB | i |.linked address:;
(11) address_in_work_area := address of work_area +
program_linked_origin — <load origin> + d,
(iv) Move data from LEDATA into the memory area starting at the
address address_in_work_area.

(e) If a FIXUPP record, for each FIXUPP specification
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produces a single binary program containing all overlays and stores it in <executable
file>,

The binary program produced by the MS DOS linker contains two provisions
to support overlays. First, an overlay manager 1s included in the executable file. It
is responsible for loading overlays when needed. Second, each procedure call that
crosses an overlay boundary is replaced by an interrupt producing instruction. This
interrupt would be processed by the overlay manager and the appropriate overlay
would be loaded in memory. If each overlay was structured into a separate binary
program, a procedure call which crosses an overlay boundary would lead to an inter-
rupt which would be attended to by the kernel of the operating system. The kernel
would transfer control to the loader to load the appropriate binary program in mem-
ory. This way an overlay manager need not be made a part of an overlay structured
program.

Changes in the LINKER algorithms

The basic change required in the LINKER algorithms of Section 5.5.3 is in the
assignment of linked addresses to segments. The vanable program_linked .origin
can be used as before while processing the root portion of a program. The size of the
root would decide the load address of the overlays. program_linked_origin should
be initialized to this value while processing every overlay. Another change in the
LINKER algorithm would be in the handling of procedure calls that cross overlay
boundaries. The LINKER has to identify an inter-overlay call and determine the des-
tination overlay. This information should be made available to the overlay manager
or the kernel of the OS which is activated through the interrupt instruction. Handling
of interrupts 1s discussed later in Section 10.2.4.

An open issue in the linking of overlay structured programs is the handling of
object modules that would be added through autolinking: Should these object mod-
ules be added to the current overlay or to the root of the program? The latter approach
would be appropriate if an autolinked procedure uses static or own data, however it
may increase the memory requirement of the program.

5.7 DYNAMIC LINKING

In static linking, the linker links all modules of a program before its execution begins;
it produces a binary program that does not contain any unresolved external refer-
ences. The linking schemes discussed in previous sections have been static linking
schemes. If several statically linked programs use the same module from a library,
each program will get a private copy of the module. If many programs that use
the module are in execution at the same time, many copies of the module might be
present in memory.

Dynamic linking 1s Perfurmed during execution of a binary program. The linker is
invoked when an unresolved external reference is encountered during its execution.
The linker resolves the external reference and resumes execution of the program.
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The two key issues that need to be addressed by a linker are relocation of a pro-
gram, which enables a program to execute in an area of memory other than the mem-
ory area for which it was translated, and linking of a program with other programs
and library routines. An address sensitive instruction in a program is an nstruc-
tion that contains an absolute memory address. Such an instruction cannot execute
correctly if the program is moved to another area of memory. Relocation involves
appropriate modification of the address sensitive instructions in a program so that
the program can execute correctly in a different area of memory. It is achieved as
follows: The translated origin of a program is the address assigned to its first in-
struction by the translator, and the linked origin is the address assigned to its first
instruction by the linker. The relocation factor is the difference between these two
addresses. The linker modifies the address used in an address-sensitive instruction
by adding the relocation factor to it.

A language translator produces a program form called object module which con-
tains information useful for linking. A public definition 1s a symbol defined in the
program that may be referred to in other programs. An external reference in a pro-
gram 1s a reference in one of its instructions to a symbol that 1s defined in some
other program. To perform linking, the linker processes all the object modules that
are to be linked together, performs memory allocation to assign linked addresses to
all public definitions, and replaces each external reference by the linked address of
the referenced symbol. These tasks can be performed by using a classic two-pass
organization.

Linking can be performed either statically or dynamically. Schemes for both
kinds of linking are discussed. Design of a linker using the MS DOS object modules
1s developed. Design of a loader and its variants called absolute loaders, relocating
loaders and bootstrap loaders are also discussed.

TEST YOUR CONCEPTS

I. Classify each of the following statements as true or false:

(a) A program must have the same load ongin every time 1t 1s executed.
(b) Every symbol defined in a program constitutes a public definition.
(¢) Relocation tactor cannot be negative.

(d) Whle linking many object modules to form a binary program, the linker assigns
the same relocation factor to all object modules.

(e) In a two-pass linker, external references are resolved in the first pass.

(f) A dynamic linker resolves external references during a program’s execution.

(g) A self-relocating program is loaded in memory by using an absolute loader.

(h} Use of a segment register reduces the number of address sensitive instructions
in a program,
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12. Modify the passes of LINKER to perform the linking of an overlay structured pro-
gram. (Hint: Should each overlay have a separate NTAB?)

13. This chapter has discussed szatic relocation. Dynamic relocation implies relocation
during the execution of a program, for example, a program executing in one area
of memory may be suspended, relocated to execute in another area of memory and
resumed there. Discuss how dynamic relocation can be performed.

14. An inter-overlay call in an overlay structured program is expensive from the execu-
tion viewpoint. It is therefore proposed that if sufficient memory is available during
program execution, all overlays can be loaded into memory so that each inter-overlay
call can simply be executed as an inter-segment call, Comment on the feasibility of
this proposal and develop a design for it.

15. Compare the .COM files in MS DOS with an object module. (MS DOS object
modules are contained in files with .OBJ extension.)

16. Itis proposed to perform dynamic linking and loading of the program units constitut-
ing an application. Comment on the nature of the information which would have to be
maintained during the execution of a program.
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CHAPTER 6

Scanning and Parsing

We saw two kinds of language processors in Chapter 2. A program generator gener-
ates a program in a procedure oriented language from its specification. A translator
helps in implementing a program written in a programming language—a compiler
generates an equivalent program in a machine language which has to be executed
to achieve the computations described in the program, whereas an interpreter itself
performs the computations described in the program.

The 1nput to a language processor 1s written in its source language. The source
language for a program generator is the language used for specifying the program.
The source language for a translator is the programming language in which a program
1s written. As discussed in Section 2.3.2.1, the front end of the language proces-
sor performs lexical analysis, syntax analysis and semantic analysis of its input. A
grammar of the source language forms the basis of these analyses. It is comprised
of the rules for forming lexical units such as identifiers and constants, and syntactic
constructs such as expressions and statements in the source language. A grammar
should provide sufficient flexibility to users of the source language. It should also
avoid ambiguity so that the meaning of a program would be uniquely defined.

A scanner 1s that part of the language processor that performs lexical analysis of
the input in accordance with the grammar, whereas a parser is that part that performs
syntax analysis. We discuss various kinds of grammars and their properties and the
fundamental techniques of scanning and parsing. We also discuss practical vanants
of parsing techniques that are both efficient and capable of providing precise diag-
nostics. In the end, we discuss the language processor development tools LEX and
YACC that are used to generate programs that would perform scanning and parsing,
respectively.
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6.1 PROGRAMMING LANGUAGE GRAMMARS

A formal language 1s one that can be considered to be a collection of valid sentences,
where each sentence can be looked upon as a sequence of words, and each word
as a sequence of graphic symbols acceptable in the language. A formal language
grammar is a set of lexical and syntactic rules which precisely specify the words and
sentences of a language, respectively.

Programming languages are formal languages. Natural languages are not formal
languages because their vocabularies cannot be specified by a set of lexical rules.
However, a subset of a natural language may be a formal language; we will use
examples from a very limited subset of English.

Terminal symbols, alphabet and strings

The alphabet of a language L is the collection of graphic symbols such as letters and
punctuation marks used in L. It 1s denoted by the Greek symbol 2. We will use lower
case letters a, b, ¢, etc., to denote symbols in Z. A symbol in the alphabet is known as
a terminal symbol of L. The alphabet can be represented by using the mathematical
notation of a set, e.g.,

¥*=4{a,b,...2,0,1,...9}

Here the symbols {, *,” and } are part of the notation. We call them merasymbols
to diftferentiate them from terminal symbols. Throughout this discussion we assume
that metasymbols are distinct from terminal symbols. If this 1s not the case, 1.e., 1l a
terminal symbol and a metasymbol are identical, we enclose the terminal symbol in
quotes to differentiate it from the metasymbol. For example, the set of punctuation
symbols of English can be defined as

S B %5 wivas 3
where *." denotes the terminal symbol ‘comma’.

A string 1s a finite sequence of symbols. We will represent strings by Greek
symbols ¢, B, v, etc. Thus ¢ = axy is a string over X. The length of a string is the
number of symbols in it. Note that the absence of any symbol is also a string, the null
string €. The concatenation operation combines two strings into a single string. It is
represented by the symbol °."; this symbol 1s omatted if the concatenation operation
is obvious from the context. Thus, given two strings « and [, concatenation of o
with [} yields a string which is formed by putting the sequence of symbols forming
« before the sequence of symbols forming . For example, if o = ab, B = axy, then
concatenation of & and [, represented as o.f or simply af, gives the string abaxy.
The null string can also participate in a concatenation, thus a.€ = £.a = a.

Nonterminal symbols

A nonterminal symbol 1s the name of a syntax category of a language, e.g., noun,
verb, etc. A nonterminal symbol is written as a single capital letter, or as a name
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according to Grammar (6.2) we perform reductions in the following sequence:

Step String
(). the boy ate an apple
1 < Article > boy ate an apple
2 < Article > < Noun > ate an apple
3 < Anicle > < Noun >» < Verb > an apple
4 < Article > < Noun > < Verb > < Article > apple
5 < Article > < Noun > < Verb > < Article > < Noun >
6 < Noun Phrase > < Verb > < Article > < Noun >
7 < Nowun Phrase > < Verb > < Noun Phrase >
8 < Noun Phrase > < Verb Phrase >
9 < Sentence >

The string is a sentence of L because
the boy ate an apple — < Sentence >.

Parse trees

The sequence of derivations that produces a string from the distinguished symbol or
the sequence of reductions that reduces the string to the distinguished symbol reveals
the string’s syntactic structure. We use a parse tree to depict the syntactic structure
of a string. A part of the parse tree 1s bmlt at every derivation or reduction.

Consider the production S ::= ... NT, .... When a derivation is made according
to this production, we build the following e¢lemental parse tree:

S
AN
vor NT; -

If the next step in the derivation replaces NT; by some string 3, we build the
following elemental parse tree to depict this derivation

llllllllllll

String 3
and combine this tree with the previous tree by replacing the node of NT; in the first
tree by this tree. In essence, the parse tree has grown in the downward direction due to
a derivation. We can obtain a parse tree from a sequence of reductions by performing
the converse actions, i1.e., by building an elemental parse tree to indicate how a string
of terminal and nonterminal symbols i1s replaced by a singie nonterminal. Such a tree
would grow in the upward direction. Example 6.6 illustrates parse trees.



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



206 Systems Programming

a string containing a single terminal symbol and a single nonterminal symbol—
gives some practical advantages n scanning (we shall see thus aspect in Chap-
ter 7). However, the nature of the productions restricts the expressive power of these
grammars, e.g., nesting of constructs or matching of parentheses cannot be speci-
fied using such productions. Hence the use of Type-3 productions 1s restricted to the
specification of lexical units, e.g., identifiers, constants, labels, etc. The productions
for < const > and < id > in Grammar (6.3) are in fact Type-3 in nature. It can be
seen clearly when we rewrite the production for < id > in a form that resembles B t

| t as
<id>u=ll<id>l|<id>d

where / and 4 stand for a letter and a digit, respectively.

Type-3 grammars are also known as linear grammars or regular grammars.
These are further categorized into left-linear and nght-linear grammars depending
on whether the nonterminal symbol in the RHS altermative appears at the extreme
left or extreme right.

Operator grammars

Definition 6.2 (Operator grammar (OG)) Productions of an operator grammar do not
contain two or more consecutive nonterminal symbols in any RHS alternative.

Thus, nonterminal symbols occurring in an RHS string are separated by one or
more terminal symbols. Each such terminal symbol is called an operator of the
grammar. As discussed later in Chapter 7, strings specified by using an operator
grammar can be parsed in a simple and efficient manner. Example 6.7 discusses an

operator grammar.

Example 6.7 (Operator grammar) Grammar (6.3} is an operator grammar because it sat-
isfies Definition 6.2. The symbols *1’, *+", *+’, *(" and *)" are the operators of the
gramimar,

6.1.2 Ambiguity in Grammatic Specification

A grammar 15 ambiguous 1f a string can be interpreted 1n two or more ways by using
it. In natural languages, ambiguity may concern the meaning of a word, the syntax
category of a word, or the syntactic structure of a construct. For example, a word
can have multiple meanings or it can be both a noun and a verb (e.g., the word “base’
can mean a chemical base, a military base, or the construction of a foundation), and
a sentence can have more than one syntactic structure (e.g., "‘police was ordered 10
stop speeding on roads”). |

in a formal language grammar, ambiguity would arise if identical strings can
occur on the RHS of two or more productions. For example, if a grammar has the
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transition, or simply a transition. Thus, the current state of a finite state automaton 18
determined by the string of source symbols it has processed so far. If a string is valid,
this state is called a final state of the finite state automaton. A formal definition of a
finite state automaton follows.

Definition 6.3 (Finite state automaton (FSA)) A finite state automaton is a triple (S, L,
T) where

S is a finite set of states, one of which is the imtial state s,
and one or more of which are the final states

is the alphabet of source symbols

is @ finite set of state transitions defining transitions out of
states in § on encountering symbols in L.

~ M

A deterministic finite state automaton (DFA) 1s a finite state automaton none of
whose states has two or more transitions for the same source symbol. The DFA has
the property that it reaches a unique state for every source string input to it.

Each transition of the DFA can be represented by the triple (old state, source
symbol, new state). The transitions in T can thus be represented by a set of such
triples. Alternatively, the transitions of the DFA can be represented in the form of a
state transition table (STT) which has one row for each state s; in S and one column
for each symbol symb in Z. The entry STT (s;, symb) in the table indicates the id of
the new state which the DFA would enter if the source symbol symb was input to it
while it was in state 5;. Thus, the entry STT (s;, symb) = 5; and the triple (s;, symb, s;)
contain equivalent information. The entry STT (s;, symb) would be blank if the DFA
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